
~ c::\ CONT~OL DATA
\!:I r::I CO~OR{\TION

SYMPL VERSION 1
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:

NOS 1
NOS/BE 1
SCOPE 2

60496400

&J E:\ CONT"OL DATA
\::I r:::J CO~OR{\TION

SYMPL VERSION 1
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1
NOS/BE 1
SCOPE 2

60496400

REVISION RECORD
REVISION DESCRIPTION

A Original printing.

(11-1-75)

B This revision documents SYMPL 1.2, PSR level 439. New features include CONTROL statement

(12-06-76) additions for trace and optimization. See list of effective pages.

C This revision documents SYMPL 1.2, PSR level 446. It reflects SYMPL support of the CYBER 170

(03-01-77) Model 176. See list of effective pages.

D This revision documents SYMPL 1.3. New features include CONTROL statement

(03-31-78) addition for weak externals; and points not tested SYMPL control statement option. Appendix F

contains a glossary.

Publication No.
60496400

REVISION LETTERS I, 0, a AND x ARE NOT USED Address comments concerning
this manual to:

©1975, 1976, 1977,1978
Control Data Corporation
Printed in the United States of America

ii

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as w~l1 as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. ,A bar by the page number indicates pagina
tion rather than content has changed.

Page Revision Page Revision Page Revision

Cover - A-2 D
Title Page - B-1 D
ii 0 B-2, B-3 B
iii/iv 0 B4 D
v/vi 0 C-l B
vii, viii 0 C-2, C-3 D
1-1, 1-2 B C4 B
1-3 C 0-1 thru 0-3 A
1-4, 1-5 B 0-4 B
1-6 thru 1-8 0 0-5 thru D-7 A
1-9 B 0-8 B
1-10 C D-9 thru 0-15 A
2-1 B 0-16 B
2-2, 2-3 C 0-17, D-18 A
24 thru 2-6 0 0-19,0-20 B
2-7 C 0-21 A
2-8, 2-9 B D-22 B
2-10 thru 2-12 0 0-23 thru D-25 D
3-1, 3-2 B E-l, E-2 B
3-3 0 .F-l, F-2 D
34 thru 3-7 B Index-l thru -3 D
4-1 B Comment Sheet D
4-2 thru 4-4 C Mailer -

4-5 B Back Cover -

4-6 thru 4-8 C
4-9 0
5-1, 5-2 B
5-3 C
54 0
5-5 B
5-6, 5-7 C
5-8, 5-9 0
6-1 C
6-2, 6-3 0
6-4 C
6-5, 6-6 0
A-I A

60496400 0 iii/iv •

SYMPL version 1.3, which is a systems programming
language, operates under control of the-following
operating systems:

PREFACE

,

CYBER 70 Models 71, 72, 73, 74, and 6000
Series Computer Systems

This reference manual presents the semantics and
SCOPE 2 for the CONTROL DATA® CYBER
170 Model 176, CYBER 70 Model 76, and
7600 Computer Systems

rules for writing programs in the SYMPL language. It
includes sufficient information to prypare, compile, and
execute such programs. An appendix presents the
syntax of the language in metalinguistic form.

NOS/BE 1 for the CDC® CYBER 170 Series,
CYBER 70 Models 71, 72, 73, 74 and 6000
Series Computer Systems

The reader of this manual is assumed to have knowl
edge of the operating system and computer system
under which SYMPL will be used.

NOS 1 for the CONTROL DATA CYBER

170 Models 171, 172, 173, 174, 175, Other publications of interest:

Publication Publication Number

NOS 1 Operating System Reference Manual, Volume 60435300

NOS 1 Operating System Reference Manual, Volume 2 60445300

NOS/BE 1 Operating System Reference Manual 60493800

SCOPE 2 Reference Manual 60342600

CDC manuals can be ordered from Control Data Literature and Distribution Services,
8001 East Bloomington Freeway, Minneapolis, MN 55420

60496400 D

This product is intended for use only as de
scribed in this document. Control Data cannot
be responsible for the proper functioning of
undescribed features or parameters.

v/vi.

CONTENTS

LANGUAGE ELEMENTS 1-1 4 PROGRAM STRUCTURE 4-1
SYMPL Character Set 1-1 Scope of Variables 4-1
Comments 1-2 Main Program 4-2
Id~ntifiers 1-2 Procedures 4-2
Constants 1-5 Formal Parameters 4-3

Boolean Constants 1-5 Actual Parameters 4-3
Character Constants 1-5 Functions 44
Integer Constants 1-5 Programmer-Su pplied Functions 44

Decimal Integer Constant 1-5 Intrinsic Functions 4-5
Hexadecimal Constant 1-5 ABS Function 4-5
Octal Constant 1-5 B Function 4-6

Real Constants 1-6 C Function 4-6
Status Functions and Constants 1-6 LOC Function 4-7

Operators 1-6 P Function 4-7
Expressions 1-6 Alternative Entry Points 4-7

Arithmetic Expressions 1-8 Interprogram Communication 4-8
Numeric Arithmetic Expressions 1-8 COMMON Declaration 4-8
Masking Expressions 1-9 XDEF Declaration 4-8

Boolean Expressions 1-9 XREF Declaration 4-9
Relational Expressions 1-9
Logical Expressions 1-10 5 COMPILER DIRECTIVES 5-1

$BEGIN/$END Debugging Facility 5-1
2 DATA DECLARATIONS 2-1 DEF Facility 5-1
ITEM Declaration 2-1 DEF Name References 5-3
STATUS Declaration 2-2 'CONTROL Statement 5-4
SWITCH Declaration 2-3 Listing Control 5-4

Ordinary Switch 2-3 Conditional Compilation 5-4
Status Switch 2-3 FOR Loop Control 5-6

ARRA Y Declaration 24 Core Residence Selection 5-6
Attributes of Variables Specification 5-7 Array References 2-6

Overlapped Variables 5-7 Serial and Parallel Arrays 2-7
Reactive Arrays 5-8

I Presetting Arrays 2-8
Weak Externals 5-8

Array Storage and Addressing 2-10 Traceback Facility 5-9
Based Array Declaration 2-12

6 COMPILER CALL AND OUTPUT
3 EXECUTABLE STATEMENTS 3-1 LISTINGS 6-1
Labels 3-1 Compiler Call 6-1
Replacement Statement 3-2 A Abort Job After Errors 6-1
Exchange Statement 3-3 B Binary Code File 6-1
FOR Statement 3-3 C Check Switch Range 6-1

TEST Statement Within a FOR Statement 34 D Pack Switches 6-1
E Compile $BEGIN/$END Statements 6-2 GOTO Statement 3-6
F FORTRAN Calling Sequence 6-2 IF Statement 3-6
H List All Source Statements 6-2

RETURN Statement 3-7 I Source Input File 6-2
I STOP Statement 3-7 K Points-Not-Tested 6-2

TERM Statement 3-7

60496400 D vii

L Listing File 6-2 X List Storage Map 6-3
N Cross Reference Unreferenced Items 6-2 Y Suppress Diagnostic 136 6-3
P Preset Common 6-2 Output Listing 6-3
S Execution Library 6-3 Storage Map 6-4
T Syntax Check 6-3 Cross-Reference Map 6-5
W Single Statement Code Generation 6-3

APPENDIXES

A STANDARD CHARACTER SETS A-I 0 METALANGUAGE 0-1
B DIAGNOSTICS B-1 E EXECUTION-TIME OUTPUT E-l
C PROGRAMMING SUGGESTIONS C-l F GLOSSARY F-l I INDEX

FIGURES

I-I Examples of Arithmetic Expressions 3-1 Generalized Fastloop and Slowloop
Evaluation 1-9 Flowcharts 3-4

2-1 Differences in Serial and Parallel 3-2 Slowloop and Fastloop Expansion
Allocation 2-5 Compared 3-5

2-2 Serial Array Allocation 2-7 4-1 Scope of Declarations 4-1
2-3 Parallel Array Allocations 2-7 6-1 Sample Source Program 6-4
2-4 Serial and Parallel Arrays with 6-2 Storage Map 6-5

Multiword Items 2-9 6-3 Cross Reference Map 6-6

I 2-5 Structure of Array RHO 2-12

TABLES

1-1 SYMPL Marks 1-2 1-5 Truth Table for I 1-2 SYMPL Reserved Words and Descriptors 1-3 Masking Operators 1-7
1-3 SYMPL Operators 1-7 2-1 Array Item Descriptor Limits 2-6

I 1-4 Truth Table for Logical Operators 1-7 B-1 Compiler Error Messages B-1

viii 604964000

CONSTANTS

SYMPL has five types of constants. Each is a se
quence of characters which defines its own value.
The constant types are: Boolean, character, integer,
real, and status.

BOOLEAN CONSTANTS

Boolean constants represent the two elements of
Boolean algebra. They are specified by the reserved
wo'rds TRUE and FALSE.

CHARACTER CONSTANTS

Character constants represent alphanumeric data. A
character constant has the format:

"string"

string String of 1 through 240 characters of
the computer character set shown in
appendix A. If the character" is to
appear in the string, it must be speci
fied by two consecutive " marks.

For example:

"TAPE01" "ERROR %%"

"QUOTES" "A" " "

INTEGER CONSTANTS

Integer constants represent numeric values. The three
types of integer constants are: decimal, octal, and
hexadecimal.

During execution, the maximum allowable value for
an integer constant depends on the use of the con
stant. The value of an integer to be converted to a
real value and the value of an integer .. operand for,
and the result of, integer multiplication and division
must be able to be expressed in 47 bits. High-order
bits are lost when a larger value exists, but no diag
nostic informs the programmer of such a condition.

Each of the types of integer constants is specified in
a different way. Also, each appears in storage in a
format appropriate to its type, as described with
ITEM declarations for data types.

60496400 B

Decimal Integer" Constant

A decimal constant is a string of decimal digits 0
through 9 with an optional preceding + or - sign.
The string can contain 1 through 18 digits; it cannot
contain blanks. The absolute value for a decimal
integer must be able to be expressed in S9 bits.

For example:

+IS -1 4096

Hexadecimal Constant

A hexadecimal constant represents 4 bits in storage
for each hexadecimal digit in the constant. The
absolute value for a hexadecimal constant must be
able to be expressed in S9 bits. If 60 significant
bits are written, the leftmost bit is used as a sign in
two's complement; and if the constant is stored in a
signed integer format of n bits, the nth bit from
the right is used as the sign bit.

A hexadecimal constant has the format:

X"string"

string String of 1 through 1 S hexadecimal
digits 0 through 9 and A through F.
Embedded blanks are ignored.

For example:

X"7FFF" X"9"

Octal Constant

An octal constant represents 3 bits in storage for
each octal digit in the constant. If 60 significant bits
are written, the leftmost bit is used as a sign in two's
complement; and if the constant is stored in a signed
integer format of n bits, the nth bit from the right
is used as the sign bit.

An octal constant has the format:

O"string"

string String of 1 through 20 octal digits 0
through 7. Embedded blanks are
ignored.

I-S

For example:

0"777" 0"33"

REAL CONSTANTS

Real constants represent numeric values in standard
single-precision normalized floating point format. A
real constant is a string of decimal digits that includes
a 'decimal point and can include a leading sign. Op
tionally, it can include an exponent representing
multiplication by a power of 10. The exponent is
specified as either of the semantically equivalent
letters D or E followed by an optional plus or minus
sign and a decimal integer. A real constant cannot
be represented by a string containing an embedded
blank.

For example:

3.14E2 -24. 37.E-3

I
The magnitude limits of a real constant are approxi
mately 10-293 to 10+322 with up to 15 digits of
accuracy. A diagnostic message is given when a
number falls outside of the hardware limits.

STATUS FUNCTIONS AND
CONSTANTS

Status functions and constants represent small integer
values the compiler has associated with the identifiers
in a status list. They can be used to preset scalar
and array items and can be used in expressions.

Both status constants and status functions require a
preceding STATUS declaration to define a status list
and identifiers associated with the status list, as de
scribed in section 2.

A status function has the format:

stlist "s tval ue"

Use of a status function accesses the integer associated
with stvalue in status list stlist.

1-6

A status constant is a shorthand method of writing
a status function. The format of a status constant
is:

S"stvalue"

Since a status constant does not indicate which status
list it belongs to, it must be used only in a context
where the status constant is directly attributable to a
particular status list. Such contexts are:

Presetting a scalar or array item of type S.

Joining a status variable by an operator such as:

OPCODE=S"NOP"; IF OPCODE NE S"NOP" ...

OPERATORS

Operators are used in arithmetic expressions and
Boolean expressions. The operators are of type arith
metic, relational, and logical.

Arithmetic operators are of two types:

Numeric operators perform arithmetic operations
to yield a numeric result.

Masking operators perform bit-bit-bit operations
to yield a numeric result.

Relational operators work with arithmetic operands
to produce a Boolean result.

Logical operators work with Boolean values and yield
a Boolean result.

Table 1-3 shows the SYMPL symbols (reserved word)
and their meanings for the different types of opera
tors. Tables 1-4 and 1-5 show truth tables for the
logical and masking operators.

EXPRESSIONS

An expression is a rule for computing a value. During
evaluation of an expression the values of the operands
in the expression are combined according to the
language rules to form a single value.

60496400 D

I

I

Each of the following is an expression:

Constant

Scalar

Subscripted array item

Function reference, except the P function

TABLE 1-3. SYMPL OPERATORS

• Symbol Meaning

Numeric Operators

+ Addition; unary plus.

- Subtraction; unary minus.

* Multiplication.

