@ CONTROL DATA
CORPORATION

60481300 H

FORTRAN

VERSION 5
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:

NOS 1
NOS 2
NOS/BE 1
SCOPE 2

Revision
A (07/20/79)

B (09/28/79)

(9]

(02/15/80)

D (09/26/80)

E (01/16/81)

]

(05/14/82)

G (07/15/83)

REVISION RECORD

Description
Original release.

Revised to reflect the released version of the FORTRAN 5 compiler. Numerous technical
and miscellaneous corrections, including added shading, have been made.

Revised to include SCOPE 2 operating system. Additional technical and miscellaneous
corrections have been made.

Released at PSR level 527. Revised to include CMM interface and update to PMD.
Additional technical and miscellaneous corrections have been made.

Revised at PSR level 533. Revised to reflect release of PMD and STATIC option under
SCOPE 2 operating system.

Revised at PSR level 564. Revised to reflect the addition of control statement
parameters to the source listing header. Additional technical and editorial corrections

have been made. This is a complete reprint.

This revision documents FORTRAN 5 at PSR level 577 which includes the addition of the
extended recovery feature. Additional technical and editorial corrections have been made.

H (01/04/85) This revision documents FORTRAN 5 at PSR level 587. Additional technical and editorial
corrections have been made.
REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:
CONTROL DATA CORPORATION
Publications and Graphics Division
GZCOPYRIGHT CONTROL DATA CORPORATION P. 0. BOX 3492

1979, 1980,

1982, 1983, 1985 SUNNYVALE, CALIFORNIA 94088-3492
All Rights Reserved

Printed in the United States of America or use Comment Sheet in the back of this manual

ii

60481300 H

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision Page Revision Page Revision

Front Cover - 5-29 G 11-3 G
Title Page - 5-30 H 11-4 G
ii H 5-31 G 11-5 F
iii/iv H 5-32 H 11-6 G
v H 5-33 F 11-7 G
vi F 5-34 thru 5-41 H 11-8 F
vii/viii F 5-42 thru 5-44 F 11-9 H
ix thru xiv H 6-1 G 11-10 H
xv/xvi H 6-2 H 11-11 F
xvii F 6-3 H 11-12 F
1-1 thru i-3 F 6-4 G 11~13 G
1-4 H 6-5 F 11-14 thru 11-20 F
1-5 F 66 F 11-21 G
1-6 F 6-7 H 11-22 thru 11-26 F
1-7 H 6—8 F 11-27 thru 11-29 H
1-8 H 6~9 thru 6-11 H 12-1 F
1-9 G 6-12 F 12-2 thru 12-8 G
1-10 G 6-13 F 12-8.1 G
1-11 thru 1-13 F 7-1 G 12-8.2 G
2-1 G 7-2 G 12-9 thru 12-18 F
2-2 F 7-2.1/7-2.2 G 12-19 G
2-3 G 7-3 thru 7-11 F 12-20 thru 12-35 F
2-4 F 7-12 G A-1 F
2-5 H 7-13 H A-2 D
2-6 thru 2-10 G 7-14 F A-3 E
2-11 thru 2-14 F 7-15 G A-4 8
3-1 thru 3-3 F 7-16 H B~1 thru B-23 F
3-4 G 7-17 thru 7-22 G B-24 G
3-5 F 7-22.1/7-22.2 G B-25 G
3-6 H 7-23 thru 7-28 F B-26 thru B-31 F
3-7 F 7-29 G B-32 thru B-34 G
3-8 G 7-30 thru 7-33 F B-34.1/B-34.2 G
3-9 H 8-1 G B-35 thru B-39 F
3-10 F 8-2 H B-40 H
4-1 thru 4-6 F 8-3 thru 8-13 F B-41 H
4-7 thru 4-10 H 8-14 H c-1 F
5-1 F 8-15 H c-2 H
5-2 G 8-16 thru 8-18 F C-2.1/C-2.2 G
5-3 F 8-19 H C-3 thru C-5 F
5-4 F 8-20 thru 8-22 F D-1 thru D-7 F
5-~5 G 8-23 H E-1 G
5-6 F 8-24 H E-2 thru E-4 F
5-7 F 8-25 F F-1 F
5-8 G 8-26 G F-2 G
5-9 H 8-27 ¥ F-3 F
5-10 H 8-28 F F-4 G
5-11 F 8-29 G F~5 F
5-12 G 8-30 F F-6 H
5-13 F 8-31 F F-7 C
5-14 ¥ 8-32 G F-3 F
5-15 G 8-33 thru 8-38 F F-9 F
5-16 F 9-1 F G-1 F
5-17 thru 5-19 H 9-2 G G-2 G
5-20 F 9-3 thru 9-6 F Index-1 thru -6 H
5-21 F 10-1 thru 10-6 F Comment Sheet/Mailer H
5-22 thru 5-24 H 11-1 G Back Cover -
5-25 G 11-2 H

5-26 thru 5-28 F 11-2.1/11-2.2 H

60481300 H iii/iv

PREFACE

This manual describes the FORTRAN Version 5 lan-
guage. FORTRAN Version 5 complies with the American
National Standards Institute FORTRAN language

described in document X3.9-1978 and known
FORTRAN 77. FORTRAN Version 5 extensions

FORTRAN 77 are indicated by shading.

as
to

The reader should be familiar with FORTRAN Extended

Version 4 or an existing FORTRAN language.

The

reader should also be familiar with the operating
system on which FORTRAN Version 5 jobs will be

compiled and executed.

The FORTRAN Version 5 (FORTRAN 5) compiler

is

available under control of the following operating

systems:

NOS 1 for the CONTROL DATA® CYBER 180 Series;

CYBER 170 Series; CYBER 70 Models 71, 72,

and 74; and 6000 Series Computer Systems

73,

NOS 2 for the CDC® CYBER 180 Series; CYBER 170
Series; CYBER 70 Models 71, 72, 73, and 74; and

6000 Series Computer Systems

NOS/BE 1 for the CDC CYBER 180 Series;

CYBER

170 Series; CYBER 70 Models 71, 72, 73, and 74;

and 6000 Series Computer Systems

SCOPE 2 for CONTROL DATA CYBER 170 Model 176,

CYBER 70 Model 76, and 7600 Computer Systems.

The following manuals are of primary interest:

Publication

FORTRAN Extended Version 4 to
FORTRAN Version 5 Conversion Aid
Program Reference Manual

FORTRAN Version 5

Common Library Mathematical Routines
Reference Manual

FORTRAN Version 5 Instant

NOS Version 1 Reference Manual,
Volume 1 of 2

NOS Version 2 Reference Set, Volume 3,
System Commands

NOS/BE Version] Reference Manual

SCOPE Version 2 Reference Manual

60481300 H

Extended memory for the CYBER 170 Model 176 is
large central memory (LCM) or large central memory
extended (LCME). Extended memory for the CYBER 170
800 Series Computer Systems is unified extended
memory (UEM). Extended memory for all other
computer systems is extended core storage (ECS) or
extended semi-conductor wmemory (ESM). In this
manual, the acronym ECS refers to all forms of
extended memory unless otherwise noted.
Programming information for the various forms of
extended memory can be found 1in the COMPASS
reference manual and in the appropriate computer
system hardware reference manual.

Related material is contained in the listed publi-
cations. These publications are listed alphabeti-
cally and grouped according to their importance to
the FORTRAN user. The NOS 1, NOS 2, and NOS/BE 1
manual abstracts are pocket-sized manuals contain-
ing brief descriptions of the contents and intended
audience of all operating system and product set
manuals. The abstracts manuals can be useful in
determining which manuals are of greatest interest
to a particular user.

The Software Publications Release History 1is a
guide for determining which revision 1level of
software documentation corresponds to the Program-
ming System Report (PSR) 1level of installed site
software.

Publication

Number NOS 1 NOS 2 NOS/BE 1 SCOPE 2
60483000 X X X X
60483100 X X X X
60483900 X X X X
60435400 X

60459680 X

60493800 X

60342600 X

The following manuals are of secondary interest:

Publication
Publication Number NOS 1 NOS 2 NOS/BE 1 SCOPE 2
Common Memory Manager Version 1
Reference Manual 60499200 X X X X
COMPASS Version 3 Reference Manual 60492600 X X X X
CYBER Interactive Debug Version 1
Reference Manual 60481400 X X X
CYBER Loader Version 1 Reference Manual 60429800 X X X
CYBER Record Manager
Advanced Access Methods
Version 2 Reference Manual 60499300 X X X
CYBER Record Manager
Advanced Access Methods
Version 2 User’s Guide 60499400 X X X
CYBER Record Manager
Basic Access Methods
Version 1.5 Reference Manual 60495700 X X X
CYBER Record Manager
Basic Access Methods
Version 1.5 User’s Guide 60495800 X X X
DMS-170 FORTRAN Data Base Facility
Version 1 Reference Manual 60482200 X X X
FORTRAN Version 5 User’s Guide 60484000 X
FORTRAN Version 5 User’s Guide 60484010 X
Information Management Facility
Version 1 Application Programming
Reference Manual 60484500 X X
INTERCOM Version 5 Reference Manual 60455010 X
Loader User’s Guide 60485200 X
Network Products
Interactive Facility Version 1
Reference Manual 60455250 X
NOS Version 1 Diagnostic Index 60455720 X
NOS Version 1 Manual Abstracts 84000420 X
NOS Version | Time-Sharing
User’s Reference Manual 60435500 X
NOS Version 2 Diagnostic Index 60459390 X
NOS Version 2 Manual Abstracts 60485500 X
NOS Version 2 Reference Set,
Volune 1, Introduction to
Interactive Usage 60459660 X
NOS/BE Version 1 Manual Abstracts 84000470 X
NOS/BE Version 1 Diagnostic Index 60456490 X
SCOPE Version 2 Loader Reference Manual 60454780 X

60481300 F

SCOPE Version 2 Record Manager

Reference Manual 60495700

Software Publications Release History 60481000 X X X
Sort/Merge Versions 4 and 1

Reference Manual 60497500 X X X
Sort/Merge Version 5 Reference Manual 60484800 X X
8-Bit Subroutines Reference Manual 60495500 X X X

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in this
document. Control Data cannot be responsible for the proper
functioning of undescribed features or parameters.

