
CONTROL DATA CORPORATION
Interoffice Memorandum

DATE: June 3, 1983

TO: NOS Section

FROM: G. A. Kersten

SUBJECT: NOS Coding Standards

·Attached is the new "Nos· COMPASS Programming S1:andard" and the new "NOS SYMPL
Coding Standard" for the NOS Development Section. These versions replace all
previous versions of the standards.

Many additions, changes and clarifications have been included from suggestions
received from the Design Support Team (DST) and from others during the ·
preparation of these revi~ions. Change bars in the right hand columns mark ·
·the majori~y of the changes (some minor wording changes are not marked).

Major changes in the COMPASS standard include:

* Documentation of the PP instruction and jump macro usage (MJP, PJP, ADK,
LDK, etc.).

* Suggestions for hangs .and error processing to assist in debugging.
* Description of the new !STORE macro and its use for instruction

modification:-- -
* Use of BSS vs BSSN.
* Use of '~SYSTEM XXX,=" and "EXECUTE XXX,=" macros for cross reference

purposes.
* Reservation of tags beginning with "U" for installation use.
* Clarification of the use of REQUIRES line in a modset.
* Additional interface considerations.
* A new Appendix -·"DOCUMENTATION/USABILITY GUIDELINES".

Major changes in the SYMPL standard include:

* Deleting the MSF Project Addendum and incorporating many of the items into
the standard.

* Addition of the Screen Management Facility (SMF) Project Addendum.

Any questions or comments should be addressed to the Design Support Off ice
(DSO) or members of the DST. Requests for changes to the standards should
follow the procedure defined in the NOS Section Procedures Notebook. Several
suggestions were made as a result of section code review and resulting changes
will be ·incorporated into the next revision of the standards.

tf.tl. ~~1'f~
G. A. Kersten
Design Support Team

NOS-DEV/4926G/smb

i

NCS COMPASS FECGBAHMING STANDARD

NOS COMPASS

TAELE CF CCNTENTS

1.0 INTRODUCTION . • • • • . . ' • • • • • • • • • • • •
1. 1 SCOPE OF DOCUMEN'I • • . • • • .

1'.1.1 PURPOSE . . . • . . • • • . • • . •
- 1.1.2 SCOPE OF USE • • • • • • • • • • • • • • • • • • •

1.2 CONFORMANCE AN't ENFORCEMENT . • • •1 . • • •. • • • . • •

2.0 DOCUMENTATICN •• ~ ••••••••••••••••••
2.1 INTRODUCTION • ~ ••• ~ •••••••••••••••

2.1.1 DESIGN OVEEVIEW ••••••••••••••••••
2.1.2 EXTERNAL INTERFACE ••••••••••••••••
2.1.3 INTERNAL CFERATION ••••••••••••••••
2.1.4 DETAILED CCDE ANALYSIS ••••••••••••••

2.2 GENERAL REQUIREMENTS •••••••••••••••••
2.2.1 ABBREVIATICNS •••• ~ •••••••••••• - ••
2.2.2 PUNCTUATICN ••••••••••••••••••••
2.2.3 FORMATS •
2.2.4 FORMAT CF ITEMIZED DCCUMENTATION •••••••••

2.3 PROGRAM LEVEL tOCUMENTATION ••••••••••••••
2.3.1 OVERVIEW •••••••••••••••••••••
2.3.2 EXTERNAL •••••••••••••••••••••
2.3.3 INTERNAL • • • • • • • • • • • • • • • • •••

2.4 SUBROUTINE LEVEL DOCUMEN~ATICM ••••••••••••
2 .4 .1 ENTR;(__ CONDITIONS (ENTRY) • • • • • • • • • • • • •
2.4.2 EXIT CONDITIONS CEXI'I) • • • • • • ••••
2.4.3 ERROR' EXIT CCNDITIONS (EERCR) •••••••••••
2.4.4 REGISTER OR tIBECT ~ELL USAGE {USES) •••.••••
2.4.5 ROU~INES CALLED CCALIS) • • • • • • • • ••••
2.4.6 COMMON OF SYSTEM DECKS EECUIFED CXEEF) ••••••
2.4.7 MACROS CALLED (MACRCS) ••••••••••••••
2.4.8 ALLOCATED REGISTERS CR CIEECT CEIL~ (DEFINE) •••
2~4.9 TIMING CCNSitERATIONS (TIMING) ••••••••••
2.4.10 PROGRAMMING NOTES (NCTES) •••••••••••••

2.5 cont LEVEL DCCUMENTATION .- ••••••••••••
2.5.1 STAND-ALCNE COMMENTS • • • • • • • • • ••••
2.5.2 EMBEDDED CCMMENTS ••••••••••••.•••••

2.6 MACRO LEVEL DCCU~ENTATICN • • • • • • • ••••
2.6.1 ENTRY CONtITIONS (ENTRY) •••••••••••••
2.6.2 EXIT CON[ITICNS (EXIT) ••••••••••••••
2.6.3 REGISTER CR DIRECT CELL USAGE (USES) •••
2.6.4 ROUTINES CALLED CCAllED) •••••••••••••
2.6.5 MACROS CALIEr (MACRCS) • • • • • • • • • •••

2. 7 DOCUMENTATION EXAMPLES •••••••••• •) •••••
2.7.1 PROGRAM LEVEL ••••••••••••• J •••• •
2.7.2 SUBROUTINE LEVEL CFE CCtE)
2.7.3 SUB]OUTINE LEVEL (CF CCCE)
2.7.4 MACRO LEVEL rocUMENTATICN •

. .
• •
• •

NOS-DEV/1926G/slf - 2 -

. • • •
• • • • • • • • • •

4/26/83

6
6
6
6
6

7
7
7
7
8
8
9
9
9

10
11
11
11
12
12
13
14
14
14
15
16
16
16
16
16
16
17
17
17
18
19
19
20
20
20
20
20
21
22
23

NOS COMPASS

3.0 CODING •••••••••••••••••••
3.1 CARD/LINE LAYCUTS ••••••••••••••

3.1.1 COMPASS CPERATION CAEDS •••••••••
3.1.2 COMPASS CCMMENT CARDS • • • • • • ••

3.2 PROGRAM LAYOUT ••••••••••••••
3.2.1 GROUP 1 INSTRUCTIONS ••••••••••
3.2.1.1 PEBIFHEFAL PROCESSCR PROGRAMS •••••
3.2.1.2 CE~TRAL PROCESSOR FROGRAMS ••••••
3.2.1.3 COMMON DECKS •••••••••••••
3.2.2 PROGRAM LEVEL DOCUMENTATICN •••••••
3.2.3 MACRO DEFINITION$.••••• _. ! •••••

3.2.4 INSTALLATICN SYMBOL DEFINITICNS •••••
3.2.5 LOCAL SYMBCL DEFINITION~ ••••••
3.2.6 GLOBAL MEKCRY DEFINITIONS • • •••

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

3.2.7 MAIN LCOF •••••••••••••••••••••
3.2.8 PRIMARY SUERCUTINES ••••••••••••••••
3.2.9 SECONDARY SUEROUTINES ~ ••••••••••••••
3.2.10 WbRKING STORAGE AND BUFFERS •••••••••••
3.2.11 INITIALIZATION' CODE • • • • • • • • • ••••
3.2.12 PROGRAM TERMINATION ••••••••••

3.3 INSTRUCTION USE, FORMAT AND PARAMETERS •••
3.3.1 REGISTER USE AND SFECIFICATICN •••••
3.3.1.1 BO REGISTER USE •••• · ~ •••••••
3.3.1.2 B1 REGISTER USE ••••••••••••
3.3.1.3 PACK AND NCMINAL SHIFT k BEGISTEES ••
3.3.1.4 UNE!CK AND NORMALIZE X REGISTERS •••

•
•
•
•
• .
•

• •
• • . • . •
• • . •
• •

• •
• •
• •
• •
• •
• .
• •

3. 3. 2 MULTIPLE 1-CG ICAL TESTS ,. • • • • • • • • • -. • • • •
3.3.3 SHIFT INS!BUCTION PAEAMETEES •••••••••••
3.3.4 BOOLEAN ~ASK 'USAGE • • • • • • • •••••••
3.3.5 RELATIVE ADDRESSING ••••••••••••••••
3.3.6 JUMF INSTRUCTION USE •••• • ••••••••••
3.3.7 SUBROUTINE ENTRY •••••••••••••••••
3.3.8 CPU CODE CFTIMIZATICN •••••••••••••••
3.3.9 CLEARING FF MEMORY.·· • • • • • • • • • • • • •
3.3.10 INSTRUCTICN MODIFICATICN •••••••••••••
3.3.11 COMMON BECK REGISTER USAGE ••••••••••••
3.3.12 PP ADK, LtK, LMK, LFK, SEK MACFC USAGE ••••.

3.4 DATA USE, FOEMAT AND PARAMETERS ••••••••••
3.4.1 LITERAL~ •••••••••••••••••••
3.4.2 DATA FORMATS • • • • •••••••••••
3.4.3 TABLE ~ENERATION •••••••••••••••
3.4.4 DIRECT CELL USE ••••••••••••••••
3.4.5 BUFFER DEFINITIONS • • • • • • • •••••

NOS-DEV/1926G/slf - 3 -

. .
• •
• • . .
• •
• •
• •

4/26/83

24 ,·
-24
24
24
24'.
25
25
25
26 '
26
26 .
26
26
27
27
27
27
27
27 -
28
28
28
28
28
29
29
29
29
31
31
31
32
33
34
34
37
37
37
37
37
38
38
39

I

Nos•coMPASS

3.5 DATA/CODE NAMING TERMINCICGY ••••• : •••••••
3.5.1 USE OF CCNDITION TERMINCLCGY • • • • • ••••
3.5.2 TAGS WITEIN SUBRCUTINES ••••••••••••
3.5.3 TAGS ON rATA • • • • • • • • • • • • • ••••
3.5.3.1 DIRECT CELLS • • • • • • • •••••••••
3.5.3.2 CODE CCNTRCL NAMES •••••••••••••••
3.5.3.3 TABLE NAfES •••••••••••••••••••
3.5.3.4 GLOBAL MEMCRY LOCATIONS • • •••••••••
3.5.4 CONSTANTS USED AS INSTBUCTICNS ••••••••••
3.5.5 'IF/ELSE/ENIIF SYMBOLS • • • • • • • • • ••••
3.5.6 NON-LOCAl MACRO SYMBCLS •••.•••••••••••
3 .5. 7 LOW CORE LCCATICN SYI'lECIS -~-. -. • • • • • • • • • •
3.5.8 CONTROL FCIN'I AREA ICCAT·ICN SYMECLS ••••••••
3.5.9 MCNITOR FUNCTICN SYMECLS ~ ••••••••••••
3.5.10 NEGATIVE FIELD LENGTH SYMECLS ••••••••••

3.6 PSEUDC INSTfUCTICN USE, ECRMAT AND PARAMETERS •••••
3.6.1 BASE ANTI PCST RADIX USE • • • • • • • • • •
3.6.2 EXTEBNAL REFERENCES • • • • • • • • • • • • • •
3.6.3 SPACE CAEt FCRMAT • • • • •••••
3.6.4 CONDITIONAL CODE • • • • • • •••••
3.6.5 MACROS ••••••••••••••••• • ••••
3.6.6 DIS PSEUtC INSTRUCTICN ••••••••••••••

3.7 TESTS FOR CVERFLCW • • • •••••••••
3.7.1 CM LOADS •••••••••. • • • • • • ••••
3.7.2 TABLE OVEFFLCW ••••••••••••••••••
3. 7. 3 MASS __ STORAGE LOADS • • • • • • • • ••
3.7.4 OVERLAY ICADS •••••••••••••••••••

3.8 RELOCATABLE CFU CODE •••••••••••••••••
3.9 ROUTINE/SUBRCUTINE ••••••••••••••••

4.0 MISCELLANEOUS •••••••••••••••••••••
. 4.1 PROGRAM NAMING • • • • • • • • • • • • ••••

4.1.1 LENGTH CF FRCGRAM NA~E • • • • • • • •••
4.1.2 RESERVED NAMES • • • • • • ••••••
4.1.3 COMMQN DECK NAMES • • •••••••••••

4.2 CODE TRANSMITTAL RULES ••••••••••••••••
4.2.1 GENERAL RULES •••••••••••••••••••
4.2.2 MODSET FCRMAT • • • • • • • • •••••
4.2.2.1 MODSET ItENTIFIEB ••••••••••••••••
-4.2.2.2 MODSET CCRRECTION IET'IER • • • • • • ••••
4.2.2.3 OVERFLCW • • • • • • • • • •••••••
4.2.2.4 MODSET EXAMPLE •••••••••••••••••

4.3 INTERFACE CCNSIDERATIONS: •••••••••••••••
4.3.1 SYSTEM SUPPLIED INTERFACES • • • • • • ••••
4.3.2 PARAMETER V.AIIDATION · •••••••••••••••
4.3.3 MEMORY ACCESS •••••••••••••••••••
4.3.4 SECURITY • • • • • • • • • • •••••••••
4.3.5 RESERVATICNS AND INTEBICCKS ••••••••••••
4.3.6 DOCUMENTING HARDWARE DEFICIENCIES •••••••
4.3.7 NEW FUNCTICN/LOW CORE IDENTIFIERS •••••••
4.3.8 DECK INTERtEFENDENCIES ••• ~ ••••••••••

NOS-DEV/1926G/slf - 4 -

4/26/83

39
40
40
41
41
41
41
42
42
42
42
43
43
43
~3
43
43
43
44
44
45
45
46
46
46
47
47
47
48

48
48
48
49
49
50
50
50
51
52
52
52
53
54
54
54
54
54
55
55 I 55

NOS COMPASS

4.4 MODULARITY ••••••••••••••••••••••
4.4.1 PP OVERLAYS ••••••••••••••••••••
4.4.2 HELPER PP-S ••••••••••••••••••••
4.4.3 COMMON DECKS ••••••••••••••••• ~ •

4.5 DAYFILE MESSAGES •••••••••••••••••••
4.6 UNHANGABLE CHANNEL CODE • • • • • • • • • • • • • •)
4.7 SPECIAL ENTRY POINTS •••••••••••••••••
4.8 SCRATCH FILE NAMIS ••••••••••••••••••

APPENDIX A - ABBFEVIATIONS •••••••• • •
A .1 GENERAL ABEBEVJATIONS ••• -~- •••••
A.2 NETWORK HOST PRODUCTS ABBFEVIA!IbNS

• • • • • • • • •
A.3 ACRONYMS •••••••••••••• ' . .

