

60481300 B

E-2

60481300 B
E-3

%gﬂﬁg}xwm

ié%%}a! e

E-4 60481300 B

INPUT/OUTPUT IMPLEMENTATION F

%

This section describes the structure of files read and
written by FORTRAN 5. All files read and written as a
result of user requests at execution time are processed
through Record Manager. The files read and written at
compile time by the compiler itself (including source input,
coded output, and binary output) are processed by
operating system routines when compilation is under NOS
or NOS/BE, and by SCOPE 2 Record Manager when
compilation is under SCOPE 2.

EXECUTION-TIME INPUT/OUTPUT

All input and output between a file referenced in a
program and the file storage device is under control of
Record Manager. The version of Record Manager used
depends on the operating system.

NOS and NOS/BE use CYBER Record Manager Basic
Access Methods (BAM), encompassing sequential and word
addressable file organizations, for standard input/output
statements, and CYBER Record Manager Advanced Access
Methods (AAM) for indexed sequential, direct access, and
actual key file organizations, and multiple-index
capability, through the CYBER Record Manager interface
routines.

SCOPE 2 uses the SCOPE 2 Record Manager for all
input/output.

CYBER Record Manager can be called directly, as
described in section 8, to use the extended file structure
and processing available. SCOPE 2 Record Manager
"cannot be called directly from the FORTRAN 5 compiler.
This appendix deals only with Record Manager processing
that results from standard language use.

File processing is governed by values compiled into the file
information table (FIT) for each file. If a file or its FIT is
changed by other than standard FORTRAN input/output
statements, subsequent FORTRAN input/output to that file
may not function correctly. Thus, it is recommended that
the user not try to use both standard FORTRAN and
nonstandard input/output on the same file within a program.

FILE AND RECORD DEFINITIONS

A file is a collection of records referenced by its logical
file name. It begins at beginning-of-information and ends
with end-of-information. A record is data created. or
processed by:

® One execution of an unformatted READ or WRITE

e One card image or a print line defined within a
formatted, list directed, or namelist READ or WRITE

® One call to READMS or WRITMS

® One execution of BUFFER IN or BUFFER OUT

60481300 D

On storage, a file can have records in one of eight formats
(record types) defined to Record Manager. Only four of
these are part of standard processing:

Z Record is terminated by a 12-bit zero byte in the
low order byte position of a 60-bit word.

W Record length is contained in a control word
prefixed to the record by Record Manager.

U Record length is defined by the user.
System logical record.

The remaining types can be formatted within a program
under user control and written to a device using a WRITE
statement if the FILE control statement is used to specify
another record type. Similarly, these types can be read by
a READ statement.

The wuser is responsible for supplying record length
information appropriate to each type before a write and
for determining record end for a read. For example, a
D type record requires a field within the record to specify
record length, and F type records require that the user
READ/WRITE exactly FL characters in each record.

Unformatted READ and WRITE are implemented through
the GETP and PUTP macros of Record Manager;
consequently, record operations must conform to macro
restrictions. Specifically, RT=R ‘and RT=Z cannot be
specified for unformatted operations.

Direct access I/O must be done with RT=U. RT=U is the
default.

STRUCTURE OF INPUT/OUTPUT FILES

FORTRAN 5 sets certain values in the file information
table depending on the nature of the input/output operation
and its associated file structure. Table F-1 lists these
values for their respective FIT fields; all except those
marked with an asterisk (¥) can be overridden at execution
time by a FILE control statement. (Numbers in
parentheses refer to notes listed following the table.)

Sequential Files

The following information is valid, unless the FIT field is
overriden by a FILE control statement.

With READ and WRITE statements, the record type (RT)
depends on whether the access is formatted or unformatted
(applies only to NOS and NOS/BE). A formatted WRITE
produces RT=Z records, with each record terminated by a
system-supplied zero byte in the low order bits of the last
word in the record. An unformatted WRITE produces RT=W
records, in which each record is prefixed by a
system-supplied control word. Blocking is type C for
formatted and I for unformatted records. The files named
INPUT, OUTPUT, and PUNCH always have record type Z
and block type C. These files should only be processed by
formatted, list directed, and namelist input/output
statements. :

On SCOPE 2 only with READ and WRITE statements, the
record type is W for all file types; blocking is I for tape
files, and unblocked for all other files.

PRINT and PUNCH statements produce Z type records
with C type blocks or on SCOPE 2 only, W type records
unblocked for processing on unit record equipment.

BUFFER IN and BUFFER QUT assume S type records or,
on SCOPE 2 only, W type records. Formatting is
determined by the parity designator in each BUFFER
statement. An unformatted operation does not convert
character codes during tape reading or writing (CM=NO),
while a formatted operation does.

The ENDFILE statement writes a boundary condition
known as an end-of-partition. When this boundary is
encountered during a read, the EOF function returns
end-of-file status. An end-of-partition may not
necessarily coincide with end-of-information, however,
and reading can continue on the same file until
end-of-information on the file has been encountered.

End-of-partition is written as the file is closed during
‘program termination. A third boundary for sequential
files, a section, is not recognized during reading except
for the special case of the file INPUT.

Mass Storage Input/Output

Files created by the random mass storage routines
OPENMS, WRITMS, STINDX, and CLOSMS described in
section 7 are word addressable files. The master index,
which is the last record in the file, is created and
maintained by FORTRAN routines rather than Record
Manager routines.

One WRITMS call creates one U type record; one
READMS call reads one U type record. If the length
specified for a READMS is longer than the actual record,
the excess locations in the user area are not changed by
the read. If the record is longer than the length specified
for a READMS, the excess words in the record are skipped.

Direct Access Input/Output

Files created by direct access READ and WRITE
statements are word addressable files. There is no index.
Except where the format specifies multiple records, one
direct access WRITE creates one U type record and one
direct access READ reads one U type record.

