@ @ CONTROL DATA
CORPORATION

60493800

NOS/BE VERSION 1
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:

CYBER 170 SERIES
CYBER 70

MODELS 71, 72, 73, 74
6000 SERIES

CONTROL STATEMENT INDEX

ABS
ACCOUNT
ADDSET
ALTER
ATTACH
AUDIT

BEGIN
BKSP

CATALOG
CKP
COMBINE
COMMENT
COMPARE
COPY
COPYBCD
COPYBF
COPYBR
COPYCF
COPYCR
COPYL/COPYLM
COPYN
COPYSBF
COPYXS

DELSET
DISPLAY
DISPOSE
DMP
DMPECS
DSMOUNT
DUMPF

EDITLIB
ELSE

.ENDHELP
ENDIF
ENDW
EXECUTE
EXIT
EXTEND

GENLDPF
GETPF

HEIP

IFE
ITEMIZE

45
4-5
4-6
4.7
4-8
49

5-25
4-11

4-12
4-14
4-15
4-15
4-16
4-17
4-18
4-18
4-21
4-18
4-21
4-22
4-25
4-30
4-30

4-31
5-18
4-32
4-34
4-36
4-37
4-38

4-41
5-16

552
5-17
5.18
4-54
4-54
455

4-57
4-58

5-51

5-13
4-59

job

LABEL
LABELMS
LIMIT
LISTMF
LOAD
LOADPF

MAP
MODE
MOUNT

PAUSE
PFLOG

PROC
PURGE

RECOVER
REDUCE
RENAME
REQUEST
RESTART
RETURN
REVERT
REWIND
RFL
ROUTE

SAVEPF
SET
SETNAME
SKIP
SKIPB
SKIPF
SUMMARY
SWITCH
SYSBULL

TRANSF
TRANSPF

UNLOAD
VSN

WHILE

42

4-62
4-65
4-69
4-69
4-70
4-70

4.74
4-74
4.75

4-76
4-76

53143
4-77

4-79
4-79
4-80
4-81
4-89
4-90
5-27
4-91
492
4-93

4-101
5-19

4-103
5-15

4-103
4-104
4-104
4-105
4-105

4-106
4-107

4-110
4-111

5-17

60493800 M

i

@ E CONTROL DATA
CORPORATION

60493800

NOS/BE VERSION 1
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:

CYBER 170 SERIES
CYBER 70

MODELS 71, 72, 73, 74
6000 SERIES

REVISION RECORD

REVISION DESCRIPTION
A Manual released.
(11-1-75)
B Updated to reflect release of features 145 (844-41/44 Support), 159 and 163 (Job Management
(7-16-76) and System Control Point Enhancement).
C Updated to reflect NOS/BE 1.2 at PSR level 447. New features documented include 844 disk drive
(3-15-77) full/half track recording mode, programmable format control (PFC) for S80 line printers, support

of CYBER 170 Model 176 with 819 disk drive (device type mnemonic AH), 679 tape unit with

6250 cpi density capability, and CYBER Control Language (section 5). References to 604 and 607

tape units are removed. This edition obsoletes all previous editions.

D Updated to support NOS/BE 1.2 at PSR level 454 and to make editorial and technical corrections.
(8-19-77) Support of CDC CYBER 170 Model 171 is included.

E Updated to reflgct NOS/BE 1.3 at PSR level 473 and to make editorial and technical corrections.
(6-13-78) ‘Support of permanent file utilities PFLOG and GENLDPF, GETACT macro, user capability to

assign universal password and permissions to private sets, user reprieve processing, schedule-by-density

option for tapes, hardware GE write error correction option, 677/679 tape units, and INTERCOM §

is also included. This edition obsoletes all previous editions.

F Updated to reflect NOS/BE 1.3 at PSR level 481 and to make editorial and technical corrections. _ |
(10-13-78) The REQUEST control statement and the FILINFO macro have been modified.
G Updated to reflect NOS/BE 1.3 at PSR level 488 and to make editorial and technical clarifications.
2-16-79) New features documented include the following: added formats for the REDUCE and RFL control

statements for use with ECS; new parameters on the GETPF, SAVEPF, and PURGE control

statements; system ability to swap ECS.

Publication No.
60493800

scanned 2/2004 by gmt

Address comments concerning
this manual to:

Control Data Corporation
REVISION LETTERS I, O, Q, S, X, AND Z ARE NOT USED. Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112
© 1975, 1976, 1977, 1978, 1979, 1980, 1981
by Control Data Corporation . or use Comment Sheet in the

All rights reserved back of this manual,
Printed in the United States of America

REVISION RECORD (Cont'd)

REVISION DESCRIPTION
H Updated to reflect NOS/BE 1.4 at PSR Level 508 and to make editorial and technical
(12-21-79) corrections. Support of 885 disk drives is included.
J Updated to reflect NOS/BE 1.4 at PSR level 518, and to make editorial and technical
(5-19-80) corrections. COPYL, COPYLM, and ITEMIZE utilities formerly in the Common Utilities
Reference Manual are included in this revision, as are expanded descriptions of
permanent file macros formerly in the NOS/BE System Programmer’s Reference Manual,
Interpretive mode processing of ECS read and write operations is also included in this
revision.
K Updated to reflect NOS/BE 1.4 at PSR level 530 and to make editorial and technical
(11-17-80) corrections.
L Updated to reflect NOS/BE 1.5 at PSR level 538 and to make editorial and technical
(4-20-81) corrections. Support of EOV2 tape label and a revised CDC CYBER control language
section are also included. This edition obsoletes all previous editions.
M Updated to reflect NOS/BE 1.5 at PSR Level 552 and to make editorial and technical
(11-23-81) corrections. The new feature is interactive CCL procedures. All references to

INTERCOM 4 have been deleted.

Publication No.
60493800

ii-a/ii-b

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

>
m S E S E R R R R R R S R E R RS S NS E NS S E S0 MmN i ey B30 O M T 3 T 3 3 o3 T 3 o3 0D 03 3 T e b 23 0T 23
w
1T}
y
DOV NO M ANMNMAFINOI-ONO NN AINOE-ONO =N O NMNMPINWE-0ODNDO =M L)W~ 00
33334444444444555555555566612345678911111111112222222221234
.._____._...»v__________._.___.&_______.T.nr____._______.____
WD WU WD WD DD WU WD MWW WD IV IO VW IO U D U W W W O WWWW W «©w WOWOWWWWWOWWWW O~ b
> . .
M S LpEFC R0 JLCFERC LR PR L) JEREREE PR RE RN -5 F R R R R R R R R R R R R
w
[C]
<
o O i N YWD 0 DD w3
DO ANMNMAINCEL-ONCOCOOCOOOODOCODOD vy O ANMA N VIO m NMIAINDE-ONOD v O D
A A A A B I R M N O U 0 S R R I

H

-4

[6§ % [P G, [P G [P [P . B G [P, (V. V6. V. |-~ [P P PG IS R R P G [P I R T -~ 6. R - P DB P I PE PRS- —3 -0 TG T B BE P R E S K I |

o
i
-

4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54
4-55
4-56
4-57
4-58
4-59
4-60
4-61
4-62
4-63
4-64
4-65
4-66
4-67

4-68

4-69
4-70
4-71
4-72
4-73
4-74
4-75

4-76
4-77

4-78

4-79
4-80

4-81

4-82

4-83

4-84

4-85

4-86
4-87
4-88

RE!J l PAGE

R NG RN PE NG -3 JL PG NG PLEL P L ~JE B -JE -5~ 3 PENE JEREJE PE I PR F S YN ER~F R O N ARV R =F S R A NS PSR~ G 0 I I . |

w
[T}
&
BNOEXRSHNNINOE ORI AN IO DR LN OCHNNFNO-ONRO NN NN
N N I W 0 G A A A o O S 4 ORISR MO MR
R L L L L . Y L r . L . T X X X % T Ut et vy Do v P vt S O Pt i P U P, FH O S W At W P N Y N
>
M N - JC PR 5§ ST R R 5 R F S F A NS RTINS Y S 9. RE RV B 3- RV JE PERS RS RS BE PR FEE AN S WSS W FO N3
)
3 E
w > 0 [
GOPWo
afl O*g5 £
o o—
Pt.mv =]
avsy = O - ™M © oM WO 0 O N Mma
eBOE] - I YD W= CO D v v v vl v O D W U O L 00 D v v vl vl vt v v v] =t O D U O L 00 P v v v v
e Lms opmiEye 0 L0 L E U b b LDl e
[P~ FEm Rl o B S e i i A AN NN RNNANNNNANNNNNNNNROMNOMM®MDM® o™

v
iii

60493800 M

MmN B aaaadldd S G a e dddl Al D RRARE TN E SN SSSSSSSEsSS 2 =,

E
= %8
—eemewor. 9 M ﬂhw
- TIITHIL
%mwmmmmmM%mmmw%mmmmm%mmqqaa4444444444444444444444412444de@ed@@msmmm
77777777777777777777777AAAAAAAAAAABBBBBBBBBCCCCCCCDDEFFmMMMMhMC m

m

R JOPEE--J NG B0 JU U PG IS B G 6. 6 I P U JE - IR B B JE G- R . R G, [P 6 [P G- [P L P G, [P G -~ . G [P G- . [P P (- IV P P G [P G TP R P P A P P [P P P P B

7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7~-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-317
7-38
7-39
7-40
7-41
7-42
7-43
7-44
7-45
7-46
7-47
7-48
7-49
7-50
7-51
7-52
7-53
7-54
7-55
7-56
7-87
7-58
7-59
7-60
7-61
7-62
7-63
7-64
7-65
7-66
7-67
7-68
7-69
7-70
7-71
7-72
7-73
7-74
7-75

7-5
7-6
7-7
7-8
7-9

60493800 M

iv

PREFACE
*

This manual deseribes the Network Operating System/Batch Environment (NOS/BE) Version 1.5 Operating
System for the CONTROL DATA® CYBER 70 Models 71, 72, 73, 74; CDC®CYBER 170 Series; and CDC
6000 Series Computer Systems. It contains general information about files, job flow, and execution; it
gives detailed descriptions of the full array of control statements available. Sections 1 through 5 are
intended for application programmers who write in higher level languages; sections 6 and 7 are for system
programmers and others who write in COMPASS assembly language.

It is assumed the user of this manual has a basic familiarity with the NOS/BE operating system. The user
who is unfamiliar with this system, or operating systems in general, should first study the NOS/BE Version
1 Batch User's Guide.

Extended memory for the CYBER 170 Model 176 is large central memory extended (LCME). Extended
memory for all other NOS/BE computer systems is extended core storage (ECS) or extended
semiconductor memory (ESM).

In this manual, the acronym ECS refers to all forms of extended memory unless otherwise noted.

Programming information for the various forms of extended memory can be found in the COMPASS
Reference Manual and in the appropriate computer system hardware reference manual.

CONVENTIONS

Conventions for central memory word formats are as follows:

® Crosshatching indicates a field is not used by or is not applicable to a function processor.
However, Control Data reserves the right to assign these fields to system use in the future.

e TFields reserved for system use are so labeled.

o Fields with numeric identifiers indicate the actual value that is used or returned for a particular
function. Numeric identifiers are octal unless otherwise noted.

RELATED PUBLICATIONS

The following manuals contain additional information about NOS/BE that may prove useful to the system
user.

The NOS/BE Manual Abstracts is a pocket-sized manual containing brief desecriptions of the contents and
intended audience of all NOS/BE and NOS/BE product manuals. The abstracts can be useful in
determining which manuals are of greatest interest to a particular user.

Control Data also publishes a Software Publications Release History of all software manuals and revision

packets it has issued. This history lists the revision level of a particular manual that corresponds to the
level of software installed at the site.

60493800 L

Contro! Data Publication Publication Number

CYBER Loader Reference Manual 60429800
CYBER Record Manager Advanced Access Methods Version 2 60499300
CYBER Record Manager Basic Access Methods Version 1.5 60495700
INTERCOM Version 4 Multi-User Job Capability 60494700
INTERCOM Version 4 Reference Manual 60494600
INTERCOM Version 5 Multi-User Job Capability Reference Manual 60456070
INTERCOM Version 5 Reference Manual 60455010
NOS/BE Manual Abstracts 84000470
NOS/BE Version 1 Batch User's Guide 60494000
NOS/BE Version 1 Diagnosite Handbook 60494400
NOS/BE Version 1 Diagnostic Index 60456490
NOS/BE Version 1 Installation Handbook 60494300
NOS/BE Version 1 Operator's Guide 60493900
NOS/BE Version 1 System Programmer's Reference Manual, Volume 1 60494100
NOS/BE Version 1 System Programmer's Reference Manual, Volume 2 60457370
On-Line Maintenance Software Reference Manual 60453900
SCOPE Version 2 Operator's Guide 60455090
Software Publications Release History 60481000
Update Reference Manual 60449900
DISCLAIMER

This product is intended for use only as described in this document. Control Data cannot be responsible
for the proper functioning of undescribed features or parameters.

vi 60493800 L

1. INTRODUCTION

Hardware Function and Use
Mainframe and Console
Central Memory
Central Processor Unit
Peripheral Processors
Operator Console
Rotating Mass Storage
Unit Record Equipment
Magnetic Tape Units
Extended Core Storage
Remote Terminals
Individual Products
INTERCOM
CDC CYBER Record Manager
FORM
UPDATE
CDC CYBER Loader

2. JOB PROCESSING AND DECK
STRUCTURE

Deck Structure
Separator Cards
Control Statement Section
Libr: Use
Load Sequence
LGO and Program Execution
Calls
Compiler and Assembler
Calls
Efficient Control
Statement Ordering
Directive Section
Detailed Job Flow through System
Example Job
Examples of Job Deck
Arrangements
Job Termination Details
Abnormal Termination
Operator Command
Termination
Job Dayfile

3. FILE CONCEPTS AND STRUCTURE

General File Usage
Naming Files
Reserved File Names
Special-Named Files
Assigning Files to a Job
Disposing of Files and
Equipment
File Structure
System-Logical-Records and
Physical Record Units
File Divisions

60493800 L

1-1
1-2
1-2
1-5
1-6
1-7
1-7
1-8
1-8
1-9
1-10
1-10
1-10
1-11
1-12
1-12
1-13

2-1

2-2
2-3

2-4
2-5

2-6

2-8
2-9
2-9
2-9

2-12
2-14
2-14

2-15
2-15

3-1

3-1
3-1
3-1
3-1

3-4
3-4

3-5
3-6

CONTENTS

Device Sets
Public Device Set Usage
Private Device Set Usage
Private Device Set Example
Operating System Random Files
Name/Number Index Files
User-Defined Index Files
Permanent Files
Concepts
File Identification
Permissions and Passwords
Multiple Access
Queued and Archived Files
Incomplete Cycles
Usage
Batch Job Usage
INTERCOM Usage
Accounting
Examples
CATALOG Examples
ATTACH Examples
RENAME Examples
PURGE Examples
ALTER/EXTEND Examples
Extended Core Storage Files
ECS Buffered Files
ECS Resident Files
Magnetic Tape Files
Tape Marks
Data Format
SI Tapes
S and L Tapes
Seven-Track Versus Nine-Track
Tapes
Seven-Track Tape
Nine-Track Tape
Tape Labels
Standard Labeled Tape
Structure
Labeled Multifile sets
Usage Summary
Print Files

4. JOB CONTROL STATEMENTS

Control Statement Syntax
Job Statement
ABS (Absolute Central Memory Dump)
ACCOUNT (Aceounting Information)
ADDSET (Create Master Device or
Add Device to Private Device Set)
ALTER (Change Permanent File
to Job)
ATTACH (Attach Permanent File
to Job)
AUDIT (Permanent File Summary)
BKSP (Backspace System-Logical-
Record)
CATALOG (Create Permanent File)
CKP (Checkpoint Request)
COMBINE (Record Consolidation)
COMMENT (Add Comment to Dayfile)
COMPARE (Compare Files)
COPY (Copy to End-of-Information)

3-7

3-8

3-9

3-10
3-11
3-12
3-13
3-13
3-14
3-14
3-15
3-16
3-17
3-19
3-19
3-19
3-21
3-22
3-23
3-23
3-25
3-25
3-26
3-27
3-27
3-27
3-28
3-28
3-29
3-29
3-30
3-31

3-32
3-32
3-32
3-33

3-37
3-38
3-39
3-41

4-8
4-9

4-11
4-12
4-14
4-15
4-15
4-16
4-17

vii

COPYBCD {Copy Line Image File)
COPYBF and COPYCF (Copy Binary
and Coded Files
COPYBR and COPYCR (Copy Binary
and Coded Records)
COPYL/COPYLM (Binary Copy with
Replacement)
COPYN (Consolidate File)
COP YN Directive Statements
REWIND (Rewind File)
SKIPF (Skip File)
SKIPR (Skip Record)
WEOF (Write File Mark)
Record Identification
Statement
File Positioning for COPYN
COPYSBF (Copy Shifted Binary
File)
COPYXS (Copy X Tape to SI Tape)
DELSET (Delete Member)
DISPOSE (Release File)
DISPOSE Examples
DMP (Dump Central Memory)
Exchange Package Dump
Control Point Area Dump
Relative Dump
DMPECS (Dump Extended Core
Storage)
DSMOUNT (Disassociate Device)
DUMPF (Dump Permanent File to
Tape)
DUMPF Examples
EDITLIB (Construct User Library)
EDITLIB Control Statement
Format
EDITLIB Directive Format
Manipulation of Library Files
ADD (Add Program During
Library Creation)
CONTENT (List File)
DELETE (Delete Program
from Library)
ENDRUN (Stop Execution)
FINISH (Stop File
Manipulation)
LIBRARY (Identify Libary)
LISTLIB (List Library File)
RANTOSEQ (Convert Random
File to Sequential File)
REPLACE (Delete and
Replace Program)
REWIND (Rewind File)
SEQTORAN (Convert
Sequential File to Random
File)
SETAL (Change Access
Level)
SETFL (Change Field
Length)
SETFLO (Set Field Length
Override Bit)
SKIPB (Skip Backward)
SKIPF (Skip Forward)
User EDITLIB Examples
EXECUTE (Initiate Execution)
EXIT (Process After Fatal Error)
EXTEND (Permanent File Extension)
GENLDPF (Reload Permanent File
Catalog)
GENLDPF Examples
GETPF (Attach Permanent File from
Linked Mainframe)
ITEMIZE (List Contents of Binary File)
LABEL (Tape Label Specification)

viii

4-18
4-18
4-21

4-22
4-25
4-26
4-26
4-27
4-27
4-27

4-27
4-29

4-30
4-30
4-31
4-32
4-33
4-34
4-34
4-35
4-35

4-36
4-37

4-38
4-40
4-41

4-42
4-43
4-45

4-46
4-47

4-47
4-48

4-48
4-48
4-49

4-49

4-49
4-50

4-50

4-51

4-51
4-51
4-52
4-53
4-54
4-54
4-55

4-57
4-57

4-58
4-59
4-62

LABELMS (Device Set Labeling)
LIMIT (Limit Mass Storage)
LISTMF (List Labeied Tape)
LOAD (Load Program)
LOADPF (Load Permanent File to
Tape)
LOADPF Examples
MAP (Produce Load Map)
MODE (Suspend Error Exit)
MOUNT (Associate Device Set)
PAUSE (Operator Interface)
PFLOG (Dump Permanent File Catalog
to Tape)
PFLOG Examples
PURGE (Remove Permanent File)
RECOVER (Device Set Maintenance)
REDUCE (Reduce Field Length)
RENAME (Change Permanent File
Table)
REQUEST (Assign File to Device)
Tape File Request
Unit Record Device Request
ECS File Request
Mass Storage File Request

RESTART (Restart Job from Checkpoint

Tape)
RETURN (Evict File)
REWIND (Rewind File)
RFL (Request Field Length)
ROUTE (File Disposition)
ROUTE Examples
SAVEPF (Catalog Permanent File on
Linked Mainframe)
SETNAME (Establish Implicit
Setname)
SKIPB (Skip Backward System-Logical-
Records)
SKIPF (Skip Forward System-Logical-
Records)
SUMMARY (Account Summary)
SWITCH (Set Software Switch)
SYSBULL (Aceess System Bulletin)
TRANSF (Decrement Dependency
Count)
TRANSPF (Transfer Permanent File)
Single Device Set TRANSPF
Transferring from a Member
Transferring from a Master
Dual Device Set TRANSPF
UNLOAD (Eviet File)
VSN (Tape Volume Identification)
VSN Examples

5. CYBER CONTROL LANGUAGE

Overview
Statement Syntax
Operators
Arithmetic Operators
Relational Operators
Logical Operators
Order of Evaluation
Operands
Constants
Symbolic Names
Functions
“File Function
DT Function
NUM Function
Conditional Statements
IFE Statement
SKIP Statement
ELSE Statement

4-65
4-69
4-69
4-70

4-70
4-73
4-74
4-74
4-75
4-76

4-75
4-717
4-77
4-79
4-78

4-80
4-81
4-82
4-87
4-87
4-88

4-89
4-90
4-91
4-92
4-93
4-97

4-101
4-103
4-103

4-104
4-104
4-105
4-105

4-106
4-107
4-108
4-108
4-109
4-110
4-110
4-111
4-112

5-11
5-12
5-12
5-13
5-15
5-16

60493800 M

ENDIF Statement
Interative Statements
WHILE Statement
ENDW Statement
Additional CCL Statements
DISPLAY Statement
SET Statement
Procedures
Procedure Call and Return
BEGIN Statement and Name
Call Statement
REVERT Statement
Noninteractive Procedure Header
Statement
Procedure Body
Parameter Substitution in
Noninteractive Procedures
Order-Dependent Parameter
Matching Mode
Order-Independent Parameter
Matching Mode
Interactive procedures
Interactive Procedure Header
Statement
Interactive Procedure Body
Interactive Processing
Interactive Procedure
Parameter Substitution
.HELP Statement
.ENDHELP Statement
Parameter Alteration
Procedure Commands
.DATA Command
.EOR Command
.EOF Command
.* Command

6. COMMUNICATION AREAS

File Environment Table
FET Creation Macros
FET Field Description
Circular Buffer Use
Establishing Owncode Routines
Tape Label Processing
Standard Label Processing
Label Macro for FET Fields
Extended Label Processing

7. COMPASS INTERFACE WITH
OPERATING SYSTEM

User/System Communication
Basic Communication: RA+1
Requests
Recall Concept
Using CPC
Calling Sequence to CPC
CPC Execution
Locations RA through RA+100
CYBER Record Manager Macros
System Communication Macros
SYSCOM Macro
SYSTEM Macro
Common Uses of System
Macro
Register Save/Restore
Function
Integer Divide Opdefs

60493800 M

5-17
5-17
5-17
5-18
5-18
5-18
5-19

5-24

6-1

6-1
6-1
6-5
6-23
6-25
6-25
6-25
6-26
6-27

System Action Macros
Ending Programs
ABORT Macro
ENDRUN Macro
GETMC Macro
Field Length Request
Dayfile Messages
RECALL Macro
Status Information
Time and Date Macros
STATUS Macro
FILESTAT Macro
GETACT Macro
FILINFO Macro
GETJCI Macro
SETJCI Macro
Dependent Job Count
Reading Control Statements
Program Recovery
RECOVR Macro
Calling RPV Directly
REPRIEVE Macro
CHECKPT Macro
File Action Macros
REQUEST Macro
Open and Close Functions
OPEN Macro
POSMF Macro
CLOSE Macro
CLOSER Macro
Read Functions
READ Macro
READNS Macro
READSKP Macro
RPHR Macro
READN Macro
READIN Macro
Write and Rewrite Functions
WRITE Macro
WRITER Macro
WRITEF Macro
WPHR Macro
WRITEN Macro
WRITOUT Macro
REWRITE Macros
WRITIN Macro
Positioning Funetions
SKIPF Macro
SKIPB Macro
BKSP Macro
BKSPRU Macro
REWIND Macro
UNLOAD Maecro
File Disposition
EVICT Macro
DISPOSE Macro
ROUTE Macro
Permanent File Functions
FDB Macro
PERM Macro
ALTER Macro
ATTACH Macro
CATALOG Macro
EXTEND Macro
GETPF Macro (Multimainframe
Only)
PURGE Macro
RENAME Macro

SAVEPF Macro (Multimainframe

Only)
System Texts
Common Decks
Text Overlays

7-93

7-95
7-95
7-95
7-97

ix

1-1
2-1
2-2
2-3

2-5
5-1

3-1
3-2
3-3

34
4-1
4-2
4-3

4-4

STANDARD CHARACTER SET

GLOSSARY

PUNCH CARD AND TAPE
FORMAT

CYBER 170 MODEL 176
DIFFERENCES

Central Memory Allocation

Sample Deck Struecture

Sample COMPASS Job

Job Flow at Central Site

Sample Dayfile

Sample Accounting Messages

BEGIN Statement Calling a
Procedure

Parameter Substitution in Two
Procedures

Multiple Access Permissions
Permanent File Parameters
ANSI Standard Tape Label
Formats
Carriage Control Characters
Items Listed by Audit
COPYxx Format Conversion
Types of Records Replaced by
COPYL and COPYLM
Exit Processing

A-1
B-1

C-1
D-1

1-3
2-2
2-10
2-12
2-16
2-17

5-25

5-36

3-17
3-20

3-35
3-42
4-11
4-20

4-24
4-56

APPENDIXES

E.

F.

INDEX

FIGURES

5-3

54
5-5

6-1
7-1

TABLES

INTERPRETIVE MODE READING
AND WRITING OF ECS

TYPES AND NAMES OF
RECORDS

Keyword Substitution in Nested
Procedures
Procedure Access to Program Data

Data File Written from a Procedure

to a Named File

File Environment Table

Communication Area RA through
RA+100

Format of the Exchange Package
Image

Types of Records Listed by
ITEMIZE

Device Defaults

Parameter Substitution in Order-
Dependent Mode

Parameter Substitution in Order-
Independent Mode

Alterations of Parameters in a
Procedure Body by Use of # and _

REQUEST Legal Device Types

F-1

5-41
5-60

5-61
6-2

7-8

7-35

4-61
4-68

5-33
5-38

5-53
7-51

60493800 M

INTRODUCTION 1

NOS/BE is the operating system for the CDC CYBER 170; CYBER 70 Models 71, 72, 73, 74; and
6000 Series Computer Systems. It is the basic system software that coordinates all other system software,
user programs, and hardware action.

The operating system offers a standard set of functions that can be utilized by system programs written in
the COMPASS assembly language and by user jobs. It also supports software packages known as the

NOS/BE 1 product set. The product set includes compilers common to more than one Control Data operating
system and products that are unique to the NOS/BE operating system. All products run under the control of
the operating system.

NOS/BE is a multi-programming, multi-processing operating system. Many jobs can be in the system in
various states of processing. It is not necessary for one job to complete before another job begins execution.
Among the tasks the operating system pertorms for a job are: reading the job into the system, assigning it
system resources such as central memory and mass storage files, scheduling execution in the central processor,
and performing end-of-job procedures that dispose of files used or produced by the job. The operating system
also controls the environment of the software and hardware used by a job, such that the resources available
to all jobs are used efficiently.

The remainder of this section presents background material about the hardware of the CDC CYBER 170;

CYBER 70 Models 71, 72, 73, 74; and 6000 Series Computer Systems. Product set members that are
intimately involved with the operating system but fully described in other manuals are also summarized.

HARDWARE FUNCTION AND USE

The CDC CYBER 170; CYBER 70 Models 71, 72, 73, 74; and 6000 Series Computer Systems have the
following hardware components.

Mainframe of the computer formed by one or two central processors, central memory, and peripheral
processors

Operator console through which the operator oversees software and hardware operation

Peripheral devices including (at minimum) rotating mass storage devices, line printer, card punch, card
reader, and magnetic tape units

Additional hardware that can be part of the system includes:
Extended core storage (ECS)
Graphics terminals and plotters

Different types of line printers and magnetic tape units

60493800 E 11

All of the previously mentioned hardware usually resides at a central site. However, the CDC CYBER hard-
ware and NOS/BE operating system also can have remote sites connected to the central site through several
kinds of communication lines.

More than one central site can be linked together. In particular, a site with 6000 Series Computer Systems
can be linked to another 6000 site or to a 7600 site so that users in one location can receive the benefits
available through more than one system.

The following discussion introduces the main components of the CDC CYBER 170: CYBER 70 Models 71,
72, 73, 74; and 6000 Series Computer System and shows how they are used during system operation.

MAINFRAME AND CONSOLE

The mainframe consists of central memory, central processor, and peripheral processors operated through a
display console.

CENTRAL MEMORY

Central memory consists of 60-bit words. Memory holds instructions to be executed by the central processor,
data to be manipulated by the central processor, and data buffered to and from peripheral processors. Any
given system can have memory with 65K, 98K, or 131K words. Memory sizes of 198K or 262K are avail-
able with the CDC CYBER 170 series.

A CDC CYBER 170 has a central memory control that controls the flow of data between central memory
and the requesting system components.

Two portions of central memory known as low core and high core are reserved for system use. Low core,
the beginning address of central memory, contains central memory resident (CMR) and a small library of
system routines frequently used by peripheral processors or the central processor during operating system
functions. These library programs exist in memory because they can be loaded from CMR much faster than
from the rotating mass storage device on which the rest of the system routines reside, and thereby reduce
system overhead. CMR also contains system tables and pointer words, the communication area that links
peripheral processors and central memory, and control point areas. High core, the highest numbered addresses
in memory, contains information relating to allocation of space on rotating mass storage devices. The amount
of memory assigned to low core and high core varies during operation, with space not currently required
being released, so that a maximum amount of memory is available for user jobs.

NOS/BE is a multi-programming system. This means that more than one job can be in central memory at the
same time. Although only one of the jobs can be using the central processor in a single-processor system at
a given time, all other jobs in memory can have peripheral processors executing tasks for them during that
time.

Figure 1-1 shows central memory allocation to the system and user jobs. As shown, the first address is at the
extreme low end of central memory and the last address is at the extreme upper end.

1.2 60493800 E

Last
Address ~ {Used for mass storage

High Core L fite 'reference infor-
mation)

Unused Storage

Job at Control Point 17

Job at Control Point 16

Job at Control Point 15

Zz Unused Storage =

Job at Control Point 4

Unused Storage

Job at Control Point 3

Job at Control Point 2
Unused Storage

Job at Control Point 1

(Used for CMR portion
of operating system,
including contro! point
areas)

Low Core

First
Address

Figure 1-1. Central Memory Allocation

CONTROL POINT DEFINITION

Each job in central memory is assigned a control point number. Control points are the concept by which
memory, the central processor and system resources are assigned to a job in memory. Any job in memory
has a control point number to identify it and has a 200-word control point area in CMR in which the
system stores information about the job. The exchange package for the control point is also stored in the
control point area.

The physical portion of central memory allocated to a job is related to the control point number to which
the job is assigned. This assignment is made and maintained in numerical order. Thus, the job at control
point 2 follows the job at control point 1, and the job at control point 3 follows the job at control point 2,
as shown in figure 1-1.

60493800 A 1-3

Through a dynamic relocation process, jobs are moved up and down in memory to make room for new jobs
assigned to control points. The relocation process occurs continuously as memory requirements change. For
example, jobs might be running at all control points except control point 2 when a new job is assigned to
control point 2. If sufficient contiguous memory is not available for the new job, other jobs are relocated as
necessary to provide sufficient contiguous memory. Each job is moved as a block. It might be necessary to
relocate the jobs at both control points 1 and 3, or to relocate only one of them, since unassigned memory
can exist between control points.

When a job is moved in storage, the monitor routine (MTR) suspends all user program activity at the control
point, waits for all peripheral processors (PPs) assigned to the control point to clear their field access
flags, and then starts the system routine that moves the job. When the move is complete, the reference
address of the job is modified, and job activity resumes. The job is not affected by this change in location.
Since all program locations are relative to the beginning of the job field length, only the reference address
(RA) in system tables needs to be changed when the job is moved.

Up to 15 control points, numbered 1 through 17 octal, are available for user jobs. An installation can choose
fewer than 15. Control point O is used to identify all hardware and software resources not presently allocated
to user jobs, or to identify resources known only to the operating system.

At a typical installation, one of the 15 control points is assigned to JANUS, the operating system routine that
controls the line printer, card punch, and card reader. JANUS uses central memory buffers, but the actual
driving of equipment is performed by peripheral processor, not central processor, programs.

An installation with remote terminals uses INTERCOM to communicate with those terminals. INTERCOM
does not use any central processor code to control this communication but executes entirely within the
peripheral processors. The central memory required for buffers and control tables is obtained by extending
the CMR area. A control point is used only when a task requested from a terminal requires the use of the
central processor.

A control point and a job are associated only when the job is in memory or when it has been rolled out.
When a job is swapped out, it loses its control point identification.

FIELD LENGTH DEFINITION

Every job in central memory occupies a contiguous block of words. The block is not of fixed size, but rather
varies with the needs of the job. The length of the block is the field length (FL) of the job. FL-1 is the
relative address of the last word in the block. The first word in the block is known as the reference address
(RA); all addresses within each block are relative to RA.

A job can reference locations within its field length, but not outside its field length. Any attempt to read or
write outside a job field length is prevented by the hardware, so that all other jobs and system programs in
central memory are protected from being accidentally overwritten. For this reason, each job can consider that
it is running alone in a computer with a central memory the size of its field length.

The operating system dynamically manages the field length assigned to a job, so that memory is not needlessly
tied to a control point when it is not required. Field length increases or decreases as the job progresses. A
job step such as a file copy operation, for example, requires much less memory than a step such as a program
compilation. The operating system adjusts the field length to the job step needs.

1-4 60493800 H

A job normally does not stay in central memory until completion. The job moves into and out of memory
in relation to its needs for system resources, such as tapes or the central processor, and to the needs of
other jobs in the system. The scheduler routine of the operating system is responsible for moving jobs into
memory to maximize system throughput.

JOB SWAPPING AND ROLLING

When a job with a high priority enters the system, existing jobs of lower priority might be swapped out or
rolled out of central memory. The user can specify initial job priority within certain ranges, but the operating
system adjusts this priority according to factors such as the system resources requested or allocated and the
time consumed in waiting for resources. Some functions requested through remote terminals and those that
affect overall systefn efficiency are assigned high priority. Actions by the central site operator also can affect
the priority of any given job.

When a job is swapped out, all information reflecting the current status of the job is written to a mass stor-
age file. The field length and control point associated with the job are made available to the scheduler. As
control points and memory (CM and/or ECS) become available, swapped out jobs are swapped back in to
continue processing. A job can be swapped into any free control point; thus, a job might run at several
different control points before it reaches termination.

When a job is rolled out, its job field length is written to a rollout file before the field length is freed for
another job. The control point is not released when rollout occurs. If a magnetic tape is being used by a
job, that job can be rolled out, but not swapped out.

If a job is waiting for a permanent file to become available or for a mass storage device to be mounted, the
job can be swapped out automatically. When the permanent file or device becomes available, the job becomes
eligible to be swapped in.

Swapping or rolling might increase the total time that a job spends in the computer, but it has no effect on the
amount of central processor time used by a given job; and it should help overall processing. Job swapping

and job rollout are controlled by the scheduler. The most important system effect is to maintain high central
processor utilization. Frequent short central processor access is balanced with longer, less urgent, access.

CENTRAL PROCESSOR UNIT

The central processor unit (CPU) is an extremely high-speed arithmetic processor that executes the instructions
of system or user programs. It performs computational tasks, but must use central memory for all its input and
output, including communication with the operating system.

Depending on the specific hardware model, a system might have one of two types of central processors or
might have both types of processors in a single system. The differences in the processors has to do with the
number of functional units available for concurrent operations, and hence the relative speed at which a given
set of instructions can execute.

The CYBER 170 Models 171, 172, 173, 720, 730, and 740; CYBER 70 Models 71-1x, 72-1x, and
73-1x; and the 6200 and 6400 Computer Systems each have a single processor that has a unified arithmetic
unit in which instructions must be executed serially.

60493800 K 1-5

The CDC CYBER 170 Model 174; CYBER 70 Models 71-2x, 72-2x, and 73-2x; and the 6500 Computer

Systems each have two central processing units. Both CPUs have unified arithmetic units; thus, two control
points can be executing simultaneously on these models.

The CDC CYBER 170 Models 175, 176, 750, and 760; CYBER 70 Model 74-1x; and the 6600 Computer
Systems have a single processor composed of 9 or 10 arithmetic and logical units in which separate instructions
from a single program can be executing simultaneously. Careful arrangement of instructions within a program
can be done to take advantage of this concurrent execution capability. (Refer to appendix D for a more
detailed discussion of CDC CYBER 170 Model 176 differences.)

The CDC CYBER 70 Model 74-2x and the 6700 Computer Systems have one processor of each type. When
only one control point is to use the CPU, it is given the advantages of the 10-unit parallel processor. When a
second control point is ready to execute, it obtains the unified processor, thus not disturbing the first job.
During normal execution, a program will usually be allotted some time on each of the two CPUs.

The central processor contains three sets of registers: the 60-bit X registers that hold data and instructions,
the 18-bit A registers that hold addresses, and the 18-bit B registers used as index registers and temporary
storage. The COMPASS assembly language deals with register manipulation.

Only jobs existing in memory are eligible for assignment to the central processor. The job using the central
processor might relinquish its control by executing an exchange jump instruction when it must await com-
pletion of a task such as a read from a file. The operating system interrupts the job periodically and gives
the central processor to another job in memory so that many jobs can be in some state of execution.

When a job loses the central processor, a 16-word exchange package is stored in the control point area for
that job. This package contains information used directly in exchange jumps: the most recent contents of
all central processor registers, the RA and FL in central memory and in ECS, and the program address which
is the address of the next instruction to be executed.

The exchange package is not under user control. The job is made aware of the package when a job terminates
abnormally, however. Experienced programmers often can use exchange package information while debugging
programs that abort during execution. The package is printed as part of the standard output from an aborted
job. It can also be requested by a job.

PERIPHERAL PROCESSORS

Peripheral processors (PPs) are small computers with 4096 12-bit words of memory. Any given system might
have 7 to 20 peripheral processors. PPs are independent computers; they all can simultaneously process
programs. In addition, a CDC CYBER Model 176 can have up to six first-level peripheral processors (PPUs)
that are used to transfer data to mass storage.

One of the purposes of the PPs is to perform input and output of data requested by a program executing in

the central processor. All data transferred between central memory and any input, output, or storage device

passes through a PP. Peripheral processors also perform the bulk of the tasks required by the operating sys-

tem, including such tasks as formatting entries in system tables and driving output devices, so that the central
processor is available for user jobs.

One peripheral processor holds only the monitor routine, MTR, which oversees and controls all operating system
functions. (Part of the monitor also resides in central memory and is known as CPMTR) Another peripheral
processor is devoted cxclusively to routine DSD which drives the system display console and input keyboard.
This routine interprets and processes all requests typed by the operator and displays all messages from the

1-6 60493800 H

operating system routines. Coordination between the central processor and a peripheral processor, or between

peripheral processors, is achieved by the MTR routine. Peripheral processor programs are normally the con-
cern only of system analysts.

OPERATOR CONSOLE

The operator console consists of a keyboard and one or two cathode ray tube display screens. Commands
entered through the keyboard are interpreted and processed by the operating system. The displays present a
wide variety of information to the operator, ranging from lists of jobs in the systems through hardware status,
the control statement any job is currently executing, and the contents of memory for a particular job.

Operator action is required for some jobs, such as mounting requested magnetic tapes. The operating system
contains many features that minimize the need for operator commands through the keyboard. Automatic tape
assignment, for example, allows the operator to mount a tape and have the system determine which job is
using it, rather than having the operator tell the system which job the tape is for. Most jobs can proceed
without operator action, but the operator always has the ability to change the automatic functioning of the
system.

Normally, a user job does not communicate directly with the operator, although the capability is available
through control statements in the job and in some programs.

ROTATING MASS STORAGE

Rotating mass storage is a disk pack used to store operating system files and routines, user jobs, and user files.
Permanent files, which are files protected against accidental destruction and unauthorized use, must reside on
rotating mass storage.

Rotating mass storage is a random device, as opposed to magnetic tape which is a sequential device. On a
random device, information that is logically part of the same file might be physically scattered throughout the
storage areas of the device. The operating system is responsible for maintaining the logical order of a file.

No physical distinction exists between binary and coded information on rotating mass storage. Data from an
integral number of central memory words is transferred between a buffer in memory and the device with no
change. A file declared to be binary when it was written can be read as a coded file, and vice versa. Rotating
mass storage is the only device in which this is possible.

60493800 K 1-7

Storage space on rotating mass storage devices is assigned to a file as it is required by the file. When a job
creates a file, it does not request a particular size of file, and no preallocation occurs. Files on mass storage
grow as they are written and can overflow to another physical device.

All rotating mass storage devices belong to a logical grouping known as a device set. The installation configures
these sets to its own needs.

Public device sets hold system files and user files from any job.
Private device sets hold only files that a job specifically indicates should be on a private device set.

The user job selects the device set on which files are to reside by specifying a specific setname or by default.

UNIT RECORD EQUIPMENT
Unit record equipment is of two categories:

Standard unit record equipment is the line printer, card punch, and card reader necessary for the
operation of all systems.

Other unit record equipment can include graphics consoles, plotters, and paper tape readers and
punches. These are not a part of the basic system. The operating system defines codes pertaining
to files on these devices. but does not include the programs needed to operate the equipment. Non-
standard unit record equipment runs under control of software provided by an installation.

Standard unit record equipment runs under control of the part of the operating system known as JANUS. All
files to be processed by JANUS must be in a special format in which each card or line is terminated by a
word with 12 bits of zero in bit positions 0-11.

The card readers can accept, and the card punches produce, files punched with either of two different sets of
Hollerith punched codes. Binary punched cards can also be processed in two formats.