APPENDIX B - ERRCE MESSAGE GUitELINES • • • • • • •

APPENDIX C - DOCUMENTATION/USA~ILITY GUIDELINES

NOS-DEV/1926G/slf - 5 -

/

4/26/83

55
55
56
56
56
57
57
58

59
59
60
61 /

62

64 l

NOS COMPASS

1 • 1 • 1 1:1LE.!:Q~_g

This document establishes stan'dard ~rccedures to be used :ty
programmers in the devel~pment and maintenance of programs in

_COMPASS Assembly languag~.

4/26/83

This document shculd he used ty ~rcgramrrers as a reference manual of
standard programming procedures. The implementation of these
procedures will increase the efficiency cf program development,
irn~rove the reliability and maintainability cf the ~rogram and aid
in the training cf persons ~ho ~ill te maintaining or using the
program.

The procedures defined in this dc~trnent are applicable tc the
NETWORK OPEBATING SYSTEM CNCS) and its related subsystems.

The proce.dures defined in this dccument are to be used in all newly
developed programs •. In existing prcgrarrs these procedures should be
used if they are net inconsistent with the existing procedures. If
major changes (such as a rewritten subroutine or a new overlay) are
made to a prograrr, these procedures are to te used fer the changes.

Programs which de net conforrr tc these requirements will be returned
to the programmer for correcticn.

NOS-DEV/1926G/slf - 6 -

NOS COMPASS 4/26/83

Documentation is the presentaticn cf infcrrnation about a ~rcgram in
easily understandable form sc that these whc need to understand the
program do not need to study the program itself. This reduces the
time consumed frcm days or weeks tc ~ust minutes or hours •

. The program documentation presente~_in_ this_ standard is embedded
within the source language cf each ~rcgram. The documentation is ,
designed tote extractable ty-the standard documentation ~recessing
program, DOCMENT. This apprcach serves to cnify the program and its
documentation, making it easier and rrore natural to update the
documentation as changes are made tc the cede.

The effectiveness cf documentation is judged by its success in
meeting the needs cf those who use it. This introduction defines
four distinct needs for documentation which arise during the life of
a software product. Sections 2.3 through 2.5 define three levels of
documentation (Program Level, S~brcutine level and Cede Level) which
together meet these needs.

Section 2.7 gives exarn~les cf ~rc~er documentation.

Anyone ~anting tc knew the structure of the system, er some
functional area, dces not want excessively detailed infcrmation
which will make the task more difficult. Cne should be able to ask
the question:

What is the functicn cf this ~rcgrarn?

and get an answer that is brief arid to the pcint. It should not
contain any infor:ma{ion about the inI:ut I:ararneters, options, error
conditions, or internal workings cf the ~rcgram.

Anyone whc knows the functic~ cf a program and wants to knew how to
interface to the program needs tc knew the form of the call, what
parameters to su~~ly, what infcrmaticn is returned, and what is
accomplished. Cne should be able tc ask the question:

,

NOS-DEV/1926G/slf - 7 -

/

NOS COMP~.ss 4/26/83

How is this program used?

and get ari answer that lists the parameter defin~tions, formats, and
contents, the initial conditions cf buffers and devices, any status
and condition information, a list cf other ~rograms called, and a
complete list of errcr codes, errcr messages issued and parameters
returned. A general description cf the acticns taken should be
included for each function perfcrmed that is recognizable by the
calling program.

Anyone working en ~ modificaticn er enhancement to the system needs
a gene r a 1 kn o w··1 edge cf the i_n t er n a 1 c per a ti.on of a pro gr a m • This
requires findi.ng out where within the prcgram some function is
performed and how it is perfcrmed. Cne shculd be able to ask the
question:

How does this program work?

and get an answer that includes ~ descri~ticn cf the logical flow
and structure cf the prograrr, the algcrithrrs used and the function
performed by each overlay or sutrcutine in the program.

Anyone attempting to modify the ~rcgram er establish a knowledge of
the detailed operaticn of a ~rcgrarr uses tte listing. Documentation
should be provided in the listing tc aid in following the flew of
the program withcut reading all cf the cede. This documentation
consists of comments within-the cede i.tself. Comments describing
the function of logical groups cf instructions should be ~rcvided,
and comments documenting table structures, data areas, ~nd constants
should appear on the instructicns which define them. Cne should be
able to ask the question:

What shculd I know when rncdifyin·g this program?

and get back an answer with all the detail needed to make the
modifications without adversely affecting existing program functions.

NOS-DEV/1926G/slf - 8 -

NOS COMPASS 4/26/83

The abbreviations for technic~l terms which are to be used in
program documentation are liEted in Appendix A. All other technical
words and phrases are completely spelled cut. Routine names and
mnemonic names of tables and equi~ments are not considered
abbreviations.

A program whose dccu~entaticn make~-ex~ersi~~ use of terms not in
this list may define a list cf abbreviations and include it in the
first section of the internal dccumentaticn for the prcgram. Such
abbreviations may net be used in the prcgram overview er external
documentation.

The following Standard symbols are used in the dccumentaticn when
expressing logical and arithmetic ccnparisons:

.NOT.

.XOR •
• AND.
~OR •
• EQ.
.NE.
.LE.
.GE.
.LT •
• GT.

()
(())

lcgical inverse
lcgical differenLe (exclusive or)
lcgical product
Logical sum (inclusive or)
equal to
Net equal to
less than or equal tc
Greater than er equal tc
Less than
Greater than
equal to
ccntents of
ccntents of the ccntents cf (indirect addressing)

All docurnentatio~ and comment lines contain complete Englisfi
sentences with correct punctuation. Exce~ticns are allowed in
subroutine headings (see section 2.4) and in embedded comments (see
section 2.5.2). !itles (such as "AEsemtly Ccnstants.") should end
with a period but need not be ccm~lete sentences. Each comment
(excluding embedded comments) should end with a period even if it is
not a sentence.

Correct punctuation means the same punctuation as required in
written English. However, the a~cstrophe tresents problems due to
character set and ~rint train differences, and plurals cf
abbreviations are not readable ~ithout upper and lower case.
Therefore, plurals and possessive fcrms cf atbreviated terms are to
be avoided •. Authorized abbreviaticns (see Eection 2.2.1> are made
plural by adding a hyphen and the letter "s" (e.g. PP-S).

NOS-DEV/1926G/slf - 9 -

/

NOS COMPASS 4/26/83

If an upper case item is to te indicated in the documentation, it is
enclosed within asterisks. D~ter case is used for names of files,
programs, calling parameters, subrcutine t~gs, table names and any
other words that are normally·catitalized • Accepted abbreviations,
acronyms, and ~rcgrarrming language names are not enclosed in
asterisks even if they would normally be ca~italized (refer to
Appendix A and secticn 2.2.1). Tables defined in CMR do not need I
asterisks CEJT, QFi, etc.).

Documentation lines ~ont~in cnly a~terlsks ~rid blanks in the first
ten columns and text in columns 11 through 11. The text is written
using correct -English except where stecifically noted. The format
for each of the varicus types cf dccum~ntaticn is shewn below.
Later sections define the usage cf each tyte cf
documentation.

External

Internal

Internal Bracket

Other Comment

Table

NOS-DEV/1926G/slf

Asterisks in .columns 1 through 3 {***).
This line indicates that this and the .
following contiguous comment lines are to be
included in the rrcgram external
documentaticn.

Asterisks in columns 1 and 2 (**). This
line_ indicates that this and the fellowing
contigucus ccmment)ines are to be included
in the ~rcgram internal documentation.

Asterisks in columns 1 through 4 (****).
This line and all ether lines up tc and
incl~ding the next cccurrence cf this line
are to te included in the program internal
d.ocun:entaticn.

Asterisk in column 1 (*). This type of
comment is uEed fer continuation cf the
above ~y~es cf dccurrentaticn. It is also
used fer stand-alone comments (see section
2.5.1).

Asterisk in column 1, T in cclumn 2 (*T).
This line indicates the beginning cf table
docurnentatien. The *T lines must appear
within ccnsecutive ccmment lines beginning
with an external (***) or internal (**)
statement. tCCMEN7 generates a table
diagram frem the field widths and
descriptions in the *T documentation. Note
that the field description size (including
blanks) cannct exceed the field width size
(to trevent truncation). A DOCMEN1 listing
should te made cf a program's
external/internal dccumentation when table •
structures are added (to verify ccrrectness).

-.10 -

NOS COMPASS

Table Continuaticn

Blank Comment Line

4/26/83

Asterisk in column 1, T in cclumn 2, comma
in cclumn 3 (*T,). !his type of comment is
used fer ccntinuaticn of table dccumentation
started ty a *T line.

A line with an asterisk in cclumn 1 (*) and
blanks in columns 2 through 71 is called a
"Blank Ccmroent line er "Blank Ccrnment Card"
and is used as a se~arator to improve
readability cf dccurnentaticn.

Documentation which contains several se,atate items cf infcrmation
(as found in sections 2.3.1, 2.3.2, 2.3~3 and 2.4) contains a Blank
Comment Line bet~een the items~ Each item ends with a ~eriod. If
an item is not atplicable,it is emitted frcrr the dccumentation. The
items are placed in the order s~ecified and the last item is
followed by a SPACE 4,10 line.

Every program ~cntains comment lihes which make up the Frcgram Lev~l
dccumenta tic~ .. (as defined_ in_ this secticn). This level cf
documentation may te used with the ~rogram listing or without it
(using extracted dccumentaticn rrcduced .l:y a documentation
processor). Even withcut the listing, ~he Frog~aw Level
documentation satisfies the resign Cvervie~, External Interface and
Internal Operation dccumentaticn needs discussed in secticn 2.1.

2 • 3 • 1 Q.Y.&.E.YI&.H

The overview documentation is ~laced imrrediately following the
COMPASS Group 1 instructions and tefcre any ether documentation,
macro definitions er executatle cede (see section 3.2). It consists
of an external documentation line (see secticn 2.2.3) which contains
the program name and a brief descri~ticn cf the program, and
additional comment lines which ccntain the fellowing items of data
(see section 2.7 fer the laycut cf these itErns):

•
•

Name of author and date written (yy/mm/dd) •
Names of authors cf majcr mcdifications, with dates •
Text cf cverview of ~rcgram.

The text of the cverview shc~ld fcllcw the general definition of
Design Overview dccurnentaticn in section 2.1. The otjective is to
describe the function of the ~rcgrarr in general terms.

NOS-DEV/1926G/slf - - 11 -

NOS COMPASS 4/26/83

2.3.2 :g:K1E.EEA1

The external documentation is ~laced immediately following the
overview dccumentaticn and tefcre any internal dccumentaticn, macro
definitions or executable cede (see secticn 3.2). It consists of an
external dccumentatiin line (see section 2.2.3) arid additicnal
comment lines which

1

together ccntain the fellowing i.tems cf data
(see section 2.7 fer .the laycut cf· these items):

•

•

Detailed descri~ticn cf functicns and o~tions •
Entry conditions, inclcding parameters and initial
ccnditicns ~£ tri~fers and-~xt~rnal.fables.
Command fcrmat.
Exit cbnditions, including status tits and fields returned.
Errors detected, error cedes returned, including ~ubsequent
action taken fer each.
System errcrs detected and subsequent action taken.
Other programs called.
Messages issued (including dayfile and operator).