/ Division.

** Exponentiation.

Masking Operators

LNO Logical NOT (bit-by-bit NOT).

LAN Logical AND (bit-by-bit AND).

LOR Logical.OR (bit-by-bit OR).

LXR Logical exclusive OR.

LIM Logical imply.

LQV Logical equivalent.

Relational Operators

EQ Is equal to.

GR Is greater than.

GQ Is greater than or equal to.

LQ Is less than or equal to.

LS Is less than.

NQ Is not equal to.

Logical Operators

NOT Negation.

AND Conjunction.

OR Union.

60496400 D

bi

b2

NOT bl

TABLE 1-4. TRUTH TABLE
FOR LOGICAL OPERATORS

False False True

False True False

Logical

T T F

bl AND b2 F F F

bl OR b2 F T T

a

b

LNO a

a LAN b

a LOR b

a LXR b

a LIM b

a LQV b

TABLE 1-5. TRUTH TABLE
FOR MASKING OPERATORS

0 0 1

0 1 0

Masking

1 1 0

0 0 0

0 1 I

0 1 1

1 1 0

1 0 0

True

True

F

T

T

1

1

0

1

1

0

1

1

Further, any of the above entities combined with a
unary operator or binary operator also produces an
expression.

The two types of expressions are:

Arithmetic expressions that yield numeric values.

Boolean expressions that yield Boolean values of
TRUE or FALSE.

Boolean operands and Boolean expressions differ in
nature from arithmetic operands and expressions; they
cannot be involved with numeric arithmetic expres
sions. No numeric arithmetic operator applies to any
Boolean operand and vice versa.

Evaluation of an expression begins with evaluation of
operators with higher precedence and continues with
evaluation of operators with lower precedence; other
wise, evaluation proceeds left to right. A different
order of evaluation can be specified by the programmer
through the use of parentheses: expressions within
parentheses are evaluated before the result is combined
with other operands.

1-7

ARITHMETIC EXPRESSIONS

Arithmetic expressions yield a numeric value. The
two types of arithmetic expressions are:

Numeric arithmetic expressions that involve oper
ands of any type except Boolean. Operands
are treated as a single value in these expressions.

Logical masking arithmetic expressions that
involve operands of any type except Boolean,
Operands are treated on a bit-by-bit level in
these expressions.

For both types of expressions operators have implicit
ranking, with evaluation of the expression preceeding
from operators with higher precedence to operators
with lower precedence.

Arithmetic operators are as follows. They are listed
in order of highest to lowest precedence:

() Parentheses, beginning with innermost
pair

** Exponentiation

* / Multiplication and division, from left
to right

+ - Unary plus and minus

+ - Addition and subtraction, from left to
right

LNO Logical NOT (complement)

LAN Logical AND

LOR Logical inclusive OR

LXR Logical exclusive OR

LIM Logical imply

LQV Logical equivalence

SYMPL has no implicit multiplication in which alge
braic multiplication can be indicated by XCV) or
(X)(Y).

Numeric Arithmetic Expressions

A numeric arithmetic expression contains only numeric
operands and numeric arithmetic operators. The
numeric operators are: **, *, /, +, and -. The
numeric operands include constants, scalars, sub
scripted array items, and function references; the type
of any numeric operand must not be Boolean.

1-8

When operands of different types are used in a single
expression, the compiler converts the type of one
operand such that the common type of both operands
is the higher type. The four operand types that exist
for conversion purposes are as follows, listed in order
from highest to lowest:

Real

Signed integer

Unsigned integer

Character.

For example, given integer item I and real item R,
the expression (I + R) is evaluated in floating point
arithmetic after the value of I is converted to type
real. Similarly, the expression ((I + 2) * R) is com
puted by:

Adding I and 2 in integer mode

Converting the result to floating point format

Multiplying the result by R in floating point
format.

Character operands are lowest in the conversion
hierarchy. Conversion' of type character to type
integer is affected by the number of characters de
clared in the character operand. (The length of a
scalar or array item is specified in its declaration;
the length of a character constant is the number of
characters in the string; the length of a C function is
the number of characters indicated in the function.)
If 'bit 59 of a 10 characte,r operand is set, the con
verted integer is a negative value. If the operand
has more than 10 characters, only the first 10
characters are used in an expression evaluation. For
operands less than 10 characters, the characters are
shifted right to normal integer position and zero
fIlled.

Character-to-real conversion occurs by conversion to
integer followed by conversion of the integer to a
floating point format.

Conversion from type integer to type real occurs by
floating the integer, as provided by hardware instruc
tions. The resulting real value is expressed in single
precision format.

60496400 D

Preset VAL to the unsigned integer value 2:

STATUS WORDS BEGIN, END, TERM;
ITEM VAL S:WORDS=SIITERM II ;

Set X to 3:

STATUS COLOR RED, OR, YEL, BLUE;
X=COLOR"BLUE";

Test LETTER for the display code value
equivalent to Q:

STATUS ALPHA A,B, ... X,Y,Z;
IF LETTER EQ SIIQII THEN ...

SWITCH DECLARATION

A SWITCH declaration defines a list of label names
that the compiler is to associate with small unsigned
integer values. The purpose of the declaration is to
allow mnemonic references to label names in a GOTO
statement.

Two types of switches, and two SWITCH declaration
formats, exist. The first is a straightforward list of
label names; the second combines STATUS capa
bilities into the SWITCH declaration.

When a switch is referenced in a GO TO statement,
the value of the switch subscript expression must be
within the range of defined switches. If the program
is compiled with the C parameter (range checking) on
the compiler call, an execution-time check is made to
determine whether the value is within the range of
valid values. When range checking is selected, any
value out of range produces a diagnostic and program
abort. If range checking is not selected, any reference
to an out of range switch value produces an undefined
result.

ORDINARY SWITCH

In the simpler form of a switch, the compiler assigns
a value to each label named. The first label in the

60496400 C

list is assigned a value 0, the second label is assigned
the value 1, and so forth.

The format of a SWITCH declaration specifying only
label names is:

SWITCH swname label, label, ... ;

swname

label

Name by which switch is known.
Identifier of 1 through 12 let
ters, digits, or $ that does not
begin with a digit and does not
duplicate a reserved word.

Label name to be associated with
swname. If the switch is never
accessed by a particular value, a
null parameter (two consecutive
commas) can appear in the list
for that value.

An example of the declaration and use of an ordinary
switch AAA that transfers control to label LAB3 when
the value of I is 2 is:

SWITCH AAA LABI, LAB2, LAB3;
GOTO AAA [I] ;

STATUS SWITCH

A status switch references a previously declared
STATUS declaration. The SWITCH declaration
associates the switch name with a status list; each
label name in the switch list is then paired with one
of the identifiers from the status list as specified by
the SWITCH declaration parameters.

The format of a SWITCH declaration specifying a
status list is:

SWITCH swname:stlist label:stvalue, label:
stvalue, ... ;

swname Name by which switch is
known. Identifier of 1 through
12 letters, digits, or $ that does
not begin with a digit and
does not duplicate a reserved
word.

2-3

stlist

label

stvalue

Name by which status list is
known, as declared by a
previous STATUS declaration.

Label name to receive the
same value as the status
value following the colon.

Status value from list stlist to
be associated with the preced
ing label name.

The status values can appear in a switch list in an
order other than that of their status list. Also, all
of the status values need not be associated with a
1abel. The same label can be associated with more
than one status value. A status value, however, can
only appear once in a switch list.

An example of a declaration of a status switch
WHICHONE and its use to transfer control to
LABZ when the value of the GOTO statement
argument is 3 is:

STATUS COLOR RED, ORG, YEL, GRN;
SWITCH WHICHONE:COLOR LABX:YEL,

LABZ:GRN;

GOTO WHICHONE[COLOR"GRN"] ;

ARRAY DECLARATION

An ARRAY declaration defines an arrangement of
item-like elements. An array can be viewed as a
rectangular assortment of entries, each composed of
one particular occurrence of each item comprising
the entry. The number of entries must be less
than 65535.

In storage an array entry occupies an integral num
ber of whole words. Items within the entry can be
as small as one bit or as large as 24 words of char
acter data; only type character items can cross the
boundary of a word in the array, however.

An array is declared by an ARRAY declaration
header followed by an ITEM declaration. If no
items exist in the entry, a null declaration (blank
followed by a semicolon) should follow the ARRAY
declaration. If more than one item (field) exists in
the entry, the ITEM declaration should be a com
pound statement.

2-4

The format of an ARRAY declaration header is:

f

ARRAY name [low:up, low:up, ...]
alloc (esize),

name

low

up

alloc

esize

Identifier specifying the name
of the array. It can be omit
ted unless the ARRAY decla
ration appears in a BASED
ARRAY, XDEF, or XREF
declaration.

Lower bound of a dimension of
the array, expressed as an in
teger with modulo 218. Can
be signed positive or negative.
If low and its following colon
are omitted, 0 is assumed.

Upper bound of a dimension
of the array, expressed as an
integer with a modulo 218

Can be signed positive or nega
tive. Must be equal or greater
than the preceding low with
which it is paired.

Allocation of the entries in the
array in storage.

P

S

Parallel allocation in which
the first words of each
entry are allocated con
tiguously, followed by the
second words of each
entry, and so forth.

Serial allocation in which
all the words of one entry
are allocated contiguously.

If alloc is omitted, P is assumed.

Entry size. Number of words
in an array entry, expressed
as an unsigned integer. Esize
must be less than 2048 words.
If esize and its enclosing
parentheses are omitted, 1 is
assumed.

An array can have up to seven dimensions. Each
low:up pair in the ARRAY declaration defines a
dimension of the array. (Dimensions specify the
coordinates that identify an element of the array.)
If the bounds list is omitted, [0:0] is assumed.

60496400 D

I

Differences between serial and parallel allocation are
in figure 2-1. In this figure, array A has one dimen
sion, a three word entry that occurs five times.
CHAR [1] is the reference that accesses the second
occurrence of item CHAR defined to occupy word 1
of the entry. A full declaration for this array might
be:

name

ARRAY A[0:4] S(3);
BEGIN
ITEM HDR 1(0,0,60);
ITEM CHAR C(1,0,10);
ITEM TRFR C(2,0,20);
END

Parallel allocation offers execution advantages and
should be used when possible.

The format of the ITEM declaration of an array is
as follows. If more than one array item is being
declared, all declarations should appear between
BEGIN and END. The declaration is similar, but not
identical, to the ITEM declaration for scalars.

ITEM name type(ep ,fbi t ,size)= [preset] ,
name type(ep,fbit,size)= [preset] , . . . ;

ARRAY A(O:4] 8(3);

entry 0 {

entry 1 {

entry 4 {

word °
word 1
word 2

word °
word 1

word °
word 1
word 2

CHAR [0] -
CHAR(1] ,

_ CHAR[4]

Occurrences of
ITEM CHAR C(l,0,10)

Would Be Here

type

ep

fbit

Identifier specifying the name
of the entry item, expressed
as 1 through 12 letters, digits,-
or $ that does not begin with
a digit and does not duplicate
the name of a reserved word.
Must be unique within procedure.

Type of array item:

B Boolean
C Character
I Signed integer;

U
R
S:stlist

default
Unsigned integer
Real
Status associated

with list stlist

Entry position. Word number in
which the high-order bit of the
item occurs, starting from 0; ex
pressed as an unsigned integer
constant.

Bit position at which item begins,
starting on the left and counting
from ° through 59; expressed as
an unsigned integer constant.

For a character item, fbit must
be divisible by six.

ARRAY A[O:4] P(3);

entry °
entry 1

word 0 Ofl entry 2
entry 3

CHAR[O]
entry 4

CHAR[I] -
CHAR [4]

-

word 2 of 1
entry °
entry 1
entry 2
entry 3
entry 4

Figure 2-1. Differences in Serial and Parallel Allocation

60496400 D 2-5

I size

preset

Type

I

U

R

B

C

S

2-6

Item length, expressed as an
unsigned integer constant ap
propriate to the type, as shown
in table 2-1. Only C type
data can cross word boundaries.

R type data must have a size
of 60.

For a single occurrence array
entry item, value to which
item is to be initialized at
load time, expressed as a
constant.

For a multiple occurrence
array entry item, a set of
values arranged in a list in the
same order as the allocation
order of different instances
of the items in storage.

Any constant specified is set
in the item, aligned appro
priately in the field, without
regard to other fields in the
word.

If the entire field descriptor (ep,fbit,size) is omitted,
ep and fbit default to 0 and size defaults as shown
in table 2-1. One parameter within the parentheses
is assumed to be ep, with fbit=O and size as in the
table; two parameters are assumed to be ep and fbit.

ARRAY REFERENCES

A particular instance of an array item is known as an
element. To reference a particular element, a sub
script enclosed in brackets is appended to the array
item name. For instance:

ARRAY REF[0:99];
ITEM REFITEM;

To reference the 40th element, which in this
example is the 40th word, the reference is:

REFITEM [39]

The subscript for the array item must be an arithmetic
expression. If the type of the arithmetic expression
is other than integer, the result of the expression will
be converted to integer mode of modulo 217.

