
I';J 1::\ CONTI\OL DATA
\:I r::J CO~ORi\TION

FORTRAN
VERSION 5
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 1
NOS/BE 1
SCOPE 2

60481300



I':J 1::\ CONT~OL DATA
\::I CI CO~OR<\TION

FORTRAN
VERSION 5
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 1
NOS/BE 1
SCOPE 2

60481300



REVISION RECORD
REViSiON DESCRIPTION

A Original release.

(7-20-79)

B Revised to reflect the released version of the FORTRAN 5 compiler. Numerous technical and

(9-28-79) miscellaneous corrections, including added shading, have been made.

C Revised to include SCOPE 2 operating system. Additional technical and miscellaneous corrections

(2-15-80) have been made.

D Released at PSR level 527. Revised to include CMM interface and update to PMD. Additional

(9-26-80) technical and miscellaneous corrections have been made.

E Revised at PSR level 533. Revised to reflect release of PMD and STATIC option under SCOPE 2

(1-16-81) operating system.

Publication No.
60481300

REVISION LETTERS I. 0, Q AND X ARE NOT USED

@COP'lRIGHT CONTROL DATA CORPORATION 1979,1980, 1981

All Rights Reserved

Printed in the United States of America

ii

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual



LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision

Cover -
Tit 1e Page -
ii E
iii E
iv E
v E
vi E
vii 0
vii i t hru xii E
xiii/iv E
xv B
1-1 0
1-2 0
1-3 B
1-4 C
1-5 0
1-6 B
1-7 E
1-8 B
1-9 thru 1-12 0
2-1 B
2-2 0
2-3 thru 2-5 E
2-6 0
2-7 E
2-8 thru 2-10 0
2-11 B
2-12 B
3-1 A
3-2 thru 3-4 B
3-5 thru 3-7 0
3-8 A
3-9 B

. 4-1 E
4-2 E
4-3 0
4-4 E
4-5 thru 4-10 0
5-1 thru 5-4 0
5-5 thru 5-7 E
5-8 C
5-9 thru 5-12 0
5-13 C
5-14 B
5-15 B
5-16 E
5-17 0
5-18 B
5-19 B
5-20 C
5-21 E
5-22 E
5-23 0
5-24 thru 5-26 B
5-27 C
5-28 thru 5-30 E
5-31 0

60481300 E

Page Revis i on

5-32 thru 5-37 E
5-38 B
6-1 0
6-2 0
6-3 thru 6-5 E
6-6 C
6-7 C
6-8 B
6-9 thru 6-11 E
7-1 E
7-2 B
7-3 thru 7-6 A
7-7 E
7-8 E
7-9 B
7-10 C
7-11 C
7-12 0
7-13 E
7-14 0
7-15 thru 7-17 C
7-18 thru 7-20 0
7-20.1/7-20.2 0
7-21 C
7-22 C
7-23 B
7-24 C
7-25 B
7-26 E
7-27 B
7-28 B
7-29 thru 7-31 E
8-1 thru 8-6 E
8-6.1/8-6.2 E
8-7 B
8-8 C
8-9 C
8-10 B
8-11 C
8-12 B
8-13 B
9-1 thru 9-5 0
10-1 thru 10-5 E
11-1 thru 11-6 0
11-7 E
11-8 0
11-9 0
11-10 thru 11-16 E
11-16.1 E
11-16.2 E
11-17 thru 11-20 C
11-21 0
11-22 E
12-1 A
12-2 A
12-3 B
12-4 B

iii •



Page Revis i on

12-5 E
12-6 B
12-7 C
12-8 B
12-9 E
12-10 B
12-11 B
12-12 C
12-13 thru 12-21 B
12-22 C
12-23 B
12-24 B
12-25 C
12-26 B
12-27 B
12-28 E
12-29 B
12-30 E
12-31 B
12-32 B
12-33 A
12-34 C
12-35 C
12-36 B
A-I C
A-2 0
A-3 E
A-4 A
A-5 B
B-1 thru B-37 E
C-l C
C-2 thru C-4 0
0-1 E
0-2 E
0-3 C
0-4 B
0-5 E
0-6 E
E-l thru E-4 B
F-l 0
F-2 C
F-3 thru F-5 E
F-6 thru F-9 C
G-l 0
G-2 E
Index-l thru Index-6 E
Conment Sheet E
Mail er -
Back Cover -

• iv 60481300 E



PREFACE

This manual describes the FORTRAN Version 5 language.
FORTRAN Version 5 complies with the American National
Standards Institute FORTRAN language described in
document X3.9-1978 and known as FORTRAN 77.
FORTRAN Version 5 extensions to FORTRAN 77 are
indicated by shading.

The reader should be familiar with FORTRAN Extended
Version 4 or an existing FORTRAN language. The reader
should also be familiar with the operating system on which
FORTRAN Version 5 jobs will be compiled and executed.

The FORTRAN Version 5 (FORTRAN 5) compiler is
available under control of the following operating systems:

NOS 1 for the CONTROL DATA® CYBER 170 Series;
CYBER 70 Models 71, 72, 73, and 74; and 6000 Series
Computer Systems

NOS/BE 1 for the CDC ® CYBER 170 Series;
CYBER 70 Models 71, 72, 73, and 74; and 6000 Series
Computer Systems

SCOPE 2 for CONTROL DATA® CYBER 170 Model
176, CYBER 70 Model 76, and 7600 Computer Systems.

Extended memory for the CYBER 170 Model 176 is large
central memory (LCM) or large central memory extended
(LCME). Extended memory for all other computer systems
is extended core storage (ECS) or extended semi-conductor
memory (ESM). In this manual, the acronym ECS refers to
all forms of extended memory unless otherwise noted.
Programming information for the various forms of
extended memory can be found in the COMPASS reference
manual and in the appropriate computer system hardware
reference manual.

Related material is contained in the listed pUblications.
The NOS manual abstracts and the NOS/BE manual
abstracts are instant-sized manuals containing brief
descriptions of the contents and intended audience of all
NOS operating system and· NOS product set manuals, and I
NOS/BE operating system and NOS/BE product set
manuals, respectively. The abstracts manuals can be
useful in .determining which manuals are of greatest
interest to a particular user. The Software Publications
Release History serves as a guide in determining which
revision level of software documentation corresponds to
the Programming System Report (PSR) level of installed
site software. Other publications serve as references for
information that requires greater detail.

The following publications are of primary interest: I
Publication

Publication Number

FORTRAN Extended Version 4 to FORTRAN Version 5
Conversion Aid Program Reference Manual 60483000

FORTRAN Version 5 Common Library Mathematical Routines
Reference Manual 60483100

60481300 E

FORTRAN Version 5 Instant

NOS Version 1 Reference Manual, Volume 1 of 2

NOS/BE Version 1 Reference Manual

SCOPE Version 2 Reference Manual

The following publications are of secondary interest:

PUblication

Common Memory Manager Version 1 Reference Manual

COMPASS Version 3 Reference Manual

CYBER Interactive Debug Version 1 Reference Manual

CYBER Loader Version 1 Reference Manual

CYBER Record Manager Advanced Access Methods
Version 2 Reference Manual

CYBER Record Manager Advanced Access Methods
Version 2 User's Guide

60483900

60435400

60493800

60342600

Publication
Number---
60499200

60492600

60481400

60429800

60499300

60499400

v

I

I



CYBER Record Manager Basic Access Methods
Version 1~5 Reference Manual

CYBER Record Manager Basic Access Methods
Version 1.5 User's Guide

DMS-l70 DOL Version 3 Reference Manual
Volume 1: Schema Definition for Use With:

COBOL
FORTRAN
Query Update

FORTRAN Data Base Facility Version 1 Reference Manual

INTERCOM Interactive Guide for Users of
FORTRAN Extended

INTERCOM Version 5 Reference Manual

Network Products
Interactive Facility Version 1 Reference Manual

NOS Version 1 Manual Abstracts

NOS Version 1 Time-Sharing User's Reference Manual

NOS/BE Version 1 Manual Abstracts

SCOPE Version 2 Loader Reference Manual

SCOPE Version 2 Record Manager Reference Manual

Software Publications Release History

Sort/Merge Versions 4 and 1 Reference Manual

60495700

60495800

60481900

60482200

60455950

60455010

60455250

84000420

60435500

84000470

60454780

60495700

60481000

60497500

I vi

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in
this document. Control Data cannot be responsible for
the proper functioning of undescribed features or
parameters.

60481300 E



CONTENTS

NOTATIONS xv 3. EXPRESSIONS AND ASSIGNMENT
STATEMENTS 3-1

l. LANGUAGE ELEMENTS 1-1 Expressions 3-1
Arithmetic Expressions 3-1

Writing FORTRAN Statements 1-1 Character Expressions 3-4
Nonsequenced Mode 1-1 Relational Expressions 3-4

Initial Lines 1-1 Logical Expressions 3-5
Continuation Lines 1-1 Boolean Expressions 3-6
Statement Labels 1-1 General Rules for Expressions 3-6
Comment Lines 1-2 Assignment Statements 3-8
Compiler Directive Lines 1-2 Arithmetic Assignment Statement 3-8
Columns 73 through 80 1-2 Character Assignment Statement 3-8

Sequenced Column Usage 1-3 Logical Assignment Statement 3-8
Symbolic Names 1-4 Boolean Assignment Statement 3-9
Constants 1-4 Multiple Assignment 3-9

Integer 1-4
Real 1-5
Double Precision 1-5 4. FLOW CONTROL ST ATEMENTS 4-1
Complex 1-5
Logical 1-6 GO TO Statement 4-1
Boolean 1-6 Unconditional GO TO Statement 4-1

Hollerith 1-6 Computed GO TO Statement 4-1
Octal 1-7 Assign Statement 4-1
Hexadecimal 1-7 Assigned GO TO Statement 4-1

Character 1-7 IF Statement 4-2
Variables 1-7 Arithmetic IF Statement 4-2

Integer Variables 1-7 Logical IF Statement 4-3
Real Variables 1-7 Block IF Statement 4-3
Double Precision Variables 1-8 ELSE Statement 4-3
Complex Variables 1-8 ELSE IF Statement 4-3
Logical Variables 1-8 END IF Statement 4-4
Boolean Variables 1-8 Block IF Structures 4-4
Character Variables 1-8 Nested Block IF Structures 4-5

Arrays 1-8 DO Statement 4-5
Array Storage 1-9 DO Loops 4-6
Array References 1-9 Acti ve and Inactive DO Loops 4-6

Character Substrings 1-10 Nested DO Loops 4-7
Substring References 1-10 CONTINUE Statement 4-7
Substrings and Arrays 1-11 PAUSE Statement 4-9

Statement Order 1-11 STOP Statement 4-10
END Statement 4-10
RETURN Statement 4-10

2. SPECIFICATION STATEMENTS 2-1 CALL Statement 4-10

Type Statements 2-1
INTEGER Statement 2-2 5. INPUT/OUTPUT 5-1
REAL Statement 2-2
DOUBLE PRECISION Statement 2-2 File Usage 5-1
COMPLEX Statement 2-2 Formatted Input/Output 5-2
BOOLEAN Statement 2-2 Input/Output Lists 5-2
LOGICAL Statement 2-3 Implied DO Loop in I/O List 5-3
CHARACTER Statement 2-3 Formatted READ 5-4

IMPLICIT Statement 2-4 Formatted WRITE 5-5
DIMENSION Statement 2-4 Formatted PRINT 5-5
PARAMETER Statement 2-5 Formatted PUNCH 5-5
COMMON Statement 2-6 Format Specification 5-5
EQUI VALENCE Sta tem ent 2-7 FORMAT Statement 5-5
LEVEL Statement 2-8 Character Format Specifications 5-6
SAVE Statement 2-9 Noncharacter Format Specification 5-6
EXTERNAL Statement 2-9 Edit Descriptors 5-6
INTRINSIC Statement 2-10 I Descriptor 5-8
DATA Statement 2-11 E Descriptor 5-8

Implied 00 List 2-12 F Descriptor 5-10
Character Data Initialization 2-12 G Descriptor 5-10

60481300 D vii



D Descriptor 5-11 Using Common Blocks 6-9
P Descriptor 5-12 Referencing a Procedure 6-9
BN and BZ Blank Interpretation 5-13 Subroutine Call 6-9
S, SP, SS Plus Sign Control 5-13 Function Reference 6-10
A Descriptor 5-13 Statement Function Reference 6-10 I
A Descriptor for Noncharacter Return and Multiple Return 6-10

List Items 5-14 Alternate Return 6-11 I
R Descriptor 5-14
L Descriptor 5-14
o Descriptor 5-15 7. FORTRANSUPPUEDPROCEDURES 7-1
Z Descriptor 5-15
H Descriptor 5-16 Intrinsic Functions 7-1
Apostrophe and Quote Descriptors 5-16 ABS 7-1
X Descriptor 5-16 ACOS 7-1
T, TL, TR Descriptors 5-17 AIMAG 7-1
End-of-Record Slash 5-17 AINT 7-1
Repeated Edit Descriptors 5-19 ALOG 7-1
Termination of Format Control 5-20 ALOGI0 7-1
Carriage Control Character 5-20 AMAXO 7-1

Execution Time Format Specification 5-20 AMAXI 7-1
Unformatted Input/Output 5-22 AMINO 7-8 IUnformatted WRITE 5-22 AMINI 7-8

Unformatted READ 5-22 AMOD 7-9
List Directed Input/Output 5-22 AND 7-9

List Directed Input 5-22 ANINT 7-9
List Directed Output 5-23 ASIN 7-9

Namelist Input/Output 5-23 ATAN 7-9
Namelist Input 5-24 ATANH 7-9
Namelist Output 5-25 ATAN2 7-9
Arrays in Namelist 5-27 BOOL 7-9

Buffer Input/Output Statements 5-28 CABS 7-9
BUFFER IN 5-28 CCOS 7-9
BUFFER OUT 5-29 CEXP 7-9

Direct Access Files 5-29 CHAR 7-9
Input/Output Status Statements 5-30 CLOG 7-9

OPEN 5-30 CMPLX 7-9

I
CLOSE 5-32 COMPL 7-9
INQUIRE 5-33 CONJG 7-9

Internal Files 5-34 COS 7-9
Standard Internal Files 5-34 COSD 7-10

Output 5-35 COSH 7-10
Input 5-35 CSIN 7-10

Extended Internal Files 5-35 CSQRT 7-10
ENCODE 5-36 DABS 7-10
DECODE 5-36 DACOS 7-10

File Positioning Statements 5-37 DASIN 7-10
REWIND 5-37 DATAN 7-10
BACKSPACE 5-38 DATAN2 7-10
ENDFILE 5-38 DBLE 7-10

DCOS 7-10
DCOSH 7-10

6. PROGRAM UNITS AND PROCEDURES 6-1 DDIM 7-10
DEXP 7-10

Main Programs 6-1 DIM 7-10
PROGRAM Statement 6-2 DINT 7-10
PROGRAM Statement Usage 6-2 DLOG 7-10

Procedures 6-3 DLOGlO 7-10
Block Data Subprogram 6-3 DMAXI 7-10
St.broutine Subprogram 6-3 DMIN1 7-11
Function Subprogram 6-4 DMOD 7-11

External Functions 6-4 DNINT 7-11
Intrinsic Functions 6~5 DPROD 7-11
Statement Functions 6-5 DSIGN 7-11
Multiple Entry 6-6 DSIN 7-11

Procedure Communication 6-6 DSINH 7-11
Actual Arguments 6-6 DSQRT 7-11
Du mmy .Arguments 6-7 DTAN 7-11
Argument Association 6-7 DTANH 7-11

Character Length 6-7 EQV 7-11
Variables 6-8 ERF 7-11
Arrays 6-8 ERFC 7-11
Procedure Arguments 6-8 EXP 7-11
Asterisk Arguments 6-8 FLOAT 7-11
Adjustable Dimensions 6-8 lABS 7-11

viii 60481300 E



ICHAR
101M
IDINT
IDNINT
IFIX
INDEX
INT
ISIGN
LEN
LGE
LGT
LLE
LLT
LOCF
LOG
LOG10
MASK
MAX
MAXO
MAXI
MIN
MIND
MINI
MOD
t£QV
NINT
OR
RAI'F
REAL
SECOND
SHIFT
SIGN
SIN
SIND
SINH
SNGL
SQRT
TAN
TAND
TANH
XOR

Miscellaneous Utility Subprograms
GETPARM
RANSET
RANGET
Operating System Interface Routines

DATE
JDATE
TIME or CLOCK
DISPLA
REMARK
SSWITCH
EXIT
CHEKPTX
RECOVR

Input/OUtput Status Checking
UNIT
EOF
IOCHEC

Other Input/Output Subprograms
LENGTH
LABEL
MOVLEV
MOVLCH
CONNEC
DISCON

Mass Storage Input/Output
Random F He Access
OPENMS
WRITMS

60481300 E

7-11
7-11
7-11
7-12
7-12
7-12
7-12
7-12
7-12
7-12
7-12
7-12
7-12
7-12
7-12
7-12
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-13
7-14
7-14
7-14
7-14
7-14
7-14
7-14
7-14
7-14
7-14
7-14
7-14
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-16
7-16
7-17
7-17
7-18
7-18
7-18
7-18
7-19
7-19
7-19
7-19
7-20
7-20.1
7-20.1
7-21
7-21

REAOMS
CLOSMS
STINDX

Debugging Routines
DUMP and PDUMP
STRACE
LEGVAR
SYSTEM
SYSTEMC
LlMERR and NUMERR

Collating Sequence Control
COLSEQ
WTSET
CSOYtN

STATIC Capsule Loading Routines

8. PRODUCT INTERFACES

FORTRAN-CYBER Record Manager Interface
Parameters
Subroutines

CLOSEM
DLTE
ENDFILE
FILExx
FITDUMP
FLUSHM
FLUSHI
GET
GETN
GETNR
GETP
IFETCH
OPENM
PUT
PUTP
REPLC
REWND
SEEKF
SKIP
STARTM
STOREF
WEOR
WTMK

Error Checking
Multiple Index Processing

Common Memory Manager Interface
FORTRAN-Sort/Merge Interface

SMSORT
SMSORTB
SMSORTP
SMMERGE
SMFILE
SMKEY
SMSEQ
SMEQU
SMOPT
SMTAPE
SMOM\I
SMEND
SMABT

Intermixed COMPASS Subprograms
Subprogram Linkage

Pass by Reference Sequence
Pass by Value Sequence
Function Result
Entry Point
Restrictions on Using Intrinsic Function

Names

7-22
7-22
7-22
7-23
7-26
7-26
7-26
7-26
7-26
7-29
7-29
7-30
7-30
7-30
7-30

8-1

8-1
8-1
8-1
8-1
8-1
8-1
8-1
8-3
8-3
8-3
8-3
8-3
8-3
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-5
8-6
8-6.1
8-6.1
8-6.1
8-6.1
8-6.1
8-6.1
8-7
8-7
8-8
8-8
8-8
8-8
8-8
8-9
8-9
8-10
8-11
8-11
8-11

8-11

ix



9. OVERLAYS 9-1 S System Text File 11-8
SEQ Sequenced Input 11-9

Overlays 9-1 STATIC Static Load 11-9
Main, Primary, and Secondary Overlays 9-1 TM Target Machine 11-9
Overlay Communication 9-2 X External Text Name 11-9
Creating Overlays 9-3 FTN5 Control Statement Examples 11-9
Calling Overlays 9-3 Compiler Listings 11-10

OVCAPS 9-4 Short Line Listing Format 11-10
Creating 0 VCAPS 9-4 Listing Control Directive 11-10
Loading and Unloading OVCAPS 9-5 Reference Map 11-10

General Format of Maps 11-11
Variables Map 11-11

10. DEBUGGING AIDS 10-1 Symbolic Constant Map 11-12
Procedure Map 11-12

CYBER Interactive Debug 10-1 Statement Label Map 11-12
Program Compilation 10-1 Entry Point Map 11-12

DEBUG Control Statement 10-1 Input/Output Unit Map 11-13
DB Parameter 10-1 NAMELIST Map 11-13

Initiating a Debug Session 10-1 DO Loop Map 11-15

ISome CID Commands 10-1 Common and Equivalence Map 11-15
GO Command 10-2 Stray Names 11-15
SET,BREAKPOINT Command 10-2 Program Statistics 11-16
SET,TRAP Command 10-2 Debugging Using the Reference Map 11-16
PRINT Command 10-2 Object Listing 11-20
Assignment Command 10-2 Program Unit Structure 11-20
QUIT Command 10-2 Naming Conventions 11-20

Other CID Features 10-2 Register Name Conflicts 11-20
Post Mortem Dump 10-2 System-Supplied Procedure Names 11-20

PMDARRY 10-4 Listing Format 11-21
PMDDUMP 10-5 Execution Control Statement 11-21
PMDLOAD 10-5 File Name Substitution 11-21
PMDSTOP 10-5 Print Limit Specification 11-21

User Parameters 11-22
Post Mortem Dump Parameters 11-22

11. COMPILATION AND EXECUTION 11-1 Post Mortem Dump Output Parameter 11-22
Subscript Limit Specification 11-22

FTN5 Control Statement 11-1
Parameters 11-1

Binary Value Parameters 11-1 12. EXAMPLES 12-1
Specified Value Parameters 11-1
Multiple Binary Value Parameters 11-1 Sample Deck Structures 12-1
Multiple Appearances of Parameters 11-2 FORTRAN Source Program with Control

Parameter Options 11-2 Statements 12-1
ANSI Diagnostics 11-2 Compilation Only 12-2
ARG Argument List Attributes 11-2 OPT=0 Compilation 12-2
B Binary Output File 11-3 Compilation and Execution 12-3
BL Burstable Listing 11-3 FORTRAN Compilation with COMPASS
CS Collating Sequence 11-3 Assembly and Execution 12-3
DB Debugging Options 11-3 Compilation and Execution with FORTRAN
DO Loop Control 11-4 Subroutine and COMPASS Subprogram 12-4
OS Directive Suppression 11-4 Compilation with Binary Card Output 12-4
E Error File 11-4 Loading and Execution of Binary Program 12-5
EC Extended Memory Usage 11-4 Compilation and Execution with Relocatable
EL Error Level 11-4 Binary Deck 12-5
ET Error Terminate 11-4 Compilations and Two Executions with
G Get System Text File 11-5 Different Data Decks 12-6
GO Automatic Execution 11-5 Preparation of Overlays 12-7
I Input File 11-5 Compilation and Two Executions with
L List File 11-5 Overlays 12-8
LCM Extended Memory Sample Programs 12-8

(LCM or ECS Storage Access) 11-5 Program OUT 12-8
LO Listing Options 11-5 Program B 12-9
MD Machine Dependent Diagnostics 11-6 Program STATES 12-9
ML Modlevel Micro 11-6 Program EQUIV 12-10
OPT Optimization Level 11-6 Program COME 12-11
PO Print Density 11-7 Program LIBS 12-12
PL Print Limit 11-7 Program ADD 12-13
PN Pagination 11-8 Read 12-13
PS Page Size 11-8 Write 12-14
PIN P age Width 11-8 Program PASCAL 12-15
QC Quick Syntax Check 11-8 Program PIE 12-16
REW Rewind Files 11-8 Program X 12-16
ROUND Rounded Arithmetic Options 11-8 Program ADIM 12-18

x 60481300 E





5-26 Unformatted READ Statement 5-22 7.;.27 CLOSMS Call 7-22
5-27 List Directed READ Statement 5-22 7-28 STINDX Call 7-22
5-28 List Directed Input Examples 5-24 7-29 Random File With Number Index 7-24
5-29 List Directed WRITE Statement 5-24 7-30 Random File With Name Index 7-25
5-30 List Directed PRINT Statement 5-24 7-31 Subindexed File With Number Index 7-25
5-31 List Directed PUNCH Statement 5-24 7-32 DUMP Call 7-26
5-32 List Directed Output Examples 5-25 7-33 PDUMP Call 7-26
5-33 NAMEUST Statement 5-25 7-34 STRACE Call 7-26

I5-34 NAMEUST Example 5-26 7-35 LEGV AR Function 7-26
5-35 NAMEUST READ Statement 5-26 7-36 SYSTEM Call 7-26
5-36 NAMEUST Group Format 5-26 7-37 SYSTEMC Call 7-27
5-37 NAMEUST WRITE Statement 5-27 7-38 Error Table Entry 7-27
5-38 NAMEUST PRINT Statement 5-27 7-39 Suppressing an Error Message 7-28
5-39 NAMEUST PUNCH Statement 5-27 7-40 LlMERR Call 7-29
5-40 BUFFER IN Statement 5-28 7-41 NUMERR Function 7-29
5-41 BUFFER IN Example 5-29 7-42 Suppressing Fatal Termination 7-29
5,..42 BUFFER OUT Statement 5-29 7-43 COLSEQ Call 7..30
5-43 OPEN Statement 5-31 7-44 WTSET Call 7-30
5-44 CLOSE Statement 5-32 7-45 CSOAN Call 7-30
5-45 INQUIRE Statement 5-33 8-1 FORTRAN-CYBER Record Manager
5-46 Internal File Output Examples 5-35 Interface Calls 8-2
5-47 Internal File Input Examples 5-35 8-2 RMOPNX Call 8-5
5-48 ENCODE Statement 5-36 8-3 RMKDEF Call 8-6
5-49 DECODE Statement 5-36 8-4 STARTM Call 8-6
5-50 DECODE Example 5-37 8-5 SMSORT Call 8-6
5-51 REWIND Statement 5-37 8-6 SMSORTB Call 8-6.1
5-52 BACKSPACE Statement 5-38 8-7 SMSORTP Call 8-6.1
5-53 ENDFILE Statement 5-38 8-8 SMMERGE Call 8-6.1
6-1 PROGRAM Statement 6-2 8-9 SMFILE Call 8-6.1
6-2 File Equivalencing Example 6-3 8-10 SMKEY Call 8-7
6-3 BLOCK DATA Statement 6-3 8-11 SMSEQ Call 8-7
6-4 Example of BLOCK DATA 6-3 8-12 SMEQU Call 8-7
6-5 St..broutine Statement 6-3 8-13 SMOPT Call 8-8
6-6 St..broutineCall Example 6-4 8-14 SMTAPE Call 8-8
6-7 FUNCTION Statement 6-4 8-15 SMCMN Call 8-8
6-8 Function Reference 6-5 8-16 SMEND Call 8-8
6-9 Statement Function 6-5 8-17 SMABT Call 8-8
6-10 Examples of Statement Functions 6-6 8-18 IDENT Statement 8-9
6-11 ENTRY Statement 6-6 8-19 Intermixed COMPASS Code 8-10
6-12 Examples of ENTRY Statements 6-7 8-20 Program SUBLNK and Function ZEUS 8-11
6-13 Using Common 6-9 8-21 Object Listing for Program SUBLNK 8-12
6-14 CALL Statement 6-9 8-22 Object Listing for Function ZEUS 8-13
6-15 Function Reference 6-10 9-1 Overlay Positioning 9-1

16

-

16 Statement Function Reference 6-10 9-2 Overlay Positioning Showing Common 9-2
6-17 RETURN Statement 6-10 9-3 OVERLAY Statement 9-3
6-18 Multiple Return Example 6-10 9-4 OVERLAY Call 9-4
6-19 Alternate Return Example 6-11 9-5 Sample Overlay Structure 9-4
7-1 LOCF Result for Character Argument 7-12 9-6 Format of an OVCAP Directive 9-5
7-2 GETPARM Call 7-14 9-7 Batch Job Set Up for OVCAPS 9-5
7-3 RANSET Call 7-14 10-1 PMDARRY Call 10-4
7-4 RANGET Call 7-14 10-2 PMDDUMP Call 10-5
7-5 DATE Function 7-15 10-3 PMDLOAD Call 10-5
7-6 JDATE Function 7-15 10-4 PMDSTOP Call 10-5
7-7 TIME Function 7-15 11-1 FTN5 Control Statement 11-1
7-8 CLOCK Function 7-15 11-2 Variable Map 11-11
7-9 DISPLA Call 7-15 11-3 Symbolic Constants Map 11-13
7-10 REMARK Call 7-15 11-4 Procedures Map 11-13
7-11 SSWITCH Call 7-15 11-5 Statement Label Map 11-14
7-12 EXIT Call 7-16 11-6 Entry Point Map 11-14
7-13 CHEKPTX Call 7-16 11-7 Input/Output Unit Map 11-15
7-14 CHEKPTX Example 7-16 11-8 Namelist Map 11-15
7-15 RECOVR Call 7-17 11-9 DO Loop Map 11-16
7-16 UNIT Function 7-18 11-10 Common Equivalence Map 11-16.1
7-17 EOFFunction 7..18 11-11 Program Statistics Map 11-16.1
7-18 IOCHEC Function 7-18 11-12 Program MAPS 11-16.2
7-19 LENGTH Subprogram 7-18 11-13 Reference Map Example 11-17
7-20 LABEL Call 7-19 12-1 FORTRAN Source Program With
7-21 MOVLEV Call 7-19 Control Statements 12-1
7-21.1 MOVLCH Call 7-19 12-2 Compilation Only 12-2
7-22 CONNEC Call 7-20 12-3 OPT=0 Compilation 12-2
7-23 DISCON Call 7-20 12-4 Compilation and Execution 12-3
7-24 OPENMS Call 7-21 12-5 Compilation With COMPASS Assembly
7-25 WRITMS Call 7-21 and Execution 12-3
7-26 READMS Call 7-22

xii 60481300 E



12-6 Compilation and Execution With 12-45 Program BLOCK 12-25
FORTRAN Subroutines and 12-46 Sample Input and Output for
COMPASS Subprogram 12-4 Program BLOCK 12-26

12-7 Compilation With Binary Card Output 12-4 12-47 Programs ONE and TWO 12-27
12-8 Loading and Execution of Binary 12-48 Program PMD2 12-28

Program 12-5 12-49 Post Mortem Dump Output for
12-9 Compilation and Execution With Program PMD2 12-29

Relocatable Binary Deck 12-5 12-50 Program PM~ 12-30
12-10 Compilation and Execution With 12-51 Post Mortem Dump Output for

Different Data Decks 12-6 Program PMD 12-31
12-11 Preparation of Overlays 12-7 12-52 Program DBUG 12-33
12-12 Compilation and Two Executions 12-53 Debug Session 12-33

With Overlays 12-8 12-54 Program GOTO 12-34
12-13 Program OUT With Control Statements 12-8 12-55 Sample Input and Output for
12-14 Program OUT Output 12-9 Program GOTO 12-34
12-15 Program B 12-9 12-56 Program ASK 12-35
12-16 Program B Output 12-9 12-57 Program ASK Output 12-35
12-17 Program STATES 12-9 12-58 Program SCORE and Subroutine AVG 12-36
12-18 Sample Input and Output for 12-59 Sample Input and Output for

Program STATES 12-10 Program SCORE 12-36
12-19 Program EQUIV 12-10
12-20 INTEGER and REAL Internal Formats 12-10
12-21 Program EQUIV Output 12-11
12-22 Program COME 12-11 TABLES
12-23 Storage Layout for Variables in

Program COME 12-11
12-24 Program COME Output 12-12 1-1 FORTRAN Character Set 1-1
12-25 Program LlBS 12-12 1-2 Array Element Position 1-10
12-26 Program LlBS Output 12-13 1-3 Statement Order 1-12
12-27 Program ADD 12-14 2-1 Correspondence of Data Types in DATA
12-28 Program ADD Input and Output 12-15 Statements 2-11
12-29 Program PASCAL 12-15 3-1 Arithmetic Operators 3-1
12-30 Program PASCAL Output 12-16 3-2 Resulting Data Type for X1**X2 3-3
12-31 Program PIE and Output 12-16 3-3 Resulting Data Type for Xl+X2,X1-X2,
12-32 Program X, Function EXTRAC, Output: Xl*X2 or X1/X2 3-3

INTEGER Declaration Omitted From 3-4 Character Operator 3-4
Main Program 12-17 3-5 Relational Operators 3-5

12-33 Program X, Function EXTRAC, Output: 3-6 Logical Operators 3-6
INTEGER Declaration Included in 3-7 Result of Logical Operators 3-6
Main Program 12-17 3-8 Result of Logical Operators in Boolean

12-34 Program ADIM and Subroutine IOTA 12-18 Expressions 3-7
12-35 Program ADIM Output 12-19 5-1 Repeatable Edit Descriptors 5-7
12-36 Program ADIM2 12-20 5-2 Nonrepeatable Edit Descriptors 5-7
12-37 Program ADIM2 Output 12-21 5-3 Printer Control Characters 5-20
12-38 Program CIRCLE, Function DIM, Output 12-22 6-1 Characteristics of Procedures and
12-39 Rectangle and Circumscribed Circle 12-22 Subprograms 6-1
12-40 Program Circle With Correction 7-1 Intrinsic Functions 7-2

and Output 12-22 7-2 Summary of Mathematical Intrinsic
12-41 Program BOOL and Output 12-23 Functions 7-7
12-42 Program BOOL With Correction 7-3 STATIC Capsule Loading Routines 7-31

and Output 12-24 8-1 Owncode Exit Numbers 8-9
12-43 Program EASYIO 12-24 8-2 Argument List Format 8-11
12-44 Sample Input and Output for 10-1 Post Mortem Dump Arrays 10-4

Program EASYIO 12-25 11-1 Defaults for FTN5 Control Statement 11-2

60481300 E xiii/xiv I





NOTATIONS

Certain notations are used throughout the manual with
cOnsistent meaning. The notations are:

UPPERCASE

Lowercase

[]
Brackets

In language syntax, uppercase
indicates a statement keyword
or character that is to be
written as shown.

In language syntax, lowercase
indicates a name, number,
symbol, or entity that is to be
sUpplied by the programmer.

In language syntax, brackets
indicate an optional item that
can be used or omitted.

Ellipsis

Ellipsis

l:J.
Delta

In language syntax, an ellipsis
indicates that the preceding
optional item in brackets can
be repeated as necessary.

In program examples, an
ellipsis indicates that other
FORTRAN statements or parts of
the program have not been shown
because they are not relevant
to the example.

A delta indicates a blank
character.

t •
Braces

60481300 B

In language syntax, braces
indicate that only one of the
vertically stacked items can
be used.

xv



1
1
1
1,
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1,
1
1,

1
1
1
1
1
1
1,
1
1
1
1
1
1
1
1
1
1
1
1
1
j
1
1
1
1
1
1
1
I
;

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

1
1,
1
1
1
1,
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I



LANGUAGE ELEMENTS 1

A FORTRAN program is written to perform a specific
sequence of operations. Each FORTRAN program
uniquely deals with the solution of a particular problem or
set of problems. Each program typically works with input
values, performs calculations and data manipulation, and
produces output values that are either printed or saved in
some way. This manual describes the full capabilities of
FOR TRAN Version 5. The FORTRAN programmer must
select and use the capabilities "needed for each particular
program.

CDC offers guidelines for the use of the software
described in this manual. These guidelines appear in
appendix G. Before using the software described in this
manual, the reader is strongly urged to review the content
of this appendix. The guidelines recommend use of this
software in a manner that reduces the effort required to
migrate application programs to future hardware or
software systems.

WRITING FORTRAN STATEMENTS

The FORTRAN character set is used for writing FORTRAN
statements. The FORTRAN character set consists of 26
letters, 10 digits, and 13 Illililll"llspecial characters. The
FORTRAN character set is s'tio'wn' in table 1-1.

TABLE 1-1. FORTRAN CHARACTER SET

Type Characters

Alphabetic A through Z

Numeric o through 9

Special = equal
Characters + plus

- minus
* asterisk
/ slash
( left parenthesis
) right parenthesis
, comma

$
decimal point
currency symbol

I apostrophe (CDC graphic t )
: colon

blank

The representations of characters are described in
appendix A. In all but two cases, the FORTRAN
character and the representation are identical. If the
CDC 63-character set or 64-character set is in use, the
two exceptions are' and It, which are represented as t and
,*, respectively. If the ASCII 63-character set or
64-character set is in use, the characters and
representations are all identical.

60481300 D

Characters that ar~ not included in the FORTRAN
character set can be used in character and
11'111~(I~I~illii in apostrophe, H, and

specifications; and in comment lines.

can be written in normal

program must be
mode is principally

parameter of the
section 11) selects

NONSEQUENCED MODE

The FORTRAN source program can be written on the
coding form shown in figure 1-1. Each line on the coding
form represents a source line, either a card image or
terminal line.

The lines coded in a FORTRAN program are initial lines,
continuation lines, and comment lines. Lines can also be
compiler directives. The column usage for nonsequenced
mode lines is shown in figure 1-2.

A nonsequenced mode line consists of characters in
columns 1 through 72. The identification field in
columns 73 through 80 is not defined as part of the line.

Initial Lines

Each statement contains an initial line. The initial line of
a statement is written in columns 7 through 72. Blanks
can be used to improve readability. The initial line of a
statement can contain a statement label in columns 1
through 5.

Continuation Lines

Statements are coded in columns 7 through 72. If a
statement is longer than 66 characters, it can be
continued on as many as 19 continuation lines. A
character other than blank or zero in column 6 indicates a
continuation line. Columns 1 through 5 must be blank.

The length of a statement cannot exceed 1320
characters. The maximum length includes one initial line
and 19 continuation lines, at 66 characters per line since
the statement is contained in columns 7 through 72.

Statement Labels

A statement label (any .1- to 5-digit positive nonzero
integer) can be written in columns.1 through 5 of the
initial line of a statement. A statement label uniquely
identifies a statement so that it can be referenced by
other statements. Statements that will not be referenced
do not need labels. Blanks and leadir,g zeros are not
significant. Labels need not occur in numerical order, but

1-1



@l8~= FORTRAN COOING FORM

DATI PAGE O.

O-ZERO
If- ALPHA 0

FORTRAN STATEMENT

l-ONE
I-ALPHA I

Figure 1-1. Program on FORTRAN Coding Form

SERIAL
.-ER

a given label must not be defined more than once in the
same program unit. A label is known only in the program
unit containing it and cannot be referenced from a
different program unit. Any statement can be labeled,
but only FORMAT and executable statement labels can be
referenced by other statements.

Comment Lines

One of the characters C or * in column 1 indicates a
comment line. Comments do not affect the program and
can be placed anywhere within the program. Comments
can appear between an initial line and a continuation line,
or between two continuation lines. Comments provide a
method of placing program documentation in the source
program.

Any line with blanks in columns 1 through 72 is also a
comment line. Comment lines following an END
statement are listed at the beginning of the next program
unit.

Additional characters that are not in the FORTRAN
character set can be included in comment lines_
Comment lines can include any characters listed in
appendix A for the character set being used.

1-2

Columns 73 through 80

Any identification information can appear in columns 73
through 80 and is not considered part of the statement or
the line. Characters in the identification field are ignored
by the compiler but are copied to the source program
listing. If input comes from other than cards, columns 73
through 90 can be used for identification information.

60481300 D



Line:

Continuation Line:

Figure 1-2. Normal Column Usage

7 72

Idirective I
~~-----------

72

Unlabeled Initial Line:

6 7 72
Il'""c-o-nt-i-n-u-at-io-n-ol'""f~sta-te-m-e-n-t---------- I

L any character except blank or zero

6 7 72
, l::,--st-at-e-m-en-t-------------l

'-- blank or zero

Labeled Initial Line:

1 2 72
CIr-c-o-m-m-e-n~t--------------------,I

* Icomment I

C$ Directive:

Comment Line:

1

C$

167
Jlabell ,l::r-st-a-te-m-e-n-t--------------~

t..- blank or zero

lall blanks

60481300 B 1-3



SYMBOLIC NAMES
A symbolic name is assigned by the user and consists of
one throughll;lllilIetters and digits (ANSI only allows six),
beginning with 'a letter. Symbolic names are used for the
following:

Main program name

Common block name

Subroutine name

External function name

Block data subprogram name

Variable name

Array name

Symbolic constant name

In~rinsic function name

Statement function name

Dummy procedure name

Names which are FORTRAN keywords can be used as
user-assigned symbolic names without conflict. For
example:

PROGRAM TEST

PRINT =1.0

PRINT*, PRINT'

In general, however, it is good programming practice to.
avoid naming conflicts by assigning unique names to
program entities. Certain of these conflicts are illegal
and are diagnosed. For example:

PROGRAM ALPHA
ALPHA = 1.0

illegally uses the name ALPHA as a program unit name
and a variable name.

CONSTANTS
A constant is a fixed quantity. The seven types of
sg~~~~~:~~ are integer, real, double precision, complex,
11~~111~,J;i logical, and character constants. The
PARAMETER statement described in section 2 can be
used to declare a s~~~~!i~\~~~~~ant. Integer, real, double
precision, complex,;;;;(ellii;I~~IIII,;;constants are considered
arithmetic constants•. " , ,'-'

INTEGER

An integer constant is a string of 1 through 18 decimal
digits written without a decimal point, as shown in
figure 1-5. It can be positive, negative, or zero. If the
integer is positive, the plus sign can be omitted; if it i~

negative, the minus sign must be present. An integer
constant must not contain a comma. The range of an
integer constant is - (259_1) to 259_1
(259_1 = 576460752303423487).

[t] d[d] ...

d Is a decimal digit.

Figure 1-5. Integer Constant

Integers used in multiplication, division, and
exponentiation! whether constant or variable, should be in
the range - (248_1) to 248_1 (248_1 = 281474 976710655).
The result of such operations must also be in this range.
For integer addition and subtraction (where both operands
are integers), the full 60-bit word is used.

Examples:

237
-74
+136772
-0024

Examples of invalid integer constants:

46. Decimal point not allowed.

23A Letter not allowed.
The name PRINT is legally used as a variable name and
FORTRAN keyword.

1-4

7,200 Comma not allowed.

60481300 C



Example of invalid real constant:

When an integer constant is used as a subscript, the
maximum value is 217-1 (217_1=131071) and minimum
is -(217-1) except when LCM=G is selected; the range
then is _(220_8) through 220_8.

When an integer constant is used as an index in a DO
statement or implied DO, the maximum value is 217_2
(217-2=131070) and the minimum value is -(217-2)
except when DO=LONG is selected or a DO (LONG=l)
directi ve is in effect; a DO index then can exceed 217-2.

Examples:

42.El

•00028E+5

6.205E6

700.E-2

7.2E3.4

Value 42. X 101 = 420.

Value .00028 X 105 = 28•

Value 6.205 X 106 = 6 205 000.

Value 700. X 10-2 = 7.

Exponent not an integer.

When values are converted (in an expression or assignment
statement) from real to integer or from integer to real, the
valid range is also from - (248_1) to 248_1. For values
outside this range, the high Qrder bits are lost and no
diagnostic is provided.

REAL

A real constant consists of a string of decimal digits
written with a decimal point or an exponent, or both, as
shown in figure 1-6. Commas are not allowed. The plus
sign can be omitted if the exponent is positive, but the
millJs sign must be present if the exponent is negative.

[±] coeff
[±] coeff E [±] exp
[±] n E [±] exp

DOUBLE PRECISION

A double precision constant is written in the same way as a
real constant with exponent, except that the exponent is
prefixed by the letter 0 instead of E, as shown in
figure 1-7. Double precision values are represented
internally by two computer words, giving additional
precision. A double precision constant is accurate to
approximately 29 decimal digits. The plus sign can be
omitted if the exponent is positive, but the minus sign must
be present if the exponent is negative.

[±] coeff 0 [±] exp
[±] n 0 [±] exp

coeff Is a coefficient in the form of a real
constant:

coeff

n

Is a coefficient in the form of a real
constant:

n.
n.n
.n

Is an unsigned integer constant.

n

exp

n.
n.n
.n

Is an unsigned integer constant.

Is an unsigned integer exponent (base 10).

exp Is an unsigned integer exponent (base 10).
Figure 1-7. Double Precision Constant

Figure 1-6. Real Constant

The range of a real constant is 10-293 to 10+322; if
this range is exceeded, a diagnostic is printed. Precision is
approximately 14 decimal digits, and the constant is stored
internally in one computer word.

Examples:

Examples:

5.83402

14.0-5

9.2003

312004

Value 5.834 X 102 = 583.4

Value 14. X 10-5 =.00014

Value 9.2 X 103 = 9200.

Value 3120. X 104 = 31 200 000.
7.5
-3.22
+4000•
•5

Examples of invalid double precision constants:

7.20 Exponent missing.

Examples of invalid real constants: 05 Exponent alone not allowed.

33,500. Comma not allowed.

2.5A Letter not allowed.

Optionally, a real constant can be followed by a decimal
exponent, written as the letter E and an integer constant
indicating the power of ten by which the number is to be
multiplied. If the E is present, the integer constant
following the letter E must not be omitted. The plus sign
can be omitted if the exponent is positive, but the minus
sign must be present if the exponent is negative.

60481300 0

2,001.302 Comma illegal.

3.14159265 0 and exponent missing.

COMPLEX

~~I:-s ••~I~.lliI~llli~~II~~I~I~!I~r~ a pair of real or integer
C11 separated by a comma and

in figure 1-8.

1-5



-\ C{l~¢)
(25

Examples of invalid logical constants:(real,imag)

real Is a real or integer constant for the real
part.

•TRUE
•F.

No terminating period•
Abbreviation not recognized•

Figure 1-9. Logical Constant

Examples:

double

i=.[:l

4.0 + 5.Oi

Parentheses missing.

Comma mlssmg and
precision not allowed.

0.0 - 1.Oi

-21. + 3.24i

1. + 7.54i

Represents the logical value true.

Represents the logical value false..FALSE.

.TRUE.

.FALSE.

.TRUE.

(12.70-4 16.1)

4.7E + 2,1. 942

0, 7.54)

(-2.1El, 3.24)

(4, 5)

(0., -1.)

Examples of invalid complex constants:

.TRUE•
•FALSE.

A logical constant takes one of the two forms shown in
figure 1-9. The periods are part of the constant and must
appear•

The first constant represents the re~l part of the complex
number, and the second constant represents the imaginary
part. The parentheses are part of the constant and must
always appear. Either constant can be preceded by a plus
or minus sign. Complex values are represented internally
by two consecutive computer words containing real values.

Figure 1-8. Complex Constant

imag Is a real or integer constant for the
imaginary part.

LOGICAL

Real constants which form the complex constant can
range from 10-293 to 10+322• Division of complex
numbers might result in underflow or overflow even when
this range is not exceeded.

Examples:

1-6 60481300 B



Examples:

INTEGER VARIABLES

Invalid number of apostrophes.'YEARS'S'

VARIABLES

Examples:

Character positions in a character constant are numbered
consecutively as 1, 2, 3, and so forth, up to the length of
the constant. The length of the character constant is
significant in all operations in which the constant is used.
The length must be greater than zero.

ITEMI
NSUM
JSUM
N72
J
K2S04

'ABC'
'123'
'YEAR"S'

The minimum number of characters in a character
constant is one, and the maximum number of characters in
a character constant is (215_1) or 32767. The length is
the number of characters in the string. Blanks are
significant in a character constant. Any characters in the
operating system character set can be used.

Examples of invalid character constants:

A variable represents a quantity with a value that can be
changed repeatedly during program execution. V
are identified by a symbolic name of one to sixv~~I!~~'!i!!! I
letters or digits, beginning with a letter. A
associated with a storage location. Whenever a variable is
used, it references the value currently in that location. A
variable must be defined before being referenced for its
value. The types Cof"'~;~'~'~'~~~i are integer, real, double I
precision, complex,l!i~'~~I~,ii logical, and character.
Variables typed by default are integer if the first letter is
I, J, K, L, M, or N, and are real if the first letter is any
other letter. Implicit and explicit typing of variables is
described in section 2, Specification Statements.

An integer variable is a variable that is typed explicitly,
. implicitly, or by default as integer. An integer variable
occupies one storage word. The range restrictions for
integer variables are the same as for integer constants.
See section 4 for restrictions on integers used in DO
statements.

A character constant has the form shown in figure 1-13.
Apostrophes are used to enclose the character string.
Within the character string, an apostrophe is represented
by two consecuti ve apostrophes.

CHARACTER

's'
REAL VARIABLES

Is a string of characters.

Figure 1-13. Character Constant

A real variable is a variable that is typed explicitly,
implicitly, or by default as real. The value range is
10-293 through 10+322 with approximately 14 significant
digits of precision. A real variable occupies one storage
word.

60481300 E 1-7



Examples:

AVAR
SUM3
RESULT
TOTAL2
BETA
XXXX

DOUBLE PRECISION VARIABLES

A double precision variable is a variable that is typed
explicitly or implicitly as double precision. The value of a
double precision variable can range from 10-293 through
10+322 with approximately 29 significant digits of
precision. Double precision variables occupy two
consecuti ve storage words. The first word contains the
more significant part of the number and the second
contains the less significant part.

Example:

IMPLICIT DOUBLE PRECISION (A)

DOUBLE PRECISION OMEGA, X, IOTA

Example:

CHARACTER NAM*15, C3*3

ARRAYS
A FORTRAN array is a set of elements identifiedJ)y a
single name. The name is composed of one toilllllil
letters and digits and begins with a letter. Each array
element is referenced by the array name and a subscript.
The type of the array elements is determined by the array
name in the same manner as the type of a variable is
determined by the variable name. The array name can be
typed explicitly with a type statement, implicitly with an
IMPLICIT statement, or by default typing. The array
name and its dimensions must be declared in a
DIMENSION, COMMON, or type statement.

When an array is declared, the declaration of array
dimensions takes the form shown in figure 1-14. Arrays
can have one through seven dimensions.

array (d [,d] ...)

array Is the symbolic name of the array.
The variables OMEGA, X, IOTA, and all variables whose
first letter is A are double precisi on.

COMPLEX VARIABLES

A complex variable is a variable that is typed explicitly or
implicitly as complex. A complex variable occupies two
storage words; each word contains a real number. The
first word represents the real part of the number and the
second represents the imaginary part.

d

lower

Specifies the bounds of an array dimension
and takes the form:

[lower:] upper

Optionally specifies the lower bound of the
dimensi~'~i ...)~~~.;!~wer bound can be an
integer i~r;:;;·.~,gilr!) expression with a
positive, zero, or negative value. If omitted,
the lower bound is assumed to bel.

Example:

COMPLEX ZETA, MU, LAMBDA

LOGICAL VARIABLES

A logical variable is a variable that is typed explicitly or
implicitly as logical. A logical variable occupies one
storage word.

Example:

LOGICAL L33, PRAVDA, VALUE

BOOLEAN VARIABLES

A Boolean variable is a variable that is typed explicitly or
implicitly \ as Boolean. A Boolean variable occupies one
storage word. Hollerith, octal, or hexadecimal values are
generally assigned to Boolean variables.

Example:

BOOLEAN HVAL, ZZZ, R34

CHARACTER VARIABLES

A character variable is a variable that is typed explicitly
or implicitly as character. The length of the character
variable is specified when the variable is typed as
character.

1-8

upper Specifies the upper bound of the diw~~sion.

!~~;~~~r bound can be an integer !~lie;
8oole~joi expression with a positive, zero, or
negative value. The upper bound must be
greater than or equal to the lower bound.
In the case of an assumed-size array, the
upper bound of the last dimension can be
specified as *

Figure 1-14. Declaration of Array Dimensions

The dimension bounds can be positive, negative, or zero.
If the lower bound is omitted, the lower bound is assumed
to be one. In this case, the upper bound must be positive.
The general rule is that the upper bound must always be
greater than or equal to the lower bound. The size of
each dimension is indicated by the distance between the
lower bound and upper bound. For example:

DIMENSION RX(0:5)

declares a I-dimensional array of six elements such as
that shown in figure 1-15.

DIMENSION TABLE(4,3)

declares a 2-dimensional array of four rows and three
columns, for a total of twelve elements such as that
shown in figure 1-16.

INTEGER STOR(6,6,3)

declares a 3-dimensional array of six rows, six columns
and three planes, for a total of one hundred and eight
elements.

60481300 B



Figure 1-15. I-Dimensional Array Storage

Storage patterns for a I-dimensional, 2-dimensional, and
3-dimensional array are shown in figure 1-15, figure 1-16,
and figure 1-17, respectively. Arithmetic values are
shown for the array elements, but an array can be any
data type. Array elements are stored in ascending
locations by columns. The first subscript value increases
most rapidly, and the last subscript value increases least
rapidly.

Column 1 Column 2 Column 3

Row 1 44 10 105
Row 2 72 20 200- If-oo-Value of (2,3)
Row 3 3

1~\
30 is 200

Row 4 91 76 714

\ .
Value of (3,2) IS 11

.....---
10.0
55.0
11.2
72.6
91.9 !-'-Value of (4) is 91.9

7.1
I---

Row 0
Row 1
Row 2
Row 3
Row 4
Row 5

ARRAY STORAGE

The span of an array dimension is given by (u-l+l) where u
is the slbscript upper bound and .&.. ~~ ...:~Q~isubscript lower
bound. An array of type integer, i!lm~li~:ilj! real, or logical
occupies n words of storage, where n is the product of the
spans of all dimensions. An array of type complex or
double precision occupies 2*n words. An array of type
character occupies (n*len+offset+9)/10 words, where len is
the length in characters of an array element, and offset is
the starting character position (0 to 9) of the array in the
first word of the array storage.

An array in central memory must occupy less than 217
words. An array in extended memory can occupy up to
220_8 words if LCM=G is selected.

A
dimension bounds specification must not include a function
reference or array element reference. Presence of a
variable makes the size of the array adjustable. Presence
of an asterisk as the upper bound of the last dimension
makes the array an assumed-size array. An assumed-size
array can only be used in a slbroutine or function, as
described under Procedure Communication in section 6.

The elements of an array have a specific storage order,
with elements of any array stored as a linear sequence of
storage words. The first element of the array begins with
the first storage word or character storage position, and
the last element ends with the last storage word or
character storage position.

The number of storage words reserved for an array is
determi~~g8~}~Q~ type of the array and its size. For real,
integer, ':I~i~I~!i)'i and logical arrays, the number of storage
words in an array equals the array size. For complex and
double precision arrays, the number of storage words
reserved is twice the array size. For character arrays, the
number of words is calculated from the number of
characters stored, at ten characters per storage word. For
example, an array defined as CHARACTER*5 X(8), that is,
eight 5-character elements, would require storage for 40
characters, or 4 storage words at offset zero.

Figure 1-16. 2-Dimensional Array Storage

ARRAY REFERENCES

Array references can be references to complete arrays or
to specific array elements. A reference to a complete
array is simply the array name. A reference to a specific
element involves the array name followed by a subscript
specification. An array element reference is also called a
subscripted array name.

Plane 1

Column 1 Column 2 Column 3

Value of (2,1,3) is 77

3j7j4789

o 33 2

Row 1

Row 2

Row 3

Value. of (3,2,1) is 33
Row 1

Row 2

Row 3

Plane 2

Column 1 Column 2

22j51j7
o 98 6

3 207 99

Value of (1,3,2) is 7

Plane 3

Column 2 Column 3

2j 1j552
77 60 3

85 100 8

Figure 1-17. 3-Dimensional Array Storage

60481300 D 1-9



TABLE 1-2. ARRAY ELEMENT POSITIONA reference to the complete array references all elements
of the array in the order in which they are stored. For
example:

DIMENSION XT(3)
DATA XT/1.,2.,3./
CALL CALC(XT)

uses the array reference XT in the DATA statement and
the CALL statement.

A reference to an array element references a specific
element and takes the form shown in figure 1-18.

array (e[,e] ...)

array Is the symbolic name of the array.

e Is a subscript expression that is an integer,

~11~~lli~III;III;llllli~ill~II~III'II~II;III;lllllllllI
expression... Each subscript expression flas a
value that is within the bounds of the cor­
responding dimension.

Dimensions

1

2

3

7

Position of Array Element

1 + (Sl-jl)

1 + (sl-jl)
+ (S2-j2)*nl

1 + (sl-jl)
+ (S2-j2)*nl
+ (s3-j3)*n2*nl

Figure 1-18. Array Element Reference

An array element reference must specify a value for each
dimension in the array. Array element references are not
legal unless a value is supplied for each dimension. There
can be up to seven dimensions in an array element.

si

Lower bound of dimension i.
Upper bound of dimension i.
Size of dimension i. If the lower
bound is one, ni=ki. Otherwise,
ni=(ki-ji+1).
Value of the subscript expression
specified for dimension i.

An array element reference specifies the name of the
array followed by a list of subscript expressions enclosed
in parentheses. Each subscript expression can be an
integer,
expressio

Each value must not be less
than the upper bound of
the dimension. If the array is an assumed-size array with
the upper bound of the last dimension specified as
asterisk, the value of the subscript expression must not
exceed the actual size of the dimension. The results are
unpredictable if an array element reference exceeds the
size of an array. For each array element reference,
evaluation of the subscript expressions yields a value for
each dimension and a position relative to the beginning of
the complete array.

The posi tion of an array element is calculated as shown in
table 1-2. The position indicates the storage location of
an array' element.

Example 1:

INTEGER DZ(12)

DZ(6)= 79

The array element reference DZ(6) refers to the element
at position 6 in the array, that is, (1+(6-1».

1-10

Example 2:

COMMON /CHAR/ CQ
CHARACTER*5 CQ(6,4)

CQ(6,3) = 'RUN'

The array element reference CQ(6,3) refers to the
element at position 18, that is, (1+(6-1)+(3-1)*6). The
character storage position is 86, that is, l+(element
position -l}*character length. Character position 86
indicates that storage for the element begins at the sixth
character position in the ninth element of the array. (The
COMMON declaration causes CQ to begin on a word
boundary; in general, the compiler does not necessarily
align character variables on word boundaries.)

CHARACTER SUBSTRINGS
When a character variable or character entity is declared,
the entire character string can be defined and
referenced. Specific parts of the character string can
also be defined or referenced with character substring
references. A character entity must be declared with the
CHARACTER statement described in section 2. The
declaration of a character entity specifies the length in
characters.

SUBSTRING REFERENCES

If the name of a character entity is used in a reference,
the value is the current value of the entire string.

60481300 D



Example:

CHARACTER*6 51,52
DATA SI/'sTRING'1
52 =51

The reference to 51 is a reference to the full string
'STRING'. A reference to part of the string would be
written as a character substring reference. A character
substring reference has the form shown in figure 1-19.

char ([first]: [last])

char Is the name.of a character variable or array
and can be an array element reference.

first Optionally specifies an integer,
expression

for the position of the first character of the
substring. If first is omitted, the value is
one.

last .2e~i,~~,~I!~,},~e~~i!ii~~}~,~ ..• i~~~~~~~JIIIIII;!III.1I:
i.lli§il;lj!i.illll~t{·i;lli,;·.lillll'e~'pressio'~' "
for the position of the last character in the
substring. If last is omitted, the value is
the length of the string.

Figure 1-19. Character Substring Reference

The specificait[qillo!in~il,lol,filittlh!el!l/lf(tiilrtstcharacter in the .substrin
an integer, K~

expression that is evaluated
.1,llllllli; The expression can contain array element
references and function references, but evaluation of a
function reference must not alter the value of the other
expression in the substring reference. If the specification
of first is omitted, the value is one and all characters
from one to the value of the specification of last are
included in the substring.

The specification of last in the substring is an expression
subject to the same rules as the specification of first. If
last is omitted, the value is the length of the string and all
characters from the specified first position to the end of
the string are included in the substring. For a string
length len, the values of first and last must be:

1~ first~lastslen

SUBSTRINGS AND ARRAYS

If a substring reference is used to select a substring from
an array element of a character array, the combined
reference includes specification of the array element
followed by specification of the substring. For example:

CHARACTER*8 ZS(5)
CHARACTER*4 RsEN

Zs(4)(5:6)='FG'
RsEN=Zs(1)(:4)

The first reference refers to characters 5 and 6 in
element 4 of array ZS. The second reference refers to
the first four characters of the first element of array Zs.

STATEMENT ORDER
The order of various statements within the program unit is
shown in table 1-3. Within each group, statements can be
ordered as necessary, but the groups must be ordered as
shown. Statements' that can appear anywhere within more
than one group are shown on the right in boxes that extend
vertically across more than one group.

A PROGRAM statement can appear only as the first
statement in a main program. The first statement of a
subroutine, function, or block data subroutine is
respectively a SUBROUTINE statement, FUNCTION
statement, or BLOCK DATA statement. The END
statement is the last statement of each of the preceding
program units.

Comments can appear anywhere within the program unit.
Note that any comment following the END statement is
considered part of the next program unit.

FORMAT statements can appear anywhere in the program
unit.

ENTRY statements can appear anywhere in the program
unit, subject to two restrictions. An ENTRY statement
cannot appear within the range of a DO loop (between the
DO statement and the terminating statement) or within a
block IF construction (between the IF .statement and the
ENDIF statement). The ENTRY statement cannot be used
in the main program unit, where an alternate entry point
would have no meaning.

For example, substring references to the string 51 with
the value 'STRING' could be any of the following:

Note that the substring reference 51(:) has the same
effect as the reference 51, since all characters in the
string are referenced.

51(1:3)
51(3:4)
51(4:)
51(:4)
51(:)

Value 'sTR'
Value 'RI'
Value 'lNG'
Value 'sTRI'
Value 'STRING'

Specification statements in general precede the
executable statements in the program unit. The
nonexecutable specification statements describe
characteristics of quantities known in the program unit,
and the executable statements describe the actions to be
taken.

