
r,J I::\ CONT~OL DATA
~ r::J CO~O~TION

FORTRAN
VERSION 5
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 1
NOS 2
NOS/BE 1
SCOPE 2

60401300 H

Revision

A (07/20/79)

B (09 /28/79)

c (02/15/80)

D (09/26/80)

E (01/16/81)

F (05/14/82)

G (07/15/83)

H (01 I 04 I 85)

REVISION RECORD

Description

Original release.

Revised to reflect the released version of the FORTRAN 5 compiler. Numerous technical
and miscellaneous corrections, including added shading, have been made.

Revised to include SCOPE 2 operating system. Additional technical and miscellaneous
corrections have been made.

Released at PSR level 527. Revised to include CMM interface and update to PMD.
Additional technical and miscellaneous corrections have been made.

Revised at PSR level 533. Revised to reflect release of PMD and STATIC option under
SCOPE 2 operating system.

Revised at PSR level 564. Revised to reflect the addition of control statement
parameters to the source listing header. Additional technical and editorial corrections
have been made. This is a complete reprint.

This revision documents FORTRAN 5 at PSR level 577 which includes the addition of the
extended recovery feature. Additional technical and editorial corrections have been made.

This revision documents FORTRAN 5 at PSR level 587. Additional technical and editorial
corrections have been made.

REVISION LETTERS I, 0, Q, AND X ARE NOT USED Address comments concerning this manual to:

(gCOPYRIGHT CONTROL DATA CORPORATION
1979, 1980, 1981, 1982, 1983, 1985
All Rights Reserved
Printed in the United States of America

ii

CONTROL DATA CORPORATION
Publications and Graphics Division
P. O. BOX 3492
SUNNYVALE, CALIFORNIA 94088-3492

or use Comment Sheet in the back of this manual

60481300 H

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Front Cover
Title Page
ii
iii/ iv
v
vi
vii/viii
ix thru xiv
xv/xvi
xvii
1-1 thru 1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1- 11 t hru 1-13
2-1
2-2
2-3
2-4
2-5
2-6 thru 2-10
2 - 11 t hru 2-14
3-1 thru 3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
4-1 thru 4-6
4-7 thru 4-10
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-ll
5-12
5-13
5-14
5-15
5-16
5-17 thru 5-19
5-20
5-21
5-22 thru 5-24
5-25
5-26 thru 5-28

60481300 H

Revision

H
H
H
F
F
H
H
F
F
H
F
F
H
H
G
G
F
G
F
G
F
H
G
F
F
G
F
H
F

G
H

~·
F
H
F
G
F
F
G
F
F
G
H
H
F
G
F
F
G
F
H
F
F
H

G
F

Page

5-29
5-30
5-31
5-32
5-33
5-34 thru 5-41
5-42 thru 5-44
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9 thru 6-11
6-12
6-13
7-1
7-2
7-2. 1/7-2. 2
7-3 thru 7-11
7-12
7-13
7-14
7-15
7-16
7-17 thru 7-22
7-22. l/7-22. 2
7-23 thru 7-28
7-29
7-30 thru 7-33
8-1
8-2
8-3 thru 8-13
8-14
8-15
8-16 thru 8-18
8-19
8-20 thru 8-22
8-23
8-24
8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32
8-33 thru 8-38
9-1
9-2
9-3 thru 9-6
10-1 thru 10-6
11-1
11-2
11-2.1/ 11-2. 2

Revision Page Revision

G 11-3 G
H 11-4 G
G 11-5 F
H 11-6 G
F 11-7 G
H 11-8 F
F 11-9 H
G 11-10 H
H 11-11 F
H 11-12 F
G 11-13 G
F 11-14 thru 11-20 F
F 11-21 G
H 11-22 thru 11-26 F
F 11-27 thru 11-29 H
H 12-1 F
F 12-2 thru 12-8 G
F 12-8.l G
G 12-8. 2 G
G 12-9 thru 12-18 F
G 12-19 G
F 12-20 thru 12-35 F
G A-1 F
H A-2 D
F A-3 E
G A-4 A
H B-1 thru B-23 F
G B-24 G
G B-25 G
F B-26 thru B-31 F
G B-32 thru B-34 G
F B-34.1/B-34. 2 G
G B-35 thru B-39 F
H B-40 H

F B-41 H
H C-1 F
H C-2 H
F C-2.l/C-2.2 G
H C-3 thru C-5 F
F D-l thru D-7 F
H E-1 G
H E-2 thru E-4 F
F F-1 F
G F-2 G
F F-3 F
F F-4 G
G F-5 F
F F-6 H
F F-7 c
G F-8 F
F F-9 F
F G-1 F
G G-2 G
F Index-1 thru -6 H
F Comment Sheet/Mail er H
G Back Cover
H
H

iii/ i \.'

I

I

I

PREFACE

This manual describes the FORTRAN Version 5 lan­
guage. FORTRAN Version 5 complies with the American
National Standards Institute FORTRAN language
described in document X3.9-1978 and known as
FORTRAN 77. FORTRAN Version 5 extensions to
FORTRAN 77 are indicated by shading.

The reader should be familiar with FORTRAN Extended
Version 4 or an existing FORTRAN language. The
reader should also be familiar with the operating
system on which FORTRAN Version 5 jobs will be
compiled and executed.

The FORTRAN Version 5 (FORTRAN 5) compiler is
available under control of the following operating
systems:

NOS 1 for the CONTROL DATA® CYBER 180 Series;
CYBER 170 Series; CYBER 70 Models 71, 72, 73,
and 74; and 6000 Series Computer Systems

NOS 2 for the CDC® CYBER 180 Series; CYBER 170
Series; CYBER 70 Models 71, 72, 73, and 74; and
6000 Series Computer Systems

NOS/BE 1 for the CDC CYBER 180 Series; CYBER
170 Series; CYBER 70 Models 71, 72, 73, and 74;
and 6000 Series Computer Systems

SCOPE 2 for CONTROL DATA CYBER 1 70 Mode 1 176,
CYBER 70 Model 76, and 7600 Computer Systems.

The following manuals are of primary interest:

Extended memory for the CYBER 170 Model 176 is
large central memory (LCM) or large central memory
extended (LCME). Extended memory for the CYBER 170
800 Series Computer Systems is unified extended
memory (UEM). Extended memory for all other
computer systems is extended core storage (ECS) or
extended semi-conductor memory (ESM). In this
manual, the acronym ECS refers to all forms of
extended memory unless otherwise noted.
Programming information for the various forms of
extended memory can be found in the COMPASS
reference manual and in the appropriate computer
system hardware reference manual.

Related material is contained in the listed publi­
cations. These publications are listed alphabeti­
cally and grouped according to their importance to
the FORTRAN user. The NOS 1, NOS 2, and NOS/BE 1
manual abstracts are pocket-sized manuals contain­
ing brief descriptions of the contents and intended
audience of all operating system and product set
manuals. The abstracts manuals can be useful in
determining which manuals are of greatest interest
to a particular user.

The Software Publications Release History is a
guide for determining which revision level of
software documentation corresponds to the Program­
ming System Report (PSR) level of installed site
software.

Publication
Publication
Number NOS l NOS 2 NOS/BE 1 SCOPE 2 ------

FORTRAN Extended Version 4 to
FORTRAN Version 5 Conversion Aid
Program Reference Manual

FORTRAN Version 5
Common Library Mathematical Routines
Reference Manual

FORTRAN Version 5 Instant

NOS Version
Volume 1 of 2

Reference Manual,

NOS Version 2 Reference Set, Volume 3,
System Commands

NOS/BE Version l Reference Manual

SCOPE Version 2 Reference Manual

60481300 H

60483000

60483100

60483900

60435400

60459680

60493800

60342600

x x x x

x x x x

x x x x

x

x

x

x

v

vi

The following manuals are of secondary interest:

Publication

Common Memory Manager Version 1
Reference Manual

COMPASS Version 3 Reference Manual

CYBER Interactive Debug Version 1

Publication
Number

60499200

60492600

Reference Manual 60481400

CYBER Loader Version 1 Reference Manual 60429800

CYBER Record Manager
Advanced Access Methods
Version 2 Reference Manual 60499300

CYBER Record Manager
Advanced Access Methods
Version 2 User's Guide

CYBER Record Manager
Basic Access Methods
Version 1.5 Reference Manual

CYBER Record Manager
Basic Access Methods
Version 1.5 User's Guide

DMS-170 FORTRAN Data Base Facility
Version 1 Reference Manual

FORTRAN Version 5 User's Guide

FORTRAN Version 5 User's Guide

Information Management Facility
Version I Application Programming
Reference Manual

INTERCOM Version 5 Reference Manual

Loader User's Guide

Network Products
Interactive Facility Version 1
Reference Manual

NOS Version Diagnostic Index

NOS Version Manual Abstracts

NOS Version Time-Sharing
User's Reference Manual

NOS Version 2 Diagnostic Index

NOS Version 2 Manual Abstracts

NOS Version 2 Reference Set,
Vol une 1, Introduction to
Interactive Usage

NOS/BE Version Manual Abstracts

NOS/BE Version Diagnostic Index

60499400

60495700

60495800

60482200

60484000

60484010

60484500

60455010

60485200

60455250

60455720

84000420

60435500

60459390

60485500

60459660

84000470

60456490

SCOPE Version 2 Loader Reference Manual 60454780

NOS 1 NOS 2 NOS/BE I SCOPE 2

x x x x

x x x x

x x x

x x x

x x x

x x x

x x x

x x x

x x x

x

x

x x

x

x

x

x

x

x

x

x

x

x

x

x

60481300 F

SCOPE Version 2 Record Manager
Reference Manual 60495700

Software Publications Release History 60481000 x x x

Sort/Merge Versions 4 and .l
Reference Manual 60497500 x x x

Sort/Merge Version 5 Reference Manual 60484800 x x

8-Bit Subroutines Reference Manual 60495500 x x x

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

60481300 F

This product is intended for use only as described in this
doctment. Control Data cannot be responsible for the proper
functioning of undescribed features or parameters.

x

x

x

vii/viii

I

NOTATIONS

1. LANGUAGE ELEMENTS

FORTRAN Statements
Nonsequenced Mode

Initial Lines
Continuation Lines
Statement Labels
Comment Lines
Compiler Directive Lines
Columns 73 Through 80

Sequenced Mode
Symbolic Names
Constants

Integer Constant
Real Constant
Double Precision Constant
Complex Constant
Logical Constant
Boolean Constants

Hollerith and Extended Hollerith
Boolean Constant

Octal Boolean Constant
Hexadecimal Boolean Constant

Character Constant
Variables

Integer Variable
Real Variable
Double Precision Variable
Complex Variable
Logical Variable
Boolean Variable
Character Variable

Arrays
Array Storage
Array References

Character Substrings
Substring References
Substrings and Arrays

Statement Order

2. SPECIFICATION STATEMENTS

COMMON Statement
DATA Statement

Implied DO List Use in DATA Statement
Character Data Initialization

DIMENSION Statement
EQUIVALENCE Statement
EXTERNAL Statement
IMPLICIT Statement
INTRINSIC Statement
LEVEL Statement
PARAMETER Statement
SA VE Statement
Type Statements

INTEGER Statement
REAL Statement
DOUBLE PRECISION Statement
COMPLEX Statement
LOGICAL Statement
BOOLRAN Statement
CHARACTER Statement

60481300 H

CONTENTS

xvii

1-1

1-1
1-1
1-2
1-2
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-5
1-5
1-6
1-6
1-6

1-7
1-7
1-7
1-7
1-8
1-8
1-8
1-8
1-8
1-8
1-8
1-9
1-9
1-10
1-10
1-11
1-11
1-12
1-12

2-1

2-1
2-3
2-4
2-5
2-5
2-6
2-7
2-7
2-8
2-9
2-9
2-10
2-11
2-12
2-12
2-12
2-12
2-12
2-11
2-11

3. EXPRESSIONS AND ASSIGNMENT STATEMENTS

Expressions
Arithmetic Expression

Infinite and Indefinite Values
Boolean Expression
Character Expression
Logical Expression
Relational Expression
General Rules for Expressions

Assignment Statements
Arithmetic Assignment
Boolean Assignment
Character Assignment
Logical Assignment
Multiple Assignment

4. FLOW CONTROL STATEMENTS

GO TO Statement
Unconditional GO TO Statement
Computed GO TO Statement
ASSIGN Statement
Assigned GO TO Statement

IF Statement
Arithmetic IF Statement
Logical IF Statement
Block IF Statement

ELSE Statement
ELSE IF Statement
END IF Statement
Block IF Structures

Nested Block IF Structures
DO Statement

Active and Inactive DO Loops
Nested DO Loops

CONTINUE Statement
PAUSE Statement
STOP Statement
END Statement

5. INPUT/OUTPUT

Input/Output Files
Sequential Files
Direct Access Files
Batch Job Files

i~put/Output Lists
Implied DO in Input/Output List
Format Specification

FORMAT Statement
Character Format Speci ficati_ons
Noncharacter Format Specifications
Edit Descriptors

Input /Output Conversions
Field Sepacators
Repeatable and Nonrepeatable Edit

Descriptors
Repetition Factors

Execution Time Format Specification
Input/Output Statements

Keyword=Valu~ Forms in Input/Output
Statements

Formatted Input/Output Statements

3-1

3-1
3-1
3-4
3-4
3-5
3-5
3-6
3-8
3-9
3-9
3-9
3-9
3-9
3-10

4-1

4-1
4-1
4-1
4-1
4-2
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-5
4-6
4-7
4-7
4-8
4-9
4-10
4-10

5-1

5-1
5-1
5-1
5-2
5-3
5-3
5-4
5-5
5-5
5-5
5-5
5-7
5-7

5-7
5-22
5-22
5-22

5-22 I
5-25

ix

Formatted READ
Formatted WRITE
Formatted PRINT
Formatted PUNCH

Unformatted Input/Output Statements
Unformatted READ
Unformatted WRITE

List Directed Input/Output Statements
List Directed Input
List Directed Output

NAMELIST Input/Output Statements
Namelist Input
Namelist Output
Arrays in Namelist

Buffer Input/Output Statements
BUFFER IN
BUFFER OUT

Input/Output File Status Statements
OPEN
CLOSE
INQUIRE

Memory-to-Memory Input/Output Statements
Standard Internal Files
Extended Internal Files

File Positioning Statements
REWIND
BACKSPACE
ENDFILE

6. USER-WRITTEN PROGRAMS, SUBPROGRAMS, AND
FUNCTIONS

Main Program
PROGRAM Statement
PROGRAM Statement Usage

Procedures, Subprograms, and Statement
Functions

Subroutine Subprogram
SUBROUTINE Statement
CALL Statement

Function Subprogram
FUNCTION Statement
Function Subprogram Reference

ENTRY Statement
RETURN and END Statements

Single and Multiple Returns
Alternate Return

Statement Functions
Statement Function Definition
Statement Function Reference

Program Unit and Procedure Communication
I Passing Arguments

Actual Arguments
Dunnny Arguments
Argument Association

Using Common Blocks
Block Data Subprograms

7. FORTRAN SUPPLIED PROCEDURES

Intrinsic Functions

x

Generic and Specific Functions
Boolean Arguments Passed to Intrinsic

Functions
Function Descriptions

ABS
ACOS
AIMAG
AINT
ALOG
ALOGlO
AMA XO
AMAX I
AMINO

5-25
5-25
5-26
5-26
5-26
5-27
5-27
5-27
5-27
5-29
5-30
5-30
5-32
5-32
5-32
5-34
5-35
5-36
5-36
5-38
5-38
5-38
5-40
5-41
5-43
5-43
5-44
5-44

6-1

6-1
6-1
6-1

6-3
6-3
6-4
6-5
6-5
6-5
6-6
6-6
6-7
6-7
6-8
6-8
6-8
6-9
6-9
6-9
6-10
6-10
6-10
6-12
6-13

7-1

7-1
7-1

7-2
7-2
7-7
7-7
7-7
7-7
7-7
7-7
7-7
7-7
7-7

AMINI
AM.OD
AND
AN INT
ASIN
ATAN
ATANH
ATAN2
BOOL
CABS
ccos
CEXP
CHAR
CLOG
CMPLX
COM PL
CON JG
cos
COSD
GOSH
CSIN
CSQRT
DABS
DA COS
DAS IN
DATAN
DATAN2
DBLE
DCOS
DCOSH
DDIM
DEXP
DIM
DINT
DLOG
DLOGlO
DMAXl
IMINl
IMOD
DNINT
DPROD
DSIGN
DSIN
DSINH
DSQRT
DTAN
DTANH
EQV
ERF
ERFC
EXP
FLOAT
IABS
I CHAR
IDIM
ID INT
IDNINT
!FIX
INDEX
INT
!SIGN
LEN
LGE
LGT
LLE
LLT
LOCF
LOG
LOG IO
MASK
MAX
MAXO
MAXI
MIN
MINO
MINl

7-7
7-7
7-7
7-7
7-7
7-7
7-7
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-9
7-9
7-9
7-9
7-9
7-9
7-9
7-9
7-9
7-9
7-9
7-9
7-9
7-9
7-9
7-9
7-9
7-9
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-12
7-12
7-12
7-12
7-12
7-12
7-12
7-12
7-12

60481300 H

MOD
NEQV
NINT
OR
RANF
REAL
SECOND
SHIFT
SIGN
SIN
SIND
SINH
SNGL
SQRT
TAN
TAND
TANH
XOR

GETPARM Subroutine
Random Number Routines

RANSET Subroutine
RANGET Subroutine

Operating System Interfaces
DATE Function
JDATE Function
TIME or CLOCK Function
DISPIA Subroutine
REMARK Subroutine
SSWTCH Subroutine
EXIT Subroutine
CHEKPTX Subroutine
RECOVR Subroutine

Input/Output Subprograms
Status Checking

UNIT Function
EOF Fune t ion
IOCHEC Fune tion
LENGTH Function and LENGTHX

Subroutine
Extended Memory

MOVLEV Subroutine
MOVLCH Subroutine

Interactive Terminals
CONNEC Subroutine
DISCON Subroutine

Tape LABEL Subroutine
Mass Storage

Random File Access
OPENMS Subroutine
WRITMS Subroutine
READMS Subroutine
CLOSMS Subroutine
STINDX Subroutine

Debugging Routines
DUMP and PDUMP Subroutines
STRACE Subroutine
LEGVAR Function
SYSTEM Subroutine
SYSTEMC Subroutine
LIMERR Subroutine and NUMERR Function

Collating Sequence Control Subprograms
COLSEQ Subroutine
WTSET Subroutine
CSOWN Subroutine

Static Loading Option

8. FORTRAN 5 INTERFACES

Permanent File Interface
PF Call
Error Processing

CYBER Record Manager (CRM)
File Information Table (FIT)
Call Syntax

60481300 H

7-12
7-12
7-12
7-12
7-12
7-12
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-14
7-14
7-14
7-14
7-14
7-14
7-14
7-14
7-15
7-15
7-15
7-15
7-15
7-17
7-17
7-18
7-18
7-18

7-19
7-19
7-19
7-19
7-20
7-20
7-21
7-21
7-22
7-22
7-22.l
7-22.l
7-22.l
7-23
7-23
7-25
7-27
7-27
7-27
7-27
7-27
7-28
7-30
7-31
7-32
7-32
7-32

8-1

8-1
8-2
8-2
8-5
8-6
8-6

File Processing
CRM Utilities

Sort/Merge
Sort/Merge 5

Sort/Merge 5 Keys
Summing
Sort/Merge 5 Owncode Routines

Sort/Merge 4 and 1
Common Memory Manager
COMPASS Assembly Language Intermixed

Subprograms
Compiler and Subprogram Linkage

Pass By Reference Sequence
Pass By Value Sequence

Function Result
Entry Point
Restrictions on Using Intrinsic Function

Names
8-Bit Subroutines
CYBER Database Control System
Information Management Facility
Queued Terminal Record Manager (QTRM)
Transaction Facility (TAF)

9. OVERIAYS AND OVCAPS

Overlays
Main, Primary, and Secondary Overlays
Overlay Communication
Creating Overlays
Calling Overlays

OVCAPs
OVCAP Communication
Creating OVCAPs
Calling OVCAPs

10. DEBUGGING AIDS

CYBER Interactive Debug
Program Compilation

DEBUG Control Statement
DB Parameter

Debug Session
SET,BREAKPOINT Command
SET,TRAP Command
PR INT Command
Assignment Command

Other CID Features
Post Mortem Dump

Compilation
Loading
Dump Information

Dump Variables
PMD Traceback

PMD Subroutines
PMDARRRY
PMDDUMP
PMDLOAD
PMDSTOP

11. COMPILATION AND EXECUTION

FTN5 Control Statement
Parameters

Binary Value Parameters
Specified Value Parameters
Multiple Binary Value Parameters
Multiple Appearances of Parameters

Parameter Options
AL Automatic Level
ANSI Diagnostics
ARG Argument List Attributes

8-6
8-16
8-16
8-18
8-18
8-18
8-21
8-21
8-24

8-28
8-28
8-28
8-29
8-29
8-29

8-29
8-30
8-30
8-35
8-36
8-37

9-1

9-1
9-1
9-2
9-2
9-4
9-5
9-5
9-5
9-5

10-1

10-1
10-1
10-1
10-1
10-2
10-2
10-2
10-2
10-2
10-3
10-3
10-3
10-3
10-3
10-4
10-4
10-5
10-5
10-5
10-6
10-6

ll-1

11-1
11-1
11-1
11-1
11-1
11-2
11-2
11-2
11-2. 1
11-3

xi

I

H Rinary Output File
BL Burstable Listing
CS Collating Sequence
DB Debugging Option
DO Loop Control
DS Directive Suppre~sion
E Error File
EC Extended Memory Usage
EL Error Level
ET Error Terminate
G Get System Text file
GO Automatic Execution
I Input File
L List File
LC>l Extended Memory (LCM, ECS,

or UEM Storage) Access
LO Listing Options
MD Machine Dependent Diagnostics
ML MODLEVEL Micro
OPT Optimization Level
PD Print Density
PL Print Limit
PN Pagination
PS Page Size
PW Page Width
QC Quick Syntax Check
REW Rewind Files
ROUND Rounded Arithmetic

Computations
S System Text File
SEQ Sequenced Input
STATIC Static Load
TM Target Machine
X External Text Name

FTN 5 Control Statement Examples
Compiler Listings

Short Line Listing
Listing Control Directive

Reference Map
General Format of Maps

Variable Map
Symbolic Constant Map
Procedure Map
Statement Label Map
Entry Point Map
Input/ Output Unit Map
NAMELIST Map
DO Loop Map
Connnon and Equivalence Map
Stray Names
Program Statistics

Debugging Using the Reference Map
Object Listing

Program Unit Structure
Naming Conventions

Register Name Conflicts
System-Supplied Procedure Names
Listing Format

Execution Control Statement
File Name Substitution
Print Limit Specificatlon
User Parameters
Post Mortem Dump Parameters

Post Mortem Dump Output Parameter
Subscript Limit Specification

12. EXAMPLES

Sample Deck Structures

I xii

FORTRAN Source Program With Control
Statements

Compilation Only
OPT=O Compilation
Compilation and Execution

l l-3
11-3
11-3
11-3
11-4
11-4
11-4
11-5
11-5
i 1-5
11-5
11-6
11-6
11-6

11-6
11-6
11-7
11-7
11-7
11-9
11-9
11-9
11-9
11-9
11-10
11-10

11-10
11-10
11-11
11-11
11-11
11-11
11-11
11-12
11-12
11-13
11-13
11-13
11-13
11-13
11-13
11-16
11-16
11-16
11-16
11-16
11-16
11-19
11-19
11-19
11-20
11-26
11-26
11-26
11-26
11-26
11-27
11-27
11-27
11-27
11-28
11-28
11-28

12-1

12-1

12-1
12-1
12-1
12-1

FORTRAN Compilation With COMPASS
Assembly and Execution

Compilation and Execution With FORTRAN
Subroutine and COMPASS Subprogram

Compilation With Binary Card Output
Loading and Execution of Binary Program
Compilation and Execution With

Relocatable Binary Deck
Compilation and Two Executions With

Different Data Decks
Preparation of Overlays
Compilation and Two Executions With

Overlays
Sample Programs

Program OUT
Program B
Program STATES
Program EQUIV
Program COME
Program LIBS
Program ADD

Read
Write

Program PASCAL
Program PIE
Program X
Program ADIM
Program ADIM2

Subroutine SET
Subroutine IOTA
Function PVAL
Function AVG
Function MULT
Main Program: ADIM2

Program CIRCLE
Program BOOL
Program EASY IO
Program BLOCK

Programs ONE and TWO
Program PMD2

Program PMD
Program DBUG
Program GOTO
Program ASK
Program SCORE

APPENDIXES

A Standard Character Sets
B FORTRAN Diagnostics
C Glossary
D Language Summary
E C$ Directives
F Input/Output Implementation
G Future System Migration Guidelines

INDEX

FIGURES

1-1 Program on FORTRAN Coding Form
1-2 Normal Column Usage
1-3 Listing of Sequenced Program
1-4 Sequenced Column Usage
1-5 Duplicated Keyword Names Examples
1-6 Integer Constant
1-7 Integer Constant Examples
1-8 Real Constant
1-9 Real Constants Examples
1-10 Double Precision Constant
1-11 Double Precision Constants Examples
1-12 Complex Constant

12-3

L2-4
12-4
12-4

12-4

12-7
12-7

12-8.1
12-8.1
12-8.1
12-9
12-9
12-9
12-10
12-12
12-13
12-14
12-14
12-14
12-14
12-16
12-17
12-18
12-20
12-20
12-20
12-20
12-21
12-21
12-21
12-22
12-23
12-24
12-24
12-25
12-29
12-29
12-32
12-34
12-34

A-1
B-1
C-1
D-1
E-1
F-1
G-1

1-1
1-2
1-3
1-3
1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-6

60481300 H

l-13
1-14
1-15
1-16
1-17
1-18
1-19

I i-20
1-21
1-22
1-23
1-24
1-25
1-26

1-27
1-28

1-29

1-30
2-1
2-2
2-3
2-4
2-5

2-6

2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14

2-15
2-16
2-17
2-18
2-19
2-20
2-21

2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
3-1
3-2

3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
4-1
4-2

Complex Constants Examples
Logical Constant
Logical Constants Examples
Hollerith Constant
Octal Constant
Hexadecimal Constant
Character Constant
Character Constants Examples
Declaration of Array Dimensions
I-Dimensional Array Storage
2-Dimensional Array Storage
3-Dimensional Array Storage
Array Element Reference
Examples of References to Array

Elements
Character Substring Reference
Examples of Character Substring

References
Example of Substring and Array

References
Statement Order
COMMON Statement
Examples of COMMON Statement
DATA Statement
Examples of DATA Statement
Examples of Implied DO List With

DATA Statement
Examples of Character Data

Initialization With DATA Statement
DIMENSION Statement
Examples of DIMENSION Statement
EQUIVALENCE Statement
Examples of EQUIVALENCE Statement
EXTERNAL Statement
Examples of EXTERNAL Statement
IMPLICIT Statement
Examples of Typing With IMPLICIT

Statement
INTRINSIC Statement
Examples of INTRINSIC Statement
LEVEL Statement
Example of LEVEL Statement
PARAMETER Statement
Example of PARAMETER Statement
Intrinsic Functions Permitted in

Extended Constant Expressions
SAVE Statement
Example of SAVE Statement
Examples of Explicit Typing
INTEGER Statement
REAL Statement
DOUBLE PRECISION Statement
COMPLEX Statement
LOGICAL Statement
BOOLEAN Statement
CHARACTER Statement
Examples of CHARACTER Statement
Arittuneti.c Expression
Examples of Integer Constant

Expressions
Boolean Expression
Character Expression
Logical Expression
Relational Expression
Arittunetic Assignment Statement
Boolean Assignment Statement
Character Assignment Statement
Logic.al Assignment St:itement
Multiple Assignment Statement
Unconditional GO TO Statement
Example of Unconditional GO TO

StAtement
Computed GO TO Statement
Example::> of Computed GO TO Statements
ASS[GN Statement

6048l300 H

1-6
1-6
1-6
1-7
1-7
1-7
1-7
1-8
1-9
1-9
1-9
1-10
1-10

1-11
1-11

1-12

1-12
1-13
2-1
2-2
2-3
2-4

2-4

2-5
2-5
2-5
2-6
2-6
2-7
2-7
2-7

2-8
2-8
2-8
2-9
2-9
2-9
2-10

2-10
2-10
2-11
2-1 L
2-12
2-12
2-12
2-12
2-U
2-13
2-13
2-l 3
3-1

3-2
3-4
3-5
3-6
3·-7
J-9
3-9
J-9
3-9
3-LO
4-1

4-1
4-1
4-2
4-2

4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19

4-20

4-21

4-22

4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31

4-32
4-33
4-34
4-35
4-36
S-1

5-2

5-3
5-4

5-5
5-6
5-7

5-8

5-9
5-10

5-11
'J-12
5-13
5-14
5-15
5-16

5-17

5-18
'.)-19

5-20
5-21
5-22
5-23
5-24
5-25
5-2t>
5-27
5-28
5-29
5-30
5-31

Examples of ASSIGN Statement
Assigned GO TO Statement
Example of Assigned GO TO Statement
Arittunetic IF Statement
Example of Arittunetic IF Statement
Logical IF Statement
Examples of Logical IF Statements
Block IF Statement
ELSE Statement
ELSE IF Statement
END IF Statement
Simple Block IF Structure
Example of Block IF Statement
Block IF Structure With ELSE

Statement
Example of Block IF Structure With

ELSE Statement
Block IF Structure With ELSE IF

Statements
Example of Block IF Structure With

ELSE IF Statements
Nested Block IF Structure
Example of Nested Block IF Structure
DO Statement
DO Loop Examples
Branch to Shared Terminal Statement
Nested DO Loops
Nested DO Loop Transfers
Nested DO Loop Examples
Nested DO Loops With Different

Terminal Statements
CONTINUE Statement
CONTINUE Statement Examples
PAUSE Statement
STOP Statement
END Statement
Direct Access File Record Length

Calculation Example
Direct Access File Processing

Examples
Input/Output List Examples
Implied DO in Input/Output List

Examples
Format Terminating Data Read Examples
FOR.."1AT Statement
Character Format Specification

Examples
Complex Data Item Format

Specification Example
A Input Examples
Apostrophe and Quote Descriptor

Exa.'llples
Printer Carriage Control Examples
Carriage Control PrL'gram Ex3Illple
D Input Field
D Output Example
E Input Field
Example Showing E Input Incorrectly

Read
Lnteger Var iab lt> Ew .d Spec. ification

Examples
End-of-Record Slash Examples
G Output Examples
H Ikscriptor Example
I Input Example

Output Examples
L Output Example
0 Lnput Example
Scaled F Output
Scaled E Output
Scaled G Output
R Input Example
s..;.gn ControL Example
T, TL, and TR Descriptor Examples
T Output Example

4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-4

4-4

4-5

4-5

4-5
4-5
4-6
4-6
4-7
4-8
4-8
4-8
4-9

4-9
4-9
4-9
4-9
4-10
4-10

5-2

5-2
5-3

5-4
5-4
5-5

5-5

5-7
5-8

5-8
5-9
5-10
5-10
5-10
5-11

5-12

5-13
5-13
5-16
5-lb
5-16
5-16
5-1/
5-17
5-18
5-18
5-18
5-19
5-19
5-19
5-20

xiii

5-32
5-33
5-34
5-35
5-36

5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-51
5-52
5-53
5-54
5-55
5-56
5-57
5-58
5-59
5-60
5-61
5-62
5-63
5-64

5-65
5-66
5-67
5-68
5-69
5-70

5-71
5-72
5-73
5-74
5-75
5-76
5-77
5-78
5-79
5-80
5-81
5-82
5-83
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19

I xiv

Termination by Colon Example
X Descriptor Example
Z Input Example
Repetition Factor Examples
Execution Time Format Specification

Examples
Formatted READ Statement
Fomatted READ Statement Examples
Formatted WRITE Statement
Formatted WRITE Statement Example
Formatted PRINT Statement
Formatted PRINT Example
Formatted PUNCH Statement
Formatted PUNCH Example
Unformatted READ Statement
Unformatted READ Example
Unformatted WRITE Statement
Unformatted WRITE Example
List Directed READ Statement
List Directed Input Examples
List Directed WRITE Statement
List Directed PRINT Statement
List Directed PUNCH Statement
List Directed Output Examples
NAMELIST Statement
NAMELIST Example
NAMELIST READ Statement
NAMELIST Group Format
NAMELIST Group Input Example
NAMELIST WRITE Statement
NAMELIST PRINT Statement
NAMELIST PUNCH Statement
NAMELIST Output Example
NAMELIST WRITE and Subsequent

NAMELIST READ Example
Arrays in NAMELIST Examples
BUFFER IN Statement
BUFFER IN Example
BUFFER OUT Statement
OPEN Statement
OPEN Overriding PROGRAM Declaration

Example
OPEN Statement Examples
CLOSE Statement
INQUIRE Statement
INQUIRE Statement Example
Internal File Input Examples
Internal File Output Examples
ENCODE Statement
ENCODE Statement Examples
DECODE Statement
DECODE Statement Examples
REWIND Statement
BACKSPACE Statement
ENDFILE Statement
PROGRAM Statement
Examples of PROGRAM Statement
File Equivalencing Example
Subroutine Statement
Subroutine Call Example
CALL Statement
FUNCTION Statement
Function Reference Example
Function Reference Name
ENTRY Statement
Examples of ENTRY Statements
END Statement
RETURN Statement
MULTIPLE Return Example
Alternate Return Example
Statement Function
Examples of Statement Functions
Statement Function Reference
Example of Adjustable Dimensions in

Subroutine

5-21
5-21
5-21
5-23

5-24
5-25
5-25
5-26
5-26
5-26
5-26
5-26
5-26
5-27
5-27
5-27
5-27
5-27
5-28
5-29
5-29
5-29
5-29
5-30
5-30
5-31
5-31
5-31
5-32
5-32
5-32
5-32

5-32
5-33
5-35
5-35
5-35
5-36

5-37
5-37
5-38
5-39
5-40
5-41
5-41
5-42
5-42
5-42
5-43
5-43
5-44
5-44
6-3
6-3
6-4
6-4
6-4
6-5
6-5
6-5
6-6
6-6
6-7
6-7
6-7
6-7
6-8
6-8
6-9
6-9

6-12

6-20
6-21
6-22
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
7-39
7-40
7-41
7-42
7-43
7-44
7-45
7-46
7-47
8-1
8-2

8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
10-1
10-2
10-3

Using Common
Block DATA Statement
Example of BLOCK DATA
LOCF Result for Character Argument
GETPARM Call
RANSET Call
RANGET Call
DATE Function
JDATE Function
TIME Fune tion
CLOCK Function
DISPLA Call
REMARK Call
SSWTCH Call
EXIT Call
CHEKPTX Call
CHEKPTX Example
RECOVR Call
UNIT Function
EOF Function
IOCHEC Fune tion
LENGTH Fune tion
LENGTHX Call
MOVLEV Call
MOVLCH Call
CONNEC Call
DISCON Call
LABEL Call
OPENMS Call
WRITMS Call
READMS Call
CLOSMS Call
STINDX Call
Random File With Number Index
Random File With Name Index
Subindexed File With Number Index
.DUMP Call
PDUMP Call
STRACE Call
LEGVAR Fune ti on
SYSTEM Call
SYSTEMC Call
Error Table Entry
Suppressing an Error Message
LIMERR Call
NUMERR Function
Suppressing Fatal Termination
COLSEQ Call
WTSET Call
CSOWN Call
FILE Control Statement

6-12
6-13
6-13
7-11
7-13
7-14
7-14
7-14
7-14
7-14
7-14
7-15
7-15
7-15
7-15
7-16
7-16
7-17
7-18
7-18
7-18
7-19
7-19
7-19
7-20
7-20
7-21
7-21
7-22.l
7-23
7-23
7-23
7-24
7-25
7-26
7-26
7-27
7-27
7-27
7-27
7-27
7-28
7-29
7-29
7-30
7-30
7-30
7-32
7-32
7-32
8-6

Example of Creating Indexed Sequential
File Having Alternate Keys

Sort/Merge 5 Owncode Subroutine
Example of CMM Use
COMPASS IDENT Statement
Program SUBLNK and Function ZEUS
Object Listing for Program SUBLNK
Object Listing for Function ZEUS
DML Preprocessor Control Statement
IML Preprocessor Control Statement
Execution-Time Parameters for IMF
Overlay Positioning
Overlay Positioning Showing Common
OVERLAY Statement
OVERLAY Call
Sample Overlay Structure
OVCAP Directive
LOVCAP Call
XOVCAP Call
UOVCAP Call
Batch Job Set Up for OVCAPs
PMDARRA Y Call
PMDDUMP Call
PMDLOAD Call

8-16
8-21
8-28
8-28
8-30
8-31
8-32
8-35
8-36
8-36
9-1
9-3
9-4
9-4
9-5
9-5
9-6
9-6
9-6
9-6

10-5
10-5
10-6

60481300 H

10-4
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16
12-1

12-2
12-3
12-4
12-5

PMDSTOP Call
FTN5 Control Statement
Possible OPT=3 Error Example 1
Possible OPT=3 Error Example 2
Optimization Example 1
Variable Map
Symbolic Constants Map
Procedures Map
Statement Label Map
En try Po int Map
Input/Output Unit Map
Namelist Map
DO Loop Map
Common Equivalence Map
Program Statistics Map
Program MAPS
Reference Map Example
FORTRAN Source Program With Control

Statements
Compilation Only
OPT=O Compilation
Compilation and Execution
Compilation With COMPASS Assembly

and Execution
12-6 Compilation and Execution With

FORTRAN Subroutines and COMPASS

12-7
12-8

12-9

12-10

12-11
12-12

12-13
12-14
12-15
12-16
12-17
12-18

12-19
12-20
12-21
12-22
12-23

12-24
12-25
12-26
12-27
12-28
12-29
12-30
12-31
12-32

12-33

12-34
12-35
12-36
12-37
12-38
12-39
12-40

12-41
12-42

Subprogram
Compilation With Binary Card Output
Loading and Execution of Binary

Program
Compilation and Execution With

Relocatable Binary Deck
Compilation and Execution With

Different Data Decks
Preparation of Overlays
Compilation and Two Executions With

Overlays
Program OUT With Control Statements
Program OUT Output
Program B
Program B Output
Program STATES
Sample Input and Output for Program

STATES
Program EQUIV
INTEGER and REAL Internal Formats
Program EQUIV Output
Program COME
Storage Layout for Variables in

Program COME
Program COME Output
Program LIBS
Program LIBS Output
Program ADD
Program ADD Input and Output
Program PASCAL
Program PASCAL Output
Program PIE and Output
Program X, Function EXTRAC, Output:

INTEGER Declaration Omitted From
Main Program

Program X, Function EXTRAC, Output:
INTEGER Declaration Include<l in
Main Program

Program ADIM and Subroutine IOTA
Program ADIM Output
Program ADIM2
Program ADIM2 Output
Program CIRCLE, Function DIM, Output
Rectangle and Circumscribed Circle
Program Circle With Correction and

Output
Program BOOL and Output
Program BOOL With Correction and

Output

60481300 H

10-6
11-1
11-8
11-8
11-9
11-14
11-15
11-16
11-17
11-17
11-18
11-18
11-18
11-19
11-20
11-21
11-22

12-1
12-2
12-2
12-3

12-3

12-4
12-5

12-5

12-6

12-7
12-8

12-8.1
i2-8.l
12-8.2
12-9
12-9
12-9

12-10
12-10
12-10
12-11
12-11

12-11
12-11
12-12
12-13
12-13
12-15
12-15
12-16
12-16

12-17

12-17
12-18
12-19
12-19
12-21
12-21
12-22

12-22
12-22

12-23

12-43
12-44
12-45

12-46
12-47

12-48
12-49
12-50

12-51
12-52

12-53
12-54
12-55
12-56

12-57
12-58
12-59
12-60

TABLES

1-1
1-2
2-1

3-1
3-2

3-3

3-4

3-5
3-6
3-7
3-8
5-1
5-2
5-3
5-4
5-5
5-6
6-1
7-1
7-2

7-3
7-4

7-5
7-6
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
11-1

Hollerith Examples
Program EASYIO
Sample Input and Output for Program

EASYIO
Program BLOCK
Sample Input and Output for Program

BLOCK
Programs ONE and TWO
Program PMD2
Post Mortem Dump Output for Program

PMD2
Program PMD
Post Mortem Dump Output for

Program PMD
Program DBUG
Debug Session
Program GOTO
Sample Input and Output for Program

GOTO
Program ASK
Program ASK Output
Program SCORE and Subroutine AVG
Sample Input and Output for Program

SCORE

FORTRAN Character Set
Array Element Position
Correspondence of Data Types in DATA

Statements
Arithmetic Operators
Resulting Data Type for Xl**X2

Operations
Resulting Data Type for Xl+X2, Xl*X2

or Xl/X2 Operations
Result of Logical Operators in

Boolean Expressions
Character Operator
Logical Operators
Result of Logical Operators
Relational Operators
Repeatable Edit Descriptors
Nonrepeatable Edit Descriptors
Printer Control Characters
Ew.d Input Examples
F Input Examples
F Output Examples
Characteristics of Program Components
Intrinsic Functions
Summary of Mathematical Intrinsic

Functions
LABINFO Block Content
Information Available to Error

Recovery Routine
Collating Weight Tables
Static Capsule Loading Routines
PF Subroutine Parameters
Meanings of PF Command Options
CYBER Record Manager FIT Fields
CYBER Record Manager Calls
CYBER Record Manager Utilities
Sort/Merge 5 Calls
Sort/Merge 5 Numeric Key Types
Sort/Merge 5 Owncode Routines
Sort/Merge 4 and 1 Calls
Common Memory Manager Calls
Argument List Format
8-Bit Subroutine Calls
DML Statements and Utility Calls
IML Statements
Queued Terminal Record Manager Calls
Defaults for FTN5 Control Statement

12-23
12-24

12-25
12-25

12-26
12-26
12-27

12-28
12-29

12-30
12-32
12-32
12-33

12-33
12-34
12-34
12-35

12-35

1-2
1-11

2-4
3-2

3-3

3-3

3-5
3-5
3-6
3-7
3-7
5-6
5-6
5-9
5-12
5-14
5-15
6-2
7-2.1

7-5
7-21

7-30
7-31
7-33
8-3
8-4
8-7
8-14
8-17
8-19
8-21
8-22
8-23
8-25
8-29
8-33
8-34
8-37
8-38

11-2

xv/xvi I

NOTATIONS

Certain notations are used throughout the manual
with consistent meaning. The notations are:

UPPERCASE In language syntax, uppercase indi­
cates a statement keyword or char­
acter that is to be written as shown.

Lowercase In language syntax, lowercase indi­
cates a name, number, symbol, or
entity that is to be supplied by the
programmer.

[]

{ }

60481300 F

In language syntax, brackets indi­
cate an optional item that can be
used or omitted.

In language syntax, braces indicate
that only one of the vertically
stacked items can be used.

In language syntax, an ellipsis
indicates that the preceding optional
item in brackets can be repeated as
necessary.

In program examples, a vertical el­
lipsis indicates that other FORTRAN
statements or parts of the program
have not been shown because they are
not relevant to the example.

A delta indicates a blank character.

xvii

LANGUAGE ELEMENTS 1

This section discusses the language elements of
FORTRAN S. These elements include: FORTRAN state­
ments, symbolic names, constants, variables,
arrays, character substrings, and statement order.

FORTRAN ST A TEMENTS
FORTRAN statements are written using the FORTRAN
character set. The FORTRAN character set consists
of 26 letters, 10 digits, and 13 special
characters. The FORTRAN character set is shown in
table 1-1.

The representations of characters are described in
appendix A. In all but two cases, the FORTRAN
character and the representation are identical. If
the CDC 63-character set or 64-character set is in
use, the two exceptions are and ", which are
represented as t and '/:, respectively. If the
ASCII 63-character set or 64-character set is in
use, the characters and representations are all
identical.

~ .::\ CONTR.OL DATA FORTRAN CODING FORM \::I r:::J CORPOR(\TION

I ~oo·~
•oon••

Characters that are not
character set can be
fj:(j'fJieti'~'h' constants; in
descriptors of format
comment lines.

included in the FORTRAN
used: in character and
apostrophe, H, and quote
specifications; and in

FORTRAN statements can be written in normal (non­

s:s~en~:d)> ~od:~ ·.· .~<?~T~N. statem~nt~ can also be
'tqrj,fi~el:l ii;t. s~q]l~n¢ed. mode.. Each program must be
written entirely in one mode. Normal mode is
principally used for hatch jobs. SeqU~n<:ed mode is
~l.~.1;~(1 ~qf)J!jp$!~ ~~m~ ... ~hfit1f1g applfoations. The SEQ
parameter ·of the FTNS control statement (described
in section 11) selects sequenced mode.

NONSEQUENCED MODE

The FORTRAN source program can be written on the
coding form shown in figure 1-1. Each line on the
coding form represents a source line from either a
card image or a terminal line.

NAME

DATE PAGE
OF

SMTEANTTE ~t--~~~~~~~~~~~~~~~~~~~~-F_OR_T_R_AN_S_T_AT_E_ME_N_T~~~~~~~~~~~~~~~~~~~~~~

0 • ZERO t = ONE 2 • TWO SERIAL
NUMBER NO fl!• ALPHA 0 I= ALPHA I i! •ALPHA Z

Figure 1-1. Program on FORTRAN Coding Form

60481300 F 1-1

TABLE 1-1. FORTRAN CHARACTER SET

Type Characters

A 1 phabet ic A through z
Numeric 0 through 9

Special = equal
Characters + plus

- minus
* asterisk
I slash
(left parenthesis
) right parenthesis

'
comma
decimal point

$ currency symbol
I (CDC graphic t)

colon

bl 1k

The lines coded in a FORTRAN program are initial
lines, continuation lines, and comment lines.
Lines can al so be compiler directives. The column
usage for nonsequenced mode lines is shown in
figure 1-2.

A nonsequenced mode line consists of characters in
columns 1 through 72. The identification field in
columns 73 through 80 is not defined as part of the
line.

Initial Lines

Each statement contains an initial line. The
initial line of a statement is written in columns 7
through 72. Blanks can be used to improve read­
ability. The initial line of a statement can
contain a statement label in columns 1 through S.

Continuation Lines

Statements are coded in columns 7 through 72. If a
statement is longer than 66 characters, it can be
continued on as many as 19 continuation lines. A
character other than blank or zero in column 6
indicates a continuation line. Columns 1 through 5
must be blank.

The length of a statement cannot exceed 1320 char­
acters. The maximtun length includes one initial
line and 19 continuation lines, at 66 characters
per line, since the statement is contained in
columns 7 through 72.

Statement Labels

A statement label {any 1- to 5-digit positive non­
zero integer) can be written in columns 1 through 5
of the initial line of a statement. A statement
label uniquely identifies a statement so that it
can be referenced by other statements. Statements
that will not be referenced do not need labels.
Blanks and leading zeros are not significant.

1-2

Line:

1

Unlabeled Initial Line:

6 7
jstatement

L blank or zero

Labeled Initial Line:

6 7

72

72

liabell i{!_ta_t_e_m_e_n_t ______________________________ ~

L blank or zero

Continuation Line:

67

lcontinuation of statement

L any character except blank or zero

Comment Line:

1 2

clcomment

* lcomment

lau blanks

C$ Directive:

72

I

72

I

1 7 72
C$ l~d-ir-e-ct-iv-e-------------------------------1

Figure 1-2. Normal Column Usage

Labels need not occur in numerical order, but a
given label must not be defined more than once in
the same program unit. A label is known only in
the program unit containing it and cannot be
referenced from a different program unit. Any
statement can be labeled, but only FORMAT and
executable statement labels can be referenced by
other statements.

Comment Lines

One of the characters C or * in column 1 indicates
a comment line. Comments do not affect the program
and can be placed anywhere within the program.
Comments can appear between an initial line and a
continuation line, or between two continuation
lines. Connnents provide a method of placing pro­
gram documentation in the source program.

Any line with blanks in columns 1 through 72 is
also a conunent line. Comment lines following an
END statement are listed at the beginning of the
next program unit.

60481300 F

Additional characters that are not in the FORTRAN
character set can be included in comment lines.
Conment lines can include any characters listed in
appendix A for the character set being used.

Columns 73 Through 80

Any identification information can appear in
columns 73 through 80 and is not considered part of
the statement or the line. Characters in the iden­
tification field are ignored by the compiler but
are copied to the source program listing. If input
comes from other than cards, col urnns 73 through 90
can be used for identification information.

60481300 F 1-3

SYMBOLIC NAMES
Symbolic names are assigned by the user. They
consist of one to ~~V-~lt letters and digits (ANSI
only allows 6) beginning with a letter. Symbolic
names are used for the following:

Main program name

Common block name

Subroutine name

External function name

Block data subprogram name

Variable name

Array name

Symbolic constant name

Intrinsic function name

Statement function name

Dummy procedure name

Names that are FORTRAN keywords can be used as
user-assigned symbolic names without conflict. In
general, however, it is good programming practice
to avoid naming conflicts by assigning unique names
to program entities. Certain of these conflicts
are illegal and are diagnosed. See figure 1-5 for
an example of duplicated keyword names.

CONSTANTS
A constant is a fixed quantity. The seven types of
constants are integer, real, double precision,
complex, ~§(};f(i~tl,; logical, and character con­
stants. The PARAMETER statement described in
section 2 can be used to declare a symbolic con­
stant. Integer, real, double precision, complex,

constants are considered arithmetic
constants.

1-4

Example 1:

PROGRAM TEST
PRINT= 1.0
PRINT*, PRINT

The name PRINT is legally used as a variable
name and FORTRAN keyword.

Example 2:.

PROGRAM ALPHA
ALPHA= 1.0

The name ALPHA is illegally used as a program
un~t name and a variable name.

Figure 1-5. Duplicated Keyword Names Examples

INTEGER CONST ANT

An integer constant (figure 1-6 with examples in
figure 1-7) is a string of l to 18 decimal digits
written without a decimal point. It can be
positive, negative, or zero. If the integer is
positive, the plus sign can be omitted; if it is
negative, the minus sign must be present. An
integer constant must not contain a comma. The
range of an integer constant is -(259-1) to
259-1 (259-1=57646075230342 3487). For values I
outside this range, the high-order bi ts are lost
and no diagnostic is provided.

[±] d[d] ...

d Is a decimal digit.

Figure 1-6. Integer Constant

Examples of valid integer constants:

237
-74
+136772
-0024

Examples of invalid integer constants:

46. Decimal point not allowed

23A Letter not allowed

7,200 Comma not allowed

Figure 1-7. Integer Constant Examples

60481300 H

Integers used in multiplication, division, and
exponentiation, whether constant or variable,
should be in the range -(248-1) to 248-1
(248-1=281474976710655). The result of such
operations must also be in this range. For integer
addition and subtraction (where both operands are
integers), the full 60-bit word is used.

When an integer constant is used as a subscript,
the maximum value is 217-1 (217-1=131071). The
minimum value is -(217-1) except when LCM=G is
selected; then the range is -(220-8) through
220-8.

When an integer constant is used as an index in a
DO statement or implied DO, the maximum value is
217-2 (217-2=131070). The minimum. value is
-(217-2) except when DO=LONG is selected or a DO
(LONG=l) directive is in effect; then a DO index
can exceed 217-2.

DO and LCM are FORTRAN control statement param­
eters. They are described in section 11.

When values are converted (in an expression or
assignment statement) from real to integer or from
integer to real, the valid range is also from
-(248-1) to 248-1. For values outside this
range, the high order bits are lost and no diagnos­
tic is provided.

REAL CONST ANT

A real constant (figure 1-8 with examples in
figure 1-9) consists of a string of decimal digits
written with a decimal point, with an exponent, or
with both. Connnas are not allowed. The plus sign
can be omitted if the exponent is positive, but the
minus sign must be present if the exponent is
negative.

[±] coeff
[±] coeff E [±] exp
[±] n E [±) exp

coeff Is a coefficient in the form of a real
constant:

n.
n.n
.n

n Is an unsigned integer constant.

exp Is an unsigned integer exponent (base 10).

The range
1o+322; if
is printed.
digits, and

Figure 1-8. Real Constant

of a real constant is 10-293 to
this range is exceeded, a diagnostic
Precision is approximately 14 decimal
the constant is stored internally in

one computer word.

Optionally, a real constant can be followed by a
decimal exponent, written as the letter E and an
integer constant that indicates the power of ten by
which the number is to be multiplied. If the E is
present, the integer constant following the letter

60481300 F

Examples of valid real constants:

7.5
-3.22
+4000.
.5

Examples of invalid real constants:

33,500. Comma not allowed

2.5A Letter not allowed

Examples of valid real constants with exponents:

42.E1

.00028E+5

6.205E6

700.E-2

Value 42. X 101 = 420.0

Value .00028 X 105 = 28.0

Value 6.205 X 106 6205000.0

Value 700. X 10-2 7.0

Example of invalid real constant with exponent:

7.2E3.4 Exponent not an integer

Figure 1-9. Real Constants Examples

E must not be omitted. The plus sign can be
omitted if the exponent is positive, but the minus
sign must be present if the exponent is negative.

DOUBLE PRECISION CONST ANT

A double precision constant (figure 1-10 and
examples in figure 1-11) is written in the same way
as a real constant with exponent, except that the
exponent is prefixed by the letter D instead of E.
Double precision values are represented internally
by two computer words, giving additional preci­
sion. A double precision constant is accurate to
approximately 29 decimal digits. The plus sign can
be omitted if the exponent is positive, but the
minus sign must be present if the exponent is
negative.

[±] coeff D [±] exp
[±] n D [±] exp

coeff Is a coefficient in the form of a real
constant:

n.
n.n
.n

n Is an unsigned integer constant.

exp Is an unsigned integer exponent (base 10).

Figure 1-10. Double Precision Constant

1-5

Examples of val id double precision constants:

5.83402 Value 5.834 x 102 = 583.4

14.0-5 Value 14. x 10-5 = .00014

9.2003 Value 9.2 x 103 = 9200.0

312004 Value 3120. x 104 = 31200000.0

Examples of invalid double precision constants:

7.20 Exponent missing

D5 Exponent alone not allowed

2,001.302 Comma illegal

3.14159265 0 and exponent missing

Figure 1-11. Double Precision Constants
Examples

COMPLEX CONST ANT

Complex constants (figure 1-12 and examples in
figure 1-13) are written as a pair of real or
integer constants IB!i WmlatJ~- separated
by a conma and enclosed in parentheses.

The first constant represents the real part of the
complex number, and the second constant represents
the imaginary part. The parentheses are part of
the constant and must always appear. Either
constant can be preceded by a plus or minus sign.
Complex values are represented internally by two
consecutive computer words containing real values.

Real constants which form the complex constant can
range from l0-293 to lo+322. Division of
complex numbers might result in underflow or over­
flow even when this range is not exceeded.

LOGICAL CONST ANT

A logical constant (figure 1-14 and examples in
figure 1-15) takes the form of .TRUE. or .FALSE ••
The periods are part of the constant and must
appear.

1-6

(real,imag)

real Is a real or integer constant for the real
part.

imag Is a real or integer constant for the
imaginary part.

Figure 1-12. Complex Constant

Examples of valid complex constants:

Cl, 7.54) 1. + 7.54i i=V-1

(-2.1E1, 3.24) -21. + 3.24i

<4, 5) 4.0 + 5.0i

co., -1.) 0.0 - 1.0i

Examples of invalid complex constants:

(12. 71>-4 16.1) Comma missing and double
precision not allowed

4.7E + 2,1.942 Parentheses missing

Figure 1-13. Complex Constants Examples

.TRUE.

.FALSE.

. TRUE.

. FALSE.

Represents the logical value true .

Represents the logical value false .

Figure 1-14. Logical Constant

Examples of valid Logical constants:

• TRUE •
• FALSE.

Examples of invalid Logical constants:

.TRUE
• F •

Figure 1-15.

No terminating period
Abbreviation not recognized

Logical Constants Examples

60481300 F

I ai~ll.ri~h a~d • 5xteJided ··. tiolfefith
BoOlean. Cinstant

A Hollerith constant (figure 1-16} J:ias Qne of four
forms.

nHs
L"s"
R"s''
"s"

n

s

Is an unsigned nonzero integer constant in
the range l~n~10.

Is a string of 1 through 10 represented
characters.

Figure 1-16.. Hollerith Constant

For the nHs form, the n specifies the number of
characters in the string following the H. No more
than 10 characters can be specified in the string

I except when used as an actual argument to an
external subroutine or function; extra characters
are truncated. Blanks are significant, and char-
acters that are not in the FORTRAN character set
can be used.

The nHs form indicates left-justified with blank
fill. Blank fill means that any unassigned char­
acter positions in the computer word are set to
blank (display code 55 octal). For example,

2HAB Value 010255 ••• 55 octal

The L''s" form indicates left-justified with binary
zero fill. Binary zero fill means that any un­
assigned character positions are set to binary zero
(display code 00 octal). For example,

L''AB'' Value 010200 ••• 00 octal

The R"s" form indicates right-justified with binary
zero fill. For example,

R"AB" Value 00 ••• 000102 octal

The "s" form is equivalent to the nlt form except
the characters need not be counted. No more than
10 characters can be represented in the string

I except when used as an actual ~rgument to an
external subroutine or function. Any quote within
the string is represented by two COI\secutive. qllote
characters. Note that the string might lie 11
characters long if one character is a quote repre­
sented by two consecutive quotes. Blanks are
significant, and characters that are not in the
FORTRAN character set can be used. For example,

"AB" Value 010255 ••• 55 octal
"C""D" Value 03640455 ••• 55 octal

I
An extended Hollerith constant can have ariy of the
forms shown in figure 1-16 and may have a str iog
length greater than 10 characters. An extended
Hollerith constant can only be used as an actual
argument to an external procedure reference .•

60481300 H

Octal·• BQ01ean·•·•const<lnt

¥:· oe~~i·.(~o~~t.,11~· <.r~~~~ ~r-1?J~~~~\.~ ~~~~~g\~~
<tigi.ts .•. tq. j)e JQ;terPreted as an·.· 07~~. 1ct~1l~F' ;/ .~
illa!!Y ~s 49 octal· d.l.gits> cal)< .. ~~· 7~p7~~en~7~ ~y.···· ;a-
69~bit. c~p14tet l!l'olt4• (~ 9¥~¥ 4.ilit is ane o.f
th~ digi.ts .. ·~···· th.rou~~ 1;) ~~>. ,~7a1 number is
right-justUie<:I with btnat'Y zel'.:'o fn1.

Example:

(f'17" Value 00 ••• 0077 octal

0 Is a string of 1 through. 20 octal digits.

Figure 1-17. Octal Constant

Hexadecimal Boolean Constant

A hexadecimal constant (figure 1-18) allows a
string of digits to be interpreted as a hexadecimal
number. As many as 15 hexadecimal digits can be
represented in a 60-bit computer word. (A hexa­
decimal digit is one of the characters 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, A, B, C, D, E, or F.) The hexa­
decimal number is right-justified With binary zero
fill.

Example:

Z"lA" Value 00 ••• 0032 octal

Z''z''

Is a string of 1 through 15 hexadecimal digits.

figure 1-18. Hexadecimal Constant

CHARACTER CONST ANT

A character constant (figure 1-19 with examples in
figure 1-20) is a string of characters enclosed in
apostrophes. Within the character string, an
apostrophe is represented by two consecutive
apostrophes.

's'

Is a string of characters.

Figure 1-19. Character Constant

The minimum number of characters in a character
constant is one, and the maximt.UD number of char­
acters in a character constant is (215_1) or
32767. The length is the number of characters in
the string. Blanks are significant in a character
constant. Any characters in the operating system
character set can be used.

1-7

Examples of valid character constants:

'ABC'
'123'
'YEAR I Is I

Examples of invalid character constants:

'ABC Terminating apostrophe is
missing

'YEARS'S' Invalid number of apostrophes

Figure 1-20. Character Constants Examples

Character positions in a character constant are
numbered consecutively as 1, 2, 3, and so forth, up
to the length of the constant. The length of the
character constant is significant in all operations
in which the constant is used. The length must be
greater than zero.

VARIABLES
A variable represents a quantity with a value that
can be changed repeatedly during program execu­
t:i,on. Variables are identified by a symbolic name
of one to [B,IJ, letters or digits (ANSI only allows
six), beginning with a letter. A variable is
associated with a storage location. Whenever a
variable is used, it references the value currently
in that location. A variable must be defined
before being referenced for its value.

The types of variables are integer, real, double
prec1s1on, complex, igplf,ig~S logical, and char­
acter. Variables typed by default are integer if
the first letter is I, J, K, L, M, or N, and are
real if the first letter is any other letter.
Implicit and explicit typing of variables is
described in section 2.

INTEGER VARIABLE

An integer variable is a variable that is typed
explicitly, implicitly, or by default as integer.
An integer variable occupies one storage word. The
range restrictions for integer variables are the
same as for integer constants.

See section 4 for restrictions on integers used in
DO statements.

Example:

ITEMl
J
NSUM

N72
K2S04
JSUM

All variables are integer by default, as the
variable name begins with the letter I through
N.

REAL VARI ABLE

A real variable is a variable that is typed expli­
citly, implicitly, or by default as real. The

value range is 10-293 through io+322 with
approximately 14 significant digits of precision.
A real variable occupies one storage word.

Example:

AVAR
RESULT
BETA

SUM3
TOTAL2
xxxx.

All variables are type real, as the variable
names begin with letters other than the letters
I through N.

DOUBLE PRECISION VARIABLE

A double precision variable is a variable that is
typed explicitly or implicitly as double precision.
The value of a double precision variable can range
from io-293 to 1Q+322 with approximately 29
significant digits of precision. Double precision
variables occupy two consecutive storage words.
The first word contains the more significant part
of the number and the second contains the less
significant part.

Example:

IMPLICIT DOUBLE PRECISION (A)
OOUBLE PRECISION <MEGA, X, IOTA

The variables OMEGA, X, IOTA, and all variables
whose first letter is A are double precision.

COMPLEX VARIABLE

A complex variable is a variable that is typed
explicitly or implicitly as complex. A complex
variable occupies two storage words; each word
contains a real number. The first word represents
the real part of the number and the second repre­
sents the imaginary part.

Example:

C(}{PLEX ZETA, MU, LAMBDA

LOGICAL VARIABLE

A logical variable is a variable that is typed
explicitly or implicitly as logkal. A logical
variable occupies one storage word.

Example:

I.DGICAL L33, PRAVDA, VALUE

I 1-8 60481300 H

CHARACTER VARIABLE

A character variable is a variable that is typed
explicitly or implicitly as character. The length
of the character variable is specified when the
variable is typed as character.

Example:

CHARACTER NAM*l5, C3*3

ARRAYS
A FORTRAN array is a set of elements identified by
a single name. The name is composed of one to
seven letters and digits (ANSI only allows six) and
begins with a letter. Each array element is
referenced by the array name and a subscript.

The type of the array elements is determined by the
array name in the same manner as the type of a
variable is determined by the variable name. The
array name can be typed explicitly with a type
statement, imp1 ici.t ly with an IMPLICIT statement,
or by default typing.

The array name and its dimensions must be declared
in a DIMENSION, COMMON, or type statement. When an
array is declared, the declaration of array dimen­
sions takes the form shown in figure 1-21. Arrays
can have 1 to 7 dimensions.

array (d[.d] ...)

array

d

Is the symbolic name of the array.

Specifies the bounds of an array dimension
and takes the form:

[lower:] upper

lower

upper

Optionally specifies the lower
bound of the dimension. The
lower bound can be an integer
c>r Boo.l~an expression with a
positive, zero, or negative value.
If omitted, the lower bound is
assumed to be 1 .

Specifies the upper bound of the
dimension. The upper bound can
be an integer Qr (lqgle~n expres­
sion with a positive, zero, or
negative value. The upper bound
must be greater than or equal to
the lower bound. In the case of
an assumed size array, the upper
bound of the last dimension can
be specified as *.

Figure 1-21. Declaration of Array
Dimensions

The dimension bounds can be positive, negative, or
zero. If the lower bound is omitted, the lower
bound is assumed to be one. In this case, the
upper bound must be positive. The general rule is
that the upper bound must always be greater than or
equal to the lower bound. The size of each dimen­
sion is indicated by the distance between the lower
bound and upper bound. For example,

60481300 G

DIMENSION RX(0:5)

declares a I-dimensional array of six elements
such as that shown in figure I-22.

DIMENSION TABLE(4,3)

declares a 2-dimensional array of four rows and
three columns, for a total of twelve elements
such as that shown in figure 1-23.

INTEGER STOR(6,6,3)

declares a 3-dimensional array of six rows, six
columns and three planes, for a total of IOB
elements.

RowO
Row 1
Row2
Row3
Row4
Row5

10.0
55.0
11.2
72.6
91.9

7.1
Value of (4) is 91.9

Figure 1-22. 1-Dimensional Array Storage

Row 1
Row 2
Row 3
Row4

Column 1 Column 2 Column 3

44_f 10 72 20
3 11

91 76 f
105
200
30

714

Value of (2,3)
is 200

Value of (3,2) is 11

Figure 1-23. 2-Dimensional Array Storage

The span of an array dimension is given by
(upper-lower+l), where upper is the upper dimension
bound and lower is the lower di mens ion bound. An
array of type integer, li6olean.. real, or logical
occupies n words of storage, where n is the product
of the spans of all dimensions. An array of type
complex or double precision occupies 2*n words. An
array of type character occupies (n*len+offset+9)/10
words, where len is the length in characters of an
array element, and offset is the starting character
position (0 to 9) of the array in the first word of
the array storage. Character operations involve
character lengths, not word lengths. The length,
in words, of a character array can be determined by
placing the array in a common block and applying
the above formula, (n*len+offset+9) I IO. For a
character array in a common block, the value of
offset is MOD(totch, 10), where totch is the total
number of characters preceding the first element of
the array in the comm.on block. Note that in the
formula for the length of a character array in
words, all terms are integers and division is an
integer division (truncation).

An array in central memory must occupy less than
217 words. An array in extended memory can
occupy up to z20-a words if LCM=G is selected on
the FTNS control statement. Arrays are placed in
extended memory through the LEVEL statement. (See
section 2.)

lf a Boolean expressiqn is used .. for tQ.e lower c>r
up~~~> ~o~rid of .a d,~mension• .·~he. V(lWe fi>t J~~
expression is converted to integer; that J,~,. the

I-9

~.~~.ii ~~ .!I~ ~~Si~{~ i~ ~NW: (91~~~,H A dimension
bounds specif{cation must not include a function
reference or array element reference. Presence of
a variable makes the size of the array adjustable.
Presence of an asterisk as the upper bound of the
last dimension makes the array an assumed-size
array. An assumed-size array can only be used in a
subroutine or function, as described in section 6.

ARRAY STORAGE

The elements of an array have a specific storage
order, with elements of any array stored as a
linear sequence of storage words. The first ele­
ment of the array begins with the first storage
word or character storage position, and the last
element ends with the last storage word or char­
acter storage position.

The number of storage words reserved for an array
is determined by the type of the array and its
size. For real, integer, !Jij~lt~A:; and logical
arrays, the number of storage words in an array
equals the array size. For complex and double
precision arrays, the number of storage words
reserved is twice the array size. For character
arrays, the number of words is calculated from the
number of characters stored, at ten characters per
storage word. For example, an array defined as
CHARACTER*S X(8), that is, eight 5-character ele­
ments, would require storage for 40 characters, or
four storage words at offset zero.

Storage patterns for a 1-dimensional, 2-dimensional,
and 3-dimensional array are shown in figure 1-22,
figure 1-23, and figure 1-24, respectively. Arith­
metic values are shown for the array elements, but
an array can be any data type. Array elements are
stored in ascending locations by columns. The
first subscript value increases most rapidly, and
the last subscript value increases least rapidly.

ARRAY REFERENCES

Array references can be references to complete
arrays or to specific array elements. A reference
to a complete array is simply the array name. A
reference to a specific element involves the array

Plane 1

Column 1 Column 2 Column 3

Row 1 3I7I4 7 8 9

0 33 2

Row 2

Row3

name followed by a subscript specification. An
array element reference is also called a subscrip­
ted array name.

A reference to the complete array references all
elements of the array in the order in which they
are stored. For example,

DIMENSION XT(3)
DATA XT/1.,2.,3./
CALL CALC(XT)

uses the array reference XT in the DATA statement
and the CALL statement.

A reference to an array element references a speci­
fic element and takes the form shown in figure 1-25.

array (e [,e] . .)

array Is the symbolic name of the array.

e Is a subscript expression that is an integer,

t~~·~ ~~99,~ j~~i~'qp~ ~@~™~~~ g~ ·~~~'~
expression. Each subscript expression has a
value that is within the bounds of the cor­
responding dimension.

Figure 1-25. Array Element Reference

An array element reference must specify a value for
each dimension in the array. Array element refer­
ences are not legal unless a value is supplied for
each dimension. There can be up to seven dimen­
sions in an array element.

An array element reference specifies the name of
the array followed by a list of subscript expres­
sions enclosed in parentheses. Each subscript

~}~~'
sc,;~pt

be an ·~n.~e~~:.•. f~~~, ~?~~~~ ·rF~~~?
·;iw.~~··~~~···z~~~r~~~~~1'~?i~~l}··•·~~!s

eval:uated and cPnVEft':t·ed. ·~s.
Jle:¢~$sali A subscript expression can
contain function references and array element
references; however, evaluation of a function
reference must not alter the value of any other
subscript expression in the array element reference.

Plane 2

Column 2

Value of (1,3,2) is 7

Value of (3,2, 1) is 33
Row2

Row3

22_f 51_f 7
0 98 6

3 207 99

Plane 3

Column 2 Column 3

Value of (2, 1,3) is 77

Figure 1-24. 3-Dimensional Array Storage

1-10 60481300 G

Each value must not be
less than the upper
bound of the dimension. If the array is an assumed­
size array with the upper bound of the last dimen­
sion specified as asterisk, the value of the
subscript expression must not exceed the actual
size of the dimension. The results are unpredict­
able if an array element reference exceeds the size
of an array. For each array element reference,
evaluation of the subscript expressions yields a
value for each dimension and a position relative to
the beginning of the complete array.

The position of an array element is calculated as
shown in table 1-2. The position indicates the
storage location of an array element.

See figure 1-26 for array reference examples.

TABLE 1-2. ARRAY ELEMENT POSITION

Dimensions Position of Array Element

2

3

7

j;
ki
'1i

si

Lower

1 + (s1-j1)

l + (s1-j1)
+ (s2-j2)*n1

l + (s1-j1)
+ (s 2- j 2) * n 1
+ (s3-j3)*n2*n1

1 + 5 1-j 1)

bound

+ > s 2- j 2) * n 1
+ s3-j3)*n2*n1
+
+
+
+

5 4-j4)*n3*n2*n1
s5-j5)*n4*n3*n2*n1
5 6-j6)*n5*n4*n3*n2*n1
5 7-j7)*n6*n5*n4*n3*n2*n1

of dimension i.
Upper bound of dimension i.
Size of dimension i. If the lower
bound is one, ni ='< i. Otherwise,
ni=(ki-ji+l).
Value of the subscript expression
specified for dimension i.

CHARACTER SUBSTRINGS
When a character variable or character entity is
declared, the entire character string can be
defined and referenced. Specific parts of the
character string can also be defined or referenced
with character substring references. A character
entity must be declared with the CHARACTER state­
ment described in section 2. The declaration of a
character entity specifies the length in characters.

SUBSTRING REFERENCES

If the name of a character entity is used in a
reference, the value is the current value of the
entire string. A reference to part of a string is
written as a character substring (figure 1-27 and
example in figure 1-28).

60481300 F

Example 1:

INTEGER DZC12)

DZC6)= 79

The array element reference DZ(6) refers to
the element at position 6 in the array: that
is, to (1 + (6-1)) •

Example 2:

COMMON /CHAR/ CQ
CHARACTER*S CQC6,4)

CQ C6,3) 'RUN'

The array element reference CQ(6,3) refers
to the element at position 18: that is, to
(1+ (6-1) + (3-1) *6). The character stor­
age position is 86: that is, 1+Celement
position -1)*character Length. Character
position 86 indicates that storage for the
element begins at the sixth character posi­
tion in the ninth element of the array.
(The COMMON declaration causes CQ to begin
on a word boundary; in general, the compiler
does not necessarily align character vari­
ables on word boundaries.)

Figure 1-26. Examples of References to
Array Elements

char ([first]: [last] i

char

first

Is the name of a character variable or array
and can be an array element reference.

Optionally specifies an integer, Mt;;Miii
pr~i~~P:u) :G9m~p*'; 9it f3P§~Mg, expression
for the position 'of the first character of the
substring. If first is omitted, the value is
one.

last Optionally specifies an integer, r~~l,~,rq~qlfHe.
pr¢Qi$i()g,¢(}.Jilpt~~;>gt~pp;lla~ ex press ion
for the position of the last character in the
substring. If last is omitted, the value is
the length of the string.

Figure 1-27. Character Substring Reference

The specification of the first character in the

~~bstring .. is au, integer, . J~~~T ·~9;~1'1~ \p:t

c~,.f~ex, a,r • .. ·• ~oq • ~~f~1~ff.>• t~.~t is
andc co11vetted as t;Y to >~.Pt~g~t'; The expres-
sion can contain array element references and
function references, but evaluation of a function
reference must not alter the value of the other
expression in the substring reference. If the
specification of first is omitted, the value is 1
and all characters from 1 to the value of the
specification of last are included in the substring.

1-11

Establish a character entity as follows:

CHARACTER*6 S1,S2
DATA S1/'STRING'/

Example of string reference:

S2 = S1

The reference to S1 is a reference to the
full string 'STRING'.

Examples of substring references:

S1 C1 :3) Value 'STR'
S1 (3:4) Value 'RI'
S1 C4: > Value I ING'
S1 C :4) Value 'STRI'
S1 (:) Value 'STRING'

Note that the substring reference S1C:) has
the same effect as the reference 51, since
all characters in the string are referenced.

Figure 1-28. Examples of Character
Substring References

The specification of last in the substring is an
expression subject to the same rules as the speci­
fication of first. If last is omitted, the value
is the length of the string and all characters from
the specified first position to the end of the
string are included in the substring. For a string
length len, the value of first must be at least I
and must not exceed last; the value of last must
not exceed the value of len.

SUBSTRINGS AND ARRAYS

If a substring reference is used to select a
substring from an array element of a character
array, the combined reference includes specifica­
tion of the array element followed by specification
of the substring. See figure 1-29 for example.

1-12

CHARACTER*8
CHARACTER*4

ZSCS)
RSEN

ZSC4)(5:6)='FG'
RSEN=ZS(1)(:4)

The first reference refers to characters
5 and 6 in element 4 of array ZS. The
second reference refers to the first
four characters of the first element of
array ZS.

Figure 1-29. Example of Substring and
Array Referencas

ST A TEMENT ORDER

The order of various statements within the program
unit is shown in figure 1-30. Within each group,
statements can be ordered as necessary, but the
groups must be ordered as shown. Statements that
can appear anywhere within more than one group are
shown on the right in boxes that extend vertically
across more than one group.

A PROGRAM statement can appear only as the first
statement in a main program. The first statement
of a subroutine, function, or block data subroutine
is respectively a SUBROUTINE statement, FUNCTION
statement, or BLOCK DATA statement. The END state­
ment is the last statement of each of the preceding
program units.

.. ~~} . ~!l ?v~rf'Y' . ·.·· t~~
the .. PROGRAM state-
t~ •statemertts.

Comments can appear anywhere within the program
unit. Note that any comment following the END
statement is considered part of the next program
unit.

FORMAT statements can appear anywhere in the
program t.nit.

ENTRY statements can appear anywhere in the program
unit, subject to two restrictions. An ENTRY state­
ment cannot appear within the range of a DO loop
(between the DO statement and the terminating
statement) or within a block IF construction
(between the IF statement and the ENDIF statement).
The ENTRY statement cannot be used in the main
program unit, where an alternate entry point would
have no meaning.

Specification statements in general precede the
executable statements in the program unit. The
nonexecutable specif lcation statements describe
characteristics of quantities known in the program
unit, and the executable statements describe the
actions to be taken.

All specification statements must precede all DATA
statements, ~~~§1; 11;~~,,-~~·~~·~i statement function
definitions, and, executable statements. Within the
specification statements, all IMPLICIT statements
must precede all other specification statements
except PARAMETER statements. PARAMETER statements
can appear anywhere among the specification state­
ments, but each PARAMETER statement must precede
any references to the symbolic constant defined by
the PARAMETER statement.

All statement function definitions must precede all
executable statements in the program unit. State­
ment function definitions cannot be used in block
data subroutines.

60481300 F

PROGRAMt, SUBROUTINE, FUNCTION, or BLOCK DATA

IMPLICIT

INTEGER
REAL
DOUBLE PRECISION
COMPLEX

PARAMETER
(must
precede
first
reference)

FORMATtt ENrnvttt
(except within
range of block IF
or DO Loop)

LOGICAL
CHARACTER
BOOLEAN
DIMENSION
EQUIVALENCE
COMMON
LEVEL
SAVE
EXTERNAL
INTRINSIC

(Type specification
statements)

(Specification statements)

Statement function definitionit

Assignment
DO
CONTINUE
IF
ELSE
ELSE IF
END IF
GOTO
ASSIGN
CALL
RETURN
PAUSE
STOP
OPEN
CLOSE
INQUIRE
READ
WRITE
PRINT
PUNCH
BUFFER IN
BUFFER OUT
ENCODE
DECODE
REWIND
BACKSPACE
END FILE

END

(Executable statements)tt

(Executable I/O
statements)tt

DATA

t Can be preceded by an OVERLAY statement ..

ttcannot be used in a BLOCK DATA subprogram.

tttcannot be used in a main program or BLOCK DATA subprogram.

