
Impact of Implementation Design
Tradeoffs on Performance:

The PDP-li, A Case Study

Edward A. Snow
Daniel P. Siewiorek
February 19, 1978

Departments of Electrical Engineering
and Computer Science

Carnegie-Merion University
Pittsburgh, Pennsylvania

DEPARTMENT
of

COMPUTER SCIENCE

CMU-CS-78-1B4

Carnegle-Mellon University

Impact of Implementation Design
Tradeoffs on Performance:

The PDP-II, A Case Study

Edward A. Snow
Daniel P. Siewiorek
February 19, 1978

Departments of Electrical Engineering
and Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania

CMU-CS-78-134

In order to develop methodologies that are useful in the design of complex
systems, existing designs must be studied. The DEC PDP-l1 was selected for a case
study since there are a number of designs (eight considered here), the designs span a
wide range in basic performance (7:1) and component technology (bipolar SSI to MOS
LSI), and th~ designs represent relatively complex systems.

The goals of the paper are two-fold: 1} to provide actual data about design
tradeoffs and 2) to suggest design methodologies based on this data. An archetypical
PDP-11 implementation is described followed by model specific variations. These
variations represent the design tradeoffs which are classified by area: technology,
control, and data path.

Two methodologies are presented. A top-down approach uses microcycle and
memory read pause times to account for 901. of the variation in processor
performance. This approach can be used in initial system planning. A bottom-up
approach uses relative frequency of functions to determine the impact of design
fradeoffs on performance. This approach can be used in design space exploration of a
single design. Finally, the general cost/performance design tradeoffs used in the
PDP-11 are summarized.

This research was supported in part by the National Science Foundation under
grant GJ-32758X and by an IBM Fellowship. Engineering documentation was supplied
by Digital Equipment Corporation.

@ 1978 by Edward A. Snow and Daniel P. Siewiorek

Contents

1. Introduction
2. Architectural Overview

2.1. Memory and Processor State
2.2. Addressing Modes and Instruction Set
2.3. The UNIBUS

3. Implementation of Medium-Performance PDP-lIs
3.1. Common Implementation Features

3.1.1. Data Paths
3.1.2. Control Unit
3.1.3. Typical Instruction Interpretation Cycle

3.2. Characterization of Individual Implementations
3.2.1. PDP-ll /20
3.2.2. PDP-11/40
3.2.3. PDP-Ill 1 0
3.2.4. PDP-l1/04
3.2.5. PDP-ll/34
3.2.6. PDP-ll/60

4. Implementation of a Minimal-Cost PDP-II
5. Implementation of a High-Performance PDP-II
6. Measuring the Effect of Design Tradeoffs on Performance

6.1. Quantifying Performance
6.2. Analysis of Variance of PDP-II P~rformance: Top-Down Approach
6.3. Measuring Second-Order: Effects: Bottom-Up Approach

6.3.1. Effect of Adding a Byte Swapper to the 11/10
6'.3.2. Effect of Adding Processor/UNIBUS Overlap to the 11/04
6.3.3. Effect of Caching on the 11/60
6.3.4. Design Tradeoffs Affecting the Fetch Phase

7. Summary and Use of the Methodologies

Introduction to the Appendices
Appendix A: Instruction Time Component Frequencies
Appendix 8: LSI-II Instruction Execution Times
Appendix C: PDP-ll/04 Instruction Execution Times
Appendix 0: PDP-ll/lO Instruction Execution Times
Appendix E: POP-ll/20 Instruction Execution Times
Appendix F: POP-l 1/34 Instruction Execution Times
Appendix G: POP-l1/40 Instruction Execution Times
Appendix H: PDP-l1/45 Instruction Execution Times
Appendix 1: POP-ll/60 Instruction Execution Times

References

1
2
3
4
9

10
10
10
11
13
16
16
17
20
21
22
22
25
27
29
30
31
34
34
34
35
36
37

51
52
54
57
59
61
63
65
68
71

75

1

1. Introduction

As semiconductor technology has evolved, the digital systems designer has been
presented with an ever increasing set of primitive components from which to construct
systems: standard 551, MSI, and LSI as well as custom LSI components. This expanding
choice makes it more difficult to arrive at a near-optimal cost/performance ratio in a
design. In the case of highly complex systems, the situation is even worse since
different primitives may be cost effective in different subareas of such systems.

Historically, digital system design has been more of an art than a science. Good
designs evolved from a mixture of experience, intuition, and trial and error. Only
rarely have design methodologies been developed (e.g. two-level combinatorial logic
minimization, wire wrap routing schemes, etc.). Effective design methodologies are
essential for the cost-effective design of more complex systems. In addition, if the
methodologies are sufficiently detailed, they can be applied in high-level design
automation systems [Siew76].

Design methodologies may be developed by studying the results of the human
design process. There are at least two ways to study this process. The first involves
a controlled design experiment where several designers perform the same task. By
contrasting the results, the range of design variation and technique can be established
[Thom77]. However, this approach is limited to fairly small design situations due to the
redundant use of the human designers.

The second approach examines a series of existing designs that meet the same
functional specification while spanning a wide range of'design constraints in terms of
cost, performance, etc. This paper considers the second approach and uses the DEC
PDP-Ill minicomputer line as a basis of study. The PDP-ll was selected due to the
large number of implementations (eight are considered here) with designs spanning a
wide range in performance (roughly 7:1) and component technology (bipolar 551, MSI,
MOS custom LSI). The designs are relatively complex and seem to embody good design
tradeoffs as ultimately reflected by their price/performance and commercial success.

The design tradeoffs considered fall into three categories: circuit technology,
control unit implementation, and data path topology. All three will be seen to have
considerable impact on performance. Attention here is focused mainly upon the CPU.
Memory performance enhancements such as caching are considered only insofar as
they impinge upon CPU performance.

This paper is divided into three major parts. The first part (Section 2) provides
an overview of the PDP-ll functional specification (e.g. architecture) and serves as
background for subsequent discussion of design tradeoffs. The second part (Sections
3, 4, 5) presents an archetypical implementation followed by the model-specific
variations from the archetype. These variations represent the design tradeoffs. The
last part (Sections 6 and 7) presents methodologies for determining the impact of

1 DEC, PDP, LSI-II, UNIBUS, and Fastbus are registered trademarks of Digital
Equipment Corporation.

2

various design parameters on system performance. The magnitude of the impact is
quantified for several parameters and the use of the results in design situations
discussed.

2. Architectural Overview

The PDP-II family is a set of small- to medium-scale stored-program central
processors with compatible instruction sets [Be1l70~ The family evolution in terms of
increased performance, constant cost, and constant performance successors is traced
in Figure 12. Since the 11/45, 11/55 and 11/70 use the same processor, only the
11/45 is treated in this study. .

11/70

II/55
.0-----0

11/60
~------~~~--------------~

Cost

Time

Figure 1: POP-ll Family Tree

2 The original equipment manufacturer (OEM) versions of the 11/10, 11/20, and 11/40
are the 11/05, 11/15, and 11/35 respectively. The OEM machines are electrically
identical (or nearly so) to their end-user counterparts, the distinction being made for
marketing purposes only.

3

A PDP-II system consists of three parts! a PDP-tt processor, a coiled ion of
memories and peripherals, and a link called the UNIBUS over which they all
communicate (Figure 2).

UNIBUS I.

I I I I
CPU Memory 1-0 1-0 1-0

(Fi&ure couriesy of Di&ital Equipment Corporation)

Figure 2: Typical PDP-1I Configuration

A number of features, not otherwise considered here, are available as options
on certain processors. These include memory management and floating-point
arithmetic. The next three subsections summarize the major architectural features of
the PDP-li including memory organization, processor state, addressing modes,
instruction set, and UNIBUS protocol. The references list a number of processor
handbooks and other documents which provide a more precise definition of the PDP-I!
architecture than is possible here.

2.1 Memory and Processor State

The central processor contains the control logic and data paths for instruction
fetching and execution. Processor instructions act upon operands located either in
memory or in one of eight general registers. These operands may be either 8-bit
bytes or IS-bit words.

Memory is byte or word addressable. Word addresses must be even. If N is a
word address, then N is the byte address of the low-order byte of the word and N+l
is the byte address of the high-order byte of the word (Figure 3).

The control and data registers of peripheral devices are also accessed through
the memory address space and the top 4K words of the space are reserved for this
purpose.

The general registers are IS bits in length and are referred to as RO through
R7. R6 is used as the system stack pointer (SP) to maintain a push-down list in
memory upon which subrouHne and interrupt linkages are kept. R7 is the program

000001

00000)

00000$

037")

031725

0372"

.

....

16''''~ - • en! BYTE

HIGH lOW

MIGH lOW

HIGH lOW

- -

HIGH lOW

HIGH lOW-

MIGH lOW

woao oac;.u.,IlArION

4

00000o ~O{
000002

000004 ~O{

{
01

OJ17n
{

03717& { 03177.

I-e" IYTf
~

lOW

HIGH

lOW

HIGH

lOW

L....- -....-

HIG>!

lOW

HtGH

ME OIGANf141'K:>N

00000o

000001

000001

00000)

00000'

037775

o:t1776-

037771

(Figure courtesy of Digital Equipment Corporation)

Figure 3: PDP-II Byte and Word Addressing

counter (PC) and always points to the next instruction to be fetched from memory_
With minor exceptions (noted below) the SP and PC are accessible in exactly the same
manner as any of the other general registers (RO through R5).

Data manipulation instructions fall into two categories: arithmetic instructions
(which interpret their operands as two's complement integers) and logical instructions
(which interpret their operands as bit vectors). A set of condition code flags is
maint ained by the processor and is updated according to the sign and presence of
carry /overflow from the result of any data manipulation instruction. The condition
codes, processor interrupt priority, and a flag enabling program execution tracing are
contained in a processor status word (PS), which is accessible as a word in the memory
addressing space.

2.2 Addressing Modes and Instruction Set

The PDP-li instruction set allows source and destination operands to be
referenced via eight different addressing modes. An operand reference consists of a
field specifying which of the eight modes is to be used and a second field specifying
which of the eight general registers is to be used. The addressing modes are:

Mode 0 - Register - The operand is contained in the specified register.

Mode 1 - Register de/erred - The contents of the specified register are used
to address the memory location containing the operand.

Mode 2 - Autoincrement - The contents of the specified register are used to
address the memory location containing the operand after which the
register is incremented.

5

Mode 3 - Autoincrement de/erred - The contents of the specified register
address a word in memory containing the address of the operand in
memory. The specified register is incremented after the reference.

Mode 4 - Autodecrement - The contents of the specified register are first
decremented and then used to address the memory location containing the
operand.

Mode 5 - Autodecrement de/erred - The contents of the specified register are
first decremented and then used to address a word in memory containing
the address of the operand in memory.

Mode 6 - Indexed - The word following the instruction is fetched and added
to the contents of the specified general register to form the address of
the memory location containing the operand.

Mode 7 - Indexed de/erred - The ward following the instruction is fetched and
added to the contents of the specified general register to form the
address of a word in memory containing the address of the operand in
memory.

The various addressing modes simplify the manipulation of diverse data structures such
as stacks, tables, etc. When used with the program counter these modes enable
immediate operands, absolute, and PC-relative addressing. The deferred modes permit
indirect addressing.

Autoincrement /autodecrement modes operate differently for byte and word
instructions. When a byte is referenced, the increment/decrement is by 1. In
references to words (including addresses in the deferred modes) the increment!
decrement is by 2. The use of R6 (SP) or R7 (PC) with these modes is an exceptional
case. Since they generally must point to word addresses because of their use by the
processor, R6 and R7 are always incremented/decremented by 2 and a word transfer
made, even with byte instructions.

The POP-l1 instruction set is made up of the following types of instructions:

Single-operand i.nstructi.ons - A destination operand is fetched by the CPU,
modified in accordance with the instruction, and then restored to the
destination.

Double-operand i.nstructi.ons - A source operand is fetched followed by the
destination operand. The appropriate operation is performed on the two
operands and the result restored to the destination. In a few double
operand instruction such as exclusive OR (XOR), source mode 0 (register
addressing) is implicit.

Branch instructi.ons - The condition specified by the instruction is checked,
and if true, a branch is taken using a field contained in the instruction as a
displacement from the current instruction address.

6

Jumps - Jump instructions allow sequential program flow to be altered either
permanently (jump) or temporarily (jump to subroutine).

Control, trOop, Oond misceUOoneous instructions - Various instructions are
available for subroutine and interrupt returns, halts, etc.

Floo.ting-point i.nstru.cti.ons - A floating-point processor is available as an
option with several PDP-II CPUs. Floating-point implementation will not
be considered in this paper.

A summary of PDP-II addressing modes, instruction set, and other programming
information is given in Table 1.

For the purposes of looking at the instruction execution cycle of the various
PDP-II processors, each cycle shall be broken into five distinct phases3:

Fetch - This phase consists of fetching the current instruction from memory
and interpreting its opcode.

Source - This phase entails fetching the source operand for double operand
instructions from memory or a general register and loading it into the
appropriate register in the data paths in preparation for the execute
phase.

Destinati.on - This phase is used to get the destination operand for single and
double operand instructions into the data paths for manipulation in the
execute phase. For JMP and JSR instructions the jump address is
calculated.

Execute - During this phase the operation specified by the current instruction
is performed and any result rewritten into the destination.

Service - This phase is only entered between execution of the last instruction
and fetch of the next to grant a pending bus request, acknowledge an
interrupt, or enter console mode after the execution of a HALT instruction
or activation of the console halt key.

The transitions from phase to phase are indicated in Figure 4.

3 N.B.: The names are identical to those used by DEC to refer to instruction phases;
however, their application here to a state within a given machine may differ from
DEC's since the attempt here is to make the discussion consistent over all machines.

Mode Name SymbDlic Description

0 register
1 register deferred
2 au lo-incremt!nt
3 auto-incr deferred

" luta-decrement
~ auto-decr deferred
6 indu
7 inclex deferred

It
(R)

(R)+
@(R)+

-(R)
@-{R)

X(R)
@X(R)

(R) is operand [ex_ R2=%21
(R) is lICdrns
(R) is adrs; (R) + (1 or 2)
(R) is adrs of adrs; (R) + Z
(R) - (1 or 2); (R) is adrs
(R) - 2; (R) is adrs of adrs
(R) + X is adrs
(R) + X is adrs of adrs

PROCRAM COUNTER ADDRESSING; Reg = 7
.,

2
3
6
7

immediate
absolute
relative
,elatIY! deferred

LEGEND,

Op Codes

• = 0 for ward 11 for byte
SS = source field (6 bits)
DO = destination field (6 bits)

:::n operand n follows instr
@:::A atldress A follows instr

A ins1r adrs + 4 + X is adrs
@A instr adrs + 4 + X is adr; of adrs

Operations

() = contents of
s = contents of source
d = contents of destination

R = gen register (3 bits). 0 to 7
XXX = offset (8 bib). + 121 to -1221
N = number (3 bits)

= contents of regiUer
~ = becomes
X = relative address
% = rellis!er definition NN = number (6 bits)

Boolean

II = ANO
V = iaclus;"e OR ...,. = elclusive OR __ = NOT

NOTE:

Condition Codes

• = conditionallY' set/clnred
- = not affected
0= cleared
1 = set

A. = Applies to tile 11/35, 11/40. 11/45 .. 11170 computers • = Applies to the 11/45 " 1!170 Cllmputers

7

~INClE OPERAND: OPR dst

I~ 0
cP coO(00 I

Mnemonic Op Code Instruction dst Result N Z V C

General

ClR(B) ·05000 clear 0 o 1 00
COMrB) • 05100 complement (l'S) -d : : ~ 1 INCrB) .05200 increment d+1
OEC(B) .05300 decrement d-l
NEG(B) • 05400 negate (2'$ compl) -4
TS1(B) • 05700 test d • • 0 0

Rotate " Shift

ROR(B) .06000 rota te ri ght -C.d · ...
ROL(B) • 06100 rotate left C. d ...
ASR(B) • 06200 arlth shift right d/2
ASl(B) .06300 arith shilt lett 2d
SWAB 000300 swap bytes • • ·0

Multiple PrecisiaD

AOC(B) .05500 add carry d+C
SBC(B) .05600 subtract carry d-C

A.SXl 006700 sign extend o or-1 ·0-

DOUBLE OPERAND: OPR SfC, clst OPR SIC, R or OPR R, dst

l!o 12 " ~ 0

I oP COO(S~ I 00
1 I ,

1!> 9 0

I ~eOO(
: R

SS OR 00

Mnemonic Oil Code Instruction Operation IIZve:

Cienllf21

MOV(B} .1SSDO move d $ • • 0 -CMP(S) .2SSo0 compare s-d ·
ADO 065500 add d ... s+d · . SU8 16S500 subtract d ... <1-5

loiical

BIT(8) .3SS00 bit test (AND) sAd • ·0-
BICiB) .4SS00 bit clear d "'I-s} A d • • 0-
BIS(8) .5SSDO bit set (OR) d ... svc! • • 0 -

A.Recistlr

MUl 07DRSS multiply r ... rxs 0 ..
DIY 011RSS divide r .. r/s <II • • •

ASH 072RSS shift arithmetically '*
ASHe 073RSS .rith shift combined · ...
XOR 074ROD exclusive OR d +-r..,.d • ·0-

(1'ablo courtesy of Digital Equipment Corporation)