All specific~.~~~~",~7~!~~~~~~.,.~~~~. precede all DATA
statements, i;I••I.lljlii\i;!jl~.I(.lli*jii statement function
definitions, and executable statements. Within the
specification statements, all IMPLICIT statements must
precede all other specification statements except
PARAMETER statements. PARAMETER statements can
appear anywhere among the specification statements, but
each PARAMETER statement must precede any

604813000 1-11



references to the symbolic constant defined by the
PARAMETER statement.

All statement function definitions must precede all
executable statements in the program unit. Statement
function definitions cannot be used in block data
subroutines.

DATA statements can be used anywhere among statement
function definitions and executable statements.

Executable statements must follow all specification
statements and any statement function definitions.
Executable statements such as assignment, flow control,
or I/O statements can appear in whatever order required
in the program unit. Execlltable statements cannot be
used in block data subroutines.

The END statement must be the last statement of each
program unit.

TABLE 1-3. STATEMENT ORDER

Statement

PROGRAMt, SUBROUTINE, FUNCTION, or BLOCK DATA

IMPLICIT

INTEGER
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL

EXTERNAL
INTRINSIC

(Type specification
statements)

(Specification statements)

PARAMETER
(must
precede
first
reference)

FORMATtt ENTRym
(except within
range of block IF
or DO loop)

Statement function definitiontt

Assignment
DO
CONTINUE
IF
ELSE
ELSEIF
ENDIF
GOTO
ASSIGN
CALL
RETURN
PAUSE
STOP
OPEN
CLOSE
INQUIRE
READ
WRITE
PRINT

REWIND
BACKSPACE
ENDFILE

END

(Executable statements)tt

(Executable I/O
statements )tt

DATA

1-12

a BLOCK DATA subprogram.
a main program or BLOCK DATA subprogram.

60481300 D



SPECIFICATION STATEMENTS 2

Specification statements are nonexecutable and are used
to specify the characteristics of symbolic names used in
the program. Specification statements must appear
before all DATA statements, Jtlllllllllli,! statements,
statement function definitions, and executable statements
in the program unit.

DATA statements are not specification statements but
are described in this section.

The specification statements are:

• IMPLICIT

• DIMENSION

• PARAMETER

• EQUIVALENCE

• COMMON

•
• SAVE

• EXTERNAL

• INTRINSIC

• Type (INTEGER, REAL, DOUBLE PRECISION,
COMPLEX'illllllltl LOGICAL, CHARACTER)

The IMPLICIT and type statements are used to specify the
data type of variables. Default typing of variables takes
place unless the IMPLICIT statement or the type
statements are used to change the data type of specific
variables. Any IMPLICIT statements must precede all
other specification statements, except PARAMETER
statements.

The DIMENSION statement is used to specify the number
of dimensions in an array and the bounds for each
dimension.

The PARAMETER statement is used to give a symbolic
name to a constant. PARAMETER statements can be
used anywhere among the specification statements, but
each symbolic constant must be defined in a PARAMETER
statement before the first reference to the symbolic
constant.

The EQUIVALENCE, COMMON, and LEVEL statements
are used to define the storage characteristics of variables,
or to· define whether storage can be lllll;llill;\il

The SAVE statement is used to preserve the values of
variables after execution of a RETURN or END statement
in a subprogram. Variables that would become undefined
remain defined and can be used in any subsequent
executions of the same subprogram.

60481300 B

The EXTERNAL and INTRINSIC statements are used to
control the recognition of function names. The
EXTERNAL statement specifies that a function name
refers to a user-written function rather than an intrinsic
function. The INTRINSIC statement specifies that a
function name refers to an intrinsic function rather than a
user-wri tten function.

DATA statements are used to give initial values to
variables. DATA statements must appear after all
specification statements in the program unit. DATA
statements can appear anywhere among the statement
function definitions and executable statements. Usually,
DATA statements are placed after the specification
statements but before the statement function definitions
and executable statements. A variable is considered
undefined until a value is assigned with a DATA
statement, input statement, or assignment statement. A
variable must be defined before the first reference to the
value of the variable.

TYPE 5TATEMENTS
Each variable, array, symbolic constant, statement
function, or external function name has a type. Entities

an yped as integer, real, double precision, complex,
logical, or character. The name of a main

program, subroutine, or block data subroutine cannot be
typed.

Default typing occurs in the absence of any implicit
typing or explicit typing. The· type of the symbolic name
is implied by the first character of the name. The letter
I, J, K, L, M, or N implies type integer, and any other
letter implies type real.

Implicit typing is controlled by the IMPLICIT statement.
The IMPLICIT statement specifies a different typing
according to the first character of each name. One or
more IMPLICIT statements can be included in each
program uni t.

Explicit typing defines the types of individual names. The
!~I~g~~l,. REAL, DOUBLE PRECISION, COMPLEX,
Ilillli.lI.i!;" LOGICAL, or CHARACTER statements are
explicit type statements. An explicit type statement can
also be used to supply dimension information for an array.

Intrinsic functions are typed by default and need not
appear in any explicit type statement in the program.
Explicitly typing a generic intrinsic function name does
not remove the generic properties of the name. Intrinsic
functions are described in section 7.

2-1



INTEGER STATEMENT

The INTEGER statement shown in figure 2-1 can be used
to define a variable, array, symbolic constant, function
name, or dummy procedure name as type integer.

Examples:

Examples:

DOUBLE PRECISION DPROD, DEIGV
DOUBLE PRECISION RMAT(10, 10)

DOUBLE PRECISION name [,name] ...

INTEGER ITEM1, NSUM, JSUM
INTEGER A72, H2SQ4
INTEGER M5(2)

INTEGER name[,name] ...

name Is explicitly typed as a double precision.
Each name is one of the forms:

var

array [(d[,d] ...)]

name Is explicitly typed as integer. Each name
is one of the forms:

var

array-

Is a variable, function name, or function entry.

Is an array name.

var

array

d

var

array [(d[,d] ...)]

Is a variable, function name, or function entry.

Is an array name.

Specifies the bounds of a dimension.

Figure 2-1. INTEGER Statement

d Specifies the bounds of a dimension.

Figure 2-3. DOUBLE PRECISION Statement

COMPLEX STATEMENT

The COMPLEX statement shown in figure 2-4 can be used
to define a variable, array, symbolic constant, function
name, or dummy procedure name as type complex.

Examples:

REAL STATEMENT

The REAL statement shown in figure 2-2 can be used to
define a variable, array, symbolic constant, function
name, or dummy procedure name as type real.

COMPLEX CPVAR
COMPLEX RES(5, 5)

COMPLEX name [,name] ...

Examples:

REAL IVAR, NSUM3, RESULT
REAL TOTAL2, BETA, XXXX
REAL TR(10, 5)

REAL name [,name] ...

name

var

array

Is explicitly typed as a complex. Each name
is one of tile forms:

var

array [(d[,d]. ..)]

Is a variable, function name,or function entry.

Is an array name.

name Is explicitly typed as real. Each name
is one of the forms:

var

array [(d[,d] ...)]

d Specifies the bounds of a dimension.

Figure 2-4. COMPLEX Statement

var Is a variable, function name, or function entry.

array Is an array name.

d Specifies the bounds of a dimension.

Figure 2-2. REAL Statement

DOUBLE PRECISION STATEMENT

The DOUBLE PRECISION statement shown in figure 2-3
can be used to define a variable, array, symbolic constant,
function name, or dummy procedure name as type double
precision.

2-2 60481300 D



CHARACTER [*Ien) [,) name [,name) ...

name Is explicitly typed as character. Each name
is one of the forms:

var [*Ien]

array [(d[,d] ...)) [*Ien)

len Specifies the length and can be: an un­
signed nonzero integer constant; an integer
constant expression, enclosed in parentheses,
with a positive value; or an asterisk enclosed
in parentheses.

var Is a variable, function name, or function entry.

array Is an array name.

I

LOGICAL STATEMENT d Specifies the bounds of a dimension.

var

LOGICAL name [,name) ...

LOGICAL SWITCH, TEST

Example:

Figure 2-7. CHARACTER Statement

PROGRAM MN
CHARACTER *3 CC, A(4)

The example defines a character variable A that is 3
characters long; and a character array B that has 10
elements, each of which is 18 characters long.

If a dummy argument has the length (*) specified, the
dummy argument assumes the length of the associated
actual argument for each reference to the subroutine or
function. If the associated actual argument is an array
name, the length assumed by the dummy argument is the
length of each array element in the associated actual
argument.

Example:
array [(d[,d) ...))

Is a variable, function name, or function entry.var

name Is explicitly typed as logical. Each name
is one of the forms:

The LOGICAL statement shown in figure 2-6 can be used
to define a variable, array, symbolic constant, function
name, or dummy procedure name as type logical.

array Is an array name.

d Specifies the bounds of a dimension. CALL TSUB (CC, A(IX2:3))

Figure 2-6. LOGICAL Statement

CHARACTER STATEMENT

SUBROUTINE TSUB (CHAR, Z)
CHARACTER *(*) CHAR, Z(4)

The CHARACTER statement shown in figure 2-7 can be
used to define a variable, array, symbolic constant,
function name, or dummy procedure name as type
character.

A length specification immediately following the word
CHARACTER applies to each entity not having its own
length specification. A length specification immediately
follOWing an entity is the length specification only for that
entity. Note that for an array, the length specified is for
each array element. If a length is not spec ified for an
entity, either explicitly or by an IMPLICIT statement, the
length is one. The un it of length for CHARACTER is
characters.

The length specification for a variable or array declared in
a CHARACTER statement must be an unsigned nonzero
integer constant, or an integer constant expression.

Example:

CHARACTER A*3, B(10)*(12+3*2)

The dummy argument CHAR in subroutine TSUB will have
length 3 and each element of the array Z will have
length 2.

If an external function has the length (*) specified in a
function subprogram, the function 'T1ame must appear as the
name of a function in a FUNCTION or ENTRY statement
in the same subprogram. vmen a reference to such a
function is executed, the function has the length specified
in the referencing program unit.

The length specified for a character function, in the
program unit that references the function, must be an
integer constant or integer constant expression and must
agree with the length specified in the function. Note that
there is always agreement of length if the length (*) is
specified in the function.

If a symbolic constant of type character has the length (*)
specified, the constant has the length of its corresponding
constant expression in a PARAMETER statement. If the I
length specification is a symbolic constant, it must be
enclosed in parentheses.

60481300 E 2-3



Example:

PARAMETER (N=5)
CHARACTER *(N) AB

If the parentheses are omitted, the compiler cannot
distinguish between the length specification and the
variable name. (Blanks do not function as delimiters, and
an error message is issued.)

The length specified for a character statement function, or
statement function dummy argument of type character,
must be an integer constant or integer constant expression.

Example:

CHARACTER*10 ASTR, ABC(5), XR*20

The variable ASTR and each element of the array ABC
have the length 10. The variable XR has the specified
length of 20.

Example:

CHARACTER AR*5, BR*8

CALL ZC(BR)

SUBROUTINE ZC(STR)
CHARACTER STR*(*)

In the example, the variable STR has the length 8 when
subroutine ZC is called. If subroutine ZC is called with
variable AR passed, the variable STR has the length 5.
Note that the length is not directly known, and certain
types of reference to STR cannot be used. See Procedure
Communication in section 6.

Character substrings are described in section 1.

IMPLICIT STATEMENT
The IMPUCIT statement can be used to change or confirm
the default typing according to the first letters of the
names. The IMPUCIT statement is shown in figure 2-8.

must precede all other specification statements except
PARAMETER statements. An IMPLICIT statement in a
function or subroutine subprogram affects the type
associated with dummy arguments and the function name,
as well as other varIables in the subprogram. Explicit
typing of a variable name or array element in a type
statement or FUNCTION statement overrides an IMPLICIT
spec ifica tion.

The specified single letters or ranges of letters specify the
entities to be typed. A range of letters has the same
effect as writing a list of the single letters within the
range. The same letter can appear as a single letter, or be
within a range of letters, only once in all IMPLICIT
statements in a program unit.

The length can be specified implicitly for entities of type
character. If length is not specified, the length is one.
The length can be specified as an unsigned nonzero integer
constant, or an integer constant expression, enclosed in
parentheses, with a positive value. The specified length
applies to all entities implicitly typed as character.

Example:

IMPLICIT CHARACTER*20 (M, X-Z)

The default typing is effective in all cases except for
names beginning with the letters M, X, Y, or Z. Names
beginning with M are typed as character rather than
integer, and names beginning with X, Y, or Z are character
rather than real.

Note that any explicit typing with a type statement is
effective in overriding both the default typing and any
implicit typing.

Example:

IMPLICIT LOGICAL (L)
.INTEGER L, LX, TT

Names beginning with L are typed as logical rather than
integer. Names L and LX are explicitly typed as integer
and are not affected by the implicit typing. The name TT
is explicitly typed as integer and does not take the default
type real.

DIMENSION STATEMENT

IMPLICIT type(ac[,ac] ... j [,type(ac[,ac] ... j] ...

The statement specifies the type of variables, arrays,
symbolic constants, and functions beginning with the
letters ac. The IMPUCIT statements in a program unit

type

ac

len

Is INTEGE~,~~~bgoUBLE PRECISION,
COMPLEX,i;,lillll;II~' LOGICAL, CHAR­
ACTER, or CHARACTER [*Ien] .

Is a single letter, or range of letters represented
by· the first and last letter separated by a hyphen,
indicating which variables are implicitly typed.

Specifies the length and can be an unsigned
nonzero integer constant; or an integer con­
stant expression, enclosed in parentheses, with
a positive value.

Figure 2-8. IMPLICIT Statement

The DIMENSION statement shown in figure 2-9 defines
symbolic names as array names and specifies the bounds of
each array. More than one array can be declared in a
single DIMENSION statement. Dummy argument arrays
specified within a procedure subprogram can have
adjustable dimension specifications. A further explanation
of adjustable dimension specifications appears under
Procedure Communication in section 6.

Within the same program unit, only one definition of an
array is permitted. Note that dimension information can
be specified in COMMON statements and type statements.
The dimension information defines the array dimensions
and the bounds for each dimension.

The description of arrays is in section 1. The description
covers the properties of arrays, the storage of arrays, and
array references.

Example:

REAL NIL
DIMENSION NIL(6, 2, 2)

2-4 60481300 E ~



array Is an array name.

DIMENSION array(d[,d] ...) [,array(d[,d] ...)] ...

d Specifies the bounds of a dimension in one
of the forms:

upper

lower: upper

Is the upper bound of the dimension and is
a dimension bound expression in which all

constants, ?'!'illi!I~.;~;~iii' and variablesare type integerl~

Is the lower bound of the dimension and is
a dimension bound expression in which all
constants, symbolic constants, and variables
are of type integerlliiiijl••I~iiii If only the
upper bound is specified, value of the lower
bound is one.

upper

lower

Figure 2-9. DIMENSION Statement

These statements could be combined into one statement
with 24 real elements declared for array NIL:

REAL NIL(6, 2, 2)

Example:

COMPLEX BETA
DIMENSION BETA(2,3)

BETA is an array containing six complex elements.

Example:

CHARACTER*8 XR
DIMENSION XR(0:4)

XR is an array containing five character elements, and
each element has a length of eight characters. A
reference to the third and fourth characters of the second
element would be XR(1)(3:4).

PARAMETER STATEMENT
The PARAMETER statement shown in figure 2-10 is used
to give a symbolic name to a constant.

If a symbolic name e integer, real, double
precision, complex, the corresponding
expression must be constant
expression If the
symbolic name is of type character or ogical, the

expression must be a
constant expression, I

Each symbolic name becomes
expression that appears to the right

of the equals, according to the rules for assignment. Any
symbolic constant that appears in an expression e must
have been previously defined in the same or a different
PARAMETER statement in the program unit.

A symbolic name of a constant can be defined only once in
a program unit, and can identify only the corresponding
constant. The type of a symbolic constant can be specified
by an IMPLICIT statement or type statement before the
first appearance of the symbolic constant in a
PARAMETER statement. If the length of a symbolic
character constant is not the default length of one, the
length must be specified in an IMPLICIT statement or type
statement before the first appearance of the symbolic
constant. The easiest way to do this is to explicitly type
the symbolic constant as character with length (*). The
actual length of the constant is determined by the length
of the string defining it in the PARAMETER statement.
The length must not be changed by another IMPLICIT
statement or by subsequent statements.

PARAMETER (p=e [,p=e] ... )
Once defined, a symbolic constant can appear in the
program unit in the following ways:

p

e

Is a symbolic name.

Is a constant constant ex
•
•

In an expression in any subsequent statement

In a DATA statement as an initial value or a repeat
count

Figure 2-10. PARAMETER Statement

A symbolic constant cannot appear in a format statement.

60481300 E 2-5



Examples:

PARAMETER (ITER= 20, START= 5)
CHARACTER CC*(*)
PARAMETER (CC= '(14, FI0.5)')

DATA COUNT /START/

DO 410 J= 1, ITER

READ CC, IX, RX

The symbolic constant START is used to assign an initial
value to variable COUNT, the symbolic constant ITER is
used to control the DO loop, and the symbolic constant CC
is used to specify a character constant format
speci fication.

COMMON STATEMENT
The COMMON statement shown in figure 2-11 provides a
means of associating entities in different program units.
The use of common blocks enables different program units
to define and reference the same data without using
arguments, and to share storage units. Within a program
unit, an entity in a common block is known by a specific
name. Within another program unit, the same data can be
known by a different symbolic name with the scope of that
program unit.

COMMON [/[cb] /] nlist [[,l![cb] /nlistl ...

cb Is a common block name identifying a
named common block containing the
entities in nlist. If the name is omitted,
the nlist entities are in blank common.

nlist Is a list of entities to be included in the
common block. The entities are separated
by commas and can take the form:

var

also be omitted. If a common block name is specified, the
common block is a nam ed common block. Within a program
unit, declarations of common blocks are cumulative. The
nlist following each successive appearance of the common
block name (or no name for blank common) adds more
entities to the common block and is treated as a
continuation of the specification. Variables and arrays are
stored in the order in which they appear in the
specification.

If any character variable or character array is included in a
common block, all entities in the common block must be
type characte~. Note that since a common block name has
the scope of the executable program, the common block
name can be used within a program unit as a variable or
array name, without conflict.

The maximum number of common blocks in an executable
program, including blank common and all named common,
is 500. The maximum size of each common block is
131071 storage words (for character data, 1310 710
characters). The use of ECS/LCM residence and LCM=G
for any common block increases the maximum possible size
to 1048568 storage words (for character data, 10485680
characters).

The actual size of any common block is the number of
storage words required for the entities in the common
block, plus any extensions associated with the common
block by EQUI VALENCE statements. Extensions can only
be made by adding storage words at the end of the common
block. See the description of the EQUI VALENCE
statement in this section. A blank common block can be
treated as haVing a different size in separate program
units. The length of a common block, other than blank
common, must not be increased a using the

b~(~~~~~'!i!~~~!'I,~!~i!~~f~'~I"~'!I,!!r~~~~!;~:i~ii!i* a prog ramt I I"'nrTlry\nn block,
variables can be inserted in the COMMON

to ensure proper correspondence of common

common blocks can be initially defined
"t~.h:"n-o,:>nt in a block data sUbprogram,;;;I.I!!I~"!!iil

Entities in blank
an entity in a

named common block has initially defined, the value
is available to any subprogram in which the named common
block appears.

array

var

array

d

array (d [,d] ...)

Is a variable.

Is an array name.

Specifies the bounds of an array dimension.

Figure 2-11. COMMON Statement

Entities in blank common remain defined at all times and
do not become undefined on execution of a return from a
subprogram. Entities in named common can become
undefined on execution of a return from a subprogram,
unless the SA VE statement is used. See the description of
the SA VE statement in this section.

Example:

COMMON A, B
COMMON Ix T/ c, 0, E

A single variable name or array name can appear only once
in any COMMON statement within the program unit.
Function or entry names cannot be included in common
blocks. In a subprogram, names of dummy arguments
cannot be included in common blocks.

If the common block name is omitted, the common block is
blank common. When the first specification in the
COMMON statement is for blank common, the slashes can

SUBROUTINE P(Q, R)
COMMON /XT/ F, G, H

FUNCTION T(U)
COMMON Y, Z

60481300 0



The entities C, D, and E in the main program are in the
common block named XT. The same storage words are
known by the names F, G, and H in stbroutine P. The
entities A and B in the main program are in blank
common. The same storage words are known by the names
V and Z in function T.

Eau IVALENCE (nlist) [,(nlist)]. ..

nlist Is a list of variable names, array names,
array element names, or character substring
names. The names are separated by commas.

Example:

COMMON JCOUNT
Figure 2-12. EQUI VALENCE Statement

JCOUNT= 6

FUNC lION AB(A)

If the equivalenced entities are of different data types,
equivalencing does not cause type conversion. If a variable
and an array are equivalenced, the variable does not
acquire array properties and the array does not lose the
properties of an array. An entity of type character can be
equivalenced only to another entity of type character. The
lengths of the equivalenced character entities can be
different.

Each nlist specification must contain at least two names of
entities to be equivalenced. In a subprogram, names of
dummy arguments cannot appear in the list. Function and
entry names cannot be included in the list. Equivalencing
specifies that all entities in the list share the same first
storage word. For character entities, equivalencing
specifies that all entities in the list share the same first
character storage position. Equivalencing can indirectly
cause the association of other entities, for instance when
an EQUIVALENCE statement interacts with a COMMON
statement.

I

Since an entity in blank common cannot be initially defined
with a DATA statement, an assigment statement must beIused to define the value of JCOUNT.

Note that JCOUNT is not common to function AB.

Example:

CHARACTER*15 D, E
COMMON /C VAL/ D, E
DATA D, E/'TEST', 'PROD'/

The common block named C VAL contains character
variables. The variables D and E are initially defined in a
DATA statement.

If an array element is included in nlist, the number of
subscript expressions must match the number of dimensions
declared for the array name. If an array name appears in
the list, the effect is as if the first element of the array
had been included Any stbscript expression
must be an integer constant expression. For
charact,~~.E:'l~~~~~~~, any expression must be an
integed'lllllliil constant expression.

Example: Example:

COMMON /SUMI A, B(20) DIMENSION V(4), B(J, 2)
EQUI VALENCE (V(l), B(3, 1»
EQUI VALENCE (X, V(2»

Storage is shared so that 6 storage words are needed for V,
B, and X. The associations are:

Storage is shared so that 5 character storage positions are
needed for A, C, and D. The associations are:

CHARACTER A*5, C*3, D(2)*2
EQUI VALENCE (A, D(l», (C, D(2»

SUBROUTINE GR
COMPLEX FR(10)
COMMON ISUM/ X, FR

The common block SUM in the main program is declared to
contain the variable A and the array B. In the stbroutine
GR, the same storage words are associated with X and the
array FR. Even if X is not used in the stbroutine, X holds
the place so that array FR matches the placement of
array B. Note also that array FR is complex. The
elements B(l) and B(2) are known in GR as FR(l); B(3) and
B(4) are FR(2); and so forth. Each speci fication of common
block SUM accounts for 21 storage words.

EQUIVALENCE STATEMENT
The EQUI VALENCE statement shown in figure 2-12 can be
used to specify the sharing of storage by two or more
entities in a program unit. Equivalencing causes
association of the entities that share the storage.
Equivalencing associates entities within a program unit,
and common blocks associate entities across program
lI1its. Equivalencing and common can interact.

V(l)
V(2)
V(3)
V(4)

Example:

A(l:l)
A(2:2)
A(3:3)
A(4:4)
A(5:5)

B(l, 1)
B(2, 1)
B(3, 1)
B(l, 2)
B(2, 2)
B(3, 2)

D(l)(l:l)
D(1)(2:2)
D(2)(1:1)
D(2)(2:2)

X

C(l:l)
C(2:2)
C(3:3)

60481300 E 2-7



can be used to extend the common block.

is not 1ega1.

TS(l)-real part
TS(l)-imaginary part
TS(2)-real part
TS(2)-imaginary part

TR(l)
TR(2)
TR(3)
TR(4)

REAL BZ(7), CZ(5)
EQUI VALENCE (BZ, CZ), (BZO), CZ(4»

would be illegal. Also, the normal storage sequence of
array elements cannot be interrupted to make consecutive
storage words no longer consecutive. For example:

COMMON /X/ A
REAL B(5)
EQUI VALENCE (A, B(l»

REAL FA(3)
EQUIVALENCE (FA(l), B), (FA(3), B)

Equivalencing must not reference array elements in such a
way that the storage sequence of the array would be
altered. The same storage unit cannot be specified as
occurring more than once in the storage sequence. For
example:

REAL TR(4)
COMPLEX TS(2)
EQUI VALENCE (TR, TS)

COMMON /X/ A
REAL B(5)
EQUI VALENCE (A, B(4»

COMMON /LT/ A. T
COMMON /LX/ 5; R
EQUI VALENCE (T, 5)

is not legal, whereas:

causes the following associations:

Variables of different data types can be equivalenced,
except for character data. The equivalencing associates
the first storage word of each entity. For example:

would also be illegal.

The interaction of COMMON and EQUI VALENCE
statements is restricted in two ways:

• An EQUI VALENCE statement must not cause a
common block to be extended by adding storage words
before the first storage word of the common block.
On the other hand, a common block can be extended
through equivalencing i'f storage words are added at
the end of the common block. For example:

• An EQUI VALENCE statement must not attempt the
association of two different common blocks in the
same program unit. For example:

2-8 60481300 0



SAVE STATEMENT
The SAVE statement shown in figure 2-14 is used to retain
the definition status of entities after the execution of a
RETURN or· END statement in a subprogram. A SA VE
statement in a main ro ram is a tional and has no effect.

SAVE [a[,a] ...]

a Is a variable name, array name, or common
block name enclosed in slashes. Redundant
appearances are not permitted.

Figure 2-14. SA VE Statement

Dummy argument names, procedure names, and names of
entities in a common block must not appear in the SA VE
statement. A common block name (or II indicating blank
common) has the effect of specifying all of the entities in
the common block. A SA VE statement with no list is
treated as though it contained the names of all allowable
items in the program unit. If a common block name is
specified in a SA VE statement in a subprogram, the
common block name must be specified by a SAVE
statement in every subprogram in which the common block
appears.

Execution of a RETURN statement or an END statement
within a subprogram causes the entities within the
subprogram to become undefined, except in the following
cases:

executed, that variable or array remains defined with the
same value at the next reference to the subprogram.

Within a subprogram, an entity in a common block can be
defined or undefined, depending on the definition status of
the associated storage. If a named common block is
specified in a SA VE statement in a subprogram and the
entities in the common block are defined, the common
block storage remains defined at the time a RETURN or
END statement is executed and is available to the next
program unit that specifies the named common block. The
common block storage can become undefined or redefined
in another program unit.

Example:

COMMON ICII G, H
SAVE ICII
CALL XYZ

SUBROUTINE XYZ
COMMON A, 0, F
COMMON ICII GVAL, HVAL
SAVE
DATA JCOUNT lSI
X=6.5

RETURN
END

The SAVE statement in subroutine XYZ has the effect of
saving the value of X as 6.5 for any later invocations of the
subroutine. Saving of certain other values does not depend
on the presence of the SAVE statement. The three
entities in blank common remain defined. The two entities
in common block Cl remain defined because common block
Cl appears in the referencing program unit. Finally, since
JCOUNT is initially defined and not redefined in the
subroutine, JCOUNT remains defined for any later
invocations of the subroutine.

EXTERNAL STATEMENT
The EXTERNAL statement shown in figure 2-15 is used to
identify a name as representing an external procedure and
to permit such a name to be used as an actual argument.

EXTERNAL proc[,proc] ...

proc Is the name of an external procedure,
dummy procedure, or block data subprogram.

• Entities specified by SA VE statements do not become
undefined. Figure 2-15. EXTERNAL Statement

• Entities in blank common do not become undefined.

• Entities that have been initially defined (and not
redefined) do not become undefined.

• Entities in a named common block that appears in the
subprogram and in the referencing program unit do not
become undefined.

If a local variable or array that is specified in a SA VE
statement and is not in a common block is defined in a
subprogram at the time a RETURN or END statement is

60481300 0

Only one appearance of a symbolic name in all of the
EXTERNAL statements of a program unit is permitted. If
an external procedure name is an actual argument in a
program unit, it must appear in an EXTERNAL statement
in the program unit. A statement function name must not
appear in an EXTERNAL statement.

If an intrinsic function name appears in an EXTERNAL
statement in a program unit, the name becomes the name
of some external procedure. The intrinsic function with
the same name cannot be referenced in the program unit.

2-9



Example:

SUBROUTINE ARGR
EXTERNAL SQRT

y= SQRT(X)

FUNCTION SQRT(XVAL)

The name SQR T is declared as external. The function
reference SQRT(X) is therefore taken to reference the
user-written function SQRT rather than the intrinsic
function SQRT.

Example:

SUBROUTINE CHECK
EXTERNAL LOW, HIGH

CALL AR (LOW, VAL)

CALL AR (HIGH, VAL)

.
SUBROUTINE AR(FUNC, VAL)
VAL= FUNC (VAL)

REAL FUNCTION LOW (X)

REAL FUNCTION HIGH (X)

The names LOW and HIGH are declared as external. In
one call to subroutine AR, LOW is passed as an actual
argument and the function reference FUNC(VAL) is
equivalent to LOW(VAL). In the second call to subroutine
AR, the function reference FUNC(VAL) is equivalent to
HIGH(VAL).

INTRINSIC STATEMENT

The INTRINSIC statement shown in figure 2-16 is used to
identify a name as representing an intrinsic function. The
INTRINSIC statement also enables use of an intrinsic
function name as an actual argument.

INTRINSIC fun [,funl ...

fun Is an intrinsic function name.

Figure 2-16. INTRINSIC Statement

2-10

Appearance of a name in an INTRINSIC statement
declares the name as an intrinsic function name. If an
intrinsic function name is used as an actual argument in a
program unit, it must appear in an INTRINSIC statement
in the program unit. The following intrinsic function
names must not be used as actual arguments:

• Type conversion functions lill!.iil: CHAR, CMPLX,
oBLE, FLOAT, ICHAR, lolNT, X, INT, REAL, and
SNGL

• Lexical relationship functions LGE, LGT, LLE, and
LLT

• Largest/smallest value functions AMAXO, AMAXl,
AMINO, AMINI, oMAXI, oMINI, MAX, MAXO,
MAXI, MIN, MINO, MINI

•
The appearance of a generic intrinsic function name in an
INTRINSIC statement does not remove the generic
properties of the name.

An intrinsic name can appear only once in all INTRINSIC
statements in a program unit. Note that a symbolic name
must not appear in both an EXTERNAL and an INTRINSIC
statement in the program unit.

Example:

SUBROUTINE DC
INTRINSIC SQRT

CALL SUBA (X,Y, SQRT)

SUBROUTINE SUBA (A, B, FNC)
B= FNC(A)

The name SQRT is declared intrinsic in subroutine DC and
passed as an argument to subroutine SUBA. Within SUBA,
the reference FNC(A)· references' the intrinisic function
SQRT.

Example:

SUBROUTINE CHECK
INTRINSIC SIN, COS

CALL AR(SIN, VAL)

CALL AR(COS, VAL)

SUBROUTINE AR(FUNC, VAL)
VAL= FUNC(VAL)

The names SIN and COS are declared as intrinsic and can
therefore be passed as actual arguments.· In the first call
to subroutine AR, the reference FUNC(VAL) is equivalent
to SIN(VAL); in the second call, FUNC(VAL) is equivalent
to COS(VAL). In each case, the intrinsic function is
referenced.

604813000



DATA STATEMENT
DATA nlist!clist! [[,] nlist!clist/] ...

The DATA statement shown in figure 2-17 is used to
provide initial values for variables, arrays, array
elements, and substrings. The DATA statement is
nonexecutable and can appear anywhere after the
specification statements in a program unit.

Entities that are initially defined by DATA statements are
defined when the program begins execution. Entities that
are not initially defined, and not associated with an
initially defined entity, are undefined at the beginning of
execution of the program.

nlist Is a list of names to be initially defined.
Each name in the list can take the form:

var

array

element

substring

dolist

A variable, array element, or substring must not be
initially defined more than once in the program. If two
entities are associated, only one can be initially defined
by a DATA statement.

Names of dummy arguments, functions, and entities in
blank common (inclUding any entities associated with an
entity in blank common) cannot be initially defined.
Entities in a named common block can be initiall defined
within a block data subprogram,

For each list nlist, the same number of items must be
specified in the corresponding list clist. A one-to-one
correspondence exists between the items specified by nlist
and the constants specified by clist. The first item of
nlist corresponds to the first constant of clist, the second
item to the second constant, and so forth. If an
unsubscripted array name appears as an item in nlist, a
constant in clist must be specified for each element of the
array. The values of the constants are assigned according
to the storage order of the array.

For arithmetic data types, the constant is converted to
the type of the associated nlist item if the types differ.
For all other types, the data type of each constant in clist
must be compatible with the data type of the nlist item.
The correspondence is shown in table 2-1.

TABLE 2-1. CORRESPONDENCE OF DATA TYPES
IN DATA STATEMENTS

var Is a variable name.

array Is an array name.

element Is an array element name (that is, sub­
scripted array name).

substring Is a substring of a character variable or
array element.

dolist Is an implied-DO list of the form:

(dlist, i = init, term Liner])

dlist Is a list of array element names and
implied-DO lists. Subscript expressions
must consist of integer constants and
active control variables from DO list.

Is an integer variable called the implied­
DO variable.

init Is an integer constant, symbolic constant,
or expression specifying the initial value, as
for DO loops.

term Is an integer constant, symbolic constant,
or expression specifying the terminal value,
as for DO loops.

incr Is an integer constant, symbolic constant,
or expression specifying the increment, as
for DO loops.

Data Type of
nlist Item

real, double
complex,

il,l~il'I,1111,1.;;

Logical

Character

60481300 B

Data Type of
Corresponding

clist Constant

Integer, real, double
precision, complex,
li\;II;llilll,ll~t The val ue
of'the nlist item is
the same as would
result from an assiqn­
ment statement of the
form nlist-item=clist­
constant.

Logical

Character

c1ist

c

Is a list of constants or symbolic con­
stants specifying the initial values. Each
item in the list can take the form:

c

r*c

Is a constant or symbolic constant.

Is a repeat count that is an unsigned non­
zero integer constant or the symbolic name
of such a constant. The repeat count can
repeat the value of a single constant,

Figure 2-17. DATA Statement

2-11



Each subscript expression used in an array element name
in nlist must be an integer constant expression, except
that implied-DO variables can be used if the array
element name is in dlist. Each substring expression used
for an item in nlist must be an integer constant expression.

The appearance of a name as an implied DO variable in a
DATA statement does not affect the value or definition
status of a variable with the same name in the program
unit. An implied DO variable has the scope of the implied
DO list.

Example 1:

REAL X(5, 5)
DATA ((X(J, I), 1= 1, J), J= 1, 5)/15*1.0/

PARAMETER (PI=3.14159)
REAL Y(5,5)
DATA ((Y(J+l,I),J=I+1,4),1=1,3)/6*PI!

Elements of array X are initially defined with the DATA
statement. Elements in the lower diagonal part of the
matrix are set to the value 1.0. The elements initialized
are:

(5,5)
(4,4)
(5,4)

(3,3)
(4,3)
(5,3)

(2,2)
(3,2)
(4,2)
(5,2)

(1,1)
(2,1)
(3,1)
(4,1)
(5,1)

Example 2:

Each subscript expression used in dlist must be an integer
constant expression, except that any expression can
contain an implied DO variable if the subscript expression
is within the corresponding implied DO list.INTEGER K(6)

DATA JR/4/
DATA AT/5.0/, AQ/7.5/
DATA NRX, SRX/17.0, 5.2/
DATA K/l, 2, 3, 3, 2, 1/

Example:

REAL R(10, 10)
DATA R/50*5.0, 50*75.0/

The array R is initially defined with the first 50 elements
set to the value 5.0 and the remaining 50 elements set to
the value 75.0.

The variables JR, AT, AQ, and SRX are initially defined
with the values 4, 5.0, 7.5, and 5.2, respectively. The
variable NRX is initially defined with the value 17, after
type conversion of the real 17.0 to the integer 17. The
array K with 6 elements is initially defined with a value
for each array element.

Examples:

Example:
CHARACTER DATA INITIALIZATION

DIMENSION TQ(2)
EQUIVALENCE (RX, TQ(2))
DATA TQ(l)/32.0/
DATA RX/47.5/

For initialization by DATA statement, a character item in
nlist must correspond to a character constant in clist.
The initial value is assigned according to the
following rules:

The first element of array TQ is initially defined with the
value 32.0. The variable RX and the second element of
array TQ are initially defined as 47.5, since TQ(2) is
equivalenced to variable RX.

• If the length of the character item in nlist is greater
than the length of the corresponding character
constant, the additional character positions in the
item are initially defined as blanks.

• If the length of the character item in nlist is less than
the length of the corresponding character constant,
the additional characters in the constant are ignored.

Note that initial definition of a character item causes
definition of all character positions. Each character
constant initially defines exactly one character variable,
array element, or substring.

IMPLIED DO LIST Examples:

An implied DO list can be used as an item in nlist. An
iteration count and the values of the implied DO variable
are established from init, term, and the optional incr just
as for DO loops, except that the iteration count must be
positive. When the implied DO list appears in a DATA
statement, the list items in dlist are specified once for
each iteration of the implied DO list, with appropriate
substitution of values for each occurrence of the implied
DO variable i.

CHARACTER STRI*6, STR2*3
DATA STRI/'ABCDE'/
DA TA STR2/' FGHJK'/

The character variables STRI and STR2 are initially
defined. Variable STRI is set to 'ABCDEA', with the sixth
character position defined as blank. Variable STR2 is set
to 'FGH " with the fourth and fifth characters of the
constant ignored.

60481300 B



EXPRESSIONS AND ASSIGNMENT STATEMENTS 3

This section describes the ways in which expressions are
written and evaluated. Expre~!~~~£~~{~~ arithmetic,
character, relational, 10gical,~lijll.;il,!i~lll, expres~ions.
Expressions are formed from a combination of operators,
operands, and parentheses. I

This section also describes assignment statements, which
are executable statements. The assignment statements in
a program use expressions to define or redefine the values
of variables.

EXPRESSIONS

Arithmetic, character, relational, and logical
expressions separately. The relational
expreSSiOns are not full y independent and are used as parts
of logical expressions.

An arithmetic expression can be an unsigned arithmetic
constant, symbolic name of an arithmetic constant,
arithmetic variable reference, arithmetic array element
reference, or arithmetic function reference. More
complicated ari thmetic expressions can be formed by
using one or more arithmeticlllll'i;'III,11111 operands
together with arithmetic operators' arid parentheses.
Arithmetic operands identify values of type integer, real,
double precision, or complex.

The arithmetic operators are shown in table 3-1. Each of
the operators **, /, and * operates on a pair of operands
and is written between the two operands. Each of the
operators + and - either operates on a pair of operands and
is written between the two operands, or operates on a
single operand and is written preceding that operand.

The syntax for an arithmetic expression is shown in
figure 3-1.

The interpretation of a division can depend on the data
types of the operands. A set of rules establishes the
interpretation of an arithmetic expression that contains
two or more operators. A precedence among the
arithmetic operators determines the order in which the
operands are to be combined:

A constant expression is an expression in which only
constants (or symbolic constants) and operators are used.
If an arithmetic expression is written using only constants
and operators, the is an arithmetic constant
expression. A character, or logical expression
that contains constants and operators is,
respectively, a character
constant

**
* and /
+ and -

Highest
Intermediate
Lowest

ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of unsigned
constants, symbolic constants, variables, array elements,
and function references separated by operators and
parentheses. For example:

{A-B)*F + C/D**E

is a valid arithmetic expression.

For example, in the expression:

- A ** 2

the exponentiating operator (**) has precedence over the
negation operator (-). The operands of the exponentiation
operator are combined to form an expression used as the
operand of the negation operator. The above expression is
the same as the expression:

- (A ** 2)

TABLE 3-1. ARITHMETIC OPERATORS

Operator Representing Use of Operator Meaning

** Exponentiation xl ** x2 Exponentiate xl to the power x2.

* Multiplication xl * x2 Multiply xl and x2.

/ Division xl / x2 Divide xl by x2.

+ Addition xl + x2 Add xl and x2.

+ Identity + x2 Same as x2.

- Subtraction xl - x2 Subtract x2 from xl.

- Negation - x2 Negate x2.

60481300 A 3-1



arithexp

arithexp Is an arithmetic expression in one of the
forms:

term
+ term
- term
arithexp + term
arithexp - term

Subexpressions containing operators of equal precedence
are evaluated from left to right. The compiler may
reorder individual operations that are mathematically
associative and/or commutative to perform optimizations
such as removal of repeated subexpressions. The
mathematical results of the reordering are correct but the
specific order of evaluation is indeterminate. For
example, the expression A/B*C is guaranteed to
algebraically equal (AC)/B, not A/(BC), but the specific
order of evaluation by the compiler is indeterminate.

term Is an arithmetic term in one of the forms:

expression
symbolic names

Note that variable,
function references are not allowed.

contains only
of arithmetic

fact

prim

fact
term * fact
term / fact

Is an arithmetic factor in one of the
forms:

prim
prim ** fact

Is an arithmetic primary. An arithmetic
primary can be an arithmetic expression
enclosed in parentheses, or any of the
following:

Note that variable, array
element, and function references are not allowed. The
following are examples of integer constant expressions:

3
-3

The data type of an arithmetic expression containing one
or more arithmetic operators is determined from the data
types of the operands. Integer expressions, real
expressions, double precision expressions, and complex
expressions· are arithmetic expressions whose values are of
type integer, real, double precision, and complex,
respectively. When the operator + or - operates on a
single operand, the data type of the resulting ex
the same as the data t e

Unsigned arithmetic constant
Arithmetic symbolic constant
Arithmetic variable
Arithmetic array element reference
Arithmetic function reference

Figure 3-1. Arithmetic Expression

Successive exponentiations are combined from right to
left. For example:

2**3**2

has the same interpretation as:

2**(3**2)

Two or more multiplication or division operators are
combined from left to right.

Two or more addition or subtraction operators are
combined from left to right. Note that arithmetic
expressions containing two consecutive arithmetic
operators, such as A**-B or A+-B are not permitted.
However, expressions such as A**(-B) and A+(-B) are
permitted.

3-2

operator operates on a pair of
••••••~~!il~~•••lli~I'~~operands, the data type of the resulting
expression is given in table 3-2 for exponentiation and
table 3-3 for the other operators. Four entries in
table 3-2 specify a value raised to a complex power. In
these cases, the value of the expression is the principal
value.

If two operands are of different type, the
operand that differs in type from the result of the
operation is converted to the type of the result. The
operator then operates on a pair of operands of the same
type. The exception to this is an operand of type real,
double precision, or complex raised to an integer power;
the integer operand is not converted. If the value of J is
negative, the interpretation of I**J is the same as the
interpretation of 1/0**ABS(J)), which is subject to the
rules for integer division. For example, 2**(-3) has the
value of 1/(2**3), which is zero.

60481300 B



TABLE 3-2. RESULTING DATA TYPE FOR Xl**X2

Type of xl Type of x2 xl Value Used x2 Value Used Resulting Data Type

Integer Integer xl x2 Integer

Integer Real REAL(xl} x2 Real

Integer Double precision DBLE(xl} x2 Double precision

Integer Complex CMPLX(REAL(xl},O.} x2 Complex

Real Integer xl x2 Real

Real Real xl x2 Real

Real Double precision OBLE(xl} x2 Double precision

Real Complex CMPLX(xl,O.} x2 Complex

Double precision Integer xl x2 Double precision

Double precision Real xl DBLE(x2} Double precision

Double precision Double precision xl x2 Double precision

Double precision Complex

Complex Integer xl x2 Complex

Complex Real xl CMPLX(x2,O.} Complex

Complex Double precision

Complex Complex xl x2 Complex

TABLE 3-3. RESULTING DATA TYPE FOR XI+X2, XI-X2, Xl*X2 OR XI!X2

Type of xl Type of x2 xl Value Used x2 Value Used Resulting Data Type

Integer Integer xl x2 Integer

Integer Real REAL(xl} x2 Real

Integer Double precision DBLE(xl} x2 Double precision

Integer Complex CMPLX(REAL(xl},O.} x2 Complex

Real Integer xl REAL(x2} Real

Real Real xl x2 Real

Real Double precision DBLE(xl) x2 Double precision

Real Complex CMPL X(xl, O. ) x2 Complex

Double precision Integer xl DBLE(x2} Double precision

Double precision Real xl DBLE(x2) Double precision

Double precision Double precision xl x2 Double precision

Double precision Complex

Complex Integer xl CMPLX(REAL(x2},O.} Complex

Complex Real xl CMPLX(x2,O.} Complex

Complex Double precision

Complex Complex xl x2 Complex

60481300 B 3-3



One operand of type integer .can be divided by another
operand of type integer to yield an integer result. The
result is the signed nonfractional part of the
mathematical quotient. For example, (-10)/4 is -2,
formed by discarding the fractional part of the
mathematical quotient -2.5.

charexp

charexp

charprim

Is a character expression in either form:

charprim
charexp / / charprim

Is a character primary. A character
primary can be a character expression
enclosed in parentheses, or any of the
following:

CHARACTER EXPRESSIONS

A character expression is used to express a character
string. Evaluation of a character expression produces a
result of type character. The simplest form of a
character expression is a character constant, symbolic
name of a character constant, character variable
reference, character array element reference, character
substring reference, or character function reference.
More ccmplicated character expressions can be formed by
using one or more character operands together with
character operators and parentheses. The character
operator is shown in table 3-4.

TABLE 3-4. CHARACTER OPERATOR

Operator Representing Use of MeaningOperator

II Concatenation xlllx2 Concatenate
xl and x2.

The result of a concatenation operation is a character
string concatenated on the right with another string and
whose length is the sum of the lengths of the strings. For
example, the value of 'AB' / / 'COE' is the string 'ABCOE'.

A character expression and the operands of a character
expression must identify values of type character. Except
in a character assignment statement, a character
expression must not involve concatenation of an operand
whose length specification is an asterisk in parentheses,
unless the operand is a symbolic constant.

The syntax for a character expression is shown in
figure 3-2.

Two or more concatenation operators are combined from
left to right to interpret the expression. For example, the
interpretation of the character expression:

'AB' // 'CD' II 'EF'

is the same as the interpretation of the character
expression:

('AB' / / 'CD') / / 'EF'

The value of the preceding expression is the same as that
of the constant 'ABCOEF'. Note that parentheses have no
effect on the value of a character expression. Thus, the
expression:

'AB'//('CO'//'EF')

has the same value as the preceding expressions.

3-4

Character constant
Character symbolic constant
Character variable
Character array element reference
Character substring reference
Character function reference

Figure 3-2. Character Expression

A character constant expression is a character expression
in which each operand is a character constant, the
symbolic name of a character constant, or a character
constant expression enclosed in parentheses. Note that
variable, array element, substring, and function
references are not allowed.

RELATlONAl EXPRESSIONS

Relational expressions can appear only within logical
expressions. Evaluation of a relational expression
produces a logical result with a true or false value.

A relational is used to compare the values of
two arithmetic expressions or two character
expressions. A expression cannot be used to
compare the value of an arithmetic expression with the
value of a character expression.

The relational operators are shown in table 3-5. The
syntax of a relational expression is shown in figure 3-3.

An operand of type complex is permitted only when the
relational operator is .EQ. or .NE.

An arithmetic relational expression has the logical value
true only if the values of the operands satisfy the relation
specified by the operator. If the two
expressions are of different types, ii:.~!i~i~•••••••••••••B!III!II'I.~.~li~lt!
the value of the relational expression:

Xl relop X2

is the value of the expression:

«Xl) - (X2)) relop 0

where 0 (zero) is of the same type as the expression. Note
that the comparison of a double precision value and a
complex value is not permitted.

A character relational expression has the logical value
true only if the values of the operands satisfy the relation
specified by the operator. The character expression Xl is
considered to be less than X2 if the value of Xl precedes
the value of X2 in the collating sequence; Xl is greater
than X2 if the value of Xl follows the value of X2 in the
collating sequence. Note thOat the collating sequence in
use determines the result of the comparison. The default
collating sequence is ASCII6 as shown in appendix A. Also
refer to Collation Control in appendix E.

60481300 B



TABLE 3-5. RELATIONAL OPERATORS

Operator Representing Use of Operator Meaning

.LT. Less than xl.LT.x2 Is xl less than x2?

.LE. Less than or equal to xl.LE.x2 Is xl less than or equal to x2?

.EQ. Equal to xl. EQ.x2 Is xl equal to x2?

.NE. Not equal to xl.NE.x2 Is xl not equal to x2?

.GT. Greater than xl.GT.x2 Is xl greater than x2?

.GE. Greater than or equal to xl.GE. x2 Is xl greater than or equal to x2?

relexp
The logical operators are shown in table 3-6. The syntax
of a logical expression is shown in figure 3-4.

A set of rules establishes the interpretation of a logical
expression that contains two or more logical operators. A
precedence among the logical operators determines the
order in which the operands are to be combined, unless the
order is changed by the use of parentheses. The
precedence of the logical operators is:

relexp

rop

arithexp

charexp

Is a relational expression used as a pri­
mary in a logical expression. A relational
expression is in one of the forms:

arithexp rop arithexp

Is one of· the relational operators:

.LT.

.LE.

.Eo.

.NE.

.GT.

.GE.

Is an arithmetic expression.

Is a character expression.

.NOT•
•AND.
.OR.
.EQV. or

logexp

logexp

logdis

Highest

Lowest

Is a logical expression in one of the
forms:

Is a logical disjunction in either form:

Figure 3-3. Relational Expression

logterm
logdis .OR. logterm

in PARAMETER
statements are

logterm Is a logical term in either form:

logfact
logterm .AND. logfact

If the operands are of unequal length, the shorter operand
~ extended on the right with blanks to the length of the
longer operand.

LOGICAL EXPRESSIONS

A logical expression is used to express a logical
computation. Evaluation of a logical expression produces
a result of type logical, with a value of true or false.

logfact

logprim

Is a logical factor in either form:

logprim
.NOT. logprim

Is a logical primary. A logical primary
can be a logical expression enclosed in
parentheses, a relational expression, or
any of the following:

The simplest form of a logical expression is a logical
constant, symbolic name of a logical constant, logical
variable reference, logical array element reference,
logical function reference, or relational expression. More
complicated logical expressions can be formed by using
one or more logical operands together with logical
operators and parentheses.

60481300 D

Logical constant
Logical symbolic constant
Logical variable
Logical array element reference
Logical function reference

Figure 3-4. Logical Expression

3-5



TABLE 3-6. LOGICAL OPERATORS

Operator Representing Use of Operator Meaning

.NOT. Logical negation •NOT. x Complement x

.AND. Logical conj unct ion xLAND.x2 Boolean product of xl and x2

.OR. Logical inclusive disjunction xLOR.x2 Boolean sum of xl and x2

.EQV. Logical equivalence xLEQV.x2 Is xl logically equivalent
to x2?

•NEQV. Logical nonequivalence xLNEQV.x2 Is xl not logically equiva-
lent to x2?

For example, in the expression:

A.OR.B.AND.C

the .AND. operator has higher precedence than the .OR.
operator; therefore, the interpretation is the same as:

A .OR. (B .AND. C)

In interpreting a logical expression containing two or more
.AND. operators; two or more .OR. operators; or two or
more .EQV., NEQV., !!I~:ii!!!~III'~ operators, the logical
quantities are combined from left to right.

The value of a logical factor involving any logical
operator is shown in table 3-7.

A logical constant expression contains only logical
constants, symbolic names of logical constants, relational
expressions which contain only constant expressions, or
logical constant expressions enclosed in parentheses.
Note that variable, array element, and function
references are not allowed.

GENERAL RULES FOR EXPRESSIONS

The order in which operands are combined using operators
is determined by:

1. Use of parentheses

2. Precedence of the operators

3. Right-to-Ieft interpretation of exponentiations

4. Left-to-right interpretation of multiplications and
divisions

5. Left-to-right interpretation of additions and
subtractions in an arithmetic expression

6. Left-to-right interpretation of concatenations in a
character expression

7. Left-to-right interpretation of .AND. operators

8. Left-to-rlght interpretation of .OR. and .NOT.
operators

9. Left-to-right interpretation of .EQV., and
operators in a logical expression 1~'II!lli~!I~••·

xl x2

•TRUE. .TRUE.
•TRUE. ~FALSE.
•FALSE. •TRUE.
•FALSE. .FALSE.

3-6

TABLE 3-7. RESULT OF LOGICAL OPERATORS

.NOT.x2 xl.AND.x2 xl.OR.x2 xl.EOV.x2 xLNEQV.x2

.FALSE. •TRUE • .TRUE • .TRUE • •FALSE.
•TRUE. •FALSE • .TRUE• •FALSE • .TRUE •
•FALSE. •FALSE. .TRUE • •FALSE. •TRUE.
•TRUE. •FALSE. •FALSE • .TRUE • .FALSE •

60481300 D



L .OR. A + B .GE. C

L .OR. «A + B) .GE. C)

A(I) =FCI)

Highest

Lowest

Arithmetic
Character
Relational
Logical

where A, B, and C are of type real, and L is of type
logical, contains an arithmetic operator, a relational
operator, and a logical operator. This expression would be
interpreted as:

An expression can contain more than one kind of
operator. For example, the logical expression:

Any variable, array element, function, or character
substring involved in an expression must be defined at the
time the reference is made. An integer operand must be
defined with an integer value rather than a statement
label value. Note that if a character string or substring is
referenced, all of the referenced character positions must
be defined at the time the reference is executed.

Y =G(X) + X

Any arithmetic operation whose result is not
mathematically defined is prohibited; for example,
dividing by zero and raising a zero-valued primary to a
zero-valued or negative-valued power.

Precedences have been established among the arithmetic
and logical operators. There is only one character
operator. No precedence is established among the
relational operators. The precedences among the
operators are:

are prohibited if the reference to F defines I, or the
reference to G defines X.

A function reference in a statement must not alter the
value of any other entity within the statement in which
the function reference appears. The execution of a
function reference in a statement must not alter the value
of any entity in common that affects the value of any
other function reference in that statement. However,
execution of a function reference in the expression of a
logical IF statement can affect entities in the statement
that is executed when the value of the expression is true.
If a function reference causes definition of an actual
argument of the function, that argument or any associated
entities must not appear elsewhere in the same
statement. For example, the stqtements:

604813000 3-7



e Is a character expression.

CHARACTER ASSIGNMENT STATEMENT

v = e

The result is then assigned to v, and v is defined or
redefined with that value.

INT (e)

REAL(e)

DBLE (e)

CMPLX (e)

Double precision

Real

Complex

Integer

v Is the name of a character variable, character array
element, or character substring.

The form of a character assignment statement is shown in
figure 3-7.

After evaulation of arithmetic expression e, the result is
converted to the type of v in the following way:

X .GT. Y .OR. L(Z)

Y =F(G(X»

where X, Y, and Z are real, and L is a logical function, the
function reference L(Z) need not be evaluated if X is
greater than Y. If a statement contains a function
reference in a part of an expression that need not be
evaluated, all entities that would have become defined in
the execution of that reference become undefined at the
completion of evaluation of the expression containing the
function reference. In the example above, evaluation of
the expression causes Z to become undefined if L defines
its argument.

All of the operands of an expression are not necessarily
evaluated if the value of the expression can be determined
otherwise. For example, in the logical expression:

If a statement contains more than one function reference,
the functions can be evaluated in any order, except for a
logical IF statement and a function argument list
containing function references. For example, the
statement:

where F and G are functions, requires G to be evaluated
before F is evaluated.

Figure 3-7. Character Assignment

Any expression contained in parentheses is always treated
as an entity. For example, in evaluating the expression
A*(B*C), the product of Band C is evaluated and then
multiplied by A; the mathematically equivalent expression
(A*B)*C is not used.

ASSIGNMENT STATEMENTS

The character expression e is evaluated, and the result is
then assigned to v. None of the character positions being
defined in v can be referenced in e.

The variable v and expression e can have different
lengths. If the length of v is greater than the length of e,
e is extended to the right with blank characters until it is
the same length as v. If the length of v is less than the
length of e, e is truncated from the right until it is the
same length as v.

There are five types of assignment statements:

Arithmetic

Logical

Only as much of the value of e must be defined as is
needed to define v. In the example:

CHARACTER A*2, B*4
A=B

Statement label (with the ASSIGN statement as
described in section 4)

Character

the assignment A=B requires that the substring B(1:2) be
defined. It does not require that the substring B(3:4) be
defined. If v is a substring, e is assigned only to the
substring. The definition status of substrings not specified
by v is unchanged.

LOGICAL ASSIGNMENT STATEMENT

ARITHMETIC ASSIGNMENT STATEMENT

The form of an arithmetic assignment statement is shown
in figure 3-6.

The form of a logical assignment statement is shown in
figure 3-8. The logical expression is evaluated and the
result is then assigned to v. Note that e must have a
value of either.TRUE. or .FALSE.

v = e v = e

v Is the name of a variable or array element of type
integer, real, double precision, or complex.

v Is the name of a logical variable or logical array
element.

e Is an arithmeticflllllllllill expression. e Is a logical expression.

Figure 3-6. Arithmetic Assignment Figure 3-8. LogIcal Assignment

3-8 60481300 A



60481300 B 3-9



j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j



FLOW CONTROL STATEMENTS 4

FORTRAN flow control statements provide· a means of
altering, interrupting, terminating, or otherwise modifying
the normal sequential flow of execution. The flow control
statements are as follows:

Unconditional GO TO
Computed GO TO
Assigned GO TO
Arithmetic IF
Logical IF
Block IF

ELSE IF
ELSE
END IF
DO
CONTINUE
STOP

PAUSE
END
CALL
RETURN

COMPUTED GO TO STATEMENT

The computed GO TO statement is shown in figure 4-3.
This statement transfers control to the statement
identified by one of the specified labels.

GO TO(sl Lsi] ... )[,]exp

s I Is the label of an executable statement that
appears in the same program unit as the
GO TO statement.

Control can be transferred only to an executable
statement.

exp Is an integer,l1l11lill)llli••expression.

A statement can be identified by a label consisting of an
integer in the range 1 through 99999, wi th leading zeros
and embedded blanks ignored. Each statement label must
be unique in the program unit (main program or
subprogram) in which it appears.

GO TO STATEMENT
The three types of GO TO statements are unconditional
GO TO, computed GO TO, and assigned GO TO. The
ASSIGN statement is used in conjunction with the assigned
GO TO and is therefore described in this subsection.

UNCONDITIONAL GO TO STATEMENT

The unconditional GO TO statement is shown in figure 4-1.

GO TO sl

sl Is the label of an executable statement.

Figure 4-1. Unconditional GO TO Statement

The unconditional GO TO statement transfers control to
the statement identified by the specified label. The
labeled statement must appear in the same program unit
as the GO TO statement. An example of an unconditional
GO TO statement is shown in figure 4-2.

Figure 4-3. Computed GO TO Statement

The label selected is determined by the value of the
expression. If exp has a value of one, control transfers to I
the statement identified by the first label in the list; if exp
has a value of i, control transfers to the statement
identified b the ith label in the list.

If the value of exp is less than one or greater than the
number of labels in the list, execution continues with the
statement following the computed GO TO.

Figure 4-4 illustrates some examples of computed GO TO
statements.

ASSIGN STATEMENT

The ASSIGN statement is shown in figure 4-5. This
statement assigns a statement label to an integer
variable. The value assigned to iv represents the label of
an executable or a FORMAT statement. The labeled
statement must appear in the same program unit as the
ASSIGN statement. Once iv is used in an ASSIGN
statement, it cannot be used in any statement other than
an assigned GO TO statement, an ASSIGN statement, or
an I/O statement, until it has been redefined.

The assignment must be made prior to execution of the
assigned GO TO statement or the input/output statement
that references assigned label sl.

ASSIGNED GO TO STATEMENT

The assigned GO TO statement transfers control to the
executable statement last assigned to iv by the execution
of a prior ASSIGN statement. The assigned GO TO
statement is shown in figure 4-7.

10 A=B+Z
100 B=X+Y

IF(A-B)20,20,30
20 Z=A

GO TO 10 ---- Transfers control to statement 10.
30 Z=B

STOP
END

Figure 4-2. Example of Unconditional GO TO Statement

Figure 4-6 illustrates some
statements.

examples of ASSIGN

60481300 E 4-1



Example 1:

GO TO(1'O,20,30,20)L

The next statement executed is:

10 if L = 1

20 if L = 2

30 if L = 3

20 if L = 4

Example 2:

K=2
GO TO(100,150,300),K

Example 1:

ASSIGN 10 TO LSWIT
GO TO LSWIT(5,10,15,20)

Control transfers to the statement labeled 10.

Example 2:

ASSIGN 24 TO IFMT
WRITE (2,IFMT)A,B

The variables A and B are formatted according to the
FORMAT statement labeled 24.

Figure 4-6. Examples of ASSIGN Statement

GO TO iv [[,](sl[,sl]. .. ))

I

Statement 150 is executed next. iv Is an integer variable.

Figure 4-7. Assigned GO TO Statement

sI Is the label of an executable statement that
appears in the same program unit as the
assigned GO TO statement.

