
&JI:\ CONTl\.OL DATA
\.!:I r::J CORfOR(\TION

NOS/BE VERSION 1
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:
CYBER 170 SERIES
CYBER 70

MODELS 71, 72, 73, 74
6000 SERIES

60493800

CONTROL STATEMENT INDEX

ABS 4-5 job 4-2
ACCOUNT 4-5
ADDSET 4-6

LABEL 4-62 ALTER 4-7
LAB ELMS 4-65 ATTACH 4-8
LIMIT 4-69 AUDIT 4-9
LISTMF 4-69

I LOAD 4-70 BEGIN 5-25
LOADPF 4-70 BKSP 4-11

MAP 4-74 CATALOG 4-12
MODE 4-74 CKP 4-14
MOUNT 4-75 COMBINE 4-15

COMMENT 4-15
PAUSE 4-76 COMPARE 4-16
PFLOG 4-76 COPY 4-17

I COPYBCD 4-18 .PROC 5-31,43
COPYBF 4-18 PURGE 4-77 COPYBR 4-21
COPY CF 4-18 RECOVER 4-79
COPY CR 4-21 REDUCE 4-79
COPYL/COPYLM 4-22 RENAME 4-80
COPYN 4-25 REQUEST 4-81
COPYSBF 4-30 RESTART 4-89
COPYXS 4-30 RETURN 4-90

REVERT 5-27

I DELSET 4-31 REWIND 4-91
DISPLAY 5-18 RFL 4-92
DISPOSE 4-32 ROUTE 4-93
DMP 4-34
DMPECS 4-36 SAVEPF 4-101 I DSMOUNT 4-37 SET 5-19
DUMPF 4-38 SETNAME 4-103 I SKIP 5-15
EDIT LIB 4-41

SKIPB 4-103
ELSE 5-16

SKIPF 4-104 I .ENDHEIP 5-52 SUMMARY 4-104

I ENDIF 5-17 SWITCH 4-105
ENDW 5-18 SYSBULL 4-105
EXECUTE 4-54
EXIT 4-54
EXTEND 4-55 TRAN SF 4-106

TRAN SPF 4-107
GENLDPF 4-57
GETPF 4-58 UNLOAD 4-110

I VSN 4-111
.HEIP 5-51

WHILE 5-17 I
IFE 5-13
ITEMIZE 4-59

60493800 M :(

&Jc:\ CONT~OL DATA
~ r::J CO~ORl\TION

NOS/BE VERSION 1
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:
CYBER 170 SERIES
CYBER 70

MODELS 71, 72, 73, 74
6000 SERIES

60493800

REVISION

A

(11-1-75)

B

(7-16-76)

c
(3-15-77)

D

(8-19-77)

E

(6-13-78)

F

(10-13-78)

G

(2-16-79)

Publication No.
60493800

REVISION RECORD
DESCRIPTION

Manual released.

Updated to reflect release of features 145 (844-41/44 Support), 159 and 163 (Job Management

and System Control Point Enhancement).

Updated to reflect NOS/BE 1.2 at PSR level 447. New features documented include 844 disk drive

full/half track recording mode, programmable format control (PFC) for 580 line printers, support

of CYBER 170 Model 17 6 with 819 disk drive (device type mnemonic AH), 679 tape unit with

6250 cpi density capability, and CYBER Control Language (section 5). References to 604 and 607

tape units are removed. This edition obsoletes all previous editions.

Updated to support NOS/BE 1.2 at PSR level 454 and to make editorial and technical corrections.

Support of CDC CYBER 170 Model 171 is included.

Updated to refl~t NOS/BE 1.3 at PSR level 473 and to make editorial and technical corrections.

'Support of permanent file utilities PFWG and GENLDPF, GET ACT macro, user capability to

assign universal password and permissions to private sets, user reprieve processing, schedule-by-density

option for tapes, hardware GE write error correction option, 677/679 tape units, and INTERCOM 5

is also included. This edition obsoletes all previous editions.

Updated to reflect NOS/BE 1.3 at PSR level 481 and to make editorial and technical corrections.

The REQUEST control statement and the FILINFO macro have been modified.

Updated to reflect NOS/BE 1.3 at PSR level 488 and to make editorial and technical clarifications.

New features documented include the following: added formats for the REDUCE and RFL control

statements for use with ECS; new parameters on the GETPF, SAVEPF, and PURGE control

statements; system ability to swap ECS.

scanned 2/2004 by gmt

Address comments concerning
this manual to:

REVISION LETTERS I, 0, Q, S, X, AND Z ARE NOT USED.
Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue

© 1975, 1976, 1977, 1978, 1979, 1980, 1981
by Control Data Corporation
All rights reserved
Printed in the United States of America

ii

St. Paul, Minnesota 55112

or use Comment Sheet in the
back of this manual.

REVISION RECORD {Cont'd)

REVISION DESCRIPTION

H Updated to reflect NOS/BE 1.4 at PSR Level 508 and to make editorial and technical

(12-21-79) corrections. Support of 885 disk drives is included.

J Updated to reflect NOS/BE 1.4 at PSR level 518, and to make editorial and technical

(5-19-80) corrections. COPYL, COPYLM, and ITEMIZE utilities formerly in the Common Utilities

Reference Manual are included in this revision, as are expanded descriptions of

permanent file macros formerly in the NOS/BE System Programmer's Reference Manual.

Interpretive mode processing of ECS read and write operations is also included in this

revision.

K Updated to reflect NOS/BE 1.4 at PSR level 530 and to make editorial and technical

(11-17-80) corrections.

L Updated to reflect NOS/BE 1.5 at PSR level 538 and to make editorial and technical
(4-20-81) corrections. Support of EOV2 tape label and a revised CDC CYBER control language

section are also included. This edition obsoletes all previous editions.

M Updated to reflect NOS/BE 1.5 at PSR Level 552 and to make editorial and technical

(11-23-81) corrections. The new feature is interactive CCL procedures. All references to

INTERCOM 4 have been deleted.

Publication No.

60493800

ii-a/ii-b

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Front Cover - 3-15 M 4-30 L 4-89 L 5-36 M
Inside Front 3-16 M 4-31 L 4-90 L 5-37 M

Cover M 3-17 L 4-32 L 4-91 L 5-38 M
Title Page -
ii L
ii-a/ii-b M
iii M

3-18 L
3-19 L
3-20 L
3-21 L

4-33 L
4-34 L
4-35 L
4-36 L

4-92 L
4-93 L
4-94 L
4-95 M

5-39 M
5-40 M
5-41 M
5-42 M

iv M
v L

3-22 M
3-23 M

4-37 L
4-38 L

4-96 M
4-97 L

5-43 M
5-44 M

vi L 3-24 L 4-39 L 4-98 L 5-45 M
vii L 3-25 L 4-40 L 4-99 L 5-46 M
viii M 3-26 L 4-41 L 4-100 L 5-47 M
ix M 3-27 L 4-42 L 4-101 L 5-48 M
x M 3-28 L 4-43 L 4-102 L 5-49 M
1-1 E 3-29 L 4-44 L 4-103 L 5-50 M
1-2 E 3-30 L 4-45 L 4-104 L 5-51 M
1-3 A
1-4 H

3-31 M
3-32 L

4-46 L
4-47 M

4-105 L
4-106 M

5-52 M
5-53 M

1-5 K 3-33 M 4-48 L 4-107 L 5-54 M
1-6 H 3-34 L 4-49 L 4-108 L 5-55 M
1-7 K 3-35 M 4-50 L 4-109 L 5-56 M
1-8 A 3-36 M 4-51 L 4-110 L 5-57 M
1-9 E 3-37 L 4-52 L 4-111 L 5-58 M
1-10 E 3-38 L 4-53 L 4-112 L 5-59 M
1-11 c 3-39 L 4-54 L 5-1 L 5-60 M
1-12 A 3-40 L 4-55 L 5-2 M 5-61 M
1-13 J 3-41 L 4-56 L 5-3 M 5-62 M
2-1 A 3-42 L 4-57 L 5-4 M 6-1 c
2-2 E 3-43 L 4-58 L 5-5 M 6-2 L
2-3 E 3-44 L 4-59 L 5-6 M 6-3 H
2-4 F 4-1 L 4-60 L 5-7 M 6-4 E
2-5 H 4-2 E 4-61 M 5-8 M 6-5 H
2-6 L 4-3 J 4-62 L 5-9 M 6-6 E
2-7 K 4-4 J 4-63 L 5-10 M 6-7 H
2-8 L 4-5 E 4-64 L 5-11 M 6-8 E
2-9 A 4-6 M 4-65 M 5-12 M 6-9 J
2-10 H 4-7 M 4-66 L 5-13 M 6-10 E
2-11 K 4-8 H 4-67 L 5-14 M 6-11 H
2-12 L 4-9 G 4-68 M 5-15 M 6-12 c
2-13 L 4-10 H 4-69 L 5-16 M 6-13 H
2-14 E
2-15 E

4-11 E
4-12 K

4-70 L
4-71 L

5-17 M
5-18 M

6-14 K
6-15 L

2-16 F 4-13 M 4-72 L 5-19 M 6-16 L
2-17 E
2-18 L

4-14 E
4-15 M

4-73 L
4-74 L

5-20 M
5-21 M

6-17 L
6-18 L

3-1 L
3-2 E
3-3 F

4-16 E
4-17 E
4-18 F

4-75 M
4-76 M
4-77 L

5-22 M
5-23 M
5-24 M

6-19 L
6-20 L
6-21 L

3-4 J 4-19 F 4-78 L 5-25 M 6-22 L
3-5 E
3-6 J
3-7 E
3-8 L
3-9 F

4-20 E
4-21 M
4-22 L
4-23 L
4-24 M

4-79 L
4-80 L
4-81 L
4-82 L
4-83 L

5-26 M
5-27 M
5-28 M
5-29 M
5-30 M

6-23 L
6-24 L
6-25 L
6-26 L
6-27 L

3-10 L
3-11 L

4-25 L
4-26 L

4-84 L
4-85 L

5-31 M
5-32 M

6-28 L
7-1 J

3-12 E
3-13 M
3-14 M

4-27 L
4-28 L
4-29 L

4-86 M
4-87 L
4-88 L

5-33 M
5-34 M
5-35 M

7-2 L
7-3 L
7-4 L

60493800 M
v

iii

7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
7-39
7-40
7-41
7-42
7-43
7-44
7-45
7-46
7-47
7-48
7-49
7-50
7-51
7-52
7-53
7-54
7-55
7-56
7-57
7-58
7-59
7-60
7-61
7-62
7-63
7-64
7-65
7-66
7-67
7-68
7--69
7-70
7-71
7-72
7-73
7-74
7-75

iv

L
H
E
L
H
F
L
M
L
L
L
L
L
M
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
M
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

7-76
7-77
7-78
7-79
7-80
7-81
7-82
7-83
7-84
7-85
7-86
7-87
7-88
7-89
7-90
7-91
7-92
7-93
7-94
7-95
7-96
7-97
7-98
A-1
A-2
A-3
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
C-1
C-2
C-3
C-4
C-5
C-6
C-7
D-1
D-2
E-1
F-1
F-2
Index-1
lndex-2
Index-3
lndex-4
Index-5
lndex-6
Index-7
Comment

Sheet
Inside Back

Cover
Back Cover

E
H
J
L
L
L
L
K
K
K
L
M
M
L
L
L
L
L
L
M
L
L
L
K
K
L
L
L
L
L
L
L
L
L
L
L
E
L
H
H
H
E
E
E
E
H
E
H
M
M
E
E
J
M
M
M
M
M
M
M
M
M

M

M
-

60493800 M

PREFACE

This manual describes the Network Operating System/Batch Environment (NOS/BE) Version 1.5 Operating
System for the CONTROL DATA® CYBER 70 Models 71, 72, 73, 74; CDC®CYBER 170 Series; and CDC
6000 Series Computer Systems. It contains general information about files, job flow, and execution; it
gives detailed descriptions of the full array of control statements available. Sections 1 through 5 are
intended for application programmers who write in higher level languages; sections 6 and 7 are for system
programmers and others who write in COMPASS assembly language.

It is assumed the user of this manual has a basic familiarity with the NOS/BE operating system. The user
who is unfamiliar with this system, or operating systems in general, should first study the NOS/BE Version
1 Batch User's Guide.

Extended memory for the CYBER 170 Model 176 is large central memory extended (LCME). Extended
memory for all other NOS/BE computer systems is extended core storage (ECS) or extended
semiconductor memory (ESM).

In this manual, the acronym ECS refers to all forms of extended memory unless otherwise noted.

Programming information for the various forms of extended memory can be found in the COMPASS
Reference Manual and in the appropriate computer system hardware reference manual.

CONVENTIONS

Conventions for central memory word formats are as follows:

• Crosshatching indicates a field is not used by or is not applicable to a function processor.
However, Control Data reserves the right to assign these fields to system use in the future.

• Fields reserved for system use are so labeled.

• Fields with numeric identifiers indicate the actual value that is used or returned for a particular
function. Numeric identifiers are octal unless otherwise noted.

RELATED PUBLICATIONS

The following manuals contain additional information about NOS/BE that may prove useful to the system
user.

The NOS/BE Manual Abstracts is a pocket-sized manual containing brief descriptions of the contents and
intended audience of all NOS/BE and NOS/BE product manuals. The abstracts can be useful in
determining which manuals are of greatest interest to a particular user.

Control Data also publishes a Software Publications Release History of all software manuals and revision I
packets it has issued. This history lists the revision level of a particular manual that corresponds to the
level of software installed at the site.

60493800 L v

I
I

Control Data Publication

CYBER Loader Reference Manual

CYBER Record Manager Advanced Acee$ Methods Version 2

CYBER Record Manager Basic Acee$ Methods Version 1.5

INTERCOM Version 4 Multi-User Job Capability

INTERCOM Version 4 Reference Manual

INTERCOM Version 5 Multi-User Job Capability Reference Manual

INTERCOM Version 5 Reference Manual

NOS/BE Manual Abstracts

NOS/BE Version 1 Batch User's Guide

NOS/BE Version 1 Diagnositc Handbook

NOS/BE Version 1 Diagnostic Index

NOS/BE Version 1 Installation Handbook

NOS/BE Version 1 Operator's Guide

NOS/BE Version 1 System Programmer's Reference Manual, Volume 1

NOS/BE Version 1 System Programmer's Reference Manual, Volume 2

On-Line Maintenance Software Reference Manual

SCOPE Version 2 Operator's Guide

Software Publications Release History

Update Reference Manual

DISCLAIMER

Publication Number

60429800

60499300

60495700

60494700

60494600

60456070

60455010

84000470

60494000

60494400

60456490

60494300

60493900

60494100

60457370

60453900

60455090

60481000

60449900

This product is intended for use only as described in this document. Control Data cannot be responsible
for the proper functioning of undescribed features or parameters.

vi 60493800 L

CONTENTS

1. INTRODUCTION 1-1 Device Sets 3-7
Public Device Set Usage 3-8

Hardware Function and Use 1-1 Private Device Set Usage 3-9
Mainframe and Console 1-2 Private Device Set Example 3-10

Central Memory 1-2 Operating System Random Files 3-11
Central Processor Unit 1-5 Name/Number Index Files 3-12
Peripheral Processors 1-6 User-Defined Index Files 3-13
Operator Console 1-7 Permanent Files 3-13

Rotating Mass Storage 1-7 Concepts 3-14
Unit Record Equipment 1-8 File Identification 3-14
Magnetic Tape Units 1-8 Permissions and Passwords 3-15
Extended Core Storage 1-9 Multiple Access 3-16
Remote Terminals 1-10 Queued and Archived Files 3-17

Individual Products 1-10 Incomplete Cycles 3-19
INTERCOM 1-10 Usage 3-19
CDC CYBER Record Manager 1-11 Batch Job Usage 3-19
FORM 1-12 INTERCOM Usage 3-21
UPDATE 1-12 Accounting 3-22
CDC CYBER Loader 1-13 Examples 3-23

CATALOG Examples 3-23
ATTACH Examples 3-25
RENAME Examples 3-25

2. JOB PROCESSING AND DECK PURGE Examples 3-26
STRUCTURE 2-1 ALTER/EXTEND Examples 3-27

Extended Core Storage Files 3-27
Deck Structure 2-2 ECS Buffered Files 3-27

Separator Cards 2-3 ECS Resident Files 3-28
Control Statement Section 2-4 Magnetic Tape Files 3-28

Libr~ Use 2-4 Tape Marks 3-29
Load equence 2-5 Data Format 3-29
LGO and Program Execution SI Tapes 3-30

Calls 2-6 Sand L Tapes 3-31
Compiler and Assembler Seven-Track Versus Nine-Track

Calls 2-7 Tapes 3-32
Efficient Control Seven-Track Tape 3-32

Statement Ordering 2-8 Nine-Track Tape 3-32
Directive Section 2-9 Tape Labels 3-33

Detailed Job Flow through System 2-9 Standard Labeled Tape
Example Job 2-9 Structure 3-37
Examples of Job Deck Labeled Multifile sets 3-38

Arrangements 2-12 Usage Summary 3-39
Job Termination Details 2-14 Print Files 3-41

Abnormal Termination 2-14
Operator Command

Termination 2-15
Job Dayfile 2-15 4. JOB CONTROL STATEMENTS 4-1

Control Statement Syntax 4-1
Job Statement 4-2

3. FILE CONCEPTS AND STRUCTURE 3-1 ABS (Absolute Central Memory Dump) 4-5
ACCOUNT (Accounting Information) 4-5

General File Usage 3-1 ADDSET (Create Master Device or
Na ming Files 3-1 Add Device to Private Device Set) 4-6

Reserved File Names 3-1 ALTER (Change Permanent File
Special-Named Files 3-1 to Job) 4-8

Assigning Files to a Job 3-3 ATTACH (Attach Permanent File
Disposing of Files and to Job) 4-8

Equipment 3-4 AUDIT (Permanent File Summary) 4-9
File Structure 3-4 BKSP (Backspace System-Logical-

System-Logical-Records and Record) 4-11
Physical Record Units 3-5 CATALOG (Create Permanent File) 4-12

File Divisions 3-6 CKP (Checkpoint Request) 4-14
COMBINE (Record Consolidation) 4-15
COMMENT (Add Comment to Dayfile) 4-15
COMPARE (Compare Files) 4-16

60493800 L COPY (Copy to End-of-Information) 4-17 vii

COPYBCD (Copy Line Image File) 4-18 I.ABELMS (Device Set Labeling) 4-65
COPYBF and COPYCF (Copy Binary UMIT (Limit Mass Storage) 4-69

and Coded Files 4-18 I.ISTMF (List Labeled Tape) 4-69
COPYBR and COPYCR (Copy Binary LOAD (Load Program) 4-70

and Coded Records) 4-21 LOADPF (Load Permanent File to
COPYL/COPYLM (Binary Copy with Tape) 4-70

Replacement) 4-22 LOADPF Examples 4-73
COPYN (Consolidate File) 4-25 MAP (Produce Load Map) 4-74

COPYN Directive Statements 4-26 MODE (Suspend Error Exit) 4-74
REWIND (Rewind File) 4-26 MOUNT (Associate Device Set) 4-75
SKIPP (Skip File) 4-27 PAUSE (Operator Interface) 4-76
SKIPR (Skip Record) 4-27 PFLOG (Dump Permanent File Catalog
WEOF (Write File Mark) 4-27 to Tape) 4-75
Record Identification PFLOG Examples 4-77

Statement 4-27 PURGE (Remove Permanent File) 4-77
File Positioning for COPYN 4-29 RECOVER (Device Set Maintenance) 4-79

COPYSBF (Copy Shifted Binary REDUCE (Reduce Field Length) 4-79
File) 4-30 RENAME (Change Permanent File

COPYXS (Copy X Tape to SI Tape) 4-30 Table) 4-80
VELSET (Delete Member) 4-31 REQUEST (Assign File to Device) 4-81
DISPOSE (Release File) 4-32 Tape File Request 4-8~

DISPOSE Examples 4-33 Unit Record Device Request 4-87
DMP (Dump Central Memory) 4-34 ECS File Request 4-87

Exchange Package Dump 4-34 Mass Storage File Request 4-88
Control Point Area Dump 4-35 RESTART (Restart Job from Checkpoint
Relative Dump 4-35 Tape) 4-89

DMPECS (Dump Extended Core RETURN (Evict File) 4-90
Storage) 4-36 REWIND (Rewind File) 4-91

DSMOUNT (Disassociate Device) 4-37 RFL (Request Field Length) 4-92
DUMPF (Dump Permanent File to ROUTE (File Disposition) 4-93

Tape) 4-38 ROUTE Examples 4-97
DUMPF Examples 4-40 SAVEPF (Catalog Permanent File on

EDITLIB (Construct User Library) 4-41 Linked Mainframe) 4-101
EDITLIB Control Statement SETNAME (Establish Implicit

Format 4-42 Setname) 4-103
EDITLIB Directive Format 4-43 SKIPB (Skip Backward System-Logical-
Manipulation of Library Files 4-45 Records) 4-103

ADD (Add Program During SKIPF (Skip Forward System-Logical-
Library Creation) 4-46 Records) 4-104

CONTENT (List File) 4-47 SUMMARY (Account Summary) 4-104
DELETE (Delete Program SWITCH (Set Software Switch) 4-105

from Library) 4-47 SYSBULL (Access System Bulletin) 4-105
ENDRUN (Stop Execution) 4-48 TRANSF (Decrement Dependency
FINISH (Stop File Count) 4-106

Manipulation) 4-48 TRANSPF (Transfer Permanent File) 4-107
LIBRARY (Identify Libary) 4-48 Single Device Set TRANSPF 4-108
LISTLIB (List Library File) 4-49 Transferring from a Member 4-108
RANTOSEQ (Convert Random Transferring from a Master 4-109

File to Sequential File) 4-49 Dual Device Set TRANSPF 4-110
REPLACE (Delete and UNLOAD (Evict File) 4-110

Replace Program) 4-49 VSN (Tape Volume Identification) 4-111
REWIND (Rewind File) 4-50 VSN Examples 4-112
SEQTORAN (Convert

Sequential File to Random
File) 4-50 5. CYBER CONTROL LANGUAGE 5-1

SETAL (Change Access
Level) 4-50 Overview 5-1

SETFL (Change Field Statement Syntax 5-3

I Length) 4-51 Operators 5-3
SETFLO (Set Field Length Arithmetic Operators 5-4

Override Bit) 4-51 Relational Operators 5-4
SKIPB (Skip Backward) 4-51 Logical Operators 5-5
SKIPP (Skip Forward) 4-52 Order of Evaluation 5-5

User EDITLIB Examples 4-53 Operands 5-5
EXECUTE (Initiate Execution) 4-54 Constants 5-6
EXIT (Process Arter Fatal Error) 4-54 Symbolic Names 5-6
EXTEND (Permanent File Extension) 4-55 Functions 5-9
GENLDPF (Reload Permanent File -File Function 5-9

Catalog) 4-57 DT Function 5-11
GENLDPF Examples 4-57 NUM Function 5-12

GETPF (Attach Permanent File from Conditional Statements 5-12
Linked Mainframe) 4-58 IFE Statement 5-13

ITEMIZE (List Contents of Binary File) 4-59 SKIP Statement 5-15
LABEL (Tape Label Specification) 4-62 ELSE Statement 5-16

viii 60493800 M

ENDIF Statement 5-17 System Action Macros 7-15
Interative Statements 5-17 Ending Programs 7-15

WHILE Statement 5-17 ABORT Macro 7-15
ENDW Statement 5-18 ENDRUN Macro 7-16

Additional CCL Statements 5-18 GETMC Macro 7-17
DISPLAY Statement 5-18 Field Length Request 7-18
SET Statement 5-19 Dayfile Messages 7-19

Procedures 5-23 RECALL Macro 7-20
Procedure Call and Return 5-24 Status Information 7-20

BEGIN Statement and Name Time and Date Macros 7-20
Call Statement 5-26 STATUS Macro 7-22

REVERT Statement 5-28 FILEST AT Macro 7-24
Noninteractive Procedure Header GETACT Macro 7-24

Statement 5-30 FILINFO Macro 7-25
Procedure Body 5-32 GETJCI Macro 7-29
Parameter Substitution in SETJCI Macro 7-30

Noninteractive Procedures 5-32 Dependent Job Count 7-32
Order-Dependent Parameter Reading Control Statements 7-32

Matching Mode 5-33 Program Recovery 7-33
Order-Independent Parameter RECOVR Macro 7-33

Matching Mode 5-36 Calling RPV Directly 7-36
Interactive procedures 5-42 REPRIEVE Macro 7-43

Interactive Procedure Header CHECKPT Macro 7-44
Statement 5-42 File Action Macros 7-46

Interactive Procedure Body 5-46 REQUEST Macro 7-46
Interactive Processing 5-47 Open and Close Functions 7-52
Interactive Procedure OPEN Macro 7-52

Parameter Substitution 5-49 POSMF Macro 7-53
.HELP Statement 5-51 CLOSE Macro 7-54
.ENDHELP Statement 5-51 CLOSER Macro 7-55

Parameter Alteration 5-53 Read Fune tions 7-57
Procedure C',ommands 5-56 READ Macro 7-58

.DATA Command 5-56 READNS Macro 7-59

.EOR Command 5-61 READSKP Macro 7-59

.EOF Command 5-62 RPHR Macro 7-60

.*Command 5-62 READN Macro 7-60
READIN Macro 7-61

Write and Rewrite Functions 7-63
WRITE Macro 7-64

6. COMMUNICATION AREAS 6-1 WRITER Macro 7-65
WRITEF Macro 7-65

File Environment Table 6-1 WPHR Macro 7-66
FET Creation Macros 6-1 WRITEN Macro 7-66
FET Field Description 6-5 WRITOUT Macro 7-67
Circular Buffer Use 6-23 REWRITE Macros 7-69

Establishing Owncode Routines 6-25 WRITIN Macro 7-70
Tape Label Processing 6-25 Positioning Functions 7-71

Standard Label Processing 6-25 SKIPF Macro 7-72
Label Macro for FET Fields 6-26 SKIPB Macro 7-73
Extended Label Processing 6-27 BKSP Macro 7-73

BKSPRU Macro 7-73
REWIND Macro 7-74
UNLOAD Macro 7-74

7. COMPASS INTERFACE WITH File Disposition 7-74
OPERATING SYSTEM 7-1 EVICT Macro 7-74

DISPOSE Macro 7-75
User/System Communication 7-1 ROUTE Macro 7-76

Basic Communication: RA+l Permanent File Functions 7-82
Requests 7-1 FDB Macro 7-82

Recall Concept 7-2 PERM Macro 7-86
Using CPC 7-3 ALTER Macro 7-87

Calling Sequence to CPC 7-3 ATIACH Macro 7-88
CPC Execution 7-4 CATALOG Macro 7-90

Locations RA through RA+lOO 7-6 EXTEND Macro 7-91
CYBER Record Manager Macros 7-9 GETPF Macro (Multimainframe
System Communication Macros 7-12 Only) 7-92

SYSCOM Macro 7-12 PURGE Macro 7-92
SYSTEM Macro 7-13 RENAME Macro 7-93

Common Uses of System SA VEPF Macro (Multimainfra me
Macro 7-13 Only) 7-95

Register Save/Restore System Texts 7-95
Function 7-14 Common Decks 7-95

Integer Divide Opdefs 7-15 Text Overlays 7-97

60493800 M ix

APPENDIXES

A. STANDARD CHARACTER SET A-1 E. INTERPRETIVE MODE READING
B. GLOSSARY 8-1 AND WRITING OF ECS E-1
c. PUNCH CARD AND TAPE F. TYPES AND NAMES OF

FORMAT C-1 RECORDS F-1
D. CYDER 170 MODEL 176

DIFFERENCES IH

INDEX

FIGURES

1-1 Central Memory Allocation 1-3 5-3 Keyword Substitution in Nested I 2-1 Sample Deck Structure 2-2 Procedures 5-41
2-2 Sample COMPASS Job 2-10 5-4 Procedure Access to Program Data 5-60
2-3 Job Flow at Central Site 2-12 5-5 Data File Written from a Procedure
2-4 Sample Daytile 2-16 to a Named File 5-61
2-5 Sample Accounting Messages 2-17 6-1 File Environment Table 6-2
5-1 BEGIN Statement Calling a 7-1 Communication Area RA through

I
Procedure 5-25 RA+lOO 7-8

5-2 Parameter Substitution in Two 7-2 Format of the Exchange Package
Procedures 5-36 Image 7-35

TABLES

3-1 Multiple Access Permissions 3-17 4-5 Types of Records Listed by
3-2 Permanent File Parameters 3-20 ITEMIZE 4-61
3-3 ANSI Standard Tape Label 4-6 Device Defaults 4-68 I Formats 3-35 5-1 Parameter Substitution in Order-
3-4 Carriage Control Characters 3-42 Dependent Mode 5-33
4-1 Items Listed by Audit 4-11 5-2 Parameter Substitution in Order-
4-2 COPYxx Format Conversion 4-20 Independent Mode 5-38
4-3 Types of Records Replaced by 5-3 Alterations of Parameters in a

COPYL and COPYLM 4-24 Procedure Body by Use of # and_ 5-53
4-4 Exit Processing 4-56 7-1 REQUEST Legal Device Types 7-51

x 60493800 M

INTRODUCTION

NOS/BE is the operating system for the CDC CYBER 170; CYBER 70 Models 71, 72, 73, 74; and
6000 Series Computer Systems. It is the basic system software that coordinates all other system software,
user programs, and hardware action.

The operating system offers a standard set of functions that can be utilized by system programs written in
the COMPASS assembly language and by user jobs. It also supports software packages known as the

1

NOS/BE 1 product set. The product set includes compilers common to more than one Control Data operating
system and products that are unique to the NOS/BE operating system. All products run under the control of
the operating system.

NOS/BE is a multi-programming, multi-processing operating system. Many jobs can be in the system in
various states of processing. It is not necessary for one job to complete before another job begins execution.
Among the tasks the operating system performs for a job are: reading the job into the system, assigning it
system resources such as central memory and mass storage files, scheduling execution in the central processor,
and performing end-of-job procedures that dispose of files used or produced by the job. The operating system
also controls the environment of the software and hardware used by a job, such that the resources available
to all jobs are used efficiently.

The remainder of this section presents background material about the hardware of the CDC CYBER 170;
CYBER 70 Models 71, 72, 73, 74; and 6000 Series Computer Systems. Product set members that are
intimately involved with the operating system but fully described in other manuals are also summarized.

HARDWARE FUNCTION AND USE

The CDC CYBER 170; CYBER 70 Models 71, 72, 73, 74; and 6000 Series Computer Systems have the
following hardware components.

Mainframe of the computer formed by one or two central processors, central memory, and peripheral
processors

Operator console through which the operator oversees software and hardware operation

Peripheral devices including (at minimum) rotating mass storage devices, line printer, card punch, card
reader, and magnetic tape units

Additional hardware that can be part of the system includes:

Extended core storage (ECS)

Graphics terminals and plotters

Different types of line printers and magnetic tape units

60493800 E 1-1

All of the previously mentioned hardware usually resides at a central site. However, the CDC CYBER hard­
ware and NOS/BE opera1ing system also can have remote sites connected to the central site through several
kinds of communication lines.

More than one central site can be linked together. In particular, a site with 6000 Series Computer Systems
can be linked to another 6000 site or to a 7600 site so that users in one location can receive the benefits
available through more than one system.

The following discussion introduces the main components of the CDC CYBER 170: CYBER 70 Models 71,
72, 7 3, 74; and 6000 Series Computer System and shows how they are used during system operation.

MAINFRAME AND CONSOLE

The mainframe consists of central memory, central processor. and peripheral processors operated through a
display console.

CENTRAL MEMORY

Central memory consists of 60-bit words. Memory holds instructions to be executed by the central processor,
data to be manipulated by the central processor, and data buffered to and from peripheral processors. Any
given system can have memory with 65K, 98K, or 131 K words. Memory sizes of I 98K or 262K are avail­
able with the CDC CYBER I 70 series.

A CDC CYBER I 70 has a central memory control that controls the flow of data between central memory
and the requesting system components.

Two portions of central memory known as low core and high core are reserved for system use. Low core,
the beginning address of central memory, contains central memory resident (CMR) and a small library of
system routines frequently used by peripheral processors or the central processor during operating system
functions. These library programs exist in memory because they can be loaded from CMR much faster than
from the rotating mass storage device on which the rest of the system routines reside, and thereby reduce
system overhead. CMR also contai"ns system tables and pointer words, the communication area that links
peripheral processors and central memory, and control point areas. High core, the highest numbered addresses
in memory, contains information relating to allocation of space on rotating mass storage devices. The amount
of memory assigned to low core and high core varies during operation, with space not currently required
being released, so that a maximum amount of memory is available for user jobs.

NOS/BE is a multi-programming system. This means that more than one job can be in central memory at the
same time. Although only one of the jobs can be using the central processor in a single-processor system at
a given time, all other jobs in memory can have peripheral processors executing tasks for them during that
time.

Figure 1-1 shows central memory allocation to the system and user jobs. As shown, the first address is at the
extreme low end of central memory and the last address is at the extreme upper end.

1-2 60493800 E

Last
Address

~

High Core

Unused Storage

Job at Control Point 1 ~

Job at Control Point 16

Job at Control Point 15

Unused Storage

Job at Control Point 4

Unused Storage

Job at Control Point 3

Job at Control Point 2

Unused Storage

Job at Control Point 1

~

(Used for mass storage
l file reference infor-
(mation)

Low Core

(Used for CMR portion
of operating system,
including control point
areas)

First
Address

CONTROL POINT DEFINITION

Figure 1-1. Central Memory Allocation

Each job in central memory is assigned a control point number. Control points are the concept by which
memory, the central processor and system resources are assigned to a job in memory. Any job in memory
has a control point number to identify it and has a 200-word control point area in CMR in which the
system stores information about the job. The exchange package for the control point is also stored in the
control point area.

The physical portion of central inemory allocated to a job is related to the control point number to which
the job is assigned. This assignment is made and maintained in numerical order. Thus, the job at control
point 2 follows the job at control point 1, and the job at control point 3 follows the job at control point 2,
as shown in figure 1-1.

60493800 A 1-3

Through a dynamic relocation process, jobs are moved up and down in memory to make room for new jobs
assigned to control points. The relocation process occurs continuously as memory requirements change. For
example, jobs might be running at all control points except control point 2 when a new job is assigned to
control point 2. If sufficient contiguous memory is not available for the new job, other jobs are relocated as
necessary to provide sufficient contiguous memory. Each job is moved as a block. It might be necessary to
relocate the jobs at both control points 1 and 3, or to relocate only one of them, since unassigned memory
can exist between control points.

When a job is moved in storage, the monitor routine (MTR) suspends all user program activity at the control
point, waits for all peripheral processors (PPs) assigned to the control point to clear their field access
flags, and then starts the system routine that moves the job. When the move is complete, the reference
address of the job is modified, and job activity resumes. The job is not affected by this change in location.
Since all program locations are relative to the beginning of the job field length, only the reference address
{RA) in system tables needs to be changed when the job is moved.

Up to 15 control points, numbered 1 through 17 octal, are available for user jobs. An installation can choose
fewer than 15. Control point 0 is used to identify all hardware and software resources not presently allocated
to user jobs, or to identify resources known only to the operating system.

At a typical installation, one of the 15 control points is assigned to JANUS, the operating system routine that
controls the line printer, card punch, and card reader. JANUS uses central memory buffers, but the actual
driving of equipment is performed by peripheral processor, not central processor, programs.

An installation with remote terminals uses INTERCOM to communicate with those terminals. INTERCOM
does not use any central processor code to control this communication but executes entirely within the
peripheral processors. The central memory required for buffers and control tables is obtained by extending
the CMR area. A control point is used only when a task requested from a terminal requires the use of the
central processor.

A control point and a job are associated only when the job is in memory or when it has been rolled out.
When a job is swapped out, it loses its control point identification.

FIELD LENGTH DEFINITION

Every job in central memory occupies a contiguous block of words. The block is not of fixed size, but rather
varies with the needs of the job. The length of the block is the field length (FL) of the job. FL-1 is the
relative address of the last word in the block. The first word in the block is known as the reference address
(RA); all addresses within each block are relative to RA.

A job can reference locations within its field length, but not outside its field length. Any attempt to read or
write outside a job field length is prevented by the hardware, so that all other jobs and system programs in
central memory are protected from being accidentally overwritten. For this reason, each job can consider that
it is running alone in a computer with a central memory the size of its field length.

The operating system dynamically manages the field length assigned to a job, so that memory is not needlessly
tied to a control point when it is not required. Field length increases or decreases as the job progresses. A
job step such as a file copy operation, for example, requires much less memory than a step such as a program
compilation. The operating system adjusts the field length to the job step needs.

1-4 60493800 H

A job normally does not stay in central memory until completion. The job moves into and out of memory
in relation to its needs for system resources, such as tapes or the central processor, and to the needs of
other jobs in the system. The scheduler routine of the operating system is responsible for moving jobs into
memory to maximize system throughput.

JOB SWAPPING AND ROLLING

When a job with a high priority enters the system, existing jobs of lower priority might be swapped out or
rolled out of central memory. The user can specify initial job priority within certain ranges, but the operating
system adjusts this priority according to factors such as the system resources requested or allocated and the
time consumed in waiting for resources. Some functions requested through remote terminals and those that
affect overall systefu efficiency are assigned high priority. Actions by the central site operator also can affect
the priority of any given job.

When a job is swapped out, all information reflecting the current status of the job is written to a mass stor­
age file. The field length and control point associated with the job are made available to the scheduler. As
control points and memory (CM and/or ECS) become available, swapped out jobs are swapped back in to
continue processing. A job can be swapped into any free control point; thus, a job might run at several
different control points before it reaches termination.

When a job is rolled out, its job field length is written to a rollout file before the field length is freed for
another job. The control point is not released when rollout occurs. If a magnetic tape is being used by a
job, that job can be rolled out, but not swapped out.

If a job is waiting for a permanent file to become available or for a mass storage device to be mounted, the
job can be swapped out automatically. When the permanent file or device becomes available, the job becomes
eligible to be swapped in.

Swapping or rolling might increase the total time that a job spends in the computer, but it has no effect on the
amount of central processor time used by a given job; and it should help overall processing. Job swapping
and job rollout are controlled by the scheduler. The most important system effect is to maintain high central
processor utilization. Frequent short central processor access is balanced with longer, less urgent, access.

CENTRAL PROCESSOR UNIT

The central processor unit (CPU) is an extremely high-speed arithmetic processor that executes the instructions
of system or user programs. It performs computational tasks, but must use central memory for all its input and
output, including communication with the operating system.

Depending on the specific hardware model, a system might have one of two types of central processors or
might have both types of processors in a single system. The differences in the processors has to do with the
number of functional units available for concurrent operations, and hence the relative speed at which a given
set of instructions can execute.

The CYBER 170 Models 171, 172, 173, 720, 730, and 740; CYBER 70 Models 71-lx, 72-lx, and
73-lx; and the 6200 and 6400 Computer Systems each have a single processor that has a unified arithmetic
unit in which instructions must be executed serially.

60493800 K l-5

The CDC CYBER 170 Model 174; CYBER 70 Models 71-2x, 72-2x, and 73-2x; and the 6500 Computer
Systems each have two central processing units. Both CPUs have unified arithmetic units; thus, two control
points can be executing simultaneously on these models.

The CDC CYBER 170 Models 175, 176, 750, and 760; CYBER 70 Model 74-lx1 and the 6600 Computer
Systems have a single processor composed of 9 or 10 arithmetic and logical units in which separate instructions
from a single program can be executing simultaneously. Careful arrangement of instructions within a program
can be done to take advantage of this concurrent execution capability. (Refer to appendix D for a more
detailed discussion of CDC CYBER 170 Model 176 differences.)

The CDC CYBER 70 Model 74-2x and the 6700 Computer Systems have one processor of each type. When
only one control point is to use the CPU, it is given the advantages of the 10-unit parallel processor. When a
second control point is ready to execute, it obtains the unified processor, thus not disturbing the first job.
During normal execution, a program will usually be allotted some time on each of the two CPUs.

The central processor contains three sets of registers: the 60-bit X registers that hold data and instructions,
the 18-bit A registers that hold addresses, and the 18-bit B registers used as index registers and temporary
storage. The COMPASS assembly language deals with register manipulation.

Only jobs existing in memory are eligible for assignment to the central processor. The job using the central
processor might relinquish its control by executing an exchange jump instruction when it must await com­
pletion of a task such as a read from a file. The operating system interrupts the job periodically and gives
the central processor to another job in memory so that many jobs can be in some state of execution.

When a job loses the central processor, a 16-word exchange package is stored in the control point area for
that job. This package contains information used directly in exchange jumps: the most recent contents of
all central processor registers, the RA and FL in central memory and in ECS, and the program address which
is the address of the next instruction to be executed.

The exchange package is not under user control. The job is made aware of the package when a job terminates
abnormally, however. Experienced programmers often can use exchange package information while debugging
programs that abort during execution. The package is printed as part of the standard output from an aborted
job. It can also be requested by a job.

PERIPHERAL PROCESSORS

Peripheral processors (PPs) are small computers with 4096 12-bit words of memory. Any given system might
have 7 to 20 peripheral processors. PPs are independent computers; they all can simultaneously process
programs. In addition, a CDC CYBER Model 176 can have up to six first-level peripheral processors (PPUs)
that are used to transfer data to mass storage.

One of the purposes of the PPs is to perform input and output of data requested by a program executing in
the central processor. All data transferred between central memory and any input, output, or storage device
passes through a PP. Peripheral processors also perform the bulk of the tasks required by the operating sys­
tem, including such tasks as formatting entries in system tables and driving output devices, so that the central
processor is available for user jobs.

One peripheral processor holds only the monitor routine, MTR, which oversees and controls all operating system
functions. (Part of the monitor also resides in central memory and is known as CPMTR.) Another peripheral
processor is devoted 1..xclusively to routine DSD which drives the system display console and input keyboard.
This routine interprets and processes all requests typed by the operator and displays all messages from the

1-6 60493800 H

operating system routines. Coordination between the central processor and a peripheral processor, or between
peripheral processors, is achieved by the MTR routine. Peripheral processor programs are normally the con­
cern only of system analysts.

OPERATOR CONSOLE

The operator console consists of a keyboard and one or two cathode ray tube display screens. Commands
entered through the keyboard are interpreted and processed by the operating system. The displays present a
wide variety of information to the operator, ranging from lists of jobs in the systems through hardware status,
the control statement any job is currently executing, and the contents of memory for a particular job.

Operator action is required for some jobs, such as mounting requested magnetic tapes. The operating system
contains many features that minimize the need for operator commands through the keyboard. Automatic tape
assignment, for example, allows the operator to mount a tape and have the system determine which job is
using it, rather than having the operator tell the system which job the tape is for. Most jobs can proceed
without operator action, but the operator always has the ability to change the automatic functioning of the
system.

Normally, a user job does not communicate directly with the operator, although the capability is available
through control statements in the job and in some programs.

ROTATING MASS STORAGE

Rotating mass storage is a disk pack used to store operating system files and routines, user jobs, and user files.
Permanent files, which are files protected against accidental destruction and unauthorized use, must reside on
rotating mass storage.

Rotating mass storage is a random device, as opposed to magnetic tape which is a sequential device. On a
random device, information that is logically part of the same file might be physically scattered throughout the
storage areas of the device. The operating system is responsible for maintaining the logical order of a file.

No physical distinction exists between binary and coded information on rotating mass storage. Data from an
integral number of central memory words is transferred between a buffer in memory and the device with no
change. A file declared to be binary when it was written can be read as a coded file, and vice versa. Rotating
mass storage is the only device in which this is possible.

60493800 K 1-7

Storage space on rotating mass storage devices is assigned to a file as it is required by the file. When a job
creates a file, it does not request a particular size of file, and no preallocation occurs. Files on mass storage
grow as they are written and can overflow to another physical device.

All rotating mass storage devices belong to a logical grouping known as a device set. The installation configures
these sets to its own needs.

Public device sets hold system files and user files from any job.

Private device sets hold only files that a job specifically indicates should be on a private device set.

The user job selects the device set on which files are to reside by specifying a specific setname or by default.

UNIT RECORD EQUIPMENT

Unit record equipment is of two categories:

Standard unit record equipment is the line printer, card punch, and card reader necessary for the
operation of all systems.

Other unit record equipment can include graphics consoles, plotters, and paper tape readers and
punches. These are not a part of the basic system. The operating system defines codes pertaining
to files on these devices but does not include the programs needed to operate the equipment. Non­
standard unit record equipment runs under control of software provided by an installation.

Standard unit record equipment runs under control of the part of the operating system known as JANUS. All
files to be processed by JANUS must be in a special format in which each card or line is terminated by a
word with 12 bits of zero in bit positions 0-11.

The card readers can accept, and the card punches produce, files punched with either of two different sets of
Hollerith punched codes. Binary punched cards can also be processed in two formats.

Various line printers are available. Models with removable print trains offer character sets with uppercase and
lowercase English, fonts with other languages, etc. Fewer unique characters on the train generally increase
print speeds. Depending on the code sent to the controller and the controller translation of that code, a
character that is produced on one printer can appear as a different character on another printer. For
example, a quotation mark output on one printer might well appear as a i= on another. This often occurs
when the character desired is not present on the printer to be used for output.

When an installation has different types of unit record equipment, the job is responsible for providing informa­
tion in the format required for processing on a particular device.

MAGNETIC TAPE UNITS

The operating system supports both 7-track and 9-track magnetic tape units. When an installation has both
types of units available, the job is responsible for specifying the type of hardware unit required to process
a given tape. The system default is a 7-track tape. Both binary and coded information can be written.

1-8 60493800 A

For a binary tape, bit patterns are written to the tape as they appear in memory

For coded tape, 6-bit characters in memory are translated to a different 6-i>it pattern, known as external
BCD, before they are written to the tape.

Density for a 7-track tape can be 200, 556, or 800 bits per inch (bpi).

A 9-track tape corresponds to tapes in industry-standard format. Both binary and coded information can be
written, but the information is not the same as 7-track binary or coded information.

For a 9-track binary tape, bits are packed, with three 8-bit characters on tape corresponding to four
6-bit characters in memory.

For 9-track coded tape, bits are either packed or are in 8-bit character codes; the two possible codes
are the 64-character ASCII and the 128-character EBCDIC characters.

Density for a 9-track tape can be 800 characters per inch (cpi), 1600 cpi phase-encoded, or 6250 cpi group-encoded.

Another type of control over recording of tape information deals with the number of characters that appear
between the physical blocks on the tape and how files and records are recorded. On both 7-track and
9-track tapes, one of three formats must be selected: SI, S, or L. Each offers advantages depending on the
use made of the tape.

EXTENDED CORE STORAGE

ECS is a second, supplementary form of memory that has two main uses. It can be used as a mass storage
device or as an auxiliary direct access memory. Its large amount of storage and very fast transfer rates make
it suitable for many tasks.

CDC CYBER l 70 Model 1 76 systems have a form of extended memory different than other CDC CYBER 1 70
models but functionally similar. The CDC CYBER 1 70 Model 1 76 extended memory cannot be shared with
other systems and does not have a distributive data path (DDP) capability. Other minor differences are in
appendix D of this manual. References to ECS in the remainder of this document apply to extended memory
of all CDC CYBER 170 Models except as limited by the CDC CYBER 170 Model 176 differences described
in appendix D.

The use of ECS at any particular site depends on the options selected when the system is installed. Frequently
used operating system routines can be placed on the ECS library file, rather than in the central memory low
core library area, to reduce the size of low core used by the system without using rotating mass storage. In
a multi-mainframe environment, ECS might be used to link the two computer systems.

ECS can be used for buffering sequential files on public devices or for storing sequential or random files (ECS
resident files). Each job specifies whether or not a given file will be buffered through ECS or reside on ECS.
In this respect, ECS is the same as other mass storage devices except that ECS resident files cannot overflow
to other mass storage devices.

ECS can be accessed directly from a running program. In this case, a block of ECS is assigned to the user's
control point. The block is delimited by RE (reference address for ECS) and FE (field length for ECS) fields
in the exchange package. These fields are analogous to the RA and FL fields for central memory. In this
mode, ECS is accessed by the ECS direct read/write hardware instructions which perform very high-speed block
transfers of user specified length between the ECS and central memory field length addresses specified by the
user. The main use of ECS in the direct access capacity is to hold large arrays and tables that do not fit in
central memory and would otherwise require partitioning and partial residence on disk, or to otherwise reduce
central memory requirements by moving the arrays and tables to ECS as their main residence.

60493800 E 1-9

REMOTE TERMINALS

Remote terminals are physically linked to the central site by communication lines. Logically, they are under
control of the portion of the operating system known as INTERCOM. INTERCOM allows a user at a remote
site to access the central site facilities. INTERCOM is controlled by the central site operator and might not
be available to remote terminals all the time the central site is in operation.

Remote terminals are of many different types and complexities. General categories of remote terminals are:

Teletype terminals, which might be a physical Teletype or a display terminal.

Display terminals, which include a keyboard and a display screen, and possibly a character printer.

Remote batch terminals, which have a card reader, line printer, and possibly a card punch attached.
Some remote batch terminals have a display screen.

All of the remote terminals provide interactive access to the operating system control statements. That is,
control statements can be entered and executed one at a time without being submitted as a complete job.·
The remote batch terminals allow complete jobs to be entered through the card reader and printed output
to be received. Users at remote terminals without a card reader can submit jobs constructed with INTERCOM
features or permanent files stored at the central site.

Different terminals operate in different character set modes. Some terminals can be reinitialized to accom­
modate either ASCII or BCD data; others run only in one mode at all times. Frequently, the line printers
of a remote terminal operate in a different mode than those at the central site.

A job can be submitted at one site and specify that its output is to be returned to another site. All job
output can be sent to any remote terminal, although it is usually not practical to send lengthy print files
to terminals without line printers. Files can be routed between remote sites and the central site in either
direction. Each terminal has an identifier assigned when communications are established between the terminal
and the central site. This identifier is used to specify the location to receive files.

INDIVIDUAL PRODUCTS

In addition to the capabilities described later in this manual, the operating system includes several features
which in turn provide many user options. Several of these features and product set members that are referred
to by name in this manual are introduced in the following paragraphs. -

INTERCOM

INTERCOM interfaces remote terminals with the central site computer. The central site operator must initiate
INTERCOM as a program before remote access is possible.

1-10 60493800 E

Commands entered at the terminal keyboard call for a variety of INTERCOM capabilities. The first command
at many terminals is LOGIN, which establishes the user's authority to use INTERCOM; some terminals do not
require LOGIN.

INTERCOM has three distinct capabilities. All three are available from remote batch terminals; only the first
two are available from terminals without batch capabilities.

The interactive capabilities of INTERCOM encompass two types of commands. INTERCOM commands allow the
terminal user to receive status about files associated with that terminal, display contents of files, and send messages.
Any keyboard entry that is not an INTERCOM command is assumed to be an operating system control statement.
Consequently, control statements that can be submitted as part of a job, except for magnetic type requests, can be
executed one at a time through INTERCOM with a few minor exceptions.

The file creating and editing capabilities of INTERCOM are the primary features of EDITOR. When the terminal user
calls EDITOR through a terminal keyboard command, subsequent keyboard entries can become part of a file being
created or updated. Interactive commands can also be submitted through EDITOR. When the created or updated file
is a source program, EDITOR allows the program to be compiled and executed through a single keyboard entry.
EDITOR displays the results on the display screen. When the file is a series of card images corresponding to a job
deck, another command causes the file to be entered into the input queue of jobs awaiting execution as though the job
had been entered as a card deck through a card reader.

The remote batch capabilities of INTERCOM give the remote terminal user commands for line printer and card reader
control. Jobs that originate through the remote batch terminals can be controlled to some extent through the terminal;
jobs that originate through interactive commands are beyond terminal user control until the job completes.

CDC CYBER RECORD MANAGER

CDC CYBER Record Manager is the software package that performs execution time input/output for many
members of the NOS/BE 1 product set. It is a common product described in full in the CDC CYBER Record
Manager manuals.

The operating system recognizes CDC CYBER Record Manager only as a central processor routine. The
operating system does not use CDC CYBER Record Manager for any function. Rather, all CDC CYBER
Record Manager capabilities are implemented through the standard operating system functions described in the
later sections of this manual.

CDC CYBER Record Manager defines five file organizations, eight record types, and four blocking types for
sequential files. None of these are known to the operating system in the same terminology or implementation,
although operating system actions and CDC CYBER Record Manager functions often result in an identical
sequential file.

COBOL programmers access CDC CYBER Record Manager through language statements. FORTRAN Extended
programmers can access its capabilities through language statements or calls to CDC CYBER Record Manager
routines. COMP ASS programmers can use CDC CYB ER Record Manager macros instead of the macros
described later in this manual. Sort/Merge and FORM users can use CDC CYBER Record Manager through
the language in which these utilities are called or through a FILE control statement available to all programs
using CDC CYBER Record Manager for execution input/output.

60493800 c l-l l

FORM

FORM is a file transformation utility. It is a common product described in full in the FORM Reference
Manual.

FORM can reformat files or records. As a file reformatting utility it has two capabilities:

Reformat files defined to CDC CYBER Record Manager as sequential, indexed sequential, direct, or
actual key organization. Files can be transformed into another of these organizations or into the same
organization with a different physical structure.

Reformat binary tape files in System/360 format for use under NOS/BE.

As a record reformatting utility, FORM has the capability to add or delete characters from each record, blank
or zero fill records, convert bit patterns to representations of characters or numbers, and in general change
the contents of a specific record. FORM can select all records or only particular records for processing.

FORM is called by a control statement or a COMPASS, COBOL, or FORTRAN Extended statement that
specifies the general operations to be performed. Detailed instructions for FORM are submitted as directives
that are part of the job deck or are on a separate file for a control statement call. Programs pass directives
to FORM through common blocks.

UPDATE

Update is a utility program used for modifying files of coded data. It allows a Hollerith punched card or
card image to be stored on rotating mass storage, while retaining the ability to modify file contents without
recreating the entire card file. Update is a common product described in full in the Update Reference
Manual.

Systems programmers make frequent use of Update when they make local modifications to· the operating
system or its products. Update is not merely a systems capability, however. Any file of character data can
be processed by the utility, whether that file contains a single program being converted from one language
version to another, a group of subroutines, or a series of independent statements that a COPY sentence
incorporates into a COBOL source program.

A specially formatted file called a program library is created when Update first manipulates a file. This
program library should not be confused with a library defined for Loader purposes. Update files, commonly
named OLDPL and NEWPL, are Hollerith card images with history information provided by Update. Files
identified as user or system libraries must contain assembled binary programs in a format suitable for loading.
Update program libraries must be manipulated only by Update.

Update is called by a control statement that specifies the general operations to be performed. Detailed
instructions for Update are submitted as directives that are part of the job deck or on a separate file.

More than 40 directives can be specified, giving the user a wide latitude in modifying the original program
library and otherwise manipulating files produced by Update. Among Update capabilities are:

Inserting or deleting cards

Dividing the file into decks for manipulation as a group

1-12 60493800 A

Declaring decks common so that a single copy can be used repeatedly without duplication

Temporarily or permanently removing corrections previously made

Producing a new program library incorporating present corrections

Producing a compile file of active cards returned to a format acceptable to assembler or compiler input

CDC CYBER LOADER

CDC CYBER Loader is the software package that places programs into memory so that they are ready for
execution. Loader input is obtained from local files and libraries. Upon completion of loading, execution
of the program is initiated if requested. CDC CYBER Loader is a common product described in full in
the CYBER Loader Reference Manual.

Loading also involves performance of services such as generation of a load map, presetting of unused core
storage to a specified value, and generation of overlays or segments.

60493800 J 1-13

JOB PROCESSING AND DECK STRUCTURE 2

A job is a sequence of control statements followed by optional source programs, object programs, data, or
directives. A job begins with the job statement and ends with an end-of-information indicator. Jobs exist as
physical card decks or images of card decks.

Jobs can enter the system in several ways:

Batch jobs on cards are read in through card readers at the central site. Batch jobs of card images are read
from a load tape under the direction of the central site operator.

Remote batch jobs on cards are read in through card readers at remote sites. Remote batch jobs of card
images are transmitted from a file created at a remote terminal. All remote batch jobs interface with the
central site facilities through INTERCOM.

Interactive jobs are control statements submitted one at a time from a remote terminal keyboard under
INTERCOM control. These jobs execute as a series of batch jobs created by INTERCOM in response to
individual keyboard entries.

All batch jobs have the same characteristics no matter what their origin. Remote batch jobs differ from central
site batch jobs only in that output returns to the terminal and that remote jobs are subject to the limitations of
the physical equipment at the remote site. Although all remote sites might not have the capability to produce
line printer output, the file that normally would be printed is available on mass storage for display on the termi­
nal. The following information about job decks applies to both decks and deck images.

See the INTERCOM Reference Manual for specific details of output file handling and specific interface to the
operating system, as well as for interactive procedures.

All jobs in the system waiting to begin execution are collectively known as the input queue. Each job enters
the system with the name specified by the first five characters on the first card in the job deck. The operat­
ing system adds two unique characters to this name to distinguish it from all others in the system.

Once a job enters central memory and begins execution, the image of the job deck is known as a file by the name
of INPUT. During job execution, a file with the name OUTPUT is generated by the operating system. When
the job completes execution, the file OUTPUT becomes part of the output queue. The output queue is the
collective name for output files remaining in the system when the jobs that generated them have completed execu­
tion. All print and punch files,and special disposition files such as plot, are part of the output queue. As printers,
punches, or remote devices become ready, the operating system causes files from the output queue to be physi­
cally output. Files normally return to the user with the name of the job that created them.

Jobs do not read cards directly from the card reader; neither do they directly punch cards or print lines. All
job input and job output is stored on mass storage files and on job process images of card or printer files. Physi­
cal card reader, card punch, and line printer operations proceed under operating system, not user job, control.

60493800 A 2-1

DECK STRUCTURE

TI1e first card of any deck (figure 2-1) is the job statement; the last card has a 6/7/8/9 multiple-punch in
column I. Cards with a 7 /8/9 multiple-punch in column 1 divide the deck into sections.t

Program, data, or
directives in the
order that control
statements execute

/6
l

8
9

I
I
I
I__

.L.

.L.

L
/7

8
9

.L

L
I /7
I 8
I f_ L....- 9

[_
:L
I/ MYJOB ..__.

Figure 2-1. Sample Deck Structure

l~

r-
L
l

End-of-I nfor mation Card

7/8/9 Card

7 /8/9 Card

l Control
~ Statements

Jo b Statement

LJ
1---l

........

Control statements are instructions to the operating system or its loader. They are grouped together at the
beginning of a deck. Collectively, the control statements form a job stream. Individually, the control state­
ments are job steps.

Control statements execute in the order in which they appear in the job stream. Consequently, the order of
the control statements governs the order of other sections in the deck.

The user is responsible for structuring the job deck such that there is a one-to-one correspondence between
each control statement that reads from the file INPUT and the sections of the job deck. The operating
system handles each section of the job deck only once, unless the job specifies contrary handling. For example,

tWhen a job deck is being created as card images through the INTERCOM EDITOR, the *EOR and *EOF
entries result in the physical equivalent of 7 /8/9 and 6/7 /8/9, respectively.

2-2 60493800 E

consider two source programs to be compiled and executed with two different sets of data. When one pro­
gram is compiled and executed before the other is compiled and executed, the control statements and deck
structure must be:

DECKA.
COBOL.
LGO.
REWIND,LGO.
COBOL.
LGO.
7/8/9

first source program
7/8/9

data for first source program execution
7/8/9

second source program
7/8/9

data for second source program execution
6/7/8/9

Compile first source program and write binary file LGO.
Execute binary file.

Compile second source program and write binary file LGO.
Execute binary file.

If both programs were compiled before either was executed, the corresponding deck structure would be:

DECKB.
COBOL.
COBOL,B=ABC.
LGO.
ABC.
7/8/9

first source program
7/8/9

second source program
7/8/9

data for first source program execution
7/8/9

data for second source program execution
6/7 /8/9

Compile first source program and write binary file LGO.
Compile second source program and write binary file ABC.
Execute binary file LGO.
Execute binary file ABC.

The preceding two decks illustrate the principles of all deck structuring.

SEPARATOR CARDS

One job is separated from another job by a card with a 6/7 /8/9 multiple-punch in column 1. This card is known
as an end-of-information (EOI) card.

Within a single job deck, each section is separated by a card with a 7 /8/9 multiple-punch in column 1. Once
on mass storage, these cards are represented by system-logical-record terminators of level 0, as discussed with
rotating mass storage files in section 3. A compiler or assembler encountering a 7 /8/9 card image during
processing treats the card as an end-of-partition (EOP) or an end-of-file (EOF).

60493800 E 2-3

An octal level number 0 through I 7 can be punched in columns 2 and 3 of a separator card. A level number
of only one digit can be punched in column 2. When columns 2 and 3 are blank, a level number of 0 is
assumed. Level numbers are not normally used on separator cards. JANUS, the system routine that controls
standard unit record equipment, converts a 7 /8/9 level 17 8 card to the equivalent of a 6/7 /8/9 end-of-information
card.

Separator cards can be used to indicate whether the cards following them are punched in 026 or 029 character
codes, as discussed in appendix A.

CONTROL STATEMENT SECTION

TI1e first section of a job deck contains only control statements. Each control statement results in the execution
of a program in the central processor or in a peripheral processor. Many control statements call programs that
make entries in system tables; others call programs that perform utility functions such as file copy. Several
broad categories of control statements are:

Operating system functions such as assigning a tape unit to the job or routing a print file to a remote
terminal. These functions are fully described in section 4 of this manual.

Utility functions such as file copy or creation of user libraries. These functions are also described in
section 4 of this manual.

Loader functions such as load, but not execution of a program, and satisfying program references from
different libraries. Only the simplest LOAD and EXECUTE statements are summarized in this manual; the
CDC CYBER Loader Reference Manual has complete details of all loader functions.

Program call functions which are a request to the operating system to load and execute information
existing on a file attached to the job. This function is discussed in the following paragraphs.

Each of the control statements discussed in this manual is available to the job because the control statement name
is the entry point to a program on a system library named NUCLEUS.

LIBRARY USE

A library is a collection of programs in executable form accompanied by library tables that specify the content of
the library. The operating system uses the libraries as the source of programs with entry point names specified on
control statements.

Two types of libraries exist: system libraries and user libraries.

2-4

A system library is available automatically to all jobs. It is named in the library name table in central
memory resident (CMR). It is contained on a permanent file that can be read by more than one job at
a time, and parts of it can be contained in CMR.

60493800 F

A user library is a file formatted as a library, but it is not available to a job until it has been
explicitly brought to the job. The job might create the file before using it as a library, or it might
be a permanent file that a job would attach explicitly. A permanent file might be such that more
than one job could read it at once, but every job must explicitly attach the file. The EDITLIB
utility can be used to create a user library.

The particular libraries that are used for each job, or for each loading operation within a job, depend on the
library set defined by the job. The total library set consists of the global library set, the local library set, and the
system library NUCLEUS.

NUCLEUS is a system library that cannot be removed from the library set. It contains the items listed
under the heading System Texts in section 7.

The local library set is defined by the loader control statement LDSET(LIB= ...). Local library sets
are valid only for the current load operation. At the start of each load operation, the local library set
is defined as empty unless the LIB parameter of LDSET is specified (see the CDC CYBER Loader
Reference Manual).

The global library set is defined by the loader control statement LIBRARY. Global library sets are valid
throughout the job or until another LIBRARY control statement changes the global library. At the start of
each job, the global library set is defined as empty.

The loader uses the library set in the following order.

Global libraries

Local libraries

NUCLEUS

Any program name on a control statement is loaded first if a file with that name is attached to the job. Then
the library set is searched and a program loaded for any matching entry point. In a simple job, the local library
set and global library set are both empty, so that the NUCLEUS library is the source of control statements exe­
cuted. Given the library set search order, however, any user program with the same name as a system program is
executed when the proper library set is declared in the job.

See the CDC CYBER Loader Reference Manual for further details of library use during loading.

LOAD SEQUENCE

A load sequence is a consecutive series of control statements that begins with a call that causes a program to be
loaded into central memory. A load sequence ends with a call that initiates execution. The following is a load
sequence with three control statements.

WAD(ABC)
LOAD(DEF)
EXECUTE.

60493800 H 2-5

All control statements in a load sequence must contain only instructions for the loader. Both LOAD and
EXECUTE are loader statements. The other control statements that appear in this manual are not loader state­
ments, unless they are specifically identified as such.

Any control statement that calls for execution terminates a load sequence. Any name call such as LGO, ABC,
REQUEST(...), terminates a load sequence. In most instances, a control statement initiates and termin<itcs <i
single statement load sequence.

Other statements that are part of a load sequence or that affect the loading of programs are:

LOAD Loads modules from file specified.

LIBLOAD Loads modules specified by entry point names from the library named.

SLOAD Loads specified modules from the file named.

EXECUTE Completes load and executes.

NOGO Completes load and produces a core image on specified or default file.

SATISFY Specifies name of a library to be searched for unsatisfied externals.

LDSET Specifies a list of independent options that can preset central memory field length, alter
default rewind options, control load map generation, define the libraries in the local library
set, select loading error handling, and force loading or inhibit loading of routines.

SEGLOAD Specifies segmentation, dividing large programs into sections.

Refer to the CYBER Loader Reference Manual for a full description of these control statements.

LGO AND PROGRAM EXECUTION CALLS

All assembler and compiler calls allow the user to specify the name of the file to contain executable code. In the
absence of another name, a file with the file name LGO is created. A job does not necessarily have a file
with the name LGO.

When LGO is encountered in the job stream, the operating system searches for a file with that name. In the
default instance, such a file exists and it is loaded and executed. LGO contains the relocatable object code
produced by the compilers in the absence of a source program statement that directs absolute code. (Refer to
the CYBER Loader Reference Manual for absolute code information.)

Similarly, any file name presented among the control statements is assumed to contain a program that can be
loaded and executed. For example:

FTNS,B=OLIVER.
OLIVER.

Writes object code on file OLIVER.
Calls for load and execution of OLIVER.

Parameters can appear on the program call, depending on the object program. For instance, the FORTRAN
compiler produces object code that can process file names. The following program call substitutes files
TAPE2 and TAPE3 for whatever file names are compiled into the object code.

OLIVER,TAPE2,TAPE3.

2-6 60493800 L

The COBOL compiler, on the other hand, does not produce object code that can accept parameters on the pro­
gram call. The reference manuals for the individual products describe any such capability.

Any user program that can access the first 100 octal locations of the job field length can be written to accept
program call parameters. Positioning of the file named on a program call is controlled by installation default.
At most installations, rewind occurs automatically before loading. In a straightforward compile-and-execute job,
the file LGO or its equivalent need not be rewound.

When more than one program is written on LGO, however, manipulation of LGO might be required. If the first
program is a main program and the second is a subroutine called by the main program, a single call for LGO
rewinds the file, loads both programs, and executes.

If the two programs are independent, however, execution stops at the end of the first object program. A second
call to LGO rewinds the file, such that the first program executes a second time, rather than having the second
program execute. The previous example job DECKA shows a deck structure with one file name that executes
two independent programs with a control statement to rewind this file so that the second program overwrites the
first. An alternative is example DECKB in which the second independent program is written to a separate file and
executed by a call with the name of the file ABC.

COMPILER AND ASSEMBLER CALLS

The following names should be used on the program execution call statement to assemble or compile a user
program.

Source Language

FORTRAN Version 5

FORTRAN Extended Version 4
COBOL Version 5

COBOL Version 4

ALGOL

ALGOL Editor

COMPASS

SIM SCRIPT

BASIC

lfn

FTNS.

FTN.

COBOLS.

COBOL.

ALGOL.

ALGEDIT.

COMPASS.

SIMS.

BASIC.

Source Language

SYMPL

Sort/Merge

PERT/TIME

APT

QUERY UPDATE Version 2t

QUERY UPDATE Version 3t

FORM

Data Definition Language 2

Data Definition Language 3

Parameters on the control statements are used for such functions as:

lfn

SYMPL.

SORTMRG.

PERT66.

APT.

QU.

QU.

FORM.

DDL.

DDL3.

Naming the file containing the program to be assembled or compiled (default name INPUT)

Naming the file to which the program is to be translated in object code (default name LGO)

Producing source language or object code listings of the program (listing options such as S in FINS)

Parameters for many products are the default I= INPUT, B=LGO, and L=OUTPUT. Refer to the reference
manual for a particular compiler for a full description of parameters that can appear on the control statement.
When a compiler or assembler call specifies INPUT as the name of the file containing the source program,
the next unprocessed section of the job deck must contain the program.

tOnly one version is active on a system. The call is the same regardless of the version.

60493800 K 2-7

EFFICIENT CONTROL STATEMENT ORDERING

Placement of some control statements, particularly those that cause hardware devices to be assigned to a job, can
affect the efficiency with which all jobs execute. Parameters on those statements can also affect job throughput.

A REQUEST control statement for a magnetic tape assigns a tape drive unit to the job as soon as the tape is
made ready and the operating system is aware of the tape location. The tape unit remains assigned to the job
either until the job executes a control statement that releases the unit or the job terminates.

\ The following examples presume a job compiles a FORTRAN program and executes the program twice
using different sets of data on individual tape volumes.

I

I

An inefficient ordering of control statements is:

INEFFICIENT,MT2
REQUEST,DATA,MT. ASSIGN 3456.
REQUEST,DATA2,MT. ASSIGN 3457.
FTN5.
LGO.
LGO.

Job statement indicates two tape units required.

The same operations performed more efficiently are:

EFFICIENT ,MTl.
FTN5.
REQUEST,DATA,MT,VSN=3456,NORING.
LGO.
UNLOAD,DATA.
REQUEST,DATA2,MT,VSN=3457,NORING.
LGO.
RETURN,DATA2.

The second job is more efficient in several ways:

Only the number of tapes required at one time is indicated on the job statement, not the total required
in all. Jobs with tape requirements are captured in a tape queue when they enter the system. They are
not released to the input queue, and consequently cannot begin execution, until certain tape availability
requirements are met.

A tape is requested when it is required, not before. Since the compiler does not use the data tape, the
tape is not requested until after compilation is complete.

The VSN parameter on the REQUEST control statement permits the operating system to assign the mounted
tape to the job without operator command. Without VSN information, the operator must inform the oper­
ating system of the location of the tape.

The tape unit is returned to the system when it is no longer needed, instead of having the job hold the unit
until job termination.

In general, control statement placement can affect job execution time whenever a magnetic tape or private device
set is used.

2-8 60493800 L

DIRECTIVE SECTION

Directives are control information that does not appear within the control statement section of a job deck.
They are required by several of the utilities, including EDITLIB and COPYN, and by several common prod­
ucts such as Update and FORM.

When directives specify instructions which will not fit on a single control statement, the programmer has
the following options.

Placing directives on a file and making the file available to the job before the directives arc needed.

Placing the directives within the job deck.

The name of the file containing the directives must be specified in the call to the utility or product. The
default file name for most calls is INPUT.

When directives are part of a job deck, they must appear in a separate section. The deck must be struc­
tured such that the directives are the next unprocessed section of the deck at the time the utility or
product executes.

DETAILED JOB FLOW THROUGH SYSTEM

The following information describes the system procedures that occur as a job passes through the system.
An understanding of this information is not required for system use.

From the time a job is assigned to a control point and execution is completed, many other jobs are being
executed. Each job is assigned a job descriptor table (JOT) ordinal when it is first assigned to a control
point. If the scheduler routine swaps out the job (returns it to mass storage in its present state or execu­
tion), the JOT ordinal maintains the identity of the job when the control point association is lost. A job can
be swapped out by the scheduler when a job with higher priority enters the system or when the job is
delayed waiting for a resource such as a disk pack. A job can also be rolled out, freeing central memory but
retaining a control point, while awaiting operator action. The scheduler directs swapping and rolling, taking
into consideration the relative needs of batch jobs and interactive jobs. When jobs are swapped or rolled
into central memory, they resume execution at the point of interruption.

EXAMPLE JOB

The manner in which control statements establish user program handling is illustrated by following a sample
job as it is processed. For example, consider a job to assemble and execute a program written in COMPASS,
with the output to a line printer. The user gives the operator a tape to be used for output. In the sample
job that follows, the tape has a label containing 1972 as the volume serial number. The job would be

·structured as illustrated in figure 2-2.

60493800 A 2-9

Terminates
control
statements

16
Terminates data_...,. 7

and job deck 8 ..L
9 .L

.L.

~
/7

8
Terminates 9
source program ~

.L
.L

.L

~
7 l 8

__....,. 9 LLGO.

L REOUEST,TAPEl ,MT,E,RING.

_LcoMPASS.

"'--: JOBNAME,MTl.

1--'

r----
1--'

Figure 2-2. Sample COMPASS Job

! Data

I-'

I

Control
{ stateme

I

nts

COMPASS
Program

When the sample job is input through the card reader, the operating system calls a PP routine to translate the job
statement, check the validity of its entries, and assign a priority to the job. Next the PP copies the job through
a central memory input/output buffer onto mass storage. At this point, the operating system identifies the job
by its file name JOBNAOI (from the job statement).

When the job is in the input queue of jobs awaiting execution, it comes under control of a scheduling
routine. The following factors are considered in assigning jobs to available control points: the priority
entered with the job, available system resources such as central memory, direct access ECS, and tape units; and
the total time the job has been in the system. A job descriptor table ordinal is assigned to the job. This
ordinal is used to identify the job while it is in execution regardless of whether it is in central memory
or not.

The job then waits for the scheduler to assign it to a control point. When a control point becomes available,
the scheduler assigns the job and initializes the control point with pertinent information about the job. The
system saves the assigned job name for later use.

2-10 60493800 H

The job file name is changed to INPUT and the file is positioned at the statement following the first 7 /8/9
card (the beginning of the user's program). The first control statements are read into a buffer within the
related control point area in low core, and are ready for execution. As job output is created, it is written to
a file named OUTPUT.

Accounting processing, if selected by the installation, occurs as the first step of actual job execution. Account­
ing information extracted from the job statement or the statement following it is validated and saved for later
use by the system. The accounting information defined by the system can include such items as name, account
number, project number, etc. If accounting is not selected by the installation, as in this example, accounting
information need not be present.

After accounting processing, the system copies the BATCH system bulletin to the job OUTPUT file. If the
installation has not specified BATCH system bulletin information, no information is written to the OUTPUT
file. The installation can specify other standard procedures to be executed at this time.

Upon completion of all standard procedures, job control is advanced to the second statement, COMPASS,
which directs assembly of the user's program. The system requests the loader to load the COMPASS assembler
into the field length. Control passes to COMPASS to assemble the next cards on the file INPUT and put the
object program on the file LGO. The assembler stops when it reads a 7 /8/9 card. [For assembly or compila­
tion, the user can designate files other than INPUT as an input file and other than LGO as binary output by
entries on the COMPASS control statement. However, unless such alternative files are named on the assembly
or compilation card (the COMPASS statement in this case), INPUT and LGO are used by default.] COMPASS
also writes a source language listing of the program onto a file named OUTPUT. At job termination OUTPUT
is printed unless the user specifies otherwise.

Control then advances to the REQUEST statement. The VSN parameter provides the volume serial
number for the tape label. The system automatically assigns the tape if it is mounted. (If the installation
does not choose the automatic assignment feature, the REQUEST statement appears on the operator con­
sole, and the operator must assign the tape to the job manually.) Control proceeds to the next control
statement, LGO.

The LGO statement directs program execution. The loader loads the LGO file containing the user's program
in object code into central memory and writes a map of this program onto the file OUTPUT. Library sub­
programs required are loaded also. Control passes to the user's program for execution, input data is read
from the next element of the INPUT file (user's data), and output is written on TAPE 1 and OUTPUT.

As each control statement is executed, it is copied onto the job and system dayfiles. Control statement pro­
cessing stops when the first 7 /8/9 card is encountered. NOS/BE writes job accounting information and job
statistics on the dayfile and copies this file to OUTPUT, which then is detached from the control point. The
name OUTPUT is changed to JOBNAOl (the assigned job name) and TAPEl is released so that the tape unit
can be available for another job. INPUT and LGO are cleared and released from NOS/BE control. All equip­
ment associated with the job is released from control point n and assigned to control point 0, where it can
be requested by other jobs. The control point area and field length in central memory are made available for
other jobs. When a printer is available, JOBNAOl, containing the assembly language program listing, load
map, output, and dayfile, is printed. A generalized description of the job flow is shown in figure 2-3.

60493800 K 2-11

2
3
4

CONTROL STATEMENT BUFFER

CONTROL
POINT
AREA

5

CENTRAL MEMORY

Job read into card reader
Job read through buffer onto disk
Job in mass storage input queue
Job assigned control point; goes into execution

5
6
7

Some output to a tape
Job assigned to output queue
Output to printer through
buffer to printer

Figure 2-3. Job Flow at Central Site

EXAMPLES OF JOB DECK ARRANGEMENTS

The order in which control statements are arranged depends upon the purpose of the job and the program it
contains. The following examples illustrate typical arrangements. Automatic rewind before a load is assumed.

1. JOBA requests a tape file named SALLY and loads and executes an object program from that file.

2-12

JOBA(MTl)
REQUEST(SALLY ,MT ,VSN= 123456)
SALLY.
6/7/8/9

60493800 L

.., JOBB, containing a FORTRAN program on Hollerith cards, compiles, loads, and executes that program.

JOBB.
FTNS.
LGO.
7/8/9
FORTRAN Program
6/7/8/9

3. JOBC, containing a program on binary cards, loads and executes that program.

JOBC,TSO.
INPUT.
7/8/9
Program on Binary Cards
6/7/8/9

4. JOBD compiles and executes a FORTRAN program and executes this program with one set of data, and
then with another.

JOBD.
FTNS.
LGO.
LGO.
7/8/9
FORTRAN Program
7/8/9
First Data record
7/8/9
Second Data record
6/7/8/9

5. JOBE compiles a program and adds it to a user library named MYLIB. Directives required by the EDITLIB
utility during library manipulation are the last section of the deck.

JOBE.
ATT ACH,MYLIB,ID=MINE.
COBOL.
REWIND,LGO.
EDITLIB,USER.
7/8/9
COBOL program
7/8/9
LIBRARY(MYLIB,OLD)
ADD(NEWPROG,LGO,AVI)
FINISH.
6/7/8/9

60493800 L 2-13 •

JOB TERMINATION DETAILS

When a job is processed without error, normal termination activity begins upon reaching the end of the control
statements or some form of EXIT control statement. First, execution time of the job is written onto the job
dayfile and on the system dayfile. Then, the job dayfile is rewound and copied onto the file OUTPUT. Next,
OUTPUT and any other files on mass storage designated for output, such as PUNCH or PUNCHB, are rewound
and placed in the output queue. OUTPUT is designated for the printer, and PUNCH (Hollerith) and PUNCHB
(binary) for the card punch by disposition codes. These files names are then changed to the job name and
assigned to control point 0.

The following files are treated as special cases. Unless the user overrides the default disposition of such
files, they are designated for output at job termination and automatically assigned a specific disposition code.

OUTPUT PUNCH

PUNCHB

FILMPR

FILMPL

HARD PR

HARD PL

PLOT

P80C

Files on magnetic tape are rewound (unloaded if the programmer requested save status) and released from the
system. Permanent files are released from the job and returned to permanent file manager jurisdiction; private
device sets are dismounted. All remaining files in central memory and mass storage associated with the job
including INPUT, LGO, and the job dayfile, are cleared and released. The job is released from the control
point area.

All hardware devices assigned to a job are assigned to control point 0, so they can be reassigned to other jobs.
At this point, only files in the output queue relating to the job remain. When an output device of the type
requested by the file's disposition code is free, the file is output through that device.

ABNORMAL TERMINATION

When a fatal error occurs, the operating system sets a flag indicating the error. If the error has been previously
identified in the current job step by a call to RECOVR, control is returned to the user program for processing.
Otherwise error processing continues.

A diagnostic message that reflects the reason for abnormal termination is written to the job dayfile. t A standard
abnormal termination dump then occurs. The dump appears on the file OUTPUT with the heading DMPX.
This dump shows the contents of the exchange package for the job, the contents of central processor registers,
and the contents of words before and after the location at which the program stopped. See the DMP control
statement for a description of the dump output.

The operating system then clears the error flag and searches the control statements for an EXIT statement.
Depending on the parameter of EXIT and the type of error that occurred, processing might resume with the
first control statement after the EXIT statement. See the EXIT control statement for a description of the
different error conditions and EXIT parameters. If no EXIT statement exists, the job terminates as previously
described for normal job termination.

tWhen a file is designated for output (output, punch, and so forth), the system finishes the write operation
in progress at the time of termination.

2-14 60493800 E

OPERATOR COMMAND TERMINATION

When the operator types in a DROP command, the job terminates prematurely. End-of-job procedures are
initiated as described under Abnormal Termination, earlier in this section.

When the operator types in a KILL command, the job terminates prematurely. All files associated with the
job, including the OUTPUT file, are dropped regardless of name or disposition. Permanent files are treated
the same as for normal termination. The programmer does not receive a dayfile listing.

When the operator enters a RERUN command, the job is terminated, and its INPUT file is returned to the
input queue so that it can be run later. The OUTPUT file is dropped, and a new output file is created. The
job dayfile is copied to tile new output file called a preoutput file and becomes the OUTPUT file when the
job is run again. The OUTPUT file for the rerun job will contain the dayfile from the previous partial run
of the job and the output and dayfile from the complete run of the job.

Permanent files and mounted private device sets for a rerun job are treated as for normal termination. All
other files, regardless of name or disposition, are dropped.

In some cases, a job might perform a function which would make it impossible to restore conditions to their
initial state before the job was run. For example, if a job writes on an existing permanent file, that informa­
tion cannot be erased. When such a job is rerun, results are unpredictable. To avoid this condition, the sys­
tem will set a no-rerun flag in the control point area to reject a RERUN type-in by the operator. The no­
rerun flag will be set when the job has performed a catalog, purge, alter, rename, or extend of a permanent
file, modified a permanent file, or added or deleted a member of a device set.

Should a job be caught at a control point during a deadstart recovery, it is either dropped or rerun
depending upon the no-rerun flag. If possible, the job is rerun; however, if the flag indicates no rerun, the
job will be dropped and an appropriate message added to its dayfile. Any job swapped out Jming a dead­
start recovery will be given a message indicating that recovery was performed.

JOB DAYFILE

The last item of the file OUTPUT from any job is the job dayfile. It gives a history of job execution. Any
program or job that terminates abnormally produces dayfile messages identifying a fatal error. Normal job com­
pletion is indicated by the absence of fatal error messages.

Each control statement that is called to execution is listed in the dayfile. System response to a control state­
ment might follow. The dayfile shows, for example, the VSN of a scratch tape assigned. Such information
might be needed as input in another job using that tape. The NOS/BE Diagnostic Handbook gives the meaning
of status and error messages originating in the operating system. Messages that originate from a member of
the product set are explained in the individual product reference manual.

60493800 E 2-15

The programmer can cause information to be sent to the job dayfile by using the COMMENT control statement
or the MESSAGE macro in a COMPASS program. Several other language processors also allow messages to be
sent to the operator or to the dayfile.

Figure 2-4 shows a typical dayfile.

mfi system level
1691t2.1q.eASIC6D -FROM
16.42.20.IP 11080192 MOROS
16.42e20.8ASIC3t,T40,P2,HT1.

mm/dd/yy

FILE INPUl • DC 00

1·g.·42. 26.REOUESTCCOHPILE,•QJ
16.42.27.REOUESTCOLOPL.E,HY,VSN=4174,NORINGJ
16.43.~o.c MT30 ASSIGNED)
16 36.UPOATECQ.o.s.•==•
16 3ft.MT30 VOLUME SERIAL NUMBER IS 804174
16 ... 5.58~ UPDATE COMPLETE.
16.45.5q.ROUTECCOMPILE,OC=INJ
16.45e5q.uNLCAO COLOPLJ
16.46.06.0P 11111920 MOROS -
16.46.07.MS !584 MOROS (
16.46.07.CPA 2.171 SEC.
16e46el7.CP9 t.164 SEC.
16.4&.01.Io 14.1~3 sec.
16.46.07.CH 285.807 KWS.
16elt6.07.SS
16.46.17.PP 34.835 SEC.
16.,6.17.EJ ENO OF JOB, ••

FILE OUlPUT • DC 41
3584 MAX USED)

2.171 ADJ.
t.164 ADJ.

llte143·AOJ.
17.444 ADJ.
34.923

DATE mm/dd/yy

Figure 24. Sample Dayfile

The system header identifies the system on which the job executed. Installations might change the information
given on this line ..

mfi Mainframe identifier.

system level Operating system level.

mm/dd/yy Date the operating system was built; time and type of deadstart recovery appears if
recovery has occurred.

The first line after the system header gives the name of the job as modified by the operating system to make
the name unique among all jobs and the job origin in the following format.

job name FROM sss/tt

jobname Unique name assigned by the system.

s s s Source mainframe ID (blank if sss is the same as mfi).

t t Terminal ID (blank unless the job was sent from an INTERCOM terminal).

2-16 60493800 F

The lines giving statistics about the input and output files have the following format.

IP nnnnnnnn WORDS - FILE lfn, DC de
or

OP nnnnnnnn WORDS - FILE lfn, DC de

IP

OP

nnnnnnnn

lfn

de

Indicates that this message refers to an input file.

Indicates that this message refers to an output file.

Decimal number of words in the file.

Logical file name.

Disposition code of an output file. DC 40 is for print on any printer. See the DISPOSE
macro for a list of disposition codes.

Accounting messages are added to the dayfile at the end of the job and each time a SUMMARY control state­
ment executes. Figure 2-5 shows sample accounting messages.

MS aaaaaaaa WORDS (bbbbbbbb MAX WORDS USED)
CPAccccccc.ccc SEC. dddddddd.ddd ADJ.
CPBccccccc.ccc SEC. dddddddd.ddd ADJ.
IOeeeeeeee.eee SEC. ffffffff.fff ADJ.
CMgggggggg.ggg KWS. hhhhhhhh.hhh ADJ.
ECiiiiiiii.iii KWS. jjjjjjjj.jjj ADJ.
SS kkkkkkkk.kkk ADJ.
PPmmrmnmmmm.nnnm SEC. DATE mm/dd/yy

Figure 2-5. Sample Accounting Messages

All values are in decimal, with leading zeros omitted:

aaaaaaaa

bbbbbbbb

CCCCCCCC .CCC

dddddddd .ddd

eeeeeeee.eee

ffffffff.fff

60493800 E

Mass storage currently used by the job, not including the INPUT file nor any
permanent files the job attaches. Newly created permanent files are included in
the word count. This message is issued only if the job has executed a LIMIT
control statement or if the installation has established a mass storage limit.
The decimal value in words is computed by multiplying the number of record
blocks used by the number of words in a record block.

Maximum mass storage used by the job. Otherwise, the same as aaaaaaaa.

Central processor time; dual processors are reported separately.

Adjusted central processor time for each processor. The time is multiplied by
an installation selected weighting constant.

Input/output time.

Adjusted input/output time. The time is multiplied by an installation selected
weighting constant.

2-17

gggggggg.ggg

hhhhhhhh.hhh

iiiiiiii .iii

jjjjjjjj . jjj

kkkkkkkk.kkk

mmmmmmmm.mmm

mm/dd/yy

2-18

Central memory kilo-word seconds. This value indicates central processor usage,
and is a sum of terms, each term computed as follows:

Central processor time and 1/0 time are weighted, to compensate for over­
lapped 1/0 processing, and then added together. This sum is multiplied
by central memory field length divided by I 000 octal.

Each time central memory field length changes, a new term is computed.
Thus, the number of terms summed is the same as the number of times
central memory field length changes during job execution.

Adjusted central memory kilo-word seconds. Statistic is the same as control
memory kilo-word seconds with weighting factors selected by the installation.

Extended core storage kilo-word seconds. This value is computed in the same
way central memory kilo-word seconds are computed, except ECS field length
divided by 1000 octal is used.

ECS kilo-word seconds adjusted by installation selected weighting factors.

System seconds. The sum of the adjusted values of central processor time, 1/0
time, central memory kilo-word seconds, and ECS kilo-word seconds.

Peripheral processor time.

I>ate job was run.

60493800 L

FILE CONCEPTS AND STRUCTURE

A file is defined as a set of information that begins at beginning-of-information, ends at end-of-information,
and has a file name.

3

This section summarizes job responsibilities for files and the devices on which they reside and introduces the
control statements used to process different types of files. Structure of files within the system is also defined.

GENERAL FILE USAGE

A job is responsible for:

Specifying the file name by which a file is known during the job

Assigning the file to a particular device, if necessary

Disposing of the file if it is to be preserved when the job ends

NAMING FILES

Each file associated with a job is known by its file name. The operating system associates two files with each
job, one with the file name INPUT and another with the file name OUTPUT. All other file names must be
specified by the job. The file name is valid only for the duration of the job. The name is not part of the
file itself; it is not written in the label of a file on tape, and it is not a part of the permanent file table
information.

Each file name must be unique within a job and must not duplicate the name of a multi-file tape set associated
with the job. File names are one through seven letters or digits and must begin with a letter.

RESERVED Fl LE NAMES

File names that begin with ZZ are reserved for use by the system. User jobs are not prevented from
creating or reading files with the name ZZ:xxxxx, but use of these files might adversely affect the job.

SPECIAL-NAMED Fl LES

Special-named files are those with an inherent set of characteristics and disposition. The following paragraphs
contain descriptions of some of these files.

60493800 L 3-1

INPUT

INPUT is the name of the file with the images of the job deck. Each separator card in the deck, or its
logical equivalent, is an end-of-partition when processed by system routines in the operating system or the
standard compilers. The separator cards trigger end-of-file processing. Each card image is a separate record
to compiler and assembler programs.

OUTPUT

Every job has a file of the name OUTPUT associated with it. OUTPUT is created by the operating system
on a queue device. The operating system writes the job dayfile to this file when the job terminates. Other
information that might appear on OUTPUT as a result of processing by system routines is:

Source program listing produced by compiler

Object listings requested by compiler call in the job

Diagnostics or error messages produced during compilation

Results generated during program execution

Exchange package dump generated by the operating system when a program aborts during execution

OUTPUT always is printed or otherwise associated with a remote terminal when a job ends. The job can
rewind OUTPUT and overwrite existing data, or it can evict all data with a DISPOSE or ROUTE control
statement. However, it cannot prevent the job dayfile from being printed at batch job termination.

OUTPUT is a print file with a maximum line length of 137 characters. The first character is the carriage
control character which must be supplied by any user program that writes to OUTPUT. System routines
supply the carriage control as needed. The remaining 136 characters of the line can be printed. Some
system routines have the ability to format OUTPUT for Teletype device processing with a line length less
than 136 characters.

Any file copied to OUTPUT is printed at the end of the job. If the file does not have carriage control
characters at the beginning of each line, the COPYSBF utility should be used to shift each line one character
to the right and insert a leading blank for single spacing control.

PUNCH

PUNCH is a file with an associated disposition code. Any data written to the file is assumed to be display
code. The file is punched in Hollerith format at the end of the job.

PUNCHB

PUNCHB is a file of binary information. Any data written to it is assumed to be binary. The file is punched
in standard binary format at the end of the job. Any assembled or compiled program that is written on
PUNCHB is an object program that can be loaded and executed by specifying the name of the file on which
the program resides.

3-2 60493800 E

P80C

P80C is a file of binaiy in formation. Any data written to it is assumed to be binaiy. The file is punched in
free-form binary format at the end of the job. They arc used only in special circumstances.

OTHER SPECIAL-NAMED FILES

Files with names FILMPR, FILMPL, HARDPR, HARDPL, and PLOT also have an associated disposition. The
operating system defines codes for these files, but does not supply the routines needed to drive the associated
hardcopy or microfilm devices. Only some installations have these devices.

ASSIGNING Fl LES TO A JOB

Before a file can be read or written, the operating system must be informed of the device on which the fi!e
resides. If a file is not associated with a specific device before it is created, it is written on a public mass
storage device at the time an executing program calls for file open. The job does not need to inform the
system of the residence of files on mass storage unless the file has special characteristics.

Files that exist only for the duration of the job are known as scratch files. They are created as they are
needed and destroyed when the job terminates. The INPUT file for the job, temporary files written by the
compilers during compilation, and some user files are useful only for a short time. Scratch files are created
on mass storage as the file is referenced. They need not be specifically requested.

The devices on which rotating mass storage files are written are divided into two classes, public device sets
and private device sets. The programmer determines the device on which a file resides by the use or absence
of the REQUEST control statement and the SETNAME control statement or parameter. Public and private
device sets are described later in this section.

Situations in which it is necessary to inform the operating system of the device on which a file is to be
created include those when:

A file is to be subsequently declared a permanent file with a CATALOG statement. Such files must be
referenced on a REQUEST control statement with a PF parameter.

A file is to be released to the output queue for print or punch processing. Unless the file name is
OUTPUT, PUNCH, PUNCHB, or P80C, a REQUEST control statement with a Q parameter is required.

A file is on magnetic tape. All tape files require a REQUEST or LABEL control statement that de­
scribes the characteristics of the tape data format, label, and recording mode.

A file is to reside on a private device set. A MOUNT control statement is required to associate the
private device set with the job. Subsequently, each file that is to reside on the device set must be
referenced in a REQUEST control statement specifying the device set name.

60493800 F 3-3

Existing files that must be specifically associated with the job include the following.

All tape files

Permanent files

Private device set files

Tape files require a REQUEST or LABEL control statement.

Permanent files are associated with a job through an ATTACH or GETPF
control statement.

Permanent files are attached with an ATTACH control statement that
names the device set.

The file INPUT and all other special-named files described are assigned by the operating system to a mass
storage device designated for input and output queue files.

DISPOSING OF FILES AND EQUIPMENT

Temporary or permanent status is controlled by the programmer. All files created on mass storage are
temporary files that disappear when the job terminates, unless the job includes steps to preserve the file. A
file can be preserved on mass storage or on external media by transferring it to printed pages, punched cards,
or magnetic tape.

Files are preserved in printed or punch card form when they are assigned a disposition code that results in
processing by the line printer or card ounch. Disposition codes are described in DISPOSE and ROUTE control
statements and macros, and Special-Named Files.

Files are preserved on mass storage by cataloging them as permanent files. Permanent files are explained later
in this section.

Normally, all files assigned to a job are retained by that job until termination. All files currently associated
with the job are called local files. When the files reside on non-allocatable devices such as magnetic tapes,
both the file and the hardware device are unavailable to other portions of the system for the duration of the
entire job even though the file is in process for only a short part of the job.

When DISPOSE, ROUTE, UNLOAD, or RETURN is used, files can be released before job termination, making
both the file name and the resident device available for other uses. Files named in UNLOAD or RETURN
are unavailable for the remainder of the job. An OPEN macro issued later in the job creates another file.

New files to be retained between jobs as permanent files on mass storage must be cataloged as permanent files
before the job ends. Existing permanent files return to permanent file manager jurisdiction when they are
referenced in either an UNLOAD or RETURN control statement or macro. They are no longer available to
the job until referenced in a subsequent ATTACH.

FILE STRUCTURE

All files on rotating mass storage are implemented through software conventions known as system-logical-records
and physical record units. These conventions are also applicable to magnetic tape in scope internal (SI) format
and card files, although the physical representations of these files are not precisely the same as for mass storage
files.

3-4 60493800 J

The following paragraphs describe the structure of files produced by the system. They define terms used
throughout this manual, such as:

System-logical-record (equivalent to SCOPE logical records)

Level terminators

Physical record units

Partitions

SYSTEM-LOGICAL-RECORDS AND PHYSICAL RECORD UNITS

A physical record unit (PRU) is the amount of information that can be accessed in a single read or write
operation for a given device. On rotating mass storage, a PRU is equivalent to the contents of 64 central
memory words.

One write operation from a higher level language program usually does not result in the creation of a single
PRU, however. Routines called by compiler programs block program data in a central memory buffer during
program execution, so that one record generated by the program can become part of a single PRU or a string
of PRUs containing records from write calls issued by a program.

System-logical-records are written as one or more PRUs, the last of which is a short PRU or a zero-length
PRU containing a record terminating marker. The terms short PRU and zero-length PRU refer to the amount
of valid user data within the PRU, not to the physical size of the PRU.

A short PRU contains fewer than 64 words of user data followed by a system-supplied record terminator
at the end of user data.

A zero-length PRU contains a system-supplied record terminator, but does not contain any user data.

When user data does not fill the last PRU needed to write a system-logical-record, the record terminator is
appended to the data and the remaining space in the PRU is ignored. If the record terminator cannot be
accommodated in the last PRU with data, a zero-length PRU is created to hold the record terminator. A
zero-length PRU has only system information.

The record terminator for a system-logical-record contains a level number of 0 through 178 to indicate the
relation of that record to other records in the file. The lowest level is O; it is associated with a single system­
logical-record. A higher level number defines a set of records that begins immediately after the last record of
that level and continues through all system-logical-records of a lower level number until the end of a record
with that level or a higher level number is encountered.

A level number of 17 8 establishes a partition boundary for the file. Level 17 8 always is recorded in a zero­
length PRU. Level 17 8 records are written in response to a COMPASS macro WRITEF and to compiler pro­
gram requests to close a file or to write an end-of-file. When a file has only one partition, the level 17 8
terminator marks the logical end of the file. However, a file can contain any number of partitions defined
by level 17 8 before the physical end of the file.

60493800 E 3-5

The following lists summarize rotating mass storage file structure.

Physical Structure

One or more PRUs terminated by a short or
zero-length PRU of level 0 through 168.

One or more PRUs terminated by a zero­
length PRU of level 17 8.

End of mass storage allocated in system
record block table (RBT).

Logical Interpretation

System-logical-record of level indicated; sets
end-of-record bits in system tables.

Partition; sets end-of-partition bits in system
tables; end-of-file exits occur.

End-of-information; sets end-of-information
bits, if any, in system tables or sets
end-of-partition bits.

System-logical-records with particular level numbers can be accessed through SKIPF, SKIPB, COPYBF, and
COPYCF control statements and through the COMPASS macros SKIPF, SKIPB, and READSKP.

A system-logical-record of level 168 has special meaning to the checkpoint/restart feature of the operating
system. Consequently, level 168 should not be specified in user programs that might be checkpointed.

Sequential files are written directly in system-logical-record format. Random files are implemented through a
higher-level structure imposed upon the system-logical-records. Two types of higher level structures are:

Name/number index random files using operating system routines described later in this section

CYBER Record Manager files using the capabilities of the CYB ER Record Manager. These
are described in the CYBER Record Manager manuals.