Various line printers are available. Models with removable print trains offer character sets with uppercase and
lowercase English, fonts with other languages, etc. Fewer unique characters on the train generally increase
print speeds. Depending on the code sent to the controller and the controller translation of that code, a
character that is produced on one printer can appear as a different character on another printer. For
example, a quotation mark output on one printer might well appear as a # on another. This often occurs
when the character desired is not present on the printer to be used for output.

When an installation has different types of unit record equipment, the job is responsible for providing informa-
tion in the format required for processing on a particular device.

MAGNETIC TAPE UNITS

The operating system supports both 7-track and 9-track magnetic tape units. When an installation has both
types of units available, the job is responsible for specifying the type of hardware unit required to process
a given tape. The system default is a 7-track tape. Both binary and coded information can be written.

1-8 60493800 A

For a binary tape, bit patterns are written to the tape as they appear in memory

For coded tape, 6-bit characters in memory are translated to a different 6-bit pattern, known as external
BCD,before they are written to the tape.

Density for a 7-track tape can be 200, 556, or 800 bits per inch (bpi).

A 9-track tape corresponds to tapes in industry-standard format. Both binary and coded information can be
written, but the information is not the same as 7-track binary or coded information.

For a 9-track binary tape, bits are packed, with three 8-bit characters on tape corresponding to four
6-bit characters in memory.

For 9-track coded tape, bits are either packed or are in 8-bit character codes; the two possible codes
are the 64-character ASCII and the 128-character EBCDIC characters.

Density for a 9-track tape can be 800 characters per inch (cpi), 1600 cpi phase-encoded, or 6250 cpi group-encoded.

Another type of control over recording of tape information deals with the number of characters that appear
between the physical blocks on the tape and how files and records are recorded. On both 7-track and
9-track tapes, one of three formats must be selected: SI, S, or L. Each offers advantages depending on the
use made of the tape.

EXTENDED CORE STORAGE

ECS is a second, supplementary form of memory that has two main uses. It can be used as a mass storage
device or as an auxiliary direct access memory. Its large amount of storage and very fast transfer rates make
it suitable for many tasks.

CDC CYBER 170 Model 176 systems have a form of extended memory different than other CDC CYBER 170
models but functionally similar. The CDC CYBER 170 Model 176 extended memory cannot be shared with
other systems and does not have a distributive data path (DDP) capability. Other minor differences are in
appendix D of this manual. References to ECS in the remainder of this document apply to extended memory
of all CDC CYBER 170 Models except as limited by the CDC CYBER 170 Model 176 differences described
in appendix D.

The use of ECS at any particular site depends on the options selected when the system is installed. Frequently
used operating system routines can be placed on the ECS library file, rather than in the central memory low
core library area, to reduce the size of low core used by the system without using rotating mass storage. In

a multi-mainframe environment, ECS might be used to link the two computer systems.

ECS can be used for buffering sequential files on public devices or for storing sequential or random files (ECS
resident files). Each job specifies whether or not a given file will be buffered through ECS or reside on ECS.
In this respect, ECS is the same as other mass storage devices except that ECS resident files cannot overflow
to other mass storage devices.

ECS can be accessed directly from a running program. In this case, a block of ECS is assigned to the user’s
control point. The block is delimited by RE (reference address for ECS) and FE (field length for ECS) fields
in the exchange package. These fields are analogous to the RA and FL fields for central memory. In this
mode, ECS is accessed by the ECS direct read/write hardware instructions which perform very high-speed block
transfers of user specified length between the ECS and central memory field length addresses specified by the
user. The main use of ECS in the direct access capacity is to hold large arrays and tables that do not fit in
central memory and would otherwise require partitioning and partial residence on disk, or to otherwise reduce
central memory requirements by moving the arrays and tables to ECS as their main residence.

60493800 E 1-9

REMOTE TERMINALS

Remote terminals are physically linked to the central site by communication lines. Logically, they are under
control of the portion of the operating system known as INTERCOM, INTERCOM allows a user at a remote
site to access the central site facilities. INTERCOM is controlled by the central site operator and might not

be available to remote terminals all the time the central site is in operation.

Remote terminals are of many different types and complexities. General categories of remote terminals are:
Teletype terminals, which might be a physical Teletype or a display terminal.
Display terminals, which include a keyboard and a display screen, and possibly a character printer.

Remote batch terminals, which have a card reader, line printer, and possibly a card punch attached.
Some remote batch terminals have a display screen.

All of the remote terminals provide interactive access to the operating system control statements. That is,
control statements can be entered and executed one at a time without being submitted as a complete job.-
The remote batch terminals allow complete jobs to be entered through the card reader and printed output

to be received. Users at remote terminals without a card reader can submit jobs constructed with INTERCOM
features or permanent files stored at the central site.

Different terminals operate in different character set modes. Some terminals can be reinitialized to accom-
modate either ASCII or BCD data; others run only in one mode at all times. Frequently, the line printers
of a remote terminal operate in a different mode than those at the central site.

A job can be submitted at one site and specify that its output is to be returned to another site. All job
output can be sent to any remote terminal, although it is usually not practical to send lengthy print files

to terminals without line printers. Files can be routed between remote sites and the central site in either
direction. Each terminal has an identifier assigned when communications are established between the terminal
and the central site. This identifier is used to speécify the location to receive files.

INDIVIDUAL PRODUCTS

In addition to the capabilities described later in this manual, the operating system includes several features
which in turn provide many user options. Several of these features and product set members that are referred
to by name in this manual are introduced in the following paragraphs.

INTERCOM

INTERCOM interfaces remote terminals with the central site computer. The central site operator must initiate
INTERCOM as a program before remote access is possible.

1-10 60493800 E

Commands entered at the terminal keyboard call for a variety of INTERCOM capabilities. The first command
at many terminals is LOGIN, which establishes the user’s authority to use INTERCOM; some terminals do not
require LOGIN.

INTERCOM has three distinct capabilities. All three are available from remote batch terminals; only the first
two are available from terminals without batch capabilities.

The interactive capabilities of INTERCOM encompass two types of commands. INTERCOM commands allow the
terminal user to receive status about files associated with that terminal, display contents of files, and send messages.
Any keyboard entry thatis not an INTERCOM command is assumed to be an operating system control statement.
Consequently, control statements that can be submitted as part of a job, except for magnetic type requests, can be
executed one at a time through INTERCOM with a few minor exceptions.

The file creating and editing capabilities of INTERCOM are the primary features of EDITOR. When the terminal user
calls EDITOR through a terminal keyboard command, subsequent keyboard entries can become part of a file being
created or updated. Interactive commands can also be submitted through EDITOR. When the created or updated file

isa source program, EDITOR allows the program to be compiled and executed through a single keyboard entry.
EDITOR displays the results on the display screen. When the file is a series of card images corresponding to a job

deck, another command causes the file to be entered into the input queue of jobs awaiting execution as though the job
had been entered as a card deck through a card reader.

The remote batch capabilities of INTERCOM give the remote terminal user commands for line printer and card reader
control. Jobs that originate through the remote batch terminals can be controlled to some extent through the terminal;
jobs that originate through interactive commands are beyond terminal user contro! until the job completes.

CDC CYBER RECORD MANAGER

CDC CYBER Record Manager is the software package that performs execution time input/output for many
members of the NOS/BE 1 product set. It is a common product described in full in the CDC CYBER Record
Manager manuals.

The operating system recognizes CDC CYBER Record Manager only as a central processor routine. The
operating system does not use CDC CYBER Record Manager for any function. Rather, all CDC CYBER
Record Manager capabilities are implemented through the standard operating system functions described in the
later sections of this manual.

CDC CYBER Record Manager defines five file organizations, eight record types, and four blocking types for
sequential files. None of these are known to the operating system in the same terminology or implementation,
although operating system actions and CDC CYBER Record Manager functions often result in an identical
sequential file.

COBOL programmers access CDC CYBER Record Manager through language statements. FORTRAN Extended
programmers can access its capabilities through language statements or calls to CDC CYBER Record Manager
routines. COMPASS programmers can use CDC CYBER Record Manager macros instead of the macros
described later in this manual. Sort/Merge and FORM users can use CDC CYBER Record Manager through
the language in which these utilities are called or through a FILE control statement available to all programs
using CDC CYBER Record Manager for execution input/output.

60493800 C 1-11

FORM

FORM is a file transformation utility. It is a common product described in full in the FORM Reference
Manual.

FORM can reformat files or records. As a file reformatting utility it has two capabilities:

Reformat files defined to CDC CYBER Record Manager as sequential, indexed sequential, direct, or
actual key organization. Files can be transformed into another of these organizations or into the same
organization with a different physical structure.

Reformat binary tape files in System/360 format for use under NOS/BE.

As a record reformatting utility, FORM has the capability to add or delete characters from each record, blank
or zero fill records, convert bit patterns to representations of characters or numbers, and in general change
the contents of a specific record. FORM can select all records or only particular records for processing.

FORM is called by a control statement or a COMPASS, COBOL, or FORTRAN Extended statement that
specifies the general operations to be performed. Detailed instructions for FORM are submitted as directives
that are part of the job deck or are on a separate file for a control statement call. Programs pass directives
to FORM through common blocks.

UPDATE

Update is a utility program used for modifying files of coded data. It allows a Hollerith punched card or
card image to be stored on rotating mass storage, while retaining the ability to modify file contents without
recreating the entire card file. Update is a common product described in full in the Update Reference
Manual. :

Systems programmers make frequent use of Update when they make local modifications to the operating
system or its products. Update is not merely a systems capability, however. Any file of character data can
be processed by the utility, whether that file contains a single program being converted from one language
version to another, a group of subroutines, or a series of independent statements that a COPY sentence
incorporates into a COBOL source program.

A specially formatted file called a program library is created when Update first manipulates a file. This
program library should not be confused with a library defined for Loader purposes. Update files, commonly
named OLDPL and NEWPL, are Hollerith card images with history information provided by Update. Files
identified as user or system libraries must contain assembled binary programs in a format suitable for loading.
Update program libraries must be manipulated only by Update.

Update is called by a control statement that specifies the general operations to be performed. Detailed
instructions for Update are submitted as directives that are part of the job deck or on a separate file.

More than 40 directives can be specified, giving the user a wide latitude in modifying the original program
library and otherwise manipulating files produced by Update. Among Update capabilities are:

Inserting or deleting cards

Dividing the file into decks for manipulation as a group

1-12 60493800 A

Declaring decks common so that a single copy can be used repeatedly without duplication
Temporarily or permanently removing corrections previously made
Producing a new program library incorporating present corrections

Producing a compile file of active cards returned to a format acceptable to assembler or compiler input

CDC CYBER LOADER

CDC CYBER Loader is the software package that places programs into memory so that they are ready for
execution. Loader input is obtained from local files and libraries. Upon completion of loading, execution
of the program is initiated if requested. CDC CYBER Loader is a common product described in full in
the CYBER Loader Reference Manual.

Loading also involves performance of services such as generation of a load map, presetting of unused core
storage to a specified value, and generation of overlays or segments.

60493800 J

1-13

JOB PROCESSING AND DECK STRUCTURE 2

A job is a sequence of control statements followed by optional source programs, object programs, data, or
directives. A job begins with the job statement and ends with an end-of-information indicator. Jobs exist as
physical card decks or images of card decks.

Jobs can enter the system in several ways:

Batch jobs on cards are read in through card readers at the central site. Batch jobs of card images are read
from a load tape under the direction of the central site operator.

Remote batch jobs on cards are read in through card readers at remote sites. Remote batch jobs of card
images are transmitted from a file created at a remote terminal. All remote batch jobs interface with the
central site facilities through INTERCOM.

Interactive jobs are control statements submitted one at a time from a remote terminal keyboard under
INTERCOM control. These jobs execute as a series of batch jobs created by INTERCOM in response to
individual keyboard entries. \
All batch jobs have the same characteristics no matter what their origin. Remote batch jobs differ from central
site batch jobs only in that output returns to the terminal and that remote jobs are subject to the limitations of
the physical equipment at the remote site. Although all remote sites might not have the capability to produce
line printer output, the file that normally would be printed is available on mass storage for display on the termi-
nal. The following information about job decks applies to both decks and deck images.

See the INTERCOM Reference Manual for specific details of output file handling and specific interface to the
operating system, as well as for interactive procedures.

All jobs in the system waiting to begin execution are collectively known as the input queue. Each job enters
the system with the name specified by the first five characters on the first card in the job deck. The operat-
ing system adds two unique characters to this name to distinguish it from all others in the system.

Once a job enters central memory and begins execution, the image of the job deck is known as a tile by the name
of INPUT. During job execution, a file with the name OUTPUT is generated by the operating system. When

the job completes execution, the file OUTPUT becomes part of the output queue. The output queue is the
collective name for output files remaining in the system when the jobs that generated them have completed execu-
tion. All print and punch files,and special disposition files such as plot, are part of the output qucue. As printers,
punches, or remote devices become ready, the operating system causes files from the output queue to be physi-
cally output. Files normally return to the user with the name of the job that created them.

Jobs do not read cards directly from the card reader; neither do they directly punch cards or print lines. All

job input and job output is stored on mass storage files and on job process images of card or printer files. Physi-
cal card reader, card punch, and line printer operations proceed under operating system, not user job, control.

60493800 A 2-1

DECK STRUCTURE

The first card of any deck (figure 2-1) is the job statement; the last card has a 6/7/8/9 multiple-punch in
column 1. Cards with a 7/8/9 multiple-punch in column 1 divide the deck into sections.’

/6 t——— End-of-Information Card

7 A=
8 r~
- 4

!

[}

1 /7 - 7/8/9 Card

] 8 o

["
Program, data, or 9 Ve
directives in the /

|

order that contro /7 7/8/9 Card
statements execute

1

I 18

]

—° /(lControl

s Statements

a
I
1, / MYJoB |— Job Statement

|

Figure 2-1. Sample Deck Structure

Control statements are instructions to the operating system or its loader. They are grouped together at the
beginning of a deck. Collectively, the control statements form a job stream. Individually, the control state-
ments are job steps.

Control statements execute in the order in which they appear in the job stream. Consequently, the order of
the control statements governs the order of other sections in the deck.

The user is responsible for structuring the job deck such that there is a one-to-one correspondence between
each control statement that reads from the file INPUT and the sections of the job deck. The operating
system handles each section of the job deck only once, unless the job specifies contrary handling. For example,

TWhen a job deck is being created as card images through the INTERCOM EDITOR, the *EOR and *EOF
entries result in the physical equivalent of 7/8/9 and 6/7/8/9, respectively.

2-2 60493800 E

consider two source programs to be compiled and executed with two different sets of data. When one pro-

gram is compiled and executed before the other is compiled and executed, the control statements and deck
structure must be:

DECKA.
COBOL.
LGO.
REWIND,LGO.
COBOL.
LGO.
7/8/9
first source program
7/8/9
data for first source program execution
7/8/9
second source program
7/8/9
data for second source program execution
6/7/8/9

Compile first source program and write binary file LGO.
Execute binary file.

Compile second source program and write binary file LGO.
Execute binary file.

If both programs were compiled before either was executed, the corresponding deck structure would be:

DECKB.

COBOL. Compile first source program and write binary file LGO.
COBOL,B=ABC. Compile second source program and write binary file ABC.
LGO. Execute binary file LGO.

ABC. Execute binary file ABC.
7/8/9
first source program
7/8/9
second source program
7/8/9
data for first source program execution
7/8/9
data for second source program execution
6/7/8/9

The preceding two decks illustrate the principles of all deck structuring.

SEPARATOR CARDS

One job is separated from another job by a card with a 6/7/8/9 multiple-punch in column 1. This card is known
as an end-of-information (EOI) card.

Within a single job deck, each section is separated by a card with a 7/8/9 multiple-punch in column 1. Once
on mass storage, these cards are represented by system-logical-record terminators of level 0, as discussed with
rotating mass storage files in section 3. A compiler or assembler encountering a 7/8/9 card image during
processing treats the card as an end-of-partition (EOP) or an end-of-file (EOF).

60493800 E 2-3

An octal level number O through 17 can be punched in columns 2 and 3 of a separator card. A level number
of only one digit can be punched in column 2. When columns 2 and 3 are blank, a level number of O is
assumed. Level numbers are not normally used on separator cards. JANUS, the system routine that controls
standard unit record equipment, converts a 7/8/9 level 17g card to the equivalent of a 6/7/8/9 end-of-information
card.

Separator cards can be used to indicate whether the cards following them are punched in 026 or 029 character
codes, as discussed in appendix A.

CONTROL STATEMENT SECTION

The first section of a job deck contains only control statements. Each control statement results in the execution
of a program in the central processor or in a peripheral processor. Many control statements call programs that
make entries in system tables; others call programs that perform utility functions such as file copy. Several
broad categories of control statements are:

Operating system functions such as assigning a tape unit to the job or routing a print file to a remote
terminal. These functions are fully described in section 4 of this manual.

Utility functions such as file copy or creation of user libraries. These functions are also described in
section 4 of this manual.

Loader functions such as load, but not execution of a program, and satisfying program references from
different libraries. Only the simplest LOAD and EXECUTE statements are summarized in this manual; the
CDC CYBER Loader Reference Manual has complete details of all loader functions.

Program call functions which are a request to the operating system to load and execute information
existing on a file attached to the job. This function is discussed in the following paragraphs.

Each of the control statements discussed in this manual is available to the job because the control statement name
is the entry point to a program on a system library named NUCLEUS.
LIBRARY USE
A library is a collection of programs in executable form accompanied by library tables that specify the content of
the library. The operating system uses the libraries as the source of programs with entry point names specified on
control statements.
Two types of libraries exist: system libraries and user libraries.

A system library is available automatically to all jobs. It is named in the library name table in central

memory resident (CMR). It is contained on a permanent file that can be read by more than one job at
a time, and parts of it can be contained in CMR.

24 60493800 F

A user library is a file formatted as a library, but it is not available to a job until it has been
explicitly brought to the job. The job might create the file before using it as a library, or it might
be a permanent file that a job would attach explicitly. A permanent file might be such that more
than one job could read it at once, but every job must explicitly attach the file. The EDITLIB
utility can be used to create a user library.

The particular libraries that are used for each job, or for each loading operation within a job, depend on the
library set defined by the job. The total library set consists of the global library set, the local library set, and the
system library NUCLEUS.

NUCLEUS is a system library that cannot be removed from the library set. It contains the items listed
under the heading System Texts in section 7.

The local library set is defined by the loader control statement LDSET(LIB= . . .). Local library sets
are valid only for the current load operation. At the start of each load operation, the local library set

is defined as empty unless the LIB parameter of LDSET is specified (see the CDC CYBER Loader
Reference Manual).

The global library set is defined by the loader control statement LIBRARY. Global library sets are valid
throughout the job or until another LIBRARY control statement changes the global library. At the start of
each job, the global library set is defined as empty.

The loader uses the library set in the following order.
Global libraries
Local libraries

NUCLEUS

Any program name on a control statement is loaded first if a file with that name is attached to the job. Then
the library set is searched and a program loaded for any matching entry point. In a simple job, the local library
set and global library set are both empty, so that the NUCLEUS library is the source of control statements exe-
cuted. Given the library set search order, however, any user program with the same name as a system program is
executed when the proper library set is declared in the job.

See the CDC CYBER Loader Reference Manual for further details of library use during loading.

LOAD SEQUENCE

A load sequence is a consecutive series of control statements that begins with a call that causes a program to be
loaded into central memory. A load sequence ends with a call that initiates execution. The following is a load
sequence with three control statements.

LOAD(ABC)
LOAD(DEF)
EXECUTE.

60493800 H 2-5

All control statements in a load sequence must contain only instructions for the loader. Both LOAD and
EXECUTE are loader statements. The other control statements that appear in this manual are not loader state-
ments, unless they are specifically identified as such.

Any control statement that calls for execution terminates a load sequence. Any name call such as LGO, ABC,
REQUEST(. . .),terminates a load sequence. In most instances, a control statement initiates and terminates a
single statement load sequence.

Other statements that are part of a load sequence or that affect the loading of programs are:

LOAD Loads modules from file specified.

LIBLOAD Loads modules specified by entry point names from the library named.
SLOAD Loads specified modules from the file named.

EXECUTE Completes load and executes.

NOGO Completes load and produces a core image on specified or default file.
SATISFY Specifies name of a library to be searched for unsatisfied externals.

LDSET Specifies a list of independent options that can preset central memory field length, alter
default rewind options, control load map generation, define the libraries in the local library
set, select loading error handling, and force loading or inhibit loading of routines.

SEGLOAD Specifies segmentation, dividing large programs into sections.

Refer to the CYBER Loader Reference Manual for a full description of these control statements.

LGO AND PROGRAM EXECUTION CALLS

All assembler and compiler calls allow the user to specify the name of the file to contain executable code. In the
absence of another name, a file with the file name LGO is created. A job does not necessarily have a file
with the name LGO.

When LGO is encountered in the job stream, the operating system searches for a file with that name. In the
default instance, such a file exists and it is loaded and executed. LGO contains the relocatable object code
produced by the compilers in the absence of a source program statement that directs absolute code. (Refer to
the CYBER Loader Reference Manual for absolute code information.)

Similarly, any file name presented among the control statements is assumed to contain a program that can be
loaded and executed. For example:

FTNS,B=OLIVER. Writes object code on file OLIVER.

OLIVER. Calls for load and execution of OLIVER.

Parameters can appear on the program call, depending on the object program. For instance, the FORTRAN
compiler produces object code that can process file names. The following program call substitutes files
TAPE?2 and TAPE3 for whatever file names are compiled into the object code.

OLIVER TAPE2,TAPE3.

2-6 60493800 L

The COBOL compiler, on the other hand, does not produce object code that can accept parameters on the pro-
gram call. The reference manuals for the individual products describe any such capability.

Any user program that can access the first 100 octal locations of the job field length can be written to accept
program call parameters. Positioning of the file named on a program call is controlled by instaliation default.

At most installations, rewind occurs automatically before loading. In a straightforward compile-and-execute job,
the file LGO or its equivalent need not be rewound.

When more than one program is written on LGO, however, manipulation of LGO might be required. If the first
program is a main program and the second is a subroutine called by the main program, a single call for LGO
rewinds the file, loads both programs, and executes.

If the two programs are independent, however, execution stops at the end of the first object program. A second
call to LGO rewinds the file, such that the first program executes a second time, rather than having the second
program execute. The previous example job DECKA shows a deck structure with one file name that executes
two independent programs with a control statement to rewind this file so that the second program overwrites the
first. An alternative is example DECKB in which the second independent program is written to a separate file and
executed by a call with the name of the file ABC.

COMPILER AND ASSEMBLER CALLS

The following names should be used on the program execution call statement to assemble or compile a user
program.

Source Language Ifn Source Language Ifn
FORTRAN Version 5 FTNS. SYMPL SYMPL.
FORTRAN Extended Version 4 FTN. Sort/Merge SORTMRG.
COBOL Version 5 COBOLS. PERT/TIME PERT66.
COBOL Version 4 COBOL. APT APT.
ALGOL ALGOL. QUERY UPDATE Version 2t Qu.
ALGOL Editor ALGEDIT. QUERY UPDATE Version 3% QU.
COMPASS COMPASS. FORM FORM.
SIMSCRIPT SIMS. Data Definition Language 2 DDL.
BASIC BASIC. Data Definition Language 3 DDL3.

Parameters on the control statements are used for such functions as:

Naming the file containing the program to be assembled or compiled (default name INPUT)

Naming the file to which the program is to be translated in object code (default name LGO)

Producing source language or object code listings of the program (listing options such as S in FTNS)
Parameters for many products are the default [=INPUT, B=L.GO, and L=OUTPUT. Refer to the reference
manual for a particular compiler for a full description of parameters that can appear on the control statement.
When a compiler or assembler call specifies INPUT as the name of the file containing the source program,
the next unprocessed section of the job deck must contain the program.

tOnly one version is active on a system. The call is the same regardless of the version.

60493800 K 2-7

EFFICIENT CONTROL STATEMENT ORDERING

Placement of some control statements, particularly those that cause hardware devices to be assigned to a job, can
affect the efficiency with which all jobs execute. Parameters on those statements can also affect job throughput.

A REQUEST control statement for a magnetic tape assigns a tape drive unit to the job as soon as the tape is
made ready and the operating system is aware of the tape location. The tape unit remains assigned to the job
either until the job executes a control statement that releases the unit or the job terminates.

The following examples presume a job compiles a FORTRAN program and executes the program twice
using different sets of data on individual tape volumes.

An inefficient ordering of control statements is:

INEFFICIENT,MT2 Job statement indicates two tape units required.
REQUEST,DATAMT. ASSIGN 3456.

REQUEST,DATA2MT. ASSIGN 3457.
FTNS.
LGO.
LGO.

The same operations performed more efficiently are:

EFFICIENT MT1.

FTNS.
REQUEST,DATAMT,VSN=3456,NORING.
LGO.

UNLOAD,DATA.

REQUEST,DATA2 MT,VSN=3457 NORING.
LGO.

RETURN,DATA2.

The second job is more efficient in several ways:

Only the number of tapes required at one time is indicated on the job statement, not the total required
in all. Jobs with tape requirements are captured in a tape queue when they enter the system. They are

not released to the input queue, and consequently cannot begin execution, until certain tape availability
requirements are met.

A tape is requested when it is required, not before. Since the compiler does not use the data tape, the
tape is not requested until after compilation is complete.

The VSN parameter on the REQUEST control statement permits the operating system to assign the mounted
tape to the job without operator command. Without VSN information, the operator must inform the oper-
ating system of the location of the tape.

The tape unit is returned to the system when it is no longer needed, instead of having the job hold the unit
until job termination.

In general, control statement placement can affect job execution time whenever a magnetic tape or private device
set is used.

2-8 60493800 L

DIRECTIVE SECTION

Directives are control information that does not appear within the control statement section of a job deck.
They are required by several of the utilities, including EDITLIB and COPYN, and by several common prod-
ucts such as Update and FORM.

When directives specify instructions which will not fit on a single control statement, the programmer has
the following options.

Placing directives on a file and making the file available to the job before the directives are nceded.
Placing the directives within the job deck.

The name of the file containing the directives must be specified in the call to the utility or product. The
default file name for most calls is INPUT.

When directives are part of a job deck, they must appear in a separate section. The deck must be struc-
tured such that the directives are the next unprocessed section of the deck at the time the utility or
product executes.

DETAILED JOB FLOW THROUGH SYSTEM

The following information describes the system procedures that occur as a job passes through the system.
An understanding of this information is not required for system use.

From the time a job is assigned to a control point and execution is completed, many other jobs are being
executed. Each job is assigned a job descriptor table (JDT) ordinal when it is first assigned to a control
point. If the scheduler routine swaps out the job (returns it to mass storage in its present state of execu-
tion), the JDT ordinal maintains the identity of the job when the control point association is lost. A job can
be swapped out by the scheduler when a job with higher priority enters the system or when the job is
delayed waiting for a resource such as a disk pack. A job can also be rolled out, freeing central memory but
retaining a control point, while awaiting operator action. The scheduler directs swapping and rolling, taking
into consideration the relative needs of batch jobs and interactive jobs. When jobs are swapped or rolled

into central memory, they resume execution at the point of interruption.

EXAMPLE JOB

The manner in which control statements establish user program handling is illustrated by following a sample
job as it is processed. For example, consider a job to assemble and execute a program written in COMPASS,
with the output to a line printer. The user gives the operator a tape to be used for output. In the sample
job that follows, the tape has a label containing 1972 as the volume serial number. The job would be
-structured as illustrated in figure 2-2.

60493800 A 29

Terminates data
and job deck

©o~ND
H

/
W
Data
/7
. 8
Terminates 9 7
source program ‘ P
v A
/ COMPASS
Program
7
: 8
T t
erminates 9)
control /
statements '/ REQUEST,TAPE1,MTE,RING.
/ COMPASS,
JOBNAME MT1.
Control
|| statements
o

Figure 2-2. Sample COMPASS Job

When the sample job is input through the card reader, the operating system calls a PP routine to translate the job
statement, check the validity of its entries, and assign a priority to the job. Next the PP copies the job through

a central memory input/output buffer onto mass storage. At this point, the operating system identifies the job
by its file name JOBNAOI (from the job statement).

When the job is in the input queue of jobs awaiting execution, it comes under control of a scheduling
routine. The following factors are considered in assigning jobs to available control points: the priority
entered with the job, available system resources such as central memory, direct access ECS, and tape units; and
the total time the job has been in the system. A job descriptor table ordinal is assigned to the job. This

ordinal is used to identify the job while it is in execution regardless of whether it is in central memory
or not.

The job then waits for the scheduler to assign it to a control point. When a control point becomes available,
the scheduler assigns the job and initializes the control point with pertinent information about the job. The
system saves the assigned job name for later use.

2-10 60493800 H

The job file name is changed to INPUT and the file is positioned at the statement following the first 7/8/9
card (the beginning of the user’s program). The first control statements are read into a buffer within the
related control point area in low core, and are ready for execution. As job output is created, it is written to
a file named OUTPUT.

Accounting processing, if selected by the installation, occurs as the first step of actual job execution. Account-
ing information extracted from the job statement or the statement following it is validated and saved for later
use by the system. The accounting information defined by the system can include such items as name, account
number, project number, etc. If accounting is not selected by the installation, as in this example, accounting
information need not be present.

After accounting processing, the system copies the BATCH system bulletin to the job OUTPUT file. If the
installation has not specified BATCH system bulletin information, no information is written to the OUTPUT
file. The installation can specify other standard procedures to be executed at this time.

Upon completion of all standard procedures, job control is advanced to the second statement, COMPASS,
which directs assembly of the user’s program. The system requests the loader to load the COMPASS assembler
into the field length. Control passes to COMPASS to assemble the next cards on the file INPUT and put the
object program on the file LGO. The assembler stops when it reads a 7/8/9 card. [For assembly or compila-
tion, the user can designate files other than INPUT as an input file and other than LGO as binary output by
entries on the COMPASS control statement. However, unless such alternative files are named on the assembly
or compilation card (the COMPASS statement in this case), INPUT and LGO are used by default.] COMPASS
also writes a source language listing of the program onto a file named OUTPUT. At job termination OUTPUT
is printed unless the user specifies otherwise.

Control then advances to the REQUEST statement. The VSN parameter provides the volume serial
number for the tape label. The system automatically assigns the tape if it is mounted. (If the installation
does not choose the automatic assignment feature, the REQUEST statement appears on the operator con-
sole, and the operator must assign the tape to the job manually.) Control proceeds to the next control
statement, LGO.

The LGO statement directs program execution. The loader loads the LGO file containing the user’s program
in object code into central memory and writes a map of this program onto the file OUTPUT. Library sub-
programs required are loaded also. Control passes to the user’s program for execution, input data is read
from the next element of the INPUT file (user’s data), and output is written on TAPEl1 and OUTPUT.

As each control statement is executed, it is copied onto the job and system dayfiles. Control statement pro-
cessing stops when the first 7/8/9 card is encountered. NOS/BE writes job accounting information and job
statistics on the dayfile and copies this file to OUTPUT, which then is detached from the control point. The
name OUTPUT is changed to JOBNAOI (the assigned job name) and TAPEI is released so that the tape unit
can be available for another job. INPUT and LGO are cleared and released from NOS/BE control. All equip-
ment associated with the job is released from control point n and assigned to control point 0, where it can
be requested by other jobs. The control point area and field length in central memory are made available for
other jobs. When a printer is available, JOBNAOI, containing the assembly language program listing, load
map, output, and dayfile, is printed. A generalized description of the job flow is shown in figure 2-3.

60493800 K 2-11

CONTROL

CONTROL STATEMENT BUFFER

POINT
AREA

L o

A

A WN -

CENTRAL MEMORY

Job read into card reader

Job read through buffer onto disk

Job in mass storage input queue

Job assigned control point; goes into exécution

5
6
7

Some output to a tape

Job assigned to output queue
Output to printer through
buffer to printer

Figure 2-3. Job Flow at Central Site

EXAMPLES OF JOB DECK ARRANGEMENTS

The order in which control statements are arranged depends upon the purpose of the job and the program it
contains. The following examples illustrate typical arrangements. Automatic rewind before a load is assumed.

1. JOBA requests a tape file named SALLY and loads and executes an object program from that file.

2-12

JOBA(MT1)
REQUEST(SALLY MT,VSN=123456)
SALLY.
6/7/8/9

60493800 L

5

3.

JOBB.

FTNS.

LGO.

7/8/9

FORTRAN Program
6/7/8/9

JOBC,T50.

INPUT.

7/8/9

Program on Binary Cards
6/7/8/9

JOBB, containing a FORTRAN program on Hollerith cards, compiles, loads,and executes that program.

JOBC, containing a program on binary cards, loads and executes that program.

4. JOBD compiles and executes a FORTRAN program and executes this program with one set of data, and

5. JOBE compiles a program and adds it to a user library named MYLIB.
utility during library manipulation are the last section of the deck.

then with another.

JOBD.

FTNS.

LGO.

LGO.

7/8/9

FORTRAN Program
7/8/9

First Data record
7/8/9

Second Data record
6/7/8/9

JOBE.

ATTACH MYLIB,ID=MINE.
COBOL.

REWIND,LGO.
EDITLIB,USER.

7/8/9

COBOL program

7/8/9
LIBRARY(MYLIB,0LD)
ADD(NEWPROG,LGO,AL=1)
FINISH.

6/7/8/9

60493800 L

Directives required by the EDITLIB

2-13

JOB TERMINATION DETAILS

When a job is processed without error, normal termination activity begins upon reaching the end of the control
statements or some form of EXIT control statement. First, execution time of the job is written onto the job
dayfile and on the system dayfile. Then, the job dayfile is rewound and copied onto the file OUTPUT. Next,
OUTPUT and any other files on mass storage designated for output, such as PUNCH or PUNCHB, are rewound
and placed in the output queue. QUTPUT is designated for the printer, and PUNCH (Hollerith) and PUNCHB
(binary) for the card punch by disposition codes. These files names are then changed to the job name and
assigned to control point 0.

The following files are treated as special cases. Unless the user overrides the default disposition of such
files, they are designated for output at job termination and automatically assigned a specific disposition code.

OUTPUT PUNCH FILMPR HARDPR PLOT
PUNCHB FILMPL HARDPL P8oC

Files on magnetic tape are rewound (unloaded if the programmer requested save status) and released from the
system. Permanent files are released from the job and returned to permanent file manager jurisdiction; private
device sets are dismounted. All remaining files in central memory and mass storage associated with the job
including INPUT, LGO, and the job dayfile, are cleared and released. The job is released from the control
point area.

All hardware devices assigned to a job are assigned to control point O, so they can be reassigned to other jobs.
At this point, only files in the output queue relating to the job remain. When an output device of the type
requested by the file’s disposition code is free, the file is output through that device.

ABNORMAL TERMINATION

When a fatal error occurs, the operating system sets a flag indicating the error. If the error has been previously
identified in the current job step by a call to RECOVR, control is returned to the user program for processing.
Otherwise error processing continues.

A diagnostic message that reflects the reason for abnormal termination is written to the job dayfile. ¥ A standard
abnormal termination dump then occurs. The dump appears on the file OUTPUT with the heading DMPX.

This dump shows the contents of the exchange package for the job, the contents of central processor registers,
and the contents of words before and after the location at which the program stopped. See the DMP control
statement for a description of the dump output.

The operating system then clears the error flag and searches the control statements for an EXIT statement.
Depending on the parameter of EXIT and the type of error that occurred, processing might resume with the
first control statement after the EXIT statement. See the EXIT control statement for a description of the
different error conditions and EXIT parameters. If no EXIT statement exists, the job terminates as previously
described for normal job termination.

tWhen a file is designated for output (output, punch, and so forth), the system finishes the write operation
in progress at the time of termination.

2-14 60493800 E .

OPERATOR COMMAND TERMINATION

When the operator types in a DROP command, the job terminates prematurely. End-of-job procedures are
initiated as described under Abnormal Termination, earlier in this section.

When the operator types in a KILL command, the job terminates prematurely. All files associated with the
job, including the QUTPUT file, are dropped regardless of name or disposition. Permanent files are treated
the same as for normal termination. The programmer does not receive a dayfile listing.

When the operator enters a RERUN command, the job is terminated, and its INPUT file is returned to the
input queue so that it can be run later. The OUTPUT file is dropped, and a new output file is created. The
job dayfile is copied to the new output file called a preoutput file and becomes the QUTPUT file when the
job is run again. The OUTPUT file for the rerun job will contain the dayfile from the previous partial run
of the job and the output and dayfile from the complete run of the job.

Permanent files and mounted private device sets for a rerun job are treated as for normal termination. All
other files, regardless of name or disposition, are dropped.

In some cases, a job might perform a function which would make it impossible to restore conditions to their
initial state before the job was run. For example, if a job writes on an existing permanent file, that informa-
tion cannot be erased. When such a job is rerun, results are unpredictable. To avoid this condition, the sys-
tem will set a no-rerun flag in the control point area to reject a RERUN type-in by the operator. The no-
rerun flag will be set when the job has performed a catalog, purge, alter, rename, or extend of a permanent
file, modified a permanent file, or added or deleted a member of a device set.

Should a job be caught at a control point during a deadstart recovery, it is either dropped or rerun
depending upon the no-rerun flag. If possible, the job is rerun; however, if the flag indicates no rerun, the
job will be dropped and an appropriate message added to its dayfile. Any job swapped out luring a dead-
start recovery will be given a message indicating that recovery was performed.

JOB DAYFILE

The last item of the file OUTPUT from any job is the job dayfile. It gives a history of job execution. Any
program or job that terminates abnormally produces dayfile messages identifying a fatal error. Normal job com-
pletion is indicated by the absence of fatal error messages.

Each control statement that is called to execution is listed in the dayfile. System response to a control state-
ment might follow. The dayfile shows, for example, the VSN of a scratch tape assigned. Such information
might be needed as input in another job using that tape. The NOS/BE Diagnostic Handbook gives the meaning
of status and error messages originating in the operating system. Messages that originate from a member of
the product set are explained in the individual product reference manual.

60493800 E 2-15

The programmer can cause information to be sent to the job dayfile by using the COMMENT control statement
or the MESSAGE macro in a COMPASS program. Several other language processors also allow messages to be
sent to the operator or to the dayfile. :

Figure 2-4 shows a typical dayfile.

mfi system level mm/dd/yy
16.42.19,8BASIC60 FROM
16.42.20.IP 00000192 WORDS - FILE INPUT , DC 00
16.42.20.BASTIC31,TH0,P2,MT1.
18.42.26 .REQUESTI(COMPILE, *Q)
16.42.27 REQUEST(OLDPL s EoHY o VSN=4174 ,NORING)
16.43.50.(MT3I0 ASSIGNED)
16,44 .36, UPDATE(QoD,8, *==)
164k 38,MT30 VOLUME SERIAL NUMBER IS 004174
16.45.58. UPDATE COMPLETE.
16.45.59.ROUTE(COMPILE OC=IN)
164559, UNLCAD (OLDPL)
16.46.06.0P 08801920 WOROS - FILE OUTPUT , DC &80

16.46.07.MS 3584 WORDS ¢ 3584 MAX USED)
16.46.07.CPA 2.171 SEC. 2.171 ADJ.
16.46.07.CPB 1.164 SEC. 1.164 ADJ.
16.46.07.10 14.163 SEC. 14.143 ADJ.
16.46.07.CH 285.807 KWS. 17.444 ADJ.
16.46.07.SS 34.923

16.46.07.PP 34.835 SEC. DAYE mm/dd/yy

16.6.87.EJ END OF JOB, **

Figure 2-4. Sample Dayfile

The system header identifies the system on which the job executed. Installations might change the information
given on this line. .

mfi Mainframe identifier.
system level Operating system level.

mm/dd/yy Date the operating system was built; time and type of deadstart recovery appears if
recovery has occurred.

The first line after the system header gives the name of the job as modified by the operating system to make
the name unique among all jobs and the job origin in the following format.

jobname FROM sss/tt
jobname Unique name assigned by the system.
§8S Source mainframe ID (blank if sss is the same as mfi).
tt Terminal ID (blank unless the job was sent from an INTERCOM terminal).

2-16 60493800 F

The lines giving statistics about the input and output files have the following format.

IP nnnnnnnn WORDS — FILE Ifn, DC dc

or
OP nnnnnnnn

P

oP
nnnnnnnn
Ifn

dc

WORDS — FILE Ifn, DC dc

Indicates that this message refers to an input file.
Indicates that this message refers to an output file.
Decimal number of words in the file.

Logical file name.

Disposition code of an output file. DC 40 is for print on any printer. See the DISPOSE
macro for a list of disposition codes.

Accounting messages are added to the dayfile at the end of the job and each time a SUMMARY control state-
ment executes. Figure 2-5 shows sample accounting messages.

MS aaaaaaaa WORDS (bbbbbbbb MAX WORDS USED)
CPAccccccc.ccc SEC. dddddddd.ddd ADJ.
CPBccceccco.ccc SEC. dddddddd.ddd ADJ.
IOeeeceeceece.cee SEC., ffffffff.fff ADJ.
CMgggegegg.ggg KWS. hhhhhhhh.hhh ADJ.
ECiiiiiiii.iii KWS. jjjjjjjj.jjj ADJ.
SS kkkkkkkk.kkk ADJ.
PPmmmmmmmm . mmm SEC . DATE mm/dd/yy

Figure 2-5. Sample Accounting Messages

All values are in decimal, with leading zeros omitted:

aaaaaaaa

bbbbbbbb

cccececc.cee

dddddddd.ddd

geceeecee.cee

fEEEEefe £

60493800 E

Mass storage currently used by the job, not including the INPUT file nor any
permanent files the job attaches. Newly created permanent files are inctuded in
the word count. This message is issued only if the job has executed a LIMIT
control statement or if the installation has established a mass storage limit.
The decimal value in words is computed by multiplying the number of record
blocks used by the number of words in a record block.

Maximum mass storage used by the job. Otherwise, the same as aaaaaaaa.
Central processor time; dual processors are reported separately.

Adjusted central processor time for each processor. The time is multiplied by
an installation selected weighting constant.

Input/output time.