FILE CONTROL STATEMENT

The FILE control statement provides a means to override
FIT field values compiled into a program and consequently
a means to change processing normally supplied for
standard input/output. In particular, it can be used to
read or create a file with a structure that does not
conform to the assumptions of default processing.

A FILE control statement can also be used to supplement
standard processing. For example, setting DFC can
change the type of Record Manager information listed in
the dayfile. : .

At execution time, FILE control statement values are
placed in the FIT when the referenced file is opened.
These values have no effect if the execution routines do
not use the fields referenced. Furthermore, FORTRAN

F-2

routines may, in some cases, reset FIT fields after the
FILE control statement is processed. These fields are
noted in table F-1.

The format of the FILE control statement is shown in
figure F-1.

FILE(lfn field=value[,field=value]. . .)

ifn Is the file name as it appears on the
execution contro! statement; if file name
does not appear there, then Ifn is file name
as it appears in the PROGRAM or OPEN

statement.
field Is a FIT field mnemonic.
value Is a symbolic or integer value.

Figure F-1. FILE Control Statement

The FILE control statement can appear anywhere in the
control statements prior to program execution, but it
must not interrupt a load sequence.

This deck shown in figure F-2 illustrates the use of the
FILE control statement to override default values supplied
by the FORTRAN compiler. Assuming the source program
is using formatted writes and 100-character records are
always written, the file is written on magnetic tape with
even parity, at 800 bpi. No labels are recorded, and no
information is written except that supplied by the user.
The following values are used:

Block type = character count
Record type = fixed length
Record length = 100 characters

Conversion mode = YES

SEQUENTIAL FILE OPERATIONS

The sequential file operations are BACKSPACE/REWIND
and ENDFILE.

Backspace/Rewind

Backspacing on FORTRAN files repositions them so that
the previous record becomes the next record.

BACKSPACE is permitted only for files with F, S, or W
record type or tape files with one record per block.

The user should remember that formatted input/output
operations can read/write more than one record;
unformatted input/output and BUFFER IN/OUT
read/write only one record.

The REWIND operation positions a magnetic tape file so
that the next FORTRAN input/output operation
references the first record. A mass storage file is
positioned to the beginning-of-information.

Table F-2 details the actions performed prior to
positioning.

60481300 C

TABLE F-1. DEFAULTS FOR FIT FIELDS

FIT Fields

Formatted,
NAMELIST, and

Unformatted

Direct Access

record length field
(D type records)

60481300 E

: : : BUFFER IN/ | Mass Storage

List Directed | Sequential 1/0 Formatted
Meaning Mnemonic Sequential READ/WRITE BUFFER OUT | Input/Output and Unformatted

READ/WRITE
CIO buffer size (words){ (1) BFS' (1) (1) (1) (1) (1)
Buffer Below Highest BBH 0 0 n/a 0 0
Address
Block type BT ct/7(o)tt " /(9" ct /(9)tt n/a C*
Close flag (positioning| CF N* N* N* NxT Rt N*
of file after close)
Length in characters of| CL 0 0 0 n/a n/a
record trailer count
field (T type records
only)
Conversion mode cM YEST /NO NO (2) n/a n/a
Beginning character cpP 0 0 0 n/a n/a
position of trailer
count field, numbered
from zero (T type
records only)
Length field (D type c1t NO NO NO n/a n/a
records) or trailer
count field (T type
records) is binary
Type of information to prct 3 3 3 3 3
be listed in dayfile
Type of information to | £FC' 0 0 0 0 0
be listed on error file
Error options EO AD AD AD AD AD
Trivial error limit ERL 0 0 0 0 0
Fatal Flush FFT 0 0 n/a 0 0
Length in characters FL! 150(5)* n/a n/a n/a n/a
of an F or Z type
record (same as MRL)
File organization FO SqQ * SQ * SQ * WA * WA *
Character length of HL 0 0 0 n/a n/a
fixed header for T
type records
Length of user's label | (7) LBL 0* 0 * 0 * n/a n/a
area {(number of
characters)
Logical file name LFN (3) (3) (3) (3) (3)
Length in characters of | LL 0 0 0 n/a n/a

F-3

TABLE F-1. DEFAULTS FOR FIT FIELDS (Contd)

FIT Fields

Formatted,
NAMELIST, and

Unformatted

Direct Access

{positioning of file
at volume CLOSEM time)

F-4

) - : BUFFER IN/ | Mass Storage
List Directed | Sequential 1/0 Formatted
Meaning Mnemonic Sequential READ/WRITE BUFFER OUT | Input/Output and Unformatted
READ/WRITE
Beginning character LP 0 0 0 n/a n/a
position of record
length, numbered from
zero (D type records)
Label type (7) LY ANY ANY ANY n/a n/a
Maximum block length MBL 0 0 0 n/a n/a
in characters
Minimum block length MNBT 0 0 0 n/a n/a
in characters
Minimum record Jength | MNRT 0 0 0 n/a n/a
in characters
Maximum record length (5) MRL n/a 223-1 (8) * n/a n/a
in characters
Multiple of characters | MUL' 2 2 2 n/a n/a
per K, E type block
Open flag (positioning | (7) OF N N* N* N*T /RTT # N*
of file after open)
Padding character for pct 768 768 768 n/a n/a
K, E type blocks
| Processing direction PD 10 10 10 10 10
Number of records per RB 1 1 1 n/a n/a
K type block
Record mark character RMK 628 n/a 628 n/a n/a
(R records)
Record type RT Zt/wtt(10) W(6) st/wtt u u*
Length field (D type 8t NO NO NO n/a n/a
records) or trailer
count field (T type
records) has sign
overpunch
Suppress buffering SBF' NO* NO* YES(11) NO* NO*
Suppress read ahead SPR NO NO NO n/a n/a
Character length of TL 0 0 0 n/a n/a
trailer portion of
T type records
User label processing (7) uLpP NO NO NO NO n/a
End of volume flag VF U U] u U

60481300 E

TABLE F-1. DEFAULTS FOR FIT FIELDS (Contd)

Notes:

(4) Set by CYBER Record Manager.

length declared on the PROGRAM statement.

must be a multiple of 10.

n/a FIT field not applicable to this input/output mode.