If the array being referenced has more than one
dimension, the subscript must have as many arithmetic

TABLE 2-l. ARRAY ITEM DESCRIPTOR LIMITS

fbit Alignment Maximum Length Default Length May Cross Words

bit 60 bits 60 no

bit 60 bits 60 no

bit 0 60 bits 60 no

bit 60 bits 1 no

byte 240 bytes 1 yes

bit 60 bits 60 no

Table 2-l. Array Item Descriptor Limits

60496400 D

\

A. Serial Array Structure

NENT --'" Al [0] I Bl [0] I Cl [0] -
Dl [0] (lst half)

Dl [0] (2nd half)

El [0]
} Entry 0

Al [1] ~ I Bl [1] J Cl [1]

Dl [1] (1 st half)

D 1 [1] (2nd half)

E1[I]
} Entry 1

Al [2] I Bl [2] I Cl [2]

Dl [2] (lst half)

Dl[2] (2nd half)

EI [2]
} Entry 2

Al [3] I Bl [3] I Cl [3]

Dl [3] (lst half)

D 1 [3] (2nd half)

El [3]

} Entry 3

B. Parallel Array Structure

NENT Al [0] Bl [0] CI [0] Entry 0

Entry 1 Al[1] Bl [1] CI[1]

Al [2] B1[2] Cl [2]

Al [3] Bl [3] CI [3]

Dl [0] (1 st half)

Dl [1] (lst half)

DI [2] (lst half)

Dl [3] (lst half)

DI [0] (2nd half)

Dl [I] (2nd half)

DI [2] (2nd half) Entry 2

Entry 3 DI [3] (2nd half)

EI [0]

E1[I]

El [2]

El [3]

Figure 2-4. Serial and Parallel Arrays with Multiword Items

60496400 B 2-9

ARRAY TENWORD [0:4] S(2);
BEGIN ITEM A 1(0,0,30)=[4, ,3, ,6];

ITEM B 1(0,0,45)= [, 10, , 15];
ITEM C C(1 ,0,5)= ["yyyyy", "XXXXX",

IIVVVWII,IIRRRRRII,IIQQQQQII] ;
END

Resulting structure and values are:

4
yyyyy

101
xxxxx

3
VVVVV

151
RRRRR

6
QQQQQ

C[O]

C [1]

C[2]

C[3]

C[4]

Multidimensional arrays are preset using nested
brackets. Brackets should be nested to the level of
the number of subscripts. The leftmost subscript
varies most rapidly, as it does in FORTRAN
Extended. -

Basically, the preset list for a declaration is a set of
constant values, with the same order as the allocation
order of the elements. This list is presented in sec
tions enclosed in square brackets, and nested to a
depth of the number of dimensions in the array. An
N dimensional array at the first level of nesting has
as many sections as the Nth dimension of the array.
Each of these sections has as many sections as the
N-lst dimension, and so forth. At the deepest level,
each section has as many values as the first dimen
sion of the array. Each section at the first level
contains values for the instances of the array item
with the same rightmost subscript; the subscript
associated with each section varying from the lower
bound at the left to the upper bound at the right.
Each section of the second level contains values for
those instances with the same rightmost two sub
scripts, and so forth. The outermost section is
appended to the array item declaration with an
equals sign.

Repetition of values can be indicated by bracketing a
list of values with a parentheses and a count. For
example:

2-10

3(2,1)is equivalent to 2,1,2,1,2,1

and

2(2(0,2))is equivalent to 0,2,0,2,0,2,0,2

A two-dimensional parallel array, for example, is
initialized by:

ARRAY OMEGA [0: 1,0:2] ;
ITEM MU 1(0,0)=[[1,2] [3,4] [5,6]];

This presetting is equivalent to:

ARRAY OMEGA[0:1,0:2];
ITEM MU 1(0,0);
MU [0,0] =1;
MU [1,0] =2;
MU [0,1]=3;
MU [1,1] =4;
MU [0,2]=5;
MU [1,2]=6;

As with single·dimension arrays, not all elements of a
multidimensional array need to initialized. Elements
that are not to be initialized can be represented by
null brackets as well as by brackets containing null
values. For instance:

[[[, ,2][' 1,]][[, ,][3,4,5]][[, ,][, ,]]]

is equivalent to

[[[, ,2] [,1]] [[] [3,4,5]] []]

Repetition of bracketed sections is indicated by plac
ing a count outside the bracket. For instance:

2[[1,3] [2(2)]]

is equivalent to

[[1,3] [2,2]] [[1,3] [2,2]]

Only the first 6000 words of an array can have preset
values.

ARRAY STORAGE AND ADDRESSING

Given the array header:

60496400 D

I

I

I

the number of entries in the array is:

At compilation time, an array is allocated the follow
ing amount of storage:

(number of entries)(esize)

The allocation of an element with respect to the
location of its array name is affected by whether
storage allocation is serial or parallel.

For serial allocation, the location of element
[sI,s2' ... ,sn] is computed from:

address+ep+el (esize)+e2(sizel +esize)+ ...
+en(sizel * ... *sizen_I *esize)

where sizei is urbri and esize is entry
size.

For parallel allocation:

address+ep*size 1 * . . . *sizen_I +e 1 +e2 *size I
+ . . .en *size I * . . . *sizen_1

where address is the address of element
[b I , ... bn]·

For a three-dimension array, the relative location
of A[ij,k] with respect to A[b I ,b2,b3] is given
by:

location (A[ij,k])=

location (A[b I ,b2,b3])+(x+L(y+M(z)))
(esize)

where x=i-b 1
y=k-b2
z=k-b3
L=urbl+1

M=uTb2+1

A three-dimension array can be initialized, for example,
by:

ARRAY XYZ[0:2,3:S,-4:-2];
ITEM PI(0,0,60)=[3[3(4)]];

60496400 D

Each element of an array resides in a particular row
or column. For example:

o
row 1

2

o

4
23
-7

column

0
-9
14

2 3

7 -8
11 6
-2 77

In this array, the value 77 resides in row 2, column 3.
Because there are three rows and four columns, this
array has the dimensions 3 by 4.

Array items are allocated in column order: that is, the
leftmost subscript varies most rapidly.

In a two-dimensional array, memory locations are:

ARRAY PSI [I :3,0:3] alloc(2);
ITEM X,Y(I);

Parallel Serial

X[I,O] X[I,O]
X[2,0] Y[1,O]
X[3,0] X[2,0]
X[I,I] Y[2,0]
X[2,1] X[3,0]
X[3,1] Y[3,0]
X[I,2] X[I,I]
X[2,2] Y[1,I]
X[3,2] X[2,I]
X[1,3] Y[2,I]
X[2,3] X[3,1]
X[3,3] Y[3,I]
Y[1,O] X[I,2]
Y[2,0] Y[I,2]
Y[3,O] X[2,2]
Y[1,1] Y[2,2]
Y[2,I] X[3,2]
Y[3,1] Y[3,2]
Y[I,2] X[1,3]
Y[2,2] Y[1,3]
Y[3,2] X[2,3]
Y[1,3] Y[2,3]
Y[2,3] X[3,3]
Y[3,3] Y[3,3]

2-11

For a three-dimensional array, the concept and
memory locations are:

ARRAY RHO[0:1,2:4,-5:-4]P(1);

Resultant structure of array RHO is shown in figure 2-12_

o

1

2-12

/
/

/
/

1
2
3
4
5
6
7
8
9
10
11
12

/
,/

/
/

/

RHO [0,2,-5]
RHO[1,2,-5]
RHO [0,3,-5]
RHO[1,3,-5]
RHO [0,4,-5]
RHO [1 ,4,-5]
RHO [0,2,-4]
RHO[1,2,-4]
RHO [0,3,-4]
RHO[I,3,-4]
RHO [0,4,-4]
RHO[1,4,-4]

/
/

/

Figure 2-5_ Structure of Array RHO

BASED ARRAY DECLARATION

A based array is an array for which the compiler does
not allocate storage; rather the compiler creates a
specific pointer variable compiled with an undetlned
value. All references to a based array are compiled
in relation to the pointer variable. From a logical
standpoint, a based array provides a template that
can be superimposed over any area of memory during
execution.

A program using the based array has the responsibility
to set the pointer variable through the intrinsic func
tion P. The P function and its use with based arrays
is described in section 4.

The based array name is declared in a BASED ARRAY
declaration. The array items are declared as they are
for normal arrays for which storage is allocated.

The format of the BASED ARRAY header is:

BASED array-dec;

or

BASED BEGIN array-dec, array-dec ... END

array-dec Full array declaration including
the ARRAY declaration for a
header and a simple or compound
ITEM declaration for the entry in
the array.

Based arrays should be used when the programmer
does not know prior to execution time where the
array is to be located. Based arrays are used, for
instance, with a memory manager such as CMM
when the position of an array is not known at
load time.

References are made to based arrays just as if they
were normal arrays, once the pointer variable is set.

60496400 D

EXCHANGE STATEMENT

The exchange statement causes the exchange of values
of the left-hand and right-hand sides of the statement.
Appropriate type conversion occurs during the exchange
if necessary: in A= =B, B is converted as if A=B

I appeared, with A converted as if B= A appeared.

The format of the exchange statement is:

vI = = v2

vi Entities whose values are to be
exchanged. Any of the following
can appear:

Scalar

Subscripted array item

P-function

Bead function

The two characters = = must appear consecutively
without an intervening blank.

SYMPL guarantees that subscript or bead function
components of expressions which m~st be evaluated
to compute -the address of vI or v2 are computed
only once. The order of expansion as to which
variable is stored first is not guaranteed, however.
The exchange process refers to the expression values
by referring to temporary variables. For example,
the exchange statement A= =B occurs as if it were
written:

temp=A;
A=B;
B=temp:

Temporary variables are used for storage of component
and subscript expressions, so that the old values are
always used. The expansion of I==J[I] is:

templ=l;
temp2=1;
I=J[I] ;
J[templ] =temp2;

The subscript expression J [I] is the old value
until the statement is complete.

60496400 D

FOR STATEMENT

The FOR statement is a generalized looping control
statement. A simple or compound statement follow
ing the DO clause of FOR executes repetitively as
long as the condition established by the FOR state
ment is TRUE.

The format of the FOR statement has several forms:

FOR i=aexpl STEP aexp2 DO statement

FOR i=aexpl STEP aexp2 UNTIL aexp3 DO
statement

FOR i=aexpl WHILE bexp DO statement

FOR i=aexpl STEP aexp2 WHILE bexp DO
statement

FOR i=aexpl DO statement

aexpl

aexp2

aexp3

statement

bexp

Counter for the loop called the
induction variable. Must be a
scalar of any type except B or C.

Arithmetic expression indicating
the initial value of the induction
variable.

Arithmetic expression indicating
a value to be added to the in
duction variable for each execution
of the loop.

Arithmetic expression indicating
the last value for the induction
variable for which loop repetition
is to occur.

Simple or compound statement to
be executed repetitively. This
statement is called the controlled
statement.

Boolean expression that must be
TRUE for repetitive loop execution.

Since the form FOR i=aexp DO statement produces
an infinite loop, the programmer-supplied statement
must provide for an exit jump.

The expressions used in the STEP and UNTIL clauses
can utilize data of any type. The result of the ex
pression is converted to the mode of the induction
variable.

3-3

Two types of loops, known as fastloops and slowloops,
can be generated by the compiler, depending on the
appearance of the compiler-directing CONTROL state
ment. Figure 3-1 compares the two types of loops.

3-4

Fastloop

Initialize

Execute

Controlled
Statement

Modify

Siowloop

Initialize

Execute
Controlled
Statement

Modify

Figure 3-1. Generalized Fastloop and
Slowloop Flowcharts

Fastloops always execute at least once (similarly
to American National Standard X3.9-1966,
FORTRAN DO loops) since the test for the
condition is at the end of the loop. To pro
duce predictable results, the elements of the'
FOR statement are restricted as follows:

The induction variable must be integer
type. It can be signed. The absolute
value of the induction variable must be
able to be contained within 17 bits.

Neither the step nor the test expression
can be modified within the loop. SYMPL
might evaluate tllese expressions before
the start of the loop.

Slowloops need not execute, at least once since
the test for the condition is at the beginning of
the loop. The restrictions of fastloops do not
hold for slowloops.

Fastloops are preferable since they can be optimized
by the compiler.

The default is slowloop, but it can be overridden for
following FOR statements: a CONTROL FASTLOOP
statement affects all FOR statements begun before a
later CONTROL SLOWLOOP statement. A loop
control statement within a FOR statement can affect
a nested loop, but not the loop in process. See
section 5 for an example of loop control.

For both types of loops, the value of the induction
variable is undefined after the loop is complete. For
sIowloops, however, the current value of the induction
variable is preserved if the controlled statement causes
a jump out of the loop. Moreover, if the controlled
statement is entered by a GOTO statement from
outside the FOR statement, the value of the induction
variable might be undefined.

Figure 3-2 shows the different types of FOR state
ments and the logic of their generated code. For
slowloops, the object code has a direct correspondence
with the SYMPL statements sIlOwn; this is not the
case with fastloops.

The step value and final value shown in figure 3-2 in
temporary locations are not guaranteed: if variables
involved in these expressions are modified within the
loop, results are not predictable.

TEST STATEMENT WITHIN A FOR
STATEMENT

In a FOR statement, the compiler automatically
supplies the modification, test, and branching steps of
a loop. The TEST statement provides a means of
branching to the modify-test-branch step; it is mean
ingful only within the controlled statement of a FOR
statement.

60496400 B

The format of the XDEF declaration is:

XDEF xdec
or
XDEF BEGIN xdec xdec . . . END

xdec Name of any procedure, function or
label that is to be referenced in an
externally compiled program; or a
full data declaration for a scalar,
array, switch, or based array.

The xdec for a procedure, function
or label is:

PROC name;

FUNC name type;

LABEL name, name, ... ;

XDEF declarations for procedure and function
names can occur either before or after the decla
rations of the procedure or function.