Adjusted input/output time. The time is multiplied by an installation selected
weighting constant.

o

-17

£88888868-888

1333303) -133

kkkkkkkk.kkk

mmmmmmmim.mmin

mm/dd/yy

Central memory kilo-word seconds. This value indicates central processor usage,
and is a sum of terms, each term computed as follows:

Central processor time and I/O time are weighted, to compensate for over-
lapped I/O processing, and then added together. This sum is multiplied
by central memory field length divided by 1000 octal.

Each time central memory field length changes, a new term is computed.
Thus, the number of terms summed is the same as the number of times
central memory field length changes during job execution.

Adjusted central memory kilo-word seconds. Statistic is the same as control
memory kilo-word seconds with weighting factors selected by the installation.

Extended core storage kilo-word seconds. This value is computed in the same
way central memory kilo-word seconds are computed, except ECS field length

divided by 1000 octal is used.

ECS kilo-word seconds adjusted by installation selected weighting factors.

System seconds. The sum of the adjusted values of central processor time, I/O
time, central memory kilo-word seconds, and ECS kilo-word seconds.

Peripheral processor time.

Date job was run.

60493800 L

FILE CONCEPTS AND STRUCTURE 3

A file is defined as a set of information that begins at beginning-of-information, ends at end-of-information,
and has a file name.

This section summarizes job responsibilities for files and the devices on which they reside and introduces the
control statements used to process different types of files. Structure of files within the system is also defined.

GENERAL FILE USAGE

A job is responsible for:
Specifying the file name by which a file is known during the job
Assigning the file to a particular device, if necessary

Disposing of the file if it is to be preserved when the job ends

NAMING FILES

Each file associated with a job is known by its file name. The operating system associates two files with each
job, one with the file name INPUT and another with the file name OUTPUT. All other file names must be
specified by the job. The file name is valid only for the duration of the job. The name is not part of the
file itself; it is not written in the label of a file on tape, and it is not a part of the permanent file table
information.

Each file name must be unique within a job and must not duplicate the name of a multi-file tape set associated
with the job. File names are one through seven letters or digits and must begin with a letter.

RESERVED FILE NAMES

File names that begin with ZZ are reserved for use by the system. User jobs are not prevented from
creating or reading files with the name ZZxxxxx, but use of these files might adversely affect the job.

SPECIAL-NAMED FILES

Special-named files are those with an inherent set of characteristics and disposition. The following paragraphs
contain descriptions of some of these files.

60493800 L 3-1

INPUT

INPUT is the name of the file with the images of the job deck. Each separator card in the deck, or its
logical equivalent, is an end-of-partition when processed by system routines in the operating system or the
standard compilers. The separator cards trigger end-of-file processing. Each card image is a separate record
to compiler and assembler programs.

OUTPUT
Every job has a file of the name QUTPUT associated with it. OUTPUT is created by the operating system
on a queue device. The operating system writes the job dayfile to this file when the job terminates. Other
information that might appear on QUTPUT as a result of processing by system routines is:

Source program listing produced by compiler

Object listings requested by compiler call in the job

Diagnostics or error messages produced during compilation

Results generated during program execution

Exchange package dump generated by the operating system when a program aborts during execution
OUTPUT always is printed or otherwise associated with a remote terminal when a job ends. The job can
rewind OUTPUT and overwrite existing data, or it can evict all data with a DISPOSE or ROUTE control
statement. However, it cannot prevent the job dayfile from being printed at batch job termination.
OUTPUT is a print file with a maximum line length of 137 characters. The first character is the carriage
control character which must be supplied by any user program that writes to OUTPUT. System routines
supply the carriage control as needed. The remaining 136 characters of the line can be printed. Some
system routines have the ability to format OUTPUT for Teletype device processing with a line length less
than 136 characters.
Any file copied to OUTPUT is printed at the end of the job. If the file does not have carriage control
characters at the beginning of each line, the COPYSBF utility should be used to shift each line one character
to the right and insert a leading blank for single spacing control.
PUNCH
PUNCH is a file with an associated disposition code. Any data written to the file is assumed to be display
code. The file is punched in Hollerith format at the end of the job.
PUNCHB
PUNCHB is a file of binary information. Any data written to it is assumed to be binary. The file is punched
in standard binary format at the end of the job. Any assembled or compiled program that is written on

PUNCHB is an object program that can be loaded and executed by specifying the name of the file on which
the program resides.

32 60493800 E

P8OC

P8OC is a file of binary information. Any data written to it is assumed to be binary. The file is punched in
free-form binary format at the end of the job. They are used only in special circumstances.

OTHER SPECIAL-NAMED FILES

Files with names FILMPR, FILMPL, HARDPR, HARDPL, and PLOT also have an associated disposition. The
operating system defines codes for these files, but does not supply the routines needed to drive the associated
hardcopy or microfilm devices. Only some installations have these devices.

ASSIGNING FILES TO A JOB

Before a file can be read or written, the operating system must be informed of the device on which the file
resides. If a file is not associated with a specific device before it is created, it is written on a public mass
storage device at the time an executing program calls for file open. The job does not need to inform the
system of the residence of files on mass storage unless the file has special characteristics.

Files that exist only for the duration of the job are known as scratch files. They are created as they are
needed and destroyed when the job terminates. The INPUT file for the job, temporary files written by the
compilers during compilation, and some user files are useful only for a short time. Scratch files are created
on mass storage as the file is referenced. They need not be specifically requested.

The devices on which rotating mass storage files are written are divided into two classes, public device sets
and private device sets. The programmer determines the device on which a file resides by the use or absence
of the REQUEST control statement and the SETNAME control statement or parameter. Public and private
device sets are described later in this section.

Situations in which it is necessary to inform the operating system of the device on which a file is to be
created include those when:

A file is to be subsequently declared a permanent file with a CATALOG statement. Such files must be
referenced on a REQUEST control statement with a PF parameter.
A file is to be released to the output queue for print or punch processing. Unless the file name is

OUTPUT, PUNCH, PUNCHB, or P80C, a REQUEST control statement with a Q parameter is required.

A file is on magnetic tape. All tape files require a REQUEST or LABEL control statement that de-
scribes the characteristics of the tape data format, label, and recording mode.

A file is to reside on a private device set. A MOUNT control statement is required to associate the

private device set with the job. Subsequently, each file that is to reside on the device set must be
referenced in a REQUEST control statement specifying the device set name.

60493800 F 3-3

Existing files that must be specifically associated with the job include the following.
All tape files Tape files require a REQUEST or LABEL control statement.

Permanent files Permanent files are associated with a job through an ATTACH or GETPF
control statement.

Private device set files Permanent files are attached with an ATTACH control statement that
names the device set.

The file INPUT and all other special-named files described are assigned by the operating system to a mass
storage device designated for input and output queue files.

DISPOSING OF FILES AND EQUIPMENT

Temporary or permanent status is controlled by the programmer. All files created on mass storage are
temporary files that disappear when the job terminates, unless the job includes steps to preserve the file. A
file can be preserved on mass storage or on external media by transferring it to printed pages, punched cards,
or magnetic tape.

Files are preserved in printed or punch card form when they are assigned a disposition code that results in
processing by the line printer or card punch. Disposition codes are described in DISPOSE and ROUTE control
statements and macros, and Special-Named Files.

Files are preserved on mass storage by cataloging them as permanent files. Permanent files are explained later
in this section.

Normally, all files assigned to a job are retained by that job until termination. All files currently associated
with the job are called local files. When the files reside on non-allocatable devices such as magnetic tapes,
both the file and the hardware device are unavailable to other portions of the system for the duration of the
entire job even though the file is in process for only a short part of the job.

When DISPOSE, ROUTE, UNLOAD, or RETURN is used, files can be released before job termination, making
both the file name and the resident device available for other uses. Files named in UNLOAD or RETURN
are unavailable for the remainder of the job. An OPEN macro issued later in the job creates another file.

New files to be retained between jobs as permanent files on mass storage must be cataloged as permanent files
before the job ends. Existing permanent files return to permanent file manager jurisdiction when they are
referenced in either an UNLOAD or RETURN control statement or macro. They are no longer available to
the job until referenced in a subsequent ATTACH.

FILE STRUCTURE

All files on rotating mass storage are implemented through software conventions known as system-logical-records
and physical record units. These conventions are also applicable to magnetic tape in scope internal (SI) format

and card files, although the physical representations of these files are not precisely the same as for mass storage

files.

3-4 60493800 J

The following paragraphs describe the structure of files produced by the system. They define terms used
throughout this manual, such as:

System-logical-record (equivalent to SCOPE logical records)

Level terminators
Physical record units

Partitions

SYSTEM-LOGICAL-RECORDS AND PHYSICAL RECORD UNITS

A physical record unit (PRU) is the amount of information that can be accessed in a single read or write

operation for a given device. On rotating mass storage, a PRU is equivalent to the contents of 64 central
memory words.

One write operation from a higher level language program usually does not result in the creation of a single
PRU, however. Routines called by compiler programs block program data in a central memory buffer during
program execution, so that one record generated by the program can become part of a single PRU or a string
of PRUs containing records from write calls issued by a program.

System-logical-records are written as one or more PRUs, the last of which is a short PRU or a zero-length
PRU containing a record terminating marker. The terms short PRU and zero-length PRU refer to the amount
of valid user data within the PRU, not to the physical size of the PRU.

A short PRU contains fewer than 64 words of user data followed by a system-supplied record terminator
at the end of user data.

A zero-length PRU contains a system-supplied record terminator, but does not contain any user data.

When user data does not fill the tast PRU needed to write a system-logical-record, the record terminator is
appended to the data and the remaining space in the PRU is ignored. If the record terminator cannot be
accommodated in the last PRU with data, a zero-length PRU is created to hold the record terminator. A
zero-length PRU has only system information.

The record terminator for a system-logical-record contains a level number of 0 through 17¢ to indicate the
relation of that record to other records in the file. The lowest level is O; it is associated with a single system-
logical-record. A higher level number defines a set of records that begins immediately after the last record of
that level and continues through all system-logical-records of a lower level number until the end of a record
with that level or a higher level number is encountered.

A level number of 17g establishes a partition boundary for the file. Level 17g always is recorded in a zero-
length PRU. Level 17g records are written in response to a COMPASS macro WRITEF and to compiler pro-
gram requests to close a file or to write an end-of-file. When a file has only one partition, the level 17
terminator marks the logical end of the file. However, a file can contain any number of partitions defined
by level 17g before the physical end of the file.

60493800 E 3-5

The following lists summarize rotating mass storage file structure.

Physical Structure Logical Interpretation
One or more PRUs terminated by a short or System-logical-record of level indicated; sets
zero-length PRU of level O through 16g. end-of-record bits in system tables.
One or more PRUs terminated by a zero- Partition; sets end-of-partition bits in system
length PRU of level 178. tables; end-of-file exits occur.
End of mass storage allocated in system End-of-information; sets end-of-information
record block table (RBT). bits, if any, in system tables or sets

end-of-partition bits.

System-logical-records with particular level numbers can be accessed through SKIPF, SKIPB, COPYBF, and
COPYCF control statements and through the COMPASS macros SKIPF, SKIPB, and READSKP.

A system-logical-record of level 16g has special meaning to the checkpoint/restart feature of the operating
system. Consequently, level 16g should not be specified in user programs that might be checkpointed.

Sequential files are written directly in system-logical-record format. Random files are implemented through a
higher-level structure imposed upon the system-logical-records. Two types of higher level structures are:

Name/number index random files using operating system routines described later in this section

CYBER Record Manager files using the capabilities of the CYBER Record Manager. These
are described in the CYBER Record Manager manuals.

FILE DIVISIONS

The physical representation of beginning-of-information and end-of-information depends on the storage device
as follows:

Device Beginning-of-Information End-of-Information

Card deck Start of first card in deck Card with 6/7/8/9 multiple-punched
in column 1

Labeled magnetic tape file Start of data after labels Start of EOF label

Unlabeled SI format tape Start of data Start of EUTI label

Unlabeled S or L format tape Load point Undefined

Mass storage file Start of data in system table End of data designated in system
table

ECS Start of data in system table End of data designated in system
table

36 60493800 J

The operating system recognizes these divisions within a file:

Partitions are divisions within a file. On a mass storage file or a tape in SI format, a partition is
synonymous with a system-logical-record of level 17¢. On an S or L tape, a partition is indicated by
a tape mark. All files have at least one partition.

System-logical-records of level O through 16g are defined by the operating system on SI format magnetic
tape and rotating mass storage. These records are divisions of a partition.

Zero-byte terminated records are divisions within a system-logical-record or within a partition of an S or
L tape. These records are the representation of a single print line or single punch card processed by
the JANUS routine of the operating system.

Tapes in S or L format do not have system-logical-records. For some purposes such as copy of a coded
record, the operating system recognizes each physical record recorded on the tape as a single record that
is logically equivalent to a system-logical-record.

The operating system recognizes only the previous divisions. Individual products that are supported by the
operating system have different definitions of the term record. For instance, CDC CYBER Record Manager
defines eight types of records, only one of which (S type) is equivalent to a system-logical-record. CDC
CYBER Record Manager uses a slightly different definition for some record types. From a program stand-
point, a record is usually associated with a single read or write request.

DEVICE SETS

All rotating mass storage devices attached to a system are grouped into device sets. - One device in a set is
designated as the master; it holds all tables related to the set. Each device in the system belongs to one and
only one set. Two types of device sets exist:

A public device set is always available to all jobs. It is used by -the system to hold system files,
permanent files, and special-named files such as INPUT and OUTPUT.

Unless a job requests that a file be written to another device, files are assigned to a public scratch
device.

A private device set is available to a job only by specific request. Depending on the installation, private
device sets may or may not be physically mounted at all times. Files to be preserved on private device

sets should be made permanent on that set. Private device sets can be used simultaneously by jobs that
have mounted the device set.

Device sets can have a varying number of members within the set. Some device seis might have only a single
device associated with them. The single device in such a set is both the master device for the set and the
only member of the set. The set is identified by the set name. The individual members of the set are
identified by a volume serial number.

A job need not know the volume serial numbers of members of device sets, however. Parameters on the
REQUEST control statement that assigns a file to a device allow a member to be identified explicitly by its
volume serial number or implicitly by its attributes.

60493800 E 3-7

Attributes are assigned when a device set is created. The attributes of most concern to applications pro-
grammers are:

Attribute Significance

Public permanent file default set Permanent files reside on this public set unless another
set is requested.

Queue set Files with the name INPUT, OUTPUT, or any other
special name reside on this set. Any file to be named in
a ROUTE or DISPOSE control statement must reside on
this set.

Permanent file device A member of a public or private device set that can hold
permanent files.

Queue device A device on which queue files can reside if the device is
a member of the queue set.

Master device The master device of each private device set must be
known before the set can be accessed by a job.

A file on a rotating mass storage device can be of arbitrary length, and it can be segmented over more than
one device. The data is recorded in a logical sequence of record blocks which can be arbitrarily scattered
about the disk surface. The operating system maintains a central memory table for each file, called the
record block table (RBT), in which the sequence of allocated record blocks is defined. The end-of-
information pesition and end-of-volume position are also defined in the RBT.

PUBLIC DEVICE SET USAGE

Public device sets are the default. Unless a private device set is requested, mass storage files are on public
devices. All public device sets are available to a job at all times. The MOUNT and DSMOUNT control
statements applicable to private device sets are not needed for public device sets and will be ignored if
encountered.

The REQUEST control statement assigns a file to a public device. Normally, a REQUEST is not needed
except for the following files.

Files that subsequently will be cataloged as permanent files

Files that have a disposition code for printing or punching

Files that are to reside on a particular public device set or member
The PF parameter of REQUEST assigns the file to a permanent file device.

The Q parameter of REQUEST assigns the file to a queue device. A file cannot be referenced by a ROUTE
control statement or DISPOSE control statement unless it resides on a queue device.

Files named INPUT, OUTPUT, PUNCH, PUNCHB, P80C or any other special-named files always reside on
public devices by default. A REQUEST with a Q parameter is not needed for special-named files.

3-8 60493800 L

PRIVATE DEVICE SET USAGE
A private device set is established by the following steps.
1. Each pack to be included in the set is blank-labeled with the LABELMS utility.

2. The master device is established by an ADDSET control statement that defines the name of the set,
the volume serial number of the master device, the maximum number of packs that can exist in the
set, the maximum number of permanent files that can exist in the set, the universal password, the
universal permissions, the public password, and the default file retention period for this set. The
master device need not be a permanent file device, but at least one member device should be
designated as a permanent file device.

3. Members of the device set are added by additional ADDSET control statements that specify the
device set name, the master device volume serial number (VSN), and the volume serial number for
the pack being added. Additional members are not required; the master device can be the only
pack in the device set. All ADDSET control statements can define the permanent file attribute for
the device being added.

Since tables relating to all packs that are subsequently added to the set reside on the master device, the
master device must be available each time a pack is added to or deleted from the device set and must be
available each time any file is accessed from the set. The master device is also required when any of the
permanent file utilities (AUDIT, DUMPF, LOADPF, or TRANSPF) references a private device set.

To access a file existing on the device set or to create a file on the device set, the job must perform the
following steps.

1. The master device must be associated with the job by a MOUNT control statement. Since private
device sets can be used by many jobs at the same time, the device might already be physically
available. If not, the operator must make the master device available.

2. Any permanent file to be attached must be identified as a file on that particular set. The
SETNAME control statement can establish the set name prior to the attach request, or the
SN=setname parameter can be used on the ATTACH control statement.

3. The REQUEST control statement assigns a file to a private device. In addition, all files to be
created on the device set must be associated with the device set by a REQUEST control statement.
An SN=setname parameter explicitly names the set; an SN parameter implicitly names the set
specified in the last SETNAME control statement.

Once the job has processed the files associated with the device, the device set should be disassociated from the
job by execution of a DSMOUNT control statement. Execution of DSMOUNT might free a disk drive for
other packs before the job ends, and thereby increase overall system throughput. If the job omits DSMOUNT,
the system disassociates the device set from the job during end-of-job processing.

The REQUEST control statement is required to assign a file to a private device set. The SN=setname or
SN parameter establishes the name of the set. The VSN parameter can specify a particular member of the
set. The PF parameter can be used to ensure that the file resides on a permanent file device.

The SETNAME control statement can be executed before any files are requested. SETNAME can establish
the device set to which all subsequent ATTACH control statements are directed. This eliminates the need for
an SN=setname parameter on each individual ATTACH control statement. It also defines the set to which .
REQUEST control statements with SN parameters are directed.

60493800 F 39

PRIVATE DEVICE SET EXAMPLES

1. NEW DEVICE.
LABELMS(DT=AY) PLEASE USE PACK 844A
LABELMS. PLEASE USE PACK 844B
ADDSET(VSN=844A MP=844A SN=MORE,*PF,UV=MYUNIV,UP=C,PB=MYPUBLIC ,FR=360)
ADDSET(MP=844A VSN=844B,SN=MORE,*PF)
6/7/8/9

This job creates a device set with two members.

2. SUBSTITUTE.
MOUNT(SN=MORE,VSN=844A)
DELSET(MP=844A,SN=MORE,VSN=844B)
MOUNT(SN=OTHER,VSN=123)
ADDSET(VSN=844B,SN=OTHER ,MP=123,*PF)
6/7/8/9

This job deletes a pack from one device set and adds it to another.

3. FIX UP.
PAUSE. OPERATOR PLEASE ENSURE SN=MORE, VSN=844A IS ON AN RMS DRIVE.
RECOVER(SN=MORE,VSN=844A)
6/7/8/9
This job runs a RECOVER on device set MORE, assuming the master device is physically on a disk drive.

4. SET.
MOUNT(VSN=844A,SN=MORE) Mounts master device.
REQUEST(TAPES5 ,PF,SN=MORE)
FTNS5.
LGO.
CATALOG(TAPES PERMANENT ID=FRIEND)
7/8/9
FORTRAN program that creates TAPES
7/8/9
data cards for FORTRAN program
6/7/8/9

This jobs makes a permanent file on the device set MORE.
5. USE A SET.

MOUNT(VSN=844A,SN=MORE) Mounts the master device.

SETNAME(MORE)

ATTACH(A,PERMANENT,ID=FRIEND) Taken from device set MORE by default.

REQUEST(TAPES6,PF) Assigned to public device since no SN parameter.

COPY(A,TAPESG)

CATALOG(TAPE6,PERMANENT,ID=FRIEND) Makes file permanent on the permanent file default set.

FTNS.

REQUEST(TAPES5,PF,SN) Assigned to device set MORE as SN is specified but not
. equivalenced.

LGO. Job uses data and file TAPEG6 to create file TAPES.

CATALOG(TAPES5 ,PERMFILE,ID=FRIEND)

7/8/9

FORTRAN program

7/8/9

data

6/7/8/9

3-10 60493800 L

Permanent file PERMANENT is copied from device set MORE to the public device and recataloged with
the same permanent file name and owner ID. A new permanent file is created and cataloged on device

set MORE.
6. TWO SETS.

MOUNT(SN=0THER,VSN=123) Mounts master device.

MOUNT(VSN=844A,SN=MORE) Mounts master device.

SETNAME(MORE)

ATTACH(TAPES,PERMFILE,ID=FRIEND) File is taken from device set MORE because of pre-
ceding SETNAME.

REQUEST(A,PF,SN=0THER) File directed to device set OTHER since explicitly
requested.

COPY(TAPES,A)

FTNS.

LGO. FORTRAN job creates file TAPE6 on system device as
no REQUEST card used.

COPY(TAPE6,A)

CATALOG(A,PERM,ID=FRIEND)

7/8/9

FORTRAN program that creates TAPE6

7/8/9

data cards

6/7/8/9

Permanent file PERMFILE is attached from device set MORE and copied to device set OTHER. A new
file is created on a system device and copied to the same file on device set OTHER. Then the file on
device set OTHER is made permanent.

OPERATING SYSTEM RANDOM FILES
The term random denotes several different concepts, depending on the context in which the word is used.

From a hardware standpoint, random refers to a device. All rotating mass storage devices and ECS are random
access devices. Any physical address on the disk or ECS is read when the hardware driver receives a request
for information at that address. This is in contrast to a sequential device, such as a card reader or tape, in
which a card or tape block can be read only in the physical order in which it was written. Files written to
random access devices can, but need not, have random structure.

From an applications programmer standpoint, random refers to a file structure and to the means of accessing
records in a file. CYBER Record Manager and compiler products provide several different random access

file structures in which each record has a key that uniquely identifies the record. The program can access
any record by specifying its key, without considering the records that physically exist before or after that
record. To the operating system, CYBER Record Manager files with random organization are sequential files.

From an operating system standpoint, random refers to the means by which the operating system receives
input/output address information. A file on a rotating mass storage device is a random file only when the
random bit is set in the file environment table (FET) which controls all file input/output. When the random
bit is set and a write is issued, the system writes a record to the device, then returns address information to
the FET. The program is responsible for preserving the information returned and for respecifying that infor-
mation when the associated record is to be read. Refer to Record Request/Return Information of the FET
in section 6 for additional details.

60493800 L 3-11

A COMPASS programmer has the option of providing indexing routines for files in which the random bit is set,
or of using the operating system supplied indexing routines. These routines create an index in which records
are identified by name or by number of the entry within the index.

References to random or indexed files in sections 6 and 7 assume the name/number index structure described
below. No other random, indexed, or random indexed file structures are recognized by the operating system.

For information about the random file structures available through CYBER Record Manager or various
languages, see the reference manuals for those products or languages.

NAME/NUMBER INDEX FILES

Name/number indexed files can be created, read, written, and rewritten using the COMPASS macros OPEN,
CLOSE, READIN, WRITOUT, WRITIN, and WRITER. Management of a single index level is provided
through macros OPEN and CLOSE.

Each file has an associated index. The index contains a relative PRU position for each system-logical-record
in the file. The file beginning is equivalent to the start of the record associated with the first index entry.
The file end is equivalent to the end of the record associated with the last index entry. Any record can be
read by identifying it in the index without the need to skip records from some beginning file position.

If a random file is to be saved, the file index must be written as the last logical record on the file. A user
can write the index or call. the COMPASS macro CLOSE or CLOSE/UNLOAD to write the index. CLOSE
automatically writes out an index for a random file if-the file contents were changed by a write with the
FET random bit set. A permanent file must also have EXTEND permission before the index can be written.

The first word in the index determines how the records are referenced. The index is generated through the
WRITOUT macro. A positive nonzero value indicates reference must be by number; a negative value indicates
reference can be by name or number. Number index entries are one word; name index entries are two words.
The number of a record is equal to the relative position of the index entry for that record; the first entry in
the index points to record 1, the second to record 2, etc. If a name index is used, the record name can be

1 to 7 letters and digits. The value of index word 1 is determined when the first record is written. Follow-
ing are the formats of index entries.

59 23 0
0 Relative PRU Position Number
Index
59 23 17 (o]
Name, Left-Justified with Zero Fill 0 Name
Index
0 Relative PRU Position

3-12 60493800 E

The smallest unit of information that can be indexed is a system-logical-record. Each system-logical-record
must begin in a new PRU. For the most economical index, data record length should be equal to an integral
number of PRUs minus one word.

USER-DEFINED INDEX FILES

Single-level name/number indexed files can be created and maintained using system macros READIN, WRITOUT,
OPEN, and CLOSE. Data record management at any level lower than a system-logical-record falls to the user.

READIN/WRITOUT can be used to create and maintain index contents during program execution without
using OPEN/CLOSE to manage the index records. The user must manage his index records. They could be
kept on a separate file, for example.

Multi-level name/number indexed files can be created and maintained using READIN/WRITOUT and system
macros OPEN and CLOSE plus a user generated sub-index management routine. A master index record con-
tains addresses of sub-index records interspersed throughout the file. The master index record is processed
by OPEN/CLOSE as is a single-level index record. The user routine needs to ensure that READIN/WRITOUT
references the correct index or sub-index block.

Other index formats can be defined by supplying a user routine to format and retrieve record names and mass
storage addresses. Mass storage addresses can be computed on files containing fixed length records, provided
the file is not ECS resident, since the addresses are in the form of a relative PRU count and the PRU size is
fixed.

PERMANENT FILES

A permanent file is a rotating mass storage file cataloged by the system, so that its location and identification
are always known to the system. Frequently used programs, subprograms, and data bases are immediately
available to requesting jobs without operator intervention. Permanent files cannot be destroyed accidentally
during normal system operation, including normal deadstart. They are protected by the system from unautho-
rized access according to the privacy controls specified when they are created.

Any file associated with a job, regardless of mode or content, which resides on a permanent file device, can be

made permanent at the option of the user. Unless the user explicitly requests the system to catalog a file, it
is not made permanent.

Files to be made permanent should be created on devices designated for permanent files. Files can be made
permanent on either a public device set or a private device set.

Privacy in permanent files is intended to minimize software interference from non-authorized central processor l
programs. The permanent file system offers a standard set of privacy controls. If an installation requires a
different kind of protection, a privacy procedure can be defined to replace the standard.

In addition to normal system protection, the individual file owner can prevent unauthorized access to his
permanent file. The owner can stipulate, in cataloging a file, the degree to which the file is to be protected
from read, write, and rewrite access. Once a file is cataloged, it cannot be used by any job unless the
necessary passwords are given when a request is made to attach the file.

60493800 M 3-13

Permanent files are processed by the portion of the operating system known as the permanent file manager.
The permanent file manager routines create and maintain the permanent file directory and catalog. The
permanent file directory contains a record of all permanent files, their cycles, and passwords. The permanent
file catalog contains a record of the physical location and statistics associated with each permanent file. As
long as these tables are intact, permanent files are available.

Permanent files can be processed through control statements and macros. For information pertinent only to
COMPASS programmers, see section 7.

CONCEPTS

The following information describes concepts applicable to all permanent files.

FILE IDENTIFICATION

A permanent file is identified in system tables by the combined information supplied by a pfn, ID, and CY
parameter when the file is made permanent with a CATALOG control statement.

pfn Permanent file name of 1-40 letters or digits.

ID=name Name of user responsible for file, 1-9 letters or digits. The ID specified must be unique
if pfn is duplicated within the system. ID=SYSTEM is reserved for system use.

CY=cy Cycle number 1-999. As many as five physical files can exist for each permanent file
name and ID combination. Each is called a cycle. Each file shares the same ID and
set of passwords. No restrictions are imposed on the content or size of any cycle, since
each is a unique file.

The pfn parameter is required for both the CATALOG request that makes a file permanent and the ATTACH
request that associates an existing permanent file with a job. When the first seven characters of the permanent
file name are the same as the local file name, the permanent file name can serve as both the pfn and the
lfn parameters. If the ID is not specified, ID=PUBLIC is assumed. If the file is cataloged with ID=PUBLIC,
the ID parameter can be omitted for the attach. For any other name except PUBLIC, the ID parameter is
required on the attach. An installation-defined password is needed to catalog a file with ID=PUBLIC.
The CY parameter is optional. Cycle numbers need not be consecutive nor contiguous; they can be created in
any order. At CATALOG time, the system assigns a cycle number oné greater than the largest existing cycle
number if any of the following occur.

CY parameter is omitted.

CY parameter duplicates the number of an existing cycle.

CY parameter is not within range of 1-999.

System assignment of a cycle number is not possible when the cycle 999 exists.

3-14 60493800 M

PERMISSIONS AND PASSWORDS

All user files have a 4-bit permission code. Each bit represents an access permission as defined by the following.

Permission Significance

READ Required to read, load, or copy a file. l
MODIFY Required to rewrite existing data or to eliminate part of a file. l
EXTEND Required to eliminate part of a file or to increase the amount of mass l

storage allocated to a particular file.
CONTROL Required to purge a file, or to catalog a new cycle of an existing pfn/ID file.

The RENAME and CATALOG functions require all four permissions.

Files in use by a job, other than permanent files, have all access permissions except for the file INPUT, which
has only READ and EXTEND permissions. Permanent files have only those permissions granted by ATTACH
parameters. A purged permanent file, when still associated with the job that purged it, has only those per-
missions it had as an attached permanent file.

Permissions are established originally by parameters on the CATALOG control statement or macro, although
they can be changed through RENAME. Passwords are a string of 1-9 letters or digits. They are defined on
a CATALOG control statement by the following parameters.

RD=rd Establishes password required for read permission.

EX=ex Establishes password required for extend permission.

MD=md Establishes password required for modify permission.

CN=cn Establishes password required for control permission.

XR=xr Establishes password required for extend, modify, and control permission. Any EX, MD,
or CN parameter overrides this password.

TK=tk " Establishes turnkey password that is required in addition to a password for a particular
permission.

Any job using an existing permanent file must supply correct passwords in order to receive permission for
functions protected by a password. On an ATTACH or PURGE, or on a CATALOG of a new cycle,
passwords are submitted with the PW parameter, not the parameter used to create the password. On a
RENAME, the public password must be specified with the PW parameter to change a permanent file to
ID = PUBLIC.

PW=pw! pw2,pw3,pw4,pw5 1-5 passwords for specific permissions.
The universal password, universal permission, and public password for private device sets are defined on the

ADDSET control statement when the master device is created. For public device sets, they are defined by
the installation (refer to the NOS/BE Installation Handbook).

60493800 M 3-15

The universal password is a string of 1-9 letters or digits. When specified for a function that references a
permanent file, such as ATTACH, it grants the universal permission defined for that set. Universal permission
is any non-null combination of control, modify, extend, and/or read permissions. The universal password
takes precedence over any password defined by CATALOG or RENAME, as explained in the following
examples.

PURGE(pfn,ID=id, SN=MYSET , UV=MYUNIVPW)

If the universal password is MYUNIVPW and the universal permission is control permission on device set
MYSET, then the universal password can be used to purge any permanent file on MYSET even though
a CN= password has been defined to restrict access to that file.

ATTACH(pfn,ID=id,SN=DSET,UV=U)

If the universal password is U and the universal permission is read permission on device set DSET, then
the universal password can be used to attach and read any permanent file on DSET even though an
RD= password has been defined to restrict access to that file.

The public password is a string of 1-9 letters or digits. On a CATALOG of the initial cycle of a file with
ID=PUBLIC, the public password for this device set must be specified using PW=,

MULTIPLE ACCESS

A permanent file can be attached to more than one job at the same time. Many jobs can read a file at the
same time, but only one at a time can have modify, extend, or control permission. Use of parameters that
allow multi-access is encouraged.

When a file is cataloged initially, it remains associated with the job with all permissions, except when MR=1

or RW=1 is specified on the CATALOG request. In the absence of RW=1 or MR=1 on the CATALOG request,
no other job can attach the file until the creating job returns it to the control of the permanent file manager,
since any job with control permission has exclusive file access. However, an RW=1 or MR=1 parameter makes
the file immediately available, on a read-only basis, to any other attaching job, but cancels all permissions except
read for MR=1 and cancels control permission for RW=1.

An RW=1 or MR=1 parameter on an ATTACH request restricts permissions that might otherwise be granted.
An MR=1 cancels all permissions except read; an RW=1 parameter cancels control permission but retains
modify, extend, and read permission. RW=1 overrides MR=1.

An alternate method of allowing multiple attaches with read only permission is initially to catalog the file

with EX=, MD=, and CN= (or XR=) specified. Subsequent attaches without PW= or MR= specified default
to multi-read access.

Table 3-1 lists the cases of multiple access in which access by a second job is either granted or the job is
put into a waiting queue. In the latter case, the attach request is not honored until all of the requested per-
missions can be granted. If the second job is of batch origin and is placed in the waiting queue, a wait
message is issued to the job dayfile. If the second job is of INTERCOM origin and is placed in the wait

queue, the wait message is issued to the terminal. The user can wait until the attach is honored or bypass
the attach by entering %A.

3-16 60493800 M

TABLE 3-1. MULTIPLE ACCESS PERMISSIONS
Second job issues an ATTACH requesting the following
permissions:
Read Extend Modify Control
Read Granted Granted Granted Wait
First job has Extend Granted Wait Wait Wait
file attached with
these permissions: Modify Granted Wait Wait Wait
Control Wait Wait Wait Wait
Granted: File is immediately attached to the second job with the requested permission.
Wait: System places the job in the permanent file queue until the ATTACH request can be
honored.

QUEUED AND ARCHIVED FILES

Job requests to attach a permanent file usually are executed immediately.

immediately, the system places the request in the permanent file queue.
permanent file request to be placed into the permanent file queue.

60493800 L

If a job cannot attach a file
Four conditions can cause a

TRANSPF utility is running.
Attached permanent file table, which is necessary for CATALOG or ATTACH, is full.
File to be attached is not available for type of access requested.

File to be attached is archived.

The job remains in the permanent file queue until the ATTACH request can be honored or until the user
or operator aborts the request. '

At some installations, permanent files physically reside on rotating mass storage devices at all times and are
immediately available to a requesting job. At other installations, some permanent files might be dumped to
a tape through the DUMPF utility. Such files are not available to a requesting job until they are reloaded
through the LOADPF utility.

A permanent file physically on tape, but known to the system through permanent file table information, is
defined as an archived file. The archiving process does not affect the file’s status as a permanent file. There-
fore, the file does not need to be re-cataloged. An archived file must be returned to mass storage before the
job can read or write the file. An archived file can be purged, however, when still on tape, since only
system tables are affected by a purge function.

A request for an attach of an archived file might or might not be honored depending on installation proce-
dures. When the system receives a request for an attach of an archived permanent file, the system informs
the operator of the request and indicates the VSN of the tape required. The operator mounts the specified
tape, then authorizes the load by entering a command from the keyboard. The job continues when the file
is available.

A request for an archived file submitted interactively through a remote terminal produces the following message
at the terminal.

REQUEST FOR ARCHIVED FILE — WAITING FOR CENTRAL OPERATOR DROP OR GO
In response to a GO command from the operator, the job is put into the permanent file queue, the message
WAITING FOR ARCHIVED FILE is sent to the terminal user, and a job is set up at another control point
to retrieve the file from tape. The INTERCOM user must wait for retrieval to be completed before the file
is attached. In response to DROP, the file is not brought into the system and the attach request is terminated.
Once the WAITING FOR ARCHIVED FILE message appears at the terminal, the terminal user has the option
of waiting for the file to be made available or of continuing with other tasks. An abort command after the

central site operator enters GO affects the attach request itself, but does not affect the reloading of the file
to mass storage. Consequently, the following procedure can save time during interactive processing.

1. Enter command to attach file. Wait until WAITING FOR ARCHIVED FILE message appears.
2. Enter abort command.
3. Continue with other operations.

4, Reissue ATTACH command.

| 3.18 60493800 L

The second ATTACH command should execute immediately since the file should have been returned to mass
storage while other terminal operations proceeded.

INCOMPLETE CYCLES

Incomplete cycles might exist as the result of abnormal termination of a permanent file manager function.
They might also be created by a normal deadstart taking place during a permanent file function. The file is
automatically purged when the file is returned or during end-of-job processing. To remove an incomplete
cycle from the system, the file must be attached with the cycle number explicitly stated and with control
permission.

Execution of the AUDIT utility with an MO=I parameter reveals the existence of any such incomplete cycles.

USAGE
BATCH JOB USAGE

Permanent files are manipulated by the following control statements at a single mainframe installation. At
linked multi-mainframe sites, these statements are used when the permanent file resides at the site at which
the job is submitted and executed.

CATALOG Make a local rotating mass storage file permanent with a particular name and owner.
Parameters on the CATALOG statement become part of a system table that controls
all further file use.

ATTACH Associate a permanent file with a job. Parameters on the ATTACH statement must
agree with privacy controls of CATALOG to establish the right to access the file.

PURGE Delete a permanent file by deleting system table information. The file remains attached
to the job as a local file.

EXTEND Increase the size of an attached permanent file.
RENAME Change system information established when the file was cataloged.
ALTER Change the size of an attached permanent file.

When the permanent file resides at a linked multi-mainframe site other than that at which the job executes,
the following statements must be used instead of the previous ones.

SAVEPF Create a permanent file on a public or private device at the system identified
by the ST parameter. Parameters on the SAVEPF statement become part of a
system table that controls all further file use.

GETPF Assign permanent file residing on the system specified by the ST parameter to the

job. Parameters on the GETPF must agree with privacy controls of SAVEPF to
establish the right to access the file.

60493800 L 3-19 |

For a single file, the CATALOG, SAVEPF, ATTACH, and GETPF control statements can be combined as
required to access the permanent file from a given system. A file cataloged with CATALOG can be attached

with GETPF.

Table 3-2 summarizes parameters applicable to permanent file functions. Any parameter not applicable to a given
control statement is ignored. The control statements and their parameters are explained in section 4.

TABLE 3-2. PERMANENT FILE PARAMETERS

Ifn/pfn AC [CN|CY|EC|EX|FO|ID {LC|MD| MR| PW{ RB| RD{RP| RW| TK | XR| SN| ST | UV|VSN
CATALOG jhoth orone { * | * | * S N o O L L B
SAVEPF |bothorone | * | * | * * x|+ * * N L B I 1 I *k
ATTACH | both or one * | * + [* * |k * *
GETPF both or one ol + | * * o | 4 | % | %%
PURGE both or one * ok + | * * | ¥ k| & | ok | owk
RENAME | lfn pfn* * | x| o* * * * * | % * | %
EXTEND Ifn
ALTER ifn
+ Required. * Optional. o Ignored with message.
** Optional. If used with ST, both SN and VSN must be specified.

The following utility routines exist explicitly for permanent file use.

AUDIT

DUMPF

GENLDPF

LOADPF

PFLOG

TRANSP

F

Reports the status of permanent files.

Dumps files to tape for backup or temporary storage as archived files.

Generates LOADPF jobs according to the permanent file catalog (PFC) entries on

the tape produced by PFLOG.

Loads permanent files that have been dumped by DUMPF.

Dumps the PFC to tape.

Moves permanent files and permanent file tables between members of a device set

and moves files from one device set to another.

These utilities can be called such that all permanent files are affected or that only files pertaining to a given
ID, device, or use are affected.

Files to be made permanent must reside on a device that the ADDSET control statement establishes as a
device. The user job can create a file on a permanent file device in two ways.

permanent file

| 3:20

60493800 L

If the file is to be cataloged on a public permanent file device or on a private device whose VSN is not
known, the PF parameter should be specified on the REQUEST statement that establishes the file.

If the file is to be cataloged on a public or private device with a volume serial number known to be the
number of a permanent file device, the VSN parameter should be specified on the REQUEST.

Cataloging a file results in entries in system permanent file tables. The file remains attached to the job and
can be used as any attached permanent file. At the termination of the job that cataloged the file, the system
detaches the file. The job can, but need not, execute a RETURN or UNLOAD function to detach the file.

INTERCOM USAGE
From the terminal, the INTERCOM user can create, attach, and purge permanent files in any of three ways:
By using standard macros within the user’s own interactively run COMPASS program.

By entering the commands ATTACH, CATALOG, etc., as if they were control statements in a batch
INPUT file.

By using the special INTERCOM commands FETCH, STORE and DISCARD. These commands allow
the user to create and use permanent files with certain restrictions.

Files created by the STORE command cannot have any passwords. The only parameters for STORE are
filename and user id. The permanent file name and the local file name are the same. User id is required
according to installation options. If a required parameter is missing, it is requested from the user.

When a permanent file has been created through the STORE command, the user can access it through the
ATTACH or FETCH commands. FETCH parameter requirements are the same as for STORE.

Similarly, the DISCARD command as well as the PURGE command can be used to purge a permanent file
created by the STORE command. DISCARD has the same parameter requirements as STORE, with the ex-
ception that the user id parameter can be omitted if the file is already attached. Since execution of the
DISCARD control statement involves both a PURGE and a RETURN, the purged file does not remain as a
local file after the DISCARD is executed.

From an INTERCOM terminal, private device sets can be used but not created. The commands MOUNT,
DSMOUNT, etc., can be entered as if they were control statements in a batch input file, LABELMS,
RECOVER, and ADDSET commands cannot be entered from INTERCOM. A MOUNT of the master device
must be the first reference to a device set. After the master has been mounted, the REQUEST command
and the permanent file commands ATTACH, CATALOG, etc., with SN parameters can be used to access
device sets. A file written on a private device set can be made permanent with the STORE command.
FETCH can be used to attach a device set resident permanent file only after a SETNAME command has
been issued. If a private device set resident permanent file has been attached, it can be purged with
DISCARD; if it has not been attached, it cannot be purged with DISCARD.