Table 1: PDP-1I Programming Summary

BRANCH: B - - location
If condition is satisfied,
Branch to location.
New PC ... Updated PC -+- (2 x offset)

r----"----.
adrs of br instr + 2

15 0

SASE COOE .n
I

Op Code = Base Code + XXX

Mnemonic Base Code Instruction Branch Condition

Branches

BR branch (unconditional) (always) 000400
BNE 001000 br it not equal (to 0) :;to Z=O
BEQ 001400 br if equal (to 0) =0 Z=l
BPL 100000 branch if plus + N=O
BMI 100400 braneh if minus N=l
BVC 102000 br if overflow is clear V=O
BVS 102400 br if overflow is set V=l
BCC 103000 br if carry is clear C=O
BCS 103400 br if carry is set C=l

Signed Conditional Branches

BGE 002000 br if greater or eQ (to OJ ;;'0 N V= 0
BLT 002400 br if less than (O) <0 N V= 1
BGT 003000 br if greater than (0) >0 Zv(N",V)=O
BLE 003400 br if less or equal (to 0) ~O Zv(N.,.V)=l

Unsigned Conditional Branches

BKI 101000 branch if higher > CvZ=O
BtOS 101400 branch if lONer or same .;;; e vZ= 1
SHIS 103000 branch if higher or same ;;.. e=o
BlO 103400 branch if lower < C=l

MnelRonic op tcce illstruction Hotes

lMP
JSR
RTS

",MARK
",SOB

000100
004ROO
00020R
0064NN
077RNN

TRAP .. INTERRUPT:

Mnemonic Op Code

EMT 104000
to 104377

TRAP 104400
to 104777

8PT 000003

lOT 000004

RTf 000002

",Rn 000006

jump PC ... dst
jump to subroutine. 1 us~ same It
return from subroutlrle
mark aid in subr return
subtract 1 & br (if * 0) (R) - 1. then if (R) *" 0,

PC Updated PC -
(2 x fiN)

Instruction Notes

emulatof trap PC at 30. PS ~t 32
(not for general use)

trap PC at 34, PS at 36

breakpoint trap PC at 14, PS at 16

input/output trap PC at 20. PS at 22

return from interrupt

return from Interrupt inhibit T bit trap

8

MISCElLANEOUS:

MnemDnlc Dp Code Instruction

HALT 000000 halt
WAIT 000001 wa It for interrupt
RESET 000005 reset external bus
NOP 000240 (no operation)

eSPL 00023N set priority level (to N)
",MFPI 0065$S move from previous ins!, space
",MTPI 006600 move to prevIous Instr space
eMFPD 1055S5 move from prevIous (lata space
eMTPD 106600 move to previous data space

CONOITION CODE OPERATORS:

~ 2 , 0

oP COOE. $ASE • 0002'40 :
! I I • Iz I v I c I

L Oo"CLU," ~:..Ecr~o CONO cot'(8tlS
1 .. '5(t $~I..ECT(O COHO COO£. BfTS

Mnemonic Op Code Instruction

etC 000241 clear C
Cty 000242 clear V
ClZ 000244 clear Z
CLN 000250 clear N
ecc 000257 clear a/l cc bits

SEC 000261 set C
SfY 000262 set V
srz 000264 set t
SEN 000270 set N
SCC 000277 set all cc bits

PROCESSOR REGISTER ADDRESSES:

Processor Status Wllfd
PS-711 776

N Z V C

---0
--0-
-0--
0---
o 000

---1
- - 1 -
-1--
1 - - -
1 1 1 1

" 14 I' 12 11 10 8 754) Z t 0

I ,

TTl
",stack limit Register - 777 774

.Pro,ram Interrupt Request -777 772

General Re,is!ers
(COnSOle use only)

(not for 11/45)

RO-777 700
R1-777 701
R2-777 702
R3-777 703

I 1 ~~~lOW
""£CATlvE
l'''.CE fRAP
<;.(... i"EGS(T.
~(.... 1()JS 1Il00(.
-CtJjiiIAE~lll.C/O(..

R4 - 777104
RS-1777OS
R6 - 777 706
R7 -777 7Q7

CDnsole Switches" Displa, Rllister - 777 570

Table 1 (continued): PDP-ll Programming Summary

C

(

(

(

(

2.3 The UNIBUS

Fetch

'i

Source

:.,..,
~

'Ii

Destination

1i7

Execute

'Ii

Service

9

)

)

)
~7

Skip source phase
if instruction does not
use a source oper and

Skip destination phase
if instruction does not
use a destination oper and

Skip service phase
if there is no serviceable
condition and processor
is in run state

Figure 4: PDP-II Instruction Interpretation Cycle

All communication among the components of a PDP-I! system takes place on a
set of bidirectional lines referred to collectively as the UNIBUS. The LSI-II is an
exception and uses an adaptation of the UNIBUS as explained in Section 4. The
UNIBUS lines carry address, data, and control signals to all memories and peripherals
attached to the CPU. Transactions on the UNIBUS are asynchronous with the
processor. At any given time there will be one device which is bus master. The bus
master may initiate communication with any device which it addresses, the addressed
device becoming the bus slave. This communication may consist of data transfers or, in
the case of the processor being slave, an interrupt request. The data transfers which
may be initiated by the master are:

DATO - Data out - A word is transferred trom master to slave.

DATOB - Data out, byte - A byte is transferred from master to slave.

DATI - Data in - A word is transferred from slave to master.

10

DATIP - Data in, pause - A word is transferred from slave to master and the
slave awaits a transfer from master back to slave to replace the
information that was read. The UNIBUS control allows no other data
transfer to intervene between the read and the write cycles. This makes
possible the reading and alteration of a memory location as an indivisible
operation. In addition it permits the use of a read/modify/write cycle
with core memories in place of the longer sequence of a read cycle
followed by a write cycle.

3. Implementation of Medium-Performance PDP-lIs

The broad middle range of PDP-lls have comparable implementations yet their
performances vary by a factor of two. The processors making up this group are the
PDP-ll/04, 11/10, 11/20, 11/34, 11/40, and 11/60. This section discusses the
features common to these implementations and the variations found between machines
which provide the dimensions along which they may be characterized.

3.1 Common Implementation Features

All PDP-II implementations, be they low-, medium-, or high-performance, can be
decomposed into a set of data paths and a control unit. The data paths store and
operate upon byte and word data and interface to the UNIBUS permitting them to read
from and write to memory and peripheral devices. The control unit provides all the
signals necessary to evoke the appropriate operations in the data paths and UNIBUS
interface. Midrange PDP-lis have comparable data path and control unit
implementations allowing, them to be contrasted in a uniform way. In this section a
basis for comparing these machines shall be established and used to characterize them.

3.1.1 Data Paths

An archetype may be constructed from which the data paths of all midrange
POP-lIs differ but minimally. This archetype is diagrammed in Figure 5. All major
registers and processing elements as welf as the links and switches which interconnect
therr are indicated. The data path illustrations for individual implementations are
grouped with Figure 5 at the end of the paper. These figures are laid out in a
common fOrmat to encourage comparison. Note that with very few exceptions, all data
paths are 16 bits wide (PDP .. 11 word size).

The heart of the data paths is the arithmetic/logic unit or ALU through which all
data circulates and where most pf the processing actually takes place. Among the
operations performed by the ALU are addition, subtraction, ones and twos
complementation, and logical ANDing and QRing.

The inputs to the ALU are the A leg and the 8 leg. The A leg is normally fed
from a multiplexor (Aleg MUX) which may select from an operand supplied it from the

11

scratchpad memory (SPM) and possibly from a small set of constants and/or the
processor status register (PS). The B leg also is typically fed from its own MUX (Sleg
MUX), its selections being among the B register and certain constants. In addition the
Bleg MUX may be configured so that byte selection, sign extension, and other functions
may be performed on the operand which it supplies to the ALU.

Following the ALU is a multiplexor (the AMUX) typically used to selects between
the outpuf of the ALU, the data lines of the UNIBUS, and certain constants. The output
of the AMUX provides the only feedback path in all midrange POP-ii implementations
except the 11/60 and acts as an input to all major processor registers.

The internal registers lie at the beginning of the data paths. The instruction
register OR) contains the current instruction. The bus address register (BA) holds the
address placed on the UNIBUS by the processor. The program status register (PS)
contains the processor priority, memory-management-unit modes, condition code flags,
and instruction trace trap enable bit. The scratchpad memory (SPM) is an array of
sixteen individually addressable registers which include the general registers (RO-R7)
plus a number of internal registers not accessible to the programmer. The B register
(Breg) is used to hold the B leg operand supplied to the AlU.

The variations from this archetype are minor as will be seen in Subsection
3.2. Variations to be encountered include routings for bus address and
processor status register, the point of generation for certain constants, the positioning
of the byte swapper, sign extender, and rotate/shift logic, and the use of of certain
auxiliary registers present in some designs and not others. In general these variations
are all peripheral to the major elements and interconnections of the data paths.

3.1.2 Con.trol Un.it

The control unit for all POP-I 1 processors (with the exception of the
PDP-II/20) is microprogrammed [Wilk53]. The considerations leading to the use of
this style of control implementation in the PDP-1! are discussed in [Olou75]. The
major advantage of microprogramming is flexibility in the derivation of control signals
to gate register transfers, synchronize with UNIBUS logic, control mlcrocycle timing,
and evoke changes in control flow. The way in which a microprogrammed control unit
accomplishes all of these actions impacts performance.

Figure 6 represents the archetypical PDP-lI microprogrammed control unit.
The contents of the micro address register determine the current control unit state and
are used to access the next microinstruction word from the control store. Pulses from
the clock generator strobe the microword and microaddress registers loading them
with the next microword and next micro address respectively. Repeated clock pulses
thus cause the control unit to sequence through a series of states. The period spent
by the control unit in one state is called a microcyc!e (or simply cycle when this does
not lead to confusion with memory or instruction cycles) and the duration of the state
as determined by the clock is known as the cycle time. The microword register
shortens cycle time by allowing the next microword to be fetched from the control
store while the current microword is being used.

12

Most of the fields of the microword supply signals for conditioning and clocking
the data paths. Many of the fields act directly or with a small amount of decoding,
supplying their signals to multiplexors and registers to select routings for data and to
enable registers to shift, increment, or load on the master clock. Other fields are
decoded based upon the state of the data paths. An instance of this is the use of
auxiliary ALU control logic to generate function select signals for the AlU as a function
of the instruction cont ained in the IR. Performance as determined by microcycle count
is in large measure established by the connectivity of the data paths and the degree to
which their functionality can be evoked by the data path control fields of the
microprogram word.

The complexity of the clock logic varies with each implementation. Typically the
clock is fixed at a single period and duty cycle; however, processors such as the 11/34
and 11/40 can select from two or three different clock periods for a given cycle
depending upon a field in the microword register. This can significantly improve
performance in machines where the longer cycles are necessary only infrequently.
The clock logic must provide some means for synchronizing processor and UNIBUS
operation since the two operate asynchronously with respect to one another. Two
alternate approaches are employed in midrange implementations. Interlocked
operation, the simpler approach, shuts off the processor clock, when a UNIBUS
operation is initiated and turns it back on when the operation is complete. This
effectively keeps microprogram flow and UNIBUS operation in lockstep with no overlap.
Overlapped operation is a somewhat more involved approach which continues
processor clocking after a DATI or DATIP is initiated. The microinstruction requiring
the result of the operation has a function bit set which turns off the processor clock
until the result is available. This approach makes it possible for the processor to
continue running for several microcycles while a data transfer is being performed,
improving performance.

The sequence of states through which the control unit passes would be fixed if
not for the branch-on-microtest (BUT) logic. This logic generates a modifier based
upon the current state of the data paths and UNIBUS interface (contents of the
instruction register, current bus requests, etc.) and a BUT field in the microword
currently being accessed from the control store which selects the condition on which
the branch is to be based. The modifier (which will be zero in the case that no branch
is selected or that the condition is false) is ORed in with the next microinstruction
address so that the next control unit state is not only a function of the current state
but also a function of the state of the data paths as well. Instruction decoding and
addressing mode decoding are two prime examples of tne application of BUTs. Certain
code points in the BUT field do not select branch conditions, but rather provide control
signals to the data paths, UNIBUS interface, or the control unit itself. These are known
as active or working BUTs.

The JAM logic is a part of the microprogram flow-altering mechanism. This logic
forces the micro address register to a known state in the event of an exceptional
condition such as a memory access error (bus timeout, stack overflOW, parity error,
etc.) or power up by ORing all ones into the next micro address through the BUT logic.
A microroutine beginning at the all-ones address handles these trapped conditions.
The old microaddress is not saved (an exception to this occurs in the case of the

13

PDP-ll/60); consequently, the interrupted microprogram sequence is lost and the
microtrap ends by restarting the instruction interpretation cycle with the fetch phase.

The structure of the microprogram is determined largely by the BUTs available
to implement it and by the degree to which special cases in the instruction set are
exploited by these BUTs. This may have a measurable influence on performance as in
the case of instruction decoding. The fetch phase of the instruction cycle is concluded
by a BUT that branches to the appropriate point in the microcode based upon the
contents of the instruction register. This branch can be quite complex since it is based
upon source mode for double operand instructions, destination mode for single operand
instructions, and opcode for all other types of instructions. Some processors can
perform the execute phase of certain instructions like set/clear condition code during
the last cycle of the fetch phase meaning that the fetch or service phases for the next
instruction might also be entered from BUT IRDECODE. Complicating the situation is the
large number of possibilities for each phase. For instance, there are not only eight
different destination addressing modes, but also subcases for each that vary for byte
and word and for memory modifying, memory non-modifying, MOV, and JMP/JSR
instructions.

Some PDP-I1 implementations such as the 11/10 make as much use of common
microcode as possible to reduce the number of control states. This allows much of the
IR decoding to be deferred until some time into a microroutine which might handle a
number of different cases, for instance, byte and word operand addressing is done by
the same microroutine in a number of PDP-11s. With the cost of control states
dropping with the cost of control store ROM, there has been a trend toward providing
separate microroutines optimized for each special case as in the 11/60. Thus more
special cases must be broken out at the BUT IRDECODE making the logic to implement
this BUT increasingly involved. There is a payoff, though, because there is a smaller
number of control states for IR decoding and fewer BUTs. Performance is boosted as
well since frequently occurring special cases such as MOV register to destination can
be optimized.

3.1.3 T y pica.l I nstru.ction Inter preta.tion Cycle

To' get a feel for the PDP-11 data paths and control unit in operation, consider
the interpretation of a representative instruction by the archetypical PDP-1t. The
instruction to be followed is a word bit set (BIS), an instruction which takes its source
operand, logically ORs it with the destination operand, and returns the result to the
destination. Register addressing with register 2 is used for the source, indexed
addressing with register 7 used for the destination. This means that general register 2
will supply the source operand; the destination operand is in a memory location with
address calculated by adding the contents of register 7 to the contents of the memory
location following the instruction. Since register 7 is the program counter, the index
following the instruction is effectively a displacement from the instruction to the
destination operand.

What follows is the sequence of microinstructions eVOked during the execution
of the macroinstruction described above. Each microinstruction is numbered and

14

consists of the register transfers and any UNIBUS operation or branch-on-microtcst
initiated by the microword.

Notation used in microinstructions;

S
SA
SUSOATA
CLKOFF

IR
PC
RO

RS

SRCOPR

a OP b

a +- b

= B register
= bus address register
= UNIBUS data lines
= stop the processor clock until a UNIBUS transaction is completed,

used for processor/UNIBUS overlap
= instruction register
.. program counter (scratchpad register 7)
= scratchpad register addressed by macroinstruction destination field

OR<2:0»
... scratchpad register addressed by macroinstruction source field

(IR<8:6»
= scratchpad register 10 (not accessible to programmer), used as a

temporary for source operands
- operand a (on the A leg of the ALU) and operand b (on the B leg of

the ALU) are combined according to the operation specified by the
macroinstruction. The ALU function is selected by the auxiliary ALU
logic as described in (3.1.2) •

... register a is loaded with operand b

Phase Cycle Oper.ation Explanation

FETCH 1

2

3

SA +- PC;
DA TI; CLKOFF

IR ... SUSOATA

PC ... PC+2;
BUT IRDECOOE

A read operation is initiated to fetch
the instruction addressed by the
program counter.

The instruction is placed in the
instruction register.

The program counter is incremented
to address the next location in the
instruction stream (in this case the
location containing the index for the
destination). The instruction (held in
the IR) is decoded by the BUT and
found to be a double-operand
instruction causing a branch to the
microcode for source mode O.

SOURCE 4 SRCOPR ~ RS;
BUT DESTINATION

DESTINATION 5 BA ~ PC;
DATI

6 PC ~ PC+2;
CLKOFF

7 B ~ BUSOATA

8 BA ~ RO+B;
DATIP; CLKOFF

9 B ~ BUSOATA

15

The contents of the register
addressed by the source field of the
instruction {register 2} are copied
into the scr atchpad . register
reserved for source operands. The
next state is determined by the
destination addressing mode and the
fact that SIS is a word instruction
which modifies its destination.

A r€lad operation is initiated to get
the index word (pointed to currently
by the program counter} for the
effective address of the destination
operand.

The program counter is incremented
to point to the next instruction.
Note that this cycle is overlapped
with the DATI started in cycle 5.

The index is stored for use in the
next cycle.

The index is added to the contents
of the destination register to form
the effective address of the
destination operand. A DATI? is
performed to read the operand
since the operand is to be modified
and then restored to its original
location in memory.