The content of this section -follcws the general definition of
External Interface dccumentaticn in secticn 2.1. The otjective is
to supply info,rmation required ty· a rotential user of the ;;rogram.

2.3.3 IE1E.B.N!1

The internal dccumentation descrites the internal workiµgs cf the
program. It may be dispersed throughout a prog,~am as desired,
however a major tcrtion appears immediately following th~ external
documentation. Internal documentaticn ccnsists cf an internal
documentation line (see section 2.2.3) and additional comment cards
which together ccntain th~ fcllcwing items cf data (see section
2.2.4 for the layc~t of these iterrs)~

•

•
•

System texts required fer assembly (other than default) •
Direct cell usage (FP ircgrams).
Global register assignrrents (C:EU ~rcgrams).
Data areas and table fcrmats •
Memory rra~ (if overlays are used) •

Other items to be included if ar~licable are:

Techn~ques er algorithres em~loyed where not obvicus.
Timing considerations.
Interlock ccnsiderations.
Known limitations tc perfcrrrance er extensibility, such as
timing cf lccps, ccre size, errcr-recovery deficiencies.

NOS-DEV/1926G/slf · - 12 -

NOS COMPASS 4/26/83

Any other information which would aid scmeone in understanding the
internal workings cf the prcgrarr is alsc ~rcvided, including logical

'flew, structure, and pitfalls tc redesign.

The heading of any subroutine ccnsists cf ccmment lines giving a
brief description cf its functicn, its entrJ and exit conditions,
register or.direct cell usage and internal workings. The
information contained should be en a level indicated by the
.complexity of the sutroutine •. !he-.fcllc-wing ·items of data should be
included (see sections 2.7.2 and 2.7.3 fer the laycut cf these
items): -

•

•
•

•

TITLE line with name as suttitle (primary subroutine)
SPACE line (see secti6n 3.6.3)
Internal comment line giving name and title of subroutine
One or were sentences describing the functien cf the
subroutine (optional but desirable).
Entry ccndit{ons (list)
Exit conditions (list)
Error exit conditions (l~~t)
Register er direct cell usage (list)
Routines called (list)
Mac~ps called (lis~)
Descripticn of allocated registers
Timing considerations, if critical
Design, implementation and general information
Two blank lines

The title of the subroutine shctld describe the action performed by
the subroutine (fer example, Fcsiticn Mass Storage, Make Queue
Entry). This means that titles shculd always contain a verb.
Titles without verts sho~ld be use4 f6r groups of subroutines and
COMSxxx decks •.

Defined formats exist for the list cf items in the subrcutine
heading. A keywcrd appears in cclumn 11, fellowed by text in column
18. The text is simtlY a list, rather than complete sentences. Any
list requiring mere than one line is continued beginning in column
18 (or beyond) of the next comment line. !he formats are shown
below. Each list ends with a rericd. Accettable keywords include:

ENTRY
EXIT
ERROR
USES
CALLS
XREF

Entry c9nditicns.
Exit conditions.
Error exit conditicns.
Register or direct cells destrcyed.
Routines called.
Common or system decks required.

NOS-DEV/1926G/slf - . 13 -

NOS COMPA.SS

MP .. CROS
DEFINE
TIMING
NOTES

Macrcs called.
list of allocatatle registers.
Descri~tion of timing considerations.
Prcgramming infcrmaticn.

Documentation f cr· corrmon decks and zerc level overlays shculd
include subroutine level documentaticn where appropriate.

Entry conditions include ·the fcllcwlng- i terr!:::

4/26/83

Registers, direct cells or memory lccaticns that must be set before
the subroutine is called.

Logical status of channels, files, etc.,(i.e. Channels reserved,
files set busy, disk postione~, files pcsiticned) that shculd exist
before the subroutine is called.

Only one entry ccnditicn may te s~ecified ~er line. For E~ code,
the contents of the A register should be described first.

Exit conditions include the fcllcwing items:

Eegisters, direct cells or memory locations that may be used by
subsequent routines.

Logical status ,of channels, filEs, etc., (i.E. Channels reserved,
files set busy, disk pcsiticned, files ~csticned) that exist when
the su~routine is exited.·

Only one exit condition is listed ~er line. for PP code, the
contents of the A register should te descrited first.

Branches (net CAlLs) to other rcutines.

Error exit conditions include all exit ccnditions that exist when a
special terminaticn cf the subr~utine, such as a jum~ tc an error
processor, is taken. Error con di ti ens include the foll·cwing i terns:

The label being jum~ed to and the conditions that caused
the special exit.

I

NOS-DEV/1926G/slf - 14 -

NOS COMPASS 4/26/83

•

•

Registers, direct cells er memory locations that may be
used by subsequent rcutines.

Lcgical status of channels, files, etc., (i.e. Channels
reserved, files set busy, disk positioned, files postioned)
that exist when the sutroutine is exited.

Only one exit cdndition is listed per line. The· label being
jumped to is documented first with all exit conditions pertaining
to that exit fellowing. If these are rn~lti~le error exits, each

.with unique conditions, the conditions should be listed under their
.. -· / .

own exits.

Registers or direct c~lls used- include all registers or direct cells
destroyed by that subroutine cnly. Fegisters or direFt cells
destroyed by subroutines or ~ACRCS called by a routine are not
listed~,.

Foi CPU code, the format of thE USES blcck includes a register type
(X - operand register, A - addres·s- register:, B - index register)
followed by a sequence of ascending numters indicating the registers
used. The term ALL may be substi~uted if all registers are used by
a routine.

Example:

*
*

*

USES x - 0, 1, 6.
A - 1, 6.
B - 3, 7.

Indicates the fellowing registers are used:

XO, X1, X6, A1, A6, B3, E7.

For PP code, single direct cells are listed in al~habetical order
followed by multi~le direct cells listed in alphabetical ceder.

Example:

* USES T1, T2, T5, CM - CM+4, RI - RI+4.

The direct cell at PP memory locaticn 0 CTO) is assumed tc te used
by every subroutine unless ctherwise stated in the ENTRY/EXIT
conditions. This is because certain instructions, such as CRM and
CWM, destroy location zero.

NOS-DEV/1926G/slf - . 15 -

NOS COMPASS 4/26/83

Routines called ty a subroutine include all subroutines, ccmmon
decks and overlays that ~re ex~licitly called. Boutines called by
macros are not tc be included. Where the rcutine called does not
return to the calling point, the tranch is an EXIT condition rather
than a CALL.

_When a routine, rracr~, or ccmmcn deck requires ·a parti~ul~r common
or system deck fer assembly er for -~cr~ect ~xecution, it is valuable
to list the deck(s) required.

Example:

* XREF COMCLOD, CC~CR!N.

Macros called include all macrcs that are extlicitly called by a
subroutine. The SUBR macro is always im~lied to be called and need
not be listed. FP macros ADK, IDK~ IMK, IFK, SBK, MJP, NJF, PJP,
UJP, and ZJP need not be listed.

-·
2.4.8 !11Q£A1tn_f~g!~lE]~_Q]_~1II~l-~E11~-1IEI1Nil

Allocated registers are registers (or direct cells fer PP code) used
for well defined items throughcut a ~articular subroutine er program.

Timing cons~derations should describe any timing limitaticns that
are imposed on the subroutine tecause cf hardware or performance
constraints. Care should be taken tc ex~ress units cf time in a
manner independent of machine t1~e. Fer example, units of time
expressed in cycles rather than micrcseccnds is more desirable.
This' is because the same routine may executE faster er slcwer than
stated depending en the ty~e of the F~ er CPU it executes in.

This section documents design, imtlerrentaticn and general
information that may be useful tc ether analysts~ Information in
this section pertains to the subrcutine cnly.

NOS-DEV/1926G/slf - 16 -

'-.

I

NOS COMPASS 4/26/83

All documentation which is net described in cne of the preceding
sections of this document falls into the category of Code Level
documentation. !he requirements fer this type of documentation vary
widely, so few rules can be stated; hcwever, Code Level
documentation is necessary and the lack cf explicit requirements
must not lead to its neglect.

Code Level documentation, alcng with the sutroutine headings, must
satisfy the need fer aid in reading the cede. Its content fellows
the guidelines fer r~tail~d Cede A~~ly~is ih-section 2.1.4.

Stand-alone comments are cornroerit iines atpearing in-line with code,
as opposed to within higher-level documentation previously defined.
All stand-alone comments are ~receded and followed by one blank
line. To reduce the binary size cf systems texts, stand-alone
comments within macrc definitions should be preceeded and followed
by a blank comment line.

Stand-alone comments descrite the functicn ~erforrned by the
subsequent section of in-line cede. The ccmments are complete
English sent~pces ~ith correct tunctuaticn, ending with a period.
The comments refer tc functicns and data in external terms, rather
than only in octal numbers and tit pcsitions. These comments follow
the general requirEments found in secticn 2.2.

Emtedded comments are comments in cclumns 3C-71 cf a line assembled
by COMPASS, not a comment line. The comment need not be a complete
sentence and is net terminated ~ith a ~ericd. This type cf comment
is never continued onto another line. If the intended comment is
too long to fit en the single line, it is i~serted as a stand-alone
comment preceding the area of cede tc.which it applies. Care should
be taken ~ot to cverflow intc cclurnn 72.

An embedded comment describes the f uncticn cf the instruction or
sequence of instructions on ~hich it apiears. (It must be at the
beginning cf the sequence.) It dces net describe the hardw~re
operation being ~erfcrmed, but rather its meaning in the context of
the function to be performed bJ the trcgrarn.

NOS-DEV/1926G/slf - . 17 ·-

/ .·

·NOS COMPASS 4/26/83

With the excepticn cf extremely ccrn~lex cede, it should net be
necessary to put embedded comments en every line. Frequently, it is
advantageous to emit "obviods" er redundent comments, since it then
becocies easier fer the casual reader tc scan the routine.

An embedded comment is required on each jump instruction, to
identify the condition being tested (ccnditicnal jumps) er the
action being taken (unconditional jumps). Cn jump instructions, the
word "JUMP" is superfluous, and is net used. On conditional jumps,
the comment must begin with the wcrd "IF" and descrites the

_condition on which t~e j~mp will be executed. These comments follo~
the general requirements found in S~cticn 2~2.

An embedded comment is required on all ~seudc tests (ERRNZ, ERRPL,
etc.). The comment should state· the condition for which the test
fails and the word "IF" should net be used.

Example - ERF.NG *-BUFAL CCtE CVEFFLOWS BUFFER AEEA

The heading of any macro def initicn consists cf comment lines giving
a brief description of. its functi·on, its entry and exit conditions,
register or direct cell usage and internal workings. The
information contained should be cri a level indicated by the
complexity c~ the macro. _The fcllc~ing items of data should be
included (see section 2.7.4 fer the laycut cf these items):

•

•

SPACE line (see secticn 3.6.3)
Internal comment line giving name and title of macro
One or more lines cf text explaining the purpose and/or
function cf the macro (cpticnal but desirable).
Format cf macro call
Entry conditions (list)
Exit conditions (list)
Register er direct cell usage (list)
Routines called (list}
Macros called (list)
Two blank lines

Defined formats exist for the list cf items in the macrc heading.
A keyword appears in column 11, fcllcwed by text in column 18. The
text is simply a list, rather than ccmplete sentences. Any list
requiring more than one line is ccntinued teginning in column 18 (or
beyond) of the next comment line. lhe fcrrrats are shown below.
Each list ends with a period.

NOS-DEV/1926G/slf - 1E -

NOS COMPASS 4/26/83

ENT Rt
EXIT
USES
CALLS
MACROS

Entry conditions.
Exit ccndition~.
Register or direct cells destroyed.
Routines called.
Macrcs called.

Entry conditions may include the fellowing ite~s:

•

•

Descripticn- of ~acre para~~te~s th~t are allowed. Complete
descripticns of macro i:arameters include:

1. valid parameter cptions
2. default values cf parameters
3. register o~timizaticn, if applicable

Registers, djrect cells er rremcry locations that must be
set befcre the macrc is called. Entry conditions may refer
to the entry docurnentaticn found in subroutines called by.
the macro.

Logical status of channels, files, etc.,(i.e. Channels
reserved, files set tusy, disk ~ostioned, files ~csitioned)

.that shculd exist tefcre- the macrc is called.

Only one enti~ condition may be specified ~er line. For FP code,
the contents cf the A register should be described first.