If an INTERCOM job enters into the permanent file queue because a permanent file request cannot be
honored immediately, the user is informed by one of the following messages.

60493800 L 3.21

WAITING FOR PF UTILITY

WAITING FOR APF SPACE

WAITING FOR ACCESS TO FILE
WAITING FOR ARCHIVED FILE

WAITING FOR VSN=vsn,SN=setname

INTERCOM PERMANENT FILE USE EXAMPLES

In these examples the information output by the INTERCOM system on the terminal display is underlined to
distinguish it from that entered by the user. This does not actually occur on the output. The symbol ‘

denotes carriage return.

1. COMMAND-STOREMYFILE €®

DREC @

The installation requires a user id parameter. The user file called MYFILE is made permanent.

During a later session, the user attaches the file and then purges it.

2. COMMAND-FETCHMYFILERKC €R
COMMANDDISCARDMYFILE @
ACCOUNTING

If the installation chooses, messages are sent to both the system and user dayfiles whenever the status of a
referenced permanent file changes. The messages are as follows:

CATALOG

EXTEND/ALTER
PURGE
RENAME (old permanent file)

RENAME (new permanent file)

3-22

CT ID=name PFN=pfn
CT CY= cy SN=setname n WORDS

EX ID=name PFN=pfn
EX CY= cy SN=setname n WORDS

PR ID=name PFN=pfn
PR CY= cy SN=setname n WORDS

NM ID=name PFN=pfn
NM CY= cy SN=setname n WORDS

RN ID=name PFN=pfn
RN CY= cy SN=setname -n WORDS

60493800 M

The first two characters of each line identify the permanent file function that caused a status change. Other
parameters are:

ID=name Name which identifies the file owner or creator.

PFN=pfn Permanent file name which identifies the file.

CY= cy Cycle number, 1-999, assigned by creator.

n WORDS Amount of mass storage space occupied by the file, given in decimal numbers I

of central memory words.

SN=setname Setname of file if it resides on a public set which is not the PF default.

EXAMPLES

The following examples form a continuous set. Many ATTACH, RENAME, and PURGE examples presume
files established by CATALOG examples.

CATALOG EXAMPLES

The first set of examples demonstrates initial catalogs; the permanent file name is unique to the ID specified.

1. CATALOG(LFN,LFN,ID=RENOIR)
CATALOG(LFN,ID=RENOIR)

These statements achieve the same effect. Any time the permanent file name is omitted, it is assumed
to be the same as the local file name. The cycle number is one.

2. CATALOG(LFN1,PERMANENTFILE ID=RENOIR,CY=10)
The first cycle cataloged can have a cycle number greater than one.
3. CATALOG(LFN2,PFILE ID=RENOIR,CY=0)

The cycle number of the permanent file, PFILE, is one since an illegal cycle number is specified. The
cycle number must be 1 through 999. Otherwise, the parameter is ignored.

4. CATALOG(WATER,LILIES,ID=CMONET,XR=ART)

CATALOG(WATER,LILIES,ID=CMONET MD=ART ,CN=ART,EX=ART)

These control statements demonstrate that the XR parameter has the same effect as the MD, CN, and EX
parameter combination. ART is the password for control, modify, and extend access.

5. CATALOG(AA,B,ID=SEURAT,XR=Y,CN=Z)

CATALOG(AA,B,ID=SEURAT MD=Y ,EX=Y,CN=Z)

These control statements have the same effect, further demonstrating use of the XR parameter.

60493800 M 3-23

CATALOG(C,F,ID=SIGNAC,FO=ISMD=X EX=Y)

If a data validity check reveals the file is an indexed sequential, direct access, or actual key file, extend
permission becomes insert permission, and modify permission becomes replace permission. If the file
is not an IS, DA, or AK file, the FO parameter is ignored.

CATALOG(LFF,PF,ID=MATISSE,RP=5,CY=4,RD=X,CN=Y MD=A ,TK=C,AC=777 MR=1)

Since the MR parameter is non-zero, LFF has only read permission upon catalog completion. The
following items are defined at catalog time.

Read password X
Control password Y
Modify password A
Turnkey password C
Account parameter 7
Cycle number : 4
Retention period 5 days

Assuming the previous examples to be successful initial catalogs, the following examples demonstrate new-cycle
catalogs. A file already has been cataloged with the permanent file name and ID specified.

8.

10.

11.

12.

3.24

CATALOG(Z,LFN,ID=RENOIR)

CATALOG(Z,LFN,ID=RENOIR,CY=2)

These control statements catalog a cycle with a cycle number one higher than the largest (in this case 1).
This new-cycle catalog does not require passwords because a control password was not defined.

CATALOG(LFN22,PERMANENTFILE,ID=RENOiR,CY=10)

Assuming a cycle 10 already exists, this control statement causes cycle 11 to be cataloged. An invalid
cycle number is treated as no cycle number. This new-cycle catalog does not require passwords, because
a control password was not defined at initial catalog time.

CATALOG(LFF PF,ID=MATISSE,CY=5 PW=Y)

If a control password is defined at initial catalog, it is necessary to submit the control password using the
PW parameter. Control permission is required to add a new cycle.

CATALOG(LFF,PF1,ID<PUBLIC PW=XYZ)

A file can be cataloged with an ID of PUBLIC if the public password is submitted, defined by the
installation as XYZ in this example. This enables an installation to define permanent files that can be
attached by all users without specifying an ID.

CATALOG(PERMANENTFILENAME,ID=MOREAU)

A catalog function is attempted using the first seven characters of the permanent file name as the
file name. If the file name is omitted, the first character of the permanent file name must be
alphabetic, or the job is terminated.

60493800 L

ATTACH EXAMPLES

1. ATTACH(LFN,ID=RENOIR)
ATTACH(LFN,LFN,ID=RENOIR)

Assuming catalog example 8 was successful, these two control statements perform the same function. If

the permanent file name is omitted, it is assumed to be the same as the logical file name. Cycle 2 is
attached since that is the highest cycle number.

2. ATTACH(LFA,PF ID=MATISSE PW=X,C EC=K)

Assuming catalog example 7 was successful, cycle 4 of the permanent file, PF is attached with read

and extend permission. During execution the permanent file is referred to by the file name, LFA.
A standard size ECS buffer is established for the file.

3 ATTACH(PERMANENTFILENAME, ID=RENOIR)

An attempt is made to attach the permanent file, PERMANENTFILENAME, under the file name,
PERMANE. The first seven characters must be letters or numbers and begin with a letter if the
file name is omitted in the attach call.

4. MOUNT(SN=SCIFI,VSN=999)
SETNAME(SCIFT)
ATTACH(DUNE,ID=HERBERT)
SETNAME.

or
MOUNT(VSN=999, SN=SCIFI)
ATTACH(DUNE,ID=HERBERT,SN=SCIFI)

Both examples have the same effect, the permanent file DUNE is attached to the job. The master device
of the device set SCIFI must be mounted before this function is issued.

5. ATTACH(WATER,LILLIES,ID=CMONET ,MR=1)
ATTACH(WATER,LILLIES,ID=CMONET)

Assuming catalog example 4 was successful, these two control statements perform the same function
of attaching file WATER with multi-read permission.

RENAME EXAMPLES

1. Assume PFILE was cataloged by owner ABC with read password X, extend password Y, and modify
password Z. Control is granted automatically.

ATTACH(LFILE,PFILE,ID=ABC,PW=Y,Z X)
RENAME(LFILE PFILE2,RD=,CN=W)

The permanent file name PFILE is replaced by PFILE2 (if no other permanent file named PFILE2,ID=
ABC exists). The read password is removed (succeeding users are given read permission automatically)
and a password for control permission is cataloged. The existing passwords for extend and modify
remain unchanged. Since the changes involve the permanent file name and passwords, the changes apply
to all cataloged cycles of the file. This would also have been true if the owner ID had been changed.

60493800 L 3.25 |

ATTACH(LFN,ID=UTRILLO)
RENAME(LFN, ID=UTRILLO,RD=A,RP=9)

RENAME(LFN,LFN,ID=UTRILLO,RD=A,RP=9)

RENAME defines a READpassword for the permanent file LFN, and redefines the retention period.
Omission of the permanent file name in the first RENAME indicates no name change is to occur. The
two RENAME control statements are identical in function. This example also demonstrates that more
than one RENAME function can be issued consecutively.

ATTACH(LFN, ID=SISLEY PW=A)

RENAME(LFN,,ID=SISLEY,RD=)

The definition of A as the READ password is removed from the permanent file, LFN.

PURGE EXAMPLES

1.

3.26

ATTACH(LFN,ID=RODIN)
PURGE(LFN)

or
ATTACH(LFN,ID=RODIN)
PURGE(LFN,ID=RODIN)

Both sequences perform the same function.

When a purge is performed, permanent file table information for the file is removed, but the file remains
available to the job with permissions existing when it was purged. At least control permission is implied.

PURGE(PERMANENTFILENAME, ID=PISSARO)

If the purge is successful, the permanent file, PERMANENTFILENAME, no longer exists. Permanent file
table information for the file is removed. The purge is not successful if the file name is omitted

in the call and the first character of the permanent file name is not alphabetic.
PURGE(PERMANENTFILE,ID=RENOIR,LC=1)

Assuming catalog examples 2 and 9 were successful, cycle 10 is purged.

ATTACH(FAUVE,PF,ID=MATISSE,PW=Y,C)
PURGE(FAUVE)

Assuming catalog examples 7 and 10 were successful, cycle 5 is purged and remains attached to the job
as a non-permanent file FAUVE with only control permission.

PURGE(DUNEMESSIAH,ID=HERBERT ,SN=SCIFI)

Assuming the master device of the set SCIFI was mounted by this job, the permanent file DUNEMESSIAH
is purged and remains as a local file with Ifn DUNEMES.

60493800 L

6. ATTACH(RED,LASER,ID=LIGHT,PW=CONTROL)
PURGE(BLUE,LASER,ID=LIGHT)

Because the permanent file cycle specified on the PURGE control statement was already attached (with
a different file name), the purge is successful with RED as the resultant local file.

ALTER/EXTEND EXAMPLE

To replace an existing cataloged permanent file by using the ALTER/EXTEND sequence:

ATTACH(LFN,PFN,ID=WHO,PW=MD,EX) passwords for modify and extend are required
REWIND(LFN)

ALTER(LFN) release old permanent file data
COPYBF(NEW,LFN) write new data

EXTEND(LFN) make new data permanent

EXTENDED CORE STORAGE FILES

Extended core storage (ECS) can be used to buffer files and/or store files (as ECS resident files). Each file so
designated is assigned a single buffer in the ECS paged partition. This paged buffer is assigned pages up to the
limit specified by REQUEST or ATTACH. User input/output through ECS buffers or to an ECS resident file is
performed in the same manner as any other mass storage input/output. ECS buffered files are more flexible than
ECS resident files since ECS resident files are not allowed to overflow to other mass storage devices.

ECS BUFFERED FILES

Sequentially accessed mass storage files on public device sets can be buffered through ECS to avoid the costly
access time of rotating mass storage devices each time a small amount of information is transferred. In order to
optimize the access to such devices, a larger amount of information is transferred between the device and ECS at
the time of each access. For each CIO call, regular smaller transfers between ECS and the user central memory
buffer take place at a high transfer rate without mass storage device access.

The information read ahead (input file) or waiting to be written (output file) is stored temporarily in an ECS
buffer. The underflow and overflow functions for these ECS buffers are performed automatically by the system.
On a write function, system programs transfer data from the file’s circular buffer in central memory to the ECS
buffer. When the ECS buffer is filled to the maximum size defined by REQUEST or ATTACH, it is written to
mass storage. On a read, the ECS buffer is filled in advance from disk, and data is transferred to the circular
buffer in central memory as the circular buffer is emptied.

The ECS buffers are requested on a file-by-file basis through the REQUEST control statement or macro, or
through an ATTACH statement or macro. A different buffer size can be specified for each file if the standard
buffer size is not desired.

The data contained in an ECS buffer is written to a mass storage device only if the file is closed or exceeds the
limit of the ECS buffer.

For optimum performance, the ECS buffer should be many times the size of the user’s CM circular buffer.
This ensures that the system overhead associated with ECS buffer management is small compared to the time
saved as a result of performing fewer device accesses. Suggested relative buffer sizes are:

60493800 L 3.27 |

CM Circular Buffer ECS Buffer

1000 octal words or less 10000 octal words or less
1001 - 2000 octal words 10000 - 20000 octal words
2001 octal words or more 20000 octal words or more

For 1/O bound programs using large central memory circular buffers there is little advantage in using 1/O
buffering. In general, an 1/O buffer can be used to reduce the central memory buffer size while maintaining
the high transfer rates associated with having large central memory circular buffers. Throughput on 1/O

buffered files is primarily a function of the ECS buffer size, rather than the central memory circular buffer
size.

If an unrecovered ECS parity error is encountered with the error processing (EP) bit set, control is returned
to the user program with the error noted in the code and status field of the FET. If the error occurs with
the EP bit off, a GO or DROP decision is required of the operator.

ECS RESIDENT FILES

This facility is provided as an installation option selected when the system tape is built. Except for some
specific applications where a faster, limited rotating mass storage device is needed, it is generally preferable
to use the I/O buffering scheme instead of ECS resident files. /O buffering allows an overall optimization
of the system.

Nevertheless, under this option any non-permanent sequential or random file can be ECS resident. ECS
resident files are requested on a file-by-file basis. REQUEST has the same format as the one used for buffer
allocation with the addition of the device type mnemonic of AX. If no EC parameter is present on the
REQUEST, the file is limited to the default I/O buffer size specified at deadstart time. Otherwise, the EC
parameter specifies the file size limit.

When an overflow occurs, i.e., all ECS pages are allocated or the maximum file size is exceeded, an error code

10 (device capacity exceeded) is stored in bits 9-13 of the code/status field and control is transferred to the
user if the EP bit is set; otherwise, the job is aborted.

NOTE

If ECS is turned off, all requests for ECS buffers are ignored and the
files requested on ECS are allocated on other mass storage devices.

MAGNETIC TAPE FILES

A single reel of magnetic tape is known as a volume. A volume set can consist of:
A single file on one volume
A multifile set on a single volume
A multivolume file extending over more than one volume

A multivolume, multifile set extending over more than one volume

I 3-28 60495800 L

All information on a magnetic tape begins after a physical reflective spot known as the load point. When this
is sensed by a photoelectric cell, the tape is at its load point. Another physical reflective spot appears near
the end of all tapes, which warns the software to initiate end-of-tape procedures.

The structure of a tape file, such as the number of characters in a block and the definition of end-of-information,
is affected by these characteristics:

Physical recording is 7-track or 9-track
Format is SI format (standard system format), S format, or L format

Standard labels exist or do not exist
See appendix C for a summary of tape characteristics.

The default tape characteristics assumed by the system are an unlabeled 7-track tape recorded at an installation-

defined default density in SI format. Any other tape density, format, or label must be explicitly declared by
a REQUEST or LABEL statement. :

TAPE MARKS

A tape mark is a short record used on SI tapes to separate label groups and, files from label information. On
S and L tapes, it can also separate files in addition to separating label groups. Interpretation of multiple tape
marks depends on the tape format. The format of a tape mark is defined by the ANSI standard, described
later in this section. These tape mark records are written by operating system routines. On S and L tapes,
tape marks can be written by the COMPASS macro WRITEF.

DATA FORMAT

Three data formats exist:
SI System default format
S Stranger tape format

L Long stranger tape format (supported on 667, 669, 677, and 679 tape drives only)
SI format is assumed unless an F=S or F=L parameter appears in a LABEL control statement or S or L is

explicitly declared on a REQUEST control statement. Both binary and coded data can be recorded in any of
these formats.

60493800 L 3-29 |

S| TAPES

SI format tape is the system standard. The structure of information on these tapes corresponds to the struc-
ture of files on rotating mass storage. Each block on the tape is a physical record unit, with the end of a
system-logical-record defined by the presence of a short or zero-length PRU.
The size of a PRU on tape depends on whether the data is written in coded or binary mode:

For coded tapes, a PRU is the contents of 128 central memory words.

For binary tapes, a PRU is the contents of 512 central memory words.
The short or zero-length PRU that terminates a record is less than full PRU size.
Each system-logical-record is terminated with a 48-bit marker that contains a level number. The marker is
appended to the data in the peripheral processor when the tape is written and stripped from the data when
the tape is read. Only data passes from the tape to a user program in central memory.
A level number of 17g indicates an end-of-partition. Level 17g is always written as a zero-lerigth PRU.
When an output file on an SI tape is closed, the operating system appends up to four items: a level 17g
zero-length PRU,t a single tape mark, trailer label information for both labeled and unlabeled tapes, and a
double tape mark. The file is then positioned to the beginning of the single tape mark. If more information
is written to the tape, only the level 17¢ marker indicating an end-of-partition remains. If the tape is rewound

or unloaded, the four items exist to define end-of-information.

The SI tape structure that results from a request for an unlabeled tape is as follows:

File End-of-Tape Reflector
EOF1 &
Partiti x| Trailer * |+
artition 17 Label
Ne—
% Load Point Level 17g Marker —/ / Double
Tape Mark Tape Mark

TThe presence of a level 17¢ PRU depends upon the procedures the programmer uses to close the file
(for example, a COBOL CLOSE or a FORTRAN ENDFILE statement writes the level 17¢ PRU).

3-30
60493800 L

The SI tape structure that results from an unlabeled tape in which the file specified on the REQUEST control
statement is opened and closed four times is as follows:

je\ psemee——. End-of-Tape Reflector\

EOF1

Partition 17| Partition |17] Partition {17 Partition [17] * Trailer | * | *

m Label
X

. ” S a— ——
Load Point Tape Mark”’ Double Tape Mark

The same structure is obtained when the program opens the file, writes data and issues an instruction to write
an end-of-partition, repeats the data and partition instructions three more times, then closes the file.

Coded information is written on 7-track SI tape in external BCD format shown in appendix A. On a 9-track
SI tape, data is written in packed (binary) mode for both coded and binary data. Only full central memory
words can be written or read on 7- or 9-track SI format tapes. (Refer to Tape Format in appendix C.)

S AND L TAPES

Data on S and L tapes is written in physical blocks separated by interblock gaps. S tape blocks are longer
than noise size and shorter than or equal to 512 central memory words. L tape blocks are longer than noise
size and shorter than the user buffer for the tape.

Neither S nor L tapes contain system-logical-records of various levels as do SI format tapes. The only records
are the physical blocks; and the file is physically delimited by tape marks. The last file on an unlabeled S or
L tape is terminated by four tape marks, but these are not recognized as end-of-information in the same sense
as a label. The user must use the four tape marks, or marks within the data, to recognize end-of-information
and initiate end-of-information processing.

The S or L tape structure that results from a request for an unlabeled tape when the file is opened and
closed three times, or is opened once and has three partitions written before the file is closed, is as follows:

File
Partition * Partition * Partition B Il Bl B

- : ——— s’
S— Load Point \——Tape Mark \——Tape Mark 4 Tape Marks

Terminating
Information

On a labeled S or L tape, an EOFI label replaces the second terminating tape mark. The system recognizes

the EOF1 label as end-of-information for the tape and initiates end-of-information processing as indicated by
the user.

Noise size, nominally 6 characters for both S and L tapes, can be changed by the installation. Blocks shorter
than or equal to noise size are not delivered to the user on read operations. An attempt to write a block
shorter than or equal to noise size causes an error.

60493800 M 3-31

In COMPASS, the maximum logical record size (MLRS) and unused bit count (UBC) fields in word 7 (Ifn+6)
of the FET should be declared when S or L tapes are processed. MLRS declares the maximum number of
60-bit central memory words in the block. The last word might not be full of data since S and L tape
blocks are measured in characters instead of words. UBC must declare the number of bits not used in the
last transmitted word. On a write operation, the operating system rounds down the UBC so that an integral
number of charactcrs are written. The discussion of the FET fields that appears in section 6 explains these
concepts in more detail.

If the MLRS and UBC are not declared, the system assigns default values. The default for UBC is zero. The
default for MLRS is 512 words for S tapes and two words less than the user buffer size for L tapes.

SEVEN-TRACK VERSUS NINE-TRACK TAPES

Both seven-track and nine-track 0.50-inch magnetic tape can be processed by the operating system. Parameters
on REQUEST and LABEL statements differ for recording densities, data format, and character conversion.
Otherwise, label characteristics and tape usage are the same for both, except that nine-track L tapes are
supported only on 669 and 679 tape drives.

SEVEN-TRACK TAPE
Seven-track tapes are processed by 667 and 677 tape drives. Data can be recorded in three densities:

Lot 200 bpi (low)
HI 556 bpi (high)
HY 800 bpi (hyper)

Installation-defined default densities are used for reading unlabeled tapes and writing both labeled and unlabeled
tapes in the absence of explicit declaration. The density of the label determines data density for reading
labeled input tapes. However, it is always advisable to specify density because of the reading peculiarities of
the tape drives. A tape label can be read at an incorrect density without causing a parity error. Longer data
blocks read at an incorrect density cause parity errors.

On a REQUEST statement, MT explicitly defines this tape as seven-track; LO, HI, or HY provides an implicit
definition. On a LABEL statement, seven-track is assumed unless nine-track is specifically declared.

NINE - TRACK TAPE

Nine-track tape is processed on Control Data 669 and 679 tape units. On a REQUEST control statement, an
NT parameter explicitly specifies a nine-track tape. On both REQUEST and LABEL control statements, a

density specification of HD, PE, or GE implicitly specifies a nine-track tape and the NT parameter can be
omitted.

tData cannot be written at 200 bpi on 667 or 677 tape drives although both drives can read 200 bpi tapes.

3-32 60493800 L

at the density at which they were written. Writing

Under hardware control, nine-track tapes are always read
f density parameter on the REQUEST or LABEL

density is determined by an installation default or by the
control statement. Density parameters are:

HD 800 cpi (high density) applies to 669 and 679 tape drives
PE 1600 cpi (phase encoded) applies to 669 and 679 tape drives
GE 6250 cpi (group encoded) applies to 679 tape drives

Data on SI format nine-track tape appears in memory as it exists on tape. Data is not converted while being
transferred between devices.

When S or L format nine-track tapes are written or read, processing depends on whether the tape is binary

or coded. Binary tape processing is the same as SI format tape processing, with no conversion. Data on
coded S and L tapes is converted between the tape and memory. Data in the user buffer in central memory
is assumed to consist of a string of 6-bit display code characters. The display code characters are mapped into
8-bit characters when written to the tape. The 8-bit characters can be a subset of either ASCII or EBCDIC,
as specified by the REQUEST or LABEL control statement. Conversion from 8-bit characters to 6-bit
characters takes place when the tape is read in conversion mode. The parameters on the REQUEST or
LABEL control statement that select conversion mode are as follows:

Us ASCII conversion
EB EBCDIC conversion

TAPE LABELS

Labels on a tape consist of 80-character records that identify the volume of tape and files it contains. They
are the first records after the load point marker. Labels can appear on all tapes. A label record has a
particular format. The first four characters of the label are VOL1. Any tape that begins with characters
other than VOLI1 is considered to be unlabeled. The tape label characters are written in 6-bit external BCD
on 7-track tapes, and in 8-bit ASCIH or EBCDIC on 9-track tapes.

Two types of labels are recognized:

Standard system labels conform to labels defined by the American National Standard, Magnetic Tape
Labels for Information Interchange, X3.27-1969. Density of the label is the same as the density at
which the data on the tape is recorded. Standard system labels are requested with a U parameter on
a REQUEST control statement or macro. On a LABEL control statement or macro, the absence of a
Z parameter requests a standard label.

Z labels conform to an earlier ANSI standard in which the density of the label and the density of the
data were not necessarily the same. Z labels are similar to standard labels, except that character 12 of
the VOLL1 specifies the density of the data. When a Z-abel tape is being read, the system changes the
read density, if necessary, during label processing. When a Z label is written, the system treats a Z
label as a standard label. Z labels are requested with a Z parameter on a REQUEST or LABEL control
statement or macro. :

Labeled tapes provide the following advantages for the user.

When a write ring is left inadvertently in an input tape reel, software checking ensures that no part of
the tape is overwritten without the express permission of the operator.

60493800 M 3.33

The number of blocks written on a file is recorded in the file trailer label, as well as in the job dayfile.
On subsequent file reading, the count serves as additional verification that data was read properly.

The volume number field of the label ensures processing of all volumes in the proper sequence.
Multifile volumes with ANSI labels can be positioned by label name, rather than by file count only.
The volume serial number of any ANSI label read or written is recorded in the dayfile.

Overall job processing time is reduced when the system can use the VSN field to locate and assign a tape
to the requesting job without operator action at the keyboard.

The maximum benefit from the operating system tape scheduling and automatic tape assignment features can be
derived only if all magnetic tapes used at an installation are labeled.

ANSI defines the following types of labels. The first three characters identify the label type; the fourth
character indicates a number within the label type.

Type No. Label Name Used At Operating System Processing
VOL 1 Volume header label Beginning of volume Required

UVL 1-9 User volume label Beginning of volume Optional

HDR 1 File header label Beginning of file Required

HDR 2-9 File header label Beginning of file Optional

UHL t User header label Beginning of file Optional

EOF 1 End-of-file label End of file Required

EOF 2-9 End-of-file label End of file Optional

EOV 1 End-of-volume label End of volume Required when appropriate
EOV 2 End-of-volume label End of volume Required when appropriate
EOV 39 End-of-volume label End of volume Optional

UTL T User trailer label End of file Optional

Table 3-3 shows the contents and defaults of label fields. All required labels are checked by the operating
system on input and generated by the operating system on output if the user does not supply them. The
user must supply all desired optional labels to the operating system. Optional ANSI label types are accepted
for reading or writing when extended label processing capabilities are requested through the XL bit of the '
file environment table, as explained in section 6. However, all manipulating of such labels must be done by
user code. The NS parameter of REQUEST or LABEL inhibits operating system processing of labels on S
or L tape.

1PAny member of Control Data 6-bit subset of ASCII character set.

3-34 60493800 L

TABLE 3-3. ANSI STANDARD TAPE LABEL FORMATS

Character . I Nam Default Checked
Position | !9 (Ngz/sse T Nome) | Legth Contents Written On Input
1-3 1 Label Identifier 3 VvOL vOoL Yes
4 2 Label Number 1 1 1 Yes
5-10 3 Volume Serial 6 Any As typed from Yes if file
Number characters console assigned
Volume by VSN
Header
Label 11 4 Accessibility 1 Space Space No
12-31 5 Reserved 20 Spaces Spaces No
32-37 6 Reserved 6 Spaces Spaces No
38-51 7 Owner 1D 14 Any characters Spaces No
52-79 8 Reserved 28 Spaces Spaces No
80 9 L.abel Standard 1 1 1 No
Level
1-3 1 Label identifier 3 HDR HDR Yes
4 2 Label Number 1 1 1 Yes
5-21 3 File ldentifier 17 Any Spaces Yes
(File Label characters
Name)
22-27 4 Set Identification 6 Any Volume Serial No
(Multi-File Set characters Number of
Name) first volume of set
28-31 5 File Section 4 " 4 digits 0001 Yes
Number indicating number
{Volume Number) of volume in
First file
File 32-35 6 File Sequence 4 4 digits 0001 Yes
Header Number indicating num-
Label (Position ber of file in
Number) multi-file set
36-39 7 Generation 4 Spaces No
Number Not used
40-41 8 Generation 2 " 2 digits 00 Yes
Version Number indicating the
(Edition Number) edition of file
42-47 9 Creation Date 6 Space followed Current date Yes
by 2 digits for year, is used
3 digits for day
48-53 10 Expiration Date 6 Same as field 9 Same as field 9 Yes
54 1 Accessibility 1 Any characters Space No
55-60 12 Block Count 6 Zeros Zeros Yes
61-73 13 System Code 13 Any characters Spaces No
74-80 14 Reserved 7 Spaces Spaces No
60493800 M

3-35

TABLE 3-3. ANSI STANDARD TAPE LABEL FORMATS (Contd)

Character . ANS! Name Default Checked
Field Length Contents
Position e {NOS/BE 1 Name) ngt Written On input
. 1-3 1 Label Identifier 3 HDR HDR Yes
Additional a 2 Label Numb 1 2-9 2.9
File Header umber - - Yes
Labels All other fields are not checked on input; they are written as received from user.
1-3 1 Label identifier 3 EOF EOF Yes
4 2 Label Number 1 1 1 Yes
5-54 3-11 Same as corres-
ponding HDR1
First label fields
End-of- 55-60 12 Block Count 6 6 digits: . Yes
File Label number of data
blocks since
last HDR label
group
61-80 13-14 Same as corres-
ponding HDR1
label fields
Additional 1-3 1 Label Identifier 3 EOF EOF Yes
End-of-File 4 2 Label Number 1 2-9 2-9 Yes
Labels All other fields are not checked on input; they are written as received from user.
First 1-3 1 Label identifier 3 EOQV EOQV Yes
End-of-Volume 4 2 L.abel Number] 1 1 Yes
Label All other fields are identical to EOF 1 label. _
Second ¥ 1-3 1 Label Identifier 3 EOV EQV Yes
End-of- 4 2 Label Number 1 2 2 Yes
Volume
Label 510 3 Next VSN 6 6 characters . No defauit Yes
Additional 1-3 1 Label Identifier 3 EOV I EOV Yes
End-of- 4 2 Label Number 1 3-9 3-9 Yes
Volume .
All other fields are not checked on input; they are written as received from user.
Labels
USER 1-3 1| tabelldentifier | 3 | 3letter code: UVL,UHL,or UTL | Yes
Labels 4-80 Any characters. Content of these fields is not checked on input;
content is written as received from the user.
TThe second end-of-volume label conforms to ANSI standards but is not a standard ANSI label.

3-36 60493800 M

STANDARD LABELED TAPE STRUCTURE

The first four ANSI labels are required and the fifth ANSI label is written by the system but is not
required to read the file. They are used as follows (tape marks separating items are completely system

controlled):

VOLI1

HDRI1

EOF1

EOV1

EOV2

Must be the first label on a labeled tape volume. This label contains the volume serial
number which uniquely identifies the volume.

Required label before each file or continuation of a file on another volume. It is
preceded by a VOLI label or tape mark. Each file must have a HDRI label which
specifies an actual position number for multifile sets.

Terminating label for file defined by HDR1 label. The EOF1 label marks the end-of-
information for the file. A single tape mark precedes EOF1. A double tape mark

.written after the EOQF1 label marks the end of a multifile set.

Required only if physical end-of-tape reflector is encountered before an EOF1 is
written or if a multifile set is continued on another volume. It is preceded by a
single tape mark and followed by an EQOV2 label or a double tape mark.

Written after the EOV1 label by the NOS/BE operating system. This label is
not a required ANSI label. When the EQOV?2 label is present, it contains the
VSN of the next reel in the muitireel set. The user can either specify the
VSNs for the set with a VSN statement before the tape is written or let the
operator assign the VSNs when the tape is written.

The EOV2 label is preceded by an EOV1 label and followed by a double
tape mark. An EOV2 label is not required to read a multireel set.

The structure of SI tapes that results from these required labels is shown as follows. The label identifier
and number is used to denote the entire 80-character label in these figures.

Single volume file:

K l.oad Point

End-of-Tape Reflector
/———Tape Mark ————\ —\

Multi-reel file:

; 2%)
vOoL1 HDR1 * FILE A * EOF1 * *
av; —

" Double Tape Mark

22

VOL1

"\
HDR1 * FILE A * EOV1 EOV2 o

J\I

A

VOL1

~v ~ H
HDR1 * FILE A {Continued) * EOF1 * *

60493800 L

-\

3-37

Multifile volume structure that results from a request for a multifile set is:
v v v
VOL1| HDR1 | *| FILEA| * EOF1 | * HDR1 | * | FILEB| *| EOF1 | * | *
& A\ "

Multifile multivolume sets are also possible. Tape label configuration that occurs when EOF1 coincides with
end-of-volume is defined in the ANSI standard.

LABELED MULTIFILE SETS

A multifile set consists of one or more files on one or more volumes of tape. Individual files can be accessed
by name, even though their order is not known.

Labeled multifile sets require the use of both REQUEST and LABEL statements. (LABEL statements are not
required if the program can generate these fields internally.) REQUEST specifies the tape characteristics;
LABEL produces the file header for individual files. LABEL must specify the set name as the M parameter.
This set name is limited to six characters and must be different from any local file name. The utility routine,
LISTMF, is available to list the labels of all files in an existing set. LABEL can be used to position within a
set when a position number is used in the parameter list.

To create a labeled multifile set, the following parameters should be used (parameters after the first can appear
in any order). The label type must be U.

REQUEST(mfn,MF,U,RING,...)

LABEL(lfn; M=mfn,W,...) Program call to create Ifn;
LABEL(lfny,M=mfn,W,...) Program call to create lfn,

The mfn parameter is the name of the multifile set, 1-6 letters and digits beginning with a letter. This param-
eter associates the file with a particular set; all files in the set must reference it. Also, mfn cannot be used in

any I/O request except as the M parameter in LABEL or POSMF requests or as the name of a multifile set on
a RETURN or UNLOAD control statement.

RING/NORING parameters on REQUEST for the muitifile set determines the RING status for all processing
of that set. RING/NORING parameters are ignored on LABEL used to position a multifile set.

On REQUEST, the MF parameter designates the first parameter to be a multifile name rather than a

file name. The U parameter causes standard labels to be produced. Other parameters should establish tape
density and format for the entire multifile set. On LABEL, density and format parameters are ignored.
REQUEST can include a VSN parameter.

LABEL is recommended for each file. In addition to required lfn and M parameters, optional parameters
describing file header fields can appear. If a position number is not given with the P parameter, it is assumed
to be one larger than that of the previous file; and the new file is written at the end of the current set.
When an L parameter is used in creating a file header, future jobs can access the file by label name.

To access a labeled multifile set, a REQUEST control statement is needed to attach the set to the job. A
LABEL control statement (either U or Z) need appear only for the file to be accessed. For example, to
access the third file on a volume, use the following statements.

| 3.38
60493800 L

REQUEST(MANY MF,U,ENORING . . .)

LABEL(FILE3,R,M=MANY.P=3, . . .)

When an R is specified on a LABEL statement, the set is positioned according to the P parameter, an OPEN
function is issued to read the label, and the contents are checked against any corresponding parameters on the
LABEL statement. Use of L instead of P causes the tape to be searched for a matching label name. If a
match cannot be found, a message, FILE NAME NOT IN MULTI-FILE SET, is issued and processing stops.
The same message appears also when neither P nor L is given and the end of the device set is encountered.
When R is not specified, the next file in the set is opened when P and L are both omitted.

Writing on a multifile can be done at the end of the existing set. At some point prior to the end, existing
files can be overwritten. For example, to create a new file LASTONE, use

LABEL(LASTONE.W M=MYSET,L=LAST)

Since P is omitted, the label is written at the end of existing files and given a position one greater than the
last file. ‘

If a position number is given when a label is to be written, the file is positioned as requested. If a label
exists at that point, its expiration date is checked. A new label is not written over the existing one unless it
is expired or the operator authorizes writing over an unexpired label. Since rewrite-in-place is not defined for
tapes, rewriting a file label destroys access to the associated file and all files following it on the tape.
The assignment of a multifile can proceed automatically with the use of a VSN under the following conditions:
VSN statement or parameter equates the multifile name to the physical volume of tape.
VSN(mfname=1234)
or
REQUEST(mfn, ,VSN=1234)
A REQUEST statement is used to assign the multifile name to the job.
REQUEST(mfname MF)

A LABEL statement is used to identify the specific file by label name, equate the file to the logical file
name, and identify the file as being a multifile set member.

LABEL(lfn M=mfname,L=lfn,.)

Once the multifile name has been assigned to the job via the REQUEST statement, any file can be accessed
individually via the LABEL statement. The execution of a new LABEL statement automatically prevents the
preceding labeled file from being accessed.

USAGE SUMMARY

Magnetic tape files to be used or created by a job must be explicitly requested. The three control statements
involved are REQUEST, LABEL, and VSN.

The REQUEST statement can be used for all tape files (labeled, unlabeled, single file, or multifile set).
Parameters, in addition to specifying format and density, can specify processing for the file. Identifying the

60493800 L 3-39

tape as input or output and the type of label is sufficient to initiate label processing and checking when the
file is opened. The installation default options for unloading, label processing, and parity error processing can
be overridden. A volume serial number parameter for the volume (or first volume in multivolume file) allows
the system to assign the file automatically.

The LABEL statement can be used in place of a REQUEST statement for a labeled, single file volume and to
write or check file header labels on single or multifile volumes. Parameters establish label type and whether
labels are to be read or written. Fields in file header (HDR1) labels are written or checked according to the
values specified. If a multifile volume is to be labeled, a REQUEST statement must first establish the
multifile name, then a LABEL statement can exist with the name and label field values for each file in the
set. With LABEL, either a volume serial number or a label name can be given for identification for automatic
tape assignment purposes. Automatic assignment by label name applies only when the read (R) parameter is
specified by LABEL. The LABEL statement also can be used to position to a particular member of a multi-
file set.

A LABEL statement can follow a REQUEST statement for the same file. Conflicts in parameters are resolved
in favor of the REQUEST statement. Unresolvable conflicts are referred to the operator.

The VSN statement can be used to equate a file name with a volume serial number so that the system can
assign a mounted tape automatically when it is requested by a REQUEST or LABEL statement or function.
The VSN for multifile set or for alternate volumes can be stated. Since the system accepts the first VSN
equated to a file name, a VSN preceding a REQUEST or LABEL statement overrides any VSN value or
supplies the omitted parameter. This VSN information is independent of label information. It is not written
or checked against label fields.

Automatic tape assigning capabilities, which are selectable by installation options, speed job throughput when
the programmer supplies information to allow assignment of mounted tapes without operator action. The
system searches first for an eq parameter, then a VSN parameter, then a label name from among the control
statements. If both the VSN and label name parameters are specified, only the VSN is used for automatic
assignment. However, label verification proceeds separately and inconsistencies are brought to the attention of
the operator for action. The operator has the option of assigning a VSN to a tape when it enters the system
if such identification was not made by the programmer.

For a multivolume file EOV2 labels, a VSN statement, or operator commands, identify the VSNs of the
continuation reels. A labeled tape or an unlabeled SI format tape may have an EOV2 label placed after
the EOV1 label. This label contains the VSN of the next reel. The VSN in the EOV2 label is the VSN
specified by a previous VSN statement or the VSN specified by the operator. If the user wants to over-
ride existing EOV2 labels or if no EOV2 labels exist, the user should enter a VSN statement to identify
the VSNs of the continuation reels. When the job’s tape file requirements change frequently, the user
should specify the VSN statement so the operator knows the required tapes. An operator can specify

a VSN and it will override both an EOV2 label and a VSN statement.

If more than one VSN parameter is given for a single file, the first encountered is accepted. Therefore,
deliberate duplication provides the programmer with the ability to override, for example, a REQUEST function
specification within a program without changing the program.

The maximum number of tape drives a job uses at any time is specified by the MT (seven-track) and NT, HD,
PE, and GE (nine-track) tape parameters on the job statement. Specifying more tapes than are needed can
delay execution of a job. The greatest delay results from specifying a number of tapes when the job does
not use any tapes. Specifying fewer tapes than needed causes the job to abort. Depending on installation
options for tape scheduling and default density (refer to the NOS/BE Installation Handbook), for nine-track
tapes, the job statement density request and the density specified on the LABEL or REQUEST statement
must be the same.

3.40 60493800 L

PRINT FILES

Print files contain a disposition code indicating printer output. The file OUTPUT always is a print file.

Print files must have the following characteristics.

Characters must be in 6-bit display code (IC=DIS) or 8-bit ASCII (IC=ASCII). Display code files
contain ten 6-bit characters per 60-bit CM word. Eight-bit ASCII files contain five 8-bit characters
right justified in each 12-bit byte. Bits 7-11 of each 12-bit byte are ignored. IC is declared with the
ROUTE control statement or macro. Default is DIS. Files to be printed with an extended print
train (more than 64-character character set) must be in ASCII.

The end of a print line must be indicated by a zero byte in the lower 12 bits of the last central
memory word of the line. Any other unused characters in the last word should be filled with binary
zeros. For example, if the line has 137 characters (including the carriage control character), the last
word would be aabbccddeeffgg000000 in octal; the letters represent the last seven characters to be
printed in the line. No line should be longer than 137 characters.

Each line must start at the high order end of a central memory word.

The first character of a line is the carriage control, which specifies spacing as shown in the following
table. It is never printed, and the second character in the line appears in the first position. A maximum
of 137 characters can be specified for a line, but 136 is the number of characters that is printed.

Table 3-4 shows carriage control characters.

When the following characters are used for carriage control, no printing takes place. The remainder of
the line is ignored.

Character Action
Q Clear auto page eject (JANUS default).
R Select auto page eject.
S Clear 8 vertical lines per inch.
T. Select 8 vertical lines per inch.
PM Output remainder of line (up to 30 characters) on the B display and the

dayfile and wait for the JANUS entry /OKxx.

A Specifies a new carriage control array to be loaded for a 580 printer.

The remaining carriage control characters to not inhibit printing. Only the carriage control character is not
printed. Any preprint skip operation of 1, 2, or 3 lines that follows a postprint skip operation is reduced
to 0, 1, or 2 lines.