The destination operand is stored so
it is available to the B leg of the
ALU.

EXECUTE

16

10 BUSOATA ~ SRCOPR OP B;
DATO; CLKOFF;
BUT SERVICE

The source and destination operands
are logically ORed together and put
out on the UNIBUS to be be
rewritten into the memory location
from which the destination operand
was read. (Note that the destination
address is still in BA.) Upon
completion of the DATa, the control
unit will branch into the service
phase if a serviceable condition is
pending, otherwise it will branch
back to repeat the fetch phase for
the next instruction. Although it
performs an execute phase function,
this microinstruction is part of the
same destination mode microroutine
that generated cycles 5 through 9.

At a detailed level, the instruction interpretation process of each PDP-Il
implementation will vary significantly from that outlined above; however, the scenario
is still highly representative of the operation of the control unit and. data paths in the
designs to be considered.

3.2 Characterization of Individual Implementations

A set of common implementation features may be used to characterize each
midrange PDP-Il to provide the raw data upon which comparisons may be based. A
summary of these characteristics is given in Tables 2 and 3.

3.2.1 PDP-ll/20

The 11/20 was the original member of the PDP-I! family. The 11/20 is atypical
in a number of important aspects. Because the semiconductor read-only memory
technology which makes microprogramming economically attractive was largely
undeveloped when the PDP-Il/20 was designed, control was implemented in random
logic in contrast to the microprogrammed control used in all the succeeding members of
the PDP-II family. This causes control to be forced into a very stylized form so as to
minimize the number of control unit states. Finally, the UNIBUS control generates a
number of signals controlling the operation of the data paths. This makes it necessary
for the UNIBUS and processor control unit to operate in tight lockstep with each other
with no possibility of asynchronous data transfer.

The absence of MSI also has significant impact on the implementation of the d;;ta
paths (Figures 7 and 8). The extensive use of SSI logic has several ramifications
beyond increased cost and complexity. The Aleg and Bleg MUXes are set up to act as

17

latches in addition to acting as data selectors (Figure 8). One may think of a Breg
being placed between the Bleg MUX and the ALU. The ALU is a simple adder in
contrast to the multifunctioned TTL MSI 74181 ALUs used in every other medium
performance PDP-11. Logical operations are carried out in the Aleg MUX/latch. The
MUX can select either the true or complemented form of operands to support logical
NOT. Logical OR is accomplished by gating the two operands into the MUX
simultaneously (one operand may have been latched beforehand). Logical AND is
performed by making use of DeMorgan's Rule (AI\B i! "'{ NAvNB]). Since there is no
logic for complementing the output of the Aleg MUX/latch, two cycles are necessary:
the first to form NAvNB, the second to run it through the Aleg MUX again to form the
complement. The rotate/shift/byte swap logic is built into the MUX following the
adder. A final peculiarity of the 11/20 is the separate paths provided from the
UNIBUS for the IR and PS. Interestingly enough, even with all of these rather striking
differences in implementation, the PDP-11/20 still shows a strong kinship to its
successors.

3.2.2 PDP-ll/40

The PDP-l1/40 was designed to improve upon the performance of the
PDP-ll/20 without an increase in price by taking advantage of the TTL MSI
technology arising after the introduction of the 11/20. With the exception of the
PDP-ll/60 (and the 11/20 which exceeds the 11/40 in cost), the 11/40 is both the
fastest and most expensive midrange PDP-II processor.

The data paths of the 11/40 (Figure 9) correspond closely to those of the
archetype except in the immediate vicinity of the ALU. What has been indicated as the
Aleg MUX is really the negative-logic wired OR of a number of signals. Options such as
the floating-point processor are added by simply tying them into the DMUX output and
Aleg. Two paths exist out of the PS: one running to the Aleg MUX as in the archetype
and a second running directly to the UNIBUS as in the 11/20. A path from the Aleg
MUX directly to the DMUX (equivalent to the AMUX of other models) exists allowing the
ALU (and thus the propagation delay incurred by passing through it) to be bypassed in
those cases where the contents of the SPM or PS are to be routed directly back to the
Breg or SPM. Single-bit shifts and rotates right are handled in the DMUX in a fashion
similar to the 11/20. Rotate/shifts to the left, however, are performed in the ALU.
Sign extension and byte swapping are performed in the Bleg MUX. Since the
scratchpad register may not be both simultaneously read and written, the 0 register
(Dreg) is used to hold results generated while the SPM is being read in one processor
clock phase so that during a later phase they may be written back into the scratchpad.
In this way the Dreg permits read/write access of the SPM within a single cycle. A
final feature is the presence of two paths into the bus address register, one from the
Aleg MUX and one from the ALU. This is of benefit in such operations as
autoincrement and autodecrement addressing modes in which the contents of a register
can be modified and either the premodification (autoincrement) or postmodification
(autodecrement) value of the the register put into the bus address register in a single
cycle.

The 11/40 microprogrammed control unit is quite elaborate to gain full benefit

i
o

18

~ --

.....
f N
,I

-
~ ---

-I
~ ,
If')

o
~ --

~ ...
I .,.,

o
~

Table .3 - PDP-il Control Unit- and Physical Assem61y

Co.dn..ller Pl.!,;"" Ass~"b7

Modd -·--·----I----.... ---...... --~

Clt.1£. I' ... tos, ... 1 c..,h .. , C'H~"" . c.. .. J / 1i .. ,C,} UNIBUS S.J..... st..-e Ol.h,..". FeaI .. ,.s Cir ;!: 1"'~,..Iod. c.~ .. ,,,,!.d.
~';""' .• 11 (--"11<0"") s,.", ... ,""'", 'IH. wv .. ~.: 8 J~ ~:";".~ ~_tf

(j,;l) s~ '''' 'cs 'tfLS

Vt ... ,,,,,l ~1."102.4.~ ;......c.t ... J : ;-.,(,

l.. S r-Jt ,,,,',,,,ot.Il--· 4DO i.~wl"tL.d. (u,...., .. 1k 994 '":-."."". _."""thAl i!::t? 1 i".ad.) 4-8 2. 4-
• -to 2048) ... M .. L.....cJ..r .. '.~' (4,..;~;,. ..

\. _ .. .J-.(.

/I l&>,..l~1 1 ~ I 11/o4 .. ~ I 'lJio ioll",,/"I:£...t tkll' t56 2. H - 138 40 -. ('r'*-)

I H",:,. .. I .. 1 300 2 loc_
H 10 .. kAocJt. (lSO{., ..,« ... I."...{ 4-0" 'Ui6 24, • M;':r.Wo,J is "..I b.ffer.<l '. 2,03 60

t.std;fJ) (n,...." ')

I R4,,1l_ • c • .,l ... 1 sl..<i..: .art ebd , ,.. • .1.,
U ZO 1."Ic.. 1.~O i..te..I....Lut - - ;~ ."'j""" ... ,.0."#"'#., ~":-I.I"I 523 27 I

" '.J'" •• ..,1.,
• sl,,fl ... , ... on (3'~:'-.)

H.i,I"'# .. I 180 2. I.e><
11134 ' .. L ;.klot~k(4i" Sll 4-U - «I '1') l:,H 54 ... ·M....... '2.40 • ,.s,

u..;., ... 1..1 140 • !lilT r •• I.t j, \,"(t~ .. J., 41.v.
11/40 '..k. 2,00 ""--'~I'tt.t 5''''256 1.51 Borr r.'4utI. • ..., ... , 1,......""- 417 53 eN.. no;c;.voin,I , I~ ~hjf~ • (21 4i..,,)

3 00 ... ~ ;f " I. ",I. ploc(. I

".,;,,,..l"/ • f"...4-,J. ""il> •• L,J ••• "'~I : 7 "~ ••
11/4S .. ;CKo<.tI.. 150 <wvlorral. ~4 ~ lS6 2SG '" __ M.L t.j." f'4 tV~ 1,.",tl 6 9(, ? g

t.t;"J p .. <tJ ... /Ce. (4',....)
L.J • "" .. I';'c-IJ 'C:""lt:w!t , • .,cs

a/60 ",,~.... 110 i.J"I.,L •• L 411.~560 2410 .,.., •. ~" .. "'.(•• ;'~.Jt.... 'k.. 648 74 ttI., ... tJtle (t"""'''''J IAS«" (;",1..01." ittf. w • bt ,,"'. us,f r J ' (owt •• t (1' rs,4:6ot")
' 1,....) fl.? ,..:!) • c..t .. 1 :I.t.l.I •• ,v /J,.....,~ "'tS .. ,_ 1...------ _~_ ____ __ J

......
1.0

20

of t he potential of the data paths. Among its features are overlapped processor /
UNIBUS operation and three selectable microcycle clock periods. The latter feature
increases performance immensely since the maximum cycle time of 300 nanoseconds is
needed only when a full circle from scratchpad through ALU and back to scratchpad is
made. In cycles which do not write into the scratchpad, a 200 nanosecond cyc:e may
be selected. When the data paths are unused and only microbranching is involved, an
even shoder cycle time of 140 nanoseconds is possible. A final unique feature of the
11/40 is a variation in the branch-on-microtest logic from that of the archetypical
control unit. To increase microbranch speed, the microword BUT select field is
buffered in the microword register rather than being routed directly from the control
store to the BUT logic. This causes a one-cycle delay in processing the branch and
forces all BUTs to be placed one microinstruction ahead of where they are to take
effect. In some cases dummy steps are required to provide sufficient lead time for
BUT action to occur, somewhat offsetting the speedup of this arrangement.

One way in which the 11/40 uses its processor/UNIBUS overlap feature to
advantage is by prefetching words from memory whenever possible. At the end of the
fetch phase, a check is made to see if the next memory reference fetches an
instruction or operand index. If it does, the read access is begun immediately using
the contents of the PC as the address. Exceptions to this are when the PC is used as
a destination or when a service request is pending, both of which mean that the
current value of the PC won't be the address of the next instruction. Starting the
access early allows it to proceed in parallel with the execution of the current
instruction. This reduces the time the processor idles waiting for the accessed word.
Updating of the PC is deferred until the proper point in the instruction interpretation
process is reached. This guarantees that references to the PC will result in the
proper value being used. .

'3.2.3 PDP-II/I0

The PDP-l1/l0 was designed as a minimal-cost processor. The implementation
is again TTL MSI but stripped to the bare essentials without the elaboration of the
11 /40. ,The data paths of the 11/10 (Figure 10) follow the conventions of the
archetype closely. A constant zero may be selected onto the AMUX in addition to ALU
or UNIBUS data. The ALU Aleg multiplexor allows selection of the PS, some constants,
and some internal addresses as well as the scratchpad memory. The Breg is
implemented as a universal bidirectional shift register so that single-bit shifts and
rotates may be performed without additional logic. The ALU Bleg multiplexor includes
the constants one and zero and permits sign extension of the low-order byte of the B
register. The scratchpad memory may not be both read and written in the same cycle,
thus operations such as incrementing the PC which takes only a single microcycle on
other processors take two microcycles to complete on the 11/10. A byte swapping
path is absent in the 11/10. As a consequence odd-byte addressing and swapping
must be accomplished by a series of eight shifts or rotates.

The 11/10 control unit has a relatively austere implementation. There is no
micro word register in the control unit although there is necessarily a microaddress
register. As a consequence, the output of the control store is used directly to

21

condition the data paths. This precludes the overlap of current microinstruction
execution with next microinstruction fetch. Hence, the propagation delay of the control
store must be added to that of the data paths in setting the microcycle time, causing it
to be a relatively long 300 nanoseconds. The simplicity of the data paths allows the
use of a microword only 40 bits wide. The microcode contains very few frills and
gains very little in performance from special cases. A notable example of this is the
jump address calculation for JMP and JSR instructions. The 11/10 uses the same
section of microcode for JMP and JSR destination modes as it uses to fetch
conventional destination operands. This costs an extra memory reference over the
separate microroutines used in other POP-II processors since not only is the effective
address of the jump calculated, but also its contents are fetched (the microprogram
logic precludes using this operand as a prefetched instruction even though this is
effectively what it is). Overlapped processor IUN18US operation allows some of the
extra microcycles necessitated by the data paths to be effectively hidden by putting
them in parallel with UNIBUS accesses. The other concession to performance is clock
speed doubling during shift operations to partially compensate for the performance
lost in the absence of a byte swapper.

3.2.4 P DP-ll /04

The POP-l1/04 is the simplest PoP-11 except for the LSI-1I. Although simple,
the 11/04 embodies a very good set of design tradeoffs. Figure 11 diagrams the
11/04 data paths. The scratchpad memory has a register (SPreg, part of the SPM
shown in Figure 11) sitting between it and the AMUX. This register allows the
scratchpad to support read/modify/write accesses saving a microcycle in each such
access over the 11/10. A multiplexor sitting before the SPM implements the swap
byte operation, allowing the halves of a word to be interchanged. This improves byte
operation performa.nce considerably over the 11/10 and obviates the need for the
11/1 O's fast shift logic. Also eliminated is overlapped processor/UNIBUS operation
since the savings from it are reduced with the overall reduction in number of
microcycles.

The AMUX (the major data bus and the multiplexor which drives it) can seled
the PS and a number of constants in addition to ALU output and UNIBUS data.
Between the SPM and ALU is a ones complementor so that the 74181 ALU may be used
to perform the Bleg minus Al.eg operation used in the subtract instruction in addition to
the Aleg minus Bleg operation used in the compare instruction. The Aleg MUX also
directly drives the UNIBUS address tines without a bus address register (if processor /
UNIBUS overlap were used, a BA register would have been necessary). Between the
Breg and ALU is a multiplexor which allows the Breg, sign-extended low-order byte of
the Breg, or the constants zero or one to be selected into the Bleg of the AlU in a
manner identical to that of the Bleg MUX of the 11/10. The Breg is also identical to
that of the 11/10 in that it is a bidirectional shift register implementing rotate/shifts.

The final contributor to increased performance of the 11/04 is the decrease in
cycle time from 300 nanoseconds in the 11/10 to 260 nanoseconds, made possible in
part by pipelining the microword fetch. On the whole, the 11/04 is superior in
performance to the 11/10 in all cases except the fetch phase and certain addressing

22

modes where the use of its processor/UNIBUS overlap capability is sufficient to put
the 11/10 ahead.

3.2.5 PDP-J 1/34

The PDP-ll/34 is an elaboration of the 11/04. The 11/34 data paths (Figure
12) bear close resemblance to those of the 11/04. The 11/04 complementor has been
replaced in the 11/34 by additional microcode which reverses the placement of source
and destination operands on the A and B legs of the ALU during the subtract
instruction from that ot the other double operand instructions. This frees the 11/34
from performing the adjustments that must be made in the data paths of other PDP-II
processors to make the subtract instruction operate correctly under the restrictions of
the 74181 ALU. Added is a B extension register (BXreg) which, when concatenated
with the Breg, forms a 32-bit register for double-width operands and results
manipulated by extended instruction set operations such as multiply and divide. Also
notable is the relocation of the byte swapper to the tail of the AMUX allowing odd
byte accessing to occur as data is entered from or placed upon the UNIBUS without
the customary extra microcycle needed in other implementations to right adjust the
byte .. Included with the byte swapper is the sign extension logic. Schottky TTL is
used in critical places in the data paths, notably the ALU, to speed up microcycle time
from the 260 nsec of the 11/04 to 180 nsec. Additional hardware for memory
management (not shown in Figure 12) and extended instruction set microcode are
standard features.

The 11/34 microprogrammed control unit makes some concessions to the
improved performance of the data paths. In addition to the normal 180 nanosecond
cycle, there 1s a 240 nanosecond cycle used primarily for UNIBUS operations. Again,
there is no processor/UNIBUS overlap feature because considerations of simplicity (i.e.
cost) outweighed the incremental improvement in performance that would be netted.
Because of its additional logic, the PDP-11/34 has a wider microword than the 11/04
(48 bits versus 40 bits). Also, since many more cases are broken out by the BUT
IRDECODE in the 11/34 than in the machines preceding it, the size of the control store
has been increased to 512 words, double that of earlier horizontally microprogrammed
implementations.

3.2.6 PDP-ll/60

The PDP-ll/60 is the latest implementation covered in this paper and in many
ways the most unique. Its design exploits advances in circuit technology occurring
since the introduction of the earlier models giving it a number of features which set it
apart from other PDP-1I family members. Two major enhancements are a larger
microcode addressing space, making an integral floating-Qoint instruction set and a
writable control store option feasible, and a cache mernory4. Both are possible due to
increases in the density and decreases in the cost of bipolar ROM and RAM [Mudg77].

4 The PDP-11/70 aiso uses a cache.

23

As illustrated in Figure 13, the 11/60 data paths show significant differences
from those of other midrange implementations. A major difference is the presence of
three scratchpad memories feeding the ALU. Scratchpads A and Bare 32-word-by-
16-bit register arrays, each having twice the number of registers of the single
scratchpad found in other midrange designs. As with the 11/45 (Section 5),
the contents of the general registers are kept in both scratchpads allowing different
registers to be read onto the A and B legs of the ALU simultaneously within the same
cycle. This speeds register-to-register operations. The additional registers in the A
and B scratchpads are used as floating-point registers by the integral floating-point
microcode, working storage by user microprograms, and console, maintenance, and
status registers by the processor. Scratchpad C is a 16-word-by-16-bit array which
holds bus data and constants used by the processor and takes the place of the
constants ROM on the B leg of other midrange implementations. During exceptional
situations these constants may be overwritten with other information but must be
restored before execution of the base machine microcode may be resumed.

