				REVIS	ONS			
LTR	DASH N	0.		DESCRIP	TION		DATE	APPROVE
A	9001	PR	DD RLS	E PEF	R ECO	1782	2-11-83	*
B	9001	REV	ISED P	ER ECC	002	825	2'JAN 85	DSPGCLD
-			а 					
			•					
		•	NOV 2 (* 19	85				
				FABRICATIC				
							· .	
T NO	RENEM IS NEL EASED TEN PER-	DWG APPRO	VAL DATE		CEN	data compo Hubbon, HEW		•
USED LICATION	CONTAINED IS NOT TO BA THOUT WINI NICE data see	DR MGR/1/1				PRODUC	T SPE	С
N AP	DIMATION C TARY AND L ODUCED WI	DWG RELEA	SE DATE	NZE		NUMMER	2176 - 900	
			A 1 1 1 100		5016			<u>, , , , , , , , , , , , , , , , , , , </u>

: :		
•		
ょく		

L

ENGINEERING PRODUCT SPECIFICATION						
CENT	RONICS SPEC. NO. 80002176-9	001				
	REV B					
	DATE JANUARY 21,	1985				
	PAGE 2 OF	36				
	TABLE OF CONTENTS	PAGE				
1.0	SCOPE	5				
2.0	RELATED DOCUMENTS	5				
2.1	SPECIFICATIONS	5				
3.0	GENERAL	6				
3.1	FEATURES	6				
3.1.1	Graphics Non-APA Normal Mode	6				
3.1.2	Cut Sheet	6				
3.1.3	Maximum Characters Per Line	6				
4.0	ELECTRICAL DESCRIPTION	7				
4.1	POWER REQUIREMENTS	7				
4.1.1	Print Controller	7				
4.1.2	Format Controller	7				
4.2	POWER CONNECTORS	7				
4.2.1	Print Controller	7				
4.2.2	Format controller	8				
5.0	INTERFACE DESCRIPTION	8				
5.1	General Description	8				
5.1.1	Signal Description	8				
5.1.2	Connector Pin-Out	12				
5.1.3	Physical Description	13				
5.1.4	C-RAM Interface Electrical Characteristics	13				
5.2	DATA/ARGUMENTS DEFINITION	13				
5.2.1	Status Bytes	13				
5.2.2	Paper Motion Argument Description	15				
5.2.3	Byte 00 - Printer Status	16				
5.2.4	Byte OE ₁₆ - Self Test Status Byte	17				
5.2.5	Byte 0116 and 0216	19				
5.2.6	Byte 03_{16} and 04_{16}	19				
5.2.7	Byte 05_{16} and 06_{16}	19				
5.2.8	Byte 07_{16} and 08_{16}	19				
5.2.9	Byte 09_{16} · · · · · · · · · · · · · · · · · · ·	19				
•						
S-42	COMPANY CONFIDENTIAL	INED HEREIN IS				

٠

OR REPRODUCED WITHOUT WRITTEN PER WISSION OF CENTRONICS and computer com

CEN	ronics	SPE	C. NO.	8000	2176	-9001
			REV DATE	B JAN	UARY	21, 19
			PAGE	3	OF	36
	TABLE OF CONTENTS					PAGE
5.2.10	Byte $0A_{16}$ and $0B_{16}$			• • •	•	21
	Byte OC_{16} and OD_{16}					21
5.2.12	Byte OF_{16} · · · · · · · · · · ·					21
5.2.13	Byte 1016 - Machine Options					21A
5.2.14	Byte 12 ₁₆ - Graphics Options.					22
5.2.15	Byte 13 ₁₆ - Optional Pitch Sele					22
5.2.16	Byte 14 ₁₆ - Alternate Speed Sel					22
5.2.17	Byte lF ₁₆ - Matrix Size				•	22A
5.3	POSITIONAL INFORMATION AND USE					22A
5.3.1	Standard Character Placement	• • •	• • • •	• • •	•	23
5.3.2	Graphic Mode	• • •		• • •	•	23
5.3.3	High Density Print	• • •		• • •	•	24
5.4	CHARACTER PATTERN GENERATION	• • •		• • •	•	24
5.4.1	Character Generator	• • •	• • • •	• • •	•	24A
5.4.2	Character Generator Address .	• • •	• • • •	• • •	•	25
5.4.3	Graphic Mode	• • •	• • • •	• • •	•	25
5.4.4	High Density Print	• • •	• • • •	• • •	•	26
5.5	RESTRICTIONS	• • •	• • • •	• • •	•	26
6.0	DRIVE CIRCUITRY	• • •	• • • •	• • •	•	26
6.1	PAPER TRANSPORT	• • •	• • • •	• • •	•	26
6.1.1	Stepper Motor Excitation Sequer	nce	• • • •	• • •	•	26
6.1.2	Stepper Driver	• • •	• • • •	• • •	•	27
6.2	CARRIAGE SERVO SYSTEM	• • •	• • • •	• • •	•	29
6.2.1	DC Motor Controller	• • •	• • • •	• • •	•	29
6.3	RIBBON MOTOR DRIVER		• • • •	• • •	•	30
6.4	HEAD DRIVER CIRCUIT	• • •	• • • •		•	30
7.0	ENVIRONMENTAL CONDITIONS	• • •	• • • •	• • •	•	32
7.1	TEMPERATURE/HUMIDITY	• • •	• • • •	• • •	•	32
7.1.1	Operating		• • • •	• • •	•	32
7.1.2	Non-Operating			• • •	•	32
7.2	ALTITUDE				•	32

ENGINEERING PRODUCT SPECIFICATION-

CENTRONICS

SPEC. NO.	800	02176	5-900)1
REV DATE	B JAN	IUARY	21,	1985
PAGE	4	OF		36

TABLE OF CONTENTS

PAGE

7.3	NEQUALITARIA CHOOM	
	MECHANICAL SHOCK	32
7.3.1	Operating	32
7.3.2	Non-Operating	32
7.4	VIBRATION	32
7.4.1	Operating	32
7.4.2	Non-Operating	33
7.6	ELECTROMAGNET COMPATIBILITY	33
7.6.1	ES D	33
7.6.2	EMI/RFI	33
8.0	SAFETY	33
9.0	RELIABILITY PROVISIONS	33
9.1	DEFINITIONS	33
9.1.1	Failure	33
9.1.2	Reliability	34
9.1.3	Power-On Time	34
9.1.4	Operating Time	34
9.1.5	Duty Cycle	34
9.1.6	Operating Environment	34
9.1.7	Mean-Time Between Failure	35
9.1.8	Mean-Time to Repair	35
9.1.9	Infant Mortality Period	35
9.1.10	Useful Life	35
9.2	RRELIABILITY PARAMETERS	35
9.2.1	Population MTBF	35
9.2.2	Reliability During Useful Life	35
9.2.3	Infant Mortality Period	35
9.2.4	Peak Failure Rate	36
9.2.5	Mean Time to Repair	36
9.2.6	Repair Actions	36
9.2.7	Failure Rate per Million Hours	36
10.0		36

ENGINEERING PRODUCT SPECIFICATION							
ENGINEERING PRODUCT SPECIFICATION							
CENTRONICS	SPEC. NO.	80002176-9001					
	REV DATE	B JANUARY 21, 1985					
	PAGE	5 <u>OF</u> 36					

1.0 SCOPE

This specification defines the functional characteristics and requirements applicable to the design and construction of the 350-3, -4 (code named "Phoenix Blue") serial matrix printer. The 350-3, -4 contains the printing mechanism, print head, power supply, and the electronics (hereinafter referred to as the "Print Controller" or P.C.) which controls the printing mechanism. Machine functions are determined by an additional electronics board (hereinafter referred to as the "Format Controller" or F.C.) either customer or Centronics supplied which receives the data and from it dictates the method of printing. The Format Controllers are not covered by this specification. The means of communication between the two controllers and the versatility and restrictions of the basic machine are herein described.

- 2.0 RELATED DOCUMENTS
- 2.1 SPECIFICATIONS

Α.	80002149-9001	Engineering Product Specification, 350 Mechanism
в.	80002150-9001	Engineering Product Specification, 350 Power Supply
c.	80002139-9001	Engineering Product Specification, High Speed Head
D.	80002151-9001	Engineering Product Specification, 350 Ribbon Cassette
E.	Centronics Engin	neering Standard 001.
F.	Centronics Engin	neering Standard 002.
G.	Centronics Engi	enering Standard 003.
H.	Centronics Engin	neering Standard 011.
I. ,	Centronics Engin	neering Standard 014.
J.	FCC Docket #207	80, Part 15, Subpart J.
к.	UL 114, 478	Regulatory Agency Requirements
L.	CSA 22.2 #154	Regulatory Agency Requirements
Μ.	VDE 0550,0730, 0830,0871,0875	Regulatory Agency Requirements

COMPANY CONFIDENTIAL

-ENGINEERING PRODUCT SPECIFICATION-

CENTRONICS

SPEC. NO.	800	02176-	9001
REV DATE	B JAN	IUARY	21, 1985
PAGE	6	OF	36

3.0 GENERAL

The Model 350 Serial Matrix Printer with Print Controller is modular in design concept where all effort has been made to de-personalize the basic machine giving flexibility of function and character to the design and implementation of the Format Controller.