The functions S and T should be given at the top of a page. In other positions S and T can cause

spacing to be different from the stated spacing. Q and R need not be given at the top of a page as
each causes a page eject before performing its functions. '

60493800 L 3.41 '

TABLE 3-4. CARRIAGE CONTROL CHARACTERS

Character Action Before Printing Action After Printing

A Space 1 Skip to top of next pageT
B Space 1 Skip to last line of page

C Space 1 Skip to channel 6
D Space 1 Skip to channel 5

E Space 1 Skip to channel 4

F Space 1 Skip to channel 3

G Space 1 Skip to channel 2

H Space 1 Skip to channel 11
| Space 1 Skip to channel 7

J Space 1 Skip to channel 8

K Space 1 Skip to channel 9

L Space 1 Skip to channel 10
1 Skip to top of next pageJr No space

2 Skip to last line on page T No space

3 Skip to channel 6 No space

4 Skip to channel 5 No space

5 Skip to channel 4 No space

6 Skip to channel 3 No space

7 Skip to channel 2 No space

8 Skip to channel 11 No space

9 Skip to channel 7 No space

X Skip to channel 8 No space

Y Skip to channel 9 No space

Z Skip to channel 10 No space

+ No space No space

0 (zero) Space 2 No space

- (minus) Space 3 No space

blank Space 1 No space

TThe top of a page is indicated by a punch in channel 1 of the carriage control tape. The
bottom of page is channel 7.

3.42 60493800 L

The V function can be used when assigning output to a 580 printer with programmable format control. Such
a printer does not use carriage control format tapes; instead it contains a microprocessor plus memory.
Programmable format arrays are loaded into this memory, performing the same function as the format tape.
System defined arrays are available for use (see the ROUTE control statement in section 4); however, the

V function allows a user-specified array to be used. When V is the first character of the line, 6, 8, or C may
be specified as the second character. Other characters invalidate the function. If the second character is

6, 6-line per inch spacing is indicated. If the second character is 8 or C, 8-line per inch spacing is indicated.
An 8 means that the entire array is contained on one line, and a C means that two lines are used. When
two lines are used, there are no restrictions as to how the array is split, but both lines must begin with the
characters VC. The data starting in column 3 defines the format array to be used in subsequent printing.
The alphabetic characters A through L, the letter O, and blanks are specified to indicate the following.

Character Significance
A Top of forms code; the array must begin with an A.
B Channels 2 through 11, respectively. Other carriage control characters contained
through in table 3-3 are used to skip to these channels. Therefore, each of these letters
K should be specified at least once in the array.
L Bottom of forms code.
0 End of the array; must be specified as the last character in the array. However,

it does not correspond to any line on the form.
blank No channel. Blanks increase the number of lines on the form.
Any other characters are illegal and invalidate the array.

Regardless of whether the array is contained on one or two lines, a maximum of 132 characters plus the end
of array terminator is allowed in a 6-line per inch array, and a maximum of 176 characters plus the end of
array terminator is allowed in an 8-line per inch array. An array may be less than the maximum length since
the printer loops on what is specified, even if it is not a full page.

NOTE

Specifying a V (with 6, 8, or C) does not imply that 6- or 8-line per inch mode will be
selected. If the user desires to change this mode, the S or T carriage controls must be
used. If an array is indicated in a mode other than that previously specified by the S or T
carriage controls, the array is ignored until the S or T carriage controls are used to change
that mode.

If the V carriage control is specified and the printer is not a printer with programmable format control, the
printer page ejects and does not print the line(s).

60493800 L 343 l

The following examples illustrate typical carriage control output and its effect.

1.

| 3-44

column 1234567890123456789012 34
array V6A B C D EFGHIJK O

This causes the 6-line per inch buffer to be loaded with a 22-character array, implying a 21-line form.

column 12345678901234
array V8ABCDEFGHIJKO

This causes the 8-line per inch buffer to be loaded with a 12-character array, implying an 11-line form.
column 12345678901234567

array VCABDC
VCEFGHIJKO

This causes the 8line per inch buffer to be loaded with a 22-character array, implying a 21-line form.

column 123456
array V6BCDO

This is invalid because the array does not begin with an A.

column 123456789
array VBA C DEO

This is invalid because the second character is not a 6, 8, or C.

column 123456
array VS8ABWC

This is invalid because W is an illegal character and the array does not end with an O.

60493800 L

JOB CONTROL STATEMENTS 4

This section describes the control statements applicable to program execution and file manipulation. Utilities
are also presented. The first statement described is the job statement that begins the job. Remaining control
statements are in alphabetical order.

In the formats that follow, uppercase letters indicate constants and lowercase letters indicate values to be
supplied by the user. Equal signs and slashes are required where they are shown within a parameter field.

CONTROL STATEMENT SYNTAX

All control statements, except the job statement that begins a job, have the same general format. They begin
with a verb and are followed by parameters separated by separator characters. A terminator must follow the

last parameter or the verb when no parameters are given. Blanks within the parameter list are ignored, except
possibly on the ACCOUNT statement (depending on the installation).

Verbs 1-7 letters or digits that indicate-the operaticn to be performed. Leading blanks
can appear before the verb. The first character must be a letter. A blank
immediately following the verb serves as a separator. .

Separators A separator is any character with a display code value greater than 444 except
*) . $ and blank. (A blank can be used to separate the verb from the first param-
eter.) The comma and left parenthesis are preferred separators. Refer to appendix A
for display code values.

Parameters Parameter format and order depends on the individual control statements. Some
parameters have more than one field. Fields within parameters are separated by = /
or commas.

If a parameter field includes characters other than letters, digits, or asterisks, it must
be written as a literal. A literal is a character string delimited by dollar signs.
Blanks within the literal are significant. If the literal is to contain the character

$, two consecutive dollar signs must be written. The literal $A B$$418$ is inter-
preted as A B$41.

Terminators Terminators are the characters period and right parenthesis.

Any characters after the terminator are treated as a comment. They appear on the job dayfile when the con-
trol statement is listed.

Certain control statements can be continued on one ore more cards or lines. These statements are specifically
noted in the following descriptions. (Refer to the appropriate product reference manual to determine which
system programs allowscontinued control statements.) In general, the last nonblank character of the card

or line to be continued must be a separator, and the verb and parameter fields cannot be split between cards
or lines. The final card or line must contain a terminator.

60493800 L 41

NOTE

In a system using the 64-character set, colons should not be
used in a control statement except within a literal. (A single
colon is permitted in a literal.) Two or more consecutive
colons could give incorrect results because the operating
system uses 12 zero-bits (equivalent to two consecutive colons)
to signify the end of a control statement.

Control Statement interpretation is described in section 7.

JOB STATEMENT

A job is identified, certain resources are requested, and processing priority levels are established with the job
statement. In addition, the installation might require accounting information on this statement. The first
statement in a job deck or in a file to be submitted for batch execution must be the job statement. Any
other statement in this position is presumed to have job statement parameters and is interpreted accordingly.

One parameter, the job name, is required on all job statements. Other parameters can be included to specify

resources, priority levels, or processing time limitations. If these parameters are omitted, the operating system
automatically assigns the system default values established when the operating system was installed. Parameters
can be listed in any order following the job name.

All blanks and any unknown parameters that appear on the job statement are ignored. However, when
improper characters are used as variables with valid parameters, the job is terminated. For example, parameters
such as CM7FFF and DATA would cause job termination since CM must be followed by digits only and D
followed by two letters and one or two digits.

A 26 or 29 can be punched in columns 79 and 80 of the job statement to indicate whether the statements
following are punched in 026 or 029 character codes. The default mode depends on an installation option

(see appendix A).

All numbers on job statements (except 26 or 29 in columns 79 and 80) are presumed to be octal values,
unless changed by the system analyst when the operating system is installed at the user’s installation.

The format of the job statement is:
name,Tt,10t,CMfl,ECf],Pp, Dym MTk NTk,HDk ,PEk,GEk,CPp,STmmf.

After the terminator following the last parameter, general comments, or installation defined material
such as accounting information, can appear.

name Name the user assigns to the job to identify it to the operating system. Any com-

bination of digits or letters can be used. The first character must be a letter. A
name longer than five characters is truncated to five.

42 60493800 E

Tt

10t

CMfl

ECfl

60493800 J

The operating system modifies the name of every job by assigning letters and digits
that differ for each job as the sixth and seventh characters. This ensures unique
identification if a job is entered with a name duplicating that of another job already
in process. For example, if two jobs are named JOBNAME, one might be processed
as JOBNA23 and the other as JOBNA34. If a job name contains fewer than five
characters, all unused characters through the fifth are filled with zeros before unique
sixth and seventh characters are added.

t is an octal value for the time, in seconds, for which the user estimates his job
requires the central processor. It must include the time required for assembly or
compilation. It does not include time during which the job is in the input queue

or in central memory but not using the central processor. If the job access to the
central processor exceeds the value specified by t , the job is terminated abnormally.
(Use of the RECOVR feature in a program allows results of execution to that point
to be recovered before termination.)

t cannot exceed five digits. An infinite time can be specified by 77777 or 0. The
job proceeds until completed even if it exceeds the installation maximum value for
t. An infinite time limit should not be used indiscriminately since certain kinds of
program errors, such as an infinite loop, can result in great waste.

t is an octal value for the time, in seconds, which the user estimates his job requires
for input/output. Although t cannot exceed five digits, an infinite time limit can
be specified by 0. The default limit is infinite but can be changed by the installation.
If the job input/output time exceeds the value specified by t , the job is terminated
prematurely. (Use of the RECOVR feature in a program allows results of execution
to that point to be recovered before termination.)

fl is the maximum field length (octal number of central memory words) that the job
requires.

When the CM parameter is specified, that amount of storage is allocated to the job
throughout execution, unless the job itself requests a smaller amount by a REDUCE
or RFL (request field length) statement. If the CM parameter is not used, the system
establishes field length requirements for each step of the job, expanding or contracting
it as necessary. Since smaller field lengths are used whenever possible, more jobs can
pass through the system in a given time period.

The system library programs, including the loader, compilers, and utilities, have an
associated field length in the library tables. The field lengths are set by the installation
to a judicious length for typical Yjobs, which should eliminate the need for the CM
parameter on many job statements.

Any CM parameter on the job statement is rounded upward to a multiple of 100. The
highest permissible value is defined by the installation for a given mainframe. An RFL
control statement requesting a field length greater than the CM value on the job state-
ment causes job termination. The RFL limit is the installation field length maximum
if CM is not on the job statement.

fl is the maximum amount (octal) of direct access ECS the job needs in multiples

of 1000-word blocks. The value must not exceed the installation-defined limit unless
STmmf is also specified (EC will be ignored if the installation limit is zero and STmmf
is not specified). An installation default amount (typically zero) is assigned if the

43

44

Dym

MTk
NTk
HDk
PEk

GEk

CPp

parameter is omitted and subsequent MEMORY and RFL requests from user programs
are not allowed to exceed that amount. The installation can specify a default amount
to be assigned when EC is specified without fl.

The EC parameter is applicable only to user programs in which ECS is accessed.
If the ECS parameter is specified, the job will start either with no ECS assigned
or with the assigned ECS equal to the parameter, depending on the option se-
lected by the installation. In the case in which no ECS is assigned, it is the same
as if a REDUCE,ECS. control statement had just been processed. In the case in
which the ECS assigned is equal to this parameter, it is the same as if an
RFL,EC=fl control statement had just been processed.

p is the priority level (octal) requested for a job. The lowest executable priority
level is 1. If zero is given for p , the system treats it as level 1. The installation
determines the highest value permitted, but it never can exceed 7777 (octal). A
value greater than the highest permitted value defaults to the installation default.

This parameter is used only in conjunction with a string of interdependent jobs.

y is the dependency identifier (two alphabetic characters) assigned by the user to
the entire string. m is the dependency count (number) of jobs (0-77 octal) upon
which this particular job depends. Examples using the D parameter are presented
in the discussion of the TRANSF statement.

MT specifies seven-track tape. GE, PE, HD, and NT specify nine-track tapes with the
following densities.

GE 6250 cpi [679 group coded recording (GCR) unit only]
PE 1600 cpi

HD 800 cpi

NT Installation-selected default density

k is the maximum number of seven-track or nine-track tape units a job will require
at any one time. k can range from 0 to 77 (octal) but cannot exceed the total
number of tape units at the computer site. If more tape units are required at any
time during job execution than are specified by k, the job will be terminated.

Depending on the installation option for tape scheduling, the following rules for
specifying density and k apply. If the installation has selected the schedule-by-
density option, three separate counts according to density are maintained for each
job (for example, the number of GE tape units is counted separately from the
number of HD tape units). If the installation has not selected the schedule-by-
density option, only one count of nine-track tape units is maintained.

A job can use more than a total of k tape units as long as their use is not simultaneous.
For example, if MT3 is specified, seven-track tape units A, B, and C are assigned to the
job, and an UNLOAD but not a RETURN function is issued for the tape unit C, tape
unit D can be requested for the job. This makes a total of four tape units used during
the entire job.

This optional parameter is applicable only to systems having more than one central
processor. Use of the CP parameter restricts the job to executing only on the specified
processor. Omission of the parameter allows the system to select the processor for

job execution; usually, both processors will be used during the execution of any pro-
gram, p can be A or B.

60493800 J

On a CYBER 174; CYBER 71-2x, 72-2x; CYBER 73-2x; or 6500 system, the
parameter restricts job execution to one of the two identical central processors. In
general, such a restriction serves no benefit. However, it is useful for running CPU
diagnostic programs.

On a CYBER 74-2x or 6700 system, the two processors operate at different
speeds. CPA restricts the job to the faster processor, and CPB restricts it to the
slower processor. When the parameter is omitted, the system chooses the faster
processor when it is available.
| STmmf This optional parameter specifies a three-character identifier (mmf) of the system on
which the job is to be run. For multimainframe environments, ST should be used
to ensure that a string of interdependent jobs is executed in the same mainframe.
Examples of job statements:

JOBA100,T400,CM45000,EC2,P1,DAB3 MT5,CPA. THE JOB NAME IS TRUNCATED TO JOBA1

K2S1. ALL DEFAULT VALUES ARE AUTOMATICALLY ASSIGNED

TLS,T777,10777,CM50000,EC5,NT2,P1 MT1.

JOB4,T77777,J00,NT1. THIS JOB HAS INFINITE CENTRAL PROCESSOR AND I/O TIME

ABS (ABSOLUTE CENTRAL MEMORY DUMP)

ABS dumps absolute addresses of central memory whether or not the addresses are within the field length
assigned to the job. Installations can prohibit absolute dumps.

The format of ABS is:

ABS,from,thru.

When only one parameter appears, it is presumed to be the thru parameter, and the dump starts at
address 0. When both parameters are present, thru must be greater than from.

from Address at which dump is to begin, 1-6 digits octal.

thru Address at which dump is to end, 1-6 digits octal. If the value exceeds the size of
memory, dumping stops at the end of memory.

The format of the output on file QUTPUT is the same as that produced by the DMP control statement. ABS

can also be called using the SYSTEM macro described in section 7.

ACCOUNT (ACCOUNTING INFORMATION)

ACCOUNT supplies accounting information. The installation determines what accounting information is
required and what can be optionally specified. Depending on the installation, the ACCOUNT control state-

ment might be required immediately after the job statement and it might be allowed or disallowed elsewhere
among the control statements.

60493800 E 4-5

The format of ACCOUNT is:
ACCOUNT.parameter list.

The dayfile message indicating the execution of ACCOUNT might be edited so that sensitive information is
deleted. Ilegal accounting information might cause job termination.

Some installations require accounting information on the job statement instead of the ACCOUNT control
statement. Others might not require any such accounting.

ADDSET (CREATE MASTER DEVICE OR ADD DEVICE
TO PRIVATE DEVICE SET)

ADDSET adds members to a device set. It can be used to create a master device when parameters MP and
VSN indicate the same volume serial number. Members being added must have the same device type as the
master device (see LABELMS). ADDSET cannot be entered through INTERCOM.

A member device is added to an existing device set when parameters MP and VSN specify different volume
serial numbers. A MOUNT statement for the master device must be issued before ADDSET can be used to
add a member device.
The format of ADDSET is:

ADDSET,SN=setname MP=mpvsn,VSN=vsn,UV=uv,UP=up ,PB=pb FR=fff NF=n NM=m,RP=ddd,*PF.

Parameters SN, MP, and VSN are required. If parameters MP and VSN are equal, parameters UV, UP,
PB and FR are required unless the installation defines defaults. All parameters are order independent.

SN=setname Name of device set created or device set to which a member is added; 1-7 letters or
digits beginning with a letter. Required.

MP=mpvsn Volume serial number of master device; 1-6 letters or digits, leading zeros assumed.
Required.
VSN=vsn Volume serial number of device being added; 1-6 letters or digits, leading zeros

assumed. Required.
UV=uvt Universal password; 1-9 letters or digits.

UP=upt Universal permission; any non-null combination of the characters C,M, E, and R,
which specify the following permissions.

C Control permission
M Modify permission
E Extend permission
R Read permission
PB=pbt Public password; 1-9 letters or digits.

1This parameter applies only when a master device is beiﬁg added.

46 60493800 M

FR={ff} Permanent file default retention period specifying the number of days permanent
files on this private set are to be retained; 0-999. The private set owner determines
the future of each file once the retention period expires.

NF=nt Maximum number of permanent or queue files that can exist on the device set.
Value of n cannot be less than one nor greater than 16000.

NF=n has meaning only for an ADDSET for a master device. Default is 300 (octal).

NM=mt Maximum number (decimal) of members allowed in the device set. NM=m is used
by ADDSET to preallocate tables for the member devices on the master device
system. For each member RBR, the system needs one PRU if the RBR is less than
62 words long, or two PRUs otherwise. For system tables ADDSET reserves a
number of PRUs equal to twice NM. If each member device is to have several RBRs,
NM=m should be specified as somewhat larger than the actual number of member-
devices. NM=m has meaning only for an ADDSET of a master device. Default is
50 (decimal).

RP=dddf Retention period for the device set. ddd must be decimal (0 to 999) indicating the
number of days before the device set expires. 999 indicates an infinite retention
period. RP=ddd has meaning only for an ADDSET of a master device. Default is
31 days.

*PF Permanent files can reside on this member of the device set. Although the master
device need not be a permanent file device, at least one device in the device set
must be a permanent file device.

ALTER (CHANGE PERMANENT FILE LENGTH)

ALTER changes the end-of-information for an attached permanent file. End-of-information is set at the end
of the PRU at which the file is currently positioned. ALTER is identical to the EXTEND control statement
when new information has been written to the file and the current file position is at the end of the new
information.

ALTER requires exclusive access to the file; an RW=0 parameter on the ATTACH control statement provides
exclusive access. The permissions required depend on whether the file is being lengthened or shortened.

tThis parameter applies only when a master device is being added.

60493800 M 47

Extend permission is required to extend the file length.

Modify and extend permission are required to reduce the file length.
The format of ALTER is:

ALTERIfn.

ifn Local file name of attached permanent file, 1-7 letters or digits beginning with a .
letter.

ATTACH (ATTACH PERMANENT FILE TO JOoB)

ATTACH attaches a permanent file to a job, as long as parameters specified on the ATTACH control statement
establish the right to use the file. Subsequent operations allowed on the file depend on the passwords sub-
mitted. Turnkey, read, modify, extend, or control permission is granted only when the appropriate passwords
are specified. In a multimainframe environment, the permanent file must reside on a device connected

to the mainframe on which the job is executing.

When the file is attached to the job, its initial position is beginning-of-information.
The format of ATTACH is:
ATTACH,lfn,pfn,ID=name,CY=cy EC=ec,LC=n MR=m,PW=pw,UV=uv,RW=p,SN=getname.

The first parameter establishes the local file name by which the file is known to the job. Parameter
pfn is required. Parameters Ifn (if present) and pfn are order dependent. All other parameters are
optional depending on how the file way cataloged. They are order independent. The ATTACH state-
ment can be continued from one line to the next. The first line must not be terminated by a period
or a right parenthesis. To be consistent with other control statements that require such a format, the
last nonblank character on the line should be a separator. The continuation begins in column 1 of
the next line.

Ifn Name by which file is to be known as a local file, 1-7 letters and digits beginning
with a letter. If omitted or null, the first seven characters of the pfn establish 1fn.

pfn Perm_anent file name by which the file is known in the permanent file manager tables,
1-40._letters or digits.

ID=name ID pafameter by which the file was cataloged. Required unless the file was cataloged
with ID=PUBLIC,
CY=cy Cycle number to be attached; 1-999. Default is highest existing numbered cycle.
EC=ec Size of buffer for sequential public device set file (octal). EC is ignored when SN is
specified.
ec - : Buffer Size
K Installation standard number of blocks of ECS.
. nnon Number of 1000 (octal) word blocks to be allocated.
nnnnK Same as EC=nnnn.
nnnnP Number of ECS pages, with a page 1000 (octal) central

memory words.

4-8 . 60493800 H

LC=n Lowest cycle indicator; n must be any non-zero value. CY overrides LC except when

CY=0.
MR=m Multiread permission.
m Significance
0 or omitted File may be attached with all the permissions
established by the creator of the file.
Nonzero File can be attached only with read permission.
digit
PW=pw 1-5 passwords, separated by commas, for permissions required in this job. Passwords
are defined by the CN, TK, RD, MD, EX parameters of the CATALOG control
statement.
UV=uv Universal password; 1-9 letters or digits. Grants universal permission. Password and

permission for public sets are defined by the installation; for private sets, they are
defined on the ADDSET statement when creating the master device. If this parameter
is specified, PW parameters are ignored.

RW=p Rewrite request,
P Significance
0 Job has exclusive file access if it has control, modify,
or extend permission.
Nonzero Job retains modify and extend permission; any control
digit permission is cancelled. Other jobs can attach the file
with MR=1 to read the file but cannot receive control
permission.
SN=setname Name of set on which file is cataloged, 1-7 letters or digits beginning with a letter.

The master device of a private device set must be referenced on a MOUNT control
statement before SN is used. If omitted the job’s current permanent file default set
is assumed (refer to SETNAME statement).

An ATTACH of an incomplete cycle must specify CY and any control password.

AUDIT (PERMANENT FILE SUMMARY)

AUDIT provides the status of permanent files. The user can restrict the AUDIT to an owner ID, permanent
file name, or device set.

AUDIT can run in either full mode or partial mode. Items contained in the printed reports of each of these
modes are listed in table 4-1.

60493800 G 4-9

The format of AUDIT is:

Al=F

AUDIT,LF=lfn, MO=m,ID=name,PF=pfn, { AI=P

} ,SN=setname,VSN=vsn, AC=n.

All parameters are optibnal and order independent. If a terminator does not appear at the end of the
parameter list, column 1 of the next card or line is considered to be a continuation of the AUDIT
parameter list.

LF=lfn Name of file to receive the output listing created by AUDIT, 1-7 letters or digits
beginning with a letter. Default is OUTPUT.
MO=m AUDIT mode; only one of the following modes can be specified.
m Mode
A AUDIT all files (default)
X AUDIT expired files
D AUDIT inactive cycles
I AUDIT incomplete files
P AUDIT files with parity errors
R AUDIT archived files
ID=name Owner identification; audit all files with this identification.
PF=pfn Permanent file name; audit all files with pfn. If PF=pfn is used, the ID=name param-
eter must also be used.
Al=F Full 2-line output for each file audited. Default.
AI=P Partial 1-line output for each file audited.
SN=setname Name of device set to be audited, 1-7 letters or digits beginning with a letter. Master

device for this device must have been previously mounted.

VSN=vsn Volume serial number of device to be audited, 1-6 digits or letters with leading zeros
assumed. All files residing on this device are audited. Master device for this device
set must have been previously mounted. SN=setname parameter must also be
specified.

AC=n Account number; audit all files with this 1-9 character account number.

410 60493800 H

TABLE 4-1. ITEMS LISTED BY AUDIT

All | Archived | Expired | Files of gg}j’;f;ﬂ‘i Partial | Full Audit
Files Files Files | Same ID Device Audit | or Account
Account Parameter X X X X X X X
Creation Date (ordinal) X X X X X X X
Cycle Number X X X X X X X
Date of Last Alteration (optional) X X X X X X X
Date of Last Attach (optional) X X X X X X X
Expiration Date (optional) X X X X X X X
Flags' , X X X X X X
Length Number of PRUs Deter- X
mined by Installation Parameter X X X X X X
Length in RBs X X X X X
Number of Attaches X X X X X X
Number of Extends X X X X X X
Number of Rewrites/Alters X X X X X X
Owner 1D X X X X X X X
Permanent File Name X X X X X X X
Set Name X X X X X X X
Subdirectory Number X X X X X X
Time of Last Alteration X X X X X X
Time of Last Attach X X X X X X
First VSN X X X X X X X
VSN of Dump Tapes (first/last) X X X X X X
TFlags are:
A Archived file E Parity error in file P Positioned file

C RB conflict file N New version file R Random file
S CDC CYBER Record Manager IS, DA, or AK file

BKSP (BACKSPACE SYSTEM-LOGICAL-RECORD)

BKSP backspaces one or more system-logical-records on rotating mass storage, ECS, or SI format tape. Back-
spacing terminates when beginning-of-information is encountered.

The format of BKSP is:

BKSP,lfn,n,C.

60493800 E 411

Parameters are positional; only lfn is required.
ifn Name of file to be backspaced, 1-7 letters or digits beginning with a letter.

n Number of system-ogical-records to be backspaced, 1-262143 (decimal). Default
is 1. If n is set to zero, the system treats it as n=1.

C File to be backspaced is coded. Default is binary.

CATALOG (CREATE PERMANENT FILE)

CATALOG makes an existing local file a permanent file by creating entries in permanent file manager tables.
A permanent file is known in these tables by a permanent file name unique within an owner ID. As many as
five cycles can exist with the same permanent file name and ID but different cycle numbers.

The local file must have all permissions in order for a new permanent file name and ID to be entered in the
permanent file manager tables. When the first cycle of a permanent file is created, the values for XR, EX,
CN, MD, TK, and RD define the passwords which are to be used in future references to all cycles of this
permanent file. Consequently, these parameters are ignored for a new cycle catalog. Any control password

or turnkey password defined must be specified with the PW parameter to create a new cycle of a permanent
file.

The local file must reside on a member of a public device set or on a member of a private device set desig-
nated for permanent files. A PF parameter on a REQUEST control statement prior to file creation ensures
proper file residence. An SN parameter on the REQUEST determines the device set for the file.

Once the file is cataloged, it remains available to the job as a local file with all permissions, unless the RW
parameter or MR parameter cancels some permissions.

The format of CATALOG is:

CATALOG,Ifn,pfn,ID=name,AC=act,CY=cy,CN=cn,EX=ex,FO=fo, MD=md MR=m,PW=pw,RD=rd,RP=rp,
RW=p, TK=tk , XR=xr. :

The first two parameters are required in the order shown. All other parameters are order independent.
CATALOG can be continued. If a period or right parenthesis does not appear at the end of the
parameter list, column 1 of the next statement is considered a continuation of column 80.

ifn File name by which file is presently known to the job, 1-7 letters or digits
beginning with a letter. If omitted, the first 7 characters of pfn are assumed. This

name does not become part of the permanent file identification.

pfn Permanent file name by which the file is known in permanent file manager tables,
1-40 letters or digits. If omitted or null, 1fn becomes the permanent file name.

ID=name Owner or creator of file; 19 letters or digits. Required unless the installation is
cataloging the file with ID=PUBLIC.

AC=act Account parameter, 1-9 letters or digits. Installation determines the procedure if
act is incorrect or is not specified.

4-12 60493800 K

CY=cy Cycle number of file with same pfn/ID combination, 1-999. If omitted, illegal, or
not unique, cycle number is one greater than highest existing cycle number. If a
cycle 999 exists, automatic cycle number assignment cannot take place.

CN=cn Password for control permission (purge or catalog new cycle), 1-9 letters or digits.
EX=ex Password for extend permission, 1-9 letters or digits.
FO=fo File is CYBER Record Manager IS, DA, or AK organization. Permissions are

defined in terms of Record Manager logic; extend is equated with adding new records,
modify with deleting or replacing records. If the file is not IS, DA, or AK organi-
zation, this parameter is ignored.

MD=md Password for modify permission, 1-9 letters or digits.
MR=m Multiread indicator.
m Significance
0 No other job can attach file while this job is in

execution. Default.

Nonzero Other jobs can attach file immediately for read only.
digit All permissions except read are cancelled.
PW=pw Password list to obtain permissions. Control password is required to catalog a new
cycle of the same pfn/ID. Public password is required to catalog the initial cycle
of a file with ID=PUBLIC. I
RD=rd Password for read permission, 1-9 letters or digits.
RP=rp Retention period indicating the number of days file is to be retained, 0-999. Infinite

retention is 999, although an installation might change this. Default is installation
defined. Installation procedures determine the future of the file once the retention
period expires.

RW=p Rewrile request.
P Significance
0 Job has exclusive file access if it has control, modify,
or extend permission.
Nonzero Job retains modify and extend permission: any control
digit permission is cancelled. Other jobs can attach the file
with MR=1 to read the file, but cannot receive control
permission.
TK=tk Password for turnkey required in addition to RD, MD, EX, or CN, 1-9 letters or
digits.
60493800 M

XR=xr Password for modify, extend, and control permission, 1-9 letters or digits, Any MD,
EX, or CN parameter overrides XR for the specified parameter only.

When a file is cataloged with a pfn unique to the ID, these parameters are applicable.
AC, CN, CY, EX, FO, MD, MR, PW, RD, RP, RW, TK

When a new cycle is cataloged with the same pfn and ID of an existing permanent file, the new cycle has the
same set of passwords as the original file. Any control permission passwords must be specified on the
CATALOG that establishes a new cycle. These parameters are applicable to a CATALOG for a new cycle:

AC, CY, FO, MR, PW, RP, RW

Any permanent file parameter not applicable to CATALOG is ignored.

CKP (CHECKPOINT REQUEST)

CKP requests a checkpoint dump be taken during job execution. Each time a checkpoint dump is taken during
job execution, a file is written containing information needed to restart the job at that point. The system
numbers each checkpoint dump in ascending order.

The format of CKP is:
CKP.

The checkpoint/restart system facility captures the total environment of a job on magnetic tape so the job can
be restarted from a checkpoint, rather than from the beginning of the job. Total environment includes all files
associated with the job. For mass storage files, the complete file is captured, including data from any ECS
buffers and the relative position within that file. For magnetic tape files, only the relative position on the
tape is captured so the tape can be properly repositioned during restart. (Refer to the RESTART utility.)

Checkpoint/restart cannot handle the following items.

Rolled-out jobs

Random files (except random permanent files)

Muttifile volumes

ECS resident files

The job should request a dump tape with a REQUEST or LABEL control statement that indicates the tape is to
be used for checkpoints. The tape must have SI data format and default density, but can be either 7-track or
9-track and labeled or unlabeled. Either a 7-track or 9-track tape can be assigned by the operator when an MN
parameter appears in REQUEST. Only one tape can be defined for checkpoint dumps per job. If no tape is
supplied, checkpoint defines an unlabeled tape for its use at the time the checkpoint occurs with the following
request statement.

REQUEST,CCCCCCC,CK,MN,RING.

4-14 60493800 E

Checkpoint/restart defines the following files for its use.
cceeece cceeccl CCCCCCM cccecceco

The user should refrain from using these file names. User system-logical-records should not have a tevel 168
since checkpoint uses level 168 for internal processing.

COMBINE (RECORD CONSOLIDATION)

COMBINE consolidates one or more consecutive system-logical-records in one file into one level O system-
logical-record on a second file. COMBINE is applicable only to files with system-logical-record structure; files

cannot be S or L tapes. COMBINE terminates at the first level 17g system-logical-record (partition) boundary. l
The format of COMBINE is:
COMBINE,lfnl,lfnz,n.
Parameters lfnl, and lfn2 are required.

lfn1 File from which one or more system-logical-records is read, 1-7 letters or digits begin-
ning with a letter.

lfn2 File to which one system-logical-record is written, 1-7 letters or digits beginning with
a letter. (lfn2 cannot be the same file as lfnl.)

n Number (decimal) of system-logical-records in Ifn; to be written onto Ifn). Defauit
is 1. If n is zero, COMBINE terminates at a level 17g system-logical-record
(partition) boundary. :

The job is responsible for positioning of both files.

COMMENT (ADD COMMENT TO DAYFILE)

COMMENT inserts a formal comment into the job dayfile. Since the comment is displayed at the operator
console as part of the job dayfile and the job continues, the operator might not see the comment. The
PAUSE control statement should be used instead of COMMENT when the comment is to be brought to the
attention of the operator, since PAUSE stops the job until the operator acknowledges the PAUSE.

The format of COMMENT is:

COMMENT .comment

The period is required. The comment can begin in any column after the period; no ending punctuation
is required.

comment String of 72 characters. Any character can be specified, including those otherwise
used as punctuation.

Only the comment appears in the dayfile; the word COMMENT does not. The first 40 characters of the com-

ment, including any leading blanks, appear on the first line. Any additional characters appear on a second line
in the dayfile.

60493800 M 415

COMPARE (COMPARE FILES)

COMPARE compares one or more consecutive system-logical-records in one partition with the same number of
consecutive system-logical-records in a partition on another file. Comparison begins at the current position of

each file and continues until the number of system-logical-records of the specified level or higher level has been
processed from the first file. COMPARE terminates if a partition boundary is encountered.

Files to be compared can reside on rotating mass storage, ECS, or magnetic tape.
COMPARE can be used with an S or L tape when record size does not exceed PRU size for an SI tape. When
a tape file is to be compared with a file not on tape, the tape file must be specified first in the COMPARE
parameter list.
The format of COMPARE is:

COMPARE lfn 1 ,1fn2,n,1ev,e,r.

Parameters lfnland lt”n2 are required; all others are optional. All parameters are order dependent.

lfni Name of file to be compared, 1-7 letters or digits beginning with a letter.

n Number (decimal) of system-logical-records of level lev or higher in lfnl, to be com-
pared to lfnz. Default is 1.

lev Record level number (octal). Default is 0.

e Number (decimal) of nonmatching word pairs to be written to the QUTPUT file for
each nonmatching record. Default is O.

r Number (decimal) of nonmatching records to be processed during the comparison.
Included in nonmatching record OUTPUT file if the e parameter is given. Default
is 30000.

Both the contents of the record and the system-logical-record terminator must be identical for the utility to
declare both files identical. When all pairs of records are identical, COMPARE writes the message GOOD
COMPARE to the dayfile; otherwise the message is BAD COMPARE. A discrepancy between levels of corre-
sponding records is listed on OUTPUT, and the comparison is abandoned, leaving the files positioned imme-
diately after the unlike record terminators.

A bad compare produces a message on the file OUTPUT. When the e and r parameters are specified,
information on OUTPUT can identify the non-matching records. The first record on each file is number 1.

COMPARE determines whether a tape file is binary or coded mode in the following way. File names are
those of example 4 below. The first record of the first-named file (GREEN) is first read in binary mode. If
a parity error occurs, the file is backspaced and re-read in coded mode. If another parity error occurs, the
fact is noted in file OUTPUT, the corresponding record of the second-named file (BLACK) is skipped over,
and the process begins again. If the coded read is successful, the corresponding record of BLACK is read in
coded mode. If this record of BLACK produces a parity error, the fact is noted in file OUTPUT, and nothing
further is done with that record. Each record of file BLACK is read in the same mode as that in which the

416 60493800 E

corresponding record of GREEN was successfully read, but if the record GREEN was unsuccessfully read in
both modes, the record of BLACK is read in the same mode as the preceding record of BLACK. Once a
record of GREEN has been read without error, following records of GREEN are read in the same mode until
a change is forced by a parity error.

Examples of COMPARE usage:
1. COMPARE(RED,BLUE)
Compares next system-logical-record on file RED with next record on file BLUE.
2. COMPARE(RED,BLUE,6)

Compares next six system-logical-records. Each record level on file RED must have the same level
as the corresponding record on file BLUE for a good compare.

3. COMPARE(RED,BLUE,3,2)

Compares two files from their current positions to and including the third following end-of-section
mark having a level number of 2 or greater.

4. COMPARE(GREEN,BLACK,3,2,5,1000)

Comparison is the same as the previous example, but the first five discrepancies between correspond-
ing words in the files plus their positions in the record are listed on OUTPUT. Positions are indi-
cated in octal, counting the first word as 0. The limit of pairs of discrepant records to be read is
1000. If two long files are compared, for instance, 20 might be used as the record parameter, so
that a large number of discrepancies are described in detail, but if, through an error, the two files
are completely different, an enormous and useless listing is not produced. Furthermore, the com-
parison is abandoned if this limit is exceeded, and the files are left positioned where they stand.

COPY (COPY TO END-OF-INFORMATION)

COPY copies one file onto a second file until a double end-of-partition (empty partition) or end-of-information
is encountered on the first file. If end-of-information is encountered on the first file, enough end-of-paritions
are written on the second file to ensure that it has a double end-of-partition.

Both files are backspaced past the last end-of-partition written unless a backspace is illegal on the device or
end-of-information was encountered.

The format of COPY is:
COPY,lfn1 ,lfn2.
Parameters are order dependent and optional.

lfn1 File to be copied onto Ifnz, 1-7 letters or digits beginning with a letter. Default is
INPUT.

60493800 E 417

]fn2 File onto which lfn1 is copied, 1-7 letters or digits beginning with a letter. Default
is OUTPUT.

COPY is intended for use with files residing on disk or on binary SI format tapes. COPY gives undefined
results when used with S or L tapes or with labeled or coded tapes.

COPY can be used with any CYBER Record Manager file that resides on a PRU device. 1fn; is copied
through end-of-information or a double end-of-partition. File format is not changed, and FILE control
statements are ignored (refer to CYBER Record Manager manuals).

COPYBCD (COPY LINE IMAGE FILE)

COPYBCD reformats files of line images. It is used most often to produce a tape file that can be listed off-
line. Each line image of the input file is assumed to be terminated by a 12-bit byte of zeros in the lower
order position of the last word of the line image. COPYBCD writes each line image as a 140-character
record, with the zero-byte line terminator converted to blanks on the output file.

When a partition boundary is encountered on the input file, a printer carriage control character for a skip to
top of next page is written on the output file before an end-of-partition is written. Thus, the final printed
output begins each partition at the top of a new page. Stray characters appear at the top of this page as a
result of the skip and end-of-partition on the output file.
The format of any output tape is determined by the REQUEST or LABEL control statement in the job.
The format of COPYBCD is: .

COPYBCD,lfn1 Afn,n.

All parameters are positional and optional.

lfn1 Name of input file to be copied onto 1fn2, 1-7 letters or digits beginning with a
letter. Default is INPUT.

lfn2 Name of output file onto which Ifn, is to be copied, 1-7 letters or digits beginning
with a letter. Default is OUTPUT.

n Number of partitions (decimal) to be copied, 0< n <218-1. Default is 1.

COPYBF AND COPYCF (COPY BINARY AND CODED FILES)

COPYBF and COPYCF copy binary files and coded files, respectively, to other files. The minimum field length
for these routines is 5000 (octal). When L tapes are copied, the minimum is 1000 (octal), plus twice the
length of the largest physical record to be copied.

COPYBF and COPYCF copy partitions delimited by level 17¢ record terminators on PRU devices (SI tapes and
mass storage) and by tape marks on S and L tapes. Copy continues until the specified number of partitions
has been copied or end-of-information is encountered. An EQF label on a tape multifile set is considered to
be end-ofinformation. An informative message is entered in the job dayfile when the copy terminates.

418 60493800 F

These utilities produce a file with a specific structure. If an exact duplication of the input file is required,
some appropriate sequence of COPYBR/COPYCR/COPYBF/COPYCF with explicit record or file counts or
other file positioning utilities can be used.

The format of COPYBF is:
COPYBF,lfn1 ,lfnz,n.
All parameters are order dependent and optional.

lfn1 Name of file from which information is to be copied, 1-7 letters and digits beginning
with a letter. Default is INPUT.

lfn2 Name of file to which information is to be copied, 1-7 letters and digits beginning with
a letter. Default is OUTPUT.

n Number of partitions to be copied, 0 < n <218-1 (decimal).
The format of COPYCF is:

COPYCF lfn ifn,n.

Parameters are discussed under COPYBF.

If an end-of-information is encountered on the input file before the number of partitions specified by the n
parameter have been copied, the copy operation ceases (but not aborts) at that point. An end-of-partition is
written on lfnz, and is not backspaced over. A dayfile message indicates the number of partitions copied
before end-of-information was encountered.

When these utility routines detect an end-of-volume for a tape, the next volume is requested, label checking/
writing is performed for labeled tapes, and the function continues normally on the next volume.

When a file with system-logical-records is copied to an S or L tape, each system-logical-record becomes a
physical tape block. Each level 178 record delimits a partition. Similarly, when an S or L tape is copied to
a PRU device, each physical record becomes a system-logical-record of level 0. A tape mark on an S or L
tape delimits a partition. An informative message on the dayfile notes that levels 1 through 168 lose their
level indicator on an S or L tape.

For the record and block types indicated below, CDC CYBER Record Manager end-of-partition (EOP) is equivalent
to a NOS/BE 1 end-of-partition. The routines COPYBF and COPYCF can be used to copy a specified number
of partitions. All other considerations are the same as for copying system files.

Device Block Type Record Type
SI tapes and mass storage C FD,RTUS,Z
) K F,.D,R,T,UZ
S and L tapes C FDR,TUZ
K FDR,T,UZ!
E F.DR,T,UZ

TA copy from an S/L device to a system device might add extraneous system CDC CYBER Record Manager
defined end-of-section terminators to a file.

60493800 F 4-19

Although not primarily implemented for that purpose, these routines are capable of limited format conversion.
Table 4-2 shows format conversion copies that can be handled successfully.

TABLE 4-2. COPYxx FORMAT CONVERSION

Input Output

SI Tapes and Mass S Tape L Tape
Storage

SI Tapes and

Mass Storage Yes Yes 15 Yes » 8
S Tape Yes 3> 45 5> 7 Yes 35 6> 7 Yes > 67
L Tape Yes 3% S Yes 3 ¢ Yes > ¢

YIf the system-logical-record or L tape physical record is greater than 512 words, the copy terminates
with an error message.

2If the system-logical-record is greater than the copy buffer size, the copy terminates with an error
message.