60481300 F

vii/viii

NOTATIONS

1. LANGUAGE ELEMENTS

FORTRAN Statements
Nonsequenced Mode
Initial Lines
Continuation Lines
Statement Labels
Comment Lines
Compiler Directive Lines
Columns 73 Through 80
Sequenced Mode
Symbolic Names
Constants
Integer Constant
Real Constant
Double Precision Constant
Complex Constant
Logical Constant
Boolean Constants
Hollerith and Extended Hollerith
Boolean Constant
Octal Boolean Constant
Hexadecimal Boolean Constant
Character Constant
Variables
Integer Variable
Real Variable
Double Precision Variable
Complex Variable
Logical Variable
Boolean Variable
Character Variable
Arrays
Array Storage
Array References
Character Substrings
Substring References
Substrings and Arrays
Statement Order

2. SPECIFICATION STATEMENTS

COMMON Statement
DATA Statement
Implied DO List Use in DATA Statement
Character Data Initialization
DIMENSION Statement
EQUIVALENCE Statement
EXTERNAL Statement
IMPLICIT Statement
INTRINSIC Statement
LEVEL Statement
PARAMETER Statement
SAVE Statement
Type Statements
INTEGER Statement
REAL Statement
DOUBLE PRECISION Statement
COMPLEX Statement
LOGICAL Statement
BOOLEAN Statement
CHARACTER Statement

60481300 H

CONTENTS

xvii

o
1
—

1

Ll i ol T i I e e
S T T N A |
OV E RBPEPWWWENRNNN~—

Pt bt e bm bt e pem b b st bt b bt e et
|
= = O \O 00 00 00 COC NN NN

|
o

[

|
<o

o
[

o

——

1-12
1-12

N
|
[

[B I |

1

| I R T T |]
— OO0 NNV W
N - O

NN NN N
i

3. EXPRESSIONS AND ASSIGNMENT STATEMENTS

Expressions

Arithmetic Expression

Infinite and Indefinite Values

Boolean Expression

Character Expression

Logical Expression

Relational Expression

General Rules for Expressions
Assignment Statements

Arithmetic Assignment

Boolean Assignment

Character Assignment

Logical Assignment

Multiple Assignment

4. FLOW CONTROL STATEMENTS

GO TO Statement
Unconditional GO TO Statement
Computed GO TO Statement
ASSIGN Statement
Assigned GO TO Statement
IF Statement
Arithmetic IF Statement
Logical IF Statement
Block IF Statement
ELSE Statement
ELSE IF Statement
END IF Statement
Block IF Structures
Nested Block IF Structures
DO Statement
Active and Inactive DO Loops
Nested DO Loops
CONTINUE Statement
PAUSE Statement
STOP Statement
END Statement

5. INPUT/OUTPUT

Input/Output Files
Sequential Files
Direct Access Files
Batch Job Files

input/Cutput Lists
Implied DO in Input/Output List
Format Specification
FORMAT Statement
Character Format Specifications
Noncharacter Format Specifications
Edit Descriptors
Input/Output Conversions
Field Separators
Repeatable and Nourepeatable Edit
Descriptors
Repetition Factors
Execution Time Format Specification
Input/Output Statements
Keyword=Value Forms in Input/Output
Statements
Formatted Input/Output Statements

7
o

[

[

O OO0 WO OV E e

w
]
o

o~
I
—

J-\Jl-\J-\J-\JI.\
N bt ot ot e

B
UL

]
WoONNOOTVMESESAEWLWLWLW

| |

4-10
4-10

-L\-L\l.\-l.\l-\il-\l-\bl-\&\b

[}
|
—

[

[

U'lU‘lWU‘U'l\-ﬂ\.Iﬂ\.ﬂU\U\kﬂU‘kﬂ
NNV B WW N e

[

ix

Formatted READ
Formatted WRITE
Formatted PRINT
Formatted PUNCH

Unformatted Input/Output Statements
Unformatted READ
Unformatted WRITE

List Directed Input/Output Statements
List Directed Input
List Directed Output

NAMELIST Input/Output Statements
Namelist Input
Namelist Output
Arrays in Namelist

Buffer Input/Output Statements
BUFFER IN
BUFFER OUT

Input/Output File Status Statements
OPEN
CLOSE
INQUIRE

Memory-to-Memory Input/Output Statements

Standard Internal Files

Extended Internal Files
File Positioning Statements

REWIND

BACKSPACE

ENDFILE

6. USER-WRITTEN PROGRAMS, SUBPROGRAMS, AND

FUNCTIONS

Main Program
PROGRAM Statement
PROGRAM Statement Usage
Procedures, Subprograms, and Statement
Functions A
Subroutine Subprogram
SUBROUTINE Statement
CALL Statement
Function Subprogram
FUNCTION Statement
Function Subprogram Reference
ENTRY Statement
RETURN and END Statements
Single and Multiple Returns
Alternate Return
Statement Functions
Statement Function Definition
Statement Function Reference
Program Unit and Procedure Communication
Passing Arguments
Actual Arguments
Dummy Arguments
Argument Association
Using Common Blocks
Block Data Subprograms

7. FORTRAN SUPPLIED PROCEDURES

Intrinsic Functions
Generic and Specific Functions
Boolean Arguments Passed to Intrinsic
Functions
Function Descriptions
ABS
ACOS
ATMAG
ATINT
ALOG
ALOG10
AMAXO
AMAX1
AMINO

5-25
5-25
5-26
5-26
5-26
5-27
5-27
5-27
5-27
5-29
5-30
5-30
5-32
5-32
5-32
5-34
5-35
5-36
5-36
5-38
5-38
5-38
5-40
5-41
5-43
5-43
5-44
5-44

o
I
—

[e)0« 3}
1
b

LI S R R T T R R A S R A A T A B
ES\D\O\OWQW\I\IO\O\U\UUJ—\WW

——
[)

6-13

~
i
—

N~
L L | it
——

NN N N NS NI N N N
UL
NN NNNNNNNDNDN

AMINI
AMOD
AND
ANINT
ASIN
ATAN
ATANH
ATAN2
BOOL
CABS
cCos
CEXP
CHAR
CLOG
CMPLX
COMPL
CONJG
cos
€OSD
COSH
CSIN
CSQRT
DABS
DACOS
DASIN
DATAN
DATAN2
DBLE
DCOS
DCOSH
DDIM
DEXP
DIM
DINT
DLOG
DLOG10
DMAX1
DMIN1
DMOD
DNINT
DPROD
DS IGN
DSIN
DS INH
DSQRT
DTAN
DTANH
EQV
ERF
ERFC
EXP
FLOAT
1ABS
ICHAR
IDIM
IDINT
LDNINT
IFIX
INDEX
INT
ISIGN
LEN
LGE
LGT
LLE
LLT
LOCF
LOG
LOG1O
MASK
MAX
MAX0
MAX1
MIN
MINO
MIN1

1

TIITTINT
NNNNNNN

1

| TR s T T AR T N S A M}
0 0 00 Co 0 0o @ X®

| N T R A T A |
WO W OOWLWOWOWY O WWWLWWW MK w K

\l\l\l\l\l\I\I\I\I\I\I\I\I\J\I\JTI\l\l\l\l\l\l\l\l\l\l\l\l\l\l\l\l

L L L T e L I e |
——

L L L T e e)
[l =N~ NoNoleX-N-N-NoNoloNeNoNaNelalelel

\l\l\‘\l\l\l\l\lMTl\l\l\l\l\l\l\l\l\l\l
e b b e e et e bt e e e b b b et et bt e
—