Figure 1-30.

DATA statements can be used anywhere among state­
ment function definitions and executable statements.

NAMELIST statements can appear anywher~ ~9~~
statement ftinction definitions and . executflkle
statements. Note that each NAMELI~T .• st4~~lil~tl.t
defining a NAMELIST gro\lP must app~ar l)Tf()t:'e th.~
first reference to the NAMELIS1' group• . A:J..!'P .not~
that NAMELIST statements cannot be used in block
data subroutines.

60481300 F

Statement Order

Executable state~~nts must follow all specification
statements and any statement function definitions.
Executable statements such as assignment, flow
control, or 1/0 statements can appear in whatever
order required in the program llllit. Executable
statements cannot be used in block data subroutines.

The END statement must be the last statement of
each program unit.

1-13

SPECIFICATION STATEMENTS 2

Specification statements are nonexecutable. They
are used to specify the characteristics of symbolic
names used in a program. Specification stateme'}yS
must appear before all DATA statements, NAMELIST
statements, statement function definitions, and
executable statements in the program unit; other­
wise, a fatal diagnostic is issued.

The specification statements are:

COMMON
DIMENSION
EQUIVALENCE
EXTERNAL
IMPLICIT
ltgJ,lJNSIC
LEVEL
PARAMETER
SAVE
type q~~~R, REAL, DOUBLE PRECISION, COMPLEX,

&00Ll¥8'J LOGICAL, CHARACTER)

These statements are discussed in this section.

DATA statements are not specification statements,
but they also are described in this section.
Statements are presented in alphabetical order.

COMMON ST A TEMENT
The COMMON statement (figure 2-1 and example in
figure 2-2) provides a means of associating
entities in different program units. The use of
common blocks enables different program units to
define and reference the same data without using
arguments, and to share storage units. Within one
program unit, an entity in a common block is known
by a specific name. Within another program unit,
the same data can be known by a different symbolic
name that is valid only within the scope of that
program unit.

A single variable name or
only once in any COMMON
program unit. Function or
included in common blocks.
of dummy arguments cannot
blocks.

array name can appear
statement within the
entry names cannot be
In a subprogram, names
be included in common

If the common block name is omitted, the common
block is blank common. When the first specifica­
tion in the COMMON statement is for blank common,
the slashes can also be omitted. If a common block
name is specified, the common block is a named
common block. Within a program unit, declarations
of common blocks are cumulative. The nlist follow­
ing each successive appearance of the common block
name (or no name for blank common) adds more
entities to the common block and is treated as a
continuation of the specification. Variables and
arrays are stored in the order in which they appear
in the specification.

60481300 G

COMMON [/[cb]/]nlist[[,]/[cb]/nlist] ...

cb Is a common block name identifying a
named common block containing the
entities in nlist. If the name is omitted,
the nlist entities are in blank common.

nlist

var

array

Is a list of entities to be included in the
common block. The entities are separated
by commas and can take the form:

var

array

array (d [,d] ...)

Is a variable.

Is an array name.

d Specifies the bounds of an array dimension.

Figure 2-1. COMMON Statement

If any character variable or character array is
included in a common block, all entities in the
common block must be type character. Note that
since a common block name has the scope of the
executable program, the common block name can be
used within a program unit as a variable or array
name, without conflict.

The maximum number of common blocks in an execut­
able program, including blank common and all named
common, is 500. The maximum size of each common
block is 131071 storage words (for character data,
1310710 characters). The use of ECS/LCM/UEM
residence and LCM=G for any common block increases
the maximum possible size to 1048568 storage words
(for character data, 10485680 characters).

The actual size of any common block is the number
of storage words required for the entities in the
common block, plus any extensions associated with
the common block by EQUIVALENCE statements. Exten­
sions can only be made by adding storage words at
the end of the common block. See the description
of the EQUIVALENCE statement in this section. A
blank common block can be treated as having a
different size in separate program units. The
length of a common block, other than blank common,
must not be increased by a subprogram using the
block unless the subprogram is loaded first~ If a
program unit does not use all locations reserved in
a common block, unused variables can be inserted in
the COMMON declaration to ensure proper correspond­
ence of common areas. A common block must have the
s~~ level in all routines decla):'ing it (see LEVEL
statem.ent).

2-1

Example 1:

COMMON A,B
COfll40N /XT/C,D,E

SUBROUTINE PCQ,R)
COfllilON /XT IF ,G,H

FUNCTION TCU)
CO ... ON Y ,z

Entities C, D, and E in the main program are in the common block named XT. The same storage words are
known by the names F, G, and H in subroutine P. Entities A and B in the main program are in blank com­
mon. The same storage words are known by the names Y and Z in function T.

Example 2:

COMMON JCOUNT

JCOUNT=6

FUNCTION AB CA)
COf'lllON /C/STX(4)
l>AfA. ST~/1.~;·2 • ., 2. ~·l;;J

Since an entity in blank common cannot be initially defined with a DATA statement, an assigment state­
ment must be used to define the ~at.~ .. : ~f .. JCOUNT. ~ry ~.4f;lf~iqo ~"i ~ D~TA $t:•t:"8~ht: (:~ii li>J! (t$ep to d~fine
jqjti~t y~tues fgr th.e. el emenfs pf. c,,cr~y·sTi tn 'the <;;PIJIPQf'J b~c;ck: nal'(t~ft c~ Note that JCOUNT is not com­
mon to function AB.

Example 3:

CHARACTER*15 D,E
COMMON /CVAL/D,E
DATA D,E/'TEST','PROD'/

Common block named CVAL contains character variables. Variables D and E are initially defined in a DATA
statement.

Example 4:

COMMON /SUM/A,8(20)

SUBROUTINE GR
COMPLEX FRC10)
COMMON /SUM/X,FR

Common block SUM in the main program is declared to contain the variable A and the array B. In the
subroutine GR, the same storage words are associated with X and the array FR. Even if X is not used in
the subroutine, X holds the place so that array FR matches the placement of array B. Note also that
array rR is complex. Elements 8(1) and 8(2) are known in GR as FRC1); 8(3) and 8(4) are FRC2>; and so
forth. Each specification of common block SUM accounts for 21 storage words.

Figure 2-2. Examples of COMMON Statement

2-2 60481300 F

Entities in named common blocks can be initially
defined by a DATA statement in a block data subpro­
gram, or by a l>A.Tfi state•en'.t i~> 3J1Y pr<>~t'~rn u,ni.t,.
Entities in blank common cannot be initially
defined. After an entity in a named common block
has been initially defined, the value is available
to any subprogram in which the named common block
appears.

Entities in blank common remain defined at all
times and do not become undefined on execution of a
return from a subprogram. Entities in named common
can become undefined on execution of a return from
a subprogram, unless the SAVE statement is used.
See the description of the SAVE statement in this
section.

DATA STATEMENT
The DATA statement (figure 2-3 and example in
figure 2-4) is used to provide initial values for
variables, arrays, array elements, and substrings.
The DATA statement is nonexecutable and can appear
anywhere after the specification statements in a
program unit. Usually, DATA statements are placed
after the specification statements but before the
statement function definitions and executable
statements.

Entities that are initially defined by DATA state­
ment are defined when the program begins execution.
Entities that are not initially defined, and not
associated with an initially defined entity, are
undefined at the beginning of execution of the
program.

A variable, array element, or substring must not be
initially defined more than once in the program.
If two entities are associated, only one can be
initially defined by a DATA statement.

Names of dummy arguments, functions, and entities
in blank common (including any entities associated
with an entity in blank common) cannot be initially
defined. Entities in a named common block can be
initially defined within a block data subprogram,
or within arty program U:nit in which the tiitliled
common block appears.

Within the DATA statement, each list nlist must
have the same number of items as the corresponding
list clist. A one-to-one correspondence exists
between the items specified by nlist and the
constants specified by clist. The first item of
nlist corresponds to the first constant of clist,
the second item to the second constant, and so
forth.

If an unsubscripted array name appears as an item
in nlist, a constant in clist must be specified for
each element of the array. The values of the
constants are assigned according to the storage
order of the array.

For arithmetic data types, the constant is con­
verted to the type of the associated nlist item if
the types differ. For all other types, the data
type of each constant in cl isl must be compatible
with the data type of the nl ist item. The corre­
spondence is shown in table 2-1.

60481300 G

DATA nlist/clist/ [[,Jnlist/clist/] •••

nl i st

var

array

element

Is a list of names to be initially
defined. Each name in the List can
take the form:

var

array

element

sub st ring

dolist

Is a variable name.

Is an array name.

Is an array element name (that is,
subscripted array name).

substring Is a substring of a character vari­
able or array element.

dolist Is an implied-DO list of the form:

Cdlist, i = init, term [,incr])

dlist Is a List of array element names
and implied-DO Lists. Subscript
expressions must consist of integer
constants and active control vari­
ables from DO list.

Is an integer variable called the
implied-DO variable.

init Is an integer constant, symbolic
constant, or expression specifying
the initial value, as for DO loops.

term Is an integer constant, symbolic
constant, or expression specifying
the terminal value, as for DO loops.

incr Is an integer constant, symbolic
constant, or expression specifying
the increment, as for DO loops.

clist Is a List of constants or symbolic
constants specifying the initial
values. Each item in the list can
take the form:

c

r*c

r(et)c .•• J>
r< (C:[,cJ< .. ~)})

c Is a constant or symbolic constant.

r Is a repeat count that is an un­
signed nonzero integer constant or
the symbolic name of such a con­
stant. The repeat count can repeat
the value of a single constant, or
c~n ·repeat th~ values of a list of
constants enclosed in parentheses.
To specify repeti tian of a complex
constant, anot~er set of parenthe­
sis must be used.

Figure 2-3. DATA Statement

2-3

Example 1:

INTEGER KC6)
DATA JR/4/
DATA AT/5.0/,AQ/7.5/
DATA NRX,SRX/17.0,5.2/
DATA K/1,2,3,3,2,1/

Variables JR, AT, AQ, and SRX are initially
defined with the values 4, 5.0, 7.5, and
5.2, respectively. Variable NRX is initi­
ally defined with the value 17, after type
conversion of the real 17.0 to the integer
17. Array K with 6 elements is initially
defined with a value for each array ele­
ment.

Example 2:

REAL RC10,10>
DATA R/50•5.0,50•75.0/

Array R is initially defined with the first
50 elements set to the value 5.0 and the re­
maining 50 elements set to the value 75.0.

Example 3:

DIMENSION TQ(2)
EQUIVALENCE CRX,TQC2))
DATA TQ C1 >132.0/
DATA RX/47.5/

The first element of array TQ is initially
defined with the value 32.0. Variable RX
and the second element of array TQ are in­
itial Ly defined as 47.5, since TQC2) is
equivalenced to variable RX.

Figure 2-4. Examples of DATA Statement

Each subscript expression used in an array element
name in nlist must be an integer constant expres­
sion, except that implied-DO variables can be used
if the array element name is in dlist. Each
substring expression used for an item in nlist must
be an integer constant expression.

IMPLIED DO LIST USE IN DAT A ST A TEMENT

An implied DO list can be used as an item in nlist.
See figure 2-5 for implied DO list examples.

2-4

TABLE 2-1. CORRESPONDENCE OF DATA TYPES
IN DATA STATEMENTS

Data Type of
nlist Item

Integer, real, double
precision, complex,
J;jr lotl~ ~~ti

Logical

Character

Example 1:

REAL X (5,5)

Data Type of
Corresponding

clist Constant

Integer, real, double
precision, complex,
~~~~g~~~~K. The value 
of the nlist item is 
the same as would 
result from an assign­
ment statement of the 
form nlist-item=clist­
constant. 

Logical 

Character 

DATA CCXCJ,I),I=1,J),J=1,5)/15•1.0/ 

Elements of array X are initially defined 
with the DATA statement. Elements in the 
Lower diagonal part of the matrix are set 
to the value 1.0. The elements initialized 
are: 

C1, 1) 
C2,1> 
(3,1) 
C4,1> 
(5,1) 

Example 2: 

C2,2> 
(3,2) 
C4,2> 
C5,2) 

C3,3> 
<4,3) 
(5,3) 

PARAMETER CPI=3.14159) 
REAL Y C5,5) 

(4,4) 
C5,4> (5,5) 

DATA CCYCJ+1,I>,J=I+1,4>,I=1,3)/6•PI/ 

Only the following elements of array Y are 
initialized to 3.14159: 

C3,1) 
(4,1) 
C5,1) 

(4,2) 
C5,2> (5,3) 

Figure 2-5. Examples of Implied DO List 
With DATA Statement 

An iteration count and the values of the implied DO 
variable are established from init, term, and the 
optional lncr just as for DO loops, except that the 
iteration count must be positive. When the implied 
DO list appears in a DATA statement, the list items 
in dl ist are specified once for each iteration of 
the implied DO list, with appropriate substitution 
of values for each occurrence of the implied DO 
variable i. 

60481300 F 



The appearance of a name as an implied DO variable 
in a DATA statement does not affect the value or 
definition status of a variable with the same name 
in the program unit. An implied DO variable has 
the scope of the implied DO list. 

Each subscript expression used in dlist must be an 
integer constant expression, except that any 
expression can contain an implied DO variable if 
the subscript expression is within the correspond­
ing implied DO list. 

CHARACTER DAT A INITIALIZATION 

For initialization by DATA statement, 
item in nlist must correspond to 
constant in clist. The initial value 
according to the following rules: 

a character 
a character 
is assigned 

If the length of the character item in nlist is 
greater than the length of the corresponding 
character constant, the additional character 
positions in the item are initially defined as 
blanks. 

If the length of the character item in nlist is 
less than the length of the corresponding 
character constant, the additional characters 
in the constant are ignored. 

Note that initial definition of a character item 
causes definition of all character positions. Each 
character constant initially defines exactly one 
character variable, array element, or substring. 

See figure 2-6 for a character data initialization 
example. 

CHARACTER STR1*6,STR2*3 
DATA STR1/'ABCDE'/ 
DATA STR2/'FGHJK'/ 

The character variables STR1 and STR2 are in­
itially defined. Variable STR1 is set to 
'ABCDE.6 ', with the sixth character position 
defined as blank. Variable STR2 is set to 
'FGH', with the fourth and fifth characters 
of the constant ignored. 

Figure 2-6. Examples of Character Data 
Initialization With DATA Statement 

DIMENSION ST A TEMENT 

The DIMENSION statement (figure 2-7 and example in 
figure 2-8) defines symbolic names as array names 

I and specifies the bounds of each array. A maximum 
of seven dimensions can be specified for an array. 
Dummy argument arrays specified within a procedure 
subprogram can have adjustable dimension speci­
fications. A further explanation of adjustable 
dimension specifications appears in section 6. 

Within the same program unit, only one definition 
of an array is permitted. Note that dimension 
information can be specified in COMMON statements 
and type statements. The dimension information 
defines the array dimensions and the bounds for 
each dimension. 

60481300 H 

DIMENSION array(d[,dJ ••• > [,arrayCd(,dJ ••• >J ••• 

array Is an array name. 

d Specifies the bounds of a dimension 
in one of the forms: 

upper 

lower:upper 

upper Is the upper bound of the dimension 
and is a dimension bound expression 
in which all constants, symbolic 
constants, and variables are type 
integer or Boolean. A maximum of 
seven dimensions can be specified 
for an array. 

lower Is the lower bound of the dimension 
and is a dimension bound expression 
in which all constants, symbolic 
constants, and variables are of 
type integer o:r Boolean. If only 
the upper bound is specified, the 
value of the lower bound is one. 

The exact form of a dimension bound expression 
is shown in section 1 under Arrays. 

Figure 2-7. DIMENSION Statement 

Example 1: 

REAL NIL 
DIMENSION NILC6,2,2) 

These statements are equivalent to: 

REAL NIL C6,2,2> 

Example 2: 

COMPLEX BETA 
DIMENSION BETAC2,3) 

Array BETA contains 6 complex elements. 

E>Cample 3: 

CHARACTER*8 XR 
DIMENSION XRC0:4) 

Array XR contains 5 character elements, 
with each element having a length of 8 
characters. A reference to the third and 
fourth characters of the second element 
would be XRC1><3:4). 

Example 4: 

PARAMETER (N =100) 
DIMENSION ARR(1:N*3,0:5) 

Array ARR is a two-dimensional array that 
contains 1800 elements. The value of N 
in the dimension bound expression for the 
first dimension is defined in the 
PARAMETER statement. 

Figure 2-8. E>Camples of DIMENSION Statement 

2-5 

I 



The description of arrays is in section 1. The 
description covers the properties of arrays, the 
storage of arrays, and array references. 

EQUIVALENCE ST A TEMENT 
The EQUIVALENCE statement (figure 2-9 and example 
in figure 2-10) is used to specify the sharing of 
storage by two or more entities in a program unit. 
Equivalencing causes association of the entities 
that share the storage. Equivalencing associates 
entities within a program unit, and common blocks 
associate entitles across program units. Equiva­
lencing and common can interact. 

EQUIVALENCE (nlist) [,(nlist)] ... 

nlist Is a list of variable names, array names. 
array element names, or character substring 
names. The names are separated by commas. 

Figure 2-9. EQUIVALENCE Statement 

If the equivalenced entities are of different data 
types, equivalencing does not cause type conver­
sion. If a variable and an array are equivalenced, 
the variable does not acquire array properties and 
the array does not lose the properties of an 
array. An entity of type character can be equiva­
lenced only to another entity of type character. 
The lengths of the equivalenced character entities 
can be different. 

Each nlist specification must contain at least two 
names of entities to be equivalenced. In a sub­
program, names of dummy arguments cannot appear in 
the list. Function and entry names cannot be 
included in the list. Equivalencing specifies that 
all entities in the list share the same first 
storage word. For character entities, equivalenc­
ing specifies that all entities in the list share 
the same first character storage position. Equiva­
lencing can indirectly cause the association of 
other entitles: for instance, when an EQUIVALENCE 
statement interacts with a COMMON statement. 

If an array element is included in nlist, the 
number of subscript expressions must match the 
number of dimensions declared for the array name. 
If an array name appears in the list, the effect is 
as if the first element of the array had been 
included in the list. Any subscript expression 
must be an integer ~'E'iil~R+f~~g. constant expression. 
For character entities · substring expression 
must be an integer constant expression. 

Variables of different data types can be equiva­
lenced, except for character data. 

Equivalencing must not reference array elements in 
such a way that the storage sequence ·of the array 
would be altered. The same storage unit cannot be 
specified as occurring more than once in the 
storage sequence. For example, 

REAL FA(3) 
EQUIVALENCE (FA(l), B), (FA(3), B) 

would be il 1 2gal. 

2-6 

Ex amp le 1: 

DIMENSION Y(4),B(3,2) 
EQUIVALENCE CYC1>,BC3,1>> 
EQUIVALENCE (X,YC2)) 

Storage is shared so that 6 storage words 
are needed for Y, B, and X. The associ­
ations are: 

y (1) 

y (2) 

YC3> 
YC4> 

Example 2: 

8(1, 1) 
8(2,1) 
8(3,1) 
8(1,2> 
8(2,2) 
8(3,2) 

x 

CHARACTER A•5,C•3,DC2)•2 
EQUIVALENCE CA,DC1>>,CC,DC2)) 

Storage is shared so that 5 character 
storage positions are needed for A, c, and 
D. The associations are: 

AC1:1) 
AC2:2> 
AC3:3> 
AC4:4) 
AC5:5) 

Example 3: 

REAL TR(4) 

D (1 )(1 :1> 
0(1)(2:2) 
D (2)(1: 1> 
0(2)(2:2) 

COMPLEX TS C2> 
EQUIVALENCE CTR,TS) 

c (1: 1) 
c <2: 2> 
CC3:3> 

Different data types are associated with 
the equivalencing of the first storage 
word of each entity: 

TR (1) 

TRC2) 
TR (3) 
TRC4) 

TS C1 >-real part 
TSC1)-imaginary part 
TSC2>-real part 
TSC2>-imaginary part 

Figure 2-10. Examples of 
EQUIVALENCE Statement 

Also, the normal storage sequence of array elements 
cannot be interrupted to make consecutive storage 
words no longer consecutive. For example, 

REAL BZ(7), 
EQUIVALENCE 

CZ(S) 
(BZ, CZ), 

would also be illegal. 

(BZ(3), CZ(4)) 

The interaction of COMMON and EQUIVALENCE state­
ments is restricted in two ways: 

An EQUIVALENCE statement must not attempt the 
association of two different comm.on blocks in 
the same program unit. For example, 

COMMON /LT/ A, T 
COMMON /LX/ S, R 
EQUIVALENCE (T, S) 

is not legal. 

60481300 G 



An EQUIVALENCE statement must not cause a 
connnon block to be extended by adding storage 
words before the first storage word of the 
connnon block. On the other hand, a common 
block can be extended through equivalencing if 
storage words are added at the end of the 
connnon block. For example, 

COMMON /X/ A 
REAL B(S) 
EQUIVALENCE (A, B(4)) 

is not legal, whereas: 

COMMON /X/ A 
REAL B(S) 
EQUIVALENCE (A, B(l)) 

can be used to extend the common block. 

EXTERNAL STATEMENT 
The EXTERNAL statement (figure 2-11 and example in 
figure 2-12) is used to identify a function name as 
representing an external procedure and to permit 
such a name to be used as an actual argument. The 
EXTERNAL statement specifies that a function name 
refers to a user-written function rather than to an 
intrinsic function. 

EXTERNAL proc [.proc] ... 

proc Is the name of an external procedure, 
dummy procedure, or block data subprogram. 

Figure 2-11. EXTERNAL Statement 

Only one appearance of a symbolic name in all of 
the EXTERNAL statements of a program unit is 
permitted. If an external procedure name is an 
actual argument in a program unit, it must appear 
in an EXTERNAL statement in the program unit. A 
statement function name must not appear in an 
EXTERNAL statement. 

If an intrinsic function name appears in an EXTERNAL 
statement in a program unit, the name becomes the 
name of some external procedure. The intrinsic 
function with the same name cannot be referenced in 
the program unit. 

IMPLICIT ST A TEMENT 
The IMPLICIT statement (figure 2-13 and example in 
figure 2-14) is used to change or confirm the 
default typing that occurs according to the first 
letters of the names. 

The statement specifies the type of variables, 
arrays, symbolic constants, and functions beginning 
with the letters ac. The IMPLICIT statements in a 
program unit must precede all other specification 
statements except PARAMETER statements. An IMPLICIT 
statement in a function or subroutine subprogram 
affects the type associated with dummy arguments 
and the function name, as well as other variables 
in the subprogram. Explicit typing of a variable 
name or array element in a type statement or 
FUNCTION statement overrides an IMPLICIT speci­
fication. 

60481300 G 

Example 1: 

SUBROUTINE ARGR 
EXTERNAL SQRT 

Y= SQRT(X) 

FUNCTION SQRTCXVAL) 

Since the name SQRT is declared external, 
the function reference SQRTCX> references 
the user-written function SQRT rather than 
the intrinsic function SQRT. 

Example 2: 

SUBROUTINE CHECK 
EXTERNAL LOW,HIGH 

CALL AR CLOW, VAL) 

CALL ARCHIGH,VAL) 

SUBROUTINE ARCFUNC,VAL) 
VAL= FUNC (VAL) 

REAL FUNCTION LOW(X) 

REAL FUNCTION HIGH(X) 

Names LOW and HIGH are declared as exter­
nal. In the first call to subroutine AR, 
LOW is passed as an actual argument and 
the function reference FUNCCVAL) is equiv­
alent to LOWCVAL). In the second call to 
subroutine AR, the function reference 
FUNCCVAL) is equivalent to HIGHCVAL). 

Figure 2-12. Examples of EXTERNAL Statement 

IMPLICIT type(ac [.ac] ... ) [.type(ac[.ac] ... ) ] ... 

type Is INTEGER, REAL, DOUBLE PRECISION, 
COMPLEX, BOOLEAN. LOGICAL, CHAR­
ACTER. or CHARACTER [*len]. 

ac Is a single letter, or range of letters represented 
by the first and last letter separated by a hyphen, 
indicating which variables are implicitly typed. 

len Specifies the length and can be an unsigned 
nonzero integer constant; or an integer con­
stant expression, enclosed in parentheses, with 
a positive value. 

Figure 2-13. IMPLICIT Statement 

2-7 



Example 1: 

IMPLICIT CHARACTER•20 CM,X-Z) 

Names beginning with Letter M are typed as 
character rather than integer; names be­
ginning with X, Y, or Z are character 
rather than real. Default typing is effec­
tive in all other cases. 

Example 2: 

IMPLICIT LOGICAL CL> 
INTEGER L,LX, TT 

Variable L is integer, rather than Logical, 
because it is explicitly typed. LX is in­
teger. The name TT is integer, because an 
explicit type overrides the default typing. 

Figure 2-14. Examples of Typing with 
IMPLICIT Statement 

The specified single letters or ranges of letters 
specify the entities to be typed. A range of 
letters has the same effect as writing a list of 
the single letters within the range. The same 
letter can appear as a single letter, or be within 
a range of letters, only once in all IMPLICIT 
statements in a program unit. 

The length can be specified implicitly for entities 
of type character. If length is not specified, the 
length is one. The length can be specified as an 
unsigned nonzero integer constant, or an integer 
constant expression, enclosed in parentheses, with 
a positive value. The specified length applies to 
all entities implicitly typed as character. 

Note that any explicit typing with a type statement 
is effective in overriding both the default typing 
and any implicit typing. 

INTRINSIC STATEMENT 
The INTRINSIC statement (figure 2-15 and example in 
figure 2-16) is used to identify a name as repre­
senting an intrinsic function. The INTRINSIC 
statement also enables use of an intrinsic function 
name as an actual argument. The INTRINSIC state­
ment specifies that a function name refers to an 
intrinsic function rather than a user-written 
function. 

INTRINSIC fun[.fun] ... 

fun Is an intrinsic function name. 

Figure 2-15. INTRINSIC Statement 

Ex ample 1: 

SUBROUTINE DC 
INTRINSIC SQRT 

CALL SUBACX,Y,SQRT) 

SUBROUTINE SUBACA,B,FNC) 
B=FNCCA) 

Name SQRT is declared intrinsic in subrou­
tine DC and passed as an argument to sub­
routine SUBA. Within SUBA, the reference 
FNCCA) references the intrinsic function 
SQRT. 

Example 2: 

SUBROUTINE CHECK 
INTRINSIC SIN,COS 

CALL AR CS IN, VAL) 

CALL AR CCOS,VAL) 

SUBROUTINE ARCFUNC,VAL) 
VAL=FUNC CVAU 

Names SIN and COS are declared as intrinsic 
and can therefore be passed as actual argu­
ments. In the first call to subroutine AR, 
the reference FUNCCVAL) is equivalent to 
SINCVAL); in the second call, FUNCCVAL) is 
equivalent to COSCVAL). In each case, the 
intrinsic function is referenced. 

Figure 2-16. Examples of 
INTRINSIC Statement 

Appearance of a name in an INTRINSIC statement 
declares the name as an intrinsic function name. 
If an intrinsic function name is used as an actual 
argument in a program unit, it must appear in an 
INTRINSIC statement in the program unit. The 
following intrinsic function names must not be used 
as actual arguments: 

Type conversion functions BOOL, CHAR, CMPLX, 
DBLE, FLOAT, !CHAR, IDINT, IFIX, INT, REAL, and 
SNGL 

Lexical relationship functions LGE, LGT, LLE, 
and LLT 

Largest/smallest value functions AMAXO, AMAXl, 
AMINO, AMINl, DMAXl, DMINl, MAX, MAXO, MAXl, 
MIN, MINO, MINl 

2-8 60481300 G 



The appearance of a generic intrinsic function name 
in an INTRINSIC statement does not remove the 
generic properties of the name. 

An intrinsic name can appear only once in all 
INTRINSIC statements in a program unit. Note that 
a symbolic name must not appear in both an EXTERNAL 
and an INTRINSIC statement in the program unit. 

Storage level 1 indicates central memory residence. 
A common block that does not appear in any LEVEL 
statement fn any program unit is at storage level 1 
in each program unit of the program. A dummy 
argument that does not appear in a LEVEL statement 
is at storage level 1. Mode of access for level 1 
entities is unrestricted. 

Storage level 2 indicates the following residence: 

residence on CDC CYBER 170 

PARAMETER STATEMENT 
The PARAMETER statement (figure 2-19 and example in 
figure 2-20) is used to give a symbolic name to a 
constant. PARAMETER statements can be used any­
where among the specification statements, but each 
symbolic constant must be defined in a PARAMETER 
statement before the first reference to the sym­
bolic constant. 

PARAMETER (p=e [,p=e] ... ) 

. p Is a symbolic name. 

e Is a constant, constant expression, or 
extended constant expression. 

Figure 2-19. PARAMETER Statement 

60481300 G 2-9 



PARAMETER CITER=20,START=5) 
CHARACTER 'CC*(*) 
PARAMETER CCC='CI4,F10.5)') 

DATA COUNT/START/ 

DO 410 J=1,ITER 

READ CC,IX,RX 

Symbolic constant START is used to assign an 
initial value to variable COUNT, the symbolic 
constant ITER is used to control the DO loop, 
and the symbolic constant CC is used to speci­
fy a character constant format specification. 

Figure 2-20. Example of PARAMETER Statement 

If a symbolic name !,,~ .gt .. ;~~·r~~teger, real, double 
precision, complex, J>j;('g;q-,Ji;~; the 
expression must 
constant expression 

2-10 

•Ill~ If the symbolic name is of type character or 
logical, the corresponding expression must be a 
character constant expression, logical constant 
expression, ii,~ii!;lllll!\~l,'l',ilBDl,)iO"Sllli,l,~1.¥; Each 
symbolic name becomes defined . with the value of the 
expression that appears to the right of the equals, 
according to the rules for assignment. Any sym­
bolic constant that appears in an expression e must 
have been previously defined in the same or a 
different PARAMETER statement in the program unit. 

A symbolic name of a constant can be defined only 
once in a program unit, and can identify only the 
corresponding constant. The type of a symbolic 
constant can be specified by an IMPLICIT statement 
or type statement before the first appearance of 
the symbolic constant in a PARAMETER statement. If 
the length of a symbolic character constant is not 
the default length of one, the length must be 
specified in an IMPLICIT statement or type state­
ment before the first appearance of the symbolic 
constant. The easiest way to do this is to expli­
citly type the symbolic constant as character with 
length (*). The actual length of the constant is 
determined by the length of the string defining it 
in the PARAMETER statement. The length must not be 
changed by another IMPLICIT statement or by sub­
sequent statements. 

Once defined, a symbolic constant can appear in the 
program unit in the following ways: 

In an expression in any subsequent statement 

In a DATA statement as an initial value or a 
repeat count 

A symbolic constant cannot appear in a FORMAT 
statement. 

SAVE ST A TEMENT 
The SAVE statement (figure 2-22 and example in 
figure 2-23) is used to retain the definition 
status of entities after the execution of a RETURN 

END statement in a subprogram. A SAVE statement 
ro ram is. o tional a11d has no effect. 

SAVE [a[,a]. .. ] 

a Is a variable name, array name, or common 
block name enclosed in slashes. Redundant 
appearances are not permitted. 

Figure 2-22. SAVE Statement 

60481300 G 



COMMON /C1/G,H 
SAVE /C1/ 
CALL XYZ 

SUBROUTINE XYZ 
COMMON A,D,F 
COMMON /C1/GVAL,HVAL 
SAVE 
DATA JCOUNT/5/ 
X=6.5 

RETURN 
END 

The SAVE statement in subroutine XYZ has the 
effect of saving the value of X as 6.5 for any 
later invocations of the subroutine. Saving 
of certain other values does not depend on the 
presence of the SAVE statement. The three en­
tities in blank common remain defined. The 
two entities in common block C1 remain defined 
because common block C1 appears in the refer­
encing program unit. Finally, since JCOUNT is 
initially defined and not redefined in the 
subroutine, JCOUNT remains defined for any 
later invocations of the subroutine. 

Figure 2-23. Example of SAVE Statement 

Dummy argument names, procedure names, and names of 
en ti ties in a comm.on block must not appear in the 
SAVE statement. A coI1DDon block name (or I I indi­
cating blank common) has the effect of specifying 
all of the entities in the coIIDDon block. A SAVE 
statement with no list is treated as though it 
contained the names of all allowable items in the 
program unit. If a common block name is specified 
in a SAVE statement in a subprogram, the common 
block name must be specified by a SAVE statement in 
every subprogram in which the coI1DDon block appears. 

Execution of a RETURN statement or an END statement 
within a subprogram causes the entities within the 
subprogram to become undefined, except in the 
following cases: 

Entities specified by SAVE statements do not 
become undefined. 

En ti ties in blank common do not become unde­
fined. 

Entities that have been initially defined (and 
not redefined) do not become undefined. 

Entities in a named common block that appears 
in the subprogram and in the referencing 
program unit do not become undefined. 

If a local variable or array that is specified in a 
SAVE statement and is not in a common block is 
defined in a subprogram at the time a RETURN or END 
statement is executed, that variable or array 
remains defined with the same value at the next 
reference to the subprogram. 

60481300 F 

Within a subprogram, an entity in a common block 
can be defined or undefined, depending on the 
definition status of the associated storage. If a 
named common block is specified in a SAVE statement 
in a subprogram and the entities in the common 
block are defined, the common block storage remains 
defined at the time a RETURN or END statement is 
executed and is available to the next program unit 
that specifies the named common block. The common 
block storage can become undefined or redefined in 
another program unit. 

TYPE ST A TEMENTS 
Each variable, array, symbolic constant, statement 
function, or external function name has a type. 
En ti ties can be type?<·>~~· integer, real, double 
precision, complex, J:SQol~an, logical, or char­
acter. The name of a main program, subroutine, or 
block data subroutine cannot be typed. 

Default typing occurs in the absence of any impli­
cit typing or explicit typing. The type of the 
symbolic name is implied by the first character of 
the name. The letter I, J, K, L, M, or N implies 
type integer, and any other letter implies type 
real. 

Implicit typing is controlled by the IMPLICIT 
statement. The IMPLICIT statement specifies a 
different typing according to the first character 
of each name. One or more IMPLICIT statements can 
be included in each program unit. 

Explicit typing defines the types of individual 
names. '£!1~ .. t~TEGER, REAL, DOUBLE PRECISION, 
COMPLEX, BQQlJE':Ml, LOGICAL, or CHARACTER statements 
are explicit type statements. An explicit type 
statement can also be used to supply dimension 
information for an array. 

Intrinsic functions are typed by default and need 
not appear in any explicit type statement in the 
program. Explicitly typing a generic intrinsic 
function name does not remove the generic prop­
erties of the name. Intrinsic functions are 
described in section 7. 

Each of the explicit type statements is discussed 
below. See figure 2-24 for examples of all but 
CHARACTER type statements. 

INTEGER ITEM1,NSUM,JSUM 
INTEGER A72,H2SQ4 
INTEGER MS C2) 

REAL IVAR,NSUM3,RESULT 
REAL TOTAL2,BETA,XXXX 
REAL TRC10,5) 

DOUBLE PRECISION DPROD,DEIGV 
DOUBLE PRECISION RMATC10,10) 

COMPLEX CPVAR 
COMPLEX RESCS,5) 

, ~:-j~A~~l..;'1'1A~K 
fl•tmEt..<14> 

LOGICAL SWITCH,TEST 

Figure 2-24. Examples of Explicit Typing 

2-11 



INTEGER STATEMENT 

The INTEGER statement (figure 2-25) is used to 
define a variable, array, symbolic constant, 
function name, or dummy procedure name as type 
integer. 

INTEGER name[,name] ... 

var 

Is explicitly typed as integer. Each name 
is one of the forms: 

var 

array [ (d [,d] . . .)) 

Is a variable, function name, or function entry. 

array Is an array name. 

d Specifies the bounds of a dimension. 

Figure 2-25. INTEGER Statement 

REAL STATEMENT 

The REAL statement (figure 2-26) is used to define 
a variable, array, symbolic constant, function 
name, or dummy procedure name as type real. 

REAL name[,name] ..• 

name 

var 

array 

Is explicitly typed as real. Each name 
is one of the forms: 

var 

array [(d[,d] •.. )] 

Is a variable, function name, or function entry .. 

Is an array name. 

d Specifies the bounds of a dimension. 

· Figure 2-26. REAL Statement 

DOUBLE PRECISION STATEMENT 

The DOUBLE PRECISION statement (figure 2-27) is 
used to define a variable, array, symbolic con­
stant, function name, or dummy procedure name as 
type double precision. 

COMPLEX STATEMENT 

The COMPLEX statement (figure 2-28) is used to 
define a variable, array, symbolic constant, 
function name, or dummy procedure name as type 
complex. 

2-12 

DOUBLE PRECISION name[,name] ... 

name 

var 

Is explicitly typed as a double precision. 
Each name is one of the forms: 

var 

array [(d[,d] ... )] 

Is a variable, function name, or function entry. 

array Is an array name. 

d Specifies the bounds of a dimension. 

Figure 2-27. DOUBLE PRECISION Statement 

COMPLEX name[,name] ... 

name 

var 

Is explicitly typed as a complex. Each name 
is one of tile forms: 

var 

array [(d [,d] . . .) ] 

Is a variable, function name, or function entry. 

array Is an array name. 

d Specifies the bounds of a dimension. 

Figure 2-28. COMPLEX Statement 

LOGICAL STATEMENT 

The LOGICAL statement (figure 2-29) is used to 
define a variable, array, symbolic constant, 
function name, or dummy procedure name as type 
logical. 

LOGICAL name[,name] ... 

name 

var 

array 

d 

Is explicitly typed as logical. Each name 
is one of the forms: 

var 

array [(d[,d] ... )] 

Is a variable, function name, or function entry. 

Is an array name. 

Specifies the bounds of a dimension. 

Figure 2-29. LOGICAL Statement 

60481300 F 



BOOLEAN STATEMENT 

The 
define a 
function name, 
Boolean. 

name 

var 

array 

d 

CHARACTER STATEMENT 

The CHARACTER statement (figure 2-31 and examples 
in figure 2-32) is used to define a variable, 
array, symbolic constant, function name, or dummy 
procedure name as type character. 

A length specification immediately following the 
word CHARACTER applies to each entity not having 
its own length specification. A length specifi­
cation immediately following an entity is the 
length specification only for that entity. Note 
that for an array, the length specified is for each 
array element. If a length is not specified for an 
entity, either explicitly or by an IMPLICIT state­
ment, the length is one. The unit of length for 
CHARACTER is characters. 

The length specification for a variable or array 
declared in a CHARACTER statement must be an 
unsigned nonzero integer constant, or an integer 
constant expression. For example, 

CHARACTER A*3, B(l0)*(12+3*2) 

defines a character variable A that is 3 characters 
long; and a character array B that has 10 elements, 
each of which is 18 characters long. 

If a dummy argument has the length (*) specified, 
the dummy argument assumes the length of the 
associated actual argument for each reference to 
the subroutine or function. If the associated 
actual argument is an array name, the length 
assumed by the dummy argument is the length of each 
array element in the associated actual argument. 

60481300 F 

CHARACTER[*len] [.] name[,name] ... 

name Is explicitly typed as character. Each name 
is one of the forms: 

var [*len] 

array [(d[,d]. .. )] [*len] 

len Specifies the length and can be: an un­
signed nonzero integer constant; an integer 
constant expression, enclosed in parentheses, 
with a positive value; or an asterisk enclosed 
in parentheses. 

var Is a variable, function name, or function entry. 

array Is an array name. 

d Specifies the bounds of a dimension. 

Figure 2-31. CHARACTER Statement 

Example 1: 

PROGRAM MN 
CHARACTER*3 CC,AC4) 

CALL TSUB CCC,AC1)C2:3)) 

SUBROUTINE TSUBCCHAR,Z) 
CHARACTER*(*) CHAR,ZC4) 

Dummy argument CHAR in subroutine TSUB will 
have Length 3, and each element of the 
array Z will have length 2. 

Example 2: 

CHARACTER AR*5,BR*8 

CALL ZCCBR) 

SUBROUTINE ZCCSTR) 
CHARACTER STR*(*) 

Variable STR has the Length 8 when sub­
routine ZC is called. If subroutine ZC is 
called with variable AR passed, the vari­
able STR has the Length 5. Note that the 
Length is not directly known, and certain 
types of reference to STR cannot be used; 
as noted in section 6. 

Figure 2-32 Examples of CHARACTER Statement 

2-13 



If an external function has the length (*) speci­
fied in a function subprogram, the function name 
must appear as the name of a function in a FUNCTION 
or ENTRY statement in the same subprogrm. When a 
reference to such a function is executed, the 
function has the length specified in the refer­
encing program unit. For example, 

CHARACTER *(*) FUNCTION ALPHA( 
and 

CHARACTER *3 FUNCTION ALPHA(X, Y) 

are valid forms of the specification. 

The length specified for a character function, in 
the program unit that references the function, must 
be an integer constant or integer constant expres­
sion and must agree with the length specified in 
the function. Note that there is always agreement 
of length if the length (*) is specified in the 
function. 

If a symbolic constant of type character has the 
length (*) specified, the constant has the length 
of its corresponding constant expression in a 

2-14 

PARAMETER statement. If the length specification 
is a symbolic constant, it must be enclosed in 
parentheses. For example, 

PARAMETER (N=5) 
CHARACTER *(N) AB 

If the parentheses are omitted, the compiler cannot 
distinguish between the length specification and 
the variable name. (Blanks do not function as 
delimiters, and an error message is issued.) 

The length specified for a character statement 
function, or statement function dummy argument of 
type character, must be an integer constant or 
integer constant expression. For example, 

CHARACTER*lO ASTR, ABC(5), XR*20 

gives variable ASTR and each element of the array 
ABC the length 10. The variable XR has the speci­
fied length of 20. 

Character substrings are described in section 1. 

60481300 F 



EXPRESSIONS AND ASSIGNMENT STATEMENTS 3 

Expressions are formed from a combination of oper­
ators, operands, and parentheses. 

Assignment statements 
that use expressions 
values of variables. 

are executable statements 
to define or redefine the 

This section discusses the types of expressions and 
the types of assignment statements. 

EXPRESSIONS 
A constant expression is an expression in which 
only constants (or symbolic constants) and opera­
tors are used. If an arithmetic expression is 
written using only constants and operators, the 

an arithmetic constant expression. 
character, or logical expression is 

MwrBiiititieinlilulsi~: ~h:;::£t~::~:~:.~~ 
logical constant expression. 

The types of expressions are: arithmetic, 1111111 
character, logical, and relational. (The rela­
tional expressions are not fully independent and 
are used as parts of logical expressions.) Each of 
these types is discussed below. 

ARITHMETIC EXPRESSION 

An arithmetic expression 
of unsigned constants, 
ables, array elements, 
separated by operators 
example, 

(A-B)*F + C/D**E 

(figure 3-1) is a sequence 
symbolic constants, vari­

and function references 
and parentheses. For 

is a valid arithmetic expression. 

An arithmetic expression can be an unsigned arith­
metic constant, symbolic name of an arithmetic 
constant, arithmetic variable reference, arithmetic 
array element reference, or arithmetic function 
reference. More complicated arithmetic expressi?.ll:~ 

Afa fo0pr:1r:~d!y t::!~~er0n~t~r a:~~~me:~~t1:;etri:t~ 
and parentheses. Arithmetic operands identify 
values of type integer, real, double precision, or 
complex. 

The arithmetic operators are shown in table 3-1. 
Each of the operators **, I, and * operates on a 
pair of operands and ls written between the two 
operards. Each of the operators + and - either 
operates on a pair of operands and is written 
between the two operands, or operates on a single 
operand and is written preceding that operand. 

60481300 F 

arithexp 

arithexp 

fact 

prim 

Is an arithmetic expression in one of the 
forms: 

term 
+term 

Is an arithmetic factor in one of the 
forms: 

prim 

Is an arithmetic primary. An arithmetic 
primary can be an arithmetic expression 
enclosed in parentheses, or any of the 
following: 

Unsigned arithmetic constant 
Arithmetic symbolic constant 
Arithmetic variable 
Arithmetic array element reference 
Arithmetic function reference 

Figure 3-1. Arithmetic Expression 

3-1 



TABLE 3-1. ARITHMETIC OPERATORS 

Operator Representing Use of Operator Meaning 

** Exponentiation xl ** x2 Exponentiate xl to the power x2. 

* Multiplication xl * x2 

I Division xl I x2 

+ Addition xl + x2 

+ Identity + x2 

- Subtraction xl -
- Negation - x2 

The interpretation of a division can depend on the 
data types of the operands. A set of rules estab­
lishes the interpretation of an arithmetic expres­
sion that contains t-wo or more operators. A 
precedence among the arithmetic operators deter­
mines the order in which the operands are to be 
combined: 

** Highest 
* and I Intermediate 
+ and Lowest 

For example, in the expression 

-A**2 

the exponentiating operator (**) has precedence 
over the negation operator (-). The operands of 
the exponentiation operator are combined to form an 
expression used as the operand of the negation 
operator. The expression is the same as the 
expression -(A**2). 

Successive exponentiations are combined from right 
to left. For example, 

2**3**2 is interpreted as 2**(3**2) 

Two or more multiplication or division operators 
are combined from left to right. 

Two or more addition or subtraction operators are 
combined from left to right. Note that arithmetic 
expressions containing t-wo consecutive arithmetic 
operators, such as A**-B or A+-B are not per­
mitted. However, expressions such as A**(-B) and 
A+(-B) are permitted. 

Subexpressions containing operators of equal prece­
dence are evaluated from left to right. The 
compiler may reorder individual operations that are 
mathematically associative and/or connnutative to 
perform optimizations such as remo~. al of repeated 
subexpressions. The mathematical results of the 
reordering are correct but the specific order of 
evaluation is inde~erminate. For example, the 
expression A/B*C is guaranteed to equal algebra­
ically (AC)/B, not A/(BC), but the specific order 
of evaluation by the compiler is indeterminate. 

.\n arithmetic constant expression contains only 
arithmetic constants, symbolic names of arithmetic 

1-2 

x2 

Multiply xl and x2. 

Divide xl by x2. 

Add xl and x2. 

Same as x2. 

Subtract x2 from xl. 

Negate x2. 

constant expressions enclosed 

Note that variable, array 
element, and function references are not allowed. 

An integer constant expression is an arithmetic 
~??:,stant expression ,lllDit-11118111111111111!~ 
RllX in which each constant or symbolic name of a 
constant is of typ 

that variable, array e ement, 
and function references are not allowed. See 
figure 3-2 for integer constant expression examples. 

3 
-3 
-3+4 

Figure 3-2. Examples of Integer 
Constant Expressions 

The data type of an arithmetic expression contain­
ing one or more arithmetic operators is determined 
from the data types of the operands. Integer 
expressions, real expressions, double precision 
expressions, and complex expressions are arithmetic 
expressions whose values are of type integer, real, 
double precision, and complex, respectively. When 
the operator + or - operates on a single operand, 
the data type of the resulting expression is the 

the data type of the operand 

When an arithmetic operator operates on a pair of 
!;l.l'!~f;,~~'1;t\1~¢/ operands, the data type of the resulting 
express:i.Ori. is given in table 3-2 for exponentiation 
and table 3-3 for the other operators. Four 
entries in table 3-2 specify a value raised to a 
complex power. In these cases, the value of the 
expression is the principal value. 

60481300 F 



TABLE 3-2. RESULTING DATA TYPE F~ Xl**X2 OPERATIONS 

Type of xl Type of x2 xl Value Used x2 Value Used Resulting Data Type 

Integer Integer xl x2 Integer 

Integer Real REAL(xl) x2 Real 

Integer Double precision DBLE(xl) x2 Double precision 

Integer Complex CMPLX(REAL{xl},O.) x2 Complex 

Real Integer xl x2 Real 

Real Real xl x2 Real 

Real Double precision DBLE(xl) x2 Double precision 

Real Complex CMPLX{xl ,0.) x2 Complex 

Double precision Integer xl x2 Double precision 

Double precision Real xl DBLE{x2) Double precision 

Double precision Double precision xl x2 Double precision 

Double precision Complex 

Complex Integer 

Complex Real 

Complex Double precision 

Complex Complex xl x2 Complex 

TABLE 3-3. RESULTING DATA TYPE FOR Xl+X2, Xl-X2, Xl*X2 or Xl/X2 OPERATIONS 

Type of xl Type of x2 xl Value Used x2 Value Used Resulting Data Type 

Integer Integer xl x2 Integer 

Integer Real REAL (x 1) x2 Real 

Integer Double precision DBLE(xl) x2 Double precision 

Integer Complex CMPLX(REAL(xl),O.) x2 Complex 

Real Integer xl REAL(x2) Real 

Real Real xl x2 Real 

Real Double precision DBLE(xl) x2 Double precision 

Real Complex CMPL X { x 1, 0. ) x2 Complex 

Double precision Integer xl DBLE{x2) Double precision 

Double precision Real xl DBLE(x2) Double precision 

Double precisit'.ln Double precision xl x2 Double precision 

Doub le precision Complex 

60481300 F 3-3 



TABLE 3-3. RESULTING DATA TYPE fOR Xl+X2, Xl-X2, Xl*X2 or Xl/X2 OPERATIONS (Contd) 

Type of xl Type of x2 xl Value Used 

Complex Integer xl 

Complex Real xl 

Complex Double precision 

Complex Complex xl 

If two arithmetfc operands are of different type, 
the operand that differs in type from the result of 
the operation is converted to the type of the 
result. The operator then operates on a pair of 
operands of the same type. The exception to this 
is an operand of type real, double precision, or 
complex raised to an integer power; the integer 
operand is not converted. If the value of J is 
negative, the interpretation of I**J is the same as 
the interpretation of 1/ (I**A.BS(J)), which is 
subject to the rules for integer division. For 
example, 2**(-3) has the value of 1/(2**3), which 
is zero. 

One operand of type integer can be divided by 
another operand of type integer to yield an integer 
result. The result is the signed nonfractional 
part of the mathematical quotient. For example, 
(-10)/4 is -2, formed by discarding the fractional 
part of the mathematical quotient -2.5. 

Infinite and Indefinite Values 

Expressions that generate illegal values (such as 
infinite and indefinite values) or that use oper­
ands containing such values can lead to execution 
errors. The point at which the error occurs depends 
on the computer model being used. For more infor­
mation, refer to the definitions of infinite and 
indefinite values in the glossary. 

J-4 

x2 Value Used Resulting Data Type 

CMPLX(REAL(x2),0.) Complex 

CMP L X ( x 2 , 0 • ) Complex 

x2 Complex 

figure 3-3. Boolean Expressi~n 

60481300 G 



CHARACTER EXPRESSION 

A character expression (figure 3-4) is used to 
express a character string. Evaluation of a 
character expression produces a result of type 
character. The simplest form of a character 
expression is a character constant, symbolic name 
of a character constant, character variable refer­
ence, character array element reference, character 
substring reference, or character function refer­
ence. More complicated character expressions can 
be formed by using one or more character operands 
together with character operators and parentheses. 
The character operator is shown ln table 3-5. 

charexp 

charexp Is a character expression in either form: 

charprim 
charexp // charprim 

charprim Is a character primary. A character 
primary can be a character expression 
enclosed in parentheses, or any of the 
following: 

Character constant 
Character symbolic constant 
Character variable 
Character array element reference 
Character substring reference 
Character function reference 

Figure 3-4. Character Expression 

TABLE 3-5. CHARACTER OPERATOR 

Operator Representing Use of Meaning Operator 

II Concatenation xl//x2 Concatenate 
xi and x2. 

60481300 F 

The result of a concatenation operation is a char­
acter string concatenated on the right with another 
string and whose length is the sum of the lengths 
of the strings. For example, the value of 'AB' II 
'CDE' is the string 'ABCDE'. 

A character expression and the operands of a char­
acter expression must identify values of type 
character. Except in a character assignment state­
ment, a character expression must not involve 
concatenation of an operand whose length specifica­
tion is an asterisk in parentheses, unless the 
operand is a symbolic constant. 

Two or more concatenation operators are combined 
from left to right to interpret the expression. 
For example, the interpretation of the character 
expression 

, AB, I I , CD, I I , EF , 

is the same as the interpretation of the character 
expression 

( 'AB ' I I ' c D' ) I I 'EF ' 

The value of the preceding expression is the same 
as that of the constant 'ABCDEF'. 

Note that parentheses have no effect on the value 
of a character expression. Thus, the expression 

'AB'/l('CD'/l'EF') 

has the same value as the preceding expressions. 

A character constant expression is a character 
expression in which each operand is a character 
constant, the symbolic name of a character constant, 
or a character constant expression enclosed in 
parentheses. Note that variable, array element, 
substring, and function references are not allowed. 

LOGICAL EXPRESSION 

A logical expression (figure 3-5) is used to 
ex: press a logical computation. Evaluation of a 
logical expression produces a result of type 
logical, with a value of true or false. 

The simplest form of a logical expression is a 
logical constant, symbolic name of a logical 
constant, logical variable reference, logical array 
element reference, logical function reference, or 
relational express lon. More compl teated logical 
expressions can be formed by using one or more 
logical operands together with logical operators 
and parentheses. 

3-5 



logexp 

logexp 

logdis 

logterm 

logfact 

log prim 

Is a logical expression in one of the 
forms: 

logdis 
logexp .EOV. logdis 
logexp .NEOV. logdis 
i9~f!.~l~f]t.;J~i$ 

Is a logical disjunction in either form: 

logterm 
logdis .OR. logterm 

Is a logical term in either form: 

log fact 
logterm .ANO. logfact 

Is a logical factor in either form: 

logprim 
.NOT. logprim 

Is a logical primary. A logical primary 
can be a logical expression enclosed in 
parentheses, a relational expression, or 
any of the following: 

Logical constant 
Logical symbolic constant 
Logical variable 
Logical array element reference 
Logical function reference 

Figure 3-5. Logical Expression 

The logical operators are shown in table 3-6. 

A set of rules establishes the interpretation of a 
logical expression that contains two or more 
logical operators. A precedence among the logical 
operators determines the order in which the oper­
ands are to be combined, unless the order is 
changed by the use of parentheses. The precedence 
of the logical operators is: 

TABLE 3-6. 

Operator Representing 

.NOT . Logical negation 

. AND. Logical conjunction 

.OR. Logical inclusive disjunction 

.EQV. Logical equivalence 

. NEQV. Logical nonequivalence 

3-6 

.NOT • 
• AND. 
.OR • 

Highest 

• EQV. or .NEQV. or .;XOR~ Lowest 

For example, in the expression 

A .OR. B .AND. C 

the .AND. operator has higher precedence than the 
.OR. operator; therefore, the interpretation is the 
same as 

A .OR. (B .AND. C) 

Logical quantities are combined from left to right 
when a logical expression contains two or more 
.AND. operators, two or more .OR. operators, or two 
or more .EQV., .NEQV., or .XOR. operators. 

The value of a logical factor involving any logical 
operator is shown in table 3-7. 

A logical constant expression contains only logical 
constants, symbolic names of logical constants, 
relational expressions which contain only constant 
expressions, or logical constant expressions 
enclosed in parentheses. Note that variable, array 
element, and function references are not allowed. 

RELATIONAL EXPRESSION 

A relational expression (figure 3-6) can appear 
only within logical expressions. Evaluation of a 
relational expression produces a logical result 
with a true or false value. 

A relational expression is used to compare the 
values of two arithmetic !>.f';;.;,.9n+f#~~. expressions or 
two character expressions. A relational expression 
cannot be used to compare the value of an arith­
metic expression with the value of a character 
expression. 

Comparisons of variables or character strings are I 
performed left-to-right. 

The relational operators are shown in table 3-8. 

An operand of type complex is permitted only when 
the relational operator is .EQ. or .NE. 

LOGICAL OPERATORS 

Use of Operator 

.NOT.x 

xl.AND.x2 

xl.OR.x2 

xl.EQV.x2 

xl.NEQV.x2 

Meaning 

Complement x 

Boolean product of xl and x2 

Boolean sum of xl and x2 

Is xl logically equivalent 
to x2? 

Is xl not logically equiva­
lent to x2? 

60481300 H 



xl 

• TRUE. 
• TRUE. 
• FALSE. 
. FALSE. 

rel exp 

relexp 

rop 

arithexp 

charexp 

TABLE 3-7. RESULT OF LOGICAL OPERATORS 

x2 .NOT.x2 xl.AND.x2 

. TRUE. • FALSE. . TRUE . 

. FALSE. .TRUE • . FALSE. 

. TRUE. • FALSE. . FALSE. 

. FALSE. • TRUE • .FALSE • 

Is a relational expression used as a pri­
mary in a logical expression. A relational 
expression is in one of the forms: 

charexp rop charexp 

Is one of the relational operators: 

. LT . 

. LE. 

.EO. 

. NE. 

.GT . 

. GE. 

Is an arithmetic expression. 

Is a character expression. 

xl.OR.x2 xl.EQV.x2 xl.NEQV.x2 

. TRUE. .TRUE • • FALSE. 
• TRUE. • FALSE. .TRUE . 
. TRUE • • FALSE . .TRUE • 
. FALSE. • TRUE. . FALSE. 

An arithmetic relational expression has the logical 
value true only if the values of the operands 
satisfy the relation specified by the operator. If 

the t~ ...... :;ff, .. ~~~z~g ... E?~~~·~·~~~gps are of different 
types, !?;;l(i.'§g;~ti. ~l;~ ~,qq~~t,\liJ~ the value of the 
relational ex~~ession · . 

Xl relop X2 

is the value of the expression 

((Xl) - (X2)) relop 0 

where 0 (zero) is of the same type as the ex­
pression • 

Note that the comparison of a double precision 
value and a complex value is not permitted • 

Figure 3-6. Relational Expression 

A character relational expression has the logical 
value true only if the values of the operands 
satisfy the relation specified by the operator. 
The character expression Xl is considered to be 
less than X2 if the value of Xl precedes the value 
of X2 in the collating sequence; Xl is greater than 
X2 if the value of Xl follows the value of X2 in 
the collating sequence. Note that the collating 
sequence in use determines the result of the 
comparison. The default collating sequence is 
ASCII6. The COLLATE compiler directive also 
affects collation. 

TABLE 3-8. RELATIONAL OPERATORS 

Operator Representing Use of Operator Meaning 

.LT. Less than xl.LT.x2 Is xl less than x2? 

.LE. Less than or equal to x l. LE. Xl Is xl less than or equal to x2? 

.EQ. Equal to xl.EQ.x2 Is xl equal to x2? 

.NE. Not equal to x l. NE. x2 Is xl not equal to x2? 

.GT. Greater than xl.GT.x2 ls xl greater than x2? 

.GE. Greater than or equal to xl.GE.x2 Is xl greater than or equal to xn 

60481300 F 3-7 



Character relational expressions in PARAMETER and 
conditi~~l ~(),pilatlori .. (G$1¥J statements are 
always eva1uated using the ASCII6 sequence. 

If the operands are of unequal length, the shorter 
operand is extended on the right with blanks to the 
length of the longer operand. 

GENERAL RULES FOR EXPRESSIONS 

The order in which operands are combined using 
operators is determined by: 

1. Use of parentheses 

2. Precedence of the operators 

3. Right-to-left interpretation of exponentiations 

4. Left-to-right interpretation of multiplications 
and divisions 

5. Left-to-right interpretation of additions and 
subtractions in an arithmetic expression 

6. Left-to-right interpretation of concatenations 
in a character expression 

7. Left-to-right interpretation of .NOT. operators 

8. Left-to-right interpretation of .AND. operators 

9. Left-to-right interpretation of .OR. operators 

10. Left-to-right interpretation of .EQV., .NEQV., 
operators in a logical expression 
~$$£fiti 

Precedences exist among the arithmetic and logical 
operators. There is only one character operator. 
No precedence exists among the relational opera­
tors. The precedences among the operators are: 

Arithmetic 
Character 
Relational 
Logical 

Highest 

Lowest 

An expression can contain more than one kind of 
operator. For example, the logical expression 

L .OR. A + B .GE. C 

where A, B, and C are of type real, and L is of 
type logical, contains an arithmetic operator, a 
relational operator, and a logical operator. This 
expression would be interpreted as 

L .OR. ((A+ B) .GE. C) 

Any variable, array element, function, or character 
substring involved in an expression must be defined 
at the time the reference is made. An integer 
operand must be defined with an integer value 
rather than a statement label value. Note that if 
a character string or substring is referenced, all 
of the referenced character positions must be 
defined at the time the reference is executed. 

3-8 

Any arithmetic operation whose result is not mathe­
matically defined is prohibited: for example, 
neither dividing by zero nor raising a zero-valued 
primary to a zero-valued or negative-valued power 
is allowed. 

A function reference in a statement must not alter 
the value of any other entity within the statement 
in which the function reference appears. The 
execution of a function reference in a statement 
must not alter the value of any entity in common 
that affects the value of any other function refer­
ence in that statement. However, execution of a 
function reference in the expression of a logical 
IF statement can affect entities in the statement 
that is executed when the value of the expression 
is true. If a function reference causes definition 
of an actual argument of the function, that argu­
ment or any associated entities must not appear 
elsewhere in the same statement. For example, the 
statements 

A(I) = F(I) 

Y = G(X) + X 

are prohibited if the reference to F defines I, or 
the reference to G defines X. 

All of the operands of an expression are not 
necessarily evaluated if the value of the expres­
sion can be determined otherwise. For example, in 
the logical expression 

X .GT. Y .OR. L(Z) 

where X, Y, and Z are real, and L is a logical 
function, the function reference L(Z) need not be 
evaluated if X is greater than Y. 

If a statement contains a function reference in a 
part of an expression that need not be evaluated, 
all entities that would have become defined in the 
execution of that reference become undefined at the 
completion of evaluation of the expression contain­
ing the function reference. In the example above, 
evaluation of the expression causes Z to become 
undefined if L defines its argument. 

If a statement contains more than one function 
reference, the functions can be evaluated in any 
order, except for a logical IF statement and a 
function argument list containing function refer­
ences. For example, the statement 

Y F(G(X)) 

where F and G are functions, 
evaluated before F is evaluated. 

requires G to be 

Any expression contained in parentheses is always 
treated as an entity. For example, in evaluating 
the expression 

A*(B*C) 

the product of B and C is evaluated and then 
multiplied by A; the mathematically equivalent 
expression (A*B)*C is not used. 

60481300 G 



ASSIGNMENT STATEMENTS 

There are five types of assignment statements: 

Arithmetic 

Character 

Logical 

Statement label (with the ASSIGN statement as 
described in section 4) 

Each type of assignment statement is discussed 
below. 

ARITHMETIC ASSIGNMENT 

The arithmetic assignment statement is shown in 
figure 3-7. 

'! = e 

v Is the name of a variable or array element of type 
integer, real, double precision, or complex. 

e Is an arithmetic or Boolean expression. 

Figure 3-7. Arithmetic Assignment Statement 

After evaulation of arithmetic expression e, the 
result is converted to the type of v in the follow­
ing way: 

Integer INT (e) 

Real REAL(e) 

Double precision DBLE (e) 

Complex CMPLX (e) 

The result is then assigned to v, and v is defined 
or redefined with that value. 

CHARACTER ASSIGNMENT 

The character assignment statement is shown in 
figure 3-9. 

v = e 

v 

e 

Is the name of a character variable, character array 
element, or character substring. 

Is a character expression. 

Figure 3-9. Character Assignment Statement 

The character expression e is evaluated, and the 
result is then assigned to v. I 
None of the character positions being defined in v 
can be referenced in e. 

The variable v and expression e can have different 
lengths. If the length of v is greater than the 
length of e, e is extended to the right with blank 
characters until it is the same length as v. If 
the length of v is less than the length of e, e is 
truncated from the right until it is the same 
length as v. 

Only as much of the value of e must be defined as 
is needed to define v. In the example 

CHARACTER A*2, B*4 
A=B 

the assignment A=B requires that the substring 
B(l:2) be defined. It does not require that the 
substring B(3:4) be defined. If v is a substring, 
e is assigned only to the substring. The defini­
tion status of substrings not specified by v is 
unchanged. 

LOGICAL ASSIGNMENT 

The logical assignment statement is shown in figure 
3-10. 

The logical expression is evaluated and the result 
is then assigned to v. Note that e must have a 
value of either .TRUE. or .FALSE. 

v = e 

v Is the name of a logical variable or logical array 
element. 

e Is a logical expression. 

Figure 3-10. Logical Assignment Statement 

60481300 H 3-9 



3-10 60481300 F 



FLOW CONTROL STATEMENTS 4 

FORTRAN flow control statements provide a means of 
altering, interrupting, terminating, or otherwise 
modifying the normal sequential flow of execution. 
The flow control statements are: 

GO TO 
IF 
00 
CONTINUE 
PAUSE 
STOP 
END 
CALL 
RETURN 

This section discusses these flow control state­
ments, except for CALL and RETURN. CALL is used to 
transfer control to a subroutine, and RETURN is 
used to return control from a subprogram; they are 
discussed in section 6. 

Control can be transferred only to an executable 
statement. 

A statement can be identified by a label consisting 
of an integer in the range 1 through 99999, with 
leading zeros and embedded blanks ignored. Each 
statement label must be unique in the program unit 
(main program or subprogram) in which it appears. 

This section discusses the flow control statements. 

GO TO ST A TEMENT 
The three types of GO TO statements are the un­
conditional GO TO, the computed GO TO, and the 
assigned GO TO. As the ASSIGN statement is used in 
conjunction with the assigned GO TO, it is also 
described below. 

UNCONDITIONAL GO TO STATEMENT 

The unconditional GO TO statement (figure 4-1 and 
example in figure 4-2) transfers control to the 
statement identified by the specified label. The 
labeled statement must appear in the same program 
unit as the GO TO statement. 

GO TO slab 

slab Is the Label of an executable 
statement. 

Figure 4-1. Unconditional GO TO Statement 

60481300 F 

10 A=B+z 
100 B=X+Y 

IFCA-0)20,20,30 
20 Z=A 

GO TO 10 
30 Z=B 

STOP 
END 

Control transfers to statement 10 when the 
GO TO statement executes. 

Figure 4-2. Example of Unconditional 
GO TO Statement 

COMPUTED GO TO STATEMENT 

The computed GO TO statement (figure 4-3 and 
example in figure 4-4) transfers control to the 
statement identified by one of the specified labels. 

GO TO Cslab[,slabJ ••• )[,]exp 

slab Is the label of an executable statement 
that appears in the same program unit 
as the GO TO statement. 

exp Is an integer ~\l~~tl~fl~~;~S~ or SoofeAl1 
expression. · · ., · 

Figure 4-3. Computed GO TO Statement 

The label selected is determined by the value of 
the expression. If exp has a value of 1, control 
transfers to the statement identified by the first 
label in the list; if exp has a value of 4, control 
transfers to the statement identified by the fourth 
label in the list and so forth. 

If the value of exp is less than 1 or greater than 
the number of labels in the list, execution con­
tinues with the statement following the computed GO 
TO. 

ASSIGN STATEMENT 

The ASSIGN statement (figure 4-5 and example in 
figure 4-6) assigns a statement label to an integer 
variable. The value assigned represents the label 
of an executable statement or a FORMAT statement. 
The labeled statement must appear in the same 
program unit as the ASSIGN statement. Once the 
variable is used in an ASSIGN statement, it cannot 
be used in any statement other than an assigned GO 
TO statement, an ASSIGN statement, or an input/ 
output statement, until it has been redefined. 

4-1 



Example 1: 

GO T0(10,20,30,20)L 

The next statement executed is: 

10 if L = 1 

20 if L = 2 

30 if L = 3 

20 if L = 4 

Example 2: 

K=2 
GO T0(100, 150,300),K 

Statement 150 is executed next. 

Example 4: 

M=4 
GO TO(l00,200,300),M 
A=B+C 

Execution continues with the statement A=B+C, 
since the value of M is greater than the number of 
labels enclosed in the parentheses. 

Figure 4-4. Examples of Computed 
GO TO Statements 

ASSIGN slab TO iv 

slab Is the Label of an executable or 
FORMAT statement. 

iv Is an integer variable. 

Figure 4-5. ASSIGN Statement 

Example 1: 

ASSIGN 10 TO LSWIT 
GO TO LSWIT (5,10,15,20) 

Control transfers to the statement labeled 10. 

Example 2: 

ASSIGN 24 TO I FMT 
WRITE (2, I FMT)A,B 

The variables A and B are formatted according to the 
FORMAT statement labeled 24. 

Figure 4-6. Examples of ASSIGN Statement 

The assignment must be made prior to execution of 
the assigned GO TO statement or the input/output 
statement that references the assigned label. 

ASSIGNED GO TO STATEMENT 

The assigned GO TO statement (figure 4-7 and 
example in figure 4-8) transfers control to the 
executable statement last assigned to integer 
variable iv by the execution of a prior ASSIGN 
statement. 

GO TO iv [[,J Cslab[,slabJ ••• )J 

iv Is an integer variable. 

slab Is the Label of an executable state­
ment that appears in the same program 
unit as the assigned GO TO statement. 

Figure 4-7. Assigned GO TO Statement 

ASSIGN 50 TO JUMP 
10 GO TO JUMP,(20,30,40,50) 

20 CONTINUE 

30 CAT=ZERO+HAT 

40 CAT=10.1-3. 

50 CAT=25.2+7.3 

Statement 50 is executed immediately after 
statement 10. 

Figure 4-8. Example of Assigned 
GO TO Statement 

60481300 F 



The variable iv must not be defined by any state­
ment other than an ASSIGN statement. The list of 
statement labels is optional. All labels in a 
statement label list must be in the same program 
unit as both the ASSIGN and assigned GO TO state­
ments. Also, iv must be one of the labels in the 
list. 

IF ST A TEMENT 
The IF statement evaluates an expression and 
conditionally transfers control or executes another 
statement, depending on the outcome of the test. 
The kinds of IF statements are: 

Arithmetic IF 

Logical IF 

Block IF 

The ELSE, ELSE IF, and END IF statements are also 
discussed as they are used in conjunction with a 
block IF statement. 

ARITHMETIC IF ST A TEMENT 

The arithmetic IF statement (figure 4-9 and example 
in figure 4-10) transfers control to one of three 
labeled statements, depending on the value of the 
expression. If the value of exp is negative, 
control transfers to the first statement label; if 
exp is O, control transfers to the second statement 
label; if exp is greater than O, 
to the third statement label. 

'.llllllifi1lllEllll1Rlfiifil!fil1:~:: 

IF (exp) slab1,slab2,slab3 

exp Is an integ~~f,,.r,,~a,~~., .. double 
precision, li.~iiiiillit'i~~~ expression. 

slab1,slab2, 
slab3 

Are statement Labels of execut­
able statements that appear in 
the same program unit as the 
arithmetic IF statement. 

Figure 4-9. Arithmetic IF Statement 

PROGRAM IF 
READ (5.100) l,J,K,N 

100 FORMAT (lOX.414) 
IF(l-N) 3.4.6 

3 ISUM=J+K 
6 CALL ERRORl 

WRITE (6,2) ISUM 
2 FORMAT (110) 
4 STOP 

END 

Figure 4-10. Example of Arithmetic 
IF Statement 

60481300 F 

LOGICAL IF ST AT EM ENT 

The logical IF statement (figure 4-11 and example 
in figure 4-12) allows for conditional execution of 
a statement. If the value of exp is true, state­
ment stat is executed. If the value of exp is 
false, stat is not executed; execution continues 
with the next statement. 

IF (exp) stat 

exp Is a logical expression. 

stat Is any executable statement except a DO. block 
IF, ELSE. ELSE IF, END. END IF, or another 
logical I F statement. 

Figure 4-11. Logical IF Statement 

Example 1: 
IF CP.AND.Q) RES=7.2 

50 TEMP=ANS*Z 

If P and Q are both true, the value of the 
variable RES is replaced by 7.2; otherwise, 
the value of RES is unchanged. In either 
case, statement 50 is executed. 

Example 2: 
IF CA.LT.B) CALL SUB1 

20 ZETA=TEMP+RES4 

If A is less than B, the subroutine SUB1 is 
called. Upon return from this subroutine, 
statement 20 is executed. If A is greater 
than or equal to B, statement 20 is executed 
and SUB1 is not called. 

Figure 4-12. Examples of Logical 
IF Statements 

BLOCK IF ST A TEMENT 

The block IF statement (figure 4-13) allows condi­
tional execution of a block of executable state­
ments. The block IF statement is used with the END 
IF and, optionally, the ELSE and ELSE IF statements 
to form block IF structures. 

IF (exp) THEN 

exp Is a logical expression. 

Figure 4-13. Block IF Statement 

If the logical expression exp is true, execution 
continues with the next executable statement. If 
exp is false, control transfers to an ELSE or ELSE 
IF statement; or if none are present, to an END IF 
statement. 

4-3 



ELSE Statement 

The ELSE statement (figure 4-14) provides an alter­
nate path of execution for a block IF statement or 
an ELSE IF statement. 

ELSE 

Figure 4-14. ELSE Statement 

An ELSE statement 
however, the label 
other statement. 

ELSE IF Statement 

can have 
cannot be 

a statement 
referenced 

label; 
in any 

The ELSE IF statement (figure 4-15) combines the 
;functions of the ELSE and block IF statements. 
This statement provides an alternate path of execu­
tion for a block IF or another ELSE IF statement 
and performs a conditional test. The ELSE IF 
statement makes it possible to form a block IF 
structure with more than one alternative. 

ELSE IF Cexp) THEN 

exp Is a logical expression. 

Figure 4-15. ELSE IF Statement 

An ELSE IF statement can have a statement label; 
however, the label cannot be referenced by any 
other statement. 

The effect of executing an ELSE IF statement is the 
same as that of a block IF statement. 

END IF Statement 

The END IF statement (figure 4-16) terminates a 
block IF structure. For each block IF statement 
there must be a corresponding END IF statement. 

END IF 

Figure 4-16. END IF Statement 

BLOCK IF Structures 

Block IF structures provide for alternative execu­
tion of blocks of statements. A block IF structure 
begins with a block IF statement, ends with an END 
IF statement and, optionally, includes one ELSE or 
one or more ELSE IF statements. Each block IF, 
ELSE, and ELSE IF statement is followed by an 
associated block of executable statements called an 
if-block. 

4-4 

The simplest form of a block IF structure is shown 
in figure 4-17, with an example in figure 4-18. 

IF (exp) THEN 

if-block 

END IF 

Figure 4-17. Simple Block IF Structure 

IF (l.EO.O) THEN 
X=X+DX 
Y=Y+DY 

END IF 

If I is zero, the subsequent statements are executed. 
If not, control transfers to the statement following 
END IF. 

Figure 4-18. Example of Block 
IF Statement 

If expression exp is true, execution continues with 
the first statement in the if-block. If exp is 
false, control transfers to the statement following 
the END IF statement. The if-block can contain any 
n1.U11ber of executable statements, including block IF 
statements. 

Control can be transferred out of an if-block from 
inside the if-block. However, control cannot be 
transferred into an if-block from outside the 
if-block. It is not permissible to branch directly 
to an ELSE, ELSE IF, or END IF statement. However, 
it is permissible to branch directly to a block IF 
statement. 

When execution of the statements in an if-block has 
completed, and if control has not been transferred 
outside an if-block, execution continues with the 
statement following END IF. 

A block IF structure can contain one ELSE statement 
to provide an alternative path of execution within 
the structure (figure 4-19 and example in figure 
4-20). 

IF {exp) THEN 

if-block-1 

ELSE 

if-block-2 

END IF 

Figure 4-19. Block IF Structure 
With ELSE Statement 

60481300 F 



READ (2,12) A,B 
IF (XSUM.L T.XLIM) THEN 

X(I )=A/2.0+B/2.0 
XSUM=XSUM+X(I) 
WRITE (3,14) X(l),XSUM 

ELSE 
Y(l)=A*B 
YSUM=Y{I) 
WRITE (3,16) YSUM,Y(I) 

END IF 

Figure 4-20. Example of Block IF Structure 
With ELSE Statement 

In the structure with an ELSE statement, execution 
continues with the first statement in if-block-I if 
exp is true. If the last statement of if-block-I 
does not transfer control, control transfers to the 
statement following END IF. However, if exp is 
false, control transfers to the first statement in 
if-block-2. If the last statement in if-block-2 
does not transfer control, execution continues with 
the statement following END IF. 

A block IF statement can have at most one associ­
ated ELSE statement. 

An IF structure can contain one or more ELSE IF 
statements to provide for alternative execution of 
additional block IF statements (figure 4-2I and 
example in figure 4-22). This capability allows 
formation of IF structures containing a n\Dllber of 
possible execution paths depending on the outcome 
of the associated IF tests. 

IF (exp1) THEN 

if-block-1 

ELSE IF (exp2) THEN 

if-block-2 

ELSE IF (exp3) THEN 

if-block-3 

END IF 

Figure 4-21. Block IF Structure 
With ELSE IF Statements 

In the structure with ELSE IF, the initial block IF 
statement and each ELSE IF or ELSE statement has an 
associated if-block. Only one if-block in this 
structure is executed (if no nested levels appear). 
Each logical expression is evaluated until one is 
fotmd that is true. Control then transfers to the 
first statement of the associated if-block. When 
execution of the if-block has completed, and if 
control has not been transferred, control transfers 
to the statement following END IF. If none of the 
logical expressions are true and no ELSE statement 
appears, no if-blocks are executed; control trans­
fers to the statement following END IF. In this 
structure, at most one if-block is executed. 

6048I300 F 

6 

8 

IF (N.EQ.1) THEN 
CALL ASUB(X,R) 
CALL BSUB(X,S) 

ELSE IF (N.EQ.2) THEN 
DO 6 1=1,100 
X(l)=O.O 

ELSE IF . (N.EQ.3) THEN 
GO TO 8 

ELSE 
END IF 

CONTINUE 

Since no executable statements appear between ELSE 
and END IF, ELSE has no effect. 

Figure 4-22. Example of Block IF Structure 
With ELSE IF Statements 

If an ELSE statement appears, it must follow the 
last ELSE IF statement. If no logical expression 
is true, control transfers to the statement follow­
ing ELSE. 

Control can transfer out of a block IF structure 
from inside any if-block; however, control cannot 
transfer from one if-block to another if they are 
at the same nesting level. 

NESTED BLOCK IF STRUCTURES 

Block IF structures can be nested: that is, any 
if-block within a structure can itself contain 
block IF structures (figure 4-23 and example in 
figure 4-24). Within a nesting hierarchy, control 
can transfer from a lower level structure into a 
higher level structure; however, control cannot 
transfer from a higher level structure into a lower 
level structure. 

IF (exp) TH EN 

if-block-1 

IF (exp) THEN 

if-block-2 

END IF 

ELSE 

if-block-1 

END IF 

Figure 4-23. Nested Block IF Structure 

4-5 



IF (X.GT.Y) THEN 
5 Y=Y+YINCR 

IF (K.EO.J) THEN 
XT=X 
YT=Y 

ELSE 
K=K+1 
GO TO 5 

END IF 
ELSE 

X=X+XINCR 
END IF 

Each level contains a block IF and an ELSE statement. 
The inner structure is execoted enfy if X is greater than 
Y. The inner structure contains a legal branch to the 
outer structure. 

Figure 4-24. Example of Nested 
Block IF Structure 

DO ST A TEMENT 
The DO statement (figure 4-25) is used to specify a 
loop, called a DO loop, that repeats a group of 
statements. 

DO slab [,] v=e1,e2[,e3] 

slab Is the label of an executable statement called 
the terminal statement of the DO loop. 

v Is an integer, real, or double precision 
control variable. 

e1 Is an initial parameter. 

e2 Is a terminal parameter. 

e3 Is an optional increment parameter; 
default is 1. 

el, e2, and e3 are called indexing parameters; they can 
be integer, real, double precision;.~I~~ constants, 
symbolic constants, variables, or expressions~ 

Figure 4-25. DO Statement 

The terminal statement of a DO loop is an execut­
able statement that must physically follow and 
reside in the same program unit as its associated 
DO statement. The terminal statement must not be 
an unconditional GO TO, assigned GO TO, arithmetic 
IF, block IF, ELSE IF, ELSE, END IF, RETURN, STOP, 
END, or DO statement. If the terminal statement is 
a logical IF statement, it can contain any state­
ment except a DO, block IF, ELSE IF, ELSE, END IF, 
END, or another logical IF. 

4-6 

The range of a DO loop consists of all the execut­
able statements following the DO statement up to 
and including the terminal statement. Execution of 
a DO statement is affected by the DO option of the 
compiler call. DO execution is as follows: 

1. The expressions el, e2, and e3 are evaluated 
and, if necessary, converted to the type of the 
control variable v. 

2. Control variable v is assigned the value of el. 

3. The iteration count is established; this value 
is determined by the following expression: 

MAX(INT((m2-ml+m3)/m3), mtc) 

ml, m2, m3 

mtc 

are the values of the expressions el, 
e2, and e3, respectively, after con­
version to the type of v. 

is the minimum trip count; mtc has a 

4. If the iteration count is not O, the range of 
the DO loop is executed. If the iteration 
count is O, execution continues with the state­
ment following the terminal statement of the DO 
loop; the control variable retains its most 
recent value. 

5. Control variable v is incremented by the value 
of e3. 

6. The iteration count is decremented by one. 

Steps 4 through 6 are repeated until the iteration 
count has a value of O. 

If the DO=LONG control statement parameter is 
selected, the trip count for DO loops can exceed 
217-1. If DO=LONG is not selected, the trip 
count must not exceed 217-1, and the following 
conditions must be satisfied: 

ml+m3 

m2+m3 

If a DO loop appears within an if-block, the range 
of the DO loop must be entirely contained within 
the if-block. If a block IF statement appears 
within the range of a DO loop, the corresponding 
END IF statement must also appear within the range 
of that DO loop. 

A DO loop can be active, inactive, and nested. 
Each is discussed below. 

60481300 F 



ACTIVE AND INACTIVE DO LOOPS 

Initially, a DO loop is inactive. A DO loop be­
comes active only when its DO statement is executed. 

Once active, a loop becomes inactive when any of 
the following occurs: 

The iteration count is determined to be O. 

RETURN, STOP, or END statement is executed 
within the program unit containing the loop. 

The control variable becomes undefined or is 
redefined (by a process other than loop incre­
mentation). 

It is in the range of another loop that becomes 
inactive. 

It is in the range of another loop whose DO 
statement is executed. 

Transfer of control out of th~ range . of a 00 l()op 
does not deactivate the loop. When such a transfer 
occurs, the control variable retains its most 
recent value in the loop. Control can be returned 
to the range of the loop provided that the control 
variable is not redefined outside the range or t::he 
program unit containing the loop has not been 
exited by a RETUR~, S'l'OP, or . END. stat~enl;'.. . The 
loop becomes inactive once the control variable is 
redefined and cannot be reentered except t:.hrough 
its ro statement. 

If a DO loop executes zero times, the control 
variable value equals ml. Otherwise, if the index 
variable iterates through the terminal parameter 
value, the control value is the most recent value 
of the control variable plus the increment param­
eter value. 

If a DO loop becomes inactive but has not executed 
to completion (iteration count does not equal 0), 
its control variable retains its most recent value 
unless it has become undefined. 

Transfer into the range of an inactive DO loop from 
outside the range is not permitted. 

Figure 4-26 shows examples of DO loops. 

NESTED DO LOOPS 

When a DO loop entirely con ta ins another DO loop, 
the grouping is called a DO nest. The range of a 
DO statement can include other DO statements 
providing the range of each inner DO is entirely 
within the range of the containing DO statements. 

The last statement of an inner 00 loop must be 
either the same as the last statement of the outer 
DO loop or must occur before it. A terminal state­
ment that is shared by more than one DO loop can be 
referenced in a GO TO or IF statement from within 
the range of the innermost loop only (figure 4-27). 
If the terminal statement is referenced from any 
loop other than the innermost loop, results are 
undefined. 

60481300 H 

Example 1: 

DO 20 I=1, 11,3 
IFCALISTCI)-ALISTCI+1))15,10,10 

15 ITEMP=ALISTCI> 
10 ALISTCI)=ALISTCI+1) 
20 CONTINUE 

300 WRITEC6,200)ALIST 

The statements following DO up to and includ­
ing statement 20 are executed four times. 
The DO loop is executed with I equal to 1, 4, 
7, and 10. Statement 300 is then executed. 
After completion of the loop, I has a value 
of 13. 

Example 2: 

DO 10 I =5, 1, -1 
PRINT 100,BCI> 
IFCX.GT.BCI>.AND.X.LT.H)Z=EQUATE 

10 CONTINUE 
6 A=ZERO+EXTRA 

Statement 10 is executed five times, whether 
or not Z=EQUATE is executed because of the 
negative increment parameter. Statement 6 is 
executed only after the DO loop is satisfied. 

Example 3: 

IVAR 9 

DO 20 I = 1,200 
IF CI .GE. IVAR) GO TO 10 

20 CONTINUE 
10 IN =11 

An exit from the range of the DO is made to 
statement 10 when the value of the control 
variable I is equal to IVAR. The value of 
the integer variable IN becomes 11. 

Example 4: 

K=3 
J=S 
DO 100 I=J,K 

RACK=2.-3.S+ANTCI) 
100 CONTINUE 

It ~9~9! fs ~~e~ if ied on t~e fl'~~ cqtj~.[~.~ 
st~te11Jent, .· .~·~·'! ~9 J9op is ~x~s~~'ed J>nc~ <w1th 
I=5l because J is target t~Cif\K;. If DO=OT is 
not specified, the loop is not executed. 

Figure 4-26. DO Loop Examples 

See figure 4-28 for examples of possible DO loop 
nests. Note that loops can be completely nested or 
can share a terminal statement. 

A DO loop can be activated only by executing the DO 

statE:inent. Once. the .oo stat~~~~~ ~~ ~~A~ ~~e~ 
cuted, a.~d .. bf:!fQrf?· .thft .. loop .. ·J.s. ~~ti?F'.i~~.~ ft.~f.l!~F?l 
c~ be transferr-e.d out,. <;>f ·. thf! l'fl.Pf1i~ ~1'P tU¢P; (:rn~~"'.'. 
ferred back into the range of t::he IX)•· · , 

4-7 

I 

I 

I 

I 

I 



DO 10 J=1,50 
DO 10 I=1,50 

DO 10 M=1,100 

GO TO 10 

10 CONTINUE 

Figure 4-27. Branch to Shared 
Terminal Statement 

Figure 4-29 illustrates legal and illegal transfers 
with nested loops. A transfer from the range of an 
outer DO into the range of an inner DO loop is not 
allowed (transfer 1 in example); however, a trans­
fer out of the range of an inner DO into the range 
of an outer DO is allowed because such a transfer 
is within the range of the outer DO loop (transfer 
2). A transfer back into the range of an innermost 
DO loop is allowed if a transfer has been made from 
the same DO loop and is still active (transfer 3). 
A transfer out of the range of an inner DO and a 
transfer back into the range of an innermost DO is 
not allowed (transfer 4). 

See figure 4-30 for nested DO loop examples. 

When an IF or GO TO statement is used to bypass 
several inner loops, different terminal statements 
are required for each loop. See figure 4-31 for 
examples of nested DO loops with different terminal 
statements. 

DO 1 1=1, 10,2 

Transfer 1: 

Transfer 4: 

Figure 4-29. Nested DO Loop Transfers 

CONTINUE STATEMENT 
The CONTINUE statement (figure 4-32 and example in 
figure 4-33) performs no operation. It is an 
executable statement that can be placed anywhere in 
the executable statement portion of a source pro­
gram without affecting the sequence of execution. 

The CONTINUE statement is most frequently used as 
the last statement of a DO loop. It can provide 
loop termination when a GO TO or IF would normally 
be the last statement of the loop. If the CONTINUE 
statement does not have a label, an informative 
diagnostic is issued. 

DO 100 L=2,LIMIT 
DO 5 J=l,10 
DO 5 K=J,15 

DO 2 J=l,5 

[ 

DO 3 K=2,8 

3 ~ONTINUE 

I DO 10 J=1,10 

L,o ~ONTINUE L 
D051=1,5 

5 ~ = B*C 

._____ 2 CONTINUE 

r- DO 4 L=l,3 

L_ 4 CONTINUE 

.___ ___ 1 CONTINUE 

I DO 20 K=K1,K2 

L20 ~ONTINUE 
---- 100 CONTINUE 

Figure 4-28. Nested DO Loops 

4-8 60481300 H 



I 

I 

I 

Example 1: 

N=O 
DO 100 I=1,10 

J=I 
DO 100 K=1,5 

L=K 
N=N+1 

100 CONTINUE 

After execution of these DO loops and at the 
execution of the CONTINUE statement, 1=11, 
J=10, K=6, L=S, and N=SO. 

Example 2: 

N=O 
DO 200 I=1,10 

J=I 
DO 200 K=S, 1 

L=K 
N=N+1 

200 CONTINUE 

If DO=OT is not specified on the FTNS control 
statement, the inner loop will not be exe-
cyt~~l ·~If ... \$~!-;;(~~·••,~i~·~1Jt ~·l~i lB~~~>t<>RP 
;i•·~···· ·1·tt .·•·•·'.~(~.$.~~~! ... !!:~: ,j ~·;;.~~~~'. )'~ 

~'.t' ·'·•> .. !:iP•• ~:p.µqt.·.··•.flt;t$"t,.t,1'.•; .ter.····than··or 
e~u~t .. f::p 1·i . . 

Example 3: 

DIMENSION ACS,4,4), 8(4,4) 
DO 2 I = 1,4 

DO 2 J = 1,4 
DO 1 K = 1,5 
ACK,J,I> = 0.0 

CONTINUE 
BCJ,I> = 0.0 

2 CONTINUE 

Arrays A and B are set to zero. 

Figure 4-30. Nested DO Loop Examples 

PAUSE STATEMENT 
The PAUSE statement (figure 4-34) causes the pro­
gram to temporarily suspend execution. At the same 
time, PAUSE n appears as a dayfi le message on the 
operator console. If the job is exe<'uting inter­
actively, PAUSE n appears as a dayfi le message at 
the user terminal (does not apply to SCOPE 2). For 
batch originated programs, the console operator can 
continue or terminate the program with an entry 
from the console. 

For programs executing interactively through 
INTERCOM under NOS/BE and SCOPE 2, the user types 
GO to continue execution or DROP to terminate. For 
any other type-in, a diagnostic message is issued 
and INTERCCM waits for a correct type-in. 

For programs executing interactively through IAF 
under NOS, the user types the user break 2 sequence 
to terminate program execution. Any other type-in 
causes execution to continue. 

60481300 H 

DO 10 K=1,100 
IFCDATACK>.NE.10) GO TO 1ot 

20 DO 30 L=1,20 
IF(DATA(L).NE.FACT*K-10.) GO TO 30 

40 D9 50 J=1,5 

GO TO (101,102,50),INDEX 
101 TEST=TEST+1 

GO TO 104 
103 TEST=TEST-1 

DATACK)=DATACK)*2.0 

50 CONTINUE 
30 CONTINUE 
10 CONTINUE 

GO TO 104 
102 DO 109 M=1,3 

109 CONTINUE 

104 CONTINUE 

tTransfer bypasses inner loops. 

Figure 4-31. Nested DO Loops With 
Different Terminal Statements 

CONTINUE 

Figure 4-32. CONTINUE Statement 

DO 10 I = 1,11 
IF(A(l).GE.A(l+1)) GO TO 10 

A (I) = A (1+1) 
10 CONTINUE 

Figure 4-33. CONTINUE Statement Examples 

PAUSE[n] 

n Is a string of 1 th~ou~~. ~ ~~~i.'!!~1.~i9,i~~- ?~. a 
character constant .of at m<>$l)70 cbaractet:$. 

Figure 4-34. PAUSE Statement 

4-9 



For programs executing interactively through the 
NOS time-sharing system, the user types STOP to 
terminate execution. Any other type-in causes 
execution to continue. 

Examples: 

PAUSE 45321 

PAUSE 'EXAMPLE TWO' 

STOP ST A TEMENT 
The STOP statement (figure 4-35) terminates program 
execution. 

STOP[n] 

n Is a string of 1 through 5 decimal digi1S, or a 
character constant,il!.IJli\lll:i!lt1.i.~~ 

Figure 4-35. STOP Statement 

When a STOP statement is encountered during execu­
tion, STOP n is displayed in the dayfile (or at the 
terminal if executing interactively), the program 
terminates, and control returns to the operating 
system. If n is omitted, blanks are implied. A 
program unit can contain more than one STOP 
statement. 

Example: 

STOP 'PROGRAM HAS ENDED' 

4-10 

END ST A TEMENT 
The END statement (figure 4-36) indicates the end 
of the program unit to the compiler. 

END 

Figure 4-36. END Statement 

Every program unit must physically terminate with 
an END statement. Tile END statement can be labeled. 
If control flows into or branches to an END state­
ment in a main program, execution terminates. If 
control flows into or branches to an END statement 
in a function or subroutine, it is treated as if a 
RETURN statement had preceded the END statement. 

An END statement cannot be continued; it must be 
completely contained on an initial line. A line 
following an END statement is considered to be the 
first line of the next program unit, even if it has 
a continuation character in column 6. 

All FORTRAN files are closed during END processing. I 
The CYBER Record Manager's error file (zzzzzEG) is 
also checked. If open, its buffers are flushed. 

60481300 H 



INPUT/OUTPUT 5 

This section discusses input/output files, input/ 
output lists, implied DO input/output lists, format 
specification, and input/output statements. 

This section does not discuss the following 
functions and subprograms used in connection with 
input/output: the EOF function, the IOCHEC 
function, the UNIT function, the LENGTH function, 
the LENGTHX subroutine, and the mass storage 
subroutines (READMS, WRITMS, OPENMS, CLOSMS, and 
STINDX). These functions and subprograms are 
discussed in section 7. Also, the CYBER Record 
Manager routines ·are not discussed in this section; 
they are discussed in section 8. 

INPUT/ OUTPUT FILES 
Input and output involve reading records from files 
and writing records to files. 

Every file must have a logical file name of 
through 7 letters and digits beginning with a 
letter. The logical file name, which is defined 
only for the current job, is the name by which the 
file is referenced in control statements. 

Input and output operations with sequential files, 
direct access files, and batch job files are 
discussed separately below. 

SEQUENTIAL FILES 

Sequential files need not be declared in the ).>l:tOGR.AM 
or an OPEN statement. If a file is not declared on 
the PRQ(:;RAM or OPEN statement, it is created 
automati~ally on the first refer~I'lce to the file. 
F~.l eil .. ,P.r9<,'!~S~ed. by C¥B'ER R~~<>i;:~ }l'~nager interfac~ 
t.'01.,1till.es ~ h()lol'ever, must not be declared on the 
PROGRAM statement. The maximmn record length and 
buffer size for a file can be specified on the 
PROGRAM and OPEN statements. In the absence of 
user specification, default values are provided. 

M~3i~g types of operatiorit ~.ri the same file can 
sometimei:; J.ea:<L to .· destruc~t9I1 of flle. inte&tJt~t 
Files . proc~ssed. by .. ma's >segr~~.¢ .or CYBER ·.Record 
M~na~~r in~erf~ce .. st1p~quqry~s·< ~~?.~i~ .. be .Pt()ee~~id 
on1,y .. by these.·.·r()util\e~~.·.· ... · y;tt~~ 1?~9cesseq ~Ybt1ffef 
s~~~~Illents ~hould b~ P.ro.~e~~~t .pnly by .. tl'ie buf~e~ 
statements in a given progpam (~.E\ftND, ENDFILE; an(i 
BA(;~P.\C~ •..... ~re Permitted ~9G .. ~1.les ·. proc~ssed .. }9' 
CYJl.r;B:. Recvird Ma.nager subroutin~s or buffer · sta,te'."" 
men.ts). 

A file should not be processed both by unformatted 
operations and by formatted, natD.elist, or list 
directed operations without an intervening rewind. 
If rewound, it can then be rewritten in a different 
mode. Alternatively, the file could be closed and 
reopened before being processed in another mode. 

If f9rJ1l~(t;~~4t .. Ji~~ dlr;~¢.t~d, ot µ~:11~elt~t i~~~t.{ 
~Mt]?µt ... ls. >per;fopned on a•·. 7-:"t:aele s or L t~Pe\ ~. 
FttE centt()l .· st~t~tnen..t . tpa.~ ·•· spec if ies CM:<=NO 
(appendix: n must be included in tb,e job. 

60481300 F 

The end-of-file status can be checked by use of the 
END= or the IOSTAT= parameter in the READ or WRITE 
statement, for every formatted, list directed, 
~glf~t; or unformatted READ or WRITE. If end-of­
file is encountered and a test is not included, the 
program term.inates with a fatal error. 

The error condition can be checked by use of the 
ERR= or IOSTAT= parameter in the READ or WRITE 
~~~f~lll~~;, for every formatted, list directed, 
natp;~tist, or unformatted READ or WRITE. If an
error is encountered and a test is not included,
the program terminates with a fatal error.

