60497800 &

CONTROL DATA
@ 2 CORPORATION - o3

FORTRAN EXTENDED
VERSION 4
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1

NOS/BE 1
SCOPE 2

FTN CONTROL STATEMENT PARAMETERS

A (Default: A=0)

A: abort job if fatal errors
during compilation

A=0: continue processing

B (Default: B=LGO)

B=Ifn: binary output on file Ifn
B: B=LGO

B=0: no binary output

BL (Default: BL=0)

BL: create output listing in burstable
form

BL=0: create output listing in com-
pact form

[od (Default: C=0)

C: use COMPASS assembler to
assemble object code

C=0: use FTN internal assembler

D {Default: D=0)

D: interpret C$ debug directives in
source code

D=0: treat C$ directives as comment
lines

DB (Defauit: DB=0)

DB=ID: generate information
necessary to use CYBER Inter-
active Debug facility (overrides
DEBUG control statement)

DB=0: do not generate debug
information (overrides DEBUG (OFF)
control statement)

DB: sameas DB=ID

E (Default: E=0)
E: output object code as COMPASS
line images

E=0: output object code as binary
machine code

EL (Default: EL=I)
EL=F: list fatal errors only

EL=W: list fatal and warning (TS}
fatal (OPT)

EL=N: list fatal, warning, note (TS)
list fatal (OPT)

EL=I: list fatal, warning, note (TS)
list fatal, informative (OPT)

EL=A: list all above plus ANSI

ER (Default: ER if TS or OPT=0
ER=0 if OPT=1, 2)
ER: include code for object time
reprieve
ER=0: do not include code for
object time reprieve

G (Default: G=0)

G=lfn: load first system text overlay
from file 1fn

G=lfn/ovl: load overlay named ovl
from file Ifn

G: same as G = SYSTEXT

G=0: no system text loading from
sequential binary file

GO (Default: GO=0)

GO: load and execute binary file at
end of compilation

GO=0: do not load and execute
binary file at end of compilation

I (Default: I=INPUT)
I=1fn: source input on file Ifn
I: source input on file COMPILE

L (Default: L=0OUTPUT)}
L=Ifn: list output on file Ifn
L: list output on file QUTPUT
L=0: no output listing

LCM (Default: LCM=D)

LCM=D: use 17-bit addresses for
ECS/LCM

LCM=I: use 21-bit addresses for
ECS/LCM

LCM: same as LCM=D

ML (Default: ML)
ML=nnn: nnn is value of MODLEVEL
micro

ML: current date is value of
MODLEVEL micro

OL (Default: OL=0)
OL: list generated object code
OL=0: do not list object code

OPT (Default: OPT=1)

OPT=0: fast compilation
OPT=1: standard optimization
OPT=2: maximum optimization
OPT: same as OPT=2

P (Default: P=0)

P: continuous page numbering

P=0: each program unit starts with
page 1

PD (Default: PD=6)

PD=6: Print density 6 lines per inch
PD=8: Print density 8 lines per inch
PD: Same as PD=8

PL (Default: PL=5000)
PL=n: limit output to n print lines
PMD post mortem dump

(Default: PMD=0)
PMD=0: no post mortem dump

PS (Default: PS=10 x PD)
PS=n: n is the maximum number of
lines per page

PW (Default: PW=72 for connected

file,PW=126 otherwise) :
PW=n: page width is n characters
PW: same as PW=72

Q (Default: Q=0)
Q: compilation only, no object code
Q=0: normal compilation

{Default: R=1)
no reference map
. short map
longer map
: longest map
same as R=2

ROUND (Default: ROUND=0)

ROUND=0p: use hardware rounding
for specified operators

ROUND: same as ROUND=+ - */
ROUND=0: no rounding

S (Default: S=SYSTEXT if G=0
S=0 if G#0)

S=ovl: load systom text overlay ovl
from current library set.

S=lib/ovl: load system text overlay
from library set lib

S=0: Do not load system text file

S: same as S=SYSTEXT

SEQ (Default: SEQ=0)
SEQ: source input in sequenced format

SEQ=0: source input not in
sequenced format

TIDDDD
WwN =0

SL (Default: SL)
SL: list source input
SL=0: do not list source input

STATIC (Default: STATIC=0)

STATIC: inhibit dynamic memory
management by CRM at
execution time

STATIC=0: do not inhibit dynamic
memory management by CRM

SYSEDIT (Default: SYSEDIT=0)

SYSEDIT: search table for input/
output references

SYSEDIT=0: direct references for
input/output

T (Default: T=0)
T: full error traceback
T=0: no error traceback

TS (Default: OPT=1)
TS: compile in time-sharing mode

UO (Default: UO0=0)

UO: perform potentially unsafe
optimizations

UO=0: do not perform potentially
unsafe optimizations

X (Default: X=OLDPL)
X=tfn: external text is on file Ifn
X: same as X=OPL

z (Default: Z=0)

Z: pass zero word for subroutine calls
with no actual arguments

Z=0: do not pass zero word for
subroutine calls with no actual
arguments

60497800 E

60497800

@ S CONTROL DATA
CORPORATION

FORTRAN EXTENDED
VERSION 4
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1 .
NOS/BE 1
SCOPE 2

REVISION RECORD

REVISION DESCRIPTICN
A Original Release.
(11-1-75)
B This revision documents Version 4.6 of FORTRAN Extended. Features documented include CP155,
(03-05-76) Compiler Enhancements, and CP079, Math Library Upgrade.
C Revised to include feature F7540, CYBER 170 Model 176 Support, as well as miscellaneous
(04-15-77) technical corrections, at PSR level 446.
D This revision documents version 4.7 of FORTRAN Extended. Features documented include
(3-31-78) CP091 and CP162, CRM products BAM and AAM, 191, Math Library Upgrade, CP184, Fast
Overlay Loading, and 66, CYBER Interactive Debug interface. Also documented is the
implementation of STATIC mode memory management, as well as miscellaneous technical
changes and corrections. |
E This revision documents version 4.8 of FORTRAN Extended. The Post Mortem Dump
(07-20-79) facility is documented with this release, as well as numerousAtechnical changes.
F This revision documents changes to Post Mortem Dump, adds the FORTRAN Interface to Common
(08-22-80) Memory Manager, and adds the STATIC Option to FORTRAN Extended. Numerous technical
changes are included. PSR level 524.
G This revision documents release of Post Mortem Dump and STATIC option under SCOPE 2. Numerous
(01-15-81) technical changes are included. PSR level 533.

Publication No.
60497800

REVISION LETTERS |, O, Q AND X ARE NOT USED

this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE

SUNNYVALE, CALIFORNIA 94086

© COPYRIGHT CONTROL DATA CORPORATION 1975, 1976, 1977, 1978, 1979, 1980, 1981

All Rights Reserved

Printed in the United States of America back of this manual

Address comments concerning

or use Comment Sheet in the

LIST OF EFFECTIVE PAGES

A bar by the page number

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars

in the margins or by a dot near the page number if the entire page is affected.

indicates pagination rather than content has changed.

=4
s
-
2 L oOWC O LWL O WL LCOOCLOC L CLL LCLONL CWLTOCOCCTW OO OLE O U QT Ll O LI W
>
]
x
~ —l B~ [Te] [<o]
Q e EPNEN N S =3 Q
) ©] -) f o] h
0 i © o © ©] ™~ ~ ~
© — r~ '
> > 1> = - = =7 O
< > £ woi < < = < < i
o = at e X< = < < < = ©
o S £ R B = < - = U
& n o OC—HOOANMTL OOD = N L O~ANMONEOO O M o
1 11
B O O T O T T A T Y S A e e e e N P TS P LY
c
]
o~
2 LWL OOV LA VLOLOWOOC W CC UL WL CLUMOLLOLLOCECOWWSOOEOOTA T
>
]
&
o W LD o
& . Bno Y
1 o 1 11 <t)
=) o €0 @@ 3 =
S N~ - S =1 ;1
Q K= < L o c . =
& b} - LB E I
o
o ML DONTOO N OO IOt AN MO0 0O — N MWD el NN LD © S
e R R N R R R Ree YT 88 ryee e SRd 33 $ 33 20 2 T T
e e i
0D 00 00 6D 0 0 0O XV b O BV CO D 0 O WV WD MDD P DDPBDVODNDDAhhor drhar S DREE82222Hn=
c
o
=
vy
< 1L 1 (DD WD O WL 00 <L <L < LT bl O <C L O <T O L L € < T Lt Ll <F T <L <C Lt L <C L <€ < L <€ 00 O L 0 < 0 bid L Ll b O <5 L
o
o«
© o
~ o = &
;& < i N O [=)] 1 (Vo] 1
s @ -3 0 v 9 { <] s
v>o et - N”m < wn
>0 o = s s
oV © o = > s s > [=] [
w ST a -sg £ raglet F £ o £
o (5} e = o o = + E 12t
& PT O >Sce P e s)
o £ — IS O ANMNT D ON B0 O — O mer Y=L -Jry
L e I AR R A A S T R R S A AR S B S S
- —
L rr e >3 > A A NNNNANNNOOOOOOOMOOMOMOdt ISttt S D00 W00 OO0 OO IO O 0D

iii

60497800 G

14-1

14-2

14-3

15-1 thru 15-3
16-1

16-2

16-3

16-4

16-5 thru 16-7
16-8

16-9

16-10

16-11

16-12

16-13

17-1

17-2

17-3

17-4

17-5

17-6

18-1

18-2 thru 18-6
18-7

18-8

18-9 thru 18-11
19-1

19-2

19-3

19-4 thru 19-7
19-8

19-9 thru 19-11
19-12

19-13 thru 19-18
19-19

19-20 thru 19-27
19-28

19-29 thru 19-32
19-33

19-34

20-1

A-1

A-2

-1 thru B-4

00 0 0 O 3>
NOYD W

OOMOS>TMPTNPOPPOPMPOPMPOPOPO00P000POMUONOITIPO0OMOOOO0OOIPE2OEIMTIMBEOTTMI>PDOOEPOEO™NM

B-39 thru B-41

B-44 thru B-49
B-51 thru B-64

B-69 thru B-76

[
~N o

DUUO'UIOOOWGJ
ONDWN WOV

E-1 thru E-6
Index-1 thru -8
Comment Sheet
Mailer

Back Cover

Page Revision Page Revision

11-5 B-8

11-6 B-9

11-7 B-10

12-1 B-11 thru B-14
12-2 B-15

12-3 B-16

12-4 B-17

12-5 B-18

13-1 B-19

13-2 B-20

13-3 B-21

13-4 B-22

13-5 thru 13-8 B-23 thru B-26
13-9 B-27

13-10 B-28

13-11 B-29

13-12 B-30

13-13 B-31 thru B-33
13-14 B-34

13-15 B-35

13-16 thru 13-20 B-36

13-21 B-37

11 OMO>OoOX>OPMODMMITIAOMOTMOOMTMOMMOUMMOMOOOMOMOMOMOUOUMODOOOMOMMOMOMOMoOoOoTToOTMMo

60497800 G

PREFACE

This manual deseribes the FORTRAN Extended 4.8 language. FORTRAN Extended is designed to comply
with American National Standards Institute FORTRAN language, as deseribed in X3.9-1966. It is assumed
the reader has knowledge of an existing FORTRAN language and is familiar with the computer system on
which the language is used.

The FORTRAN Extended compiler operates in eonjunction with the COMPASS 3 assembly language
processor under control of the following operating systems:

NOS 1 for the CONTROL DATA® CYBER 170 Series, CYBER 70 Models 71, 72, 73, 74, and 6000
Series Computer Systems

NOS/BE 1 for the CDC® CYBER 170 Series, CYBER 70 Models 71, 72, 73, 74, and 6000 Series
Computer Systems

SCOPE 2 for the CONTROL DATA CYBER 170 Model 176, CYBER 70 Model 76, and 7600 Computer
Systems

Due to capsule loading, relocatable binaries compiled by versions of FORTRAN Extended prior to version
4.7 cannot be run with CRM BAM 1.5 or AAM 2; they must be recompiled.

Control Data extensions to the FORTRAN language are indicated by shading. Example programs or parts
of programs are shaded in their entirety if they contain lines using extensions to the ANSI standard (unless
the only such extension is the PROGRAM statement). Shading is used only in sections 1 through 8, which
contain the specification of the FORTRAN Extended language; later sections describe the implementation
of these specifications and shading is not used.

Extended memory for the CYBER 170 Model 176 is large central memory (LCM) or large central memory
extended (LCME). Extended memory for all other NOS or NOS/BE computer systems is extended core
storage (ECS) or extended semiconductor memory (ESM). In this manual, the acronym ECS refers to all
forms of extended memory unless otherwise noted. Programming information for the various forms of
extended memory can be found in the COMPASS reference manual and in the appropriate computer system
hardware reference manual.

Related material is contained in the listed publications. The publications are listed within groupings that
indicate relative importance to readers of this manual.

The NOS manual abstracts and the NOS/BE manual abstracts are instant-sized manuals containing brief
descriptions of the contents and intended audience of all NOS operating system and NOS product set
manuals, and NOS/BE operating system and NOS/BE product set manuals, respectively. The abstracts
manuzls can be useful in determining which manuals are of greatest interest to a particular user. The
Software Publications Release History serves as a guide in determining which revision level of software
documentation corresponds to the Programming System Report (PSR) level of installed site software.
Other manuals serve as references for information that require greater detail.

The following publications are of primary interest:

Publication
Publication Number
FORTRAN Common Library Mathematieal
Routines Reference Manual 60498200

60497800 G v

FORTRAN Extended Version 4 DEBUG
User's Guide

FORTRAN Extended Version 4 User's Guide
NOS Version 1 Reference Manual, Volume 1 of 2
NOS/BE Version 1 Reference Manual

SCOPE Version 2 Reference Manual

l The following publications are of secondary interest:

vi

Publication

Common Memory Manager Version 1
Reference Manual

COMPASS Version 3 Reference Manual

CYBER Interactive Debug Version 1
Reference Manual

CYBER Interactive Debug Version 1
Guide for Users of FORTRAN Extended

Version 4

CYBER Loader Version 1 Reference Manual

CYBER Record Manager Advanced Access
Methods Version 2 Reference Manual

CYBER Record Manager Advanced Access
Methods Version 2 User's Guide

CYBER Record Manager Basic Access
Methods Version 1.5 Reference Manual

CYBER Record Manager Basic Access
Methods Version 1.5 User's Guide

DMS~170

DDL Version 3 Reference Manual

Volume 1: Schema Definition for Use With:
COBOL
FORTRAN
Query Update

FORTRAN Data Base Facility Version 1
Reference Manual

INTERCOM Interactive Guide for Users
of FORTRAN Extended

INTERCOM Version 5 Reference Manual
Network Products

Interactive Facility Version 1
Reference Manual

60498000
60499700
60435400
60493800
60342600

Publication
Number

60499200
60492600

60481400
60482700
60429800
60499300
60499400
60495700

60495800

60481900
60482200
60495000

60455010

60455250

60497800 G

60497800 G

NOS Version 1 Manual Abstracts 84000420

NOS/BE Version 1 Manual Abstracts 84000470
SIFT Programming System Bulletin 60496500
Software Publications Release History 60481000

Sort/Merge Versions 4 and 1

Reference Manual 60497500

CDC manuals can be ordered from Control Data Corporation, Literature
and Distribution Services, 308 North Dale Street, St. Paul, Minnesota
55103.

This produet is intended for use only as described in this
document. Control Data cannot be responsible for the
proper functioning of undescribed features or parameters.

vii/viii i

CONTENTS

1. FORTRAN LANGUAGE ELEMENTS

Coding FORTR AN Statements
FORTRAN Character Set
Column Usage

Comments
Statement Labels
Continuation
Columns 73-80
Statement Separator
Blank Lines
Data

Ordering of Statements

Constants
Integer Constant
Real Constant
Double Precision Constant
Complex Constant
Octal Constant
Hollerith Constant

nHf and #{#
nRf and nLf
Logical Constant

V ariables
Integer Variables
Real Variables
Double Precision V ariables
Complex V ariables
Logical Variables

Arrays
Subseripts
Array Structure

2. EXPRESSIONS AND ASSIGNMENT
STATEMENTS

Expressions
-Arithmetic Expressions
Evaluation of Expressions
Type of Arithmetic Expressions
Exponentiation
Relational Expressions
Logical Expressions
Masking Expressions
Assignment Statements
Arithmetie Assignment Statements
Conversion to Integer
Conversion to Double Preeision
Conversion to Complex
Conversion to Real
Logical Assignment
Masking Assignment
Multiple Assignment

3. SPECIFICATION STATEMENTS

Type Statements

Explicit Type Declarations
INTEGER
REAL
COMPLEX
DOUBLE PRECISION
LOGICAL

60497800 G

-t
]
Ry

L JRPUR S SR R D |
WL W W

-

1
NGO

bbb el e s e e
©

1
Pt O SNI DD LN e

i
[

NNNN[T’IMMNNN

[)
-
30

2-16
2-16
2-17
2-18
2-18
2-19
2-19

Implicit Type Statement
DIMENSION Statement
COMMON Statement
EQUIVALENCE Statement
EQUIVALENCE and Common
LEVEL Statement
EXTERNAL Statement
DATA Statement

Implied DO in Data List

4. FLOW CONTROL STATEMENTS

GO TO Statement
Unconditional GO TO Statement
Computed GO TO Statement
ASSIGN Statement
Assigned GO TO Statement
Arithmetic IF Statement
Three-Branch Arithmetic IF Statement
Two-Branch Arithmetic IF Statement
Logiecal IF Statement
Standard-Form Logical IF Statement
Two-Branch Logical IF Statement
DO Statement
DO Loops
Nested DO Loops
CONTINUE Statement
PAUSE Statement
STOP Statement
END Statemeit
RETURN Statement

5. INPUT/OUTPUT STATEMENTS

Formatted Input/Output
Formatted Output Statements
PRINT
PUNCH
WRITE
Formatted READ
Unformatted Input/Output
Unformatted WRITE
Unformatted READ
List Directed Input/Output
List Directed Input
List Directed Output
Namelist
Input
Output
Arrays in Namelist
Buffer Statements
BUFFER IN
BUFFER OUT
ENCODE and DECODE
ENCODE
DECODE
File Manipulation Statements
REWIND
BACKSPACE
ENDFILE

3-3
3-4
3-4
3-8
3-11
3-12
3-13
3-15
3-19

4-1
4-1
4-1
4-3
4-4
4-5
4-5
4-5
4-6
4-6
4-17
4-7
4-8
4-9
4-12
4-13
4-14
4-14
4-15

5-2
5-3
5-3
5-4
5-5
5-5
5-7
5-7
5-7
5-8
5-8
5-10.2
5-13
5-14
5-15
5-17
5-20
5-20
5-22
5-22
5-22
5-25
5-27
5-27
5-27
5-27

6. INPUT/OUTPUT LISTS AND FORMAT

STATEMENTS

Input/Output Lists
Implied DO in I/O List
Format Statement
Data Conversion
Conversion Specification
Iw and Iw.z Input
Iw and Iw.z Output

Ew.d, Ew.dEe and Ew.dDe Output
Ew.D, Ew.dEe and Ew.dDe Input

Fw.d Output
Fw.d Input
Gw.d Input
Gw.d Output
Dw.d Output
Dw.d Input
Ow Input
Ow Output
Zw Input and Output
Aw Input
Aw Output
Rw Input
Rw Output
Lw Input
Lw Output
Scale Factors
Fw.d Scaling
Ew.d and Dw.d Scaling
Gw.d Scaling
X Specification
nH Output
nH Input
End of Record Slash
Repeated Format Specification
Printer Control Character
Tn Specification
V Specification
Equals Sign
Execution Time Format Specification

7. PROGRAM UNITS, PROCEDURES,
AND OVERLAYS

Main Programs
PROGRAM Statement Format
PROGRAM Statement Usage
Block Data Subprogram
Procedures
Subroutine Subprogram
Funetion Subprogram
Basie External Function
Intrinsie Funetion
Statement Function
Procedure Communication
Passing Values to a Procedure
Using Arguments
Using Common
Using Arrays
Referencing a Function
Calling a Subroutine Subprogram
Using the ENTRY Statement
Overlays
Overlay Communication
Creating an Overlay
Calling an Overlay

6-1

6-1

6-2

6-5

6-6

6-7

6-7

6-8

6-9

6-10
6-13
6-13
6-14
6-14
6-16
6-16
6-17
6-17
6-18
6-18
6-19
6-20
6-21
6-21
6-21
6-21
6-22
6-23
6-23
6-24
6-25
6-26
6-28
6-29
6-31
6-32
6-34
6-34
6-36

7-1

7-2
7-2
7-3
7-5
7-6
7-6
7-8
7-9
7-10
7-10
7-12
7-12
7-12
7-14
7-14
7-15
7-16
7-18
7-19
7-21
7-21
7-23

8. FORTRAN EXTENDED SUPPLIED
PROCEDURES

Intrinsie Functions
Basic External Functions
Miscellaneous Utility Subprograms
Random Number Generator
Operating System Interface Routines
Debugging Aids
Input/Output Status Checking
Other Input/Output Subprograms
ECS/LCM Subprograms
Terminal Interface Subprograms
Mass Storage Input/Output
Random File Access
Mass Storage Subroutines
Opening a File
Writing Records
Reading Records
Closing a File
Specifying a Different Index
Index Key Types
Master Index
Sub-Index
Multi-Level File Indexing
Compatibility with Previous Mass
Storage Routines
FORTRAN-CYBER Record Manager Interface
Parameters
Subroutines
Error Checking
Multiple Index Processing
FORTRAN - Sort/Merge Interface
FORTRAN-CYBER Interactive Debug Interface
Control Statement
User-CID Interaction
CID Output
Batch Debugging
Interface to Common Memory Manager
Post Mortem Dump

9. DEBUGGING FACILITY

Debugging Statements
Continuation Line
ARRAYS Statement
CALLS Statement
FUNCS Statement
STORES Statement
Variable Names
Relational Operators
Checking Operators
Hollerith Data
GOTOS Statement
TRACE Statement
NOGO Statement
Debug Deck Structure
DEBUG Statement
AREA Statement
OFF Statement
Printing Debug Output
STRACE Entry Point

10. FTN CONTROL STATEMENT

Parameters
A Exit Parameter
B Binary Object File

8-1
8-1
8-8
8-8
8-9
8-14
8-23
8-25
8-26
8-27
8-29
8-29
8-30
8-30
8-31
8-32
8-32
8-32.1
8-33
8-33
8-33
8-33

8-39
8-39
8-39
8-42
8-44
8-45
8-46
8-51
8-51
8-52
8-52
8-52
8-52
8-53

9-3

9-3

9-3

9-3

9-7

9-10
9-11
9-12
9-13
9-13
9-14
9-15
9-17
9-17
9-22
9-23
9-26
9-27
9-28

10-1
10-1

10-2
10-2

60497800 G

BL Burstable Listing

C COMPASS Assembly

CC Control Statement Continuation
Parameter

D Debugging Mode Parameters

DB CYBER Interactive Debug Parameter

E Editing Parameter

EL Error Level

ER Error Recovery

G Get System Text File

GO Automatic Execution (Load and Go)
I Source Input File

L List Output File

LCM Level 2 and Level 3 Storage Access

ML Modlevel

OL Object List

OPT Optimization Parameter
P Pagination

PD Print Density

PL Print Limit

PMD Post Mortem Dump
PS Page Size

PW Page Width

Q Program Verification

R Symbolic Reference Map

ROUND Rounded Arithmetic Computations

S System Text (Library) File
SEQ Sequence Input
SL Source List
STATIC Static Loading
SYSEDIT System Editing
T Error Traceback
TS Timesharing Mode
UO Unsafe Optimization
X External Text Name
Z Zero Parameter
FTN Control Statement Examples

11. COMPILATION MODES AND
OPTIMIZATION

Optimizing Mode
Object Code Optimization
OPT=0
OPT=1
OPT=2
uo
Source Code Optimization
Time-Sharing Mode
TS Listings
Sequenced Line Format

12. COMPILER LISTINGS

Optimizing Mode Listings
Time-Sharing Mode Listings
Listing Control Directives

13. CROSS REFERENCE MAP

Optimizing Compilation Mode

Source Program

R=1 Maps

R=2/R=3 Maps
Entry Points
Variables
File Names
External References
Inline Functions
Namelists

60497800 G

10-2
10-2

10-2
10-3
10-3
10-3
10-4
10-4
10-4
10-4
10-5
10-4
10-5
10-5
10-5
10-6
10-6
10-6
10-6
10-6
10-6
10-7
10-7
10-7
10-7
10-8
10-8
10-8
10-8
10-8
10-9
10-9
10-9
10-9
10-9
10-10

11-1

11-2
11-2
11-2
11-2
11-2
11-3
11-4
11-6
11-7
11-7

12-1

12-1
12-2
12-2

13-1

13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10

Statement Labels
DO Loops
Common Blocks
Equivalence Classes
Program Statisties
Error Messages
Debugging (Using the Reference Map)
Time-Sharing Mode
R=1 Maps
R=2, R=3 Maps
Common Blocks
Entry Points
External References
Statement Labels
Variables

14. OBJECT CODE

Optimizing Mode
Subroutine and Funetion Structure
Main Program Structure
Renaming Conventions
Register Names
External Procedure Names
Listing Format
Time-Sharing Mode
Listing Format

15. EXECUTION CONTROL STATEMENT

Alternate File Name Specification
Print Limit Specification
Post Mortem Dump Parameters

16. INPUT/OUTPUT IMPLEMENTATION

Execution-Time Input/Output
File and Record Definitions
Structure of Input/Output Files
Sequential Files
Mass Storage Input/Output
FILE Control Statement
Sequential File Operations
BACKSPACE/REWIND
ENDFILE
Input/Output Restrictions
Compile-Time Input/Output
Source Input File Structure
Coded Output File Structure
Binary Output File Structure

17. COMPASS SUBPROGRAM LINKAGE

Call by Name and Call by Value
Call by Name Sequence
Call by Value Sequence
Intermixed COMPASS Subprogram
Entry Point -

Restrictions on Using Library Function Names

18. SAMPLE DECK STRUCTURES

FORTRAN Source Program with Control
Statements
Compilation Only
TS Mode Compilation Only
Compilation and Execution

13-10
13-11
13-12
13-13
13-14
13-14
13-14
13-15
13-16
13-17
13-18
13-18
13-18
13-19
13-20

14-1

14-1
14-1
14-2
14-2
14-2
14-2
14-3
14-3
14-3

15-1

15-1
15-2
15-2

16-1

16-1
16-1
16-2
16-2
16-6
16-6
16-8
16-8
16-10
16-11
16-11
16-12
16-13
16-13

17-1

17-1
17-1
17-2
17-2
17-4
17-4

18-1

18-1
18-2
18-2
18-3

xi

FORTRAN Compilation with COMPASS
Assembly and Execution

Compile and Execute with FORTRAN Sub-
routine and COMPASS Subprogram

Compile and Produce Binary Cards

Load and Execute Binary Program

Compile and Execute with Relocatable Binary
Deck

Compile Once and Execute with Different
Data Decks

Preparation of Overlays

Compilation and 2 Executions with Overlays

19. SAMPLE PROGRAMS

Program OUT
Program B

A STANDARD CHARACTER SET
B FORTRAN DIAGNOSTICS
C STATEMENT FORMS

1-1
9-1

9-2

7-1
7-2

Program PASCAL)

Example of Interspersed Debugging
Statements

External Debugging Deck

Differences Between a Function and
Subroutine Subprogram

Procedure and Subprogram Inter-
relationships

Program MASK
18-4 Program EQUIV
Program COME
18-5 Program LIBS
18-6 Program PIE
18-7 Program ADD
Program PASCAL
18-8 Program X
Program VARDIM
18-9 Program VARDIM2
18-10 Funetion PVAL
18-11 Funetion MULT
Program CIRCLE
Program OCON
19-1 List Directed Input/Output
19-1
19-3 20. STATIC OPTION
APPENDIXES
A-1 D ARITHMETIC
B-1 E GLOSSARY
C-1
INDEX
FIGURES
1-2 9-3 Example of Internal Debugging Deck
9-4 Example of External Deck on Separate
9-18 File
9-19
TABLES
8-1 Intrinsic Functions
7-1 8-2 Basic External Functions
16-1 Defaults for FIT Fields Under FORTRAN
7-2 Extended

19-5

19-7

19-9

19-11
19-13
19-15
19-18
19-19
19-21
19-23
19-24
19-25
19-28
19-30
19-33

20-1 l
D-1

E-1

9-20
9-21

8-2
8-6

16-3

60497800 G

FORTRAN LANGUAGE ELEMENTS 1

A FORTRAN program contains executable and non-executable statements. Executable statements specify actions
the program is to take, and non-executable statements describe characteristics of operands, statement functions,
arrangement of data, and format of data.

CODING FORTRAN STATEMENTS

The FORTRAN source program is written on the coding form illustrated in figure 1-1. Each line on the coding
form represents an 80-column source line (terminal line or card image). The FORTKAN character set is used to
code statements.

FORTRAN CHARACTER SET
Alphabetic AtoZ

Numeric Oto9
Special = equal) right parenthesis
+ plus , comma
- minus . decimal point
* asterisk $ dollar sign
{ slash '

(left parenthesis

In addition, any character (Appendix A) may be used in Hollerith constants and in comments. Blanks are not
significant except in Hollerith fields.

COLUMN USAGE

Column 1 ndicates comment line

Columns 1-2

Columns 1-2
Columns 1-5 Statement label.
Column 6 Any character other than blank or zero den tes co tinpa ion; d not
to comment lines or list directives.
Columns 7-72 Statement.
Identification field, not
Columns 73-80 n .
processed by compiler.

60497800 A 1-1

V 008L6¥09

COMMENTS

In column I a C, %, or § indicates a comment line. Comments do not affect the program; they can be
written in column 2 to 80 and can be placed anywhere within the program. If a comment occupies more
than one line, each line must begin with C in column 1. In a comment line a character in column 6
is not recognized as a continuation character. t ;

STATEMENT LABELS

A statement label (any 1- to 5-digit integer) uniquely identifies a statement so it can be referenced by
another statement. Statements that will not be referenced do not need labels. Blanks and leading zeros are
not significant. Labels need not occur in numerical order; however, a given label must not be used more than
once in the same program unit. A label is known only in the program unit containing it; it cannot be refer-
enced from a different program unit. Any statement can be labeled, but only FORMAT and executable state-
ment labels can be referenced by other statements. A label on a continuation line is ignored.

CONTINUATION

Statements are coded in columns 7-72. If a statement is longer than 66 columns, it can be continued on as

many as 19 continuation lines. A character other than blank or zero in column 6 indicates a continuation line.
Column 1 can contain any character other than C
Any statement except a comment

can be continued,

COLUMNS 73-80

Any information can appear in columns 73-80 because they are not part of the statement. Entries in these
columns are copied to the source program listing. They are generally used to order the lines in a deck

o

60497800 A 1-3

BLANK LINES

Blank lines can be used frecly between statements to produce blank lines on the source listing.
; , a blank line interrupts statement continuation, and the line following the blank line is “the be-
ginning of a new statement. This line can: ave the form of a continuation line.

DATA

No restrictions are imposed on the format of data read by the source program. Data input on cards is limited
to 80 characters per card, but a record can span more than one card

ORDERING OF STATEMENTS

The following table shows the general form of a FORTRAN program unit. Statements within a group can
appear in any order, but groups must be ordered as shown. Comment lines can appear anywhere within the
program.

. STATEMENTS

2 FUNCTION*
SUBROUTINE*
BLOCK DATA

type

COMMON

4 | DIMENSION
EQUIVALENCE
EXTERNAL®

Statement function*
definitions

> D0 M

» -4 >0

6 Executable
statements*

7 END

*Not allowed in BLOCK DATA Subprograms

14 60497800 A

CONSTANTS

A constant is a fixed quantity. The seven types of constants are: integer, real, double precision, complex,
‘octal, Hollerith, and logical.

INTEGER CONSTANT

In,nz...nm]'

n is a decimal digit (0-9)

1<m< 18
Examples:

237 -74 +136772 0 -0024
An integer constant is a string of 1-18 decimal digits written without a decimal point. It may be positive,
negative or zero. If the integer is positive, the plus sign may be omitted; if it is negative, the minus sign
must be present. An integer constant must not contain a comma. The range of an integer constant is

- (2%°-1) to 2%°-1 (2%°-1 = 576 460 752 303 423 487).

Examples of invalid integer constants:

46. (decimal point not allowed)
23A (letter not allowed)
7,200 (comma not allowed)

When an integer constant is used as a subscript, or as an index in a DO statement or implied DO, the maximum
value is 2'7-1 (2'7-1 = 131 071), and the minimum is 1.

Integers used in multiplication, division,and exponentiation, whether constant or variable, should be in the range
- (248 -1) to 248 -1 (248 -1 = 281 474 976 710 655). The result of such operations also should be in this
range. If an integer constant exceeding this range is used, a fatal diagnostic is issued. Any other cases are not
diagnosed, and the results are unpredictable. For integer addition and subtraction (where both operands are
integers), the full 60-bit word is used.

When values are converted from real to integer or from integer to real (in an expression or assignment state-

ment), the valid range is also from - (2*®-1) to 2*-1 . For values outside this range, the high order bits
are lost and no diagnostic is provided.

REAL CONSTANT

| A.n .n n. n.nEts .nEts n.Ets nEts]
n Coefficient < 15 decimal digits
Ets Exponent (base 10)

60497800 B 1-5

A real constant consists of a string of decimal digits written with a decimal point or an exponent, or both.
Commas are not allowed. If the exponet is positive, the plus sign is optional.

The range of a real constant is 102 to 10**?; if this range is exceeded, a diagnostic is printed. Precision is
approximately 14 decimal digits, and the constant is stored internally in one computer word.

Examples:
7.5 -3.22 +4000. 23798.14 .5 - .72 42.E1 700.E-2
Examples of invalid real constants:
3,50, (comma not allowed)

2.5A (letter not allowed)

Optionally, a real constant can be followed by a decimal exponent, written as the letter E and an ihteger con-
stant indicating the power of ten by which the number is to be multiplied. If the E is present, the integer
constant following the letter E must not be omitted. The sign may be omitted if the exponent is positive, but
it must be present if the exponent is negative.

Examples:
42.E1 (42. % 10" = 420.)
.00028E+5 (.00028 x 10° = 28.)

6.205E12 (6.205 x 10" = 6205000000000.)

8.0E+6 (8. X 10° = 8000000.)
700.E-2 (700. X 10?2 = 7))
7E20 (7. x 10® = 70 000 000 000 000 000 0000.)

Example of invalid real constants:

7.2E3.4 exponent not an integer

DOUBLE PﬁECISION CONSTANT

In.nD:l:s .nDis n.Dis nD:ts]

n Coefficient

Dxs ‘Exponent (base 10)

1-6 60497800 A

Double precision constants are written in the same way as real constants except the exponent is specified by
the letter D instead of E. Double precision values are represented internally by two computer words, giving
extra precision. A double precision constant is accurate to approximately 29 decimal digits. If the exponent
is positive, the plus sign is optional.

Examples:
5.834D2 (5.834 x 10> = 583.4)
14.D-5 (14. X 10 = .00014)
9.2D03 (9.2 X 10° = 9200.)
-7.D2 (-7. X 10> = -700.)
3120D4 (3120. x 10* = 31200000.)

Examples of invalid double precision constants:

7.2D exponent missing

D5 exponent alone not allowed

2,1.3D2 comma illegal
3.141592653589793238462643383279 D and exponent missing

COMPLEX CONSTANT

rl Real part
r2 Imaginary part

Complex constants are written as a pair of real constants separated by a comma and enclosed in
parentheses.

FORTRAN Coding Complex Number

(1., 7.54) 1. + 7.54i i= /T
(-2.1E1, 3.24) 21, + 3.24i

(4.0, 5.0) 40 + 50i

(0., -1.) 0.0 - 1.0i

60497800 A 1-7

The first constant represents the real part of the complex number, and the second constant represents the
imaginary part. The parentheses are part of the constant and must always appear. Either constant may be
preceded by a plus or minus sign. Complex values are represented internally by two consecutive computer

words.

Both parts of complex constants must be real; they may not be integer.

Examples of invalid complex constants:

(275, 3.24) 275 is an integer

(12.7D-4 16.1) comma missing and double precision not allowed
4.7E+2,1.942 parentheses missing

(0,0) 0 is an integer

Real constants which form the complex constant can range from 102 to 10*%22. Division of complex
numbers might result in underflow or overflow (see Appendix D) even when this range is not exceeded.

1-8 ' 60497800 A

n Unsigned decimal integer representing number of characters in string including blanks;
must be greater than zero.

f String of characters; must contain at least one character

an informative diagnostic is given. If a Hollerith constant is used as an argument in a subprogram call, it is
followed by a zero word.

60497800 A 1-9

The Hollerith specification in a FORMAT statement (see section 6) is not the same as a Hollerith constant.

These two forms produce left-justified display code constants with 10 characters per word. If the string length
is not a multiple of 10, the final word is blank filled.

nHf Examples:

18HTHIS IS A CONSTANT
7HTHE END

19HRESULT NUMBER THREE

e

1-10 60497800 E

LOGICAL CONSTANT

A logical constant takes the forms:

representing the value false

The decimal points are part of the constant and must appear.

Examples:

LOGICAL X1, X2

X1 = .TRUE.
X2 = .FALSE.
VARIABLES

A variable represents a quantity whose value can be varied; this value can be changed repeatedly during
program execution. Variables are identified by a symbolic name of one to letters or digits, beginning
with a letter. A variable is associated with a storage location; whenever a variable is used, it references the

value currently in that location.

A variable can have its type specified in a type statement (see section 3) as integer, real, double precision,
complex, or logical. In the absence of an explicit declaration, the type is implied by the first character of
the name: I, J, K, L, M, and N imply type integer and any Pther letter implies type real, un

60497800 A 1-11

Default typing of variables:

A-H,0-Z

Real

I-N

Integer

INTEGER VARIABLES

An integer variable is a variable that is typed explicitly or implicitly as described under Variables.

The value range is - (2°°-1) to 25°-1. When an integer variable is used as a subscript, the maximum value is
2'-1. The resulting absolute value of conversion from integer to real, or real to integer must be less than
The operands, as well as the result, of an integer multiplication or division must be less than 28 in
absolute value. If any of these restrictions are violated, the results are unpredictable. For integer addition

24

and subtraction, the full 60-bit word is used; the resulting absolute value must be less than 2%°.

See section 4 for restrictions or integers used in DO statements.

An integer variable occupies one word of memory.

Examples:

REAL VARIABLES
A real variable is a variable that is typed explicitly or implicitly as described under Variables.

ITEM1 NSUM

JSUM

N72 J

K2s04

The value range is 107293 to 10*322 with approximately 14 significant digits of precision. A real variable
occupies one word of storage.

Examples:

1-12

AVAR SUM3

RESULT

TOTAL2

BETA

XXXX

60497800 A

'DOUBLE PRECISION VARIABLES

Double precision variables must be typed by a type declaration. The value of a double precision variable can

range from 1072% to 10"*? with approximately 29 significant digits of precision.

Double precision variables occupy two consecutive words of memory. The first word contains the more
significant part of the number and the second contains the less significant part.

COMPLEX VARIABLES

Complex variables must be typed by a type declaration. A complex variable occupies two words of memory;
each word contains a real number. The first word represents the real part of the number and the second
represents the imaginary part.

Example:

COMPLEX ZERA MU,LAMBDA

LOGICAL VARIABLES

Logical variables must be typed by a type declaration. A logical variable has the value true or false and
occupies one word of memory.

Example:

LOGICAL L33,PRAVDA,VALUE

ARRAYS

A FORTRAN array is a set of elements identified by a single name composed of one to
digits beginning with a letter. Each array element is referenced by the array name and a subscript. The type
of the array elements is determined by the array name in the same manner as the type of a variable is deter-
mined by the variable name (see Variables in this section). The array name and its dimensions must be de-
clared in a DIMENSION or COMMON statement or a type declaration. Arrays can have one, two, or three
dimensions.

The number of dimensions in the array is indicated by the number of subscripts in the declaration.

DIMENSION STOR(6) declares a one-dimensional array of six elements

60497800 A 1-13

REAL STOR(3,7) declares a two-dimensional array of three rows and seven columns
LOGICAL STOR(6,6,3) declares a three-dimensional array of six rows, six columns and three planes

The entire array may be referenced by the unsubscripted array name when it is used as an item in an input
a DATA statement.

The array N consists of six values in the order: 10, 55, 11, 72, 91, 7

N(1) value 10

N(2) value 55

N(3) value 11

N@4) value 72

N(5) value 91

N(6) value 7
Example 2:

The two-dimensional array TABLE (4,3) has four rows and three columns.

Column 1 Column 2 Column 3
Row 1 44 i0 105
Row 2 72 20 200
Row 3 3 11 30
Row 4 91 76 714

To refer to the number in row two, column three write TABLE(2,3).

TABLE(3,3) = 30 TABLE(1,1) = 44 TABLE(@4,1) = 91

TABLE(4,4) would be outside the bounds of the array and results are unpredictable.

1-14 60497800 A

SUBSCRIPTS

A subscript indicates the position of a particular element in an array. A subscript consists of a pair of
expressions which are %eparated by commas. The subscript
Mrietred B B e et

L

parentheses enclosing from one to three subscript
N :
follows the array name. Si

The value of a subscript must never be zero or negative. It should be less than or equal to the product
of the declared dimensions, or the reference will be outside the array. If the reference is outside the bounds

of the array, results are unpredictable.

The amount of storage allocated to arrays is discussed under DIMENSION declarations in section 3.

Valid subscript forms:

AllLK)
B(1+2,J-3,6"K+2)
LAST(6}
ARAYD(1,3,2)

Invalid subscript forms:

zero subscript causes a reference outside of the array

ATLASI(0)
D(1 .GE. K) relational or logical expression illegal
ALL) or AllLK) commas can only be used to separate adjacent subscript expressions

60497800 A

ARRAY STRUCTURE

Arrays are stored in ascending locations: the value of the first subscript increases most rapidly, and the value of
the last increases least rapidly.

Example:

In an array declared as A(3,3,3), the elements of the array are stored by columns in ascending locations.

Plane 1
Col 1 Col2 Col3
Row1| A111 A121 ~A131
| ! }
Row 2| A211 A221 | A231 Plane 2
| } {
Row3 | A311 A321—- A331 Col2 Col3
N\
Row 1 A122 »A132
| }
Row 2 A222 | A232 Plane 3
| !
Row 3 A322 - A332 Col2 Col3
\
Row 1 A123 ~A133
} }
Row 2 A223 | A233
{ }
Row 3 A323- A333

The array is stored in linear sequence as follows:

Element

A(LLD
AQ2,1,1)
AG.L1)
A(1,2,1)
AQ2,1)
A(3.2,1)
A(1,3,1)
A(2,3,1)
AG,3,1)
A(1,1,2)
A(2,1,2)
A(3,1,2)
A(1,2,2)
A(2,2,2)

Location Relative
to first Element

COPAAULE WN = O

—
W N -

Element

A(3.2.2)
A(1,3.2)
A(2,3.2)
A(3,3.2)
A(1,1,3)
A(2,1,3)
A(3,1,3)
A(1,2,3)
A(2,2,3)
A(3,2,3)
A(1,3,3)
AQ2,3,3)
A(3,3,3)

Location Relative
to first Element

14
15
16
17
18
19
20
21
22
23
24
25
26

60497800 A

To find the location of an element in the linear sequence of storage locations the following method can be

used:
Number of Array Location of Element
Dimensions Dimension Subscript Relative to Starting Location
1 ALPHA(K) ALPHA(K) (k-1)XE
2 ALPHA(K,M) ALPHA(k,m) (k-1+KX(m-1) }XE
3 ALPHA(K,M,N) ALPHA(k,m,n) (k-1+KX{m-1+MX(n-1)))XE

K, M, and N are dimensions of the array.

k,m, and n are the subscript expression values of the array.