* Default cannot be overridden by a FILE control statement.

(1) Buffer size can be declared on the PROGRAM statement, OPEN statement, or FILE control
statement. Otherwise, CRM chooses the buffer size according to device type. Buffer is
allocated on the first I/0 operation and deallocated when the file is closed.

(2) Set by parity designator in BUFFER IN or BUFFER OUT statement.

(3) Set by PROGRAM statement, OPEN statement, or execution control statement.

(5) Default can be changed on PROGRAM or OPEN statement. For formatted, NAMELIST, and list directed
READ/WRITE statements, a FILE control statement can decrease but not increase the maximum record

(6) Default can be overridden by a FILE control statement only if RT=R and RT=Z. For RT=F, FL

(7} The LABEL subroutine (section 7) sets LBL=80, LT=ST, OF=R, and ULP=F.

(8) Maximum record length equal to length of rgcord specified in BUFFER IN or BUFFER OUT statement.
(9) Unblocked if mass storage file; I if tape file.

(10) Default can be overridden by FILE control statement only if RT=U.

(11) On a CYBER 170 Model 176, SBF must be set to NO on a FILE control statement if a level 2 or
3(LCM) variable is used in a buffer statement under NOS/BE.

prph'es to NOS and NOS/BE only.
Tapplies to SCOPE 2 only.

End File

Tables F-3 and F-4 indicate the action taken when an
ENDFILE statement is executed. The action depends on
the record and block type, as well as the device on which
the file resides.

INPUT/OUTPUT RESTRICTIONS

Meaningful results are not guaranteed in the following
circumstances:

e Mixed formatted and unformatted read or write
statements and buffer input/output statements on the
same file (without an intervening REWIND, ENDFILE,
or without encountering an end-of-file as determined
by the EOF Function).

e Requesting a LENGTH function or LENGTHX call on
a buffer unit before requesting a UNIT function.

e Two consecutive buffer input/output statements on

the same file without the intervening execution of a
UNIT function call.

60481300 E

e Writing formatted records on a 7-track S or L tape
without specifying CM=NO on a file control statement.

e Using items in an input list after encountering
end-of-file in a read.

e Attempting to write a noise record on an S or L tape.
This can occur with block types K and E (and C for
SCOPE 2) using record types F,D,R,T, or U with MNB
<noise size.

e Sequential 1/O operations REWIND, BACKSPACE, and
ENDFILE on a direct access file.

COMPILE TIME INPUT/OUTPUT

The compiler expects source input files to have certain
characteristics and it produces coded and binary files
which must be structured in specific ways according to
the operating system under which it runs. A program
compiled under SCOPE 2 must be executed under control
of SCOPE 2; a program compiled under other operating
systems cannot be executed under SCOPE 2. Programs
compiled under NOS or NOS/BE can be executed under
either of these operating systems.

F-5

CON®

V4
/
yA
Data Deck
7
8 / 1
9 /-;FORTRAN source program
Vs
/7
8
9

{ Lco.

t

FILE(TAPE1,BT=C,RT=F,FL=100,CM=YES)

/ REQUEST(TAPE1MT,HY,VSN=HAVEN)

/ FTNS,ET.

T/ Accounting statements

Job statement

1‘As required by the operating system.
Tt Format applicable to NOS/BE.

Figure F-2. FILE Control Statement Example

Under SCOPE 2, the compiler uses SCOPE 2 Record
Manager for all input/output operations. However, a FILE
control statement should not be used since the compiler
overrides file information table settings after this control
statement is processed. Under NOS and NOS/BE, the
compiler makes direct calls to the operating system for
input/output; CRM is not used.

SOURCE INPUT FILE STRUCTURE

A source input file must have a certain structure. Only
the first 90 characters of each record are processed or
reproduced in the listing output file. The characteristics
are described in table F-5.

CODED OUTPUT FILE STRUCTURE
Two coded output files can be produced: the listing file

and the errors file. The characteristics are described in
table F-6.

BINARY OUTPUT FILE STRUCTURE

The content of the executable object code file differs,
depending on the loader supported by the operating
system. The characteristics are described in table F-7.

60481300 C

TABLE F-2. ACTION BEFORE POSITIONING FOR BACKSPACE/REWIND

Condition

Device Type

Action

Last operation was
WRITE or BUFFER OUT

Last operation was
WRITE or BUFFER oUT'T

Last operation'was
READ, BUFFER IN or
BACKSPACE

No previous operation

Previous operation
{was REWIND

Mass Storage

Unlabeled Magnetic Tape

Labeled Magnetic Tape

Mass Storage

Unlabeled Magnetic

S or L Tape

Labeled Magnetic Tape
or Unlabeled System
Magnetic Tape

Mass Storage

Unlabeled Magnetic Tape
Labeled Magnetic Tape
A11 Devices'

Mass Storageft

Magnetic Tape't

Any unwritten blocks for the file are written. An
end-of-partition is written. If record format is W, a deleted
zero length record is written.

Any unwritten blocks for the file are written. If record

format is W, a deleted zero length record is written. Two
file marks are written.
Any unwritten blocks for the file are written. If record

A file mark is
Two file marks are

format is W, a deleted record is written.
written. A single EOF label is written.
written.

ENDFILE is issued. Any unwritten blocks for the file are
written. End-of-information is written.

ENDFILE is issued. Any unwritten blocks for the file are
written. Two file marks are written.

ENDFILE is issued. Any unwritten blocks for the file are

written. A tape mark is written. A single EOF label is
written. Two tape marks are written.

None.

None.

None.

REWIND request causes the file to be rewound when first
referenced.