Exit conditions include the fcllcwing items:

•

Registers, direct iells er rrerncry locations that may be
used by subsequent routines. Exit conditions may refer to
exit conditions in sutrcutires called by the rnacrc.

Logical status of channels, files, etc., (i.e. Channels
reserved, files set tusy, djsk pcsitioned, files postioned)
that exist when the code generated by th~ macro is exited.

Special terminations cf the rnacrc such as jumps to error
processors er to any ether routines. The label being
jumped tc and the ccnditicnE that cause the special exit
should re documented.

Only one exit condition is listed ~er line. For PP code, the
contents of the A register should be described first.

NOS-DEV/1926G/slf - 19 -

NOS COMPASS 4/26/83

/ Registers or direct cells used include all registers or direct cells
destroyed (or modified) by that macrc cnly. Refer tc section 2.4.4
for the format of the USES blcck.

Routines called ty a macro incl~de all subrcutines and overlays that
are explicitly calle~. ~outines called ty macros within the macro
definition are net tc be included.

Macros called include all macros that are ex~licitly called by a
macro definition.

These examples are statements cf the standard and are intended as
further clarification of the reGuired prccedures.

--·'
2 • 7 • 1 .£.B.QQ.El!lLlE.Yil

*** · LIBE:CIT - LIBEARY EDITING FRCGEAM.
*
*
*
*

*
*

*

*
*

A. E. CRIGINAI.
A. E. MODIFIEF.
C. D. MODIFIER.
SPACE 4,10

74/C1/C1.
75/01/01.
76;01/01.

LIEEDIT IS A GENERAL PUBPCSE FILE EDITING
FRCGRAM CAPABLE CF MC:CIFYING AND GENERATING
LIBRARY FIL-ES.
SFACE 4,10
COMMAN:C FORMA'I.

•

SPACE 4,10
DAYFILE MESSAGES.
•

•

NOS-DEV/1926G/slf - 20 -

NOS COMP.~SS

*
*

SPACE 4,10
ACCCUN'I FILE (MESSAGES.

•

SPACE 4,10
'*** ERBCR LOG MESSAGES.
*
*

•
SPACE _ 4,10

*** OFEEATCR MESSAGES.
*
*

•
SPACE 4, 10.

* COMMON DECKS.
•
•

SPACE 4,10
* MACEC DEFINIIICNS.

• ..
**** ASSEMBIY CONSTANTS.

BUFL

*

EQU 1001B

SPACE 4,10
GLCBAL STORAGE.
•

CU'IPUT EUFFER LENGTH

2.1.2 ~Y~RQYIIHE_1E!E1_ifE_~Q~El

TIILE ERROR FEOCESSING RCUTINES.
LEM SPACE 4,30
** LEM - IIST ERRCR MESSAGE.
*
*
*
*
*
*

*

LEM ISSUES EFBCF ME~SAGES TC THE JOB ANC
SYSTEM DAYFILES AND TC THE ERRCR LOG.

ENTRY (A) = 1 IF SINGlE EI'I SECDED ERROR.
= 2 IF STATUS/CCN1RCL REGISTER

EBECB LIMI'I.

NOS-DEV/1926G/slf - 21 -

4/26/83

1

I

I

NOS COMPASS

*
*
*
*
*
*
*
*

*
*
*

*
*
*
*
*
*
*
*

LEM

(SCBA - SCFA+20) = SCR IMAGE.
(NL) = ADDEESS CF NEXT LIST ENTRY.

EX:I'I CNL} = DFDA1ED 1IS1 FCIMTER.

ERRCR TO *ERR* IF ERRCR ENCCUNTERED.

USES T1, T2, CM - CH+4, FN - FN+4.
i

CAIL.S LMC.

XREF COMPABZ.
I

MAC RCS MONITOR.

DEFINE CT2)i = FWA CF MESSAGE.

TIMING A DELAY IS NEEDED 'IC AVCID FILLING THE
DISK WI!H EEBCR LOG MESSAGES.

SUER ENTEY/EXI'I

UJN LEYH RETURN

ACS SPACE 4,25
** ACS - ASSEMBLE CHARACTER STRING.
*
*
*

. *
*
*
*
*
*
*
*
*
*
*

*
*

ACS ASSEMBLES A CHARACTER STRING INTC BUFFER
CEUF, FACKED 10 CHAEACTEBS FER CM WORD.

ENTRY (B6) = EWA CF CEAEAC1EF STRING •.
(E7) = IENGTH CF STRIN~ BUFFER.

EXI'I (CBUF - CEtF+20) = CHAFACTER STBING.

ERBCR TO *ERR* IF INVALID CHAEACTER FCUND.
(X1) = FWA CF EEROE ~ESSAGE.

USES X - O, 1, E.
A - 1, 6.
B - 6, 7.

NOS-DEV/1926G/slf ""·,..:
- LL -

4/26/83

NOS COMPASS

*
*
*

*
*

ACS

EB ROB
**
*
*
*
*
*
*
*
*

ERROR

ERROR

CALLS MCI.

MACRCS GETCH.

DEFINE CXO) = CHAEACTEF ~ASK.

SUEB .ENTEY/EXI'I
•

EQ AC St RETURN

SFllCE 4,10
ERROR - ERROR FROCESSING MACRC.

ERRCB ADDR

ENTBY *ADDR* = FiA CF DAYFIIE MESSAGE.

EXI'I. TC *EFR*.

USES x - J.

PUEGMAC ERROR

MACRC A
SX1 A
EQ EPB
ENI:M

\

NOS-DEV/1926G/slf - 23 -

4/26/83

NOS COMPASS 4/26/83

3. 0 ~ODJJ!.Q

The following list cf column nurrl:ers re~resent the beginning of each
field in a COMPASS ceding line. (An exce~tion is allowed for macro
_definitions in syste~ texts ~here ~~ace is critical. Refer to
section 3.6.5.)

Column 1 = Continuaticn field (ccrnma) if required
Column "' L. = Lo ca ti en field
Column 11 = Operaticn field
Column 18 = Address field
Column 30 = Comment field
Column 73-80 = Reserved

If a field is full or civerflcws intc an adjacent field, then two
spaces shuuld se~arate the fields. For readability, a blcck of
comments can be aligned in a ccltrrnfi tast cclumn 30. Column 72 of
the comment field should be blank unless a continuation line is
required.

The following list of column nurrters re~resent the format of a
comment line. A full descri~ticn cf where and how tc use comment
lines is found in section 2.

Column 1 = always contains an asterisk
Column 2-5 = (see section 2.2.3)
Column 6-10 = generally l:lank
Column 11-71 = contains the text of the comment
Column 72-80 = reserved

3.2 _t,EOG,BAM_LA1.Q.11

The following sections define the corr~onents of a program in the
order they appear within the ~rcgram. It is net expected er
required that every trogram ~ill consist of all components
described. In this discussicn a "~rcgrarr" is a relocatatle program
unit (from "IDEN!" tc "END"), an entire atsclute program or a common
deck. A subroutine is a routine within a ~rcgram.

NOS-DEV/1926G/slf - 24 -

. I

NOS COMPASS 4/26/83

Group 1 instructions appear at the beginning of each program and
contain the identification and envircnment information fer the
prcgram. The fellowing examples define the layout of the Group 1
instructions for each type of prcgraro.

1 1 1 18 • 3_0 (Columns)
+---------+------+-----------+-----

!DENT XXX,ORIGIN
MACHINE (cptional)
PERIFH
NOLABEL (deadstart routines)
BASE M
LIST (optional)
SST
TITLE XXX - rrcgram description.

*COMMENT dechnaree - descripticn.
COMMENT CCPYFIGH! CCN1RCI tATA COBPCRATION, year.

XXX SPACE 4,10

.... _.

3.2.1.2 ~El!IBA1_I.R£QI~~Q.R_f.E~!213A]~

!DENT XXXXXXX,EWA pro~rare description
ABS (optional)
MACHINE (optional)
LCC (optional)
SST Ccrticnal)
ENTRY YYYY (optional)
SYSCCM B1.
LIST (optional)
TITLE XXXXXXX - program d~scription.

*COMMENT deckname - description.·
COMMENT COPYRIGHT CCN1BOI DA!A CORPORATION, year.

XXX SPACE l~, 10

NOS-DEV/1926G/slf - 25 -

NOS COMPASS· 4/26/8~

1 11 18 30 (Columns)
+---------+------+-----------+-----

CTEXT xxxxxxx - common deck descripticn.
SF.ACE 4,10

QUAL$ IF -DEF,QUAL$
QUAL xxxxxxx

QUA LS ENtIF
BASE B (B = any legal value)
COtE ·C c6~tiona1>

* COMMENT COPYRIGH'I CCNTROI DATA CORPORATION, year.
xxx SPACE 4, 10

Refer to section 4.4.3 for furth~r informaticn on qualification of
common decks.

Program level documentation consists of overview, external and
internal documentaticn as detcrib~d in section 2.3.

The macros are in al~ha:betical crde r. Cc·mmcn decks which define
macros should be included before lccal rracrc definitions in
alphabetical order.

~

Installation symbols are parameters that may be changed ty a site
when installing a ~reduct. lhese syffibols may include buffer
lengths, default values, and timing delays. Installation symboJ..s
are defined in al~hatetical crder unless functional order is m~e
meaningful. The ~nstallaticn symtcl definition area shculd he
bracketed by internal bracket lines (****).

Local symbols are parameters that shculd net be changed by an
itistallation. These symbols may include cede generation symbols
(QUALS, DBI$, etc.) And symtels used fer cress re£erence ~urposes.
Local symbols are defined in alihatetical crder, unless
functional order is more ~eaningful.

NOS-DEV/1926G/slf - 26 -

NOS COMPP.SS 4f26/83

This section of th~ ~rogram is used to define memory that is preset
with data. This section may include FETs, tables, and working
storage. Global memcry definitions are defined in alphabetical
order unless functional order is mere meaningful.

3.2.7 _tl_aIN;...1QQI

This section cf the ~rog~am ccntai~§ t~e ma~cr logic ~nd control
flew for the program and internal dccumentation for that flew (see
section 2.4). A TITLE line ~{th an apprcpriate subtitle precedes
the fi~st primary sutroutine.

This section of the ~rogram contains the sutroutines which are of
major importance to the program. They should be in alphabetical
order unless there is a logically associated set of subrcutines
which interact tcgether (in which case these subroutines may be
grouped together). Each subrouti~~ contains documentaticn as
described in secticn 2.4. A TITlE line with an apprcpriate subtitle
precedes the first primary sutrcu~ine.

This section cf the program ccntains sutrcutines of miner importance
to the program. They should be in alphabetical order unless there
is a logically asscciated set cf sutroutines which interact together
(in which ca~e these subroutines may be grcuped together). A TITLE
line with an apprc~riate subtitle ~recedes the first secondary
sutroutine. Each sutroutine contains dccurnentation as described in
section 2.4.

Common decks (excett those used fer initialization) are after the
secondary subroutines. Commcn decks shculd te listed in
alphabetical ordEr whenever ~cssitle.

This section of the ~rogram contains working storage and buffer
definitions that are not preset with data. (Refer tc section 3.4.5}

I

I

1

Use of EQU er BSSN is preferred tc ESS since additional cede is not I
added to the binary. ~

·Code which may be overlayed after ~rogram initialization is included
here.

NOS-DEV/1926G/slf - 27 -

NOS COMPASS 4/26/83

All programs end with an "ENt" staterrent except commcn deck~ which
end as follows:

1 11 18 30 (columns)
+---------+------+-----------+-----

QUl\1$

*
*

. -DEF,QUAL$
*

(if api;:licable)
(if api;:licable)

yyy

BASE
CO:CE
IF
QUAl
ECU /XXXXXXX/YYY (unqualified entry point)

QUAL$
xxx

•

ENI:IF
EN:CX

If "CODE x" is used at the beginning but ttCCDE *" is net used at the
end of a common deck, it must £E ex~licitly documented in the common
deck header.

If the main listing title has been changed ty use of an !DENT or TTL
line, the main title must be rest6red with a TTL card just before
the END line _tc trcvide the correct title en the symbolic reference
table.

3.3 INSl]Q~1lQN_1~IL_FO~~A1~-ABI_E~B~~!1IE~

""' . 3. 3 .1 B..&£I~T.&1LQ~E-~JHL~E't~III~B11£B

The BO register shculd net be s~ecified in instructicns which test E
registers. The assembler assumes EC if the requisite number of B
registers is not s~ecified.

The B1 register must always contain ihe value one (1). The nsYSCOM
B1" macro is included in each program tc indicate that B1 will
contain this val~e. B1 must be set to 1 immediately upcn ~rogram
entry. B1 is then used by CCMEASS in ccnjunction with the R= psuedo
instruction to generate 15 b~t instructions rather than 30 bit
instructions.