7-11
7-11
7-11
7-11
7-11
7-11
7-12
7-12
7-12
7-12
7-12
7-12
7-12
7-12
7-12

60481300 H

MOD
NEQV
NINT
OR
RANF
REAL
SECOND
SHIFT
SIGN
SIN
SIND
SINH
SNGL
SQRT
TAN
TAND
TANH
XOR
GETPARM Subroutine
Random Number Routines
RANSET Subroutine
RANGET Subroutine
Operating System Interfaces
DATE Function
JDATE Function
TIME or CLOCK Function
DISPLA Subroutine
REMARK Subroutine
SSWTCH Subroutine
EXIT Subroutine
CHEKPTX Subroutine
RECOVR Subroutine
Input/Output Subprograms
Status Checking
UNIT Function
EOF Function
IOCHEC Function
LENGTH Function and LENGTHX
Subroutine
Extended Memory
MOVLEV Subroutine
MOVLCH Subroutine
Interactive Terminals
CONNEC Subroutine
DISCON Subroutine
Tape LABEL Subroutine
Mass Storage
Random File Access
OPENMS Subroutine
WRITMS Subroutine
READMS Subroutine
CLOSMS Subroutine
STINDX Subroutine
Debugging Routines
DUMP and PDUMP Subroutines
STRACE Subroutine
LEGVAR Function
SYSTEM Subroutine
SYSTEMC Subroutine
LIMERR Subroutine and NUMERR Function
Collating Sequence Control Subprograms
COLSEQ Subroutine
WTSET Subroutine
CSOWN Subroutine
Static Loading Option

8. FORTRAN 5 INTERFACES

Permanent File Interface
PF Call
Error Processing
CYBER Record Manager (CRM)
File Information Table (FIT)
Call Syntax

60481300 H

7-12
7-12
7-12
7-12
7-12
7-12
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-14
7-14
7-14
7-14
7-14
7-14
7-14
7-14
7-15
7-15
7-15
7-15
7-15
7-17
7-17
7-18
7-18
7-18

7-19
7-19
7-19
7-19
7-20
7-20
7-21
7-21
7-22
7-22
7-22.1
7-22.1
7-22.1
7-23
7-23
7-25
7-27
7-27
7-27
7-27
7-27
7-28
7-30
7-31
7-32
7-32
7-32

File Processing
CRM Utilities
Sort/Merge
Sort/Merge 5
Sort/Merge 5 Keys
Summing
Sort/Merge 5 Owncode Routines
Sort/Merge 4 and 1
Common Memory Manager
COMPASS Assembly Language Intermixed
Subprograms
Compiler and Subprogram Linkage
Pass By Reference Sequence
Pass By Value Sequence
Function Result
Entry Point

Restrictions on Using Intrinsic Function

Names
8-Bit Subroutines
CYBER Database Control System
Information Management Facility
Queued Terminal Record Manager (QTRM)
Transaction Facility (TAF)

9. OVERLAYS AND OVCAPS

Overlays
Main, Primary, and Secondary Overlays
Overlay Communication
Creating Overlays
Calling Overlays
OVCAPs
OVCAP Communication
Creating OVCAPs
Calling OVCAPs

10. DEBUGGING AIDS

CYBER Interactive Debug

Program Compilation
DEBUG Control Statement
DB Parameter

Debug Session
SET, BREAKPOINT Command
SET,TRAP Command
PRINT Command
Assignment Command

Other CID Features

Post Mortem Dump

Compilation

Loading

Dump Information
Dump Variables
PMD Traceback

PMD Subroutines

PMDARRRY

PMDDUMP

PMDLOAD

PMDSTOP

11. COMPILATION AND EXECUTION

FTN5 Control Statement
Parameters
Binary Value Parameters
Specified Value Parameters
Multiple Binary Value Parameters
Multiple Appearances of Parameters
Parameter Options
AL Automatic Level
ANSI Diagnostics
ARG Argument List Attributes

8-29
8-30
8-30
8-35
8-36
8-37

P
-

\O\D\D\O\IO\D\D\D\O
VMU eEN N~

10-1
10-1
10-1
10-1
10-2
10-2
10-2
10-2
10-2
10-3
10-3
10-3
10-3
10-3
10-4
10-4
10-5
10-5
10-5
10-6
10-6

11-1

11-1
11-1
11-1
11-1
11-1
11-2
11-2
11-2
11-2.1
11-3

xi

B Rinary Oatput File -3 FGRTRAN Compilation With COMPASS

BL Burstable Listing 11-3 Assembly and Execution 12-3
cs Collating Sequence 11-3 Compilation and Execution With FORTRAN
DB Debugging Option 11-3 Subroutine and COMPASS Subprogram 12-4
DO Loop Control 11-4 Compilation With Binary Card Output 12-4
DS Directive Suppression 11-4 Loading and Execution of Binary Program 12-4%4
E Error File 11-4 Compilation and Execution With
EC Extended Memory Usage 11-5 Relocatable Binatry Deck 12-4
EL Error Level 11-5 Compilation and Two Executions With
ET Error Terminate i1-5 Different Data Decks 12-7
G Get System Text File 11-5 Preparation of Overlays 12-7
GO Automatic Execution 11-6 Compilation and Two Executions With
1 Input File 11-6 Overlays 12-8.1
L List File 11-6 Sample Programs 12-8.1
LM Extended Memory (LCM, ECS, Program OUT 12-8.1
or UEM Storage) Access 11-6 Program B 12-9
Lo Listing Options 11-6 Program STATES 12-9
MD Machine Dependent Diagnostics 11-7 Program EQUIV 12-9
ML MODLEVEL Micro 11-7 Program COME 12-10
OPT Optimization Level 11-7 Program LIBS 12-12
PD Print Demnsity 11-9 Program ADD 12-13
PL Print Limit 11-9 Read 12-14
PN Pagination 11-9 Write 12-14
Ps Page Size 11-9 Program PASCAL 12-14
120 Page Width 11-9 Program PIE 12-14
QC Quick Syntax Check 11-10 Program X 12-16
REW Rewind Files 11-10 Program ADIM 12-17
ROUND Rounded Arithmetic Program ADIM2 12-18
Computations 11-10 Subroutine SET 12-20
S System Text File 11-10 Subroutine IOTA 12-20
SEQ Sequenced Input 11-11 Function PVAL 12-20
STATIC Static Load 11-11 Function AVG 12-20
™ Target Machine 11-11 Function MULT 12-21
X External Text Name 11-11 Main Program: ADIM2 12-21
FIN 5 Control Statement Examples 11-11 Program CIRCLE 12-21
Compiler Listings 11-12 Program BOOL 12-22
Short Line Listing 11-12 Program EASY I0 12-23
Listing Control Directive 11-13 Program BLOCK 12-24
Reference Map 11-13 Programs ONE and TWO 12-24
General Format of Maps 11-13 Program PMD2 12-25
Variable Map 11-13 Program PMD 12-29
Symbolic Constant Map 11-13 Program DBUG 12-29
Procedure Map 11-13 Program GOTO 12-32
Statement Label Map 11-16 Program ASK 12-34
Entry Point Map 11-16 Program SCORE 12-34
Input/Output Unit Map 11-16
NAMELIST Map 11-16
DO Loop Map 11-16 APPENDIXES
Common and Equivalence Map 11-16
Stray Names 11-19 A Standard Character Sets A-1
Program Statistics 11-19 B FORTRAN Diagnostics B-1
Debugging Using the Reference Map 11-19 C Glossary Cc-1
Object Listing 11-20 D Language Summary D-1
Program Unit Structure 11-26 E C$ Directives E-1
Naming Conventions 11-26 F Input/Output Implementation F-1
Register Name Conflicts 11-26 G Future System Migration Guidelines G-1
System—-Supplied Procedure Names 11-26
Listing Format 11-26
Execution Control Statement 11-27 INDEX
File Name Substitution 11-27
Print Limit Specification 11-27
User Parameters 11-27 FIGURES
Post Mortem Dump Parameters 11-28
Post Mortem Dump Output Parameter 11-28 1-1 Program on FORTRAN Coding Form 1-1
Subscript Limit Specification 11-28 1-2 Normal Column Usage 1-2
1-3 Listing of Sequenced Program 1-3
1-4 Sequenced Column Usage 1-3
12. EXAMPLES 12-1 1-5 Duplicated Keyword Names Examples 1-4
1-6 Integer Constant 1-4
Sample Deck Structures 12-1 1-7 Integer Constant Examples 1-4
FORTRAN Source Program With Control 1-8 Real Constant 1-5
Statements 12-1 1-9 Real Constants Examples 1-5
Compilation Only 12-1 1-10 Double Precision Constant 1-5
OPT=0 Compilation 12-1 1-11 Double Precision Constants Examples 1-6
Compilation and Execution 12-1 1-12 Complex Constant 1-6