If the file is assigned to on-line magnetic tape, a REWIND
request is executed. For SCOPE 2, if the file is staged, the
REWIND request has no effect. The file is staged and rewound
when it is first referenced.

Current REWIND is ignored.

TApplies to NOS and NOS/BE only.
TtApplied to SCOPE 2 only.

TABLE F-3. ENDFILE ACTION (NOS AND NOS/BE)

Device Type

Record Type

S or L Tape

Other Device

Other

An end-of-partition flag is written.

The block is terminated.
The block is terminated.

A tape mark is written.

An end-of-partition flag is written.

The block is terminated with a short PRU
of level 0.

The block is terminated with a short PRU
of level 0.

A zero length PRU of level 17 is written.

60481300 C

F-7

TABLE F-4. ENDFILE ACTION (SCOPE 2)

Blocking
Record Type
Blocked Unblocked
W An end-of-partition flag is written. An end-of-partition flag is written.
The block is terminated.
YA If C type blocking, the block is A level 17 PRU is written.
terminated. Otherwise, the block is ter-
minated and a tape mark recovery control
word is written.
S If C type blocking, the block is Not applicable.
terminated with a zero length PRU of
level 17. Otherwise, the block is termi-
nated and a tape mark recovery control
word is written.
Others The block is terminated. A tape mark Ignored.
on Mass recovery control word is written.
Storage
Others The block is terminated. A tape mark is Not applicable.
on Magnetic written.
Tape
TABLE F-5. SOURCE INPUT FILE STRUCTURE
File NOS/BE and NOS SCOPE 2
Characteristics

File organization

Record type

Max imum record
length

Conversion mode

Label type of
tape

Zero-byte terminated

158 characters

Not applicable

Under operating system control

Sequential operating system default format with file
terminated by a short or zero length PRU

Sequential (F0=SQ)
unblocked

Control word (RT=NW)

158 characters
(MRL=158)

No (CM=NO)

Unlabeled (LT=UL)

F-8

60481300 C

TABLE F-6. CODED OUTPUT FILE STRUCTURE

File
Characteristics

NOS/BE and NOS

SCOPE 2

File organization

Maximum block
Tength

Record type

Maximum record
length

Sequential operating system default format with file
terminated by a short PRU

Not applicable
Zero-byte terminated (equivalent to Record Manager
Z type{

137 characters

Sequential (F0=SQ)
unblocked

None

Control word (RT=W)

137 characters

Conversion mode Not applicable No (CM=NO)
Tape label type Under operating system control Unlabeled
(LT=UL)
TABLE F-7. BINARY OUTPUT FILE STRUCTURE
File NOS/BE and NOS SCOPE 2
Characteristics

File organization

Record type

Maximum record
length
Conversion mode

Tape label type

Sequential operating system default format with file
terminated by a zero length PRU which is then back-
spaced over

Operating system logical record (equivalent to
Record Manager S type)

None

Not applicable

Under operating system control

Sequential (F0=SQ)
unblocked

Control word
(RT=W)

1,310,710
characters

No (CM=NO)
Unlabeled (LT=U)

60481300 C

F-9

FUTURE SYSTEM MIGRATION GUIDELINES G

This appendix contains programming practices
recommended by CDC for users of the software described
in this manual. When possible, application programs based
on this software should be designed and coded in
conformance with these recommendations.

Two forms of guidelines are given. The general guidelines
minimize application program dependence on the specific
characteristics of a hardware system. The feature use
guidelines ensure the easiest migration of an application
program to future hardware or software systems.

GENERAL GUIDELINES

Programmers should observe the following practices to
avoid hardware dependency:

e Avoid programming hardcoded constants. Manip-
ulation of data should never depend on the occurrence
of a type of data in a fixed multiple such as 6, 10, or
60.

e Do not manipulate data based on the binary
representation of that data. Characters should be

manipulated as characters, rather than as octal

display-coded values or as 6-bit binary digits.
Numbers should be manipulated as numeric data of a
known type, rather than as binary patterns within a
central memory word.

e Do not identify or classify information based on the
location of a specific value within a specific set of
central. memory word bits.

® Avoid using COMPASS in application programs.
COMPASS and other machine-dependent languages can
complicate migration to future hardware or software
systems. Migration is restricted by continued use of
COMPASS for stand-alone programs, by COMPASS
subroutines embedded in programs using higher-level
languages, and by COMPASS owncode routines in CDC
standard products. COMPASS should only be used to
create part or all of an application program when the
function cannot be performed in a higher-level
language or when execution efficiency is more
important than any other consideration.

FEATURE USE GUIDELINES

The recommendations in the remainder of this appendix
ensure the easiest migration of an application program for
use on future hardware or software systems. These
recommendations are based on known or anticipated
changes in the hardware or software system, or comply
with proposed new industry standards or proposed changes
to existing industry standards.

ADVANCED ACCESS METHODS
The Advanced Access Methods (AAM) offer several

features within which choices must be made. The
following paragraphs indicate preferred usage.

60481300 D

Access Methods

The recommended access methods are indexed sequential
(1S), direct access (DA), and multiple index processor (MIP).

Record Types

The recommended record types are either F for fixed
length records, or W for variable length records. Record
length for W records is indicated in the control word; the
length must be supplied by the user in the RL FIT field on a
put operation and is returned to the user in RL on a get
operation.

FORTRAN Usage

The following machine-independent coding practices are
encouraged for a FORTRAN programmer using AAM:

e Initialize the FIT by FILExx calls or by the FILE
control statement.

e Modify the FIT with STOREF calls.
e Use the FORTRAN 5 CHARACTER data type when
working with character fields rather than octal values

of display code characters; specify lengths of fields,
records, and so forth, in characters rather than words.

BASIC ACCESS METHODS
The Basic Access Methods (BAM) offer several features

within which choices must be made. The .following
paragraphs indicate preferred usage.

File Organizations

The recommended file organization is sequential (5Q). For
files with word-addressable (WA) organization, use an
accessing technique that can easily be madified to byte
addresses.