An example of use of the XDEF and XREF
declarations is as follows:

Procedure A is compiled with:·

XREF ITEM COUNT I;

Procedure B is compiled with:

XDEF ITEM COUNT I;

Any reference to COUNT from within proce
dure A accesses the storage reserved for the
item within procedure B, assuming both A
and B are available at load time.

XREF DECLARATION

The XREF declaration generates external references
to the specified names. It is assumed that storage

60496400 D

for variables is allocated and appropriately declared
with XDEF in a separately compiled program.

The format of the XREF declaration is:

XREF xdec
or
XREF BEGIN xdec xdec ... END

xdec Any of the following whose storage
is declared with XDEF:

Data declaration for a scalar with
out preset.

Data declaration for an array with
out presets.

Data declaration for a based array.

PROC name;

FUNC name type;

LABEL name, name,

SWITCH name, name, . . . ;

XREF itself is not terminated by a semicolon, but
each declaration within the XREF statement re
quires a terminating semicolon.

Examples of XREF statements are:

XREF BASED ARRAY AA; ITEM XX;

XREF BEGIN
SWITCH JUMVEC;
FUNC LINEUP R;
ARRAY [0:9 ,0:9] S(S);

BEGIN
ITEM ZZ C(0,O,40);
ITEM YY R(4,0,60);
END

END

4-9

I

Each parameter in the actual parameter list is
delimited by the final parenthesis or a comma. A
parameter consists of all the characters between suc
cessive parameter delimiters.

Any character can appear as part of the actual param
eter string, but characters with syntax-defining mean
ing might require special coding:

Any parameter string that contains a semicolon
must be bounded by #. The bounding # are
removed prior to substitution.

Any parameter string that contains # must
specify # # t~' produce a single # substitution.

Any parameter string that contains incorrectly
unbalanced or nested (), < > , or [] must be
bounded by #. The bounding # are removed
prior to substitution.

Any comma within a parameter string is not
recognized as a parameter delimiter when that
comma is contained within a balanced set of
(), < >, or [].

All actual parameters valid for a procedure or function
call are valid as DEF parameter strings. No restriction
limits the DEF name reference parameter strings to
items or expressions, however.

For example:

• Define BYTE and reference it by BYTE(C,5,2**J):

DEF BYTE(B,J,K) # B<J>A[K] #;

Expansion produces:

C< 5>A[2**J]

• Define CHECK with two parameters and a body
that uses the BYTE specified above:

DEF CHECK(X,ERROR) # IF BYTE(B,l,X)
EQ 1 THEN COTO OK; ERROR#;

Reference:

. CHECK(CALl(3,B),#ERROR=3 7;
COTO FAIL#);

Expansion:

IF B<1>A[CALL(3,B)] EQ 1 THEN COTO
OK; ERROR=37; COT a FAIL;

60496400 C

• Another definition of CHECK with the same
parameters produces the following expansion,
given the same reference:

DEF CHECK(X,ERROR)#IF BYTE
(B,l,##X##) EQ 1 THEN COTO OK;
ERROR#;

Expansion:

IF B<l>A[X] EQ 1 THEN COTO OK;
ERROR=37; COTO FAIL;

DEF NAME REFERENCES

Once a DEF name has been defined, subsequent
references to that name are replaced by the characters
in DEF body. No substitution occurs in the follow
ing circumstances, however:

The DEF name appears within a comment.

The DEF name appears within a constant.

The DEF name or the DEF parameter name
appears as the identifier being defined by an
ITEM, ARRAY or COMMON declaration.

The DEF name corresponds to one of the
following and the name appears in a syntax
defining context:

Type descriptor abbreviations B, C, I,
R, S, U.

Array layout specifiers P, S.

Constant prefixes 0, S, X.

Intrinsic function B, C, P.

Real number specifiers D, E.

When the DEF declaration does not include parameters,
compilation simply replaces the DEF name with the
DEF body.

When the DEF declaration includes parameters, each
reference to the DEF name must be followed by an
actual parameter list. The format of the DEF name
reference with parameters is:

name(param,param, . . .)

name Name defined in a prior DEF
declaration within this subprogram.

5-3

I

param String of characters to replace a
formal parameter.

No comment can appear between the DEF name and
the left parenthesis of the actual parameter list.

A one-to-one correspondence exists between the posi
tions of parameters in each list. The first actual
parameter replaces all occurrences of the first formal
parameter within the DEF body; the second actual
parameter replaces all occurrences of the second .
parameter; and so forth. The number of actual

• parameters must not exceed the number of formal
parameters: such a condition is detected as a fatal
error and DEF name substitution is suppressed.

The number of actual parameters can be fewer than
the number of formal parameters, however. Any
formal parameter without a corresponding actual
parameter is replaced by a null character string. This
allows the expansion of a DEF name with a variable
number of actual parameters.

CONTROL STATEMENT

The CONTROL statement directs the compiler to
take immediate action. Several different types of
control words in the statement cause different types
of actions:

Output listing control specifications are EJECT,
LIST, NOLIST, OBJLST.

Conditional compilation control words are IF,
FI, ENDIF.

Compilation option selections are PACK,
PRESET, FTNCALL.

FOR statement loop specifications are
FASTLOOP, SLOWLOOP.

Core residence selections are LEVEL I, LEVEL2,
LEVEL3.

Variable attribute specifications are DISJOINT,
OVERLAP, REACTIVE, INERT. .

Weak external specification is WEAK.

Traceback selection is TRACEBACK.

Each of the different functions is described separately
below.

5-4

A CONTROL statement can appear anywhere in a
program that a statement can appear. It can also
appear within BEGIN and END enclosing a list of
array items, based arrays, external declarations, or
common declarations.

The effect of a CONTROL statement can be reflected
in an entire module. The end of a procedure or
function does not cancel the statement; only TERM
cancels a CONTROL statement.

LISTING CONTROL

Four forms of the CONTROL statement affect output
listings. The general format is:

CONTROL control-word;

Control-word

EJECT

LIST

NOLIST

OBJLST

One of the following:

Skip to new page of listing

Resume normal listing of source
statements

Suspend normal listing of source
statements

List object code

EJECT, LIST, and NOLIST cause the compiler to
take action at the time the statement is encountered
among the source statements.

OBJLST applies to the entire module. Its appearance
anywhere within the module affects the entire module.

The H parameter of the SYMPL compiler call overrides
CONTROL NOLIST.

CONDITIONAL COMPILATION

The CONTROL statement can be used to determine
whether source statements following the CONTROL
statement are to be compiled:

When the relationship defined in the CONTROL
statement tests TRUE, the following source
statements are compiled.

60496400 D

ATTRIBUTES OF VARIABLES
SPECIFICATION

The SYMPL compiler attempts to produce efficient
executable code. Because the compiler cannot predict
the precise use of a variable in subsequent source
statements, it must forego many efficiencies that would
produce inaccurate code by particular variable references.
The programmer, however, can be aware of data use
and, through the CONTROL statement, can inform
the compiler of usage characteristics. By classifying
variables and array items as separate or potentially
overlapping, the programmer provides the information
that the compiler needs to decide optimizations.

The format of the CONTROL statement for specifying
attributes of variables is:

CONTROL attribute var, var, ..
or
CONTROL attribute;

attribute Attribute of variables in the state
ment list:

60496400 C

OVERLAP Variables might be
referenced by more
than one name, as
shown in examples
below. OVERLAP is
the opposite of
DISJOINT.

DISJOINT Variables are referenced
by a single name only.
DISJOINT is the oppo
site of OVERLAP.

REACTIVE A given word in a
single array might con
tain two items, or parts
of items, being refer
enced together although
the two items are not
declared to overlay- each
other. See examples
below. REACTIVE is
the opposite of INERT.

Items with declarations
that show one field
overlaying another
field are detected by

var

INERT

the compiler, so that
REACTIVE need not
be declared.

A given word in a
single array does not
contain items, or parts
of items, referenced
together. INERT is
the opposite of
REACTIVE.

Variable with the attribute specified.

If the list of variables is omitted, the
CONTROL statement becomes a
global switch that affects all sub
sequently declared variables not
otherwise referenced by a contrary
individual specification.

If neither the global switch format nor the individual
specification format of the CONTROL statement
appears, the module is compiled as described in
appendix C, Possible Optimizations. If any CONTROL
statement specifying an attribute appears in the module,
the global switch format CONTROL REACTIVE and
CONTROL OVERLAP is assumed at the beginning of
a module. Use of the CONTROL statement to
classify variables is encouraged because future versions
of the compiler might require such classification.

The definitions of overlap and disjoint refer only to
variables in separate arrays; for overlapping items
within a single array, the distinction between reactive
and inert must instead be drawn.

Overlapped Variables

One program might refer to the same variable by two
names when formal parameters or based arrays are
referenced. For example:

PROC P(A,B);

A=2;
B=4;
Y=A;

5-7

A call to procedure P in the form P(V ,V)
represents two occurrences of the same actual
parameter: during compiler optimization the
store of the value of Y must not use the value
of A from the A=2 statement.

Similarly, with a based array B based on A:

PROC P(A,B);
X=A[2] ;
B[2]=3;
Y=A[2] ;

Since A and B refer to the same array, the com
piler must not store Y such that it refers back
to the first A [I] .

Variable names that interfere with each other as
illustrated above are called overlapped variable names.
If such interference does not occur, the variables are
said to be disjoint.

To determine whether variables should be specified as
OVERLAP or DISJOINT, the programmer must
examine the entire module, not simply a given subpro
gram. The compiler reserves the right to inspect all
procedures and functions in a given module for use of
variables and it considers that normal nonextemal
variables are not destroyed by calls to global s,ubpro
grams whether external or not. But if local procedures
are called which have access to the names of local
variables, the compiler detects all the variables such a
procedure explicitly stores.

Variables known through COMMON, XDEF, and XREF
declarations are considered destroyed by calls to an
external subprogram. Overlapped behavior exists when
an external subprogram destroys nonexternal variables.

Reactive Arrays

Two items in one array can interfere with optimization
when references to items do not match the declarations
of these items. For example:

5-8

ARRAY [0:100] S (l);
ITEM A (0), B (l);

B[I] =A[J] *2;
Q=A[J] ;

Item B is outside the bounds of one array entry
and it interfers with the next entry. If the array
is always indexed by 2, B does not interfere with
A. However, if I is set to J-l, the A(J) is
destroyed by a store to B{I).

Array items that interfere with each other as in this
illustration are said to be reactive items. If such
interference does not occur, the items are said to be
inert. An array is reactive if it has two items A and
B such that for A [i] and B [j] with i not equal to j
at some time during execution, any part of A [i) is in
the same word as any part of B [j]. It is not neces
sary for the fields to overlap: reactive arrays occur
when both items are in the same word.

To determine whether an array item should be clas
sified as_ REACTIVE or INERT, the progrannner must'
examine an entire module, including all variables
affected by other procedures it might call.

WEAK EXTERNALS

When a compiled program is loaded before execution,
the loader searches for a matching entry point for
all externals and loads the subprogram in which they
occur. Under some circumstances this can result in
the loading of subprograms not required for current
execution. Through using a CONTROL statement to
declare an external weak, the programmer can specify
that the external is not necessarily to be satisfied.

A weak external does not cause a search for the
matching entry point. If the program that con
tains the entry point is loaded for some other
reason, however, that weak external is linked.

When a weak external is satisfied, it is linked as if
it were a normal external. If it is not satisifed, no
error message is produced.

The format of the CONTROL statement specifying a
weak external is:

CONTROL WEAK name, name, ...

name Name of array, based array, function,
item, label, procedure, or switch.

Name must have been previously
declared as external by using XREF.

60496400 D

TRACEBACK FACILITY

SYMPL uses standard calling sequences for transferring
control to a procedure or subroutine of another
language. In this sequence, register Al contains the
address of a parameter list and each parameter to be
passed occupies one word of the list. Execution of
an RJ instruction to the entry point links the programs.
For debugging purposes, SYMPL provides an option
for traceback.

The format of the CONTROL statement for tracing
purposes is:

CONTROL TRACEBACK;

The appearance of this statement anywhere within the
module selects the option for the entire module.

I Traceback code is generated automatically when the
K parameter (points-not-tested) of the SYMPL com
piler call is used.

The traceback code generated for procedures and
functions is compatible with traceback of FORTRAN
Extended. To complete FORTRAN Extended com
patibility, the F parameter of the SYMPL compiler call
must also be specified. Code generated by a SYMPL
calling program is never compatible with FORTRAN
Extended traceback, however.

Traceback code generated is as follows:

If the procedure of function has a single entry,
the generated constant word is:

60496400 D

VFD 42/0Hname,I8/ept

name Subprogram name left-justified and
blank fIlled or truncated to seven
characters.

ept Address of subprogram entry point.

If the procedure or function has multiple entries,
the generated constant word is:

VFD 42/0Hname,I8/temp

name Subprogram primary entry point.

temp Address of a copy of the return
information taken from the most
recent entry point.

The return jump instruction for the subprogram
call is forced upper. The lower 30 bits of the
instruction contain:

VFD I2/line,I8/trace

line Approximate source line number
of call.

trace Address of the constant word
described above for the innermost
subprogram containing the call
statement.

5-9

)

COMPILER CALL AND OUTPUT LISTINGS 6

COMPILER CALL

The SYMPL compiler is called with a control state
ment that conforms to operating system syntax. The
control statement cannot be continued.