If the end-of-file status or an error condition is
encountered by a READ statement, all items in the
input list, including the implied DO variables,
become undefined.

Record length on card files should not exceed 80
characters. Record length on print files should
not exceed 137 characters; the first character is
always used as carriage control and is not printed.
The second character appears in the first print
position.

DIRECT ACCESS FILES

Direct access file manipulations differ from
conventional sequential file manipulations. In a
sequential file, records are stored in the order in
which they are written, and they normally can be
read back only in the same order. This can be slow
and inconvenient in applications where the order of
writing is not the same as the retrieval order. In
addition, such processing requires a continU>us
awareness of the current file position and the
position of the required record. To remove these
limitations, a direct access file capability is
provided by the FORTRAN input/output statements.

In a direct access file, any record can be read,
written, or rewritten directly, without concern for
the position or structure of the. file. This is
possible because the file resides on a random
access mass storage device that can be positioned
to any portion of a file. Thus, the entire concept
of file position does not apply to a direct access
file. The notion of rewinding a direct access file
is, for instance, without meaning.

To create a direct access file the user must
specify an OPEN statement with ACCESS='DIRECT' and
include the RECL (record length) parameter. For
example,

OPEN(2,FILE='DAFL' ,ACCESS='DIRECT' ,RECL=l20)

opens an unformatted file DAFL for direct access.
The file is associated with unit 2 and has a record
Length of 120 words.

All records in a direct access file must have the
same length.

5-1

The record length for a formatted direct access
file is specified in characters. The record length
for an unformatted direct access file is specified
in words. If the iolist for an unformatted WRITE
contains character data, the record length to be
written must still be specified in words: it can be
determined by the following rules:

1. Each noncharacter item counts as one word
except for double precision and complex items,
which count as two words.

2. The length in words of each contiguous group of
character items is determined by adding 9 to
the combined length of the items in characters
and dividing this result by 10, discarding the
fractional part.

3. The lengths calculated in steps and 2 are
added to determine the record length in words.

See figure 5-1 for an example of record length
calculation.

CHARACTER A•7,B•9,C•10,D•20,E•15,F•12
INTEGER IA,IB,IC,IDC5)
OPEN C5,ACCESS='DIRECT',

+FORM='UNFORMATTED',RECL=16)
WRITE C5,REC=1) A,B,IA,C,IB,E,D,ID,F

The length of the output record is determined by
the following calculation:

(length of A + length of B + 9)/10 2 words
IA 1 word
(length of c + 9)/10 1 word
IB 1 word
(length of E + length of D + 9)/10 4 words
ID 5 words
(length of F + 9)/10 2 words

Record Length = 2+1+1+1+4+5+2=16 words

Figure 5-1. Direct Access File Record
Length Calculation Example

A record nunber identifies a record in a direct
access file. The record ntmber is a positive
decimal integer that is assigned when the record is
written. Once a record number is assigned to a
record, the record can always be accessed by that
record number. The order of record numbers is the
order of records on a direct access file.

Records can be written, rewritten, or read by
specifying the record number in a READ or WRITE
statement. Records can be read or written in any
order; they need not be referenced in the order of
their record numbers. The number of the record to
be read or written is specified in a READ or WRITE
statement with the REC= parameter.

The REC= parameter, on a direct access READ state­
ment, must not be set to a record number greater
than the highest record number written in the
file. An attempt to read record numbers greater
than the highest in the file can return unpredict­
able data without any error being reported.

5-2

If the length of the iolist in a direct access
formatted WRITE statement is less than the record
length of the direct access file, the unused
portion of the record is blank filled. A direct
access WRITE statement must not write a record
longer than the record length.

A direct access file can be opened for formatted or
unformatted input/output. However, neither list
directed nor namelist input/output can be used with
direct access files.

An internal file cannot be opened for direct
access. A discussion of internal files follows in
this section.

See figure 5-2 for examples of direct access file
access.

Ex amp le 1:

WRITEC2,'C3E10.4)',REC=6>A,B,C
WRITEC2,'C2I4,G20.10)',REC=1>I,J,X

Variables A, B, and C are written to record
number 6, and variables I, J, and X are
written to record number 1 of the direct
access file associated with unit 2.

Example 2:

OPENC2,FILE='DARG',ACCESS='DIRECT',
+FORM='FORMATTED',RECL=72)

DO 14 !=10,2,-2
READC2,99,REC=I,ERR=20) CACJ>,J=1,6)

99 FORMAT C6E12.6)

14 CONTINUE

Records 10, 8, 6, 4, and 2 are read from the
direct access file DARG.

Figure 5-2. Direct Access File
Processing Examples

60481300 G

INPUT/ OUTPUT LISTS
The list portion of an input/output statement
specifies the items to be read or written and the
order of transmission. The input/output list can
contain any number of items. List items are read
or written sequentially from left to right.

If no list appears on input, one or more records
are skipped. Only information completely contained
within the FORMAT statement, such as character
strings, can be output with a null (empty) output
list. If the input/output list contains redundant
parenthesis, a fatal error is issued.

A list item consists of a variable name, an array
name, an array element name, a character substring
name, or an implied DO list. On .~,~.7~~T.!· the list
items can also include character, B::ilJi~-;, logical,
or arithmetic expressions. No expression in an
input/ output list can reference a function if such
reference either would cause any input/output
operations to be executed or would cause the value
of any element of the input/output statement to he
changed. List items are separated by connnas.

An array name without subscripts in an input/output
list specifies the entire array in the order in
which it is stored. The entire array (not just the
first word of the array) is read or written.
Assumed-size array names are illegal in input/
output lists.

Subscripts in an input/output list can be written
as any valid subscript form described in section 1.

See figure 5-3 for input/output list examples.

Input record contains data:

100223456712

Example 1:

READ (2,100) A,B,C,D
READ (3,200) A,B,C(I),D(3,4),E(I,J,7),H
READ (4,101) J,ACJ>,I,BCI,J)
WRITE (2,202) DELTA
WRITE (4,102) DELTA(5*J+2,S*I-3,5*K),C,D(I+7)

On formatted input or output, the iolist is
scanned and each item in the list is paired
with the field specification provided by the
FORMAT statement. After one item has been
input or output, the next format specifica­
tion is taken together with the next element
of the list; and so on, until the end of the
Li st.

Example 2:

READ (5,20) L,M,N
20 FORMAT (I3,I2,I7)

100 is read into the variable L under the
specification I3. 22 is read into Munder
the specification 12, and 3456712 is read
into N under specification I7.

Figure 5-3. Input/Output List Examples

60481300 F

IMPLIED DO IN INPUT/OUTPUT
LIST

An implied DO specification has the following form:

(dlist,i=el,e2 [,e3])

The elements i, el,e2, and e3 have the same meaning
as in the DO statement, and dlist is an input/output
list. The range of an implied DO specification is
that of dlist. The value of i must not be changed
within the range of the implied DO list by a READ
statement. ·changes to the values of el, e2, and e3
have no effect upon the execution of the implied
IX>. However, their values can be changed in a READ
statement if they are outside the range of the
implied DO, and the change does have effect. For
example,

READ 100, K, (A(I),I=l,K)

reads a value in to K and uses that value as the
terminal parameter of the implied DO.

The statements:

K=2
READ 100, (A(I),I=l,K)

100 FORMAT (Fl0.3)

read two records, each containing a value for A.

An implied DO can be used to transmit a simple
variable more than one time. For example, the list
(A(K),B,K=l,5) causes the variable B to be trans­
mitted five times.

Input/ output of array elements can be accomplished
by using an implied DO. The list of variables
followed by the DO index is enclosed in parentheses
to form a single element of the input/output list.
For example,

READ (5,100) (A(I),I=l,3)

has the same effect as the statement:

READ (5,100) A(l),A(2),A(3)

Also,

WRITE (3,20) (CAT,DOG,RAT,I=l,10)

causes CAT, DOG, and RAT to be written 10 times
each.

A variable cannot be used as a control variable
more than once in the same implied DO nest, but
iolist items can appear more than once. The value
of a control variable within an implied DO specifi­
cation is defined within that specification. On
exit from the implied DO specification the control
variable retains the first value to exceed the
upper limit (e2).

The implied DO can be nested: that is, the iolist
in an implied DO can itself contain an implied DO.
The first (innermost) control variable varies most
rapidly, and the last (outermost) control variable
varies least rapidly. For example, a nested
implied DO with two levels has the form:

((list,vl=el,e2,e3),v2=eel,ee2,ee3)

5-3

Nested implied :00 loops are executed in the same
manner as nested DO statements.

The nested form can be used to read into and write
from arrays. See figure 5-4 for examples.

Each execution of an input or output statement
transmits at least one record regardless of the
FORMAT statement. Once a READ is initiated, the
FORMAT statement determines when a new record will
be transmitted. See figure 5-5 for examples.

FORMAT SPECIFICATION
Format specifications are used in conjunction with
formatted input/output statements to produce output
or read input that consists of strings of display
code characters. On input, data is converted from
a specified format to its internal binary represen­
tation. On output, data is converted from its
internal binary representation to the specified
format before it is transmitted. Formats can be
specified by: ·

The statement label of a FORMAT statement.

An integer variable which has been assigned the
statement label of a FORMAT statement (see
ASSIGN statement).

A character array name or any character expres­
sion, except one involving assuned-length
character entities.

The following paragraphs discuss FORMAT statements,
character format specifications, noncharacter
format specifications, edit descriptors, and execu­
tion time format specification

Example 1:

Example 1:

READ <5,100) CVECTOR CI),I=1,10)
100 FORMAT CF7.2)

Reads one number from each record into the
elements VECTORC1) through VECTORC10) of the
array VECTOR. The READ statement is encoun­
tered each time the DO loop is executed; and
a new record is read for each element of the
array.

Example 2:

DO 40 I = 1, 10
40 READ C5,100) VECTOR CI)

100 FORMAT CF7.2)

Same effect as example 1.

Example 3:

READ CS,100) CVECTOR CI),I=1,10)
100 FORMAT C4F7.2)

Reads only 3 records, with 10 values read.

Example 4:

DO 40 I = 1, 10
40 READ CS,100) VECTOR CI)

100 FORMAT C4F7.2)

Reads 10 records and 10 values, as in
example 2.

Figure 5-5. Format Terminating Data
Read Examples

READ C2,100) ((A(JV,JX),JV=2,20,2),JX=1,30)
READ C2,300) CCCITMLISTCI,J+1,K-2>,I=1,25),J=2,N>,

+K=IVAR,IVMAX,4)

Example 2:

DIMENSION VECTOR C3,4, 7)

READ C3,100) VECTOR
100 FORMAT CI6)

is equivalent to

DIMENSION VECTORC3,4,7)
READ (3,100) CCCVECTORCI,J,K),I=1,3),J=1,4),K=1,7)

100 FORMAT CI6)

Example 3:

READ C1,100) ((ECI,J),J=1,3),I=1,3)

Transmits nine elements into the array E in the order:

EC1,1), EC1,2), EC1,3>, EC2,1>, EC2,2), EC2,3), EC3,1), EC3,2), EC3,3)

Figure 5-4. Implied DO in Input/Output List Examples

5-4 60481300 F

FORMAT STATEMENT

The FORMAT statement (figure 5-6) is a nonexecut­
able statement which specifies the formatting of
data to be read or written with formatted I/O.

sl FORMAT (flist)

sl Is a statement label.

flist Is a list of items, separated by commas,
having the following forms:

[r] ed
ned
[r] (flist)

ed Is a repeatable edit descriptor.

ned Is a nonrepeatable edit descriptor.

Is a nonzero unsigned integer constant
repeat specification.

Figure 5-6. FORMAT Statement

The FORMAT statement is used in conjunction with
formatted input and output statements. It can
appear anywhere in the program after the PROGRAM,
FUNCTION or SUBROUTINE statement. An example of a
FORMAT statement and its associated READ statement
is as follows:

READ (5 , 100) INK, NAME, AREA
100 FORMAT (10X,I4,I2,F7.2)

The format specification consists of edit descrip­
tors in parentheses. n1anks are not significant
except in H, quote, and apostrophe descriptors.

Generally, each item in an input/output list is
associated with a corresponding edit descriptor in
a FORMAT statement. The FORMAT statement specifies
the external format of the data and the type of
conversion to be used. Complex variables always
correspond to two edit descriptors. Double preci­
sion variables correspond to one edit descriptor
when using D, E, F, or G; otherwise, they
correspond to two edit descriptors. The D edit
descriptor corresponds to exactly one list item.
Complex editing requires two (D, E, F, G)
descriptors; the two descriptors can be different.

The type of conversion should correspond to the
type of the variable in the input/output list. The
FORMAT statement specifies the type of conversion
for the input data, with no regard to the type of
the variable which receives the value when reading
is complete. For example, the statements

INTEGER N
READ (5, 100) N

100 FORMAT (Fl0.2)

will assign a floating point ntnnber to the variable
N which could cause unpredictable results if N is
referenced later as an integer.

60481300 G

CHARACTER FORMAT SPECIFICATIONS

A format specification can also be specified as a
character expression or as the name of a character
variable or array containing a format specifica­
tion. The form of these format specifications is
the same as for FORMAT statements without the
keyword FORMAT. Any character information beyond
the terminating parenthesis is ignored. The
initial left parenthesis can be preceded by blanks.
See figure 5-7 example 1.

Example 1:

CHARACTER FORM•11
DATA FORM/'CI3,2E14.4)'/
READ C2,FMT=FORM,END=50) N,A,B

is equivalent to

READ C2,FMT=100,END=50) N,A,B
100 FORMAT CI3,2E14.4)

The examples above can also be expressed as:

READ C2,FMT='CI3, 2E14.4)',END=50) N,A,B
or

CHARACTER FORM•(•)
PARAMETER CFORM='CI3,2E14.4)')
READ C2,FMT=FORM,END=50) N,A,B

Example 2:

CHARACTER ARC2>•10
DATA AR/'C10X,2I2,1','0X,F6.2)'/
READ CS,AR) I,J,X

is equivalent to

READ CS,100> I,J,X
100 FORMAT C10X,2I2,10X,F6.2)

Figure 5-7. Character Format
Specification Examples

If a format specification is contained in a char­
acter array, the specification may cross element
boundaries. Only the array name need be specified
in the input/output statement; all information up
to the closing parenthesis is considered to be part
of the format specification. See figure 5-7
example 2.

EDIT DESCRIPTORS

~dit descriptors specify the data conversions to be
performed. Table 5-1 describes the repeatable edit
descriptors; table 5-2 describes the nonrepeatable
edit descriptors.

5-5

TABLE 5-1. REPEATABLE EDIT DESCRIPTORS

Descriptor
Type

Character

Character

Numeric

Logical

Descriptor

A

Aw

Dw.d

Ew.d

Ew.dEe

Fw.d

Gw.d

Gw.dEe

Iw

Iw.m

Lw

Description

Character with data­
dependent length

Character lii@Jgl~l~ld
with spec i Hed · .· ·
length

Double prec1s1on
floating-point with
exponent

Single precision
floating-point with
exponent

Single precision
floating-point with
explicitly specified
exponent length

Single precision
floating-point with­
out exponent

Single precision
floating-point with
or without exponent

Single precision
floating-point with
or without explic­
itly specified expo­
nent length

Decimal integer

Decimal integer with
minimum number of
dig its

Logical

In both tables, uppercase letters indicate the type
of conversion. Lowercase letters indicate user­
supplied information that has the following meaning:

5-6

w Nonzero unsigned integer constant specify­
ing the field width in number of character
positions in the external record. This
width includes any leading blanks, + or
- signs, decimal point, and exponent.

TABLE 5-2. NONREPEATABLE EDIT DESCRIPTORS

Descriptor
Type

Numeric
input
control

Scale
factor

Hollerith

Character
output

Skip
spaces

Numeric
output
control

Tabulation
Control

Format
control

End of
record

Descriptor

BN

BZ

kP

nH

nX

SP

SS

s

Tn

TRn

Tln

I

Description

Blanks ignored

Blanks treated as
zeros

Scaling for numeric
editing

Output Hollerith
string

Output character
string

Position forward

Plus signs (+) pro­
duced

Plus signs (+) sup­
pressed

Plus signs (+} sup­
pressed

Position forward or
backward

Position forward

Position backward

Terminate format
control

Indicates end of
current input or
output record

d Unsigned integer constant specifying the
number of digits to the right of the deci­
mal point within the field. On output all
numbers are rounded.

e Nonzero unsigned integer constant specify­
ing the nunber of digits in the exponent;
the value of e cannot exceed 6.

m Unsigned integer constant specifying the
minimum number of digits to be output.

k Integer constant scale factor.

n Positive nonzero decimal integer.

In table 5-1, the field width w must be specified
for all conversion codes except A.

The following paragraphs discuss input/output
conversions, field separators, repeatable and
nonrepeatable edit descriptors, and repetition
factors.

60481300 F

Input/ Output Conversions

For the D, E, F, and G input conversions, a decimal
point in the input field overrides the decimal
point specification of the field descriptor.

Leading blanks are not significant in numeric input
conversions; other blanks in numeric conversions
are ignored unless BLANK='ZERO' is specified for
the file on an OPEN statement or a BZ edit descrip­
tor is in effect. Plus signs can be omitted. An
all-blank field is considered to be zero, except
for logical input, where an all-blank field is
considered to be FALSE.

The output field is right-justified for all output
conversions. If the number of characters produced
by the conversion is less than the field width,
leading blanks are inserted in the output field
unless w.m is specified, in which case leading
zeros are produced as necessary. The number of
characters produced by an output conversion must
not be greater than the field width. If the field
width is exceeded, asterisks are inserted through­
out the field.

Complex data items are converted on input/output as
two independent floating-po int quantities. The
format specification uses two conversion elements.
See figure 5-8 for an example.

COMPLEX A,B,C,D
WRITE C6, 10) A

10 FORMAT CF7.2,E8.2)
READ CS,11) B,C,D

11 FORMAT C2E10.3,2CF8.3,F4.1))

Figure 5-8. Complex Data Item Format
Specification Example

Different types of data can be read by the same
FORMAT specification. For example,

10 FORMAT (15,Fl5.2)

specifies two values: the first of type integer,
the second of type real.

Example:

CHARACTER R*4
READ (5,15) NO,NONE,INK,A,B,R

15 FORMAT (315,2F7.2,A4)

reads three integer values, two real values, and
one character string.

Field Separators

Field separators are used to separate descriptors
and groups of descriptors. The format field separ­
ators are the slash (/), the comma, and the colon.
The slash is also used to specify demarcation of
formatted records.

60481300 F

Repeatable and Nonrepeatable Edit Descriptors

The repeatable edit descriptors are used to specify
numeric, logical, character, or Boolean data con­
versions. The repeatable edit descriptors can be
repeated by prefixing the descript0r with a nonzero
unsigned integer constant specifying the number of
repetitions required. The re~~~T~~~'.:<r~~!.t descrip­
tors are A, D, E, F, G, I, L, Q', .. !t,.:lil'Qd Z·

The nonrepeatable edit descriptors are used for
numeric input/output control, tabulation control,
character output control, format control, end-of­
record designation, and scaling for numeric editing.
The nonrepeatable edit descriptors cannot be
repeated. The nonrepeatable edit descriptors are '
and ", BN, BZ, : , /, nH, kP, S, SP, SS, Tn, TLn,
and TRn.

The following paragraphs discuss the repeatable and
nonrepeatable edit descriptors in alphabetical
order.

The A descriptor is used with an input/output list
item of type character or noncharacter. The fol­
lowing paragraphs discuss the A descriptor for
input/output list items of type character and
noncharac ter.

The form of the A descriptor for character list
items is:

A or Aw

On input, if w is less than the length of the list
item, the input quantity is stored left-justified
in the item; the remainder of the item is filled
with blanks. If w is greater than the length of
the item, the rightmost characters are stored and
the remaining characters are ignored. If w is
omitted, the length of the field is equal to the
length of the list item. See figure 5-9 for
examples.

On output, if w is less than the length of the list
item, the leftmost characters in the item are
output. For example, if a variable A, declared
CHARACTER A*8, contains

SAMPLE AA

and A is output with the statement

WRITE (6,'(1X,A4)')A

then the characters SAMP are output.

If w is greater than the length of the list item,
the characters are output right-justified in the
field, with blanks on the left. For example, if A
in the previous example is output with the state­
ments

WRITE (6,400)A
400 FORMAT (1X,Al2)

output is as follows:

AAMSAMPLEAA

5-7

Example 1 (character list item):

CHARACTER A*9
READ (5,100) A

100 FORMAT CA7>

Input record:

EXAMPLE

In location A:

EXAMPLE 66

Example 2:

CHARACTER B•10
READ C5,200)B

200 FORMAT CA13)

Input record:

1 13
SPECIFICATION

In location B:

10
CI FI CATION

Exa•ple 3:

CHARACTER P•8,Q•12,R*9
READ CS,10) P,Q,R

10 FORMAT CA8,A12,A5)

Input record:

THIS IS AN EXAMPLE I KNOW
~..____.,

8 12

Jn storage:

P THIS6IS6
Q ANllEXAMPLE&
R 6KNOW6666

5

Example 4:

CHARACTER NAME•30,PHONE*7
READ C5,'CA,A)') NAME,PHONE

Note that if no length is specified for an A edit
descriptor, the length of the list item is used.

Figure 5-9. A Input Examples

If w is omitted, the length of the character list
item determines the length of the output field.

5-8

Apostrophe ~!lltlll Descriptors

delimited by a pair of apostrophe
l:J!~~i}l,11 \~!I~! symbols can be used as alternate

forms specification for output. See
figure 5-10 for examples. The paired symbols
delineate the string. If the string is empty or
invalidly delimited, a fatal compilation error
occurs and an error message is printed. The apos­
trophe and quote descriptors must not be used on
input.

Example 1:

Source statements:

PRINT 10
10 FORMAT C' .11 SUBTOTALS')

Output (before printing):

6SUBTOTALS

Source statements:

WRITE C6,20>
20 FORMAT C' 6 RESULT OF CALCULATIONS IS t:.',

+'AS FOLLOWS')

Output (before printing):

6RESULT OF CALCULATIONS IS AS FOLLOWS

Example 2:

Source statements:

PRINT 3
3 FORMATC'6 DON' 'T')

Output (before printing):

6DON'T

Note that on some printers " is output as I and
' is output as t .

Figure 5-10. Apostrophe and Quote
Descriptor Examples

60481300 G

I

NOTE

It is preferable to use
descriptor instead of the

BN and BZ Blank Interpretation

the aspostrophe
descriptor.

a string delimited by

The nonrepeatable BN and BZ edit descriptors can be
used with the repeatable D, E, F, G, and I edit
descriptors, on input, to specify the interpreta­
tion of blanks (other than leading blanks). In the
absence of a BN or BZ descriptor, blanks in input
fields are interpreted as zeros or are ignored.
Their interpretation depends on the value of the
BLANK= parameter in the OPEN statement that is
currently in effect for the input/output unit.
BLANK='NULL' (blanks ignored) is the default for
input. If a BN descriptor is encountered in a
format specification, all blank characters in
succeeding numeric input fields are ignored; that
is, the field is treated as if blanks had been
removed, the remaining portion of the field
right-justified, and the field padded with leading
blanks. A field of all blanks has a value of zero.

If a BZ descriptor is encountered in a format
specification, all blank characters in succeeding
numeric input fields are interpreted as zeros.

For example, assuming BLANK='NULL', if the statement

READ (6,'(15, BZ, 13, BN, I3)')I,J,K

reads the input record

I, J, and Kare assigned the following values:

I = 1 J = 200 K = 3

Carriage ~ontrol Character

The carriage control character is the first char­
acter of a printer output record and is not printed.
It appears in other forms of output as data.
Carriage control also applies to records listed at
a terminal under INTERCOM; the meaning of carriage
control characters depends on the type of terminal.
(See the INTERCOM reference manual.) Carriage
control does not apply to records listed at a
terminal under the NOS time-sharing system; for
this system, the first character is listed as data.

The carriage control characters are shown in table
5-3.

For output directed to the card punch or any device
other than the line pl'.'inter or terminal, control
characters are not required. If carriage control
characters are tt"ansmitted to the card punch, they
are punched in column one.

Carriage contt"ol characters are required at the
beginning of every record to be printed, including

60481300 H

TABLE 5-3. PRINTER CONTROL CHARACTERS

Character

Blank

0

Action

Space vertically one line, then
print.

Space vertically two lines, then
print.

1 Eject to the first line of the next
page before printing.

+

< si't <c:
) ~;') ifl•

No advance before printing; allows
overprinting.

;.]< x717'7 ·~i • < .•. 7 '.>'./{ > i

new records introduced by means of a slash.
age control characters can be generated
means. See figure 5-11 for examples.

Carri­
by any

10 FORMAT C1HO,F7.3,I2,G12.6)

20 FORMAT (I fl. I ,IS, I RESULT= I ,F8.4)

30 FORMAT C'1 ',I4,2CF7.3))

40 FORMAT C1X,I4,G16.8)

Figure 5-11. Printer Carriage
Control Examples

Figure 5-12 shows a program using carriage control
characters; the resulting output produces a tic tac
toe diagram.

D Descriptor

The D descriptor specifies conversion between an
internal double precision real number and an
external floating-point number written with an
exponent. This descriptor has the form:

Dw.d

NOTE

The E descriptor is preferred over the D
descriptor.

On input, D editing corresponds to E editing and
can be used to input all the same forms as E.

The diagram in figure 5-13 illustrates the struc­
ture of the input field. It shows the characters
allowed to stat"t a subfield.

On output, type D conversion is used to output
double precision values. D conversion corresponds
to E conversion except that D replac~~ E at the

~i:;&~.~mill~ of .. ~P:~w ~~P?l1~P.~. ~~.bft~hd • ~£
.~e,·~.~~··········•·~·~·~·~·~·f·tT~·.••.•.~·~·L.· ~·~·~sr·~~~~s.r·.··•.·•·•··~~··········I .. : ~~··· the:field;./if i;'t i§J gµtpf· .··t~ng¢;.r~p,.g •
Furthet" description about how indefinite and
infinite values are generated and how they are
represented on various computer models can be found
in the glossary under the appropriate definition.
See figure 5-14 for examples of D output.

5-9

Example:

PROGRAM CHARCON
PRINT 10

10 FORMATC'1', 5X, 'HERE WE ARE AT THE TOP OF A NEW PAGE')
PRINT 20

20 FORMATC3C/))
c

DO 50 I=2, 8
IF CI .EQ. 4 .OR. I .EQ. 6) THEN

PRINT 30
30 FORMATC20X, I xxxxxxxxxx '/'+', 19X, I ========= 1)

ELSE
PRINT 40

40 FORMATC21X, I x x 1
,/

1 +•,2ox, I ')

END IF
50 CONTINUE
c

PRINT 60
60 FORMATC'O', 5X, 'BEGIN TIC TAC TOE ')

STOP
END

Output after printing on a line printer:

HERE WE ARE AT THE TOP OF A NEW PAGE

* *
* *

* *

* *
* *

BEGIN TIC TAC TOE

A '1' specification causes the first output line to appear at the top of a page. FORMAT statement 20
causes three lines to be skipped. In FORMAT statements 30 and 40, a slash skips to the next output record
and a plus character causes the record to begin on the same line as the previous record, resulting in
overprinting of a row of X characters and = characters. FORMAT statement 60 uses a '0' specification to
skip two lines before writing the last output line.

_,,,,--

I ;git
integer
subfield

5-10

Figure 5-12. Carriage Control Program Example

Input field

~

-----• 1~ ~ E

fraction exponent
subfield

Figure 5-13. D Input Field

DOUBLE PRECISION A,B,C
A= 111111.1111100
B = 222222.2222200
C = A + B
WRITE C2,10) A,B,C

10 FORMAT C3D23.11)

produces output of:

.111111111110+06

.333333333330+06
.222222222220+06

Figure 5-'f 4. D Output Example

60481300 H

The specification Dw.d produces output in the
following format:

s.a+eee

For values where the magnitude of the
exponent exceeds 100

s.aD+ee

For values where the magnitude of the
exponent is less than 100

s

Minus sign if the number is negative, or
blank if the nlDD.ber is positive

a

One or more most significant digits

ee

Digits in the exponent

E Descriptor

The E descriptor specifies conversion between an
internal real or double precision value and an
external number written with an exponent. This
descriptor has the forms:

Ew.d Ew.dEe

On input, the width w includes pl us or minus signs,
digits, decimal point, E, and exponent. If an
external decimal point is not provided, d acts as a
negative power-of-10 scaling factor. The internal
representation of the input quantity is:

(integer subfield) X lo-d x 10 (exponent
subfield)

For example, if the specification is
input quantity 3267E+OS is converted
as: 3267 X lo-8 X 105 = 3.267.

ElO. 8, the
and stored

If an external decimal point is provided, it over­
rides d; e, if specified, has no effect on input.
An input field consisting entirely of blanks is
interpreted as zero.

The diagram in figure S-15
ture of the E input field.
allowed to start a subfield.

i 11 ustra tes the struc­
It shows the characters

input field

~-----------~----------~-

integer
subfield

•

fraction exponent
subfield

Figure 5-15. E Input Field

60481300 F

The integer subfield begins with a + or - sign, a
digit, or a blank; and it can contain a string of
digits. The integer field is terminated by a
decimal point, E, +, - or the end of the input
field.

The fraction subfield begins with a decimal point
and terminates with an E, +, -, or the end of the
input field. It can contain a string of digits.

The exponent subfield can begin with E, + or -
When it begins with E, the + is optional between E
and the string of digits in the subfield. For
example, the following are valid equivalent forms
for the exponent 3:

E+ 03 E 03 E03 E3 +3

The range, in absolute value, of permissible values
is approximately lo-293 to 10322. Numbers
below the range are treated as zero; numbers above
the range cause a fatal error message.

Valid subfield combinations are as follows:

+l. 6327E-04

Integer-fraction-exponent

-32. 7216

Integer-fraction

+328+5

Integer-exponent

.629E-l

Fraction-exponent

+136

Integer only

136

Integer only

.07628431

Fraction only

If the field length specified by w in Ew.d is not
the same as the length of the field containing the
input number, incorrect numbers might be read,
converted, and stored.

The example in figure S-16 illustrates a situation
where nun.hers are read incor-rectly, converted, and
stored; yet there is no immediate indication that
an error has occurred. First, +647E-01 is read,
converted and placed in location A. The second
specification E7. 2 exceeds the width of the second
field by two characters. The ntunber -2.36+5 is
read instead of -2.36. The specification error
(E7. 2 instead of ES. 2) caused the two extra char­
acters to be read. The nunber read (-2.36+5) is a
legitimate input number. Since the second specifi-

5-11

OPEN (3.BLANK='ZERO')
READ (3.20) A,B,C

20 FORMAT (E9.3,E7.2.E10.3)

On the input record, quantities are in three adjacent
fields, columns 1 through 24:

(+s.41e-01 l-2.Js l+s.J21 e+o2 j
~ '-v-' ..._,_,_..,

9 5 10

would be read as:

9 7

1+6.47E-01j l
-1--2.--36+-5~,

10

I
1.321E+02M I

Figure 5-16. Example Showing E Input
Incorrectly Read

cation incorrectly took two digits from the third
number, the specification for the third number is
now incorrect. The field • 321E+o266 is read.
The OPEN statement specifies that trailing blanks
are to be treated as zeros; therefore the number
.321E+0200 is read converted and placed in location
C. Here again, this is a legitimate input number
which is converted and stored, even though it is
not the number desired.

Some additional examples of Ew.d input specifica­
tions are shown in table 5-4.

On output, the width w must be sufficient to
contain digits, plus or minus signs, decimal point,
E, the exponent, and blanks. Generally, w must be
at least (d+6) or (d+e+4) for negative numbers, and
w must be at least (d+5) or (d+e+3) for positive

Input Field Specification

+l43.26E-03 Ell .2

327.625 E7.3

-.0003627+5 Ell. 7

-.0003627E5 E 11. 7

blanks E4. l

E+06 El0.6

5-12

TABLE 5-4.

Converted
Value

0.14326

327.625

-36. 27

-36. 27

0.

0.

numbers. Positive numbers need not reserve a space
for the sign of the number unless an SP specifica­
tion is in effect. If the field is not wide enough
to contain the output value, asterisks are inserted
throughout the field. If the field is longer than
the output value, the is right-justified
with blanks the ~~~f

9~~,~~~~~·•••••··~•~. . .. ··.•>~~.n
p•;;~+~··~········••;J.t •• ·t:!-t p~;J.i9~f!i:!+
Further description indefinite and
infinite values are generated and how they are
represented on various computer models can be found
in the glossary under appropriate definition.

The Ew.d specification produces output in the
following formats:

s .a ••• aE + ee

For values where the magnitude of the
exponent is less than 100

s .a ••• a + eee

s

For values where the magnitude of the
exponent exceeds 100

Is a minus sign if the number is negative,
and omitted if the number is positive

a ••• a

Are the most significant digits of the
value correctly rounded

When the specification Ew.dEe is used, the exponent
is preceded by E, and the number of digits used for
the exponent field not counting the letter and sign
is determined by e. If e is specified too small
for the value being output, the entire field width
as specified by w will be filled with asterisks.

If an integer variable is output under the Ew.d
specification, results are unpredictable since the
internal formats of real and integer values
differ. An integer value normally does not have an
exponent and will be printed, therefore, as a very
small value or O.O. See figure 5-17 for examples.

Ew.d INPUT EXAMPLES

Remarks

All subfields present.

No exponent subfield.

Integer subfield only a minus sign and a plus sign
appears instead of E.

Integer subfield left of decimal contains minus
sign only.

All subfields empty.

No integer or fraction subfield: zero stored re­
gardless of exponent field contents.

60481300 G

Example 1:

Source data:

-67.32 or +67.32

WRITE C2, 10) A
10 FORMAT CE9.3)

Output (before printing):

-.673E+02 or 6.673E+02

Example 2:

Source data:

-67.32 or +67.32

WRITE C2,10) A
10 FORMAT CE12.3)

Output (before printing):

666-.673E+02 or 666.6.673E+02

Figure 5-17. Integer Variable Ew.d
Specification Examples

Example 1:

WRITE (2, 10>
10 FORMAT C6X,7HHEADING///1X,5HINPUT,

+7H60UTPUT>

Output (before printing>:

666.666. HEADING
[blank Line]
[blank line]
6INPUT OUTPUT

End-of-Record Slash

The slash indicates the end of a record anywhere in
the FORMAT specification. When a slash is used to
separate edit descriptors, a comma is allowed but
not required. Consecutive slashes can be used and
need not be separated from other elements by
comm.as. When a slash is the last format specifica­
tion to be processed, it causes a blank record to
be written on output or an input record to be
skipped. Normally, the slash indicates the end of
a record during output and specifies that further
data comes from the next record during input. See
figure 5-18 for examples.

F Descriptor

The F descriptor specifies conversion between an
internal real or double precision ntmber and an
external floating-point number without an exponent.
This descriptor has the form:

Fw.d

On input, the F specification is treated the same
as the E specification. See table 5-5 for examples
of F input.

On output, the F descriptor outputs a real number
without a decimal exponent.

Each line corresponds to a formatted record. The second and third records are blank.

Example 2:

1=5
J=6
K=7
WRITE C2,1) I,J,K
FORMAT C3I5/F10.4)
WRITE C2,2)

2 FORMAT (' 6 A BLANK LINE SHOULD PRECEDE 6. 1
,

+THIS LrnE • >

Output <before printing):

66.66 5 6.6.6.6. 6 6.6.66. 7
[blank Line]

AA BLANK LINE SHOULD PRECEDE THIS LINE

The variable list CI,J,K) is exhausted and processing continues until a variable conversion is
encountered CF10.4>. Since the slash has been processed, it causes a blank Line to be printed;
F10.4 is ignored because there is nothing to be converted.

Figure 5-18. End-of-Record Slash Examples (Sheet 1 of 2)

60481300 F 5-13

Example 3:

DIMENSION 8(3)
READ C5,100) IA,B

100 FORMAT CI5/3E7.2)

The statements read two records: the first contains an integer number, and the second contains three
real numbers.

Example 4:

WRITE C3,11> A,B,C,D
11 FORMAT C1X,2E10.2/1X,2F7.3)

In storage:

A -11.6
B .325
c 46.327
D -14.261

Output (before printing):

/J.AA-. 12E+02llAll. 33E+OO
AA 46.327-14.261

Example 5:

WRITE C1,11) A,B,C,D
11 FORMAT C1X,2E10.2//1X,2F7.3)

Output (before printing):

AAA-. 12E+02AAA. 33E+OO
[blank lineJ
AA46.327-14.261

The second slash causes the blank line.

Figure 5-18. End-of-Record Slash Examples (Sheet 2 of 2)

TABLE 5-5. F INPUT EXAMPLES

Input Field Specification Converted Remarks Value

367.2593 F8.4 367.2593 Integer and fraction field.

• 62543 F6.5 .62543 No integer subfield •

.62543 F6.2 .62543 Decimal point overrides d of specification.

+144.15E-03 Fll .2 .14415 Exponents are allowed in F input.

50000 F5.2 500.00 No fraction subfield; input number converted
50000xl0-2 •

llAAAll F5.2 0 Blanks in input field interpreted as O.

as

5-14 60481300 F

The plus sign is suppressed for positive numbers.
If the field is too short, all asterisks appear in
the output field. If the field is longer than
required, the number i~ ri~ht ... jus~ifieci ~i~~ • ~lanks
9n · ... the l~ft. J:f <~};ie Yi\'ll~e]:)e~l;\8 C<;)µy~i:-ted . is
i~<lefin.i~~,. ~~· J .i.~ ~~iti!T:<l i.n J::l'le {i~ld; H :it is
out of :t;'i\l,lge~ aµ J,l is pdn.ted• Further description
about how indefinite and infinite values are
generated and how they are represented on various
computer models can be found in the glossary under
the appropriate definition.

The specification Fw.d outputs a number in the
following format:

sn.n

n Is a field of decimal digits

s Is a minus sign if the number is negative,
or omitted if the number is positive

See table 5-6 for examples of F output.

G Descriptor

The G descriptor specifies conversion between an
internal real or double precision number and an
external floating-point number written either with
or without an exponent, depending on the magnitude
of the number. This descriptor has the forms:

Gw.d Gw.dEe

On input, the G specification is treated the same
as the E specification. The rules which apply to
the E specification also apply to the G specifica­
tion. For example,

READ (5,11) A,B,C
11 FORMAT (Gl3.6,2Gl2.4)

On output, results depend on the size of the
floating-point number being edited. For values in
the range greater than or equal to .1 and less than
lOd the number is output under F format. For
values outside this range, Gw.d output is identical
to Ew.d and Gw.dEe is identical to Ew.dEe.

If a number is output under the Gw.d specification
without an exponent, four spaces are inserted to
the right of the field (these spaces are reserved

TABLE 5-6.

Value of A FORMAT Statement

+32.694 10 FORMAT (lHll. ,F6.3)

+32.694 11 FORMAT (lHll. ,Fl0.3

-32. 694 12 FORMAT (lH6 ,F6.3)

.32694 13 FORMAT (1H6 ,F4.3,F6.3)

32.694 14 FORMAT (lHA ,F6.0)

for the exponent field E+ee). Therefore, for
output under G conversion, w must be greater than
or equal to d+6. The 6 extra spaces are required
for sign and decimal point plus four spaces for the
exponent field. If the Gw.dEe form is used for a
number output without an exponent, then e+2 spaces
are inserted to the right of the field. See figure
5-19 for examples.

H Descriptor

The H descriptor is used to output strings of
characters. This descriptor is not associated with
a variable in the output list. The H descriptor
has the form:

nHstring

n Is the number of characters in the
string including blanks

string Is a string of characters

The H descriptor cannot be used on input.

Note that although using apostrophes to designate a
character string precludes the need to count
characters, the H descriptor may be more convenient
if the string contains apostrophes. See figure
5-20 for example.

I Descriptor

The I descriptor specifies integer conversion.
This descriptor has the forms:

Iw Iw.m

On input, the plus sign can be omitted for positive
integers. When a sign appears, it must precede the
first digit in the field. The Iw and Iw.m specifi­
cations have the same effect on input. An all
blank field is considered to be zero. Decimal
points are not permitted. The value is stored in
the specified variable. Any character other than a
decimal digit, blank, or the leading plus or minus
sign in an integer field on input will cause an
error. See figure 5-21 for examples of I input.

F OUTPUT EXAMPLES

PRINT Statement Output (Before
Printing)

PRINT 10,A ll.32.694

PRINT 11,A fl./);.fl./);./);. 32. 694

PRINT 12,A A******

PRINT 13,A,A A .327 Ah. .327

PRINT 14,A h.ll.AA 33.

The specification lH 6 is the carriage control character.

60481300 G 5-15

On output, if the integer is positive, the plus
sign is suppressed unless an SP specification is in
effect. Leading zeros are suppressed.

If Iw.m is used and the output value occupies fewer
than m positions, leading zeros are generated to
fill up to m digits. If m=O, a zero value will

Example 1:

Y=77 .132
WRITE C7 ,200> Y

200 FORMAT (610.3)

Output (before printing):

Example 2:

EXIT=1214635 .1
WRITE C4,100) EXIT

100 FORMAT (610.3)

Output (before printing):

llll.121 E+07

Example 3:

READ C5,50) SAMPLE
50 FORMAT CE20.5)

WRITE C6,60) SAMPLE
60 FORMAT C1X,614.8)

Data Read By
READ Statement

Output
(before printing)

Format
Option

.1415926535 E-10
Allll. 8979323846
6/lll. 2643383279.
At:,.A-693.9937510

llll.14159265E-10 E conversion
ll/l .89793238 F conversion
llll.26433833E+10 E conversion
ll-693.99375 F conversion

5-16

Figure 5-19. 6 Output Examples

Source statements:

A = 1.5
WRITE C2,30> A

30 FORMAT C6HALMAX=,F5.2)

Output (before printing):

llLMAX= 1. 50

Replacing the H descriptor in the preceding
example with ' llLMAX=' would produce the same
output.

Figure 5-20. H Descriptor Example

produce all blanks. If m=w, no b tanks will occur
in the field when the value is positive, and the
field will be too short for any negative value. If
the field is too short, asterisks occupy the field.

Figure 5-22 shows some examples of I output.

OPEN C2,BLANK='NULL')
READ C2,10> I,J,K,L,M,N

10 FORMAT CI3,I7,I2,I3,I2,I4)

Input Record:

139 llllllll-1518 llA 7 llll.61 ll 4

In storage:

I contains 139
J contains -15
K contains 18

L contains 7
M contains 0
N contains 14

If BLANK='ZERO' were specified on the OPEN
statement, J would contain -1500 and N would
contain 104. Other values would not be affected.

Figure 5-21. I Input Example

Example 1:

PRINT 10,I,J,K
10 FORMAT CI9,I10,I5.3)

I contains -3762
J contains +4762937
K contains +13

Output (before printing):

C
llllllA -3762 I lltJ.6 4762937lllll013I
~~---

8 10 5

First blank taken as printer
control character.

Example 2:

WRITE C6,100)N,M,I
100 FORMAT CI5,I6,I9)

N contains +20
M contains -731450
I contains +205

Output (before printing):

4 6~ C
llll6 20 I****** I ll.66llllA205 I
'-v-"'--~

First blank taken Specification too
as printer control small, * indicates
character. field is too short.

Figure 5-22. I Output Examples

60481300 F

L Descriptor

The L descriptor is used to input or output logical
items. This descriptor has the form:

Lw

On input, if the first nonblank characters in the
field are T or • T, the logical value • TRUE. is
stored in the corresponding list item, which should
be of type logical. If the first nonblank charac­
ters are F or .F, the value .FALSE. is stored. If

the first nonblank characters ar~ .. ~~.~ .~' ... :3.t ~l <>:~
printed • & \8:11.: tiilauitc p±eld

On output, variables \lllder the L specification
should be of type logical. A value of .TRUE. or
.FALSE. in memory is output as a right-justified T
or F with blanks on the left. See figure 5-23 for
examples of L output.

60481300 H

LOGICAL I,J,K
I • TRUE.
J = • FALSE.
K = • TRUE.
WRITE C4,5) I,J,K

5 FORMAT C3L3)

Output (before printing):

Figure 5-23. L Output Example

Tl-ie P descriptor is used to change the position of
a decimal point of a real number when it is input
or output. The P descriptor has the form:

kP

where k is a signed or unsigned integer constant
called the scale factor.

Scale factors can either precede D, E, F, and G
format specifications or appear independently.
Forms are as follows:

kPDw.d

kPEw.dEe

5-17

kPEw.d

kPFw.d

kPGw.d

kP

A scale factor of zero is established when each
FORMAT specification is first referenced; it holds
for all F, E, G, and D field descriptors until
another scale factor is encountered.

Once a scale factor is specified, it holds for all
D, E, F, and G descriptors in that FORMAT specifi­
cation until another scale factor is encountered.
To nullify this effect for subsequent D, E, F, and
G descriptors a zero scale factor (OP) must be
specified. For example,

15 FORMAT(2P,El4.3,Fl0.2,Gl6.2,0P,4Fl3.2)

The 2P scale factor applies to the E14.3 format
specification and also to the Fl0.2 and G16.2
format specifications. The OP scale factor
restores normal scaling (100 = 1) for the sub­
sequent specification 4Fl3.2.

Example:

20 FORMAT(3P,5X,E12.6,F10.3,0PD18.7,-1P,F5.2)

El2.6 and Fl0.3 specifications are scaled by 103.
The 018.7 specification is not scaled, and the FS.2
specification is scaled by lo-1

The specification (3P,319,Fl0.2) is the same as the
specification (3I9,3PF10.2).

On input, for F, E, D, and G editing, the number
is divided by lQk and stored, provided that the
nunber in the input field does not have an exponent.
For example, if the input quantity 314.1592 is read
under the specification 2PF8.4, the internal number
is 314.1592 X l0-2 = 3.141592. However, if an
exponent is read the scale factor is ignored.

On output, for F editing, the number in the output
field is the internal number multiplied by lOk.
In the output representation, the decimal po.int is
fixed; the number is adjusted to the left or right,
depending on whether the scale factor is plus or
minus. For example, the internal number
-3.1415926536 can be represented on output under
scaled F specifications as shown in figure 5-25.

(-1PF13.6)
(F13.6)
(1PF13.6)
(3PF13.6)

-.31~159
-3.1Ll1593

-31.41592'7
-3141.5926::>4

Figure 5-25. Scaled F Output

For E and D editing, the effect of the scale factor
kP is to shift the output coefficient left k places
and reduce the exponent by k. In addition, the
scale factor controls the decimal normalization

5-18

between the coefficient and the exponent such
that: if k is less than or equal to O, there will
be exactly -k leading zeros and d+k significant
digits after the decimal point; if k is greater
than 0, there will be exactly k significant digits
to the left of the decimal point and d-k+l ·signifi­
cant digits to the right of the decimal point. For
example, the number -3.1415926536 is represented on
output under the indicated Ew.d scaling as shown in
figure 5-26.

(-3PE20.4)
(-1PE20.4)
(E20.4)
(1PE20.4)
(3PE20.4)

-.0003E+U4
-.0314E+02
-.3142F.+01

-3.1416f+OO
-314.16E-02

Figure 5-26. Scaled E Output

For G editing, the effect of the scale factor is
nullified unless the magnitude of the number to be
output is outside the range that permits effective
use of F conversion (namely, unless the number N is
less than 10-l or greater than or equal to
lOd). In these cases, the scale factor has the
same effect as described for Ew.d and Dw.d
scaling. For example, the numbers -3.1415926536
and -.00031415926536 are represented on output
under the indicated Gw.d scaling as shown in figure
5-27.

(-3PG20.6)
(-1PG20.6)
(G20.6)
(1PG20.6)
(3PG20.6)
(5PG20.6)
("(PG20.6)

{-3PG20.6)
(-1PG20.6)
(G2U.6)
(1PG20.6)
(3PG2CJ.6)
(5PG20.6)
("(PG20.6)

-3.14159
-3.14159
-3. Pl 15~1
-3.11n59
-3.14159
-3.1!1159
-3.14159

-.00031LIE+OO
-.031416£-02
-.314159E-OJ
-3.141593E-04
-314.1593E-06
-31'I1':>.93E-08
- 3 1 JI 1 5 9 3 . E - 1 0

Figure 5-27. Scaled G Output

60481300 H

I

I
S, SP, SS Plus Sign Control

The nonrepeatable S, SP and SS edit descriptors can
be used on output with the repeatable D, E, F, G,
and I edit descriptors to control the printing of
plus (+) characters. S, SP and SS have no effect
on input.

Norm.ally, FORTRAN does not precede positive nlDllbers
by a plus sign on output. If an SP descriptor is
encotmtered in a format specification, all succeed­
ing positive numeric fields will contain the plus
sign (w must be of sufficient length to include the
sign). If an SS or S descriptor is encountered,
the optional plus signs will not appear.

S, SP, and SS have no effect on plus signs pre­
ceding exponents, since those signs are always
provided. See figure 5-29 for examples of sign
control.

A = 10.5
B 7.3
c 26.0
WRITE C2,'C1X,F6.2,SP,F6.2,SS,F6.2)') A,B,C

Output (before printing):

llll 10. 50 6 + 7 • 30 6 26. 00

Figure 5-29. Sign Control Example

The T, TL, and TR descriptors provide for tabula­
tion control. These descriptors have the forms:

Tn TLn TRn

n Is a nonzero unsigned decimal integer

60481300 H

When a Tn descriptor is encountered in a format
specification, input or output control skips right
or left to column n; the next edit descriptor is
then processed.

When a TLn descriptor is encountered, control skips
backward (left) n columns. If n is greater than or
equal to the current character position, control
skips to the first character position.

When a TRn descriptor is encountered, control skips
forward (right) n characters. TRn is the same as
nX.

On card input, control can be positioned beyond
collunn 80, but a succeeding descriptor would read
only blanks.

See figure 5-30 for tabulation control examples.

Example 1:

READ 40, A,B,C
40 FORMAT CT2,F5.2,TRS,F6.1,TR3,F5.2)

Input:

ll684. 73llllll6ll2436. 2 llllllll 89 .14

A is set to 684.7, B to 2436.0, and C to 89.0.

Example 2:

WRITE (31,10)
10 FORMAT CT20,'LABELS')

Control positions to column 20 of the output
record and writes the characters LABELS.

Example 3:

READ C2,'CF5.2,TL5,F5.2)') A,B

Input record:

76.05

The same information is read more than once.
Both A and B contain 76.05.

Figure 5-30. T, TL, and TR
Descriptor Examples

With a T, TR, or TL specification, the order of a
list need not be the same as that of the input or
output record. The same information can be read
more than once as shown in figure 5-33 example 3.

When a T, TR, TL specification causes control to
pass over character positions on output, positions
not previously filled during record generation are
set to blanks; those already filled are left
unchanged. An example is shown in figure 5-31.

5-19

Vl
I
~

(7\

0
4:-
00
w
0
0
"Zj

PROGRAM TEST
FORMAT(l2('0123456789'))
PRINT 1
PRINT 60

60 FORMAT(T80,'COMMENTS' ,T60,'HEADING4' ,T40,
+ 'HEADING3' ,T20,'HEADING2' ,T2,'HEADING1')

PRINT 10
10 FORMAT(20X,'THIS IS THE END OF THIS RUN' ,T52,'HONEST')

PRINT 1
STOP
END

Line Printer Output:

123456789012345678Q0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
HEADING I HEAOING2 HEADING3 HEAOING4 COMMENTS

THIS IS THR RND OF THIS RUN HONEST

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

For the FORMAT statement labeled 60, control passes over the first print position (the one used for
carriage control); therefore, it is automatically set to a blank, which causes the line to be singl~ spaced.

Figure 5-31. T Output Example

The following example shows that it is possible to
destroy a previously formed field:

WRITE (2,8)
8 FORMAT ('DISASTERS' ,TS,3Hl23)

Output record before printing:

DISA123RS

If the output record is printed, the first char­
acter is not printed. (See Carriage Control
Character in this section.)

Termination of Format Control

A colon (:) in a format specification terminates
format control if there are no more items in the
input/output list. The colon has no effect if
there are more items in the input/output list.
This descriptor is useful in forms where nonlist
item edit descriptors follow list item edit
descriptors; when the iolist is exhausted, the
subsequent edit descriptors are not processed. See
figure 5-32 for examples of colon use.

A 1.0
8 2.2
c 3.1
D 5.7
PRINT 10, A, B, C, D

10 FORMAT C4CF4.1,:,','))

Output (before printing):

A1. 0, A 2. 2, A 3. 1, A 5. 7

Format control terminates after the value of D
is printed, and the last comma is not printed.

Figure 5-32. Termination by Colon Example

The X descriptor is used to skip character posi­
tions in an input line or output line. X is not
associated with a variable in the input/output
list. The X descriptor has the form:

nX

n Is the nt.mber of character positions to be
skipped from the current character posi­
tion; n is a nonzero unsigned integer

The specification nX indicates that transmission of
the next character to or from a record is to occur
at the position n characters forward from the
current position.

When an X specification causes control to pass over
character positions on output, positions not
previously filled during record geneC'at ion are set
to blanks; however, positions already filled are
left unchanged. See figure 5-33 for examples.

60481300 F

Example 1:

Source statements:

A -342.743
8 1.53190
J 22
WRITE C6,'C1X,F9.4,4X,F7.5,4X,I3)') A,B,J

Output (before printing):

A-342. 7430.6.6.6.61. 53190.6.6.6.6.622

Example 2:

Source statement:

READ C3,'CF5.2,3X,F5.2,6X,F5.2)') R,S,T

Input:

14.62.6.6$13. 78 .6COST .615.97

In storage:

R 14.62
s 13. 78
T 15. 97

Figure 5-33. X Descriptor Example

5-21

I

Repetition Factors

The repeatable edit descriptors can be repeated by
prefixing the descriptor with a nonzero unsigned
integer constant specifying the number of repeti­
tions required. For example,

100 FORMAT (3I4,2E7.3)

is equivalent to:

100 FORMAT (I4,I4,I4,E7.3,E7.3)

Also,

50 FORMAT (4G12.6)

is equivalent to:

50 FORMAT (Gl2.6,Gl2.6,G12.6,G12.6)

A group of descriptors can be repeated by enclosing
the group in parentheses and prefixing it with the
repetition factor. If no integer precedes the left
parenthesis, the repetition factor is 1. For
example,

FORMAT (I3,2(El5.3,F6.1,2I4))

is equivalent to the following specification if the
number of items in the input/output list does not
exceed the number of format conversion codes:

FORMAT(I3,El5.3,F6.l,I4,I4,El5.3,
+ F6.l,I4,I4)

A maximum of nine levels of parentheses is allowed
in addition to the parentheses required by the
FORMAT statement.

If there are fewer items in the input/output list
than indicated by the format conversions in the
FORMAT specification, the excess conversions are
ignored.

If the number of items in the input/output list
exceeds the number of format conversions when the
final right parenthesis in the FORMAT statement is
reached, the line formed internally is output. The
format control then scans to the left looking for a

5-22

right parenthesis within the FORMAT statement. If
none is found, the scan stops when it reaches the
beginning of the format specification. If a right
parenthesis is found, however, the scan continues
to the left until it reaches the field separator
which precedes the left parenthesis pairing the
right parenthesis. Output resumes with the format
control moving right until either the output list
is exhausted or the final right parenthesis of the
FORMAT statement is encountered.

If n slashes are indicated, a repetition factor can
be used to indicate multiple slashes; n-1 lines are
skipped on output.

See figure 5-35 for repetition factor examples.

EXECUTION TIME FORMAT SPECIFICATION

Variable format specifications can be read in as
part of the data at execution time and used wher­
ever a normal format can be used. The format can
be read in under the A specification and stored in
a character array, variable, or array element; or
it can be included in a DATA statement. Formats
can also be generated by the program at execution
time.

~!,··t······~~·····>·~.;.;.~.~······~~····r·•~.;2:~: ?~.~.:nent is i:lli.l~~i);i .I.ii; ;~·Iii ;1.~~11
'jg;@IJ!~~;;imm•r!}l~~~S~~N~/j/ al though character is the
preferred type. In either case, the format must
consist of a list of descriptors and editing char-
acters enclosed in parentheses, but without the
keyword FORMAT and the statement label.

The name of the entity containing the specifica­
tions is used in place of the FORMAT statement
number in the associated input/output statement.
The name specifies the location of the first word
of the format information.

The run time library checks execution time format I
specifications as it processes the 1/0 list. Once
the I/O list is complete and format processing is
finished, the library ignores the rest of the
format specification.

See figure 5-36 for examples of execution time
format specifications.

INPUT/OUTPUT STATEMENTS
The following information discusses keyword=value
forms in input/ output statements, formatted input/
output statements, unformatted input/ output state­
ments, list directed input/output statements,
namelist input/output statements, buffered input/
output statements, file status statements, memory­
to-memory input/ output statements, and file posi­
tioning statements.

KEYWORD=VALUE FORMS IN INPUT/OUTPUT
STATEMENTS

The following keyword=value forms are used in
input/output statements.

UNIT=u

60481300 H

Example 1:

DIMENSION AC9)
DATA A/3.62,-4.03,-9.78,-6.33,7.12,3.49,6.21,

+-6.74,-1.18/

WRITE C3,15)CACI),I=1,9>
15 FORMAT C8H RESULTS,4C/),C1X,3F8.2>>

Format statement 15 is equivalent to:

15 FORMAT C8H RESULTS,//// C1X,3F8.2))

Output (before printing):

RESULTS
[blank line]
[blank line]
[blank line]

3.62
-6.33
6.21

-4.03
7.12

-6.74

-9.78
3.49

-1.18

The 4C/) results in 3 blank lines.

Example 2:

READ CS,300> I,J,E,K,F,L,M,G,N,R
300 FORMAT Cl3,2CI4,F7.3>,17)

Data is stored in l with format 13, J with 14, E with F7.3, K with 14, F with F7.3, and L with 17.
A new record is then read; data is stored in M with the format 14, G with F7.3, N with 14, and R
with F7.3.