The 11/60 is the first PDP-ll implementation to make use of three-state
devices to eliminate many of the multiplexors used in other designs (the 11/40 uses
open-collector logic on the Aleg bus to the same effect). For instance, instead of
actual Aleg and 81eg MUXes, the 11/60 uses registers and combinatorial elements with
three-state outputs that can be independently enabled onto a common bus for each
ALU leg. The AlU itself is the conventional '181 type used in all of the other MSI
implementations. As in the 11/40, the D register (Dreg) latches the ALU output so that
results may be rewritten to the scratchpads during a later clock phase of the
microcycle in which they are generated. The output of the Dreg is the major, but not
sote, feedback route in the data paths.

The bus address register (BA) is loaded from the Aleg bus as in the 11/04 and
11/34. The address out bus is driven by the SA and supplies addresses to the
memory subsystem (cache, relocation hardware, and UNIBUS interface). The bus data
in (DIN) bus routes data into the processor from the memory subsystem, internal
registers accessed via UNIBUS addresses such as the PS, and constants emitted by the
microinstruction word. Scratchpad C and the instruction register are loaded directly
from DIN in a manner reminiscent of the 11/20. A register in SPM C is set aside
specifically for transfers from memory to the data paths. Results are routed from the
data paths back to the memory subsystem and internal registers via a separate bus
data out (DOUT) bus.

As compared to the other midrange machines, several data path elements are
unique to the 11/60. The counter (Cntr) is an iteration counter used by the extended
instruction set and floating-point microcode. The shift register and shift register guard
(shown together as the SR in Figure l3) can be loaded in parallel with Dreg and
shifted one position right or left. Either all or the low-order seven bits of the SR may
be gated onto the Aleg bus through the XMUX (not shown). The shift tree is a network
of multiplexors used for byte swapping, sign extension, and field isolation and
positioning. It is unusual in that it allows right shifts of from 1 to 14 bit positions
combinatorially in a single microcycle.

The PDP-l 1/60 control unit is horizontally microprogrammed in much the same

24

manner as the other midrange implementations. Extensive use of Schottky logic
throughout the processor allows a fixed 170 nanosecond microcycle time. Processor/
UNIBUS communication is interlocked unlike either the 11/40 or 11/45. There are
several significant differences from the more conventional implementations. Many of
these differences are generalizations of the microprogram flow control mechanism to
allow more functions of the base machine to be performed by microcode rather than
hardwired logic and to create a user microprogramming environment which can be put
to uses beyond executing the POP-ll instruction set. The 11/60 has a larger and
more generalized set of BUTs than earlier machines. Also included for the first time in
a horizontally microprogrammed machine is a mu'ltilevel microsubroutine call/return
capability.

Increased reliance on microcode has expanded the control store to 4096 words
by 48 bits. 2560 words of this are used to implement the basic machine. The
remaining 1536 words are available to the user through a ROM control store option;
1024 are available through a writable control store option. Since addressing the
micros tore requires 12 bits, a page-addressing scheme has been adopted to avoid
widening the microword. Page size is 512 words reducing micro addresses to 9 bits
within a page. Microbranches across a page boundary require that an additional 3-bit
page field be specified.

Another concept used extensively in the 11/60 to reduce microword size is
residual control. In this technique relatively static control information is kept in set-up
registers separately from the microword. The microprogram must load these registers
to affeet the data path elements which they control. Set-up registers are used in the
11/60 to gate registers onto to DIN bus, enable data into registers from the DOUT bus,
seleet SR functions, and control certain actions of the shift tree.

The overlapping of a number of different control fields by bit steering is a final
means of keeping t~e microword relatively narrow. Certain bits in the microword
control the interpretation of corresponding microword fields. This allows a single field
to control several different functions. The one drawback of this technique is that
these functions become mutually exclusive within a single microword since their
simultaneous use would involve two different interpretations of the same microtield.

Hardwired logic in the memory subsystem detects internal addresses in a manner
similar to other PDP-I1 processors. However, the actual access to these registers is
accomplished through microcode instead of additional control logic. Internal address
access has been added to the exceptional conditions detected by the JAM logic of the
11/60. If the JAM microroutine finds that a microtrap has been caused by an internal
address access, then an intraprocessor transfer to or from the addressed register is
performed. Unlike other JAM sequences, such transfers are terminated by resuming
the interrupted microprogram. Microcoded register access require~ much more time
than the corresponding hardwired access. Reading the PS, for instance, takes 33
microcycJes or 5.610 microseconds using microcode where a single microcycJe suffices
for the hardwired approach. This is justified, however, by the decreased cost of
microcode versus hardwired logic and by the infrequent access made to these
registers.

25

Like the 11/40, the 11/60 prefetches instructions and operand indices whenever
possible. Unlike the 11/40, the. PC is incremented at the time the prefetch is
performed. Because of this, prefetching cannot be done when the current instruction
uses the PC as either a source or destination register. A second difference is that
service requests are not polled until the end of the current instruction, when the next
instruction may already be prefetched and the PC updated. When this occurs, two
microcycles must be spent to decrement the PC to restore its old value before
proceeding with the service phase.

4. Implementation of a Minimal-Cost PDP-Il

The LSI-II (known in packaged form as the PDP-II/03) is designed for the low
end market where there is more concern for low cost than high performance.
Integrated circuit package count and printed circuit board area, the main determinants
of manufacturing cost, are kept low through an n-channel MOS LSI technology
implementation of the CPU. The result is a PDP-ll processor with four kilowords of
semiconductor memory on a single 8.5" x 10.5" (standard DEC quad height) printed
circuit board which can execute the entire PDP-1 1/40 instruction set.

The constraints imposed by current semiconductor technology dictate much of
the implementation of the LSI-Il. The entire CPU consists of four LSI packages plus a
number of standard TTL SSI and MSI packages for clock generation and bus
interfacing. A system control chip provides microinstruction addressing logic plus an
interface to external signals used in bus control. A data paths chip contains the
registers and arithmetic/logic unit of the machine. Two chips are microcode ROMs
(MICROMs). Each contains 512 microinstruction words with a width of 22 bits. An
optional third MICROM adds the extended instruction set/floating-paint instruction set
option of the PDP-ll/40. To decrease the complexity of the machine, the traditional
UNIBUS was abandoned in favor of a scheme requiring fewer bus lines. Most notable
is the multiplexing of both data and addresses onto a single set of 18 data/address
lines, DAl<17:00>. A significant savings over the 34 lines dedicated to data and
address in the UNIBUS results at the expense of bus cycle speed.

The 22 bit microinstruction word of the LSI-!1 is quite narrow compared to the
microwords of the horizontally microprogrammed PDP-l15 which range from 40 to 64
bits wide. Four bits are not decoded and provide direct TTL-compatible signals which
are used by logic external to the CPU chips. Anot\1er two bits are used within the CPU
chips to control next microinstruction addressing. The remaining 16 bits are decoded
as a microinstruction by the CPU chips. LSI-II microinstructions differ little in form
from conventional minicomputer instructions with their opcode and operand (which may
be register, microcode address, or literal) fields. These require a great deal more
decoding than the horizontal microinstructions of other designs.

The LSI-11 microstore is larger than the control store of any other PDP-ll
except the 11/60. Since LSI-ll microinstructions lack the possibilities for parallelism
inherent in the horizontal microinstructions, more LSI .. ll microinstructions are needed
to code a given operation. In addition, certain functions which are handled with

26

combinatorial logic in other PDP-II control units and data paths are microcoded in the
LSI ... I1. Finally, the LSI-II has more elaborate console microcode than the other
implementations. As a result, the LSI-Il has 22528 bits of microstore versus 14336
bits for the PDP-ll/40, 16384 bits for the PDP-ll/45, and 122880 bits for the
PDP-I 1/60. The narrow microword is used in spite of its attendant problems due to a
limitation imposed by the packaging of the MOS CPU chips. 'Only 40 pins are available
to carry power and signals to and from each chip, limiting the number of lines available
for transmitting the microword from the MICROMs to the control and data path chips.

Technology also imposes a serious constraint on instruction decoding. The
equivalent of a branch on microtest allows only 8 bits to be decoded at a time. This is
sufficient for decoding the majority of instructions; however, the remainder require
additional decoding which may consume as many as 8 microcycles. This is in marked
contrast with aU other PDP-lls which require only a single microcycle to do the initial
instruction decode at the end of the fetch phase {BUT IRDECODE)5. The effect that
this has on the average duration of the LSI-ll fetch phase is evident from Table 4.

Figure 14 details the data paths around which the operands of the
macroinstruction level machine circulate. As with the medium-performance
implementations, the ALU is the hub of activity, operating upon quantities supplied
from the scratchpad memory. The AMUX selects among the output of the ALU, the high
or low byte of the data/address lines, and the processor flags. The selected quantity
is fed back to be rewritten into the scratchpad. Constants supplied as literals from the
microinstruction word may be gated into the data paths through the Bleg MUX to the
ALU. Additional paths exist for transmittiAg information in and out on the data/address
lines.

Significant differences exist between the data paths of the LSI-II and the
midrange machines in addition to the similarities. One major difference is in the width
of the data paths. The LSI-I! is the only member of the PDP-!1 family with data
paths 8 bits rather than 16 bits wide. This is necessitated by limitations in current
semiconductor chip density. Bus paths in particular occupy large amounts of chip real
estate dictating their reduction in width. Since only 8 bits of data can be processed at
a time, two microcycles are required to accomplish any I6-bit operation. A second
effect is the elimination of logic that would otherwise be necessary to configure the
data paths for both byte and word operations. A last unique characteristic is the
absence of a B register for feeding the 8 leg of the ALU. Instead, the B leg is fed
from a second read port into the scratchpad memory. In this the LSI-ll bears a
curious resemblance to the PDP-l1/45 and 11/60. The difference is that while the
LSI-II uses this feature to eliminate cycles that would be needed to load a Breg, there
is not sufficient logic to allow source and destination registers to be accessed
simultaneously. Consequently, multiple cycles are still required to set up register /
register operations on the LSI-l1.

The final important performance factor is again a direct result of the circuit
technology employed. NMOS logic is not as fast as the bipolar logic found in every
other PDP-ll implementation so that the microcycle time of the LSI-ll is 400

5 The 11/60 requires two microcycles to decode certain instructions.

27

nanoseconds or one-third slower than the next slowest PDP-II. This coupled with the
larger number of microcycles necessary to execute a given macroinstruction causes
the LSI-11 to lag in performance.

5. Implementation of a High-Performance PDP-ll

The PDP-l1/45 was designed for maximum performance and followed the 11/20
to become the second member of the PDP-I! family. Maximum performance is
achieved with a complex set of data paths allowing highly parallel operation and an
optional high-speed semiconductor memory (bipolar or MOS) with its own path into the
processor called the Fastbus. The extensive use of Schottky TTL in the processor
malt,es possible a 150 nanosecond cycle time, half as long as that in some midrange
designs.

The complexity of the PDP-l1j45 data paths is evident from Figure 15 even
with several of the special-purpose registers and buses omitted· for clarity. The
overall organization still bears some resemblance to the midrange PDP-1I data paths,
however. The ALU remains the hub of data path activity with its output the primary
feedback path to the processor registers, although not the only one as in other
implementations. The ALU is based upon the Schottky equivalent of the 74181 chip
used in most other PDP-11 designs. The difference begins with the multiplexors
driving the A and B legs of the ALU. These MUXes allow operands to be routed
directly to the proper leg without using additional cycles to move operands from
register to register. KOMUX and KIMUX (combined in Figure 15) are multiplexors used
in conjunction with the BMUX to gate constants. trap vector addresses, and branch
offsets into the B leg of the ALU.

Among the registers supplying the AMUX and 8MUX are the source and
destination operand registers (Sreg and Dreg respectively) .. These are in turn supplied
by the SRMUX and DRMUX which seled data from individual scratchpad registers or the
program counter. Besides holding operands from the general registers, the Sreg and
Dreg act as working registers. In particular Dreg is a shift register used to accumulate
the less significant half of results during multiply and divide.

Separate scratchpads are maintained so that source and destination general
registers may be read simultaneously and independently. This necessitates both
scratchpads being written together to keep their contents identical. Each scratchpad is
organized as 16 words of 16 bits each. Fifteen words in each scratchpad are actually
used: two sets of general registers RO through R5 and three sets of stack pointers
(R6). Register set selection is controlled by status bits in the PS and permits fast
context switching by eliminating the need to save and restore registers .

.
The program counter is not maintained in the scratchpad registers as in other

POP-lIs. Rather, it is held separately so that it may be routed directly to the BAMUX
while the Sreg and Dreg are occupied with other operations. Moreover, two program
counters are implemented. PCS holds the current value of the program counter and is
used as a general register or bus address. peA holds the new value of the program

28

counter allowing the PC to be updated while the old PC value is still in use, after which
PCB is clocked to load it with the new value contained in PCA.

The SHFMUX can right shift or byte swap data from the ALU before it is clocked
into the scratchpads. rt also provides a route from PCB to the Sreg and/or Dreg when
the PC is used as a general register. This arrangement precludes the shifting or byte
swapping of data being loaded into the PC that is possible with data destined for one
of the other general registers res!ding in the scratchpads. As a consequence,
arithmetic shift left and byte swap operations on the PC do not cause the PC to be
modified, although the condition codes are updated as though it were.

Processor access to the UNIBUS, Fastbus, and internal registers is via the bus
register MUX (8RMUX), the bus register (BR and BRA), and the data out MUX (DMUX).
The BR and BRA (the duplication is due to electrical loading considerations) are
logically a single register as shown in Figure 15. They receive all incoming data and
transmit almost all outgoing data in addition to accumulating the more significant half of
results during multiply and divide. The BRMUX selects the input to the BR (and BRA)
from among the two external buses and internal input bus for input to the processor
and from the SHFMUX for output from the processor via the BR and DMUX to the
external buses and internal output bus. The internal buses connect a number of
special registers and an optional floating-point processor to the data paths. Of these,
only the PS is indicated in Figure 15. The instruction register (duplicated as IR and
AFIR, again for electrical loading reasons) are also loaded from the BRMUX but are only
clocked when an instruction is fetched.

Bus addresses are applied directly to the UNlBUS or to an optional memory
mapping unit by the bus address multiplexor (BAMUX). No bus address register is
needed since memory access and processor clocking are fuHy interlocked except
during an overlapped fetch in which case the PCB is held selected while o'perations
continue in other parts of the data paths.

The PDP-11j45 contrql unit is horizontally microprogrammed and is for the most
part quite similar to the archetype described for midrange PDP-II implementations.
The control store is 256 words by 64 bits. The relatively wide microword is
necessary for generating the large number of control signals used in conditioning and
clocking the complicated data paths. An additional source of complexity is the timing
logic needed to produce and use the five processor clock phases.

There are two classes of microsequence-aftering functions corresponding to the
BUTs of other PDP-lIs. The first class consists of simple branches having four or
fewer possible branch addresses. These operate in the same fashion as BUTs. The
second class of branches consists of three complex instruction decoding functions
called forks. The first, fork A, does the initial instruction decode and corresponds to
the BUT IRDECODE of other implementations. Fork B dispatches to an execute phase
microroutine following a destination operand fetch. Fork C dispatches to a destination
phase microroutine following a source operand fetch. A fork enable field in the
microword is used to enable one fork at most during a cycle. When a fork and branch
are combined in the same cycle, the fork is disabled if the branch is taken. This
permits the implementation of certain functions without the use of additional cycles.

29

The 11/45 microcode is structured to take full advantage of the data paths and
processor /UN18US overlap. Besides intensively exploiting special cases in the
addressing modes and instruction set, the microprogram implements operand and
instruction fetch overlap in much the same way as the 11/40. The one difference
between the two prefetch mechanisms is that the 11/45 updates the PC value in PCB
and stores it in PCA at the time the prefetch is started. References to the PC work
correctly because PCB holds the old PC value until it is updated at the appropriate
time.

All the design decisions described above are directed toward implementing the
fastest system possible. Tradeoffs involving circuit technology and control unit and
data path organization have all been made with this end in mind.

6. Measuring the Effect of Design Tradeoffs on Performance

There are two alternative approaches to the problem of determining just how
the particular binding of different design decisions affects the performance of each
machine:

1) Top-down approach - Attempt to isolate the effect of a particular design
tradeoff over the entire space of implementations by fitting the individual
performance figures for the whole family of machines to a mathematical
model which treats the design parameters as independent variables and
performance as the dependent variable.

2) Bottom-u.p approach - Make a detailed sensitivity analysis of a particular
tradeoff within a particular machine by comparing the performance of the
machine both with and without the design feature while leaving all other
design features the same.

Each approach has its assets and liabilities for assessing design fradeoffs. The
first method requires no information about the implementation of a machine~ but does
require a sufficiently large collection of different implementations, a sufficiently small
number of independent variables, and an adequate mathematical model in order to
explain the variance in the dependent variable to some reasonable level of statistical
confidence. The second method, on the other hand, requires a great deal of knowledge
about the implementation of the given system and a correspondingly great amount of
analysis to isolate the effect of the single design decision on the performance of the
complete system. The information that is yielded is quite exact, but applies only to the
single point chosen in the design space and may not be generalized to other points in
the space unless the assumptions concerning the machine's implementation are similarly
generalizable. In the following subsections the first method is used to determine the
dominant tradeoffs and the second method is used to estimate the impact of individual
implementation tradeoffs.