More than one program or subprogram can be com
piled by a single call to the compiler as long as they
follow each other on the source file without any file
boundaries between them. The compiler recognizes
a TERM statement as the end of a module and ignores
any further statements on the same card or card
image. Compilation resumes with the next card, which
is assumed to be the start of another program or sub
program. A comment can precede a program or sub
program header.

If the first card or card image encountered at the
beginning of a loader module contains the character
OVERLA Y in columns 1 through 7, the remainder
of the module is treated as if an LCC statement
appeared in a COMPASS program.

The name on the compiler call statement is SYMPL.
If all default parameters are selected, the compiler
call appears as:

SYMPL.

A variety of compilation options can be specified in
a parameter list following the compiler call name. If
the name of the source input file is NEWONE, for
example, the compiler call appears as:

SYMPL,I=NEWONE.

All compilation parameters are optional and can appear
in any order. Parameters are listed below in alpha
betical order.

A ABORT JOB AFTER ERRORS

omitted

60496400 C

Execute next control statement whether
or not any errors are diagnosed during
compilation.

A Execute control statement after an
EXIT(S) control statement if errors are
found at the end of compilation.

B BINARY CODE FILE

omitted

B

B=O

B=lfn

Write binary output from compilation
to file LGO.

Write binary output from compilation
to file LGO.

Suppress generation of binary code.

Write binary output from compilation
to file lfn, where lfn is one through
seven letters or digits beginning with a
letter.

C CHECK SWITCH RANGE

omitted

C

Do not generate code to check range of
switch references. Any reference to an
undefined switch value produces either
an endless loop, a mode error, or a
wild jump.

Genera te code to check range of switch
references. During execution any refer
ence to an out-of-range switch or an
unspecified switch value produces a diag
nostic and a program abort.

\

D PACK SWITCHES

omitted

D

Generate one word for each switch.

Generate one word with two switch
points, reducing the size of generated
code but increasing execution time.
Produces the same result as CONTROL
PACK within a program.

6-1

E COMPILE $BEGIN/$END STATEMENTS

omitted

E

Do not compile source statements
bracketed between $BEGIN and $END.

Compile source statements bracketed
between $BEGIN and $END.

F FORTRAN CALLING SEQUENCE

omitted

F

Do not compile a word of all zeros at
the end of a parameter list.

Compile a word of all zeros at the end
of each parameter list as required by
the FORTRAN Extended calling sequence.
Produces the same result as a CONTROL
FTNCALL statement within a program.

H LIST ALL SOURCE STATEMENTS

omitted

H

List source statements according to
CONTROL NOLIST and CONTROL
LIST statements within the program.

List all source statements, regardless of
CONTROL NOLIST statements within
the program.

SOURCE INPUT FILE

omitted Compile card images from file INPUT.

I Compile card images from file COMPILE.

I=lfn Compile card images from file If11.

K POINTS-NaT-TESTED

omitted

K

Do not generate points-not-tested inter
face code.

Generate an RJ to the points-not
tested interface routine after every
label and conditional jump. Find all
paths in the executable code and'
determine which of the paths are
exercised by the test base. Also, gen
erate traceback code.

L LISTING FI LE

Any 0, R, or X parameter must be concatenated
with any L parameter, as in: LXOR=PRINTIT.

omitted

6-2

Write source statement listing and diag
nostics to fIle OUTPUT.

L

L=l

L=O

L=lfn

•

,
Write source statement listing and diag
nostics to fIle OUTPUT.

Write summary of resources used to
fIle OUTPUT.

Suppress all listing output, including
that selected by 0, R, and X; list only
diagnostics.

Write source statement listing and diag
nostics to fIle lfn, with Ifn being one
through seven letters or digits beginning
with a letter.

N CROSS REFERENCE UNREFERENCED
ITEMS

omitted

N

List only referenced items on the cross
reference map selected by the R param
eter.

List referenced and unreferenced data
items on the cross reference map
selected by the R parameter.

a LIST OBJECT CODE

Any L, R, or X parameter must be concatenated with
any 0 parameter, as in: OL=LIST/35/45.

omitted

O=st/end

Do not list binary object code.

List binary object code generated by
range of source statements indicated:

st Number of first source statement
whose object code is to be listed.
Default is O.

end Number of last source statement
whose object code is to be listed.
Default is last statement in program.

If only one number appears after =, it
is presumed to be end. The line numbers
appear to the left of the source images
on the listing.

O=lfn/st/end List binary object code from specified
source statements on fIle lfn, where lfn
is one through seven letters or digits
beginning with a letter. st and end are
as above.

P PRESET COMMON

omitted Data items in common blocks are not
to be initialized.

60496400 D

(

I

I

(

I

I

P Initialize data items in common blocks
according to the preset values in the
data declarations. Produces the same
result as a CONTROL PRESET state
ment within a program.

R LIST CROSS-REFERENCE MAP

Any L, 0, or X parameter must be concatenated with
any R parameter, as in: RX=SHOW.

omitted

R

R=lfn

Do not list cross reference table and
common blocks.

List cross reference table and common
blocks on me OUTPUT.

List cross reference table and common
blocks on me Ifn, where Ifn is one
through seven letters or digits beginning
with a letter.

S EXECUTION LIBRARY

omitted Compile LDSET tables with references
to these libraries:

SYMLIB/FORTRAN for NOS and
NOS/BE operating systems

SYMIO/FORTRAN for SCOPE 2
operating system

S=o Suppress LDSET table generation.

S=lib Generate LDSET tables with references
to library lib. Multiple libraries can be
specified with slashes between library
names, as in: S=AAA/MMM/TTT.

T SYNTAX CHECK

omitted Check syntax and generate binary code.

'F Check syntax, but do not generate
binary code.

W SINGLE STATEMENT CODE GENERATION

omitted

60496400 D

Generate object code with multiple
source statement intermixed.

W

x

Generate object code that maintains a
close correspondence with its source
statement. While the resulting object
code might be less efficient, it is useful
for debugging.

LIST STORAGE MAP

Any L, R, or 0 parameter must be concatenated with
any X parameter, as in: RX=OUTPUT.

omitted Do not list storage map or common
blocks.

X

X=lfn

List storage map and common blocks
on me OUTPUT.

List storage map and common blocks
on me lfn, where lfn is one through
seven letters or digits beginning with a
letter.

Y SUPPRESS DIAGNOSTIC 136

omitted List diagnostic 136 (Semi ends comment)
as required.

Y Suppress diagnostic 136 listing, but
take normal corrective action.

OUTPUT LISTINGS

Figure 6-1 shows a SYMPL main program SORTIOO
that can be used to sort 100 items. It calls procedure
SORTER which was compiled separate from SORTI00
since TERM appeared at the end of SORTIOO. SORT-
100 consequently contains an XREF statement that
declared SORTER to be an external program.

A job deck for syntax analysis compilation both the
main program and subprogram would appear as:

jobcard.
any accounting statement.
SYMPL,T.
7/8/9
all SYMPL source statement
6/7/8/9

Output from a compilation normally includes the
source stat~m~nt listing, and a diagnostic summary.

6-3

o C!G ~ S n ~ T 10 C
gC:G T~I
qASf~ ARo~~ AA(99)

ITE'M X ;
IT~t1 NOREFEPENC:

• •

Xr:(~F oRoe SOKTf P ;

A~~AV T09~SooTFD (gg]
I T EM T:

P<AA> :: LOC (T09~SO~TED)
SOr:(TE~ (t'I<AA»;

P ·t) C SORT E R , S 0 ~ T 1
a~:; IN
A~~AY SOPT(9Q]:

ITEM VA LUE;
I T: ~ I:
I TE M F L A r; I = 0 :

• ,

• •

Ll: F1~ I=O S1EP 1 UNTTt 98 0'
IF VALUE£!.11 GP ~ALU£rT] THE~

g~G I~

VALUErI.11 -- VALU~rIJ:
FLAG = 1;
C:Nr)

It:' FL A·G ~ Q f] n·" =N
RfTtf°N:

FLA G = C :
G JT" L 1 :
E 'JJ = SO tiT E R =
T7:Q ~

Figure 6-1. Sample Source Program

Any storage map, cross-reference map, or object listing
follows on a separate page of the listing. The last in
formation shown summarizes the number of words of
memory and the time required for compilation. The
parameters of the compiler call used for compilation,
whether selected explicitly or implicitly, are also
shown.

A large map might appear on the output listing in two
parts. Both should be examined.

6-4

STORAGE MAP

The storage map is a dictionary of all programmer
created declarations in the source program. It is
selected by the X parameter of the compiler call.
Figure 6-2 shows the storage map from the
SORTIOO main program of figure 6-1. Informa
tion appearing on the map includes:

60496400 C

1 NAME

2 TYPE

3 M

4 LOC

First ten characters only of declarations
are printed.

Defines the name as one of the follow-
ing types:

ARYITM
COMMON
ITEM
FUNC
PROC
LABEL
B.ARRY
ARRAY
PROGRAM

Mode

B
C
I
P
S

U
x.
Y

of data

Array item
Common block
Item
Function
Procedure
Label
Based array
Array
Program

representation

Boolean
Character
Integer
Parallel (arrays only)
Status (Serial if type is

array or based array)
Unsigned integer
External
Weak external

Octal address relative to start of routine;
if followed by C, LOC is relative to
start of common block. If type =
ARYITM, LOC refers to first occur
rence of item.

5 FBIT ~irst bit, numbered from 0 to 59, left
to right.

6 NUM Number of bits; if MODE
ber of bytes.

C, num-

SOiH10D P~OGUH • STORAGE MAP •

CD ® ®® ®®
,.4HE'O(10) UPE If ~OC FaIT HUH NAHE'CUiU TYPE Ii LOC

AA 'l.A~Rt P Q I ARYIT 11 I
SORrEl< f'p.'1C l(0 SORT100 PROGRr1
Toer:SCRTEO IoRF.A'i p 2)(ARYITH I

CROSS-REFERENCE MAP

The cross-reference map lists the properties of
each declaration and shows the source line num
ber at which the entity was declared or referenced.
It is selected by the R parameter of the compiler
call.

Figure 6-3 shows the cross-reference map from
subprogram SORTIOO of figure 6-1. Since the
subprogram was compiled with the N parameter
of the SYMPL compiler call, items that were
declared, but not referenced, also appear on the
map. Information appearing on the map includes:

1 NAME

2 TYPE

FaIT HUH

Z 0 60
151

II II 60

First ten characters only of decla
rations are printed.

Defines the name as one of the
following types:

ARYITM
COMMON
ITEM
FUNC
PROC
LABEL
B.ARRY
STSCON
DEFINE
STSLST
PROGRM
ARRAY

NAME IC ~ 10 t TYPE

NOREFER~NC ITEI1
SYS- PRQC

Array item
Common block
Item
Function
Procedure
Label
Based array
Status constant
DEF
Status list
Program
Array

t1 LOC

I 1
X U

FaIT

a

HUH

GJ

Figure 6-2. Storage Map

60496400 D 6-5

3 M Mode of data representation by C, declaration is in common
block.

B Boolean
C Character 5 SCOPE Name of outermost procedure
I Integer within which declaration occurs;
P Parallel (arrays only) if type = STSCON, SCOPE is
S Status (serial if type =

the name of the status list of array)
U Unsigned integer which the item is a member.

X External

I y Weak external 6 SET/USED Source listing line numbers of
references to NAME, * indicates

4 DEF line number in source listing where use as other than left-hand side
declaration is defined; if follow~d of the replacement statement.

SORT1J" P"-'')G::>AM • GROSS RE F"lR:: Nr(~

CD 0 ® 0 ® ®
NAMC::S(1~' TY p~ '-1 [)t"F scOP~ SET' I.J SE [l/ AT 1 ~ I RUT ~ - .=USEO t A -=A T T RI 8U TE

AA g.A~~V :> ·3 S O~T 1 a Q 9 lG
Noo~·Fr::~=Nr. IT f'M T 5 S O~ TiC C .4

SO~TER pooe X fJ SO~T1JO 10-\'
T L\QYITM I 8 SORT10~
Ton~~1RTEn AqPA y f!> 7 SO" T1 C C q-\'

X ~o Y I T ~ T 4 '3 O~ T1 C C

Figure 6-3. Cross-Reference Map

6-6 60496400 D

)

)

)

) STANDARD CHARACTER SETS A

)

) CONTROL DATA operating systems offer the following variations of a basic character set:

)

)

)

)

)

)

'\
)

)

)

)

)

)

)

)

CDC 64-character set

CDC 63-character set

ASCII 64-character set

ASCII 63-character set

The set in use at a particular installation was specified when the operating system was installed.

Depending on another installation option, the system assumes an input deck has been punched either in 026 or
in 029 mode (regardless of the character set in use). Under NOS/BE the alternate mode can be specified by
a 26 or 29 punched in columns 79 and 80 of the job statement or any 7/8/9 card. The specified mode remains
in effect through the end of the job unless it is reset by specification of the alternate mode on a subsequent
7/8/9 card.

Under NOS, the alternate mode can be specified by a 26 or 29 punched in columns 79 and 80 of any 6/7/9
card, as described above for a 7/8/9 card. In addition, 026 mode can be specified by a card with 5/7/9 multi
punched in column I, and 029 mode can be specified by a card with 5/7/9 multipunched in column I and a 9
punched in column 2.

Graphic character representation appearing at a terminal or printer depends on the installation character set and
the terminal type. Characters shown in the CDC Graphic column of the standard character set table are applicable
to BCD terminals; ASCII graphic characters are applicable to ASCII-CRT and ASCII-TTY terminals.