The P.C. analyzes arguments and data passed to it by the F.C., performs the printer operation (described later) and returns status information. The machine is capable of 9-wire printing at a speed of 20 ips or 200 characters per second at 10 cpi printing a 7 wide matrix. The P.C. handles the logic seeking and bi-directional printing by analyzing the data and determining the most efficient method of printing. The machine is also capable, dependent on the format controller design, of high density, multi-pass printing.

The printing speed is determined by the pitch of the horizontal dots. Paper motion, reverse or forward, is defined in actual steps of the stepper motor. Each step is equal to 1/120 (.00833) of an inch. Paper slew rate is 8 ips.

3.1 FEATURES

3.1.1 Graphics Non-APA Normal Mode

Character font is 7x8 in a 10H x 8V character cell.

3.1.2 Cut Sheet /Sheet Feeder

Printer is capable of handling cut sheet forms. The margin is moved 1.2 inches to the right of the fanfold margin. For the

sheet feeder the margin is moved in .4 inches from the fan fold margin.

3.1.3 Maximum Characters per Line

	Max. Charact	ers Available	
Char. Density	Fanfold	Cut Sheet	Sheet Feeder
5	66	60	64
6	79	72	77
6.7	88	80	85
7.5	99	90	96
8.3	110	100	106
10	132	120	128
12	158	144	154
13.3	176	160	170
15	198	180	192
16.67	220	200	213
		· · · · · · · · · · · · · · · · · · ·	

THE INFORMATION CONTAINED HEREIN IS PROPRIETARY AND IS NOT TO BE RELEASED DR REPRODUCED WITHOUT WRITTEN PER-MISSION OF CENTRONICS data computer carp.

ENGINEERING PRODUCT SPECIFICATION

CENTRONICS

4.0 ELECTRICAL DESCRIPTION

4.1 POWER REQUIREMENTS

4.1.1 Print Controller

The following power is required to operate the Print Controller.

SPEC. NO.

REV

DATE

PAGE

В

7

		Avei	cage	
+5V	-	2	Amps	max.
+35V	-	3.5	Amps	max.
+12V	-		Amp	max.
-12V	-	.1	Amp	max.

For details on the power supply specification, see Engineering Product Specification, 350 Power Supply, 80002150-9001.

4.1.2 Format Controller

The following power is available for the Format Controller.

+5V	-	5	Amps	max.
+12V	-	.65	Amps	max.
-12V	-	.75	Amps	max.

4.2 POWER CONNECTORS

4.2.1 Print Controller

Power is provided to the Print Controller via a connector as follows.

9 Pin Molex #09-74-1091, CDCC #31301029-1009.

Pin Number	Description
5	Chassis Ground
6	+5 VDC
0	+5 V Return
1	+12 VDC
2	+/-12 V Return
3	-12 VDC
7	+35 VDC
8	+35 V Return
9	Power Fail

80002176-9001

OF

JANUARY 21, 1985

36

C-3-75-126

ENGINEERING PRODUCT SPECIFICATION		
<u>CENTRONICS</u> °	SPEC. NO. REV DATE	80002176-9001 B JANUARY 21, 1985
	PAGE	8 OF 36
4.2.2 Format Controller		
Power is provided to the Format Co	ontroller via	a 6 pin Molex

#26-03-4061 as follows:

Pin Number	Description			
1	+12 VDC			
2	+12 Return			
3	-12 VDC			
4	+5 Return			
5	Chassis Ground			
6	+5 VDC			

5.0 INTERFACE DESCRIPTION

5.1 General Description

The communications Ram (hereinafter referred to as the C-RAM) is the shared read/write memory used for Arguement/Data/Status communication between the Format Controller and the Print Controller. The C-RAM is physically located on the Format Controller but can be accessed by both the F.C. and the P.C. During a power on or P.C. reset sequence the P.C. will have initial control of the C-RAM until it has completed it's diagnostics. Any subsequent access to the C-RAM by the P.C. will be in response to the F.C. having raised and lowered the "HOLDIT" handshake signal.

The following sections will describe the bus architecture that will be utilized by the P.C. to communicate with the C-RAM. Refer to figures 1 & 2 for specifics on the read/write and control signal timing.

- 5.1.1 Signal Description
- 5.1.1.1 Data Bus DO Thru D7

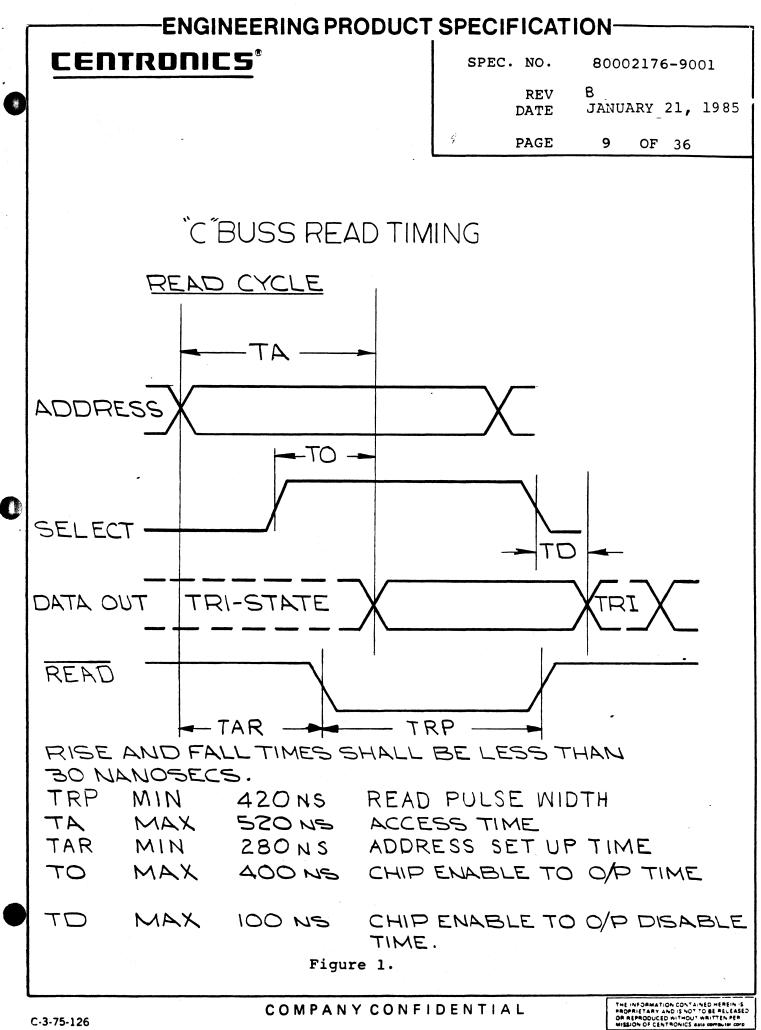
These 8 bidirectional data lines allow the Printer Controller to communicate with the character generator ROM's or RAM and the C-RAM buffer.

5.1.1.2 Address Bus - A0 Thru Al2

These 13 unidirectional lines are used to address an 8K block of contiguous memory addresses. Two additional select lines are provided (CGSEL, CRSEL) to select either the C-RAM or character generator address block. The format controller uses additional decoding logic under firmware control to allow the character generator options to use the same address block.