30

6.1 Quantifying Performance

Measuring the change in performance of a particular PDP-I! processor model
due to design changes presupposes the existence of some performance metric.
Average instruction execution time was chosen because of its obvious relationship to
instruction stream throughput. Neglected are such overhead factors as direct memory
access, interrupt servicing, and, on the LSI-II, dynamic memory refresh. Average
instruction execution times may be obtained by benchmarking or by calculation from
instruction frequency and timing data. The latter method was chosen due to its
freedom from the extraneous factors noted above and from the normal clock rate
variations found from machine to machine of a given model. This method also allows us
to calculate the change in average instruction execution time that would result from
some change in the implementation. Such frequency-driven design has already been
appl ied in practice to the PDP-ll/60 [Mudg 77].

The instruction frequencies are tabulated in Appendix A and include the
frequencies of the various addressing modes. These figures were calculated from
measurements made by Strecker [Stre76b] on 7.6 million instruction executions traced
in 10 different PDP-II instruction streams encountered in various applications. While
there is a reasonable amount of variation of frequencies from one stream to the next,
the figures of Appendix A should be representative.

Instruction times are tabulated in Appendices B through 1. These times were
calculated from the engineering documents for each machine. The times vary from
those published in the PDP-ll processor handbooks for two reasons. First, in the
handbooks, times have been redistributed among phases to ease the process of
calculating instruction times. In the appendices the attempt has been to accurately
characterize each phase. Second, there are inaccuracies in the handbOOks arising from
conservative timing estimates and engineering revisions. The figures included here
may be considered more accurate.

A performance figure is arrived at for each machine by weighting its instruction
times by frequency. The results, given in Table 4, form the basis of the analyses to
follow.

,

31

Speed
Fetch Source Dest. Execute Total Relative to

LSI-II

LSI-II 2.514 0.689 1.360 1.320 5.883 1.000

PDP-l1/04 1.940 0.610 0.811 0.682 4.043 1.455

PDP-II/IO 1.500 0.573 0.929 1.094 4.096 1.436

PDP-l1/20 1.490 0.468 0.802 0.768 3.529 1.667

PDP-11/34 1.630 0.397 0.538 0.464 3.029 1.942

PDP-l 1/40 0.958 0.260 0.294 0.575 2.087 2.819

PDP-ll/45 0.363 0.101 0.213 0.185 0.863 6.820
(bipolar memory)

PDP-II/60 0.541 0 . .185 0.218 0.635 1.578 3.727
(871: cache kit ratio)

Table 4: Average PDP-II Instruction Execution Times in Microseconds

6.2 Analysis of Variance of PDP-II Performance: Top-Down Approach

The first method of analysis described above will be employed in an attempt to
explain most of the variance in PDP-II performance in terms of two parameters:

I) Microcycle time - The microcycle time is used as a measure of processor
performance which excludes the effed of the memory subsystem.

2) Memory read pau.se time - The memory read pause time is defined as the
period of time during which the processor clock is suspended during a
memory read. For machines with processor jUNIBUS overlap, the clock is
assumed to be turned off by the same microinstruction which initiates the
memory access. Memory read pause time is used as a measure of the

32

memory subsystem's impact on processor performance. Note that this
time is less than the memory access time since all PDP-II processor
clocks will continue to run at least partially concurrently with a memory
access.

The: choice of these two factors is motivated by their dominant contribution to, and
(approximately) linear relationship with, performance. Keeping the number of
independent variables low is also import ant due to the small number of data points
being fit to the model.

The model itself is of the form:

, where ti is the average instruction execution time of machine i from Table 4.
c Ii is the microcycle time' of machine i (for machine with selectable

microcycle times, the predominant time is used).
c2i is the memory read pause time of machine i.

This model is only an approximation since it assumes k 1 and k2 will be constant
over all machines. In general this will not be the case. k1 is the number of
microcycles expected in a canonical instruction. This number will be a function mainly
of data path connectivity and strictly speaking another factor should be included to
take that variability into account; however, since the data path organization of all
PDP-II implementations considered here (excepting the 11/03, 11/45, and 11/60) are,
quite comparable, the simplifying assumption of calling them all identical at the price of
explainin'g somewhat less of the variance shall be made. K2 is the number of memory
accesses expected in a canonical instruction and also exhibits some variability from
machine to machine. A small part of this is due to the fact that some PDP-lIs actually
take more memory cycles to perform a given instruction than do others (this is really
only a factor in certain 11/10 instructions, notably JMP and JSR, and the 11/20 MOV
instruction). A more important source of variability is the UNIBUS/processor overlap
logic incorporated into some PDP-ll implementations which effectively reduces the
actual contribution of the k2c2i term by overlapping more memory access time with
processor operation than is excluded from the memory read pause time.

Given the model and the dependent and independent data for each machine as
given in Table 5, a linear regression was applied to determine the coefficients kl and
k2 and to find out how much of the variance is explained by the model.

Applying the regression over all eight processors: k 1 = 11.580, k2 = 1.162, R2 =
0.904. R2 is the amount of variance accounted for by the model or 90.47.. If the
regression is applied to iust the six midrange processor~: kl = 10.896, k., = 1.194. R2
= 0.962. R2 i~c~eases to 96.27. partly bec~us~ fewer data "points are' being fit to' the
model and partly because the LSI-li and 11/45 can be expected to have different k
coefficients than the midrange machines and hence don't fit the model as well. Note
that if two midrange machines, the 11/04 and the 11/40, are eliminated instead of the
LSI-II and 11/45, then R2 decreases to 89.37. rather than increasing. The k
coefficients are close to what should be expected for average microcycle and memory

33

Independent Variables
Dependent
Variable

Memory Average
ucycle Read Instruction
Time Pause Execution

Time Time

LSI-11 0.400 0.400 5.883

PDP-11/04 0.260 0.940 4.043

PDP-11/10 0.300 0.600 4.096

PDP-11/20 0.280 0.370 3.529

PDP-11/34 0.180 0.940 3.029

PDP-l1/40 0.140 0.500 2.087

PDP-l1/45 0.150 0.000 0.863
(bipolar memory)

PDP-II/GO 0.170 0.140 1.578
(871 cache hit ratio)

Table 5: Top-Down Model Parameters in Microseconds

cycle counts. Since kl is much larger than k2' average instruction time is more
sensitive to microcycle time than to memory read pause time by a factor of k 1/k2 or
approximately 10. The implication for the designer is that much more performance can
be gained or lost by perturbing the microcycle time than memory read pause time.

Although this method lacks statistical rigor, it is reasonably safe to say that
memory and microcycle speed do have by far the largest impact on performance 'and
that the dependency is quantifiable to some degree.

34

6.3 Measuring Second-Order Effects: Bottom-Up Approach

It is a great deal harder to measure the effect of other design tradeoffs on
performance. The approximate methods employed in the previous section cannot be
used because the effects being measured tend to be swamped out by first-order
effects and often either cancel or reinforce one another making linear models useless.
For these reasons such tradeoffs must be evaluated on a design-by-design basis as
explained above. This subsection will evaluate several design tradeoffs in this way.

6.3.1 Effect of Addi.ng a. Byte Swa.pper to the 11/10

It is evident that the lack of a byte swapper on the PDP-II/I0 has a negative
effect on performance. In this subsection the performance gained by the addition of a
byte swapper either before the B register or as part of the Bleg multiplexor is
calculated. Adding a byte swapper would change five different parts of the instruction
interpretation process: the source and destination phases where an odd-byte operand
is read from memory, the execute phase where a swap byte instruction is executed in
destinatior.l mode 0 and in destination modes I through 7, and the execute phase where
an odd-byte address is modified. In each of these cases seven fast shift cycles would
be eliminated and the re'maining normal-speed shift cycle could be replaced by a byte
swap cycle resulting in a savings of seven fast shift cycles or 1.050 usec. None of this
time is overlapped with UNIBUS operations; hence, all would be saved. This savings is
only effeded; however, when a byte swap or odd-byte access is actually performed.
The frequency with which this occurs is just the sum of the frequencies of the
individual cases noted above or 0.0640. Multiplied by the time saved per occurrence
gives a savings of 0.0672 usec or 1.641. of the average instruction execution time. The
insignificance of this savings could well be used to support the decision for leaving the
byte swapper out of the PDP-II/IO.

6.3.2 Effect of Adding Processor/UNIBUS Overlap to the 1 J /04

Processor /UNIBUS overlap is not a feature of the 11 /04 control unit. Adding
this feature involves altering the control unit/UNIBUS synchronization logic so that the
processor clock continues to run until a microcycle requiring the UNIBUS data from a
DA TI or DATIP is detected. A bus address register must also be added to drive the
UNIBUS lines after the microcycle initiating the DA TI/P is completed. This alteration
allows time to be saved in two ways. First, processor cycles may be overlapped with
memory read cycles as explained in Subsection 3.1.2. Second, since UNIBUS data is not
read into the data paths during the cycle in which the DATI/P occurs, the path from
the ALU through the AMUX and back to the registers is freed. This permits certain
oper at ions to be performed in the same cycle as the DATI/P, for example, the
microword BA+-PC; DATI; PC+-PC+2 could be used to start fetching the word pointed to
by the PC while simultaneously incrementing the PC to address the next word. The
cycle following could then load the UNIBUS data directly into a scratchpad register
rather than loading the data into the Breg and then into the scratchpad on the
following cycle as is necessary without overlap logic. A savings of two microcycle
times would result.

35

DATI and DATIP operations are scattered liberally throughout the 11/04
microcode; however, only those cycles in which an overlap would produce a time
savings need be considered. An average of 0.730 cycles can be saved or overlapped
during each instruction. If all of the overlapped time is actually saved, then 0.190 usec
or 4.70% will be pared from the average instruction execution time. This amounts to a
4.931. increase in performance.

6.3.3 Effect of Ca.chi.ng on the 11/60

The PDP-Il/60 uses a cache to decrease its effective memory read pause time.
The degree to which this time is reduced depends upon three factors: the cache read
hit pause time, the cache read miss pause time, and the ratio of cache read hits to total
memory 'read accesses. A write-through cache is assumed; therefQre, the timing of
memory write accesses is not affeded by caching and only read accesses need be
considered. The performance of the 11/60 as measured by average instruction
execution time is modeled exactly as a function of the above three parameters by the
equation:

, where t is the average instruction execution time.
a is the cache hit ratio.

k 1 is the average execution time of a PDP-11/60 instruction excluding
memory read pause time but including memory write pause time
(1.339 usec).

"'2 is the number of memory reads per average instruction (1.713).
k3 is the memory read pause time for a cache hit (O.OOO usee).
k4 is the memory read pause time for a cache miss (1.075 usee).

The above equation can be rearranged to yield:

The first term and the coefficient of the second term in the equation above
evaluate to 3.181 usec and 1.842 usec respectively with the given k parameter values.
This reduces the average instruction time to a function of the cache hit ratio making it
possible to compare the effect of various caching schemes on 11/60 performance in
terms of this one parameter.

The effect of various cache organiza.tions on the hit ratio is described for the
PDP-II family in general in [Stre7Sa] and for the POP-11/S0 in particular in [Mudg77].
If no cache is provided, the hit ratio is effectively zero and the average instruction
execution time reduces to the first term in the model or 3.181 usee. A set associative
cache with a set size of 1 word and a cache size of 1024 words has been found
through simulation to give a .87 hit ratio. An average instruction time of 1.578 usee
results for a 101.521. improvement in performance over that without the cache.

The cache organization described above is that actually employed in the 11/60.

36

It has the virtue of being relatively simple to implement and therefore reasonably
inexpensive. Set size or cache size can be increased to attain a higher hit ratio at a
correspondingly higher cost. One alternative cache organization is a set size of 2
words and a cache size of 2048 words. This organization boosts the hit ratio to .93
resulting in an instruction time of 1.468 usee, an increase in performance of 7.531..
This inc.reased performance must be paid for, however, since twice as many memory
chips are needed. Because the performance increment derived from the second cache
organization is much smaller than that of the first while the cost increment is
approximately the same, the first organization is more cost effective.

6.3.4 Design Tra.deoffs Affectin.g the Fetch Pha.se

The fetch phase holds much potential for performance improvement since it
consists of a single short sequence of microoperations that, as Table 4 clearly shows,
involves a sizable fraction of the average instruction time due to the inevitable
memory access and possible service operations. In this subsection two approaches to
cutting this time are evaluated for four different processors.

The UNIBUS interface logic of the PDP-ll/04 and 11/34 are very similar. Both
insert a delay into the initial microcycle of the fetch phase to allow time for bus grant
arbitration circuitry to settle so that a microbranch can be taken if a serviceable
condition exists. If the arbitration logic were redesigned to eliminate thi!; delay, the
average instruction execution time would drop by 0.220 usec for the 11/04 and 0.150
usec for the 11/346. The resulting increases in performance would be 5.757. and
5.2110 respectively.

Another example of a design feature affecting the fetch phase is the operandi
instruction fetch overlap mechanism of the 11/40, 11/45, and 11/60. From the normal
fetch times in the appendices and the actual average fetch times given in Table 4, the
savings in fetch phase time alone can be calculated to be 0.162 usec for the 11/40,
0.087 usec for the 11/45, and 0.118 usec for the 11/60 or an increase of 7.771.,
10.077., and 8.117. over what their respective performances would be if fetch phase
time were not overlapped.

These examples demonstrate the practicality of optimizing sequences of control
states that have a high frequency of occurrence rather than just those which have'
long durations. The 11/10 byte swap logic is quite slow, but is utilized infrequently
causing its impact upon performance to be small while the bus arbitration logic of the
11/34 exacts only a small time penalty, but does so each time an instruction is
executed and results in a larger performance impact. The usefulness of frequency
data should thus be apparent since the bottlenecks in a design are often not where
intuition says they should be.

6 These figures are typical. Since the delay is set by an RC circuit and Schmitt trigger,
the delay may vary considerably from machine to machine of a given model.

37

7. Summary and Use of the Methodologies

The PDP-11 offers an interesting opportunity to examine an architecture with
numerous implementations spanning a wide range of price and performance. The
implement ations appear to fall into three distinct categories: the midrange machines
(PDP-ll/04/l0/20/34/40/60)t an inexpensivet relatively low-performance machine
(LSI-ll), and a comparatively expensive, but high-performance machine (PDP-ll/45).
The midrange machines are all minor variations on a common theme with each
implementation introducing much less variability than might be expected. Their
differences reside in the presence or absence of certain embellishments rather than in
any major structural differences. This common design scheme is still quite
recognizable in the LSI-I1 and even in the PDP-I 1/45. The deviations of the LSI-II
arise from limitations imposed by semiconductor technology rather than directly from
cost or performance considerations although the technology decision derives from cost.
In the PDP-ll/45, on the other hand, the quantum jump in complexity is purely
motivated by the desire to squeeze the maximum performance out of the architecture.

From the overall performance model presented in Section 6.2, it is evident that
instruction stream processing can be speeded up either by improving the performance
of the memory subsystem or the performance of the processor. Memory subsystem
performance depends upon number of memory accesses in a canonical instruction and
the effective memory read pause time. There is not much that can be done about the
first number since it is a function of the architecture and thus largely fixed. The
second number may be improved, however, by the use of faster memory components
or techniques such as caching.

Performance of the PDP-l! processor itself can be enhanced in two ways: by
cutting the number of processor cycles to perform a given function or by cutting the
time used per microcycle. Several approaches to decreasing the effective microcycle
count have been demonstrated:

I) Structure the d.ata pa.th.s for mo.xi.mum po.ro.l1e!.i.sm - The PDP-l1/45 can
perform much more in a given microcycle than any of the midrange
PDP-lIs and thus needs fewer microcycles to complete an instruction. To
obtain this increased functionality, however, a much more elaborate set of
data paths is required in addition to a highly developed control unit to
excercise them to maximum potential. Such a change is not an incremental
one and involves rethinking the entire implementation.

2) Structure th.e microcode to tClke best Cld.vClntage of instructi.on features -
All processors except. the 11/10 handle JMP/JSR addressing modes as a
special case in the microcode. Most do the same for the destination
modes of the MOV instruction because of its high frequency. Varying
degrees of sophistication in instruction dispatching from the BUT
IRDECODE at the end of every fetch is evident in different machines
resulting in various performance improvements.

3) Cut effective microcycle count by overla.pping processor o.nd UNIBUS

38

operation. - The PoP-II/iO demonstrates that a larae microcycle count
can be effectively reduced by placing cycles in parallel with memory
access operations whenever possible.

Increasing microcycle speed is perhaps more generally useful since it can often
be applied without making substantial changes to an entire implementation. Several of
the midrange POP-lIs achieve most of their performance improvement by increasing
microcycle speed in the following ways:

1) Make the dato. paths fo.ster - The PDP-ll/34 demonstrates the
improvement in microcycle time that can result from the judicious use of
Schottky TTL in such heavily travelled points as the ALU. Replacing the
ALU and carry-Iookahead logic alone with Schottky equivalents saves
approximately 35 nanoseconds in propagation delay. With cycle times
running 300 nanoseconds and less, this amounts to better than a 101-
increase in speed.

2) Make each microcycLe take only o.s long o.s necessary - The 11/34 and
11/40 both use selectable microcycle times to speed up cycles which
don't entail long data path propagation delays.