Example 4:

M=4
GO TO(100,200,300),M
A=B+C

ASSIGN 50 TO JUMP
10 GO TO JUMP,(20,30,40,50)

20 CONTINUE

30 CAT=ZERO+HAT

40 CAT=10.1-3.

Statement 50 is executed
immediately after state­
ment 10.

Execution continues with the statement A=B+C,
since the value of M is greater than the number of
labels enclosed in the parentheses.

Figure 4-4. Examples of Computed GO TO Statements

ASSIGN sl TO iv

sl Is the label of an executable or FORMAT
statement.

iv Is an integer variable.

Figure 4-5. ASSIGN Statement

The variable iv must not be defined by any statement other
than an ASSIGN statement. The list of statement labels is

I optional. All labels in a statement label list must be in the
same program unit as both the ASSIGN and assigned GO TO
statements. Also, iv must be one of the labels in the list.
Figure 4-8 illustrates an example of an assigned GO TO
statement.

4-2

50 CAT=25.2+7.3

Figure 4-8. Example of Assigned GO TO Statement

IF STATEMENT
The IF statement evaluates an expression and
conditionally transfers control or executes another
statement, depending on the outcome of the test. The
kinds of IF statements are as follows:

Arithmetic IF
Logical IF
Block IF

The ELSE, ELSE IF, and END IF statements are also
discussed in this subsection since they are used in
conjunction with a block IF statement.

ARITHMETIC IF STATEMENT

The arithmetic IF statement is shown in figure 4-9.

60481300 E



IF (P.AND.Q) RES=7.2
50 TEMP=ANS*Z

exp Is an integer, real, double precision,
111111•• expression.

Are statement labels of executable
statements that appear in the same
program unit as the arithmetic IF
statement.

If P and Q are both true, the value of the variable RES
is replaced by 7.2; otherwise, the value of RES is
unchanged. In either case, statement 50 is executed.

Figure 4-9~ Arithmetic IF Statement

The arithmetic IF statement transfers control to the
statement labeled sll if the value of exp is less than zero,
to the statement labeled slZ if it is equal to or to
the statement labeled sl if it is greater than zero.

Figure 4-10 illustrates an example of an arithmetic IF
statement.

PROGRAM IF
READ (5,100) I,J,K,N

100 FORMAT (10X,414)
IF(I-N) 3,4,6

3 ISUM=J+K
6 CALL ERROR1

WRITE (6,2) ISUM
2 FORMAT (110)
4 STOP

END

Figure 4-10. Example of Arithmetic IF Statement

LOGICAL IF STATEMENT

The logical IF statement is shown in figure 4-11.

IF (exp) stat

exp Is a logical expression.

stat Is any executable statement except a DO, block
IF, ELSE, ELSE IF, END, END IF, or another
logical IF statement.

Figure 4-11. Logical IF Statement

The logical IF statement allows for conditional execution
of a statement. If the value of exp is true, statement stat
is executed. If the value of exp is false, stat is not
executed; execution continues with the next statement.
Figure 4-1Z illustrates some examples of logical IF
statements.

BLOCK IF STATEMENT

The block IF statement provides for condi tional execution
of a block of executable statements. The block IF
statement is used with the END IF and, optionally, the
ELSE and ELSE IF statements to form block IF
structures. The block IF statement is shown in
figure 4-13.

60481300 D

IF (A.LT.B) CALL SUB1
20 ZETA=TEMP+RES4

If A is less than B, the subroutine SUB1 is called. Upon
return from this subroutine, statement 20 is executed.
If A is greater than or equal to B, statement 20 is
executed and SUB1 is not called.

Figure 4-1Z. Examples of Logical IF Statements

IF (exp) THEN

exp Is a logical expression.

Figure 4-13. Block IF Statement

If the logical expression exp is true, execution continues
with the next executable statement. If exp is false,
control transfers to an ELSE or ELSE IF statement, or if
none are present, to an END IF statement.

ELSE STATEMENT

The ELSE statement provides an alternate path of
execution for a block IF statement or an ELSE IF
statement. The ELSE statement is shown in figure 4-14.

An ELSE statement can have a statement label; however,
the label cannot be referenced in any other statement.

ELSE

Figure 4-14. ELSE Statement

ELSE IF STATEMENT

The ELSE IF statement combines the functions of the
ELSE and block IF statements. This statement provides
an alternate path of execution for a block IF or another
ELSE IF statement and performs a conditional test. The
ELSE IF statement makes it possible to form a block IF
structure with more than one alternative. The ELSE IF
statement is shown in figure 4-15.

ELSE IF (exp) THEN

exp Is a logical expression.

Figure 4-15. ELSE IF Statement

4-3



An ELSE IF statement can have a statement label;
however, the label cannot be referenced by any other
statement.

The effect of executing an ELSE IF statement is the same
as for a block IF statement.

END IF STATEMENT

The END IF statement terminates a block IF structure.

I
For each block IF statement there must be a corresponding
END IF statement. A statement label for an END IF
statement cannot be referenced. The END IF statement is
shown in figure 4-16.

END IF

Figure 4-16. END IF Statement

BLOCK IF STRUCTURES

Block IF structures provide for alternative execution of
blocks of statements. A block IF structure begins wi th a
block IF statement, ends with an END IF statement and,
optionally, includes one ELSE or one or more ELSE IF
statements. Each block IF, ELSE, and ELSE IF statement
is followed by an associated block of executable
statements called an if-block.

The simplest form of a block IF structure is shown in
figure 4-17.

IF (exp) THEN

if-block

END IF

Figure 4-17. Simple Block IF Structure

If exp is true, execution continues with the first
statement in the if-block. If exp is false, control
transfers to the statement following the END IF
statement. The if-block can contain any number of
executable statements, including block IF statements.

ControJ can be transferred out of an if-block from inside
the if-block. However, control cannot be transferred into
an if-block from outside the if-block. It is not permissible
to branch directly to an ELSE, ELSE IF, or END IF
statement. However, it is permissible to branch directly
to a block IF statement.

When execution of the statements in an if-block has
completed, and if control has not been transferred outside
an if-block, execution continues with the statement
following END IF.

4-4

An example of a simple block IF structure is shown in
figure 4-18. In this and subsequent examples, indentation
is used to indicate levels of block IF structures.

IF (I.EO.O) THEN
X=X+DX
Y=Y+DY

END IF

If I is zero, the subsequent statements are executed.
If not, control transfers to the statement following
END IF.

Figure 4-18. Example of Block IF Statement

A block IF structure can contain one ELSE statement to
provide an alternative path of execution within the
structure. Figure 4-19 shows a block IF structure
containing an ELSE statement.

IF (exp) THEN

if-block-l

ELSE

if-block-2

END IF

Figure 4-19. Block IF Structure With ELSE Statement

In this structure, if exp is true, execution continues with
the first statement in if-black-I. If the last statement of
if-block-l does not transfer control, control transfers to
the statement following END IF.

If exp is false, control transfers to the first statement in
if-block-2. If the last statement in if-block-2 does not
transfer control, execution continues with the statement
following END IF.

A block IF statement can have at most one associated
ELSE statement.

An .example of an ELSE statement is illustrated in
figure 4-20.

READ (2,12) A,B
IF (XSUM.LT.XLlM) THEN

X(I)=A/2.0+B/2.0
XSUM=XSUM+X(I)
WRITE (3,14) X(I),XSUM

ELSE
Y(I)=A*B
YSUM=Y(I)
WRITE (3,16) YSUM,Y(I)

END IF

Figure 4-20. Example of Block IF Structure
Wi th ELSE Statement

60481300 E



An IF structure can contain one or more ELSE IF
statements to provide for alternative execution of
additional block IF statements. This capability allows the
user to form IF structures containing a number of possible
execution paths depending on the outcome of the
associated IF tests. The IF structure with ELSE IF
statements is shown in figure 4-21.

IF (exp1) THEN

if-block-l

ELSE IF (exp2) THEN

if-block-2

6

8

IF (N.EQ.1) THEN
CALL ASUB(X,R)
CALL BSUB(X,S)

ELSE IF (N.EQ.2) THEN
DO 6 1=1,100
X(I)=O.O

ELSE IF (N.EQ.3) THEN
GO TO 8

ELSE
END IF

CONTINUE

ELSE IF (exp3) THEN

if-block-3

END IF

Figure 4-21. Block IF Structure With ELSE IF Statements

In this structure, the initial block IF statement and each
ELSE IF or ELSE statement has an associated if-block.
Only one if-block in this structure is executed (if no
nested levels appear). Each logical expressi on is
evaluated until one is found that is true. Control then
transfers to the first statement of the associated
if-block. When execution of the if-block has completed,
and if control has not been transferred, control transfers
to the statement following END IF. If none of the logical
expressions are true and no ELSE statement appears, no
if-blocks are executed; control transfers to the statement
following END IF. In this structure, at most one if-block
is executed.

If an ELSE statement appears, it must follow the last
ELSE IF statement. If no logical expression is true,
control transfers to the statement following ELSE.

Control can transfer out of a block IF structure from
inside any if-block; however, control cannot transfer from
one if-block to another if they are at the same nesting
level.

An example of a block IF structure with ELSE IF
statements is illustrated in figure 4-22.

NESTED BLOCK IF STRUCTURES

Block IF structures can be nested, that is, any if-block
within a structure can itself contain block IF structures.
Within a nesting hierarchy, control can transfer from a
lower level structure into a higher level structure;
however, control cannot transfer from a higher level
structure into a lower level structure. Nested block IF
structures are illustrated in figure 4-23. Figure 4-24
shows an additional example of a nested block IF structure.

604813000

Since no executable statements appear between ELSE
and END IF, ELSE has no effect.

Figure 4-22. Example of Block IF Structure
With ELSE IF Statements

IF (exp) THEN

if-block-1

IF (exp) THEN

if-block-2

END IF

ELSE

if-block-l

END IF

Figure 4-23. Nested Block IF Structure

IF (X.GT.Y) THEN
5 Y=Y+YINCR

IF (K.EQ.J) THEN
XT=X
YT=Y

ELSE
K=K+1
GO TO 5

END IF
ELSE

X=X+XINCR
END IF

Each level contains a block IF and an ELSE statement.
The inner structure is executed only if X is greater than
Y. The inner structure contains a legal branch to the
outer structure.

Figure 4-24. Example of Nested Block IF Structure

DO SlAlEMENl
The DO statement is used to specify a loop, called a DO
loop, that repeats a group of statements. The DO
statement is shown in figure 4-25.

4-5



s I Is the label of an executable statement called
the terminal statement of the DO loop.

4. If the iteration count is not zero, the range of the DO
loop is executed. If the iteration count is zero,
execution continues with the statement following the
terminal statement of the 00 loop; the control
variable retains its most recent value.

v Is an integer, real, or double precision
control variable.

5. Control variable v is incremented by the value of e3.

6. The iterati on count is decrem ented by one.

Is an initial parameter.

Is a terminal parameter.

Steps 4 through 6 are repeated until the iteration count
attains a value of zero.

Is an optional increment parameter;
default is ,.

e" e2' and e3 are called indexin~~~~~:~~~~~; they can
be integer, real, double precisiQn,!;i!!lI!illlllti, constants,
symbolic constants, variables, or expressions.

Figure 4-25. DO Statement

If the DO=LONG control statement parameter is selected,
the trip count for DO loops can exceed 217_1. If
DO=LONG is not selected, the trip count must not exceed
217-1, and the following conditions must be satisfied:

/ml+ m31<217 -1

1m2 + m3/ < 217 - 1

The terminal statement of a DO loop is an executable
statement that must physically follow and reside in the
same program unit as its associated DO statement. The
terminal statement must not be an unconditional GO TO,
assigned GO TO, arithmetic IF, block IF, ELSE IF, ELSE,
END IF, RETURN, STOP, END, or DO statement. If the
terminal statement is a logical IF statement, it can contain
any statement except a DO, block IF, ELSE IF, ELSE, END
IF, END, or another logical IF.

If a DO loop appears within an if-block, the range of the
DO loop must be entirely contained within the if-block. If
a block IF statement appears within the range of a DO
loop, the corresponding END IF statement must also appear
within the range of that DO loop.

ACTIVE AND INACTIVE DO LOOPS

DO LOOPS

Initially, a DO loop is inactive. A DO loop becomes active
only when its DO statement is executed.

The range of a DO loop consists of all the executable
statements following the DO statement up to and including
the terminal statement. Execution of a DO statement
causes the following sequence of operations:

1. The expressions elJ e2, and e3 are evaluated
and, if necessary, converted to the type of the control
variable v.

2. Control variable v is assigned the value of el.

3. The iteration count is established; this value is
determined by the following expression:

Once acti ve, a loop becomes inactive when any of the
following occur:

Its iteration count is determined to be zero.

A RETURN, STOP, or END statement is executed
within the program unit containing the loop.

The control variable becomes undefined or is redefined
(by a process other than loop incrementation).

It is in the range of another loop that becomes
inactive.

It is in the range of another loop whose DO statement
is executed.

mtc

If a DO loop executes zero times, the control variable
value equals mI' Otherwise, the value is the most
recent value of the control variable plus the increment
parameter value.

is the minimum trip count; mtc has a value of
0,

are the values of the expressions el, e2,
and e3, respectively, after conversion to
the type of v.

4-6 60481300 D



I

If a DO loop becomes inactive but has not executed to
completion (iteration count does not equal zero), its
control variable retains its most recent value unless it has
become undefined.

Transfer into the range of an inactive DO loop from
outside the range is not permitted.

Figure 4-26 illustrates some examples of DO loops.

Example 1:

DO 10 1=1,11,3
IF(ALlST(I)-ALlST(I+l) )15,10,10

15 ITEMP=ALlST(I)'
10 ALlST(I)=ALlST(I+l)

300 WRITE(6,200)ALlST

The statements following DO up to and including
statement 10 are executed four times. The DO
loop is executed with I equal to 1, 4, 7, and 10.
Statement 300 is then executed. After completion
of the loop, I has a value of 13.

Example 2:

DO 10 1=5,1,-1
PRINT 100, 8(1)

10 IF (X .GT. 8(1) .AND. X .LT. H) Z=EQUATE
6 A=ZERO+EXTRA

This example illustrates the use of a negative
increment parameter. Statement 10 is executed
five times, whether or not Z = EQUATE is executed.
Statement 6 is executed only after the DO loop
is satisfied.

Example 3:

IVAR = 9

DO 20 I = 1,200
IF (I .GE. IVAR) GO TO 10

20 CONTINUE
10 IN =11

An exit from the range of the DO is made to
statement 10 when the value of the control variable
I is equal to IVAR. The value of the integer variable
IN becomes 11.

Example 4:

K=3
J=5
DO 100 I=J,K
RACK=2.-3.5+ANT(I )

100 CONTINUE

Figure 4-26. DO Loop Examples

604813000

NESTED DO LOOPS

When a DO loop entirely contains another DO loop, the
grouping is called a DO nest. The range of a DO statement
can include other DO statements providing the range of
each inner DO is entirely within the range of the
containing DO statements.

The last statement of an inner DO loop must be either the
same as the last statement of the outer DO loop or must
occur before it.

and the label can be referenced in any GO TO or IF
statement in the nest. Figure 4-27 illustrates some
possible DO loop nests. Note that loops can be completely
nested or can share a terminal statement.

A transfer from the range of an outer DO into the range of
an inner DO loop is not allowed; however, a transfer out of
the range of an inner DO into the range of an outer DO is
allowed because such a transfer is within the range of the
outer DO loop. Subprograms can be called from within a
DO loop. A transfer back into the range of an innermost
DO loop is allowed if a transfer has been made from the
same loop and is still active. Legal and illegal transfers
are illustrated in figure 4-28.

Figure 4-29 illustrates some examples of nested DO loops.

A terminal statement that is shared by more than one DO
loop can be referenced in a GO TO or IF statement in the
range of any of the loops, provided the referencing loop is
active, as illustrated in figure 4-30. If the terminal
statement is referenced in an inactive loop, results are
undefined.

When an IF or GO TO statement is used to bypass several
inner loops, different terminal statements are required for
each loop. Figure 4-31 illustrates nested DO loops with
different terminal statements.

CONTINUE STATEMENT

The CONTINUE statement is shown in figure 4-32.

The CONTINUE statement performs no operation. It is an
executable statement that can be placed anywhere in the
executable statement portion of a source program without
affecting the sequence of execution. The CONTINUE
statement is most frequently used as the last statement of
a DO loop. It can provide loop termination when a GO TO
or IF would normally be the last statement of the loop_ If
the CONTINUE statement does not have a label, an
informative diagnostic is issued. Figure 4-33 shows an
example using a CONTINUE statement.

4-7



DO 1 1=1,10,2

DO 2 J=1,5

[

DO 3 K=2,8

3 ~NTINUE

-2 CONTINUE

r- DO 4 L=1,3

L- 4 CONTINUE

'----- 1 CONTINUE

DO 100 L=2,L1MIT

r-- DO 10 J=1,10

L lO ~ONTINUE

r-- DO 20 K=K1,K2

L 20 ~ONTINUE

'----- 100 CONTINUE

Figure 4-27. Nested DO Loops

E
D051=1,5
DO 5 J=I,10
DO 5 K=J,15

5 ~ = B*C

Figure 4-28. Nested DO Loop Transfers

Example 1:

N=O
DO 100 1=1,10
J=I
DO 100 K=1,5
L=K

100 N=N+1
101 CONTINUE

After execution of these DO loops and at the execution
of the CONTINUE statement, 1=11, J=10, K=6, L=5,
and N=50.

Figure 4-29. Nested DO Loop Examples (Sheet 1 of 2)

Example 2:

N=O
DO 200 1=1,10
J=I
DO 200 K=5,1
L=K

200 N=N+1
201 CONTINUE

If DO=OT is not specified on the FTN5 control statement
the in r 100 will not be executed.

Example 3:

DIMENSION A(5,4,4), B(4,4)
DO 2 1= 1,4
DO 2 J = 1,4
DO 1 K = 1,5

1 AtK,J,1) = 0.0
2 B(J,I) = 0.0

This example sets arrays A and B to zero.

Figure 4-29. Nested DO Loop Examples (Sheet 2 of 2)

604813000



DO 10 J=1,50
DO 10 1=1,50
DO 10 M=1,100

GO TO 10

10 CONTINUE

Figure 4-30. Branch to Shared Terminal Statement

DO 10 K=1,100
IF(DATA(K).NE.10) GO TO 10 t

20 DO 30 L=1,20
IF(DATA(L).NE.FACT*K-10.) GO TO 30 t

40 DO 50 J=1,5

GO TO (101,102,50),INDEX
101 TEST=TEST+1

GO TO 104
103 TEST=TEST-1

DATA(K)=DATA(K)*2.0

50 CONTINUE
30 CONTINUE
10 CONTINUE

GO TO 104
102 00109 M=1,3

109 CONTINUE

104 CONTINUE

tTransfer bypasses inner loops.

Figure 4-31. Nested DO Loops With Different
Terminal Statements

CONTINUE

Example:

DO 10 I = 1,11
IF(A(I).GE.A(I+1)) GO TO 10

A (I) = A (1+1)
10 CONTINUE

Figure 4-33. CONTINUE Statement Examples

PAUSE STATEMENT
The PAUSE statement is shown in figure 4-34. \Nhen a
PAUSE statement is encountered during execution, the
program halts and PAUSE n appears as a dayfile message
on the operator conrole. If the job is executing
interactively, PAUSE n appears as a dayfile message at the
user terminal (does not apply to SCOPE 2). For batch
originated programs, the console operator can continue or
terminate the program with an entry from the conrole.

For programs executing interactively through INTERCOM
under NOS/BE and SCOPE 2, the user types GO to continue
execution or DROP to terminate. For any other type-in, a
di agnostic message is issued and INTERCOM waits for a
correct type-in.

For programs executing interactively through IAF under
NOS, the user types the user break 2 sequence to
terminate program execution. Any other type-in causes
execution to continue.

For programs executing interactively through the NOS
Time-Sharing System, the user types STOP to terminate
execution. Any other type-in causes execution to continue.

Examples:

PAUSE 45321

PAUSE 'EXAMPLE lWO'

PAUSE[n]

n Is a string of 1 thir~oluflflh!1115ildleclii~millaillldtiilitISIIairIIacharacter constant full

Figure 4-32. CONTINUE Statement Figure 4-34. PAUSE Statement

60481300 0 4-9



STOP STATEMENT
The STOP statement is shown in figure 4-35.

STOP[n]

n

Figure 4-35. STOP Statement

A STOP statement terminates program execution. When a
STOP statement is encountered during execution, STOP n
is displayed in the dayfile (or at the terminal if executing
interactively), the program terminates, and control
returns to the operating system. If n is omitted, blanks
are implied. A program unit can contain more than one
STOP statement.

Example:

STOP 'PROGRAM HAS ENDED'

END STATEMENT

The END statement is shown in figure 4-36.

END

Figure 4-36. END Statement

4-10

The END statement indicates the end of the program unit
to the compiler. Every program unit must physically
terminate with an END statement. The END statement
can be labeled. If control flows into or branches to an
END· statement in a main program, execution terminates.
If control flows into or branches to an END statement in a
function or subroutine, it is treated as if a RETURN
statement had preceded the END statement.

An END statement cannot be continued; it must be
completely contained on an initial line. A line following
an END statement is considered to be the first line of the
next program unit, even if it has a continuation character
in column 6.

RETURN STATEMENT

The RETURN statement is described in section 6,
Program Units and Procedures.

CALL STATEMENT

The CALL statement is described in section 6, Program
Units and Procedures.

604813000



INPUT/OUTPUT 5

Processing that results from input/output statements
depends on the type of statement used. For each
category, there are one or more input statements and
corresponding output statements. The categories are:

List directed (READ, WRITE, PRINT,
with an * replacing the format specifier)

on the
created

OPEN statements
maximum record length

!.~i·II:I,.;·illll'illlilllll~il!illi~.~.III.In the absence of user specifi catlOn,
are provided.

Sequential files need not be declared on i!lllil.llliltl~lllllliil!IJJI;

"ill.ll.il;;llf:~~;~ If a file is not;'1 OPEN statement, a buffer is
on the first reference to th

formatwithoutWRITEand(READ

Formatted (READ, WRITE, PRINT
statements with format specifier)

Unformatted
specifier)

In addition, there are file status statements OPEN,
INQUIRE, and CL

and the ile
POSl lOnmg , CKSPACE, and
ENDFILE, all discussed in this section. Format
specifications, input/output lists, and internal files which
provide for memory-to-memory transfer of data, are also
discussed in this section.

FILE USAGE
Input and output involve reading records from files and
writing records to files. Every file must have a logical
file name of one to seven letters and digits beginning with
a letter. The logical file name is defined only for the
current job, and is the name by which the file is referred
to in control statements.

A file should not be proces~~gt2Q~b. by unformatted
operations and by formatted,;!il'~.~~!~~~ or list directed
operations without an intervening rewind. If rewound, it
can then be rewritten in a different mode.

For every formatted, list directed, namelist, or
unformatted READ, end-of-file status can be checked by
use of the END= or lOSTAT= parameter in the READ
statement. If end-of-file is encountered and a test is not
included, the program terminates with a fatal error.

Record length on card files should not exceed 80
characters. Record length on print files should not exceed
137 characters; the first character is always used as
carriage control and is not printed. The second character
appears in the first print position. Carriage control
characters are listed in this section under Format
Processing.

The following keyword=value forms are used in
input/output statements.

he u can be one 0

An asterisk implying unit INPUT in a
READ statement and unit OUTPUT in a
WRITE statement.

Specifies the FORTRAN unit or internal file
to be used.

UNIT= u

60481300 D 5-1



the unit name
name has been

The name of a character variable, array,
array element, or slbstring identifying
an internal file.

The characters UNIT= can be omitted, in
which case u must be the first item in
the control information list.

of error condition
(see appendix B,

Number
detected
table B-4).

>0

>1000 CRM error; the rightmost 3
digits correspond to an octal
error code In the CYBER
Record Manager reference
manual. For example, error
number 1355 corresponds to
CRM error number 355.

Input/output list specifying items to be trans­
mitted (described under Input/Output Lists).

Specifies the label of an executable
statement to which control transfers if an
error condition is encountered during
input/output processing.

=0 Operation completed normally

<0 End-of-file

iolist

FORMATTED INPUTjOUTPUT

ERR=sl

lOSTAT=ios Specifies an integer variable into which one
of the following values is placed after the
input/output operation is complete:

havingAn integer l'IIIII~lllllle:xpI'ession
the following t"'h'~l"~~t"'t~l"iiQti

FMT=fn

statement.

Specifies a format to be used for formatted
input/output; fn can be one of the following:

A statement label identifying a
FORMAT statement in the program unit
containing the input/output statement.

For formatted input/output, a format specifier must be
present in the input/output statement. The input/output
list is optional. Each formatted input/output statement
transfers one or more records. The fO~~~~"~'~'~'i.!~.e.~t/output
statements are READ, WRITE, PRINT,,~.;;i·I.ll:lt

The name of a character array, variable,
expression or array element containing
the format specification.

An integer variable that has been
assigned the statement number of a
FORMAT statement by an ASSIGN
statement.

An asterisk, indicating list directed I/O.

INPUT/ OUTPUT LISTS

The list portion of an input/output statement specifies the
items to be read or written and the order of transmission.
The input/output list can contain any number of items.
List items are read or written sequentially from left to
right.

If no list appears on input, one or more records are
skipped. Only information completely contained within the
FORMAT statement, such as character strings, can be
output with a null (empty) output list.

REC=rn

END:sl

The characters FMT= can be omitted, in
which case the format designator must
be the second item in the control
information list, and the first item must
be the unit specifier without the
characters UNIT=.

Specifies the number of the record to be read
or written in the file; must be a positive
nonzero integer. Valid for files opened for
direct access only.

Specifies the label of an executable statement
to which control transfers when an end-of-file
is encountered during an input operation.

A list item consists of a variable name, an array name, an
array element name, a character substring name, or an
implied D~"'\~'~'~i:t:.~:~ output the list items can also include
character,I~!;;I;~~i!i!, logical, or arithmetic expressions. No
expression in an input/output list can reference a function
if such reference would cause any input/output operations
to be executed or would cause the value of any element of
the input/output statement to be changed. List items are
separated by commas.

An array name without subscripts in an input/output list
specifies the entire array in the order in which it is stored.
The entire array (not just the first word of the array) is
read or written. Assumed-size array names are illegal in
input/output lists.

Subscripts in an input/output list can be any valid subscript
(section 1).

5-2 60481300 D



Example of input/output lists:

READ (2,100) A,B,C,D
READ (3,200) A,B,C(I),D(3,4),E(I,J,7),H
READ (4,101) J,A(J),I,BCI,J)
WRITE (2,202) DELTA
WRITE (4,102) DELTA(5*J+2,5*1-3,5*K),C,DCI+7)

On formatted input or output, the I/O list is scanned and
each item in the list is paired with the field specification
provided by the FORMAT statement. After one item has
been input or output, the next format specification is taken
together with the next element of the list, and so on until
the end of the list.

Example:

READ (5,20) L,M,N
20 FORMAT (13,12,17)

Inpu t record:

100223456712

100 is read into the variable L under the specification 13.
22 is read into M under the specification IZ, and 345671Z is
read into N under specification 17.

IMPLIED DO LOOP IN 1/0 LIST

An implied DO specification has the following form:

The elements i, eheZ' and e3 have the same
meaning as in the 00 statement, and dlist is an
input/output list. The range of an implied DO specification
is that of dlist. The value of i must not be changed within
the range of the implied DO list by a READ statement.
Changes to the values of eh e2, and e3 have no
effect 4Jon the execution of the implied DO. However,
their values can be changed in a READ statement if they
are outside the range of the implied DO, and the change
does have effect. For example:

READ 100, K, (A(I),I=l,K)

reads a value into K and uses that value as the terminal
parameter of the impli ed DO.

The statements:

K=2
READ 100, (A(I),I=l,K)

100 FORMAT (FlO.3)

read two records, each containing a value for A.

An implied DO loop can be used to transmit a simple
variable more than one time. For example, the list
(A(K),B,K=1,5) causes the variable B to be transmitted five
times.

Input/output of array elements can be accomplished by
using an implied DO loop. The list of variables followed by
the DO loop index is enclosed in parentheses to form a
single element of the input/output list.

60481300 0

Example:

READ (5,100) (A(I),1=1,3)

has the same effect as the statement:

READ (5,100) A(1),A(2),A(3)

Example:

WRITE (3,20) (CAT,DOG,RAT,1=1,10)

CAT, DOG, and RAT are written 10 times each.

A variable cannot be used as a control variable more than
once in the same impli ed DO nest, but iolist items can
appear more than once. The value of a control variable
within an implied DO specification is defined within that
specification. On exit from the implied DO specification
the control variable retains the first value to exceed the
upper limit (e2).

Implied DO loops cali be nested, that is, the iolist in an
implied DO can itself contain implied DO loops. The first
(innermost) control variable varies most rapidly, and the
last (outermost) control variable varies least rapidly. For
example, a nested implied DO with two levels has the form:

Nested implied DO loops are executed in the same manner
as nested DO statements.

The nested form can be used to read into and write from
arrays.

Example:

READ (2,100) «A(J V,JX),J V=2,20,2),JX=1,30)
READ (2,300) «(ITMLIST(I,J+l,K-2),1=1,25),J=2,N),

*K=I VAR,I VMAX,4)

Example:

DIMENSION VECTOR(3,4,7)
READ (3,100) VECTOR

100 FORMAT (16)

is equivalent to the following:

DIMENSION VECTOR(3,4,7)
READ (3,100) «( VECTOR(I,J,K),I=1,3),J=1,4),K=1,7)

5-3



The following statement transmits nine elements into the
array E in the order: E(l,l), E(1,2), E(1,3), E(2,1), E(2,2),
E(2,3), E(3,1), E(3,2), EO,3):

READ (1,100) «E(I,J),J=1,3),1=1,3)

Each execution of an input or output statement transmits
at least one record regardless of the FORMAT statement.
Once a READ is initiated, the FORMAT statement
determines when a new record will be transmitted. For
example:

READ (5,100) (VECTOR (1),1=1,10)
100 FORMAT (F7.2)

reads data (consisting of one constant per record) into the
first 10 elements of the array VECTOR. The following
statements have the same effect:

DO 40 I = 1,10
40 READ (5,100) VECTOR (I)

100 FORMAT (F7.2)

In this example, numbers are read, one from each record,
into the elements VECTOR(l) through VECTOR(10) of the
array VECTOR. The READ statement is encountered each
time the DO loop is executed; and a new record is read for
each element of the array.

If statement 100 FORMAT (F7.2) had been 100 FORMAT
(4F7.2), only three records would be read by the first
example; the second example would still read ten records.
Both examples would read ten values.

FORMATTED READ

The formatted READ statement is shown in figure 5-1.

READ ([UNIT=] u,[FMT=] fn [,IOSTAT=ios]
[,ERR=sl] [,END=sl] ) [iolist)

READ fn [,iolist)

Figure 5-1. Formatted READ Statement

These statements transmit data from unit u, or the unit
INPUT (the second form of read), to storage locations
named in ioUst according to FORMAT specification fn.
The number of items in the list and the FORMAT
speci fications must conform to the record structure on the
input unit. If the list is omitted, one or more input records
will be bypassed. The number of records bypassed is one
plus the number of slashes interpreted in the FORMAT
statement.

The user should specify the END= or lOSTAT= parameter
to avoid termination when an end-of-file is encountered. If
an attempt is made to read on unit u and an end-of-file was
encountered on the previous read operation on this unit,
execution terminates and an error message is printed.
Records following an end-of-file can be read by issuing a
CLOSE followed by an OPEN on the file or by using the
EOF function (section 7). CLOSE/OPEN, described later in
this section, is the preferred method.

5-4

Examples of formatted READ statements are shown in
figure 5-2.

Example 1:

PROGRAM IN
OPEN (4, FILE='INPUT')
OPEN (7, FILE='OUTPUT')
READ (4,200)A,B,C

200 FORMAT (3F7.3)
A=B*C+A
WRITE (7,50) A

50 FORMAT (50X,F7.4)
STOP
END

The READ statement transfers data from logical unit 4
(externally, the file INPUT) to the variables A, B, and C,
according to. the specifications in the FORMAT statement
labeled 200.

Example 2:

PROGRAM RUST
READ 5,X,V,Z

5 FORMAT (3G20.2)
RESULT = X-V+Z
PRINT 100, RESULT

100 FORMAT (10X,Gl0.2)
STOP
END

The READ statement transfers data from file INPUT
to the variables X, V, and Z, according to the specifica­
tions in the FORMAT statement labeled 5. Result is
printed on file OUTPUT.

Example 3:

PR GRA READ ~1,1111111'111111~11111,1~~lilllll~

READ (2,100,ERR=16,END=18) A,B
100 FORMAT (2Fl0.4)

C=A+B
PR INT * ,A,B,C
STOP

16 PRINT 101
101 FORMAT ('ld/O ERROR')

STOP
18 PRINT 102

102 FORMAT ('L1END OF FILE')
STOP
END

Variables are read according to the FORMAT statement
labeled 100. If an error occurs during the read, control
transfers to statement 16; if an end-of-file is en­
countered, control transfers to statement 18.

Example 4:

In example 3, the READ and FORMAT statements can
be combined as follows:

READ (2,'(2Fl0.4)',ERR=16,END=18)A,B

Figure 5-2. READ Statement Examples

60481300 0



I

FORMATTED WRITE

The formatted WRITE statement is shown in figure 5-3.

WRITE ([UNIT=] u,[FMT=] fn[,IOSTAT=ios]
[,ERR=sl] )[iolist]

Figure 5-3. Formatted WRITE Statement

The formatted WRITE statement transfers information
from the storage locations named in the input/output list
to the unit specified by u, according to the FORMAT
specification, fn.

Examples:

WRITE (4,50)
50 FORMAT ('THE IOUST CAN BE OMITTED')

WRITE (*,FMT=12) L,M,S(3)
12 FORMAT (3E16.5)

In the following example, the format specification appears
in the WRITE statement:

WRITE (2,'(2E16.5)' ,ERR=12) X,Y

Figure 5-4 shows a program segment containing a WRITE
statement.

PROGRAM RITE
X=2.1
Y=3.
M=7
WRITE (6,100,ERR =200) X,Y,M

100 FORMAT (2F6.2,14)
200 STOP

END

Figure 5-4. WRITE Statement Example

FORMATTED PRINT

The PRINT statement is shown in figure 5-5.

PRINT fn [,iolist]

Figure 5-5. PRINT Statement

FORMAT SPECIFICATION

Format specifications are used in c,onjunction with
formatted input/output statements to produce output or
read input that consists of strings of display code
characters. On input, data is converted from a specified
format to its internal binary representation. On output,
data is converted from its internal binary representation to
the specified format before it is transmitted. Formats can
be specified by:

The statement label of a FORMAT statement.

An integer variable which has been assigned the
statement label of a FORMAT statement (see ASSIGN
Statement, section 4).

A character array name or any character expression,
except one involving assumed-length character
entities.

FORMAT STATEMENT

The FORMAT statement is shown in figure 5-7.

51 FORMAT (flist)

sl Is a statement label.

This statement transfers information
named in the input/output list II~ illl.111~lil~~IIMI!III~.

IlIlijllli according to the specified format.
job, file OUTPUT is normally sent to the printer.

Example:

PROGRAM PRINT
CHARACTER B*3
A=1.2
B='YES'
N=19
PRIN T 4,A,B,N

4 FORMAT (G20.6,A,I5)
STOP
END

60481300 E

flist Is a list of items, separated by commas,
having the following forms:

[r]ed
ned
[r] (flist)

ed Is a repeatable edit descriptor.

ned Is a nonrepeatable edit descriptor.

Is a nonzero unsigned integer constant
repeat specification.

Figure 5-7. FORMAT Statement

5-5



FORMAT is a nonexecutable statement which specifies the
formatting of data to be read or written with formatted
I/O. It is used in conjunction with formatted input and
output statements, and it can appear anywhere in the
program after the PROGRAM, FUNCTION or
SUBROUTINE statement. An example of a READ
statement and its associated FORMAT statement is as
follows:

READ (5,100) INK,NAME,AREA
100 FORMAT (10X,I4,I2,F7.2)

The format specification consists of edit descriptors in
parentheses. Blanks are not significant except in H, quote,
and apostrophe descriptors.

Generally, each item in an input/output list is associated
with a corresponding edit descriptor in a FORMAT
statement. The FORMAT statement specifies the external
format of the data and the type of conversion to be used.
Complex variables always correspond to two edit
descriptors. Double precision variables correspond to one
floating-point edit descriptor (D,E,F,G). The Dedit
descriptor corresponds to exactly one list item. Complex
editing requires two (D,E,F,G) descriptors; the two
descriptors can be different.

The type of conversion should correspond to the type of the
variable in the input/output list. The FORMAT statement
specifies the type of conversion for the input data, with no
regard to the type of the variable which receives the value
when reading is complete. For example, the statements:

INTEGER N
READ (5,100) N

100 FORMAT (F 10.2)

assign a floating point number to the variable N which
could cause unpredictable results if N is referenced later
as an integer.

CHARACTER FORMAT SPECIFICATIONS

A format specification can also be specified as a character
expression or as the name of a character variable or array
containing a format specification. The form of these
format specifications is the same as for FORMAT
statements without the keyword FORMAT. Any character
information beyond the terminating parenthesis is ignored.
The initial left parenthesis can be preceded by blanks.

If a format specification is contained in a character array,
the specification may cross element boundaries. Only the
array name need be specified in the input/output
statement; all information up to the closing parenthesis is
considered to be part of the format specification. For
example:

CHARACTER AR(2)*10
DATA AR/'(lOX,2I2,1','OX,F6.2)'/
READ (5,AR) I,J,X

is equivalent to:

READ (5,000) I,J,X
100 FORMAT (10X,2I2,10X,F6.2)

NONCHARACTER FORMAT SPECIFICAliON

Format specifications can be contained in a noncharacter
array. The rules for noncharacter format specifications
are the same as for character format specifications.

EDIT DESCRIPTORS

Format specifications are composed of edit descriptors
which specify the data conversions to be performed.
Tables 5-1 and 5-2 list the edit descriptors and give a brief
description of each. The descriptors listed in table 5-1 can
be preceded by an unsigned nonzero decimal integer
indicating the number of times the descriptor is to be
repeated (as described later in this section under Repeated
Edit Descriptors). Uppercase letters indicate the type of
conversion. Lowercase letters indicate user-supplied
information that has the following meaning:

w Nonzero unsigned integer constant specifying the
field width in number of character positions in the
external record. This width includes any leading
blanks, + or - signs, decimal point, and exponent.

d Unsigned integer constant specifying the number
of digits to the right of the decimal point within
the field. On output all numbers are rounded.

e Nonzero unsigned integer constant specifying the
number of digits in the exponent; the value of e
cannot exceed six.

m Unsigned integer constant specifying the
minimum number of digits to be output.

I

Example:

CHARACTER FORM*ll
DATA FORM/'(l3,2E14.4)'/
READ (2, FMT=FORM,END=50) N,A,B

is equivalent to:

READ (2,FMT=100,END=50) N,A,B
100 FORMAT (l3,2E14.4)

k Integer constant scale factor.

n Positive nonzero decimal integer. I
The field width w must be specified for all conversion
codes except A.

Field separators are used to separate descriptors and
groups of descriptors. The format field separators are the
slash (f), the comma, and the colon. The slash is also used
to specify demarcation of formatted records.

The preceding examples can also be expressed as:

5-6

or
READ (2, FMT='(13, 2EI4.4)',END=50) N,A,B

CHARACTER FORM*(*)
PARAMETER (FORM='(I3,2E14.4)')
READ (2,FMT=FORM,END=50)N,A,B

Leading blanks are not significant in numeric input
conversions; other blanks in numeric conversions are
ignored unless BLANK='ZERO' was specified for the file on
an OPEN statement or a BZ edit descriptor is in effect.
Plus signs can be omitted. An all-blank field is considered
to be zero, except for logical input, where an all-blank
field is considered to be FALSE.

60481300 E



I

TABLE 5-1. REPEATABLE EDIT DESCRIPTORS

Descriptor Descriptor DescriptionType

Ew.d Single preC1Slon
floating-point with
exponent

Ew.dEe Single precision
floating-point with
explicitly specified
exponentl ength

Fw.d Single precision
floating-point with-
out exponent

Dw.d Double precision
floating-point with

Numeric exponent

Gw.d Single precision
floating-point with
or without exponent

Gw.dEe Single precision
floating-point with
or without explic-
itly specified expo-
nent 1ength

Iw Decimal integer

Iw.m Dec imal integer with
minimum number of
digits

Lw Logical Logical

A Character Character with data-
dependent length

Aw Character

For the E, F, G, and D input conversions, a decimal point in
the input field overrides the decimal point specification of
the field descriptor.

The output field is right-justified for all output
conversions. If the number of characters produced by the

60481300 E

conversion is less than the field width, leading blanks are
inserted in the output field unless w.m is specified, in
which case leading zeros are produced as necessary. The
number of characters produced by an output conversion
must not be greater than the field width. If the field width
is exceeded, asterisks are inserted throughout the field.

TABLE 5-2. NONREPEATABLE EDIT DESCRIPTORS

Descriptor Descriptor DescriptionType

SP Plus signs (+) produced.
Numeric

SS output Plus signs (+) suppressed.
control

S Plus signs (+) suppressed.

nX Position forward.

Tn Position forward or back-
Tabul ati on ward.
control

TRn . Position forward.

TLn Positi on backward.

nH

Format Terminate format contro1.
control

/ End of Indicates end of current
record input or output record.

kP Scale Scaling for numeric
factor editing.

BN Numeric Blanks ignored. Iinput
BZ control Blanks treated as

zeros

Complex data items are converted on input/output as two
independent floating-point quantities. The format
specification uses two conversion elements.

Example:

COMPLEX A,B,C,D
WRITE (6,10)A

10 FORMAT (F7.2,E8.2)
READ (5,11) B,C,D

11 FORMAT (2E10.3,2(F8.3,F4.1))

Different types of data can be read by the same FORMAT
specification. For example:

10 FORMAT (I5,F15.2)

specifies two numbers, the first of type integer, the second
of type real.

5-7



Example:

CHARACTER R*4
READ (5,15) NO,NONE,INK,A,B,R

15 FORMAT (315,2F7.2,A4)

reads three integer values, two real values, and one
character string.

Following are descriptions of the edit descriptors.

I Descri ptor

The I descriptor specifies integer conversion. This
descriptor has the forms:

Figure 5-8 shows some examples of I output. Note that
the first character of a printer output record is used for
carriage control and is not printed. More information on
carriage control appears later in this section.

Example 1:

PRINT 10,I,J,K
10 FORMAT (19,110,15)

I contains -3762
J contains +4762937

K contains +13

Printed result:

Iw Iw.m AM-37621AAA47629371M013I
-...,-....'------~

8 10 5

The plus sign can be omitted for positive integers. When a
sign appears, it must precede the first digit in the field.
An Iw.m specification has no effect on input. An all blank
field is considered to be zero. Decimal points are not
permitted. The value is stored in the specified variable.
Any character other than a decimal digit, blank, or the
leading plus or minus sign in an integer field on input will
cause an error.

Example:

OPEN (2,BLANK='NULL')
READ (2,10) I,J,K,L,M,N

10 FORMAT (13,17,12,13,12,14)

First blank taken as printer
control character

Example 2:

WRITE (6,100)N,M,1
100 FORMAT (15,16,19)

N contains +20
M contains -731450
I contains +205

Printed result:

M201** ****bAAAM2051
-.-'~

Input Record:

139 -15 18 7

In memory:

I contains 139
J contains -15
K contains 18

1 4

L contains 7
M contains 0
N contains 14

4 6 9

t ~
First blank taken as Specification too small,
printer control * indicates field is too
character short

Figure 5-8. I Output Examples

If BLANK='ZERO' were specified on the OPEN statement,
Jwould contain -1500 and N would contain 104. Other
values would not be affected. (The OPEN statement is
described later in this section.)

If the integer is positive, the plus sign is suppressed unless
an SP specification is in effect. Leading zeros are
suppressed.

If Iw.m is used and the output value occupies fewer than
m posi tions, leading zeros are generated to fill up to m
digits. If m=O, a zero value will produce all blanks. If
m=w, no blanks will occur in the field when the value is
positive, and the field will be too short for any negative
value. If the field is too short, asterisks occupy the field.

5-8

E Descriptor

The E descriptor specifies conversion between an internal
real or double precision value and an external number
written with an exponent. This descriptor has the forms:

Ew.d Ew.dEe

The width w includes plus or minus signs, digits, decimal
point, E, and exponent. If an external decimal point is not
provided, d acts as a negative power-of-l0 scaling factor.
The internal representation of the input quantity is:

(integer subfield) X 10-d X 10 (exponent subfield)

For example, if the specification is EI0.8, the input
quantity 3267E + 05 is converted and stored as:
3267 X 10-8 X 105 = 3.267.

60481300 C



If an external decimal point is provided, it overrides d; e,
if specified, has no effect on input. An input field
consisting entirely of blanks is interpreted as zero.

The di agram in figure 5-9 illustrates the structure of the
input field. It shows the characters allowed to start a
subfield.

input field

~
~ ---........

1;9;' I- I ~ or D

integer fraction exponent
subfield subfield

Figure 5-9. E Input Field

The integer subfield begins with a + or - sign, a digit, or a
blank; and it can contain a string of digits. The integer
field is terminated by a decimal point, E, +, - or the end of
the input field.

The fraction subfield begins with a decimal point and
terminates with an E, +, - or the end of the input field. It
can contain a string of digits.

The exponent subfi eld can begin with E, + or -. When it
begins with E, the + is optional between E and the string of
digits in the subfield. For example, the following are valid
equi valent forms for the exponent 3:

-2.36 +5 is read instead of -2.36. The specification error
(E7.2 instead of E5.2) caused the two extra characters to
be read. The number read (-2.36 + 5) is a legitimate input
number. Since the second specification incorrectly took
two digits from the third number, the specification for the
third number is now incorrect. The field .321E + 02 D. D. is
read. The OPEN statement specifies that trailing blanks
are to be treated as zeros; therefore the number
.321E +0200 is read converted and placed in location C.
Here again, this is a legitimate input number which is
converted and stored, even though it is not the number
desired.

OPEN (3,BLANK='ZERO')
READ (3,20) A,B,C

20 FORMAT (E9.3,E7.2,El0.3)

On the input record, quantities are in three adjacent
fields, columns 1 through 24:

(+6.47E-Ol~+5.321E+021
'-v-" '-v-'~

9 5 10

would be read as:

9 7 10

I+6.47E-Q1I I I
1-2.36+5 1

1.321 E+02LlLlI

E+03 E03 E03 E3 +3 Figure 5-10. Example Showing E Input Incorrectly Read

Some additional examples of Ew.d input specifications are
shown in figure 5-11.

The range, in abrolute valuej of permissible values is
approximately 10-293 to 10 22. Numbers below the
range are treated as zero; numbers above the range cause a
fatal error message.

Converted
Input Field Specification Value Remarks

Valid subfield combinations are as follows:

blanks E4.1

+1.6327E-04

-32.7216

+328+5

.629E-1

+136

136

.07628431

Integer-fraction-exponent

Integer-fraction

Integer-exponent

Fraction-exponent

Integer only

Integer only

Fraction only

+143.26E-03

327.625

-.0003627+5

-.0003627E5

Ell.2

E7.3

Ell.7

Ell.7

0.14326 All subfields
present.

327.625 No exponent
subfield.

-36.27 Integer subfield
only a minus sign
and a plus sign
appears instead of
E.

-36.27 Integer subfield
left of decimal
contains minus
sign only.

O. All subfields
empty.

If the field length specified by w in Ew.d is not the same
as the length of the field containing the input number,
incorrect numbers might be read, converted, and stored.
The example in figure 5-10 illustrates a situation where
numbers are read incorrectly, converted, and stored; yet
there is no immediate indication that an error has
occurred. First, +647E-0l is read, converted and placed in
location A. The second specification E7.2 exceeds the
width of the second field by two characters. The number Figure 5-11. Ew.d Input Examples

60481300 D 5-9



The width w, must be sufficient to contain digits, plus or
minus signs, decimal point, E, the exponent, and blanks.
Generally, w~d+6 or w~d+e+4 for negative numbers
and w~d+5 or w~d+e+3 for positive numbers. Positive
numbers need not reserve a space for the sign of the
number unless an SP specification is in effect. If the field
is not wide enough to contain the output value, asterisks
are inserted throughout the field. If the field is longer
than the output value, the quantity is right-justified with
blanks on the left.

F Descriptor

The F descriptor specifies conversion between an internal
real or double preCISIon number and an external
floating-point number without an exponent. This
descriptor has the form:

Fw.d

On input the F specification is treated identically to the E
specification. Some examples are shown in figure 5-12.

The Ew.d specification produces output in the following
formats:

s.a...aE.:!:. ee

s.a... a + eee

s

a... a

For values where the magnitude of
the exponent is less than one
hundred

For values where the magnitude of
the exponent exceeds one hundred

Is a minus sign if the number is
negative, and omitted if the number
is positive.

Are the most significant digits of
the value correctly rounded.

The F descriptor outputs a real number wi thout a decimal
exponent.

The plus sign is suppressed for positive numbers. If the
field is too short, all asterisks appear in the output field.
If the field is longer than required, the number is
right-justified with blanks on the left. If the value being
converted is indefinite, an I is printed in the field; if it is
out of range (exceeds the capaci ty of the machine), an R
is printed.

The specification Fw.d outputs a number in the following
format:

sn.n

When the specification Ew.dEe is used, the exponent is
preceded by E, and the number of digits used for the
exponent field not counting the letter and sign is
determined bye. If e is specified too small for the value
being output, the entire field width as specified by w will
be filled with asterisks.

If an integer variable is output under the Ew.d
specification, results are unpredictable since the internal
formats of real and integer values differ. An integer
value normally does not have an exponent and will be
printed, therefore, as a very small value or 0.0.

Example:

n Is a field of decimal digits.
s Is a minus sign if the number is negative, or

omitted if the number is positive.

Some examples of F output are shown in figure 5-13.

G Descriptor

The G descriptor specifies conversion between an internal
real or double precision number and an external
floating-point number written either with or without an
exponent, depending on the magnitude of the number.
This descriptor has the forms:

WRITE (2,10)A A contains -67.32 or +67.32
10 FORMAT (E9.3)

Gw.d Gw.dEe

Result:

Example:

WRITE (2,10)A
10 FORMAT (E12.3)

Result:

-.673E+02 or ~.673E+02

~~~-.673E+02 or ~~~~.673E+02

Input under control of G specification is the same as for
the E specification. The rules which apply to the E
specification also apply to the G specification. For
example:

READ (5,11) A,B,C
11 FORMAT (G13.6,2G12.4)

5-10

Input Field

367.2593

.62543

.62543

+144.15E-03

50000

Specification

F8.4

F6.5

F6.2

F11.2

F5.2

F5.2

Converted Value Remarks

367.2593 Integer and fraction field.

.62543 No integer subfield .

.62543 Decimal point overrides d of specification.

.14415 Exponents are allowed in F input.

500.00 No fraction subfield; input number converted as 50000x10-2.

o Blanks in input field interpreted as O.

Figure 5-12. F Input Examples

60481300 D



Value of A FORMAT Statement PRINT Statement Printed Result

+32.694 10 FORMAT (1H ,F6.3) PRINT 10,A 32.694
+32.694 11 FORMAT (1H ,F10.3) PRINT 11,A AAAA32.694
-32.694 12 FORMAT (1H ,F6.3) PRINT 12,A ******

.32694 13 FORMAT (1H ,F4.3,F6.3) PRINT 13,A,A .327AA.327
32.694 14 FORMAT (1H ,F6.0) PRINT 14,A AAA33.

The specification 1H is the carriage control character.

Figure 5-13. F Output Examples

D Descriptor

Output under control of the G descriptor depends on the
size of the floating-point number being edited. For values
in the range greater than or equal to .1 and less than
10**d the number is output under F format. For values
outside this range, Gw.doutput is identical to Ew.d and
Gw.dEe is identical to Ew.dEe.

If a number is output under the Gw.d specification without
an exponent, four spaces are inserted to the right of the
field (these spaces are reserved for the exponent field
E+ee). Therefore, for output under G conversion, w must
be greater than or equal to d + 6. The six extra spaces are
required for sign and decimal point plus four spaces for
the exponent field. If the Gw.dEe form is used for a
number output without an exponent, then e + 2 spaces are
inserted to the right of the field. For example:

Y=77.132
WRITE (7,200)Y

200 FORMAT (GI0.3)

writes the following:

M 77.1.6.6.6.6

EXIT=1214635.1
WRITE (4,100) EXIT

100 FORMAT (GI0.3)

writes the following:

.121E+07

Additional examples of G output are shown in figure 5-14.

READ (5,50) SAMPLE
50 FORMAT (E20.5)

WRITE (6,60) SAMPLE
60 FORMAT (1X,G14.8)

Data Read By Data Format
READ Statement Printed Option

.1415926535AE-10 A.14159265E-10 E conversion
AA A.8979323846 A.89793238 F conversion
AAA2643383279. A.26433833E+1 0 E conversion
AAA-693.9937510 -693.99375 F conversion

Figure 5-14. G Output Examples

60481300 0

The 0 descriptor specifies conversion between an internal
double precision real number and an external
floating-point number written with an exponent. This
descriptor has the form:

Ow.d

NOTE

The E descriptor is preferred over the 0
descriptor.

o editing corresponds to E editing and can be used to input
all the same forms as E.

The diagram in figure 5-15 illustrates the structure of the
input field. It shows the characters allowed to start a
subfield.

Input field

.".,-- ~

---------

1~9it I' I~ ~ E
I

integer fraction exponent
subfield subfield

Figure 5-15. D Input Field

Type 0 conversion is
values. D conversion corresponds to E
that D re laces E at the be innin

. I .

5-11



Examples of type D output:

The specification Dw.d produces output in the following
format:

DOUBLE PRECISION A,B,C
A = 111111.11111DO
B = 222222.22222DO
C=A+B
WRITE (2,10) A,B,C

10 FORMAT (3D23.11)

.11111111111D+06

.33333333333D+06

Example:

The specification (3P,3I9,FI0.2) is the same as the
speci fication (3I9,3PF 10.2).

The 2P scale factor appli es to the E14.3 format
specification and also to the FI0.2 and G16.2 format
specifications. The OP scale factor restores normal scaling
(100 = 1) for the subsequent specification 4F13.2.

20 FORMAT(3P,5X,E12.6,FW.3,OPD18.7,-lP,F5.2)

E12.6 and FlO.3 specifications are scaled by 103• The
D18.7 specification is not scaled, and the F5.2
specification is scaled by 10-1•

.22222222222D+06

For values where the magnitude of the
exponent exceeds one hundred

s.a.±eee

s.aD+ee

s

a

For values where the magnitude of the
exponent is less than one hundred

Mirus sign if the number is negative, or
blank if the number is positive

One or more most signi ficant digits

For F, E, D, and G editing, provided that the number in the
input field does not have an exponent, the number is
divided ,by 10k and stored. For example, if the input
quantity 314.1592 is read under the specification 2PF8.4,
the internal number is 314.1592 X 10-2 = 3.141592.
However, if an exponent is read the scale factor is ignored.

ee Digits in the exponent

P Descriptor

The P descriptor has the form:

kP

where k is a signed or unsigned integer constant called the
scale factor.

For F editing, the number in the output field is the internal
number multiplied by 10k• In the output representation,
the decimal point is fixed; the number is adjusted to the
left or right, depending on whether the scale factor is plus
or minus. For example, the internal number-3.1415926536
can be represented on output under scaled F specifications
as shown in figure 5-16.

The P descriptor is used to change the position of a
decimal point of a real number when it is input or output.
Scale factors can precede D, E, F, and G format
specifications or appear independently. Forms are as
follows:

(-1PF13.6)
( F13.6)
( 1PF13.6)
( 3PF13.6)

-.31~159

-3.141593
-31.Ll1592'7

-3141 .5926:>4

kPDw.d

kPEw.dEe Figure 5-16. Scaled F Output

kPEw.d

kPFw.d

kPGw.d

kP

A scale factor of zero is established when each FORMAT
specification is first referenced; it holds for all F, E, G,
and D field descriptors until another scale f actor is
encountered.

For E and D editing, the effect of the scale factor kP is to
shift the output coefficient left k places and reduce the
exponent by k. In addition, the scale factor controls the
decimal normalization between the coefficient and the
exponent such that: if k~O, there will be exactly -k leading
zeros and d + k significant digits after the decimal point; if
k>O, there will be exactly k significant digits to the left of
the decimal point and d- k + 1 significant digits to the right
of the decimal point. For example, the number
-3.1415926536 is represented on output under the indicated
Ew.d scaling as shown in figure 5-17.

Once a scale factor is specifi ed, it holds for all 0, E, F,
and G descriptors in that FORMAT specification until
another scale factor is encountered. To nullify this effect
for subsequent D, E, F, and G descriptors a zero scale
factor (OP) must be specifi ed.

(-3PE20 . It)
(-1PE20.4)
( E20.4)
( 1PE20.4)
( 3PE20.4)

-.0003E+04
-.0314E+02
-.3142E+01

-3.1416E+00
-314.16E-02

Example:

15 FORMAT(2P,EI4.3,F10.2,G16.2,OP,4F13.2) Figure 5-17. Scaled E Output

5-12 60481300D



For G editing, the effect of the scale factor is nullified
unless the magnitude of the number to be output is outside
the range that permits effective use of F conversion
(namely, unless the number N<10-1 or N~10d). In these
cases, the scale factor has the same effect as described
for Ew.d and Ow.d scaling. For example, the numbers
-3.1415926536 and -.00031415926536 are represented on
output under the indicated GW.d scaling as shown in
figure 5-18.

(-3PG20.6)
(-1PG20.6)
( G20.6)
( 1PG20.6)
( 3PG20.6)
( 5PG20.6)
( 7PG20.6)

(-3PG20.6)
(-1PG20.6)
( G20.6)
( 1PG20.6)
( 3PG20.6)
( 5PG20.6)
( 7PG20.6)

-3.14159
-3.14159
-3.14159
-3.14159
-3.14159
-3.14159
-3.14159

-.000314E+OO
-.031416E-02
-.314159E-03
-3.141593E-04
-314.1593E-06
-31415.93E-08
-31ll1593.E-10

S,SP,SS Plus Sign Control

The 5, SP and 55 descriptors can be used on output with
the I,F,E,O, and G descriptors to control the printing of
plus (+) characters. S, SP and 55 have no effect on input.

Normally, FORTRAN does not precede positive numbers
by a plus sign on output. If an SP descriptor is
encountered in a format specification, all succeeding
positive numeric fields will contain the plus sign (w must
be of sufficient length to include the sign). If an 55 or 5
descriptor is encountered, the optional plus signs will not
appear.

5, SP, and 55 have no effect on plus signs preceding
exponents, since those signs are always provided. For
example:

A = 10.5
B = 7.3
C = 26.0
WRITE (2,'(lX,F6.2,SP,F6.2,SS,F6.2)')A,B,C

prints the following:

M10.50tl+7.30tl26.00

A Descriptor

The A descriptor can
item of type character ;lliii;IIII~III!IIIIII!lgli;
has the forms:

Figure 5-18. Scaled G Output

BN and BI Blank Interpretation

The BN and BZ descriptors can be used with the I, F, E, 0,
and G edit descriptors, on input, to specify the
interpretation of blanks (other than leading blanks). In the
absence of a BN or BZ descriptor, blanks in input fields
are interpreted as zeros or are ignored, depending on the
value of the BLANK= specifier currently in effect for the
input/output unit. BLANK='NULL' is the default for
input. If a BN descriptor is encountered in a format
specification, all blank characters in succeeding numeric
input fields are ignored; that is, the field is treated as if
blanks had been removed, the remaining portion of the
field right-justified, and the field padded with leading
blanks. A field of all blanks has a value of zero.

If a BZ descriptor is encountered in a format
specification, all blank characters in succeeding numeric
input fields are interpreted as zeros.

For example, assuming BLANK = 'NULL', if the statement:

READ (6,'(13, BZ, 13, BN, I3)')I,J,K

reads the input record:

then the I, J, and K have the following values:

1=1 J=200 K=3

60481300 C

A Aw

If w is less than the length of the list item, the input
quantity is stored left-justified in the item; the remainder
of the item is filled with blanks. If w is greater than the
length of the item, the rightmost characters are stored
and the remaining characters _are ignored. If w is omitted,
the length of the field is equal to the length of the list
item. Examples of A input are shown in figure 5-19.

If w is less than the length of the list item, the leftmost
characters in the item are output. For example, if a
variable A, declared CHARACTER A*8, contains:

SAMPLEtltl

and A is output with the following statement:

WRITE (6,'(lX,A4)')A

then the characters SAMP are output.

If w is greater than the length of the list item, the
characters are output right-justified in the field, with
blanks on the left. For example, if A in the previous
example is output with the following statements:

WRITE (6,400)A
400 FORMAT (lX,A12)

output is as follows:

~SAMPLEtltl

If w is omitted, the length of the character list item
determines the length of the output field.

5-13



5-14

Example 1 (character list item)~

CHARACTE R A *9
READ (5,100) A

100 FORMAT (A7)

Input record:

EXAMPLE

In location A:

EXAMPLELlLl

Example 2:

CHARACTER B*10
READ (5,200)B

200 FORMAT (A13)

Input record:

1 13
SPECIFICATION

In location B:

1 10
CIFICATION

Example 3:

CHARACTER Q*8,P*12,R*9
READ (5,10) Q,P,R

10 FORMAT (A8,A12,A5)

Input record:

THIS IS AN EXAMPLE I KNOW
--.-~--

8 12 5

In storage:

P THISLlISLl
Q ANLlEXAMPLELlI
R LlKNOW~Ll~Ll

Example 4:

CHARACTER NAME*30,PHONE*7
READ (5,'(A,A)') NAME,PHONE

Note that if no length is specified for an A edit
descriptor, the length of the list item is used.

Figure 5-19. A Input Examples

L Descriptor

The L descriptor is used to input or output logical items.
This descriptor has the form:

Lw

If the first nonblank characters in the field are T or •T,
the logical value •TRUE. is stored in the corresponding list
item, which should be of type logical. If the first
nonblank characters are F or .F, the value .FALSE. is
stored. If the fi rst nonblank characters are not T •T F
or .F, a dia nostic is rinted.

60481300 B



Variables output under the L specification should be of
type logical. A value of •TRUE. or .FALSE. in memory is
output as a right-justified T or F with blanks on the left.

Example:

LOGICAL I,J,K
1= .TRUE.
J =.FALSE.
K = .TRUE.
WRITE (4,5) I,J,K

5 FORMAT (3L3)

Printed output:

60481300 B 5-15



H Descriptor

The H descriptor is used to output strings of characters.
This descriptor is not associated wi th a variable in the
output list. The H descriptor has the form:

nHstring

n Is the number of characters in the
string including blanks.

string Is a string of characters.

The H descriptor cannot be used on input.

Note that although using apostrophes to designate a
character string precludes the need to count characters,
the H descriptor may be more convenient if the string
contains apostrophes.

Example:

Source statements:

A =1.5
WRITE (2,30)A

30 FORMAT (6HALMAX=,F5.2)

Output:

LMAX = 1.50

Replacing the H descriptor in the preceding example with
'l1LMAX=' would produce the same output.

Examples:

Source statements:

PRINT 10
10 FORMAT ('l1SUBTOTALS')

Printed output:

SUBTOTALS

Source statements:

WRITE (6,20)
20 FORMAT ('6RESULT OF CALCULATIONS ISl1'

*'AS FOLLOWS')

Output:

RESULT OF CALCULATIONS IS AS FOLLOWS

An apostrophe within a string delimited by the I
same symbol can represented by two consecutive
occurrences of the symbol.

Source statements:

PRINT 3
3 FORMAT('6DON' 'T')

Output:

DON'T

X Descriptor

tillillllir strings delimited by a pair of apostrophe (')
!l~ symbols can be used as al ternate forms of the
specification for output. The paired symbols delineate the
string. If the string is empty or invalidly delimited, a
fatal compilation error oc an error message is
printed. The apostrophe descriptors must not
be used on input.

Apostroph Descriptors
The X descriptor is used to skip character positions in an
input line or output line. X is not associated with a
variable in the input/output list. The X descriptor has the
form:

nX

n Is the number of character positions to be skipped
from the current character position; n is a
nonzero unsigned integer.

5-16 60481300 E



The specification nX indicates that transmission of the
next character to or from a record is to occur at the
posi tion n characters forward from the current position.

Examples:

Source statements:

A = -342.743
B =1.53190
J =22
WRITE (6,'(IX,F9.4,4X,F7.5,4X,I3)') A,B,J

Output:

-342.743066MI.53190AAAAA22
Source statement:

READ (3,'(F5.2,3X,F5.2,6X,F5.2)') R,S,T

Input:

14.62M$13.786COST615.97

In storage:

R 14.62
S 13.78
T 15.97

TI TL,TR Descriptors

The T, TL, and TR descriptors provide for tabulation
control. These descriptors have the forms:

Positions to column 20 of the output record and writes the
characters LABELS.

With a T, TR, or TL specification, the order of a list need
not be the same as that of the input or output record, and
the same information can be read more than once.

Example:

READ (2,'(F5.2,TL5,F5.2)')A,B

Input record:

76.05

Both A and B contain 76.05.

When a T, TR, TL specification causes control to pass
over character positions on output, positions not
previously filled during record generation are set to
blanks; those already filled are left unchanged. An
example is shown in figure 5-23.

The following example shows that it is possible to destroy
a previously formed field:

WRITE (2.8)
8 FORMAT ('DISASTERS',T5,3HI23)

Output record before printing:

DISA123RS

Is a nonzero unsigned decimal integer.

Tn

n

TLn TRn
If the output record is printed, the first character is not
printed. See Carriage Control Character in this section.

When a Tn descriptor is encountered in a format
specification, input or output control skips right or left to
column n; the next edit descriptor is then processed.

When a TLn descriptor is encountered, control skips
backward (Ieft) n columns. If n is greater than or equal to
the current character position, control skips to the first
character posi tion.

When a TRn descriptor is encountered, control skips
forward (right) n characters.

On card input, control can be posi tioned beyond column
80, but a succeeding descriptor would read only blanks.

Example:

READ 40, A,B,C
40 FORMAT (T2,F5.2,TR5,F6.1,TR3,F5.2)

Input:

6684.7~2436.2~89.14

A is set to 684.7, B to 2436.0, and C to 89.0.

Example:

WRITE (31,10)
10 FORMAT (T20, 'LABELS')

60481300 D

End-of-Record Slash

The slash indicates the end of a record anywhere in the
FORMAT specification. When a slash is used to separate
edit descriptors, a comma is allowed but not required.
Consecutive slashes can be used and need not be separated
from other elements by commas. When a slash is the last
format specification to be processed, it causes a blank
record to be wriUen on output or an input record to be
skipped. Normally, the slash indicates the end of a record
during output and specifies that further data comes from
the next record during input.

Example:

WRITE (2,10)
10 FORMAT (6X,7HHEADING///IX,5HINPUT,

*7H60UTPUT)

Printed output:

M6MHEADING
(blank line)
(blank line)
INPUT OUTPUT

Each line corresponds to a formatted record. The second
and third records are blank and produce the line spacing
illustrated.

5-17



\II
I
I-'
00

60

10

*

PROGRAr-~ TEST
FORMAT(12(' 123456789'»
PHINT 1
PRINT 60
FORMAT(T80, 'COM~ENTS' ,T60, 'HEADING4' ,140,

'HEADI NG3 I, T20, 'HEADI NG2! ,12, 'HEADING 1 t )

PRHJT 10
FORi-1AT(20X. 'THIS IS THE: END Of THIS RUN',T52, 'HONEST')
PRINT 1
STOP
EIH)

0\o
.po
00
I-'

"".0
o
CD

1234567890123456789012345678901234567890123456789012345fi18901234567Kgo12345678901234567R901234567HG01234567890123456789
HF!\DIrJG1 HEADIlJG2 HEADING3 1!r:~/)ING4 CClMf·1F.NTS

THIS L~ TilE [ 11 D 0 F T fl ISH lJ iJ H0 ~J F: ST
123 4~ 6? 890 123 il5 6'7 C90 12345 G'7 890 123 I~ 567ns: () 123 ll5 () 7gt) 0 123 115 () '7 890 12 31~ 567890 1234 I) 6HI 90 1234 r, 67B90 1234567 g901234567890 123456789

For the FORMAT statement labeled 60, control passes over the first print position (the one used for
carriage control); therefore, it is automatically set to a blank, which causes the line to be single spaced.

Figure 5-23. T Output Example



Example:

1=5
J=6
K=7
WRITE (2,l)I,J,K

1 FORMAT (315/FI0.4)
WRITE (2,2)

2 FORMAT ('AA BLANK LINE SHOULD PRECEDEA',
*THIS LINE')

Printed output:

A BLANK LINE SHOULD PRECEDE THIS LINE

The variable list (I, J, K) .is exhausted and processing
continues until a variable conversion is encountered
(FI0.4).Since the slash has been processed, it causes a
blank line to be printed, and F10.4 is ignored because
there is nothing to be converted.

Example:

DIMENSION B(3)
READ (5,100)IA,B

100 FORMAT (l5/3E7.2)

These statements read two records; the first contains an
integer number, and the second contains three real
numbers.

Example:

WRITE (3,1l)A,B,C,D
11 FORMAT (lX,2EI0.2/lX,2F7.3)

In storage:

A -11.6
B .325
C 46.327
o -14.261

Printed output:

AA-.12E+02MA.33E+00
A46.327-14.261

Example:

WRITE (l,ll)A,B,C,D
11 FORMAT (lX,2EI0.2//lX,2F7.3)

Printed output:

AA-.12E+02AAA.33E+00
(blank line)
A46.327-14.261

The second slash causes the blank line.

Repeated Edit Descriptors

Certain edit descriptors can be repeated by prefixing the
descriptor with a nonzero unsigned integer constant
specifying the number of repetitions required. The

\\11;rilellla,tj,a,ble edit descriptors are 0, E, F, G, I, A, L,
iiI The other edi t descriptors cannot be repeated.

60481300 B

Examples:

100 FORMAT (314,2E7.3)

is equivalent to:

100 FORMAT (l4,14,14,E7.3,E7.3)

50 FORMAT (4G12.6)

is equivalent to:

50 FORMAT (G12.6,G12.6,G12.6,G12.6)

A group of descriptors can be repeated by enclosing the
group in parentheses and prefixing it with the repetition
factor. If no integer precedes the left parenthesis, the
repetition factor is 1.

Example:

1 FORMAT (13,2(E15.3,F6.1,214))

is equivalent to the following specification if the number
of items in the input/output list does not exceed the
number of format conversion codes:

1 FORMAT (I3,E15.3,F6.1,14,14,E15.3,F6.1,I4,14)

A maximum of nine levels of parentheses is allowed in
addition to the parentheses required by the FORMAT
statement.

If there are fewer items in the input/output list than
indicated by the format conversions in the FORMAT
specification, the excess conversions are ignored.

If the number of items in the input/output list exceeds the
number of format conversions when the final right
parenthesis in the FORMAT statement is reached, the line
formed internally is output. The format control then
scans to the left looking for a right parenthesis wi thin the
FORMAT statement. If none is found, the scan stops
when it reaches the beginning of the format
specification. If a right parenthesis is found, however, the
scan continues to the left until it reaches the field
separator which precedes the left parenthesis pairing the
right parenthesis. Output resumes with the format
control moving right until either the output list is
exhausted or the final right parenthesis of the FORMAT
statement is encountered.

If n slashes are indicated, a repetition factor can be used
to indicate multiple slashes; n-l lines are skipped on
output.

Example:

DIMENSION A(9)
DATA A/3.62,-4.03,-9.78,-6.33,7.12,3.49,6.21,

*-6.74,-1.18/

WRITE (3,15)(A(I),1=1,9)
15 FORMAT (8HARESULTS,4(f),(lX,3F8.2))

5-19



Format statement 15 is equivalent to:

15 FORMAT (8HtlRESULTS,//// (lX,3F8.2»

Output:

manual.) Carriage control does not apply to records listed
at a terminal under the NOS Time-Sharing System; the
first character is listed as data.

The carriage control characters are shown in table 5-3.

TABLE 5-3. PRINTER CONTROL CHARACTERSRESULTS
(blank line)
(blank line)
(blank line)
MM3.62AM-4.03AAt.-9.78
1:JlA-6.33AAt.A7.12MM3.49
MAA6.21AM-6.74,6M-I.I8

Example:

READ (5,300) I,J,E,K,F,L,M,G,N,R
300 FORMAT (l3,2(14,F7.3),17)

Data is stored in I with format 13, J with 14, E with F7.3,
K with 14, F with F7.3, and L with 17. A new record is
then read; data is stored in M with the format 14, G with
F7.3, N with 14, and R with F7.3.

Character

Blank

o

1

+

Action

Space vertically one line, then
print.

Space vertically two lines, then
print.

Eject to the first line of the next
page before printing.

No advance before printing; allows
overprinting.

Example:

READ (5,100) NEXT,DAY,KAT,WAY,NAT,
*RAY,MAT

100 FORMAT (17,(F12.7,13»

NEXT is input with format 17, DAY is input with F12.7,
KAT is input with 13. The FORMAT statement is
exhausted (the right parenthesis has been reached), a new
record is read, and the statement is rescanned from the
group (F12.7,13). WAY is input with the format F12.7,
NAT with 13, and from a third record, RAY with F12.7,
and MAT wi th 13.

Termination of Format Control

A colon (:) in a format specification terminates format
control if there are no more items in the input/output
list. The colon has no effect if there are more items in
the input/output list. This descriptor is useful in forms
where nonlist item edit descriptors follow list item edit
descriptors; when the iolist is exhausted, the subsequent
edit descriptors are not processed. For example:

A = 1.0
B = 2.2
C = 3.1
0=5.7
PRINT 10, A, B, C, 0

10 FORMAT (4(F4.1,:,','»

Output:

1.0,A2.2,A3.1,A5.7

In this example, format control terminates after the value
of 0 is printed, and the last comma is not printed.

Carriage Control Character

The first character of a printer output record is used for
carriage control and is not printed. It appears in other
forms of output as data. Carriage control also applies to
records listed at a terminal under INTERCOM; the
meaning of carriage control characters depends on the
type of terminal. (See the INTERCOM reference

5-20

For output directed to the card punch or any device other
than the line printer or terminal, control characters are
not required. If carriage control characters are
transmitted to the card punch, they are punched in column
one.

Carriage control characters are required at the beginning
of every record to be printed,. including new records
introduced by means of a slash. Carriage control
characters can be generated by any means.

Examples:

10 FORMAT (IHO,F7.3,12,G12.6)

20 FORMAT (. ',15,'RESULT=',F8.4)

30 FORMAT ('I',14,2(F7.3»

40 FORMAT (lX,14,G16.8)

A program using carriage control characters, and resulting
output, is shown in figure 5-24. The program constructs a
tic tac toe diagram. A '1' specification causes the first
output line to appear at the top of a page. FORMAT
statement 20 causes three lines to be skipped. In
FORMAT statements 30 and 40, a slash skips to the next
output record and a plus character causes the record to
begin on the same line as the previous record, resulting in
overprinting of a row of X characters and = characters.
FORMAT statement 60 uses a '0' specification to skip two
lines before writing the last output line.

EXECUTION TIME FORMAT SPECIFICATION

Variable format specifications can be read in as part of
the data at execution time and used wherever a normal
format can be used. The format can be read in under the
A specification and stored ina character array, variable,

60481300 C



Example:

PROGRAlv1 CHARCON
PRINT 10

10 FORMAT('l', 5X, 'HERE WE ARE AT THE TOP OF A NEW PAGE')
PRINT 20

20 FORMAT(3(/))
C

DO 50 1=2, 8
IF (I .EQ. 4 .OR. I .EO. 6) THErJ
PRIwr 30

30 FORtvlAT(20X,' XXXXXXXXXX '/'+', 19X, ' ========= ')
ELSE
PRINT 40

40 FORMAT(21X,' X X ',/'+',20X, = = ')
ENDIF

50 CONT IiW E
C

PRINT 60
60 FOlnL4.T('o'. 5X, 'BEGIN TIC TAC TOE .)

STOP
END

Output:

'IERE ""rF. l\RF: .I\T THF TOP OF A tIEt~' PA.GP

• •• •tUOUUUUUUUC

• $(••••••••••
te •

• •
BEGIn TIC TAC TOJ;'

Figure 5-24. Carriage Control Example

or array element; or it can be included in a DATA
statement. Formats can also be generated by the program
at execution time.

case,
descriptors and editing
parentheses, but without the
statement label.

The name of the entity containing the specifications is
used in place of the FORMAT statement number in the
associated input/output statement. The name specifies
the location of the first word of the format information.

Example:

Input record:

(E7.2,G20.5,F7.4,13)

60481300 E

This specification can be read and subsequently
referenced as follows:

CHARACTER F*30
READ (2,'(A)') F
WRITE O,F) A,B,C,N

Example:

Input record:

(E12.2,FB.2,17,2E20.3,F9.3,14)

This specification can be read by the statements:

CHARACTER VAR*40
READ (2,'(A)') VAR

A subsequent output statement in the same program can
refer to these format specifications as:

WRITE (2,VAR) A,B,I,C,D,E,J

5-21 I



If PRTFLG is zero, the program produces the same result
as WRITE (2,'(3I10)') I,J,K.

UNFORMATTED INPUT/OUTPUT
Unformatted READ and WRITE statements do not use
format specifications and do not convert data in any way
on input or output. Instead, data is transferred as is
between memory and the external device. Each
unformatted input/output statement transfers exactly one
record. If data is written by an unformatted WRITE and
subsequently read by an unformatted READ, exactly what
was written is read; no prec ision is lost since no conversion
is performed.

encountered on the previous read operation on this unit,I
execution terminates and an error message is printed.
Records following an end-of-file can be read by issuing a
CLOSE followed by an OPEN on the file or by using the
EOF function (section 7). CLOSE/OPEN, described later in
this section, is the preferred method.

Example:

PROGRAM AREAD
READ (2,END=30,ERR=40) X,Y,Z
SUM = X+Y+Z/2.

END

UNFORMATTED WRITE

The unformatted WRITE statement is shown in figure 5-25.

WRITE ([UNIT=] u[,IOSTAT=ios] [,ERR=sl] Hiolist]

Figure 5-25. Unformatted WRITE Statement

LIST DIRECTED INPUT/OUTPUT
List directed input/output involves the processing of coded
records without a FORMAT statement. Each record
consists of a list of values in a freer format than is used
for formatted input/output. This type of input/output is
particularly convenient when the exact form of data is not
important.

This statement is used to output binary records.
Information is transferred from the items ioUst to the
specified output unit u with no format conversion. One
record is created by an unformatted WRITE statement. If
the list is omitted, the statement writes a null record on
the output device. A null record has no data but contains
all other properties of a legitimate record.

Example:

PROGRAM OUT
DIMENSION A(260), B(4000)

LIST DIRECTED INPUT

The list directed READ statement is shown in figure 5-27.

READ ([UNIT=] u,[FMT=] * [,IOSTAT=ios] [,ERR=sl]
[,END=sl] )[iolist]

READ * [,iolist]

Figure 5-27. List Directed READ Statement

A list directed READ following a list directed READ that
terminated in the middle of a record starts with the next
data record.

Embedded blanks are not allowed in input values, except
character values and complex numbers. The format of
values in the input record is as follows:

Data is transmitted from unit u or the file INPUT (if u is
omitted or unit= * specified) to the storage locations
named in ioUst. The input data items are free-form with
separators rather than in fixed-size fields.

Input data consists of a string of values separated by one or
more blanks, or by a comma or slash, either of which can
be preceded or followed by any number of blanks. Also, a
line boundary, such as end-of-record or end-of-card, serves
as a value separator; however, a separator adjacent to a
line boundary does not indicate a null value.

Same format as for integer
constants.

Integers

The user should specify the END= or lOSTAT= parameter
to avoid termination when an end-of-file is encountered. If
an attempt is made to read on unit u and an end-of-file was
encountered on the previous read operation on this unit,
execution terminates and an error message is printed.
Records following an end-of-file can be read by issuing a
CLOSE followed by an OPEN on the file or by using the
EOF function (section 7). CLOSE/OPEN, described later in
this section, is the preferred method.

The 4260 words of arrays A and B are written as one record
on unit 10.

UNFORMATTED READ

READ ([UNIT=] u[,IOSTAT=ios] [,ERR=sl] [,END=sl])
[iolist]

WRITE (10,ERR=16) A,B
END

The unformatted READ statement is shown in figure 5-26.

Figure 5-26. Unformatted READ Statement

One record is transmitted from the specified unit u to the
storage locations named in iolist. Records are not
converted; no FORMAT statement is used. The
information is transmitted from the designated file in the
form in which it exists on the file without any conversion.
If the number of words in the list exceeds the number of
words in the record, an execution diagnostic results. If the
number of locations specified in iolist is less than the
number of words in the record, the excess data is ignored.
If iolist is omitted, the unformatted READ skips one record.

IThe user should specify the END= or IOSTAT= parameter
to avoid termination when an end-of-file is encountered. If
an attempt is made to read on unit u and an end-of-file was

5-22 60481300 E



Real numbers

Complex numbers

Charac ter values

Logical values

Any valid FORTRAN format
for real or double precision
numbers. In addition, the
decimal point can be omitted;
it is assumed to be to the right
of the mantissa.

Two real values, separated by a
comma, and enclosed by
parentheses. The parentheses
are not considered to be a
separator. The decimal point
can be omitted from either of
the real constants. Each of the
real values can be preceded or
followed by blanks.

A itring of characters (which
can include blanks) enclosed by
apostrophes. A delimiting
apostrophe can be represented
within a string by two
successive occurrences. Char­
acter values can only be· read
into character arrays, variables
and substrings. If the string
length exceeds the length of
the list item, the string is
truncated. If the string is
shorter than the list item, the
string is left-justified and
remaining character positions
are blank filled.

An optional period, followed by
a T or F, followed by optional
characters which do not include
separators (slashes or commas).

Input values must correspond in type to variables in the
input/output list. Note that the form of a real value can
be the same as that of an integer value.

Some examples of list directed input are illustrated in
figure 5-28.

LIST DIRECTED OUTPUT

statements consist of a WRITE, a
IJll:;III~"I~;; statement. These statements are

and 5-31, respectively.

Data is transferred from storage locations ,specified by
the ioUst to the designated unit in a manner consistent
with list directed input.

List directed output is consistent with the input; however,
null values, slashes, repeated constants, .and the
apostrophes used to indicate character values are not
produced. For real or double precision variables with
absolute values in the range of 10-6 to 109, an F format
type of conversion is used; otherv.:ise, output i~ of the l~E

type. Trailing zeros in the mantissa and leadIng zeros In
the exponent are suppressed. Values are separated by
blanks.

List directed output statements always produce a blank
for carriage control as the first character of the output
record.

Logical values are output as T or F. Comple>: values are
enclosed in parentheses with a comma separatIng the real
and imaginary parts.

To repeat a value, an integer repeat constant is followed
by an aster isk and the constant to be repeate~.. BI~nks

cannot be embedded in the repeat part of the specificatIOn.

A null can be input in place of a constant when the value
of the corresponding list entity is not to be changed. A
null is indicated by the first character in the input string
being a comma or by two commas separated by an
arbitrary number of blanks. Nulls can be repeated by
specifying an integer repeat count followed by an asterisk
and any value separator. The next value begins
immediately after a repeated null. A null cannot be used
for either the real or imaginary part of a complex
constant; however, a null can represent an entire complex
constant.

When the value separator is a slash, remaining list
elements are treated as nulls and the remainder of the
current record is discarded.

604813000

Some examples of list directed output are shown in
figure 5-32.

5-23

I



E)(ample 1:

10

Input:

PROGRAM LDR
READ I, CAT, BIRD, DOG
PRINT 10, CAT, BIRD, DOG
FORMAT(' CAT = " E9.3,1' BIRD =
STOP
END

Output:

E9.3,I' DOG = ',E9.3)

Example 2:

13.3, -5.2, .01 CAT = .133E+02
BIRD = -.520E+Ol
DOG = .100E-Ol

Input:

PROGRAM LOIN
100 READ(I,*,END=99) J,K

PRINT 1, J,K
FO~MAT (T20,2I5)
GO TO 100

99 STOP
END

1 2

,3
, ,
2tl8

19

Output:

1

1

1

~

8

2

3

3

8

8

Figure 5-28. list Directed Input Examples

WRITE ([UNIT=] u,[FMT=] * [,IOSTAT=ios]
[,ERR=sl] ) [iolist]

Figure 5-29. List Directed WRITE Statement

PR INT* [,iolist]

Figure 5-30. List Directed PRINT Statement

5-24 60481300 B



Example 1:
PROGRAM LDW
INTEGER J(4)
COMPLEX Z (2)
DOUBLE PRECISION Q
DATA J, Z ,Q /1, -2 , 3 , -4 , (7 • , -1 _ ) , (-3. ,2. ) , 1 • D-5 /
PRINT *, J
PRINT *, Z,Q
STOP
END

Output:
1 -.2 3 -4
(rr _, -1 _) (-3_,2 _) . 0000 1

Example 2:
PROGRAM K
PRINT *, 'TYPE IN X'
READ *, X
PRINT *~ 'TYPE IN Y'
READ *, Y
END

Terminal listing under NOS:

TYPE IN X
? 1.234

TYPE IN Y
? 5.678

Figure 5-32. List Directed Output Examples

60481300 B 5-25



5-26 60481300 B



60481300 C 5-27



5-28 60481300 E



I

I

I

DIRECT ACCESS FILES
Direct access file manipulations differ from conventional
sequential file manipulations. In a sequential file, records
are stored in the order in which they are written, and can
normally be read back only in the same order. This can be
slow and inconvenient in applications where the order of
writing and of retrieving records differs and, in addition, it
requires a continuous awareness of the current file position
and the position of the required record. To remove these
limitations, a direct access file capability is provided by
the FORTRAN input/output statements.

In a direct access file, any record can be read, written, or
rewritten directly, without concern for the position or
structure of the file. This is possible because the file
resides on a random access mass storage device that can be
positioned to any portion of a file. Thus, the entire

I

60481300·E 5-29



concept of file position does not apply to a direct access
file. The notion of rewinding a direct access file is, for
instance, without meaning.

To create 'a direct access file the user must specify an
OPEN statement with ACCESS='DIRECT' and include the
RECL (record length) specifier. For example:

OPEN(2,FILE='DAFL',ACCESS='DIRECT',RECL=120)

If the length of the iolist in a direct access formatted
WRITE statement is less than the record length of the
direct access file, the unused portion of the record is blank
filled. A direct access WRITE statement must not write a
record longer than"the record length.

A direct access file can be opened for formatted or
unformatted input/output. However, list directed
input/output cannot be used with direct access files.

opens an unformatted file DAFL for direct access. The
file is associated with unit 2 and has a record length of 120
words.

An internal file cannot be opened for. direct access. A
discussion of internal files follows in this section.

The record length of a direct access file must be specified
in the OPEN statement, and all records have the same
length.

Example:

WRITE(2, '(3E10.4)',REC=6)A,B,C
WRITE(2,'(2I4,G20.10)',REC=l)I,J,X

3. The lengths calculated in steps 1 and 2 are added to
determine the record length in words.

1. Each noncharacter item counts as one word except for
double precision and complex items, which count as
two words.

The record length for a formatted direct access file is
specified in characters. The record length for an
unformatted direct access file is specified in words. If the
ioUst for an unformatted WRITE contains character data,
the record length to be written is still spec ified in words
and can be determined by the following rules:

I
2. The length in words of each contiguous group of

character items is determined by adding 9 to the
combined length of the items in characters and
dividing this result by 10, discarding the fractional
part.

Variables A, B, and C are written to record number 6, and
variables I, J, and X are written to record number 1 of the
direct access file associated with unit 2.

Example:

OPEN(2,FILE='DARG',ACCESS='DIRECT',
*FORM='FORMATTED',RECL=72)

DO 14 1=10,2,-2
READ(2,99,REC=I,ERR=20) (A(J),J=1,6)

99 FORMAT (6E12.6)

14 CONTINUE

Records 10, 8, 6, 4, and 2 are read from the direct access
file DARG.

The length of the output record is determined by the
following calculation:

Example:

CHARACTER A*7,B*9,C*10,D*20,E*15,F*12
INTEGER IA,IB,IC,ID(5)
OPEN (5,ACCESS='DIRECT',

*FORM='UNFORMATTED',RECL=100)
WRITE (5,REC=1) A,B,IA,C,IB,E,D,ID,F

Records in a direct access file are identified by a record
number. The record number is a positive decimal integer
that is assigned when the record is written. Once a record
is written with a record number, it can always be accessed
with the same number. The order of records on a direct
access file is the order of their record numbers. Records
can be written, rewritten, or read by specifying the record
rumber in a READ or WRITE statement. Records can be
read or written in any order; they need not be referenced
in the order of their record numbers. The number of the
record to be read or written is specified in a READ or
WRITE statement with the REC=rn specifier.

FORTRAN provides three statements that can be used to
establish, examine, or alter certain attributes of files used
for input or output. These are the OPEN, INQUIRE, and
CLOSE statements.

INPUT/ OUTPUT STATUS STATEMENTS

The OPEN statement can be used to associate an existing
file with a unit number, to create a new file and associate
it with a unit number, or to change certain attributes of an
existing file. The OPEN statement is shown in figure 5-43.

The UNIT= parameter is required; all other parameters are
optional except that the RECL parameter must be
specified if a file is being opened for direct access. If a
STATUS of OLD or NEW is specified, a FILE=specifier must
be given.

OPEN

= 2 words
= 1 words
= 1 words
= 1 words
= 4 words
= 5 words
= 2 words

(length of A + length of B + 9)/10
IA
(length of C + 9)/10
IB
(length of E + length of 0 + 9)/10
10
(length of F + 9)/10

Record length = 2+1+1+1+4+5+2=16 words

5-30 60481100 E



OPEN ([UNIT=] u[,IOSTit!AITI=ilijOIISl]1it.iIIE~RjR=SI] [,FILE=fin] [,STATUS=sta] [,ACCESS=acc] [,FORM=fm] [,RECL=rl]
[,BLAN K=blnkl~

u Specifies the unit number of the file to be opened. (See File Usage.)

ios Is an integer variable that contains an error number if an error occurs during the open, or zero if no errors
occur.

sl Is the label of an executable statement to which control transfers if an error occurs during the open.

fin Is a character expression (seven characters or fewer; first character must be a letter) whose value is the name of the
file to be opened. Trailing blanks are removed. This file becomes associated with unit u.

sta Is a character expression specifying file status. Valid values are:

'OLD'

'NEW'

'SCRATCH'

'UNKNOWN'

File fl currently exists.

File fl does not currently exist.

Delete the file associated with unit u on program termination or execution of CLOSE
that specifies unit u; must not appear if FILE parameter is specified.

File status is unknown.

Default is STATUS= 'UN KNOWN I.

acc Is a character expression specifying the access method of the file. Valid values are:

'SEQUENTIAL'

'DIRECTI

File is to be opened for sequential access.

File is to be opened for direct access.

Default is ACCESS=ISEQUENTIAL'.

If the file exists, the access method must be valid for the existing file.

fm Is a character expression having one of the following values:

'FORMATTED' File is being opened for formatted input/output.

IUNFORMATTED' File is being opened for unformatted input/output.

Default is FORM= 'FORMATTED1 for sequential access files, FORM= 'UNFORMATTED' for direct access files.

For an existing file, the specified form must be valid for that file.

rl variable or positive integer constant specifying the record length for a direct
for a direct access file; '1!lllliil!.IIII~~I!!illll!llill!il'i!~il'1111~!II~111llll~ilil '~l

1.111~lilill!'II'illi!ilii:tlll~l

blnk Is a character expression having one of the following values:

INULL'

'ZERO'

Blank values in numeric formatted input fields are ignored, except that a field of all
blanks is treated as zeros.

Blanks, other than leading blanks, are treated as zeros.

Default is BLANK= INULL1 •

Figure 5-43. OPEN Statement

60481300 D 5-31



u Is the unit designator of the file to be closed.

CLOSE

CLOSE ([UNIT=] u[,IOSTAT=ios] [,ERR=sl] [,STATUS=sta])

The file is kept after exe­
cution of the CLOSE
statement.

The file is unloaded after
execution of the CLOSE
statement.

IKEEP'

'DELETE'

Figure 5-44. CLOSE Statement

'KEEP' is not valid for a file whose status is
'SCRATCH'.

Default is STATUS= IDELETE' if file status
is 'SCRATCH'; otherwise, tbe default is
STATUS= 'KEEP' .

Is a character expression that determines the
disposition of the file associated with the speci­
fied unit. Valid values are:

sta

A CLOSE statement can appear in any program unit in the
program; it need not appear in the same program unit as
the OPEN statement specifying the same unit.

A CLOSE statement that references a unit that does not
have a file connected to it has no effect.

ios Is an integer variable which, upon completion
of the CLOSE, contains the error number; a
value of 0 indicates no errors occurred.

The CLOSE statement disconnects a file from a specified
unit and specifies whether the file connected to that unit is
to be kept or released. The CLOSE statement is shown in
figure 5-44.

sl Is the label of an executable statement to
which control transfers if an error occurs
during the close.

Once properties of a file have been established in an OPEN
statement, only the BLANK= parameter can be changed in
a subsequent OPEN statement for that file, unless the file
is first closed in a CLOSE statement.

OPEN (3,FILE='XXX'STATUS='OLD',BLANK='ZERO')

Example:

When data is read from the existing file XXX, blanks will
be interpreted as zeros.

Example:

OPEN (2,STATUS='NEW,ERR=12,FILE='NEWFL',
*ACCESS='SEQUENTIAL')

A new file, NEWFL, is associated with unit 2 and is to be a
sequential access file.

If a file is associated with a unit and a succeeding OPEN
statement associates a different file with the same unit,
the effect is the same as performing a CLOSE without a
STATUS= specifier on the currently associated file before
associating the new file with the unit. For example:

OPEN (2,FILE='MYFILE')
WRITE (2,'(A)')A,B,C
OPEN (2,FILE='PART2')

In th is example, the second OPEN statement closes
MYFILE before opening PART2.

After a unit has been disconnected by a CLOSE statement,
it can be connected again within the same program to the
same file or to a different file. A file connected to a unit
specified in a CLOSE statement can be connected again to
the same or to another unit, provided the file still exists.

File equivalence established on the PROGRAM statement
or on the execution control statement is no longer in effect
after the CLOSE statement is executed.

'M1en a program terminates normally, an implicit CLOSE
(u,STATUS='KEEP') occurs for each connected unit unless
the status of the file was SCRATCH; in this case, a CLOSE
(u,STATUS='DELETE') occurs.

Example:

CLOSE (2,ERR=25,STATUS='DELETE')

5-32 60481300 E



INQUIRE

There are two forms of the INQUIRE statement: inquire by
unit is used to obtain information about the current status
of a specified unit; inquire by file is used to obtain
information about the current status of a file. The
INQUIRE statement is shown in figure 5-45.

Either a file name (inquire by file) or a unit specifier
(inquire by unit), but not both, must be specified in an
INQUIRE statement. The file or unit need not exist when
INQUIRE is executed. Following execution of an INQUIRE
statement, the specified parameters ccntain values that
are current at the time the statement is executed. If a
unit number is specified and the unit is opened, the

INQUIRE ({~y~~~~u} [,IOSTAT=ios] [,ERR=sl] [,EXIST=ex] [,OPENED=od) [,NUMBER=num] [,NAMED=nmd] [,NAME=fn]

[,ACCESS=acc] [,SEQUENTIAL=seq] [,DIRECT=dir] [,FORM=fm) [,FORMATTED=fmt] [,UNFORMATTED=unf]
[,RECL=rcl] [,NEXTREC=nr] [,BLANK=blnk] )

u Is the external unit for which information is to be returned; if the unit is associated with a file, information about
the file is returned. (The format of this parameter is described under File Usage.)

fin Is a character expression specifying the name of the file for which information is to be returned.

ios Is an integer variable which, upon completion of the INQU IRE, contains an error number; the value is 0 if no
errors occurred.

sl Is a user-specified statement label of an executable statement to which control passes if an error occurs during
an inquire.

ex Is a logical variable:

.TRUE. The file (unit) exists.

.FALSE. The file (unit) does not exist.

od Is a logical variable:

.TRUE. The file (unit) is connected to a unit (file).

.FALSE. The file (unit) is not connected to a unit (file).

num Is an integer variable containing the external unit number of the unit currently associated with the file; undefined
if the file is not associated with a unit.

nmd Is a logical variable:

.TRUE. The file has a name .

.FALSE. The file does not have a name.

fn Is a character variable containing the name of the file associated with unit u.

acc Is a character variable indicating the access method of the file:

'SEQUENTIAL'

'DIRECT'

The file is opened for sequential access input/output.

The file is opened for direct access input/output.

If the file is not opened, acc is undefined.

seq Is a character variable indicating whether the file can be opened for sequential access input/output:

'YES'

'NO'

'UNKNOWN'

The file can be opened for sequential access input/output.

The file cannot be opened for sequential access input/output.

Cannot be determined.

dir Is a character variable indicating whether the file can be opened for direct access input/output:

60481300 E

'YES'

'NO'

'UNKNOWN'

The file can be opened for direct access input/output.

The file cannot be opened for direct access input/output.

Cannot be determined.

Figure 5-45. INQUIRE Statement (Sheet 1 of 2)

5-33 I



fm Is a character variable indicating formatted or unformatted input/output:

'FORMATTED' The file is opened for formatted input/output.

IUNFORMATTED' The file is opened for unformatted input/output.

If the file has not been opened, fm is undefined.

fmt Is· a character variable specifying whether the file can be opened for formatted input/output:

'YES'

'NO'

.The file can be opened for formatted input/output.

The file cannot be opened for formatted input/output.

IUNKNOWN' It cannot be determined if the file can be opened for formatted input/output.

unf Is a character variable specifying whether the file can be opened for unformatted input/output:

IYES' The file can be opened for unformatted input/output.

'NO' The file cannot be opened for unformatted input/output.

'UNKNOWN' It cannot be determined if the file can be opened for unformatted input/output.

rcl Is an integer variable containing the record length of a file opened for direct access. If the file is 'FORMATTED',
rcl contains the record length in characters; if IUNFORMATTED', the record length is in words; undefined if the
file is not opened for direct access.

nr Is an integer variable; for a direct access file, nr contains the record number of the next record to be read or
written. If no records have been read or written, nr contains 1. Undefined for sequential files.

blnk Is a character variable:

'NULL' Null blank control is in effect for a file opened for formatted input/output.

'ZERO' Zero blank control is in effect for a file opened for formatted input/output.

Undefined if the file is not opened for formatted input/output.

Figure 5-45. INQUIRE Statement (Sheet 2 of 2)

INTERNAL FILES
Internal files provide a means of reformatting and
transferring data from one area of memory to another.
Input and on internal files

statements ;II~~;II~~I~I:~II!I~~.·••••••
l~i~.ilil.~~III~ ••••••••••••••II~~~lilllil~;I; However, no

files allow
without the necessity of writing it and

rereading it 'under a different format specification.
Internal files also allow numeric conversion to or from
character data The of internal files are
standard

NAMED, NAME, ACCESS, SEQUENTIAL, DIRECT, FORM,
FORMATTED, UNFORMATTED, RECL, NEXTRt::C,
OPENED, EXIST, NUMBER, ACCESS, and BLANK
specifiers will contain information about the file
associated with the unit. If a file name is specified, the
NAMED, NAME, SEQUENTIAL, DIRECT, FORMATTED,
UNFORMATTED, OPENED, EXIST, NUMBER, ACCESS,
FORM, RECL, NEXTREC, and BLANK specifiers will
contain information about the file and the unit it is
associated with.

If a nonexistent file or unit is specified, no error results
but certain parameters are not assigned values. Note that
if a unit that is not associated with a file is specified, only
the lOSTAT and EXIST parameters contain values.

If an error occu rs during an INQUIRE, only lOSTAT
contains a value.

Example:

LOGICAL EX
CHARACTER*lO AC

STANDARD INTERNAL FILES

A standard internal file can be any character variable,
array, or substring. If the file is a variable or substring, it
consists of a single record whose length is the length of the
variable or substring. If the file is an array, each array
element constitutes a single record. For example:

CHARACTER *20 A(lOO)

The internal file A contains 100 records of 20 characters
each.

INQUIRE (FILE='AFILE', ERR=lOO, EXIST=EX,
*ACCESS=AC)

I 5-34 60481300 E



Records of an internal file are defined by storing data into
the records, either with an output statement or an
assignment statement.

It is not necessary to declare internal files in the
manner as external files. Only formatted

I be unformatted, list directed, i~j~I~~.~if~~'I~i,I~!4I~hr~il

j11~'••~~!l~,~~rJ~~a~~re~ not valid fort' and file status statements cannot be
with internal files. Some sample programs using internal
files are ircluded in section 12.

Output

Data is written to standard internal files using a formatted
WRITE statement (figure 5-3) in which the internal unit
specifier u is a character variable, array, or substring
name. The WRITE statement transmits data from the
variables specified in iolist to consecutive locations
starting with the leftmost character of the location
specified by u; data is converted from internal to
character format according to the format specification.
The number of characters transmitted is determined by the
record length.

Figure 5-46 shows some examples of internal files used for
output.

Example 1:
INTEGER A,B,C,D
CHARACTER*4 AR(4)

A=123
B=-27
C=104
D=1234
WRITE (AR, I( 14)1 )A,B,C,D

In memory:

Id 123 Id -27 Id 104 I 1234 I
The WR ITE statement defines an internal file, AR, and
writes four records to the file.

Example 2:

CHARACTER *S BI RD(3),A*l,B,C

A=IZ'
B= IABCDEI
C= 11234567S1

WRITE (BIRD, I(A1/A5/AS)1 )A,B,C

In memory:

I Zddd~~~~ IABCDE~~~ 11234567s1

BIRD(1) BIRD (2) BIRD(3)

The WRITE statement defines an internal file, BIRD,
which contains three records (array elements).

Figure 5-46. Internal File Output Examples

60481300 E

Input

Data is read from a standard internal file using a
formatted READ statement (figure 5-1) in which the
internal unit identifier is a character variable, array, or
substring. Data is transferred from consecutive locations
starting at the first character position of u, converted
under format specification, and stored in the variables
specified in iolist.

Some examples of internal files used for input are shown in
figure 5-47.

Example 1:

CHARACTER*3 ZT(6),A,B,C

READ (ZT, I(A3)1 )A,B,C

Contents of ZT:

'CATI DOG 1 RUNI

ZT(1) ZT(2) ZT(3)

Stored in A, B, C:

A CAT

B DOG

C RUN

Example 2:

CHARACTER CN*12

READ (eN, 1(413)1 )I,J,K,L

Contents of CN:

Stored in I,J,K,L (internal integer format):

2

J 56

K 4

L 8

Figure 5-47. Internal File Input Examples

5-35



I

5-36 60481300 E



FILE POSITIONING 5TATEMENT5
Three statements can be used to position files connected
for sequential access: REWIND, BACKSPACE, and
ENDFILE.

REWIND

The REWIND statement, shown in figure 5-51 positions a
file at beginning-of-information so that the next
input/output operation references the first record in the
file, even though several ENDFILE statements may have
been issued to that unit since the last REWIND. If the file
is already at beginning-of-information, no action is taken.
(Refer to BACKSPACE/REWIND, appendix F, for further
information.)

Example:

REWIND 3

REWIND ([UNIT=] u[,IOSTAT=ios][,ERR=sl])

REWIND u

u Is an external unit specifier.

ios Is an integer variable which, after execution
of REWIND, contains an error number; a
value of 0 indicates no errors occurred.

sl Is a statement label of an executable
statement to which control transfers if an
error occurs during the rewind.

Figure 5-51. REWIND Statement

60481300 E 5-37



BACKSPACE

The BACKSPACE statement, shown in figure 5-52,
backspaces unit u one record. When the file is positioned
at beginning-of-information, this statement acts as a
do-nothing statement. Backspace operations should not be
used on direct access files or on records created by list
directed or NAMELIST output.

BACKSPACE ([UNIT=] uLIOSTAT=ios] LERR=sl])

BACKSPACE u

u, ios, and sl are as described for REWIND.

Figure 5-52. BACKSPACE Statement

Example:

DO 1 LUN = 1,4
1 BACKSPACE LUN

The files associated with units 1 through 4 are backspaced
one record.

5-38

ENDFILE

The ENDFILE statement, shown in figure 5-53 writes an
end-of-partition (end-of-file) on the designated unit.
ENDFILE is not permitted on units opened for direct
access. The end-of-partition boundary can be detected by
the END= and lOSTAT= specifiers.

ENDFILE ([UNIT=] u[,IOSTAT=ios] [,ERR=sll)

ENDFILE u

u, ios, and sl are as described for REWIND.

Figure 5-53. ENDFILE Statement

Because the file mode (formatted or unformatted) cannot
be detected, ENDFILE should not be the first operation on
a file.

Example:

lOUT = 7
ENDFILE (UNIT=IOUT, ERR=100)

End-of-partition is written on unit 7.

60481300 B



PROGRAM UNITS AND PROCEDURES 6

An executable program contains one main program unit
and zero or more subprograms. Each subprogram is a
program unit. A program unit is a group of FORTRAN
statements, with optional comments, terminated by an
END statement.

A main program is a program unit that does not begin with
a SUBROUTINE, FUNCTION, or BLOCK DATA
statement. Usually, a main program begins with a
PROGRAM statement, but this statement can be
omitted. Execution of any program begins with the main
program unit.

A subprogram is a program unit that begins with a
SUBROUTINE, FUNCTION, or BLOCK DATA statement.
A subprogram is defined separately and can be compiled
independently of a main program. A subprogram that
begins with a SUBROUTINE or FUNCTION statement is a
procedure subprogram and can accept one or more values
through a list of arguments, through common blocks, or
both. A subprogrqm that begins wi th a BLOCK DATA
statement is a specification subprogram.

A procedure can be a function subprogram (external or
intrinsic), a subroutine subprogram, or a statement
function. Intrinsic functions are FORTRAN-supplied
procedures and are available to any programmer
(section 7). External functions, subroutines, and
statement functions are provided by the programmer.

Functions return single values through the function
names. Function subprograms defined by the programmer
can also return values through a list of arguments, through
common blocks, or both.

This section discusses programmer-written procedures,
which include statement functions, function subprograms,
and subroutine subprograms. FORTRAN-supplied
procedures, which include intrinsic functions and utility
subprograms, are discussed in section 7. The only
subprogram that is not a procedure is the block data
subprogram, which is not executable.

Table 6-1 summarizes the characteristics of procedures
and subprograms.

MAIN PROGRAMS
A main program can contain any FORTRAN statements
except FUNCTION, SUBROUTINE, BLOCK DATA, or
ENTRY. The main program should have a PROGRAM
statement and at least one executable statement followed
by an END statement. No executable program can have

ain ro ram unit

TABLE 6-1. CHARACTERISTICS OF PROCEDURES AND SUBPROGRAMS