NOS-DEV/1926G/slf - 28 ~

\

NOS COMPASS 4/26/83

It should be assumed that calls tc external entry points which may
be loaded from an external scurce destrcy E1. Therefore, E1 should
be reset to one after these calls.

In the Pack and Nominal Shift instructicns, the X register is
specified before the B register, as follcws:

PXi . Xk ,B __ j

LXi Xk,Bj

In the Unpack and Normalize instructions, the B register is
specifi~d in the c~ccde fie1d irrrnediately fellowing the c~ccde.

UXi,Ej Xk

NXi,Bj Xk

When a PP ~rograrr tests a value in the A-register for equality with
several possible values, it may be dcne with a sequenc€ cf logical
difference (exclusive "or") cperations, as fellows:

LMC AA
ZJN XYZ12 IF 'IYPE AA
LMC BB"'AA
ZJN XYZ24 IF 'IYPE E.E
LMC CC"'BB
ZJN XYZ36 IF 'IYPE cc

The value being tested is s~ecified first in the LMC.

Alternatively, a table look-up ~ay te mere efficient.

Shift counts in shift instructicns which are used to test bits, are
coded in one of the following fcrms:

A-B (first shift of a wcrd)

A-B-AA+EB+~ (next shift of the word)

NOS-DEV/1926G/slf - 29 -

NOS COMPASS

Where:

A =
B =

AA,BB=

M =

4/26/83

The desired pcsiticn cf a tit in the wcrd.
The original pcsiticn cf a bit in the word (tefore any
shifts).
The A and E parameters frcrn the previous shift of

this wcrd.
Modulus value

Note: The modulus values (60 fer CFU and 22B for FP) may have to
be added to the shift value if the resulting value is not
within the iegaf limits f~~ the in~truction.

Example:

1 •. To shift bit 47 to bit 5S:

LXi 59-47

2. To shift the result of examtle 1 so that bit 32 of the original
register (before any shifts) is in tit 59 of the result:

LXi 59-32-~9+47

3. To shift the result of exam~l~ 2 sc that bit 58 cf the original
register (before any ~hifts) is in tit 59 of the result:

LXi 59-58-59+32

Example:

1. To shift bit 2 tc bit 21E:

SHN 21-2

2. To shift the result of exam~le 1 so that bit 5 of the original
register (befcre any shift) is in bit 21 of the result:

SHN 21-5-21+2+22

A modulus of 22B is needed in thi~ case tc avoid executing a right
shift (ie. The resultant shift would otherwise be negative.)

\

NOS-DEV/1926G/slf - 30 -

I

NOS COMPASS 4/26/83

The mask created fer use in tcclean instructions depends tn whether
the field cf hits tc be extracted is in the left or right hand part
of the word. If the field of n bits is in the left hand part of the
word, use the fcllc~ing methcd:

MXi n
BXj Xi*Xk (Xj contains the extracted field)

If the field of n l:i ts- is in the right hand part of the wcrd, the
·following method is ~sed~ . --

MXi -n
BXj -Xi*Xk (Xj ccntains the extracted field) ·

If the mask is used in more than cne way, the first u~e determines
how it is defined~

Relative addressing (such as *+n and *-n, .where n is a numeric
value) should net te used exce~t:

r. In timing delays (where *-1 is the cnly acceptable value).
2. For insti~cticn modifica~icn (where *-1 er *-2 are the only

accepta~l~ values).
3. In PP code tc reference bytes within a CFU word. The relative

address must be in cne cf the fellowing forms:

where:

tag+n
tag+c*5+n

tag = base address
~ c = CM word within the PP buffer
, n = byte within the CM wcrd (0 - 4)

Unconditional jurrps in CPU cede are coded using the EQ instruction
so that the instruction stack is net voided. When it is necessary
to void the instruction stack the EJ instruction is used. (The BJ
is the only instruction which vcids the stack on all central
processors.)

PP jump macros MJF, NJP, PJF, UJF, ZJ~ can be used tc assemble short
or long jum~ as needed; however, these roacrcs should be avcided when
branching forward since a lcng jurn~ sequence is always generated if
the jump address has net yet been defined en pass 1 cf the assembly.

NOS-DEV/1926G/slf - 31' -

NOS COMPASS 4/26/83

A blank line is inserted after each unccnditional jump instruction
to indicate a break in the ~rcgram flow. If the unccnditicnal jump
occurs at the end cf a subroutine, a SPACE line or TITLE ~ine may be
used.

A tlank line is also required after an imrlied unconditional jump.
The following are examples of an irn~lied unconditional jum~.

Example:

A blank line should ~e inserted after macrc calls that break the
flow of execution in a sequence of -~cd~ •

tag2

Example:

•
•

NZ X1,tag2
ABCR'I
(blank line)
SA1 B2

IF comment
TERMINATE

When code occurs befcre the ~UEB, there shculd be a tlank line
between the code and the SUEF.

tag2

tag

tag1

tagA

IDN 0
(tlank line)
SUEE

UJN tagX

BSS 1

comment

EN'IEY/EXI'I

PETUBN

ccmrnent ' j

When storage locations for a sutrcutine are defined at the end of
the routine, there stould be 2 blank lines tetween the cede and the
first data tag.

Each subroutine has cne and cnly one entry ~cint. Excerticns are
allowed as follows:

If memory limitations in a FF prcgram make this irn~ractical.

For termination subroutines (such as error processors). Each
entry point should be dccuffiented within the subroutine.

NOS-DEV/1926G/slf - 32 -

NOS COMPASS 4/26/83

PP and CPU subroutines which are entered via a return jump contain
the following instruction at their ent~y/exit point:

ta.g SUER ENTRY/EXIT
•
•
•
UJN tagX RETURN

or,

tag SUBR

•
•
•
EQ t.agX BEIURN

A subroutine may alsc consist cf a block cf code that is entered by
a jump instructicn. In this case, the subrcutine entry ~oints
should be clearly documented using a BSS ~seudo-instructicn:

TAG BSS 0 ·ENTRY

•

•

Sutroutines defined.with SUEB should be used for hangs and error
processors so the EJ/RJM for CF/FF cede leaves a trace cf the
caller, even though return tc the caller is not used. FP's should
write the caller's address and ether pertinEnt information in the PP
output register er message tuffer Cstace permitting) before issuing
a HNGM monitor function.

An effort should be made to avcid the generation of NO-CFs at the
end of a 60-bit word. This may te done ty arrangement ~f cede so
that each 60-bit wcrd is comrletely filled with executable code.
This is also done for instructions which have an optional "k"
parameter by supJ:lying a zero value fci.: "k", thus gener'i:iting a 30-
bit instruction instead of a 15-bit instruction. The way to do this
is to append a "+" tc the register in the variable field cf
the instruction, as sh6wn below:

SA4 A1+ {Generates 3C-bit instruction)

This indicates that the padding was added fer optimizaticn purposes
and may be removed as necessary when the cede is mcdified.

NOS-DEV/1926G/slf - 33 -

NOS COMPASS 4/26/83

When initializing an X register tc zero, a

SXi BO+

should be us-ed if a ~O bit instruction pack::: better.

If a 15 bit instruction packs better,

BXi Xi-Xi

is preferred~ but fc~ efficiency

SXi BO
MXi 0

also may be used interchangeatly.

The following ceding sequence is used tc clear 5 consecutive words
of PP memory to zeroes:

LDN ZERL
CRD tag

The constant ZERl shculd not be assumed tc be at address absolute
zero in memory.

Instruction modification grEatly increases the complexity cf code
and is a reliable source of ~rcgram errcrs. It is a practice to be
avcided wherever possible. lhe· sole justification fer instruction
modification is cverwhelming space er time-critical constraint, such
as a crowded PP, an in-stack lccp, er a hardware driver.. It is
particularly important that cne rcutine rrcdifying the contents cf
another routine te avoided. It is far ~referable to employ a global
variable for communications bet~een routines, even at the expense of
some storage.

Where a routine must modify cede within ancther routine, the
modified code must be documented as an EXI1 condition from the first
routine and an ENTRY conditicn tc the second.

Data locations imtedded within a routine and referenced by more than
one routine should be assigned descriptive,. global variable symbols
.(this is an exce~ticn to the standard fer the naming of data
locations within a routine). !his will scmewhat decrease the
chances of error arising from their use.

NOS-DEV/1926G/slf - 34 -

NOS COMPASS 4/26/83

Instructions which must be mcdified are to te followed by a comment
which shows each alternative ferro under ~hich the instruction can
take. The following examples shew the laycut used:

Example:

tag
*
*

+..agA

Example:

tagA
*

LDC
LDC
LDC
EQU

LDC
LDC
STt

TRCO
TWTO
TFCN
*-1

*
('I 1)
T1

SET READ FUNCTION
{WRITE FUNCTION)
{fCSITICN FUNCTION)

RESTORE (11)
{CCNTEN'IS CE T1)

The comment in () should descrite the ccnditions under which the
instruction is changed.

In CPU code, care must be taken to insure that the instruction being
modified is not already in the instructicn stack. Since the only
way to guarantee this fer all ma~nf rames is to perform an FJ
instruction, any CFU program that dces cede modification must have
at least one RJ instruction tet~e~n the rncdification and the
execution of the cede~ This RJ may te a call to a dummy subroutine,
or to a "normal" cne; if a call tc a normal subroutine js also being
used to void the instruction stack, the ccmrnent on the EJ should
note that fact.

PP short jump instructions which must be mcdified are tested for
range etrors. The LCC pseudc-c' is used and the jumt instruction is
actually assembled if the prcgrarr size is net a critical factor.
For: example:

LDM
STM

•
TAGA MJN

* UJN
•
•

TAGB BSS
LOC
UJN.
LOC

NOS-DEV/1926G/slf

TAGB
TAGA

TAG1
TAG2

0
TAGA
TAG2
*O

IF 7IME NC! EXPIRED
{ONE C:EU CNLY)

comment

- 35 -

NOS COMPASS 4/26/83

When program sizE is a constraining factcr and the tag to be
modified is previously defined, the ISTCRE Macro defined in COMPMAC
should be used:

ISTORE CADtR,CINSTF)

where CADDR is the address cf the cede tc te modified,
INSTR is the iristruction (op cede and address field) to te stored.

For example:

TAGA

*
MJN
UJN

•

TAG 1
TAG~

IF TIM! NCT EX~lRED
CONE CFD ONLY)

!STORE TAGA,(UJN TAG2)

Which generates the following sequence cf instructions:

LDC '**
ORG *-1
LOC TAGA
UJN TAG2
LOC *C
STM 'IAGA

When program size is a constraining factor and the tag to be
modified has not yet been defined, the jumr should be assembled as
part of an LDC instruction as fellows:

LDC UJNI+TAG2-TAGA
STM TAGA

In this case, the EBENG psuedo instruction rrust be used tc test £or
range errors as fellows:

ERRNG 37+daddr-jaddr (cornment)
or

ERRNG 37+jaddr-daddr (comment)

(depending on ~hether the jumt is a tackward or forward jump
respectively)

Where:
jaddr
daddr

=address of jurn~ instruction
=destination address of jum~

Again, instructicn mcdificaticn should be avoided in PP and CPU code
whenever possible.

NOS-DEV/1926G/slf - 36 -

NOS COMPASS 4/26/83

CPU code within commcn d~cks avcids using registers AO, A5, XO and
XS unless absolutely necessary. If these registers must be used,
they should be restored bef cre exiting tc the calling routine.

Use of ADK, LDK, LMK, LPK, an~ SEK macrcs defined in COMFMAC are
_encouraged, since th~ actual instr~ction assembled will be adjusted
to a 0, 1, or 2 tyte insi~ucticn a~-ne~ded,-clepending en the tag
values in the operand field. If the operand value reduces to zero,
no instruction will te generated (except for LDK). Operands to
these macros should not be numerics cnlY (usefulness for ta~s is
recommended). Because of the variability cf the code generated by
these instructions, this code ~hculd not te changed ty in-line code
modifications.

3.4.1 11.II.Rh.1~

Literals may -~e used for read-cnly ccnstants only. ·Error message
text should net he defined as literals, tut rather should be defined
in data statements (preferably in tatles).

Data is specified in its natural fcrrr (readable and understandable
by humans) using pcst-radix-symtcls as required (see section
3.6.1). If conversicn considerations make this impossible, the
comment field will ccntain the natural form cf the data. Cctal
values are not used fer character data unless the data cannot be
specified in any ether way. When the VFD is used, it cann~t /
generate more than one CM wcrd cf data.

If a data item dces not require an initial value preset at assembly
time, BSS should be used to res~rve Epace rather than CCN.

Only one piece cf data is specified en a line of code unless a block
of data is being specified fer use aE a single data item tc be
referenced by a single name.