Block Types

The recommended block type is C.

Record Types

The recommended record types are F for fixed length
records and W for variable length records. For purely
coded files that are to be listed, Z type records can be used.

Block Size

Set the Maximum Block Length (MBL) to 640 characters
for mass storage files and 5120 characters for tape files.

Host Language Input/Output

Use of host language input/output statements (for example,
a FORTRAN READ statement) to process BAM files is
always a safe procedure. Host language statements
provide appropriate default values for record type, block
type, and block size. Do not use the CYBER Record
Manager FORTRAN interface routines to process
sequential files.

Collating Sequence

The default collating sequence or the ASCII collating
sequence should be used.

FORTRAN 5

FORTRAN 5 offers users several capabilities that are
processor-dependent. The use of such capabilities restrict
FORTRAN 5 program migration. The following paragraphs
indicate preferred usages.

Processor-dependent Values

Coding should not depend on the internal representation of
data (floating-point layout, number of characters per word,
and so forth). Where coding must depend on these
representations, use parameter variables for
processor-dependent characteristics such as the number of
characters per word.

Boolean Data Types

Do not use Boolean data types and operations (SHIFT,
MASK, and so forth) because they can be
processor-dependent. Use type CHARACTER instead, if
working with character data.

LOCF Function

Do not use the intrinsic function LOCF. For most
applications, this function should not be necessary.

ENCODE and DECODE Statements

Do not use ENCODE and DECODE; use the ANSI standard
internal files feature instead. ENCODE and DECODE are
generally dependent on the number of characters per word.

DATE, TIME, and CLOCK Functions

Do not dismantle values returned by the DATE, TIME, and
CLOCK functions; use these functions only for printing out
values as a whole.

BUFFER IN and BUFFER OUT Statements

Do not use BUFFER IN and BUFFER OUT, especially when
use depends on the number of characters per word.

CYBER Record Manager Interface Routines

Do not use the CYBER Record Manager interface routines
for sequential files. Instead, use FORTRAN input/output
statements such as READ or WRITE.

Overlays

If possible, use segmented loading instead. If overlays
must be used, do not depend on such properties as
reinitialization of variables when an overlay is reloaded.

LABEL Subroutine

Avoid use of the LABEL subroutine. Changes to the ANSI
standard for tape labels might require changes to the
interface used by this subroutine.

STATIC Memory Management and
Capsule Loading

Do not use this capability unless absolutely necessary. Use
of Common Memory Manager and OV CAPs is preferred.

The user must be thoroughly aware of the capsules needed
to perform the types of 1/O operations required. It is the
user's responsibility to ensure that the capsules are loaded
by explicitly specifying the appropriate STLxxx subroutine

~call. Only default block and record types are supported by

the STLxxx subroutines. To force load nondefault block
type/record type handling of capsules, the user must use
the following control statement sequence:

FILE,LFN,...,RT=...,BT=...,...USE=...
LDSET(STAT=1fn)

SORT/MERGE VERSIONS 4 AND 1

Sort/Merge offers several features among which choices
must be made. The following paragraphs indicate

preferred usage.

Key Alignment

Ensure that SORT keys are aligned on character or word
boundaries. Do not place SORT keys in arbitrary bit
positions within words.

SORT and MERGE Statements

Always perform logically separated SORT and MERGE
operations with separate control statements.

60481300 £

INDEX

\

A edit descriptor 5-13
Abort, recovery 7-16
ABS 7-1

ACOS 7-1

Actual arguments 6-6
Adjustable dimensions 6-8
AIMAG 7-1

AINT 7-1

ALOG 7-1

ALOGI0 7-1

Alternate return 6-11
AMAX0 7-1
AMAX1 7-1
AMINO 7-8
AMIN1 7-8
AMOD 7-9
AND 7-9
ANINT 7-9
Argument list format 8-11
Arguments
Actual 6-6
Dummy or formal 6-7
Arithmetic
Assignment 3-8
Expressions 3-1
IF statement 4-2
Operators 3-1
Arrays
And Substrings 1-10
Assumed-size 1-9, 6-9
Dimensions 1-8
Element location 1-10
EQUIVALENCE 2-7
In subprogram 6-8
NAMELIST 5-23
Structure 1-9
Subscripts 1-9
Transmission 6-9
Type statements 1-8, 2-1
ASIN 7-9
ASSIGN statement 4-1
Assigned GO TO 4-1
Assignment statements
Arithmetic 3-8
Boolean 3-9
Character 3-8
Logical 3-8
Multiple 3-9
Statement label 4-1
Asterisk
Comment 1-2
In SUBROUTINE statement 6-8
Multiplication 3-1
ATAN 7-9
ATANH 7-9
ATAN2 7.9

BACKSPACE 5-38
Binary
1/0, see Unfarmatted input/output 5-22
Program execution 11-1, 11-3, 11-21
Blank Common 2-6

60481300 E

Block
Common 2-6, 6-9
Data subprogram 6-3
Block IF
Nested 4-5 -
Statement 4-3
Structures 4-4
BN edit descriptor 5-13
BOOL 7-9
Boolean
Constants 1-6
Expressions 3-6
Type statement 2-2
Variables 1-8
BOOLEAN statement 2-2
Buffer
In OPEN statement 5-30
In PROGRAM statement 6-2
Input/output 5-28
BUFFER IN statement 5-28
BUFFER OUT statement 5-29
BZ edit descriptor 5-13