Circuit technology is perhaps the single most important factor in performance.
It is only stating the obvious to say that doubling circuit speed will double total
performance. Aside from raw speed, circuit technology dictates what it is economically
feasible to build as witnessed by the SSI PoP-II/20, the MSI PoP-ll/40, and the
LSI-I!. Just the limitations of a particular circuit technology at a given pOint in time
may dictate much about the design tradeoffs that can be made as in the case of the
LSI-I!.

Turning to the methodologies, the two presented in Section 6 can be used at
various times during the design cycle. The top-down approach can be used to
estimate the performance of a proposed implementation, or to plan a family of
implementations, given only the characteristics of the selected technology and a
general estimate of data path and memory cycle utilization.

The bottom-up approach can be used to perturb an existing or planned design
to determine the performance payoff of a particular design tradeoff. The relative
frequencies of each function (e.g. addressing modes, instructions, etc.), while required
for an accurate prediction, may not be available. There are, however, alternative ways
to estimate relative frequencies. Consider the three following situations:

1) At lea.st on.e implemento.ti.on. ezists - An analysis of the implementation in
typical usage (Le. benchmark programs for a stored-program computer)
can provide the relative frequencies.

2) No implementation. ezists, but si.milo.r systems ezist - The frequency data
may be extrapolated from measurements made on a machine with a similar
architecture. For example, the Gibson Mix [Bell71] provided the relative
frequencies of IBM 7090 functions from "{hich the relative frequencies of
IBM 360 functions were estimated.

39

3) No implementation exists and there are no prior similar systems - From
knowledge of the specifications, a set of most-used functions can be
estimated (e.g. instruction fetch, register and relative addressing, move
and add instructions for a stored-program computer). The design is then
optimized for these functions.

Of course, the relative frequency data should always be updated to take into account
new data.

Our purpose in writing this paper has been two-fold: to provide data about
design tradeoffs and to suggest design methodologies based on this data. It is hoped
that the design data will stimulate the study of other methodologies while the results
of the design methodologies presented here have demonstrated their usefulness to
designers.

Condition
I DI Codes 4

Figure 5: Archetypical Medium-Range
PDP-Il Data Paths
Note; All data paths are 16 bits wide unless otherwise indicated.

18
~--r/~ Bus Address

Const.
Bus Data --..., Bus Data

AMUX
Const.

Bleg MUX AlU

J'.:> o

State
Inform
from
Data P

Figure 6: Archetypical Microprogrammed PDP-II Control Unit

Synchronization Clock I<!-
SIgnals

...

from UNIBUS
Interface

1

,
UNIBUS
and

next
clock
control

uword field

BUT next ~
ROM ... 8 . uaddr uaddr

...
data

uaddr
ation

'-"
Logic

..
.L. -c h Control path 8 reg 8

store control
aths I--

~ fields

Microword

8 microprogram counter
Register

. I

4 BUT select

UNIBUS
~ Control J::a

Signals
..-

"
Control Signals -,..

- to
. Data

Paths

Figure 7: PDP-l1/20 Data Paths
Note: All data paths are 16 bits wide unless otherwise indicated.

18
~--r/~ Bus Address

Bus , I .. t>f.
Data

Condition
Codes ~ DI

Const.
Sign
Extend Sleg MUX

and latch

, ~ Bus Data

Rotate/Shiftl
Byte Swap

MUX

Bus Data

J:>
N

LII TCH "'15~O' H -----
Gil TE II - R·.15~ I' H ----~

GIITE II - .;FI5~1} H -----,
Gil TE A - .aO<lS,()O' H

Aleg MUX/Latch

\;474HOO

R<03>H T I
(from SPM) 111 741<00 I ===l

~ 74HOO 74H53

\;474HOO

80<03> H" '"""
(Bus Data)

STPM<03> H i I I
(Constants)

LIITCHO<lS:OO>H ----'
GIITE 6 - 60<15,0:)0> H -----'

GIITE 6 -11'07:00> H ------'
GIITE 0 - STP"'<lS:OO> H -------'

74H53

Bleg MUX/latch

Figure 8:

Adder

\;2 7482

CARRY FRO'" '02> L

Key:

Detail of Central Part
of PDP-l! /20 Data Paths
One-bit (03) Slice
(Adapted from the KC 11 Processor Manual)

Rotate/Shift MUX
ADD<03> l

ADD<l b l .. ==:f

ADO<D4> l , I
P-- 0<03> H

ADO<02> l I I I r

GATE IIOD<07~O> H -----'
GIITE 6YTE <07;00> H ____ ..J

GATE RIGHT <15000> H -------'
GATE LEFT <I5~0> H -------'

74H53

"signal name" H signal is asserted (1) when high

"signal name" l signal is asserted (1) when low

(to rest of
data paths)

.t!>
W

Condition
Codes 4

Figure 9: PDP-ll/40 Data Paths
Note: All data paths are 16 bits wide unless otherwise indicated.

Bus Address

Bus Data ...-f-----------ll':> Bus Data

DMUX
Const.

Byte
Swap/ Bleg MUX
Sign
Extend

• [) Bus Data

.l:>

.l:>

Condition
I DI Codes .4

Figure 10: PDP-I II I 0 Data Paths
Note: All data paths are 16 bits wide unless otherwise indicated.

18
~--r/~ Bus Address

o
Const.

o
1

Sign
Extend Bleg MUX

Bus Data ----..., Bus Data

AMUX

.b
U1

Condition
Codes ~ 8

Figure 11: PDP-ll/04 Data Paths
Note: All data paths are 16 bits wide unless otherwise indicated.

Complementor

18
~--------------------------------------~/~ Bus Address

Bus Data ~ ~ Bus Data

Constants

AMUX o
1

Sign
Extend Bleg MUX

~
(1)

Condition I D1
Codes 4 MUX

Figure 12: PDP-I! /34 Data Paths
Note: All data paths are 16 bits wide unless otherwise indicated.

18
r---IM'~ Bus Address

o
1

Bleg MUX

ALU

Bus Data ---, Bus Data

Constants

AMUX

J::>
.......

Figure 13: PDP-11/60 Data Paths

Shift Tree

Bus. Dt

Data

. PS is implemented
separately from data paths.

Note: All data paths are 16 bits wide unless otherwise indicated.

Bus Address

1-----+-------.,---11> Bus Data
.b
00

Figure 14: LSI-II Data Paths

IR is maintained
within SPM.

SPM

26x8 I t>I

Constants

Note: All data paths are 8 bits wide unless- otherwise indicated.

1-----------------1> DAL<15:08>

1-------------------1[> DAL<07:00>

DAL<15:08>

DAl<07:00>

AMUX
AlU

Condition
Codes, t>I

.b
U)

MUX

Figure 15: PDP-1! /45 Data Paths

SHFMUX

Fastbus Data
UNIBUS Data

Note: All data pa Ihs are 16 bits wide unless otherwise indicated.

18
I----;,H' Do Bus Address

BAMUX

AMUX

BRMUX Const.
KO/KIMUX

• Do F astbus Data

1----1> UNIBUS Data

DMUX

U1 o

51

Introduction to the Appendices

Appendix A tabulates the frequencies of PDP-I! instructions and addressing
modes. This data was derived as explained in Subsection 6.1. Frequencies are given
for the occurrence of each phase (e.g. source, which occurs only during double
operand instructions), each subcase of each phase (e.g. jump destination, which occurs
only during jump or jump to subroutine instructions), and each instance of each phase
such as a particular addressing mode or instruction. The frequency with which the
phase is skipped is listed for source and destination phases. Source and destination
odd-byte-addressing frequencies are listed as well due to their effed on instruction
timing.

Appendices B through r tabulate the calculated instruction execution times for
all the PDP-11 processors reviewed here. These calculations have been made
assuming certain processor and memory timing characteristics described at the end of
each appendix. Normal'timing variations from machine to machine can be significant;
therefore, the times given here can only be taken as typical.

52

Appendix A: Instruction Time Component Frequencies

Frequency Frequency
.a •••••••••••••••••••••••••••••........•••
Fetch 1.0000 Execute 1.0000
.............. __ Instruction
Source 0.4069 ----------
Mode Double Operand 004069
0 R 0.1377 ADD 0.0524
1 (.l!R or (R) 0.0338 SUB 0.0274
2 (R)+ 0.1587 SIC 0.0309
3 «i)(R) .. 0.0122 SICB O.
4 -(R) 0.0352 BIS 0.0012
5 (W-(R) 0.0000 BISB 0.0013
6 X(R) 0.0271 CM? 0.0626
7 ~X(R) 0.0022 CMPB 0.0212
No Source 0.5931 BIT 0.0041
NOTE: BITB 0.0014
Frequency of odd-byte addressinl (SMl-7) • 0.0252. MOV 0.1517 -...•....••....•.•.•.•.••. MOV8 0.0524
Destination 0.6872 XOR O.

---------- ----------
Daia Manipulation 0.6355 Single Operand 0.2286
Mode CLR 0.0186
0 R 0.3146 CLRB 0.0018
1 ~R or R 0.0599 COM O.
2 (Ro) .. 0.0854 COMB O.
3 ~(R) .. 0.0307 INC 0.0224
4 -(R) 0.0823 INCB O.
5 ~-(R) 0.0000 DEC 0.0809
6 X(R) 0.0547 DECB. O.
7 ~xau 0.0080 NEG 0.0038
NOTE: NEGB O.
Frequency of odd-byte addressing <OMl-7) • 0.0213. ADC 0.0070

---------- ADCB O.
Jump (JMP I JSR) 0.0517 sec o.
Mode SeCB O.
0 R 0.0000 (ILLEGAL) ROR 0.0036
1 ~R or (R) 0.0000 RORB O.
2 (R)+ 0.0000 ROL 0.0059
3 @\(R)+ 0.0079 ROlB O.
4 -(R) 0.0000 ASR 0.0069
5 ~-(R) 0.0000 ASRB O.
6 X(R) 0.0438 ASL 0.0298
7 @IX(R) 0.0000 ASlB O.
---------- TST 0.0329
No Destination 0.3128 TSTB 0.0079
. __ •...•.................•...• SWAB 0.0038

SXT O.

Branch
All Branches (true)
All Branches (false)
SOB (true)
SOB (false)

Jump
JMP
JSR

Control, Trap,
and Miscellaneous

Set/Clear Condition Codes
MARK
RTS
RTI
RTT
lOT
EMT
TRAP
BPT

NOTES:

Frequency

0.2853
0.1744
0.1109
O.
O.

0.0517
0.0272
0.0245

0.0270

0.0017
O.
0.0236
O.
O.
O.
0.0017
O.
O.

53

Frequency of destination odd-byte addressing <DMl-7> .0.021a
Execution frequencies indicated ilS O. have an auregat. frequency < 0.0050.

54

Appendix 8: LSI-II Instruction Execution Times

Micro~ycle Time. 0.400 Microseconds

... __•..•.•....•.•.•••
Fetch Time
NOTE:

Memory
Read,

Micro
Cycles

5

The followine instructions take additional ucycles to decode:

Time (ulee)

2.400

Not ..

All sine'e-oporand instructions except SWAB, SXT, MFPS, and MTPS add 1 ucycle (.0.400 usee).
XOR, JMP, RTS, RTI, RTT, let/clear condition code. add 1 ucycle (.0.400 usee).
SWAB adds 2 ucycles (.0.800 usee).
MFPS, MTPS add 4 ueyc!es (.1.600 usee).
SXT adds 5 ucycles (.2.000 usec).
BPT, lOT add 6 ucycles (+2.400 usec).
MARK adds 8 ucycles (.3.200 usee) ,

Source Times
Mode
0 R 0
1 ~R or (R) 1
2 (R). 1
3 @(R). 2
4 -(R) 1
5 (Ol-(R) 2
6 X(R) 2
7 @X(R) 3
NOTES:
(I) Byte addressine .ubtraeta 1 ueyele (-0.400 usec).
(2) Byte addressing adds 1 ucycle (.0.400 usee).

1
3
4
7
5
8
9

12

(3) If reeister ~ R6 or R7, byte addressin, add, 1 ucycle (.0.400 usee) .
.....•.....................•..
Destination Times

---.------
Data Manipulation
Mode
0 R 0 1
1 ~R or (R) 1 4
2 (R). 1 5
3 6iI(R). 2 8
4 -(R) 1 6
5 E!I-(R) 2 9
6 X(R) 2 10
7 @X(R) 3 13
NOTES:

0.400
1.600 (1)

2.000 (3)
3.600 (1)

2.400 (2)
4.000 (1)

4.400 (1)

6.000 (1)

0.400
2.000
2.400 (1)
4.000
2.800 (1)

4.400
4.800
6.400

For MOV, DMO subtracts 1 ucycle (-0.400 usee). OM1-7 8ubtrlcis 2 ucycles and memory read (-1.200 usee).
Byte add,essine (DMl-7) subtraeft 1 ucycle (-0.400 uaee).
(1) If register • R6 or R7, byte add,essin, adds 2 ucycles (.0.800 usee) additive to the time noted directly

above.

55

Memory Memory Micro-
Reads Writes Cycles Time (usee) Notes

Jump (JMP I JSR)
Mode
0 R ILLEGAL
1 ~R or (R) 0 3 1.200
2 (R). 0 5 2.000
3 ~(R). 1 5 2.400
4 -(R) 0 5 2.000
5 (i;l-(R) 1 6 2.800
6 X(R) 1 7 3.200
7 ~X(R) 2 10 4.800 _R. ___________ •••••••• _ •••••• _
Execute Times
Instrudion

Double Operand
ADD, SUB, BIC, BIS, 3 1.600 (3)

XOR
BICB, BlSB 1 2 1.200 (3)
CMP, BIT 0 2 0.800
CMPB, BITB 0 1 0.400
MOV 1 3 1.600 (2)
MOVB 1 2 1.200 (1)

Single Operand
CLR 3 1.600 (2)
CLRB 3 1.600 (2)
COM, NEG 4 2.000 (2)
COMB, NEGB 3 fsoo (2)
INC, DEC, ADC, SBe 5 2.400 (3)
INCB, DECB,ADCB,S8CB 1 4 2.000 (3)
ROR 1 8 3.600 (3)
RORB 1 5 2.400 (3)
ASR 1 9 4.000 (3)
ASRB 1 8 3.S00 (4)
ROl, ASl 1 4 2.000 (3)
ROLB,ASLB 1 3 1.600 (3)
TST 0 4 1.600
TSTB 0 3 1.200
SWAB 1 3 1.600 (2)
SXT 1 6 2.800 (3)
MFPS 1 8 3.500 0,9)
MTPS 1 10 4.400 (2,5,9,10)

Branch
All Branches (Irue)
All Branches (false)
SOB (true)
SOB (false)

Jump
JMP
JSR (rogister • R7)
JSR (register,. R7)

Control, Trap, and Miscellaneous
Set/Clear Condition Codes
MARK
RTS
RTI
RTT
rOT, EMT, TRAP, BPT

NOTES;

Memory
Reads

1
1
2
2
2

Memory
Writes

1
1

2

56

Miero
Cycles

4
4
8
6

2
6

15

3
16

6
15
15
33

(1) DMO adds 1 ueyele and subtracts memory write (.0.000 usec).
(2) DMO subtracts memory write (-0.400 usec).
(3) DMO subtracts 1 ueyde and momory write (-0.800 usec).
(4) DMO subtracts 3 vcydes and memory write (-1.600 usee).
(5) If new PS has bit 7 clear, add 1 ueyele (+0.400 usee).
(6) If new PS has bit 4 set, add 9 ucyeles (+3.600 usee).
(7) If new PS has bit 4 set, add 10' ucycles (+4.000 usee).
(8) If new PS has bit 4 set, add 1 vcyele (+0.400 usee).
(9) Byte instruction.
(0) Use destination rather than sovrce Hmes .
.......•.........•............
NOTE:

Time (usee) Notes

1.600
1.600
3.200
2.400

0.800
2.800
6.400

1.200
6.800
2.800
6.800 (5,6)
6.800 (5,7)

14.800 (5,8)

Times given apply to microcode revision 2(4), MICROMs CP1631-10 (DEC 23-088AS) and CP1631-07 (DEC
23-087A5).

Times Assumed for AU Calculations

1) Microcyde time is 0.400 usec.
2) Microcycle time is extended by 0.400 usee durine DATI/OATlP/OATO/DATOB. (Note: 1 extra wait ueycle is

actually generated for each memory access; however, these ueyeles have not been tallied in the microcyc:le
counts above.)

57

Appendix C: PDP-II/04 Instruction Execution Times

Microcycle Time. 0.260 Microseconds

Memory Mie:ro-
Reads Cyc:lea Time (usee:)

-------_.-.... _---_ ... _._.-...
Felch Time 3 1.940
............. -...........•.•.•
Source Times
Mode
0 R 0 2 0.520
1 0lR or (R) 1 2 1,460
2 (R)+ 1 3 1.720
3 «»(R)+ 2 -5 3.180
4 -(R) 1 3 1.720
5 ~-(R) 2 5 3.180
6 X(R) 2 6 3,440
7 0lX(R) 3 S 4.900
NOTE:
Odd-byte acldressinl (SMl-7) adds 2 ucycle9 (.0.520 usee:) .
...•••..•..•......•.•..•••••••
Destination Times

Data Manipulation
Mode
0 R 0 1 0.260
1 ""I(or (R) 1 1 1.200
2 (R). 1 2 1.460
3 f»(R)+ 2 4 2.920
4 -(R) 1 2 1.460
5 (cl>-(R) 2 4 2.920
6 X(R) 2 5 3.1S0
7 (cl>X(R) 3 7 4.640
NOTE:
Odd-byte addrenin, (DMl-7) adds 2 ucychn (.0.520 vaac).