Fl LE DIVISIONS

The physical representation of beginning-of-information and end-of-information depends on the storage device
as follows:

Device Beginning-of-Information

Card deck Start of first card in deck

Labeled magnetic tape file Start of data after labels

Unlabeled SI format tape Start of data

Unlabeled S or L format tape Load point

Mass storage file Start of data in system table

ECS Start of data in system table

3-6

End-of-Information

Card with 6/7 /8/9 multiple-punched
in column I

Start of EOF label

Start of EVf!abel

Undefined

End of data designated in system
table

End of data designated in system
table

60493800 J

The operating system recognizes these divisions within a file:

Partitions are divisions within a file. On a mass storage file or a tape in SI format, a partition is
synonymous with a system-logical-record of level 17 8. On an S or L tape, a partition is indicated by
a tape mark. All files have at least one partition.

System-logical-records of level 0 through I 68 are defined by the operating system on SI format magnetic
tape and rotating mass storage. These records are divisions of a partition.

Zero-byte terminated records are divisions within a system-logical-record or within a partition of an S or
L tape. These records are the representation of a single print line or single punch card processed by
the JANUS routine of the operating system.

Tapes in S or L format do not have system-logical-records. For some purposes such as copy of a coded
record, the operating system recognizes each physical record recorded on the tape as a single record that
is logically equivalent to a system-logical-record.

The operating system recognizes only the previous divisions. Individual products that are supported by the
operating system have different definitions of the term record. For instance, CDC CYBER Record Manager
defines eight types of records, only one of which (S type) is equivalent to a system-logical-record. CDC
CYBER Record Manager uses a slightly different definition for some record types. From a program stand­
point, a record is usually associated with a single read or write request.

DEVICE SETS

All rotating mass storage devices attached to a system are grouped into device sets. One device in a set is
designated as the master; it holds all tables related to the set. Each device in the system belongs to one and
only one set. Two types of device sets exist:

A public device set is always available to all jobs. It is used by the system to hold system files,
permanent files, and special-named files such as INPUT and OUTPUT.

Unless a job requests that a file be written to another device, files are assigned to a public scratch
device.

A private device set is available to a job only by specific request. Depending on the installation, private
device sets may or may not be physically mounted at all times. Files to be preserved on private device
sets should be made permanent on that set. Private device sets can be used simultaneously by jobs that
have mounted the device set.

Device sets can have a varying number of members within the set. Some device sei.s might have only a single
device associated with them. The single device in such a set is both the master device for the set and the
only member of the set. The set is identified by the set name. The individual members of the set are
identified by a volume serial number.

A job need not know the volume serial numbers of members of device sets, however. Parameters on the
REQUEST control statement that assigns a file to a device allow a member to be identified explicitly by its
volume serial number or implicitly by its attributes.

60493800 E 3-7

I

Attributes are assigned when a device set is created. The attributes of most concern to applications pro­
grammers are:

Attribute

Public permanent file default set

Queue set

Permanent file device

Queue device

Master device

Significance

Permanent files reside on this public set unless another
set is requested.

Files with the name INPUT, OUTPUT, or any other
special name reside on this set. Any file to be named in
a ROUTE or DISPOSE control statement must reside on
this set.

A member of a public or private device set that can hold
permanent files.

A device on which queue files can reside if the device is
a member of the queue set.

The master device of each private device set must be
known before the set can be accessed by a job.

A file on a rotating mass storage device can be of arbitrary length, and it can be segmented over more than
one device. The data is recorded in a logical sequence of record blocks which can be arbitrarily scattered
about the disk surface. The operating system maintains a central memory table for each file, called the
record block table (RBT), in which the sequence of allocated record blocks is defined. The end-of­
information position and end-of-volume position are also defined in the RBT.

PUBLIC DEVICE SET USAGE

Public device sets are the default. Unless a private device set is requested, mass storage files are on public
devices. All public device sets are available to a job at all times. The MOUNT and DSMOUNT control
statements applicable to private device sets are not needed for public device sets and will be ignored if
encountered.

The REQUEST control statement assigns a file to a public device. Normally, a REQUEST is not needed
except for the following files.

Files that subsequently will be cataloged as permanent files

Files that have a disposition code for printing or punching

Files that are to reside on a particular public device set or member

The PF parameter of REQUEST assigns the file to a permanent file device.

The Q parameter of REQUEST assigns the file to a queue device. A file cannot be referenced by a ROUTE
control statement or DISPOSE control statement unless it resides on a queue device.

Files named INPUT, OUTPUT, PUNCH, PUNCHB, P80C or any other special-named files always reside on
public devices by default. A REQUEST with a Q parameter is not needed for special-named files.

3-8 60493800 L

PRIVATE DEVICE SET USAGE

A private device set is established by the following steps.

1. Each pack to be included in the set is blank-labeled with the LABELMS utility.

2. The master device is established by an ADDSET control statement that defines the name of the set,
the volume serial number of the master device, the maximum number of packs that can exist in the
set, the maximum number of permanent files that can exist in the set, the universal password, the
universal permissions, the public password, and the default file retention period for this set. The
master device need not be a permanent file device, but at least one member device should be
designated as a permanent file device.

3. Members of the device set are added by additional ADDSET control statements that specify the
device set name, the master device volume serial number (VSN), and the volume serial number for
the pack being added. Additional members are not required; the master device can be the only
pack in the device set. All ADDSET control statements can define the permanent file attribute for
the device being added.

Since tables relating to all packs that are subsequently added to the set reside on the master device, the
master device must be available each time a pack is added to or deleted from the device set and must be
available each time any file is accessed from the set. The master device is also required when any of the
permanent file utilities (AUDIT, DUMPF, LOADPF, or TRANSPF) references a private device set.

To access a file existing on the device set or to create a file on the device set, the job must perform the
following steps.

1. The master device must be associated with the job by a MOUNT control statement. Since private
device sets can be used by many jobs at the same time, the device might already be physically
available. If not, the operator must make the master device available.

2. Any permanent file to be attached must be identified as a file on that particular set. The
SETNAME control statement can establish the set name prior to the attach request, or the
SN=setname parameter can be used on the ATTACH control statement.

3. The REQUEST control statement assigns a file to a private device. In addition, all files to be
created on the device set must be associated with the device set by a REQUEST control statement.
An SN=setname parameter explicitly names the set; an SN parameter implicitly names the set
specified in the last SETNAME control statement.

Once the job has processed the files associated with the device, the device set should be disassociated from the
job by execution of a DSMOUNT control statement. Execution of DSMOUNT might free a disk drive for
other packs before the job ends, and thereby increase overall system throughput. If the job omits DSMOUNT,
the system disassociates the device set from the job during end-of-job processing.

The REQUEST control statement is required to assign a file to a private device set. The SN=setname or
SN parameter establishes the name of the set. The VSN parameter can specify a particular member of the
set. The PF parameter can be used to ensure that the file resides on a permanent file device.

The SETNAME control statement can be executed before any files are requested. SETNAME can establish
the device set to which all subsequent ATTACH control statements are directed. This eliminates the need for
an SN=setname parameter on each individual ATTACH control statement. It also defines the set to which
REQUEST control statements with SN parameters are directed.

60493800 F 3-9

PRIVATE DEVICE SET EXAMPLES

1. NEW DEVICE.
LABELMS(DT=AY) PLEASE USE PACK 844A
LABELMS. PLEASE USE PACK 844B
ADDSET(VSN=844A,MP=844A,SN=MORE, *PF ,UV=MYUNIV ,UP=C,PB=MYPUBLIC,FR=360)
ADDSET(MP=844A,VSN=844B,SN=MORE, *PF)
6/7/8/9

This job creates a device set with two members.

2. SUBSTITUTE.
MOUNT(SN=MORE,VSN=844A)
DELSET(MP=844A,SN=MORE,VSN=844B)
MOUNT(SN=OTHER,VSN= 123)
ADDSET(VSN=844B,SN=OTHER,MP= 123, *PF)
6/7/8/9

This job deletes a pack from one device set and adds it to another.

3. FIX UP.
PAUSE. OPERATOR PLEASE ENSURE SN=MORE, VSN=844A IS ON AN RMS DRIVE.
RECOVER(SN=MORE,VSN=844A)
6/7/8/9

This job runs a RECOVER on device set MORE, assuming the master device is physically on a disk drive.

4. SET.
MOUNT(VSN=844A,SN=MORE) Mounts master device.
REQUEST(T APES ,PF ,SN= MORE)
FTNS.
LGO.
CAT ALOG(T APES ,PERMANENT ,ID= FRIEND)
7/8/9
FORTRAN program that creates TAPES
7/8/9
data cards for FORTRAN program
6/7/8/9

This jobs makes a permanent file on the device set MORE.

S. USE A SET.

3-10

MOUNT(VSN=844A,SN=MORE) Mounts the master device.
SETNAME(MORE)
ATTACH(A,PERMANENT,ID=FRIEND) Taken from device set MORE by default.
REQUEST(T APE6,PF) Assigned to public device since no SN parameter.
COPY(A,TAPE6)
CATALOG(TAPE6,PERMANENT,ID=FRIEND) Makes file permanent on the permanent file default set.
FTNS.
REQUEST(TAPES,PF,SN) Assigned to device set MORE as SN is specified but not

equivalenced.

LGO. Job uses data and file T APE6 to create file TAPES.
CAT ALOG(T APES ,PERMFILE,ID= FRIEND)
7/8/9
FORTRAN program
7/8/9
data
6/7/8/9

60493800 L

Permanent file PERMANENT is copied from device set MORE to the public device and recataloged with
the same permanent file name and owner ID. A new permanent file is created and cataloged on device
set MORE.

6. TWO SETS.
MOUNT(SN=OTHER,VSN=l 23)
MOUNT(VSN=844A,SN=MORE)
SETNAME(MORE)
ATT ACH(T APE5,PERMFILE,ID=FRIEND)

REQUEST(A,PF ,SN=OTHER)

COPY(T APE5,A)
FTN5.
LGO.

COPY(T APE6,A)
CAT ALOG(A,PERM,ID=FRIEND)
7/8/9
FORTRAN program that creates TAPE6
7/8/9
data cards
6/7/8/9

Mounts master device.
Mounts master device.

File is taken from device set MORE because of pre­
ceding SETNAME.
File directed to device set OTHER since explicitly
requested.

FORTRAN job creates file TAPE6 on system device as
no REQUEST card used.

Permanent file PERMFILE is attached from device set MORE and copied to device set OTHER. A new
file is created on a system device and copied to the same file on device set OTHER. Then the file on
device set OTHER is made permanent.

OPERATING SYSTEM RANDOM FILES

The term random denotes several different concepts, depending on the context in which the word is used.

From a hardware standpoint, random refers to a device. All rotating mass storage devices and ECS are random
access devices. Any physical address on the disk or ECS is read when the hardware driver receives a request
for information at that address. This is in contrast to a sequential device, such as a card reader or tape, in
which a card or tape block can be read only in the physical· order in which it was written. Files written to
random access devices can, but need not, have random structure.

From an applications programmer standpoint, random refers to a file structure and to the means of accessing
records in a file. CYBER Record Manager and compiler products provide several different random access
file structures in which each record has a key that uniquely identifies the record. The program can access
any record by specifying its key, without considering the records that physically exist before or after that
record. To the operating system, CYBER Record Manager files with random organization are sequential files.

From an operating system standpoint, random refers to the means by which the operating system receives
input/output address information. A file on a rotating mass storage device is a random file only when the
random bit is set in the file environment table (FET) which controls all file input/output. When the random
bit is set and a write is issued, the system writes a record to the device, then returns address information to
the FET'. The program is responsible for preserving the information returned and for respecifying that infor­
mation when the associated record is to be read. Refer to Record Request/Return Information of the FET
in section 6 for additional details.

60493800 L 3-11

A COMPASS programmer has the option of providing indexing routines for files in which the random bit is set,
or of using the operating system supplied indexing routines. These routines create an index in which records
are identified by name or by number of the entry within the index.

References to random or indexed files in sections 6 and 7 assume the name/number index structure described
below. No other random, indexed, or random indexed file structures are recognized by the operating system.

For information about the random file structures available through CYBER Record Manager or various
languages, see the reference manuals for those products or languages.

NAME/NUMBER INDEX FILES

Name/number indexed files can be created, read, written, and rewritten using the COMPASS macros OPEN,
CLOSE, READIN, WRITOUT, WRITIN, and WRITER. Management of a single index level is provided
through macros OPEN and CLOSE.

Each file has an associated index. The index contains a relative PRU position for each system-logical-record
in the file. The file beginning is equivalent to the start of the record associated with the first index entry.
The file end is equivalent to the end of the record associated with the last index entry. Any record can be
read by identifying it in the index without the need to skip records from some beginning file position.

If a random file is to be saved, the file index must be written as the last logical record on the file. A user
can write the index or call. the COMPASS macro CLOSE or CLOSE/UNLOAD to write the index. CLOSE
automatically writes out an index for a random file if the file contents were changed by a write with the
FET random bit set. A permanent file must also have EXTEND permission before the index can be written.

The first word in the index determines how the records are referenced. The index is generated through the
WRITOUT macro. A positive nonzero value indicates reference must be by number; a negative value indicates
reference can be by name or number. Number index entries are one word; name index entries are two words.
The number of a record is equal to the relative position of the index entry for that ·record; the first entry in
the index points to record I, the second to record 2, etc. If a name index is used, the record name can be
I to 7 letters and digits. The value of index word 1 is determined when the first record is written. Follow­
ing are the formats of index entries.

59 23 0

I Number
Index

0 Relative PRU Position

59 23 17 0

Name, Left-Justified with Zero Fill 0
Name
Index

0 Relative PRU Position

3-12 60493800 E

The smallest unit of information that can be indexed is a system-logical-record. Each system-logical-record
must begin in a new PRU. For the most economical index, data record length should be equal to an integral
number of PRUs minus one word.

USER-DEFINED INDEX FILES

Single-level name/number indexed files can be created and maintained using system macros READIN, WRITOUT,
OPEN, and CLOSE. Data record management at any level lower than a system-logical-record falls to the user.

READIN/WRITOUT can be used to create and maintain index contents during program execution without
using OPEN/CLOSE to manage the index records. The user must manage his index records. They could be
kept on a separate file, for example.

Multi-level name/number indexed files can be created and maintained using READIN/WRITOUT and system
macros OPEN and CLOSE plus a user generated sub-index management routine. A master index record con­
tains addresses of sub-index records interspersed throughout the file. The master index record is processed
by OPEN/CLOSE as is a single-level index record. The user routine needs to ensure that READIN/WRITOUT
references the correct index or sub-index block.

Other index formats can be defined by supplying a user routine to format and retrieve record names and mass
storage addresses. Mass storage addresses can be computed on files containing fixed length records, provided
the file is not ECS resident, since the addresses are in the form of a relative PRU count and the PRU size is
fixed.

PERMANENT FILES

A permanent file is a rotating mass storage file cataloged by the system, so that its location and identification
are always known to the system. Frequently used programs, subprograms, and data bases are immediately
available to requesting jobs without operator intervention. Permanent files cannot be destroyed accidentally
during normal system operation, including normal deadstart. They are protected by the system from unautho­
rized access according to the privacy controls specified when they are created.

Any file associated with a job, regardless of mode or content, which resides on a permanent file device, can be
made permanent at the option of the user. Unless the user explicitly requests the system to catalog a file, it
is not made permanent.

Files to be made permanent should be created on devices designated for permanent files. Files can be made
permanent on either a public device set or a private device set.

Privacy in permanent files is intended to minimize software interference from non-authorized central processor I
programs. The permanent file system offers a standard set of privacy controls. If an installation requires a
different kind of protection, a privacy procedure can be defined to replace the standard.

In addition to normal system protection, the individual file owner can prevent unauthorized access to his
permanent file. The owner can stipulate, in cataloging a file, the degree to which the file is to be protected
from read, write, and re~rite access. Once a file is cataloged, it cannot be used by any job unless the
necessary passwords are given when a request is made to attach the file.

60493800 M 3-13

Permanent files are processed by the portion of the operating system known as the permanent file manager.
The permanent file manager routines create and maintain the permanent file directory and catalog. The
permanent file directory contains a record of all permanent files, their cycles, and passwords. The permanent
file catalog contains a record of the physical location and statistics associated with each permanent file. As
long as these tables are intact, permanent files are available.

Permanent files can be processed through control statements and macros. For information pertinent only to
COMPASS programmers, see section 7.

CONCEPTS

The following information describes concepts applicable to all permanent files.

FILE IDENTIFICATION

A permanent file is identified in system tables by the combined information supplied by a pfn, ID, and CY
parameter when the file is made permanent with a CATALOG control statement.

pfn

ID=name

CY=cy

Permanent file name of 1-40 letters or digits.

Name of user responsible for file, 1-9 letters or digits. The ID specified must be unique
if pfn is duplicated within the system. ID=SYSTEM is reserved for system use.

Cycle number 1-999. As many as five physical files can exist for each permanent file
name and ID combination. Each is called a cycle. Each file shares the same ID and
set of passwords. No restrictions are imposed on the content or size of any cycle, since
each is a unique file.

The pfn parameter is required for both the CATALOG request that makes a file permanent and the ATTACH
request that associates an existing permanent file with a job. When the first seven characters of the permanent
file name are the same as the local file name, the permanent file name can serve as both the pfn and the
lfn parameters. If the ID is not specified, ID=PUBLIC is assumed. If the file is cataloged with ID=PUBLIC,
the ID parameter can be omitted for the attach. For any other name except PUBLIC, the ID parameter is
required on the attach. An installation-defined password is needed to catalog a file with ID=PUBLIC.

The CY parameter is optional. Cycle numbers need not be consecutive nor contiguous; they can be created in
any order. At CATALOG time, the system assigns a cycle number one -greater than the largest existing cycle
number if any of the following occur.

CY parameter is omitted.

CY parameter duplicates the number of an existing cycle.

CY parameter is not within range of 1-999.

I System assignment of a cycle number is not possible when the cycle 999 exists.

3-14 60493800 M

PERMISSIONS AND PASSWORDS

All user files have a 4-bit permission code. Each bit represents an access permission as defined by the following.

Permission

READ

MODIFY

EXTEND

CONTROL

Significance

Required to read, load, or copy a file.

Required to rewrite existing data or to eliminate part of a file.

Required to eliminate part of a file or to increase the amount of mass
storage allocated to a particular file.

Required to purge a file, or to catalog a new cycle of an existing pfn/ID file.

The RENAME and CATALOG functions require all four permissions.

Files in use by a job, other than permanent files, have all access permissions except for the file INPUT, which
has only READ and EXTEND permissions. Permanent files have only those permissions granted by ATTACH
parameters. A purged permanent file, when still associated with the job that purged it, has only those per­
missions it had as an attached permanent file.

Permissions are established originally by parameters on the CATALOG control statement or macro, although
they can be changed through RENAME. Passwords are a string of 1-9 letters or digits. They are defined on
a CATALOG control statement by the following parameters.

RD=rd

EX=ex

MD=md

CN=cn

XR=xr

TK=tk

Establishes password required for read permission.

Establishes password required for extend permission.

Establishes password required for modify permission.

Establishes password required for control permission.

Establishes password required for extend, modify, and control permission. Any EX, MD,
or CN parameter overrides this password.

Establishes turnkey password that is required in addition to a password for a particular
permission.

Any job using an existing permanent file must supply correct passwords in order to receive permission for
functions protected by a password. On an ATTACH or PURGE, or on a CATALOG of a new cycle,
passwords are submitted with the PW parameter, not the parameter used to create the password. On a
RENAME, the public password must be specified with the PW parameter to change a permanent file to
ID= PUBLIC.

PW=pw l ,pw2,pw3,pw4,pw5 1-5 passwords for specific permissions.

The universal password, universal permission, and public password for private device sets are defined on the
ADDSET control statement when the master device is created. For public device sets, they are defined by
the installation (refer to the NOS/BE Installation Handbook).

60493800 M 3-15

I
I

I

I

I

The universal password is a string of 1-9 letters or digits. When specified for a function that references a
permanent file, such as ATTACH, it grants the universal permission defined for that set. Universal permission
is any non-null combination of control, modify, extend, and/or read permissions. The universal password
takes precedence over any password defined by CATALOG or RENAME, as explained in the following
examples.

PURGE(pfn,ID=id,SN=MYSET ,lN=MYUNIVPW)

If the universal password is MYUNIVPW and the universal permission is control permission on device set
MYSET, then the universal password can be used to purge any permanent file on MYSET even though
a CN= password has been defined to restrict access to that file.

ATI ACH(pfn,ID=id,SN=DSET,UV=U)

If the universal password is U and the universal permission is read permission on device set DSET, then
the universal password can be used to attach and read any permanent file on DSET even though an
RD= password has been defined to restrict access to that file.

The public password is a string of 1-9 letters or digits. On a CATALOG of the initial cycle of a file with
ID=PUBUC, the public password for this device set must be specified using PW=.

MULTIPLE ACCESS

A permanent file can be attached to more than one job at the same time. Many jobs can read a file at the
same time, but only one at a time can have modify, extend, or control permission. Use of parameters that
allow multi-access is encouraged.

When a file is cataloged initially, it remains associated with the job with all permissions, except when MR=l
or RW=l is specified on the CATALOG request. In the absence of RW=l or MR=l on the CATALOG request,
no other job can attach the file until the creating job returns it to the control of the permanent file manager,
since any job with control permission has exclusive file access. However, an RW=l or MR=l parameter makes
the file immediately available, on a read-only basis, to any other attaching job, but cancels all permissions except
read for MR=l and cancels control permission for RW=l.

An RW=l or MR=l parameter on an ATIACH request restricts permissions that might otherwise be granted.
An MR=l cancels all permissions except read; an RW=l parameter cancels control permission but retains
modify, extend, and read permission. RW= I overrides MR= I.

An alternate method of allowing multiple attaches with read only permission is initially to catalog the file
with EX=, MD=, and CN= (or XR=) specified. Subsequent attaches without PW= or MR= specified default
to multi-read access.

Table 3-1 lists the cases of multiple access in which access by a second job is either granted or the job is
put into a waiting queue. In the latter case, the attach request is not honored until all of the requested per­
missions can be granted. If the second job is of batch origin and is placed in the waiting queue, a wait
message is issued to the job dayfile. If the second job is of INTERCOM origin and is placed in the wait
queue, the wait message is issued to the terminal. The user can wait until the attach is honored or bypass
the attach by entering %A.

3-16 60493800 M

TABLE 3-1. MULTIPLE ACCESS PERMISSIONS

Second job issues an ATTACH requesting the following
permissions:

Read Extend Modify Control

Read Granted Granted Granted Wait

First job has Extend Granted Wait Wait Wait
file attached with
these permissions: Modify Granted Wait Wait Wait

Control Wait Wait Wait Wait

Granted: File is immediately attached to the second job with the requested permission.

Wait: System places the job in the permanent file queue until the ATTACH request can be
honored.

QUEUED AND ARCHIVED FILES

Job requests to attach a permanent file usually are executed immediately. If a job cannot attach a file
immediately, the system places the request in the permanent file queue. Four conditions can cause a
permanent file request to be placed into the permanent file queue.

60493800 L
3-1 7 '

TRANSPF utility is running.

Attached permanent file table, which is necessary for CATALOG or ATTACH, is full.

File to be attached is not available for type of access requested.

File to be attached is archived.

The job remains in the permanent file queue until the ATTACH request can be honored or until the user
or operator aborts the request.

At some installations, permanent files physically reside on rotating mass storage devices at all times and are
immediately available to a requesting job. At other installations, some permanent files might be dumped to
a tape through the DUMPF utility. Such files are not available to a requesting job until they are reloaded
through the LOADPF utility.

A permanent file physically on tape, but known to the system through permanent file table information, is
defined as an archived file. The archiving process does not affect the file's status as a permanent file. There­
fore, the file does not need to be re-cataloged. An archived file must be returned to mass storage before the
job can read or write the file. An archived file can be purged, however, when still on tape, since only
system tables are affected by a purge function.

A request for an attach of an archived file might or might not be honored depending on installation proce­
dures. When the system receives a request for an attach of an archived permanent file, the system informs
the operator of the request and indicates the VSN of the tape required. The operator mounts the specified
tape, then authorizes the load by entering a command from the keyboard. The job continues when the file
is available.

A request for an archived file submitted interactively through a remote terminal produces the following message
at the terminal.

REQUEST FOR ARCHIVED FILE - WAITING FOR CENTRAL OPERATOR DROP OR GO

In response to a GO command from the operator, the job is put into the permanent file queue, the message
WAITING FOR ARCHIVED FILE is sent to the terminal user, and a job is set up at another control point
to retrieve the file from tape. The INTERCOM user must wait for retrieval to be completed before the file
is attached. In response to DROP, the file is not brought into the system and the attach request is terminated.

Once the WAITING FOR ARCHIVED FILE message appears at the terminal, the terminal user has the option
of waiting for the file to be made available or of continuing with other tasks. An abort command after the
central site operator enters GO affects the attach request itself, but does not affect the reloading of the file
to mass storage. Consequently, the following procedure can save time during interactive processing.

1. Enter command to attach file. Wait until WAITING FOR ARCHIVED FILE message appears.

2. Enter abort command.

3. Continue with other operations.

4. Reissue ATTACH command.

I 3-18 60493800 L

The second ATTACH command should execute immediately since the file should have been returned to mass
storage while other terminal operations proceeded.

INCOMPLETE CYCLES

Incomplete cycles might exist as the result of abnormal termination of a permanent file manager function.
They might also be created by a normal deadstart taking place during a permanent file function. The file is
automatically purged when the file is returned or during end-of-job processing. To remove an incomplete
cycle from the system, the file must be attached with the cycle number explicitly stated and with control
permission.

Execution of the AUDIT utility with an MO=I parameter reveals the existence of any such incomplete cycles.

USAGE

BATCH JOB USAGE

Permanent files are manipulated by the following control statements at a single mainframe installation. At
linked multi-mainframe sites, these statements are used when the permanent file resides at the site at which
the job is submitted and executed.

CATALOG

ATTACH

PURGE

EXTEND

RENAME

ALTER

Make a local rotating mass storage file permanent with a particular name and owner.
Parameters on the CATALOG statement become part of a system table that controls
all further file use.

Associate a permanent file with a job. Parameters on the ATTACH statement must
agree with privacy controls of CATALOG to establish the right to access the file.

Delete a permanent file by deleting system table information. The file remains attached
to the job as a local file.

Increase the size of an attached permanent file.

Change system information established when the file was cataloged.

Change the size of an attached permanent file.

When the permanent file resides at a linked multi-mainframe site other than that at which the job executes,
the following statements must be used instead of the previous ones.

SAVEPF

GETPF

60493800 L

Create a permanent file on a public or private device at the system identified
by the ST parameter. Parameters on the SAVEPF statement become part of a
system table that controls all further file use.

Assign permanent file residing on the system specified by the ST parameter to the
job. Parameters on the G ETPF must agree with privacy controls of SA VEPF to
establish the right to access the file.

3-19 I

For a single file, the CATALOG, SAVEPF, ATTACH, and GETPF control statements can be combined as
required to access the permanent file from a given system. A file cataloged with CATALOG can be attached
with GETPF.

Table 3-2 summarizes parameters applicable to permanent file functions. Any parameter not applicable to a given
control statement is ignored. The control statements and their parameters are explained in section 4.

TABLE 3-2. PERMANENT FILE PARAMETERS

lfn/pfn AC CN CY EC EX FO ID LC MD MR PW RB RD RP RW TK XR SN ST UV VSN

CATALOG hoth or one * * * * * + * * * * * * * *

SAVEPF both or one * * * * * + * * * * * * •• + **

ATTACH both or one * * + * • * * * *
GETPF both or one * * + * * 0 •• + * **
PURGE both or one * * + * * * ** * * **
RENAME lfn pfn. * * * * * * * * * *

EXTEND lfn

ALTER lfn

+ Required. • Optional. 0 Ignored with message.

•• Optional. If used with ST, both SN and VSN must be specified .

The following utility routines exist explicitly for permanent file use.

AUDIT

DUMPF

GENLDPF

LOADPF

PF LOG

TRANSPF

Reports the status of permanent files.

Dumps files to tape for backup or temporary storage as archived files.

Generates LOADPF jobs according to the permanent file catalog (PFC) entries on
the tape produced by PFLOG.

Loads permanent files that have been dumped by DUMPF.

Dumps the PFC to tape.

Moves permanent files and permanent file tables between members of a device set
and moves files from one device set to another.

These utilities can be called such that all permanent files are affected or that only files pertaining to a given
ID, device, or use are affected.

Files to be made permanent must reside on a device that the ADDSET control statement establishes as a
permanent file device. The user job can create a file on a permanent file device in two ways.

I 3-20 60493800 L

If the file is to be cataloged on a public permanent file device or on a private device whose VSN is not
known, the PF parameter should be specified on the REQUEST statement that establishes the file.

If the file is to be cataloged on a public or private device with a volume serial number known to be the
number of a permanent file device, the VSN parameter should be specified on the REQUEST.

Cataloging a file results in entries in system permanent file tables. The file remains attached to the job and
can be used as any attached permanent file. At the termination of the job that cataloged the file, the system
detaches the file. The job can, but need not, execute a RETURN or UNLOAD function to detach the file.

INTERCOM USAGE

From the terminal, the INTERCOM user can create, attach, and purge permanent files in any of three ways:

By using standard macros within the user's own interactively run COMP ASS program.

By entering the commands ATTACH, CATALOG, etc., as if they were control statements in a batch
INPUT file.

By using the special INTERCOM commands FETCH, STORE and DISCARD. These commands allow
the user to create and use permanent files with certain restrictions.

Files created by the STORE command cannot have any passwords. The only parameters for STORE are
filename and user id. The permanent file name and the local file name are the same. User id is required
according to installation options. If a required parameter is missing, it is requested from the user.

When a permanent file has been created through the STORE command, the user can access it through the
ATTACH or FETCH commands. FETCH parameter requirements are the same as for STORE.

Similarly, the DISCARD command as well as the PURGE command can be used to purge a permanent file
created by the STORE command. DISCARD has the same parameter requirements as STORE, with the ex­
ception that the user .id parameter can be omitted if the file is already attached. Since execution of the
DISCARD control statement involves both a PURGE and a RETURN, the purged file does not remain as a
local file after the DISCARD is executed.

From an INTERCOM terminal, private device sets can be used but not created. The commands MOUNT,
DSMOUNT, etc., can be entered as if they were control statements in a batch input file, LABELMS,
RECOVER, and ADDSET commands cannot be entered from INTERCOM. A MOUNT of the master device
must be the first reference to a device set. After the master has been mounted, the REQUEST command
and the permanent file commands ATTACH, CATALOG, etc., with SN parameters can be used to access
device sets. A file written on a private device set can be made permanent with the STORE command.
FETCH can be used to attach a device set resident permanent file only after a SETNAME command has
been issued. If a private device set resident permanent file has been attached, it can be purged with
DISCARD; if it has not been attached, it cannot be purged with DISCARD.

If an INTERCOM job enters into the permanent file queue because a permanent file request cannot be
honored immediately, the user is informed by one of the following messages.

60493800 L 3-21

I

I

I

I

I

WAITING FOR PF UTILITY

WAITING FOR APF SPACE

WAITING FOR ACCESS TO FILE

WAITING FOR ARCIHVED FILE

WAITING FOR VSN=vsn,8N=setnarne

INTERCOM PERMANENT FILE USE EXAMPLES

In these examples the information output by the INTERCOM system on the terminal display is underlined to
distinguish it from that entered by the user. This does not actually occur on the output. The symbol @
denotes carriage return.

1. COMMANl).STORE.MYFILE 0
ID=RKC @

The installation requires a user id parameter. The user file called MYFILE is made permanent.

2. COMMANl).FETCH,MYFILE,RKC @

COMMANl).DISCARD,MYFILE @

During a later session, the user attaches the file and then purges it.

ACCOUNTING

If the installation chooses, messages are sent to both the system and user dayfiles whenever the status of a
referenced permanent file changes. The messages are as follows:

CATALOG CT ID=narne PFN=pfn
CT CY= cy SN=setnarne n WORDS

EXTEND/ ALTER EX ID=name PFN=pfn
EX CY= cy SN=setname n WORDS

PURGE PR ID=name PFN=pfn
PR CY= cy SN=setname n WORDS

RENAME (old permanent file) NM ID=name PFN=pfn
NM CY= cy SN=setname n WORDS

RENAME (new permanent file) RN ID=name PFN=pfn
RN CY= cy SN=setname n WORDS

3-22 60493800 M

The first two characters of each line identify the permanent ftle function that caused a status change. Other
parameters are:

ID=name Name which identifies the file owner or creator.

PFN=pfn Permanent file name which identifies the file.

CY= cy Cycle number, 1-999, assigned by creator.

n WORDS Amount of mass storage space occupied by the file, given in decimal numbers I
of central memory words.

SN=setname Setname of file if it resides on a public set which is not the PF default.

EXAMPLES

The following examples form a continuous set. Many ATTACH, RENAME, and PURGE examples presume
files established hr CATALOG examples.

CATALOG EXAMPLES

The first set of examples demonstrates initial catalogs; the permanent file name is unique to the ID specified.

1. CATALOG(LFN,LFN,ID=RENOIR)

CAT ALOG(LFN,ID=RENOIR)

These statements achieve the same effect. Any time the permanent file name is omitted, it is assumed
to be the same as the local file name. The cycle number is one.

2. CAT ALOG(LFNl ,PERMANENTFILE,ID=RENOIR,CY=lO)

The first cycle cataloged can have a cycle number greater than one.

3. CAT ALOG(LFN2,PFILE,ID=RENOIR,CY=O)

The cycle number of the permanent file, PFILE, is one since an illegal cycle number is specified. The
cycle number must be 1 through 999. Otherwise, the parameter is ignored.

4. CAT ALOG(W ATER,ULIES,ID=CMONET ,XR=ART)

CATALOG(WATER,LIUES,ID=CMONET,MD=ART,CN=ART,EX=ART)

These control statements demonstrate that the XR parameter has the same effect as the MD, CN, and EX
parameter combination. ART is the password for control, modify, and extend access.

5. CATALOG(AA,B,ID=SEURAT,XR=Y,CN=Z)

CATALOG(AA,B,ID=SEURAT ,MD=Y,EX=Y,CN=Z)

These control statements have the same effect, further demonstrating use of the XR parameter.

60493800 M 3-23

6. CATALOG(C,F,ID=SIGNAC,FO=IS,MD=X,EX=Y)

If a data validity check reveals the file is an indexed sequential, direct access, or actual key file, extend
permission becomes insert permission, and modify permission becomes replace permission. If the file
is not an IS, DA, or AK file, the FO parameter is ignored.

7. CATALOG(LFF,PF,ID=MATISSE,RP=5,CY=4,RD=X,CN=Y ,MD=A,TK=C,AC=777,MR=l)

Since the MR parameter ts non-zero, LFF has only read permission upon catalog completion. The
following items are defined at catalog time.

Read password
Control password
Modify password
Turnkey password
Account parameter
Cycle number
Retention period

x
y
A
c
777
4
5 days

Assuming the previous examples to be successful initial catalogs, the following examples demonstrate new-cycle
catalogs. A file already has been cataloged with the permanent file name and ID specified.

8. CATALOG(Z,LFN,ID=RENOIR)

CATALOG(Z,LFN,ID=RENOIR,CY=2)

These control statements catalog a cycle with a cycle number one higher than the largest (in this case 1).
This new-cycle catalog does not require passwords because a control password was not defined.

9. CATALOG(LFN22,PERMANENTFILE,ID=RENOiR,CY=10)

Assuming a cycle 10 already exists, this control statement causes cycle 11 to be cataloged. An invalid
cycle number is treated as no cycle number. This new-cycle catalog does not require passwords, because
a control password was not defined at initial catalog time.

10. CATALOG(LFF,PF,ID=MATISSE,CY=S,PW=Y)

If a control password is defined at initial catalog, it is necessary to submit the control password using the
PW parameter. Control permission is required to add a new cycle.

. 11. CATALOG(LFF,PFl,ID=PUBUC,PW=XYZ)

A file can be cataloged with an ID of PUBLIC if the public password is submitted, defined by the
installation as XYZ in this example. This enables an installation to define permanent files that can be
attached by all users without specifying an ID.

12. CATALOG(PERMANENTFILENAME,ID=MOREAU)

3-24

A catalog function is attempted using the first seven characters of the permanent file name as the
file name. If the file name is omitted, the first character of the permanent file name must be
alphabetic, or the job is terminated.

60493800 L

ATTACH EXAMPLES

l. ATTACH(LFN,ID=RENOIR)
ATTACH(LFN,LFN,ID=RENOIR)

Assuming catalog example 8 was successful, these two control statements perform the same function. If
the permanent file name is omitted, it is assumed to be the same as the logical file name. Cycle 2 is
attached since that is the highest cycle number.

2. ATT ACH(LF A,PF ,ID=MA TISSE,PW= X,C,EC=K)

Assuming catalog example 7 was successful, cycle 4 of the permanent file, PF is attached with read
and extend permission. During execution the permanent file is referred to by the file name, LF A.
A standard size ECS buffer is established for the file.

3 ATTACH(PERMANENTFILENAME,ID=RENOIR)

An attempt is made to attach the permanent file, PERMANENTFILENAME, under the file name,
PERMANE. The first seven characters must be letters or numbers and begin with a letter if the
file name is omitted in the attach call.

4. MOUNT(SN=SCIFI,VSN=999)
SETNAME(SCIFI)
ATTACH(DUNE,ID=HERBERT)
SETNAME.

or

MOUNT(VSN=999 ,SN=SCIFI)
ATT ACH(DUNE,ID=HERBERT,SN=SCIFI)

Both examples have the same effect, the permanent file DUNE is attached to the job. The master device
of the device set SCIFI must be mounted before this function is issued.

5. ATT ACH(WATER,LILLIES,ID=CMONET ,MR= 1)
ATT ACH(WATER,LILLIES,ID=CMONET)

Assuming catalog example 4 was successful, these two control statements perform the same function
of attaching file WATER with multi-read permission.

RENAME EXAMPLES

1. Assume PFILE was cataloged by owner ABC with read password X, extend password Y, and modify
password Z. Control is granted automatically.

ATT ACH(LFILE,PFILE,ID=ABC,PW=Y,Z,X)

RENAME(LFILE,PFILE2,RD=,CN=W)

The permanent file name PFILE is replaced by PFILE2 (if no other permanent file named PFILE2,ID=
ABC exists). The read password is removed (succeeding users are given read permission automatically)
and a password for control permission is cataloged. The existing passwords for extend and modify
remain unchanged. Since the changes involve the permanent file name and passwords, the changes apply
to all cataloged cycles of the file. This would also have been true if the owner ID had been changed.

60493800 L 3-25 1

2. ATTACH(LFN,ID=UTRILLO)

RENAME(LFN,,ID=UTRILLO,RD=A,RP=9)

RENAME(LFN,LFN,ID=UTRILLO,RD=A,RP=9)

RENAME defines a READpassword for the permanent file LFN, and redefines the retention period.
Omission of the permanent file name in the first RENAME indicates no name change is to occur. The
two RENAME control statements are identical in function. This example also demonstrates that more
than one RENAME function can be issued consecutively.

3. ATTACH(LFN,,ID=SISLEY ,PW=A)

RENAME(LFN,,ID=SISLEY,RD=)

The definition of A as the READ password is removed from the permanent file, LFN.

PURGE EXAMPLES

1. ATTACH(LFN,ID=RODIN)
PURGE(LFN)
or
ATTACH(LFN,ID=RODIN)
PURGE(LFN ,ID= RODIN)

Both sequences perform the same function.

When a purge is performed, permanent file table information for the file is removed, but the file remains
available to the job with permissions existing when it was purged. At least control permission is implied.

2. PURGE(PERMANENTFILENAME,ID=PISSARO)

If the purge is successful, the permanent file, PERMANENTFILENAME, no longer exists. Permanent file
table information for the file is removed. The purge is not successful if the file name is omitted
in the call and the first character of the permanent file name is not alphabetic.

3. PURGE(PERMANENTFILE,ID=RENOIR,LC=l)

Assuming catalog examples 2 and 9 were successful, cycle 10 is purged.

4. ATTACH(FAUVE,PF,ID=MATISSE,PW=Y,C)
PURGE(F AUVE)

Assuming catalog examples 7 and 10 were successful, cycle 5 is purged and remains attached to the job
as a non-permanent file FAUVE with only control permission.

5. PURGE(DUNEMESSIAH,ID=HERBERT ,SN=SCIFI)

3-26

Assuming the master device of the set SCIFI was mounted by this job, the permanent file DUNEMESSIAH
is purged and remains as a local file with lfn DUNEMES.

60493800 L

6. ATT ACH(RED,LASER,ID=LIGHT,PW=CONTROL)
PURGE(BLUE,LASER,ID= LIGHT)

Because the permanent file cycle specified on the PURGE control statement was already attached (with
a different file name), the purge is successful with RED as the resultant local file.

ALTER/EXTEND EXAMPLE

To replace an existing cataloged permanent file by using the ALTER/EXTEND sequence:

ATT ACH(LFN ,PFN ,ID=WHO,PW=MD,EX)
REWIND(LFN)
ALTER(LFN)
COPYBF(NEW,LFN)
EXTEND(LFN)

EX TEN OED CORE STORAGE FILES

passwords for modify and extend are required

release old permanent file data
write new data
make new data permanent

Extended core storage (ECS) can be used to buffer files and/or store files (as ECS resident files). Each file so
designated is assigned a single buffer in the ECS paged partition. This paged buffer is assigned pages up to the
limit specified by REQUEST or ATTACH. User input/output through ECS buffers or to an ECS resident file is
performed in the same manner as any other mass storage input/output. ECS buffered files are more flexible than
ECS resident files since ECS resident files are not allowed to overflow to other mass storage devices.

ECS BUFFERED Fl LES

Sequentially accessed mass storage files on public device sets can be buffered through ECS to avoid the costly
access time of rotating mass storage devices each time a small amount of information is transferred. In order to
optimize the access to such devices, a larger amount of information is transferred between the device and ECS at
the time of each access. For each CIO call, regular smaller transfers between ECS and the user central memory
buffer take place at a high transfer rate without mass storage device access.

The information read ahead (input file) or waiting to be written (output file) is stored temporarily in an ECS
buffer. The underflow and overflow functions for these ECS buffers are performed automatically by the system.
On a write function, system programs transfer data from the file's circular buffer in central memory to the ECS
buffer. When the ECS buffer is filled to the maximum size defined by REQUEST or ATTACH, it is written to
mass storage. On a read, the ECS buffer is filled in advance from disk, and data is transferred to the circular
buffer in central memory as the circular buffer is emptied.

The ECS buffers are requested on a file-by-file basis through the REQUEST control statement or macro, or
through an ATTACH statement or macro. A different buffer size can be specified for each file if the standard
buffer size is not desired.

The data contained in an ECS buffer is written to a mass storage device only if the file is closed or exceeds the
limit of the ECS buffer.

For optimum performance, the ECS buffer should be many times the size of the user's CM circular buffer.
This ensures that the system overhead associated with ECS buffer management is small compared to the time
saved as a result of performing fewer device accesses. Suggested relative buffer sizes are:

60493800 L 3-27

CM Circular Buffer

I 000 octal words or less
1001 - 2000 octal words
2001 octal words or more

ECS Buffer

10000 octal words or less
10000 - 20000 octal words
20000 octal words or more

For 1/0 bound programs using large central memory circular buffers there is little advantage in using 1/0
buffering. In general, an 1/0 buffer can be used to reduce the central memory buffer size while maintaining
the high transfer rates associated with having large central memory circular buffers. Throughput on 1/0
buffered files is primarily a function of the ECS buffer size, rather than the central memory circular buffer
size.

If an unrecovered ECS parity error is encountered with the error processing (EP) bit set, control is returned
to the user program with the error noted in the code and status field of the FET. If the error occurs with
the EP bit off, a GO or DROP decision is required of the operator.

ECS RESIDENT FILES

This facility is provided as an installation option selected when the system tape is built. Except for some
specific applications where a faster, limited rotating mass storage device is needed, it is generally preferable
to use the 1/0 buffering scheme instead of ECS resident files. 1/0 buffering allows an overall optimization
of the system.

Nevertheless, under this option any non-permanent sequential or random file can be ECS resident. ECS
resident files are requested on a file-by-file basis. REQUEST has the same format as the one used for buffer
allocation with the addition of the device type mnemonic of AX. If no EC parameter is present on the
REQUEST, the file is limited to the default 1/0 buffer size specified at deadstart time. Otherwise, the EC
parameter specifies the file size limit.

When an overflow occurs, i.e., all ECS pages are allocated or the maximum file size is exceeded, an error code
10 {device capacity exceeded) is stored in bits 9-13 of the code/status field and control is transferred to the
user if the EP bit is set; otherwise, the job is aborted.

NOTE

If ECS is turned off, all requests for ECS buffers are ignored and the
files requested on ECS are allocated on other mass storage devices.

MAGNETIC TAPE FILES

A single reel of magnetic tape is known as a volume. A volume set can consist of:

A single file on one volume

A multifile set on a single volume

A multivolume file extending over more than one volume

A multivolume, multifile set extending over more than one volume

I 3-28
I

60493800 L

All information on a magnetic tape begins after a physical reflective spot known as the load point. When this
is sensed by a photoelectric cell, the tape is at its load point. Another physical reflective spot appears near
the end of all tapes, which warns the software to initiate end-of-tape procedures.

The structure of a tape file, such as the number of characters in a block and the definition of end-of-information,
is affected by these characteristics:

Physical recording is 7-track or 9-track

Format is SI format (standard system format), S format, or L format

Standard labels exist or do not exist

.See appendix C for a summary of tape characteristics.

The default tape characteristics assumed by the system are an unlabeled 7-track tape recorded at an installation­
defined default density in SI format. Any other tape density, format, or label must be explicitly declared by
a REQUEST or LABEL statement.

TAPE IVIARKS

A tape mark is a short record used on SI tapes to separate label groups and. files from label information. On
S and L tapes, it can also separate files in addition to separating label groups. Interpretation of multiple tape
marks depends on the tape format. The format of a tape mark is defined by the ANSI standard, described
later in this section. These tape mark records are written by operating system routines. On S and L tapes,
tape marks can be written by the COMPASS macro WRITEF.

DATA FORMAT

Three data formats exist:

SI System default format

S Stranger tape format

L Long stranger tape format (supported on 667, 669, 677, and 679 tape drives only)

SI format is assumed unless an F=S or F=L parameter appears in a LABEL control statement or S or L is
explicitly declared on a REQUEST control statement. Both binary and coded data can be recorded in any of
these formats.

60493800 L 3-29 I

I

SI TAPES

SI format tape is the system standard. The structure of information on these tapes corresponds to the struc­
ture of files on rotating mass storage. Each block on the tape is a physical record unit, with the end of a
system-logical-record defined by the presence of a short or zero-length PRU.

The size of a PRU on tape depends on whether the data is written in coded or binary mode:

For coded tapes, a PRU is the contents of 128 central memory words.

For binary tapes, a PRU is the contents of 512 central memory words.

The short or zero-length PRU that terminates a record is less than full PRU size.

Each system-logical-record is terminated with a 48-bit marker that contains a level number. The marker is
appended to the data in the peripheral processor when the tape is written and stripped from the data when
the tape is read. Only data passes from the tape to a user program in central memory.

A level number of 17 8 indicates an end-of-partition. Level 17 8 is always written as a zero-length PRU.

When an output file on an SI tape is closed, the operating system appends up to four items: a level 17 8
zero-length PRU,t a single tape mark, trailer label information for both labeled and unlabeled tapes, and a '
double tape mark. The file is then positioned to the beginning of the single tape mark. If more information
is written to the tape, only the level 17 8 marker indicating an end-of-partition remains. If the tape is rewound
or unloaded, the four items exist to define end-of-information.

The SI tape structure that results from a request for an unlabeled tape is as follows:

File
------~--.... ____ _........____~------~------

Load Point

Partition

Level 17 8 Marker

Tape Mark

End·of-Tape Reflector

17 *
EOF1

Trailer
Label

* *

~

Double
Tape Mark

tThe presence of a level 17 8 PRU depends upon the procedures the programmer uses to close the file
(for example, a COBOL CLOSE or a FORTRAN ENDFILE statement writes the level 178 PRU).

3-30
60493800 L

The SI tape structure that results from an unlabeled tape in which the file specified on the REQUEST control
statement is opened and closed four times is as follows:

File ----------_ ______ __
Partition 17 Partition 17 Partition 17 Partition 17 *

11

Tape Mark/

End-of-Tape Reflector~

EOF1
Trailer
Label

* *

-~

Double Tape Mark

The same structure is obtained when the program opens the file, writes data and issues an instruction to write
an end-of-partition, repeats the data and partition instructions three more times, then closes the file.

Coded information is written on 7-track SI tape in external BCD format shown in appendix A. On a 9-track
SI tape, data is written in packed (binary) mode for both coded and binary data. Only full central memory I
words can be written or read on 7- or 9-track SI format tapes. (Refer to Tape Format in appendix C .)

SAND L TAPES

Data on S and L tapes is written in physical blocks separated by interblock gaps. S tape blocks are longer
than noise size and shorter than or equal to 512 central memory words. L tape blocks are longer than noise
size and shorter than the user buffer for the tape.

Neither S nor L tapes contain system-logical-records of various levels as do SI format tapes. The only records
are the physical blocks; and the file is physically delimited by tape marks. The last file on an unlabeled S or
L tape is terminated by four tape marks, but these are not recognized as end-of-information in the same sense
as a label. The user must use the four tape marks, or marks within the data, to recognize end-of-information
and initiate end-of-information processing.

The S or L tape structure that results from a request for an unlabeled tape when the file is opened and
closed three times, or is opened once and has three partitions written before the file is closed, is as follows:

File

Partition * Partition

Load Point Tape Mark

* Partition

Tape Mark

* * * *

..... __ ..._v-,... ___

4 Tape Marks
Terminating
Information

On a labeled S or L tape, an EOFI label replaces the second terminating tape mark. The system recognizes
the EOFI label as end-of-information for the tape and initiates end-of-information processing as indicated by
the user.

Noise size, nominally 6 characters for both S and L tapes, can be changed by the installation. Blocks shorter
than or equal to noise size are not delivered to the user on read operations. An attempt to write a block
shorter than or equal to noise size causes an error.

60493800 M 3-31

In COMPASS, the maximum logical record size (MLRS) and unused bit count (UBC) fields in word 7 (lfn+6)
of the FET should be declared when S or L tapes are processed. MLRS declares the maximum number of
60-bit central memory words in the block. The last word might not be full of data since S and L tape
blocks are measured in characters instead of words. UBC must declare the number of bits not used in the
last transmitted word. On a write operation, the operating system rounds down the UBC so that an integral
number of charactc.rs are written. The discussion of the FET fields that appears in section 6 explains these
concepts in more detail.

If the MLRS and UBC are not declared, the system assigns default values. The default for UBC is zero. The
default for MLRS is 512 words for S tapes and two words less than the user buffer size for L tapes.

SEVEN-TRACK VERSUS NINE-TRACK TAPES

Both seven-track and nine-track 0.50-inch magnetic tape can be processed by the operating system. Parameters
on REQUEST and LABEL statements differ for recording densities, data format, and character conversion.
Otherwise, label characteristics and tape usage are the same for both, except that nine-track L tapes are
supported only on 669 and 679 tape drives.

SEVEN-TRACK TAPE

Seven-track tapes are processed by 667 and 677 tape drives. Data can be recorded in three densities:

Lot 200 bpi (low)

HI 556 bpi (high)

HY 800 bpi (hyper)

Installation-defined default densities are used for reading unlabeled tapes and writing both labeled and unlabeled
tapes in the absence of explicit declaration. The density of the label determines data density for reading
labeled input tapes. However, it is always advisable to specify density because of the reading peculiarities of
the tape drives. A tape label can be read at an incorrect density without causing a parity error. Longer data
blocks read at an incorrect density cause parity errors.

On a REQUEST statement, MT explicitly defines this tape as seven-track; LO, HI, or HY provides an implicit
definition. On a LABEL statement, seven-track is assumed unless nine-track is specifically declared.

NINE-TRACK TAPE

Nine-track tape is processed on Control Data 669 and 679 tape units. On a REQUEST control statement, an
NT parameter explicitly specifies a nine-track tape. On both REQUEST and LABEL control statements, a
density specification of HD, PE, or GE implicitly specifies a nine-track tape and the NT parameter can be
omitted.

tData cannot be written at 200 bpi on 667 or 677 tape drives although both drives can read 200 bpi tapes.

3-32 60493800 L

Under hardware control, nine-track tapes are always read at the density at which they were written. Writing
density is determined by an installation default or by the density parameter on the REQUEST or LABEL

control statement. Density parameters are:

HD 800 cpi (high density) applies to 669 and 679 tape drives

PE 1600 cpi (phase encoded) applies to 669 and 679 tape drives

GE 6250 cpi (group encoded) applies to 679 tape drives

Data on SI format nine-track tape appears in memory as it exists on tape. Data is not converted while being

transferred between devices.

When s or L format nine-track tapes are written or read, processing depends on whether the tape is binary
or coded. Binary tape processing is the same as SI format tape processing, with no conversion. Data on
coded s and L tapes is converted between the tape and memory. Data in the user buffer in central memo?'
is assumed to consist of a string of 6-bit display code characters. The display code characters are mapped mto
8-bit characters when written to the tape. The 8-bit characters can be a subset of either ASCII or EBCDIC,
as specified by the REQUEST or LABEL control statement. Conversion from 8-bit characters to 6-bit
characters takes place when the tape is read in conversion mode. The parameters on the REQUEST or
LABEL control statement that select conversion mode are as follows:

US ASCII conversion

EB EBCDIC conversion

TAPE LABELS

Labels on a tape consist of 80-character records that identify the volume of tape and files it contains. They
are the first records after the load point marker. Labels can appear on all tapes. A lab~l record has a
particular format. The first four characters of the label are VOLl. Any tape that begins with characters
other than VOLl is considered to be unlabeled. The tape label characters are written in 6-bit external BCD I
on 7-track tapes, and in 8-bit ASCII or EBCDIC on 9-track tapes.

Two types of labels are recognized:

Standard system labels conform to labels defined by the American National Standard, Magnetic Tape
Labels for Information Interchange, X3.27-1969. Density of the label is the same as the density at
which the data on the tape is recorded. Standard system labels are requested with a U parameter on
a REQUEST control statement or macro. On a LABEL control statement or macro, the absence of a
Z parameter requests a standard label.

Z labels conform to an earlier ANSI standard in which the density of the label and the density of the
data were not necessarily the same. Z labels are similar to standard labels, except that character 12 of
the VOLl specifies the density of the data. When a Z-label tape is being read, the system changes the
read density, if necessary, during label processing. When a Z label is written, the system treats a Z
label as a standard label. Z labels are requested with a Z parameter on a REQUEST or LABEL control
statement or macro.

Labeled tapes provide the following advantages for the user.

When a write ring is left inadvertently in an input tape reel, software checking ensures that no part of
the tape is overwritten without the express permission of the operator.

60493800 M 3-33

The number of blocks written on a file is recorded in the file trailer label, as well as in the job dayfile.
On subsequent file reading, the count serves as additional verification that data was read properly.

The volume number field of the label ensures processing of all volu:mes in the proper sequence.

Multifile volumes with ANSI labels can be positioned by label name, rather than by file count only.

The volume serial number of any ANSI label read or written is recorded in the dayfile.

Overall job processing time is reduced when the system can use the VSN field to locate and assign a tape
to the requesting job without operator action at the keyboard.

The maximum benefit from the operating system tape scheduling and automatic tape assignment features can be
derived only if all magnetic tapes used at an installation are labeled.

ANSI defines the following types of labels. The first three characters identify the label type; the fourth
character indicates a number within the label type.

Type No. Label Name Used At Operating System Proc~ing

VOL 1 Volume header label Beginning of volume Required

UVL 1-9 User volume label Beginning of volume Optional

HDR File header label Beginning of file Required

HDR 2-9 File header label Beginning of file Optional

UHL t User header label Beginning of file Optional

EOF 1 End-of-file label End of file Required

EOF 2-9 End-of-file label End of file Optional

EOV I End-of-volume label End of volume Required when appropriate
EOV 2 End-of-volume label End of volume Required when appropriate
EOV 3-9 End-of-volume label End of volume Optional
UfL t User trailer label End of file Optional

Table 3-3 shows the contents and defaults of label fields. All 11equired labels are checked by the operating
system on input and generated by the operating system on output if the user does not supply them. The
user must supply all desired optional labels to the operating system. Optional ANSI label types are accepted
for reading or writing when extended label processing capabilities are requested through the XL bit of the ·
file environment table, as explained in section 6. However, all manipulating of such labels must be done by
user code. The NS parameter of REQUEST or LABEL inhibits operating system processing of labels on S
or L tape.

t Any member of Control Data 6-bit subset of ASCII character set.

3-34 60493800 L

Character
Position

1-3

4
5-10

Volume
Header
Label 11

12-31

32-37

38-51
52-79

80

1-3

4

5-21

22-27

28-31

First
File 32-35

Header
Label

36-39

40-41

42-47

48-53

54

55-60

61-73

74-80

60493800 M

TABLE 3-3. ANSI ST AND ARD TAPE LABEL FORMATS

Field
ANSI Name

Contents
Default

(NOS/BE 1 Name}
Length

Written

1 Label Identifier 3 VOL VOL

2 Label Number 1 1 1

3 Volume Serial 6 Any As typed from
Number characters console

4 Accessibility 1 Space Space

5 Reserved 20 Spaces Spaces

6 Reserved 6 Spaces Spaces

7 Owner ID 14 Any characters Spaces

8 Reserved 28 Spaces Spaces

9 Label Standard 1
1 1

Level

1 Label Identifier 3 HOR HOR

2 Label Number 1 1 1

3 File Identifier 17 Any Spaces
(file Label characters

Name I

4 Set Identification 6 Any Volume Serial
(Multi-File Set characters Number of

Name) first volume of set

5 File Section 4 4 digits 0001
Number indicating number

(Volume Numbed of volume in
file

6 File Sequence 4 4 digits 0001
Number indicating num-
(Position ber of file in
Number) multi-file set

7 Generation 4 Spaces
Number

Not used

8 Generation 2 2 digits· 00
Version Number indicating the

(Edition Numberl edition of file

9 Creation Date 6 Space followed Current date

by 2 digits for year, is used

3 digits for day

10 Expiration Date 6 Same as field 9 Same as field 9

11 Accessibility 1 Any characters Space
12 Block Count 6 Zeros Zeros
13 System Code 13 Any characters Spaces

14 Reserved 7 Spaces Spaces

Checked
On Input

Yes

Yes

Yes if file
assigned
by VSN

No

No

No

No

No

No

Yes

Yes

Yes

No

Yes

Yes

No

Yes

Yes

Yes

No

Yes

No

No

3-35

I

I

I

I

I

I

I
f
I

I

I

'
I
I

TABLE 3-3. ANSI STANDARD TAPE LABEL FORMATS (Contd)

Character
Field

ANSI Name
Length Contents Default Checked

Position (NOS/BE 1 Name) Written On Input

1-3 1 Label Identifier 3 HOR HOR Yes
Additional

2 Label Number 2-9
File Header

4 1 2-9 Yes

Labels All other fields are not checked on input; they are written as received from user.

1-3 1 Label Identifier 3 EOF EOF Yes

4 2 Label Number 1 1 1 Yes

5-54 3-11 Same as corres-
ponding HOR 1

First
label fields

End-of- 55-60 12 Block Count 6 6 digits: Yes

File Label number of data
blocks since

last HOR label
group

61-80 13-14 Same as corres-
ponding HORl

label fields

Additional 1-3 1 Label Identifier 3 EOF EOF Yes

End-of-File 4 2 Label Number 1 2-9 2-9 Yes
Labels All other fif!lds are not checked on input; they are written as received from user.

First 1-3 1 Label Identifier 3 EOV EOV Yes

End-of-Volume 4 2 Label Number 1 1 1 Yes
Label All other fields are identical to EOF1 label.

Second t 1-3 1 Label Identifier 3 EOV EOV Yes
End-of- 4 2 Label Number 1 2 2 Yes
Volume
Label 5-10 3 Next VSN 6 6 characters No default Yes

Additional 1-3 1 Label Identifier 3 EOV EOV Yes
End-of- 4 2 Label Number 1 3-9 3-9 Yes
Volume
Labels All other fields are not checked on input; they are written as received from user.

USER
1-3 1 Label Identifier 3 3 letter code: UVL, UHL, or UTL Yes

Labels 4-80 Any characters. Content of these fields is not checked on input;
content is written as received from the user.

tThe second end-of-volume label conforms to ANSI standards but is not a standard ANSI label.

-j

3-36 60493800 M

STANDARD LABELED TAPE STRUCTURE

The first four ANSI labels are required and the fifth ANSI label is written by the system but is not
required to read the file. They are used as follows (tape marks separating items are completely system
controlled):

VOLi

HDRl

EOFl

EOVl

EOV2

Must be the first label on a labeled tape volume. This label contains the volume serial
number which uniquely identifies the volume.

Required label before each file or continuation of a file on another volume. It is
preceded by a YOU label or tape mark. Each file must have a HDRl label which
specifies an actual position number for multifile sets.

Terminating label for file defined by HDRl label. The EOFl label marks the end-of­
information for the file. A single tape mark precedes EOFl. A double tape mark
written after the EOFl label marks the end of a multifile set.

Required only if physical end-of-tape reflector is encountered before an EOFl is
written or if a multifile set is continued on another volume. It is preceded by a
single tape mark and followed by an EOV2 label or a double tape mark.

Written after the EOVl label by the NOS/BE operating system. This label is
not a required ANSI label. When the EOV2 label is present, it contains the
VSN of the next reel in the multireel set. The user can either specify the
VSNs for the set with a VSN statement before the tape is written or let the
operator assign the VSNs when the tape is written.

The EOV2 label is preceded by an EOVl label and followed by a double
tape mark. An EOV2 label is not required to read a multireel set.

The structure of SI tapes that results from these required labels is shown as follows. The label identifier
and number is used to denote the entire 80-character label in these figures.

Single volume file:

Load Point
,..----Tape Mark-----.

VOL1 HDR1 * FILE A

Multi-reel file:

F~A 1 · 1

~

1 · 1
VOL1 HDR1

~

f\J

I · I VOL1 HDR1 FILE A (Continued)

Wda -'\;

60493800 L

*

I

End-of-Tape Reflector

EOF1 * *

~

Double Tape Mark

EOV1 EOV2 I * I · I

I 1 · 1 · 1

~
* EOF1

I

3-37

Multifile volume structure that results from a request for a multifile set is:

VOL1 HDR1 * FILE A * EOF1 * HDR1 * FILE B * EOF1 * *

Multifile multivolume sets are also possible. Tape label configuration that occurs when EOFI coincides with
end-of-volume is defined in the ANSI standard.

LABELED MULTIFILE SETS

A multifile set consists of one or more files on one or more volumes of tape. Individual files can be accessed
by name, even though their order is not known.

Labeled multifile sets require the use of both REQUEST and LABEL statements. (LABEL statements are not
required if the program can generate these fields internally.) REQUEST specifies the tape characteristics;
LABEL produces the file header for individual files. LABEL must specify the set name as the M parameter.
This set name is limited to six characters and must be different from any local file name. The utility routine,
LISTMF, is available to list the labels of all files in an existing set. LABEL can be used to position within a
set when a position number is used in the parameter list.

To create a labeled multifile set, the following parameters should be used (parameters after the first can appear
in any order). The label type must be U.

REQUEST(mfn,MF,U,RING, ...)

LABEL(lfn1 ,M=mfn,W, ...)
LABEL(lfn2,M=mfn,W, ...)

Program call to create lfn 1
Program call to create lfn2

The mfn parameter is the name of the multifile set, 1-6 letters and digits beginning with a letter. This param­
eter associates the file with a particular set; all files in the set must reference it. Also, mfn cannot be used in
any I/O request except as the M parameter in LABEL or POSMF requests or as the name of a multifile set on
a RETURN or UNLOAD control statement.

RING/NORING parameters on REQUEST for the multifile set determines the RING status for all processing
of that set. RING/NORING parameters are ignored on LABEL used to position a multifile set.

On REQUEST, the MF parameter designates the first parameter to be a multifile name rather than a
file name. The U parameter causes standard labels to be produced. Other parameters should establish tape
density and format for the entire multifile set. On LABEL, density and format parameters are ignored.
REQUEST can include a VSN parameter.

LABEL is recommended for each file. In addition to required lfn and M parameters, optional parameters
describing file header fields can appear. If a position number is not given with the P parameter, it is assumed
to be one larger than that of the previous file; and the new file is written at the end of the current set.
When an L parameter is used in creating a file header, future jobs can access the file by label name.

To access a labeled multifile set, a REQUEST control statement is needed to attach the set to the job. A
LABEL control statement (either U or Z) need appear only for the file to be accessed. For example, to
access the third file on a volume, use the following statements.

' 3-38 60493800 L

REQUEST(MANY,MF,U,E,NORING ...)

LABEL(FILE3,R,M=MANY,P=3, ...)

When an R is specified on a LABEL statement, the set is positioned according to the P parameter, an OPEN
function is issued to read the label, and the contents are checked against any corresponding parameters on the
LABEL statement. Use of L instead of P causes the tape to be searched for a matching label name. If a
match cannot be found, a message, FILE NAME NOT IN MULTI-FILE SET, is issued and processing stops.
The same message appears also when neither P nor L is given and the end of the device set is encountered.
When R is not specified, the next file in the set is opened when P and L are both omitted.

Writing on a multifile can be done at the end of the existing set. At some point prior to the end, existing
files can be overwritten. For example, to create a new file LASTONE, use

LABEL(LASTONE,W,M=MYSET ,L= LAST)

Since P is omitted, the label is written at the end of existing files and given a position one greater than the
last file.

If a position number is given when a label is to be written, the file is positioned as requested. If a label
exists at that point, its expiration date is checked. A new label is not written over the existing one unless it
is expired or the operator authorizes writing over an unexpired label. Since rewrite-in-place is not defined for
tapes, rewriting a file label destroys access to the associated file and all files following it on the tape.

The assignment of a multifile can proceed automatically with the use of a VSN under the following conditions:

VSN statement or parameter equates the multifile name to the physical volume of tape.

VSN(mfname= 1234)
or

REQUEST(mfn, ,VSN=l234)

A REQUEST statement is used to assign the multifile name to the job.

REQUEST(mfname ,MF)

A LABEL statement is used to identify the specific file by label name, equate the file to the logical file
name, and identify the file as being a multifile set member.

LABEL(lfn,M=mfname,L=lfn,)

Once the multifile name has been assigned to the job via the REQUEST statement, any file can be accessed
individually via the LABEL statement. The execution of a new LABEL statement automatically prevents the
preceding labeled file from being accessed.

USAGE SUMMARY

Magnetic tape files to be used or created by a job must be explicitly requested. The three control statements
involved are REQUEST, LABEL, and VSN.

The REQUEST statement can be used for all tape files (labeled, unlabeled, single file, or multifile set).
Parameters, in addition to specifying format and density, can specify processing for the file. Identifying the

60493800 L 3-39 I

tape as input or output and the type of label is sufficient to initiate label processing and checking when the
file is opened. The installation default options for unloading, label processing, and parity error processing can
be overridden. A volume serial number parameter for the volume {or first volume in multivolume file) allows
the system to assign the file automatically.

The LABEL statement can be used in place of a REQUEST statement for a labeled, single file volume and to
write or check file header labels on single or multifile volumes. Parameters establish label type and whether
labels are to be read or written. Fields in file header (HDRl) labels are written or checked according to the
values specified. If a multifile volume is to be labeled, a REQUEST statement must first establish the
multifile name, then a LABEL statement can exist with the name and label field values for each file in the
set. With LABEL, either a volume serial number or a label name can be given for identification for automatic
tape assignment purposes. Automatic assignment by label name applies only when the read {R) parameter is
specified by LABEL The LABEL statement also can be used to position to a particular member of a multi­
file set.

A LABEL statement can follow a REQUEST statement for the same file. Conflicts in parameters are resolved
in favor of the REQUEST statement. Unresolvable conflicts are referred to the operator.

The VSN statement can be used to equate a file name with a volume serial number so that the system can
assign a mounted tape automatically when it is requested by a REQUEST or LABEL statement or function.
The VSN for multifile set or for alternate volumes can be stated. Since the system accepts the first VSN
equated to a file name, a VSN preceding a REQUEST or LABEL statement overrides any VSN value or
supplies the omitted parameter. This VSN information is independent of label information. It is not written
or checked against label fields.

Automatic tape assigning capabilities, which are selectable by installation options, speed job throughput when
the programmer supplies information to allow assignment of mounted tapes without operator action. The
system searches first for an eq parameter, then a VSN parameter, then a label name from among the control
statements. If both the VSN and label name parameters are specified, only the VSN is used for automatic
assignment. However, label verification proceeds separately and inconsistencies are brought to the attention of
the operator for action. The operator has the option of assigning a VSN to a tape when it enters the system
if such identification was not made by the programmer.

For a multivolume file EOV2 labels, a VSN statement, or operator commands, identify the VSNs of the
continuation reels. A labeled tape or an unlabeled SI format tape may have an EOV2 label placed after
the EOVl label. This label contains the VSN of the next reel. The VSN in the EOV2 label is the VSN
specified by a previous VSN statement or the VSN specified by the operator. If the user wants to over­
ride existing EOV2 labels or if no EOV2 labels exist, the user should enter a VSN statement to identify
the VSNs of the continuation reels. When the job's tape file requirements change frequently, the user
should specify the VSN statement so the operator knows the required tapes. An operator can specify
a VSN and it will override both an EOV2 label and a VSN statement.

If more than one VSN parameter is given for a single file, the first encountered is accepted. Therefore,
deliberate duplication provides the programmer with the ability to override, for example, a REQUEST function
specification within a program without changing the program.

The maximum number of tape drives a job uses at any time is specified by the MT (seven-track) and NT, HD,
PE, and GE (nine-track) tape parameters on the job statement. Specifying more tapes than are needed can
delay execution of a job. The greatest delay results from specifying a number of tapes when the job does
not use any tapes. Specifying fewer tapes than needed causes the job to abort. Depending on installation
options for tape scheduling and default density {refer to the NOS/BE Installation Handbook), for nine-track
tapes, the job statement density request and the density specified on the LABEL or REQUEST statement
must be the same.

3-40 60493800 L

PRINT FILES

Print files contain a disposition code indicating printer output. The file OUTPUT always is a print file.

Print files must have the following characteristics.

Characters must be in 6-bit display code (IC=DIS) or 8-bit ASCII (IC=ASCII). Display code files
contain ten 6-bit characters per 60-bit CM word. Eight-bit ASCII files contain five 8-bit characters
right justified in each 12-bit byte. Bits 7-11 of each 12-bit byte are ignored. IC is declared with the
ROUTE control statement or macro.· Default is DIS. Files to be printed with an extended print
train (more than 64-character character set) must be in ASCII.

The end of a print line must be indicated by a zero byte in the lower 12 bits of the last central
memory word of the line. Any other unused characters in the last word should be filled with binary
zeros. For example, if the line has 137 characters (including the carriage control character), the last
word would be aabbccddeeffggOOOOOO in octal; the letters represent the last seven characters to be
printed in the line. No line should be longer than 137 characters.

Each line must start at the high order end of a central memory word.

The first character of a line is the carriage control, which specifies spacing as shown in the following
table. It is never printed, and the second character in the line appears in the first position. A maximum
of 137 characters can be specified for a line, but 136 is the number of characters that is printed.
Table 3-4 shows carriage control characters.

When the following characters are used for carriage control, no printing takes place. The remainder of
the line is ignored.

Character Action

Q Clear auto page eject (JANUS default).

R Select auto page eject.

s Clear 8 vertical lines per inch.

T Select 8 vertical lines per inch.

PM Output remainder of line (up to 30 characters) on the B display and the
dayfile and wait for the JANUS entry /OKxx.

v Specifies a new carriage control array to be loaded for a 580 printer.

The remaining carriage control characters to not inhibit printing. Only the carriage control character is not
printed. Any preprint skip operation of 1, 2, or 3 lines that follows a postprint skip operation is reduced
to 0, 1, or 2 lines.

The functions Sand T should be given at the top of a page. In other positions Sand T can cause
spacing to be different from the stated spacing. Q and R need not be given at the top of a page as
each causes a page eject before performing its functions.

60493800 L 3-41 I

TABLE 3-4. CARRIAGE CONTROL CHARACTERS

Character Action Before Printing Action After Printing

A Space 1 Skip to top of next page t
B Space 1 Skip to last line of page t
c Space 1 Skip to channel 6
D Space 1 Skip to channel 5
E Space 1 Skip to channel 4
F Space 1 Skip to channel 3
G Space 1 Skip to channel 2
H Space 1 Skip to channel 11
I Space 1 Skip to channel 7
J Space 1 Skip to channel 8
K Space 1 Skip to channel 9

'
L Space 1 Skip to channel 10
1 Skip to top of next page t No space
2 Skip to last line on page t No space
3 Skip to channel 6 No space
4 Skip to channel 5 No space
5 Skip to channel 4 No space
6 Skip to channel 3 No space
7 Skip to channel 2 No space
8 Skip to channel 11 No space
9 Skip to channel 7 No space
x Skip to channel 8 No space
y Skip to channel 9 No space
z Skip to channel 10 No space
+ No space No space
0 (zero) Space 2 No space
- (minus) Space 3 No space
blank Space 1 No space

tThe top of a page is indicated by a punch in channel l of the carriage control tape. The
bottom of page is channel 7.

3-42 60493800 L

The V function can be used when assigning output to a 580 printer with programmable format control. Such
a printer does not use carriage control format tapes; instead it contains a microprocessor plus memory.
Programmable format arrays are loaded into this memory, performing the same function as the format tape.
System defined arrays are available for use (see the ROUTE control statement in section 4); however, the
V function allows a user-specified array to be used. When V is the first character of the line, 6, 8, or C may
be specified as the second character. Other characters invalidate the function. If the second character is
6, 6-line per inch spacing is indicated. If the second character is 8 or C, 8-line per inch spacing is indicated.
An 8 means that the entire array is contained on one line, and a C means that two lines are used. When
two lines are used, there are no restrictions as to how the array is split, but both lines must begin with the
characters VC. The data starting in column 3 defines the format array to be used in subsequent printing.
The alphabetic characters A through L, the letter 0, and blanks are specified to indicate the following.

Character

A

B
through

K

L

0

blank

Significance

Top of forms code; the array must begin with an A.

Channels 2 through 11, respectively. Other carriage control characters contained
in table 3-3 are used to skip to these channels. Therefore, each of these letters
should be specified at least once in the array.

Bottom of forms code.

End of the array; must be specified as the last character in the array. However,
it does not correspond to any line on the form.

No channel. Blanks increase the number of lines on the form.

Any other characters are illegal and invalidate the array.

Regardless of whether the array is contained on one or two lines, a maximum of 132 characters plus the end
of array terminator is allowed in a 6-line per inch array, and a maximum of 1 76 characters plus the end of
array terminator is allowed in an 8-line per inch array. An array may be less than the maximum length since
the printer loops on what is specified, even if it is not a full page.

NOTE

Specifying a V (with 6, 8, or C) does not imply that 6- or 8-line per inch mode will be
selected. If the user desires to change this mode, the S or T carriage controls must be
used. If an array is indicated in a mode other than that previously specified by the S or T
carriage controls, the array is ignored until the S or T carriage controls are used to change
that mode.

If the V carriage control is specified and the printer is not a printer with programmable format control, the
printer page ejects and does not print the line(s).

60493800 L 3-43 I

The following examples illustrate typical carriage control output and its effect.

I.

2.

3.

4.

5.

column
array

123456789012345678901234
V6A B C D EFGHI JK 0

This causes the 6-line per inch buffer to be loaded with a 22-character array, implying a 21-line form.

column
array

I 23 45 6 789 0 123 4
V8ABCDEFGHI J KO

This causes the 8-line per inch buffer to be loaded with a 12-character array, implying an I I-line form.

column 12345678901234567
array VCA B D C

VC E F G HI JK 0

This causes the 8-line per inch buffer to be loaded with a 22-character array, implying a 21-line form.

column I 2345 6
array V6BCDO

This is invalid because the array does not begin with an A.

column I 234567 89
array VBA C DEO

This is invalid because the second character is not a 6, 8, or C.

6. column
array

I 2345 6
V8ABWC

This is invalid because W is an illegal character and the array does not end with an 0.

3-44 60493800 L

JOB CONTROL STATEMENTS 4

This section describes the control statements applicable to program execution and file manipulation. Utilities
are also presented. The first statement described is the job statement that begins the job. Remaining control
statements are in alphabetical order.

In the formats that follow, uppercase letters indicate constants and lowercase letters indicate values to be
supplied by the user. Equal signs and slashes are required where they are shown within a parameter field.

CONTROL STATEMENT SYNTAX

All control statements, except the job statement that begins a job, have the same general format. They begin
with a verb and are followed by parameters separated by separator characters. A terminator must follow the
last parameter or the verb when no parameters are given. Blanks within the parameter list are ignored, except
possibly on the ACCOUNT statement (depending on the installation).

Verbs

Separators

Parameters

Terminators

1-7 letters or digits that indicate-the operation to be performed. Leading blanks
can appear before the verb. The first character must be a letter. A blank
immediately following the verb serves as a separator.

A separator is any character with a display code value greater than 448 except
*) . $ and blank. (A blank can be used to separate the verb from the first param­
eter.) The comma and left parenthesis are preferred separators. Refer to appendix A
for display code values.

Parameter format and order depends on the individual control statements. Some
parameters have more than one field. Fields within parameters are separated by = /

or commas.

If a parameter field includes characters other than letters, digits, or asterisks, it must
be written as a literal. A literal is a character string delimited by dollar signs.
Blanks within the literal are significant. If the literal is to contain the character
$, two consecutive -dollar signs must be written. The literal $A B$$41$ is inter­
preted as A B$41.

Terminators are the characters period and right parenthesis.

Any characters after the terminator are treated as a comment. They appear on the job dayfile when the con­
trol statement is listed.

Certain control statements can be continued on one ore more cards or lines. These statements are specifically
noted in the following descriptions. (Refer to the appropriate product reference manual to determine which
system programs allowscontinued control statements.) In general, the last nonblank character of the card
or line to be continued must be a separator, and the verb and parameter fields cannot be split between cards
or lines. The final card or line must contain a terminator.

60493800 L 4-1

NOTE

In a system using the 64-character set, colons should not be
used in a control statement except within a literal. (A single
colon is permitted in a literal.) Two or more consecutive
colons could give incorrect results because the operating
system uses 12 zero-bits (equivalent to two consecutive colons)
to signify the end of a control statement.

Control Statement interpretation is described in section 7.

JOB STATEMENT

A job is identified, certain resources are requested, and processing priority levels are established with the job
statement. In addition, the installation might require accounting information· on this statement. The first
statement in a job deck or in a file to be submitted for batch execution must be the job statement. Any
other statement in this position is presumed to have job statement parameters and is interpreted accordingly.

One parameter, the job name, is required on all job statements. Other parameters can be included to specify
resources, priority levels, or processing time limitations. If these parameters are omitted, the operating system
automatically assigns the system default values established when the operating system was installed. Parameters
can be listed in any order following the job name.

All blanks and any unknown parameters that appear on the job statement are ignored. However, when
improper characters are used as variables with valid parameters, the job is terminated. For example, parameters
such as CM7FFF and DATA would cause job termination since CM must be followed by digits only and D
followed by two letters and one or two digits.

A 26 or 29 can be punched in columns 79 and 80 of the job statement to indicate whether the statements
following are punched in 026 or 029 character codes. The default mode depends on an installation option
(see appendix A).

All numbers on job statements (except 26 or 29 in columns 79 and 80) are presumed to be octal values,
unless changed by the system analyst when the operating system is installed at the user's installation.

The format of the job statement is:

4-2

name,Tt,IOt,CMfl,ECfl,Pp,Dym,MTk,NTk,HDk,PEk,GEk,CPp,STmmf.

After the terminator following the last parameter, general comments, or installation defined material
such as accounting information, can appear.

name Name the user assigns to the job to identify it to the operating system. Any com­
bination of digits or letters can be used. The first character must be a letter. A
name longer than five characters is truncated to five.

60493800 E

Tt

IOt

CM fl

EC fl

60493800 J

The operating system modifies the name of every job by assigning letters and digits
that differ for each job as the sixth and seventh characters. This ensures unique
identification if a job is entered with a name duplicating that of another job already
in process. For example, if two jobs are named JOBNAME, one might be processed
as JOBNA23 and the other as JOBNA34. If a job name contains fewer than five
characters, all unused characters through the fifth are filled with zeros before unique
sixth and seventh characters are added.

t is an octal value for the time, in seconds, for which the user estimates his job
requires the central processor. It must include the time required for assembly or
compilation. It does not include time during which the job is in the input queue
or in central memory but not using the central processor. If the job access to the
central processor exceeds the value specified by t , the job is terminated abnormally.
(Use of the RECOVR feature in a program allows results of execution to that point
to be recovered before termination.)

t cannot exceed five digits. An infinite time can be specified by 77777 or 0. The
job proceeds until completed even if it exceeds the installation maximum value for
t. An infinite time limit should not be used indiscriminately since certain kinds of
program errors, such as an infinite loop, can result in great waste.

t is an octal value for the time, in seconds, which the user estimates his job requires
for input/output. Although t cannot exceed five digits, an infinite time limit can
be specified by 0. The default limit is infinite but can be changed by the installation.
If the job input/output time exceeds the value specified by t , the job is terminated
prematurely. (Use of the RECOVR feature in a program allows results of execution
to that point to be recovered before termination.)

fl is the maximum field length (octal number of central memory words) that the job
requires.

When the CM parameter is specified, that amount of storage is allocated to the job
throughout execution, unless the job itself requests a smaller amount by a REDUCE
or RFL (request field length) statement. If the CM parameter is not used, the system
establishes field length requirements for each step of the job, expanding or contracting
it as necessary. Since smaller field lengths are used whenever possible, more jobs can
pass through the system in a given time period.

The system library programs, including the loader, compilers, and utilities, have an
associated field length in the library tables. The field lengths are set by the installation
to a judicious length for typical jobs, which should eliminate the need for the CM
parameter on many job statements.

Any CM parameter on the job statement is rounded upward to a multiple of 100. The
highest permissible value is defined by the installation for a given mainframe. An RFL
control statement requesting a field length greater than the CM value on the job state­
ment causes job termination. The RFL limit is the installation field length maximum
if CM is not on the job statement.

fl is the maximum amount (octal) of direct access ECS the job needs in multiples
of 1000-word blocks. The value must not exceed the installation-defined limit unless
STmmf is also specified (EC will be ignored if the installation limit is zero and STmmf
is not specified). An installation default amount (typically zero) is assigned if the

4-3

4-4

Pp

Dym

MTk
NTk
HDk
PEk
GEk

CPp

parameter is omitted and subsequent MEMORY and RFL requests from user programs
are not allowed to exceed that amount. The installation can specify a default amount
to be assigned when EC is specified without fl.

The EC parameter is applicable only to user programs in which ECS is accessed.
If the ECS parameter is specified, the job will start either with no ECS assigned
or with the assigned ECS equal to the parameter, depending on the option se­
lected by the installation. In the case in which no ECS is assigned, it is the same
as if a REDUCE,ECS. control statement had just been processed. In the case in
which the ECS assigned is equal to this parameter, it is the same as if an
RFL,EC=fl control statement had just been processed.

p is the priority level (octal) requested for a job. The lowest executable priority
level is 1. If zero is given for p , the system treats it as level 1. The installation
determines the highest value permitted, but it never can exceed 7777 (octal). A
value greater than the highest permitted value defaults to the installation default.

This parameter is used only in conjunction with a string of interdependent jobs.
y is the dependency identifier (two alphabetic characters) assigned by the user to
the entire string. m is the dependency count (number) of jobs (0-77 octal) upon
which this particular job depends. Examples using the D parameter are presented
in the discussion of the TRANSF statement.

MT specifies seven-track tape. GE, PE, HD, and NT specify nine-track tapes with the
following densities.

GE
PE
HD
NT

6250 cpi [679 group coded recording (GCR) unit only]
1600 cpi
800 cpi
Installation-selected default density

k is the maximum number of seven-track or nine-track tape units a job will require
at any one time. k can range from 0 to 77 (octal) but cannot exceed the total
number of tape units at the computer site. If more tape units are required at any
time during job execution than are specified by k, the job will be terminated.

Depending on the installation option for tape scheduling, the following rules for
specifying density and k apply. If the installation has selected the schedule-by­
density option, three separate counts according to density are maintained for each
job (for example, the number of GE tape units is counted separately from the
number of HD tape units). If the installation has not selected the schedule-by­
density option, only one count of nine-track tape units is maintained.

A job can use more than a total of k tape units as long as their use is not simultaneous.
For example, if MT3 is specified, seven-track tape units A, B, and C are assigned to the
job, and an UNLOAD but not a RETURN function is issued for the tape unit C, tape
unit D can be requested for the job. This makes a total of four tape units used during
the entire job.

This optional parameter is applicable only to systems having more than one central
processor. Use of the CP parameter restricts the job to executing only on the specified
processor. Omission of the parameter allows the system to select the processor for
job execution; usually, both processors will be used during the execution of any pro­
gram. p can be A or B.

60493800 J

STmmf

On a CYBER 174; CYBER 71-2x, 72-2x; CYBER 73-2x; or 6500 system, the
parameter restricts job execution to one of the two identical central processors. In
general, such a restriction serves no benefit. However, it is useful for running CPU
diagnostic programs.

On a CYBER 74-2x or 6700 system, the two processors operate at different
speeds. CPA restricts the job to the faster processor, and CPB restricts it to the
slower processor. When the parameter is omitted, the system chooses the faster
processor when it is available.

This optional parameter specifies a three-character identifier (mmf) of the system on
which the job is to be run. For multimainframe environments, ST should be used
to ensure that a string of interdependent jobs is executed in the same mainframe.

Examples of job statements:

JOBAIOO,T400,CM45000,EC2,PI,DAB3,MT5,CPA. THE JOB NAME IS TRUNCATED TO JOBAI

K2Sl. ALL DEFAULT VALUES ARE AUTOMATICALLY ASSIGNED

TLS,T777 ,I0777 ,CM50000,EC5 ,NT2,Pl ,MTl.

JOB4,T77777,IOO,NTI. THIS JOB HAS INFINITE CENTRAL PROCESSOR AND I/O TIME

ABS (ABSOLUTE CENTRAL MEMORY DUMP)

ABS dumps absolute addresses of central memory whether or not the addresses are within the field length
assigned to the job. Installations can prohibit absolute dumps.

The format of ABS is:

ABS,from,thru.

When only one parameter appears, it is presumed to be the thru parameter, and the dump starts at
address 0. When both parameters are present, thru must be greater than from.

from

thru

Address at which dump is to begin, 1-6 digits octal.

Address at which dump is to end, 1-6 digits octal. If the value exceeds the size of
memory, dumping stops at the end of memory.

The format of the output on file OUTPUT is the same as that produced by the DMP control statement. ABS
can also be called using the SYSTEM macro described in section 7.

ACCOUNT (ACCOUNTING INFORMATION)

ACCOUNT supplies accounting information. The installation determines what accounting information is
required and what can be optionally specified. Depending on the installation, the ACCOUNT control state­
ment might be required immediately after the job statement and it might be allowed or disallowed elsewhere
among the control statements.

60493800 E 4-5

The format of ACCOUNT is:

ACCOUNT.parameter list.

The dayftle message indicating the execution of ACCOUNT might be edited so that sensitive information is
deleted. Illegal accounting information might cause job termination.

Some installations require accounting information on the job statement instead of the ACCOUNT control
statement. Others might not require any such accounting.

ADDSET (CREATE MASTER DEVICE OR ADD DEVICE
TO PRIVATE DEVICE SET)

ADDSET adds members to a device set. It can be used to create a master device when parameters MP and
VSN indicate the same volume serial number. Members being added must have the same device type as the
master device (see LABELMS). ADDSET cannot be entered through INTERCOM.

A member device is added to an existing device set when parameters MP and VSN specify different volume
serial numbers. A MOUNT statement for the master device must be issued before ADDSET can be used to
add a member device.

The format of ADDSET is:

I ADDSET,SN=setname,MP=mpvsn,VSN=vsn,UV=uv,UP=up,PB=pb,FR=fff,NF=n,NM=m,RP=ddd,*PF.

Parameters SN, MP, and VSN are required. If parameters MP and VSN are equal, parameters UV, UP,
PB and FR are required unless the installation defines defaults. All parameters are order independent.

SN=setname

MP=mpvsn

VSN=vsn

UV=uvt

UP=upt

PB=pbt

Name of device set created or device set to which a member is added; 1-7 letters or
digits beginning with a letter. Required.

Volume serial number of master device; 1-6 letters or digits, leading zeros assumed.
Required.

Volume serial number of device being added; 1-6 letters or digits, leading zeros
assumed. Required.

Universal password; 1-9 letters or digits.

Universal permission; any non-null combination of the characters C, M, E, and R,
which specify the following permissions.

C Control permission
M Modify permission
E Extend permission
R Read permission

Public password; 1-9 letters or digits.

tThis parameter applies only when a master device is being added.

4-6 60493800 M

FR=ffft

NF=nt

NM=mt

Permanent file default retention period specifying the number of days permanent
files on this private set are to be retained; 0-999. The private set owner determines
the future of each file once the retention period expires.

Maximum number of permanent or queue files that can exist on the device set.
Value of n cannot be less than one nor greater than 16000.

NF=n has meaning only for an ADDSET for a master device. Default is 300 (octal).

Maximum number (decimal) of members allowed in the device set. NM=m is used
by ADDSET to preallocate tables for the member devices on the master device
system. For each member RBR, the system needs one PRU if the RBR is less than
62 words long, or two PRUs otherwise. For system tables ADDSET reserves a
number of PRUs equal to twice NM. If each member device is to have several RBRs,
NM=m should be specified as somewhat larger than the actual number of member
devices. NM=m has meaning only for an ADDSET of a master device. Default is

RP=dddt

*PF

50 (decimal).

Retention period for the device set. ddd must be decimal (0 to 999) indicating the
number of days before the device set expires. 999 indicates an infinite retention
period. RP=ddd has meaning only for an ADDSET of a master device. Default is
31 days.

Permanent files can reside on this member of the device set. Although the master
device need not be a permanent file device, at least one device in the device set
must be a permanent file device.

ALTER (CHANGE PERMANENT FILE LENGTH)

ALTER changes the end-of-information for an attached permanent file. End-of-information is set at the end
of the PRU at which the file is currently positioned. ALTER is identical to the EXTEND control statement
when new information has been written to the file and the current file position is at the end of the new
information.

ALTER requires exclusive access to the file; an RW=O parameter on the ATTACH control statement provides
exclusive access. The permissions required depend on whether the file is being lengthened or shortened.

tThis parameter applies only when a master device is being added.

60493800 M 4-7

I

Extend permission is required to extend the file length.

Modify and extend permission are required to reduce the file length.

The format of ALTER is:

ALTER,lfn.

lfn Local file name of attached permanent file, 1-7 letters or digits beginning with a
letter.

ATTACH (ATTACH PERMANENT FILE TO JOB)

ATTACH attaches a permanent file to a job, as long as parameters specified on the ATTACH control statement
establish the right to use the file. Subsequent operations allowed on the file depend on the passwords sub­
mitted. Turnkey, read, modify, extend, or control permission is granted only when the appropriate passwords
are specified. In a multimainframe environment, the permanent file must reside on a device connected
to the mainframe on which the job is executing.

When the file is attached to the job, its initial position is beginning-of-information.

The format of ATTACH is:

4-8

ATT ACHJfn,pfn,ID=name,CY=cy ,EC=ec,LC=n,MR=m,PW=pw ,UV=uv ,RW=p,SN=setname.

The first parameter establishes the local file name by which the file is known to the job. Parameter
pfn is required. Parameters lfn (if present) and pfn are order dependent. All other parameters are
optional depending on how the file wa~ cataloged. They are order independent. The ATTACH state­
ment can be continued from one line to the next. The first line must not be terminated by a period
or a right parenthesis. To be consistent with other control statements that require such a format, the
last nonblank character on the line should be a separator. The continuation begins in column 1 of
the next line.

lfn

pfn

ID=name

CY=cy

EC=ec

Name by which file is to be known as a local file, 1-7 letters and digits beginning
with a letter. If omitted or null, the first seven characters of the pfn establish lfn.

Perm.anent file name by which the file is known in the permanent file manager tables,
1-40 .letters or digits.

ID parameter by which the file was cataloged. Required unless the file was cataloged
with ID=PUBLIC.

Cycle number to be attached; 1-999. Default is highest existing numbered cycle.

Size of buffer for sequential public device set file (octal). EC is ignored when SN is
specified.

ec

K
nnnn
nnnnK
nnnnP

Buffer Size

Installation standard number of blocks of ECS.
Number of 1000 (octal) word blocks to be allocated.
Same as EC=nnnn.
Number of ECS pages, with a page 1000 (octal) central
memory words.

60493800 H

LC=n

MR=m

PW=pw

UV=uv

RW=p

SN=setname

Lowest cycle indicator; n must be any non-zero value. CY overrides LC except when
CY=O.

Multiread permission.

m

0 or omitted

Nonzero
digit

Significance

File may be attached with all the permissions
established by the creator of the file.

File can be attached only with read permission.

1-5 passwords, separated by commas, for permissions required in this job. Passwords
are defined by the CN, TK, RD, MD, EX parameters of the CATALOG control
statement.

Universal password; 1-9 letters or digits. Grants universal permission. Password and
permission for public sets are defined by the installation; for private sets, they are
defined on the ADDSET statement when creating the master device. If this parameter
is specified, PW parameters are ignored.

Rewrite request.

p

0

Nonzero
digit

Significance

Job has exclusive file access if it has control, modify,
or extend permission.

Job retains modify and extend permission; any control
permission is cancelled. Other jobs can attach the file
with MR=l to read the file but cannot receive control
permission.

Name of set on which file is cataloged, 1-7 letters or digits beginning with a letter.
The master device of a private device set must be referenced on a MOUNT control
statement before SN is used. If omitted the job's current permanent file default set
is assumed (refer to SETNAME statement).

An ATTACH of an incomplete cycle must specify CY and any control password.

AUDIT (PERMANENT FILE SUMMARY)

AUDIT provides the status of permanent files. The user can restrict the AUDIT to an owner ID, permanent
file name, or device set.

AUDIT can run in either full mode or partial mode. Items contained in the printed reports of each of these
modes are listed in table 4-1.

60493800 G 4-9

The format of AUDIT is:

4-10

{
AI=F} AUDIT ,LF=lfn,MO=m,ID=name,PF=pfn, AI =P , SN=setname, VSN=vsn, AC=n.

All parameters are opti~nal and order independent. If a terminator does not appear at the end of the
parameter list, column 1 of the next card or line is considered to be a continuation of the AUDIT
parameter list.

LF=lfn

MO=m

ID= name

PF=pfn

Al=F

Al=P

SN=setname

VSN=vsn

AC=n

Name of file to receive the output listing created by AUDIT, 1-7 letters or digits
beginning with a letter. Default is OUTPUT.

AUDIT mode; only one of the following modes can be specified.

m Mode

A AUDIT all files (default)

x AUDIT expired files

D AUDIT inactive cycles

I AUDIT incomplete files

p AUDIT files with parity errors

R AUDIT archived files

Owner identification; audit all files with this identification.

Permanent file name; audit all files with pfn. If PF=pfn is used, the ID=name param­
eter must also be used.

Full 2-line output for each file audited. Default.

Partial I-line output for each file audited.

Name of device set to be audited, 1-7 letters or digits beginning with a letter. Master
device for this device must have been previously mounted.

Volume serial number of device to be audited, 1-6 digits or letters with leading zeros
assumed. All files residing on this device are audited. Master device for this device
set must have been previously mounted. SN=setname parameter must also be
specified.

Account number; audit all files with this 1-9 character account number.

60493800 H

TABLE 4-1. ITEMS LISTED BY AUDIT

All Archived Expired Files of Files on Partial Full Audit
Files Files Files Same ID Specified Audit or Account Device

Account Parameter x x x x x x x
Creation Date (ordinal) x x x x x x x
Cycle Number x x x x x x x
Date of Last Alteration (optional) x x x x x x x
Date of Last Attach (optional) x x x x x x x
Expiration Date (optional) x x x x x x x
Flagst x x x x x x
Length Number of PRUs Deter- x
mined by Installation Parameter x x x x x x
Length in RBs x x x x x
Number of Attaches x x x x x x
Number of Extends x x x x x x
Number of Rewrites/ Alters x x x x x x
Owner ID x x x x x x x
Permanent File Name x x x x x x x
Set Name x x x x x x x
Subdirectory Number x x x x x x
Time of Last Alteration x x x x x x
Time of Last Attach x x x x x x
First VSN x x x x x x x
VSN of Dump Tapes (first/last) x x x x x x

tFlags are:

A Archived file E Parity error in file p Positioned file
c RB conflict file N New version file R Random file

s CDC CYBER Record Manager IS, DA, or AK file

BKSP (BACKSPACE SYSTEM-LOGICAL-RECORD)

BKSP backspaces one or more system-logical-records on rotating mass storage, ECS, or SI format tape. Back­
spacing terminates when beginning-of-information is encountered.

The format of BKSP is:

BKSP,lfn,n,C.

60493800 E 4-11

Parameters are positional; only lfn is required.

lfn

n

c

Name of file to be backspaced, l-7 letters or digits beginning with a letter.

Number of system-logical-records to be backspaced, 1-262143 (decimal). Default
is 1. If n is set to zero, the system treats it as n=l.

File to be backspaced is coded. Default is binary.

CATALOG (CREATE PERMANENT FILE)

CATALOG makes an existing local file a permanent file by creating entries in permanent file manager tables.
A permanent file is known in these tables by a permanent file name unique within an owner ID. As many as
five cycles can exist with the same permanent file name and ID but different cycle numbers.

The local file must have all permissions in order for a new permanent file name and ID to be entered in the
permanent file manager tables. When the first cycle of a permanent file is created, the values for XR, EX,
CN, MD, TK, and RD define the passwords which are to be used in future references to all cycles of this
permanent file. Consequently, these parameters are ignored for a new cycle catalog. Any control password
or turnkey password defined must be specified with the PW parameter to create a new cycle of a permanent
file.

The local file must reside on a member of a public device set or on a member of a private device set desig­
nated for permanent files. A PF parameter on a REQUEST control statement prior to file creation ensures
proper file residence. An SN parameter on the REQUEST determines the device set for the file.