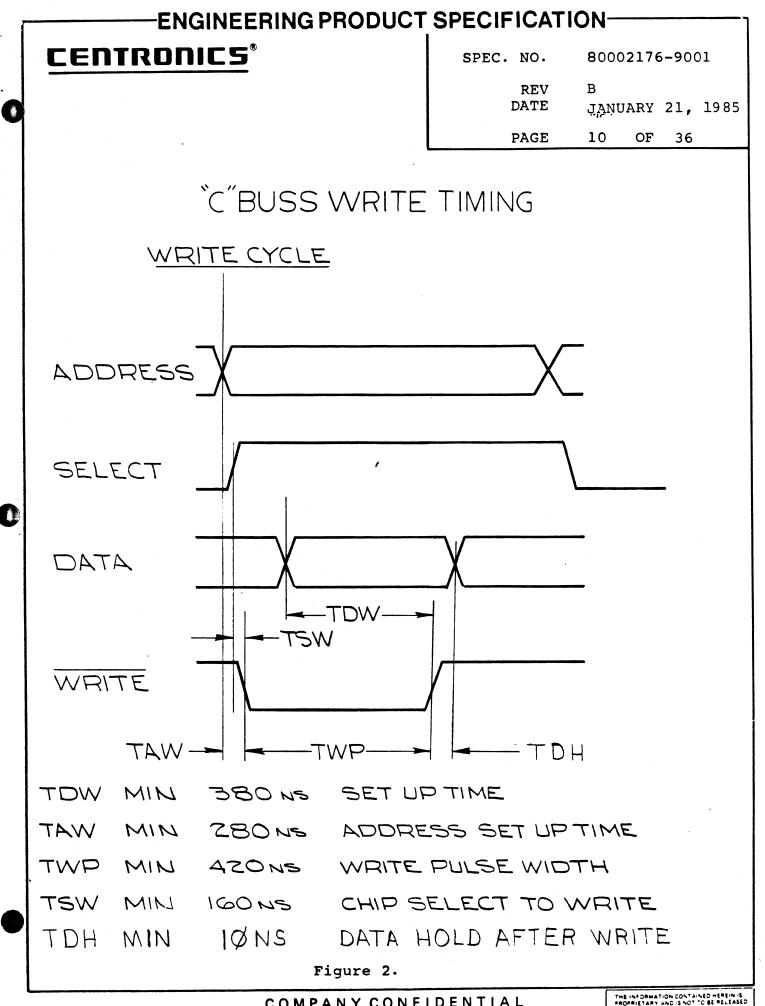
C-3-75-126

ENGINEERING PRODUCT	SPECIFICAT	TION		
CENTRONICS'	SPEC. NO.	8000	2176-9001	
	REV DATE	B JANU	ARY 21, 1985	
	PAGE	8A	OF 36	


5.1.1.3 Control Bus

There are ten (10) control lines available at the remote C-BUS connector.

5.1.1.3.1 RESET


RESET originates from the Print Controller and is used to reset the logic on the For<u>mat Controller during power-on.</u> A low level indicates the RESET condition. While the RESET signal is asserted "GOT IT" will also be asserted and the P.C. must have control of the C-RAM. The "RESET" signal is released prior to "GOT IT" being released by 1-3 us.

COMPANY CONFIDENTIAL

C-3	-75-	1	26	
-----	------	---	----	--

COMPANY CONFIDENTIAL

ENGINEERING PRODUCT SPECIFICATION					
	SPEC. NO.	800	02176	-9001	
	REV DATE	B JAN	UARY	21, 198	85
5.1.1.3.2 HOLD IT	PAGE	11	OF	36	

This handshake originates from the Format Controller. A high level indicates that the Format Controller has read/write control of the C-RAM. The Print Controller is prohibited at this time from accessing the C-RAM. When this level goes low, it means that the Format Controller has relinquished control of the C-RAM and is requesting the Print Controller to act on the data in the C-RAM.

5.1.1.3.3 PWR FAIL

Originates from the power supply. It indicates that the power supply will continue to remain in spec for only 4 msec before failing. Upon detecting this signal, the P.C. will release C-RAM and turn off the carriage motor. If this signal should go low and stay low for a period of time(indicating a false power

fail) a cold start will take place. 5.1.1.3.4 GOT IT

> This handshake signal originates from the Print Controller. A high means that the Print Controller has read/write control of the C-RAM and action is in progress. The Format Controller is prohibited from accessing the C-RAM at this time. When this signal goes low, it means that the Print Controller has relinquished control of the C-RAM, and that action is complete.

On power up, this signal is high. At this time, the Print Controller must have access to the C-RAM in order to perform a self-test. Once the self-test and Print Controller initialization is complete "GOT IT" is dropped and RESET is raised (see Section 5.1.1.3.1).

5.1.1.3.5 **CGSEL**

This line originates from the Print Controller and is used to select the 8K block of memory addresses for the character generator. A low level indicates that a READ or WRITE operation to the character generator is in progress.

5.1.1.3.6 CRSEL

This line originates from the Print Controller and is used to select the 4K block of memory addresses for the C-RAM and graphics RAM buffer. A HIGH level indicates that a READ or WRITE operation to the buffer is in progress.

5.1.1.3.7 WRITE

This line originates from the Print Controller and is used to strobe data into the C-RAM or character generator RAM. A low level indicates a data write to memory.

ENGINEERING PRODUCT SPECIFICATION			
CENTRONICS'	SPEC. NO.	80002176-9001	
	REV DATE	B JANUARY 21, 1985	
	PAGE	11A OF 36	

5.1.1. 3.8 READ

This line originates from the Print Controller and is used to strobe data from the C-RAM or character generator RAM/ROM. A low level indicates a data read from memory.

5.1.1.3.9 CDCC FMAT

This line originates from the Format Controller and is used to provide compaability with current CDCC Format Controllers and CDCC test equpment. When this line is a low level, the 10 ns. min. hold time will not be guaranteed during a write operation to C-RAM or character generator RAM.

5.1.1.3.10 P.C. RESET

This line originates from the Format Controller. A low level of 90 Ms. min. will cause the Print Controller Logic to be reset.

-ENGINEERING PRODUCT SPECIFICATION-

CENTRONICS

SPEC. NC.	80002176-9001
REV DATE	B JANUARY 21, 1985;
PAGE	12 OF 36

5.1.2 Connector Pin Out

The 34 way connector on each P.C. board and F.C. board will use the following pin out.

34 WAY PIN #	DESCRIPTION	
30 13	DATA DO DATA DI	DATA
29	DATA D2	
12	DATA D3	
28	DATA D4	
11	DATA D5	
27	DATA D6	
10	DATA D7	
1	ADDR AO	ADDRESS
18	ADDR A1	
2	ADDR A2	
19	ADDR A3	
3	ADDR A4	
20	ADDR A5	
4	ADDR A6	
21 14	ADDR A7 ADDR A8	
14	ADDR AB	
16	ADDR AJO	
17	ADDR AIO	
32	ADDR A11	
7	RESET	CONTROL
6	HOLD IT	
23	GOT IT	
8	CRSELH	
31	CGSEL	
25	WRITE	
5	GROUND	
22	CDCC FMAT	
9	GROUND	
26	GROUND	
24	PWR FAIL	
34	PC RESET	
33	READ	

COMPANY CONFIDENTIAL

ENGINEERING PRODUCT SPECIFICATION				
CENTRONICS' SPEC. NO. 80002176-9001				
	REV DATE	B JANUARY 21, 1985		
	PAGE	13 OF 36		

5.1.3 Physical Description

Cable shall be ribbon cable compatible with the mating connector for receptacle defined by Centronics part number 31240080-1040. The maximum cable length shall be 6 inches. The T/B Ansley part number for the 34 way connector is 609-3429M.

5.1.4 C-RAM Interface electrical Characteristics

5.1.4.1 Input Signals

All input signals to the P.C. are TTL compatible voltage levels (logical low 0.8 volts, logical high 2.0 volts) and will not exceed one TTL load (l.6 ma sink).

5.1.4.2 Output Signals

All output signals to the F.C. are TTL compatible voltage levels (logical low 0.8 volts, logical high 2.8 volts) and are capable of driving five (5) TTL loads (8 ma sink).

5.2 DATA/ARGUMENTS DEFINITION

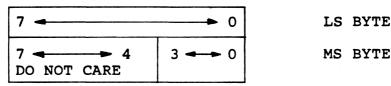
Action by the printer is dictated by the placement of parameters in the C-RAM by the Format Controller and the signaling of the Print Controller with the lowering of the 'Hold It' line that action is requested. The C-RAM is divided into two sections, the Control Block and the Data block (Figure 3). Control information is located at addresses 00_{16} to 1F16. The data area is located from 20_{16} to 7FF16. Arguments for the print functions and status of the printer are passed in the control block.

5.2.1 Status Bytes

The status occupies, location 00-04 and OE_{16} while the arguments occupy locations $05_{16} - 14_{16}$ except for OE_{16} Arguments for five events are defined, four for paper motion, and one for print action. The five events are performed in sequence. (See Figure 3).