Jump (JMP I JSR)
Mode
0 R ILLEGAL
1 (cl>R or (R) a 2 0.520
2 (R). 0 3 0.7S0
3 (cl>(R). 1 3 1.720
4 -(R) 0 3 0.780
5 f»-(R) 1 3 1.720
6 X(R) 1 4 1.980
7 @X(R) ~ 6 3.440
........ _---_•...•..••••

58

Memory Memory Micro-
Reads Writes Cycles Time (usee) Notes ._-----_•.••

Execuie Times
Instruction

Double Op~rand
ADD, SUB, BIC(B), BIS(B) 1 2 1.060 (1)

CMP(8), BIHB) 0 1 0.260
MOV(B) 1 2 1.060 O,2}

Sine Ie Operand
CLR(B), COM(B), INC(B), 2 1.060 (l)

DEC(B), NEG(B), ADC(B),
SBC(B)

ROR(B), ROL(B), ASR(B), 1 3 1.320 (1)

ASL(B)
TST(B) 0 0.260
SWAB 1 3 1.320 (1)

Branch
All Branches (Irue) 3 0.780
All Branches (falae) 0 0.000

Jump
JMP 0 0.000
JSR 7 2.360

Control, Trap, and Miscellaneous
Set/Clear Condition Codes 2 0.520
RTS 1 5 2.240
RTI 2 6 3.440
lOT, EMT, TRAP, BPT 2 2 12 6.080

NOTES:
(1) Destination odd-byte addressini (DM!-7) adda 2 ucycln (",0.520 ua6c). DMO subtracts memory write

(-0.540 ,usee).
(2) DMO subtracts 1 additional ucycle (-0.260 usee).
....•.........••••..•...•.•••• .

Times Auumod for All Calculations

1) Microeycle time is 0.260 usee.
2) Mieroeycfe time is extended by 0.220 usee by bus priority arbitration delay during BUT SERVICE.
3) Microeycle time is extended by 0.940 usee during DATI/DATI? (MOS memory).
4) Mieroeyele lime is extended by 0.540 usee during DATO/DATOB (MaS memory).

59

Appendix 0: PDP-II/ 10 Instruction Execution Times

Microcycla Time. 0.300 Microseconds

Fatch Time

Source Times
Mode
o R
1 @lR or (R)
2 (R).
3 ~(R).

4 -(R)
5 (llI-CI()

6 XCR)
7 f)X(R)
NOTE:

Memory
Read.

1

o
1
1
2
1
2
2
3

Micro
Cycle.

5

2
3
5
7
4
6
7
9

Time (usee)

1.500

0.600
1.500
1.500
2.700
1.500
2.700
2.100
3.900

Odd-byte addressine (SMl-7) adds 7 fast shift (0.150 usec/ucycle) and 1 ,elular ucycle for a total of +1.350
usee .

...........•.....•....•..•.•••
Destination Times

Data Manipulation
Mode
o R
1 @lR or (I()
2 (R).
3 @I(R).

4 -(R)
5 @I-(R)

6 X(I~)

7 (llX(R)
NOTE:

o
1
1
2
1
2
2
3

2
3
5
7
4
6
7
9

0.600
1.500
1.500
2.700
1.500
2.700
2.700
3.900

(1)

Odd-byte addressing (OMl-7) adds 7 fast shift (0.150 usec/ueycle) and 1 regular ucycle for a total of .1.350
usae.

(1) MOV subtracts 1 ucycle (-0.300 usee).

Jump (JMP/JSR)
Mode
o R
1 @lR or (R)
2 (R).
3 @I(R).

4 -(R)
5 @I-(R)
6 X(R)
7 @lX(R)
......•...•......•...........•

ILLEGAL
1
1
2
1
2
2
3

1
3
5
2
4
5
7

0.900
0.900
2.100
0.900
2.100
2.100
3.300

60

Memory Memory Micro-
Reads Writes Cycles Time (usec) Notes .. __ .. _ .••.••.... _-•........••

Execute Times
Instruction

Double Operand
ADO, SUS, SIC(S}, SIS(S) 1 4 1.800 (l)
CMP(S), SIHS) 0 2 0.600
MOV(S) 1 4 1.800 (1)

Single Operand
ClR(8), COM(S', INC(S), 5 2.100 (1)

DEC(S), NEG(S), ADC(S),
SSC(S), ROR(S), ROL(S),
ASR(S), ASl(S)

TST(B) 0 3 0.900
SWAB 1 12 al50 (1,2)

Branch
All Branches (frue) 3 0.900
All Branchos (false) 1 0.300

J'Jmp
JMP 2 0.600
JSR 1 9 a300

Control, Trap, and Miscellaneous
Set/Clear Condition Codes 3 0.900
RTS 1 7 2.100
RTI 2 9 2.700
lOT, EMT, TRAP, BPT 2 2 13 6.300

NOTES:
(l) Destination odd-byte addressin& (OM 1-7) adds 7 fast shift ucycles (0.150 usec/ucycle) for a total of

+ 1.050 vsec. OMO subtracts 2 vcycles and memory write (-1.200 usee).
(2) Byte swap consists of 7 fast shift (0.150 usec/ucycle) and 1 ,olular ucycle for a total of +1.350 vssc .
.... -.--_•..•...••.•••••.
NOTE:
Times given apply to the M7261 microprogram module, revision R. Earlier versions use additional ucycles.

Times Assumed for All Calculations

1) Microcycle time is 0.300 usee.
2) A CKOFF followine a OArI/DATIP/OATOIDATOB extends ucycle time by 0.600 usec minus 0.300 usee for

each ucycle that the CKOFF is removed from the eyele initiatin, the bus transaction.

61

Appendix E: PDP-ll/20 Instruction Execution Times

Microcycle Time .• 0.280 Microseconds

Memory Micro-
Reads Cycles Time (use c)

--_._---------------._._----.-
Feich Time 4 1.490
eft_a ••••••••••••••••••••••••••

Source Times
Mode
0 R 0 0 0.000
1 ~R or (R) 1 4 1.490
2 (R)+ 1 4 1.490
3 ~(R)+ 2 7 2.700
4 -(R) 1 4 1.490
5 O>l-(R) 2 7 2.700
6 X(R) 2 7 2.700
7 O>lX{l~) 3 10 a910
NOTE:
Odd-byte addressing (SM 1-7) adds 2 ucyclss (+0.560 US8C) •

... ----.-_._ ... _ ...•.....••..•
Destination Times
----_ ... ----
Data Manipulation
Mode
0 R 0 1 0.280
1 ~R or (R) 1 4 1.390
2 (R). 1 4 1.390
3 ~(R). 2 7 2.600
4 -(R) 1 4 1.390
5 ~-(R) 2 7 2.600
6 X(R) 2 7 2.600
7 (!»X(R) 3 10 3.810
NOTES:
Odd-byte addressing (DM 1-7) adds 2 ucycles (.0.560 usee).
Non-modifying instruction (CMP(B). BIT{B), TST(8» adds 0 ucycles (.0.100 vIae for DATI in place of DATIP).

Jump (JMP I JSR)
Mode
0 R ILLEGAL
1 ~R or (R) 0 4 1.120
2 (R)+ 0 4 1.120
3 ~(R)+ 1 7 2.330
4 -(R) 0 4 1.120
5 @l-(R) 1 7 2.330
6 X(R) 1 7 2.330
7 ~X(R) 2 10 3.540
........•...........••••.•••••

62

Memory Memory Micro-
Reads Writes Cycles Time (usee) Notes

.~•.. -.....•......•
Execute Times
Instruction

Double Operand
ADD, SUB, 8IS(8), MOV(S) 1 3 0.840 (1)

BIC(B) 1 5 1.400 (1)

BIHS) 0 4 1.120
CMP(B) 0 2 0.560

Sin~le Operand
CLR(S), COM(B), INC(B), 3 0.840 0)

DEC(S),.NEG(B), ADC(B),
SBC(B)

ROR(B), ROUB), ASR(B), 3 0.840 (1,2)
ASL<B)

TSHB) 0 2 0.560
SWAB 1 3 0.840 (1)

Branch
All Branches (true) 4 1.120
All Branches (false) 0 0.000

Jump
JMP 0 0.000
JSR 10 2.800

Control, Trap, and Miscellaneous
Sei/Clear Condition Codes 0 0.000
RTS 1 6 2.050
RTI 2 9 3.260
IOT, EMT, TRAP, BPT 2 2 21 6.620
-----.. ----
NOTES:
(l) DMO subtracts 1 ucycle and memory writ. (-0.280 usee). PS as destination adds 1 ucycle (.0.280 usee).
(2) Odd-byte addressin, (DMl-7> adds 2 ueycles (.0.560 usee) .
............•.....•.••........

Times Assumed fot' All Calculations

1) Mierocycle time is 0.280 usee.
2) Microeycle time is extended by 0.370 usee durinl OATI.
3) Mierocycle time is extended by 0.270 usee durin, DATlP.
4) Mieroeycle time is exiended by 0.000 usee durin, DATO/DATOB.

63

Appendix F: PDP-llj34 Instruction Execution Times

Microcycle Time. 0.180/0.240 Microseconds

Memory Micro-
Reads eycl .. Time (usee) Notes --.. _•..••.•......••

Fetch Time 3 1.630
e •••••••••••••••••••••••••••••

Source Times
Mode
0 R 0 1 0.180 (1)

1 (.R or (R) 1 1 1.120
2 (R). 1 2 1.300
3 fiI(R). 2 3 2.420
4 -(R) 1 2 1.300
5 ~-(R) 2 3 2.420
6 X(R) 2 4 2.600
7 ~X(R) 3 5 3.720
NOTE:
(l) OMO subtracts 1 ucycle (-0.180 usee) .
........ -......••...• -........
Destinations Times

Data Manipulation
Mode
0 R 0 0.180 (1,2)

1 @lR or (R) 1 1 1.120
2 (R) ... 1 2 1.300 (1)
3 (N(R) ... 2 3 2.420
4 -(R) 1 2 1.300
5 (.I-CR) 2 3 2.420
6 X(R) 2 4 2.600
7 filX(R) 3 5 3.720
NOTES:
MOV(8) and DMI-7 chante. lont to short ucycle and subtracts memory read <-1.000 usee).
(1) MOV(S) subtracts an additional ucycle (.O.ISO usee).
(2) Single-operand instruction except NEG(B) subtracts 1 ucycle (·0.180 usee).

Jump (JMP 1 JSR)
Mode
o R
1 (.IR or (~)
2 (R) ...
3 (ilI(R) ...

4 -(R)
5 Ii»-CR)
6 X(R)
7 (NX(R)
NOTE:

ILLEGAL
o
o
1
o
1
1
2

(1) JSR adds 1 ucyele (.0.lS0 usee) .
.....•..........•....•.•..•..•

o
2
2
1
2
2
4

0.000
0.360
1.300
0.180
1.300
1.300
2.600

(1)

(1)

64

Memory Memory Micro-
Reads Writes Cycles Time (usee) Notes

.a ••••••••••••••••••••••••••••

Execution Time
Instruction

Double Operand
ADD, SUS, SIC(B), BIS(B), 0.780 (1)

MOV(S), XOR
CMP(B), BIT (B) 0 0.180

Sin&Ie Operand
CLR(B), COM(S), INC(S), 0.780 (1)

DECCB), ADC(B), saCCS),
SXT

NEG(B) 2 0.960 0)
ROR(B), ROL(B), ASR(8), 2 0.960 (2)

ASUB)
TST<B) 0 0.180
SWAB 1 0.780 (2)

Branch
All Branches (true) 3 0.540
All Branches (false) 0 0.000
SOB (true) 4 0.780
SOB (false) 2 0.420

Jump
JMP 1 0.180
JSR 5 1.500

Control, Trap, and Miscellaneous
Set/Clear Condition Codes 2 0.360
MARK 1 8 2.380
RTS 1 4 1.660
RTI, RTT 2 6 2.960
lOT, EMT, TRAP, BPT 2 2 13 5.420

NOTES:
(1) DMO subtracts memory write and changes long to shod ucycle (-0.600 usee).
(2) DMO subtracts memory write, changes long to short ueycle, and add. 1 ueyele (-0.420 usee) .
••.••....•....•......•••.•.•••

Times Assumed for All Calculations

I} Microcycle times are 0.180 and 0.240 usee.
2) Microcycle time is extended by 0.150 usee by bus priority arbilration delay during BUT SERVICE.
3) Microcyele time is extended by 0.940 usec during DATI/DATI? (MOS memory).
4) Microcycle time is extended by 0.540 usee during DATO/DATOS (MOS memory).
5) Memory management unit delay is not included (.0.120 usee/memory cycle. when enabled).

65

Appendix G: PDP-11 /40 Instruction Execution Times

Microcycle Time. 0.140/0.200/0.300 Microseconds

Fetch Time
NOTE:

Memory
Reads

Micro
Cycles

4

Time (usee) Notel

1.120

Execute phase of previous instrudion may be overlapped with fetch. Consult execute phase noles for effect
on timing .

... _•.....•.......••...••
Source Times
Mode
0 R 0 0 0.000
1 RR or (R) 1 3 0.780
2 (R) .. 1 3 0.840
3 (W(R) .. 2 5 1.720
4 -(R) 1 3 0.840
5 (W-(R) 2 5 1.720
6 X(R) 2 5 1.340
7 ,",X(R) 3 7 2.120
NOTE:
Odd-byte addressing (SMl-?) adds 2 ueyeles (+0.340 usee) .
• ~s •••••••••••••• _ ••••••••••••

Destinations Times
----_ _--
Dala Manipulation (except MOV(S»
Mode
0 R 0 0 0.000
1 €'>R or (R) 1 3 0.780
2 (R) .. 1 3 0.840
3 €'>(R)+ 2 5 1.720
4 -(R) 1 3 0.840
5 ~-(R) 2 5 1.720
6 X(R) 2 5 1.780 (1)

7 (.lX(R) 3 7 2.560 (1)

NOTES:
Odd-byte addressing (OMI-7) adds 2 ueyeles (.0.340 usee).
(1) Sintle-operand instruction or SMa lubtrletl 0 ueycln (-0.440 usee).

MOV(S)
Mode
0 R 0 0 0.000
1 li»R or (R) a 2 0.340
2 (R) .. 0 2 0.340
3 Ii»(R) .. 1 3 1.140
4 -(R) 0 2 0.340
5 In>-(R} 1 3 1.140
6 X(R) 1 3 1.140 (1)

7 \n>X(R) 2 5 1.980 (1)

NOTE:
(l) SMO subtrads 0 ueycles (.0.440 usee).

66

Memory Memory Micro-
Reads Writes Cycles Time (usec) Notea

Jump (JMP/JSR)
Mode
0 R ILLEGAL
1 (WR or (R) 0 2 0.340
2 (R)+ 0 3 0.640
3 @(R)+ 1 2 0.940
4 -(R) 0 2 0.440
5 @l-(R) 1 2 0.940
6 X(R) 1 4 0.840
7 @lX(R) 2 4 1.340 ._-_•
Execution Time
Instruction

Double Operand
ADD, SIC(S), SIS(S), XOR 3 0.540 (l,2)
SUS 1 4 0.680 (1)

CMP(B), BIHB) 0 3 0.480 (3)
MOV(B) 1 3 0.640 (4)

Single Operand
ClR(B), COM{S), rNC(B), 4 0.620 0,2)

DEC(B), ADC(B), S8C(8),
ROUB), ASL(8), SXT

NEG(B) 1 3 0.540 (1,2)
ROR(B), ASR(B) 1 4 . 0.840 (5)
TST(B) 0 4 0.620 0,2)
SWAB 1 3 0.540 (1)

Branch
All Branches (true) 3 0.640
All Branches (false) 2 0.280
50S (true) 5 1.240
SOB (falae) 5 0.920
----.-----
Jump
JMP 2 0.340
JSR 1 6 1.480

Control, Trap, and Miscellaneous
Set Condition Codes 2 0.600
Clear Condition Codes 3 0.900
MARK 1 6 1.540
RTS 1 4 1.280
RTI, RTT 2 6 2.320
lOT, EMT, TRAP, BPT 2 2 14 4.180

67

NOTES,
If (single-operand instruction or SMO and double-operand instruction except MOVB), DMO, destination ;.

rogistor 7, and no sorvice request pendlnl, then next felch is overlapped (-1 ucycle/-0.640 usec from
noxt felch).

(1) If DMO, phase takes 3 ucycles and memory write is not done (0.480 usec).
(2) If odd-byte addressins COMl-7), phase lake; 5 ucycles (1.020 usee).
(3) If odd-by to addresains (DMl-7), phase lak .. 5 ucycles (0.820 usec).
(4) If byte instruction and DMl-7, phase lakes 4 ucycles (0.880 usec). For DMO: If word instruction, phase

takes 2 ucycles (0.340 usee). If byte instruction, phase takes 4 ucycles (0.680 usec).
(5) For DMO: If word instruction, phase takes 3 ucycles (0.740 usee). If byte instruction, phase lakes 4

uc:yc:les (0.880 use c). In neither case is memory write done •
...•.•...........•..•..•...•.•

Times Assumed for All Calculations

1) Microc:ycle times are 0.140, 0.200, and 0.300 usee.
2) A CLKOFF followins a DATI/DATIP extends ucycle time by 0.500 usec minus sum of cycle times between

DATI/DATIP (oxclusive) and ClKOFF (inclusive).
3) A CLKOFF followins a DATO/DATOB axtends ucycle time by 0.200 usee minus sum of cycle times between

DATO/DATOB (exclusive) and CLKOFF (inclusive).
4) Memory manll\tement unit delay is not included (.0.150 usee/memory c:ycle when enabled).