Once the file is cataloged, it remains available to the job as a local file with all permissions, unless the RW
parameter or MR parameter cancels some permissions.

The format of CATALOG is:

4-12

CAT ALOG,lfn,pfn,ID=name ,AC=act,CY=cy ,CN=cn,EX=ex,FO=fo,MD=md,MR=m,PW=pw ,RD=rd,RP=rp,
RW=p,TK=tk,XR=xr.

The first two parameters are required in the order shown. All other parameters are order independent.
CATALOG can be continued. If a period or right parenthesis does not appear at the end of the
parameter list, column I of the next statement is considered a continuation of column 80.

lfn

pfn

ID=name

AC=act

File name by which file is presently known to the job, 1-7 letters or digits
beginning with a letter. If omitted, the first 7 characters of pfn are assumed. This
name does not become part of the permanent file identification.

Permanent file name by which the file is known in permanent file manager tables,
1-40 letters or digits. If omitted or null, lfn becomes the permanent file name.

Owner or creator of file; 1-9 letters or digits. Required unless the installation is
cataloging the file with ID=PUBLIC.

Account parameter, 1-9 letters or digits. Installation determines the procedure if
act is incorrect or is not specified.

60493800 K

CY=cy

CN=cn

EX=ex

FO=fo

MD=md

MR=m

PW=pw

RD= rd

RP=rp

RW=p

TK=tk

60493800 M

Cycle number of file with same pfn/lD combination, I -999. If omitted, illegal, or
not unique, cycle number is one greater than highest existing cycle number. If a
cycle 999 exists, automatic cycle number assignment cannot take place.

Password for control permission (purge or catalog new cycle), 1-9 letters or digits.

Password for extend permission, 1-9 letters or digits.

File is CYBER Record Manager IS, DA, or AK organization. Permissions arc
defined in terms of Record Manager logic; extend is equated with adding new records,
modify with deleting or replacing records. If the file is not IS, DA, or AK organi­
zation, this parameter is ignored.

Password for modify permission, 1-9 letters or digits.

Multi read indicator.

m

0

Nonzero
digit

Significance

No other job can attach file while this job is in
execution. Default.

Other jobs can attach file immediately for read only.
All permissions except read are cancelled.

Password list to obtain permissions. Control password is required to catalog a new
cycle of the same pfn/ID. Public password is required to catalog the initial cycle
of a file with ID=PUBLIC.

Password for read permission, 1-9 letters or digits.

Retention period indicating the number of days file is to be retained. 0-999. Infinite
retention is 999, although an installation might change this. Default is installation
defined. Installation procedures determine the future of the file once the retention
period expires.

Rewrite request.

p

0

Nonzero
digit

Significance

Job has exclusive file access if it has control. modify.
or extend permission.

Job retains modify and extend permission; any control
permission is cancelled. Other jobs can attach the file
with MR=J to read the file. but cannot receive control
permission.

Password for turnkey required in addition to RD, MD, EX, or C'N, 1-9 letters or
digits.

4-13

I

XR=xr Password for modify, extend, and control permission, 1-9 letters or digits. Any MD,
EX, or CN parameter overrides XR for the specified parameter only.

When a file is cataloged with a pfn unique to the ID, these parameters are applicable.

AC, CN, CY, EX, FO,MD,MR,PW,RD, RP, RW,TK

When a new cycle is cataloged with the same pfn and ID of an existing permanent file, the new cycle has the
same set of passwords as the original file. Any control permission passwords must be specified on the
CATALOG that establishes a new cycle. These parameters are applicable to a CATALOG for a new cycle:

AC, CY, FO, MR, PW, RP, RW

Any permanent file parameter not applicable to CATALOG is ignored.

CKP (CHECKPOINT REQUEST)

CKP requests a checkpoint dump be taken during job execution. Each time a checkpoint dump is taken during
job execution, a file is written containing information needed to restart the job at that point. The system
numbers each checkpoint dump in ascending order.

The format of CKP is:

CKP.

The checkpoint/restart system facility captures the total environment of a job on magnetic tape so the job can
be restarted from a checkpoint, rather than from the beginning of the job. Total environment includes all files
associated with the job. For mass storage files, the complete file is captured, including data from any ECS
buffers and the relative position within that file. For magnetic tape files, only the relative position on the
tape is captured so the tape can be properly repositioned during restart. (Refer to the REST ART utility.)

Checkpoint/restart cannot handle the following items.

Rolled-out jobs

Random files (except random permanent files)

Multifile volumes

ECS resident files

The job should request a dump tape with a REQUEST or LABEL control statement that indicates the tape is to
be used for checkpoints. The tape must have SI data format and default density, but can be either 7-track or
9-track and labeled or unlabeled. Either a 7-track or 9-track tape can be assigned by the operator when an MN
parameter appears in REQUEST. Only one tape can be defined for checkpoint dumps per job. If no tape is
supplied, checkpoint defines an unlabeled tape for its use at the time the checkpoint occurs with the following
request statement.

REQUEST,CCCCCCC,CK,MN,RING.

4-14 60493800 E

Chcckpoint/rest~rt defines the following files for its use.

ccccccc CCCCCCI CCCCCCM cccccco

The user should refrain from using these file names. User system-logical-records should not have a level 168
since checkpoint uses level 168 for internal processing.

COMBINE (RECORD CONSOLIDATION)

COMBINE consolidates one or more consecutive system-logical-records in one file into one level 0 system­
logical-record on a second file. COMBINE is applicable only to files with system-logical-record structure; files

cannot be S or L tapes. COMBINE terminates at the first level 17 8 system-logical-record (partition) boundary. I
The format of COMBINE is:

Parameters Ifni' and lfn2 are required.

n

File from which one or more system-logical-records is read, 1-7 letters or digits begin­
ning with a letter.

File to which one system-logical-record is written, 1-7 letters or digits beginning with
a letter. {lfn2 cannot be the same file as lfn1 .)

Number {decimal) of system-logical-records in lfn1 to be written onto lfn2. Default
is I. If n is zero, COMBINE terminates at a level 17 8 system-logical-record
(partition) boundary.

The job is responsible for positioning of both files.

COMMENT (ADD COMMENT TO DAVFILE)

COMMENT inserts a formal comment into the job dayfile. Since the comment is displayed at the operator
console as part of the job dayfile and the job continues, the operator might not see the comment. The
PAUSE control statement should be used instead of COMMENT when the comment is to be brought to the
attention of the operator, since PAUSE stops the job until the operator acknowledges the PAUSE.

TI1e format of COMMENT is:

COMMENT.comment

The period is required. The comment can begin in any column after the period; no ending punctuation
is required.

comment String of 72 characters. Any character can be specified, including those otherwise
used as punctuation.

Only the comment appears in the dayfile; the word COMMENT does not. The first 40 characters of the com­
ment. including any leading blanks, appear on the first line. Any additional characters appear on a second line
i11 the day file.

60493800 M 4-15

I

COMPARE (COMPARE FILES)

COMPARE compares one or more consecutive system-logical-records in one partition with the same number of
consecutive system-logical-records in a partition on another file. Comparison begins at the current position of
each file and continues until the number of system-logical-records of the specified level or higher level has been
processed from the first file. COMPARE terminates if a partition boundary is encountered.

Files to be compared can reside on rotating mass storage, ECS, or magnetic tape.

COMPARE can be used with an S or L tape when record size does not exceed PRU size for an SI tape. When
a tape file is to be compared with a file not on tape, the tape file must be specified first in the COMPARE
parameter list.

The format of COMPARE is:

COMPARE,lfn1 ,lfn2,n,lev,e,r.

Parameters lfn 1 and lfn2 are required; all others are optional. All parameters are order dependent.

n

lev

e

r

Name of file to be compared, 1-7 letters or digits beginning with a letter.

Number (decimal) of system-logical-records of level lev or higher in lfn1, to be com­
pared to lfn2. Default is 1.

Record level number (octal). Default is 0.

Number (decimal} of nonmatching word pairs to be written to the OUTPUT file for
each nonmatching record. Default is 0.

Number (decimal) of nonrnatching records to be processed during the comparison.
Included in nonrnatching record OUTPUT file if the e parameter is given. Default
is 30000.

Both the contents of the record and the system-logical-record terminator must be identical for the utility to
declare both files identical. When all pairs of records are identical, ·COMPARE writes the message GOOD
COMPARE to the dayfile; otherwise the message is BAD COMPARE. A discrepancy between levels of corre­
sponding records is listed on OUTPUT, and the comparison is abandoned, leaving the files positioned imme­
diately after the unlike record terminators.

A bad compare produces a message on the file OUTPUT. When the e and r parameters are specified,
information on OUTPUT can identify the non-matching records. The first record on each file is number 1.

COMP ARE determines whether a tape file is binary or coded mode in the following way. File names are
those of example 4 below. The first record of the first-named file (GREEN) is first read in binary mode. If
a parity error occurs, the file is backspaced and re-read in coded mode. If another parity error occurs, the
fact is noted in file OUTPUT, the corresponding record of the second-named file (BLACK) is skipped over,
and the process begins again. If the coded read is successful, the corresponding record of BLACK is read in
coded mode. If this record of BLACK produces a parity error, the fact is noted in file OUTPUT, and nothing
further is done with that record. Each record of file BLACK is read in the same mode as that in which the

4-16 60493800 E

corresponding record of GREEN was successfully read, but if the record GREEN was unsuccessfully read in
both modes, the record of BLACK is read in the same mode as the preceding record of BLACK. Once a
record of GREEN has been read without error, following records of GREEN are read in the same mode until
a change is forced by a parity error.

Examples of COMP ARE usage:

I. COMPARE(RED,BLUE)

Compares next system-logical-record on file RED with next record on file BLUE.

2. COMPARE(RED,BLUE,6)

Compares next six system-logical-records. Each record level on file RED must have the same level
as the corresponding record on file BLUE for a good compare.

3. COMPARE(RED,BLUE,3,2)

Compares two files from their current positions to and including the third following end-of-section
mark having a level number of 2 or greater.

4. COMPARE(GREEN,BLACK,3,2,5,1000)

Comparison is the same as the previous example, but the first five discrepancies between correspond­
ing words in the files plus their positions in the record are listed on OUTPUT. Positions are indi­
cated in octal, counting the first word as 0. The limit of pairs of discrepant records to be read is
1000. If two long files are compared, for instance, 20 might be used as the record parameter, so
that a large number of discrepancies are described in detail, but if, through an error, the two files
are completely different, an enormous and useless listing is not produced. Furthermore, the com­
parison is abandoned if this limit is exceeded, and the files are left positioned where they stand.

COPY (COPY TO END-OF-INFORMATION)

COPY copies one file onto a second file until a double end-of-partition (empty partition) or end-of-information
is encountered on the first file. If end-of-information is encountered on the first file, enough end-of-paritions
are written on the second file to ensure that it has a double end-of-partition.

Both files are backspaced past the last end-of-partition written unless a backspace is illegal on the device or
end-of-information was encountered.

The format of COPY is:

Parameters are order dependent and optional.

60493800 E

File to be copied onto lfn2, 1-7 letters or digits beginning with a letter. Default is
INPUT.

4-17

File onto which lfn 1 is copied, 1-7 letters or digits beginning with a letter. Default
is OUTPUT.

COPY is intended for use with files residing on disk or on binary SI format tapes. COPY gives undefined
results when used with S or L tapes or with labeled or coded tapes.

COPY can be used with any CYBER Record Manager file that resides on a PRU device. Ifn1 is copied
through end-of-information or a double end-of-partition. File format is not changed, and FILE control
statements are ignored (refer to CYBER Record Manager manuals).

COPYBCD (COPY LINE IMAGE FILE)

COPYBCD reformats files of line images. It is used most often to produce a tape file that can be listed off­
line. Each line image of the input file is assumed to be terminated by a 12-bit byte of zeros in the lower
order position of the last word of the line image. COPYBCD writes each line image as a 140-character
record, with the zero-byte line terminator converted to blanks on the output file.

When a partition boundary is encountered on the input file, a printer carriage control character for a skip to
top of next page is written on the output file before an end-of-partition is written. Thus, the final printed
output begins each partition at the top of a new page. Stray characters appear at the top of this page as a
result of the skip and end-of-partition on the output file.

The format of any output tape is determined by the REQUEST or LABEL control statement in the job.

The format of COPYBCD is:

All parameters are positional and optional.

n

Name of input file to be copied onto Ifn2, 1-7 letters or digits beginning with a
letter. Default is INPUT.

Name of output file onto which lfn1 is to be copied, 1-7 letters or digits beginning
with a letter. Default is OUTPUT.

Number of partitions (decimal) to be copied, o< n < 218-I. Default is 1.

COPYBF AND COPYCF (COPY BINARY AND CODED FILES)

COPYBF and COPYCF copy binary files and coded files, respectively, to other files. The minimum field length
for these routines is 5000 (octal). When L tapes are copied, the minimum is 1000 (octal), plus twice the
length of the largest physical record to be copied.

COPYBF and COPY CF copy partitions delimited by level 17 8 record terminators on PRU devices (SI tapes and
mass storage) and by tape marks on S and L tapes. Copy continues until the specified number of partitions
has been copied or end-of-information is encountered. An EOF label on a tape multifile set is considered to
be end-of-information. An informative message is entered in the job dayfile when the copy terminates.

4-18 60493800 F

These utilities produce a file with a specific structure. If an exact duplication of the input file is required,
some appropriate sequence of COPYBR/COPYCR/COPYBF/COPYCF with explicit record or file counts or
other file positioning utilities can be used.

The format of COPYBF is:

All parameters are order dependent and optional.

Name of file from which information is to be copied, 1-7 letters and digits beginning
with a letter. Default is INPUT.

Name of file to which information is to be copied, 1-7 letters and digits beginning with'
a letter. Default is OUTPUT.

n Number of partitions to be copied, 0 < n < 2l8_1 (decimal).

The format of COPYCF is:

Parameters are discussed under COPYBF.

If an end-of-information is encountered on the input file before the number of partitions specified by the n
parameter have been copied, the copy operation ceases (but not aborts) at that point. An end-of-partition is
written on lfn2, and is not backspaced over. A dayfile message indicates the number of partitions copied
before end-of-information was encountered.

When these utility routines detect an end-of-volume for a tape, the next volume is requested, label checking/
writing is performed for labeled tapes, and the function continues normally on the next volume.

When a file with system-logical-records is copied to an S or L tape, each system-logical-record becomes a
physical tape block. Each level 17 8 record delimits a partition. Similarly, when an S or L tape is copied to
a PRU device, each physical record becomes a system-logical-record of level 0. A tape mark on an S or L
tape delimits a partition. An informative message on the dayfile notes that levels 1 through 168 lose their
level indicator on an S or L tape.

For the record and block types indicated below, CDC CYBER Record Manager end-of-partition (EOP) is equivalent
to a NOS/BE 1 end-of-partition. The routines COPYBF and COPYCF can be used to copy a specified number
of partitions. All other considerations are the same as for copying system files.

Device Block Type Record Type

SI tapes and mass storage c F,D,R,T,U,S,Z
K F,D,R,T,U,Z

S and L tapes c F,D,R,T,U,Z
K F,D,R,T,U,zt
E F,D,R,T,u,zt

t A copy from an S/L device to a system device might add extraneous system CDC CYBER Record Manager
defined end-of-section terminators to a file.

60493800 F 4-19

Although not primarily implemented for that purpose, these routines are capable of limited format conversion.
Table 4-2 shows format conversion copies that can be handled successfully.

Input

SI Tapes and
Mass Storage

S Tape

L Tape

TABLE 4-2. COPY:xx FORMAT CONVERSION

SI Tapes and Mass
Storage

Yes

Yes 3, 4, s, 1

Yes 3, 4, s

Output

S Tape

Yes t, 5

Yes 3, 6, 7

Yes 3
•

6

L Tape

Yes 2
•

5

Yes 3, 6, 7

Yes 3, 6

1 If the system-logical-record or L tape physical record is greater than 512 words, the copy terminates
with an error message.

2 If the system-logical-record is greater than the copy buffer size, the copy terminates with an error
message.

3 If the S tape physical record is greater than 512 word~ or the L tape physical record is greater than
the copy buffer size, the system aborts the copy with an error message.

4 If the S or L tape record is not a multiple of IO characters, the last word of the system-logical­
record is filled with zero bits; and an informative message is issued when the copy finishes.

5 If a 9-track coded S or L tape is used, character conversion takes place. Four 8-bit characters on
input convert to four 6-bit characters in memory. Four 6-bit characters from memory convert to
four 8-bit characters on tape. An informative message concerning this conversion is issued when the
copy finishes.

6 If a 9-track coded S or L tape is used, character conversion takes place between files; and an informa­
tive message concerning this conversion process is issued when the copy finishes.

7 The largest 9-track tape record that can be copied by COPYBR or COPYBF is 3840 8-bit characters.
A record of 5120 characters can be copied by COPYCR/COPYCF.

4-20 60493800 E

COPYBR AND COPYCR (COPY BINARY AND :CODED RECORDS)

COPYBR and COPY CR copy binary logical records and coded logical records, respectively, to output files.
The minimum field length for these routines is 5000 (octal). When L tapes are copied, the minimum is 1000
(octal), plus twice the length of the largest physical record to be copied.

COPYBR and COPYCR copy physical records on S or L tapes and system-logical-records on PRU devices (SI
tapes and mass storage). Copy continues until the specified number of records has been copied or end-of­
information or end-of-partition is encountered. An EOF label on a tape multi-file set is considered to be
end-of-information. An informative message is entered in the job dayfile when the copy terminates.

The format of COPYBR is:

Parameters are order dependent and optional.

n

Name of file from which information is to be copied, 1-7 letters or digits beginning
with a letter. Default is INPUT.

Name of file to which information is to be copied, 1-7 letters or digits beginning
with a letter. Default is OUTPUT.

Number of records to be copied, O<n< 218 -1 (decimal). Default isl.

The format of COPYCR is:

Parameters are discussed under COPYBR.

If an end-of-partition is encountered on the input file before the number of records specified by the n
parameter have been copied, the copy operation ceases (but does not abort) at that point. An end-of-partition
is written on the output file, but it is not backspaced over. A dayfile message indicates the number of re­
cords copied before the partition boundary was encountered.

A formatted FORTRAN write to a PRU device can produce more than one line per logical record. When
COPYCR is used to copy the file to an S tape, the line images are not detected as separate records.

When COPYBR or COPYCR is used to copy one S or L tape to another, each tape block copied is counted
as a logical record and is converted to a system-logical-record level uro. Similarly, each system-logical-record
of an input file becomes a physical record of an S or L format output file.

When these utility routines detect an end-of-volume on a tape, the next volume is requested, label checking/
writing is performed for labeled tapes, and the function continues normally on the next volume.

60493800 M 4-21

I

If a partial logical record (a record not terminated with a system-logical-record mark) is encountered on the
input file before an end-of-partition or end-of-information is encountered, information in the partial record is
written to the output file as a logical record of level zero (or a physical tape block for an S or L tape).

For the record and block types indicated below, CDC CYBER Record Manager end-of-section (EOS) is equivalent
to a system-logical-record of level 0. The routines COPYBR and COPYCR can be used to copy a specified
number of sections for these file structures.

Device

SI tapes and mass storage

Sand L tapes

Block Type

c
None; EOS and EOR
are not equivalent

. Record Type

F,D,R,T,U,S,Z

For CDC CYBER Record Manager W type records, both end-of-section and end-of-partition are written as a
system-logical-record of level 0. COPYBR or COPYCR can be used to copy a specified number of sections
and partitions. In determining the number of records to be copied, the user should be aware that the
operating system cannot distinguish between EOS and EOP defined for W type records. The copy terminates
when the specified number of records has been copied or when EOI is encountered on lfn1. For W type
records, COPYBR and COPYCR copy to end-of-information.

Refer to table 4-2 with the COPYCF utility for a list of successful format conversions.

COPYL/COPYLM {BINARY COPY WITH REPLACEMENT)

The COPYL and COPYLM control statements copy an old file to a new file substituting records from a
replacement file for the matching records on the old file. Records on the replacement ftle which do not
match records on the old file are ignored unless the user specifies that they be appended to the new file.
Records are considered matching if they have the same type and the same name; however, the user may
specify that the record type be ignored. COPYL and COPYLM are commonly used to maintain files of
procedures or subroutines.

COPYL and COPYLM differ only in the handling of multiple occurrences of a record on the old file.
COPYL uses each record on the replacement file only once, replacing the first matching record from the old
ftle. COPYLM uses the first matching record encountered on the replacement file to replace each matching
record from the old file. COPYL can be used to replace multiple occurrences of the same record if multiple
occurrences of the record are in the replacement file.

The old file and the replacement file must reside on mass storage or a system-logical-record format tape.
Only a single file terminated by an end-of-file marker is processed by a single call to COPYL or COPYLM
unless the user requests processing to the end-of-information by using the E parameter. When working with
multifile files, the user must be sure to position the multifile file to the file that is to be processed.

The order of the re<;ords on the replacement file is not significant. The system copies the records to the new
file in the same order as on the old file.

COPYL and COPYLM issue dayfile messages during processing; no other printed output is produced unless
the command is issued from an interactive terminal. The dayfile messages list which replacement records
were copied and which replacement records were not copied to the new file. These messages are issued
immediately to interactive terminals.

4-22 60493800 L

COPYL and COPYLM replace only the types of records listed in table 4-3. Any record on the old file that
is not recognized as one of the listed types is copied to the new file without further processing. Any replace­
ment file record type that is not listed in table 4-3 is ignored without comment.

The formats of COPYL and COPYLM are:

COPYL(oldlfn ,replfn,newlfn)ast,flag)
or

Single replacement.

COPYLM(oldlfn ,replfn,newlfn)ast,flag) Multiple replacement.

All parameters are optional and position dependent. A user denotes an omitted parameter by consecutive
commas.

oldlfn

replfn

newlfn

last

flag

60493800 L

File name of the old file; default name is OLD.

File name of the replacement file; default name is LGO.

File name of the updated file; default name is NEW.

Name of the last record on oldlfn to be processed. If last is not specified,
all records on oldlfn are processed from its current position to the next
end-of-file (or end-of-information if the E parameter is used).

Processing parameters.

Flag

R

A

T

E

Description

Rewind oldlfn and newlfn files before processing.
(replfn file is always rewound before and after processing.
Oldlfn and newlfn are not necessarily rewound to beginning
of information in multifile files. Refer to explanation
below.)

Append to the end of newlfn all replfn records that do
not match any records on the oldlfn. If A is not selected,
records on the replacement file that do not match any
records on the oldlfn are ignored and a dayfile message
is issued.

Check for matching name of record, but omit check for
matching type of record. If T is not selected, records
match only if both the type and name of the records
are the same.

Process oldlfn until the end-of-information.

These parameters can be specified by combining one or more letters in any order,
such as TRA, AR, RTEA, or TR.

COPYL and COPYLM check only the first four flag parameters; if more than
four are specified, the remaining characters are ignored.

4-23

I

I

The R parameter affects file positioning of the old and new files before processing. If R is specified, the old
and new files are rewound before processing. In a multifile file, if there is one or more end-of-file markers
between the current position of the file and the beginning-of-information, the R parameter rewinds the file
to the first preceding end-of-file. In the absence of R, the user is responsible for positioning the oldlfn and
newlfn files. The R parameter does not affect the file of replacement records, since the current file of the
replacement file is always rewound to the beginning-of-information before and after processing.

The E parameter causes the old file to be processed to the end-of-information. Each end-of-file encountered
on the old file causes a matching end-of-file to be written on the new file. Records added to the new file
as a result of an AE parameter combination are appended with an end-of-file prior to the end-of-information.
Here, users should note that such appended records follow an end-of-file if both end-of-file and end-of-information

existed at the end of the old file.

Processing stops after an end-of-file, end-of-record, or end-of-information is reached, depending on the structure
of the old file and the processing parameters selected. If processing stops because an end-of-file or end-of-record
is reached, the old file will be positioned after that end-of-file or end-of-record. If processing stops because
end-of-information is reached, the old file will be positioned just prior to the end-of-information.

COPYL and COPYLM add an end-of-file to the new file even if no end-of-file is encountered on the old file.
No further positioning of the new file takes place.

TABLE 4-3. TYPESt OF RECORDS REPLACED BY COPYL AND COPYLM

Type Description Type Description

ABS Central processor overlay with one REL Relocatable central processor
or more named entry points program

CAP Capsule TEXT Text record

OVL CP overlay with one unnamed entry 6PP 6000 Series peripheral processor
point including system texts program

PROC CYBER Control Language 7PP 7000 Series peripheral processor
procedure file program

tFor additional information about how these types are determined, refer to appendix F.

4-24
60493800 M

COPYN (CONSOLIDATE FILE)

COPYN consolidates or merges files. System-logical-records from up to 10 binary input files can be extracted
and written on one output file. Input can be from tape, card, or mass storage files. Output can be to a
tape, card, or mass storage file.

Directive statements on file INPUT determine the order of the final file. Several tapes can be merged to
create a composite tape. A routine can be selected from a composite tape, temporarily written on a scratch
tape, and transmitted as input to a translator, assembler, or programmer routine, eliminating the need for
tape manipulation by the second program. In its most basic form, COPYN can perform a tape copy.

The format of COPYN is:

COPYN,f,outlfn,inlfn1,

Parameters are order dependent and required. Up to 10 inlfn parameters can be specified.

f Format of output record.

0 Copy records verbatim.

non-zero Omit ID from record.

outlfn File name of output file, 1-7 letters or digits beginning with a letter.

File name of input file, 1-7 letters or digits beginning with a letter.

System-logical-records to be copied might or might not have an ID prefix table containing the name of the
program or the name associated with the record. A record ID format consists of the first seven characters of
the second word of each record. If records do not contain an ID, record identification directives must specify
the record number (the position of the record from the current position of the file). Records without an ID
are copied verbatim to the output file.

Format of the binary input files depends on the storage media. A binary tape file consists of the information
between the load point and a double end-of-partition. This file can contain any number of single end-of-partition
marks. A mass storage file ends at end-of-information. A card file must be terminated with a 7 /8/9 card.

60493800 L 4-25 I

On the output file, a file mark for an output tape is written by using a WEOF statement in the desired
sequence, or it can be copied in a range of records and counted as a record.

Deck structure for a COPYN job in which all input files are other than INPUT:

Job statement
REQUEST statements as necessary
COPYN call
7/8/9
COPYN directives
6/7/8/9

COPYN DIRECTIVE STATEMENTS

Directive statements for COPYN use are REWIND, SKIPF, SKIPR, WEOF, and record identification statements.
These statements are read from INPUT when COPYN executes. The directive statements are free-field. They
can contain blanks but must include the separators indicated in each statement description. The ordering of
the directive statements establishes the material written on the output file. Directive statements are written
on the file OUTPUT as they are read and processed. When an error occurs, the abort flag is set, and the
statement in error followed by an error message is printed on OUTPUT. This statement is not processed, but
an attempt is made to process the next directive statement. When the last directive statement is processed,
the abort flag is checked, and if it is set, the job is terminated. Otherwise, control is given to the next con­
trol statement.

REWIND (REWIND FILE)

The REWIND directive rewinds the named file. This file must be one of the input or output file names given
on the COPYN control statement, not the system INPUT file.

The format of the REWIND directive is:

REWIND(lfn)

lfn Name of file to be rewound, 1-7 letters or digits beginning with a letter.

' 4-26
60493800 L

SKIPF (SKIP FILE)

SKIPF skips forward or backward a designated number of partitions on a file. No indication is given when
SKIPF causes a tape to go beyond the double end-of-partition or when the tape is at load point.

The format of the SKIPF directive is:

SKIPF(lfn ,n)

lfn Name of tape file to be skipped, 1-7 letters or digits beginning with a letter.

n Number (decimal) of file marks to be skipped. n skips forward n marks, -n skips
backward n marks.

SKIPR (SKIP RECORD)

SKIPR skips forward or backward a designated number of records. Levels 1 through 16 are not recognized
by the skip. ·

The format of the SKIPR directive is:

SKIPR(lfn,n)

lfn Name of tape file in which records are skipped, 1-7 letters or digits beginning with a
letter.

n Number (decimal) of records to be skipped. Zero-length records and file marks must
be included in parameter n. n skips forward n records; -n skips backward n records.

WEOF (WRITE Fl LE MARK)

WEOF writes a partition boundary on the named file.

The format of the WEOF directive is:

WEOF(lfn)

lfn Name of file, 1-7 letters or digits beginning with a letter.

RECORD IDENTIFICATION STATEMENT

The record identification statement contains the parameters which identify a system-logical-record or set of
records to be copied from a given file.

60493800 L 4-27 I

I

The format of the record identification statement is:

First record to be copied or the beginning record of a set. Name associated with the
record or a number giving the position in the file can be specified.

Last record to be copied in a set of records:

name

decimal
integer

*

**

0 or blank

System-logical-records p 1 through p2 are copied. p2 must be
located between p1 and end-of-information.

Number of records to be copied, beginning with p 1. Zero-length
records and file marks are counted. Copying stops when the file
end is encountered, even if the count has not been reached.

p1 through an end-of-partition are copied.

p1 through a double end-of-partition are copied.

p 1 through a zero-length record are copied.

Only p 1 is copied.

Input file to be searched. If p 1 is a name, and p3 is omitted, all input files declared
on the COPYN statement are searched until the p 1 record is found. If it is not
located, a message is issued. If p is a number and p3 is omitted, the last input file
referenced is assumed. If this is tte first directive statement, the first input file on
the COPYN statement is used.

Examples of record identification statements:

SIN,T AN,INPUT A

SIN,1 O,INPUT A

SIN,TAN

SIN,,INPUTA

l,TAN,INPUTA

1,10,INPUTA

l,*,INPUTA

4-28

Copies all system-logical-records from SIN through TAN from file INPUT A.

Copies 10 system-logical-records from file INPUTA, from SIN through SIN+9.

Searches all input files beginning with current file or first input file. When
SIN is encountered, all system-logical-records are copied from SIN through
TAN or until an end-of-partition is encountered.

Copies system-logical-record SIN from file INPUT A.

Copies the current system-logical-record through TAN from INPUT A.

Copies 10 system-logical-records, beginning with the current system-logical-record
on file INPUT A.

Copies the current system-logical-record through the first file mark encountered
on INPUTA.

60493800 L

FtLE POSITIONING FOR COPYN

Files manipulated during a COPYN operation are left in the position indicated by the previously executed
directive. The file containing p 1 is positioned at the record following p2. Other files remain effectively in
the same position.

When COPYN is searching for a named record and p has been omitted, each input file is searched in turn
until either the named record is found or the originaf position of the file is reached. The job INPUT file,
however, is not searched end-around.

In contrast to the end-around search, a copy operation does not rewind files. An end-of-partition terminates
a copy even if the record named in p2 has not been encountered. Since the output file is not repositioned
after a search, COPYN can be re-entered. Therefore, the programmer is responsible for any REWIND, SKIP,
or WEOF requests referencing the output file.

COPYN does not check for records duplicating names on other files. If such records exist, the programmer is
responsible for them. COPYN uses the first record encountered that matches the name on a directive
statement.

Examples of file positioning:

1. Record identification statement: REC,,INPUTl

BAKER REC
INPUTl

SIN TAN ZEE
E E
0 0
F F

Input file I ABLE

'--~~~..__~~~~-'-~~~4-~~~+-~~---1'--~~~~~~----''--~~--J

If INPUTA were positioned at TAN, TAN and ZEE would be examined for REC. The double
EOP would cause ABLE to be the next system-logical-record examined, continuing until REC is
read and copied to the output file. INPUTl would then be positioned at SIN.

2. Record identification statement: RECA

Input file INPUTl,
positioned at Bl

Input file INPUT2,
positioned at
load point

Input file INPUT3,
positioned at
load point

A1

A2 I RECA

A3
E E
0 0
F F

All records from Bl through Al are searched to find RECA; this repositions INPUTl to Bl. A2 is
searched, and when RECA is found, it is copied to the output file. INPUT2 remains positioned at
D2. INPUT3 is not searched.

60493800 L 4-29 I

3. Record identification statements and binary records on INPUT file. Directive statements are:

REC,,INPUT
JOBI ,JOB3,INPUT
ABLE,,IN2
7/8/9
REC (binary)
7/8/9
JOBI (binary)
7/8/9
JOB2 (binary)
7/8/9
JOB3 (binary)
7/8/9

Because the INPUT file is not searched end-around, RBC and JOBI through JOB3 must directly
follow the requesting record identification statements in the order specified by them. An incorrect
request for an INPUT record terminates the job.

COPYSBF (COPY SHIFTED BINARY FILE)

COPYSBF adds a carriage control character to the beginning of each line during a copy to a second file. It is
used with files to be printed when the existing first character is not a carriage control character. COPYSBF
inserts a page eject character at the beginning of the first line. A blank is inserted at the beginning of sub­
sequent lines to cause single spacing. A minimum field length of 10000 (octal) is required for COPYSBF.

A tape input file must be binary. Each line must be terminated by a I 2-bit byte of zeros in the low order
position of the last central memory word of the record.

The format of COPYSBF is:

Parameters are order dependent and optional.

Name of input file to be copied onto lfn2, I-7 letters or digits beginning with a
letter. Default is INPUT.

Name of output file onto which lfnI is to be copied, I-7 letters or digits beginning
with a letter. Default is OUTPUT.

COPYXS (COPY X TAPE TO SI TAPE)

COPYXS converts a binary tape in X format to SI format. X tapes exist as a result of operating systems that
are predecessors to NOS/BE I. The binary X tape logical structure contains 512-word PRUs with short PRUs
of sizes that are variable multiples of central memory words or 136 character PRUs.

' 4-30
60493800 L

The format of COPYXS is:

COPYXS,xlfn,scplfn,n.

Parameters xlfn and scplfn are required.

xlfn File name of input X tape, 1-7 letters or digits beginning with a letter.

scplfn File name of output SI tape, 1-7 letters or digits beginning with a letter.

n Number (decimal) of partitions to be copied. Default is 1.

COPYXS is used in the following manner. Both files must be requested as S format.

REQUEST(xlfn,S)
REQUEST(scplfn,S)
COPYXS(xlfn,scplfn,n)

The output tape is produced in SI format but is flagged in the system tables as S format. To read the output
tape in the same job, the following control statements are needed.

UNLOAD(scplfn)
REQUEST(scplfn,MT)

COPYXS cannot determine when end-of-information occurs on an X tape. Therefore, at least n partitions to
be copied must exist on the X tape. Neither the input nor the output tape is rewound after conversion.
After the requested number of partitions has been copied, the output tape is backspaced and positioned
directly in front of the first tape mark preceding the EOF trailer label. Subsequent files can be copied to
the output tape. However, the block count in the trailer label is then incorrect.

DELSET (DELETE MEMBER)

DELSET deletes and blank-labels a member device from a device set. It cannot be executed while a device
set is being shared. All member devices must be deleted before a DELSET is issued for the master device.
The master device must be mounted before DELSET is issued. The member device must be on-line (not
necessarily mounted) before DELSET is issued so that it can be blank-labeled and the flaw table updated.
Permanent files, queue files, and local files residing on the device must be removed before DELSET is issued.
If any portion of a local file or permanent file resides on the device to be deleted, the DELSET request is
aborted.

The format of DELSET is:

DELSET,SN=setname,MP=mpvsn,VSN=vsn.

All parameters are required and are order independent.

SN=setname

MP=mpvsn

60493800 L

Name of set from which member is to be deleted, 1-7 letters or digits beginning with
a letter.

Volume serial number of master device for the device set, 1-6 letters or digits with
leading zeros assumed.

4-31 I

VSN=vsn Volume serial number of member to be deleted from the device set, 1-6 letters or digits
with leading zeros assumed.

DISPOSE (RELEASE FILE)

DISPOSE releases a file for end-of-job processing or specified disposition either immediately or at the true
end-of-job. DISPOSE can be used to:

Assign a disposition code for an output file, including a forms code

Send a file to a central site or remote site device

Evict a file

The file referenced with DISPOSE must reside on a public queue device or on ECS and must not be a perma­
nent file.

When a special-name file is to be evicted such that all file data and references are destroyed, the DISPOSE
control statement should be used in preference to an UNLOAD or RETURN control statement. UNLOAD
and RETURN cause the implicit disposition of the file to occur. Only DISPOSE or ROUTE can evict a file
without causing special-name file output.

The format of DISPOSE is:

{

*de }
DISPOSE,lfn, *~~=~fc •

dc=Iid

The only required parameter is lfn. The asterisk is optional before the de parameter.

lfn

*

de

Name of file to be disposed, 1-7 letters or digits beginning with a letter. If only lfn
is specified, the file is evicted.

Defer disposition until end-of-job. Must be used if DISPOSE control statement appears
before the file is created. In the absence of *, disposition occurs when the DISPOSE
control statement is encountered in the job stream. The * cannot be used when disposing
a file to an INTERCOM terminal or to a forms code. If * is used to dispose the file
OUTPUT to the central site (*dc=C) for a job that originated elsewhere, a copy of the day­
file is sent to the job's origin at end-of-job.

Disposition code.

SC
PR
PE
LR
LS
LT
PB
PU

Evict the file (default)
Print on any available printer
Print on ASCII 95-character print train
Print on 580-12 printer
Print on 580-16 printer
Print on 580-20 printer
Punch standard binary format
Punch Hollerith format

P8

FRt
PTt
HRt
HLt
FLt
IN

Punch 80-colurnn free-form binary
format
Print on microfilm recorder
Plot on any available plotter
Print on hardcopy device
Plot on hardcopy device
Plot on microfilm recorder
Place file in the input queue

tsupporting drivers must be supplied by the installation.

I 4-32 60493800 L

c File is to be routed to the central site.

Cfc Forms code for special card or paper forms. Codes are defined by the installation.

lid File is to be routed to the INTERCOM terminal specified by id.

Identification on the printout or punch output file is the name of the job that executed DISPOSE.

DISPOSE EXAMPLES

1. JOB.
COBOL.
LGO.
DISPOSE,OUTPUT,PR.
REWIND(LGO)
FINS.
LGO.
7/8/9
COBOL program
7/8/9
data for COBOL program
7/8/9
FORTRAN program
7/8/9
data for FORTRAN program
6/7/8/9

Prints OUTPUT on any available printer.

Creates print file on OUTPUT.

Creates unrelated print file on OUTPUT.

This example creates two unrelated print files. The use of DISPOSE allows the files to be printed
separately. The job dayfile is attached to the second OUTPUT file.

2. JOB.
DISPOSE,HERON, *PR=C.
COBOL.
LGO.
7/8/9
COBOL program
7/8/9
data for COBOL program
6/7/8/9

File HERON to be printed at central site at end of job.

Creates file HERON and file OUTPUT.

This job creates a file named HERON and prints it at central site. If this job is submitted from
an INTERCOM terminal, the OUTPUT file and the dayfile are returned to that terminal.

60493800 L 4-33

DMP (DUMP CENTRAL MEMORY)

DMP prints the contents of selected areas of central memory. Three types of dumps are possible, depending on
the relative values of the parameters on the DMP control statement.

Exchange package dump Parameters omitted or all parameters specified are 0.

Control point area dump Parameters are equal in value and not 0.

Relative dump Parameters specify address within field length.

DMP output appears on the file OUTPUT. Each output line contains the contents, in octal, of up to four
central memory words, with the address of the first word at the beginning of the line.

When the content of a word is identical to the last word printed, printing of that word is suppressed. Printing
resumes with the next word having a different content. The address of the word at which printing resumes is
printed and marked by a right arrow.

When the content of a word is the address of that word, printing is suppressed. Printing resumes with the next
word that does not have its address as its content. The address of the word at which printing resumes is
printed and marked by a greater-than sign.

EXCHANGE PACKAGE DUMP

The format of DMP that produces an exchange package dump is:

DMP,0,0. or DMP.

Either or both of the parameters can be omitted.

Output from the dump includes:

The contents of the exchange jump package as noted below.

The contents of the communication area of the job field length, addresses RA through RA+lOO.

The contents of the first 100 octal words before and after the address to which the P register points,
provided the addresses are within the field length. If the P register is 0, the P address in bits 30-47 of
RA+O determines the locations to be dumped. If the P register or the P address in RA+O is less than
200 (octal), the first address dumped is 100. If both the P register and the P address are 0, only the
communications area and the exchange package are dumped.

The 16-word exchange package includes the following information.

p Program register contents

RA Central memory address of beginning of user field length

FL Central memory address of field length limit

' 4-34
60493800 L

EM Error mode register divided by 100 (octal)

RE ECS reference address divided by 1000 (octal)

FE ECS field length divided by 1000 (octal)

MA Monitor address applicable only to machines with monitor exchange jump instructions

AO-A7 Contents of A registers 0-7

Bl-87 Contents of B registers 1-7 (BO is always zero)

XO-X7 Contents of X registers 0-7

When the exchange jump package is dumped, the following information is also given if addresses are within the
field length. A message **OUT OF RANGE** appears if they are outside the field length.

C(Al)-C(A7) Contents of addresses listed in registers Al-A 7

C(B 1)-C(B7) Contents of addresses listed in registers Bl-87

CONTROL POINT AREA DUMP

The format of DMP that produces a control point area dump is:

DMP,x,x.

x Any pair of identical, nonzero octal values indicates the control point area is
to be dumped.

This control statement dumps the entire (200 octal word) control point area of the job. The actual octal
value specified is not significant. If the two octal values are nonzero and identical, the control point area
of the job will be dumped.

RELATIVE DUMP

The format of DMP that produces a relative dump of locations with the job field length is:

DMP,from,thru.

When only one parameter appears, it is presumed to be the thru parameter and dump begins at RA.

from Address at which dump is to begin after RA, octal.

thru Address at which dump is to end, octal. If address exceeds FL, FL is substituted.

60493800 L 4-35 I

14-36

DMP EXAMPLES

I. DMP,1,1. Dumps the control point area of the job.

2. DMP,0,0. Dumps the exchange package of the job.

3. DMP,100,200. Dumps from address IOO through 200 of the job's field length.

4. DMP,IOO. Dumps from the beginning of the job's field length through address IOO.

5. DMP. Dumps the exchange package of the job.

DMPECS (DUMP EXTENDED CORE STORAGE)

DMPECS prints the contents of selected areas of extended core storage. The file on which information
appears and the format of the dump are both selected by control statement parameters. Only the field
length assigned to the job can be dumped. All addresses are between RE and FE, the reference address and
field length of assigned ECS.

The format of DMPECS is:

DMPECS,from,thru,format,lfn.

Parameters are positional; from and thru are required.

from

thru

format

lfn

Address (octal) at which dump is to begin after RE.

Address (octal) at which dump is to end. If address exceeds FE, FE is substituted.

Format of each output line:

0 or 4 words in octal and in display code; default

2 2 words in 5 octal digit groups and in display code

3 2 words in 4 octal digit groups and in display code

4 2 words in octal and in display code

Name of file on which printout is to appear, 1-7 letters or digits beginning with a
letter. If omitted or 0, OUTPUT is assumed.

The dump begins at the closest multiple of IO (octal) less than or equal to the value of the from parameter.
The dump ends at the closest multiple of IO (octal) greater than the value of the thru parameter minus I.

60493800 L

DSMOUNT (DISASSOCIATE DEVICE)

DSMOUNT disassociates a private device from the job. DSMOUNT is a logical operation. When DSMOUNT
specifies the master device of a private device set, the entire set is disassociated from the job. A CLOSE/
UNLOAD function is issued for each open file on the set before each mounted member device is dismounted.
Finally, the master device is logically dismounted from the job.

The format of DSMOUNT is:

DSMOUNT,VSN=vsn,SN=setname.

Both parameters are required and order independent.

VSN=vsn

SN=setname

60493800 L

Volume serial number of device to be dismounted, 1-6 letters or digits with leading
zeros assumed. Can be a member device or a master device.

Name of device set to which this device belongs, 1-7 letters or digits beginning with
a letter.

4-37

DUMPF (DUMP PERMANENT FILE TO TAPE)

DUMPF dumps permanent files to a tape. It can be used to clear permanent files from a mass storage device
or to maintain backup copies of files selected by parameters on the DUMPF control statement. Parameters
on the DUMPF can identify a single file by name or specify the criteria by which the permanent file system
selects files for dumping.

The dump tape must be S tape format with the logical file name DUMTAPE. A REQUEST statement must
appear in the job before DUMPF is called.

Three dumps are possible:

Mode 1

Mode 2

Mode 3

Backup dump. The original copy of the file remains on mass storage ready for
immediate access by an executing job.

Archive dump. The file remains a permanent file, but with archive status. The only
copy of the file resides on the dump tape; it can be accessed by an executing job if
the operator makes the archive tape available so that the file can be reloaded to mass
storage.

Destructive dump. The file is no longer a permanent file. The only copy of the file
resides on the dump tape. It cannot be accessed unless the WADPF utility is executed
to restore the file to permanent file status.

DUMPF execution causes an implicit attach of a file having the permanent file name DUM. The device set
from which files are being dumped must contain a copy of DUM cataloged with an ID of PUBLIC and defined
passwords for RD, MD, CN, and EX. If a DUM permanent file with TK=DUMPF already exists (earlier systems
required this), it must be purged and replaced as described above. Passwords to access DUM must be submitted
as part of the DUMPF call.

For each cycle dumped, DUMPF makes an output listing entry that contains the permanent file name, owner
ID, cycle number, volume serial number of the dump tape, date of dump, a comment, and the flagging of any
parity errors.

The format of DUMPF is:

I 4-38

DUMPF,PW=pw,MO=n,I=lfn
1

,LF=lfn
2

,CL,DP=a,ID=name,PF=pfn,CY=cy,SN=setname,VSN=vsn,IN=ddd,

JN=yyddd,LA=mmddyy ,DA=yyddd,CD=mmddyy ,TI=hhmm.

Only PW is required; all other parameters are optional and order independent. Only one CD, DA, JN,
LA, or IN parameter can appear. If a terminator does not appear at the end of the parameter list,
column 1 of the next card or line is considered to be a continuation of the DUMPF parameter list.

PW=pw RD, MD, or CN password for DUM, depending on mode of dump. Refer to CATALOG
control statement for password definitions.

60493800 L

MO=n

LF=lfn2

CL

DP=a

ID=name

PF=pfn

CY=cy

SN=setname

VSN=vsn

IN=ddd

60493800 L

Dump mode:

n Mode

Backup mode. Permanent file tables and all associated mass storage space
are intact. RD password required. Default.

2 Archive dunip. Mass storage space is released, but permanent file tables
remain with the files marked as being on an archive tape. MD password
required.

3 Destructive dump. All permanent file tables and mass storage spaces are
released as the files are dumped. CN password required. The central
site operator receives notification when a mode 3 dump is attempted
and must authorize continuance of the dump.

Name of directive file for MO=l dump; 1-7 letters or digits beginning with a
letter. If lfn 1 is not specified, directives for MO=l are on INPUT. If a directive
file is used, the following parameters are not allowed on the DUMPF statement:
ID=name, PF=pfn, CY=cy, VSN=vsn, IN=ddd, JN=yyddd, LA=mmddyy, DA=yyddd,
CD=mmddyy, and TI=hhmm.

Output listing file. Default is OUTPUT.

Complete list option selected. All files in the permanent file directory are listed. If
CL is omitted, information is listed only for files which are dumped.

Dump type:

a Type

A All files meeting criteria of other parameters. Default.

X All files meeting criteria of other parameters only if their expiration
dates are equal or less than current date.

C All files meeting criteria of other parameters only if they have been
modified, renamed, created, or extended since the last DP=C or full dump. f

Dump files with this owner.

Dump files with this permanent file name. ID should be specified also; if it is not
specified, ID=PUBLIC is assumed.

Dump cycle cy of file identified by PF and ID. CY is ignored and the dump continues
if this cycle is not found or if PF and ID have not also been specified.

Dump files from device set with this name; 1-7 letters or digits beginning with a letter.

Dump files from this device of device set specified by SN; 1-6 letters or digits with
leading zeros assumed. VSN is ignored if SN is omitted.

Dump files not attached within this number of days; 1-3 digits. Can be qualified
by a TI parameter.

4-39

I

I

JN=yyddd

LA=mmddyy

DA=yyddd

CD=mmddyy

TI=hhmm

Dump files not attached on or after this date; five-digit ordinal date format. Can be
qualified by TI parameter.

Dump files not attached on or after this date; six-digit month-day-year format. Can
be qualified by TI parameter.

Dump files created, modified, renamed, or extended after this date; five-digit year­
and-day-of-year format. Can be qualified by TI parameter.

Dump files created, modified, renamed, or extended after this date; six-digit month­
day-year format. Can be qualified by TI parameter.

Time qualifier for date parameters; four-digit 24-hour clock format. If date parameters
are not specified, TI is ignored.

Several copies of DUMPF can execute at the same time on the same set as long as all copies running have
the same mode and type (DP parameter). If an attempt is made to run a DUMPF with a different mode
or type than one already running, all except the first DUMPF abort. Several copies of DUMPF can execute
at the same time on different sets and the modes and types need not match.

If a group of files is to be dumped for backup purposes, they can be identified by name and owner in a
directive record. The I parameter is required to specify the name of the file containing directives. Directive
formats are as follows.

ID=name
ID=name, PF=pfn
ID=name, PF=pfn, CY=cy

Parameters are order independent and ending punctuation is not required. The PF and CY parameters are
optional. The ID parameter should be specified. However, if the PF parameter is specified without an ID
parameter, ID=PUBLIC is assumed.

DUMPF EXAMPLES

1. DAYDMP, ...
REQUEST(DUMT APE,NT,PE,S,N)
DUMPF(PW=PERMl ,DA=78164)
6/7 /8/9

The job DAYDMP dumps all files cataloged, modified, renamed, or extended after the 164th day
in 1978.

2. SELDMP,.
REQUEST(DUMPT APE,MT ,HY,S,N)
DUMPF(PW=PERMl)
7/8/9
ID=DEVCTR
PF=FILEl ,ID=LER
PF=FICHE,ID=GFS,CY=l
6/7/8/9

4-40 60493800 L

Job SELDMP dumps the files specified in the input section of the control statement record. All
files with ID DEVCTR are dumped.

3. ARCHIVE, ...
PAUSE. BRING UPP DISPLAY TO INSURE DUMP TAPE HAS A VSN.
REQUEST(DUMT APE,MT,HY,S,N)
DUMPF(M0=2,IN= 1 O,PW=PERM2)
6/7/8/9

Job ARCHIVE illustrates a 10-day archive dump.

EDITLIB (CONSTRUCT USER LIBRARY)

EDITLIB constructs user libraries from a group of central processor routines or overlays. That library is avail­
able to the system loader by specific direction in the loader control statements for a job. It can also create
and maintain system libraries and create deadstart tapes. With EDITLIB a user library can be modified by
the addition, deletion, replacement of routines, and statistics about library contents can be listed.

A user library can only contain assembled central processor routines, CCL procedures, programs, or text records
produced by the COMPASS assembler, one of the system compilers, or loader generated overlays. Library
records can be independent programs, subroutines, overlays, or CCL procedures. Binary output from SEGLOAD
cannot be made part of a library. Unassembled text records in BCD format, peripheral processor programs,
and source language programs cannot be made part of user libraries.

EDITLIB considers each program on a user library to be a single unit occupying a system-logical-record. It
extracts the name, entry points, and external references from tables output with the program assembly and
uses them to construct tables describing the library file. Library tables are used by the loader to locate pro­
grams on the file. EDITLIB changes the tables when the user library is modified. Format of user library
tables is the same as that for system libraries. A user library file created by EDITLIB contains:

Assembled programs

CCL procedures

Tables referring to:

Entry points
External references
Program numbers
Program names

The program number table is used to link external references, entry points, and program names.

A user library can contain at most 2047 programs, 2047 external references, and 2047 entry points. A partic­
ular program in the library can have at most 124 entry points and 124 external references.

The user library file generated by EDITLIB can be on mass storage or magnetic tape. If the library file name
is assigned to a tape file before EDITLIB is called, the library is in sequential format on that tape, with the
library tables preceding the programs. Otherwise, the library is in random format on mass storage. When the
random library file is to be retained as a permanent file, the library file name should be associated with a
permanent file device before EDITLIB is called.

60493800 L 4-41

I

I

If a user library is to be copied from mass storage to tape, the EDITLIB directive RANTOSEQ should be
used rather than a COPY utility. Likewise, SEQTORAN should be used to copy a library from tape to disk.
The COPY utilities cannot copy a library file to or from mass storage correctly.

The user is responsible for cataloging and attaching any permanent files that are used by EDITLIB while per­
forming the task specified on each directive, and for extending permanent files that have been changed.

EDITLIB CONTROL STATEMENT FORMAT

The EDITLIB utility is called by an EDITLIB statement in the control statement section. If encountered
during job processing, EDITLIB accesses the next unprocessed section of the INPUT file, unless the I parameter
names another source of directives. A parameter on this statement specifies the file that contains EDITLIB
directives. These directives provide details for creating or manipulating the user library.

The format of EDITLIB is:

EDITLIB(USER,l=lfn1 ,L=lfn2)

All parameters are optional.

USER Distinguishes user library definition from system library. Default is USER.

File name containing directives, 1-7 letters or digits beginning with a letter.
Default is INPUT. I is identical to I=INPUT.

File name to receive listable output, 1-7 letters or digits beginning with a
letter. Default is OUTPUT. Lis identical to L=OUTPUT.

The following deck structure assembles two programs and adds them to an existing library.

4-42

job statement
COMPASS.
FTNS.
ATT ACH(ALIB,ID=SMITH)
EDITLIB(USER)
EXTEND(ALIB)
7/8/9

COMPASS program to be assembled
7/8/9

FORTRAN program to be compiled
7/8/9

Directives instructing EDITLIB to add programs to user library ALIB from LGO file
6/7 /8/9

60493800 L

EDITLIB DIRECTIVE FORMAT

The directive section for EDITLIB must contain only valid directives. EDITLIB considers the first 72 columns
of each 80 column card or 90 column card image to contain a separate directive. Blanks can be used freely.
EDITLIB removes them except in a literal or comment field. Required format for directives is similar to
system control statement format.

The format of EDITLIB directives is:

keyword. or keyword(parameter list)

Parentheses are required around parameter lists. Optional parameters have the format parameter=value;
all others are required. Required parameters must appear in the order given; optional parameters can
appear in any order after the required parameters.

Directive format and use is summarized as follows:

LIBRARY(libname, { ~~~})

FINISH.

END RUN.

ADD(prog,from,AL=level,FL=fl,FLO=O,LIB)

REPLACE(prog,from,AL=level,FL=fl,FLO=O,LIB)

DELETE(prog)

SET AL(prog,level)

SETFL(prog,fl)

SETFLO(prog, { ~})

LISTLIB(prog,lfn)

REWIND(lfn)

CONTENT(prog,lfn)

SKIPF({ n } ,lfn)
prog

SKIPF(n,lfn,F)

SKIPB({ n }· ,lfn)
prog

SKIPB(n,lfn,F)

60493800 L

Defines library to be created or modified

Terminates library manipulation

Stops execution of directives

Adds new program to library

Replaces program on library

Deletes program in library

Changes access level

Changes field length requirements

Sets FL override bit for INTERCOM

Lists program data from library file

Rewinds file

Lists program data from file

Skips ahead n records or to prog

Skips n files forward

Skips back n records or to prog start

Skip n files backward

4-43

'

*/ Inserts comments in output

RANTOSEQ(rlfn,slfn) Rewrites random library as sequential library

SEQTORAN(slfn,rlfn) Rewrites sequential library as random library

The prog parameter in these directives can take several forms:

A single program name can be stated. EDITLIB searches the entire file specified to find the named
program.

An asterisk can replace the program name. EDITLIB processes all programs from the current file position t
to end-of-file.

A range of programs to be included in directive execution can be specified with a + between the first and
last programs to be processed. In a file with records A,B,C,D,E, the range B + D represents B,C,D.

A single program to be excluded from directive execution can be specified with a dash(-) preceding the
program name or with the program name appearing at both ends of the range of programs to be excluded.

A range of programs to be excluded from directive execution can be specified with a - between the first
and last programs to be considered. In a file with records A,B,C,D,E, the range B - D represents A and E.

An asterisk can replace either the first or last program named in a range. For the first named program,
it is equated with the current file position; t for the last, it is equivalent to end-of-partition.

For the ADD and REPLACE directives only, several individual programs can be stated. In a file with
records A,B,C,D,E, the parameter D/B/E represent D and B and E. EDITLIB searches the entire file
specified to find the named program.

Program names must not exceed seven characters. Any character supported by the system is legal. If characters
EDITLIB uses for delimiters are in a name, the entire name must be written as a literal between dollar signs.
These characters are:

$ () - + = . , I blank

Any dollar sign to be included in the program name must be prefixed by a second dollar sign.

If the prog parameter is a single program name, EDITLIB searches the entire file for that program. If the prog
parameter is a range, EDITLIB searches the entire file for the first program in the range, but does not search
end-around for the second program. Thus, a range goes from the first program through either the second pro­
gram or end-of-partition whichever occurs first. The file INPUT is not searched.

The interpretation of the * depends on file format. The current position of a library file is always defined to
be the beginning of the file. Current position of other files is simply the beginning of the next record on the
file, which can be controlled by the user with file manipulation directives. An * replacing the last program is
equivalent to stating end-of-partition.

tThe definition of current file position depends on the file format. The current file position of a library file
is always defined to be the beginning of the file. The current position of other files is the beginning of the
next record in the file. The user can control the current position of these other files with file manipulation
directives.
4-44 60493800 L

Examples of names acceptable to EDITLIB:

Parameter Format Resulting Program Name

PROG12 PROG12

$PROG12$$$ PROG12$

$1-0$ 1-0

AA BB AABB

$AA BB$ AA BB

3AB 3AB

library file names should not begin with ZZ since these are reserved for system names.

' MANIPULATION OF LIBRARY FILES

A library is created by identifying the library in a LIBRARY directive followed by file manipulation statements
and ending with the FINISH directive. Multiple LIBRARY /FINISH sequences are permitted within an
EDITLIB directive set. An ENDRUN should follow the last FINISH in the EDITLIB directive set. If
ENDRUN is not supplied by the user, EDITLIB inserts it.

Existing user libraries in random file format are modified by the ADD, REPLACE, and DELETE directives
that change programs in the library. The SET AL, SETFL, and SETFLO directives change parameters in the
program name table of entries for existing libraries. These directives must be issued between the LIBRARY
Ofn,OLD) and FINISH directives.

The format of library files can be changed by the RANTOSEQ function and the SEQTORAN function.

File positioning statements can appear anywhere in the directive record. EDITLIB rewinds all files except
INPUT before executing any directives. After a random library is written, it is rewound. When a new sequen­
tial libracy is written, it is left-positioned after the end-of-partition.

A list of information about any or all programs on a library file or a file of assembled information is obtained
by the LISTLIB and CONTENT directives. Information listed comes from the program tables output with
every assembled record. It includes:

Program name

Date, time, and compilation or assembly machine

Entry points

External references

AL and FL values

60493800 L 4-45

Length of object deck in central memory words

Type of program: relocatable or absolute

ADD (ADD PROGRAM DURING LIBRARY CREATION)

ADD directives between LIBRARY(lfn,NEW) and FINISH directives create a user library. Programs (other than
peripheral processor programs) can be added from any file attached to the job, as long as the program contains
the necessary prefix table material at the beginning of the assembled information. If the directive is in error,
a message is issued, the programs are not added, and processing continues.

The format of the ADD directive is:

ADD(prog,lfn,AL=level,FL=fl,FW= {~} ,LIB)

Parameters prog and lfn are required; all others are optional.

prog

lfn

AL=level

FL=fl

FLa={~}

LIB

Name of program or range of programs to be added.

Name of file where assembled program currently resides, 1-7 letters or digits
beginning with a letter.

Access level of 1-4 (octal) digits used to determine whether or not a given INTERCOM
user can attach and use the program named. Also used to mark programs for access
by control statements; level must be an odd number. Program is available only to
internal calls unless AL is odd. Default is 0.

Maximum field length [O to 377777 (octal) J required for program loading and
execution. If FL=O, the field length specified on the job statement or the last RFL
statement encountered is used. Default is 0.

Field length override bit. If FLO=l, then the field length from the job control state­
ment CM parameter or from the RFL control statement or from the EFL INTERCOM
command overrides FL. If FLO=O, no override is allowed. Default is 0.

Indicates the parameter lfn is a user library name. Allows programs to be added
from an existing user library. It directs EDITLIB to search the directory of a file
in library format.

If AL, FL, or FLO values are wanted in the new library tables, they must be explicitly stated in the directive,
even if the addition is to be made from an existing library. Current values in source library or existing library
tables are not preserved. To change the values of these parameters in an existing library, use the SET AL,
SETFL, and SETFLO directives.

I 4-46 60493800 L

Examples of valid ADD formats and their results:

Parameter Format Result

ADD(*, TREES) All programs between current position and the end-of-partition
of TREES are added.

ADD(RAINIER,MTS,FL=14400) All of file MTS is searched for program RAINIER; field length
of 14400 (octal) is required to execute RAINIER.

ADD(REDWOOD-SEQUOIA,TIMBER) All programs on file TIMBER, except REDWOOD, SEQUOIA,
and all those between, are added.

ADD(*+ASPEN,YELLOW) All programs from the current position of YELLOW through
program ASPEN are added.

ADD(SEND/MONEY ,PROCFIL) Procedure file PROCFIL is searched as needed and procedures I
SEND and MONEY are added to the user's library.

ADD(AlP,LlBR,LlB) The program name table of library LlBR is searched for pro­
gram AIP which, when located, is added to the current
library.

CONTENT (LIST FILE)

CONTENT lists any file of assembled programs, whether in library format or not.

The format of the CONTENT directive is:

CONTENT(prog,lfn)

prog Program or range of programs to be listed.

lfn File name containing prog, 1-7 letters or digits beginning with a letter.

DELETE (DELETE PROGRAM FROM LIBRARY)

DELETE logically deletes all references to the named program from library tables.

The format of the DELETE directive is:

DELETE(prog)

prog Name of program or range of programs to be deleted.

60493800 M 4-47

Examples of valid DELETE formats and their results:

Parameter Format

DELETE(BIRCH+ ASH)

DELETE(LAUREL-MADRONE)

Result

Programs BIRCH through ASH on library being modified are
deleted.

All programs on existing library except LAUREL, MADRONE,
and those between, are deleted.

Programs named in a DELETE or REPLACE directive are logically deleted from the library file. Records in
the file are not overwritten, but in the case of a REPLACE, the file is extended with the addition of a new
program. To completely eliminate programs from the library, it is necessary either to construct a new library
using the old one as the source or to use RANTOSEQ followed by SEQTORAN, which compacts the library
and preserves attributes of programs in the library.

ENDRUN (STOP EXECUTION)

During directive processing, EDITLIB first interprets each directive in the record excluding comment statements.
Execution begins after all directives are interpreted.

When an ENDRUN is encountered during execution phase, execution stops. In most instances, ENDRUN is
the last directive in the record. By placing it earlier in the record, syntax of succeeding directives can be
checked without an error producing premature termination.

The format of the ENDRUN directive is:

END RUN.

FINISH (STOP FILE MANIPULATION)

FINISH indicates the end of library construction.

The format of the FINISH directive is:

FINISH.

LIBRARY (IDENTIFY LIBRARY)

LIBRARY identifies the library to be manipulated. This directive must precede all other directives except
comments or file manipulation directives. Every directive set calling for library creation or modification must
have at least one such directive. A FINISH directive is required to mark the end of library construction. File
manipulation statements can appear between LIBRARY and FINISH.

The format of the LIBRARY directive is:

LIBRARY(libname, { ~~~})

4-48 60493800 L

libname library name and name of file containing library during this job.

OLD Used when libname is an existing library to be modified.

NEW Used when libname refers to new library or directory to be created.

LISTLIB (LIST LIBRARY FILE)

LISTLIB lists a library file. Part or all of the library can be listed depending on the number of programs
indicated by the prog parameter. The LISTLIB directive cannot appear between a LIBRARY and a FINISH.

The format of the LISTLIB directive is:

LISTLIB(prog,lfn)

prog Program or range of programs to be listed.

lfn File name containing prog, 1-7 letters or digits beginning with a letter.

RANTOSEO (CONVERT RANDOM FILE TO SEQUENTIAL FILE)

RANTOSEQ takes a disk resident library file in random format and creates a sequential library file containing
the same programs. This directive cannot appear between a LIBRARY and FINISH.

The format of the RANTOSEQ directive is:

RANTOSEQ(rlfn,slfn)

rlfn Disk resident random library that is to be converted.

slfn Sequential library created from rlfn; slfn is not rewound after the copy.

REPLACE (DELETE AND REPLACE PROGRAM)

REPLACE differs from the ADD directive in that it causes a program with an identical name to be deleted
from the library before the new program is added. If a program with that name does not exist, an informa­
tive message is issued and the new program is added to the library.

The format of the REPLACE directive is:

REPLACE(prog)fn,AL=level,FL=fl,FLO=O,LIB)

Parameters have the same meaning as those of the ADD directive. AL, FL, and FLO values must be stated
explicitly if values other than the defaults are wanted. Current values in source library or existing library
tables are not preserved when ADD or REPLACE is used. See ADD for parameter definitions.

60493800 L 4-49 I

Examples of valid REPLACE formats and their results:

Parameter Format

REPLACE(MAPLE,TREES,FLO=O)

REPLACE(OAK, TREES)

REPLACE(ACORN, TREE,LIB)

Result

Existing program MAPLE is deleted. Program MAPLE is added
from file TREES. FLO is set to 1 ; FL and AL are set to
default values.

Existing program OAK is deleted and replaced; FL, FLO, and
AL receive default values.

Program name table for library TREE is searched for program
ACORN. The named program is deleted from the current
library and the new program ACORN is added from library
TREE.

REWIND (REWIND FILE)

The format of the REWIND directive is:

REWIND(lfn) or REWIND(lfn/lfn/ ... lfn)

lfn Name of file or files to be rewound.

SEQTORAN (CONVERT SEQUENTIAL FILE TO RANDOM FILE)

SEQTORAN takes a tape resident library file in sequential format and creates a disk resident library file con­
taining the same programs. The directive cannot appear between a LIBRARY and a FINISH.

The format of the SEQTORAN directive is:

SEQTORAN(slfn,rlfn)

slfn Tape file in sequential format that is to be converted.

rlfn Random library file created from slfn.

SETAL (CHANGE ACCESS LEVEL)

SET AL assigns a new access level to the named program.

The format of the SETAL directive is:

SETAL(prog,level)

prog Name of program or range of programs.

level New access level of 1-4 (octal) digits.

' 4-50 60493800 L

SETFL (CHANGE FIELD LENGTH)

SETFL assigns a new field length to the named program.

The format of the SETFL directive is:

SETFL(prog,fl)

prog Name of program or range of programs.

fl New field length of 0 to 377777 (octal).

SETFLO (SET FIELD LENGTH OVERRIDE BIT)

SETFLO sets the field length override bit for INTERCOM.

The format of the SETFLO directive is:

SETFLO(prog, { ~})

prog Name of program or range of programs.

0 Does not allow override; 0 is the default value.

Allows override.

SKIPB (SKIP BACKWARD)

SKIPB repositions a library backward one or more records or files. The library is positioned at the beginning
of a record or file. When beginning-of-information or end-of-information is encountered, a skip by count is
terminated. For a skip by name, the entire file is searched, if necessary, in the direction stated. Skip by
program name is applicable to sequential files only.

The format of the SKIPB directive for records is:

SKIPB({n },lfn) prog

n Number (decimal) of records to be skipped backward; cannot be zero.

prog Program name to which instruction skips.

lfn File name containing prog, 1-7 letters or digits beginning with a letter.

60493800 L 4-51

The format of the SKIPB directive for files is:

SKIPB(n,lfn,F)

n Number (decimal) of files to be skipped backward; cannot be zero.

lfn File name of multi-file, 1-7 letters or digits beginning with a letter.

F Indicates files, not records, are to be skipped.

SKIPF (SKIP FORWARD)

SKIPF repositions a library forward one or more records or files. The library is positioned at the beginning of
a record or file. When beginning-of-information or end-of-information is encountered, a skip by count is
terminated. For a skip by name, the entire file is searched, if necessary, in the direction stated. Skip by pro­
gram name is applicable to sequential files only.

The format of the SKIPF directive for records is:

SKIPF({n } ,lfn)
prog

n

prog

lfn

Number {decimal) of records to be skipped forward; cannot be zero.

Program name to which instruction skips.

File name containing prog, 1-7 letters or digits beginning with a letter.

The format of the SKIPF directive for files is:

SKIPF{n,lfn,F)

n Number {decimal) of files to be skipped forward; cannot be zero.

lfn File name of multifile, 1-7 letters or digits beginning with a letter.

F Indicates files, not records, are to be skipped.

I 4-52 60493800 L

USER EDITLIB EXAMPLES

1. MTCREAT.
REQUEST(MTLIB,LO,VSN=l4444)
REQUEST(SO RC EFL,MT ,VSN= 14445)

FTN5.
EDITLIB(USER)
7/8/9

Requests 7-track tape to hold new library.
Requests tape with previously assembled source
programs.

FORTRAN program to be compiled, program name HOOD.

7/8/9
LIBRARY(MTLIB,NEW)
REWIND(SORCEFL)
REWIND(LGO)

ADD(*+SHAST A,SORCEFL)

SKIPF(3,SORCEFL)
ADD(HOOD,LGO)
ADD(* ,SORCEFL)
FINISH.
END RUN.
6/7/8/9

Job MTCREAT creates a sequential user library on a tape.

2. MTCHNGE.
REQUEST(MTLIB,LO,VSN=l 4444)
REQUEST(DIRECT,MT,VSN=I 2000)
EDITLIB(I=DIRECT)
6/7 /8/9

Initiates construction of new library MTLIB.
Rewinds binary input file.
Rewind binary output from FORTRAN
Extended program.
Adds programs from beginning of file
through SHASTA.
Skips 3 programs on file.
Adds program from LGO file.
Adds all remaining programs on SORCEFL.
Terminates library construction.
Stops execution.

Job MTCHNGE modifies the library created above. Directives for EDITLIB are on tape 12000.

3. BIRDS.
REQUEST(BIRDLIB,PF)
ATT ACH(GULLS,GULLSPF ,ID=PETERSON)
ATT ACH(WRENS,WRENSPF ,ID=PETERSON)
EDITLIB(USER)
CAT ALOG(BIRDLIB,BIRDLIBRARY ,ID=PETERSON)
7/8/9
LIBRARY(BIRDLIB,NEW)
ADD(*,GULLS)
ADD(CACTUS-HOUSE,WRENS)

FINISH.
END RUN.
6/7/8/9

60493800 L

Job statement.
Requests permanent file device for library.
Attaches permanent file as lfn GULLS.
Attaches permanent file as lfn WRENS.
Calls EDITLIB.
Catalogs library as permanent file.

Establishes library name.
Adds all files from GULLS.
Adds all files from WRENS except CACTUS
through HOUSE.
Terminates library.
Stops execution.

4-53

Job BIRDS creates a random format library file and makes it permanent. Binary input files exist on
permanent files GULLSPF and WRENSPF.

4. CHECK.
EDITLIB(USER)
7/8/9
ENDRUN.
LIBRARY(OLDLIB,OLD)
DELETE(SPARROW)
REPLACE(HA WK,INPUT,FLO=O)
SET AL(SHRIKE, 777)
SETFLO(ROBIN,l)
SETFL(CREEPER,5 5000)

FINISH.
6/7 /8/9

Stops execution here.

Job CHECK uses EDITLIB to check syntax of all directives but does not execute.

EXECUTE (INITIATE EXECUTION)

EXECUTE causes execution of a loaded program. It is a loader control statement. Refer to the CYBER
Loader Reference Manual for additional information. EXECUTE terminates a load sequence.

The format of EXECUTE is:

EXECUTE.

EXECUTE normally follows a LOAD control statement.

EXIT (PROCESS AFTER FATAL ERROR)

The EXIT control statement establishes the conditional processing of sequences of control statements when
certain fatal errors occur. If an error causes a job step to terminate (table 4-4), the system aborts the job and
searches the job control statement file for EXIT control statements, skipping other control statements in the
process. If the system finds no EXIT statement, the job is terminated as described in Job Processing and
Deck Structure, section 2. If the system finds two consecutive EXIT statements, the job is terminated.

The formats of the EXIT statement are:

EXIT.

EXIT,C.

EXIT,U.

EXIT,S.

I 4-54 60493800 L

c Conditional processing option.

u Unconditional processing option.

s System processing option.

The type of error that occurs dictates the type of EXIT processing to be performed. Some error conditions
bypass EXIT processing and terminate the job immediately. Error conditions are classified as follows:

Job step abort

Special abort

Terminal abort

Terminates the current job step and starts the search for any of the four types of
EXIT control statements. Most error conditions in the system are in this classification.

Terminates the current job step processing and starts the search for an EXIT ,S
control statement.

Terminates the current job step and the job immediately. No EXIT processing takes
place.

Table 4-4 describes the type of EXIT processing performed when various errors occur.

EXTEND (PERMANENT FILE EXTENSION)

EXTEND makes information written at the end of an existing permanent file permanent. Information can be
written at the end of any attached permanent file. However, in the absence of an EXTEND or ALTER con­
trol statement, the added information disappears when the job terminates. EXTEND can be issued with the
file at any position.

EXTEND can be issued by any job that attaches the file with extend permission or by the job that catalogs the
file. The newly added information acquires the privacy controls of the existing permanent file. No boundary
exists between the original information and the new information.

The format of EXTEND is:

EXTEND,lfn.

lf n

60493800 L

Name of permanent file attached with extend permission, 1-7 letters or digits
beginning with a letter.

4-5 s I

-
~ .
Ul

°'

~
~

'° w
00
0
0

t""'

Condition Causing Job
Step Termination

Successful completion (no
error or only non-fatal errors).

ENDRUN macro.

Peripheral processor encountered
improper I/O request.

Time limit exceeded (first time
only).

Operator DROP.

User arithmetic error not negated
by a MODE control statement.

ECS parity error.

Loading program with compila·
tion or assembly errors.

ABORT,NODUMP macro.

ABORT,,S macro.

ABORT,NODUMP,S macro.

Control statement error.

Job statement error.

ACCOUNT statement error.

Operator KILL.

Operator RERUN.

Time limit exceeded (second
: time).

Checksum error during job
input.

Two consecutive EXIT statements.

TABLE 44. EXIT PROCESSING

Type of Termination and Action Taken When EXIT Encountered

Action Taken on Occurrence EXIT. EXIT,C. EXIT,U. EXIT,S.

Normal job step advance; advances Terminates job. Resumes processing Resumes processing Terminates job.
to next control statement and pro· after EXIT,C. After EXIT,U.
cesses it. Terminates job if end of
control statement record
encountered.

Job step abort; aborts job step Resumes processing Terminates job. Resumes processing Resumes processing
and skips all control statements after EXIT. after EXIT,U. after EXIT,S.
until an EXIT statement is found.
Terminates job if no EXIT found
before end of control statement
record encountered.

Special abort; aborts job step and Continues skipping. Continues skipping. Continues skipping. Resumes processing

skips all control statements until after EXIT,S.

an EXIT,S. Terminates job if no
EXIT,S found before end of con·
trol statement record.

Terminal abort; aborts job step and Not applicable. Not applicable. Not applicable. Not applicable.

terminates job.

GENLDPF (RELOAD PERMANENT FILE CATALOG)

GENLDPF reads a log tape created by the PFLOG utility and generates LOADPF jobs, which will load the
files that had a permanent file catalog (PFC) entry at the time PFLOG was run. This allows the installation
to do a full reload of the permanent file base without reloading files purged since the last full dump.

Before GENLDPF is called, a REQUEST control statement must define a log file as an existing labeled SI
tape whose logical file name is LOGT APE.

For each entry read from the log tape, GENLDPF makes an output listing entry that contains the permanent
file name, owner id, and cycle number.

The format of GENLDPF is:

GENLDPF,PW=pw,SN=setname,VSN=vsn,LF=lfn.

PW is required; all other parameters are optional. However, SN is specified if VSN is specified, and
vice versa. All parameters are order independent.

PW=pw EX password required for generated LOADPF jobs.

SN=setname Name of device set onto which permanent files are to be reloaded, 1-7 letters or digits
beginning with a letter. The master device for this set must have been mounted
before GENLDPF can execute. Default is the permanent file default set.

VSN=vsn Volume serial number of the master device of the device set specified by SN=setname.

LF=lfn Name of file on which the listing is to appear, 1-7 letters or digits beginning with a·
letter. Default is OUTPUT. If lfn=O, no listing is generated.

GENLDPF EXAMPLES

1. JOBX(NTOl)
VSN(LOGT APE=l 23456)
REQUEST(LOGTAPE,NT,PE,E,NORING)
GENLDPF(PW=HELLO)
6/7/8/9

This job reloads files onto the permanent file default set and writes the output listing on OUTPUT.

2. JOBY(NTOl)
VSN(LOG T APE=246801)
MOUNT(SN=SETNAME,VSN=MASTER)
REQUEST(LOGTAPE,NT,PE,E,NORING)
GENLDPF(PW= LOAD,SN=SETNAME,VSN=MASTER,LF=O)

This job reloads files onto set SETNAME whose master pack vsn is MASTER. No output listing is
generated.

60493800 L 4-57

l

\

GETPF (ATTACH PERMANENT FILE FROM LINKED MAINFRAME)

GETPF enables users in a multimainframe environment to attach permanent files from a linked mainframe.
lt can attach a permanent file to a job, as long as parameters specified on the GETPF control 3tatement
establish the right to use the file. GETPF differs from the ATTACH control statement in that:

GETPF creates a local copy of a file; ATTACH manipulates the file itself.

GETPF can obtain a copy of any permanent file residing in a permanent file set of any of the linked main­
frames. ATTACH can access only permanent files which reside on a device directly connected to the main­
frame on which the job is executing.

The format of GETPF is:

{
LC=n } GETPF ,lfn,pfn,ID=name ,EC=ec, CY=cy ,PW=pw ,ST=mmf,SN=setname ,VSN=vsn.

The first parameter establishes the logical file name. Parameters lfn and pfn are required in the order
shown; all other parameters are order independent. ID and ST are required. SN and VSN are optional,
hut if one is specified, they both must be specified. GETPF can be continued; if a period or right
parenthesis does not appear at the end of the parameter list, column l of the next statement is con­
sidered a continuation of column 80.

lfn

pfn

ID=name

ST=mmf

SN=setname

VSN=vsn

File name, 1-7 letters or digits beginning with a letter. If omitted, the first seven
characters of pfn establish lfn.

Permanent file name by which the file is known in the permanent file catalog, 1-40
letters or digits. Required.

ID parameter by which the file was cataloged. Required unless the file was cataloged
with ID=PUBLIC.

The mainframe on which file lfn is cataloged; three characters. The values for mmf
are established at installation time. Required.

Device set name identifying the private device set containing the permanent file to
be attached. This parameter may be 1-7 letters or digits and must begin with a
letter. If SN is specified, VSN must also be specified to allow access to the private
set on the mainframe specified by ST.

Volume serial number identifying the master device of the private device set. This
parameter may be 1-6 letters or digits. If SN is specified, VSN must also be speci­
fied as explained in the SN description.

Refer to the ATTACH control statement for the remaining parameters.

GETPF always sets MR=l.

I
When a file is referenced by GETPF, a copy of the file is transmitted to the mainframe on which the job is
executing at the time the file is opened.

Any modifications made to the file during the job are a part of the local file copy, not of the original
permanent file.

4-58 60493800 L

ITEMIZE (LIST CONTENTS OF BINARY FILE)

ITEMIZE lists pertinent information about each record of a binary file in a format suitable for printing.
Table 4-5 describes the types of records processed by ITEMIZE.

ITEMIZE processes mass storage files or system-logical-record format tape files. A file can be processed
from beginning-of-information through end-of-information.

Output from ITEMIZE is affected by the type of record and options selected. A header appears for each
file terminated by an end-of-file marker within the file specified by the file name. The first line of the
header identifies the file name, file position within that file, and the date and time of the run. The second
line of the header has the following fields:

REC

NAME

TYPE

LENGTH

CKSUM

DATE

Position of the record in the file starting with the first record of each file.

Record name obtained from the second word of the prefix table or from the
first word of the record.

Type of record as shown in table 4-5.

Number of words (octal) in the record, excluding the prefix table.

Cyclic logical checksum (octal), excluding the prefix table.

Date record was created as stored in the prefix table.

COMMENTS Contents of the comments field in the prefix table.

If no prefix table is present, the associated fields are blank.

Additional information listed depends on the type of record:

ABS

DATA

OVL

TEXT

UPL

6PP

7PP

Entry point names are listed.

First line of the record is listed if the name of the record is OVERLAY.

Overlay level is listed in octal.

Entire record is listed if the name of the record is CMRDC, IPRDECK, IPRDC,
LIBDECK, LIBDC, or COMMENT.

Deck names are listed.

Information stored by EDITLIB is listed giving the octal equivalent of the load
address, residence, and control statement call flag.

PP number is listed.

The E parameter can select further details about several types of records.

60493800 L 4-59

\

The last record in each file is the end-of-file marker, which appears on the listing as the characters *EOF*.
The SUM= identification is the total length, in words, for all records in the file, including the prefix table
lengths.

Any zero-length record in the file appears with the record name (00). When it is encountered, a sum of
the lengths of the records encountered since the beginning of the file, or since the last sum was taken, is
listed on the output. The length includes prefix tables. Record numbering is not restarted until a new
file is encountered.

If a record of type UPL has more correction identifier names and/or deck names than can be accommodated
within the ITEMIZE buffer, the following message appears on the listing in place of the excess names:

TRUNCATED--IDENT OR DECK LIST TOO LONG

Here, the Update utility must be used to obtain a complete list of identifiers and deck names.

NOS/BE deadstart tapes can be recognized by ITEMIZE. For deadstart tapes, ITEMIZE lists deadstart records
or the library name tables according to their positions on the tape. The remaining records are listed as usual,
with the library name becoming part of the header for each file.

A dayfile message is issued when ITEMIZE completes execution.

The format of ITEMIZE is:

ITEMIZE(lfn,L=listlfn ,BL,PW=n,PD ,NR,N=n,E)

The first parameter is positional; if lfn is omitted, its position must be indicated by a comma. All others
are optional and order independent.

Parameter

lfn

L=listlfn

BL

PW=n

4-60

Description

Name of file to be itemized; default name is LGO.

List output on file listlfn; default is L=OUTPUT.

Burstable listing; each file output starts at the top of a page. Default is
a compact listing in which a page eject occurs only when the current page
is nearly full.

Print either 136-character lines or 72-character lines depending on the value
of the decimal integer n. If n :?!'. 136 print 136-character lines. If < 136,
print 72-character lines.

If =n is omitted, print 72-character lines regardless of the listing file device.

If PW=n is omitted, the default value is 72-character lines if the listing file
is a terminal; otherwise, the default value is 136-character lines.

60493800 L

Parameter

PD

NR

N=n

E

Type of Record

ABS

CAP

DATA

LIBNT

OVL

PPNT

PROC

Description

Print density at eight lines per inch; default is six lines per inch. If this
parameter is to produce the desired result, the programmer must ensure that
output appears at a printer with eight lines per inch capability.

No rewind of lfn before or after processing; default is rewind before and after
processing.

Itemize n files, where n is a decimal integer; default is N= l.

If =n is omitted, itemize until end of information.

If n is zero, itemize until an empty file is processed.

Expand output to list further information; default is no expansion.

For record types CAP and REL, list entry points.

For record types UPL, list correction identifier names.

TABLE 4-5. TYPES OF RECORDS LISTED BY ITEMIZEt

Record Description Type of Record Record Description

Central processor overlay with REL Relocatable central processor
one or more named entry points. program.

Capsule. SOR Special deadstart record.

Not any other described record TEXT Text record.
type.

Library name table record. UCF Update compressed compile file.

Central processor overlay with one UPLx Update sequential program
unnamed entry point (no ENTRY library with x master control
statement in program); system text character.

Peripheral processor program 6PP 6000 Series peripheral processor
name table. overlay.

CYBER Control Language 7PP 7000 Series peripheral processor
procedure file. overlay.

+For additional information about how these types are determined, see appendix F.

60493800 M 4-61

I

LABEL (TAPE LABEL SPECIFICATION)

LABEL writes or checks VOLl and HDRI labels on tapes. In addition to substituting for a REQUEST control
statement for a single file labeled tape, LABEL can be used to position within a multifile set. To use a LABEL
statement the job statement must specify the tape track type and density (refer to MTk parameter in the JOB
statement earlier in this section).

In most instances, LABEL is the first reference to a file in a job, unless it is preceded by a VSN statement
indicating the volume serial number of the resident volume. For a single file volume, a REQUEST is not
needed, although a REQUEST followed by LABEL is valid and does not create an error condition. If a
REQUEST statement follows the LABEL statement, duplicate file names are generated and the job terminates
since the LABEL program issues a REQUEST function to obtain the equipment. For labeled multifile volumes,
a REQUEST establishing the multifile set must precede the LABEL statements that write the header labels for
various files in the set.

The label program issues an OPEN function to read or write the file label. Contents of the label are copied to
both the system and job dayfiles. When label fields are not consistent with the information supplied on the
LABEL control statement, the operator is notified. The operator can mount another tape and have its label
checked or can authorize the job to continue with the existing tape.

The format of LABEL is:

LABEL,lfn.{~}. {~},{~;~NG} .{;:~}.D=d,F=f,N=n,X=x,L=z,V=v ,E=e,T=t,C=c,M=m,P=p,VSN=vsn

The first parameter must be the file name. An R or W parameter is required. The remaining
optional parameters are order independent. LABEL can be continued; if a terminator does not appear
on the first statement, the next is assumed to be a continuation of the first.

Default parameters cause a single file header in ANSI format for a seven-track tape in SI format. Any
other label or data format to be written, or a tape to be read, must be declared explicitly.

Nine-track tape can be selected only by giving either a nine-track density parameter (HD, PE, or GE)
or a code conversion parameter (US or EB).

Read or write:

R

w

4-62

Label is to be read and compared with parameters on the LABEL control statement.
When R is issued, the tape can be a candidate for automatic assignment by label name.

Label is to be written.

60493800 L

Label type:

y

z

absent

Write ring:

RING

NORING

absent

3000 Series label.

Label conforms to standard label of previous operating system. Character 12 of the
VOLl label specifies data density; otherwise Z labels are identical to U labels.

Standard label conforming to ANSI.

Write-enabled ring required in tape.

Write-enabled ring prohibited in tape.

Parameter is set to installation-defined value.

Hardware error correction:

EEC

IEC

Tape characteristics:

D=d

Enable hardware GE write error correction. The system allows certain types of
single-track errors to be written that can be corrected when the tape is read (on-the­
fly correction). This is the recommended mode of operation, because it provides
efficient throughput, error recovery, and tape usage when writing GE tapes on media
that is suitable for use at 3200 fci or 6250 cpi.

Disable all error correction activity in GE write mode. The system invokes standard
error recovery processing when an on-the-fly error occurs while writing a GE tape.
The system erases the defective portion of tape, thereby reducing the amount of
data that can be stored on the tape. Only tape that is suitable for recording at 6250
cpi should be used when this mode of operation is in effect.

NOTE

EEC and IEC apply only to GE (6250 cpi) operations. GE
must also be specified in a REQUEST statement; otherwise,
EEC and IEC are ignored.

EEC and IEC are applicable if the user requests default nine-track
density and the installation nine-track default density is GE
(6250 cpi).

Density. If omitted, density declared or implied by REQUEST prevails. For 7-track
tapes:

Lot 200 bpi
HI 556 bpi
HY 800 bpi

t200 bpi can be read but not written by 667 /677 tape drives.

60493800 L 4-63

I

F=f

N=n

X=x

Label fields:

L=z

V=v

E=e

T=t

C=c

M=m

For nine-track tapes, the d parameter determines density for writing only; data is
always reading at the recording density.

HD 800 cpi
PE 1600 cpi, phase encoded
GEt 6250 cpi, group encoded

Format of the file data. Default is SI format.

S S tape format
L L tape format

Code for conversion of all nine-track tape labels and for conversion of data on coded
nine-track tapes of types S or L. Default is installation defined.

US ASCII code
EB EBCDIC code

Disposition of tape:

IU Inhibit physical unload
SV Unload tape at end of job; notify operator to save
CK Checkpoint dump written on tape
CI Checkpoint dump and inhibit physical unload
CS Checkpoint dump and save

Label name, 1-17 characters for ANSI or Z labels; 1-14 characters for Y labels.
Default value is spaces.

Label field. Volume number specifying volume sequence in volume set. 1-4 digits
for ANSI or Z labels; 1-2 digits for Y labels. Default is 0001 for ANSI or Z
labels, 01 for Y labels.

Label field. Edition number specifying version of file. 1-2 digits. Default is 00.

Label field. Number of days file is to be retained, 1-3 digits. Default determined
by installation. 999 is permanent retention. A retention period greater than 364
days results in the assignment of T=999.

Label field. Creation date format is two digits for year and three digits for day.
Default is current date.

Label field. The operating system uses this parameter to establish that the current
LABEL function applies to a member of a multifile set. m is the logical multifile
set name as it appears on the REQUEST statement for this set, and it must be
present for all LABEL statements referencing members of this multifile set. When
the label is written on tape, the multifile field does not contain the logical set name.
It contains the VSN for the first volume of the multifile set.

t 6250 cpi density is supported only on 679 GCR tape drives.

4-64 60493800 L

P=p

VSN=vsn

Label field. Position number indicating file within multifile set, 1-4 digits. Default
is 0001. Not defined for 3000 Series labels.

Volume serial number of 1-6 characters used to identify the tape for automatic
assignment. Parameter can appear on VSN statement rather than LABEL state­
ment. A VSN of SCRATCH or 0 specifies a scratch tape.

LABELMS (DEVICE SET LABELING)

LABELMS labels a device before it is used in a device set, places the volume serial number in the label, and
establishes the type of access to the device. In addition, LABELMS can be used to specify information for
subsequent access to the device, and to record known flaws on a device so that such areas are not accessed.

The format of LABELMS is:

LABELMS,DT=dt ,mode ,I=lfn.

All parameters are optional.

DT=dt

mode

I=lfn

Device type. If DT is omitted, the operator can assign any device type. The value
of dt is a device mnemonic; for example, AY for 844-21. (Refer to section 6 for
list of device types.) Member devices subsequently added by the ADDSET statement
must have the same device type as the master device.

Recording mode for an 844 or 885 disk pack. Default is defined at installation time.

HT Half-tracking; read and write alternate sectors.
FT Full-tracking; read and write sequential sectors.

NOTE

If FT is specified, 2xPP speed must be in effect, and
there must be full-track controller access to the drive
on which the pack resides.

File name for input directives containing allocation and flaw information.
If I is specified but not equivalenced, file INPUT is used; otherwise, no directives
are expected. Consequently, default allocation information is used and the disk is
presumed to be free of flaws. If this parameter is specified, DT must also be
specified.

Input directive formats are as follows:

All values in the directives are assumed to be octal unless suffixed with a D.

Each directive must begin in column 1 and end with a valid terminator. Valid control separators must
appear between the elements of a directive. Successive allocation directives must refer to successive
portions of a device. Allocation directives can be intermixed with flaw directives. A maximum of
eight allocation directives is permitted.

Allocation directive:

Flaw directives:

60493800 M

Aas,Rpru,Nrbs.

(
Ttn,Ccn,Ssn.
Ttn,Ccn,Sfsn-lsn.

4-65

Allocation
Directive

as

pru

rbs

Meaning

Allocation style number with limits of 0 to 77 (octal) that corresponds
with a number of PRUs per record block and a number of record blocks
in the RBR. By using the allocation style parameter on the REQUEST
statement, the user can request a specific allocation feature, such as directing
a file to a specific portion of a device having a particular record block size.

Number of PRUs per record block (RB) size with a maximum value of
7777 (octal). For an 844 device the specified RB size must be greater
than or equal to 1/32 of the physical block (PB) size and less than or
equal to 32 times the PR size. For an 885 device the specified RB size
must be less than or equal to 12 times the PB size. For a user device
set the specified RB size must be the same on all allocation directives.

Number of record blocks in RBR for this device or portion of device.
The RBR, maintained by the operating system in central memory, contains
information indicating its allocation style and the status available for assign­
ment of all record blocks governed by this RBR. The limits of rbs are I
to 7777 (octal). Default depends on the device as shown in table 4-6.

The number of record blocks (RB) on the first RBR must be sufficient to hold disk tables. For a master
device, the minimum number of record blocks depends on record block size, whether or not this set has a
permanent file device, and the number of permanent files allowed in this set. If the number of record
blocks is insufficient, LABELMS will abort and the error message will specify the table that LABELMS
tried to write when it ran out of space. A subsequent ADDSET may fail due to lack of space even though
LABELMS was successful.

Determine the number of record blocks the disk table requires as follows:

Disk Table Space = LBL + PFT + LFT + PFD + PFC + PAM + SDT + DSR + DAM + SMT

Mnemonic

LBL
PFT
LFT
PFD

Meaning

Device label.
Physical flaw table.
Logical flaw table.
Permanent file directory.

NF Maximum number of files
allowed in set.

RBSIZE Physical record units (PRU)
per record block (RB).

RBs

I
I
2
NF/(4*RBSIZE)

4-66 60493800 L

Mnemonic

PFC

PAM
SOT
DSR
DAM
SMT

Example:

Meaning

Permanent file catalog (refer to PFD for
meanings of NF and RBSIZE).
PFC allocation map.
Subdirectory table.
Deadstart recovery RB.
Device allocation map.
Set member table.

RBs

(NF*6)/(4 * RBSIZE)

2
I

For an 844-21 master device with a maximum of 4000 files in a set (NF) and 57 PRUs per record block
(RBSIZE), calculate the number of RBs needed for disk table space as follows:

PFD = 4000/(4*57)
= 18 RBs

PFC = (4000*6)/(4*57)
= 106 RBs

Disk Table Space = LBL + PFT + LFT + PFD + PFC +PAM + SOT + DSR + DAM + SMT
1 + I + 2 + 18 + 106 + 1 + 1 + 1 + 2 + 1

= 134 RBs

Flaw
Directive Meaning

tn Track number

en Cylinder number Limits depend on device as shown in table 4-6.

sn Sector number

fsn First sector number

lsn Last sector number
I lndioates several oontiguous flaw secton.

60493800 L
4-67

I

TABLE 4-6. DEVICE DEFAULTS

RB Size
PB Size Default

Device (PRUs) (PR Us) rbs Default tn Limits en Limits sn Limits

844-21 l 14t 57 3232 0 to 18 0 to 403 0 to 23
844-41 114 57tt 3232tt 0 to 18 0 to 807 0 to 23
885 320 160ttt 3356ttt 0 to 39 0 to 838 0 to 31

----- - - ---·----·-

tThis value changed from 70 to 160 with the introduction of the 844-41 devices. Only devices with
the following RB sizes are compatible on both pre- and post-844-41 supporting systems.

For devices with (RB size) :S 708, RB sizes of 2, 4, 7, 10, 16, 34, 70
are compatible with both systems.

For devices with (RB size) > 708, RB sizes such that (2n-1)*70+1 :S RB
size :s 2n* 70, where n= 1,2 ... 208 are compatible with both systems.

This value changed from 160 to 162 at NOS/BE 1.4 PSR level 508. Refer to the following NOTE
for information on compatibility.

ttTo create al! 844-~l_ {~o~b!~density) pack with an RB size of 71 8 , two allocation directives must be
input to LABELMS. The 844-41s require two RBRs when the RB size is 11 8.

tttTo create an 885 disk with an RB size of 2408 , two allocation directives must be input to LABELMS.

4-68

NOTE

User packs cannot have the number of RBs greater
than the installation-defined maximum number of
record blocks to be used for private devices. All
members of a user device set including the master
must be labeled using the same set of allocation
directives.

Elimination of gap sectors on 844 devices introduces
a downward incompatibility at NOS/BE 1.4 PSR
level 508. If a label is written on an 844 device in
a system at level 508 or later, the user cannot read
or write the device in a system release level prior
to level 508.

60493800 M

For 885 (AJ), 844-21 (AY), and 844-41 (AZ) disk drives, the flaws recorded on the device in the utility flaw
map (UFM) are read by LABELMS (except during deadstart) and added to the flaws supplied in the input file.
If the pack does not contain the flaw map, the following informative message is written to the job dayfile.

ERROR IN READING UFM

During deadstart, LABELMS obtains a complete set of flaws from IRCP through CMR including the flaws
from the utility flaw map read by IRCP.

LIMIT (LIMIT MASS STORAGE)

LIMIT limits the amount of rotating mass storage that is assigned to a job. Normally, a job is assigned as
much mass storage as it needs. However, a user might want to limit the maximum mass storage that should
be assigned, for example, during a debug phase when large amounts of output would indicate program errors.
Any time mass storage in excess of the specified limit is required, the job terminates.

The format of LIMIT is:

LIMIT,n.

n Maximum number of blocks that can be allocated to the job, 1-377777 (octal).

The maximum value allowed may be reduced by the installation. Blocks are

4096 60-bit words. The n parameter is required.

The value of the LIMIT parameter should anticipate both the number and size of files that exist at one time.
TI1e information in the mass storage accounting message in the dayfile might be helpful in determining a
limit for the LIMIT control statement. Note that the dayfile message is in decimal words, but the LIMIT
argument is in blocks of 4096 words. The mass storage statistic is issued only if a LIMIT control statement
has been executed by the job or if the installation has set a nonzero default mass storage limit. Generally,
very small limits should be avoided, since the system allocation of one record block, at minimum, for each
file can exceed the limit established even though each file is small.

Record blocks are defined at each installation, usually with different sizes of blocks for different mass storage
devices. For example, a disk might have record blocks of 3200 words. In this instance, a statement specifying
LIMIT(2) would cause job termination when a third file is opened, since 3 times the record block size is more
than the stated limit of 8192 words.

Mass storage occupied by the INPUT file or attached permanent files is not involved in the total mass storage
allocation for LIMIT calculations. Any file evicted from mass storage decreases the count of words allocated.

LISTMF (LIST LABELED TAPE)

LISTMF lists the HDRl labels of files in a multifile set. The utility is valid only for tape files with ANSI
standard labels. All volumes in the set are processed with a single utility call. The listing appears on the
file OUTPUT.

A REQUEST control statement defining the multifile set is required before LISTMF is called.

60493800 L 4-69

The format of LISTMF is:

LISTMF ,M=mfn,P=p.

M=mfn

P=p

Multifile name of the set, as declared on the REQUEST control statement. Required.

Position of file at which listing is to begin; 1-3 digits. The first file in the set is
position 1. Default is 1.