CENT	'RONICS'		SPEC. NO	. 80002176-9001
<u></u>			RE	у В
			DAT	
			PAG	E 14 OF 36
	-	· · ·	r	
	COMMUNICA	TONE DA		
BYTE	DESIGNATION	SOURCE		COMMENTS
00	PRINTER STATUS		CONTROLLER	
01	ACCUMULATED PAPER		CONTROLLER	STATUS INFO.
02	MOTION STEPS			
03	UNCOMPLETED PAPER	PRINT	CONTROLLER	STATUS OF
04	MOTION STEPS			FAILED MOTION
05	REVERSE PAPER MOTION	FORMAT		EVENT 1
06	BEFORE PRINT	CONTRO	LLER	
07	FORWARD PAPER MOTION	FORMAT		EVENT 2
08	BEFORE PRINT	CONTRO	LLER	
09	PRINT COMMAND	FORMAT	CONTROLLER	EVENT 3
0A	REVERSE PAPER MOTION	FORMAT	CONTROLLER	EVENT 4
OB	AFTER PRINT			
0C	FORWARD PAPER MOTION	FORMAT	CONTROLLER	EVENT 5
0D	AFTER PRINT			
OE	SELF TEST BYTE	PRINT	CONTROLLER	STATUS OF SELF TEST
OF	DENSITY SELECTION	P.C.	/F.C.	
10	MACHINE OPTIONS	FORMAT	CONTROLLER	MECHANICAL
				FEATURES
11		RESERV	ED	
12	GRAPHIC OPTIONS	FORMAT	CONTROLLER	
13	OPTIONAL PITCH SELECTI	ON	FC	MULTI-PASS DENSITI
14	ALTERNATE SPEED BYTE		FC	LOWER CPS
15 1E		RESERV	ED	
lF	MATRIX SIZE	FORMAT	CONTROLLER	OPTIONAL
20			1	
FF	ASCII DATA	FORMAT	CONTROLLER	•
20	GRAPHICS			
7FF	PIN DATA	FORMAT	CONTROLLER	
		Figure 3		

重


ENGINEERING PRODUCT SPECIFICATION			
CENTRONICS'	SPEC. NO.	80002176-9001	
	REV DATE	B JANUARY 21, 1985	
	PAGE	15 OF 36	

Status is updated by the Print Controller before each transfer of the C-RAM to the Format Controller. The print function arguments are not changed by the Print Controller only acted upon. After the completion of a "Print Command", the data buffer is returned to a reset mode, i.e., full of null codes. Should an abort occur, the data is left intact and passed back to the Format Controller with the appropriate event bit set in the "Printer status" byte. If no print action is requested, Print Command, Bit 4 = 0, the print buffer is neither interroggated nor changed.

5.2.2 Paper Motion Argument Description

The four paper motion arguments (Bytes $05_{16} - 08_{16}$ and $0A_{16} - 0D_{16}$) are stated as a 2 byte numbers. The argument forms a 12 bit binary number. Bits 0 - 7 of the lower order address bytes contain the eight (8) least significant bits of the argument value. Bit 0 - 3 of the higher order address bytes from the four (4) most significant bits of the argument values Bits 4 - 7 of the higher order address bytes are ignored.

PAPER MOVEMEMENT ARGUMENT

2 BYTES FORM 12 BIT BINARY NUMBER

ONE BIT REPRESENTS 1 STEP = .00833 INS PAPER MOVEMENT (FANFOLD PAPER)

120 FULL STEPS = 1 INCH 20 FULL STEPS = 1/6 INCH PAPER MOVEMENT 15 FULL STEPS = 1/8 INCH PAPER MOVEMENT 14 FULL STEPS = VERTICAL DISTANCE FOR 8 PIN GRAPHICS

TOTAL MOVEMENT IS 4095 FULL STEPS = 34.125 INCHES (86.67 cm)

CUT SHEET MODE

108 FULL STEPS = 1 INCH 18 FULL STEPS = 1/6 INCH 13 to 14 FULL STEPS = 1/8 INCH

NOTE: Formatter should alternate 13 steps for first movement and 14 steps for second movement, as actual movement in this mode is 13.5 steps.

ENGINEERING PRODUCT SPECIFICATION				
CENTRONICS	SPEC. NO.	80002176-9001		
	REV DATE	B JANUARY 21, 1985		

PAGE 16 OF 36

For 8 Pin cut sheet graphics, the formatter will have to alternate between 12 and 13 steps as actual movement is 12.6 steps.

To maximize throughput, paper motion before print should be utilized whenever possible as seeking a line of print will take place while paper motion is in progress. Also, control of the C-RAM is passed back to the formatter with five characters left to print if there is no paper motion after print.

5.2.3 Byte 00 - Printer Status (Figure 5)

This byte is written by the Print Controller after each printer action (prior to the return of the control of C-RAM to the Formatter) and shows the printer status as defined below. The transfer of control from the Format Controller to the Print Controller with all events zero will update paper out only.

PRINT STATUS BYTE 00

EVENT ABORTED ABORT ON EVENT 1 ABORT ON EVENT 2
ABORT ON EVENT 2
ABORT ON EVENT 3
ABORT ON EVENT 4
ABORT ON EVENT 5
FAULT/TEST FAIL
PAPER OUT

Figure 5

SELF TEST ERROR MAP BYTE OE

BIT NO.	DESIGNATION
7	Head Jam/No Video
6	Bad Video Count
5	Cover Open (Interlock)
4	Reserved
3	P.C. Ram Check
2	Pin Fire Test
1	CRAM Check
0	CRC on Program PROM

Figure 6

THE INFORMATION CONTAINED HEREIN IS PROPRIETARY AND IS NOT TO BE RELEASED OR REPRODUCED WITHOUT WRITTEN PER WISSION OF CENTRONICS and computer care

ENGINEERING PRODUCT SPECIFICATION					
CENTRONICS	SPEC. NO.	80002176-9001			
	REV DATE	B JANUARY 21, 1985,			
	PAGE	17 OF 36			

5.2.3.1 Printer Status - Bit 7

When set shows that one of the five events was aborted because of either a fault or paper out condition. If this bit is set along with Bit 1 and none of the event bits are set, then a head prime has been aborted. Interrogate byte OE₁₆ (self test byte) for future definition of the failure. Whenever an abort does occur, a prime should be requested on the next pass of C-RAM.

5.2.3.2 Printer Status - Bits 2 - 6

When bit 7 is set showing an abort of one of the events, one of the bits 2 thru 6 may be set showing the event in progress when the abort occured. (see sect. 5.2.3.1)

The events are polled in order with event one first and five last. Since the events are acted upon in order, it must be assumed that all events that follow an aborted event have not been acted upon.

5.2.3.3 Printer Status - Bit 1

There are three conditions for which bit 1 can be set:

- A. If a print head jam or an open interlock occurs during a print cycle, bit 7, 4 and 1 will be set indicating a print cycle has been terminated.
- B. When a self test has been initiated and a failure has been recognized, Self Test byte should then be polled.
- C. If during a head prime the video processor indicates a failure or an open interlock has occurred, this bit along with Bit 7 will be set.
- 5.2.3.4 Printer Status Bit 0

When set, indicates a paper out condition. If paper out should occur while paper motion is in progress, that paper motion will be completed. However, all other events will be aborted. Paper motion will never be started if a paper out condition exists unless the override bit is set (see Section 5.2.9.5). Paper motion without head movement is allowed with the interlock 5.2.4 Byte OE₁₆ - Self Test Status Byte (Figure 6)

The self test status byte is located in OE_{16} . Figure 6 shows the error map that is possible for this location. The format controller initiates the self test by setting the appropriate bit in the print command byte (see Figure 7). The print controller will then proceed with a self test and write the results in the self test byte location.

CENTRONICS'	SPEC. NO. 80002176-9001
	REV B DATE JANUARY 21, 1985
	PAGE 18 OF 36
On power-up the print controller p with Bits 0, 1, 3, and 5 and place test byte location. When the bit i in the test being performed. If th other time the tests associated wi	s the results in the self s set, it indicates a failure e self test bit is set at any
If the prime bit is also set the was described in sec. 5.2.9.7 along	
After the tests are completed the side.	head is returned to the left
5.2.4.1 Self Test Status - Bit 0 - Fir	mware CRC Test
CRC check on the firmware program an error condition.	chip on the P.C. A one signals
5.2.4.2 Self Test Status - C-RAM Test	
Checks that reading and writing C- A one signals an error condition. data test.	RAM is functioning correctly. This test is a non-destructive
5.2.4.3 Self Test Status - Bit 2 - Pin	Fire Test
The head drive circuitry is checke each pin in the head individually. setting this bit.	d during this test by firing Any failures are reported by
5.2.4.4 Self Test Status - Bit 3 - P.C	. Ram Test
Checks that reading and writing th correctly. This test is non-destru an error condition.	
5.2.4.5 Self Test Status - Bit 4 -	
NOT USED	
5.2.4.6 Self Test Status - Bit 5 - Cov	ver Interlock Check
If the cover is open while any hea bit will be set and the carriage m print status byte should be checke motion without print will be allow	otor will be turned off. The d for aborted events. Paper

COMPANY CONFIDENTIAL

energy which is also determine the second state of the

.

e e consequence encourage age

.

ENGINEERING PRODUCT SPECIFICATION					
CENTRONICS'	SPEC. NO.	8000	2176-9	9001	
	REV DATE	B JANU2	ARY 21	, 1985	
	PAGE	19	OF	36	

5.2.4.7 Self Test Status - Bit 6 - Video Count Accuracy Test

Video circuitry is checked by causing the head to move from the left side frame to the right side frame and a count is made of the video interrupts. If set, it indicates a video count with an error greater than 2% of the accepted value was recieved.

5.2.4.8 Self Test Status - Bit 7 - Loss of video/Head Jam Test

If set, it indicates no video signals were recieved.

5.2.5 Byte 01_{16} and 02_{16} - Accumulated paper motion steps.

This two byte, 16 bit number is a signed integer count of the number of steps that paper has moved. Zeroed on initialization, forward paper motion steps are added to the number and reverse are substracted as each step is done. The Format Controller can zero this at each logical top of form if the total steps per form are to be accumulated. Each step of motion is equal to 0.00833 inches (120 steps/inch) when using fanfold paper.