31If the S tape physical record is greater than 512 words or the L tape physical record is greater than
the copy buffer size, the system aborts the copy with an error message.

41f the S or L tape record is not a multiple of 10 characters, the last word of the system-logical-
record is filled with zero bits; and an informative message is issued when the copy finishes.

SIf a 9-track coded S or L tape is used, character conversion takes place. Four 8-bit characters on
input convert to four 6-bit characters in memory. Four 6-bit characters from memory convert to
four 8-bit characters on tape. An informative message concerning this conversion is issued when the
copy finishes.

5 If a 9-track coded S or L tape is used, character conversion takes place between files; and an informa-
tive message concerning this conversion process is issued when the copy finishes.

" The largest 9-track tape record that can be copied by COPYBR or COPYBF is 3840 8-bit characters.
A record of 5120 characters can be copied by COPYCR/COPYCF.

4-20 60493800 E

COPYBR AND COPYCR (COPY BINARY AND CODED RECORDS)

COPYBR and COPYCR copy binary logical records and coded logical records, respectively, to output files.
The minimum field length for these routines is 5000 (octal). When L tapes are copied, the minimum is 1000
(octal), plus twice the length of the largest physical record to be copied.

COPYBR and COPYCR copy physical records on S or L tapes and system-logical-records on PRU devices (SI
tapes and mass storage). Copy continues until the specified number of records has been copied or end-of-

information or end-of-partition is encountered. An EOF label on a tape multi-file set is considered to be
end-of-information. An informative message is entered in the job dayfile when the copy terminates.

The format of COPYBR is:
COPYBR,lfn1 ,lfnz,n.
Parameters are order dependent and optional.

lfnl Name of file from which information is to be copied, 1-7 letters or digits beginning
with a letter. Default is INPUT.

lfn2 Name of file to which information is to be copied, 1-7 letters or digits beginning
with a letter. Default is OUTPUT.

n Number of records to be copied, 0 < n< 218 (decimal). Defaultis 1.
The format of COPYCR is:

COPYCR,lfn1 ,lfnz,n.

Parameters are discussed under COPYBR.
If an end-of-partition is encountered on the input file before the number of records specified by the n
parameter have been copied, the copy operation ceases (but does not abort) at that point. An end-of-partition
is written on the output file, but it is not backspaced over. A dayfile message indicates the number of re-

cords copied before the partition boundary was encountered.

A formatted FORTRAN write to a PRU device can produce more than one line per logical record. When
COPYCR is used to copy the file to an S tape, the line images are not detected as separate records.

When COPYBR or COPYCR is used to copy one S or L tape to another, each tape block copied is counted
as a logical record and is converted to a system-logical-record level zero. Similarly, each system-ogical-record

of an input file becomes a physical record of an S or L format output file.

When these utility routines detect an end-of-volume on a tape, the next volume is requested, label checking/
writing is performed for labeled tapes, and the function continues normally on the next volume.

60493800 M : 4-21

If a partial logical record (a record not terminated with a system-logical-record mark) is encountered on the
input file before an end-of-partition or end-of-information is encountered, information in the partial record is
written to the output file as a logical record of level zero (or a physical tape block for an S or L tape).

For the record and block types indicated below, CDC CYBER Record Manager end-of-section (EOS) is equivalent
to a system-ogical-record of level 0. The routines COPYBR and COPYCR can be used to copy a specified
number of sections for these file structures.

Device Block Type Record Type
SI tapes and mass storage C F,D.R,T,US,Z
S and L tapes None; EOS and EOR

are not equivalent

For CDC CYBER Record Manager W type records, both end-of-section and end-of-partition are written as a
system-logical-record of level 0. COPYBR or COPYCR can be used to copy a specified number of sections
and partitions. In determining the number of records to be copied, the user should be aware that the _
operating system cannot distinguish between EOS and EOP defined for W type records. The copy terminates
when the specified number of records has been copied or when EOI is encountered on lfn1 For W type
records, COPYBR and COPYCR copy to end-of-information.

Refer to table 4-2 with the COPYCF utility for a list of successful format conversions.

COPYL/COPYLM (BINARY COPY WITH REPLACEMENT)

The COPYL and CORYLM control statements copy an old file to a new file substituting records from a
replacement file for the matching records on the old file. Records on the replacement file which do not
match records on the old file are ignored unless the user specifies that they be appended to the new file.
Records are considered matching if they have the same type and the same name; however, the user may
specify that the record type be ignored. COPYL and COPYLM are commonly used to maintain files of
procedures or subroutines.

COPYL and COPYLM differ only in the handling of multiple occurrences of a record on the old file.
COPYL uses each record on the replacement file only once, replacing the first matching record from the old
file. COPYLM uses the first matching record encountered on the replacement file to replace each matching
record from the old file. COPYL can be used to replace multiple occurrences of the same record if multiple
occurrences of the record are in the replacement file.

‘The old file and the replacement file must reside on mass storage or a system-logical-record format tape.
Only a single file terminated by an end-of-file marker is processed by a single call to COPYL or COPYLM
unless the user requests processing to the end-of-information by using the E parameter. When working with
multifile files, the user must be sure to position the multifile file to the file that is to be processed.

The order of the records on the replacement file is not significant. The system copies the records to the new
file in the same order as on the old file.

COPYL and COPYLM issue dayfile messages during processing; no other printed output is produced unless
the command is issued from an interactive terminal. The dayfile messages list which replacement records

were copied and which replacement records were not copied to the new file. These messages are issued
immediately to interactive terminals.

4-22 60493800 L

COPYL and COPYLM replace only the types of records listed in table 4-3. Any record on the old file that
is not recognized as one of the listed types is copied to the new file without further processing. Any replace-
ment file record type that is not listed in table 4-3 is ignored without comment.

The formats of COPYL and COPYLM are:

COPYL(oldlfn, replfn newlfn last, flag)

COPYLM(oldifn,replfn,newlfn last,flag)

or

Single replacement.

Multiple replacement.

All parameters are optional and position dependent. A user denotes an omitted parameter by consecutive

commas.

60493800 L

oldlfn
replfn
newlfn

last

flag

File name of the old file; default name is OLD.

File name of the replacement file; default name is LGO.

File name of the updated file; default name is NEW.

Name of the last record on oldlfn to be processed. If last is not specified,
all records on oldlfn are processed from its current position to the next
end-of-file (or end-of-information if the E parameter is used).

Processing parameters.

Flag

R

E

Description

Rewind oldlfn and newlfn files before processing.

(replfn file is always rewound before and after processing.
Oldlfn and newifn are not necessarily rewound to beginning
of information in multifile files. Refer to explanation
below.)

Append to the end of newlfn all replfn records that do
not match any records on the oldifn. If A is not selected,
records on the replacement file that do not match any
records on the oldlfn are ignored and a dayfile message

is issued.

Check for matching name of record, but omit check for
matching type of record. If T is not selected, records
match only if both the type and name of the records
are the same.

Process oldlfn until the end-of-information.

These parameters can be specified by combining one or more letters in any order,
such as TRA, AR, RTEA, or TR.

COPYL and COPYLM check only the first four flag parameters; if more than
four are specified, the remaining characters are ignored.

4-23

The R parameter affects file positioning of the old and new files before processing. If R is specified, the old
and new files are rewound before processing. In a multifile file, if there is one or more end-of-file markers
between the current position of the file and the beginning-of-information, the R parameter rewinds the file
to the first preceding end-of-file. In the absence of R, the user is responsible for positioning the oldlfn and
newlfn files. The R parameter does not affect the file of replacement records, since the current file of the
replacement file is always rewound to the beginning-of-information before and after processing.

The E parameter causes the old file to be processed to the end-of-information. Each end-of-file encountered

on the old file causes a matching end-of-file to be written on the new file. Records added to the new file

as a result of an AE parameter combination are appended with an end-of-file prior to the end-of-information.
Here, users should note that such appended records follow an end-of-file if both end-of-file and end-of-information
existed at the end of the old file.

Processing stops after an end-of-file, end-of-record, or end-of-information is reached, depending on the structure
of the old file and the processing parameters selected. If processing stops because an end-of-file or end-of-record
is reached, the old file will be positioned after that end-of-file or end-of-record. If processing stops because
end-of-information is reached, the old file will be positioned just prior to the end-of-information.

COPYL and COPYLM add an end-of-file to the new file even if no end-of-file is encountered on the old file.
No further positioning of the new file takes place.

TABLE 4-3. TYPESt OF RECORDS REPLACED BY COPYL AND COPYLM

Type Description Type Description

ABS Central processor overlay with one REL Relocatable central processor
or more named entry points program

CAP Capsule TEXT Text record

OVL CP overlay with one unnamed entry 6PP 6000 Series peripheral processor
point including system texts program

PROC CYBER Control Language 7PP 7000 Series peripheral processor
procedure file program

tFor additional information about how these types are determined, refer to appendix F.

424 60493800 M

COPYN (CONSOLIDATE FILE)

COPYN consolidates or merges files. System-logical-records from up to 10 binary input files can be extracted
and written on one output file. Input can be from tape, card, or mass storage files. Output can be to a
tape, card, or mass storage file.

Directive statements on file INPUT determine the order of the final file. Several tapes can be merged to
create a composite tape. A routine can be selected from a composite tape, temporarily written on a scratch
tape, and transmitted as input to a translator, assembler, or programmer routine, eliminating the need for
tape manipulation by the second program. In its most basic form, COPYN can perform a tape copy.
The format of COPYN is:

COPYN,f,outlfn,inlfnl, R

Parameters are order dependent and required. Up to 10 inlfn parameters can be specified.

f Format of output record.

0 Copy records verbatim.

non-zero Omit ID from record.
outlfn File name of output file, 1-7 letters or digits beginning with a letter.
inlfn; File name of input file, 1-7 letters or digits beginning with a letter.

System-ogical-records to be copied might or might not have an ID prefix table containing the name of the
program or the name associated with the record. A record ID format consists of the first seven characters of
the second word of each record. If records do not contain an ID, record identification directives must specify
the record number (the position of the record from the current position of the file). Records without an ID
are copied verbatim to the output file.

Format of the binary input files depends on the storage media. A binary tape file consists of the information

between the load point and a double end-of-partition. This file can contain any number of single end-of-partition
marks. A mass storage file ends at end-of-information. A card file must be terminated with a 7/8/9 card.

60493800 L 425 I

On the output file, a file mark for an output tape is written by using a WEQOF statement in the desired
sequence, or it can be copied in a range of records and counted as a record.

Deck structure for a COPYN job in which all input files are other than INPUT:

Job statement

REQUEST statements as necessary
COPYN call

7/8/9

COPYN directives

6/7/8/9

COPYN DIRECTIVE STATEMENTS

Directive statements for COPYN use are REWIND, SKIPF, SKIPR, WEOF, and record identification statements.
These statements are read from INPUT when COPYN executes. The directive statements are free-field. They
can contain blanks but must include the separators indicated in each statement description. The ordering of
the directive statements establishes the material written on the output file. Directive statements are written
on the file OUTPUT as they are read and processed. When an error occurs, the abort flag is set, and the
statement in error followed by an error message is printed on OUTPUT. This statement is not processed, but
an attempt is made to process the next directive statement. When the last directive statement is processed,
the abort flag is checked, and if it is set, the job is terminated. Otherwise, control is given to the next con-
trol statement.

REWIND (REWIND FILE)

The REWIND directive rewinds the named file. This file must be one of the input or output file names given
on the COPYN control statement, not the system INPUT file.

The format of the REWIND directive is:
REWIND(lfn)

Ifn Name of file to be rewound, 1-7 letters or digits beginning with a letter.

| 4-26 60493800 L

SKIPF (SKIP FILE)

SKIPF skips forward or backward a designated number of partitions on a file. No indication is given when
SKIPF causes a tape to go beyond the double end-of-partition or when the tape is at load point.

The format of the SKIPF directive is:

SKIPF(lfn,n)
Ifn Name of tape file to be skipped, 1-7 letters or digits beginning with a letter.
n Number (decimal) of file marks to be skipped. n skips forward n marks, -n skips

backward n marks.

SKIPR (SKIP RECORD)

SKIPR skips forward or backward a designated number of records. Levels 1 through 16 are not recognized
by the skip. '

The format of the SKIPR directive is:

SKIPR(Ifn,n)

Ifn Name of tape file in which records are skipped, 1-7 letters or digits beginning with a
letter.

n Number (decimal) of records to be skipped. Zero-length records and file marks must

be included in parameter n. n skips forward n records; -n skips backward n records.

WEOF (WRITE FILE MARK)

WEOF writes a partition boundary on the named file.

The format of the WEOQOF directive is:

WEOF(lfn)

1fn Name of file, 1-7 letters or digits beginning with a letter.

RECORD IDENTIFICATION STATEMENT

The record identification statement contains the parameters which identify a system-logical-record or set of
records to be copied from a given file.

60493800 L 4-27

The format of the record identification statement is:

Plypz’P:;
Py First record to be copied or the beginning record of a set. Name associated with the
record or a number giving the position in the file can be specified.
Py Last record to be copied in a set of records:
name System-logical-records Py through P, are copied. P, must be
located between Py and end-of-information.
decimal Number of records to be copied, beginning with Py- Zero-length
integer records and file marks are counted. Copying stops when the file
end is encountered, even if the count has not been reached.
* P through an end-of-partition are copied.
*k P through a double end-of-partition are copied.
/ Py through a zero-length record are copied.
0 or blank Only P is copied.
P3 Input file to be searched. If Py is a name, and p, is omitted, all input files declared

on the COPYN statement are searched until the p, record is found. If it is not
located, a message is issued. If p, is a number and p, is omitted, the last input file
referenced is assumed. If this is t]he first directive statement, the first input file on
the COPYN statement is used.

Examples of record identification statements:

SIN,TAN,INPUTA Copies all system-logical-records from SIN through TAN from file INPUTA.
SIN,10,INPUTA Copies 10 system-logical-records from file INPUTA, from SIN through SIN+9.
SIN,TAN Searches all input files beginning with current file or first input file. When

SIN is encountered, all system-logical-records are copied from SIN through
TAN or until an end-of-partition is encountered.

SIN,,INPUTA Copies system-logical-record SIN from file INPUTA.

1,TAN,INPUTA Copies the current system-logical-record through TAN from INPUTA.

1,10,JNPUTA Copies 10 system-logical-records, beginning with the current system-logical-record
on file INPUTA.

l,*,iNPUTA Copies the current system-logical-record through the first file mark encountered
on INPUTA.

| 4-28 60493800 L

FILE POSITIONING FOR COPYN

Files manipulated during a COPYN operation are left in the position indicated by the previously executed
directive. The file containing p; is positioned at the record following Py Other files remain effectively in
the same position.

When COPYN is searching for a named record and p, has been omitted, each input file is searched in turn
until either the named record is found or the original position of the file is reached. The job INPUT file,
however, is not searched end-around.

In contrast to the end-around search, a copy operation does not rewind files. An end-of-partition terminates
a copy even if the record named in p, has not been encountered. Since the output file is not repositioned
after a search, COPYN can be re-entered. Therefore, the programmer is responsible for any REWIND, SKIP,
or WEOF requests referencing the output file.

COPYN does not check for records duplicating names on other files. If such records exist, the programmer is
responsible for them. COPYN uses the first record encountered that matches the name on a directive
statement.

Examples of file positioning:

1. Record identification statement: REC,INPUT1

E E
Input file ABLE BAKER e REC SIN TAN ZEE 00
INPUT1 FF

If INPUTA were positioned at TAN, TAN and ZEE would be examined for REC. The double
EOP would cause ABLE to be the next system-logical-record examined, continuing until REC is
read and copied to the output file. INPUT1 would then be positioned at SIN.

2. Record identification statement: RECA

E E
Input file INPUTI, A1l B1 21 | 0o
positioned at Bl

FF
Input file INPUT?2, E E
positioned at A2 RECA D2 00
load point FF
Input file INPUTS3, E E
positioned at A3 B3 C3 . Z3 00
load point F F

All records from Bl through Al are searched to find RECA; this repositions INPUT1 to Bl. A2 is
searched, and when RECA is found, it is copied to the output file. INPUT2 remains positioned at
D2. INPUT3 is not searched.

60493800 L 429 |

3. Record identification statements and binary records on INPUT file. Directive statements are:

REC,,INPUT
JOB1,JOB3,INPUT
ABLE, IN2
7/8/9

REC (binary)
7/8/9

JOBI1 (binary)
7/8/9

JOB2 (binary)
7/8/9

JOB3 (binary)
7/8/9

Because the INPUT file is not searched end-around, RBC and JOB1 through JOB3 must directly

follow the requesting record identification statements in the order specified by them. An incorrect
request for an INPUT record terminates the job.

COPYSBF (COPY SHIFTED BINARY FILE)

COPYSBF adds a carriage control character to the beginning of each line during a copy to a second file. It is
used with files to be printed when the existing first character is not a carriage control character. COPYSBF
inserts a page eject character at the beginning of the first line. A blank is inserted at the beginning of sub-

sequent lines to cause single spacing. A minimum field length of 10000 (octal) is required for COPYSBF.

A tape input file must be binary. Each line must be terminated by a 12-bit byte of zeros in the low order
position of the last central memory word of the record.

The format of COPYSBF is:
COPYSBF ,lfn1 Afn,.
Parameters are order dependent and optional.

lfn1 Name of input file to be copied onto 1fn2, 1-7 letters or digits beginning with a
letter. Default is INPUT.

lfn2 Name of output file onto which Ifn, is to be copied, 1-7 letters or digits beginning
with a letter. Default is OUTPUT.

COPYXS (COPY X TAPE TO SI TAPE)

COPYXS converts a binary tape in X format to SI format. X tapes exist as a result of operating systems that

are predecessors to NOS/BE 1. The binary X tape logical structure contains 512-word PRUs with short PRUs
of sizes that are variable multiples of central memory words or 136 character PRUs.

| 430 60493800 L

The format of COPYXS is:
COPYXS,xlfn,scplfn,n.

Parameters xifn and scplfn are required.

xlfn File name of input X tape, 1-7 letters or digits beginning with a letter,
scplfn File name of output SI tape, 1-7 letters or digits beginning with a letter.
n Number (decimal) of partitions to be copied. Default is 1.

COPYXS is used in the following manner. Both files must be requested as S format.

REQUEST(xlfn,S)
REQUEST(scplfn,S)
COPYXS(xlfn,scplfn,n)

The output tape is produced in SI format but is flagged in the system tables as S format. To read the output
tape in the same job, the following control statements are needed.

UNLOAD(scplfn)
REQUEST(scplfn,MT)

COPYXS cannot determine when end-of-information occurs on an X tape. Therefore, at least n partitions to
be copied must exist on the X tape. Neither the input nor the output tape is rewound after conversion.
After the requested number of partitions has been copied, the output tape is backspaced and positioned
directly in front of the first tape mark preceding the EOF trailer label. Subsequent files can be copied to
the output tape. However, the block count in the trailer label is then incorrect.

DELSET (DELETE MEMBER)

DELSET deletes and blank-labels a member device from a device set. It cannot be executed while a device
set is being shared. All member devices must be deleted before a DELSET is issued for the master device.
The master device must be mounted before DELSET is issued. The member device must be on-line (not
necessarily mounted) before DELSET is issued so that it can be blank-labeled and the flaw table updated.
Permanent files, queue files, and local files residing on the device must be removed before DELSET is issued.

If any portion of a local file or permanent file resides on the device to be deleted, the DELSET request is
aborted.

The format of DELSET is:
DELSET,SN=setname MP=mpvsn,VSN=vsn.

All parameters are required and are order independent.

SN=setname Name of set from which member is to be deleted, 1-7 letters or digits beginning with
a letter.
MP=mpvsn Volume serial number of master device for the device set, 1-6 letters or digits with

leading zeros assumed.

60493800 L 4-31

VSN=vysn Volume serial number of member to be deleted from the device set, 1-6 letters or digits
with leading zeros assumed.

DISPOSE (RELEASE FILE)

DISPOSE releases a file for end-of-job processing or specified disposition either immediately or at the true
end-ofjob. DISPOSE can be used to:

Assign a disposition code for an output file, including a forms code
Send a file to a central site or remote site device
Evict a file

The file referenced with DISPOSE must reside on a public queue device or on ECS and must not be a perma-
nent file.

When a special-name file is to be evicted such that all file data and references are destroyed, the DISPOSE
control statement should be used in preference to an UNLOAD or RETURN control statement. UNLOAD
and RETURN cause the implicit disposition of the file to occur. Only DISPOSE or ROUTE can evict a file
without causing special-name file output.

The format of DISPOSE is:

*dc
*dc=C
DISPOSE Ifn, .
n de=Cfc

de=Iid
The only required parameter is 1fn. The asterisk is optional before the dc parameter.

Ifn Name of file to be disposed, 1-7 letters or digits beginning with a letter. If only 1fn
is specified, the file is evicted.

* Defer disposition until end-of-job. Must be used if DISPOSE control statement appears
before the file is created. In the absence of *, disposition occurs when the DISPOSE
control statement is encountered in the job stream. The * cannot be used when disposing
a file to an INTERCOM terminal or to a forms code. If * is used to dispose the file
OUTPUT to the central site (*dc=C) for a job that originated elsewhere, a copy of the day-
file is sent to the job’s origin at end-of-job.

dc Disposition code.
SC Evict the file (default) P8 Punch 80-column free-form binary
PR Print on any available printer format
PE Print on ASCH 95-character print train FR{ Print on microfilm recorder
LR Print on 580-12 printer PTt Plot on any available plotter
LS Print on 580-16 printer HRt Print on hardcopy device
LT Print on 580-20 printer HLY Plot on hardcopy device
PB Punch standard binary format FLt Plot on microfilm recorder
PU Punch Hollerith format IN Place file in the input queue

fSupporting drivers must be supplied by the installation.

| 4-32 60493800 L

C File is to be routed to the central site.

Cfe Forms code for special card or paper forms. Codes are defined by the installation.
Iid File is to be routed to the INTERCOM terminal specified by id.

Identification on the printout or punch output file is the name of the job that executed DISPOSE.
DISPOSE EXAMPLES

1. JOB.
COBOL.
LGO.
DISPOSE,OUTPUT,PR. Prints QUTPUT on any available printer.
REWIND(LGO)
FTNS.
LGO.
7/8/9
COBOL program Creates print file on QUTPUT.
7/8/9
data for COBOL program
7/8/9
FORTRAN program Creates unrelated print file on OQUTPUT.
7/8/9
data for FORTRAN program
6/7/8/9

This example creates two unrelated print files. The use of DISPOSE allows the files to be printed
separately. The job dayfile is attached to the second QUTPUT file.

2. JOB.
DISPOSE, HERON,*PR=C. File HERON to be printed at central site at end of job.
COBOL.
LGO.
7/8/9
COBOL program Creates file HERON and file OUTPUT.
7/8/9
data for COBOL program
6/7/8/9

This job creates a file named HERON and prints it at central site. If this job is submitted from
an INTERCOM terminal, the QOUTPUT file and the dayfile are returned to that terminal.

60493800 L 4.33

DMP (DUMP CENTRAL MEMORY)

DMP prints the contents of selected areas of central memory. Three types of dumps are possible, depending on
the relative values of the parameters on the DMP control statement.

Exchange package dump Parameters omitted or all parameters specified are 0.
Control point area dump Parameters are equal in value and not O.
Relative dump Parameters specify address within field length.

DMP output appears on the file OUTPUT. Each output line contains the contents, in octal, of up to four
central memory words, with the address of the first word at the beginning of the line.

When the content of a word is identical to the last word printed, printing of that word is suppressed. Printing
resumes with the next word having a different content. The address of the word at which printing resumes is
printed and marked by a right arrow.

When the content of a word is the address of that word, printing is suppressed. Printing resumes with the next

word that does not have its address as its content. The address of the word at which printing resumes is
printed and marked by a greater-than sign.

EXCHANGE PACKAGE DUMP

The format of DMP that produces an exchange package dump is:
DMP,0,0. or DMP.
Either or both of the parameters can be omitted.

Output from the dump includes:
The contents of the exchange jump package as noted below.
The contents of the communication area of the job field length, addresses RA through RA+100.
The contents of the first 100 octal words before and after the address to which the P register points,
provided the addresses are within the field length. If the P register is O, the P address in bits 30-47 of
RA+0 determines the locations to be dumped. If the P register or the P address in RA+0 is less than
200 (octal), the first address dumped is 100. If both the P register and the P address are 0, only the

communications area and the exchange package are dumped.

The 16-word exchange package includes the following information.

P Program register contents
RA Central memory address of beginning of user field length
FL Central memory address of field length limit

\ 4.34 60493800 L

EM Error mode register divided by 100 (octal)

RE ECS reference address divided by 1000 (octal)

FE ECS field length divided by 1000 (octal)

MA Monitor address applicable only to machines with monitor exchange jump instructions
AQ-A7 Contents of A registers 0-7

B1-B7 Contents of B registers 1-7 (BO is always zero)

X0-X7 Contents of X registers 0-7

When the exchange jump package is dumped, the following information is also given if addresses are within the
field length. A message **OUT OF RANGE** appears if they are outside the field length.

C(A1)-C(A7) Contents of addresses listed in registers A1-A7

C(B1)-C(B7) Contents of addresses listed in registers B1-B7

CONTROL POINT AREA DUMP
The format of DMP that produces a control point area dump is:

DMP x, x.

X Any pair of identical, nonzero octal values indicates the control point area is
to be dumped.

This control statement dumps the entire (200 octal word) control point area of the job. The actual octal

value specified is not significant. If the two octal values are nonzero and identical, the control point area
of the job will be dumped.

RELATIVE DUMP

The format of DMP that produces a relative dump of locations with the job field length is:
DMP,from,thru.
When only one parameter appears, it is presumed to be the thru parameter and dump begins at RA.
from Address at which dump is to begin after RA, octal.

thru Address at which dump is to end, octal. If address exceeds FL, FL is substituted.

60493800 L 4-35

DMP EXAMPLES

1. DMP,1,1. Dumps the control point area of the job.

2. DMP0,0. Dumps the exchange package of the job.

3. DMP,100,200. Dumps from address 100 through 200 of the job’s field length.

4. DMP,100. Dumps from the beginning of the job’s field length through address 100.

5. DMP. Dumps the exchange package of the job.

DMPECS (DUMP EXTENDED CORE STORAGE)

DMPECS prints the contents of selected areas of extended core storage. The file on which information
appears and the format of the dump are both selected by control statement parameters. Only the field

length assigned to the job can be dumped. All addresses are between RE and FE, the reference address and
field length of assigned ECS.

The format of DMPECS is:
DMPECS, from,thru,format,ifn.

Parameters are positional; from and thru are required.

from Address (octal) at which dump is to begin after RE.
thru Address (octal) at which dump is to end. If address exceeds FE, FE is substituted.
format Format of each output line:
Qorl 4 words in octal and in display code; default
2 2 words in 5 octal digit groups and in display code
3 2 words in 4 octal digit groups and in display code
4 2 words in octal and in display code
1fn Name of file on which printout is to appear, 1-7 letters or digits beginning with a

letter. If omitted or O, OUTPUT is assumed.

The dump begins at the closest multiple of 10 (octal) less than or equal to the value of the from parameter.
The dump ends at the closest multiple of 10 (octal) greater than the value of the thru parameter minus 1.

|4_36 60493800 L

DSMOUNT (DISASSOCIATE DEVICE)
DSMOUNT disassociates a private device from the job. DSMOUNT is a logical operation. When DSMOUNT
specifies the master device of a private device set, the entire set is disassociated from the job. A CLOSE/
UNLOAD function is issued for each open file on the set before each mounted member device is dismounted.
Finally, the master device is logically dismounted from the job.
The format of DSMOUNT is:

DSMOUNT,VSN=vsn,SN=setname.

Both parameters are required and order independent.

VSN=vsn Volume serial number of device to be dismounted, 1-6 letters or digits with leading
zeros assumed. Can be a member device or a master device.

SN=getname Name of device set to which this device belongs, 1-7 letters or digits beginning with
a letter.

60493800 L 4-37

DUMPF (DUMP PERMANENT FILE TO TAPE)

DUMPF dumps permanent files to a tape. It can be used to clear permanent files from a mass storage device
or to maintain backup copies of files selected by parameters on the DUMPF control statement. Parameters
on the DUMPF can identify a single file by name or specify the criteria by which the permanent file system
selects files for dumping.

The dump tape must be S tape format with the logical file name DUMTAPE. A REQUEST statement must
appear in the job before DUMPF is called.

Three dumps are possible:

Mode 1 Backup dump. The original copy of the file remains on mass storage ready for
immediate access by an executing job.

Mode 2 Archive dump. The file remains a permanent file, but with archive status. The only
copy of the file resides on the dump tape; it can be accessed by an executing job if
the operator makes the archive tape available so that the file can be reloaded to mass
storage.

Mode 3 Destructive dump. The file is no longer a permanent file. The only copy of the file
resides on the dump tape. It cannot be accessed unless the LOADPF utility is executed
to restore the file to permanent file status.

DUMPF execution causes an implicit attach of a file having the permanent file name DUM. The device set
from which files are being dumped must contain a copy of DUM cataloged with an ID of PUBLIC and defined
passwords for RD, MD, CN, and EX. If a DUM permanent file with TK=DUMPF already exists (earlier systems

required this), it must be purged and replaced as described above. Passwords to access DUM must be submitted
as part of the DUMPF call.

For each cycle dumped, DUMPF makes an output listing entry that contains the permanent file name, owner
ID, cycle number, volume serial number of the dump tape, date of dump, a comment, and the flagging of any
parity errors.

The format of DUMPF is:

DUMPF,PW=pw,MO=n,I=lfn1,LF=1fn2,CL,DP=a,ID=name,PF=pfn,CY=cy,SN=setname,VSN=vsn,IN=ddd,
JN=yyddd,LA=mmddyy,DA=yyddd,CD=mmddyy,TI=hhmm.

Only PW is required; all other parameters are optional and order independent. Only one CD, DA, JN,

LA, or IN parameter can appear. If a terminator does not appear at the end of the parameter list,

column 1 of the next card or line is considered to be a continuation of the DUMPF parameter list.

PW=pw RD, MD, or CN password for DUM, depending on mode of dump. Refer to CATALOG
control statement for password definitions.

| 4.38 60493800 L

MO=n Dump mode:
n Mode

1 Backup mode. Permanent file tables and all associated mass storage space
are intact. RD password required. Default.

2 Archive dump. Mass storage space is released, but permanent file tables
remain with the files marked as being on an archive tape. MD password
required.

3 Destructive dump. All permanent file tables and mass storage spaces are

released as the files are dumped. CN password required. The central
site operator receives notification when a mode 3 dump is attempted
and must authorize continuance of the dump.

I=lfn, Name of directive file for MO=1 dump; 1-7 letters or digits beginning with a
letter. If lfn1 is not specified, directives for MO=1 are on INPUT. If a directive
file is used, the following parameters are not allowed on the DUMPF statement:
ID=name, PF=pfn, CY=cy, VSN=vsn, IN=ddd, JN=yyddd, LA=mmddyy, DA=yyddd,
CD=mmddyy, and TI=hhmm.

LF=lfn2 Output listing file. Default is OUTPUT.
CL Complete list option selected. All files in the permanent file directory are listed. If
CL is omitted, information is listed only for files which are dumped.
DP=a Dump type:
a Type
A All files meeting criteria of other parameters. Default.
X All files meeting criteria of other parameters only if their expiration
dates are equal or less than current date.
C All files meeting criteria of other parameters only if they have been
modified, renamed, created, or extended since the last DP=C or full dump. ,
ID=name Dump files with this owner.
PF=pfn Dump files with this permanent file name. ID should be specified also; if it is not

specified, ID=PUBLIC is assumed.

CY=cy Dump cycle cy of file identified by PF and ID. CY is ignored and the dump continues
if this cycle is not found or if PF and ID have not also been specified.

SN=setname Dump files from device set with this name; 1-7 letters or digits beginning with a letter.

VSN=vsn Dump files from this device of device set specified by SN; 1-6 letters or digits with

leading zeros assumed. VSN is ignored if SN is omitted.

IN=ddd Dump files not attached within this number of days; 1-3 digits. Can be qualified
by a TI parameter.

60493800 L 4-39

JN=yyddd Dump files not attached on or after this date; five-digit ordinal date format. Can be
qualified by TI parameter.

LA=mmddyy Dump files not attached on or after this date; six-digit month-day-year format. Can
be qualified by T1 parameter.

DA=yyddd Dump files created, modified, renamed, or extended after this date; five-digit year-
and-day-of-year format. Can be qualified by Tl parameter.

CD=mmddyy Dump files created, modified, renamed, or extended after this date; six-digit month-
day-year format. Can be qualified by TI parameter.

TI=hhmm Time qualifier for date parameters; four-digit 24-hour clock format. If date parameters
are not specified, TI is ignored.

Several copies of DUMPF can execute at the same time on the same set as long as all copies running have
the same mode and type (DP parameter). If an attempt is made to run a DUMPF with a different mode
or type than one already running, all except the first DUMPF abort. Several copies of DUMPF can execute
at the same time on different sets and the modes and types need not match.

If a group of files is to be dumped for backup purposes, they can be identified by name and owner in a
directive record. The I parameter is required to specify the name of the file containing directives. Directive
formats are as follows.

ID=name
ID=name, PF=pfn
ID=name, PF=pfn, CY=cy

Parameters are order independent and ending punctuation is not required. The PF and CY parameters are
optional. The ID parameter should be specified. However, if the PF parameter is specified without an ID
parameter, ID=PUBLIC is assumed.

DUMPF EXAMPLES

1. DAYDMP, . ..
REQUEST(DUMTAPE,NT,PE,S,N)
DUMPF(PW=PERM1,DA=78164)
6/7/8/9

The job DAYDMP dumps all files cataloged, modified, renamed, or extended after the 164th day
in 1978.

2. SELDMP, . ..
REQUEST(DUMPTAPE MT HY,S,N)
DUMPF(PW=PERM1)

7/8/9

ID=DEVCTR
PF=FILE1,ID=LER
PF=FICHE, ID=GFS,CY=1
6/7/8/9

4.40 60493800 L

Job SELDMP dumps the files specified in the input section of the control statement record. All
files with ID DEVCTR are dumped.

3. ARCHIVE, . ..
PAUSE. BRING UP P DISPLAY TO INSURE DUMP TAPE HAS A VSN.
REQUEST(DUMTAPE,MT HY,S,N)
DUMPF(MO=2,IN=10,PW=PERM?2)
6/7/8/9

Job ARCHIVE illustrates a 10-day archive dump.

EDITLIB (CONSTRUCT USER LIBRARY)

EDITLIB constructs user libraries from a group of central processor routines or overlays. That library is avail-
able to the system loader by specific direction in the loader control statements for a job. It can also create
and maintain system libraries and create deadstart tapes. With EDITLIB a user library can be modified by
the addition, deletion, replacement of routines, and statistics about library contents can be listed.

A user library can only contain assembled central processor routines, CCL procedures, programs, or text records
produced by the COMPASS assembler, one of the system compilers, or loader generated overlays. Library
records can be independent programs, subroutines, overlays, or CCL procedures. Binary output from SEGLOAD
cannot be made part of a library. Unassembled text records in BCD format, peripheral processor programs,

and source language programs cannot be made part of user libraries.

EDITLIB considers each program on a user library to be a single unit occupying a system-logical-record. It
extracts the name, entry points, and external references from tables output with the program assembly and
uses them to construct tables describing the library file. Library tables are used by the loader to locate pro-
grams on the file. EDITLIB changes the tables when the user library is modified. Format of user library
tables is the same as that for system libraries. A user library file created by EDITLIB contains:

Assembled programs
CCL procedures

Tables referring to:

Entry points
External references
Program numbers
Program names

The program number table is used to link external references, entry points, and program names.

A user library can contain at most 2047 programs, 2047 external references, and 2047 entry points. A partic-
ular program in the library can have at most 124 entry points and 124 external references.

The user library file generated by EDITLIB can be on mass storage or magnetic tape. If the library file name
is assigned to a tape file before EDITLIB is called, the library is in sequential format on that tape, with the
library tables preceding the programs. Otherwise, the library is in random format on mass storage. When the
random library file is to be retained as a permanent file, the library file name should be associated with a
permanent file device before EDITLIB is called.

60493800 L 4-41 I

If a user library is to be copied from mass storage to tape, the EDITLIB directive RANTOSEQ should be
used rather than a COPY utility. Likewise, SEQTORAN should be used to copy a library from tape to disk.
The COPY utilities cannot copy a library file to or from mass storage correctly.

The user is responsible for cataloging and attaching any permanent files that are used by EDITLIB while per-
forming the task specified on each directive, and for extending permanent files that have been changed.

EDITLIB CONTROL STATEMENT FORMAT

The EDITLIB utility is called by an EDITLIB statement in the control statement section. If encountered
during job processing, EDITLIB accesses the next unprocessed section of the INPUT file, unless the I parameter
names another source of directives. A parameter on this statement specifies the file that contains EDITLIB
directives. These directives provide details for creating or manipulating the user library.

The format of EDITLIB is:
EDITLIB(USER,I=lfn; L=1fn,)
All parameters are optional.
USER Distinguishes user library definition from system library. Default is USER.

lfn1 File name containing directives, 1-7 letters or digits beginning with a letter.
Default is INPUT. 1 is identical to I=INPUT.

lfn2 File name to receive listable output, 1-7 letters or digits beginning with a
letter. Default is OUTPUT. L is identical to L=OUTPUT.

The following deck structure assembles two programs and adds them to an existing library.

job statement
COMPASS.
FTNS.
ATTACH(ALIB,ID=SMITH)
EDITLIB(USER)
EXTEND(ALIB)
7/8/9

COMPASS program to be assembled
7/8/9

FORTRAN program to be compiled
7/8/9

Directives instructing EDITLIB to add programs to user library ALIB from LGO file
6/7/8/9

4.42 : 60493800 L

EDITLIB DIRECTIVE FORMAT
The directive section for EDITLIB must contain only valid directives. EDITLIB considers the first 72 columns
of each 80 column card or 90 column card image to contain a separate directive. Blanks can be used freely.
EDITLIB removes them except in a literal or comment field. Required format for directives is similar to
system control statement format.
The format of EDITLIB directives is:
keyword. or keyword(parameter list)
Parentheses are required around parameter lists. Optional parameters have the format parameter=value;
all others are required. Required parameters must appear in the order given; optional parameters can

appear in any order after the required parameters.

Directive format and use is summarized as follows:

LIBRARY(libname, { IC\)IE\?’]) Defines library to be created or modified
FINISH. Terminates library manipulation
ENDRUN. Stops execution of directives
ADD(prog,from,AL=level,FL=f1, FLO=0,LIB) Adds new program to library
REPLACE(prog,from,AL=level,FL=fl, FLO=0,LIB) Replaces program on library
DELETE(prog) Deletes program in library
SETAL(prog,level) Changes access level

SETFL(prog,fl) Changes field length requirements
SETFLO(prog, ‘(1)}) Sets FL override bit for INTERCOM
LISTLIB(prog,lfn) Lists program data from library file
REWIND(1fn) Rewinds file

CONTENT(prog,lfn) Lists program data from file
SKIPF(' grog l,lfn) Skips ahead n records or to prog
SKIPF(n,!fn,F) Skips n files forward

SKIPB({grog } Jfn) Skips back n records or to prog start
SKIPB(n,ifn,F) Skip n files backward

60493800 L 4.43 |

*/ Inserts comments in output

RANTOSEQ(rifn,sifn) Rewrites random library as sequential library

SEQTORAN(lfn,rlfn) Rewrites sequential library as random library
The prog parameter in these directives can take several forms:

A single program name can be stated. EDITLIB searches the entire file specified to find the named
program.

An asterisk can replace the program name. EDITLIB processes all programs from the current file positiont
to end-of-file.

A range of programs to be included in directive execution can be specified with a + between the first and
last programs to be processed. In a file with records A,B,C,D,E, the range B + D represents B,C,D.

A single program to be excluded from directive execution can be specified with a dash (—) preceding the
program name or with the program name appearing at both ends of the range of programs to be excluded.

A range of programs to be excluded from directive execution can be specified with a — between the first
and last programs to be considered. In a file with records A,B,C,D,E, the range B — D represents A and E.

An asterisk can replace either the first or last program named in a range. For the first named program,
it is equated with the current file position;T for the last, it is equivalent to end-of-partition.

For the ADD and REPLACE directives only, several individual programs can be stated. In a file with
records A,B,C,D,E, the parameter D/B/E represent D and B and E. EDITLIB searches the entire file
specified to find the named program.

Program names must not exceed seven characters. Any character supported by the system is legal. If characters
EDITLIB uses for delimiters are in a name, the entire name must be written as a literal between dollar signs.
These characters are:

$ () -+ = ., /| blank

Any dollar sign to be included in the program name must be prefixed by a second dollar sign.

If the prog parameter is a single program name, EDITLIB searches the entire file for that program. If the prog
parameter is a range, EDITLIB searches the entire file for the first program in the range, but does not search
end-around for the second program. Thus, a range goes from the first program through either the second pro-
gram or end-of-partition whichever occurs first. The file INPUT is not searched.

The interpretation of the * depends on file format. The current position of a library file is always defined to
be the beginning of the file. Current position of other files is simply the beginning of the next record on the
file, which can be controlled by the user with file manipulation directives. An * replacing the last program is
equivalent to stating end-of-partition.