I xii 60481300 H

1-13 Complex Constants Examples 1-6 4-6 Examples of ASSIGN Statement 4-2
1-14 Logical Constant 1-6 4-7 Assigned GO TO Statement 4-2
1-15 Logical Constants Examples 1-6 4-8 Example of Assigned GO TO Statement 4-2
1-16 Hollerith Constant 1-7 4-9 Arittmetic IF Statement 4-3
1-17 Octal Constant 1-7 4-10 Example of Arithmetic IF Statement 4-3
1-18 Hexadecimal Constant 1-7 4-11 Logical IF Statement 4-3
1-19 Character Constant 1-7 4-12 Examples of Logical IF Statements 4-3
1-20 Character Constants Examples 1-8 4-13 Block IF Statement 4-3
1-21 Declaration of Array Dimensions 1-9 4-14 ELSE Statement 4=4
1-22 1-Dimensional Array Storage 1-9 4-15 ELSE IF Statement 4-4
1-23 2-Dimensional Array Storage 1-9 4-16 END IF Statement 4=4
1-24 3-Dimensional Array Storage 1-10 4-17 Simple Block IF Structure 4-4
1-25 Array Element Reference 1-10 4~18 Example of Block IF Statement 4-4
1-26 Examples of References to Array 4~19 Block IF Structure With ELSE
Elements 1-11 Statement 4-4
1-27 Character Substring Reference 1-11 4-20 Example of Block IF Structure With
1-28 Examples of Character Substring ELSE Statement 4-5
References 1-12 4-21 Block IF Structure With ELSE IF
1-29 Example of Substring and Array Statements 4-5
References 1-12 4-22 Example of Block IF Structure With
1-30 Statement Order 1-13 ELSE IF Statements 4-5
2-1 COMMON Statement 2-1 4-23 Nested Block IF Structure 4-5
2-2 Examples of COMMON Statement 2-2 4-24 Example of Nested Block IF Structure 4-5
2-3 DATA Statement 2-3 4-25 DO Statement 4-6
2-4 Examples of DATA Statement 2-4 4-26 DO Loop Examples 4-7
2-5 Examples of Implied DO List With 4-27 Branch to Shared Terminal Statement 4-8
DATA Statement 2-4 4-28 Nested DO Loops 4-8
2-6 Examples of Character Data 4-29 Nested DO Loop Transfers 4-8
Initialization With DATA Statement 2-5 4-30 Nested DO Loop Examples 4-9
2-7 DIMENSION Statement 2-5 4-31 Nested DO Loops With Different
2-8 Examples of DIMENSION Statement 2-5 Terminal Statements 4-9
2-9 EQUIVALENCE Statement 2-6 4-32 CONTINUE Statement 4~9
2-10 Examples of EQUIVALENCE Statement 2-6 4-33 CONTINUE Statement Examples 4-9
2~11 EXTERNAL Statement 2-7 4-34 PAUSE Statement 4-9
2-12 Examples of EXTERNAL Statement 2-7 4-35 STOP Statement 4-10
2-13 IMPLICIT Statement 2-7 4-36 END Statement 4-10
2-14 Examples of Typing With IMPLICIT 5-1 Direct Access File Record Length
Statement 2-8 Calculation Example 5-2
2-15 INTRINSIC Statement 2-8 5-2 Direct Access File Processing
2-16 Examples of INTRINSIC Statement 2-8 Examples 5-2
2-17 LEVEL Statement 2-9 5-3 Input/Output List Examples 5-3
2-18 Example of LEVEL Statement 2-9 5-4 Implied DO in Input/Output List
2-19 PARAMETER Statement 2-9 Exanples 5-4
2-20 Example of PARAMETER Statement 2-10 5-5 Format Terminating Data Read Examples 5-4
2-21 Intrinsic Functions Permitted in 5-6 FORMAT Statement 5~5
Extended Constant Expressions 2-10 5-7 Character Format Specification
2-22 SAVE Statement 2-10 Examples 5-5
2-23 Example of SAVE Statement 2-11 5-8 Complex Data Item Format
2-24 Examples of Explicit Typing 2-11 Specification Example 5-7
2-25 INTEGER Statement 2-12 5-9 A Input Examples 5-8
2-26 REAL Statement 2-12 5-10 Apostrophe and Quote Descriptor
2-27 DOUBLE PRECISION Statement 2-12 Examples 5-8
2-28 COMPLEX Statement 2-12 5-11 Printer Carriage Control Examples 5-9
2-29 LOGICAL Statement 2-i2 5-12 Carriage Control Program Example 5-10
2-30 BOOLEAN Statement 2-13 5-13 D Input Field 5-10
2-31 CHARACTER Statement 2-13 5-14 D Output Example 5-10
2-32 Examples of CHARACTER Statement 2-13 5-15 E Input Field 5-11
3-1 Arithmetic Expression 3-1 5-16 Example Showing E Input Incorrectly
3-2 Examples of Integer Constant Read 5-12
Expressions 3-2 5-17 Integer Variable Ew.d Specification
3-3 Boolean Expression 3-4 Examples 5-13
3-4 Character Expression 3-5 5-18 End-of-Record Slash Examples 5-13
3-5 Logical Expression 3-6 5-19 G Output Examples 5-16
3-6 Relational Expression 3-7 5-20 H Descriptor Example 5-16
3-7 Arithmetic Assignment Statement 3-9 5-21 1 Input Example 5-16
3-8 Boolean Assignment Statement 3-9 5-22 T Output Examples 5-16
3-9 Character Assignment Statement 3-9 5-23 L Output Example 5-1/
3-10 Logical Assignment Statement 3-9 5-24 0 ILnput Example 5-17
3-11 Multiple Assignment Statemeat 3-10 5-25 Scaled F Output 5-18
4-1 Unconditional GO TO Statemeat 4-1 5-26 Scaled E Output 5-18
4-2 Example of Unconditional GO TO 5-27 Scaled G Output 5-18
Statement 4-1 5-28 R Input Example 5-19
4-3 Computed GO TO Statement 4-1 5-29 Siga Control Exampie 5-19
4-4 Examples of Computed GO TO Statements 4-2 5-30 T, TL, and TR Descriptor Examples 5-19
4-5 ASSIGN Statement 4-2 5-31 T OQutput Example 5-20

60481300 H xiii

5-32
5-33
5-34
5-35
5-36

5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-51
5-52
5-53
5-54
5-55
5-56
5-57
5-58
5-59
5-60
5-61
5-62
5-63
5-64

5-65
5-66
5-67
5-68
5-69
5-70

5-71
5-72
5-73
5-74
5-75
5-76
5-77
5-78
5-79
5-80
5-81
5-82
5-83

[U

|
— A0 00N O BN

(]

[

LA W« e N W= A0« AN« A= N« N N= N AN
| |

—

SN

|

6-15
6-16
6-17
6-18
6-19

I xiv

Termination by Colon Example

X Descriptor Example

Z Input Example

Repetition Factor Examples

Execution Time Format Specification
Examples

Formatted READ Statement

Fomatted READ Statement Examples

Formatted WRITE Statement

Formatted WRITE Statement Example

Formatted PRINT Statement

Formatted PRINT Example

Formatted PUNCH Statement

Formatted PUNCH Example

Unformatted READ Statement

Unformatted READ Example

Unformatted WRITE Statement

Unformatted WRITE Example

List Directed READ Statement

List Directed Input Examples

List Directed WRITE Statement

List Directed PRINT Statement

List Directed PUNCH Statement

List Directed Output Examples

NAMELIST Statement

NAMELIST Example

NAMELIST READ Statement

NAMELIST Group Format

NAMELIST Group Input Example

NAMELIST WRITE Statement

NAMELIST PRINT Statement

NAMELIST PUNCH Statement

NAMELIST Output Example

NAMELIST WRITE and Subsequent
NAMELIST READ Example

Arrays in NAMELIST Examples

BUFFER IN Statement

BUFFER IN Example

BUFFER OUT Statement

OPEN Statement

OPEN Overriding PROGRAM Declaration
Example

OPEN Statement Examples

CLOSE Statement

INQUIRE Statement

INQUIRE Statement Example

Internal File Input Examples

Internal File Output Examples

ENCODE Statement

ENCODE Statement Examples

DECODE Statement

DECODE Statement Examples

REWIND Statement

BACKSPACE Statement

ENDFILE Statement

PROGRAM Statement

Examples of PROGRAM Statement

File Equivalencing Example

Subroutine Statement

Subroutine Call Example

CALL Statement

FUNCTION Statement

Function Reference Example

Function Reference Name

ENTRY Statement

Examples of ENTRY Statements

END Statement

RETURN Statement

MULTIPLE Return Example

Alternate Return Example

Statement Function

Examples of Statement Functions

Statement Function Reference

Example of Adjustable Dimensions in
Subroutine

| T S A |

R UL L

oo oo OO OO
|
OO O ~N~N NN Www

=)}
[}

—

N

\I\I\I\I\JTI\I\I\JN\I
== 0 00NN B W N

|
o

]

7-12

[-

o [}] [RN |
C" "\OC’”\‘O\U’!L\WNV—'MH\DW\IG\U\L\W
wr = O — O

»—»—r-soososo\oxoo\ow\'ooooamoooooooooooo

Using Common

Block DATA Statement
Example of BLOCK DATA

LOCF Result for Character Argument
GETPARM Call

RANSET Call

RANGET Call

DATE Function

JDATE Function

TIME Function

CLOCK Function

DISPLA Call

REMARK Call

SSWICH Call

EXIT Call

CHEKPTX Call

CHEKPTX Example

RECOVR Call

UNIT Function

EOF Function

TOCHEC Function

LENGTH Function

LENGTHX Call

MOVLEV Call

MOVLCH Call

CONNEC Call

DISCON Call

LABEL Call

OPENMS Call

WRITMS Call

READMS Call

CLOSMS Call

STINDX Call

Random File With Number Index
Random File With Name Index
Subindexed File With Number Index
DUMP Call