NOS-DEV/1926G/slf - 37 -

I

NOS COMPASS 4/26/83

,

Tables which are generated with entry ordinals relative to the base
address of the table, should use the LOC pseudo-op as shewn in the
following example:

TFCN

TFCNL

BSS
LOC
CON
CON
•

•
CON
ICC
EQU

0
0
BNM
ACF

VSN
*O
*-TFCN

table entry

first entry
seccnd entry

last entry

table length (optional)

Where tables are described, they are defined so they can be
processed by the "tccumentation !able Generator". A description of
this format is fcund in the external documentation fer the progr?m
DOCMENT.

Direct cells are defined using cne cf the f cllowing methcds:

1. A single cell:

xx EQU n

2. Multiple cells:

xx EQU n

3. Contiguous cells:

xx
yy

zz

LOC
BSS
BSS

BSS
LOC

NOS-DEV/1926G/slf

n
1
5

- 1
*0

- m

descripticn

descrii::;ticn

descripticn
descripticn

descripticn

- 38 -

NOS COMPASS 4/26/83

4. Contiguous direct cells er ether seq~ential tag definitions
without reserving srace:

BEGIN
xx
yy

zz
END\

BSSN
BSSN
BSSN

•

BSSN
BSSN

n
1
5

2

descripticn
descripticn

descriI;ticn

The BSSN macrc is defined in CCMCMAC and COMPMAC.

Where:

xx, yy, zz = the ta& for the cell
n = lccation of the cell (er first cell)
m = lccat~on cf the last cell

Multiple definitions of direct cells shculd le avoided.

The first few direct cells in the·.pp shculd not be used fer data
which is critical to debugging. 1he deadstart dump process
destroys the contents of these locations:

TO - T3 and 7774 - 7777

Large buffers and ~orking stcrage areas shculd be defined using EQU
statements (rather than BSS and ESSZ) tc avcid unneccessary loading
of the buffer areas that de-net require initializaticn. 1his
applies to CPU and PF code.

IEUF
OBUF
RFL=

USE
EQU
EQU
EQU

BUFFERS

*
IBUF+IBUFL
CEUF+OEUFL

Small buffers and ~orking stcrage areas reay te allocated via BSSZ,
if the program requires that the area be zero on program initiation.

The BSSN macro defiped in CCMCMAC and CC~PMAC may also be used to
define buffers.

NOS-DEV/1926G/slf - 3S -

I

NOS COMPASS 4/26/83

The following terms ate used tc describe the conditicn cf tits used
as flags or switches. The selected terms shculd be used
consistently within a program.

1 0
on off
true false
set clear (reset)
nonzerc zerc ..
up down

Each subroutine (main loop, rrirrary sutrcutine or secondary
subroutine) has a rreaningful three ctaracter name which is derived
from the title of the subroutine (see section 2.4).

Tags used for branch instructicns are of the form:

XXXn Example: GFN1

Tags on code which is added later· to the su~routine are cf the
form:

XXXN.n Example: GFN1.1

Tags that are inserted between the SUBR and the tag XXX1 ty
corrective code are cf the ferro:

xxxo.n Example: GFN0.1

Tags on storage locations (ccnstants, tempcrary storage and
instruction modification) within a subroutine are of the ferro:

Where:

xxx =
XXXN =
n =

a =

XXXa

.
Su:trcutine name
Tag. preceding an added one
Number from 1 to 99 (in ccnsecutive order teginning at
the entry point anfi ending at the exit point)
Letter from A to Z and AA tc ZZ (in alrhatetical order
and excluding X)

Tags of the form XXXn, XXXn.n, and XXXa shculd not be referenced
outside of subroutine XXX.

NOS-DtV/1926G/slf - 40 -

NOS COMPASS 4/26/83

If the above rules cannot te fellowed due tc tag unavailalility,
the entire subroutine will have its tags resequenced.

Tags on storage locations within a subroutine which must he
referenced outside of the sutrout~ne should te given apprcpriate
global tags.

All PP direct cells have two-character names.

The following table defines the ~reassigned direct cell usage:

'Contents Name Le cation

Control Point RA/100 EA 55
Control Point fl/100 Fl 56
1 CN 7C
100 1rn- 71
1000 'IH 72
3 TB 73
CPA address CF\ 74
pp input register address IA 7'5
pp output register addr,~ss CA 76
pp message buffer add re Es :MA 77

Names used for assemtly opticns, micros and to -ccntrcl cede
generation are five er more characters long.

Tags used on tables have the form:

Txxx

Tags used for tatle lengths have the form:

Txxxl

Tags used fer tatle entry lengths have th~ form:

TxxxE

NOS-DEV/1926G/slf \ - 41- -

NOS COMPP.SS 4/26/83

Where:

xxx = 3 character table name

Names used for global memory locations (locations referenced by more
than one subroutine) are four characters long. Multiple definitions
for global memory locations shculd be avcided.

Four letter tag names should end. in "I" if the tag name is defining
an instruction.

For example:

LJMI
SHNI

ECU
EQU

0100B
1000B

LJM INSTRUCTION
SHN INSTRUCTION

PP instructions are defined as cc~~tants in common deck COMSPIM.

_,,-/'\

Symbols used on IF, ELSE, ENDIF and SKIF ~suede instructicns may be
system symbol~ er local symbols cf the £crm:

.a

where:
a = letter from A to Z

Unlabeled, unnumtered IF/ELSE/SKIP/ENDIF sequences should not be
ased as they may unexpectedly affect other sequences. Fer very
short sequences a line count may te used, fer longer sequences
labels are preferred.

To avoid conflicts with user cede, ncn-lccal symbols defined within
macros are cf the form:

.n

where:
n = numter from 1 tc 99

NOS-DEV/1926G/sl~ - - 42 -

MOS COMPASS 4/26/83

Symbols that are used to define lccations in low core (CME) are of
the fo.rm:

xxxL

Symbols that are use~ for defining lccaticns in the contrcl ~oint
area are of the ferro:

xxxW

Symbols used for mcnitor functicn requests are of the fcrm:

xxxM

Symbols used j:c reference_ data in negative field length are of the
form:

xxxN

The BASE DECIMAL tseudo-o~ is used in all CPU code. The BASE MIXED
pseudo-op is used in all PP cede. Fest Radix is allcwed fer data
formats other than octal and decimal; in s~ecifying timing loops
where decimal values are moie meaningful tc humans} and where
external specificaticns such as ANSI or ccr~crate standard~ dictate
the use of a particular format.

The EXT pseudo-o~ is not used. All references tc external Dames use
the form =Xname. In an absolute assembly, references tc locations
in other overlays use the form =Xname.

NOS-DEV/1926G/slf - 43 -

NOS COMPASS 4/26/83

The format cf the SPACE pseudc instructicn is:

tag SPACE 4,n

where:

tag =tatle, macrc er subrcutine name
n =statement count

. ..
The statement count is a multi~le·6~ ~that.is greater er equal to
10. It should be large enough tc avcid breaking documentation
across page boundaries.

-Numeric skip counts are disccuraged with IF, IFC, ELSE, etc.,
because this makes cede difficult tc read (especially when the
skipped lines are not listed). ENDIF shc~ld be used instead. An
exception is allcwed for very shcrt sequences and for systems texts
where space is critical.

Conditional sequences should be b~acketed with labels (refer to
section 3.5.~) which allows them tc te easily spotted and matched in
listings ..

When either end cf a sequence of conditional code occurs at a break
in the listing (SPACE, TITLE, or tlank lines), the s~acing lines
should be placed sc that ~pacing will be ccrrect whether the test is
true or false.· Usually this means mcving the spacing outside the
conditional code. \

Example:

EQ TAG1 CCNTINUE
(blank line) (outside conditional cede)

.A IFC EQ,*"SYSTEM .. *SCCFE*
TAG3 CON'IFCL 'IAGA,R BE At CC~MANI:

EQ TAGX RETURN
(blank line)

TAG.A BSS 8 CCMMAN:C BUFFER
.A ELSE
TAG3 CONTROL CCDR READ CCMMAND

EQ 'IAGX RETURN
.A END IF
abc SPACE 4, 10 (cutside ccnditional cede)

NOS-DEV/1926G/slf - 44 ;.....

NOS COMPASS 4/26/83

3 • 6 • 5 111&.E.Q~

Macro definitions shculd i.nclude a descrii;.ticn of hew· the macro is
called and a description of all fcrmal ~arameters. (Refer to
section 2.5.)

The PURGMAC psuedc instructicn should te used to disable any
previous macro definitions cf the sa~e name.

Non-local symbol definitions shculd te cf the form .n (see section
3.5.6).

To avoid terminating multiple macro definitions, the ENDH
instruction should be labeled with the macrc name.

The MACaEF macrc (defined in SYS1EXT) may te included within the
macro definition body to provide symbolic reference table listing of
the calls cf the macro.

The SYSTEM XXX,= macro (defined in CICO~) should be used fer cross
referencing of CF trcgrams calling FI programs without a standard
interface CExarn~les: CPUMTR calling 1MA, MAGNET calling 1MT via SPC
call).

The EXECUTE XXX,= macro (defined in COMFMAC) should be used for
cross referenGing cf PP programs calling FF J;.rograrns or overlays
without a standard interface.

When space is critical, a
1

s in systems te:xts, the following list of
column numters represent the beginning cf each field in a COMPASS
coding line to be used in a rracrc definiticn.

Column
column
column
column

2
3
6
73

=
=
=
=

lccation field
cperation f iEld
address field
reserved

If a field 1 is full or overflcws intc an adjacent field, then one
space shobld separate the fields. If ccmments are required, they
should appear as stand-alone cc~ments rather than embedded comments.

The DIS pseudo instruction should net be used to generate data since
the syntax of the instruction determines the format cf the data.
The DATA psuedo instruction should be used instead.

NOS-DEV/1926G/slf - 45 -

NOS COMPASS 4/26/83

CPU and PP programs should ccntain assembly checks fer certain types
of overflew conditions. The fcllcwing ~cints should be ccnsidered
when makin9 the checks.

PP programs and overlays are generated by COMPASS in multiples
of 5 FP bytes (1 C~ word). therefore, ~hen reading an overlay
from central memory to FP memory, mere PP bytes may be destroyed
than the actual number cf bytes cf FF cede.

Overlays loaded ~rem ~as~ stcr~~e tc IF'~emory come in
multiplies of 500 PF bytes. At least 5 bytes of the last PRU
are required.tc represent end cf record which can increase the
size of the cverlay by cne fRU (500 bytes).

Care should be taken to in~~re that the literals block has been
defined before checking fer the cverflcw conditicns. Literals
can be flushed by specifying:

USE (name)
USE *

The OVERFLOW macro (defined in CCMPMAC) may be used to perform these
checks.

3.7.1 £1L1QlQ~

All PP programs include a test f cr the amount of core remaining
after a CM load as shown in the fcllcwing example:

xxx

Where:

USE
BSS
EI~ENG

OVERFLCw
0
7772-xxx FP MEMCBY CVERFLOW

xxx =tag for the last lccaticn defined

If a PP program uses more stcrage than it declares, its length is
checked as shown in the f?llcwing exam~le:

xxx
xxxE

USE
BSS
EQU
ERR NG

NOS-DEV/1926G/slf

OVERFLCW
0
xxx+xxxl
7777-xxxE FRCGRAM OVEEFLOW

- 46 -

\

NOS COMPASS

Where:

xxx = tag fer the last lccaticn defined
xxxL = length cf undeclared space
xxxE = end of space used

4/26/83

A test will be included in each PP prcgram ~hich may reside on mass
stcrage. This test ~ill prctect against a lead which exceeds the
end of memcry in the PP causing wr~~ a~cund~ · The "OVEBFICW" macrd
is available in CCMPMAC for this cperaticn.

Prcgrams calling overlays shculd test f cr memory overflew with the
following test:

ERRNG Clwa+1}-(lcad addr)-len comment
where:

1wa+1 = first byte net· tc be destroyed by the zero level
overlay

load addr = address where the overlay is loaded
len.gth_of overlay len =

The length of an overlay is defined to te the number of bytes
destroyed by the overlay during leading and execution. The overlay
should also contain a test tc insure that it does not exceed its
defined length. The overlay length can te adjusted to a higher or
smaller value as lcnQ as none cf the tests fail. The "CVERFLOW"
macro is available in COMPMAC fer this cperation.

The first word of a relocatable CPU .rrogram should be of the format:

42/0LDECK, 18/ADDR

where:

DECK = deck name
ADDR = entry address cf ~rcgrarr

This word is used to locate the first wcrd address and entry point
of a routine in a CM dump.

The contents cf ~O must never be used in a library le~el rcutine
unless it is saved and restcred. AO is used by FTN as a base
register for formal ~arameters in sutroutine linkages.