The multifile set is rewound at the beginning of LISTMF execution, then positioned to the beginning of the
file indicated by the P parameter. Listing of header labels stops when the end of the set (EOF label followed
by multiple tape marks) is reached. No further positioning occurs.

LOAD (LOAD PROGRAM)

LOAD loads a file into memory in anticipation of a call for execution of loaded programs. LOAD can initiate
a load sequence or be part of an existing load sequence but it does not terminate a load sequence. An
EXECUTE control statement, or, in the case of overlay preparation, a NOGO control statement, would normally
terminate the load sequence.

LOAD is defined by the loader, not the operating system. Refer to the CYBER Loader Reference Manual
for further details.

The format of LOAD is:

More than one parameter can be specified when all files contain relocatable programs. Only one parameter
can be specified when the file contains an absolute program.

r

Name of file containing binary executable code, 1-7 letters or digits beginning
with a letter.

Rewind indicator:

R Rewind file prior to loading. Rewind of the file INPUT rewinds to the
beginning of the control statements; no skipping of control statements
occurs.

NR Inhibits rewind prior to loading.

Loading from the file terminates when a partition boundary, or end-of-information is encountered, or when two
consecutive 7 /8/9 cards are encountered in an image of a job deck.

LOADPF (LOAD PERMANENT FILE FROM TAPE)

LOADPF loads permanent files that have been dumped to tape. All files or a selected portion of files on the
tape can be loaded. An optional directive file specifies individual files to be loaded. Multiple copies of
LOADPF can execute at the same time. A job can access a file as soon as it is entered into the permanent

1 4-70 60493800 L

file tables. For each cycle loaded, LOADPF makes an output listing entry that contains the permanent file
name, owner ID, cycle number, date of last dump, and a comment.

Before LOADPF is called, a REQUEST or LABEL control statement must define a tape file named DUMTAPE
in S format with an existing label. If the dump tape for a file to be loaded contains more than one file with
the same permanent file name, cycle number, and ID name, a message is sent to the operator and the file is
ignored. New cycles of a permanent file will not be loaded if the passwords of the tape cycle disagree with
the existing cycle.

LOADPF execution causes an implicit attach of a file whose permanent file name is DUM. The device set to
which files are to be loaded must contain a copy of DUM cataloged with an ID of PUBLIC and defined
passwords for RD, MD, CN, and EX. If a DUM permanent file with TK=DUMPF already exists (earlier systems
required this), it must be purged and replaced as described above. The EX password to access DUM must be
submitted as part of the LOADPF call.

NOTE

Files purged between a full DUMPF and several change dumps (DUMPF ,DP=C) are
reloaded when both the change and full dumps are reloaded. However, running
PFLOG after each change dump and then running GENLDPF with the last log tape
restores the PFC without reloading the purged files. For multivolume LOADPF
jobs, NORING must be specified on a REQUEST or LABEL control statement.

The format of LOADPF is:

LOADPF, LP=x,LF=lfn l ,CL,SN=setname, VSN=vsn,ID=name ,PF=pfn,CY =cy, I=lfn2,PW=pw ,IN=ddd,JN=yyddd,
LA=mmddyy ,DA=yyddd,CD=mmddyy, TI=hhmm,OR.

Only PW is required. All parameters are order independent. Only one LP parameter can be specified. If a
terminator does not appear at the end of the parameter list, column 1 of the next card or line is considered
to be a continuation of the LOADPF parameter list.

LP=x Files to be loaded:

x

A

R

p

x

0

60493800 L

Significance

Load all files. Existing files are not replaced unless the file is
incomplete or not disk resident. Default.

Replace existing files. Both X and R can be specified in the
form LP=X,R.

Load archived files (files with entries in permanent file tables
but file residence on tape).

Do not load expired files.

Permanent file dump tape is in SCOPE 3.2 or 3.3 format. If
LP=O is not specified, the tape is assumed to be a SCOPE 3.4
permanent file dump tape. The 0 option can be used with
other LP parameters in the form LP=R,O,X.

4-71

LF=lfn 1

CL

SN=setname

VSN=vsn

ID=name

PF=pfn

CY=cy

PW=pw

IN=ddd

JN=yyddd

LA=mmddyy

DA=yyddd

CD=mmddyy

TI=hhmm

OR

4-72

Name of file on which listing is to appear, 1-7 letters or digits beginning with a
letter. Default is OUTPUT.

Complete list option selected. All files read from the dump tape are listed.
If CL is omitted, only loaded files are listed.

Name of device set to which files are loaded, 1-7 letters or digits beginning with a
letter. Master device of this set must be previously mounted.

Volume serial number of the device onto which permanent files are loaded, 1-6
letters or digits with leading zeros assumed. Parameter SN must also be included,
and the master device of the set must be previously mounted.

Load files with this owner.

Load files with this permanent file name. ID=owner is also required.

Load cycle cy of file specified by PF and ID. CY is ignored and the load continued
if this cycle is not found, or if PF and ID are not specified.

Name of directive file, 1-7 letters or digits beginning with a letter. If I is specified
but not equivalenced, file INPUT is used. If a directive file is used, the following
parameters are not allowed on the LOADPF statement: VSN=vsn, ID=name, PF=pfn,
CY=cy, IN=ddd, JN=yyddd, LA==mmddyy, DA=yyddd, CD=mmddyy, and TI=hhmm.

EX password for DUM.

Load files not attached within this number of days; 1-3 digits. Can be qualified by a
TI parameter.

Load files not attached on or after this date; five-digit ordinal date format. Can be
qualified by TI parameter.

Load files not attached on or after this date; six-digit month-day-year format. Can be
qualified by TI parameter.

Load files created, modified, renamed, or extended after this date; five-digit year-and-day­
of-year format. Can be qualified by TI parameter.

Load files created, modified, renamed, or extended after this date; six-digit month-day­
year format. Can be qualified by TI parameter.

Time qualifier for date parameters; four-digit 24-hour clock format. If date parameters
are not specified, TI is ignored.

Allows loading of files from the dump tape with a device type or an allocation

style different from that defined on the equipment set to which the files are being

loaded. If OR is not specified, a file with device type or allocation style conflict

is not loaded.

60493800 L

A group of files to be loaded can be identified by name and owner in a directive record. Directive formats

are as follows:

ID=name

ID=name, PF=pfn

ID=name, PF=pfn, CY=cy

Parameters are order independent. The PF and CY parameters are optional. The ID parameter should
be specified. However, if the PF parameter is specified without an ID parameter, then ID=PUBLIC is

assumed.

LOADPF EXAMPLES

I. JOBI.
REQUEST(DUMT APE,HY,S,E)
LOADPF(PW=EXPW)
6/7/8/9

This job loads all files on the tape unless LOADPF finds the owner ID, permanent file name, and cycle
number combination already in the system; such files are skipped.

2. JOB2.
REQUEST(DUMT APE,HY,S,E)
LOADPF(LP=X,PW=EXPW)
6/7 /8/9

This job loads all nonexpired permanent files from tape.

3. JOB3.
REQUEST(DUMT APE,HY,S,E)
LOADPF(PF=ST ARTREK,ID=SPOCK,PW=EXPW)
6/7/8/9

All cycles of the permanent file STARTREK with owner ID SPOCK are loaded unless one of the
following conditions arises.

The permanent file name/owner ID combination already exists in the system with different
passwords.

A duplicate cycle number is encountered.

The permanent file name/owner ID combination already has five cycles cataloged.

4. JOB4.
REQUEST(DUMT APE, ...)
LOADPF(l,PW= EXPW)
7/8/9
PF=PASSERIFORMES,CY=21,ID=VEERY
PF=ANATINAE,ID=GADWELL
PF=PROCELLARIIFORMES,ID=FULMAR
6/7/8/9

This job loads the specified permanent files from tape.

60493800 L 4-73 I

MAP (PRODUCE LOAD MAP)

MAP determines the extent of the load map produced for all subsequent programs loaded in central memory.
When MAP is omitted, an installation default determines the type of map.

Output from a load map appears on the file OUTPUT. It includes items such as the type of load, location
of programs, common blocks and tables, and entry points. Load maps of programs on the system library,
such as compilers or assemblers, are never produced. Refer to the CYBER Loader Reference Manual for an
explanation of all items in the load map.

The MAP option selected remains in effect until another MAP control statement changes the option or the
job ends.

The format of MAP is:

{

OFF}
MAP FULL

'ON .

PART

OFF No map is produced.

FULL Full map is produced.

ON Map has all items except entry point map.

PART Map has all items except entry point map and cross-reference.

The effect of a MAP can be overridden for a particular load sequence by the MAP option of the loader state­
ment LDSET (see the CDC CYBER Loader Reference Manual).

MODE (SUSPEND ERROR EXIT)

MODE specifies the error conditions that abnormally terminate the job. Normally, a job terminates when any
of the following CPU program errors are detected.

Reference to an operand (any number used in a calculation) that has an infinite value.

Reference to an address outside the field length of the job in central memory or ECS: such an address
can be generated during assembly if a nonexistent location is referenced or inadequate field length is set.

Reference to an operand for floating point arithmetic which has an indefinite value.

When a selected error condition is detected, the job terminates. When an error condition not selected by
MODE is detected, job processing continues and no error message is issued.t A MODE selection remains in
effect until another MODE control statement is executed or the job ends.

t On a CYBER 176, address range errors always result in job termination, no matter what option is
specified on the MODE statement.

4-74 60493800 L

The format of MODE is:

MODE,m.

m CPU program error exit conditions 0-7 (octal). If omitted, 7 is assumed.

0

1

2

3

4

5

6

7

Disable CPU program error exit; all errors allow job to continue
except jump to location zero.

Address is out of range.

Operand is infinite.

Both 1 and 2 remain in effect.

Floating point number of indefinite value.

Both 1 and 4 remain in effect.

Both 2 and 4 remain in effect.

1 and 2 and 4 remain in effect.

For example, a MODE, 5. statement directs the system to continue processing even if an infinite operand is
encountered. If an address is out of range or a floating point number of indefinite value is encountered, the
job terminates. A control statement MODE,7. is equivalent to a job without a MODE control statement.

MOUNT (ASSOCIATE DEVICE SET}

MOUNT associates a device set and its members with a job. MOUNT is a logical operation. If the device is
physically available, no operator intervention is required. If the device is not physically available, the device
name is placed in an operator display, and the job is swapped out until the device is mounted.

When the master device is mounted, the device set tables are read into the system and all files and member
devices become logically accessible to the job. The master device must remain mounted while the associated
device set is in use. When the master is mounted, the system issues a MOUNT for other member devices as
needed. The user also can issue a MOUNT for a member device.

The format of MOUNT is:

MOUNT,VSN=vsn,SN= setname.

Parameters VSN and SN are required; mode is optional. All parameters are order independent.

VSN=vsn

SN=setname

60493800 M

Volume serial number of device to be mounted, 1-6 letters or digits with leading
zeros assumed.

Name of device set to which this device belongs, 1-7 letters or digits beginning with a
letter.

4-75

I

I
PAUSE (OPERATOR INTERFACE)

PAUSE inserts a formal comment into the job dayfile and stops the job until the operator acknowledges the
comment. PAUSE should not be used unless communication with the operator is essential. The COMMENT
control statement allows messages to be inserted into the dayfile without the need for operator response.

The format of PAUSE is:

PAUSE. comment

The period is required. The comment can begin in any column after the period; ending punctuation is
not required.

comment String of 74 characters to be displayed for the operator. Any character can be
specified, including those otherwise used as punctuation. Characters with display
code values greater than 57 are displayed as blanks.

All eighty characters (PAUSE plus message) are displayed for the operator. A message longer than 74 charac·
ters can be sent by using a second PAUSE control statement, but each statement requires operator action.

The operator acknowledges the PAUSE message by a GO, DROP, or KILL command that continues, drops,
or aborts the job, respectively.

PFLOG (DUMP PERMANENT FILE CATALOG TO TAPE)

PFLOG dumps the permanent file catalog (PFC) of a device set to a magnetic tape (log file).

Before PFLOG is called, a REQUEST control statement must define the log file as a new labeled SI tape
whose file name is LOGT APE.

PFLOG execution causes an implicit attach of a file whose permanent file name is DUM. The device set
whose PFC is to be dumped must contain a copy of DUM cataloged with an ID of PUBLIC and a defined
password for RD. The RD password must be submitted as the PW parameter on the PFLOG call.

For each PFC entry dumped, PFLOG makes an output listing entry that contains the permanent file name,
owner id, and cycle number.

The format of PFLOG is:

PFLOG,PW=rd,SN=setname ,LF=lfn.

Only PW is required. All parameters are order independent.

4-76 60493800 M

PW=rd RD password for DUM.

SN=setname Name of device set whose PFC is to be dumped; 1-7 letters or digits beginning with
a letter. The master device for this set must have been mounted before PFLOG can
execute. Default is the permanent file default set.

LF=lfn Name of file on which listing is to appear; 1-7 letters or digits beginning with a letter.
Default is OUTPUT. If lfn=O, no listing is generated.

PF LOG EXAMPLES

1. JOBCARD(NTOl)
VSN(LOGT APE=l 23456)
REQUEST(LOGT APE,NT ,PE,N ,RING)
PFLOG(PW=READ,LF=O)
6/7 /8/9

This job dumps the permanent file default set to WGTAPE. No output listing is generated.

2. JOBCARD(NTOl)
VSN(LOG TAPE= 123456)
MOUNT(SN=SETNAME,VSN=MASTER)
REQUEST(LOGTAPE,NT,PE,N,RING)
PFLOG(SN=SETNAME,PW=READ)
6/7/8/9

This job dumps the PFC of SETNAME to LOGTAPE and prints the output listing on OUTPUT.

PURGE (REMOVE PERMANENT FILE)

PURGE removes the permanent status of a file. The file remains as a local fil~ for the job if the file is being
accessed on the mainframe at which the job is executing, if the file is not archived, and if the RB parameter
is not specified. Control permission is required to purge a file.

PURGE affects only one cycle of a permanent file. If a cycle number is not specified, the cycle with the
highest cycle number is purged. If there is only one cycle, the permanent file name is removed from the
permanent file tables. A subsequent CATALOG with the same permanent file name and ID would be an
initial CATALOG.

60493800 L 4-77 I

I

The format of the control statement and subsequent file permissions depends on whether the file is already
attached to the job.

If the file is attached to the job, the format of the PURGE statement is:

PURGE)fn,RB=l.

lfn Local file name by which the file is attached to the job.

RB=l Refer to the explanation in the next form of the PURGE statement.

All other parameters are ignored. The local file remains with all permissions that were granted when the file
was attached, except in the following cases:

• The file resides on a mainframe other than the one on which the job is executing.

• The file is archived.

• The user has specified the RB=l parameter and the system has set the record block
conflict flag.

If the file is not attached to the job, the format of the PURGE statement is:

(
LC=n l PURG E,lfn ,pfn ,ID=name, ,EC=ec,PW=pw ,UV=uv ,RB= l ,RW=p ,SN=setname ,ST=mmf,VSN=vsn.
CY=cy

Parameter pfn is required. Parameters lfn (if present) and pfn are order dependent. All other parameters are
optional depe.1ding on how the file was cataloged. They are also order independent. The PURGE statement
can be continued from one line to the next. The first line must not be terminated by a period or right
parenthesis. To be consistent with other control statements that require such a format, the last nonblank
character on the line should be separator. The continuation begins in column I of the next line.

RB=l

ST=mmf

SN=setname

4-78

Record block conflict. Applicable only when the record block conflict flag
is set in system tables to indicate that storage allocation for the file is in conflict
with mass storage allocation elsewhere. If this parameter is used when the con­
flict flag is set, the local file has all permissions removed except control permission
and the mass storage associated with the file is not released when the file is
released to the system. The AUDIT utility reveals the presence of files with
storage conflict.

System on which file is cataloged, three characters. If the file is not cataloged on
the mainframe at which the job is executing, a job is generated on the specific
mainframe to purge the file.

Device set name identifying the private device set containing the file to be purged.
This parameter may be 1-7 letters or digits and must begin with a letter. If SN
is specified, VSN must also be specified to allow access to the private set on the
mainframe specified by ST.

()()493800 L

VSN=vsn Volume serial number identifying the master device of the private device set. This
parameter may be 1-6 letters or digits. If SN is specified, VSN must also be speci­
fied as explained in the SN description.

Refer to the ATTACH control statement for the meaning of the remaining parameters.

The system issues an ATTACH (or GETPF) using the parameters specified in the PURGE statement. It then
purges the file. The local file remains as explained in the previous format of the PURGE statement.

RECOVER (DEVICE SET MAINTENANCE)

RECOVER validates a device set and reconstructs tables whenever the integrity of a device set is in question.
It scans critical disk tables of a device set to verify and recreate each. Any errors encountered during the
recovery process are noted in the OUTPUT file. The RECOVER control statement is not executed if this job
or any other job has issued instructions to mount the device set.

The format of RECOVER is:

RECOVER,SN=setname,V=vsn.

Parameters are required and order independent.

SN=setname

V=vsn

Name of device set to be validated or reconstructed, 1-7 letters or digits
beginning with a letter.

Volume serial number of device set master device, 1-6 letters or digits with
leading zeros assumed.

In a multimainframe environment, permanent files on a shared device set could be destroyed if RECOVER
is executed when one of the mainframes has the master mounted. Therefore, the system aborts the request
unless called from the console by an operator entry.

REDUCE (REDUCE FIELD LENGTH)

REDUCE decreases the central memory field length assigned to a job to the amount of memory needed by
the program currently loaded. It also restores dynamic field length management by the operating system that
the job previously inhibited through execution of an RFL control statement or through use of a CM param­
eter on the job statement.

REDUCE,ECS. releases the ECS field length currently assigned to the job.

This control statement should be used whenever the job no longer requires special field length handling in
CM or ECS.

60493800 L 4-79 1

I 4-80

The formats of REDUCE are:

REDUCE. Decreases CM field length.

REDUCE,ECS. Releases ECS field length.

·RENAME (CHANGE PERMANENT FILE TABLE)

RENAME changes values of parameters in the permanent file manager tables. Parameter values originating
from a prior RENAME or original file catalog can be deleted or changed to different values and new param­
eters can be added. RENAME affects only the parameters specified on the control statement; other parameters
remain as they were.

Prior to issuing RENAME, the job must attach the file with read, extend, modify, and control permission.

The format of RENAME is:

RENAME,lfn,pfn,ID=name,AC=act,CN=cn,CY=cy,EX=ex,MD=md,RD=rd,RP=rp,TK=tk,XR=xr.

Only the lfn parameter is required; it must be the first parameter. All other parameters are optional
and order independent. RENAME can be continued; if the parameter list is not terminated by a period
or right parenthesis, column 1 of the next statement is considered to be a continuation of column 80.
Two commas can follow lfn when pfn is not changed.

Specifying the parameter name and an equals sign without a following parameter value removes the
existing value for that parameter.

lfn

RP

Name of attached permanent file, 1-7 letters or digits beginning with a letter.
Required.

Retention period, 0-999. Applies to date of original CATALOG, not to date of
RENAME.

See the CATALOG control statement for the meaning of remaining parameters.

Any change to the permanent file name, ID, or passwords of any cycle of a file causes the same change to be
made for all cycles of the file. Consequently, RENAME cannot change the permanent file name, ID, or pass­
words if any cycle of the file has been dumped or archived to tape. If the pfn/ID are being changed and a
file already exists with the proposed pfn/ID, the pfn/ID change will not occur, and a nonfatal error message
is issued.

60493800 L

REQUEST (ASSIGN FILE TO DEVICE)

REQUEST requests assignment of a file to a particular device. Since control statements are processed in
order of appearance, the REQUEST statement for a particular file must precede the first control statement
that references the file or executes a program referencing that file. Otherwise, the file is sought or written
on a public scratch device when it is referenced.

REQUEST is most commonly used with permanent files, magnetic tapes, and private device sets, but it can be
used to cause file assignment to any public device or unit record equipment. Files are assigned to public disk
packs by a REQUEST or by system default. However, to ensure that a file is assigned to a permanent file
device, a REQUEST statement with a PF parameter should be used.

When a REQUEST control statement is encountered, job processing might halt for operator action or continue
with operating system action, depending on the form of the parameter specifying device type and, for magnetic
tape, the installation tape assigning options.

The general form of REQUEST is:

REQUEST,lfn,dt,parameters.

Parameter lfn is required and must be the first defined; all other parameters are optional and order
independent.

lfn

dt

parameters

Name by which file will be known throughout the job, 1-7 letters or
digits beginning with a letter. lfn beginning with ZZ is reserved for the
system. lfn cannot be OUTPUT. With private device sets, lfn also
cannot be PUNCH, PUNCHB, P80C, FILMPR, FILMPL, PLOT, HARDPL,
or HARDPR.

Device-type mnemonic plus other dt parameters to further describe equipment
requested. If the user specifies an optional device type parameter which is
unique to a device type (for example, the GE parameter for a nine-track tape),
the device-type mnemonic need not be specified. A preceding asterisk allows
assignment of devices without operator action if possible. An asterisk is implied
for mass storage devices.

Optional parameters.

The optional device-type descriptors depend on the category of equipment involved. Details of parameters for
REQUEST are discussed separately in relation to files on the following devices.

Magnetic tapes (seven- and nine-track) including multifile sets.

Unit record devices such as card reader and line printer

ECS

Public devices including those used for permanent files

An asterisk preceding the device-type mnemonic causes the operating system to attempt to assign the device
without operator action. Automatic assignment is attempted on mass storage devices regardless of whether the
asterisk is specified. The tape assigning options available make the * redundant for magnetic tape requests,
but it can be used. However, * cannot be used if two units are requested with the same control statement
or a multifile set is involved. If * is used for unit record devices, the REQUEST control statement appears

60493800 L 4-81

I

I

on the operator display for manual assignment. The operator must then make the unit physically ready and
logically assign it to the job by entering a command on the console keyboard. Refer to Unit Record Device
Request description which follows in this section.

When sufficient information is given on the REQUEST control statement, the operating system assigns the
device to the job without operator action. For rotating mass storage devices, automatic assignment is attempted
whether or not the asterisk precedes the dt parameter. For other device requests, operator action is required
if an asterisk does not precede the dt parameter. If dt is not declared, the operator can assign any device.
For tape request, a VSN parameter is used to locate and to assign the tape if it is mounted.

The operating system compares the device assigned by the operator with the request and reports any discrepancy
to the operator. An additional operator command must be given if the dt parameter on the control statement
is to be overridden by manual assignment. Conflicts must be resolved by the operator.

TAPE Fl LE REQUEST

To use a REQUEST statement for tape files the JOB statement must specify the tape track type and density
(refer to the MTk parameter in the JOB statement earlier in this section). The REQUEST control statement
can describe both physical and logical characteristics for magnetic tape files. When only the logical file name
and magnetic tape device type MT are specified, the file, by default, becomes a seven-track unlabeled tape
with SI t"rmat written at installation density or read at written density, and installation declarations for
automatic unloading are honored. Any other use, such as for checkpoints or multifile sets, or any charac­
teristics of the file must be specifically declared.

The MT or NT device type parameter can be prefixed by an asterisk or a 2. The asterisk is applicable only
when compatibility with previous operating systems is considered. The asterisk prefix results in assignment of
a scratch tape to the file. However, if a nonscratch VSN has been specified also, it overrides the scratch
designation. If REQUEST includes parameter E, a scratch tape is not assigned. Depending upon the selection
of installation options, the operating system attempts to assign the tape to a job automatically using a VSN or
label name parameter. Operator assignment is necessary only when automatic assignment attempts are unsuccessful.

If either a seven- or nine-track tape is acceptable, an MN parameter can be used in place of MT or NT. The
resulting tape has default density. However, to ensure that the job is not aborted because of maximum tape
units exceeded, the job statement should specify both MT and NT. If the request includes at least one device­
type descriptor which is unique to magnetic tapes (such as the RING parameter), neither the device type nor
the density need be specified.

A 2 prefix to MT or NT causes two tape units to be requested from the operator, which are used in the order
assigned. Tape requests using the 2 prefix cannot be auto-assigned. When the tape on the first unit reaches
end-of-volume, the system begins processing the tape on the second unit while the tape on the first unit is
rewound and unloaded. When the tape on the second unit reaches end-of-volume, the system returns to the
first unit, which should have been mounted in the interim with a new tape. The tape on the second unit is
rewound and unloaded. This alternating process is repeated as long as the file is referenced. The operator
must ensure the proper tape mounting sequence.

SEVEN-TRACK TAPE PARAMETERS:

REQUEST Jfn,MT,{~}·l~~J. 1~ l· mmS} ·1~ l· 1~tiiNGl ,NR,VSN=v•n

4-82 60493800 L

File name:

If the MF parameter is not specified, lfn is the file name of 1-7 letters or digits beginning
with a letter.

If the MF parameter is specified, this parameter is a multifile set name of 1-6 letters or digits
beginning with a letter.

The multifile set name cannot be used in any input/output statement except as the M parameter in
a LABEL statement or POSMF macro.

Seven-track identification:

A declaration of LO, HI, or HY is sufficient to define the device type as MT. If MT is absent,
LO, HI or HY can be prefixed by a 2 if two units are required. The MTk parameter must be
specified in the JOB statement. Refer to the JOB statement earlier in this section.

Density:

Lot

HI

HY

absent

File disposition:

IU

sv

absent

Tape security:

RING

NO RING

absent

200 bpi density

556 bpi density

800 bpi density

Density is set to an installation-defined value if initial use is output. If initial use of
a label tape is input, the density of the label is determined automatically. However, it
is recommended that density be specified whenever known and used to read both the
label and the data, except as indicated under Z in the Z parameter description later in I
this section. If initial use of an unlabeled tape is input, the density is set to an instal­
lation-declared value.

Any physical unload of the tape file in a context other than reel swapping is inhibited.
The IU parameter does not inhibit logical actions associated with UNLOAD or RETURN.
IU is recommended when a scratch tape or input tape is requested that is to remain
mounted and ready.

The tape file is unloaded at job termination, and the operator is notified that the tape
is to be saved.

Action performed at end-of-job is option of the installation.

Write-enable ring required in tape.

Write-enable ring prohibited in tape.

RING/NORING is set to an installation defined value.

tTue 667 /677 tape units can read but not write at 200 bpi.

60493800 L 4-83

I 4-84

Volume serial number identification:

VSN=vsn

absent

Volume serial number of the tape volume, 1-6 letters or digits with leading zeros
assumed. The VSN appears on the previewing display for the operator's information
before the job is assigned to a control point. Once the tape is mounted and the unit
made ready, the operating system can locate the volume without further operator
action. Once the tape is assigned, the VSN is verified against the standard or Z for­
mat label, if present. VSN also is verified against operator-supplied VSN for an
unlabeled tape.

If a scratch tape is desired, a VSN of SCRATCH or 0 can be used. The * prefix can
be used for a scratch tape also.

If a VSN parameter is declared for a file on a REQUEST, and a VSN control state­
ment or a VSN parameter on a LABEL control statement also appears, the first
declaration is effective.

Any VSN declaration is used; otherwise, file header label fields are used for assignment
and verification. If neither VSN nor file header label field declaration is made, any
tape volume is accepted, but the assignment must be made manually unless * prefix
is used.

Parity error recovery procedure:

NR

Special tape use:

CK

MF

absent

Data format:

s

L

absent

The NR parameter can be used to inhibit normal parity error recovery procedures.
Data containing the parity error is returned to the user.

Checkpoint dumps are written on the tape.

The tape is a valid U or Z labeled multifile set.

Neither of the above is assumed.

S tape format.

L tape format.

Data format is SI format.

Input or output use (apply only to labeled tapes):

E

N

absent

Existing label. Initial use of the tape is input; only the expiration date is checked in
the label.

New label. Initial use of the tape is output; tape label is written.

If file is to be labeled (U, Z, or Y is declared), a tape label is written.

60493800 L

Label characteristics:

u

y

z

absent

Label processing:

NS

Tape label format is ANSI (standard label).

Tape label format is Y (3000 Series label).

Tape label format is ANSI, except character 12, of the VOLl label is used to indicate
data density. These labels were standard for SCOPE 3.3.

Tape is unlabeled unless either E or N is declared; in which case, ANSI (U) label
format is assumed.

The NS parameter can be used to indicate a tape has nonstandard labels and is to be
processed as unlabeled even though the tape is labeled. Existing labels appear to the
system as data and are passed to the user as such. The user can then process the
labels or ignore them. Nonstandard labels are not supported on SI tapes.

NINE-TRACK TAPE PARAMETERS:

A declaration of NT or a nine-track density for a tape to be written is required to identify a nine-track
tape and a declaration of NT, GE, PE, or HD is required on the JOB statement. Refer to the JOB
statement earlier in this section. Definitions and conditions for all except the density and data format
parameters are the same as those for seven-track tape.

Density:

A density specification is effective only when the tape is to be written; density setting is a hardware
function when the tape is read.

HD

PE

GE

absent

Data format:

s

60493800 L

800 cpi

1600 cpi

6250 cpi

Tape written at installation-declared density

S tape format.

4-85

I

L tape format.

absent Data format is SI format.

Hardware error correction:

EEC Enable hardware GE write error correction. The system allows certain types of
single-track errors to be written that can be corrected when the tape is read (on-the-fly
correction). This is the recommended mode of operation, because it provides efficient
throughput, error recovery, and tape usage when writing GE tapes on media that is
suitable for use at 3200 fci or 6250 cpi.

IEC Disable all error correction activity in GE write mode. The system invokes standard
error recovery processing when an on-the-fly error occurs while writing a GE tape.
The system erases the defective portion of tape, thereby reducing the amount of
data that can be stored on the tape. Only tape that is suitable for recording at
6250 cpi should be used when this mode of operation is in effect.

NOTE

EEC and IEC apply only to GE (6250 cpi) operations. GE must also be
specified in a REQUEST statement; otherwise, EEC and IEC are ignored.

EEC and IEC are applicable if the user requests default nine-track
density and the installation nine-track default density is GE (6250 cpi).

Code for conversion of all nine-track tape labels and of data on coded nine-track tapes of type S or L
(refer to tape conversion tables in appendix A):

us

EB

absent

Coded data on tape is to be converted from ASCII on input or to ASCII on output.

Coded data on tape is to be converted from EBCDIC on input or to EBCDIC on
output.

Coded data conversion is defined by the installation.

Examples of REQUEST statements for tapes:

1. REQUEST(FILEl ,NT,U,E,NORING)
or
REQUEST(FILEl ,NT,E,NORING)

The operator must assign an ANSI labeled, nine-track tape. The label is checked when the first
function is issued on the tape. Because density is not specified, it is assumed that both the label
and data are written at the same density.

t Currently L tapes are supported only on seven-track tape devices and 669/679 nine-track tape drives.

4-86 60493800 M

2. REQUEST(FILEl ,*MT,RING)

Depending on installation option, the system automatically assigns FILEl to a scratch tape on a
seven-track tape unit. The file is unlabeled and written in SI data format at an installation-declared
density.

3. REQUEST(STANF27,HI,VSN=OHIO17 ,U ,S,SV ,RING)

Depending on installation option, file STANF27 is assigned automatically to a unit containing volume
OHIOl 7. An ANSI label is written; both label and data are written at 556 bpi. Data format is S.
The volume is saved at job completion.

UNIT RECORD DEVICE REQUEST

When a file is input from a card reader or output to a printer or card punch, devices are assigned automatically
and REQUEST is not necessary. There are no standard drivers for the unit record equipment. Request and
assignment of such devices is only valid for on-line diagnostic packages or for devices for which the installation
has provided drivers. If the installation has provided drivers, the following devices can be requested. Assign­
ment is not automatic; the operator must assign the request device to the job.

REQUEST,lfn,dt.

lfn

dt

ECS Fl LE REQUEST

File name of 1-7 letters or digits beginning with a letter.

Device type. The following device types are recognized, but not supported by the
standard system. If an installation provides software drivers for these devices, they
can be specified.

LP Any available line printer GC 252-2 graphics console
LR 580-12 line printer HC 253-2 hardcopy recorder
LS 580-16 line printer FM 254-2 microfilm recorder
LT 580-20 line printer TR Paper tape reader
CR 405 card reader TP Paper tape punch
CP 415 card punch PL Plotter

Files that are to reside on ECS are requested by the following control statement. This statement is not to be
used for files that are buffered through ECS.

REQUEST,lfn,AX,EC.

lfn File name of 1-7 letters or digits beginning with a letter.

AX ECS device type mnemonic. Required.

EC Maximum file size. If omitted, default buffer size is the maximum file size.

60493800 L 4-87 I

EC

ECnnnn
or
ECnnnnK

ECnnnnP

Default buffer size maximum.

Maximum size nnnn words multiplied by 1000 (octal).

Maximum size nnnn ECS pages, where page size is 1000 (octal)
60-bit words.

If ECS is turned off, the files requested on ECS are allocated on rotating mass storage devices.

MASS STORAGE Fl LE REQUEST

Mass storage files on either public device sets or private device sets are requested as follows. The EC param­
eter is valid only for files on public device sets.

For private device sets, a MOUNT control statement must assign the master device to the job before REQUEST
assigns a file to the device set.

4-88

REQUEST ,lfn,dtaa,OV ,EC,PF ,Q,SN=setname,VSN=vsn.

The first parameter must be lfn. Other parameters are optional and order independent.

lfn

dtaa

ov

File name of 1-7 letters or digits beginning with a letter.

Device type mnemonic and allocation style. An asterisk can appear before dt, but its
function is redundant.

dt Device type mnemonic for a mass storage device:

A* Any mass storage device

AH 819 disk drive (CDC CYBER 170 Model 176 only)

AJ 885 disk drive

AY 844-21 disk drive

AZ 844-41 disk drive

aa Allocation style, 0 to 77 (octal), defined by the installation for public
sets; by LABELMS for user device sets. Can be null.

Overflow to any other mass storage device is allowed when device dtaa or a device
specified by SN and VSN parameters is unavailable or full. Permanent files and queue
files are assigned only to permanent file devices and queue devices, respectively; other­
wise, files might be assigned to any mass storage. If all mass storage of any type
becomes unavailable, a device capacity exceeded status is returned to a COMPASS
program when the EP bit is set in the FET. When OV is specified and requested
device is unavailable or full, all parameters are ignored except PF, Q, and SN as
the system selects the device on which to continue.

60493800 L

EC

PF

Q

SN=setname

VSN=vsn

Buffer file through ECS. Valid only for sequential files on public devices.t If ECS
is off, this parameter is ignored for this job.

EC

ECnnnn
or
ECnnnnK

ECnnnnP

Default buffer size.

Buffer size of nnnn 60-bit words multiplied by 1000 (octal).

Buffer size of nnnn ECS pages, where page size is 1000 (octal)
60-bit words.

Assign file to a permanent file device. If SN and VSN specify a permanent file
device, PF is not required. If SN is not specified, the file is assigned to the default
PF set. (*PF can be used instead of PF and has the same meaning.)

File is to be assigned to a queue device. If SN is a private device set, Q is not
allowed. If SN is not specified, the file is assigned to the queue set. (*Q can be
used instead of Q and has the same meaning.)

Assign file to setname, 1-7 letters or digits beginning with a letter. If omitted, file
is assigned to a public device set. If only SN is specified, setname is that specified by
SETNAME control statement; if setname has not been specified previously, file is
assigned to a public device.

Volume serial number of device within set specified by SN, 1-6 letters or digits with
leading zeros assumed. VSN cannot be used without the SN parameter.

Allocation style aa is an optional appendage to the device type mnemonic. Two digit octal codes representing
allocation style must be defined at each installation and can be used to identify sub-areas of a device. For
example, an installation can divide 844 disk packs into two sub-areas - default and large space allocation. If
the large space allocation area is identified as allocation style aa=SS, files residing in the large space allocation
sub-area are assigned more units of disk storage than similar files residing in the default sub-area. At this
example installation, a file is assigned large space allocation sub-area by REQUEST(lfn,A YSS).

Refer to DEVICE SETS in section 3 for more examples and explanations of REQUEST.

RESTART (RESTART JOB FROM CHECKPOINT TAPE)

RESTART restarts a job from a checkpoint tape. After locating the proper dump on the checkpoint tape, the
restart program requests all tape files defined at checkpoint time and repositions these files. Then a request is
made for all mass storage files and ECS buffer length where applicable. Files are copied from the checkpoint
tape and repositioned. RESTART also restores the central memory field length of the job and restarts the
user's program. If a permanent file was attached to the job when a checkpoint was called, it is attached and
positioned as it was at the time of the checkpoint.

t All file types will be buffered for device type AH (CDC CYBER 170 Model 176 only).

60493800 L 4-89 I

A restart job requires only a control statement to request the checkpoint tape (REQUEST or LABEL) and

the RESTART control statement. If a checkpoint tape is not requested, the restart program requests an

unlabeled 7-track or 9-track tape (for the file named on the RESTART control statement) as follows:

REQUEST(lfn ,CK,MN)

Since RESTART recreates all files used for the checkpointed job, the user should not create any files before

the call to RESTART. If any of those files are recreated by the user before the call to RESTART, a

duplicate file error might occur. The output file of the check pointed job, unless redirected by a ROUTE
command, will return to the source of the RESTART job.

If a device set was mounted when the checkpoint was taken, the job issuing the REST ART must execute a
MOUNT control statement for the device set before calling RESTART. RESTART does not mount device
sets. Files on device sets are attached and positioned by REST ART.

Any ECS direct access user area attached to the job is copied in its entirety to the checkpoint tape. At
restart time, it is recopied to ECS from the checkpoint file. On the job statement for the restart job, the
user must request at least as much ECS as the original job was allowed. An RFL control statement may be
needed to give the RESTART routine sufficient memory to operate. If reconfiguration results in insufficient
ECS available to the user, restart is not possible. The RESTART statement should not be used within a
CCL procedure (see section 5).

The format of RESTART is:

REST ART ,name ,n,S=xxx.

All parameters are optional and order independent.

name Name of checkpoint file as define~ at checkpoint time. Default is CCCCCCC.

n

S=xxx

Number (decimal) of checkpoint to be restarted. If n is greater than the number of
the last checkpoint taken, the restart attempt is terminated. Default is 1.

Ignored by RESTART; allowed for compatibility with previous systems.

A checkpoint dump cannot be restarted in the following cases.

A tape file necessary for restarting the program was overwritten after the checkpoint dump was taken.

A machine error propagated bad results but did not cause abnormal termination until after another
checkpoint dump.

RETURN (EVICT FILE)

RETURN performs an operating system CLOSE/RETURN function. It differs from the UNLOAD control state­
ment only in that RETURN reduces the maximum number of tapes that can be held by the job, but UNLOAD
does not. RETURN deletes all references to the files specified, except as noted below, and destroys the file
contents of local files.

I 4.90 60493800 L

The format of RETURN is:

RETURN,lfn1 ,lfn2, ...

More than one file or multi-file set can be specified; only one is required.

lfn.
I

Name of file to be returned, 1-7 letters or digits beginning with a letter or name of
multi-file set tape to be returned, 1-6 letters or digits beginning with a letter. lfn i
cannot be INPUT.

For magnetic tape output files, RETURN causes trailer labels to be written and the file to be rewound and
then unloaded. With the exception of members of a multifile set, the tape units on which the file resides is
disassociated from the job and made available to the system for new assignment. The count of the number
of tape units logically required by the job, as set by a tape parameter on the job statement, is then decreased.

For members of a multifile set, the tape units on which the files reside are not disassociated from the job.
The multifile set is left without a member as it was immediately after the initial REQUEST was made for
the master file.

For master multifile set names, the tape units assigned to the set are disassociated from the job and made
available to the system for new assignment. The count of the number of tape drives required is then decreased.

For mass storage files, RETURN causes the file to be returned. Special-named files on queue devices are
released to the output queue associated with their dispositions. If any of the special-named files are to be
evicted, the DISPOSE or ROUTE control statement should be used instead of RETURN. Permanent files
return to permanent file manager jurisdiction. Other mass storage files are evicted.

REWIND (REWIND FILE)

REWIND positions a file at the beginning-of-information.

For a labeled magnetic tape, this position is the start of the user's data after label information.

For unlabeled multivolume tapes, a REWIND rewinds the current volume and a subsequent forward motion
initiates a backward reel swap, positioning the file at its beginning.

For labeled multivolume, single-file tapes, a REWIND rewinds the current volume and sets the volume number
in the system tables to I. A subsequent forward motion causes the label to be read and compared with the
system tables, and the operator is notified if the current volume is not number 1.

For labeled multifile tapes, a REWIND rewinds the specified file to its beginning. If necessary, the operator
is instructed to mount the previous volume.

The format of REWIND is:

More than one file can be specified; only one is required.

Name of file to be rewound, 1-7 letters or digits beginning with a letter.

A REWIND that references a multi-file set name is illegal; the job terminates.

A REWIND that references an lfn that is not local to the job creates an empty file of the same name.

60493800 L 4-91

In most cases, when a file is requested for a job, that file is positioned automatically at beginning-of-information.
However, because of variations in installation parameters and procedures, automatic positioning can not always
occur with every file requested. Therefore, it is best to follow the REQUEST statement with a REWIND state­
ment to ensure that the file is positioned at its beginning when first referenced.

RFL (REQUEST FIELD LENGTH)

The RFL control statement requests a specific field length in central memory (CM) or extended core storage
(ECS).

A job's field length requirement in central memory usually varies with each job step. For example, a
FORTRAN compilation might require 45 000 words (octal) while a COPY routine might require only 5000
words (octal). Normally, the dynamic field length management of the system automatically varies the field
length assigned in order to optimize use of system storage.

If a job has special requirements for which specific job steps require considerably more or less field length
than the field length manager would assign, the user can override the system assignment by including an RFL
control statement. When used with the CM parameter, this statement inhibits dynamic field length manage­
ment by the system and assigns a user-specified field length to the job. This user-specified field length re­
mains in effect until a REDUCE control statement again activates the system's dynamic field length manage­
ment. Thus a REDUCE statement should immediately follow each RFL statement unless the user wants his
field length specification to remain in effect for succeeding job steps.

The RFL control statement also specifies field length in ECS. This does not affect dynamic field length
management by the system which applies only to central memory.

Once an ECS field length is assigned, it remains in effect until released by a REDUCE,ECS. control statement.
Thus, the REDUCE,ECS. statement should immediately follow the last job step that uses the ECS assignment.

The formats of RFL are:

RFL,fl.

RFL,CM=fl.

RFL,EC=fle.

RFL,CM=fl,EC=fle.

fl

fle

I 4-92

New CM field length (octal). Maximum value is established either by the CM pa­
rameter on the job statement or, if that parameter is omitted, by the installation
default. The fl parameter must be specified; there is no default.

New ECS field length in multiples of 1000 words (octal). Maximum value is
established either by the EC parameter on the job statement or, if that parameter
is omitted, by the installation default. If the installation is using ECS, the fle
parameter must be specified; there is no default.

60493800 L

ROUTE (FILE DISPOSITION)

ROUTE directs a file to an input or output queue. Both file destination and type of further processing can
be specified by control statement parameters. ROUTE is concerned with handling a file after it is released
from the job, so it is not applicable to files with a fixed residence such as permanent files, private device set
files, or files residing on other nonallocatable equipment. Unless deferred routing is requested, the file is
released from the job immediately.

The file must be resident on a queue device. This can be assured by specifying Q on a REQUEST statement.

The characteristics of a file that can be specified by ROUTE are:

Disposition code

Deferred routing

External
characteristics

Forms code

File ID

Internal
characteristics

Priority

Repeat count

Spacing code

Station ID

Terminal ID

Print, punch, and so on.

Do not release the file immediately.

Punch card format or print train.

Particular paper or card forms to use.

Name identifying the file while it is in the output queue, this name is printed
on the banner page of a printout or punched on the lace card of a punch card
deck.

Data is in display code, ASCII, binary, or transparent (INTERCOM 5) format.

Priority of file to be output at originating INTERCOM terminal.

Number of extra copies for output files.

Octal number of the array to be used with the 580 PFC Printer.

Logical identifier of the computer to process the file.

Central site or identifier of the INTERCOM terminal to receive the file.

Unlike DISPOSE, deferred routing can be used with INTERCOM terminal ID and forms code on a ROUTE
control statement.

Files on public mass storage devices, except those with the special file names, receive a disposition code of
scratch when they are created. At end-of-job or when the file is returned, such a file is discarded.

60493800 L 4-93

I

Files with special names receive specific disposition and external and internal characteristic codes when they
are created. These files are sent to the predetermined destination at end-of-job or when returned. If a special­
named file is to be discarded, DISPOSE or ROUTE must be used. The file names with special codes are
listed as follows:

Special
File Name

OUTPUT

PUNCH
PUNCHB
P80C
FILMPRt
FILMFLt
HARDPRt
HARDFtt
PLOTt

Destination

Print on any available printer with
standard print train
Punch in Hollerith format
Punch in standard binary format
Punch in free-form binary format
Print on microfilm recorder
Plot on microfilm recorder
Print on hardcopy device
Plot on hardcopy device
Plot on any available plotter

Default DC Default EC Default IC

PR

PU
PU
PU
FRt
FLt
HRt
HLt
PTt

A6 or B6tt DIS

026 or 029tt DIS
SB BIN
80COL BIN

Format of files routed to the input queue can be dictated by operating system convention. If keywords FID,
IC, EC, or FC are used in conjunction with DC=IN, they are ignored and no warning message is issued.

The format of ROUTE is:

ROUTE,lfn,DEF, DC=dc, EC=ec, FC=fc, FID=fid, IC=ic, PRI=pri, REP=n, SC=nn, ST=mmf, TID=tid.

Only lfn is required. All other parameters are optional and order independent.

lfn

DEF

Name of the file to be routed, 1-7 letters or digits beginning with a letter.
lfn cannot be INPUT.

Defer file disposition. The system stores the information about the file and disposes
it as requested when the file is released. Files are released by RETURN and UNLOAD
control statements, ROUTE or DISPOSE statements that specify immediate release,
or at end-of-job. Routing of files to the input queue cannot be deferred. With
deferred routing, the user can redefine the same file with subsequent ROUTE state­
ments or specify characteristics of a file before the file is created.

DEF used with DC=IN causes the ROUTE statement to be ignored. If omitted, file
is released at ROUTE execution. DEF used with DC=SC, or DC not equivalenced,
causes all user generated output to be discarded. The dayfile is not discarded.

If DEF is used to dispose the file OUTPUT to a destination other than the
job's origin, a copy of the dayfile is sent to the job's origin at end-of-job.

tsupporting software must be supplied by the instaliation.
ttDepends on installation parameter.

4-94 60493800 L

DC=dc

EC=ec

File disposition:

SC Evict the file
PR Print on any available printer

LR Print on 580-12 printer
LS Print on 580-16 printer
LT Print on 580-20 printer
PU Punch

FRt
FLt
HRt
HLt
PTt
IN

Print on microfilm recorder
Plot on microfilm recorder
Print on hardcopy device
Plot on hardcopy device
Plot on any available plotter
Place file in the input queue

Use of DC=IN can be restricted by the installation. If de is not specified, and lfn is
not a special file name such as OUTPUT, PUNCH, and so forth, DC=SC is assumed.

External characteristics of the print or punch file. If EC is not specified, default EC
code is used.

Print Files:

B4 Print format BCD 48 character print train
B6 Print format BCD 64 character print train
A4 Print format ASCII 48 character print train
A6 Print format ASCII 64 character print train
A9 Print format ASCII 95 character print train

Default value for JANUS print files is B6 or A6 depending on installation option.
If EC=A9 is specified, JANUS will not print the file unless IC=ASCII is also specified.
For all other print EC values, JANUS requires IC=DIS.
The print trains normally mounted for output from INTERCOM terminals are:

INTERCOM

BCD 200UT B6
ASCII 200UT A6
730 series batch terminal A6
711 and 714 terminal A9
Others A6

Punch Files:

026 (or 026)

029 (or 029)

ASCII

SB

80COL

Punch format 026
Punch format 029
Punch format ASCII (INTERCOM files only)
Punch format standard binary
Punch format 80 column free-format binary

t Supporting software must be supplied by the installation.

4.95

I
FC=fc

FID=fid

IC=ic

I

4-96

Default value for JANUS punch files is 026 or 029 depending on installation option.
No standard binary punching is available with INTERCOM.

Forms code, where fc can be any two letters or digits. This parameter indicates
special card or paper forms are to be used for output. The operator should be
informed of the meaning of the codes so that the proper forms are mounted. Each
installation, typically, establishes procedures for using forms codes. If FC is not
specified, standard forms are used.

File name while the file is in the output queue.

•

fffff

*fffff

First five characters of the file name are the same as the first
five characters of the job name. Two unique sequence numbers,
different from the job sequence numbers, are added in the
sixth and seventh positions.

First five characters of the file name are fffff. This name is
printed on the banner page of a printout or punched on the
lace card of a punch card deck. Any combination of one to
five letters or digits can be specified, with the first character
a letter. The two unique job sequence characters added by
the system to the job name are used as the sixth and seventh
characters of the file name. If fffff is less than five characters,
the name is filled with display code zero through the fifth
position.

Equivalent to FID=fffff except two unique sequence numbers,
other than the job sequence numbers, are added in the sixth
and seventh positions.

If fid is not specified, file name while the file is in the output queue is the same as
the job name. Default.

Internal characteristics of the file:

DIS
ASCII
BIN
TRANS

File format is display code; default.
File format is ASCII.
File format is binary.
File format is transparent (INTERCOM).

IC=DIS is required by JANUS for all print files except where EC=A9, in which case,
IC=ASCII is required. IC=BIN is required for binary punch files. IC=TRANS can be
specified only at HASP or 2780/3780 terminals. If IC is not specified, IC=DIS is
assumed.

60493800 M

PRI=pri

REP=n

SC=nn

ST=mmf

TID=tid

ROUTE EXAMPLES

1. job statement

Priority level for a file to be output at originating INTERCOM terminal, 1-4 (octal)
digits. PRI can be used to enter a priority for a file to be entered into the remote
output queue. In any other instance, the parameter is ignored. If pri is not specified,
file receives standard priority.

Repeat count for output files, n < 37 8. If n is not specified, there are zero extra
copies.

Spacing code for output sent to a 580 PFC printer. nn is an octal value, 0 to 77 8,
indicating an installation-defined spacing code array. Zero indicates the default array.
All other values of nn are defined at the installation. See a site analyst for valid
nn values. If nn is not specified, SC=O is assumed.

The logical identifier of the system responsible for processing the file. If DC=IN,
mmf is the logical identifier of the system where the job is executed. The ST param­
eter on the ROUTE control statement overrides any ST parameter on the job statement
of the routed file. If the DC parameter specifies an output queue, mmf is the system
where the file is output. If mmf is not specified, process the file on the system where
it originated.

INTERCOM terminal identification. File is to be returned to terminal identified.
If tid=C, file is to be output at central site. If tid is not specified, file is to be
returned to the site or terminal where the job originated.

REQUEST(LOON ,Q)
ROUTE(LOON,DEF,OC=PR,EC=A9,IC=ASCII)

EXIT.
ROUTE(LOON,OC=SC)
7/8/9

6/7/8/9

This job creates a long file in ASCII format for a printer with an ASCII 95-character print train.
If the job aborts, the file is scratched. If the job terminates normally, file LOON is printed after
the operator mounts the 95-character print train. The file is referenced before it is created. The
routing information is saved and used when the file is sent to the output queue.

60493800 L
4-97 '

2. job statement
REQUEST (SWALLOW,Q)
COPY(INPUT,SWALLOW)
ROUTE(SWALLOW,DC=IN)

7/8/9
SWALLOW,STABC.

7/8/9

6/7/8/9

The job file SW ALLOW is executed on system ABC.

3. job statement
REQUEST(F ALCON ,Q)
COPYBF(INPUT ,FALCON)
ROUTE(FALCON,OC=IN,ST=ABC)
7/8/9
HAWK,TIOO.
REQUEST(OWL,Q)
COPYBF(INPUT ,OWL)
REWIND(OWL)
REQUEST(EAGLE,Q)
COPYBF(OWL,EAGLE)
ROUTE(OWL,OC=PR)
ROUTE(EAGLE,OC=PR,ST=DOG)

7/8/9

6/7/8/9

This job creates a file FALCON, which is all but the control statements of the job. File FALCON
is sent to the input queue of system ABC where it is known as job HAWK. Job HAWK produces
file OWL to be printed on system ABC and file EAGLE to be printed on system DOG.

4. job statement
REQUEST(SWIFT ,Q)
COPY(INPUT,SWIFT)
ROUTE(SWIF ,DC=IN ,ST= DOG)

I 4-9 8 60493800 L

7/8/9
SWIFT.ST ABC.

7/8/9

6/7/8/9

When the ST parameter is specified on ROUTE and on the job statement of the file being routed.
the ROUTE control statement overrules the job statement. Job SWIFT is executed on system
DOG.

5. job statement

ROUTE(PIPIT.DEF ,DC=PR)

RETURN(PIPIT)

7/8/9

6/7/8/9

When the control statement RETURN(PIPIT) is executed, the file PIPIT is sent to the output queue
to be printed. PIPIT is not scratched.

6. job statement

RO UTE(G REBE,DEF ,EC= A6, IC= ASCII)

ROUTE(GREBE,DEF,EC=A9)

ROUTE(GREBE,DC=PR)

60493800 L 4-991

7/8/9

6/7/8/9

The file named GREBE is printed on a printer with a 96-character ASCII print train. When the
first ROUTE is executed, an EC of A6 and IC of ASCII are recorded. When the second ROUTE
is executed, the EC is changed to A9. Since the IC parameter does not appear, its value does not
change. When the third ROUTE is executed, the file GREBE is sent to the output queue to be
printed. Subsequent references to an lfn of GREBE refer to a new file with the same name.

7. MURRE.

ROUTE(ALCID,FID=* ,DC=PR)

7/8/9

6/7 /8/9

Suppose the two unique sequence characters added to the job name by the system are 3F. The
job is then known as MURRE3F. If the next sequence characters were 3Z when ROUTE is
executed, the file ALCID would be given the name MURRE3Z when it is printed.

8. IDRDS.

ROUTE(TERN ,FID=*TERN)

7/8/9

6/7/8/9

Suppose the sequence characters are as in example 7. Then the file TERN is printed as TERN03Z.

4-100 60493800 L

9. BIRDS.

ROUTE(TERN,FID=TERN)

7/8/9

6/7/8/9

Suppose the sequence characters are as in examples 7 and 8. Then the file TERN is printed as
TERN03F.

SAVEPF (CATALOG PERMANENT FILE ON LINKED MAINFRAME)

SA VEPF makes an existing local file a permanent file on the mainframe specified. SA VEPF differs from the
CATALOG control statement in that SAVEPF can catalog a file at a mainframe other than that where the
job is executing; CATALOG cannot.

The format of SAVEPF is:

SA VEPF Jfn,pfn,ID=name,AC=act,CN=cn,CY=cy ,EX=ex,FO=fo,MD=md,PW=pw ,RD=rd,RP=rp,ST=mmf,
TK =tk,XR=xr ,SN=setname ,VSN=vsn.

The lfn and pfn parameters are required in the order shown. All other parameters are order indepen­
dent. The ST parameter is required; other parameters might be required, as noted with CATALOG.
If a terminator does not appear at the end of the parameter list, column 1 of the next card or line is
considered to be a continuation of the SA VEPF parameter list.

lfn

pfn

ID=name

ST=mmf

60493800 L

Name by which the file is presently known to the job, 1-7 letters or digits
beginning with a letter. This name does not become part of the permanent
file identification.

Permanent file name by which the file is known in permanent file manager tables,
1-40 letters or digits. If pfn is omitted, lfn is used.

Owner or creator of file.

System on which file is to be cataloged, 3 characters. The values for mmf are
established at installation time.

4-101 I

I

I

SN=setname

VSN=vsn

Device set name identifying the private device set containing the file to be made a
permanent file. This parameter may be 1-7 letters or digits and must begin with a
letter: If SN is specified, VSN must also be specified to allow access to the private
set on the mainframe specified by ST.

Volume serial number identifying the master device of the private device set. This
parameter may be 1-6 letters or digits. If SN is specified, VSN must also be speci­
fied as explained in the SN description.

When the ST parameter designates a mainframe running SCOPE 2, the file structure must adhere to
SCOPE 2 Record Manager defaults; otherwise a FILE statement must be used. For example, the
SCOPE 2 FORTRAN and COBOL compilers expect the source program to be in W type record format.
A program created under the NOS/BE INTERCOM Editor consists of Z type records and cannot be
compiled directly by SCOPE 2 compilers.

Example:

A user writes a program under the Editor CREATE command and makes the file local to the job
with a SA VE,ART command. The user then enters the following statement to make the file
permanent under SCOPE 2: SA VEPF ,ART,ID=XX,ST=MFZ., where MFZ is the mainframe running
SCOPE 2. The system responds with WAITING FOR MMF SAVEPF. This message appears even
if the SCOPE 2 mainframe is down or not available. When INTERCOM responds with . ., the file
has been transferred and made permanent.

To compile and execute the program made permanent on SCOPE 2, the user creates the following
file under the Editor CREATE command.

SCOPE 2 job statement.
SCOPE 2 account statement.
FILE,ART,RT=Z,BT=C,FL=80.
ATTACH,ART,ID=XX.
FTN5,I=ART
LGO.

With the SAVE and BATCH commands, the user makes the file local and then submits the job.
The program on file ART is attached, compiled, and executed. The job aborts if the FILE state­
ment is not included, since the FORTRAN compiler would expect W type records.

Refer to the CYBER Record Manager manuals and the SCOPE 2 Operator's Guide for additional details
on file conversion requirements.

Refer to the CATALOG control statement for the remaining parameters.

4-102 60493800 L

SETNAME (ESTABLISH IMPLICIT SETNAME)

SETNAME indicates the device set to be referenced implicitly by subsequent ATTACH, PURGE, and REQUEST
control statements. When SETNAME is not used, these control statements implicitly reference a system device
set.

The format of SETNAME is:

SETNAME,setname.

The parameter can be omitted.

setname Name of device set to be referenced implicitly, 1-7 letters or digits beginning with a
letter. If omitted, public device sets are assumed.

A second SETNAME control statement overrides the first.

SETNAME is explicitly overridden by an SN=setname parameter on a REQUEST, ATTACH, or PURGE control
statement. An SN that does not specify a setname on a REQUEST control statement does not override the
SETNAME control statement. A rotating mass storage REQUEST which does not have an SN parameter will
always reference public device sets.

SKIPB (SKIP BACKWARD SYSTEM-LOGICAL-RECORDS)

SKIPB bypasses one or more system-logical-records in a reverse direction. Current file position can be any
point within a record when the control statement is executed. The file must have system-logical-record
structure. SKIPB should not be used with CYBER Record Manager file organizations unless RT=S. For
S and L tapes SKIPB recognizes only levels 0 and 17 8 and treats any other level as a level 0.

The format of SKIPB is:

SKIPB,lfn,n,lev ,mode.

Parameters are positional; only lfn is required.

lfn

n

lev

mode

60493800 L

File name, 1-7 letters or digits beginning with a letter.

Number of system-logical-records of level lev or greater to be skipped, 1-262142

(decimal). Default is 1. A value greater than 262142 is treated as a rewind

request. If n is set to zero, the system will treat it as n=l.

Level number, 0-17 (octal). Default is 0.

File mode applicable to tape files only:

B Binary; default.

c Coded.

4-103

I

Skipping stops when the specified number of terminators containing the specified level have been bypassed or
beginning-of-information is encountered. At the end of SKIPB, the file is positioned immediately following
the system-logical-record terminator examined last. When the file is positioned immediately following a system­
logical-record terminator, that terminator is not counted in the execution of n skips.

SKIPF (SKIP FORWARD SYSTEM-LOGICAL-RECORDS)

SKIPF bypasses one or more system-logical-records in a forward direction. Current file position can be any

point within a record when the control statement is issued. The file must have system-logical-record

structure. SKIPF should not be used with CDC CYBER Record Manager file organizations unless RT=S.

The format of SKIPF is:

SKIPF Jfn ,nJev ,mode.

Parameters are positional; only lfn is required.

]fn File name, 1-7 letters or digits beginning with a Jetter.

n Number of system-logical-records of level Tev or greater to be skipped, I-262142

(decimal). Default is I. If n is set to zero, the system treats it as n= I.

lev Level number, 0-17 (octal).t Default is 0.

mode File mode applicable to tape fi1es only:

B Binary; default.

C Coded

Skipping stops when the specified number of terminators containing the specified level have been bypassed or
end-of-information is reached. At the end of SKIPF, the file is positioned immediately following the system­
logicaJ-record last examined.

A value greater than 262142 for the number of records to be skipped causes a rotating mass storage file to be
positioned at end-of-information. For a tape file, a similar parameter causes the file to remain at its current
position.

SUMMARY (ACCOUNT SUMMARY)

SUMMARY obtains an accounting summary up to the point in the job where the statement is encountered.
The accounting summary, which appears in the job dayfile, lists resources used to this point in the job. The
resources used by a job step can be determined by executing a SUMMARY statement before and after the
job step and subtracting the resulting values. The summary output is the same as the accounting summary
generated at end-of-job.

t Although level numbers do not exist on S and L data format tapes, an lev parameter may be specified for

SKIPF requests. If level number 17 8 is specified, a skip to end-of-partition is performed. Any other level

number is assumed to be zero, and one record is skipped.

1 4-104 60493800 L

The format of SUMMARY is:

SUMMARY.

The discussion of the dayfile in section 2 gives details of summary output.

SWITCH (SET SOFTWARE SWITCH)

SWITCH sets one of the six software switches available for each job. At the start of job execution, all
switches are zero. Execution of SWITCH changes the current setting to its opposite mode.

In program branching, where two alternate processing routes are provided, the software sense switch is frequently
used to determine the path taken. This switch is a bit in central memory that a user's program can reference.
A program might contain a request to take one path if the bit is set to one (on) and another if it is zero (off).

The format of SWITCH is:

SWITCH,n.

n Number of switch to be changed, 1-6. The n parameter must be specified; there is
no default.

Switches also can be set by the central site operator, a terminal user, or a program in a language that supports
switch operations.

The following example changes switch 4 to ON, then OFF, then ON again.

SWITCH,4. Set switch to 1.

SWITCH,4. Resets switch to 0.

SWITCH,4. Resets switch to 1.

SYSBULL (ACCESS SYSTEM BULLETIN)

SYSBULL copies request system bulletins to the OUTPUT file.

The format of SYSBULL is:

Parameters are all optional.

Bulletin names, ALL, or INDEX:

ALL Lists all bulletins. Any other parameters are ignored.

INDEX Lists index of all bulletins available. Default.

60493800 L 4-105

INTERCOM makes a call to SYSBULL whenever a user logs in. The calls are:

SYSBULI.(LOGIN) If SUP is not specified.

SYSBULI.(SUP) If SUP is specified.

SYSBULL automatically attempts to find the bulletin named LOGIN or SUP. If found, the bulletin is
immediately displayed. If SYSBULL does not find the system bulletin permanent file or the specific bulletin
LOGIN or SUP, processing continues.

The operating system calls SYSBULL for each batch job entered in the system.

The call is:

SYSBULI.(BATCH)

SYSBULL automatically attempts to find the bulletin named BATCH. If found, it is the first item printed on
OUTPUT. If SYSBULL does not find the system bulletin permanent file or the specific bulletin BATCH, pro­
cessing continues.

TRANSF (DECREMENT DEPENDENCY COUNT)

TRANSF decrements the dependency count for jobs in an interdependent job string. The user can submit a
string of interdependent jobs to the computer, specifying the order in which they are to be executed. In
such a string, all dependent jobs should be submitted before independent jobs. Jobs can be submitted from
the central site, or from remote card readers. A job is not executed until all prerequisite jobs in the string
have been executed. Whenever possible, the operating system schedules interdependent jobs for execution in
parallel (multi-programming).

As each job is input, dependency identifier and dependency count on the job statement are noted. The
dependency count is decremented by TRANSF control statements in prerequisite jobs. When the count of
a dependent job becomes zero, it executes.

The Dym parameter on the job statement establishes job interdependency. y is the dependency identifier that
names the string to which the job belongs. m is the dependency count (number) of prerequisite jobs on
which the job depends.

TRANSF must appear after the control statements that execute the prerequisite programs. In multi-mainframe
configurations, a string of interdependent jobs must execute on the same mainframe. TRANSF should not
appear in the last job in the string since no jobs can depend on it.

The format of TRANSF is:

Multiple job names or multiple TRANSF control statements can be used.

4-106

Name of job whose dependency count is to be decremented. Only the first five
characters of each job name are used, with the dependency string identifier maintaining
proper identification.

60493800 M

If a job containing a TRANSF control statement is terminated before that control statement is processed, the
dependency count of other jobs is not decreased. Instead, all succeeding jobs that depend on this job remain
in the input queue. No error message indicates that a job in a dependent string has terminated abnormally.
The operator decides whether the remaining jobs should be evicted or forced into execution. A message
instructing the operator can be placed in a routine after a RECOVR function, or on a PAUSE statement
following an EXIT statement.

An example of an interdependent job string JS follows. Consider jobs with names JOBA through JOBF.

JOBB is dependent on successful execution of JOBA
JOBC on JOBA
JOBD on JOBB and JOBC
JOBE on JOBC
JOBF on JOBB, JOBD, and JOBE

The control statements should appear with:

JOBA,DJSOO.
execution call
TRANSF(JOBB,JOBC)

6/7/8/9

JOBC,DJSOl.
execution call
TRANSF(JOBD,JOBE)
6/7/8/9

JOBE,DJSOl.
execution call
TRANSF(JOBF)
6/7/8/9

JOBB,DJSOl.
execution call
TRANSF(JOBD,JOBF)

6/7/8/9

JOBD,DJS02.
execution call
TRANSF(JOBF)
6/7/8/9

JOBF,DJS03.
execution call
6/7/8/9

JOBF, which can execute only if all other jobs in the string are successful, has a dependency count of
3, the number of jobs containing TRANSF references to JOBF.

TRANSPF (TRANSFER PERMANENT FILE)

TRANSPF changes the residence of permanent files and permanent file tables within a device set so that all
permanent file information can be removed from a device. It also copies files from one device set to another.
These operations are known as a single device set transfer and a dual device set transfer, respectively.

Before TRANSPF can be executed, a permanent file with name of DUM and ID of PUBLIC must be cataloged
on the device set specified by the FS parameter. If this is not done, TRANSPF aborts. TRANSPF issues an
internal ATTACH of the permanent file DUM; the passwords submitted in this ATTACH are those submitted
via the PW parameter on the TRANSPF request. If a DUM permanent file with TK=DUMPF already exists
(earlier systems required this), it must be purged and replaced as described above. If TRANSPF is unable to
attach the permanent file DUM, the function aborts.

60493800 L 4-101 I

Before TRANSPF is called, a MOUNT control statement must be executed for the master devices of the device
sets specified by the FS and TS parameters. TRANSPF cannot be run on a shared device set.

The format of TRANSPF is:

TRAN SPF ,PW=pw ,FS=setname 1, TS=setname2,FM=vsn 1,TM=vsn2,LF=lfn.

Parameters FS and TS are required; PW is required if passwords have been defined for file DUM.
Remaining parameters are optional. All parameters are order independent. If a terminator does not
appear at the end of the parameter list, column 1 of the next card or line is considered to be a
continuation of the TRANSPF parameter list.

PW=pw

FS=setname 1

TS=setname 2

FM=vsn 1

TM=vsn 2

LF=lfn

Specifies read, control, modify, and extend passwords, separated by commas, if defined
for permanent file DUM. If passwords have been defined for file DUM, all must be
specified with this parameter or the utility aborts. No default exists.

Name of device set from which permanent file information is to be transferred; 1-7
letters or digits beginning with a letter. Default is the permanent file default set.

Name of device set to which permanent file information is to be transferred; 1·7
letters or digits beginning with a letter. Default is the permanent file default set.

Volume serial number of member device from which permanent file information is to
be transferred; 1 -6 letters or digits with leading zeros assumed. Required when TS
and FS specify the same setname. When TS and FS specify different setnames, all
devices in the set are assumed and the FM parameter cannot be specified.

Volume serial number of member device to which permanent file information is to
be transferred; 1-6 letters or digits with leading zeros assumed. Data that cannot be
contained on this device overflows to another member of device set specified by TS,
except that files do not overflow to the member specified by FM when TS and FS
specify the same setname. Required when TS and FS specify the same setname and
FM specifies a master device. When TS and FS specify different setnames, TM cannot
be specified. Default is all devices in device set specified by the TS parameter.

Name of file on which output listing is written; 1 -7 letters or digits beginning with a
letter. Default is OUTPUT.

SINGLE DEVICE SET TRANSPF

A single device set TRANSPF is requested if the device set specified by the FS parameter is the same as the
device set specified by the TS parameter.

TRANSFERRING FROM A MEMBER

If the FM parameter does not specify a master device, permanent files residing on the FM device are moved to
the TM device. A file is moved if any part resides on the FM device. Once the file has been transferred, the
disk space associated with the old copy is released. ff the file cannot be completely contained on the TM
device, the file overflows to any other device in the set except the FM device. If the transfer of a file is

4-108 60493800 L

unsuccessful, that file is skipped, but TRANSPF is not aborted. A file transfer can be unsuccessful because of
uncorrectable parity errors, not enough space in the device set to accommodate two copies of the file simulta­
neously, or permanent file catalog full. When all permanent file information is successfully transferred from
the FM device, that device is no longer a permanent file device.

TRANSFERRING FROM A MASTER

When the FM parameter specifies a master device, the device set tables are moved to the device specified by
TM, and the device labels for both devices are updated to reflect the new organization of the device set. If
the tables cannot be successfully moved, the device set is not changed by the TRAN SPF utility. Table trans­
fers can fail because of uncorrectable parity errors, or not enough space on the TM device to completely con­
tain the disk tables. The system must be idle before TRANSPF is executed for table transfer.

After the master device is successfully changed, permanent files residing on the FM device are moved to the
TM device as described above. When all permanent file information is transferred from the FM device, that
device is no longer a permanent file device.

Examples of single device set transfer are:

1.

2.

FIRST.
MOUNT(SN=TEST ,VSN=999)
TRANSPF(FS=TEST,TS=TEST,FM=999,TM=l 11,PW=A,B,C,D)
6/7/8/9

Mount master.

This job transfers all permanent files and permanent file tables from the master device with VSN
of 999 to the member device with VSN of 111. Both devices belong to device set TEST. The
member device with VSN=l 11 was not explicitly mounted. The system initiates the mount of the
member when actual 1/0 is requested by TRANSPF. If this job runs successfully, device 111 is
the master device of set TEST.

If the tables do not fit on the device with VSN=l 11, the set is not changed, and the job ends.
If the tables are successfully transferred but the permanent files do not fit on the device with
VSN= 111, the files overflow to any devices in the set TEST except the device with VSN=999.

The permanent file DUM is assumed to have been previously cataloged with passwords A,B,C,D on
device set TEST.

SECOND.
MOUNT(SN=TESTl ,VSN=555)
TRANSPF(FS=TESTl ,TS=TESTl ,FM=888,TM=222,PW=Q,R,S,T)
6/7/8/9

Mount master.

This job transfers all permanent files from the member device with VSN=888 to the member device
with VSN=222. Both members belong to the device set TESTl. The members with VSNs of
888 and 222 were not explicitly mounted. The system initiates the mount of these members when
actual 1/0 is requested by TRANSPF.

The central site operator receives notification when a master-to-member table move is attempted
and must authorize continuance of the transfer. The record block size of the first record block
reservation table (RBR) of the FM and TM devices must be the same (refer to the rbs allocation
directive of the LABELMS statement in this section).

60493800 L 4-109

I

DUAL DEVICE SET TRANSPF

A dual device set TRANSPF is requested if the device set specified by the FS parameter is different from the
device set specified by the TS parameter. TRANSPF transfers permanent files by simulating the following
sequence of control statements.

REQUEST(lfn2,SN=setname2)
ATT ACH(lfn 1,pfn,ID=owner ,SN=setname 1)
COPY(lfn1 ,lfn2)
CAT ALOG(lfn2,pfn,ID=owner)
RETURN(lfn 1 ,lfn2)

All files residing on the device set specified by the FS parameter are transferred to the device set specified by
the TS parameter. The FM and TM parameters cannot be used and no member devices can be specified. After
a successful transfer of a file, two copies of the file exist, one in the FS device set and one in the TS device
set.

A permanent file transfer might be unsuccessful if lfn has an uncorrectable parity error, CATALOG is unsuccessful
for reasons such as unavailable table space, or if insufficient disk space is available on the TS device set to con­
tain the file.

In a dual device set transfer, the disk tables are not moved as a separate entity. Critical tables are only moved
within a device set and never from one device set to another.

Example of dual device set transfer:

JOB.
MOUNT(SN=BOB,VSN=l 944)
MOUNT(SN=TOM,VSN=l 984)
TRANSPF(FS= BOB, TS=TOM,PW=PWl ,PW2,PW3 ,PW 4)
6/7/8/9

Mount master.
Mount master.

This job moves permanent files from the device set BOB to the device set TOM.

UNLOAD (EVICT FILE)

UNLOAD performs an operating system CLOSE/UNLOAD function. It differs from RETURN only in that
RETURN reduces the maximum number of tapes that can be held by the job, but UNLOAD does not affect
the tape count. UNLOAD deletes all references to the files specified, except as noted below.

The format of UNLOAD is:

More than one file or multifile set can be specified; only one is required.

4-110

Name of file to be unloaded, 1-7 letters or digits beginning with a letter. Can be a
member of a tape multifile set. If INPUT is specified, an error message is issued and
INPUT is rewound but not unloaded.

Name of multifile set of tape to be unloaded, 1-6 letters or digits beginning with a
letter.

60493800 L

For tape files, tapes are rewound and unloaded after any necessary labels are written. The tape drive is then
made available for new assignment. However, UNLOAD cannot override an IU (inhibit unload) parameter on
the REQUEST control statement for the file. When the IU parameter exists, a subsequent unload rewinds,
but does not unload, the tape.

For mass storage files, UNLOAD causes the file to be returned. Special-named files on queue devices are
released to the output queue associated with their disposition. If any of the special-named files is to be
evicted, the DISPOSE or ROUTE control statement should be used rather than UNLOAD. Permanent files
return to permanent file manager jurisdiction. Other mass storage files are evicted.

VSN (TAPE VOLUME IDENTIFICATION)

VSN has two functions for tape files.

It relates the external sticker (volume serial number) for a tape to the file name.

It provides information for the tape prescheduling display at the operator console. Since the operator
is then aware of upcoming tape requests, he can mount the required tapes so the system can access
them without further operator action.

The VSN control statement can be used in place of a VSN parameter on a REQUEST or LABEL control
statement. VSN execution does not affect either the checking or writing of tape labels. It can be specified
for labeled or unlabeled tapes.

The format of VSN is:

VSN,lfn1 =vsn 1 ,lfn2=vsn2,

One statement can be used for any number of files. Multiple VSN control statements can be used.
The VSN statement can be continued from one line to the next. The last nonblank character on
the line to be continued must be a separator. The continuation begins in column 1 of the next
line.

60493800 L

For a single file, the file name of 1-7 letters or digits beginning with a letter.

For a multifile set, the multifile set name of 1-6 letters or digits beginning with a
letter.

Volume serial number of 1-6 letters or digits with leading zeros assumed. A vsn of O
or SCRATCH, or omission of =vsn, results in scratch tape assignment.

If any of several alternate volumes suffice, equals signs should separate identifiers, as
in FILE= 1234= 123 5.

If the file is to be assigned to a multivolume set, VSNs should appear, separated by
slashes, in the order that volumes are to be accessed as in BIGFILE=1ST/2ND/ ... /
LAST.

4-11 1 I

If conflicting volume serial numbers are given for a single tape file, the first encountered is used. However,
duplicate specifications on the same control statement produce a fatal error.

VSN statements can be placed anywhere in the control statements as long as they precede the REQUEST or
LABEL control statement that associates the file with the job. If a file name is to be reused during a job,
such as OLDPL for two UPDATE operations, the first file should be released by an UNLOAD or RETURN
control statement before a VSN is given for the second file.

VSN EXAMPLES

I. The VSN control statement has no effect, because no REQUEST or LABEL control statement
appears for file TAPEI. File TAPE! is opened as a disk file.

JOB5,MTI.
VSN(TAPEI =1234)
REWIND,T APEi.

2. To have a specific magnetic tape assigned to the job, either of the following requests would suffice.

JOB6,MTI. JOB7,MTI.
VSN(T APEi =1234) REQUEST(T APEI ,VSN=l 234,MT ,E,NORING)
REQUEST(T APEI ,MT ,E,NORING)

3. A 679 GCR unit with any tape mounted that meets the installation criteria for a scratch tape
is assigned.

JOB8,GE1.
VSN(TAPEl=O)
REQUEST(TAPEI ,GE,N,IU)

4. A 669 or 679 unit with any tape mounted that meets the installation criteria for a scratch tape
is assigned.

JOB9,PEI.
VSN(TAPEl=O)
REQUEST(T APE I ,PE,N ,IU)

5. The magnetic tape with VSN of 1234 is assigned to the job and the subsequent reel has a VSN
of 5000.

JOBA,MTI.
VSN(T APEl =1234/5000)
REQUEST(T APEI ,MT ,E,NORING)

6. A magnetic tape with a VSN of 1234 or 5000 is assigned to the job. If subsequent reels are
needed, the first tape's EOV2 label or a VSN entered by the operator identifies the reel.

• 4-112

JOBB,MTl.
VSN(T APEl =l 234=5000)
REQUEST(T APEl ,MT ,E,NORING)

60493800 L

CYBER CONTROL LANGUAGE 5

CYBER Control Language (CCL) is a set of job control statements, functions, and commands, that permit
the user to:

• Control and alter the processing sequence of job control statements.

• Perform externally defined control statement sequences (procedures) during job execution.

• Determine and test the attributes and physical residence of files and use that information to
determine the job processing sequence.

These capabilities are in the form of a procedure-oriented language that contains conditional and
unconditional skipping, looping, procedure-calling, and displaying statements. CCL also provides a number
of registers that the user can set, alter, and test.

The first subsection is an overview of the CCL statements, functions, and commands. The following three
subsections describe the CCL statement syntax and the operators and operands that make up a CCL
expression. The remainder of the subsections describe the CCL statements. The statement descriptions
are organized according to shared attributes.

OVERVIEW

The following paragraphs briefly describe all CCL statements, functions, and commands. The descriptions
are grouped according to functional use.

These CCL statements initiate or terminate the skipping of control statements.

Statement

IFE

SKIP

ELSE

ENDIF

60493800 L

Description

Evaluates a conditional expression. If its expression is true, the next
statement is processed. If its expression is false, statements are
skipped until a matching ELSE or ENDIF statement is found and the
statements following the ELSE or ENDIF are processed.

Skips statements until a matching ENDIF statement is found.

Terminates or initiates skipping of statements following an IFE
statement. If an IFE statement is true, the ELSE statement initiates
skipping to the matching ENDIF statement; if it is false, the ELSE
statement stops the skipping initiated by the false IFE expression.

Terminates skipping of statements initiated by a matching IFE, SKIP,
or ELSE statement.

5-1

These CCL statements identify a sequence of control statements as a loop that can be repeatedly
processed.

Statement

WHILE

ENDW

Description

Establishes the beginning of the loop. If the associated expression is
true, the loop is processed; if it is false, the loop is not processed.

Establishes the end of the loop.

These CCL statements assign and display values associated with CCL symbolic names. A CCL symboli:!
name is an alphanumeric character string that is recognized by CCL and has an assigned value. The value
is assigned by the system or the user.

Statement

SET

DISPLAY

Description

Allows the user to assign values to CCL symbolic names.

Evaluates an expression and displays the result in the job dayfile in
both octal and decimal. In INTERCOM, the result is displayed at the
terminal and in the job dayfile.

These CCL functions are used in expressions within the CCL statements. They can determine the
conditions for transfer of control.

Function

FILE

DT

NUM

Description

Determines the attributes of a file.

Deter mines the type of device on which a file resides.

Determines whether or not a parameter has a numeric value.

These CCL statements initiate and terminate processing of a procedure. A procedure is a group of
control statements (including CCL statements) that is separate from the job control record.

Statement

BEGIN

REVERT

Description

Initiates processing of a procedure.

Returns processing from a procedure to the control statement record
or procedure that called it. Job processing continues with the control
statement following the BEGIN statement.

This CCL statement identifies a procedure. A procedure is a sequence of control statements executed

I similarly to a subroutine. A procedure is called from the job control record, from a user at an interactive
terminal, or from other procedures. It consists of any number of control statements, and is physically a
single record on a file. The user can define any number of procedures to reside on a single file.
Procedure files can be optionally put on user and system libraries.

Statement

.PROC

5-2

Description

Identifies the statements that follow .PROC as a procedure. There
are two types of procedures; interactive and noninteractive. Both
procedures use the .PROC statement.

60493800 M

These CCL statements allow descriptions of the procedure and its parameters to be displayed. They may
only be used in interactive procedures.

Statement

.HELP

. ENDHELP

Description

Establishes the beginning of descriptive text for the procedure
and its parameters.

Establishes the end of descriptive text for a procedure .

These CCL commands control processing of data within a procedure.

Command

.DATA

. EOR

• EOF

Description

Creates a data file containing information to be used by the
noninteractive procedure in which it appears.

Causes an end-of-record to be written on a data file .

Causes an end-of-partition to be written on a data file •

·* Allows the user to include comments in a procedure; these comments
are not printed in the dayfile.

STATEMENT SYNTAX
The following CCL statement syntax rules are similar to the syntax rules of other control statements.

• A comma or left parenthesis must separate the statement name and the first parameter.

• Commas must separate consecutive parameters.

• A period or a right parenthesis must terminate the statement.

• Parentheses can nest expressions within expressions (parentheses do not imply multiplication).

• A right parenthesis ending an expression within a statement cannot also serve as the statement
terminator. The user must include an additional right parenthesis or period to complete the
statement.

• Comments can follow the statement terminator.

CCL statements may be longer than 80 characters. They may extend over more than one line if each line I
to be continued contains no more than 80 characters and ends with a comma. Lines in an interactive -
procedure header statement do not have to end with a comma.

OPERATORS

Operators separate operands in a CCL expression. There are three types of CCL operators: arithmetic,
relational, and logical. Operators are used in the expressions within the IFE, WHILE, DISPLAY, and SET
statements, and within the FILE function.

60493800 M 5-3

ARITHMETIC OPERATORS

I Integer arithmetic is used in each step of the evaluation of a. CCL expression. Integer division truncates
any remainders and no rounding occurs. Division, multiplication, and exponentiation produce a zero result
if the absolute value exceeds 248 - 1. Computations are accurate to 10 decimal digits (20 octal digits)
and overflow is ignored.

The following are the CCL arithmetic opera tors.

Operator Operation

+ Addition

Subtraction

* Multiplication

I Division

** Exponentiation

Leading - Negation

Leading+ Ignored

RELATIONAL OPERATORS

A relational operator produces a value of 1 if the relationship is true, and 0 if it is false. The following
are the CCL relational operators (either form may be used).

Operator Operation

= or .EQ. Equal to

.NE. Not equal to

< or .LT. Less than

> or .GT. Greater than

.LE. Less than oc equal to

.GE. Orea ter than oc equal to

5-4 60493800 M

LOGICAL OPERATORS

When a CCL expression contains a logical operator, CCL evaluates each operand as true (nonzero) or false
(zero). The following are the CCL logical operators.

Operator Operation

.EQV. Equivalence

.OR. Inclusive OR

.AND. AND

.XOR. Exclusive OR

.NOT. Complement

ORDER Of EVALUATION

Operators in an expression are evaluated in the following order:

1. Exponentiation

2. Multiplication, division

3. Addition, subtraction, negation

4. Relations

5. Complement

s. AND

7. Inclusive OR

IJ. Exclusive OR, equivalence

Operators of equal order are evaluated from left to right.

OPERANDS

One or more operands separated by operators make up a CCL expression. Expressions are used within the
IFE, WHILE, DISPLAY, and SET statements and within the FILE function. An expression within an
expression must begin with a left parenthesis and end with a right parenthesis. There is no limit on the
length of an expression, except that a period or a right parenthesis (not acting as a statement terminator)
must appear within the first 50 operands. Expressions can contain operands of one or more types. There
are three types of operands: constants, symbolic names, and functions.

60493800 M 5-5 I

CONSTANTS

CCL uses two types of constants, numeric constants and literals.

A numeric constant is a string of 1 to 10 numerals that CCL processes as an interger. All characters
within the string must be digits (0 through 9), except the final character, which may be a postradix B or
D. A B postradix identifies an octal integer; a D postradix identifies a decimal integer. If no postradix is
specified, decimal is assumed.

!\ literal is a string of alphanumeric characters delimited by dollar signs. When a literal i<> used as a
numeric constant, the string can be from 1 to 10 alphanumeric characters, and the system treats the
binary value of the display code string as a right-justified integer.

A dollar sign is represented within a literal by two dollar signs. !\ literal must have an even number of
dollar signs. A literal may be used alone or in combination with other characters to form parameter
values, as shown in the following list.

Parameter Specified

$$
$$$$
$A.B$
A$.$B
A$.B$
$A.$B

Value Produced

null
$
A.B
A.R
A.B
A.B

SYMBOLIC NAMES

A symbolic name is a string of characters that is recognized by CCL and h~s an assigned val~e. CCL uses
symbolic names in tests for conditions. CCL can also display the value assigned to a symbolic name.

The value assigned to a symbolic name is specified by the installation or set either by the user or by CCL.
All variable symbolic names have an initial value of 0 except OT (job origin type), SYS (host operating
system), VER (operating system version number), EM (the current exit mode set by the user with the
MODE statement), and TIME (the current time of day).

The symbolic names used with the FILE and DT functions are listed with the descriptions of the functions
later in this section. The following symbolic names can be used in CCL expressions. They are grouped
according to a shared attribute.

5-6

• Symbolic names whose values are passed to, but not from, a procedure (refer to Procedures, later
in this section). When a procedure reverts, symbolic names are restored to the values they held
when the procedure was called (refer to SET Statement, later in this section).

Name

DSC

EF

Description

Flag determining whether skipped control statements are entered in
the dayfile.

Previous error flag.

60493800 M

Name Description

Rl Control register 1 contents.

R2 Control register 2 contents.

R3 Control register 3 contents.

• Symbolic names whose values can be set by the user. All except EM are set by the SET control
statement or the SETJCI macro (refer to section 7).

Name

DSC

EF

EFG

EM

Rl

RlG

R2

R3

Description

Flag determining whether skipped control statements are entered in
the dayfile.

Previous error nag.
Global error flag.

Current exit mode (refer to MODE control statement, section 4). In
the CYBER 170 series, EM is a four-digit octal value, rather than a
single-digit octal value. To reduce the value of EM to the
single-digit set by the MODE statement, use the expression
EM.AND. 7. To ensure correct evaluation, enclose this expression in
parentheses.

Control register 1 contents.

Global control register 1 contents.

Control register 2 contents.

Control register 3 contents.

• Symbolic names whose values are set by the operating system.

60493800 M

Name

DSC

EF

FL

MFL

MFLL

OT

SYS

TIME

VER

Description

Flag indicating that skipped control statements are to be entered in
the dayfile.

Previous error nag.
Current central memory (CM) field length.

Maximum CM field length.

Maximum extended core storage (ECS) field length.

Job origin type.

Host operating system.

Current time of day (hhm m).

CCL version number.

5-7

I

I 5-s

• Symbolic name whose value is set by the calling or termination of a procedure.

Name

PNL

Description

Procedure nesting level (0 when processing the original job control
statement record, 1 when processing a first level procedure, and so
forth). Its maximum value is 50.

• Symbolic name whose value can be set by the termination of a procedure (refer to SET
Statement, later in this section).

Name Description

EFG Global error flag.

• Symbolic names that correspond to error code value<>. In an expression, a user typically checks
the error flag (EF) for a nonzero value; a nonzero value indicates an error, and a zero value
indicates no error. For detailed error examination, the user can compare EF with a particular
symbolic name or its error code value. Users are encouraged to use the symbolic name, because
the numeric values could change in future releases of NOS/BE. The following list contains the
errors that allow exit processing.

Name Value

ARE 1

CPE 4

ESE 9

MNE 5

MSE 8

ODE 11

PPE 3

'l'LE 6

Description

Arithmetic error.

Central processor unit (CPU) abort.

ABORT macro with S option initiated a search for an EXIT,S.
statement.

Monitor call error.

Mass storage error.

Operator drop.

Peripheral processor (PP) abort.

Time limit.

• Symboli~ names with fixed values. Usually these symbolic names are compared with the OT
value within an expression.

Name

BCO

EIO

SYO

TXO

Description

Local batch origin.

Remote batch origin.

System origin.

Time-sharing origin.

60493800 M

• Symbolic names with fixed values. Usually these symbolic names are compared with the SYS
value within an expression.

Name Description

NOSB NOS/BE Operating System.

SC2 SCOPE 2 Operating System.

• Symbolic names with true or false values. True is l; false is 0.

Name

F

FALSE

SWn

T

TRUE

FUNCTIONS

Description

Fixed value of 0.

Fixed value of O.

One of six sense switches (n is a number from 1 to 6). Their values
are set by the SWITCH statement (refer to section 4).

Fixed value of l.

Fixed value of 1.

Functions are used in CCL statements as expressions or operands within expressions. Functions are not
control statements. The CCL functions are FILE, DT, and NUM.

File Function

'T'he FILE function determines whether a file has a specified attribute. The system returns a value of true
(1) or false (0) depending upon whether or not the file has or does not have the specified attribute(s). Only
the equipment number (EQ) and file ID attributes can return values other than 1 or 0. The list of file
attributes follows the description of the FILE function format.

The FILE function must be used as an expression or as a part of an expression in a CCL statement. A left
parenthesis must appear before the file name, a comma must appear between the file name and the
expression, and a right parenthesis must appear after the expression.

The format of FILE is:

FILE(lfn,exp)

lfn

exp

60493800 M

File name for which attributes are being determined.

Either a special FILE function attribute or an exp_ression consisting of logical
operators and special FILE function attributes.

5-9 I

1 s-10

The expression within a FILE function cannot include the NUM function or another
FILE function; the DT function or the following symbolic names can be used within
the expression. Any other symbolic name within the expression is treated either as
an implicit DT function (refer to DT Function, which follows) or an unidentified
variable.

AS

BOI

EN

EOF

EOI

IN

LB

LO

MD

MS

OP

PF

PH

PR

RD

TP

TT

WR

Description

File is attached to the user's job (that is, NOS/BE
recognizes the lfn of the file; the file exists).

Fil~ is positioned at the beginning-of-information. This is
useful only if the sequential file is on mass storage.

File has extend permission.

Last operation was a forward operation that encountered
an EOP, and the file is now positioned at that EOP. This is
useful only if the sequential file is on mass storage.

Last operation was a forward operation that encountered
an EOI, and the file is now positioned at that EOI. This is
useful only if the sequential file is on mass storage.

File INPUT.

File is on a labeled tape.

l<'ile type is local. The file is a temporary (scratch) file;
attached permanent files are not considered local in this
context.

File has modify permission.

File is on mas'> storage.

File is opened.

File is an attached permanent file.

File type is punch.

File type is print.

File has read permission.

File is on magnetic tape.

File is connected to a terminal.

File has extend permission.

60493800 M

Example:

The following job segment shows the FILE function being used inside an IFE control statement to
determine if file DATA is attached to the user's job. If DATA is not attached, the IFE statement is true
and the system attaches file DATA. If DATA is attached, the IFE statement is falc;e and the system skips
to the ENDIF control statement. In both cases DATA is copied to ITEM.

OT function

IFE,FILECDATA,.NOT.AS),ATTACH.
ATTACHCDATA,ID=FRAN2)
ENDIF,ATTACH.
COPY (DATA, ITEM)

The DT function determines the device type on which a file resides. DT can be used only within a FILE
function expression. The value of the DT function is true if the two-character mnemonic included in the
function (dt) is equal to the two-character device type mnemonic of the file (lfn). The opera ting system
defines the mnemonics. (Refer to Device Type, section 6, for a list of valid device type mnemonics.)

The format of DT as used in FILE is:

FILE(lfn,DT(dt))

lfn Name of the file for which device residence is being determined.

dt A two-character mnemonic identifying the device.

CCL assumes that any two-character symbol within a FILE function that is not a FILE function symbolic
name is an implicit DT function. For example, both

DISPLA Y,FILE(TAX,NT).

and

DISPLAY ,FILE(TAX,DT(NT)).

test if file TAX is on a nine-track magnetic tape drive. If TAX is on a nine-track tape, a value of 1 (true)
is displayed. If it is not on a nine-trac!< tape, a value of O (false) is displayed.

Example:

If PATCH resides on a 9-track tape, the following job segment copies PATCH to a file on a mass storage I
device and catalogs it.

60493800 M

IFE,FILE(PATCH,DT(NT)),CATALOG.
REWIND,PATCH.
REQUEST,TEMP,PF.
COPY,PATCH,TEMP.
RETURN, PATCH.
CATALOG,TEMP,PATCH,ID=FIXIT.
ENDIF,CATALOG.

5-11

I

I

NUM Function

The NUM function determines whether or not a character string is numeric. It evaluates the character
string as true (1) if it is numeric, or false (0) if it is not. NUM must be used as an expression, or as part of
an expression, in a CCL statement.

The format of NUM is:

NUM(c)

c A string of 1 to 40 characters. If the string contains any nonalphanumeric characters, it
must be delimited by dollar signs (for example $6:15 p.m.$) and is evaluated as nonnumeric.

Example:

The following procedure uses the NUM function to ensure that the passed parameter, NUMBER, is
numeric. If a nonnumeric value is passed, the procedure reverts and aborts and processing searches for an
EXIT,S. statement in the job control statement record •

• PROC,PROC1,NUMBER.
IFE,NUMCNUMBER),QUIT.
WHILE,R1.LE.NUMBER,LOOP.

SET ,R1=R1+1.
ENDW,LOOP.
REVERT. PROC1 PROCESSING COMPLETE
END IF ,QUIT.
REVERT,ABORT. NONNUMBERIC PASSED TO PROC1

CONDITIONAL STATEMENTS

The following conditional control statements bracket groups of other control statements to be
conditionally processed or skipped.

IFE
SKIP
ELSE
ENDIF

All conditional statements require a label string parameter. The 111bel string consists of 1 to 10
alphanumeric characters, beginning with an alphabetic character. An IFE, SKIP, or ELSE statement (with
a label string) initiates skipping, and skipping continues until CCL encounters an ELSE or ENDIF
statement (ELSE only used in conjunction with IFE) with a label string matching the label string of the
statement initiating the skipping. If no such terminating statement is found while skipping within the job
control statement record, CCL skips all remaining statements and the job ends. If no such terminating
statement is found while skipping within a procedure (covered later in this section), CCL skips all
remaining statements in the procedure, issues an abort, and continues processing with the job or calling
procedure.

5-12 60493800 M

I NOTE I
If the job's time limit is exceeded while CCL is
skipping, the job aborts and the position of the job
control statement file is undefined. CCL stops
skipping, and the system begins searching for an
EXIT statement. Results can be altered. The user
should increase the time limit and resubmit the job.

By default, skipped control statements are not written on the dayfile. The SET statement can change this
default, allowing skipped statements to appear in the dayfile.

IFE STATEMENT

The IFE statement conditionally initiates the skipping of succeeding statements. If the expression in the
IFE statement is true, the next statement is processed. If the expression is false, CCL skips statements
until it encounters a matching ELSE or ENDIF statement.

An IFE statement must have an ELSE or ENDIF statement with a matching label string. If the IFE
statement is in a procedure, the ELSE or ENDIF statement must also be in that procedure.

The format of IFE fa:

IFE,exp,ls.

exp A CCL expression. The separator following exp must be a comma.

ls Label string; 1 to lO alphanumeric characters beginning with an alphabetic character.

Example 1:

In the following job segment the IFE control statement is used to check if it is after 6 p.m. If it is, a
comment giving the time is entered in the job dayfile. Whether it is after 6 p.m. or not, job processing
continues with the statement following the ENDIF statement.

60493800 M

IFE,TIME.GT.1800,HOME.
COMMENT. GO HOME. IT IS TIME.
ENDIF,HOME.
COMMENT. JOB PROCESSING CONTINUES HERE

s-13 1

Example 2:

The following procedure file is a permanent file called COLORPR. It uses the IFE statement to
determine if the color the BEGIN statement substituted for COLOR is red or blue. Different processing is
done for the colors red and blue. Any other color is ignored •

• PROC,A,COLOR.
IFE,SCOLORS.EQ.SREDS,L1.
COMMENT. PROCESSING DONE FOR RED
REVERT.
ENDIF,L1.
IFE,SCOLORS.EQ.SBLUES,L2.
COMMENT. PROCESSING DONE FOR BLUE
REVERT.
ENDIF,L2.
COMMENT. NO PROCESSING DONE IF COLOR
COMMENT. IS NOT RED OR BLUE

The following control statements call procedure .c\.

I 5-14

ATTACH,COLORPR,ID=PAINT.
BEGIN,A,COLORPR,BLUE.
BEGIN,A,COLORPR,RED.
BEGIN,A,COLORPR,PINK.

60493800 M

The following dayfile segment results when the preceding control statements are processed.

SKIP STATEMENT

11.36.47.ATTACH,COLORPR,ID=PAINT.
11.36.47.PFN IS
11.36.47.COLORPR
11.36.48.AT CY= 002 SN=SPFSET
11.36.48.BEGIN,A,COLORPR,BLUE.
11.36.48.IFE,SBLUES.EQ.SREDS,L1.
11.36.48.ENDIF,L1.
11.36.48.IFE,SBLUES.EQ.SBLUES,L2.
11.36.48. PROCESSING DONE FOR BLUE
11.36.48.REVERT.
11.36.48.BEGIN,A,COLORPR,RED.
11.36.49.IFE,SREDS.EQ.SREDS,L1.
11.36.49. PROCESSING DONE FOR RED
11.36.49.REVERT.
11.36.49.BEGIN,A,COLORPR,PINK.
11.36.49.IFE,SPINKS.EQ.SREDS,L1.
11.36.49.ENDIF,L1.
11.36.49.IFE,SPINKS.EQ.SBLUES,L2.
11.36.49.ENDIF,L2.
11.36.49. NO PROCESSING DONE IF COLOR
11.36.49. IS NOT RED OR BLUE
11.36.50.REVERT.CCL

The SKIP statement initiates unconditional skipping of succeeding control statements. Skipping is
terminated by an ENDIF statement that has a label string matching the label string specified on the SKIP
statement. Only an ENDIF statement, not an ELSE statement, terminates skipping initiated by a SKIP
statement.