PDUMP Call

STRACE Call

LEGVAR Function

SYSTEM Call

SYSTEMC Call

Error Table Entry
Suppressing an Error Message
LIMERR Call

NUMERR Function

Suppressing Fatal Termination
COLSEQ Call

WTSET Call

CSOWN Call

FILE Control Statement

Example of Creating Indexed Sequential

File Having Alternate Keys
Sort/Merge 5 Owncode Subroutine
Example of CMM Use
COMPASS IDENT Statement
Program SUBLNK and Function ZEUS
Object Listing for Program SUBLNK
Object Listing for Function ZEUS
DML Preprocessor Control Statement
IML Preprocessor Control Statement
Execution-Time Parameters for IMF
Overlay Positioning
Overlay Positioning Showing Common
OVERLAY Statement
OVERLAY Call
Sample Overlay Structure
OVCAP Directive
LOVCAP Call
XOVCAP Call
UOVCAP Call
Batch Job Set Up for OVCAPs
PMDARRAY Call
PMDDUMP Call
PMDLOAD Call

bbb
W= W W Ww
[« XN« NV}

|

OO C VWY VW ? W OO OYO W

|
[N IV - - - N NV R O e

—— -

60481300 H

10-4

PMDSTOP Call

11-1 FTN5 Control Statement

11-2 Possible OPT=3 Error Example 1

11-3 Possible OPT=3 Error Example 2

11-4 Optimization Example 1

11-5 Variable Map

11-6 Symbolic Constants Map

11-7 Procedures Map

11-8 Statement Label Map

11~9 Entry Point Map

11-10 Input/Output Unit Map

11-11 Namelist Map

11-12 DO Loop Map

11-13 Common Equivalence Map

11-14 Program Statistics Map

11-15 Program MAPS

11-16 Reference Map Example

12-1 FORTRAN Source Program With Control
Statements

12-2 Compilation Only

12-3 OPT=0 Compilation

12-4 Compilation and Execution

12-5 Compilation With COMPASS Assembly
and Execution

12-6 Compilation and Execution With
FORTRAN Subroutines and COMPASS
Subprogram

12-7 Compilation With Binary Card Output

12-8 Loading and Execution of Binary
Program

12-9 Compilation and Execution With
Relocatable Binary Deck

12-10 Compilation and Execution With
Different Data Decks

12-11 Preparation of Overlays

12-12 Compilation and Two Executions With
Overlays

12-13 Program OUT With Control Statements

12-14 Program OUT Output

12-15 Program B

12-16 Program B Output

12-17 Program STATES

12-18 Sample Input and Output for Program
STATES

12-19 Program EQUIV

12-20 INTEGER and REAL Internal Formats

12-21 Program EQUIV Output

12-22 Program COME

12-23 Storage layout for Variables in
Program COME

12-24 Program COME Output

12-25 Program LIBS

12-26 Program LIBS Output

12-27 Program ADD

12-28 Program ADD Input and Output

12-29 Program PASCAL

12-30 Program PASCAL Output

12-31 Program PIE and Output

12-32 Program X, Function EXTRAC, Output:
INTEGER Declaration Omitted From
Main Program

12-33 Program X, Function EXTRAC, Output:
INTEGER Declaration Included in
Main Program

12-34 Program ADIM and Subroutine IOTA

12-35 Program ADIM Output

12-36 Program ADIM2

12-37 Program ADIM2 Output

12-38 Program CIRCLE, Function DIM, Output

12-39 Rectangle and Circumscribed Circle

12-40 Program Circle With Correction and
Output

12-41 Program BOOL and Output

12-42 Program BOOL With Correction and
Output

60481300 H

10-6

11-1

11-8

11-8

11-9

11-14
11-15
11-16
11-17
11-17
11-18
11-18
11-18
11-19
11-20
11-21
11-22

12-1
12-2
12-2
12-3

12-3

12-17
12-18
12-19
12-19
12-21
12-21
12-22

12-22
12-22

12-43 Hollerith Examples

12-44 Program EASYIO

12-45 Sample Input and Output for Program
EASYIO

12-46 Program BLOCK

12-47 Sample Input and Output for Program
BLOCK

12-48 Programs ONE and TWO

12-49 Program PMD2

12-50 Post Mortem Dump Output for Program
PMD2

12-51 Program PMD

12-52 Post Mortem Dump Output for
Program PMD

12-53 Program DBUG

12-54 Debug Session

12-55 Program GOTO

12-56 Sample Input and Output for Program
GOTO

12-57 Program ASK

12-58 Program ASK Output

12-59 Program SCORE and Subroutine AVG

12-60 Sample Input and Output for Program
SCORE

TABLES

1-1 FORTRAN Character Set

1-2 Array Element Position

2-1 Correspondence of Data Types in DATA
Statements

3-1 Arithmetic Operators

3-2 Resulting Data Type for X1%*X2
Operations

3-3 Resulting Data Type for X1+X2, X1*X2
or X1/X2 Operations

3-4 Result of Logical Operators in

[

\:\nou‘u\u‘\.lnuwu\wwwu
MO ERWN=ONO W

~N o~
1 b
&~ W

1
SV wN=OWn

o o~

|
—
o

8-11
8-12
8-13
8-14
8-15
1i-1

Boolean Expressions
Character Operator
Logical Operators
Result of Logical Operators
Relational Operators
Repeatable Edit Descriptors
Nonrepeatable Edit Descriptors
Printer Control Characters
Ew.d Input Examples
F Input Examples
F Output Examples
Characteristics of Program Components
Intrinsic Functions
Summary of Mathematical Intrinsic
Functions
LABINFO Block Content
Information Available to Error
Recovery Routine
Collating Weight Tables
Static Capsule Loading Routines
PF Subroutine Parameters
Meanings of PF Command Options
CYBER Record Manager FIT Fields
CYBER Record Manager Calls
CYBER Record Manager Utilities
Sort/Merge 5 Calls
Sort/Merge 5 Numeric Key Types
Sort/Merge 5 Owncode Routines
Sort/Merge 4 and 1 Calls
Common Memory Manager Calls
Argument List Format
8-Bit Subroutine Calls
DML Statements and Utility Calls
IML Statements
Queued Terminal Record Manager Calls
Defaults for FTN5 Control Statement

12-23
12-24

12-25
12-25

12-26
12-26
12-27

12-28
12-29

12-30
12-32
12-32
12-33

12-33
12-34
12-34
12-35

12-35

\‘O‘kﬂ\ﬂU'U\kIhU!Ub)wuw
NN~ NSNO OBV

NOTATIONS

Certain notations are used throughout the manual
with consistent meaning. The notations are:

UPPERCASE

Lowercase

{1

{1}

60481300 F

In language syntax, uppercase indi-
cates a statement keyword or char-
acter that is to be written as shown.

In language syntax, lowercase indi-
cates a name, number, symbol, or
entity that is to be supplied by the
programmer.

In language syntax, brackets indi-
cate an optional item that can be
used or omitted.

In language syntax, braces indicate
that only one of the vertically
stacked items can be used.

In language syntax, an ellipsis
indicates that the preceding optional
item in brackets can be repeated as
necessary.

In program examples, a vertical el-
lipsis indicates that other FORTRAN
statements or parts of the program
have not been shown because they are
not relevant to the example.

A delta indicates a blank character.

xvii

LANGUAGE ELEMENTS 1

This section discusses the language elements of
FORTRAN 5. These elements include: FORTRAN state-
ments, symbolic names, constants, variables,

arrays, character substrings, and statement order.

FORTRAN STATEMENTS

FORTRAN statements are written using the FORTRAN
character set. The FORTRAN character set consists

of 26 letters, 10 digits, and 13 special
characters. The FORTRAN character set is shown in
table 1-1.

The representations of characters are described in
appendix A. In all but two cases, the FORTRAN
character and the representation are identical. If
the CDC 63-character set or 64-character set is in

Characters that are not included in the FORTRAN
ch set can be used: in chara ter

i constants; in apostrophe, H, a “quote
descrlptors of format specifications; and in

comment lines.

FORTRAN statements can b wrltten
sequenced) mode.

normal (non-
an “also . be

0 ~ed . m Each program must be
written entirely in one mode. Normal mode is
principally used for batch jobs. e is

parameter of the FIN5 con.trol statement (descrlbed
in section 11) selects sequenced mode.