60496400 A A-I

STANDARD CHARACTER SETS

CDC
~

ASCII

Display Hollerith External
Graphic Punch Code Code Graphic Punch BCD

(octal) (026) Code
Subset (029) (octal)

oot : (colon)tt 8-2 00 : (colon) tt 8-2 072
01 A 12-1 61 A 12-1 101
02 B 12-2 62 B 12-2 102
03 C 12-3 63 C 12-3 103
04 D 12-4 64 D 12-4 104
05 E 12-5 65 E 12-5 105
06 F 12-6 66 F 12-6 106
07 G 12-7 67 G 12-7 107
10 H 12-8 70 H 12-8 110
11 I 12-9 71 I 12-9 111
12 J 11-1 41 J 11-1 112
13 K 11-2 42 K 11-2 113
14 L 11-3 43 L 11-3 114
15 M 11-4 44 M 11-4 115
16 N 11-5 45 N 11-5 116
17 0 11-6 46 0 11-6 117
20 P 11-7 47 P 11-7 120
21 Q 11-8 50 Q 11-8 121
22 R 11-9 51 R 11-9 122
23 S 0-2 22 S 0-2 123
24 T 0-3 23 T 0-3 124
25 U 0-4 24 U Q-4 125
26 V 0-5 25 V 0-5 126
27 W 0-6 26 W 0-6 127
30 X 0-7 27 X 0-7 130
31 y 0-8 30 y 0-8 131
32 Z 0-9 31 Z 0-9 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 11 9 9 071
45 + 12 60 + 12-8-6 053
46 - 11 40 - 11 055
47 * 11-8-4 54 * 11-8-4 052
50 / 0-1 21 / 0-1 057
51 (0-8-4 34 (12-8-5 050
52) 12-8-4 74) 11-8-5 051
53 $ 11-8-3 53 $ 11-8-3 044
54 = 8-3 13 = 8-6 075
55 blank no punch 20 blank no punch 040
56 , (comma) 0-8-3 33 , (comma) 0-8-3 054
57 • (pe~od) 12-8-3 73 • (period) 12-8-3 056
60 0-8-6 36 * 8-3 043
61 [8-7 17 [12-8-2 133
62] 0-8-2 32 1 11-8-2 135
63 % tt 8-6 16 % tt 0-8-4 045
64 ~ 8-4 14 " (quote) 8-7 042
65 r- 0-8-5 35 (underline) 0-8-5 137
66 11-0 or 11-8-21tt 52 - ! 12-8-7 or 11_0ttt 041 v
67 1\ 0-8-7 37 & 12 046
70 t 11-8-5 55 ' (apostrophe) 8-5 047
71 , 11-8-6 56 ? 0-8-7 077
72 < 12-0 or 12-8-2ttt 72 < 12-8-4 or 12_0ttt 074
73 > 11-8-7 57 > 0-8-6 076
74 :5 8-5 15 @ 8-4 100
75 ~ 12-8-5 75 '\ 0-8-2 134
76 .., 12-8-6 76 - (circumflex) 11-8-7 136
77 ; (semicolon) 12-8-7 77 ; (semicolon) 11-8-6 073

t Twelve zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than
two colons.

tt I n installations using a 53-graphic set, display code 00 has no associated graphic or card code; display
code 63 is the colon (8-2 punch). The % graphic and related card codes do not exist and translations
yield a blank (55~)'

tttThe alternate Hoi erith (026) and ASCII (029) punches are accepted for input only.

A-2 60496400 D

(

(

(

/

(

(

(

(
\

(

(
\

(

(

(
\

(

(

(

(

I

DIAGNOSTICS B

The SYMPL compiler recognizes errors in SYMPL
syntax. An applicable diagnostic message is printed
on OUTPUT immediately preceding the line on which
the error was detected. In addition, the total number
of diagnostic messages is printed along with a detailed
listing of each message number and the condition that
caused the error.

The compiler aborts under several conditions:

Error in the compiler call. A dayfIle message
PARAMETER n IN ERROR is generated.

An attempt is made to compile some types of
incorrect programs. An internal diagnostic
message accompanies such an abort.

Other dayfIle messages that might be produced include:

-SYMPL- INSUFFICIENT FL

-SYMPL- INSUFFICIENT SCM FL

-SYMPL- INSUFFICIENT· LCM FL

-SYMPL- EMPTY INPUT FILE

-SYMPL- COMPILER ABORT

-SYMPL- BAD EXP CALL TO FTN

-SYMPL- BAD LOADER CALL

-SYMPL- cccccccccc COMPILED cp secs

Table B-1 lists the message number and text of the
compilation diagnostics. Abbreviations used in these
messages are:

Abbreviation Description

BOOL Boolean

CHAR Character

CHARS Characters

CONS Constant

DECL Declaration

DUP Duplicate

60496400 D

Abbreviation Description

ERR Error

EXPR Expression

FUNC Function

HEX Hexadecimal

ID Identifier

IFXX Conditional compilation computa
tion word

ILL

PARAM

PARENS

PROC

PROG

REF

REFS

REPL

SEMI

SPECS

STMT

STRG

UNDECL

XDEF

XREF

/

Illegal

Parameter

Parenthesis

Procedure

Program

Reference

References

Replacement

Semicolon

Specifications

Statement

String

Undeclared

External definition

External reference

Or

TABLE B-1. COMPILER ERROR MESSAGES

Message
Number

001
002
003
004

Condition Causing Message

LONG ID-FIRST 12 CHARS USED
DUP DECL-NEW ONE OVERRIDES
UNDECL ID DELETED
ILL OCTAL/HEX CONS

B-1

TABLE B-1. COMPILER ERROR MESSAGES (cont.)

Message
Condition Causing Message

Message
Condition Causing Message Number Number

005 TERM MISSING 042 BAD XREF /XDEF IGNORED
006 BAD STATUS CONS USE 043 BAD BASED DECL IGNORED
007 • BAD NESTING OF PARENS/ 044 XDEF /XREF LIST CRUD DELETED

BRACKETS 045 SWITCH DECL SYNTAX ERR
008 CRUD CHAR IN INPUT 046 COMMON LIST SCAN RESUMES
009 CHAR STRG>240 BYTES-240 USED AT -ARRAY-/-ITEM-
010 ILL ARRAY ITEM ID USE DELETED 047 STATUS DECL SYNTAX ERR
011 ILL SWITCH ID USE DELETED 048 -END- ENDS BAD COMMON LIST
012 ILL ARRAY ID USE DELETED 049 DEF DECL SYNTAX ERR
013 ILL STATUS LIST ID USE DELETED 050 BAD FORMAL PARAM DECL
014 ILL COMMON ID USE DELETED 051 PROGRAM BEGINS BADLY
015 SEMI MISSING AFTER ARRAY 052 PROG DECL LACKS ID

DECL 053 PROG DECL ERR-CRUD PRECEDES
016 CRUD AT START OF STMT SEMI

DELETED 054 XDEF/XREF LIST SCAN RESUMES
017 ILL KEYWORD USE DELETED AT LEGAL ENTRY
018 ARRA Y ITEM DECL LIST LACKS 055 FORMAL LABEL DECL SYNTAX

END ERR
019 DUP DECL OVERRIDES 056 -END- ENDS BAD XDEF /XREF
020 , ITEM DECL ID ERR LIST
021 DECL DISCARDED-SCAN RESUMES 057 FORMAL PROC DECL SYNTAX

AT SEMI ERR
022 ITEM DECL TYPE ERR-I 058 FUNC DECL LASKS ID

ASSUMED 059 FUNC DECL TYPE ERR- I
023 ILL ITEM LENGTH-l BYTE USED ASSUMED
024 SIGNED PRESET ILL FOR THIS 060 FUNC DECL LACKS SEMI

TYPE--IGNORED 061 SCAN RESUMES AT SEMI
025 SCAN RESUMES AT -BEGIN- 062 DUP FORMAL PARAM ID IN LIST
026 MISSING SEMI 063 DUP PARAM ID-PRIOR DECL
027 ITEM PRESET ERR THIS SCOPE
028 SEMI ACCEPTED AS NULL STMT 064 PARAM LIST SYNTAX ERR
029 BASED/XDEF /XREF ARRAYS 065 PROC DECL LACKS ID

NEED ID 066 PROC DECL SYNTAX ERR
030 ARRAY ITEM DECL SYNTAX ERR 067 UNDECL LABEL/PROC ID
031 ARRAY ITEM DECL TYPE ERR 068 FORMAL ID LACKS DECL
032 BAD ARRAY BOUND V ALUES- 069 PARAM NOT USED IN THIS SCOPE

ASSUMED [0:0] 070 ILL DEF ID-NO EXPANSION
033 ARRAY BOUND SYNTAX ERR 071 ENTRY PROC MAY NOT CALL
034 ARRAY ITEM DECL PARTWORD ITSELF

SPECS ERR-DEFAULT TAKEN 073 TOO MANY PARAM/ARRAY/ARRAY
035 ARRAY ITEM DECL 1ST BIT ITEM REFS

ALIGNMENT WRONG-O USED 074 TOO MANY SUBSCRIPTS: SWITCH
036 ILL ARRA Y ITEM BOUNDARY- REF

DEFAULT TAKEN 075 NOT ENOUGH SUBSCRIPTS FOR
037 TOO MANY ARRA Y ENTRIES ARRA Y / ARRAY ITEM REFS
038 TOO MANY PRESET GROUPS 076 BAD SUBSCRIPT LIST
039 ARRA Y PRESET SYNTAX ERR 077 ILL LABEL/PROC ID USE DELETED
040 COMMON/XDEF/XREF-AT OUTER 078 STATUS SWITCH DECL LACKS

SCOPE ONLY STATUS LIST ID
041 BAD COMMON DECL IGNORED 079 BAD LABEL USE IN STATUS SWITCH

B-2 60496400 B

TABLE B-1. COMPILER ERROR MESSAGES (cont.)

Message
Condition Causing Message Message

Condition Causing Message Number Number

080 STATUS SWITCH-VALUE TOO 118 BASED LIST SCAN RESUMES
LARGE WITH -ARRAY-

081 STATUS SWITCH-DUP CONSTANT 119 -END- ENDS BAD BASED LIST
VALUES 120 o LENGTH -DEF- STRING IGNORED

082 STATUS SWITCH-MISSING CON- 121 CHAR LENGTH OMITTED-l
STANT ASSUMED

083 BEGIN/END MISMATCH. PROBABLE 122 BAD ARRAY ENTRY SIZE
DISASTER 123 BRACKET NEST TOO DEEP

084 IF EXPR NOT BOOL 124 ILL EXPR TYPE THIS LEFT SIDE
085 WHILE EXPR NOT BOOL 125 BAD READ FUNC
086 CRUD AFTER FINAL END IGNORED 126 EXPR OP CONCATENATION ERR
087 -DEF- ID EXPANSION NEST TOO 127 LONG CHAR STRG-240 BYTES

DEEP-ID DELETED USED
088 YOUR -DO- HAS BEEN FOUND 128 BAD -LOC- FUNC
089 THE -THEN- HAS BEEN FOUND 129 BAD -ABS- FUNC
090 MISSING -DO- 130 BAD INDUCTION ID TYPE
091 MISSING -THEN- 131 NON INDUCTION ID IN -TEST-
092 INITIAL VALUE EXPR ERR 132 -TEST- ILL OUTSIDE LOOP
093 -STEP- EXPR ERR 133 SCAN RESUMES AT -BEGIN-/
094 -UNTIL- EXPR ERR -ITEM-/SEMI
095 -WHILE- EXPR ERR 134 READ FUNC NEEDS ID
096 BAD -GOTO- DELETED 135 DUP STATUS ID
097 BAD REPL STMT DELETED 136 SEMI ENDS COMMENT
098 PARTWORD VALUES AFTER 137 CONTROL STMT SYNTAX ERR

FIRST 3 IGNORED 138 CHAR NOT D/F IN REAL OR
099 ITEM DISCARDED-SCAN RESUMES COUBLE CONSTANT

AT COMMA 139 FORMAL PARAM PRESET ILL
100 HANGING -IF- CLAUSE 140 XREF PRESET ILL
101 HANGING -FOR- CLAUSE 141 BLANK COMMON PRESET ILL
102 HANGING -ELSE- 142 BASED ARRAY ITEM PRESET ILL
103 EXTRA END-OMITTED BEGIN 143 BAD P-FUNC

FOR SUBPROGRAM ASSUMED 144 CHARACTER ITEM>240 BYTES -
104 ILL UNDECL P ARAM USE DELETED 240 USED
105 FOR STMT: INDUCTION ID ERR 145 NO SUBSCRIPT FOR ARRAY ITEM -
106 -IF- EXPR ERR o USED
107 DUP XDEF /XREF DECLS FOR ID 146 CIRCULAR DEF NAME EXPANSION -
108 XDEF PROC/FUNC: NOT FULLY EXPANSION IGNORED

DECL 147 NO MAIN PROC FOR ENTRY PROC
109 BAD FORMAL DECL 148 ILLEGAL CHAR.IN MACRO DEF
110 REDUNDANT FORMAL DECL 149 ILLEGAL IFXX COMPARE
111 BAD PARAM LIST 150 TOO MANY DEF PARAMS
112 BOOL ILL IN ARITH CONTEXT 151 ILLEGAL CONDIT DIRECTIVE
113 COMMON LIST LACKS -END- IGNORED
114 BASED LIST LACKS -END- 152 ILLEGAL VALUE PARAM-LABEL
115 XDEF /XREF LIST LACKS -END- 153 ILLEGAL VALUE PARAM-ARRAY
116 COMMON LIST CRUD DELETED 154 ILLEGAL VALUE P ARAM-PROC
117 BASED LIST CRUD DELETED 155 COMMON BASED ARRAY DECL

ERROR

60496400 B B-3

TABLE B-1. COMPILER ERROR MESSAGES (cont.)