The format of SKIP is:

SKIP,ls.

ls Label string; 1 to 10 alphanumeric characters beginning with an alphabetic character.

Example:

The SKIP,HALT. statement initiates skipping, and the statements following SKIP are ignored until
ENDIF,HALT. is encountered.

60493800 M

SKIP,HALT.
COMMENT. THIS IS SKIPPED.
ELSE,HALT.
COMMENT. ELSE DOES NOT TERMINATE A SKIP.
ENDIF,STOP.
COMMENT. ENDIF WITH A MATCHING LABEL STRING IS NEEDED.
ENDIF,HALT.
COMMENT. SKIPPING STOPPED & EXECUTION CONTINUES HERE.

5-15 I

ELSE ST A TEMENT

The ELSE statement is used only with a matching JFE statement. It performs one of the following
functions.

• A false IFE statement initiates skipping of control statements and the ELSE statement with a
matching label string terminates that skipping. Execution continues with the next control
statement.

• A true IFE statement executes statements until the ELSE statement with a matching label string
is encountered. The ELSE statement initiates skipping to the ENDIF statement with a matching
label string.

If the IFE and ELSE label strings do not match, the ELSE statement is ignored.

Neither a SKIP nor an ELSE statement terminates skipping initiated by another SKIP or ELSE statement.

The format of ELSE is:

ELSE,ls.

ls Label string; 1 to 10 alphanumeric characters beginning with an alphabetic character.

Example:

In the following procedure different processing occurs for different sexes. The JFE statement determines
the processing that occurs for the value of the parameter SEX that BEGIN sent to the procedure •

• PROC,SP1,SEX.
IFE,SSEXS.EQ.$FEMALES,LABEL1.
COMMENT. DATA COLLECTED HERE
COMMENT. ON WOMEN EMPLOYEES.
ELSE, LABEL 1.
COMMENT. DATA COLLECTED HERE
COMMENT. ON MEN EMPLOYEES.
ENDIF,LABEL1.

The following dayfile segment results when BEGIN passes the value FEMALE to the procedure.

15.18.23.BEGIN,SP1,,SEX=SFEMALES.
15.18.24.IFE,SFEMALES.EQ.$FEMALES,LABEL1.
15.18.24. DATA COLLECTED HERE
15.18.24. ON WOMEN EMPLOYEES.
15.18.24.ELSE,LABEL1.
15.18.24.ENDIF,LABEL1.
15.18.24.REVERT.CCL

The following dayfile segment results when BEGIN passes the value MALE to the procedure.

I 5-16

15.18.21.BEGIN,SP1,,SEX=$MALES.
15.18.22.IFE,SMALES.EQ.SFEMALES,LABEL1.
15.18.22.ELSE,LABEL1.
15.18.22. DATA COLLECTED HERE
15.18.22. ON MEN EMPLOYEES.
15.18.22.ENDIF,LABEL1.
15.18.22.R~VERT.CCL

60493800 M

ENDIF STATEMENT

The ENDIF statement terminates skipping initiated by a SKIP, IFE, or ELSE statement. In all cases, the
label string on the ENDIF statement must match the label string on the statement that initiates the
skipping. If CCL encounters an ENDIF statement with a nonmatching label string, it ignores that
statement.

The format of ENDIF is:

ENDIF,ls.

ls Label string; 1 to 10 alphanumeric characters beginning with an alphabetic character.

Examples of the use of ENDIF are given with the descriptions of the IFE, SKIP, and ELSE statements.

ITERATIVE STATEMENTS

The CCL iterative statements WHILE and ENDW bracket a group of control statements into a loop that
can be repeatedly processed. The WHILE statement identifies the beginning of the loop and the ENDW
statement identifies its end. The ENDW statement must have a label string that matches the label string
specified on the WHILE statement. The loop is repeated as long as the expression in the WHILE statement
is true. If the expression is initially false, control immediately skips to the ENDW statement; if no
matching ENDW statement is found, all the remaining statements in the control statement record or
procedure are skipped.

Label strings of all WHILE statements within the control statement record of a job and within each
procedure should be unique. Duplication of a label string within a control statement record or within a
procedure can produce unpredictable results. The same label string can be used in a called procedure and
in the calling control statement record or procedure.

WHILE STATEMENT

The format of WHILE is:

WHILE,exp,ls.

exp A CCL expression. The separator following exp must be a comma.

ls Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic character.

60493800 M
5-17 I

I

ENDW STATEMENT

The format of ENDW is:

ENDW,ls.

Is Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic character.

Example:

In the following job segment the value of control register 1 (Rl) is set to 1 and control register 2 (R2) is
set to 5. The FTNS compiler continues to take input from file FROG and executes the FORTRAN 5
programs as long as the value of Rl is less than R2 (four times). Each pass through the loop increases the
value of Rl by 1.

SET,R1=1.
SET,R2=5.
WHILE,R1<R2,LEAP.
FTN5,I=FROG.
LGO.
RETURN,LGO.
SET,R1=R1+1.
ENDW,LEAP.

The user can vary the number of repetitions by setting different values in Rl and R2.

ADDITIONAL CCL STATEMENTS

The following control statements display or set symbolic name values., The DISPLAY statement can also
evaluate and display an expression that does not contain a symbolic name.

DISPLAY STATEMENT

The DISPLAY statement evaluates an expression and sends the result to the user dayfile in both decimal
and octal integer forms. The largest decimal value that can be displayed is 10 digits. If the value is
larger than 10 digits, GT followed by 9999999999 is displayed. If the value is negative and larger than 10
digits, LT followed by a minus and 9999999999 is displayed. In octal code, numbers as large as 20 digits
can be displayed. For an expression larger than 248-1, zeros are displayed.

The DISPLAY control statement can also evaluate an expression as true or false, and send a 1 for true and
a 0 for false to the user dayfile in both decimal and octal format. Under INTERCOM, the result is also
displayed at the terminal.

The format of DISPLAY is:

DISPLA Y(exp)

5-18

exp A CCL expression. Character strings within the expression must be constants,
symbolic names, or CCL functions.

60493800 M

Example:

The following sample dayfile shows several display operations.

11.36.S5.DISPLAYCTIME}
11.36.55. 1136 21608
11.36.55.DISPLAYCSABCS}
11.36.55. 4227 102038
11.36.55.SET,R1=99.
11.36.55.SET,R2=901.
11.36.55.DISPLAYCR1}
11.36.55. 99 1438
11.36.55.DISPLAYCR1+R2}
11.36.55. 1000 17508
11.36.55.DISPLAYCR1.GT.R2}
11.36.55. 0 OB
11.36.55.DISPLAYC3/2}
11.36.56. 1 18
11.36.56.DISPLAYC2••47}
11.36.56. GT 9999999999 40000000000000008
11.36.56.DISPLAYC-2••47}
11.36.56. LT -9999999999 -40000000000000008
11.36.56.DISPLAYC2**48}
11.36.56. 0 OB
11.36.56.DISPLAYC99999999999}
11.36.56. CCL156- STRING TOO LONG - 99999999999

The first DISPLAY statement displays the value of the TIME symbolic name. The current time given is in
the form hhmm. The next DISPLAY statement displays the display code value of the $-delimited
characters. The next eight lines demonstrate the use of the Rl and R2 symbolic names. The other
DISPLAY statements specify numeric expressions. The numeric constant in the final DISPLAY statement
has more than 10 digits, resulting in an error message.

SET STATEMENT

The SET statement allows the user to set the value of a control register, an error flag, or the dayfile
skipped control statement flag that determines whether or not skipped control statements are entered in
the dayfile.

The format of SET is:

SET(sym=exp)

sym One of the following symbolic names (initially these names are set to 0).

Name

Rl, R2, or R3

60493800 M

Description

Local control registers. When a procedure is
called, the current values of Rl, R2, and R3 do
not change. The values of these registers may
change within the procedure. However, when
processing reverts, these registers are restored to
the values they had when the procedure was
called.

5-19 I

I 5-20

Name

RlG

EF

EFG

DSC

Description

Global control register. When a proced.tre is
called or reverts, RlG keeps its current value.

Local error nag. When a procedure is called, the
current value of the error nag does not change.
The value of the error nag may change within the
procedure. However, when proce~ing reverts,
the error nag is restored to the value it had when
the procedure was called.

Global error nag. When a procedure is called or
reverts, EFG keeps its current value.

Dayfile-skipped-control-statement nag. Initially,
it is set to O, so that control statements that are
skipped (not proce~ed) are not entered in the
dayfile. If DSC is not zero, skipped statements
are entered in the dayfile.

exp A CCL expression. The value derived through evaluation of the expression is assigned
to the symbolic name. Acceptable values for each symbolic name follow. If the
value is outside the specified range, CCL does not i~ue a me~age and selects a value
within the range.

sym

Rl, R2, R3, or RlG

EF or EFG

DSC

Suggested Value

Any integer between -131 071 and 131 071
(-377777 8 and 377777 s>·
Any integer between 0 and 63. To assign the
value defined by the system for an error
condition, the user should set the error nag to one
of the error condition symbolic names (refer to
Symbolic Names, earlier in this section). CCL
sets the EF nag to the appropriate error code
when an error occurs. If EFG is 0 when a
REVERT statement is proce~ed in a procedure,
CCL sets EFG to the value of EF (refer to
REVERT Statement, later in this section).

1 or 0. If the value of the expression is nonzero,
DSC is set to 1. When DSC is 1, skipped control
statements are entered in the dayfile preceded by
two periods. Some CCL error proce~ing routines
set DSC to 1 so that skipped control statements
are written in the dayfile. When DSC is O,
skipped control statements are not entered in the
dayfile.

60493800 M

Example 1 - DSC Flag Use:

The following control statements (on the left side) demonstrate the effect of DSC=O and DSC=l. On the
right is the dayfile segment resulting from processing of the control statements.

SET,DSC=O.
SKIP,LABL1.

11.36.58.SET,DSC=O.
11.36.58.SKIP,LABL1.
11.36.58.ENDIF,LABL1.
11.36.58.SET,DSC=1.
11.36.58.SKIP,LABL2.

COMMENT. SINCE THE DAYFILE SKIP
COMMENT. CONTROL IS SET TO ZERO,
COMMENT. THESE STATEMENTS WILL NOT
COMMENT. APPEAR IN THE DAYFILE.
ENDIF,LABL1.
SET ,DSC=1.
SKIP,LABL2.
COMMENT. SINCE THE DAYFILE SKIP
COMMENT. CONTROL IS NOW SET TO ONE,
COMMENT. THESE STATEMENTS WILL
COMMENT. APPEAR IN THE DAYFILE
COMMENT. PREFIXED WITH

11.36.58 .•• COMMENT. SINCE THE DAYFILE SKIP
11.36.58 ••• COMMENT. CONTROL IS NOW SET TO
11.36.58 ••• COMMENT. ONE, THESE STATEMENTS
11.36.58 ••• COMMENT. WILL APPEAR IN THE
11.36.58 ••• COMMENT. DAYFILE PREFIXED WITH
11.36.58 ••• COMMENT. TWO PERIODS.
11.36.58.ENDIF,LABL2.

COMMENT. TWO PERIODS.
ENDIF,LABL2.

Example 2 - Error Flag (EF) Use:

The following job segment determines if the error that occurred in the job control record was a CPU abort
error (CPE). The IFE statement compares the value of EF to the value of CPE. If they are equal, the
value of Rl is set to 1 and the ENDIF statement is printed in the dayfile. If the values of EF and CPE are
not equal, CCL skips to the ENDIF statement. In either case, the value of Rl and EF are displayed.

Following are the two possible dayfiles.

11.42.55.EXIT,S.
11.42.55.SET,R1=0.
11.42.55.IFE,EF=CPE,SKIP.
11.42.55.ENDIF,SKIP.
11.42.55.DISPLAY,R1.
11.42.56. 0 OB
11.42.56.DISPLAY,EF.
11.42.56. 3 3B

60493800 M

EXIT,S.
SET,R1=0.
IFE,EF=CPE,SKIP.
SET,R1=1.
ENDIF,SKIP.
OISPLAY,R1.
DISPLAY,EF.

10.39.33.EXIT,S.
10.39.33.SET,R1=0.
10.39.33.IFE,EF=CPE,SKIP.
10.39.33.SET,R1=1.
10.39.33.ENDIF,SKIP.
10.39.33.DISPLAY,R1.
10.39.33. 1 1B
10.39.33.DISPLAY,EF.
10.39.33. 4 4B

5-21

I

I

Example 3 - Control Register Use:

Procedure Pl is on procedure file SETFILE •

• PROC,P1.
DISPLAYCR1>
DISPLAYCR1G)
SETCR1=9)
SETCR1G=888)

The following control statements (on the left side) set and display registers Rl and RlG. BEGIN calls
procerure Pl, which displays these registers and resets them, then processing reverts to the control
statement record where the registers are again displayed.

The Rl and RlG registers retain their setting when the procedure is called. However, after new values
are set in the procedure and control reverts to the control statement record, Rl returns to its previous
value and RlG retains the value set in the procedlre.

On the right is the dayfie segment resulting from processing of the control statements.

5-22

SET,R1=1.
SET,R1G=10.
DISPLAY,R1.
DISPLAY,R1G.
ATTACH,SETFILE,ID=SPARK.
8EGIN,P1,SETFILE.
DISPLAY,R1.
DISPLAY,R1G.

11.36.56.SET,R1=1.
11.36.56.SET,R1G=10.
11.36.56.DISPLAY,R1.
11.36.56. 1 18
11.36.56.DISPLAY,R1G.
11.36.56. 10 128
11.36.56.ATTACH,SETFILE,ID=SPARK.
11.36.56.PFN IS
11.36.56.SETFILE
11.36.57.AT CY= 005 SN=SPFSET
11.36.57.8EGIN,P1,SETFILE.
11.36.57.DISPLAYCR1)
11.36.57. 1 18
11.36.57.DISPLAYCR1G)
11.36.57. 10 128
11.36.57.SETCR1=9)
11.36.57.SETCR1G=888)
11.36.57.REVERT.CCL
11.36.57.DISPLAY,R1.
11.36.57. 1 18
11.36.57.DISPLAY,R1G.
11.36.58. 888 15708

60493800 M

Example 4 - Error Flag Use (EFG Zero):

To return the error code generated in a procedure to the control statement record, error processing must
occur within the procedure and EFG must be 0 before the procedure reverts. The following procedure sets
the global error flag to 0 and attempts to attach a file that does not exist •

• PROC,PP.
SET,EFG=O.
ATTACH,BOXES,ID=RIBBON.
FTN5CI=BOXES,L=O>
EXIT,S.
DISPLAYCEF)
DISPLAY(EfG)
REVERT.

The dayfile segment (on the right) resulting from processing of the job control statements (on the left)
shows how the error code is retumed.

ATTACH,SETFILE,ID=RIBBON.
BEGIN,PP,SETFILE.
DISPLAY(Ef)
DISPLAYCEFG)

PROCEDURES

15.18.24.ATTACH,EFGFILE,ID=RIBBON.
15.18.24.PFN IS ,
15.18~24.EFGFILE
15.18.25.AT CY= 001 SN=SPFSET
15.18.25.BEGIN,PP,EFGFILE.
15.18.25.SET,EFG=O.
15.18.25.ATTACH,BOXES,ID=RIBBON.
15.18.25.PFN IS
15.18.25.BOXES
15.18.25.FILE NOT CATALOGED,SN=SPFSET
15.18.25.PF ABORT
15.18.26.EXIT,S.
15.18.26.DISPLAY(Ef)
15.18.26. 3 3B
15.18.26.DISPLAYCEFG)
15.18.26. 0 OB
15.18.26.REVERT.
15.18.26.DISPLAYCEF)
15.18.26. 0 OB
15.18.26.DISPLAY(EFG)
15.18.26. 3 3B

A procedure is a sequence of control statements that can be executed from either the control statement
record or another procedure. A procedure is to the job control statement record as a subroutine is to a
program in that both

• Contain statements that usually perform a single function within the job.

• Can be repeatedly executed.

• Are executed by the main job or by another procedure/subroutine.

60493800 M 5-23 I

I There are two types or procedures; interactive and noninteractive. All following references to
procedlres in this section apply to both types, unless prefixed by the word interactive or noninteractive.

I

A procedure consists or a procedure header statement and a procedure body. The procedure header
statement must be the first line in the procedlre. It names the procedure and identifies the parameters in
the procedure body that can be changed during execution.

The procedlre body contains all statements between the header statement and the end-of-record or
end-of-partition. The control statements within the procedure body usually perform a function that the
user wants to execute often, such as routing a file to a line printer (the procedure would request a file on
a queue device, copy the file to be printed to the queue device file, and route it to the printer). A
procedure body must contain at least one control statement. All control statements, including CCL
statements, are legal within a procedure. The body can also include special procedure commands
(explained later in this section).

A procedure is stored as a record on a file. The user can put any number or procedures on a single file;
each must be a separate record. The procedure file may be a local file or an attached perm anent file.
The procedure file can reside on magnetic tape as well as on mass storage and can optionally be in a user
library (refer to EDITLIB statement in section 4 and to the CYBER Loader Reference Manual, listed in
the preface) or a system library.

A BEGIN or name call statement initiates execution or a procedure. When a procedure is called, the
REGIN or name call parameters pass values to the procedlre's parameters. If data records are defined
within the procedure, CCL writes them to a separate local file. A REVERT statement within the
procedure returns job control to the statement following the BEGIN or name cal! statement.

PROCEDURE CALL AND RETURN

The BEGIN or name call statement initiates processing or a procedure. A procedure can include BEGIN
and name call statements to call other procedures. After the final control statement in the procedure is
processed, a user- or CCL-suppliedt REVERT statement continues processing with the control statement
following the REGIN or name call control statement. Use or the BEGIN and REVERT statements is
illustrated in figure 5-1.

t CCL issues a REVERT statement if the user does not supply one within a procedure.

5-24 60493800 M

Job File

AJOB. Procedure . ---1 PROC,APROC.

BE~IN,APROC. ------------ :

. REVER~

Job File

BJOB. Procedure

Procedure _____________.. PROC,BPROC.

BE~IN,BPROC. : ------------- PROC,CPROC.

BE~IN,CPROC. -----------·
REVERT.

REVERT.

In AJOB, BEGIN initiates execution of procedure APROC and the REVERT statement returns
job processing to the statement following BEGIN.

In BJOB, BEGIN initiates execution of procedure BPROC. Within BPROC a BEGIN statement
initiates execution of procedure CPROC. The REVERT statemet within CPROC returns job
processing to the statement following BEGIN,CPROC. When BPROC is done executing,
REVERT returns processing to the statement following the BEGIN statement in the job control
record.

Figure 5-1. BEGIN Statement Calling a Procedure

60493800 M 5-25 I

I

I

BEGIN Statement and Name Catr Statement

The BEGIN control statement and name call statement call and initiate processing of a procedure. With
optional parameters they can make substitutions for the keywords in the procedure body.

The format of BEGIN is:

BEGIN ,pname,pfile,pt,P2, ... ,Pn.

The format of name call is:

5-26

pname,PJ,P2,···,Pn·

pname Procedure name from the procedure header.

In the BEGIN format, pname is the name of a procedure on file pfile. If pname is
omitted, two consecutive commas must ':>e specified. The default procedure is the
record at the current position or file pfile. If pfile is at end-of-information, CCL
rewinds pfile and uses the first record. If pfile is INPUT, the file is not rewound.

In the name call format pname is the name of the local file containing a procedure,
the name of a procedure on NUCLEUS, the name of a procedure on a library (refer to
EDITLIB control statement in section 4) in the global library set (refer to LIBRARY
statement in the CYBER Loader Reference Manual), or the name of a procedure on
the default system library. The procedure name may or may not be the same as the
local file name. pname must be specified in the name call format.

pfile Name of the file containing the procedlre.

Pi

In the BEGIN format ;>file must be the second parameter. Its omission is indicated by
two consecutive commas. If pfile is omitted, the installation-defined default file
name is used. The released default is PROCFIL.

When the BEGIN statement is processed, CCL looks for local file pfile. If no local
pfile is found, CCL attempts to attach permanent file PROCFIL with the user id
PUBLIC. Once pfile or PROCFIL is located, CCL searches for procedure pname.

Optional parameter specifying the substitution to be made for a keyword used in the
procedure. If the user needs only the default values specified on the procedure
header, omit the Pi parameters. If a required parameter is omitted on a call to an
interactive procedure, the system prompts the user for a parameter value. (For a
complete description of parameter use m procedures, refer to Parameter Substitution
and Procedure Header Statement, or Interactive Procedures, later in this section.)

The following parameter formats are available.

keyword The parameter is identical to a keyword on the
procedure header. In noninteractive procedures,
keyword, or the second default for the procedure's
keyword, is used. In interactive procedures, the
interactive procedure header determines what replaces
the keyword in the procedure body.

60493800 M

Example:

keyword= References to the keyword in the procedure are
removed (null substitution).

value CCL assigns this 1- to 40-character symbolic name or
value to the keyword whose position in the procedure
header parameter list matches the position of this
parameter in the BEGIN statement parameter list. In I
interactive procedures, value must conform to
parameter checklist specifications. A value containing
nonalphanumeric characters, other than I or -, must be
$-delimited.

keyword=value The symbolic name or value is substituted for the
keyword wherever it appears in the procedure. If value
is followed by a+, value must be a symbolic name.
(Refer to Symbolic Names earlier in this section.) This
keyword in the BEGIN statement is the same keyword
that is used in the procedure header statement. ln I
interactive procedures, value must conform to
parameter checklist specifications.

The following formats can be used.

Format

keyword=value
or

keyword=symbol

keyword=symbol+
or

keyword=symbol+D

keyword=symbol+B

Description

Substitutes the value
or symbolic name itself
for the keyword in the
procedure.

Substitutes the decimal
value associated with
the symbolic name for the
keyword in the procedure.

Substitutes the octal value
associated with the
symbolic name for the
keyword in the procedure.

When calling a procedure, a keyword can be named more than once if the
keyword=value parameter format is used each time. CCL issues a
message informing the user that a keyword is named more than once on
the statement. It uses the value specified with the last occurrence of
the keyword.

The following procedure is on file FKTEST and is accessed by a sequence of calling statements in the
control statement record of the job •

• PROC,TEST1,FK.
COMMENT. FK.

60493800 M 5-27

The resulting dayfile shows each calling statement and the substitutions made. The relevant segment of
the dayfile is as follows:

REVERT Statement

11.53.43.BEGIN,TEST1,FKTEST,20.
11.53.43. 20.
11.53.43.REVERT.CCL
11.53.44.SET,R2=100.
11.53.44.BEGIN,TEST1,FKTEST,FK=R2+.
11.53.44. 100.
11.53.44.REVERT.CCL
11.53.44.BEGIN,TEST1,FKTEST,FK=R2+D.
11.53.44. 100.
11.53.44.REVERT.CCL
11.53.45.BEGIN,TEST1,FKTEST,FK=R2+B.
11.53.45. 144.
11.53.45.REVERT.CCL
11.53.45.BEGIN,TEST1,FKTEST.
11.53.45. FK.
11.53.45.REVERT.CCL
11.53.45.BEGIN,TEST1,FKTEST,FK=.
11.53.46.
11.53.46.REVERT.CCL
11.53.46.BEGIN,TEST1,FKTEST,VALUE.
11.53.46. VALUE.
11.53.46.REVERT.CCL
11.53.46.BEGIN,TEST1,FKTEST,VALUE-2.
11.53.46. CCL212- SEPARATOR INVALID VALUE-
11.53.46.EXIT.
11.53.46.BEGIN,TEST1,FKTEST,SVALUE-2$.
11.53.47. VALUE-2.
11.53.47.REVERT.CCL

The REVERT statement terminates processing in the procedure and retums control to the statement
following the BEGIN statement that called the procedure. The REVERT,ABORT statement sets the error
flag EF=CPE (CPU abort) and processing continues with the next EXIT,S statement in the control
statement record (refer to Exit Processing in section 4).

The formats of REVERT are:

REVERT.

or

REVERT,ABORT.

A REVERT statement can appear anywhere within a procedure. REVERT is commonly used in conjunction
with a conditional statement to cause premature return to the calling job or procedure. The user can
place REVERT at the end of a procedure, but this is unnecessary because CCL provides an implicit
REVERT sequence. CCL always appends the following three control statements to a procedure. The CCL
following each statement identifies it as generated by CCL.

I 5-28

REVERT.CCL
EXIT,S.CCL
REVERT,ABORT.CCL

60493800 M

If the procedure did not produce a fatal error, CCL processes the REVERT. statement. If the procedure
did produce a fatal error, CCL skips the first statement in this sequence. CCL executes the EXIT,S.
statement to terminate skipping, and processes the REVERT,ABORT. statement.

The user may wish to use an EXIT control statement to create a REVERT sequence. The EXIT statement
produces the same results whether it is in a procedure or the job file; it does not cause a return to the
calling job or procedure.

I NOTE I
EXIT should be used with caution because it can
terminate the job.

The user and/or system can set the value of the symbolic names Rl, R2, R3, EF, EFG, and DCS. During a
REVERT, CCL can change their values (refer to SET Statement, earlier in this section).

Example 1:

If a fatal error occurs during the processing of the LGO statement in the following procedure segment,
the system skips to the EXIT statement, dumps CM, and processes the REVERT,ABORT. If no fatal error
occurs during the processing of the LGO, CCL processes the REVERT statement.

Example 2:

LGO.
REVERT.
EXIT,S.
DMP.
REVERT,ABORT.

The following procedure (PFCLEAN) is on file PROCFIL. It purges all but the highest cycle of a
permanent file on any device set. If the set name parameter (SN) is specified in the BEGIN statement, all
but the highest cycle of the file are purged from the specified device set. If SN is omitted, the lower
cycle files are purged from the default permanent file set •

60493800 M

• PROC,PFCLEAN,PFN,ID=LYNN,PW=MINE,SN=O.
IFE,NUMCSN)=O,OK.
ATTACH,PRF1,PFN,#ID=ID,MR=1,#SN=SN.
PURGE,PRF2,PFN,#ID=ID,#PW=PW,LC=1,#SN=SN.
PURGE,PRF3,PFN,#ID=ID,#PW=PW,LC=1,#SN=SN.
PURGE,PRF4,PFN,#ID=ID,#PW=PW,LC=1,#SN=SN.
PURGE,PRF5,PFN,#ID=ID,#PW=PW,LC=1,#SN=SN.
EXIT,U.
RETURN,PRF1,PRF2,PRF3,PRF4,PRF5.
REVERT.
ENDIF,OK.
ATTACH,PRF1,PFN,#ID=ID,MR=1.
PURGE,PRF2,PFN,#ID=ID,#PW=PW,LC=1.
PURGE,PRF3,PFN,#ID=ID,#PW=PW,LC=1.
PURGE,PRF4,PFN,#ID=ID,#PW=PW,LC=1.
PURGE,PRF5,PFN,#ID=ID,#PW=PW,LC=1.
EXIT,U.
RETURN,PRF1,PRF2,PRF3,PRF4,PRF5.

s-29 I

The following statements attach PROCFIL and call the procedure. The SN parameter equals zero on the
BEGIN statement so SN is a numeric, the IFE statement is fal<>e, and procedure PFCLEAN purges all but
the highest cycles of file TEMP from the default permanent file set.

ATTACH,PROCFIL,ID=I YNN.
BEGIN,PFCLEAN,,TEM~,ID=LYNN,PW=,SN=O.

Following is the resulting dayfile segment.

09.48.28.ATTACH,PROCFIL,ID=LYNN.
09.48.29.PFN IS
09.48.29.PROCFIL
09.48.29.AT CY= 007 SN=SPFSET
09.48.29.BEGIN,PFCLEAN,,TEMP,ID=LYNN,PW,SN=O.
09.48.29.IFE,NUMCO)=O,OK.
09.48.29.ENDIF,OK.
09.48.29.ATTACH,PRF1,TEMP,ID=LYNN,MR=1.
09.48.30.AT CY= 004 SN=SPFSET
09.48.30.PURGE,PRF2,TEMP,ID=LYNN,PW=•---•,LC=1.
09.48.30.PR ID= LYNN PFN=TEMP
09.48.30.PR CY= 001 SN=SPFSET 00000064 WORDS.
09.48.30.PURGE,PRF3,TEMP,ID=LYNN,PW=•---•,LC=1.
09.48.31.PR ID= LYNN PFN=TEMP
09.48.31.PR CY= 002 SN=SPFSET 00000064 WORDS.
09.48.31.PURGE,PRF4,TEMP,ID=LYNN,PW=•~--•,LC=1.
09.48.31.PR ID= LYNN PFN=TEMP
09.48.31.PR CY= 003 SN=SPFSET 00000064 WORDS.
09.48.31.PURGE,PRF5,TEMP,ID=LYNN,PW=•---•,LC=1.
09.48.31.FILE ALREADY ATTACHED
09.48.31.INCORRECT PERMISSION
09.48.31.PF ABORT
09.48.32.EXIT,U.
09.48.32.RETURN,PRF1,PRF2,PRF3,PRF4,PRF5.
09.48.32.REVERT.CCL

f NONINTERACTIVE PROCEDURE HEADER STATEMENT

I The noninteractive procedure header statement is the first line of the procedure. It identifies the
procedure and specifies the keywords to which the BEGIN statement can pass values. The BEGIN
statement substitutes the keywords into the procedure body. Unless the header statement contains an
error, it does not appear in the dayfile.

I

Syntax rules for header statements are as follows.

5-30

• The header statement must begin with a period followed by the characters PROC.

• The separators between parameters must be commas.

• A period terminates the header statement.

• The header statement can extend over more than one line if each line to be continued ends with
a comma.

60493800 M

The format of the noninteractive procedure header statement is: I
.PROC,pname,p1,p2, ... ,Pn.

pname

Pi

60493800 M

Name of the procedure; one to seven alphanumeric characters. lt can begin with or
consist entirely of numeric characters, unless it is to be a name call statement. Then
it must begin with an alphabetic character. pname cannot be BEGIN.

Optional parameters whose keywords are used in the body of the procedure.
Depending on the BEGIN statement parameters, keywords in the procedure body can
be removed, left as they are, replaced by a value specified in the BEGIN statement,
or replaced by first or second default values as specified in the procedure header
parameter. (Refer to Parameter Substitution in Noninteractive Procedures, later in f
this section.)

The maximum number of procedure header keywords is defined by the installation.
The released maximum default is 50.

The following are the legal formats for Pi·

Format Example

keyword FIL El
keyword=
keyword=defaultl
keyword=defaultl/default2
keyword=/default2

FIL El=
FILEl=LGO
FILEl=LGO/OLD
FILEl=/OLD
FILEl=#DATA
FILEl=# PILE

keyword=#DATA (Control Data graphics: keyword= DATA)
keyword=#FILE (Control Data graphics: keyword= FILE)

keyword

defaultl

default2

A 1- to 10-character keyword.

A 1- to 40-character first default value. If defaultl
contains nonalphanumeric characters, it must be
$-delimited. This default value replaces the keyword in the
procedure body if this parameter is omitted from the BEGIN
statement.

A 1- to 40-character second default value. If default2
contains nonalphanumeric characters, it must be
$-delimited. This default value replaces the keyword in the
procedure body if the BEGIN statement specifies a
parameter identical to the noninteractive procedure's I
keyword.

defaultl and default2 could be either of the special values #DATA and #FILE. The
#DATA and #FILE options allow the procedure to access records within the
procedure file. #DATA and #FILE are often used to access program data.

The #DATA and #FILE options can be overridden by BEGIN statement parameters.

5-31

#DATA

#FILE

PROCEDURE BODY

If this default value is used, keyword within the procedure
body references the record(s) created by the .DATA
command (refer to .DATA Command, later in this section).
Keyword substitution occurs within the record(s) created by
.DATA, since the procedure's keyword substitution occurs
before the .DATA command creates the record(s).

If this default value is used, keyword within the procedure
body references the next record on the procedure file (refer
to figure 5-4 and .DATA Command, later in this section).
Keyword substitution does not occur within the referenced
record, since it is not within the procedure.

The procedure body consists of all statements between the procedure header statement and the
end-of-record. These statements can be control statements, which include CCL statements, and CCL
procedure commands (refer to Procedure Commands, later in this section).

The BEGIN (or name call) control statement initiates execution of the procedure and passes any specified
parameters to the procedure. Within the procedure body the BEGIN parameters can change the control
statement's parameters. When BEGIN calls a procedure, substitutions are made for the parameters in the
procedure, and the proce<lure body becomes the control statement record until a REVERT statement i<>
encountered.

I PARAMETER SUBSTITUTION IN NONINTERACTIVE PROCEDURES

The .PROC control statement specifies keywords that are used in the procedure body. A user can change
the value of these keywords each time the procedure is executed by using the appropriate parameters in
the BEGIN statement. With the BEGIN parameter the user can remove a keyword (null substitution),
leave it as is, or replace it with a .PROC default or another value.

After substitutions for the keywords are made in the procedure body, some control statements may be
expanded beyond 80 characters. For most control statements, this is flagged as an error. Some
exceptions are CCL statements and the LABEL and VSN statements, which can extend over more than one
line if the statement is split at a separator. The user should ensure that the line containing the parameter
is short enough so that possible expansion does not extend the line beyond the 80th character.

When a procedure is called, CCL must match each parameter on the call statement with a parameter on
I the noninteractive-procedure header statement. Order-dependent and order-independent are the two

methods of parameter matching used by CCL.

5-32 60493800 M

Order-Dependent Parameter Matching Mode

Parameter matching always begins in order-dependent mode (refer to Order-Independent Parameter
Matching Mode, later in this section, for information on changing parameter matching modes). CCL
compares, in order, each parameter on the BEGIN statement with the parameter in that position on the
noninteractive-procedure header statement. CCL then substitutes the selected parameters into the I
procedure body.

All possible parameter substitutions in order-dependent mode are summarized in table 5-1. The table I
shows each parameter format on the BEGIN statement, each parameter format on the noninteractive­
procedure header statement, and the substitution resulting from each combination. The word value in the
table indicates that the parameter in the BEGIN statement (called value) is different from the
correspond- ing keyword and/or defaults on the header statement. Keyword in the BEGIN statement is I
identical to the keyword in the noninteractive procedure header statement parameter. For example, if
the procedure keyword is SIZE, SMALL is a BEGIN value and SIZE is a BEGIN keyword.

TABLE 5-1. PARAMETER SUBSTITUTION IN ORDER-DEPENDENT MODE

BEGIN Statement Parameter Format I
keyword value

N oninteractive-Procedure or or
Header Parameter Format omitted $keyword$ $value$

keyword keyword keyword value

keyword= null keyword value

keyword=def aul t1 defaultl keyword value

keyword=defaultl/default2 t defaultl default2 error

tswitches keyword substitution to order-independent mode for all subsequent parameters.

Assuming that all parameter matches between the BEGIN statement and the noninteractive-procedure I
header are valid for order-dependent mode (table 5-1), CCL completes parameter matching in order­
dependent mode.

In order-dependent mode, CCL ignores excess parameters on the BEGIN statement.

The user should use table 5-1 with the following examples to ~larify the table entry meanings (keyword,
defaultl, default2, value, and null).

Examples - Parameter Matching In Order-Dependent Mode:

N oninteracti ve-Procedure
on Attached File, MY Fl LE

.PROC,SAMPL1,L,M,N=XY.
REWIND,L,A,M,N.

60493800 M

Call, Substitution, and Explanation

BEGIN,SAMPL1,MYFILE.
yields

REWIND,L,A,M,XY.

When parameters are oinitted on the BEGIN
statement, the system uses the defaults from the
noninteractive-procedure header (L, M, and XY).

5-33

I

Noninteractive-Procedtre
on Attached File, MYFILE

• PROC,SAMPL2,LFN1=,LFN2,SBF=/SBF.
COPY_SBFCLFN1,LFN2)

(Refer to Parameter Alteration, later
in this section,for a description of_).

. PROC,SAMPL3,PFN,CYCLE=S.$/S,CY=25.S.
ATTACH,PFN,ID=MARTY_CYCLE

5-34

Call, Substitution, and Explanation

~EGIN,SAMPL1,MYFILE,,,N.

yields
REWIND,L,A,M,N.

Omitted parameters indicate use of the procedure
header defaults (L and M). N overrides the
procedure header default (XY) •

BEGIN,SAMPL2,MYFILE.

yields

COPYC,LFN2)

Omitted parameters indicate use of procedure
header defaults (LFN2 and null substitution for
LFNl and SBF).

BEGIN,SAMPL2,MYFILE,,,SBF.

yields
COPYSBFC,LFN2)

Omitted parameters indicate use of procedure
header defaults (null and LFN2). The BEGIN
statement parameter, SBF, indicates use of the
second default of the SBF procedure header
parameter (SBF). The linking character (_)
connects COPY and SBF to make COPYSBF.

BEGIN,SAMPL2,MYFILE,FORMS,TANK.
yields

COPYCFORMS,TANK)

FORMS replaces LFNl= and TANK replaces
LFN2. Since the third parameter is omitted, the
system uses the procedure header default (null) .

BEGIN,SAMPL3,MYFILE,TAXES,CYCLE.

yields
ATTACH,TAXES,ID=MARTY,CY=25.
PFN IS
TAXES
AT CY= 025 SN=SPFSET

TAXES replaces PFN and the BEGIN statement
parameter CYCLE indicates use of the second
default of the CYCLE procedure header
parameter (,CY=25.).

60493800 M

Example 1:

The following procedure is on file PROCFIL. It prepares a file for processing. If the file is local, it is
rewound. If it is not local, the system searches for the file in the user's permanent file catalog. If the
file is not found, the procedure reverts and aborts •

• PROC,PREPARE,FNAME=,ID=SOUL.
IFE,fllECFNAME,AS),PREP1.
REWIND(fNAME)
REVERT. FNAME PREPARED.
ENDlf,PREP1.
ATTACH(fNAME,#ID=ID)
REVERT. FNAfllE PR EPA RED.
EXIT,S.
REVERT,ABORT. FNAME NOT FOUND.

On the left is the call to procedure PREPARE. Since PROCFIL is the default file, it does not have to be
specified and is noted by successive commas (PROCFIL is already local to the job). On the right is the
resulting dayfile.

BEGIN,PREPARE,,TEST. 10.48.11.BEGIN,PREPARE,,TEST.
10.48.11.IFE,FILECTEST,AS>,PREP1.
10.48.11.ENDIF,PREP1.
10.48.11.ATTACHCTEST,ID=SOUL)
10.48.11.PFN IS
10.48.11.TEST
10.48.11.AT CY= 001 SN=SPFSET
10.48.12.REVERT. TEST PREPARED.

Example 2 - Parameter Matching In Nested Procedures:

As shown in figure 5-2, procedure EXECUTE resides on file PFILEl and procedure LISTING resides on file
PFILE2. Procedure EXECUTE executes a FORTRAN 5 program and if no errors occur, calls procedure
LISTING to print the FORTRAN 5 output.

60493800 M 5-35 I

Job Record Segment

ATTACHCPRGRAM1,ID=L~~N)

9EG1N, EXECIJTE,i>F ILE 1/RA/INT.

PFILEl / /

• PROC,EXECUTE,NAME,OUT.
FTNSCI=NAME,L=OUT)
LGO.
EXITCU)
IFE,EF=O,DROP.
A~TACHCPFILE2,1D=LYNN)
BEGIN,LlSTl~G,PfILE2,0UT.

ENDIF,DROP. I
PFILE2

..
.P~OC,LISTING,OUTFILE=FILE
RE.IUND <OUH 1LE)
COPYSBf(DUTFILE,OUTP~T)

Resulting Dayfile

10.48.12.ATTACHCPRGRAM1,ID=LYNN)
10.48.12.PFN IS
10.48.12.!>RGRAl'l1
10.48.12.AT CY= .001 SN=SPFSET
10.48.12.BEGIN,EXECUTE,PFILE1,PRGRAM1,PRINT.
10.48.13.FTN5Cl=PRGRAM1,L=PRINT)
10.48.14. 60700 SCM STORAGE USED •
10.48.14. 0.038 CP SECONDS COMPIL1.TION TIME.
10.48.14.LGO.
10.48.17. STOP
10~48.17. 15700 MAXIMUM EXECUTIO~ FL.
10.48.17. .024 CP SECONDS EXECUTION TIME.
10.48.17.EXIT(U)
10.48.i7.IFE,EF=0,DROP.
10.48.17.ATTACHCPFILE2,ID=LYNN)
10.48.17.PFN IS
10.48.17.PFILE2
10.48.17.AT CY= 001 SN=SPFSET
10.48.17.8EGIN,LISTING,PFIL~2,PRINT •
10.48.17.R[WIND(PRINT)
10.48.17.COPYSBFCPRINT,OUTPUT)
10.48.18.REVERT.CCL
10.48.18.ENDIF,DROP.
10.48.18.REVERT.CCL

BEGIN calls procedure EXECUTE. BEGJN's PRINT parameter replaces the OUT parameters in
proced.lre EXECUTE. In procedure EXECUTE the OUT parameter in the BEGIN statement
becomes PRINT. The call to procedure LISTING replaces OUTFILE's default FILE with PRINT,
and all occurrences of OUTFILE become PRINT.

Figure 5-2. Keyword Substitution in Two Procedures

Order-Independent Parameter Matching Mode

CCL switches to order-independent mode to match the remainder of the parameters if, in comparison of a
I BEGIN statement parameter and a noninteractive-procedure header parameter, one of the following

occurs.

• A BEGIN statement parameter is in the format l<eyword= or keyword=value.

I • A noninteractive-procedure header statement parameter is in the format
keyword=defaultl/default2.

5-36 60493800 M

For each BEGIN statement, parameter matching always begins in order-dependent mode. Once in
order-independent mode, CCL matches each successive keyword of the BEGIN statement to the identical
keyword in the procedure header statement, regardless of the order of the procedure header parameters.

The following statements illustrate the parameter combinations that result in switching from
order-dependent mode to order-independent mode.

Procedure on Local Default File PROCFIL

• PROC,SALES,TAX,TOTAL=,FLAG=A.
COPYL(TAX,TOTAL,HOLD,,FLAG)
CATALOGCHOLD,TAX,ID=QUIET,RP=31)

Call, Substitution, and Explanation

BEGIN,SALES,,TAX,TOTAL=SUM,FLAG .
yields

COPYLCTAX,SUM,HOLD,,A)
COPYL COMPLETE.

CATALOGCHOLD,TAX,ID=QUIET,RP=31

Parameter matching starts in order-dependent mode.
The BEGIN parameter TOTAL=SUM switches the mode
to order-independent mode. FLAG is then matched in
order-independent mode, which yields A •

. PROC,TAXES,TAX=FED/MN,DEDUCT,FLAG=A. BEGIN,TAXES,,TAX,DEDUCT.
c 0 p y L (TA x , DE Du c T , R E s v , , FL AG) yields
CATALOG(RESV,TAX,ID=QUIET,RP=16)

COPYLCMN,DEDUCT,HOLD,,A)
COPYL COMPLETE.

CATALOGCHOLD,flllN,ID=QUIET,RP=16

The T AX=FED/MN procedure parameter switches the
mode to order-independent mode. All parameters will be
matched in order-independent mode.

All possible parameter substitutions in order-independent mode are summarized in table 5-2. The table
shows each parameter format on the BEGIN statement, each parameter format on the noninteractive- I
procedure header statement, and the substitution resulting from each combination.

The word value in the table indicates that the parameter in the BEGIN statement (called value) is
different than the keyword and/or defaults on the procedure header statement. The user should use table
5-2 with the following examples to clarify the table entry meanings (keyword, defaultl, default2, value,
and null).

60493800 M 5-37

I

TABLE 5-2. PARAMETER SUBSTITUTION IN ORDER-INDEPENDENT MODE

BEGIN Statement Parameter Format

keyword keyword= keyword= value value
N oninteractive-Procedure or or or or
Header Parameter Format omitted $keyword$ $keyword$= $keyword$=value $value$ t

keyword keyword keyword null value error

keyword= null null null value error

keyword=defaultl defaultl defaultl null value error

keyword=defaultl/ defaultl default2 null value error
default2

t Assumes the parameter is entered under order-independent mode.

Examples of Parameter Matching:

Procedure on Local Default File PROCFIL

.PROC,SAMPL1,L,M,N=XY.
REWIND,L,A,M,N.

5-38

Call, Substitution, and Explanation

BEGIN,SAMPL1,,L=SWITCH.

yields
REWIND,SWITCH,A,M,XY.

The BEGIN parameter L=SWITCH switches
parameter matching mode to order-independent
mode. Order-independent mode uses the procedure
header defaults for omitted BEGIN parameters.
Order-dependent and order-independent modes work
identically for omitted BEGIN parameters.

BEGIN,SAMPL1,,L=CHANGE,M,N.

or
BEGIN,SAMPL1,,L=CHANGE,N,M.

yields

REWIND,CHANGE,A,M,XY.

The L=CHANGE parameter switches parameter
matching to order-independent mode. In
order-independent mode the order of the BEGIN
parameters does not matter. M matches with M,
and the BEGIN keyword N indicates substitution of
the procedure header default (XY).

BEGIN,SAMPL1,,L=FLIP,M=B,N=Z.
yields

REWIND,FLIP,A,B,Z.

BEGIN parameters in the form keyword=value
always override procedure header parameters. FLIP
replaces L, B replaces M, and Z replaces XY.

60493800 M

Non interactive-Procedure
on Local Default File PROCFIL

. PROC,TRACE,MS,MR,MA.
COPYL(MS,MR,MA)

Call, Substitution, and Explanation

BEGIN,TRACE,,MS=,MR=MD,MA= .

yields
COPYL(,MD,)

The MS= parameter switches parameter matching to
order-independent mode. All BEGIN statements in
the form keyword= use null substitution •

. PROC,SAMPL4,FILE1,EC=B6/A6,DC=LR,REP=O.BEGIN,SAMPL4,,COIN.
REQUEST,AAA,Q.
COPY(FILE1,AAA)
P.OUTE(AAA,#DC=DC,#EC=EC,#REP=REP)

yields
REQUEST,AAA,Q.
COPY(COIN,AAA)
ROUTE(AAA,DC=LR,EC=B6,REP=0)

Example 1:

COIN is substituted in order-dependent mode.
EC=B6/ A6 switches the mode to order-independent
mode. The omitted parameters indicate use of the
procedure header defaults (order-dependent and
order-independent mode work alike for omitted
BEGIN parameters).

BEGIN,SAMPL4,,COIN,EC,DC,REP.

yields
REQUEST,AAA,Q.
COPY(COIN,AAA)
ROUTE(AAA,DC=LR,EC=A6,REP=0)

EC=B6/ A6 switches the mode to order-independent
mode. Specifying a keyword on the BEGIN
statement produces the same result as omitting it
(refer to previous example) except for the double
default procedure parameter, EC=B6/A6. If EC is
omitted, 86 is used. If EC is specified, A6 is used.

The following procedure resides on file PROCFIL. It routes a specified file (FN AME) to the specified
equipment (default is any Control Data graphics line printer) •

60493800 M

. PROC,PRINTR,FNAME,REP=0,DC=LR,EC=B6.
REQUEST,AAA,Q.
COPYCFNAME,AAA)
ROUTECAAA,#DC=DC,#REP=REP,#EC=EC)
REVERT. FNAME ROUTED.
EXIT,S.
REVERT,ABORT. PRINTR PARAMETER ERRORS.

5-39

I

The following control statements attach file PROCFIL and call the procedure PRINTR. The system
matches FORMS in order-dependent form. DC=PU switches the mode to order-independent mode. PU
indicates the file is to be punched.

ATTACH,PROCFIL,ID=INK45.
BEGIN,PRINTR,,FORMS,DC=PU,EC=SB.

The following is a segment of the dayfile that results when the BEGIN statement is processed.

13.30.36.ATTACH~PROCFIL,ID=INK.
13.30.36.PFN IS
13.30.36.PROCFIL
13.30.36.AT CY= 006 SN=SPFSET
13.30.36.BEGIN,PRINTR,,FORMS,DC=PU,EC=SB.
13.30.36.REQUEST,AAA,Q.
13.30.37.COPY(FORMS,AAA)
13.30.37.ROUTECAAA,DC=PU,REP=O,EC=SB)
13.30.37.0P 00000192 WORDS - FILE AAA , DC 10
13.30.37.REVERT. FORMS ROUTED.

Example 2 - Parameter Matching In Nested Procedures (Order-Dependent and Order-Independent
Parameter Matching Modes):

.\s shown in figure 5-3, procedures ROUT and PREPARE reside on the default file PROCFIL. A BEGIN
statement within ROUT calls PREPARE. In procedure ROUT the substitution for the FN AME parameter
(TEST) is passed to procedure PREPARE by the BEGIN statement. The resulting dayfile is on the right

I side of figure 5-3.

5-40 60493800 M

Attach and Call

~TT~CH,PROCFIL,ID=SOUL.

PEGI~,ROUT,,TEST,SBF.

Resulting Dayfile

11.41.41.ATTACH,PROCFIL,ID=SOUL.
11.41.41.PFN IS
11.41.41.PROCFIL
11.41.42.AT CY= 006 ~N=SPFSET
11.41.42.BEGIN,ROUT,,TEST,SBF.

PROCFIL 11 • 41 • 4 2. BEG l N, PREPARE,, F NAME =TEST.
11 . 4 1 • 4 3. l FE, FI LE (TEST, AS) , PREP 1 •

. c' - - -o Ec-s6 DC-PR 11.41.43.ENDIF,PREP1.
.PROC,ROUT,.NAME-L,SBF-/SBF,REP-' - ' - 0 11.41.43.ATTACHCTEST ID=SOUL)
BEGI~,PREPARE,,#FNAME=FNAME. 11.41.43.PFN IS ,
REQUEST,HOLD,Q. . 11.41.43.T~ST
COPY7SBF~FN~~E~HOLD) _ =REP 11.41.43.AT CY= 001 SN=SPFSET
ROUTc,Ho~c,~oc-DC,#EC-EC,#REP . 11.41.43.REVERT. TEST PREPARED.
REVERT. F~AME -#PRINTER 11.41.44.REQUEST,HOLD,Q.
EXIT,S. 11.41.44.COPYSBFCTEST,HOLD)
REVERT,ABORT. ROUT ERRORS. 11.41.44.ROUTE,HOLD,DC=PR,EC=B6,REP=O.

11.41.44.0P 00000192 WORDS - FILE HOLD
11.41.44.REVERT. TEST ->PRINTER.

-EOR- 11.41.44.REVERT.CCL

-EOR-

.PROC,PREPARE,FNAME=,ID=SOUL.
IFE,FILECFNAME,AS),PREP1.
REWINDCFNAME>
REVERT. FNAME PREPARED.
ENDIF,PREP1.
ATTACHCFNAME,#ID=ID)
REVERT. FNAME PREPARED.
EXIT,S.
REVERT,ABORT. FNAME NOT FOUND.

BEGIN calls procedure ROUT. The SBF=/SBF parameter switches parameter matching to
order-independent mode. The first control statement of ROUT is a BEGIN statement that calls
procedure PREPARE. The parameters are matched in order-independent mode. PREPARE
readies a file for processing. If the file is local, it is rewound. If it is not local, the system
searches for the file in the user's permanent file catalog. If the file is not found, the procedure
reverts and aborts. If the file is found, processing continues with the second control statement
in procedure ROUT. The procedure prepares the file for printing, routes the file to the printer,
and reverts to the statement following the BEGIN control statement.

Figure 5-3. Keyword Substitution in Nested Procedures

60493800 M

, DC 40

5-41 I

INTERACTIVE PROCEDURES

A specific procedure header statement format identifies a procedure as interactive. Interactive
procedures allow the user to have a dialog with the system before the procedure is executed. Interactive
sessions or batch jobs may use interactive procedures, but only users on time-sharing terminals can take
full advantage of the interactive procedure's following capabilities.

• Getting a description of the procedure.

• Getting a description of each parameter and its acceptable values.

• Prompting by the system for required para meters if they had been omitted from the procedure
call.

• Reprompting by the system for a parameter value when an unacceptable entry has been made.

The procedure writer may make these capabilities available to the end user by providing the following
information.

• Designating procedure parameters as optional or required.

• Designating permissible values and correct syntax for each parameter through a checklist in the
procedure header statement.

• Supplying prompt descriptions for each parameter.

• Supplying directions for each of the parameters and for the procedure with .HELP statements.

The procedure call statement replaces keywords in the procedure body as soon as all required parameters
are supplied. Unless the header statement contains an error, it does not appear in the dayfile.

A user can execute an interactive procedure from a noninteractive source as long as all the required
parameters are specified on the procedure call. If any required parameters are omitted, the system issues
diagnostics to the dayfile specifying parameter values missing or in error, and the procedure is not
executed.

Interactive-Procedure Header Statement

The interactive-procedure header statement is the first line of the procedure. It names the procedure,
identifies it as interactive, and specifies the keywords to which the procedure call statement or the
i:lteractive user can pass values.

The following syntax rules apply to interactive header statements:

• The statement must begin with a period followed by the characters .PROC.

• An *I must be appended to the procedure name; *I identifies the procedure as interactive.

• A comma must separate .PROC and the proce<l.tre name.

• 5-42 60493800 M

• The separators between the procedure name and the procedure parameters may be commas(,),
reverse slashes (), or slashes (/). Reverse slashes and slashes change parameter substitution
from order-dependent to order-independent format. (Refer to Interactive Parameter
Substitution, later in this section.)

• A period terminates the header statement.

• The header statement can extend over more than one line.

The format of the interactive procedure heade!' is:

.PROC,pname*I,p1
11description 1

11=(checklist1),p2
11description2"=(checklist2), ••• ,

Pn "descriptionn "=(che<!klistn).

pname*I

pname is the procedure name (from one to seven alphanumeric characters). The procedure
name should begin with an alphabetic character and must not be BEGIN. *I must be
appended to tl1e procedure name to indicate that t~e procedure is interactive.

Pi"descriptioni "=(checklisti)

60493800 M

Optional parameters. The maximum number of parameters is 50.

Pi

descriptioni

checklisti

A keyword which identifies the parameter. The occurrences of Pi
in the procedure body are replaced by a value that must conform to
the specifications made in the checklist. This value is specified by
the procedure call parameters or by interactively entered
parameters. Values entered interactively override proc~dure call
parameters.

An optional 1- to 40- character text string that must be enclosed in
quotation marks. The system displays this text string when
prompting for a parameter. descriptioni may be null("") or
omitted.

A list of the acceptable values and syntax for Pi. The checklist
must be surrounded by parentheses. The value specified for a
parameter in a procedure call is compared to each of the entries in
the checklist in a left-to-right order. A match must occur for a
value to be acceptable.

If a checklist is omitted, the system assumes a checklist containing
*A.

A description of acceptable checklist entries follows.

5-43 •

*N=value

*K=value

*F=value

• 5-44

If Pi is not specified on the procedure call, value replaces each
occurrence of Pi in the procedure body. If only *N= is specified in
the checklist, a null value replaces each occurrence of Pi· If only
*N is specified, no substitution occurs for Pi· If the *N entry is
omitted from a checklist, Pi is a required parameter and
interactive prompting occurs when Pi is omitted from the
procedure call.

For example, procedure SUB on local file PROCFIL

.PROC,SUB•I,P1=C•N),P2=C•N=LG0),P3=C•N=).
COMMENT. #P1=P1, #P2=P2, #P3=P3

called by

BEGIN,SUB.

will produce the procedure body

COMMENT. P1=P1, P2=LGO, P3=

Specifying the *N entry more than once in a single checklist is an
error.

If the keyword (pi) is specified on a procedure call or interactive
entry, value replaces each occurrence of Pi in the procedure body.
If only *K= is specified in the checklist, a null value replaces Pi· If
only *K is specified, no substitution occurs for Pi·

For example, procedure KEY on local file PROCFIL

.PROC,KEY•I,P1=C•K),P2=C•K=INPUT),P3=C•K=).
COMMENT. #P1=P1, #P2=P2, #P3=P3

called by

BEGIN,KEY,,P1,P3,P2.

will produce the procedure body

COMMENT. P1=P1, P2=INPUT, P3=

Specifying the *K entry more than once in a single checklist is an
error.

If the procedure call or the interactive entry specified a file name
that conforms to the operating system format for a file name, value
replaces each occurrence of Pi in the procedure body. If only *F=
is specified in the checklist, a null value replaces each occurrence of
Pi in the procedure body. If only *F is specified, the file name
specified on the procedure call or the interactive entry replaces all
occurrences of Pi in the procedure body.

60493800 M

60493800 M

*A=value

*Sn(set)
=value

For example, procedure EXEC on local file EX

.PROC,EXEC•I,I=C•F>,B=C•N=LGO,•F>,L=C•F=OUTPUT).
FTNSC#I=I,#B=B,#L=L)

called by

BEGIN,EXEC,EX,I=CARDS,L=PRINT.

will produce the procedure body

FTNSCI=CARDS,B=LGO,L=OUTPUT)

Anything can be specified for Pi on the procedure call or
interactive entry, and value replaces each occurrence of Pi in the
procedure body. If only *A= is specified in the checklist, a null value
replaces each occurrence of Pi in the procedure body, no matter
what is specified for Pi on the call. If only *A is specified,
whatever is specified on the procedure call or interactive entry
replaces each occurrence of Pi in the procedure body.

After the set selection criteria have been met, value
replaces all occurrences of Pi in the procedure body. The set
selection criteria require that the parameter entry for Pi on the
procedure call or interactive entry must contain n or fewer
characters selected from the specified set. set may contain from 1
to 40 alphanumeric characters, or a literal. n is the maximum
number of characters allowed for the Pi parameter entry. If n is
omitted on the procedure header statement, the maximum is assumed
to be one. If the selection criteria are not met, the user is
reprompted for the parameter.

If only *Sn(set)= is specified in the checklist, a null value is
substituted for each occurrence of Pi in the procedure body if the
set selection criteria are met.

If only *Sn(set) is specified, the parameter entry for Pi on the
procedure call or interactive entry replaces all occurrences of Pi in
the procedure body if it meets the set selection criteria.

For example, procedure COPIL on local file COPI

.PROC,COPIL•I,O"OLD FILE NAME"=C•F,•N=OLD)
,R"REPLACEMENT FILE NAME"=C•F,•N=LGO)
,N"NEW FILE NAME"=C•F,•N=NEW)
,L"LAST RECORD"=C•F,•N=)
,F"FLAG"=C•S4CARTE),•N=>.
COPYLCO,R,N,L,F)
REVERT.

5-45 •

string=value

Interactive Procedure Body

called by

BEGIN,COPIL,COPI,O=OLD,R=MODIFIED,N=NEW,F=AE.

will produce a procedure body of

COPYL(OLD,MODIFIED,NEW,,AE)

Procedure COPIL will accept up to four letters for F parameter.

More than one set may be specified for a parameter. For example,
procedure SET has two sets specified for the P parameter .

• PROC,SET*I,P=C*S3(ABC),•S3CXYZ)).

Parameter entries could include P=BB or P=XZY, but not P=AZ or P.

Null sets are not allowed; in the following procedure header all set
entries in the Pl checklist are illegal .

• PROC,SET*I,P1=C•S,*SC),•S3>.

If the parameter on the procedure call 0r interactive entry matches
string, value is substituted for each occurrence of Pi in the
procedure body. A string may contait1 from 1 to 40 alphanumeric
characters, or a literal. If only string= is specified in the checklist
and the parameter on the procedure call or interactive entry matches
string, a null value replaces Pi· If only string is specified and the
parameter on the procedure call or interactive e:1try matches string,
string replaces Pi·

For example, procedure LABL on local file PROCFIL

.PROC,LABL*I,FN"FILE NAME"=(•F)
,LT"LABEL TYPE Y OR Z"= CY ,Z)

,WRITE"YES OR NO"=CYES=W,NO=R)
,RING"YES OR NO"=CYES=RING,NO=NORING).
LABELCFN,LT,WRITE,RING)
REVERT.

called by

BEGIN,LABL,,FN=TAPE1,LT=Z,WRITE=YES,RING=YES.

will produce a procedure body of

LABEL<TAPE1,Z,W,RING)

Procedure bodies are the same whether or not the procedure header statement is interactive, except that
interactive procedures may use .HELP and .ENDHELP statements. (Refer to Procedure Body, earlier in
this section.)

• 5-46 60493800 M

Interactive Processing

.\ procedure call statement initiates the execution of an interactive procedure. The procedure call may
have the same format for an interactive procedure as it has for a noninteractive procedure. In addition,
on an interactive procedure call, an interactive user may:

• Request a description of the procedure.

• Request a description of a procedure parameter.

• Omit required parameters.

• Specify an incorrect procedure parameter name.

If any of the preceding conditions occur, and if the interactive procedure had been called from an
interactive source, the system initiates an interactive dialogue with the user.

If descriptions are requested, the system lists optionally provided descriptive text. Procedure or
parameter descriptions can be requested by doing one of the following:

• Appending a question mark to the procedure file name.

• Appending a question mark to the name of a procedure parameter name.

• Entering a question mark as a parameter on the procedure call.

• Entering a question mark in response to an interactive prompt.

In the following example, the first two calls request the description of procedure LIST and initiate
prompting for all procedure parameters. The third call requests the description of the parameter KEY
and prompts for the KEY parameter entry and all other parameters on the header statement.

BEGIN,LIST,FILE?
BEGIN,LIST,FILE,?
BEGIN,LIST,FILE,KEY?

When the system encounters a question mark in a procedure call statement, it stops reading the call
statement and starts help processing. Anything entered after the question mark, therefore, will
not be read.

If required parameters are omitted, or if any parameter is in error on the procedure call, CCL prompts
the user for those parameters. If CCL prompts the user for a parameter that has an *N in its checklist,
and if the user wants to omit that parameter, %EOR or %EOF must be entered. If the format of a
parameter entry is not correct according to the parameter checklist, or if the parameter entry is not
specified on the procedure header statement, the user is reprompted for the parameter. Prompting for
parameters terminates when any of the following situations occur.

• All parameter requirement3 have been satisfied.

• The user enters a parameter terminated by a period or right parenthesis, or enters a period or
right parenthesis. If all required parameters have been entered, the system executes the
procedure. Otherwise, the system continues prompting until all required parameters are
satisfied.

• The user enters the terminal abort ccmmand (user break, %A). The call statement and
interactive dialogue are terminated. The procedure is not executed.

60493800 M 5-47 •

The following example shows the interactive entering of parameters.

• 5-48

Procedure FTN5 resides on local file F5 .

• PROC, FTNS•I,I" INPUT"= (*F ,•N=INPUT>
,B"BINARIES"~C*F,*N=LGO)
,L"OUTPUT"= (*F ,•N=OUTPUT>
,LO"LIST OPTIONS"=C•N=O,O,O,R,A,M,S).
FTNSC#I=I,#B=B,#L=L,#LO=LO)
REVERT.

To be prompted for the parameters on the procedure, the user enters

F5,'?

at the terminal.

~:vstem responses (uppercase) and user entries (lowercase) appear as follows:

PARAMETERS FOR FTN5 ARE I, B, L, LO
ENTER I INPUT
.? , .
MAY BE A FILE NAME
PARAMETER MAY BE OMITTED

ENTER I INPUT
example
ENTER B BINARIES
b?
MAY BE A FILE NAME
PARAMETER MAY BE OMITTED

ENTER B BINARIES
le or
ENTER L OUTPUT
l?
MAY BE A FILE NAME
PARAMETER MAY BE OfllITTED

ENTER L OUTPUT
lfile
ENTER LO LIST OPTIONS
lo?
ALLOWABLE VALUE(S)

0
0
R
A
M
s

PARAMETER MAY BE OMITTED

ENTER LO LIST OPTIONS
0

70000 SCM STORAGE USED.
0.022 CP SECONDS COMPILATION TIME •

60493800 M

When an interactive procedure is called from a non-interactive source and descriptions of the procedure
or parameters are requested, the descriptions are written to the dayfile. If required parameters are
omitted from a call on a non-interactive source, error messages are written to the dayfile. In either case,
the procedure is not executed.

Interactive Procedure Parameter Substitution

The interactive .PROC procedure header specifies keywords used in the procedure body. A user
may change the value of these keywords each time the procedure is executed by specifying the
appropriate parameters in the procedure call statement or during the interactive entry of a parameter.
The values of these parameters must conform to the restrictions specified in the parameters' checklists.

Control statements sometimes expand beyond 80 characters after substitutions for keywords have been
made in the procedure body. For most control statements, this will be flagged as an error. The user
should ensure that a line containing keywords is short enough so that possible expansion does not extend
the line beyond the 80th character. CCL, LABEL, and VSN statements are among those statements which
may extend one line, as long as the statement splits at a separator.

When a procedure is called, CCL must match each parameter on the call statement with a parameter on
the procedure header statement. CCL uses two methods of parameter matching; order-dependent and
order-independent.

Parameter :natching always begins in order-dependent mode. CCL compares, in order, each parameter on
the procedure call statement with the parameter in the same position on the procedure header statement.
If any of the entered parameters do not conform to the restrictions in the parameter checklist, or
required parameters are omitted on the procedure call, the system prompts the user for those procedures.
After all required parameters have been entered, CCL substitutes the selected keywords into the
proced.Jre body.

For example, assuming that the following procedure is on a local file named ITEMIZE

.PROC,ITEMIZE*I,F"LOCAL FILE NAME"=C•N=LGO,*F>
,L"NAME OF LIST OUTPUT FILE"=C•N=OUTPUT ,•F)
,BL"EACH FILE START ON NEW PAGE? YES OR NO"=CYES=S,BLS,NO=,•N=)
,NR"REWil'tD BEFORE & AFTER? YES OR NO"=CYES=,NO=S,NRS,•N=).
ITEMIZECF,#L=L BL NR)
REVERT.

The procedure call

ITEMIZE,LIST,,NO,NO.

matches all parameters in order-dependent mode and produces a procedure body of

ITEMIZECLIST,L=OUTPUT ,NR)

In order-dependent mode, CCL treats excess parameters on a procedure call statement as a
non-fatal error.

60493800 M 5-49 •

CCL switches to order-independent mode if, in the comparison of a procedure call statement parameter
with an interactive-procedure header statement parameter, one of the following conditions occurs.

• A call statement parameter is in the format keyword=value.

• A reverse slash (\)separates two parameters on the interactive procedure header or call
statement.

• A. slash (/)separates two parameters on the interactive procedure header statement.

• A slash(/) separates two parameters on the call statement and a slash is also used as a separator
in the procedure header. If a slash is specified on the call statement and not on the header
statement, the slash is not treated as a separator, but as part of the parameter value. This
feature can be helpful in using EDITLIB directives in a procedure. (Refer to the ADD and
REWIND directives in the EDITLIB subsection of section 4.)

The parameter-matching mode cannot switch back from order-independent to order-dependent mode.

Once in order-independent mode, CCL matches each successive keyword of a call statement or
interactive entry to the identical keyword in the procedure header statement, regardless of the order of
the procedure header parameters.

The preceding example, which showed the order-dependent parameter matching mode, has been slightly
modified in the following example. An *K entry has been added to the BL parameter checklist to make
BL a valid parameter entry. A reverse slash is being used as a separator before the .L parameter to ensure
order-independent parameter matching mode for all parameters after the local file name parameter, F .

• PROC,ITEMIZE*I,F"LOCAL FILE NAME"= C•N=LGO,*F)
\L"NAME OF LIST OUTPUT FILE"=C•N=OUTPUT,*F)
,BL"EACH FILE START ON NEW PAGE? YES OR NO"=CYES=S,BLS,NO=,*N=,•K=S,BL$)
,NR"REWIND BEFORE & AFTER? YES OR NO"=CYES=,NO=S,NR$ *N=).
ITEMIZECF,#L=L BL NR)
REVERT.

The procedure call

ITEMIZE,LIST,,NR=NO,BL.

starts parameter matching in order-dependent mode. The reverse slash in the procedure header switches
parameter matching to order-independent mode. In order-independent mode, the user must specify all
parameters in the form keyword=value, unless there is an *K entry in the parameter checklist. If an *K
entry is in the parameter checklist, the user may specify the keyword alone as the parameter entry. Since
*K is in the BL parameter checklist, the system accepts BL as a parameter entry. The NR parameter
must be specified as NR=value.

The procedure body appears as follows:

ITEMIZECLIST,L=OUTPUT ,BL ,NR>

• 5-50 60493800 M

.HELP Statement

The .HELP statement allows the procedure writer to provide descriptions of the procedure and/or its
parameters in the procedure. The procedure user can access these descriptions interactively by entering a
question mark as a parameter in a procedure call, or by appending a question mark to a procedure or
parameter name. (Refer to Interactive Processing, earlier in this section.)

When parameter descriptions are requested, the system displays the following information:

• Text information following the .HELP statement for the parameter.

• Description string specified with the parameter on the procedure header statement.

• Parameter values acceptable according to parameter checklist specifications.

• Current value, if any, of the parameter, and prompts for parameter values.

When the procedure description is requested, the system displays the following information.

• Text following the procedure's .HELP statement.

• All parameters on the procedure header and prompts for parameter value'>.

All .HELP statements, if specified, must inmediately follow the procedure header statement. .\.
terminator must not be specified on a .HELP statement.

The format of the .HELP statement is:

.HELP,param,NOLIST

par am Param must be a parameter in the procedure header statement. Text which follows
this .HELP statement describes the parameter. Omitting param creates a .HELP
statement for the procedure.

NO LIST If param is specified, NOLIST prohibits the display of acceptable parameter values.

If pararn is omitted from the .HELP statement, NOLIST prohibits the display of the
procedure parameter list.

Text description must start on the line following the .HELP statement. Text description can span lines
and is not subject to parameter substitution.

Examples of the .HELP statement are provided in the ENDHELP Statement subsection •

. ENDHELP Statement

The .ENDHELP statement specifies the end of the help descriptions. Only one .ENDHELP statement is
allowed in a procedure. A terminator must not be specified on the .ENDHELP statement and nothing else
can appear on the same line.

The format of the .ENDHELP statement is:

.ENDHELP

60493800 M 5-51 •

Example: Use of .HELP and .ENDHELP Statements

Procedure ROUT, on file PRINT, verifies that the selected file has been attached before it routes the file
to a printer •

• PROC,ROUT*I,F"FILE NAME"=C*F)
,DC=C*N=PR,PR,LR,LS,LT) •
• HELP
THIS PROCEDURE ROUTES A PERMANENT FILE TO THE SELECTED LINE PRINTER •
• HELP,F
THE NAME OF THE PERMANENT FILE TO BE ROUTED •
• HELP,DC
THE DISPOSITION CODE. DC ONLY ACCEPTS LINE PRINTER OPTIONS •
• ENDHELP
IFE,FILECF,.NOT.PF),PF.
ATTACHCF,ID=SHE)
ENDIF,PF.
REQUEST,Z,Q.
COPYSBFCF,Z)
ROUTECZ,#DC=DC)

Directions on how to use the procedure are obtained by appending a question mark to the file name,
PRINT.

ATTACHCPRINT,ID=SHE)
PRINT?

System responses and user input follows. System responses appear in uppercase letters, and user input
appears in lowercase letters.

THIS PROCEDURE ROUTES A PERMANENT FILE TO THE SELECTED LINE PRINTER.
PARAMETERS FOR ROUT ARE F, DC

• 5-52

ENTER F FILE NAME
f?
MUST BE A FILE NAME
THE NAME OF THE PERMANENT FILE TO BE ROUTED.

ENTER F FILE NAME
tues
ENTER DC
de?
ALLOWABLE VALUES CS)

PR
LR
LS
LT

PARAMETER MAY BE OMITTED
THE DISPOSITION CODE. DC ONLY ACCEPTS LINE PRINTER OPTIONS. ~S.

ENTER DC
Xeor

PFN IS
TUES
AT CY= 002 SN-SPF SET

60493800 M

PARAMETER Al TERA TION

When specifying keywords in the procedure body, two special characters, ASCII graphics # and - (or
Control Data graphics = and r--), are used to inhibit keyword substitution and to combine parts of a
parameter after keyword substitution. These characters may be used in interactive and noninteractive I
procedures.

A single # character placed immediately before a keyword in a procedure statement inhibits substitution
for that keyword. Two such characters(##) placed immediately before a keyword allow substitution; one
is retained. The # does not affect a separator or nonkeywords.

The linking character, underline (_), is used in a procedure statement to temporarily separate two
parameters (keyword or nonkeyword). After possible substitutions are made, the underline character is
removed and the two parameters are merged into one. # before _retains - and allows substitution.
- before # does not affect the inhibiting action of#.

Examples of use of the # and _ characters in a procedure are shown in table 5-3. Because the call
statement in table 5-3 has no keywords, the defaults from the procedure header are used unless the #
character inhibits the substitution.

TABLE 5-3. ALTERATIONS OF PARAMETERS IN A PROCEDURE
BODY BY USE OF # AND _

Call statement: BEGIN, DATE, APROCFL.

Procedure header: .PROC,DATE,DAY=19,MONTH=02.

Procedure Parameters Procedure Parameters
in Procedure Body in Procedure Body

Before Substitution After Substitution I Comment
I

#DAY,DAY DAY,19 # inhibits substitution in the
#1,J I,J keyword that immediately follows
DAY#MONTH 19MONTH and does not effect nonkeywords.

##DAY,MONTH #19,02 ## allows substitution if a key-
##1,J #1,J word immediately follows; one #

is retained.

DAY#,DAY 19,19 # does not affect a separator.

DAY_MONTH 1902 _separates two parameters
l_J IJ before substitutions are made;
DAY_J 19J after all substitutions are made,
J_MONTH J02 they are joined into one para-

meter.

DAY#_ DAY 19_19 # before_ retains _ and
DAY#_MONTH 19_02 allows substitution.

DAY_#DAY

l
19DAY _before an# does not affect

the inhibiting action of the #.

60493800 M 5-53

I

Example 1 - # Character:

The following procedure resides on file PROCFIL •

• PROC,INHIBIT,I=TEST.
ATTACHCI,ID=HUSH)
FTN5C#I=I,L=0)
LGO.
COMMENT. I, #I, I#I. #I#I.

On the left are the ATTACH and BEGIN statements that attach file PROCFIL and call procedure
INHIBIT. On the right is the resulting dayfile.

ATTACH,PROCFIL,ID=HUSH.
BEGIN, INHIBIT.

11.45.54.ATTACH,PROCFIL,ID=HUSH.
11.45.54.PFN IS
11.45.54.PROCFIL
11.45.55.AT CY= 006 SN=SPFSET
11.45.55.BEGIN,INHIBIT.
11.45.55.ATTACHCTEST,ID=HUSH)
11.45.56.PFN IS
11.45.56.TEST
11.45.56.AT CY= 001 SN=SPFSET
11.45.56.FTN5CI=TEST,L=0)
11.45.57. 60000 SCM STORAGE USED.
11.45.57. 0.029 CP SECONDS- COMPILATION TIME.
11.45.57.LGO.
11.45.59. STOP
11.45.59. 15700 MAXIMUM EXECUTION FL.
11.45.59. .027 CP SECONDS EXECUTION TIME.

Example 2 - # Character:

11.45.59. TEST, I, TEST!. II.
11.45.59.REVERT.CCL

The following procedure file is a permanent file called COLORPR. It uses the IFE statement to
determine if the color the BEGIN statement substituted for COLOR is red or blue. Different processing is
done for the colors red and blue. Any other color is ignored. The # character in the comment line inhibits
substitution for the word (COLOR) it precedes.

.PROC,A*I,COLOR=C*A).
IFE,SCOLORS.EQ.SREDS,L1.
COMMENT. PROCESSING DONE FOR #COLOR OF COLOR
REVERT.
ENDIF,L1.
IFE,SCOLORS.EQ.SBLUES,L2.
COMMENT. PROCESSING DONE FOR #COLOR OF COLOR
REVERT.
ENDIF ,L2.
COMMENT. NO PROCESSING DONE FOR #COLOR OF COLOR

5-54 60493800 M

The following control statements call procedure A.

ATTACH,COLORPR,ID=PIGMENT.
BEGIN,A,COLORPR,BLUE.
BEGIN,A,COLORPR,RED.
BEGIN,A,COLORPR,PINK.

The following dayfile segment results when the preceding control statements are processed. It shows the
effect of the # character.

11.36.47.ATTACH,COLORPR,ID=PIGMENT.
11.36.47.PFN IS
11.36.47.COLORPR
11.36.48.AT CY= 002 SN=SPFSET
11.36.48.BEGIN,A,COLORPR,BLUE.
11.36.48.IFE,$BLUE$.EQ.$REDS,L1.
11.36.48.ENDIF,L1.
11.36.48.IFE,$8LUE$.EQ.$8LUES,L2.
11.36.48. PROCESSING DONE FOR COLOR OF BLUE
11.36.48.REVERT.
11.36.48.BEGIN,A,COLORPR,RED.
11.36.49.IFE,SRED$.EQ.SREDS,L1.
11.36.49. PROCESSING DONE FOR COLOR OF RED
11.36.49.REVERT.
11.36.49.BEGIN,A,COLORPR,PINK.
11.36.49.IFE,$PINKS.EQ.$REDS,L1.
11.36.49.ENDIF,L1.
11.36.49.IFE,$PINKS.EQ.$8LUES,L2.
11.36.49.ENDIF,L2.
11.36.49. NO PROCESSING DONE FOR COLOR OF PINK
11.36.50.REVERT.CCL

Example 3 -_Character:

Procedure LINK resides on file LFILE •

• PROC,LINK,TYPE=SBF,LFN1,LFN2.
REWINDCLFN1)
COPY TYPE(LFN1,LFN2)

The first BEGIN statement does a COPYSBF of file PLAN to file SCHEME. The next BEGIN statement
does a COPY of file MAZE to file TAXES. The resulting dayfile segment follows the BEGIN statements.
LFILE is already attac'led.

60493800 M

BEGIN,LINK,LFILE,TYPE=SBF,LFN1=PLAN,LFN2=SCHEME.
BEGIN,LINK,LFILE,TYPE=,LFN1=MAZE,LFN2=TAXES.

11.45.59.BEGIN,LINK,LFILE,TYPE=SBF,LFN1=PLAN,LFN2
11.45.59.=SCHEME.
11.46.00.REWIND(PLAN)
11.46.00.COPYSBF(PLAN,SCHEME)
11.46.00.REVERT.CCL
11.46.01.BEGIN,LINK,LFILE,TYPE=,LFN1=MAZE,LFN2=TA
11. 46. 01. XES.
11.46.01.REWINDCMAZE)
11.46.01.COPYCMAZE,TAXES)
11.46.02.REVERT.CCL

5-55 1

PROCEDURE COMMANDS

I Procedure commands enable the user to format a data file and to insert documentary comments within a
procedure. The commands are in fixed format with a period in column 1 and the command name beginning
in column 2 .

. DATA Command

A .DATA command in a procedure marks the beginning of a sequence of data lines to be written to a
separate file when the procedure is called. File marks generated by .EOR and .EOF commands can
subdivide the lines written to the data file. The sequence of data lines is terminated by one of the
following:

• Another .DATA command.

• A system end-of-record (not an .EOR command).

• A system end-of;>artition (not an .EOF command).

• A system end-of-information.

The data file created does not include the .DATA command. Keyword substitution occurs within the data
statements.

The format of .DATA is:

.DATA,lfn

lfn Optional name of the file on which the data lines are to be written. If a file named lfn is
already attached to the job, it is released, and new local file lfn is created. After the data
file is written, it is automati<?ally rewound. If lfn is specified, lfn references the data file
and not the special default #DATA.

If lfn is specified, the separator between DATA and lfn can be a comma, a left parenthesis,
or a blank space. The terminator after the lfn can be a period, a right parenthesis, or a
blank space. If the user wants to include comments, a period or a right parenthesis must
terminate the command.

If lfn is omitted, the user references the data file with the special default #DATA. At the
first procedure level, the system calls this file ZZCCLAA; at the second procedure level it
is <?alled ZZCCLAB; and so forth.

I The following examples show three different ways of inserting a FORTRAN program into a noninteractive
procerure.

5-56 60493800 M

Example 1 - Procedure Accesses Program Data With .DATA Command:

The following procedure file is a permanent file named DATAFIL •

• PROC,ALPHA,P1=#DATA,X=OUTFILE.
FTN5CI=P1,L=X>
LGO.
CATALOGCX,LISTFIL,ID=FRAN,RP=15)
REVERT •
• DATA. FORTRAN PROGRAM.

PROGRAM X(OUTPUT)

END

The following call statement in the control statement record or the job accesses procedure ALPHA on file
DATAFIL. A previous ATTACH statement made DATAFIL local to the job.

BEGIN,APLHA,DATAFIL,X=FTNOUT.

A sample of a resulting dayfile is:

16.04.09.BEGIN,ALPHA,DATAFIL,X=FTNOUT.
16.04.16.FTNSCI=ZZCCLAA,L=FTNOUT)
16.04.17. 60700 SCM STORAGE USED.
16.04.17. 0.035 CP SECONDS COMPILATION TIME.
16.04.17.LGO.
16.04.19. END FTNOUT
16.04.19. 16100 MAXIMUM EXECUTION FL.
16.04.19. .026 CP SECONDS EXECUTION TIME.
16.04.20.CATALOGCFTNOUT,LISTFIL,ID=FRAN,RP=15)
16.04.20.NEWCYCLE CATALOG
16.04.21.CT ID= FRAN PFN=LISTFIL
16.04.21.CT CY= 007 SN=SPFSET 00000128 WORDS.
16.04.21.REVERT.CCL

All input after the .DATA command (the FORTRAN source program) is written onto the default
temporary file ZZCCLAA. Parameter substitution occurs in the data statements, as shown by FTNOUT
replacing the program name X in the END dayfile line.

60493800 M 5-57 I

Example 2 - Procedure Accesses Program Data With Special Default #FILE:

The following noninteractive procedure is a permanent file named PFILE. The record immediately
following procedure BETA contains the program data. The #FILE default tells the FTN5 compiler to
search for input from the next record on file BET A •

• PROC,BETA~P1=#FILE,X=OUTFILE.
FTN5CI=P1,L=X)
LGO.
CATALOGCX,LISTFIL,ID=WWW,RP=15)
•EOR

PROGRAM X<OUTPUT)

END

After file PFILE is attached, the following call accesses procedure BETA.

BEGIN,BETA,PFILE,X=FTNOUT.

The following is a segment of the resulting dayfile. Parameter substitution occurs within the procedure
but not within the FORTRAN program.

16.04.37.BEGlN,BETA,PFILE,X=FTNOUT.
16.04.37.FTNSCI=PFILE,L=FTNOUT)
16.04.39. 60700 SCM STORAGE USED.
16.04.39. 0.037 CP SECONDS COMPILATION TIME.
16.04.39.LGO.
16.04.41. END X
16.04.41. 16100 MAXIMUM EXECUTION FL.
16.04.41. .023 CP SECONDS EXECUTION TIME.
16.04.41.CATALOGCFTNOUT,LISTFIL,ID=WWW,RP=15)
16.04.41.NEWCYCLE CATALOG
16.04.42.CT ID= WWW PFN=LISTFIL
16.04.42.CT CY= 009 SN=SPFSET 00000128 WORDS.
16.04.42.REVERT.CCL

Figure 5-4 shows diagrammatically how #FILE is used to access program data.

Example 3 - Procedure Accesses Program Data From Another File:

To access program data outside of the procedure file, the procedure must include an ATTACH control
statement. The following procedure is on file PROCFIL .

. PROC,GAMMA,P1=PRGRAM1,X=OUTFILE.
ATTACH,P1,ID=WIND.
FTN5CI=P1,L=X)
LGO.
CATALOGCX,LISTFIL,ID=WIND,RP=20)

5-58 60493800 M

The following statements attach PROCFIL and call procedure file GA!IJMA.

ATTACH,PROCFIL,ID=WIND.
BEGIN,GAMMA,,X=FTNOUT.

The following is the resulting dayfile segment. Parameter substitution occurs within the procedure but
not within the FORTRAN program.

16.04.22.ATTACH,PROCFIL,ID=WIND.
16.04.23.PFN IS
16.04.23.PROCFIL
16.04.23.AT CY= 008 SN=SPFSET
16.04.23.BEGIN,GAMMA,,X=FTNOUT.
16.04.24.ATTACH,PRGRAM1,ID=WIND.
16.04.24.PFN IS
16.04.24.PRGRAM1
16.04.24.AT CY= 002 SN=SPFSET
16.04.24.FTN5CI=PRGRAM1,L=FTNOUT)
16.04.26. 60700 SCM STORAGE USED.
16.04.26. 0.030 CP SECONDS COMPILATION TIME.

60493800 M

16.04.26.LGO.
16.04.33. END X
16.04.33. 16100 MAXIMUM EXECUTION FL.
16.04.33. .025 CP SECONDS EXECUTION TIME.
16.04.33.CATALOGCFTNOUT,LISTFIL,ID=WIND,RP=20)
16.04.33.NEWCYCLE CATALOG
16.04.34.CT ID= WIND PFN=LISTFIL
16.04.34.CT CY= 008 SN=SPFSET 00000128 WORDS.
16.04.34.REVERT.CCL

5-59 I

Figure 5-4 shows diagrammatically how ATTACH is used to access program data. An example of a data
file written from a procedure to a named file is shown in figure 5-5.

PROCEDURE ACCESSES PROGRAM
DATA THROUGH ATTACH STATEMENT

Processing of procedure Bl is
initiated with the control statements:

ATTACH,PROFILl,ID=TERRY.
BEGIN,Bl,PROFILl.

Files PROFILl and INFILE are set up
as follows:

PROFILl

first record I .PROC,Al.
of PROFILl COMMENT. PROCESSING DONE

COMMENT. HERE FOR Al.
'--~~~~~~~~~~~----.I

second and l
last record
of PROFILl

single l
record
on INFILE

end-of-record

. PROG,Bl,INFILE.
ATTACH,INFILE,ID=TERRY.
FTN5(1=INFILE)

end-of-record
end-of-partition

IN FILE
FORTRAN 5 Source
Program

end-of-record
end-of-partition

I+

PROCEDURE ACCESSES PROGRAM DATA
THROUGH SPECIAL DEFAULT #FILE

Processing of procedure B2 is
initiated with the control statements:

ATTACH,PROFIL2,ID=TERRY.
BEGIN ,B2,PROFIL2.

File PROFIL2 is set up
as follows:

first record l
of PROFIL2

PROFIL2

.PROC,A2.
COMMENT. PROCESSING DONE
COMMENT. HERE FOR A2.
'--~~~~~~~~~~~~-1

end-of-record

second recordl .PROC,B2,IN=#FILE •
of PROFIL2 FTN5(I=IN)

LGO.

third record l
of PROFIL2

end-of-record

FORTRAN 5 Source
Program
'---~~~~~~~~~~~~~

end-of-record

fourth and l .PROC,C2,PASS.
last record COMMENT. C2 PROCESSING
of PROFIL2 COMMENT. DONE HERE.

end-of-record
end-of-partition

Figure 5-4. Procedure Access to Program Data

60493800 M
5-60

One
record

on PFILEJ

PFILEJ

.PROC,A.

.DATA,DFILE

.EOR

.EOF

Data for
first record

Data for
second record

Data for
third record

end-of-record

Next 11 ·PROC,B.
record

on PFILEJ

'--~~~~~~~~~~--'

end-of-record

When procedure A is called,
the data is written on a local
file named DFILE

DFILE

First data record

end-of-record

Second data record

end-of-record
end-of- partition

Third data record

end-of-record
end-of-information

Figure 5-5. Data File Written from a Procedure to a Named File

.EOR Command

The .EOR command is used to separate records in a data file originating in a procedure. Whenever an
.EOR is placed, an actual end-of-record is recorded when the data file is written on #DATA or lfn. Since
the data statements are written on an external file, the .EOR command has no effect on the system
end-of-record on the procedure file that terminates the procedure. The .EOR command is valid only after
a .DATA command (figure 5-5). A terminator must not be used and nothing else can appear on the same
line.

60493800 M
5-611

.EOF Command

The .EOF command generates an end-of-partition on a data file originating in a procedure. An actual
end-of-partition is recorded when the data statements are written on #DATA or lfn. This command has
no effect on the end-of-record that terminates the procedure. If the end of the data file format is also
the end of the procedure, no .EOF command is needed. In this case, an end-of-record mark is added. If
the user wants an end-of-partition mark, an .EOF command must be included. The .EOF command is valid
only after a .DATA command (figure 5-5). A terminator must not be used, and nothing else can appear on
the same line •

. *Command

The .*command enables the user to document a procedure with internal comments. These comments
appear when the file is copied to output or displayed at a terminal; they do not appear in the dayfile when
the procedure is processed. The comment, which follows the *, can contain any combination of characters.

I 5-62 60493800 M

COMMUNICATION AREAS 6

FILE ENVIRONMENT TABLE

The file environment table (FET) is a communication area supplied by the user within his field length. Any
file to be written, read, or otherwise manipulated or positioned, must have its own FET. The FET is interro­
gated and updated by the system and user file processing.

COMPASS programmers can create an FET in two ways:

Use the FET creating macros FILEB, FILEC, RFILEB, or RFILEC.

Use other COMPASS instructions to build a table in the format expected by the system.

Compiler language programmers need not be concerned with FET construction or manipulation, because the
compilers will perform these tasks in response to compiler language instructions. When CDC CYBER Record
Manager is used for input/output, the user need supply only the file information table (FIT) data. CDC
CYBER Record Manager will construct and manipulate the FET from information in its FIT. The FIT is
fully described in the CDC CYBER Record Manager Manuals.

A minimum size FET is five words, which allows for processing of sequential unlabeled files. Random or
labeled files, or files in which the user will process file conditions or errors with OWNCODE routines, require
a longer table. Extensions to the FET, areas identified by pointers within the FET, are required for extended
error and label processing. Some compilers append an area past word 13 of the FET, as explained in the
respective manuals. When S and L tapes are processed, the FET must be at least seven words in length.

The format of the FET is shown in figure 6-1. Some fields are pertinent only to CDC CYBER Record
Manager manipulation. A description exists in the reference manuals for CDC CYBER Record Manager.
Other fields contain different data depending on the file mode or residence.

FET CREATION MACROS

System macros in the COMPASS language facilitate generation of the FET.

All parameters except lfn, fwa, and f are optional. The fwa and f parameters must be in the order shown;
others can be in any order. The macro parameters WSA, OWN, XPR, and IND are not order dependent, but
order is fixed within these parameters.

The user must specifically allocate the circular buffer location in the field length as well as the buffers for the
WSA, XPR, and XLR parameters. The macro identifies but does not create the buffers.

Four macros are available, depending on whether the file is coded or binary, random or sequential.