Example 3:

READ CS,100) NEXT,DAY,KAT,WAY,NAT,
+RAY ,MAT

100 FORMAT CI7,CF12.7,I3))

NEXT is input with format 17, DAY is input with F12.7, and KAT is input with 13. The FORMAT
statement is exhausted (the right parenthesis has been reached), a new record is read, and the
statement is rescanned from the group CF12.7,I3). WAY is input with the format F12.7, NAT with 13,
and from a third record, RAY with F12.7, and MAT with 13.

Figure 5-35. Repetition Factor Examples

Specifies the FORTRAN unit or internal file
to be used. 11

~ e~'~il~~P;I ~~t one
of the following:

60481300 H

An asterisk implying unit INPUT in a
READ statement and unit OUTPUT in a
WRITE statement.

The name of a character
array, array element, or
identifying an internal file.

variable,
substring

An integer gg;.!g~~~~~ expression having
the following characteristics:

The characters UNIT= can be omitted, in
which case u must be the first item in the
control information list.

File names default to the unit name unless
a different file name has been specified

using . ·. !}t~~~f#~!t ~p~~rg~ silfistf;..;
i:-.ut~~Jh PRQ.Ga.Aff. · statemen~ i?i~ll.i•·• .qt
an OPEN statement.

s-23 I

I

Example 1:

Input record:

CE7. 2, G20. 5, F7. 4, I3)

This specification can be read and
subsequently referenced as follows:

CHARACTER F•30
READ (2, I (A) I) F
WRITE C3,F) A,B,C,N

Example 2:

Input record:

CE12.2,F8.2,I7,2E20.3,F9.3,I4)

This specification can be read by the
statements:

CHARACTER VAR•40
READ C2,'(A)') VAR

A subsequent output statement in the same
program can refer to these format
specifications as:

WRITE C2,VAR) A,B,I,C,D,E,J

which produces the same result as the
statements:

WRITE C2,10) A,B,I,C,D,E,J
10 FORMAT CE12.2,F8.2,17,2E20.3,F9.3,I4)

Example 3:

FMT=fn

5-24

c
c

CHARACTER FMT*9
DATA FMT/'C1X,3I10)'/
REMOVE CARRIAGE CONTROL CHARACTER
IF NOT GOING TO PRINTER
IF CPRTFLG .EQ. Q) FMT (2:4)='
WRITE C2, FMT) I, J,K

If PRTFLG is zero, the program produces the
same result as WRITE C2,' C3I10> ') I,J,K.

Figure 5-36. Execution Time Format
Specification Examples

Specifies a format to be used for formatted
input/output; fn can be one of the fol­
lowing:

A statement label identifying a FORMAT
statement in the program unit contain­
ing the input/output statement.

The name of a character array, vari­
able, expression or array element
containing the format specification.

REC=rn

END=sl

ERR=sl

An integer variable that has been
assigned the statement number of a
FORMAT statement by an ASSIGN statement.

An asterisk, indicating list directed
input/output.

A character constant whose value is a
format specification.

When fn is specified as a constant or I
symbolic constant, it is not checked
for correctness during compilation; it
is passed, as is, to the run time
library.

The characters FMT= can be omitted, in
which case the format designator must be
the second item in the control information
list, and the first item must be the unit
designator without the characters UNIT=.

Specifies the number of the record to be
read or written in the file; must be a
positive nonzero integer expression. Valid
for files opened for direct access only.

Specifies the label of an executable state­
ment to which control transfers when an
end-of-file is encountered during an input
operation. END= is ignored for direct
access input operations.

Records following an end-of-file c~n be
read by either issuing a CLOSE statement
followed by an OPEN statement on the file,
or by using the EOF function. CLOSE/OPEN
is the preferred method.

Specifies the label of an executable state­
ment to which control transfers if a parity
error condition is encountered during input/
output processing. ERR= has no effect on
the processing of errors 78 and 79 in data
input from a connected (terminal) file.

IOSTAT=ios

Specifies an integer variable into which
one of the following values is placed after
the input/output operation is complete:

<O End-of-file

=0 Operation completed normally

>O Number of error
detected (see table
appendix B.)

condition
B-5 in

)1000 CRM error; the rightmost 3
digits correspond to an octal
error code in the CYBER Record
Manager reference manual. For
example, error number 1355 corre­
sponds to CRM error number 355.

60481300 H

iolist

Records following an end-of-file can be
read by either issuing a CLOSE statement
followed by and OPEN statement on the file,
or by using the EOF function. CLOSE/OPEN
is the preferred method.

Input/output
transmitted
Lists).

list specifying
(described under

items to be
Input/Output

FORMATTED INPUT/ OUTPUT STATEMENTS

For formatted input/output, a format designator
must be present in the input/output statement. The
input/output list is optional. Each formatted
input/output statement transfers one or more
records.

The formatted input/output statements are READ,
WRITE, PRINT, and PUNCH. They are discussed below.

Formatted READ

The formatted READ statement (figure 5-37 and
examples in figure 5-38) transmits data from either

unit u or the unit INPUT to storage locations named
in iolist according to FORMAT specification fn.

The number of items in the iolist and the FORMAT
specifications must conform to the record structure
on the input unit. If the list is omitted, one or
more input records will be bypassed. The number of
records bypassed is one plus the number of slashes
interpreted in the FORMAT statement.

Either the END= or IOSTAT= parameter should be
specified to avoid termination when an end-of-file
is encountered. If an attempt is made to read on
unit u and an end-of-file was encountered on the
previous read operation on this unit, execution

-·terminates and an error message is printed.
Records following an end-of-file can be read by
issuing a CLOSE followed by an OPEN on the file or
by using the EOF function. CLOSE/OPEN is the
preferred method.

Formatted WRITE

The formatted WRITE statement (figure 5-39 and
example in figure 5-40) transfers information from
the storage locations named in the input/output
list to the unit specified by u, according to the
FORMAT specification fn.

READ ({~:~~T=fn } [,IOSTAT=iosJ[,ERR=slJ[,END=slJ) [iolistJ
UNIT=u,FMT=fn

READ fn[,iolistJ

Figure 5-37. Formatted READ Statement

Ex amp Le 1: Example 3:

PROGRAM IN
OPEN C4, FILE='INPUT')
OPEN C7, FILE='OUTPUT')
READ C4,200)A,B,C

200 FORMAT C3F7.3)
A=B*C+A
WRITE (7 ,50) A

50 FORMAT C50X,F7.4)
STOP
END

The READ statement transfers data from Logical
unit 4 (externally, the file INPUT) to the
variables A, B, and C, according to the speci­
fications in the FORMAT statement Labeled 200.

Example 2:

PROGRAM RUST
READ 5,X,Y,Z

5 FORMAT C3G20.2)
RESULT = X-Y+Z
PRINT 100, RESULT

100 FORMAT C10X,G10.2)
STOP
END

The READ statement transfers data from file
INPUT to the variables X, Y, and Z, according
to the specifications in the FORMAT statement
Labeled 5. Result is printed on file OUTPUT.

PROGRAM READ
OPEN C2, FILE='INPUT')
OPEN (3, FILE='OUTPUT')
READ C2,100,ERR=16,END=18) A,B

100 FORMAT C2F10.4)
C=A+B
PRINT *,A,B,C
STOP

16 PRINT 101
101 FORMAT ('/J,.I/O ERROR')

STOP
18 PRINT 102

102 FORMAT ('6END OF FILE')
STOP
END

Variables are read according to the FORMAT
statement Labeled 100. If an error occurs
during the read, control transfers to state­
ment 16; if an end-of-file is encountered,
control transfers to statement 18.

Example 4:

In example 3, the READ and FORMAT state­
ments can be combined as follows:

READ C2,'C2F10.4>',ERR=16,END=18)A,B

Figure 5-38. Formatted READ Statement Examples

60481300 G 5-25

WRITE (J ~::~T=fn } (,IOSTAT=ios] [,ERR=sl]) [iol i st] l UNIT=u, FMT=fn

Figure 5-39. Formatted WRITE Statement

PROGRAM RITE
X=2.1
Y=3.
M=7
WRITE (6,100,ERR=200) X,Y,M

100 FORMAT (2F6.2,14)
200 STOP

END

Figure 5-40. Formatted WRITE
Statement Example

Examples:

WRITE (4,50)
50 FORMAT ('THE IOLIST CAN BE OMITTED')

WRITE (*,FMT=l2) L,M,S(3)
12 FORMAT (3El6.5)

The format specification can appear in the WRITE
statement. For example,

WRITE (2,'(2El6.S)' ,ERR=l2) X,Y

Formatted PRINT

The formatted PRINT statement (figure 5-41 and
example in figure 5-42) transfers information from
the storage locations named in the input/output
list i;~~i!;gf,!fli .f;~~f!.itllliti!\ID~~I according to the
specified format. At the end of a batch job, file
OUTPUT is normally sent to the printer.

5-26

PRINT fn [,iolist]

Figure 5-41. Formatted PRINT Statement

PROGRAM PRINT
CHARACTER B*3
A=1.2
B='YES'
N=19
PRINT 4,A,B,N

4 FORMAT CG20.6,A,I5)
STOP
END

Figure 5-42. Formatted PRINT Example

Examples:

PRINT 4,A,B,N
4 FORMAT(G20.6,A,I5)

PRINT 50
50 FORMAT (' END OF FILE')

UNFORMATTED INPUT/ OUTPUT STATEMENTS

Unformatted READ and WRITE statements do not use
form.at specifications and do not convert data in
any way on input or output. Instead, data is
transferred as is between memory and the external
device. Each llllformatted input/output statement
transfers exactly one l:'ecord. If data is written
by an unformatted WRITE and subsequently read by an
llllform.atted READ, exactly what was Wl:'itten is read;
no precision is lost since no conversion is per­
formed.

60481300 F

Unformatted READ

The unformatted READ statement (figure 5-45 and
example in figure 5-46) transmits one record from
the specified unit u to the storage locations named
in iolist. Records are not converted; no FORMAT
statement is used. The information is transmitted
from the designated file in the form in which it
exists on the file without any conversion. If the
number of words in the 1 ist exceeds the m.unber of
words in the record, an execution diagnostic
results. If the number of locations specified in
iolist is less than the m.unber of words in the
record, the excess data is ignored. If iolist is
omitted, the unformatted READ skips one record.

READ ([UNIT=] u[,IOSTAT=ios] [,ERR=sl] [,END=sl])
[iolist]

Figure 5-45. Unformatted READ Statement

PROGRAM AREAD
READ C2,END=30,ERR=40) X,Y,Z
SUM = X+Y+Z/2.

END

Figure 5-46. Unformatted READ Example

Either the END= or IOSTAT= parameter should be
specified to avoid termination when an end-of-file
is encountered. If an attempt is made to read on
unit u and an end-of-file was encountered on the
previous read operation on this unit, execution
terminates and an error message is printed.
Records following an end-of-file can be read by
issuing a CLOSE followed by an OPEN on the file or
by using the EOF function. CLOSE/OPEN is the
preferred method.

Unformatted WRITE

The unformatted WRITE statement (figure 5-47 and
example in figure 5-48) is used to output binary
records. Information is transferred from the items
iolist to the specified output unit u with no
format conversion. One record is created by an
unformatted WRITE statement. If the list is
omitted, the statement writes a null record on the
output device. A null record has no data but
contains all other properties of a legitimate
record.

WRITE ([UNIT=] u[,IOSTAT=ios] [,ERR=sl]) [iolist]

Figure 5-47. Unformatted WRITE Statement

PROGRAM OUT
DIMENSION AC260), 8(4000)

WRITE C10,ERR=16) A,B
END

The 4260 words of arrays A and B are
written as one record on unit 10.

Figure 5-48. Unformatted WRITE Example

LIST DIRECTED INPUT/ OUTPUT
STATEMENTS

List directed input/output involves the processing
of coded records without a FORMAT statement. Each
record consists of a list of values in a freer
format than is used for formatted input/output.
This type of input/ output is particularly conven­
ient when the exact form of data is not important.

List Directed Input

The list directed READ statement (figure 5-49)
transmits data from unit u or the file INPUT (if u
is omitted or if UNIT= * specified) to the storage
locations named in iolist. The input data items
are free-form with separators rather than in fiKed­
size fields.

A list directed READ following a list directed READ
that terminated in the middle of a record starts
with the next data record.

Either the END= or IOSTAT= parameter should be
specified to avoid termination when an end-of-file
is encountered. If an attempt is made to read on
unit u and an end-of-file was encountered on the
previous read operation on this unit, execution
terminates and an error message is printed.
Records following an end-of-file can be read by
issuing a CLOSE followed by an OPEN on the file or
by using the EOF function. CLOSE/OPEN is the
preferred method.

See figure 5-50 for an example of list directed
READ input.

READ({~:;MT=* } [,IOSTAT=iosJ[,ERR=slJ[,END=slJ) [iolist]
UNIT=u, FMT=*

READ*[, i ol i st]

Figure 5-49. List Directed READ Statement

60481300 F 5-27

Example 1:

10

PHOGRAM LDH
READ *, CAT~ BIRD, DOG
PRINT 10, CAT, BIRD, UOG
fORMAT(' CAT= ', E9.3,/' nIRD =
STOP
END

E9.3,/' DOG= ',E9.3)

Input: Output (after printing by a line printer):

Example 2:

100

99

Input:

13. 3' -5. 2' . 01

PROGHAM LDIN
READ(*,*,END=99) J,K
PRitlT 1, J,K
FOR~·1AT (T20,215)
GO TO 100
STOP
EflD

CAT = .133E+02
BIHD = - • 520E+O 1
DOG = • 100£-0t

Output (after printing by a line printer>:

1 2 1 2

'3

',
2*8

/9

8

8

3

3

8

8

Figure 5-50. List Directed Input Examples

Input data consists of a string of values separated
by one or more blanks, or by a comma or slash,
either of which can be preceded or followed by any
number of blanks. Also, a line boundary, such as
end-of-record or end-of-card, serves as a value
separator; however, a separator adjacent to a line
boundary does not indicate a null value.

Embedded blanks are not allowed in input values,
except character values and complex numbers. The
format of values in the input record is as follows:

5-28

Integers

Same format as for integer constants.

Real numbers

Any valid FORTRAN format for real or double
precision numbers. In addition, the deci­
mal point can be omitted; it is assumed to
be to the right of the mantissa.

Complex numbers

Two real values, separated by a comma, and
enclosed by parentheses. The parentheses
are not considered to be a separator. The
decimal point can be omitted from either of
the real constants. Each of the real
values can be preceded or followed by
blanks.

Character values

A string of characters (which can include
blanks) enclosed by apostrophes. A deli­
miting apostrophe can be represented within
a string by two successive occurrences.
Character values can only be read into
character arrays, variables and substrings.
If the string length exceeds the length of
the list item, the string is truncated. If
the string is shorter than the list item,
the string is left-justified and remaining
character positions are blank filled.

Logical values

An optional period, followed by a T or F,
followed by optional characters which do
not include separators (slashes or commas).

60481300 F

tr(.. ~~~~~AR'··.·•<~~~i ·}~})~ int:~s~r·· ... ·.v,;tl;ye.~
into BOolean variable$.

be read

To repeat a value, an integer repeat constant is
followed by an asterisk and the constant to be
repeated. Blanks cannot be embedded in the repeat
part of the specification.

A null can be input in place of a constant when the
value of the corresponding list entity is not to be
changed. A null is indicated by the first char­
acter in the input string being a comma or by two
commas separated by an arbitrary number of blanks.
Nulls can be repeated by specifying an integer
repeat count followed by an asterisk and any value
separator. The next value begins immediately after
a repeated null. A null cannot be used for either
the real or imaginary part of a complex constant;
however, a null can represent an entire complex
constant.

When the value separator is a slash, remaining list
elements are treated as nulls and the remainder of
the current record is discarded.

Input values must correspond in type to variables
in the input/output list. Note that the form of a
real value can be the same as that of an integer
value.

List Directed Output

The list directed output statements are a WRITE
(figure 5-51?, a PRINT (figure 5-52), al:td a PUNCH
(fi.g~t:e 5""'5~) statement. See figure 5-54 for
examples.

Data is transferred from storage locations speci­
fied by the iolist to the designated unit in a
manner consistent with list directed input.

WRITE ({~;;MT=* l [,IOSTAT=ios] [,ERR=sl]) [iol istJ
UNIT=u, FMT=* ~

Figure 5-51. List Directed WRITE Statement

PRINT*[,iolist]

Figure 5-52. List Directed PRINT Statement

Example 1:
PHOGRAM LDW
INTEGER J (4)
COMPLEX Z(2)
DOUHLE PRECISION Q
DATA J' Z 'Q / 1 '-2 I 3 I -4 I { r{ • 9 -1 • } I {-3 • t 2 •) I 1 • D-5 /
PHHJT *, J
PRHIT *, Z, Q

STOP
EtJ lJ

Output (after printing by a Line printer):

1 -2 3 -4

Example 2:

('(.,-1.) (-3.,2.} .00001

PROGRA!~ K
PRINT *, 'TYPE I!J X'
REAO *· X
PRINT *' 'TYPE Iil y I

READ *, Y
END

Terminal Listing under NOS:
TYPE Ill f...

? 1. 234
HPE rn Y

? '.). 6'(b

Figure 5-54. List Directed Output Examples

60481300 G 5-29

I

PRINT outputs data to the unit OUTPUT.
outputs to the unit PUNCH.

PUNCH

List directed output is consistent with the input;
however, null values, slashes, repeated constants,
and the apostrophes used to indicate character
values are not produced. For real or double preci­
sion variables with absolute values in the range of
io-6 to 109, an F format type of conversion is
used; otherwise, output is of the lPE type. Trail­
ing zeros in the mantissa and leading zeros in the
exponent are suppressed. Values are separated by
blanks.

List directed output statements always produce a
blank for carriage control as the first character
of the output record.

Logical values are output as T or F. Complex
values are enclosed in parentheses with a comma
separating the real and imaginary parts.

5-30 60481300 H

60481300 G 5-31

I

5-32 60481300 H

60481300 F 5-33

I

5-34 60481300 H

I

··.••i···•··>.••.•·••··•·•••···•·•·•··•······••••··· .. ······ t··•···••·······•·••••••••·•··•····•••.·••·······••ii·•·•·······•••····.·•··<·J·•·••·•·r?•i·•···•····ri 1

.·.·····.···············}························· , •. • .••. < .? ··•.•.·.> x.·.••.•···r·i•ii···· }·•·•>g·············•··•····t,)1. I

60481300 H 5-35

I

where LWA is the terminal address of the record and
FWA is the starting address. For fixed-length
records (RT=F on FILE statement), the record length
is the length (characters) specified on the FILE
statement (FL parameter). If FL is greater than
(LWA - FWA + 1) X 10, an error occurs.

The UNIT function must be referenced before another
reference is made to the file or to the contents of
the block of memory.

INPUT/OUTPUT FILE STATUS STATEMENTS

FORTRAN provides three statements that can be used
to establish, examine, or alter certain attributes
of files used for input or output. These are the
OPEN, INQUIRE, and CLOSE statements. They are
discussed separately below.

OPE.N

The OPEN statement (figure 5-69) can be used to
associate an existing file with a unit number, to
create a new file and associate it with a unit
number, or to change certain attributes of an
existing file.

The UNIT= parameter is required; all other param­
eters are optional, except for the RECL parameter,
which must be specified if a file is being opened
for direct access. If a STATUS of OLD or NEW is
specified, the FILE= parameter must be given. If a
STATUS of SCRATCH is specified, the FILE= parameter
must be omitted, and if a STATUS of UNKNOWN is
specified, the FILE= parameter is optional.

OPEN C CUNIT=JuC, IOSJ~!7}P~I~r~RR=s lJ C, FILE=f i nJ C, STATUS=staJ [, ACCESS=accJ [, FORM=fmJ [, RECL=r ll
C,BLANK=blnkl~~l\l~iel.J'.I~

u Specifies the unit number of the file to be opened. (See File Usage.>

ios Is an integer variable that contains an error number if an error occurs during the open, or zero
if no errors occur.

sl Is the label of an executable statement to which control transfers if an error occurs during the
open.

fin Is a character expression <seven characters or fewer; first character must be a letter> whose
value is the name of the file to be opened. Trailing blanks are removed. This file becomes
associated with unit u.

sta Is a character expression specifying file status. Valid values are:

'OLD'

'NEW'

'SCRATCH'

'UNKN<MN'

File fin currently exists.

File fin does not currently exist.

Delete the file associated with unit u on program termination or execution
of CLOSE that specifies unit u; must not appear if FILE parameter is
specified.

File status is unknown.

Default is STATUS='UNKN<MN'.

ace Is a character expression specifying the access method of the file. Valid values are:

'SEQUENTIAL' File is to be opened for sequential access.

'DIRECT' File is to be opened for direct access.

Default is ACCESS='SEQUENTIAL'.

If the file exists, the access method must be valid for the existing file.

fm Is a character expression having one of the following values:

'FORMATTED' File is being opened for formatted input/output.

'UNFORMATTED' File is being opened for unformatted input/output.

'BUFFERED' File is being opened for buffered input/output.

Default is FORM='FORMATTED' for sequential access files, FORM='UNFORMATTED' for direct access
fi Les.

For an existing file, the specified form must be valid for that file.

Figure 5-69. OPEN Statement (Sheet 1 of 2>

5-36 60481300 H

rl

blnk Is a character expression having one of the following values:

'NULL'

'ZERO'

Blank values in numeric formatted input fields are ignored, except that a
field of all blanks is treated as zeros.

Blanks, other than leading blanks, are treated as zeros.

Default is BLANK='NULL'.

Figure 5-69. OPEN Statement CSheet 2 of 2>

See figure 5-71 for examples of the OPEN statement.

Once properties of a file have been established in
an OPEN statement, only the BLANK= parameter can be
changed in a subsequent OPEN statement for that
file, unless the file is first closed in a CLOSE
statement.

60481300 H

Example 2:

OPEN C3,FILE='XXX',STATUS='OLD',BLANK='ZERO')

When data is read from the existing file
XXX, blanks will be interpreted as zeros.

Example 3:

OPEN C2,STATUS='NEW',ERR=12,FILE='NEWFL',
+ACCESS='SEQUENTIAL')

A new file NEWFL is associated with unit 2
and is to be a sequential access file.

Example 4:

OPEN C2,FILE='MYFILE')
WRITE C2,'CA)')A,B,C
OPEN C2,FILE='PART2')

The second OPEN statement closes MYFILE
before opening PART2.

Figure 5-71. OPEN Statement Examples

5-37

I

If a file is associated with a unit and a succeed­
ing OPEN statement associates a different file with
the same unit, the effect is the same as performing
a CLOSE without a STATUS= parameter on the cur­
rently associated file before associating the new
file with the unit. See figure 5-71 example 4.

CLOSE

The CLOSE statement (figure 5-72) disconnects a
file from a specified unit and specifies whether
the file connected to that unit is to be kept or
released.

CLOSE ([UNIT=] u[,IOSTAT=ios] [,ERR=sl] [,STATUS=sta])

u Is the unit designator of the file to be closed.

ios Is an integer variable which, upon completion
of the CLOSE, contains the error number; a
value of 0 indicates no errors occurred.

sl Is the label of an executable statement to
which control transfers if an error occurs
during the close.

sta Is a character expression that determines the
disposition of the file associated with the speci­
fied unit. Valid values are:

1DELETE 1

The file is kept after exe­
cution of the CLOSE
statement.

The file is unloaded after
execution of the CLOSE
statement.

Default is STATUS= 1DELETE 1 if file status
is 1SCRATCH 1 ; otherwise, the default is
STATUS= 1KEEP 1•

1KEEP 1 is not valid for a file whose status is
1SCRATCH1 •

Figure 5-72. CLOSE Statement

A CLOSE statement can appear in any program unit in
the program; it need not appear in the same program
unit as the OPEN statement specifying the same unit.

A CLOSE statement that references a unit that does
not have a file connected to it has no effect.

After a unit has been disconnected by a CLOSE
statement, it can be connected again within the
same program to the same file or to a different
file. A file connected to a unit specified in a
CLOSE statement can be connected again to the same
or to another unit, provided the file still exists.

File equivalence established on the PROGRAM state-
ment or on
longer in
executed.

the execution control statement is no
effect after the CLOSE statement is

When a program terminates normally, an implicit
CLOSE(u,STATUS='KEEP') occurs for each connected
unit unless the status of the file was SCRATCH; in
this case, a CLOSE(u,STATUS='DELETE') occurs.

I 5-38

Example:

CLOSE (2,ERR=25,STATUS='DELETE')

In static mode, once a file is closed in a CLOSE
statement, it must be explicitly reopened if it is
to be used again.

INQUIRE

There are two forms of the INQUIRE statement
(figure 5-73 and example in figure 5-74). Inquire
by unit is used to obtain information about the
current status of a specified unit. Inquire by
file is used to obtain information about the cur­
rent status of a file. Either a file name (inquire
by file) or a unit specifier (inquire by unit), but
not both, must be specified in an INQUIRE
statement. The file or unit need not exist when
INQUIRE is executed.

Following execution of an INQUIRE statement, the
specified parameters contain values that are cur­
rent at the time the statement is executed.

If a unit number is specified and the unit is
opened, the NAMED, NAME, ACCESS, SEQUENTIAL,
DIRECT, FORM, FORMATTED, UNFORMATTED, RECL,
NEXTREC, OPENED, EXIST, NUMBER, ACCESS, and
BLANK variables will contain information about
the file associated with the unit. EXIST
returns a TRUE value only if the unit has been
opened by a reference on the PROGRAM statement
or the OPEN statement; it does not indicate
whether a file by this name is local or not.

If a file name is specified, the NAMED, NAME,
SEQUENTIAL, DIRECT, FORMATTED, UNFORMATTED,
OPENED, EXIST, NUMBER, ACCESS, FORM, RECL,
NEXTREC, and BLANK variables will contain
information about the file and the unit it is
associated with. EXIST returns a TRUE value
only if a nonempty local file by this name
exists or if an empty local file by this name
is currently open.

When EXIST returns a FALSE value, the NUMBER,
NAMED, NAME, ACCESS, SEQUENTIAL, DIRECT, FORM,
FORMATTED, UNFORMATTED, RECL, NEXTREC, and
BLANK variables will contain undefined values.
This does not result in an error.

Note that if a unit that is not associated with a
file is specified, only the IOSTAT and EXIST
variables contain values.

If an error occurs during an INQUIRE, only IOSTAT
contains a value.

MEMORY-TO-MEMORY INPUT/ OUTPUT
STATEMENTS

Internal files provide a means of reformatting and
transferring data from one area of memory to
another, without the need to write the data and
reread it under a different format specification.
Internal files also allow numeric conversion to or

60481300 H

from character data type. Input and output on
internal files are performed by formatted READ and
WRITE statements and the .'ENC()DJL and DECODE state.­
ments. However, no input/output devices are
involved.

The two types of internal files are standard
internal files and extended internal files. They
are discussed below along with the ENCODE and
DECODE statements.

INQUIRE ({~Y~J!~~ u} [,IOSTAT=ios] [,ERR=sl] [,EXIST=ex] [,OPENED=od] [,NUMBER=num] [,NAMED=nmd] [,NAME=fn]

[,ACCESS=acc] [,SEQUENTIAL=seq] [,DIRECT=dir] [,FORM=fm] [,FORMATTED=fmt] [.UNFORMATTED=unf]
[,RECL=rcl] [,NEXTREC=nr] [.BLANK=blnk])

u Is the external unit for which information is to be returned; if the unit is associated with a file, information about
the file is returned. (The format of this parameter is described under File Usage.)

fin Is a character expression specifying the name of the file for which information is to be returned.

ios Is an integer variable which, upon completion of the INQUIRE, contains an error number; the value is 0 if no
errors occurred.

sl Is a user-specified statement label of an executable statement to which control passes if an error occurs during
an inquire.

ex Is a logical variable:

.TRUE. The file (unit) exists .

. FALSE. The file (unit) does not exist.

od Is a logical variable:

.TRUE. The file (unit) is connected to a unit (file) .

. FALSE. The file (unit) is not connected to a unit (file).

num Is an integer variable containing the external unit number of the unit currently associated with the file; undefined
if the file is not associated with a unit.

nmd Is a logical variable:

.TRUE. The file has a name .

. FALSE. The file does not have a name.

fn Is a character variable containing the name of the file associated with unit u.

ace Is a character variable indicating the access method of the file:

1SEQUENTIAL1 The file is opened for sequential access input/output.

1DIRECT 1 The file is opened for direct access input/output.

If the file is not opened, ace is undefined.

seq Is a character variable indicating whether the file can be opened for sequential access input/output:

ivesi The file can be opened for sequential access input/output.

INQI The file cannot be opened for sequential access input/output.

1UNKNOWN1 Cannot be determined.

dir Is a character variable indicating whether the file can be opened for direct access input/output:

1YES 1 The file can be opened for direct access input/output.

1N01 The file cannot be opened for direct access input/output.

1UNKNOWN 1 Cannot be determined.

Figure 5-73. INQUIRE Statement (Sheet 1 of 2)

60481300 H 5-39 I

fm Is a character variable indicating formatted or unformatted input/output:

'FORMATTED' The file is opened for formatted input/output.

'UNFORMATTED' The file is opened for unformatted input/output.

If the file has not been opened, fm is undefined.

fmt Is a character variable specifying whether the fi1e can be opened for formatted input/output:

1YES1 The file can be opened for formatted input/output.

1N01 The file cannot be opened for formatted input/output.

1UNKNOWN1 It cannot be determined if the file can be opened for formatted input/output.

unf Is a character variable specifying whether the file can be opened for unformatted input/output:

1YES1 The file can be opened for unformatted input/output.

1N01 The file cannot be opened for unformatted input/output.

1UNKNOWN1 It cannot be determined if the file can be opened for unformatted input/output.

rel Is an integer variable containing the record length of a file opened for direct access. If the file is 'FORMATTED',
rel contains the record length in characters; if 1UNFORMATTED1

, the record length is in words; undefined if the
file is not opened for direct access.

nr Is an integer variable; for a direct access file, nr contains the record number of the last record read or written
plus one. If no records have been read or written, nr contains 1. Undefined for sequential files.

blnk Is a character variable:

1NULL1 Null blank control is in effect for a file opened for formatted input/output.

1ZER01 Zero blank control is in effect for a file opened for formatted input/output.

Undefined if the file is not opened for formatted input/output.

Figure 5-73. INQUIRE Statement (Sheet 2 of 2>

LOGICAL EX
CHARACTER*10 AC

INQUIRE CFILE='AFILE', ERR=100, EXIST=EX,
+ACCESS=AC)

Figure 5-74. INQUIRE Statement Example

Standard Internal Files

A standard internal file can be any character
variable, array, or substring. If the file is a
variable or substring, it consists of a single
record whose length is the length of the variable
or substring. If the file is an array, each array
element constitutes a single record. For example,

CHARACTER *20 A(lOO)

creates an internal file A containing 100 records
of 20 characters each.

5-40

Records of an internal file are defined by storing
data into the records, either with an output state­
ment or an assignment statement. The record is I
blank filled before the characters are moved in.
So, if the number of characters written in a record
is less than the length of the record, the unused
portion contains blanks.

It is not necessary to declare internal files in
the same manner as external files. Only formatted
input/output can be used; unformatted, list direc-

ted. nlB'.1¥1!'¥ii 111 !•1111.r ;1111~Blll,I are not
valid for internal files. In addition, file
manipulation and file status statements cannot be
used with internal files. Some sample programs
using internal files are included in section 12.

For input, data is read from a standard internal
file using a formatted READ statement in which the
internal unit identifier is a character variable,
array, or substring. Data is transferred from
consecutive locations starting at the first char­
acter position of u, converted under format speci­
fication, and stored in .the variables specified in
iolist.

Some examples of internal files used for input are
shown in figure 5-75.

60481300 H

Example 1:

CHARACTER*3 ZT(6),A,B,C

READ (ZT, 1(A3)1)A,B,C

Contents of ZT:

lcAT I DOG I RUN I
ZT(1) ZT(2) ZT(3)

Stored in A, B, C:

A CAT

B DOG

c RUN

Example 2:

CHARACTER CN*12

READ (CN, 1(413)1)l,J,K,L

Contents of CN :

Stored in l,J,K,L (internal integer format):

2

J 56

K 4

L 8

Figure 5-75. Internal File Input Examples

For output, data is written to standard internal
files using a formatted WRITE statement in which
the internal unit u is a character variable, array,
or substring name. The WRITE statement transmits
data from the variables specified in iolist to
consecutive locations starting with the leftmost
character of the location specified by u; data is
converted from internal to character format accord­
ing to the format specification. The number of
characters transmitted is determined by the record
length. If the iolist exceeds the number of edit
descriptors, the format statement is processed
again and variables are written to the next record
in the internal file. (See the discussion under
Repetition Factors.) If there are fewer records in
the internal file than iolist variables, the output
is terminated.

Figure 5-76 shows some examples of internal files
used for output.

60481300 H

Example 1:
INTEGER A,B,C,D
CHARACTER*4 AR(4)

A=123
B=-27
C=104
0=1234
WRITE (AR, 1(14.)1)A,B,C,D

In memory:

I A 123 I A -27 I A 104 I 1234

The WRITE statement defines an internal file, AR, and
writes four records to the file.

Example 2:

CHARACTER *8 BIRD(3),A*1,B,C

A= 1Z 1

B= 1ABCDE1

C= 1123456781

WRITE (BIRD, 1(A 1/A5/A8)1)A,B,C

In memory:

I ZAAAAAAA I ABCDEAAA I 123456781

BIRD(1) BIRD (2) BIRD(3)

The WRITE statement defines an internal file, BIRD,
which contains three records (array elements).

Figure 5-76. Internal File Output Examples

5-41

5-42 60481300 F

FILE POSITIONING STATEMENTS

Three statements can be used to position files
connected for sequential access: REWIND, BACKSPACE,
and ENDFILE. They are discussed separately below.

60481300 F

REWIND

The REWIND statement (figure 5-81) positions a file
&t beginning-of-information so that the next input/
output operation references the first record in the
file, even though several ENDFILE statements may
have been issued to that unit since the last
REWIND. If the file is already at beginning-of­
information, no action is taken. (Refer to
BACKSPACE/REWIND, appendix F, for further infor­
mation.)

REWIND ([UNIT=Ju[,IOSTAT=ios][,ERR=sl])

REWIND u

Figure 5-81. REWIND Statement

5-43

Example:

REWIND 3

BACKSPACE

The BACKSPACE statement (figure 5-82) backspaces
unit u one record. When the file is positioned at
beginning-of-information, this statement acts as a
do-nothing statement. Backspace operations should
not be used on direct access files or on records
created by list directed or namelist output.

BACKSPACE ([UNIT=Ju[,IOSTAT=iosJ[,ERR=slJ)

BACKSPACE u

Figure 5-82. BACKSPACE Statement

Example:

1
DO 1 LUN = 1,4
BACKSPACE LUN

The files associated with units 1 through 4 are
backspaced one record.

5-44

ENDFILE

The ENDFILE statement (figure 5-83) writes an
end-of-partition (end-of-file) on the designated
unit. ENDFILE is not permitted on units opened for
direct access. The end-of-partition boundary can
be detected by the END= and IOSTAT= variables.

ENDFILE ([UNIT=Ju[,IOSTAT=iosJ[,ERR=slJ)

ENDFILE u

Figure 5-83. ENDFILE Statement

Because the file mode (formatted or unformatted)
cannot be detected, ENDFILE should not be the first
operation on a file.

Example:

IOUT = 7
ENDFILE (UNIT=IOUT, ERR=lOO)

End-of-partition is written on tmit 7.

60481300 F

USER-WRITTEN PROGRAMS, SUBPROGRAMS, AND FUNCTIONS 6

An executable program consists of one main program
and optional subprograms.

Both main programs and subprograms are known as
program units. A program unit contains a group of
FORTRAN statements, including optional comments; it
is terminated by an END statement. Program units
can be compiled independently of each other, but a
subprogram cannot be executed except through a main
program.

There are two types of subprograms: the specifica­
tion subprogram and the procedure subprogram.

A subprogram that begins with a BLOCK DATA
statement is a specification subprogram. It is
used to enter initial values for variables and
array elements in named common blocks.

A subprogram that begins with a SUBROUTINE
statement or a FUNCTION statement is a proce­
dure subprogram known as a subroutine subpro­
gram or a function subprogram, respectively.
It can accept one or more values through a list
of arguments, common blocks, or both.

A procedure is a function or a subroutine subpro­
gram that can be executed many times. A subroutine
subprogram begins with a SUBROUTINE statement and
terminates with an END statement; it can return one
or more values to the referencing program unit.

A function is used only in expressions to supply a
value to the expression. Functions can occur in
three forms:

As a user-written function subprogram beginning
with a FUNCTION statement, terminating with an
END statement, and containing other statements.

As a single statement written by the user.

As an intrinsic function supplied by the FORTRAN
library. Intrinsic functions are discussed in
section 7 along with other procedures supplied
by the FORTRAN library.

These functions differ in the way they are written
and referenced, al though they have many character­
istics in common.

A function written by the user is sometimes known
as an external function.

Table 6-1 summarizes the characteristics of the-;e
overlapping entities.

60481300 G

MAIN PROGRAM
A main program is a program unit that does not
begin with a FUNCTION, SUBROUTINE, BLOCK DATA, or
ENTRY statement. The main program should have a
PROGRAM statement (optional) and at least one
executable statement followed by an END statement.

The execution of any program begins with the main
program unit. No executable program can have more
than one main program unit, except that an overlay­
structured program has one main program unit in
each overlay.

The main program can be compiled independently of
any subprograms. However, when a main program is
loaded into memory for execution, all the required
subprograms must be loaded with it prior to its
execution.

Although the PROGRAM statement is optional, it is
useful in defining the program name and declaring
certain properties of files to be used by the
program. The format and use of the PROGRAM state­
ment are discussed below.

PROGRAM STATEMENT

The PROGRAM statement (figure 6-1 and example in
figure 6-2) defines the program name that is used
as the entry point name and as the object deck name
for the loader. The PROGRAM statement also
declares c~rtain properties of files to be used by
the program.

6-1

TABLE 6-1. CHARACTERISTICS OF PROGRAM COMPONENTS

Characteristics Main Program Block Data Subroutine (External) Statement Intrinsic
Function Function Function

Program unit? Yes Yes Yes Yes No t

Subprogram? --- --- Yes Yes No t

Procedure? --- No Yes Yes Yes Yes

User-written? Yes Yes Yes Yes Yes No

Reference from --- External Any executable Any executable Defining Any executable
statement program unit program unit program program unit
in any unit
program
unit

Multiple entry --- --- Yes Yes --- ---
possible?

RETURN statement Same as END --- Alternate, Multiple No ---
possible? multiple

How referenced Control Not CALL statement Name used in Name used Name used in
statement executable expression in ex- expression

press ion

How typed --- --- --- Implicity or Imp lie- Function name
explicitly itly or or generic

ex~lic-
it y

How values --- --- Through Through Through Through
accepted arguments or arguments or arguments arguments

conmon blocks conman blocks

How values --- --- Through Function name Function Function
returned arguments or name name

common

tAn intrinsic function, along with other supplied subprograms, can be external; and in terms of an
executable program, is considered to be a program unit. Some intrinsic functions are compiled in-
line; therefore, they are neither external nor procedures since the same code is not re-executed.

I

6-2 60481300 H

I

PROGRAM name[(fpar[,fparJ ••• >J

name

60481300 H

Is the program name that can­
not be used elsewhere in the
program as a user-defined
name.

Figure 6-1. PROGRAM Statement

Example 3:

PROGRAM FIRST

Assigns the name FIRST to the program. The
file list is legally omitted.

Figure 6-2. Examples of PROGRAM Statement

PROCEDURES, SUBPROGRAMS,
AND ST A TEMENT FUNCTIONS

Subroutine. subprograms and function subprograms are
both procedures. They are discussed below, along
with the ENTRY, RETURN, and END statements that are
applicable to both of these types of procedures.

A statement function is also a procedure, although
it is not a subprogram. It is discussed separately
below.

SUBROUTINE SUBPROGRAM

A subroutine subprogram is a procedure that commun­
icates with the calling program unit either through
a list of arguments passed with the CALL statement
or through common blocks. A subroutine subprogram
is executed when a CALL statement naming the sub­
routine is encountered in a program unit.

Subroutines begin with a SUBROUTINE statement and
end with an END statement. Control is returned to
the calling program unit when a RETURN statement is
encountered. If control flows into the END state­
ment, then a RETURN is implied.

6-3

SUBROUTINE Statement

The SUBROUTINE statement (figure 6-4 and example in
figure 6-5) must appear as the first statement of
the subroutine subprogram. The statement contains
the symbolic name that is the main entry point of
the subprogram. The name must not be the same as
any other program unit or entry name. Also, the
name cannot be the same as any name in the sub­
routine.

SUBROUTINE sub[([d[,d] ...])]

sub Is the name of the subroutine
subprogram. If there are no dummy
arguments, either sub or sub() can be
used.

d Is a dummy argument that can be a
variable name, array name, dummy
procedure name, or *.

Figure 6-4. Subroutine Statement

PROGRAM MAIN

The subprogram name is not used to return results
to the calling program.

Subroutines can contain any statement except a
PROGRAM, BLOCK DATA, FUNCTION, or another SUBROUTINE
statement. A subroutine subprogram must not
directly or indirectly call itself.

In a subroutine subprogram, the symbolic name of a
dummy argument is unique to the program unit and
must not appear in an EQUIVALENCE, PARAMETER, SAVE,
INTRINSIC, DATA, or COMMON statement, except as a
common block name. The dummy arguments are re­
placed with the actual arguments during a subrou­
tine call. The SUBROUTINE statement can also have
dummy arguments for statement labels; these argu­
ments are represented by asterisks.

Dummy arguments that represent array names must be
dimensioned by a DIMENSION or type statement.
Adjustable dimensions are permitted in subroutine
subprograms. More details can be found below.

INTEGER A,B
OPENCS,FILE='INPUT')
OPENC6,FILE='OUTPUT')
READ CS, 100) A,B

100 FORMATC2I2)
IF CA-B> 10,20,20

10 CALL ERROR1
20 RESULT = CA*1CIO> + 375.2

STOP

c
END

SUBROUTINE ERROR1
WRITE C6, 1>
FORMATC5X, 'NUMBER IS OUT OF RANGE')
RETURN
END

The subroutine ERROR1 is called and executed if A-B is less than zero. Control returns to statement 20.
This example shows that argunents need not be used.

Figure 6-5. Subroutine Call Example

6-4 60481300 G

CALL Statement

A subroutine subprogram is brought into execution
by a CALL statement (figure 6-6).

CALL sub[([a[,a] ...])]

sub

a

Is the name of subroutine or dummy
procedure.

Is an actual argument that can be one
of the following:

An expression (except a character
expression involving concatenation
of a dummy argument with length (*))

An array name

An intrinsic function name

An external procedure name

A dummy procedure name

An alternate return specifier of
the form *s

Is the statement label of an executable
statement that appears in the same
program unit as the CALL statement.

Figure 6-6. CALL Statement

The CALL statement can contain actual arguments and
statement labels which must correspond in order,
number, and type to those in the subroutine defini-
tion. An actl;l8_1 ~1teiliJi~~~ o
a corresponding· dtUIUilY axog
real. An ac ttial .•. ti
can have a c.ot:"l'.'esp
Boolean.

An actual argument in a CALL statement can be a
dummy argument name that appears in the dummy
argument list of the subprogram containing the CALL
statement. An asterisk dummy argument cannot be
used as an actual argument.

FUNCTION SUBPROGRAM

A function subprogram is a procedure that communi­
cates with the referencing program unit through a
list of arguments or common blocks. It is usually
referred to as an external function. A function
subprogram performs a set of calculations when the
name appears in an expression in the referencing
program unit.

(In add it ion to the function subprogram, there are
functions that are procedures but are not subpro­
grams. These functions are the statement function
discussed later in this section and the intrinsic
function discussed in the next section.)

60481300 F

A function subprogram begins with a FUNCTION state­
ment and ends with an END statement. Control is
returned to the referencing program unit when a
RETURN or END is encountered; a RETURN statement of
the form RETURN exp is not allo"Wed in a function
subprogram.

A function subprogram can contain any statements
except PROGRAM, BLOCK DATA, SUBROUTINE, or another
FUNCTION statement. A function must not directly
or indirectly reference itself.

FUNCTION Statement

The FUNCTION statement (figure 6-7 and example in
figure 6-8) must appear as the first statement of
the function subprogram. The FUNCTION statement
specifies the symbolic name that is used as the
main entry point of the subprogram.

[typ] FUNCTION fun([d [,d] ...])

typ Is INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, BOOLEAN, or
CHARACTER*len. The len value specifies the
length of the result of the character function.

fun

d

Is the name of the function subprogram;
fun is an external function name.

Is a dummy argument that can be a
variable name, array name, or dummy
procedure name.

Figure 6-7. FUNCTION Statement

c

PROGRAM MAIN
INTEGER Z
Z = JOR (5,3)
ZZ = JAMCS,3)
PRINT *, Z,ZZ
STOP
END

FUNCTION JOR CX,Y)
INTEGER X,Y
JOR = X-Y
RETURN
ENTRY JAMCX,Y)
JAM=X+Y
RETURN
END

Function subprogram JOR is executed when the
name appears in the calling program unit. The
alternate entry point is entry JAM in function
JOR.

Figure 6-8. Function Reference Example

6-5

The symbolic name of a function subprogram, or an
associated entry name of the same type, is a vari­
able name in the function. The symbolic name
specified in a FUNCTION or ENTRY statement must not
appear in any other nonexecutable statement, except
a type statement. If the type of a function is
specified in a FUNCTION statement, then the func­
tion name cannot appear in a type statement. In an
executable statement, the symbolic name can appear
only as a variable. During execution, this vari­
able becomes defined and can be referenced or
redefined. The value of the function is the value
of this variable when control returns to the refer­
encing program unit.

The type of the function name must be the same in
the referencing program unit and the referenced
function subprogram. When type is omitted, the
type of the function is determined by the first
character of the function name. Implicit typing by
the IMPLICIT statement takes effect only when the
function name is not explicitly typed. The name
cannot have its type explicitly specified more than
once.

If the name of a function subprogram is of type
character, then each entry name must be type char­
acter and vice versa. The length of the function
subprogram symbolic name and any entry names in
the function subprogram must: be specified with the
same length. For example, if the function name has
a length of (*), all entry names must have a length
of (*).

The symbolic name of a function subprogram must not
be name, except a variable

The function subprogram can have more than one
entry point:, although alternate returns are prohib­
ited. See figure 6-8 for example. Multiple entry
points are established through the ENTRY statement.

In a function subprogram, the symbolic name of a
dummy argument is unique to the program unit and
must not appear in an EQUIVALENCE, PARAMETER, SAVE,
INTRINSIC, DATA, or COMMON statement, except as a
common block name. The dummy arguments are
replaced with the actual arguments during a func­
tion reference.

Dummy arguments that represent array names must be
dimensioned by a DIMENSION or type statement.
Adjustable dimensions are permitted in function
subprograms, as described below.

Function Subprogram Reference

References to function subprograms are not the same
as references to statement functions.

Function subprograms and intrinsic functions are
referenced through a function name (figure 6-9).
When the function name is referenced in an expres­
sion, a function is executed. The function name
can appear anywhere in an expression where an
operand of the same type can be used.

6-6

tun([a[,a] ...])

fun Is the name of the function or dummy
procedure.

a Is an actual argument that can be one
of the following:

An expression (except a character
expression involving concatenation
of a dummy argument with length (*))

An array name

An intrinsic function name

An external procedure name

A dummy procedure name

Figure 6-9. Function Reference Name

The type of the funccion result is the type of the
function name. The arguments must agree in order,

and type with the correspondin dummy argu-

Function subprograms and intrinsic functions can be
referenced in any procedure subprogram.

ENTRY STATEMENT

The ENTRY statement (figure 6-10 and example in
figure 6-11) can be used to define additional entry
points for a procedure established by the SUBROUTINE
or FUNCTION statement.

ENTRY ep[([d[,d] ...])]

ep

d

Is an entry point name in a function or
subroutine.

Is a dummy argument that can be on9 of
the following:

A variable name

An array name

A dummy procedure name

An asterisk, only if in a subroutine
subprogram

Figure 6-10. ENTRY Statement

60481300 F

1
5

6
99

900

c

20

10

PROGRAM MAIN
DIMENSION SET1C25)
READ 5,N
FORMAT CI 1)
IFCN .EQ. 0) GO TO 900
IFCN. EQ. 1) CALL CLEARCSET1)
IFCN. EQ. 2) CALL FILLCSET1)
DO 99 I=1,25
PRINT 6, SET1CI)
FORMAT CF5.2)
CONTINUE
GO TO 1
STOP
END

SUBROUTINE CLEARCARRAY)
DIMENSION ARRAYC25)
DO 10 I= 1,25
ARRAY CI) = 0. 0
CONTINUE
ENTRY FILLCARRAY)
READ *, VALUE,IPLACE
IFCIPLACE .GT. 25) RETURN
ARRAYCIPLACE) = VALUE
RETURN
END

Figure 6-11. Examples of ENTRY Statements

Each procedure subprogram has a primary entry point
established by the statement that begins the pro­
gram unit. Usually, a subroutine call or function
reference invokes the procedure at the primary
entry point, and the first statement executed is
the first executable statement in the program
unit. ENTRY statements can be used to define other
entry points.

A procedure that contains one or more ENTRY state­
ments has multiple entry points.

An ENTRY statement can appear anywhere after the
SUBROUTINE or FUNCTION statement in the subpro­
gram. An ENTRY statement cannot appear between a
block IF statement and its corresponding END IF
statement, or between a DO statement and the termi­
nal statement of the DO loop.

When an entry name is used to reference a proce­
dure, execution begins with the first executable
statement that follows the referenced entry point.
An entry name is available for reference in any
program unit, except in the procedure that contains
the entry name. The entry name can appear in an
EXTERNAL statement and (for a function entry name)
in a type statement.

Each reference to a procedure must use an actual
argument list that corresponds in number of argu­
ments and type of arguments with the dummy argument
list in the corresponding SUBROUTINE, FUNCTION, or
ENTRY statement. Type agreement is not required
for actual arguments that have no type, such as a
dummy subroutine name. The dummy arguments for an
entry point can therefore be different from the
dummy arguments for the primary entry point or
another entry point. No dummy argument can be used
in an executable statement of a procedure unless it
has al ready appeared in a FUNCTION, SUBROUTINE, or
ENTRY statement.

60481300 H

The order, number, type, and names of the dummy I
arguments in an ENTRY statement may be different
from the order, number, type, and names of the
dummy arguments in the FUNCTION statement or
SUBROUTINE statement and other ENTRY statements in
the same subprogram.

RETURN AND END STATEMENTS

Execution of a END or RETURN statement returns
program control to the next executable statement in
the referencing program unit. These statements are
often used together at the end of a subroutine
subprogram or a function subprogram.

The END statement (figure 6-12) ends each subroutine
subprogram or function subprogram. Execution of
the statement terminates the subroutine or function.

END

Figure 6-12. END Statement

Single and Multiple Returns

The RETURN statement (figure 6-13) can be used
wherever appropriate to terminate the subroutine or
function subprogram. The END statement must be at
the end of the subprogram.

RETURN[exp]

exp Is an arijb11t~tfQ or Bp0,.t~~rf expres­
sion. If exp is not of type inte­
ger, the value INTCexp) is used.
The optional expression exp can only
be used in a subroutine subprogram.

Figure 6-13. RETURN Statement

Both subroutine subprograms and function subpro­
grams can ha'.-e multiple returns. A multiple return
exists: when the subprogram has more than one
RETURN statement, and when a single RETURN state­
ment is separated from the END statement by other
statements.

The optional expression exp is not applicable to a
single or multiple return. See figure 6-14 for
example.

c

PROGRAM MAIN
READ *, X,Y,Z
CALL VALCX, Y ,Z)
END

SUBROUTINE VALCA,B,C)
IF(A .LT. 0.0) GO TO 12
PRINT *, 'A IS POSITIVE'
RETURN

12 CONTINUE
PRINT *, 'A IS NEGATIVE'
RETURN
END

Figure 6-14. MULTIPLE Return Example

6-7

Alternate Return

An alternate return is used only within a subrou­
tine subprogram. It returns control to the refer­
encing program unit at a place other than the next
executable statement after the CALL statement. The
RETURN statement in the form RETURN exp is used for
an alternate return.

Control is returned to a specified point in the
referencing program unit. The specified point is a
statement label in the referencing program unit.
The statement labels must be included in the actual
argument list, each preceded by an asterisk.
Control returns to the statement label determined
by the integer value of the alternate return
expression. If the value of the expression is less
than one, or greater than the number of asterisks
in the SUBROUTINE statement or ENTRY statement that
is the current entry point, control returns to the
statement following t)le CALL statement. For
example, if a CALL statement contains five_ state­
ment labels and if the alternate return expression
evaluates to three, control returns to the third
statement label specified in the actual argument in
the alternate return list:.

Al ternat:e returns can be used only in subroutine
subprograms. See figure 6-15 for example.

6-8

20

30

40

10
c

11

12

13

PROGRAM MAIN
READ *, A,B,C
CALL XCOMP(A,B,C,*20,*30,*40)
CONTINUE
PRINT *, 'RETURNED TO STMT 20'
GO TO 10
CONTINUE
PRINT *, 'RETURNED TO STMT 30'
GO TO 10
CONTINUE
PRINT *, 'RETURNED TO STMT 40'
END

SUBROUTINE XCOMPCB1,B2,G,*,*,*)
IF(B1*B2 - 4.159) 11,12,13
CONTINUE
RETURN 2
CONTINUE
RETURN 1
CONTINUE
IF(B1 .GT. 32.> RETURN 3
RETURN
END

RETURN 1 is a return to statement 20 in the
calling program; RETURN 2 is a return to
statement 30; RETURN 3 is a return to state­
ment 40. The subroutine contains both the
normal RETURN statement and alternate RETURN.

Figure 6-15. Alternate Return Example

ST A TEMENT FUNCTIONS

A statement function is a user-defined procedure.
It is a nonexecutable, single-statement computation
that applies only to the program unit containing
the definition.

Within a program unit, a statement function must
appear after the specification statements and
before the first executable statement in the unit.
A statement function must not directly or indirectly
reference itself.

Statement Function Definition

A statement function is specified by a single
statement (figure 6-16 and example in figure
6-17). It is similar to an assignment statement.

fun([d(,dJ ••• J) = expr

fun Is the function name.

d Is a statement function dummy argu­
ment.

ex pr Is an expression in which each pri­
mary is an expression expr enclosed
in parentheses, or is one of the
following:

Constant
Symbolic constant
Variable reference
Array element reference
Intrinsic function reference
Reference to a statement function

which appears in the same pro­
gram unit, beforeElflli\11111 this
statement

External function reference
Dummy procedure reference

~l&lliilll•~t••1•1

Figure 6-16. Statement Function

The symbolic name of the function is a variable and
contains the value of the expression after execu­
tion. During execution, the actual argument
expressions are evaluated,

an
us, an actual argument cannot

an array name or a function name. In addition,
a character variable or array element is used as

an actual argument, a substring reference to the
corresponding dummy argument must not be specified
in the statement function expression. The expres­
sion of the function is evaluated, and the result­
tng value is converted as necessary to the data
type of the function.

60481300 F

PROGRAM SFUNC
INTEGER SN
DIMENSION AVGC25)
ADDCA,B,C,D) = A+B+C+D
AVRGCT1,T2,T3,T4) = ADDCT1,T2,T3,T4)/4
GRADECSCORE,HSCORE) = CSCORE/HSCORE) * 100
SN=1

1 READC•,100,END=20) S1,S2,S3,S4
100 FORMATC4F5.1)

AVGCSN)=AVRGCS1,S2,S3,S4)
NS=SN
SN = SN +1
GO TO 1

20 HIGH= AVG(1)
DO 30 SN = 1, NS
IFCAVGCSN) .GT. HIGH) HIGH AVGCSN)

30 CONTINUE
DO 40 SN=1, NS
CRVEDG = GRADECAVGCSN),HIGH)
PRINT *, CRVEDG

40 CONTINUE
STOP
END

Figure 6-17. Examples of Statement Functions

The symbolic name of a statement function is local
and must not be the same as any other local name in
the program unit, except a common block name. The
name of a statement function cannot be an actual
argument and must not appear in an INTRINSIC or
EXTERNAL statement. If the statement function is
used in a function subprogram, then the statement
function can contain a reference to the name of the
function subprogram or any of its entry names as a
variable, but not as a function.

Each variable reference in the expression can be
either a reference to a variable within the same
program unit or to a dummy argument of the state­
ment function. Statement functions can reference
dummy variables that appear in a SUBROUTINE,
FUNCTION, or ENTRY statement, but that statement
must precede the statement function. Statement
function dummy arguments can have the same names as
variables defined elsewhere in the same program
unit without conflict. Any reference to the name
inside the function refers to the dummy argument,
and any reference to the name outside the function
definition refers to the variable.

Statement Function Reference

A statement function is referenced through a state­
ment function name (figure 6-18}. When the state­
ment function name is referenced in an expression,
the statement function is evaluated. The actual

.~.rgt111l.e.nts •.... · •... ~ •. ;;•...•. ~ .. ~.~ .. :.~.~ •. 5 .. :~ ... i!;;~~~,<~.~i~~~*;~~~ '.pqti !~8 ';~\ii~
qf tJ\~< ~qrt;:~~pgp;~~~g.;~µ~ ~l;gµ~~!i~i the resulting
values are used in place of the corresponding dummy
arguments in evaluation of the statement function
expression. The definition of a statement function
must not directly or indirectly reference itself.
The statement function name can appear anywhere in
an expression where an operand of the same type can
be used.

The type of the statement function result is the
type of the statement function name. The arguments
must agree in order and number with the correspond­
ing dummy arguments.

60481300 H

fun([a[,a]. .])

fun Is the name of the statement function.

a Is an actual argument that must be an
expression (except a character expression
involving concatenation of a dummy
argument with length (*)).

Figure 6-18. Statement Function Reference

A statement function can be referenced only in the
program unit where the statement function appears.

PROGRAM UNIT AND
PROCEDURE COMMUNICATION

Communication between the referencing program unit
and the referenced procedure is accomplished by
passing actual arguments and by using common blocks.

Common blocks can be used to pass data to a sub­
program, but not to an intrinsic function or a
statement function. Data must be passed to these
functions through an argument list.

Passing arguments
discussed below.

and use of common blocks is
The BLOCK DATA subprogram, which

is used to initialize named common, is then
discussed.

PASSING ARGUMENTS

Actual arguments in the referencing program unit
are associated with the referenced procedure
through dummy arguments.

6-9 I

Actual Arguments

Actual arguments appear in the argument list of the
referencing program unit. The referencing program
unit passes actual arguments to the referenced
procedure. The procedure receives values from the
actual arguments and returns values to the refer­
encing program unit. Actual arguments can be
constants, symbolic names of constants, variables,
array names, array elements, function references,
and expressions. An actual argument cannot be the
name of a statement function within the referencing
program unit.

Dummy Arguments

Dummy arguments appear in the argument list of the
referenced procedure. Within the referenced proce­
dure, the dunnny arguments are associated with the
actual arguments passed. Procedures use dummy
arguments to indicate the types of actual argu­
ments, the number of arguments, and whether each
argument is a variable, array, procedure, or
statement label. Dummy arguments for statement
functions can only be variables. Since all names
are local to the program unit, the same dummy
argument name can be used in more than one proce­
dure. A dummy argument appearing in a SUBROUTINE,
FUNCTION, or ENTRY statement must not appear in
EQUIVALENCE, DATA, PARAMETER, SAVE, INTRINSIC, or
COMMON statements except as a comm.on block name.
Dummy arguments used in array declarations for
adjustable dimensions must be type integer. Dummy
arguments representing array names must be dimen­
sioned.

Argument Association

When a procedure is executed, the actual arguments
and dummy arguments are matched up and each actual
argument replaces each dummy argument. The type of
the actual argument and the dummy argument must be
the same. The actual arguments must be in the same
order and there must be the same number as the
dummy arguments in the referenced procedure. The
actual arguments that are evaluated before the
association of arguments include: expressions,
substring expressions, and array subscripts. If
the actual argument is a procedure name, the proce­
dure must be available for execution at the time of
the reference to the procedure.

A dummy argument is undefined unless it is associ­
ated with an actual argument. Argument association
can exist at more than one level of procedure
reference, and terminates within a program unit at
the execution of a RETURN or END statement.

A subprogram reference can cause a dummy argument
to be associated with another dummy argument in the
referenced procedure. Any dummy arguments that
become associated with each other can be referenced
but must not be stored into during the execution of
the procedure. For example, if a procedure is
defined as:

SUBROUTINE ALPHA(X,Y)

6-10

and referenced with:

CALL ALPHA(A,A)

then the dummy arguments X and Y would each be
associated with the actual argument A. X and Y
would be associated with each other and therefore
must not be stored into.

A subroutine reference can cause a dummy argument
to become associated with an entity in a common
block. For example, if a procedure contains the
statements:

SUBROUTINE ALPHA(X)
COMMON Y

and the referencing program unit contains:

COMMON A
CALL ALPHA(A)

then the actual argument A causes the dummy argu­
ment X to become associated with Y, which is in
blank common. In this case, X and Y cannot be
stored into during execution of the subroutine.

The information below discusses argument associ­
ation with reference to character length, var­
iables, arrays, procedure arguments, asterisk
arguments, and adjustable dimensions.

Character Length

For type character, both the dummy and actual
arguments must be of type character, and the length
of the actual argument must be greater than or
equal to the length of the dummy argument. If the
length of the actual argument of type character is
greater than the length of the dummy argument, only
the leftmost characters of the actual argument, up
to the length of the dummy argument, are used as
the dummy argument.

If a dummy argument is an array name, length
applies to the entire array and not to each array
element. Length of array elements in the dummy
argument can be different from length of array
elements in the actual argument. The total length
of the actual argument array must be greater than
or equal to the total length of the dummy argument
array.

When an actual argument is a character substring,
the length of the actual argument is the length of
the substring. If the actual argument expression
involves concatenation, the sum of the lengths of
the operands is the length of the actual argument.

Variables

A variable in a dummy argument can be associated
with a variable, array element, substring, or
expression in the actual argument. A procedure can
define or redefine the associated dummy argument if
the actual argument is a variable name, array ele­
ment name, or substring reference. The procedure I
cannot redefine the dummy argument if the actual
argument is a constant, a symbolic constant, a
function reference, an expression using operators,
or an expression enclosed in parentheses.

60481300 H

The array declaration in a type, COMMON, or
DIMENSION statement provides the information needed
for the array during the execution of the program
unit. The actual argument array and the dummy argu­
ment array can differ in the number of the dimension
and size of the array. A dummy argument array can
be associated with an actual argument that is an
array, array element, or array element substring.

If the actual argument is a noncharacter array
name, the size of the actual argument array cannot
be less than the size of the dummy argument array.
Each actual argument array element is associated
with the dummy argument array element that has the
corresponding subscript value.

An association exists for array elements in a
character array. Note that unless the lengths of
the elements in the dummy and actual argument
agree, the dummy and actual argument array elements
might consist of different characters. For example,
if a program unit has the following statements:

DIMENSION A(2)
CHARACTER A*2

CALL SUB(A)

and the subroutine has the following statements:

SUBROUTINE SUB(B)
DIMENSION B(2)
CHARACTER B*l

then the first character of A(1) corresponds to
B(1) and the second character of A(1) corresponds
to B(2).

If the actual argument is a noncharacter array
element name, the size of the dummy argument cannot
exceed (as+l-av), where as is the size of the
actual argument array and av is the subscript value
of the array element. For example, if the program
unit has the following statements:

DIMENSION ARRAY(20)

CALL CHECK(ARRAY(3))

then the value of as is 20, and av is 3. The
maximum dummy array size is 18 for the subroutine:

SUBROUTINE CHECK (DUMMY)
DIMENSION DUMMY(18)

SWAP= DUMMY(2)

Actual argument array elements are associated wih
dummy argument array elements, starting with the
first element passed. In the example, DUMMY(2) is
associated with ARRAY(4), and DUMMY(18) is associ­
ated with ARRAY(20).

60481300 H

The association for characters is basically the
same as for noncharacter array elements. The
actual argument for characters can be an array
name, array element name, or array element sub­
string name. If the actual argument begins at
character storage position acu of an array, then
the first character storage position of the dummy
argument array becomes associated with character
storage position acu of the actual argument array,
and so forth to the end of the dummy argument array.

An actual argument that is an extended Hollerith
constant is treated as a one-dimensional array with
ten characters per word. For extended Hollerith
constants of nH or "f" form, any unused characters
in the last word are blank filled; for R"f" forms,
the last word is right justified with left zero
fill; for L"f" forms, the last word is left justi­
fied with right zero fill.

Procedure Arguments

A dummy argument that is a dummy procedure can be
associated only with an actual argument that is an
intrinsic function, external function, subroutine,
or another dummy procedure. If the dummy argument
is used as an external function, the actual argument
that is passed must be a fu ttion or dummy proce­
dure. The type of the du y argument must agree
with the type of result of 11 specific actual argu­
ments that become associa ed with the dummy argu­
ment. When a dummy argum nt is used as an external
function and is the name of an intrinsic function,
the intrinsic function/ name corresponding to the
dummy argument name is fot available. If the dummy
argument is referenced as a subroutine, the actual
argument must be the name of a subroutine or dummy
procedure, and the dummy argument must not appear
in a type statement or be referenced as a function.

Asterisk Arguments

A dummy argument that is an asterisk can only
appear in the argument list of a SUBROUTINE or
ENTRY statement in a subroutine subprogram. The
actual argument is an alternate return specifier in
the CALL statement.

Adjustable Dimensions

Adjustable dimensions enable creation of a more
general subprogram that can accept varying sizes of
array arguments. For example, a subroutine with a
fixed array can be declared as:

SUBROUTINE SUM(A)
DIMENSION A(lO)

The maximum array size subroutine SUM can accept is
10 elements.

If the same subroutine is to accept an array of any
size, it can be written as:

SUBROUTINE SUM(A, N)
DIMENSION A(N)

6-11

Value N is passed as an actual argument.

Adjustable dimensions can be passed through common
variables. For example,

SUBROUTINE SUB(A)
COMMON/B/M,N
DIMENSION A(M,N)

Dimension of array A, in subroutine SUB, is speci­
fied by the values M and N passed through the
common block B.

Character strings and arrays can also be adjust­
able. For example,

SUBROUTINE MESSAG(X)
CHARACTER X*(*)
PRINT *, X

The subroutine declares X with a length of (*) to
accept strings of varying size. Note that the
length of the string is not passed explicitly as an
actual argument.

Another form of adjustable dimension is the
assumed-size array. In this case, the upper bound
of the last dimension of the array is specified by
an asterisk. The value of the dimension is not
passed as an argument, but is determined by the
number of elements stored into the array. If an
array is dimensioned *, the array in the calling
program must be large enough to contain all the
elements stored into it in the subprogram. See
figure 6-19 for example.

10

20

SUBROUTINE CAT CA,M,N,B,C)
REAL ACM), B(N), CC*)
DO 10 1=1, M
C (l)=A (I)

DO 20 1=1, N
C Cl+M) =B CI)
RETURN
END

Subroutine CAT places the contents of array A
followed by the contents of array 8 into
array C. The dimension of C in the calling
program must be greater than or equal to M+N.

Figure 6-19. Example of Adjustable
Dimensions in Subroutine

Use of the asterisk form of the adjustable dimen­
sion prevents subscript checking for the array, so
the user must .be careful not to reference outside
the array bounds. Use of this form is preferable
to the common practice of declaring arrays to have
dimension I.

USING COMMON BLOCKS

Common blocks can be used to transfer values
between a referencing program unit and a subpro­
gram. Common blocks can reduce the number of
storage units required for a program by enabling
two or more subprograms to share some of the same

6-12

storage units. The variables and arrays in a
common block can be defined and referenced in all
subprograms that contain a declaration of that
common block. The names of the variables and
arrays in the common block can be different for
each subprogram. The association is by storage and
not by name.

Common blocks cannot -Oe used to pass data to
intrinsic functions or statement functions; the
method used to pass data to these procedures is
through an argument list.

A reference to data in a common block is valid if
the data is defined and is the same type as the
type of the name used in the main program or sub­
program. The exceptions to agreement betlileen the
type in common and the type of the reference are:

Either part of a complex entity can be refer­
enced as real.

In a subprogram, entities declared in a labeled
common block can remain defined or become undefined
at execution of an END or RETURN statement. If a
labeled common block with the same name has been
declared in a program unit that is directly or
indirectly referencing the subprogram, the entities
remain defined. Entities specified in a SAVE
statement remain defined. Entities that are
initially defined by DATA statements, and have
neither been redefined nor become undefined, remain
defined. Execution of a RETURN or END statement
does not: cause entities in blank common, or enti­
ties in any labeled common block that appears in
the main program, to become undefined.

An example using common blocks in a subroutine is
shown in figure 6-20.

c

10

PROGRAM AVRG
C01'910N NUMBRC10), STORE
REAL NUMBR, STORE
READ *, NUMBR
CALL SUM
STORE = STORE/10
PRINT*, 'AVERAGE=', STORE
END

SUBROUTINE SUM
COMMON AC10), B
REAL A,B
B = 0.
D0101=1,10
B = B + ACI)
CONTINUE
RETURN
END

Array NUMBR in program AVRG and array A in sub­
routine SUM share the same locations in common.
The values read into locations NUMBRC1) through
NUMBRC10) are available to subroutine SUM.

Figure 6-20. Using Common

60481300 F

BLOCK DAT A SUBPROGRAMS
The block data subprogram is a nonexecutable
specification subprogram that can be used to ~nter
initial values for variables and array elements in
named common blocks. A program can have more than
one block data subprogram. Only one block data
subprogram can be unnamed;

The BLOCK DATA statement (figure 6-21 and example
in figure 6-22) must appear as the first statement
of the block data subprogram. The name used for
the block data subprogram must not be the same as
any local variables in the subprogram. The name
must not be the same as any other program unit or
entry name in the program.

Block data subprograms can contain IMPLICIT,
PARAMETER, DIMENSION, type, COMMON, SAVE,
EQUIVALENCE, LEVEL, or DATA statements. A block
data subprogram ends with an END statement. Data
can be entered into more than one common block in a
block data program. All variables having storage
in the named comm.on must be spec if ied even if they
are not all initially defined.

A BLOCK DATA subprogram can be referenced by an
external statement in any program unit. If it is
loaded from a library, the control statement
LDSET(USEP=blockdataname) should be specified.

60481300 F

BLOCK DATA [sub]

sub Is the name of the block data
subprogram.

Figure 6-21. BLOCK DATA Statement

BLOCK DATA ANAME
COMMON /CAT/X,Y,Z /DOG/,R,S,T
COMPLEX X,Y
DATA X,Y /2*(1.0,2.7)/, R/7.6543/
END

The block data subprogram ANAME enters data in­
to common blocks CAT and DOG. Initial values
are defined for variables X and Y in block CAT
and variable R in block DOG. No initial values
are defined for variables Z, S, or T.

Figure 6-22. Example of BLOCK DATA

6-13

FORTRAN SUPPLIED PROCEDURES 7

Certain procedures that are of general utility or
that are difficult to express in FORTRAN statements
are contained within the FORTRAN library. In
general, these include the intrinsic functions and
various subprograms that interface with different
aspects of the operating system.

The intrinsic functions are used in expressions
to calculate values.

The utility subprograms and functions include
several different types of operations:

Accessing parameters on an LGO or EXECUTE
control statement through the GETPARM sub­
routine

Accessing the seed for the random number
generator function

Duplicating COMPASS macros
operating system functions

that access

Checking status and other input/output
operations

Connecting files to interactive terminals

Implementing random access files through
the MSIO routines when direct access files
are not suitable

Debugging operations that dump memory,
trace subroutine calls, affect error
messages, and check data errors

Changing the collating sequence for char­
acter data evaluations

Static loading for programs that are not
using the Common Memory Manager.

Utility subprograms are always called by name.
A user-supplied subprogram with the same name
overrides the utility supplied by the FORTRAN
library.

INTRINSIC FUNCTIONS

Intrinsic functions are procedures that perform a
set of calculations when the name appears in an
expression in the referencing program unit.
Intrinsic functions communicate with the referenc­
ing program unit through a single value associated
with the function symbolic name. See section 6 for
a general discussion of functions.

60481300 G

When the name of an intrinsic function duplicates
another element in a program, the result depends on
the element and the references. If a variable,
array, or statement function is defined with the
same name as an intrinsic function, the name is a
local name that no longer refers to the intrinsic
function. If an external function subprogram is
written with the same name as an intrinsic fun­
ction, use of the name references the intrinsic
function, unless the name is declared as the name
of an external function with the EXTERNAL statement
described in section 2.

Intrinsic functions are typed by default and need
not appear in any explicit type statement in the
program. Explicitly typing a generic intrinsic
function name does not remove the generic proper­
ties of the name. If an intrinsic function is
typed something other than the default for that
function, the compiler does not honor the type
statement and generates an error.

If DB=TB is specified on the FTN5 control state­
ment, many intrinsic functions perform argument
range checking and issue an informative diagnostic
at execution time.

GENERIC AND SPECIFIC FUNCTIONS

Certain intrinsic functions are generic, but have
related specific functions. For example, the
generic function name LOG computes the natural
logarithm of an argument. Its argument can be
real, double precision, or complex, and the type of
the result is the same as the type of the argu­
ment. Specific function names ALOG, DLOG, and CLOG
also compute the natural logarithm. The specific
function name ALOG computes the log of a real
argument and returns a real result. Likewise, the
specific name DLOG is for double precision argu­
ments and results, and the specific name CLOG is
for complex arguments and results.

If a generic name and specific names exist, a
generic name can be used in place of a specific
name and is more flexible than a specific name.
Except for type conversion generic functions, the
type of the argument determines the type of the
result.

Only a specific name can be used as an actual
argument when passing the function name to a user­
defined procedure or function.