Message
Condition Causing Message

Number
Message

Condition Causing Message
Number

156 LABEL DECL ERROR 171 ONLY ITEMS AND ARRAYS HAVE
157 XREF SWITCH ERROR ATTRIBUTES
158 UNMATCHED IFXX 172 BAD ATTRIBUTE/LEVEL SPECIFI-
159 DEF PARAM ERROR CATION LIST
160 ([OR < NESTING TOO DEEP 173 FAST FOR LOOP INDUCTION
161 ([OR < NEST MISMATCH V ARIABLE ERROR
162 PARAMETER TOO LONG 174 BAD GLOBAL ATTRIBUTE SPEC
163 PARAMETER COUNT ERROR 175 LEVEL ONLY APPLIES TO COM-
164 RECOVERY AT ; MON AND BASED ARRAYS
165 BAD DEF ACTUAL PARAMETER 176 BAD USE OF LEVEL 3 VARIABLE
166 BAD UNDCL PROC/LABEL LIST 177 INDUCTION V ARIABLES MUST BE
167 ILL DEF PARAM USAGE SCM RESIDENT
168 SORRY BUT IFXX MUST HA VE

2 PARAMS-FOR THE TIME
178 WEAK ONLY APPLIES TO

EXTERNAL SYMBOLS I
BEING 179 ARRAY ENTRY-SIZE TOO LARGE

169 ATTRIBUTE SPECIFIED TO UN- 180 ARRAY DIMENSION TOO LARGE
KNOWN VARIABLE 181 RECURSIVE PROC/FUNC CALL

170 SIMPLE ITEMS MAY NOT BE
INERT/REACTIVE

NOT ALLOWED
182 ERROR IN REAL CONSTANT I

B-4 60496400 D

PROGRAMMING SUGGESTIONS c

COMPILER

Space required for compilation is proportional to the
number of symbols in the source program. Approxi
mately five words of core are dedicated to each name
in the program, in the form of a symbol table entry.

Time required for compilation is proportional to the
size of the object program, in terms of the amount
of syntax to be scanned. Although data declarations
do, not generate code, they use significant amounts of
compiler time and field length, especially data presets.

Compilation time can be further reduced by judicious
use of the compiler options such as suppression of
object code and cross reference listings.

DEF declarations can increase readability of SYMPL
source programs and facilitate changes to them. How
ever, DEF declarations and expansions increase com
pilation time and field length, accordingly.

OBJECT CODE

SUBSCRIPTS

Code produced by referencing subscripted variables
can be affected by the means of expressing the sub
script. For example, an integer constant can be
partially evaluated at compile time so that one in
struction is required to access an array item (given
the item is a full word); but a scalar integer variable
requires four instructions to access the item. Thus,
a reference to A[3] requires one instruction; but A[I],
where 1=3, requires four instructions to retrieve the
same item.

ARRAYS

Parallel arrays are accessed more efficiently than
serial arrays when an array entry exceeds one word.
For arrays with one-word entries, no difference in
object code speed or space is apparent. Parallel

60496400 B

arrays, rather than serial arrays, should be used when
possible. Fixed arrays are accessed more efficiently
than based arrays, which require a level of indirect
ness to access an entry. Whenever possible, fixed
arrays should be used.

COST OF ACCESSING
DATA TYPES

If an array item is a full 60-bit word, access does
not depend upon its type. For items which are not
60-bit words, however, type and bit position assign
men t affect the code required to access them, as
follows:

Signed integers are accessed more efficiently than
unsigned integers. If the item is 18 bits long,
the SXi instruction is used to access signed
integers. Signed integer items are accessed more
efficiently if they are the leftmost bits of a
word. Unsigned integer items are accessed more
efficiently if they occupy the rightmost bits of
a word rather than the middle or leftmost bits.
Boolean items are most efficiently accessed by
allocating the whole word or the leftmost bit
of a word rather than one bit elsewhere. Other
wise, they are accessed as unsigned integers are
accessed.

FOR LOOPS

The break-even point in code generated for in-line
and FOR loop code is 3-4 iterations. Of the fol
lowing sequences, the second generates fewer instruc
tions and runs faster.

FOR 1=0 STEP 1 UNTIL 2 DO
PWORD[I] = 0;

PWORD[O] = 0;
PWORD[I] = 0;
PWORD[2] = 0;

C-l

If four or more items were being set by the above
sequence, the loop would have required less code but
required more time.

In general, the less source code in the FOR statement,
the faster it will run. Of the following code sequences,
the second is faster since the loop limit is computed
and the value stored only once.

FOR I = 0 STEP 1 UNTIL B/C DO
PWORD[I] = K**J;

A = B/C;
D = K**J;
FOR I = 0 STEP 1 UNTIL A DO

PWORD[I] = D;

One execption is that FOR loop execution time can
be reduced with more source code as in the following
example where the second sequence would be faster
even though more code would be generated.

FOR I = 0 STEP 1 UNTIL 89 DO
PWORD [I] = 0;

)

FOR J = 0 STEP 3 UNTIL 89 DO
BEGIN

PWORD [I] = 0;
PWORD [1+ 1] = 0;
PWORD[I+2] = 0;

END

DATA CONVERSION

Integer-to-character conversion is byte-oriented; the
character-to-integer conversion is word-oriented. When
an integer item is converted to character mode, the
rightmost 6-bit byte is left-justified and blank filled
in the character field; yet, character-to-integer con
version is performed by right-justifying the right end
of the last word of the character item and zero filling
it on the left. Character field definitions can cross
word boundaries. Arithmetic operations with c~ar
acter data, including masking, makes the code machine
dependent because it reduces the string to one word.

The conversions can be circumvented by the use of
bit bead functions. For example, B<0,60>FLTINGPT
=INTEGER; would cause the integer to be stored in
the floating point item without conversion. B<0,60>
CHARACTER=INTEGER also would cause the full
word to be stored in CHARACTER, not just the low
order six bits.

C-2

PROC SUBPROGRAMS

Formal parameters should be called by value when
ever possible. If a procedure must reference its formal
call by address parameter more than once, a local
variable should be declared, set to the value of the
formal parameter, and subsequently referenced instead
of the formal parameter. Actual call-by-name param
eters are referenced indirectly in the generated code;
this level of indirectness can be overcome by evalu
ating the parameter once and making it local to the
procedure by storing the parameter's value in a local
variable.

FUNC SUBPROGRAMS

The statements under the heading PROC subprograms
are true for FUNC subprograms also. When the sub
program must return a result, a function should be
used rather than a procedure that returns a value.
Use of the function saves two instructions. For
example: a routine is needed to convert from integer
to display code, with the result to be stored in one
of three arrays, depending upon the section of code
where the call originates. If a function is used (as in
ARRA YWORD[I] = FUNCTION[INT] rather than a
procedure (as in PROCED (INT); ARRA YWORD[I]
= INTT), two SAi k instructions are saved per call.
The saving is realized since functions return their
result in register X6 rather than in a memory location.

CODING HINTS

Based array references are candidates for scratch vari
able storage if referenced more than once in a sequence
of source code, since based array references are
indirect.

When storing into many items of the same data struc
ture (array) clustered together, those that refer to the
same word of storage should be described in the same
order in which they occur.

POSSIBLE OPTIMIZATIONS

The SYMPL language permits the compiler to move
code to achieve optimization. SYMPL 1.2 and later I
versions, at the present time, do not perform global
flow analysis. They do, however, perform many local
optimizations including: compile-time computation of
constant expressions, conversion of many multiplies to

60496400 D

shift-and-add, and elimination of many redundant
loads and stores. Therefore, if the program has any
OVERLAP or REACTIVE variables, they should be
declared to assure correct compilation on SYMPL 1.2

I and later versions of the compiler.

I In SYMPL 1.2 and later versions, if no CONTROL
statements with INERT, REACTIVE, DISJOINT, or
OVERLAP appear, the program is called unbehaved
and is considered to adhere to SYMPL 1.1 rules,
which are:

Fonnal parameters can destroy global variables
and vice versa.

A based array can destroy all other based and
fixed arrays, but a fixed array does not destroy
any other arrays.

All arrays are considered reactive.

An external call can destroy all COMMON,
XDEF and XREF variables.

Formal parameters can destroy each ·other.

There are no other interferences between variables.

These definitions are retained in SYMPL 1.2 and
I later versions to accommodate existing programs until

correct behavior statements are inserted.

OPTIMIZATIONS POSSIBLE UNDER
GLOBAL OPTIMIZATION

The compiler is permitted all the optimizations listed
below.

Constant Subsumation: If a constant is assigned to
a variable, replace the variable with the constant up
until a point where its value may be destroyed.

Common-Expression removal: If the same expression
occurs twice and none of the variables are destroyed
in between, save the result of the first computation,
eliminate the code for the second computation, and
reference the saved value.

Removal of identities: Remove statements such as
1=1; and through constant subsumation and the mech
anisms of common-expression removal, the optimizer
might determine that a statement is in fact an identify
though this is not apparent in the source.

60496400 D

Code removal from loops: Recognize program flow
which is a loop, whether it is a formal FOR-loop or
not, and optimize any loop which is not spoiled by a
branch entering from outside. Code which is invariant
during the loop is moved in front of the loop.

Strength reduction: In a fastloop, certain multiply
operations on the induction variable are converted to
additions to a temporary variable, and certain ex
ponentiations are similarly converted to multiplications.

This SYMPL language definition pennits analysis of
program flow to discover loops (including nested loops)
and to determine which expressions are invalidated by
forward branches. It may also analyze all procedures
and functions within a module to determine which
variables they use and which ones they destroy. This
enables the optimizer to optimize over many function
or procedure calls. Since it is possible for code to be
removed over long distances in the program, the pro
grammer must inspect the entire module to determine
OVERLAP or REACTIVE behavior.

The compiler never moves code from one procedure
to another. Suppose PROC Q stores B(I) and PROC P
references A(J) and B(I) is based on A(J). If P calls
Q, there is danger of the A(J) reference being moved
past the call to Q; this is overlapped behavior and the
CONTROL OVERLAP statement is required to pre
vent such optimization. But if the program is re
structured so that P and Q are parallel (neither one
calls the other), then this is not overlapped behavior.
F or example:

PROC MAIN;
BEGIN

LI:

ARRAY A[IO]; ITEM AA(O);
BA~ED ARRAY B[IO]; ITEM BB(O);

PROC INIT;
BEGIN
AA(I) = 31;
END #INIT#

P = LOC (A);

INIT;
X ~ BB[I];

IF BOOLE THEN GOTO Ll;
END #MAIN#

C-3

Here the compiler might remove BB[I] from the
loop~ causing an error that might be difficult to
locate. The statement

CONTROL OVERLAP A,B;

solves this problem. However, if the code
between the INIT call and the IF BOOLE state
ment is converted to a procedure, the problem
will not arise and no CONTROL statement is
required.

Such a problem occurs frequently in programs
having a separate initialization section: the
program can remain well-behaved if both the
initialization and the body are made into sep~r-
ate procedures. '

Another common problem is the local based array
whose pointer is manipulated by an external proce
dure. (The Common Memory Manager is a case in
point.) Such based arrays must be declared over
lapped. F or example:

C-4

XREF PROC GETSPC;
BASED ARRAY X[IOO] ; ITEM XX (0);

GETSPC(X, 100);
Q=P<X>;
GETSPC(Y, 50);
R=P<X>;

Suppose the routine GETSPC is external and manages
dynamic storage, and sup.pose that at ,the GET~PC(Y,
50) call, it moves block X. Now if the optimizer re
moves the expression P<X> and sets R to the old
P<X> from the statement Q=P<X>, .the result will
be wrong.

The compiler can assume that GETSPC(Y) does not
destroy X because X is a local, and theoretically
GETSPC cannot get at X unless X is a parameter.
This assumption is not of course fully correct; how
ever, we define the language to consider this to be
overlapped behavior and require the statement:

CONTROL OVERLAP X;

TREATMENT OF EXTERNALS AND
COMMON

All badly-behaved and all external variables (XDEF,
XREF, and COMMON) are considered destroyed by
an external call. Any global flow analysis analyzes
all possible flow of control resulting from an XDEF
label, and considers that all variables are destroyed
by entry at such a label.