60493800 c 6-1

• 6-2

0 f Address
.-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-.-~~~ ~~~~~~ lfn+n
59 53 47 41 35 32 29 23 17 13 8

DEVICE TYPE

FNT POINTER

DETAIL
ERROR CODE

(XP=1)

FILE NAME

0

0

RECORD BLOCK SIZE

POINTER TO
FET EXTENSION

(XP=1)

DISPOSITION
CODE

PRU SIZE

UBC

FET
LENGTH

-5

RESERVED

CODE/STATUS 0 LEVEL ERROR
NO. CODE

FIRST POINTER

IN POINTER 2

OUT POINTER 3

LIMIT POINTER 4

MLRS (Sil TAPES ONLY) }

___._.RECOR-D REQU_.__EST/RE-TURN 1-NFORMA-TION -- 6

(RANDOM RMS ONLY)

~-__....,..,...,.....,...,.... _ ___, _____ 7 CRM FET EXTENSION (XP=1) }

...........,......,,..,...........,..._.. ... ~------........................... ~_}10

XL=1 FWA OF LABEL BUFFER }
1--~~~~~~~~~~~~~~--''--~~~~~~~~~~...a.~~~~~~~~~~---1 11

XL=O Fl RST 10 CHARACTERS OF Fl LE LABEL NAME

X~1 RESERVED }
i---~~~~~~~~~~~---~~~~----412

XL=O LAST 7 CHARACTERS OF FILE LABEL NAME POSITION NUMBER

XL=1 RESERVED }
t-~~~~~~...-~~~~~~~~~....-~~~~~~~~~~~~~~~~~ 13

XL=O EDITION NUMBER RETENTION CYCLE CREATION DATE

XL=1 RESERVED }
--~~~~~~~~~--~~~~~~---114

XL=O MUL Tl Fl LE SET NAME REEL NUMBER

PERM LENGTH OF EXTENSION T
BITS (L)

~~~~~ 

RESIDUAL SKIP COUNT 

L 

____ ____,l 
t RESERVED 

Figure 6-1. File Environment Table 

60493800 L 



CODED SEQUENTIAL FILE 

lfn FILEC fwa,f,(WSA=addrw,lw),(OWN=eoi,err),LBL,UPR,EPR,XPR=xpadr,UBC=ubc,MLR=mlrs, 
(XLR=xladr ,xll) 

BINARY SEQUENTIAL FILE 

lfn FILEB 

CODED RANDOM FILE 

lfn RFILEC 

f wa,f,(WSA=addrw, I w ),( OWN=eoi,err) ,LBL,UPR,EPR,XPR=xpadr, UBC=ubc ,ML R =ml rs, 
(XLR=xladr ,xll) 

fwa,f,(WSA=addrw)w),(IND=addri,li),(OWN=eoi,err),LBL,UPR,EPR,XPR=xpadr 

BINARY RANDOM FILE 

lfn RFILEB fwa,f,(WSA=addrw,lw),(IND=addri,li),(OWN=eoi,err),LBL,UPR,EPR,)CPR=xpadr 

Further explanation of parameter usage appears with descriptions of the FET fields below. 

lfn 

fwa 

f 

WSA 

addrw 

lw 

IND 

addri 

Ii 

OWN 

eoi 

error 

60493800 H 

File name 

Circular buffer address; substituted in FIRST, IN, and OUT 

Length of circular buffer; fwa+f is substituted in LIMIT to make buffer address 
lwa+ I; f should be at least one word larger than PRU size of the device on which 
the file resides 

Working storage area keyword; parameters required for READIN and WRITOUT; 
relieves user of responsibility for buffer manipulation 

First word address of working storage area 

Length of working storage; when coded files are being processed, the length must be 
at least as long as the longest record, or data will be lost 

Index buffer parameter keyword; required for name/number index random files only 

First word address of index buffer 

Length of index buffer; for numbered indexed files, length should allow one word for 
each record plus a one word header; for named indexed files, two words are required 
for each record in addition to the index header 

OWNCODE routine parameters keyword 

Address of routine to be executed if end-of-volume, end-of-device, or end-of-information 
occurs; UPR must be used 

Address of routine to be executed if file action errors occur; EPR must be used 

6-3 



UPR 

LBL 

EPR 

UBC 

ubc 

MLR 

mlrs 

XPR 

xpadr 

XLR 

xladr 

xll 

Examples: 

User specifies processing at end-of-volume, end-of-pack for user device sets, or end-of­
information; sets bit 45 of word 2 (lfn+l) 

Label information will follow for magnetic tape file; LABEL macro providing label 
information must immediately follow the FET creating macro to which it pertains 

User specifies handling of file action error conditions; sets bit 44 of word 2 (lfn+ I); 
does not set extended error processing flag 

Unused bit count keyword; required only for S and L tapes 

Specifies number of bits in last word of record that do not contain valid data 

Maximum record size keyword; required only for S and L tapes 

Maximum number of 60-bit words in record 

Extended error information to be returned by system 

First word address of FET extension for extended error processing 

Extended label processing keyword 

First word address of extended label processing buffer 

Length of extended label buffer 

To create a minimum FET for the standard INPUT file: 

LBUFFER 
INPUT 

EQU 
FILEC 

65 
BUFFER,LBUFFER 

To create an FET for a binary random file: 

LBUFFER 
LINDEX 
FI LEA BC 

EQU 
EQU 
RFILEB 

65 
25 
BUFFER,LBUFFER,(IND=INDEX,LINDEX) 

To create an FET for a labeled tape file with user processing at end-of-volume condition. OWNCODE routine 
is supplied: 

LBUFA 
TAPE I 
TAPEI 

EQU 
FILEB 
LABEL 

65 
BUF A,LBUF A,LBL,UPR,(OWN=PROCEOR) 
SORTINPUTT APE,32,90 

To create an FET for a list file. OWNCODE routines are supplied and the working storage area is used: 

6-4 

LBUFB 
PRINT 

EQU 
FILEC 

65 
BUFB,LBUFB,(WSA= LINE, 14),(0WN=ENDING ,ERRORS),UPR,EPR 

60493800 E 



FET FIELD DESCRIPTION 

Words of the FET are numbered 1-13 in decimal, corresponding to the addresses lfn through lfn+ 14 octal. All 
parameter values are octal unless otherwise noted. Bits are numbered 0-59 right to left in decimal. 

FILE NAME (lfn) (bits 18-59 at lfn) 

The lfn field contains one to seven display-coded letters or digits starting with a letter, left justified; if less 
than seven are declared, unused characters are zero-filled. This field is used as common reference point by the 
central processor program and the peripheral processor input/output routines. 

The lfn parameter declared in an FET creation macro is also used as the location symbol associated with the 
first word (lfn+O) of the FET. A reference to lfn in the file action requests is a reference to the base address 
of the FET. 

CODE AND STATUS (CS) (bits 0-17 at lfn) 

111e CS field is used for communication of requested functions and resulting status between the central pro­
cessor program and the peripheral processor input/output routines. This field is set to the request code by 
CPC when a file action macro request is encountered. When the FET is generated, bits 2-1 7 should be zero. 

The code and status bits have the following significance: 

Bits 14-17 

Bits 9-13 

Bits 0-8 

60493800 H 

Record level number. On skip and write record requests, this subfield is set by CPC 
as part of the function code. On read requests, it is set by CIO as part of the status 
when an end-of-record is read. Initially the level subfield is set to zero when the 
FET is generated. 

Status information upon request completion. Zero indicates normal completion. 
Non-zero indicates an abnormal condition, not necessarily an error; an OWNCODE 
routine, if present, will be executed. Status codes are described with the EOI 
OWN CODE and Error Exit Address discussions. Initially, this subfield is set to zero 
when the FET is generated. 

Used primarily to pass function codes to a peripheral processor. Function codes 
are even numbers (bit 0 has a zero value). They are listed as CIO codes below. 

When the request has been processed, bit 0 is set to one. When the FET is generated, 
bit 0 must be set to one to indicate the file is not busy. 

Bit 0 

Bit l 

Bits 2-8 

Current status of request (0 = file being processed, I = request 
complete). 

Specifies the mode of the file (0 = coded, l = binary). Bit I is not 
altered by CPC when a request is issued. 

Pass function codes to a peripheral processor (file action requests). 

6-5 



Bits 3 and 4 These bits will be set to binary 10 if end-of-record is read, or to binary 
11 if end-of-partition is read. 

CIO function codes listed below can be set in bits 0-8 of the CS field by the user before calling CIO to carry 
out the function. They are set by CPC when file action macros are used. All values are octal. 

All codes not listed are illegal. All codes are shown for coded mode operations; add 2 for binary mode (for 
example, 010 is coded READ, 012 is binary READ). Upon completion of operation, code/status in FET is 
changed to an odd number, ususally by adding 1 to the code. In some cases, code is further modified to 
indicate manner in which operation concluded [for example, a READ function 010, at completion, becomes 
011 (buffer full), 021 (end of system-logical-record), or 031 (end-of-partition)] . 

General code meanings are: 

200 series for special reads or writes (reverse, skip, non-stop, rewrite, etc.) 

300 series for open and close 

400 series reserved for CDC 

500 series reserved for installations 

600 series for skip 

700 series reserved for CDC 

Code Function Code Function Code Function 

000 RPHRt 104 OPEN/WRITE/NR 224 REWRITER 

004 WPHRt 110 POSMF 234 REWRITEF 

010 READ 114 EVICT 240 SKIPF 

014 WRITE 120 OPEN/NR 250 READ NS 

020 READS KP 130 CLOSE/NR 260 READNttt 

024 WRITERtt 140 OPEN 264 WRITENttt 

034 WRITEF 144 OPEN/WRITE 300 OPEN/NR 

040 BKSP 150 CLOSE 330 CLOSER 

044 BKSPRU 160 OPEN 340 OPEN 

050 REWIND 170 CLOSE/UNLOAD 350 CLOSER 

060 UNLOAD 174 CLOSE/RETURN 370 CLOSER/UNLOAD 

100 OPEN/NR 214 REWRITE 374 CLOSER/RETURN 

640 SKIPB 

t Applies to SI tapes only. 
HWhen a WRITER function is issued with level 17 8 specified, the function is changed to a WRITEF. Thus, 

a function issued as a 24 will return as a 34. 
ttt Applies to S and L tapes only. 

6-6 60493800 E 



DEVICE TYPE (dt) (bits 48-59 at lfn + I) 

The device type value will be returned to the FET device type field when a file action request is issued if 
FET length exceeds the minimum. The 6-bit device type will occupy bits 54-59; bits 48-53 will hold recording 
technique identification for magnetic tapes, if applicable. The mnemonic is used in the REQUEST control 
statement. 

Mass storage devices have the following codes. 

Device Type Mnemonic 

AY 
AZ 
AH 

AJ 
AX 

LM 

Device Type Value 

01-05 
06 
07-12 
13 
14 
15 
16 
17 
20 
21-25 
26 
27 
30-37 

Magnetic tapes have the following codes. 

Device Type Mnemonic Device Type Value (Octal) 

MT 40 7-track magnetic tape 

NT 41 9-track magnetic tape 

60493800 H 

Device 

Reserved for CDC 
Reserved for installations 
Reserved for CDC 
844-21 disk drive 
844-41 disk drive 
819 disk drive 
Reserved for CDC 
885 disk drive 
ECS resident files 
Reserved for CDC 
Link medium file 
Reserved for CDC 
Reserved for installations, mass storage only 

Recording Technique 
(Right 6 bits of FET dt Field in Binary) 

xxxxOO HI density 556 bpi 
xxxxOl LO density 200 bpi 
xxxxlO HY density 800 bpi 
xxxxl l Reserved for CDC 
xxOOxx Unlabeled 
xxOlxx SI standard U and Z labels 
xxlOxx 3000 series label (Y) 
xxl lxx Reserved for CDC 
OOxxxx SI data format 
Olxxxx Reserved for CDC 
I Oxxxx S data format 
l lxxxx L data format 

xxxxOO Reserved for CDC 
xxxxOl GE density 6250 cpi 
xxxxlO HD density 800 cpi 
xxxx 11 PE density 1600 cpi 
xxOOxx Unlabeled 
xxOlxx SI standard U label (ANSI) 
xx lOxx 3000 series label (Y) 
xxl lxx Reserved for CDC 
OOxxxx SI data format 
Olxxxx Reserved for CDC 
lOxxxx S data format 
l lxxxx L data format 

6-7 



Recording Technique 
Device Type Mnemonic Device Type Value (Octal) (Right 6 bits of FET dt Field in Binary) 

_t 42 Member multi-file set Same as in MT 
7-track tape 

_t 43 Member multi-file set Same as in NT 
9-track tape 

_t 62 7-track multi-file set tape Same as in MT 

_t 63 9-track multi-file set tape Same as in NT 

Unit record devices have the following codes. 

Device Type Mnemonic Device Type Value (Octal) Device 

TRtt 44 Paper tape reader 
TPtt 45 Paper tape punch 

46-47 Reserved for installations 
LPtt 50 Any available line printer 

51 Reserved for CDC -

52 Reserved for installations 
LRtt 53 580-12 line printer 
Lstt 54 580-16 line printer 
LTtt 55 580-20 line printer 

56-57 Reserved for installations 
CRtt 60 405 card reader 
KB 61 Remote terminal keyboard 

64ttt-65 Reserved for CDC 
66-67 Reserved for installations 

cptt 70 415 card punch 
DS 71 6612 keyboard/display console 
Gett 72 252-2 graphic console 
Hett 73 253-2 hardcopy recorder 
FMtt 74 254-2 microfilm recorder 
PLtt 75 Plotter 

76-77 Reserved for installations 

t Code is generated when a tape is declared to have MF characteristics; the multi-file set code 62 or 63 is 
used only in system tables; it is not returned to the user's FET. 

tt Supporting software must be supplied by the installation. 
tttDevice code 64 cannot be assigned. REQUEST processing uses code 64 to indicate a tape file in the pro­

cess of being assigned. 

6-8 60493800 E 



RANDOM ACCESS (R) (bit 47 at lfn + I) 

A one in the R field indicates a random access file. R may be set to I by using the RFI LEB or RFI LEC 
macro. When a file is opened or closed, the R setting determines action performed with regard to the index 
as shown below. 

The index is that used by name/number index random files, not CDC CYBER Record Manager. 

OPEN FET R=O 

No index No index action 

Index No index action 

FET R=l 

FET R bit is set to zero. 

Index is read into index buffer; if index buffer is not 
specified, FET R bit is set to zero and a non-fatal 
diagnostic is sent to dayfile. The index buffer is zeroed 
out before the index is read. 

If a non-existent file is opened, the value of the R bit is not altered. The index buffer specified in the FET 
is zeroed out. 

CLOSE 

File currently 
has index 

File currently 
has no index 

FET R=O 

File is flagged as 
not having index 

No index action 

FET R=l 

If index buffer exists or previous operation was write, 
the index is written, and file is flagged as having index. 
If buffer is not specified, a non-fatal diagnostic occurs. 

If file is written while R=l during this job, or if pre­
vious operation was write, the file is flagged as having 
an index and the index is written. If index buffer is 
not specified, a non-fatal diagnostic occurs. 

T11e above actions are taken only if the contents have been altered since the file was last opened. 

When any other file action request is issued, the r setting determines the access method to be used. If r = 0 
or the Record Request/Return Information field in FET word 7 (lfn+6) = 0, the file is read or written beginning 
at the current location. If r = 1, the file is read or rewritten according to the logical disk address in FET word 
7 (lfn+6), or written at the end-of-information; and the logical disk address is returned to FET word 7 (lfn+6). 

RELEASE (N) (bit 46 at lfn + I) 

This bit is reserved for the operating system. 

USER PROCESSING (UP) (bit 45 at lfn + I) 

T11e UP bit may be used to control tape end-of-volume and device set end-of-device processing. If the UP bit 
is zero, unit swapping is automatic without notification to the user; the function in process when eml-uf-vulume 
or end-of-device is detected is completed on the next unit. If the UP bit is set to one, the user is notified 

60493800 J 6-9 



when an end-of-volume or end-of-device condition arises. End-of-volume for tape files is defined as a tape 
mark followed by an EOVI label for labeled tapes and SI format unlabeled tapes, or as the first tape mark 
after the EOT reflective spot for unlabeled S and L tapes. End-of-device for RMS files is defined by an 
overflow RBT word pair. 

If the UP bit is set, end-of-volume and end-of-device status (02) is returned in bits 9-13 of the FET code and 
status field. Functions that do not transfer data from the circular buffer will have been completed; data 
transfer function may be re-issued as indicated by an examination of the buffer pointers. If CPC is in use, 
control is returned to the EOI OWNCODE routine if declared in bits 30-47 of lfn + 8. If a continuation volume 
or device is desired, a CLOSER function should be issued. If end of volume processing without a continuation 
volume is desired, a CLOSER/RETURN should be issued. 

ERROR PROCESSING (EP) (bit 44 at lfn + I) 

The EP bit is set when the calling program is to be notified of error conditions arising from file actions. Error 
codes returned to the code and status field are listed under the error address field. Control is given to the 
user OWNCODE routine at error address when EP is set. If EP has not been set, the operator is informed of 
the error and must authorize job termination or continuance regardless of the error. The following errors 
cause control to be returned to the user when the EP bit is set. 

CIO code not legal on this device 

READ or SKIP forward function immediately follows WRITE function 

FET buffer pointers out of bounds 

READ attempted on a file without read permission 

WRITE attempted on permanent file not positioned at end of information 

Open function on an existing random indexed file with too small index buffer 

REWRITE on permanent file without MODIFY permission 

WRITE on permanent file without EXTEND permission 

EVICT on permanent file 

Device is full and overflow is not allowed 

Parity error on an ECS resident file 

Index error on an ECS resident file 

Unrecovered RMS error 

6-10 60493800 E 



NO RECOVERY (EB) (bit 43 at lfn + 1) 

111is hit can be set to control error recovery. If it is set, no attempt will be made to recover errors encountered 
while reading data on magnetic tape. 

INTERCOM (INT) (bit 42 at lfn + 1) 

Set to allow use of the INTERCOM word (lfn + 5). The INTERCOM word makes ASCII 256 mode, ASCII 
128 mode, or multi-line reads available for terminal input/output. The user ID and user table address also 
appear in lfn + 5. 

EXTENDED LABEL PROCESSING (XL) (bit 41 at lfn + 1) 

This bit affects processing of labels on magnetic tape. Format to be used in the label fields in lfn + 10 
through lfn + I 2 depends on this setting. Standard label processing of required labels occurs when XL=O. 
If XL> I, the user can process optional labels, as described under Tape Label Processing later in this section. 

EXTENDED ERROR PROCESSING (XP) (bit 40 at lfn + 1) 

The upper 12 bits of FET word 7 (lfn + 6) detail errors indicated by bits 9-13 of FET word I if the XP bit 
equals I, as explained under FET Extension Pointer field. An error message is displayed on the B display 
and is written to the dayfile. If this bit is not set, the operator is informed of unrecovered errors and has 
the option of dropping or continuing the job. 

The EP bit must be set before control can return to the user OWNCODE to process these errors. Also; the 
UP bit must be set to gain control at end-of-volume. 

When XP is set, the FET extension pointer in word 7 (lfn + 6) must be set. 

EC (bit 39 at lfn + 1) 

111is bit is reserved for the operating system. 

NON-STANDARD LABEL (NS) (bit 38 at lfn + 1) 

Setting this bit to I indicates non-standard labels exist. All processing must be done by the user program. 
Non-standard labels are not supported on SI format tapes. 

INHIBIT lMPLIClT MOUNT (HM) (bit 37 at lfn + 1) 

This bit can be set to prevent implicit mounting of disk devices which would otherwise occur in situations 
such as disk overflow or new file assignment. 

FILE FLUSH (FF) (bit 36 at lfn + 1) 

Setting this bit to I indicates that a sequential scratch file will be flushed (unwritten data sent to mass 
storage) if the job ends abnormally. 

60493800 H 6-1 I 



DISPOSITION CODE (bits 35-24 at lfn + I) 

The values shown below are returned to the FET disposition code field when a file action request is issued 
with the FET length greater than the minimum. A file with a special name automatically is assigned the 
corresponding disposition code value when the file is created. 

Codes on LABEL or REQUEST control statements for tape files set these values in the FET: 

Code 

CK 
IU 
CI 
SY 
cs 

FET Value 
(Octal) 

xxOI 
xx02 
xx03 
xx04 
xx05 

Disposition 

Checkpoint 
Inhibit automatic unload of tape 
Checkpoint and inhibit unload tape 
Inform operator to save tape 
Checkpoint and save tape 

For rotating mass storage files, bits 35-24 of lfn + 1 are divided into four fields. The user cannot alter file 
disposition by changing this field. Rather, the DISPOSE or ROUTE control statement or macro must be used. 

6-12 

EC (bits 35-33) External characteristics: 

FET 
Value Special 

Code (Binary) Description File Name 

Default/default 000 Default print train/default punch 0 UTPUT /PUNCH 
character set 

--/EC=SB 001 Reserved/punch standard binary --/PUNCHB 
EC=A4/EC=80COL 010 ASCII 48-character print train/punch --/P80C 

free-form binary 
EC=B4/-- 011 BCD 48-character print train/reserved --/--
EC=B6/EC=026 100 BCD 64-character print train/punch 026 --/--
EC=A6/EC=029 101 ASCII 64-character print train/punch 029 --/--
EC=A9/EC=ASCII 110 ASCII 96-character print train/punch ASCII --/--
--/-- 111 Reserved for installations 

TID (bit 32) Terminal identifier which applies only to local files, not queue files: 

Code 

TID=C 
TID=id 

FET 
Value 

(Binary) Description 

Ignore remote ID in file routine 
0 Route file to remote user with terminal 

identification id 

60493800 c 



IC (bits 31-30) Internal: 

FET 
Value 

Code (Binary) 

IC= DIS 00 
IC= ASCII 01 
IC= BIN 10 
lC=TRANS 11 

DC (bits 29-24) Disposition code: 

FET 
Value 

Code (Octal) 

01 
02 
03 
04 
05 
06 

07 
PU 10 
FRt 20 
Flt 22 
HRt 24 
HLt 30 
PR 40 
LR 43 
LS 44 
LT 45 

LENGTH OF FET (bits 18-23 at lfn + 1) 

Description 

File format is display code 
File format is ASCII 
File format is binary 
File format is transparent 

(INTERCOM 5) 

Description 

Reserved 
Reserved 
Reserved 
Job ready for scheduling 
Job has tape requirements 
Job has tape requirements with VSN 

information 
Reserved 
Punch 
Film print 
Film plot 
Hardcopy print 
Plot 
Print on any available printer 
Print on 5 80-12 line printer 
Print on 580-16 line printer 
Print on 580-20 line printer 

Special 
File Name 

OUTPUT/PUNCH 
----/----
----/PUNCHB,P80C 
----/----

Special 
File Name 

PUNCH,PUNCHB,P80C 
FILMPRt 
FILMPLt 
HARDPRt 
PLOTt 
OUTPUT 

The system FET length is determined as follows: FET first word address + 5 + lgth = last word address + 1. 
The minimum FET length is five words (lgth=O). If the minimum FET is used, only the file name, 
code and status field, FIRST, IN, OUT, and LIMIT are relevant; other fields are not checked by the operating 
system. An FET of six words (lgth+ 1) is used if a working storage area is needed for blocking/de blocking. 
An FET of eight words (lgth+3) is used if the r bit is set, indicating an indexed file. Length is nine words 
(lgth=4), if OWNCODE routines are declared. 

t Supporting software must be supplied by the installation. 

60493800 H 6-13 



FNT POINTER (bits 48-59 at lfn + 4) 

The FNT pointer is set by the operating system, upon return from a file action request, to the location of 
the file entry in the file name table. The pointer is placed in the FET to minimize table search time and 
does not affect the program. In the case of a minimum FET, the pointer is not updated. 

RECORD BLOCK SIZE (bits 34-47 at lfn + 4) 

If the file resides on an allocatable device, the size of the device record block is returned in this field when 
the file is opened. It is given as the number of physical record units in a record block. If the number of 
PR.Us is not defined or is variable, the field is set to zero. Record block size is not returned if a minimum 
FET is used. 

PHYSICAL RECORD UNIT SIZE (PRU) (bits 18-33 at lfn + 4) 

The physical record unit size of the device to which the file is assigned is returned in this field when a file is 
opened. It is given as the number of central memory words. The PRU size is used by CPC to determine 
when to issue a physical read or write. PRU size will not be returned if a minimum FET is used. 

FIRST, IN, OUT, LIMIT (bits 0-17 at lfn + 1 through lfn + 4) 

The fields contain the beginning address (FIRST) and last word address + I (LIMIT) which define the file 
circular buffer. The IN and OUT pointers indicate the address of data placed into or removed from the 
buffer. System and programmer use of these fields is discussed under the heading Circular Buffer Use. 

WORKING STORAGE AREA (WSA) (lfn + 5) 

The two fields in this word of the FET specify the first word address (bits 30-47) and last word address + 
(bits 0-17) of a secondary buffer within the program field length. The area is needed to use the system 
macros READIN and WRITOUT, which blocks or deblocks records from the area into the circular buffer. 
READIN and WRITOUT relieve the user of responsibility for circular buffer pointer manipulation. 

INTERCOM (lfn + 5) 

If bit 42 (INT) of lfn + I is set, five fields are defined in lfn + 5. Bits 59-48 contain the user ID. Bit 23, 
if set by the user, specifies ASCII 256 mode. Bit 22, if set by the user, specifies ASCII 128 mode. Bit 19, 
if set by the user, specifies multi-line reads. Bits 17-0 contain the user table address. 

6-14 60493800 K 



DETAIL ERROR CODE (bits 48-59 at lfn + 6) 

When the XP bit is set to 1, this field contains extended tape error processing codes which give additional 
detail of abnormal conditions resulting from the last input/output operation. The user is responsible for 
clearing this field after reading it. 

Codes 1-77 (octal) are considered software warnings to the user; they are not results of hardware failures. 
The tape related codes and subsequent software warnings are as follows: 

Error Codes 
(Octal) 

24 
25 
27 

Error Codes 
(Octal) 

30 
31 
32 
33 
35 
36 
37 

Software Warning 

Read error in opposite mode 
Function not complete 
Record fragment possible 

Software Warning 

Data read exceeds MLRS/PRU size 
Multi-file set ill-formed 
Write attempt on protected volume 
Write at 200 bpi not allowed on 66X tape drive 
Multi-file name not found on multi-file device 
Next volume unknown 
File not allowed on assigned device 

Codes 100-177 (octal) are considered cases where the tape unit has lost position. These codes are as follows: 

Error Codes 
(Octal) 

100 
101 
102 
103 

60493800 L 

Position 

Position uncertain - data intact 
Position uncertain - data destroyed 
Physical/logical positions disagree 
Position uncertain - ready dropped during last operation 

6-15 



Codes 200-277 (octal) are considered, unit oriented errors. Switching physical tape devices allows the program 
to continue after repositioning. These codes and subsequent errors are as follows: 

Error Codes 
(Octal) 

200 
201 
202 
203 
204 
205 
206 
207 
210 
211 
212 
213 
214 
215 

Unit 

System error - tape table 
Hardware - unit hung busy 
Hardware - no end of operation 
Hardware density change during I/O 
Unit reserved by another buffer controller 
Loop fault 
Unable to read tape just written 
Marginal transport indication 
Lost data 
Multiple load points on tape 
No read after write 
Cold start 
Irrecoverable write reposition error 
Attempt to use downed unit 

Codes 400-477 (octal) are errors resulting from hardware failure between the PPU and the physical tape unit. 
These codes and subsequent errors are as follows: 

Error Code 
(Octal) 

' 6-16 

400 

402 
403 
404 

Data Path Error 

Hardware - 6681 or 6683 malfunction 

Hardware - 6681 failed, no data on IAN 
Hardware - transmission parity error 
System error 

60493800 L 



Codes I 000-1005 (octal) are errors resulting from a bad tape. These codes and subsequent errors are as follows: 

Error Codes 
(Octal) 

1000 
1001 
1002 
1003 
1004 
1005 

Tape (Medium) 

Tape parity error 
25 feet erased tape 
Blank tape read 
Incomplete erasure of tape bad spot 
Noise in IRG 
Erase limit reached 

Codes 6000-7777 (octal) are reserved for installations. 

Codes are combined meanings of the following bits: 

11 10 9 8 7 6 5 4 3 2 0 

I Re+d I TM I CE I U+L I D+E I DE I D+E I DE I 
TM Tape medium 

CE Controller error (controller, 6681, etc.) 

UE Unit caused error 

PL Position lost 

DE Detailed error 

The references to system noise record and last good record refer to procedures the system follows in recovery 
attempts. 

Detailed error codes allow a central processor program to take appropriate action when a non-user caused error 
occurs. For example, the message UBC IN FET TOO LARGE does not have a detailed error code because it 
is a user caused error. On the other hand, the message TAPE PARITY ERROR is assigned to a detailed error 
code because the condition is an external caused error. 

60493800 L 6-1 7 I 



The following errors will cause a parity error notification word to be inserted in the circular buffer at the 
position pointed to by IN. 

Error Code 
(Octal) 

24 
27 
1000 

Description 

Read error in opposite mode (binary/coded) 
Record fragment possible 
Tape parity error 

The format of the word is: 

59 35 1 7 

be ~ lvi 

be Block count. 

0 

!vi Last valid IN pointer before the error was detected. 

FET EXTENSION POINTER (bits 30-47 at lfn + 6) 

When the XP is set, pointer is the required address of an FET extension. Currently, the extension is limited 
to a single word, but the length (L) parameter anticipates future expansion. 

UNUSED BIT COUNT (UBC) (bits 24-29 of lfn + 6) 

The unused bit count field is used only for files in S or L tape format. (If the device type is not magnetic 
tape, this word will contain indexing information.) It is used for communication between the peripheral 
processor input/output routines and the user program. 

6-18 60493800 L 



For magnetic tapes with S or L data format, the structure of the word at Ifn + 6 is: 

59 29 23 17 0 

~UBC MLRS 

For a READ or READSKIP function, the operating system will store into this field the number of low-order 
unused bits in the last data word of the record. The UBC field is not used during a READN request. For a 
WRITE, WRITER, or WRITEF function, the operating system will read the contents of UBC and adjust the 
length of the record accordingly. The operating system does not use the FET UBC field during a WRITEN request. 

For example. to write a single record of 164 decimal characters, the data length is 17, to the next highest CM 
word. The number of low-order unused bits in the last word would be 36. The user would set UBC = 36. 
set IN and OUT pointers to reflect 17 words of data, and then issue a WRITE or a WRITER. 

For 7-track tape, the UBC may range from 0 to 59, but will always be a multiple of 12 when set as a result 
of a read operation. If it is not a multiple of 12 for a write request, the operating system will truncate the 
value to the nearest multiple of 12; if UBC is 18, the operating system will execute as though it were 12, and 
if UBC is 6, the operating system will execute as though it were 0. The field in the FET remains unchanged. 

For 9-track conversion mode tape, each 6-bit character in memory is converted to an 8-bit character on tape. 
The UBC is set to allow an integral number of characters to be written or read. The UBC is set to a multiple 
of 6 bits as a result of a read operation. For a write request, the operating system will truncate the value to 
the nearest multiple of 6. If the UBC is 19, the operating system will execute as if it were 18. The field in 
the FET remains unchanged. 

For 9-track packed mode tape, four 6-bit characters in central memory are written as three 8-bit characters on 
tape; two central memory words are 15 tape characters. On a read, the UBC is set after an integral number of 
characters have been read from tape. If 3839 tape characters are read, 512 words are put in the buffer and 
the UBC is set to 8. If 511 words are written to tape, the operating system executes as if the buffer contains 
512 words and the UBC is 56. The fields in the FET remain unchanged. 

MAXIMUM LOGICAL RECORD SIZE (MLRS) (bits 0-23 of Ifn + 6) 

The MLRS field is applicable only for S or L format magnetic tape files. It defines the size of the largest 
physical record to be encountered when the S or L tape format is used. The size is given in number of 
central memory words. 

For S tape format, if MLRS = 0, the value of the maximum PRU is assumed to be 512 words. For L tape 
format, if MLRS = 0, the assumed maximum PRU is LIMIT - FIRST - 1 for standard reads. and LIMIT -
FIRST - 2 for READN. 

Since S and L tapes record size is defined in characters, instead of central memory words. the last word ma\ 
contain invalid data. Consequently, UBC is required to attest to the validity of all characters in this word. 

60493800 L 6-19 



RECORD REQUEST/RETURN INFORMATION (bits 0-29 of lfn + 6) 

If the file resides on a mass storage device and has the r bit set in word 2, indexing information appears in words 
7 and 8 for communication between the peripheral processor input/output routines and the user program. 

The record request/return information field is set to zero when the FET is generated. Both the indexing 
functions and the peripheral processor input/output routines set the field during random file processing. 

For other than the operating system indexing method, the following information is pertinent. At the start of writing 
a new system-logical-record, if the random access bit and the record request/return information field are non-zero, the 
latter field is assumed to contain the address of a location within an index. The PP routine inserts into that location 
(in bits 0-23) the PRU ordinal (starting from I) of the system-logical-record. To read the record again, the random 
access bit should be set to non-zero and the PRU ordinal should be entered in the FET in the record request/return 
information field. If the field is zero at the start of a request, then the file is treated as sequential regardless of the 
setting of the random access bit. 

RECORD NUMBER (bits 36-59 at lfn + 7) 

When an indexed file is processed, this field contains the ordinal of a record identified in the index. Records 
are numbered beginning with I. 

INDEX LENGTH (bits I 8-35 at lfn + 7) 

When an indexed file is processed, this field contains the number of words in the index. One word for each 
numbered record, or two words for each named record, plus a one-word header is required. 

INDEX ADDRESS (bits 0-I 7 at lfn + 7) 

This field contains the address of the index for a name or number index file. 

EOI OWNCODE ADDRESS (bits 30-47 of lfn + I 0) 

This field contains the address of a user supplied OWNCODE routine to be entered when end-of-information, 
end-of-device, or end-of-volume status is encountered during magnetic tape or device set processing. The UP 
bit must be set if user end-of-volume or end-of-device processing is desired. If an OWNCODE address is specified, 
CPC enters this routine when end-of-information is encountered regardless of the setting of the UP bit. 

CPC enters this routine when bits 9-13 of the code and status field is: 

QI End-of-information encountered after forward operation 

02 End-of-volume reached during magnetic tape forward operation 

02 End-of-device reached during device set processing 

Just before entering an end-of-information OWNCODE routine. CPC zeros bits 9 and IO of the first word 
of the FET. However, as the routine is entered, register XI still contains the first word of the FET as it 
appeared before those two bits were zeroed. 

6-20 60493800 L 



ERROR EXIT ADDRESS (bits 0-17 of lfn + 10) 

The field specifies an address to receive control if an error condition occurs after a file action request. The 
EP bit must be set to cause control to pass to this OWNCODE address. The FET code and status field will 
reflect the error condition. If processing can continue, the error routine should exit through its entry point; 
otherwise, an abort request may be issued. If the error address field is zero, the run continues normally. The 
FET code and status bits reflect the error condition upon normal return to the program. 

CS Bits 9-13 
(Octal) 

04 

10 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34-37 

Meaning 

Irrecoverable parity error on last operation; t or lost data on write. Unrecovered error 
other than device capacity exceeded on last magnetic tape operation. 

During a magnetic tape read, the physical record size exceeded circular buffer or maxi­
mum allowable PRU size (MLRS for S and L tapes). Such magnetic tape error is 
termed device capacity exceeded. During a mass storage write, all mass storage space 
meeting the file requirements was in use or otherwise unavailable. 

Additional error status returned. 

End of multi-file set. File position number is greater than that of the last member 
in the set. Any subsequent attempt to reference the file name assigned to 
the non-existent member will result in a fatal error. 

Fatal error. 

Index full. 

Interlock broken for shared rotating mass storage devices. 

Attempt made to read or write record number n of a random file, but n exceeds 
index size. 

Attempt made to read named record from random file, but name does not appear in 
index. 

Attempt made to write named record on random file, but name does not appear in 
index, and index is full. 

Function legal but not defined on device. 

Permanent file permission not granted. 

Function legal except for permanent files. 

No public set has the required attributes. 

Reserved for future use. 

tThis error will cause a parity error notification word to be inserted in the circular buffer at the position 
pointed to by IN. For further information, refer to Detail Error Code earlier in this section. 

60493800 L 
6-21 ' 



If both EOI and error routine execution are needed, the error routine is executed. Just before entering an 
error OWN CODE routine, CPC zeros bits 11-13 of the first word of the FET. However, as the routine is 
entered, register XI contains the first word (lfn + 0) of the FET as it appeared before those bits were zeroed. 

LABEL PARAMETERS (lfn + 11 through lfn + 14) 

Words at lfn + 11 through lfn + 14 of the FET may contain information pertaining to magnetic tape labels. 
The format and use of these fields depends on the setting of the extended label processing bit in word 2 
(lfn + 1 ). The LABEL macro generates fields for normal label processing. Further details appear under the 
Tape Label Processing heading. 

Parameters in these fields must be display code. If other than the LABEL macro is used to create them, display 
code zero may be used to add leading zeros to numeric fields. Character fields, which are left justified, may 
be display code blank filled. 

RESIDUAL SKIP COUNT (RSC) (bits 24-41 at P + 0) 

When XP is set and P is the address of the FET extension word, RSC is the residual skip count. If SKIPF, 
SKIPB, or READSKP functions do not complete the specified number of skips, the count of records yet to 
be skipped is returned here. RSC will have a value when SKIPB encounters beginning-of-information even 
when the UP bit is not set. If SKIPF terminates at end-of-volume because UP is set, RSC will be set. 

PERM BITS (bits 20-23 of P + 0) 

The setting of these bits will duplicate that of the permanent file permission bits in the file name table. 
Permission is granted when the bit indicated is set. 

Bit 

20 
21 
22 
23 

Meaning 

Read permission 
Extend permission 
Modify permission 
Control permission 

These bits are set when the user issues an OPEN function. 

EXTENSION LENGTH (bits 0-17 at P + O) 

The length of the extension, including word P, is required. This value must be 1. 

6-22 60493800 L 



Cl RCULAR BUFFER USE 

For each file, the user must provide one buffer, of any length greater than a PRU size. The buffer is called 
circular because it is filled and emptied as if it were a cylindrical surface in which the highest addressed loca­
tion is immediately followed by the lowest. The FET fields FIRST, IN, OUT and LIMIT control movement of 
data to and from the circular buffer. 

Data is transmitted in physical record units; their size is determined by the hardware device. For example, 
rotating mass storage has an inherent PRU size of 64 CM words; binary mode magnetic tape files in SI for­
mat are assigned a PRU size of 512 words. 

FIRST and LIMIT never vary during an 1/0 operation; they permanently indicate buffer limits to the user and 
the operating system. 

The program that puts data into the buffer varies IN, and the program that takes it out varies OUT. During 
reading, the operating system varies IN as it fills the buffer; and the user varies OUT as he removes data from 
the buffer. During writing, the user varies IN as he fills the buffer with data, and the system varies OUT as 
it removes data from the buffer and writes it out. 

111e user cannot vary IN or OUT automatically except when using READIN and WRITOUT functions. To 
change these pointers within the program a new value is inserted into lfn + 2 (IN) or lfn + 3 (OUT). For 
convenience, the words containing IN and OUT contain no other items, eliminating the need for a masking 
operation. The system dynamically checks the values of IN and OUT during data transfers, making continuous 
read or write possible. 

If IN = OUT, the buffer is empty; this is the initial condition. If IN> OUT, the area from OUT to IN -
I contains available data. If OUT> IN, the area from OUT to LIMIT - 1 contains the first part of the 
available data, and the area from FIRST to IN - 1 contains the balance. 

To begin buffering, a READ function may be issued. One or more PRUs of data are put into the buffer 
beginning at IN, resetting IN to one more than the address of the last word filled after each PRU is read. 
Data may be processed from the buffer beginning with the word at OUT, and going as far as necessary, but 
not beyond IN - 1. The user must then set OUT to one more than the address of the last word taken from 
the buffer. He sets OUT = IN to indicate that the buffer is empty. 

When a READ macro request is issued, if the buffer is inactive and a read is not in process, CPC determines 
how much free space is in the buffer. If OUT> IN, OUT - IN words are free. If IN> OUT, (LIMIT - IN) 
+ (OUT - FIRST) words are free. The system subtracts 1 from the number of free words, because it never 
must fill the last word since it would result in IN=OUT and give a false empty buffer condition. If the 
number of free words minus 1 is less than the PRU size, CPC does not issue a physical read request; control 
is returned normally. 

The example below illustrates the use of IN and OUT pointers. Speed of operation is not considered; simul­
taneous processing and physical 1/0 are not attempted. The initial buffer pointer position is: 

FIRST = BCBUF 
IN= BCBUF 
OUT= BCBUF 
LIMIT = BCBUF + 500 

60493800 L 6-23 1 



The user issues a READ with recall request. Ignoring the possibilities of an end-of-partition, the system reads 
as many PRUs as possible (if PRU size is 64 words, 7 x 64 = 448 words) and leaves the pointers: 

FIRST = BCBUF 
IN = BCBUF + 448 
OUT= BCBUF 
LIMIT = BCBUF + 500 

The user is processing items of 110 words. He takes four items from the buffer, leaving the pointers: 

FIRST = BCBUF 
IN = BCBUF + 448 
OUT = BCBUF + 440 
LIMIT = BCBUF + 500 

The user issues another READ request since the buffer does not contain a complete item. The system is aware 
that IN> OUT, so that vacant space is LIMIT - IN + OUT - FIRST = 492 words; since it must not fill the 
last word, it must read fewer than 492 words. 

The nearest lower multiple of 64 is 7 x 64 = 448, so the system reads 52 words into IN through LIMIT - I, 
and then 396 more words into FIRST through FIRST + 395. It then resets IN so that the pointers look like: 

FIRST = BCBUF 
IN = BCBUF + 396 
OUT = BCBUF + 440 
LIMIT = BCBUF + 500 

The system has just used the circular feature of the buffer; now the user must do so. The next time he wants 
an item, he takes the first 60 words from OUT through LIMIT - I and the remaining 50 from FIRST through 
FIRST + 49. Then he resets OUT, making the pointers: 

FIRST = BCBUF 
IN = BCBUF + 396 
OUT = BCBUF + 50 
LIMIT = BCBUF + 500 

On input, this can continue indefinitely, with OUT following IN, around the buffer. The system stops on 
encountering an end-of-record or end-of-partition, and sets the code and status bits accordingly. The system 
may, or may not, have read data before the end-of-record; so it is up to the user to examine the pointers 
and/or process the data before taking end-of-record or end-of-file action. 

In writing, the process is similar, but the roles are reversed. The user puts information into the buffer and 
resets IN; and when he calls the system, it removes information from the buffer and resets OUT. For writing, 
the system removes data in physical record units and empties the buffer if possible. The user must be careful 
not to overfill the buffer; IN must not become equal to OUT. During the process of emptying the buffer, 
the operating system resets OUT after each PRU has been written and checked for errors. 

1 6-24 60493800 L 



ESTABLISHING OWNCODE ROUTINES 

The EOI address and error address fields in word 9 (lfn + IO) of the FET define user-supplied routines. CPC 
calls these routines when the UP or EP bits are set. 

An OWNCODE routine should be set up like a closed subroutine with execution beginning in the second word 
of the routine. CPC calls an OWNCODE routine by copying the exit word of CPC into the first word of the 
OWNCODE routine, putting the contents of the first word of the FET into register XI, and branching to the 
second word of the OWNCODE routine. Upon entry of the OWNCODE routine, the FET pointers are left 
positioned after the last good write operation and the file positioned after the bad PRU. 

Termination of an OWNCODE routine by a branch to its first word causes a branch to the point in the pro­
gram to which CPC would have returned if the OWNCODE routine had not been called. 

Although CPC clears status bits in the first word of the FET before the OWNCODE routine is called, the 
contents of this word can be examined in register XI. All registers used in the main program except Al, 
XI, A6, and X6 are saved and restored by CPC. 

TAPE LABEL PROCESSING 

The label processing that occurs for magnetic tapes is indicated by the XL bit setting, bit 4I of the second 
word (lfn + I) of the FET. Extended label processing is possible only when this bit is set. An explicit 
open is required. 

When the bit is off, the system generates output data and checks input data only for required ANSI, Z for­
mat, and Y (3000 series) format labels. Labels that are processed by standard processing (excluding Y labels) 
are label types VOLl, HDRl, EOFl, and EOVl. Default values are written if the user does not specity 
otherwise. 

Checking of the VOLl label of ANSI or Z formats ensures that the VSN requested for the job is the one 
assigned. 

STANDARD LABEL PROCESSING 

Only standard labels are processed when the XL bit is off. Any existing optional labels will be ignored. 

If the FET for the file is at least 13 words long, words 10-13 (lfn + I l through lfn + 14) hold file header 
label data in the following format. 

60493800 L 
6-2s I 



59 47 29 23 17 0 

First 10 Characters of Label Name lfn+l 1 

Last 7 Characters of Label Name Position Number lfn+12 

Edition Number Retention Cycle Creation Date lfn+13 

Multi-File Set Name Volume Number lfn+14 

L 1 I 

When input tapes are read, any user information in these fields is compared with that written in the HDRl 
label on the tape before the file is opened. A discrepancy in a label field stops job processing until the oper­
ator takes action to continue it. If a field is not specified in the FET, any value on the tape HDRl label is 
accepted. This checking cannot be done with an FET of less than 13 words, but any labeled tape will be 
accepted for processing. 

When output tapes are opened, any information in words 10-13 (lfn + 11 through lfn + 14) is used to create 
the HDRl label for the file. Otherwise, default values are written. If two OPEN functions with rewind are 
performed, the system retains the information written the first time. Thus, a label area supplies the label 
information regardless of which programs run afterwards. 

LABEL MACRO FOR FET FIELDS 

Fields in words 10-13 (lfn + 11 through lfn + 14) of the FET can be set for standard label processing by means 
of the LABEL macro. This macro must follow immediately the macro creating the FET to which it pertains. 
The LABEL macro generates data for VOLI and HDRl labels but does not directly cause any action on the 
file. 

lfn LABEL 

lfn 

labname 

ed 

ret 

create 

vol 

I 6-26 

lab name ,ed ,ret ,create ,vol,mfn ,pos 

File name used in FET creating macro. 

Label name or file identification of 1-17 characters; default is 17 blank characters. 

Edition number specifying file version of 1-2 decimal digits; default is 01. 

Retention indicator indicating the 1-3 digit decimal number of days the file is to be 
protected against accidental destruction; default is installation parameter. 

Creation data in format of two digits for year and three digits for dav fvvddd); default i• 

current date. 

1-4 decimal digits indicating volume within a multivolume set; default is 0001. 

60493800 L 



mfn 

pos 

Multifile name of 1-6 characters indicating the set to which lfn belongs; default is 
binary zero. 

Position number of 1-3 decimal digits indicating position of file lfn in multifile set 
mfn; default is 000. 

The macro expansion results in display code values with binary-zero fill for all parameters given. If a parameter 
is absent from the macro, it is binary-zero filled. Character fields are left justified; numeric fields are right 
justified. 

When a file header label is written subsequently using the FET fields, default values are assigned for any field 
containing binary zero. On the tape, character fields are display code blank filled and numeric fields are display 
code zero filled. The fields, as written on the tape, are returned to the FET. 

When the information in the FET is used to check existing labels, binary-zero fill characters will be converted 
to the display code blank appropriate for character fields or display code zero for numeric fields before com­
parison is made. Fields in the FET containing all binary zeros are not compared. Checking procedures com­
pare fields in the FET with those on the tape; not all fields in the FET need be specified; neither must the 
FET contain a value for all fields written on the tape. 

If the header label on the tape mounted does not match the FET fields, the operator can attempt to locate 
the correct tape and assign it to the job, or accept the mounted tape with nonmatching label fields. If the 
mounted tape is accepted, the values returned to the FET will reflect the header label on that tape. 

EXTENDED LABEL PROCESSING 

When the XL bit is set, a user label buffer, rather than the FET, is used to hold labels for processing. The 
system processes the required labels, and the user may process optional labels in the buffer. 

Buffer location must be defined in word I 0 (lfn + 11) of the file FET as foll-0ws: 

59 35 17 

Length of FWA of 
Label Error Code Label Buffer Label Buffer 

Within the buffer. each label must be preceded by a status word. 

59 47 35 23 11 

Characters 
in Label 

0 

0 

Only bits 0-11 should be set by the user to show the number of characters in the label. Remaining fields are 
set and used by the label processor. The last label should be followed by the status word containing zeros in 
bits 0-11. 

60493800 L 6-27 



Each label in the buffer appears, in display code, with the same format it has on the tape. Specific label 
field characteristics are discussed with Tape Labels in section 3. 

When input tapes are read, the label processor searches the buffer for a HDRI label. Any label information 
in the buffer is compared with that on the tape; any differences will require operator action. The system 
validates only the HDRI label; other labels are the user's responsibility. If a HDRI label in the buffer contains 
binary zero in any field, no label checking is done on that field. After an OPEN function is issued, all labels 
read by the system are delivered to the buffer, beginning with VOLI. 

When output tapes are generated, any user labels to be written must be present in the label buffer when an 
OPEN or CLOSE function is issued. The buffer may, but need not, include the system required labels. The 
operating system will generate the required labels if they are not present in the label buffer. VOLi labels in 
the label buffer will be ignored; HDRI labels in the label buffer will be used if they are appropriate at that 
point in file processing. EOFI or EOVI labels in the label buffer will be used if they are present when the 
CLOSE function is issued. 

For multifile set processing with the XL bit set and calls to the COMPASS macro POSMF, word I 0 (lfn + 11) 
of the FET must point a label buffer. One of the first entries in the buffer must be a formatted HDRI label 
with the multifile name in the set identifier field. The position number field in the label has four digits; 
a position number of 9999 is required to write a label. Labels are always written at the end of all existing 
files in the multifile set. 

6-28 60493800 L 



COMPASS INTERFACE WITH OPERATING SYSTEM 7 

USER/SYSTEM COMMUNICATION 

A user program can request action by another part of the operating system in several ways: 

A CYBER Record Manager macro can be called to create or manipulate a file. This results in a 
call to other operating system functions. 

A file action macro can be called. This results in a call to central program control (CPC) which posts 
a request in RA+ I to communicate with Monitor. 

The system communication routine SYS= can be called through various macros. 

Central processor subroutine CPC can be called through a return jump instruction. CPC then communi­
cates with Monitor. 

A request for PP program execution or system action can be placed in location RA+ I of the user field 
length to communicate directly with Monitor (CPMTR and MTR). 

These requests are necessary to perform all file action such as opening, closing, reading, or writing a file, in 
addition to receiving information such as current time or date from the system. 

BASIC COMMUNICATION: RA+1 REQUESTS 

All requests from the user program to the system are made through RA+! of the user program, which is 
initialized to zero. The system Monitor frequently examines RA+J during program execution. If RA+I is 
not zero, Monitor assumes that the contents are a request for a PP program or a system action, and initiates 
request processing. Executing an XJ instruction immediately after setting RA+I nonzero speeds up proces­
sing. Bit 59 of RA+66 is set if the XJ hardware is available. When Monitor processing is complete, RA+J 
is reset to zero. The requests to Monitor must be in the general format: 

Bit 42-59 

Bit 40 

Bit 36-39 

Bit 0-35 

3 display code characters of a PP program name. 

I if automatic recall is requested. With automatic recall, control is not returned to the 
calling program until the request is completed. If automatic recall is not requested, the user 
program must determine whether or not the request is complete by checking a status word. 

Zero. 

Parameters that are required by the particular function being requested. 

The user has the option of setting RA+l directly, or calling a system or file action macro that sets it. If the user 
sets it directly, the format must conform to that shown above. 

When Monitor accepts the request, it fills location RA+I with zeros. For all requests except RCL, TIM, ABT, or 
END, the zero means only that Monitor has accepted the request and has no relation to whether the requested 

60493800 J 7-1 



task is complete. A user program posts an RA+ 1 request, then loops until that location is zero, before 
proceeding with other code. The user should make sure that RA+l is clear before issuing a request. 

Task completion normally is noted by the change of bit 0 in a status word from 0 to 1. The address of the 
status word must be greater than RA+l and less than RA+FL. For requests made with automatic recall, the 
complete status bit is always set to 1 before control returns to the program, as explained below. Bits 0-17 of 
the RA+ l request points to the status word. For file action requests, this status word is the first word of the 
FET for that file. 

RECALL CONCEPT 
A recall request issued in a program causes Monitor to suspend the program execution for a while. The length 
of time that Monitor suspends the program execution depends on whether periodic or automatic recall was 
requested, as well as other system activity. 

Periodic recall puts the program in recall status for the amount of time specified in the request. If no period 
(that is, zero) is specified in the request, CPMTR supplies a default period of approximately 25 milliseconds. 
If a program calls a PP program without recall and issues a periodic recall request before that PP program 
completes, then when the first PP program does complete, the periodic recall is terminated regardless of the 
time remaining in the specified recall period. In addition, when a program is performing an RMS Input/Output 
operation without automatic recall, the program's periodic recall period is terminated whenever there is a change 
in the FET IN or OUT field that the system is updating. For RMS files, the system updates this field after 
each transfer of 64 words. 

Automatic recall (auto recall) causes Monitor to suspend execution of the program until the specified request is 
completed. The request must contain a status word address greater than RA+l and less than RA+FL. Recall 
status is terminated when Monitor detects that the complete bit (bit O) of the status word is set. For any non­
RCL request, the program is aborted with an AUTO-RECALL ERROR message if the complete bit is already 
set when the request is issued. 

With programs using recall whenever appropriate, central processor time for a job is minimized and overall 
system central processor use is improved. If a program cannot proceed until a requested task is complete, it 
can allow Monitor to assign the central processor to another job until such time as the task is complete. Recall 
is particularly useful when input/output tasks are considered. A programmer can request recall in four ways: 

RCL request to Monitor through program location RA+ 1. 

PP program call in RA+ I with recall bit set. 

RECALL macro request. 

File action macro with recall parameter. Any nonblank character establishes the recall parameter. 
R or RECALL can, but need not, be used. 

Central processor programs can post an RA+l request with the display code characters RCL in bits 42-59 and 
obtain periodic or auto recall depending on the setting of bit 40. If bit 40 is zero, then Monitor treats the 
request as a periodic recall request and uses the value in bits 0-10 as the recall period. This is the only way 
a program can issue a periodic recall request with a non-default recall period. The period is specified in qu2rter­
milliseconds ( 4096 quarter-milliseconds = I sec.), so the largest recall period that can be specified is 500 milli­
seconds; the shortest period is approximately 7 .5 milliseconds on a CDC CYBER 170 Series machine and approx­
imately 15 milliseconds on other machines. If a shorter period is specified in the request, the actual time 
suspended varies. If bit 40 is set to one, then it is an automatic recall request with bits 0-17 containing 
the address of a status word. It is expected that the complete bit in this status word will be set by some 
previously issued request (without recall) to terminate the recall status. If the complete bit is already set 
when the request is issued, then the request is ignored and the program continued. 
The RECALL macro results in periodic recall when no parameter list is given with the macro. If a file name is 
specified, automatic recall is produced. No separate status word is involved with periodic recall. The user pro­
gram must check the code and ~tatus field of the FET for complete status to determine whether program execu­
tion can continue. The RECALL macro will not exit to OWNCODE routines. 

7-2 60493800 L 



When file action macros arc used, automatic recall is requested by a recall parameter. Any nonblank character 
or string of characters can appear as this parameter. The characters RECALL arc often used, but a single 
arbitrary character is sufficient. 

The recall parameter can be specified for all the read and write macros except READIN and WRITOUT. However, 
the internal execution of these two macros ensures that automatic recall is always in effect. 

USING CPC 

Before CPC can honor a file action request, the file environment table (FET) must have been established for the 
file to be processed. Calling sequences to CPC can be generated either directly or through the use of system 
macro statements. 

The user communicates with CPC through macro requests and the FET. Communication with the operating sys­
tem is handled by CPC through setting and checking RA+l. CPC may also cause the execution of one or more 
user OWNCODE subroutines for which addresses are specified in word 9 (lfn + 10) of the FET. 

A normal exit is made from CPC if the request is honored and no error condition occurs. Register Xl contains 
zero upon exit. If the status is other than request completed, register Xl contains the code and status bits set 
in the FET before the OWNCODE routine was entered. 

Automatic recall should be used when the program makes an 1/0 or system action request but cannot proceed 
until that request is satisfied. Control is not returned to the program until that request is satisfied. Periodic recall 
can be used when the program is waiting for any one of several requests to be satisfied. In this case, the program 
is activated periodically so that the user can determine whether or not the program can proceed. 

CALLING SEQUENCE TO CPC 

Format of the calling sequence to the CPC subroutine: 

59 41 39 35 29 17 0 

x RJ CPC 

YYY n r ~ ~ w z 

RJ Return jump instruction 

CPC Entry point to the CPC subroutine 

r Set if auto recall requested 

If n=O (indicating a file action request), yyy is one of the following. 

CIO CPC generates a call to CIO. 

000001 Only file recall is desired. Display code characters RCL are generated in RA+!. OWNCODE 
routines are executed if appropriate. 

I 
000002 Used for most read or write functions. A function in progress is not reissued by CPC. 

the file becomes inactive, CPC issues a call to CIO. 
When I 

60493800 L 7-3 



000003 

000004 

Used for all other functions. When the file becomes inactive, CPC issues a call to CIO. 

Equivalent to 000003; included only for compatibility with previous systems. 
or 000007 

x SAl base address of FET. 

z Request code (one of the CIO codes listed in section 5). 

w Skip count for SKIPF, SKIPB, and BKSPRU; otherwise ignored. 

If n=l indicating other than a file action request: 

yyy Display-coded name of the called PP program 

x Not relevant 

z, w Parameters as required 

For file action requests, CPC places the CIO function request code in the code and status field of the FET before 
writing the request in RA+ I. Bits not specified in the calling sequence are reserved for future system use. A file 
action request to Monitor is formatted by CPC in RA+l as follows: 

59 41 39 35 17 0 

I [L--YYY-..L.l..-1+~~ _w ~I _addres-sof FET____.I 
A system action request to Monitor is formatted in RA+l as follows: 

I 1_59 -YYY___.__._ff ~i3_5 _w ~17 _z ____.I 

CPC EXECUTION 

Bit 41 of word 2 is set to 1 in the calling sequence of all requests except file action requests. This bit is 
actually a flag for CPC and has no relevance to either Monitor or the processing PP program. The setting of 
bit 41 causes CPC to recognize that the address given in Al is not relevant, and that the word following the 
return jump to CPC contains a properly formatted request. No additional processing is done on these requests, 
except for MESSAGE. The request is simply placed in RA+l. 

A request which utilizes an FET is signalled by a value of zero in bit 41 of word 2 of the calling sequence. 
CPC will in this case, do considerable processing for the user. The processing basically consists of three steps: 
wait until the FET is inactive; process any abnormal conditions; and initiate the new request. The high order 18 
bits of word 2 in the calling sequence may contain a numerical value rather than a PP program name. These 
values are of the form 2X + Y, where X represents the ordinal in a table of PP program names, and Y is 1 or 0 
to indicate whether or not the FET must be in3ctive before processing can continue. If a PP program name 
appears in these 18 bits, CPC waits for inactive FET status before initiating the new request. 

7-4 60493800 L 



I. Upon receipt of a file action request, CPC waits for previous activity on the specified FET to he com­
pleted unless the Y bit is zero; CPC requests automatic recall until FET word I contains an odd value. 
The Y bit is zero for READ, WRITE, and OPEN requests. If the request is OPEN, the assumption is 
made that no previous activity has occurred. READ and WRITE are handled specially. 

,., If the Y bit is one, the results of the previous operation are tested. A zero in bits 9-13 of the FET 
code and status field indicates there are no abnormal conditions and processing goes to step 3. However, 
if there are abnormal conditions but no OWNCODE addresses are given, the contents of FET word 1 (lfn+O) 
are saved for subsequent use as an exit parameter before processing goes to step 3. The error OWNCODE 
routine is entered if bits 9-13 have a value of 4 or higher (end-of-information or end-of-volume may also 
be present); the EOI OWNCODE is entered if the value is less than four. An OWNCODE routine is 
entered as though a return jump instruction was issued. Execution begins at the start address plus l. 
An exit from the routine will, however, return control to the main program, not to CPC. The request 
which triggered this activity may or may not have been issued; and the program must decide whether to 
reissue it. An OWNCODE routine is entered with Xl containing word 1 of the FET complete with bits 
indicating abnormal conditions; FET word 1 itself has been cleared of the abnormal bits. 

3. If the new request is for READ, WRITE or REWRITE, and the FET is already active with the same 
request, CPC exits, it would be pointless to stop the 1/0 merely to reactivate it. If, however, the FET 
is inactive or active with a different request, steps 1 and 2, preceding, are executed as a subroutine. If 
the new request is a READ, an additional check is made for end-of-logical record or end-of-partition 
status on the previous request; the new READ is ignored and an exit taken from CPC if either status 
is present. If a program is reading without recall, the user is forced to clear the logical record bit at 
the end of each record to ensure that he is aware of the e11d-0f-logical record. 

CPC now makes preparations to communicate the new request to the system. The new request code from 
word 2 of the calling sequence is inserted into bits 0-17 of FET word 1 at lfn + O; the old mode bit (bit 1) 
is not disturbed. The RA+ 1 request is formatted from the following items. 

PP program name obtained from the CPC calling sequence. 

Setting of the auto-recall bit in the calling sequence. 

First word address of the FET. 

RA+l is set and the CPC waits for a zero quantity to reappear. If the auto-recall bit was set, CPC executes 
step 2, preceding, as a subroutine. CPC then exits with Xl containing zero if no abnormal conditions 
(error code in FET equals zero) were encountered; otherwise, Xl contains the value from FET word 1 
(lfn + 0). 

CPC saves and restores all registers except Al, A6, Xl and X6. 

60493800 L 7-5 



LOCATIONS RA THROUGH RA+lOO 

The first 100 octal locations within a user field length are used for communication between the operating 
system and a user job. An additional word, RA+IOO, is reserved for loading purposes. Many of the words 
are applicable only to internal operating system routines, and can be ignored by the programmer. Several of 
the fields in this area are useful in COMPASS programming when macros are called. 

Figure 7-1 shows the communication area. Fields within it are: 

R Dependent job string recheck bit. 

A Job swapout to operator action queue (I = job will be placed under operation queue upon swapout 
regardless of job origin). 

0 Comment. from operator (CFO) flag (I = accept comment from operator). 

T Storage move flag (l = move being attempted). 

P Pause flag; when set, program will halt until the operator takes action and clears the flag with GO 
command; if MESSAGE is called when P is set, the message will flash on the B display. 

SS Sense switches 1-6 set by SWITCH statements or by operator command ONSWn. 

M If set, system has CMU hardware available for use, 

L Library /file flag ( 1 = name is library name). 

X If set, system has the XJ instruction available for use. 

JO Job origin (O=system, !=central site batch, 2=remote batch, and 3=terminal). 

D RSS flag for DIS (refer to NOS/BE Operator's Guide). 

C Load complete flag set when load requested by LOADREQ is finished . 

Locations RA+70 through RA+77 contain the control statement currently being processed. When a job step 
begins, the control statement verb is placed in bits 18-59 of RA+64, left-justified and binary-zero filled. 
The parameters are placed in bits 18-59 of RA+2 through RA+52, one parameter per word, left-justified 
and binary-zero filled. A parameter longer than seven characters is continued in the next word. A zero word 
marks the end of the parameter list. Bits 0-3 of each parameter word contain one of the following codes 
which indicates the separator or terminator that followed the parameter. 

00 Continuation 

01 

02 

03 I 

04 ( 

05 + 

06 

IO 

16 other 

17 . or ) 

7-6 60493800 H 



The number of words containing parameters (0-51) is placed in bits 0-17 of RA+64. 

Example: 

This example shows a user field length containing a fictitious control statement verb and parameters to illustrate 
separator and terminator codes. The statement ABC(Pl=LGO/FILE34*B,P3+09.2$-$;2( ,P5%LAST) appears in 
RA+2 through RA+ 77 as follows: 

Location Contents (Octal) 

RA+ 2 2034 0000 0000 0000 0002 
RA+ 3 1407 l 700 0000 0000 0003 
RA+ 4 0611 1405 3637 4700 0000 
RA+ 5 0200 0000 0000 0000 000 I 
RA+ 6 2036 0000 0000 0000 0005 
RA+ 7 3344 5735 5300 5500 0006 
RA+IO 5300 0000 0000 0000 0010 
RA+ll 3500 0000 0000 0000 0004 
RA+l2 0000 0000 0000 0000 000 I 
RA+l3 2040 0000 0000 0000 0016 
RA+l4 1401 2324 0000 0000 0017 
RA+l5 0000 0000 0000 0000 0000 

RA+64 0102 0300 0000 0000 0013 

RA+70 5555 5501 0203 5120 5534 
RA+71 5554 1407 1755 5006 1114 
RA+72 0536 3747 0256 2036 4533 
RA+73 4453 5735 5353 0055 5346 
RA+74 5353 5353 7735 5155 5620 
RA+75 4055 6355 1455 0155 2355 
RA+76 2455 5255 0000 0000 0000 
RA+77 0000 0000 0000 0000 0000 

Oisplay Code 
Equivalent 

Pl :::::::B 
LGO::::::C 
FILE34*::: 
B::::::::A 
P3:::::::E 
09.2$: ::F 
$::::::::H 
2::::::::D 
:::::::::A 
PS:::::::N 
LAST:::::O 
.......... .......... 

ABC::::::K 

ABC(P I 
=LGO /FIL 

E34*B,P3+0 
9$.2$$: $-
$$$$;2( ,P 
5%LAS 
T) :::::: 
·········· ·········· 

Control 
Character 

continued 

+ 

( 

other 
terminator 

When a control statement is read in response to a CONTRLC macro with the crack parameter, the same 
interpretation takes place except the verb is taken as the first parameter and placed in RA+2. Bits 18-59 
of RA+64 are not altered but bits 0-17 show the parameter word count of the new statement. 

Location RA+ 1 is set by the user, or macros called by the user, when a function is requested from the 
operating system. 

60493800 E 7-7 



59 

RA+O 

RA+1 

RA+2 

RA+53 

RA+54 

RA+63 

RA+64 

RA+65 M 

RA+66 X 

RA+67 

RA+70 

RA+76 

RA+100 

7-8 

Hardware 
Error Flag 

47 35 

P- Register 
When Error Occurred 

29 23 

User /System Interface 

17 11 5 0 

SS 

Parameters 
(left justified) 

(Reserved) Code 

I I 
I I 
I I 
I I 
I I . 
I I 
I I 

--------------------------~---------l-

1AJ Bootstrap for Absolute Programs 

File/Library Name 

LWA+1 of Loadable 
Area in ECS 

FWA of Loadable 

Control Statement Image 

Number of 
Parameter Words, 
starting in RA+2 

LWA+1 of Loadable 
Area in CM 

FWA of Loadable 

(Replaced by Operator Message If 0 Bit Set and CFO Type-In) 

Reserved for Loading Purposes 

Figure 7-1. Communication Area RA through RA+JOO 

60493800 L 



CDC CYBER RECORD MANAGER MACROS 

CDC CYBER Record Manager consists of a group of routines providing input/output facilities common to 
several products. User programs written in COBOL or FORTRAN can communicate with the Record Manager 
through compiler language calls; COMPASS programmers communicate through the macros listed below. 

CDC CYBER Record Manager supports the following file organizations. 

Sequential files in physical order 

Word addressable files on mass storage with continuous non-blocked data 

Indexed sequential files in which records are physically and logically in order by symbolic keys 

Direct access files containing records in fixed length blocks; record location is determined by hashing a 
key to identify a block 

Actual key files in which each record is stored in a location specified by the key associated with that 
record 

The operating system considers all the above types of organization as sequential files. None have name/number 
indexes similar to those discussed elsewhere in this manual. 

TI1e record and block formats supported by CDC CYBER Record Manager are listed below. 

Record 
Type 

F 

D 

R 

T 

u 

w 

z 

s 

60493800 H 

Description 

Fixed length records. 

Record length is given as a character count, in decimal, by a length field contained 
within the record. 

Record terminated by a record mark character specified by the user. 

Record consists of a fixed length header followed by a variable number of fixed 
length trailers, header contains a trailer count field in decimal. 

Record length is defined by the user for each read or write. 

Record length is contained in a control word prefixed to the record by CDC CYBER 
Record Manager. 

Record is terminated by a 12-bit zero byte in the low order byte position of a 60-bit 
word. Binary zero fill can precede the record terminator; thus, the record can end in 
12 to 66 bits of zero. 

Record consists of zero or more blocks of a fixed size followed by a terminating block of 
less than the fixed size. These S records are equivalent to the system-logical-records dis­
cussed elsewhere in this manual. 

7-9 



Block 
Type Description 

K All blocks contain a fixed number of records; the last block can be shorter. 

C All blocks contain a fixed number of characters; last block can be shorter. 

E All blocks contain an integral number of records; block sizes may vary up to a fixed 
maximum number of characters. 

A control word is prefixed to each block. 

COMPASS macros used by CDC CYBER Record Manager reside in the system text overlay IOTEXT; if system 
defaults are installed, macros also reside in overlay SYSTEXT. General macro names and functions are given 
below; specific variants of these macros are detailed in the Record Manager manuals along with other product 
capabilities. 

Macro Function 

File Creation and Maintenance Macros: 

FETCH Retrieves value of any field in FIT 

FILE Creates file information table (FIT) 

STORE Sets value in field of FIT 

File Initialization and Termination Macros: 

CLOS EM Terminates file processing; initiates label processing 

FLUSHM Flushes buffers as if the files had been closed 

OPENM Prepares a file for processing; initiates label processing 

Data Transfer Macros: 

CHECK Determines completion status of 1/0 operations 

GET Transfers data from file to working storage area 

GETP Retrieves a portion of a record from a file 

PUT Transfers data from working storage area to a file 

7-10 60493800 F 



Macro Function 

PUTP Transfers a portion of a record to a file 

File Positioning Macros: 

REWINDM Rewinds volume to beginning-of-information 

SEEK Provides overlap between I/O and processing by positioning while processing 

SKIP Repositions file backward or forward 

ST ART Positions a file to a record that satisfies a specific condition 

File Updating Macros: 

DELETE Deletes record from file 

REPLACE Replaces record in file 

Boundary Condition Macros: 

WTMK Records a tape mark on a tape file 

WEOR Records end of a section 

ENDFILE Records end of a partition 

A FILE control statement equivalent to the FILE macro also is available. 

Files created by CPC can be read or written by CDC CYBER Record Manager once they are properly described 
to Record Manager. Similarly, a file created by Record Manager can be read by CPC if the file structure con­
forms to that required by READ and WRITE macros. A file should not be manipulated by both Record 
Manager and CPC within a given run. 

The reference manuals for Record Manager contain details of its use. CDC CYBER Record Manager macros 
are not further discussed in this manual. -

60493800 L 7-11 



I 

SYSTEM COMMUNICATION MACROS 

Communication between the operating system and a program written in COMPASS is provided by the following 
macros. These macros exist within all of the COMPASS system text overlays CPCTEXT, IOTEXT, SYSTEXT, 
SCPTEXT, and CPUTEXT. 

SYSCOM MACRO 

This macro defines standard symbols and macros. 

SYSCOM Bl 

If Bl is present, the COMPASS pseudo instruction Bl =l is generated. This informs COMPASS that register Bl 
contains l throughout the program, and can affect the code produced by the R= pseudo instruction. The 
symbols listed below are made available for use by the user program. 

RA.SSW = 0 Sense switches in bits 11-6. 
RA.MTR = l System monitor request register. 
RA.ARG = 2 Start of control statement argument list. 
RA.PGN 64s Bits 59-18 = program name. 
RA.ACT 64s Bits 17-00 = argument count. 
RA.LWP = 65g Last word pointers for overlay load. 
RA.CMU 658 Compare move unit flag (bit 59). 
RA.FWP = 66s First word pointers for overlay load. 
RA.CEJ = 66s Bit 59 = central exchange jump enable flag. 
RA.LOR 678 Loader communication word. 
RA.CCD = 108 First word of control card image. 
RA.ORG = 1008 Origin of overlay header word for absolute programs. 

7-12 60493800 M 



SYSTEM MACRO 

This macro is. used for issuing system requests for which no specific system macro is provided. It is also used 
by many of the system action macros. Registers XI, X2, X6, Al, and A6 are destroyed during macro 
execution and should not be used as parameters. 

S't'STH1 name,recal1,p 1 ,p 2 

The SYSTEM macro generates the following in X6 and issue~ a return jump to SYS=. 

59 41 39 35 17 0 

I.____ _Nam_e _____ l+.......____I 0 I _P2 _[_P1 ____.I 

Name Display-coded name of PP program 

Optional recall parameter 

First parameter to PP program 

Second parameter to PP program 

The value of p 1 or p2 cannot exceed 377777 (octal). 

COMMON USES OF SYSTEM MACRO 

ABS is a system program used by a central processor program to dump absolute core. This request is done 
by issuing a call to PP routine ABS. The call to ABS can be issued with or without auto-recall either by 
using the SYSTEM macro or by placing the call in RA+l directly. If aut0-recall is not used, the program 
uses: 

SYSTEM ABS,,thru,from. 

If auto-recall is used, the programmer establishes a parameter word that contains the thru and from values. 
The format of the parameter word is: 

Bit 11-0 Zero-filled, bit zero used as complete bit 

Bit 29-12 Thru value 

Bit 47-30 From value 

60493800 L 
7-13 I 



The central processor program then uses: 

SYSTEM ABS,R,pointer to parameter word. 

DMP is a system program used by a central processor program to dump specified portions of field length. 
This request is done by issuing a call to PP routine DMP. The call to DMP can be issued with or without 
auto-recall either by using the SYSTEM macro or by placing the call in RA+ 1 directly. If auto-recall is not 
used, the program uses: 

SYSTEM DMP,,thru,from. 

If auto-recall is used, the programmer establishes a parameter word that contains the thru and from values. 
The format of the parameter word is: 

Bit 11-0 Zero-filled, bit zero used as complete bit 

Bit 29-12 Thru value 

Bit 47-30 From value 

The central processor program then uses: 

SYSTEM DMP,R,pointer to the parameter word 

REGISTER SAVE/RESTORE FUNCTION 

To save or restore registers, a program can issue a call for an XJR function through RA+l. This special call is 
processed entirely by central monitor (CPMTR). 

To issue the XJR call the program can use the SYSTEM macro as follows: 

SYSTEM XJR,R,addr,l 

XJR Name of system process. 

R Recall parameter. This call must be made with recall. 

addr Address of a 16-word parameter area to contain the exchange package. The format of 
this area is described with the DMP control statement. 

Save function requested; if omitted restore requested. 

For the save function, CPMTR saves the job's current exchange package in the parameter area. Registers XI, 
X2, X6, Al and A6 are destroyed by the SYSTEM macro and by the subroutine SYS=. 

17-14 (,()493800 L 



For the restore function, CPMTR sets up an exchange package containing XO-X7, B 1-B7, AO-A 7 and P from 
the parameter area. RA, FL, EM, RE, FE and MA registers come from the job's current exchange package. 
The result, then, replaces the job's current exchange package. Execution resumes at the address pointed to by 
P in the parameter area. This is the only safe way to set registers Al through A 7 to values outside the 
current field length. 

INTEGER DIVIDE Opdefs 

These opdefs provide for division of 48-bit integers. 

I Xi Xj/Xk 
I Xi Xj/Xk,Bn 

The integer quotient (fraction truncated) result in register Xi has sign extension in bits 59-48. The first form 
destroys register 87, and the second form destroys register Bn. The contents of Xj and Xk are the floating 
point normalized operands. 

SYSTEM ACTION MACROS 

The macros described in this section allow the user to receive status information from the operating system 
and to change some job parameters. Calling these macros from a COMPASS central processor program results 
in RA+ 1 requests for Monitor functions or PP programs. 

The macros reside in the following COMPASS system text overlays: CPCTEXT, IOTEXT, SYSTEXT, CPUTEXT, I 
and SCPTEXT. All of the system action request macros call the system communication subroutine SYS=, 
except as noted in the individual macro descriptions; these macros do not call CPC. The subroutine SYS= 
resides in the library NUCLEUS. 

Generally, the system action macros use registers alike; only registers XI, X6, Al, and A6 are destroyed. All 
registers except Xl and X6 can be used as parameters. Register XI can be used as the first, but not as the 
second, parameter. Register X6 cannot be used as a parameter. Exceptions are noted in the macro 
descriptions. 

ENDING PROGRAMS 

Programs can be ended by one of two macros: 

ABORT 

END RUN 

Abnormal termination 

Normal termination 

These functions result in a Monitor request for ABT and END, respectively; they are executed immediately by 
Monitor. 

ABORT MACRO 

The ABORT macro causes abrupt termination of the present program and if an EXIT, EXIT(U) or EXIT(S) 
does not appear among the remaining control statements, causes job termination. 

60493800 L 7-15 



ABORT lfn,p 1,p2 

lfn Position allows for SCOPE 2 compatibility. Any nonblank value in this field causes 
an assembly error under NOS/BE. 

Optional parameter. Characters ND in this field suppress the DMPX user dump. 
Characters NODUMP suppress the DMPX user dump and cause control statement pro· 
cessing to be resumed only after an EXIT(S) control statement has been encountered. 
EXIT, EXIT(C), and EXIT(U) control statements are skipped. Any other nonblank 
value in this field is ignored. 

Optional parameter. Character S in this field causes control statement processing 
to be resumed only after an EXIT(S) control statement is encountered. EXIT, 
EXIT(C), and EXIT(U) control statements are skipped. Any other nonblank 
value in this field is ignored. 

The DMPX user dump produced when p1 is blank (or any nonblank value except ND or NODUMP) shows the 
contents of the exchange package, contents of the operating registers, and memory locations near the location 
of the ABORT call. 

The effect of the various EXIT control statements on job processing and DMPX production after an ABORT 
call is shown in the following chart. Resume indicates that the statements following EXIT are executed; skip 
indicates that the following statements are not executed. 

ABORT Call DMPX EXIT. EXIT(C) EXIT(S) EXIT(U) 

ABORT Yes Resume End job Resume Resume 

ABORT ,ND No Resume End job Resume Resume 

ABORT ,ND,S No Skip Skip Resume Skip 

ABORT ,,S Yes Skip Skip Resume Skip 

ABORT ,NO DUMP No Skip Skip Resume Skip 

ABORT ,NODUMP,S No Skip Skip Resume Skip 

ENDRUN MACRO 

The ENDRUN macro is usally the last instruction to be executed in a user program. No parameters can be 
used with this request. 

END RUN 

Monitor causes the operating system to examine the control statements and begin processing of the next con­
trol statement. If the next control statement contains a 7 /8/9 multiple punch or is EXIT. or EXIT(S), the 
job is terminated. 

' 7 ·16 
60493800 L 



GETMC MACRO 

The GETMC macro obtains the characteristics of the mainframe on which the user's routine is executing. 

The format of the macro is: 

GETMC addr 

addr 

60493800 L 

Address of a word where the following information is returned. 

Bits 59-49 

Bit 48 

Bits 47-36 

Bits 35-24 

Bits 23-20 

Bits 19-18 

Bit 17 

Bit 16 

Bit 15 

Bit 14 

Bit 13 

Bit 12 

Bits 11-1 

Bit 0 

Reserved for software characteristics 

System assembled for 63-character set • 

ECS size/lOOOg. 

Number of PPs • 

Reserved for hardware characteristics. 

CYBER 170 Model 176 mainframt: flag: 

0 Not a 176 
1-2 Reserved 
3 Model 17 6 mainframe 

PPs running at 2x speed (CYBER 170 series only). 

CYBER 17x mainframe. 

CMU is present . 

CEJ /MEJ option is present . 

CPU 0 has instruction stack . 

CPU 1 is present. 

Memory size/2008 . 

Completion bit; must be set to 0 before execution. 
It is automatically set to 1 by the function processor 
when execution of the macro has finished. 

7-1 7 



I 

FIELD LENGTH REQUEST 

The amount of extended core storage or central memory assigned to a job can be changed by the MEMORY 
macro. The MEMORY macro can also be used to obtain the current ECS or central memory field length 
assigned to the job, obtain the maximum ECS or central memory field length available to the job, or release 
all ECS assigned to the job. 

Format of the MEMORY macro call: 

MEMORY type,address,recall,length,nabort 

type CM, SCM,t or blank, central memory request; ECS or LCM,t extended core storage 
memory request. 

address 

recall 

length 

nabort 

Address of request/reply word; if omitted, a PP-call error results. 

Optional recall parameter. If recall is specified, control is not returned to the user's 
program until the request is honored. Any nonblank parameter is acceptable. Recall 
is required on all requests for memory increases. 

Optional parameter giving number of words of field length requested. For ECS the 
maximum field length is 377 8 K. 

Optional parameter which averts a job abort if nonblank prevents job termination when 
requested field length exceeds field length defined on the job statement, or when other 
problems involving field length discrepancies occur in loading the user's job. If a non­
blank nabort parameter is used, and an ABORT cannot be prevented, the current field 
length is returned in bits 30 through 59 of the status word. [Memory is allocated in 
portion of 100 (octal) for central memory and 1000 (octal) for ECS.] 

Format of MEMORY macro request/reply word is two 30-bit fields. 

Bits 0-29 should always contain zero when the request is issued. Bit 0 is set to 1 upon completion of the 
request. 

If the length parameter in the MEMORY macro call is blank, the upper 30 bits of the request/reply word 
determine the action taken. 

If bits 30-59 contain zero, the current field length of the type specified in the macro call is returned right 
justified in bits 30-59. 

If bits 30-59 contain negative zero (7777777777 g) and the type parameter in the MEMORY macro call is ECS 
or LCM, all extended core storage assigned to the job is released. If a negative zero is given when the type 
parameter is not ECS or LCM, an error condition results. Also, the message MEM ARG ERROR is issued to 
the dayfile and the job is aborted. 

If bits 30-59 contain negative one (7777777776g) the maximum type field length available to the job is 
returned right justified in bits 30-59 of the request/reply word. 

tscM and LCM are allowed for compatibility with SCOPE 2. 

7-18 60493800 M 



Any value, other than those described above, in bits 30-59 of the request/reply word is assumed to be the 
field length desired; and this value is requested. If the request is satisfied, the field length is returned right 
justified in bits 30-59 of the request/reply word; and bit 0 of the request/reply word is set to l. The system 
rounds the user's field length to the nearest 100 (octal) central memory words or 1000 (octal) ECS words 
above the requested length. 

If the request cannot be satisfied and the nabort parameter in the MEMORY macro call was not blank, the 
current field length is returned in bits 30-59 of the request/reply word, and the job continues at that field 
length. If the nabort parameter was blank, the job is aborted. 

Because system routines may read ahead, field length should not be reduced to within four words of last used 
location. 

DAYFILE MESSAGES 

A message is always placed in the control point message area and optionally entered into the job or system 
dayfile with the MESSAGE macro. The control point message area is displayed on the operator console B 
display, and the dayfiles are displayed on the operator console A display. 

The message flashes for operator attention if its first character is $ or if the pause bit is set when 
MESSAGE is called (bit 12 of word RA+O). The MESSAGE macro calls the system communication sub­
routine MSG=. 

MESSAGE addr ,display ,recall 

addr 

display 

0 

2 

3 

4 

5 

6 

7 

8 or more 

LOCAL 

other 
nonblank 

recall 

60493800 L 

First word address of the message. 

Ordinal specifying message disposition. If omitted, default is 0. 

Enter in system and job dayfiles and control point message area. 

In control point message area only. 

Same as option I (for compatability with other systems). 

Enter in job dayfile and control point message area. 

Enter in CERFILE (system programs only). 

Dayfile accounting message (system programs only). 

Same as option 0 but do not send to user's terminal. 

Same as option 3 but do not send to user's terminal. 

Same as option l . 

Display on B display and record in job dayfile. 

Display on B display but do not record elsewhere. 

Optional recall parameter; if nonblank, MSG= constructs a status word. 

7-19 



I 

' 

Within the program the message must be stored in display code and should not contain any characters with display 
code values greater than 57 since these cannot be displayed on the console. Any display code value greater than 57 8 
or O is replaced with a blank (display code value of 558). Maximum message length of 80 characters is established 
by the dayfile processing routine: 40 characters appear on each line. Messages exceeding 80 characters are truncated. 
Those shorter than 80 characters must be terminated by a word with zeros in bits 0-11. The CERFILE option is an 
exception since the message length is always six CM words. It is assumed to contain binary data so no character checks 
are made. The data is entered in the CERFILE and nowhere else. 

RECALL MACRO 

RECALL causes the program to relinquish control of the central processor. The conditions that determine 
when the job regains control of the processor depends on the form of the macro used. 

Periodic recall results from: 

RECALL 

Control returns to the user program after a short period of time or when any PP program terminates processing 
for the job. Once control is regained, the user must determine whether the condition that required recall is 
still present. The RECALL macro calls the system communication subroutine RCL=, or CPC if CPCTEXT is 
used. 
Automatic recall results from: 

RECALL addr 

addr Address of a word (usually the first word of a FET) which has bit 0 set to 1 before 
control returns to the user program. If addr is zero and CPC is not used, control 
returns immediately to the user program. 

If CPCTEXT is used when addr is the first word of the FET and error or end-of-partition bits are set in the 
code and status field of the FET, control returns to a user OWNCODE routine if it exists. Such routines are 
established by setting the EP or UP bits and specifying OWNCODE addresses. If other texts are used for the 
assembly, the RECALL macro calls the system communication subroutine WNB= (wait not busy). 

Since recall may be entered when an input/output operation is initiated, the RECALL macro is needed only 
if some useful processing can be done in the time the input/output operation is being completed. 

STATUS INFORMATION 

TIME AND DATE MACROS 

The user can determine the date and time in several formats by accessing clocks kept internally by the system. 
Each of these functions calls the system communication routine SYS=. 

CLOCK Current system clock in hours, minutes, and seconds 

DATE Current date established at deadstart time when the system was loaded 

JD ATE Current date in format yyddd for year and date 

RTIME Real time clock maintained by Monitor, in fractional seconds 

TIME Central processor time allowed and used by job 

IOTIME Input/output time allowed and used by job. 

7-20 60493800 L 



Each of these functions requires the user to identify a status word. The system returns the requested informa­
tion before clearing location RA+ 1 to mark the function complete. 

The macros, and the format of the status returned, are given below. 

The system clock is that established when the operator loads the system. Display code hours, minutes, and 
seconds appear with periods and a leading blank as follows: 

CLOCK status 

59 35 17 0 

[ h h m m s s 

The date returned is that typed hy the operator when the system was loaded. Its format is display code, and 
generally is mm/dd/yy for month, day. and year: this order may he changed at installation option. A 
leading and trailing blank appear. 

DATE status 

59 35 17 0 

I m m I d d I y y 

Date in a format suitable for calculating elapsed days is returned with JDATE. Five display code characters 
appear in the low order position: the first two digits are the year. the last three the number of the day in the 
year. 

JDATE status 

59 29 0 

I Zeros I y y d d d I 
~The real time clock is that maintained by Monitor for purposes such as determining peripheral processor time used. 
The status word will show seconds in bits 12-35 and units of 4096ths of a second (244 9/64 microseconds) in 
bits 0-11. 

RTIME status 

59 

PP Queue 
Entry Count 

60493800 L 

47 35 0 

undefined Seconds Times 4096 

7-21 



' 

The job time limit is that requested on the job statement or assigned by installation default. Central processor 
time used is shown in seconds and milliseconds. 

TIME status 

59 35 11 

Time Limit (Seconds) CP Time (Seconds) Milliseconds 

The IO time limit is requested on the job statement or assigned by installation default. Used IO time is 
shown in seconds and milliseconds. 

IOTIME status 

59 35 11 

10 Time Limit (Seconds) 10 Time (Seconds) Milliseconds 

STATUS MACRO 

0 

0 

l11e STATUS function provides a user program with information about system resources. Two types of infor­
mation are available depending on the value of the x parameter as described below. 

The call to this macro is: 

STATUS list,x,recall 

list 

x 

recall 

7-22 

Address of a header word containing the length of the area in which status information 
is to be returned. The status area begins at list+ I. 

x = I maps available space on all public rotating mass storage devices. 
x = 2 returns system information concerning files assigned to the user program. 
x = 3 PRU count for a file (or files). 
x = 4 returns control point activity information to the header word. 
x = 5-777 reserved; 1000 to 7777 reserved for installation use. 

Optional recall parameter; any nonblank character. 

60493800 L 



Format of the header word for x = 1, 2, or 3 must be: 

59 

Zeros 

1--

List Length 

Length 
Return 

a 

47 35 23 11 0 

List Length Length Return (Reserved) Zeros a 

Number of words, excluding this header word, to be used for return information; 
must be set by user to other than 0. 

Number of status words returned; set by operating system when list is complete. 

Must be set to 0 before issuing a STATUS call. 

l11e header word is also the auto recall reply word; when bit a becomes 1, the request is complete. 

When x= 1, the system returns one word of information for each rotating mass storage device available with the 
default allocation flag set in the RBR. Format is: 

59 56 

0 Status 

Status 

Device Type 

EST Ordinal 

Chan 

Eq 

PR Us 

60493800 L 

47 35 23 17 11 0 

Device Type EST Ordinal Chan Eq Available PRU's 

9-bit binary field: 

000 Unavailable device 
020 Mounted device 
040 Dismounted device 
060 Idled device 

Hardware mnemonic in display code: 

AH 819 disk drive 
AJ 885 disk drive 
AX ECS resident files 
AY 844-21 disk drive 
AZ 844-41 disk drive 

Position of entry for device in equipment status table (12-bit binary field). 

Channel number by which device can be accessed. 

Equipment (controller) number to which device is connected. 

Number of PRUs, divided by 100 octal, of space remaining on the device; value of 
7777 indicates at least 262, 100 PR Us available. This value is not returned for ECS 
resident files. 

7-23 I 



When x=2, the status area contains one three-word entry for each file name, which should appear left-justified, 
zero-filled in the first word of each entry. If the file exists, the file name is replaced by the first three words 
of the file name table (FNT). If the file does not exist, the file name is zeroed out. Information in the 
FNT is used by some compilers. 

When x=3, the list length field in the STATUS macro list header word must specify two words for each file 
requiring size determination. The first word contains the file name, left-justified with zero fill. Upon return, 
the second word, bits 0 through 23, contains the PRU count for the file. 

When x=4, bit 0 (complete flag) in the header word must be zero initially, and all other bits are ignored. 
l11e PP program SIS processes the request. Upon completion, the following information is returned to the 
header word. 

59 

Short Term 
Activity Count 

47 

0 

38 35 0 

0 

Short Term 
Activity Count 

Sum of active PPUs (excluding the SIS program), stack results, and subsystem control 
point wait responses. 

Bit 38 Bit 38 is set equal to I to indicate a subsystem control point long-term connect. 

cfo Comment-from-operator flag; set equal to bit 14 of RA+O. 

p Pause flag; set equal to bit 12 of RA+O. 

Although this SIS request can be used by any program, it is required only by system programs involved with 
interactive debugging. 

FILESTAT MACRO 

The FILEST AT macro is an alternate for the STATUS macro: 

FI LEST AT list,recall 

This macro is equivalent to: 

ST A TUS list,2,recall 

GETACT MACRO 

The GET ACT macro is an alternate for the STATUS macro: 

GET ACT list,recall 

This macro is equivalent to: 

ST A TUS list,4,recall 

I 7-24 60493800 L 



FILINFO MACRO 

The FILINFO macro provides a user program with information about a file assigned to the user's control point. 
The general information, common to most files, is returned to a table (return block) whose standard size is 
five words. However, the size of this table is variable and additional information for tape files, if requested, 
is returned in extra key words in the return block after the standard five words. 

The call to this macro is: 

FILINFO addr 

addr Address of a table (FILINFO return block) to receive file information. 

Format of the header word must be: 
59 17 11 0 

addrl ~----F-il_e_N_a_m __ e ________________________ IL--L_e_n_gt_h ________ __.l~Z--er_o_s ____________________ ~l........,a) 
File Name A valid display-coded file name. 

Length 

a 

Table length including the first word. Must be at least 4. 

Must be set to 0 before issuing a FILINFO call (will be set to 1 when the operation 
is completed). 

When the operation is completed, the standard table will have the following format. If the file is not assigned 
to the user's job, the table entries will be zero. 

59 47 29 23 5 0 

addr + 1 Device Type Reserved (0) I Status I Ft 

addr + 2 Eq Reserved (0) 

addr + 3 NPRU I CPRU 

addr + 4 Reserved (0) 

60493800 L 1-2s I 



Device Type 

Status 

' 7-26 

Hardware mnemonic in display code: 

AH 819 disk drive 
AJ 885 disk drive 
AX ECS resident files 
A Y 7054/844-21 disk drive 
AZ 7054/844-41 disk drive 
CP 415 card punch 
CR 405 card reader 
DS Console display 
FM 254-2 microfilm recorder 
GC 252-2 graphics console 
HC 253-2 hardcopy recorder 
KB Remote terminal keyboard 
LM Link medium file 
lP Line printer (any) 
LR 580-12 line printer 
LS 580-16 line printer 
LT 580-20 line printer 
MT 667 or 677 magnetic tape drive 
NT 669 or 679 magnetic tape drive 
PL Plotter 
TP 3691 paper tape punch 
TR 3691 paper tape reader 

Bits 23-21 Sequential file position: 

23 End-of-information 
22 End-of-file 
21 Beginning-of-information 

Bits 20-18 Magnetic tape characteristics: 

20 Labeled tape 
19 9-track tape 
18 7-track tape 

Bit 17 File is open. 

Bit 16 File is connected to terminal. 

Bit 15 File is on mass storage. This bit is set when the device type 
field is zero (the file has not yet been assigned to a device with 
a REQUEST or the file has not yet been accessed with a GETPF). 

Bit 14-10 Reserved (0). 

60493800 L 



Ft 

Eq 

NPRU 

CPRU 

Bits 9-6 Permissions: t 

9 Modify 
8 Extend 
7 Write 
6 Read 

File type (6-bit binary field): 

00 Local scratch 
01 Input (file name is INPUT) 
02 Output (print disposition) 
03 Punch (punch disposition) 
04 Permanent file 
77B Other disposition 

Equipment number, the EST ordinal of the device (12-bit binary number). 

File size in PRUs (if mass storage file): 

Bits 59-36 
Bits 35-30 

PRU count 
0 

Current file position (if mass storage file) given as the number of PRUs+ 1 from 
beginning-of-information (beginning-of-information as indicated by PRU count=!): 

To request additional tape file information, the user must set up additional key words, each with a key value 
specified in bits 4-0 which corresponds to information desired. The key words begin at addr+S in the FILINFO 
return block and can be defined in any order. The table length contained in bits 17 through 12 of the header 
word must include the additional key words. The key values and corresponding information are as follows: 

Key Value 

0 
1 
2 

3-27g 
30g-37g 

Information 

Ignored 
Tape data format 
Error processing flag, label type, density, and conversion mode 
Reserved for CDC 
Reserved for installations 

tRead, extend, and modify reflect permanent file permissions for mass storage files. Write permission is set 
if either modify or extend permission is set. Modify, extend, and write permissions are set for magnetic tape 
files if the write-enable ring is present and cleared if the ring is absent. Read permission is set unless the file 
is a multi-file tape. 

60493800 L 
1-21 I 



Format of the additional key words must be: 

addr + 5 

addr + 6 

addr + 
(length -1) 

59 

0 

0 

0 

When the operation is completed, the FILINFO return block includes the additional key words which contain 
the additional information requested. Any key word with a key value of zero is ignored. Bit 5 in a key 
word is set if the specified key value is unknown to the operating system, not applicable to the file type, or 
if the file is not found. 

If the key value equals one, the returned key word will have the following format. 

11 5 4 0 

0 F 
I 

0
1 

F Bits 11-6 Tape data format: 

00 Reserved for CDC 
01 System internal (SI) 
02 Reserved for CDC 
03 Stranger (S) 
04 Long block stranger (L) 
05-77 8 Reserved for CDC 

If the key value equals two, the returned key word will have the following format. 

59 18 17 11 8 5 4 0 

I 
0 IE I Ltyp Dn Cv 

I 
0

1 
2 

I 1-28 60493800 L 

0 



E Bit 18 Error processing inhibited (if set) 

Ltyp Bits 17-12 Label type: 

00 Unlabeled 
01 Standard (ANSI 1969 Std.) 
02-108 Reserved for CDC 

118 Y label (3000 label) 
12g Z label 

138 Nonstandard (no tape positioning) 

148-67g Reserved for CDC 

708-778 Reserved for installations 

Dn Bits 11-9 Tape density: 

0 Reserved for CDC 
1 200 bpi (7-track) 
2 556 bpi (7-track) 
3 800 bpi/cpi (7- or 9-track) 
4 1600 cpi (9-track) 
5 6250 cpi (9-track) 

Cv Bits 8-6 Conversion mode:t 

0 External BCD conversion 
1 ASCII conversion 
2 EBCDIC conversion 
3-7 Reserved for CDC 

GETJCI MACRO 

The GETJCI macro allows a user program to transfer the job control information used by CCL to a speci­
fied location in the job's central memory field length. Job control information fields can be changed by 
executing the GETJCI macro to obtain the current fields, modifying the appropriate fields, and then executing 
the SETJCI macro to save the new fields in the system area. 

The call to this macro is: 

GETJCI addr 

addr Address of a 2-word table. 

tConversion mode of labels (if any) or of coded data (if any). This does not indicate whether the data on 
the tape is coded or binary. 

60493800 L 7-29 I 



Format of this header word must be: 

59 53 

•dd, I EFG 

•dd<+1 EF 

EFG 

RIG 

CCLDATA 

EM 

SSW 

a 

35 

RIG CCLDATA 

R3 R2 

Contents of global error register .t 

Contents of global registed 

23 17 