NONSEQUENCED MODE

use, the two exceptions are and ", which are
represented as ¢ and #, respectively. If the The FORTRAN source program can be written on the
ASCIT 63-character set or 64-character set is in coding form shown in figure 1-1. Each line on the
use, the characters and representations are all coding form represents a source line from either a
identical. card image or a terminal line.
G S Eg%%‘r?gﬁ FORTRAN CODING FORM
PROGRAM NAME
ROUTINE DATE PAGE OF
T STATE. c FORTRAN STATEMENT
M MENT o 0=2ERO 1= ONE 2= TWO SERIAL
ol woo [V @ ALPHA O 1= ALPHA | 2~ ALPHA Z NUMBER
1|2y374ysf6]ryeysjio]upapragagigpiryepoqaofanzajzajas asias) 21)oa) 29pa0] 31 32033 3035 96197 8, 39 a0[a1 2 43 444614748 4945015252 4 550, 5758 5 80 116263 {641 65 o5 67 88 180y 0] 71, 72 3 74y 876 77 78 9 0
L | PR PASCAL v e v e e vt e b by e b Lo
C ... o b vt v o bevr v e bty r e by rr v c e s b i
C . TH|lS PROGRAM PREDUCES, A PASCAL TRIANGLE WITH 15 RIWS 1o |0 i la i
Cl L1 BN NN NN NN RN NN NN NN NN NN
Lt INTEGER LR OLSEY 111 i i e gt bl
L D@6 IE L AS Ly b e U L Lt
110, LlleVJ(III\I 1 RN RN NN NN NN N N N A
Lo PIRIIINTJLL WSICAIL TR /1K 15,./4%,,) |21151)|I|.! LREO(E Yy il
LM (s e e e b b e b e e
Cii AR NN AN RS SN EE NN S N SN
1111 D B0 J = Aty 21 =iy v v P e b ccv b e e b i
Ll Dlﬂll‘lo“kl|:1|3'|111‘+111111111||||u||1111H[1111H|11||| RN NN
o, ¢ L:RM/lmhmuLlI?MI:KJL z+||LtRﬂf1W/|ki+|1|)111|| Ll bt ittt by
Lo 1211|NT|||(|1|X|1@MW311'11,115;\HI|H Loy b e bbby
5101 11 C@}_{L___MEHIHllllnllllullnlllx|1111||1|1|||11|||111L1|u|||:|11r1
G Pt e Lt b it v b gy
L P BTEP v b b e b e b ey
Pt ENMB L v b e by e by s byt bttt ety ay
L1l BN N SN NN NS N RN NN NN N N N !
11 1 1O T T U 5 O T T T T T T T T IO 0 1 A O I 1 20 O O A T O O O I |
Lyt U I N T T T T A T O T O T T T T T N T T 0 I A O O A DY
s[2191a)5]6[7g8)s profuizjrsjiajisyue)rr|ingro)20] 21)22423) 24 25)26) 27 28 29) 30| 31y 32133 38 3536 | 37) 8] 39 | 40) 41| a2]a3} ay5|45) 47 48}49 80 | 1] 52{ 53| 54| s 56 57 88| 9{e0 e {62163 45 o6y 671868110 | o[273474 75| 76 77) 98 79 0
Figure 1-1. Program on FORTRAN Coding Form
60481300 F 1-1

TABLE 1-1. FORTRAN CHARACTER SET

Type Characters

p=3

Alphabetic through Z

o

Numer ic through 9

Special
Characters

equal

plus

minus

asterisk

slash

left parenthesis
right parenthesis
comma

decimal point
currency symbol
apostrophe (CDC graphic t)
colon

+ W

A v e~ F 1

The lines coded in a FORTRAN program are initial
lines, continuation lines, and comment lines.
Lines can also be compiler directives. The column
usage for nonsequenced mode lines is shown in
figure 1-2.

A nonsequenced mode line consists of characters in
columns 1 through 72. The identification field in
columns 73 through 80 is not defined as part of the
line.

Initial Lines

Each statement contains an initial 1line. The
initial line of a statement is written in columns 7
through 72. Blanks can be used to improve read-
ability. The initial 1line of a statement can
contain a statement label in columns 1 through 5.

Continuation Lines

Statements are coded in columns 7 through 72. 1If a
statement is longer than 66 characters, it can be
continued on as many as 19 continuation lines. A
character other than blank or =zero in column 6
indicates a continuation line. Columns 1 through 5
must be blank.

The length of a statement cannot exceed 1320 char-
acters. The maximum length includes one initial
line and 19 continuation lines, at 66 characters
per line, since the statement is contained in
columns 7 through 72.

Statement Labels

A statement label (any 1- to 5-digit positive non—
zero integer) can be written in columns 1 through 5
of the initial line of a statement. A statement
label uniquely identifies a statement so that it
can be referenced by other statements. Statements
that will not be referenced do not need labels.
Blanks and leading zeros are not significant.

1-2

Line:

Unlabeled Initial Line:
1 67 72

‘Etatement |

blank or zero

Labeled Initial Line:
1 67

Eement]

blank or zero

Continuation Line:

67 72
|continuation of statement]

L any character except blank or zero

Comment Line:

12
C[comment

* lcomment

HENREE

Jall blanks

C$ Directive:

1 7
c$ |directive

I

Figure 1-2. Normal Column Usage

Labels need not occur in numerical order, but a
given label must not be defined more than omnce in
the same program unit. A label is known only in
the program unit containing it and cannot be
referenced from a different program unit. Any
statement can be labeled, but only FORMAT and
executable statement labels can be referenced by
other statements.

Comment Lines

One of the characters C or * in column 1 indicates
a comment line. Comments do not affect the program
and can be placed anywhere within the program.
Comments can appear between an initial line and a
continuation line, or between two continuation
lines. Comments provide a method of placing pro—
gram documentation in the source program.

Any line with blanks in columns 1 through 72 is
also a comment line. Comment 1lines following an
END statement are listed at the beginning of the
next program unit.

60481300 F

Additional characters that are not in the FORTRAN
character set can be included in comment lines.
Comment lines can include any characters listed in
appendix A for the character set being used.

Columns 73 Through 80

Any identification information can appear in
columns 73 through 80 and is not considered part of
the statement or the line. Characters in the iden-
tification field are ignored by the compiler but
are copied to the source program listing. If input
comes from other than cards, columns 73 through 90
can be used for identification information.

60481300 F

SYMBOLIC NAMES

Symbolic names are assigned by the user. They
consist of one to letters and digits (ANSI
only allows 6) beginning with a letter. Symbolic
names are used for the following:

Main program name

Common block name
Subroutine name

External function name
Block data subprogram name
Variable name

Array name

Symbolic constant name
Intrinsic function name
Statement function name

Dummy procedure name

Names that are FORTRAN keywords can be used as
user-assigned symbolic names without conflict. In
general, however, it is good programming practice
to avoid naming conflicts by assigning unique names
to program entities. Certain of these conflicts
are illegal and are diagnosed. See figure 1-5 for
an example of duplicated keyword names.

CONSTANTS

A constant is a fixed quantity. The seven types of
constants a integer, real, double precision,
complex, Bool ; logical, and character con-
stants. The RAMETER statement described in
section 2 can be used to declare a symbolic con-
stant. Integer, real, double precision, complex,
i I constants are considered arithmetic

constants.

Example 1:

PROGRAM TEST
PRINT = 1.0
PRINT*, PRINT

The name PRINT is legally used as a variable
name and FORTRAN keyword.

Example 2:.

PROGRAM ALPHA
ALPHA = 1.0

The name ALPHA is illegally used as a program
unit name and a variable name.

Figure 1-5. ODuplicated Keyword Names Examples

INTEGER CONSTANT

An integer constant (figure 1-6 with examples in
figure 1-7) is a string of 1 to 18 decimal digits
written without a decimal point. It can be
positive, negative, or zero. If the integer is
positive, the plus sign can be omitted; if it is
negative, the minus sign must be present. An
integer constant must not contain a comma. The
range of an integer constant is -(259-1) to
259-1 (259-1=576460752303423487). For values
outside this range, the high-order bits are lost
and no diagnostic is provided.

[£] dld]...

d Is a decimal digit.

Figure 1-6. Integer Constant

Examples of valid integer constants:
237
-74
+136772
-0024

Examples of invalid integer constants:
46. Decimal point not allowed

23A Letter not allowed

7,200 Comma not allowed

Figure 1-7. Integer Constant Examples

60481300 H

Integers used in multiplication, division, and
exponentiation, whether constant or variable,
should be in the range —(248-1) to 248-1
(248-1=281474976710655). The result of such
operations must also be in this range. For integer
addition and subtraction (where both operands are
integers), the full 60-bit word is used.

When an integer constant is used as a subscript,
the maximum value is 217-1 (217-1=131071). The
minimum value is =(217-1) except when LCM=G is
s;(l)ected; then the range is -(220-8) through
220-g,

When an integer constant is used as an index in a
DO statement or implied DO, the maximum value is
217-2 (217-2=131070). The minimum value is
-(217-2) except when DO=LONG is selected or a DO
(LONG=1) directive is in effect; then a DO index
can exceed 217-2,

DO and LM are FORTRAN control statement param-—
eters. They are described in section 1l.

When values are converted (in an expression or
assignment statement) from real to integer or from
integer to real, the valid range 1is also from
-(248-1) to 248-1, For values outside this
range, the high order bits are lost and no diagnos-—
tic is provided.

REAL CONSTANT

A real constant (figure 1-8 with examples in
figure 1-9) consists of a string of decimal digits
written with a decimal point, with an exponent, or
with both. Commas are not allowed. The plus sign
can be omitted if the exponent is positive, but the
minus sign must be present if the exponent is
negative.

[£] coeff
[+] coeff E [t] exp
[+]1 n E [t] exp
coeff Is a coefficient in the form of a real
constant:
n.
n.n
.n
n Is an unsigned integer constant.
exp Is an unsigned integer exponent (base 10).

Figure 1-8. Real Constant

The range of a real constant is 107293 o
10"'322; if this range is exceeded, a diagnostic
is printed. Precision is approximately 14 decimal
digits, and the constant is stored internally in
one computer word.