1 is subtracted from each subscript value because the subscript starts with 1, not 0.

E is length of the element. For real, logical, and integer arrays, E = 1. For complex and double
precision arrays, E = 2.

Examples:
Location of Element
Subscript Relative to Starting Location
INTEGER ALPHA (3) ALPHA(2) (2-1)X1=1
REAL ALPHA (3,3) ALPHA(3,1) (3-1+3X(1-1))X1=2
COMPLEX ALPHA (3,3,3) ALPHA(3,2,1) (3-1+3X(2-1+3X(1-1)))X2 = 10

60497800 A

EXPRESSIONS AND ASSIGNMENT STATEMENTS 2

EXPRESSIONS

FORTRAN expressions are arithmetic, |
yield numeric values, and logical and re

logical and relational. Arithmetic
expressions yield truth values.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of unsigned constants, variables, array elements, and function references
separated by operators and parentheses. For example,

(A-B)*F + C/D**E

is a valid arithmetic expression.

The FORTRAN arithmetic operators are:
+ addition
- subtraction
* multiplication
/ division
** exponentiation

An arithmetic expression may consist of a single constant, variable, array element, or function reference. If X
is an expression, then (X) is an expression. If X and Y are expressions, then the following are expressions:

X+Y
X*Y
X
+X
X-Y
X/Y

X**Y

60497800 A 2-1

All operations must be specified explicitly. For example, to multiply two variables A and B, the expression
A*B must be used. AB, (A)(B), or A.B will not result in multiplication.

Expression Value
3.78542 Real constant 3.78542
A(2*7) Array element A (2*))
BILL Variable BILL
SQRT(5.0) ‘ V.
A+B Sum of the values A and B
C*D/E Product of C times D divided by E
J**1 Value of J raised to the power of I
(200 -50)*2 300

EVALUATION OF EXPRESSIONS

The sequence in which an expression is evaluated is governed by the following rules, listed in descending precedence:
1. References to external functions are evaluated.
2. Arithmetic statement functions and intrinsic functions are expanded.
3. Subexpressions delimited by parentheses are evaluated, beginning with the innermost subexpressions.

4. Subexpressions defined by arithmetic, relational, and logical operators are evaluated according to the
following precedence hierarchy:

(exponentiation)
/ * (division or multiplication)
+ - (addition or subtraction)
.GT. .GE. LT. LE. EQ. .NE. (relationals)
NOT. (logical)
-AND. (logical)
OR. (logical)

2-2 60497800 A

5. Subexpressions containing operators of equal precedence are evaluated from left to right. However,
individual operations that are mathematically associative and/or commutative may be reordered by the
compiler to perform optimizations such as removal of repeated subexpressions or improvement of
functional unit usage. The evaluation of the expression A/B*C is guaranteed to algebraically equal
AC + B, not A <+ BC, but the specific order of evaluation here is indeterminate. Subexpressions
containing integer divisions are not reordered within the * / precedence level because the truncation
resulting from an integer division renders these operations non-associative.

Unary addition and subtraction are treated as follows:

+n the same as n
-n negate n

An array element (a subscripted variable) used in an expression requires the evaluation of its subscript. The
type of the expression in which a function reference or subscript appears does not affect, nor is it affected
by, the evaluation of the arguments or subscripts.

The evaluation of an expression having any of the following conditions is undefined:

Negative-value quantity raised to a real, double precision, or complex exponent
Zero-value quantity raised to a zero-value exponent

Infinite or indefinite operand (Appendix D)

Element for which a value is not mathematically defined, such as division by zero

If the error traceback option (T) is selected on the FTN control statement (section 10), the first three
conditions produce informative diagnostics during execution. If the traceback option is not selected, a mode
error message is printed (Appendix D).

In the case of invalid exponentiation, a diagnostic might be issued by one of the library routines ALOG, EXP, or
DEXP when the exponent is real, complex, or double precision, and the base is integer, real or double precision.

Two operators must not be used together. A*-B and Z/ +X are not allowed. However, a unary + or - can
be separated from another operator in an expression by using parentheses. For example,

A*(-B) and Z/(+X) Valid expressions
B*-A and X/-Y*Z Invalid expressions

Each left parenthesis must have a corresponding right parenthesis.
Example:

(F+ (X *Y) Incorrect, right parenthesis missing
(F+ (X *Y)) Correct

Examples:
In the expression
A-B*C

B is multiplied by C, and the product is subtracted from A.

60497800 E 2-3

The expression A/B-C*D**E is evaluated as follows:
D is raised to the power of E.
A is divided by B.
C is multiplied by the result of D**E.
The product of C*D**E is subtracted from the quotient of A divided by B.

The expression -A**C is evaluated as 0-A**C; A is first raised to the power of C and the result is
then subtracted from zero.

The expression A*B*C may be evaluated as ((A*B)*C), ((A*C)*B) or (A*(B*C)), since the operator * is
associative.

The expression A**B**C is evaluated as ((A**B)**C), since the operator ** is not associative.

Dividing an integer by another integer yields a truncated result; 11/3 produces the result 3. Therefore,
when an integer expression is evaluated from left to right, J/K*I may give a different result than I*J/K.

Example:
I=4 J=3 K=2
Jv/l(‘ I I*J/K
3/2*4 =4 4*3/2=6
An integer divided by an integer of larger magnitude yields the result 0.
Example:
N=24 M=27 K=2
N/M*K
24/27*2 =0
Examples of valid expressions:
A
3.14159
B + 16.427
(XBAR +(B(I,J+I,K) /3.0))

-(C + DELTA * AERO)

2-4 60497800 A

(=B - SQRT(B**2-(4*A*C)))/(2.0%A)
GROSS - (TAX*0.04)

TEMP + V(M,AMAX1(A,B))*Y**C/ (H-FACT(K+3))

TYPE OF ARITHMETIC EXPRESSIONS

An arithmetic expression may be of type integer, real, double precision, or complex. The order of
dominance from highest to lowest is as follows:

Complex

Double Precision

Real
Integer
Table 2-1. Mixed Type Arithmetic Expressions with + - * / Operators
2nd
1st gperand| |nteger Double Complex

Precision

operand

Double
Precision

Real Real Complex

Double
Precision

Double
Precision

Double
Precision

Complex Complex Complex

When an expression contains operands of different types, type conversion takes place during evaluation. Before each
operation is performed, operands are converted to the type of the dominant operand. Thus the type of the value of
the expression is determined by the dominant operand. For example, in the expression A*B-I/J, A is multiplied by
B, I is divided by J as integer, converted to real, and subtracted from the result of A multiplied by B.

Octal and Hollerith constants, as well as references to shifting or masking functions, are typeless operands. When
these operands are used, type is not converted. When these operands are the only operands in an expression, they
are treated as if they were type integer, and the result is type integer.

Variables into which Hollerith constants are stored should be of type INTEGER to ensure proper results when used
in subsequent arithmetic or logical expressions. For example, if the variables are REAL, expressions involving these
variables are evaluated using floating point arithmetic.

60497800 E 2-5

EXPONENTIATION

In exponentiation, the following types of base and exponent are permitted:

Base

Integer

Real

Double Precision

Complex

Exponent

Integer,

ket

Integer, Real, Double Precision,
Integer, Real, Double Precision,

In an expression of the form A**B the type of the result is determined as follows:

Type of Result
Type of A Type of B of A**B
integer Integer lnr
Real Integer Real
Real Real
Double Integer Double
Real Double
Double
Complex Complex

The expression -2**2 is equivalent to 0-2**2. An exponent may be an expression. The following examples are all

acceptable.
B**2.
B**N
B**(2*N-1)
(AtB)**(-J)

2-6

A negetive exponent must be enclosed in parentheses:

A**(-B)
NSUM#**(-J)

60497800 D

When the exponent is of a type other than integer, exponentiation is performed by means of a call to FORTRAN
Common Library routines. The value of the result in these cases is determined according to the formula:

xY = eY(ln(X))

where In is the natural logarithm function.

Examples:
Expression Type Result
CVAB**(I-3) Real**Integer Real
D**B Real**Real Real
c**1 Complex**Integer Complex
BASE(M,K)**2.1 Double Precision Double Precision

**Real

K**5 Integer**Integer Integer
314D-02**3.14D-02 Double Precision Double Precision

**Double Precision

RELATIONAL EXPRESSIONS

a;,a, Arithmetic

op Relational operator

xpressions and relational operators.
The relational operators are:

A relational expression is constructed from arithmetic
Arithmetic expressions may be type integer, real, double precisio

GT. Greater than

.GE. Greater than or equal to
LT. Less than

.LE. Less than or equal to
EQ. Equal to

.NE. Not equal to

The enclosing decimal points are part of the operator and must be present.

60497800 A 2-7

Two expressions separated by a relational operator constitute a basic logical element. The value of this
element is either true or false. If the expressions satisfy the relation specified by the operator, the value is
true; if not, it is false. For example: :

X+Y .GT. 5.3

If X +Y is greater than 5.3 the value of the expression is true. If X+ is less than or equal to
5.3 the value of the expression is false.

A relational expression can have only two operands combined by one operator. a, op a, op a, is not valid.

Relational operands ma ‘be of type integer real double

Examples:

J.LT.ITEM
580.2 .GT. VAR

E.EQ..5

(I) «EQ. (J(K))))

C.LT. 1.5D4 most significant part of double precision number is used in
evaluation

Relational expressions are evaluated according to the rules governing arithmetic expressions. Each

expression is evaluated and compared with zero to determine the truth value. For example, the expression

p-EQ.q is equivalent to the question, does p - ¢ = 0? q is subtracted from p and the result is tested for zero.

If the difference is zero or minus zero the relation is true. Otherwise, the relation is false.

If pis 0 and q is -0 the relation is true.

Expressions are evaluated from left to right. Parentheses enclosing an operand do not affect evaluation; for
example, the following relational expressions are equivalent:

A.GT.B
A.GT.(B)
(A).GT.B

(A).GT.(B)

-8 60497800 A

Examples:

REAL A
A.GT.720

DOUBLE PRECISION BILL, PAY
INTEGER I,J BILL .LT. PAY
I.EQ.J(K)

A+B.GE.Z**2
(I).EQ.(N*J)

300.+B.EQ.A-Z
B.LE.3.754

.5+2. .GT. .8+AMNT
Z.LT.35.3D+5

Examples of invalid expressions:

A .GT. 720 .LE. 900 2 relational operators must not appear in a relational expression

B .LE. 3.754 .EQ. C

LOGICAL EXPRESSIONS

L1 op L2 op L3 op...Ln

L..L, logical operand or relational expression

op logical operator
A logical expression is a sequence of logical constants, logical variables, logical array elements, or relational
expressions separated by logical operators and possibly parentheses. After evaluation, a logical expression
has the value true or false.
Logical operators:

.NOT. logical negation

.AAND logical multiplication

inclusive OR

The enclosing decimal points are part of the operator and must be present.

60497800 A 2-9

The logical operators are defined as follows (p and q represent LOGICAL expressions):

.NOTp If p is true, NOT.p has the value false. If p is false, .NOT.p has the
value true.

p-ANDgq - If p and q are both true, p. AND.q has the value true. Otherwise, false.

p-ORgq If either p or q, or both. are true then p.OR.q has the value true. If both

p and q are false, then p.OR.q has the value false.

Truth Table

[+] q p .AND. q p.OR.q .NOT. p
T T T T F
T F F T F
F T F T T
F F F F T

If precedence is not establi-"ied explicitly by parentheses. operations are executed in the following order:

.NOT. .AND. .OR.
Example:
PROGRAM LOGIC(OUTPUT»TAPE6=0UTPUT)
C
C THIS PROGKRAM PRINTS OUT A TRUTh TABLE FOR LOGTCAL
C OPERATIONS wllH P AND Q
c

LOGICAL PoeusLOGNELSLOGMLT 9L OGSUMsTABLE (492)
DATA TABL&/.TRUE"'TRUE.’OFALSt.’.FALSE.’.TQUEO,QFALSE.’.TRUE.'
1.FALSE./
WwRITE(Sy10)
10 FURMAT(61lH} P W eNOTe Q P <AND Q P .0
IRe @ /10X« 51(1H=-))
DO 20 1 = lea
LOGNEG = NUT. TAbLE(Ie2)
LOGMLT = TAELE(l91) oANUe TAbLE(Is2)
LOGSUM = TAELE(Isl) oOre TAELE(Is2)
20 WRITE(6¢30) (TAnlb(leJ)eJ=19c)s LUGNEGs LOG~LTs LOGSUM
30 FORMAT(1HOe S(L11)?
STOP
END

2-10 : 60497800 A

Output:

P Q NOTe @ P <AND w P JOR. Q
T T F T T
T F T F T
F T F F T
F F T F F

Thé operator .NOT. which indicates logical negation appears in the form:
NOT. p
.NOT. can appear in combination with .AND. or .OR. only as follows (p and q are logical expressions):
p -AND.NOT. q
p -OR.NOT. q
p -AND.(NOT. q)
p .OR(NOT.q)
.NOT. can appear adjacent to itself only when the second operator is enclosed in parentheses, as in .NOT. (NOT.p).
Two logical operators can appear in sequence only in the forms .OR.NOT. and .AND..NOT.
Valid logical expressions, where M, L, and Z are logical variables, are:
.NOT.L
NOT(X .GT. Y)
X .GT. Y .AND.NOT.Z
(L) .AND. M

Invalid logical expressions, where P and R are logical variables, are:

.AND. P .AND. must be preceded by a logical expression
K .EQ.1 .OR. 2 .OR. must be followed by a logical expression
P .AND. OR.R .AND. always must be separated from .OR. by a logical expressi‘on

60497800 A 2-11

Examples:

A, X, B, C, J, L, and K are type logical.

Expression

.NOT. X

A .AND.

.NOT.B

A.AND.C

J.OR.L.OR.K

Examples:

B-C < A < B+C is written asB-C .LE. A .AND. A .LE. B+C _
FICA >176. and PAYNB = 5889. is written FICA .GT. 176. .AND. PAYNB .EQ. 5889.

2-12 ' - - ' 60497800 A

60497800 A 2-13

ASSIGNMENT STATEMENTS

An assignment statement evaluates an expression and assigns this value to a variable or array element. The
statement is written as follows:

v = expression

v is a variable or an array element

2-14 60497800 A

The meaning of the equals sign differs from the conventional mathematical notation. It means replace the
value of the variable on the left with the value of the expression on the right. For example, the assignment
statement A=B+C replaces the current value of the variable A with the value of B+C.

ARITHMETIC ASSIGNMENT STATEMENTS

7
i v = arithmetic expression

Replace the current value of v with the value of the arithmetic expression. The variable or array element
can be any type other than logical.

Examples:
A=A+l replace the value of A with the value of A+ 1
N=J-100*20 replace N with the value of J-100*20
WAGE=PAY-TAX replace WAGE with the value of PAY less TAX
VAR=VALUE+(7/4)*32 replace the value of VAR with the value of VALUE +(7/4)*32
B(4)=B(1)+B(2) replace the value of B(4) with the value of B(1)+B(2)

If the type of the variable on the left of the equals sign differs from that of the expression on the right, type
conversion takes place. The expression is evaluated. converted to the type of the variable on the left, and
then replaces the current value of the variable. The type of an evaluated arithmetic expression is
determined by the type of the dominant operand. Below, the types are ranked in order of dominance from
highest to lowest:

Complex

Double Precision

Real

Integer

In the following tables, if high order bits are lost by truncation during conversion, no diagnostic is given.

60497800 A 2-15

CONVERSION TO INTEGER

Value Assigned

Example

Value of IFORM
After Evaluation

Value of integer
expression re-
places v.

Integer = Integerb

Integer = Real Value of real
expression, trun-
cated to 48-bit
integer, replaces
V.

Value of double

precision expres-

sion, truncated to
-48-bit integer,
replaces v.

Integer = Double Precision

CONVERSION TO DOUBLE PRECISION

IFORM = 10/2

5

IFORM = 3141.593D3

3141593

Value Assigned

Example

Value of SUM
After Evaluation

Double Precision = Integer Value of integer
expression, trun-
cated to 48 bits,
is converted to
real and replaces
most significant
part. Least sig-
nificant part set
to 0.

Double Precision = Real Value of real
expression re-
places most
significant part;
least significant
part is set to 0.

2-16

SUM =7%5

35.D0

15.D0

60497800 A

CONVERSION TO DOUBLE PRECISION (CONTINUED)

Value of SUM
Value Assigned Example After Evaluation
Double Precision Value of double SUM =7.322D2 - 32.D -1 7.29D2

= Double Precision precision expres-
sion replaces v.

CONVERSION TO COMPLEX

Value of AFORM
Value Assigned Example After Evaluation

Complex = Complex Value of complex AFORM =(3.4,1.1) + (7.3,4.6) (10.7,5.7)
expression replaces
variable.

60497800 A 2-17

CONVERSION TO REAL

Value of AFORM
Value Assigned Example After Evaluation

Real = Integer Value of integer AFORM =200 + 300 500.0
expression, trun-
cated to 48 bits,
is converted to
real and replaces
V.

Real = Real ' Value of real AFORM =25+7.2 : 9.7
expression re-
places v.

Real = Double Precision Value of most AFORM = 3421.D - 04 3421
significant part

of expression re-
places v.

LOGICAL ASSIGNMENT

7
Logical variable or array element = Logical or relational expression

Replace the current value of the logical variable or array element with the value of the expression.
Examples:

LOGICAL LOG2

I=1

LoG2 = I .EQ.O

LOG? is assigned the value .FALSE. because <0
LOGICAL NSUM,VAR
BIG = 200.

VAR = .TRUE.
NSUM = BIG .GT. 200. .AND. VAR

2-18 60497800 A

NSUM is assigned the value .FALSE.

LOGICAL A,B,C,D,E,LGA,LGB,LGC

REAL F,G,H

A = B.AND.C.AND.D

A - F.GT.G.OR.F.GT.H

A = .NOT.(A.AND..NOT.B).AND.(C.OR.D)

LGA - .NOT.LGB

LGC = E.OR.LGC.OR.LGB.OR.LGA.OR.(A.AND.B)

60497800 A 2-19

2-20 60497800 A

SPECIFICATION STATEMENTS -3

Specification statements are non-executable; they define the type of a variable or array, specify the amount
of storage allocated to each variable according to its type, specify the dimensions of arrays, define methods
of sharing storage, and assign initial values to variables and arrays. The specification statements are:

Type

DIMENSION

COMMON If any of these statements appears after the first executable statement or

EQUIVALENCE statement function definition, the specification statement is ignored and a
fatal diagnostic is printed.

EXTERNAL

The DATA statement, which is not a specification statement, is also described in this section. The DATA state-
ment must follow all other specification statements except statement function definitions and FORMAT statements;
it can occur after the first executable statement.

TYPE STATEMENTS

A type statement defines a variable, array, or function to be integer, real, ¢
An exPlicit type statement can be used to supply dimension information. |

In the absence of an explicit type statement, the type of a symbolic name is implied by the ﬁrs h racter
of the name: L J, K, L, M, or N imp s ot

b

ly type integer and any other letter implies type real, u

bde oo

Basic external and intrinsic functions are implicitly typed, and need not appear in a type statement in the
user’s program. The type of each library function is listed in section 8.

EXPLICIT TYPE DECLARATIONS
There are five explicit type statements: INTEGER, REAL, COMPLEX, DOUBLE PRECISION, and LOGICAL.

INTEGER

7
INTEGER name,, name, ,...,name_

—— e

60497800 A 3-1

The symbolic names listed are declared as type integer.
Example:
INTEGER SUM, RESULT, ALIST
The variables SUM, RESULT and ALIST are all declared as type integer.
REAL

7
REAL name

namez, ..., nName

1 n

The symbolic names listed are declared as type real.
Example:

REAL NEXT(7), ITEM

NEXT is declared as an arrayr with 7 real elements, and ITEM is declared as a real variable.

COMPLEX
-7

COMPLEX name, , name,, ..., name_

The symbolic names listed are declared as type complex.
Example:

COMPLEX ALPHA, NAM, MASTER, BETA
The variables ALPHA, NAM, MASTER, BETA are declared as type complex.

DOUBLE PRECISION

7
DOUBLE PRECISION name

4, Name,, ... name

The symbolic names listed are declared as type double precision.

322 60497800 A

Example:
DOUBLE PRECISION ALIST, JUNR, BOX4

The variables ALIST, JUNR, BOX4 are declared as type double precision.

LOGICAL
7
LOGICAL name,, name,, ..., name_

— - — o

The symbolic names listed are declared as type logical.
Example:

LOGICAL P,Q,NUMBR4

The variables P, Q and NUMBR4 are declared as type logical.

60497800 A

DIMENSION STATEMENT

7
T
I DIMENSION name, (d,),...,name _(d)
|

d. Array declarator, 1-3 integer constants separated by commas. If name is a dummy param-
eter, d can be 1-3 integer constants or integer dummy parameters intermixed.

name; Symbolic name of an array.

The DIMENSION statement is a nonexecutable statement which defines symbolic names as array names and
specifies the bounds of the array. More than one array can be declared in a single DIMENSION statement.
Dummy parameter arrays specified within a procedure subprogram can have adjustable dimension specifications.
(A further explanation of adjustable dimension specifications appears under Procedure Communication in section
7). Within the same program unit, only one definition of an array is permitted.

The number of computer words reserved for an array is determined by the type of the array and the product
of the subscripts. For real, integer and logical arrays, the number of words in an array equals the number of
elements in the array. For complex and double precision arrays, the number of words reserved is twice the
product of the subscripts. No array can exceed 131,071 words.

Example:

COMPLEX BETA
DIMENSION BETA (2,3)

BETA is an array containing six elements; however, BETA has been defined as COMPLEX and two words
are used to contain each complex element; therefore, 12 computer words are reserved.

34 60497800 A

Example:

REAL NIL
DIMENSION NIL (6,2,2)

These statements could be combined into one statement with 24 words reserved for array NIL:
REAL NIL (6,2,2)

Example:

DIMENSION ASUM(10,2)

DIMENSION ASUM (3), VECTOR (7,7)

The second specification of ASUM is ignored, and an informative message is printed. The specification for
VECTOR is valid and is processed.

COMMON STATEMENT
7

| COMMON/ /v, ...,V
|
|

n

7
|r COMMON/blknamey/vy, . . . V,/blknamey/v,, . . v,. . /blkname /vq, ... v,
|
|
7
r
| COMMON v, ,...,v,
|
|
blkname;
_ The same block name of | \can appear more
MON statement or a pro ; the loader links all
variables in blocks having the same name into a single labeled
common block.
vi Variable or array name which can be followed by constant subscripts

that declare the dimensions. The variable or array names are assigned to
blkname. The COMMON statement can contain one or more block
specifications.

60497800 A 3-5

// Denotes a blank common block. If blank common is the first block in the
statement, slashes can be omitted.

Variables or arrays in a main program or subprogram can share the same storage locations with variables or
arrays in other subprograms by means of the COMMON statement. Variables and array names are stored in the
order in which they appear in the block specification.

COMMON is a non-executable statement. See section 1 for proper location of COMMON statements relative
to other statements in the program unit. The COMMON specification provides up to 125 storage blocks that
can be referenced by more than one subprogram. A block of common storage can be labeled by a nam

. A COMMON statement without a name or number refers to a blank common block. Variables and
arraiy elements can appear in both COMMON and EQUIVALENCE statements. A common block of storage can
be extended by an EQUIVALENCE statement; however, no common block can exceed 131,071 words.

L

The length of a common block, other than blank common, must not be increased by a subprogram using
the block

Example:

COMMON/BLACK/A(3)
DATA A/1.,2.,3./

Data may not be entered into blank common blocks by the DATA declaration.
The COMMON statement may contain one or more block specifications:

COMMON/X/RAG,TAG/APPA/Y,Z2,B(5)

RAG and TAG are placed in block X. The array B and Y,Z are placed in block APPA.

Any number of blank common specifications can appear in a program. Blank, named
common blocks are cumulative throughout a program, as illustrated by the following example:

COMMON A,B,C/X/Y,Z2,D//W,R

COMMON M,N/CAT/ALPHA,BINGO//ADD

3-6

60497800 A

These statements have the same effect as the single statement:

COMMON A,B,C,W,R,M,N,ADD/X/Y,Z,D/CAT/ALPHA,BINGO

Within subprograms, dummy arguments are not allowed in the COMMON statement.

If dimension information for an array is not given in the COMMON statement, it must be declared in a

type or DIMENSION statement in that program unit.

Examples:

COMMON/DEE/Z(10,4)

Specifies the dimensions of the array Z and enters Z into labeled common block DEE.

COMMON/BLOKE/ANARAY,B,D
DIMENSION ANARAY(10,2)

COMMON/Z/X,Y,A
REAL X(7)

COMMON/HAT/M,N,J(3,4)
DIMENSION J(2,7)

In the last example, J is defined as an array (3,4) in the COMMON statement. (2,7) in the
DIMENSION statement is ignored and an error message is printed.

The length of a common block, in computer words, is determined by the number and type of the variables
and array elements in that block. In the following statements, the length of common block A is 12 computer

words. The origin of the common block is Q(1).

REAL Q,R
COMPLEX S
COMMON/A/Q(4),.R(4),5(2)

Block A

origin Q1)
QQ2)
Q(3)
Q4)
R(1)
R(2)
R(@3)
R4)
S(1)
S(1)
S(2)
S(2)

real part
imaginary part
real part
imaginary part

If a program unit does not use all locations reserved in a common block, unused variables can be inserted
in the COMMON declaration to ensure proper correspondence of common areas.

60497800 A

3-7

Example:
COMMON/SUM/A,B,C,D main program
COMMON/SUM/E(3),D subprogram

If the subprogram does not use variables A,B, and C, array E is necessary to space over the area
reserved by A,B, and C.

Alternatively, correspondence can be ensured by placing unused variables at the end of the common list.
COMMON/SUM/D,A,B,C main program
COMMON/ SUM/D subprogram

If program units share the same common block, they may assign different names and types to the members
of the block; but the block name must remain the same.

Example:
COMPLEX C
COMMON/TEST/C(20)
The block named TEST consists of 40 computer words.
The subprogram may use different names for variables and arrays as in:

SUBROUTINE ONE
COMPLEX A
COMMON/TEST/A(10),G(10),K(10)

The length of TEST is 40 words. The first 10 elements (20 words) of the block represented by A are
complex elements. Array G is the next 10 words, and array K is the last 10 words. Within the
subprogram, elements of G are treated as floating point; elements of K are treated as integer.

EQUIVALENCE STATEMENT

7
| EQUIVALENCE (glisty), . . . ,(glist,)
|
|

L

¥ .

Each glisti consists of two or more variables, array elements

Array elements

EQUIVALENCE is a non-executable statement and must appear before all executable statements in a pro-
gram unit. If it appears after the first executable statement, a fatal diagnostic is printed.

3-8 60497800 A

EQUIVALENCE assigns two or more variables in the same program unit to the same storage location (as
opposed to COMMON which assigns two variables in different program units to the same location). Variables
or array elements not mentioned in an EQUIVALENCE statement are assigned unique locations.

Example:

DIMENSION JAN(6),BILL(10)
EQUIVALENCE (IRON,MAT,ZERO), (JAN(5),BILL(2)),(A,B,C)

The variables IRON, MAT and ZERO share the same location, the fifth element in array JAN and the
second element in array BILL share the same location, and the variables A,B and C share the same location.

When an element of an array is referred to in an EQUIVALENCE statement, the relative locations of the
other array elements are, thereby, defined also.

Example:

DIMENSION Y(4), B(3,2)
EQUIVALENCE (Y(1),B(1,2)), (X,Y(4))

This EQUIVALENCE statement causes storage to be shared by the first element in Y and the fourth
element in B and, similarly, the variable X and the fourth element in Y. Storage will be as follows:

B(1,1)
B(2.1)
B(3.1)
B(1.2) Y(1)
B(2.2) Y(2)
B(3.2) Y(3)

Y(4) X

The elements of a glist constitute an equivalence group. When an equivalence group contains an element that
appears in another equivalence group, these groups are merged and their elements constitute an equivalence
class.

Example:

DIMENSION A(100)
EQUIVALENCE (A,B), (C,A(50)), (DE), (F.C)

These statements establish the following equivalence groups:
(w8} {adh fcrh foE}
and the following equivalence classes:
{ABCF}, {DE}
The statement EQUIVALENCE (A,B),(B,C) has the same effect as EQUIVALENCE (A,B,C).

60497800 A 39

A logical, integer, or real entity equivalenced to a double precision or complex entity shares the same location

as the real or most significant part of the complex or double precision entity. :

An array with multiple dimensions may be referenced with a single subscript. The location of the element
in the array may be determined by the following method:

DIMENSION A(K,M,N)
The position of element A(k.m,n) is given by:
A(k+K*(m-1+M*(n-1)))*E)
E is 1 if A is real, integer or logical; E is 2 if A is complex or double precision.
Example:

DIMENSION AVERAG(2,3,4),TERM(7)
EQUIVALENCE (AVERAG(8),TERM(2))

Elements AVERAG (2,1,2) and TERM(2) share the same locations.
Two or more arrays can share the same storage locations.
Example:

DIMENSION ITIN(10,10),TAX(100)
EQUIVALENCE(ITIN(1),TAX(1))
500 READ (5,40)ITIN (1)

600 READ (5,70) TAX (1)

3-10 60497800 D

The EQUIVALENCE declaration assigns the first elements of arrays ITIN and TAX to the same
location. READ statement 500 stores the array ITIN in consecutive locations. Before READ
statement 600 is executed, all operations involving ITIN should be completed; as the values of array
TAX are read into the storage locations previously occupied by ITIN.

Lengths of arrays need not be equal.
Examples:

DIMENSION ZERO1(10,5),ZER02(3,3)
EQUIVALENCE (ZERO1l,ZER02)

EQUIVALENCE (ITEM,TEMP)

The integer variable ITEM and the real variable TEMP share the same location; therefore, the same
location may be referred to as either integer or real. However, the integer and real internal formats

differ; therefore the values will not be the same.

EQUIVALENCE AND COMMON

is a legal EQUIVALENCE statement

Variables, array elements, and arrays may appear in both COMMON and EQUIVALENCE statements. A
common block of storage may be extended by an EQUIVALENCE statement.

Example:

COMMON/HAT/A(4),C
DIMENSION B(5)
EQUIVALENCE (A(2),B(1))

Common block HAT will extend from A(1) to B(5):

/HAT/

EQUIVALENCE statements which extend the origin of a common block are not allowed, however.

Example:
COMMONR/DESK/E,F,G

DIMENSION H(4)
EQUIVALENCE (E,H(3))

60497800 A

Origin

A(l)
AQ2)
AQ)
A4)

B(1)
B(2)
B(3)
B(4)
B(5)

The above EQUIVALENCE statement is illegal because H(1) and H(2) extend the start of the common
block DESK:

/DESK/ H(1)

HQ2)
E H@3)
F H4)
G

An element or array is brought into COMMON if it is equivalenced to an element in COMMON. Two elements
in COMMON must not be equivalenced to each other.

Examples:

COMMON A,B,C
EQUIVALERCE (A,B) illegal

COMMON /HAT/ A(4),C /X/ Y,2
EQUIVALENCE (C,Y) illegal

As stated in section 1, the result of indexing outside of array bounds is unpredictable. Since the compiler attempts
to minimize the size of equivalence classes in common blocks to the smallest subset of the block that includes all
members named in associated EQUIVALENCE statements, all members of a common block will not necessarily be
considered as one array. The programming practice of intentionally referencing locations outside a known array
can produce unintentional results as shown in the following example.

COMMON/ /A{4), B, D, E
DIMENSION AA(4)
EQUIVALENCE (AA, A(2))
D=2.

E=2.
DO 10 I=1,6

10 AA(=D*E
PRINT *,E

When these statements are compiled under OPT=0, E will have a value of 8.0n exit. Under OPT=1 or 2,
the evaluation of D*E will be moved out of the loop since AA and D (or E) are not recognized as being
in the same equivalence class. If the program is to produce the same results under all OPT levels, AA
must be dimensioned to include the entire common block in the equivalence class.

3-12 60497800 C

3-13

60497800 F

EXTERNAL STATEMENT

7

- amm o

name,,..,name,

EXTERNAL name, , ..., name

Subprogram names

n

Before a subprogram name is used as an argument to another subprogram, it must be declared in an

EXTERNAL statement in the calling program.

Any. name used as an actual argument in a call is assumed to be a variable or array unless it appears in an
EXTERNAL statement. An EXTERNAL statement must be used even if the subprogram concerned is a basic

external function, such as SQRT.

Example:
Calling Program

EXTERNAL SIN, SQRT
CALL SUBRT(2.0,SIN,RESULT)
WRITE (6,100) RESULT
100 FORMAT (F7.3)
CALL SUBRT(2.0,SQRT,RESULT)
WRITE (6,100)RESULT
STOP
END

Subprogram

SUBROUTINE SUBRT (A,B,C)
X=A+3.14159/2.

C=B(X)

RETURN

END

60497800 F

First the sine, then the square root are computed; and in each case, the value is returned in RESULT.

The EXTERNAL statement must precede the first executable statement, and always appears in the calling
program. (It cannot be used with statement functions.)

A function call that provides values for an actual argument does not need an EXTERNAL statement.

Example:
Calling Program Subprogram
CALL SUBRT(SIN(X),RESULT) SUBROUTINE SUBRT(A,B)
B=A
END

An EXTERNAL statement is not required because the function SIN is not the argument of the
subprogram; the evaluated result of SIN(X) becomes the argument.

DATA STATEMENT

7
DATA inst1/dIist1/,vli§t2/dlist2/, I instn/dlistn/

“vlist List of
commas.
subscripts.

array elements
s

variable names, ‘
array elements must have integer constant

60497800 C 3-15

dlist One or more of the following forms separated by commas:

constant

rf*constant

constant list List of constants separated by commas.

rf Positive integer constant. The constant or
constant list is repeated the number of times
indicated by rf.

The data statement is non-executable and must follow all specification statements except statement function
definitions, NAMELIST statements, and FORMAT statements. It can occur after the first executable statement.
It assigns initial values to variables or array elements. Only variables assigned values by the DATA statement have
specified values when program execution begins. The DATA statement cannot be used to assign values in blank

common or to dummy arguments.

The number of items in the data list should agree with the number of variables in the variable list.

60497800 A

3-16

60497800 A 3-17

60497800 E

60497800 E 3-19

3-20 60497800 A

60497800 A 3-21

FLOW CONTROL STATEMENTS 4

FORTRAN flow control statements provide a means of altering, interrupting, terminating, or otherwise modifying
the normal sequential flow of execution:

ASSIGN PAUSE
GO TO STOP

IF END

DO RETURN
CONTINUE

Control can be transferred only to an executable statement.

A statement can be identified by an integer, 1-99999, with leading zeros and embedded blanks ignored. Each
statement label must be unique in the program unit (main program or subprogram) in which it appears.

GO TO STATEMENT -

The three types of GO TO statements are unconditional, computed, and assigned. The ASSIGN statement is
used in conjunction with the assigned GO TO and is therefore described in the GO TO statement group.

UNCONDITIONAL GO TO STATEMENT

7 GO TO sn

sn is a label of an executable statement.

This statement transfers control to the statement labeled sn which must be an executable statement in the
current program unit.

Example:

10 A=B+Z
100 B=X+Y
IF(A-B)20,20,30
20 Z=A
GO0 TO 10 ««————————Transfers control to statement 10
30 Z=B
STOP
END

60497800 A 4-1

COMPUTED GO TO STATEMENT

7
GO TO (sn1',sn2 reees snm) v

sny is a label on an executable statement.

iv is an integer variable.

i

The computed GO TO statement transfers control to one of the statements referenced in the parentheses. If
the variable iv has a value of one, control transfers to the statement labeled sny; if the value is i, control
transfers to the statement labeled sny.

The variable must not be specified by an ASSIGN statement. If it is specified by an ASSIGN statement, the
object code is incorrect, but no compilation error message is issued.

If the value of the variable or expression is less than one or larger than the number of statement numbers in
parentheses, the transfer of control is undefined and a fatal error results at execution time.

Example 1:

GO T0(10,20,30,20),L

4-2 60497800 A

The next statement executed is:

10if L=1
20if L=2
30if L=3
20ifL=4
Example 2:
K=2
G0 TO0(100,150,300)K Statement 150 is executed next.

Example 4:

M=4
GO TO (100,200,300),M

Execution of the last example causes a fatal error during execution because fewer than four numbers are
specified in the list of statement labels.

ASSIGN STATEMENT
7

} ASSIGN sn TO iv

|

|
sn is a label of an executable statement.
iv is an integer variable.

The ASSIGN statement assigns a statement label to a variable used in an assigned GO TO. The integer
constant assigned to iv represents the label of an executable statement to which control may be transferred
by an assigned GO TO statement. Once iv is used in an ASSIGN statement, it must not be referenced in
any statement, other than an assigned GO TO or another ASSIGN, until it has been redefined.

60497800 E 4-3

The assignment must be made prior to the execution of the assigned GO TO statement and sn (the label of

an executable statement) must be in the same program unit as both the ASSIGN and-assigned GO TO
statements.

Example:

ASSIGN 10 TO LSWIT ’
GO0 TO LSWIT,(5,10,15,20) Control transfers to statement 10

ASSIGNED GO TO STATEMENT

7
GO TO v, (sn1 ,...,snm)

iv is an integer variable.

(snq,...,sn_) is a list of all the statement labels to which control can be passed by this assigned
1 m

GO TO. Upon execution of the assigned GO TO, iv must be assigned to one of the
labels in the list.

The assigned GO TO statement transfers control to the statement label last assigned to iv by the execution of
a prior ASSIGN statement. All the statement labels in the list must be in the same program unit with both
the ASSIGN and the assigned GO TO statements. Omitting the list of statement labels causes a fatal error.

If a statement label is omitted from the list or the value of iv is defined by a statement other than an

ASSIGN statement, the results are unpredictable. (Control is transferred to the absolute memory address
represented by the low order 18 bits of iv.)

Example:

ASSIGN 50 TO JUMP
10 GO TO JUMP,(20,30,40,50) Statement 50 is executed immediately after statement 10.

20 CONTINUE

-
.

30 CAT=ZERO+HAT
40 CAT=10.1-3.

50 CAT=25.2+7.3

4-4 4 60497800 F

ARITHMETIC IF STATEMENT

The arithmetic IF statement has a three-branch and a two-branch form. In both cases, zero is defined as a
word containing all bits set to zero or all bits set to one (+0 or -0). If the type of the evaluated expression
is complex, only the real part is tested. ‘

THREE-BRANCH ARITHMETIC IF STATEMENT

7
IF (eam) sny, sngp..sn3

eam is an arithmetic expression.

sn;, sn,, sng -are labels on executable statements.

The three-branch IF statement transfers control to the statement labeled sn; if the value of the expression is
less than zero, to the statement labeled sny if it is equal to zero, or to the statement labeled sn3 if it is
greater than zero.

Example:

PROGRAM IF (INPUT,OUTPUT,TAPES=INPUT,TAPE6=O0UTPUT)
READ (5,100) I,J,K,N
100 FORMAT (10X,414)
IF(I-N) 3,4,6
3 ISUM=J+K
6 CALL ERROR1
WRITE (6,2) ISUM
2 FORMAT (I10)
4 STOP
END

60497800 A 4-5

LOGICAL IF STATEMENT

The logical IF statement has a standard form

STANDARD-FORM LOGICAL IF STATEMENT

7
IF (elr) stat

elr is a logical or relational expression.

stat is any unlabeled executable statement other than DO, END, or another standard-form
logical IF.

The standard-form logical IF allows for conditional execution of a statement. If the logical or relational
expression is true, stat is executed. If the expression is false, stat is skipped.

Examples:

IF (P.AND.Q) RES=7.2
50 TEMP=ANS*Z

If P and Q are both true, the value of the variable RES is replaced by 7.2; otherwise, the value of RES
is unchanged. In either case, statement 50 is executed.

IF (A.LE. 2.5) CASH=150.
70 B=A+C-TEMP

If A is less than or equal to 2.5, the value of CASH is replaced by 150. If A is greater than 2.5, CASH
remains unchanged.

IF (A.LT.B) CALL SUB1
20 ZETA=TEMP+RES4

If A is less than B, the subroutine SUBI is called. Upon return from this subroutine, statement 20 is
executed. If A is greater than or equal to B, statement 20 is executed and SUBI is not called.

4-6 60497800 A

DO STATEMENT

7
i DO sn iv=m1 ,m

2'M3

DO sn iv=m,.,m,

sn Terminal statement label; an executable statement that must physically follow and reside in
the same program unit as its associated DO statement. The terminal statement must not be
any arithmetic or two-branch logical IF, a GO TO, RETURN, END, STOP, PAUSE, or
another DO statement.

iv Control variable; an integer variable.
my Initial parameter. Indexing parameters: unsigned mteger' T octal constants or
integer variables with positive non-zero values at execution such
my Terminal parameter. that neither m;+m3 nor my+mg is larger than 2171, If the
indexing parameters exceed these constraints, the results are
mg Incrementation parameter. unpredictable. If mj is not specified, its value is assumed to be 1.

60497800 A 4-7

The DO statement makes it possible to repeat groups of statements and to change the value of an integer
variable during the repetition.

DO LOOPS
The range of a DO loop consists of all executable statements, from and including the first executable state-
ment after the DO statement to and including the terminal statement. Execution of a DO statement causes
the following sequence of operations:
1. iv is assigned the value of m;.
2. The range of the DO lodp is executed.
3. ivis incremented by the value of mj.
4. iv is compared with m,. If the value of iv is less than or equal to the value of m,, the sequence
of operations starting at step 2 is repeated. If the value of iv is greater than the value of m,,
the DO is said to have been satisfied, the control variable becomes undefined, and control passes

to the statement following sn. If m; i equal to m,, the range of the DO loop
is executed once.

A transfer out of the range of a DO loop is permissible at any time. When such a transfer occurs, the control
variable remains defined at its most recent value in the loop. If control eventually is returned to the same range,
the statements executed while control is out of the range are said to define the extended range of the DO. The
extended range should not contain a DO statement. Subroutines or functions invoked within the range of a DO
can contain DO statements, however.

The control variable must not be redefined in the range of a DO; such redefinition causes a fatal-to-execution
diagnostic to be issued. The control variable should likewise not be redefined in the extended range; such
redefinition causes the results of execution to be unpredictable.

The indexing parameters should not be redefined in either the range or the extended range of a DO. In
either case, the results of execution are unpredictable. Redefinition in the range of the DO causes an
informative diagnostic to be issued.

Example 1:

DO 10 I=1,11,3
IF(ALIST(I)-ALIST(I+1))15,10,10
15 ITEMP=ALIST(I)
10 ALIST(I)=ALIST(I+1)
300 WRITE(6,200)ALIST

The statements following DO up to and including statement 10 are executed four times. The DO
loop is executed with I equal to 1, 4, 7, 10. Statement 300 is then executed.

4-8 60497800 A

Example 2:

DO 10 I=1,5

CAT=BOX+D
10 IF (X.GT.B.AND.X.LT.H)Z=EQUATE
6 A=ZERO+EXTRA

Statement 10 is executed five times, whether or not Z = EQUATE is executed. Statement 6 is
executed only after the DO loop is satisfied.

Example 3:

IVAR = 9

D0 201 - 1,200

IF (I-1VAR) 20,10,10
20 CONTINUE
10IN = I

An exit from the range of the DO is made to statement 10 when the value of the control variable I
is equal to IVAR. The value of the integer variable IN becomes 9.