1The definition of current file position depends on the file format. The current file position of a library file
is always defined to be the beginning of the file. The current position of other files is the beginning of the
next record in the file. The user can control the current position of these other files with file manipulation
directives.

| 4.44 60493800 L

Examples of names acceptable to EDITLIB:

Parameter Format Resulting Program Name
PROGI12 PROG12
$PROG1258$ PROG12$
$1-03 IO
AA BB AABB
$AA BBS AA BB
3AB 3AB
Library file names should not begin with ZZ since these are reserved for system names. ‘

MANIPULATION OF LIBRARY FILES
A library is created by identifying the library in a LIBRARY directive followed by file manipulation statements
and ending with the FINISH directive. Multiple LIBRARY/FINISH sequences are permitted within an
EDITLIB directive set. An ENDRUN should follow the last FINISH in the EDITLIB directive set. If
ENDRUN is not supplied by the user, EDITLIB inserts it.
Existing user libraries in random file format are modified by the ADD, REPLACE, and DELETE directives
that change programs in the library. The SETAL, SETFL, and SETFLO directives change parameters in the
program name table of entries for existing libraries. These directives must be issued between the LIBRARY
(Ifn,OLD) and FINISH directives.
The format of library files can be changed by the RANTOSEQ function and the SEQTORAN function.
File positioning statements can appear anywhere in the directive record. EDITLIB rewinds all files except
INPUT before executing any directives. After a random library is written, it is rewound. When a new sequen-
tial library is written, it is left-positioned after the end-of-partition.
A list of information about any or all programs on a library file or a file of assembled information is obtained
by the LISTLIB and CONTENT directives. Information listed comes from the program tables output with
every assembled record. It includes:

Program name

Date, time, and compilation or assembly machine

Entry points

External references

AL and FL values

60493800 L _ 4-45

Length of object deck in central memory words

Type of program: relocatable or absolute

ADD (ADD PROGRAM DURING LIBRARY CREATION)

ADD directives between LIBRARY(Ifn,NEW) and FINISH directives create a user library. Programs (other than
peripheral processor programs) can be added from any file attached to the job, as long as the program contains
the necessary prefix table material at the beginning of the assembled information. If the directive is in error,
a message is issued, the programs are not added, and processing continues.

The format of the ADD directive is:
ADD(prog,]fn,AL=1evel,FL=fl,FLO=‘?l ,LIB)
Parameters prog and lfn are requiredi all others are optional.
prog Name of program or range of programs to be added.

Hn Name of file where assembled program currently resides, 1-7 letters or digits
beginning with a letter.

Al=level Access level of 1-4 (octal) digits used to determine whether or not a given INTERCOM
user can attach and use the program named. Also used to mark programs for access
by control statements; level must be an odd number. Program is available only to
internal calls unless AL is odd. Default is O.

FL=f1 Maximum field length [0 to 377777 (octal)] required for program loading and
execution. If FL=0, the field length specified on the job statement or the last RFL
statement encountered is used. Default is 0.

FLO%?} Field length override bit. If FLO=1, then the field length from the job control state-
. ment CM parameter or from the RFL control statement or from the EFL INTERCOM
command overrides FL. If FLO=0, no override is allowed. Default is O.

LIB Indicates the parameter Ifn is a user library name. Allows programs to be added
from an existing user library. It directs EDITLIB to search the directory of a file
in library format.

If AL, FL, or FLO values are wanted in the new library tables, they must be explicitly stated in the directive,
even if the addition is to be made from an existing library. Current values in source library or existing library
tables are not preserved. To change the values of these parameters in an existing library, use the SETAL,
SETFL, and SETFLO directives.

| 4-46 60493800 L

Examples of valid ADD formats and their results:
Parameter Format Result

ADD(*, TREES) All programs between current position and the end-of-partition
of TREES are added.

ADD(RAINIER MTS,F1~14400) All of file MTS is searched for program RAINIER; field length
of 14400 (octal) is required to execute RAINIER.

ADD(REDWOOD—-SEQUOIA,TIMBER) All programs on file TIMBER, except REDWOOD, SEQUOIA,
and all those between, are added.

ADD(*+ASPEN,YELLOW) All programs from the current position of YELLOW through
program ASPEN are added.

ADD(SEND/MONEY ,PROCFIL) Procedure file PROCFIL is searched as needed and procedures |
SEND and MONEY are added to the user’s library.

ADD(ALP,LIBR,LIB) The program name table of library LIBR is searched for pro-
gram ALP which, when located, is added to the current
library.

CONTENT (LIST FILE)

CONTENT lists any file of assembled programs, whether in library format or not.

The format of the CONTENT directive is:

CONTENT (prog,lfn)
prog Program or range of programs to be listed.

Ifn File name containing prog, 1-7 letters or digits beginning with a letter.

DELETE (DELETE PROGRAM FROM LIBRARY)
DELETE logically deletes all references to the named program from library tables.
The format of the DELETE directive is:

DELETE(prog)

prog Name of program or range of programs to be deleted.

60493800 M 4.47

Examples of valid DELETE formats and their results:

Parameter Format Result
DELETE(BIRCH+ASH) Programs BIRCH through ASH on library being modified are
deleted.
DELETE(LAUREL-MADRONE) All programs on existing library except LAUREL, MADRONE,

and those between, are deleted.

Programs named in a DELETE or REPLACE directive are logically deleted from the library file. Records in
the file are not overwritten, but in the case of a REPLACE, the file is extended with the addition of a new
program. To completely eliminate programs from the library, it is necessary either to construct a new library
using the old one as the source or to use RANTOSEQ followed by SEQTORAN, which compacts the library
and preserves attributes of programs in the library.

ENDRUN (STOP EXECUTION)

During directive processing, EDITLIB first interprets each directive in the record excluding comment statements.
Execution begins after all directives are interpreted.

When an ENDRUN is encountered during execution phase, execution stops. In most instances, ENDRUN is
the last directive in the record. By placing it earlier in the record, syntax of succeeding directives can be
checked without an error producing premature termination.

The format of the ENDRUN directive is:

ENDRUN.

FINISH (STOP FILE MANIPULATION)
FINISH indicates the end of library construction.
The format of the FINISH directive is:

FINISH.

LIBRARY (IDENTIFY LIBRARY)

LIBRARY identifies the library to be manipulated. This directive must precede all other directives except
comments or file manipulation directives. Every directive set calling for library creation or modification must
have at least one such directive. A FINISH directive is required to mark the end of library construction. File
manipulation statements can appear between LIBRARY and FINISH.

The format of the LIBRARY directive is:

OLD})

LIBRARY(libname, NEW

4-48 60493800 L

libname Library name and name of file containing library during this job.
OLD Used when libname is an existing library to be modified.

NEW Used when libname refers to new library or directory to be created.

LISTLIB (LIST LIBRARY FILE)

LISTLIB lists a library file. Part or all of the library can be listed depending on the number of programs
indicated by the prog parameter. The LISTLIB directive cannot appear between a LIBRARY and a FINISH.

The format of the LISTLIB directive is:

LISTLIB(prog,lfn)
prog Program or range of programs to be listed.
Ifn File name containing prog, 1-7 letters or digits beginning with a letter.

RANTOSEQ (CONVERT RANDOM FILE TO SEQUENTIAL FILE)

RANTOSEQ takes a disk resident library file in random format and creates a sequential library file containing
the same programs. This directive cannot appear between a LIBRARY and FINISH.

The format of the RANTOSEQ directive is:

RANTOSEQ(rlfn,slfn)
rifn Disk resident random library that is to be converted.
sifn Sequential library created from rlfn; slfn is not rewound after the copy.

REPLACE (DELETE AND REPLACE PROGRAM)
REPLACE differs from the ADD directive in that it causes a program with an identical name to be deleted
from the library before the new program is added. If a program with that name does not exist, an informa-
tive message is issued and the new program is added to the library.
The format of the REPLACE directive is:
REPLACE(prog,lfn,AL=level FL=f1, FLO=0,LIB)
Parameters have the same meaning as those of the ADD directive. AL, FL, and FLO values must be stated

explicitly if values other than the defaults are wanted. Current values in source library or existing library
tables are not preserved when ADD or REPLACE is used. See ADD for parameter definitions.

60493800 L - 4-49 |

Examples of valid REPLACE formats and their results:

Parameter Format

REPLACE(MAPLE, TREES,FLO=0)

REPLACE(OAK,TREES)

REPLACE(ACORN,TREE,LIB)

REWIND (REWIND FILE)

The format of the REWIND directive is:

Result

Existing program MAPLE is deleted. Program MAPLE is added
from file TREES. FLO is set to 1; FL and AL are set to
default values.

Existing program OAK is deleted and replaced; FL, FLO, and
AL receive default values.

Program name table for library TREE is searched for program
ACORN. The named program is deleted from the current
library and the new program ACORN is added from library
TREE.

REWIND(Ifn) or REWIND(Ifn/lfn/ . . . lfn)

Ifn Name of file or files to be rewound.

SEQTORAN (CONVERT SEQUENTIAL FILE TO RANDOM FILE)

SEQTORAN takes a tape resident library file in sequential format and creates a disk resident library file con-
taining the same programs. The directive cannot appear between a LIBRARY and a FINISH.

The format of the SEQTORAN directive is:

SEQTORAN(sIfn rlfn)
sifn Tape file in sequential format that is to be converted.
rlfn Random library file created from slfn.

SETAL (CHANGE ACCESS LEVEL)

SETAL assigns a new access level to the named program.

The format of the SETAL directive is:

SETAL(prog,level)

prog Name of program or range of programs.

level New access level of 14 (octal) digits.
4-50

60493800 L

SETFL (CHANGE FIELD LENGTH)
SETFL assigns a new field length to the named program.

The format of the SETFL directive is:

SETFL(prog,fl)
prog Name of program or range of programs.
fl New field length of 0 to 377777 (octal).

SETFLO (SET FIELD LENGTH OVERRIDE BIT)
SETFLO sets the field length override bit for INTERCOM.
The format of the SETFLO directive is:

SETFLO(prog, l ?})

prog Name of program or range of programs.
0 Does not allow override; O is the default value.
1 Allows override.

SKIPB (SKIP BACKWARD)

SKIPB repositions a library backward one or more records or files. The library is positioned at the beginning
of a record or file. When beginning-of-information or end-of-information is encountered, a skip by count is
terminated. For a skip by name, the entire file is searched, if necessary, in the direction stated. Skip by
program name is applicable to sequential files only.

The format of the SKIPB directive for records is:

SKIPB(|n !,lfn)

prog

n Number (decimal) of records to be skipped backward; cannot be zero.
prog Program name to which instruction skips.

Ifn File name containing prog, 1-7 letters or digits beginning with a letter.

60493800 L 451 |

The format of the SKIPB directive for files is:

SKIPB(n lfn,F)

n Number (decimal) of files to be skipped backward; cannot be zero.
Ifn File name of multi-file, 1-7 letters or digits beginning with a letter.
F Indicates files, not records, are to be skipped.

SKIPF (SKIP FORWARD)

SKIPF repositions a library forward one or more records or files. The library is positioned at the beginning of
a record or file. When beginning-of-information or end-of-information is encountered, a skip by count is
terminated. For a skip by name, the entire file is searched, if necessary, in the direction stated. Skip by pro-
gram name is applicable to sequential files only.

The format of the SKIPF directive for records is:

SKIPF([n },lfn)
prog

n Number (decimal) of records to be skipped forward; cannot be zero.
prog Program name to which instruction skips.
Ifn File name containing prog, 1-7 letters or digits beginning with a letter.

The format of the SKIPF directive for files is:

SKIPF(n,lfn,F)

n Number (decimal) of files to be skipped forward; cannot be zero.
Ifn File name of multifile, 1-7 letters or digits beginning with a letter.
F Indicates files, not records, are to be skipped.

l 4-52 60493800 L

USER EDITLIB EXAMPLES

1. MTCREAT.

REQUEST(MTLIB,LO,VSN=14444) Requests 7-track tape to hold new library.

REQUEST(SORCEFL MT,VSN=14445) Requests tape with previously assembled source
programs.

FTNS. I

EDITLIB(USER)

7/8/9

FORTRAN program to be compiled, program name HOOD. I

7/8/9

LIBRARY(MTLIB,NEW) Initiates construction of new library MTLIB.

REWIND(SORCEFL) Rewinds binary input file.

REWIND(LGO) Rewind binary output from FORTRAN
Extended program.

ADD(*+SHASTA,SORCEFL) Adds programs from beginning of file
through SHASTA.

SKIPF(3,SORCEFL) Skips 3 programs on file.

ADD(HOOD,LGO) Adds program from LGO file.

ADD(*,SORCEFL) Adds all remaining programs on SORCEFL.

FINISH. Terminates library construction.

ENDRUN. Stops execution.

6/7/8/9

Job MTCREAT creates a sequential user library on a tape.

2. MTCHNGE.
REQUEST(MTLIB,LO,VSN=14444)
REQUEST(DIRECT ,MT,VSN=12000)
EDITLIB(I=DIRECT)
6/7/8/9

Job MTCHNGE modifies the library created above. Directives for EDITLIB are on tape 12000.

3. BIRDS. Job statement.
REQUEST(BIRDLIB,PF) Requests permanent file device for library.
ATTACH(GULLS,GULLSPF,ID=PETERSON) Attaches permanent file as Ifn GULLS.
ATTACH(WRENS,WRENSPF,ID=PETERSON) Attaches permanent file as ifn WRENS.
EDITLIB(USER) Calls EDITLIB.
CATALOG(BIRDLIB,BIRDLIBRARY,ID=PETERSON) Catalogs library as permanent file.
7/8/9
LIBRARY(BIRDLIB,NEW) Establishes library name.
ADD(*,GULLS) Adds all files from GULLS.
ADD(CACTUS—-HOUSE,WRENS) Adds all files from WRENS except CACTUS

through HOUSE.

FINISH. Terminates library.
ENDRUN. Stops execution.
6/7/8/9

60493800 L 4-53

Job BIRDS creates a random format library file and makes it permanent. Binary input files exist on
permanent files GULLSPF and WRENSPF.

4. CHECK.
EDITLIB(USER)
7/8/9
ENDRUN. Stops execution here.
LIBRARY(OLDLIB,OLD)
DELETE(SPARROW)
REPLACE(HAWK,INPUT,FLO=0)
SETAL(SHRIKE,777)
SETFLO(ROBIN, 1)
SETFL(CREEPER,55000)

FINISH.
6/7/8/9

Job CHECK uses EDITLIB to check syntax of all directives but does not execute.

EXECUTE (INITIATE EXECUTION)

EXECUTE causes execution of a loaded program. It is a loader control statement. Refer to the CYBER
Loader Reference Manual for additional information. EXECUTE terminates a load sequence.

The format of EXECUTE is:
EXECUTE.

EXECUTE normally follows a LOAD control statement.

EXIT (PROCESS AFTER FATAL ERROR)

The EXIT control statement establishes the conditional processing of sequences of control statements when
certain fatal errors occur. If an error causes a job step to terminate (table 4-4), the system aborts the job and
searches the job control statement file for EXIT control statements, skipping other control statements in the
process. If the system finds no EXIT statement, the job is terminated as described in Job Processing and
Deck Structure, section 2. If the system finds two consecutive EXIT statements, the job is terminated.
The formats of the EXIT statement are:

EXIT.

EXIT,C.

EXIT,U.

EXIT,S.

I 4-54 60493800 L

C Conditional processing option.
6) Unconditional processing option.
S System processing option.

The type of error that occurs dictates the type of EXIT processing to be performed. Some error conditions
bypass EXIT processing and terminate the job immediately. Error conditions are classified as follows:

Job step abort Terminates the current job step and starts the search for any of the four types of
EXIT control statements. Most error conditions in the system are in this classification.

Special abort Terminates the current job step processing and starts the search for an EXIT,S
control statement.

Terminal abort Terminates the current job step and the job immediately. No EXIT processing takes
place.

Table 4-4 describes the type of EXIT processing performed when various errors occur.

EXTEND (PERMANENT FILE EXTENSION)

EXTEND makes information written at the end of an existing permanent file permanent. Information can be
written at the end of any attached permanent file. However, in the absence of an EXTEND or ALTER con-
trol statement, the added information disappears when the job terminates. EXTEND can be issued with the
file at any position.

EXTEND can be issued by any job that attaches the file with extend permission or by the job that catalogs the
file. The newly added information acquires the privacy controls of the existing permanent file. No boundary
exists between the original information and the new information.
The format of EXTEND is:

EXTEND,lfn.

Ifn Name of permanent file attached with extend permission, 1-7 letters or digits
beginning with a letter.

60493800 L 4.55 |

96 v

T 008€6+09

TABLE 44. EXIT PROCESSING

Condition Causing Job
Step Termination

Type of Termination and
Action Taken on Occurrence

Action Taken When EXIT Encountered

EXIT.

EXIT,C.

EXIT,U.

EXITS.

Successful completion (no
error or only non-fatal errors).

ENDRUN macro.

Normal job step advance; advances
to next control statement and pro-
cesses it. Terminates job if end of
control statement record
encountered.

Terminates job.

Resumes processing
after EXIT,C.

Resumes processing
After EXIT,U.

Terminates job.

Peripheral processor encountered
improper 1/0O request.

Time limit exceeded (first time
only).

Operator DROP.

User arithmetic error not negated
by a MODE control statement.

ECS parity error.

Job step abort; aborts job step
and skips all control statements
until an EXIT statement is found.
Terminates job if no EXIT found
before end of control statement
record encountered.

Resumes processing
after EXIT.

Terminates job.

Resumes processing
after EXIT,U.

Resumes processing
after EXIT,S.

Loading program with compila-
tion or assembly errors.
ABORT,NODUMP macro.

ABORT,,S macro.
ABORT ,NODUMP.S macro.

Control statement error.

Special abort; aborts job step and
skips all control statements until
an EXIT,S. Terminates job if no
EXIT,S found before end of con-
trol statement record.

Continues skipping.

Continues skipping.

Continues skipping.

Resumes processing
after EXIT,S.

Job statement error.
ACCOUNT statement error.
Operator KILL.

Operator RERUN.,

Time limit exceeded (second
time).

Checksum error during job
input.

Two consecutive EXIT statements.

Terminal abort; aborts job step and
terminates job. :

Not applicable.

Not applicable.

Not applicable.

Not applicable.

GENLDPF (RELOAD PERMANENT FILE CATALOG)

GENLDPF reads a log tape created by the PFLOG utility and generates LOADPF jobs, which will load the
files that had a permanent file catalog (PFC) entry at the time PFLOG was run. This allows the installation
to do a full reload of the permanent file base without reloading files purged since the last full dump.

Before GENLDPF is called, a REQUEST control statement must define a log file as an existing labeled SI
tape whose logical file name is LOGTAPE.

For each entry read from the log tape, GENLDPF makes an output listing entry that contains the permanent
file name, owner id, and cycle number.

The format of GENLDPF is:

GENLDPF PW=pw,SN=setname,VSN=vsn,LF=lfn.

PW is required; all other parameters are optional. However, SN is specified if VSN is specified, and
vice versa. All parameters are order independent.

PW=pw EX password required for generated LOADPF jobs.

SN=setname Name of device set onto which permanent files are to be reloaded, 1-7 letters or digits
beginning with a letter. The master device for this set must have been mounted
before GENLDPF can execute. Default is the permanent file default set.

VSN=vsn Volume serial number of the master device of the device set specified by SN=setname.

LF=lfn Name of file on which the listing is to appear, 1-7 letters or digits beginning with a’
letter. Default is OUTPUT. If 1fn=0, no listing is generated.

GENLDPF EXAMPLES

1.

JOBX(NTO1)

VSN(LOGTAPE=123456)
REQUEST(LOGTAPE,NT,PE,E,NORING)
GENLDPF(PW=HELLO)

6/7/8/9

This job reloads files onto the permanent file default set and writes the output listing on OUTPUT.

JOBY(NTO1)

VSN(LOGTAPE=246801)
MOUNT(SN=SETNAME,VSN=MASTER)
REQUEST(LOGTAPE,NT,PE,E,NORING)
GENLDPF(PW=LOAD,SN=SETNAME,VSN=MASTER,LF=0)

This job reloads files onto set SETNAME whose master pack vsn is MASTER. No output listing is
generated.

60493800 L 4.57

GETPF (ATTACH PERMANENT FILE FROM LINKED MAINFRAME)

GETPF enables users in a multimainframe environment to attach permanent files from a linked mainframe.
It can attach a permanent file to a job, as long as parameters specified on the GETPF control statement
establish the right to use the file. GETPF differs from the ATTACH control statement in that:

GETPF creates a local copy of a file; ATTACH manipulates the file itself.

GETPF can obtain a copy of any permanent file residing in a permanent file set of any of the linked main-
frames. ATTACH can access only permanent files which reside on a device directly connected to the main-
frame on which the job is executing.

The format of GETPF is:

LC=n
CY=c
The first parameter establishes the logical file name. Parameters 1fn and pfn are required in the order
shown; all other parameters are order independent. ID and ST are required. SN and VSN are optional,
but if one is specified, they both must be specified. GETPF can be continued; if a period or right
parenthesis does not appear at the end of the parameter list, column 1 of the next statement is con-
sidered a continuation of column 80.

GETPF lfn,pfn,ID=name,EC=ec, Yl JPW=pw,ST=mmf,SN=setname,VSN=vsn.

Ifn File name, 1-7 letters or digits beginning with a letter. If omitted, the first seven
characters of pfn establish 1fn.

pfn Permanent file name by which the file is known in the permanent file catalog, 1-40
letters or digits. Required.

ID=name ID parameter by which the file was cataloged. Required unless the file was cataloged
with ID=PUBLIC.

ST=mmf The mainframe on which file Ifn is cataloged; three characters. The values for mmf
are established at installation time. Required.

SN=setname Device set name identifying the private device set containing the permanent file to
be attached. This parameter may be 1-7 letters or digits and must begin with a
letter. If SN is specified, VSN must also be specified to allow access to the private
set on the mainframe specified by ST.

VSN=vsn Volume serial number identifying the master device of the private device set. This
parameter may be 1-6 letters or digits. If SN is specified, VSN must also be speci-
fied as explained in the SN description.

Refer to the ATTACH control statement for the remaining parameters.
GETPF always sets MR=1.

When a file is referenced by GETPF, a copy of the file is transmitted to the mainframe on which the job is
executing at the time the file is opened.

Any modifications made to the file during the job are a part of the local file copy, not of the original
permanent file.

4-58 60493800 L

ITEMIZE (LIST CONTENTS OF BINARY FILE)

ITEMIZE lists pertinent information about each record of a binary file in a format suitable for printing.
Table 4-5 describes the types of records processed by ITEMIZE.

ITEMIZE processes mass storage files or system-logical-record format tape files. A file can be processed
from beginning-of-information through end-of-information.

Output from ITEMIZE is affected by the type of record and options selected. A header appears for each
file terminated by an end-of-file marker within the file specified by the file name. The first line of the
header identifies the file name, file position within that file, and the date and time of the run. The second
line of the header has the following fields:

REC Position .of the record in the file starting with the first record of each file.

NAME Record name obtained from the second word of the prefix table or from the
first word of the record.

TYPE Type of record as shown in table 4-5.

LENGTH Number of words (octal) in the record, excluding the prefix table.
CKSUM Cyclic logical checksum (octal), excluding the prefix table.

DATE Date record was created as stored in the prefix table.
COMMENTS Cont;ants of the comments field in the prefix table.

If no prefix table is present, the associated fields are blank.

Additional information listed depends on the type of record:

ABS Entry point names are listed.

DATA First line of the record is listed if the name of the record is OVERLAY.

OVL Overlay level is listed in octal.

TEXT Entire record is listed if the name of the record is CMRDC, IPRDECK, IPRDC,

LIBDECK, LIBDC, or COMMENT.
UPL Deck names are listed.

6PP Information stored by EDITLIB is listed giving the octal equivalent of the load
address, residence, and control statement call flag.

7PP PP number is listed.

The E parameter can select further details about several types of records.

60493800 L 4-59

The last record in each file is the end-of-file marker, which appears on the listing as the characters *EOQF*.
The SUM= identification is the total length, in words, for all records in the file, including the prefix table
lengths.

Any zero-length record in the file appears with the record name (00). When it is encountered, a sum of
the lengths of the records encountered since the beginning of the file, or since the last sum was taken, is
listed on the output. The length includes prefix tables. Record numbering is not restarted until a new
file is encountered.

If a record of type UPL has more correction identifier names and/or deck names than can be accommodated
within the ITEMIZE buffer, the following message appears on the listing in place of the excess names:

TRUNCATED--IDENT OR DECK LIST TOO LONG
Here, the Update utility must be used to obtain a complete list of identifiers and deck names.
NOS/BE deadstart tapes can be recognized by ITEMIZE. For deadstart tapes, ITEMIZE lists deadstart records
or the library name tables according to their positions on the tape. The remaining records are listed as usual,
with the library name becoming part of the header for each file.
A dayfile message is issued when ITEMIZE completes execution.
The format of ITEMIZE is:

ITEMIZE(Ifn,L=listlfn BL,PW=n,PD,NR,N=n,E)

The first parameter is positional; if Ifn is omitted, its position must be indicated by a comma. All others
are optional and order independent.

Parameter Description

Ifn Name of file to be itemized; default name is LGO.

L=listlfn List output on file listlfn; default is I=OUTPUT.

BL Burstable listing; each file output starts at the top of a page. Default is

a compact listing in which a page eject occurs only when the current page
is nearly full.

PW=n Print either 136-character lines or 72-character lines depending on the value
of the decimal integer n. If n = 136 print 136-character lines. If < 136,
print 72-character lines.

If =n is omitted, print 72-character lines regardless of the listing file device.

If PW=n is omitted, the default value is 72-character lines if the listing file
is a terminal; otherwise, the default value is 136-character lines.

4-60 60493800 L

Parameter

PD

NR

N=n

Description

Print density at eight lines per inch; default is six lines per inch. If this
parameter is to produce the desired result, the programmer must ensure that
output appears at a printer with eight lines per inch capability.

No rewind of lfn before or after processing; default is rewind before and after

processing.

Itemize n files, where n is a decimal integer; default is N=1.

If =n is omitted, itemize until end of information.

If n is zero, itemize until an empty file is processed.

Expand output to list further information; default is no expansion.

For record types CAP and REL, list entry points.

For record types UPL, list correction identifier names.

TABLE 4-5. TYPES OF RECORDS LISTED BY ITEMIZE+}

Type of Record

Record Description

Type of Record

Record Description

ABS

CAP

DATA

LIBNT

OVL

PPNT

PROC

Central processor overlay with
one or more named entry points.

Capsule.

Not any other described record
type.

Library name table record.

Central processor overlay with one
unnamed entry point (no ENTRY
statement in program); system text

Peripheral processor program
name table.

CYBER Control Language
procedure file,

REL

SDR

TEXT

UCF

UPLx

6PP

7PP

Relocatable central processor
program.

Special deadstart record.

Text record.

Update compressed compile file.

Update sequential program
library with x master control
character.

6000 Series peripheral processor
overlay.

7000 Series peripheral processor
overlay.

TFor additional information about how these types are determined, see appendix F.

60493800 M

4-61

LABEL (TAPE LABEL SPECIFICATION)

LABEL writes or checks VOL1 and HDR1 labels on tapes. In addition to substituting for a REQUEST control
statement for a single file labeled tape, LABEL can be used to position within a multifile set. To use a LABEL
statement the job statement must specify the tape track type and density (refer to MTk parameter in the JOB
statement earlier in this section).

In most instances, LABEL is the first reference to a file in a job, unless it is preceded by a VSN statement
indicating the volume serial number of the resident volume. For a single file volume, a REQUEST is not
needed, although a REQUEST followed by LABEL is valid and does not create an error condition. If a
REQUEST statement follows the LABEL statement, duplicate file names are generated and the job terminates
since the LABEL program issues a REQUEST function to obtain the equipment. For labeled multifile volumes,
a REQUEST establishing the multifile set must precede the LABEL statements that write the header labels for
various files in the set.

The label program issues an OPEN function to read or write the file label. Contents of the label are copied to
both the system and job dayfiles. When label fields are not consistent with the information supplied on the
LABEL control statement, the operator is notified. The operator can mount another tape and have its label
checked or can authorize the job to continue with the existing tape.

The format of LABEL is:

W| (2] (RING | (EEC
LABEL’”“’{RHYHNORING {iec

|,D=d,F=f N=n,X=x,l.=2,V=v,E=¢,T=t,C=c,M=m,P=p,VSN=vsn
The first parameter must be the file name. An R or W parameter is required. The remaining
optional parameters are order independent. LABEL can be continued; if a terminator does not appear

on the first statement, the next is assumed to be a continuation of the first.

Default parameters cause a single file header in ANSI format for a seven-track tape in SI format. Any
other label or data format to be written, or a tape to be read, must be declared explicitly.

Nine-track tape can be selected only by giving either a nine-track density parameter (HD, PE, or GE)
or a code conversion parameter (US or EB).

Read or write:

R Label is to be read and compared with parameters on the LABEL control statement.
When R is issued, the tape can be a candidate for automatic assignment by label name.

w Label is to be written.

4-62 60493800 L

Label type:
Y 3000 Series label.

Z Label conforms to standard label of previous operating system. Character 12 of the
VOLL1 label specifies data density; otherwise Z labels are identical to U labels.

absent Standard label conforming to ANSI.
Write ring:
RING Write-enabled ring required in tape.
NORING Write-enabled ring prohibited in tape.
absent Parameter is set to installation-defined value.

Hardware error correction:

EEC Enable hardware GE write error correction. The system allows certain types of
single-track errors to be written that can be corrected when the tape is read (on-the-
fly correction). This is the recommended mode of operation, because it provides
efficient throughput, error recovery, and tape usage when writing GE tapes on media
that is suitable for use at 3200 fci or 6250 cpi.

IEC Disable all error correction activity in GE write mode. The system invokes standard
error recovery processing when an on-the-fly error occurs while writing a GE tape.
The system erases the defective portion of tape, thereby reducing the amount of
data that can be stored on the tape. Only tape that is suitable for recording at 6250
cpi should be used when this mode of operation is in effect.

NOTE

EEC and 1EC apply only to GE (6250 cpi) operations. GE
must also be specified in a REQUEST statement; otherwise,
EEC and IEC are ignored.

EEC and IEC are applicable if the user requests default nine-track
density and the installation nine-track default density is GE

(6250 cpi).
Tape characteristics:
D=d Density. If omitted, density declared or implied by REQUEST prevails. For 7-track
tapes:

Lot 200 bpi
HI 556 bpi
HY 800 bpi

200 bpi can be read but not written by 667/677 tape drives.

60493800 L 4-63 |

For nine-track tapes, the d parameter determines density for writing only; data is
always reading at the recording density.

HD 800 cpi
PE 1600 cpi, phase encoded
GET 6250 cpi, group encoded

F=f Format of the file data. Default is SI format.
S S tape format
L L tape format

=n Code for conversion of all nine-track tape labels and for conversion of data on coded
nine-track tapes of types S or L. Default is installation defined.

us ASCII code
EB EBCDIC code

X=x Disposition of tape:
1o Inhibit physical unload
Sv Unload tape at end of job; notify operator to save
CK Checkpoint dump written on tape
Cl Checkpoint dump and inhibit physical unload
CS Checkpoint dump and save

Label fields:

L=z Label name, 1-17 characters for ANSI or Z labels; 1-14 characters for Y labels.
Default value is spaces.

V=vy Label field. Volume number specifying volume sequence in volume set. 1-4 digits
for ANSI or Z labels; 1-2 digits for Y labels. Default is 0001 for ANSI or Z
labels, 01 for Y labels.

=e Label field. Edition number specifying version of file. 1-2 digits. Default is 00.

=t Label field. Number of days file is to be retained, 1-3 digits. Default determined
by installation. 999 is permanent retention. A retention period greater than 364
days results in the assignment of T=999.

C=c Label field. Creation date format is two digits for year and three digits for day.
Default is current date.

=m Label field. The operating system uses this parameter to establish that the current
LABEL function applies to a member of a multifile set. m is the logical multifile
set name as it appears on the REQUEST statement for this set, and it must be
present for all LABEL statements referencing members of this multifile set. When
the label is written on tape, the multifile field does not contain the logical set name.
It contains the VSN for the first volume of the multifile set.

t6250 cpi density is supported only on 679 GCR tape drives.

4.64 60493800 L

=p Label field. Position number indicating file within multifile set, 1-4 digits. Default
is 0001. Not defined for 3000 Series labels.

VSN=vsn Volume serial number of 1-6 characters used to identify the tape for automatic
assignment. Parameter can appear on VSN statement rather than LABEL state-
ment. A VSN of SCRATCH or 0 specifies a scratch tape.

LABELMS (DEVICE SET LABELING)

LABELMS labels a device before it is used in a device set, places the volume serial number in the label, and
establishes the type of access to the device. In addition, LABELMS can be used to specify information for
subsequent access to the device, and to record known flaws on a device so that such areas are not accessed.

The format of LABELMS is:
LABELMS,DT=dt,mode I=Ifn.
All parameters are optional.
DT=dt Device type. If DT is omitted, the operator can assign any device type. The value
of dt is a device mnemonic; for example, AY for 844-21. (Refer to section 6 for

list of device types.) Member devices subsequently added by the ADDSET statement
must have the same device type as the master device.

mode Recording mode for an 844 or 885 disk pack. Default is defined at installation time.
HT Half-tracking; read and write alternate sectors.
FT Full-tracking; read and write sequential sectors.
NOTE

If FT is specified, 2xPP speed must be in effect, and
there must be full-track controller access to the drive
on which the pack resides.

I=lfn File name for input directives containing allocation and flaw information.
If T is specified but not equivalenced, file INPUT is used; otherwise, no directives
are expected. Consequently, default allocation information is used and the disk is
presumed to be free of flaws. If this parameter is specified, DT must also be
specified.

Input directive formats are as follows:
All values in the directives are assumed to be octal unless suffixed with a D.
Each directive must begin in column 1 and end with a valid terminator. Valid control separators must
appear between the elements of a directive. Successive allocation directives must refer to successive

portions of a device. Allocation directives can be intermixed with flaw directives. A maximum of
eight allocation directives is permitted.

Allocation directive: Aas,Rpru,Nrbs.
. N Ttn,Ccn,Ssn.
Flaw directives: { Ttn.Con Sfsn—lsn.

60493800 M 4-65

Allocation
Directive Meaning

as Allocation style number with limits of 0 to 77 (octal) that corresponds
with a number of PRUs per record block and a number of record blocks
in the RBR. By using the allocation style parameter on the REQUEST
statement, the user can request a specific allocation feature, such as directing
a file to a specific portion of a device having a particular record block size.

pru Number of PRUs per record block (RB) size with a maximum value of
7777 (octal). For an 844 device the specified RB size must be greater
than or equal to 1/32 of the physical block (PB) size and less than or
equal to 32 times the PR size. For an 885 device the specified RB size
must be less than or equal to 12 times the PB size. For a user device
set the specified RB size must be the same on all allocation directives.

rbs Number of record blocks in RBR for this device or portion of device.
The RBR, maintained by the operating system in central memory, contains
information indicating its allocation style and the status available for assign-
ment of all record blocks governed by this RBR. The limits of rbs are 1
to 7777 (octal). Default depends on the device as shown in table 4-6.

The number of record blocks (RB) on the first RBR must be sufficient to hold disk tables. For a master
device, the minimum number of record blocks depends on record block size, whether or not this set has a
permanent file device, and the number of permanent files allowed in this set. If the number of record
blocks is insufficient, LABELMS will abort and the error message will specify the table that LABELMS

tried to write when it ran out of space. A subsequent ADDSET may faii due to lack of space even though
LABELMS was successful.

Determine the number of record blocks the disk table requires as follows:

Disk Table Space = LBL + PFT + LFT + PFD + PFC + PAM + SDT + DSR + DAM + SMT

Mnemonic Meaning RBs

LBL Device label. 1

PFT Physical flaw table. 1

LFT Logical flaw table. 2

PFD Permanent file directory. NF/(4*RBSIZE)
NF Maximum number of files

allowed in set.
RBSIZE Physical record units (PRU)
per record block (RB).

4-66 60493800 L

Mnemonic

PFC

PAM
SDT
DSR
DAM
SMT

Example:

Meaning

Permanent file catalog (refer to PFD for
meanings of NF and RBSIZE).

PEFC allocation map.

Subdirectory table.

Deadstart recovery RB.

Device allocation map.

Set member table.

RBs
(NF*6)/(4*RBSIZE)

—) = e

For an 844-21 master device with a maximum of 4000 files in a set (NF) and 57 PRUs per record block
(RBSIZE), calculate the number of RBs needed for disk table space as follows:

PFD = 4000/(4*57)
= 18 RBs

PFC = (4000*6)/(4*57)
= 106 RBs

Disk Table Space =

Flaw
Directive

tn

cn

sn

fsn

Isn

60493800 L

i

LBL + PFT + LFT + PFD + PFC + PAM + SDT + DSR + DAM + SMT

I +1 + 2 + 18 +106 + 1
134 RBs

Meaning

Track number
Cylinder number
Sector number

First sector number

Indicates several contiguous flaw sectors.

Last sector number

+

1

+ 1 + 2 +

1

Limits depend on device as shown in table 4-6.

4-67

TABLE 4-6. DEVICE DEFAULTS

RB Size

PB Size Default
Device (PRUs) (PRUs) rbs Default tn Limits cn Limits sn Limits
844.21 1147 57 3232 0 to 18 0 to 403 0 to 23
844-41 114 57+t 32321t 0 to 18 0 to 807 0 to 23
885 320 16011t 335611+ 0 to 39 0 to 838 0 to 31

1This value changed from 70 to 160 with the introduction of the 84441 devices. Only devices with
the following RB sizes are compatible on both pre- and post-844-41 supporting systems.

TtTo create an 844-41 (double-density) pack with an RB size of T1g, two allocation directives must be
input to LABELMS. The 844-41s require two RBRs when the RB size is 71g. '
+11To create an 885 disk with an RB size of 2408, two allocation directives must be input to LABELMS.

For devices with (RB size) < 70g, RB sizes of 2, 4, 7, 10, 16, 34, 70
are compatible with both systems.

For devices with (RB size) > 70g, RB sizes such that (2n-1)*70+1 < RB
size < 2nx70, where n=1,2...20g are compatible with both systems.

This value changed from 160 to 162 at NOS/BE 1.4 PSR level 508. Refer to the following NOTE
for information on compatibility.

4.68

NOTE

User packs cannot have the number of RBs greater
than the installation-defined maximum number of
record blocks to be used for private devices. All
members of a user device set including the master
must be labeled using the same set of allocation
directives.

Elimination of gap sectors on 844 devices introduces
a downward incompatibility at NOS/BE 1.4 PSR
level 508. If a label is written on an 844 device in
a system at level 508 or later, the user cannot read
or write the device in a system release level prior

to level 508.

60493800 M

For 885 (Al), 844-21 (AY), and 844-41 (AZ) disk drives, the flaws recorded on the device in the utility flaw
map (UFM) are read by LABELMS (except during deadstart) and added to the flaws supplied in the input file.
If the pack does not contain the flaw map, the following informative message is written to the job dayfile.

ERROR IN READING UFM

During deadstart, LABELMS obtains a complete set of flaws from IRCP through CMR including the flaws
from the utility flaw map read by IRCP.

LIMIT (LIMIT MASS STORAGE)

LIMIT limits the amount of rotating mass storage that is assigned to a job. Normally, a job is assigned as
much mass storage as it needs. However, a user might want to limit the maximum mass storage that should
be assigned, for example, during a debug phase when large amounts of output would indicate program errors.
Any time mass storage in excess of the specified limit is required, the job terminates.

The format of LIMIT is:
LIMIT n.

n Maximum number of blocks that can be allocated to the job, 1-377777 (octal).
The maximum value allowed may be reduced by the installation. Blocks are
4096 60-bit words. The n parameter is required.

The value of the LIMIT parameter should anticipate both the number and size of files that exist at one time.
The information in the mass storage accounting message in the dayfile might be helpful in determining a
limit for the LIMIT control statement. Note that the dayfile message is in decimal words, but the LIMIT
argument is in blocks of 4096 words. The mass storage statistic is issued only if a LIMIT control statement
has been executed by the job or if the installation has set a nonzero default mass storage limit. Generally,
very small limits should be avoided, since the system allocation of one record block, at minimum, for each
file can exceed the limit established even though each file is small.

Record blocks are defined at each installation, usually with different sizes of blocks for different mass storage
devices. For example, a disk might have record blocks of 3200 words. In this instance, a statement specifying
LIMIT(2) would cause job termination when a third file is opened, since 3 times the record block size is more
than the stated limit of 8192 words.

Mass storage occupied by the INPUT file or attached permanent files is not involved in the total mass storage
allocation for LIMIT calculations. Any file evicted from mass storage decreases the count of words allocated.

LISTMF (LIST LABELED TAPE)

LISTMF lists the HDRI labels of files in a muitifile set. The utility is valid only for tape files with ANSI

standard labels. All volumes in the set are processed with a single utility call. The listing appears on the
file OUTPUT,

A REQUEST control statement defining the multifile set is required before LISTMF is called.

60493800 L 469 |

The format of LISTMF is:
LISTMF M=mfn,P=p.
M=mfn Multifile name of the set, as declared on the REQUEST control statement. Required.

P=p Position of file at which listing is to begin; 1-3 digits. The first file in the set is
position 1. Default is 1.

The multifile set is rewound at the beginning of LISTMF execution, then positioned to the beginning of the
file indicated by the P parameter. Listing of header labels stops when the end of the set (EOF label followed
by multiple tape marks) is reached. No further positioning occurs.

LOAD (LOAD PROGRAM)

LOAD loads a file into memory in anticipation of a call for execution of loaded programs. LOAD can initiate
a load sequence or be part of an existing load sequence but it does not terminate a load sequence. An
EXECUTE control statement, or, in the case of overlay preparation, a NOGO control statement, would normally
terminate the load sequence.

LOAD is defined by the loader, not the operating system. Refer to the CYBER Loader Reference Manual
for further details.

The format of LOAD is:
LOAD,lfnl/r,lfnz/r, e

More than one parameter can be specified when all files contain relocatable programs. Only one parameter
can be specified when the file contains an absolute program.

]fni Name of file containing binary executable code, 1-7 letters or digits beginning
with a letter.

r Rewind indicator:

R Rewind file prior to loading. Rewind of the file INPUT rewinds to the
beginning of the control statements; no skipping of control statements
occurs.

NR Inhibits rewind prior to loading.