Main Program Subroutine External Function Intrinsic Function Statement Function Block Data
Subprogram

- Procedure Procedure Procedure Procedure -

- Subprogram Subprogram - - Subprogram

- - Function Function Function -

User-written User-written User-written Supplied User-written User-written

Separate Separate program Separate program In the FORTRAN Within a program Separate
program unit U'1it unit library unit program unit

Not typed Not typed Typed implicitly Typed by intrinsic Typed implicitly Not typed
or explicitly function name, or or explicitly

generic

- Alternate RETURN RETURN allowed Single RETURN, Immediate RETURN, -
allowed effectively effectively

- Accepts values Accepts values Accepts values Accepts values -
through arguments through arguments through arguments through arguments
or common blocks or common blocks

- - Returns a value Returns a value Returns a value -
for the function for the function for the function
name name name

604813000 6-1



name Is the program name that cannot be
used elsewhere in the program as a
user-defined name.

PROG RAM name

Figure 6-1. PROGRAM Statement

The PROGRAM statement defines the program name that
is used as the entry point name and as the object deck
name for the loader. Figure 6-1 shows the syntax for the
PROGRAM statement.

The main program can be compiled independently of any
subprograms. When a main program is loaded into
memory for execution, all the required subprograms must
also be loaded and ready for execution.

PROGRAM S1A1EMEN1

6-2 60481300 0



PROCEDURES
The main program unit is a procedure. Other procedures
can be sLbroutines, function subprograms, intrinsic
functions, and statement functions. The use of additional
procedures depends on the needs of the program. If the
program requires the evaluation of a standard function,
then a FORTRAN intrinsic function can be used. If a
single computation is needed repeatedly, a user-written
statement function can be included in the program. If
several statements are required to obtain a single value, a
function subprogram can be written. If several statements
are required to obtain more than one value, a subroutine
can be written.

Procedures enable multiple executions of the same
routine. Communication can be controlled through the use
of common blocks or through passing actual arguments.
Procedures (except statement functions) can be compiled
independently of the main programs or other procedures.

BLOCK OATA SUBPROGRAM

A block data subprogram is the only subprogram that is not
a procedure. The block data subprogram is a
nonexecutable specification subprogram that can be used
to enter initial values for variables and array elements in
named common blocks. A program can have more than one
block data subprogram. Only one block data subprogram
can be Li'1l1amed;

The BLOCK DATA statement must appear as the first
statement of the block data subprogram. The name used
for the block data subprogram must not be the same as any
local variables in the subprogram. The name is global and
must not be the same as any other program unit or entry
name in the program. The BLOCK DATA statement is
shown in figure 6-3.

Block data subprograms can contain IMPLICIT,
PARAMETER;~!~;S~;~ION, type, COMMON, SAVE,
EQUIVALENCE,illlil~! or DATA statements. A block
data subprogram ends·· with an END statement. Data can
be entered into more than one common block in a block
data program. All variables having storage in the named
common must be specified even if they are not all initially
defined. A sample block data subprogram with two named
common blocks is shown in figure 6-4.

BLOCK DATA ANAME
COMMON ICATI X,Y,Z IDEFI R,S,T
COMPLEX X,Y
DATA X,Y 12*(1.0,2.7)/, R/7.65431
END

Figure 6-4. Example of BLOCK DATA

In the example, not all entities in the common blocks are
initially defined. The variable Z in block CAT, and the
variables Sand T in block DEF are not initially defined.

SUBROUTINE SUBPROGRAM

A subroutine subprogram is executed when a CALL
statement naming the subroutine is encountered in a
program unit. A subroutine must not directly or indirectly
call itself. The subroutine communicates with the calling
program unit through a list of arguments passed with the
CALL statement or through common blocks.

The SUBROUTINE statement must appear as the first
statement of the subroutine subprogram and contains the
symbolic name that is the main entry point of the
subprogram. The subprogram name is not used to return
results to the calling program. The name must not be the
same as any other program unit or entry name. The name
also cannot be the same as any name in the subroutine.
The SUBROUTINE statement is shown in figure 6-5.

SUBROUTINE sub [{[d [,d]. ..])]

sub Is the name of the subroutine
subprogram. If there are no dummy
arguments, either sub or subO can be
used.

BLOCK DATA [sub]

sub Is the name of the block data
subprogram.

d Is a dummy argument that can be a
variable name, array name, dummy
procedure name, or *.

Figure 6-3. BLOCK DATA Statement

60481300 E

Figure 6-5. Subroutine Statement

6-3



Subroutines can contain any statements except a
PROGRAM, BLOCK DATA, FUNCTION, or another
SUBROUTINE statement. Subroutines begin with a
SUBROUTINE statement and end with an END statement.
If control flows into the END statement, then a RETURN
is implied. Control is returned to the calling program unit
when a RETURN or END statement is encountered.

An example of a subroutine call is shown in figure 6-6.

Subroutine ERROR1 is called and executed if A-B is less
than zero. Control returns to statement 20. The example
illustrates that arguments need not be used.

In a subroutine subprogram, the symbolic name of a
dummy argument is unique to the program unit and must
not appear in an EQUIVALENCE, PARAMETER, SAVE,
INTRINSIC, OATA, or COMMON statement, except as a
common block name. The dummy arguments are replaced
with the actual arguments during a subroutine call. The
SUBROUTINE statement can also have dummy arguments
for statement labels; these arguments are represented by
asterisks.

Dummy arguments that represent array names must be
dimensioned by a DIMENSION or type statement.
Adjustable dimensions are permitted In subroutine
subprograms. More details can be found later in this
section under Referencing a Procedure.

FUNCTION SUBPROGRAM

Function subprograms can be external functions, intrinsic
functions, or statement functions. Both external and
intrinsic functions are specified externally from the
program unit that referenced them; statement functions
are contained within the referencing program unit.

External Functions

A function subprogram performs a set of calculations
when the name appears in an expression in the referencing
program unit. A function must not directly or indirectly
reference itself. The function subprogram communicates
with the referencing program unit through a value
associated with the function symbolic name, through a list
of arguments, or through common blocks.

The function statement must appear as the first
statement of the function subprogram. The FUNCTION
statement contains the symbolic name that is used as the

main entry point of the subprogram. A function can have
more than one entry point. The FUNCTION statement is
shown in figure 6-7.

[typ] FUNCTION fun( [d [,d] ...])

typ Is INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, or
CHARACTER*len. The len value specifies the
length of the result of the character function.

fun Is the name of the function subprogram;
fun is an external function name.

d Is a dummy argument that can be a
variable name, array name, or dummy
procedure name.

Figure 6-7. FUNCTION Statement

The symbolic name of a function subprogram, or an
associated entry name of the same type, is a variable
name in the function. The symbolic name specified in a
FUNCTION or ENTRY statement must not appear in any
other nonexecutable statement, except a type statement.
If the type of a function is specified in a FUNCTION
statement, then the function name cannot appear in a
type statement. In an executable statement, the symbolic
name can appear only as a variable. During execution,
this variable becomes defined and can be referenced or
redefined. The value of the function is the value of this
variable when control returns to the referencing program
unit.

The type of the function name must be the same in the
referencing program unit and the referenced function
subprogram. When type is omitted, the type of the
function is determined by the first character of the
function name. Implicit typing by the IMPLICIT
statement takes effect only when the function name is not
explicitly typed. The name cannot have its type explicitly
specified more than once.

If the name of a function subprogram is of type character,
then each entry name must be type character and vice
versa. The length of the function symbolic name and any
entry names in the function must be specified with the
same length. For example, if the function name has a
length of (*), all entry names must have a length of (*).

I

100

10
20

C

PROGRM~ MAltI
INTEGER A.n
READ(5.1(:0) 1\. B
FOHHAT(212)
IF (A-B) 10,20,20
CALL ERROR 1
RESULT = (A*100) + 375.2
STOP
EtlD

SUBROUTINE ~RROH1

'r.'RITE(6.1)
FOR!"IAT(5X, 'i!U~1BER IS OUT OF RAtiGF')
RETU R!~

EflD

Figure 6-6. Subroutine Call Example

6-4 60481300 E



The symbolic name of a
as any other name, ;111,11:.I!i;iil:iil,~!1111111'ill~illil~l;

The name can be the same as a name
function subprogram, if used as a variable name.

Function subprograms can contain any statements except
PROGRAM, BLOCK DATA, SUBROUTINE, or another
FUNCTION statement. They begin with a FUNCTION
statement and end with an END statement. Control is
returned to the referencing program unit when a RETURN
or END is encountered; a RETURN statement of the form
RETURN e, (described under Referencing a Procedure) in a
function subprogram is not allowed.

appear after the specification statements and before the
first executable statement in the program unit. A
statement function must not directly or indirectly
reference itself.

A statement function is specified by statement and
is similar to an arithmetic, logical, .li~~I.I,I~li, or character
assignment statement. The syntax statement
function is shown in figure 6-9.

fun{ [d [,d] ...]) = expr

fun Is the function name.
Although alternate returns are prohibited for function
stbprograms, multiple entries are allowed, as describedI later in th is section. An example is shown in figure 6-8.

d Is a statement function dummy argument.

PROGRAM MAIN
INTEGER Z
Z = JOR(5,3)
ZZ = JAM(5,3)
PRINT *, Z,ZZ
STOP
END

C
FUNCTION JOR (X,Y)
INTEGER X,Y
JOR = X-Y
RETURN
ENTRY JAM(X,Y)
JAM=X+Y
RETURN
END

Figure 6-8. Function Reference

Function subprogram JOR is executed when the name
appears in the calling program unit. The alternate entry
point is entry JAM in function JOR.

In a function subprogram, the symbolic name of a dummy
argument is unique to the program unit and must not
appear in an EQUIVALENCE, PARAMETER, SAVE,
INTRINSIC, DATA, or COMMON statement, except as a
common block name. The dummy arguments are replaced
with the actual arguments during a function reference.

Dummy arguments that represent array names must be
dimensioned by a DIMENSION or type statement.
Adjustable dimensions are permitted in function
subprograms, as described later in this section under
Referencing a Procedure.

Intrinsic Functions

Intrinsic functions are supplied by the FORTRAN library.
The rules for using intrinsic functions are the same as for
user-written function subprograms. An IMPLICIT
statement does not change the type of an intrinsic
function. Section 7 discusses intrinsic functions in detail,
including generic and specific names, function definitions,
type of arguments, and type of results.

Statement Functions

A statement function is a user-defined, single-statement
computation that applies only to the program unit
containing the definition. A statement function is a
nonexecutable statement. A statement function must

60481300 E

expr Is an expression in which each primary is an
expression expr enclosed in parentheses, or is
one of the follOWing:

Constant
Symbolic constant
Variable reference
Array element reference
Intrinsic function reference
Reference to a statement function which

~ee;~rs in th;~~~;iprogram unit,
;iQ.ilati: beforeg:I1·~.i; th is statement

External function reference
Dummy IoI'V"""uu,,,,, reference

Figure 6-9. Statement Function

The symbolic name of the function is a variable and
contains the value of the expression after execution.

the actual ar ument expressions are

and passed to the function. Thus, an actual
argument cannot be an array name or a function name. In
addition, if a character variable or array element is used as
an actual argument, a substring reference to the
corresponding dummy argument must not be specified in
the statement function expression. The expression of the
function is evaluated, and the resulting value is converted
as necessary to the data type of the function. An example
of a program that uses statement functions is shown in
figure 6-10.

name of a statement function is local and
other local name in the

lit,,';'IIIII!~I~e,i,lil,I~lilli'!I;~ligl:llliiIIB,~11The name of
argument and

must not appear in an INTRINSIC or EXTERNAL
statement. If the. statement function is used in a function
subprogram, then the statement function can contain a
reference to the name of the function subprogram or any
of its entry names as a variable, but not as a function.

Each variable reference in the expression can be either a
reference to a variable within the same program unit or to
a dummy argument of the statement function. Statement
functions can reference dummy variables that appear in a
SUBROUTINE, FUNCTION, or ENTRY statement, but that
statement must precede the statement function. If a
statement function dummy argument is the same as
another variable in the program unit and that name is
referenced in the expression of the statement function, the
reference is to the statement function dummy argument
and not to the other variable. The names used for
statement function dummy arguments have a scope of the
statement function definition.

6-5

I



PROGRA"1 SF UNC
INTEGER SN
DI~ENSION AVG(25)
ADD(A,B,C,D) = A+B+C+D
AVRG(T1,T2,T3,T4) = ADD(T1,T2,T3,T4)/4
GRADE(SCORE,HSCORE) = (SCORE/HSCORE) * 100
SN=l

1 READl*,100,END=20) 31,S2,S3,S4
100 FORMAT(4F5.1)

AVG(S~)=AVRG(Sl,S2,S3,S4)
NS=SN
SN = SO +1
GO TO 1

20 HIGH = AVG(l)
DO 30 SN = 1, US
IF(AVG(SN) .GT. IIH~Il) HIGH = AVG(SN)

30 CONTINUE
DO 4 0 S l! =1. ;'1 S
CRVEDG = GRJU)E(AVG(SN),HIGH)
PRINT *, CRVEDG

40 CONTINUE
STOP
END

Figure 6-10. Examples of Statement Functions

the reference is to the statement function dummy
argument and not tc the other variable. The names used
for statement function dummy arguments have a scope of
the statement function definition.

Multiple Entry

Each procedure subprogram has a primary entry point
established by the SUBROUTINE or FUNCTION statement
that begins the program uni t. A subroutine call or
function reference usually invokes the procedure at the
primary entry point, and the first statement executed is
the first executable statement in the program unit.
ENTRY statements can be used to define other entry
points. A procedure that contains one or more ENTRY
statements has multiple entry points. The ENTRY
statement is shown in figure 6-11.

ENTRY ep[([d[,d]. ..])]

When an entry name is used to reference a procedure,
execution begins with the first executable statement that
follows the referenced entry point. An entry name is
available for reference in any program unit, except in the
procedure that contains the entry name. The entry name
can appear in an EXTERNAL statement and (for a
function entry name) in a type statement.

Each reference to a procedure must use an actual
argument list that corresponds in number of arguments
and type of arguments with the dummy argument list in
the corresponding SUBROUTINE, FUNCTION, or' ENTRY
statement. Type agreement is not required for actual
arguments that have no type, such as a dummy subroutine
name. The dummy arguments for an entry point can
therefore be different from the dummy arguments for the
primary entry point or another entry point. No dummy
argument can be used in an executable statement of a
procedure unless it has already appeared in a FUNCTION,
SUBROUTINE, or ENTRY statement.

A procedure with multiple entry points is shown in
figure 6-12.

ep

d

Is an entry point name in a function or
subroutine.

Is a dummy argument that can be one of
the following:

A variable name

An array name

A dummy procedure name

An asterisk, only if in a subroutine
subprogram

Figure 6-11. ENTRY Statement

PROCEDURE COMMUNICATION

Communication between the referencing program unit and
the referenced procedure can be through common blocks
or by passing actual arguments to the procedure.
Common blocks cannot be used to pass data to intrinsic
functions or statement functions; the method used to pass
data to these procedures is through an argument list.
Common blocks and argument lists can be used for
external, that is, user-written procedures, but passing
procedure names to the external procedures can only be
through an argument list.

ACTUAL ARGUMENTS

An ENTRY statement can appear anywhere after the
SUBROUTINE or FUNCTION statement in the
subprogram. An ENTRY statement cannot appear
between a block IF statement and its corresponding END
IF statement, or between a DO statement and the
terminal statement of the DO loop.

6-6

Actual arguments appear in the argument list of the
referencing program unit. The referencing program unit
passes actual arguments to the referenced procedure. The
procedure receives values from the actual arguments and
returns values to the referencing program uni t. Actual
arguments can be constants, symbolic names of constants,

60481300 C



1
5

6
99

goo

C

20

10

PROGRAM MAIN
DIMENSION SET1(25)
READ 5,N
FORMAT(I1)
IF(N .EO. 0) GO TO 900
IF(N .EO. 1) CALL CLEAR(SET1)
IF(N .EO. 2) CALL FILL(SET1)
DO 99 1=1,25
PRINT 6, SET1(I)
FORMAT (F5.2)
CONTINUE
GO TO 1
STOP
END

SUBROUTINE CLEAR(ARRAY)
DIMENSION ARRAY(25)
DO 10 1= 1,25
ARRAY(I) = 0.0
CONTINUE
ENTRY FILL(ARRAY)
READ *, VALUE,IPLACE
IF(IPLACE .GT. 25) RETURN
ARRAY(IPLACE) = VALUE
RETURN
END

A dummy argument is undefined unless it is associated
with an actual argument. Argument association can exist
at more than one level of procedure reference, and
terminates within a program unit at the execution of a
RETURN or END statement.

A subprogram reference can cause a dummy argument to
be associated with another dummy argument in the
referenced procedure. Any dummy arguments that
become associated with each other can be referenced but
must not be stored into during the execution of the
procedure. For example, if a procedure is defined as:

SUBROUTINE ALPHA(X,y)

and referenced wi th:

CALL ALPHA(A,A)

then the dummy arguments X and Y would each be
associated with the actual argument A. X and Y would be
associated with each other and therefore must not be
stored into.

A subroutine reference can cause a dummy argument to
become associated with an entity in a common block. For
example, if a procedure contains the statements:

Figure 6-12. Examples of ENTRY Statements

variables, array names, array elements, function
references, and expressions. An actual argument cannot
be the name of a statement function within the
referencing program unit.

DUMMY ARGUMENTS

Dummy arguments appear in the argument list of the
referenced procedure. Within the referenced procedure,
the dummy arguments are associated with the actual
arguments passed. Procedures use dummy arguments to
indicate the types of actual arguments, the number of
arguments, and whether each argument is a variable,
array, procedure, or statement label. Dummy arguments
for statement functions can only be variables. Since all
names are local to the program unit, the same dummy
argument name can be used in more than one procedure.
A dummy argument appearing in a SUBROUTINE,
FUNCTION, or ENTRY statement must not appear in
EQUIVALENCE, DATA, PARAMETER, SAVE, INTRINSIC,
or COMMON statements except as a common block
name. Dummy arguments used in array declarations for
adjustable dimensions must be type integer. Dummy
arguments representing array names must be dimensioned.

ARGUMENT ASSOCIATION

When a procedure is executed, the actual arguments and
dummy arguments are matched up and each actual
argument replaces each dummy argument. The type of
the actual argument and the dummy argument must be the
same. The actual arguments must be in the same order
and there must be the same number as the dummy
arguments in the referenced procedure. The actual
arguments that are evaluated before the association of
arguments include: expressions, substring expressions, and
array subscripts. If the actual argument is a procedure
name, the procedure must be available for execution at
the time of the reference to the procedure.

60481300 C

SUBROUTINE ALPHA(X)

COMMON Y

and the referencing program unit contains:

COMMON A

CALL ALPHA(A)

then the actual argument A causes the dummy
argument X to become associated with Y, which is in
blank common. In this case, X and Y cannot be stored
into during execution of the subroutine.

Character Length

For type character, both the dummy and actual arguments
must be of type character, and the length of the actual
argument must be greater than or equal to the length of
the dummy argument. If the length of the actual
argument of type character is greater than the length of
the dummy argument, only the leftmost characters of the
actual argument, up to the length of the dummy
argument, are used as the dummy argument.

If a dummy argument is an array name, length applies to
the entire array. and not to each array element. Length of
array elements in the dummy argument can be different
from length of array elements in the actual argument.
The total length of the actual argument array must be
greater than or equal to the total length of the dummy
argument array.

When an actual argument is a character substring, the
length of the actual argument is the length of the
substring. If the actual argument expression involves
concatenation, the sum of the lengths of the operands is
the length of the actual argument.

6-7



Variables

A variable in a dummy argument can be associated with a
variable, array element, substring, or expression in the
actual argument. A procedure can define or redefine the
associated dummy argument if the actual argument is a
variable name, array element name, or substring name.
The procedure cannot redefine the dummy argument if the
actual argument is a constant, a symbolic constant, a
function reference, an expression using operators, or an
expression enclosed in parentheses.

Arrays

The array declaration in a type, COMMON, or
DIMENSION statement provides the information needed
for the array during the execution of the program unit.
The actual argument array and the dummy argument array
can differ in the number of the dimension and size of the
array. A dummy argument array can be associated with
an actual argument that is an array, array element, or
array element substring.

If the actual argument is a noncharacter array name, the
size of the actual argument array cannot be less than the
size of the dummy argument array. Each actual argument
array element is associated with the dummy argument
array element that has the corresponding subscript value.

An association exists for array elements in a character
array. Note that unless the lengths of the elements in the
dummy and actual argument agree, the dummy and actual
argument array elements might consist of different
characters. For example, if a program unit has the
following statements:

DIMENSION A(2)
CHARACTER A*2

CALL SUB(A)

and the subroutine has the following statements:

SUBROUTINE SUB(B)
DIMENSION B(2)
CHARACTER B*1

then the first character of A(I) corresponds to B(l) and
the second character of A(I) corresponds to B(2).

If the actual argument is a noncharacter array element
name, the size of the dummy argument cannot exceed
(as+l-av), where as is the size of the actual argument
array and av is the subscript value of the array element.
For example, if the program unit has the following
statements:

DIMENSION ARRAY(20)

.
CALL CHECK(ARRAYO))

then the value of as is 20, and av is 3. The maximum
dummy array size is 18 for the subroutine:

SUBROUTINE CHECK (DUMMY)
DIMENSION DUMMY(18)

SWAP= DUMMY(2)

6-8

The actual argument array elements are associated wih
dummy argument array elements, starting with the first
element passed. In the example, DUMMY(2) is associated
with ARRAY(4), and DUMMY(18) is associated with
ARRAY(20).

The association for characters is basically the same as for
noncharacter array elements. The actual argument for
characters can be an array name, array element name, or
array element substring name. If the actual argument
begins at character storage position acu of an array, then
the first character storage position of the dummy
argument array becomes associated with character
storage position acu of the actual argument array, and so
forth to the end of the dummy argument array.

Procedure Arguments

A dummy argument that is a dummy procedure can be
associated only with an actual argument that is an
intrinsic function, external function, subroutine, or
another dummy procedure. If the dummy argument is
used as an external function, the actual argument that is
passed must be a function or dummy procedure. The type
of the dummy argument must agree with the type of
result of all specific actual arguments that become
associated with the dummy argument. When a dummy
argument is used as an external function and is the name
of an intrinsic function, the intrinsic function name
corresponding to the dummy argument name is not
available. If the dummy argument is referenced as a
subroutine, the actual argument must be the name of a
subroutine or dummy procedure, and the dummy argument
must not appear in a type statement or be referenced as a
function.

Asterisk Arguments

A dummy argument that is an asterisk can only appear in
the argument list of a SUBROUTINE or ENTRY statement
in a subroutine subprogram. The actual argument is an
alternate return specifier in the CALL statement.

Adjustable Dimensions

Adjustable dimensions enable creation of a more general
subprogram that can accept varying sizes of array
arguments. For example, a subroutine with a fixed array
can be declared as:

SUBROUTINE SUM(A)
DIMENSION A(10)

The maximum array size subroutine SUM can accept is 10
elements. If the same subroutine is to accept an array of
any size, it can be written as:

SUBROUTINE SUM(A, N)
DIMENSION A(N)

In this case, the value N is passed as an actual argument•

Character strings and arrays can also be adjustable, as in
the subroutine:

SUBROUTINE MESSAG(X)
CHARACTER X*(*)
PRINT *, X

The subroutine declares X with a length of (*) to accept
strings of varying size. Note that the length of the string
is not passed explicitly as an actual argument.

60481300 B



REFERENCING A PROCEDURE

Figure 6-13. Using Common

The array NUMBR in program AVRG and the array A in
subroutine SUM share the same locations in common. The
values read into locations NUMBR(l) through NUMBR(10)
are available to subroutine SUM.

PRO GRA1,1 AVRG
COMMON NUMBR(10), STORE
REAL NUMBR, STORE
READ *, NUHBR
CALL SUfv1
STORE: STORE/l0
PRINT * 'AVERAGE:' STORE
END

Another form of adjustable dimension is the assumed-size
array. In this case, the upper bound of the last dimension
of the array is spec ified by an asterisk. The value of the
dimension is not passed as an argument, but is determined
by the number of elements stored into the array. If an
array is dimensioned *, the array in the calling program
must be large enough to conta in all the elements stored
into it in the subprogram. For example:

SUBROUTINE CAT (A,M,N,B,C)
REAL A(M), B(N), C(*)
DO 10 1=1, M

10 C(I)=A(I)
DO 20 1=1, N

20 C(I+M)=B(I)
RETURN
END

Subroutine CAT places the contents of array A followed by
the contents of array B into array C. The dimension of C
in the calling program must be greater than or equal
to M+N.

Use of the asterisk form Of the adjustable dimension
prevents subscript checking for the array, so the user must
be careful not to reference outside the array bounds. Use
of this form is preferable to the common practice of
declaring arrays to have dimension 1.

C

10

SUBROUTI NE sur~

COMfvl0N A( 10), B
REAL A,B
B : O.
DO 10 I: 1, 10
R = B + A(I)
CONTINUE
RETURN
END

USING COMMON BLOCKS

Common blocks can be used to transfer values between a
referencing program unit and a subprogram. Common
blocks can reduce the number of storage units required for
a program by enabling two or more subprograms to share
some of the same storage units. The variables and arrays
in a common block can be defined and referenced in all
subprograms that contain a declaration of that common
block. The names of the variables and arrays in the
common block can be different for each subprogram. The
assoc iation is by storage and not by name.

The CALL statement is used to reference a subroutine, the
function name is used to reference a function, and the I
statement function name is used to reference a statement
function. Multiple entry points can be used, and alternate
return can be used for subroutines.

Subroutine Call

A subroutine subprogram is executed when a CALL
statement is encountered in a program unit. The syntax
for the the CALL statement is shown in figure 6-14.

CALL sub[([a[,a] ...])]
A reference to data in a common block is valid if the data
is defined and is the same type as the type of the name
used in the main program or subprogram. The exceptions
to agreement between the type in common and the type of
the reference are:

Either part of a complex entity can be referenced as
real.

In a subprogram, entities declared in a labeled common
block can remain defined or become undefined at execution
of an END or RETURN statement. If a labeled common
block with the same name has been declared in a program
unit that is directly or indirectly referencing the
subprogram, the entities remain defined. Entities specified
in a SA VE statement remain defined. Entities that are
initially defined by DATA statements, and have neither
been redefined nor become undefined, remain defined.
Execution of a RETURN or END statement does not cause
entities in blank common, or entities in any labeled
common block that appears in the main program, to
become undefined.

An example using common blocks in a subroutine is shown
in figure 6-13.

60481300 E

sub

a

Is the name of subroutine or dummy
procedure.

Is an actual argument that can be one
of the following:

An expression (except a character
expression involving concatenation
of a dummy argument with length (*))

An array name

An intrinsic function name

An external procedure name

A dummy procedure name

An alternate return specifier of
the form *s

Is the statement label of an executable
statement that appears in the same
program unit as the CALL statement.

Figure 6-14. CALL Statement

6-9



The CALL statement can contain actual arguments and
statement labels which must correspond in order number
and t e to those in the subroutine definition.

An actual argument in a subroutine call can be a dummy
argument name that appears in the dummy argument list of
the subprogram containing the subroutine call. An asterisk
dummy argument cannot be used as an actual argument.

Function Reference

A function is executed when the name is referenced in an
expression. A function must not directly or indirectly
reference itself. The function reference can appear
anywhere in an expression where an operand of the same
type can be used. The syntax of a function reference is
shown in figure 6-15.

fun( [a La] ...])

fun Is the name of the statement ·function.

a Is an actual argument that must be an
expression (except a character expression
involving concatenation of a dummy
argument with length (*)).

Figure 6-16. Statement Function Reference

The type of the statement function result is the type of the
statement function name. The arguments must agree in
order and number with the corresponding dummy
arguments.

A statement function can only be referenced in the
program unit where the statement function appears.

fun([a[,a] ...])

fun

a

Is the name of the function or dummy
procedure.

Is an actual argument that can be one
of the following:

An expression (except a character
expression involving concatenation
of a dummy argument with length (*))

An array name

An intrinsic function name

An external procedure name

Return and Multiple Return

Each procedure subprogram ends with an END statement.
Execution of the END statement terminates the
procedure. The RETURN and END statements are often
used together at the end of the procedure. The RETURN
statement also terminates execution of the procedure.
RETURN statements can be used wherever appropriate to
terminate the procedure. A procedure that contains more
than one RETURN statement (or a single RETURN
statement that is separated from the END statement by
other statements) has multiple returns. The RETURN
statement is shown in figure 6-17. I

RETURN[e]

For a simple return, the optional expression e is not used.
An example is shown in figure 6-18. I

A dummy procedure name

Figure 6-15. Function Reference

The type of the function result is the type of the function
in order, number and
ar uments.

e Is an expression. If
e is not of type integer, the value INT(e)
is used. The optional expression e can
only be used in a subroutine subprogram.

Figure 6-17. RETURN Statement I

Intrinsic and external functions can be referenced in any
I procedure subprogram. Intrinsic functions are predefined

and are described in section 7.

Statement Function Reference

PHOGRALI HAH·J
READ *, X,Y.Z
CALL VAL(X,Y.Z)
EtlD

C
A statement function is evaluated when the name is
referenced in an expression. The actual arguments are
evaluated and converted to the type of the corresponding
dummy argument; the resulting values are used in place of
the corresponding dummy arguments in evaluation of the
statement function expression. The definition of a
statement function must not directly or indirectly
reference itself. The statement function reference can
appear anywhere in an expression where an operand of the
same type can be used. The syntax of a statement function
reference is shown in figure 6-16.

6-10

SUBROUTItiE VAL(A.B,C)
IF (1\ • LT. 0.0) GO TO 12
PRINT *, 'A IS POSITIVE'
j~£TU Hr.J

12 COI1TH1UE
PRINT *. 'A IS rj~GATIVE'

RETURN
END

Figure 6-18. Multiple Return Example

60481300 E

I



Alternate Return

Execution of a RETURN or END statement returns control
to the next executable statement in the referencing
procedure. Control can be returned to a different place in
the referencing procedure if the RETURN statement in the
form RETURN e is used. A procedure that includes any
RETURN e statements has alternate returns. Alternate
returns can only be used in subroutine subprograms.

An alternate return returns control to a specified point
other than the next executable statement following the
procedure reference. The specified point is a statement
label in the referencing procedure. The statement labels
must be included in the actual argument list, each
preceded by an asterisk. Control returns to the statement
label determined by the integer value of the alternate
return expression. If the value of the expression is less
than one, or greater than the number of asterisks in the
SUBROUTINE statement or ENTRY statement that is the
current entry point, control returns to the statement
following the CALL statement. For example, if a CALL
statement contains five statement labels and if the
alternate return expression evaluates to three, control
returns to the third statement label specified in the actual
argument in the alternate return list.

I An example of an alternate return is shown in figure 6-19.
RETURN 1 isa .return to statement 20 in the calling
program; RETURN 2 is a return to statement 30;

60481300 E

RETURN 3 is a return to statement 40. The subroutine
contains both the normal RETURN statement and alternate
RETURN.

PROGRAM MAIN
READ *, A,B,C
CALL XCOMP(A,B,C,*20,*30,*40)

20 CONTINUE
PRINT *, 'RETURNED TO STMT 20'
GO TO 10

30 CONTINUE
PR INT *, 'RETURNED TO STMT 30'
GO TO 10

40 CONTINUE
PRINT * 'RETURNED TO STMT 40'

10 END
C

SUBROUTINE XCOMP(B1,B2,G,*,*,*)
IF(B1*B2 - 4.159) 11,12,13

11 CONTINUE
RETURN 2

12 CONTINUE
RETURN 1

13 CONTINUE
IF(B1 .GT. 32.) RETURN 3
RETURN
END

Figure 6-19. Alternate Return Example

6-11

I



1
1

1
1
1
1
I
1

1
1
1

1
1
1
1

1
1

1
i
1
1
1
1

1
1
1
1
1
1
1
1

1
1

1
1
1
1
1

1
1
1
1
1
i,
I

1
1
1
1
1
1
i

1
1

1

1

1
1
1
1
1
1
1
1
1
1
I



FORTRAN SUPPLIED PROCEDURES 7

FORTRAN 5 provides certain procedures that are of
general utility or are difficult to express in FORTRAN.
The supplied procedures are referenced in the same way as
user-written procedures. The two classes of supplied
procedures are intrinsic functions and utility subprograms.

INTRINSIC FUNCTIONS

An intrinsic function is a compiler-defined procedure that
returns a single value. Intrinsic functions are referenced in
the same way as user-written functions. If a variable,
array, or statement function is defined with the same name
as an intrinsic function, the name is a local name that no
longer refers to the intrinsic function. If a function
subprogram is written with the same name as an intrinsic
function, use of the name references the intrinsic function,
unless the name is declared as the name of an external
function with the EXTERNAL statement described in
section 2. Intrinsic functions are typed by default and
need not appear in any explicit type statement in the
program. Explicitly typing a generic intrinsic function
name does not remove the generic properties of the name.
If an intrinsic function is typed something other than the
default for that function, the compiler does not honor the
type statement and generates an error.

Certain intrinsic functions are generic. If a generic name
and specific names exist, a generic name can be used in
place of a specific name and is more flexible than a
specific name. Except for type conversion generic
functions, the type of the argument determines the type of
the result.

For example, the generic function name LOG computes the
natural logarithm of an argument. Its argument can be
real" double precision, or complex. The type of the result
is the same as the type of the argument.

Specific function names ALOG, DLOG, and CLOG also
compute the natural logarithm. The specific function
name ALOG computes the log of a real argument and
returns a real result. Likewise, the specific name DLOG is
for double precision arguments and results, and the specific
name CLOG is for complex arguments and results.

Only a specific name can be used as an actual argument
when passing the function name to a user-defined
procedure or function. The intrinsic functions are listed in
table 7-1. For specific names, the types of the arguments
and results are shown.

The mathematical intrinsic functions are listed in
table 7-2. The domains and ranges of the functions are
shown in the table.

60481300 E

ABS

ASS(a) is a generic function that returns an absolute
value. The result is integer, real, or double precision,
depending on the argument type. For an integer, real, or
double precision argument,the result is Ia I. For a complex
argument, the result is the square root of (ar2+ai2).
The specific names are lABS, ABS, DABS, and CABS.

ACOS

ACOS(a) is a generic function that returns an arccosine.
The result is expressed in radians. The result is real or
double precision, depending on the argument type. See
table 7-2. The specific names are ACOS and DACOS.

AIMAG

AIMAG(a) returns the imaginary part of a complex
argument. The real result is ai, where the complex
argument is (ar,ai).

Ai NT

AINT(a) is a generic function that returns an integer after
truncation. The result is real. For a real or double
precision argument, the result is 0 if lal <1. If lal ~1, the
result is the largest integer with the same sign as
argument a that does not exceed the magnitude of a. The
specific names are AINT and DINT.

ALOG

ALOG(a) is a specific function that returns the natural
logarithm of the argument. The argument is real and the
result is real. The generic name is LOG.

ALOG10

ALOGIO(a) is a specific function that returns the logarithm
base 10 of the argument. The argument is real and the
result is real. The generic name is LOGI0.

AMAXO

AMAXO(al,a2[,an] •••) is a specific function that
returns the value of the largest argument. The 2 through
500 arguments are integer, and the result is real. The
generic name is MAX.

AMAXl

AMAXl(al,a2[,an] •••) is a specific function that
returns the value of the largest argument. The 2 through
500 arguments are real, and the result is real. The generic
name is MAX.

7-1



TABLE 7-1. INTRINSIC FUNCTIONS

Intrinsic Definition Number of Generic Specific Type of Type of
Function Arguments Name Name Argument Function

Type Conversion 1 INT Integer Integer
conversion to integer, INT Real Integer

int(a) IFIX Real Integer
IDINT Double Integer

Complex Integer

Conversion 1 REAL FLOAT Integer Real
to real REAL Integer Real

Real Real
Complex Real

SNGL Double Real
Complex Real

Conversion 1 DBLE Integer Double
to double Real Double

Double Double
Complex Double

Conversion 1 or 2 CMPLX Integer Complex
to complex Real Complex

Double Complex
Complex Complex

Character 1 None ICHAR Character Integer
conversion
to integer

Integer 1 None CHAR Integer Character
conversion
to character

Truncation Defined as 1 AINT AINT Real Real
int(a) DINT Double Double

Nearest Defined as 1 ANINT ANINT Real Real
whole int(a + .5) DNINT Double Double
number if a is

positive or
zero;
int(a - .5)
if a is
negative

Nearest Defined as NINT NINT Real Integer
integer int(a + .5) IDNINT Double Integer

if a is
positive or
zero;
int(a - .5)
if a is
negative

7-2 60481300 B



TABLE 7-1. INTRINSIC FUNCTIONS (Contd)

Intrinsic Definition Number of Generic Specific Type of Type of
Function Arguments Name Name Argument Function

Absolute Defined as I ABS lABS Integer Integer
value lal; if a is ABS Real Real

complex, DABS Double Double
square root} CABS - Complex Real
of ((real a 2 +
(imaginary a)2)

Remaindering Defined as 2 MOD MOD Integer Integer
al-int(al/a2)*a2 AMOD Real Real

DMOD Double Double

Transfer of Defined as 2 SIGN ISIGN Integer Integer
sign lall if a2 is SIGN Real Real

positive or DSIGN Double Double
zero; - lall
if a2 is
negative

Positive Defined as 2 DIM IDIM Integer Integer
difference al-a2 if al is DIM Real Real

greater than a2; DDIM Double Double
o if al is not
greater than a2

Double Defined as 2 None DPROD Real Double
precision al*a2
product

Choosing Defined as 2 - 500 MAX MAXO Integer Integer
largest max AMAXI Real Real
value (al,a2 [,an] ..• ) DMAXI Double Double

None AMAXO Integer Real
MAXI Real Integer

Choosing Defined as 2 - 500 MIN MINO Integer Integer
smallest min AMINI Real Real
value (aI, a2 [, an] ••. ) DMINI Double Double

None AMINO Integer Real
MINI Real Integer

Length Length of 1 None LEN Character Integer
character
string

Index of Location of 2 None INDEX Character Integer
a substring substring a2

in string al

60481300 A 7-3



TABLE 7-1. INTRINSIC FUNCTIONS (Contd)

Intrinsic Definition Number of Generic Specific Type of Type of
Function Arguments Name Name Argument Function

Imaginary Imaginary part 1 None AIMAG Complex Real
part of of (ar,ai)
complex = ai
argument

Conjugate of Negation of 1 None CONJG Complex Complex
complex imaginary
argument part (ar, -ai)

Square root Square root 1 SQRT SQRT Real Real
of (a) DSQRT Double Double

CSQRT Complex Complex

Exponential Defined as 1 EXP EXP Real Real
e**a DEXP Double Double

CEXP Complex Complex

Natural Defined as 1 LOG ALOG Real Real
logarithm loge (a) DLOG Double Double

CLOG Complex Complex

Common Defined as 1 LOG10 ALOG10 Real Real
logarithm 10910 (a) DLOG10 Double Double

Sine Defined as 1 SIN SIN Real Real
sin (a), where DSIN Double Double
a is in radians CSIN Complex Complex

Cosine Defi ned as
cos (a), where
a is in radi ans

1 COS COS
DCOS
CCOS

Real
Double
Complex

Real
Double
Complex

Tangent Defined as
tan (a), where
a is in radians

1 TAN TAN
DTAN

Real
Double

Real
Double

Arcsine

7-4

Defined as
arcsin (a)

1 ASIN ASIN
DASIN

Real
Double

Real
Double

60481300 A



TABLE 7-1. INTRINSIC FUNCTIONS (Contd)

Intrinsic Definition Number of Generic Specific Type of Type of
Function Arguments Name Name Argument Function

Arccosine Defined as 1 ACOS ACOS Real Real
arccos (a) DACOS Double Double

Arctangent Defined as 1 ATAN ATAN Real Real
arctan (a) DATAN Double Double

Defined as 2 ATAN2 ATAN2 Real Real
arctan (al/a2) DATAN2 Double Double

Hyperbolic Defined as 1 SINH SINH Real Real
sine sinh (a) DSINH Double Double

Hyperbolic Defined as 1 COSH COSH Real Real
cosine cosh (a) DCOSH Double Double

Hyperbolic Defined as 1 TANH TANH Real Real
tangent tanh (a) DTANH Double Double

Lexically True if al 2 None LGE Character Logical
greater than follows a2,
or equal or al=a2 in

ASCII co, 1at ing
sequence

Lexically True if al 2 None LGT Character Logical
greater follows a2 in
than ASCII collating

sequence

Lexically True if al 2 None LLE Character Logical
less than precedes a2,
or equal or at=a2 in

ASCI co'lating
sequence

Lexically True if al 2 None LLT Character Logical
less than precedes a2 in

ASCII collating
sequence

60481300 A
7-5



TABLE 7-1. INTRINSIC FUNCTIONS (Contd)

Intrinsic
Function Definition Number of

Arguments
Generic

Name
Specific

Name
Type of
Argument

Type of
Function

7-6 60481300 A



TABLE 7-2. SUMMARY OF MATHEMATICAL INTRINSIC FUNCTIONS

Function Syntax Type of Domain Defi niti on RangeName

arccosine ACOS(y) Generic Iyl $1 cos-1(y) 0:$ ACOS(Y):$ rr
(result in ACOS(y) Real
radians) DACOS(y) Double

arcsin ASIN(y) Generic Iyl :$ 1 sin-1(y) -rr/2 $ ASIN(y) $ rr/2
(result in ASIN(y) Real
radians) DASIN(y) Double

arctangent ATAN(y) Generic tan-1(y) -rr/2 $ ATAN(y) $ rr/2
(result in ATAN(y) Real
radians) DATAN(y) Double

arctangent ATAN2(y,x) Generic x<O,y<O -7r+tan-1(y/x) -rr<ATAN2(y,x) < -rr/2
(2 arguments, ATAN2(y,x) Real x=O,Y< 0 -rr/2
result in DATAN2(y,x) Double x>0 tan-1(y/x) -rr/2<ATAN2(y,x)< rr/2
radians) x=O,y>O rr/2 1

x< O,y~O rr+tan- (y,x) rr/2 < ATAN2(y,x) S rr
x=O,y=O error

trigonometric COS(x) Generic Ix 1< 247 cos(x) -1 $ COS (x) $ 1
cosine COS(x) Real
(argument in DCOS(x) Double
radians)

CCOS(x) Complex Ixl ~ rr*2 46 cos(x+iy)
IIYI $ 741.66

exporential EXP(x) Generic -675.81 $ x$ 741. 66 eX 0< EXP(x) I
EXP(x) Real
DEXP(x) Double

CEXP(x) Complex -675.81 $x$741.66 e(x+iy) I
lyl :$ rr*246

natural LOG(x) Generic x>O loge(x)
logarithm ALOG(x) Real

DLOG(x) Double

CLOG(x) Complex i+y2.,0 loge(x+iy) -rr < imagi nary
part ~ 1r

60481300 E 7-7



TABLE 7-2. SUMMARY OF MATHEMATICAL INTRINSIC FUNCTIONS (Contd)

Function Syntax Type of Domain Definition RangeName

common LOG10(x) Generic x>O lo910(x)
logarithm ALOG10{x) Real
(base 10) DLOG10(x) Double

trigonometric SIN(x) Generic Ixl < 247 sin(x) -1 S SIN(x) S 1
sine SIN(x) Real
(argument in DSIN(x) Double
radians)

Ixts 11'*2
46

I
CSIN(x) Complex sin(x+iy)

lylS 741.66

hyperbolic SINH(x) Generic I xl S 742.36 sinh(x)
sine SINH(x) Real

DSINH(x) Double

square SQRT(x) Generic x~O xO•S SQRT(x) ~O
root SQRT(x) Real

DSQRT(x) Double
CSQRT(x) Complex x~O,x<O value in right half

plane

trigonometric TAN(x) . Generic I xl $11'*246 tan(x)
tangent TAN(x) Real
(argument in DTAN(x) Double
radi ans)

hyperbolic
tangent

AMINO

TANH(x)
TANH(x)

Generic
Real

tanh(x)

AMINl

-1 S TANH(x) S 1

AMINO(8l,82 [,8n). ••) is a specific function that
returns the value of the smallest argument. The 2 through
500 arguments are integer, and the result is real. The
generic name is MIN.

7-8

AMINl(aha2[,an} ••) is a specific function that
returns tfie value of the smallest argument. The 2 through
500 arguments are real, and the result is real. The generic
name is MIN.

60481300 E



AMOD

AMOD(a1,aZ) is a specific function that returns a1
modulus aZ' The arguments are real and the result is
real. If a2 is zero, results are undefined. The generic
name is MOD.

ANINT

ANINT(a) is a generic function that returns the nearest
whole number. The result is real or double precision,
depending on the argument type. The specific names are
ANINT and DNINT.

ASIN

ASIN(a) is a generic function that returns an arcsine. The
result is expressed in radians. The result is real or double
precision, depending on the argument type. See
table 7-2. The specific names are ASIN and DASIN.

ATAN

ATAN(a) is a generic function that returns an arctangent.
The result is expressed in radians. The result is real or
double precision, depending on the argument type. See
table 7-2. The specific names are ATAN and DATAN.

ATAN2

ATAN2(a1,aZ) is a generic function that returns an
arctangent. The result is expressed in radians. The result
is real or double precision, depending on the type of the
arguments. The arguments must not both be zero. See
table 7-2. The specific names are ATAN2 and DATAN2.

CABS

CABS(a) is a specific function that returns a real result
from a complex argument. The generic name is ASS.

60481300 B

CCOS

CCOS(a) is a specific function that returns a complex
result from a complex argument. The generic name is
COS.

CEXP

CEXP(a) is a specific function that returns a complex
result from a complex argument. The generic name is
EXP.

CHAR

CHAR(a) returns the character value of an integer
argument. The value returned depends on the collating
sequence used. If the ASCII collating sequence is used,
the argument must be in the range 0$a$63; the first
character in the collating sequence corresponds to
value 0, the second character to value 1, the third to
value 2, and so forth. The result is the selection of a
single character from the collating sequence. If, in a
user-specified collating sequence, more than one
character has weight a, the character returned can be
any of them.

CLOG

CLOG(a) is a specific function that returns a complex
result from a complex argument. The generic name is
LOG.

CMPLX

CMPLX(a) or CMPLX(a1,a2) is a generic function that
performs type conversion and returns a complex value.
CMPLX can have one or two arguments. A single
argument can be integer, real, double precision, or
complex. If two arguments are used, the arguments must
be of the same type and must both be integer, real, or
double precision. For a single integer, real, or double
precision argument, the result is complex, with the
argument used as the real part and the imaginary part
zero. For a single complex argument, the result is the
same as the argument. For two arguments a1 and a2, the
result is complex, with argument a1 used as the real part
and argument a2 used as the imaginary part. There are no
specific names.

CONJG

CONJG(a) returns a conjugate of a complex argument.
The result is complex. For a complex argument (ar,ai),
the result is (ar,-ai) with the imaginary part negated.

COS

COS(a) is a generic function that returns a cosine. The
argument is assumed to be in radians. The result is real,

7-9



double preCisIOn, or complex, depending on the argument
type. See table 7-2. The specific names are COS, CCOS,
and DCOS.

COSH

COSH(a) is a generic function that returns a hyperbolic
cosine. The result is real or double precision, depending
on the argument type. See table 7-2. The specific names
are COSH and DCOSH.

CSIN

CSIN(a) is a specific function that returns the sine of the
argument. The argument and result are complex. The
generic name is SIN.

CSQRT

CSQR T(a) is a specific function that returns a complex
result from a complex argument. The generic name is
SQRT.

DABS

DABS(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is ABS.

DACOS

DACOS(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is ACOS.

DASIN

DASIN(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is ASIN.

DATAN

DATAN(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is ATAN.

DATAN2

DATAN2(al,a2) is a specific function that returns a
double precision result from a double precision argument.
The generic name is ATAN2.

DBLE

DBLE(a) is a generic function that performs type
conversion and returns a double precision result. The
argument can be integer, real, double precision, or

7-10

complex. For an integer or real argument, the result has
as much precision as the double precision field can
contain. For a double precision argument, the result is
the argument. For a complex argument, the real part is
used, and the result has as much precision as the double
precision field can contain. There are no specific names.

DCOS

DCOS(a) is a specific function that returns a double
preCisIOn result from a double precision argument. The
generic name is COS.

DCOSH

DCOSH(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is COSH.

DDIM

DDIM(al,aZ) is a specific function that returns a double
precision result from double precision arguments. It
returns the value of ~1-a2; if al < a2, it returns zero. The
generic name is DIM.

DEXP

DEXP(a) is a specific function that returns a double
preCision result from a double precision argument. The
generic name is EXP.

DIM

DIM(al,a2) is a generic function that returns a positive
difference. The result is integer, real, or double
precision, depending on the argument type. Both
arguments must be the same type. The result is a1-a2 if
al> a2, and the result is 0 if al$ a2. The specific names
are DIM, IDIM, DDIM.

DINT

DINT(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is AINT.

DLOG

DLOG(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is LOG.

DLOG10

DLOGI0(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is LOGI0.

DMAXl

DMAXl(al,a2[,an] •••) is a specific function that returns a
double precision result from 2 through 500 double
precision arguments. The generic name is MAX.

60481300 C



DMINl

DMINl(a1,a2[,an]. ••) is a specific function that returns a
double precision result from 2 through 500 double
precision arguments. The generic name is MIN.

DMOD

DMOD(a1,a2) is a specific function that returns a double
precision result from two double precision arguments. If
a2 is zero, results are undefined. The generic name is
MOD.

DNINT

DNINT(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is ANINT.

DPROD

DPROD(a1,a2) returns a double preCisiOn product. The
arguments are real, and the result is double precision.
The result is a1*a2.

DSIGN

DSIGN(al,a2) is a specific function that returns a double
precision result from two double precision arguments.
The generic name is SIGN.

DSIN

DSIN(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is SIN.

DSINH

DSINH(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is SINH.

OSQRT

DSQRT(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is SQRT.

DTAN

DTAN(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is TAN.

DTANH

DTANH(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is TANH.

60481300 C

EXP

EXP(a) is a generic function that returns an exponential.
The result is real, double precision, or complex, depending
on the argument type. See table 7-2. The specific names
are EXP, DEXP, and CEXP.

FLOAT

FLOAT(a) is a specific function that returns a real result
from an integer argument. The generic name is REAL.

lABS

IABS(a) is a specific function that returns an integer
result from an integer argument. The generic name is
ABS.

ICHAR

ICHAR(a) returns an integer value from a character
argument. The value returned depends on the collating
weight of the character in the collating sequence used.
For the ASCII collating sequence, the first character in
the collating sequence is at position 0, the second
character at position 1, the third at position 2, and so
forth. For a user-specified collating sequence, two or
more characters can have the same value. The argument
is a character value with a length of one character, and
the value returned is the integer position of that
character in the collating sequence.

101M

IDIM(a1,a2) is a specific function that returns an integer
result from integer arguments. It returns the value of
a1-a2; if a1< a2' it returns zero. The generic name is DIM.

IDINT

IDINT(a) is a specific function that returns an integer
result from a double precision argument. The generic
name is INT.

7-11



IDNINT

IDNINTCa) is a specific function that returns an integer
result from a double precision argument. The generic
name is NINT.

IFIX

IFIX(a) is a specific function that returns an integer result
from a real argument. The generic name is INT.

INDEX

INDEX(al,a2) returns the location of a substring within a
string. Both arguments must be character string
arguments.' If string a2 occurs as a substring within
string aI, the result is an integer indicating the starting
position of the substring a2 within 81. If a2 does not
occur as a substring within aI, the result is O. If a2
occurs as a substring more than once within aI, only the
starting position of the first occurrence is returned.

INT

INT(a) is a generic function that performs type conversion
to integer. The result is integer, and the argument can be
integer, real, double precision, or complex. For an integer
argument, the result is the argument. For a real or double
precision argument where Ia 1<1, the result is O. Where
I al ~1, the result is the largest integer with the same sign
as argument a that does not exceed the magnitude of a.
For a complex argument, the real part is used, and the
result is the same as for a real argument. The specific
names are INT, IFIX and IDINT.

ISIGN

ISIGN(al,a2) is a specific function that returns an integer
result from two integer arguments. The generic name is
SIGN.

LEN

LEN(a) returns the length of a character string. The
argument is a character string, and the result is an integer
indicating the length of the string.

LGE

LGE(al,a2) returns a result indicating lexically greater
than or equal to. The arguments are character strings.
The result is true only if al follows a2 or al is equal to a2
in the ASCII collating sequence (shown in appendix A).

LGT