7-l

7-2 60481300 G

TABLE 7-1. INTRINSIC FUNCTIONS

Generic Specific Type of Type of Number of Intrinsic
Definition Name Name Argument Function Arguments Function

ABS IABS Integer Integer Absolute Value Defined as lal; if a is
ABS Real Real complex, square root of
DABS Double Double ((real a)2+(imaginary a)2)
CABS Complex Real

ACOS ACOS Real Real Arccosine Defined as arccos(a)
DACOS Double Double

AIMAG Complex Real Imaginary part of Imaginary part of (ar,ai)=ai
complex argument

AINT AINT Real Real Truncation Defined as int(a)
DINT Double Double

AMAX.O Integer Real 2 thru Choosing largest Defined as max
MAXI Real Integer 500 value (aI,a2[,an] •••)

AMINO Integer Real 2 thru Choosing smallest Defined as min
MINI Real Integer 500 value (aI,a2[,an] •••)

AN INT ANINT Real Real Nearest whole Defined as int(a+.5)
DNINT Double Double number if a is positive or zero;

int(a-.5) if a is
negative

ASIN ASIN Real Real Arcsine Defined as arcsin(a)
DAS IN Double Double

ATAN ATAN Real Real Arctangent Defined as arctan(a)
DATAN Double Double

CHAR Integer Character Type conversion Integer conversion to
character

CMPLX Integer Complex I or 2 Type conversion Conversion to complex
Real Complex
Double Complex
Complex Complex

CON JG Complex Complex Conjugate of Negation of imaginary part of
complex argument (ar,-ai)

cos cos Real Real Cosine Defined as cos(a), where a is
DCOS Double Double in radians
ccos Complex Complex

60481300 G 7-2.I/7-2.2

Generic
Name

COSH

DBLE

DIM

EXP

INT

LOG

60481300 F

Specific
Name

COSH
DCOSH

IDIM
DIM
DDIM

DPROD

ERFC

EXP
DEXP
CEXP

I CHAR

INDEX

INT
IFIX
ID INT

LEN

LGE

LGT

LLE

LLT

ALOG
DLOG
CLOG

Type of
Argument

Real
Double

Integer
Real
Double
Complex

Integer
Real
Double

Real

Real

Real
Double
Complex

Character

Character

Integer
Real
Real
Double
Complex

Character

Character

Character

Character

Character

Real
Double
Complex

TABLE 7-1. INTRINSIC FUNCTIONS (Contd)

Type of
Function

Real
Double

Double
Double
Double
Double

Integer
Real
Double

Double

Real

Real
Double
Complex

Integer

Integer

Integer
Integer
Integer
Integer
Integer

Integer

Logical

Logical

Logical

Logical

Real
Double
Complex

Number of
Arguments

2

2

2

2

2

2

2

Intrinsic
Function

Hyperbolic cosine

Type conversion

Positive
difference

Double precision
product

Complementary
error function

Exponential

Type conversion

Index of a
substring

Type conversion

Length

Lexically greater
than or equal

Lexically greater
than

Lexically less
than or equal

Lexically less
than

Natural logarithm

Definition

Defined as cosh(a)

Conversion to double

Defined as al-a2 if al is
greater than a2; 0 if al is
not greater than a2

Defined as al*a2

Defined as 1-erf(a)

Defined as e**a

Character conversion to
integer

Location of substring a2 in
string al

Conversion to integer, int(a)

Length of character string

True if al follows a2, or
al=a2, in ASCII collating
sequence

True if al follows a2 in ASCII
collating sequence

True if al precedes a2, or
al=a2, in ASCII collating
sequence

True if al precedes a2 in
ASCII collating sequence

Defined as loge(a)

7-3

Generic
Name

LOG IO

MAX

MIN

MOD

REAL

SIGN

SIN

SINH

SQRT

7-4

Specific
Name

ALOGlO
DLOGIO

MAXO
AMAX I
DMAXI

MINO
AMIN!
DMINI

MOD
AMOD
DMOD

FLOAT
REAL

SNGL

!SIGN
SIGN
DSIGN

SIN
DSIN
CSIN

SINH
DSINH

SQRT
DSQRT
CSQRT

Type of
Argument

Real
Double

Integer
Real
Double

Integer
Real
Double

Integer
Real
Double

Integer
Integer
Real
Complex
Double
Complex

Integer
Real
Double

Real
Double
Complex

Real
Double

Real
Double
Complex

TABLE 7-1. INTRINSIC FUNCTIONS (Contd)

Type of
Function

Real
Double

Integer
Real
Double

Integer
Real
Double

Integer
Real
Double

Real
Real
Real
Real
Real
Real

Integer
Real
Double

Real
Double
Complex

Real
Double

Real
Double
Complex

Number of
Argmnents

I

2 thru
500

2 thru
500

2

2

Intrinsic
Function

Common logarithm

Choosing largest
value

Choosing smallest
value

Remaindering

Type conversion

Transfer of sign

Sine

Hyperbolic sine

Square root

Definition

Defined as log1o(a)

Defined as max
(al ,a2 [,an] •••)

Defined as min
(al,a2[,an] •••)

Defined as
al-int(al/a2)*a2

Conversion to real

Defined as lal I if a2 is ~ O;
-lall if a2 is < 0

Defined as sin(a), where a is
in radians

Defined as sinh(a)

Square root of (a)

60481300 F

Generic
Name

TAN

TANH

Specific Type of
Name Argument

TAN
DTAN

Real
Double

TABLE 7-1. INTRINSIC FUNCTIONS (Contd)

Type of
Function

Real
Double

Number of
Arguments

Intrinsic
Function

Tangent

Definition

Defined as tan(a), where a is
in radians

TABLE 7-2. Sffi'1\1ARY OF MATHEMATICAL INTRINISIC FUNCTIONS

Function Syntax
Type of

Domain Definition · Range
Name

Arceo sine ACOS(y) Generic IYl~l
-1

cos (y) O~ACOS(y)~ 7r
(result in ACOS(y) Real
radians) DACOS(y) Double

ASIN(y)
-1

- 7r /2~ASIN(y)~ 7r/2 Arc sin Generic IYl~l sin (y)
(result in ASIN(y) Real
radians) DASIN(y) Double

Arctangent ATAN(y) Generic
-1

tan (y) - 7r /2~ATAN(y)~ 7r I 2
(result in ATAN(y) Real
radians) DATAN(y) Double

Arctangent ATAN2(y,x) Generic x<O,y<O
-1

- 7r+tan (y/x) - tr<ATAN2(y,x)<- 7r /2
(2 argunents, ATAN2(y,x) Real x=O,y<O - 7rL!
result in DATAN2(y,x) Double x>O tan (y/x) - 7r/2<ATAN2(y,x)<7r /2
radians) x=O,y>O 7r /2 -1

x<O,y>O 7r +tan (y ,x) 7r /2<ATAN2(y,x)~ 7r
x=O,y-;;;O error

Inverse
hyperbolic
tangent

COS(x)
47

cos(x) -l~COS(x)g Trigonometric Generic lx1<2
cosine COS(x) Real
(argument in DCOS(x) Double
radians)

CCOS(x) Complex lxl<7r*2
46

cos(x+iy)
IYl~741.66

Trigonometric
cosine
(argument in
degrees)

Hyperbolic COSH(x) Generic 1x1g42.36 cosh(x) l~COSH(x)

cosine COSH(x) Real
DCOSH(x) Double

60481300 F 7-5

Function

Exponential

Natural
logarithm

Common
logarithm
(base 10)

Trigonometric
sine
(argument in
radians)

Hyperbolic
sine

Square
root

Trigonometric
tangent
(argunent
radians)

Hyperbolic
tangent

7-6

in

TABLE 7-2. SUMMARY OF MATHEMATICAL INTRINISIC FUNCTIONS (Contd)

Syntax

EXP(x)
EXP(x)
DEXP(x)

CEXP(x)

LOG(x)
ALOG(x)
DLOG(x)

CLOG(x)

LOGlO(x)
ALOGlO(x)
DLOGlO(x)

SIN(x)
SIN(x)
DSIN(x)

CSIN(x)

SINH(x)
SINH(x)
DSINH(x)

SQRT(x)
SQRT(x)
DSQRT(x)

CSQRT(x)

TAN(x)
TAN(x)
DTAN(x)

TANH(x)
TANH(x)

Type of
Name

Generic
Real
Double

Complex

Generic
Real
Double

Complex

Generic
Real
Double

Generic
Real
Double

Complex

Generic
Real
Double

Generic
Real
Double

Complex

Generic
Real
Double

Generic
Real

Domain Definition

-675.8l<x<741.66 x e

-675.8l<x<741.66 e (x+iy)

IYI~
~46

x>O loge (x)

x
2
+i=10 loge(x+iy)

x>O log
10

(x)

txt<2
47 sin(x)

lxl<7r*2
46 sin(x+iy)

IYl:5:741.66

1x1g42.36 sinh(x)

x>O
0.5

x

x20,x<O

tx1<2
47 tan(x)

tanh(x)

Range

O<EXP(x)

- 7r<imaginary
part~ 11'

-l~SIN(x)~l

SQRT(x)20

value in right half
plane

-liTANH(x)il

60481300 F

The description of each intrinsic function is given
below in alphabetical order.

ABS

ABS(a) is a generic function that returns an
absolute value. The result is integer, real, or
double precision, depending on the argument type.
For an integer, real, or double precision argument,
the result is !al. For a complex argument, the
result is the square root of (ar2+ai2). The
specific names are IABS, ABS, DABS, and CABS.

ACOS
ACOS(a) is a generic function that returns an
arccosine. The result is expressed in radians.
The result is real or double precision, depending
on the argument type. See table 7-2. The specific
names are ACOS and DACOS.

AIMAG

AIMAG(a) is a specific function that returns the
imaginary part of a complex argument. The real
result is ai, where the complex argument is
(ar,ai). AIMAG does not have a generic name.

AINT

AINT(a) is a generic function that returns an
integer after truncation. The result is real. For
a real or double precision argument, the result is
0 if lal is less than 1. If lal is greater than or
equal to 1, the result is the largest integer with
the same sign as argument a that does not exceed
the magnitude of a. The specific names are AINT
and DINT.

ALOG

ALOG(a) is a specific function that returns the
natural logarithm of the argument. The argument is
real and the result is real. The generic name is
LOG.

ALOG10

ALOGlO(a) is a specific function that returns the
logarithm base 10 of the argument. The argument is
real and the result is real. The generic name is
LOGlO.

AMAXO
AMAXO(al ,a2 [,an] •.•) is a specific function that
returns the value of the largest argument. The 2
through 500 arguments are integer, and the result
is real. AMAX.O does not have a generic name.

AMAXl

AMAXl(al ,a2 [,an] ..•) is a specific function that
returns the value of the largest argument. The 2
through 500 arguments are real, and the result is
real. The generic name is MAX.

60481300 F

AMINO

AMINO(al,a2 [,an] •••) is a specific function that
returns the value of the smallest argument. The 2
through 500 arguments are integer, and the result
is real. AMINO does not have a generic name.

AMINl

AMINl(al ,a2 [,an] •••) is a specific function that
returns the value of the smallest argument. The 2
through 500 arguments are real, and the result is
real. The generic name is MIN.

AMOD

AMOD(al ,a2) is a specific function that returns al
modulus a2. The arguments are real, and the result
is real. If a2 is zero, results are undefined.
The lal/a21 must be less than z48. The generic
name is MOD.

AND

AND(al,a2 [,an] •••) is a specific function that
returns a Boolean product. The 2 through 500
arguments can be any type but character, and the
result is Boolean. AND does not have a generic
name.

ANINT
ANINT(a) is a generic function that returns the
nearest whole number. The result is real or double
precision, depending on the argument type. The
specific names are ANINT and DNINT.

ASIN

ASIN(a) is a generic function that returns an
arcsine. The result is expressed in radians. The
result is real or double precision, depending on
the argument type. See table 7-2. The specific
names are ASIN and DASIN.

ATAN
ATAN(a) is a generic function that returns an
arctangent. The result is expressed in radians.
The result is real or double precision, depending
on the argument type. See table 7-2. The specific
names are ATAN and DATAN.

7-7

ATAN2

ATAN2(al ,a2) is a generic function that returns an
arctangent. The result is expressed in radians.
The result is real or double precision, depending
on the type of the arguments. The arguments must
not both be O. See table 7-2. The specific names
are ATAN2 and DATAN2.

CABS
CABS(a) is a specific function that returns a real
result from a complex argument. The generic name
is ABS.

ccos
CCOS(a) is a specific function
complex result from a complex
generic name is COS.

CEXP

CEXP(a) is a specific function
complex result from a complex
generic name is EXP.

CHAR

that returns a
argument. The

that returns a
argument. The

CHAR(a) is a specific function that returns the
character value of an integer argument. The value
returned depends on the collating sequence used.
If the ASCII collating sequence is used, the argu­
ment must be in the range 0 through 63; the first
character in the collating sequence corresponds to
value 0, the second character to value 1, the thir~
to value 2, and so forth. The result is the selec­
tion of a single character from the collating
sequence. If, in a user-specified collating
sequence, more than one character has weight a, the
character returned can be any of them. CHAR does
not have a generic name.

CLOG

CLOG(a) is a specific function
complex result from a complex
generic name is LOG.

7-8

that returns a
argument. The

CMPLX

CMPLX{a) or CMPLX(al,a2) is a generic function that
performs type conversion and returns a complex
value. CMPLX can have one or two arguments. A
single argument can be integer, real, double preci­
sion, or complex. If two arguments are used, the
arguments must be of the same type and must both be
integer, real, or double precision. For a single
integer, real, or double precision argument, the
result is complex, with the argument used as the
real part and the imaginary part zero. For a
single complex argument, the result is the same as
the argument. For two arguments al and a2, the
result is complex, with argument al used as the
real part and argument a2 used as the imaginary
part. COMPLX does not have specific names.

CON JG

that returns a
The result is

(ar ,ai), the
part negated.

CONJG{a) is a specific function
conjugate of a complex argument.
complex. For a complex ~rgument

result is (ar,-ai) with the imaginary
CONJG does not have a generic name.

cos
COS(a) is a generic function that returns a cosine.
The argument is assumed to be in radians. The
result is real, double precision, or complex,
depending on the argument type. See table 7-2.
The specific names are COS, CCOS, and DCOS.

COSH
COSH(a) is a generic function that returns a hyper­
bolic cosine. The result is real or do.uble preci­
sion, depending on the argument type. See table
7-2. The specific names are COSH and DCOSH.

CSIN

CSIN(a) is a specific function that returns the
sine of the argument. The argument and result are
complex. The generic name is SIN.

60481300 F

CSQRT

CSQRT(a) is a specific
complex result from a
generic name is SQRT.

function
complex

that returns a
argument. The

DABS

DABS(a) is a specific function that
double precision result from a double
argument. The generic name is ABS.

DA COS

DACOS(a) is a specific function that
double precision result from a double
argument. The generic name is ACOS.

DASIN

DASIN(a) is a specific function that
double precision result from a double
argument. The generic name is ASIN.

DAT AN

DATAN(a) is a specific function that
double precision result from a double
argument. The generic name is ATAN.

DATAN2

returns a
precision

returns a
precision

returns a
precision

returns a
precision

DATAN2(al,a2) is a specific function that returns a
double precision result from a double precision
argument. The generic name is ATAN2.

DBLE

DBLE(a) is a generic function that performs t:ype
conversion and returns a double precision result.
The argument can be integer, real, double preci­
sion, or complex. For an integer or real argument,
the result has as much precision as the double
precision field can contain. For a double preci­
sion argument, the result is the argument. For a
complex argument, the real part is used, and the
result has as much precision as the double pre­
cision field can contain. DBLE does not have
specific names.

DCOS

DCOS(a) is a specific function that
double precision result from a double
argument. The generic name is COS.

DCOSH

DCOSH(a) is a specific function that
double precision result from a double
argument. The generic name is COSH.

60481300 F

returns a
precision

returns a
precision

DDIM

DDIM(al ,a2) is a specific function that returns a
double precision result from double precision argu­
ments. It returns the value of al-a2; if al is
less than a2, it returns O. The generic name is
DIM.

DEXP
DEXP(a) is a specific function that returns a
double precision result from a double precision
argument. The generic name is EXP.

DIM

DIM(al,a2) is a generic function that returns a
positive difference. The result is integer, real,
or double precision, depending on the argument
type. Both arguments must be the same type. The
result is al-a2 if al is greater than a2, and the
result is 0 if al is less than or equal to a2. The
specific names are DIM, !DIM, DDIM.

DINT

DINT(a) is a specific function that
double precision result from a double
argument. The generic name is AINT.

DLOG

DLOG(a) is a specific function
double precision result from a
argument. The generic name is LOG.

DLOG10

that
double

returns a
precision

returns a
precision

DLOGlO(a) is a specific function that returns a
double precision result from a double precision
argument. The generic name is LOGlO.

DMAXl

DMAXl(al,a2 (,an] .••) is a specific function that
returns a double precision result from 2 through
500 double precision arguments. The generic name
is MAX.

DMINl

DMINl(al,a2 (,an] .••) is a specific function that
returns a double precision result from 2 through
500 double precision arguments. The generic name
is MIN.

DMOD

DMOD(al,a2) is a specific function that returns a
double precision result from two double precision
arguments. If a2 is zero, results are undefined.
The lal/a2 I must be less than 248. The generic
name is MOD.

7-9

DNINT

DNINT(a) is a specific function that
double precision result from a double
argument. The generic name is ANINT.

DPROD

returns a
precision

DPROD(al ,a2) is a specific function that returns a
double precision product. The arguments are real,
and the result is double precision. The result is
al*a2. DPROD does not have a generic name.

DSIGN

DSIGN{al ,a2) is a specific function that returns a
double precision result from two double precision
arguments. The generic name is SIGN~

DSIN

DSIN(a) is a specific function that
double precision result from a double
argument. The generic name is SIN.

DSINH

DSINH(a) is a specific function that
double precision result from a double
argument. The generic name is SINH.

DSQRT

DSQRT(a) is a specific function that
double precision result from a double
argument. The generic name is SQRT.

DTAN

DTAN(a) is a specific function
double precision result from a
argument. The generic name is TAN.

DTANH

that
double

DTANH(a) is a specific function that
double precision result from a double
argument. The generic name is TANH.

7-10

returns a
precision

returns a
precision

returns a
precision

returns a
precision

returns a
precision

EXP
EXP(a) is a generic function that returns an expo­
nential. The result is real, double precision, or
complex, depending on the argument type. See table
7-2. The specific names are EXP, DEXP, and CEXP.

FLOAT

FLOAT(a) is a specific function that returns a real
result from an integer arguaent. The generic name
is REAL.

IABS

IABS(a) is a specific
integer result from an
generic name is ABS.

ICHAR

function that returns an
integer argument. The

ICHAR(a) is a specific function that returns an
integer value from a character argument. The value
returned depends on the collating weight of the
character in the collating sequence used. For the
ASCII collating sequence, the first character in
the collating seque~ce is at position 0, the second
character at position 1, the third at position 2,
and so forth. For a user-specified collating
sequence, two or more characters can have the same
value. The argument is a character value with a
length of one character, and the value returned is
the integer position of that character in the
collating sequence. !CHAR does not have a generic
name.

IDIM

IDIM(al,a2) is a specific function that returns an
integer result from integer arguments. It returns
the value of al-a2; if al is less than a2, it
returns O. The generic name is DIM.

IDINT

IDINT(a) is a specific function that returns an
integer result from a double precision argument.
The generic name is INT.

IDNINT

IDNINT(a) is a specific function that returns an
integer result from a double precision argument.
The generic name is NINT.

60481300 F

IFIX

IFIX(a) is a specific function that
integer result from a real argument.
name is INT.

INDEX

returns an
The generic

INDEX(al,a2) is a specific function that returns
the location of a substring within a string. Both
arguments must be character string arguments. If
string a2 occurs as a substring within string al,
the result is an integer indicating the starting
position of the substring a2 within al. If a2 does
not occur as a substring within al, the result is
O. If a2 occurs as a substring more than once
within al, only the starting position of the first
occurrence is returned. INDEX does not have a
generic name.

INT

INT(a) is a generic function that performs type
conversion to integer. The r'::.~.~.¢.fa .••• ~~\ integer, and
the argument can be integer, g~i;J;.~~µi< real, ~?11.~.~T
precision, or complex. For an integer or U()l;e;an
argument, the result is the argument. For a real
or double precision argument where lal is less than
1, the result is O. Where tat is greater than or
equal to 1, the result is the largest integer with
the same sign as argument a that does not exceed
the magnitude of a. For a complex argument, the
real part is used, and the result is the same as
for a real argument. The specific names are INT,
IFIX and ID INT.

ISIGN

ISIGN(al,a2) is a specific function that returns an
integer result from two integer arguments. The
generic name is SIGN.

LEN

LEN(a) is a specific function that returns the
length of a character string. The argument is a
character string, and the result is an integer
indicating the length of the string. LEN does not
have a generic name.

60481300 F

LGE

LGE(al ,a2) is a specific function that returns a
result indicating lexically greater than or equal
to. The arguments are character strings. The
result is true only if al follows a2, or al is
equal to a2, in the ASCII collating sequence. LGE
does not have a generic name.

LGT

LGT(al ,a2) is a specific function that returns a
result indicating lexically greater than. The
arguments are character strings. The result is
true only if al follows a2 in the ASCII collating
sequence. LGT does not have a generic name.

LLE

LLE(al ,a2) is a specific function that returns a
result indicating lexically less than or equal to.
The arguments are character strings. The result is
true only if al precedes a2, or al is equal to a2,
in the ASCII collating sequence. LLE does not have
a generic name.

LLT

LLT(al ,a2) is a specific function that returns a
result indicating lexically less than. The argu­
ments are character strings. The result is true
only if al precedes a2 in the ASCII collating
sequence. LLT does not have a generic name.

7-11

LOG

LOG(a) is a generic function that returns a natural
logarithm. The result is real, double precison, or
complex, depending on the argument type. See table
7-2. For a complex argument (ar ,ai), the range of
the imaginary part of the result is - ?r(ai< 7r. The
imaginary part of the result is only 0 when ar is
greater than 0 and ai=O. The specific names are
ALOG, DLOG, and CLOG.

LOG10

LOGlO(a) is a generic function that returns a
coDDon logarithm. The result is real or double
precision, depending on the argument type. See
table 7-2. The specific names are ALOGlO and
DLOGlO.

MAX

MAX(al,a2 [,an] .••) is a generic function that
returns the largest value. The result is integer,
real, or double precision, depending on the type of
the 2 through 500 arguments. The specific names
are MAXO, AMAXl, and DMAXl.

MAXO

MAXO(al,a2 [,an] •.•) is a specific function that
returns as an integer result the largest value from
2 through 500 integer arguments. The generic name
is MAX.

MAXl
MAXl(al,a2 [,an] ...) is a specific function that
returns as an integer result the largest value from
the 2 through 500 real arguments. MAXl does not
have a generic name.

MIN

MIN(al,a2 [,an] .•.) is a generic function that
returns the smallest value from the 2 through 500
arguments. The result is integer, real, or double
precision, depending on the type of arguments. The
specific names are MINO, AMINl, and DMINl.

MINO

MINO(al,a2 [,an] •••) is a specific function that
returns as an integer result the smallest value
from the 2 through 500 integer arguments. The
generic name is MIN.

7-12

MINl

MINl(al,a2 [,an] .••) is a specific function that
returns as an integer result the smallest value
from the 2 through 500 real arguments. MINl does
not have a generic name.

MOD

MOD(al ,a2) is a generic function that returns the
remainder of al divided by a2. The result is inte­
ger, real, or double precision, depending on the
argument type. The result is al-(int(al/a2)*a2).
If a2=0, results are undefined. The arguments al
and a2 must not exceed 248-1. The specific
names are MOD, AMOD, and DMOD.

NINT

NINT(a) is a generic function that returns the
nearest integer. The result is integer, and the
argument can be real or double precision. For a
real or double precision argument where a is zero
or positive, the result is (int(a+.5)). For an
argument where a is negative, the result is
(int(a-.5)). The specific names are NINT and
IDNINT.

REAL

REAL(a) is a generic function that performs type
conversion and returns a real result. The argument
can be integer, real, double precision, or com­
plex. For a complex argument (ar ,ai), the result
is real(ar). The specific names are REAL, FLOAT,
and SNGL.

60481300 G

SIGN
SIGN(al,a2) is a generic function that returns a
value after a transfer of sign. The result is
integer, real, or double precision, depending on

I the argmnent type. The result is jal I if a2 is
greater than or equal to O. The result is -jalj if
a2 is less than 0. The specific names are SIGN,
ISIGN, and DSIGN.

SIN

SIN{a) is a generic function that returns a sine.
The argument is assumed to be in radians. The
result is real, double precision, or complex,
depending on the argument type. See table 7-2.
The specific names are SIN, DSIN, and CSIN.

SINH

SINH(a) is a generic function that returns a hyper­
bolic sine. The result is real or double precision,
depending on the argument type. See table 7-2.
The specific names are SINH and DSINH.

SNGL

SNGL{a) is a specific function that returns a real
result from a double precision argument. The
generic name is REAL.

SQRT

SQRT{a) is a generic function that returns a prin­
cipal square root. The result is real, double
precision, or complex, depending on the argument
type. See table 7-2. The specific names are SQRT,
DSQRT, and CSQRT.

60481300 H

TAN

TAN{a) is a generic function that returns a tan­
gent. The argument is assumed to be in radians.
The result is real or double precision, depending
on the argument type. See table 7-2. The spacific
names are TAN and DTAN.

TAND(a) is a specific function that returns a tan­
gent. . Tfie . ar$ument is as~V;med to be .· in degrees.
The ar~ment and result are real. see table 7-2.
TAN!J does not have a: generic name.

TANH

TANH(a) is a generic function that returns a hyper­
bolic tangent. The result is real or double
precision, depending on the argument type. See
table 7-2. The specific names are TANH and DTANH.

7-13

7-14 60481300 F

60481300 G

in figure 7.:.14)
the specified

the

occur.

7-15

I

7-16 60481300 H

60481300 G 7-17

7-18 60481300 G

60481300 G 7-19

7-20 60481300 G

Ex~mple:

59 thru 18

17 thru 0

3 59 thru

47 thru 30

29 thru 0 5

4 59 thru 24 6

23 thru 0 4

f Field must be display code zero filled.

60481300 G 7-21

7-22 60481300 G

60481300 G 7-22 .1/7-22.2

60481300 F 7-23

7-24 60481300 F

60481300 F 7-25

7-26 60481300 F

60481300 F 7-27

7-28 60481300 F

59

print
frequency

43 31

print limit detection
total

print frequency By default, print frequency value is 0.. If the v~llle is changed
to n by a call to SYSTEMC1 diagnostic and traceback informa­
tion is listed every nth time until the print limit is reached.

frequency increment By default, frequency increment . value is 1. This specification
can be changed by a call to SYSTEMC if the call specifies
print frequency as O. When frequency increment is 0, diag­
nostic and traceback information is not listed; when it is 1,
such information is listed until the priqt liritit is reachec::I; when
the frequency increment is n > 1, such informatic)n is listeQ
only the first n times µnless the print limit . is teached first.

print limit By -default, print limit value is 1 o~ h. can be cftapge<;I by a
eall to SYSTEMC.

detection total Detection .. total is .a r~nning <:Punt of the nt1ri)ber of tlrllQ~ ~?
error· occurs. The final value is reported in . the error sumJl'lary
issued at end-of-job if SYSTEMC is catted during execution.

F/NF

A/NA

This bit specifies the severity of the error: 1 indicates a fa tat
error; o~ . nonfatal. . The severities of system . defil'.led errors
are given in appendix 8. AH errors define<! by the user· wjth
these numbers in a call to SYSTEM retain the specified
severity. The severity of any error can be changed by a can
to SYSTEMC, however.

The A/NA bit is ignored unless a nonstandard. r~co\ferY. adQ.ress
is specified; it can be set only durin9 assembty of SYSTf:::tyiC.
When this bit is set, the· ad(;.lress. in an auxiliary tct.t>le . is . pa~sed
in the third word of ti,e secQn~arv arQument Ust to t~e r~9~v­
ery routine. Each. wor~ in the auxiliary table must hav~ .. the
~rrot. number if) its up~ 1.0 bits, So that the address of the
first error number· ~t~h. i~ JlaSS~ t(). t¥ ·•·recovery' t~.Utl~~·
,An . entry . in. the (lUxiliary table fpr an erro~ is not limi~erJ ·to
any specific number of· words.

user-specified
recovery· addr~ss

Tj}is aqdress is specified . in a· call to SYST(:MC.

figure 7-40.. Error Tabl~ Entry

PROGRA~ .. ··EXPECT
l>IMENS!9~ lRAY(6)
DATA IRAY/6* -0/

C ~ET .P~UIT LIMIT TO ZERO
IRAY(4J ·~ 0
X i:: EXP (800. Q)
X = E)(P0-800.0>

C CALL SYSTEMC TO INHIBIT PRINTING Of ERROR 115
C AND STAR.T ERROR SUMMARY ACCUMULATION

CALL SYSTEMCC115,IRAY)
PRINT *
PRINT *,'*****SYSTEMC IS CALLEI> TO SUPPRESS '//

+ 'PRINTING OF ERROR 115 1

X = EXPC800.0>
X = EXPC-800 .. 0)
PRINT *
PRINT *,'*****ERROR 115 DETECTED BUT NOT PRINTED'
END

Figure 7-41. Suppressing an Error Message

60481300 G 7-29

7-30 60481300 F

table 7-5. If c(i) and c(j) are characters and i
and j are their respective collating weights, then
c(i) .op.c(j) has the value • TRUE. if and only if
Lop. j has the value • TRUE. , where • op. is any of
the relational operators.

The value of a weight table element does not have
to be unique within the table; that is, several
characters can have the same collating weight.

Collation can be directed by the fixed collating
weight table or by the user-specified collating
weight table. The fixed table is predefined as the
display code weight table and cannot be modified;
the user-specified weight table is predefined as
the ASCII6 weight table and can be accessed and
modified by the program. The CS parameter on the
FTN5 control statement and the C$ COLLATE compiler
directive determine whether the fixed or user­
specified table controls current collation. The
predefined weight tables appear in table 7-5.

The ASCII collating sequence used by the intrinsic
functions LGE, LGT, LLE, and LLT is independent of
both the fixed and user-specified weight tables and
is therefore unaffected by either the compiler-call
statement option or the C$ COLLATE directive. The

intrinsic function INDEX does not use either
collating weight table.

A program can access or modify the user-specified
weight table by using the procedures COLSEQ, WTSET
or CSOWN.

COLSEQ SUBROUTINE

COLSEQ (figure 7-45) selects a processor-defined
user-specified weight table.

The collating sequences that can be selected are:

ASCII6

COBOL6

DISPLAY

STANDARD

If STANDARD is specified, COBOL6 values are used
when the operating system is using the CDC graphic
set; and ASCII6 values are used when the operating
system is using the CDC ASCII subset.

TABLE 7.5 COLLATING WEIGHT TABLES

CDC Octal Decimal Weights CDC Octal Decimal Weights
Graphic Character Graphic Character

Code ASCII6 COBOL6 Display Code ASCII6 COBOL6 Display

: (colon) oat 26 53 0 5 40 21 59 32
A 01 33 25 1 6 41 22 60 33
B 02 34 26 2 7 42 23 61 34
c 03 35 27 3 8 43 24 62 35
D 04 36 28 4 9 44 25 63 36
E 05 37 29 5 + 45 11 15 37
F 06 38 30 6 - 46 13 18 38
G 07 39 31 7 * 47 10 17 39
H 10 40 32 8 I 50 15 19 40
I 11 41 33 9 (51 8 21 41
J 12 42 35 10) 52 9 13 42
K 13 43 36 11 $ 53 4 16 43
L 14 44 37 12 = 54 29 22 44
M 15 45 38 13 blank 55 0 0 45
N 16 46 39 14 , (comma) 56 12 20 46
0 17 47 40 15 • (period) 57 14 12 47
p 20 48 41 16 r 60 3 5 48
Q 21 49 42 17 61 59 3 49
R 22 50 43 18] 62 61 44 50
s 23 51 45 19 % 63t 5 2 51
T 24 52 46 20 I 64 2 23 52
u 25 53 47 21 r- 65 63 4 53
v 26 54 48 22 v 66 1 34 54
w 27 55 49 23 I\ 67 6 6 55
x 30 56 50 24 t 70 7 7 56
y 31 57 51 25 J 71 31 8 57
z 32 58 52 26 < 72 28 24 58
0 33 16 54 27 > 73 30 9 29
1 34 17 55 28 ~ 74 32 1 60
2 35 18 56 29 ~ 75 60 10 61
3 36 19 57 30 -, 76 62 11 62
4 37 20 58 31 ; (semicolon) 77 27 14 63

trn installations using the 63-graphic set, the octal character code 00 does not exist, and the weights
in the ASCII6 and COBOL6 tables for the octal character code 63 assume the corresponding weights from
character code 00.

60481300 F 7-31

7-32 60481300 F

60481300 F 7-33

FORTRAN 5 INTERFACES 8

60481300 G 8-1

8-2 60481300 H

60481300 F 8-3

8-4 60471399 F

60481300 F 8-5

8-6 60481300 F

60481300 F 8-7

8-8 60481300 F

60481300 F 8-9

8-10 60481300 F

60481300 F 8-11

8-12 60481300 F

60481300 F 8-13

I

8-14 60481300 H

location

I

60481300 H 8-15

8-16 60481300 F

60481300 F 8-17

8-18 60481300 F

I

60481300 H 8-19

8-20 60481300 F

60481300 F 8-21

8-22 60481300 F

60481300 H 8-23

I

8-24 60481300 H

60481300 F 8-25

8-26 60481300 G

60481300 F 8-27

8-28 60481300 F

60481300 G 8-29

8-30 60481300 F

60481300 F 8-31

8-32 60481300 G

60481300 F 8-33

8-34 60481300 F

60481300 F 8-35

8-36 60481300 F

60481300 F 8-37

8-38 60481300 F

OVERLAYS AND OVCAPS 9

60481300 F 9-1

9-2 60481300 G

60481300 F 9-3

9-4 60481300 F

60481300 F 9-5

9-6 60481300 F

DEBUGGING AIDS 10

60481300 F 10-1

10-2 60481300 F

60481300 F 10-3

10-4 60481300 F

60481300 F 10-5

10-6 60481300 F

COMPILATION AND EXECUTION 11

60481300 G 11-1

11-2 60481300 H

60481300 H 11-2.1/11-2.2

60481300 G 11-3

11-4 60481300 G

60481300 F 11-5

11-6 60481300 G

60481300 G 11-7

11-8 60481300 F

60481300 H 11-9 I

11-10 60481300 H

60481300 F 11-11

11-12 60481300 F

60481300 G 11-13

11-14 60481300 F

60481300 F 11-15

11-16 60481300 F

60481300 F 11-17

11-18 60481300 F

60481300 F 11-19

11-20 60481300 F

60481300 G 11-21

11-22 60481300 F

60481300 F 11-23

11-24 60481300 F

60481300 F 11-25

11-26 60481300 F

I
60481300 H 11-27

11-28 60481300 H

60481300 H 11-29 I

EXAMPLES 12

The first part of this section contains sample deck
structures, including control statements, illus­
trating compilation and execution of FORTRAN
programs. The second part contains sample execut­
able programs illustrating various features of
FORTRAN. Examples of input and output are included.

SAMPLE DECK STRUCTURES
Following are some typical deck structures that can
be used for compiling and executing FORTRAN pro­
grams. Refer to the operating system reference
manual for details of control statements.

FORTRAN SOURCE PROGRAM WITH CONTROL
STATEMENTS
Figure 12-1 shows a deck structure for compiling
and executing a FORTRAN program that contains a
function and a subroutine.

f6
7
8
9 l END

I
L

r

COMPILATION ONLY

Figure 12-2 shows a deck structure for compiling a
program; the program is not executed after com­
pilation.

OPT=O COMPILATION

Figure 12-3 illustrates a deck structure for
compiling a program in OPT=O mode. No binary
object file is produced and no execution occurs.

COMPILATION AND EXECUTION

Figure 12-4 illustrates a deck structure for
compiling and executing a program that reads data
from cards.

f FORTRAN statements

Control
Statements

/SUBROUTINE RVIE (C,J,L)

(END

"--{ FORTRAN statements

I FUNCTION RTSM (A,B)

l END
I

{ FORTRAN statements

f PROGRAM MAIN
/1

8
9 L LGO.

(FTN5.

{ t Accounting statements

f Job statement

~

t As applicable for operating system or installation

...

1

~

~

............

...

~

I'-'

FORTRAN
Source
Program

Figure 12-1. FORTRAN Source Program With Control Statements
60481300 F 12- 1

7
8
9

FTNS(QC,EL=T)

t Accounting statements

Job statement

tAs applicable for operating system or installation

ac

Figure 12-2. Compilation Only

7
8
9

FTN5(OPT=O,B=O)

t Accounting statements

tAs applicable for operating system or installation

OPT=O

B=O

Figure 12-3. OPT=O Compilation

All diagnostics (excluding
ANSI) listed on file
OUTPUT

Full syntactic error
scan of program

OPT=O compilation mode is
desired.

Binary object file is
not produced.

12-2 60481300 G

Is
7
8
9 L

f_ Data

h l 8
9

{_ FORTRAN source deck

17 1 8
9

LLGO.

f_FTN5.
.,___

lL t Accounting statements
/ Job statement

~

I--

1--

t As applicable for operating system or installation

Figure 12-4. Compilation and Execution

FORTRAN COMPILATION WITH COMPASS
ASSEMBLY AND EXECUTION

Figure 12-5 illustrates a deck structure containing
a FORTRAN and a COMPASS program unit. The FORTRAN
and COMPASS source decks can be in any order.

/6 1
7 .L.

L

8 1

9 f_ Data

17 1
8 /;
9 'l / COMPASS source deck

.L
F

L

[_ FORTRAN source deck

/7 1
8 L LGO.
9 (FTN5(LO=R,EL=T)

{ t Accounting statements

Job statement

]_
I

COMPASS source decks must begin with a line con­
taining the word:

ID ENT

in columns 11 through 16. Columns 1 through 10 of
the ident line must be blank.

Jt
...

y ~)·"'

I--

1--

LO=R

EL=T

Source program and cross­
reference listing on file
OUTPUT

All diagnostics (excluding
ANSI) listed on file
OUTPUT

·-
tAs applicable for operating system or installation

Figure 12-5. Compilation With COMPASS Assembly and Execution

60481300 G 12-3

COMPILATION AND EXECUTION WITH
FORTRAN SUBROUTINE AND COMPASS
SUBPROGRAM

Figure 12-6 illustrates a deck structure containing
a FORTRAN subroutine, and a COMPASS subprogram,
showing the COMPASS IDENT and ENTRY statements. In
this example, the LGO statement specifies the
output file (as described in section 11).

COMPILATION WITH BINARY CARD OUTPUT

Figure 12-7 illustrates a deck structure to compile
and produce a binary object deck.

7
8
9

Data

ENTRY Al

LGO (.OUTPUT)

FTN5.

IDENTSUB

t Accounting statements

Job statement

t As applicable for operating system or installation

LOADING AND EXECUTION OF BINARY
PROGRAM
Figure 12-8 illustrates a deck structure to load
and execute a binary object program. The MAP(OFF)
statement suppresses the load map.

COMPILATION AND EXECUTION WITH
RELOCATABLE BINARY DECK

Figure 12-9 illustrates a deck structure to compile
a FORTRAN program and load and execute a binary
program along with the FORTRAN program.

Data is written to OUTPUT
rather than T APE2.

Figure 12-6. Compilation and Execution With FORTRAN Subroutines and COMPASS Subprogram

12-4 60481300 G

7
8
9

Source deck

PROGRAM BOB

FTN5 (B=PUNCHB,OPT=3) ~-+-- OPT=3 specifies
---------------, full optimization
t Accounting statements

Job statement

t As applicable for operating system or installation

Figure 12-7. Compilation With Binary Card Output

Is
7
8
9 Ir l

.l

'r _l

I Data

l7 l 8 _[

9 /7 1 8
9

Ir(
l

l

~ Binary deck

/7
8
9

/INPUT.
L

l
IMAP(OFF) 1

~ ft Accounting statements l
Job statement

...__,
~

.__I

t As applicable for operating system or installation

Figure 12-8. Loading and Execution of Binary Program

60481300 G 12-5

I&
7
8
9

I
1

1
_L

(Data

1-""
/1 l

8
~

/7 J::~ 9 8 ..L
9 _L

_L

.__ { Binary deck

t-/7
8
9

L
_L

_L
_L

~
Source deck

PROGRAM ALFRED I-

/1
...

I-
8 ~

9
f_ EXECUTE.

L LOAD(LGO)

'--(LOAD(INPUT)

I FTN5.

It Accounting statements 1 i---

Job statement -
....__

......__

t As applicable for operating system or installation

Figure 12-9. Compilation and Execution With Relocatable Binary Deck

12-6 60481300 G

COMPILATION AND TWO EXECUTIONS WITH
DIFFERENT DAT A DECKS

Figure 12-10 illustrates a deck structure to
compile a program and to execute the program twice
with two different data decks. Output from the two
executions is sent to separate output files.

7
8
9

Data #1

PREPARATION OF OVERLA VS

Figure 12-11 illustrates a deck structure to
compile, load and execute a program containing
overlays.

PROGRAM SUBS (INPUT,OUTPUT)

7
8
9

LGO,,TAPE2.

t Accounting statements

Job statement

t As applicable for operating system or installation

Output will be on two
separate files; output
from data# 1 will be on
TAPE 1, output from
data #2 on T APE2.

Figure 12-10. Compilation and Execution With Different Data Decks

60481300 G 12-7

Primary Overlay
(1,0)

Source Deck

Main Overlay
(O,O)

Source Deck

1'6 l
7 L
8 LL

n L_Y'"Data

/7 _l

} 8 L END Secondary Overlay

9 ~ (1.1)

- I' PROGRAM MLT Source Deck

/ OVERLAY(FRANK,1,1) I
(END - L CALL OVERLAY (5HFRANK~1.1,0)

L.

~u L.

I' PROGRAM ROY

/ OVERLAY(FRANK,1,0) I
/ END

....__
I' SUBROUTINE GROUCH(X) 1

l_ END

L CALL OVERLAY(5HFRANK.1.0,0) ~

~ CALL GROUCH(40.0)

L
L ~

{_ PROGRAM LEO
t-

OVERLAY (FRANK,0,0) l I-
7 1 8 FRANK. 1 9

_{._NOGO.
~ f__LOAD(LGO)

....__
_{ FTN5 .

_(t Accounting statements
1--

(Job statement
t---'

1--

t--

tAs applicable for operating system or installation

Figure 12-11. Preparation of Overlays

Cail to
Primary Overlay
FRANK 1,0

12-8 60481300 G

COMPILATION AND TWO EXECUTIONS WITH
OVERLAYS

Control statements for batch execution

WRITE and PRINT statements
Figure I2-I2 illustrates a deck structure to com­
pile an overlay and to execute the overlay two
times.

Carriage control

PROGRAM statement

SAMPLE PROGRAMS
The control statement:

This subsection shows sample FORTRAN programs which
illustrate various features of the FORTRAN language. BIRD, TIO.

PROGRAM OUT

Program OUT, shown in figure I2-I3, illustrates the
following FORTRAN features:

is the job statement. A job statement must precede
every job. BIRD is the job name. TIO specifies a
maximum of IO seconds of central processor time
(can be either octal or decimal, depending on
installation option).

7
8
9

Source deck

CH. (ABSOLUTE OVERLAY)

X. (RELOCATABLE)

FTN5(B=X)

t Accounting statements
Job statement

t As applicable for operating system or installation

Figure 12-12. Compilation and Two Executions With Overlays

BIRD, TlO.
FTN5.
LGO.
7/~/Y IN COLUMN 1

PROGRAM OUT
OPEN (6, FILE= 1 0UTPUT 1

)

PRINT 100
100 FORMAT (11 1 THIS WILL PRINT AT THE TOP OF A PAGE")

INK= 2000 + 4000
WRITE (6, I { lX, 14, II = INK OUTPUT BY WRITE STATEMENT") I) INK
PRINT 1 (lH ,I4, JOH= OUTPUT FROM PRINT STATEMENT)', INK
STOP
END

6/7/~/9 IN COLUMN 1

Figure 12-13. Program OUT With Control Statements

6048I300 G 12-8.I

The statement:

FTN5.

specifies the FORTRAN compiler. The default param­
eters (described in section 10) are used. Since no
alternative files are specified on the FTN5 control
statement, the FORTRAN compiler reads from file
INPUT and outputs to files OUTPUT and LGO. List­
ings, diagnostics, and maps are written to OUTPUT
and the relocatable object code is written to LGO.

The statement:

LGO.

causes the binary object code to be loaded and
executed.

The statement:

7 /8/9

separates control statements from the remainder of
the job deck (file INPUT). This statement contains
a 7, 8, and 9 multipunched in column 1; it follows
the control statements in every batch job.

The OPEN statement (line 2) associates unit 6 with
file OUTPUT.

The WRITE statement (line 6) outputs the variable
INK to file OUTPUT. The format specification is

12-8.2

included in the WRITE statement. If the following
PRINT statement had been used instead of WRITE:

PRINT '(15, "=INK OUTPUT BY PRINT",
*"STATEMENT")', INK

the OPEN statement would not be needed. The
specification uses quotes to delimit the literal
and the carriage control character 1 to cause the
line to be printed at the top of a page.

Lines 6 and 7 print the variable INK. In both
output statements, a blank carriage control char­
acter is specified to cause single spacing. Line 6
uses the specification lX to produce a blank in
column 1; line 7 uses the specification lH for
the same effect.

The 6/7 /8/9 card contains the characters 6, 7, 8,
and 9 multipunched in column 1. It is the last
card in every job deck (INPUT file), indicating to
the system the end of the job.

Output from program OUT is shown in figure 12-14.

THIS WILL PRINT AT THE TOP OF A PAGE
tiOOO INK OUTPUT BY WRITE ~TATEMENT
6000 = OUTPUT FRUM PRINT STATEMENT

Figure. 12-14. Program OUT Output

60481300 G

PROGRAM B

Program B, shown in figure 12-15, generates a table
of 64 characters. The internal bit configuration
of any character can be determined by its position
in the table. Each character occupies six bits.

Features illustrated in this example include:

Octal constants

Simple DO loop

PRINT statement

FORMAT with /,I,X and A editing

Character constant as a format specifier

The PRINT statement (line 2) has no output list; it
prints out the heading at the top of the page using
the information provided by the format specifica­
tion. The 1 is the carriage control character, and
the two slashes cause one line to be skipped before
the next string is printed. The slash at the end
of the format specification skips another line
before the program output is printed.

The DO loop (lines 4 through 6) generates numbers 0
through 7 (note that a DO index can be zero). The
PRINT statement (line S) prints 0 through 7 (the
value of J) on the left and the 8 characters in
NCHAR on the right. The first iteration of the DO
loop prints NCHAR as it appears on line 3. The
octal value 01 is a display code A, 02 is a B, 03
is a C, etc. Line 6 adds the octal constant
10101010101010100000 to NCHAR; when this is printed
on the second iteration of the DO loop, the octal
value 10 is printed as a display code H, 11 as I,
12 as J, etc. Compare these values with the char­
acter set listed in appendix A.

Output from program B is shown in figure 12-16.

PROGRAM STATES

Program STATES, shown in figure 12-17, reads
employee names and home states, ignoring all but
the first two letters of the state name. If the
state name starts with the letters CA, the name is
printed. This program illustrates character
handling.

The first PRINT statement (line 3)
printer to start a new page, print
NAME, and skip 3 lines.

directs the
the heading

The READ statement (line 5) reads the last name
into I.NAME, first name into FNAME, home state into
STATE, and tests for end-of-file.

P1WGRAM B

TABLE OF INTERNAL VALUES

012J4567

0 : ABC DEF G
1 HIJKLMNO
2 PQRSTUVW
J XYZ01234
4 56789+-*
5 /()$= ,.
6 #[]%"- !&
7 I 1 () @'\'' ;

Figure 12-16. Program B Output

PROGRAM STATES
CHARACTER*lU FNAME, LNAME, STATE
PR lNT 1

1 FORMAT (lHl, 5X, 4HNAME, ///)
3 READ(*, '(3A)', END=99) LN.AME,

X FNAME, STATE

c
c IF FIRST Two CHARACTERS OF STATE ARE CA
C PRINT LAST NAME ANO FIRST NAME
c

IF (STATE(l:~) .EQ. 'LA') THEN
PRINT '(5X, 2A)', LNAME, FNAME

ENUIF
GU TO J

99 STOP
ENU

Figure 12-17. Program STATES

The relational operator .EQ. tests to determine if
the first two letters read into variable STATE
match the two letters of the constant 'CA'. If a
match occurs, FNAME and LNAME are printed.

Sample input and output for program STATES are
shown in figure 12-18.

PROGRAM EQUIV

Program EQUIV, shown in figure 12-19, places values
in variables that have been equivalenced and prints
these values using the NAMELIST statement. The
following features are illustrated:

EQUIVALENCE statement

NAMELIST statement

PRINT '("lTABLE UF INTERNAL VALUES",//," ulLJ4567",/)'
NCHAR= O"OU ul 02 U3 04 U5 U6 U7 00 00"
lJO J J = U,7
p R l NT I (I 3' 1 x' Ats) I • J ' NCH AR

j NCHAR= NCHAR + O"lU 10 lU lU lu 10 lU lU UU UU"
STUP
Erm

Figure 12-15. Program B

60481300 F 12-9

Input:

BROWN, PHILLIP
BICAROI, R. J.
CROWN, SYLVIA
HIGENBERF,ZELOA
MUNCH, GARY G.
SMITH S !MON
DEAN, ROGER
RIPPLE SALLY
JUNES STAN
HEATH BILL
Output:

NAME

M.CA
KENTUCKY
CAL
MAINE
CALlF
CA
GEORGIA
NEW YORK
URE GUN
NEW YORK

BROWN,
CROWN,
MUNCH,
SMITH

PHILLIP M.
SYLVIA
GARY G.
SIMON

Figure 12-18. Sample Input and
Output for Program STATES

PROGRAM EQUIV
E~UIVALENCE (X,Y), (Z,l)
HAMELIST /OUT/ X, Y, Z,
OPEN (6, FlLE='OUTPUT')
X= 1.
Y= l.
Z= J.
I= 4
WRITE (6,0UT)
!>TOP
END

Figure 12-19. Program EQUIV

Line 2 equivalences two real variables X and Y; the
two variables share the same location in storage,
which can be referred to as either X or Y. Any
change made to one variable changes the value of
the others in an equivalence group as illustrated
by the output of the WRITE statement, in which both
X and Y have the value 2. • The storage location
shared by X and Y contains first 1. (X=l.), then 2.
(Y=2.).

The real variable Z and the integer variable I are
equivalenced, and the same location can be referred
to as either real or integer. Since integer and
real internal formats differ, however, the output
values will not be the same.

For example, the storage location shared by Z and I
contained first 3.0 (real value), then 4 (integer
value). When I is output, no problem arises; an
integer value is referred to by an integer variable
name. However, when this same integer value is
referred to by a real variable name, the value O.O
is output, because the internal formats of real and
integer values differ. The integer and real
internal formats are shown in figure 12-20.

Although a value can be referred to by names of
different types, the internal bit configuration
does not change. An integer value output as a real
variable has a. zero exponent and its value is zero.

When variables of different types are equivalenced,
the value in the storage location must agree with
the type of the variable name, or unexpected
results might be obtained.

This NAMELIST WRITE statement (line 10) outputs
both the name and the value of each member of the
NAMELIST group OUT defined in the statement
NAME LIST/ OUT /X, Y, Z, I. The NAMELIST group is pre­
ceded by the group name, OUT, and terminated by the
characters $END. Output is shown in figure 12-21.

PROGRAM COME

Program COME, shown in figure 12-22, places vari­
ables and an array in common and declares another
variable and array equivalent to the first element
in common. It places the numbers -1 through -12 in
each element of the array IA and outputs values in
common using the NAMELIST statement. Features
illustrated include:

COMMON and EQUIVALENCE statements

NAMELIST statement

Negative subscript

Negative DO loop parameters

lnteger~ar-----1 ----~I
59

Sign

59 58 ~ 0

R:Jirl..___8_~-~-~ __ l __________ F_r_:-:-io_n_(m_> _________ __.I

Figure 12-20. INTEGER and REAL Internal Formats

12-10 60481300 F

Variables are stored in common in the order of
appearance in the COMMON statement: A, B, C, D, F,
G, H. All variables with the exception of G are
declared integer. G is implicitly typed real.

The EQUIVALENCE statement assigns the first element
of the arrays IA and E to the same storage location
as the variable A. The subscript of IA has a lower
bound of -12. Since A is in conunon, E and IA will
be in common. Variables and array elements are
assigned storage as shown in figure 12-23.

The DO loop places values -1 through -12 in IA
using a negative DO index. The first element of IA
(indexed by -12) shares the same location as the
first element of E. This location is also shared
by A. IA(-11) is equivalent to E(2,1) and B;
IA(-10) is equivalent to E(3,1) and C, and so forth.

Any change made to one member of an equivalence
group changes the value of all members of the
group. When -12 is stored in IA(-12), both E(1, 1)
and A have the value -12. When -11 is stored in
IA(-11), B and E(2,1) have the value -11. Although
Band E(2,1) are not explicitly equivalenced to
IA(-11), equivalence is implied by their position
in conunon.

The implied equivalence between the array elements
and variables is illustrated by the output shown in
figure 12-24.

Relative
Address 0 +1 +2 +3 +4

I

E(1, 1) E(2,1) E(3,1) E(1,2) E(2,2)

A B c D F

IA(-12) IA(-11) IA(-10) IA(-9) IA(-8)

+5

E(3,2)

G

IA(-7)

c

2

c

+6

E(1,3)

H

IA(-6)

$OUT

x .2E+Ol,

y • 2E+Ol,

z o.o,

4'

$£NU

Figure 12-21. Program EQUIV Output

PROGRAM COME
COMMON A,B,C,D, F,G,H
INTEGER A,B,C,D,E(3,4),F, H,IA!-12:-1)
EQUIVALENCE (A, E, IA)
NAMELIST /V/ A,B,C,D,E,F,G,H,lA

OPEN (6, FILE= 1 0UTPUT 1
)

DO 2 J=-1, -12, -1
IA(J)= J
WRITE (6,V)

STOP
END

Figure 12-22. Program COME

+7 +8 +9 +10 +11

E(2,3) E(3,3) E(1.4) E(2,4) E(3,4)

IA(-5) IA(-4) IA(-3) IA(-2) IA(-1)

Figure 12-23. Storage Layout for Variables in Program COME

$V

A -1~.

-11,

c -lU,

1) -9,

E -12, -11, -lU, -!:*,-ti, -7, -ti, -5, -4, -.i, -£, -1,

F - ti,

(j u. u,

H -b'

IA -1£, -11, -10, -Y, -ti, -7, -b, -5, -4, -3, -2, -1,

$£NU

Figure 12-24. Program COME Output

60481300 F 12-11

The NAMELIST statement is used for output. A
NAMELIST group, V, containing the variables and
arrays A, B, C, D, E, F, G, H, IA is defined. The
NAMELIST WRITE statement, WRITE(6,V), outputs all
the members of the group in the order of appearance
in the NAMELIST statement. Array E is output on
one line in the order in which it is stored in
memory. There is no indication of the number of
rows and columns (3,4).

G is equivalent to E(3,2) and yet the output for
E(3,2) is 6 and G is O.O. G is type real and E is
type integer. When two names of different types
are used f.or the same element, their values· will
differ because the internal bit configuration for
type real and type integer differ. (Refer to
Program EQUIV.)

Output from program. COME is shown in figure 12-24.

PROGRAM LIBS

Program LIBS, shown in figure 12-25, illustrates
the following features:

Use of FORTRAN library subroutines and intrin­
sic functions

EXTERNAL used to pass a library subroutine name
as a parameter to another library routine

INTRINSIC used to pass an intrinsic function
name as a parameter to another library routine

Division by zero

PROGRAM LIBS
c

LEGVAR function used to test for overflow or
divide error conditions

The following functions and subroutines are used in
LIBS:

DATE

TIME

SECOND

RANGET

SQRT

SIN

DATE is a library function which returns the date
entered by the operator from the console.

SQRT is an intrinsic function that calculates the
square root of its argument. SIN is an intrinsic
function that calculates the sine of its argument.
These functions are declared INTRINSIC so that they
can be passed as arguments to a subprogram.

The PRINT statement in line 10 prints the date and
time. The arguments TODAY and CLOCK are declared
character with length 10 because the DATE and TIME
functions each return 10 characters. The leading
and trailing blanks appear with the 10 characters
returned by the subroutine DATE, because the oper­
ating system formats the date in this manner. (The
date format is system and installation dependent.)
The value returned by TIME is changed by the system
once a second, and the position of the digits
remains fixed; a leading blank always appears.

CHARACTER*lO TODAY, CLOCK, UATE, TlME
EXTERNAL UATE
INTRIN~lC SQRT, ~IN

(,

TODAY= DATE ()
CLOCK= TIME ()

c
PRINT 2, TODAY, CLOCK

2 FORMAT ('lTODAY= ',A, I CLOCK= I A)
c

c

TYM E= SEC ONO ()
CALL RANGET (SEED)
Y= FUNC(S(JRT)
Yl= FUNC(SIN)

PRINT 3, TYME, Y, Yl, SEED, SEED
3 F 0 RM AT (I THE EL A p s ED c p u Tl ME l s I ' G 14 • 5 ' I s E c 0 N [) s • I I I ' I s QR T (2 • 4

c

*)/Pl = I ,614.b,/' ~IN(l.4)/PI = I ,C:il4.!>,/' THE INITIAL VALUE OF. T
*HE RANF SEED IS',022,', UR',/G30.15,' IN GJ0.15 FORMAT.')

Y= 0. 0
WOW= 7.2/Y
IF (LEGVAR(WOW) .NE. O) PRINT 4, WOW

4 FORMAT (lHU,SO(lH*-)/ 1 DIVIDE ERROR, WUW PRINTS AS: ',Gl0.2)
STOP
END
FUNCTION FUNC(F)
FUNC= F(2.4)/J.14159
RETURN
ENU

Figure 12-25. Program LIBS

12-12 60481300 F

When SECOND is called (line 13) , the variable name
TYME is used. A variable name cannot be spelled
the same as an intrinsic function name if that
intrinsic function is used in the same program
unit. If program LIBS had not called the function
TIME, a variable name could be spelled TIME.

Library subroutine RANGET returns the seed used by
the random number generator RANF. If RANGET is
called after RANF has been used, RANGET will return
the value currently being processed by the random
number generator. With the library subroutine
RANSET, this same value could be used to initialize
the random number generator at a later date.

The PRINT statement in line 18 prints out the
values returned by the routines SECOND, FUNC, and
RANGET.

Lines 25 through 27 illustrate the use of the
library function LEGVAR within an IF statement to
test the validity of division by zero. LEGVAR
checks the variable WOW.· This function returns a
result of -1 if the variable is indefinite, +l if
it is out of range, and 0 if it is normal. Compar­
ing the value returned by LEGVAR with 0 shows that
the number is either indefinite or out of range.
The output R shows the variable is out of range.

TOUAY= 79/08/17. CLOCK=
THE ELAPSED CPU TIME IS

12.12.21.
3.1010

SQRT(2.4)/Pl = .49J12
SIN(2.4)/PI = .21501

SECONDS.

NOTE

This example will not work on a CYBER
76/176 or 7600 machine because division by
zero causes an immediate program interrupt
before LEGVAR can be called.

The line of *- on the output is produced by the
FORMAT specification in statement number 4:
50(2H*-).

Output from program LIBS is shown in figure 12-26.

PROGRAM ADD

Program ADD, shown in figure 12-27, illustrates the
use of internal files. Any character variable or
array can be treated as an internal file. Input
and output for internal files is performed by
formatted READ and WRITE statements. Program ADD
uses a formatted READ statement to read data from
an internal file.

THE INITIAL VALUE UF THE RANF SEED IS 1717127432147741Jl55, UR
(t

)) .170998394044023 IN G30.1S FORMAT.
*-
DIVIDE ERROR. WOW PRINTS AS: R

c

figure 12-26. Program LIBS Output

PROGRAM ADD
UIMENSION IN(79)
CHARACTER CARD*79, FM(3)*6
lJATA FM/ 1 (79Il) 1

,
1 (3912) 1

,
1 (26D) 1

/

OPEN (5, FILE= 1 INPUT 1
)

OPEN (6, FILE= 1 0UTPUT 1
)

10 READ (5, 1 (Il,A) 1
, END=lOO) KEY, CARU

N= MAX(l, MIN(KEY, 3))

c

c

LIM= 79/N

READ (CARD, FM(N)) (IN(I),l=l,LIM)

ITOT=U
DO 40 I=l ,LIM

40 lTOT= !TOT+ IN(I)
WRITE (6,12) !TOT, LlM, N, CARD, {IN(l),I=l,LIM)

12 FORMAT (/I6,20H IS THE TOTAL OF THE ,I3,20H NUMBERS ON THE CARU/
1 12,A7~,/16H THE NUMBERS ARE/(2014))

GO TO 10
lUO STOP

E1W

Figure 12-27. Program ADD

60481300 F 12-13

Read
A formatted READ statement for an external file
places the image of each record read into an input
buffer. Compiler routines convert the character
string in the record into floating-point, integer,
or logical values, as specified by the FORMAT
statement, and store these values in the locations
associated with the variables named in the list.

With internal files, the specified file (character
variable, substring, or array) is used as the input
buffer. The record length is equal to the length,
in characters, of the variable if the file is a
character variable, of a single array element if
the file is an array, or of the substring.

With external files, when the format specification
indicates a new record is to be processed (by a
slash or the final right parenthesis of the FORMAT
statement), a new record is read into the input
buffer.

With internal files, when the format specification
indicates a new record is to be processed (by a
slash or final right parenthesis), the next element
of the array is used as the input buffer.

Write

A formatted WRITE statement for external files
causes the output buffer to be cleared. Data in
the WRITE statement list is converted into a
character string according to the format specified
in the format specification, and placed in the
output buffer. When the format specification
indicates the end of a record with either a slash
or the final right parenthesis, the character
string is passed from the output buffer to the
output system; the output buffer area is reset, and
the next string of characters is placed in the
buffer.

The WRITE statement for internal files is processed
by compiler routines in the same way as for exter­
nal files, but with the internal file specified
within the WRITE statement used as the output
buffer. The number of words per record in the
array is determined by the length of an element.

In the sample program, the format of data on input
is specified in column 1 of each input card. If
column 1 contains a one or zero or blank, each of
the remaining columns contains a data item. If
column 1 is a two, each pair of the remaining
columns is a data item. If column 1 contains a
number equal to or greater than 3, each triplet of
the remaining columns is a data item. Based on the
information in column 1, the correct format speci­
fication is selected. The program then totals and
prints out the items in each input record.

CARD is a character variable 79 characters long,
which is to receive the characters in columns 2
through 80 of the input record. IN is dimensioned
79 to receive the converted input items. FM is a
character array which contains three elements, each
six characters long. The DATA statement (line 4)
loads a format specification into each element of
FM.

12-14

The READ statement in line 8 reads the first column
of an input record into KEY under I format and the
remaining 79 characters into CARD under A format.
When an end-of-file is encountered, control trans­
fers to statement 100, a STOP statement.

Line 9 ensures that the value of KEY is between 1
and 3; this value is stored in N.

Line 10 calculates the number of values to be
transferred to IN.

The READ statement in line 12 transmits the char­
acters in CARD to IN, converting them to integers
according to the format specification stored in FM;
N selects the array element containing the correct
format specification.

Lines 14 through 20 sum the values in IN, print the
input and output values, and branch back to process
the next input record.

Sample input and output records for program ADD are
shown in figure 12-28.

PROGRAM PASCAL

Program PASCAL, shown in figure 12-29, produces a
table of binary coefficients (Pascal's triangle).
The following features are illustrated:

Nested DO loops

Implied DO loop

The DO loop in lines 6 and 7 initializes the
integer array LROW to 1. The PRINT statement in
line 8 prints a heading and the the first two rows
of the triangle.

The nested DO loops (lines 11 through 15) calculate
the remaining elements of the triangle. These
statements illustrate the technique of going
backward through an array by using a negative
incrementation parameter.

Each pass through the inner DO loop generates one
row of the triangle. The row elements are written
in line 14 using an implied DO loop.

Output from program PASCAL is shown in figure 12-30.

PROGRAM PIE

Program PIE, shown in figure 12-31, calculates an
approximation of the value of Tr • This program
illustrates the use of the intrinsic function RANF.

The random number generator, RANF, is called twice
during each iteration of the DO loop, and the
values obtained are stored in the variables X and Y.

The DATA statement (line 2) initializes the vari­
able circle with the value O.O.

Each time RANF is called, a random number, uniformly
distributed over the range 0 through 1, is returned.
A random number is stored in X and in Y.

60481300 F

Input:

21322554766988775533210JJ224566687/965541233322112365478965412365547896541LJUUl0
302144566998774566J2214455o666552J365522214445566332556669988566o554778854887U29
55566663223666552J3221445566699887765522214445561122330332445666998877455889603U
1023456668889988778996555444455666553J222111233023333669985555222114444777885031

Output:

1900 IS THE TOTAL OF THE 39 NUMBERS ON THE CARU
2132255476698877553321033224566687796554123JJ22112J6547896541236554789o541236U28
THE NUMBERS ARE

13 22 55 47 66 98 87 75 53 32 10 33 22 45 66 68 77 96 55 41
23 33 22 11 2J 65 47 89 o5 41 2J o5 54 78 Y6 54 12 Jo 2

14380 IS THE TUTAL OF THE 26 NUMBEKS ON THE CARU
J021445669987745663221445566b6552J365522214445566332556669988566b554778854887029
THE NUMBERS ARE

21 445 669 987 745 663 221 445 566 665 523 365 522 214 445 566 332 556 669 988
566 655 477 8d5 488 702

13840 IS THE TOTAL OF THE 26 NUMBERS UN THE CARD
355666632236665523J221445566ci9988776552221444556112233U3324456669988774558896030
THE NUMBERS ARE
556 666 322 366 655 233 221 445 566 699 887 765 52~ 214 445 5til 122 33U 332 445
666 998 877 455 889 603

370 lS THE TOTAL OF THE 79 NUMBERS uN THE CAR[)
102345666888998877d9965554444~566655JJ222111233023JjJ669985555222114444777885031
THE

(J

b
l
!)

60481300 F

NUMBERS ARE
2
5
l
2

3 4 5 6 b tJ (j 8 ti 9 9 ti 8 7
5 5 4 4 4 4 5 !:) b 0 b 5 ~ J
1 2 j 3 u 2 j 3 j 3 b 6 9 9
2 2 1 1 4 4 4 4 7 7 7 8 8 5

Figure 12-28, Program ADD Input and Output

PROliRAM PASCAL
c
C THIS PROGRAM PRODUCES A PASCAL TRIANGLE WITH 15 ROW~
c

INTEGER LROW(l5)
uo 10 I=l,15

10 LROW(l)=l

7 b
j 2
8 5
u J

PRINT 1
(

11 1 PASCAL TRIANGLE 11 //lX, 15,/lX, 2I5)', LROW(l5),
* LRUW(l4), LROW(l5)

c
DO 50 J = 14, 2, -1
DO 40 K =J, 14

40 LROW(K)= LROW(K) + LROW(K+l)
PRINT I (lX, 15I5) I, (LRUW(M), M=J-1,15)

50 CONTINUE
c

STOP
END

Figure 12-29. Program PASCAL

9 9
2 2
5 5
l

12-15

PASCAL TRIANGLE

1
1 l
1 2 l
l 3 3 1
l 4 6 4 1
l 5 10 10 5 1
l 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
l 10 45 120 llO 252 210 120 45 10 1
l 11 55 165 3JO 462 462 ::s::so 165 55 11 l
1 12 bti 220 4!)5 1n 924 79'l. 495 220 66 12 1
1 13 78 2b6 715 12ti7 1716 1716 1287 715 2b6 78 13 1
1 14 !)l J64 1001 2002 JOOJ 3432 3003 2002 1001 364 Yl 14 1

Figure 12-30. Program PASCAL Output

c

PRUliRAM PIE
DATA CIRCLE /0.0/

DO 1 I = 1,lUOU
X= RANF()
Y= RANF ()
IF (X*X + Y*Y .LL 1.0) CIRCLE= CIRCLE + 1.0

1 CONTINUE
c

PI= 4.0*CIRCLE/1000.0
PRINT*, I PI = I' Pl

c

Output:

Pl = J.l4tj

STOP
END

Figure 12-31.

The IF statement and the arithmetic expression
4.0*CIRCLE/1000.0. calculate an approximation of
the value of 7r • The value of 7r is calculated
using Monte Carlo techniques. The IF statement
counts those points whose distance from the point
(0., O.) is less than or equal to one. The ratio
of the number of points within the quarter circle
to the total number of points approximates 1/4 of
7r • The value PI is printed by the list directed
output statement PRINT*, 'PI=', PI.

PROGRAM X

Program X, shown in figures 12-32 and 12-33, refer­
ences a function EXTRAC which squares the nunber
passed as an argunent. This program illustrates
the following features:

Referencing user-defined functions

Function type

Program X illustrates that a function type must
agree with the type associated with the function
name in the calling program.

12-16

Program PIE and Output

In the example o::ihown in figure 12-32, the first
letter of the function name EXTRAC is E and the
function is therefore implicitly typed real.
EXTRAC is referenced, and the value 7 is passed to
the function as an argument. However, the function
subprogram is explicitly defined integer, INTEGER
FUNCTION EXTRAC(K), and the conflicting types
produce erroneous results.

The argument 7 is type integer which agrees with
the type of the dummy argument K in the subpro­
gram. The result 49 is correctly computed.
However, when this value is returned to the calling
program, the integer value 9 is returned to the
real name Ex.TRAC; and an integer value in a real
variable produces an erroneous result. (Refer to
program EQUIV.)

This problem arises because the programmer and the
compiler regard a program from different view­
points. The programmer often considers a complete
program to be one unit, whereas the compiler treats
each program unit separately. To the programmer,
the statement:

INTEGER FUNCTION EXTRAC(K)

60481300 F

PROGRAM X
C IF EXTRAC IS DECLAREU TYPE INTEGER TH£ RESULT lS 49, OTHERW!SE IT lS
C ZERO
c

c

K = £ X TRAC (7 J
PRINT 1

(
11 lK

STOP
ENO

I I ' 15) I ' K

Function EXTRAC:

Output:

K = 0

INTEGER FUNCTION EXTRAC (K)
EXTRAC= K*K
RETURN
ENO

Figure 12-32. Program X, Function EXTRAC, Output: INTEGER Declaration Omitted From Main Program

Pt<UGRAM X
C IF EXTRAC IS OECLAR£U TYPE lNTEbER THE kE~ULT lS 4~, UTHERW!SE IT l~
C ZERU
c

INTEGER EXTRAC
K = EXT RAC (7)
PRINT 1

(
11 lK = ", 15)', K

STOP
ENO

Function EXTRAC:

Output:

K = 49

lNTEGER FUNCTlON EXTRAC (K)
EXTRAC= K*K
RETURN
ENU

Figure 12-33. Program X, Function EXTRAC, Output: INTEGER Declaration Included in Main Program

defines the. function EXTRAC integer. The compiler,
however, compiles integer function EXTRAC and the
main program separately. In the subprogram, EXTRAC
is declared integer; in the main program it is
declared real. Information (in this instance the
type of the function) which the main program needs
regarding a subprogram, must be supplied in the
main program.

There is no way for the compiler to determine if
the type of a program unit agrees with the type of
the name in the calling program; therefore, no
diagnostic help can be given for errors of this
kind.

In figure 12-33, EXTRAC is declared integer in the
calling program, and the correct result is obtained.

60481300 F

PROGRAM ADIM

Program ADIM, shown in figure 12-34, illustrates
the use of adjustable dimensions to allow a subrou­
tine to operate on arrays of various sizes. The
following features are included in this example:

Passing an array to a subroutine as a parameter

Specifying an array name, with no dimension
information, in an argument list

Specifying an array with a negative lower
subscript bound

12-17

c

PROGRAM ADIM
COMMON X(4,3), Z(-2:J)
REAL Y(6)

CALL IOTA (X,12)
CALL IOTA (Y,b)
CALL IOTA (Z,6J

PRINT lUU, X, Y, Z
100 FORMAT ('lARRAY X = ',12Fti.U/' ARRAY Y

* /' ARRAY z = I ,6F6.U)
6F6.0,

c

8

110
c

c

c

DO 8 I = -2,3
Z(I)= I
PRINT 110, Z
FORMAT ('ARRAY Z

STOP
END

I , 6F6. 0)

SUBROUTlNE IOTA (A,M)

C IOTA STORES CONSECUTIVE INTEbERS IN EVERY ELEMENT OF THE ARRAY A
C STARTlNG AT 1
c

DIMENSION A(M)
UO 1 I = l,M

l A(l)= I
RETURN
END

Figure 12-34. Program ADIM and Subroutine IOTA

Two arrays, X and Z, are dimensioned and placed in
conmon. Z is dimensioned (-2:3). This means that
Z has six elements; the lower subscript bound is -2
and the upper subscript bound is 3. The elements
are: Z(-2), Z(-1), Z(O), Z(l), Z(2), Z(3).

The array Y is dimensioned (6) and is explicitly
typed real. It is not in common.

In subroutine IOTA, the adjustable dimension for
array A is indicated by M. Whenever the main
program calls IOTA, it can provide the name and the
dimensions of the array; since A and M are duDBD.y
arguments, IOTA can be called repeatedly with
different dimensions replacing M at each call.
IOTA contains a DO loop which stores consecutive
integers into the array A.

The main program calls subroutine IOTA three
times. In the first call, the first argument is
array X and the second argument is the number of
elements in the array, 12. Consecutive integers
are stored into the 12 elements of X.

In the second call to IOTA, the arguments (Y,6) are
passed. Consecutive integers are stored into the
six elements of Y.

In the third call to IOTA, the arguments (Z,6) are
passed. The subscript bounds specified in the
subroutine need not be the same as the ones speci­
fied in the calling program. Although Z is dimen­
sioned (-2:3) in the main program, it can be
dimensioned (6) in IOTA.

12-18

The PRINT statements output the arrays X, Y, and
z. The second PRINT statement illustrates the use
of a negative DO index to output the array z. The
output is shown in figure 12-35.

PROGRAM ADIM2

ADIM2, shown in figure 12-36, is an extension of
program ADIM. Subroutine IOTA is used; in addi­
tion, another subroutine and two functions are
used. The following features are illustrated:

Parameter statement

Negative array subscripts

Negative DO parameters

Use of an expression for an array dimension

Multiple entry points

Adjustable dimensions

EXTERNAL statement

Passing values through COMMON

Use of intrinsic functions ABS and REAL

Calling functions through several levels

Passing a subprogram name as an argument

60481300 F

.l\RRAY x
ARRAY y
ARRAY z
ARRAY z

60481300 G

l. 2. 3. '4. 5. 6. 7. 8. 9.
l. 2. 3. 4. 5. 6.
1. 2. 3. 4. 5. b.

-l. -1. o. 1. 2. 3.

Figure 12-35. Program ADIM Output

PROGRAM ADIM2
c
C THIS PROGRAM USES ADJUSTABLE DIMENSIONS, NEGATIVE ARRAY BOUNDS,
C AND MANY SUBPROGRAM CONCEPTS
c

c

c

c

PARAMETER (1=4, J=3, K=-2, M=12, N=6)
COflllON X CI,J)
REAL Y CK:J)
EXTERNAL MULT, AVG
NAMELIST /V/ X, Y, AA, AM

CALL SET CY, N, O.>
CALL IOTA ex, M)
CALL INC ex, M, -5.0)
AA = PVAL CM, AVG)
AM = PVAL CM, MULT)
PRINT V
STOP
END

SUBROUTINE SET CA, M, V>

C SET PUTS THE VALUE V INTO EVERY ELEMENT OF THE ARRAY A
c

c

c

DIMENSION A(*)
DO 1 I = 1, M

1 ACI) = 0.0

ENTRY INC (A, M, V)

C INC ADDS THE VALUE V TO EVERY ELEMENT IN THE ARRAY A
c

c

c

DO 2 I = 1, M
2 A(I) = A(I) + V

RETURN
END

SUBROUTINE IOTA CA, M)

10.

C IOTA PUTS CONSECUTIVE NEGATIVE INTEGERS STARTING AT -1 INTO EVERY
C ELEMENT OF THE ARRAY A
c

DIMENSION A(-M:-1)
DO 1 I = -1, -M, -1
ACI) = I
RETURN
END

Figure 12-36. Program ADIM2 (Sheet 1 of 2>

11. 12.

12-19

c
FUNCTION PVAL (!SIZE, WAY)

c
C PVAL COMPUTES THE ABSOLUTE VALUE OF THE REAL VALUE OF A FUNCTION
C PASSED TO PVAL. ISIZE IS AN INTEGER WHICH PVAL PASSES TO THE
C FUNCTION
c

c

c

PVAL = ABS CWAYCISIZE))
RETURN
END

FUNCTION AVG CJ)

C AVG COMPUTES THE AVERAGE OF THE FIRST J ELEMENTS OF COMMON
c

c

c

PARAMETER CM=4, N=3>
COMMON ACM*N)
AVG = 0.
DO 1 I = 1, J
AVG = AVG + AC1)
AVG = AVG/REAL(J)
RETURN
END

REAL FUNCTION MULT (J)

C MULT MULTIPLIES THE FIRST AND TWELFTH ELEMENTS OF COMMON AND
C SUBTRACTS FROM THIS THE AVERAGE (COMPUTED BY THE FUNCTION AVG)
C OF THE FIRST J/2 WORDS IN COMMON
c

COMMON ARRAYC-1:10)
MULT = ARRAYC10> * ARRAYC-1> - AVGCJ/2)
RETURN
END

Figure 12-36. Program ADIM2 (Sheet 2 of 2>

Program ADIM2 illustrates the method of a main
program calling subprograms and subprograms calling
each other. Since the program is necessarily
complex, each subprogram is described separately
followed by a description of the main program.

Subroutine SET

Subroutine SET places the value V into every
element of the array A. The dimension of A is
specified by M.

Subroutine SET has an alternate entry point INC.
When SET is entered at ENTRY INC, the value V is
added to each element of the array A. The dimen­
sion of A is specified by M.

The first DO loop in subroutine SET clears the
array to zero.

Subroutine IOTA

Subroutine IOTA is as described for program ADIM
except that the input array A is given negative
upper and lower subscript bounds. The DO loop uses
negative control variables and places consecutive
negative integers in A.

12-20

Function PVAL

Function PVAL references a function specified by
the calling program to return a value to the call­
ing program. This value is forced to be positive
by the intrinsic function ABS.

The main program first calls PVAL with the state­
ment AA=PVAL(M,AVG), passing the integer M (assigned
the value 12 in the PARAMETER statement) and the
function AVG as parameters. The type of the argu­
ment in the main program (INTEGER M) agrees with
the corresponding dummy argument (!SIZE) in the
subprogram.

The value of PVAL is computed in line 7. This
value will be returned to the main program through
the function name PVAL. Two functions are refer­
enced by this statement; the intrinisic function
ABS and the user-written function AVG. The actual
arguments M and AVG replace !SIZE and WAY. The
second time PVAL is called, the actual arguments M
and MULT replace !SIZE and WAY.

Function AVG

This function computes the average of the first J
elements of comm.on. J is a value passed by the
main program through the function PVAL.

60481300 F

This function subprogram is an example of a main
program and a subprogram sharing values in co11111on.
The main program and function AVG declare common to
be a total of 12 words. Values placed in co11111on by
the main program are available to the function
subprogram.

The number of values to be averaged is passed to
function PVAL by the statement AA=PVAL(l2,AVG) and
function PVAL passes this number (in ISIZE) to
function AVG: PVAL=ABS(WAY(ISIZE)).

AVG uses a PARAMETER statement to assign symbolic
names to the constants 4 and 3. These constants
are then used in an expression that calculates the
dimension for A. The expression itself is used as
the dimension for A. AVG declares a total of 12
locations for common.

Lines 4 through 6 sum the 12 elements and divide by
the number of elements to calculate the average.
The intrinsic function REAL is used to convert the
integer 12 to a real number to avoid mixed mode
arithmetic, although in this case mixed mode is
permissible and produces the same result.

The average is returned to the statement
PVAL=ABS(WAY(ISIZE)) in function PVAL.

Function MULT

MULT multiplies the first and twelfth words in
COMMON and subtracts the product from the average
(computed by the function AVG) of the first J/2
words in co111Don.

The declaration COMMON ARRAY (-1:10) assigns 12
elements to ARRAY and places it in common. The 12
elements are referenced by a subscript in the range
-1 through 10. Line 8 multiplies the first element
(ARRAY(-1)) by the twelfth element (ARRAY(lO)) and
subtracts the average (computed by function AVG) of
the first J/2 elements in common.