NESTED DO LOOPS

When a DO loop entirely contains another DO loop, the grouping is called a DO nest. DO loops can be
nested to 50 levels. The range of a DO statement can include other DO statements providing the range of
each inner DO is entirely within the range of the containing DO statement.

The last statement of an inner DO loop must be either the same as the last statement of the outer DO loop
or must occur before it. If more than one DO loop has the same terminal statement, a transfer to that
statement can be made only from within the range (or extended range) of the innermost DO, and the label
cannot be referenced in any GO TO or IF statement in the nest except in the range of the innermost DO.

A DO loop can be entered only through the DO statement. Once the DO statement has been executed, and

before the loop is satisfied, control can be transferred out of the range and then transferred back into the
range of the DO.

60497800 A 4-9

A transfer from the range of an outer DO into the range of an inner DO loop is not allowed; however, a
transfer out of the range of an inner DO into the range of an outer DO is allowed because such a transfer

is within the range of the outer DO loop.

"

—)

—p Legal
cfn——

The use of and return from a subprogram within a DO loop are permitted. A transfer back into the range
of an innermost DO loop is allowed if a transfer has been made from the same loop.

Legal

—

——

~¢— |llegal

The extended range of an inner DO loop must be outside the outermost DO loop.

Example 1:

DIMENSION A

DO 2 I
D0 2 J
DO 1 K
1 A(K,J,I
2 B(J,I)

This example sets arrays A and B to zero.

Example 2:
— D1

— n1

4-10

o~ n
O Il = - -

*

Q O O b~

— D2

l— n2

— D4

— n4

.0

5,4,4), B(4,4)

D3

n3

FD1

L— n1

— D2

b n2

— D3

— n3

r-D1

—— D2

L— n1=n2=n3

D3

60497800 E

DO loops can be nested completely within an outermost loop or can share a terminal statement. The diagrams
in example 2 might be represented by the following code:

DO 1- I-1,10,2

DO 3 K=2,8
3 CONTINUE

—— 2 CONTINUE

[—-DO 4 L=1,3
4 CONTINUE

e 1 CONTINUE

Example 3:

DO 10 J=1,50
DO 10 I=-1,50
DO 10 M=1,100

GO TO 10

10 CONTINUE

PO 100 L=2,LIMIT

]EJO 10 J=1,10
10 (f}ONTINUE

l:)O 20 K=K1,K2.
20 (f!ONTINUE

~ 100 CONTINUE

DO 5 I-=1,5
— DO 5 J=I1,10
—— DO 5 K=J,15

L—5 A = B*C

Since statement 10 is the terminal statement for more than one DO loop, it can be referenced in
a GO TO or IF statement in the range of the innermost DO. If 10 is referenced in one of the outer
loops, control is transferred out of the range with undefined resuits.

60497800 A

4-11

Example 4:

DO 10 K-1,100
IF(DATA(K)-10.)20,10,20
20 DO 30 L-=1,20
IF(DATA(L)-FACT*K-10.)40,30,40
40 DO 50 J=1,5

GO TO (101,102,50),INDEX
101 TEST=TEST+1
GO TO 104
103 TEST=TEST-1
DATA(K)=DATA(K)*2.0

50 CONTINUE
30 CONTINUE
10 CONTINUE

GO TO 104
102 DO 109 M=1,3

109 CONTINUE
GO TO 103
104 CONTINUE

When an IF statement is used to bypass several inner loops, different terminal statements are required for each
loop.

CONTINUE STATEMENT

5 7
CONTINUE

I
sn
|
|
|

sn is a statement label.

4-12 . 60497800 A

The CONTINUE statement performs no operation. It is an executable statement that can be placed anywhere
in the executable statement portion of a source program without affecting the sequence of execution. The
CONTINUE statement is most frequently used as the last statement of a DO loop. It can provide loop termina-
tion when a GO TO or IF would normally be the last statement of the loop. If the CONTINUE statement does
not have a label, an informative diagnostic is provided.

Example 1: Example 2:
DO 10 I = 1,11 DO 20 I=1,20
IF (A(I)-A(I-1)20,10,10 1 IF (X(I) - Y(I))2,20,20
20 ITEMPP = A(I) 2 X(I)=X(I)+1.0
A (I) = A (I-1) Y(I)=Y(I)-2.0
10 CONTINUE GO TO 1

20 CONTINUE

PAUSE STATEMENT

PAUSE

7
PAUSE n

n is a string of 1-5 octal digits.

When a PAUSE statement is encountered during execution, the program halts and PAUSE n, o
appears as a dayfile message on the operator console, and at the user terminal-Hif the job is executing interactively.
For batch originated programs, the console operator can continue or terminate the program with an entry from
the console.

For programs executing interactively through INTERCOM, the user types GO to continue execution or DROP to
terminate. For any other type-in, a diagnostic message is issued and INTERCOM waits for a correct type-in.

RN
For programs executing interactively through the NOS 1 Time-Sharing System, the user types STOP" "
to terminate execution. Any other type-in causes execution to continue.

TOnly 40 characters for SCOPE 2.
"Does not apply to SCOPE 2.

* Applies to TELEX only. For IAF, a terminating character must be used: for most terminals the terminating
character is CTRL/T or the “)” character.

e
-

o<
+

R
-

60497800 F 4-13

STOP STATEMENT

STOP

operatlng sYstem lf n is omitted, blanks are unphed A program unit can contain more than one STOP
statement.

END STATEMENT

END

_Every program unit must

4-14 60497800 A

RETURN STATEMENT

7 .
RETURN

The RETURN statement terminates the execution sequence within a program unit and normally retums
control to the current calling program unit n cut an

When a RETURN statement is encountered in a function subprogram, control returns to the referencing
program unit and the evaluation of the expression is completed using the value returned from the function.

In a subroutine subprogram, a RETURN statement transfers control to the next executable statement
following the CALL statement in the calling program unit.

Example 1:
A = SUBFUN (D,E) FUNCTION SUBFUN(X,Y)
i0D0 200 I = 1,5 SUBFUN = X/Y
. RETURN
. END

When the RETURN statement is encountered in the function subprogram, control is returned to
the statement referencing the subprogram, and the value calculated by SUBFUN is stored in A.

60497800 A 4-15

.

. - . L
. - . . §
- ,

-

,«AF;E? -

%2%%&
-

o

i
agﬁ%xa -

4-16 60497800 A

INPUT/OUTPUT STATEMENTS 5

Processing resulting from input/output statements depends on the type of statement used. For each category,
there are one or more input statements and corresponding output statements. The categories are:

Formatted (READ, WRITE

statements with format designator)

Unformatted (READ and WRITE without format designator)

Mass storage input/output (Subroutines READMS, WRITMS, OPENMS, CLOSMS, and STINDX; see
section 8)

CYBER Record Manager interface routines (see section 8)

In addition, there are the the file motion

statements REWIND, ﬁhCKSPACE, and ENDFILE, all discussed in this section.

Subprograms used in connection with input/output, besides the mass storage routines and the CYBER Record
Manager routines, include EOF, IOCHEC, UNIT, LENGTH, and LENGTHX. These subprograms are discussed
in section 8. Format specifications and input/output lists are discussed in section 6.

Input and output involve reading records from files and writing records to files. Every file must have a logical
file name of one to seven letters and digits, the first a letter. The logical file name is defined only for the
current job, and is the name by which the file is referred to in control statements.

For batch jobs (jobs not executed interactively at a terminal), certain file names have a predefined origin or
destination. These file names are:

INPUT Data from user’s source deck PUNCH Punched in Hollerith format at job termination
OUTPUT Printed at job termination PUNCHB Punched in binary format at job termination

The files INPUT, OUTPUT, and PUNCH should be processed only by formatted, list-directed, or namelist input/
output statements.

The predefined meaning of any file name except INPUT can be overridden by control statements.

60497800 B 5-1

Mixing types of operations on the same file can sometimes lead to destruction of file integrity. In particular,
files processed by mass storage or CYBER Record Manager subroutines should be processed only by these
routines. Files processed by buffer statements should be processed only by these statements in a given pro-
gram (REWIND, ENDFILE, and BACKSPACE are permitted for these files).

A file should not be processed both by unformatted operations on the one hand and by formatted, namelist,
or list directed operations on the other. However, if a file is rewound, it can then be rewritten in a different
mode.

If formatted, list directed, or namelist input/output is performed on a 7-track S or L tape, a FILE control
statement that specifies CM=NO (see section 16) must be included in the job.

After every formatted, list directed, namelist, or unformatted READ, end-of-file status should be checked by
a call to the EOF function (section 8). If end-of-file is encountered, and EOF is not called, the contents of
the input/output list are undefined.

Record length on card files should not exceed 80 characters. Record length on print files should not exceed

137 characters; the first character i$ always used as carriage control and is not printed. (Under the NOS'1 Time-
Sharing System, the first character. is printed.) The second character appears in the first print position. Carriage

control characters are listed in section 6.

The following mnemonics are used throughout this manual in descriptions of input/output statements and
subprograms: '

u Input/output unit designator, used to determine the logical file name of the file to be used
for input and output. The file name is derived from u depending on its value. The value
can be one of the following:

Integer constant of one or two digits (leading zeros are discarded). The compiler associates
these numbers with file names of the type TAPEu, where u is the file designator (refer to
PROGRAM statement, section 7).

Simple integer variable name with a value of:
0-99 or

fn ator; a FORMAT statement number or the name of an array,
i clement containing the format specification. The statement number must identify a
FORMAT statement in the program unit containing the input/output statement.

iolist Input/output list specifying items to be transmitted (section 6).

FORMATTED INPUT/OUTPUT

For formatted input/output, a format designator must be present in the input/output statement. The input/
output list is optional. Each formatted input/output statement transfers one or more records.

5-2 60497800 C

FORMATTED OUTPUT STATEMENTS

60497800 F

5-3

5-4 | 60497300 C

WRITE

7
ﬂ WRITE (u.fn) iolist

|

|

7

/ : WRITE (u,fn)

|

|

the file specified by u, according to the FORMAT
specification, fn. At the end of a]ob if the user has not specified an alternate assignment, the file OUTPUT
is sent to the printer.

7
ROGRAM RITE (OUTPUT,TAPE6=OUTPUT)
-2.1
=3.
=7
ITE (6,100) X,Y,M
100 [FORMAT (2F6.2,I4)
TOP
ND

The iolist can be omitted. For example,

WRITE (4,27)
27 FORMAT (32H THIS COLUMN REPRESENTS X VALUES)

FORMATTED READ
7
READ (u,fn) iolist

-— ctus cmme e

60497800 C 5-5

7

READ (u,fn)

e

These statements transmit data from unit u, | to storage locations
named in iolist according to FORMAT specification fn. The number of words in the list and the FORMAT
specifications must conform to the record structure on the input unit. If the list is omitted, one or more
FORTRAN records will be bypassed. The number of records bypassed is one plus the number of slashes
interpreted in the FORMAT statement. Except for information read into H specifications in the FORMAT
statement, the data in the records skipped is ignored. .

The user should test for an end-of-file after each READ statement to avoid input/output errors. If an
attempt is made to read on unit u and an EOF was encountered on the previous read operation on this
unit, execution terminates and an error message is printed. (Refer to section 8, EOF Function.)

Example 1:

ROGRAM IN (INPUT,OUTPUT,TAPE4=INPUT,TAPE7=0UTPUT)

EAD (4,200) A,B,C
200 [FORMAT (3F7.3)
A = B*c+a
ITE (7,50) A
50| [FORMAT (50X,F7.4)
TOP

The READ statement transfers data from logical unit 4 (externally, the file INPUT) to the variables A,
B, and C, according to the specifications in the FORMAT statement labeled 200.

Example 2:

ROGRAM RLIST (INPUT,OUTPUT)
EAD 5,X,Y,Z

5 [FORMAT (3620.2)

ESULT = X-Y+2Z

RINT 100, RESULT

100 [FORMAT (10X,G10.2)

TOP

ND

The READ statement transfers data from the file INPUT to the variables X, Y, and Z, according to
the specifications in the FORMAT statement labeled 5.

5-6 60497800 C

UNFORMATTED INPUT/OUTPUT

Unformatted READ and WRITE statements do not use format specifications and do not convert data in any
way on input or output. Instead, data is transferred as is between memory and the external device. Each
unformatted input/output statement transfers exactly one record. If data is written by an unformatted
WRITE and subsequently read by an unformatted READ, exactly what was written is read; no precision is
lost. Unformatted input/output cannot take place with coded tapes.

UNFORMATTED WRITE

7
| WRITE (u) iolist

7
WRITE (u)

Example:

PROGRAM OUT (OUTPUT,TAPE10)
DIMENSION A(260),B(4000)

WRITE (10) A,B
END

This statement is used to output binary records. Information is transferred from the list variables, iolist, to
the specified output unit, u, with no format conversion. One record is created by an unformatted WRITE
statement. If the list is omitted, the statement writes a null record on the output device. A null record has
no data but contains all other properties of a legitimate record.

UNFORMATTED READ

7
/ { READ (u) iolist

|

|

7

/| READ (u)

|

|

|

60497800 A 5-7

One record is transmitted from the specified unit, u, to the storage locations named in iolist. Records are
not converted; no FORMAT statement is used. The information is transmitted from the designated file in
the form in which it exists on the file. If the number of words in the list exceeds the number of words in
the record, an execution diagnostic results. If the number of locations specified in iolist is less than the

number of words in the record, the excess data is ignored. If iolist is omitted, READ (u) spaces over one
record.

PROGRAM AREAD (INPUT,OUTPUT,TAPEZ2)
READ (2) X,Y,2
SUM = X+Y+Z/2.

5.8 60497800 D

5-9

60497800 E

60497800 E

5-10

60497800 E 5-10.1

5-10.2 60497800 E

60497800 C 5-11

e

.
o
. o

5-12
60497800 C

.

o
-

60497800 C 5-13

-

-

-

-
mk

.

60497800 C

5-14

i

5

-

60497800 C 5-15

5-16 60497800 C

60497800 C 5-17

5-18 ' 60497800 C

5-19

60497800 C

5-20 60497800 C

60497800 G

5-21

5-22 60497800 F

60497800 E 5-23

60497800 D

5-24

60497800 E 5-25

60497800 E

5-26

FILE MANIPULATION STATEMENTS

Three statements can be used to manipulate files: REWIND, BACKSPACE, and ENDFILE.

REWIND
7

REWIND u

T
|
I
|
1

The REWIND operation positions a file at beginning of information so that the next input/output operation
references the first record in the file, even though several ENDFILE statements may have been issued to that

unit since the last REWIND. If the file is already at beginning of information, the statement acts as a do-nothing
statement. (Refer to BACKSPACE/REWIND, section 16 for further information.)

Example:

REWIND 3

BACKSPACE
7
BACKSPACE u

Unit u is backspaced one record. When the file is positioned at beginning of information, this statement acts
as a do-nothing statement. If BACKSPACE is the first operation on a file positioned at beginning-of-information,
a non-fatal Record Manager error results. A backspace operation should not follow a list directed read on a file.

Example:

DO 1 LUN = 1,10,3
1 BACKSPACE LUN

Files TAPE1, TAPE4, TAPE7, and TAPEI0 are backspaced one record.
ENDFILE

7
ENDFILE u

An end of partition is written on the designated unit.

Note: When ENDFILE is used on a file defined with W type records, an end-of-partition is not physically
written but is marked in the control word. For all other record types a level 17 zero-length PRU is written.

60497800 E 5-27

To ensure file integrity, ENDFILE should not be the first operation on a file.

Meaningful results are not guaranteed if ENDFILE is used on a file processed by mass storage subroutines.

End of partition is the file boundary recognized by the EOF function (section 8).

For records written by an unformatted WRITE statement, an end-of-partition boundary is detected as an
end of section (end-of-record) by the operating system.

5-28 : 60497800 E

INPUT/OUTPUT LISTS AND FORMAT STATEMENTS 6

This chapter covers input/output lists and FORMAT statements. Input/output statements are covered in
section 5.

INPUT/OUTPUT LISTS

The list portion of an input/output statement specifies the items to be read or written and the order of
transmission. The input/output list can contain any number of items. List items are read or written sequentially
from left to right.

If no list appears on input, a record is skipped. Only Hollerith information from the FORMAT statement can
be output with a null (empty) output list.

list i i f iabl

Multiple lists can appear, separated by commas, each enclosed in parentheses.

An array name without subscripts in an input/output list specifies the entire array in the order in which it is
stored. The entire array (not just the first word of the array) is read or written.

Subscripts in an input/output list may be any valid subscript (section 1).
Examples:

READ (2,100)A,B,C.D

READ (3,200)A,B,C(1),D(3,4),E(1,4,7) H

READ (4,101)4,A(),1,B(1,4)

READ (2,202)DELTA _
READ (4,102)DELTA(5*3+2,5%1-3,5*K),C,D(1+7)
READ (3,2)A,(B,C.D)(X,Y)

An implied DO list is a list followed by a comma and an implied DO specification, all enclosed in parentheses.
An implied DO specification takes one of the following forms:
i= m, mymy i= mym,

The elements i, m{, mj, and m3 have the same meaning as in the DO statement. The range of an implied DO
specification is that of the implied DO list. The values of i, m 1> My, and m3 must not be changed within the
range of the implied DO list by a READ statement.

60497800 A 6-1

On input or output, the list is scanned and each variable in the list is paired with the field specification
provided by the FORMAT statement. After one item has been input or output, the next format specification
1s taken together with the next element of the list, and so on until the end of the list.

Example:

READ (5,20)L.,M.N
20 FORMAT (13,12,17)

Input record

10 23456712'

100 is read into the variable L under the specification 13, 22 is read into M under the specification
12, and 3456712 is read into N under specification 17.

IMPLIED DO IN I/O LIST

Input/output of array elements may be accomplished by using an implied DO loop. The list of variables.
followed by the DO loop index, is enclosed in parentheses to form a single element of the input/output list

Example:
READ (5,100) (A(i),1=1,3)
has the same effect as the statement
READ (5,100) A(1),A(2),A(3)
The general form for an implied DO loop is:
(... ((list,i1=m’,m2,m3),i2=j1, j2' j3), Cees in=k1,k2,k3)
m.j.k are unsigned integer constants or predefined positive integer variables. If m,, j, or k, is omitted,
a one is used for incrementing.

13-1n are integer control variables. A control variable should not be used twice in the same implied DO
nest, but array names, array elements, and variables may appear more than once. The value of a control
variable within an implied DO specification is defined only within that specification; it should not be
referenced outside the specification.

The first control variable (i) defined in the list is incremented first. i; is set equal to my and the
associated list is transmitted; then il is incremented by ms, until m, is exceeded. When the first
control variable reaches m,, it is reset to my; the next control variable at the right (i2) is incremented;
and the process is repeated until the last control variable (i) has been incremented, until k, is exceeded.

6-2 60497800 D

The general form for an array is:
(AL, KD I=my my,mg) J=ny ny,n0) K=k ko ka)
Example:

READ (2,100) ((A(JV,JX),Jv=2,20,2),JX=1,30)
READ (2,200) (BETA(3*JON+7),JON=JONA JONB,JONC)
READ (2,300) ((1ITMLIST{1,+1,K-2),1=1,25),J=2 N) ,K=IVAR,IVMAX 4)

An implied DO loop can be used to transmit a simple variable more than one time. For example, the list
item (A(K).B.K=1.5) causes the variable B to be transmitted five times. An input list of the form

K.(A(I).I= LK) is permitted. and the input value of K is used in the implied DO loop. The index variable
in an implied DO list must be an integer variable.

Examples of simple implied DO loop list items:

READ (1,400) (A(1),1=1,10)
400 FORMAT (E20.10)

The following DO loop would have the same effect:

DO 5 1=1,10
5 READ (1,400) A(l)

Example:
CAT.DOG. and RAT will be transmitted 10 times each with the following iolist
(CAT, DOG, RAT, 1=1,10)
Implied DO loops may be nested.
Example:

DIMENSION MATRIX(3,4,7)
READ (3,100} MATRIX
100 FORMAT (16)

Equivalent to the following:

DIMENSION MATRIX(3,4,7)
READ (3,100) (({MATRIX(1,J,K),1=1,3)4=1,4),K=1,7)

The list is similar to the nest of DO loops:

DO 5 K=1,7
DO 5 J=1,4
DO S5 1=13
5 READ (3,100) MATRIX(1,J,K)

60497800 A

Example:
The following statement transmits nine elements into the array E in the order: E(1,1), E(1,2), E(1,3),
E(2,1), E(2,2), E(2,3), E(3,1), E(3,2), E(3,3)
READ (1,100} ({(E(1,J),4=1,3),1=1,3)
Example:
READ (2,100) ({{{{A(1,4,K),B{1,L),C(J.N),1=1,10) J=1,5),
X K=1,8),L.=1,15},N=2,7)

Data is transmitted in the following sequence:

A(1,1,1), . B(1,1), C(1,2), A(2,1,1), B(2,1), C(1,2)...
...A(10,1,1), B(10,1), C(1,2), A(1,2,1), B(1,1), C(2,2)...
...A(10,2,1), B(10,1), C(2,2),...A(10,5,1), B(10,1), C(5,2)...
...A(10,5,8), B(10,1), C(5,2),...A(10,5,8), B(10,15), C(5,2)...

Data can be read into or written from part of an-array by using the implied DO loop.

Examples:

READ (5,100) (MATRIX(1),1=1,10)
100 FORMAT (F7.2)

Data (consisting of one constant per record) is read into the first 10 elements of the array MATRIX.
The following statements would have the same effect:

DO 401 =1,10
40 READ (5,100) MATRIX(I)
100 FORMAT (F7.2)

In this example, numbers are read from unit 5, one from each record,into the elements MATRIX(1)

through MATRIX(10) of the array MATRIX. The READ statement is encountered each time the DO

'loop is executed; and a new record is read for each element of the array. Each execution of a READ
statement reads at least one record regardless of the FORMAT statement.

READ (5,100} (MATRIX(i),1=1,10)
100 FORMAT (F7.2) e

In the above statements, the implied DO loop is part of the READ statement; therefore, the FORMAT
statement specifies the format of the data input and determines when a new record will be read.

If statement 100 FORMAT (F7.2) had been 100 FORMAT (4F20.10), only three records would be read.

To read data into an entire array, it is necessary only to name the array in a list without any subscripts.

Example:

DIMENSION B (10,15)
READ (12,13) B

Is equivalent to

READ (12,13) ({B(1,J),1=1,10),J=1,15)

The entire array B will be transmitted in both cases.

6-4 60497800 A

FORMAT STATEMENT

Input and output can be formatted or unformatted. Formatted information consists of strings of display code
characters. Unformatted information consists of strings of binary word values in the form in which they
normally appear in storage. A FORMAT statement or variable format specification is required to transmit
formatted information.

5 7

snl FORMAT (fs ... fs)

sn Statement label which must appear

£s5y,....f5,, Set of one or more field specifications separated by commas and slashes and
optionally grouped by parentheses

Note that the syntax sn FORMAT (, that is, a statement label followed by the word FORMAT followed by
a left parenthesis, is understood by the FORTRAN compiler to be a FORMAT statement, regardiess of
previous conditions or uses of the word FORMAT in the user program.

Example:

READ (5,100) INK,NAME,AREA
100 FORMAT (10X,14,12,F7.2)

FORMAT is a non-executable statement which specifies the format of data to be moved between input/output
device and main memory. It is used in conjunction with formatted input and output statements, and it may
appear anywhere in the program.

The FORMAT specification is enclosed in parentheses. Blanks are not significant except in Hollerith field
specifications.

Generally, each item in an input/output list is associated with a corresponding field specification in a FORMAT
statement. The FORMAT statement spécifies the external format of the data and the type of conversion to
be used. Complex variables always correspond to two field specifications. Double variables correspond to one
floating point field specification (D, E, F, G) or two of any other kind. The D field specification corresponds

to exactly one list item or half of a complex item. ’

The type of conversion should correspond to the type of the variable in the input/output list. The
FORMAT statement specifies the type of conversion for the input data, with no regard to the type of the
variable which receives the value when reading is complete.

For example:

INTEGER N
READ (5,100) N
100 FORMAT (F10.2)

A floating point number is assigned to the variable N which could cause unpredictable results if N is
referenced later as an integer.

60497800 E ‘ 6-5

DATA CONVERSION

The following types of data conversions are available:

stEw.d Single precision floating point with exponent

stFw.d Single precision floating point without exponent

stGw.d Single precision floating point with or without exponent
srDw.d Double precision floating point with exponent

riw Decimal integer conversion

rLw Logical conversion

rAw Character conversion

E,F,G, D, 1, L, A, % are the codes which indicate the type of conversion.

w Non-zero, unsigned integer constant specifying the field width in number of character pos-
itions in the extemal record. This width includes any leading blanks, + or - signs, decimal
point, and exponent.

d Unsigned integer constant specifying the number of digits to the right of the decimal point
within the field. On output all numbers are rounded.

r Non-zero, unsigned integer constant less than 217-1 specifying the number of times the con-
version code is to be repeated.

J Optional scale factor.

S £ i
The field width w must be specified for all conversion codes. If d is not specified for w.d, it is
assumed to be zero. w must be = d.

6-6 60497800 A

Field separators are used to separate specifications and groups of specifications. The format field separators
are the slash (/) and the comma. The slash is also used to specify demarcation of formatted records.

CONVERSION SPECIFICATION

Leading blanks are not significant in numeric input conversions; other blanks are treated as zeros. Plus
s can be omitted. An all-blank field is considered to be minus zero,
 field is considered fo be FALSE. When an all-blank field is read with a Hollerith input specification,
ank character is translated into a display code 55 octal.

each

For the E, F, G, and D input conversions, a decimal point in the input field overrides the decimal point
specification of the field descriptor.

The output field is right-justified for all output conversions. If the number of characters produced by the
conversion is less than the field width, leading blanks are inserted in the output field. The number of
characters produced by an output conversion must not be greater than the field width. If the field width is
exceeded, asterisks are inserted throughout the field.

Complex data items are converted on input/output as two independent floating point quantities. The
format specification uses two conversion elements.

Example:
COMPLEX A,B.C.D
WRITE (6,10)A
10 FORMAT (F7.2,E8.2)

READ (5,11) B,C.D
11 FORMAT (2E10.3(F8.3,F4.1))

Data of differing types may be read by the same FORMAT statement. For example:
10 FORMAT (15,F15.2)
specifies two numbers, the first of type integer, the second of type real.

READ (5,15) NO,NONE,INK,A B.R
15 FORMAT (315,2F7.2,A4)

reads three integer values, two real values, and one character string.

60497800 A 6-7

The plus sign may be omitted for positive integers. When a sign appears, it must precede the first digit in
the field. Blanks are interpreted as zeros. An all blank field is considered to be minus zero. Decimal points
are not permitted. The value is stored in the specified variable. Any character other than a decimal digit,
blank, or the leading plus or minus sign in an integer field on input will terminate execution.

Example:

READ (2,10) 1,J,.K,L,M,N
10 FORMAT (13,17,12,13,12,14)

Input Record: In storage:
I contains 139 L contains 7
J contains -1500 M contains -0
K contains 18 N contains 104

The I specification is used to output decimal integer values.

w is a decimal integer constant designating the total number of characters in the field including signs and
blanks. If the integer is positive the plus sign is suppressed. Numbers in the range of-(2%°-1) to 2%°-1
(2%°-1=576 460 752 303 423 487) are output correctly.

The specification Iw or Iw.z outputs a number in the following format:

ba...a
b Minus sign if the number is negative, or blank if the number is positive
a.a May be a maximum of 18 digits

The output quantity is right justified with blanks on the left.

6-8 60497800 A

OouUTPUT

E specifies conversion between an internal real value and an external number written with exponent.

Ewd

w is an unsigned integer designating the total number of characters in the field. w must be wide enough to
contain digits, plus or minus signs, decimal point, E, the exponent, and blanks. Generally, w > d + 6

for negative numbers and w>d + 5 for positive numbers. Positive
numbers need not reserve a space for the sign of the number. If the field is not wide enough to contain the
output value, asterisks are inserted throughout the tield. If the field is longer than the output value, the quan-
tity is right justified with blanks on the left. If the value being converted is indefinite, an I is printed in the
field; if it is out of range, an R is printed.

d specifies the number of digits to the right of the decimal within the field.

The Ew.d specification produces output in the following formats:
b.a...aE * ee For values where the magnitude of the exponent is less than one hundred
b.a..a t eee For values where the magnitude of the exponent exceeds one hundred
b is a minus sign if the number is negative, and a blank if the number is positive

a...a are the most significant digits of the value correctly rounded

60497800 E 6-9

Examples:

WRITE (2,10)A) A contains -67.32 or +67.32
10 FORMAT (E10.3)

Result: -.673E+02 or b.673E+02

WRITE (2,10)A
10 FORMAT (E13.3)

Result: bbb-.673E+02 or bbbb.673E+02

If an integer variable is output under the Ew.d specification, results are unpredictable since the internal format
of real and integer values differ. An integer value does not have an exponent and will be printed, therefore, as
a very small value or 0.0.

E specifies conversion between an external number written with an exponent and an internal real value.

Ew.d

w is an unsigned integer designating the total number of characters in the field, including plus or minus
signs, digits, decimal point, E and exponent. If an external decimal point is not provided, d acts as a
negative power-of-10 scaling factor. The internal representation of the input quantity is:

(integer subfield) X 107¢ x 10 {exponent subfieid)

For example, if the specification is E10.8, the input quantity 3267E+05 is converted and stored as:
3267 %10 x 10°=3.267.

If an external decimal point is provided, it overrides d. If d does not appear it is assumed to be zero. .

In the input data, leading blanks are not significant; other blanks are interpreted as zeros.
An input field consisting entirely of blanks is interpreted as minus zero.

The following diagram illustrates the structure of the input field:

6-10 60497800 C

input field

AN

+ +

digit EorD

integer fraction exponent
subfield subfield

The integer subfield begins with a + or - sign, a digit, or a blank; and it may contain a string of digits. The
integer field is terminated by a decimal point, E, +, - or the end of the input field.

The fraction subfield begins with a decimal point and terminates with an E, +, - or the end of the input
field. It may contain a string of digits.

The exponent subfield may begin with E, + or -. When it begins with E, the + is optional between E and
the string of digits in the subfield.

For example, the following are valid equivalent forms for the exponent 3:

E+ 03|E 03|€03|c+ 3|e3|+ 3|{+3|D3|D+3]|D+ 3

®asoo0 L I] oo e LN) LN 4 L2 2N J LN J LN LN 4 LK 2 I 2

The range, in absolute value, of permissible values is 10%* to 10?2 approximately. Smaller numbers are treated
as zero; larger numbers cause a fatal error message.

Valid subfield combinations:

+1.6327E-04 Integer-fraction-exponent
-32.7216 integer-fraction

+328+5 integer-exponent

.629E-1 fraction-exponent

+136 integer only

136 integer only

07628431 fraction only

E-06 (interpreted as zero) exponent only

If the field length specified by w in Ew.d is not the same as the length of the field containing the input
number, incorrect numbers may be read, converted, and stored. The following example illustrates a
situation where numbers are read incorrectly, converted and stored; yet there is no immediate indication
that an error has occurred: '

READ (3,20) A,B,C
20 FORMAT (E9.3,E7.2,E10.3)

60497800 A 6-11

On the input record, quanities are in three adjacent fields, columns 1-24:

Fe.u}:—o 2.36¢}+5.321E+02

9 5 10

6 47E-01
+6.47E-01}2. 36+5]

+8.47E-01-2.36+5} 321 E+02bD]

First, +647E-01 is read, converted and placed in location A. The second specification E7.2 exceeds
the width of the second field by two characters. The number -2.36+5 is read instead of -2.36. The
specification error (E7.2 instead of E5.2) caused the two extra characters to be read. The number
read (-2.36+5) is a legitimate input number. Since the second specification incorrectly took two
digits from the third number, the specification for the third number is now incorrect. The number
.321E+02bb is read. Trailing blanks are treated as zeros; therefore the number .321E +0200 is read
converted and placed in location C. Here again, this is a legitimate input number which is converted
and stored, even though it is not the number desired.

Examples of Ew.d input specifications:

Input Field Specification Converted Value Remarks
+143.26E-03 E11.2 .14326 All subfields present
327.625 E7.3 327.625 No exponent subfield
4376 E5 4376 No d in specification
-.0003627+5 E11.7 -36.27 Integer subfield only a minus
v sign and a plus sign appears
instead of E
-.0003627€5 E11.7 -36.27 Integer subfield left of decimal
contains minus sign only
blanks Ew.d -0. All subfields empty
E+06 E10.6 0. No integer or fraction subfield;

zero stored regardless of expo-
nent field contents

1.bEb1 E6.3 10. Blanks are interpreted as zeros

6-12 60497800 A

Fw.d OUTPUT

The F specification outputs a real number without a decimal exponent.

Fw.d

w is an unsigned integer which designates the total number of characters in the field including the
sign (if negative) and decimal point. w must be > d + 2.

d specifies the number of places to the right of the decimal point. When d is zero, only the digits to the
left of the decimal and the decimal point are printed.

The plus sign is suppressed for positive numbers. |

If the field is longer than required, the number is nght Justlﬁed W1th blanks on the left If the valuebemg
converted is indefinite, an I is printed in the field; if it is out of range, an R is printed.

The specification Fw.d outputs a number in the following format:

decimal point

The specification 1H is the carriage control character.

Fw.d INPUT

On input F specification is treated identically to the E specification.

60497800 A 6-13

Examples of the F format specification:

Input Field Specification Converted Value Remarks

367.2593 F8.4. 367.2593 Integer and fraction field

.62543 F6.5 62543 No integer subfield
62543 F6.2 62543 Decimal point overrides d of speci-
fication
+144,15E-03 F11.2 .14415 Exponents are allowed in F input,

and may have P scaling

Sbbbb F5.2 500.00 No fraction subfield; input number
converted as 50000x1072
bbbbb F5.2 -0.00 Blanks in input field interpreted as
-0
Gw.d INPUT

Input under control of G specification is the same as for the E specification. The rules which apply to the E
specification apply to the G specification.

Gw.d
w Unsigned integer which designates the total number of characters in the field including
E, digits, sign, and decimal point
d Number of places to the right of the decimal point
Example:

READ (5,11) A,B,.C
11 FORMAT (G13.6,2G12.4)

Gw.d OUTPUT
Output under control of the G specification is dependent on the size of the floating point number being

converted. The number is output under the F conversion unless the magnitude of the data exceeds the range
which permits effective use of the F. In this case. it is output under E conversion with an exponent.

6-14 : 60497800 A

Gw.d

w Unsigned integer which designates the total number of characters in the field including

digits, signs and decimal point, the exponent E, and any leading blanks.

d Number of significant digits output.

If a number is output under the G specification without an exponent, four spaces are inserted to the right of
the field (these spaces are reserved for the exponent field E +00). Therefore, for output under G conversion
w must be greater than or equal to d + 6. The six extra spaces are required for sign and decimal point plus

four spaces for the exponent field.

Example:

WRITE (7,200) YES
200 FORMAT (G10.3)

Output: b77.1bbbd

YES contains 77.132

b denotes a blank

If the decimal point is not within the first d significant digits of the number, the exponential form is used

(G is treated as if it were E).
Example:

WRITE (4,100} EXIT
100 FORMAT (G10.3)

Output: .121E+07
Example:

READ (5,50) SAMPLE

WRITE (6,20) SAMPLE
20 FORMAT (1X,G17.8)

EXIT contains 1214635.1

Data read by
READ statement

Data Output

Format Option

.1415926535bE-10

8979323846

2643383279.

-693.9937510

.14159265E-10

89793238

.26433833E+10

-693.99375

E conversion
F conversion
E conversion

F conversion

60497800 A

Dw.d OUTPUT

Dw.d

Type D conversion is used to output double precision variables. D conversion corresponds to E conversion
except that D replaces E at the beginning of the exponent subfield. If the value being converted is
indefinite, an I is printed in the field; if it is out of range, an R is printed.

Examples of type D output:

DOUBLE PRECISION A,B,C
A=11111111111
B = 222222.22222
C=A+8B
WRITE (2,10) A,B.C

10 FORMAT (3D23.11)

A1111111111D+06 .22222222222D+06 .33333333333D+06

The specification Dw.d produces output in the following format:

r— decimal point

bla...a :eee -308 < eee < 337

b.a..aD +ee 0<ee< 99
b Minus sign if the number is negative. or blank if the number is positive
a..a Most significant digits
ee Digits in the exponent

Dw.d INPUT

D conversion corresponds to E conversion except that D replaces E at the beginning of the exponent
subfield.

The following diagram illustrates the structure of the input field:

input field
+ +
digit DorE
integer fraction exponent
subfield subfield

6-16 60497800 A

60497800 A 6-17

60497800 E

6-18

"Aw INPUT

A\
The A specification is used to input character data

Aw

w is an unsigned integer designating the total number of characters in the field.

Character information is stored as 6-bit display code characters, 10 characters per 60-bit word. For example, the
digit 4 when read under A specification is stored as a display code 37. If w is less than 10, the input quantity is
stored left justified in the word; the remainder of the word is filled with blanks.

Example:

READ (5,100) J
100 FORMAT (A7)

60497800 E 6-18.1/6-18.2

Input record:

(ixAMPLE
When EXAMPLE is read it is stored left justified in the 10 character word

1234567890
EXIAMPITIE]]] |

If w is greater than 10, the rightmost 10 characters are stored and remaining characters are ignored.

Example:

READ (5,200)K
200 FORMAT (A13)

Input record:

1 13

(SPECIFICATION

In storage:

12345678910

READ (5,10) LM,N
10 FORMAT (A10,A10,A5)

Input record:

THIS IS A EXAMPLE KNOW
-~ o | N — |

v

10 10 5

In storage:
12345678910
L
R
ot | 111 |

N | Jki

Aw OUTPUT
The A specification is used to output alphanumeric characters.

Aw

60497800 E 6-19

w is an unsigned integer designating the total number of characters in the field. If w is less than 10,
the leftmost characters in the word are printed. For example, if the contents of location M in the Aw
input example are output with the following statements:

WRITE (6,300)M
300 FORMAT (1X,A4)

In storage:

R

Characters EXAM are output

If w is greater than 10, the characters are output rightjustified in the field, with blanks on the left. For
example, if M in the previous example is output with the following statements:

WRITE (6,400)M
400 FORMAT (1X,A12)

Output is as follows:

bbEXAMPLEbbb b = blank

6-20 60497800 E

Lw INPUT
The L specification is used to input logical variables.

Lw
w is an unsigned integer designating the total number of characters in the field.
If the first non-blank character in the field is T, the logical value .TRUE. is stored in the corresponding list

. item, which should be of type logical. If the first non-blank character is F, the value .FALSE. is stored. If the
first non-blank character is not T or F, a diagnostic is printed '

Lw OUTPUT
Lw

w is an unsigned integer designating the total number of characters in the field.

Variables output under the L specification should be of type logical. A value of .TRUE. or .FALSE. in
storage is output as a right justified T or F with blanks on the left.

Example:

LOGICAL 14K
1 = .TRUE.

4= .FALSE.
K = .TRUE.

WRITE (45) 1,JK
5 FORMAT (3L3)

Output:

bTbbFbbT

SCALE FACTORS

The scale factor P is used to change the position of a decimal point of a real number when it is input or
output. Scale factors may precede D, E, F and G format specifications.

60497800 E 6-21

nPDw.d

nPEw.d

nPFw.d

nPGw.d.

n is the scale factor which can be any integer constant. w is an unsigned integer constant designating the
total width of the field. d determines the number of digits to the right of the decimal point.

A scale factor of zero is established when each FORMAT statement is first referenced; it holds for all F,E,G,
and D field descriptors until another scale factor is encountered.

Once a scale factor is specified, it holds for all D, E, F, and G specifications in that FORMAT statement
until another scale factor is encountered. To nullify this effect for subsequent D, E, F, and G specifications,
a zero scale factor (OP) must precede a specification.

Example:
15 FORMAT(ZPE14.3,F10.2,GIG.2.0P4F13.2)

The 2P scale factor applies to the E14.3 format specification and also to the F10.2 and G16.2 format
specification. The OP scale factor restores normal scaling (10" = 1) for the subsequent specification
4F13.2.

Fw.d SCALING

INPUT
The number in the input field is divided by 10% and stored. For example, if the input quantity 314.1592 is

read under the specification 2PF8.4, the internal number is 314.1592 X' 102 = 3.141592. However, if an
exponent is read the scale factor is ignored.

6-22 60497800 A

Ew.d and Dw.d SCALING

INPUT

Ew.d scaling on input is the same as Fw.d scaling on input.

OUTPUT

The effect of the scale factor nP is to shift the output coefficient left n places and reduce the exponent by n.
In addition, the scale factor controls the decimal normalization between the coefficient and the exponent such
that: if n < 0, there will be exactly -n leading zeros and d + n significant digits after the decimal point; if

n > 0, there will be exactly n significant digits to the left of the decimal point and d - n + 1 significant digits

to the right of the decimal point. For example, the number -3.1415926536 is represented on output under the
“indicated Ew.d scaling as follows:

(-3PE20. &) -.0003E+0y
(€20, &) -« J142E+(1
(1PE20. &) -3.1416E+00
(3FE2C. &) -314e16E-{2

00 0 0600 000 800 0HS2OPEDOS VGO SODN
Gw.d SCALING
INPUT

Gw.d scaling on input is the same as Fw.d scaling on input.

OUTPUT

The effect of the scale factor is nullified unless the magnitude of the number to be output is outside the range
that permits effective use of F conversion (namely, unless the number N < 107 or N> 10d). In these cases,
the scale factor has the same effect as described above for Ew.d and Dw.d scaling. For example, the numbers
-3.1415926536 and -.00031415926536 are represented on output under the indicated Gw.d scaling as follows:

60497800 C 6-23

LA L B I 2 B B I I I BF BB B B BE JE BY S B R I I N N WY

LA IR I IR B I BB B BRI B B NI B I N R S Y NP PSP

(~3PG20. o) ~3.14153 (=3FG2T. A) ~«D0C314E+DY
(=1PG20. 6) ~3.14153 (~1PG20. &) ~e 031416E~52
(G20. 6) -3.14159 (G20. %) ~e314159E-03
(1PG20. 6) -3.14159 (1PG2C. 6) ~2,141593£=-0

(3PG20. 6) -3.14159 (3PG2C. &) -314,1593F-00b
(5PG20. 6) -3.14159 { 5PG20. 5) =31415.93E-08
(7P6200 2) "301‘0159 PP OB DV VBV 9802008002008 99 800

B0 8 DDV I BLISPIDDILOSIIIND IS

X SPECIFICATION
The X specification is used to skip characters in an input line or output line. On output, any character
positions not previously filled during this record generation will be set to blank. It is not associated with a

variable in the input/output list. ’

nX Number of characters, n, to be ski

Example:
WRITE (6,100) A,B,C A - -342.743
100 FORMAT (F9.4,4X,F7.5,4X,13) B = 1.53190
C =22
Output record:
-342.743bbbb1.53190 bbbbb22 b is a blank

on input n columns are skipped.
Example:

READ (3,11) RS, T
11 FORMAT (F5.2, 3X, F5.2, 6X, F5.2)

Input record:

(14.62bb$13.78bCOSTbl5.9‘7

6-24 60497800 D

In storage:

R 1462
S 1378
T 1597

Example:

INTEGER A
WRITE (1,10) A,BC
10 FORMAT (12,6X,F6.2,6X,E125)

A contains 7
B contains 13.6
C contains 1462.37

Result: 7bbbbbbb13.60bbbbbbb.146237E+04

nH OUTPUT

The H specification is used to output strings of alphanumeric characters and, like X, H is not associated with
a variable in the input/output list.

nH
n Number of characters in the string including blanks.
H Denotes a Hollerith field. '

For example, the statement:

WRITE (6,1)
1 FORMAT (15HbENDbOFbPROGRAM)

can be used to output the following on the output listing.
END OF PROGRAM
Examples:
Source program:

WRITE (3,20)
20 FORMAT (28HbBLANKSbCOUNTbINbANbHbLFIELD.)

produces output record:
BLANKSbCOUNTbINbANBbHBFIELD.
Source program:

WRITE (2,30)A

A contains 1.5
30 FORMAT (6HbLMAX=,F5.2)

60497800 A 6-25

produces output record:

LMAX=b1.50

nH INPUT

The H specification can be used to read Hollerith characters into an existing H field within the FORMAT
statement.