LGT(al,a2) returns a result indicating lexically greater
than. The arguments are character strings. The result is
true only if a1 follows a2 in the ASCII collating sequence
(shown in appendix A).

LLE

LLE(al,a2) returns a result indicating lexically less than
or equal to. The arguments are character strings. The
result is true only if al precedes a2 or a1 is equal to a2 in
the ASCII collating sequence (shown in appendix A).

LLT

LLTCal,aZ) returns a result indicating lexically less than.
The arguments are character strings. The result is true
only if al precedes a2 in the ASCII collating sequence
(shown in appendix A).

LOG

LOG(a) is a generic function that returns a natural
logarithm. The result is real, double precison, or complex,
depending on the argument type. See table 7-2. For a
complex argument (ar,ai), the range of the imaginary part
of the result is -1T<ai$1T. The imaginary part of the
result is only zero when ar>O and ai=O. The specific
names are ALOG, DLOG, and CLOG.

LOG10

LOGI0(a) is a generic function that returns a common
logarithm. The result is real or double precision,
depending on the argument type. See table 7-2. The
specific names are ALOGI0 and DLOGI0.

7-12 60481300 D



MAX

MAX(al,az f,an]' ••) is a generic function that returns the
largest vafue. The result is integer, real, or double
precision, depending on the type of the 2 through 500
arguments. The specific names are MAXO, AMAXl, and
DMAXl.

MAXO

MAXO(al,az[,an1•••) is a specific function that returns as
an integer resu1t the largest value from Z through 500
integer arguments. The generic name is MAX.

MAXl

MAXl(al,az[,an1•••) is a specific function that returns as
an integer resul1: the largest value from the Z through 500
real arguments.

MIN

MIN(al,az[,an].") is a generic function that returns the
smallest value from the Z through 500 arguments. The
result is integer, real, or double precision, depending on
the type of arguments. The specific names are MINO,
AMINI, and DMINl.

MINO

MINO(al,az[,an]' ••) is a specific function that returns as
an integer result the smallest value from the Z through
500 integer arguments. The generic name is MIN.

MINl

MINl(al,az[,an]•••) is a specific function that returns as
an integer result the smallest value from the Z through
500 real arguments.

MOD

MOD(al,az) is a generic function that returns the
remainder of al divided by aZ. The result is integer, real,
or double precision, depending on the argument type. The
result is al-(int(al!az)*az). If a is zero, results are
undefined. The specific names are MOD, AMOD, and
DMOD.

60481300 E

NINT

NINT(a) is a generic function that returns the nearest
integer. The result is integer, and the argument can be
real or double precision. For a real or double precision
argument where a is zero or positive, the result is
(int(a+.5)). For an argument where a is negative, the
result is (int(a-.5)). The specific names are NINT and
IDNINT.

REAL

REAL(a) is a generic function that performs type
conversion and returns a real result. The argument can be
integer, real, double precision, or complex. For a complex
argument (ar,aO, the result is real(ar). The specific names
are REAL, FLOAT, and SNGL.

SIGN

SIGN(a1,az) is a generic function that returns a value
after a transfer of sign. The result is integer, real, or
double precision, depending on the argument type. The
result is lall if aZ is zero or positive. The result is I
-l a ll if aZ is negative. The specific names are SIGN,
ISIGN, and DSIGN.

SIN

SIN(a) is a qeneric function that returns a sine. The
argument is assumed to be in radians. The result is real,
double precision, or complex, depending on the argument
type. See table 7-Z. The specific names are SIN, DSIN,
and CSIN.

7-13



SINH

SINH(a) is a generic function that returns a hyperbolic
sine. The result is real or double precision, depending on
the argument type. See table 7-2. The specific names
are SINH and OSINH.

SNGL

SNGL(a) is a specific function that returns a real result
from a double precision argument. The generic name is
REAL.

SQRT

SQRT(a) is a generic function that returns a principal
square root. The result is real, double precision, or
complex, depending on the argument type. See table 7-2.
The specific names are SQRT,DSQRT, and CSQRT.

TAN

TAN(a) is a generic function that returns a tangent. The
argument is assumed to be in radians. The resul t is real or
double precjsion, depending on the argument type. See
table 7-2. The specific names are TAN and DTAN.

TANH

TANH(a) is a generic function that returns a hyperbolic
tangent. The result is real or double precision, depending
on the argument type. See table 7-2. The specific names
are TANH and OTANH.

7-14 604813000



60481300 C 7-15



7-16 60481300 C



60481300 C 7-17



7-18 604813000



60481300 D 7-19



7-20 60481300 0



60481300 D 7-20.1/7-20.2 I



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1
I
I
i

1

1

1
1

1

1,
i

1

1

1

1

1

1

1

1
I



60481300 C 7-21



7-22 60481300 C



60481300 B 7-23



7-24 60481300 C



60481300 8 7-25



I

I

7-26 60481300 E



60481300 B 7-27



7-28 60481300 B



I

I

60481300 E 7-29 '



7-30 60481300 E

I



I
I

I

60481300 E 7-31





PRODUCT INTERFACES 8

80481300 E 8-1

I



8-2 60481300 E



I
I

I

I

60481300 E 8-3



• 8-4 60481300 E



80481300 E 8-5



I

I

I

8-6 60481300 E

I



80481300 E 8-6.1/8-6.2 I





60481300 B 8-7



8-8 60481300 C



60481300 C 8-9



8-10 60481300 B



60481l00C 8-11



8-12 60481300 B



60481300 B 8-13



j
j
j
I

I
j
j
j
j
j
J

J

j
j
j
j
j
I

/

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
I
I

j
j
J

j
j
j
j
j
j
j
j
j
j
j

j
j
J

j
j
j
j
j
J

J

i
j
j
j
j
j



OVERLAYS 9

60481300 0 9-1



9-2 60481300 D



60481300 0



9-4 60481300D



60481300 D 9-5 •





10

60481300 E 10-1 •



• 10-2 60481300 E



60481300 E 10-3 •



• 10-4 60481300 E



60481300 E 1O~5 •





COMPILATION AND EXECUTION 1 1

60481300 0 11-1



11-2 60481300 0



60461300 0 11-3



11-4 60481300 0



60481300 0 11-5



11-6 60481300 [)



60481300 E 11-7



11-8 60481300 D



60481300 0 11-9



11-10 60481300 E



60481300 E 11-11



I 11-12 60481300 E



60481300 E 11-13 I



111-14 60481300 E



I

I

60481300 E 11-15



I 11-16 60481300 E



I

60481300 E 11-16.1



I 11-16.2 60481300 E



60A81300 C
11-17



11-18 60481300 r



60481300 C 11-19



11-20 60481300 C



60481300 0 11-21



I

I
11-22 60481300 E



EXAMPLES 12

The first part of this section contains sample deck
structures, including control statements, illustrating
compilation and execution of FORTRAN programs. The
second part contains sample executable programs
illustrating various features of FORTRAN. Examples of
input and output are included.

SAMPLE DECK STRUCTURES
Following are some typical deck structures that can be
used for compiling and executing FORTRAN programs.

Refer to the operating system reference manual for
details of control statements.

FORTRAN SOURCE PROGRAM WITH
CONTROL STATEMENTS

Figure 12-1 shows a deck structure for compiling and
executing a FORTRAN program that contains a function
and a subroutine.

Control
Statements

'6
7
8
9

/ END

I
( FORTRAN statements

1 SUBROUTINE RVIE (C,J,L)

I END

---r FORTRAN statements
I FUNCTION RTSM (A,B)

{ END

( FORTRAN statements

f PROGRAM MAIN
17 I8 { LGO. ~

9
( FTN5. I--

( t Accounting statements -
I Job statement

~

I--

I----

FORTRAN
Source
Program

t As applicable for operating system or installation

Figure 12-1. FORTRAN Source Program With Control Statements

60481300 A 12-1



COMPILATION ONLY

Figure 12-2 shows a deck structure for compiling a
program; the program is not executed after .compilation.

OPT=O COMPILATION

Figure 12-3 illustrates a deck structure for compiling a
program in OPT=0 mode. No binary object file is
produced and no execution occurs.

/6 I7
8

I

9 I

I
I

--( FORTRAN source deck

/7 I8
~

9 ..f FTN5(QC,EL=T)

~
I-

Job statement -
- '-EL=T

- or::

All diagnostics (excluding
ANSI) 1is1ed on file
OUTPUT

Full syntactic error
scan of program

Figure 12-2. Compilation Only

12-2

'6 I7
8

I

9 I
I

I

--(FORTRAN source deck

/7 I8
9 ~I FTN5(OPT=0,B=0)

1\
I-

~

Job statement -
- -OPT=O

I--- B=O

Figure 12-3. OPT=O Compilation

OPT=O compilation mode is
desired.

Binary object file is
not produced.

60481300 A



COMPILATION AND EXECUTION

Figure 12-4 illustrates a deck structure for compiling and
executing a program that reads data from cards.

FORTRAN COMPILATION WITH COMPASS
ASSEMBLY AND EXECUTION

Figure 12-5 illustrates a deck structure containing a
FORTRAN and a COMPASS program unit. The FORTRAN
and COMPASS source decks can be in any order.
COMPASS source decks must begin with a line containing
the word:

IDENTA

in columns 11 through 16. Columns 1 through 10 of the
ident line must be blank.

/6
7
8
9

( Data

/7 I
8
9

( FORTRAN source deck

/7

I8
9

flGO.rFTN5. ~

/ Job statement....

~

~

Figure 12-4. Compilation and Execution

1'6 I
7
8 (9 Data

1'7 I
8 1'/
9

~
I

/ COMPASS source deck ~~

( FORTRAN source deck

/7 I
8 I LGO.
9 I FTN5(LO=R,EL=T) ~

~V ~~

/ Job statement

"""'-

~

I--

LO=R Source program and cross­
reference listing on file
OUTPUT

EL=T All diagnostics (excluding
ANSI) listed on file
OUTPUT

Figure 12-5. Compilation With COMPASS Assembly and Execution

60481300 B 12-3



COMPILAliON AND EXECUTION WITH FORTRAN
SUBROUTINE AND COMPASS SUBPROGRAM

Figure 12-6 illustrates a deck structure containing a
FORTRAN subroutine, and a COMPASS subprogram,
showing the COMPASS IDENT and ENTRY statements. In
this example, the LGO statement specifies the output file
(as described in section 11).

COMPILAliON WITH BINARY CARD OUTPUT

Figure 12-7 illustrates a deck structure to compile and
produce a binary object deck.

'6
7
8
9

" •
'/

Source deck 1
( PROGRAM BOB

'7
8

'-- 9
, FTN5 (B=PUNCHB,OPT=3) I-

I Job statement

-
OPT=3 specifies
full optimization.

-

Figure 12-7. Compilation With Binary Card Output

Data is written to OUTPUT
rather than TAPE2.

'6 I7
8
9 I

I

L( Data

'7 I
8 / END I
9 ~

" ENTRY A1 I
( IDENTSUB

, END
r

I,
SUBROUTINE S1(P1,P2)

/ END 1
I, .....

'~
•

PROGRAM DONE (INPUT.~

/7 ~

8

---~9
I LGO (,OUTPUT)"'- I

I FTN5. I

---- / Job statement

-
-

Figure 12-6. Compilation and Execution With FORTRAN Subroutines and COMPASS Subprogram

12-4 60481300 B



I

LOADING AND EXECUTION OF
BINARY PROGRAM

Figure 12-8 illustrates a deck structure to load and
e~ecute a binary object program. The MAP(OFF)
statement suppresses the load map.

COMPILATION AND EXECUTION WITH
RELOCATABLE BINARY DECK

Figure 12-9 illustrates a deck structure to compile a
FOR TRAN program and load and execute a binary
program along with the FOR TRAN program.

'
6
7
8
9 I,, I

/ Data

'7 I
8
9 7 I8

9 f((
I

I

""'---
Binary deck

'7
8
9

'INPUT. I
1 MAP(OFF) I

I...-- / Job statement

-
----

Figure 12-8. Loading and Execution of Binary Program

60481300 E

'6
7
8
9

r

r
r

( Data

/ 7 I l-
S 17 l-I-9 8

9 r
I

'--- ( Binary deck

..... /7
8
9

I
I

r
r

~
Source deck

( PROGRAM ALFRED

/7 l-

S I----

9

( EXECUTE.

( LOAD(LGO)

---( LOAD(lNPUT)

I FTN5. I
, Job statement ~

-

--

Figure 12-9. Compilation and Execution With
Relocatable Binary Deck

12-5



COMPILATIONS AND TWO EXECUTIONS WITH
DIFFERENT DATA DECKS

Figure 12-10 illustrates a deck structure to compile a
program and to execute the program twice with two
different data decks. Output from the two executions is
sent to separate output files.

Output will be on two
separate files; output
rom data # 1 will be on

TAPE1, output from
ata #2 on TAPE2.

6
7
8
9

~Data #2

r; I8
9 ,

'rrData #1

I
I

/7 I8
9

1/,,.
( PROGRAM SUBS (lNPUT,OUTPUT)

v7~f'7
8 ~ d9

/ LGO"TAPE2.~ /---- / LGO"TAPE1.' I
, FTN5. I

/ Job statement

- -

Figure 12-10. Compilation and Execution With Different Data Decks

12-6 60481300 B



PREPARATION OF OVERLAYS

Figure 12-11 illustrates a deck structure to compile, load
and execute a program containing overlays.

Primary Overlay
(1,0)

Source Deck

Main Overlay
(0,0)

Source Deck

/6 I
7
8

III~Data

/7 I

8 ( END } Secondary Overlay

9· (1,1)

- PROGRAM MLT Source Deck

/ OVERLAY (FRANK,l,l) r
'- ( END I

( CALL OVERLAY(5HFRANK~1,1,0)

PROGRAM ROY II I
/ OVERLAY(FRANK,l,O) I

/ END

'-- ,- SUBROUTINE GROUCH(X)

( END'

( CALL OVERLAY(5HFRANK,1,0,0)

L( CALL GROUCH(40.0)

I--

( PROGRAM LEO
~

/ OVERLAY (FRAN K,O,O) I I--
7 I
8 FRANK. 19

( NOGO.
'-- (LOAD(LGO)

'------ ( FTN5.

Job statement
~

I---

-

Call to
Primary Overlay
FRANK 1,0

Figure 12-11. Preparation of Overlays

60481300 C 12-7



COMPILATION AND TWO EXECUTIONS
WITH OVERLAYS

Figure 12-12 illustrates a deck structure to compile an
overlay and to execute the overlay two times.

'6 I7
8
9

I

Lf Source deck

( OVER LAY (CH,O,O)

/7
8 I-
9 I---

/ CH. (ABSOLUTE OVERLAY) r-
L.....--

/ X. (RELOCATABLE) I
/ FTN5(B=X)

/ Job statement

L....-

L..-

L..--

Figure 12-12. Compilation and Two Executions
With Overlays

SAMPLE PROGRAMS
This subsection shows sample FORTRAN programs which
illustrate various features of the FOR TRAN language.

PROGRAM OUT

Program OUT, shown in figure 12-13, illustrates the
following FOR TRAN features:

Control statements for batch execution

WRITE and PRINT statements

Carriage control

PROGRAM statement

The control statement:

BIRD, TI0.

is the job statement. A job statement must precede every
job. BIRD is the job name. TI0 specifies a maximum of
10 seconds of central processor time (can be either octal
or decimal, depending on installation option).

The statement:

FTN5.

specifies the FORTRAN compiler. The default
parameters (described in section 10) are used. Since no
alternative files are specified on the FTN5 control
statement, the FOR TRAN compiler reads from file INPUT
and outputs to files OUTPUT and LGO. Listings,
diagnostics, and maps are written to OUTPUT and the
relocatable object code is written to LGO.

The statement:

LGO.

causes the binary object code to be loaded and executed.

The statement:

7/8/9

separates control statements from the remainder of the
job deck (file INPUT). This statement contains a 7, 8, and
9 multipunched in column 1; it follows the control
statements in every batch job.

The OPEN statement (line 2) associates unit 6 with file
OUTPUT.

The WRITE statement (line 6) outputs the variable INK to
file OUTPUT. The format specification is included in the
WRITE statement. If the following PRINT statement had
been used instead of WRITE:

PRINT '(I5, ": INK OUTPUT BY PRINT",
*"STATEMENT")', INK

the OPEN statement would not be needed. The
specification uses quotes to delimit the literal and the
carriage control character 1 to cause the line to be
printed at the top of a page.

Lines 6 and 7 print the variable INK. In both output
statements, a blank carriage control character is specified
to cause single spacing. line 6 uses the specification IX

BIRD,T10.
FTN5.
LGO.
7/8/9 IN COLUMN 1

PROGRAM OUT
OPEN (6, FILE='OUTPUT ' )
PRINT 100

100 FURMAT ("1 THIS WILL PRINT AT THE TOP OF A PAGE")
INK= 2000 + 4000
WRITE (6,'(lX,I4," = INK OUTPUT BY WRITE STATEMENT")') 'INK
PRINT I (lH ,14, JOH = OUTPUT FROM PRINT STATEMENT)', INK
STOP
END

6/7/~/9 IN COLUMN 1

Figure 12-13. Program OUT With Control Statements

12-8 60481300 B



to produce a blank in column 1; line 7 uses the
specification IH for the same effect.

The 6/7/8/9 card contains the characters 6, 7, 8, and 9
multipunched in column 1. It is the last card in every job
deck (INPUT file), indicating to the system the end of the
job.

Output from program OUT is shown in figure 12-14.

THIS WILL PRINT AT THE TOP OF A PAGE
tiOOO INK OUTPUT BY WRITE ~TATEMENT

6000 = OUTPUT FRUM PRINT STATEMENT

Figure 12-14. Program OUT Output

PROGRAM B

Program B, shown in figure 12-15, generates a table of 64
characters. The internal bit configuration of any
character can be determined by its position in the table.
Each character occupies six bi ts.

Features illustrated in this example include:

Octal constants

Simple DO loop

PRINT statement

FORMAT with / ,I,X and A editing

Character constant as a format specifier

The PRINT statement (line 2) has no output list; it prints
out the heading at the top of the page using the
information provided by the format specification. The 1
is the carriage control character, and the two slashes
cause one line to be skipped before the next string is
printed. The slash at the end of the format specification
skips another line before the program output is printed.

The DO loop (lines 4 through 6) generates numbers 0
through 7 (note that a DO index can be zero). The PRINT
statement (line 5) prints 0 through 7 (the value of J) on the
left and the 8 characters in NCHAR on the right. The first
iteration of the DO loop prints NCHAR as it appears on

I line 3. The octal value 01 is a display code A, 02 is a B, 03
is a C, etc. Line 6 adds the octal constant
10101010101010100000 to NCHAR; when this is printed on
the second iteration of the DO loop, the octal value 10 is
printed as a display code H, 11 as I, 12 as J, etc. Compare
these values with the character set listed in appendiX A.

Output from program B is shown in figure 12-16.

TABLE OF INTERNAL VALUES

012j4567

U : ABCDEFG
1 HIJKLMNO
2 PQRSTUVW
J XYZ01234
4 567H9+-*
5 I () $ = ,.
6 #[]%II_ 1&
7 I? <>@\':" ;

Figure 12-16. Program B Output

PROGRAM STATES

Program STATES, shown in figure 12-17, reads employee
names and home states, ignoring all but the first two
letters of the state name. If the state name starts with
the letters cA, the name is printed. This program
illustrates character handling.

The first PRINT statement (line 3) directs the printer to
start a new page, print the heading NAME, and skip 3 lines.

The READ statement (line 5) reads the last name into
LNAME, first name into FNAME, home state into STATE,
and tests for end-of-file.

PROliRAN STATES
CHARACTER*10 FNAME, LNAME, STATE
PRINT I

1 FORMAT OHI, 5X, 4HNAME, 11f)
3 READ (*. '(3A)'. END=99) LNAME.

X FNM1E, STATE

C
C IF FIRST TwO CHARACTERS OF STATE ARE CA
C PRINT LAST NAME AND FIRST NAME
C

IF (STATE(l:l) .EQ. ICA I
) THEN

PRINT '(5X, 2A)', LNAI'I\E, FNAlvtE
ENOIF
Gu TO J

gg STUP
END

Figure 12-17. Program STATES

PROGRAM B
PRINT 1(lIlTABLE Of INTERNAL VALUESII,II," Ull34567 11

,/)'

NCHAR= O"OU ul 02 03 04 05 06 07 00 00"
UO J J = 0,7
PRINT '(13, lX, A8) I, J, NCHAR

3 NCHAR= NCHAR + U"10 10 lU 10 10 10 10 lU UU OU II
STOP
END

Figure 12-15. Program B

60481300 E 12-9



Sample input and output for program STATES are shown in
figure 12-18·.

The relational operator .EQ. tests to determine if the first
two letters read into variable STATE match the two
letters of the constant 'CAl. If a match occurs, FNAME
and LNAME are printed.

Input:

BRUWN, PHILLIP
BICARDI, R. J.
CROWN, SYLVIA
HIGENBERF,ZELDA
MUNCH, GARY G.
SMITH Sl\'40N
DEAN, ROGER
RIPPLE SALLY
JUNES STAN
HEATH BILL
Output:

NAivtE

M. CA
KENTUCKY
CAL
MAINE
CALiF
CA
GEORGIA
NEW YURK
OREGUN
NEW YOl<K

PROGRAM EQUIV
EQUIVALENCE (X,Y), (Z,l)
NAMELIST /OUT/ 1, Y, Z,
OPEN (6, FILE='OUTPUT ' )
X= l.
Y= 2.
Z= J.
1= 4
WRITE (6,OUT)
STOP
END

Figure 12-19. Program EQUIV

variable changes the value of the others in an equivalence
group as illustrated by the output of the WRITE
statement, in which both X and Y have the value 2.. The
storage location shared by X and Y contains first
1. (X=1.), then 2. (y=2.).

BIWWN,
CRUWN,
MUNCH,
SM I TH

PHILLIP tl\.
SYLVIA
GARY G.
SIMON

The real variable Z and the integer variable I are
equivalenced, and the same location can be referred to as
either real or integer. Since integer and real internal
formats differ, however, the output values will not be the
same.

Figure 12-18. Sample Input and Output
for Program STATES

PROGRAM EQUIV

Program EQUIV, shown in figure 12-19, places values in
variables that have been equivalenced and prints these
values using the NAMELIST statement. The following
features are illustrated:

EQUIVALENCE statement
NAMELIST statement

Line 2 equivalences two real variables X and Y; the two
variables share the same location in storage, which can be
referred to as either X or Y. Any change made to one

For example, the storage location shared by Z and I
contained first 3.0 (real value), then 4 (integer value).
When I is output, no problem arises; an integer value is
referred to by an integer variable name. However, when
this same integer value is referred to by a real variable
name, the value 0.0 is output, because the internal
formats of real and integer values differ. The integer and
real internal formats are shown in figure 12-20.

Although a value can be referred. to by names of different
types, the internal bit configuration does not change. An
integer value output as a real variable has a zero exponent
and its value is zero.

When variables of different types are equivalenced, the
value in the storage location must agree with the type of
the variable name, or" unexpected results might be
obtained.

~~ 0

Integer~~ 1
59

Sign

~~ U 0

Real ~~_B_~_a:_~__.JI F_ra_c_ti_o_n_(m_) I
48

Sign

Figure 12-20. INTEGER and REAL Internal Formats

12-10 60481300 B



This NAMELIST WRITE statement Cline 10) outputs both
the name and the value of each member of the NAMELIST
group OUT defined in the statement NAMELIST!
OUT!X,Y,Z,I. The NAMELIST group is preceded by the
group name, OUT, and terminated by the characters
$END. Output is shown in figure 12-21.

$OUT

X

Y

z

.LE+Ol,

.2E+01,

0.0,

4,

C

2

C

PROGRAM COME
COMMON A,B,C,D, F,G,H
INTEGER A,B,C,D,E(3,4),F, H,IA(-12:-1)
EQUIVALENCE (A, E, IA) •
NAMELIST IV/ A,B,C,O,E,F,G,H,IA

OPEN (6, FILE='OUTPUT ' )
00 2 J=-l, -12, -1
IA(J)= J
WRITE (6,V)

STOP
END

Figure 12-22. Program COME

$ENU

Figure 12-21. Program EQUIV Output

PROGRAM COME

Program COME, shown in figure 12-22, places variables
and an array in common and declares another variable and
array equivalent to the first element in common. It
places the numbers -1 through -12 in each element of the
array IA and outputs values in common using the
NAMELIST statement. Features illustrated include:

COMMON and EQUIVALENCE statements

NAMELIST statement

Negative subscript

Negative DO loop parameters

Variables are stored in common in the order of appearance
in the COMMON statement: A,B,C,D,F,G,H. All
variables with the exception of G are declared integer. G
is implicitly typed real.

The EQUIVALENCE statement assigns the first element
of the arrays IA and E to the same storage location as the
variable A. The subscript of IA has a lower bound of -12.
Since A is in common, E and IA will be in common.
Variables and array elements are assigned storage as
shown in figure 12-23.

The DO loop places values -1 through -12 in IA using a
negative DO index. The first element of IA (indexed by
-12) shares the same location as the first element of E.
This location is also shared by A. IA(-H) is equivalent to
E(2,1) and B; IA(-lO) is equivalent to E(3,1) and C, and so
forth.

Any change made to one member of an equivalence group
changes the value of all members of the group. When -12
is stored in IA(-l2), both E(l,l) and A have the value -12.
When -11 is stored in IA(-H), Band E(2,1) have the
value -11. Although Band E(2,1) are not explicitly
equivalenced to IA(-H), equivalence is implied by their
posi tion in common.

The implied equivalence between the array elements and
variables is illustrated by the output shown in figure 12-24.

The NAMELIST statement is used for output. A
NAMELIST group, V, containing the variables and arrays
A,B,C,D,E,F,G,H,IA is defined. The NAMELIST WRITE
statement, WRITE(6,V), outputs all the members of the
group in the order of appearance in the NAMELIST
statement. Array E is output on one line in the order in
which it is stored in memory. There is no indication of
the number of rows and columns 0,4).

G is equivalent to EO,2) and yet the output for EO,2) is 6
and G is 0.0. G is type real and E is type integer. When
two names of different types are used for the same
element, their values will differ because the internal bit
configuration for type real and type integer differ. (Refer
to Program EQUIV.)

Output from program COME is shown in figure 12-24.

Relative
Address 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11

60481300 B

I

E(l,l) E(2,1) E(3,1) E(1,2) E(2,2) E(3,2) E(1,3) E(2,3) E(3,3) E(1,4) E(2,4) E(3,4)

A B C 0 F G H

IA(-12) IA(-ll) IA(-10) IA(-9) IA(-8) IA(-7) IA(-6) IA(-5) IA(-4) IA(-3) IA(-2) IA(-l)

Figure 12-23. Storage Layout for Variables in Program COME

12-11



$V

A • -12,

B = -11,

C • -10,

o -9,

E -1~, -11, -10, -9, -~, -7, -0, -5, -4, -J, -2, -1,

F = -tS,

G = \l.U,

H = -6,

PROGRAM UBS

lA

$ENU

-l~, -11, -10, -9, -~, -7, -0, -5, -4, -3, -2, -1,

Figure 12-24. Program COME Output

Program LIBS, shown in figure 12-25, illustrates the
following features:

Use of FORTRAN library subroutines and intrinsic
functions

EXTERNAL used to pass a library subroutine name as
a parameter to another library routine

INTRINSIC used to pass an· intrinsic function name as
a parameter to another library routine

Division by zero

LEGVAR function used to test for overflow or divide
error conditions

c

(,

PROGRAi~t L IBS

CtiARACTER*lu TODAY, CLOCK, DATE, TIME
EXTERNAL DATE
INTRIN~IC SQRT, ~IN

TODAY= DATE()
CLOCK= TIME()

12-12

PRINT 2, TODAY, CLOCK
2 FORMAT (IITODAY= I, A, I CLOCK= I, A)
(;

TYME= SECONU()
CALL RANGET (SEED)
Y= FUr~C(SQRT)

Y1= FUNC(SIN)
c

PRINT :S, TYME, Y, Yl, SEED, SEED
J FORM AT (I THE ELAP SED CPU T It4 E I S I , G14 • 5, I SEC 0 NUS. ' / / " SQRT ( 2 • 4

* )/PI = ',G14.b,/' ~IN(2.4)/PI = I,Ci14.b,JI THE INITIAL VALUE OF T
*HE RANF SEED IS I ,022,1, UR I ,/G30.15,' IN G30.15 FURMAT.')

C
Y= 0.0
~OW= l.2/Y
IF (LEGVAR(WOW) .NE. 0) PRINT 4, WOW

4 FORI~AT (lHU,50Uti*-)/1 OIVIDE ERROR, WOW PRINTS AS: 1,G10.2)
STOP
END
FUNCTION FUNC(F)
FUNC= F(2.4)/J.14159
RETURN
ENO

Figure 12-25. Program LIBS

60481300 C



The following functions and subroutines are used in LIBS:

DATE

TIME

SECOND

RANGET

SQRT

SIN

DATE is a library function which returns the date entered
by the operator from the console.

SQRT is an intrinsic function that calculates the square
root of its argument. SIN is an intrinsic function that
calculates the sine of its argument. These functions are
declared INTRINSIC so that they can be passed as
arguments to a subprogram.

The PRINT statement in line 10 prints the date and time.
The arguments TODAY and CLOCK are declared
character with length 10 because the DATE and TIME
functions each return 10 characters. The leading and
trailing blanks appear with the 10 characters returned by
the subroutine DATE, because the operating system
formats the date in this manner. (The date format is
system and installation dependent.) The value returned by
TIME is changed by the system once a second, and the
position of the digits remains fixed; a leading blank always
appears.

When SECOND is called (line 13), the variable name
TYME is used. A variable name cannot be spelled the
same as an intrinsic function name if that intrinsic
function is used in the same program unit. If program
LIBS had not called the function TIME, a variable name
could be spelled TIME.

Library subroutine RANGET returns the seed used by the
random number generator RANF. If RANGET is called
after RANF has been used, RANGET will return the value
currently being processed by the random number
generator. With the library subroutine RANSET, this
same value could be used to initialize the random number
generator at a later date.

The PRINT statement in line 18 prints out the values
returned by the routines SECOND, FUNC, and RANGET.

Lines 25 through 27 illustrate the use of the library
function LEGVAR within an IF statement to test the
validity of division by zero. LEGVAR checks the variable

WOW. This function returns a result of -1 if the variable
is indefinite, +1 if it is out of range, and 0 if it is normal.
Comparing the value returned by LEGVAR with 0 shows
that the number is either indefinite or out of range. The
output R shows the variable is out of range.

NOTE

This example will not work on a CYBER 76/176
or 7600 machine because division by zero causes
an immediate program interrupt before LEGVAR
can be called.

The line of *- on the output is produced by the FORMAT
specification in statement number 4: 50(2H*-).

Output from program LIBS is shown in figure 12-26.

PROGRAM ADD

Program ADD, shown in figure 12-27, illustrates the use
of internal files. Any character variable or array can be
treated as an internal file. Input and output for internal
files is performed by formatted READ and WRITE
statements. Program ADD uses a formatted READ
statement to read data from an internal file.

Read

A formatted READ statement for an external file places
the image of each record read into an input buffer.
Compiler routines convert the character string in the
record into floating-point, integer, or logical values, as
specified by the FORMAT statement, and store these
values in the locations associated with the variables
named in the list.

With internal files, the specified file (character variable,
substring, or array) is used as the input buffer. The record
length is equal to the length, in characters, of the variable
if the file is a character variable, of a single array
element if the file is an array, or of the substring.

With external files, when the format specification
indicates a new record is to be processed (by a slash or the
final right parenthesis of the FORMAT statement), a new
record is read into the input buffer.

With internal files, when the format specification
indicates a new record is to be processed (by a slash or
final right parenthesis), the next element of the array is
used as the input buffer.

TOUAY= 79/0ti/ll. CLOCK=
THE ELAPSED CPU TIME IS

1l.12.21.
3.1010 :>ECONDS.

SQRT(2.4 )/Pl = .49J12 ('
SIN(2.4)/PI = .~1501 ,
THE INITIAL VALUE OF THE RANF SEED IS 17171L74j2147741j15~, UR II
* * * .17UY98JY4044023 IN GJO.1S FURMAT.

- - -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
DIVIDE ERRUR. WUW PRINT~ A~: R

Figure 12-26. Program LIBS Output

60481300 B 12-13



PROGRAM ADD
UIMENSION IN(79)
CHARACTER CARD*79, FM(3)*6
DATA FM/ 1(7911)I, 1(3912)1, 1(2613)1/

C
OPEN (5, FILE=IINPUT ' )
OPEN (6, FILE=IOUTPUT 1)

10 READ (5, '(U,A)I, END=100) KEY, CARIJ
N= MAX(l, MlN(KEY, 3»
LIM= 79/M

C

C
READ (CARD, FM(N» (IN(I),I=1,LlM)

ITOT=O
DO 40 l=l,LlM

40 lTOT= lTOT + IN(I)
WRITE (6,12) lTOT, LIM, N, CARD, (IN(I),I=l,LlM)

12 FORMAT (/16,20H IS THE TOTAL OF THE ,13,20H NUMBEHS ON THE CA~IJ/

1 12,A79,/16H THE NUMBERS ARE/(20l4»
GO TO 1U

100 STOP
EHU

Figure 12-27. Program ADD

Write

A formatted WRITE statement for external files causes
the output buffer to be cleared. Data in the WRITE
statement list is converted into a character string
according to the format specified in the format
specification, and placed in the output buffer. When the
format specification indicates the end of a record with
either a slash or the final right parenthesis, the character
string is passed from the output buffer to the output
system; the output buffer area is reset, and the next
string of characters is placed in the buffer.

The WRITE statement for internal files is processed by
compiler routines in the same way as for external files,
but with the internal file specified within the WRITE
statement used as the output buffer. The number of
words per record in the array is determined by the length
of an element.

In the sample program, the format of data on input is
specified in column 1 of each input card. If column 1
contains a one or zero or blank, each of the remaining
columns contains a data item. If column 1 is a two, each
pair of the remaining columns is a data item. If column 1
contains a number equal to or greater than 3, each triplet
of the remaining columns is a data item. Based on the
information in column 1, the correct format specification
is selected. The program then totals and prints out the
items in each input record.

12-14

CARD is a character variable 79 characters long, which is
to receive the characters in columns 2 through 80 of the
input record. IN is dimensioned 79 to receive the
converted input items. FM is a character array which
contains three elements, each six characters long. The
DATA statement Cline 4) loads a format specification into
each element of FM.

The READ statement in line 8 reads the first column of
an input record into KEY under I format and the
remaining 79 characters into CARD under A format.
When an end-of-file is encountered, control transfers to
statement 100, a STOP statement.

Line 9 ensures that the value of KEY is between 1 and 3;
this value is stored in N.

Line 10 calculates the number of values to be transferred
to IN.

The READ statement in line 12 transmits the characters
in CARD to IN, converting them to integers according to
the format specification stored in FM; N selects the array
element containing the correct format specification.

Lines 14 through 20 sum the values in IN, print the input
and output values, and branch back to process the next
input record.

Sample input and output records for program ADD are
shown in figure 12-28.

60481300 B



Input:

21322554766988775533210332245666877965541233322112365478965412365547896541~jb0~o

30214456699877456632214455066655233655222144455663325566699885666554778854887029
55566663223666552j3221445566699887765522214445561122330332445666998877455889603U
1023456668889988778996555444455666553322211123302333366998555522211444477788S031

Output:

1900 IS THE TOTAL OF THE 39 NUMBERS ON THE CARD
2132255476698877553321033224566687796554123jj22112j65478965412365547896541236028
THE NUMBERS ARE

13 22 55 47 66 98 87 75 53 32 10 33 22 45 66 6d 77 ~o 55 41
23 33 22 11 23 65 47 89 65 41 23 65 54 78 96 54 12 JO 2

14380 IS THE TuTAL OF THE 26 NUMBERS ON THE CARU
3021445669987745663221445566665523365522214445566j325566699885666554778854887029
THE NUMBERS ARE

21 445 669 987 745 663 221 445 566 66b 523 365 522 214 445 566 332 556 669 ~88
566 655 477 8d5 488 702

13840 IS THE TOTAL OF THE 26 NUMBERS ON THE CARD
35566663223666552332214455660998877655222144455611223303324456669988774558896030
THE NUMBERS ARE
556 666 322 366 655 233 221 445 566 699 887 765 522 214 445 561 122 J3U 332 445
666 998 877 455 889 603

370 IS THE TOTAL OF THE 79 NUMBERS LIN THE CARD
1023456668889988778996555444455666553322211123302j333669985555222114444777885031
THE NUMBERS ARE

0 2 J 4 5 6 b ti 8 8 8 9 9 8 8 7 7 8 9 9
6 5 5 5 4 4 4 4 5 5 6 b 6 5 5 J 3 2 2 2
1 1 1 2 3 3 0 2 j 3 3 3 6 6 9 9 8 5 5 b
5 2 2 2 I 1 4 4 4 4 7 7 7 8 8 S U 3 I

Figure 12-28. Program ADD Input and Output

PROGRAM PASCAL

Program PASCAL, shown in figure 12-29, produces a table
of binary coefficients (Pascal's triangle). The foilowing
features are illustrated:

Nested DO loops

Implied DO loop

The DO loop in lines 6 and 7 initializes the integer array
LROW to 1. The PRINT statement in line 8 prints a
heading and the the first two rows of the triangle.

PROGRAM PASCAL

The nested DO loops (lines 11 through 15) calculate the
remaining elements of the triangle. These statements
illustrate the technique of going backward through an
array by using a"negative incrementation parameter.

Each pass through the inner DO loop generates one row of
the triangle. The row elements are written in line 14
using an implied DO loop.

Output from program PASCAL is shown in figure 12-30.

C
C THIS PROGRAM PRODUCES A PASCAL TRIANGLE WITH 15 ROW~

C

10

c

INTEGER LROW(15)
00 10 1=1,15
LROW(1)= I
PRINT '("1 PASCAL TRIANGLE "//IX, IS,/lX, 2(5)1, LROW(15),

* LROW(14), LROW(15)

DO 50 J = 14, 2, -1
DO 40 K=J ,14

40 LROW(K)= LROW(K) + LROW(K+1)
PRINT '(lX, 1515)1, (LROW(~1), M=J-1,15)

50 CONTINUE
C

STOP
END

Figure 12-29. Program PASCAL

60481300 B 12-15



PASCAL TRIANGLE

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 B 28 56 70 56 2B ij 1
1 9 36 84 126 126 B4 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 ~JO 165 55 11 1
1 12 66 220 495 792 924 792 495 220 66 12 1
1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1
1 14 91 J64 1001 20U2 J003 3432 3U03 2002 1001 J64 !H 14 1

Figure 12-30. Program PASCAL Output

PROGRAM PIE

Program PIE, shown in figure 12-31, calculates an
approximation of the value of 1f'. This program illustrates
the use of the intrinsic function RANF.

The random number generator, RANF, is called twice
during each iteration of the DO loop, and the values
obtained are stored in the variables X and Y.

The DATA statementOine 2) initializes the variable
circle with the value 0.0.

Each time RANF is called, a random number, uniformly
distributed over the range 0 through 1, is returned. A
random number is stored in X and in Y.

The IF statement and th~ arithmetic expression
4.0*CIRCLE/1000.0. calculate an approximation of the
value of 1f' • The value of 1f' is calculated using Monte
Carlo techniques. The IF statement counts those points
whose distance from the point (0., 0.) is less than or equal
to one. The ratio of the number of points within the
quarter circle to the total number of points approximates
1/4 of 1f'. The value PI is printed by the list directed
output statement PRINT*, 'PI=', PI.

PRUGRAM PIE
DATA CIRCLE /0.0/

C

PROGRAM X

Program X, shown in figures 12-32 and 12-33, references
a function EXTRAC which squares the number passed as
an argument. This program illustrates the following
features:

Referencing user-defined functions

Function type

Program X illustrates that a function type must agree
with the type associated with the function name in the
calling program.

In the example shown in figure 12-32, the first letter of
the function name EXTRAC is E and the function is
therefore implicitly typed real. EXTRAC is referenced,
and the value 7 is passed to the function as an argument.
However, the function subprogram is explicitly defined
integer, INTEGER FUNCTION EXTRAC(K), and the
conflicting types produce erroneous results.

DO 1 1= 1,1000
X=RANF()
Y=RANF()
IF (X*X + y*y .LE. 1.0) CIRCLE= CIRCLE + 1.0

1 CONTINUE
C

PI= 4.0*CIRCLE/100U.0
PRINT*, ' PI = I, PI

C
~TOP

END

Output:

PI J.14ti

Figure 12-31. Program PIE and Output

12-16 60481300 B



The argument 7 is type integer which agrees with the type
of the dummy argument K in the subprogram. The result
49 is correctly computed. However, when this value is
returned to the calling program, the integer value 9 is
returned to the real name EXTR AC;and an integer value
in a real variable produces an erroneous result. (Refer to
program EQUIV.)

This problem arises because the programmer and the
compiler regard a program from different viewpoints.
The programmer often considers a complete program to
be one unit, whereas the compiler treats each program
unit separately. To the programmer, the statement:

INTEGER FUNCTION EXTRAC(K)

defines the function EXTRAC integer. The compiler,
however, compiles integer function EXTRAC and the main
program separately. In the subprogram, EXTRAC is
declared integer; in the main program it is declared real.
Information (in this instance the type of the function)
which the main program needs regarding a subprogram,
must be supplied in the main program.

There is no way for the compiler to determine if the type
of a program unit agrees with the type of the name in the
calling program; therefore, no diagnostic help can be
given for errors of this kind.

In figure 12-33, EXTRAC is declared integer in the calling
program, and the correct result is obtained.

PROGR,4M X
C IF EXTR,4C IS DECL,4~EU TYPE lNTEbER Trl~ RESULT IS 49, uT~ER~lSE IT IS
C ZERO
C

K= EXTR,4C(7,
PRINT '("1K
STOP
END

C

Function EXTRAC:

I' Ib) I, K

INTEGER FUNCTION EXTR,4C (K)
EXTR,4C= K*K
RETURN
ENO

Output:

K = 0

Figure 12-32. Program X, Function EXTRAC, Output: INTEGER DeclarOation Omitted From Main Program

PRUGR,4M X
C IF EXTR,4C IS DECL,4REU TYPE iNTEbER THE RE~ULT IS 4~, OTHERWiSE IT I~

C ZERO
C

INTEGER EXTR,4C
K= EXTR,4~(7)

PRINT 1("1K = II

STOP
END

Function EXTRAC:

I~' " K

INTEGER FUNCTION EXTRpC (K)
EXTR,4C= K*K
RETURN
ENU

Output:

K = 49

Figure 12-33. Program X, Function EXTRAC, Output: INTEGER Declaration Included in Main Program

60481300 B 12-17



PROGRAM ADIM

Program ADIM, shown in figure 12-34, illustrates the use
of adjustable dimensions to allow a subroutine to operate
on arrays of various sizes. The following features are
included in this example:

Passing an array to a subroutine as a parameter

Specifying an array name, with no dimension
information, in an argument list

Specifying an array with a negative lower subscript
bound

IOTA, it can prov~de the name and the dimensions of the
array; since A and M are dummy arguments, lOTA can be
called repeatedly with different dimensions replacing M at
each call. lOTA contains a DO loop which stores
consecutive integers into the array A.

The main program calls subroutine IOTA three times. In
the first call, the first argument is array X and the second
argument is the number of elements in the array, 12.
Consecutive integers are stored into the 12 elements of X.

In the second call to lOTA, the arguments (Y,6) are
passed. Consecutive integers are stored into the six
elements of Y.

Two arrays, X and Z, are dimensioned and placed in
common. Z is dimensioned (-2:3). This means that Z has
six elements; the lower subscript bound is -2 and the upper
subscript bound is 3. The elements are: Z(-2), Z(-l), Z(O),
Z(l), Z(2), z(3).

In the third call to IOTA, the arguments (Z,6) are passed.
The subscript bounds speci fied in the subroutine need not
be the same as the ones specified in the calling program.
Although Z is dimensioned (-2:3) in the main program, it
can be dimensioned (6) in IOTA.

The array Y is dimensioned (6) and is explicitly typed
real. It is not in common.

In subroutine IOTA, the adjustable dimension for array A
is indicated by M. Whenever the main program calls

The PRINT statements output the arrays X, Y, and Z. The
seco~d PRINT statement illustrates the use of a negative
DO Index to output the array Z. The output is shown in
figure 12-35.

c

C

PROGRAM AOIM
COMMON X(4,3), Z(-2:~)

REAL Y(6)

CAll IOTA {X,12)
CALL IOTA (Y,6)
CAll IOTA (Z,6)

PRINT lUU, X, Y, Z
100 FORMAT ('1ARRAY X = ',12Fti.U/ ' ARRAY Y

* /1 ARRAY Z = ',tiFti.U)
6F6.0,

IOTA STORES CONSECUTIVE INTEbER~ IN EVERY ELEMENT UF THE ARRAY A
STARTING AT 1

I , 6F 6. U)

DIMENSION A(M)
UO 1 I = 1, M
A(l)= I
RETUIU;
END

DO U I = -2,3
Z(I)= I
PRINT 110, Z
FORMAT {I ARRAY Z

STOP
END

SUBROUTINE IOTA (A,M)

1

C

~

110
C

C

C
C
t
C

Figure 12-34. Program ADIM and Subroutine lOTA

12-18 60481300 B



ARRAY X
ARRAY Y
ARRAY Z
ARRAY Z

PROGRAM ADIM2

l. 2. 3. 4. 5. 6. 7. 8. 9. 10. ll. 12.
l. 2. 3. 4. 5. 6.
1- 2. 3. 4. 5. b.

-2. -l. O. 1- 2. 3.

Figure 12-35. Program ADIM Output

Subroutine PVAL

ADIM2, shown in figure 12-36, is an extension of program
ADIM. Subroutine lOTA is used; in addition, another
subroutine and two functions are used. The following
features are illustrated:

Parameter statement

Negative array subscripts

Negative DO parameters

Use of an expression for an array dimension

Multiple entry points

Adjustable dimensions

EXTERNAL statement

Passing values through COMMON

Use of intrinsic functions ABS and REAL

Calling functions through several levels

Passing a subprogram name as an argument

Program ADIM2 illustrates the method of a main program
calling subprograms and subprograms calling each other.
Since the program is necessarily complex, each
subprogram is described separately followed by a
description of the main program.

Subroutine SET

Subroutine SET places the value V into every element of
the array A. The dimension of A is specified by M.

Function PVAL references a function specified by the
calling program to return a value to the calling program.
This value is forced to be positive by the intrinsic function
ABS.

The main program first calls PVAL with the statement
AA=PVAL(M,AVG), passing the integer M (assigned the
value 12 in the PARAMETER statement) and the function
AVG as parameters. The type of the argument in the
main program (INTEGER M) agrees with the
corresponding dummy argument (ISIZE) in the subprogram.

The value of PVAL is computed in line 7. This value will
be returned to the main program through the function
name PVAL. Two functions are referenced by this.
statement; the intrinisic function ABS and the
user-written function AVG. The actual arguments M and
AVG replace ISIZE and WAY. The second time PVAL is
called, the actual arguments M and MULT replace ISIZE
and WAY.

Function AVG

This function computes the average of the first J
elements of common. J is a value passed by the main
program through the function PVAL.

This function subprogram is an example of a main program
and a subprogram sharing values in common. The main
program and function AVG declare common to be a total
of 12 words. Values placed in common by the main
program are available to the function subprogram.

The number of values to be averaged is passed to function
PVAL by the statement AA=PVAL(12,AVG) and function
PVAL passes this number (in ISIZE) to function AVG:
PVAL=ABS(WAY(ISIZE)).

AVG uses a PARAMETER statement to assign symbolic
names to the constants 4 and 3. These constants are then
used in an expression that calculates the dimension for A.
The expression itself is used as the dimension for A. AVG
declares a total of 12 locations for common.

Lines 4 through 6 sum the 12 elements and divide by the
number of elements to calculate the average. The
intrinsic function REAL is used to convert the integer 12
to a real number to avoid mixed mode arithmetic,
although in this case mixed mode is permissible and
produces the same resul t.

Subroutine SET has an alternate entry point INC. When
SET is entered at ENTRY INC, the value V is added to
each element of the array A. The dimension of A is
specified by M.

The first DO loop in sUbroutine SET clears the array to
zero.

Subroutine IOTA

Subroutine IOTA is as described for program AD1M except
that the input array A is given negative upper and lower
subscript bounds. The DO loop uses negative control
variables and plAces consecutive negative integers in A.

60481300 B

The average is returned to the
PVAL=ABS(WAY(ISIZE)) in function PVAL.

statement

12-19



Function MULT

MULT multiplies the first and twelfth words in COMMON
and subtracts the product from the average (computed by
the function AVG) of the first J/2 words in common.

The declaration COMMON ARRAY (-1:10) assigns 12
elements to ARRAY and places it in common. The 12
elements are referenced by a subscript in the range -1
through 10. Line 8 multiplies the first element
(ARRAY(-l)) by the twelfth element (ARRAY(10)) and
subtracts the average (computed by function _AVG) of the
first J/2 elements in common.

Main Program: ADIM2

The main program calls the subroutines and functions
described.

The array Y has six elements, with subscript bounds of
(-2:3). MUL T and AVG appear in an EXTERNAL
statement so that they can be passed to subprograms as
arguments.

Lines 12 through 16 call the user-written subprograms
SET, lOTA, and PVAL; CALL INC calls subroutine SET
through the alternate entry point INC. The calls to PVAL
pass a symbolic constant and a function name. Results
are returned to AA and AM, respectively.

The namelist PRINT statement outputs the values
calculated by the subprograms. The output is shown in
figure 12-37.

c
C THIS PHDGRAr.!: USES J\I>JIJ~;TJ\BLJ: DH:~·~!!SICHI~. tlEGA';rVE I\HhI\YP;OUiJDS.
C MID HANY SUBPRUGRAY CWICf.PT3
C

PARJI.~,lETEL? (1=4, J=3. i(=-2, V=12,1'l=6)
cmr.:·i(H; X(I , J )
HEAL Y(K:J)
EXTF. fHl AL ~;lJLT. AV~;

:IM'lEL!ST IVI X. Y. 1\/\, /'.'-~

c
CJ\LL SET (Y, 1.1.0.)
CALL IOTl\(X. !-!)
CALL INC (X. M, -~.C)

AA= PV AL( ~1 • 1\ VG )
A"1 = PVl\ L C'l ~ "W LT )
f'RIfIT 'oJ

STOP
~:Il [)

c
SUBROUTINE SET (A. ~. V)

c
C ~ETPUTS TIlE V1\LlJE V INTO Ellj::iiY ELF.~·'1;:llT OF 'fHF .lr~RAY '\
c

DnlENSION A(tt)
DO 1 I = 1, ~_!

1 ;\(1)= 0.0
C

12-20

c
c
c

2

F',ITHY PIC(A ,1-', V)

lUC ADOS THE \'ALlJF V TO E\fE~Y 1.-LI-J-~F:f!T HI THE ,'Rfd\Y i~

r.:o 2 I = 1, 1·1
AO ) = A(I) + V
fH.TURi;;
EtlD

Figure 12-36. Program ADIM2

60681:JOO8



C
SUBROUTINE IOT~ (~,M)

c
C IOTft PUTS CONSECUTIVE NEG~TIVE INTEGERS ST~RTING ~T -1 INTO EVERY
C ELEMENT OF THE ~RR~Y ~
(;

DIMENSION ~(-M:-1)

DO 1 I = -1, -M, -1
1 ~(I)= I

RETURN
END

C
FUNCTION PV~L (ISIZE, W~Y)

C
C PVftL COMPUTES THE ~BSOLUTE V~LUE OF THE REftL V~LUE OF ~ FUNCTION
C P~SSED TO PV~L. ISIZE IS ~N INTEGER WHICH PV~L P~SSES TO THE
C FUNCTION
C

PV~L= ftBS(W~Y(ISIZE»

RETURN
END

C
FUNCTION ~VG(J)

C
C ~VG COMPUTES THE ~VER~GE OF THE FIRST J ELEMENTS OF COMMON
C

P~ R~METER (M=4, N=3)
COMMON ,4 (~1*N)
~VG= O.
DO 1 I = 1,J

1 ~VG= ~VG + ,4(1)
~VG= pVG/RE~L(J)

RETURN
END

C
REPL FUNCTION MULT(J)

(;

C MULT MULTIPLIES THE FIRST ftND TWELFTH ELEMENTS UF COMMON ~NO

C SUBTRftCTS FROM THIS THE ~VERPGE (COMPUTED BY THE FUNCTION PVG)
C OF THE FIRST J/2 WORDS IN COMMON
C

cuMMON ftRR~Y{-l:lO)

MULT= ftRR,AY{lO,*,ARRPY(-l) - ,4VG{J/2)
RETURN
END

Figure 12-36. Program ADIM2 (Sheet 2 of 2)

$V

X -.17E+Ul, -.16E+U2, -.15£+02, -.14E+02, -.13E+02,
-.12[+02, -.11[+U2, -.lE+02, -.YE+u1, -.8E+01,
-.7£+01, -.tiE+Ol,

Y 0.0, U.U, O.U, U.U, U.u, u.O,

AA .115£+Ul,

AM .11titiE+UJ,

$E NO

Figure 12-37. Program ADIM2 Output

60481300 B 12-21



PROGRAM CIRCLE

Program CIRCLE, shown in figure 12-38, finds the area of
a circle which circumscribes a rectangle with short sides
of length 3 and long sides of length 4. This example
illustrates the use of FUNCTION subprograms and of
statement functions. The program contains an error.

Program CIRCLE:

PROGRJlM CIRCLE
Jl= 4.U
B= ::S.O
JlREJl= 3.141~/4.U * DIM(Jl,B)**2
PRINT 1, JlREJl
FORMJlT (I JlREJl = I, G2U.10)
STUP
END

Function DIM:

C
FUNCTIuN DIM(X. Y)
DIM= SQRT(X*X + y*y)
RETURN
END

Output:

Figure 12-39. Rectangle and Circumscribed Circle

There are several ways of correcting this error:

Change the function name so that it is not the same
as an intrinsic function name.

Declare DIM external; in this case, the user-written
external function will be used.

Write the function DIM as a statement function; the
function name can be the same as an intrinsic
function name, and the user-written functio'n is used.
This is the most efficient method. Since FORTRAN
compiles statement functions in-line, the program
executes much faster because no function call is
used. This solution is limited to functions of a single
statement.

flREJl = .78540UOOOU
A corrected version of the program, in which DIM is
written as a statement function, is shown in figure 12-40.

Figure 12;..38. Program CIRCLE, Function DIM, Output

Figure 12-39 shows a rectangle and circumscribed circle.
The area of a circle is given by R2, which is
approximated by the FOR TRAN expression:

3.1416/4.0*0**2

where R is the radius and 0 is the diameter of the circle.

The user-written function DIM computes the diameter of
the rectangle given the lengths of the sides using the
relation:

DIM=SQR T(X*X + y*y)

Program CiRCLE:

PROGRAM CIRCLE
UIM(X,Y)= SQRT(X*X + y*y)
A= 4.0
B= 3.0
AREA= 3.1416/4.0*DIM(A,B)**2
PRINT 1, AREA

1 FORMAT (11AREA IS I,G20.10)
STOP
END

The result shown in figure 12-38 is incorrect. The area of
a circle circumscribing a rectangle with sides 3 and 4 is
clearly greater than.785.

Output:

AREA IS 19.63500000

The error occurred because the function DIM has the same
name as an intrinsic function. If the name of an intrinsic
function is used for a user-written function, the
user-written function is ignored.

12-22

Figure 12-40. Program Circle With Correction and Output

60481300 C



60481300 B 12-23



PROGRAM EASY 10

Program EASY 10, shown in figure 12-43, illustrates the
use of list directed input/output.

List directed input/output eliminates the need for fixed
data fields. It is especially useful for input since the user
need not be concerned with punching data in specific
columns. List directed input does not require the user to
name each item as does NAMELIST input.

Used in combination, list directed input and NAMELIST
output simplify program design. Such a program is easy to
write, even for persons just learning the language;
knowledge of the format specifications is not required.
This feature is particularly useful when FORTRAN
programs are being run from a remote terminal.

Program EASY 10 calculates the area and radius of a
circle inscribed in a triangle, given the lengths of the
sides of the triangle. A list directed READ statement is
used for input, and NAMELIST is used for output.
Figure 12-44 shows some sample input and output.

The user can enter the three input values in whatever way
is convenient, such as: one item p'er line (or card), one
item per line with each item followed by a comma, all
items on a single line with spaces separating each item,
all items on a line with a comma and several spaces
separating each item, or any combination of the
foregoing. Furthermore, even though all input items are
real, the decimal point is not required when the input
value is a whole number.

PIWGRAivl t:A~ Y 1U
c
~ GIVEN THE ~lDES UF A TRIANGLE, CUMPUTE THe AKEA AND KAuIU~ OF THE
C INSCRIBEU CIRCLE
C

REAL SIUES(J)
E~UIVALENC£ (5IUES(l) ,A), (SIUES(2) ,13), (SlUES(J) ,e)
kAMELl~T luUTI SlDE~, AREA, KAOIU~

READ (*, *, ENU=bO) ~)1UES

S= (A + B + C)/2.0
AREA= SQRT(S*(~~A) * (5-6) * (S-C»
RADIUS= AREA/S
WRITE (*, OUT)
GO TO ;j

50 STOP
END

Figure 12-43. Program EASYIO

60481300 B



Input:

:; 4 5
6,7,~

3*1
4
5
6

Output:

PROGRAM BLOCK

Program BLOCK, shown in figure 12-45, illustrates block
IF structures.

Block IF structures allow the user to specify alternate
paths of execution, based on the outcome of IF tests.
Block IF structures eliminate the need for branching when
IF tests are performed. This feature can make programs
simpler and more readable.

Program BLOCK reads an integer into the variable K, and
two sets of real numbers into the arrays A and B. K is
tested and the following action is taken:

K=2 Calculate C(I)=A(I)*B(I)•

$OUT

~IUES . 3E+ul, .4E+01, .5E+01,

K=l Calculate C(I)=A(I)**2 + B(I)**2.

AREA

RADIUS

$END

$OUT

SIDES

AREA

RADIUS

$END

. 6E+U1,

.1E+01,

.6E+U1, .7E+Ul, .dE+Ol,

.2U333102567589E+U2,

. 19J649167310j7E+01,

All other Set array C to zero•
values of K

These tests could be performed by conventional methods,
using logical IF and GO TO statements. However, with
block IF structures the program is much clearer.

The program includes a block IF statement (line 7), and
ELSE IF statement (line 11), and an ELSE statement
(line 15). These statements provide for three alternate
paths of execution. After the appropriate block has been
executed, control transfers to the WRITE statement
"following END IF. The program then branches back to
process the next input record•

Sample input and output are shown in figure 12-46.

Figure 12-44. Sample Input and Output
for Program EASYIO

$OUT

SIDES

AREA

RAUIU:>

$END

$UUT

SIDES

AREA

RADIUS

$END

.1E+U1, .1£+U1, .1£+01,

.4330127U189222E+OU,

.28~6751J4b9481£+00,

.4£+01, .5E+01, .6E+01,

.99215674164922E+01,

.13228756555JZ3£+01,

10
C

15
C

100

PROliRAI~1 ~LUCK

PARAMETER (M=b)
DIMEN::;IUN A(M), ~(M), C(M)
NAMELl::;T /UUT/ K, A, 13, C

READ (*, *, ENU=lOO) K, A, B
IF (K .ElJ. 1) THEN
DU 5 1 = I,M
C(I)= A{I)**2 + B(I)**2

ELSE IF (K .EQ. 2) THEN
00 iu 1 = 1, M
C(I)= A(I)*B(I)

ELSE
00 15 I = 1,lvI
C( I ) = O.U

END IF
WRITE (* , OUT)
liO TU t.

::;TOP
END

Figure 12-45. Program BLOCK

60481300 C 12-25



Input:

b 9.0 9.0 8.0 8.0 7:0 b.O 3.0 3.0 2.0 6.0
1 1.0 0.0 O.u 7.0 7.0 4.0 0.0 0.0 0.0 0.0
4 4.0 4.0 4.0 7.0 8.0 b.O 0.0 0.0 3.0 2.0
J 3.0 3.0 2.0 2.0 1.0 6.0 tS.O 0.0 1.0 1.0

Output:

12-26

sour
K

A

B

C

$ENU

sour
K

A

B

$ENU

sour
K

A

B

(;

$E NO

sour

K

A

B

c

$END

5,

.9E+01, .9E+01, .8E+01, .8E+01, .7E+01,

.5E+01, .3E+01, .3£+01, .2£+01, .6£+01,

0.0, 0.0, o.u, u.O, 0.0,

1,

.1£+01, u.O, O.U, .7£+01, .7£+01,

.4£+01, 0.0, U.O, U.O, u.O,

.17£+02, 0.0, 0.0, .49E+02, .4~E+02,

4,

.4E+01, .4£+01, .4£+01, .7E+01, . ~£+Ol,

.5E+01, U.O, 0.0, .3£+01, .2£+01,

O.u, O.U, 0.0, 0.0, U.O,

J,

.3£+01, .3E+U1, .2£+01, .~E+01, .1E+01,

.oE+U1, .8£+01, u.O, .lE+U1, .1E+01,

0.0, 0.0, 0.0, u.O, U.O,

Figure 12-46. Sample Input and Output
for Program BLOCK

60481300 B



PROGRAMS ONE AND TWO

Programs ONE and TWO, shown in figure 12-47, illustrate
internal file usage.

Program ONE writes a single record to an internal file.
The array A and the variables Band C are declared type
character of length 10. The character variable ALPHA,
to be used as the internal file, has length 40. The DATA
statement loads character data into A, B, and C.

The WRITE statement defines ALPHA to be an internal
file and writes the values of A, B, and C to the file
according to the format specification (2A4, A5, A6). The
following formatting is performed:

Characters ABCD from A(l) are transmi tted to
posi tions 1 through 4 of ALPHA.

Example 1:

Characters KLMN from A(2) are transmi tted to
posi tions 5 through 8 of ALPHA.

Characters UVWXY from Bare transmi tted to
posi tions 9 through 13 of ALPHA.

Characters Z12345 from C are transmitted to
positions 14 through 19 of ALPHA.

Positions 20 through 40 of ALPHA are blank filled.

Program TWO is identical to program ONE except that
ALPHA is dimensioned 2 and the format specification is
changed to cause two records to be written to ALPHA.
The characters in A(l) and A(2) aretransmi tted to
ALPHA(l) as before. The slash, however, causes
subsequent data to be transmi tted to ALPHA(2). Unused
portions of both records are blank filled.

PRO GRAt-1 0 t·; E
CHARACTER A(2)*10.R*10,C*10,ALPHA~40

[) ATA A. R , C /' ARC 0 EFGHI J I • 'K L ~, N0P0 RST ' , 'U VVXY, , I Z123456 ' /
WRITE (ALPHA. '(2A4.A5.A6)') A,R.C
PRINT 2.ALPHA

2 FOR ~·1 AT (. 1C0 ~! TEN TS 0 F ALP HA = '. /1 X. A4 (1 )

STOP
OW

Output:

CONTENTS OF A PHA =
ABCOKUHIUH'XYZ123456 - - - - - - - - - - - 6

- SECONDS EXECUTION TI~E.

A single record is written to the internal file ALPHA.

Example 2:

PROGRAM T"-'O
CHARACT F. R A( 2 ) *10 •R*10 •C*HJ •ALP HA ( ?) *40
DATA. II., R. • C / I ABC [) EFGHI J I , 'K Ltv' t,1 0 ~ (I RST ' • I UVWx Y I • • Z1234 5 f) I /

WRITE (ALPHA. 1(2A4/A~.A6)') f,R.C
P Pun 2. ALP Ht\

2 FOP t,l AT (. 1CON T0 1TS 0 F ALP HA = j, /1 X. 2A4(l )
STOP .
END

Output:

COrQENTS OF ALPHA =
!ARCfJKLI,lN6 - - - - - - - - - - - - - - - 6IuV\IXYZ123456- -(

record 1 record 2

Two records are written to the internal file ALPHA.

Figure 12-47. Programs ONE and TWO