Optionally, a real constant can be followed by a
decimal exponent, written as the letter E and an
integer constant that indicates the power of ten by
which the number is to be multiplied. If the E is
present, the integer constant following the letter

60481300 F

Examples of valid real constants:
7.5
-3.22

+4000.
.5

Examples of invalid real constants:

33,500. Comma not allowed

2.5A Letter not allowed

Examples of valid real consténts with exponents:
42.E1 Value 42. X 101 = 420.0
.00028E+5 value .00028 X 105 = 28.0
6.205E6

Value 6.205 X 106 = 6205000.0

700.€-2 Value 700. X 10-2

7.0

Example of invalid real constant with exponent:

7.2E3.4 Exponent not an integer

Figure 1-9. Real Constants Examples

E must not be omitted. The plus sign can be
omitted if the exponent is positive, but the minus
sign must be present if the exponent is negative.

DOUBLE PRECISION CONSTANT

A double precision constant (figure 1-10 and
examples in figure 1-11) is written in the same way
as a real constant with exponent, except that the
exponent is prefixed by the letter D instead of E.
Double precision values are represented internally
by two computer words, giving additional preci-
sion. A double precision constant is accurate to
approximately 29 decimal digits. The plus sign can
be omitted if the exponent is positive, but the
minus sign must be present if the exponent is
negative.

[+] coeff D [t] exp
[x] n D [£] exp

coeff Is a coefficient in the form of a real
constant:
n.
n.n
.n
n Is an unsigned integer constant.
exp Is an unsigned integer exponent (base 10).

Figure 1-10. Double Precision Constant

Examples of valid double precision constants: (real imag)
5.834D2 Value 5.834 X 102 = 583.4 real Is a real or integer constant for the real
part.
14.0-5 Value 14. X 1075 = 00014
imag Is a real or integer constant for the
9.2003 Value 9.2 X 103 = 9200.0 irmaginary part.
312004 Vatue 3120. X 104 = 31200000.0

Figure 1-12. Complex Constant

Examples of invalid double precision constants:

7.2D Exponent missing Examples of valid complex constants:

DS Exponent alone not allowed (L, 7.56 1.+ 7.54i i=v-1

2,001.302 Comma illegal (-2.161, 3.24) -21. + 3.24i

3.14159265 D and exponent missing %, 5 4.0 + 5.01

0., -1.) 0.0 - 1.0i

Figure 1-11. Double Precision Constants
Examples

COMPLEX CONSTANT

Complex constants (figure 1-12 and examples in

figure 1-13) are written as a pair of real or Examples of invalid complex constants:
integer constants separated '

by a comma and enclosed in parentheses. (12.70-4 16.1) Comma missing and double
precision not allowed

The first constant represents the real part of the
complex number, and the second constant represents 4.7E + 2,1.942 Parentheses missing
the imaginary part. The parentheses are part of

the constant and must always appear. Either

constant can be preceded by a plus or minus sign. Figure 1-13. Complex Constants Examples
Complex values are represented internally by two

consecutive computer words containing real values.

Real constants which form the complex constant can TRUE.

range from 10-293 to 10+322, Division of 'FALSE.

complex numbers might result in underflow or over-

flow even when this range is not exceeded. .TRUE. Represents the logical value true.

.FALSE. Represents the logical value false.

LOGICAL CONSTANT

A logical constant (figure 1-14 and examples in Figure 1-14. Logical Constant
figure 1-15) takes the form of .TRUE. or .FALSE..
The periods are part of the constant and must

appear.

Examples of valid logical constants:
- TRUE.
.FALSE.
Examples of invalid logical constants:

. TRUE No terminating period
.F. Abbreviation not recognized

Figure 1-15. Logical Constants Examples

1-6 60481300

Bcﬁaﬁau:vi(kmnstcuat

A Hollerith constant (figure. 1-1 has one of four

forms.

e
Ak

"N

n Is an unsigned nonzero mteger constam m
the range 1<n<10.

s Is a string of 1 through 10 represented
characters.

Figure 1~16. Hollerith Constant

For the nHs: form, the n specifies the number of
characters in the string following the H. No more
than 10 characters can be specified in the string
except when used as an actual argument to an
external subroutine or function; extra characters
are truncated. Blanks are significant, and char-
acters that are not in the FORTRAN character set
can be used.

The nHs form indicates left-justified with blank
fi1l. Blank fill means that any unassigned char-
acter positions -in the computer word are set to
blank (display code 55 octal). For example,

2HAB Value 010255...55 octal

The L"s" form indicates left-justified with binary
zero fill. Binary zero fill means that any un-
assigned character positions are set to binary zero
{display code 00 octal). For example,

LYAB" - Value 010200...00 octal
The R"s" form indicates nght-_-;ustiﬁed with binary
zero flll. For example,

R"AB" Value 00..,000102 octal
The "s" form is equivalent to the nH form “except
the characters need not be counted. No more than
10 characters can be represented 'in the string
éxcept when wused as an actual. argument. to an
extérnal subroutme or function. Any quote within
the ‘string is represented by . two conmsecutive quote
characters. © Note . that the - string might be 11
characters long if one character is a quote repre-
sented by .two consecutive i quotes. . Blanks -are
significant, and characters that are not in the
FORTRAN character set can be used. For example,

"AB" . Value 010255...55 octal .
"e''p" Value 03640455...1}5 octal

An extended Hollerith constant can have any of the
forms shown in figure 1-16 and’ may have a string
length greater than 10 characters. An extended
Hollerith constant can only be used as an actual
argument to an external procedure reference.

60481300 H

nHs feonn e]

Exampla. f

0"77" Value 00...0077 octal

i cﬁ 0"

o s astring of 1 through 20 octal digits.

Figure 1-17. Octal Constant

Hexadecimal Boolean Constant

A hexadecimal constant (figure 1-18) ‘allows a
string of digits to be interpreted as a hexadecimal
number. As many as 15 hexadecimal digits: can be
represented in a 60-bit computer word. (A hexa-
decimal digit is one of the characters 0, 1, 2, 3,
4, 5, 6, 7,.8,'9, A, B, C, D, E, or F.) The hexa-
decimal number is right-justified with binary zero
fill.

Example:

ZU1A" Value 00...0032 octal e e

rrowe

2 Isastring of 1 through 15 hexadecimal digits.

figure 1-18. Hexadecimal Con stvav’it

CHARACTER CONSTANT

A character constant (figure 1-19 with examples in
figure 1-20) is a string of characters enclosed in
apostrophes. Within the character string, an
apostrophe is represented by two consecutive
apostrophes.

s Is a string of characters.

Figure 1-19. Character Constant

The minimum number of characters in a character
constant is one, and the maximum number of char-
acters in a character constant is (2'2-1) or
32767. The length is the number of characters in
the string. Blanks are significant in a character
constant. Any characters in the operating system
character set can be used.

Examples of valid character constants:
*ABC'

123
'YEAR' 'S’

Examples of invalid character constants:

'ABC Terminating apostrophe is
missing

strop

Figure 1-20. Character Constants Examples

Character positions in a character constant are
numbered consecutively as 1, 2, 3, and so forth, up
to the length of the constant. The length of the
character constant is significant in all operations
in which the constant is used. The length must be
greater than zero.

VARIABLES

A variable represents a quantity with a value that
can be changed repeatedly during program execu-—
tion. Variables are identified by a symbolic name
of one to letters or digits (ANSI only allows
six), beginning with a letter. A variable is
associated with a storage 1location. Whenever a
variable is used, it references the value currently
in that location. A variable must be defined
before being referenced for its value.

The types of variables are integer, real, double
precision, complex, , logical, and char-
acter. Variables type y default are integer if
the first letter is I, J, K, L, M, or N, and are
real if the first letter is any other letter.
Implicit and explicit typing of variables is
described in section 2.

INTEGER VARIABLE

An integer variable is a variable that is typed
explicitly, implicitly, or by default as integer.
An integer variable occupies one storage word. The
range restrictions for integer variables are the
same as for integer constants.

See section 4 for restrictions on integers used in
DO statements.

Example:
ITEM1 N72
J K2504

NSUM JSUM
All variables are integer by default, as the

variable name begins with the letter I through
N.

REAL VARIABLE

A real variable is a variable that is typed expli-
citly, dimplicitly, or by default as real. The

]i-8

value range is 107293 through 10%322 yith
approximately 14 significant digits of precision.
A real variable occupies one storage word.

Example:
AVAR SuM3
RESULT TOTAL2
BETA XXXX

All variables are type real, as the variable
names begin with letters other than the letters
I through N.

DOUBLE PRECISION VARIABLE

A double precision variable is a variable that is
typed explicitly or implicitly as double precision.
The value of a double precision variable can range
from 107293 o 10¥322 yith approximately 29
significant digits of precision. Double precision
variables occupy two consecutive storage words.
The first word contains the more significant part
of the number and the second contains the less
significant part.

Example:

IMPLICIT DOUBLE PRECISION (A)
DOUBLE PRECISION OMEGA, X, IOTA

The variables OMEGA, X, IOTA, and all variables
whose first letter is A are double precision.