5.2.6 Byte 03₁₆ and 04₁₆ - Paper Motion steps remaining after abort

If the Print Controller is forced to abort a paper motion event because of a power failure, the number of forward paper motion steps that were not completed during that pass of the C-RAM, are stored here by the Print Controller.

5.2.7 Byte 05_{16} and 06_{16} - Event No. 1

Reverse paper motion before print step count.

5.2.8 Byte 0716 and 0816 - Event No. 2

Forward paper motion before print step count.

5.2.9 Byte 0916 - Event No. 3

Print Command (Figure 7) - The Print Command indicates to the Print Controller the action, other than paper motion, that is requested. Results will be placed in the status word.

ENGINEERING PRODUCT SPECIFICATION				
CENTRONICS'	SPEC. NO.	80002176-9001		
	REV DATE	B JANUARY 21, 1985		

PAGE 19A OF

36

PRINT COMMAND

BIT NO.	DESIGNATION
7	PRIME
6	PRINT UNDERLINE
5	PRINT EXPANDED
4	PRINT DATA
3	OVERRIDE
2	CHARACTER SET
1	SELECTION
0	TEST

Figure 7.

5.2.9.1 Print Command - Bit 7 - Prime

When set causes the carriage to move to the left home position. This takes priority over all other events except selftest.

When this bit is set in conjuction with bit 0 (test bit) the P.C. will also perform the wire printout test. See Section 5.2.9.7 for details.

COMPANY CONFIDENTIAL

ENGINEERING PRODUCT SPECIFICATION			
CENTRONICS'	SPEC. NO.	80002176-9001	
	REV DATE	B JANUARY 21, 1985	
	PAGE	20 OF 36	

5.2.9.2 Print Command - Bit 6 - Print Underline

When set causes the data in the print buffer to be printed with an underline. Embedded nulls are not underlined. Note; During underline, print speed is reduced by 30%.

5.2.9.3 Print Command - Bit 5 - Print Expanded

When set causes the data in the print buffer to be printed expanded (i.e. Horozontal size is Doubled). Note: during expanded print speed is reduced by 15%

5.2.9.4 Print Command - Bit 4 - Print

When set indicates that data is to be printed. This bit must be set to initiate any print action. To print underline expanded, bits 6, 5, and 4 must be all set to ones. For normal print only bit 4 would be set. Bits in the Print Command word are processed MSB to LSB with the exception of the test bit (bit 0) which is interrogated and acted upon first (any failure will cause an abort) If bit 7 was set in the above examples the head would move to the left before printing.

5.2.9.5 Print Command - Bit 3 - Override

When set the request events will be processed regardless of a paper out condition.

5.2.9.6 Print Command - Bits 2 and 1 - Character Generator Offset

These bits provide the four 2K offset arguments into the character generator (see table below). The P.C. will ADD the relative address as defined by Bits 1 and 2 to the base address of the 8K character generator block. (see sect. 5.4)

B2	Bl	Re	lat	ive	Base	Address	(Hex)
0	0	0	0	0	0		
0	1	0	8	0	0		
1	0	1	0	0	0		
1	1	1	8	0	0	•	

THE HEROTHER FOR CONTAINING HERITERS

ENGINEERING PRODUCT	SPECIFICATION
CENTRONICS'	SPEC. NO. 80002176-9001
	REV B DATE JANUARY 21, 1985
	PAGE 21 OF 36
5.2.9.7 Print Command - Bit 0 - Test	
When set will cause the Print Cont include a C-RAM and Scratch Ram Ch CRC check and the moving of the he right and back to verify video cou the status Byte (Byte OE ₁₆). If th along with this bit the wire print purpose of this printout is to det head. The test consists of a "W" f number and a series of dots (actua is repeated for each of the nine (neck, a Pin Fire Check, program ead from the left margin to the int. Results will be placed in ne prime bit (bit 7) is also se cout test will occur. The cect a mechanical failure in the followed by the print head wire ations of that wire). The test
• • •	
5.2.10 Byte OA16 and OB ₁₆ - Event no after print step count.	o. 4, reverse paper motion
5.2.11 Byte OC ₁₆ and OD ₁₆ - Event no after print step count.	o. 5, forward paper motion
5.2.12 Byte OF16 Print Density/Type	e
Bits 0 through 2 are used by the selection of character density a	e Format Controller for the
<u>B2 B1 B0</u>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Bit 3 is set to indicate a graphi mode has been selected, Byte 12 ₁ will be interrogated. When Bit 3 ignored. When printing graphics, F.C. (see sect. 5.4.3) Bit 4 is set to indicate high den	6 the graphics options byte, is set, Bits 0 through 2 are the pin data comes from the
set, Bits o through 3 are ignored Pitch Selection byte, will be in density (10 or 12 CPI) will be pr must be performed by setting Bit locations with Byte 09 ₁₆ Bit 7 wi determine uni-directional or bi-d	d. Byte 13 ₁₆ , the optional terrogated to determine what rinted. Multi-pass printing 4 and changing character set ill also be interrogated to

•

•

بريبيون المحاصية المستحدا المنصبة

ENGINEERING PRODUCT SPECIFICATION				
CENTRONICS'	SPEC. NO.	80002176-9001		
	REV DATE	B JANUARY 21, 1985		
	PAGE	21A OF 36		

Bit 5 - If this bit is set all previous bits are ignored and printing will be done at one of three possible speeds as specified by the value stored in byte 14_{16} , the Alternate speed byte.(see sect. 5.2.16 for further information)

Bit 6 - When Bit 6 is set, the P.C. will interpret the data in C-Ram as character set information. The P.C. will transfer 2K bytes of the C-Ram data into the character generator RAM location as defined by the setting of Bits 1 and 2 in the Print Cmd Byte (see 5.2.9.6). During the transfer, a read after write check is performed on each byte for load validity. If an error is detected, the transfer is aborted at that point and the C-Ram is returned to the F.C. with Bit 6 left set. If the transfer is completed with no errors, Bit 6 is cleared before returning C-Ram control to the F.C. In either case, the 2K block of C-Ram is always cleared before releasing control. No other events will be acted on.

Bit 7 - If this bit is set along with either Bits 3 or 4, uni-directional printing will take place, which means that a high speed seek of the left end of the next line will occur at 20 ips. If it is not set and either Bits 3 or 4 are set, bi-directional printing is assumed. The exception to this is APA Graphics, which is always unidirectional.

5.2.13 Byte 10₁₆ - Machine Options

Bit 0 - If set a cut sheet mode is indicated. The P.C. will shift the margin in from the left side. Also the maximum line lengths will be adjusted to reflect this shift. (see section 3.1.2 and 3.1.3)

Bit 1 - When set by the P.C. a sheet feeder paper out condition exists. The P.C. will not abort printing or paper motion as a result of this condition. It is updated with each pass of the C-RAM.

Bit 2 - If set a sheet feeder mode is indicated. The left margin will be shifted in from the left side. (see section 3.1.2 and 3.1.3)

Bits 3 - 6

Not used

Bit 7 - If this bit is set the print head will seek the right side. All printing will be done inverted and in the reverse direction from the right side. This feature will be used in conjuction with the sheet feeder to print the return address on an envelope.

ENGINEERING PRODUCT SPECIFICATION-CENTRONICS

SPEC. NO.	80002176-9001
	B JANUARY 21, 1985
PAGE	22 OF 36

5.2.14 Byte 12₁₆ - Graphics Mode

If Bit 3 of the print density byte was set, this byte should be checked to determine which of three possible graphics modes is to be selected. These modes are as follows:

Byte $12_{16} = 00 - Reserved$

Byte 12₁₆ = 01 Non-APA normal printing is assumed. Pin data is still taken directly from the C-RAM and dot spacing is every six encoder lines (.0100 inch), however, adjacent dots cannot be fired. The first seven columns out of ten will contain printable dot information. The remaining three colmns must contain null codes for inter-character spacing. Failure to do this could cause serious damage to the head. Printing can be done uni or bi-directionally.

Byte $12_{16} = 02$ - Non-APA Graphics printing is assumed. Dot spacing is every six encoder lines (.0100 inch) and adjacent dots cannot be fired. Printing can be done uni or bi-directionally. It is assumed that every column will have printable dot information.

Byte $12_{16} = 03$ - APA Graphics (all points available) is assumed This type of graphics can only be done in the uni-directional mode. Dote spacing is every six encoder lines (.0100 inch) and adjacent dots can be fired.

5.2.15 Byte 13₁₆ - Optional Pitch Selection When bit 4 of the Print Density byte is set this byte will be interrogated to determine which of the two multi-pass densities are desired.