Example:
Source program:

READ (2,10)
10 FORMAT (27Hbbbbbbbbbbbbbbbbbbbbbbbbbbb)}

Input record:

rbTHIS IS A VARIABLE HEADING

After a READ statement, the FORMAT statement labeled 10 contains the alphanumeric information read from the
input record; a subsequent reference to statement 10 in an output statement acts as follows:

WRITE (6,10}

produces the output line:

THIS IS A VARIABLE HEADING

6-26 60497800 A

6-27

60497800 A

END OF RECORD SLASH

The slash indicates the end of a record anywhere in the FORMAT specification. When a slash is used to separate
field specification elements, a comma is allowed but not required. Consecutive slashes can be used and need not
be separated from other elements by commas. When a slash is the last format specification to be processed, it
causes a blank record to be written on output or an input record to be skipped. Normally, the stash indicates the
end of a record during output and specifies that further data comes from the next record during input.

Example:

WRITE (2,10)
10 FORMAT (6X, 7HHEADING / / / 1X, SHINPUT, 7H OUTPUT)

QOutput:

HEADING line 1
— (blank) —line 2
——(blank) ___ line 3

INPUT OUTPUT line 4

Each line corresponds to a formatted record. The second and third records are blank and produce the line
spacing illustrated.

Example:

1=5
J=6
K=7
WRITE (2,1)1,4,K
1 FORMAT (315/)
WRITE (2,2)
2 FORMAT(* A BLANK LINE SHOULD PRECEDE THIS LINE*)

Output:

A BLANK LINE SHOULD PRECEDE THIS LINE

The variable list (I, J, K) is exhausted and processing continues until a variable conversion is encountered.
Since the slash has been processed, it causes a blank line to be printed.

6-28 60497800 F

Example:

DIMENSION B(3)
READ (5,100)1A,B
100 FORMAT (15/3€7.2)

These statements read two records; the first contains an integer number, and the second contains three real
numbers.

WRITE (3,11) AB,C,D
11 FORMAT (2E10.2/2F7.3)

In storage:

A -11.6
B .325
C 46.327
D -14.261

Output:

b-.12E+02bbb.33E+00
46.327-14.261

WRITE (1,11) A,B,C,D
11 FORMAT (2€E10.2 / / 2F7.3)

Output:
b-.12E+02bbb.33E+00 line 1
(blank) —=—1line 2
46.327-14.261 line 3

The second slash causes the blank line.

REPEATED FORMAT SPECIFICATION

Format specifications can be repeated by prefixing the control characters D, E, F, G, I, A, L
with a non-zero, unsigned integer constant specifying the number of repetitions required.

100 FORMAT (314,2E7.3) is equivalent to: 100 FORMAT (14,14,14,E7.3,E7.3)
50 FORMAT (4G12.6) is equivalent to: 50 FORMAT (G12.6,G12.6,G12.6,G12.6)

A group of specifications can be repeated by enclosing the group in parentheses and prefixing it with the repeti-
tion factor. If no integer precedes the left parenthesis, the repetition factor is assumed to be one.

1 FORMAT (13,2(E15.3,F6.1,214))

60497800 B 6-29

is equivalent to the following specification if the number of items in the input/output list does not
exceed the format conversion codes:

1 FORMAT (13,E15.3,F6.1,14,14,E15.3,F6.1,14,i4)

A maximum of nine levels of parentheses is allowed in addition to the parentheses required by the FORMAT
statement.

If the number of items in the input/output list is fewer than the number of format codes in the FORMAT
statement, excess format codes are ignored.

If the number of items in the input/output list exceeds the number of format conversion codes when the final
right parenthesis in the FORMAT statement is reached, the line formed internally is output. The format control
then scans to the left looking for a right parenthesis within the FORMAT statement. If none is found, the scan
stops when it reaches the beginning of the format specification. If a right parenthesis is found, however, the

scan continues to the left until it reaches the field separator which precedes the left parenthesis pairing the

right parenthesis. Output resumes with the format control moving right until either the output list is exhausted
or the final right parenthesis of the FORMAT statement is encountered.

A repetition factor can be used to indicate multiple slashes, n(/), where n is an unsigned integer constant
indicating the number of slashes required and n-1 is the number of lines skipped on output.

Example:

WRITE (3,15)(All),1=1,9)
15 FORMAT (8HbRESULTS4(/),(3F8.2})

Format statement 15 is equivalent to: 15 FORMAT (8HbRESULTS //// (3F8.2))

Output:

RESULTS line 1
(blank) — line 2

(blank) —— line 3

(blank) — line 4

3.62 -4.03 -9.78 line 5

-6.33 7.12 3.49 line 6

6.21 -6.74 -1.18 line 7

Example:

READ (5,300)1,J,E,K,F,L,M,G,N,R
300 FORMAT (13,2(14,F7.3),17)

is equivalent to storing data in I with format I3, J with I4, E with F7.3, K with 14, F with F7.3, and L
with I7. A new record is then read; data is stored in M with the format I4, G with F7.3, N with 14,
and R with F7.3.

READ (5,100) NEXT, DAY, KAT, WAY, NAT, RAY, MAT
100 FORMAT (17,(F12.7,13))

6-30 60497800 A

NEXT is input with format I7, DAY is input with F12.7, KAT is input with I3. The FORMAT state-
ment is exhausted (the right parenthesis has been reached), a new record is read, and the statement is
rescanned from the group (F12.7,13). WAY is input with the format F12.7, NAT with 13, and from a third
record, RAY with F12.7, and MAT with I3.

PRINTER CONTROL CHARACTER

The first character of a printer output record is used for carriage control and is not printed. It appears in other
forms of output as data. Carriage control also applies to records listed at a terminal under INTERCOM; the
meaning of carriage control characters depends on the type of terminal (see the INTERCOM reference manual).
Carriage control does not apply to records listed at a terminal under the NOS 1 Time-Sharing System; the
first character is listed as data.

The printer control characters are as follows :

Character Action
Blank Space vertically one line then print
0 Space vertically two lines then print

Eject to the first line of the next
page before printing

No advance before printing; allows
overprinting

For output directed to the card punch or any device other than the line printer or terminal, control characters
are not required. If carriage control characters are transmitted to the card punch, they are punched in column one.

Carriage control characters are required at the beginning of every record to be printed, including new
records introduced by means of a slash. Carriage control characters can be generated by any means.

Examples:

FORMAT (1H0,F7.3,12,G12.6)

FORMAT (1X,14,G16.8)

fThis chart applies only to NOS/BE 1 and SCOPE 2. For corresponding information under NOS 1, refer to
the reference manual for the subsystem under which the program is executed.

60497800 F 6-31

6-32 60497800 A

60497800 A 6-33

60497800 F

i
R AR

60497800 A 6-35

EXECUTION TIME FORMAT SPECIFICATION

Variable format specifications can be read in as part of the data at execution time and used by READ, WRITE,
PRIN C] or DE statements later in the program. The format is read in as alphanumeric
text under the A specification and stored in an array, AT T or it may be included in
a DATA statement. The format must consist of a list of format specnﬁcatlons enclosed in parentheses, but
without the word FORMAT or the statement label.

For example, an input record could consist of the characters:

(E7.2,G20.5,F7.4,13)

The name of the array containing the specifications is used in place of the FORMAT statement number in the
associated input/output statement. The array name specifies the location of the first word of the format
information.
For example, assume the following format specifications:
(E12.2,F8.2,17,2E20.3,F9.3,14)
This information on an input record can be read by the statements of the program such as:
DIMENSION IVAR(3)

READ (2,1) IVAR
1 FORMAT (3A10)

6-36 , 60497800 A

The elements of the input record are placed in storage as follows:

IVAR(1) (E12.2,F8.
IVAR(2) 2,17,2E20.
IVAR(3) 3,F9.3,14)

A subsequent output statement in the same program can refer to these format specifications as:
WRITE (2,IVAR) A,B,I,C,D,EJ
Which produces exactly the same result as the statements:

WRITE (2,10) A,B.1,C,D,EJ
10 FORMAT (E12.2,F8.2,17,2E20.3,F9.3,14)

60497800 A 6-37

PROGRAM UNITS, PROCEDURES, AND OVERLAYS 7

A program unit consists of FORTRAN statements, with optional comments, terminated by an END statement.
A main prog i i gin with a SU A
statement. ’
A subprogram , .
An executable program contains one main program with or without subprograms. A program unit containing
no FORTRAN statements other than an END statement is considered a null program; it is diagnosed and
ignored.

2

A subprogram is defined separately and can be compiled independently of a main program. If the subprogram
begins with a SUBROUTINE or FUNCTION statement, it is a procedure subprogram and can accept and use
zero, one, or more values through a list of arguments, through common, or both. If the subprogram begins
with a BLOCK DATA statement, it is a specification subprogram.

A procedure is a procedure subprogram, statement function, intrinsic function, or basic external function.
Intrinsic functions and basic extemal functions are FORTRAN supplied procedures and are available to any

programmer (see section 8). Statement functions and procedure subprograms are supplied by the programmer.

The differences between function and subroutine specification and use are summarized in table 7-1.

TABLE 7-1. DIFFERENCES BETWEEN A FUNCTION AND SUBROUTINE SUBPROGRAM

Function Subroutine
How Used The name appearing in an expression is A CALL statement is used as
used as the reference. the reference.
Arguments One or more arguments must be included. Arguments need not be present.
How Typed Name is typed implicitly by first letter No type is associated with the
or explicitly by the type designation name.
appearing before the word FUNCTION.

Functions return a single value through the function name. Function subprograms defined by the programmer
also can return values through a list of arguments, through common, or both.

Table 7-2 summarizes the terminology of the overlapping categories of procedures and subprograms.

60497800 A 7-1

TABLE 7-2. PROCEDURE AND SUBPROGRAM INTERRELATIONSHIPS

Statement Intrinsic Basic Function Subroutine Block Data
Function Function External Subprogram Subprogram Subprogram
Function T8 prog
Procedure yes ves yes yes yes no
External procedure | no no yes yes yes N/A
Subprogram no no no yes yes yes
Function yes yes yes yes no no
External function no no yes yes N/A N/A
Who defines user compiler' compiler | user user user
Where defined within compiler | library | €xtemal to | external to | extemal to
. calling pro- calling pro- calling pro-
program unit . . .
gram unit gram unit gram unit

N/A = not applicable

Programmer written procedures (statement functions, function subprograms, and subroutine subprograms) are
discussed below as a group. FORTRAN supplied procedures (intrinsic functions and basic external functions)
are discussed in detail in section 8. The only subprogram that is not a procedure is the block data subpro-
gram. Since it is not executable, it is discussed separately.

MAIN PROGRAMS

7-2

60497800 D

7-3

60497800 B

69497800 F

BLOCK DATA SUBPROGRAM

7
BLOCK DATA

G

The block data subprogram is a nonexecutable specification subprogram that can be used to enter data into
cution

g

type, DIMENSION, COMMON, EQUIVALENCE,

The block data subprogram contains only
DATA, and END statements. A valid BLOCK DATA subprogram must contain at least one COMMON state-
ment and one DATA statement. Any executable statements are ignored and a warning is issued. All DATA
statements must follow the specification statements. Data can be entered into more than one block of
common in a block data program. The specifications in a BLOCK DATA subprogram take effect when the
binary output file (specified by the control statement B option) is loaded.

Example:

BLOCK DATA ANAME
COMMON/CAT/X,Y,Z/DEF/R,S,T
COMPLEX X,Y

DATA X,¥/2*((1.0,2.7))/,R/7.6543/
END

Z is in block CAT and S and T are in DEF, although no initial data values are defined for them.

60497800 A 7.5

PROCEDURES

The category of procedure to be used is determined by its particular capabilities and the needs of the program
being written. If the program requires the evaluation of a standard mathematical function, a FORTRAN
supplied intrinsic function or a basic external function can be used. If a single computation is needed
repeatedly, a user-written statement function can be included in the program. If a number of statements are
required to obtain a single result, a function subprogram is written. If a number of calculations are required
to obtain several values, a subroutine is written.

Procedure Communication (later in this section) contains details on how to use procedures and how procedures
use arguments or common to communicate. ’

SUBROUTINE SUBPROGRAM

7
SUBROUTINE name (p, Py, .p,)

7
SUBROUTINE name

T
!
|
|
|

name Symbolic name of the subroutine.

Pis---5Pp Dummy arguments that must agree in order, number, type,
ments passed to the subprogram at execution time.

A subroutine subprogram is executed when a CALL statement is encountered in a program unit. A sub-
routine subprogram must not directly or indirectly call itself. The subroutine subprogram communicates with
the calling program unit through a list of arguments passed with the CALL statement or through common.
Calling a Subroutine Subprogram later in this section contains more CALL statement details.

7-6 - 60497800 A

The SUBROUTINE\ tatement point of the sub-

program. (1] ' The subprogram name
is not used to return results to the calling program, does not determine the type, and must not appear in any
other statement in the same subprogram.

Subroutine subprograms can contain any statements except PROGRAM, BLOCK DATA, FUNCTION, or
another SUBROUTINE statement. They begin with a SUBROUTINE statement should have at least one
RETURN statement and end w1th an END statement.] e

encountered.

| Adjustable dlmensmns are penmtted

given later 1;1 this sectlon under Using Arrays).

Example 1:
/
Calling Program Subprogram
. SUBROUTINE ERROR1
. WRITE (6,1)
. 1 FORMAT (5X,22H NUMBER IS OUT OF RANGE)
IF (A-B) 10,20,20 RETURN
10 CALL ERROR1 END

20 RESULT=(A*CAT) +375.2-ZERO

.

The subroutine ERRORI is called and executed if A-B is less than zero. Control returns to
statement 20. This example also illustrates that arguments need not be used.

60497800 A 7-7

FUNCTION SUBPROGRAM

7
FUNCTION name (p1 veeeaPy)

— e — —

7
type FUNCTION name (p,,..., p,)

name Symbolic name of the subprogram.

P> -.»>Pp Dummy arguments that should agree in order, number, type
arguments in the calling program. At least one argument is requlred a maximum of
63 is allowed.

DOUBLE PRECISION, COMPLEX, or

type The type may be REAL, INTEGER,
LOGICAL.

A function subprogram performs a set of calculations when its name appears in an expression in a referencing

program unit. Execution of the function subprogram must result in a value being defined for the function
name. A function subprogram can modify the value of one or more of its arguments or store data in common.

7-8 60497800 A

Dummy arguments which represent array names must be dimensioned within the subprogram b a DIMENSION
or type statement.

function is referenced.
tion name must not appear in any nonexecutable statements other than the FUNCTION statement in the sub-
program. The type of the function name must be the same in the referencing program and the referenced
function subprogram. When type is omitted, the type of the function result is determined by the first char-
acter of the function name

The function subprogram can contain any statements except PROGRAM, BLOCK DATA, SUBROUTINE,
another FUNCTION statement, or any statement that directly or indirectly references the function being
defined. The function subprogram begi t, should have at least one RETURN"
statement, and has an END statemen . Control is returned to the
s encountered. |

A function subprogram can have the same name as that of an intrinsic or basic external function supplied by
FORTRAN. Section 8 defines the conditions under which programmer supplied routines override the
FORTRAN supplied routines.

Example:
Calling Program Subprogram

DIMENSION ARY (5,5) FUNCTION DIAG (A,N)
. DIMENSION A(N,N)
. DIAG=A(1,1)
. DO 70 1=2,N

10 RES=DIAG(ARY,5)**2 70 DIAG=DIAG*A{I,I)
. RETURN
. END

The statement labeled 10 contains the reference to function DIAG. The statement labeled 70 sets the
function name to a value. At the end of the function subprogram execution, RES will have the value of
DIAG squared.

BASIC EXTERNAL FUNCTION

A basic extemal function is a predefined procedure included with the system. Section 8 contains further
details.

60497800 A 79

INTRINSIC FUNCTION

An intrinsic function is a compiler-defined procedure that is inserted in the referencing program at compile
time. Section 8 contains further details.

STATEMENT FUNCTION

7
name (p1 Po.Pg, .., P,) = expression

name Type of the function is determined by the type of the function name.

P{>--->P, Dummy arguments must be simple variable names. At least one argument is requued a
aximum of 63 is allowed. These arguments should agree in order, number, type o
with the actual arguments used in the function reference.

expression Any expression may be used. It may contain references to intrinsic or basic external func-
tions, statement functions, or function subprograms. Names in the expression that do not
represent arguments are normal variables having the same value as they have outside the
function :

A statement function is a user-defined, single-statement computation and applies only to the program unit containing
the definition. Since the statement function only defines the function, the value is computed when the function is
referenced and the actual arguments are substituted for the dummy arguments in the definition.

During compilation, the statement function definition is retained by the compiler. Whenever the function is referenced,
instructions are generated in-line to evaluate the function (as opposed to FUNCTION subprograms for which an external
procedure is used at each reference). The expansion of a statement function is the same as writing the expression in
place of the reference. Thus the statement function does not reduce execution speed or efficiency.

Statement function names must not appear in DIMENSION, EQUIVALENCE, COMMON or EXTERNAL statements;
they can appear in a type declaration but cannot be dimensioned. Statement function names must not appear as actual
or dummy arguments. If the function name is type logical, the expression must be logical. If the function name is not
type logical, the expression must not be a relational or logical expression. For other types, if the function names and
expression differ, conversion is performed as part of the evaluation of the function. For example, in the program

. segment:

LSUM(,J) = OR(,))
A = OR(15,50)
= LSUM(15,50)

OR is typeless and LSUM is a statement function of type INTEGER. In the first function evaluation, no
conversion takes place; the binary value is assigned to A. In the second function evaluation, the value is
converted to floating point before being assigned to B.

A statement function must precede the first executable statement and it must follow all specification state-
ments. A statement function must not reference itself either directly or indirectly.

7-10 60497800 E

Examples:

Statement Function Definitions Statement Function References

ADD(X,Y,C,D)=X+Y+C+D RES1=GROSS-ADD(TAX,FICA,INS,RES3)

AVERGE(0,P,Q,R)=(0+P+Q+R)/4 GRADE=AVERGE(TEST1,TEST2,TEST3,
TEST4)+MID

LOGICAL A,B,EQV
EQV(A,B)=(A.AND.B).OR. TEST=EQV (MAX,MIN) .AND. ZED
(.NOT.A.AND..NOT.B)

COMPLEX Z RESULT=(Z(BETZ,GAMMA(I+K))**2-1.)
Z(X,Y)=(1.,0.)*EXP(X)*COS(Y) /SQRT (TWOPIE)
+(0.,1.)*EXP(X)*SIN(Y)
Example 1:

The statement function can be used to substitute a FORTRAN supplied function name in a program con-
taining an alternate name for this function.

SINF(X)=SIN(X) Statement function definition.

A-SINF(3.0+B)+7. Statement function reference.
The above sequence generates exactly the same object code as:
A=SIN(3.0+B)+7.
Example 2:

To compute one root of the quadratic equation ax2+bx+c=0, given values of a, b and c, an arithmetic
statement function can be defined as follows:

ROOT (A,B,C)=(-B+SQRT(B*B-4.*A*C))/(2.0%A)

When the function is used in an expression, actual arguments are substituted for the dummy arguments
A, B,C.

RESA = ROOT (6.5,7.,1.)
is equivalent to writing:

RESA = (-7.+SQRT(7.*7.-4.0%*6.5%1.0))/(2.0%6.5)

Wherever the statement function ROOT (A, B, C) is referenced, the definition of that function — in this
case (-B+SQRT(B*B—4.*A*C))/(2.*A) — is evaluated using the current values of the arguments A, B, C.

60497800 A 7-11

PROCEDURE COMMUNICATION

The procedures defined by a statement function or a procedure subprogram are executed when they are
referenced in a program unit.

PASSING VALUES TO A PROCEDURE

Values can be passed between a calling program unit and a procedure as actual arguments in an argument
list or through common. Arrays with adjustable dimensions can be used to pass values of arguments.
nts passed to a procedure must agree with the procedure definition in order, number, type, length,

USING ARGUMENTS

Arguments used for communication between procedures are either actual or dummy (formal). The arguments
appearing in a subroutine CALL statement or a function reference are the actual arguments. “The corre-
sponding dummy arguments appear in the SUBROUTINE or FUNCTION statement
%» S

The actual arguments allowed for a particular procedure are given in the discussion of the procedure
reference. :

Dummy arguments are used as variable, array or external procedure subprogram names within the subprogram
and can be used to return values to the calling program. The dummy arguments are replaced by the actual
arguments when the procedure is executed. Since all names are local to the program unit containing them,
the same dummy argument name can be used in more than one program unit. A dummy argument must
not appear in COMMON, EQUIVALENCE, or DATA statements within a program unit.

Dummy arguments representing array names must appear within the subprogram in a DIMENSION or type
statement giving dimension information. If dummy arguments are not dimensioned, they cannot be referenced
as arrays in a subprogram.

In a subprogram, the definition of a dummy argument that is associated with a constant actual argument or with
any expression except a variable or array element is prohibited.

If a subprogram reference causes a dummy argument to be associated with an entity in common in the refer-
enced subprogram, definition of the dummy argument or of the entity in common is prohibited. If a subpro-
gram reference causes two dummy arguments to be associated, the definition of either in the referenced subpro-
gram is prohibited.

7-12 60497800 C

Example 1:

Calling Program

Subprogram

FUNCTION GRATER(A,B)

IF (A.GT.B)1,2

W(I,J)=FA+FB-GRATER(C-D,3*AX/BX) 1 GRATER=A-B
RETURN

2 GRATER=A+B
RETURN

END

This example shows the normal use of arguments in a function subprogram. The actual argument C-D is

used in place of the dummy argument A and 3*AX/BX is substituted for dummy argument B when the

function subprogram is executed.

Example 2:

CALL SUBA(1.5) SUBROUTINE SUBA(R)

IF

R.INEO)R = 0

This example contains a prohibited definition of a dummy argument, R, which is associated with a con-

stant actual argument.

Example 3:

CALL suBB (X, X) SUBROUTINE SUBB (A, B)

A =
Z =

This example contains a prohibited definition of a dummy argument, A,
associated with another dummy argument, B, in the referencing program

B

which has been previously
unit.

Example 4:
COMMON X SUBROUTINE SUBC (B)
CALL SuBC (X) COMMON A

This example contains a prohibited definition of an entity in common,
dummy argument, B, in the same subprogram.

60497800 A

B

A, which is associated with a

USING COMMON

Common can be used to transfer values between a calling program unit and a subprogram. Passing values
through common is more efficient than passing values through arguments in a CALL statement or function reference.

If a dummy argument in a subprogram is associated with an entity in a common block in the same subpro-
gram, the definition of either is prohibited.

USING ARRAYS

The array dimensions in a subprogram must be the same as those in the calling routine if the subscripts are
to agree between the called and calling program units. If a dummy argument is not dimensioned, it cannot
be referenced as an array in the subprogram.

If any of the entries in a subscript of a type or DIMENSION statement is an integer variable name, the
array is called an adjustable array. The variable names are called adjustable dimensions. Such an array
can only appear in a procedure subprogram. The dummy argument list of the subprogram must contain
the array name and the integer variable names that represent the adjustable dimensions. The values of the
actual arguments that represent array dimensions in the argument list of the reference must be defined
prior to calling the subprogram and cannot be redefined during execution of the subprogram. The absolute

7-14 60497800 A

size of the actual array may not be exceeded. For every array appearing in an executable program, there
must be at least one constant array dimension associated through subprogram references.

In a subprogram, an array name that appears in a COMMON statement must have fixed dimension
specifications.

REFERENCING A FUNCTION

A function is referenced when the name appears in an expression. A function must not directly or indirectly
reference itself. The reference can appear anywhere in an expression that an operand of the same type can
be used.

When a statement function or intrinsic function is referenced, instructions are generated inline to evaluate the
function. The value is computed with the actual arguments substituted for the dummy arguments in the
definition.

When a function subprogram or a basic external function is referenced, control is transferred to the function
subprogram and the values of the actual arguments are substituted for the dummy arguments. Control is
returned to the referencing program unit when a RETURN is encountered.

Actual arguments in a function subprogram reference may be an expression, constant (including Hollerith),
variable, array name, array element name, subroutine subprogram name, extemal function name (not intrinsic
function or statement function), or function reference (the function reference is a special case of an arith-
metic expression).

60497800 A 7-15

CALLING A SUBROUTINE SUBPROGRAM

CALL name

CALL name (p1 veens pn)

T
|
!
|

name - Name of subroutine called.

Pps-- 5Py Actual arguments which must correspond in order, number, type,
specified in the SUBROUTINE statement.

A subroutine subprogram is executed when a CALL statement is encountered in a program unit. A subroutine
must not directly or indirectly call itself. The CALL statement transfers control to the subrcutine and either
in the subroutine returns control to the calling program unit. If a RETURN is

number, type,

an | Sl The subroutine name must not appear in any specification state-
ment in the calling program except an EXTERNAL statement.

Actual arguments in a subroutine subprogram call can be any of the following: expression, constant, variable,
array name, array element name, subroutine subprogram name, basic external function name (not an intrinsic

7-16 60497800 C

m

»B)

tisfied.

, is sa

ial case of an arithmetic
20

i

3

B) GO TO 2

is a spec
LE

Subprogram

SUBROUTINE GRATER (A
al parameter

IF (A
RETURN
RETURN

END

rmin

ference
ince the CALL statement as the last statement

on re

is called 20 times s
il the DO loop te

TEMP(I))

’

ion reference (the funct

to continue unt

»20

1

ion name), funct

Calling Program
tine subprogram GRATER

DO 5 I

5 CALL GRATER (STACK(I)

ion).

expression
a DO loop causes looping

or statement funct
The subrou

Example 1

S s e R o T S R
Mot G soian b el . i .
. e e i L o -
w&,wm,m%%um; o e o - i e
. o . e o e

nadain i

o e e

et . o

= . ke
; e e

s

L
i

s
.

Gt Sl =
s . e .

i
e

e G

-
i

- o
o s

5

¢

:

-

- o e

e

i e S ¢ e - o L i
i . , o o . o - .
[. : . . o , . . . L .
o e N G : s -
. . a ¢ .0 . g

e S M| . o o

i S L . o o o g
E e - e o -

b s T Y B S i s i

| . . .

b
i

e .

s
o

o T e :;

s
-

g

.

. . L e
. . B L i

i

o P Bl s e s : o L el 0T
- P s i i N
i O e
oo i e Sl s]

w .

L e

.

S g Giia

L = e

.

=

.

o
el e i
Samman i -

.

- -

> L -
i = e @ s e
Jom e - s
i il

o

o

o

:

e
L

i
i
.

i

-

.
o e

o
-

E

o
o
i

Dot

o

et i - oy : 5

S i : : : e

e : - e
S . = .
L B .

. oh O el
b g el - e
G e A8 = -
e e T e

:

- - o
Bhea =
sh e e
o
p
e : . . P

o
i

e

.

e

e
o

o
e
o

-

L
e

.

i

. =
B

-

R

L e

. .
T e -

-

S

5

-

e
e
i

i

v

&
o

-

o

.

o
o

s
o : G
e o

o

-

o

e -
o
o o

i

v

o
s

:

-

e

o

5
i

o

G . Lo e : .
S e - e S - = e
u
G o : . - .

. - . o

- L - .

i
Lk

Eaentoees e

: . .

] e R 5 cmimgl e : . : - . ;

iy o = e : - :
. e o . - o

S
: Lo e
e .
- e

i

ey P -
i
s

L

s S e
. g e

e
-

s

e
e e
e e
e

.

e

G

i
.

.
.

-

.

-

o -
.

o

s

.

-

- S
il L
B ol i
P ol e
S
i .

e

el
L

o - oo
- . . -

:

o

;.

e .

—
-
o

.
O

T

G
L

o

S

T
.

i

i

ol . o o R

il P
o o
o e

. - - m . - o - . ey

.
e

i
W : 8
- . 5
M SR e

]

-

o

i

.
e
.

o o Bt ¢« 4 s
Ay e e . . £

o

s o a
e me g .
e e
- . e o
o - :
. o &
. L : .
e . .
. (
L

o
o

s
i
4
o

o

5

.
=
-
o
.
o
i
.
L

.

e
T

o
e
.

&

o

o
i

i

-

b

o

e

0
i

-

L e o ; - e

7-17

60497800 A

L
i
.
1

7-18 60497800 A

60497800 E 7-19

7-20

Fixed starting
address for
primary overlays

Fixed starting
address for (1,n)
secondary overlays

Zero
overlay
(0,0)

Primary
overlay
(3,0

Secondary
overlay
(3,1)

Fixed starting address

for primary overlay

Starting address for
secondary overlay
4,2)

Fixed starting address

for secondary overlay

Zero overlay (9,0)

Primary overlay (1,0)

Secondary overlay (1,1)

Zero (0,0)

Primary
overlay (4,0)

60497800 E

L

s

-

60497800 G 7-21

7-22 60497800 D

60497800 D 7-23

60497800 A

7-24

7-25

60497800 A

60497800 A

7-26

o

-

tions and is to be used repeatedly. The entire p: , e generated, therefore.
placed on the file in the absolute form. The control statement CATALOG creates a

60497800 A 7-27

8T-L

-8

TABLE 8-1. INTRINSIC FUNCTIONS
Intrinsic Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example
=
Absolute 1Al 1 ABS Real Real Y=ABS(X)
Value IABS Integer Integer J=1ABS(I)
DABS Doubie Double DOUBLEAB
B=DABS(A)
Truncation Sign of A times 1 AINT Real Real Y=AINT(X)
largest integer < |Al INT Real Integer 1=INT(X)
for |A] < 2481 IDINT Double Intecer DOUBLE 2

V 008L6¥09

S-8

TABLE 8-1.

INTRINSIC FUNCTIONS (Contd)

Intrinsic
Function

Definition

Number of
Arguments

Symbolic
Name

Type of
Argument

Type of
Function

Example

Obtain Imagi-
nary Part of
Complex
Argument

AIMAG

Complex

Real

Express Single

Precision Argu-
ment in Double
Precision Form

DBLE

Real

Double

Express Two
Real Arguments
In Complex .
Form

A1+A2i
(where i2= -1)

CMPLX

Real

Complex

COMPLEX A
D=AIMAG(A)

COMPLEX C
C=CMPLX(A1,A2)

Obtain Conju-
gate of a Com-
plex Argument

a-bi
(where A=a+bi)

CONJG

Complex

Complex

COMPLEX X,Y
Y=CONJG(X)

9-8

d 008L6¥09

TABLE 8-2. BASIC EXTERNAL FUNCTIONS

Basic Extemal Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example
Exponential eh 1 EXP Real Real Z=EXP(Y)
-675.82<A<741.67 1 DEXP Double Double
e{X+Y) 1 CEXP Complex Complex COMPLEX A,B
-675.82<X<741.67 B=CEXP(A)
IY[<m x 246
Natural logg (A) 1 ALOG Real Real Z2=ALOGL(Y)
Logarithm A>0 1 DLOG Double Double .
log, (X+iY) 1 CLOGT Complex Complex COMPLEX AB
X2+Y2#0 B=CLOG(A)
Common logyo(A) 1 ALOG10 Real Real B=ALOG10(A)
Logarithm A>0 DLOG10 Double Double LED
Trigonometric sin{A) 1 SIN Real Real
Sine in radians |Al<n x 246 1 DSIN Double Double UBL
DSIN
sin(X+iY) 1 CSIN Complex Complex COMPLEX CC,F
IXI<7x 296 CC=CSIN(F)
Y[<741.67
Trigonometric cos(A) 1 Ccos Real Real X=COS(Y)
Cosine in |AI<T x 296 1 DCOS Double Double
radians
cos(X+iY) 1 CCOSs Complex Complex COMPLEX CC,F
IXI<7 x 246 CC=CCOS(F)
Y|<741.67
Hyperbolic tanh{A) 1 TANH Real Real B=TANH(A)

Tangent

TCLOG returns values with imaginary parts in the range (-m,7].

Double

Double

For x<0, therefore, CLOG(x+i0) returns an imaginary part with a value =+m;
CLOG(x+i0™) returns an imaginary part with a value =+7; and CLOG(x-i0%) returns an imaginary part with a value ~-.

4 008L6+09

T'9-8/1°9-8

TABLE 8-2. BASIC EXTERNAL FUNCTIONS (Contd)

Basic External Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example

A
Error 2 12
Function Jr]; e’ dt 1 ERF Real Real Y=ERF(X)
Complementary 2 f°°_t2 1 ERFC Real Real Y=ERFC(X)
Error Function »ﬁr Ae dt

A<25.923

Hyperbolic arctanh(A) 1 ATANH Real Real Y=ATANH(X)
Arctangent Al <1
Trigonometric sin{A) 1 SIND Real Real Y=SIND(X)
Sine in 1Al < 2%7
Degrees
Trigonometric cos(A) 1 COSD Real Real Y=COSD(X)}
Cosine in 1Al < 247
Degrees
Trigonometric tan(A) 1 TAND! Real Real Y=TAND(X)
Tangent in Al < 247
Degrees

?The argument for TAND must not be an odd multiple of 90.

D 008L6¥09

L-8

TABLE 8-2. BASIC EXTERNAL FUNCTIONS (Contd)

A=a+bi

TCSQRT returns values in the right half plane.
7tATAN and DATAN return values in the range
t+TATAN2 and DATAN2 return values in the range
returns a value = + 7; and ATAN2(0",x) returns a value =~ - 7.
£ The function DMOD (a,b) is defined. as a-[a/b]b,where[X] is the largest integer that does not exceed the magnitude of X with sign the same as X;
the result is not defined when the second argument is zero.
£ ACOS and DACOS return values in the range [0,m]. §£€ ASIN and DASIN return values in the range —g, 1r2_]_

(_EI-E)'
F-ﬂ,zﬂ]. For x < 0, therefore, ATAN2(0,x) returns a value = + m; ATAN2(0*,x)

Basic Externai- Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example
Square (A)”2 (non- 1 SQRT Real Real QY=SQRT(X)
Root A= 0 negative 1 DSQRT Double Double | "
root) E=DS5! | %i‘
1/2 o 1 CSQRTT Complex Complex COMPLEX CC,F
A {principal CC=CSQRT(F)
value)
Arctangent arctan (A) 1 ATAN'H' Real Real Y=ATAN(X) w
1 DATANTT Double Double :
arctan (A1/A2) 2 ATAN2TTT Real Real B=ATAN2(A1,A2)
A12+A2250 2 DATAN2TTT | Double Double
Remaindering A1 (mod A2) 2 DMOD ¢ Double Double
Modulus Va2+b? 1 CABS Complex Real COMPLEX C

CM=CABS(C)

When a function subprogram is defined with the same name as that of a basic external function, the user
definition overrides the library definition only if, in the calling program unit, the name of the function appears
either in an EXTERNAL statement or in an explicit type statement that overrides the type associated with

the library function, or if option T, D, or OPT=0 is specified on the FTN control statement.

Table 8-2 lists the basic external functions.

Arguments for which a result is not mathematically defined, or those of a type other than that specified,
should not be used. Arguments of the trigonometric functions SIN, COS, and TAN are in radians; those of
SIND, COSD, and TAND are in degrees. The inverse trigonometric functions return principal values in radians.
If the name of the function appears either in an EXTERNAL statement or in an explicit type statement that
overrides the type associated with the library function, or if option T, D, or OPT=0 is specified on the FTN
control statement, the arguments of all external functions are checked to ensure that they are neither indefinite
nor infinite and fall within the limits listed in the Definition column of table 8-1. Argument checking is pro-

vided unconditionally for all single and double precision math functions except DSIN, DCOS, DLOG, and
DLOG10. An informative diagnostic is provided when an argument is found to be invalid.

MISCELLANEOUS UTILITY SUBPROGRAMS

The utility subprograms described below are supplied by the system and are always called by name (section
17 defines call by name). A user-supplied subprogram with the same name as a library subprogram overrides
the library subprogram. Other utility routines, such as the mass storage routines, CYBER Record Manager
interface routines, Sort/Merge interface routines and Post Mortem Dump routines are described later in this section.
In the definitions listed under the routines:

i and n are integer variables, constants, or expressions.

j is an integer variable.

a and b are variable or array names of any type.

u is a unit designator (as defined in section 5).

H is a Hollerith specification.

RANDOM NUMBER GENERATOR
RANF (n)f

Random number generator. Retumns values uniformly distributed over the range (0,1); the value O and 1 are
excluded. n is a dummy argument which is ignored. Result is type real.

TRANF is an intrinsic function.

8-8 60497800 E

CALL RANSET(n)

Initializes seed of RANF. n is a one-word bit pattern. Bit O will be set to 1 (forced odd), and bits 59
through 48 will be set to 1717 octal.

CALL RANGET(n)
Obtains current seed of RANF between 0 and 1. n is a symbolic name to receive the seed. It is not neces-
sarily normalized. The value returned may be passed to RANSET at a later time to regenerate the same
sequence of random numbers.
OPERATING SYSTEM INTERFACE ROUTINES

DATE(a) or CALL DATE(a)
The current date is returned as the value of argument a or of the function in the form 10Hbmm/dd/yyb (under
NOS/BE 1, SCOPE 2) or 10Hbyy/mm/dd. (under NOS 1), where b denotes a blank, mm is the number of the
month, dd is the number of the day within the month, and yy is the year. The value returned is Hollerith data
and can be output using an A format specification.
The default type of the function DATE is real; thus if J and K are integer variables as in:

J = DATE(K)
J will not be useful because the value returned will have been converted from real to integer.

JDATE(a) or CALL JDATE(a) *
The current date is returned as the value of argument a or of the function in the form 5Ryyddd, where yy

is the year and ddd is the number of the day within the year. The value returned is Hollerith data and can
be output using an R format specification. The type of the function JDATE is integer.

SECOND(t) or CALL SECOND(t)

The central processor time is retumed from start-of-job in seconds as a real number, usually accurate to two
decimal places. t is a real variable.

Example:

OPTIM = SECOND (CP)

T These routines can be used as functions or subroutines. The value is retumned via the argument and the
normal function retum.

¥ Not available under SCOPE 2.
T The date format can be changed by the installation.

60497800 D 8-9

TIME(a) or CALL TIME(a)T
CLOCK(a) or CALL CLOCK (a)t

The current reading of the system clock is returned as the value of argument a or of the function in the form
10Hbhh.mm.ss., where b denotes a blank, and hh, mm, and ss are the number of hours, minutes, and seconds,
respectively. The value returned is Hollerith data and can be output using an A format specification.

The default type of the functions TIME and CLOCK is real; thus if J and K are integer variables in the following
statement, J is not useful because the value returned will have been converted from real to integer.

Example:
J = TIME(K)
CALL DISPLA (H,k)

A name and a value are placed in the dayfile. H is a Hollerith specification of not more than 50 characters; k is
a real or integer variable or expression and is displayed as an integer or real value. Characters with display code
greater than 57 octal are replaced by blanks when displayed at the operator’s console. If the first character is §,
the message will flash at the console except under NOS 1, which allows flashing messages only for system origin jobs.

Example:
CALL DISPLA (7H TIME =, STOP-START)

CALL REMARK (H)

Places a message in the dayfile. Under SCOPE 2, the maximum message length is 90 characters displayed on one line.
Under NOS/BE 1, the maximum message length is 80 characters displayed 40 characters per line. Under NOS 1, the
message length is one line of 30 characters. A message exceeding the maximum length is truncated. A message
shorter than the maximum must have all zeros in the lower 12 bits of the last word. These zeros are automatically
supplied when a Hollerith constant is used as the parameter. Characters with display code greater than 57 octal are
listed in the dayfile, but they are replaced by blanks when displayed at the operator’s console. If the first character
is §, the message will flash at the console, except under NOS 1, which allows flashing messages only for system

origin jobs.

Example:
CALL REMARK (9HLAST DECK)
CALL SLITE(i)

Sense light i is turned on. If i = O, all sense lights are turned off. If i is other than O through 6, an
informative diagnostic is printed and sense lights are not changed.

CALL SLITET(i,j)
Sense light i is tested. If sense light iis on, j = 1; if sense light i is off, j = 2. If i is other than 1-6, an infor-

mative diagnostic is printed, all sense lights remain unchanged, and j = 2. Execution tums off sense light i if
it is on.

TThese routines can be used as functions or subroutines. The value is returned via the argument and the
normal function retumn.

8-10 60497800 E

(Note: Logical variables generally provide a more efficient method of testing a condition than do calls to
SLITE or SLITET.)

CALL SSWTCH(i,j)
If sense switch i is on, j is set to 1; if sense switch i is off,j issetto 2. i is 1 to 6. If i is out
of range, an informative diagnostic is printed, and j is set to 2. The sense switches are set or reset by the

computer operator or by the control statements SWITCH (NOS 1 and NOS/BE 1), ONSW (NOS 1 only), and
OFFSW (NOS 1 only).

CALL OVERLAY(fname, primary, secondary, recall k)
See section 7.

CALL EXIT

Program execution is terminated and control is returned to the operating system. (Note: use of the STOP
statement is preferable to CALL EXIT.)

CALL CHEKPT X(filelist,n)

A checkpoint dump of the files specified is taken. If n is zero, all files are checkpointed. If n is nonzero, the
files specified by filelist are checkpointed.

filelist Array in the following format:

59 17 " 0
Word 1 n 0000
Word 2 Ifn, f, +
Word 3 Ifny fo¥

= zZ

Word n+1 Ifn, fo ¥

*Does not apply to SCOPE 2.

60497800 D 8-11

n Number of files in following list, to a maximum of 42.

1fny Name (in left justified display code) of user mass storage files to be processed.
£, Number indicating specific manner in which 1fn is to be processed.
0 Mass storage file is copied from beginning of information to its position at

checkpoint time, and only that portion will be available at restart. The
file is positioned at the latter point.

1 Mass storage file is copied from its position at check point time to end of
+ information, and only that portion will be available at restart. The file is
positioned at the former point.

2 Mass storage file is copied from beginning of information to end of infor-
mation; the entire file will be available at restart time. The file is positioned
at the point at which the checkpoint was taken.

\ 3 The last operation on the file determines how the mass storage file is copied.

Example:

DIMENSION IFILES(4)

IFILES(1) = 300008

IFILES(2) = SLTAPE1 .OR. 10000B
IFILES(3) = BLTAPE2 .OR. 30000B
IFILES(4) = SLTAPE3

CALL CHEKPTX(IFILES,1)

The names defined in the array passed to CHEKPTX must be the actual file names used at run time.

For more information, refer to the operating system reference manual checkpoint/restart discussions.

CALL RECOVR(name,flags, checksum)*

name Name of subroutine to be executed if flagged conditions occur (must be specified in an
EXTERNAL statement).

flags Octal value for conditions under which recovery code is to be executed, as outlined below.
Conditions can be combined as desired, with octal values up to 177 allowed.

001 Arithmetic mode error.
002 PP call or auto-recall error.

¥ Not available under SCOPE 2.