60481300 B 12-27



PROGRAM PMD2

Program PMD2, shown in figure 12-48, illustrates the use
I of the Post Mortem Dump facility. In this example, the

dump is triggered by a program abort.

Program PMD2 consists of a main program and a
slbroutine. The main program contains an error: in the
CALL statement, the subroutine name SETCOM is
misspelled as SETCM. This error causes the program to
abort when the statement CALL SETCM is executed.

PROGR~M PMU~

Subroutine SETCOM tests the logical variable L. If L
contains the value •TRUE., data is read from unit 1 into
the array· B. If L contains the value .FALSE., B is set to
zero.

Note that the program contains no calls to Post Mortem
Dump routines. In this case, if the program aborts and
DB=PMD was selected, a dump occurs automatically.

The Post Mortem Dump output for program PMD2 is
shown in figure 12-49. The dump includes an error
analysis, a description of current file, status, and an
analysis of variables in the main program (in which the
error occurred).

L
C THIS PRUGR~M ~UNT~lNS AN ERRuR WHICH ACTIV~TES Pu~T MuRTEM DUMP
L IF OB=PMU IS S£LECTEU
L

CH~kA~T£K*lO F1LE, IFG
LLlGICAL LVPR
CUMMLlN /CBLUCK/ ~RR(J,3)

OPEN lUNIT=o,F1LE='OuTPUT ' )
LV~K = .TRUE.
CALL ~ETCI'/I (LV~R, IFG)
WRITE (6,*) IF~, ~RR

STUP
END

I

I

12-28

III

SUBROUTINE SETCuM(L, IF~)

LOGICAL L
CH~RACTER*lO IFG
COMMON /CBLUCK/ B(3,3)

IF (L) TI-II::N
IFG = 'FIRST'
RE~u (l,EtW=~99) «ti(I,J),I=l,J),J=l,J)
EL~E

1F li = I SEC UN iJ I

[J() 10 l=l,J
ULl 10 J=I,J
tS(I,J) = 0.0
ENUIF
RETURN
END

Figure 12-48. Program PMD2

60481300 E



7~/O~/lO. 12.~7.lij •
0'\
o
.l=:­
(Xl....
VI
o
o
CII

FTN POST MORTEM ~MP ~RROR REPORT

*** YUUR JUB HPS T~E FuLLUWING NUN-FpTPL LOPO ERROR(S):
UNSPTISFIEU EXTERNPL REF -- SETGM

III EXECUTION WPS TERMINPTED BECPUSE YUUR PRUGRPM GPLLEU P MISSING ROUTiNE PT LINE NUMBER II uF PROGRIlM PMOl

PRRPYS WILL BE PRINTEu BY OEFPuLT PPRPMETERS ( 20, l, 1, 1, 1, 1, 1 )

YUUR PRUGRPM REQUIREU 26JUOB WORUS TU LOPU, lU315b WORDS Tv RUN

FiLE £TftTUS PT TIME UF TEKMINPTIUN

FILE NPME FURTKftN NPMES LPST uP
-UUTPUT rpPEb uPENEO

STJ1TU~ FILE TYPE BLOCKIN~ TYPE REC TYPE REGORU CUUNT
S~ C l U

VPRIPBLE~ IN
NPME

PROliRPM PMU2
TYPE KELOCPTlu~ CUKRtNTVJ1LUE CUMMt:NT~ I~PI~E

ftRR REJ1L ICBLUCKI
UIMENSIUNED PS - ftRR(l:J,l:J)

*** THE NEXT iTEM IS NEVER UEFI~EU

FILE CHPRftCT
IFG CHftRPCT
LVPR LOGICftL

flKRPY

PMD2 :J1W
'If: :E/uU~P%

. TKUE.

PRR

FILE
IFG
LVIlR

J1RRPYS IN PRUGRM4 PiVlU2

REPL PRRPY PRR(l:J,l:J)
(J1RRO~,l})

N=l NUT INITIPLIZtD NOT INITIPLIZEO
(J1RR(N,2})
N=l NOT INITIPLllED NUT INITIPLIIEU

TRJ1LEBftCK SUCLEJSFULLY COMPLETED

III END OF ERROR REPORT

NUT INITl,ALlLI::U

NOT INITIJ1LIZEU

....
N
I
N
\0

Figure 12-49. Post Mortem Dump Output for Program PMD2



PROGRAM PMD

Program PMD, shown in figure 12-50, illustrates the use of
I the Post Mortem Dump. In this example, Post Mortem

Dump calls are used to trigger a dump. Post Mortem Dump
routines illustrated are:

PMDARRY

PMDLOAD

PMDDUMP

The Post Mortem Dump output is shown in figure 12-51.
The dump includes an analysis of variables and traceback
information for each program unit.

PROGRAM DBUG

Program DBUG, shown in figure 12-52, illustrates the use
of CYBER Interactive Debug (CID) to conduct an
interacti ve debug session (not supported on SCOPE 2). The
CIO commands illustrated are:

SLbroutine SUBT and function SQRS each contain a call to
PMDOUMP. After these calls are executed, the call to
PMOLOAO in the main program causes variables in SUBT
and SQRS to be dumped following the variables of the main

Program PMD consists of a main program, a subroutine,
and a function subprogram. These program units perform
some simple operations on values stored in an array. The
call to PMDARR Y in the main program specifies that only
I-dimensional arrays are to be dumped and that dumps of
arrays are to be limited to the first five elements, although
the arrays are dimensioned 50. The call to PMDLOAo in
line 11 causes a dump of variables in the main program and
in any routines that have called PMDDUMP.

12-30

c

c

10

c

c

16
l"

C

c

PRUGR,At~ Piv\[)
DIMENSIUN ~(~U), b(~U), C(~O)

D~TA p/50*Z.U/, B/50*4.U/

CJlLL PMlJJ\RKY(5)

DO 10 I = 1,5u,2
p(l) = ,A(I) + 8(1)
CftLL SUBT (p,B,C,50)

CIlLL PtoIDLJJ\U

STOP
END

SU~KuuTINE SU~T (X,Y,Z,M)
OIMEN~IUl\l X(t-I), Y(tvl), Z(lvl)
UU 16 1 = 1,M
1.(1) = SljRS(XII),Y(l))

CJ\LL PI~ULJUMP

R£TURN
END

FUNCTIUN ~4K~IK,~)

~lJRS = K*K + S*:>

C~LL PMODUIVlP

RETURN
ENO

Figure 12-50. Program PMD

SET,BREAKPOINT

GO

PRINT

QUIT

Program OBUG stores numbers into an array A and stores
a character string into a variable CHAR. The program is
compiled and executed interacti vely in debug mode.

The terminal session for NJS/BE is shown in figure 12-53
(CIO and system output are in uppercase, user input is in
lowercase). The OEBUG control statement establishes
debug mode. When the program is compiled in debug mode,
special tables are generated for use by CIO. The execution
control statement LGO initiates the debug session. CIO
responds with:

CYBER INTERACTIVE DEBUG
?

allowing the user to enter CIO commands. The
SET,BREAKPOINT command sets a breakpoint that causes
execution to be suspended when line 9 is reached. The GO
command initiates execution of the program. The message:

*B Ill, AT L.9
?

indicates that a breakpoint has suspended execution at
line 9 and that CIO is waiting for user input. Note that
execution is suspended before the statement in line 9 is
executed (the PRINT command shows that CHAR still
contains the value assigned by the DATA statement).

The GO command is then entered to resume program
execution. The message:

*T 1117, END IN L.I0
?

is a trap message indicating that the program has
terminated at line 10 and that CID commands can be
entered.

The QUIT command ends the debug session. Debug mode,
however, remains in effect until OEBUG(OFF) is entered.

60481300 E



0\
o
J:l­
IX).....
""oo
CD

F1N POST MuRTEM UUMP ERRUK REPuRT

*** YUUR JUb HP~ THE FULLUWINb NUN-F~TPL LO~U ERROR(S);
UN~PTISFI£U £XTEKNPL REF -- SETCH

III EXECuTIUN w~~ INTERRUPTEu ~ECpuSE YUUR PKUbR~M C~LLtU PMuLUPu PT LINE NUMBER L1 OF
PkR~Y~ wILL ~E PRINTEU BY RE~UE~T£U P~R~METERS ( ~, U, 0, 0, u. U,
YUUR PRuGRpM Rt4UIKtU ~7'UUB WURU~ Tu LUPu, L1IO~~ WUKUS Tu RUN

79/U~/lO. 12.~9.U4.

IJROGR~M IIMU
U)

VPi<IJ1tlLES IN PKUliRJllvl PMU
NPiv11:. rypl:. RELO{,PTiUN (,UiH<I:.NT V~LUE

J1 REPL PRRPY
UIMI:.N~lUN£U PS - p(1:5U)
Ij REPL PRK~Y

UIMENSluNEU J1S - tl{l:oU)
C K£J1L ~Rk~ Y
UIME~~IUNEU P~ - C(1:5U)
I INTEGER ~l = lR1.

COMMENTS N~ME

p

B

(,

J1kRPYS IN PRUbRJlM PMU

REPL PRRpY ~(1:50)

(P( N))
N=1 b.UOUOUlJUUUUU '.UOOUOuUOUOU b.OOOOOOOOUUO £.UOOOOUOOOUU O.OOUUOUUUOUU

REPL PRRPY ~(l:~U)

(U( N))
N=1 4.0UOOUUUUUUU ~.UO(JUOUOUUUU 4.UUUOOUUUOUU 4.UOOOOUUUUUU 4.UUUuUuuUOUU

KEPL PkRpY C(l:~U)

(C( N) )
N=l 3Z.UOUOuuuuUU 'O.OOUUOOOUUU b2.UOOOu\JUUUO to.UUUUOUOUOu 5l.UUUOOUUOUU

FrN POST MuRIEM UUMP

CURRENT ~lTupTl0N iN FUNCTIUN S4R~

FUNCTIuN :>{JRS 19/U~/lU. ll.S9.U4.

.....
N
I

"".....

VPRIPULE~ iN FUNCTiUN S(JR S
NJlIvIl: TYPt: RELUCPTIUN LURKI:.NT V~LUt

R REJ1L F . P. 1 l.UUUUUuuUUUU
~ RE..pL F . P. &:: 4.0UUOOuuuOUU

CJlLLEU FRUM LIN£ NUMtiER 4 UF SUBRUuTINE SU~T

Figure 12-51. Post Mortem Dump Output For Program PMD (Sheet 1 of 2)

CUI1ME.NT ~ N~Mt

R
:>



....
N

~
N

FTN POST MORTEM DUMP ~UaItOUTIN~ SUtsT ;9/0ti/20. 12.S~.04.

CURRENT SlTU~TION IN SUBROUTINE ~UBT

V~RI~BLES IN SUBROUTINE SUBT
N~ME TYPE RELOC~TION

I INTEGER
M I NTEGE R F.P. 4
X Rt~L F.P. 1
UIMENSIONEU ~~ - X(1:50)
Y t{t::~L F. P. ~

UIMENSIONED ~S - Yl1:bO)
Z RE~L F.P. 3
UIMEN~IONEu ~s - Z(l:~O)

~t{RPYS iN SU~RuUTINE SUBT

CURRENT V~LUE COMME.NT~ "_ME

51 = lR'I 1
bO • lRj M

~RR~Y X

J1RR~Y Y

PRiVY l

RE~L PRRPY X(1:50)
VPR~I~BLE ~P~N IN SUB~CRIPTS 1

(X (N J )
N=l 6.UOUOOOOUUUU i.UOUOUOUOOOO 6.00UOOOOOOOO l.UUOOUOOOOUO b.OUOOOOOOOUO

RE~L ~RR~Y Y(l:bO)
V~RJ1I~BLE SP~N IN SUBSCRIPT~ 1

PLL RE~U£STEU ELEMENTS uF THIS ~RR~Y WERE 4.uOOOOOUUOOU

RE~L ~RR~Y Z(1:5U)
VPR~I~BLE SPPN IN SUBSCRIPTS 1

(Z(N))
N=l 52.UOOOOOOOOO £O.OOUOuuOOOU

CPLLEU FRUM LINE NUM6tR ~ OF PRUbR~M Pt~U

III tNU OF ERROR REPORT

b2.uOOOOOOOOO C!u.OOUOOOOOOO bl.OUOUOUOUOO

0\

~
Q)....
Vol
o
o
CD

Figure 12-51. Post Mortem Dump Output For Program PMD (Sheet 2 of 2)



1 PROGRAM DBUG 74/74 OPT=O

1
2
3
4
5
6
7
8
9

10
11

C

12
C

PROGRAM DBUG
DIMENSI0K A(-1:4)
CHARACTER*5 CHAR
DATA CHAR /'ABCDE'/

00121=-1,4
A(I) 1

CHAR = 'XYZ12'
STOP
END

Figure 12-52. Program DSUG

COMMAND- debug_a-----------------Activatedebugmode

COMMA N0 - f t n 5 , i =pro g , 1 =1 i s t ---------_Compile program

57300 CM STORAGE USED.
0.112 CP SECONDS.

COMMAND - 1go _, Initiate debug session

CYBER INTERACTIVE DEBUG
?set, b re a k po i nt, 1 .9_._--------------_ Set a breakpoint at line 9

? go_.--------- Begin program execution

* B #1, AT L. 9_.----------- Breakpoint detected at line 9, execution suspended
?print*, a,char_.----------__

......... Display values of A and CHAR
-1. O. 1. 2. 3. 4. ABCDE

? go _.------ Resume execution

*T #17, END IN L. 10_._------ Program terminates at line 10
?

STOP
12000B MAX FL DURING EXECUTION •

• 167 CP SECONDS EXECUTION TIME
Pr in t*, c ha r_. Display value of CHAR

XYZ12
?q u i t_.- Terminate debug session

DEBUG TERMINATED
COMMAND - deb ug ( 0 f f)_._-------------__ Turn off debug mode

COMMAND-

Figure 12-53. Debug Session

60481300 A 12-33



PROGRAM GOTO

Program GOTO, shown in figure 12-54, illustrates the
computed GO TO feature.

Program GOTO reads records containing a single integer
each and keeps a running total of the number of integers
falling within the intervals °through 25, 26 through 50, 51
through 75, and 76 through 100. If the integer does not
fall within any of these intervals an appropriate message
is printed. When all records have been read, the total for
each interval is printed.

In the computed GO TO statement in line 13, the control
index is an expression (NUM + 24)/25. If the input value
NUM is il"l the range 1 through 100, the value of the
expression is in the range 1 through 4. The computed GO
TO transfers control to the label 20, 30, 40, or 50, if the
value of the expression is 1, 2, 3, or 4 respectively. The
appropriate counter is then incremented. If the value of
the expression is less than 1 or greater than 4, control
passes to the PRINT statement following the GO TO.

Sample input and output are shown in figure 12-55.

PRuGRJl~1 bUlu

Input:

56
30
110
2
25
-10
o
10.0
~1

Output:

NUMBER 110 IS OUT uF CORRECT R~NGE

NUMBER -10 I~ uUT OF CORRECT R~NGE

o - 2!:i j

26 - 50 1
51 - 75 1
7b - 100: 2

Figure 12-55. Sample Input and Output
for Program GOTO

c
C PROGRP~ GUTO REPD~ INTE~tR~ RPNbING.FRuM 1 TU 1uu, DIVIDES THEM INTO
C FUUR GRUUP~, PND UETERMINE~ THE NUMBER IN EPCH GROUP
L

NbRP1 u
NGRP£ U
NGRPJ 0
NGRP4 0

C
lOREPU (*, *, ENU=1(0) NU14

IF (N Ulv1 • E(J. 0) NUM = 1
GU Tu (20,30,40,50), (NUM + 24)/25
PRINT '( II NUMBER 11,14,11 IS OUT OF CORRECT RPNGE II

)', NUIv1
GO TO 10

20 NGRPI = NGRPI + 1
GU Tu 10

jO NGRP2 = NGRPl + 1
GO TU 10

40 NGRPJ = NGRP3 + 1
GO TO 10

~O NGRP4 = NGRP4 + 1
GO TU 10

(;

100
200

PRINT 200, NbRPl, NGRPl, NGRPJ, NbRP4
FORM~T (I U - 2b :1, 14,/IX,'2ti - Su

* /lX, 176 - 1UU: I ,14)
~TOP

ENU

• I. , I4,/IX,151 - 75 . ,. , 14,

12-34

Figure 12-54. Program GOTO

6048UOO C



PROGRAM ASK

Program ASK, shown in figure 12-56, illustrates the
OPEN, INQUIRE, and CLOSE statements. The program
creates a file, writes information to the file, inquires
about the status of the file, and closes the file.

The OPEN statement in lines 9 and 10 creates a file
named N123 and associates the file with unit 2. File N123
is declared to be a direct access file with a record length
of 100 words.

The DO loop in lines 12 through 15 writes 5 records to file
NI23.. One record is written on each pass through the
loop. Each record consists of ten consecutive words from
the array BUF followed by blank fill. Since N123 is a
direct access file, the REC parameter is specified on the
WRITE statement to assign a number to each record. A
counter K is incremented on each pass through the loop,
and the value of K is used for the record number.

The INQUIRE statement in line 16 performs an inquire on
unit 2. INQUIRE returns information in the variables
supplied for the specified parameters. The variables 0
and E are declared type logical because INQUIRE returns
a logical value (T or F) for the EXIST and OPENED
parameters. Variables N, A, S, F, and B are declared type
character because INQUIRE returns a character string for
the NAME, ACCESS, SEQUENTIAL, and FORM
parameters.

PRUGR~M ftSK
LOGICftL E, 0
CH~R~CTER*lU N,P,~,F*11

UIMENSION BUF(50)
C

LJu 10 ! = 1,50
1U ~UF(l) = I
C

Program output is shown in figure 12-57. The FORMAT
statement formats the output so that it is
self-explanatory. Note that sequential access is not
permitted on file N123. The file is opened for
unformatted output (default for direct access files), the
next record is 6 (5 records have been written), and blanks
within a record are ignored (default). The NAME,
ACCESS, and RECL parameters reflect information
specified on the OPEN statement.

The CLOSE statement in line 26 specifies the
STATUS='DELETE' parameter so that the file is destroyed
after execution of the CLOSE. If this statement were
omi tted, an implicit CLOSE(2,STATUS='KEEP') would
occur.

UNIT EXISTS? T
UNIT ~SSOCI~TEU WITH FILE? T
FILE N~ME IS N123
~CCESS METHOD I~ DIRECT
SE~UENTIftL ~CCESS PERMITTED? NO
OPENED FOR UNFORM~TTED I/O
RECURD LENGTH IS 100
NEXT RECORD IS 6

Figure 12-57. Program ASK Output

UPEN (2, ERR=99, FILE=IN12 j l, ST~TU~=INEWI, ftCCESS=IDIRECT ' ,
* RECL=lUO )

K=l
UU 15 I = 1,41,10
WRITE U, REC=K, ERR=99) (BUF(J),J=I,l+~)

15 K = K + 1
C

INQUIRE (UNIT=l, EI<I<=99, EXIST=E, UPENEu=u, N~~~=N, PCCESS=p,
* SEQUENTI~L=S, FURM=F, RECL=L, NEXTREC=M)

C
PRINT 50, E,U,N,~,~,F,L,M

50 FURI·1.11 T (I 1 I, I UNIT EX1ST S? I, L1, / I UNIT ~ SSOC I~ TELJ WIT H FI LE? 1

* Ll, /1 FILE N~ME IS I, ~, /1 ~CCESS METHOD IS I, Ii,
* /1 SEQUENTI~L ~CCESS PERMITTEU? I, /1,
* /1 OPENED FUR I, 11, I 1/0 1, /1 RECORD LENGTH is I, 15,
* /1 NEXT RECURU IS I, 15) .

C
CLOSE (2, ERR=99, ST~TUS=IOELETE I)
STOP

99 PRINT*, I F~T~L I/O ERRUR I

STOP
ENU

Figure 12-56. Program ASK

60481300 C 12-35



PROGRAM SCORE

Program SCORE, shown in figure 12-58, reads student
names and test scores from input records and calls
subroutine AVG to compute the average of the scores on
each record and to determine which of the students
qualify for honors. Program SCORE illustrates the use of
an alternate return.

In the main program, the statement labeled 8 prints the
string "HONORS"•. The statement labeled 10 prints the
name and the computed average; the + carriage control
character causes these values to appear on the same line
as "HONORS".

The program continues to process input records until an
end-of-file is detected, at which time control passes to
the statement labeled 99 and execution terminates.

Sample input and output for program SCORE are shown in
figure 12-59.

Figure 12-59. Sample Input and Output
for Program SCORE

Each input record contains a name and four test scores.
After reading a record, the main program calls subroutine
AVG which computes the average of the four scores. The
actual arguments passed to AVG are an array ISCORE
containing the four scores, an integer variable N
containing the number of scores, a real variable XLIM, a
real variable AV in which AVG returns the computed
average, and two statem~nt labels indicated by *8 and *10.

The variables XLIM and N are initiali zed by the DATA
statement in line 4.

Subroutine AVG computes the average of the values in
ISCORE and tests the average against XLIM to determine
if the student qualifies for honors. The IF statement in
line 8 performs the test and returns control to the
statement label represented by the first asterisk in the
SUBROUTINE statement Oabel 8) if the test has a value
that is true. If the test is not true, control passes to the
next statement which returns control to the statement
label represented by the second asterisk in the
SUBROUTINE statement Oabel 10).

PKOGRM-1 SCORE
LHPRPCTE~*lO NPME
OIMENSION ISCURE(4)
OPTP XLIM/~O.O/, N/41

Input:

~MITH

JONES
ODE
uOJ1KES

Output:

SMITH
JONES

DOE
uOJ1KES

~8 85 89 92
75 83 8U 89
85 92 95 89
85 89 80 91

~1.00 HONORS
81. 75

90.25 HONORS
ts6.2b

C
b REPO (*, 100, END=12) NPME, (ISCURE(I),I=1,4)
100 FORM.A T (JlI0, 4I 3)

C.ALL .AVG (ISCORE, N, XLIM, .AV, *8, *10)
ti PRINT I (21X, "HONORS II

) I
10 PRINT I("+",.A, 3X, F6.2, /)1, N.AME, .AV

GO Tu 6
C
12 STOP

END

SUBROUTINE ,AVG(I.ARR, N, XLIM, PV, * *)
UIMENSION I.ARR(N)

SUM = 0
UO 20 I = 1,N

iO SUM = SUM + I.ARR(I)
PV = SUM/N
IF (ftV .GE. XLI~J RETURN 1
RETURN 2
tNO

Figure 12-58. Program SCORE and Subroutine AVG

12-36 60481300 B



STANDARD CHARACTER SETS A

CONTROL DATA operating systems offer the following
variations of a basic character set:

CDC 64-character set
CDC 63-character set
ASCII 64-character set
ASCII 63-character set

The set in use at a particular installation is specified when
the operating system is installed. The standard character
sets are shown in table A-I.

Depending on another installation option, NOS and
NOS/BE assume an input deck has been punched either in
026 or 029 mode, regardless of the character set in use.
Under NOS, the alternate mode can be specified by a 26
or 29 punched in columns 79 and 80 of any 6/7/9 card. In
addition, 026 mode can be specified by a card with 5/7/9
multipunched in column 1, and 029 mode can be specified
by a card with 5/7/9 multipunched in column 1 and a 9
punched in column 2.

Under NOS/BE, the alternate mode can be specified by a
26 or 29 punched in columns 79 and. 80 of the job
statement or any 7/8/9 card. The specified alternate
mode remains in effect throughout the job unless reset by
another alternate mode specification.

Graphic character representation on a terminal or printer
depends on the installation character set and the device
type. CDC graphic characters in table A-I are applicable
to BCD terminals. ASCII subset graphic characters are
applicable to ASCII-CRT and ASCII-TTY terminals.

Under SCOPE 2, the alternate modes are: 026, 029, and
blank.

The 026 and 029 modes are specified by a 26 or 29
punched in columns 79 and 80 of the job statement or any

60481300 C

7/8/9 card. The 26 and 29 codes convert 026 and 029
coded input to display code. Blank entries in" columns 79
and 80 indicate that the following section is coded or
binary and the next card should be checked according to
these alternatives:

If .the next card is a free-form flag card, the section
following is free-form binary. (See the SCOPE 2
reference manual.)

If the next card has 7/9 punched (only) in column 1,
the following section is SCOPE 2 binary. (See the
SCOPE 2 reference manual.)

In any other case, the following section is coded with
the last requested conversion mode.

When a 63-character set is in use, display code 00 under A
or R edit descriptor conversion in a formatted I/O
statement, ENCODE statement, or DECODE statement is
converted to display code 558 (blank). No conversions
occur when a 64-character set is in use.

FORTRAN programs can be written to handle
96-character or 128-character ASCII. In general, NOS
handling of 96-character or 128-character ASCII involves
6-bit and 12-bit codes, with characters represented in a
single display code or double display code combination.
The NOS character codes are shown in table A-2. In
general, NOS/BE and INTERCOM handling of 96-character
or 128-character ASCII involves 8-bit and 12-bit codes,
with the 8-bit ASCII code right-justified in a 12-bit field.
The ASCII character set is shown in table A-3. See the
appropriate operating system manual (NOS reference
manual volume 1, NOS/BE reference manual, or the
SCOPE 2 reference manual) for details.

The collation weight tables referenced at the end of
section 7 are given in table A-4.

A-I



TABLE A-I. FORTRAN AND STANDARD CHARACTER SETS

CDC ASCII

Display Hollerith External
Graphic PunchFORTRAN Code Graphic Punch BCD Code

(octal) (026) Code
Subset (029) (octal)

: (colon) oot : (colon) tt 8-2 00 : (colon) tt 8-2 072
A 01 A 12-1 61 A 12-1 101
B 02 B 12-2 62 B 12-2 102
C 03 C 12-3 63 C 12-3 103
D 04 D 12-4 64 D 12-4 104
E 05 E 12-5 65 E 12-5 105
F 06 F 12-6 66 F 12-6 106
G 07 G 12-7 67 G 12-7 107
H 10 H 12-8 70 H 12-8 110
I 11 I 12-9 71 I 12-9 111
J 12 J 11-1 41 J 11-1 112
K 13 K 11-2 42 K 11-2 113
L 14 L 11-3 43 L 11-3 114

v M 15 M 11-4 44 M 11-4 115
N 16 N 11-5 45 N 11-5 116
0 17 0 11-6 46 0 11-6 117
P 20 P 11-7 47 P 11-7 120
Q 21 Q 11-8 50 Q 11-8 121
R 22 R 11-9 51 R 11-9 122
S 23 S 0-2 22 S 0-2 123
T 24 T 0-3 23 T 0-3 124
U 25 U 0-4 24 U 0-4 125
V 26 V 0-5 25 V 0-5 126
W 27 W 0-6 26 W 0-6 127
X 30 X 0-7 27 X 0-7 130
Y 31 y 0-8 30 y 0-8 131
Z 32 Z 0-9 31 Z 0-9 132
0 33 0 0 12 0 0 060
1 34 1 1 01 1 1 061
2 35 2 2 02 2 2 062
3 36 3 3 03 3 3 063
4 37 4 4 04 4 4 064
5 40 5 5 05 5 5 065
6 41 6 6 06 6 6 066
7 42 7 7 07 7 7 067
8 43 8 8 10 8 8 070
9 44 9 9 11 9 9 071

+ (plus) 45 + 12 60 + 12-8-6 053
- (minus) 46 - 11 40 - 11 055
* (asterisk) 47 * 11-8-4 54 * 11-8-4 052

/ (slash) 50 / 0-1 21 / 0-1 057
( (left paren) 51 ( 0-8-4 34 ( 12-8-5 050

) (right paren) 52 ) 12-8-4 74 ) 11-8-5 051
$ (currency) 53 $ 11-8-3 53 $ 11-8-3 044
= (equals) 54 = 8-3 13 = 8-6 075

blank 55 blank no punch 20 blank no punch 040
, (comma) 56 , (comma) 0-8-3 33 , (comma) 0-8-3 054

. (decimal point) 57 • (pe~od) 12-8-3 73 • (period) 12-8-3 056
60 0-8-6 36 # 8-3 043
61 [ 8-7 17 [ 12-8-2 133
62 ] 0-8-2 32 ] 11-8-2 135
63 % tt 8-6 16 % tt 0-8-4 045

" (quote) 64 ~ 8-4 14 " (quote) 8-7 042
65 r- 0-8-5 35 - (underline) 0-8-5 137
66 v 11-0 52 ! 12-8-7 041
67 1\ 0-8-7 37 & 12 046

I (apostrophe) 70 t 11-8-5 55 ' (apostrophe) 8-5 047
71 J 11-8-6 56 ? 0-8-7 077
72 < 12-0 72 < 12-8-4 074
73 > 11-8-7 57 > 0-8-6 076
74 $ 8-5 15 @ 8-4 100
75 ~ 12-8-5 75 \ 0-8-2 134
76 ., 12-8-6 76 - (circumflex) 11-8-7 136
77 ; (semicolon) 12-8-7 77 ; (semicolon) 11-8-6 073

t Twelve zero bits at the end of a 60-bit word in a zero byte record are an end-of-record mark rather than two colons.
ttl n installations using a 63-graphic set, display code 008 has no associated graphic or card code; display code 638 is the colon

(8-2 ·punch). The % graphic and related card codes do not exist and translations yield a blank (558)'

A-2 60481300 D



TABLE A-2. CODES (6/12-BIT) FOR NOS

ASCII ASCII ASCII ASCII
Display Code Char. Code Code Display Code Char. Code Code

(6/12-Bit Octal) (7-Bit Octal) (Hexadecimal) (61l2-Bit Octal) (7-Bit Octal) (Hexadecimal)

oot 072 3A 7604 d 144 64
01 A 101 41 7605 e 145 65
02 B 102 42 7606 f 146 66
03 C 103 43 7607 9 147 67
04 0 104 44 7610 h 150 68
05 E 105 45 7611 i 151 69
06 F 106 46 7612 j 152 6A
07 G 107 47 7613 k 153 6B
10 H 110 48 7614 1 154 6C
11 I 111 49 7615 m 155 60
12 J 112 4A 7616 n 156 6E
13 K 113 4B 7617 0 157 6F
14 L 114 4C 7620 p 160 70
15 M 115 40 7621 q 161 71
16 N 116 4E 7622 r 162 72
17 0 117 4F 7623 s 163 73
20 P 120 50 7624 t 164 74
21 Q 121 51 7625 u 165 75
22 R 122 52 7626 v 166 76
23 S 123 53 7627 w 167 77
24 T 124 54 7630 x 170 78
25 U 125 55 7631 Y 171 79
26 V 126 56 7632 z 172 7A
27 W 127 57 7633 { 173 7B
30 X 130 58 7634 I 174 7C
31 Y 131 59 7635 } 175 70
32 Z 132 5A 7636 .... 176 7E
33 0 060 30 7637 DEL 177 7F
34 1 061 31 7640 NUL 000 00
35 2 062 32 7641 SOH 001 01
36 3 063 33 7642 STX 002 02
37 4 064 34 7643 ETX 003 03
40 5 065 35 7644 EDT 004 04
41 6 066 36 7645 ENO 005 05
42 7 067 37 7646 ACK 006 06
43 8 070 38 7647 BEL 007 07
44 9 071 39 7650 BS 010 08
45 + 053 2B 7651 HT all 09
46 - 055 20 7652 LF 012 OA
47 * 052 2A 7653 VT 013 OB
50 I 057 2F 7654 FF 014 OC
51 ( 050 28 7655 CR 015 00
52 ) 051 29 7656 SO 016 OE
53 $ 044 24 7657 SI 017 OF
54 = 075 3D 7660 OLE 020 10
55 (space) 040 20 7661 DC1 021 11
56 , 054 2C 7662 DC2 022 12
57 056 2E 7663 DC3 023 13
60 # 043 23 7664 DC4 024 14
61 [ 133 58 7665 NAK 025 15
62 ] 135 50 7666 SYN 026 16
63tt % 045 25 7667 ETB 027 17
64 II 042 22 7670 CAN 030 18
65 ttt 137 5F 7671 EM 031 19
66 ! 041 21 7672 SUB 032 1A
67 & 046 26 7673 ESC 033 1B
70 I 047 27 7674 FS 034 1C
71 ? 077 3F 7675 GS 035 10
72 < 074 3C 7676 RS 036 IE
73 > 076 3E 7677 US 037 IF
74 @ 100 40 7400 null --- --
75 \ 134 5C 7401 @ 100 40
76 ./'-.. 136 5E 7402 ./'-.. 136 5E
77

nui 1
073 3B 7403 null --- --

7600 --- -- 7404 072 3A
7601 a 141 61 7405 null --- --
7602 b 142 62 7406 null --- --
7603 c 143 63 7407 140 60

tIn the 63-character set, this display code represents a null character. Also, use of the colon in program
and data files may cause problems. This is particularly true when it is used in PRINT and FORMAT
statements.

ttln the 63-character set, this display code represents a colon (:), 7-bit ASCII code 072, 7-bit hexadecimal
code 3A.

ttton TTY models having no underline, the backarrow (~) takes its place.

60481300 E

I

A-3



TABLE A-3. CODES (a-BIT) FOR NOS/BE

be 0 0 0 0 0 0 0 0

Bits b7 0 0 0 0 1 1 1 1
~ 0 0 1 1 0 0 1 1
bs 0 1 0 1 0 1 0 1

Hex
b4 b3 b2 b1 Digits

0 1 2 3 4 5 6 7

NUL OLE SP 0 @l P \
P

0 0 0 0 0 12-0-9-8-1 12-11-9-8-1 no-punch 0 8-4 11-7 8-1 12-11-7
NUL 00 OLE 10 SP 40 0 FO @l7C P 07 \ 79 p 97

SOH OC1 ! 1 A Q a q
0 0 0 1 1 12-9-1 11-9-1 12-8-7 1 12-1 11-8 12-0-1 12-11-8

SOH 01 OC1 11 I 4F 1 F1 AC1 Q 08 a 81 q 98
STX OC2 ..

2 B A b r
0 0 1 0 2 12-9-2 11-9-2 8-7 2 12-2 11-9 12-0-2 12-11-9

STX 02 OC2 12 7F 2 F2 B C2 A D9 b 82 r 99

ETX OC3 # 3 C S c s
0 0 1 1 3 12-9-3 11-9-3 8-3 3 12-3 0-2 12-0-3 11-0-2

ETX 03 TM 13 # 7B 3 F3 C C3 S E2 c 83 s A2

EOT 0C4 $ 4 0 T d t
0 1 0 0 4 9-7 9-8-4 11-8-3 4 12-4 0-3 12-0-4 11-0-3

EaT 37 0C4 3C $ 58 4 F4 0C4 T E3 d 84 t A3

ENQ NAK % 5 E U e u
0 1 0 1 5 0-9-8-5 9-8-5 0-8-4 5 12-5 0-4 12-0-5 11-0-4

ENQ 20 NAK 3D % 6C 5 F5 E C5 U E4 e 85 u A4

ACK SYN & 6 F V f v
0 1 1 0 6 0-9-8-6 9-2 12 6 12-6 0-5 12-0-6 11-0-5

ACK 2E SYN 32 & 50 6 F6 F C6 V E5 f 86 v A5

BEL ETB , 7 G W 9 w
0 1 1 1 7 0-9-8-7 0-9-6 8-5 7 12-7 0-6 12-0-7 11-0-6

BEL 2F ETB 26 , 70 7 F7 G C7 W E6 9 87 w A6

BS CAN ( 8 H X h x
1 0 0 0 8 11-9-6 11-9-8 12-8-5 8 12-8 0-7 12-0-8 11-0-7

as 16 CAN 18 ( 40 8 F8 HCS X E7 h 88 x A7

HT EM ) 9 I Y i V
1 0 0 1 9 12-9-5 11-9-8-1 11-8-5 9 12-9 0-8 12-0-9 11-0-8

HT 05 EM 19 ) 50 9 F9 I C9 Y E8 i 89 v A8

LF SUB . : J Z j z
1 0 1 0 10 0-9-5 9-8-7 11-8-4 8-2 11-1 0-9 12-11-1 11-0-9(A)

LF 25 SUB 3F . 5C : 7A J 01 Z E9 j 91 z A9

11 VT ESC + K [ k
{12-o1 0 1 1 12-9-8-3 0-9-7 12-8-6 11-8-6 11-2 12-8-2 12-11-2(B)

VT OB ESC 27 + 4E ; 5E K02 C 4A k 92 { CO

FF FS < L \ I I

12 0-8-3
I

1 1 0 0 12-9-8-4 11-9-8-4 12-8-4 11-3 0-8-2 12-11-3 12-11(C)
FF OC IFS 1C 6B < 4C L 03 \ EO I 93 I 6AI

13 CA GS - = M ] m
}11-01 1 0 1 12-9-8-5 11-9-8-5 11 8-6 11-4 11-8-2 12-11-4(D)

CA 00 IGS 10 - 60 = 7E M04 ! 5A m 94 } DO

SO AS > N A n -
1 1 1 0 14 12-9-8-6 11-9-8-6 12-8-3 0-8-6 11-5 11-8-7 12-11-5 11-0-1(E)

SO OE lAS 1E 4B > 6E N05 ... 5F n 95 - A1

15 SI US I ? 0 0 DEL
1 1 1 1 12-9-8-7 11-9-8-7 0-1 0-8-7 11-6 0-8-5 12-11-6 12-9-7IF)

SI OF IUS 1F I 61 ? 6F 006 60 0 96 DEL 07-

64-character ASCII

95-character ASCII (does not include DE L)

128-character ASCII

A-4

ASCII Character---! )
EBCDIC characterJ !

I

,-I-card Code

11-8-2
5A.-EBCOIC Code (Hexadecimal)

I

60481300 A



TABLE A-4. COLLATING WEIGHT TABLES

CDC Octal Decimal Weights CDC Octal Decimal Weights
Graphic Character Graphic Character

Code ASCII6 COBOL6 Display Code ASCII6 COBOL6 Display

: (colon) oot 26 53 0 5 40 21 59 32
A 01 33 25 1 6 41 22 60 33
B 02 34 26 2 7 42 23 61 34
C 03 35 27 3 8 43 24 62 35
D 04 36 28 4 9 44 25 63 36
E 05 37 29 5 + 45 11 15 37
F 06 38 30 6 - 46 13 18 38
G 07 39 31 7 * 47 10 17 39
H 10 40 32 8 / 50 15 19 40
I 11 41 33 9 ( 51 8 21 41
J 12 42 35 10 ) 52 9 13 42
K 13 43 36 11 $ 53 4 16 43
L 14 44 37 12 = 54 29 22 44
M 15 45 38 13 blank 55 0 0 45
N 16 46 39 14 t (comma) 56 12 20 46
0 17 47 40 15 • (period) 57 14 12 47
P 20 48 41 16 r 60 3 5 48
Q 21 49 42 17 61 59 3 49
R 22 50 43 18 ] 62 61 44 50
S 23 51 45 19 % 63t 5 2 51
T 24 52 46 20 '! 64 2 23 52
U 25 53 47 21 r- 65 63 4 53
V 26 54 48 22 v 66 1 34 54
W 27 55 49 23 " 67 6 6 55
X 30 56 50 24 t 70 7 7 56
y 31 57 51 25 J 71 31 8 57
Z 32 58 52 26 < 72 28 24 58
0 33 16 54 27 > 73 30 9 29
1 34 17 55 28 ~ 74 32 1 60
2 35 18 56 29 ? 75 60 10 61
3 36 19 57 30 -, 76 62 11 62
4 37 20 58 31 ; (semicolon) 77 27 14 63

tIn installations using the 63-graphic set t the octal character code 00 does not exist t and the weights
in the ASCII6 and COBOL6 tables for the octal character code 63 assume the corresponding weights from
character code 00.

60481300 B A-5





FORTRAN DIAGNOSTICS B

Diagnostic messages are issued by FORTRAN 5 during both
compilation and execution to inform the user of errors in
the source program, input data, or intermediate results.
This appendix explains the content and format of the
FORTRAN 5 diagnostic messages.

COMPILE-TIME DIAGNOSTICS

When an error is detected during compilation of the source
program, a diagnostic message is issued immediately after
the erroneous source line. The format of the diagnostics is:

severity * message

COMPILER OUTPUT LISTING MESSAGES
Compiler output listing messages are printed in the source
listing. They may appear before, during, or after the
reference map and object code listings, depending on the
error condition. The message format is different than
that of the standard error summary; each message is
usually left-justified on the output page, and may be
preceded by several blank lines, or may be printed at the
top of a page.

The compiler output listing messages are given in
table B-3.

The severity indicator tells the consequences the error will

I have on further processing of the program. One of the
following severity indicators will accompany each error
message:

FATAL

WARNING

TRIVIAL

ANSI

MDEP

The program will not be executed.

The error is severe, but the program will
be executed. Although syntax is
incorrect, the probable meaning of the
source code is presumed.

A minor syntax error or omission was
detected, or correct syntax was used but
semantics were irregular.

Usage does not conform to ANSI X3.9 ­
FORTRAN 77 specification. Listed only
if the ANSI list option is specified on the
FTN5 control statement.

The line contains a use of a machine­
dependent language feature. Listed only
if the MD option is specified on the
FTN5 control statement.

EXECUTION DIAGNOSTICS
Execution diagnostics are issued when an error occurs
while a user program is running. The diagnostics are
printed on the source listing in one of the following
formats:

ERROR NUMBER x DETECTED BY routine
AT ADDRESS Y

or

ERROR NUMBER x DETECTED BY routine
CALLED FROM routine AT ADDRESS z

or

ERROR NUMBER x DETECTED BY routine
CALLED FROM routine AT LINE d

where y and z are relative octal addresses, x is a decimal
error number, and d is a decimal line number
corresponding to a line number printed in the source
listing.

The compile-time diagnostics issued by FORTRAN 5 are
summarized in alphabetical order in table B-1. Ellipses,
denoted by ••• , are replaced by items from the relevant
source statement.

SPECIAL COMPILATION DIAGNOSTICS

When a compilation is aborted or prematurely terminated
for internal reasons, one or more of the messages shown in
table B-2 appear. This table also includes messages that
appear only in the dayfile that are not caused by internal
error.

60481300 E

Table 8-4 summarizes the execution diagnostics by error
number. In table B-4, the letters under Class mean:

F = Fatal

I = Informative, nonfatal

D= Debug (diagnostic can be issued only when in
debug mode)

T = Trace (diagnostic can be issued only when in
trace mode)

A = Always (diagnostic can always be issued)

8-1



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS

Significance Action

ANSI

I ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

I ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

B-2

IS DEFINED TO BE INTRINSIC

••••• IS NON-ANSI EDIT DESCRIPTOR

7 CHARACTER SYMBOL •..•• IS NON-ANSI

CHARACTER ARRAY REQUIRED FOR FORMAT
SPECIFIER

COMMON BLOCK NAME
CANNOT BE .....

COMMON CAN BE PRESET IN BLOCK DATA ONLY

COMPUTED GO TO INDEX MUST BE INTEGER

DOUBLE PRECISION AND COMPLEX OPERANDS
ARE MIXED

FILE DECLARATION LIST NON-ANSI

FUNCTION REFERENCE IN CONSTANT
EXPRESSION

HOLLERITH CONSTANT NON-ANSI

I/O KEYWORD BUFL IS NON-ANSI

MASK EXPRESSION NON-ANSI

MULTIPLE ASSIGNMENT IS NON-ANSI

NAMELIST I/O IS NON-ANSI

OBJECT OF IF IS ILLEGAL DO TERMINATOR

OCTAL DATA TYPE NOT DEFINED IN ANSI

PAREN REPEAT LIST IS NOT PERMITTED

The FORTRAN 5 defined
intrinsic function is not
supported in ANSI FORTRAN.

Nonstandard format specifi­
cati on.

ANSI allows only 6 char­
acters.

Format must be contained in
character array.

Common block name used as
another symbol name in a
nonANSI manner (for example,
as an entry point name or as
an intrinsic function name.)

ANSI allows COMMON to be
preset in block data only.

Index is of incorrect type.

Cannot mix DOUBLE PRECISION
and COMPLEX operands.

ANSI does not permit file
declaration in the PROGRAM
statement.

ANSI does not allow function
reference in constant
express ion.

ANSI uses character data
type.

ANSI does not permit I/O
keyword BUFL.

ANSI does not permit mask
expressions.

ANSI permits only one
assignment per statement.

ANSI does not permit
NAMELI ST II0•

A logical IF, used as the
last statement in a DO loop,
contains a nonstandard
statement.

ANSI does not permit octal
data type.

Repeated item list is not
provided in standard FORTRAN.

Supply the function
for portability.

Replace format
spec ifi cati on.

Shorten symbol to 6
characters or less.

Use an array of char­
acter type.

Change the common
block name or, when
possible, the symbol
name.

Remove presetting of
COMMON.

Change GO TO index or
declare it to be
integer.

Apply REAL function to
DOUBLE PRECISION
operand.

Remove file list from
PROGRAM statement.

Remove function
reference.

Switch usage to
character.

Remove I/O keyword
BUFL.

Remove mask
expression.

Break assignment
statement into two or
more statements.

Remove NAMELIST I/O.

Change object of IF.
Make the last state­
ment in the loop a
CONTINUE statement.

Write number as
decimal.

Remove paren repeat
list.

60481300 E



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 E

RETURN IN MAIN PROGRAM -- ACTS AS END

STATEMENT FUNCTION ACTUAL ARGUMENT
MUST AGREE IN TYPE WITH DUMMY ARGU­
MENT

STATEMENT FUNCTION DUMMY ARGUMENT •••
CANNOT BE AN ARRAY

STATEMENT IS NOT DEFINED IN ANSI

SUBSCRIPT ••••• OF ••••• IS NOT TYPE
INTEGER

SYMBOLIC CONSTANT IN COMPLEX CONSTANT
NOT ANSI

TRANSFER INTO RANGE OF 00

EDIT DESCRIPTOR REQUIRES COUNT

••••• EXPRESSION NOT CONSTANT, OR NOT
EVALUATABLE

••••• -- ILLEGAL TRANSFER TO INSIDE A
CLOSED DO LOOP OR IF BLOCK

..... •.... I/O CONTROL ALREADY
SPECIFIED FOR THIS STATEMENT

•••••••••• NOT I/O CONTROL KEYWORD

••. •• ..... NOT LEGAL I/O CONTROL
KEYWORD FOR THIS STATEMENT

BLOCK IF(S) NOT TERMINATED

C$ IF(S) NOT TERMINATED

•••.• CANNOT HAVE ASSUMED CHARACTER
LENGTH

••••• CAUSES CHARACTER DECLARATION
CONFLICT IN EQUIVALENCE GROUP

••••• ILLEGAL EXTENSION OF COMMON
BLOCK ORIGIN

RETURN is considered the END
statement in main program.

ANSI requires that dummy and
actual arguments to state­
ment functions agree in
type.

Declaration of dummy argu­
ment is invalid.

ANSI does not recognize
statement.

ANSI requires integer
subscripts.

Symbolic constant in complex
constant is not allowed by
ANSI.

Cannot transfer into range
of DO.

Program will not execute
without count.

Expression, which must be a
constant, will not reduce.

To branch inside a DO loop,
a branch must previously
have been made out of the
loop. Branching into an IF
block is illegal.

Duplication of I/O specifier
is invalid.

I/O control keyword not
recognized.

Valid I/O keyword but not
for this statement.

Missing ENDIF statement.

Missing C$ ENDIF statement.

Only symbolic constants and
dummy arguments may have (*)
1ength.

Character declaration
conflict encountered in
EQUIVALENCE statement.

The EQUIVALENCE statement
has extended the common
block origin backward.

Change RETURN to END
or STOP.

Change type decla­
ration of dummy or
actual argument.

Change declaration of
dummy argument or name
of dummy argument.

Correct statement.

Assign subscript ex­
pression to an integer
variable and use the
variab leo

Replace symbolic con­
stant with constant.

Rewrite loops to be
closed.

Supply a count for the
edit descriptor.

Rewrite statement.

Revise program flow to
remove invalid branch.

Remove duplicate I/O
specifier.

Likely to be a
misspelled keyword.
Correct it.

Remove I/O control
keyword.

Insert ENDIF state­
ment.

Insert C$ ENDIF state­
ment.

Remove (*) length dec­
laration.

Check declarations of
equivalenced character
variables.

Check all EQUIVALENCE
statements containing
the specified
vari ab leo

B-3

I

I



TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

-------_•._-------------,--------------,------------

I

I

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

Message

..... ILLEGAL FIRST ELEMENT OF
EXPRESSION

••••• IN INPUT LIST IS ILLEGAL

•••.. IS IN BLANK COMMON -- DATA
IGNORED

IS NOT DEFINED AS INTRINSIC

IS UNKNOWN C$ PARAMETER FOR

MUST BE DO CONTROL VARIABLE

MUST BE A DUMMY-ARG

••••• MUST BE INTEGER CONSTANT
EXPRESSION

•.•.• OPERAND CANNOT BE CONVERTED TO
TyPE •••..

PREVIOUSLY USED IN EXECUTABLE OR
CONFLICTING DECLARATIVE

REDEFINES A DO CONTROL INDEX

••..• SUBSCRIPT OUTSIDE OF ARRAY
BOUNDS

3 BRANCH IF HAS ....• EXPRESSION

3 BRANCH IF MIS~ING LABEL

ADJUSTABLE BOUND ••••. MUST BE
DUMMY-ARG OR IN COMMON

ADJUSTABLE DIMENSION BOUND ••••• IS
NOT INTEGER

ALTERNATE RETURN IS ILLEGAL IN A
FUNCTION

Sign ifi cance

First element of expression
found to be invalid.

Constants and expressions
cannot appear in input
lists.

Blank common variables must
not be initialized.

Name is not the name of a
builtin intrinsic function.

C$ parameter not recognized
for this expression.

Expression must be a DO
control variable.

Expression must be a
dunmy-arg.

Expression must be an
integer constant.

The operand cannot be
converted to the type
attempted.

Dunmy argument on ENTRY
statement had previous use
that proh ibits use as a
dunmy argument.

Variable redefines a current
DO index.

Subscript must be inside of
array bounds.

3 branch IF expression must
be integer, real, or
boolean.

Label required for 3
branch IF.

Variable used as a dimension
bound must be a dummy-arg or
in conmon.

Adjustable dimension bound
must be integer.

Legal only in a subroutine.

Action

Correct first element
of expression.

Remove constant or
expression.

Remove blank common
variables from DATA
statement.

Remove name or correct
spell i ng.

Correct C$ parameter
or expression.

Make expression a DO
control variable.

Make expression a
dummy-argo

Make expression an
integer constant.

Check operand and
type.

Correct the previous
usage or change the
name of the dummy
argument.

Change variable usage.
Check equivalence
dec 1arat ions.

Check subscript and
dimension statement.

Change type of expres­
sion to integer, real,
or boolean.

Supply a label.

Add variable to dummy­
arg list or to common
block.

Declare adjustable
dimension bound to be
integer.

Remove alternate
return.

FATAL

FATAL

B-4

ARGUMENT COUNT ON

ARGUMENT COUNT ON
THAN ONE

EXCEEDS 500

MUST BE MORE

Too many arguments.

Not enough arguments.

Reduce number of
arguments.

Increase number of
arguments.

60481300 E



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

ARGUMENT COUNT ON INTRINSIC ••••• IS
WRONG

ARGUMENT MODE ILLEGAL FOR GENERIC
FUNCTION •••••

ARGUMENT MODE MUST AGREE WITH TYPE
DEFINED FOR LIBRARY FUNCTION •••••

ARRAy •••• DIMENSION •••• -- DIMENSION
BOUND EXPRESSION CONTAINS ILLEGAL
OPERATION

ARRAy •••• DIMENSION •••• -- DIMENSION
BOUND EXPRESSION CONTAINS NON-VARIABLE

ARRAy •••• DIMENSION •••• -- DIMENSION
BOUND EXPRESSION CONTAINS ARRAY
REFERENCE

ARRAy ••••• DIMENSION ••••• -- LOWER
BOUND EXCEEDS UPPER BOUND

ARRAy ••••• DIMENSION ••••• -- EXCEEDS
2**23_1

Wrong number of arguments
supplied for the intrinsic
function.

Improper argument type.

Improper argument type.

Illegal expression in
DIMENSION declaration.

Illegal expression in
DIMENSION declaration.

Array references in expres­
sions are illegal when the
expression appears in a
DIMENSION statement.

Lower bound must be less
than or equal to upper
bound.

Dimension value too large.

Check syntax of the
intrinsic function.

Check definition of
function to determine
correct argument type.

Check definition of
fun~tion to determine
correct argument type.

Correct expression.

Correct invalid vari­
ables in expression.

Remove all array
references from
expression.

Correct dimension
boundaries.

Reduce dimension size.

I

I
ARRAy ••••• DIMENSION BOUND
INTEGER

ARRAy ••••• SUBSCRIPT COUNT DOES NOT
MATCH DIMENSION COUNT

FATAL

FATAL

FATAL

FATAL

FATAL

ARRAY

ARRAY

ARRAY

EXCEEDS 7 DIMENSIONS

MISSING SUBSCRIPT

SIZE EXCEEDS 2**23_1

NOT Dimension bounds must be
integer.

Too many dimensions.

Subscript required to refer­
ence an array element.

Array too 1arge.

Wrong number of subscripts
supplied. The number of
subscripts in an array
reference must equal the
number specified in the
DIMENSION statement.

Declare dimension
bound to be integer.

Reduce number of
dimensions.

Supply subscript.

Reduce size of array.

Check the number of
subscripts on the
DIMENSION statement.

I

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 E

ARRAY DECLARATION FOR ••••. MISSING
RIGHT PAREN

ASSUMED CHARACTER LENGTH ILLEGAL FOR
IMPLICIT

ASSUMED SIZE ARRAy ..••• NOT ALLOWED IN
I/O LIST

ASSUMED SIZE ARRAY NOT PERMITTED IN
NAMELIST

ASSUMED SIZE CAN ONLY BE ON LAST UPPER
BOUND

Right parenthesis missing.

Length must be declared in
the IMPLICIT statement.

Assumed size array must have
a subscript when appearing
in an I/O 1ist.

Assumed size array must be
subscripted when it appears
in a namelist.

Assumed size is not last
upper bound.

Supply right paren­
thesis.

Declare character
length.

Specify a subscript.

Specify a subscript.

Declare size when not
last upper bound.

B-:.5



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significa!1ce Acti on

I
I

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

B-6

ASSUMED SIZE OR ADJUSTABLE ARRAY
MUST BE DUMMY-ARG

BUFFER DIRECTION SPECIFIER MUST BE IN
OR OUT

BUFFER I/O ADDRESS CANNOT BE CHARACTER

BUFFER I/O ADDRESS CANNOT BE •••••

BUFFER I/O LWA MUST BE GREATER THAN OR
EQUAL TO FWA

BUFFER I/O PARITY SPECIFIER MUST BE
INTEGER CONSTANT OR VARIABLE

BUFFER I/O PARITY INDICATOR VALUE MUST
BE ZERO OR 1

BUFFER LENGTH FOR FILE ••••• EXCEEDS
360000B -- DEFINITION IGNORED

C$ IF EXPRESSION MUST BE LOGICAL

C$ ••••• LABEL ••••• DIFFERENT FROM C$
IF LABEL

CALL STATEMENT MISSING ROUTINE NAME

CHARACTER AND OTHER TYPE OPERANDS MAY
NOT BE MIXED

CHARACTER DECLARATION CONFLICT EXISTS
IN COMMON BLOCK •••••

CHARACTER LENGTH GREATER THAN 2**15_1

CHAR LENGTH NOT POSITIVE CONSTANT,
(POSITIVE CONSTANT EXPRESSION) OR (*)

CHARACTER LENGTH ZERO ILLEGAL

CHARACTER LENGTHS OF ENTRy ••••• AND
FUNCTION CANNOT DISAGREE

CHARACTER OPERAND ••••• USED WITH
OPERATOR •••••

COMMA BEFORE AN I/O LIST IS ALLOWED
ONLY ON SHORT FORM READ OR PRINT
STATEMENT

Assumed size or adjustable
array is not dummy-argo

BUFFER statement incorrect;
correct form is BUFFER IN or
BUFFER OUT.

Buffer I/O address must not
be character.

Buffer I/O address is not
recognized.

Last-ward-address must be
greater than or equal to
first-ward-address.

Buffer I/O parity specifier
not recognized.

Buffer I/O parity indicator
not zero or 1.

Buffer length too long.

C$ IF expression is not type
logi ca1.

Label on C$ IF does not
match C$ ENDIF or C$ ELSE
1abe1.

The correct form is CALL
routine-name (parameter
list).

Character operands cannot be
mixed with non-character
operands.

Common block contains
character and non-character
entities.

Character variable too long.

The l~ngth on a CHARACTER or
type declaration was nega­
tive or zero.

Length must be at least 1.

Character lengths of entry
and function disagree.

Operation illegal for char­
acter variable.

The comma before the I/O
list is not allowed here.

Make assumed size or
adjustable array
dummy-argo

Make BUFFER statement:
BUFFERIN or BUFFEROUT.

Change Buffer I/O
address.

Correct Buffer I/O
address.

Correct word-address
boundaries.

Correct Buffer I/O
parity specifier.

Make Buffer I/O parity
indicator zero or 1.

Reduce buffer length.

Make expression type
logical.

Make labels identical.

Insert routine name
between CALL keyword
and parameter list.

Correct operands.

Make all common block
members either type
character or type non­
character.

Shorten character
vari able.

Correct the length
specification.

Correct character
length value.

Correct disagreement.

Correct conflict.

Remove comma.

60481300 E



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

FATAL COMMA OR E.O.S. MUST FOLLOW LEVEL LIST
NAME

Comma or end of statement
expected; statement contains
extraneous information.

Correct statement.

FATAL

FATAL

COMMON BLOCK
LEVEL 0

COMMON BLOCK •••••
LENGTH 131071

CANNOT BE DECLARED

EXCEEDS MAX BLOCK

Wrong level declared for
this block.

Common block too large.

Declare correct level.

Break common block
into two or more
common blocks.

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 E

COMMON BLOCK ••••• EXCEEDS MAX LCM=G
BLOCK LENGTH 1048568

COMMON ELEMENT ••••• MAY NOT APPEAR IN
SAVE

CONCATENATION OF ASSUMED LENGTH
VARIABLE NOT ALLOWED HERE

CONFLICT IN EQUIVALENCE SPECIFICATION
FOR •••••

CONSTANT CANNOT BE CONVERTED

CONSTANT DIVIDE BY ZERO -- RESULTS SET
TO INFINITE

DATA INTO ••••• IS ILLEGAL

DATA VARIABLE LIST CONTAINS •••••

DECIMAL POINT IS NOT SPECIFIED FOR THE
EDIT DESCRIPTOR AT •••••

DECIMAL POINT REQUIRED IN EDIT
DESCRIPTOR AT •••••

DIMENSION ON ••.•. IGNORED -- PRIOR
DIMENSION RETAINED

DIRECT ACCESS I/O CANNOT BE FREE FORMAT

DIRECT ACCESS I/O CANNOT BE NAMELIST

DIRECT ACCESS I/O CANNOT SPECIFY END

DO ••.•• PARAMETER CANNOT BE •••••

DO-IMPLIED LOOPS IN DATA MUST BE
INTEGER

Common block too large.

Names of entities in a
common block may not appear
in the SAVE statement.

Assumed length variable can­
not be concatenated in this
circumstance.

Indicated EQUIVALENCE is
inconsistent with previous
EQUIVALENCE.

Constant contains syntax
error.

Division by zero is an
undefined operation.

DATA statement attempts to
initialize something which
cannot be initialized, such
as a formal parameter.

DATA variable list contains
a constant or an expression.

Decimal point is invalid in
this circumstance.

Decimal point required.

A dimension was specified
more than once; first decla­
ration is used.

FORMAT specification needed.

FORMAT specification needed.

END option is illegal.

Type of the DO parameter is
invalid.

DO-implied loops are
required to be integer.

Break common block
into two or more
common blocks.

Correct the SAVE
statement.

Do not concatenate
variable here.

Check all EQUIVALENCE
statements containing
the specified variable.

Correct syntax error
in constant.

Correct division error.

Correct DATA statement.

Correct DATA statement.

Remove decimal point.

Supply decimal point.

Eliminate second
declaration.

Replace * with format
spec ifi cat ion.

Replace namelist name
with format specifi­
cation.

Remove END= specifier
from I/O statement.

Change the type of
the parameter.

Make DO-implied loops
integer.

B-7

I



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

DO INDEX ••••• MUST BE SIMPLE VARIABLE

DO INDEX CANNOT BE .••••

DO LOOP ••••• CONTAINS UNCLOSED IF
BLOCK

DO LOOP ••••• MUST TERMINATE WITHIN IF
BLOCK

DO LOOP ••••• NOT TERMINATED BEFORE END
OF PROGRAM

DO LOOP ••••• PREVIOUSLY DEFINED -­
ILLEGAL NESTING

DO LOOP INCREMENT MAY NOT BE ZERO

DUMMY-ARG FUNCTION ••••• CANNOT
HAVE ASSUMED CHARACTER LENGTH

DUMMY ARGUMENT ••••• CAN OCCUR ONLY
ONCE IN ••••• DEFINITION

DUMMY ARGUMENT ••.•• CANNOT BE
EQUIVALENCED

DO index is required to be a
simple variable.

Type of DO index is invalid.

Entire IF block must be
within the range of the DO
loop.

Entire DO loop must be
within the range of the IF
block.

DO loop terminator missing.

The label was previously
used.

DO loop increment is
required to be nonzero.

Dummy-arg function has
assumed character length.

Dummy argument previously
defined in current statement
function.

Dummy argument must not
~ppear in EQUIVALENCE
statement.

Make DO index a simple
vari ab le.

Change the type of the
DO index.

Make IF block within
range of DO loop.

Make DO loop within

range of IF block.

Add DO terminator
statement number where
appropriate.

Choose a new statement
number for the DO.

Provide nonzero incre­
ment.

Specify length of
character dummy-argo

Remove excess dummy
argument.

Remove dummy argument
from EQUIVALENCE
statement.

FATAL DUMMY ARGUMENT
SAVE

MAY NOT APPEAR IN Dummy argument must not
appear in SAVE statement.

Remove dummy argument
from SAVE statement.

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

I B-8

DUMMY ARGUMENT ••••• MUST BEGIN WITH
LETTER OR STAR

E.O.S. BEFORE END OF HOLLERITH COUNT

EDIT DESCRIPTOR MISSING AT ••.••

ELSEIF EXPRESSION MUST BE LOGICAL

ELSEIF REQUIRES THEN

EMPTY COMMON BLOCK •.•••

END LINE ABSENT

END OR ERR REQUIRES STATEMENT LABEL

ENTRY INSIDE DO LOOP OR IF BLOCK IS
ILLEGAL

Dummy argument must begin
with a letter or star.

Premature end of statement
encountered.

Error in FORMAT statement.

ELSEIF expression is not
type 1ogi cal.

THEN is missing from ELSEIF
construct.

Common block contains no
elements.

END statement must be last
statement in source deck.

The END= or ERR= in a READ
statement must be followed
by the label number of an
executable statement.

Illegal entry into range of
DO loop or IF block.

Correct dummy argu­
ment.

Check for incorrect
hollerith count.

Supply edit
descriptor.

Make ELSEIF expression
type logical.

Add THEN where appro­
priate.

Remove COMMON state­
ment or add variable
list.

Add END statement.

Provide statement
1abel.

Remove ENTRY or
rewrite loop or block.

60481300 E



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 E

EQUAL SIGN MUST BE FOLLOWED BY NAME,
NUMBER ffi SLASH

EQUIVALENCED ARRAy ••••• HAS SUBSCRIPT
LESS THAN DIMENSION LOWER BOUND

EQUIVALENCED ARRAy ••••• HAS SUBSCRIPT
WHICH EXCEEDS DIMENSION BOUND

EXCESS LEFT PAREN IN I/O LIST

EXCESS LEFT PAREN IN I/O LIST ITEM
SUBSCRIPT

EXCESS RIGHT PAREN IN I/O LIST

EXCESS SUBSCRIPTS ON EQUIVALENCE
VARIABLE •••••

EXECUTABLE STATEMENT ILLEGAL IN BLOCK
DATA SUBPROGRAM

EXPECTED C$ DIRECTIVE LABEL -­
FOUND •••••

EXPECTED C$ PARAMETER -- FOUND

EXPECTED COMMA -- FOUND •••••

EXPECTED COMMA AFTER COUNT -­
FOUND •••••

EXPECTED COMMA AFTER FffiMAT
SPECIFIER -- FOUND ••.••

EXPECTED COMMA OR RIGHT PAREN -­
FOUND •••••

EXPECTED COMMA OR SLASH FOUND

EXPECTED DO CONTROL INDEX -­
FOUND ••••

EXPECTED E.O.S. -- FOUND •.•••

EXPECTED E.O.S. -- FOUND AND
IGNORED .....

EXPECTED EQUAL SIGN -- FOUND

EXPECTED FORMAT SPECIFIER -­
FOUND •••••

EXPECTED FILE NAME, FOUND

Equal sign required to be
followed by a name, number,
or a sl ash.

Subscript must be greater
than or equal to lower
bound specified in. the
DIMENSION statement.

Subscript must be less than
or equal to upper bound
specified in DIMENSION.

Too many left parens.

Too many left parens.

Too many right parens.

EQUIVALENCE variable has
more subscripts than de­
clared in DIMENSION.

Illegal executable state­
ments in block data
subprogram.

C$ directive label expected.

C$ parameter expected.

Corrma expected.

Corrma after count expected.

Corrma after format specifier
expected.

Corrma or right paren
expected.

Corrma or slash expected.

Syntax error in DO
statement.

Extraneous information
follows a legal statement.

End of statement expected.

Equal sign expected.

Format specifier expected.

File name expected.

Correct expression
after equal sign.

Change subscript or
dimension.

Change subscript or
DIMENSION statement.

Remove excess paren(s).

Remove excess paren(s).

Remove excess paren(s).

Change subscripts or
DIMENSION statement.

Remove executable
statements.

Check C$ directive
keyword specification.

Check C$ directive
keyword specification.

Check syntax of state­
ment.

Check syntax of state­
ment.

Check syntax of state­
ment.

Check syntax of state­
ment.

Check syntax of state­
ment.

Check syntax of DO
statement.

Remove extra informa­
tion.

Check syntax of state­
ment.

Check syntax of state­
ment.

Check format statement.

Correct statement.

B-9

I



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

FATAL

FATAL

I FATAL

I

I

I

I

FATAL

FATAL

FATAL

FATAL

FATAL

EXPECTED INTRINSIC FUNCTION NAME -­
FOUND •••.•

EXPECTED LEFT PAREN -- FOUND •••••

EXPECTED LEFT PAREN BEFORE COUNT -­
FOUND .....

EXPECTED LEFT PAREN FOR AN ARGUMENT
LIST FOUND •••••

EXPECTED LEFT PAREN OR PERIOD -­
FOUND .....

EXPECTED NAME -- FOUND •••••

EXPECTED RANGE INDICATOR -- FOUND

EXPECTED RIGHT PAREN -- FOUND •••.•

Intrinsic function name
expected.

Left parenthesis expected.

Left parenthesis before
count expected.

Left parenthesis for an
argument list expected.

Left parenthesis or period
expected.

Name expected.

Range indicator expected.

Right parenthesis expected.

Check intrinsic state­
ment.

Check syntax of state­
ment.

Check syntax of state­
ment.

Check syntax of state­
ment.

Check syntax of state­
ment.

Correct statement.

Correct statement.

Check syntax of state­
ment.

I FATAL

I FATAL

FATAL

EXPECTED RIGHT PAREN AFTER STRING
ADDRESS -- FOUND •••.•

EXPECTED RIGHT PAREN OR COMMA -­
FOUND .....

EXPECTED SLASH -- FOUND •••••

Right parenthesis after
string address expected.

Right parenthesis or comma
expected.

Sl ash expected.

Check syntax of state­
ment.

Check syntax of state­
ment.

Check syntax of state­
ment.

I FATAL

FATAL

FATAL

FATAL

FATAL

EXPECTED SYMBOL -- FOUND •••••
STATEMENT SCAN STOPPED

EXPECTED VARIABLE OR COMMON BLOCK
NAME -- FOUND •••••

EXPONENT FIELD ON EDIT DESCRIPTOR AT
••••• IS ZERO OR NOT SPECIFIED

EXPRESSION TOO COMPLICATED -- SCAN
STOPPED AT •••••

EXTERNAl UNIT SPECIFIER NOT INTEGER
EXPRESSION

Symbol expected; scan of
statement stopped.

Common block names enclosed
in slashes s must follow
COMMON keyword for named
common blocks. A variable
1i st mu st fa 11 ow COMMON key­
word for blank common.

Exponent field is invalid.

Expression too complicated;
scan stopped.

External unit specifier must
be integer expression.

Check syntax of state­
ment.

Correct statement.

Correct exponent field.

Simplify expression
using two or more
statements.

Make external unit
specifier integer ex­
pression.

EXTRANEOUS NUMERIC FIELD IN EDIT
DESCRIPTOR AT •••••

FIELD WIDTH NOT SPECIFIED FOR EDIT
DESCRIPTOR AT ••••

FIELD WIDTH OF EDIT DESCRIPTOR AT
IS ZERO OR NOT SPECIFIED

FILE ••••• PREVIOUSLY DEFINED -­
IGNORED

FATAL

FATAL

FATAL

FATAL

FATAL

B-10

EXTRA CHARACTERS •••.
SPECIFIER IGNORED

AFTER UNIT Extraneous information
follows a legal unit
specifier.

Invalid numeric field in
edit descriptor.

Field width required.

Field width is invalid.

File already defined.

Remove extra char­
acters.

Remove extra numeric
field.

Supply field width.

Correct field width.

Self-explanatory.

60481300 E



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

FATAL

FATAL

FATAL

FATAL

FATAL

FILE ••••• NOT DEFINED -- DEFINITION
IGNORED

FORMAT SPECIFIER •.••• IS NAMELIST NAME

FORMAT LABEL PREVIOUSLY REFERENCED AS
CONTROL STATEMENT LABEL

FORMAT LABEL PREVIOUSLY REFERENCED AS
DO STATEMENT LABEL

FORMAT MUST HAVE STATEMENT LABEL

File is not defined.

Format specifier cannot be
NAMELIST name.

Label being referenced or
defined as a format label
was previously referenced as
a control statement label.

Label being referenced or
defined as a format label
was previously referenced as
a DO statement label.

Format is required to have
statement label.

Define file.

Correct format speci­
fier.

Check all references
to the 1abel in
question for consis­
tent usage.

Check all references
to the 1abe1 in
question for consis­
tent usage.

Provide a unique
statement label for
each FORMAT statement.

FATAL

FATAL

FUNCTION ENTRY
CHARACTER

FUNCTION ENTRY
CHARACTER

MAY NOT BE TYPE

MUST BE TYPE

Function entry must not be
type character.

All entries in a character
function must be of type
character.

Make function entry
noncharacter.

Make function entry
type character.

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 E

FUNCTION NAME OR ENTRY OF TYPE
WAS NOT ASSIGNED A VALUE

FUNCTION REQUIRES EXPLICIT NULL
AR GUM ENT LI ST

GROUP NAME ••••• PREVIOUSLY DEFINED

HEADER CARD NOT FIRST STATEMENT -­
IGNORED

I/O CONTROL KEYWORD •••••••••• MUST BE
POSITIVE INTEGER EXPRESSION

I/O CONTROL KEYWORD PARAMETER
••••• CANNOT BE •••••

I/O CONTROL KEYWORD PARAMETER
••••• MUST BE TYPE •••.•

ILL-FORMED COMPLEX CONSTANT

ILLEGAL BLOCK IF STRUCTURE

ILLEGAL BLOCK NAME IN COMMON STATEMENT

The function name or entry
must be assigned a value
within the function.

A null argument list is a
left parenthesis followed
immediately by a right
parenthesis.

The group name appears
twice in the same NAME-LIST
statement or in a previous
NAMELIST statement.

PROGRAM, SUBROUTINE, BLOCK
DATA, or FUNCTION must be
the first statement of a
program.

I/O control keyword is
required to be positive
integer expression.

I/O control keyword param­
eter is invalid.

I/O control keyword param­
eter is wrong type.

Complex constant invalid.

ELSEIF, ELSE, or ENDIF
appears, but is not
associated with a block IF.

Block name in COMMON
statement illegal.

Assign a value to the
function name or entry
within the function.

Provide null argument
list after the func­
tion name in the
function reference.

Check for duplicate
name-list group names.

Correct first state­
ment of program.

Make I/O keyword posi­
tive expression.

Correct I/O control
keyword parameter •

Correct I/O control
keyword parameter
type.

Correct complex con­
stant.

Check IF block
nesting.

Correct block name.

B-11

I



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

I B-12

ILLEGAL BUFFER LENGTH FOR FILE
-- DEFINITION IGNORED

ILLEGAL CHARACTER COUNT

ILLEGAl CONSTANT FOLLOWING + OR -

ILLEGAL EXPLICIT LEVEL DECLARATION FOR
COMMON MEMBER NAME •••••

ILLEGAL FORM INVOLVING THE USE OF A
COMMA

ILLEGAl FORM OF EXPONENT

ILLEGAL FORMAT SPECIFIER

ILLEGAL IF BLOCK NESTING WITH DO
LOOP •••••

ILLEGAl IF STATEMENT -- OBJECT MISSING