Byte $13_{16} = 00 - 10$ CPI multi-pass

Byte $13_{16} = 01 - 12$ CPI multi-pass

5.2.16 Byte 1415 - Alternate Speed Selction

When bit 5 of the Print Density/Type byte (byte OF16) is set this byte will be examined to determine at what print rate the line should be printed. Below is a chart that indicates the three possible print rates that may be selected. If byte 1416 is zero a special 10 CPI character will be printed as indicated in the chart. The other two selections will effect the print rates of all the print densities except muti-pass.

	COMBAN	YCONFIDE	NTIAL	THE HEROMAN THE CONTAINED HE
02	120	ALL DEN	ISITIES	
01	150	ALL DEN	ISITIES	
00 -0	240	7	0.0117	18
BYTE $14_{16} =$	PRINT RATE (GPS)	LINE/ COLUMNS	DOT SPACING	LINES/ INERCHAR.

C-3-75-126

ENGINEERING PRODUCT SPECIFICATION		
CENTRONICS'	SPEC. NO.	80002176-9001
	REV DATE	B JANUARY 21, 1985
	PAGE	22A OF 36

5.2.17 Byte lF₁₆ - Matrix Size

This binary number indicates the horizontal character width and is used to calculate the address of the character within the character generator (see paragraph 5.4 "Character Pattern Generation"). For a value of 0 to 7, the character is assumed to be seven wide. For any other value, it is assumed to be nine wide.

5.3 Positional Information and Use

Positional information comes in as quadrature from an encoder mounted on the horizontal drive motor. This information comes directly into a seperate microprocessor which signals the main microprossor with both column and positional information on divide-by arguments it is presented. The encoder with dual sensors gives positional information at a rate of 600 edges per inch or every (0.00167 inch). See Engineering Specification 80002149-9001 for signal specification.

COMPANY CONFIDENTIAL

-ENC

CENTRON

. CPI

5.3.2

5.3.1

ENGINEERING PRODU	ICT SPECIFICA	
NTRONICS"	SPEC. NO.	80002176-9001
		В
	REV DATE	
	PAGE	23 OF 36
-		
· · ·		
1 Standard Character Placemen	+	
For the standard 7 wide charac	ter, column spac	ing is as
follows:		
CPI Line/Columns Dot Spacin	q (In) Lines/In	terchar. Total Lines
10 6 0.0100		
12 5 0.0083		
13.3 5 0.0083 15 4 0.0067		
16.67 4 0.0067		
When the character width is ch the placement of a binary 1001 the standard spacing for the 9 spacing is as follows:	in argument lF1	6 of the C-RAM,
CPI Line/Columns Dot Spacin	g (In) Lines/In	terchar. Total Lines
10 5 0.0083	20	60
10 3 0.0083 12 4 0.0067		
13.3 4 0.0067		
15 3 0.0050	16	40
16.67 3 0.0050	12	36
NOTE: In the above, adjacent	dot positions ca	nnot be fired.
2 Graphics Modes		
When Bit 3 of the print densit	v argument is so	+ indicating
grahics, byte 12_{16} is then int		
the three modes is to be used.		
be every six encoder lines or	every 0.010 inch	
between them are outlined belo		•
DD Granhing District Date		
APA Graphics - Adjacent dots c uni-directionally only. Print		
uni-directionally only. Print		119.
Non-APA Graphics - Adjacent do	ts cannot be fir	ed. Every column
can contain printable dot info		
IPS.		

ENGINEERING PRODUCT SPECIFICATION-

SPEC. NO. 80002176-9001

REV DATE	B JANUAI	RY 21,	1985
PAGE	24 C	F 36	

Non-APA Normal - Adjacent dots <u>cannot</u> be fired. Out of every ten colmns, seven can contain printable dot information. The other three colmns must be nulls. The resulting print density is 10 CPI. Printing speed is 20 IPS.

5.3.3 High Density Print

CENTRONICS

When bit 4 of the Print Density argument is set byte 13₁₆ (Optional Pitch Selection byte) will be interrogated to determine which of the two possible high density multy-pass print modes is being selected

Printing will be done in multiple passes. For each pass bits 1 & 2 of the Print Command (byte 09₁₆) are interrogated to determine which 2K block of character generator the pin data should be taken from for that pass.

printing can be done either bi-directionally or uni-directionally. Adjacent dots cannot be fired on a single pass. Each pass should be offset vertically by one step or by .00833 of an inch to provide overlapping of the dots.

Both modes consist of a fifteen column wide matrix. The differences are outlined below.

5.3.3.1 10 CPI Multi-pass

In this mode there are three (3) encoder lines per column for a horizontal dot spacing of .005 inch. There are five (5) intercharacter spacing columns. Print speed is 9.35 IPS.

5.3.3.2 12 CPI Multi-pass

In this mode there are two (2) encoder lines per column for a horizontal dot spacing of .0033 inch. There are ten (10) intercharacter spacing columns. Print speed is 7.55 IPS.

5.4 CHARACTER PATTERN GENERATION

It is the responsibility of the Format Controller to insure that the character generator complies to the method of printing requested. When printing standard characters the address as shown below and a ROM select are presented by the P.C. on the address lines of the character generator connector and eight bits of data representing pin fire information are read. The LSB represents Pin 1 (top most pin) and the MSB is Pin 8 information. When printing characters, only alternate dots can be fired. Pin 9 is only available (other than underline) for the 7 wide character.

1	ENGINEERING PRODUCT SPECIFICATION			
	CENTRONICS'	SPEC. NO.	80002176-9001	
		REV DATE	B JANUARY 21, 1985	
		PAGE	24A OF 36	

5.4.1 Character Generator - Standard 7 Wide Character

The following is the address presented to the character generator for standard 7 wide characters. All numbers are hexidecimal. The eighth byte of each character code contains the ninth pin data. The eighth bit of the byte (Bit 7) represents the leftmost column of the character and the second bit (Bit 1) represents the right column or seventh column of the character. The first bit (Bit 0) is ignored. However, in the case of underline, the eighth byte information is ignored.

ENGINEERING PRODU	CT SPECIFICATION
CENTRONICS	SPEC. NO. 80002176-9001
	REV B DATE JANUARY 21, 1985
	PAGE 25 OF 36
Char. Code 00	Char. Gen Address 000-006
01	008-00E
02	010-016 018-01E
	010-011
41 (A)	208-20E
: 7E	3F0-3F6
75	3F8-3FE
80	400-406
:	
: Cl	608-60E
	008-00E
:	
FE	7F0-7F6
FF	7F8-7FF
5.4.2 Character Generator Address	- Non-Standard Width
In this case, Pin 9 is not ava Addresses for 9 wide are compu lowing manner:	
(Character Code) x (Width) First Column + Width - 1 =	
Example: For a character 9 wi	de (Shown in Hex)
	x (09) = 00 First Column - (09) -1 = 08 Last Column
	x (09) = 1B First Column - 09 - 1 = 23 Last Column
Character Code $41 = (41)$ 249	x (09) = 249 First Column + 09 - 1 = 251 Last Column
5.4.3 Graphic Mode	
the graphics byte (Byte 12 ₁₆₎	density argument of the C-Ram, is interrogated to determine which modes is to be used. Pin data
	THE INFORMATION CONTAINED MEREIN IS

COMPANY CONFIDENTIAL

www.ext.come.ext.com

.....

THE INFORMATION CONTAINED MEREIN IS REDMIETARY AND IS NOT TO BE RELEASED OR REPRODUCED WITHOUT WRITTEN PER. MISSION OF CENTRONICS and annautic stre

ENGINEERING PRODUCT	ODECIEICAT	'ION	
ENGINEERINGPHODUCI	SPECIFICAT		
CENTRONICS	SPEC. NO.	80002176-9001	
	REV DATE	B JANUARY 21, 1985	
	PAGE	26 OF 36	

is taken directly from the C-Ram with the eight bits representing the eight pins on the print head that can be fired. The first column comes from Location 20_{16} and the last column from 547_{16} for a total of 1320 possible column firings. Once all pin data has been obtained, all 1320 locations are cleared.