NOS-DEV/1926G/slf - 47 - i

NOS COMPASS 4/26/83

In this context, the term "ccm~lexity" is used in its formal sense;
that is, a sense of the structural incoherence (entropy} cf a
routihe. The more complex a routine is, the more liable it is to be
a source of errors, difficult tc im~lement, and worse tc mcdify or
correct. There are no hard and fast rules fer gauging the
complexity of a routine, but it can be said in general that the
longer it is, the more decisions it reakes (branches), and the more
functions i~ performs, the mere com~lex and unreliable it tends to
be.

In order to reduce complexity, the fcllcwing guidelines are to be
followed whenever tossible (i.e., net irr~cssible).

1. One routine - one function. Each routine shculd have one
clearly defined functibn.

2. 10-Tag rule. If there are m~re-than 10 branching locations
within a rcutine, it is most likely attempting to ~erform
too many functions (see 1 abcve). It should be considered a
candidate to be broken ~~ into functional units.

3. Code Modification. ~inimi2e within routines, avoid between
routines. If used tetweeh rcutines, document thoroughly.

4. Hidd~~ Variable~. tata ~laced in a register with the hope
of being used at some later time cf ten may net survive to
its destination. Ccnsider global variables for
inter-routine communication, estecially when there are one
or more routines intervening. In any case, all exit
conditicns from a rcutine must te dccumented.

5. ·Code for the Future. Always consider the im~lications of
debugging, mcdification, and maintenance; structure code to
make these tasks easier.

Peripheral processcr program names are ~ characters long.

Central Processor prcgram narres are 4 tc 7 characters long.

NOS-DEV/1926G/slf - 48 -

NOS COMPASS •4/26/83

The following PP program names are res~rved er presently defined for
use Cx means any character legal in a PP pregram name and n means
any number between 0 - 9):

Uxx Reserved fer installations
nUx Reserved fer installations
9AA-9T9 Beserved f cr system use
9VA-9Z9 Reserved fer system use
90A-929 Be served fer dia9ncstics
93A-939 Fe served f cr system U!::E

The following names are currently used by NCS:

6xx
7xx
9AA-9D9
9EA-9F9
9GA-9G9
Oxx
OCx
OPx
OTx
UxxL
Ux'xM
UxxN
UxxP
UxxW

Callable mass sterage drivers
Mass storage· error precessing overlays
DSD overlays
DIS overlays
C26 1overlays
location free overlays
Contrcl~are identificatien processcrs
Fack number identificaticn processers
Automatic track flaw ~rocessors
PPCOM symtcl - tEserved fer installations
PPCOM symtcl - res~rved f cr installations .
PPCOM symtcl - reserved fer installations
PPCOM symtel - reserved fer installations
PPCOM symtel - reserved fer installatiens

In general, tags teginning with U shculd net be used as tags in
NOSTEXT, COMSXXX decks, etc. er as rnacrc names in COMCMAC, COMPMAC,
etc. These tags should- be reserved for installation use.

Common deck names are seven characters in length and in the
following form:

COMxaaa

I

NOS-DEV/1926G/slf -.49 -

I

NOS COMPASS 4/26/83

where:

aaa = The name of the rcutine er a symbolic name if no
routine name.

x = One cf the following common deck indicators:
C = CPU cede
F = PP cede
S = Subsystem text symhcls, constants etc.
D = Display driver cede
T = TableE

1

M = Mass storage errcr equivalents
B. = D~ta managet-
K = Transacticn scbsystem
I = Initiali2aticn

The following indicators are re~erved fer SYMPL commcn decks: A, E,
u, z.

. ,

4.2 ~QQ&_IEaN~~11I~1-EQ1E~

Code which is tc be integrated intc a systerr build f cr eventual
release to the field is identified-and formatted as described in
this section.

Each external ESF ~eing answered has a ccrresponding corrective code
identifier (to be described later). Corrective code answering other
PSRs is not included in the modification under this identifier.
Exceptions are allowed where required by interrelated mcdifications
for several PSRs.

Corrections are ~laced in ascending numerical order; i. e., the
corrections are sorted in the sarre crder that the lines being
corrected appear on the program library. If a single modification
changes several decks, then the ccrrecticns are also sdrted in the
order that the decks appear en the ~rcgram library.

Corrections modifying lines ~ith ~reviously modified sequence
numbers include the line numter cf the nearest preceding original
line in parenthesis in the comments field cf the modify directive.

NOS-DEV/1926G/slf - 50 -

NOS COMPASS 4/26/83

Separate modset name lists are maintained fer NO~ 1 CRS.5) and NOS 2
CR6.0). Precesses fer naming mcdsets are identical, except for
multiple deck mcdsets CNS1xxx and NS2xxx), dccumentation mcdsets
CDOK1xxx and DOK2~xx), and release feature medsets (FN1xxx and
FN2xxx). A modset named 1CD4 in NCS 1, fer example, has no
relationship te mcdset 1CD4 in NCS2.

You should not sign up for a mcdset name unti~ after cede has been
generated and tested, and de~ending en the size cf the mcdset, even
·after code revie~ ha~ ta~~n tlace.---This ali6ws other analysts
submitting code to get the next available mcdset name. Ycu should
not request modset names for mcdsets not tc le included in the
current series of builds; you shculd net request feature medset
names for a future release until feature code for the current
release is compl~te. If you sign up for~ rncdset name and don't use
it, notify Code Control so that the rnodset name can be used by
someone else.

The modset name consists of thrEe tc five alihanumeric characters
which are extracted from the deck name f cllcwed by a 1 to 3 digit
sequence nurnbei. The modset narre cannot exceed 7 characters.

1. For common decks that begin with "CCM" use the last fcur
characters of the name (exam~le - CMAC4 is a modset in deck
COMCMAC).

~. For PP programs use the three character program name (example -
CPM2 is a modset in deck Cf~).

3. All other decks use the first five characters of the deck name;
if the deck na~e is less than six characters use the entire deck
name (example - IIBED2 is a mcdset in deck LIBEDIT).

4. Modificaticns which invclve multiple decks are given the modset
name:

NS1xxx
NS2xxx

if NCS 1,
if NCS 2.

Example NS1001 is a multi~l~ deck mcdset in N0S 1.
NS2C01 is a multi~le deck mcdset in NOS 2.

5. Modificaticns which only ccrrect dccumentation within a deck are
gathered together for each corrective cede release and given the
modset name:

Example

DOK1xxx if NCS 1,
DOK2xxx if NCS 2.

DCK1006 is a NCS 1 mcdset.
DOK2006 is a NCS 2 mcdset.

NOS-DEV/1926G/slf - 51 -

NOS COMPASS 4/26/83

This does not include lines cf cede which have dccumentation
changes in them.

6. If a rnodset is adding a new feature, the feature modset name for
each deck mcdified is obtained from NCS Code Control.

7. Upon release cf the system, a "ccmpcsite" modset is generated
from all feature cede which is tc be released.

When a rnodset is correcting a ~revious ~cdset, one alphabetic
character (starting with A) ~ill be appended to the sequence
number. Whenever a modset ccrrecticn letter of 11 B" or above is
required, the comments header of the mcdset must indicate which
previous modset is being corrected.

4.2.2.3 Q!EBI1Qi

Whenever a modset identifier using the atcve conventions exceeds
seven characters, truricate the la~t character(s) of the deck name to
reduce the identifier to seven characters.

The follo~ing format is used fer corrective code modsets:

1 11 18 30
+-------+---------+--------------+
ident
,..I DENT
*/
*/
*/

ident .initials. yy/rnm/dd •
**** system.
**** PSR nurnter.
**** REQUIEES - rncdset.

(column numbers)

*/ ***** PROBLEM - i;:rcblern description."
*/ (continuation of prctlem description).
*/
*/ SOLU7ICN - soluticn descripticn.
*/
*/ ***** RESUBMITTAL - yy/rnm/dd.
*/
*DECK

Reascn fer resutIBittal.
decknaree

*I,seg~ence number
*D,sequence number
*D,modname.sequence number
*EDIT deck name
*/ END CF MCDSET.

(nearest original seq. no.)
(if common deck)

NOS-DEV/1926G/slf - 5<2 - '

··'\

NOS COMPASS

Where:

ident

initials

yy/mm/dd

system

PSR number

mod set

4/26/83

- Modset name.

= Initials cf the ana1yst(s) who wrcte· and/or
tested the cede. Example - ABC. (ene
analyst) ABC/ADD. (two analysts)

= Date of last mcdset change.

= Name of sy~tem in ~hich the modset will be
released. ·cie - NCS ·1 OS. Cr NOS 2 OS.}

- This line must always b~ present. If more
than one FSR is answered, list the PSR

·numbers en separate lines. If nc PSR is
invclv~d, use the phrase: NC PSE.

= The EEQUIBES lines must always te present.
If mere than one medset is required (direct
or indirect dependency), list the mcdsets o~
separate lines. If no dependency is
·involved,· ~se the thrase: NONE.

Since mods to mods in the same reiease are not allowed fer PSR code
{physically dependent .code must be in the same modset), the REQUIRES
shculd specify rncdsets with logical er s~ace dependencies. Modsets
previously released in a standard system usually should not be
included. For initial transmittal-cf feature code, REQUIEES - NONE
shculd be used. Fer feature re~air code, the REQUIRES should
specify those modsets going inte the same build that are dependent
on each other.

The problem descri~tion should describe the ~rcblern teing fixed by
the modset and the impact the ~reblem has en the user. The solution
description should describe how the trotlem was fixed. External
interface changes caused by the installaticn of the modset should
also be documented. The prchlem/soluticn description may be
combined into cne taragra~h to avcid redundancy.

The *READPL directive is not used.

NOS-DEV/1926G/slf - 53 -

r
\

- I

NOS COMPASS 4/26/83

All interactions between programs (CPU and PP) and the system use
systEdm-supplied macros, linkage labels er ccmmon decks. In PP
pr·cgrarns the systerr defined direct cells are only used as defined by
the system. (see section 3.5.3.1)

_Each parameter passe~ between prcgrarrs ~ill te validated er
processed in a way that p~otects th~ p~cgra~ ·from uncontrolled
act~ons caused by unexpected values~

PP programs which access the field length cf a job will insure that
no combination of ~arameters, errors, etc. ~ill cause access to an
address outside cf that field length. Addresses should te validated
prior to using them for a CM read er write tc avoid referencing
areas of memory cutside of the ccntrcl ~cints field length.

A FP program accessing the field length cf a control pcint should
insure the relative address does ~ct exceed ~77777B.

4 • 3 • 4 ~E.£11.RIII

Programs that perform privil€ged functicns rrust insure that the
requester of the ~unction has teen given rermission :ty the system to
use the function. ·This also aprlies to the use of special device
drivers, which cculd be called accidentally er maliciously by
unauthorized users. Where ccrnmcn decks are available tc check
security or privileges, they shculd te used rather than locally
written code.

Beservations and interlocks are cnly used as defined by the system
and ~re released as seen as ~cssible. Ncn-essential code is not
executed while a reservation er interlock is in effect.

In cases where a resErvation reject could cccur, the program will:

1. Control the rate· of reservation re-issue.
2.. Detect and respond tc error conditions.
3. Protect against storage move lccku~.

NOS-DEV/1926G/slf - 54 -

NOS COMPASS 4/26/83

Programs which use reservations and interlocks will insure that the
conditions are relea&ed no matter what program path is taken.

When multiple inte~lccks are required, all trograms in the operating
system must request the interlocks in the same order. When a reject
occurs when attempting to attain such interlocks, all reser~ations
held must be released and the entire sequence cf interlocking must
begin. again.

Care must be taken tc not issue da1file messages, load overlays, or
pause with non-dediqited .. channel(s) re~erve~9'.

A PP program must not have a di£k channel reserved when it attempts
to do an STBM or AFAM monitcr f uncticn. If necessary, a ENDMS
should be performed to ensure this"

Instructions which are included to ccmpensate for hardware
deficiencies are documented with a trief description or
identification of the deficiency~

New tags in PPCOM, use of previously reserved fields in C~E and CPA,
new PP function numbers, new mcnitcr functicn numbers, etc. must be
signed up fer via the DSC (Desi~n Su~port Cffice).

Beware of deck interdependencies which rray require additicnal
code/modsets, such as PPCOM and CCMSXXX changes affecting DSDI, DIS
changes that shocld also be made ~n XIS, and COMCXXX/COMDXXX/COMPXXX/
COMSXXX/COMTXXX, etc. changes causing CAlLCfU/CALLDIS/CAllFFU/
CALLSYS/CAILTAE, etc. to not assemble without lots of errors.