1M 

Contents of CCL register, for CCL use only (read by GETJCI). 

R1 

Value of error mode, set only by mode statement (read by GETJCI)J 

11 

SSW 

Value of sense switches, set by SWITCH statement or by by SETJCI macro: 

Bit 6 Switch 1 
Bit 11 Switch 6 

5 

Completion flag; must be set to 0 before execution. Set to 1 when function is 

complete. 

0 

. I 

EF Value of error flag. (If not set by the user, the system sets EF when the job aborts. 
If set to a non-zero number by the user, EF is saved by the system but does not 

cause job abort.) 

' 

R3-Rl 

SETJCI MACRO 

Contents of local registers.t 

The SETJCI macro allows a user program to transfer the job control information used by CCL from a speci­
fied location in the job's central memory field length. Job control information fields can be changed by 
executing the GETJCI macro to obtain the current fields, then modifying the appropriate fields, and executing 
the SETJCI macro to save the new fields in the system area. 

The call to this macro is: 

SETJCI addr 

addr Address of a 2-word table. 

t These registers are CCL symbol names. 

7-30 60493800 L 



Format of this header word must be: 

59 

addr 
IEFG 

I 
addr + 1 EF 

EFG 

RIG 

CCLDATA 

EM 

SSW 

a 

ef 

R3-Rl 

53 35 23 17 11 5 

RIG 

I 

CCLDATA I ; EM I sswl 
R3 R2 Rl 

Contents of global error register.t 

Contents of global register .t 

Contents of CCL register, for CCL use only (ignored by SETJCI). 

Value of error mode, set only by MODE statement (ignored by SETJCI).t 

Value of sense switches, set by SWITCH statement or by SETJCI: 

Bit 6 
Bit 11 

Switch l 
Switch 6 

Completion flag; must be set to 0 before execution. Set to l when function is 
complete. 

Value of error flag. (If not set by the user, the system sets EF when the job aborts. 
If set to a non-zero value by the user, EF is saved by the system but does not cause 
job abort.) 

Contents of local registers.t 

t These registers are CCL symbol names. 

60493800 L 7-31 

0 

·I 



' 

DEPENDENT JOB COUNT 

The dependency count of a job within a dependent string can be decremented from within a user program. 
This count also can be decremented by a control statement. Dependent jobs are explained in section 4 with 
the TRANSF description. Jobs in a dependent string do not execute until their dependency count is zero. 

The TRANSF macro is used to decrement the count of a job dependent on the currently executing job. 

TRANSF list 

list Beginning address of a list naming the jobs for which the dependency count is to be 
reduced. 

Names in the list should be left-justified with zero fill; the last word must be all zeros. 

READING CONTROL STATEMENTS 

With the CONTRLC function a central processor program can read or backspace within the control statements 
for the job. When the function is executed, the pointer to the next control statement is moved. The user is 
responsible for the resulting position of the control pointer. 

CONTRLC status,function,dfile,crack 

status 

function 

Address of a reply word. 

Control statement pointer repositioning: 

READ 

BKSP 

Move the statement image to RA+70 (octal) through RA+77 (octal) and 
change the pointer to point at the start of the succeeding control statement. 
The optional actions, described later, are done on the statement image in 
RA+70. 

Change the pointer to point at the start of the control statement preceding 
the current statement. 

dfile Optional dayfile indicator. If non-blank the statement image is to be sent to the dayfile 
when the function is READ. 

crack Optional parameter; any non-blank character. When the function is READ, non-blank 
parameters from the statement are to be placed in locations RA+2 through RA+53, aligned 
as shown below. 

The reply word also is used to pass the function code in bits 0-17. If the function type is specified as above 
in the macro call, the macro puts the code into the word. If the function field is blank, the user must put 
the proper value into the word. The following codes are used. 

000010 (octal) READ 000040 (octal) BKSP 

Bit 0 of the reply word is set to I when the function is complete. Bit 4 of the reply word is set to I if READ 
attempts to go past the last statement in the control statement record or in a CCL procedure. Bit 4 is also set 
to I if BKSP attempts to backspace past the job statement in the control statement record or past the procedure 
header statement in a CCL procedure. 

7-32 60493800 L 



If parameter cracking is requested, the parameters are stored left-justified with zero fill in bits 18-59, and a code 
indicating how the parameter ended is stored in bits 0-3. If the parameter is longer than seven characters, the 
first seven characters are stored with the 00 code and the parameter is continued in the next word. The word 
count is stored in bits 0-17 of RA+64 (octal). 

Processing stops when a terminator is found. The parameter ending codes are as follows: 

00 Continuation 05 Plus 

01 Comma 06 Minus 

02 Equals 10 Semicolon 

03 Slash 16 Other 

04 Left parentheses 17 Terminator 

In the cracking process, a statement is always considered to be a continuation statement. Blanks are always 
squeezed out and cannot be used to delimit the first parameter (keyword). Also the first parameter is always 
put in RA+2, the second in RA+3 (assuming the first parameter is less than eight characters), and so on. 

PROGRAM RECOVERY 

Two means are available to recover the results of a program that aborts during execution: 

The RECOVR macro can establish conditions under which control returns to the program after an error 
so that outstanding results can be saved or diagnostic information produced. The same results can be 
achieved by a direct RA+l call to RPV. 

The CHECKPT macro can call for a checkpoint during execution, such that the program can be restarted 
from the last checkpoint in the event of a subsequent abort. 

RECOVR MACRO 

With the RECOVR macro, a user program can gain control at the time when normal or abnormal job termination 
procedures would otherwise occur. Initialization of RECOVR at the beginning of a program establishes the con­
ditions under which control is to be regained and specifies the address of user recovery code. If the stated con­
dition occurs during program execution, control returns to the user code. 

RECOVR macro expansion calls the SETUP. subroutine. If necessary, the system increases the CP time limit, 
IO time limit, or mass storage limit to provide an installation defined minimum of time and mass storage for 
RECOVR processing. No limit is increased more than once in a job. A job can be recovered from only one 
operator KILL. 

RECOVR is concerned with conditions that affect job execution. The conditions under which control returns 
to the user, and the octal values that select them in the call to RECOVR, are: 

Arithmetic mode error 001 
PP call or auto-recall error 002 
Time or storage limit exceeded 004 
Operator drop, kill, or rerun 010 

60493800 L 

System abort 
CP abort 
Normal termination 

020 
040 
100 

7-33 



Conditions can be combined as desired, with octal values up to 177 allowed in the flag field of the call to 
RECOVR. 

At least 5 seconds of central processor time always are available for user code execution. RECOVR makes the 
exchange jump package and RA+ 1 contents available to the program if user recovery code is executed and gives 
the user the option of having normal or abnormal job termination output. 

Initialization of RECOVR within code at the beginning of a program results in an entry in a stack of requests 
for PP program RPV. Although RPV can be called directly by a Monitor request in RA+ 1, use of the 
RECOVR utility is preferable for all except stand alone system utilities because operating system routines 
themselves use this capability. Only one set of recovery conditions can exist within RPV, but RECOVR 
allows up to five user and system set of flags and code for each program. The last RECOVR initialization 
will receive control first. 

The second specification of a subroutine overrides its previous parameters. This override can be used to 
remove a subroutine from the RECOVR list by passing a mask of zero. 

A checksum of the user recovery code can be requested during initialization. If flagged conditions subsequently 
occur, RECOVR again checksums the code before returning control to it. This gives some assurance of user 
code integrity before it is executed. 

RECOVR is initialized from a COMPASS program with: 

RECOVR name ,flags,checksum 

name Address of code to be executed if flagged conditions occur; a return jump is made to 
this location. 

flags 

checksum 

Octal value for conditions under which recovery code is to be executed, as outlined 
above; default is 77. 

Last word address of recovery code to be checksummed; 0 if no checksum. 

If one of the flagged conditions occurs, three arguments are passed to the reprieve-time subroutine. Al contains 
the address of the argument list; XI contains the address of the first argument. 

A 17-word (decimal) array showing the program situation when RPV was called. The first 16 words 
are an image of the exchange package with the error condition in the BO field (refer to figure 7-2). 
The seventeenth word is the contents of RA+ 1. 

A flag that determines the type of program termination. If the user sets the flag nonzero, ENDRUN termina­
tion occurs upon completion of the last postprocessing subroutine. If the flag remains zero, the original error 
code and the exchange package are restored and the job continues as if RECOVR had not been called. Alter­
ing the exchange package passed as argument 1 prevents the correct completion of the restore, but does not 
impair system operation. 

I An array, starting at RA+l, that allows a FORTRAN subroutine to access all of the user's field length. 

7-34 60493800 L 



59 53 47 35 17 

AO BO 

A1 81 

A2 82 

A3 83 

ECS RA A4 84 

ECS FL A5 85 

MA A6 86 

EEA (CYBER 176 ONLY) A7 87 

XO 

X7 

Field Name Description 

EM Exit mode bits (all models except CYBER 176). 
N Hardware exit mode flag for the CYBER 170 only. 
M Hardware exit mode flag for all models. 

PSD Program status designator for the CYBER 176 only. 

Figure 7-2. Format of the Exchange Package Image 

'he subroutines called by RECOVR should return; if they do not, additional subroutine calls. if any, and 
he register/error flag restore is not performed. 

60493800 L 

0 

0 

2 

3 

4 

5 

6 

7 

10 

17 

7-35 • 



If a program calling RECOVR contains overlays, both the call to RECOVR and the user recovery code should 
be a part of the level 0,0 code. 

The error conditions and associated error codes and masks are: 

Condition 

Normal termination 
CP time limit 
Mode error 
PP program requested abort 
CP program requested abort 
PP call error 
Operator DROP 
Operator KILL 
Operator RERUN 
Control statement error 
ECS parity error 
Auto-recall error 
Hung in auto-recall 
Mass storage limit 
PP program not in library 
1/0 time limit 

Error Code 
(octal) 

0 
1 
2 
3 

4 
5 
6 
7 

10 
11 
12 
15 
16 
17 
20 
21 

RECOVR Mask 
(octal) 

100 
004 
001 
020 
040 
002 
010 
010 
010 
040 
020 
002 
002 
004 
002 
004 

I The FORTRAN language contains RECOVR subroutines as detailed in that reference manual. 

CALLI NG RPV DIRECTLY 

RPV should be called directly only by programs with complete control over all RPV requests that the routine 
issues. The RECOVR utility should be used in all other situations, because system-supplied routines such as 
a CDC CYBER Record Manager routine define (through RECOVR) their own reprieve routines. 

Two modes of reprieve processing are available with RPV, normal and extended. Normal mode provides the 
reprieve processing capabilities as described for the RECOVR macro. Extended mode provides all the 
capabilities of normal mode and the means of disabling external interrupts while the reprieve routine is active 
and resuming the interrupted program after the error has been processed. 

NORMAL RPV 

SETUP and RESET calls can be made with normal mode reprieve processing. Before an error is encountered, 
a SETUP call establishes the address of the reprieve routine and the classes of errors which cause control to 
be transferred to the reprieve routine. Following the processing of an error, a RESET call issued by the 
reprieve routine reinstates the error condition and allows system processing of the error as if the job had not 
been reprieved. 

7-36 60493800 L 



SETUP Call 

The RA+I RPV SETUP call has the following form. 

59 

RPV 

Mask 

fwa 

59 

'1 

lwa 

c 

Checksum 

60493800 L 

39 35 23 17 

l+I 0 I Mask I 0 
fwa 

Mask specifying the classes of errors for which the system initiates reprieve 
processing. 

First word address of a parameter list formatted as follows: 

29 

lwa 0 

Checksum 

Remainder of Area to Receive Exchange Package 

First Word of Reprieve Routine Code 

Last word address of user routine to checksum (0 if no checksum). 

Completion bit; 0 before the call; 1 upon completion. 

Set by RPV. Checksum of words fwa+21g (first word of user routine) 
through lwa. 

0 

0 

c fwa 

fwa +1 

7 t 

fwa +21 8 

7-37 I 



Upon detection of an error condition, the system initiates RPV to reprieve the job. If the error condition is 
in one of the error classes specified by the mask, RPV transfers control to fwa+21 g. RPV provides in for· 
mation about the error and the state of the interrupted program in the parameter block as follows: 

59 53 35 17 0 

0 p AO Error Code fwa 

't Remainder of Exchange Package ~ 

RA+1 Contents at Time of Error fwa +208 

First Word of Reprieve Routine Code fwa +218 

p Contents of the program register. 

AO Contents of the AO register. 

Error Code Code identifying the error condition which initiated reprieve processing. 

RESET Call 

The RA+ I RPV RESET call has the following form. 

59 41 35 0 

RPV 0 

RPV resets the error and exchange package from the fields, starting at fwa specified in the SETUP call. 

EXTENDED RPV 

SETUP, RESET, and RESUME calls can be made with extended mode reprieve processing. The SETUP and 
RESET calls perform functions similar to the SETUP and RESET calls for normal mode RPV. The 
RESUME call restores the exchange package and causes execution of the program to resume at the point at 
which the error was detected. 

I 7-38 
(i()493800 L 



The RA+ 1 RPV call has the following form. 

59 39 17 0 

RPV 1+1 0 fwa 

fwa First word address of a parameter list formatted as follows: 

59 35 29 23 17 11 9 0 

0 Length 0 Function c fwa +O 

lwa for Checksum Transfer Address fwa +1 

Checksum fwa +2 

New Mask Error Class Error Code fwa +3 

Pending Interrupts fwa +4 

Pending RA+1 Request fwa +5 

lnterrputed Terminal Input Request fwa +6 

0 Error Flag fwa +7 

Reserved for CDC ·Reserved for Installations fwa +108 

fwa +11 8 

7 Exchange Package '1 

" 
fwa +308 

i0493800 L 7-39 



Length 

Function 

c 

lwa for 
Checksum 

Transfer Address 

Checksum 

New Mask 

Error Class 

Error Code 

Pending 
Interrupts 

Pending RA+ 1 
Request 

Interrupted 
Terminal Input 
Request 

Error Flag 

Length of parameter block. Set by user. 

Function code. Set by user. One of the following. 

I SETUP call 
2 RESUME call 
3 RESET call 

Completion bit. Cleared by user; set to I by RPV upon completion of function. 

Last word address of user routine to checksum (0 if no checksum). Set by 
user. 

Address to which control is transferred when an interruption occurs (first word 
of user routine). Set by user. 

Checksum from transfer address through lwa of area to checksum (first through 
last word of user routine). Set by RPV. 

Mask specifying the error class for which reprieve is desired. Set by user. 

Mask bit which specified the class of the reprieved error. Set by RPV. 

Code of reprieved error. Set by RPV. 

Bit i set indicates system error flag i is pending. Set by RPV. 

RA+ 1 contents at the time of interruption. Set by RPV. 

If a terminal input request with auto-recall was in progress at the time of the 
interrupt, this field contains the reconstructed CIO RA+l request (0 if no 
interrupted terminal input). Set by RPV. 

Value of the system error flag at the time of interrupt. Set by RPV. 

Exchange Package Copy of the exchange package at the time of interrupt. Set by RPV. 

' 7-40 
~93800 L 



The error conditions and associated error codes and masks are as follows: 

Error Code Mask 
Condition (octal) (octal) 

Normal termination 0 0100 
CP time limit 0004 
Mode error 2 0001 
PP program requested abort 3 0020 
CP program requested abort 4 0040 
PP call error 5 0002 
Operator DROP 6 0010 
Operator KILL 7 0010 
Operator RERUN 10 0010 
Control statement error 11 0040 
ECS parity error 12 0020 
Auto-recall error 15 0002 
Hung in auto-recall 16 0002 
Mass storage limit 17 0004 
PP program not in library 20 0002 
I/O time limit 21 0004 
Reserved for Control Data 22-33 0400-1000 
Reserved for installations 34-37 20004000 
Terminal interrupt 40 0200 

fa a SETUP call, the user sets the new mask, the transfer address, and the lwa for checksum, and the user 
clears the pending interrupts, pending RA+l request, and the interrupted terminal input request. If a 
SETUP call has the pending interruptions, pending RA+ 1 request, or interrupted terminal input request set, 
these fields are processed in the same way that a RESUME call processes them (see the description of 
RESUME). 

Upon detection of an error, the system initiates RPV to reprieve the job. If the error condition is in one 
of the error classes specified by the mask, three possibilities exist. 

If the reprieve routine is active and did not generate the error (error codes 1, 6, 7, 10, 12, 17, 21, or 
40), the job is reprieved. RPV marks the error in the pending interrupts word, and the reprieve routine 
continues. 

If the reprieve routine is active and did generate the error, the job is not reprieved. 

If the error condition is not in one of the classes specified by the mask, the job is not reprieved. Also, 
the second occurrence of KILL, CP time limit, mass storage limit, or I/O time limit is not reprieved. 

60493800 L 7-41 



' 

A RESUME call directs RPV to restore the P, A, B, and X registers of the exchange package, pending RA+l 
request, and interrupted terminal input request and to transfer control back to the point in the program 
where the error was detected. However, if the pending interrupts word is non-zero, the reprieve routine is 
reinitiated to process the highest priority of the pending interrupts. The priority ordering of the interrupts 
is as follows: 

ERROR FLAG VALUE 

7 (Highest) 
10 

6 
12 
17 
21 

1 
11 
20 
15 
16 

5 
3 
4 
2 
0 

40 (Lowest) 

ERROR CONDITION 

Operator KILL 
Operator RERUN 
Operator DROP 
ECS parity error 
Mass storage limit 
1/0 time limit 
CP time limit 
Control statement error 
PP program not in library 
Auto-recall error 
Hung in auto-recall 
PP call error 
PP program requested abort 
CP program requested abort 
Mode error 
Normal termination 
Terminal interrupt 

When RESUME is used following the processing of an error, the error condition should be corrected. For 
example, after a reprieve for a CP abort, the pending RA+l request should be cleared before RESUME is 
called so that the RA+ 1 ABT request is not reissued. 

Caution is advised when using the RESUME call or depending on the disabling of interrupts. An interrupt 
can often cause premature termination of activities related to the execution of the CP program. 

Therefore, if a program requires a RESUME call after interruption and disabling of interrupts, it must avoid 
using any of the following. 

7-42 

Magnetic tapes 
Device set operations (PP programs: ADS, DUM, MNT, and DSM) 
Permanent file operations (ALTER, ATTACH, CATALOG, EXTEND, PURGE, and RENAME macros) 
Explicit file requests (REQUEST macro, and REQ PP program) 
DIS PP program 
Checkpoint/restart 
Job dependency processing (TRANSPF macro, and JDP PP program) 
Multi-mainframe file functions on files not yet transmitted 
Multiply-connected files 
PP programs: LBL, LDC, LDV, LDW, MDI, NSV, and XDQ 

60493800 L 



PP programs MNT and DSM can be executed implicitly as the result of other I/O operations. Before execution, 
the user should explicitly request possible mounts of all member devices used to avoid implicit mounts. After 
execution, the user may be required to explicitly request dismounts for dismounts that did not complete. 

Proper resumption of the program after an interruption and disabling of interrupts for activities related to the 
execution of the CP program are not guaranteed for an operator KILL. 

Normal mass storage operations always complete. The interrupted terminal input FET is left incomplete, and 
the FET address is available in the interrupted terminal input request word. 

Caution is advised when designing reprieve routines that issue RESUME calls to avoid alteration of the 
interrupted program, including the subroutine return address. 

REPRIEVE MACRO 

The REPRIEVE macro can call RPV directly. It issues an RA+ 1 request for extended reprieve processing. 
Programs that cannot call RPV directly should use the RECOVR macro. The request takes the following 
form. 

REPRIEVE addr,type,mask 

addr 

type 

mask 

Address of the extended RPV parameter block. 

Type of call (SETUP, RESET, or RESUME). 

Reprieve mask specifying the classes of errors for which the system initiates 
reprieve processing. 

The REPRIEVE macro inserts the parameter values into the corresponding fields in the parameter block. The 
values in the other fields of the parameter block are the responsibility of the user. Use of the macro destroys 
the contents of registers Al, A6, Xl, and X6. 

60493800 L 7-43 



I 

CHECKPT MACRO 

A checkpoint of the program and files in use is obtained with the CHECK.PT macro. The RESTART control 

statement is used to restart a job on the basis of information obtained from the checkpoint dump. See the 
CKP control statement for information about the checkpoint dump tape and other general information. 

An executing program would request checkpoint at various logical points, such as end-of-partition, x logical 
records processed, x seconds of elapsed time, etc. Checkpoint requests may be issued more than once. The 
request takes the following form: 

CHECK.PT param,sp 

sp Mass storage files to be processed. 

pa ram 

59 

cpn 

cpn 

n 

lfn 

7-44 

0 All files. 

Nonzero Certain standard files plus files in a parameter list. Assumed 0 if sp is not given. 

Address of a parameter list formatted as follows: 

addr+O 

addr+1 

addr+2 

lfnn fn 

Contains the checkpoint number unconditionally returned by CHECKPT. A zero value 
indicates no checkpoint was taken. 

Defines number of lfn entries in following list, to a maximum of 42 (decimal). 

Name of user mass storage files to be processed; left-justified display code. 

60493800 L 



f Octal number indicating specific manner in which lfn is to be processed. 

0 Mass storage file is copied from beginning-of-information to its position at check­
point time, and only that portion is available at restart. The file is positioned at 
the latter point. 

Mass storage file is copied from its position at checkpoint time to end-of­
information, and only that portion is available at restart. The file is positioned 
at the former point. 

2 Mass storage file is copied from beginning-of-information to end-of-information; 
the entire file is available at restart time. The file is positioned at the point at 
which the checkpoint was taken. 

3 The last operation on the file determines how the mass storage file is copied. 

When the manner of copying a mass storage file is to be determined from the last operation on the 
file, checkpoint derives f values from the last code status as follows: 

f = 0 if code/status ends in 4, 5, 6, or 7 or if code/status ends in 0, I, 2, or 3 and end-of­
information is set. 

f = 2 if code/status ends in 0, 1, 2, or 3 and end-of-information bit is not set. 

The following standard files, if they exist, are always copied to the checkpoint dump tape. 

File 

INPUT 
OUTPUT 
PUNCH 
PUNCHB 
LGO 
CYBER Control Language Internal Files 

Default Copy Type 

2 
0 
0 
3 
3 
2 

The default copy type may be overriden by including the file name in the parameter list. For any file to be 
copied which is in neither the standard file list nor the parameter list, the copy type is f=3. 

Generally, these values cause the entire mass storage file to be copied for: write operations, read operations 
resulting in end-of-information status, and rewind operations (excluding some OPEN functions). 

The checkpoint macro generates the following code in X6 followed by a return jump to SYS=. 

39 35 23 17 0 

CKP sp pa ram 

60493800 L 7-45 

I 



FILE ACTION MACROS 

Each of the following functions addresses a file by its file name. A file environment table must exist 
for the file before its residence and use can be specified. The FET creating macros may be used, or the pro­
grammer can construct his own FET conforming to the format expected by the system. 

When any file action request is issued, values are returned to the device type, disposition code, and FNT 
pointer fields in the FET. 

All these functions, with the exception of READIN and WRITOUT, expand to a sequence of code that 
includes a return jump to routine CPC. READIN and WRITOUT bypass CPC by calling the random indexed 
record processors directly. For the other functions, CPC will call the appropriate PP routines to carry out the 
function specified. 

Files manipulated by the following functions should not be manipulated by the functions described in the 
reference manual for the Record Manager within the same run. 

The macros which call CPC are contained in the CPCTEXT system text overlay. 

REQUEST MACRO 

File residence can be specified by a REQUEST control statement or macro, with the same results. 

File action requests must reference the file name (lfn) of the file. If the file is a member of a multifile set, 
all functions must reference the lfn of the set member. No function except REQUEST may be issued using 
the set name. 

The REQUEST function informs the system of file characteristics. 

REQUEST addr 

addr is the first word of a variable length parameter list constructed by the user. The list must be at least 
two words long; maximum length required is that which supplies the parameters indicated by bits set in the 
flag field. 

The parameter list must have the form shown below. The parameter list used with the REQUEST macro 
must be reinitialized after each call. Word 2 (addr+l), in particular, can be changed by the system during 
processing. 

Once the REQUEST function is completed, bit zero of the first word (addr+O) of the parameter list is set to 1. 
In addition, bits 9-13 of word 1 (addr+O) may show one of the octal codes listed under Status Return after the 
following Parameter List Format. If so, the REQUEST function has been ignored and control returned to the 
program. 

I 7-46 60493800 L 



Parameter List Format: 

59 

Flags 

File Name 

Status Return 

(' 

Flag Fields 

60493800 M 

47· 35 23 17 11 0 

File Name 
0 

(Status Return) 
C addr+O 

Flags 
De\1ice Type; 
Allocation 

Volume Serial Number (CDC reserved) 

Device Set Name P or K 

Magnetic Tape File Header Label Information 

Magnetic Tape File Header Label Information 

File name, left-justified, zero-filled. 

ECS Buffer 
Size 

Initially, user should set to zero. The system returns the following codes. 

22 If INTERCOM or graphics job, a non-allocatable device is 
specified or default density bit (bit 15) is set. 

If batch job, illegal device type is specified. (Refer to tzble 7-1 
following this section for legal device types.) 

User issued an RA+ 1 call for the REQ PP without setting the 
RECALL bit. 

24 File name table is full. 

26 Device of the requested type is unavailable. 

30 File is already assigned to a device; the device type code is 
returned to the device type field of the parameter list. 

Completion bit; set to I upon completion of REQUEST function. 

Each bit is a flag for a particular condition listed following the explanations of 
the parameter list fields. 

addr+l 

addr+2 

addr+3 

addr+4 

addr+n 

I 

7-4 7 



Device Type and 
Allocation 

Volume Serial 
Number 

Device Set Name 

ECS Buffer 

Bits 6-11 are the device type octal values listed in the device type table 
at the end of this section (table 7-1). Allocation styles of that device 
(except tape units) are installation defined. The allocation styles (bits 5 
through O) for tape units are the following: 

xx Seven-Track Nine-Track 

xxxxOO HI density 556 cpi Reserved for CDC 
xxxxOl LO density 200 cpi GE density 6250 cpi 
xxxxlO HY density 800 cpi HD density 800 cpi 
xxxxll Reserved for CDC PE density 1600 cpi 
xxOOxx Unlabeled Unlabeled 
xxOlxx SI standard U and Z labels SI standard U and Z labels 
xxlOxx 3000 Series label (Y) 3000 Series label (Y) 
xxllxx Reserved for CDC Reserved for CDC 
OOxxxx SI data format SI data format 
Olxxxx Reserved for CDC Reserved for CDC 
lOxxxx S data format S data format 
llxxxx L data format L data format 

Volume serial number identifying a particular device of a device set or a magnetic 
tape for automatic assignment. (Binary zeros in this field indicate a scratch tape.) 
When given, the VSN must be right-justified with display code zero fill. 

1-7 letters or digits of device set name left-justified, zero-filled, with the first char­
acter alphabetic. Bit 17 of word 2 (addr+ 1) must be set if this parameter is given. 

If the file is to be buffered through ECS, bit 33 of word 2 (addr+ 1) must be set. 
The size of the buffer must be in bits 0-11, with bits 12-17 showing a display cod1 
P if the size is in pages, or a K if the size is in thousands of words. 

Tape Label Fields Label information for normal or extended label processing, formatted as shown below. 
Normal label processing is assumed unless bit 49 of word 2 ( addr+ 1) is set. If 
either bit 48 or bit 49 is set and no VSN is specified, depending on the selection 
of installation options for automatic tape assigning capabilities, the magnetic tape 
identified by the file label name is used for automatic assignment. Edition number, 
creation date, and volume number need not be specified; if they are specified, they 
must match the fields as read from the label of the candidate tape. The file label 
name or the VSN must be present to allow automatic assignment. 

The flags are individual bits that should be set to 1 to indicate the following conditions; otherwise the bits 
should be 0. 

REQUEST 
Control Statement 

lit Equivalent 

57 IEC 

55 *Q 

53 NO RING 

52 RING 

51 MN 

50 A* 

7-48 

Meaning 

Inhibit hardware GCR write error correction. 

I = Assign file to queue device. Implies RMS device and causes automatic 
assignment. Not allowed for private device set. 

Write enable ring prohibited in tape. 

Write enable ring required in tape. 

Seven-track or nine-track tape can be assigned. 

Assign any RMS device. 

(i()493800 L 



Bit 

49 

48 

33 

32 

31 

30 

29 

28 

27 

26 

25 

24 

23 

22 

21 

20 

19 

18 

REQUEST 
Control Statement 
Equivalent 

none 

none 

EC 

ov 

PF 

us 

EB 

*prefix to device 
type 

none 

Meaning 

Parameter list words 5-9 have extended label processing format. 

Parameter list words 5-9 have operating system label format. 

ECS buffering with parameters set in word 4 (addr+3). (Private device set files 

cannot be ECS buffered.) 

Overflow allowed to different device if that specified in word 2 ( addr+ 1) is not 
available; if EP bit is set, a device capacity exceeded status is returned if no 
mass storage is available; permanent files overflow only to another permanent 
file device. OV implies RMS and forces automatic assignment. 

File must reside on a permanent file device. PF implies RMS and causes auto­

matic assignment. 

Nine-track tape conversion to ASCII codes. 

Nine-track tape conversion to EBCDIC codes. 

Device to be assigned by system rather than operator (OV, PF, A*, *Q causes 

bit 28 to be set). 

Format of operator flashing message; if set, contents of RA+70 through RA+77 
are displayed; if 0, REQ constructs the message from the REQUEST parameter 
list. 

When this bit is set, the flashing B display message is not put in either job or system dayfile. Also, since 
the request parameters are extracted from the parameter list, the operator may see a flashing message 
which bears no relationship to the actual request; and as a result, may assign an incorrect device. 

2 prefix to device 

VSN 

E 

NS 

NR 

z 

none 

MF 

Two magnetic tapes requested. (For two tape assignments, bit 28 and bit 25 
are cleared.) 

Word 3 contains a volume serial number for a magnetic tape or device set 
member. Bit 25 is cleared if bit 26 is set. 

Magnetic tape is labeled currently. 

Nonstandard labels on tape are considered data, not labels, by operating system. 
Not supported on SI tapes. 

Normal system tape read parity error processing is to be inhibited. 

Magnetic tape has Z format label of SCOPE 3 .3, with character 12 of VO Ll 
label establishing data density. 

Special return of error code to user; do not issue dayfile message or consult 
operator. FNT address is returned to word 2, bits 48-59. 

Reserved. 

Request is for a multifile set. 

60493800 L 7-49 I 



17 SN Set name for a device set. Must be set to 1 if device set name is specified 
in word 4. 

16 Reserved. 

15 absence of Magnetic tape is to be written at system default density. 
explicit density 

14 sv Output tape to be saved. 

13 IU Inhibit physical unload of tape. 

12 CK Checkpoint tape request. 

Format of the tape label fields depends on whether normal label processing is requested. The label fields 
must be in display code format, with acceptable values for each field, as detailed in section 3. 

Label information for normal processing: 

59 47 29 

File Label Name 

File Label Name 

Edition 
Retention Cycle 

Number 

Multi- File Set Name 

Label information for extended label processing: 

59 53 41 35 29 

7-50 

HDRl 

File Label Name 

a Multi-File Set Name 

b Position Number 

c Creation Date ( yyddd) 

a File label name continued. 

b Volume number continued. 

c Edition number. 

23 17 11 0 

Position Number 

Creation Date (yyddd) 

Volume Number 

17 11 5 0 

File Label Name 

Volume Number 

Generation Number c 

60493800 L 



Two dayfile messages result from a successful REQUEST function. The first. directed only to the operator. 
contains parameters corresponding to those used in the internal parameter list. After assignment, a second 
message is written to the job and system day files reflecting the assignment. For example, if a REQUEST 
function is made with dt set to zero, the operator display shows no device type. If the operator assigns a 
seven-track tape, however, the mnemonic MT appears in the job dayfile message. 

Conflicts between dt requested and dt assigned by the operator must be resolved by the operator using the 
n.YES or n.NO command. 

The following table lists the device types recognized as legal by REQUEST processing. Only device type 
mnemonics with the first letter A can be specified from an interactive terminal. 

TABLE 7-l. REQUEST LEGAL DEVICE TYPES 

Mnemonic Octal value Device 

AH 15 819 Disk. 
AJ 17 885 Disk. 
AX 20 ECS Resident. 
AY 13 844-21 Single Density. 
AZ 14 844-41 Double Density. 
CP 70 Card Punch. 
CR 60 Card Reader. 
FM 74 Microfilm. 
GC 72 Graphic Display. 
HC 73 Hard Copy. 
LR 53 580-12 Line Printer. 
LS 54 580-16 Line Printer. 
LT 55 580-20 Line Printer. 
~IT 40 Seven-Track Magnetic Tape. 
~IT 62 Seven-Track Multifile Set Tape. 
:\T 41 Nine-Track Magnetic Tape. 
:\T 63 Nine-Track Multifile Set Tape. 
TP 45 Paper Tape Punch. 
TR 44 Paper Tape Reader. 

60493800 L 7-51 I 



OPEN AND CLOSE FUNCTIONS 

Two functions are available for opening files: 

OPEN is applicable to all files. 

POSMF is applicable only to labeled multi-file tapes. 

Files can be closed with the following functions: 

CLOSE is applicable to all files. 

CLOSER is applicable to sequential files on tape or on a device set; it gives the user control over end­
of-volume processing. 

OPEN MACRO 

An OPEN function is a file initialization and status checking operation. The user must issue an OPEN if: 

Random files are to be processed by the user or system. 

User label processing is to follow. 

Sequential files are to be rewound without a REWIND function being issued. 

Otherwise, OPEN is not necessary. If an OPEN function is to be issued, it should be the first function issued 
on a given file; otherwise the effect of the OPEN function is undefined. 

OPEN lfn,x,recall 

The x parameter is the function to be performed. 

Parameter 

READNR 
READ 
REELNR 
REEL 
ALTERNR 
absent or ALTER 
WRITENR 
WRITE 
NR 

Function (With Octal Code) 

Read, no rewind (100). 
Read and rewind (140). 
Read reel, no rewind (300). 
Read reel and rewind (340). 
Alter, no rewind (120). 
Alter and rewind (160). 
Write, no rewind (104). 
Write and rewind (144). 
No rewind (120). 

READ, REEL, ALTER, and absent all perform identical functions and can be used interchangeably, as can 
READNR, REELNR, ALTERNR, and NR. 

7-52 60493800 L 



The WRITE or WRITENR values of x may be used to ensure that the file circular buffer is emptied if the 
job terminates abnormally before buffer contents have been transferred to an output device. The first data 
function following these OPEN functions must not then be a read or a forward motion function. 

If the value of x is READ, REEL, ALTER. WRITE, or absent, sequential files are rewound. Any other value 
of x does not reposition the file. 

When an OPEN is issued, the following events occur. 

For sequential files, file position is changed to beginning-of-information unless a no rewind is specified 
by using an x parameter ending in NR. The r bit in the FET is set to zero. 

For labeled magnetic tape files, processing depends on the presence or absence of the XL bit in the FET. 
If the XL bit is set, all labels are written from or delivered to the file label buffer. If the XL bit is off 
and labels are being written, the HDR I label is formatted from data in the FET label fields. If labels 
are being read (XL off), the HDR I label is returned to the FET label fields. 

For random files, if the r bit is set, any existing index is read into the index buffer. If the index 
record is shorter than the buffer, unused buffer space is set to zeros. If the r bit is not set, an existing 
index is not read. 

For all files, the physical record unit and record block sizes are returned to FET fields. 

POSMF MACRO 

The POSMF function positions standard labeled multifile sets. The multifile set to be positioned is specified 
by the multifile name in the name field of the FET. The named multifile set is positioned to a particular 
file and an OPEN with rewind function is performed. The position number is specified in the label field or 
label buffer. The position number specifies the file to be opened. 

POSMF mfn,recall 

mfn FET name of multifile set. 

recall Nonblank value if for auto recall; otherwise, blank. 

The position number is specified in either word l 1 (lfn+ l 2) of the FET or the extended label buffer, depending 
on the label processing to be performed. If normal label processing is to occur, bits 0-l 7 of word I I (lfn+ l 2) 
of the multifile name FET may contain the position number (position numbers begin with I for the first file). 
For extended label processing to occur, the XL bit must be set (bit 41 at mfn+l). The position number is 
expected to be in the ANSI standard position field of a record formatted as an HDRI label within the label 
buffer. A fatal error exists if HDRI is not found within the label buffer. 

If the position number is 0, the set is positioned at the beginning of the next file. OPEN procedures for an 
existing file follow. If the position number is 999 in the FET or 9999 in the label buffer, the set is positioned 
after the last member file and OPEN procedures instituted for a new file. 

End-of-set status (21 in bits 9-13 of mfn) is returned to the FET for the multifile set if the explicit or 
implied position number is greater than the last member of the set. The position field in the FET will 
be one greater than that of the last member file. 

60493800 L 7-5 3 

I 



CLOSE MACRO 

A CLOSE function is a file terminating operation. The user must issue a CLOSE if: 

Random files have been created or modified .and a valid index is to be saved. 

End-of-job procedures listed below are to be initiated for a file before the actual end-of-job. 

Otherwise, a CLOSE is not necessary. 

CLOSE lfn,x,recall 

The x parameter is the function to be performed. 

Parameter 

absent 
NR 
UNLOAD 
RETURN 

Function (With Octal Code) 

Rewind (150). 
No rewind (130). 
Rewind and unload (170). 
Rewind and return. For tape files, decreases the number 

of tape units required for the job (174). 

If the value of x is absent, UNLOAD, or RETURN, the file is rewound. NR specifies that the file is not to 
be rewound. Both of these positionings are possible only with sequential files; positioning is not defined on 
files for which an index is written. 

When a CLOSE is issued, the following events occur. 

For sequential files, position will be changed according to the rewind associated with the x parameter. 

For labeled magnetic tape files, action depends on the x parameter. If no rewind is specified and the 
file is positioned after a newly written record, a file mark and an EOP trailer label is written, then the 
file will be positioned immediately before the file mark. If the file is to be rewound and it is 
positioned after a newly written record, an EOP trailer label is written before the rewind is initiated. 

For unlabeled S and L tape files, four tape marks are written instead of an EOP trailer label. Otherwise, 
processing is the same as for labeled tape files. 

For random files, the index is written as the last system-logical-record if the FET r bit is set, an index 
buffer is specified, and file contents have been altered since the last OPEN function was issued. 

The user must empty the file circular buffer when files are being written; CLOSE does not empty the buffer. 

When CLOSE/RETURN or CLOSE/UNLOAD is issued, end-of-job processing procedures occur for the named 
file. 

Permanent files are detached from the job. 

For magnetic tape files, a CLOSE/RETURN decreases the number of tape units required by the job as 
indicated with the MT or NT parameter on the job statements. A CLOSE/UNLOAD does not decrease 
this value. A CLOSE/UNLOAD or CLOSE/RETURN function issued on a member of a multi-file set 
acts as a CLOSE/REWIND on that member. 

7-54 60493800 L 



CLOSER MACRO 

Processing of both magnetic tape and device set files continues across volume or device boundaries when data 
is skipped in a forward direction, read, or written. With the UP bit of the FET the user can request notifica­
tion when a boundary is about to be crossed; and volumes or devices can be processed in other than ascending 
order. 

The CLOSER function affords a degree of user control over processing at end-of-volume or end-of-device: 

CLOSER lfn,x,recall 

The x parameter is the function to be performed. 

Parameter 

absent 
NR 

UNLOAD 
RETURN 

Function (With Octal Code) 

Rewind (350). 
No rewind, although the result is the same as octal 

code 350 (330). 
Rewind and unload (370). 
Rewind and unload; do not swap reels (374). 

MAGNETIC TAPE PROCESSING 

For magnetic tapes, the system initiates volume swapping if the UP bit is 0 when CLOSER is issued. The file 
is positioned on the next volume and file operations can continue normally. An OPEN function is not required 
for the second volume, but may be issued if the program is to receive the header label contents. 

A volume swap is performed by the following steps. 

1. If the tape is positioned after a newly written record, a volume trailer label is written. 

2. The tape is unloaded and the operator is notified that processing on that volume is completed. 

3. If two units were assigned to the file, unit numbers are interchanged so processing continues with­
out changing tables refe~encing the unit. 

4. The volume number of a labeled file is incremented by one in the system label table and, if 
declared, in the user's FET label fields. 

5. The FET completion bit is set. End-of-volume status is not returned. 

If the UP bit is set to 1 when the CLOSER is issued for a tape file, the user may specify the next volume to 
be processed. The following occurs. 

l. If the tape is positioned after a newly written record, a volume trailer label is written. 

2. The tape is rewound or rewound/unloaded according to the CLOSER parameter. 

3. The operator is notified that processing on that volume is completed. 

4. If two units were assigned to the file, unit numbers are interchanged. 

5. The end-of-volume status and completion bits are set. 

60493800 L 7-55 



I 

To establish the next volume to be processed, the user must enter the volume number in the FET label field 
in bits 0-24 in word 13 (lfn+ 14) before another function is issued to the file. A following OPEN function 
is not required unless the program uses the header label of the new volume. 

When CLOSER/RETURN is issued, normal end-of-volume processing is performed regardless of the UP bit. 
Instead of swapping to the next volume as in the CLOSER macro, the file is returned {disassociated from 
the job). 

End-of-volume processing for CLOSER/RETURN is performed by the following steps. 

1. If the tape is positioned after a newly written record, a volume trailer label is written. 

2. The reel is unloaded according to the IU parameter on the REQUEST statement. 

3. The FET completion bit is set; end-of-volume status is not returned. 

4. The FNT entry is cleared and FET IN/OUT pointers are set to FIRST. 

ROTATING MASS STORAGE DEVICE PROCESSING 

For an RMS device, the operating system performs the following. 

1. If the file is at EOI and the last RBT word pair is not an overflow word pair, an EOI status {bit 
9) is returned in the FET and FST; and an overflow word pair is added at the end of the RBT 
chain. 

2. If the file is at EOI and the last RBT word pair is an overflow word pair, an EOI status is 
returned in the FET and FST. 

3. If the file is not at EOI but positioned on an overflow word pair, the current position in the FST 
is updated and points to the RBT word pair following the overflow word pair. 

4. If the file is not at EOI and is not positioned on an overflow word pair, the system skips to the 
next overflow word pair or to EOI {whichever it finds first) and then takes action as described, 
in steps 1 through 3. 

In all cases, the completion bit is set in the FET and FST and the end-of-device status {bit 10) is set in the 
FST. If the UP bit is set in the FET, then the end-of-device status is also returned in the CS field of the 
FET. 

Processing continues after executing the device assignment algorithm to select a device for continuation of 
the file. 

7-56 60493800 L 



READ FUNCTIONS 

Six read functions are available for bringing information into central memory. The functions, and the main 
distinctions among them, are: 

READ Applicable to all mass storage and tape files. Reading stops when the end of a 
physical record or the end of a system-logical-record of level 0-168 is encountered. 

READ NS Applicable to mass storage files only. Read does not necessarily stop at end-of-logical 
record. 

READSKP Similar to READ, but positions file to beginning of next logical record when the circular 
buffer is filled. 

RPHR Applicable to magnetic tapes in SI format only. Reads the next PRU delivering coded 
data in internal BCD codes (seven-track). For nine-track SI tapes, the data is read in 
packed mode and delivered with no conversion. 

READN Applicable to magnetic tapes in S and L data format only. 

READIN Applicable to all mass storage and tape files. 

All of these functions read information into the file circular buffer, with the amount of information read 
dependent on the specific function and the size of the buffer. As information is read into the buffer, operat­
ing system routines change the value of the IN pointer. This value, minus 1, is the address of the last word 
read. The user is responsible for using the IN pointer while removing information from the buffer, and for 
setting the OUT pointer to reflect the move, except when the READIN macro is called. READIN, like 
WRITOUT, relieves the user of responsibility for IN and OUT pointer manipulation. By means of a secondary 
buffer called a working storage area, READIN maintains circular buffer pointers. 

As processing progresses, status information is returned to the code and status field of the FET. If the user 
has the EP bit set, control returns to his program for OWNCODE routine execution when file action errors 
occur. Otherwise, the operator is notified and given the option to drop the job. 

The 18 bit code and status field will show the values listed below for the conditions that cause various read 
functions to terminate. Bits in the field have the purposes: 

Bits 14-17 
Bits 9-13 
Bit 4 
Bit 3 
Bit 1 
Bit 0 

System-logical-record level number 
File action error code 
End-of-logical-record indicator 
End-of-partition indicator if bit 4 is set 
Mode indicator: 0 for coded, 1 for binary 
Complete bit 

For binary files, the low order octal digit of the code and status is 3 instead of 1. 

60493800 L 1-s1 I 



Condition 

End-of-information encountered 

Zero-length PRU of level xx is read 

Level 17 8 system-logical-record or level 168 mass 
storage file read with READNS 

Next PRU will not fit into circular buffer 

Unrecoverable file action error code ee 

Code/Status Setting for Coded Files 

741031 

xx0021 

740031 

000011 

OeeOI l 

File action error codes are listed in the error exit address field in the FET discussion of section 6. 

When a read for a file is issued without recall, the IN pointer is updated as each PRU of data is moved to 
the buffer, allowing the user to remove data as fast as it is placed in the buffer. When the request is issued 
with recall, the pointer is not changed until the request is complete. For magnetic tape, the code status 
(bits 11, 12) is set for each record before the IN pointer is moved. Tapes can be read dynamically as 
follows: 

EP must be on. 

Check to determine if IN has moved; if not, repeat check. 

When IN has moved, check CS field for errors. If none, process record. If errors occurred, wait for 
complete bit to set. 

For S and L format files, the UBC field is set as a record is read. 

All the following read functions, except READIN, expand to a two-word sequence of code which includes a 
return jump to routine CPC. The READIN function expands to call routine IO or IORANDM, which calls 
CPC. 

Parameters appearing in the macros are: 

lfn File name 

recall Optional recall parameter of any letter or digit 

READ MACRO 

The READ function is applicable to all types of files. READ causes information from the specified file to 
be placed in the circular buffer for the file in central memory. 

READ lfn,recall 

7-58 60493800 L 



Reading begins as long as the circular buffer has room for at least one physical record unit. It continues 
until: 

The next PRU will not fit into the circular buffer. 

End-of-logical-record or end-of-partition is encountered. 

End-of-information is encountered. 

File action error occurs. 

For S and L tapes, one physical record is read. 

If the end-of-logical-record bit [bit 4 of word I (lfn+o) of the FET] is set when READ is called, CPC ignores 
the request. 

For S and L tapes, the unused bit count is returned to the UBC field in the FET word 7 (lfn+6) when the 
read is complete. 

READNS MACRO 

The READNS function is applicable only to mass storage files. A single READNS often results in more 
information being transferred to the circular buffer than a READ issued to the same file since reading does 
not necessarily stop at the end of a logical record. 

READNS lfn,recall 

Reading begins if the circular buffer has room for at least one physical record unit. Reading continues until: 

The next PRU will not fit into the circular buffer. 

Zero-length system-logical-record of any level is read. 

Level 168 or 17 8 system-logical-record is read. 

End-of-information is encountered. 

File action error occurs. 

READSKP MACRO 

The READSKP function is applicable to all types of files. READSKP is used to identify and skip records. 
Reading continues until an end-of-logical-record is encountered, or the circular buffer is full. Once the buffer 
is full, the file is repositioned to the beginning of the next record. READSKP is halted by any conditions 
which halt a READ. 

READSKP lfn,lev;recall 

lfn File name 

lev Optional level number 0-17g. Default value is 0. 

recall Optional recall indicator. 

60493800 L 7-59 

I 

1 



I 

If a level parameter lev is specified for SI tapes or mass storage files, information is skipped until the 
occurrence of an end-of-logical-record with a level number greater than or equal to the one specified. For S 
and L tapes, only a request with level 17 8 is recognized; any other level in the request is ignored. 

When the READSKP is executed, the end-of-logical-record bit [bit 4 in word I {lfn+O) of FET] is set, since 
an end-of-logical-record is encountered in the skip to the beginning of the next record. This bit must be 
cleared by the user program before a subsequent READ, but not a READNS, is issued. When EP=l, a READ 
error prevents the skip; and control returns to the user. 

For S and L tapes, the user should set the MLRS field before the READSKP is issued. If this field has a 0, 
the system sets it to 512 words for an S tape and to LIMIT-FIRST-I for an L tape. 

An end-of-volume condition on a magnetic tape file with the UP bit set terminates the skip of a READSKP 
even if the beginning of the next record has not been encountered. Otherwise, volume swapping takes place 
under system control. 

RPHR MACRO 

The RPHR function is applicable only to magnetic tapes in SI format. RPHR causes all information existing 
in the circular buffer to be discarded and the next PRU to be read into the buffer. 

RPHR lfn,recall 

For coded seven-track files, data is converted from external to internal BCD only. Conversion to display code 
is not made. No conversion takes place for nine-track tapes; the data appears as written. SI tapes are always 
written to contain exact multiples of central memory words by filling the last word with zeros. 

READN MACRO 

The READN function is applicable only to magnetic tape in S or L format. READN allows maximum tape 
throughput; as long as the user provides space in the circular buffer for two records and their header words, 
tape reading continues without releasing and reloading the read routine between physical records. This 
gives maximum utilization of interrecord gap time. The minimum buffer size for reading an S or L tape should 
be two words more than the maximum logical record size (MLRS field of the FET). 

READN lfn,recall 

Before this function is issued, the MLRS field of the FET [bits 0-17 of word 7 {lfn+6)] must be set to the 
largest physical record that will be encountered. File mode must also be set. 

Reading continues until: 

The next record will not fit into the circular buffer. 

End-of-file is encountered. 

End-of-information is encountered. 

File action error occurs. 

7-60 60493800 L 



The header word that precedes each physical record in the circular buffer is generated by the system; it does 
not exist on the tape. The format of the header word is: 

59 29 23 17 0 

-.,.:.,.:....__~_________....,.------U__........,.BC m..,....,.....,.C-M words___,, I 
CM words Number of 60-bit words in the physical record 

UBC Number of bits in the last word that are not valid data 

After each complete physical record has been placed in the buffer, the system moves the IN pointer to 
reflect both the header and data. 

READIN MACRO 

The READIN function is applicable to all mass storage and tape files. READIN employs a user-provided 
working storage area as well as the file circular buffer. The user deals only with data in the working storage 
area; the system handles the circular buffer and the IN and OUT pointers of the FET. 

Format of the READIN macro depends on the structure of the file being accessed. The second parameter is 
required only if the file is a random indexed file with a name or number index. 

When READIN is executed, data from the circular buffer is placed in the working storage area. The amount 
of information transferred depends on file mode: 

For binary files, READIN fills the working storage area unless an end-of-logical-record or end-of­
information is encountered before the area is full. 

For coded files, information is moved to the working storage area until a 12-bit zero byte in the low 
order bits of a word (end-of-line indicator) is encountered or the working storage area is full. When a 
zero byte is encountered, two blanks are substituted and the remainder of the area is filled with blanks. 
If a zero byte is not met before the working storage area is full, the remainder of the line is skipped. 
The next READIN request obtains the next line rather than the end of the first line. 

READIN issues calls to READ through CPC as needed. If the data in the buffer does not satisfy the 
READIN request, a READ with recall is issued. Therefore, the user does not gain control until his request 
is satisfied. 

If a working storage area is not specified, a READIN request has no effect, except as described below for 
indexed random files. 

READIN makes a check of the I/O progress immediately prior to returning to the user program. A READ 
without recall is issued if the circular buffer is not already busy and it is more than half empty, so that 
input/output is buffered with subsequent computing by the user program. 

60493800 L 
7-61 



I 

Sequential or random files are read with the following macro. 

READIN lfn 

When an end-of-logical-record or end-of-partition is encountered during a read of a sequential file, the user 
regains control immediately, with the Xl register showing the state of the request. Filling of the working 
storage area ceases. The next READIN request begins with the next record. 

Status information in the Xl register may be: 

Positive zero 

Positive non-zero 

Negative non-zero 

Requested number of words was read and the function completed normally. 

The working storage area was not filled because the remainder of the logical 
record contained too few words when the READIN was issued. XI contains 
the address of the first unfilled word, or if no data was transferred, the first 
word address. For coded files, this is always the first word address. 

No data was transferred to the working storage area because an end-of­
partition or end-of-information was encountered. 

When an indexed random file has named or numbered records, READIN positions the file to the desired 
record. 

READIN lfn,/name/ 

READIN lfn,n 

/name/ Name of record 

n Number of record 

When a READIN is issued for such an indexed random file, the current contents of the circular buffer are 
destroyed when the IN and OUT pointers are set equal. Then, the mass storage address corresponding to the 
record number or name is copied from the index into FET word 7 (lfn+6), and a READ request with recall is 
passed through CPC. On return from the READ, the procedures for a READIN without a name or number 
parameter are followed. If a working storage area is specified in the FET, the beginning of the record is 
copied into it and the FET pointers are adjusted. If no working storage area is specified, no further action 
occurs; however, the file has been positioned and reading of the desired record has been initiated by READIN. 

Any remainder of the record can be read by subsequent READIN requests that do not identify the record by 
name or number. After an end-of-logical-record is encountered on a random file, further READIN requests 
specifying only a file name will not initiate reading of the next record, as they would on a nonrandom file. 
To start reading the next record, or some other record on a random file, a READIN with a record name or 
number must be issued. 

When a record is located by a READIN request containing its name or number, the number of the record is 
stored in word 8 (lfn+7) of the FET, making it possible to read the next record with: 

READIN lfn,O 

7-62 60493800 l 



The system interprets this statement as record n+ 1. Consequently, by starting a new record with a request 
that identifies record number zero, the list of records as given in the index can be read. However, if the 
calling program did not stop before overshooting the end of the index, there would be an error return from 
READIN on the last+ 1 record. 

The code generated by the READIN macro depends on the second parameter. For no parameter, a name 
parameter, and a number parameter, respectively, the code is: 

59 29 17 0 

Executable Instructions RJ IOREAD 

0 lfn 

59 29 17 0 

Executable Instructions RJ IORR 

0 lfn 

name 0 

59 29 17 0 

Executable Instructions RJ IORR 

0 lfn 

0 n 

WRITE AND REWRITE FUNCTIONS 

Information is transferred from the file circular buffer to a storage device when one of the write functions is 
issued. These functions and the main distinctions among them are: 

WRITE 

WRITER 

60493800 L 

Applicable to mass storage and tape files; writes at end-of-information. 

Applicable to mass storage and SI tapes; writes a short or zero-length PRU to indicate 
end-of-logical-record. 

7-63 

I 



WRITEP 

WPHR 

WRIT EN 

WRITOUT 

REWRITE 

REWRITER 

REWRITEP 

WRITIN 

Applicable to mass storage and magnetic tape files; writes an end-of-partition indicator. 

Applicable to magnetic tapes in SI format only; writes a single physical record; the 
only write function that expects coded data in internal BCD format. No conversion 
is performed for nine-track coded tapes. 

Applicable to S and L data format tapes only. 

Applicable to mass storage and tape files; the only write function in which the system, 
rather than the user, manipulates the buffer pointers of the PET. 

Applicable to mass storage only; rewrites record of same length. 

Applicable to mass storage only; writes an end-of-logical-record indicator for a 
rewritten record. 

Applicable to mass storage only; writes an end-of-partition for a rewritten file. 

Applicable to mass storage file to be rewritten only; analogous to WRITOUT using 
REWRITE rather than WRITE. 

The system sets the OUT pointer when data is removed from the buffer. The user must manipulate the IN 
pointer as he places information in the buffer, as explained under Circular B~ffer Use in section 6. 

When S and L tapes are being written, the MLRS and UBC fields in the PET must be set by the user to 
indicate the size of the record before a write is issued. 

Status information and error codes are returned to the first word of the PET as the file is written. If the 
user has the EP bit set, control returns to his program for OWNCODE execution when file action errors 
occur. Otherwise, operator is notified and given the option to drop the job. 

Parameters that appear in the write macros are: 

lfn File name 

recall Optional recall parameter consisting of any nonblank letter/digit character string 

WRITE MACRO 

The WRITE function transfers information from the file circular buffer to the file storage device. WRITE is 
applicable to both mass storage files and tapes. 

WRITE lfn,recall 

For mass storage files and tapes in SI format, only full PRU's are written. The size of the PRU depends on 
the storage device. Writing continues until: 

The buffer is empty. 

Data in the buffer does not fill a PRU. 

7-64 60493800 L 



A following WRITER request will empty the buffer. 

For tapes in S or L format, only one record is written for each request. The length of the record is 
determined by the value of the IN and OUT pointers. If the record length exceeds the MLRS field value 
in bits 0-23 of word 7 (lfn+6) in the FET, the job terminates with an error. 

When a WRITE function is completed on any type of file, end-of-information (EOI) is established immediately 
after the position just written. Any information that may have existed beyond that point on the file is lost. 
When the FET random bit is on, the file is positioned at EOI before writing is done. On permanent files, a 
WRITE function is permitted only at EOI. 

A REWRITE function is used to modify data in the middle of a mass storage file, the WRITE function cannot 
accomplish such action. 

WRITER MACRO 

The WRITER function causes the circular buffer to be emptied and an end-of-logical-record indicator to be 
written. For mass storage files and tape files in SI format, a short or zero-length PRU is written. For S 
and L format tape files, WRITER is equivalent to WRITE. 

WRITER lfn,lev,recall 

lfn File name 

lev Optional level number 0-118. Default value is 0. 

recall Optional recall indicator. 

WRITER is processed the same as WRITE, with the following additions. 

For mass storage files and tapes in SI format, the data in the circular buffer is written out followed by 
an end-of-logical-record marker. A zero-length PRU is created if necessary; otherwise a short PRU exists. 
If the level parameter is present, it is included. If the buffer contains no data when WRITER is issued, 
a zero-length PRU is created. If the specified level number is 17 8 the system changes the WRITER 
request to a WRITEF. 

WRITEF MACRO 

The WRITEF function produces an end-of-partition. Any information in the buffer is written out before the 
end-of-partition is written. 

WRITEF lfn,recall 

For mass storage files and tapes in SI format, WRITEF produces a zero-length PRU of level 17 8. Data in the 
buffer is written out and terminated by a zero-level end-of-logical-record before the zero-length PRU is written. 
If the buffer is empty and the last operation was a WRITE, a zero-length PRU of level 0 is written before the 
level 178. 

For S and L tapes, data in the buffer is written to tape and followed by a physical tape mark. 

60493800 L 7-65 

I 

I 



I 

WPHR MACRO 

The WPHR function is applicable only to magnetic tape in SI format. It causes all information in the circular 
buffer, to a limit of 512 words, to be written as a single physical record. Data to be written to seven-track 
tape must be in internal BCD codes. Only internal to external BCD conversion is performed before writing; no 

conversion is performed for nine-track tapes. 

WPHR lfn,recall 

If the buffer contains fewer than 512 (decimal) words, the IN and OUT pointers in the FET are set equal 
when writing is completed to show an empty buffer. If the buffer contains more than 512 words, only the 
first 512 words are written. The IN and OUT pointers will be set by the system to show that more data 
exists in the buffer. Status returned is 10, indicating device capacity exceeded. 

A WPHR issued for any device other than magnetic tape in SI format is ignored. A 22 status is returned to 
show an illegal function call, terminating the job. 

WRITEN MACRO 

The WRITEN function is applicable to magnetic tape in S or L format only. It allows maximum use of the 
interrecord gap time as long as the user provides at least two records and their control words in the circular 
buffer. 

WRITEN lfn,recall 

Writing continues until: 

Buffer is empty. 

End-of-volume is encountered. 

File action error occurs. 

No action takes place if the buffer is empty. 

The user must provide a header word immediately preceding each record in the buffer. This header is not 
physically written on the tape. Its format is: 

CM words Number of 60-bit words in the physical record 

UBC Number of bits that are not valid data in the last word 

The system compares the MLRS and UBC fields in the FET using information from this header. 

The OUT pointer is not changed to reflect the move until after each complete record has been written to 
tape. The user should not move the IN pointer beyond the header word until the header and the complete 
record are in place, or an error will result. 

7-66 60493800 L 



WRITOUT MACRO 

The WRITOUT function is applicable to all mass storage and tape files. It employs a user-provided working 
storage area as well as the file circular buffer; when the buffer is full, the system issues a WRITE function to 
transfer data from the buffer to the file storage device. With random indexed files, the user has the option 
of using either WRITOUT to position a file and manage the circular buffer himself, or providing a working 
storage area and letting the system manage the buffer. Otherwise, the user deals only with data in the work­
ing storage area; the system handles the circular buffer and both the IN and OUT pointers of the FET. 

When WRITOUT is executed, data in the working storage area is transferred to the circular buffer. No record 
boundaries are assumed, with all data placed in the buffer by WRITOUT being considered a single logical 
record. Until the user issues a WRITER or WRITEF to empty the buffer, a single record exists. The system 
empties the buffer as necessary to accommodate new data being moved into the buffer. As with the READIN 
function, the system buffers input/output with computing by checking the buffer just before returning to the 
calling program, and issuing a WRITE without recall if the buffer is more than half full. WRITE functions 
with recall are issued when it is necessary to empty the buffer before carrying out the WRITOUT request, so 
that the WRITOUT function completes before control returns to the user program. 

The amount of data transferred from the working storage area to the buffer depends on the file mode: 

For binary mode files, the entire working storage area is transferred. 

For coded mode files, trailing blanks are removed and a 12-bit zero byte is inserted in the low order 
position of a word to indicate end-of-line. 

Sequential files are written with: 

WRITOUT lfn 

A WRITER function must be used to terminate a record. If a working storage area does not exist for a 
sequential or random file, the WRITOUT is ignored with no error indication. 

An additional parameter is required when the file has indexed records. To declare the beginning of an indexed 
record, one of these forms of the macro is used: 

WRlTOUT lfn,/name/ 

WRITOUT lfn,n 

/name/ 

n 

60493800 L 

Name of record 

Number of record; if n is 0, the number is one greater than the last number, with the first 
record being numbered 1 

7-67 



I 

To continue writing the same record, this form is used: 

WRITOUT lfn 

To terminate the record, the WRITER macro should be used, although the system issues WRITER under circum­
stances noted below. 

WRITER lfn 

An alternate method of processing indexed records is to use WRITOUT with a record identifier, then fill the 
circular buffer directly and issue a WRITE request without using the working storage area. A WRITER request 
is still needed to terminate the record. 

When a WRITOUT identifying an indexed record is issued, the system performs the following. 

I. If the buffer contains data from a previous WRITOUT or the last operation was a completed write 
rather than write end-of-logical-record, a WRITER occurs. 

2. The IN and OUT pointers are set equal to indicate an empty buffer, and the FET status is set to 
show that write was completed. 

3. The random file index and the eighth word (lfn+7) of the FET are set to the correct record. 

4. The working storage area is transferred to the circular buffer as the beginning of the new record 
identified in the WRITOUT. 

5. If the buffer contains at least one PRU of data, WRITE is called. 

When a working storage area does not exist for an indexed file or the length of the area is 0, the same 
procedures occur with the omission of any transfer of data to the buffer. 

The code generated by the WRITOUT macro depends on the parameter list. For no second parameter, a 
name parameter, or number parameter, respectively, the code is: 

59 29 17 

Executable Instructions RJ IOWRITE 

0 lfn 

0 

7-68 60493800 L 



59 29 17 0 

Executable Instructions RJ IORW 

0 lfn 

name 0 

59 29 17 0 

Executable Instructions RJ IORW 

0 lfn 

0 n 

REWRITE MACROS 

The functions REWRITE, REWRITER, and REWRITEF update records in existing mass storage files. A fourth 
rewrite function, WRITIN, can be used similarly to WRITOUT; it can be used in conjunction with REWRITE, as 
the WRITOUT function with WRITE, and the REWRITER function should be used to terminate the record 
rewritten. These functions do not change the total amount of mass storage assigned to the file, nor do they update 
any index which may be associated with the file. 

I 

I 

All of these functions call for writing in place, not writing at end-of-information. Since the system cannot deter­
mine the length of the original record, it offers no protection from overwriting or underwriting .and does not issue 
diagnostics when these conditions occur. The system guarantees only that a rewritten record does not extend 
beyond the file end-of-information, with writing taking place up to that point and a diagnostic issued if the pro­
gram attempts to go beyond that point. End-of-information is never moved. The index record existing at the 
end of random file is not protected. 

Rewrite functions are similar to WRITE. WRITER. and WRITEF. Parameters for the macros are the same. 

REWRITE lfn,recall 

REWRITER lfn,lev,recall 

REWRITEF lfn,recall 

The user is responsible for knowing file structure before and after the rewrite. A minimum of one PRU is 
transferred from the circular buffer to the file each time a rewrite function is issued. Writing always begins 
at the current file position. Therefore, the user must see that the file is positioned properly before writing 
takes place. 

60493800 L 
7-69 



I 

The amount of information rewritten for each call depends on the amount of information in the circular 
buffer, with the minimum amount being one PRU which may include a short or zero-length PRU. When a 
system-logical-record is to be replaced with a record of the same length in a single rewrite operation, RE­
WRITER should be used. A longer record may require REWRITE and REWRITER, depending on the buffer 
size. 

When "the new record is not the size of the original record, the· resulting file may have spurious records. Short 
replacement records, where the original record was contained in a single PRU, or the replacement record 
extends into the last PRU of the original record, do not cause difficulties. When the new record occupies 
fewer PRUs than the original, however, the end of the original record remains in the file. As an example con­
sider an original 120-word record occupying a full PRU of 64 words and extending 56 words into a second 
PRU. Replacing the record with 60 words produces a short PRU in place of 64 words or original data. The 
56 words of the second PRU of the original record remain in the file, since mass storage allocation never is 
changed by a rewrite. 

A similar condition is created when the replacement record extends beyond the PRUs of the original record. 
Since the beginning of the next record in the file is overwritten, its usefulness is destroyed, but the remainder 
of the record still resides in the file. 

When REWRITEF is issued, a zero-length PRU containing a level 17 8 is written. If issued when the file is 
positioned at any point, two level 17 8 indicators will exist on the file. 

When random files are being rewritten, the methods of writing and the results of under-writing or over-writing 
a logical record are the same as for sequential files. Index integrity can be destroyed by rewriting records of 
different lengths. The user must position the file properly before each record is rewritten. Otherwise, writing 
takes place at the current position. Subsequent rewriting operations rewrites the next record in the file, 
which is not necessarily the next index entry for the file. 

To position a random file for rewriting, the user may use one of two methods: 

Set up the FET the same as for a random read and insert the record address found by searching 
the file index into the record request/return field in the seventh word of the FET. 

For an indexed file with records identified by name or number, use the WRITIN function, which 
causes the system to search the user's index and set the necessary FET fields. 

Once the file is positioned to the beginning of a record, a REWRITE and REWRITER sequence or a WRITIN 
and REWRITER sequence can be executed without further repositioning. The record request/return field in 
the FET will be cleared by the first REWRITE or REWRITER that is issued by the calling program or 
WRITIN and remain cleared until repositioning for another record is required. 

WRITIN MACRO 

The WRITIN function applicable to mass storage files is a rewrite-in-place function similar to the rewrites. 
It assumes the user has full knowledge of file structure and knows the results of his actions. as explained 
with the rewrite functions. 

WRITIN is similar to WRITOUT in that it relieves the user of the responsibility of manipulating buffer 
pointers when a working storage area is provided. When the circular buffer has been filled from the 
working storage area. WRITIN issues a REWRITE. Handling of binary and coded data is the same as for a 
WRITOUT. Parameters for WRITIN, and results of its use, are the same as for WRITOUT. 

7-70 60493800 L 



WRITIN lfn 

WRITIN lfn,/name/ 

WRITIN lfn,n 

REWRITER is required to terminate a record, except when WRITIN or WRITOUT names another indexed 
record. In this case, a REWRITER of level 0 is forced before the new record is begun. 

If a working storage area does not exist when WRITIN is issued to a random or sequential file, the function 
is ignored with no error indication. For an indexed file without a working storage area, however, a WRITIN 
specifying a record name or number causes file repositioning to the beginning of that record. Therefore, the 
WRITIN function is useful before REWRITE or REWRITER. 

The code generated by the WRITIN macro depends on the second parameter. For no parameter, a name 
parameter, and a number parameter, respectively, the code is: 

59 29 17 0 

Executable Instructions RJ IOREWRT 

0 lfn 

59 29 17 0 

Executable Instructions RJ IORRW 

0 lfn 

name 

59 29 17 00 

Executable Instructions RJ IORRW 

0 lfn 

0 n 

POSITIONING FUNCTIONS 

Files can be repositioned forward with the SKIPF function, or repositioned in a reverse direction with BKSP, 
BKSPRU, REWIND, SKIPB, and UNLOAD. Any of these commands can be issued at any point in a logical 
record. If parity errors occur during repositioning, they are ignored. 

60493800 L 7 -71 

I 

I 

I 
I 



I 

SKIPF Skips records forward 

SKIPB Skips records backward 

BKSP Skips back single record 

BKSPRU Skips back single physical record unit 

REWIND Skips back to beginning-of-information 

UNLOAD Skips back to beginning-of-information and unloads 

Reverse functions other than REWIND stop at the beginning of the current volume of magnetic tape. No 
status returned to the FET indicates that beginning-of-volume has been detected before the requested number 
of backspaces was completed. However, if the XP bit (bit 40 of word 2 at lfn+ 1) is set, the number of 
skips yet to be made will be stored in the RSC field (bits 24-41) of the FET extension. 

If a magnetic tape file is positioned immediately after a newly written record when a reverse motion function 
is issued, trailer label procedures are executed before the function is performed. Four tape marks are 
written if a trailer label format is not defined. 

SKIPF MACRO 

SKIPF causes one or more system-logical-records, or physical records of an S or L tape, to be bypassed in a 
forward direction. 

SKIPF lfn,n,lev,recall 

The number of records or record groups to be skipped is specified by the n parameter; the value 1 is assumed 
if n is absent. The maximum octal value of n is 777776. If n is 777777 and the file is on magnetic tape, it 
is not repositioned. If n is 777777 and the file is on mass storage, it is positioned at end-of-information. If 
the CIO call is used instead of the CPC call, whenever n=O it is treated as if n=l was given. If the SKIPF 
macro is extended from CPUTEXT, the maximum octal value of n is 377777. 

For mass storage and SI tapes, the skip count is incremented as each level defined by the lev parameter is 
passed. Thus, a SKIPF with a count of 1 and lev of 0 issued in the middle of a record positions the file to 
the beginning of the following record. 

The lev parameter specifies the level defining the record end; logical records are skipped until an end-of-logical 
record with a level number greater than or equal to the requested level is reached. The file is positioned 
immediately following this end-of-logical-record mark. 

If lev is absent, this field is set to zero, and the file is positioned forward n logical records or parts of records. 
If end-of-information is encountered before an end-of-logical-record with the specified level is found, the end­
of-information status bit will be set in the FET. 

Although level numbers do not exist on S and L data format tapes, an lev parameter may be specified for 
SKIPF requests. If level number I 7 8 is specified, a skip to end-of-partition is performed. Any other level 
number is assumed to be zero, and one record is skipped. 

A SKIPF is continued across volumes when the user processing (UP) bit is 0. If UP is set, the forward skip 
stops when end-of-volume is detected. If both UP and XP are set when end-of-volume appears before the 
skip count is fulfilled, the difference between the count requested and count made to that point will be 

I returned to the RSC field in the FET extension. 

7-72 60493800 L 



SKIPB MACRO 

SKIPB causes one or more system-logical-records, or physical records of S and L tapes, to be bypassed in a 
reverse direction. 

SKIPB lfn,n,lev,recall 

The number of records or logical record groups to be skipped is specified by the n parameter; the value is 
assumed if n is absent. When n is the maximum value of 777777 (octal), the file is rewound. 

For mass storage and SI tapes, if the level parameter is used, logical records are read backwards until a short 
PRU containing the specified level has been read. A forward read is issued, leaving the file positioned after 
this short PRU. If the file is positioned initially between logical records, the level number immediately pre­
ceding the current position is ignored in searching for a record of the specified level. This positioning process 
is performed n times. 

Consecutive system-logical-records within a file may be organized into a group by using level number. The file 
is composed of one or more groups of logical records. This may be done by choosing a minimum level num­
ber other than 0, assigning a larger or equal level number to the last logical record of each group, and assign­
ing a smaller level number to all other logical records. Then SKIPB lfn,,lev skips the file backward to the 
beginning of the logical record group which immediately follows a logical record of level lev. 

If the level parameter is absent, this field is set to zero, and the file is positioned backward n logical records 
(or partial logical records if the SKIPB is issued in the middle of a logical record). 

If the beginning of a volume is encountered on mass storage and the UP bit is set, or if the beginning of a 
volume on magnetic tape is encountered before the requested level number is found, the request terminates 
with no indication. However, if XP is set, field RSC in the FET extension contains the count n still required 
to complete the operation. Parity errors encountered during a SKIPB operation are ignored. 

For S and L tapes, only levels 0 and 17 8 are recognized; any other level specified is assumed 0. 

BKSP MACRO 

BKSP causes one system-logical-record to be bypassed in a reverse direction. This function is a subset of 
SKIPB; it is included for compatibility with previous systems. 

BKSP lfn,recall 

BKSPRU MACRO 

BKSPRU causes one or more physical record units to be bypassed in a reverse direction. 

BKSPRU lfn,n,recall 

The number of PRU's to be bypassed is indicated by n. If n does not appear, one PRU is skipped. 

60493800 L 7-73 

' 



I 

REWIND MACRO 

REWIND positions a file to beginning-of-information. A REWIND issued for a file already rewound has no 
effect. A REWIND request for a file on a device that cannot be rewound causes a 22 status indicating an 
illegal function to be returned to the FET. 

REWIND lfn,recall 

Labeled tapes are positioned to beginning-of-information ahead of the label group. Subsequent forward motion 
requests result in the label being skipped before the tape is read or written. 

For unlabeled multivolume tapes a REWIND rewinds the current volume and a subsequent forward motion 
initiates a backward reel swap positioning the file at its beginning. For labeled multivolume, single-file tapes, 
a REWIND rewinds the current volume and sets the volume number in the system tables to 1. A subsequent 
forward motion causes the label to be read and compared with the system tables, and the operator is notified 
if the current volume is not number 1. 

For multifile labeled tapes, a REWIND rewinds the specified file to its beginning. If necessary, the operator is 
instructed to mount the previous volume. A REWIND that references a multifile name is illegal; the job 
terminates. 

UNLOAD MACRO 

UNLOAD operates in a manner similar to REWIND, except that it only affects the current volume of tape. 
UNLOAD cannot override an IU inhibit unload parameter on a REQUEST control statement. Otherwise, a 
tape file is rewound and unloaded. 

UNLOAD lfn,recall 

Fl LE DISPOSITION 

Files can be disposed of in several ways in addition to the disposition associated with special file names. 

The file can be destroyed by the EVICT function. 

The file can be routed to an output device at the central site or a remote terminal station with the 
ROUTE or DISPOSE functions. 

Files on public device sets that have not been named in a ROUTE or DISPOSE control statement or macro, 
or have not been equated to standard output file names such as OUTPUT or PUNCH, disappear upon job 
termination. Permanent files, of course, are retained under permanent file manager disposition. 

It is not possible to dispose of a file by setting a disposition code directly in the FET. 

EVICT MACRO 

The EVICT function declares that contents of file lfn are to oe discarded. 

EVICT lfn,recall 

7-74 60493800 L 



When a file on a public device set is evicted, all space occupied by that file is released to the system. The 
space immediately becomes available for any system purpose or reassignment. An EVICT function directed to 
a permanent file is ignored; a dayfile message is issued and the job continues normally. 

When a file on a magnetic tape is evicted, the tape is rewound and set to new status, thus declaring that the 
data and label are no longer valid and cannot be read by the job. If the file was declared to be labeled a 
new header label is written on any subsequent file reference. However, the evicted file is not overwritten 
without operator authorization if the file expiration date has not passed. 

If an EVICT function is directed to a member of a multi-file set, the set already must have been positioned 
at that file. Eviction of a member file also implies eviction of all files occupying higher numbered positions. 

The file name used in the EVICT function is retained and cannot be used for a file on another device. 

EVICT is undefined and, therefore, illegal on unit record equipment. A fatal error results if it is tried. 

DISPOSE MACRO 

With the dispose function, a central processor program may declare a disposition code and initiate termination 
processing for a file. Files either can be released or sent to the output queue of completed files, as explained 
with the DISPOSE control statement. The dispose function can be used only for files that are resident on 
queue devices. 

DISPOSE lfn,*x=ky,recall 

lfn 

* 

x 

File name_ 

Optional end-of-job disposition indicator. 

Two-character disposition mnemonic. 

Mnemonic 

PR 
PE 
LR 
LS 
LT 
PB 
PU 
pg 

FRt 
FLt 
PTt 
HRt 
HLt 
IN 

Meaning 

Print on any available printer 
Print on ASCII 95-character print train 
Print on 580-12 printer 
Print on 580-16 printer 
Print on 580-20 printer 
Punch standard binary format 
Punch Hollerith format 
Punch free-form binary format 
Print on microfilm recorder 
Plot on microfilm recorder 
Plot 
Print on hardcopy device 
Plot on hardcopy device 
Place file in the input queue 

t Supporting drivers must be supplied by the installation. 

60493800 L 7-75 



k 

y 

Optional site indicator; y must follow: 

c Central site 
INTERCOM terminal 

Qualifier to k; y cannot be used without k. 

If k is C, two-character alphanumeric installation defined identifier of special forms or 
paper. 

If k is I, two-character user identification. 

recall Optional character indicating recall. 

If only lfn is given, the file is released, with mass storage and table references being removed. 

The code generated by the DISPOSE macro is: 

59 47 41 39 29 23 15 11 0 

EO *+2 0 y c 

lfn z kk 1 x 

The following is set in X6 with a subsequent call to SYS=. 

DSP H,I 0 *-2 

,z Set to I when * is used. 

kk Site indicator: 

00 none 
01 central site 
IO INTERCOM terminal 

The completion bit (C) is set to by DSP when the requested function is complete. 

ROUTE MACRO 

The ROUTE macro places a file in an input or output queue, evicts a file, or specifies attributes the file has 
when it is placed in an output queue. ROUTE has all the capabilities of DISPOSE. See the ROUTE control 
statement for a complete description of the ROUTE capabilities. The user must construct a parameter list in 
the format described below before calling the ROUTE macro. The file being processed must not be the 
INPUT file, but it must be resident on a queue device. 

7-76 60493800 E 



ROUTE tag,recall 

tag Address of the ROUTE parameter list. 

recall Optional non-blank character indicating auto recall. 

Parameter List Format: 

59 

tag+O 

tag+1 0000 

tag+2 Reserved 

tag+3 

Spacing 
tag+4 Code 

(Output 
Only) 

Word Bits 

tag+O 18-59 

12-17 

47 41 35 23 19 17 13 11 0 

File Name 
Error 

Unused IA Code 

Forms Code/ Disposition E 
t 

I 
Flags 

INPUT Flags Code c c 

Station ID-
Destination 

Unused TIO 

File Identifier (FID) Unused ls Priority 

Field 

File 
Name 

Error Code 

Reserved t Repeat Unused 
Count 

Description 

lfn of file to be routed: must be mass storage file, not a 
permanent file, cannot reside on a dismountable device, must 
have at least read permission. 

Code returned by system when bit 12 of flag field is set, as 
noted below. 

1-11 Unused 

tag+l 

t Unused 

60493800 H 

0 

48-59 

36-47 

A 

Zeros 

Forms Code/ 
Input Flags 

Completion bit. Must be zero when macro is issued; system 
sets to one when function is complete. 

Twelve bits of zero. Allows compatibility with previous 
callers of DSP. The old calling sequence put the lfn in tag+ 1. 

Two display code letters or digits identifying forms to be used 
for this file. Default is standard forms. If the file is to be 
routed to an input queue, this field is defined as: 

Bit Meaning 

47 Unused 
46 Unused 
45 Do not catalog INPUT file 

7-77 



Word Bits Field Description 

tag+ I Bit Meaning 

44 Reserved for use by system jobs 
43 Send file to input queue even if job statement error 
42 Use dependency count 
36-41 Dependency count 

24-35 Disposition Two display code characters specifying a disposition code 
Code mnemonic as follows: 

Mnemonic Meaning 

FRt Print on microfilm recorder. 
FLt Plot on microfilm recorder. 
HLt Plot on hardcopy device. 
HRt Print on hardcopy device. 
INtt Place file in input queue. 
LS Print on 580-16 printer. 
LR Print on 580-12 printer. 
LT Print on 580-20 printer. 
PTt Plot on any available plotter. 
PR Print on any available printer. 
PU Punch. 
SC Evict the file 

21-23 EC External characteristics code translated as follows: 

Value 
(octal) Print File Punch File 

0 EC (default) EC (default) 
EC=SB 

2 EC=80COL 
3 EC=B4 
4 EC=B6 EC=026 
5 EC=A6 EC=029 
6 EC=A9 EC= ASCII 
7 Reserved for installations 

20 Unused 

t Available only if supporting software is supplied by the installation. 
tt Use of IN can be restricted by the installation. 

7-78 60493800 J 



Word Bits Field 

18-19 IC 

0-17 Flag Bits 

60493800 L 

Description 

Internal characteristic code translated as follows: 

Value 
(octal) 

0 
l 
2 
3 

Meaning 

IC or IC=DIS - Display code (default) 
IC= ASCII 
IC=BIN binary 

IC=TRANS - Transparent (INTERCOM 5) 

Indicate specified parameters when set to 1. (User must set 
bit 2, 4, 5, 7-10, 14, or 15 to l if corresponding parameter 
is being specified.) 

Bit 

17 

16 
15 
14 
13 
12 

11 
10 
9 
8 
7 
6 

5 
4 
3 
2 
1 
0 

M~ 

File name assigned by system is returned at tag+O, 
bits 18-59. 
Unused. 
Spacing code (tag+4, bits 54-59) is specified. 
Repeat count (tag+4, bits 12-16) is specified. 
Reserved for system job. 
No dayfile message; return error code in bits. 
12-1 7 of first-word of parameter list. 
Reserved for system jobs. 
Forms code (tag+ 1, bits 36-47) is specified. 
Priority (tag+3, bits 0-11) is specified. 
Internal characteristics (tag+ 1, bits 18-19) are specified. 
External characteristics (tag+ 1, bits 21-23) are specified. 
FID=* System appends two unique sequence characters 
to the caller's jobname (and the file identifier, if bit 5 
is set). 
File identifier (tag+3, bits 18-59) is specified. 
Disposition code (tag+l, bits 24-35) is specified. 
Route to remote station. 
Terminal identifier (tag+2, bits 0-11) is specified. 
Route to central site. 
End-of-job (deferred ROUTE). 

7-79 I 



Word Bits Field Description 

tag+2 42-59 Reserved Used by system jobs; otherwise, set to binary zero. 

24-41 Station ID- Display code destination ID. The file is processed by the 
Destination system with this logical identifier. 

12-23 Unused 

0-11 TID Display code identifier of INTERCOM terminal to receive 
the file. 

tag+3 18-59 FID If the calling job was not loaded completely from the system 
library, only a maximum of 5 characters may be used to 
specify FID. The additional 2-character sequence number is 
determined by flag bits 5 and 6. Seven characters may be 
specified by calling jobs loaded completely from the system 
library. 

13-17 Unused 

12 B Use the priority in bits 0-11. 

0-11 Priority Priority for an interactively routed output file being routed to 
the routing terminal. 

tag+4 18-59 Reserved For use by system jobs only. 

54-59 Spacing Code (SC) 580 PFC printer. Spacing array to be loaded with the file 
(output only). 

17 Unused 

12-16 Repeat Count Repeat count. 

0-11 Unused 

When an error occurs in processing a ROUTE macro, either a dayfile message explaining the error is issued, or 
an error code is returned in bits 12-17 of the first word (tag +0) in the parameter list. If bit 12 of the flag 
field is set, an error code is returned, and no dayfile message is. issued. If bit 12 is not set, a dayfile message 
is issued, and no error code is returned. If the address of the parameter list is outside the field length of the 
job or if the complete bit is set when the macro is issued, the job aborts. For all other errors, the ROUTE 
macro is not executed, but processing continues. 

I 1-80 60493800 



When a diagnostic is issued for the ROUTE macro, the message ERROR IN ROUTE FUNCTION LFN= is 
issued before the message describing the error. If the function completes successfully, no message is issued; 
the error code field is set to binary zero. 

Error Code 
(octal) 

01 

02 

03 

04 

05 

06 

07 

lO 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

24 

25 

26 

60493800 L 

Message 

INVALID LFN - DSP 

CANT ROUTE NON ALLOCATABLE EQP 

CANT ROUTE PERM FILE 

NO PERMISSION TO ROUTE THIS FILE 

ROUTE TO INPUT NOT IMMEDIATE - IGNORED 

IMMEDIATE ROUTING - NO FILE - IGNORED 

INVALID DISPOSITION CODE - ROUTING IGNORED 

INV AUD FID - ROUTING IGNORED 

DSP ABORTED BY SYSTEM 

DSP PARAMETER OUTSIDE FL 

PRIORITY SPECIFICATION IGNORED 

RMT ROUTING,NO ID - CENTRAL SITE ASSUMED 

El200 SPECIFIED - INTERCOM USED (DSP) 

CAN NOT ROUTE INPUT FILE 

DSP COMPLETE BIT ALREADY SET 

FILE ON DISMOUNT ABLE DEVICE - ROUTING IGNORED 

TIO NOT ALPHANUMERIC - ROUTING IGNORED 

FORMS CODE NOT ALPHANUMERIC - ROUTING IGNORED 

INVALID LINK TYPE - ROUTING IGNORED (DSP) 

FILE NOT ON QUEUE DEVICE - ROUTE IGNORED 

PRE-DA YFILE LFN AND NO DC=IN - ROUTE IGNORED 

PRE-DAYFILE FILE NOT FOUND - ROUTE IGNORED 

7-81 I 



Error Code 
(octal) 

27 

30 

31 

32 

Message 

INVALID SID/DID - ROUTING IGNORED 

JOBCARD ERROR - ROUTING IGNORED 

THIS ROUTINE NOT ALLOWED - ROUTINE IGNORED 

FNT SPACE CRITICAL - ROUTING IGNORED 

See the NOS/BE Diagnostic Handbook for a description of each message. 

PERMANENT FILE FUNCTIONS 

Permanent file functions are those defined by control statements with the following names. 

ALTER 

ATTACH 
CATALOG 
EXTEND 

GETPF 
PURGE 

RENAME 
SAVEPF 

Information applicable to a control statement call is also applicable to a call through a permanent file macro. 
In addition, FDB and PERM macros are available. 

The parameters used with the macros are the same as the parameters used with the corresponding control state­
ments. Thus, more information is available under the control statement description. 

Each permanent file macro expansion contains an RA+ I call to a permanent file program. Parameters 
necessary for execution of a function are contained in the file definition block (FDB) table within the user's 
field length. 

FOB MACRO 

The macro for generating an FDB has the format: 

fdbaddr FDB lfn,pfn,parameter list 

fdbaddr is the symbol to be associated with the word in the FDB that contains the lfn; it must be present in 
the location field. Parameters are separated by commas and terminated by a blank. They may include any 
of those indicated by the two-letter codes described for control statements. 

The field to the right of the macro name, FDB, is identical to that which could be on a control statement. 
Parameters are entered into the FDB as they are encountered in the list. The FDB is generated in-line during 
assembly whenever the macro is called. 

A user specifies the intent of a particular function by specifying parameters. If they do not clearly define the 
function request, the permanent file manager attempts to inform the user of the unknown information by the 
following means. 

I 1-82 60493800 L 



Modification of the file definition block will be done when an illegal parameter is correctable. For 
example, if an incorrect cycle number is encountered on a CATALOG function, the actual cycle 
number is returned in the FDB. If a function is not successful, error codes may be returned in the 
FDB. 

An error message is issued to the job dayfile unless the RT or RC parameter is specified in the 
function call. Fatal errors (errors with a return code of 708 or greater) are written to the job dayfile. 

The FDB generated by the macro has the form: 

59 17 11 8 5 0 

~ 
Permanent File Name 

'7 (Display Code Left Justified Zero Filled) 

fdbaddr lfn (Left Justified Zero Filled) 
Return 
Code 

status 

Parameter Value (Right Justified Zero Filled) t k(l) 

Parameter Value {Right Justified Zero Filled) k(2) 

. 
~ . '7 

Parameter Value (Right Justified Zero Filled) k(n) 

Unused 0000 tt 

Field Description 

k(n) Parameter identifier in octal or display code: 

k Keyword Parameter Value 
(Octal) Parameter and Description 

00 End of FDB list 
02 RP Retention period; days; in binaryttt 
03 CY Cycle number; in binary 
04 TK Turnkey password (display code) 

tThe SN parameter (keyword 40) is left justified with zero fill; the VSN parameter (keyword 41) is con­
tained in a 6-character field (bits 59-24) with leading display code zero fill. 

ttThe system only checks bits 0-11 in this word. 
tttlf cycle 0 is specified, the actual cycle referenced will be returned in the parameter value upon comple­

tion of the request. 

0 

2 

3 

4 

5 

6 

4+n 

60493800 K 7-83 



7-84 

Field 

Status 

Return 
Code 

Description 

k Keyword Parameter Value 
(Octal) Parameter and Description 

05 CN Control password (display code) 
06 MD Modify password (display code) 
07 EX Extend password (display code) 
IO RD Read password (display code) 
11 MR Multiread parameter (any nonzero binary value) 
13 XR Control, modify, extend password (display code) 
14 ID Owner identification (display code) 
16 AC Account (display code) 
17 EC ECS buffering (display code) 
20 I 

PW Password submitted (display code) 24 r 
25 FO File organization (display code) 
31 LC Lowest cycle (any nonzero binary value) 
32 ST Station ID (display code) 
33 RW Multiread with single rewrite (any nonzero binary value) 
40 SN Setname (display code, left justified) 
41 VSN Volume serial number (display code) 
43 RB PURGE RB conflict parameter (any nonzero binary value) 

53 UV Universal password (display code) 

Status bits: 

Bit Meaning 

0 Completion bit 
1 Unused 
2-5 Function code bits (binary) 

0010 GETPF 1000 PURGE 

0100 SAVEPF 1010 RENAME 
0110 EXTEND 1100 PERM 
0111 ALTER 

6 Set if RC or RT not specified; issue dayfile message; all errors are fatal 
7 Set if RT specified 
8 Set if NR specified 

Return codes: 

Value 
(Octal) 

000 
001 
002 
003 

Meaning 

Function successful 
PFN/ID error 
lfn already in use 
Unknown lfn 

60493800 K 



Field Description 

Value 
(Octal) Meaning 

004 No room for extra cycle (limit is five) 
005 Permanent file catalog (PFC) is full 
006 No lfn or pfn specified in the FOB 
007 Not used 
OIO Latest index was not written for a random file 
0 I l File is not on PF device 
012 File is not cataloged, SN=setname (setname is the set name of the device set 

searched} 
013 Archive retrieval aborted 
014 Bad LPF communication 
015 Cycle number limit reached; maximum value of cycle number is 999 
016 Permanent file directory (PFO) is full 
017 Function attempted on nonpermanent file 
020 Function attempted on nonlocal file 
021 Improper archive retrieval call 
022 File was never assigned to a device 
023 Cycle is incomplete or was dumped 
024 PF already attached 
1)25 File is archived 
026 Illegal character in FOB parameter 
027 ltlegal lfn 
030 File dumped 
031 Ulegal function code 
032 Purge attempt ignored; use RB parameter 
033 ALTER needs exclusive access 
034 FOB is too large 
035 File already in system 
036 No APF space 
037 Permission conflicts (file is attached elsewhere with exclusive access permissions) 
040 Illegal setname specified 
041 Device set not mounted at this control point 
042 RBT chain is too large for PFC 
043 File resides on unavailable device 
044 File not available 
045-067 Not used 
070 PFM stopped by system 

The following conditions will unconditionally cause abnormal job termination. 

071 Incorrect permission 
072 File definition block address invalid (not returned to FOB) 
073 1/0 error on PFO/PFC read/write 

Unless the RC parameter is specified, all errors terminate the job. Any job that attempts a privacy breach 
is terminated. All internal permanent file malfunctions are system errors that cause job termination. 

60493800 K 7-85 



PERM MACRO 

The PERM function is available only as a system macro. A running program can determine if a file is a non­
permanent local file or what permissions have been granted to a currently attached permanent file. 

The format of the PERM macro is 

PERM fdbaddr,RC 

The lfn of an attached permanent file should be given in the FDB. This macro produces a 5-bit code in the 
fdbaddr return code field. The bits represent the following information. 

Bit 4 I Nonpermanent file. 
0 Permanent file. 

Bits 3-0 1000 Control permission. 
0100 Modify permission. 
0010 Extend permission. 
0001 Read permission. 

A return code of zero signifies that the lfn is not in the FNT for the control point (a nonexistent file) or that 
some other error occurred. 

Perm example: 

FDBA FDB DFLN,PFILE,CY=l ,PW=XXX,ID=ABDC 

ATTACH FD BA, RC 

PERM FDBA 

Assuming the file is cataloged with passwords required for control and modify permissions, the ATTACH 
request generates control permission by the password XXX and read and extend permissions by default. A 
subsequent PERM request causes an octal 13 value to be returned to the FOB. The code indicates a permanent 
file is attached with read, extend, and control permission. 

I, 7-86 60493800 L 



For permanent file functions, the macro function call is of the following form. 

function fdbaddr,RC,RT ,NR 

function 

fdbaddr 

RC 

RT 

Any permanent file function, such as CATALOG. 

Symbol on FDB macro or any expression that would be valid in the variable field of a 
set register Xi (SXi) COMPASS command. It must form the address of the fifth word 
of the FDB. 

Optional parameter that causes return codes to be available in FDB and returns control to 
the program on nonfatal errors. Permanent file queuing occurs when a file cannot be 
accessed immediately. If RC and RT parameters are both specified, the RC 
parameter is ignored. I 
Optional parameter that inhibits permanent file queuing and causes return codes to be 
available in FDB. I 