68

Appendix H: PDP-ll /45 Instruction Execution Times

Microcycle Time. 0.150 Microseconds

Fetch Time
NOTE:

Memory
Reads

Micro
Cycles

3

Time (usee) Notes

00450

Execute phase of previous instruction may be overlapped with fetch. Consult execute phase notes for effect
on timing .

• n ••••••••••••••••••••••••••••

Source Times
Mode
0 R 0
1 (l»R or (R) 1
2 (R). 1
3 ~(R). 2
4 -(R) 1
5 ~-(R) 2
6 X(R) 2
7 ~X(R) 3
...................•.........•
Destinations Times

Data Manipulation
Mode
a R a
1 .. R or (R) 1
2 (R). 1
3 @(R). 2
4 -(R) 1
5 ~-(R) 2
6 X(R) 2
7 ~X(R) 3
NOTE:
MOV and DMI-7 subtracts memory read (-0.000 usee).
Odd-byte addressing <OM!-7) adds 1 ucycle (.0.150 usec).

a
2
2
5
3
6
4
7

0
2
2
5
3
6
5
8

(1) Single-operand instruction or SMO subtracts 1 ucycle (.0.150 usee).

. Jump (JMP/JSR)
Mode
0 R ILLEGAL
1 @R or (R) 0 2
2 (R). 0 2
3 @(R). 1 4
4 -(R) 0 2
5 @-(R) 1 5
6 X(R) 1 3
7 @\X(l<) 2 6
..................•.....•.....

0.000
0.300
0.300
0.750
00450
0.900
0.600
1.050

0.000
0.300
0.300
0.750
0.450
0.900
0.750 0)
1.200 (1)

0.300
0.300
0.600
0.300
0.750
0.450
0.900

69

Memory Memory Micro-
Roads Wrii811 Cycles Time (usee) Notes

.r. ••••••.•••.••.••••••••••.•••
E xoculion Time
Instruction

Double Operand
ADD, SUB, BICCB), 8IS(B), 2 0.300 (1)

MOVB,XOR
CMP{B), SIHS) 0 1 0.150 (1,2)
MOV 1 0 0.000 (1.3)

Smgle Operand
CLR(S), COM(S), INC(S), 2 0.300 (1)

DEC(S), ADC(8), SSC(S),
ROL(B), ASL(B), SWAB,
SXT

NEG(B) 4 0.600 (4)
ROR(B), ASR(B) 2 0.300 (l,5)
TST(B) 0 1 0.150 (1.2)

Branch
All Branches (hue) 1 0.150
All Branches (false) 0 0.000 (6)
S08 (true) 3 0.450 (6)
SOB (false) 2 0.300 (6)

Jump
JMP 1 0.150
JSR 5 0.750

Control, Trap, and Miscellaneous
Set/Clear Condition ·Codes 1 0.150
MARK 4 0.600 (6)
RTS 1 4 0.600
RTI, RTT 2 7 1.050
BPT 2 2 12 1.800
lOT 2 2 11 1.650
EMT, TRAP 2 2 13 1.950

70

NOTES:
(1) For OMO:

If double-operand instruction, destination" register 7, and SMl-7:
If odd-byte addressing, Ihen phase takes 2 ueyeles (0.300 u'see), else phase lakes 1 ueycle (0.150
usee). If no service request is pendins, then nelet felch is overlapped (-1 ueyele/-0.150 usee
from nelet fetch).

If double-operand instruction, destination. register 7, and SMl-7:
Phase lakes 2 ucycles (0.300 usee).

Otherwise (single-operand instruction or SMO):
Phase lakes 1 ueyde (0.150 usee). If deslination " register 7 and no service request is pending,
then nele! feieh is overlapped (-2 ueyeJes/-O.300 usee from nut fetch).

No memory wrile is done.
(2) For OMl-7, if destination fetch is via Fastbus and no service request is pending, then next instrudion felch

is overlapped (-1 ueyde/-O.lSO usee from ned felch).
(3) OM 1-2 adds 1 ueyele (.0.150 usee). If no service request is pending, then next fetch is overlapped (-1

ueyele/-0.150 usee from next fetch).
(4) OMO subtracts 2 ueyeles and memory write (-0.300 usee).
(5) Odd-byte addressing adds 1 ucycle (+0.150 usee).
(6) If no service request is pending, then next fetch is overlapped (-1 ucycle/-0.150 usee from nexl fetch).

Times Assumed for All Calculations

1) Mierocycle time is 0.150 usec.
2) Memory aecesa time does not influence m;eroeyele times (bipolar memory).
3) Memory management unit delay is not included (+0.090 usee/memory cycle when enabled).

71

Appendix I: PDP-II/50 Instruction Execution Times

Microcycle Time. 0.170 Microseconds

Fetch Time
NOTES:

Memory
Reads

Micro
Cycles

:3

Time (usee) Notes

0.510

The followinlt instructions lake 1 addilional ucycle (+0.170 usee) to decode: XOR, SWAB, SXT, JSR, set/clear
condition codes, MARK, SOB, RTS, RTI, RTT, IOT, EMT, TRAP, BPT, MFPl(D), MTPl(D).

Fetch or execute phase of previous instruction may be overlapped with fetch. Consult execute phase notes
f or effect on limin, .

......•........•.•..••.•••..••
Source Times
Mode
o R
1 <">R or .(1<)
2 (R)+

3 <">(R)+
4 -(R)
5 (O;-(R)

6 X(R)
7 (,llX(R)
NOTE:

o
1
1
2
1
2
2
:3

o
2
2
5
3
6
4
7

0.000
0.340
0.340
0.850
0.510
1.020
0.680
1.190

For SMl-7: Word instruction except MOV and DM1-7 adds ucyele (+0.170 usee). Byte instuction adds 2
ucycles (+0.340 usee) .

.•..................•.......••
Destination Times

Dala Manipulation (except MOV(B) and MTPI(D»
Mode
0 R 0 0 O.oqo
1 (ilil< or (1<) 1 2 0.340
2 (I<)+ 1 2 0.340
3 (ili(R)+ 2 5 0,850
4 -(R) 1 :3 0.510
5 ~HR) 2 6 1.020
6 X(R) 2 5 0.850 (1)

7 (iliX(R) :3 8 1.360 (1)

NOTES:
Byte addrossinlt (OM 1-7) adds 2 ucycles (+0.340 usee).
(1) Sinltlo-operand instruction excepl SWAB or SXT or SMO and double-operand instruction except XOR

subtracts 1 ueycle (-0.170 use~).

72

Memory Memory Micro-
Reads Writes Cycles Time (usee) Notes

MOV(S) and MTPl(D)
Meal?
0 R 0 0 0.000
1 G"R or (R) 0 0 0.000
2 (R)+ 0 1 0.170
3 ~(R)+ 1 3 0.510
4 -(R) 0 1 0.170 (1)

5 ~-(R) 1 4 0.680
6 X(R) 1 3 0.510 (2)
7 ('!>X(R) 2 6 1.020 (2)
NOTES:
MOVS, SMO, and DMl-7 adds 2 ucycles (.0.340 usee) for even byte, 3 ueyeles (.. 0.5l0 usee) for odd byte.
(1) MOV and SMO adds 1 uc:ycle (.0.170 usee).
(2) MOV(S) and SMO subtracts 1 ucycle (-0.170 usee).

Jump (JMP I JSR)
Mode
o R ILLEGAL
1 0lR or (R) 0 1 0.170
2 (R)+ 0 2 0.340
3 0l(R)+ 1 2 0.340
4 .(R) 0 1 0.170
5 ~·(R) 1 3 0.510
6 X(R) 1 2 0.340
7 G"X(R) 2 5 0.850
.•............•.•••..••.•.....
Execute Times
Instruc1ion

Double Operand
ADD,MOV 2 1.170 (1,6)

SUS 3 1.340 (1,7)
SIC(S), SlS(S) 2 1.170 (1,6,12)
CMP(B) 0 1 0.170 (1,11)
81HS) 0 1 0.170 (1)

MOVS 1 2 1.170 (4)
XOR 1 3 1.340 (7)

SinRle Operand
CLR(B), COM(S) 1 3 1.340 (2,7)
INC(S), DEC(S), ADC(S), 1 3 1.340 (2,7,8)

ROL(S), ASL(B)
NEGCS) 1 4 1.510 (7,8)
SSC(S) 1 4 1.510 (6,8)
ROR(S) 1 4 1.510 (6)
ASR(B) 1 5 1.680 (7,9)
TST(B) 0 2 0.340 (2,5)
SWAB 5 1.680 (7)
SXT 6 1.850 (7)

MFPl(D) 21 4.400 (13)
MTPl(D) 22 4.570 (6)

73

Memory Memory Micro-
Reads Writes Cycles Time (usec) Notes

Branch
All Branches (true) 4 0.680 (3)
All Branches (false) 2 0.340
SOB (lrue) 10 1.700 (3)
SOB (false) 7 1.190

Jump
JMP 1 0.170
JSR 6 1.850 <3.10)

Contro~ Trap, and Miscellaneous
Set/Clear Condition Codes 8 1.190
MARK 1 9 1.530
RTS 1 4 0.680
RTI 2 10 1.700
RTT 2 19 a230
lOT, EMT, TRAP, BPT 2 2 22 5.400 (14)

NOTES,
(l) If SMO, DMO, source ~ reeister 7, and destination ~ reaister 7, then fetch overlap is attempted. If no

sorvice request is pendin& at conclusion of instruction, then next fetch is overlapped (-2 ucycles/-0.340
usec from next fetch); otherwise, add 2 ucycle8 (.. 0.340 usec) to service phase followin& instruction for
PC rollback, add 1 memory read (.0.000 usec) to next fetch for instruction refetch.

(2) If DMO and destination ~ re&ister 7, then fetch overlap is attempted. If no service request is pending at
conelu'sion of instruction, then next fetch is overlapped (-2 ucycles/-0.340 usec from next fetch);
otherwise, add 2 ueydes (.0.340 usec) to service phase followin& instruction for PC rollback, add 1
memory read (.. O.OOO usee) to next fetch for instruction refeteh.

(3) If no service request is pendin&, then next fetch is overlapped (-2 ueyeles/-0.340 usee from next fetch);
otherwise, subtract 1 ueyele (-0.170 usec) from execute.

(4) For DMO: SMO subtracts memory writ. (-0.830 usee). SMl-7 subtracts 1 ueycle and memory wriie
<-1.000 usee).

(5) DMO subtrects 1 ueyele (-0.170 usec).
(6) DMO subtracts 1 ueyele and memory write (-1.000 usee).
(7) DMO subtrads 2 ueyel. and memory write (-1.170 usee).
(8) OM1-7 and byte addressina adds 1 ueyele (.0.170 usee).
(9) OMl-7 and byte addressin& adds 3 ueyel .. (.0.510 usee).
(10) OM3.5-7 adds 1 ucycl. (.0.170 usec).
(11) SMl-7, OMO, and word addressing adds 1 ucycle (.0.170 usec).
(12) SMa, OMI-7, and byte addressin& adds 1 ucycl. (.0.170 usee).
(13) SMO adds 1 ueyele (.0.170 usee).
(14) If new PC odd, Mierocontrol transfers to writable control store if present and instruction timing does not

apply; otherwise, trap sequence continues normally with 3 extra ucyeles (.0.510 usee) .
.•••..••...•.•...•.•........••

74

NOTE:
Accessina Ihe followina inlernal addresses invokes microcode which adds additional microcycles in all phases:

772300-16 Kernel Page Descriplor Registers
772340-56 Kernel Page Address Registers
777540 Writable Control Store Status Register
777542 Writable Control Store Address Register
777544 Writable Control Store Data Register
777570 Console Switch and Display Register
777572 Memory Management Slatus Register 0
777574 Memory Management Status Register 1
777576 Memory Management Status Register 2
777600-16 User Page Descriptor Registers
777640-56 User Page Address Registers
777744 Memory System Error Register
777746 Cache Control Register
777752 Cache Hit/Miss Register
777766 CPU Error Register
777770 Microprogram Break Register
777774 Slack limit Reais!er
777776 Processor Stalus Word

Times Assumed for All Calculations

1) Microcycie time is 0.170 usee.
2) Microcycie time is extended by 0.000 usee during DATI/DATIP with cache hit (all tabulated limes assume

cache hif on read).
3) Microcyc:le time is extended by 1.075 usee during DA TI/DA TIP with eaehe miss ..
4) Microeycle time is extended by 0.830 usee during DATO/DATOS.
5) Memory manallement unit adds no delay when enabled.

75

References

[8eI170] Bell, C. G., R. Cady, H. McFarland, B. Delagi, J. O'Loughlin, R. Noonan, and W.
Wulf, "A New Architecture for Minicomputers - The DEC PDP-11," AFIPS
Conference Proceedings, vol. 36, pp. 657-675, 1970.

[8eIl71] 8ell, C. G. and A. Newell, Computer Stru.ctures: Reo.dings o.nd ExOomples,
McGraw-Hili, New York, 1971.

[Mudg77] Mudge, J. C., "Design Decisions Achieve Price/Performance Balance in Mid
Range Minicomputers," Computer Design, vol. 16, no. 8, pp. 87-95, August
1977.

[Olou75] O'Loughlin, J. F., "Microprogramming a Fixed Architecture Machine," Infotech
State of the Art Report 23 Microprogro.mming Oond Systems Architecture,
pp. 205-224,' 1975.

[Siew76] Siewiorek, D. P. and M R. Barbacci, "The C-MU RT -CAD System: An
Innovative Approach to Computer Aided Design," AFIPS Conference
Proceedi.ngs, vol. 45, pp. 643-655t 1976.

[Stre76a] Strecker, W. D., "Cache Memories for PDP-11 Family Computers," 3ra.
Symposiu.m on Computer Architecture Proceedings, pp. 155-158, 1976.

[Stre76b] Strecker, W. D., private communication, 1976.

[Thom77] Thomas, D. E. and D. P. Sieviiorek, "Measuring Designer Performance to
Verify Design Automation Systems," Desi.gn Automo.tion Con.ference
Proceedings, vol. 14, pp. 411-418, 1977.

[Wilk53] Wilkes, M. V. and J. B. Stringer, "Microprogramming and the Design of the
Control Circuits in an Electronic Digital Computer," Proceedi.n.gs of the
Co.mbridge P hilosophico.l Society, pt. 2, vol. 49, pp. 230-238, April 1953.

The following Digital Equipment Corporation documents define the architecture and
instruction set of the PDP-11 in addition to detailing features peculiar to individual
processor implement ations:

PDP-l1/20/1S/R20 Processor Ho.ndbook, EB-01855-7l.
PDP-ll/04/0S/10/35/40/45 Processor Ho.ndbook, EB-05138-76.
PDP-l1/04/34/45/55 Processor HOondbook, EB-A5138-76.
PDP-ll/60 Processor Ho.ndbook, EB-06498-20.
Mi.crocomputer HOondbook (LSI-II), EB-07948-53.
PDP-l1 PeripherOols Ho.ndbook, 1976, E8-05961-76.
PDP-ll Progro.mming Reference COord, EH-S 1046-76.
LS[-11/PDP-11/03 Progro.mming Reference COord, EK-04779-7S.

76

The following Digital Equipment Corporation documents were the source for
information on individual PDP-II processor implementations!

LSI-II

LSI-I I, PDP-tt/03 User's Mo.nuo.l, EK-LSI1I-TM-002.
Western Di.gito.l Corporo.ti.on Microprocessor Set (MCP) Functi.ono.l Specifico.tion,

DEC internal document. .
KD 1 I-F Print Set, MP00049.
LSI-II microcode, DEC internal document.
LSI~ll EIS/FIS microcode, DEC internal document.

PDP-I 1/04

KDII-D Processor Mo.nuo.l (Preliminary), EK-KDIIo-TM-PRE.
KDl1-D Print Set, MP00020.

PDP-II/lO

KDl1-B Processor Mo.inteno.nce Mo.nuo.l, EK-KDll B-MM-oOl.
PDP-ll/05-S, 11/10-S Systems Engineering Dro.utings.

PDP-I 1/20

KC11 Processor Mo.nuo.l, ll-HKCB-D.
KCl I Processor Engineering Dro.wings.

PDP-I 1/34

KDl1-E Processor Mo.nuo.l (Preliminary), EK-KOllE-TM-PRE.
KDl1-£ Print Set, MP00043.

PDP-l 1/40

KDI1-A Processor Mo.inteno.nce Mo.nu.o.L, EK-KDllA-MM-oOl.
PDP-11/40 System Engineerm, Dro.wi.n,s.

PDP-l 1/45

KB11-A,D Centro.l Processor Uni.t Mo.ittteno.nce Mo.ltUo.l, EK-KBIIA-MM-004.
PDP-l1/45 System Engi.neering Dro.wings.

PDP-II/SO

KDtt-K Processor Mo.nuo.L
KDI1-K Pri.nt Set.
PDP-l1/60 Microprogro.mming Specifico.ti.on, draft.
PDP-ll/60 microcode, DEC internal document.