8-12 60497800 E

004 Time or storage limit exceeded.
010 Operator drop, kill, or rerun.
020 System abort.

040 CP abort.

100 Normal termination.

checksum Last word address of recovery code to be checksummed; 0 if no checksum is desired.

The RECOVR subroutine allows a user program to gain control at the time that normal or abnormal job ter-
mination procedures would otherwise occur. Initialization of RECOVR at the beginning of a program estab-
lishes the conditions under which control is to be regained and specifies the address of user recovery code. If
the stated condition occurs during program execution, control returns to the user code. If necessary, the sys-
tem increases the CP time limit, input/output time limit, or mass storage limit to provide an installation defined
minimum of time and mass storage for RECOVR processing. No limit is increased more than once in a job.
RECOVR can be called more than once during program initialization to reference different user recovery sub-
routines. These calls to RECOVR can use different combinations of conditions for the same or different user
recovery subroutines.

No more than five routines can be specified by RECOVR in one program. If an error occurs and more than one
routine has been established for that error, the routines are called successively, with the routine most recently
specified called first.

The second specification of a subroutine overrides its previous parameters. This override can be used to remove a
subroutine from the RECOVR list by passing a mask of zero.

A checksum of the user recovery code can be requested during initialization. If flagged conditions subsequently
occur, RECOVR again checksums the code before returning control to it. This gives some assurance of user code
integrity before it is executed.

If the checksum parameter is zero, no checksum is done.

If one of the user’s selected error conditions occurs, RECOVR gains control, performs internal tasks, and then
transfers control to the user's recovery subroutines. The following three arguments are passed to the user’s
recovery subroutine:

1. A 17-word integer array. The first 16 words are an image of the exchange package; the seventeenth word is
the contents of RA+1. The first word of the exchange package contains the value of BO; bits 0 through 17
of BO contain the error flag.

2. A flag that, upon return, determines the type of program termination. If the user’s recovery sub-
routine sets the flag non-zero, the job terminates normally, as if no errors had occurred. If the
flag remains zero, the job continues as if RECOVR had not been called, that is, the original
system error code is restored and processed.

3. An array, starting at RA+1, that allows a FORTRAN subroutine to access all of the user’s field
length.

60497800 E 8-13

If the recovery subroutine was called because of normal termination, the subroutine, before returning, should
flush the buffers of all output files. Buffers can be flushed by an ENDFILE or REWIND statement.

In an overlay structured program, calls to RECOVR as well as the user recovery subprograms should be in the
(0,0) overlay.

For further information about RECOVR, refer to the appropriate operating system reference manual.
Example:

PROGRAM MAIN(INPUT,OUTPUT)
EXTERNAL REPREV,CHKSUM

CALL RECOVR(REPREV,72B,LOCF (CHKSUM))

STOP
END
SUBROUTINE REPREV(IXCHNG,IFLAG,IFLDLN)
DIMENSION IXCHNG(17), IFLDLN(400008)
IFLAG = 1
PRINT 10, IXCHNG, (IFLDLN(I), 1=1,64)
10 FORMAT (3(6X, 020))
RETURN
ENTRY CHKSUM - determines end of code to be checksummed
END

DEBUGGING AIDS

A number of calls and functions useful in debugging are described here. Many users find CYBER Interactive Debug
and/or Post Mortem Dump more useful. They are described near the end of this section.

CALL DUMP (a1,b1,f1, ey an'bn'fn)
CALL PDUMP (a1,b1,f1, oo apbf)

Dumps central memory on the OUTPUT file in the indicated format. PDUMP retums control to the calling
program; DUMP terminates program execution. 3y and b; specify the beginning and the end of the storage
area to be dumped. 1 < n < 20. f is a format indicator, as follows:

f=0o0r3 octal dump
f=1 real dump
f=2 integer dump

For f values O through 3, a; and b; are the first and last words dumped. If 4 is added to any f value, the
values of a; and b; are used as the addresses of the first and last words dumped within the job’s field length.
An ASSIGN statement or the LOCF function can be used to get addresses for the a; and b; parameters.

8-14 60497800 F

Examples:

CALL PDUMP(A(1),A(100), 1) Dumps from A(1) to A(100) as real numbers

CALL PDUMP (0, 10008, 4) Dumps from location O to 1000B in octal

CALL STRACE
Provides traceback information from the subroutine calling STRACE back to the main program. Traceback
information is written to the file DEBUG. To obtain traceback information interspersed with the source
program, DEBUG should be equivalenced to OUTPUT in the PROGRAM statement. (Refer to STRACE,
section 9).

LEGVAR(a)

Checks the value of variable a. Returns the result -1 if variable is indefinite, +1 if out of range, and 0
otherwise. Variable a is type real; result is type integer.

CALL SYSTEM(ermum,mesg)

errmum Error number. An integer value from 0 to 9999 decimal. Error numbers used by the
compiler (listed in appendix B) retain the severity associated with them. Error numbers
51 (non-fatal) and 52 (fatal) are reserved for the user. If an error number greater than
the highest number defined in appendix B is specified, 52 is substituted.

mesg Error message: entered as a Hollerith constant with the first character used as a carriage
control character and not printed.

The subroutine SYSTEM enables the user to issue an execution-time error message.

If error number zero is entered, the message is ignored, the output buffers are flushed, and control is returned
to the calling program.

The file OUTPUT should be declared before SYSTEM is called. Otherwise, no errors are printed; and a message
to this effect is entered in the dayfile.

Each line is printed unless the line limit of the OUTPUT buffer is exceeded, in which case the job is terminated.
Example:

CALL SYSTEM (3, # CHECK DATA %)

CALL SYSTEMC (errnum,speclist)

errnum Error number for which non-standard recovery is to be implemented.

60497800 C 8-15

speclist Integer array containing error processing specifications is consecutive locations:

word
word
word
word
word
word

1 F/NF (1 = fatal, O = non-fatal).

2 Print frequency

3 Frequency increment

4 Print limit

5 User-specified error recovery routine address

6 Maximum traceback limit applicable to all errors; this limit is
20 unless changed by a call to SYSTEMC

SYSTEMC enables the user to alter the contents of the error table, which contains specifications that regulate
error processing. The error table is ignored for erroneous data input from a connected (terminal) file.

In an overlay program, if SYSTEMC is not called in the (0,0) overlay, the routine might not be available

to higher level overlays.

In the error table, the first entry corresponds to error number 1, the second to error number 2, and so on.
Each entry has the following format:

59 51

43 31 20 17 0

print frequency
frequency | increment

detection user-specified

rint limit
P total F N recovery address

print frequency

frequency increment

print limit

detection total

F/NF

8-16

By default, print frequency value is 0. If the value is changed to n by a call
to SYSTEMC, diagnostic and traceback information is listed every nth time until
the print limit is reached.

By default, frequency increment value is 1. This specification can be changed
by a call to SYSTEMC if the call specifies print frequency as 0. When fre-
quency increment is 0, diagnostic and traceback information is not listed; when
it is 1, such information is listed until the print limit is reached; when the
frequency increment is n>1, such information is listed only the first n times
unless the print limit is reached first.

By default, print limit value is 10. It can be changed by a call to
SYSTEMC.

Detection total is a running count of the number of times an error occurs.
The final value is reported in the error summary issued at end of job if
SYSTEMC is called during execution.

This bit specifies the severity of the error: 1 indicates a fatal error; 0, non-
fatal. The severities of system defined errors are given in appendix B. All
errors defined by the user with these numbers in a call to SYSTEM retain the
specified severity. The severity of any error can be changed by a call to
SYSTEMC, however.

60497800 C

A/NA The A/NA bit is ignored unless a non-standard recovery address is specified;
it can be set only during assembly of SYSTEMC. When this bit is set, the
address in an auxiliary table is passed in the third word of the secondary
argument list to the recovery routine. Each word in the auxiliary table must
have the error number in its upper 10 bits, so that the address of the first
error number match is passed to the recovery routine. An entry in the aux-
iliary table for an error is not limited to any specific number of words.

user-specified This address is specified in a call to SYSTEMC.
recovery address

A negative value for any word in the speclist indicates that the current value of that specification is not to be
changed. A user-specified error recovery routine activated by a call to SYSTEMC can be canceled by a sub-
sequent call with word 5 of the speclist set to zero.

If SYSTEMC has been called, an error summary is issued at job termination indicating the number of times
each error occurred since the first call to SYSTEMC.

For an error detected by a routine in the math library, a user-supplied error recovery routine should be a
function subprogram of the same type as the FORTRAN function detecting the error. For any other error,
a user-supplied error recovery should be a subroutine subprogram.

When SYSTEMC is called from an overlay or segment, it must reside in the (0,0) overlay or the root segment.

When an error previously referenced by a SYSTEMC call is detected, the following sequence of operations is
initiated:

1. Diagnostic and traceback information is printed in accordance with the specification in the pertinent
error table entry. The traceback information is terminated for any of the following conditions:

Calling routine is a program
Maximum traceback limit is reached.

No traceback information is supplied.

2. If the SYSTEMC cali references a user-specified error recovery routine address, SYSTEMC,
FORSYS=, and the routine detecting the error are delinked from the calling chain, and the
user-supplied error recovery routine is entered.

3. If the error is non-fatal, control returns to the routine that called the routine detecting the error.
An error summary is printed at job termination.

4. If the error is fatal, all output buffers are flushed, an error summary is printed, and the job is
terminated.

60497800 D 8-17

If a non-standard recovery address is specified in the SYSTEMC call, the following information is available to
the user recovery routine:

Register Contents

Al Address of argument list passed to routine detecting the error for errors detected by a
math library routine.

Address of the FIT for error 103.
Undefined for all other errors.

X1 Address of the first argument in the list for errors detected by a math library routine.
Undefined for all other errors.

A0 Address of argument list of routine that called the routine detecting the error.

Bl Address of a secondary argument list containing, in successive words:

Error number associated with this error.

Address of message associated with this error.

Address within auxiliary table if A/NA bit set; otherwise 0.

In upper 30 bits, instruction consisting of RJ to SYSERR.j; in lower 30 bits, address of

traceback information for routine detecting the error.

Information in the secondary argument list is not available to user supplied error recovery
routines coded in FORTRAN.

A2 Address of error table entry for this error.
X2 Contents of error table entry for this error.
Example 1:

PROGRAM EXPECT(OUTPUT)
DIMENSION IRAY(6)
DATA IRAY /6 * (-0}

C SET PRINT LIMIT TO ZERO
tRAY(4)=0

X = EXP(800.0)
X = EXP(-800.0)

C CALL SYSTEMC TO INHIBIT PRINTING OF ERROR 115
.C AND START ERROR SUMMARY ACCUMULATION
CALL SYSTEMC (115,IRAY)
PRINT *, ##
PRINT *#*****SYSTEMC IS CALLED TO SUPPRESS PRINTING#,

¢ # OF ERROR 115#

X = EXP{800.0}
X = EXP(-800.0) .

8-18 : 60497800 C

PRINT *# #

PRINT *##****ERROR 115 DETECTED BUT NOT PRINTED#
END

ARGUMENT TOO LARGE, FLOATING OVERFLOW
ERROR NUMBER 30 DETECTED BY EXP

ARGUMENT TOO SMALL
ERROR NUMBER 115 DETECTED BY EXP

*&**SYSTEMC IS CALLED TO SUPPRESS PRINTING OF ERROR 115

ARGUMENT TOO LARGE, FLOATING OVERFLOW
ERROR NUMBER 30 DETECTED BY EXP

+****ERROR 115 DETECTED BUT NOT PRINTED

ERROR SUMMARY

ERROR TIMES
0030 0001
0115 0001

Program EXPECT illustrates a standard error recovery in a math library routine and how to suppress the print-
ing of error message 115.

Example 2:

PROGRAM FXAMPL (TAPE1l»OUTPUT)
EXTERNAL ITSOK
OIMENSION NARRAY(6)
DATA NARQAY/6#(=1)/
NARRAY (1) = 0
NARRAY(S) = LOCF (ITSOK)
NARRAY (6) =]
CALL SYSTEMC(66¢NARRAY)
NAMELIST/DATAL/A+8
READ (1+ DATAl)
REWIND 1
NAMELIST/DATA2/A8B
READ (l+ DATA2)
NAMELIST/DATAOUT/A»8B
PRINT DATAOQUT
STOP
END
SUBROUTINE ITSOK
PRINT 10

10 FORMAT (®#0DATA SET NAMED ABOVE NOT USED®)
RETURN
END

Input:

$SDATAZ2
3..
Loy

o>

60497800 C 8-19

Output:

NAMELIST NAME NOT FOUND = DATAY
ERROR NUMBER 0066 DETECTED BY NAMIN= AT ADDRESS 000435

DATA SET NAMED ABOVE NOT USED

SDATAOUT

A = o3E+01
B B o4E+01,
SEND

ERROR SUMMARY
ERROR TIMES
0066 0001

CALL LIMERR({lim)

lim Integer value; the program does not terminate when data errors are encountered until the
number of errors occurring after the call exceeds the value of lim.

NUMERR(n) A function that returns the number of errors since the last LIMERR call. Result type is
integer. n is a dummy argument which is ignored.

The subroutine LIMERR and function NUMERR enable the user to input data without the risk of termination
when improper data is encountered.

LIMERR can be used to inhibit job termination when data is being input with a formatted, NAMELIST, or list
directed read, or with DECODE statements. It operates only when data is encountered that would ordinarily
cause job termination under error number 78 (“ILLEGAL DATA IN FIELD”) or error number 79 (“DATA
OVERFLOW”). LIMERR has no effect on the processing of errors in data input from a connected (terminal) file.

LIMERR initializes an error count and specifies a maximum limit (lim) on the number of data errors
allowed before termination. LIMERR continues in effect for all subsequent READ statements until the limit
is reached. LIMERR can be reactivated with another call, which will reinitialize the error count location and
reset the limit. A LIMERR call with lim specified as zero nullifies a previous call; improper data will then
result in job termination as usual.

When improper data is encountered in a formatted or NAMELIST read or in a DECODE statement with LIMERR
in effect, the bad data field is bypassed, and processing continues at the next field. When improper data is
encountered in a list directed read, control moves to the statement immediately following the READ statement.

NUMERR returns the number of errors since the last LIMERR call. The previous error count is lost when
LIMERR is called, and the count is reinitialized to zero.

8-20 60497800 G

Example:

The following example illustrates the use of LIMERR and NUMERR to suppress normal fatal termination
when large sets of data are being processed.

CALL LIMERR (200)

READ(1,125)(ARAY(I),1=1,1500)
125 FORMAT (3F10.5,E10.1)

IF (NUMERR({0).GT.0) GO TO 500

500 CALL LIMERR(200)
READ(1,125)(BRAY (1),1=1,1500)
IF (NUMERR(0).GT.0) GO TO 600

600 CALL LIMERR(100)
READ(1,230}(LRAY(1),1=1,500)
PRINT 99, NUMERR(0)
READ(4,127)(MRAY!(1),1=1,500)
PRINT 99, NUMERR(0)
READ(4,225)(NRAY (I),1=1,50)

IF (NUMERR(0).GT.0) GO TO 700

700 STOP
END

When LIMERR is called, a limit of 200 errors is established. The number of errors is reset to zero. After
ARAY is read, NUMERR(0) is checked. If errors occur, the following statements are not processed and a
branch is made to statement 500. Had LIMERR not been called, fatal errors would have terminated the pro-
gram before the branch to statement 500. At statement 500, LIMERR once more initializes the error count,
and execution continues.

60497800 E 8-21

'Emmﬂm

PRIGRAM EXAMPL(TAPEL,OUTPUT)
DIMENSION ACARD(5)
DA]’A ACARD /’1.”2.,"3:,'“‘,-5a/
SALL LIMERR(2)
READ(1+13) (ACARD(I) 4I=1,5)

13 FORMAT (F4.1)
PRINT 2i, NUMERR(S)

25 FORMAT (1HG, I1, * DATA ERRORS FOUND*//)
PRINT 30y (ACARDII)I=145)

33 FORMAT (1Xy Fiéol)
STOP
END

Input:

47,1
25./
48,3
2446
91.2

Output:

8-22

25./
esetaesses123455783031234567339012345678301234567830

* ERROR DATA INPUT + ILL:EGAL DATA IN FIELD ¥*r*

ERROR NUMSER 78 DETELCTED BY INCOM= AT ADDRESS 000215
SALLED FROM KRAKER= AT ADDRESS G00345

CALLED FROM INPC= AT ADDRESS 530675

CALLED FROM EXAMPL AT L_INE 5

4 2l B
estaesessel234557330123456789312345678901234567890

* ERROR DATA INPUT * ILLEGAL DATA IN FIELD *e+

ERROR NUMBER 738 DETELTED BY INGOM= AT ADDRESS 000215
CALLED FROM KRAKER= AT ADORESS {00345

GALLED FROM INPC= AT ADDRESS 3404075

CALLED FROM EXAMPL AT LINE 5

2 DATA ERRORS FOUND

7.1
=238
4343
-4 8
91.2

60497800 D

INPUT/OUTPUT STATUS CHECKING

FORTRAN Extended provides the capability of checking for an end-of-file or a parity error condition following
read operations via the functions UNIT, EOF, and IOCHEC.

Any of the following conditions encountered during a read returns an end-of-file status via the functions UNIT
or EOF:

End of section (in the case of file INPUT only)

End of partition

End of information

Non-deleted W format flag record

Embedded tape mark

Terminating double tape mark

Terminating end-of-ﬁle label

Embedded zero length level 17 block

The functions UNIT and IOCHEC return a parity error indication for every record within or spanning a block
containing a parity error; however, such an indication does not necessarily refer to the immediately preceding
operation because of the record blocking/deblocking performed by the Record Manager input/output routines.

§Parity status can be checked on write operations that access mass storage files when the write check option
has been specified on the REQUEST statement for the file (SCOPE 2 Reference Manual). Write parity errors
for other types of devices (such as staged/on-line tape) are detected by the operating system, and a message
to this effect is written in the dayfile.

UNIT(u)

The UNIT function is used to check the status of a BUFFER IN or BUFFER OUT operation for an end-of-
file or parity error condition on logical unit u. When UNIT is referenced, the user program does not regain
control until input/output operations on the unit are complete. The function returns the following values:

-1. Unit ready, no end-of-file or parity error encountered on the previous operation
10. Unit ready, end-of-file encountered on the previous operation
+1. Unit ready, parity error encountered on the previous operation

Example:

IF (UNIT(5)) 12,14,16

Control transfers to the statement labeled 12, 14 or 16 if the value returned was -1., 0., or +1., respectively.

8 Applies only to SCOPE 2.

60497800 C 8-23

If 0. or +1. is returned, the condition indicator is cleared before control is returned to the program. UNIT
should only be called for a file processed by buffer statements.

EOF(u)

The EOF function is used to test for an end-of-file condition on unit u following a formatted, list-directed,
NAMELIST, or unformatted read. Zero is retumed if no end-of-file is encountered, or a non-zero value if end-
of-file is encountered.

Example:
IF (EOF(5)) 10,20

returns control to the statement labeled 10 if the previous read encountered an end-of-file; otherwise, control
goes to statement 20.

If an end-of-file is encountered, EQF clears the indicator before returning control.

The EOF function returns a zero value following read or write operations on random access files (files accessed
by READMS/WRITMS), and also following write operations on all types of files, regardless of whether an end-
of-file condition has been detected; therefore, the EOF function should not be used in those circumstances.

The user should test for an end-of-file after each READ statement to avoid input errors. If an attempt is
made to read on unit u and an EOF was encountered on the previous read operation on file, execution ter-
minates and an error message is printed.

10CHEC(u)

The 10CHEC function tests for parity error on unit u following a formatted, list-directed, NAMELIST, or
unformatted read. The value zero is returned if no error has been detected.

Example:
J = JOCHEC(6)
IF (J) 15,25

Zero value would be returned to J if no parity error occurred and non-zero if an error had occurred;
control would transfer to the statement labeled 25 or 15 respectively.

If a parity error occurs, IOCHEC clears the parity indicator before retuming, Parity errors are handled in
this way regardless of the type of the external device.

8-24 60497800 C

OTHER INPUT/OUTPUT SUBPROGRAMS
LENGTH(u) or CALL LENGTHX(u,nw,ubc)

Returns information regarding the previous BUFFER IN or READMS call of the file designated by u. nw or
the value of LENGTH is set to the number of 60-bit words read. ubc is set to the number of unused bits in
the last word of the transfer. nw, ubc, and value returned are type integer.

After an unformatted BUFFER IN on a 9-track S or L tape, the unused bit count parameter of LENGTHX
is rounded down so as to indicate a whole number of 6-bit characters. For example, a BUFFER IN of a
record of 23 8-bit frames returns a length of four words with an unused bit count of 54, even though the
actual unused bit count is 56.

If an odd number of words is written to a 9-track S or L tape by an unformatted BUFFER OUT, the record
on the tape contains four additional zero bits at the right so as to be a whole number of 8-bit characters. If
such a record is subsequently read by BUFFER IN, the length indication in LENGTH or LENGTHX is one
word greater than the number of words originally written.

For a file accessed by buffer statements, LENGTH or LENGTHX should be called only after a call to UNIT
ensures that input/output activity is complete; otherwise, file integrity might be endangered.

Example:

NW = LENGTH(5)
or

CALL LENGTHX(5,NW,NUBC)
CALL LABEL(u,labinfo) ¥
u Logical unit number.

labinfo Name of 4-word array containing label information in the format given for words 9-12 of
the file environment table (FET) in the operating system reference manual.

This subroutine passes label information to the operating system.

The control statement that requests the tape for the job must have specified that the tapé has labels before the
CALL LABEL statement can be used.

#Recognized but ignored under SCOPE 2.

60497800 F 8-25

On input, the specified file’s label is compared with the indicated information in labinfo (unless it was so
checked when an earlier LABEL control statement was executed). If any of the relevant fields were filled
with binary zeros by CALL LABEL, these fields are set to the values contained in the label read. If there is
a mismatch between the label read and any field not zero-filled, a request is sent to the operator for a GO
or DROP response.

On output, the appropriate information from labinfo is written as a label at the beginning of the specified
file. If any of the relevant fields are filled with binary zeros, the corresponding label field will be set to an
appropriate default value.

CALL LABEL should not be used with files accessed with CYBER Record Manager interface routines.

ECS/LCM SUBPROGRAMS

CALL MOVLEV (ab,n)
Transfers n consecutive words of data between a and b. a and b are variables or array elements; n
is an integer value. a is the starting address of the data to be moved and b is the starting address of the
receiving location.
Example:

CALL MOVLEV(A,B,1000)

No conversion is done by MOVLEV. If data from a real variable is moved to an integer type receiving field,
the data remains real.

Example:
CALL MOVLEV (A, 1, 1000)
After the move, I does not contain the integer equivalent of A.
Example:
DOUBLE PRECISION D1(500), D2(500)
CALL MOVLEYV (D1, D2, 1000)
Since D1 is defined as double precision, n should be set to 1000 to move the entire D1 array.
CALL READEC(a,b,n)
Transfers data from extended core storage to central memory.
a is a simple variable or array element located in central memory. b is a simple variable or array element located

in an extended core storage block or LCM block. n is an integer constant or expression. n consecutive words
of data are transferred beginning with a in central memory and b in extended core storage.

8-26 60497800 C

CALL WRITEC(a,b,n)
Transfers data from central memory to extended core storage or LCM.
No type conversion is done.
Example:

LEVEL 3,8
CALL READECI(A,B,10)

CALL WRITEC(A,B,10)

TERMINAL INTERFACE SU_BPROGF!AMSqt
CALL CONNEC (u,cs)
u unit designator.

cs optional character set designator (applicable to NOS/BE 1 only): cs is an integer with a value
from O to 2, in accordance with the character set to be used for the data entered or displayed
at the terminal:

0 display code (default)
1 ASCII-95
2 ASCII-256 code

cs should not be specified if the installation character set is a 63-character set.

If a FORTRAN program to be run under INTERCOM for NOS/BE 1, under the NOS 1 Time-Sharing System, under
the NOS 1 Interactive Facility, or under HELLO7 for SCOPE 2, calls for input/output operations through the user’s
remote terminal, all files to be accessed through the terminal must be formally associated with the terminal at the
time of execution.

In particular, the file INPUT must be connected to the terminal if data is to be entered there and an alternate logical
unit is not designated in the READ statement. The file OUTPUT must be connected to the terminal if execution diag-
nostics are to be displayed or printed at the terminal, or if data is to be displayed or printed there and an alternate unit
is not designated in the WRITE or PRINT statement. These files are automatically connected to the terminal when the
program is executed under NOS 1 or under the RUN command of the EDITOR utility of INTERCOM.

Under HELLO?7, any file can be connected by providing a FILE control statement specifying CNF = YES.
Under INTERCOM, any file can be connected to the terminal by the CONNECT command.

Under all operating systems, the user can connect any file from within the program by using the CALL CONNEC
statement.

A file n is considered still connected if a CALL CONNEC (n) has been made by a program running at a terminal and if
the program terminates under normal or abnormal circumstances without a CALL DISCON (n). Any subsequent
input/output on n will still be through the terminal unless the file is returned.

¥More information about INTERCOM is in the INTERCOM reference manual and the INTERCOM Interactive
Guide for Users of FORTRAN Extended. More information about NOS 1 is in the NOS 1 Time-Sharing
User’s reference manual and the Interactive Facility reference manual. More information about HELLO7 is
in the SCOPE 2 reference manual.

60497800 F

8-27

Under NOS 1, if CONNEC specifies an existing local file, the buffers for the file are flushed (if it is an output
file) and the file is returned. A subsequent DISCON for the file causes the connected file to be returned, but the
pre-existing file is not reassociated with the file name.

If ¢s is not specified, it is set to 0. If display code is selected, input/output operations must be formatted, list-
directed, NAMELIST, or buffered.

If either of the ASCII codes is selected, input/output operations must be either formatted or buffered. When buffer
input/output is used, either a FILE control statement (section 16) specifying RT=S must be provided, or blanks
cannot terminate a line.

When a CALL CONNEC specifies a file already connected with the character set specified, the call is ignored. If
the file specified is already connected with a character set other than that specified, cs is reset accordingly.

Data input or output through a terminal under INTERCOM is represented ordinarily in a CDC 64-character or
ASCIl 64-character set, depending on installation option. For these sets, ten characters in 6-bit display code
are stored in each central memory word. As described above, a terminal user can specify from within a
FORTRAN program that data represented in an ASCII 95-character set (providing the capability for recog-
nizing lowercase letters) or an ASCII 256~character set (providing the capability for recognizing lower—case
letters, control codes, and parity) be input or output through the terminal. For the ASCII 95-character and
256-character sets, characters are stored in five 12-bit bytes in each central memory word. Characters in the
ASCII 95-character set are represented in 7-bit ASCII code right justified in each byte with binary zero fill;
characters in the ASCII 256-character set are represented in 8-bit ASCII code right justified in each byte with
binary zero fill. When data represented in either ASCH character set code is transferred with a formatted
input/output statement, the maximum record length should be specified in the PROGRAM statement as twice
the number of characters to be transferred (see section 7). Allowance should also be made in input/output
operations for the fact that internal characters require twice as much space as external characters.

When the ASCII 95-character or 256-character sei has been specified for terminal input/output under INTER-
COM, blanks following the end of data on each line are not translated into ASCIH code but are retained in
display code (as 558). Unless the user eliminates them, these blanks will appear on output as lowercase m
characters (two blanks in display code translates to one m in ASCH code). For formatted input, the user
can identify the end of data on a line by scanning data entered in nR2 format until the Hollerith constant
2Rbb (b = blank) is found. For buffered input, the end can be determined by reading the data into an
array, manipulating it with a DECODE statement, and then scanning as with formatted input.

For a FORTRAN program run under NOS 1, any file can be connected to the terminal by the ASSIGN com-
mand. In addition, the user can connect any file from within the program by using the statement:

CALL CONNEC (u}

Data input or output through a terminal under NOS 1 is represented ordinarily in a standard 61-character set.
However, the user can elect to have data represented in an ASCII 128-character set (which provides the capa-
bility for recognizing control codes and lowercase, as well as uppercase, letters) by entering the ASCII com-
mand. Characters contained in the standard set are stored internally in 6-bit display code, whether or not
the ASCII command has been entered. The additional characters which complete the ASCII 128-character set
are stored internally in 12-bit display code if the ASCII command has been entered; otherwise, they are
mapped into the standard 61-character set and stored intemally in 6-bit display code.

Under any system, if a file specified in a CALL CONNEC exists as a local file but is not connected at the
time of the call, the file’s buffer is flushed before the file is connected to the terminal; under NOS 1, the
file is returned.

8-28 60497800 D

CALL DISCON (u)
This subroutine disconnects a file from within a FORTRAN program.

This request is ignored if the specified file is not connected. After execution of this statement under NOS/BE 1,
the specified file remains local to the terminal. In addition, if the file existed prior to connection, the file name
is re-associated with the information contained on the device where the file resided prior to connection. Data
written to a connected file is not contained in the file after it is disconnected. Under NOS 1, a CALL

DISCON causes the connected file to be returned; the disconnected file name is not re-associated with the
pre-existing information.

All files to be connected or disconnected during program execution must be declared in the PROGRAM state-
ment. An attempt to connect or disconnect an undeclared file results in a fatal diagnostic.

Calls to CONNEC and DISCON are recognized and ignored when programs are not executed under INTERCOM
or interactively under NOS 1.

Examples:
CALL CONNEC (6)

K = 4LAGES
CALL CONNEC (K)

CALL CONNEC (6+2)
CALL CONNEC (4LDATA»1)

CALL DISCON (6)

MASS STORAGE INPUT/OUTPUT

Mass storage input/output (MSIO) subroutines allow the user to create, access, and modify files on a random basis
without regard for their physical positioning. Each record in the file can be read or written at random without
logically affecting the remaining file contents. The length and content of each record are determined by the user.
A random file can reside on any mass storage device. Record Manager word addressable file organization is used to
implement MSIO files. The Record Manager reference manual contains details of word addressable implementation.

A file processed by mass storage subroutines should not be processed by any other form of input/output.

RANDOM FILE ACCESS

Random file manipulations differ from conventional sequential file manipulations. In a sequential file, records
are stored in the order in which they are written, and can normally be read back only in the same order.

This can be slow and inconvenient in applications where the order of writing and of retrieving records differ
and, in addition, it requires a continuous awareness of the current file position and the position of the required
record. To remove these limitations, a randomly accessible file capability is provided by the mass storage
input/output subroutines.

In a random file, any record may be read, written or rewritten directly, without concern for the position or
structure of the file. This is possible because the file resides on a random-access mass storage device that can
be positioned to any portion of a file. Thus, the entire concept of file position does not apply to a random
file. The notion of rewinding a random file is, for instance, without meaning.

60497800 D 8-29

To permit random accessing, each record in a random file is uniquely and permanently identified by a record
key. A key is an 18- or 60-bit quantity, selected by the user and included as a parameter on the call to
read or write a record. When a record is first written, the key in the call becomes the permanent identifier
for that record. The record can be retrieved later by a read call that includes the same key, and it can be
updated by a write call with the same key.

When a random file is in active use, the record key information is kept in an array in the user’s field length.
The user is responsible for allocating the array space by a DIMENSION, type, or similar array declaration
statement, but must not attempt to manipulate the array contents. The array becomes the directory or index
to the file contents. In addition to the key data, it contains the word address and length of each record in
the file. The index is the logical link that enables the mass storage subroutines to associate a user call key
with the hardware address of the required record.

The index is maintained automatically by the mass storage subroutines. The user must not alter the contents
of the array containing the index in any manner: to do so may result in destruction of the file contents.

(In the case of a sub-index, the user must clear the array before using it as a sub-index, and read the sub-
index into the array if an existing file is being reopened and manipulated. However, individual index entries
should not be altered.)

When a permanent file that was created by mass storage input/output routines is to be modified it must be
attached with modify and extend permissions (append permission under NOS 1). Under NOS/BE 1 and

SCOPE 2, the EXTEND control statement should be used after the file is modified. Failure to extend the
file can render it unusable.

In response to a call to open the file, the mass storage subroutine automatically clear the assigned index array.
If an existing file is being reopened, the mass storage subroutines locate the master index in mass storage and
read it into this array. Subsequent file manipulations make new index entries or update current entries.

When the file is closed, the master index is written from the array to the mass storage device. When the file
is reopened, by the same job or another job, the index is again read into the index array space provided, so
that file manipulation may continue.

MASS STORAGE SUBROUTINES

Object time input/output subroutines control the transfer of records between central memory and mass storage.

OPENING A FILE
OPENMS opens the mass storage file and informs the system that it is a random (word addressable) file.
CALL OPENMS (u,ix,Ingth,t)
u Unit designator.
ix Name of the array containing the master index.
Ingth Length of master index
for a number index: Ingth > (number of entries in master index) + 1

f for a name index: Ingth > 2 * (number of entries in master index) + 1

8-30 60497800 D

t Type of index.
t=0 file has a number master index

t=1 file has a name master index

The array (ix) specified in the call is automatically cleared to zeros. If an existing file is being reopened, the
master index is read from mass storage into the index array.

Example:

DIMENSION {11}
CALL OPENMS (5,1,11,0)

These statements prepare for random input/output on the file TAPES using an 11-word master index of the
number type. If the file already exists, the master index is read into memory starting at address I.

WRITING RECORDS
WRITMS transmits data from central memory to the file.

CALL WRITMS (u,fwa,nk,r,s)

u Unit designator.
fwa Name of the array in central memory (address of first word).
n Number of 60-bit words to be transferred.
k Record key.
for number index: 1 <k <lIngth -1
for name index k = any 60-bit quantity except +0
r Rewrite.
r=1 Rewrite in place. Unconditional request; fatal error occurs if new record
length exceeds old record length.
r=-1 Rewrite in place if new record length does not exceed old record length,
otherwise write at end-of-data.
r=0 No rewrite; write at end-of-data (default value).
s Sub-index flag.
s=1 Write sub-index marker flag in index control word for this record.
s=0 Do not write sub-index marker flag in index control word (default value).

End-of-data (for r = -1 and r = 0) is defined to be immediately after the end of the data record which is
closest to end of information. The first record written at end-of-data overwrites the old index.

Except under SCOPE 2, Record Manager operates more efficiently if n is always a multiple of 64. The r
parameter can be omitted if the s parameter is also omitted. The s parameter is for future file editing
routines. Current routines do not test the flag, but the user should include this parameter in new programs
(when appropriate) to facilitate transition to a future edit capability.

Example:
CALL WRITMS (3,DATA,256,1)

60497800 E 8-31

This state
DATA, a

READIN!

READMS

Except u

Example:

This stat¢
address o

CLOSIN(

CLOSMS
close a fi
a file cre

lay progr

Since ney
unless th
might ab
cause the

When usi
file befo1
the (0,0)
overlay ¢

CA

u

8-32

A separate array space must be declared for each sub-index that will be in active use. Inactive s
may, of course, be stored in the random file as additional data records.

The sub-index is read from and written to the file by the standard READMS and WRITMS calls,
indistinguishable from any other data record. Although the master index array area is cleared by
when the file is opened, STINDX does not clear the sub-index array area. The user must clear the
array to zeros. If an existing file is being manipulated and the sub-index already exists on the fil
must read the sub-index from the file into the sub-index array by a call to READMS before S
called. STINDX then informs the mass storage routine to use this sub-index as the current inde»
WRITMS to an existing file using a sub-index must be preceded by a call to STINDX to inforn
storage routine where to place the index control word entry before the write takes place.

If the user wishes to retain the sub-index, it must be written to the file after the current index d
has been changed back to the master index, or a higher level sub-index by a call to STINDX.

Example 1 creates and modifies a random file using a number index:
PROGRAM MS1 (TAPE3)
C CREATE RANDOM FILE WITH NUMBER INDEX.

DIMENSION INDEX(11), DATA(25)
CALL OPENMS (3,INDEX,11,0)

DO 99 NRKEY=1,10

(GENERATE RECORD IN ARRAY NAMED DATA.)

aOaO0aQaaQaa

.

99 CALL WRITMS (3,DATA,25,NRKEY)

STOP
END

PROGRAM MS2 (TAPE3)
C MODIFY RANDOM FILE CREATED BY PROGRAM MS1.
C NOTE LARGER INDEX BUFFER TO ACCOMMODATE TWO NEW
C RECORDS.

DIMENSION INDEX(13), DATA(25), DATAMOR(40)
CALL OPENMS (3,INDEX,13,0)

8-34 6

t Type of index.
t=0 file has a number master index

t=1 file has a name master index

The array (ix) specified in the call is automatically cleared to zeros. If an existing file is being reopened, the
master index is read from mass storage into the index array.

Example:

DIMENSION {11}
CALL OPENMS (5,1,11,0

These statements prepare for random input/output on the file TAPES using an 11-word master index of the
number type. If the file already exists, the master index is read into memory starting at address I.

WRITING RECORDS
WRITMS transmits data from central memory to the file.

CALL WRITMS (u,fwa,nk,r,s)

u Unit designator.
fwa Name of the array in central memory (address of first word).
n Number of 60-bit words to be transferred.
k Record key.
for number index: 1 <k <lIngth -1
for name index k = any 60-bit quantity except +0
r Rewrite.
r=1 Rewrite in place. Unconditional request; fatal error occurs if new record
length exceeds old record length.
r=-1 Rewrite in place if new record length does not exceed old record length,
otherwise write at end-of-data.
r=0 No rewrite; write at end-of-data (default value).
s Sub-index flag.
s=1 Write sub-index marker flag in index control word for this record.
s=0 Do not write sub-index marker flag in index control word (default value).

End-of-data (for r = -1 and r = 0) is defined to be immediately after the end of the data record which is
closest to end of information. The first record written at end-of-data overwrites the old index.

Except under SCOPE 2, Record Manager operates more efficiently if n is always a multiple of 64. The r
parameter can be omitted if the s parameter is also omitted. The s parameter is for future file editing
routines. Current routines do not test the flag, but the user should include this parameter in new programs
(when appropriate) to facilitate transition to a future edit capability.

Example:
CALL WRITMS (3,DATA,25,6,1)

60497800 E 8-31

This statement unconditionally rewrites in place of file TAPE3, starting at the address of the array named
DATA, a 25-word record with an index number key of 6. The default value is taken for the s parameter.

READING RECORDS
READMS transmits data from the file to central memory.

CALL READMS (u,fwa,n k)

u Unit designator
fwa Name of the array in central memory (address of first word)
n Number of 60-bit words to be transferred. If n is less than the record length, n words
are transferred without diagnostic.
k Record key -
for number index: =1<k<Ingt -1
for name index: k = any 60-bit quantity except +0

Except under SCOPE 2, Record Manager operates more efficiently if n is always a multiple of 64.

Example:
CALL READMS (3,DATAMOR,25,2)

This statement reads the first 25 words of record 2 from unit 3 (TAPE3) into central memory starting at the
address of the array DATAMOR.

CLOSING A FILE

CLOSMS writes the master index from central memory to the file and closes the file. CLOSMS is provided to
close a file so that it can be returned to the operating system before the end of a FORTRAN run, to preserve
a file created by an experimental job that might subsequently abort, or for other special purposes. In an over-
lay program that is STATICly loaded, a mass storage file must be closed explicitly by CLOSMS.

Since new data records can overwrite the old index, a file which has had new data records added is invalid
unless the file is closed. (Under NOS/BE1 and SCOPE 2 permanent files must also be extended.) Jobs which
might abort before closing the files should use RECOVR to recover and terminate normally (i.e. STOP) to
cause the files to be closed.

When using mass storage input/output subroutines in overlays or segments, care should be taken to close a
file before program termination. If this is not possible, the mass storage input/output routines must reside in
the (0,0) overlay or root segment. This can be done by including a call to an MSIO routine in the (0,0)
overlay or root segment (the call need not be executed), or by using the LIBLOAD control statement.

CALL CLOSMS (u)

u Unit designator

8-32 60497800 D

Example:
CALL CLOSMS (2)

This statement closes the file TAPE2.

SPECIFYING A DIFFERENT INDEX

STINDX selects a different array to be used as the current index to the file. The call permits a file to be
manipulated with more than one index. For example, when the user wishes to use a sub-index instead of
the master index, STINDX is called to select the sub-index as the current index. The STINDX call does not
cause the sub-index to be read or written; that task must be carried out by explicit READMS or WRITMS
calls. It merely updates the internal description of the current index to the file.
CALL STINDX (u,ix,Ingth,t)
u Unit designator.
ix Name of the array in central memory containing the sub-index (first word address).
Ingth ‘Length of sub-index
for a number index: Ingth = (number of entries in sub-index) + 1
for a name index: Ingth > 2 * (number of entries in sub-index) + 1

t Type of index. If omitted, t is the same as the current index.
t =0 File has a number sub-index
t =1 File has a name sub-index
Example 1:

DIMENSION SUBIX (10)
CALL STINDX (3,SUBIX,10,0)

These statements select a new index, SUBIX, for file TAPE3 with an index length of 10. The records ref-
erenced via this sub-index use number keys.

Example 2:

DIMENSION MASTER (5)
CALL STINDX (2MASTER,5)

These statements select a new index, MASTER, from file TAPE2 with an index length of 5 and index type
unchanged from the last index used.

60497800 C 8-32.1/8-32.2

INDEX KEY TYPES

There are two types of index key, name and number. A name key may be any 60-bit quantity except +0
or -0. A number key must be a simple positive integer, greater than 0 and less than or equal to the length
of the index in words, minus 1 word. The user selects the type of key by the t parameter of the OPENMS
call. The key type selection is permanent. There is no way to change the key type, because of differences
in the internal index structure. If the user should inadvertently attempt to reopen an existing file with an
incorrect index type parameter, the job will be aborted. (This does not apply to sub-indexes chosen by
STINDX calls; proper index type specification is the sole responsibility of the user.) In addition, key types
cannot be mixed within a file. Violation of this restriction might result in destruction of a file.

The choice between name and number keys is left entirely to the user. The nature of the application may
clearly dictate one type or the other. However, where possible, the number key type is preferable. Job
execution will be faster and less central memory space will be required. Faster execution occurs because it is
not necessary to search the index for a matching key entry (as is necessary when a name key is used). Space
is saved due to the smaller index array length requirement.

MASTER INDEX

The master index type for a given file is selected by the t parameter in the OPENMS call when the index is
created. The type cannot be changed after the file is created; attempts to do so by reopening the file with
the opposite type index are treated as fatal errors.

SUB-INDEX

The sub-index type can be specified independently for each sub-index. A different sub-index name/number
type can be specified by including the t parameter in the STINDX call. If t is omitted, the index type
remains the same as the current index. Intervening calls which omit the t parameter do not change the most
recent explicit type specification. The type remains in effect until changed by another STINDX call.

STINDX cannot change the type of an index which already exists on a file. The user must ensure that the t
parameter in a call to an existing index agrees with the type of the index in the file. Correct sub-index type
specification is the responsibility of the user; no error message is issued.

MULTI-LEVEL FILE INDEXING

When a file is opened by an OPENMS call, the mass storage routines clear the array specified as the index
area, and if the call is to an existing file, locates the file index and reads it into the array. This creates the
initial or master index.

The user can create additional indexes (sub-indexes) by allocating additional index array areas, preparing
the area for use as described below, and calling the STINDX subroutine to indicate to the mass storage
routine the location, length and type of the sub-index array. This process may be chained as many times as
required, limited only by the amount of central memory space available. (Each active sub-index requires an
index array area.) The mass storage routine uses the sub-index just as it uses the master index; no distinc-
tion is made.

60497800 A : 8-33

A separate array space must be declared for each sub-index that will be in active use. Inactive sub-indexes
may, of course, be stored in the random file as additional data records.