COMPLEX VARIABLE

A complex variable is a variable that is typed
explicitly or implicitly as complex. A complex
variable occupies two storage words; each word
contains a real number. The first word represents
the real part of the number and the second repre-

sents the imaginary part.

Example:

COMPLEX ZETA, MU, LAMBDA

LOGICAL VARIABLE

A logical variable is a variable that is typed
explicitly or dimplicitly as logical. A 1logical
variable occupies one storage word.

Example:

LOGICAL L33, PRAVDA, VALUE

60481300 H

CHARACTER VARIABLE

A character variable is a variable that is typed
explicitly or implicitly as character. The length
of the character variable is specified when the
variable is typed as character.

Example:

CHARACTER NAM*15, C3#*3

ARRAYS

A FORTRAN array is a set of elements identified by
a single name. The name is composed of one to
seven letters and digits (ANSI only allows six) and
begins with a letter. Each array element is
referenced by the array name and a subscript.

The type of the array elements is determined by the
array name in the same manner as the type of a
variable is determined by the variable name. The
array name can be typed explicitly with a type
statement, implicitly with an IMPLICIT statement,
or by default typing.

The array name and its dimensions must be declared
in a DIMENSION, COMMON, or type statement. When an
array is declared, the declaration of array dimen-
sions takes the form shown in figure 1-21. Arrays
can have 1 to 7 dimensions.

array (d{,d]. . .)
array Is the symbolic name of the array.

d Specifies the bounds of an array dimension
and takes the form:

[lower:] upper

lower Optionally specifies the lower
bound of the dimension. The
lower bound can be an integer
or-Booleéan expression with a
positive, zero, or negative value.
If omitted, the lower bound is
assumed to be 1.

upper Specifies the upper bound of the
dimension. The upper bound can
be an integer Or Booledn expres-
sion with a positive, zero, or
negative value. The upper bound
must be greater than or equal to
the lower bound. In the case of
an assumed size array, the upper
bound of the last dimension can
be specified as *.

Figure 1-21. Declaration of Array
Dimensions

The dimension bounds can be positive, negative, or
zZero. If the lower bound is omitted, the lower
bound is assumed to be one. In this case, the
upper bound must be positive. The general rule is
that the upper bound must always be greater than or
equal to the lower bound. The size of each dimen-
sion is indicated by the distance between the lower
bound and upper bound. For example,

60481300 G

DIMENSION RX(0:5)

declares a l-dimensional array of six elements
such as that shown in figure 1-22.

DIMENSION TABLE(4,3)

declares a 2-dimensional array of four rows and
three columns, for a total of twelve elements
such as that shown in figure 1-23.

INTEGER STOR(6,6,3)
declares a 3-dimensional array of six rows, six

columns and three planes, for a total of 108
elements.

Row 0 10.0
Row 1 55.0
Row 2 11.2
Row 3 72.6
Row 4 91.9 as—Value of (4) is91.9
Row 5 71

Figure 1-22. 1-Dimensional Array Storage

Column1 Column2 Column3

Row 1 44 10 105

Row 2 72 20 200 —~—Value of (2,3}
Row 3 3 1 30 is 200

Row 4 91 76 714

\
Value of (3,2) is 11

Figure 1-23. 2-Dimensional Array Storage

The span of an array dimension 1is given by
(upper-lower+l), where upper is the upper dimension
bound and lower is the lower dimension bound. An
array of type integer, Boolean, real, or logical
occupies n words of storage, where n is the product
of the spans of all dimensions. An array of type
complex or double precision occupies 2*n words. An
array of type character occupies (n*lentoffset+9)/10
words, where len is the length in characters of an
array element, and offset is the starting character
position (O to 9) of the array in the first word of
the array storage. Character operations involve
character lengths, not word lengths. The length,
in words, of a character array can be determined by
placing the array in a common block and applying
the above formula, (n*lentoffset+9)/10. For a
character array in a common block, the value of
offset is MOD(totch,10), where totch is the total
number of characters preceding the first element of
the array in the common block. Note that in the
formula for the 1length of a character array in
words, all terms are integers and division is an
integer division (truncation).

An array in central memory must occupy less than
217 yords. An array in extended memory can
occupy up to 220-8 words if LCM=G is selected on
the FTN5 control statement. Arrays are placed in
extended memory through the LEVEL statement. (See
section 2.)

If a Boolean expression is used for the lower or
upper - bound of a dimension, ‘the” value ! of ’ne
expressien is converted “to integer; that ij,» thi

1-9

A dimension
bounds specification must not include a function
reference or array element reference. Presence of
a variable makes the size of the array adjustable.
Presence of an asterisk as the upper bound of the
last dimension makes the array an assumed-size
array. An assumed-size array can only be used in a
subroutine or function, as described in section 6.

ARRAY STORAGE

The elements of an array have a specific storage
order, with elements of any array stored as a
linear sequence of storage words. The first ele-
ment of the array begins with the first storage
word or character storage position, and the last
element ends with the last storage word or char-
acter storage position.

The number of storage words reserved for an array
is determined by the type of the array and its
size. For real, integer, and logical
arrays, the number of storage words in an array
equals the array size. For complex and double
precision arrays, the number of storage words
reserved is twice the array size. For character
arrays, the number of words is calculated from the
number of characters stored, at ten characters per
storage word. For example, an array defined as
CHARACTER*5 X(8), that is, eight S5-character ele-
ments, would require storage for 40 characters, or
four storage words at offset zero.

Storage patterns for a l-dimensional, 2-dimensional,
and 3-dimensional array are shown in figure 1-22,
figure 1-23, and figure 1-24, respectively. Arith-
metic values are shown for the array elements, but
an array can be any data type. Array elements are
stored 1in ascending locations by columns. The
first subscript value increases most rapidly, and
the last subscript value increases least rapidly.

ARRAY REFERENCES

Array references. can be references to complete
arrays or to specific array elements. A reference
to a complete array is simply the array name. A
reference to a specific element involves the array

name followed by a subscript specification. An
array element reference is also called a subscrip-
ted array name.

A reference to the complete array references all
elements of the array in the order in which they
are stored. For example,

DIMENSION XT(3)
DATA XT/1.,2.,3./
CALL CALC(XT)

uses the array reference XT in the DATA statement
and the CALL statement.

A reference to an array element references a speci-
fic element and takes the form shown in figure 1-25.

array (el.e]. . .)

array Is the symbolic name of the array.

ipt expression that is an integer,

e Is a subs
; e

pr P
vatlue that is within the bounds of the cor-
responding dimension.

Figure 1-25. Array Element Reference

An array element reference must specify a value for
each dimension in the array. Array element refer-
ences are not legal unless a value is supplied for
each dimension. There can be up to seven dimen-
sions in an array element.

An array element reference specifies the name of
the array followed by a 1list of subscript expres-
sions enclosed in parentheses. Each subscript
expression can be an inte

A subscrlpt' expression can

contain function references and array element
references; however, evaluation of a function
reference must not alter the value of any other
subscript expression in the array element reference.

y
Value of (2,1,3) is 77 Row 3 85 100 8

Plane 1
Column1 Column2 Column3
Row 1 3 7 4 Value of (1,3,2) is 7
Row 2 7 8 9 Plane 2
Row 3 0 133 2 — Column1 Column2 Column3
i Row 1 b 22 51 7
Value of (3,2,1) is 33
Row 2 0 98 6 Plane 3
Row 3 3 207 99 ——-LCqumn 1 Column2 Column3
Row 1 -2 1 552

—77 60 3

Figure 1-24. 3-Dimensional Array Storage

60481300 G

Each value must not be
less than t an the upper
bound of the dimension. If the array is an assumed-
size array with the upper bound of the last dimen-
sion specified as asterisk, the value of the
subscript expression must not exceed the actual
size of the dimension. The results are unpredict-
able if an array element reference exceeds the size
of an array. For each array element reference,
evaluation of the subscript expressions yields a
value for each dimension and a position relative to
the beginning of the complete array.

The position of an array element is calculated as
shown in table 1-2. The position indicates the
storage location of an array element.

See figure 1-26 for array reference examples.

TABLE 1-2. ARRAY ELEMENT POSITION

Dimensions Position of Array Element

! 1+ (s1-51)

+ (s9-31)
+ (sp-32)*m

(O8]
—
+

(s1-31)
(sp-3p)*n
($3-33)*np*m

+ +

{s1-37)
(Sg-jz)*n]
(53-33)*np*ny
(54-j4)*n3*n2*n1
S5-j5)*ng*n3*ny*ng
)
)

+ o+ 4+ o+ o+

$6-36)*n5*ng*n3*ny*ny
($7-37)*ng*n5*ng*n3*n¥n,

Ji Lower bound of dimension 7.

K Upper bound of dimension i.

N3 Size of dimension i. If the lower
bound is one, ni=kj, Otherwise,
ni=(ki-ji+1).

S5 Value of the subscript expression
specified for dimension i.

CHARACTER SUBSTRINGS

When a character variable or character entity is
declared, the entire character string can be
defined and referenced. Specific parts of the
character string can also be defined or referenced
with character substring references. A character
entity must be declared with the CHARACTER state-
ment described in se