C comment line 1-2
CABS 7-9
CALL statement 6-9
Calling
Overlay 9-3
Subroutine 6-3, 6-9
Carriage control 5-20
CCOos 7-9
CEXP 7-9
CHAR 7-9
Character
Arguments 6-6
Constants 1-7
DATA initialization 2-12
Editing 5-13
Expressions 3-4
String 5-16
Substrings 1-10
Type statement 2-3
Variables 1-8
Character set
CDC 1-1, A-1
FORTRAN 1-1, A-1
CHARACTER statement 2-3
CHEKPTX 7-16
CLOCK 7-15
CLOG 7-9
CLOSE statement 5-32
CLOSEM 8-1
CLOSEMS 7-22
CMPLX 7-9
Collation control 7-29, E-1, A-5
COLSEQ@ 7-30
Column usage 1-1
Comment line 1-2
Common
And equivalence 2-7
Overlay communication 9-2
Statement 2-6
Usage 2-6, 6-9

Index-1

Common Memory Manager 8-5
COMMON statement 2-6
COMPASS
Calling sequence 8-9
Program entry points 8-11
Subprogram 8-9
Compilation
Control statement 11-1
Listings 11-10
Modes 11-5, 11-6
Optimization 11-6
I Compile-time diagnostics B-1
Compiler
Call 11-1
Diagnostics B-1
Output listings B-1, B-25
Supplied functions 7-1
COMPL 7-9
Complex
Constants 1-5
Editing 5-7
Type statement 2-2
Varisbles 1-8
] COMPLEX statement 2-2
Computed GO TO 4-1
Concatenation 3-4

CONJG 7-9

CONNEC 7-19

Constants
Boolean 1-6
Character 1-7
Complex 1-5

Double precision 1-5

Hexadecimal 1-7

Hollerith 1-6

Integer 1-4

Logical 1-6

Octal 1-7

Real 1-5

Symbolic 1-4, 2-1

1 Typesof 1-4

Continuation line 1-1
CONTINUE statement 4-7

Control
Carriage 5-20
Column 5-17

Listing 5-22
Control statement
DEBUG 10-1
EXECUTION 11-21
FILE F-2
FTN5 11-1
Conversion
Data on input/output 5-22
Mixed mode 3-1, 3-8
Specification for input/output 5-6
cos 7-9
cosD 7-10
COSH 7-10
Cross-reference map 11-10, 11-17
CSIN 7-10
CSOWN 7-30
CSQRT 7-10
CYBER Interactive Debug 10-1
CYBER Record Manager
File handling F-1
Interface 8-1
Parameters B8-1
Subroutines B8-1
C$ Directives 1-2, E-1

Index-2

D edit descriptor 5-11
DABS 7-10
DACOS 7-10
DASIN 7-10
Data conversion on input/output 5-6
DATA statement 2-7, 2-11
DATAN 7-10
DATAN2 7-10
DATE 7-15
Dayfile messages 7-15
DBLE 7-10
DcCos 7-10
DCOSH 7-10
DDIM 7-10
DEBUG control statement 10-1
Debugging aids
CYBER Interactive Debug 10-1
LIMERR 7-29
NUMERR 7-29
Post Mortem Dump 10-2
Reference map 11-16
Deck structure 12-1
Declarative statements (see Specification statements)
DECODE statement 5-36
DEXP 7-10
Diagnostics
Compilation B-1, B-2
Compiler output listing messages B-1, B-25
Execution B-1, B-26 :
Special compilation B-1, B-25
DIM 7-10
DIMENSION
Adjustable 6-8
Statement 2-4
DINT 7-10
Direct access input/output 5-30
DISCON 7-20
DISPLA 7-15
Display code A-1
Division 3-1
DLOG 7-10
DLOG10 7-10
DLTE 8-1 .
DMAX1 7-10
DMIN1 7-11
DMOD 7-11
DNINT 7-11
DO loops
Active and inactive 4-6
Implied in DATA list 2-12
Implied in 1/O list 5-3
Nested 4-7
Range 4-6
DO statement 4-5
Double precision
Constants 1-5
Editing 5-8, 5-11
Type declaration 2-2
Variables 1-8
DOUBLE PRECISION statement 2-2
DPROD 7-11
DSIGN 7-11
DSIN 7-11
DSINH 7-11
DSQRT 7-11
DTAN 7-11
DTANH 7-11
DUMP 7-26

60481300 E

E edit descriptor 5-8
ECS (see Extended memory)
ELSE statement 4-3
ELSE IF statement 4-3
ENCODE statement 5-36
END IF statement 4-4
END statement 4-10
ENDFILE 8-1
ENDFILE statement 5-38
END= 5-4
ENTRY statement 6-6
EOF 7-18
EQUIV ALENCE statement 2-7
EQV 7-11
ERF 7-11
ERFC 7-11
Error processing
By CYBER Record Manager 8-4
SYSTEM or SYSTEMC 7-26
ERR= 5-2
Evaluation of expressions 3-6

Execution control statement 11-21

Execution time
Diagnostics B-1, B-26
File name handling F-1
FORMAT 5-20
Input/output 5-20

EXIT 7-15

EXP 7-11

Exponentiation 3-1

Expressions
Arithmetic 3-1
Boolean 3-6
Character 3-4
Evaluation 3-6
General rules for 3-6
Logical 3-5
Relational 3-4
Subscripts 1-8

Extended memory 2-8

External function 2-9, 6-4

EXTERNAL statement 2-9

F edit descriptor 5-10
FALSE 1-6
FILE contro! statement F-2
File
Definition F-1
Labeled 7-19
Name substitution 11-21
Name (TAPEu) 5-2, 11-21
Positioning 5-37
Sequential F-1
Status 5-30
Structure F-1
Usage 5-1
File information table (FIT)
Defaults for standard I/O F-3
Defined F-1
Direct call by CYBER Record Manager 8-1
FILExx 8-1 :
FITDUMP 8-3
FLOAT 7-11
FLUSHM 8-3
FMT= 5-2
Formal argument (parameter) (see Dummy argument)
FORMAT statement 5-5
Format
Control, termination of 5-20
Execution time 5-20
Specification 5-5