NR Optional parameter that inhibits auto recall. 

All permanent file macro calls are issued with auto recall unless NR is present. In this case, it is possible 
for the central processor program to test the completion bit in the FDB to determine whether the function 
has completed. The parameters RC, RT, and NR are order independent. 

ALTER MACRO 

The format of the ALTER macro is 

ALTER fdbaddr,RC,RT,NR 

The ALTER function causes the current position of an attached permanent file (designated by lfn in the FDB) 
to be recorded as end-of-information in the PFC of that file. Permissions needed to perform the ALTER 
function depend upon the context in which the function is issued. If the current position of the file is less 
than. the file EOI (as attached), modify permission, extend permission, and exclusive access are required. If 
the current position is greater than the file EOI, ALTER operates similarly to the EXTEND function and extend 
permission is required. 

60493800 M 7-87 



ATTACH MACRO 

The format of the ATTACH macro is 

ATTACH fdbaddr ,RC ,RT ,NR 

The ATTACH request requires the lfn,_ .pfn, and ID parameters in the FDB. The following parameters are 
optional. 

CY Cycle number to be attached. 

PW Password list. 

MR Multiread access. 

LC Lowest cycle number. 

RW Multiread/rewrite access. 

EC ECS buffering for 1/0. 

SN Set name. 

PS Position of file. 

lN Universal password. 

If RC is specified, the user is notified of a nonfatal error condition by an error return code at fdbaddr in the 
I FDB. If RT is specified, the system handles the call as a real time calL The system suppresses the routing 

of informative and diagnostic messages normally issued to the dayfile when either the RC or RT parameter 
I is specified. If RT is not specified, and any of the following conditions prevail, a job issuing an attach 

request is queued for the requested file. 

e File is not available for exclusive access by requesting job. 

• Attached permanent file (APF) table is full. 

• Archived file is temporarily unavailable. The ATTACH request causes a LOADPF job to be set 
up and scheduled through the tape scheduler. The job requesting the ATTACH is swapped out 
until the file is available. 

• Permanent file utility is running. 

If the CY parameter is zero or not present, and the permanent file has multiple cycles, the default cycle 
attached is the one with the largest cycle number, presumably the latest cataloged. If the CY parameter is 
present, and that particular cycle number is not known to the system, the request cannot be honored. If both 
LC and CY are specified, LC is ignored and the conflict is resolved. 

System evaluation of passwords establishes the type of access granted to the user for each file. Subsequent to 
an ATTACH request, the user cannot access the file for which he does not have permission in any way. For 
example, if ATTACH results in only read permission, the user cannot subsequently attempt to modify or extend. 

ATTACH does not preclude opening the file. The success of an OPEN request depends upon the permission 
granted when the file is attached. If the file is attached to another control point and multiread access is not 
possible, PFM waits for access to the file. 

7-88 60493800 M 



Attach example: 

FDBZ FDB LF ,MFILE,MR=l ,PW=Y,ID=ABC,CY=l 

ATTACH FDBZ,RT 

Permanent file MFILE is referenced again. The CY = 1 specification ensures that cycle 1 is attached. 

In the FDB, only the password for turnkey appears; extend and read permissions are granted by default. In 
this example, the macro contains MR = 1; therefore, all permissions except READ are ignored, making the 
file available for multiread access. 

If the file requested by the macro is unavailable, the presence of the RT parameter causes an octal code 37 
to be returned at location FDBZ. 

FD Bl 

CATALOG 
CLOSE 

ATTACH 

FDB 

FDBl 
LFl,UNLOAD,RECALL 

FDBl 

LF l ,PERMF ,TK=T ,MD=M ,EX=E,CN=C,PW=T ,ID= ABC 

The preceding example illustrates several points. Assuming that local file LFl has been created, it is cataloged 
as cycle 1 (by default) of permanent file PERMF. The file is protected by turnkey, control, modify, and extend 
passwords. The PW parameter in the FDB is ignored in cataloging. 

After cataloging is complete, a CLOSE/UNLOAD logically detaches the file from the job. 

As illustrated, the file PERMF now can be reattached. Although not mandatory, the same FDB is used to 
conserve CM space. When PERMF is attached, the default cycle number is the largest cataloged; therefore, 
cycle 1 is the only cycle present. The PW parameter contains the turnkey password giving READ access 
permission by default. This example illustrates an implicit read-only attach. 

The same example is shown with two FDBs. 

FDBl 
FDB2 

60493800 L 

FDB 
FDB 

CATAWG 
CLOSE 

ATTACH 

LFl,PERMF,TK=T,MD=M,EX=E,CN=C,ID=ABC 
LF 1,PERM,PW=T ,ID= ABC 

FDBl 
LF 1,UNLOAD,RECALL 

FDB2 

7-89 I 



CATALOG MACRO 

The format of the CATALOG macro is 

CATALOG fdbaddr,RC,RT,NR 

For this request, the required parameters in the FDB are lfn, pfn, and ID. If the permanent file name is 
unique to the ID specified, the request is considered an initial catalog. The initial catalog defines the passwords 
necessary to access any of up to five cycles that can be cataloged with the same pfn and ID. If the CY 
parameter is not specified, it is assumed to be I. The following parameters are relevant on an initial catalog. 

CY Cycle number. 

XR Control, modify, extend, common password definition. 

CN Control password. 

MD Modify password. 

EX Extend password. 

RD Read password. 

TK Turnkey password. 

RP Retention period. 

FO File validity check. 

RW Read with rewrite permission. 

MR Multiread access. 

PW Password list. 

AC Account parameter. 

If a file with the same pfn and ID has already been cataloged, the request is considered a new cycle catalog. 
If a CY parameter is not specified, it is assumed to be one larger than the highest cycle. Control permission 
must be established to do a new cycle catalog. The following parameters are relevant on a new cycle catalog. 

CY Cycle number. 

PW Password list. 

RP Retention period. 

FO File validity check. 

RW Read with rewrite permission. 

MR Multiread access. 

If RC is specified, the user is notified of a nonfatal error condition by an error return code at fdbaddr in 
the FDB. 

I 7-90 60493800 L 



If RT is specified, the call is regarded as real-time. Specifying the RT option forces the RC option. In both 
cases, informative and diagnostic messages to the dayfile are suppressed. 

Initial catalog example: 

FDBA FDB LF l ,MFILE,CN=Z,MD=X,TK=Y,ID=ABC 

CATALOG FDBA,RC 

LF 1 is assumed to exist on a valid permanent file device as a local file to this control point. 

The CATALOG macro references FDBA, which contains the necessary parameters to make LF l permanent. 

Since RC is specified on the CATALOG macro, control is returned to the user on a nonfatal error, and a 
return code is made available in location FDBA (bits 17 through 9). If RC is not specified, all errors result 
in termination and a diagnostic message. 

New cycle catalog example: 

CATALOG FDBS 

FDBS FDB LF16,MFILE,CY=l2,PW=Y,Z,ID=ABC 

This job adds a second cycle to permanent file MFILE, created in the preceding example. File LF16 is assumed 
to be a valid local file on a permanent file device. The PW parameter is used to submit the passwords needed 
to obtain control permission. Had the initial catalog attempt aborted, MFILE would not exist, and this new 
cycle attempt would be processed as an initial cataloging. If successful as an initial catalog, the file would be 
unprotected as no passwords are defined in the FDB. An alternate form of the FDB could be used as follows: 

FDBS FDB LF16,MFILE,CY=l2,PW=Y,Z,ID=ABC,TK=Y,CN=Z,MD=X 

The preceding FDB would perform equally as well for a new cycle catalog because the TK, CN, and MD 
parameters would be ignored. If initial cataloging has failed, this FDB would catalog the file with protection, 
and the PW parameter list would be ignored. 

EXTEND MACRO 

The format of the EXTEND macro is 

EXTEND fdbaddr,RC,RT,NR 

Local extensions can be written at the end-of-information point of an attached permanent file and an extend 
function can be issued, thus extending the length of the permanent file. The file must be attached with extend 
permission granted. 

In the FDB, the required parameter is lfn; the extend password, if defined, must appear in the PW list. The 
extended section of the file acquires the privacy controls of the permanent file. 

60493800 L 7-91 I 



If lfn is an indexed file, the current index is assumed to be the only valid index for the entire file. Random 
files must be closed before an EXTEND request is made. 

Extend example: 

ATTACH FDBX 

EXTEND FDBX 

FDBX FDB LFI ,PROGLIBI ,ID=XYZ 

The program that attaches permanent file PROGLIBI as local file LFI writes beyond the end-of-information. 
Assuming that no password was required for extend permission, it is given by default. Prior to program 
termination, the EXTEND request would make permanent any additions written to the file. 

GETPF MACRO (MULTIMAINFRAME ONLY) 

The format of the GETPF macro is 

GETPF fdbaddr,RC,RT,NR 

The GETPF request requires the lfn, pfn, ID, and ST parameters in the FDB. Specifying both SN and VSN 
parameters allows access to a file on a private set at the specified mainframe. Other optional parameters are 
the same as those for the ATTACH function except for RW, which is ignored if present. Refer to the 
ATTACH function for more detail. 

GETPF prepares for staging the requested permanent file from the mainframe specified by the ST parameter 
and attaches a local copy of that file to the calling routine. The file must be opened before actual staging 
occurs. The mainframe specified by the ST parameter can be the linked mainframe or the local mainframe. 
In either case, two files exist after the file is staged, the permanent file and a local copy of the file attached 
to the calling routine. 

The local copy of the file is processed, even if the permanent file specified resides at the same mainframe. 

PURGE MACRO 

The format of the PURGE macro is 

PURGE fdbaddr,RC,RT,NR 

A cycle of a file can be removed from the catalog of permanent files by the PURGE function. In the macro, 
fdbaddr is required; RC and RT are as for CATALOG. In the FDB, the lfn is the only required parameter if 
the file was attached before the purge function was issued; all other parameters are ignored. The optional 
parameters are CY, SN, LC, EC, RB, PW, and UV. Control permission must be granted, or the job is terminated. 

I 7-92 60493800 L 



For the macro request, the FDB used when the file was attached can be referenced or a new FDB can be used. 
Only one cycle of a file can be purged at a time. When the last cycle of the file is purged, the entire permanent 
file name entry is removed from the directory and catalog. 

A user attempting to purge a permanent file already attached must specify the lfn under which the file was 
attached. This purge is by local file name, and the user need provide only the lfn in the FDB. 

To purge a file not already attached, the user must specify a local file name not in use at his control point. 
The permanent file name, ID, and password list must be given. If the file resides on a private device set, the 
SN parameter must be given. 

To purge a permanent file at a linked mainframe, the user must specify the ST parameter. Specifying both 
SN and VSN parameters with the ST parameter allows a file to be purged from a private set at the specified 
mainframe. If RB=l is specified in the FDB, and if the RB conflict flag is set in the PFC by RECOVER, the 
RBs in the chain are zeroed, and storage is not released to the system. To prevent further use of the file, the 
FNT permissions are reduced to control only. 

RENAME MACRO 

The format of the RENAME macro is 

RENAME fdbaddr,RC,RT 

Any or all information cataloged by the user can be replaced through the RENAME function. The file must 
be attached to the requesting job with all permissions granted. A file owner can change permanent file name, 
cycle numbers, passwords, and even the user ID. 

In the FDB for this request, lfn is the only required parameter. The specified parameters cause replacement 
of existing parameter information if they contradict the cataloged information. If they duplicate the cataloged 
information, the parameters are ignored. 

Parameters which could result in replacement are: 

pfn Permanent file name. 

ID Owner identification. 

RP Retention period. 

CY Cycle number. 

TK Turnkey password. 

RD Read password. 

EX Extend password. 

MD Modify password. 

60493800 L 7-931 



CN Control password. 

AC Account name. 

XR Common password definition. 

The PW parameter may be specified to submit the public password if the file ID is to be renamed PUBLIC. 
Other parameters in the FDB are ignored. Changing the ID, pfn, or passwords for any cycle cataloged changes 
all cycles. No ID, pfn, or CY changes are permitted if any of the cycles have been dumped (mode 2 dump) 
or archived, as retrieval of such files would be impossible. RC and RT are as for CATALOG. 

An attempt to rename pfn/ID is ignored when the new pfn/ID pair currently exist; however, the remainder of 
the specified changes still occur. 

Rename example: 

FDBA 
FDBB 

ATTACH 
RENAME 

FDB 
FDB 

FDBA 
FDBB 

DFILE,MFILE,PW=Z,Y,X,ID=ABC 
DFILE,PFILE2,RD=W ,MD= ,CN=ZZ 

Assuming that MFILE is cataloged with X, Y, and Z as passwords for modify, turnkey, and control, read 
access is given by default when DFILE is attached as a local file. By RENAME action, the cataloged permanent 
file name is replaced with PFILE2. A new password, ZZ, replaces the existing password for control permission; 
a read password, W, is cataloged for the nonexistent read password. The password for modify permission is 
removed, and none replaces it. The owner's ID remains unchanged. Since no cycle number is given in FDBA, 
the cycle with the largest number is attached; renaming does not change the existing cycle number, as no replace­
ment is given in FDBB. 

FD Bl 
FDB2 
FDB3 

FDB 
FDB 
FDB 

ATTACH 
RENAME 

RENAME 

LFILE,MFILE,CY=9 ,RD=Y ,ID=ABC 
LFILE,MFILE,CY=8,PW=X,Y,Z,ID=ABC 
LFILE,MFILE,RD=Z 

FDB2 
FDBl 

FDB3 

This example illustrates that for renaming purposes, the same file can be called more than once in a job. If 
the read password was originally cataloged as X, it is changed to Y when the file is renamed as cycle 9, and 
then finally changed to Z. The appearance of an identical ID parameter in FDBl is ignored. 

I 7-94 60493800 L 



SAVEPF MACRO (MULTIMAINFRAME ONLY) 

The format of the SA VEPF macro is 

SAVEPF fdbaddr ,RC,RT ,NR 

The SAVEPF request requires the lfn, pfn, ID, and ST parameters in the FDB. SN and VSN parameters 
allow a copy of the file to be made permanent on a private set at the specified mainframe. Other optional 
parameters are the same as those for the CATALOG function. Refer to the CATALOG function for more 
details. 

SA VEPF stages a local file specified by the lfn to be cataloged at the mainframe associated with the ST 
parameter. The mainframe where the file is to be cataloged can be a linked mainframe or the local mainframe. 
In either case, two files exist after the call, a new or updated permanent file and the local file that is attached 
to the calling routine. 

SYSTEM TEXTS 

System texts provide commonly used macro, micro, and symbol definitions for use in COMPASS source 
programs. The system provides several system text overlays, which are loaded by COMPASS from the system 
libraries when specified by S or G parameters on the COMPASS control statements. S_ or G parameters can 

also be used on FTNS control statements when FORTRAN source programs contain intermixed COMPASS 
subprograms. Up to seven system texts can be specified, each by a different S or G parameter, for a given 
assembler run. Most system texts are made up of Update common decks described below. System texts 
are constructed as part of the installation process described in the NOS/BE Installation Handbook. 

COMMON DECKS 

ACTCOM - System action request macros: 

IXi Xj/Xk 
IXi Xj/Xk,Bn 
ABORT 
ACQUIRE 
CHECKPT 
CLOCK 
CONTRLC 

DATE 
DISPOSE 
END RUN 
FILESTAT 
FILINFO 
GET ACT 

GETJCI 
IOTIME 
JDATE 
WADREQ 
MEMORY 
MESSAGE 

RECALL 
RECOVR 
REQUEST 
ROUTE 
RTIME 
SETJCI 

STATUS 
SYSCOM 
SYSTEM 
TIME 
TRAN SF 
VERIFYJ 

CIOCOM - Codes, symbols, macros and installation parameters associated with magnetic tape processing and 
tape scheduling. 

CMRDEF - Symbols, macros and installation parameters for Monitor and the integrated scheduler. 

60493800 M 7-95 

I 

I 



COMACIO - CPU input/output macros using SYS= and CIO=: 

BKSP RE ADC READS KP 
BKSPRU READEI READW 
CHECKF READH RETURN 
CLOSE READ LS REWIND 
CLOSER READN REWRITE 
EVICT READO REWRITEF 
OPEN READ NS REWRITER 
POSMF READS RPHR 
READ 

COMAFET - File environment table generation macros: 

FILEB 
FILEC 

LABEL RFILEB 
RFILEC 

COMAREG - Replacement for R= pseudo-instruction. 

SKIPB 
SKIP EI 
SKIPF 
SKIPFB 
SKIP FF 
UNLOAD 
WPHR 
WRITE 

COMCECS - Contains the ECS interpretive routines (refer to appendix E). 

WRITEC 
WRITEF 
WRITEH 
WRITEN 
WRITED 
WRITER 
WRITES 
WRITEW 

COMCF.CM - Contains the redefinition of the RE and WE COMPASS instructions (refer to appendix E). 

COMSRAS - System communication symbols: . 

Contaias definitions of the system communications symbols described in this section under the heading 
SYSTEM COMMUNICATION MACROS. 

CPSYS - Input/output macros using CPC: 

BKSP 
BKSPRU 
CLOSE 
CLOSER 
EVICT 
OPEN 
POSMF 
READ 

RE ADC 
READIN 
READN 
READ NS 
READSKP 
REWIND 
REWRITE 

REWRITEF WRITE 
REWRITER WRIT EC 
RPHR WRIT EN 
SKIPB WRITEF 
SKIPF WRITER 
UNLOAD WRITIN 
WPHR WRITOUT 

ECSCOM - ECS and ECS link installation parameters; ECS flag register function macros. 

ECSDEF - Codes, macros, symbol definitions and storage descriptors for ECS processing and the ECS Link. 

IPARAMS - Installation parameters: 

Contains installation parameters as symbol and micro definitions. 

LMACOM - Loader request macros: 

Contains LOADER and LDREQ. 

7-96 60493800 L 



PFCOM - Permanent file macros: 

ALTER 
ATTACH 
CATALOG 

EXTEND 
FOB 
PERM 

PPSYS - Peripheral processor system definitions: 

PURGE 
RENAME 

Contains many system symbols and micros, and the following macros. 

ADK CRI LOK 
BIT ENM PPENTRY 
CEQU JO BC ARD SBK 
CMICRO LDCA UJK 

SCHCOM - Integrated scheduler macros: 

CISO SCH LOK SCHSTOR 
ENTRY34 SCHSAVE STREQ 
LOW 

SISICOM - SCOPE indexed sequential macros: 

ACCESSK OPEN OLD SETBLKI 
ACCESSN REPLACE SETCOLL 
DELETE REPOS SE TERR 
FORCEW SEE KL SETFET 
INSERT SEEKS SETKEY 
OPENNEW SETBLKD TERMNAT 

ST ATCOM - Station interface definitions: 

GETPF 
SAVEPF 

Contains definition of interface to the station control point and definition of codes used in message 
requests. 

6RMCOM - CYBER Record Manager definitions: 

Contains macro, micro, and symbol definitions for user programs that use CYBER Record Manager. 

SSYS - System control point macros and definitions. 

TEXT OVERLAYS 

The system text overlays contain various combinations of the common decks, as shown below. When the 
multimainframe module is present and IP.SRMS= I, an additional system text (SRMSTXT) is cataloged. 

CMRTEXT 

CPCTEXT 

60493800 L 

System text for assembling central memory resident segments separately from CMR. 

Common decks IPARAMS, SSYS, ECSCOM, CIOCOM, CMRDEF, and ECSDEF. 

System text for central processor programs using CPC. 

Common decks ACTCOM, COMAFET, COMSRAS, CPSYS, and SISICOM. 

7-97 



I 

CPUTEXT 

ECSTEXT 

IOTEXT 

IPTEXT 

LDRTEXT 

PFMTEXT 

PPTEXT 

SCHTEXT 

SCPTEXT 

SDDTEXT 

SRMSTXT 

SS YT EXT 

STA TEXT 

SYS TEXT 

System text containing all system macros, micros, and symbols for COMPASS CPU pro­
grams that use the CIO= communication routine for 1/0. 

Common decks ACTCOM, COMACIO, COMAFET, COMAREG, and COMSRAS. 

System text which contains the redefinition of the RE and WE COMPASS instructions. 
Common deck COMCECM (refer to appendix E). 

System text for central processor programs using ·CDC CYBER Record Manager. 

Common decks ACTCOM, COMSRAS, and 6RMCOM. 

Installation parameter system text. 

Contains the macros CEQU, CMICRO, and IPARAMS, whose pody is the IPARAMS 
common deck. 

System text for central processor programs using CDC CYBER Loader. 

Common deck LMACOM. 

System text for central processor programs using permanent files. 

Common deck PFCOM. 

System text for peripheral processor programs. 

Common decks COMSRAS and PPSYS. 

System text for central and peripheral processor programs interfacing with the integrated 
scheduler. 

Common deck SCHCOM. 

System text for central and peripheral processor programs in the operating syste111. 

Common decks ACTCOM, COMAFET, COMSRAS, CPSYS, and PPSYS. 

System text containing two macros, PPUDMP and ClDD, that provide the interface 
betwern PP programs and the dynamic dump feature. 

Cataloged as an additional system text when multi-mainframe shared RMS is installed. 

System text for system control point subsystem programs. 

Common deck SSYS. 

System text of station interface definition for DSD and INTERCOM. 

Common deck STATCOM. 

System text for central processor programs. 

This is the default system text used by COMPASS when no S or G parameters are 
specified. It can be identical to either CPCTEXT or IOTEXT, at installation option. In 
the released system, SYSTEXT is equal to IOTEXT. 

The following additional system texts are provided by product set members. 

ALGTEXT Contains COMPASS-coded macros used to expand application areas of ALGOL. 

SM TEXT Contains macros for central processor programs that call Sort/Merge. 

RMERTXT Contains CYBER Record Manager error dictionary. 

7-98 60493800 L 



CHARACTER SETS A 

A character set is composed of graphic and/or control 
characters. A code set is a set of codes used to represent 
each character within a character set. 

A graphic character may be displayed at a terminal or 
printed by a line printer. Examples are the characters A 
through Z and the digits 0 through !-1. A control character 
initiates, modifies, or stops a control operation. An 
example is the backspace character that moves the 
terminal carriage or cursor back one space. Although a 
control character is not a graphic character, a terminal 
may produce a graphic representation when it receives a 
control character. 

All references within this manual to ASCII character sets 
or ASCII code set refer to the character sets and code set 
defined in the American National Standard Code for 
Information Interchange (ASCII, ANSI Standard X3.4-1977). 

NOS/BE supports t'1e following character sets. 

• CDC graphic 64- (or 63-) character set. 

• ASCII 128-character set. 

• ASCII graphic 64- (or 63-) character set. 

• ASCII graphic 95-character set. 

Each installation selects either the 64-character set or the 
63-character set. The differences between the two are 
described in Character Set Anomalies later in this appendix. 

NOS/BE supports the following code sets. 

• Display code. 

• 12-bit ASCII code. 

Display code is a set of 6-bit codes from 00 8 to 77 8· 

'T'he 12-bit ASCII code is the ASCII 7-bit code (as defined 
by ANSI Standard X3.4-1977) right-justified in a 12-bit 
byte. Assuming that the bits are numbered from the right 
starting with O, bits 0 through 6 contain the ASCII code, 
bits 7 through 10 contain zeros, and !:>it 11 distinguishes the 
12-bit ASCII 00008 code from the end-of-line byte. The 
12-bit codes are OOOlg through 0177 8 and 4000g. 

CHARACTER SET ANOMALIES 

NOS/BE interprets the codes for the colon and the percent 
graphic characters differently when the installation selects 
the 63-character set rather than the 64-character set. In 
tables A-l and A-2 the codes for the colon and percent 
graphic characters in the 64-character set are unshaded; 
the codes for the colon and percent graphic characters in 
the 63-character set are shaded. If an installation uses the 

60493800 K 

63-character set, the colon graphic character is always 
represented by a 63g code. 

Also, two or more consecutive 008 codes may be confused 
with an end-of-line hyte and should he avoided. 

CHARACTER SET TABLES 

This appendix contains character set tables for INTERCOM 
users, batch users, and magnetic tape users. Table A-1 is 
for INTERCOM users, and table A-2 is for batch users. 
Tables A-3, A-4, and A-5 are for magnetic tape users and 
list the magnetic tape codes and their display code 
equivalents. 

The character set tables are designed so the user can either 
find the character represented by a code (such as in a 
dump) or find the code that represents a character. To find 
the character represented by a code, the user looks up the 
code in the column listing the appropriate code set and 
then reads across the table to find the character on that 
line in the column listing the appropriate character set. To 
find the code that represents a character, the user first 
looks up the character and then reads across the table to 
find the code on the same line in the appropriate code 
column. 

INTERCOM USERS 

Table A-1 shows the character sets and code sets available 
to an ASCII code terminal user. When communicating with 
a terminal, NOS/BE displays by default the ASCII graphic 
64- or 63-character set and interprets all input and output 
as display code. COMPASS and FORTRAN users can elect 
to use 12-bit ASCII code if the terminal in use will support 
the code set selected. Refer to the INTERCOM Reference 
Manual. 

BATCH USERS 

Table A-2 lists the CDC graphic 64- or 63-character set, 
the ASCII graphic 64- or 63-character set, and the ASCII 
graphic 95-character set. It also lists the code sets and 
card punch codes (026 and 029) that represent the 
characters. 

The 64- or 63-character sets use display code as their code 
set; the 95-character set uses 12-bit ASCII code. The 
!-15-character <set is composed of all the characters in the 
ASCII 128-character set that can be printed at a line 
printer (refer to Line Printer Use later in this appendix). 
Only 12-bit ASCII code files can be printed using the ASCII 
graphic 95-character set. 

A-1 



LINE PRINTER USE 

The orint train used determines which batch character set 
is prlnted (refer to the ROUTE control statement in section 
4). Following is a list of the print trains and their 
corresponding batch character sets. 

Character Set Print Train 

CDC graphic 64- or f33-character set 596-1 

ASCII graphic 64- or 63-character set 596-5 

ASCII graphic 95-character set 596-6 

The characters of the default 596-1 print train are listed in 
table A-2 in the column labeled CDC Graphic (64 or 63 
Characters); the 596-5 print train characters are listed in 
table A-2 in the column labeled ASCII Graphic (64 or 63 
Characters); and 596-6 print train characters are listed in 
table A-2 in the column labeled ASCII Graphic (95 
Characters). 

If a transmission error occurs when printing a line, the 
system stops printing and alerts the operator, who must 
decide what action to take. The operator ususally decides 
to r(:!wind the print file and return it to the print queue. An 
installation option is available which allows print errors to 
be automatically overridden. 

If an unprintable character exists in a line (that is, a 12-bit 
ASCII code outside the range 00408 through 01768), the 
number sign (#) appears in the first printable column of a 
print line, and a space replaces the unprintable character. 

PUNCHED CARD INPUT AND OUTPUT 

Punched card data falls into two categories. 

• Coded data • 

• Binary data. 

Coded data is data converted from (or to) a punched card 
code to (or from) a character set code recognizable by a 
software product as representing a conventional character. 
Binary data does not require such conversion. Binary data 
in this context is usually manipulated in offline operations 
involving card-to-tape or tape-to-card transmissions, 
storage of relocated programs, and so forth. 

Under NOS/BE, alternative card keypunch codes are 
available for input of the CDC characters and or their 
ASCII equivalents ! and . 

Depending on which (if any) installation option is selected, 
t'1e system assumes an input <leek has been punched either 
in 026 or in 029 keypunch mode (regardless of the character 
set in use). The alternative mode can be specified by a 26 
or 29 punched in columns 79 and 80 of the 

A-2 

job card or any 7 /8/9 card. The mode remains in effect 
throughout the job unless it is changed by a mode specified 
on a subsequent 7 /8/9 card. 

MAGNETIC TAPE USERS 

Coded data to be copied from mass storage to magnetic 
tape is assumed to be represented in display code. NOS/BE 
converts the data to external BCD code when writing a 
coded seven-track tape and to ASCII or EBCDIC code (as 
specified on the tape assignment statement) when writing a 
coded nine-track tape. 

Because only 63 characters can be represented in 
seven-track even parity, one of the 64 display codes is lost 
in conversion to and from external BCD code. The 
following shows the difference in conversion depending on 
the character set (63 or 64 characters) which the system 
uses. The ASCII character for the specified character code 
is shown in parentheses. The output arrow shows how the 
display code changes when it is written on tape in external 
BCD. The input arrow shows how the external BCD code 
changes when the tape is read and converted to display 
code. 

Display Code 

00 

33 (0) 

63 (:) 

Display Code 

00 (:) 

33 (0) 

63 (%) 

63-Character Set 

External BCD Display Code 

16 (%) 00 

Output 12 (0) Input 33 (0) 

33 (0) 12 (0) 

64-Character Set 

External BCD 

12 (0) 

Output 12 (O) 

16 (%) 

Display Code 

Input 

33 (0) 

33 (0) 

63 (%) 

If lowercase ASCII or EBCDIC code is read from a 
nine-track coded tape, it is converted to its uppercase 6-bit 
display code equivalent. To read and write lowercase 
ASCII or EBCDIC characters, the user must assign the tape 
in binary mode and perform his own conversion of the 
binary data. 

Tables A-3 and A-4 show the character set conversions for 
nine-track tapes. Table A-3 lists the conversions to and 
from the ASCII character code and display code. Table A-4 
lists the conversions between the EBCDIC character code 
and the display code. Table A-5 shows the character set 
conversions between external BCD and display code for 
seven-track tapes. 

60493800 K 



TABLE A-1. INTERCOM CHARACTER SETS 

AS CIT ASCII 12-Bit ASCII 
Graphic Character Display ASCII Graphic 

( 64 Char) (128 Char) Code Code (64 Char) 

: co 1 on t oot # num. sign 
Display code 00 is undefined at sites [ 1. bracket 
using the 63-character set. J r. bracket 

A A 01 0101 % t 
B B 02 0102 { i:;lil(l# 
c c 03 0103 " quote 
D D 04 0104 under! ine 
E E 05 0105 T 
F F 06 0106 & ampersand 
G G 07 0107 . apostrophe 

? 
H H 10 0110 < 
I I 11 0111 > 
J J 12 0112 @ 

K K 13 0113 \ rev. slant 
l l 14 0114 A circumflex 
M M 15 0115 ; semicolon 
N N 16 0116 
0 0 17 0117 

·•···•· p p 20 0120 r·>•··:···•·>·•·•·········· ........ 
Q Q 21 0121 
R R 22 0122 
s s 23 0123 
T T 24 0124 
u u 25 0125 
v v 26 0126 
w w 27 0127 

x x 30 0130 
y y 31 0131 
z z 32 0132 
ll 0 33 0060 
1 1 34 0061 
z z 35 0062 
3 3 36 0063 
4 4 37 0064 

5 5 40 0065 
6 6 41 0066 
7 7 42 0067 
8 8 43 0070 
9 9 44 0071 
+ + 45 0053 
- - 46 0055 
* * 47 0052 

I I 50 0057 
( ( 51 0050 
) ) 52 0051 
$ $ 53 0044 
= = 54 0075 

space space 55 0040 
, comma , comma 56 0054 

period period 57 0056 

tThe interpretation of this character or code may depend on 
Character Set Anomalies elsewhere in this appendix. 

60493800 L 

ASCII 12-Bit 
Character Display ASCII 
( 128 Char) Code Code 

# num. sign 60 0043 
[ 1. bracket 61 0133 
J r. bracket 62 0135 
% t 63t 0045 
.... c<'ll&n.·. . 63 0012 
" quote 64 0042 

underline 65 0137 
T 66 0041 
& ampersand 67 0046 

I apostrophe 70 004 7 
? 71 0077 
< 72 0074 
> 73 0076 

74 
\ rev. slant 75 0134 

76 
; semicolon 77 0073 

@ 0100 
A circumflex 0136 

1 : ;o lo~! ...•.. ·.·• 0072 
F'•' ........... : ..... ::::.:) .. ®45••··· 

grave accent 0140 

a 
b 
c 
d 
e 
f 
g 

h 
; 
j 
k 
L 
m 
n 
0 

p 
q 
r 
s 
t 
u 
v ., 

x 
y 

z 
{ left brace 
I vert. line 
} right brace 
- ti 1 de 
DEL 

its context. Refer to 

00028 
I OF 2 

0141 
0142 
0143 
0144 
0145 
0146 
0147 

0150 
0151 
0152 
0153 
0154 
0155 
0156 
0157 

0160 
0161 
0162 
0163 
0164 
0165 
0166 
0167 

0170 
0171 
01 72 
0173 
01 74 
0175 
0176 
0177 

A-3 I 



TABLE A-1. INTERCOM CHARACTER SETS (Contd) 

ASCII ASCII 12-Bit ASCII ASCII 
Graphic Character Display ASCII Graphic Character 

( 64 Char) (!28 Char) Code Code (64 Char) (128 Char) 

NUL 4000 DLE 
SOH 0001 DCJ 
STX 0002 DC2 
ETX 0003 DC3 
EOT 0004 DC4 
ENQ 0005 NAK 
ACK 0006 SYN 
BEL 0007 ETB 

BS 0010 CAN 
HT 0011 EM 
LF 0012 SUB 
VT 0013 ESC 
FF 0014 FS 
CR 0015 GS 
so 0016 RS 
SI 0017 us 

A-4 

12-Bit 
Display 

Code 

00028 
2 OF 2 

ASCII 
Code 

0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 

0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 

60493800 L 



~493800 L 

TABLE A-2. BATCH CHARACTER SETS 

CDC ASCII ASCII 12-Bit Punch Code Graphic Graphic Graphic Display .ASCII 
( 64 Char) ( 64 Char) ( 95 Char) Code Code 026 029 

: colon t : colon t 00 t 8-2 8-2 
1 Illill!BMOD.~:111Ii11i1T&&•ltl1i .]i!iH~ ~I!!!~ 

A A A 01 0101 12-1 12-1 
B B B 02 0102 12-2 12-2 
c c c 03 0103 12-3 12-3 
D D D 04 0104 12-4 12-4 
E E E 05 0105 12-5 12-5 
F F F 06 0106 12-6 12-6 
G G G 07 0107 12-7 12-7 

H H H 10 0110 12-8 12-8 
I I I 11 0111 12-9 12-9 
J J J 12 0112 11-1 11-1 
K K K 13 0113 11-2 11-2 
L L L 14 0114 11-3 11-3 
M M M 15 0115 11-4 11-4 
N N N 16 0116 11-5 11-5 
0 0 0 17 0117 11-6 11-6 

p p p 20 0120 11-7 11-7 
Q Q Q 21 0121 11-8 11-8 
R R R 22 0122 11-9 11-9 
s s s 23 0123 0-2 0-2 
T T T 24 0124 0-3 0-3 
u u u 25 0125 0-4 0-4 
v v v 26 0126 0-5 0-5 
w w w 27 0127 0-6 0-6 

x x x 30 0130 0-7 0-7 
y y y 31 0131 0-8 0-8 
z z z 32 0132 0-9 0-9 
0 0 0 33 0060 0 0 
1 1 1 34 0061 1 1 
2 2 2 35 0062 2 2 
3 3 3 36 0063 3 3 
4 4 4 37 0064 4 4 

5 5 5 40 0065 5 5 
6 6 6 41 0066 6 6 
7 7 7 42 0067 7 7 
8 8 8 43 0070 8 8 
9 9 9 44 0071 9 9 
+ + + 45 0053 12 12-8-6 
- - - 46 0055 11 11 
* * * 47 0052 11-8-4 11-8-4 

t The interpretation of this character or code may depend on its context. 
Refer to Character Set Anomalies elsewhere in this appendix. 

00029 
I OF 3 



TABLE A-2. BATCH CHARACTER SETS (Contd) 

CDC ASCII ASCII 12-Bit Punch Code Graphic Graphic Graphic Display ASCII 
( 64 Char) (64 Char) ( 95 Char) Code Code 026 029 

I I I 50 0057 0-1 0-1 
( ( ( 51 0050 0-8-4 12-8-5 
) ) ) 52 0051 12-8-4 11-8-5 
$ $ $ 53 0044 11-8-3 11-8-3 
= = = 54 0075 8-3 8-6 

space space space 55 0040 no punch no punch 
, comma , corrana. , comma 56 0054 0-8-3 0-8-3 

period period period 57 0056 12-8-3 12-8-3 

- equiv. II num. sign II num. sign 60 0043 0-8-6 8-3 
[ 1. bracket [ l. bracket [ l. bracket 61 0133 8-7 12-8-2 
J r. bracket J r. bracket J r. bracket 62 0135 0-8-2 11-8-2 

t % t % t 63 t 0045 8-6 0-8-4 
·•·•· <:•··· ®1M> 

-; " quote ··;; quote 64 0042 g.:.j 
~ underline under] ine 65 0137 0-8-5 0-8-5 
v T T 66 0041 11-0 12-8-7 
/\ & ampersand & ampersand 67 0046 0-8-7 12 

"' 
I apostrophe I apostrophe 70 0047 11-8-5 8-5 

+ ? ? 71 0077 11-8-6 0-8-7 
< < < 72 0074 12-0 12-8-4 
> > > 73 0076 11-8-7 0-8-6 
~ @ 74 8-5 8-4 
~ \ rev. slant \ rev. slant 75 0134 12-8-5 0-8-2 
, . circumflex 76 12-8-6 11-8-7 
; semi col on ; semicolon ; semi co 1 on 77 0073 12-8-7 11-8-6 

@ 0100 . circumflex 0136 
: colon t 0072 

1. .·) .. I> .... ®4:U> . ...... 
grave accent 0140 

a 0141 
b 0142 
c 0143 
d 0144 
e 0145 
f 0146 
g 0147 

t The interpretation of this character or code may depend on its context. 
Refer to Character Set Anomalies elsewhere in this appendix. 

00029 
2 OF 3 

60493800 L 



CDC 
Graphic 

(64 Char) 

60493800 L 

TABLE A-2. BATCH CHARACTER SETS (Contd) 

ASCII ASCII 12-Bit 
Graphic Graphic Display ASCTT Punch 

(64 Char) (95 Char) Code Code 026 

h 0150 
i 0151 
j 0152 
k 0153 
L 0154 
m 0155 
n 0156 
0 0157 

p 0160 
q 0161 
r 0162 
s 0163 
t 0164 
u 0165 
v 0166 
w 0167 

x 0170 
y 01 71 
z 0172 
{ left brace 0173 
I vert. line 0174 
} right brace 0175 
- tilde 0176 

Code 

029 

00029 
3 OF 3 



TABLE A-3. ASCII NINE-TRACK CODED TAPE CONVERSION 

ASCII 

Code Character and 
Display 

Code 
Conversiont Code Conversiontt 

Code 
(Hex) Char 

20 
21 
22 
23 
24 
25 
2S 
26 
27 
28 
29 
2A 
2B 
2C 
20 
2E 

space 

# 
s 
7. 
% 
& 

* 
+ 

Code 
(Hex) 

00 
7D 
02 
03 
04 
05 
OS 
06 
07 
08 
09 
OA 
OB 
oc 
OD 
OE 

Char 

NUL 
} 

STX 
ETX 
EOT 
ENQ 

···•·· ilf(f 
ACK 
BEL 
BS 
HT 
LF 
VT 
FF 
CR 
so 

2F I OF SI 
30 0 10 OLE 
31 1 11 DCl 
32 2 12 DC2 
33 3 13 DC3 
34 4 14 DC4 
35 5 15 NAK 
36 6 16 SYN 
37 7 17 ETB 
38 8 18 CAN 
39 9 19 EM 
3A : JA SUB 

Di•tl«? c~~ l)O · i~ un4,•fiu~ 
the '3~eh;ar4ctet •et~ · 

3A : ·u·· .. SUB 

3B 
3C 
30 

< 
lB 
7B 
10 

ESC 
{ 

GS 

ASCII 
Char 

Code 
(Oct al) 

c>pace 55 
! 66 

# 
s 

64 
60 
53 

Y. 63 
•••e•ttt •• ··· ss< 

& 

( 

) 

* 
+ 

I 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

67 
70 
Sl 
52 
47 
45 
56 
46 
57 
50 
33 
34 
35 
36 
37 
40 
41 
42 
43 
44 
00 

~~····· ~.;t•• .~~~-
:···· << \~3 
; 77 
< 72 
= 54 

ASCII 

Code 
Conversiont 

Code 
(Hex) Char 

3E 
3F 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
4A 
48 
1,c 
40 
4E 
4F 
50 
51 
52 
53 
54 
S5 
56 
S7 
58 
S9 
SA 
SB 
SC 
SD 
SE 
SF 

> 
? 
@ 

A 
8 
c 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
p 

Q 
R 
s 
T 
u 
v 
w 
x 
y 

z 
[ 

\ 
] 

Character and 
Code Convers i ontt 

Code 
(Hex) 

lE 
IF 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
6A 
6B 
6C 
60 
6E 
6F 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
7A 
lC 
7C 
01 
7E 
7F 

Char 

RS 

us 

a 
b 
c 
d 
e 
f 
9 
h 
i 
j 
k 
l 
m 
n 
0 

p 
q 
r 
s 
t 
u 
v 
w 
x 
y 

z 
FS 
I 
SOH 

DEL 

Display 
Code 

ASCII 
Char 

> 
? 
@ 

A 
8 
c 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
p 
Q 

R 
s 
T 
u 
v 
w 
x 
y 

z 
[ 

\ 
] 

Code 
(Octal) 

73 
71 
74 
01 
02 
03 
04 
05 
06 
07 
10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
61 
75 
62 
76 
65 

tWhen these characters are copied from/to a tape, the characters remain the same and the code changes 
from/to ASCII to/from display code. 

tt These characters do not 
each ASCII character is 
also changed. Example: 
uppercase A, 013. 

exist in display code. Therefore, when the characters are copied from a tape, 
changed to an alternate display code character. The corresponding codes are 
When the system copies a lowercase a, 61!6• from tape, it writes an 

tttA display code space always translates to an ASCII space. 

00030 

60493800 L 



TABLE A-4. EBCDIC NINE-TRACK CODED TAPE CONVERSION 

EBCDIC 

Code 
Conversion t 

Character and 
Code Conversiontt 

Display 
Code 

EBCDIC 

Code 
Conversion t 

Character and 
Code Conversiontt 

Display 
Code 

Code 
(Hex) Char 

Code 
(Hex) Char 

ASCII 
Char 

Code 
(Octal) 

Code 
(Hex) Char 

Code 
(Hex) Char 

ASCII 
Char 

Code 
(Octal) 

40 space 00 NUL space S5 
4A C lC IFS [ 61 
4B OE SO • S 7 
4C < CO { < 72 
4D ( 16 BS ( Sl 
4E + OB VT + 4S 
4F I DO } ! 66 
50 & 2E ACK & 67 
SA ! 01 SOH ] 62 
SB $ 37 EOT $ S3 
SC * 2S LF * 47 
SD ) OS HT ) S2 
SE ; 2 7 ESC , 77 
SF .., Al - 76 
60 - OD CR - 46 
61 I OF SI I SO 
6B , OC FF , S6 

~ ··. i f .. ·~ ... \.+ i~ I $pj¢11\Trt · ~S 
6D 07 DEL _> 65 
6E > lE IRS 73 
6F ? lF !US ? 71 
7A : 3F SUB : 00 
Displ.~y. co(h! Ot) ill unddi;\\~ at ai~~' lflli.'~$ 
tqe 6l0d1ar•e;ter set.. . .....•... ·· 

~~ ·•• : I .. ·. ~~ I ·. ··~~· 

7C @ 79 \ 
70 I 2F BEL 
7E = 10 !GS 
7F " 02 STX 
Cl A 81 
C2 B 82 
C3 C 83 

a 
b 
c 

# 
@ 

A 
B 
c 

. > ') 
60 
74 
70 
SI~ 

64 
01 
02 
03 

•••••••• 

C4 
cs 
C6 
C7 
CB 
C9 
DI 
D2 
D3 
D4 
DS 
D6 
D7 
DB 
D9 
EO 
E2 
E3 
E4 
ES 
E6 
E7 
ES 
E9 
FO 
Fl 
F2 
F3 
F4 
FS 
F6 
F7 
F8 
F9 

D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
p 
Q 

R 
\ 
s 
T 
u 
v 
w 
x 
y 

z 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

84 
8S 
86 
87 
88 
89 
91 
92 
93 
94 
9S 
96 
97 
98 
99 
6A 
A2 
A3 
A4 
AS 
A6 
A7 
AB 
A9 
10 
11 
12 
13 
3C 
3D 
32 
26 
18 
19 

d 
e 
f 
g 
h 
i 
j 
k 
l 
m 
n 
0 

p 
q 
r 
I 
s 
t 
u 
v 
w 
x 
y 
z 
DLE 
DC l 
DC2 
TM 
DC4 
NAK 
SYN 
ETB 
CAN 
EM 

D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
p 
Q 

R 
\ 
s 
T 
u 
v 
w 
x 
y 

z 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

04 
OS 
06 
07 
10 
11 
12 
13 
14 
IS 
16 
17 
20 
21 
22 
7S 
23 
24 
2S 
26 
27 
30 
31 
32 
33 
34 
3S 
36 
37 
40 
41 
42 
43 
44 

t When these characters are copied from/to a tape, the characters remain the same (except EBCDIC codes 
4A, 4F, SA, and SF) and the code changes from/to EBCDIC to/from display code. 

tt These characters do not exist in display code. Therefore, when the characters are copied from a tape, 
each EBCDIC character is changed to an alternate display code character. The corresponding codes are 
also changed. Example: When the system copies a lowercase a, 8ll6• from tape, it writes an 
uppercase A, Olg. 

ttt All EBCDIC codes not listed translate to display code SSg (space). A display code space always 
translates to an EBCDIC space. 

60493800 L 

00031 



A-10 

TABLE A-5. SEVEN-TRACK CODED TAPE CONVERSION 

Octal 
External ASCII Display 

BCD Character Code 

01 
02 
03 
04 
05 
06 
07 
10 
11 
12 t 
13 
14 
15 
16t 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 
34 
35 
36 
37 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 

@ 

[ 
space 

I 
s 
T 
u 
v 
w 
x 
y 

z 
J 
, 
( 

# 
& 

34 
35 
36 
37 
40 
1+1 
42 
43 
44 
33 
54 
64 
74 
63 
61 
55 
50 
23 
24 
25 
26 
27 
30 
31 
32 
62 
56 
51 
65 
60 
67 

Octal 
External ASCII Display 

BCD Character Code 

40 
41 
42 
43 
44 
45 
46 
47 
50 
51 
52 
53 
54 
55 
56 
57 
60 
61 
62 
63 
64 
65 
66 
67 
70 
71 
72 
73 
74 
75 
76 
77 

J 
K 
L 

"' N 
0 
p 

Q 
R 

$ 

* 
I 

? 
> 
+ 
A 
B 
c 
D 
E 
F 
G 
H 
I 
< 

) 

\ 

46 
12 
13 
14 
15 
16 
17 
20 
21 
22 
66 
53 
47 
70 
71 
73 
45 
01 
02 
03 
04 
05 
06 
07 
10 
11 
72 
57 
52 
75 
76 
77 

tAs explained previously in this section, 
conversion of these codes depends on whether the 
tape is being read or written. 

00032 

60493800 L 



GLOSSARY 

Absolute Address 

The actual physical location of a word in central memory. Contrast with relative address. 

Allocatable Device 

A storage device that can be shared by more than one job. 

Alphanumeric 
The letters of the alphabet (A-Z) and the digits (0-9). 

Attach 

To make a permanent file accessible to a job by specifying the proper permanent file identification 
and passwords. 

Catalog 

To place a file under jurisdiction of the permanent file manager, making it a permanent file. 

Central Memory Resident (CMR) 

8 

Low core area of central memory reserved for tables, pointers, and subroutines necessary for operation 
of the operating system. 

COMPASS 

The assembly language of the CYBER 170, CYBER 70, and 6000 Series computers. 

Control Points 

The concept by which the multiprogramming capability of CYBER 170, CYBER 70, and 6000 
Series computers is exploited. When a control point number is assigned to a job, that job is 
allocated some of the system resources, and it becomes eligible for assignment to the central 
processor for execution. 

Control Statement 

An instruction to the operating system or its loader. It is found in a section at the beginning of a 
job deck. 

CYBER Control Language (CCL) 

A group of control statements and commands that manipulate all control statements. With CCL, the 
user can conditionally skip or process control statements, process and reprocess a group of control 
statements, and process control statements in a file other than the job file. CCL is common to both 
NOS/BE and SCOPE 2 and is virtually identical on both systems. 

CYBER Record Manager 

A software package running under the NOS and NOS/BE operating systems that allows a variety of 
record types, blocking types, and file organizations to be created and accessed. The execution time 
input/output of COBOL 4, COBOL 5, FORTRAN Extended 4, FORTRAN 5, Sort/Merge 4, ALGOL 4, 

60493800 L B-1 

I 



I 

and the DMS-170 products is implemented through CYBER Record Manager. Neither the input/output 
of the NOS/BE operating system nor any of the system utilities such as COPY or SKIPF is imple­
mented through CYBER Record Manager. All CYBER Record Manager file processing requests ulti­
mately pass through the operating system input/output routines. SCOPE 2 record manager performs 
input/output for the SCOPE 2 operating system and its products. SCOPE 2 record manager is similar 
in capabilities and use to CYBER Record Manager. 

Day file 

A chronological system permanent file, maintained on a permanent file device, which forms an account­
ing and job history file. Entries, called dayfile messages, are generated by operator action or by the 
system when control statements are processed or other significant action occurs. The system dayfile 
has entries for the entire system. Every job receives a job dayfile with entries pertinent to that job. 

Deadstart 

The process of initializing the system by loading the system library programs and any of the product 
set from magnetic tape or a public device. Deadstart recovery is reinitialization after system failure. 

Default 

A system-supplied parameter value or name used when a value or name is not supplied by the user. 

Dependency Count 

A number established by the user with the Dym parameter on a job statement and decremented by 
other jobs in the dependency string. The job is not run until the count reaches zero. 

Dependent Job 

A job which depends on the execution of other jobs before it can be run. It cannot be run until its 
dependency count is zero. 

Device Set 

A group of rotating mass storage devices. No device can belong to more than one device set. Every 
file must be contained within one device set, but can be on different devices in that device set. 

Device Set Member 

A rotating mass storage device belonging to a device set. 

Device Type Code (dt) 

An optional parameter on REQUEST statement or macro which specifies the type of device on which 
the named file is to be stored. It can encompass a group of parameters to define the device charac­
teristics in detail. 

Directive 

A directive is control information that appears on a separate file or in a separate section of the job 
deck. 

Dismountable Device 

A rotating mass storage device which can be logically disassociated from the running system. 

B-2 60493800 L 



Display Code 

Character code used internally in the computer. Each character consists of 6 bits (2 octal digits). 

Disposition Code 

A two-character mnemonic indicating device, site, form, and format for processing a file named on a 
ROUTE control statement and a DISPOSE statement or macro. Also, an octal value returned to the 
file environment table corresponding to the ultimate disposition of the file. 

DMPX 

A standard dump which appears on file OUTPUT when a job terminates abnormally. It shows the 
contents of the exchange package for the program, the contents of central processor registers, and the 
contents of words before and after the location at which the program stopped. 

EDITLIB 

A utility program which allows creation or maintenance of library files suitable for use by the loader. 

End-of-Information 

Physical end of data. In card decks, a card with a 6/7 /8/9 multiple punch in column one. On SI tapes 
and on labeled S and L tapes, a tape mark followed by an EOF trailer label followed by two tape 
marks. On mass storage devices, the position of the last written data. CDC CYBER Record Manager 
defines end-of-information in terms of file residency and organization. 

End-of-Tape Reflective Marker 

A reflective strip near the end of a magnetic tape. It is used to signal termination of operations on a 
particular volume. At least 18 feet of tape must follow this marker. 

EST Ordinal 

Evict 

The number designating the position of an entry within the equipment status table established at each 
installation. 

Evict releases all space occupied by a file to the system, including space occupied by entries in system 
tables. 

Exchange Package 

A 16-word package containing information used in exchange jumps during job execution: contents of 
central processor registers, RA and FL in central memory and in ECS and the program address. It is 
stored in the control point area and printed as part of the standard output of an aborted job. 

Extended Core Storage (ECS) 

ECS contains 60-bit words. ECS has a large amount of storage and fast transfer rates. 

Field Length (FL and FE) 

FL is the number of central memory words assigned to a job. FE is the number of words in the 
direct access area of extended core storage assigned to a job. Within central memory or extended core 
storage, the field length added to the reference address defines the upper address limit of a job. 

60493800 E B-3 



File 

A file is a set of information that begins at beginning-of-information and ends at end-of-information 
and that has a file name. All files have at least one partition, which is delimited by a system·.Jogical­
record of level 17 8 on mass storage files or tapes in SI format, and by a tape mark on S or L tapes. 

File Environment Table (FET) 

A table used for communication between a user program and the operating system when files are pro­
cessed. An FET created by a compiler or by the assembly language programmer is required within the 
user field length for each file in the program. 

File Name (lfn) 

The I-7 display coded alphabetic or numeric characters by which the operating system recognizes a file. 
Every lfn in a job must be unique and begin with a letter. 

File Set 

One or more related files recorded on one or more volumes. 

Full track (FT) 

I Reading/writing sequential sectors on an 844 or 885 disk drive (I : 1 interlace). 

Half track (HT) I Reading/writing alternate sectors on an 844 or 885 disk drive (2:1 interlace). 

Hang 

A system stop that may be caused by hardware failure or by an error in a system program. An error 
in a user program could cause that program to hang (go into a loop or abort), but no user program 
error should cause a system hang. 

Job Step 

Each individual control statement is a job step. A group of job steps forms a job stream. 

Job Stream 

A job stream is a group of control statements found at the beginning of a deck. 

INPUT 

A file name assigned by the system to every job. It contains the image of user job deck. 

JANUS 

A group of system peripheral processor routines which controls the processing of input and output files. 
JANUS controls up to 4 card readers, 3 card punches, and 12 line printers. It normally functions at 
control point I but can be assigned to another control point by the operator. 

L Tape 

A labeled or unlabeled magnetic tape containing physical records whose sizes range from one central 
memory word to an upper limit specified by the size of the buffer for that tape. 

B-4 60493800 L 



Labeled Tape 

Level 

A magnetic tape with header and trailer labels having the format of the CDC CYBER 170, CYBER 70, 
or 6000 Series standard labels or the 3000 Series labels; alternately a tape in S or L format with non­
standard labels. 

An indicator specifying relative position in a hierarchy. For priority considerations, level 0 is the lowest 
priority. For system-logical-records, octal level numbers 0-17 can be used to organize files. For overlay 
and segment loading, a pair of numbers specifies level, with (0,0) being the portion of the program 
remaining in memory. 

Level Number 

An octal number from 0-17 in a short physical record unit or zero-length physical record unit marker to 
form system-logical-record groups within files. Level number 17 indicates a logical end-of-partition. 
Level number 16 is used by checkpoint/restart and should not otherwise be specified by the user. The 
system creates system-logical-records with a level number of 0 for mass storage files and SI tapes when 
the user does not specify otherwise. 

Library 

A file or collection of files containing executable programs and tables needed to locate and load the pro­
grams. A system library can contain peripheral processor programs in addition to the central processor 
programs. A user library is file formatted as a library but is not available to a job until it has been 
explicitly brought to the job. 

Load Point 

The reflective marker near the beginning of a magnetic tape. Data, including labels, is written after the 
load point. A rewind positions a single file volume to the load point. At least 10 feet of tape should 
precede the load point marker. 

Load Sequence 

A sequence of load operations which encompasses all of the loader's processing from the time that 
nothing is loaded until the time execution begins. It includes initialization, specification of specified 
loader requests, and completion of load. 

Macro 

A COMPASS language statement which generates other source language code. 

Master Device 

The member of a device set designated as the device to contain all device set related tables. Every 
device set has one device that is a master device. 

Mount 

A logical operation that associates a device set member with a job. 

Monitor 

The system routine which coordinates and controls all activities of the computer system. It occupies 
peripheral processor 0 and part of central memory. It schedules the use of the central processor and 
the other peripheral processors. 

60493800 H B-5 



Non-Allocatable Device 

A device such as a magnetic tape which can be used by only one job at a given 'time. 

NUCLEUS 

A system library containing the essential system programs needed to load and execute all other system 
library programs. It is available to all jobs without explicit call. 

OUTPUT 

A file name assigned by the system to each job to receive information such as assembly listing, 
diagnostics, load map, dayfile, and program output. It is printed at job termination unless otherwise 
disposed by the user. 

Partition 

A partition is a system-logical-record of level 17 8 on a mass storage file or a tape in SI format. On 
a S or L tape, it is delimited by a tape mark. 

Password 

A string of 1-9 letters or digits defining access permission assigned at attach time. Each password implies 
one type of access permission designated for permanent files, such as read, modify, extend, control, or 
turnkey. 

Permanent File 

A mass storage file cataloged by the system so that its location and identification are always known to 
the system. Permanent files cannot be destroyed accidentally during normal system operation (including 
deadstart). They are protected by the system from unauthorized access according to privacy controls 
specified when they are created. 

Physical Record Unit (PRU) 

The smallest amount of information transmitted by a single physical operation of a specified equipment, 
measured in central memory words. A PRU for mass storage devices is 64 decimal words long, a PRU 
for SI format binary magnetic tape is 512 decimal words, etc. 

Private Device 

A mass storage device which can be used only by specific request. It is logically removable and is a 
member of a private device set. 

PRU Device 

A mass storage device or tape in SI format. 

Public Device 

An allocatable mass storage device available to the operating system for assignment of default residence 
files. 

PUNCH 

B-6 

A file name which causes the file to be punched on cards in Hollerith format when the job 
terminates. 

60493800 H 



PUNCHB 

A file name which causes the file to be punched on cards in binary format when the job 
terminates. 

Random File 

A file with an index entry to each record in the file. A file on a rotating mass storage device is a 
random file only when the random bit is set in the file environment table. The last record of the 
file is an index. 

Recall 

The state of a program when it has released control of the central processor until a fixed time has 
elapsed (periodic recall) or until a requested function is complete (auto recall). Recall is a system 
action request as well as an optional parameter of some file action requests. 

Record 

CDC CYBER Record Manager defines a record or a portion thereof as the smallest collection of infor­
mation passed between CDC CYBER Record Manager and a user program. Eight record types exist, as 
defined by the RT field of the file information table (FIT). Other parts of the operating systems and 
their products might have additional or different definition of records. 

Reference Address (RA and RE) 

RA is the absolute central memory address that is the starting, or zero relative address assigned to a 
program. Addresses within the program are relative to RA. RA+l is used as the communication word 
between the user program and Monitor. RE is the absolute extended core storage starting address 
assigned to file. 

Relative Address 

All addresses in a relocatable program are relative to a base address of zero. When a relocatable pro­
gram is loaded for execution, the zero base address is assigned to a reference address. At that time, 
all addresses in the program become relative to the reference address. 

Removable Device 

A rotating mass storage device which can be physically detached from the RMS drive. 

Retention Period 

The number of days a permanent file or a device set is to be valid. 

Rolling 

The concept of removing jobs from central memory to mass storage before execution is complete so 
memory can be assigned to a higher priority job. 

Rotating Mass Storage (RMS) 

Disk storage device. 

60493800 H B-7 



S tape (Stranger Tape) 

A magnetic tape (labeled or unlabeled, 7- or 9-track) containing physical records ranging in size from 
2 characters to 51 20 decimal characters. This tape does not contain any level numbers. 

Scheduler 

A group of system routines which select jobs for assignment to control points and control swapping 
and rollout of jobs. 

Sequential File 

A file in which records must be located by position, not address. 

Short PRU 

A physical record unit containing data and a marker with an octal level number to mark the end of 
a system-logical-record. The amount of user data in a short PRU is less than the PRU size of the 
storage device. A short PRU defines the end of a system-logical-record. In CDC CYBER Record 
Manager, a short PRU may have several interpretations that depend upon record and block type. 

SI Tape 

A magnetic tape created under NOS/BE I with fixed length physical record units. For coded tape = 
128 decimal central memory words; for binary tape = 512 decimal central memory words. An SI tape 
can be labeled or unlabeled and written on 7-track or 9-track tape. Identical to SCOPE tape under 
SCOPE 3.3 and 3.4 and to SI format tape under NOS I and KRONOS 2.1. 

Staging 

Releasing a tape job from the tape queue for scheduling. 

Standard Labeled Tape 

A tape with labels conforming to American National Standard Magnetic Tape Labels for Information 
Interchange X3.27- 1969. Also called a system labeled tape. 

Swapping 

The concept of removing jobs from central memory to mass storage before execution is complete, so 
control point and memory can be assigned to another job. A job is swapped out when it is waiting 
for an external event, or when its control point and/or central memory is needed by a higher priority 
job. 

System Device 

A system device is a device that holds system information. All system devices are PRU devices but not 
all PRU devices are system devices. 

System Libraries 

The collection of tables and object language programs residing in central memory or on mass storage, 
which are necessary for running the system and its product set. 

Sys tern- Logical-Record 

B-8 

A data grouping that consists of one or more physical record units immediately followed by a short 
physical record unit or a zero-length physical record unit. These records can be transferred between 
devices without loss of data or structure. A system-logical-record is equivalent to a CDC CYBER Record 
Manager S type record. 

60493800 E 



Tape Mark 

A short record written on tapes under operating system control to separate label groups, files, and/or 
labels. Interpretation depends on the tape format. 

Unlabeled Tape 

A magnetic tape that does not have a header label. Unlabeled tapes generated by the opera ting system 
contain a trailer label similar to the trailer for a standard labeled tape. 

Unit Record Device 

A standard unit record device (such as line printer, card punch, and card reader) runs under control of 
JANUS. A nonstandard unit record device (such as. graphic consoles, plotters, and paper tape readers 
and punches) runs under installation software. 

Update 

A utility program that allows a source statement program stored on mass storage or tape in Update 
format to be modified and restored. 

User Library 

Library file a programmer created through the EDITLIB utility. It contains loader tables referencing 
the assembled central processor programs, subroutines, text records, or overlays. 

Volume 

A term synonymous with reel of tape. 

Zero-Length PRU 

A physical record unit, containing only an octal level number, that is used to terminate a system­
logical-record; it does not contain any user data. In CYBER Record Manager, a zero-length PRU 
with a level designator of 17 8 is a partition boundary. 

Zero-Byte Terminator 

The 12 bits of zero in the low order position of a central memory word are used to terminate a line 
of coded information to be output to a line printer or to represent cards input through a card reader. 
Files with names INPUT and OUTPUT have such terminators while in storage. Any file to be displayed 
at a terminal must also have such terminators for each line to be displayed correctly. A record with 
such a terminator in CYBER Record Manager is a zero-byte record (Z type record). 

In display code, two colons create 12 bits of zeros. If two consecutive colons occur in a file that 
contains zero-byte records, they may be stored in the lower order portion of a word and create a 
zero-byte record. 

Files created at a terminal under the CREATE command contain zero-byte terminated records. 

lxPPU 

Memory speed is l microsecond. 

2xPPU 

Memory speed is 0.5 microseconds. 2xPPU is available only on CYBER 170. Memory speed is 
set by the installation. 

60493800 E B-9 





PUNCH CARD AND TAPE FORMAT c 

TI1is appendix contains details of the format of punch cards and magnetic tape. Two types of card format 
are discussed: Hollerith or coded cards and binary cards, which include the separator cards used between 
sections of a deck and between decks. Magnetic tape format is discussed in terms of the binary and coded 
formats produced on 7- and 9-track tapes in SI format. 

PUNCH CARD FORMATS 

Punch card formats can be coded Hollerith, standard binary, and free-form binary. 

Hollerith cards are produced when the file name is PUNCH, or the disposition code of the output file is PU 
(octal 0010). Unused columns at the end of the last Hollerith card are blank; a card with 7 /8/9 multipunch 
follows the last card produced. 

Standard binary cards are produced when the file name is PUNCHB, or the file has a disposition code of PU, 
IC=BIN, and EC=SB (octal 1210). 

Free-form binary cards are produced when the file name is P80C, or the file has a disposition code of PU, 
IC=BIN, and EC=80COL (octal 2210). If the number of words to be punched in free-form is not an even 
multiple of 16, the unused columns at the right of the last punched card are blank. A card with 7 /8/9 is 
produced following the last free-form binary card. The flag cards are not punched as part of the output. 

HOLLERITH FORMAT 

Hollerith cards are often called coded cards. Each column can be punched to represent codes of any given 
character set (see appendix A). The hole code is translated by card reading devices into the binary code 
for the character. Blank columns are translated into a binary code representing a blank space. 

Holierith punch cards can be in 026 or 029 format. 026 mode is a 63- or 64-character set defined by 
Control Data. 029 mode is a Control Data 64-character subset of the codes defined by the American 
National Standard Code for Information Interchange, X3.4-1968 (ASCII mode). 

Each installation selects the default mode for cards to be read into the system, but cards in an alternative 
mode can be read when the job indicates another card mode. Appendix A shows card codes for 026 and 
029 modes and discusses how to change modes within a job deck. 

END-OF-RECORD CARD 

A card containing octal 0007 (7 /8/9) in column 1 separates logical records in a job deck. Level numbers 
associated with the record are punched in Hollerith code in columns 2 and 3. The level number may be 
00,01,02,03,04,05,06,07,10,ll,12,13,14,15,16, or 17. If columns 2 and 3 are blank, the level number is 
assumed to be 00. Level numbers 1-7 may be punched with a trailing blank in the form nb, where n is 
the level number and b is a blank. The format of this card is as follows: 

60493800 E C-1 



COLUMNS 

1 2 3 80 

12 
11 

0 
2 
c 

1 \ 
2 l 

(/) 3 
$ 4 0 
a: 

5 

I 
\ 

6 

7 

8 ) 
9 

STANDARD BINARY CARDS 

All standard binary calds must have punches in rows 7 and 9 of column 1; thus, any four octal digits ending 
with 5 or 7 would act as a binary card marker. Any card without a 7/9 punch in column 1 is considered 
to be a Hollerith card; no legal Hollerith code contains a 7 /9 punch combination. Any Hollerith card 
column containing an illegal Hollerith punch combination is read as a blank, and a message is produced for 
output giving the card number and the number of the record containing the card. 

Binary subprogram or data cards can contain the binary representation of up to 15 central memory words. 
This card type contains a 7/9 punch with a word count in rows 0/1/2/3 and a checksum flag in row 4, all 
in column 1. The word count indicates the number of binary words in the card, starting in column 3 and 
not extending beyond column 77. Column 2 contains a checksum of the binary words in columns 2 
through 77; the value of the checksum is a ones-complement sum, modulo 4095 (2** 12 - 1 =4095). If the 
checksum flag in row 4 of column 1 is punched, the checksum is ignored by the system. Columns 79 and 
80 contain a card sequence number in binary. The lower five bits in column 79 and all 12 bits in column 
80 make up the 17 bit serial number of the card record within the logical record that contains it. If cards 
are not read in sequential order, a warning message is produced for output; however, the cards are read and 
accepted. 

Columns 1, 2, 7 8, and 80 are produced when a binary punch file is punched through a remote terminal or 
JANUS controlled device. These columns are removed when the deck is read into the system, so that a 
card has only 15 central memory words of information internally. 

C-2 60493800 E 



The format of a binary subprogram card is as follows: 

(/) 

::: 
0 
a: 

12 

11 

0 

1 

2 

3 

4 

5 

6 

7 

8 
9 

COLUMNS 

1 2 3 4 5 

L 
t-;:;" -c LO ~ 

::J en 
0 0 
u '<t 

"'O j2 .... 
::J 0 

~ 
"'O 
0 
~ 

E 
::J 

"' t- .:.!. 
u 

~ 
Cl> 

..c 
u 

~ 

FREE·FORM BINARY CARDS 

Column Binary Information 

I 
~ 

_l_ 

j 
~ 
7 

l 

I 

~ 

77 80 

{_ T 
\ . -I 

-"' ~ 

l 
·~ 

·-I "' ::J 

..... 

\: 0 
•c ---

I 
r-->. 

·-
Cl> .... 
u <ti 
c c 
Cl>·-

.. ::J ::£ 

l g a; 
(/) D 

\ "'O E ...., ~ ::J 
uz 

Free-form binary cards are unique since they can be read as sixteen 60-bit words per card (eighty 12-bit 
columns) with no checksum or sequence number. For example, ·a card having 6/7 /8/9 punched in column 
and at least one punch in one other column can be read as a free-form binary card. Normally, it would be 
treated as an end-of-information card. 

Free-form binary cards must be preceded by a flag card with all 12 rows punched in column 1 and any other 
column and no other punches. This flag card is not read as containing information; it signals that free-form 
binary cards follow. 

Any number of cards may follow; none may have the same form as the free-form flag card or a 6/7 /8/9 
end-of-information card. The free-form binary cards are read into memory in 16-word increments. After 
the free-form binary cards, another flag card with 12 rows punched in column 1 and the same column as 
the first flag card must appear. This card signals the end of the free-form binary deck and standard binary 
or Hollerith cards follow. The operator's console displays TRAY EMPTY until a matching flag card is read. 

If it is necessary for a free-form binary card with the same appearance as the flag card to appear in the 
deck, it is possible to create a flag card of a different form. Any card having 12 rows in column 1 punched 
and 12 rows in any other column punched with no other punches on the card is recognized as a free-form 
flag; therefore, 79 variations are possible for the flag card. 

60493800 H C-3 



• 

Normally, a series of free-form binary cards and their flag cards are organized into one record in an input file. 
However, they can be preceded and/or followed by standard binary and/or Hollerith cards within the same 
record. The different cards in the record are accepted; however, a message indicating a change in mode is 
produced for the record. A valid record might consist of the following. 

A series of Hollerith cards. 

A start free-form flag card (7777 in columns l and 80) with no other punches. 

A series of free-form binary cards without a standard 6/7 /8/9 card or any card identical with 2. 

An end free-form flag card identical with 2. 

A start free-form flag card, which might be the same as or different from 2 and 4. 

A series of free-form binary cards as in 3. 

An end free-form flag card identical with 5. 

A series of standard binary cards which should be in order according to sequence numbers. If not, a 
sequence number check message and a mode change message are issued for the record . 

A 7/8/9 card. 

TAPE FORMAT 

7-TRACK CODED SI FORMAT 

For coded data being output on 7-track tape, the PP converts display code to internal BCD codes if a 6684 
converter is not available. The tape controller converts internal BCD to the external BCD codes recorded on 
the tape. In the 63-character set display code, characters 33 and 63 convert to an external BCD 12. How­
ever, if the last two characters of a central memory word have a display code representation of 0000 (end­
of-line delimiter byte), they become an external BCD 163 2. 

For 7-track coded tapes being read in, the tape controller converts external BCD to internal BCD codes. The 
PRU converts the internal BCD to display codes (if a 6684 converter is not available) before transferring data 
to the file buffer. On input, the external BCD 12 is converted to a display code 33 (zero). The end-of-line 
delimiter byte, which must occur at some multiple of five bytes, is converted to a 0000 display coded 
end-of-line byte. 

C-4 60493800 E 



Peculiarities for coded tape for the 63-character set: 

OUTPUT INPUT 

Display Internal External ·Internal Display 

Code BCD BCD BCD Code 

()() 16 16 ' 16 ()() 

33 ()() 12 00 33 
63 12 12 00 33 

Line Terminator 0000 1672 1632 1672 0000 

Display code 00 is not a valid character; display code 63 (colon) is lost. Line terminators (byte of all zeros 
in lowest byte of a central memory word) will not result in the loss of zeros. 

Peculiarities for coded tape for the 64-character set: 

OUTPUT INPUT 

Display Internal External Internal Display 
Code BCD BCD BCD Code 

00 12 12 12 33 
33 00 12 12 33 
63 16 16 16 63 

Line Terminator 0000 1672 1632 1672 0000 

Display code 00 (colon) is lost; display code 63 is now a valid character. An exception exists when up to 
nine 0 characters precede a line terminator. They are changed in the PP buffer to 638. On tape, they 
result in external BCD 16. When tape is read, a 63 preceding a line terminator is converted to display code 
zero. This substitution ensures preservation of all zeros preceding a line terminator, regardless of the graphic 
character set used. 

Appendix A contains the conversion tables for these codes. Conversion is performed by a 6684 if it is part 
of the hardware configuration. 

The system-logical-record terminator on 7-track coded tape is eight characters long. Its format in external 
BCD is: 

47 4 0 

Blank (Reserved for Future System Use) 

Level Number, in Binary~· 

The level number is the low-order 5 bits of the last character. The upper 2 bits of this character are always 
zero except for level zero which is represented by 010000 (binary). For example, in external BCD, level 5 
would be represented by 2020202020202005 and level 0 would be represented by 2020202020202020. 

A record terminator marker is appended to the record data, if possible, or written as the only information 
in the following tape block. 

60493800 H C-5 



7-TRACK TAPE BINARY SI FORMAT 

The system-logical-record terminator on 7-track binary tape is 48 bits long. Its format is: 

47 35 23 11 5 0 

5523 3552 2754 00 L 

The marker immediately follows record data if it can be contained within the tape block; otherwise, it is 
written as the only information in the following tape block. 

9-TRACK TAPE CODED OR BINARY SI FORMAT 

When Si format 9-track tapes are written or read, information is not converted by the system. Only full 
central memory (CM) words can be written or read on SI format tapes. If a short or zero-length PRU is 
written on tape, it is terminated by a 48-bit system-logical-record terminator. Data is written on tape in 
frames of 8 bits, packed mode. For example, one CM word (60 bits) is written on tape as 7 .5 frames, 
and two CM words are written as 15 frames. If a short PRU contains an odd number of CM words, the 
last 4 bits of the last frame are not used. Partial central memory words cannot be read or written on SI 
tapes. SI tapes can be written or read in packed mode. 

The system-logical-record terminator has the same format as that for 7-track coded tapes. 

Table C-1 summarizes tape file characteristics. 

C-6 60493800 M 



§ 
\Ci w 
00 

8 
~ 

(') 

.:..i 

TABLE C-1. TAPE FILE CHARACTERISTICS 

Tape Maximum Data Format Noise End-of- End-of- End-of-
Track/Density Mode Type Parity Block Size on Tape Size* Record File Information 

9-Track Binary SI Odd 5120 characters Packed§ ~6 t tt TM EOFl TM TM 

HD=800 cpi Binary s Odd 5120 characters Packed§ ~6 Interblock Tape ttt 
GE=6250 cpi 

gap (IBG) mark(TM) 

PE=l600 cpi Binary L Odd No maximum** Packed§ ~6 IBG TM ttt 

Hardware Coded SI Odd 1280 characters Packed§ ~6 t tt TM EOFl TMTM 
selects density 
on read. Coded s Odd 5 120 Characters EBCDIC or ASCII ~6 IBG TM ttt 

conversion 

Coded L Odd No maximum** EBCDIC or ASCII ~6 IBG TM ttt 
conversion 

7-Track Binary SI Odd 5120 characters No conversion ~6 t tt TM EOFl TM TM 

L0~200 bpi Binary s Odd 5120 characters No conversion ~6 IBG TM ttt 

HI=556 bpi Binary L Odd No maximum** No conversion ~6 IBG TM ttt 

HY=800 bpi Coded SI Even 1280 characters External BCD ~6 t tt TMEOFl TMTM 

Hardware can Coded s Even 5120 characters External BCD ~6 IBG TM ttt 
read short 
records at Coded L Even No maximum** External BCD ~6 IBG TM ttt 
wrong density. 

§ Packed means that a 60-bit word is changed to or from 7 .5 8-bit frames on tape. I 
t Short or zero length PRU with a 48-bit marker containing a level number~ l 6B. 

tt Zero length PRU with a 48-bit marker containing a level number of l 7B. 

ttt For unlabeled tapes: on a write, 4 tape marks and on a read, undefined so that the user must determine. For labeled tapes: TM EOFl TM TM. 

* May be changed by installation option. Defined in 6-bit characters. 

** Maximum size on read (except READSKP) or write is determined by size of user data buffer. 





CDC CYBER 170 MODEL 176 DIFFERENCES D 

Major hardware differences between CDC CYBER 170 Model 176 and other CDC CYBER 1 70 models are as 
follows: 

CDC CYBER 170 Model 176 extended memory is analogous to the CDC CYBER 70 Model 76 large 
central memory (LCM) or large central memory extended (LCME). Extended memory cannot be 
shared between mainframes and does not have a distributive data path (DDP) access. Shared mass 
storage (not 819 disk) and coupler linkage multimainframe (MMF) modes are supported; the ECS MMF 
link is not supported. The maximum extended memory block copy size is 1023 decimal words. 

The instruction word stack has a 2-word read-ahead and is not voided by a jump out of the stack or 
02 (JP) instruction. When instructions are modified, a return jump is required to void the stack before 
the modified instructions are executed. 

Because of these differences, products have been modified to execute and compile based on a MODEL=l 76 
value in the MODEL micro (refer to the NOS/BE Installation Handbook). Binaries generated by other model 
settings will not necessarily run under the new models and vice versa. 

CDC CYBER 170 Model 176 is not compatible with the CDC CYBER 170 Model 175 in the following ways. 

Model 176 systems always execute in CEJ/MEJ mode; the switch, if present, has no effect. 

Model 176 peripheral processor subsystem (PPS) can cause exchange jumps in the CPU only when the 
monitor flag is clear. 

Model 176 instruction word stack (IWS) is not degradable. 

Model 176 CPU has an instruction word step mode. 

Model 176 02 instruction does not void the IWS. 

Model 176 jump out of stack does not void the IWS. 

60493800 E 0-l 



CDC CYBER 70 Model 76 LCM/LCME memory replaces ECS as extended memory on CDC CYBER 170 
Model 176. The maximum number of 60-bit words that can be transferred in the block copy instruction is 
1023 decimal. CDC CYBER 170 Model 176 does not support flag register operations. Extended memory 
has single error correction/double error detection (SEC/DED). 

D-2 

The 011, 012, and 013 instructions are legal on a model 176 in any word parcel. NOS/BE forces a 
half exit, as performed on model 175 if the instruction is in the upper word parcel. 

The 014-017 instructions are legal on model 176. 

The 464-467 instructions are legal no-op instructions on model 176. 

30-bit instructions in parcel 3 are legal on model 176. 

Model 176 shift unit tests bits 6 through 11 of Bj to determine if the shift count exceeds 63 decimal. 

Model 176 shift unit returns negative zero when a negative number is right shifted by more than 63 
decimal places. 

Model 176 divide unit enters a 4000 .... pattern below the least significant bit of the dividend on 
round operations. Overflow or underflow on exponent subtract returns overflow or underflow. 

Model 176 floating add unit returns a positive zero if the shift count exceeds 128. 

Model 176 branch instructions sense infinite and indefinite as out of range. 

A central exchange (013 instruction) exchanges to RAS + K on a model 176. 

Model 176 CPU has no breakpoint capability. 

60493800 E 



INTERPRETIVE MODE READING AND WRITING OF ECS E 

Interpretive mode processing of ECS read and write operations gives the COMPASS programmer an effective 
means of breaking up large block ECS transfers and processing recoverable ECS errors. The efficiency of 
long ECS transfers tends to be degraded because of PP-initiated exchange jumps which force ECS transfers 
to be completely restarted. Interpretive mode processing breaks up large blocks into smaller, 4008-word 
blocks, thereby minimizing the effects of these exchanges. ECS transfer errors are retried as a block transfer 
and then as single word transfers if necessary. If the error is recovered, it is logged in the system error log 
and is transparent to the user program. Unrecoverable errors are also logged and must be processed by the 
user program. 

The interpretive routines are available on common deck COMCECS for absolute COMPASS programs and as 
relocatable routines in SYSLIB for relocatable COMP ASS programs. Additionally, common deck COMCECM 
is provided to redefine the RE and WE COMPASS instructions. COMCECM is also available on systems text 
ECSTEXT. Thus, for absolute COMPASS programs, the user must either make specific calls to both common 
decks or call COMCECS and specify S=ECSTEXT on the COMPASS control statement (refer to the COMPASS 
Reference Manual). For relocatable COMPASS programs, the user need only specify ECSTEXT as an alternate 
systems text on the COMPASS statement. 

Programs using interpretive mode reading and writing of ECS do so with the usual RE and WE COMPASS 
instructions. If, while in interpretive mode, the user desires to perform noninterpretive reading and writing 
of ECS, the RD and WT instructions must be used. These instructions are defined on common deck 
COMCECM. These instructions read and write ECS directly while in interpretive mode, as in the normal 
execution of the RE and WE instructions. 

The instructions defined in ECSTEXT and common deck COMCECM are in the following formats. 

inst Bj 

inst K 
inst Bj+K 

Instruction inst is one of the following: 

inst 

RE 

WE 

RD 

WT 

60493800 J 

Description 

Read ECS in interpretive mode. 

Write ECS in interpretive mode. 

Read ECS noninterpretively in interpretive mode. 

Write ECS noninterpretively in interpretive moue. 

E-1 





TYPES AND NAMES Of RECORDS F 

The type and the name of a record are determined by the COPYL and ITEMIZE utilities from information 
contained within the record. If the record begins with a prefix table, the record name is obtained from that 
table and the type of the record is determined from the first word following the prefix table. If the first 
word in the record is not a prefix table, but is a recognizable format, the format determines type. Any 
record that has neither a prefix table nor a recognizable format is classed as a DATA type record. 

PREFIX TABLE USE ' 

Prefix tables exist, unless they uave been specifically suppressed, for programs assembled or compiled under 
any operating system and system text overlays. 

The prefix table is the first of the ordered set of binary tables that form object programs. The tables consist 
of a header word with an octal table type identifier followed by varying amounts of control information that 
instruct system routines, such as the loader, or that contain the program code. 

The prefix table is identified by octal digits 7700 in bits 48-59 of its first word; consequently, it is often 
referred to as a 77 or 7700 table. Information in the prefix table, which originates with the assembler or 
other system routine that creates the table, specifies items such as the date created and the system on which 
the job was executed. 

Although some of the records may contain display coded data (loader directives, for instance, are coded), 
they are considered binary records. 

OTHER RECORD IDENTIFIERS 

If a prefix table is not present, the first word in a record is examined in a search for a recognizable format. 
If a record meets the criteria for a given type of record, the utilities identify it as such. An Update sequential I 
program library, for example, is identified by the characters CHECK in the first word. 

Table F-1 summarizes types of records and the criteria used to determine them. 

RECORD NAMES 

If a record begins with a prefix table, bits 18-59 of the second word of the table determine the record name. 
If a record does not begin with a prefix table, bits 18-59 of the first word of the record are used as the 
record name. 

Records typed as DATA, UCF, and UPL do not have names. 

60493800 M F-1 



TABLE F-1. DETERMINING TYPES OF RECORDS 

Type of Record Record Description Type Determined By 

ABS Central processor overlay with one or 51 table; 53 table with bit 17=1; or 
more named entry points. 54 table with (0,0) overlays. 

I 
CAP Capsule. 77 table followed by 6000 table. 

DATA Not any other described record type. Unrecognizable by criteria defined in 
these tables. 

LIBNT library name table record. NOS/BE deadstart tape position. 

OVL Central processor overlay with one 50 table; 53 table with bit 17=0; or 
unnamed entry point (no ENTRY 54 table with non-(0,0) overlays. 
statement in program); system text. 

PPNT Peripheral processor program name table. NOS/BE deadstart tape position. 

I PROC CYBER control language procedure file. .PROC followed by comma. 

REL Relocatable central processor program. 34 table. 

SDR Special deadstart record. NOS/BE deadstart tape position. 

TEXT Text record. No 77 table and first word has all 
zeros in bits 0-17. 

UCF Update compressed compile file. 77 table with 0 word count. 

I UPLx Update sequential program library No prefix table and characters CHECK 
with x master control character. in bits 30-59: control character 

obtained from bits 0-5. 

6PP 6000 Series peripheral processor overlay. 77 table with three-character name in 
header word. 

7PP 7000 Series peripheral processor overlay. 52 table. 

F-2 60493800 M 



Abort 
ABORT macro 7-15 
Processing 2-14; 7-15 
Recovery 7-33 

ABS control statement 4-5 
Absolute dump 4-5 
Access to file (also refer to Assign) 

Exclusive 3-16 
Multiread 3-16 
Permission 3-15; 6-22 

ACCOUNT control statement 4-5 
Accounting 

ACCOUNT control statement 4-5 
Dayfile messages 2-17 
Job 4-5 
Job statement 4-2 
Permanent file 3-22; 4-9 
SUMMARY control statement 4-104 

ADD directive of EDITLIB 4-46 
ADDSET control statement 4-6 
ALTER 

Control statement 4-7 
Macro 7-82,87 

ANSI label format 3-34 
Archive 

Dump 4-38 
File definition 3-16 

ASCII 
Character set A-1 
Print file codes 3-42 

Assembler (also refer to COMPASS) 
Call 2-7 

Assign 
Device to job 

Device set MOUNT 4-75 
Other REQUEST 4-81; 7-46 

Device to set 
ADDSET 3-9; 4-6 

File to device 

Attach 

Device set 4-81; 7-46 
ECS 4-87 
Multifile set 3-39 
Permanent file 4-81 
Tape 4-62,82; 7-46 
When needed 3-3,8 

ATTACH control statement 4-8 
ATTACH macro 7-82,88 
GETPF control statement 4-58 

Attributes of device set 3-8 
AUDIT utility 4-9 
Automatic 

Device assign 4-81 
Recall 7-2 
Tape assign 3-39; 4-62,84 

Backspace (refer to BKSP) 
Batch job 2-1 
BEGIN control statement 5-24,26 
Beginning-of-information 3-6 

60493800 M 

INDEX 

Binary 
Default file name 2-6 
Program load 4-70 

Binary tape format 
(refer to copy utilities) 
(refer to SI, S, L tape) 
(refer to Seven-track, Nine-track tape) 

BKSP 
Control statement 4-11 
Macro 7-73 

BKSPRU macro 7-73 
Block store ECS 4-4 
Buffer 

CIO 6-23 
ECS 3-27 

Busy bit of FET 6-5 

Carriage control 
Add with COPYSBF 4-30 
COPYBCD 4-18 
Print file 3-41 

Catalog 
CATALOG control statement 4-12 
CATALOG macro 7-90 

CCL 
Permission 3-15 

Conditional control statements 5-12 
Expressions 5-3,5 
Functions 5-2,9 
Iterative control statements 5-17 
Operands 5-5 
Operators 5-3 
Overview 5-1 
Procedures 4-41; 5-23 
Symbolic names 5-6,10 
Syntax 5-3 

Central memory (also refer to Field length) 
Definition 1-2 
Request 4-3,92; 7-18 

Character set 
Codes A-1 
Conversion 3-33 

Checkpoint/Restart (refer to CHECKPT, CKP, RESTART) 
CHECKPT macro 7-44 
CIO codes 6-6 
Circular buffer 

FET fields 6-14 
Usage 6-23 
WRITOUT 7-67 

CKP control statement 4-14 
CLOCK macro 7-20 
Close 

Indexed file 6-9 
CLOSE macro 7-54 
CLOSER macro 7-55 
UP bit 7-55 

CM (also refer to Central memory, Field length) 
Parameter 4-3 

Code and Statw; (refer to CS) 
Coded tape (refer to SI, S, L tape) 

lndex-1 



COMBINE control statement 4-15 
Comment 

COMMENT control statement 4-15 
Informal 4-2 

I Procedure 5-62 
Comm uni cation 

Area 7-6 
PET 6-1 
Macros 7-11 
With operator 1-7 

COMPARE control statment 4-16 
COMP ASS macros 7-1 
Compiler calls 2-7 
Completion bit of PET 6-5 
Conditional control statements 5-12 
Console 1-7 

I Constants 5-6 
CONTENT directive of EDITLIB 4-43 
Control permL-;sion 3-15 
Control point 1-3 
Control point area 

Defined 1-3 
Dump 4-35 

Control statement 
Efficient ordering 2-8 
Section in deck 2-4 
Syntax 4-1 
Parameter cracking 7-6 

CONTROLC macro 7-32 
Copy 

COPY utility 4-17 
COPYBCD utility 4-18 
COPYBF utility 4-18 
COPYBR utility 4-21 
COPYCF utility 4-18 

I 
COPYCR utility 4-21 
COPYL utility 4-22 
COPYN utility 4-25 
COPYSBF utility 4-30 
COPYXS utility 4-30 
Library copy 4-41 

Core (refer to Central memory, Field length) 
CP parameter 4-4 
CPC 7-3,11 
CPU 

Characteristics 1-5 
Selection 4-4 
Time limit 4-3 

Create 

cs 

Library 4-41 
Permanent file 4-12 

Codes for errors 6-21 
Codes for status 6-5 
Field of FET 6-5 

CYBER hardware 1-1,6 
CYBER Record Manager 

File copy 4-19,22 
Macro summary 7-9 
Permanent file parameter 4-13 
Product summary 1-10 
Random files 3-6,11 
Record types 3-7 

Cycle 
Incomplete- 3-19 
Permanent file 3-14 

I .DATA command 5-56 
#DATA parameter 5-31,56 
DATE macro 7-20 
Dayfile 

Comment 4-15 

Index-2 

Explanation 2-16 
Job 2-15 
MESSAGE macro 7-19 

DC codes 4-95 
Deck structure (refer to Job deck) 
DELETE directive of EDITLIB 4-47 
DELSET control statement 4-31 
Density (refer to Magnetic tape) 
Dependent job 

Cooot 4-107 
Identification 4-4 
Multimainframe 4-5 
TRANSF 4-106; 7-32 

Device set 
Add device 4-6 
Create master device 4-6 
Default 3-8 
Defined 3-7 
Delete device 4-31 
Dismooot 4-37 
Master 3-7 
Mooot 4-75 
Name 3-9 
Private set usage 3-9 
Public set usage 3-8 
Recovery 4-79 

Device types 6-7 
Directives 

COPYN 4-25 
Defined 2-9 
EDITLIB 4-41 
LABELMS 4-65 
Permanent file dump 4-40 

DISCARD INTERCOM command 3-21 
Disk pack (refer to Rotating mass storage) 
Dismooot pack 4-37 
DISPLAY control statement 5-18 
Dispose of file 

DISPOSE control statement 4-32 
DISPOSE macro 7-75 
Disposition codes 6-12 
EVICT macro 7-74 
Need for 3-4 
Remote terminal 4-32 
RETURN control statement 4-90 
ROUTE control statement 4-93 
ROUTE macro 7-76 
UNLOAD control statement 4-110 
UNLOAD macro 7-74 

DMP control statement 4-34 
DMPECS control statement 4-36 
DMPX 

Definition 2-14 
Suppress 7-16 

Drop job 2-15; 4-54 
DSD 1-6 
DSMOUNT control statement 4-37 
DT function 5-11 
Dump 

Absolute memory 4-5 
Checkpoint 4-14 
ESC 4-36 
Exchange package 4-34 
Format of output 4-34 
Permanent files 4-38 
Relative memory 4-35 

DUMPF utility 4-38 

EC codes 4-95; 6-12 
ECS 

Buffered files 3-27; 4-8,87 
Direct access request 4-4 

I 

I 

60493800 M 



Dump 4-34 
Hardware 1-9 
Interpretive Mode Processing E-1 
Request 4-87 
Resident files 3-28 

EDIT LIB 
Directive summary 4-43 
Examples 4-53 
Utility 4-41 

EEC 4-63,86 
I ELSE control statment 5-16 

End-of-file (refer to Partition) 
End-of-information 

Job deck 2-4 
Physical structure 3-6 

End-of-partition (refer to Partition) 

I .ENDHELP control statement 5-52 
ENDIF control statement 5-17 
END RUN 

Directive of EDITLIB 4-48 
Macro 7-16 

I ENDW control statement 5-18 
Entry points and libraries 2-4 

I .EOF command 5-62 
EOF labels 3-62 I .EOR command 5-48 
EOV labels 3-37 
EP bit 3-28; 4-88; 6-10 
Error processing (refer to EP bit) 

Detailed code in FET 6-14 
ECS 3-28 
Tape 6-15 

Evict file 
DISPOSE 4-32; 7-75 
EVICT macro 7-74 
RETURN 4-90 

Exchange package 
Contents 4-34 
Definition 1-6 
Dump 4-34 

Execution 
Call 2-5 

Exit 
EXECUTE control statement 4-54 

ABORT macro 7-15 
EXIT control statement 4-54 
Job termination 2-14 

Expired 
Device set 4-7 
Label 3-39 
Permanent file 4-13 
Permanent file dump 4-39 

Extend 
EXTEND control statement 4-55 
EXTEND macro 7-91 
Permission 3-15 

Extended core storage (refer to ECS) 
Extended label processing 

FET 6-26; 7-46 
Usage 3-33 

Extended print train 3-40 

FOB macro 7-82 
FET 

Creation 6-1 
Definition 6-1 
Label fields 6-25 
Table 6-2 

FETCH INTERCOM command 3-21 

60493800 M 

Field length 
Change 4-92 
Definition 1-4 
Dump 4-32 
Library table 4-46 
Reduction 4-79 
Request on job statement 4-3 
Management 4-79,92 
MEMORY macro 7-18 
REDUCE control statement 4-79 
RFL control statement 4-92 

FILE control statement 1-11; 4-18 
File environment table (refer to FET) 
File flush bit 6-11 
FILE function 5-9 
File 

Beginning-of-information 3-6 
Definition 3-1 
Disposition 4-93 
Divisions 3-6 
End-of-information 3-6 
General information 3-4 
Label 3-33 
Name 3-1 
Request 4-81; 7-46 

FILE macro 7-10 
#FILE parameter 5-31,58,60 
FILEB macro 6-3 
FILEC macro 6-3 
FILF.STAT macro 7-24 
FILINFO macro 7-25 
FINISH directive of EDITLIB 4-48 
FL (refer to Field length) 
Flaws 4-65 
FLUSHM macro 7-10 
FNT pointer 6-14 
FORM product summary 1-12 
Forms code 4-92 
Function macros 7-81 

GENLDPF utility 4-57 
GETACT macro 7-24 
GETJCI macro 7-29 
GETMC macro 7-17 
GETPF control statement 4-58 
GETPF macro 7-92 
Global library 2-5 

Hardware 
Error mode 4-74 
Functions 1-1 

.HELP control statement 5-51 

IC codes 4-96; 6-13 
IEC 4-63,86; 7-44 
IFE control statement 5-13 
Indexed file 

Definition 3-12 
Fields in FET 6-19 
Random bit and CLOSE 6-9 
Usage 3-12 

Inhibit implicit mount bit 6-11 
INPUT file 

Defined 3-2 
Usage 2-1 

Integer constants 5-6 
Interactive jobs 2-1 

lndex-3 



I Interactive procedures 5-42 
INTERCOM 

File routing 4-93 
Library table parameters 4-45 
Memory use 1-4 
Permanent file usage 3-20 
Product summary 1-10 
SYSBULL 4-105 
Terminal characteristics 4-94 

IOTIME macro 7-20 
ITEMIZE utility 4-59 I Iterative control statements 5-17 

JANUS 
Definition 1-4; B-4 
File disposition 4-94 
PM line 3-41 
Separator card handling 2-4 

JDA TE macro 7-20 
JDT ordinal 2-9 
Job 

Accounting 2-17; 4-5,104 
Dayfile 2-15 
Definition 2-1 
Dependent 4-4,106 
Execution in system 2-9 
History 2-15 
Mainframe selection 4-5 
Name 4-2 
Rerun 2-15 
Termination 2-14; 4-54 

Job deck 
Control statement section 2-4 
Directive section 2-9 
Name is INPUT 3-2 
Separator cards 2-3 

Job statement 4-2 

L tape (also refer to Copy) 
FET 6-1 
Structure 3-7 ,31 

Labels for tapes 
(also refer to SI, S, L tape) 
(also refer to Seven-track, Nine-track tape) 
Default, LABEL 4-57 
Definition 3-33 
Density 3-32 
FET format 6-25 
LABEL control statement 4-62 
LABEL macro 6-26 
Multifile set 3-38 
Placement 3-34 
Standard 3-37 
User processing 4-85; 6-11,27 

LABELMS utility 3-9; 4-65 
LDSET control staement 2-5; 4-74 
Level number 

Copy to S/L tape 4-19,21 
In job deck 2-4 
In system-logical-record 3-5 
Level 16 3-6; 7-58 
Level 17 3-5; 7-58 

LPN (refer to Logical file name) 
LGO 2-6 
Library 

Copy 4-42 
Create 4-41 
LIBRARY loader statement 2-5 
LIBRARY directive of EDITLIB 4-48 

lndex-4 

List 4-49 
System use 2-4 
User 2-5 

Limit 
CPU time 4-3 
LIMIT control statement 4-69 
Mass storage 4-69 

Line length OUTPUT 3-2 
LISTLIB directive of EDITLIB 4-49 
LISTMF utility 4-69 
Literal 4-1 
Literal constant 5-6 
Load 

LOAD control statement 4-70 
Map 4-74 
Permanent file 4-70 
Point of tape 3-29 
Sequence 2-5 

Loader 2-5 
LOADPF utility 4-70 
Logical file name 

Definition 3-1 
Reserved 3-1 

Magnetic tape files 
(also refer to S, L, SI tape) 
(also refer to Seven-track, Nine-track tape) 
Characteristics C-7 
Compare with disk 4-16 
Density 3-32 
Format C-4 
Job statement parameter 4-4 
Labels 3-33 
Off-line listing 4-18 
Scheduling 3-40; 4-4 
Unit limit 4-4,90 
Usage summary 3-39 

Mainframe 
Definition 1-2 
Identification 4-5 
Permanent file usage 3-19 

MAP control statement 4-74 
Mass storage (refer to Rotating mass storage) 
Master device 

Create 4-6 
Definition 3-7 
Established 3-9 

Memory (refer to Central memory, Field length, ECS) 
MEMORY macro 7-18 

Merge with COPY N 4-22 
Message (refer to Comment) 

MESSAGE macro 7-18 
MLRS field 3-32; 6-19 
Mode 

Error 4-74 
MODE control statement 4-74 

Modes of parameter substitution 5-31 
Modify permission 3-15 
Monitor 1-6 
MOUNT control statement 4-75 
MUJ bit 6-11 
Multimainfra me 

Definition 1-2 
Permanent files 3-17; 4-8 
Selection 4-5 

Multifile set 
Defined 3-38 
Labels 3-38; 4-64 
List 4-69 
Positioning 3-39 

60493800M 

I 



Request 4-84 
Return 4-90 
Rewind 4-91 

Multiread permission 3-16; 4-62 

I Name call control statement 5-24,26 
Name/number index 3-12 
Nine-track tape 

Request 4-85 
Structure 3-32 

I Noninteractive procedures 5-30 
NUCLEUS library 2-5 

I NUM function 5-11 
Number base 4-2 

I Numeric constant 5-6 

I Order-dependent parameter matching mode 5-33 
Order-independent parameter matching mode 5-36 
OPEN macro 7-52 
Operator 

Comm uni cation 4-76 
Console 1-7 
Drop of job 2-15 
Label processing 4-62 
Pause bit 7-6 

OUTPUT file defined 3-2 
Overflow, file 4-88 
Owncode exits 

EOI 6-20 
EP 6-10 
Exit 6-3,21 
General 6-25 
XL 6-11 
XP 6-11 

P register 4-34 
P register dump 4-34 
Parameter alteration 5-53 
Parameter substitution modes 5-32,49 
Parity error 

Hardware 4-74 
Tape 4-84 
Permanent file 4-11 
Recovery inhibit 6-11 

Partition 
Defined 3-7 
In INPUT file 2-3; 3-2 
System-logical-record 3-5 

Password (refer to Permission) 
PAUSE control statement 4-76 
PERM macro 7-86 
Permanent file 

(also refer to ALTER, ATTACH, CATALOG, EXTEND, 
PURGE, RENAME) 

Access 3-13 
Accounting 3-22 
CATALOG control statement 4-12 
CATALOG macro 7-90 
Concepts 3-14 
Definition 3-13 
Device 3-8 
Dump 4-38 
INTERCOM usage 3-18, 21 
Manager 3-14 
Name 3-14 
Parameter summary 3-20 
Privacy 3-13 
Read-only access 3-16 

60493800 M 

Status 4-9 
Usage 3-19 

Permission 
Bits in FET 6-22 
Cancel 4-11 
Permanent file 3-15 
Other file 3-15 
Universal 3-9,15; 4-6 

PFLOG utility 4-76 
PFN (refer to Permanent file) 
Phase encoded tape C-7 
Physical record-unit (refer to PRU) 
PM line 3-41 
POSMF macro 7-53 
PPU 1-6 
Prefix table and COPYN 4-25 
Print file 

COPYBCD 4-18 
COPYSBF 4-30 
Definition 3-41 
OUTPUT 3-2 
Special form 4-92 
Usage 3-41 
Zero-byte records 3-7 

Private device set 
Definition 3-7 
Examples 3-10 
INTERCOM 3-21 
Usage 3-9 

.PROC statement 5-31,43 
Procedure 

Body 5-32,46 
Call 5-24,26 
Call and return 5-24 
Call and substitution examples 5-33,36 
Commands 5-56 
Header statement 5-30,42 
Comments 5-62 
Parameter alteration 5-53 
Parameter substitution 5-32,49 
Residence 4-41; 5-24 
Return 5-28 
Structure 5-23 

Product set 1-1 
PRU 

Definition 3-5 
Device copy 4-18,19 
Permanent file end 4-7 
Short PRU 3-5 
SI tape 3-30 
Size field 6-14 
Tape C-7 
Zero-length PRU 3-5 

PUBLIC ID 3-14 
Public device set 

Definition 3-7 
File buffering 3-27 
Usage 3-8 

Punch card format C-1 
PUNCH file 3-2 
PUNCHB file 3-2 
PURGE 

Control statement 4-77 
Macro 7-92 

P80C file 3-3 

Queue 
Input 2-1 
Output 2-1 
Permanent file 3-16 
Set 3-8 
Tape 2-8 

Index-5 



RA (refer to Reference address) 
RA.xxx symbols 7-12 
RA+l 7-1 
Random bit 

In FET 6-9 
Use 3-11 

Random files (also refer to Indexed file) 
Definition 3-11 
Device 3-11 
R bit 6-9 

RANTOSEQ directive of EDITLm 4-49 
RB confiict 4-11,78 
RBR 4-67 
RBT 3-8 
Read (also refer to Multiread) 

Permission 3-15 
READ macro 7-58 
READIN macro 7-61 
READN macro 7-60 
READNS macro 7-59 
READSKP macro 7-59 

Recall concept 7-2 
RECALL macro 7-20 
Record (also refer to System-logical-record) 

Terminator 3-5 
Type 7-9, F-1 

Record identification statement 4-27 
Record Manager (refer to CYBER Record Manger) 
RECOVER utility 4-79 ~· 
RECOVR macro 7-33 
REDUCE control statement 4-79 
Reference address 

Defined 1-4 
0 to 100 contents 7-6 

Register 
CPC 6-25 
Defined 1-6 
Dump 4-34 
Save 7-14 
System action macro use 7-15 

Remote 
Batch jobs 2-1 
File routing 4-30,93 
Terminals 1-10 

RENAME 
Control statement 4-80 
Macro 7-93 

REPLACE directive of EDITLm 4-49 
REPRIEVE macro 7-43 
REQUEST 

Control Statement 4-81 
Macro 7-46 
vs. LABEL 4-62 

Rerun of job 2-15; 4-54 
RESET call 7-36 
Reserved file names 3-1 
RESTART utility 4-89 
RESUME call 7-38 
Retention period 

Device set 4-7 
Label 4-64 
Perm anent file 3-9; 4-7 ,13 

RETURN 
Control statement 4-90 
Through CLOSE macro 7-54 

Return codes 7-84 
REVERT control statement 5-27 
REWIND 

Control statement 4-91 
Directive of COPYN 4-26 
Directive of EDITLIB 4-50 
Macro 7-74 

Index-6 

REWRITE macro 7-69 
REWRITEF macro 7-69 
REWRITER macro 7-69 
RFILEB macro 6-3 
RFILEC macro 6-3 
RFL control statement 4-92 
Ring, write 4-63,83 
Rolling 1-5; 2-9 
Rotating mass storage 

Definition 1-7 
Structure summary 3-6 

ROUTE 
Control statement 4-93 
Examples 4-97 
Macro 7-76 

RPHR macro 7-60 
RPV 

Call 7-33, 36 
Extended 7-38 
Normal 7-36 

RTlME macro 7-20 

S tape (also ref er to Copy) 
FET 6-1 
Structure 3-7, 31 

Save tape 4-83 
SAVEPF 

Control statement 4-101 
Macro 7-95 

Scheduler 
Scratch file 

Definition 3-3 
Disposition 3-4 
Tape request 4-65,82,84 

Separator cards 
In INPUT file 3-2 
In job deck 2-3 

Separator characters 4-1 
SEQTORAN directive of EDITLIB 4-50 
SET control statement 5-19 
SETJCI macro 7-30 
SETAL directive of EDITLIB 4-50 
SETFL directive of EDITLIB 4-51 
SETFLO directive of EDITLIB 4-51 
SETNAME control statement 4-9,103 
SETUP call 7-36 
Seven-track tape 

Request 4-82 
Structure 3-32 

Short PRU 3-5 
SI tape (also refer to Copy) 

Structure 3-30 
SKIP control statement 5-15 
Skip count field 6-22 
SKIPB 

Control statement 4-103 
Directive of EDITLIB 4-51 
Macro 7-73 

SKIPP 
Control statement 4-104 
Directive of COPYN 4-27 
Directive of EDITLIB 4-52 
Macro 7-72 

SKIPR directive of COPYN 4-27 
Special-named files 

Definition 3-1 
Disposition at job end 4-93 
Evict 4-93 
RETURN 4-90 

ST parameter 4-5 

I 

I 

60493800 M 



I START macro 7-11 
Status 

Field of PET 6-5 
Macros 7-20 
Permanent file audit 4-9 
STATUS macro 7-22 

STORE INTERCOM command 3-21 
Substitution modes, parameter 5-31 
SUMMARY control statement 4-104 
Swapping 1-5 
Switch bits 7-6 
SWfrCH control statement 4-105 
Symbolic names 5-5,9 
Syntax 

Control statement 4-1, 5-3 
COPYN directives 4-26 
EDrrLm directives 4-43 
Job statement 4-2 

SYSBULL control statement 4-105 
SYSCOM macro 7-12 
SYSTEM macro 7-13 
System-logical-record 

Definition 3-5 
Equivalent SIL tape 3-7 

Tape (refer to Magnetic tape) 
Tape mark 

Definition 3-29 
End-of-information 3-30,31 
WRrrEF 7-65 

Tape mit 3-31 
Terminals 1-10 

(also refer to INTERCOM) 
Terminator 4-1 
Termination of job 2-14; 4-54 
Text 

EDrrLm considerations 4-41 
Macro location 7-11 
System 7-95 

TIME macro 7-20 
Time limit 

Recovery 7-33 
Specification 4-3 

TRANSF control statement 4-106 
Macro 7-32 

TRANSPF utility 4-107 
Turnkey permission 3-15 

u label 4-85 
UBC field 3-32; 6-19 
Unit record equipment 

Hardware 1-8 
Request 4-87 

Universal password 3-16 
Unload 

Tape inhibit 4-83 

60493800 M 

UNLOAD control statement 4-110 
UNLOAD macro 7-74 

UP bit 6-9 
Update product summary 1-12 
User library 

Creation 4-41 
Utilities 

Copy (refer to Copy) 
FORM 1-12 
Permanent file 3-20 

Volume 
Copy 4-19 
Defined C-7 

Volume serial number 
Device set 4-6 
Tape 4-84 
Usage 2-8; 3-39 

VOL label 3-34,35,37 
VSN control statement 4-111 

WEOF directive of COPYN 4-27 
WHILE control statement 5-17 
Working storage 6-14 
WPHR macro 7-66 
WRrrE macro 7-64 
WRrrEF macro 7-65 
WRrrEN macro 7-66 
WRrrER macro 7-65 
WRrrIN macro 7-70 
WRrrOUT macro 3-12; 7-67 
WTMK 7-11 

X tape conversion 4-30 
XJ instruction 7-1 

y label 4-63,85; 6-25 

z label 3-33; 4-63,85; 6-25 
Zero-byte terminated records 

COPYBCD utility 4-18 
COPYSBF utility 4-30 
JANUS files 1-8 

Zero-length PRU 3-5 

3000 series labels 4-63,85; 6-25 
026, 029 mode 4-2; A-1 
7-track tape (refer to Seven-track tape) 
9-track tape (refer to Nine-track tape) 

Index-7 





... 
5 
::> z 
) .... 
c( 

-
::> 
J 

°' " ...._ 

""' .I 
>I 
WI 
°'I 

I 

°'I ~. 

""' <">1 <1 <1 
1 
! 

COMMENT SHEET 

MANUAL TITLE: CDC NOS/BE Version 1 Reference Manual 

PUBLICATION NO.: 60493800 REVISION: M 

STREET ADDRESS=-------------------------------

CITY: _______________ STATE: _______ ZIP CODE:--------

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of 
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please 
include page number references). 

D Please Reply 0 No Reply Necessary 

NO POSTAGE STAMP NECESSARY IF MAllED IN U.S.A. 



I 

FOLD FOLD I 
---------------------------------------------------------------------------------------------------------------~ 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. 

POSTAGE WILL BE PAID BY 

CONTROL DATA CORPORATION 

Publications and Graphics Division 

ARH219 
4201 North Lexington Avenue 

Saint Paul, Minnesota 55112 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

---------------------------------------------------------------------------------------------------------------~ FOLD FOLD 

UJ z 
:; 

('.) 
z 
0 
< 
..... 
::i 
u 



MACRO INDEX 

ABORT 7-15 PURGE 7-92 
ALTER 7-87 PUT 7-10 
ATTACH 7-88 PUTP 7-11 

BKSP 7-73 READ 7-58 
BKSPRU 7-73 READ IN 7-61 

READN 7-60 
CATALOG 7-90 READ NS 7-59 
CHECK 7-10 READS KP 7-59 
CHECKPT 7-44 RECALL 7-20 
CLOCK 7-20 RECOVR 7-33 
CLOSE 7-54 RENAME 7-93 
CWSEM 7-10 REPLACE 7-11 
CW SER 7-55 REPRIEVE 7-43 
CONTRLC 7-32 REQUEST 7-46 

REWIND 7-74 
DATE 7-20 REWINDM 7-11 
DELETE 7-11 REWRITE 7-69 
DISPOSE 7-75 REWRITEF 7-69 

REWRITER 7-69 
END FILE 7-11 RFILEB 6-3 
END RUN 7-16 RFILEC 6-3 
EVICT 7-74 ROUTE 7-76 
EXTEND 7-91 RPHR 7-60 

RTIME 7-20 
FOB 7-82 SAVEPF 
FETCH 7-10 

7-95 
SEEK 

FILE 7-10 
7-11 

SETJCI 7-30 
FILEB 6-3 

6-3 
SKIP 7-10 

FILEC SKIPB 
FILESTAT 7-24 7-73 

SKIPF 
FILINFO 7-25 7-72 

' FUJSHM 7-10 START 7-11 I 
GET 7-10 STATUS 7-22 
GET ACT 7-24 STORE 7-10 
GETJCI 7-29 SYSCOM 7-12 
GETMC 7-17 SYSTEM 7-13 
GETP 7-10 
GEIPF 7-92 TIME 7-20 
IOTIME 7-20 TRAN SF 7-32 

JDATE 7-20 UNWAD 7-74 

LABEL 6-26 WEOR 7-11 
WPHR 7-66 

MEMORY 7-18 WRITE 7-64 
MESSAGE 7-19 WRITEF 7-65 

WRITEN 7-66 
OPEN 7-52 WRITER 7-65 
OPENM 7-10 WRITIN 7-70 

WRITOUT 7-67 

PERM 7-86 WTMK 7-11 

POSMF 7-53 

60493800 M 



CORPORATE HEADQUARTERS. P .O . BOX 0 , MINNEAPOLIS, MINN. !55440 LITHO IN U .S .A . 
SALES OFFICES ANO SERVICE CENTERS IN MAJOR Cl'TIES THROUGHOUT THE WORLD 

~:?) 
CONT"OL DATA COl\POR.i\TION 