4 , 4 1tQ~J11.a.!U1.I

4.4.1 PP OVERLAYS
' ------------

PP Programs use cverl~ys whenever possitle tc improve the long range
performance of the system. Cverlays are used for any seldom
executed cede such as error handling and seldom used features.

NOS-DEV/1926G/slf - 55 -

NOS COMPASS 4/26/83

Helper PPs are net used unless nc ether methcd exists. The
availability of FPs when needed should be considered, since the use
of helper PP's may lea~ to deadlccks if nc EP's are available.

A common deck containing executable code ccnsists of one er more
subroutines tas defined in secticns 3.2.6 and 3.2.7) and any
associated data stcr~ge ~ieas. Th~-~utpose-cif common decks is to
increase efficiency in writing cede, insure uniformity cf cede and
decrease debugging time. Ccmmcn decks ccntain optimized cede and
external interfaces that are generalized tc facilitate their use in
future programs. These decks shculd te used in preference to local
code whenever possible.

Common Decks which ccntain cnly macrcs are net qualified. "S" type
common decks are not qualified ty the QUAL pseudo-op within the
common deck. If an "S" type commcn deck is qualified externally,
the qualifier is the three character name cf the routine. Fer
example:

tCMSaaa (whete aaa is the qualifier)

Dayfile messages issued to the user er system Dayfile begin with a
blank character and end with a tericd. tayfile messages should not
exceed 50 characters. Abbreviaticns shculd te avoided when possible
in dayfile messages.

Informative messages should te issued tc the user dayfile only
(opt~on 3 on the MESSAGE macrc er the CiCN cption on the call to
DF~). Messages that indicate that the job will abort are the only
informative user messages that shculd also te issued to the ·system
Dayf~le. Special system pr~rarrs CMCDVAl, ISF, Subsystems, FF or
Queue Ut~lities, etc.) are e~cepticns and may issue informative
messages to the System Dayfile ~hen necessary.

NOS-DEV/1926G/slf - 56 -

I

NOS COMPASS 4/26/83

To avoid channel hangs, bit 2**5 is ~et en scme PP channel
instructions. This should cnly te used ~hen undesirable side
affects will not result and where it is tcssible to take corrective
action. (For exam~le: disconnecting an· inactive channel will not
result in undesirable effects.) Bit 2**5 should not be used when
unpredictable results may occur. Eit 2**5 is not used with channel
15.

Example:

tag1

IJM
DCN
RJM

tag f,CH
CH+40
ERP

IF CHANNEL-DISCONNECTED
DISCONNECT CHANNEL

FBCCESS ERROR

Special entry points defined by NCS include:

.ARG=
CLB=
DMP=
LDR=
MFL=
RFL=
SDM=
SSJ=
SSM=
VAL=

Inhitit argument ~recessing
Command line tuffer·
Allow speci~l system processing
Loader processing
Minimum field length
Running field length
Su~press dayf ile message
S~ecial system jct
Secure system memcry
Validation program

I

To insure ~roper icading and executicn cf s~ecial entry pcint
programs, special entry points rrust te declared after ncrrnal entry
points.

EXAMPLE:

I DENT FWA
ABS
ENTRY ABC
ENTRY XYZ
ENTRY BFI=
ENTRY SSJ=
SYSCOM B1

•
•
•

NCS-DEV/1926G/slf - 57 -

NOS COMPASS 4/26/83

Programs requiring temporary scratch files ~ill use the names
ZZZZZGO - ZZZZZG9 as names fer scratch files. Programs which
require m-bre than these 10 scratch file na·mes must r,esolve the
r~quired fiie na~es with Systems Design. Such scratch files must
always be returned at prograrr terminaticn.

NOS-DEV/1926G/slf - 58 -

/

NOS COMPASS

\
4/26/83

Standard industry abbreviaticns and ~rogramming ·language names may
be used even th~ugh they are not included in the following appendix.

\
BML
BOI
CLT
CM
CME
CMM
CMR
CMU
CP
CPA.
CPU
CB
CSU
cw
DAT
DIT
ECS
ESM
EJT
EJTC
EM
EOF
EOI
EOL
EOB
EOS
EPD
EST
FOT
ETX
FDX
FET
FL
FLE
FLPP
FNT
FST
FWA
HDX
ID
I/C
JCB
JSN
LCME

binary maintenance leg
beginning of inf crmaticn
common library table
centr~l memory
central 'me.mo ry € :x te"ri sich
common memory manager
central memory resident
ccm~are/m~ve unit
ccntrcl point
control point atea address
central processing unit
carriage return

,cartridge storage unit
ccntrcl word
device access tatle
device interlcck tatle
extended core storage
extended semi ccnductcr rremcry
executing jot tatle
ex~cuting job tatle crdinal
extended memory
end cf file
end cf inf ormaticn
end of line
end of record
end of stream
entry point directory
equipment status table,
family ordinal table
end -·of text
full duplex
file. enviroment table
field length
field length f cr extended rrerrcry
first level PFU
file name table
file status table
first word address
half duplex
identifier or identification
input/output
jcb control block
jct sequence name
large core memory extended

NOS-DEV/1926G/slf - 59 -

I

NOS COMPASS

lcgical file name
last word address
machine identification:
multi-mainframe
machine recovery table
mass st .. orage
mass storage adattcr
mass storage table

4/26/83

LFN
LWA
MID
MMF
MRT
MS
MSA
MST
MST

MT
MUX
NFL
PF
PFC
PFN
PLD
pp

mass storage trans~crt (de net use abbreviation where
ccnfusion with Hass Stora'ge 'Iable may result)
magne:tic tape
multiilexer
negative field length
perrr.anent file
permanent file catalog
permanent file name
peripheral litr~ry directcry
peripheral prccesscr

PPU first-level peripheral processor; only on CYBER 176
(also known aE FLFP)

PRU
PST
QFT
RA

physical reccrd unit
program status table
queued file table
reference address

RAE
P.Cl
FPL
BMS
SCP
SCR
SECDED
SUBCP
TRT
TTY
UCP
UEM
UDT
UJN

reference address f cr extended memory
resident central library
resident peritheral library
rctating mass stcrage
system control pcint
status and conticl register
single error ccrrecticn, dcutle error detection
subcontrol pcint

VSN

track reserva ticn ta"tle
te.let:ype
user control ~cint
unified extended memory for 8X5
unit descriptor table
uEer job name
volume serial number

ABH atplication block header
ABL attlication tlock limit
ABN atplication tlock numter
ABT application block tJte
ACK block acknowledged
ACN atplication ccnnecticn nurnter
ACT application character type
ADB address informaticn

NOS-DEV/1926G/slf - 6C -

I

I

NOS COMPASS

ALN
CLA
IBU
IVT
LCF
LOP
NAK
NCF
NDL
NFE
NOP
NPU
PFC
SFC
SM
SMP
TA

·TLC
TL MAX
TNAME

AIP
BIO
CDCS
CRM
FSE·
I~.F

LCN
MAG
MAP
MCS
MSF
~SS

NAM
NOS
NVF

/ REF
RDF
RHF
SMF
SSF
STM
TAF
TIP
TVF

a~plication list number
ccmreunications line adapter
input block undeliverable
interactive virtual terminal
lccal configuraticn file
local operator
block not acknowledged
network configuration file
network definiticn language
nc format effectcrs
netwc~k operator .
DE t'work, processing unit-
primary function code
seccndary f uncticn cede
supervisory message
super~isory message prccesscr
text a'rea
text length characters
maximum length cf data message block text
terminal name

Application Interface Prcgram
Eatchio
CYBER Da~abase Ccntrcl System
Cyber Record lanager ~
Full Screen Editcr
Interactive Facility
Lccsely Coupled Netwcrk
Magnet
Matrix Array Irccessor
Message Contrcl Systerr
MasE Storage Facility
Mass Storage Subsystem
Network Access Method
Network Cperatin~ System
Network Validaticn Facility
Remcte Batch facility
Bernete Diagncstic Facility
Bernete Hcst Facility
Screen Management Facility
Scc~e Station Facility
Stiipulator
Transaction Facility
Terminal Interface Prcgratt
Terminal Verif icaticn Facility

NOS-DEV/1926G/slf - 61 -

4/26/83

I
I

NOS COMPASS 4/26/83

The following gener~l p~incirles are to be cbserved in designing
future error messages for NCS. Existing mes~ages should be improved
as opportunities arise. ThEse guidelines will be formalized in a
later Usability Design Direction Document~

1. The purpose cf an error message is tc inform the user hew to
correct a prcblerr.

Discussion: It helps tc view error messages as prompts: not
"this is what ye~ did wrcng" t~l "this is how to do it right."
Messages should be phrased pcsitively. The words "ILLEGAL",
"INVALID", and "SYNTAX" are s~ecifically not permitted in NOS
messages. Of course, there are ether ways to phrase unhelpful,
negative messages; but these three ~crds are singled cut for
extinction fer being so fr~quently seen in the company of
usability offenders.

2. A single message should diagticse a single error.

Discussion: Fer example, if the meaning of message is "more
than seven characters or leading non-al~habetic character or
null identifier" it should be three messages. Usually, the code
must make three separate test~, so it is easy to be ~recise. An
exception is when a corn~cn deck returns an error status which
could ha~~ result~d f~om several different conditions.

3. An error message is friendly if it is tusiness-like and
informative.

Discussion: Cute, funny, or fli~pant messages are to be
avoided, as thEy seldom dia~nese accurately and always wear
quickly. Messag~s shou1d ~e directed at the process and not the
person.

4. Messages must te.writt~n plainly, using terms already known to
the user.

Discussion: Messages shculd use terms which are either
self-defining er natural tc the trccess. All words sheuld be
part of the external user interface, like "file name" instead of
"LFN" (unless lFN is an external parameter}.

5. Messages must te wiitten in English.

Discussion: Messages shculd fellow normal rules for English
grammar and ~unctuation, although "~idgin English" -- the
omission of selected subjects, verbs or objects in .the interest
of brevity where the meaning is clear - is acceptable. Messages
should not be written in octal, er in ether forms of scientific
notation. Note that the asterisk is net an English ~unctuator.

NOS-DEV/1926G/slf - 62 -

/

I

NOS COMPASS 4/26/83

6. Messages should be self-contained.

Discussion: If you need to tell a stcry, tell the whole story.
Avoid references, as they are difficult to keep up-to-date and
are often no mere helpful then a geed cne-line message would be.

7. Error messages should point directly to the source of the
trouble.

Discussion: Fer example, "FILE NOT FCUNt" is better put as
"FILE XYZ NOT FOUND"~ "EXPECTING COMMA CB FERIOD AFTEE 'ABC'" is
much clearer ~an "SYNTAX EEBCB". In general, the technique o~
echoing back part of the user in~ut as part. of the message is
better than the use cf i~ternal names er parameter keywords
which 1 the user may not recognize.

8. Inte~active error messages should a~~ear as soon as possible
after an errcr is committed.

Discussion: Each interactive intut should be completely and
fully validated as soon as it is received. In no event should a
user be led dc~n the.garden path to enter a long series cf input
only to be advised that it is all wrong because the first part
was wrong.·

9. No messages at all sh6uld appear for trivial, correctable errors
- nor should they be errcrs.

Discussion: Errcrs such as missing er redundant ter~inators
should not be errors at all. If a reasonable assum~ticn can be
made as to the intent of an input, it shculd be acted upon as
though it were "valid". Ne errcr diagncstic should be produced
for these cases. If it is net ~erfectly clear what assumption
was made, th& assumption was ~rctably net reasonable tc tegin
with.

10. An error message must clearly signal that an error bas cccurr~d.

Discussion: An error message must net te phrased in such a way
as to be confused with a merel~ infcrmative message. Also, a
message shculd indicate the gravity and extent of the error, as
when an error in a list inhi~its precessing cf the remainder ~f
the list.

NOS-DEV/1926G/slf - 63 -

NOS COMPASS 4/26/83

1. COMMAND shculd be u~ed instead cf CCNTECl STATEMENT er CONTROL
CARD.

2. INCOBRECT shculd be used rather than ILLEGAL or INVALID Cr~fer
to Appendix E item 1).

/

3. USER should te used instead cf ACCCUNT.

4. USER NAME shculd be ri~ed inste~a cf USEB NUMBER er ACCOUNT
NUMBEB.

5. EXTENDED MEMCBY should be used rather than ECS.

6. MONITOR REQUEST should te bsed rather than BA+1 CALI.

7. EST ORDINAL er CEVICE should be used instead of EQUIPMENT NUMBER
or EQUIPMEN~. I

8. English variatles such aE file name rather than filenam should
be used to remcve the shcrthand notaticn of using variable names
that are the same length as the ~aximum entry.

9. Document~~ion, messag~s, etc. shculd avcid the use cf sexist
language (he, ~he, him, her, etc.).

NOS-DEV/1926G/slf - 64 -