60481300 E

Formatted
Input/output 5-2
PRINT statement. 5-4
READ statement 5-4
WRITE statement 5-5
FORTRAN
Compiler call 11-1
Syntax summary D-1
FTNS control statement 11-1
Function
External 6-4
Intrinsic 2-10, 6-5, 7-1
Referencing 6-10
Statement 6-5
Subprogram 6-4
Future System migration G-1

G edit descriptor 5-10

GET 8-3

GETN 8-3

GETNR 8-3

GETP 8-3

GETPARM 7-14

GO TO statements
Assigned GO TO 4-1
Computed GO TO 4-1
Unconditional GO TO 4-1

H edit descriptor 5-16
H specification

In format specification 5-16

Hollerith constant 1-6
Hexadecimal/octal conversion 5-15
Hexadecimal constant 1-7
Hierarchy in expressions 3-1, 3-5
Hollerith

Constant 1-6

Format specification 5-16

I edit descriptor 5-8
IABS 7-11

ICHAR 7-11

IDIM 7-11

IDINT 7-11

IDNINT 7-12

IF statements

Arithmetic IF 4-2

Block IF 4-3
Logical IF 4-3
IFETCH 8-4
FIX 7-12

IMPLICIT statement 2-4
Implicit typing of variables 2-1, 2-4
Implied DO
In DATA list 2-12
In1/O list 5-3
INDEX 7-12
Index
DO loop 4-6
Mass storage files 7-22
Multiple (CYBER Record Manager) files 8-4
Initial line 1-1
INPUT file 5-35
Input/output
BUFFER 5-28
Compile time 5-5
Direct access 5-29
Execution time 5-20
Formatted 5-2
Implementation F-1

Index-3

Input/output (Contd)
List directed 5-22
Lists 5-2
Mass storage 7-20
NAMELIST 5-23
Status checking 7-17
Status statements 5-30
Unformatted 5-22
INQUIRE statement 5-33
INT 7-12
Integer
Constants 1-4
Editing 5-6
Type declaration 2-2
Variables 1-7
INTEGER statement 2-2
Internal files
Extended 5-36
Standard 5-34
Intrinsic functions 2-10, 6-5, 7-1
INTRINSIC statement 2-10
IOCHEC 7-18
Iolist 5-2
IOSTAT= 5-2, 5-22
ISIGN 7-12

JDATE 7-15
Job decks, examples 12-1

L edit descriptor 5-14
L format Hollerith constant 1-6
LABEL. 7-19
L_abeled
Common 2-6
Files 7-19
L.abels
Statement labels 1-1
Use in alternate return 6-11
LCM (see Extended memory)
LEGVAR 7-26
LEN 7-12
LENGTH, LENGTHX 7-18
LEVEL Statement 2-8
Levels, overlay 9-1
LGE 7-12
LGO 11-3,11-21
LGT 7-12
Library functions 7-1
LIMERR 7-29
List directed
Input 5-22
PRINT 5-23
PUNCH 5-23
Output 5-23
READ 5-22
WRITE 5-24
Listings
Control of 11-10
Object 11-20
Reference map 11-10
Source 11-10
L List File 11-5
LLE 7-12
LLT 7-12
LOCF 7-12
LOG 7-12
Logical
Assignment statement 3-8
Constants 1-6
Expressions 3-5
File names 1-4,5-1
IF statement 4-3

Index-4

Logical (Contd)
Operators 3-5
Unit number 5-1
Variables 1-8
LLOGICAL statement 2-3
LOG10 7-12
Loops
DO 4-6

Implied in DATA statement 2-12
Implied in input/output statements 5-3

Nested 4-7

Main program 6-1

Map, reference 11-10

MASK 7-13

Mass storage input/output
CLOSMS 7-22
OPENMS 7-21
READMS 7-22
STINDX 7-22
WRITMS 7-21

Mathematical functions 7-1

MAX 7-13

MAX0 7-13

MAX1 7-13

Messages
Compilation diagnostics B-1

Compiler output listing B-1, B-25
Execution diagnostics B-1, B-26
Special compilation diagnostics B-1, B-25

MIN 7-13
MINO 7-13
MIN1 7-13

Mixed mode arithmetic conversion 3-1, 3-3, 3-8

MOD 7-13
Mode
Debug 10-1
Nonsequenced 1-1
Optimizing 11-6
Sequenced 1-3
MOVLCH 7-19
MOVLEV 7-19
Multiple
Assignment statement 3-9
Entry 6-6
Return 6-10
Multiple-Index processing 8-4

Named common 2-6
Namelist
PRINT 5-25
PUNCH 5-25
READ 5-26
WRITE 5-27
NAMELIST statement 5-25
Names
Common block 2-6
File 1-4,5-1
Program unit 1-4, 6-1
Symbolic 1-4
Variable 1-7

NEQV 7-13
Nesting
Block IF structures 4-5
DO loops 4-7 :
Parentheses 3-7
NINT 7-13
Nonsequenced mode -~ 1-1
Number

Formats (see Constants)
Statement label 1-1
NUMERR 7-29

60481300 E

O edit descriptor 5-15
Object code 11-5, 11-20
Octal Constants 1-6, 1-7
Offset 1-9, 5-30
OPEN statement 5-30
OPENM 8-4
OPENMS 7-21
Operands, evaluation of 3-1
Operating system interface routines 7-14
Operators
Arithmetic 3-1
Boolean 3-6
Character 3-4
Logical 3-5
Relational 3-4
Optimization
Object code 11-6
Source code 11-6
Unsafe 11-6
Options, FTN5 control statement 11-2
OR 7-13
Order, statements in program unit 1-11
Output (see Input/output?
File 5-5
Print limit specification 11-21
Record length 5-28
OVCAPS 9-4
OVERLAY statement 9-3
Overlays 9-1

P scale factor 5-12
Parameter, see Argument
PARAMETER statement 2-5
Parameters, FTN5 control statement 11-2
Pass by reference 8-10
Pass by value 8-11
PAUSE statement 4-9
PDUMP 7-26
PMD 10-3
PMDARRY 10-4
PMDLOAD 10-5
PMDSTOP 10-5
PMDDUMP 10-5
Post Mortem Dump 10-2
Precedence of operators 3-1
Print