Loading from the file terminates when a partition boundary, or end-of<information is encountered, or when two
consecutive 7/8/9 cards are encountered in an image of a job deck.

LOADPF (LOAD PERMANENT FILE FROM TAPE)

LOADPF loads permanent files that have been dumped to tape. All files or a selected portion of files on the
tape can be loaded. An optional directive file specifies individual files to be loaded. Multiple copies of
LOADPF can execute at the same time. A job can access a file as soon as it is entered into the permanent

4.70 60493800 L

file tables. For each cycle loaded, LOADPF makes an output listing entry that contains the permanent file
name, owner ID, cycle number, date of last dump, and a comment.

Before LOADPF is called, a REQUEST or LABEL control statement must define a tape file named DUMTAPE
in S format with an existing label. If the dump tape for a file to be loaded contains more than one file with
the same permanent file name, cycle number, and ID name, a message is sent to the operator and the file is
ignored. New cycles of a permanent file will not be loaded if the passwords of the tape cycle disagree with
the existing cycle.

LOADPF execution causes an implicit attach of a file whose permanent file name is DUM. The device set to
which files are to be loaded must contain a copy of DUM cataloged with an ID of PUBLIC and defined
passwords for RD, MD, CN, and EX. If a DUM permanent file with TK=DUMPF already exists (earlier systems
required this), it must be purged and replaced as described above. The EX password to access DUM must be
submitted as part of the LOADPF call.

NOTE

Files purged between a full DUMPF and several change dumps (DUMPF,DP=C) are
reloaded when both the change and full dumps are reloaded. However, running
PFLOG after each change dump and then running GENLDPF with the last log tape
restores the PFC without reloading the purged files. For multivolume LOADPF
jobs, NORING must be specified on a REQUEST or LABEL control statement.

The format of LOADPF is:

LOADPF,LP=x,LF=lfn 1 ,CL,SN=setname,VSN=vsn,ID=name PF=pfn,CY=cy I=lfn5 PW=pw, IN=ddd,JN=yyddd,
LA=mmddyy,DA=yyddd,CD=mmddyy, TI=hhmm,OR.

Only PW is required. All parameters are order independent. Only one LP parameter can be specified. If a
terminator does not appear at the end of the parameter list, column 1 of the next card or line is considered
to be a continuation of the LOADPF parameter list.

LP=x Files to be loaded:

X Significance

A Load all files. Existing files are not replaced unless the file is
incomplete or not disk resident. Default.

R Replace existing files. Both X and R can be specified in the
form LP=X,R.

P Load archived files (files with entries in permanent file tables
but file residence on tape).

X Do not load expired files.

0] Permanent file dump tape is in SCOPE 3.2 or 3.3 format. If

LP=0 is not specified, the tape is assumed to be a SCOPE 3.4
permanent file dump tape. The O option can be used with
other LP parameters in the form LP=R,0,X.

60493800 L 4-71 |

LF=1fn1

CL

SN=setname

VSN=vsn

ID=name

PF=pfn

CY=cy

I=lfn 2

PW=pw

IN=ddd

JN=yyddd

LA=mmddyy

DA=yyddd

CD=mmddyy

Ti=hhmm

OR

Name of file on which listing is to appear, 1.7 letters or digits beginning with a
letter. Default is OUTPUT.

Complete list option selected. All files read from the dump tape are listed.
If CL is omitted, only loaded files are listed.

Name of device set to which files are loaded, 1-7 letters or digits beginning with a
letter. Master device of this set must be previously mounted.

Volume serial number of the device onto which permanent files are loaded, 1-6
letters or digits with leading zeros assumed. Parameter SN must also be included,
and the master device of the set must be previously mounted.

Load files with this owner.
Load files with this permanent file name. ID=owner is also required.

Load cycle cy of file specified by PF and ID. CY is ignored and the load continued
if this cycle is not found, or if PF and ID are not specified.

Name of directive file, 1-7 letters or digits beginning with a letter. If I is specified
but not equivalenced, file INPUT is used. If a directive file is used, the following
parameters are not allowed on the LOADPF statement: VSN=vsn, ID=name, PF=pfn,
CY=cy, IN=ddd, JN=yyddd, LA=mmddyy, DA=yyddd, CD=mmddyy, and TI=hhmm.

EX password for DUM.

Load files not attached within this number of days; 1-3 digits. Can be qualified by a
TI parameter.

Load files not attached on or after this date; five-digit ordinal date format. Can be
qualified by TI parameter.

Load files not attached on or after this date; six-digit month-day-year format. Can be
qualified by TI parameter.

Load files created, modified, renamed, or extended after this date; five-digit year-and-day-
of-year format. Can be qualified by TI parameter.

Load files created, modified, renamed, or extended after this date; six-digit month-day-
year format. Can be qualified by TI parameter.

Time qualifier for date parameters; four-digit 24-hour clock format. If date parameters
are not specified, Tl is ignored.

Allows loading of files from the dump tape with a device type or an allocation
style different from that defined on the equipment set to which the files are being
loaded. If OR is not specified, a file with device type or allocation style conflict
is not loaded.

60493800 L

A group of files to be loaded can be identified by name and owner in a directive record. Directive formats
are as follows:

ID=name
ID=name, PF=pfn
ID=name, PF=pfn, CY=cy

Parameters are order independent. The PF and CY parameters are optional. The ID parameter should
be specified. However, if the PF parameter is specified without an ID parameter, then ID=PUBLIC is
assumed.

LOADPF EXAMPLES

1. JOBI.
REQUEST(DUMTAPE HY,S,E)
LOADPF(PW=EXPW)
6/7/8/9

This job loads all files on the tape unless LOADPF finds the owner ID, permanent file name, and cycle
number combination already in the system; such files are skipped.

2. JOB2.
REQUEST(DUMTAPE,HY,S,E)
LOADPF(LP=X PW=EXPW)
6/7/8/9

This job loads all nonexpired permanent files from tape.

3. JOB3.
REQUEST(DUMTAPE, HY,S.E)
LOADPF(PF=STARTREK,ID=SPOCK ,PW=EXPW)
6/7/8/9

All cycles of the permanent file STARTREK with owner ID SPOCK are loaded unless one of the
following conditions arises.

The permanent file name/owner ID combination already exists in the system with different
passwords.

A duplicate cycle number is encountered.

The permanent file name/owner ID combination already has five cycles cataloged.

4. JOB4.
REQUEST(DUMTAPE,...)
LOADPF(I,PW=EXPW)
7/8/9
PF=PASSERIFORMES,CY=21,ID=VEERY
PF=ANATINAE,ID=GADWELL
PF=PROCELLARIIFORMES,ID=FULMAR
6/7/8/9

This job loads the specified permanent files from tape.
60493800 L 4-73

MAP (PRODUCE LOAD MAP)

MAP determines the extent of the load map produced for all subsequent programs loaded in central memory.
When MAP is omitted, an installation default determines the type of map.

Output from a load map appears on the file QUTPUT. It includes items such as the type of load, location
of programs, common blocks and tables, and entry points. Load maps of programs on the system library,
such as compilers or assemblers, are never produced. Refer to the CYBER Loader Reference Manual for an
explanation of all items in the load map.

The MAP option selected remains in effect until another MAP control statement changes the option or the
job ends.

The format of MAP is:

OFF
e P01
PART
OFF No map is produced.
FULL Full map is produced.
ON Map has all items except entry point map.
PART Map has all items except entry point map and cross-reference.

The effect of a MAP can be overridden for a particular load sequence by the MAP option of the loader state-
ment LDSET (see the CDC CYBER Loader Reference Manual).

MODE (SUSPEND ERROR EXIT)

MODE specifies the error conditions that abnormally terminate the job. Normally, a job terminates when any
of the following CPU program errors are detected.

Reference to an operand (any number used in a calculation) that has an infinite value.

Reference to an address outside the field length of the job in central memory or ECS: such an address
can be generated during assembly if a nonexistent location is referenced or inadequate field length is set.

Reference to an operand for floating point arithmetic which has an indefinite value.
When a selected error condition is detected, the job terminates. When an error condition not selected by

MODE is detected, job processing continues and no error message is issued.” A MODE selection remains in
effect until another MODE control statement is executed or the job ends.

TOn a CYBER 176, address range errors always result in job termination, no matter what option is
specified on the MODE statement.

4-74 60493800 L

The format of MODE is:
MODE,m.
m CPU program error exit conditions 0-7 (octal). If omitted, 7 is assumed.

0 Disable CPU program error exit; all errors allow job to continue
except jump to location zero.

1 Address is out of range.

2 Operand is infinite. |

3 Both 1 and 2 remain in effect.

4 Floating point number of indefinite value.
5 Both 1 and 4 remain in effect.

6 Both 2 and 4 remain in effect.

7 1 and 2 and 4 remain in effect.

For example, a MODE, 5. statement directs the system to continue processing even if an infinite operand is
encountered. If an address is out of range or a floating point number of indefinite value is encountered, the
job terminates. A control statement MODE,7. is equivalent to a job without a MODE control statement.

MOUNT (ASSOCIATE DEVICE SET)

MOUNT associates a device set and its members with a job. MOUNT is a logical operation. If the device is
physically available, no operator intervention is required. If the device is not physically available, the device
name is placed in an operator display, and the job is swapped out until the device is mounted.

When the master device is mounted, the device set tables are read into the system and all files and member
devices become logically accessible to the job. The master device must remain mounted while the associated
device set is in use. When the master is mounted, the system issues a MOUNT for other member devices as
needed. The user also can issue a MOUNT for a member device. Y

The format of MOUNT is:
MOUNT,VSN=vsn,SN=setname.
Parameters VSN and SN are required; mode is optional. All parameters are order independent.

VSN=vsn Volume serial number of device to be mounted, 1-6 letters or digits with leading
zeros assumed.

SN=setname Name of device set to which this device belongs, 1-7 letters or digits beginning with a
letter.

60493800 M 4-75

PAUSE (OPERATOR INTERFACE)

PAUSE inserts a formal comment into the job dayfile and stops the job until the operator acknowledges the
comment. PAUSE should not be used unless communication with the operator is essential. The COMMENT
control statement allows messages to be inserted into the dayfile without the need for operator response.
The format of PAUSE is:

PAUSE. comment

The period is required. The comment can begin in any column after the period; ending punctuation is
not required.

comment String of 74 characters to be displayed for the operator. Any character can be
specified, including those otherwise used as punctuation. Characters with display

code values greater than 57 are displayed as blanks.

All eighty characters (PAUSE plus message) are displayed for the operator. A message longer than 74 charac-
ters can be sent by using a second PAUSE control statement, but each statement requires operator action.

The operator acknowledges the PAUSE message by a GO, DROP, or KILL command that continues, drops,
or aborts the job, respectively.

PFLOG (DUMP PERMANENT FILE CATALOG TO TAPE)

PFLOG dumps the permanent file catalog (PFC) of a device set to a magnetic tape (log file).

Before PFLOG is called, a REQUEST control statement must define the log file as a new labeled SI tape
whose file name is LOGTAPE.

PFLOG execution causes an implicit attach of a file whose permanent file name is DUM. The device set
whose PFC is to be dumped must contain a copy of DUM cataloged with an ID of PUBLIC and a defined
password for RD. The RD password must be submitted as the PW parameter on the PFLOG call.

For each PFC entry dumped, PFLOG makes an output listing entry that contains the permanent file name,
owner id, and cycle number.

The format of PFLOG is:
PFLOG,PW=rd,SN=setname,LF=1fn.

Only PW is required. All parameters are order independent.

4-76 60493800 M

PW=rd RD password for DUM.

SN=setname Name of device set whose PFC is to be dumped; 1-7 letters or digits beginning with
a letter. The master device for this set must have been mounted before PFLOG can
execute. Default is the permanent file default set.

LF=lfn Name of file on which listing is to appear; 1-7 letters or digits beginning with a letter.
Default is QUTPUT. If Ifn=0, no listing is generated.

PFLOG EXAMPLES

1. JOBCARD(NTO1)
VSN(LOGTAPE=123456)
REQUEST(LOGTAPE,NT,PE,N,RING)
PFLOG(PW=READ,LF=0)
6/7/8/9

This job dumps the permanent file default set to LOGTAPE. No output listing is generated.

2. JOBCARD(NTO1)
VSN(LOGTAPE=123456)
MOUNT(SN=SETNAME,VSN=MASTER)
REQUEST(LOGTAPE,NT,PE,N,RING)
PFLOG(SN=SETNAME,PW=READ)
6/7/8/9

This job dumps the PFC of SETNAME to LOGTAPE and prints the output listing on QOUTPUT.

PURGE (REMOVE PERMANENT FILE)

PURGE removes the permanent status of a file. The file remains as a local file for the job if the file is being
accessed on the mainframe at which the job is executing, if the file is not archived, and if the RB parameter
is not specified. Control permission is required to purge a file.

PURGE affects only one cycle of a permanent file. If a cycle number is not specified, the cycle with the
highest cycle number is purged. If there is only one cycle, the permanent file name is removed from the

permanent file tables. A subsequent CATALOG with the same permanent file name and ID would be an
initial CATALOG.

60493800 L 4-717

The format of the control statement and subsequent file permissions depends on whether the file is already
attached to the job.

If the file is attached to the job, the format of the PURGE statement is:
PURGEIfn RB=1.
ifn Local file name by which the file is attached to the job.
RB=1 Refer to the explanation in the next form of the PURGE statement.

All other parameters are ignored. The local file remains with all permissions that were granted when the file
was attached, except in the following cases:

' The file resides on a mainframe other than the one on which the job is executing.
° The file is archived.

° The user has specified the RB=1 parameter and the system has set the record block
conflict flag.

If the file is not attached to the job, the format of the PURGE statement is:

PURGE, Ifn,pfn ID=name, {C } ,EC=ec,PW=pw,UV=uv RB=1 RW=p SN=setname ,ST=mmf,VSN=vsn.

Y=cy

Parameter pfn is required. Parameters Ifn (if present) and pfn are order dependent. All other parameters are
optional depeading on how the file was cataloged. They are also order independent. The PURGE statement
can be continued from one line to the next. The first line must not be terminated by a period or right
parenthesis. To be consistent with other control statements that require such a format, the last nonblank
character on the line should be separator. The continuation begins in column 1 of the next line.

RB=1 Record block conflict. Applicable only when the record block conflict flag
is set in system tables to indicate that storage allocation for the file is in conflict
with mass storage allocation elsewhere. If this parameter is used when the con-
flict flag is set, the local file has all permissions removed except control permission
and the mass storage associated with the file is not released when the file is
released to the system. The AUDIT utility reveals the presence of files with
storage conflict.

ST=mmf System on which file is cataloged, three characters. If the file is not cataloged on
the mainframe at which the job is executing, a job is generated on the specific
mainframe to purge the file.

SN=setname Device set name identifying the private device set containing the file to be purged.
This parameter may be 1-7 letters or digits and must begin with a letter. If SN
is specified, VSN must also be specified to allow access to the private set on the
mainframe specified by ST.

4-78 60493800 L

VSN=vsn Volume serial number identifying the master device of the private device set. This
parameter may be 1-6 letters or digits. If SN is specified, VSN must also be speci-
fied as explained in the SN description.

Refer to the ATTACH control statement for the meaning of the remaining parameters.
The system issues an ATTACH (or GETPF) using the parameters specified in the PURGE statement. It then

purges the file. The local file remains as explained in the previous format of the PURGE statement.

RECOVER (DEVICE SET MAINTENANCE)

RECOVER validates a device set and reconstructs tables whenever the integrity of a device set is in question.
It scans critical disk tables of a device set to verify and recreate each. Any errors encountered during the
recovery process are noted in the OUTPUT file. The RECOVER control statement is not executed if this job
or any other job has issued instructions to mount the device set.
The format of RECOVER is:

RECOVER,SN=setname,V=vsn.

Parameters are required and order independent.

SN=setname Name of device set to be validated or reconstructed, 1-7 letters or digits
beginning with a letter.

V=vsn Volume serial number of device set master device, 1-6 letters or digits. with
leading zeros assumed.

In a multimainframe environment, permanent files on a shared device set could be destroyed if RECOVER

is executed when one of the mainframes has the master mounted. Therefore, the system aborts the request
unless called from the console by an operator entry.

REDUCE (REDUCE FIELD LENGTH)
REDUCE decreases the central memory field length assigned to a job to the amount of memory needed by
the program currently loaded. It also restores dynamic field length management by the operating system that

the job previously inhibited through execution of an RFL control statement or through use of a CM param-
eter on the job statement.

REDUCE,ECS. releases the ECS field length currently assigned to the job.

This control statement should be used whenever the job no longer requires special field length handling in
CM or ECS.

60493800 L 479 |

| 4-80

The formats of REDUCE are:
REDUCE. Decreases CM field length.

REDUCE,ECS. Releases ECS field length.

-RENAME (CHANGE PERMANENT FILE TABLE)

RENAME changes values of parameters in the permanent file manager tables. Parameter values originating
from a prior RENAME or original file catalog can be deleted or changed to different values and new param-
eters can be added. RENAME affects only the parameters specified on the control statement; other parameters
remain as they were.

Prior to issuing RENAME, the job must attach the file with read, extend, modify, and control permission.

The format of RENAME is:
RENAME 1fn,pfn,ID=name,AC=act,CN=cn,CY=cy EX=ex,MD=md,RD=1d , RP=rp, TK=tk XR=xr.

Only the Ifn parameter is required; it must be the first parameter. All other parameters are optional
and order independent. RENAME can be continued; if the parameter list is not terminated by a period
or right parenthesis, column 1 of the next statement is considered to be a continuation of column 80.
Two commas can follow Ifn when pfn is not changed.

Specifying the parameter name and an equals sign without a following parameter value removes the
existing value for that parameter.

Ifn Name of attached permanent file, 1-7 letters or digits beginning with a letter.
Required.

RP Retention period, 0-999. Applies to date of original CATALOG, not to date of
RENAME.

See the CATALOG control statement for the meaning of remaining parameters.

Any change to the permanent file name, ID, or passwords of any cycle of a file causes the same change to be
made for all cycles of the file. Consequently, RENAME cannot change the permanent file name, ID, or pass-
words if any cycle of the file has been dumped or archived to tape. If the pfn/ID are being changed and a
file already exists with the proposed pfn/ID, the pfn/ID change will not occur, and a nonfatal error message
is issued.

60493800 L

v

REQUEST (ASSIGN FILE TO DEVICE)

REQUEST requests assignment of a file to a particular device. Since control statements are processed in
order of appearance, the REQUEST statement for a particular file must precede the first control statement
that references the file or executes a program referencing that file. Otherwise, the file is sought or written
on a public scratch device when it is referenced.

REQUEST is most commonly used with permanent files, magnetic tapes, and private device sets, but it can be
used to cause file assignment to any public device or unit record equipment. Files are assigned to public disk
packs by a REQUEST or by system default. However, to ensure that a file is assigned to a permanent file
device, a REQUEST statement with a PF parameter should be used.

When a REQUEST control statement is encountered, job processing might halt for operator action or continue
with operating system action, depending on the form of the parameter specifying device type and, for magnetic
tape, the installation tape assigning options.

The general form of REQUEST is:
REQUEST Ifn,dt,parameters.

Parameter 1fn is required and must be the first defined; all other parameters are optional and order
independent.

ifn Name by which file will be known throughout the job, 1-7 letters or
digits beginning with a letter. Ifn beginning with ZZ is reserved for the
system. 1fn cannot be QUTPUT. With private device sets, 1fn also
cannot be PUNCH, PUNCHB, P80OC, FILMPR, FILMPL, PLOT, HARDPL,
or HARDPR.

dt Device-type mnemonic plus other dt parameters to further describe equipment
requested. If the user specifies an optional device type parameter which is
unique to a device type (for example, the GE parameter for a nine-track tape),
the device-type mnemonic need not be specified. A preceding asterisk allows
assignment of devices without operator action if possible. An asterisk is implied
for mass storage devices.

parameters Optional parameters.

The optional device-type descriptors depend on the category of equipment involved. Details of parameters for
REQUEST are discussed separately in relation to files on the following devices.

Magnetic tapes (seven- and nine-track) including multifile sets.

Unit record devices such as card reader and line printer

ECS

Public devices including those used for permanent files

An asterisk preceding the device-type mnemonic causes the operating system to attempt to assign the device
without operator action. Automatic assignment is attempted on mass storage devices regardless of whether the
asterisk is specified. The tape assigning options available make the * redundant for magnetic tape requests,
but it can be used. However, * cannot be used if two units are requested with the same control statement
or a multifile set is involved. If * is used for unit record devices, the REQUEST control statement appears

60493800 L 4-81

on the operator display for manual assignment. The operator must then make the unit physically ready and
logically assign it to the job by entering a command on the console keyboard. Refer to Unit Record Device
Request description which follows in this section.

When sufficient information is given on the REQUEST control statement, the operating system assigns the
device to the job without operator action. For rotating mass storage devices, automatic assignment is attempted
whether or not the asterisk precedes the dt parameter. For other device requests, operator action is required

if an asterisk does not precede the dt parameter. If dt is not declared, the operator can assign any device.

For tape request, a VSN parameter is used to locate and to assign the tape if it is mounted.

The operating system compares the device assigned by the operator with the request and reports any discrepancy
to the operator. An additional operator command must be given if the dt parameter on the control statement
is to be overridden by manual assignment. Conflicts must be resolved by the operator.

TAPE FILE REQUEST

To use a REQUEST statement for tape files the JOB statement must specify the tape track type and density
(refer to the MTk parameter in the JOB statement earlier in this section). The REQUEST control statement
can describe both physical and logical characteristics for magnetic tape files. When only the logical file name
and magnetic tape device type MT are specified, the file, by default, becomes a seven-track unlabeled tape
with SI format written at installation density or read at written density, and installation declarations for
automatic unloading are honored. Any other use, such as for checkpoints or multifile sets, or any charac-
teristics of the file must be specifically declared.

The MT or NT device type parameter can be prefixed by an asterisk or a 2. The asterisk is applicable only

when compatibility with previous operating systems is considered. The asterisk prefix results in assignment of

a scratch tape to the file. However, if a nonscratch VSN has been specified also, it overrides the scratch
designation. If REQUEST includes parameter E, a scratch tape is not assigned. Depending upon the selection

of installation options, the operating system attempts to assign the tape to a job automatically using a VSN or
label name parameter. Operator assignment is necessary only when automatic assignment attempts are unsuccessful.

If either a seven- or nine-track tape is acceptable, an MN parameter can be used in place of MT or NT. The
resulting tape has default density. However, to ensure that the job is not aborted because of maximum tape
units exceeded, the job statement should specify both MT and NT. If the request includes at least one device-
type descriptor which is unique to magnetic tapes (such as the RING parameter), neither the device type nor
the density need be specified.

A 2 prefix to MT or NT causes two tape units to be requested from the operator, which are used in the order
assigned. Tape requests using the 2 prefix cannot be auto-assigned. When the tape on the first unit reaches
end-of-volume, the system begins processing the tape on the second unit while the tape on the first unit is
rewound and unloaded. When the tape on the second unit reaches end-of-volume, the system returns to the
first unit, which should have been mounted in the interim with a new tape. The tape on the second unit is
rewound and unloaded. This alternating process is repeated as long as the file is referenced. The operator
must ensure the proper tape mounting sequence.

SEVEN-TRACK TAPE PARAMETERS:

LO U) (E
cK s} U {RJN(;] ~
REQUESTan,MT,=HI } MF],[L ‘;}{Es}{s"] RING | NRVSN=ven

4.82 60493800 L

File name:

If the MF parameter is not specified, Ifn is the file name of 1-7 letters or digits beginning

with a letter.

If the MF parameter is specified, this parameter is a multifile set name of 1-6 letters or digits
beginning with a letter.

The multifile set name cannot be used in any input/output statement except as the M parameter in
a LABEL statement or POSMF macro.

Seven-track identification:

A declaration of LO, HI, or HY is sufficient to define the device type as MT. If MT is absent,
LO, HI or HY can be prefixed by a 2 if two units are required. The MTk parameter must be
specified in the JOB statement. Refer to the JOB statement earlier in this section.

Density:
Lot
HI
HY

absent

File disposition:

U

Sv

absent
Tape security:

RING

NORING

absent

200 bpi density

556 bpi density

800 bpi density

Density is set to an installation-defined value if initial use is output. If initial use of
a label tape is input, the density of the label is determined automatically. However, it
is recommended that density be specified whenever known and used to read both the
label and the data, except as indicated under Z in the Z parameter description later in

this section. If initial use of an unlabeled tape is input, the density is set to an instal-
lation-declared value.

Any physical unload of the tape file in a context other than reel swapping is inhibited.
The IU parameter does not inhibit logical actions associated with UNLOAD or RETURN.
IU is recommended when a scratch tape or input tape is requested that is to remain
mounted and ready.

The tape file is unloaded at job termination, and the operator is notified that the tape
is to be saved.

Action performed at end-of-job is option of the installation.

Write-enable ring required in tape.
Write-enable ring prohibited in tape.

RING/NORING is set to an installation defined value.

TThe 667/677 tape units can read but not write at 200 bpi.

60493800 L

4-83

| 4-84

Volume serial number identification:

VSN=vsn

absent

Volume serial number of the tape volume, 1-6 letters or digits with leading zeros
assumed. The VSN appears on the previewing display for the operator’s information
before the job is assigned to a control point. Once the tape is mounted and the unit
made ready, the operating system can locate the volume without further operator
action. Once the tape is assigned, the VSN is verified against the standard or Z for-
mat label, if present. VSN also is verified against operator-supplied VSN for an
unlabeled tape.

If a scratch tape is desired, a VSN of SCRATCH or 0 can be used. The * prefix can
be used for a scratch tape also.

If a VSN parameter is declared for a file on a REQUEST, and a VSN control state-
ment or a VSN parameter on a LABEL control statement also appears, the first
declaration is effective.

Any VSN declaration is used; otherwise, file header label fields are used for assignment
and verification. If neither VSN nor file header label field declaration is made, any
tape volume is accepted, but the assignment must be made manually unless * prefix

is used.

Parity error recovery procedure:

NR

Special tape use:
CK
MF
absent
Data format:
S
L

absent

The NR parameter can be used to inhibit normal parity error recovery procedures.
Data containing the parity error is retumed to the user.

Checkpoint dumps are written on the tape.
The tape is a valid U or Z labeled multifile set.

Neither of the above is assumed.

S tape format.
L tape format.

Data format is SI format.

Input or output use (apply only to labeled tapes):

E

N

absent

Existing label. Initial use of the tape is input; only the expiration date is checked in
the label.

New label. Initial use of the tape is output; tape label is written.

If file is to be labeled (U, Z, or Y is declared), a tape label is written.

60493800 L

Label characteristics:

U Tape label format is ANSI (standard label).
Y Tape label format is Y (3000 Series label).
Z Tape label format is ANSI, except character 12, of the VOLI label is used to indicate

data density. These labels were standard for SCOPE 3.3.

absent Tape is unlabeled unless either E or N is declared; in which case, ANSI (U) label
format is assumed.

Label processing:

NS The NS parameter can be used to indicate a tape has nonstandard labels and is to be
processed as unlabeled even though the tape is labeled. Existing labels appear to-the
system as data and are passed to the user as such. The user can then process the
labels or ignore them. Nonstandard labels are not supported on SI tapes.

NINE-TRACK TAPE PARAMETERS:

A declaration of NT or a nine-track density for a tape to be written is required to identify a nine-track
tape and a declaration of NT, GE, PE, or HD is required on the JOB statement. Refer to the JOB
statement earlier in this section. Definitions and conditions for all except the density and data format
parameters are the same as those for seven-track tape.

E E "
S\ CK US| IU) JRING | JEEC
REQUEST,Ifn,NT,{HD}, { } , { { H { l =vsn.
Q n,NT Fég} L} MF {:ZJ{} {:s} EBJ\sv \NORING[\IEC | NRVSN=Vsn

DensityA:

A density specification is effective only when the tape is to be written; density setting is a hardware
function when the tape is read.

HD 800 cpi

PE 1600 cpi

GE 6250 cpi

absent Tape written at installation-declared density
Data format:

S S tape format.

60493800 L 4-85

Lt L tape format. .

absent Data format is SI format.

Hardware error correction:

EEC Enable hardware GE write error correction. The system allows certain types of
single-track errors to be written that can be corrected when the tape is read (on-the-fly
correction). This is the recommended mode of operation, because it provides efficient
throughput, error recovery, and tape usage when writing GE tapes on media that is
suitable for use at 3200 fci or 6250 cpi.

IEC Disable all error correction activity in GE write mode. The system invokes standard
error recovery processing when an on-the-fly error occurs while writing a GE tape.
The system erases the defective portion of tape, thereby reducing the amount of
data that can be stored on the tape. Only tape that is suitable for recording at
6250 cpi should be used when this mode of operation is in effect.

NOTE

EEC and IEC apply only to GE (6250 cpi) operations. GE must also be
specified in a REQUEST statement; otherwise, EEC and IEC are ignored.

EEC and IEC are applicable if the user requests default nine-track
density and the installation nine-track default density is GE (6250 cpi).

Code for conversion of all nine-track tape labels and of data on coded nine-track tapes of type S or L
(refer to tape conversion tables in appendix A):

Us Coded data on tape is to be converted from ASCH on input or to ASCII on output.

EB Coded data on tape is to be converted from EBCDIC on input or to EBCDIC on
output.

absent Coded data conversion is defined by the installation.

Examples of REQUEST statements for tapes:

1.

REQUEST(FILE1 NT,U,E,;NORING)
or
REQUEST(FILE1,NT,E,NORING)

The operator must assign an ANSI labeled, nine-track tape. The label is checked when the first
function is issued on the tape. Because density is not specified, it is assumed that both the label
and data are written at the same density.

TCurrently L tapes are supported only on seven-track tape devices and 669/679 nine-track tape drives.

4-86

60493800 M

2. REQUEST(FILE},*MT,RING)

Depending on installation option, the system automatically assigns FILE1 to a scratch tape on a
seven-track tape unit. The file is unlabeled and written in SI data format at an installation-declared

density.

3. REQUEST(STANF27 HI,VSN=OHIO17,US,SV,RING)

Depending on installation option, file STANF27 is assigned automatically to a unit containing volume
OHIO17. An ANSI label is written; both label and data are written at 556 bpi. Data format is S.
The volume is saved at job completion.

UNIT RECORD DEVICE REQUEST

When a file is input from a card reader or output to a printer or card punch, devices are assigned automatically
and REQUEST is not necessary. There are no standard drivers for the unit record equipment. Request and
assignment of such devices is only valid for on-ine diagnostic packages or for devices for which the installation
has provided drivers. If the installation has provided drivers, the following devices can be requested. Assign-

ment is not automatic; the operator must assign the request device to the job.

REQUEST,lfn,dt.
Ifn File name of 1-7 letters or digits beginning with a letter.
dt Device type. The following device types are recognized, but not supported by the

standard system.

can be specified.

Lp
LR
LS
LT
CR
CP

ECS FILE REQUEST

Files that are to reside on ECS are requested by the following control statement.

Any available line printer GC
580-12 line printer HC
580-16 line printer FM
580-20 line printer TR
405 card reader TP
415 card punch PL

used for files that are buffered through ECS.

If an installation provides software drivers for these devices, they

252-2 graphics console
253-2 hardcopy recorder
254-2 microfilm recorder
Paper tape reader

Paper tape punch
Plotter

This statement is not to be

REQUEST Ifn,AX,EC.

Ifn File name of 1-7 letters or digits beginning with a letter.

AX ECS device type mnemonic. Required.

EC Maximum file size. If omitted, default buffer size is the maximum file size.
60493800 L

4-87 |

EC Default buffer size maximum.

ECnnnn Maximum size nnnn words multiplied by 1000 (octal).

or

ECnnnnK

ECnnnnP Maximum size nnnn ECS pages, where page size is 1000 (octal)

60-bit words.

If ECS is turned off, the files requested on ECS are allocated on rotating mass storage devices.

MASS STORAGE FILE REQUEST

Mass storage files on either public device sets or private device sets are requested as follows. The EC param-
eter is valid only for files on public device sets.

For private device sets, a MOUNT control statement must assign the master device to the job before REQUEST
assigns a file to the device set.

REQUEST \fn,dtaa,OV,EC,PF,Q,SN=setname,VSN=vsn.
The first parameter must be Ifn. Other parameters are optional and order independent.
Ifn File name of 1-7 letters or digits beginning with a letter.

dtaa Device type mnemonic and allocation style. An asterisk can appear before dt, but its
function is redundant.

dt Device type mnemonic for a mass storage device:

A* Any mass storage device

AH 819 disk drive (CDC CYBER 170 Model 176 only)
AJ 885 disk drive

AY 844-21 disk drive

AZ 844-41 disk drive

aa Allocation style, O to 77 (octal), defined by the instailation for public
sets; by LABELMS for user device sets. Can be null.

ov Overflow to any other mass storage device is allowed when device dtaa or a device
specified by SN and VSN parameters is unavailable or full. Permanent files and queue
files are assigned only to permanent file devices and queue devices, respectively; other-
wise, files might be assigned to any mass storage. If all mass storage of any type
becomes unavailable, a device capacity exceeded status is returned to a COMPASS
program when the EP bit is set in the FET. When OV is specified and requested
device is unavailable or full, all parameters are ignored except PF, Q, and SN as
the system selects the device on which to continue.

| 4.88 60493800 L

EC Buffer file through ECS. Valid only for sequential files on public devices.T If ECS
is off, this parameter is ignored for this job.

EC Default buffer size.

ECnnnn Buffer size of nnnn 60-bit words multiplied by 1000 (octal).
or

ECnnnnK

ECnnnnP Buffer size of nnnn ECS pages, where page size is 1000 (octal)
60-bit words.
PF Assign file to a permanent file device. If SN and VSN specify a permanent file
device, PF is not required. If SN is not specified, the file is assigned to the default
PF set. (*PF can be used instead of PF and has the same meaning.)

Q File is to be assigned to a queue device. If SN is a private device set, Q is not
allowed. If SN is not specified, the file is assigned to the queue set. (*Q can be
used instead of Q and has the same meaning.)

SN=setname Assign file to setname, 1-7 letters or digits beginning with a letter. If omitted, file
is assigned to a public device set. If only SN is specified, setname is that specified by
SETNAME control statement; if setname has not been specified previously, file is
assigned to a public device.

VSN=vsn Volume serial number of device within set specified by SN, 1-6 letters or digits with
leading zeros assumed. VSN cannot be used without the SN parameter.

Allocation style aa is an optional appendage to the device type mnemonic. Two digit octal codes representing
allocation style must be defined at each installation and can be used to identify sub-areas of a device. For
example, an installation can divide 844 disk packs into two sub-areas — default and large space allocation. If
the large space allocation area is identified as allocation style aa=55, files residing in the large space allocation
sub-area are assigned more units of disk storage than similar files residing in the default sub-area. At this
example installation, a file is assigned large space allocation sub-area by REQUEST(1fn,AY55).

Refer to DEVICE SETS in section 3 for more examples and explanations of REQUEST.

RESTART (RESTART JOB FROM CHECKPOINT TAPE)

RESTART restarts a job from a checkpoint tape. After locating the proper dump on the checkpoint tape, the
restart program requests all tape files defined at checkpoint time and repositions these files. Then a request is
made for all mass storage files and ECS buffer length where applicable. Files are copied from the checkpoint
tape and repositioned. RESTART also restores the central memory field length of the job and restarts the
user’s program. If a permanent file was attached to the job when a checkpoint was called, it is attached and
positioned as it was at the time of the checkpoint.

TAll file types will be buffered for device type AH (CDC CYBER 170 Model 176 only).

60493800 L 4.89 |

A restart job requires only a control statement to request the checkpoint tape (REQUEST or LABEL) and
the RESTART control statement. If a checkpoint tape is not requested, the restart program requests an
unlabeled 7-track or 9-track tape (for the file named on the RESTART control statement) as follows:

REQUEST(1fn,CK,MN)

Since RESTART recreates all files used for the checkpointed job, the user should not create any files before
the call to RESTART. If any of those files are recreated by the user before the call to RESTART, a

duplicate file error might occur. The output file of the checkpointed job, unless redirected by a ROUTE
command, will return to the source of the RESTART job.

If a device set was mounted when the checkpoint was taken, the job issuing the RESTART must execute a
MOUNT control statement for the device set before calling RESTART. RESTART does not mount device
sets. Files on device sets are attached and positioned by RESTART.

Any ECS direct access user area attached to the job is copied in its entirety to the checkpoint tape. At
restart time, it is recopied to ECS from the checkpoint file. On the job statement for the restart job, the
user must request at least as much ECS as the original job was allowed. An RFL control statement may be
needed to give the RESTART routine sufficient memory to operate. If reconfiguration results in insufficient
ECS available to the user, restart is not possible. The RESTART statement should not be used within a
CCL procedure (see section 5).

The format of RESTART is:
RESTART name,n,S=xxx.
All parameters are optional and order independent.
name Name of checkpoint file as defined at checkpoint time. Default is CCCCCCC.

n Number (decimal) of checkpoint to be restarted. If n is greater than the number of
the last checkpoint taken, the restart attempt is terminated. Default is 1.

S=xxx Ignored by RESTART; allowed for compatibility with previous systems.
A checkpoint dump cannot be restarted in the following cases.
A tape file necessary for restarting the program was overwritten after the checkpoint dump was taken.

A machine error propagated bad results but did not cause abnormal termination until after another
checkpoint dump.

RETURN (EVICT FILE)

RETURN performs an operating system CLOSE/RETURN function. It differs from the UNLOAD control state-
ment only in that RETURN reduces the maximum number of tapes that can be held by the job, but UNLOAD
does not. RETURN deletes all references to the files specified, except as noted below, and destroys the file
contents of local files.

| 490 60493800 L

The format of RETURN is:
RETURN,lfnl,lfnz, e

More than one file or multi-file set can be specified; only one is required.

lfni Name of file to be returned, 1-7 letters or digits beginning with a letter or name of
multi-file set tape to be returned, 1-6 letters or digits beginning with a letter. 1fn;
cannot be INPUT.

For magnetic tape output files, RETURN causes trailer labels to be written and the file to be rewound and
then unloaded. With the exception of members of a multifile set, the tape units on which the file resides is
disassociated from the job and made available to the system for new assignment. The count of the number
of tape units logically required by the job, as set by a tape parameter on the job statement, is then decreased.

For members of a multifile set, the tape units on which the files reside are not disassociated from the job.
The multifile set is left without a member as it was immediately after the initial REQUEST was made for
the master file.

For master multifile set names, the tape units assigned to the set are disassociated from the job and made
available to the system for new assignment. The count of the number of tape drives required is then decreased.

For mass storage files, RETURN causes the file to be returned. Special-named files on queue devices are
released to the output queue associated with their dispositions. If any of the special-named files are to be

evicted, the DISPOSE or ROUTE control statement should be used instead of RETURN. Permanent files
return to permanent file manager jurisdiction. Other mass storage files are evicted.

REWIND (REWIND FILE)

REWIND positions a file at the beginning-of-information.

For a labeled magnetic tape, this position is the start of the user’s data after label information.

For unlabeled multivolume tapes, a REWIND rewinds the current volume and a subsequent forward motion
initiates a backward reel swap, positioning the file at its beginning.

For labeled multivolume, single-file tapes, a REWIND rewinds the current volume and sets the volume number
in the system tables to 1. A subsequent forward motion causes the label to be read and compared with the
system tables, and the operator is notified if the current volume is not number 1.

For labeled multifile tapes, a REWIND rewinds the specified file to its beginning. If necessary, the operator
is instructed to mount the previous volume.

The format of REWIND is:
REWIND,lfnl,lfnz, e
More than one file can be specified; only one is required.
lfni Name of file to be rewound, 1-7 letters or digits beginning with a letter.

A REWIND that references a multi-file set name is illegal; the job terminates.

A REWIND that references an Ifn that is not local to the job creates an empty file of the same name.

60493800 L 4.91

In most cases, when a file is requested for a job, that file is positioned automatically at beginning-of-information.
However, because of variations in installation parameters and procedures, automatic positioning can not always
occur with every file requested. Therefore, it is best to follow the REQUEST statement with a REWIND state-
ment to ensure that the file is positioned at its beginning when first referenced.

RFL (REQUEST FIELD LENGTH)

The RFL control statement requests a specific field length in central memory (CM) or extended core storage
(ECS).

A job’s field length requirement in central memory usually varies with each job step. For example, a
FORTRAN compilation might require 45 000 words (octal) while a COPY routine might require only 5000
words (octal). Normally, the dynamic field length management of the system automatically varies the field
length assigned in order to optimize use of system storage.

If a job has special requirements for which specific job steps require considerably more or less field length
than the field length manager would assign, the user can override the system assignment by including an RFL
control statement. When used with the CM parameter, this statement inhibits dynamic field length manage-
ment by the system and assigns a user-specified field length to the job. This user-specified field length re-
mains in effect until a REDUCE control statement again activates the system’s dynamic field length manage-
ment. Thus a REDUCE statement should immediately follow each RFL statement unless the user wants his
field length specification to remain in effect for succeeding job steps.

The RFL control statement also specifies field length in ECS. This does not affect dynamic field length
management by the system which applies only to central memory.

Once an ECS field length is assigned, it remains in effect until released by a REDUCE,ECS. control statement.
Thus, the REDUCE,ECS. statement should immediately follow the last job step that uses the ECS assignment.

The formats of RFL are:

RFL.fl.

RFL,CM=Al.

RFL,EC=fle.

RFL,CM=f],EC=fle.

fl New CM field length (octal). Maximum value is established either by the CM pa-
rameter on the job statement or, if that parameter is omitted, by the installation
default. The fl parameter must be specified; there is no default.

fle New ECS field length in multiples of 1000 words (octal). Maximum value is
established either by the EC parameter on the job statement or, if that parameter

is omitted, by the installation default. If the installation is using ECS, the fle
parameter must be specified; there is no default.

4-92 60493800 L

ROUTE (FILE DISPOSITION)

ROUTE directs a file to an input or output queue. Both file destination and type of further proc