The sub-index is read from and written to the file by the standard READMS and WRITMS calls, since it is
indistinguishable from any other data record. Although the master index array area is cleared by OPENMS
when the file is opened, STINDX does not clear the sub-index array area. The user must clear the sub-index
array to zeros. If an existing file is being manipulated and the sub-index already exists on the file, the user
must read the sub-index from the file into the sub-index array by a call to READMS before STINDX is
called. STINDX then informs the mass storage routine to use this sub-index as the current index. The first
WRITMS to an existing file using a sub-index must be preceded by a call to STINDX to inform the mass
storage routine where to place the index control word entry before the write takes place.

If the user wishes to retain the sub-index, it must be written to the file after the current index designation
has been changed back to the master index, or a higher level sub-index by a call to STINDX.

Example 1 creates and modifies a random file using a number index:
PROGRAM MS1 (TAPE3)
C CREATE RANDOM FILE WITH NUMBER INDEX.

DIMENSION INDEX(11), DATA(25)
CALL OPENMS (3,INDEX,11,0)

DO 99 NRKEY=1,10

(GENERATE RECORD IN ARRAY NAMED DATA.)

aaQaaaaq

99 CALL WRITMS (3,DATA,25,NRKEY)

STOP
END

PROGRAM MS2 (TAPE3)
C MODIFY RANDOM FILE CREATED BY PROGRAM MS1.
C NOTE LARGER INDEX BUFFER TO ACCOMMODATE TWO NEW
C RECORDS.

DIMENSION INDEX(13), DATA(25), DATAMOR(40)
CALL OPENMS (3,INDEX,13,0)

8-34 60497800 A

C READ 8TH RECORD FROM FILE TAPE3.
CALL READMS (3,DATA,25,8)

.
.

(MODIFY ARRAY NAMED DATA.)

QaQaaQaaa

Q

WRITE MODIFIED ARRAY AS RECORD 8 AT END OF
C INFORMATION IN THE FILE
CALL WRITMS (3,DATA,25,8)

C READ 6TH RECORD.
CALL READMS (3,DATA,25,6)

(MODIFY ARRAY.)

aaQQaa

Q
.

C REWRITE MODIFIED ARRAY IN PLACE AS RECORD 6.
CALL WRITMS (3,DATA,25,6,1)

C READ 2ND RECORD INTO LONGER ARRAY AREA.
CALL READMS (3,DATAMOR,25,2)

c .

c .

C (ADD 15 NEW WORDS TO THE ARRAY NAMED DATAMOR.)

c .

c .

C CALL FOR IN-PLACE REWRITE OF RECORD 2. 1IT WILL
C DEFAULT TO A NORMAL WRITE AT END-OF-INFORMATION
C SINCE THE NEW RECORD IS LONGER THAN THE OLD ONE,
C AND FILE SPACE IS THEREFORE UNAVAILABLE.

CALL WRITMS (3,DATAMOR,40,2,-1)

C READ THE 4TH AND 5TH RECORDS.
CALL READMS (3,DATA,25,4)
CALL READMS (3,DATAMOR,25,5)

(MODIFY THE ARRAYS NAMED DATA AND DATAMOR.)

aQaQaaaa

60497800 A 8-35

WRITE THE ARRAYS TO THE FILE AS TWO NEW RECORDS.
CALL WRITMS (3,DATA,25,11)
CALL WRITMS (3,DATAMOR,25,12)

STOP
END

Example 2 uses a name index for a random file:

PROGRAM MS3 (TAPE7)

C CREATE A RANDOM FILE WITH NAME INDEX.
DIMENSION INDEX(9), ARRAY(15,4)
DATA REC1,REC2/7HRECORD1,#RECORD27/
CALL OPENMS (7,INDEX,4,1)
c .
C .
C (GENERATE DATA IN ARRAY AREA.)
c .
C .
C WRITE FOUR RECORDS TO THE FILE. NOTE THAT
C KEY NAMES ARE RECORD(N).
CALL WRITMS (7,ARRAY(1,1),15,REC1)
CALL WRITMS (7,ARRAY(1,2),15,REC2)
CALL WRITMS (7,ARRAY(1,3),15,7HRECORD3)
CALL WRITMS (7,ARRAY(1,4),15,7RECORD4+#)
C CLOSE THE FILE.
CALL CLOSMS (7)
STOP
END
Example 3:
PROGRAM MS4 (TAPE2)
C GENERATE SUBINDEXED FILE WITH NUMBER INDEX. FOUR
C SUBINDEXES WILL BE USED, WITH NINE DATA RECORDS
C PER SUBINDEX, FOR A TOTAL OF 36 RECORDS.

8-36

DIMENSION MASTER(5), SUBIX(10), RECORD(50)
CALL OPENMS (2,MASTER,5,0)

DO 99 MAJOR-1,4

60497800 E

C CLEAR THE SUBINDEX AREA.

77

DO 77 I=1,10
SUBIX(I)=0

C CHANGE THE INDEX IN CURRENT USE TO SUBIX.

Q

88

CALL STINDX (2,SUBIX,10)

GENERATE AND WRITE NINE RECORDS.
DO 88 MINOR-=1,9

WRITE A RECORD.
CALL WRITMS (2,RECORD,50,MINOR)

C CHANGE BACK TO THE MASTER INDEX.

CALL STINDX (2,MASTER,5)

C WRITE THE SUBINDEX TO THE FILE.

99

CALL WRITMS (2,SUBIX,10,MAJOR,O0,1)

CONTINUE

C READ THE 5TH RECORD INDEXED UNDER THE 2ND SUBINDEX.

c .

Cc . .

C (MANIPULATE THE SELECTED RECORD AS DESIRED.)

c .

c L]

STOP
END
Example 4:
PROGRAM MS5 (INPUT,OUTPUT,TAPE9)

C CREATE FILE WITH NAME INDEX AND TWO LEVELS OF SUBINDEX.
DIMENSION STATE(101), COUNTY(50l1), CITY(501), ZIP(1l00)
INTEGER STATE, COUNTY, CITY, ZIP

10 FORMAT (A10,I10)
11 FORMAT (Il0)
12 FORMAT (5X,8I15)

CALL READMS (2,SUBIX,10,2)
CALL STINDX (2,SUBIX,10)
CALL READMS (2,RECORD,50,5)

CALL OPENMS (9,STATE,101,1)

60497800 A

8-37

838

C READ MASTER DECK CONTAINING STATES,

C AND ZIP CODES.

DO 99 NRSTATE=1,50
READ 10,STATNAM, NRCNTYS

C CLEAR THE COUNTY SUBINDEX.
DO 21 I-1,501

21

COUNTY(I)=0

D0 98 NRCN=1,NRCNTYS
READ 10, CNTYNAM, NRCITYS

C CLEAR THE CITY SUBINDEX.
DO 31 I-1,501
CITY(I)-0

31

41

96

97

28

99

CALL STINDX (9,CITY,501)

DO 97 NRCY=1,NRCITYS
READ 10, CITYNAM, NRZIP

C CLEAR THE ZIP CODE LIST
DO 41, J=1,100
ZIP(J) =0
DO 96 NRZ=1,NRZIP
READ 11,ZIP(NRZ)

CALL

CALL

CALL

CALL
CALL

C FILE IS

CALL
CALL
CALL
CALL
CALL
CALL

WRITMS

STINDX
WRITMS

STINDX
WRITMS

GENERATED.

STINDX
READMS
STINDX
READMS
STINDX
READMS

(9,ZIP,NRZIP,CITYNAM)

(9,COUNTY,501)
(9,CITY,501,CNTYNAM)

(9,STATE,101)
(9,COUNTY,501,STATNAM)

(9,STATE,101)
(9,COUNTY, 501, *#CALIFORNIA)
(9,COUNTY,501)
(9,CITY,501,*SANTACLARA)
(9,CITY,501)

(9,2IP,100, #SUNNYVALE)

PRINT 12, ZIP

CALL STINDX (9,STATE,101)

STOP
END

COUNTIES, CITIES

NOW PRINT OUT LOCAL ZIP CODES.

60497800 A

COMPATIBILITY WITH PREVIOUS MASS STORAGE ROUTINES

FORTRAN Extended mass storage routines and the files they create are not compatible with mass storage
routines and files created under versions of FORTRAN Extended before version 4. Major internal differences
in the file structure were necessitated by adding the Record Manager interface. However, source programs are
fully compatible. Any source program that compiled and executed successfully under earlier versions will do
so under this version, provided that all file manipulated by mass storage routines are manipulated only by
these routines.

FORTRAN—-CYBER RECORD MANAGER INTERFACE

The CYBER Record Manager interface subroutines correspond closely to the CYBER Record Manager COMPASS
macros. The names are different in some cases, and the parameters are not necessarily specified in the same order,
but the processing performed by each subroutine is for the most part the same as the corresponding COMPASS
macro.

Only a summary of the format, parameters, and purpose of each subroutine is given here. The differences in
usage of these routines among the five file organizations are not discussed. In order to use these routines, it is
necessary to refer to the CYBER Record Manager publications listed in the preface.

The user can either allocate buffers within a program block or allow CYBER Record Manager to allocate them
dynamically when the file is opened.

To allocate a buffer within the program block, an array must be dimensioned and the length and position of
the array specified by the BFS and FWB fields of the file information table. If either of these fields is zero
when the file is opened, CYBER Record Manager allocates a buffer in central memory following the execut-
able code and blank common (if declared). In an overlay program, dynamically allocated buffers are assigned
to memory beyond the last word address of the longest overlay chain.

These routines are available under NOS/BE 1 and NOS 1, but not under SCOPE 2.

PARAMETERS

The first parameter in the call to every subroutine is the name of the array containing the file information table
being processed. This array should be dimensioned 35 words long; 20 words for the file information table
itself and 15 for the file environment table. Any other parameters can be omitted; default values are supplied
by CYBER Record Manager. With the exception of FILExx, parameters are identified strictly by position;
thus, parameters can be omitted only from the right.

When a program is compiled with OPT=2, wsa must be specified on all calls to GET, GETP, and GETN. Also,
ka must be specified on calls to GETN and PUT for indexed sequential, direct access, and actual key files.

Most of the parameters establish values for file information table fields. CYBER Record Manager always uses
the most recent value established for a field; if a parameter is omitted, the previous contents of the field are
used instead.

If the same subroutine is called twice in the same program unit with a different number of parameters, an
informative diagnostic is issued by the compiler.

60497800 F 839

Values for parameters can be:

Array or variable names, identifying areas used for communication between the user program and
CYBER Record Manager

Subprogram names for user owncode exits (must be specified in an EXTERNAL statement)
Integer values

L format Hollerith constants, used to express symbolic options and to identify file information table
fields

The following mnemonics are used in the subroutine formats below. The precise meaning of any parameter
depends on the file organization of the file being processed, as well as the subroutine being called. Not all
parameters are applicable to all file organizations.

fit Name of array containing file information table. Linked to the actual file by means of the LFN field.
afit Name of an array that contains a list of addresses of FITs terminated by a word of zeros.
wsa Working storage area. A variable, array, or array element name indicating the starting location

from which data is to be read or into which data is to be written.

pd Processing direction established when file is opened:

SLINPUT Read only

6LOUTPUT Write only

3LI-0 Read and write

3LNEW File creation (indexed sequential, direct access, actual key only)
of File positioning at open time:

1LR Rewind

1LN No file positioning

1LE Extend; file is positioned immediately before end of information
cf File positioning after close:

1LR Rewind

1LN No positioning

1LU Unload

3LRET Return

3LDIS Disconnect (terminal files only)

3LDET No positioning; release buffer space and remove from active file list

8-40 60497800 F

type

ka

wa

kp

mkl

1l
ex
dx

post

count

ptl

skip

lev

id

Type of close (not a file information table field):
4LFILE File close
6LVOLUME Volume close

Location of key for access to record in a direct access, indexed sequential, or actual key
file. For GETN, key is returned to this location.

Location of word address for read or write of record in a word addressable file.

Character position (0 through 9) within word designated by ka in which key begins (direct
access, indexed sequential only).

Major key length (indexed sequential only).

Record length in characters for record to be read or written.
Name of user owncode error exit subroutine.
Name of user owncode data exit subroutine.

For duplicate key processing:

1P Write record preceding current record

1IN Write record as next record

1LC Delete or replace current record

0 Delete or replace first record in duplicate key chain

Number of records to be skipped; positive count indicates forward skip, negative count indi-
cates backward skip, zero count should not be used.

Number of characters to be used for a partial read or write.
Positioning before execution of GETP:

0 Continue reading at current position

4LSKIP Skip to beginning of next record before reading

Level number for end of section; O to 17.

FIT identifier.

"LApplies only to Initial Indexed Sequential files.

60497800 E

8-41

SUBROUTINES

In the subroutine formats below, braces are used to indicate that more than one parameter occupies the same
position. In all cases, these parameters are applicable to mutually exclusive file organizations.

CALL FILExx (fit, keyword1, valuey, ... ,keywordn, valuen)

xx is SQ (for sequential files), IS (for indexed sequential files), DA (for direct access files), AK (for actual
key files) or WA (for word addressable files).

All parameters, with the exception of fit, are paired. The first parameter in each pair is the name of a file information
table field, in L format. The second parameter of each pair is the value to be set in that field. CALL FILExx must be
executed before the file is opened. CALL FILExx ensures that the object libraries BAMLIB and AAMLIB are made
available to the job.

CALL STOREF (fit, keyword, value)

STOREF specifies a value for a single file information table field. It can be called before or after the file is opened.
The keyword is the name of a file information table field, in L format, and value is the value to be placed in that field.

IFETCH(fit, field) or CALL IFETCH(fit,field, value)
IFETCH is an integer function that returns the current value of a single file information table field. A one-bit field is
returned in the sign bit; if the bit is 1, the value of the function is negative; if the bit is 0, the value of the function is

positive.

IFETCH can also be called as a subroutine; in which case, the value is returned in the integer variables specified as the
third parameter.

CALL OPENM(fit,pd,of)

OPENM opens a file and prepares it for further processing. Only FILExx, STOREF, and IFETCH can precede
execution of CALL OPENM.

CALL CLOSEM (fit,cf,type)

CLOSEM closes the file after all processing has been completed. Only STOREF and IFETCH can follow execution
of CLOSEM.

CALL GET(fit,wsa, { ka },kp,mkl,rl, { °"})
wa dx

GET reads a record and returns it to the working storage area (wsa). The last parameter specifies dx for
sequential files, ex for all other files.

CALL PUT({fit,wsa,rl, {:’aa} ,kp,pos,ex)

PUT writes a record to the file from the working-storage area (wsa).
CALL GETP(fit,wsa,ptl,skip,dx)

GETP reads a partial record. The number of characters to be read is indicated by ptl.

8-42 ‘ 60497800 F

CALL PUTP(fit,wsa,ptl,rl,ex)

PUTP writes a partial record. The number of characters to be written by this write is indicated by ptl; the
total number of characters to be written is given by 1l (required only for record types U, W, and R).

CALL GETN(fit,wsaka,ex)

GETN reads the next record in sequential order from an indexed sequential, direct access, or actual key file.
The key of the record read is placed in ka after the read.

CALL DLTE(fitka,kp,pos,ex}

DLTE deletes a record from an indexed sequential, direct access, or actual key file. The key of the record
to be deleted is in the location specified by ka.

CALL REPLCIfit,wsa,ri ka,kp,pos,ex)

REPLC replaces a record on a sequential, indexed sequential, direct access, or actual key file. The key of the
record to be replaced is in the location specified by ka; the new record is in the working storage area indicated
by wsa. For sequential files, the last record read is replaced by a record of exactly the same size.

CALL WEOR(fit,lev)

WEOR terminates a section or partition, or S type record.
CALL WTMK(fit)

Writes a tape-mark (equivalent to end of partition).
CALL ENDFILE(fit)

Writes an end of partition.
CALL REWND(fit)

REWND positions a tape file to the beginning of the current volume. It positions a mass storage file to the
beginning of information.

CALL GETNR(fit,wsa,ex, ka)
GETNR transfers the next record in sequential order to the working storage area, unless an input/output

operation is required, in which case control returns to the user before the input is complete. The user
must continue to call GETNR until the transfer is complete (FP field of the FIT is set to 0).

60497800 E 8-43

CALL FLUSHM(afit)

FLUSHM performs all file close operations (such as buffer flushing), but the file remains open.
CALL FLUSH1({fit)

FLUSH1 performs the same function as FLUSHM, but for a single file instead of a list of files.
CALL FITDMP(fit,id)

FITDMP dumps the contents of the file information table to the error file ZZZZZEG. The CRMEP control
statement (see the CYBER Record Manager AAM reference manual) can then be used to print file ZZZZZEG.

CALL SEEKF(fit,kakp,inki,ex)
SEEKF initiates block transfer to the file buffer. The program can continue processing while the transfer
occurs. This overlapping of central memory processing and input/output activity can shorten program execu-
tion time.

CALL SKIP(fit,count)
SKIP repositions an indexed sequential or actual key file in a forward or backward direction a specified num-
ber of records. It does not return a record to the working storage area. A positive value for count indicates
a forward move; a negative value indicates a backward move.

CALL STARTMIfit,ka kp,mkli,ex)
STARTM positions an indexed sequential or alternate key index file to a record that meets a specific con-

dition; the record is not transferred to the working storage area. The file is positioned according to the key
relation field in the file information table and the current value at the key address location.

ERROR CHECKING

CYBER Record Manager interface routines perform limited error checking to determine whether the call can
be interpreted, but actual parameter values are not checked.

The following fatal error conditions are detected at execution time, and a message appears in the dayfile:

FIT ADDRESS NOT Array name was not specified.
SPECIFIED
FORMAT ERROR Parameters were not paired (FILExx), or required parameters were not speci-

fied (STOREF, IFETCH or SKIP).

UNDEFINED SYMBOL A file information table field mnemonic or symbolic option was specified
incorrectly; for example, an incorrect spelling, or the of parameter in
OPENM was not specified as R, N or E.

8-44 . 60497800 F

MULTIPLE INDEX PROCESSING

FORTRAN Extended provides the capability of multiple indexing for IS, DA, and AK files via CYBER
Record Manager.

Each multiple-indexed file has an associated alterate key index file. An alternate key index is a cross-
reference table of alternate values and IS, DA, or AK primary key values. The key-field position identifies
each table, which consists of all the different alternate key values that occur in the records of the file. Asso-
ciated with each alternate key value is a list of primary keys, each of which identifies a record containing
the alternate key value.

To utilize this capability, the index file is specified in the XN field of the file information table. To open
the index file, the following statement is used:

CALL RMOPNX(fit,pd,of)

The parameters are the same as those of CALL OPENM. The file may be opened by a CALL OPENM instead
of CALL RMOPNX if XN was specified on a FILE control statement rather than by a CALL FILExx.

The following subroutine should be called to describe a key field when creating a new IS, DA, or AK file.
It must be called once for each key field in the record.

CALL RMKDEF(fit,kw kp ki ki ktks,kg,kec)

fit Name of an array containing the file information table.

kw Word of record in which key starts (0 = first word)

kp Starting character position of key (0 through 9)

kl Key length in characters (1 through 255)

ki Summary index; reserved (0)

kt Key type: 0 = symbolic, 1 = signed integer, 2 = unsigned

ks Substructure for each primary key list in the index: I = index-sequential; F = FIFO;

U (default) = unique; specified as L format Hollerith constant.

60497800 F 845

kg Size of repeating group in which key resides (default = 0).

kc Occurrences of group (default = 0).

To position a multiple index file, the following subroutine is used:
CALL STARTM(fit,ka,kp,mki,ex)

If the RKW and RKP parameters are set to indicate the primary key, STARTM positions the data file and
subsequent calls to GETN retrieve records in sequential order. If RKW and RKP indicate an alternate key,
STARTM positions the index file, and subsequent calls to GETN retrieve records in their order on the index
file.

FORTRAN-SORT/MERGE INTERFACE

FORTRAN Extended provides the capability for processing data records under the Sort/Merge system from
within a FORTRAN program. The FORTRAN user of this feature should be familiar with the autonomous
functioning of the Sort/Merge system as described in the Sort/Merge Reference Manual.

Sort/Merge uses the unused part of the field length as a scratch area; if this is not adequate, additional field length
is obtained from the system. For this reason the STATIC control statement parameter must not be used for
programs using SORT/MERGE.

The FORTRAN subroutines interfacing with Sort/Merge are listed below. The series of calls to Sort/Merge sub-
routines must begin with a call to SMSORT, SMSORTB, SMSORTP, or SMMERGE. 1If a file is processed by
CYBER Record Manager subroutines, OPENM should be called before any of these routines. The Sort/Merge
subroutines are on the library SRTLIB.

In an overlay structured program using blank common, the Sort/Merge interface routines must not be called from
the (0,0) overlay.

CALL SMSORT (mrl,ba)

mrl Maximum length in characters of records to be sorted.
bal LCM buffer area in decimal for intermediate scratch files constructed by Sort/Merge.
ba* Number of words of central memory to be used by Sort/Merge for working storage. If

omitted, amount is computed by Sort/Merge.
SMSORT calls for a sort on rotating mass storage.
CALL SMSORTB (mrl,ba)"
mrl Maximum length in characters of records to be sorted.

ba Number of words of central memory to be used by Sort/Merge for working storage. If
omitted, amount is computed by Sort/Merge.

SMSORTB calls for a balanced tape sort. SMTAPE (see below) must also be called.

§Applies only to SCOPE 2.
* Applies only to NOS 1 and NOS/BE 1.

8-46 60497800 F

CALL SMSORTP (mrl, ba)*
mrl Maximum length in characters of records to be sorted.

ba Number of words of central memory to be used by Sort/Merge for working storage. If
omitted, amount is computed by Sort/Merge.

SMSORTP calls for a polyphase tape sort. SMTAPE must also be calied.

CALL SMMERGE (mrl,ba)

mrl Maximum length in characters of records to be merged.
bal LCM buffer area in decimal for intermediate scratch files constructed by Sort/Merge.
ba* Number of words of central memory to be used by Sort/Merge for working storage. If

omitted, amount is computed by Sort/Merge.
SMMERGE calls for merge-only processing.

CALL SMFILE (dis,i/o \fn,action)

dis File disposition:
#SORT# File to be sorted.
#MERGE+# File to be merged.
FOUTPUT# File to receive output.
ifo Mode of file input/output:

:#FORMATTED#:} File accessed with formatted input/output.

#CODED+
#BINARY# File accessed with unformatted input/output.
o* File accessed with interfacing CYBER Record Manager subroutines

(see this section above).

lfn File name indicator:
u Logical unit number, 0 to 99.
nl filename File name left justified with zero fill.
fit* When i/o is specified as 0, an array containing the file information
table.
action File disposition following sort or merge:
#REWIND#
FUNLOAD#

#NONE# (default)

§Applies only to SCOPE 2.
¥ Applies only to NOS 1 and NOS/BE 1.

60497800 F 8-47

SMFILE must be called for each file to be sorted or merged, and once for the file to receive the output (unless SMOWN
is called). If a file is to be accessed with formatted or unformatted FORTRAN input/output, its name must be declared
in the PROGRAM statement. Files should be properly positioned before they are sorted or merged.

CALL SMKEY (charpos,bitpos,nchar,nbits,code,colseq,order)

charpos Integer specifying position of first character of sort key, considering the first characters as position
number 1.

bitpos Integer specifying position of first bit of sort key in character (or 6-bit byte) specified by charpos,
considering the first bit as position number 1.

nchar Integer specifying number of characters or complete 6-bit byte in sort key.
nbits Integer specifying number of bits in sort key in excess of those indicated by nchar.
code Coding identifier:

#DISPLAY# Internal display code.

#FLOAT+ Floating point data.

#INTEGER# Signed integer data.

#LOGICAL# Unsigned integer data (default).

The following identifiers must be specified in pairs separated by a comma, as indicated. Each pair
is positionally interchangeable:

#SIGN#,#LEADING# Numeric data in display code; sign present as an overpunch
at beginning of field.

#SIGN#,#TRAILING# Numeric data in display code; sign present as an overpunch
at end of field.

#SEPARATE##LEADING# Numeric data in display code; sign is a separate character at
beginning of field.

#SEPARATE##TRAILING# Numeric data in display code; sign is a separate character
at end of field.

colseq Collating sequence (applicable only if code is specified as #DISPLAY#):

ASCII6 # 6-bit ASCII collating sequence (default for installations using
ASCH character set).

#COBOL6+ 6-bit COBOL collating sequence (default for installations using
CDC character set)

#DISPLAY # Internal display collating sequence.

INTBCD+# Internal BCD collating sequence.

sequence Name of a collating sequence specified in a call to SMSEQ (see below).

If a code identifier other than DISPLAY is used, this field must be omitted; otherwise, run time
error 165 is issued.

order Order of sort processing.
FA# Ascending (default).
#D+ Descending.

One SMKEY call is required to describe each sort key to be used. The first SMKEY call indicates the major key;
subsequent calls indicate additional or minor keys in the order encountered.

8-48 ’ 60497800 F

CALL SMSEQ (segname,segspec)

seqname Name of user supplied collating sequence.

segspec Name of integer array, terminated with a negative number. containing entire sequence of
characters in order of collation.

SMSEQ specifies a user’s collating sequence, or redefines the default to be a user collating sequence or a
standard collating sequence other than the system default.

The characters in seqspec can be specified as their octal equivalents in the form ijB or as Hollerith constants
in the form 1Rx. Characters to collate equal are specified in a call to SMEQU (see below). Unspecified char-
acters collate high (following the last character specified in seqspec) and equal.

CALL SMEQU (colseq,equspec)
colseq Collating sequence determined by a previous call to SMKEY (and perhaps SMSEQ),

equspec Name of an integer array, terminated with a negative number, containing characters to collate
equal to the last character, which must be included in colseq.

SMEQU specifies that two or more characters in the collating sequence are equal for comparison purposes.

CALL SMOPT (opty, ..., opt,)

opt Non-ordered options separated by commas:

#VERIFY# Check output for correct sequencing (important for insertions
during output and merge input).

RETAIN+# Retain records with identical sort keys in order of appearance
on input file.

#VOLDUMP# # Checkpoint dump at end-of-volume.

#DUMP#*, Checkpoint dump after 50,000 records.

#DUMP#n# Checkpoint dump after (decimal) n records.

#NODUMP++ No checkpoint dumps.

#NODAY#+ Suppress dayfile messages.

=#ORDER#,mo¢ Merge order = mo (default: mo = 5).

#COMPARE+ The key comparison sorting technique is to be used.

FEXTRACT# The key extraction sorting technique is to be used.

#COMPARE# and #EXTRACT=# are mutually exclusive. If both are omitted, Sort/Merge decides which to
use. FCOMPARE# usually decreases elapsed time while increasing central processor time, whereas #EXTRACT+#
usually decreases central processor time while increasing elapsed time.

SMOPT specifies special record handling options. If SMOPT is called more than once, the last call will override all
previous calls. If SMOPT is called, it must be done immediately after the call to SMSORT or SMMERGE.

¥ Applies only to NOS 1 and NOS/BE 1.

60497800 F , 8-49

CALL SMTAPE (taplist)

taplist List of logical file names, each in the form nLfilename, to be used in balanced or polyphase
tape merge.

The file names in taplist must not be declared in the PROGRAM statement. A balanced merge requires a mini-
mum of four tapes; a polyphase merge, a minimum of three tapes.

CALL SMOWN (exitnum1,subname1, cen, exitnumn,subnamen)
exitnum Number of the owncode exit.
subname Name of the user-supplied owncode exit subroutine

Each subname specified in a call to SMOWN must appear in an EXTERNAL statement in the calling program.
For each subname specified, the user must supply a subroutine which exits through a call to system subroutine
SMRTN, in accordance with the owncode exit number and return address as follows:

exitnum entry exit

1or3 SUBROUTINE subname (a,rl) CALL SMRTN (retaddr), for retaddr = 1 or 3
CALL SMRTN (retaddr,b,rl), for retaddr = O or 2

2o0r4 SUBROUTINE subname CALL SMRTN (retaddr), for retaddr = O
CALL SMRTN (retaddr,b,rl), for retaddr = 1

5 SUBROUTINE subname (aq,tl4,a,,1l5) CALL SMRTN (by,1l4,b,,1l5), for retaddr = 0
CALL SMRTN (b, ,11;), for retaddr =

retaddr Return address:

0 Normal return address

1 Normal return address + 1
2 Normal return address + 2
3 Normal return address + 3

a Integer array of length (11 + 9)/10 in which Sort/Merge stores a record when subname is called.
Storing into - a ‘causes indeterminate results. - "

b Integer array of length (11 + 9)/10 in which the user stores a record when subname is called.
b should not be the same as a.

| Record length in characters.
No parameters are needed on SUBROUTINE subname for exit number 1 if there are no input files.
CALL SMEND
Required as the last in a series of Sort/Merge interfacing subroutines, SMEND initiates execution of the sort or merge.

CALL SMABT

Terminates a sequence of SORT/MERGE interface calls without calling Sort/Merge. The state of the interface
is the same as if no calls had been made.

* Applies only to NOS 1 and NOS/BE 1.

8-50 60497800 F

FORTRAN-CYBER INTERACTIVE DEBUG INTERFACE

CYBER Interactive Debug (CID) is a debugging facility, available under NOS 1 and NOS/BE 1, which allows the user
to monitor and control the execution of programs from an interactive terminal. CID is on the library DBUGLIB.

A brief discussion of CID is presented here. For more information, refer to the CYBER Interactive Debug
reference manual.

FORTRAN Extended provides the capability of interfacing with CID. The CID features allow the user
to:

Suspend program execution at specified locations called breakpoints.

Set traps which cause program execution to be suspended on specific events, such as the loading of an
overlay.

Display values stored into variables and arrays while program execution is suspended.
Enter data into the program.
Interrupt and restart the program from the terminal.

Define and save sequences of CID commands to be executed automatically when a breakpoint or trap is
encountered during program execution.

CONTROL STATEMENT

In order to make use of all the CID facilities, a FORTRAN program must be compiled, loaded and
executed in debug mode. Debug mode is activated by the control statement

DEBUG or DEBUG(ON)

When a source program is compiled in debug mode, the compiler produces a line number table and a symbol
table along with the binary object code. The CID package is loaded along with the compiled code and
becomes part of the user’s field length.

CID is deactivated by the control statement
DEBUG(OFF)
As an alternative to compiling with DEBUG(ON), the necessary compiler tables can be produced by

specifying DB or DB=ID on the FTN control statement. Subsequent executions with DEBUG(ON) can
make use of CID.

If debug mode has been activated with DEBUG(ON), it can be subsequently turned off for the duration of a
compilation by specifying DB=0 on the FTN control statement. The default is DB=0.

A program that has been compiled with DEBUG(ON) or DB=ID can subsequently be executed with
DEBUG(OFF), but CID cannot be used.

60497800 F 8-51

USER-CID INTERACTION

In debug mode, after the user’s program has been loaded, but before execution is initiated, CID requests input
of commands. - Typically, the user initially sets breakpoints and traps which specify debugging options to be
performed during program execution.

When a breakpoint or trap is encountered during execution, execution is suspended while CID performs the
sequence of commands specified in the body of the breakpoint or trap definition. With certain breakpoints
or traps, the user has the option of entering debug commands at the terminal before execution is resumed.

CID OUTPUT

Output from CID consists of informative messages, diagnostics, and the results of commands. Certain
informative messages always appear at the terminal; other messages are arranged into classes, and the user
can specify which message classes are to be sent to the terminal.

BATCH DEBUGGING

CID is primarily intended to be used interactively, but can be used in batch mode. In this case, the user must
place CID commands as the first record in the file DBUGIN.

Output from CID is written to a file called DBUGOUT. The type of output written to this file is controlled
in the same manner in which output is sent to the terminal when CID is used interactively.

INTERFACE TO COMMON MEMORY MANAGER

Common Memory Manager (CMM) is used for the management of field length, except when using the static loading
options. CMM ensures that the field length is increased or decreased properly to accommodate assigned blocks.

Interface to CMM can be done to assign blocks of memory for arrays. This assignment is completely dynamic,
and for efficient use, the blocks should be returned to the system when finished.

The Common Memory Manager reference manual should be read for a detailed description of CMM usage.
The following descriptions are for simple CMM usage.

CMMALF is called to allocate a fixed position block. The array to be assigned is defined in the FORTRAN
program as an array of length 1. The proper offset to the base address of the array is calculated by using the
LOCF function, adding one to this base address, and subtracting this value from the first word address of the
block returned by CMM. This calculated address, plus any subscript of the array desired, is used to reference
array elements. For example, the following statements assign a block and set the fifth element to 1:

PROGRAM CMM1

DIMENSION CMMAR(1)
ILEN=10

CALL CMMALF(ILEN 0,0,JFWA)
IOFF=IFWA-LOCF(CMMAR(1))+1
CMMAR(IOFF +5)=1.0

8-52 60497800 F

The calling sequence for CMMALF is:
CALL CMMALF(IBLKSZ,ISZCDE IGRPID,IBLFWA)
IBLKSZ Number of words required for the block.
ISZCDE Size code:

Fixed size block (should be used in most cases).

Block can grow at last word address.

Block can shrink at last word address.

Block can shrink at first word address.

Block can grow at last word address and shrink at first word address.

Block can shrink at first and last word addresses.

Block can shrink at first and last word addresses and grow at last word
address.

NN AN~ O

IGRPID Group identifier:

0 Item does not belong to a group (normal usage).
>0 The block is assigned to this group. The group number is determined by
calling CMMAGR (see the Common Memory Manager reference manual).
The group number may be any value greater than O.

The value returned from a call to CMMALF is:
IBLFWA First word address of block allocated by CMM.

CMMFREF is called to free the fixed-position block when it is no longer needed. When the block is freed, the
contents of the block are no longer accessible.

The calling sequence for CMMFRF is:

CALL CMMFRF(IBLFWA)

IBLFWA First word address of block (must have been returned by CMMALF).

Other routines are available to accomplish other tasks, such as determining maximum field length and other statistics,
assigning blocks to groups, and releasing groups of blocks (see the Common Memory Manager reference manual). All
CMM interface routines for NOS and NOS/BE are on the library SYMLIB. Therefore, the statement LDSET
(LIB=SYMLIB) must be included in the loader directives for a run using the CMM interface routines, or the user
should include a CALL SYMLIB subroutine call in the main program. SCOPE 2 users must specify SYMIO in the
LDSET statement instead of SYMLIB.

POST MORTEM DUMP

Post Mortem Dump (PMD) analyzes the execution time errors in FORTRAN Extended Version 4 programs.
PMD provides interpreted output in a form which is more easily understood than the octal dump normally
output following a fatal error; PMD prints a summary of the error condition and the state of the program at
the time of failure in terms of the names used in the original program. The names and values of the variables

60497800 G 8-53

in the routine in which the error was detected are printed; this process is repeated, tracing back through the calling
sequence of routines until the main program is reached.

Use of PMD does not affect the use of FORTRAN Extended DEBUG or CYBER Interactive Debug. PMD is
activated by a hardware or software fatal error and can also intentionally be invoked by the user. PMD overrides
any user-supplied load map directive or MAP(ON) control statement. For example, the following statements do
not produce a load map if PMD was specified:

LDSET(MAP=SBEX)
LOAD(LGO)
EXECUTE.

However, the loader always writes a block and statistics map to file ZZZZZMP for PMD’s use. It is the user’s
responsibility to rewind and copy this file to output. If nonfatal loader errors occur, a summary of the errors is
included in the PMD output.

When PMD is used, the FORTRAN Extended compiler generates a loader request to preset all memory to a
special value for initialization testing. This preset is similar to that produced by the following load sequence:

LDSET(PRESETA=60000000000433400000)
LOAD(LGO)
EXECUTE.

Any user LDSET(PRESET=) loader specification is overridden.

PMD reloads the user field length before it aborts to allow a subsequent octal dump of the user’s program if one has
been specified.

To use PMD, the PMD parameter must be specified on the FTN control statement. PMD will then be activated by a
fatal execution error or by one of the user-callable subroutines PMDLOAD or PMDSTOP. Information provided by
the dump includes the following, where applicable:

A summary of all nonfatal loader errors.

A list of all COMMON block length clashes.

The nature of the error that activated PMD.

The array-dumping parameters selected and the field length required to load and run the user program.

The activity of each file used by the user program at the time of the error.

The overlays in memory at the time of the error.

The location of the error in terms of statement labels and line numbers, if possible.

An annotated register dump; an attempt is made to associate each address register with a variable or array
referenced within the routine in which the error occurred.

An alphabetical list of all variables and their values, accessible from the current routines.

A printout of arrays according to specified parameters.

A message-tracing call beginning at the previous routine and ending when the main program is reached.
A completion message upon reaching the main program.

Variables are printed alphabetically. The column labeled RELOCATION is left blank for local variables. It contains
the block name for COMMON variables and F.P. nn for formal parameters, where nn indicates the parameter number.

In addition to being printed as numbers, INTEGER variables are interpreted as masks or charactersinH, L, or R

format. In character representation, binary zeros are converted to blanks within a word, but a word with binary
zeros at each end has the first binary zero printed as a colon.

8-54 60497800 G

The column headed COMMENTS flags undefined local variables as *UNDEF, which indicates a potential source of error.

Variables passed as parameters to the previous routine in the traceback tree are labeled PARAM nn in the COMMENTS
column. The COMMENTS column contains F.P. nn where the same variable occurs more than once in an argument
string; nn points to the last occurrence. Constants passed in the previous routine are also printed at the end of the list
and given the symbolic name CONSTANT. Untraceable functions and subroutines passed as arguments are printed.

Full checking is carried out on subroutine or function arguments, and a warning message is issued if:

A routine is called with the wrong number of arguments.
A type conflict exists between actual and formal arguments.
The argument was a constant and the called routine either treated it as an array or corrupted it.

A conflict in the use of EXTERNAL arguments is detected; note that the results given for EXTERNAL arguments
can be imprecise because several utilities can reside within the same routine and PMD cannot differentiate
between them. For example, both SIN and COS reside within the routine SINCOS=.

A warning message is also issued if a real variable contains an unnormalized value, for example, integer.

For batch jobs, the dump is written to file OUTPUT. For jobs executed from an interactive terminal, the disposition
of the dump is determined by options specified on the execution control statement (typically LGO) as follows:

LGO,*OP=option [option] [option] .
where option is one of the following:

T A condensed form of the dump is displayed at the terminal.

A The variables in all active routines are included in the dump. An active routine is a routine that has been
executed but is not necessarily in the traceback chain. This option is valid for batch, as well as interactive,
jobs.

F A full dump is written to the file PMDUMP when the job is executed with the file OUTPUT connected.
This option is valid for interactive jobs only and is the default if the *OP parameter is omitted.

PMD can be used with overlay programs. In this case, only variables defined in the overlay currently in memory are
dumped. The overlay numbers of the current overlay appear in the PMD output.

PMD output produced by a program compiled under a given optimization level can differ from that produced by the
same program compiled under a different optimization level. This occurs because different optimization levels
generate different sequences of object code. At the actual time of an abort, the machine instruction being executed for
a specified optimization level might be different from the instruction being executed for a different optimization level.

Variable values printed by PMD might differ for successive executions of the same program on certain computer systems.
This can occur on systems with parallel functional units such as the 6600, 6700, CYBER 70 models 74 ar:d 76, and the
CYBER 170 models 175, 176, 750, and 760.

The formats of the optional PMD subroutine calls are as follows:

CALL PMDARRY/{i)
CALL PMDARRY!/i,j) |
CALL PMDARRY(i,jk)

The last subroutine call listed causes dump of arrays to be limited to elements whose subscripts do not exceed i, j, and |
k for their respective dimensions; i, j, and k represent the first, second, and third dimensions, respectively.

If k is omitted, three-dimensional arrays are not printed. If j and k are omitted, two- and three-dimensional arrays |
are not printed; only one-dimensional arrays are printed.

60497800 G 8-55

Array dumping parameters can also be specified on the LGO call card. The three formats are:
LGO,*DA=I] Corresponds to call PMDARRY(I).
LGO,*DA=I+] Corresponds to call PMDARRY(LJ).
LGO,*DA=I+J+K Corresponds to call PMDARRY(LJK).

where 1, J, and K represent the first, second, and third dimensions, respectively.

If neither CALL PMDARRY nor LGO,*DA= is used, the default array dimensions of I, J, and K are assumed
to be 20, 2, and 1, respectively.

Once PMDARRY has been called, the established conditions apply to all program units in the user program.
Any number of PMDARRY calls can be included; the most recent call determines the effective conditions.

Example:
DIMENSION RAY (10,10,10)

CALL PMDARRY (3,4,1)

Array elements are printed with the first subscript varying fastest and with a maximum of six values per line for real
integer, and logical arrays, and a maximum of three values per line for double precision and complex arrays.

The following twelve elements of array RAY will be printed:

(1,1,1(2,1,1)(3,1,1)(2,3,2)(2,2,1)(3,2,1)
(1,3,1(2,3,1)(3,3,1(1,4,11(2,4,1)(3,4,1)

If all the requested elements of an array have the same value, PMD will print the message:
ALL REQUESTED ELEMENTS OF THIS ARRAY WERE

If several consecutive elements of an array subblock have the same value, PMD will print the message:
ALL THREE ELEMENTS WERE

CALL PMDDUMP causes a dump of variables in the calling routine, not at once, but when an abort occurs or
when PMDLOAD or PMDSTOP is called. PMDDUMP and PMDLOAD or PMDSTOP need not be called from
the same routine. The dump includes an analysis of all active routines that have called PMDDUMP. These
active routines have been executed but are not necessarily in the traceback chain. Following an abort or call
to PMDSTOP, all routines in the traceback chain are dumped. A limit of ten successive calls to PMDDUMP
is imposed. The tenth call to PMDDUMP is converted to a PMDSTOP call.

CALL PMDLOAD causes an immediate dump of variables in the calling routine and in any routines that have called
PMDDUMP. Program execution continues normally after the dump unless PMDLOAD is called more than 10 times,
in which case a nonreturnable call to PMDSTOP occurs.

CALL PMDSTOP causes an immediate dump of variables in the calling routine, all routines in the traceback chain,
and any routines that have called PMDDUMP. The job is then aborted. Programs cannot recover from a call to
PMDSTOP.