5.4.4 High Density Print

High density print is defined as a 15 (OF Hex) wide matrix. Adjacent dots cannot be fired. Using the method described in Section 5.4.2, the dot formation in the character generator is as follows (calculations shown in hex):

Character Code $01 = 01 \times 0F = 0F$ First Column 0F + 0F - 1 = 1D Last Column Character Code $41 = 41 \times 0F = 33F$ First Column 33F + 0F - 1 = 34D Last Column

5.5 RESTRICTIONS

The following restrictions apply when printing with the 350 Print Controller:

- A. Logic seeking is done on any leading or trailing nulls in a line. Any other code is considered a printable character.
- B. Any embedded nulls in a line are not underlined.
- C. Only one type of printing can be done on one transfer of the C-RAM.
- 6.0 DRIVE CIRCUITRY
- 6.1 PAPER TRANSPORT
- 6.1.1 Stepper Motor Excitation Sequence

-		ON OFF	= 1 = 0 = 0	+5 0V	
O N	OFF	ON	ON	OFF	
T I	OFF	ON	OFF	ON	SEQUENCE (FULL STEP)
T A	ON	OFF	OFF	ON	4 STEP
R O	ON	OFF	ON	OFF	NORMAL
C W	01	02	03	04	

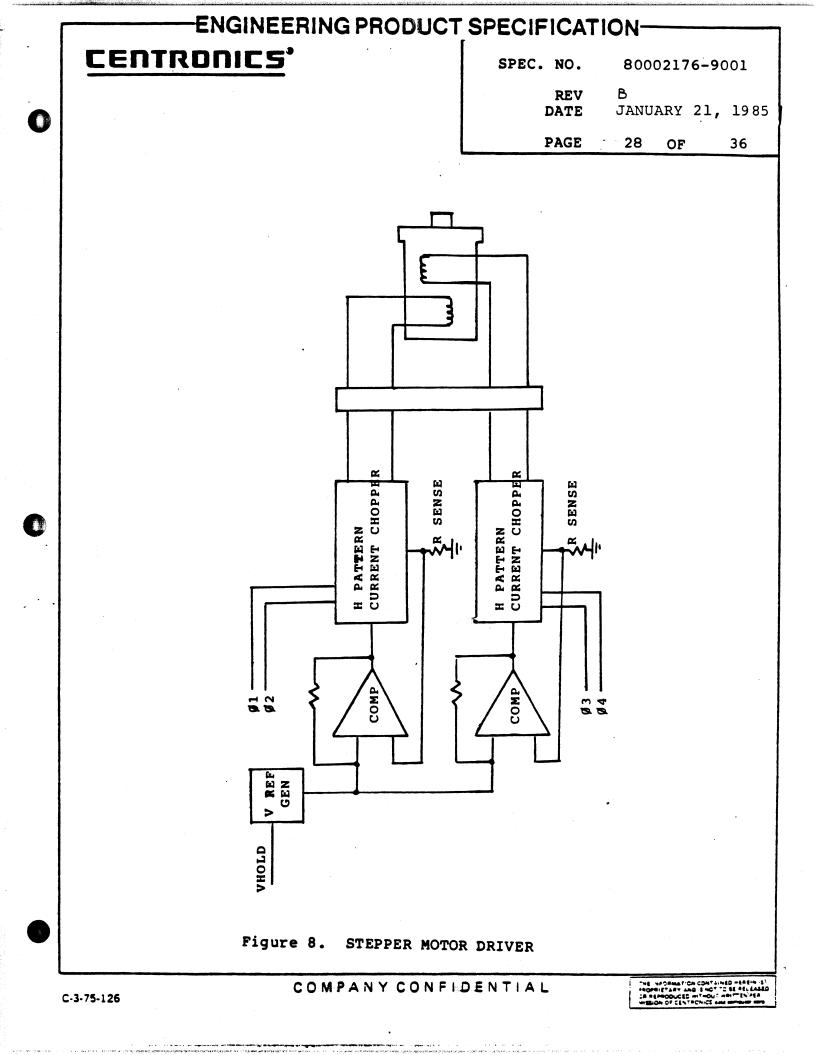
ENGINEERING PRODUCT SPECIFICATION		
CENTRONICS	SPEC. NO.	80002176-9001
	REV DATE	B JANUARY 21, 1985
	PAGE	27 OF 36

6.1.2 Stepper Driver

Figure 8 describes the driver circuitry for the stepper motor. The energy level in the motor is maintained by chopping the current in each winding with the upper stage drivers. During paper motion, the motor current per winding is 1 AMP with V hold at OV. When no paper motion is required, current per winding is approximately 250ma with V hold at +5. This minimizes power loss when paper motion is not required.

Average current per winding:

V hold ON 250 ma V hold OFF 1 Amp


Voltage required:

+35V, +5V

C-3-75-126

COMPANY CONFIDENTIAL

THE INFORMATION CONTAINED MEREIN IS PROPRIETARY AND IS NOT TO BE RELEASED OR REPRODUCED WITHOUT WRITTEN PER MISSION OF CENTRONICS and computer carp

ENGINEERING PRODUCT SPECIFICATION			
ENGINEERINGPHODUCT	SPECIFICAT		
CENTRONICS	SPEC. NO.	80002176-9001	
	REV DATE	B JANUARY 21, 1985	
	PAGE	29 OF 36	
6.2 CARRIAGE SERVO SYSTEM			
6.2.1 DC Motor Controller			
Figure 9 describes the DC motor of control circuit.	rive circuitry	and velocity	

<u>Control</u>	Signal	DC Motor Shaft Rotation	Carriage Direction
FWD REV	0 0	None	-
FWD REV	1 0	CCW	Forward Left Side Frame to Right Side Frame
FWD REV	0 1	CW	Reverse Right Side Frame to Left Side Frame
FWD REV	1 1	None	

1 = ON = +50 = OFF = OV

Carriage motion is achieved by applying the control signals described above as well as the TACH signal described below.

Velocity control is achieved by maintaining a constant error voltage between an internal reference and the voltage derived as a result of the input TACH frequency. TACH frequency is derived as a sub-multiple of the video feedback. That is, given the 600 position feedback points per linear inch of carriage motion a variable divider is used to generate the TACH FREQ for the desired carriage velocity.

The count for the divider is selected by considering the rep rate of the matrix head and the number of possible dot firings per inch. The following head speeds are used for the standard densities for a 7-part character:

10	CPI	20	IPS
12	CPI	16.4	IPS
13.3	CPI	14.76	IPS
15	CPI	13.02	IPS
16.67	CPI	11.45	IPS

COMPANY CONFIDENTIAL

THE INFORMATION CONTAINED HEREIN IJ ROFRIETARY AND IS NOT TO BE RELEASED OR REPRODUCED WITHOUT WRITTEN PER WISSION OF CENTRONICS and semanter and

ENGINEERING PRODUCT SPECIFICATION				
INTRONICS [®]	SPEC. NO.	8000	2176-9001	
	REV DATE	B JANUAI	RY 21, 1985	
	PAGE	3 0	OF 36	
				_

For a 9-part character, the head speeds are:

10	CPI	16.4	IPS
12	CPI	13	IPS
13.2	CPI	11.5	IPS
15	CPI	9.35	IPS
16.5	CPI	9.35	IPS

Other speeds are: High Density 12 CPI 7.55 IPS 9.35 IPS High Density 10 CPI 7.55 IPS Graphics Non-APA Graphics APA 3.9 IPS Non-APA Normal 20.0 IPS IPS High Speed Return 20.0

Component selection maintains the above speeds ± 10 %. There is no speed adjustment. A cap is used to shut the motor down if no video information is received after 46 msec.

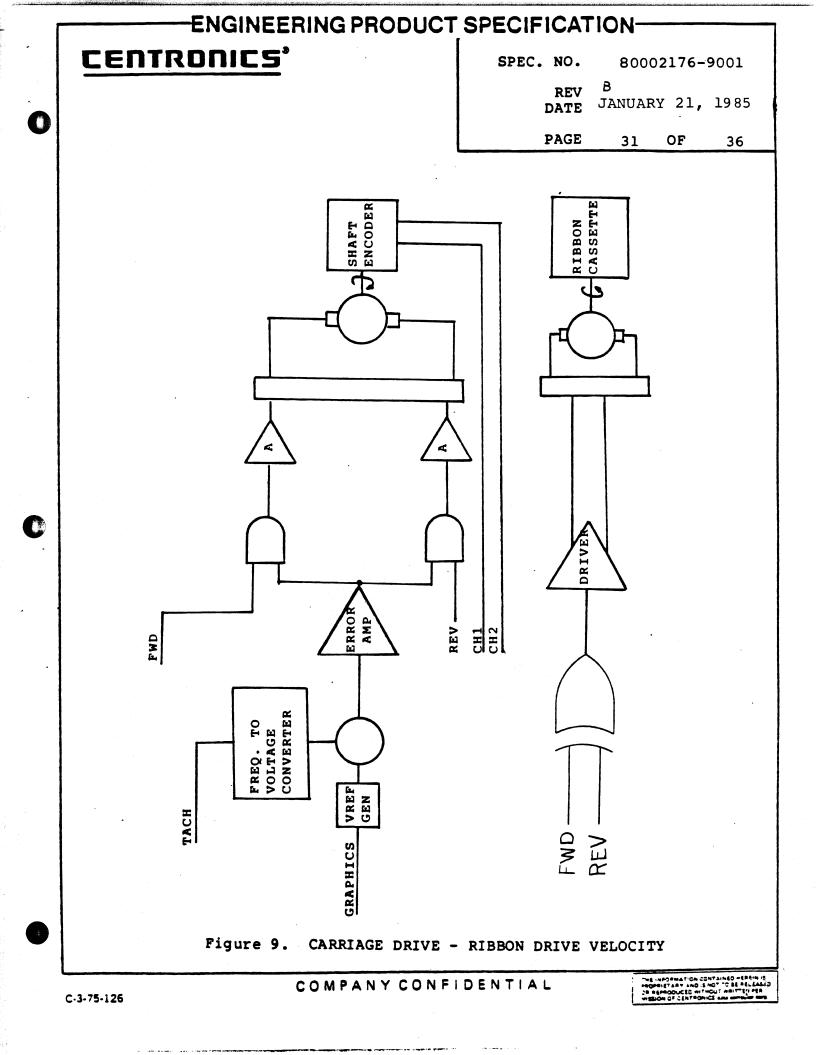
6.3 RIBBON MOTOR DRIVER

The ribbon motor driver is a +12V DC motor, controlled by a single transistor shown in Figure 9. The ribbon motor is turned ON when the DC carriage motor is turned on.