Main Program: ADIM2

The main program calls the subroutines and func­
tions described.

The array Y has six elements, with subscript bounds
of (-2: 3). MULT and AVG appear in an EXTERNAL
statement so that they can be passed to subprograms
as arguments.

Lines 12 through 16 call the user-written subpro­
grams SET, IOTA, and PVAL; CALL INC calls subrou­
tine SET through the alternate entry point INC.
The calls to PVAL pass a symbolic constant and a
function name. Results are returned to AA and AM,
respectively.

The namelist PRINT statement
calculated by the subprograms.
in figure 12-37.

outputs the values
The output is shown

PROGRAM CIRCLE

Program CIRCLE, shown in figure 12-38, finds the
area of a circle which circumscribes a rectangle
with short sides of length 3 and long sides of
length 4. This example illustrates the use of
FUNCTION subprograms and of statement functions.
The program contains an error.

Program CIRCLE:

PROGR.AM CIRCLE
A= 4 .u
B= ~.O
ARE.A= 3.14li/4.U * OIM(A,B)**2
PRINT 1, AREA

1 FORMAT (I AREA = I' G2U.10)

c

STOP
ENO

Function DIM:

FUNCTION DIM(X, Y)
UIM= SQRT(X*X + Y*Y)
RETURN
EMO

Output:

AREA = .7854000000

Figure 12-38. Program CIRCLE,
Function DIM, Output

$V

x -.17E+02, -.16E+U2, -.15E+02, -.14E+02, -.13E+02,

y

AA

AM

$ENO

-.llE+02, -.11E+02, -.1E+02, -.9£+01, -.8E+Ol,
-.7E+Ol, -.6E+Ol,

o.o, 0.0, 0.0, u.u, u.u, u.o,

.115E +02,

.1165E+03,

Figure 12-37. Program ADIM2 Output

60481300 F 12-21

Figure 12-39 shows a rectangle and circumscribed
circle. The area of a circle is given by 1T *R2,
which is approximated by the FORTRAN expression:

3.1416/4.0*D**2

where R is the radius and D is the diameter of the
circle.

Figure 12-39. Rectangle and
Circumscribed Circle

The user-written function DIM computes the diameter
of the rectangle given the lengths of the sides
using the relation:

DIM=SQRT(X*X + Y*Y)

The result shown in figure 12-38 is incorrect. The
area of a ,circle circumscribing a rectangle with
sides 3 and 4 is clearly greater than .785.

The error occurred because the function DIM has the
same name as an intrinsic function. If the name of
an intrinsic function is used for a user-written
function, the user-written function is ignored.

There are several ways of correcting this error:

Change the function name so that it is not the
same as an intrinsic function name.

Declare DIM external; in this case, the user­
writ ten external function will be used.

Write the function DIM as a statement function;
the function name can be the same as an
intrinsic function name, and the user-written
function is used. This is the most efficient
method. Since FORTRAN compiles statement
functions in-line, the program executes much
faster because no function call is used. This
solution is limited to functions of a single
statement.

A corrected version of the program, in which DIM is
written as a statement function, is shown in figure
12-40.

12-22

1

Program CIRCLE:

PROGRAM CIRCLE
UIM(X,Y)= SQRT(X*X + Y*Y)
A= 4.0
B= 3.0
AREA= 3.1416/4.0*DlM(A,8)**2
PRINT 1, AREA
FORMAT ('lAREA IS I ,G20.10)
STOP
END

Output:

AREA IS 19.63500000

Figure 12-40. Program Circle With
Correction and Output

60481300 F

60481300 F

PROGRAM EASY 10

Program EASY IO, shown in figure 12-44, illustrates
the use of list directed input/output.

12-23

PRUGRAM lASY lU

~ blVEw THE ~!DES UF A TRlANGL£, CuMPUTE THE AKEA ANO RAUlU~ OF TH£
C lNS~RlBEU ClRCLE
i;

REAL SlUl::S(J)
E~UIVALENCE (SlUES(lJ,A), (SlUES(2),B), (~IUES(J),C)
kAMELI~T /UUT/ SlUE~, AREA, RAOIU~

J REAU (*, *, EMD=50) SlOES
S= (A + B + C)/2.0
AREA= SQRT(S*(~-A) * (S-B) * (S-C))
RADIUS= AREA/S
WRITE (*, OUT)
GO TO 3

50 STOP
END

Figure 12-44.

List directed input/output eliminates the need for
fixed data fields. It is especially useful for
input since the user need not be concerned with
punching data in specific columns. List directed
input does not require the user to name each item
as does NAMELIST input.

Used in combination, list directed input and
NAMELIST output simplify program design. Such a
program is easy to write, even for persons just
learning the language; knowledge of the format
specifications is not required. This feature is
particularly useful when FORTRAN programs are being
run from a remote terminal.

Program EASY IO calculates the area and radius of a
circle inscribed in a triangle, given the lengths
of the sides of the triangle. A list directed READ
statement is used for input, and NAMELIST is used
for output. Figure 12-45 shows some sample input
and output.

The user can enter the three input values in
whatever way is convenient, such as: one item per
line (or card), one ttem per line with each item
followed by a conma, all items on a single line
with spaces separating each item, all items on a
line with a co11111a and several spaces separating
each item, or any combination of the foregoing.
Furthermore, even though all input items are real,
the decimal point is not required when the input
value is a whole number.

PROGRAM BLOCK

Program BLOCK, shown in figure 12-46, illustrates
block IF structures.

Block IF structures allow the user to specify
alternate paths of execution, based on the outcome
of IF tests. Block IF structures eliminate the
need for branching when IF tests are performed.
This feature can make programs simpler and more
readable.

12-24

Progran EASYIO

Program BLOCK reads an integer into the variable K,
and two sets of real numbers into the arrays A and
B. K is tested and the following action is taken:

K=l

Calculate C(I)=A(I)**2 + B(I}**2.

K=2

Calculate C(I}=A(I)*B(I).

All other values of K

Set array C to zero.

These tests could be performed by conventional
methods, using logical IF and GO TO statements.
However, with block IF structures the program is
much clearer.

The program includes a block IF statement (line 7),
and ELSE IF statement (line 11), and an ELSE state­
ment (line 15). These statements provide for three
alternate paths of execution. After the appropri­
ate block has been executed, control transfers to
the WRITE statement following END IF. The program
then branches back to process the next input record.

Sample input and output are shown in figure 12-47.

PRoGRAMS ONE AND TWO
Programs ONE and TWO, shown in figure 12-48, illus­
trate internal file usage.

Program ONE writes a single record to an internal
file. The array A and the variables B and C are
declared type character of length 10. The char­
acter variable ALPHA, to be used as the internal
file, has length 40. The DATA statement loads
character data into A, B, and C.

60481300 F

Input:

3 4 5
6,7,8
3*1
4
5
6

Output:

$OUT

SIDES

AREA

RADIUS

$END

$OUT

SIDES

AREA

RADIUS

$END

$OUT

SIDES

AREA

RADIU!)

$END

$OUT

SIDES

AREA

RADIUS

$END

• 3E+Ul, . 4E+Ol, • 5E+Ol,

.6E+Ol,

.lE+Ol,

.6E+Ol, .7E+Ol, .8E+01,

.lOJ33162567589E+02,

.19J649167JlOJ7E+Ol,

.lE+Ul, .lE+Ol, .lE+Ol,

.43301270189222E+OO,

.288675134594dlE+OO,

.4E+Ol, .SE+Ol, .6E+Ol,

.992156741649l2E+Ol,

.13228756555Jl3E+Ol,

Figure 12-45. Sample Input and Output
for Program EASYIO

The WRITE statement defines ALPHA to be an internal
file and writes the values of A, B, and C to the
file according to the format specification (2A4,
A5, A6). The following formatting is performed:

Characters ABCD from A(l) are transmitted to
positions 1 through 4 of ALPHA.

Characters KI.MN from A(2) are transmitted to
positions 5 through 8 of ALPHA.

Characters UVWXY from B are transmitted to
positions 9 through 13 of ALPHA.

60481300 F

10
c

15
c

100

PROuRAM HLOCK
PARAMETER (M=!>)
UlMEN!)lUN A(M), ~(M), ~(M)
NAMELl~T /OUT/ K, A, B, C

!{EAU (*' * ENU=lOO) K, A,
' lF (K • E lJ. 1) THEN

uo 5 l = l,M
C(l)= A(l)**2 + B(I)**2

ELSE IF (K •EQ. 2) THEN
00 10 I = l,M
C(I)= A(l)*B(l)

ELSE
DO 15 I = l,M
t; (I) = 0.0

END IF
WRITE (*' OUT)
GO TO l

HOP
ENU

Figure 12-46. Program BLOCK

B

Characters Z12345 from C are transmitted to
positions 14 through 19 of ALPHA.

Positions 20 through 40 of ALPHA are blank
filled.

Program TWO is identical to program ONE except that
ALPHA is dimensioned 2 and the format specification
is changed to cause two records to be written to
ALPHA. The characters in A(l) and A(2) are trans­
lD.itted to ALPHA(l) as before. The slash, however,
causes subsequent data to be transmitted to
ALPHA(2). Unused portions of both records are
blank filled.

PROGRAM PMD2
Program PMD2, shown in figure 12-49, illustrates
the use of the Post Mortem Dump facility. In this
example, the dump is triggered by a program abort.

Program PMD2 consists of a main program and a
subroutine. The main program contains an error:
in the CALL statement, the subroutine name SETCOM
is misspelled as SETCM. This error causes the
program to abort when the statement CALL SETCM is
executed.

Subroutine SETCOM tests the logical variable L. If
L contains the value .TRUE., data is read from unit
1 into the array B. If L contains the value
.FALSE., Bis set to zero.

Note that the program contains no calls to Post
Mortem Dump routines. In this case, if the program
aborts and DB=PMD was selected, a dump occurs
automatically.

The Post Mortem Dump output for program PMD2 is
shown in figure 12-50. The dump includes an error
analysis, a description of current file status, and
an analysis of variables in the main program (in
which the error occurred).

12-25

12-26

Input:

5 9.0
l 1.0
4 4.U
3 3.U

Output:

$OUT

K

A

B

c;

$ENO

$OUT

K

A

B

c
$END

$OUT

K

A

B

c

$END

9.0
o.o
4.0
3.0

8.0 8.0 7.0 ti. 0 3.0 3.0 2.0 b.U
o.u 7.0 7.0 4.0 0.0 o.o 0.0 0.0
4.0 7.0 8.0 ti. 0 o.o 0.0 J.O 2.0
2.0 2.0 l. u b.O d.O o.o 1. u 1.0

1,

.lE+Ol, U.O, O.U, .7E+Ol, .7£+01,

.4E+Ol, 0.0, U.O, u.O, u.O,

.17£+02, 0.0, 0.0, .49E+02, .4~£+02,

4,

.4E+Ol, .4£+01, .4E+Ol, .7E+Ol, .8E+Ol,

.5E+Ol, 0.0, 0.0, .3E+Ol, .2E+Ol,

o.o, o.u, 0.0, o.o, u.o,

3,

.JE+Ol, .3E+Ul, .2£+01, .2£+01, .lE+Ol,

.bE+Ul, .~E+Ol, u.O, .lE+Ol, .lE+Ol,

0.0, o.o, 0.0, 0.0, o.o,

Figure 12-47. Sample Input and Output for Program BLOCK

Example 1:

PROGRAM ONE
CHARACTER A(2)*10.B*l0,C*l0,ALPHA*40
OATA A,B ,c /'AACOEFGHIJ I. 'KLMNOPORST'' 'UVWXY' ''Z123456' /
WRITE (ALPHA,'(2A4.A5.A6)') A.R.C
PRINT 2,ALPHA

2 FORMAT ('ICOMTENTS OF ALPHA = '. /lX. A40)
STOP
END

Output:

CONTENTS Of ALPHA =
IABCDKLMNUVWXYZ123456 - - - - - - - - - - - A

- SECONDS EXECUTION TIME.

A single record is written to the internal file ALPHA.

Figure 12-48. Programs ONE and TWO (Sheet 1 of 2)

60481300 F

60481300 F

L

Example 2:

PROGRAM TWO
CHARACTER A(2)*10,B*l0,C*l0,ALPHA(2)*40
DATA A,B,C / 1 ABCOEFGHIJ 1 ,'KL~NOPORST 1 , 1 UVWXY','Z123456 1 /
WRITE (ALPHA,'(2A4/A5,A6) 1

) A,B.C
PRUIT 2,ALPHA

2 FORMAT ('!CONTENTS OF ALPHA= 1
, /lX, 2A40)

STOP
END

Output:

CONTENTS OF ALPHA =
!ABCDKLMN6 - - - - - - - - - - - - - - - 6 IUVWXYZ123456- -(

record 1 record 2

Two records are written to the internal file ALPHA.

Figure 12-48. Programs ONE and TWO (Sheet 2 of 2)

PROGRAM PMOl

C THIS PROGRAM CUNTAlN~ AN EKRu~ WHICH ACTIVATES PUST MURTEM UUMP
C IF OB=PMU IS SELECTEU
L

c

c

c

CHARACTER*lO FlLE, IFG
LUGICAL LVAR
COMMON /CBLUCK/ AKR(J,3)

OPEN lUNIT=6,FlLE= 1 UUTPUT 1
)

LVAK =.TRUE.
CALL SETCM (LVAR, IFG)
WRITE (6,*) IFG, ARR
STOP
ENO

SUBROUTINE SETCUM (L, IFG)
LOGICAL L
CHARACTER*lO IFG
COMMON /CBLUCK/ 8(3,3)

lf (L) THEN
lFG :;: 'FIRST'
READ (1,ENU=999) ((tl(l,J),l=l,J),J=l,3)
ELSE
IFG = '~ECONO'
UO 10 I=l,~
DO 10 J=l,J

lU tl(l,J) = 0.0
END IF

~99 RETURN
ENO

Figure 12-49. Program PfllD2

12-27

....
N
I

N
co

0\
0
~
co
w g
'z:I

FTN POST MORTEM DUMP ERROR REPORT 79/08/20. 12.57.28.

*** YOUR JOB HPS THE FOLLOWING NUN-F~TPL LOPD ERROR(S):
UNSPTISFIED EXTERN~L REF -- SETCM

Ill EXECUTION WPS TERMINPTED BECPUSE YOUR PROGRPM CPLLED ~ MISSING ROUTINE ~T LINE NUMBER 12 OF PROGRPM PMD2

PRRPYS WILL BE PRINTED BY OEFPULT PPRPM~TERS (20, l,

YOUR PROGRPM REQUIREU 263008 WORDS TO LOPO, 103158 WORDS TO RUN

FILE STPTUS PT TIME OF TERMINPTION

l, l, 1. 1. l)

FILE NPME FuRTRPN NPMES LPST OP STPTUS FILE TYPE BLOCKING TYPE REC TYPE RECORD COUNT
-OUTPUT T~PE6 OPENED

VPRIPBLES IN PROGRPM PMD2
NPME TYPE RELOC~TION

PRR REPL /CBLOCK/
OIMENSIONEU PS - PRR(l:3,1:3)

*** THE NEXT ITEM IS NEVER DEFINEU
FILE CHPRPCT
IFG CHPRPCT
LVPR LOG I CPL

PRRPYS IN PROGRPM PMD2

REPL PRRPY PRR(l:3,1:3)
(PRR(N,l))

CURRENT VHUE

PRRPY

PMD2 :PW
#: : EIOU5P j,

• TRUE.

N=l NOT INITIPLIZED NOT INlTIPLlZEO NOT INITlPLIZED

NOT INITIPLIZED
(PRR(N,2))
N=l NOT INITIPLIZED NOT INlTIPLIZEU

TRPCEBPCK SUCCESSFULLY COMPLETED

/II END OF ERRUR REPORT

SQ C Z 0

COMMEKTS NPME

PRR

FILE
IFG
LVPR

Figure 12-50. Post Mortem Dump Output for Program PMD2

PROGRAM PMD
Program PMD, shown in figure 12-51, illustrates the
use of the Post Mortem Dump. In this example, Post
Mortem Dump calls are used to trigger a dump. Post
Mortem Dump routines illustrated are:

PMDARRY

PMDLOAD

PMDDUMP

c

.c

10

c

c

16
c

c

c

c

PRUGR/lM PMD
DIMENSION ~(50), 8(50), C(50)
O~TA /l/50*2.0/, B/50*4.U/

C/lLL PMD~RRY(5)

DO 10 I = 1,50,2
~(I)= /l(l) + B(I)
C/lLL SUBT (/l,B,C,50)

C/lLL PMULO,\D

STOP
END

SUBROUTINE SUBT (X,Y,Z,M)
OIMEN!>ION X(M), Y(M), Z(M)
UU 16 I = l,M
Z(I) = !>~RS(X(l),Y(l))

C}\LL PP100UMP

RETURN
END

FUNCTION !>~R!>(R,!>)
!>(JRS = R*R + S*!>

CA.LL PMDDUMP

RETURN
END

Figure 12-51. Program PMD

Program PMD consists of a main program, a subrou­
tine, and a function subprogram. These program
units perform some simple operations on values
stored in an array. The call to PMDARRY in the
main program specifies that only 1-dimensional
arrays are to be dumped and that dumps of arrays
are to be limited to the first five elements,
al though the arrays are dimensioned 50. The call
to PMDLOAD in line 11 causes a dump of variables in
the main program and in any routines that have
called PMDDUMP.

Subroutine SUBT and function SQRS each contain a
call to PMDDUMP. After these calls are executed,
the call to PMDLOAD in the main program causes
variables in SUBT and SQRS to be dumped following
the variables of the main program.

60481300 F

The Post Mortem Dump output is shown in figure
12-52. The dump includes an analysis of variables
and traceback information for each program unit.

PROGRAM DBUG
Program DBUG, shown in figure 12-53, illustrates
the use of CYBER Interactive Debug (CID) to conduct
an interactive debug session (not supported on
SCOPE 2). The CID commands illustrated are:

SET,BREAKPOINT

GO

PRINT

QUIT

Program DBUG stores numbers into an array A and
stores a character string into a variable CHAR.
The program is compiled and executed interactively
in debug mode.

The terminal session for NOS/BE is shown in figure
12-54 (CID and system output are in uppercase, user
input is in lowercase). The DEBUG control state­
ment establishes debug mode. When the program is
compiled in debug mode, special tables are gen­
erated for use by CID. The execution control
statement LGO initiates the debug session. CID
responds with:

CYBER INTERACTIVE DEBUG
?

allowing the user to enter CID commands. The
SET,BREAKPOINT command sets a breakpoint that
causes execution to be suspended when line 9 is
reached. The GO command initiates execution of the
program. The message:

*B #1, AT L.9
?

indicates that a breakpoint has suspended execution
at line 9 and that CID is waiting for user input.
Note that execution is suspended before the state­
ment in line 9 is executed (the PRINT command shows
that CHAR still contains the value assigned by the
DATA statement).

The GO command is then entered to resume program
execution. The message:

*T #17, END IN L.10

is a trap message indicating that the program has
terminated at line 10 and that CID commands can be
entered.

The QUIT command ends the debug session. Debug
mode, however, remains in effect until DEBUG(OFF)
is entered.

12-29

~
N
I w

0

°' 0
~
00
~

w
0
0
lsj

FTN POST MORTEM UUMP ERIWR REPORT

***YOUR JOB H/IS THE FOLLOWING NON-FPT/IL LOPD ERROR(S):
UNS/ITISFIEO EXTEKN/IL REF -- SETCM

Ill EXECUTlON WPS INTERRUPTEO BEC/IUSE YOUR PkUGRPM CPLLEU PMULO~LJ /IT Ll~E NUMBER 11 OF
/IRR/IYS WILL BE PRlNTED BY REqUESTEU PPR/IMETERS (5, U, 0, 0, O, U,
YUUR PROGR/IM R~4UIR£0 27l00B WORDS TO LO/IU, lll05B WORUS TU RUN

V/IRI/IBLES IN PKOllR/IM PMD
N/IME TYPE RELOC/I TlUN CURRENT V/ILUE

" RE/IL /IRR/IY
UIM~NSlONEU /IS - /1(1:50}
B RE/IL /IRR/IY
UIMENSIONEU /IS - 8(1:50)
c RE/IL /IRR/I Y
DIME~SIONEU /IS - C(l:50)
l INTEGER 51 = lR1'

/IRR/IYS IN PROuR/IM PMU

RE/IL /'RR/IY /1(1:50)
(/I (N))
N=l 6.00000000000 2.ooooouoouoo ti.OOOOOOOOUOO l.00000000000

RE/IL /IRR/IY B(l:50)
(B (N))
N=l 4.00000000000 4.00000000001) 4.UUOOOOUOOOO 4.00000UOOOOO

RE/IL /lkRPY C(l:50)
(C(N))
N=l 52.0000000000 20.0000000000 52.oooouuoooo £0.000000000U

79IU8ll0. 12.~9.04.

PROGR/IM PMD
U)

CO~MEMTS NPME

"
B

L

l

b.ooouoouuouo

4.ooooouuouoo

52.00000UOOUU
--

FTN POST MuRTEM UUMP FUNCTION

CURRENT ~1TU"T10N IN FUNCTION S(JRS

VPRI/IBLES IN FUNCTION S(JRS
N/IM£ TYPE RELOC/ITIUN l; URRt.NT V /I LUE

R RE/IL F. p. 1 l.OOOOOuOOUOO
~ REH F. p. 2 4.uoooouuuouo

C~LLEu FROM LINE NUMBER 4 OF SUBROUTINE SUBT

SQRS 19108120. 12.59.04.

COMMENTS N~Mt:

R
~

--

Figure 12-52. Post Mortem Dump Output for Program PMD <Sheet 1 of 2>

"' 0

~
I-'
w g
"s:I

I-'
N
I

w
I-'

FTN POST MORTEM DUMP

CURRENT SITUPTION IN SUBROUTINE SUBT

VPRIPBLES IN SUBROUTINE SUBT
NPME TYPE RELOCPTION

I INTEGER
M INTEGER
x REH
UIMENSIONEU PS - X(l:50)
y REH
DlMENSlUNED ~S - Y(l:50)
z REPL
UIMENSIONEU PS - Z(l:50)

PKRPYS lN SU~RUUTINE SUBT

REPL PRRPY X(l:50)
VPRPIPBLE SPPN IN SUBSCRIPTS 1

(X (N))

F. p. 4
F.P. 1

F.P. z

F. P .• 3

N=l 6.00000UOUUUU l.UOOOUOUOUOO

REPL PRRPY Y(l:~O)
VPRJ1IPBLE SPPN IN SUBSCRIPTS 1

SUB KOUTl Nt sutn

CURRENT VHUE

51 = lRi
bO = lRj

PRRPY

J1 KR/IV

PRRP Y

6.00UUUOUOUOO i.ooooouuuoou

JlLL RE~UESTEU ELEMENTS UF THIS PRRPY WERE 4.00UOOOOOOUO

REPL PRRPY 2(1:5U)
VPRPIPBLE SPPN IN SUBSCRlPTS l

(Z(N))
N=l 52.0000000000 20.0000UUOUOO

CPLLED FRUM LINE NUMBER

Ill END OF ERROR REPORT

9 OF PRUGRPM PMU

bl.OUOOOOOOUO 20.ooouoouooo

Figure 12-52. Post Mortem Dump Output for Program PMD (Sheet 2 of 2)

79108/20. 12.5~.04.

COMME.NH N.AME

l
M
x
y

z

().UUOOOOOOOUO

bl.OUOOOUOUUO

1 PROGRAM DBUG 74/74 OPT=O

1 PROGRAM DBUG
2 DIMENSION A(-1:4)
3 CHARACTER*5 CHAR
4 DATA CHAR /'ABCDE'/
5 c
6 DO 12 I=-1,4
7 12 A(I) I
8 c
9 CHAR = 'XYZ12'

10 STOP
11 END

Figure 12-53. Program OBUG

COMMAND- debug-------------------Activatedebugmode

COMMA ND - f tn 5, i =prog, 1=11 st ------------Compile program

57300 CM STORAGE USED.
0.112 CP SECONDS. COMMAND- lgo ____________________ lnitiatedebugsession

CYBER INTERACTIVE DEBUG
?set, breakpoint, 1 . 9 -----------------Set a breakpoint at line 9

?go-------------------------- Begin program execution

*B #1 , AT L. 9---------------------Breakpoint detected at line 9, execution suspended
?print*, a,char _________ .._ ___ ___

--------Display values of A and CHAR
-1. 0. 1. 2. 3. 4. ABCDE
?go-------------------------- Resume execution.

*T #17, END IN L. lo _________________ Program terminates at line 10
?

STOP
120008 MAX FL DURING EXECUTION .

• 167 CP SECONDS EXECUTION TIME
print*, char-------------------- Display value of CHAR

XVZ12
?qu 1t~-------------------------- Terminate debug session

DEBUG TERMINATED
COMMAND- debug(offl----------------Turnoffdebugrnode

COMMAND-

Figure 12-54. Debug Session

PROGRAM GOTO In the computed GO TO statement in line 13, the
control index is an expression (NUM + 24)/25. If
the input value NUM is in the range 1 through 100,
the value of the expression is in the range 1
through 4. The computed GO TO transfers control to
the label 20, 30, 40, or 50, if the value of the
expression is 1, 2, 3, or 4 respectively. The
appropriate counter is then incremented. If the
value of the expression is less than 1 or greater
than 4, control passes to the PRINT statement
following the GO TO.

Program GOTO, shown in figure 12-55, illustrates
the computed GO TO feature.

Program GOTO reads records containing a single
integer each and keeps a running total of the
number of integers falling within the intervals 0
through 25, 26 through 50, 51 through 7 5, and 76
through 100. If the integer does not fall within
any of these intervals an appropriate message is
printed. When all records have been read, the
total for each interval is printed.

12-32

Sample input and output are shown in figure 12-56.

60481300 F

PROGR,6M (j0TU
c
C PROGR,6M GOTO RE,605 INTEuERS Ri'HblNG FROM l TO lUU, UIVlDES THEM INTO
C FOUR GROUPS, ,6ND DETERMINES THE NUMBE~ IN E,6CH GROUP
c

c

NGRPl = U
NGRPl U
NGRP:S 0
rHiRP4 0

10 RE,60 (*, *, ENU=lOO) NUM
IF (N UM • E Q. 0) N UM = 1
GO TU (20,30,40,50), (NUM + 24)/25
PRINT I (u NUMBER II' 14' II IS OUT OF CORRECT Ri'NGE II) I' NUP1
GO TO 10

20 NGRPl = NGRPl + 1
GO TO 10

30 NGRP2 = NGRPl + 1
GO TO 10

40 NGRP3 = NGRPJ + l
GO TO 10

50 NGRP4 = NGRP4 + 1
GO TU 10

c
100
200

PRINT 200, NGRPl, NGRPl, NGRPJ, NGRP4
F 0 RM" T (I 0 - 2 5 : I , 14 , I 1 x , I 2 ti - !> 0

* /lX, 1 76 - 1UU: 1 ,14)
STOP
ENU

•I . '

Figure 12-55. Program GOTO

Input:

56
JO
110
2
25
-10
0
100
~1

Output:

14,/lX, 1 51 - 75

NUMBER 110
NUMBER -10
0 - 25

IS OUT OF CORRECT R,6NGE
IS OUT OF CORRECT Ri'NGE
J

26 - 50
51 - 75 :
76 - 100:

1
1
2

Figure 12-56. Sample Input and Output for Program GOTO

•I . ' 14,

60481300 F 12-33

c

PRUGR~M JlSK
LOGICH E, 0
CH~R~CTER*lO N,~,S,F*ll
UIMENSION BUF(50)

uu 10 1 = 1,50
10 B UF (I) = I
c

OPEN (2, ERR=99, FILE= 1 Nl2J 1
, SHTUS= 1 NEW 1

, JlCCESS= 1 DlRECT 1
,

* RECL=lOO
K=l
UO 15 I = 1,41,10
WRITE (l, REC=K, ERR=99) lBUF(J),J=l,l+~)

15 K = K + 1
c

INQUIRE (UNIT=l, ERR=99, EXIST=E, OPENEU=U, NPME=N, PCCESS=P,
* SEQUENTIPL=S, FURM=F, RECL=L, NEXTREC=M)

c
PRINT 50, E,O,N,P,S,F,L,M

50 FORMPT (1 1 1
, 'UNIT EXISTS? 1

, Ll, /' UNIT PSSOCIPTEO WITH FILE? 1

* Ll, / 1 FILE NPME IS I' P, ,. PCCESS METHOD IS I. ~.
* / 1 SEQUENTIPL PCCESS PERMITTEO? 1

, P,
* / 1 OPENED FOR 1

, ~' 1 1/0 1
, /

1 RECORD LENGTH IS 1
, 15,

* / 1 NEXT RECORU IS I' I5) .
c

CLOSE (2, ERR=99, STPTUS= 1 0ELETE 1
)

STOP
99 PRlNT*, I F~TPL 1/0 ERRUR 1

STOP
END

Figure 12-57.

PROGRAM ASK

Program ASK, shown in figure 12-57, illustrates the
OPEN, INQUIRE, and CLOSE statem.ents. The program
creates a file, writes information to the file,
inquires about the status of the file, and closes
the file.

The OPEN statement in lines 9 and 10 creates a file
named Nl23 and associates the file with u.nit 2.
File N123 is declared to be a direct access file
with a record length of 100 words.

The DO loop in lines 12 through 15 writes 5 records
to file Nl23. One record is written on each pass
through the loop. Each record consists of ten
consecutive words from the array BUF followed by
blank fill. Since Nl23 is a direct access file,
the REC parameter is specified on the WRITE state­
ment to assign a number to each record. A counter
K is incremented on each pass through the loop, and
the value of K is used for the record number.

The INQUIRE statement in line 16 performs an
inquire on unit 2. INQUIRE returns information in
the variables supplied for the specified param­
eters. The variables 0 and E are declared type
logical because INQUIRE returns a logical value (T
or F) for the EXIST and OPENED parameters. Vari­
ables N, A, S, F, and B are declared type character
because INQUIRE returns a character string for the
NAME, ACCESS, SEQUENTIAL, and FORM parameters.

Program output is shown in figure 12-58. The
FORMAT statem.ent formats the output so that it is
self-explanatory. Note that sequential access is

12-34

ProgrM ASIC

UN IT EXISTS? T
UNIT PSSOCIPTEO WITH FILE? T
FILE NPME IS Nl23
PCCESS METHOD IS DIRECT
SEQUENTIPL PCCESS PERMITTEO? NO
OPENED FOR UNFORMPTTED I/O
RECORD LENGTH IS 100
NEXT RECORD IS 6

Figure 12-58. Program ASK Output

not permitted on file Nl23. The file is opened for
unformatted output (default for direct access
files), the next record is 6 (5 records have been
written), and blanks within a record are ignored
(default). The NAME, ACCESS, and RECL parameters
reflect information specified on the OPEN statement.

The CLOSE statement in line 26 specifies the
STATUS=-DELETE- parameter so that the file is
destroyed after execution of the CLOSE. If this
statement were omitted, an implicit
CLOSE(2,STATUSa-KEEP-) would occur.

PROGRAM SCORE

Program SCORE, shown in figure 12-59, reads student
names and test scores from input records and calls
subroutine AVG to compute the average of the scores
on each record and to determine which of the
students qualify for honors. Program SCORE
illustrates the use of an alternate return.

60481300 F

c

PIWGRJlM SCORE
CHJlR~CT£R*lU NJlME
UlMENSION ISCORE(4)
UPT~ XLlM/90.0/, N/4/

6 REPO (*, 100, END=l2) N~ME, (ISCORE(l),I=l,4)
100 FORM~T (ftlO, 413)

CPLL ftVG (!SCORE, N, XLIM, PY, *8, *10)
H PRINT I (21X, "HONORS") I

10 PRINT'("+", ft, 3X, F6.2, /)', HftME, PY
GO TU 6

c
12 STOP

c

c

END

SUBROUTINE PVG(lftRR, N, XLIM, ~Y, *, *)
UIMENSION lPRR(N)

SUM = 0
00 20 l = 1, N

lO SUM= SUM+ IPRR(l)
ftY = SUM/N
lF (PY .GE. XLI~) RETURN
RETURN 2
£NO

Figure 12-59. Program SCORE and Subroutine AVG

Each input record contains a name and four test
scores. After reading a record, the main program
calls subroutine AVG which computes the average of
the four scores. The actual arguments passed to
AVG are an array !SCORE containing the four scores,
an integer variable N containing the number of
scores, a real variable XLIM, a real variable AV in
which AVG returns the computed average, and two
statement labels indicated by *8 and *10.

The program continues to process input records
until an end-of-file is detected, at which time
control passes to the statement labeled 99 and
execution terminates.

The variables XLIM and N are initialized by the
DATA statement in line 4.

Subroutine AVG computes the average of the values
in ISCORE and tests the average against XLIM to
determine if the student qualifies for honors. The
IF statement in line 8 performs the test and
returns control to the statement label represented
by the first asterisk in the SUBROUTINE statement
(label 8) if the test has a value that is true. If
the test is not true, control passes to the next
statement which returns control to the statement
label represented by the second asterisk in the
SUBROUTINE statement (label 10).

In the main program, the statement labeled 8 prints
the string "HONORS". The statement labeled 10
prints the name and the computed average; the +
carriage control character causes these values to
appear on the same line as "HONORS".

60481300 F

Sample input and output for program SCORE are shown
in figure 12-60.

Input:

::>MITH 98 85 89 92
JONES 75 83 8U 89
u OE 85 92 95 89
UOPK£ S 85 89 HO 91

Output:

SMITH 91.UO HONOR~
JONES 81. 75

OOE 90.25 HONORS
UOHES b6.2ti

Figure 12-60. Sample Input and Output
for Program SCORE

12-35

STANDARD CHARACTER SETS A

CONTROL DATA operating systems offer the following
variations of a basic character set:

CDC 64-character set

CDC 63-character set

ASCII 64-character set

ASCII 63-character set

The set in use at a particular installation is
specified when the operating system is installed.
The standard character sets are shown in table A-1.

Depending on another installation option, NOS and
NOS/BE assume an input deck has been punched either
in 026 or 029 mode, regardless of the character set
in use. Under NOS, the alternate mode can be
specified by a 26 or 29 punched in columns 79 and
80 of any 6/7/9 card. In addition, 026 mode can be
specified by a card with 5/7/9 multipunched in
column 1, and 029 mode can be specified by a card
with 5/7/9 multipunched in column 1 and a 9 punched
in column 2.

Under NOS/BE, the alternate mode can be specified
by a 26 or 29 punched in columns 79 and 80 of the
job statement or any 7/8/9 card. The specified
alternate mode remains in effect throughout the job
unless reset by another alternate mode specifi­
cation.

Graphic character representation on a terminal or
printer depends on the installation character set
and the device type. CDC graphic characters in
table A-1 are applicable to BCD terminals. ASCII
subset graphic characters are applicable to
ASCII-CRT, ASCII-TTY terminals, and line printers
that have the ASCII graphics print-train.

60481300 F

Under SCOPE 2, the alternate modes are: 026, 029,
and blank.

The 026 and 029 modes are specified by a 26 or 29
punched in columns 79 and 80 of the job statement
or any 7/8/9 card. The 26 and 29 codes convert 026
and 029 coded input to display code. Blank entries
in columns 79 and 80 indicate that the following
section is coded or binary and the next card should
be checked according to these alternatives:

If the next card is a free-form flag card, the
section following is free-form binary. (See
the SCOPE 2 reference manual.)

If the
column
binary.

next card has 7/9 punched (only) in
1, the following section is SCOPE 2

(See the SCOPE 2 reference manual.)

In any other case, the following section is
coded with the last requested conversion mode.

When a 63-character set is in use, display code 00
under A or R edit descriptor conversion in a for­
matted I/O statement, ENCODE statement, or DECODE
statement is converted to display code 55 octal
(blank). No conversions occur when a 64-character
set is in use.

FORTRAN programs can be written to handle 95-
charac ter or 128...,.charac ter ASCII. In general, NOS
handling of 95-character or 128-character ASCII
involves 6-bit and 12-bit codes, with characters
represented in a single display code or double
display code combination. The NOS character codes
are shown in table A-2. In general, NOS/BE and
INTERCOM handling of 95-character or 128-character
ASCII involves 8-bit and 12-bit codes, with the
8-bit ASCII code right-justified in a 12-bit
field. The ASCII character set is shown in table
A-3. See the appropriate operating system manual.

A-1

TABLE A-1. F~TRAN AND STANDARD CHARACTER SETS

CDC ASCII

Display Hollerith External Graphic Punch Code FORTRAN Code Graphic Punch BCD
(octal) (026) Code

Subset (029) (octal)

: (colon) oot : (colon)tt 8-2 00 : (colon) tt 8-2 072
A 01 A 12-1 61 A 12-1 101
B 02 B 12-2 62 B 12-2 102
c 03 c 12-3 63 c 12-3 103
D 04 D 12-4 64 D 12-4 104
E 05 E 12-5 65 E 12-5 105
F 06 F 12-6 66 F 12-6 106
G 07 G 12-7 67 G 12-7 107
H 10 H 12-8 70 H 12-8 110
I 11 I 12-9 71 I 12-9 111
J 12 J 11-1 41 J 11-1 112
K 13 K 11-2 42 K 11-2 113
L 14 L 11-3 43 L 11-3 114
M 15 M 11-4 44 M 11-4 115
N 16 N 11-5 45 N 11-5 116
0 17 0 11-6 46 0 11-6 117
p 20 p 11-7 47 p 11-7 120
Q 21 a 11-8 50 a 11-8 121
R 22 R 11-9 51 R 11-9 122
s. 23 s 0-2 22 s 0-2 123
T 24 T 0-3 23 T 0-3 124
u 25 u 0-4 24 u 0-4 125
v 26 v 0-5 25 v 0-5 126
w 27 w 0-6 26 w 0-6 127
x 30 x 0-7 27 x 0-7 130
y 31 y 0-8 30 y 0-8 131
z 32 z 0-9 31 z 0-9 132
0 33 0 0 12 0 0 060
1 34 1 1 01 1 1 061
2 35 2 2 02 2 2 062
3 36 3 3 03 3 3 063
4 37 4 4 04 4 4 064
5 40 5 5 05 5 5 065
6 41 6 6 06 6 6 066
7 42 7 7 07 7 7 067
8 43 8 8 10 8 8 070
9 44 9 9 11 9 9 071

+(plus) 45 + 12 60 + 12-8-6 053
- (minus) 46 - 11 40 - 11 055
* (asterisk) 47 * 11-8-4 54 * 11-8-4 052
I (slash) 50 I 0-1 21 I 0-1 057

((left paren) 51 (0-8-4 34 (12-8-5 050
) (right paren) 52) 12-8-4 74) 11-8-5 051
$(currency) 53 $ 11-8-3 53 $ 11-8-3 044
=(equals) 54 = 8-3 13 = 8-6 075

blank 55 blank no punch 20 blank no punch 040
, (comma) 56 , (comma) 0-8-3 33 , (comma) 0-8-3 054

. (decimal point) 57 • (pe~od) 12-8-3 73 • (period) 12-8-3 056
60 0-8-6 36 * 8-3 043
61 [8-7 17 [12-8-2 133
62] 0-8-2 32] 11-8-2 135
63 % tt 8-6 16 % tt 0-8-4 045

11 (Ql;JOte) 64 "# 8-4 14 " (quote) 8-7 042
65 .- 0-8-5 35 - (underline) 0-8-5 137
66 v 11-0 52 ! 12-8-7 041
67 A 0-8-7 37 & 12 046

' (apostrophe) 70 t 11-8-5 55 ' (apostrophe) 8-5 047
71 ' 11-8-6 56 ? 0-8-7 077
72 "< 12-0 72 < 12-8-4 074
73 > 11-8-7 57 > 0-8-6 076
74 s 8-5 15 @ 8-4 100
75 ~ 12-8-5 75 \ 0-8-2 134
76, 12-8-6 76 - (circumflex) 11-8-7 136
77 ; (semicolon) 12-8-7 77 ; (semicolon) 11-8-6 073

t Twelve zero bits at the end of a 60-bit word in a zero byte record are an end-of-record mark rather than two colons.
ttrn installations using a 63-graphic set, display code 008 has no associated graphic or card code; display code 639 is. the colon

(8-2 punch). The % graphic and related card codes do not exist and translations yield a blank (559).

A-2 60481300 D

TABLE A-2. CODES (6/12-BIT) FOR NOS

ASCII ASCII ASCII ASCII
Display Code Char. Code Code Display Code Char. Code Code

(6/12-Bit Octal) (7-Bit Octal) (Hexadecimal) (6/12-Bit Octal) (7-Bit Octal) (Hexadecimal)

oot : 072 3A 7604 d 144 64
01 A 101 41 7605 e 145 65
02 B 102 42 7606 f 146 66
03 c 103 43 7607 g 147 67
04 D 104 44 7610 h 150 68
05 E 105 45 7611 i 151 69
06 F 106 46 7612 j 152 6A
07 G 107 47 7613 k 153 6B
10 H 110 48 7614 1 154 6C
11 I 111 49 7615 m 155 60
12 J 112 4A 7616 n 156 6E
13 K 113 4B 7617 0 157 6F
14 L 114 4C 7620 p 160 70
15 M 115 40 7621 q 161 71
16 N 116 4E 7622 r 162 72
17 0 117 4F 7623 s 163 73
20 p 120 50 7624 t 164 74
21 Q 121 51 7625 u 165 75
22 R 122 52 7626 v 166 76
23 s 123 53 7627 w 167 77
24 T 124 54 7630 x 170 78
25 u 125 55 7631 y 171 79
26 v 126 56 7632 z 172 7A
27 w 127 57 7633 t 173 7B
30 x 130 58 7634 I 174 7C
31 y 131 59 7635 } 175 70
32 z 132 5A 7636 - 176 7E
33 0 060 30 7637 DEL 177 7F
34 1 061 31 7640 NUL 000 00
35 2 062 32 7641 SOH 001 01
36 3 063 33 7642 STX 002 02
37 4 064 34 7643 ETX 003 03
40 5 065 35 7644 EQT 004 04
41 6 066 36 7645 ENO 005 05
42 7 067 37 7646 ACK 006 06
43 8 070 38 7647 BEL 007 07
44 9 071 39 7650 BS 010 08
45 + 053 2B 7651 HT 011 09
46 - 055 20 7652 LF 012 OA
47 * 052 2A 7653 VT 013 OB
50 I 057 2F 7654 FF 014 oc
51 (050 28 7655 CR 015 OD
52) 051 29 7656 so 016 OE
53 $ 044 24 7657 SI 017 OF
54 = 075 30 7660 OLE 020 10
55 (space) 040 20 7661 DCl 021 11
56 . 054 2C 7662 OC2 022 12
57 056 2E 7663 OC3 023 13
60 # 043 23 7664 OC4 024 14
61 [133 5B 7665 NAK 025 15
62] 135 50 7666 SYN 026 16
63tt % 045 25 7667 ETB 027 17
64 II 042 22 7670 CAN 030 18
65 ttt 137 5F 7671 EM 031 19
66 ! 041 21 7672 SUB 032 lA
67 & 046 26 7673 ESC 033 lB
70 I 047 27 7674 FS 034 lC
71 ? 077 3F 7675 GS 035 10
72 < 074 3C 7676 RS 036 lE
73 > 076 3E 7677 us 037 lF
74 @ 100 40 7400 null --- --
75 \ 134 SC 7401 @ 100 40
76 /'.. 136 5E 7402 136 5E
77

nuil
073 3B 7403 null --- --

7600 --- -- 7404 : 072 3A
7601 a 141 61 7405 null --- --
7602 b 142 62 7406 null --- --
7603 c 143 63 7407 140 60

tin the 63-character set, this display code represents a null character. Also, use of the colon in program
and data files may cause problems. This is particularly true when it is used in PRINT and FORMAT
statements.

ttrn the 63-character set, this display code represents a colon(:}, 7-bit ASCII code 072, 7-bit hexadecimal
code 3A.

ttton TTY models having no underline, the backarrow (----} takes its place.

60481300 E A-3

A-4

TABLE A-3. CODES (8-BIT) FOR NOS/BE

.. 0
Bits b7 0

be 0
b& 0

Hex
bt 113 112 b1 Digits

0

0 0 0

0 0 0

0 0 1

0 0 1

0 1 0

0 1 0

0 1 1

0 1 1

1 0 0

1 0 0

1 0 1

1 0 1

1 1 0

1 1 0

1 1 1

1 1 1

NUL
0 0 12~-1

NUL 00
SOH

1 1 12-9-1
SOH 01
STX

0 2 12-9-2
STX 02

ETX
1 3 12-9-3

ETX 03

EOT
0 4 9-7

EOT 37
ENO

1 5 0-9-8-5
ENO 20
ACK

0 6 0-9-8-6
ACK 2E
BEL

1 7 0-9-8-7
BEL 2F
BS

0 8 11-9-6
BS 16
HT

1 9 12-9-5
HT 06

LF
0 10 0-9-5 IAI LF 25

11 VT
1 12-9-8-3 IBI VT OB

FF 12 0 12-9-8-4 CC) FF oc
13 CR

1 12-9-8-5 (0) CR 00

so
0 14 12-9-8-6 (El so OE

15 SI
1 12-9-8-7 (Fl SI OF

ASCII Character--.l]

EBCDIC Character J I
I

0 0 0 0 0 0 0
0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

1 2 3 4 5 6 7

OLE SP 0 @ p ' p
12-11-9-8-1 no-punch 0 8-4 11-7 8-1 12-11-7
OLE 10 SP 40 0 FO @7C p 07 ' 79 p 97
DC1 I 1 A a a q
11-9-1 12-8-7 1 12-1 11-8 12-0-1 12-11-8
DC1 11 I 4F 1 F1 AC1 a oa a 81 q 98
DC2 .. 2 B R b r
11-9-2 8-7 2 12-2 11-9 12-0-2 12-11-9
DC2 12 7F 2 F2 B C2 R 09 b 82 r 99

OC3 # 3 c s c s
11-9-3 8-3 3 12-3 0-2 12-0-3 11-0-2
TM 13 # 78 3 Fl c C3 s E2 c 83 s A2

DC4 $ 4 D T d t
9-8-4 11-8-3 4 12-4 0-3 12-0-4 11-0-3
OC4 JC $ 5B 4 F4 DC4 T El d 84 t Al
NAK % 5 E u e u
9-8-5 0-8-4 s 12-5 0-4 12-0-S 11-0-4
NAK 30 % 6C 5 F5 E C5 U E4 e 85 u A4

SYN • 6 F v f v
9-2 12 6 12-6 0-5 12-0-6 11-0-5
SYN 32 • 50 6 F6 F C6 V E5 f 86 v A5
ETB , 7 G w g w
0-9-6 8-S 7 12-7 0-6 12-0-7 11-0-6
ETB 26 , 70 7 F7 GC7 W E6 g 87 w A6
CAN (8 H x h x
11-9-8 12-8-5 8 12-8 0-7 12-0-8 11-0-7
CAN 18 I 40 8 FB HC8 X E7 h 88 x A7
EM I 9 I y i y
11-9-8-1 11-8-5 9 12-9 0-8 12-0-9 11-0-8
EM 19 I 50 9 F9 I C9 Y ES i 89 y A8

SUB . : J z i z
9-8-7 11-8-4 8-2 11-1 0-9 12-11-1 11-0-9
SUB 3F . 5C : 7A J 01 z E9 i 91 z A9

ESC + K [k
{12-0 0-9-7 12-8-6 11-8-6 11-2 12-8-2 12-11-2

ESC 27 + 4E ; 5E KD2 ; 4A k 92 { co
FS < L \ I I

0-s-J
I

11-9-8-4 12-8-4 11-3 0-8-2 12-11-3 12-11
IFS 1C 68 < 4C L 03 \ EO I 93 I 6A I

GS - = M I m
}11-0 11-9-8-5 11 8-6 11-4 11-8-2 12-11-4

IGS 10 - 60 .. 7E MD4 ' 5A m 94 } DO

RS > N A. n -
11-9-8-6 12-8-3 0-8-6 11-5 11-8-7 12-11-5 11-0-1
IRS 1E 4B > 6E NOS -. SF n 95 - A1
us I 7 0 0 DEL
11-9-8-7 0-1 0-8-7 11-6 G-8-5 12-11-6 12-9-7
IUS 1F I 61 7 6F 006 - 60 0 96 DEL 07

64-character ASCII

95-character ASCII (does not include DEL)

128-character ASCII

r-1-carn coo.
11-8-2

5A-4--EBCDIC Code (Hexadecimal)
I

60481300 A

FORTRAN DIAGNOSTICS B

Diagnostic messages are issued by FORTRAN 5 during
both compilation and execution to inform the user
of errors in the source program., input data, or
intermediate results. This appendix explains the
content and format of the FORTRAN 5 diagnostic
messages.

COMPILE-TIME DIAGNOSTICS
When an error is detected during compilation of the
source program, a diagnostic message is issued
inmediately after the erroneous source line. The
format of the diagnostics is:

severity * message

The severity indicator tells the consequences the
error will have on further processing of the pro­
gram. One of the following severity indicators
will accompany each error message:

FATAL

The program will not be executed.

WARNING

The error is severe, but the program will
be executed. Although syntax is incorrect,
the probable meaning of the source code is
presumed.

TRIVIAL

ANSI

A minor syntax error or omission was
detected, or correct syntax was used but
semantics were irregular.

Usage does not conform to ANSI X3.9 - 1978
(FORTRAN 77) specification. Listed only if
the ANSI list option is specified on the
FTN5 control statement.

MDEP

The line contains a use of a machine­
dependent language feature. Listed only if
the MD option is specified on the FTNS
control statement.

The compile-time diagnostics issued by FORTRAN 5
are summarized in alphabetical order in table B-1.
Ellipses, denoted by ••• , are replaced by items
from the relevant source statement.

SPECIAL COMPILATION
DIAGNOSTICS
When a compilation is aborted or prematurely termi­
nated for internal reasons, one or more of the
messages shown in table B-2 are issued. This table
also includes messages that appear only in the
dayfile that are not caused by internal error.

60481300 F

CONTROL STATEMENT
DIAGNOSTICS

When errors are detected in the control statement
portion of the program. the message CONTROL STATEMENT
ERRORS-- followed by one or more of the messages
shown in table B-3 is issued. These messages only
appear in the dayfile.

COMPILER OUTPUT LISTING
MESSAGES
Compiler output listing messages are printed in the
source listing. They may appear before, during, or
after the reference map and object code listings,
depending on the error condition. The message
format is different than that of the standard error
summary; each message is usually left-justified on
the output page, and may be preceded by several
blank lines, or may be printed at the top of a page.

The compiler output listing messages are given in
table B-4.

EXECUTION DIAGNOSTICS
Execution diagnostics are issued when an error
occurs while a user program is running. The diag­
nostics are printed on the source listing in one of
the following formats:

or

or

ERROR NUMBER x DETECTED BY routine
AT ADDRESS y

ERROR NUMBER x DETECTED BY routine
CALLED FROM routine AT ADDRESS z

ERROR NUMBER x DETECTED BY routine
CALLED FROM routine AT LINE d

where y and z are relative octal addresses, x is a
decimal error number, and d is a decimal line
number corresponding to a line number printed in
the source listing.

Table B-5 summarizes the execution diagnostics by
error number. In table B-5, the letters under
Class mean:

F = Fatal

I Informative, nonfatal

D Debug (diagnostic can be issued only when
in debug mode)

T ""' Trace (diagnostic can be issued only when
in trace mode). Trace mode is active when
DB=TB is specified on the FORTRAN 5 compi­
lation control Card.

A = Always (diagnostic can always be issued)

B-1

When invalid data is entered through connected
input, it can be reentered for formatted, list
directed, or namelist read operations. Data that
would otherwise produce error 78 (illegal data in
field) or 79 (data overflow) causes this message to
be displayed:

dd ••• dd(-ERROR IN COL. nn, RETYPE RECORD FROM
THIS FIELD

where

dd •• dd Is the data field right justified and
blank filled, where the rightmost
character is the one at which the error
condition was detected.

nn Is the colU1Dn number, in decilllal, . of
the character that caused the message.

Data can then be reentered, starting at the field
described and continuing through the end of the
iolist. For formatted input, a field is defined by
the last edit descriptor active when the error was
detected; reentered data will be processed from the
beginning of that descriptor. For list directed
and namelist input, a field is defined as the last
iolist item. active when the error was detected in
the constant or repetition count; the reentered
data will be processed from the beginning of the
iolist item.

TABLE B-1. COMPILE-TIME DIAGNOSTICS

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

B-2

Message

••••• IS DEFINED TO BE INTRINSIC

••••• IS NON-ANSI EDIT DESCRIPTOR

7 CHARACTER SYMBOL ••••• IS NON-ANSI

CHARACTER ARRAY REQUIRED FOR FORMAT
SPECIFIER

CmllON BLOCK NAME
CANNOT BE •••••

COMMON CAN BE PRESET IN BLOCK DATA ONLY

COMPUTED GO TO INDEX MUST BE INTEGER

DOUBLE PRECISION AND COMPLEX OPERANDS
ARE MIXED

FILE DECLARATION LIST NON-ANSI

FUNCTION REFERENCE IN CONSTANT
EXPRESSION

HOLLERITH CONSTANT NON-ANSI

I/O KEYWORD BUFL IS NON-ANSI

LIST DIRECTED OUTPUT
CANNOT END WITH COMMA

Significance

The FORTRAN 5 defined
intrinsic function is not
supported in ANSI FORTRAN.

Nonstandard format specifi­
cation.

ANSI allows only 6 char­
acters.

Format must be contained in
character array.

Conmon block name used as
another symbol name in a
nonANSI manner (for example,
as an entry point name or as
an intrinsic function name.)

ANSI allows COMMON to be
preset in block data only.

Index is of incorrect type.

Cannot mix DOUBLE PRECISION
and COMPLEX operands.

ANSI does not permit file
declaration in the PROGRAM
statement.

ANSI does not allow function
reference in constant
expression.

ANSI uses character data
type.

ANSI does not permit I/O
keyword BUFL.

ANSI does not permit comma
at end of list directed
output.

Action

Supply the ftm.ction
for portability.

Replace format
specification.

Shorten symbol to 6
characters or less.

Use an array of char­
acter type.

Change the common
block name or, when
possible, the symbol
name.

Remove presetting of
COMMON.

Change GO TO index or
declare it to be
integer.

Apply REAL fllllction to
DOUBLE PRECISION
operand.

Remove file list from
PROGRAM statement.

Remove function
reference.

Switch usage to
character.

Remove I/O keyword
BUFL.

Remove the trailing
comma.

60481300 F

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

FATAL

FATAL

60481300 F

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

MASK EXPRESSION NON-ANSI

MULTIPLE ASSIGNMENT IS NON-ANSI

NAMELIST I/O IS NON-ANSI

OBJECT OF IF IS ILLEGAL DO TERMINATOR

OCT/HEX DATA TYPE NOT DEFINED IN ANSI

PAREN REPEAT LIST IS NOT PERMITTED

RETURN IN MAIN PROGRAM -- ACTS AS END

SEQUENCE MODE IS NON-ANSI

STATEMENT FUNCTION ACTUAL ARGUMENT
MUST AGREE IN TYPE WITH DUMMY ARGU­
MENT

STATEMENT FUNCTION DUMMY ARGUMENT
CANNOT BE AN ARRAY

STATEMENT IS NOT DEFINED IN ANSI

SUBSCRIPT •••••OF ••••• IS NOT TYPE
INTEGER

SUBSTRING EXPRESSION NOT INTEGER

SYMBOLIC CONSTANT IN COMPLEX CONSTANT
I«>T ANSI

TRANSFER INTO RANGE OF DO

••••• EDIT DESCRIPTOR REQUIRES COUNT

•••••EXPRESSION NOT CONSTANT, OR NOT
EVALUATABLE

Significance

ANSI does not perm.it mask
expressions.

ANSI permits only one
assignment per statement.

ANSI does not perm.it
NAMELIST I/O.

A logical IF, used as the
last statement in a DO loop,
contains a nonstandard
statement.

ANSI does not permit octal
or hexadecimal data type.

Repeated item list is not
provided in standard FORTRAN.

RETURN is considered the END
statement in main program.

ANSI does not recognize SEQ
format.

ANSI requires that dumm.y and
actual argunents to state­
ment functions agree in
type.

Declaration of dummy argu­
ment is invalid.

ANSI does not recognize
statement.

ANSI requires integer
subscripts.

ANSI permits only integer
substring expressions.

Symbolic constant in complex
constant is not allowed by
ANSI.

Cannot transfer into range
of DO.

Program will not execute
without cowt.

Expression, which must be a
constant, will not reduce.

Action

Remove mask
expression.

Break assignment
statement into two or
more statements.

Remove NAMELIST I/O.

Change object of IF.
Make the last state­
ment in the loop a
CONTINUE statement.

Write nunber as
decimal.

Remove paren repeat
list.

Change RETURN to END
or STOP.

Remove sequence nm­
bers and compile
without SEQ param­
eter.

Change type decla­
ration of dUDllly or
actual argtment.

Change declaration of
dlDllly argt1Rent or name
of d1.11&y argtment.

Correct statement.

Assign subscript ex­
pression to an integer
variable and use the
variable.

Check substring ex­
pression.

Replace symbolic con­
stant with constant.

Rewrite loops to be
closed.

Supply a count for the
edit descriptor.

Rewrite statement.

B-3

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

B-4

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

• • • • • - ILLEGAL TRANSFER TO INS IDE A
CLOSED DO LOOP OR IF BLOCK

•••••••••• 1/0 CONTROL ALREADY
SPEC IF IED FOR THIS STATEMENT

••••• ••••• NOT I/O CONTROL KEYWORD

••••• •••••NOT LEGAL 1/0 CONTROL
KEYWORD FOR THIS STATEMENT

••••• BLOCK IF(S) NOT TERMINATED

••••• C$ IF(S) NOT TERMINATED

••••• CANNOT HAVE ASSUMED CHARACTER
LENGTH

• • • • • CAUSES CHARACTER DECLARATION
CONFLICT IN EQUIVALENCE GROUP

••••• ILLEGAL EXTENSION OF COMMON
BLOCK ORIGIN

••••• ILLEGAL FIRST ELEMENT OF
EXPRESSION

••••• IN INPUT LIST IS ILLEGAL

• • • • • IS IN BLANK COMMON -- DATA
IGNORED

• • • • • IS NOT DEFINED AS INTRINSIC

••••• IS UNKNOWN C$ PARAMETER FOR •••••

•••••MUST BE DO CONTROL VARIABLE

••••• MUST BE A DUMMY-ARG

• • • • • MUST BE INTEGER CONSTANT
EXPRESSION

• • • • • OPERAND CANNOT BE CONVERTED TO
TYPE •••••

Significance

To branch inside a DO loop,
a branch must previously
have been made out of the
loop. Branching into an IF
block is illegal.

Duplication of I/O specifier
is invalid.

1/0 control keyword not
recognized.

Valid I/O keyword but not
for this statement.

Missing ENDIF statement.

Missing C$ ENDIF statement.

Only symbolic constants and
dumny argunents may have (*)
length.

Character declaration
conflict encolm.tered in
EQUIVALENCE statement.

The EQUIVALENCE statement
has extended the common
block origin backward.

First element of expression
found to be invalid.

Constants and expressions
cannot appear in input
lists.

Blank common variables must
not be initialized.

Name is not the name of a
builtin intrinsic function.

C$ parameter not recognized
for this expression.

Expression must be a DO
control variable.

Expression must be a
dumny-arg.

Expression must be an
integer constant.

The operand cannot be
converted to the type
attempted.

Action

Revise program flow to
remove invalid branch.

Remove duplicate 1/0
specifier.

Likely to be a
misspelled keyword.
Correct it.

Remove I/O control
keyword.

Insert ENDIF state­
ment.

Insert C$ ENDIF state­
ment.

Remove (*) length dec­
laration.

Check declarations of
equivalenced character
variables.

Check all EQUIVALENCE
statements containing
the specified
variable.

Correct first element
of expression.

Remove constant or
expression.

Remove blank common
variables from DATA
statement.

Remove name or correct
spelling.

Correct C$ parameter
or expression.

Make expression a DO
control variable.

Make expression a
dumny-arg.

Make expression an
integer constant.

Check operand and
type.

60481300 F

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 F

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

••••• PREVIOUSLY USED IN EXECUTABLE
OR CONFLICTING DECLARATIVE

••••• REDEFINES A DO CONTROL INDEX

••••• SUBSCRIPT OUTSIDE OF ARRAY
BOUNDS

••••• TOO HIGH -- SHORT LOOPS
SELECTED

3 BRANCH IF HAS ••••• EXPRESSION

3 BRANCH IF MISSING LABEL

ADJUSTABLE BOUND ••••• MUST BE
DUMMY-ARG OR IN COMMON

ADJUSTABLE DIMENSION BOUND • • • • • IS
NOT INTEGER

ALTERNATE RETURN IS ILLEGAL IN A
FUNCTION

ARGUMENT COUNT ON ••••• EXCEEDS 500

ARGUMENT COUNT ON ••••• MUST BE MORE
THAN ONE

ARGUMENT COUNT ON INTRINSIC ••••• IS
WRONG

ARGUMENT MODE ILLEGAL FOR GENERIC
FUNCTION •••••

ARGUMENT MODE MUST AGREE WITH TYPE
DEFINED FOR LIBRARY FUNCTION •••••

ARRAY •••• DIMENSION •••• -- DIMENSION
BOUND EXPRESSION CONTAINS ILLEGAL
OPERATION

ARRAY •••• DIMENSION •••• -- DIMENSION
BOUND EXPRESSION CONTAINS NON-VARIABLE

ARRAY •••• DIMENSION •••• -- DIMENSION
BOUND EXPRESSION CONTAINS ARRAY
REFERENCE

ARRAY ••••• DIMENSION ••••• -- LOWER
BOUND EXCEEDS UPPER BOUND

Significance

Dl.DDDly argument on ENTRY
statement had previous use
that prohibits use as a
dl.DDDly argument.

Variable redefines a current
DO index.

Subscript must be inside of
array bounds.

Trip count~ lml+m31 or
lm2+m3 I)21'-L

3 branch IF expression must
be integer, real, or
boolean.

Label required for 3
branch IF.

Variable used as a dimension
bound must be a dummy-arg or
in common.

Adjustable dimension bound
must be integer.

Legal only in a subroutine.

Too many arguments.

Not enough arguments.

Wrong nl.ID.ber of arguments
supplied for the intrinsic
function.

Improper argument type.

Improper argument type.

Illegal expression in
DIMENSION declaration.

Illegal expression in
DIMENSION declaration.

Array references in expres­
sions are illegal when the
expression appears in a
DIMENSION statement.

Lower bound must be less
than or equal to upper
bound.

Action

Correct the previous
usage or change the
name of the dummy
argl.DD.ent.

Change variable usage.
Check equivalence
declarations.

Check subscript and
dimension statement.

Modify loop or
select DO=LONG.

Change type of expres­
sion to integer, real,
or boolean.

Supply a label.

Add variable to dummy­
arg list or to common
block.

Declare adjustable
dimension bound to be
integer.

Remove alternate
return.

Reduce number of
argl.DD.ents.

Increase number of
argl.DD.ents.

Check syntax of the
intrinsic function.

Check definition of
function to determine
correct argument type.

Check definition of
function to determine
correct argument type.

Correct expression.

Correct invalid vari­
ables in expression.

Remove all array
references from
expression.

Correct dimension
boundaries.

B-5

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

B-6

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

ARRAY ••••• DIMENSION ••••• -- EXCEEDS
2**23_1

ARRAY ••••• DIMENSION BOUND ••••• NOT
INTEGER

ARRAY ••••• EXCEEDS 7 DIMENSIONS

ARRAY ••••• IN COMMON CANNOT HAVE
ADJUSTABLE DIMENSION

ARRAY ••••• IN PROGRAM CANNOT HAVE
ADJUSTABLE DIMENSION

ARRAY ••••• MISSING SUBSCRIPT

ARRAY SIZE EXCEEDS 2**23_1

ARRAY • • • • • SUBSCRIPT COUNT DOES NOT
MATCH DIMENSION COUNT

ARRAY DECLARATION FOR • • • • • MISS ING
RIGHT PAREN

ASSUMED CHARACTER LENGTH ILLEGAL FOR
IMPLICIT

ASSUMED SIZE ARRAY ••••• NOT ALLOWED IN
I/O LIST

ASSUMED SIZE ARRAY NOT PERMITTED IN
NAMELIST

ASSUMED SIZE CAN ONLY BE ON LAST UPPER
BOUND

ASSUMED SIZE OR ADJUSTABLE ARRAY
MUST BE DUMMY-ARG

BUFFER DIRECTION SPECIFIER. MUST BE IN
OR OUT

BUFFER I/O ADDRESS CANNOT BE CHARACTER

BUFFER I/O ADDRESS CANNOT BE •••••

BUFFER I/O LWA MUST BE GREATER THAN OR
EQUAL TO FWA

BUFFER I/O PARITY SPECIFIER MUST BE
INTEGER CONSTANT OR VARIABLE

Significance

Dimension value too large.

Dimension bounds must be
integer.

Too many dimensions.

Arrays in common must have
explicit bounds.

Arrays in PROGRAM program
unit must have explicit
bolllldS •

Subscript required to refer­
ence an array element.

Array too large.

Wrong number of subscripts
supplied. The number of
subscripts in an array
reference must equal the
number specified in the
DIMENSION statement.

Right parenthesis missing.

Length must be declared in
the IMPLICIT statement.

Assumed size array must have
a subscript when appearing
in an I/O list.

Assumed size array must be
subscripted when it appears
in a namelist.

Assumed size is not last
upper botmd.

Assumed size or adjustable
array is not dumny-arg.

BUFFER statement incorrect;
correct form is BUFFER IN or
BUFFER OUT.

Buffer I/O address must not
be character.

Buffer I/O address is not
recognized.

Last-word-address must be
greater than or equal to
first-word-address.

Buffer I/O parity specifier
not recognized.

Action

Reduce dimension size.

Declare dimension
bound to be integer.

Reduce number of
dimensions.

Correct dimension
descriptor •

Correct dimension
descriptor.

Supply subscript.

Reduce size of array.

Check the nunber of
subscripts on the
DIMENSION statement.

Supply right paren­
thesis.

Declare character
length.

Specify a subscript.

Specify a subscript.

Declare size when not
last upper bound.

Make assumed size or
adjustable array
d UJ11By-arg.

Make BUFFER statement:
BUFFERIN or BUFFEROUT.

Change Buffer I/O
address.

Correct Buffer I/O
address.

Correct word-address
boundaries.

Correct Buffer I/O
parity specifier.

60481300 F

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 F

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

BUFFER I/O PARITY INDICATOR VALUE MUST
BE ZERO OR 1

BUFFER LENGTH FOR FILE • • • • • EXCEEDS
360000B -- DEFINITION IGNORED

C$ IF EXPRESSION MUST BE LOGICAL

C$ ••••• LABEL ••••• DIFFERENT FROM C$
IF LABEL

CALL STATEMENT MISSING ROUTINE NAME

CHARACTER AND OTHER TYPE OPERANDS MAY
NOT BE MIXED

CHARACTER DECLARATION CONFLICT EXISTS
IN COMMON BLOCK •••••

CHARACTER LENGTH GREATER THAN 2**15_1

CHAR LENGTH NOT POSITIVE CONSTANT,
(POSITIVE CONSTANT EXPRESSION) OR (*)

CHARACTER LENGTH ZERO ILLEGAL

CHARACTER LENGTHS OF ENTRY • • • • • AND
FUNCTION CANNOT DISAGREE

CHARACTER OPERAND • • • • • USED WITH
OPERATOR •••••

COMMA BEFORE AN I/O LIST IS ALLOWED
ONLY ON SHORT FORM READ OR PRINT
STATEMENT

COMMA OR E.O.S. MUST FOLLOW LEVEL LIST
NAME

COMMON BLOCK ••••• CANNOT BE DECLARED
LEVEL 0

COMMON BLOCK
LENGTH 131071

EXCEEDS MAX BLOCK

COMMON BLOCK ••••• EXCEEDS MAX LCM=G
BLOCK LENGTH 1048568

COMMON ELEMENT ••••• MAY NOT APPEAR IN
SAVE

Significance

Buffer I/O parity indicator
not zero or 1 •

Buffer length too long.

C$ IF expression is not type
logical.

Label on C$ IF does not
match C$ ENDIF or C$ ELSE
label.

The correct form is CALL
routine-name (parameter
list).

Character operands cannot be
mixed with non-character
operands.

Common block contains
character and non-character
entities.

Character variable too long.

The length on a CHARACTER or
type declaration was nega­
tive or zero.

Length must be at least 1.

Character lengths of entry
and function disagree.

Operation illegal for char­
acter variable.

The comma before the I/O
list is not allowed here.

Comm.a or end of statement
expected; statement contains
extraneous information.

Wrong level declared for
this block.

Common block too large.

Common block too large.

Names of entities in a
common block may not appear
in the SAVE statement.

Action

Make Buffer I/O parity
indicator zero or 1.

Reduce buffer length.

Make expression type
logical.

Make labels identical.

Insert routine name
between CALL keyword
and parameter list.

Correct operands.

Make all common block
members either type
character or type non­
character.

Shorten character
variable.

Correct the length
specification.

Correct character
length value.

Correct disagreement.

Correct conflict.

Remove comm.a.

Correct statement.

Declare correct level.

Break common block
into two or more
common bloc ks.

Break common block
into two or more
common bloc ks.

Correct the SAVE
statement.

B-7

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

B-8

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

CONCATENATION OF ASSUMED LENGTH
VARIABLE NOT ALLOWED HERE

CONFLICT IN EQUIVALENCE SPECIFICATION
FOR •••••

CONSTANT CANNOT BE CONVERTED

CONSTANT DIVIDE BY ZERO -- RESULTS SET
TO INFINITE

DATA INTO • • • • • IS ILLEGAL

DATA VARIABLE LIST CONTAINS •••••

DECIMAL POINT IS NOT SPECIFIED FOR THE
EDIT DESCRIPTOR AT •••••

DECIMAL POINT REQUIRED IN EDIT
DESCRIPTOR AT •••••

DIMENSION ON ••••• IGNORED -- PRIOR
DIMENSION RETAINED

DIRECT ACCESS I/O CANNOT BE FREE FORMAT

DIRECT ACCESS I/O CANNOT BE NAMELIST

DIRECT ACCESS I/O CANNOT SPECIFY END

DO ••••• PARAMETER CANNOT BE •••••

DO-IMPLIED LOOPS IN DATA MUST BE
INTEGER

DO INDEX • • • • • MUST BE SIMPLE VARIABLE

DO INDEX CANNOT BE •••••

DO LOOP ••••• CONTAINS UNCLOSED IF
BLOCK

DO LOOP • • • • • MUST TERMINATE WITHIN IF
BLOCK

DO LOOP ••••• NOT TERMINATED BEFORE END
OF PROGRAM

Significance

Assuned length variable can­
not be concatenated in this
circunstance.

Indicated EQUIVALENCE is
inconsistent with previous
EQUIVALENCE.

Constant contains syntax
error.

Division by zero is an
tm.defined operation.

DATA statement attempts to
initialize something which
cannot be initialized, such
as a formal parameter.

DATA variable list contains
a constant or an expression.

Decimal point is invalid in
this circunstance.

Decimal point required.

A dimension was specified
more than once; first decla­
ration is used.

FORMAT specification needed.

FORMAT specification needed.

END option is illegal.

Type of the DO parameter is
invalid.

DO-implied loops are
required to be integer.

DO index is required to be a
simple variable.

Type of DO index is invalid.

Entire IF block must be
within the range of the DO
loop.

Entire DO loop must be
within the range of the IF
block.

DO loop terminator missing.

Action

Do not concatenate
variable here.

Check all EQUIVALENCE
statements containing
the specified variable.

Correct syntax error
in constant.

Correct division error.

Correct DATA statement.

Correct DATA statement.

Remove decimal point.

Supply decimal point.

Eliminate second
declaration.

Replace * with format
specification.

Replace namelist name
with form.at specifi­
cation.

Remove END= specifier
from I/O statement.

Change the type of
the parameter.

Make DO-implied loops
integer.

Make DO index a simple
variable.

Change the type of the
00 index.

Make IF block within
range of DO loop.

Make DO loop within

range of IF block.

Add DO terminator
statement ntmber where
appropriate.

60481300 F

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 F

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

DO LOOP ••••• PREVIOUSLY DEFINED -­
ILLEGAL NESTING

DO LOOP INCREMENT MAY NOT BE ZERO

D OR M FIELD NOT SPECIFIED
FOR EDIT DESCRIPTOR AT •••••

DUMMY-ARG FUNCTION ••••• CANNOT
HAVE ASSUMED CHARACTER LENGTH

DUMMY ARGUMENT ••••• CAN OCCUR ONLY
ONCE IN••••• DEFINITION

DUMMY ARGUMENT ••••• CANNOT BE
EQUIVALENCED

DUMMY ARGUMENT •••• , MAY NOT APPEAR IN
SAVE

DUMMY ARGUMENT • • • • • MUST BEGIN WITH
LETTER OR STAR

E.o.s. BEFORE END OF HOLLERITH COUNT

EDIT DESCRIPTOR MISSING AT •••••

ELSEIF EXPRESSION MUST BE LOGICAL

ELSEIF REQUIRES THEN

F.MPTY COMMON BLOCK •••••

END LINE ABSENT

END OR ERR REQUIRES STATEMENT LABEL

ENTRY INSIDE DO LOOP OR IF BLOCK IS
ILLEGAL

EQUAL SIGN MUST BE FOLLOWED BY NAME,
NUMBER OR SLASH

EQUIVALENCED ARRAY • • • • • HAS SUBSCRIPT
LESS THAN DIMENSION LOWER BOUND

EQUIVALENCED ARRAY ••••• HAS SUBSCRIPT
WHICH EXCEEDS DIMENSION BOUND

Significance

The label was previously
used.

DO loop increment is
required to be nonzero.

Edit descriptor of form
Fw. was encountered.

DllllDlly-arg function has
asstmed character length.

Dunnny argunent previously
defined in current statement
function.

Dunnny argunent must not
appear in EQUIVALENCE
statement.

Dummy argunent must not
appear in SAVE statement.

Dummy argunent must begin
with a letter or star.

Premature end of statement
encountered.

Error in FORMAT statement.

ELSEIF expression is not
type logical.

THEN is missing from ELSEIF
construct.

Common block contains no
elements.

END statement must be last
statement in source deck.

The END= or ERR= in a READ
statement must be followed
by the label nllD.ber of an
executable statement.

Illegal entry into range of
DO loop or IF block.

Equal sign required to be
followed by a name, nunber,
or a slash.

Subscript must be greater
than or equal to lower
bound specified in the
DIMENSION statement.

Subscript must be less than
or equal to upper bound
specified in DIMENSION.

Action

Choose a new statement
nllD.ber for the DO.

Provide nonzero incre­
ment.

Add the m or d field to
the edit descriptor.

Specify length of
character dunmy-arg.

Remove excess dummy
argument.

Remove dunmy argtment
from EQUIVALENCE
statement.

Remove dummy argtment
from SAVE statement.

Correct dummy argu­
ment.

Check for incorrect
hollerith collllt.

Supply edit
descriptor.

Make ELSEIF expression
type logical.

Add THEN where appro­
priate.

Remove COMMON state­
ment or add variable
list.

Add END statement.

Provide statement
label.

Remove ENTRY or
rewrite loop or block.

Correct expression
after equal sign.

Change subscript or
dimension.

Change subscript or
DIMENSION statement.

B-9

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

B-10

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

EXCESS LEFT PAREN IN I/O LIST

EXCESS LEFT PAREN IN I/O LIST ITEM
SUBSCRIPT

EXCESS RIGHT PAREN IN I/O LIST

EXCESS SUBSCRIPTS ON EQUIVALENCE
VARIABLE •••••

EXECUTABLE STATEMENT ILLEGAL IN BLOCK
DATA SUBPROGRAM

EXPECTED C$ DIRECTIVE LABEL --
FOUND •••••

EXPECTED C$ PARAMETER -- FOUND

EXPECTED COMMA -- FOUND

EXPECTED COMMA AFTER COUNT --
FOUND •••••

EXPECTED COMMA AFTER FORMAT
SPECIFIER -- FOUND •••••

EXPECTED COMMA OR RIGHT PAREN --
FOUND •••••

EXPECTED COMMA OR SLASH FOUND

EXPECTED DO CONTROL INDEX --
FOUND ••••

EXPECTED E.o.s. -- FOUND •••••

EXPECTED E.o.s. -- FOUND AND
IGNORED •••••

EXPECTED EQUAL SIGN -- FOUND

EXPECTED FORMAT SPECIFIER --
FOUND •••••

EXPECTED FILE NAME, FOUND •••••

EXPECTED INTRINSIC FUNCTION NAME --
FOUND •••••

EXPECTED LEFT PAREN -- FOUND •••••

EXPECTED LEFT PAREN BEFORE COUNT --
FOUND •••••

EXPECTED LEFT PAREN FOR AN ARGUMENT
LIST FOUND •••••

Significance

Too many left parens.

Too many left parens.

Too many right parens.

EQUIVALENCE variable has
more subscripts than de­
clared in DIMENSION.

Illegal executable sta.te­
ments in block data
subprogram.

C$ directive label expected.

C$ parameter expected.

Comma expected •

Comma after count expected.

Comma after format specifier
expected.

Comma or right paren
expected.