60496400 B

(,

condition word : =

control word :=

attribute : =

lev list : =

lev descr : =

var list : =

60496400 D

ifeq
ifne
ifls

1lliL
~
ifgr

eject
list
nolist
objlst
pack
preset
fi

traceback
ftn c all

fastloop
slowloop

level /\ lev list

inert /\ var list

reacti ve L var list

disjoint /\ var list

over lap ~ var list

weak 1\ weak list

{
lev descr }

lev list V, V lev descr

{

common name }

!aSed array name

{
var descr }

var list :!.' V var descr

I

D-23

D-24

var descr : =

weak list . { .-

array name

based array name

item name

weak descr 'l
weak list y-, ~ weak descr f
array name

weak descr ..-
based array name
function name
item name

ifeg

ifne

ifls

eject

list

nolist

objlst

pack

preset

fi

: = mark

: = mark

: = mark

: = mark

: = mark

: = mark

: = mark

label name
proc name
switeb name

J IFEQ

J IFNE

J IFIB

J IFLQ

J IFGQ

J IFGR

-- J EJECT

J LIST : = mark

: = mark

: = mark

: = mark

: = mark

: = {mark
mark --

J NOLIST

J OBJLST

J PACK

J PRESET

J FI
J ENDIF

L mark

L. mark

L
L
L
L

L
L
L

L
L
L
L
L

.;

mark

mark

mark

mark

mark

mark

mark

mark

mark

mark

mark}
mark

tra ceback : = mark ...J TRA CEBA CK L mark

ftncall : =

fastloop

slowloop

inert

: =

: =

: =

: =

mark .J FTNCALL L mark

mark

mark

mark --

mark

-1 FASTLOOP L
-.J SLOWLOOP L

~. LEVEL{il L

.J INERT L

mark --
mark

mark

mark

60496400 D

reactive : = J mark

disjoint : =.J mark

overlap : =.J mark

weak : =.J mark

declaration "-

statement

60496400 D

REACTIVE L mark

DISJOINT L mark

OVERLAP L mark

WEAK L mark

array dec
based dec
common dec
def dec
entry dec
func dec
item dec
label dec
proc dec
status dec
switch dec
xdef dec
xref dec
formal array dec
formrJ based dec
formal func dec
formal item dec
formal label dec
formal Eroc dec

comEound statement
exchange statement
for statement
goto statement
if statement
labeled statement
Eroc call statement
replacement statement
return statement
stoE statement
test statement

I

D-25

GLOSSARY F

ARITHMETIC EXPRESSION - An expression that
yields a numeric value.

BASED ARRAY - A structure that can be super
imposed over any area of memory during
program execution. No storage is allocated
for a based array during compilation; rather
the compiler creates a specific pointer
variable compiled with an undefined value.
Based arrays are used when the position of an
array is not known at load time.

BEAD FUNCTION - A function that accesses
consecutive bits or characters of an item.

BOOLEAN EXPRESSION - An expression that
yields a Boolean value of TRUE or FALSE.

DELIMITER - A character that is used to separate
and organize data items or statements.
SYMPL- characters classified as marks serve as
delimiting characters.

ENTRY POINT - A location within a procedure or
function that can be referenced from a calling
program. Each entry point has a name with
which it is associated.

EXCHANGE STATEMENT - A statement that
causes the exchange of values of the left-hand
and right-hand sides of the statement.

EXPRESSION - A sequence of identifiers,
constants, or function calls separated by
operators and parentheses. The evaluation of
all expression yields a value.

EXTERNAL REFERENCE - A reference in one
module to an entry point in another module.
Throughout the loading process, the loader
matches ~xternals to the correct entry points.
External references are specified by the XREF
statement.

EXTERNAL SUBPROGRAM - A subprogram that
is compiled as a separate module.

60496400 D

FASTLOOP - A type of FOR statement where the
test and branch is at the end of the loop.
Fastloops always execute at least once. Con
trast with slowloop.

FUNCTION - A subprogram used within an expres
sion. It returns a value through its name.
The text of a function must contain an
assignment statement that assigns a value to the
function name. A function can also return
values through its parameters. Contrast with
procedure and main program.

IDENTIFIER - A string of 1 through 12 letters,
digits, or $ beginning with a letter ($ is con
sidered to be a letter). This manual uses the
term identifier to indicate a programmer
defined entity. Contrast with reserved words.

INDUCTION VARIABLE - A scalar that is used as
the counter for the loop in a FOR statement.

LOGICAL OPERATOR - An operator that works
with Boolean values and yields a Boolean
result. Contrast with masking operator, num
eric operator, and relational operator.

MAIN PROGRAM - A module that consists of a
main program header followed by a series of
declarations and one statement (usually com
pound) and ended by a TERM statement.
Contrast with function, procedure, and sub
program.

MASKING OPERATOR - An operator that performs
bit-by-bit operations that yield numeric results.
Contrast with logical operator, numeric operator,
and relational operator.

MODULE - A separately compiled main program or
subprogram. Compilation of a module is ter
minated whenever a TERM statement is
encountered.

NUMERIC OPERATOR An operator that performs
arithmetic operations to yield numeric results.
Contrast with logical operator, masking operator,
and relational operator.

PARALLEL ALLOCATION - The first words of
each array entry are allocated contiguously,
followed by the second words of each entry,
and so forth. Contrast with serial allocation.

P-FUNCTION - A function that references the
pointer variable for a based array.

POINTER VARIABLE - The variable created by
the compiler for a based array. The pointer
variable is set by the P-function.

PROCEDURE - A subprogram that can, but, need
not, return values through any of its para
meters. It is called when its name or one of
its alternative entry points is referenced.
Contrast with function and main program.

RELATIONAL OPERATOR - An operator that
works with arithmetic or character operands
to produce a Boolean result. Contrast
with logical operator, masking operator,
and numeric operator.

REPLACEMENT STATEMENT - A statement that
assigns a value to a scalar, subscripted array
item, P-function, bead function, or function
name.

RESERVED WORDS - Identifiers that have pre
defined meaning to the SYMPL compiler.

SCALAR - An item that is not in an array. An
ITEM declaration outside an array defines
a scalar.

SCOPE OR VARIABLE - The set of statements in
which the declaration of the variable is valid.

SERIAL ALLOCATION - All the words of one
array entry are allocated contiguously. Con
trast with parallel allocation.

SLOWLOOP - A type of statement where the test
and branch is at the beginning of the loop.
Slowloops need not execute at all. Contrast
with fastloop.

SUBPROGRAM - A function or procedure. Sub
programs can be compiled as separate modules.
Contrast with main program.

TYPE - The representation of data. Data can be
type integer, unsigned integer, real, character,
Boolean, or status.

WEAK EXTERNAL - An external reference that is
ignored by the loader during library searching
and cannot cause any other program to be
loaded. A weak external is linked, however,
if the corresponding entry point is loaded for
any other reason.

XDEF DECLARATION - A declaration that gen
erates an entry point that can be used by the
loader. It is used in the declaring program to
define an identifier as external. Storage is
allocated for the identifier. Contrast with
XREF declaration.

XREF DECLARATION - A declaration that gener
ates an external reference to the specified
identifier. It is used in the referencing pro
gram. Use of XREF implies that the identifier
has been declared to be external in another
program. No storage is aliocated for the
identifier. Contrast with XDEF declaration.

60496400 D

ABS function 4-5, D-16
Actual parameters

call-by-value 4-2
• DEF 5-3, 5-4

function 4-5
procedure 4-3
syntax D-20

Arithmetic
expressions 1-8, D-9
operators 1-7

Array
ARRAY declaration 2-4, D-13
BASED ARRAY declaration 2-12
bead function 2-8
defmition 2-1
ITEM in array 2-5
preset 2-8
reactive 5-8
references 2-6
subscripts 2-6

Attributes
data items 2-1
optimization 5-7

B function 4-6
BASED ARRAY

BASED declaration 2-12, D-15
level 5-6
P function 4-7

Bead function
array item 2-8
bit 4-6, D-16
character 4-6, D-16
exchange statement 3-3
replacement statement 3-2

Blank or space 1-1
Boolean

constant 1-5, D-ll
data type 2-1
expressions 1-9, D-9
expression use

FOR statement 3-5
IF statement 3-6

ITEM declaration 2-2
operators 1-7

60496400 D

INDEX

Brackets
array dimension 2-4
DEF parameter 5-3
presetting 2-10

C function 4-6
Call

by-value parameter 4-2
compiler 6-1
print routines E-l
procedure 4-2

Character
comparison IFxx 5-5
constant 1-5, D-11
conversion 1-8
data type 2-1
ITEM declaration 2-2

Character set
CDC A-I
SYMPL 1-1, D-3

Comment
conditional compilation 5-5
DEF 5-2
delimiter 1-1, 1-2, D-5

Common
COMMON declaration 4-8, D-21
level 5-6
preset 5-5

Compilation
compiler call 6-1
conditional 5-4
debugging 5-1
SYMPL 6-1

Constant 1-5, D-I0
CONTROL statement 5-4, D-22
Controlled statement 3-3
Conversion

expressions 1-8
FOR statement expressions 3-3
ITEM declaration 2-3
replacement statement 3-2

Debugging
$BEGIN/$END 5-1, 6-2
conditional compile 5-4
points-not-tested 5-9, 6-2
TRACEBACK 5-9

I

Index-·l

I

I

Deck structure 6~

Declarations
array 2~, 2-12
label 3-1
scalar 2-1
scope of 4-1
STATUS 2-2
SWITCH 2-3

DEF
comment 1-2
conditional compilation 5-5
declaration 5-2, D-8
references 5-3, D-9

Delimiters 1-2
I>iagnostics B-1
I>imension

array 2~

preset array 2-10
DISJOINT 5-7

ECS 5-6
Entry

array 2-5
multi word array 2-8

Entry point
al ternative 4-7
ENTRY declaration 4-8, D-20
XDEF declaration 4-8

Error messages B-1
Exchange statement 3-3, D-17
Expressions

arithmetic 1-8
Boolean 1-9

External
references XREF 4-9
su bprograms 4-1
weak 5-8, I>-23

Fastloop
F ASTLOOP 5-6
flowchart 3-4

Floating point (see Real)
FOR statement 3-3, 5-6, D-18
Formal parameters

DEF 5-2
expressions 4-4
procedure 4-3
syntax I>-20

FORTRAN Extended
calling sequence 5-5, 6-2
FTNCALL 5-5
print routines E-1
TRACEBACK 5-9

EPRC 4-1, 4-3

Index-2

Function
ABS 4-5
Bead 4-6
FUNC declaration 4-1
LOC 4-7
P 4-7
status 1-6

GOTO statement 3-6, D-18

Identifier 1-2
IF statement 3-6, D-18
IFxx test 5-5
INERT 5-7
Input/output FORTRAN PRINT E-1
Integer

constant 1-5, D-I0
data type 2-1
ITEM declaration 2-2

ITEM
array declaration 2-5
ITEM declaration 2-1, D-12
scalar declaration 2-1

Label
GOTO statement 3-6
LABEL declaration 3-1, D-19
name 3-1, D-17
switches 2-3

LCM 5-6
LEVEL 5-6
Listing

control
compiler call 6-2
CONTROL statement 5-4

maps 6-4
LOC function 4-7, D-16
'Logical expressions 1-10
Loop (see Fastloop, Slowloop)

Macro (see DEF)
Main program 4-2
Maps 6-4
Marks 1-2
Masking 1-9
Memory residence 5-6
Metalanguage D-1
Module 6-1

Object code list
CONTROL statement 5-4
o parameter 6-2

Operators 1-6

60496400 D

Optimization 5-7, C-l
OVERLAP 5-7
OVERLAY 6-1

P function 4-7, 0-15
Pack switch 5-5, 6-1
Parallel array

declaration 2-4
storage 2-7

Pointer variable
BASED ARRAY 2-12
LEVEL 5-6
P function 4-7, D-15

I Points-not-tested 5-9, 6-2
Preset

array 2-8
common 4-8, 6-2
scalar 2-1

PRINT /PRINTFL E-l
Procedures

call 0-18
declaration 4-2
FPRC 4-1
PROC 4-2

REACTIVE 5-7
Real

constant 1-6, 0-12
data type 2-1
ITEM declaration 2-2

Relational expression 1-9
Replacement statement 3-2, 0-17
Reserved words 1-3
RETURN statement 3-7, 0-19

Scalar 2-1
SCM 5-6
Scope of identifiers

declarations 4-1
label 3-1

Serial array
declaration 24
storage 2-7

Slowloop
flowchart 3-4
SLOWLOOP 5-6

Statement
compiler-directing 5-1

60496400 D

exchange executable 3-1
replacement 3-2
within IF 3-7

Status
constant 1-6, 0-11
data type 2-1
function 1-6
ITEM declaration 2-2
STATUS declaration 2-2, D-13

STOP statement 3 -7, 0-19
Storage format

arrays 24
calculation for arrays 2-11
replacement statement 3-2
scalars 2-1
switch 5-5
overlapped 5-7
reactive 5 -7
XDEF 4-8

Subprogram
communication 4-8
compilation 6-1
declaration 4-1, 0-19

Switch
GOTO statement 3-6
packing 5-5, 6-1
range check 6-1
status switch 2-3
SWITCH declaration 2-3, 0-17

SYMPL call 6-1
Syntax

check 6-3
metalanguage 0-1
used in text 1-1

TERM statement 3-7, 6-1
TEST statement 3-4, 0-18
TRACEBACK 5-9, 6-2
Truth tables 1-7

WEAK 5-8, D-23

XDEF declaration 4-9, 0-22
XREF declaration 4-8, D-21

$BEGIN/$END 5-1

I

Index-3

I
I
I
I
I
I
I
I
r

COMMENT SHEET

TITLE: SYMPL Version 1 Reference Manual

PUBLICATION NO. 60496400 REVISION D

I":;J 1:\ CONTf\.OL DATA
\!:I r:::I CO~OR{\TION

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

•

FROM NAME: ____________ _ POSITION: _________________ _

COMPANY' NAME: __ _

ADDRESS: ______________________________________ _

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
r::1"\1 n 1"\11.1 nl"\"T"Tr::n 1 11I.1r-l'" A 11., ~-r" n

STAPLE

FOLD

STAPLE

STAPLE

FOLD I -- -- ------ -- -- -- -- - ---t

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division

215 Moffett Park Drive
(IJnnyvale, California 94086

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

&E2

'*

'iiZii
I

- .& i
-- -- --- - -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -I

STAPLE

FOLD I
I

i
!
i
I