Voltages required = +12V

6.4 HEAD DRIVER CIRCUIT

The head driver circuit features a Current Limited Driver circuit to quickly energize the pin solenoids. This drive technique enables high speed printing with minimum power loss since all stages are run in saturation mode. The maximum rep rate per pin is 909us.


Signals required = Pin 1 through Pin 9

1 = ON = +5 = FIRE PIN0 = OFF = OV = DO NOT FIRE PIN

Pin Data Strobe = 1-3 us negative going TTL signal

Logic level requirements = TTL

Voltages required = +35V, +5V

ENGINEERING PRODUCT SPECIFICATION		
CENTRONICS	SPEC. NO.	80002176-9001

REV DATE	B JANUA	RY	21,	1935
PAGE	32	OF	36	

7.0 ENVIRONMENTAL CONDITIONS

7.1 TEMPERATURE/HUMIDITY

The printer will meet the requirements as specified for a "Class B" product in Paragraph 3.0 of Centronics Engineering Standard 001.

7.1.1 Operating

Temperature 10 degrees $(50^{\circ}F)$ to 40 degrees C $(104^{\circ}F)$. Relative Humidity 10% to 90% with maximum wet bulb 28 degress C $(82^{\circ}F)$ and minimum dew point 2 degrees C $(36^{\circ}F)$.

7.1.2 Non-Operating

-40 degrees C (-40°F) to 66 degrees C (105°F) and 10% to 95% RH.

7.2 ALTITUDE

As per Paragraph 4.0, Centronics Engineering Standard 001, 2.4 Km (8,000 ft.) to -.303 Km (-1,000 ft.).

7.3 MECHANICAL SHOCK

As per Paragraph 5.0, Centronics Engineering Standard 001.

7.3.1 Operating

Half sine shock pulse of 10 Gpk and 10 ± 3 ms duration applied once in either direction of three orthogonal axes (3 pulse total).

7.3.2 Non-Operating

Table top products shipped in individual packages shall be designed to withstand half sine shock pulses of 40 feet Gpk and 30 + 10 ms duration.

7.4 VIBRATION

As per Paragraph 6.0, Centronics Engineering Standard 001.

7.4.1 Operating

5-22	Hz	0.010"	DA
22-500	Hz	0.25	Gpk
500-22	Hz	0.25	Gpk
22-5	Hz	0.010"	DĀ

Sweep rate of 1 octave/minute.

ENGINEERING PRODUCT SPECIFICATION CENTRONICS[®] SPEC. NO. 80002176-9001 REV B DATE JANUARY 21, 1985; PAGE 33 OF 36

7.4.2 Non-Operating

The printer when packaged will withstand the random vibration listed below when the packaged product is affixed to a shaker table.

(These profiles are equivalent to measured vibration spectra in various transportation modes.)

Vertical Axis Excitation - 1.40 Grms overall from 10-300 Hz. Power Spectral Density .029 g2/Hz from 10-50 Hz with 8 dB/octave rolloff from 50-300 Hz.

Longitudinal and Lateral Axis Excitation - 0.68 Grms overall from 10-200 Hz. Power Spectral Density 0.007 g2/Hz from 10-50 Hz with 8 dB/octave rolloff from 50-200 Hz. (See Figure 6).

Test duration shall be one hour in each axis (3 hours total).

7.6 ELECTROMAGNETIC COMPATIBILITY

7.6.1 ESD

The printer will meet the requirements set forth in Centronics Engineering Standard 002 and be tested as per Centronics Engineering Standard 003.

7.6.2 EMI/RFI

As per Centronics Engineering Standard 002. Emission requirements will meet those specified for an international product (i.e., VDE 0871 and VDE 0875 along with the FCC requirements as stated in Docket #20780, Part 15, Subpart J.

8.0 SAFETY

The printer will meet the requirements as specified in Centronics Engineering Standard 011.

9.0 RELIABILITY PROVISIONS

9.1 DEFINITIONS

9.1.1 Failure

A failure is any stoppage or malfunction of the product mechanism or electronics specified herein which prohibits full use of the product as defined by the specifications and is directly caused by the mechanism or electronics.

ENGINEERING PRODUCT SPECIFICATION		
CENTRONICS	SPEC. NO.	80002176-9001
	REV DATE	B JANUARY 21, 1985
	PAGE	34 OF 36

This excludes stoppages or sub-standard performance caused by operator error, power failure, or environmental conditions exceeding specified limits. Failures are classified into two categories.

- A. Critical Failure A critical failure is defined as any failure which cannot be corrected by a trained operator and requires the services of a trained technical or field service representative for repair.
- B. Inconvenient Failure An inconvenient failure is any failure which can be readily corrected by an operator without requiring the services of a field representative. Ribbon jams, paper jams, etc., are examples of inconvenient failures.

9.1.2 Reliability

Reliability is defined as the probability of failure-free performance of the product through a time period at a specified operating environment and duty cycle.

9.1.3 Power-On Time

The period of time during which A.C. Power is applied to the product is defined as Power-On Time. Unless stated otherwise, all hours are expressed in terms of Power-On Time.

9.1.4 Operating Time

Operating Time is defined as that period of time which the product is moving paper or the print head carriage is in motion.

9.1.5 Duty Cycle

Duty Cycle is defined as the ratio of Operating Time to Power-On Time.

9.1.6 Operating Environment

The Operating Environment for reliability parameters for the printer shall be as follows, unless otherwise specified herein:

- A. Nominal voltage 115/230 VAC.
- B. 50/60 Hertz.
- C. Ambient room temperature of 70° +5°F.
- D. Ambient relative humidity of 50% + 5%.

THE INFORMATION CONTAINED HEREIN IS PROPRIETARY AND IS NOT TO BE RELEASED OR REPRODUCED WITHOUT WRITTEN PER MISSION OF CENTRONICS data company carp

ENGINEERING PRODUCT SPECIFICATION-

CENTRONICS

SPEC. NO.	80002176-9001
REV DATE	B JANUARY 21, 1985
PAGE	35 OF 36

9.1.7 Mean-Time Between Failure (MTBF)

The MTBF shall be defined only during the product Useful Life and is calculated as follows:

> MTBF = Power-On Time Number of Critical Failures

9.1.8 Mean-Time to Repair (MTTR)

The MTTR is the average value of time required to perform on-site repair of the product by a properly trained and equipped service representative after it has failed. MTTR is calculated as follows:

> MTTR = Total Product Repair Time Number of Repair Actions

9.1.9 Infant Mortality period

Infant Mortality Period is defined as that time period of early product life when an initially high failure rate decreases to a specified Useful Life failure rate level.

9.1.10 Useful Life

The Useful Life of the product is defined as that period of time during the life of the product when the failure rate is maintained at a constant value due to random failures.

9.2 RELIABILITY PARAMETERS

All Reliability Parameters are based on the following:

A. A Duty Cycle of 25%.

B. The Operating Environment specified in Section 9.1.6.

9.2.1 Population MTBF

The Population MTBF shall exceed 1900 hours per failure (4400 hours excluding print head).

9.2.2 Reliability During Useful Life

The Reliability, R(t), at Time (t), for any time period during Useful Life shall be defined as being equal to EXP -(t/MTBF).

9.2.3 Infant Mortality Period

The Infant Mortality period shall be no longer than 100 hours.

ENGINEERING PRODUCT SPECIFICATION-

CENTRONICS"

SPEC. NO.	80002176-9001
REV DATE	B JANUARY 21, 1985
PAGE	36 OF 36

9.2.4 Peak Failure Rate

The Peak Failure Rate for any point in time during Infant Mortality shall be less than .0013 failures per hour.

9.2.5 Mean Time to Repair (MTTR)

The Mean Time To Repair (MTTR) shall be equal to or less than 0.5 hours per repair action.

9.2.6 Repair Actions

Ninety percent (90%) of all repair actions shall require less than one hour to complete.

9.2.7 Failure Rate per Million Hours

The Failure Rate expressed in failures per million hours for the following key subassemblies shall be:

SUBASSEMBLY	FAILURE RATE
Mechanism	100
Print Controller Board	75
Power Supply	50
Print Head	300

10.0 TESTING

Reliability testing will be as specified in Centronics Engineering Standard #014 at a "B10" life with 90% confidence.