Comma or slash expected.

Syntax error in DO
statement.

Extraneous information
follows a legal statement.

End of statement expected.

Equal sign expected.

Format specifier expected.

File name expected.

Intrinsic function name
expected.

Left parenthesis expected.

Left parenthesis before
count expected.

Left parenthesis for an
argument list expected.

Action

Remove excess paren(s).

Remove excess paren(s).

Remove excess paren(s).

Change subscripts or
DIMENSION statement.

Remove executable
statements.

Check C$ directive
keyword specification.

Check C$ directive
keyword specification.

Check syntax of state­
ment.

Check syntax of state­
ment.

Check syntax of state­
ment.

Check syntax of state­
ment.

Check syntax of state­
ment.

Check syntax of DO
'statement.

Remove extra informa­
tion.

Check syntax of state­
ment.

Check syntax of state­
ment.

Check format statement.

Correct statement.

Check intrinsic state­
ment.

Check syntax of state­
ment.

Check syntax of state­
ment.

Check syntax of state­
ment.

60481300 F

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 F

TABLE B-1. C(J{PILE-TIME DIAGNOSTICS (Contd)

Message

EXPECTED LEFT PAREN OR PERIOD --
FOUND •••••

EXPECTED NAME -- FOUND

EXPECTED RANGE INDICATOR -- FOUND

EXPECTED RIGHT PAREN -- FOUND •••••

EXPECTED RIGHT PAREN AFTER STRING
ADDRESS -- FOUND •••••

EXPECTED RIGHT PAREN OR COMMA --
FOUND •••••

EXPECTED SLASH -- FOUND

EXPECTED SYMBOL -- FOUND
STATEMENT SCAN STOPPED

EXPECTED VARIABLE OR COMMON BLOCK
NAME - FOUND •••••

EXPONENT FIELD ON EDIT DESCRIPTOR AT
••••• IS ZERO OR R>T SPECIFIED

EXPRESS ION TOO COMPLICATED -- SCAN
STOPPED AT •••••

EXTERNAL UNIT SPECIFIER NOT INTEGER
EXPRESSION

EXTRA CHARACTERS •••• AFTER UNIT
SPECIFIER IGNORED

EXTRANEOUS NUMERIC FIELD IN EDIT
DESCRIPTOR AT •••••

FIELD WIDTH NOT SPECIFIED FOR EDIT
DESCRIPTOR AT ••••

FIELD WIDTH OF EDIT DESCRIPTOR AT
IS ZERO OR NOT SPECIFIED

FILE ••.•• PREVIOUSLY DEFINED --
IGNORED

FILE ••••• NOT DEFINED -- DEFINITION
IGNORED

FORMAT SPECIFIER ••••• IS NAMELIST NAME

Significance

Left parenthesis or period
expected.

Name expected.

Range indicator expected.

Right parenthesis expected.

Right parenthesis after
string address expected.

Right parenthesis or comma
expected.

Slash expected.

Symbol expected; scan of
statement stopped.

Common block name, enclosed
in slashes, must follow
COMMON keyword for named
common blocks. A variable
list must follow COMMON key­
word for blank common.

Exponent field is invalid.

Expression too complicated;
scan stopped.

External unit specifier must
be integer expression.

Extraneous information
follows a legal unit
specifier.

Invalid nt.meric field in
edit descriptor.

Field width required.

Field width is invalid.

File already defined.

File is not defined.

Format specifier cannot be
NAMELIST name.

Action

Check syntax of state­
ment.

Correct statement.

Correct statement.

Check syntax of state-
ment.

Check syntax of state-
ment.

Check syntax of state-
ment.

Check syntax of state-
ment.

Check syntax of state-
ment.

Correct statement.

Correct exponent field.

Simplify expression
using two or more
statements.

Make external tmit
specifier integer ex­
pression.

Remove extra char­
acters.

Remove extra nuneric
field.

Supply field width.

Correct field width.

Self-explanatory.

Define file.

Correct format speci­
fier.

B-11

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

B-12

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

FORMAT LABEL PREVIOUSLY REFERENCED AS
CONTROL STATEMENT LABEL

FORMAT LABEL PREVIOUSLY REFERENCED AS
00 STATEMENT LABEL

FORMAT MUST HAVE STATEMENT LABEL

FUNCTION EN1'RY • • • • • MAY NOT BE TYPE
CHARACTER

FUNCTION ENTRY • • • • • MUST BE TYPE
CHARACTER

FUNCTION NAME OR ENTRY OF TYPE •••••
WAS NOT ASSIGNED A VALUE

FUNCTION REQUIRES EXPLICIT NULL
ARGUMENT LIST

GROUP NAME ••••• PREVIOUSLY DEFINED

HEADER CARD NOT FIRST STATEMENT -­
IGNORED

I/O CONTROL KEYWORD ••••• •••••MUST BE
POSITIVE INTEGER EXPRESSION

I/O CONTROL KEYWORD PARAMETER
••••• CANNOT BE •••••

I/O CONTROL KEYWORD PARAMETER
••••• MUST BE TYPE •••••

ILL-FORMED COMPLEX CONSTANT

ILLEGAL BLOCK IF S1'RUCTURE

ILLEGAL BLOCK NAME IN COMMON STATF.MENT

ILLEGAL BUFFER LENGTH FOR FILE
-- DEFINITION IGNORED

Significance

Label being referenced or
defined as a format label
was previously referenced as
a control statement label.

Label being referenced or
defined as a format label
was previously referenced as
a DO statement label.

Format is required to have
statement label.

Function entry must not be
type character.

All entries in a character
ftmc tion must be of type
character.

The function name or entry
must be assigned a value
within the function.

A null argument list is a
left parenthesis followed
immediately by a right
parenthesis.

The group name appears
twice in the same NAME-LIST
statement or in a previous
NAMELIST statement.

PROGRAM, SUBROUTINE, BLOCK
DATA, or FUNCTION must be
the first statement of a
program.

I/O control keyword is
required to be positive
integer expression.

I/O control keyword param­
eter is invalid.

I/O control keyword param­
eter is wrong type.

Complex constant invalid.

ELSEIF, ELSE, or ENDIF
appears, but is not
associated with a block IF.

Block name in COMMON
statement illegal.

Buffer length invalid.

Action

Check all references
to the label in
question for consis­
tent usage.

Check all references
to the label in
question for consis­
tent usage.

Provide a unique
statement label for
each FORMAT statement.

Make function entry
noncharac ter.

Make function entry
type character.

Assign a value to the
ftmction name or entry
within the function.

Provide null argument
list after the ftmc­
tion name in the
function reference.

Check for duplicate
name-list group names.

Correct first state­
ment of program.

Make I/O keyword posi­
tive expression.

Correct I/O control
keyword parameter.

Correct I/O control
keyword parameter
type.

Correct complex con-
stant.

Check IF block
nesting.

Correct block name.

Redefine buffer
length.

60481300 F

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 F

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

ILLEGAL CHARACTER COUNT

ILLEGAL CONSTANT FOLLOWING + OR -

ILLEGAL EXPLICIT LEVEL DECLARATION FOR
COMMON MEMBER NAME •••••

ILLEGAL FORM OF EXPONENT •••••

ILLEGAL FORMAT SPECIFIER •••••

ILLEGAL IF BLOCK NESTING WITH DO
LOOP •••••

ILLEGAL IF STATEMENT -- OBJECT MISSING

ILLEGAL NESTING OF DO LOOPS

ILLEGAL OBJECT OF IF -- TROUBLE STARTED
AT •••••

ILLEGAL OBJECT OF LOGICAL IF

ILLEGAL RANGE -- • • • • • NOT LESS THAN
• • • • • - TRUNCATED

ILLEGAL RECORD LENGTH FOR FILE
-- DEFINITION IGNORED

ILLEGAL REFERENCE TO LABEL •••••
DEFINED ON NON-EXECUTABLE STATEMENT

ILLEGAL REFERENCE TO STATEMENT
LABEL • • • • • AS A FORMAT

ILLEGAL REPEAT CONSTANT

ILLEGAL SEPARATOR FOLLOWING DATA
CONSTANT

ILLEGAL TRANSFER INTO RANGE OF DO

ILLEGAL TRANSFER TO ••••• FORMAT

ILLEGAL USE OF ASSIGNMENT OPERATOR

Significance

Character count for ENCODE
or DECODE must be integer
constant or simple integer
variable.

+ or - is followed by an
illegal constant.

Explicit level declaration
for a common member name is
illegal.

Exponent is invalid.

Format specifier must be a
legal statement label.

Range of the IF block must
be within the range of the
DO loop.

End of statement encountered
before finding object of IF.

The range of an inner DO
must be within the range of
an outer DO.

Object of IF illegal.

Improper statement type,
used as true part of a
logical IF. The object must
be an executable statement.
It cannot be a logical IF,
DO, block IF, ELSEIF, ENDIF,
ELSE, or END.

Range is illegal.

Record length invalid.

The label specifies a non­
executable statement.

The label referencing a
FORMAT statement appears on
an executable statement.

Error in DATA statement.

The legal separators
are) , I, or • •

The indicated statement
branches into a DO loop.

FORMAT statements cannot be
the objects of transfers.

Equal sign used improperly.

Action

Correct character
count.

Correct illegal con­
stant.

Correct explicit level
declaration.

Correct form of
exponent.

Correct format speci­
fier.

Make range of IF block
within range of DO
loop.

Correct the IF state­
ment.

Restructure DO loops.

Correct object of IF.

Correct object of
logical IF.

Correct range.

Redefine record length
of file.

Correct reference to
label.

Correct reference to
statement label.

Correct DATA state­
ment.

Replace with legal
separator.

Check transfer into DO
loop range.

Correct illegal
transfer.

Correct use of equal
sign.

B-13

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

B-14

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

ILLEGAL USE OF ENTRY •••••

ILLEGAL USE OF NAMELIST GROUP
NAME •••••

ILLEGAL USE OF OPERATOR/OPERAND --

ILLEGAL USE OF PARAMETER

IMPLICIT MUST BE FOLLOWED BY A TYPE
INDICATOR

IMPLICIT STATEMENT MUST OCCUR BEFORE
DECLARATIVE STATEMENTS

IMPLIED LOOP NOT TERMINATED

IMPLIED I/O UNIT SPECIFIER NOT ALLOWED
FOR THIS STATEMENT

INITIAL LEFT FAREN MISSING

INQUIRE CANNOT SPECIFY BOTH UNIT AND
FILE

INQUIRE MUST SPECIFY UNIT OR FILE

INTEGER O, 1, 2 OR 3 MUST FOLLOW LEVEL

INTERNAL FILE I/O CANNOT BE FREE FORMAT

INTERNAL FILE I/O CANNOT BE NAMELIST

INTERNAL FILE REQUIRES A FORMAT

INTERNAL FILE WITHOUT FORMAT OR MISSING
COMMA BEFORE I/O LIST

INTERNAL UNIT SPECIFIER CANNOT BE •••••

INTERNAL UNIT SPECIFIER CANNOT BE
ASSUMED SIZE ARRAY

INTERNAL UNIT SPECIFIER NOT ALLOWED FOR
THIS STATEMENT

INTRINSIC FUNCTION ••••• NOT ALLOWED AS
ACTUAL ARGUMENT

Significance

Entry name used improperly.

Use of NAMELIST group name
is invalid.

Use of operator/operand is
invalid.

Use of parameter is invalid.

Type information omitted.

IMPLICIT must be the first
statement after the PROGRAM
statement.

Implied loop must be
terminated.

Unit specifier must be
explicit.

The initial left parenthesis
is missing.

Either a file name or a unit
specifier must be specified
in an INQUIRE statement.

INQUIRE statement is
required to specify a file
name or a unit specifier.

0, 1, 2 or 3 are required
to follow LEVEL in a LEVEL
statement.

Internal files are not
compatible with free format.

Interval file I/O must not
be NAMELIST.

The internal file must have
a format.

Internal file must have
format or comma missing
before I/O list.

Illegal use of internal unit
specifier.

Internal unit specifier must
not be assumed size array.

Internal unit specifier
invalid in this context.

INTRINSIC function is not
allowed as actual argument.

Action

Correct use of entry
name.

Correct use of
NAMELIST group name.

Correct use of
operator/operand.

Use valid parameter.

Provide a type key­
word, such as INTEGER
or REAL.

Move the IMPLICIT
statement.

Check statement for
syntax errors.

Explicitly specify I/O
unit specifier.

Provide left paren­
thesis.

Specify either unit or
file.

Specify either unit or
file.

Correct LEVEL state­
ment.

Change unit on format
specifier.

Check NAMELIST.

Provide format for
internal file.

Provide format for
internal file or place
comma before I/O list.

Correct illegal use.

Specify size array.

Check statement.

Remove intrinsic
function name from
argument list.

60481300 F

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

6081300 F

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

INTRINSIC LEN MUST NOT APPEAR IN
PARAMETER CONSTANT EXPRESSION

INVALID FORM INVOLVING THE USE OF A
COMMA OR REDUNDANT PARENS

INVALID STATEMENT LABEL

LEFT SIDE OF EQUAL SIGN IS ILLEGAL

LENGTH OF CHARACTER FORMAT SPECIFIER
MUST BE GREATER THAN 1

LEVEL 3 N.AME • • • • • MAY NOT OCCUR IN
THIS STATEMENT

LOCF ARGUMENT MUST NOT BE

LOGICAL IF EXPRESSION MUST BE LOGICAL

LOGICAL IF MUST NOT BE OBJECT OF
LOGICAL IF

MAGNITUDE OF SUBSCRIPT ••••• OF •••••
EXCEEDS 2**23_1

MISSING COMMA AT

MISSING LEFT FAREN AT •••••

MISSING N.AME IN LEVEL LIST

MISSING SLASH ON GROUP NAME

MISSING SUBSCRIPTS SET TO LOWER BOUND
FOR EQUIVALENCE VARIABLE •••••

MORE THAN 7 SUBSCRIPTS

MULITPLE DECIMAL POINT IN EDIT
DESCRIPTOR AT •••••

MULTIPLE DEFINITION OF CURRENT FORMAT
LABEL

MULTIPLE OCCURRENCES OF DUMMY
ARGUMENT •••••

MULTIPLY DEFINED STATEMENT LABEL •••••

Significance

LEN intrinsic appears in
PARAMETER statement.

Parenthesized form with
comma(s) in error. May be
badly formed complex con­
stant or I/O list with
redundant parentheses.

The statement label is
invalid.

Left side of equal sign
illegal.

The length of the character
format specifier must be
greater than 1.

Level 3 data cannot be used
in expressions.

LOCF argunent must be a
variable.

Logical IF expression is
required to be logical.

Logical IF cannot be object
of logical IF.

Subscript too large or too
small.

Comma is missing in state­
ment.

Left paren is missing in
statement.

Name missing in LEVEL list.

Group name must be enclosed
by slashes.

EQUIVALENCE variable con­
tains fewer subscripts than
declared dimension.

Too many subscripts.

Too many decimal points.

Format label previously
defined.

Dummy argument occurs more
than once in dummy-arg list.

The same statement label
appears on more than one
statement.

Action

Rewrite statement.

Correct use of comma
or remove redtm.dant
parentheses.

Correct statement
label.

Correct left side of
equal sign.

Correct length of
character format
specifier.

Correct use of level 3
data.

Make LOCF a variable.

Make logical IF ex­
press ion logical.

Correct object of
logical IF.

Correct subscript.

Provide comma in
proper place.

Provide left paren in
proper place.

Insert missing name.

Provide slashes on
group name.

Check declaration of
the EQUIVALENCE vari­
able.

Reduce number of sub­
scripts.

Remove extra decimal
points.

Check FORMAT state­
ments for duplicate
labels.

Remove multiple occur­
rences of dummy argu­
ments.

Change duplicate
labels.

B-15

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

B-16

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

NAME EXCEEDS 7 CHARACTERS -- TRUNCATED
TO • • • • •

NAME••••• IN DATA CONSTANT LIST MUST
BE PARAMETER

NESTING OF REPEAT COUNT IN DATA
CONSTANT LIST IS ILLEGAL

NO DIMENSION FOUND FOR EQUIVALENCE
VARIABLE •••••

NO PREVIOUS C$ IF DIRECTIVE

NON-DUMMY ARGUMENT ••••• CANNOT BE
LEVELED

NON-NULL LABEL FIELD ON CONTINUATION
LINE

OBJECT OF GO TO MISSING

OBJECT OF GO TO••••• DID NOT APPEAR IN
ASSIGN STATEMENT

ONLY ONE C$ ELSE ALLOWED IN C$ IF GROUP

ONLY 9 PAREN LEVELS ALLOWED

ONLY 19 CONTINUATION LINES ARE
PERMITTED

ONLY 500 DUMMY ARGUMENTS ARE
PERMITTED -- EXCESS IGNORED

ONLY 500 COMMON BLOCKS ARE PERMITTED

ONLY LIST DIRECTED OUTPUT STATEMENTS
MAY END WITH A COMMA

OPERAND BAS MODE NOT ALLOWED IN THIS
CONTEXT

OPERAND OF// OPERATOR MUST BE TYPE
CHARACTER

OPERAND OF ** OPERATOR MUST NOT BE
TYPE CHARACTER

OPERAND TO ** OPERATOR MUST NOT BE
LOGICAL

Significance

Names must be unique within
7 characters.

Name must be parameter.

Nesting of repeat count in
data constant list is not
allowed.

Dimension of equivalence
variable missing.

C$ ELSE or ENDIF must be
preceded by a C$ IF.

Leveled name must be a
dumny-arg or in common.

Columns 1 through 5 are not
on continuation line.

The GO TO does not specify
an existing statement label.

Object of GO TO must appear
in ASSIGN statement.

More than one C$ ELSE in C$
IF group.

Too many parenthesis levels
in FORMAT statement.

Too many continuation lines.

Total nunber of unique dummy
arguments in the FUNCTION or
SUBROUTINE statement and in
all associated ENTRY state­
ments exceed the allowed
nunber.

Too many common blocks.

Extraneous comma fotmd.

Wrong mode for this
situation.

Operand is required to be
type character.

Exponentiation cannot be
performed using character
operands.

Exponentiation cannot be
performed using logical
operands.

Action

Shorten name.

Remove name that is
not a parameter.

Remove nesting of
repeat count.

Supply dimension of
equivalence variable.

Provide C$ IF direc­
tive.

Add name to argument
list or to a common
block.

Remove extraneous
label.

Provide statement
label or change object
of GO TO.

Put object of GO TO in
ASSIGN statement.

Remove excess C$ ELSE
from C$ IF group.

Reduce ntDDber of
parenthesis levels.

Reduce ntDDber of
continuation lines.

Reduce ntDDber of dumny
argunents.

Reduce number of
comm.on blocks.

Remove comma.

Correct mode.

Declare operand to be
of type character.

Correct operand type.

Correct operand type.

60481300 F

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 F

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

OVCAP DIRECTIVE CAN APPEAR ONLY WITH
SUBROUTINES

OVERLAY DIRECTIVE MUST BEGIN WITH
LEFT PAREN

PARAMETER REQUIRES INTEGER
EXPONENTIATION

PARAMETER ••••• TYPE OR CHARACTER.
LENGTH CANNOT BE MODIFIED AFTER
PARAMETER STATEMENT

PREMATURE E.o.s.

PREMATURE E.o.s. -- EXPECTED BLOCK NAME

PREMATURE E.O.S. -- EXPECTED SYMBOL OR
SLASH

PREMATURE E.o.s. IN ENCODE OR DECODE

PREMATURE E.o.s. IN I/O CONTROL LIST

PREMATURE E.o.s. IN I/O LIST ITEM
SUBSCRIPT

PREMATURE E.o.s. OR MISSING RIGHT PAREN

PREVIOUS REFERENCE TO DO LABEL •••••
IS ILLEGAL

PREVIOUS REFERENCE TO FORMAT
LABEL ••••• IS ILLEGAL

PREVIOUS REFERENCE TO LABEL • • • • • WAS
ILLEGAL

PROGRAM LENGTH EXCEEDS 2**17-1

RECORD LENGTH EXCEEDS 131071 COLUMNS

RECORD LENGTH FOR FILE ••••• EXCEEDS
'MAX. RECL' B -- DEFINITION IGNORED

Significance

OVCAP directives can only
appear with subroutines.

OVERLAY directives must
begin with left parenthesis.

Integer exponentiation
is required with this
parameter.

Length of symbolic constant
must not be changed by an
IMPLICIT statement or other
statements following a
PARAMETER statement.

Premature end of statement.

End of statement encountered
before a block name was
found.

End of statement encountered
before a symbol or slash was
found.

End of statement encountered;
ENCODE or DECODE statement
incomplete.

End of statement encountered;
I/O control list incomplete.

End of statement encountered;
I/O list item subscript
incomplete.

End of statement encountered
or right parenthesis missing.

A DO label must not be
referenced from outside the
DO loop.

The label was previously
defined or referenced as a
FORMAT label.

Illegal reference to label.

Program too large.

Record too large. Error in
FORMAT statement.

Record length too large.

Action

Revise job program
type.

Add left parenthesis.

Provide integer expo­
nentiation for this
parameter.

Correct usage of sym­
bolic constant.

Check for incomplete
statement.

Check for incomplete
statement.

Check for incomplete
statement.

Check for incomplete
statement.

Check for incomplete
statement.

Check for incomplete
statement.

Check for incomplete
statement.

Check all previous
references to the
label.

Check all previous
references to the
label.

Correct reference to
the label.

Shorten program or
break up into several
routines.

Check for incorrect
repeat specification,
hollerith count, and
format specification.

Reduce record length.

B-17

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

B-18

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

RECURSIVE DEFINITION OF STATEMENT
FUNCTION •••••

REFER.ENCE TO EXTERNAL ••••• REQUIRES
AN ARGUMENT LIST

REFERENCE TO VARIABLE • • • • • AS A
FUNCTION OR ARRAY

REPEAT COUNT IS NOT ALLOWED BEFORE THE
EDIT DESCRIPTOR •••••

SCALAR FORMAT SPECIFIER MUST BE INTEGER

'SCM' COMMON BLOCKLENGTH EXCEEDS 131071

SEPARATOR MISSING AT •••••

SEQUENCE NUMBER OUT OF ORDER

SIGNED COUNT ALLOWED ONLY BEFORE P EDIT
DESCRIPTOR

SIZE OF ARRAY EXCEEDS 1048568

SIZE OF ARRAY EXCEEDS 131071

SLASH MUST BE FOLLOWED BY AN OCTAL OR
INTEGER CONSTANT

STAR DUMMY ARGUMENT ILLEGAL IN FUNCTION

STATEMENT FUNCTION • • • • • -- MISPLACED
EQUAL SIGN

STATEMENT FUNCTION ••••• INDIRECTLY
REFERENCES ITSELF

STATEMENT FUNCTION ••••• OF
TYPE ••••• CANNOT ACCEPT RESULT
OF TYPE •••••

STATEMENT FUNCTION DEFINITION MUST
OCCUR BEFORE FIRST EXECUTABLE

STATEMENT FUNCTION DUMMY ARGUMENT
••••• CANNOT BE ASSUMED LENGTH

STATEMENT FUNCTION DUMMY ARGUMENT
••••• MUST BE USED AS SIMPLE VARIABLE

Significance

The function name appears on
both sides of an equal sign.

Function requires argument
list.

The variable has a subscript
or argunent list, but is not
declared as an array or
function.

A repeat cotmt was used with
a descriptor that does not
allow one.

Scalar format is required to
be integer.

Common block too large.

Error in FORMAT statement.

Sequence nunber was
specified out of order.

Signed cotmt used illegally.

Array too large.

Array too large.

Octal or integer constant
missing after slash.

Alternate returns illegal in
functions.

Syntax error in statement
function.

Recursive statement
functions are not allowed.

Result of statement func­
tion expansion cannot be
converted to statement
function type.

Definition must precede
first executable statement.

Dummy argument name appeared
in a CHARACTER*(*) declara­
tion.

Dummy argunent was followed
by expression in parentheses.

Action

Remove function name
from the right side of
the equal sign.

Supply appropriate
arg1.111ent list.

Check for missing
declaration.

Remove repeat count.

Make scalar format
integer.

Break common block
into two or more
common blocks.

Correct FORMAT state­
ment.

Correct statement
sequence nunber.

Correct use of signed
cotmt.

Reduce size of array.

Reduce size of array.

Put octal or integer
after slash.

Remove alternate
returns.

Correct syntax error
in statement function.

Check all appropriate
statement functions
for indirect recursion.

Check typing of state­
ment function.

Move statement func­
tion definition, or
check for undimen­
sioned array.

Change type declara­
tion or dummy argtnent
name.

Rewrite statement
function expression.

60481300 F

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 F

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

STATEMENT FUNCTION DUMMY
PARAMETER ••••• NOT SIMPLE VARIABLE

STATEMENT FUNCTION INVALID IN DATA
VARIABLE LIST

STATEMENT LABEL ••••• CONTAINS
NON-DIGIT

STATEMENT LABEL ••••• EXCEEDS 5 DIGITS

STATEMENT LABEL ••••• MUST BE NUMERIC

STATEMENT LABEL ••••• REFERENCED BUT
NOT DEFINED

STATEMENT LABEL EXPECTED BUT NOT FOUND

STATEMENT MISPLACED

STRING ADDRESS CANNOT BE •••••

STRING ADDRESS CANNOT BE CHARACTER

SUBROUTINE ENTRY ••••• MAY NOT APPEAR
IN A DECLARATIVE STATEMENT

SUBSCRIPT ••••• OF ••••• IS NOT A
NUMERIC TYPE

SUBSCRIPTS IN DATA MUST BE INTEGER

SUBSTRING ILLEGAL FOR OPERAND •••••

SUBSTRING ILLEGAL FOR PARAMETER •••••

SUBSTRINGED VARIABLE • • • • • NOT TYPE
CHARACTER

SYNTAX ERROR IN BLOCK NAME

SYNTAX ERROR IN DATA CONSTANT LIST

SYNTAX ERROR IN DATA STATEMENT

SYNTAX ERROR IN nTMENSION DECLARATION

Significance

A constant or expression
appears in the parameter
list of a function
definition.

Attempt to use statement
ftmction that is in DATA
statement.

Statement labels must
consist of digits.

Statement labels must be
five digits or less.

Statement labels must
consist of digits.

The indicated label does not
appear as a statement label
anywhere in the program.

A statement label reference
is missing.

Statement in the wrong place.

Invalid string address on
encode or decode.

String address on encode or
decode cannot be type
character.

Subroutine entry cannot
appear in a declarative
statement.

Subscripts must be numeric.

Subscripts must be integer.

Wrong substring for operand.

Wrong substring for para­
meter.

Variable must be chA~actPr
type.

Wrong svntax in b1ock name.

Wrong syntax in data
constant list.

Wrong syntax in data state­
ment.

Wrong syntax in dimension
declaration.

Action

Check parameter list
of the function def­
inition.

Rewrite statement.

Correct statement
labels.

Correct statement
labels.

Correct statement
labels.

Check for missing
statement.

Insert label.

Put statement in
proper place.

Check string address.

Change type of string
address.

Check declarative
statement.

Make subscripts
ntmeric.

Make subscripts
integer.

Check substring.

Check substring.

Check substring vari­
able.

Check block name for
syntax error.

Check data constant
list for syntax error.

Check data statement
for syntax error.

Check uimension decla­
ration for syntax
error.

B-19

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

B-20

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

SYNTAX ERROR IN EQUIVALENCE STATEMENT

SYNTAX ERROR IN GO TO STATEMENT

SYNTAX ERROR IN I/O CONTROL LIST
AT •••••

SYNTAX ERROR IN I/O IMPLIED DO

SYNTAX ERROR IN NAMELIST

SYNTAX ERROR IN PROGRAM UNIT NAME

SYNTAX ERROR IN SUBSTRING EXPRESSION
FOR •••••

SYNTAX OF DO MUST BE I=Ml ,M2 ,M3 OR
Ml,M2

T EDIT DESCRIPTOR FOLLOWED BY ZERO OR
NON-DIGIT

TABLE OVERFLOW -- INCREASE FIELD LENGTH
AND RERUN

TERMINAL DELIMITER • • • • • MISSING

THE TERMINAL STATEMENT OF DO
PRECEDED THE DO DEFINITION

THIS IS NOT A FORTRAN STATEMENT

THIS STATEMENT MAY NOT BE A DO TERMINAL

THIS STATEMENT MUST BE CONTAINED ON 1
CARD

TOO FEW LEFT PAREN OR PREVIOUS SYNTAX
ERROR -- SCAN STOPPED AT •••••

TOO FEW RIGHT PAREN OR PREVIOUS SYNTAX
ERROR -- SCAN STOPPED AT •••••

TRIP COUNT IS LESS THAN ONE

TRIP COUNT OF • • • • • MUST BE POSITIVE

UNBALANCED PARENS

Significance

Wrong syntax in EQUIVALENCE
statement.

Wrong syntax in GO TO state-
ment.

Wrong syntax in I/O control
list.

Wrong syntax in I/O implied
DO.

Wrong syntax in NAMELIST.

Wrong syntax in program llllit
name.

Wrong syntax in substring
expression.

DO statement syntax
incorrect.

T code must be followed by
nonzero col1111n n1111ber.

Not enough field length for
compilation.

The terminal delimiter is
missing.

Terminal statement of DO
must not precede the DO
definition.

Unrecognizable statement.

A DO loop cannot end with
the specified statement.

Continuation lines not
allowed for this statement.

Left paren missing or there
is a previous syntax error.

Right paren missing or there
is a previous syntax error.

Trip collllt must be at least
one if DO=OT is selected.

Trip cotmt must be positive.

Parentheses are unbalanced.

Action

Check EQUIVALENCE
statement for syntax
error.

Check GO TO statement
for syntax error.

Check I/O control list
for syntax error.

Check I/O implied DO
for syntax error.

Check NAMELIST for
syntax error.

.Check program llllit
name for syntax error.

Check substring ex­
pression for syntax
error.

Use correct syntax.

Correct column number.

Provide more field
length for compila­
tion.

Provide correct
terminal delimiter.

Provide terminal
statement of DO in
proper place.

Check syntax.

Restructure DO loop.

Rewrite statement to
fit on 1 line.

Check parenthesis
matching or correct
previous syntax.

Check parenthesis
matching or correct
previous syntax.

Make trip cooot at
least one.

Make trip collllt
positive.

Balance parentheses.

60481300 F

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

MDEP

. MDEP

MDEP

60481300 F

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

UNDECLARED INTRINSIC OR EXTERNAL
FUNCTION • • • • • USED AS ACTUAL ARGUMENT

UNIT SPECIFIER FILE NAME GREATER THAN
7 CHARACTERS

UNIT SPECIFIER NOT LEGAL FILE NAME

UNIT SPECIFIER OUTSIDE RANGE 0 - 999

UNIT SPECIFIER MISSING

UNKNOWN EDIT DESCRIPTOR

UNMATCHED PARAMETER COUNT TO STATEMENT
FUNCTION •••••

USAGE CONFLICT -- ••••• CANNOT BE
STATEMENT FUNCTION

USAGE CONFLICT -- ••••• IS •••••
AND CANNOT BE •••••

USAGE CONFLICT PREVIOUSLY USED
AS • • •. •

USAGE CONFLICT -- PREVOUSLY
DEFINED AS DO TERMINAL

USAGE CONFLICT -- ••••• PREVIOUSLY
DEFINED AS FORMAT

USAGE CONFLICT -- ••••• PREVIOUSLY
USED AS A FORMAT LABEL

ZERO IS SPECIFIED AS REPEAT COUNT
AT •••••

ZERO LENGTH CHARACTER OR HOLLERITH
STRING

BOOLEAN DATA TYPE IS MACHINE
DEPENDENT

BUFFER I/O IS MACHINE DEPENDENT

ENCODE/DECODE ARE MACHINE DEPENDENT

Significance

Cannot use undeclared func­
tion as actual argtunent.

Illegal file name.

Illegal file name.

Illegal unit ntunber.

Unit specifier required.

EDIT descriptor not
recognized.

The function reference and
function definition contain
different nunbers of param­
eters.

The indicated statement
function conflicts with a
previous usage •

Usage conflict.

The label was previously
used another way.

The label was previously
defined as a DO terminal.

The label was previously
defined as a FORMAT label.

The label was previously
used as a Format label.

Repeat count must be greater
than zero.

Character or hollerith
string must have a positive
nonzero length.

This data type is machine
dependent.

Buffer 1/0 is machine
dependent.

ENCODE/DECODE is machine
dependent.

Action

Remove undeclared
function.

Check character length
of unit specifier.

Check all uses of the
file name.

Provide a unit nunber
which is no more than
3 digits long.

Provide a unit nunber.

Check EDIT descriptor.

Check for missing
parameters.

Check all other
usages; the function
name might be used as
a variable or array
name.

Check uses of indi­
cated name.

Check previous usage
of label.

Check previous loops
for use of the same
label.

Change label.

Change label.

Make repeat count
greater than zero.

Make string positive
nonzero length.

Use the CHARACTER data
type instead, for
portability.

Avoid using Buffer I/O
if possible, especial­
ly usages that depend
on the nunber of char­
acters per word.

Use internal files
instead for porta­
bility.

B-21

MDEP

MDEP

MDEP

TRIVIAL

TRIVIAL

TRIVIAL

TRIVIAL

TRIVIAL

TRIVIAL

TRIVIAL

TRIVIAL

TRIVIAL

TRIVIAL

TRIVIAL

TRIVIAL

TRIVIAL

TRIVIAL

B-22

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

LIBRARY FUNCTIONS DATE, TIME AND
CLOCK ARE MACHINE DEPENDENT

OVCAPS ARE MACHINE DEPENDENT

OVERLAYS ARE MACHINE DEPENDENT

ARGUMENT • • • • • IS NOT USED IN
STATEMENT FUNCTION •••••

CONSTANT ** CONSTANT CANNOT BE
EVALUATED

CONSTANT TOO LONG, EXCESS DIGITS
TRUNCATED

CONTINUE WITH NO STATEMENT LABEL -­
IGNORED

IF RESULTS IN A SIMPLE TRANSFER

IF RESULTS IN A TRANSFER TO THE NEXT
LINE

INTEGER ** NEGATIVE CONSTANT -­
RESULTS ZERO

LAST IF RESULTS IN A NULL TRANSFER TO
THIS STATEMENT

MISSING PROGRAM STATEMENT -- PROGRAM
START. ASSUMED

NO PATH TO THE ENTIRE RANGE OF DO

NO PATH TO THIS STATEMENT

NULL TRANSFER STATEMENT -- TRANSFER
IGNORED

RECORD LENGTH EXCEEDS 137 COLUMNS -­
MAY EXCEED I/O DEVICE

STATEMENT CAN TRANSFER TO ITSELF

Significance

These functions are machine
dependent.

OVCAPS are machine depen­
dent.

OVERLAYS are machine depen­
dent.

Specified argllJlent not
needed.

Specified operation cannot
be performed at compile
time.

Constant truncated due to
excess length.

CONTINUE without statement
label is meaningless.

The IF can be replaced by a
GO TO.

Control will always transfer
to the next statement,
regardless of the condition
specified in the IF
statement.

Integer raised to a negative
power is zero.

IF acts as a do-nothing
statement.

The PROGRAM statement must
be the first statement of
the main program.

The statements in the loop
cannot be reached.

Statement will never be
executed.

A GO TO statement transfers
to the next statement.

Record length may be too
large for peripheral device.

Infinite loop possible.

Action

Do not dismantle the
output of these
routines, print them
out as a whole.

Do not let programs
depend on certain pro­
perties of OVCAPS,
such as reinitializa­
tion of variables when
an OVCAP is reloaded.

Do not let programs
depend on certain
properties of over­
lays, such as
reinitialization of
variables when an
overlay is reloaded.

Remove argument.

Change the expression.

Remove excess digits.

Insert label or
eliminate CONTINUE.

Make the substitution.

Reexamine the IF.

Change the integer to
real.

Check syntax of IF.

Supply PROGRAM state­
ment.

Check for logic error,
in current branch.

Check program logic,
particularly GO TO
statements and IF
statements.

GO TO can be
eliminated.

Reduce record length
if necessary.

Revise statement.

60481300 F

TRIVIAL

TRIVIAL

TRIVIAL

TRIVIAL

TRIVIAL

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

60481300 F

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

STATEMENT TRANSFERS TO ITSELF

THIS DO LOOP WILL NOT EXECUTE

TL EDIT DESCRIPTOR BACKSPACED BEYOND
1st COLUMN -- COLUMN POINTER RESET AT

VARIABLE ** ZERO -- RESULT ASSUMED ONE

ZERO ** ZERO -- RESULTS INDEFINITE

TO ASSUMED FOR •••••

••••• PREVIOUSLY DECLARED INTRINSIC -­
IGNORED

••••• PREVIOUSLY DECLARED EXTERNAL -­
IGNORED

••••• PREVIOUSLY TYPED NON-CONFORMING
~ PREVIOUS TYPE OVERRIDDEN

• • • • • REDUNDANTLY DECLARED IN SAVE

ARGUMENT TO MASK MUST BE BE'lWEEN
0 AND 60

C$ PARAMETER VALUE FOR ••••• ON •••••
MUST BE 0 OR 1

COMMA AFTER STATEMENT LABEL IGNORED

COMMA MUST FOLLOW LEVEL NUMBER

CONFLICT IN RANGE INDICATOR -- FIRST
RETAINED

CONSTANT EXCEEDS 5 DIGITS -­
TRUNCATED

CONSTANT MISSING EXPONENT FIELD
ZERO ASSUMED

DO CONCLUSION NOT COMPILED -- DO
DEFINITION ERROR

ENTRY ••••• MUST NOT BE DECLARED
EXTERNAL -- IGNORED

ENTRY STATEMENT IGNORED IN MAIN
PROGRAM

EXCESS CONSTANTS IGNORED

EXPECTED COMMA AFTER I/O CONTROL
FOUND •••••

EXPECTED E.o.s. -- FOUND AND
IGNORED •••••

--

--

1

Significance

Infinite loop results.

Condition always prohibits
execution of DO loop.
Value of TL code is too
large.

Variable raised to zero
power is equal to one.

Zero raised to zero power is
indefinite.

Syntax error in ASSIGN
statement.

Function already declared.

Function already declared •

Most recent declaration
used.

The indicated name appears
more than once in a SAVE
statement.

Argument to mask is not
between 0 and 60.

C$ parameter must be zero or
one.

Comma is not needed.

Comma missing after level
number.

Overlap of ranges in
IMPLICIT statement.

Constant too long.

Exponent field missing in
constant; zero assumed.

Error in DO definition; DO
conclusion not compiled.

The entry must not be
declared external.

An ENTRY statement in the
main program has no purpose.

Too many constants.

Comma should have followed
I/O control statement.

Extraneous information
follows a legal statement.

Action

Change statement.

Check logic of DO
loop.
Check TL code.

Check expression.

Check expression.

Check ASSIGN statement
for syntax error.

Check declaration of
functions.

Check declaration of
functions.

Check declarations •

Eliminate redundancy •

Make argument to mask
between 0 and 60.

Check C$ parameter.

Remove comma.

Insert comma.

Check for overlap of
ranges in IMPLICIT
statement.

Reduce ntmber of
digits in constant to
5 or less.

Provide constant with
an exponent field.

Correct previous
errors.

Correct declaration of
entry.

Remove ENTRY state­
ment.

Reduce excess number
of constants.

Provide comma after
I/O control statement.

Remove extra char­
acters.

B-23

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

B-24

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

EXPECTED LEFT PAREN -- FOUND •••••

EXTRANEOUS COMMA IGNORED

FIELD WIDTH IS LESS THAN MINIMUM
REQUIRED ON EDIT DESCRIPTOR AT •••••

FUNCTION••••• REFERENCED AS
SUBROUTINE

FWA AND LWA NOT IN SAME ARRAY,
EQUIVALENCE CLASS, OR COMMON BLOCK

GENERIC ONLY INTRINSIC •••• TYPED-­
TYPING IGNORED

HOLLERITH CONSTANT EXCEEDS 10
CHARACTERS

I/O LIST IGNORED WHEN USING NAMELIST

ILLEGAL NAME -- ENTRY STATEMENT IGNORED

INTRINSIC ••••• TYPED NON-CONFIRMING
-- TYPE IGNORED

LOCAL••••• IN BLOCK DATA -- IGNORED

MISS ING NAME -- ENTRY STATEMENT
IGNORED

MULTIPLY DEFINED LEVEL FOR NAME
-- IGNORED

MULTIPLY DEFINED LEVEL FOR COMMON
BLOCK NAME ••••• -- IGNORED

NAME ••••• PREVIOUSLY DEFINED -­
ENTRY STATEMENT IGNORED

NON-OCT/HEX DIGIT IN OCT/HEX
CONSTANT -- IGNORED

NUMBER OF ARGUMENTS IN REFERENCE TO
••••• IS NOT CONSISTENT

OBJECT OF GO TO NOT INTEGER VARIABLE

ONLY 49 FILES ARE ALLOWED -- EXCESS
IGNORED

PREMATURE E.o.s. -- EXPECTED VARIABLE
AT •••••

Significance

Left parenthesis not found.

Comma unrecognized and
ignored.

Field width too small.

Function names must not be
the object of CALL state­
ments.

First-word-address and last­
word-address must be in the
same coDDD.on block, equiva­
lence class, or array.

Name of intrinsic function,
which is not specific
function, appears in type

Self-explanatory.

Namelist I/O does not use an
I/O list.

Name invalid.

Declared type of intrinsic
disagrees with implicit
type.

Variable appears in BLOCK
DATA subprogram, but not in
a coDDD.on statement.

ENTRY statement needs a
name.

Too many levels defined for
name.

Too many levels defined for
common block name.

Too many definitions of
ENTRY name.

Digit must be 0-7 for
octal; 0-9, A-F for
hexadecimal.

Number of arguments in ref­
erence must be the same as
the number of arguments in
the FUNCTION or SUBROUTINE
statement.

Object of GO TO must be a
simple integer variable.

Too many files were speci­
fied in the PROGRAM
statement.

End of statement encountered;
statement incomplete.

Action

Check syntax of state­
ment.

Remove extraneous
comma.

Increase field width.

Use function reference
syntax.

Check declarations
for inconsistencies
involving FWA and LWA.

Remove attempted
typing.

Reduce constant to 10
characters or less.

Eliminate I/O list.

Provide legal name.

Change type declara­
tion.

Check common block for
missing variables.

Provide name for ENTRY
statement.

Check defined levels
of name.

Check defined levels
of common block name.

Check for another
usage of the ENTRY
name.

Rewrite octal or
hexadecimal constant.

Check arguments.

Make object of GO TO
integer variable.

Reduce number of
excess files.

Check syntax.

60481300 G

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

60481300 G

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message

PREMATURE E.o.s. OR EXTRA TRAILING
SEPARATOR •••••

PREVIOUS DEFINITION OF STATEMENT
FUNCTION ••••• IS OVERRIDDEN

RANGE INDICATOR ••••• NOT 1 LETTER -­
TRUNCATED TO •••••

REDUNDANT EQUIVALENCE SPECIFICATION
FOR •••••

SHIFT COUNT MUST BE BETWEEN -60 and 60

STATEMENT FUNCTION • • • • • HAS NULL
DEFINITION -- IGNORED

SUBROUTINE ••••• APPEARED IN
TYPE DECLARATION

SUBROUTINE ••••• CANNOT BE
TYPED -- TYPING IGNORED

SUBROUTINE • • • • • REFERENCED AS
FUNCTION

SUBSCRIPT ••••• OF ••••• VIOLATES
LOWER DIMENSION BOUND

SUBSCRIPT ••••• OF ••••• VIOLATES
UPPER DIMENSION BOUND

TARGET/ SOURCE OVERLAP IN CHARACTER
ASSIGNMENT STATEMENT

TERMINAL CHARACTER • • • • • CONVERTED TO
RIGHT PAREN

THIS STATEMENT HAS NO INITIAL LINE -­
INITIAL ASSUMED

TOO FEW CONSTANTS -- VARIABLES FROM
••••• NOT INITIALIZED

TRIVIAL EQUIVALENCE GROUP WITH ONLY 1
MEMBER IS IGNORED

TRIVIAL RANGE -- • • • • • SAME AS •••••

TYPING OF ••••• IGNORED -- PRIOR
TYPING RETAINED

UNIVERSAL SAVE DECLARED -- OTHER SAVE
STATEMENTS ARE REDUNDANT

Significance

End of statement encountered
or an extraneous separator
found.

The function was defined
more than once; the most
recent definition is used.

Implicit statement range
indicator not 1 letter.

EQUIVALENCE specification
used before.

SHIFT count is not between
-60 and 60.

Statement function expansion
reduces to a null code
sequence.

Subroutine named on CALL
statement was typed.

Subroutine entry name
appeared in type statement.

Subroutines are referenced
with the CALL statement.

Subscript less than declared
lower bound.

Subscript greater than
declared upper bound.

None of the elements in a
character expression can
overlap the target variable
that the expression is being
assigned to.

The indicated character
appeared where a right
parenthesis was expected.

Initial line missing from
statement.

Not enough constants in data
constant list.

An EQUIVALENCE must contain
at least 2 members.

Implicit range is trivial.

The symbol appeared in more
than one type statement;
first type is used.

When universal SAVE declared,
other SAVE statements are
not necessary.

Action

Check statement or
eliminate extra
separator.

Change second
definition.

Change the range indi­
cator to 1 letter.

Check for occurrence
of indicated symbol in
previous EQUIVALENCE
statement.

Make SHIFT count
between -60 and 60.

Check for error in
function definition
statement.

Remove type
declaration.

Remove type
declaration.

Use CALL statement.

Correct subscript.

Correct subscript.

Eliminate all
instances of
overlap in the
assignment.

Compiler assumes a
right parenthesis.

Provide initial line.

Initialize the vari­
ables; uninitalized
variables can cause
run-time errors.

Check EQUIVALENCE
statement.

Check range.

Eliminate second type
declaration.

Eliminate redundant
SAVE statements.

B-25

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Message Significance

WARNING UNKNOWN FORM -- BLANK ASSUMED Unrecognizable form of STOP
or PAUSE statement.

WARNING VARIABLE ••••• HAS NO DIMENSION Variable label must have
BOUND -- IGNORED dimension bound.

WARNING VARIABLE ••••• NOT INTEGER Variable must be integer.

Message

COMPILING program
LAST STATEMENT BEGAN AT

LINE nnnnn
ERROR AT aaaaa IN ddddddd
LAST OVERLAY LOADED - (p,s)

DEAD CODE IN program

EMPTY INPUT FILE. NO
COMPILATION.

B-26

TABLE B-2. SPECIAL COMPILATION DIAGNOSTICS

Significance

Compiler, operating system, or hardware error has
occurred while compiling program.

program Name of source program unit.

nnnnn Approximate compiler-assigned source line
nunber where the difficulty arose. During
transitions from one phase of compilation
to another, the END line nunber might be
displayed.

ddddddd Name of compiler internal deck where abort
occurred. Might be RA+o if control was
accidentally transferred to the control
point job communications area.

aaaaaa Address relative to origin of internal
deck where abort occurred.

p,s Primary and secondary level nunbers of
overlay last loaded before abort occurred:

0,0 - Control statement cracker; global
communication and control

1,0 - (OPT=O) compilation overlay

2,0 - (OPT>O) compilation batch
controller

2,1 - (OPT>O) compilation normal pass 1
{lexical scan, parse, intermediate
language generation)

2,2 - (OPT>O) compilation pass 2 (global
and local optimization, object code
generation)

2,3 - (OPT)O) compilation reference map
generation and object code assembly
phase

A section of code is tmreachable and cannot be
processed (can be issued only when OPT.?._2).

An end-of-partition or end-of-section was en­
countered on the first read of the input.

Action

Check STOP or PAUSE
statement.

Provide dimension
bound for variable
label.

Make variable integer.

Action

Follow site-defined
procedures for report­
ing software errors or
operational problems.

Same as STATEMENTS
BEGINNING AT THE
BELOW LINE NUMBERS
ARE UNREACHABLE (DEAD
CODE), AND WILL NOT BE
PROCESSED.

Check for extra EOP
or EOS, or misposi­
tioned input file.

60481300 F

TABLE B-3. CONTROL STATEMENT DIAGNOSTICS

Message

•••••• GT. 10 CHAR

••••• ANSI MUST BE 0, TOR F

••••• EL MUST BET, W, F, OR C

••••• ET MUST BE O, T, W, F, OR C

• • • • • HAS ILLEGAL BINARY VALUE

••••• ILLEGAL FILENAME

• • • • • ILLEGAL NUMERIC

••••• LCM OPTION MUST BEG, I, ORD

••••• MD MUST BE O, T, ORF

• • • • • TOO MANY OCCURRENCES

• • • • • TOO MANY OPTIONS

••••• UNRECOGNIZABLE

• • • • • UNKNOWN OPTION

ARG CANT BE BOTH COMMON AND
FIXED

B=O AND GO IS INCONSISTENT

CS MUST BE USER OR FIXED

E=O IS ILLEGAL

FILE USE CONFLICT

60481300 F

Significance

Indicated parameter length gr~ater than
allowable. Check spelling.

Invalid level for ANSI diagnostics.

Invalid error level selected.

Invalid error termination level selected.

Indicated parameter has invalid binary
value •

Indicated filename is invalid. Can be
system dependent.

Indicated value was used, nu:nerical value
was expected •

Invalid LCM access specified.

Invalid machine dependent diagnostic level
selected.

Indicated parameters present more times than
allowed.

Indicated parameter has more than the allow­
able nunber of options.

Indicated attempt is not a valid
parameter.

Indicated option is not valid for that
parameter.

Attempt made to specify both types of
argunent list styles.

GO cannot work without a binary file.

Invalid syntax for collate sequence
parameter.

Error level, but not error file can be
suppressed.

Multiple use of file name.

Action

Correct indicated
portion of con­
trol statement •

Choose a correct
level.

Choose a correct
level •

Choose a correct
level •

Check and select a
correct form.

Select a correct
filename. Change
other control
statements which
use that filename.

Choose a nuneric
value.

Choose a correct
access •

Choose a correct
level.

Eliminate excess
occurrences.

Reduce to a valid
nunber of options

Check spelling;
consult section 11
for valid parameters.

Check section 11
for valid options
of the parameter.

Choose one or the
other or neither.

Drop GO or select a
binary file.

Choose a correct
value.

Provide named file or
use default.

Select distinct file
names.

B-27

TABLE B-3. CONTROL STATEMENT DIAGNOSTICS (Contd)

Message

I=O IS l«>T ALLOWED

ILLEGAL CHARACTER

ILLEGAL G OPTION SYNTAX

ILLEGAL S OPTION SYNTAX

INTERACTIVE DEBUG REQUIRES OPT=O

ONLY 7 SYSTEMS TEXTS ALLOWED

OPT LEVEL NOT 0,1,2, OR 3

PD ARGUMENT NOT 6 OR 8

PL MUST NOT EXCEED 999999999

PS .LT. 4

PW .LT. 50 OR .GT. 136

TERMINATOR MISSING

X=O IS NOT ALLOWED

Significance

A file name for input must be provided or
default used.

Invalid character found on control state­
ment.

Bad G file syntax.

Gad S file syntax.

DB=ID and OPT other than 0 were selected.

The S\lll of the S and G text names cannot
exceed 7.

Invalid optimization level selected.

Invalid print density selected.

Print limit too high.

Page size too small to print listings.

Page width out of valid range.

A terminator is missing.

External text must be named, if used.

TABLE B-4. COMPILER OUTPUT LISTING MESSAGES

Message Significance

STATEMENTS BEGINNING AT THE BELOW Executable statements in the source program
LINE NUMBERS ARE UNREACHABLE (DF.AD can never be executed, due to program flow
CODE), AND WILL NOT BE PROCESSED. of control. No object code is compiled for

dead statements. Accompanied by dayfile
message DEAD CODE IN program. Detected only
when OPT=2 has been selected. Note that due
to code movement by the OPT=2 optimizer,
line n\lllbers named are approximate. This is
especially true of unreachable code within
block if blocks.

Action

Use default or supply
file name.

Check control
statement.

Correct the syntax.

Correct the syntax.

Change OPT to 0 or do
not request
interactive debug.

Reduce the n\lllber of
texts. May require
splitting into two or
more separate com­
pilations.

Choose a valid level.

Choose a valid
density.

Select a lower limit.

Increase page size.

Choose a width in the
valid range.

Provide the valid
terminator.

Select a valid name.

Action

Check flow control
of program.

B-28 60481300 F

TABLE B-5. EXECUTION-TIME DIAGNOSTICS

No. Class Message Significance Action Issued By

1 F A ERROR IN COMPUTED GO TO STATEMENT - Value .LT. 1 or .GT. Recompile using GOTO ER=
INDEX VALUE INVALID nunber of statement FORTRAN 5 com-

nunbers. Occurs only piler.
if FORTRAN Extended 4
binary is used in a
FORTRAN 5 job.

2 I A ARGUMENT ABS VALUE .GT. 1 Note 1 Note 2 ACOSIN=(ACOS)
ARGUMENT INFINITE
ARGUMENT INDEFINITE

3 I A ARGUMENT ZERO Note 1 Note 2 ALOG
ARGUMENT NEGATIVE
ARGUMENT INFINITE
ARGUMENT INDEFINITE

4 I A ARGUMENT ZERO Note 1 Note 2 ALOGlO
ARGUMENT NEGATIVE
ARGUMENT INFINITE
ARGUMENT INDEFINITE

5 I A ARGUMENT ABS VALUE .GT. l Note 1 Note 2 ACOS IN= (AS IN)
ARGUMENT INFINITE
ARGUMENT INDEFINITE

6 I A ARGUMENT INDEFINITE Note 1 Note 2 ATAN

7 I A ARGUMENT VECTOR ZERO Note 1 Note 2 ATAN2
ARGUMENT INFINITE
ARGUMENT INDEFINITE

8 I A ARGUMENT TOO LARGE Note 1 Note 2 CABS
ARGUMENT INFINITE
ARGUMENT INDEFINITE

9 I T ZERO TO THE ZERO POWER Note l Note 2 ZTOI (Z**I)
ZERO TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

10 I T INFINITE ARGUMENT Note 1 Note 2 ccos
INDEFINITE ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (!MAG PART) TOO LARGE

11 I T INFINITE ARGUMENT Note 1 Note 2 CEXP
INDEFINITE ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (!MAG PART) TOO LARGE

12 I T ZERO ARGUMENT Note 1 Note 2 CLOG
INFINITE ARGUMENT
INDEFINITE ARGUMENT

13 I A ARGUMENT TOO LARGE, ACCURACY LOST Note 1 Note 2 SIN COS= (COS)
ARGUMENT INFINITE
ARGUMENT INDEFINITE

14 I T INFINITE ARGUMENT Note 1 Note 2 CSIN
INDEFINITE ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (!MAG PART) TOO LARGE

15 I T INFINITE ARGUMENT Note 1 Note 2 CSQRT
INDEFINITE ARGUMENT

60481300 F B-29

TABLE B-5. EXECUTION-TIME DIAGNOSTICS (Contd)

No. Class Message Significance Action Issued By

16 I T FLOATING OVERFLOW Note 1 Note 2 DTOX (D**X)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE BASE IN EXPONENTIATION
INFINITE ARGUMENT
INDEFINITE ARGUMENT

17 I A ARGUMENT INFINITE Note 1 Note 2 DATAN
ARGUMENT INDEFINITE

18 I A ARGUMENT VECTOR 0,0 Note 1 Note 2 DATAN2
ARGUMENT INFINITE
ARGUMENT INDEFINITE

19 I T FLOATING OVERFLOW Note 1 Note 2 DTOD (D**D)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

20 I T ZERO TO THE ZERO POWER Note 1 Note 2 DTOI (D**I)
ZERO TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

21 I T FLOATING OVERFLOW IN D** REAL(Z) Note 1 Note 2 DTOZ (D**Z)
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)LOG(D) TOO LARGE
INFINITE ARGUMENT
INDEFINITE ARGUMENT

22 I T ARGUMENT TOO LARGE, ACCURACY LOST Note 1 Note 2 DCOS
INFINITE ARGUMENT
INDEFINITE ARGUMENT

23 I A ARGUMENT TOO LARGE Note 1 Note 2 DEXP
ARGUMENT INFINITE
ARGUMENT INDEFINITE

24 I T ZERO ARGUMENT Note 1 Note 2 DLOG
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

25 I T ZERO ARGUMENT Note 1 Note 2 DLOGlO
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

26 I T DP INTEGER EXCEEDS 96 BITS Note 1 Note 2 IMOD
2ND ARGUMENT ZERO
INFINITE ARGUMENT
INDEFINITE ARGUMENT

28 I T ARGUMENT TOO LARGE, ACCURACY LOST Note 1 Note 2 DSIN
INFINITE ARGUMENT
INDEFINITE ARGUMENT

29 I T NEGATIVE ARGUMENT Note 1 Note 2 DSQRT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

B-)0 60481300 F

TABLE B-5. EXECUTION-TIME DIAGNOSTICS (Contd)

No. Class Message Significance Action Issued By

30 I A ARGUMENT TOO LARGE, FLOATING OVERFLOW Note 1 Note 2 EXP
ARGUMENT INFINITE
ARGUMENT INDEFINITE

31 I T INTEGER OVERFLOW Note 1 Note 2 ITOJ (I**J)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER

33 I T FLOATING OVERFLOW Note 1 Note 2 XTOD (X**D)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

34 I T ZERO TO THE ZERO POWER Note 1 Note 2 XTO! (X**I)
ZERO TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

35 I T FLOATING OVERFLOW Note 1 Note 2 XTOY (X**Y)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

36 I A ARGUMENT TOO LARGE, ACCURACY LOST Note 1 Note 2 SINCOS=(SIN)
ARGUMENT INFINITE
ARGUMENT INDEFINITE

39 I A ARGUMENT NEGATIVE Note 1 Note 2 SQRT
ARGUMENT INFINITE
ARGUMENT INDEFINITE

40 I T ILLEGAL SENSE SWITCH NUMBER Number not in range SSWTCH
1-6; return parameter
set to 2.

41 I T ARGUMENT TOO LARGE, ACCURACY LOST Note 1 Note 2 TAN
INFINITE ARGUMENT
INDEFINITE ARGUMENT

42 I T INFINITE ARGUMENT Note 1 Note 2 TANH
INDEFINITE ARGUMENT

44 I T FLOATING OVERFLOW Note 1 Note 2 ITOD (I**D)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

45 I T FLOATING OVERFLOW Note 1 Note 2 ITOX (I**X)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

46 I T FLOATING OVERFLOW IN I** REAL(Z) Note 1 Note 2 ITOZ (I**Z)
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(I) TOO LARGE
INFINITE ARGUMENT
INDEFINITE ARGUMENT

60481300 F B-31

TABLE B-5. EXECUTION-TIME DIAGNOSTICS (Contd)

No.

47

49

50

51

52

53

54

Class

I T

I A

I A
I A

F A

I A

F A

F A

F A

Message

FLOATING OVERFLOW IN X** REAL(Z)
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(X) TOO LARGE
INFINITE OR INDEF ARGUMENT

COMMA MISSING AT END OF RECORD -
COMMA ASSUMED

NAMELIST DATA TERMINATED BY EOF NOT $
CONSTANTS MISSING AT END OF RECORD -

NEXT RECORD READ

FATAL ERROR IN LOADER.

Set by user via subroutine SYSTEM
or SYSTEMC.

Set by user via subroutine SYSTEM
or SYSTEMC. Error numbers larger
than any listed in this table become
error 52.

NOT ENOUGH FL FOR SORT/MERGE.

{
DIRECT }

MIXED IO MODES - SEQUENTIAL

{
CODED } { DIRECT }
BINARY AFTER SEQUENTIAL
BUFFER

{
CODED }
BINARY ON LFN-xxxxxxx.
BUFFER

55 F A END-OF-FILE ENCOUNTERED, FILENAME
- - - - xxxxxxx.

56 F A WRITE FOLLOWED BY READ, FILENAME
- - - - xxxxxxx.

57 F A AREA SPECIFICATION SPANS SCM/LCM.

58 F A BUFFER DESIGNATION BAD -- FWA.GT.LWA.

59 F A BUFFER SPECIFICATION BAD -­
FWA. GT. LWA

B-32

Significance

Note 1

Error occurred during
NAMELIST processing.

Error occurred during
load.

Defined by user.

Defined by user.

More memory required
for Sort/Merge
processing.

User is trying to
switch I/O mode on
a file without an
intervening REWIND,
ENDFILE, or CLOSE/
OPEN sequence.

Attempt to read past
end-of-file.

A READ cannot follow
a WRITE unless a
REWIND intervenes.

In a buffered I/O
statement the first
and last word
addresses must be in
the same level of
memory.

First-word address
must be LE last word
address.

First-word address
must be LE last word
address.

Action Issued By

Note 2 XTOZ(X**Z)

Check NAMELIST NAMIN=
input data for
errors.

Inspect load map OVERLA=
to determine
cause of error.

Defined by user. USER

Defined by user. USER

Extend program SMxxxx=
field length.

Continue using FORSYS=
previous I/O
mode or perform
a REWIND, END-
FILE, or CLOSE/
OPEN sequence.

Rewind before BUFIN=
reading or cor-
rect program
logic.

Insert a REWIND BUFIN=
statement.

Check word
addresses in
buffered I/O
statement.

Check buffer
designation.

Check first
and last word
address.

BUFIO=

BUFIO=

BUFOUT=

60481300 G

TABLE B-5. EXECUTION-TIME DIAGNOSTICS (Contd)

No. Class Message

60 F A BFS EXCEEDS ALLOCATED STATIC SIZE,
LFN-xxxxxxx.

61 F A PARAMETERS ON EXPLICIT OPEN
INCONSISTENT WITH USE OF
LFN-xxxxxxx.

62 F A INVALID UNIT

63

64

65

66

67

68

69

70

F

F

F

F
F
F
F
F
F
F

F

F
F

F

F

60481300 G

A

A

A

A
A
A
A
A
A
A

A

A
A

A

A

END-OF-FILE ENCOUNTERED ON
FILE xxxxxxx.

ILLEGAL BUF LEN SPECIFIED ON
PROGRAM STATEMENT

END-OF-FILE ENCOUNTERED ON
FILE xxxxxxx.

NAMELIST NAME NOT FOUND-xxxxxxx.
INCORRECT SUBSCRIPT.
TOO MANY CONSTANTS.
, ($ OR = EXPECTED, MISSING.
VARIABLE NAME NOT FOUND-xxxxxxx.
CONSTANT MISSING.
INVALID COMPLEX CONSTANT

DECODE RECORD LENGTH .LE. O.
DECODE LCM RECORD .GT. 150 CHARACTERS.

* ILL-PLACED NUMBER OR SIGN.
* ILLEGAL FUNCTIONAL LETTER.

* IMPROPER PARENTHESIS NESTING.

* EXCEEDED RECORD SIZE.

Significance

User has specified a
larger file card BFS
than is available in
a statically com­
piled program.

User is attempting
to change I/O modes
on a file that was
explicitly opened
without first
explicitly closing
the file.

Unit not recognized.

Attempt to read past
end-of-file.

For unformatted
files, buffer
length specified on
the PROGRAM state­
ment must be
.GE.513.

Attempt to read past
end-of-file.

Error occurred
during NAMELIST
processing.

Bad first parameter
to DECODE.

Illegal FORMAT.

Illegal FORMAT.

The maximum record
length specified on
the PROGRAM, OPEN,
ENCODE, DECODE or
FILE control state­
ment has been
exceeded.

Action

Decrease file
card BFS
parameter or
recompile
program with a
larger buffer
size on the
PROGRAM state­
ment file
declaration.

Issue an
explicit close
on the file.

Check unit
number.

Rewind file or
correct program
logic.

Check buffer
length.

Rewind file or
correct program
logic.

Check NAMELIST
input data for
errors.

Check first
parameter to
DECODE.

Check format.

Check format.

Change RL
parameter on
PROGRAM state­
ment, MRL

·parameter on
the FILE con­
trol statement,
RECL parameter
on the OPEN
statement, or C
parameter on
the ENCODE or
DECODE statement.

Issued By

FORSYS=

FORSYS=

GETFIT=

INPB=

FORSYS=

INPC=
NAMIN=

NAMIN=

DECODE=

FMTAP=

FMTAP=

FMTAP=

B-33

TABLE B-5. EXECUTION-TIME DIAGNOSTICS (Contd)

No. Class

71 F A

72 F A

73 F A

78 F A

79 F A

83 F A

85 F A

88 F A

Message

* SPECIFIED FIELD WIDTH ZERO.

* FIELD WIDTH .LE. DECIMAL WIDTH.

*HOLLERITH FORMAT WITH LIST.

* ILLEGAL DATA IN FIELD * ' *

* DATA OVERFLOW * ' *

OUTPUT FILE LINE LIMIT EXCEEDED.

ENCODE CHARACTER/RECORD .LE. 0
ENCODE LCM RECORD .GT. 150 CHARACTERS

WRITE FOLLOWED BY READ ON
FILE-xxxxxxx.

89 F A LIST EXCEEDS DATA, READ ON
FILE-xxxxxxx.

90 F A PARITY ERROR ON FILE xxxxxxx
DURING PREVIOUS READ.

91

92

F A WRITE FOLLOWED BY READ ON
FILE-xxxxxxx.

F A PARITY ERROR READING (CODED)
FILE-xxxxxxx.

93 F A PARITY ERROR ON FILE-xxxxxxx
DURING PREVIOUS READ.

B-34

Significance

w=O in FORMAT.

w LE d in FORMAT.

The FORMAT has no
specifiers corre­
sponding to the
I/O statement.

Usually a nondigit
in a numeric input
field.

Input value GT
1. 26501E322.

The default or
specified print
limit to OUTPUT was
exceeded.

Bad first parameter
to ENCODE.

A READ cannot follow
a WRITE unless a
REWIND intervenes.

More words were
specified in the I/O
list than existed in
the record of the
file.

Probable disk or
tape error.

A READ cannot follow
a WRITE unless a
REWIND intervenes.

Probable disk or
tape error.

Probable disk or
tape error.

Action

Check field
width in
FORMAT.

Check width
in FORMAT.

Change one or
the other.

Fix input data.

Fix input data.

Specify PL on
FTNS statement,
PL on execution
call, or change
program to print
less.

Check first
parameter to
ENCODE.

Insert a REWIND
statement.

Issued By

FMTAP=

FMTAP=

IN COM=

INCOM=

IN COM=

OUTC=
NAMOUT=
OUTF=
SY SERR=

ENCODE=

INPB=

Check for miss- INPB=
ing data or
incorrect in-
put list.

Follow site- INPB=
defined proce-
dures for re-
porting soft-
ware error or
operational
problems.

Insert a REWIND
statement.

Follow site­
def ined proce­
dures for re­
porting soft­
ware errors or
operational

·problems.

Follow site­
defined proce­
dures for re­
porting soft­
ware errors or
operational
problems.

INPC=

INPC=
NAMIN=

OUTB=

60481300 G

TABLE B-5. EXECUTION-TIME DIAGNOSTICS (Contd)

No. Class Message Significance Action Issued By

94 F A PARITY ERROR ON LAST READ ON Probable disk or Follow site- OUTC=
FILE-xxxxxxx. tape error. defined proce-

dures for re-
porting soft-
ware errors or
operational
problems.

95 F A PARITY ERROR ON FILE xxxxxxx Probable disk or Follow site- ODAB
DURING PREVIOUS WRITE tape error. defined proce-

dures for re-
porting soft-
ware errors or
operational
problems.

96 F A PARITY ERROR ON FILE xxxxxxx Probable disk or Follow site- IDAB
DURING PREVIOUS READ tape error defined proce-

dures for re-
porting soft-
ware errors or
operational
problems.

60481300 G B-34.1/B-34.2

TABLE B-5. EXECUTION-TIME DIAGNOSTICS (Contd)

No. Class Message

97 F A INDEX NUMBER ERROR.

98 F A FILE ORGANIZATION ERR OR FILE NOT
OPEN.

99 F A WRONG INDEX TYPE.

100 F A INDEX IS FULL.

101 F A DEFECTIVE INDEX CONTROL WORD.

102 F A RECORD LENGTH EXCEEDS SPACE
ALLOCATED.

103 F A RECORD MANAGER ERROR xxx ON FILE
xxxxxxx, RECORD xxxxxxx.

104 F A INDEX KEY UNKNOWN.

105 F A RECORD LENGTH NEGATIVE.

107 F A ILLEGAL PARAMETER VALUE.

108 F A TOO FEW OR TOO MANY PARAMETERS.

109 F A KEYWORD (xxxxxxx) INVALID.

110 F A A ROUTINE CALLED OUT OF SEQUENCE.

111 F A LCM BLOCK COPY ERROR.

114 F A CONNEC CHARACTER CODE CONVERSION IS
OUT OF RANGE

115 I A ARGUMENT INFINITE
ARGUMENT TOO SMALL

116 I A ARGUMENT INFINITE
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

60481300 F

Significance

Nonexistent index
value specified or
bad file.

Wrong type specified
to OPENMS.

An index is full, and
an attempt is being
made to add a new
record to it.

Bad file.

Record length too
long.

Record Manager
error.

Invalid index key.

Record length must
not be negative.

Argument to Sort/
Merge routine has
bad value.

Valid nm.her of
parameters not
provided.

Keyword not recog­
nized.

Sequence (SMSORT,
SMSORTB, SMSORTP,
or SMMERGE), (other
Sort/Merge calls),
(SMEND or SMABT)
not followed.

Parity error.

Bad second argument
in CALL CONNEC.

Note 1

Note 1

Action

Check index
and fire.

Call OPENMS.

Check index
type.

Increase index
size.

File must be
recreated.

Increase space
allocation.

See Record Man­
ager reference
manual.

Correct index
key.

Fix call.

Check parameter
value of Sort/
Merge routine.

Provide proper
nm.her of
parameters.

Provide legal
keyword.

Check sequence
of routine
call.

Follow site­
defined proce­
dures for re­
porting soft­
ware errors or
operational
problems.

Change to
specify correct
character set.

Note 2

Note 2

Issued By

RANMS=

RANMS=

RANMS=

RANMS=

RANMS=

RANMS=
BUFIO=

RANMS=

RANMS=

RANMS=

SMXXXX=

SMXXXX=

SMxxxx=

SMxxxx=

COMIO=,
DECODE=,
ENCODE=,
INPB=, OUTB=,
READEC,
WRITEC

CONDIS=

EXP

HYP=(COSH)

B-35

TABLE B-5. EXECUTION-TIME DIAGNOSTICS (Contd)

No. Class Message Significance k.tion Issued By

117 I A ARGUMENT INFINITE Note 1 Note 2 HYP=(SINH)
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

118 I A ARGUMENT TOO SMALL Note 1 Note 2 DEXP

119 I A ARGUMENT INFINITE Note 1 Note 2 DHYP=(DCOSH)
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

120 I A ARGUMENT INFINITE Note 1 Note 2 DHYP=(DS INH)
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

121 I A ARGUMENT INDEFINITE Note 1 Note 2 DTANH

122 I A ARGUMENT INFINITE Note 1 Note 2 DTAN
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

123 I A ARGUMENT INFINITE Note 1 Note 2 DASNCS(DASIN)
ARGUMENT INDEFINITE
ARGUMENT .GT. 1.0.

124 I A ARGUMENT INFINITE Note 1 Note 2 DASNCS(DACOS)
ARGUMENT INDEFINITE
ARGUMENT .GT. 1.0

125 I A ARGUMENT INDEFINITE Note 1 Note 2 ERF(ERF)

126 I A ARGUMENT INDEFINITE Note 1 Note 2 ERF(ERFC)

127 I A ARGUMENT TOO LARGE Note 1 Note 2 ERF(ERFC)

128 I A ARGUMENT INFINITE Note 1 Note 2 ATANH
ARGUMENT INDEFINITE
ARGUMENT .GE. 1.0.

129 I A ARGUMENT INFINITE Note 1 Note 2 SIND
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

130 I A ARGUMENT INFINITE Note 1 Note 2 COSD
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

131 F A ARGUMENT INFINITE TAND
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE
ARGUMENT ODD MULTIPLE OF 90

132 F A DUPLICATE CHARACTER IN CSOWN CALL Entry in collating Check CSOWN CSOWN=
sequence is defined call.
twice.

133 F A IRRECONCILABLE STATUS OPTION Status option Check status OPECAP=
irreconcilable. option.

134 F A STATUS OPTION INCOMPATIBLE WITH Status option incon- Check status OPECAP=
OLD FILE sistent with option and/or

specified file. file name.

B-36 60481300 F

TABLE B-5. EXECUTION-TIME DIAGNOSTICS (Contd)

No. Class Message

135 F A FORM CHANGE ON OPENED FILE

136 F A BAD RECL VALUE

137 F A BLANK OPTION ON UNFORMATTED FILE

138 F A BAD BUFL VALUE

139 F A BAD OPEN OPTION

140 F A ERROR DURING FILE CLOSING

141 I A BAD ARGUMENT TO !CHAR

142 F A BAD CLOSE PARAMETER

143

144

145

146

F A ACCESS CHANGE ON OPENED FILE

I D xxxx SUBSCRIPT OF ARRAY nnn = yyy,
DECLARED LOWER WAS 1111 , UPPER WAS

I D

I D

uuuu.

STARTING CHARACTER POSITION OF xxxx
SHOULD BE .GT. ZERO.

CHARACTER LENGTH OF xxxx SHOULD BE
• GT. ZERO.

60481300 F

Significance

File was previously
opened for a differ­
ent processing type.
The valid types are
formatted, unfor­
matted, buffer I/O,
and random I/O.

Blank option applies
to formatted I/O
only.

Negative value, or,
for open files,
value not equal to
the file buff er
length. BUFL must
be at least 129
words on coded tape,
513 words on binary
tape, and 65 words
on disk.

Option not allowed.

Conflicting file
attributes. CRM
cannot perform
close.

Argument is not of
type character,
does not have a
character length
of 1, or is un­
defined for this
installation.

An option is not
allowed in the
close.

File was previously
opened for a dif­
ferent access.

The xxxx subscript
of array nnn has
value yyy. This
value is outside
the range 1111 to
uuuu.

Substring reference
outside of character
string.

A negative character
length is invalid •

Action

Check process­
ing type.

Correct record
length value.

Remove blank
option.

For open files,
verify that
the BUFL
value = the
buffer length.

Check OPEN
option.

Check file
attributes.

Check argument
to !CHAR.

Check close
option.

Remove or
change ACCESS
option of OPEN
statement.

Correct sub­
string limits.

· Correct sub­
string limits.

Correct sub­
string limits.

Issued By

OPE CAP=

OPE CAP=

OPECAP=

OPE CAP=

OPE CAP=

FORSYS

I CHAR=

CLOSE=

OPECAP=

CDL=

CDL=

CDL=

B-37

TABLE B-5. EXECUTION-TIME DIAGNOSTICS (Contd)

No. Class

147 I D

148 F A

149 F A

150 F A

151 F A

152 I A

153 F A

154 F A

155 F A

156 F A

Message

NEW CHARACTER LENGTH OF xxxx EXCEEDS
OLD LENGTH OF x:xxx

INTERNAL FILE RECORD LENGTH .LE. ZERO

INTERNAL FILE LCM RECORD EXCEEDS 150
CHARACTERS

INTERNAL FILE I/O LIST EXCEEDS FILE
SIZE.

DIRECT ACCESS OPEN HAS NO RECL
PARAMETER

REWIND PROHIBITED ON DIRECT FILE -­
IGNORED

ARGUMENT TO CSOWN NOT TYPE CHARACTER

UNALLOCATED RECORD LENGTH GREATER
THAN 150

SEQUENTIAL 1/0 ATTEMPTED ON DIRECT
FILE

CODED I/O ATTEMPTED ON xxxx FILE xx:xx

157 F A INVALID KEYWORD FOR COLSEQ

158 F A OVER 1499 CHARACTERS IN REPEATED
CHARACTER STRING

B-38

Significance

New character
length must be LE
old character
length.

Record length must
be positive.

Internal file LCM
record cannot exceed
150 characters.

Format declared on
I/O list incom­
patible with file
(variable, sub­
string, or array)
format.

Record length param­
eter missing.

REWIND used only for
sequential files.

Noncharacter argu­
ment passed to
CSOWN.

Explicit open call
attempted to make
record length
greater than 150
for an unallocated
record in static
mode.

Sequential I/O
commands used on
direct access file.

Formatted READ or
WRITE attempted on
a file which was
opened for unfor­
matted, buffer, or
random I/O.

Attempt to specify
an invalid collating
sequence. The valid
keywords are ASCil6,
DISPLAY, INTBCD,
and COBOL6.

Character string
with more than 1499
characters has a
repeat factor for
list directed input.
Probably caused by
missing apostrophe.

Action

Correct sub­
string limits.

Correct sub­
string limits.

Reduce LCM
record length
or move record
to SCM.

Check 1/0 list.

Insert the
parameter.

Remove REWIND.

Supply a collat­
ing sequence
string argunent.

Declare proper
record length
on PROGRAM
statement.

Use the direct
access I/O
comm.ands.

Self-evident.

Issued By

CDL=

IIFC=
OIFC=

IIFC=
OIFC=

IIFC=
OIFC=

OPECAP=

REWIND=

CSOWN=

OPECAP=

OUTB=
OUTC=
OUTF=
INPB=
INPC=
INPF=

!DAB=
ODAB=

Supply a valid COLSEQ=
keyword.

Add the termina- LDIN=
ting apostrophe
or break the
input into sub­
strings.