Control characters 5-20

Limit specification 11-21
PRINT statement 5-5
Procedures 6-3
Program

Examples 12-8

Maps 11-10

Units 6-1
PROGRAM statement 6-2
Punch codes A-1
PUNCH

File 5-1

Statement 5-5
PUT 8-4
PUTP 8-4

Quote
Character string delimiter 1-6
Edit descriptor 5-16

R edit descriptor 5-14
R format Hollerith constant 1-6
Random
Access 7-20.1/7-20.2
Number routines 7-14

60481300 E

RANF 7-13

Range of DO loops 4-6

RANGET 7-14

RANSET 7-14

READ statements
Direct access 5-30
Formatted 5-4
Internal 5-35
List directed 5-22
Namelist 5-26
Unformatted 5-22

READMS 7-22

Real
Constant 1-5
Variable 1-7

REAL 7-13

REAL statement 2-2

Record
Definition F-1
Length 5-2, 5-22, 6-2
Types F-1

Record Manager (see CYBER Record Manager)

Recovery 7-16
RECOVR 7-16
Reference, function 6-10
Reference map 11-10
Relational
Evaluation 3-4
Expressions 3-4
Operators 3-4
REMARK 7-15
REPLC 8-4
RETURN statement 6-10
REWIND statement 5-37
REWND 8-4
RMKDEF 8-6
RMOPNX 8-5

S edit descriptor 5-13
Sample
Coding form 1-1
COMPASS subprogram 8-10
Decks 12-1
FTNS control statement 11-9
Programs 12-8
SAVE statement 2-9
Scale factor 5-12
Scaling 5-13
SECOND 7-13
SEEKF 8-4
Sense switch 7-15
Separator, slash and comma 5-17
Sequenced mode 1-3
Sequential access input/output 5-29
Sequential file structure F-1
SHIFT 7-13
SIGN 7-13
SIN 7-13
SIND 7-13
SINH 7-14
SKIP 8-4
Slash in FORMAT statement 5-17
SNGL 7-14
Sort/Merge
Subroutines 8-6
Future migration guidelines G-2
SP edit descriptor 5-13
Specification statements 2-1
SQRT 7-14
SS edit descriptor 5-13
SSWTCH 7-15
Standard, FORTRAN ANSI v
STARTM 8-4

Index-5

Statement Variable

Format 1-1 FORMAT statements 5-5
FORTRAN (see individual statement name) Name and type 1-7
Function name 1-4 Variables
LLabels 1-1 Boolean 1-8
Order in program unit 1-11 Character 1-8
‘Statement functions 6-5 Complex 1-8
STATIC capsule loading 7-30 Double precision 1-8
STINDX 7-22 Integer 1-7
STOP statement 4-10 Logical 1-8
STOREF 8-4 Real 1-7
STRACE 7-26
Structure
Block IF 4-4 Weight tables A-5
Program unit 6-1 WEOR 8-4
Subprogram linkage 8-11 WRITE statement
Subprograms Direct access 5-30
Block data 6-3 Formatted 5-5
Function 6-4 Internal 5-35
Miscellaneous utility 7-14 List directed 5-24
Subroutine 6-3 Namelist 5-27
Subroutines, calling 6-3 Unformatted 5-22
SUBROUTINE statement 6-3 WRITMS 7-21
Subscripts 1-8 : WTMK 8-4
Substrings 1-10 WTSET 7-30

Symbolic names 1-4

Syntax summary D-1

SYSTEM and SYSTEMC 7-26 X edit descriptor 5-16
XOR 7-14

Z edit descriptor 5-15
Tabulation control 5-17

TAN 7-14
TAND 7-14 LAND. 3-5
TANH 7-14 EQ. 3-5
TAPEu 5-2, 6-2,11-21 EQV. 3-5
Terminal interface 7-19 JFALSE., 1-6
Texts, system 8-9 .GE. 3-4
TIME 7-15 GT. 3-4
Tn edit descriptor 5-17 LE 3-4
Traceback 10-2 LT, 3-4
TRUE 1-6 NE. 3-4
Type of v NEQV. 3-5
Arithmetic expressions 3-1 NOT. 3-5
Functions 6-5 OR. 3-5
Variables 1-7 .JTRUE. 1-6
Type statements _XOR. 3-5

Dimension information in 1-8, 2-1
Explicit 2-1

Implicit 2-1 *
Incolumnl 1-2
In SUBROUTINE statement 6-8
" or *

Unconditional GO TO 4-1 Hollerith constant 1-1, 1-6
Unformatted input/output In FORMAT specification 5-16
READ 5-22 | end-of-record indicator 5-17

WRITE 5-22 'ort
UNIT 7-17 Character constant 1-1, 1-7
UNIT= 5-1 In FORMAT specification 5-16
Utility subprograms 7-14 : in FORMAT specification 5-20

Index-6 60481300 E

-

- CUT ALONG UNE

FRARNICUW IN U.D.A,

~ 17

e

COMMENT SHEET

MANUAL TITLE: FORTRAN Version 5 Reference Manual
PUBLICATION NO.: 60481300 REVISION: E

NAME:

COMPANY:

STREET ADDRESS:

CiTY: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

D Please reply D No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

APE TAPE
FOLD FOLD
NO POSTAGE
NECESSARY
If MAILED

IN THE
UNITED STATES

R
BUSINESS REPLY MAIL —
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. R
]
POSTAGE WILL BE PAID BY S
CONTROL DATA CORPORATION R

Publications and Graphics Division
.]

215 Moffett Park Drive
Sunnyvale, California 94086 L
S
N
| R
]
FOLD } - " folo

CUT ALONG LINE

P =

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 556440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G

CONTROL DATA CORPORATION