An example of Post Mortem Dump output follows:

8-56 60497800 F

1

PAGE

~
-
.
w
"
L4
-
-
.
B deded oS ad) ed ard o AP) od b e b
© oeocawaamaaanaammacaacoas
~ CTEEEEY XLy XTI ER -
o deqadardgdadqiadddacad -
© 3¢ 3% T3 3 LI 3 2D 30 HE LULL: 30 I 20 2 2 3 2B
- W :
o
<
- S
- e "o
- —— -~
o ~
£ “
(-] w
S]
o
*
-
(3 co [-1-]
- Wit ww
2N zZ
z ——— Sy
- w wy wu
w - ww wus
- -~ (-1 co
> » -
a w 1
- a -
2 2 o 5
[~ - - PROCHOM DT OOE~
T « - ~ Neotodrton rdrtattN
O w [>
w W - a
a o «
<« W -t -
L 4 - — [
. - - w
- - - o ©
a w - o ~ - occo o z
E 3 a © - - - Ul wro
e -« - - - LULULLPZZZUULUTU X ey
T = L) ~ L UL L L ittt B ot L UL LAY w
a - T »0 = - rrxaxexulbLlaaaus uw
- o dea o - [rorenrs ™ w
D n &0 = - (-1 o a
w a ~ emO >
[T} [l Lol O -< w
< 2w awtn o (4 w w
[(= -~ b ~ o z
- - < L3 4 - Tt v FOON
- ar . atar et L k4.4 weN ~Oon
- S - OX o am - Cw « aCoy
o a w —O e P - - w ol -
Ll r Sw e Aulal - [’ -y “w w
a - > Aee W . o w < w a
(-] - o~ -y o > (¥} s a
o F AT - O Om o z o z¥r
a A et WP 0O omo w - —t—t @ oo
P WL X OEC) et fdsb O~ - w oo N>
o« Ay CAOUE I AWNT it ~ oW ar -t ——— P
- » o >> JUX O A ZZwxd [> > ZzE Lad dndasd
~ W VA VIZETZTEn +ZATadNA @ w e < == o
i or O Uittt AU © oy T Wl - ar v o
~ T HC Wit oo R smiA M X o o [ad [l
< A WA rZTaA-NI RN NTW a <« « O Dt
o« A SOZOD > rtetotmt NN omd - a a
D N AmLT e €a ooy o = « « z
0O =W TOXEIDrgdddCeqCSN IO -
@ IT CO=QTIa>>3>33>>qd-2 w oW (1=
d A e QUCUWE COA bt T OO QO Ze W arararer Joar arw zw
a F] LI W L s < L w wwae wn
€ W o w SBOBOAOLY w a av» TN -2
-« a O IO WLWNLWS Jdwd O > > -
»x w oW PAAT et s O = e ON zT
w w W —WUWOZZPEZZOZWWW ¥ rQ z (2,53
[0 1E w s O OO Q00 Somt 0t bt et 0t) 04 OF OF O - W xn
= ar - x
« = (XXX Y3 .] r_cm
[4 (%) (] z =T OO
» - o S O
o - - =N - A - na —ToON
& oD wve 33 ond 4 D= et N o bt W ot —Det O DL ad X T wZwe
a ® = cCxaaraarar e e Daww ¥ O X VU il O
r Te yrdaadadadsnsaa na=aa — T OO0 VO
P M NXEDLEIIIBIIATIE WZDIAE WX DPE JdJd Usyr @
»n Ow weat ~“Txa> ¥ -l L= OO ~edrd
- w o - -] o - - - -
-t - ~] x z w 4 N=-Ou.
> XOMENO MO OO OIOP & z [} —rowk
&Xrt m ANOOOOOSNSOND W N W - b3 =2 DO
=N A MAUGNAUNAANNAANAN) OO b -l € anra on
ZH | HOLOLDODOVLOLOO = ANPN = » o -
w > 'S w - (%] w

60497800 F 8-57

~
w
<
-
a
~
-
.
w
v
.
-
-
-
e
=4 am
-~ T
° “ra
o Rt
- wew
o
o«
»
-
»
(-4
3
(=3
o
o
*
-
[
-
»
-
w
-
o
w
“»
2
=z
-
-
~
b ot
o
a
E
a -
x -
o z
* -
a >
< -
o -
w o -
[%] - N
- -
ar oo
- e
L bnd
- eSeme
) -
- A -
a «ZZ
(-] A
P
e
ey
o
° wuw
- ZTare
] —a
~ = o
D
Cwd
T
o« D=
soz
v VO
-
o
=
>
w
w
z
lad
[
>
(=]
ar
-3
2
w

8-58

COMMON 3LOCK LENGTHS DISAGREE == ERQOR TRIGGERS CALL TD PNONP

4

ctaddECaNnESNnN
bbbk b LT Y
BRI b

IS IS AN FIN POST MOQTEM DUMP EXANMPLE ¢)

-
o

-

o

-

°

-

-t

>

-

L -
a (-4
- -4
< 8
- - *
x O ~N
O o O
(=] o» Ot=N
-y et 114
« av SOW™
o et D N
- =
ZTwd = L& Xed
o Zwe
ECwi=X oxam

10
15

tme DB

20
25

SYNBOLIC REFERENCE MAP (Rs2)

REFERENCES
27

F LINE
OE ll

e

17

OEFINED

]
1
i
26

€
2
E
€
23

(] <

13 23 24

DEFINED

OEFINED
2024

o0

NAWIMLVHAD VLW
VU TULPUUL~NLTZTW

W S) L Sl L
[439 1 4% 14
w w
e [

I
4
[
14
FePo

[T o e]
= L 2 4

Upns b tn?
U
Wi
co

FePo
FoPo

SUNUSED

GER

MOTION

Tiekd

FILE NAMES

REFERENCES
i
1
18
DEF LINE

REFERENCES
18

TYPE ARGS
1 INTRIN

REAL

[t
(T3
rO
S
wi

INLINE

[
w
(=3
z
w
o
woo
e
w
o
w
z
-
P
bt
-
w
E-J
-
=
» u
-
w
[
-
- O
o0
-0
k£
w
=
weN
Lt

STa

O
Ny
~
w
et -
ane a
- L 4
- - -
»
w
a
x
x D
Lo [
e
rF r
w w
-2 -
x
ZzZX o
[~ 3] t 4
t 471
= [od
FOo w
=0 (-]
@ O L3
—an
T W z
Yt ed O -
we W n
weTea
= E 4
| ot -
VIS
-EOx o
b OIL) -
aSren
- w
- L d
x
-

60497800 F

d 008.L6¥09

65-8

FTN POST MQRTEM DUNP FTN & ERROR REPORT B80/06/705. 11.55.46.
®e% YOQUR 479 HAS THE FNLLIWING NIN-FATAL LNAD ERRO(S)
UNSATISFIED EXTERNAL REF == AJSENT

*6¢ YOUR JNB HAS THE FOLLOWING /CTINMIN/ LENGTH CLASH(ES):
/BLOCKAZ »LOADED LENGTH= 252+LENGTH IN ROUTINE EXTRAS = 216

717 EXECUTION dAS TERMINATED BECAUSE YOUR PROGRAM FAILED WITH ERROR CONDITION OVERFLOW
ece ARRAYS WILL BE PRINTED BY DEFAULT PARAMETERS (200 29 1)
eee YOUR PROGRAM REQUIRED 334009 WNRDS TO LOAD» 161278 W#ORDS TO RUN
eee FILE STATUS AT TIME OF ERROR
FILE NAME FORTRAN NAMES LASTOP STATUS FN 8T RT RECORD CgUNt

=INPUT INPUT UNUSED So L]
=0uTPUT ouTPUT PUT/PUTP E-0-R SO C 2 4
TAPES
-TAPEL TAPEL REWINDM B=-0-1 SQ 1 [}
4171 THE ERROR OCCURRED IN SUBRNOUTINE EXTRAS ,a80nUT 4 WORDS AFTER LINE 18 (2 WORDS BEFORE LINE 25)

wee THE REGISTERS CONTAINED THE FOLLNWING AT THE TIME 0OF T4€ ERROR

A=REGISTERS (CONTAIN ADORESSES) ASSNCIATED LOCATINN

REG OCT vAlL SYMBOL 0CTAL VALUE ARTTHMETIC VALUE CHAR VALUE
A0 0067428 PARAMETER LIST ADDRESS ¢ 0 (A0)=000000000000000067578 ADORESS OF PARANETER 1
Al 0071178 ADDRESS OF A TEMPORARY (A1)2000000000000000000008 0.
A2 0114648 WITHIN SINCNS. (A212040000710500000000008 «505292518332-218 5LD0 +¢E
A3 0115258 WITHIN SINCOS. (43)26064151671155562330068 =e495774235001E-01
A4 0067438 PARAMETER LIST ADDRESS ¢ 1 {A4)=000000000000000067718 ADDRESS NF PARAMETER 2
A5 0071448 X (A5)=377700000000000000008 POSITIVE INFINITE
Ab 0071448 X (A6)=377700000000000000008 POSITIVE INFINITE
A7 0067718 PARAMETER 2 - 4 {A71=000000000000000000008 [}

B8-REGISTERS X=REGISTERS (USED FNR COMPUTATINN)

REG OCT vaL 0EC vAL REG 0CTAL VALVE ARITHMETIC VALUE CHAR VALUE
80 0000008 = 0 X0 377700000000000000008 POSITIVE INFINITE
81 0071058 = 3653 X1 000000000000000000008 0.
82 7760008 = -1023 X? 000000000004000071058 67112517 5RD ¢E
83 0000008 = 0 X3 000000000000000000008 0.
84 0020008 = 0 X4 000000000000000067714 3577 2RA 4
85 0000128 = 10 X5 172160090000000000008 3,00000000000 3L0Q%
86 0110048 = 4612 X6 377700000000000000008 POSITIVE INFINITE
87 0000008 = [X7 00000000000000000000R 0.

P-REGISTER 0071078 CH FIELD LENGTH 0216004 ECS/LCN FIELD LENGTH 0000000098
RA+0 000203711000000000008 k441 300000000000000003308 PSD (CYLT?6 ONLY) 00038

esee VARIABLES IN SUBROUTINE EXTRAS

NAME TYPE RELOCATION CURRENT VALUE CNOMMENTS NAME
ARRAY] REAL /RLOCKA/ ARRAY (6eheb) ARRAY]
DVARL DOUALE 1.414213562373095048391689 DVAR]
1 INTEGER FePo 1 3 = 1RC 1
TARRAY INTEGER FePy 3 ARRAY (1o TARRAY
1ARRY2 INTEGER FoPo 5 ARRAY (1) [ARRY?
®%® THE NEXT [VEM WAS SET T AN UNINITIALIIZED VALUF =~ IVaRs
1vaRS INTEGFR % NOT INTTTALITEN®® TVarRS

4 008609

$08 THE NEXT ITEN IS NEVER DEFINED
1vaeRe INTEGER NOT INITIALIZED IvaRe
] INTESER FebPo 2] J
N INTEGER FePo & ’ 10 LERL R N
Pl REAL 3.14159260000 [}
UNUSED REAL FoPo & #¢ OMITTED FRNM THE CALL STATEMENT L1 UNUSED
ERROR=~X REAL POSTIVIVE INFINITE X
000 ROUTINE EXPECTED 6 ARGUMENTS BUT WAS CALLED WITH 5 AQGUNMENTS
see ARRAYS IN SUBROUTINE EXTRAS
REAL ARRAY ARRAYL{6s646)
ALL REQUESTED ELEMENTS OF THIS ARRAY WERE NOT INITIALIZED
INTEGER ARRAY [ARRAY(10) DECLARED AS [ARRAY(N)
ALL REQUESTED ELEMENTS OF T4IS ARRAY WERE -4
INTEGER ARRAY [aARRY2(1)
ALL REQUESTED ELEWENTS OF THIS ARRAY WERE WNOT INITIALIZED
eee CALLED FROM LINE NUMBER 21 OF PROGRAN EXAMPL
FTN POST NORTEN OUNP FIN ¢ PROGRAM EXAMPL 80/06/05. .11.55.46,
eee SITUATION AT THE TIME SUBROUTINE E€XTRAS WAS CALLED AT LINE NUMBER 21 Of PROGRAN EXAMPL
see VARIABLES IN PROGRAM EXA4PL
NANE TYPE RELOCATION CURRENT VALUE COMMENTS NANME
ARRAY]L REAL INLOCKAY/ ARRAY (7+646) ARRAY]
ARRAY2 REAL ARRAY (30) ARRAY?2
cvarl COMPLEX (1.0000000000 + 1.5000000000) cvariy
1ARaAyY INTEGER ARRAY {10,2) ARG, 3 LARRAY
066 THE MNEXT ITEN IS AN INTEGER ARRAY IN THE CALLED ROUTINF
TARRY2 INTEGER NOT INITIALIZEO ARG, 5 TARQY2
Ivarl INTEGER LOHANT NR INTEGER > 2%¢4u-] tvaqy
Ivar2 INVEGER JLANT OR INTEGER > 2¢%48~-1 TvaR2
Va3 INTEGER 5012 s JINANT [VAR]
IVARG INTEGER 10000 s INQLP fvars
LVaARl LoGtCaAL o«FALSE. LvaRrl
RASKL INTEGER ~4095 =48-8IT MASK NASK]
®6¢ THE NEXT VARIABLE CONTAINS AN INTEGER VALUE
RHASK REAL -4099% s48-RIT MASK RMASK
006 THE NEXT VARIABLE IS UNNORMALIZED
/vVaRrl REAL 0296962555974~270 104ANTELOPE avarl
006 THE NEXT IVEM IS AN INTEGER VAREAGLE IN THE CALLEN ROUTINE
VAR]L REAL 0. ARG, 2 VARl
O66 THE NEXT CONSTANT NAY HAVE BEEN ALTERED IN THE CALLED ROUTINE
CONSTANTY INTEGER 3 = IRC A6, 1 CONSTANT
CONSTaNT INTEGER 10 . 1Ry ARG, & CONSTANT
see ARRAYS IN PROGRAM EXAMPL
REAL ARRAY ARRAYL(T7,606)
ALL REQUFSTED ELEMENTS IF THIS ARRAY WERE NOT INITIALIZED
REAL ARQAY ARRAY2(30)
(ARRAY2(N))
N=1ls16 ALL THESE ELEAFNTS WERE NNT INTTIALIZEN
Nel?7 1717.,17170990 NAT INITIALIZED NOT INTTUALEZED NIT INITIALIZED

4 008L6%09

19-8

INTEGER ARRAY [ARRAY(10s2)
(LARRAY{N,0))

N=1,10 ALL THESE ELEMENTS WERE
(TARRAY(No 1))
N=1,10 ALL THESE ELEMENTS WERE

see TRACEBACK SUCCESSFULLY COMPLETED

177 €MD OF ERROR REPORT

-4

* 18C

DEBUGGING FACILITY 9

The debugging facility allows the programmer to debug programs within the context of the FORTRAN language.
Using the statements described in this section, the programmer can check the following:

Array bounds Function references and the values returned
Assigned GO TO Values stored into variables and arrays
Subroutine calls and retumns Program flow

The debugging facility, together with the source cross reference map, is provided specifically to assist the pro-
grammer develop or convert programs.

The debugging mode is selected by specifying D or D = lfn on the FTN control statement. This option auto-
matically selects fast compilation (OPT=0) and full error traceback (T option). If any other optimization level

is specified, it will be ignored. Specification of both D and TS results in a fatal error. The following examples
are equivalent:

FIN (D)

FIN (D=INPUT,OPT=0,T)

FIN (D,OPT=2) OPT=2 is ignored, OPT=0 and T are automatically selected.
Debug output is written on the file DEBUG. The DEBUG file, which must be on a queue device, is given print
disposition and printed separately from the output file upon job termination. To obtain debugging information
on the same file as the source program, or any other queue device resident T file, DEBUG must be equivalenced
to that file in the PROGRAM statement.

Examples:
PROGRAM EX (INPUT,OUTPUT,DEBUG=OUTPUT)
Debug output is interspersed with program output on the file OUTPUT.
PROGRAM EX(INPUT, OUTPUT, TAPEX, DEBUG=TAPEX)
Debug output is written on the file TAPEX.

The following control statement sequence causes the debug output to be printed on the output file at termination
of the job. It is not interspersed with the results of program execution.

FTN(D)
LGO.

REWIND (DEBUG)

COPYCF (DEBUG, OUTPUT)

EXIT(S)f or EXIT. 1t Abnormal termination
REWIND (DEBUG)

COPYCF (DEBUG,OUTPUT)

TNOS/BE 1 and SCOPE 2
NOS 1
TTYNOS/BE 1

60497800 E 9-1

In debug mode, programs execute regardless of most compilation errors. Execution, however, terminates when
a fatal error is detected, and the following message is printed:

FATAL ERROR ENCOUNTERED DURING PROGRAM EXECUTION
DUE TO COMPILATION ERROR

Partial execution of programs containing fatal errors allows the programmer to insert debugging statements to
assist in locating fatal and non-fatal errors. Partial execution is prohibited for only four classes of errors:

Any declarative error (any error encountered before at least one valid executable statement is found)

Any fatal compilation error (defined in Appendix B)

Any missing (undefined) DO termination

Any illegal transfer into an innermost DO loop that is not an extended range loop

When a program is compiled in debug mode, at least 15000 (octal) words are required beyond the minimum
field length for normal compilation. To execute, at least 2500 (octal) words beyond the minimum are re-
quired. The CPU time required for compilation is also greater than for normal OPT=0 compilation.

If the D option is not specified on the FIN control statement, all debugging statements are treated as com-
ments; therefore, it is not necessary to remove debugging statements from a program.

All debugging options are activated and deactivated at compile time only. This compile time processing is
not to be confused with program flow at execution time.

Example:

PROGRAM TEST (OUTPUT,DEBUG=OUTPUT)

C$ (DEBUGGING OPTION)
C$ (DEBUGGING OPTION)
4 CONTINUE

END

Even though a section of code may never be executed, the debugging options are processed at compile time
and are effective for the remainder of the program. In the above example, the code between the GO TO
statement and the CONTINUE statement may never be executed. However, debugging statements betwe=n
these statements are processed at compile time and are effective for the remainder of the program, or until
deactivated by a C$ OFF statement.

9-2 60497800 C

DEBUGGING STATEMENTS

1 _7
1
Cl$ dsip,p,)
|
!
ds Type of option. beginning after column 6: DEBUG. AREA. ARRAYS. CALLS.

FUNCS. GOTOS. NOGO. OFF. STORES. TRACE

P Argument list; details extent of the option. ds (not used with NOGO, GOTOS: required
for AREA. STORES: optional for other options)

CONTINUATION LINE

1

(7

67
" (P +-- -+ Py)
|

Debugging statements are written in columns 7-72, as in a normal FORTRAN statement, but columns 1 and
2 of each statement must contain the characters C$. Any character, other than a blank or zero, in column

6 denotes a continuation line. Columns 3, 4, and 5 of any debugging statement must be blank. A maximum
of 19 continuation lines is allowed.

Comment lines may be interspersed with debugging statements. The statement separator ($) cannot be used
with debugging statements. When the debug mode is not selected, all debugging statements are treated as
comments.

Example:
cs ARRAYS (A, BNUMB,Z10, C, DLIST, MATRIX,

C$ *NSUM, GTEXT,
C$ *TOTAL)

ARRAYS STATEMENT

ARRAYS (a1 Ay, an)

c$ ARRAYS

a,,...4, array names

60497800 C 9-3

The ARRAYS statement initiates subscript checking on specified arrays. If no argument list is specified, all arrays in
the program unit are checked. Each time a specified or implied element of an array is referenced, the calculated
subscript is checked against the dimensioned bounds. The address is calculated according to the method described in
section 1. Subscripts are not checked individually. If the address is found to be greater than the storage allocated
for the array or less than one, a diagnostic is issued. The reference then is allowed to occur. Bounds checking is
not performed for array references in input/output statements, or in ENCODE/DECODE statements. In a subprogram,
the bounds that are checked are those in effect in the subprogram, including variable dimensions. -

Example:

PROGRAM AKRAYS (OUTPUT,DEBUG=0UTPUT)
INTEGER A(2)s B(4)e C(6)s D(29394)
PRINT 1

1 FORMAT (%0 ARRAYS EXAMPLE®///)
TURN ON ARRAYS FOR ARRAYS A AND D
ARRAYS (A, D)

A(3) IS OUT OF BUUNDS AND ARRAYS IS ON FOR As SO A DIAGNOSTIC
IS PRINTED.

¢ SO ¢ & ¢
-]

A(3) =1

B(5) IS OUT OF BOUNDS BUT ARRAYS IS NOT ON FOR 8, SO NO
DIAGNGSTIC IS PRINTED.

% &8

B(3) =1

*

C2) = A(A(I))

EVEN THOUGH A(3) WAS OUT OF BOUNDSs THE ASSIGNMENT TOOK PLACE.
ACAL3)) IS EVUIVALENT TO A(l)e THIS SUaSCRIPT IS [N SOUNDS»
HOWEVEK THE REFERENCE TO A(3) WILL CAUSF A DIAGNOSTIC.

% % & &G

D(=590+6) = 99

FUR THE ARrRAY D(LsMeN) THE STORAGE ALLUCATED IS L ® M & N
THE SUBSCRIPT FOR THE ELEMENT D(I+JeK) IS COMPUTED AS FOLLOWS
(I + L#{Jd=1 + M2E(K=1)))
FGR THt ELEMENT D(-5+096) THE SUBSCRIFT APPEARS TO
BE OUT OF BOUUNDS BECAUSE The INUDIVIDUAL SUWSCRIPTS ARE (UT
OF BOUNDSe HOWEVERs 22y Tk COMPUTED ANDRESSe IS £SS THAN
24y THE STORAGE ALLOCATEDs AND NO DIAGNNSTIC IS ISSutU.

TURN ON ARRAYS FOR aLL ARRAYS

ARRAYS

(]

WITH TH1S FORM ALL ARKAY REFEKENCES WILL 8E CHECKED. THERE wILL
BE DIAGNUSTICS DR B(S)e C(=1)s» AND D(0.0+0)., HECAUSEL A(2)
IS IN BOUNGS AND Af6) 1S IN AN I/0 STATEMENTs THERE WILL BE
NO DIAGNOSTICS FOR £ITHER OF THESE REFERENCES.

LR IR BN BN o RN BN BN BN BRI

Al2) = 1
B(3) = 2 +« C(-1)
D(0+000) =1
PRINT 2+ A(4)

2 FURMAT (1Xs A10)
END

9-4 60497800 C

ARRAYS EXAWMPLL

/DEBUG/ ARRAYS AT LINE 13- THE SUATTATAT VALIE ~F 3 I+ seeiv A CYCEEDS DIYENSINNED A0UNY OF 2
/70€8UG/ AT LIne 20= TuE SUASIIIPT VALUF oF T In a4y 2 FYCELNS PIMENSIONED POUND .OF 2
F0EDBUG/ AT LINC L= THE SUBSCRALPT vALUF OF 5 IN 4POAY [EXCEEDS OIMLNSINNED AOUND OF [
/0E8UG/ AT LINE b7= THE SUPSCRIOT VALUF NF 3 IN AOPaY [EXCEFNS DIMENSIONEN BOUND OF 6
I0FRUG S AT LTINF L= IHE SUBCAIPT VALUE OF -8 IN ARPAY O EXCEEDS OIMENSIONED BOUND OF 24

CALLS STATEMENT

k]

cs | [cALLs G, ,....a)
|)
I

1

C'S CALLS
l
|

a,,..,a, subroutine names

The CALLS statement initiates tracing of calls to and returns from specified subroutines. If there is no
argument list all subroutines will be traced. Non-standard returns, specified in a RETURNS list, are
included. To trace alternate entry points to a subroutine, either the entry points must be explicitly named in
the argument list, or the form with no argument list must be used (all external calls traced). The message

printed contains the names of the calling and called routines, as well as the line and level number of the
call and return.

A main program is at level zero; a subroutine or a function called by the main program is at level I,
another subprogram called by the subprogram at level 1, is at level 2, and so forth. Calls are shown in order
of ascending level number, returns in order of descending level number.

level O MAIN ——p= call
level 1 return g——— SUB A —_—p call
level 2 return -¢———m———— SuB B

For example, subroutine SUB A is called at level 1 and a return is made to level 0. SUB B is called at
level 2 and a return is made to level 1.

60497800 A 9-5

Example:

*

Cs

(228 BN BF 2N BN BN BN BN B

s ¢

9-6

10

PROGRAM CALLS (OUTPUT » DEBUG=0UTPUT) -
PRINT 1)
FORMAT (0 CALLS TRACING®)

TURN -ON CALLS FUR SUBROU?XNES CALLS]1 AND CALLS2

CALLS(CALLS], CALLSZ)

X = le

CALL CALLS1 (XeY)s RETURNS (10)
IF (X +EQ. 1.) CALL CALLSZ(X)
CALL SUBNOT _
CALL CALLSI1E (X»YV)

DEBUG MESSAGES WILL BE PRINTED FUR CALLS TO AND RETURNS FROM
CALLS]1 AND cALES2. SINCE THE CALLS ARE FROM THE MaIN PROGRAMs
THEY ARE AT LEVEL G. THE CALLS TO SUBNNT AND THE a4LTERNATE
ENTRY POINT CALLS)IE AKRE NOT TRACED BECANSE THEY DO NO1 APPEAR
IN THE ARGUMENT LIST OF THt C$ CALLS STATEMENT. :

TURN ON CALLS FOR ALL SUBROUTINES

CALLS

CALL SUBNOT

CALL CALLS2(X)

CALL CALLSI1E (XoY)

DLBUG MESSAGES WILL BE PRINTED FOK CALLS TO AND RETURNS FKOM
SUBINOTs CALLSZs AND CALLSIEs SINCE ALL CALLS ARE To Bt
TRACED.

END ‘

SUBROUTINE CALLS1(XsY)s RETURNS(A)
Y = =X

IF (Y oNE. X) RETURN A

RETURN

ENTRY CALLSIE

RETURN

END

SUBROUTINE CALLS2(X)

CALL CALLS1(X#Y)s RETURNS(S)
RETURN

END

SUBROUTINE SUBNOT

X = =1,

CALL CALLS1(XsY)s RETURNS(S)
RETURN

ENOD

60497800 A

CALLS TRACING

/DEBUG/ CALLS
/DEBUG/
/DEBUG/
/DEBUG/
/DEBUG/
/DEBUG/
7DEBUG/
/0€EBUG/
/0EBUG/
/DEBUG/

AT
AT
AT
AT
AT
AT
AT
AT
AT
AT

LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

Q-
10~
10-
11~
24~
25-
25~
26~
26~
27~

ROUTINE
ROUTINE
ROUTINE
ROUTINE
POUTINE
ROUTINE
ROUTINE
ROUTINE
ROUTINE
ROUTINE

CALLS1 CALLED
CALLS1 RETURNS
CALLS2 CALLED
CALLS2 RETURNS
SUBNOT CALLED
SUBNOT RETURNS
CALLS2 CALLED
CALLS2 RETURNS
CALLS1E CALLED
CALLS1E RETURNS

AT
T0
AY
T0
AT
T0
AT
T0
AT
T0

LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL

- XN NN NN NN NX-)

AT STATEMENT 10

In this example. only calls from the main program are traced. To trace calls from subprograms, a C$
CALLS statement must appear in the subprograms.

FUNCS STATEMENT

7
Cs. FUNCS (a, ,...,a)
[
|
1 7
cs FUNCS

If no function names (g

a,) are listed, all external functions referenced in the program unit are traced.

Alternate entry points must be named explicitly in the argument list. or implicitly in the CS FUNCS
statement with no paramenters.

Function tracing is similar to call tracing. but the value returned by the function is included in the debug
message. Each time a specified external function is referenced. a message is printed which contains the
routine name and line number containing the reference. function name and type. value returned, and level
number. The level concept is the same as for the CALLS statement.

Statement function references and intrinsic function references are not traced, nor are function references in
input/output statements.

60497800 C

9-1

Example:

10

20

25

10

The following program, VARDIM2, illustrates both the CS FUNCS and C$ CALLS statements. All
function references in the main program are traced because C§ FUNCS appears without an
argument list; references to functions PVAL. AVG and MULT and the values returned to the main
program (level 0) are traced‘ All subroutine calls-in the main program are traced also because a C$ CALLS
statement without an argument' list appears.

Function references within the FUNCTION subprograms PVAL, AVG and MULT are traced since
C$ FUNCS statements appear within these subprograms. If no C$ FUNCS statements appear in the
subprograms. only main program function references w1ll be traced.

PROGRAM VARDIN2(OUTPUT,TAPEG=OUTPUT,DEBUG=0UTPUT)
c THIS PROGRAM USES VARIABLE DIMENSIONS #ND MANY SUBPROGRAM CONCEPTS

COMMON X (4, 3) :
REAL Y(6)
EXTERNAL MULT, AVG
PVALSF(X,Y) = PVAL (X,Y). -

'C$ CALLS -

- CALL SET(Y,6,0.)
CALL IOTA(X,12)
CALL INCIX,12,-5.)

c . . .
c ALL EXTERNAL CALLS ARE DIAGNOSED.
C .
cs FUNCS)
AR = PVALSF(12,AVG)
AM = PVALSF(12,MULT)
Cc
Cc PVALSF IS A STATEMENT FUNCTION, SO THE FUNCS STATEMENT DOES NOT
c APPLY TO IT AND NO MESSAGE IS PRINTED. HOWEVER, THE EXTERNAL
c FUNCTION PVAL IS REFERENCED WITHIN THE CODE FOR PVALSF,
C AND THOSE REFERENCES ARE DIAGNOSED.
[MULT AND AVG ARE NAMES AS ARGUMENTS TO PVALSF, HOWEVER, THE
Cc FUNCTIONS ARE NOT ACTUALLY REFERENCED AND MESSAGES ARE NOT
Cc PRINVED.
C
stop
END
SUBROUTINE SET (A,M,V)
c SET PUTS THE VALUE V INTO EVERY ELEMENTY OF THE ARRAY A
DIMENSION A(M)
DO1I=1,M
1 A(1I)=0.0
c
ENTRY INC
c INC ADDS THE VALUE V TO EVERY ELEMENT IN THE ARRAY A
D02I=1,M
2 ACTI=ALI) +V
RETURN
END

9-8 ’ 60497800 A

10

10

10

(%,

OO0

SUBROUTINE IO0OTA (A,M)

IOTA PUTS CONSECUTIVE INTEGERS STARTING AT 1 IN EVERY ELEMENT OF
THE ARRAY A

DIMENSION A (M)

DO1I=1,M

AlI) =1

RETUPRN

END

FUNCTION PVAL(SIZE,HWAY)

PVAL COMPUTES THE POSITIVE VALUE OF WHATEVER REAL VALUE IS RETURNED

BY A FUNCTION SPECIFIED WHEN PVAL WAS CALLEO. SIZE IS AN INTEGER
VALUE PASSED ON TO THE FUNCTION.

INTEGER SIZE

PUNCS (ABS)

PVAL=ABS(WAY(SIZE))

WAY DOES NOT APPEAR IN THE ARGUMENT LIST FOR THE FUNCS STATEMENT,
SO ONLY THE REFERENCE TO ABS IS DIAGNOSED.

RETURN
END

FUNCTION AVG(J)

C AVG COMPUTES THE AVERAGE OF THE FIRST J ELEMENTS OF COMMON.

A0

60497800 A

COMMON A(100)
AVG=0.
001I=1,J
AVG=AVG+A(I)
FUNCS

ALL EXTERNAL FUNCTION REFERENCES WILL BE DIAGNOSED.
AVG=AVG/FLOAT(J)

RETURN
END

REAL FUNCTION MULT (J)

MULT COMPUTES A STRANGE AVERAGE. IT MULTIPLIES THE FIRST AND 12TH

ELEMENTS OF COMMON AND SUBTRACTS FROM THIS THE AVERAGE (COMPUTED
8Y THE FUNCTION AVG) OF THE FIRST J/2 WORDS IN COMMONe

COMMON ARRAY(12)
FUNCS

ALL EXTERNAL FUNCTION REFERENCES WILL BE DIAGNOSED.
MULT=ARRAY (12) *ARRAY(1)-AVG (J/2)

RETURN
€E N 0

9-9

70FBUGY
/0ERUGY
/DERUGY
/DEBUG/
/DECUGY
70ERYG/
. IDERUG/
/DEBUNGY
/0EBUN/
70ERUGY
70E£UG/
/DERLG/

VARGTM? AT LINE

MULT

AT
AT
ar
AT
AT
AT
AT

AT

AT
AT

VARDIMZ AT

L INE
L INE
LINE
LINE

LINE .
LINE.

LINE
LINE
LINE
LINg
LINE

g~

s

9-
10~
10~-
11-
5=
16~
16~
11~
11-

16=

STORES STATEMENT

7

ROIUT THE
KOLT INE
KOUT INE
rOUTINE
FIUTINE
FOUT INE
F E f‘.‘.
KE AL
wo AL
RE au
nEAL
REAL

SET

SET

107
I0OTA

INC

ING
FUNSTESGH
FUNCTLUN
FUNCTION
FUNCTION
FUNCTION
FUNCTION

CALLEO
~E TURNS
CALLED
S TURNS
CALLED
=E TUKRNS
PAL
PUAL
PyvaLl
AVS
AVS
PVAL

AT
70
AT
T0

AT

T0

CALLED AT
RETURKSNS A
CALLcD AT
CALLED AT
rEFURNS A
RCTURNS A

Levek
LEVEL
LEVEL
LEVEL
Livel
LEVIL

coocoon

LEVEL
vALUE
LEVEL
LEVEL
VALVE
VALUE

|STORES (c,.c,.....c,)

An argument INisll must be specified for the STORES statement.

(¢y.....c,) are variable names or expressions in the forms:

variable name

. . IS
variable name .relational operator. constant

. ,/' . .
variable name .relational operator. variable name

variable name .checking operator.

Relational operators are .EQ., .NE., .GT.. .GE.. LT.. LE.

Checking operators are .RANGE., .INDEF., VALID.

Example:

9-10

C$

C$

cs$

C$

STORES (SUM, DGAMP ,AX ,NET.LT.4,ROWSUM.RANGE.)

STORES(A1,AGAIN,I,A2.EQ.5.0,IAGAIN.LE.IVAR)

STORES(C.EQ.(1.,1.),L.VALID.,D.NE.10.004)

STORES(G.RANGE.,TR.EQ..FALSE.)

(]
OF 1.5000GBudb AT LEVEL
)
2
CF -1,500060000 AT LEVEL
OF 2b6.5G0ubudd AT LEVEL
60497800 C

<N

The STORES statement is used to record changes in value of specified variables or arrays. The STORES
statement applies only to assignment statements. Values changed as a result of input/output. or use in
DATA, ASSIGN, and COMMON statements, or argument lists to subroutines and functions are not detected.
The STORES statement does not apply to the index variable in a DO loop.

If the value of a variable in an EQUIVALENCE group is changed, the STORES statement will not detect
changes to the value of other variables in the group.

VARIABLE NAMES

In the first form of the STORES statement, a message is printed each time the value of a variable or an
array element changes. The variable and name of the array must appear as arguments in the C$ STORES
statement.

Example:

PROGRAM STORES (INPUT,0UTPUT,DEBUG = OUTPUT)
LOGICAL L1,L2
o 3 STORES (NSUM,NDGAMP,AX)
NSUM = 20
5 DGAMP = .5
AX 7.2 + DGAMP
L1 + TRUE.
L? oFALSE,
PLANY = 2,5
19 A = 7.5
PRINT 3
3 FORMAT (1HOD)
SToP
END

Each time the value of the variables NSUM, DGAMP and AX changes, a message is printed. The
values of PLANT. A. L1 and L2 are not printed. since they do not appear in the argument list.

/DEBUG/ STORES AT LINE k= THE NEW VALUE OF THE VARIABLE NSUM IS8 20
/DEBUG/ AT LINE 5= THE NEW VALUE OF THE VARIABLE DGAMP IS «5000000000
/DEBUG/ AT LINE 6= THE NEW VALUE OF THE VARIABLE AX IS 7.700000000

60497800 A 9-11

Array elements should not be specified in the parameter list of a STORES statement; the array name must be

used.

are noted; only the array name without subscript is listed.

Example:

10

/DEBUG/ STORAR

/DEBUG/
/DEBUG/
/DEBUG/
/DEBUG/

PROGRAM STORAR (INPUT,0UTPUT,DEBUG=0UTPUT)
REAL A(10), Bl&4y2)
(A,8)
= 5.5

cs STORES
B(1,2)
Bt{&4,2)

DD & N

& A(N) =

PRINT 5

= 1,3

N+1

S FORMAT (1HO)

sSToP
END

AT LINE
AT LINE
AT LINE
AT LINE
AT LINE

4= THE NEW
5= THE NEW
7= THE NEW
7= THE NEW
7- THE NEW

VALUE OF THE VARIABLE 8
VALUE OF THE VARIABLE B
VALUE OF THE VARIABLE A
VALUE OF THE VARIABLE A
VALUE OF THE VARIASBLE A

Is
IS
IS
1s
Is

If an array element appears, an informative diagnostic is printed. Changes to any element of the array

5.500000000

2.000000000
3.000000000
4.000000000

The values stored into array elements B(1,2) and B(4,2) appear in the debug output under the array
name B in both cases, and array elements A(1), A(2). and A(3) appear under the array name A.

RELATIONAL OPERATORS

In the second form of the C$ STORES statement, a message is printed only when the stored value satisfies the
relation specified in the argument list. The two components of the relational expression must be of the same type.

PROGRAM ST3 (INPUT»OUTPUT»DEBUG=0UTPUT)
S FORMAT (1HO)
PRINT S

M=

S

Ccs STORES (I+EQe39N.LE.M9ANT)

CZ 2 e
nuwenu

/DEBUG/ ST3

7DEBUG/
/DEBUG/

9-12

AT LINE
AT LINE
AT LINE

6= THE NEW VALUE OF THE VARIABLE I
8= THE NEW VALUE OF THE VARIABLE N
11= THE NEW VALUE OF THE VARIABLE ANT

IS
) §

3
4

1S 77.00000000

60497800 A

I appears in the debug output when it is equal to 3; N appears when it is less than or equal to M.
Since no relational operator is specified with ANT, it is printed whenever the value changes.

CHECKING OPERATORS

In the third form of the STORES statement, a message is issued only when the stored value is out of range,
indefinite, or invalid as specified by the checking operator.

RANGE Out of range

INDEF Indefinite

VALID Out of range or indefinite
For example:

cs$ STORES (ROWSUM .RANGE., COLSUM .VALID.)

Whenever the value to be stored into ROWSUM is out of range, a message is printed. Whenever the
value to be stored into COLSUM is out of range or indefinite, a message is printed.

HOLLERITH DATA

Hollerith data stored in a variable of type integer is interpreted by the STORES statement as an integer
number. Hollerith data stored in a variable of type real or double precision is interpreted as a real or
double precision number.

In the following example, the three integer variables IHOLL, IRIGHT and ILEFT contain the characters
PA in display code (20 and 01).

IHOLL 20015555555555555555
P A blank fill

IRIGHT 00000000000000002001
zero fill P A

ILEFT 20010000000000000000

P A zero fill

60497800 A 9-13

Example:

PROGRAM DEROL (INPUTsOUTPUT +DEBUG=O0UTPUT)

cs DEBUS
cs STCRES (IMOLLs IREGHT» ILEFTonOLL)

IHOLL=2KPA
IRIGHT=2RPA
ILEFT=2LPA
HOLL=2nPA
10 PRINT)
FORMAT (1nC)
syoP
END

-

/0EouG/ DEMOL AT LINE 6= THE NEW VALUE OF TrHE VARIABLE InOLL IS weesesepvevece

FOEBUG/ AY LINE 7= Tr€ NEW VALUE OF TrHY VAKLABLE IRIGHI IS ig2s
/0E8U6/ AT LINE 8= ThnE NEW VALUE OF TnE VARIABLE ILEFT 1S sevsnvescatone
/DEsUs/ AT LINE 9= THE NEW VALUE OF THE VARIABLE WOLL 1s «4021071096E°1S

The variables IHOLL, IRIGHT, and ILEFT are interpreted as integer numbers. Since the field width allocated
by the STORES option (14 digits) is insufficient to contain the converted quantities represented by IHOLL
and ILEFT, these fields are filled with asterisks. The variable IRIGHT is converted and printed out by the
STORES option as 1025.

The variable HOLL is interpreted as a real number, and its value is printed out.

GOTOS STATEMENT

1 7
C|$ GOTOS

No argument list can be specified with the C$ GOTOS statement. The GOTOS statement initiates checking
of all assigned GO TO statements to ensure that the statement label assigned to the integer variables is in the
GO TO statement list. If no match is found, a message is printed and transfer of control continues.

PROGRAM GO TOS {OUTPLT,0ERUG=OUTPUT)

INTEGER 8
€$ GOToS
. . (GOTOS NEVER USES AN ARGUMENT LIST)
L d
ASSIGN 1 TO &
GO TO A €1, 2, B
»
. IN THIS CASE MO MESSAGE IS PRINTED SINCE THE LABEL ASSIGNED Y0
10 . A IS IN THE GOTO LIST,
L d
4 PRINT 10
10 FORMAT(*® --CONTROL TRANSFERED TO STATEMENT LABEL 4—-%)
sTop
15 1 ASSIGN 4 TO A
GO TO A (1, 2, 3)
»
. IN THTIS CASE & MESSAGE IS PRINTED STNCE THE LAREL & IS NOT IN
. THE GOTO LIST. CONTPOL THEN TRANSFERS TO LABEL 4.
20 .
2 CONTINUE
3 CONTINUE
END

/DERUG/ GOTOS AT LINE 16~ ASCIGNEN 597D INDCTX TOMTAINS THE ANORESS 002151. NO MATCH FOUNC IM STATEMENT LAREL ADOPESS LIST
~=~CONTPOL TRANSFERED TO STATEMENT LAREL G--

9-14 60497800 A

TRACE STATEMENT

c$ TRACE (iv)

1 7

LS

cs [TRACE
|
|

lv is a level number 0-49. If Iv = 0, tracing occurs only outside DO loops. If Iv = n, tracing occurs up to
and including level n in a DO nest. If no level is specified, tracing occurs only outside DO loops.
The C$ TRACE statement traces the following transfers of control within a program unit:

GO TO

Computed GO TO

Assigned GO TO

Arithmetic IF

True side of logical IF

Transfers resulting from a return specified in a RETURNS list are not traced. (These can be checked by the
CS$ CALLS statement.)

If an out-of-bound computed GO TO is executed, the value of the incorrect index is printed before the job
is terminated.

Messages are printed each time control transfers during execution. The message contains the routine name,
the line where the transfer took place, and the number of the line to which the transfer was made, as well
as the statement number of this line, if present.

A message is printed each time control transfers at a level less than or equal to the one specified by Iv. For
example, if a statement C$ TRACE(2) appears before a sequence of DO loops nested four deep, tracing
takes place in the two outermost loops only.

TRACE messages are produced at execution time, but TRACE levels are assigned at compile time;
therefore, the compile time environment determines the tracing status of any given statement. For example,
a DO loop TRACE statement applies only to control transfers occurring between the DO statement and its
terminal statement at compile time (physically between the two in the source listing).

60497800 A 9-15

Example:

PROGRAM P (OUTPUT,DEBUG=0UTPUT)
DATA U707/
level 0 cs TRACE(1)
IF (J .EQ.) GO TO 11
5 [level? 11001711 = 1,3
IF ((J#1) .EQ. I1)} GO TO 12
124=1
-level 2 D0 2 I2=1,5
J=zJ +12
10 G0 10 2
2 2 CONTINUE
cs TRACE(3)
[~ tovel 2 DO 20 12 =1, 3
IF (I2 .EQ. 3) GO TO 20
18 J=2
level 3 DO 3 I3 =1, &
IF (J .6T. I3) GO YO 31

3100 4 T4 = 1, 2
lwua[GO TO &
20 & CONTINUE
3 CONTINUE
i 20 CONTINUE
J=10
L 1 CONTINUE
25 END
/DEBUG/ P AT LINE 4= CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL IF EXPRESSION
/DEBUG/ AT LINE 4- CONTROL WILL BE TRANSFERRED TO STATEMENT 11 AT LINE s
/DEBUG/ AT LTNE 6= CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL If EXPRESSION
/DEBUG/ AT LINE 6- CONTROL WILL BE TRANSFERRED TO STATEMENT 12 AT LINE 7
/DEBUG / AT LINE 17- CONTROL TRANSFERRED TO THE TRUZ SIDE OF LOGICAL IF EXPRESSION
/DERUG/ AT LINE 17~ CONTROL WILL BE TRANSFERRED TO STATEMENT 31 AT LINE 18
/DEBUG / AT LINE 17- CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL IF EXPRESSION
/DEBUG / AT LINE 17- CONTROL WILL BE TRANSFERRED TO STATEMENT 31 AT LINE 18
/DEBUG/ AT LINE 14- CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL If EXPRESSION
/DEBUG/ AT LINE 14- CONTROL WILL BE TRANSFERRED TO STATEMENT 20 AT LINE 22
/DEBUG/ AT LINE 17- CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL IF EXPRESSION
/DEBUG/ AT LINE 17- CONTROL WILL BE TRANSFERRED TO STATEMENT 31 AT LINE 18
/DEBUG/ AT LINE 17- CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL IF EXPRESSION
/DEBUG/ AT LINE 17- CONTROL WILL BE TRANSFERRED TO STATEMENT 31 AT LINE 18
/DEBUG/ AT LINE 14- CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL IF EXPRESSION
/DEBUG/ AT LINE = 14- CONTPOL WILL BE TRANSFERRED TO STATEMENT 20 AT LINE 22
/DEBUG / AT LINE 17- CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL IF EXPRESSION
/DEBUG/ AT LINE 17- CONTROL WILL BE TRANSFERRED TO STATEMENT 31 AT LINE 18
/DEBUG/ AT LINE 17- CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL IF EXPRESSION
/7DEBUG / AT LINE 17- CONTROL WILL BE TRANSFERRED TO SIATEMENT 31 AT LINE 18
/DEBUG/ AT LINE 14- CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL IF EXPRESSION
/DEBUG/ AT LINE 14— CONTROL AILL BE TRANSFERRED TO STATEMENT 20 AT LINE 22

In the first level 2 loop no debug messages are printed since the TRACE(1) statement is in effect. However,
when the TRACE(3) statement becomes effective, flow is traced up to and including level 3. There are no
messages for transfers within the level 4 loop. To trace only inner loops, for example levels 3 and 4 in the
above example, a C§ TRACE(4) statement is placed immediately before the DO statement for the level 3

~loop (line 16). A C$ OFF (TRACE) statement is placed after the terminal line for the level 3 loop, so that
subsequent program flow in levels 0, 1, and 2 is not traced.