60481300 F

TABLE B-5. EXECUTION-TIME DIAGNOSTICS (Contd)

No. Class Message

159 F

160 F

A SCRATCH FILE xxxx CANNOT BE CLOSED
WITH STATUS=KEEP

A ILLEGAL USE OF ASTERISK AS STRING
DELIMITER IN FORMAT

161 F A NON EXISTENT OVCAP ••••

162 F

163 F

164 F

A OVCAP •••• IS ALREADY LOADED

A OVCAP •••• WAS NEVER LOADED

A FDL ERROR xx DURING LOAD OR UNLOAD
of OVCAP ••••

165 F A INVALID SEQUENCE

166 F A RESERVED COL-SEQ

167 F

168 F

169 F

60481300 F

A H, ', ", ILLEGAL INPUT FORMATS

A * DECIMAL POINT M£SSING

A FORMAT VARIABLE DOES NOT CONTAIN
ASSIGNED FOR.'IAT

Significance

It is illegal to use
status='KEEP' on a
CLOSE when status=
'SCRATCH' was speci­
fied on the OPEN.

Asterisk is an
invalid format string
delimiter in
FORTRAN 5.

An attempt to load an
OVCAP that does not
exist.

LOVCAP has been
called twice for the
same OVCAP name.

A ca 11 to UOVCAP has
been made specifying
an OVCAP that has not
been loaded.

A Fast Dynamic Loader
error has been raised
for reasons beyond
user control.

SMKEY call specified
a col-seg parameter
w.tthout specifying a
coding identifier of
DISPLAY.

SMSEQ/SMEQU C'il.l

speci fi.ed a sequence
name equivalent to
one of the standard
co 1.la ting sequence
names (ASCII6/COBOL6
/DISPLA.Y/INTBCD) in
an attempt to rede­
fine it.

Single quote, double
quote, or H format
are illegal iri
FORTRAN S input.

Decimal po lnt re­
quired.

Assignment of a for­
mat to a variable
used for I/O is not
allowed.

Action

Correct the
CLOSE or OPEN
statement.

Use apostrophe.

Check that the
name specified
is the name of
the first sub­
routine after
an OVCAP state­
ment.

Cheek program
logic and
eliminate re­
dundant call.

Check program
logic.

Check error
number in
Loader refe­
rence manual.
Follow site­
defined proce­
dure.

Ensure coding
identifier is
set to DISPLAY.

Select another
name for the
user-supplied
collating se­
quence.

Correct format.

Supply decimal
point.

Use ASSIGN
statement to
assign state­
ment label to
vari.abl~.

Issued By

FORSYS=

KO DER=
KRAKER=

LOVCAP or
XOVCAP

LOVCAP or
XOVCAP

UOVCAP

LOVCAP,
XOVCAP, or
UOVCAP

SMKEY

SM SEQ/
SMEQU

KRAKER=

FMTAP=

INPC=
OUTC=
IDAC=
ODAC=

B-39

TABLE B-5. EXECUTION-TIME DIAGNOSTICS (Contd)

No. Class Message

170 F A ZERO LENGTH HOLLERITH STRING

1 7 1 F A BAD FILE NAME GI VEN

172 F A SEPARATOR MISSING IN FORMAT

173 F A SCALE FACTOR MISSING IN FORMAT

174 F A WTSET ARGlMENT INVALID

175 F A INVALID CHARACTER CODE IN CS™N CALL

176-198 Reserved.

199 F

200 F

201 F

202 F

A FORM='BUFFERED' NONCCJ1PATIBLE
WI'lll DIRECT FILE

A

A

A

{
CODED } { READ }

DIRECT B !NARY WRITE ON

NONEXPLICITLY OPENED FILE xxxx

DIRECT WRITE ATTEMPTED ON
SEQUENTIAL FILE xxxx

BINARY WRITE ATTEMPTED ON xxxx
FILE xxxx

203 F A ATTEMPT TO WRITE NON-POSITIVE RECORD
NUMBER

207 F A ATTEMPT TO READ NON-POSITIVE RECORD
NUMBER

208 F A LIST EXCEEDS RECORD LENGTH FOR
FILE xxxx

B-40

Significance

Hollerith string
must have a posi­
tive nonzero
length.

Illegal character
was used or char­
acter length was
greater than 7.

Error in format
statement.

P edit descrip­
tor requires
count.

The first argu­
ment is not an
integer or a
string of length
#1 or a character
code is undefined
for this instal­
lation.

One of the charac­
ter codes in the
argument is unde­
fined for this
installation.

ACCESS='DIRECT' was
specified for a
FORM= 'BUFFERED'
unit.

Direct access file
must be opened be­
fore I/O is allowed.

Direct I/0 connnand
used on sequential
file.

Unformatted WRITE
attempted on a file
opened for format­
ted, buffer, or ran­
dom I/O.

Record number must
be positive.

Record number must be
positive.

List too long or
record length too
short.

Action

Make string
positive non­
zero length.

Supply a valid
file name.

Supply appro­
priate separa­
tor.

Supply a valid
scale factor.

Check the first
argument.

Check the
argument.

Delete ACCESS=
'DIRECT'
specifier.

Use OPEN
command.

Use sequential
I/O command.

Check WRITE
statement.

Check record
number.

Check record
number.

Check record
list and record
length.

Issued By

KO DER=

OPECAP=

FM TAP=

FM TAP=

WT SET=

CS OWN=

OPE CAP=

ODAB=
ODAC=
IDAB=
IDAC=

ODAB=

ODAB=

ODAB=
ODAC=

!DAB=
IDAC=

ODAB=

60481300 H

No. Class

209 F A

212 F A

215 I A

216 F A

217 F A

TABLE B-5. EXECUTION-TIME DIAGNOSTICS (Contd)

Message

CMM ERROR IN CODED DIRECT-ACCESS
OUTPUT

CHM ERROR IN CODED DIRECT-ACCESS
INPUT

UNDEFINED WEIGHT PASSED TO CHAR

SUBSTRING ERROR ON NAMELIST ITEM
xxxx IN GROUP yyyy

NAMELIST ITEM xxxx IN GROUP yyyy,
ITEM LENGTH

Significance

Common Memory Man­
ager must be avail­
able to handle a
record length
greater than 1500
for formatted
direct access I/O.

Common Memory Man­
ager must be avail­
able to handle a
record length
greater than 1500
for formatted
direct access I/O.

The character argu­
ment (weight) passed
is not defined in
the collating table.

Format of the
substring is not
correct.

The substring has
an upper bound
greater than the
length of the named
character string.

Action

Define proper
record length
on the PROGRAM
statement.

See Common
Memory Manager
reference
manual.

Check character
argument or
current collat­
ing sequence •

Correct format
of the sub­
string.

Correct sub­
string limits.

Issued By

ODAC=

IDAC=

CHAR=
CHARF=

NAMIN=

NAMIN=

Note 1 Infinites can be generated by dividing a nonzero number by zero, or by an addition, substraction,
multiplication, or division whose result was greater than 10322 in absolute value. Indefinites
are usually generated by dividing zero by zero.

Note 2 Check for undefined argument; if argument is calculated, check for undefined or illegal operand.

60481300 H B-41 I

GLOSSARY c

This glossary does not include terms defined in the
ANSI standard for FORTRAN, X3.9-1978.

Advanced Access Methods (AAM) -
A file manager that processes indexed sequen­
tial, direct access, and actual key file
organizations, and supports the Multiple-Index
Processor. See CYBER Record Manager.

Basic Access Methods (BAM) -
A file manager that processes sequential and
word addressable file organizations. See CYBER
Record Manager.

Beginning-of-Information (BOI) -
CYBER Record Manager defines beginning-of­
inf ormation as the start of the first user
record in a file. System-supplied information,
such as an index block, control word, or tape
label, exists prior to beginning-of-information.

Blank Common Block -
An unlabeled common block. No data can be
stored into a blank common block at load time.
The size of the block is determined by the
largest declaration for it. Contrast with
Labeled Common Block.

Block -
In the context of input/output, a physical
grouping of data on a file that provides faster
data transfer. CYBER Record Manager defines
four block types on sequential files: I, C, K,
and E. Other kinds of blocks are defined for
indexed sequential, direct access, and actual
key files. Also refers to a common block.

Buffer -
An intermediate storage area used to compensate
for a difference in rates of data flow, or
times of event occurrence, when transmitting
data between central memory and an external
device during input/output operations.

Buffer Statement -
One of the input/output statements BUFFER IN or
BUFFER OUT.

Common Block -
An area of memory that can be declared in a
COMMON statement by more than one relocatable
program and used for storage of shared data.
See Blank Common Block and Labeled Common Block.

CYBER Loader -
The system software facility that loads object
code into memory and prepares it for execution.

CYBER Record Manager (CRM) -
A generic term relating to the common products
AAM and BAM that run under the NOS and NOS/BE
operating systems, and which allow a variety of
record types, blocking types, and file organi-

60481300 F

zations to be created and accessed. The execu­
tion time input/output of COBOL 5, FORTRAN 5,
Sort/Merge 4 and 5, ALGOL 4, and the DMS-170
products is implemented through CRM. Neither
the input/output of the NOS and NOS/BE operat­
ing systems themselves, nor any of the system
utilities such as COPY or SKIPF, is implemented
through CRM. All CRM file processing requests
ultimately pass through the operating system
input/output routines.

Default Type -
The data type assumed by a variable in the
absence of any type declarations for the
variable. Variables whose names begin with one
of the letters A through H or 0 through Z have
a default type of real. Variables whose names
begin with one of the letters I through N have
a default type of integer.

Direct Access Input/Output -
A method of input/output in which records can
be read or written in any order. Direct access
input/output is performed by direct access READ
and WRITE statements.

End-of-File (EOF) -
A particular kind of boundary on a sequential
file, recognized by the END= parameter, the
functions EOF and UNIT, and written by the
ENDFILE statement. Any of the following condi­
tions is recognized as end-of-file:

End-of-section (for INPUT file only)

End-of-partition

End-of-information (EOI)

W type record with flag bit set and delete
bit not set

Tape mark

Trailer label

Embedded zero length level 17 block

End-Of-Information (EOI) -
The end of the last programmer record in a
file. Trailer labels are considered to be past
end-of-information. End-of-information is un­
defined for unlabeled S or L tapes.

Entry Point -
A location within a program unit that can be
branched to from other program units. Each
entry point has a unique name.

Equivalence Class -
A group of variables and arrays whose position
relative to each other is defined as a result
of an EQUIVALENCE statement.

C-1

I

Extended Memory -
Extended memory for the CYBER 170 Model 176 is
large central memory (LCM) or large central
memory extended (LCME). Extended memory for
all other computer systems except for the CYBER
170 800 Series, is extended core storage (ECS)
or extended semiconductor memory (ESM).
Extended memory for CYBER 170 800 Series is
unified extended memory (UEM).

In this manual, the acronym ECS refers to all
forms of extended memory unless otherwise
noted. However, in the context of a multimain­
frame environment or distributive data path
(DDP) access, model 176 is excluded.

Programming information for the various forms
of extended memory can be found in the COMPASS
reference manual and in the appropriate
computer system hardware reference manual.
Descriptions of the various forms of extended
memory can be found in the hardware manuals
appropriate for equipment available at the site.

External File -
A file residing on an external storage device.
An external file starts at beginning-of­
information and ends at end-of-information.
See File.

External Reference -
A reference in one program unit to an entry
point in another program unit.

Field Length -
The area (number of words) in central memory
assigned to a job.

File -
A logically related set of information; the
largest collection of information that can be
addressed by a file name. FORTRAN 5 recognizes
two types of files, internal files and external
files.

FILE Control Statement -
A control statement that contains
used to build the file information

parameters
table for

processing. Basic file characteristics such as
organization, record type, and description can
be specified on this statement.

File Information Table (FIT) -
A table through which a user program communi­
cates with CYBER Record Manager. All file
processing executes on the basis of fields in
the table. Some fields can be set by the
FORTRAN user in the FILE control statement.

Generic Function Name -
The name of an intrinsic function that can have
arguments of any data type. Except for data
type conversion generic functions, the data
type of the result is the same as the data type
of the arguments.

Implicit Type -

C-2

The type of a variable as declared in an
IMPLICIT statement.

Indefinite -
An indefinite value results from a calculation
that cannot be resolved, such as dividing zero
by zero. The internal representation of an
indefinite value does not correspond to any
number; therefore, an I is printed for the
value.

On a CYBER 70 Model 71, 72, 73, 74, CYBER 170
Model 171, 172, 173, 174, 175, or 6000 Series
computer, no action is taken unless the in­
definite value is used as an operand in an
expression. In this case, the program aborts
and an error message is printed.

On a CYBER Model 76, CYBER 170 Model 176, 835,
855, or 7600, the indefinite flag is set as
soon as the indefinite value is generated.
This flag causes the program to abort and an
error message to be printed.

Infinite -
An infinite value results from a calculation
that generates a value that exceeds the upper
or lower range of the computer, such as com­
puting 10100 * 10100. An infinite value is
printed as the symbol R.

If the result of a calculation exceeds the upper
range of the computer, the outcome depends on
the computer being used.

On a CYBER 70 Model 71, 72, 73, 74, CYBER 170
Model 171, 172, 17 3, 17 4, 17 5, or 6000 Series
computer, no action is taken unless the value
is used as an operand in an expression. In this
case, the program aborts and an error message
is printed.

On a CYBER 70 Model 76, CYBER 170 Model 176,
835, 855, or 7600, the overflow condition flag
is set in the Program Status Designator regis­
ter as soon as the range is exceeded. This
flag causes the program to abort and an over­
flow message to be listed. This condition also
results from the use of an operand that was not
generated by an arithmetic operation.

If the result of a calculation is less than the
lower range, no further action is taken except
on the CYBER 70 Model 76, CYBER 170 Model 176,
and 7600 Series computers. On these computers,
no further action is taken unless underflow has
been selected as a mode error by a MODE control
statement. In this case, the underflow condi­
tion flag is set in the Program Status Designa­
tor register as soon as the condition is
generated. This flag causes the program to
abort and an underflow error message to be
printed.

Internal File -
A character variable, array, or substring on
which input/output operations are performed by
formatted READ and WRITE statements. Internal
files provide a method of transferring and
converting data from one area of memory to
another.

60481300 H

Labeled Common Block -
A comm.on block into which data can be stored at
load time. The first program unit declaring a
labeled coDDDon block determines the amount of
memory allocated. Contrast with Blank Common
Block.

Logical File Name -
The name by which a file is identified; con­
sists of one through seven letters or digits,
the first a letter. File names used in stan­
dard FORTRAN 5 input/output statements can have
a maximum of six letters or digits.

Main Overlay -
An overlay that must remain in memory through­
out execution of an overlayed program.

Mass Storage Input/Output -
The type of input/output used for random access
to files; it involves the subroutines OPENMS,
READMS, WRITMS, CLOSMS, and STINDX.

Object Code -
Binary code produced by the compiler.
code must be processed by the CYBER
before it can be executed.

Object Listing -

Object
Loader

A compiler-generated listing of the object code
produced for a program, represented as COMPASS
code.

60481300 G

Off set -
The starting position of the array in the first
word of its storage (0 to 9).

Optimizing Mode -
One of the compilation modes in the FORTRAN 5
compiler, indicated by the control statement
options OPT=O, 1, 2 or 3.

Overlay -
One or more relocatable programs that were
relocated and linked together into a single
absolute program. It can be a main, primary,
or secondary overlay.

Partition -
CYBER Record Manager defines a partition as a
division within a file with sequential organi­
zation. Generally, a partition contains several
records or sections. Implementation of a
partition boundary is affected by file struc­
ture and residence. Partition boundaries are
shown in table C-1.

Notice that in a file with W type records a
short PRU of level 0 terminates both a section
and a partition.

C-2.1/C-2.2

TABLE C-1. PARTITION AND SECTION BOUNDARIES

Record Block Physical Representation_. Physical Representation Device Type Type
(RT) (BT) of Partition of Section

PRU w I A short PRU of level 0 A deleted one-word re-
devicet containing a one-word cord pointin~ back to

deleted record pointing the last I b ock bound-
back to the last I ary followed by a con-
block boundary, fol- trol word with flags
lowed by a control word indicating a section
with a flag indicating boundary. At least
a partition boundary. the control word is in

a short PRU of level O.

w c A short PRU of level 0 A control word with
containing a control flags indicating a sec-
word with a flag indi- tiol'I boundary. The
eating a partition control word is in a
boundary. short PRU of level O.

O,F,R, c A short PRU of level 0 A short PRU with a
T,U,Z followed by a zero- level less than 17

length PRU of level 17 octal.
octal.

s - A zero-length PRU of Undefined.
level number 17 octal.

S or L w I A separate tape block A separate tape block
format containing as many containing as many de-
tape deleted records of leted records of re-

record length 0 as cord length 0 as re-
required to exceed quired to exceed noise
noise record size, fol- record size, followed
lowed by a deleted one- by a deleted one-word
word record pointing record pointing back to
back to the last I the last I block bound-
block boundary, fol- ary, followed by a con-
lowed by a control trol word with flags
word with a flag indicating a section
indicating a parti- boundary.
tion boundary.

w c A separate tape block A separate tape block
containing as many
deleted records of

containing as many de-
leted records of record

record length 0 as length 0 as required to
required to exceed exceed noise record
noise record size, fol- size, followed by a con-
lowed by a control trol word with flags
word with a flag indicating a section
indicating a parti- boundary.
ti on boundary.

O,F,T, C,K,E A tapemark. Undefined.
R,U,Z

s - A tapemark. Undefined.

Any - - Undefined. Undefined.
other
tape
format

tNOs and NOS/BE only.

60481300 F C-3

Pass by Name -
A method of referencing a subprogram in which
the addresses of the actual arguments are
passed.

Pass by Value -
A method of referencing a subprogram in which
only the values of the actual arguments are
passed.

Primary Overlay -
A second level overlay that is subordinate to
the main overlay. A primary overlay can call
its associated secondary overlays and can
reference entry points and comnon blocks in the
main overlay.

Procedure -
A FORTRAN function subprogram, subroutine,
statement function, or intrinsic function.

· Program Unit -
A sequence of FORTRAN statements terminated by
an END statement. The FORTRAN program uni ts
are main programs, subroutines, functions, and
block data subprograms.

PRU -
Under NOS and NOS/BE, the amount of information
transmitted by a single physical operation of a
specified device. The size of a PRU depends on
the device: a PRU which is not full of user
data is called a short PRU; a PRU that has a
level terminator, but not user data, is called
a zero-length PRU. PRU sizes are shown in
table C-2.

TABLE C-2. PRU SIZES

Device Size in Number
of 60-Bit Words

Mass storage (NOS and 64
NOS/BE only).

Tape in SI format with 128
coded data (NOS/BE only).

Tape in SI format with 512
bi nary data.

Tape in I format (NOS 512
only).

Tape in any other format. Undefined.

PRU Device -

C-4

A mass storage device or a tape in SI (NOS and
NOS/BE), I (NOS and NOS/BE), or X (NOS/BE only)
format, so called because records on these
devices are written in PRUs.

Record -
CYBER Record Manager defines a record as a
group of related characters. A record or a
portion thereof is the smallest collection of
information passed between CYBER Record Manager
and a user program in a single read or write
operation. Eight different record types exist,
as defined by the RT field of the file informa­
tion table.

Other parts of the operating systems and their
products might have additional or different
definition of records.

Record Length -
The length of a record measured in words for
unformatted input/output and in characters for
formatted input/output.

Record Type -
The term record type can have one of several
meanings, depending on the context. CYBER
Record Manager defines eight record types
established by an RT field in the file informa­
tion table.

Reference Listing -
A part of listing produced by a FORTRAN compi­
lation, which displays some or all of the
entities used by the program, and provides
other information such as attributes and loca­
tion of these entities.

Relocation -
Placement of object code into central memory in
locations that are not predetermined, and
adjusting the addresses accordingly.

SCOPE 2 Record Manager -
The record manager used under the SCOPE 2
operating system. It processes all files read
and written as a result of user requests at
execution time, as well as all files read and
written at compile time by the compiler. The
SCOPE 2 Record Manager processes all input/
output files.

Secondary Overlay -
The third level of overlays. A secondary over­
lay is called into memory by its associated
primary overlay. A secondary overlay can
reference entry points and common blocks in
both its associated primary overlay and the
main overlay.

Section -
CYBER Record Manager defines a section as a
division within a file with sequential organi­
zation. Generally, a section contains more
than one record and is a division within a
partition of a file. A section terminates with
a physical representation of a section boundary.
Section boundaries are described in table C-1.

The NOS and NOS/BE operating systems equate a
section with a system-logical-record of level 0
through 16 octal.

60481300 F

Sequential -
A file organization in which the location of
each record is defined only as occurring
immediately after the preceding record. A file
position is defined at all times, which speci­
fies the next record to be read or written.

Sequential Access Input/Output -
A method of input/output in which records are
processed in the order in which they occur on a
storage device.

Source Code -
Code written by the programmer in a language
such as FORTRAN, and input to a compiler.

Source Listing -
A compiler-produced listing, in a particular
format, of the user's original source program.

Specific Function Name -
The name of an intrinsic function that accepts
arguments of a particular data type, and
returns a result of a particular data type.

System-Logical-Record -
Under NOS/BE, a data grouping that consists of
one or more PRUs terminated by a short PRU or
zero-length PRU. These records can be trans­
ferred between devices without loss of
structure.

60481300 F

Unit Specifier -
An integer constant, or an integer variable
with a value of either 0 to 999, or an L format
logical file name. In input/output statements,
it indicates on which unit the operation is to
be performed. It is linked with the actual
file name by the PROGRAM statement or OPEN
statement.

Word Addressable -
A file organization in which the location of
each record is defined by the ordinal of the
first word in the record, relative to the
beginning of the file.

Working Storage Area -
An area within the user's field length, in­
tended for receipt of data from a file or
transmission of data to a file. Transmission
to or from a buffer intervenes, except for
buffer statements.

Zero-Byte Terminator -
12 bits of zero in the low order position of a
word that marks the end of the line to be
displayed at a terminal or printed on a line
printer. The image of cards input through the
card reader or terminal also has such a
terminator.

C-5

LANGUAGE SUMMARY D

The following symbols are used in the descriptions of the FORTRAN 5 statements:

v variable name, array name, or array element

sl statement label

iv integer variable

name symbolic name

u an integer expression with a value of 0 through 999, or
code file name in L format

fs format specifier

iolist input/output list

ios input/output status specifier

recn record number

Other symbols are defined individually in the statement descriptions.

ASSIGNMENT
v = arithmetic expression

character v = character expression

logical v = logical or relational expression

TYPE DECLARATION
INTEGER. v[,v) •••

REAL v[,v) •••

DOUBLE PRECISION v[,v) •••

COMPLEX v[, v) •••

LOGICAL v[,v) ••

CHARACTER [*length][,)v[*length][,v[*length]] •••

IMPLICIT type (ac [, ac] •••)[, type (ac [, ac] •••)] •••

ac

60481300 F

Is a single letter, or range of letters represented by the first and last
letter separated by a hyphen, indicating which variables are implicitly typed.

3-1

3-4

3-5

3-5

3-10

2-12

2-12

2-12

2-12

2-13

2-12

2-13

2-7

D-1

EXTERNAL DECLARATION
EXTERNAL name[,name] •••

INTRINSIC DECLARATION
INTRINSIC name[,name] •••

STORAGE ALLOCATION
type array(d)[,array(d)] •••

DIMENSION array(d)[,array(d)] •••

type

d

Is INTEGER, CHARACTER, ••• , REAL, COMPLEX, DOUBLE PRECISION, or LOGICAL.

Is one through seven array bound expressions separated by commas, as described
in section 2.

COMMON [/[name]/]nlist[[,]/[name]/nlist] •••

nlist Is a list of variables or arrays, separated by commas, to be included in the
common block.

DATA nlist/clist/[[,]nlist/clist/] •••

nlist

clist

Is a list of names to be initially defined. Each name in the list can take
the form:

variable

array

element

substring

implied DO list

Is a list of constants or symbolic constants specifying the initial values.
Forms for list items are described in section 2.

EQUIVALENCE (nlist)[,(nlist)] •••

nlist Is a list of variable names, array names, array element names, or character
substring names. The names are separated by commas.

PARAMETER (name=exp[,name=exp] •••)

exp Is a constant or constant expression.

SAVE [name[,name] •••]

FLOW CONTROL
GO TO sl

GO TO (sl[,sl] •••)[,]expression

GO TO iv[[,](sl[,sl] •••)]

ASSIGN sl TO iv

D-2

2-7

2-8

2-5

2-5

2-1

2-3

2-6

2-9

2-9

2-10

4-1

4-1

4-2

4-2

60481300 F

IF (arithmetic or ••••••••) sl 1, sl2, s13

IF (logical expression) statement

IF (logical expression) THEN

ELSE IF (logical expression) THEN

ELSE

END IF

DO sl [,]v=el ,e2 [,e3]

el,e2,e3 Are indexing parameters. They can be integer, real, double precision,
1111117775 ' t symbolic constants, variables, or expressions.

PAUSE [n]

STOP [n]

n Is a string of 1 through 5 digits, or a character constant.

END

MAIN PROGRAM

SUBPROGRAM
SUBROUTINE name[(argument[,argument] •••)]

[type]FUNCTION name([argument[,argument]] •••)

or

type Is • p-, CHARACTER, INTEGER, REAL, COMPLEX, DOUBLE PRECISION, or LOGICAL.

BLOCK DATA[name]

STATEMENT FUNCTION
name([argument[,argument]] •••)=expression

SUBROUTINE CALL
CALL name[(argument[,argument] •••)]

FUNCTION REFERENCE
name({argument,[argument]] •••)

60481300 F

4-3

4-3

4-3

4-4

4-4

4-4

4-6

4-9

4-10

4-10

6-3

6-4

6-5

6-13

6-8

6-5

6-6

D-3

ENTRY POINT
ENTRY name[(argument[,argument] •••)]

RETURN
RETURN [expression]

FORMATTED INPUT/ OUTPUT

READ (u,FMT=fn [,IOSTAT=ios}[,ERR=sl][,END=sl}) [iolist}
{

u,fn }

UNIT=u,FMT=fn

READ fn[,iolist]

{
u,fn }

WRITE (u,PMT=fn [,IOSTAT=ios][,ERR=sl}) [iolist]
UNIT=u,FMT•fn

PRINT fn[,iolist]

UNFORMATTED INPUT /OUTPUT
READ ([UNIT=]u[,IOSTAT=ios][,ERR=sl][,END=sl]) [iolist}

WRITE ([UNIT=]u[,IOSTAT=ios][,ERR=sl]) [iolist]

LIST DIRECTED INPUT/OUTPUT

READ ({ ::~=* } [, IOSTAT=ios] [,ERR=sl] [,END=sl]) [iolist}
UNIT=u, FMT=*

READ *[,iolist]

WRITE ({ ::~T=* } [,IOSTAT=ios][,ERR=sl]) [io-list]
UNIT=u,FMT=*

PRINT *[,iolist]

DIRECT ACCESS INPUT/OUTPUT

{
u,fn }

READ (u,FMT=fn [,IOSTAT=ios][,ERR=sl][,REC=recn]) [iolist]
UNIT=u,FMT-fn

{
u,fn }

WRITE (u,FMT=fn [,IOSTAT=ios][,ERR=sl][,REC=recn]) [iolist]
UNIT=u, FMT=fn

D-4

6-6

6-7

5-25

5-25

5-26

5-26

5-26

5-27

5-27

5-27

5-27

5-29

5-29

5-29

5-1

5-1

60481300 F

FORMAT SPECIFICATION
sl FORMAT (flist)

flist Is a list of items, separated by commas, having the following forms:

60481300 F

[r)ed
ned
[r] (flist)

ed

ned

r

Is a repeatable edit descriptor.

Is a nonrepeatable edit descriptor.

Is a nonzero unsigned integer constant repeat specification.

5-30

5-31

5-31

5-32

5-32

5-32

5-35

5-35

5-42

5-42

5-5

D-5

EDIT DESCRIPTORS
srEw.d

srEw.dEe

srFw.d

srDw.d

srGw.d

srGw.dEe

riw

riw.m

rLw

rA

rAw

rRw

BN

BZ

SP

SS

s

nX

Tn

TRn

TLn

nH

I

D-6

s Is

r Is

w Is

d Is

e Is

m is

n is

an

an

an

an

an

an

Single precision floating-point with exponent.

Single precision floating-point with specified exponent length.

Single precision floating-point without exponent.

Double precision floating-point with exponent.

Single precision floating-point with or without exponent.

Single precision floating-point with or without specified exponent length.

Decimal integer.

Decimal integer with specified minimum number of digits.

Logical.

Character with variable length.

Character with specified length.

Rightmost characters with binary zero fill.

Blanks ignored on numeric input.

Blanks treated as zeros on numeric input.

+characters produced on output.

+ characters suppressed on output.

+ characters suppressed on output.

Skip n spaces.

Tabulate to nth column.

Tabulate forward.

Tabulate backward.

Hollerith or character string output.

Hollerith or character string output.

Format control.

End of FORTRAN record.

optional scale factor of the form kP.

optional repetition factor.

integer constant indicating field width.

integer constant indicating digits to right of decimal point.

integer constant indicating digits in exponent field.

integer constant indicating minimum number of digits in field.

a positive nonzero decimal digit.

5-11

5-11

5-13

5-9

5-15

5-15

5-15

5-15

5-17

5-7

5-7

5-18

5-17

5-17

5-21

5-21

5-9

5-9

5-19

5-19

5-19

5-21

5-19

5-19

5-19

5-15

5-8

5-8

5-21

5-13

60481300 F

FILE POSITIONING
BACKSPACE ([UNIT=]u[,IOSTAT=ios][,ERR=sl])

BACKSPACE u

REWIND ([UNIT=]u[,IOSTAT=ios][,ERR=sl])

REWIND u

ENDFILE ([UNIT=]u[,IOSTAT=ios][,ERR=sl])

ENDFILE u

FILE STATUS

. OPEN ([UNIT=]u[,IOSTAT=ios] [,ERR=sllll.·.·_··_f_~.~~--~-J __ ·.·_in] [,STATUS=sta] [,ACCESS=acc] [,FORM=fm]
[,RECL=rl] [,BLANK=blnkL· . ,,,.all)

INQUIRE (o~~~;i~} [,IOSTAT=ios][,ERR=sl]

[,EXIST=ex][,OPENED=od][,NUMBER=num][,NAMED=nmd][,NAME=fn][,ACCESS=acc]
[,SEQUENTIAL=seq][,DIRECT=dir][,FORM=fm][,FORMATTED=FMT][,UNFORMATTED=unf]
[,RECL=fcl][,NEXTREC=nr][,BLANK=blnk])

CLOSE ([UNIT=]u[,IOSTAT=ios][,ERR=sl][~STATUS=sta])

5-44

5-44

5-43

5-43

5-44

5-44

5-36

5-39

5-38

9-4

9-4
(Also see CYBER Loader reference manual)

9-5

9-5

9-6

9-6

60481300 F D-7

C$ DIRECTIVES E

In sequenced mode the

A

60481300 G E-1

E-2 60481300 F

60481300 F E-3

E-4 60481300 F

INPUT /OUTPUT IMPLEMENTATION F

This section describes the structure of files read
and written by FORTRAN 5. All files read and
written as a result of user requests at execution
time are processed through Record Manager. The
files read and written at compile time by the
compiler itself (including source input, coded
output, and binary output) are processed by operat­
ing system routines when compilation is under NOS
or NOS/BE, and by SCOPE 2 Record Manager when
compilation is under SCOPE 2.

EXECUTION-TIME INPUT/ OUTPUT
All input and output between a file referenced in a
program and the file storage device is under con­
trol of Record Manager. The version of Record
Manager used depends on the operating system.

NOS and NOS/BE use CYBER Record Manager Basic
Access Methods (BAM), encompassing sequential and
word addressable file organizations, for standard
input/output statements, and CYBER Record Manager
Advanced Access Methods (AAM) for indexed sequen­
tial, direct access, and actual key file organiza­
tions, and multiple-index capability, through the
CYBER Record Manager interface routines.

SCOPE 2 uses the SCOPE 2 Record Manager for all
input/output.

CYBER Record Manager can be called directly, as
described in section 8, to use the extended file
structure and processing available. SCOPE 2 Record
Manager cannot be called directly from the FORTRAN
5 compiler. This appendix deals only with Record
Manager processing that results from standard
language use.

File processing is governed by values compiled into
the file information table (FIT) for each file. If
a file or its FIT is changed by other than standard
FORTRAN input/output statements, subsequent FORTRAN
input/output to that file may not function correc­
tly. Thus, it is reconnnended that the user not try
to use both standard FORTRAN and nonstandard input/
output on the same file within a program.

FILE AND RECORD DEFINITIONS

A file is a collection of records referenced by its
logical file name. It begins at beginning-of­
information and ends with end-of-information. A
record is data created or processed by:

One execution of an unformatted READ or WRITE

60481300 F

One card image or a print line defined within a
formatted, list directed, or namelist READ or
WRITE

One call to READMS or WRITMS

One execution of BUFFER IN or BUFFER OUT

On storage, a file can have records in one of eight
formats (record types) defined to Record Manager.
Only four of these are part of standard processing:

z

w

Record is terminated by a 12-bit zero byte
in the low order byte position of a 60-bit
word.

Record length
word prefixed
Manager.

is contained in
to the ~cord

a control
by Record

U Record length is defined by the user.

S System logical record.

The remaining types can be formatted within a
program under user control and written to a device
using a WRITE statement if the FILE control state­
ment is used to specify another record type. Simi­
larly, these types can be read by a READ statement.

The user is responsible for supplying record length
information appropriate to each type before a write
and for determining record end for a read. For
example, a D type record requires a field within
the record to specify record length, and F type
records require that the user READ/WRITE exactly FL
characters in each record.

Unformatted READ and WRITE are implemented through
the GETP and PUTP macros of Record Manager; conse­
quently, record operations must conform to macro
restrictions. Specifically, RT=R and RT=Z cannot
be specified for unformatted operations.

Direct access I/O must be done with RT=U. RT=U is
the default.

STRUCTURE OF INPUT /OUTPUT FILES

FORTRAN 5 sets certain values in the file infor­
mation table depending on the nature of the
input/output operation and its associated file
structure. Table F-1 lists these values for their
respective FIT fields; all except those marked with
an asterisk (*) can be overridden at execution time
by a FILE control statement. (Numbers in paren­
theses refer to notes listed following the table.)

F-1

TABLE F-1. DEFAULTS FOR FIT FIELDS

Fonnatted,
FIT Fields NAMELIST, and Unfonnatted BUFFER IN/ Mass Storage Direct Access

List Directed Sequential I/O F onnatted
Meaning Mnemonic Sequential READ/WRITE BUFFER OUT Input/Output and Unfonnatted

READ/~ITE

CIO buffer size (words) (1) BFst (1) (1) (1) (1) (1)

Buffer Below Highest BBH 0 0 n/a 0 0
Address

Block type BT ct /(9)tt 1t /(9)tt ct /(9)tt n/a C*

Close flag {positioning CF N* N* N* N*t /R*tt N*
of file after close)

Length in characters of CL 0 0 0 n/a n/a
record trailer count
field (T type records
only)

Conversion mode CM YEst /Nott NO (2) n/a n/a

Beginning character CP 0 0 0 n/a n/a
position of trailer
count field, numbered
f ran zero {T type
records only)

Length field (D type cit NO NO NO n/a n/a
records) or trailer
count field (T type
records) is binary

Type of information to DFct 3 3 3 3 3
be listed in dayfile

Type of information to EFCt 0 0 0 0 0
be listed on error file

Error options EO AD AD AD AD AD

Trivial error limit ERL 0 0 0 0 0

Fatal Flush Ff t 0 0 n/a 0 0

Length in characters Flt 150(5)* n/a n/a n/a n/a
of an F or Z type
record (same as MRL)

File organization FO SQ * SQ * SQ * WA * WA *

Character length of HL 0 0 0 n/a n/a
fixed header for T
type records

Length of user's
area (number of

label (7) LBL 0 * 0 * 0 * n/a n/a

characters)

Logical file name LFN (3) (3) (3) (3) (3)

Length in characters of LL 0 0 0 n/a n/a
record length field
(D type records)

F-2 60481300 G

TABLE F-1. DEFAULT'$ FOR FIT FIELDS (Contd)

Formatted,
FIT Fields NAMELIST, and Unformatted BUFFER IN/ Mass Storage Direct Access

List Directed Sequential I/O Formatted
Meaning Mnemonic Sequential READ/WRITE BUFFER OUT Input/Output and Unformatted

READ/WRITE

Beginning character LP 0 0 0 n/a n/a
position of record
length, numbered from
zero (0 type records)

Label type (7) LT ANY ANY ANY n/a n/a

Maximum block 1 ength MBL 0 0 0 n/a n/a
in characters

Minimum b 1 ock length MNBt 0 0 0 n/a n/a
in characters

Minimum record length MNRt 0 0 0 n/a n/a
in characters

Maximum record length (S) MRL n/a 223-1 (8) * n/a n/a
in characters

Multiple of characters Kilt 2 2 2 n/a n/a
per K, E type block

Open flag (positioning
of file after open)

(7) OF N* N* N* N* t;Rtt* N*

Padding character for pct 76B 76B 76B n/a n/a
K, E type blocks

Processing direction PO IO IO IO IO IO

Number of records per RB 1 1 1 n/a n/a
K type block

Record mark character RMK 62B
(R records)

n/a 62B n/a n/a

Record type RT zt 1wtt(10) W(6) st;wtt u u *

Length field (D type
records) or trailer

sBt NO NO NO n/a n/a

count field (T type
records) has sign
over punch

Suppress buffering SB Ft NO* NO* YES(11) NO* NO*

Suppress read ahead SPR NO NO NO n/a n/a

Character length of TL 0 0 0 n/a n/a
trailer portion of
T type records

User label processing (7) ULP NO NO NO NO n/a

End of volume flag VF u u u u u
(positioning of file
at volume CLOSEM time)

60481300 F F-3

TABLE F-1. DEFAULTS FOR FIT FIELDS (Contd)

Notes:

n/a FIT field not applicable to this input/output mode.

* Default cannot be overridden by a FILE control statement.

(1) Buffer size can be declared on the PROGRAM statement, OPEN statement, or FILE control
statement. Otherwise, CRM chooses the buffer size according to device type. Buffer is
allocated on the first 1/0 operation and deallocated when the file is closed.

(2) Set by parity designator in BUFFER IN or BUFFER OUT statement.

{3) Set by PROGRAM statement, OPEN statement, or execution control statement.

(4) Set by CYBER Record Manager.

(5) Default can be changed on PROGRAM or OPEN statement. For formatted, NAMELIST, and list directed
READ/WRITE statements, a FILE control statement can decrease but not increase the maximum record
length declared on the PROGRAM statement. This restriction applies to programs run in static
mode.

(6) Default can be overridden by a FILE control statement only if RT~ R and RT~ Z. For RT=F, FL
must be a multiple of 10.

(7) The LABEL subroutine (section 7) sets LBL=SO, LT=ST, OF=R, and ULP=F.

(8) Maximum record length equal to length of record specified in BUFFER IN or BUFFER OUT statement.

{9) Unblocked if mass storage file; I if tape file.

(10) Default can be overridden by FILE control statement only if RT iE U.

(11) On a CYBER 170 Model 176, SBF must be set to NO on a FILE control statement if a level 2 or
3(LCM) variable is used in a buffer statement.

tt
tApplies to NOS and NOS/BE only.
Applies to SCOPE 2 only.

Sequential Files

The following information is valid, unless the FIT
field is overriden by a FILE control statement.

With READ and WRITE statements, the record type
(RT) depends on whether the access is formatted or
unformatted (applies only to NOS and NOS/BE). A
formatted WRITE produces RT=Z records, with each
record terminated by a system-supplied zero byte in
the low order bits of the last word in the record.
An unformatted WRITE produces RT=W records, in
which each record is prefixed by a system-supplied
control word. Blocking is type C for formatted and
I for unformatted records. The files named INPUT,
OUTPUT, and PUNCH always have record type Z and
block type C. These files should only be processed
by formatted, list directed, and namelist input/
output statements.

On SCOPE 2 only with READ and WRITE statements, the
record type is W for all file types; blocking is I
for tape files, and unblocked for all other files.

F-4

PRINT and PUNCH statements produce Z type records
with C type blocks or on SCOPE 2 only, W type
records unblocked for processing on unit record
equipment.

BUFFER IN and BUFFER OUT assume S type records or,
on SCOPE 2 only, W type records. Format ting is
determined by the parity designator in each BUFFER
statement. An unformatted operation does not
convert character codes during tape reading or
writing (CM=NO), while a formatted operation does.

The ENDFILE statement writes a boundary condition
known as an end-of-partition. When this boundary
is encountered during a read, the EOF function
returns end-of-file status. An end-of-partition
may not necessarily coincide with end-of­
information, however, and reading can continue on
the same file until end-of-information on the file
has been encountered.

End-of-partition is written as the file is closed
during program termination. A third boundary for
sequential files, a section, is not recognized
during reading except for the special case of the
file INPUT.

60481300 G

Mass Storage Input/ Output

Files created by the random mass storage routines
OPENMS, WRITMS, STINDX, and CLOSMS described in
section 7 are word addressable files. The master
index, which is the last record in the file, is
created and maintained by FORTRAN routines rather
than Record Manager routines.

One WRITMS call creates one U type record; one
READMS call reads one U type record. If the length
specified for a READMS is longer than the actual
record, the excess locations in the user area are
not changed by the read. If the record is longer
than the length specified for a READMS, the excess
words in the record are skipped.

Direct Access Input/Output

Files created by direct access READ and WRITE
statements are word addressable files. There is no
index. Except where the format specifies multiple
records, one direct access WRITE creates one U type
record and one direct access READ reads one U type
record.

FILE CONTROL STATEMENT

The FILE control statement provides a means to
override FIT field values compiled into a program
and consequently a means to change processing
normally supplied for standard input/output. In
particular, it can be used to read or create a file
with a structure that does not conform to the
assumptions of default processing.

A FILE control statement can also be used to
supplement standard processing. For example,
setting DFC can change the type of Record Manager
information listed in the dayfile.

At execution time, FILE control statement values
are placed in the FIT when the referenced file is
opened. These values have no effect if the execu­
tion routines do not use the fields referenced.
Furthermore, FORTRAN routines may, in some cases,
reset FIT fields after the FILE control statement
is processed. These fields are noted in table F-1.

The format of the FILE control statement is shown
in figure F-1.

FILE(lfn,field=value[,field=value] ...)

lfn

field

value

Is the file name as it appears on the
execution control statement; if file name
does not appear there, then lfn is file name
as it appears in the PROGRAM or OPEN
statement.

Is a FIT field mnemonic.

Is a symbolic or integer value.

Figure F-1. FILE Control Statement

60481300 F

The FILE control statement can appear anywhere in
the control statements prior to program execution,
but it must not interrupt a load sequence.

This deck shown in figure F-2 illustrates the use
of the FILE control statement to override default
values supplied by the FORTRAN compiler. Assuming
the source program is using formatted writes and
100-character records are always written, the file
is written on magnetic tape with even parity, at
800 bpi. No labels are recorded, and no informa­
tion is written except that supplied by the user.
The following values are used:

Block type = character count

Record type = fixed length

Record length 100 characters

Conversion mode = YES

SEQUENTIAL FILE OPERATIONS

The sequential file operations are BACKSPACE/REWIND
and ENDF ILE.

Backspace/ Rewind

Backspacing on FORTRAN files repositions them so
that the previous record becomes the next record.

BACKSPACE is permitted only for files with F, S, or
W record type or tape files with one record per
block.

The user should remember that formatted input/output
operations can read/write more than one record;
unformatted input/output and BUFFER IN/OUT read/
write only one record.

The REWIND operation positions a magnetic tape file
so that the next FORTRAN input/output operation
references the first record. A mass storage file
is positioned to the beginning-of-information.

Table F-2 details the actions performed prior to
positioning.

ENDFILE

Tables F-3 and F-4 indicate the action taken when
an ENDFILE statement is executed. The action
depends on the record and block type, as well as
the device on which the file resides.

F-5

I

r6 I 7
8 L
9 L

L [Data Deck

11 l 8
I-

L
9 I FORTRAN source program---L

L
F1

~ 8

9

L LGO.

L FILE(TAPE1,BT=C,RT=F,FL=100,CM=YES)

L REOUEST(TAPEl,MT,HY,VSN=HAVEN)

{FTN5,ET.

t Accounting statements

f Job statement

t As required by the operating system.
tt Format applicable to NOS/BE.

I--

t--

~

1--

Figure F-2. FILE Control Statement Example

I-'

"""" I-'

I--

""""

INPUT /OUTPUT RESTRICTIONS Attempting to write a noise record on an S or L
tape. This can occur with block types . K and E
(and C for SCOPE 2) using record types F,D,R,T,
or U with MNB<noise size. Meaningful results are not guaranteed in the

following circumstances:

F-6

Mixed formatted and unformatted read or write
statements and buffer input/output statements
on the same file (without an intervening
REWIND, ENDFILE, or without encountering an
end-of-file as determined by the EOF Function).

Requesting a LENGTH function or LENGTHX call on
a buffer unit before requesti~. a UNIT function.

Two consecutive buffer input/output statements
on the same file without the intervening
execution of a UNIT function call.

Writing formatted records on a 7-track S or L
tape without specifying CM=NO on a file control
statement.

Writing F-type records with namelist or list­
directed output.

Sequential I/O operations REWIND, BACKSPACE,
and ENDFILE on a direct access file.

RECORD MANAGER ERROR SUPPRESSION

For formatted, namelist, and list directed sequen­
tial reads, a default WSA size of 150 characters,
the RECL= parameter value of an OPEN statement, or
the record length parameter on the PROGRAM state­
ment is passed to the record manager as the maximum
record length (MRL).

If the record read from the file exceeds the MRL,
record manager raises an RM142 error condition and
posts a message to the job's dayfile.

In common FORTRAN usage this error condition is
suppressed by runtime input processing routines.
However, the informative RM142 dayfile message
already generated by record manager cannot be
suppressed.

60481300 H

Condition

Last operation was
WRITE or BUFFER OUT

TABLE F-2. ACTION BEFORE POSITIONING FOR BACKSPACE/REWIND

Device Type

Mass Storage

Action

Any unwritten blocks for the file are written. An
end-of-partition is written. If record format is w. a deleted
zero length record is written.

Unlabeled Magnetic Tape Any unwritten blocks for the file are written. If record
format is w. a deleted zero length record is written. Two
file marks are written.

Labeled Magnetic Tape Any unwritten blocks for the file are written. If record
format is W, a deleted record is written. A file mark is
written. A single EOF label is written. Two file marks are
written.

Last operation was Mass Storage
WRITE or BUFFER OUTtt

ENDFILE is issued. Any unwritten blocks for the file are
written. End-of-information is written.

Unlabeled Magnetic
S or L Tape

Labeled Magnetic Tape
or Unlabeled System
Magnetic Tape

Mass Storage

ENDFILE is issued. Any unwritten blocks for the file are
written. Two file marks are written.

ENDFILE is issued. Any unwritten blocks for the file are
written. A tape mark is written. A single EOF label is
written. Two tape marks are written.

None. Last operation was
READ. BUFFER IN or
BACKSPACE Unlabeled Magnetic Tape None.

Labeled Magnetic Tape

No previous operation All Devicest

Previous operation
was REWIND

Mass Storagett

Magnetic Tapett

tApplies to NOS and NOS/BE only •
. tt App 1 i ed to SCOPE 2 only.

None.

REWIND request causes the file to be rewound when first
referenced.

If the file is assigned to on-line magnetic tape, a REWIND
request is executed. For SCOPE 2, if the file is staged, the
REWIND request has no effect. The file is staged and rewound
when it is first referenced.

Current REWIND is ignored.

TAB~E F-3. ENDFILE ACTION (NOS and NOS/BE}

Record Type
Device Type

S or L Tape Other Device

w An end-of-partition flag is written. An end-of-partition flag is written.

The block is terminated. The block is terminated with a short PRU
of level 0.

Other The block is terminated. The block is terminated with a short PRU
of level 0.

A tape mark is written. A zero length PRU of level 17 is written.

60481300 C F-7

Record Type

w

z

s

Others
on Mass
Storage

Others
on Magnetic
Tape

TABLE F-4. ENDFILE ACTION (SCOPE 2)

Blocking

Blocked

An end-of-partition flag is written.

The block is terminated.

If C type blocking, the block is
terminated. Otherwise, the block is ter­
minated and a tape mark recovery control
word is written.

If C type blocking, the block is
terminated with a zero length PRU of
level 17. Otherwise, the block is termi­
nated and a tape mark recovery control
word is written.

The block is terminated. A tape mark
recovery control word is written.

The block is terminated. A tape mark is
written.

Unblocked

An end-of-partition flag is written.

A level 17 PRU is written.

Not applicable.

Ignored.

Not applicable.

COMPILE-TIME INPUT /OUTPUT a FILE control statement should not be used since
the compiler overrides file information table
settings after this control statement is processed.
Under NOS and NOS/BE, the compiler makes direct
calls to the operating system for input/output; CRM
is not used.

The compiler expects source input files to have
certain characteristics and it produces coded and
binary files which must be structured in specific
ways according to the operating system under which
it runs. A program compiled under SCOPE 2 must be
executed under control of SCOPE 2; a program
compiled under other operating systems cannot be
executed under SCOPE 2. Programs compiled under
NOS or NOS/BE can be executed under either of these
operating systems.

Under SCOPE 2, the compiler uses SCOPE 2 Record
Manager for all input/output operations. However,

SOURCE INPUT FILE STRUCTURE

A source input file must have a certain structure.
Only the first 90 characters of each record are
processed or reproduced in the listing output
file. The characteristics are described in table
F-5.

TABLE F-5. SOURCE INPUT FILE STRUCTURE

File NOS/BE and NOS SCOPE 2 Characteristics

File organization Sequential operating system default format with file Sequential (FO=SQ)
terminated by a short or zero length PRU unblocked

Record type Zero-byte terminated Control word {RT=W)

Maximum record 158 characters 158 characters
length (MRL=l58)

Conversion mode Not applicable No (CM=NO)

Label type of Under operating system control Unlabeled (LT=UL)
tape

F-8 60481300 F

CODED OUTPUT FILE STRUCTURE BINARY OUTPUT FILE STRUCTURE

Two coded output files can be produced: the list­
ing file and the errors file. The characteristics
are described in table F-6.

The content of the executable object code file
differs, depending on the loader supported by the
operating system. The characteristics are des­
cribed in table F-7.

File
Characteristics

File organization

Maximum block
length

Record type

Maximum record
length

Conversion mode

Tape label type

File
Characteristics

File organization

Record type

Maximum record
length

Conversion mode

Tape label type

60481300 F

TABLE F-6. CODED OUTPUT FILE STRUCTURE

NOS/BE and NOS

Sequential operating system default format with file
terminated by a short PRU

Not app l i cable

Zero-b~te terminated (equivalent to Record Manager
Z type)

137 characters

Not app l i cable

Under operating system control

TABLE F-7. BINARY OUTPUT FILE STRUCTURE

NOS/BE and NOS

Sequential operating system default format with file
terminated by a zero length PRU which is then back­
spaced over

Operating system logical record (equivalent to
Record Manager S type)

None

Not applicable

Under operating system control

SCOPE 2

Sequential (FO=SQ)
unblocked

None

Control word (RT=W)

137 characters

No (CM=NO)

Unlabeled
(LT=UL)

SCOPE 2

Sequential (FO=SQ)
unblocked

Control word
(RT=W)

1, 310' 710
characters

No (CM=NO)

Unlabeled (LT=U)

F-9

FUTURE SYSTEM MIGRATION GUIDELINES G

This appendix contains programming practices recom­
mended by CDC for users of the software described
in this manual. When possible, application pro­
grams based on this software should be designed and
coded in conformance with these recommendations.

Two forms of guidelines are given. The general
guidelines minimize application program dependence
on the specific characteristics of a hardware
system. The feature use guidelines ensure the
easiest migration of an application program to
future hardware or software systems.

GENERAL GUIDELINES
Progranmers should observe the following practices
to avoid hardware dependency:

Avoid programming hardcoded constants. Mani­
pulation of data should never depend on the
occurrence of a type of data in a fixed mul­
tiple such as 6, 10, or 60.

Do not manipulate data based on the binary
representation of that data. Characters should
be manipulated as characters, rather than as
octal display-coded values or as 6-bit binary
digits. Numbers should be manipulated as
numeric data of a known type, rather than as
binary patterns within a central memory word.

Do not identify or classify information based
on the location of a specific value within a
specific set of central memory word bits.

Avoid using COMPASS in application programs.
COMPASS and other machine-dependent languages
can complicate migration to future hardware or
software systems. Migration is restricted by
continued use of COMPASS for stand-alone
programs, by COMPASS subroutines embedded in
programs using higher-level languages, and by
COMPASS owncode routines in CDC standard
products. COMPASS should only be used to
create part or all of an application program
when the function cannot be performed in a
higher-level language or when execution
efficiency is more important than any other
consideration.

Avoid using NOS PF subroutines due to antici­
pated changes to this feature in the future.

FEATURE USE GUIDELINES
The recommendations in the remainder of this
appendix ensure the easiest migration of an appli­
cation program for use on future hardware or soft­
ware systems. These recommendations are based on
known or anticipated changes in the hardware or
software system, or comply with proposed new
industry standards or proposed changes to existing
industry standards.

60481300 F

ADVANCED ACCESS METHODS

The Advanced Access Methods (AAM) off er several
features within which choices must be made. The
following paragraphs indicate preferred usage.

Access Methods

The recommended access methods are indexed sequen­
tial (IS), direct access (DA), and multiple index
processor (MIP).

Record Types

The recommended record types are either F for fixed
length records, or W for variable length records.
Record length for W records is indicated in the
control word; the length must be supplied by the
user in the RL FIT field on a put operation and is
returned to the user in RL on a get operation.

FORTRAN Usage

The following machine-independent coding practices
are encouraged for a FORTRAN programmer using AAM:

Initialize the FIT by FILExx calls or by the
FILE control statement.

Modify the FIT with STOREF calls.

Use the FORTRAN 5 CHARACTER data type when
working with character fields rather than octal
values of display code characters; specify
lengths of fields, records, and so forth, in
characters rather than words.

BASIC ACCESS METHODS

The Basic Access Methods (BAM) offer several
features within which choices must be made. The
following paragraphs indicate preferred usage.

File Organizations

The recommended file organization is sequential
(SQ). For files with word-addressable (WA) organi­
zation, use an accessing technique that can easily
be modified to byte addresses.

Block Types

The recommended block type is C.

Record Types

The recommended record types are F for fixed length
records and W for variable length records. For
purely coded files that are to be listed, Z type
records can be used.

G-1

Block Size

Set the Maximum Block Length (MBL) to 640 char­
acters for mass storage files and 5120 characters
for tape files.

Host Language Input/Output

Use of host language input/output statements (for
example, a FORTRAN READ statement) to process BAM
files is always a safe procedure. Host language
statements provide appropriate default values for
record type, block type, and block size. Do not
use the CYBER Record Manager FORTRAN interface
routines to process sequential files.

Collating Sequence

The default collating sequence or the ASCII collat­
ing sequence should be used.

FORTRAN 5

FORTRAN 5 offers users several capabilities that
are processor-dependent. The use of such capabili­
ties restrict FORTRAN 5 program migration. The
following paragraphs indicate preferred usages.

Processor-dependent Values

Coding should not depend on the internal represen­
tation of data (floating-point layout, number of
characters per word, and so forth). Where coding
must depend on these representations, use parameter
variables for processor-dependent characteristics
such as the number of characters per word.

Boolean Data Types

Do not use Boolean data types and operations
(SHIFT, MASK, and so forth) because they can be
processor-dependent. Use type CHARACTER instead,
if working with character data.

LOCF Function

Do not use the intrinsic function LOCF. For most
applications, this function should not be necessary.

ENCODE and DECODE Statements

Do not use ENCODE and DECODE; use the ANSI standard
internal files feature instead. ENCODE and DECODE
are generally dependent on the number of characters
per word.

DATE, TIME, and CLOCK Functions

Do not dismantle values returned by the DATE, TIME,
and CLOCK functions; use these functions only for
printing out values as a whole.

G-2

BUFFER IN and BUFFER OUT Statements

Do not use BUFFER IN and BUFFER OUT, especially
when use depends on the number of characters per
word.

Common Memory Manager Interface Routines

Avoid use of these routines because they are
processor-dependent and inhibit portability.

CYBER Record Manager Interface Routines

Do not use the CYBER Record Manager interface
routines for sequential files. Instead, use
FORTRAN input/output statements such as READ or
WRITE.

Overlays

If possible, use segmented loading instead. If
overlays must be used, do not depend on such
properties as reinitialization of variables when an
overlay is reloaded.

LABEL Subroutine

Avoid use of the LABEL subroutine. Changes to the
ANSI standard for tape labels might require changes
to the interface used by this subroutine.

STATIC Memory Management and
Capsule Loading

Do not use this capability unless absolutely neces­
sary. Use of OVCAPs is preferred.

The user must be thoroughly aware of the capsules
needed to perform the types of I/O operations
required. It is the user's responsibility to ensure
that the capsules are loaded by explicitly specify­
ing the appropriate STLxxx subroutine call. Only
default block and record types are supported by the
STLxxx subroutines. To force load nondefault block
type/record type handling of capsules, the user must
use the following control statement sequence:

FILE,lfn, ••• ,RT= ••• ,BT= ••• ,USE= •••
LDSET(STAT=lfn)

SORT/ MERGE VERSIONS 4 AND 1

Sort/Merge offers several features among which
choices must be made. The following paragraphs
indicate preferred usage.

Key Alignment

Ensure that SORT keys are aligned on character or
word boundaries. Do not place SORT keys in arbi­
trary bit positions within words.

SORT and MERGE Statements

Always perform logically separated SORT and MERGE
operations with separate control statements.

,
60481300 G

A edit descriptor 5-7
Abort, recovery 7-15
ABS 7-7
ACOS 7-7
Actual arguments 6-10
Adjustable dimensions 6-11
AIMAG 7-7

I
AIN'f 7-7
AL 11-2
ALOG 7-7
ALOGlO 7-7
Alternate return 6-8
AMAXO 7-7
AMAX! 7-7
AMINO 7-7
AMINI 7-7
AMOD 7-7
AND 7-7
ANINr 7-7

I ANSI diagnostics 11-2. 1
Apostrophe

I

Character constant 1-1, 1-7
In FORMAT specification 5-8

Argument list format 8-29
Argl.Dllents

Actual 6-10
Dummy or formal 6-10

Arithmetic
Assignment 3-9
Expressions 3-1
IF statement 4-3
Operators 3-2

Arrays
And Substrings 1-12
Assumed-size 1-10, 6-12
Dimensions 1-9
Element location 1-11
EQUIVALENCE 2-6
In subprogram 6-12
NAMELIST 5-30
Structure 1-10
Subscripts 1-10
Transmission 6-12
Type statements 1-9, 2-11

ASIN 7-7
ASSIGN statement 4-1
Assigned GO TO 4-2
Assignment statements

Arithmetic 3-9
Boolean 3-9
Character 3-9
Logical 3-9
Multiple 3-10
Statement label 4-1

Asterisk
Arguments 6-11
Comnent 1-2
In SUBROUTINE statement 6-12
Multiplication 3-2

ATAN 7-7
ATANH 7-7
ATAN2 7-8

BACKSPACE 5-44
Batch job files 5-2

60481300 H

INDEX

Binary
I/O, see Unformatted input/output 5-26
Program execution 11-1, 11-3, 11-26

Blank Common 2-1
Block

Common 2-1, 6-12
Data subprogram 6-13

Block IF
Nested 4-5
Statement 4-3
Structures 4-4

BN edit descriptor 5-9
BOOL 7-8
Boolean

Constants 1-6
Expressions 3-4
Type statement 2-13
Variables 1-8

BOOLEAN statement 2-13
Buffer

In OPEN statement 5-36
In PROGRAM statement 6-2
Input/output 5-32

BUFFER IN statement 5-34
BUFFER OUT statement 5-35
BZ edit descriptor 5-9

C comment line 1-2
CABS 7-8
CALL statement 6-5
Calling

Overlay 9-4
Subroutine 6-5, 6-10

Carriage control 5-9
ccos 7-8
CEXP 7-8
CHAR 7-8
Character

Arguments 6-10
Constants 1-7
DATA initialization 2-5
Editing 5-7
Expressions 3-5
String 5-8
Substrings 1-11
Type statement 2-13
Variables 1-8

Character set
CDC 1-1, A-1
FORTRAN 1-2, A-1

CHARACTER statement 2-13
CHEKPTX 7-15
CLOCK 7-14
CLOG 7-8
CLOSE statement 5-38
CLOSEMS 7-23
CMPLX 7-8
Collation control 7-30, 7-31, E-3
COLSEQ 7-31
Column usage 1-2
Comment line 1-2
Common

And equivalence 2-6
Overlay communication 9-2

Index-I

I

Common (Contd)
Statement 2-1
Usage 2-1, 6-12

Conanon Memory Manager 8-1, 8-24
COMMON statement 2-1
COMPASS

Calling sequence 8-28
Program entry points 8-29
Subprogram 8-28

Compilation
Control statement 11-1
Listings 11-12
Optimization 11-7

Compile-time diagnostics B-1
Compiler

Call 11-1
Diagnostics B-1
Directive E-1
Output listings B-1, B-28
Supplied functions 7-1

COMPL 7-8
Complex

Constants 1-6
Editing 5-7
Type statement 2-12
Variables 1-8

COMPLEX statement 2-12
Computed GO TO 4-1
Concatenation 3-5

I Conditional compilation E-1
CONJG 7-8
CONNEC 7-20
Constants

Boolean 1-6
Character 1-7
Complex 1-6
Double precision 1-5
Hexadecimal 1-7
Hollerith 1-7
Integer 1-4
Logical 1-6
Octal 1-7
Real 1-5
Symbolic 1-4, 2-11
Types of 1-4

Continuation line 1-2
CONTINUE statement 4-8
Control

Carriage 5-9
Column 5-19
Listing 5-27

Control statement
DEBUG 10-1
EXECUTION 11-27
FILE F-5
FTN5 11-1

Conversion
Data on input/output 5-7
Mixed mode 3-2, 3-9
Specification for input/output 5-5

cos 7-8
COSD 7-8
COSH 7-8

I CRM utilities 8-16
Cross-reference map 11-13, 11-22
CSIN 7-8
CSOWN 7-32
CSQRT 7-9
CYBER Database Control System 8-30
CYBER Interactive Debug 10-1
CYBER Record Manager

Call syntax 8-6
File handling - F-1
File information table 8-6
File processing 8-6

Index-2

CYBER Record Manager (Contd)
Interface 8-1, 8-5
Utilities 8-16

C$ Directives 1-3, E-1

D edit descriptor 5-9
DABS 7-9
DACOS 7-9
DASIN 7-9
Data conversion
DATA statement
DATAN 7-9
DATAN2 7-9
DATE 7-14
Dayfile messages
DBLE 7-9
DCOS 7-9
DCOSH 7-9
DDIM 7-9

on input/output
2-3, 2-4

7-15

DEBUG control statement 10-1
Debugging aids

CYBER Interactive Debug 10-1
LIMERR 7-28
NUMERR 7-28
Post Mortem Dump 10-3
Reference map 11-21

Deck structure 12-1

5-7

Declarative statements (see Specification
statements)

DECODE statement 5-42
DEXP 7-9
Diagnostics

Compilation B-1, B-2
Compiler output listing messages
Execution B-1, B-29

B-1, B-28

Special compilation B-1, B-26
DIM 7-9
DIMENSION

Adjustable
Statement

DINT 7-9

6-11
2-5

Direct access input/output 5-1, F-5
DISCON 7-21
DISPLA 7-14
Display code A-1
Division 3-2
DLOG 7-9
DLOGlO 7-9
rMAXl 7-9
IMINl 7-9
DMOD 7-9
DNINT 7-10
DO loops

Active and inactive 4-7
Implied in DATA list 2-4
Implied in I/O list 5-3
Nested 4-7
Range 4-6

DO statement 4-6
Double precision

Constants 1-5
Editing 5-9, 5-11
Type declaration 2-12
Variables 1-8

DOUBLE PRECISION statement 2-12
DPROD 7-10
DSIGN 7-10
DSIN 7-10
DSINH 7-10
DSQRT 7-10
DTAN 7-10
DTANH 7-10
DUMP 7-27

60481300 H

I

I

E edit descriptor 5-11
ECS (see Extended memory)
ELSE statement 4-4
ELSE IF statement 4-4
ENCODE statement 5-42
END IF statement 4-4
END statement 4-10, 6-7
ENDFILE statement 5-44, F-5
END= 5-24
ENTRY statement 6-6
EOF 7-18
EQUIVALENCE statement 2-6
EQV 7-10
ERF 7-10
ERFC 7-10
Error processing

SYSTEM or SYSTEMC 7-27
ERR= 5-24
Evaluation of expressions 3-8
Execution control statement 11-27
Execution time

Diagnostics B-1, B-29
File name handling F-1
FORMAT 5-22
Input/output 5-22

EXIT 7-15
EXP 7-10
Exponentiation 3-2
Expressions

Arithmetic 3-1
Boolean 3-4
Character 3-5
Evaluation 3-8
General rules for 3-8
Logical 3-5
Relational 3-6
Subscripts 1-9

Extended memory 2-9
External function 2-7, 6-4
EXTERNAL statement 2-7

F edit descriptor 5-13
FALSE 1-6
FILE control statement F-5
File

Definition F-1
Name substitution
Name (TAPEk) 5-23,
Positioning 5-43
Sequential F-4
Status 5-36
Structure F-1
Usage 5-23

11-27
11-27

File information table (FIT)
Defaults for standard I/O F-2
Defined F-1
Direct call by CYBER Record Manager 8-6

FLOAT 7-10
FMT= 5-24
Formal argument (parameter) (see Dummy argument)
FORMAT statement 5-5
Format

Control, termination of
Execution time 5-22
Specification 5-4

Formatted
Input/output 5-25
PRINT statement 5-26
READ statement 5-25
WRITE statement 5-25

FORTRAN
Compiler call 11-1
Syntax sunm.ary D-1

60481300 H

5-21

FTN5 control statement
Function

Intrinsic 2-8, 7-1
Referencing 6-6
Statement 6-5
Subprogram 6-5

Future System migration

G edit descriptor 5-15
GET PARM 7-13
Glossary C-1
GO TO statements

Assigned GO TO 4-1
Computed GO TO 4-1
Unconditional GO TO

H edit descriptor 5-15
H specification

11-1

G-1

4-1

In format specification 5-15
Hollerith constant 1-7

Hexadecimal/octal conversion 5-17
Hexadecimal constant 1-7
Hierarchy in expressions 3-2, 3-6
Hollerith

Constant 1-7
Format specification 5-15

I edit descriptor 5-15
IABS 7-10
ICHAR 7-10
IDIM 7-10
IDINT 7-10
IDNINT 7-10
IF statements

Arithmetic IF 4-3
Block IF 4-3
Logical IF 4-3

IFIX 7-11
IMPLICIT statement 2-7
Implicit typing of variables 2-7, 2-11
Implied DO

In DATA list 2-4
In I/O list 5-3

INDEX 7-11
Index

00 loop 4-6
Mass storage files 7-23

Information Management Facility 8-35
Initial line 1-2
INPUT file 5-40
Input/output

BUFFER 5-32
Compile time 5-4
Direct access 5-1
Execution time 5-22
Formatted 5-25
Implementation F-1
Keyword = value forms 5-22
List directed 5-27
Lists 5-3
Mass storage 7-22
NAMELIST 5-30
Restrictions F-6
Status checking 7-17
Status statements 5-36
Unformatted 5-26

INQUIRE statement 5-38
INT 7-11
Integer

Constants 1-4
Editing 5-6

I

I

Index-3

Integer (Contd)
Type declaration 2-12
Variables 1-8

INTEGER statement 2-12
Internal files

Extended 5-41
Standard 5-40

Intrinsic functions 2-8, 7-1
INTRINSIC statement 2-8
IOCHEC 7-18
Iolist 5-25
IOSTAT= 5-24, 5-27
!SIGN 7-11

JDATE 7-14
Job decks, examples 12-1
Job files, batch 5-2

L edit descriptor 5-17
L format Hollerith constant 1-7
LABEL 7-21
Labeled

Common 2-1
Files 7-20

Labels
Statement labels 1-2
Use in alternate return

LCM (see Extended memory)
LEGVAR 7-27
LEN 7-11
LENGTH, LENGTHX 7-19
LEVEL Statement 2-9
Levels, overlay 9-1
LGE 7-11
LGO 11-3, 11-27
LGT 7-11
Library functions 7-1
LIMERR 7-28
List directed

Input 5-27
PRINT 5-29
PUNCH 5-29
Output 5-29
READ 5-27
WRITE 5-29

Listings
Control of 11-13
Object 11-20
Reference map 11-13
Source 11-13

L List File 11-6
LLE 7-11
LLT 7-11
LOCF 7-11
LOG 7-12
Logical

Assignment statement 3-9
Constants 1-6
Expressions 3-5
File names 5-1
IF statement 4-3
Operators 3-6
Unit number 5-1
Variables 1-8

LOGICAL statement 2-12
LOGlO 7-12
Loops

DO 4-6

6-8

Implied in DATA statement 2-4
Implied in input/output statements 5-3
Nested 4-7

Index-4

Main program 6-1
Map, reference 11-13
MASK 7-12
Mass storage input/output

CLOSMS 7-23
OPENMS 7-22.1
REAIMS 7-22.1
STINDX 7-23
WRITMS 7-22.1

Mathematical functions 7-1
MAX 7-12
MAXO 7-12
MAX! 7-12
Messages

Compilation diagnostics B-1
Compiler output listing B-1, B-28
Execution diagnostics B-1, B-29
Special compilation diagnostics B-1, B-26

MIN 7-12
MINO 7-12
MIN! 7-12
Mixed mode arithmetic conversion 3-2, 3-3, 3-9
MOD 7-12
Mode

Debug 10-1
Nonsequenced 1-1
Optimizing 11-7
Sequenced 1-3

MOVLCH 7-19
MOVLEV 7-19
Multiple

Assignment statement
Binary value 11-1
Entry 6-7
Return 6-7

Named common 2-1
Namelist

PRINT
PUNCH
READ
WRITE

5-32
5-32

5-30
5-32

NAMELIST statement 5-30
Names

Common block 2-1
File 5-1
Program unit 1-4, 6-1
Symbolic 1-4
Variable 1-8

NEQV 7-12
Nesting

3-10

Block IF structures 4-5
DO loops 4-7
Parentheses 3-8

NINT 7-12
Nonsequenced mode 1-1
Number

Formats (see Constants)
Statement label 1-2

NUMERR 7-28

0 edit descriptor 5-17
Object code 11-6, 11-20
Octal Constants 1-7
Offset 1-10, 5-1
OPEN statement 5-36
OPENMS 7-22.1
Operands, evaluation of 3-2
Operating system interface routines 7-14

60481300 H

I

Operators
Arithmetic 3-2
Boolean 3-4
Character 3-5
Logical 3-6
Relational 3-7

Optimization
Object code 11-7
Source code 11-8
Unsafe 11-8

Options, FTN5 control statement 11-1
OR 7-12
Order, statements in program unit 1-12
Output (see Input/output)

File 5-25
Print limit specification 11-27
Record length 5-34

OVCAPS 9-5
OVERLAY statement 9-4
Overlays 9-1

P scale factor 5-17
Parameter, see Argument
PARAMETER statement 2-9
Parameters, FTN5 control statement
Pass by reference 8-28
Pass by value 8-29

I PAUSE statement 4-9
PD 11-9
PDUMP 7-27
Permanent file

I PF call 8-2
PL 11-9
PMD 10-5
PMDARRY 10-5
PMDLOAD 10-6
PMDSTOP 10-6
PMDDUMP 10-5

8-1

I PN 11-9
Post Mortem Dump 10-3, 11-28
Precedence of operators 3-2
Print

Control characters 5-9
I Density 11-9

Limit specification 11-27
PRINT statement 5-26
Procedures 6-3
Program

Examples 12-8.1
Maps 11-13
Units 6-1

PROGRAM statement 6-1
I PS 11-9

Punch codes A-1
PUNCH

File 5-2
Statement 5-26

I PWQC 11-9

11-10
Queued Terminal Record Manager 8-36
Quote

Character string delimiter 1-7
Edit descriptor 5-8

R edit descriptor 5-18
R format Hollerith constant 1-7
Random

Access 7-21
Number routines 7-14

RANF 7-12

60481300 H

11-2

Range of DO loops 4-6
RANGET 7-14
RANSET 7-14
READ statements

Direct access 5-2
Formatted 5-25
Internal 5-40
List directed 5-27
Namelist 5-30
Unformatted 5-27

REAOOS 7-22.1
Real

Constant 1-5
Variable 1-8

REAL 7-12
REAL statement 2-12
Record

Definition F-1
Length 5-1, 6-2
Types F-1

Record Manager (see CYBER Record Manager)
Recovery 7-15
RECOVR 7-15
Reference, function 6-9
Reference map 11-13
Relational

Evaluation 3-6
Expressions 3-6
Operators 3-7

REMARK 7-15
RETURN statement 6-7
REW 11-10
REWIND statement 5-43
ROUND 11-10

S edit descriptor 5-19
S system text file 11-10
Sample

Coding form 1-1
Decks 12-1
FTN5 control statement 11-11
Programs 12-8. 1

SAVE statement 2-10
Scale factor 5-17
Scaling 5-18
SECOND 7-13
Sense switch 7-15
Separator, slash and comma 5-7
Sequenced mode 1-3
Sequential access input/output 5-1
Sequential file structure F-4, F-5
SHIFT 7-13
SIGN 7-13
SIN 7-13
SIND 7-13
SINH 7-13
Slash in FORMAT statement 5-13
SNGL 7-13
Sort/Merge 5 8-18

Subroutines 8-19
Sort/Merge 4 and 1 8-21
SP edit descriptor 5-19
Specification statements 2-1
SQRT 7-13
SS edit descriptor 5-19
SSWTCH 7-15
Standard, FORTRAN ANSI v
Statement

Format 1-1
FORTRAN (see individual statement name)
Function name 1-4
Labels 1-2
Order in program unit 1-12

Index-5

I
I

I

I

Statement functions 6-8
STATIC capsule loading 7-32
STINDX 7-23
STOP statement 4-10
STRACE 7-27
Structure

Block IF 4-4
Program unit' 6-1

Subprogram linkage 8-28
Subprograms

Block data 6-13
Function 6-5
Miscellaneous utility 7-13
Subroutine 6-3

Subroutines, calling 6-3
SUBROUTINE statement 6-4

I Subscripts 1-9, 11-28
Substrings 1-11
Symbolic names 1-4
Syntax summary D-1
SYSTEM and SYSTEMC 7-27

I T edit descriptor 5-19
Tabulation control 5-19
TAN 7-13

I

I

TAND 7-13
TANH 7-13
TAPEk 5-23, 6-2, 11-27
Terminal interface 7-20
Texts, system 8-28
TIME 7-14
TL edit descriptor 5-19
Tn edit descriptor 5-19
TR edit descriptor 5-19
Traceback 10-4
Transaction Facility 8-36
'IRUE 1-6
Type of

Arithmetic expressions
Functions 6-6
Variables 1-8

Type statements
Dimension information
Explicit 2-11
Implicit 2-11

Unconditional GO TO 4-1
Unformatted input/output

READ 5-27
WRITE 5-27

UNIT 7-18
UNIT= 5-23
User parameters 11-27
Utility subprograms 7-14

Index-6

3-1

in 1-9, 2-11

Variable
FORMAT statements 5-25
Name and type 1-8

Variables
Boolean 1-8
Character 1-9
Complex 1-8
Double precision 1-8
Integer 1-8
Logical 1-8
Real 1-8

Weight tables 7-31
WRITE statement

Direct access 5-2
Formatted 5-25
Internal 5-41
List directed 5-29
Namelist 5-32
Unformatted 5-27

WRI'IMS 7-22.1
WTSET 7-32

X edit descriptor 5-21
XOR 7-13

Z edit descriptor 5-21

8-bit subroutines 8-30
.AND. 3-6
.EQ. 3-6
.EQV. 3-6
.FALSE. 1-6
.GE. 3-7
.GT. 3-7
.LE. 3-7
• LT. 3-7
.NE. 3-7
.NEQV. 3-6
.NOT. 3-6
.OR. 3-6
• TRUE. 1-6
.XOR. 3-6

*
In column 1 1-2
In SUBROUTINE statement

or :#
Hollerith constant 1-1,
In FORMAT specification

I end-of-record indicator
or t

6-11

1-7
5-8

5-13

Character constant 1-1, 1-7
In FORMAT specification 5-8

in FORMAT specification 5-21

60481300 H

n
c:
-4

>
5 z
D
'""" z
m

COMMENT SHEET

MANUAL TITLE: FORTRAN Version 5 Reference Manual

PUBLICATION NO.: 60481300

REVISION: H

This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested
additions or deletions, or general comments on the back (please include page number
references).

FOLD

Please reply --- No reply necessary ---

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE Will BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division

P.O. BOX 3492

Sunnyvale, California 94088-3492

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

FOLD

L---~~--------------------~----------------------· FOLD FOLD

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

NAME:

COMPANY:

STREET ADDRESS:

CITY/STATE/ZIP:

'T'An'C'

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. !56440 UTHO IN U.S.JI
SALES OFFICES ANO SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

~~
CONT"OL DATA CO~ORl\TION