9-16 : 60497800 A

The level number applies to the entire program unit; it is not relative to the position of the C$§ TRACE
statement in the program. For example, to trace the level 4 DO loop in Program P:

C$ TRACE(4)

must be specified. Positioning the statement C$ TRACE(1) before statement 31 would not achieve the same
resuit.

Care must be taken with the use of debugging statements within DO loops. Since nested loops are executed
more frequently, the quantity of debug output may quickly multiply.

The C$ TRACE (lv) statement traces transfers of control within DO loops; however, transfers between the
terminal statement and the DO statement are not traced.

Example:

DO 100 I = 1,10

100 CONTINUE

Transfers from statement 100 to the DO statement are not traced.

NOGO STATEMENT

cs NOGO

No argument list is specified with this statement. The NOGO statement suppresses partial execution of a pro-
gram containing compilation errors.

If a NOGO statement is present anywhere in the program, it applies to the entire program. It is therefore
not affected by an OFF statement or by bounds in an AREA statement.

DEBUG DECK STRUCTURE

Debugging statements may be interspersed with FORTRAN statements in a program unit (main program, sub-
routine, function). The debugging statements apply to the program unit in which they appear. Interspersed
debugging statements (figure 9-1) change the FORTRAN generated line numbers for a program.

60497800 A 9-17

Debugging statements also may be grouped to form a debugging deck in one of the following ways:

As a deck placed immediately after the PROGRAM, SUBROUTINE or FUNCTION statement heading
the routine to which the deck applies (internal debugging deck, figure 9-3). Any names specified in
the DEBUG statement, other than the name of the enclosing routine, are ignored.

As a deck immediately preceding the first source deck in the source input file (external debugging deck,
figure 9-2).

As one or more decks on the file specified by the D parameter on the FTN control statement (external
debugging deck, figure 9-4). When no name is specified by the D parameter, the INPUT file is assumed.

All debugging decks must be headed by a C$ DEBUG statement. In an internal debugging deck, the C$
DEBUG statement is used without an argument list, since the deck can only appear to the routine in which
it is inserted. In an external debugging deck, a C$ DEBUG may be used with or without an argument list.
The statements in the external debugging deck apply to all program units in the compilation.

L
7
L
L

Data Deck

' (1. -R51-)

! |
9 ,1 . 1
L : .
(Executable Statements
Cc$

OFF (FUNCS)
Debug / C$ STORES(A)
Statements P
s
\ L
(Executable Statements
C$ CALLS]
Debug / cs Funcs I
Statements A
Y —
k (Executable Statements
w4
L
/7
i
(Specification Statements
PROGRAM Statement |
8
9 1
FTN(D) 1

Job Statement

Debugging statements are interspersed; they are inserted at the point in the program where they will be activated.

Figure 9-1. Example of Interspersed Debugging Statements

9-18 60497800 A

LoONM

L
A

ya
/ Data Deck

(1
9

// —

/ Subroutine B
L
y 4
L
Y an
/ Program A
External 7t _H'
Debugging C$ DEBUG -
Deck
/ 7
8
9 ya
/ FTN(D)

/ Job Statement

The external debugging deck is placed immediately in front of the first source line. All program units (here,
Program A and Subroutine B) will be debugged (unless limiting bounds are specified in the deck). This
positioning is particularly useful when a program is to be run for the first time, since it ensures that all
program units will be debugged.

Figure 9-2. External Debugging Deck

60497800 A 9-19

OoON®

. L
- Yo
p
Data Deck
/7
8
9 y4
v
wa
s
/ 3
/ Source Deck
internal [Van
Debugging C$ DEBUG iy
Deck =
/ PROGRAM Statement -

7
/8 [
® (/ FIN(D) . |

/ Job Statement

When the debugging deck is placed immediately after the PROGRAM statement and before any specification
statements, all statements in the program unit will be debugged (unless limiting bounds are specified in the
deck); no statements in other program units will be debugged. This positioning is best when the job is
composed of several program units known to be free of bugs and one unit that is new or known to have
bugs. -

Figure 9-3. Example of Intemal Debugging Deck

9-20 ' 60497800 A

L

/
/
Debug Deck (INPUT file)
Source
Deck
TAPE1
FTN (1=TAPE1,D)
Compiler
y A
y A
L
E Source Deck (INPUT file)
Deck

FTN (D=TAPE1)

Compiler

The debugging deck is placed on a separate file (external debugging deck) named by the D parameter on
the FTN control statement and called in during compilation. All program units will be debugged (unless the
program units to be debugged are specified in the deck). This positioning is useful when several jobs can be
processed using the same debugging deck.

Figure 9-4. Example of External Deck on Separate File

60497800 A 9-21

DEBUG STATEMENT

1 7
cs DEBUG
I
|
1 7
C:$ DEBUG (name1 ,--., name)
|
|
name,,...,name, routines to which the debugging deck applies

Internal and external debugging decks start with a DEBUG statement and end with the first line other than
a debugging statement or comment. Interspersed debugging statements do not require a DEBUG statement.

In an internal debugging deck, the first form of the statement (without an argument list) is generally used,
since the deck can apply only to the program unit in which it appears. If a name is specified it must be the
name of the routine containing the debugging deck; if any other name is specified, an informative diagnostic
is printed.

In an external debugging deck, if no names are specified, the deck applies to all routines compiled.
Otherwise, it will apply to only those program units specified by name,,...,name,; if any other name is
specified, an informative diagnostic is printed.

Example:

In the following program, a DEBUG statement is not required since the debugging statement, C$
STORES (A,B), is interspersed.

PROGRAM STORAR (INPUT,0UTPUT,0EBUG=0UTPUT)
REAL A(10), Bl(4y2)

cs STORES (A,8)
B(1,2) = 5,5

5 Bla,2) = 0.
00 & N = 1,3
& AAN) = N+l
PRINT 5
S FORMAT (1HO)
10 sSTOP
END

9-22 60497800 A

However, if the C$ STORES statement immediately follows the PROGRAM statement, this is an internal debugging
deck, and a C$ DEBUG statement must appear.

PROGRAM DEHOL (INPUT,0UTPUT,DEBUG=0UTPUT)

ce DEBUG
cs STORES(IHOL yIRIGHT » ILEFT9HOLL)

IHOL=2HPA
IRIGHT=2RPA
ILEFT=2LPA
HOLL=2HPA
10 PRINT 1

1 FORMAT (1HO0)
SToP
END

There can be several DEBUG statements in an external deck, and a routine can be mentioned more than
once.

C$ DEBUG

C$ STORES(I,J)

C$ DEBUG(MAIN,EXTRA,NAMES)
C$ ARRAYS(VECTAB,MLTAB)

C$ DEBUG(MAIN)

C$ TRACE

C$ CALLS(EXTRA,NAMES)

AREA STATEMENT

1 7
cs AREA bounds, ,... bounds_
i
|
7
Cc$ AREA/name, /bounds, ,...,bounds_,... /name"/bounds1 ,--.,bounds_

C$ AREA(bounds,,...,bounds,) is used in internal debugging decks only.
name,,name,,...,name, are the names of routines to which the bounds apply.

bounds are line positions defining the area to be debugged.

60497800 A 9-23

bounds can be written in one of the following forms:

(n,,n,) n, Initial line position.

Terminal line position.
(n;) » n, Single line position to be debugged.

(n,*) n, Initial line position.

* Last line of program.

*.m) * First line of program.
n, Terminal line position.

" * First line of program.
* Last line of program. -

Line positions can be:
nnnnn Statement label.

Lnnnn Source program line number as printed on the source listing by the FORTRAN
Extended compiler (source listing line numbers change when debugging statements are
interspersed in the program).

id.n UPDATE line identifier (defined in the UPDATE Reference Manual); id must begin with
an alphabetic character and contain no special characters.

A comma must be used to separate the line positions, and embedded blanks are not permitted. Any of the
line position forms can be combined and bounds can overlap.

The AREA statement is used to specify an area to be debugged within a program unit. All debugging
statements applicable to the program areas designated by the AREA statement must follow that statement.
Each AREA statement cancels the preceding program AREA statement. An AREA statement (or contiguous
set of AREA statements) specifies bounds for all debugging statements that occur between it and the next
C$ DEBUG, AREA statement, or FORTRAN source statement.

AREA statements may appear only in an external or an internal debugging deck (figures 9-2, 9-3, and 9-4).
If they are interspersed in a FORTRAN source deck, they will be ignored.

9-24 60497800 A

In an external debugging deck, the following form, with /name;/ specified, must be used. It can be used
with both forms of the DEBUG statement.

1 7
/ c:s DEBUG
|
|
1 7
/C:$ AREA/name1 /bounds1 ,.-.,bounds ... /name"/bounds1 .-...,bounds_
|
|
or
1 7
(C:$ DEBUG (name1 .- .. name)
|
|
1
1 7
/cl $ AREA/nameI/bounds1 ,...,bounds ... /namen/bounds1 ,...,bounds
!
|
|

If /name;/ is omitted, or names in the /name;/ list do not appear in (name,,..,name,) in the DEBUG
statement, the AREA statement is ignored.

In an internal debugging deck, the following form is used, and the bounds apply to the program unit that
contains the deck.

1 7
/cs DEBUG
|
! 7
/cs AREA bounds,, .. . bounds,
|
|

60497800 A 9-25

Example:

External deck

C$ DEBUG

C$ AREA/PROGA/(XNEW.10,XNEW.30)/SUB/*,L50)
C$ ARRAYS (TAB,TITLE,DAYS)

C$ AREA/SUB/(15,99)

C$ STORES (DAYS)

Internal deck
cs$ DEBUG

C$ AREA (L10,*)
C$ FUNCS (ABS)

- OFF STATEMENT

1 7
cs OFF
|
[
1 g
cs OFF(x, ,....x,)

XX, debug options
The OFF statement deactivates the options specified by x; or all currently active options except NOGO, if
no argument list exists. Only options activated by interspersed debugging statements are affected. Opuons
activated in debug decks or by subsequent debugging statements are not affected.

The OFF statement is effective at compile time only. In a debugging deck, the OFF statement is ignored.

9-26 60497800 A

Example:

10

15

29

c3
cs

cs

L B B B B

/DEBUG/ OFF

/7DEBUG/
/DEBUG/
/DEBUG/

PROGRAM OFF (OUTPUT,DEBUG=0UTPUT)

OEBUG

STORES(C)

INTEGER Ay By C
STORES(A, B)

A= 1
B =2
cC=3

MESSAGES WILL BE PRINTED FOR STORES INWO A,

OFF

= 4
=5
= 6
€

-ZIm >

H

STATEMENT,

AND C.

OFF STATEMENT WILL ONLY AFFECT THE INTERSPERSED DEBUGGING
SO THERE WILL BE NO MESSAGES FOR STORES INTO

A OR Bs HOWEVERy, C3 STORES(C) IN THE DEBUGGING DECK IS NOT

AFFECTED,

END

AT LINE
AT LINE
AT LINE
AT LINE

7- THE NEW VALUE OF THE VARIABLE A
8- THE NEW VALUE OF THE VARIABLE 8
9- THE NEW VALUE OF THE VARIABLE C
17+~ THE NEW VALUE OF THE VARIABLE C

PRINTING DEBUG OUTPUT

AND A MESSAGE IS PRINTED FOR A STORE INTO C.

Is
Is
Is
IS

Debug messages produced by the object routines are written to a file named DEBUG. The file is printed upon
job termination, unless otherwise specified by the user, because it has a print disposition. To intersperse debug-

ging information with output, the programmer should equate DEBUG to OUTPUT on the PROGRAM statement.

An FET and buffer are supplied automatically at load time if the programmer does not declare the DEBUG file
in the PROGRAM statement. For overlay jobs, the buffer and FET will be placed in the lowest level of overlay

containing debugging. If this overlay level would be overwritten by a subsequent overlay load, the debug buffer
will be cleared before it is overwritten.

At object time, printing is performed by seven debug routines. These routines are called by code generated at
compile time when debugging is selected.

60497800 A

9-27

LN

Routine

BUGARR

BUGCLL

BUGFUN

BUGGTA

BUGSTO

BUGTRC

BUGTRT

STRACE ENTRY POINT

Function
Checks array subscripts

Prints messages when subroutines are called and when return to calling
program occurs

Prints messages when functions are called and when return to calling
program occurs

_Prints a message if the target of an assigned GO TO is not in the list

Performs stores checking
Flow trace printing except for true sides of logical IF

Flow trace printing for true sides of logical IF

Traceback information from a current subroutine level back to the main level is available through a call to
STRACE. STRACE is an entry point in the object routine BUGCLL. A program need not specify the D
option on the FTN control statement to use the STRACE feature.

STRACE output is written on the file DEBUG; to obtain traceback information interspersed with the source
program’s output, DEBUG should be equivalenced to OUTPUT in the PROGRAM statement.

Examples:

9-28

PROGRAM MAIN (OUTPUT,DEBUG=OUTPUT)

CALL SUB1
END

SUBROUTINE SUB1
CALL SUB2
RETURN

END

SUBROUTINE SUB2
I = FUNC1(2)
RETURN

END

FUNCTION FUNC1 (K)
FUNC1 = K ** 10
CALL STRACE
RETURN

END

60497800 A

Output from STRACE:

/0EBUG/ FUNCL AT LINE 3= TRACE ROUTINE CALLED

FUNCL CALLED BY SuBs2 AT LINK 29 FROM 1 LEVELS BACK
susz CALLED BY Susit AT LING 2y FROM 2 LEVELS BACK
susi CALLED 8Y MAIN AT LINE 2y FROM 3 LEVELS B8ACK

A main program is at level 0; a subroutine or function called by the main program is at level 1; another

subprogram called by a subprogram is at level 2, etc. Calls are shown in order of ascending level number,
returns in order of descending level number.

For additional information regarding the debugging facility, refer to the FORTRAN Extended Debug
User’s Guide.

60497800 A 9-29

FTN CONTROL STATEMENT 10

The FORTRAN Extended compiler is called from the library and executed by an FTN or FTN4 control
statement. Either control statement calls the compiler, specifies the files to be used for input and output,
and indicates the type of output to be produced. Either control statement may be used in any of the
following forms:

1
F}TN(p1 ,p2' ey pn) comments

|TN. comments

1

F:TN,p1 +---, P,. comments
l

|

I

Examples:

FTN (A,L,R,GO,5=0)
FTN4 (A,L,R,GO,S=0)

PARAMETERS

The optional parameters, p;,...,p,, must be separated by commas and may be in any order. If no parameters
are specified, FTN is followed by a period or right parenthesis. If a parameter list is specified, it must con-
form to the syntax for job control statements as defined in the operating system reference manual, with the
added restriction that a comma is the only valid parameter delimiter. Columns following the right parenthesis
or period can be used for comments; they are ignored by the compiler, but are printed on the dayfile.

Default values are used for omitted parameters. These defaults are set when the system is installed; since
installations can change default values, the user should determine what default values are in effect at the user’s

particular installation.

Unrecognizable parameters are ignored. Conflicting options either are resolved or cause compilation to ter-
minate, depending on the severity of the conflict; this resolution is indicated in a dayfile entry.

The values of the A, B, D, G, I, L, ML, P, S, and X parameters are passed to COMPASS when intermixed
COMPASS subprograms are present.

60497800 F 10-1

In the following description of the FTN control statement parameters, Ifn indicates a file name consisting of one to
seven letters and digits, the first a letter. Two or more options using the same file terminates compilation with a
message to the dayfile.

A

BL

cC

10-2

EXIT PARAMETER (Default: A =0)

A If fatal errors have occurred during compilation, the system aborts the job to the next
EXIT(S) control statement (NOS/BE 1 and SCOPE 2) or EXIT control statement (NOS 1).
If no such control statement is found, the job is terminated. This option has no effect on
interactive jobs. A takes precedence over GO but not over D.

A=0 System advances to the next control statement at end of compilation whether or not fatal
errors have been found.

BINARY OBJECT FILE (Defauit: B=L1GO)
B Generated binary object code is output on file LGO.

B =1fn Generated binary object code is output on file 1fn.

B=0 No binary object file is produced. Cannot be specified with GO.

The B option conflicts with the Q and E options.

BURSTABLE LISTING ’ (Default: BL=0)

BL Generates output listing that is easily separable into components by issuing page ejects
between source code, error summary (if present), cross reference map, and object code (if
requested); and ensures that each program unit listing contains an even number of pages
(page parity) issuing a blank page at the end if necessary.

BL=0 Generates listings in compact format.
COMPASS ASSEMBLY (Default: C=0)
C Selects the COMPASS assembler to process the symbolic object code generated by

FORTRAN Extended. When the C parameter is specified, FTNMAC is selected as a
system text for the COMPASS assembly ; therefore, if the C option is selected, the
maximum number of system texts that can be specified with the G and S parameters is six.

C=0 Selects the FORTRAN Extended internal assembler (regardless of installation default),
which is two to three times faster than the COMPASS assembler.

The C option conflicts with the TS, Q, and E options.

CONTROL STATEMENT CONTINUATION PARAMETER (Default: CC=0)

CcC Causes the FORTRAN Extended compiler to interpret the following control statement as
a continuation of the FTN control statement, thus allowing the FTN control statement
to be continued on more than one line. The CC parameter must be repeated on each
statement in the sequence with the exception of the last statement in the sequence; the
CC parameter must not appear on the last statement in the sequence. Each statement in
the sequence of continued statements must be terminated by a period or a right

parenthesis.
CC=0 The FTN control statement appears on one line only.
Example:

FTN,I=INPUT,CC.

L=OUTPUT,CC.

B=LGO.

60497800 G

D DEBUGGING MODE PARAMETER (Section 9) (Default: D = 0)

D = Ifn This option must be specified if the debug utility described in section 9 is to be
used. Ifn is the name of the file where the user debug deck resides (see figure
9-4, section 9). Binary object code is generated on the file indicated by the B
parameter regardless of compilation errors or the exit parameter A. Interspersed
COMPASS code, if present, is assembled under the COMPASS D option. Specify-
ing D automatically activates OPT=0 and the T option; thus, FTN(D) is equivalent
to FTN(D,0PT=0,T,A=0).

D Implies D = INPUT
D=0 Debug statements are ignored.

OPT=1 and OPT=2 are ignored if D or D=lfn is specified. The D option conflicts with the TS option.

DB CYBER INTERACTIVE DEBUG PARAMETER (Default: DB = 0)

DB =ID This option must be specified if the program is to be debugged using CYBER
Interactive Debug and the DEBUG control statement (NOS 1 and NOS/BE 1
only) has not been included. If the DB parameter is specified, the binary
object code is complemented by a line number table and a symbol table.
CYBER Interactive Debug uses these tables while processing the user’s program to
determine variable locations, source line locations, and other useful debugging
information.

DB =0 No debug tables are generated. If CYBER Interactive Debug has been turned
on with the DEBUG control statement, specifying DB = O turns it off for the
duration of the compilation.

DB Implies DB = ID.

Specifying the DB option automatically activates the TS option. The DB option conflicts with the D
and OPT = 0, 1, or 2 options. For more information, refer to the CYBER Interactive Debug
reference manual.

E EDITING PARAMETER (Default: E = 0)

E = lfn Generated object code is output as COMPASS line images on the file 1fn, which
is rewound at the end of compilation. Each program unit is prefaced with the line
image, *DECK,program, so that the file will be suitably formatted for input to
UPDATE or MODIFY. Binary object code is not produced, and COMPASS is not
called. When the file 1fn is assembled subsequently, SSFTNMAC must be specified
on the COMPASS control statement.

E Implies E = COMPS
E=0 Object file is generated in normal binary code rather than as COMPASS line
images.

The E option conflicts with the B, C, GO, OL, TS, and Q options.

60497800 D 10-3

EL ERROR LEVEL (Appendix B) (Default: EL =1)

EL= A Lists diagnostics indicating all non-ANSI usages, as well as fatal diagnostics; lists
informative diagnostics if compiling under OPT = 0, 1, or 2; lists note and warning
diagnostics if compiling in TS mode.

EL =1 Lists informative and fatal diagnostics if compiling under OPT = 0, 1, or 2; lists
note, warning, and fatal diagnostics if compiling in TS mode.

EL=N Lists note, warning, and fatal diagnostics if compiling in TS mode; lists fatal
diagnostics if compiling under OPT = O, 1, or 2.

EL=W Lists warning and fatal diagnostics if compiling in TS mode; lists fatal diagnostics
if compiling under OPT = 0, 1, or 2.

EL=F Lists fatal diagnostics.

ER ERROR RECOVERY (Default: ER if in TS or OPT=0 mode
ER=0 if in OPT=1 or 2 mode)

ER Code is generated for object time reprieve. When this option is selected, any of
the following execution time errors are reprieved: arithmetic mode error, bad
system request in RA + 1, CP or 10 time limit exceeded, mass storage limit
exceeded, or an operator drop. When the error occurs within the field length
occupied by the user program, the name of the program unit and number of
the line in which the error occurred are written to the job dayfile and (under
NOS 1 only) the OUTPUT file. (Under OPT=1 or 2, the line number might be
approximate, since optimization can rearrange portions of the code.) When the
error occurs outside the user’s field length, only the P-register contents are
shown. This option increases the size of object code and should be used only
while a program is being debugged.

ER=0 No code is generated for object time reprieve.

G GET SYSTEM TEXT FILE (Default: G = 0)

G =1fn Loads the first system text overlay from the sequential binary file, 1fn.

G = Ifn/ovl Searches the sequential binary file, Ifn, for a system text overlay with the name
ovl and loads the first such overlay encountered.

G Implies G = SYSTEXT

G=0 Prevents system text loading from sequential binary file.

A maximum of seven system texts can be specified by any combination of the G, S, and C parameters.

This feature is for COMPASS subprograms only.

GO AUTOMATIC EXECUTION (LOAD AND GO) (Default: GO = 0)

GO

104

Binary object file (B option) is loaded and executed at end of compilation; file is
not rewound before compilation.

60497800 E

GO=0

Binary object file is not loaded and executed.

The GO option conflicts with the Q, E, and B = 0 options.

I SOURCE INPUT FILE (Default: I = INPUT)

I =1fn

Source code to be compiled appears on file Ifn. Compilation ends when an end

of section, end of partition, or end of information is encountered.

I Implies I = COMPILE
L LIST OUTPUT FILE (SECTION 12) (Default: L = OUTPUT)

L = Ifn Listable output (specified by list control options BL, EL, OL, R, and SL) is to be
written onto file Ifn. If list control options are not specified, the listing consists
of the source program, informative and fatal diagnostics, and a short reference
map.

Implies L = OUTPUT
=0 Fatal diagnostics and the statement that caused them are listed on the file
OUTPUT. All other compile-time output, including intermixed COMPASS, is
suppressed. List control options are ignored.
LCM LEVEL 2 AND LEVEL 3 STORAGE ACCESS' (Default: LCM = D)

ICM =D Direct mode: selects 17-bit address mode for level 2§ or 3 data. This method
produces more efficient code for accessing data ssigned to level 2 or 3. User
LCM or ECS field length must not exceed 131,071 words.

LCM = [Indirect mode: selects 21-bit address mode for level 2§ or 3 data. This mode
depends heavily upon indirect addressing. LCM = I must be specified if the
execution LCM or ECS field length exceeds 131,071 words.

LCM Implies LCM = D

ML

oL

In TS mode, all LCM addressing is done in 21-bit mode, regardless of the LCM parameter.

MODLEVEL (Default: ML)

ML = nnn Specifies nnn as the value of the MODLEVEL micro used by COMPASS. nnn
consists of 1 to 7 letters and digits.

ML Uses current date in the form yyddd (where yy is the year and ddd is the number
of day within the year) for the MODLEVEL micro.

OBJECT LIST (SECTION 14) (Default: OL = 0)

OL Generated object code is listed on the list output file.

OL =0 Object code is not listed.

The OL option conflicts with the Q and E options.

1‘See LEVEL statement, section 3, for further information.
§Applies only to Control Data CYBER 170 Model 176, CYBER 70,Model 76 and 7600 computers.

60497800 E

10-5

OPT OPTIMIZATION PARAMETER (SECTION 11) (Default: OPT = 1)

PD

PL

OPT =0 Fast compilation (automatically activates T and ER options).
OPT =1 Standard optimization

OPT =2 Maximum optimization

OPT Implies OPT = 2

The OPT option conflicts with the TS and SEQ options.

PAGINATION (Default: P = 0)
P Page numbering of output listing is continuous from subprogram to subprogram,
including intermixed COMPASS output.
P=0 Page numbers begin at 1 for each subprogram.

PRINT DENSITY (Default: PD = 6)

PD =6 Compile time listings are produced at a density of six lines per inch.
PD = 8 Compile time listings are produced at a density of eight lines per inch.
PD Implies PD = 8.

Print density of six is assumed upon entry. Listing control is changed only when print density of eight is
requested, then returned to six when finished.

PRINT LIMIT ' (Default: PL = 5000)

PL=n n is the maximum number of records (print lines) that can be written at execution
time to the file OUTPUT. Under NOS/BE 1 and SCOPE 2, n must not exceed
ten characters. If n is suffixed with the letter B, it is interpreted as an octal
number and must not exceed 777 777 777B; otherwise, it is interpreted as a
decimal number and must not exceed 9 999 999 999,

Under NOS 1, n must not exceed seven characters. The maximum value is therefore
777 777B if octal or 9 999 999 if decimal.

The PL parameter is operative only when appearing on an FTN control statement
used to compile a main program.

The print limit (specified at compilation-time either explicitly or by default) can
be overridden at execution-time by a parameter of the same format appearing on
the LGO or EXECUTE control card; see Execution Control Statement, section 15.

PMD POST MORTEM DUMP (Default: PMD = 0)

PS

10-6

PMD This parameter must be specified if the Post Mortem Dump Facility is to be used.
Symbol tables are written to separate files that are accessed by the Post Mortem
Dump Facility so that a symbolic analysis of error conditions, variable names and
values, and traceback information can be written to an output file.

PMD =0 No symbol table files are generated.
PAGE SIZE (Default: PS = 60 if PD = 6
PS = 80 if PD = 8)

PS=n n is the maximum number of lines per page for compiler listings (including headers).
If n < 4, the default value is substituted.

60497800 G

PW PAGE WIDTH (Default: PW = 126 if a printer output file
PW = 72 if a terminal output file)

PW Implies PW = 72

PW=n n is the number of characters on a line of listable output. Values less than 50
or greater than 136 are diagnosed and ignored.

The PW option is valid only with TS mode.

Q PROGRAM VERIFICATION (Default: Q = 0)

Q Quick mode: compiler performs full syntactic scan of the program, but no object
code is produced. No code addresses are provided if a reference map is requested.
This mode is substantially faster than a normal compilation; but it must not be
selected if the program is to be executed.

Q=0 Normal compilation.

The Q option conflicts with the B, C, GO, OL, TS, and E options.

R SYMBOLIC REFERENCE MAP (SECTION 13) (Default: R =1)
R=0 No map
R=1 Short map (symbols, addresses, properties, DO loop map)
R=2 Long map (short map plus references by line number)
R=3 Long map plus listing of common block members and equivalence classes
R Implies R = 2

In TS mode, R = 3 is identical to R = 2; common and equivalence classes are not listed.

ROUND ROUNDED ARITHMETIC COMPUTATIONS (Default: ROUND = 0)
ROUND = op op is any combination of the arithmetic operators + - * [specified with no
separators. Single precision real and complex floating point arithmetic operations
are performed using the hardware rounding feature, as described in the various
computer systems reference manuals.
ROUND = 0 Computation is not rounded.
ROUND Implies ROUND = +- */

The ROUND option controls only the in-line object code compiled for arithmetic expressions; it does
not affect computations by library subprograms or input/output routines.

60497800 C 10-7

S SYSTEM TEXT (LIBRARY) FILE (Default: S = SYSTEXT if G parameter = 0
S = 0 if G parameter is other than G = 0)

S = ovl System text overlay, ovl, is loaded from the job’s current library set.
S = libjovl System text overlay, ovl, is loaded from the user library file or system library, lib.
S=0 System text file is not loaded when COMPASS is called to assemble any inter-
mixed COMPASS programs.

S Implies S = SYSTEXT
This feature is for COMPASS subprograms only. Up to seven system texts can be specified by repeating
this option.

SEQ SEQUENCED INPUT (SECTION 11) (Default: SEQ = 0)
SEQ Source input file is in sequenced line format.
SEQ=0 Source input file is in standard FORTRAN format.

Specifying the SEQ option automatically activates the TS option; sequenced line format is not recognized
in optimizing mode or by COMPASS. The SEQ option conflicts with the OPT option.

SL SOURCE LIST (SECTION 12) (Default: SL)
SL Source program is listed on the file specified by the L parameter.
SL=20 Source program is not listed.

STATIC STATIC LOADING (NOS 1, NOS/BE 1 only) (Default: STATIC = 0)
STATIC Inhibits dynamic memory management at execution time by CRM. The compiler

generates a set of LDSET,USE directives specifying each of the capsules needed by
the program. The specified library programs are then statically loaded. STATIC
is required for any program that dynamically extends blank common.

STATIC =0 No special LDSET directives are generated and CRM uses dynamic memory
management at execution time. This option results in a decrease in field length
needed at execution time.

SYSEDIT SYSTEM EDITING (Default: SYSEDIT = 0)

SYSEDIT All input/output references are accomplished indirectly through a table search at
object time. File names are not entry points in the main program, and subpro-
grams do not produce external references to the file name.

SYSEDIT = 0 Input/output references are accomplished directly; file names are used as entry

points in the main program, and subprograms produce external references to the
file name.

10-8 60497800 D

This option is used when building libraries that contain more than one relocatable main program. It is
also necessary when compiling subroutines containing input/output references to files declared in COBOL
4 or 5 programs.

T ERROR TRACEBACK (Default: T = 0)

T Full error traceback occurs when an error is detected. Calls to basic extemnal
functions are made with call-by-name sequence (section 17).

T=0 No traceback occurs when an error is detected. Calls to basic external functions
are made with the more efficient call-by-value sequence. A saving in memory
space and execution time is realized.

This option is provided to assist in debugging programs. Selecting the D parameter or OPT=0 auto-
matically activates the T option. Only the execution-time errors listed in appendix B are traced.

TS TIMESHARING MODE (SECTION 11) (Default: OPT = 1)

TS In time-sharing mode, compilation speed and field length are optimized at the
expense of execution speed and field length. Time-sharing mode is preferable to
the optimizing compilation modes (OPT = 0, 1, or 2) for the debugging stages of
a program. Specifying option TS together with option C, D, E, Q, or OPT con-
stitutes a fatal control statement error.

UO UNSAFE OPTIMIZATION (SECTION 11) (Default: UO = 0)

Uo Allows the compiler to perform certain optimizations which are potentially unsafe.
UO is ignored unless OPT = 2 is also specified.

U0 =0 Unsafe optimization is not performed.
X EXTERNAL TEXT NAME (Default: X = OLDPL)
X =1fn File 1fn is source of external text (XTEXT) when location field of XTEXT pseudo

instruction is blank. Only one X parameter may be specified.
X Implies X = OPL.

This feature is for COMPASS subprograms only.

Z ZERO PARAMETER (Default: Z = 0)
Z All subroutine calls having no parameters are forced to pass a parameter list con-
sisting of a zero word. This feature is useful to COMPASS-coded subroutines
expecting a variable number of parameters. Z should not be specified unless

necessary, since programs require less memory if Z is omitted.

Z=0 The zero word parameter list is not passed for calls with no parameters.

60497800 G 10-9 |

Example 1:

FTN CONTROL STATEMENT EXAMPLES

FTN {A,EL=F,GO,L=SEE,R=2,5=0,SL=0)

Selects the following options:

Example 2:

A Skip to an EXIT (NOS 1) or EXIT(S) (NOS/BE 1 and SCOPE 2) control statement
if fatal errors occur during compilation.

EL=F Fatal diagnostics only are listed.

GO Generated binary object file is loaded and executed at end of successful compilation.

L=SEE Listed output appears on file SEE.

R=2 Long reference map is listed.

S=0 When COMPASS is called to assemble an intermixed COMPASS subprogram, it does
not read in a system text file.

SL=0 Source program is not listed.

FTN (GO,T)

Source program on INPUT file; object code on LGO; source program, short map, informative and fatal
diagnostics listed on file QUTPUT; call-by-name sequence generated for calls to basic external functions; no
debug package; optimizing compilation mode; and unrounded arithmetic. Program is executed if no fatal

€rrors occur.

Example 3:

FTN.

Selects the following options (unless option default values are changed by the installation):

A=0
B=1LGO
BL=0
C=0
CC=0
D=0
DB=0
E=0
EL~1
ER=0
G=0
GO=0

10-10

I=INPUT
L=OUTPUT
LCM=D
ML=yyddd
OL=0
OPT=1

P=0

PD=6
PL=5000
PS=60
PW=126 (if not connected file)
Q=0

R=1
ROUND=0
S=SYSTEXT
SEQ=0

SL
STATIC=0
SYSEDIT=0
T=0

TS=0

Uo=0
X=OLDPL
Z=

60497800 G

COMPILATION MODES AND OPTIMIZATION n

FORTRAN Extended provides several alternative modes for compilation. Their characteristics, together with
the FTN control statement parameter required to activate them, are as follows:

Q

OPT=0

OPT=1

OPT=2

[8[0)

Fastest compilation; compiler performs full syntactic scan of source code, but produces

no object code. Minimum field length required for compilation approximates that of OPT=0.
OPT=0, OPT=1, and OPT=2 are ignored if specified. Expedient for finding errors in a pro-
gram before attempting to execute it.

Very fast, one~-pass compilation. = Little optimization of object code; execution time of
object code approximates that of OPT=0. Minimum field lengthT for compilation is
40000% or 350008. Expedient for a program which is recompiled before each execution,
unless execution time is over twice as large as compilation time.

Fast, two-pass compilation; little optimization of object code. Most programs can be com-
piled in the minimum field length of 46000% or 430008 .

Two-pass compilation; moderate optimization of object code. Most programs can be com-
piled in the minimum field length of 46000% or 430008 . Expedient for programs which
are recompiled before each execution but require excessive execution time in TS mode.

Relatively slow, two-pass compilation; extensive optimization of object code; fastest execution.
Minimum field length required for compilation is 54000% or 510008. Programs in which the
longest program unit consists of less than about 600 statements can be compiled in a field
length of 60000; above that, field length required for compilation is proportional to the
number of executable statements in, and the complexity of, the longest program unit. This
optimization level is expedient for programs whose code is executed many times per com-
pilation; it should not be used for undebugged programs since code redistribution in opti-
mization renders debugging difficult if the executing f)rogram terminates abnormally.

Activates FORTRAN Extended debugging facility (see section 9). Minimum field length
required for compilation is 63000F or 61000§. Automatically activates OPT=0; OPT=1
and OPT=2 are ignored if specified. Specification of TS is a fatal error. Necessary for
programs in which execution-time debugging is desired.

Provides additional potentially unsafe object code optimization when both the OPT=2 and
UO options are specified.

tField lengths are given in octal.
F Applies only to NOS 1 and NOS/BE 1.
§Applies only to SCOPE 2.

60497800 C

- OPTIMIZING MODE

When TS is not present on the FIN control statement (OPT=0, 1, or 2) the compiler functions in optimizing
mode. Time-sharing mode and optimizing mode differ not only in the kinds of optimizations performed, but
also in the listing format produced. Source listings are described in section 12, reference map format in
section 13, object code format in section 14, and diagnostics in Appendix B.

In optimizing mode, optimizations can be performed in two ways: by the compiler and by the user. User
optimization includes not only the standard methods that represent good programming practice, but also cer-
tain specific methods that enable the compiler to optimize more effectively. Source code optimization and
object code optimization are discussed below.

OBJECT CODE OPTIMIZATION

OPT=0

In the OPT=0 compilation mode, compile time evaluations are made of constant subexpressions, redundant
instructions and expressions within a statement are eliminated, and PERT critical path scheduling is done to
utilize the multiple functional units efficiently.

OPT=1

In the OPT=1 compilation mode, the following optimizations take place in addition to those in OPT=0:

1. Redundant instructions and expressions within a sequence of statements are eliminated.

2. Subscript calculations are simplified, and values of simple integer variables are stored in machine
registers throughout loop execution, for innermost loops satisfying all of the following conditions:

No entries other than by normal entry at the beginning of the loop.
No exits other than by normal termination at the end of the loop.

No external references (user function references or subroutine calls; input/output, STOP, or
PAUSE statements, or basic external function referénces) in the loop.

No IF or GOTO statement in the loop branching backward to a statement appearing
previously in the loop.
OPT=2

In the OPT=2 compilation mode, the compiler collects information about the program unit as a whole and
the following optimizations are attempted in addition to those in both OPT=0 and OPT=1:

1. Values of simple variables are not retained when they are not referenced by succeeding statements.

2. Invariant (loop-independent) subexpressions are evaluated prior to entering the loops containing
them.

11-2 60497800 A

uo

For all loops, the evaluation of subscript expressions containing a recursively defined integer var-
iable (such as I when I=I+1 appears within the loop) is reduced from multiplication to addition.

Array addresses, values of simple variables in central memory, and subscript expressions are stored
in machine registers throughout loop execution for all loops.

In all loops and in complicated sections of straight-line code, array references and subscript values
are stored in machine registers.

In small loops, indexed array references are prefetched after safety checks are made to ensure that
the base address of the array and its increment are reasonable and should not cause an out-of-
bounds reference (mode 1 error).

In unsafe optimization mode, the optimizations listed below are made, in addition to the optimizations made
under OPT=2, since OPT=2 must also be selected. If OPT=2 is omitted, UO is not invoked.

1.

In small loops, indexed array references are prefetched unconditionally without any safety checks.
Example:
REAL B(100,100)
DO 20 I = 1,100,10
20 S=S + B(J,)
When the compiler prefetches the reference to B, the last reference to B in the loop is B(J,110)
which might cause an out-of-bounds error at execution time if the array B is stored near the end

of the field length.

When a basic external function is referenced, the compiler assumes that the contents of certain B
registers are preserved for use following the function processing.

Example:
REAL A(10),C(10)
i)O 10I=1,N
10 C(J) = EXP(A(I))

The compiler might assign I and N to B registers during the loop.

In a loop, the registers available for assignment are determined by the presence or absence of external ref-
erences. External references are user function references and subroutine calls, input/output statements, and
basic external functions (SIN, COS, SQRT, EXP, and so on).

60497800 D 11-3

When UO is not selected, the compiler assumes that any external reference modifies all the registers; therefore
it does not expect any register contents to be preserved across function calls.

If a math library other than the FORTRAN Common Library is used at an installation to supply basic external
functions, the B register portion of the UO option must be deactivated by an installation option in order to
ensure correct object code.

SOURCE CODE OPTIMIZATION

To achieve maximum object code optimization regardless of optimization level, the user should observe the
following practices for programming source code:

1.

11-4

Since arrays are stored in column major order, DO loops (including implied DO loops in input/
output lists) which manipulate multi-dimensional arrays should be nested so that the range of the
DO loop indexing over the first subscript is executed first.

Example:

DIMENSION A(20,30,40), B(20,3040)

DO 10K =1, 40
DO 10J =1, 30
DO101 =1,20

10 A(LJ K) = B(LJ X)

The number of different variable names in subscript expressions should be minimized.
Example:

X = A(1+1,]-1) + A(I-1,14+1)
is more efficient than:

IP1 = 41

M1 = I-1

X = A(IP1,M1) + A(IM1,IP1)

The use of EQUIVALENCE statements should be avoided, especially those including simple variables
and arrays in the same equivalence class.

Common blocks should not be used as a scratch storage area for simple variables.

Program logic should be kept simple and straightforward; program unit length should be less than
about 600 executable statements.

The use of dummy arguments (formal parameters) and variable dimensions should be avoided
if possible; common or local variables should be used instead.

60497800 A

7. The first n~1 dimensions of an n-dimensional array should be either a non-negative power of 2
or the sum or difference of two non-negative powers of 2.

8. Recurrent expressions should be grouped so that they can be recognized for optimization.
Example:

AA = X*AlY
BB = X*B/Y

is less efficient than

AA = A%(X/Y)
BB = B*(X/Y)

Likewise, invariant and constant expressions should be grouped appropriately.
Example:

DO10I=1,50
1I0BD=1.+ A+ X

is less efficient than

DO101=1,50
10B(D) = (1. + X) + A(D)

Example:
X =1024. * B * 3.14159
is less efficient than
X = (1024. * 3.14159) * B

9. Multiple references to a basic external function within a statement should be algebraically reduced
to a single reference.

Example:
Y = ALOG(A) + ALOG(B)
is less efficient than

Y = ALOG(A*B)

60497800 F 11-5

10. In a small summation loop, it is better to use a temporary variable to keep the sum than to reference
an array element directly.

Example:
S$=0
DO 100K = 1IN
100 S =8 + A(IK) * B(KJ)
ciLH=:5

is more efficient than

a5 =0
DO 100K = 1,N
100 C(LJ) = C(LJ) + A(LK) * B(K.J)

TIME-SHARING MODE

When the TS option is specified on the FIN control statement, FORTRAN Extended operates in time-sharing
(TS) mode. Compilation is one-pass; therefore, no overlay reloading is required to compile multiple program
units, and the number of disk accesses is reduced. The minimum compilation field length is 40000 octal. The-
CPU time spent in compilation is 30% to 75% less than that for optimizing mode (OPT=0, OPT=1, or OPT=2).
The object code is not highly optimized and thus executes approximately at the rate of that produced by
OPT=0.

Time-sharing mode is permissive in that it accepts some keyword misspellings and punctuation errors. When
this occurs, a warning level diagnostic is issued, since the program may not compile under optimizing mode.

Misspelled keywords will be recognized if the string length matches the keyword length, the first four characters
match, and the context is unambiguous.

For example,
COMMUN A(Q2)

will be recognized as a COMMON declaration and a warning diagnostic will be issued. However,
COMMUNC(I) = 2+1

will be correctly interpreted as a replacement statement or a statement function definition, depending on
whether or not COMMUNC was previously dimensioned.

Some punctuation errors which do not inhibit the compiler from correctly interpreting a statement will be
accepted.

For example, in
DO 10, I =1,10

th