ILLEGAl NESTING OF DO LOOPS

ILLEGAl OBJECT OF IF -- TROUBLE STARTED
AT •••••

ILLEGAL OBJECT OF LOGICAL IF

ILLEGAL RANGE -- ••••• NOT LESS THAN
••••• -- TRUNCATED

ILLEGAL RECORD LENGTH FOR FILE
-- DEFINITION IGNORED

ILLEGAL REFERENCE TO LABEL •..•.
DEFINED ON NON-EXECUTABLE STATEMENT

ILLEGAL REFERENCE TO STATEMENT
LABEL ••••• AS A FORMAT

ILLEGAL REPEAT CONSTANT

ILLEGAL SEPARATOR FOLLOWING DATA
CONSTANT

Buffer length invalid.

Character count for ENCODE
or DECODE must be integer
constant or simple integer
variable.

+ or - is followed by an
illegal constant.

Explicit level declaration
for a common member name is
illegal.

Parenthesized form with
comma(s) in error. May be
badly formed complex con­
stant or I/O list with
redundant parentheses.

Exponent is invalid.

Format specifier must be a
legal statement label.

Range of the IF block must
be within the range of the
DO loop.

End of statement encountered
before finding object of IF.

The range of an inner DO
must be within the range of
an outer DO.

Object of IF illegal.

Improper statement type,
used as true part of a
logical IF. The object must
be an executable statement.
It cannot be a logical IF,
DO, block IF, ELSEIF, ENDIF,
ELSE, or END.

Range is illegal.

Record length invalid.

The label specifies a non­
executable statement.

The label referencing a
FORMAT statement appears on
an executable statement.

Error in DATA statement.

The legal separators
are ), /, or • •

Redefine buffer
1ength.

Correct character
count.

Correct illegal con­
stant.

Correct explicit level
declaration.

Correct use of comma.

Correct form of
exponent.

Correct format speci­
fier.

Make range of IF block
within range of DO
loop.

Correct the IF state­
ment.

Restructure DO loops.

Correct object of IF.

Correct object of
logical IF.

Correct range.

Redefine record length
of fi leo

Correct reference to
label.

Correct reference to
statement label.

Correct DATA state­
ment.

Replace with legal
separator.

60481300 E



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 E

ILLEGAL TRANSFER INTO RANGE OF DO

ILLEGAL TRANSFER TO ••••• FORMAT

ILLEGAL USE OF ASSIGNMENT OPERATOR

ILLEGAL USE OF ENTRy •••••

ILLEGAL USE OF NAMELIST GROUP
NAME •••••

ILLEGAL USE OF OPERATOR/OPERAND --

ILLEGAL USE OF PARAMETER

IMPLICIT MUST BE FOLLOWED BY A TYPE
INDICATOR

IMPLICIT STATEMENT MUST OCCUR BEFORE
DECLARATIVE STATEMENTS

IMPLIED LOOP NOT TERMINATED

IMPLIED I/O UNIT SPECIFIER NOT ALLOWED
FOR THIS STATEMENT

INITIAL LEFT PAREN MISSING

INQUIRE CANNOT SPECIFY BOTH UNIT AND
FILE

INQUIRE MUST SPECIFY UNIT OR FILE

INTEGER O~ 1~ 2 OR 3 MUST FOLLOW LEVEL

INTERNAL FILE I/O CANNOT BE NAMELIST

INTERNAL FILE REQUIRES A FORMAT

INTERNAL FILE WITHOUT FORMAT OR MISSING
COMMA BEFORE I/O LIST

INTERNAL UNIT SPECIFIER CANNOT BE

INTERNAL UNIT SPECIFIER CANNOT BE
ASSUMED SIZE ARRAY

INTERNAL UNIT SPECIFIER NOT ALLOWED FOR
THIS STATEMENT

The indicated statement
branches into a DO loop.

FORMAT statements cannot be
the objects of transfers.

Equal sign used improperly.

Entry name used improperly.

Use of NAMELIST group name
is invalid.

Use of operator/operand is
invalid.

Use of parameter is invalid.

Type information omitted.

IMPLICIT must be the first
statement after the PROGRAM
statement.

Implied loop must be
terminated.

Unit specifier must be
explicit.

The initial left parenthesis
is missing.

Either a file name or a unit
specifier must be specified
in an INQUIRE statement.

INQUIRE statement is
required to specify a file
name or a unit specifier.

O~ 1~ 2 or 3 are required
to follow LEVEL in a LEVEL
statement.

Interval file I/O must not
be NAMELIST.

The internal file must have
a format.

Internal file must have
format or comma missing
before I/O list.

Illegal use of internal unit
specifier.

Internal unit specifier must
not be assumed size array.

Internal unit specifier
invalid in this context.

Check transfer into DO
loop range.

Correct illegal
transfer.

Correct use of equal
sign.

Correct use of entry
name.

Correct use of
NAMELIST group name.

Correct use of
operator/operand.

Use valid parameter.

Provide a type key~

word~ such as INTEGER
or REAL.

Move the IMPLICIT
statement.

Check statement for
syntax errors.

Explicitly specify I/O
unit specifier.

Provide left paren­
thesis.

Specify either unit or
file.

Specify either unit or
file.

Correct LEVEL state­
ment.

Check NAMELI ST.

Provide format for
interna 1 fil e.

Provide format for
internal file or place
comma before I/O list.

Correct illeg~l use.

Specify size array.

Check statement.

B-13 I



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Si gn ifi cance Action

I

I

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

B-14

INTRINSIC FUNCTION ••••• NOT ALLOWED AS
ACTUAL ARGUMENT

INTRINSIC LEN MUST NOT APPEAR IN
PARAMETER CONSTANT EXPRESSION

INVALID STATEMENT LABEL

LEFT SIDE OF EQUAL SIGN IS ILLEGAL

LENGTH OF CHARACTER FORMAT SPECIFIER
MUST BE GREATER THAN 1

LEVEL 3 NAME ••••• MAY NOT OCCUR IN
THIS STATEMENT

LOCF ARGUMENT MU ST NOT BE •••••

LOGICAL IF EXPRESSION MUST BE LOGICAL

LOGICAL IF MUST NOT BE OBJECT OF
LOGICAL IF

MAGNITUDE OF SUBSCRIPT •••.• OF •••••
EXCEEDS 2**23-1

MISSING COMMA AT •.•••

MISSING LEFT PAREN AT

MISSING NAME IN LEVEL LIST

MISSING SLASH ON GROUP NAME

MISSING SUBSCRIPTS SET TO LOWER BOUND
FOR EQUIVALENCE VARIABLE ••.••

MORE THAN 7 SUBSCRIPTS

MULITPLE DECIMAL POINT IN EDIT
DESCRIPTOR AT .•••.

MULTIPLE DEFINITION OF CURRENT FORMAT
LABEL

MULTIPLE OCCURRENCES OF DUMMY
ARGUMENT •••••

MULTIPLY DEFINED STATEMENT LABEL

NAME EXCEEDS 7 CHARACTERS -- TRUNCATED
TO •••••

INTRINSIC function is not
allowed as actual argument.

LEN intrinsic appears in
PARAMETER statement.

The statement label is
invalid.

Left side of equal sign
illegal.

The length of the character
format specifier must be
greater than l.

Level 3 data cannot be used
in expressions.

LOCF argument must be a
variable.

Logical IF expression is
required to be logical.

Logical IF cannot be object
of logical IF.

Subscript too large or too
small.

Comma is missing in state­
ment.

Left paren is missing in
statement.

Name missing in LEVEL list.

Group name must be enclosed
by slashes.

EQUIVALENCE variable con­
tains fewer subscripts than
declared dimension.

Too many subscripts.

Too many decimal points.

Format label previously
defined.

Dummy argument occurs more
than once in dummy-arg list.

The same statement label
appears on more than one
statement.

Names must be unique within
7 characters.

Remove intrinsic
function name from
argument list.

Rewrite statement.

Correct statement
label.

Correct left side of
equal sign.

Correct length of
character format
spec ifi er.

Correct use of level 3
data.

Make LOCF a variable.

Make logical IF ex­
pression logical.

Correct object of
logical IF.

Correct subscript.

Provide comma in
proper place.

Provide left paren in
proper place.

Insert missing name.

Provide slashes on
group name.

Check declaration of
the EQUIVALENCE vari­
able.

Reduce number of sub­
scripts.

Remove extra decimal
points.

Check FORMAT state­
ments for duplicate
labels.

Remove multiple occur­
rences of dummy argu­
ments.

Change dup 1i cate
labels.

Shorten name.

60481300 E



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 E

NAME ••.•• IN DATA CONSTANT LIST MUST
BE PARAMETER

NESTING OF REPEAT COUNT IN DATA
CONSTANT LIST IS ILLEGAL

NO DIMENSION FOUND FOR EQUIVALENCE
VARIABLE .....

NO PREVIOUS C$ IF DIRECTIVE

NON-DUMMY ARGUMENT ••••• CANNOT BE
LEVELED

NON-NULL LABEL FIELD ON CONTINUATION
LINE

OBJECT OF GO TO MISSING

OBJECT OF GO TO ••••• DID NOT APPEAR IN
ASSIGN STATEMENT

ONLY ONE C$ ELSE ALLOWED IN C$ IF GROUP

ONLY 9 PAREN LEVELS ALLOWED

ONLY 19 CONTINUATION LINES ARE
PERMITTED

ONLY 500 DUMMY ARGUMENTS ARE
PERMITTED -- EXCESS IGNORED

ONLY 500 COMMON BLOCKS ARE PERMITTED

ONLY LIST DIRECTED OUTPUT STATEMENTS
MAY END WITH A COMMA

OPERAND HAS MODE NOT ALLOWED IN THIS
CONTEXT

OPERAND OF II OPERATOR MUST BE TYPE
CHARACTER

OPERAND OF ** OPERATOR MUST NOT BE
TYPE CHARACTER

OPERAND'TO ** OPERATOR MUST NOT BE
LOGICAL

OVCAP DIRECTIVE CAN APPEAR ONLY WITH
SUBROUTINES HAVING NO ARGUMENTS

Name must be parameter.

Nesting of repeat count in
data constant list is not
allowed.

Dimension of equivalence
variable missing.

C$ ELSE or ENDIF must be
preceded by a C$ IF.

Leveled name must be a
dummy-arg or in common.

Columns 1 through 5 are not
on continuation line.

The GO TO does not specify
an existing statement label.

Object of GO TO must appear
in ASSIGN statement.

More than one C$ ELSE in C$
IF group.

Too many parenthesis levels
in FORMAT statement.

Too many continuation lines.

Total number of unique dummy
arguments in the FUNCTION or
SUBROUTINE statement and in
all associated ENTRY state­
ments exceed the allowed
number.

Too many common blocks.

Extraneous comma found.

Wrong mode for this
situation.

Operand is required to be
type character.

Exponentiation cannot be
performed using character
operands.

Exponentiation cannot be
performed using logical
operands.

OVCAP directives can only
appear with subroutines
having no arguments.

Remove name that is
not a parameter.

Remove nesting of
repeat count.

Supply dimension of
equivalence variable.

Provide C$ IF direc­
tive.

Add name to argument
list or to a common
block.

Remove extraneous
1abel.

Provide statement
label or change object
of GO TO.

Put object of GO TO in
ASSIGN statement.

Remove excess C$ ELSE
from C$ IF group.

Reduce number of
parenthesis levels.

Reduce number of
continuation lines.

Reduce number of dummy
arguments.

Reduce number of
common blocks.

Remove comma.

Correct mode.

Declare operand to be
of type character.

Correct operand type.

Correct operand type.

Rewrite program.

B-15 I



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

I

FATAL

FATAL

FATAL

OVERLAY DIRECTIVE MUST BEGIN WITH
LEFT PAREN

PARAMETER REQUIRES INTEGER
EXPONENTIATION

PARAMETER .•.•• TYPE OR CHARACTER
LENGTH CANNOT BE MODIFIED AFTER
PARAMETER STATEMENT

OVERLAY directives must
begin with left parenthesis.

Integer exponentiation
is required with this
parameter.

Length of symbolic constant
must not be changed by an
IMPLICIT statement or other
statements following a
PARAMETER statement.

Add left parenthesis.

Provide integer expo­
nentiation for this
parameter.

Correct usage of sym­
bolic constant.

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

PREMATURE E.O.S.

PREMATURE E.O.S. -- EXPECTED BLOCK NAME

PREMATURE E.O.S. -- EXPECTED SYMBOL OR
SLASH

PREMATURE E.O.S. IN ENCODE OR DECODE

PREMATURE E.O.S. IN I/O CONTROL LIST

PREMATURE E.O.S. IN I/O LIST ITEM
SUBSCRIPT

PREMATURE E.O.S. OR MISSING RIGHT PAREN

Premature end of statement. Check for incomplete
statement.

End of statement encountered Check for incomplete
before a block name was statement.
found.

End of statement encountered Check for incomplete
before a symbol or slash was statement.
found.

End of statement encountered; Check for incomplete
ENCODE or DECODE statement statement.
incomplete.

End of statement encountered; Check for incomplete
I/O control list incomplete. statement.

End of statement encountered; Check for incomplete
I/O list item subscript statement.
incomplete.

End of statement encountered Check for incomplete
or right parenthesis missing. statement.

FATAL

FATAL

PREVIOUS REFERENCE TO DO LABEL
IS ILLEGAL

PREVIOUS REFERENCE TO FORMAT
LABEL ••••• IS ILLEGAL

A 00 label must not be
referenced from outside the
00 loop.

The label was previously
defined or referenced as a
FORMAT 1abe1•

Check all previous
references to the
1abel.

Check all previous
references to the
label.

FATAL

FATAL

PREVIOUS REFERENCE TO LABEL
ILLEGAL

PROGRAM LENGTH EXCEEDS 2**17-1

WAS Illegal reference to label.

Program too 1arge.

Correct reference to
the label.

Shorten program or
break up into several
routines.

FATAL

FATAL

FATAL

FATAL

B-16

RECORD LENGTH EXCEEDS 131071 COLUMNS

RECORD LENGTH FOR FILE ••.•. EXCEEDS
'MAX. RECL' B -- DEFINITION IGNORED

RECURSIVE DEFINITION OF STATEMENT
FUNCTION .•...

REFERENCE TO EXTERNAL .•..• REQUIRES
AN ARGUMENT LI ST

Record too large. Error in
FORMAT statement.

Record length too large.

The function name appears on
both sides of an equal sign.

Function requires argument
list.

Check for incorrect
repeat specification,
hollerith count, and
format specification.

Reduce record length.

Remove function name
from the right side of
the equal sign.

Supply appropriate
argument 1ist.

60481300 E



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Si9n ifi cance Action

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

REFERENCE TO VARIABLE ••.•• AS A
FUNCTION OR ARRAY

REPEAT COUNT IS NOT ALLOWED BEFORE THE
EDIT DESCRIPTOR •••••

SCALAR FORMAT SPECIFIER MUST BE INTEGER

'SCM' COMMON BLOCKLENGTH EXCEEDS 131071

SEPARATOR MISSING AT •••••

SEQUENCE NUMBER OUT OF ORDER

SIGNED COUNT ALLOWED ONLY BEFORE P EDIT
DESCRIPTOR

The variable has a subscript
or argument list, but is not
declared as an array or
function.

A repeat count was used with
a descriptor that does not
a11 ow one.

Scalar format is required to
be integer.

Common block too large.

Error in FORMAT statement.

Sequence number was
specified out of order.

Signed count used illegally.

Check for missing
declaration.

Remove repeat count.

Make scalar format
integer.

Break common block
into two or more
common blocks.

Correct FORMAT state­
ment.

Correct statement
sequence number.

Correct use of signed
count.

I

SLASH MUST BE FOLLOWED BY AN OCTAL OR
INTEGER CONSTANT

STAR DUMMY ARGUMENT ILLEGAL IN FUNCTION

FATAL

FATAL

fATAL

FATAL

FATAL

FATAL

SIZE OF ARRAY

SIZE OF ARRAY

STATEMENT FUNCTION
EQUAL SIGN

STATEMENT FUNCTION
REFERENCES ITSELF

EXCEEDS 1048568

EXCEEDS 131071

-- MISPLACED

INDIRECTLY

Array too large.

Array too large.

Octal or integer constant
missing after slash.

Alternate returns illegal in
functions.

Syntax error in statement
function.

Recursive statement
functions are not allowed.

Reduce size of array.

Reduce size of array.

Put octal or integer
after slash.

Remove alternate
returns.

Correct syntax error
in statement function.

Check all appropriate
statement functions
for indirect recursion.

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 E

STATEMENT FUNCTION DEFINITION MUST
OCCUR BEFORE FIRST EXECUTABLE

STATEMENT FUNCTION DUMMY ARGUMENT
•.•.• CANNOT BE ASSUMED LENGTH

STATEMENT FUNCTION DUMMY ARGUMENT
••••• MUST BE USED AS SIMPLE VARIABLE

STATEMENT FUNCTION DUMMY
PARAMETER ••••• NOT SIMPLE VARIABLE

STATEMENT FUNCTION INVALID IN DATA
VARIABLE LI ST

STATEMENT LABEL ••••• CONTAINS
NON-DIGIT

Definition must precede
first executable statement.

Dummy argument name appeared
in a CHARACTER*(*) declara­
tion.

Dummy argument was followed
by expression in parentheses •

A constant or expression
appears in the parameter
list of a function
defin i ti on.

Attempt to use statement
function that is in DATA
statement.

Statement labels must
consist of digits.

Move statement func­
tion definition, or
check for undimen­
sioned array.

Change type declara­
tion or dummy argument
name.

Rewrite statement
function expression.

Check parameter list
of the function def­
inition.

Rewrite statement.

Correct statement
labels.

8-17

I



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

FATAL

FATAL

STATEMENT LABEL

STATEMENT LABEL

EXCEEDS 5 DIGITS

MUST BE NUMERIC

Statement labels must be
five digits or less.

Statement labels must
consist of digits.

Correct statement
labels.

Correct statement
labels.

FATAL

FATAL

FATAL

FATAL

STATEMENT LABEL .••.• REFERENCED BUT
NOT DEFINED

STATEMENT LABEL EXPECTED BUT NOT FOUND

STATEMENT MISPLACED

STRING ADDRESS CANNOT BE •.•••

The indicated label does not Check for missing
appear as a statement label statement.
anywhere in the program.

A statement label reference Insert label.
is missing.

Statement in the wrong place. Put statement in
proper place.

Invalid string address on Check string address.
encode or decode.

I

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

B-18

STRING ADDRESS CANNOT BE CHARACTER

SUBROUTINE ENTRy ...•• MAY NOT APPEAR
IN A DECLARATIVE STATEMENT

SUBSCRIPT ••..• OF .•••• IS NOT A
NUMERIC TYPE

SUBSCRIPTS IN DATA MUST BE INTEGER

SUBSTRING EXPRESSION NOT INTEGER

SUBSTRING ILLEGAL FOR OPERAND •..••

SUBSTRING ILLEGAL FOR PARAMETER •••..

SUBSTRINGED VARIABLE ••.•• NOT TYPE
CHARACTER

SYNTAX ERROR IN BLOCK NAME

SYNTAX ERROR IN DATA CONSTANT LIST

SYNTAX ERROR IN DATA STATEMENT

SYNTAX ERROR IN DIMENSION DECLARATION

SYNTAX ERROR IN EQUIVALENCE STATEMENT

SYNTAX ERROR IN GO TO STATEMENT

SYNTAX ERROR IN I/O CONTROL LIST
AT •••.•

String address on encode or
decode cannot be type
character.

Subroutine entry cannot
appear in a declarative
statement.

Subscripts must be numeric.

Subscripts must be integer.

Substring expression must be
integer.

Wrong substring for operand.

Wrong substring for para­
meter.

Variable must be character
type.

Wrong syntax in block name.

Wrong syntax in data
constant list.

Wrong syntax in data state­
ment.

Wrong syntax in dimension
decl arat ion.

Wrong syntax in EQUIVALENCE
statement.

Wrong syntax in GO TO state­
ment.

Wrong syntax in I/O control
list.

Change type of string
address.

Check declarative
statement.

Make subscripts
numeric.

Make subscripts
integer.

Check substring ex­
pression.

Check substring.

Check substring.

Check substring vari­
able.

Check block name for
syntax error.

Check data constant
list for syntax error.

Check data statement
for syntax error.

Check dimension decla­
ration for syntax
error.

Check EQUIVALENCE
statement for syntax
error.

Check GO TO statement
for syntax error.

Check I/O control list
for syntax error.

60481300 E



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Si gn ifi cance Action

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

60481300 E

SYNTAX ERROR IN I/O IMPLIED DO

SYNTAX ERROR IN NAMELI ST

SYNTAX ERROR IN PROGRAM UNIT NAME

SYNTAX ERROR IN SUBSTRING EXPRESSION
FOR •••••

SYNTAX OF DO MUST BE I=Ml,M2,M3 OR
M1,M2

T EDIT DESCRIPTOR FOLLOWED BY ZERO OR
NON-DIGIT

TABLE OVERFLOW -- INCREASE FIELD LENGTH
AND RERUN

TERMINAL DELIMITER ••••• MISSING

THE TERMINAL STATEMENT OF DO
PRECEDED THE DO DEFINITION

THIS IS NOT A FORTRAN STATEMENT

THIS STATEMENT MAY NOT BE A DO TERMINAL

THIS STATEMENT MUST BE CONTAINED ON 1
CARD

TOO FEW LEFT PAREN OR PREVIOUS SYNTAX
ERROR -- SCAN STOPPED AT •••••

TOO FEW RIGHT PAREN OR PREVIOUS SYNTAX
ERROR -- SCAN STOPPED AT •••••

TRIP COUNT IS LESS THAN ONE

TRIP COUNT OF ••..• MUST BE POSITIVE

TRIP COUNT TOO HIGH -- SHORT LOOPS
SELECTED

UNBALANCED PARENS

UNDECLARED INTRINSIC OR EXTERNAL
FUNCTION ••••• USED AS ACTUAL ARGUMENT

UNIT SPECIFIER FILE NAME GREATER THAN
7 CHARACTERS

UNIT SPECIFIER NOT LEGAL FILE NAME

Wrong syntax in I/O implied
DO.

Wrong syntax in NAMELIST.

Wrong syntax in program unit
name.

Wrong syntax in substring
expression.

DO statement syntax
incorrect.

T code must be followed by
nonzero column number.

Not enough field length for
compilation.

The terminal delimiter is
missing.

Terminal statement of DO
must not precede the DO
defin iti on.

Unrecognizable statement.

A DO loop cannot end with
the specified statement.

Continuation lines not
allowed for this statement.

Left paren missing or there
is a previous syntax error.

Right paren missing or there
is a previous syntax error.

Trip count must be at least
one if DO=OT is selected.

Trip count must be positive.

Trip count too high.

Parentheses are unbalanced.

Cannot use undeclared func­
tion as actual argument.

Illegal file name.

Illegal file name.

Check I/O implied DO
for syntax error.

Check NAMELIST for
syntax error.

Check program unit
name for syntax error.

Check substring ex­
pression for syntax
error.

Use correct syntax.

Correct column number.

Provide more field
length for compila­
tion.

Provide correct
terminal delimiter.

Provide terminal
statement of DO in
proper place.

Check syntax.

Restructure DO loop.

Rewrite statement to
fit on 1 1i ne •

Check parenthesis
matching or correct
previous syntax.

Check parenthesis
matching or correct
previous syntax.

Make trip count at
least one.

Make trip count
positive.

Lower trip count.

Balance parentheses.

Remove undeclared
function.

Check character length
of unit specifier.

Check all uses of the
file name.

B-19

I



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

PREVIOUSLY

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

MDEP

MDEP

MDEP

MDEP

I B-20

UNIT SPECIFIER OUTSIDE RANGE 0 - 999

UNIT SPEC IFIER MI SSING

UNKNOWN EDIT DESCRIPTOR

UNMATCHED PARAMETER COUNT TO STATEMENT
FUNCTION •••••

USAGE CONFLICT -- ••••• CANNOT BE
STATEMENT FUNCTION

USAGE CONFLICT -- ••••• IS •••••
AND CANNOT BE •.•••

USAGE CONFLICT ••••. PREVIOUSLY USED
AS •••••

USAGE CONFLICT -- •.••• PREVOUSLY
DEFINED AS DO TERMINAL

USAGE CONFLICT -­
DEFINED AS FORMAT

USAGE CONFLICT -- •..•• PREVIOUSLY
USED AS A FORMAT LABEL

ZERO IS SPECIFIED AS REPEAT COUNT
AT •••••

ZERO LENGTH CHARACTER OR HOLLERITH
STRING

BOOLEAN DATA TYPE IS MACHINE
DEPENDENT

BUFFER I/O IS MACHINE DEPENDENT

ENCODE/DECODE ARE MACHINE DEPENDENT

LIBRARY FUNCTIONS DATE, TIME AND
CLOCK ARE MACHINE DEPENDENT

Illegal unit number.

Unit specifier required.

EDIT descriptor not
recognized.

The function reference and
function definition contain
different numbers of param­
eters.

The indicated statement
function conflicts with a
previ ous usage.

Usage confl ict.

The label was previously
used another way.

The label was previously
defined as a DO terminal.

The label was previously
defined as a FORMAT label.

The label was previously
used as a Format label.

Repeat count must be greater
than zero.

Character or hollerith
string must have a positive
nonzero length.

This data type is machine
dependent.

Buffer I/O is machine
dependent.

ENCODE/DECODE is machine
dependent.

These functions are machine
dependent.

Provide a unit number
which is no more than
3 digits long.

Provide a unit number.

Check EDIT descriptor.

Check for missing
parameters.

Check all other
usages; the function
name might be used as
a variable or array
name.

Check uses of indi­
cated name.

Check previous usage
of label.

Check previous loops
for use of the same
1abel.

Change 1abe1.

Change label.

Make repeat count
greater than zero.

Make string positive
nonzero length.

Use the CHARACTER data
type instead, for
portability.

Avoid using Buffer I/O
if possible, especial­
ly usages that depend
on the number of char­
acters per word.

Use internal files
instead for porta-
bil ity.

Do not dismantle the
output of these
routines, print them
out as a whole.

60481300 E



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

MDEP OVCAPS ARE MACHINE DEPENDENT

MDEP OVERLAYS ARE MACHINE DEPENDENT

TRIVIAL ARGUMENT ••••• IS NOT USED IN
STATEMENT FUNCTION •••••

TRIVIAL CONSTANT ** CONSTANT CANNOT BE
EVALUATED

TRIVIAL CONSTANT TOO LONG, EXCESS DIGITS
TRUNCATED

TRIVIAL CONTINUE WITH NO STATEMENT LABEL -­
IGNORED

TRIVIAL IF RESULTS IN A SIMPLE TRANSFER

TRIVIAL IF RESULTS IN A TRANSFER TO THE NEXT
LINE

TRIVIAL INTEGER ** NEGATIVE CONSTANT -­
RESULTS ZERO

TRIVIAL LAST IF RESULTS IN A NULL TRANSFER TO
TH IS STATEMENT

TRIVIAL MISSING PROGRAM STATEMENT -- PROGRAM
START. ASSUMED

TRIVIAL NO PATH,TO THE ENTIRE RANGE OF DO

TRIVIAL NO PATH TO THIS STATEMENT

TRIVIAL NULL TRANSFER STATEMENT -- TRANSFER
IGNORED

TRIVIAL RECORD LENGTH EXCEEDS 137 COLUMNS --
MAY EXCEED I/O DEVICE

TRIVIAL STATEMENT CAN TRANSFER TO ITSELF

TRIVIAL STATEMENT TRANSFERS TO ITSELF

TRIVIAL THIS 00 LOOP WILL NOT EXECUTE

60481300 E

OVCAPS are machine depen­
dent.

OVERLAYS are machine depen­
dent.

Specified argument not
needed.

Specified operation cannot
be performed at compile
time.

Constant truncated due to
excess length.

CONTINUE without statement
label is meaningless.

The IF can be replaced by a
GO TO.

Control will always transfer
to the next statement,
regardless of the condition
specified in the IF
statement.

Integer raised to a negative
power is zero.

IF acts as a do-nothing
statement.

The PROGRAM statement must
be the first statement of
the main program.

The statements in the loop
cannot be reached.

Statement will never be
executed.

A GO TO statement transfers
to the next statement.

Record length may be too
large for peripheral device.

Infinite loop possible.

Infinite loop results.

Condition always prohibits
execution of DO loop.

Do not let programs
depend on certain pro­
perties of OVCAPS,
such as reinitializa­
tion of variables when
an OVCAP is reloaded.

Do not let programs
depend on certain
properties of over­
lays, such as
reinitialization of
variables when an
overlay is reloaded.

Remove argument.

Change the expression.

Remove excess digits.

Insert label or
eliminate CONTINUE.

Make the substitution.

Reexamine the IF.

Change the integer to
real.

Check syntax of IF.

Supply PROGRAM state­
ment.

Check for logic error,
in current branch.

Check program logic,
particularly GO TO
statements and IF
statements.

GO TO can be
e1imi nated.

Reduce record length
if necessary.

Revise statement.

Change statement.

Check logic of DO
loop.

B-21 I



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

I

TRIVIAL

TRIVIAL

TRIVIAL

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

B-22

TL EDIT DESCRIPTOR BACKSPACED BEYOND
1st COLUMN -- COLUMN POINTER RESET AT 1

VARIABLE ** ZERO -- RESULT ASSUMED ONE

ZERO ** ZERO -- RESULTS INDEFINITE

*TO* ASSUMED FOR ••..•

••••• PREVIOUSLY DECLARED INTRINSIC -­
IGNORED

••.•• PREVIOUSLY DECLARED EXTERNAL -­
IGNORED

••••• PREVIOUSLY TYPED NON-CONFORMING
-- PREVIOUS TYPE OVERRIDDEN

••••• REDUNDANTLY DECLARED IN SAVE

ARGUMENT TO MASK MUST BE BETWEEN
o AND 60

C$ PARAMETER VALUE FOR .•.•• ON •••.•
MUST BE 0 OR 1

COMMA AFTER STATEMENT LABEL IGNORED

COMMA MUST FOLLOW LEVEL NUMBER

CONFLICT IN RANGE INDICATOR -- FIRST
RETAINED

CONSTANT EXCEEDS 5 DIGITS -­
TRUNCATED

CONSTANT MISSING EXPONENT FIELD -­
ZERO ASSUMED

DO CONCLUSION NOT COMPILED -- DO
DEFINITION ERROR

ENTRy ••..• MUST NOT BE DECLARED
EXTERNAL -- IGNORED

ENTRY STATEMENT IGNORED IN MAIN
PROGRAM

EXCESS CONSTANTS IGNORED

EXPECTED COMMA AFTER I/O CONTROL -­
FOUND .....

EXPECTED E.O.S. -- FOUND AND
IGNORED ••.•.

EXPECTED LEFT PAREN -- FOUND

Value of TL code is too
1arge.

Variable raised to zero
power is equal to one.

Zero raised to zero power is
indefinite.

Syntax error in ASSIGN
statement.

Function already declared.

Function already declared•

Most recent declaration
used.

The indicated name appears
more than once in a SAVE
statement.

Argument to mask is not
between 0 and 60.

C$ parameter must be zero or
one.

Comma is not needed.

Comma missing after level
number.

Overlap of ranges in
IMPLICIT statement.

Constant too long.

Exponent field missing in
constant; zero assumed.

Error in DO definition; DO
conclusion not compiled.

The entry must not be
declared external.

An ENTRY statement in the
main program has no purpose.

Too many constants.

Comma should have followed
I/O control statement.

Extraneous information
follows a legal statement.

Left parenthesis not found.

Check TL code.

Check expression.

Check expression.

Check ASSIGN statement
for syntax error.

Check declaration of
functions.

Check declaration of
functions.

Check declarations •

Eliminate redundancy.

Make argument to mask
between 0 and 60.

Check C$ parameter.

Remove comma.

Insert comma.

Check for overlap of
ranges in IMPLICIT
statement.

Reduce number of
digits in constant to
5 or less.

Provide constant with
an exponent field.

Correct previous
errors.

Correct declaration of
entry.

Remove ENTRY state­
ment.

Reduce excess number
of constants.

Provide comma after
I/O control statement.

Remove extra char­
acters.

Check syntax of state­
ment.

60481300 E



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Sign ificance Action

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

EXTRANEOUS COMMA IGNORED

FIELD WIDTH IS LESS THAN MINIMUM
REQUIRED ON EDIT DESCRIPTOR AT •••••

FUNCTION ••••• REFERENCED AS
SUBROUTINE

FWA AND LWA NOT IN SAME ARRAY,
EQUIVALENCE CLASS, OR COMMON BLOCK

GENERIC ONLY INTRINSIC •••• TYPED-­
TYPING IGNORED

HOLLERITH CONSTANT EXCEEDS 10
CHARACTERS

I/O LIST IGNORED WHEN USING NAMELIST

ILLEGAl NAME -- ENTRY STATEMENT IGNORED

INTRINSIC ••••• TYPED NON-CONFORMING
-- TYPE IGNORED

LOCAL ••••• IN BLOCK DATA -- IGNORED

MISSING NAME -- ENTRY STATEMENT
IGNORED

MULTIPLY DEFINED LEVEL FOR NAME
-- IGNORED

MULTIPLY DEFINED LEVEL FOR COMMON
BLOCK NAME •.••• -- IGNORED

NAME ••.•• PREVIOUSLY DEFINED -­
ENTRY STATEMENT IGNORED

NON-OCTAl DIGIT IN OCTAl CONSTANT -­
IGNORED

NUMBER OF ARGUMENTS IN REFERENCE TO
••••• IS NOT CONSISTENT

Comma unrecognized and
ignored.

Field width too small.

Function names must not be
the object of CALL state­
ments.

First-word-address and last­
word-address must be in the
same common block, equiva­
lence class, or array.

Name of intrinsic function,
which is not'specific
function, appears in type.

Self-explanatory.

Name 1i st I/O does not use an
I/O list.

Name invalid.

Declared type of intrinsic
nonconforming.

Variable appears in BLOCK
DATA subprogram, but not in
a common statement.

ENTRY statement needs a
name.

Too many levels defined for
name.

Too many levels defined for
common block name.

Too many definitions of
ENTRY name.

Digit must be less than or
equal to 7.

Number of arguments in ref­
erence must be the same as
the number ~f arguments in
the FUNCTION or SUBROUTINE
statement.

Remove extraneous
comma.

Increase field width.

Use function reference
syntax.

Check declarations
for inconsistencies
involving FWA and LWA.

Remove attempted
typing.

Reduce constant to 10
characters or less.

Eliminate I/O list.

Provide legal name.

Change type declara­
tion.

Check common block for
missing variables.

Provide name for ENTRY
statement.

Check defined levels
of name.

Check defined levels
of common block name.

Check for another
usage of the ENTRY
name.

Rewrite octal
constant.

Check arguments.

I

Make object of GO TO
integer variable.

Reduce number of
excess files.

WARNING

WARNING

WARNING

60481300 E

OBJECT OF GO TO NOT INTEGER VARIABLE

ONLY 49 FILES ARE ALLOWED -- EXCESS
IGNORED

PREMATURE E.O.S. -- EXPECTED VARIABLE
AT •••••

Object of GO TO must be a
simple integer variable.

Too many files were speci­
fied in the PROGRAM
statement.

End of statement encountered; Check syntax.
statement incomplete.

B-23

I



Message

TABLE B-1. COMPILE-TIME DIAGNOSTICS (Contd)

Significance Action

WARNING PREMATURE E.O.S. OR EXTRA TRAILING
SEPARATOR •••••

WARNING PREVIOUS DEFINITION OF STATEMENT
FUNCTION ••••• IS OVERRIDDEN

End of statement encountered
or an extraneous separator
found.

The function was defined
more than once; the most
recent definition is used.

Check statement or
e1imi nate extra
separator.

Change second
definition.

WARNING RANGE INDICATOR ••••• NOT 1 LETTER -­
TRUNCATED TO •••••

WARNING REDUNDANT EQUIVALENCE SPECIFICATION
FOR •••••

I

I

I

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

8-24

SHIFT COONT MUST BE BETWEEN -60 and 60

STATEMENT FUNCTION ••••• HAS NULL
DEFINITION -- IGNORED

SUBROUTINE ••••• REFERENCED AS
FUNCTION

SUBSCRIPT ••••• OF ••••• VIOLATES
LOWER DIMENSION BOUND

SUBSCRIPT ..... OF ..... VIOLATES
UPPER DIMENSION BOUND

TERMINAl.. CHARACTER ..... CONVERTED TO
RIGHT PAREN

THIS STATEMENT HAS NO INITIAL LINE -­
INITIAL ASSUMED

TOO FEW CONSTANTS -- VARIABLES FROM
••••• NOT INITIALIZED

TRIVIAL EQUIVALENCE GROUP WITH ONLY 1
MEMBER IS IGNORED

TRIVIAL RANGE -- ••••• SAME AS •••••

TYPING OF ••••• IGNORED -- PRIOR
TYPING RETAINED

UNIVERSAL SAVE DECLARED -- OTHER SAVE
STATEMENTS ARE REDUNDANT

UNKNOWN FORM -- BLANK ASSUMED

VARIABLE ••••• HAS NO DIMENSION
BOUND -- IGNORED

VARIABLE ••••• NOT INTEGER

Implicit statement range
indicator not 1 letter.

EQUIVALENCE specification
used before.

SHIFT count is not betw~en

-60 and 60.

Statement function expansion
reduces to a null code
sequence.

Subroutines are referenced
with the CALL statement.

Subscript less than declared
lower bound.

Subscript greater than
declared upper bound.

The indicated character
appeared where a right
parenthesis was expected.

Initial line missing from
statement.

Not enough constants in data
constant list •

An EQUIVALENCE must contain
at least 2 members.

Implicit range is trivial.

The symbol appeared in more
than one type statement;
first type is used.

When universal SAVE declared
other SAVE statements are
not necessary.

Unrecognizable form of STOP
or PAUSE statement.

Variable label must have
dimension bound.

Variable must be integer.

Change the range indi­
cator to 1 letter.

Check for occurrence
of indicated symbol in
previous EQUIVALENCE
statement.

Make SHIFT count
between -60 and 60.

Check for error in
function definition
statement.

Use CALL statement.

Correct subscript.

Correct subscript.

Compiler assumes a
right parenthesis.

Provide initial line.

Initialize the vari­
ables; uninitalized
variables can cause
run-time errors.

Check EQUIVALENCE
statement.

Check range.

Eliminate second type
declaration.

Eliminate redundant
SAVE statements.

Check STOP or PAUSE
statement.

Provide dimension
bound for variable
label.

Make variable integer.

60481300 E



Message

COMPILING program
LAST STATEMENT BEGAN AT

LINE nnnnn
ERROR AT aaaaa IN ddddddd
LAST OVERLAY LOADED - (p,s)

DEAD CODE IN Program

EMPTY INPUT FILE. NO
COMP ILATION.

TABLE B-2. SPECIAL COMPILATION DIAGNOSTICS

Significance

Compiler, operating system, or hardware error has
occurred while compiling program.

program Name of source program unit.

nnnnn Approximate compiler-assigned source line
number where the difficulty arose. During
transitions from one phase of compilation
to another, the END line number might be
displayed.

ddddddd Name of compiler internal deck where abort
occurred. Might be RA+O if control was

, accidentally transferred to the control
point job communications area.

aaaaaa Address relative to origin of internal
deck where abort occurred.

p,s Primary and secondary level numbers of
overlay last loaded before abort occurred:

0,0 - Control statement cracker; global
communication and control

1,0 - (OPT=O) compilation overlay

2,0 - OPT>O compilation batch- controller

2,1 - (OPT>O) compilation normal pass 1
(lexical scan, parse, intermediate
language generation)

2,2 - (OPT>O) compilation pass 2 (global
and local optimization, object code
generation)

2,3 - (OPT>O) compilation reference map
generation and object code assembly
phase

A section of code is unreachable and cannot be
processed (can be issued on ly when OPT ~ 2) •

An end-of-partition or end-of-section was en­
countered on the first read of the input.

TABLE B-3. COMPILER OUTPUT LISTING MESSAGES

Action

Follow site-defined
procedures for report­
ing software errors or
operational problems.

Same as STATEMENTS
BEGINNING AT THE
BELOW LINE NUMBERS
ARE UNREACHABLE (DEAD
CODE), AND WILL NOT BE
PROCESSED.

Check for extra EOP
or EOS, or misposi­
tioned input file.

I

I
I

I

Message Significance Acti on

STATEMENTS BEGINNING AT THE BELOW Executable statements in the source program Check flow control
LINE NUMBERS ARE UNREACHABLE (DEAD can never be executed, due to program flow of program.
CODE), AND WILL NOT BE PROCESSED. of control. No object code is compiled for

dead statements. Accompanied by dayfile
message DEAD CODE IN program. Detected only
when OPT=2 has been selected.

60481300 E B-25



TABLE B-4. EXECUTION-TIME DIAGNOSTICS

No. Class Message Significance Action Issued By

1 F A ERROR IN COMPUTED GO TO STATEMENT - Value .LT. 1 or .GT. Recompile us i ng GOTOER=
INDEX VALUE INVALID number of statement FORTRAN 5 com-

numbers. Occurs only piler.
if FORTRAN Extended 4
binary is used in a
FORTRAN 5 job.

2 I A ARGUMENT ABS VAlUE •GT. 1 Note 1 Note 2 ACOSIN=(ACOS)
ARGUMENT INFINITE
ARGUMENT INDEFINITE

3 I A ARGUMENT ZERO Note 1 Note 2 ALOG
ARGUMENT NEGATIVE
ARGUMENT INFINITE
ARGUMENT INDEFINITE

4 I A ARGUMENT ZERO Note 1 Note 2 ALOGIO
ARGUMENT NEGATIVE
ARGUMENT INFINITE
ARGUMENT INDEFINITE

5 I A ARGUMENT ABS VALUE .GT. 1 Note 1 Note 2 ACOSIN=(ASIN)
ARGUMENT INFINITE
ARGUMENT INDEFINITE

6 I A ARGUMENT INDEFINITE Note 1 Note 2 ATAN

7 I A ARGUMENT VECTOR ZERO Note 1 Note 2 ATAN2
ARGUMENT INFINITE
ARGUMENT INDEFINITE

8 I A ARGUMENT TOO LARGE Note 1 Note 2 CABS
ARGUMENT INFINITE
ARGUMENT INDEFINITE

9 I T ZERO TO THE ZERO POWER Note 1 Note 2 ZTOI (Z**I)
ZERO TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

10 I T INFINITE ARGUMENT Note 1 Note 2 CCOS
INDEFINITE ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

11 I T INFINITE ARGUMENT Note 1 Note 2 CEXP
INDEFINITE ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

12 I T ZERO ARGUMENT Note 1 Note 2 CLOG
INFINITE ARGUMENT
INDEFINITE ARGUMENT

13 I A ARGUMENT TOO LARGE, ACCURACY LOST Note 1 Note 2 SINCOS=(COS)
ARGUMENT INFINITE
ARGUMENT INDEFINITE

14 I T INFINITE ARGUMENT Note 1 Note 2 CSIN
INDEFINITE ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (IMAG P.ART) TOO LARGE

15 I T INFINITE ARGUMENT Note 1 Note 2 CSQRT
INDEFINITE ARGUMENT

I B-26 60481300 E



TABLE B-4. EXECUTION-TIME DIAGNOSTICS (Cont)

No. Cl ass Message Significance Action Issued By

16 I T FLOATING OVERFLOW Note 1 Note 2 DTOX (D**X)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE BASE IN EXPONENTIATION
INFINITE ARGUMENT
INDEFINITE ARGUMENT

17 I A ARGUMENT INFINITE Note 1 Note 2 DATAN
ARGUMENT INDEFINITE

18 I A ARGUMENT VECTOR 0,0 Note 1 Note 2 DATAN2
ARGUMENT INFINITE
ARGUMENT INDEFINITE

19 I T FLOATING OVERFLOW Note 1 Note 2 DTOD (0**0)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

20 I T ZERO TO THE ZERO POWER Note 1 Note 2 DTOI (0**1)
ZERO TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

21 I T FLOATING OVERFLOW IN 0** REAL(Z) Note 1 Note 2 DTOZ (D**Z)
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)LOG(D) TOO LARGE
INFINITE ARGUMENT
INDEFINITE ARGUMENT

22 I T ARGUMENT TOO LARGE, ACCURACY LOST Note 1 Note 2 DCOS
INFINITE ARGUMENT
INDEFINITE ARGUMENT

23 I A ARGUMENT TOO LARGE Note 1 Note 2 DEXP
ARGUMENT INFINITE
ARGUMENT INDEFINITE

24 I T ZERO ARGUMENT Note 1 Note 2 DLOG
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

25 I T ZERO ARGUMENT Note 1 Note 2 DLOG10
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

26 I T DP INTEGER EXCEEDS 96 BITS Note 1 Note 2 DMOD
2ND ARGUMENT ZERO
INFINITE ARGUMENT
INDEFINITE ARGUMENT

28 I T ARGUMENT TOO LARGE, ACCURACY LOST Note 1 Note 2 DSIN
INFINITE ARGUMENT
INDEFINITE ARGUMENT

29 I T NEGATIVE ARGUMENT Note 1 Note 2 DSQRT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

30 I A ARGUMENT TOO LARGE, FLOATING OVERFLOW Note 1 Note 2 EXP
ARGUMENT INFINITE
ARGUMENT INDEFINITE

60481300 E B-27 I



TABLE B-4. EXECUTION-TIME DIAGNOSTICS (Cant)

No. Class Message , Significance Action Issued By

31 I T INTEGER OVERFLOW Note 1 Note 2 ITOJ (I**J)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER

33 I T FLOATING OVERFLOW Note 1 Note 2 XTOD (X**D)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

34 I T ZERO TO THE ZERO POWER Note 1 Note 2 XTOI (X**I)
ZERO TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

35 I T FLOATING OVERFLOW Note 1 Note 2 XTOY (X**Y)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATI VE TO THE REAL POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

36 I A ARGUMENT TOO LARGE, ACCURACY LOST Note 1 Note 2 SINCOS=(SIN)
ARGUMENT INFINITE
ARGUMENT INDEFINITE

39 I A ARGUMENT NEGATIVE Note 1 Note 2 SQRT
ARGUMENT INFINITE
ARGUMENT INDEFINITE

40 I T ILLEGAL SENSE SWITCH NUMBER Number not in range SSWTCH
1-6; return parameter
set to 2.

41 I T ARGUMENT TOO LARGE, ACCURACY LOST Note 1 Note 2 TAN
INFINITE ARGUMENT
INDEFINITE ARGUMENT

42 I T INFINITE ARGUMENT Note 1 Note 2 TANH
INDEFINITE ARGUMENT

44 I T FLOATING OVERFLOW Note 1 Note 2 ITOD (1**0)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

45 I T FLOATING OVERFLOW Note 1 Note 2 ITOX (I**X)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

46 I T FLOATING OVERFLOW IN 1** REAL(Z) Note 1 Note 2 ITOZ (I**Z)
ZERO TO THE ZERO rn NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(I) TOO LARGE
INFINITE ARGUMENT
INDEFINITE ARGUMENT

I B-28 60481300 E



TABLE B-4. EXECUTION-TIME DIAGNOSTICS (Cont)

No. Cl ass Message Significance Action Issued By

47 I T FLOATING OVERFLOW IN X** REAL(Z) Note 1 Note 2 XTOZ(X**Z)
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(X) TOO LARGE
INFINITE OR INDEF ARGUMENT

49 I A COMMA MISSING AT END OF RECORD - Error occurred during Check NAMELI ST NAMIN=
COMMA ASSUMED NAMELIST processing. input data for

I A NAMELIST DATA TERMINATED BY EOF NOT $ errors.
I A CONSTANTS MISSING AT END OF RECORD -

NEXT RECORD READ

'50 F A FATAL ERROR IN LOADER. Error occurred during Inspect load map OVERLA=
load. to determine

cause of error.

51 I A Set by user via subroutine SYSTEM Defined by user. Defi ned by user. USER
or SYSTEMC.

52 F A Set by user via subroutine SYSTEM Defined by user. Defined by user. USER
or SYSTEMC. Error numbers larger
than any listed in this table become
error 52.

53 F A NOT ENOUGH FL FOR SORT/MERGE. More memory required Extend program SMXXXX=
for Sort/Merge field length.
processing.

55 F A END-OF-FILE ENCOUNTERED, FILENAME Attempt to read past Rewind before BUFIN=
- - - - xxxxxxx. end-of-file. reading or cor-

rect program
logic.

56 F A WRITE FOLLOWED BY READ, FILENAME AREAD cannot follow Insert a REWIND BUFIN=
- - - - xxxxxxx. a WRITE unless a statement.

REWIND intervenes.

57 F A AREA SPECIFICATION SPANS SCM/LCM. In a buffered I/O Check word BUFIO=
statement the first addresses in
and last word buffered I/O
addresses must be in statement.
the same level of
memory.

58 F A BUFFER DESIGNATION BAD -- FWA.GT.LWA. First-word address Check buffer BUFIO=
must be LE 1ast word designation.
address.

59 F A BUFFER SPECIFICATION BAD -- First-word address Check first BUFOUT=
FWA.GT.LWA must be LE last word and 1ast word

address. address.

62 F A INVALID UNIT Unit not recognized. Check unit GETFIT=
number.

63 F A END-OF-FILE ENCOUNTERED ON Attempt to read past Rewind file or INPB=
FILE xxxxxxx. end-of-file. correct program

logic.

65 F A END-OF-FILE ENCOUNTERED ON Attempt to read past Rewi nd fi le or INPC=
FILE xxxxxxx. end-of-file. correct program NAMIN=

logic.

60481300 E B-29 I



I

I

I

TABLE B-4. EXECUTION-TIME DIAGNOSTICS (Cont)

No. Class Message Significance Action Issued By

66 F A NAMELIST NAME NOT FOUND-xxxxxxx. Error occurred Check NAMELIST NAMIN=
F A INCORRECT SUBSCRIPT. dur i ng NAMELI ST input data for
F A TOO MANY CONSTANTS. processing. errors.
F A , ( $ OR = EXPECTED, MISSING.
F A VARIABLE NAME NOT FOUND-xxxxxxx.
F A CONSTANT MISSING.

67 F A DECODE RECORD LENGTH .LE. O. Bad first parameter Check first DECODE=
DECODE LCM RECORD .GT. 150 CHARACTERS. to DECODE. parameter to

DECODE.

68 F A * ILL-PLACED NUMBER OR SIGN. III ega1 FORMAT. Check format. FMTAP=
F A * ILLEGAL FUNCTIONAL LETTER.

69 F A * IMPROPER PARENTHESIS NESTING. 111 ega1 FORMAT. Check format. FMTAP=

70 F A * EXCEEDED RECORD SIZE. The maximum record Change RL FMTAP=
length specified on parameter on
the PROGRAM, OPEN, PROGRAM state-
ENCODE, DECODE or ment, MRL
FILE control state- parameter on
ment has been the FILE con-
exceeded. trol statement,

REeL parameter
on the OPEN
statement, or C
parameter on
the ENCODE or
DECODE statement.

71 F A * SPECIFIED FIELD WIDTH ZERO. w=O in FORMAT. Check field FMTAP=
width in
FORMAT.

72 F A * FIELD WIDTH .LE. DECIMAL WIDTH. w LE d in FORMAT. Check width FMTAP=
in FORMAT.

73 F A *HOLLERITH FORMAT WITH LIST. The FORMAT has no Change one or INCOM=
specifiers corre- the other.
sponding to the
I/O statement.

78 F A * ILLEGAL DATA IN FIELD * I * Usually a nondigit Fix input data. INCOM=
in a numeric input
field.

79 F A * DATA OVERFLOW * I * Input value GT Fix input data. INCOM=
1.26501E322.

83 F A OUTPUT FILE LINE LIMIT EXCEEDED. The default or Specify PL on OUTC=
specified print FTN5 statement, NAMOUT=
limit to OUTPUT was PL on execution OUTF=
exceeded. ca 11, or change SYSERR=

program to print
less.

85 F A ENCODE CHARACTER/RECORD .LE. 0 Bad first parameter Check first ENCODE=
ENCODE LCM RECORD .GT. 150 CHARACTERS to ENCODE. parameter to

ENCODE.

88 F A WRITE FOLLOWED BY READ ON A READ cannot follow Insert a REWIND INPB=
FILE-xxxxxxx. a WRITE unless a statement.

REWIND intervenes.

8-30 60481300 E



TABLE B-4. EXECUTION-TIME DIAGNOSTICS (Cont)

No. Class Message Significance Action Issued By

89 F A LIST EXCEEDS DATA, READ ON More words were Check for miss- INPB=
FILE-xxxxxxx. specified in the 1/0 ing data or

list than existed in incorrect in-
the record of the put 1i st.
file.

90 F A PARITY ERROR ON FILE xxxxxxx Probable disk or See systems INPB=
DURING PREVIOUS READ. tape error. analyst.

91 F A WRITE FOLLOWED BY READ ON A READ cannot fo 11ow Insert a REWIND INPC=
FILE-xxxxxxx. a WRITE unless a statement.

REWIND intervenes.

92 F A PARITY ERROR READING (CODED) Probable disk or See systems INPC=
FILE-xxxxxxx. tape error. analyst. NAMIN=

93 F A PARITY ERROR ON FILE-xxxxxxx Probable disk or See systems OUTB=
DURING PREVIOUS READ. tape error. ana lyst.

94 F A PARITY ERROR ON LAST READ ON Probable disk or See systems OUTC=
FILE-xxxxxxx. tape error. analyst.

95 F A PARITY ERROR ON FILE xxxxxxx Probable disk or See systems ODAB
DURING PREVIOUS WRITE tape error. analyst.

96 F A PARITY ERROR ON FILE xxxxxxx Probable disk or See systems IDAB
DURING PREVIOUS READ tape error analyst.

97 F A INDEX NUMBER ERROR. Nonexistent index Check index RANMS=
value specified or and file.
bad fil e.

98 F A FILE ORGANIZATION ERR OR FILE NOT Call OPENMS. RANMS=
OPEN.

99 F A WRONG INDEX TYPE. Wrong type specified Check index RANMS=
to OPENMS. type.

100 F A INDEX IS FULL. An index is full, and Increase index RANMS=
an attempt is being size.
made to add a new
record to it.

101 F A DEFECTIVE INDEX CONTROL WORD. Bad fil e. File must be RANMS=
recreated.

102 F A RECORD LENGTH EXCEEDS SPACE Record length too Increase sp ace RANMS=
ALLOCATED. long. a11 ocat i on • BUFIO=

103 F A RECORD MANAGER ERROR xxx ON FILE Record Manager See Record Man- RANMS=
xxxxxxx, RECORD xxxxxxx. error. ager reference

manua1.

104 F A INDEX KEY UNKNOWN. Invalid index key. Correct index RANMS=
key.

105 F A RECORD LENGTH NEGATIVE. Record length must Fix call. RANMS=
not be negative.

107 F A ILLEGAL PARAMETER VALUE. Argument to Sortl Check parameter SMXXXX=
Merge routine has value of Sarti
bad value. Merge routine.

108 F A TOO FEW OR TOO MANY PARAMETERS. Valid number of Provide proper SMXXXX=
parameters not number of
provided. parameters.

60481300 E B-31 ..1



TABLE 8-4. EXECUTION-TIME DIAGNOSTICS (Cont)

No. Class Message Sign ifi cance Action Issued By

109 F A KEYWORD (xxxxxxx) INVALID. Keyword not recog- Provide legal SMXXXX=
nized. keyword.

110 F A A ROUTINE CALLED OUT OF SEQUENCE. Sequence (SMSORT, Check sequence SMXXXX=
SMSORTB, SMSORTP, of routine
or SMMERGE), (other call.
Sort/Merge calls),
(SMEND or SMABT)
not fa 11 owed.

111 F A LCM BLOCK COPY ERROR. Parity error. See systems COMIO=,
analyst. DECODE=,

ENCODE=,
INPB=, OUTB=,
READEC,
WRITEC

114 F A CONNEC CHARACTER CODE CONVERSION IS Bad second at"gument Change to CONDIS=
OUT OF RANGE in CALL CONNEC. specify correct

character set.

115 I A ARGUMENT INFINITE Note 1 Note 2 EXP
ARGUMENT TOO SMALL

116 I A ARGUMENT INFINITE Note 1 Note 2 HYP=(COSH)
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

117 I A ARGUMENT INFINITE Note 1 Note 2 HYP=(SINH)
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

118 I A ARGUMENT TOO SMALL Note 1 Note 2 DEXP

119 I A ARGUMENT INFINITE Note 1 Note 2 DHYP=(DCOSH)
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

120 I A ARGUMENT INFINITE Note 1 Note 2 DHYP=(DSINH)
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

121 I A ARGUMENT INDEFINITE Note 1 Note 2 DTANH

122 I A ARGUMENT INFINITE Note 1 Note 2 DTAN
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

123 I A ARGUMENT INFINITE Note 1 Note 2 DASNCS(DASIN)
ARGUMENT INDEFINITE
ARGUMENT .GT. 1.0.

124 I A ARGUMENT INFINITE Note 1 Note 2 DASNCS(DACOS)
ARGUMENT INDEFINITE
ARGUMENT .GT. 1.0

125 I A ARGUMENT INDEFINITE Note 1 Note 2 ERF(ERF)

126 I A ARGUMENT INDEFINITE Note 1 Note 2 ERF(ERFC)

127 I A ARGUMENT TOO LARGE Note 1 Note 2 ERF(ERFC)

128 I A ARGUMENT INFINITE Note 1 Note 2 ATANH
ARGUMENT INDEFINITE
ARGUMENT .GE. 1.0.

I B-32 60481300 E



TABLE 8-4. EXECUTION-TIME DIAGNOSTICS (Cant)

No. Cl ass Message Significance Action Issued By

129 I A ARGUMENT INFINITE Note 1 Note 2 SIND
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

130 I A ARGUMENT INFINITE Note 1 Note 2 COSD
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

131 F A ARGUMENT INFINITE TAND
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE
ARGUMENT ODD MULTIPLE OF 90

132 F A DUPLICATE CHARACTER IN CSOWN CALL Entry in collating Check CSOWN CSOWN=
sequence is defined ca ll.
twice.

133 F A IRRECONCILABLE STATUS OPTION Status option Check status OPECAP=
irreconc il ab 1e. option.

134 F A STATUS OPTION INCOMPATIBLE WITH Status option incon- Check status OPECAP=
OLD FILE sistent with option and/or

spec if i ed f i1e. file name.

135 F A FORM CHANGE ON OPENED FILE File was previously Check process- OPECAP=
opened for a differ- ing type.
ent processing type.
The valid types are
formatted, unfor-
matted, buffer I/O,
and random I/O.

136 F A BAD RECL VAlUE Correct record OPECAP=
length value.

137 F A BLANK OPTION ON UNFORMATTED FILE Blank option applies Remove blank OPECAP=
to formatted I/O option.
only.

138 F A BAD BUFL VAlUE Negative value, or, For open files, OPECAP=
for open fil es, verify that
va 1ue not equal to the BUFL
the fi le buffer value = the
length. buffer length.

139 F A BAD OPEN OPTION Option not allowed. Check OPEN OPECAP=
option.

140 F A ERROR DURING FILE CLOSING Confl icting file Check file FORSYS
attributes. CRM attributes.
cannot perform
close.

141 F A BAD ARGUMENT TO ICHAR Argument is not of Check argument ICHAR=
type character, or to ICHAR.
does not have a
character length
of 1.

142 F A BAD CLOSE PARAMETER Keyword specified Correct CLOSE
for STATUS option keyword~

was not 'KEEP' or
'DELETE' • I

60481300 E 8-33



I

TABLE B-4. EXECUTION-TIME DIAGNOSTICS (Cont)

No. Class Message Significance Action Issued By

143 F A ACCESS CHANGE ON OPEN FILE ACCESS option can- Remove or OPECAP=
not be changed on change ACCESS
open fi 1e. option of OPEN

statement.

144 I 0 xxxx SUBSCRIPT OF ARRAY nnn = yyy, The xxxx subscript Correct sub- CDL=
DECLARED LOWER WAS 1111, UPPER WAS of array nnn has str i ng 1imits.
uuuu. value yyy. This

value is outside
the range 1111 to
uuuu •

.
145 I D STARTING CHARACTER POSITION OF xxxx Substring reference Correct sub- CDL=

SHOULD BE .GT. ZERO. outside of character string limits.
string.

146 I D CHARACTER LENGTH OF xxxx SHOULD BE A negative character Correct sub- CDL=
.GT. ZERO. length is invalid. string limits.

147 I D NEW CHARACTER LENGTH OF xxxx EXCEEDS New character Correct sub- CDL=
OLD LENGTH OF xxxx length must be LE string limits.

old character
1ength.

148 F A INTERNAL FILE RECORD LENGTH .LE. ZERO Record length must Correct sub- IIFC=
be positive. string limits. OIFC=

149 F A INTERNAL FILE LCM RECORD EXCEEDS 150 Internal file LCM Reduce LCM IIFC=
CHARACTERS record cannot exceed record length OIFC=

150 characters. or move record
to SCM.

150 F A INTERNAL FILE I/O LIST EXCEEDS FILE Internal file I/O Check I/O list. lIFC=
SIZE. list cannot exceed OIFC=

file size.

151 F A DIRECT ACCESS OPEN HAS NO RECL Record length param- Insert the OPECAP=
PARAMETER eter missing. parameter.

152 I A REWIND PROHIBITED ON DIRECT FILE -- REWIND used only for Remove REWIND. REWIND=
IGNORED sequential files.

153 F A ARGUMENT TO CSOWN NOT TYPE CHARACTER Noncharacter argu- Supply a co11at- CSOWN=
ment passed to ing sequence
CSOWN. string argument.

154 F A UNALLOCATED RECORD LENGTH GREATER Explicit open call Dec1are proper OPECAP=
THAN 150 attempted to make record length

record length on PROGRAM
greater than 150 statement.
for an unallocated
record in static
mode.

155 F A SEQUENTIAL I/O ATTEMPTED ON DIRECT Sequential I/O Use the direct OUTB=
FILE commands used on access I/O OUTC=

direct access file. commands. OUTF=
INPB=
INPC=
INPF=

156 F A CODED I/O attempted on xxxx FILE xxxx Formatted READ or Self-evident. IDAB=
WRITE attempted on ODAB=
a file which was
opened for unfor-
matted, buffer, or
random I/O.

8-34 60481300 E



TABLE B-4. EXECUTION-TIME DIAGNOSTICS (Cont)

No. Class Message Significance Action Issued By

157 F A INVALID KEYWORD FOR COLSEQ Attempt to specify Supply a valid COLSEQ=
an invalid collating keyword.
sequence. The valid
keywords are ASCII6,
DISPLAY, INTBCD,
and COBOL6.

158 F A OVER 1499 CHARACTERS IN REPEATED Character string Add the termi na- LDIN=
CHARACTER STRING with more than 1499 t i ng apostrophe

characters has a or break the
repeat factor for input into sub-
list directed input. strings.
Probably caused by
missing apostrophe.

159 F A SCRATCH FILE xxxx CANNOT BE CLOSED It is illegal to use Correct the FORSYS=
WITH STATUS=KEEP status='KEEP ' on a CLOSE or OPEN

CLOSE when status= statement.
I SCRATCH I was speci-
fied on the OPEN.

160 F A ILLEGAL USE OF ASTERISK AS STRING Asterisk is an Use apostrophe. KODER=
DELIMITER IN FORMAT invalid format string KRAKER=

de 1imiter in
FORTRAN 5.

161 F A NON EXISTENT OVCAP •••• An attempt to load an Check that the LOVCAP or
OVCAP that does not name specified XOVCAP
exist. is the name of

the fi rst sub-
rout i ne after
an OVCAP state-
ment.

162 F A OVCAP •••• IS ALREADY LOADED LOVCAP has been Check program LOVCAP or
ca11 ed twi ce for the logic and XOVCAP
same OVCAP name. e1imi nate re-

dundant ca11.

163 F A OVCAP •••• WAS NEVER LOADED A call to UOVCAP has Check program UOVCAP
been made specifying logic.
an OVCAP that has not
been loaded.

164 F A FDL ERROR XX DURING LOAD OR UNLOAD A Fast Dynamic Loader Check error LOVCAP,
of OVCAP .... p.rror has been raised number in XOVCAP, or

for reasons beyond Loader refe- UOVCAP
user control. rence manual.

F011 ow si te-
defined proce-
dure.

165 F A INVALID SEQUENCE SMKEY call specified Ensure coding SMKEY
a col-seg parameter identifier is
without specifying a set to DISPLAY.
coding identifier of
DISPLAY.

166 F A RESERVED COL-SEQ SMSEQ/SMEQU call Se1ect another SMSEQ/
specified a sequence name for the SMEQU
name equivalent to user-supplied
one of the standard collating se-
collating sequence quence.
names (ASCII6/COBOL6
/DISPLAY/INTBCD) in
an attempt to rede-
fine it.

I

60481300 E B-35



TABLE B-4. EXECUTION-TIME DIAGNOSTICS (Cont)

No. Class Message Significance Action Issued By

167 F A H I II ILLEGAL INPUT FORMATS Single quote, double Correct format. KRAKER=, , ,
quote, or H format
are illegal in
FORTRAN 5 input.

168 F A * DECIMAL POINT MISSING Decimal point re- Supp1y dec ima1 FMTAP=
quired. point.

169 F A FORMAT VARIABLE DOES NOT CONTAIN Assignment of a for- Use ASSIGN INPC=
ASSIGNED FORMAT mat to a variable statement to OUTC=

used for I/O is not assign state- IDAC=
allowed. ment label to ODAC=

variable.

170 F A ZERO LENGTH HOLLERITH STRING Ho 11 er ith str i ng Make string KODER=
must have a posi- positive non-
tive nonzero zero length.
length.

171 F A BAD FILENAME GIVEN Illegal character Supply a valid OPECAP=
was used or char- file name.
acter 1ength was
greater than 7.

172-199 Reserved.

200 F A WRITE ATTEMPTED ON UNOPENED FILE xxxx Direct access file Use OPEN ODAB=
must be opened be- command. ODAC=
fore I/O is allowed.

201 F A DIRECT WRITE ATTEMPTED ON SEQUENTIAL Direct I/O command Use sequential ODAB=
FILE xxxx used on sequential I/O command.

file.

202 F A BINARY WRITE ATTEMPTED ON xxxx Unformatted WRITE Self-evident. ODAB=
FILE xxxx attempted on a

file opened for
formatted, buffer,
or random I/O.

203 F A ATTEMPT TO WRITE NON-POSITIVE RECORD Record number must Check record ODAB=
NUMBER be positive. number. ODAC=

204 F A READ ATTEMPTED ON UNOPENED FILE xxxx Direct access file Use OPEN IDAB=
must be opened be- cOl111land. ODAC=
fore I/O is allowed.

205 F A DIRECT READ ATTEMPTED ON SEQUENTIAL Direct I/O command Use sequential IDAB=
FILE xxxx used on sequential I/O command. IDAC=

file.

206 F A BINARY READ ATTEMPTED ON xxxx FILE Unformatted READ Self-evident. IDAB=
xxxx attempted from a

file opened for
formatted, buffer,
or random I/O.

207 F A ATTEMPT TO READ NON-POSITIVE RECORD Record number must be Check record IDAB=
NUMBER positive. number. IDAC=

208 F A LIST EXCEEDS RECORD LENGTH FOR List too long or Check record ODAB=
FILE xxxx record length too list and record

short. length.

8-36 60481300 E



TABLE B-4. EXECUTION-TIME DIAGNOSTICS (Cont)

No. Cl ass Message Significance Action Issued By

209 F A CMM ERROR IN CODED DIRECT-ACCESS
OUTPUT

210 F A DIRECT ACCESS ON SEQUENTIAL FILE

Common Memory Man­
ager must be avail­
able to handle a
record length
greater than 1500
for formatted
direct access I/O.

Direct I/O command
used on sequential
file.

Define proper
record length
on the PROGRAM
statement.

Use sequential
I/O command.

ODAC=

IDAC=
IDAB=
ODAC=
ODAB=

211 F A FORMATTED WRITE ON UNFORMATTED FILE

212 F A CMM ERROR IN CODED DIRECT-ACCESS
INPUT

213 F A DIRECT ACCESS ON SEQUENTIAL FILE

214 F A FORMATTED READ ON UNFORMATTED FILE

215 F A UNDEFINED WEIGHT PASSED TO CHAR

216 F A SUBSTRING ERROR ON NAMELIST ITEM
xxxx IN GROUP yyyy

217 F A NAMELIST ITEM xxxx IN GROUP yyyy,
ITEM LENGTH

Unformatted I/O
commands must be
used with unfor­
matted fil es.

Common Memory Man­
ager must be avail­
able to handle a
record length
greater than 1500
for formatted
direct access I/O.

Direct I/O command
used on sequential
file.

Unformatted I/O must
be used with unfor­
matted files.

The character argu­
ment (weight) passed
is not defined in
the collating table.

Format of the
substring is not
correct.

The substring has
an upper bound
greater than the
length of the named
character string.

Used unformatted ODAC=
command or IDAC=
change files.

See Common IDAC=
Memory Manager
reference
manual.

Use sequential ODAB=
I/O command. ODAC=

IDAB=
IDAC=

Use unformatted IDAC=
command or
change fi 1es.

Check character CHAR=
argument or CHARF=
current co 11 at-
ing sequence.

Correct format NAMIN=
of the sub,..
string.

Correct sub- NAMIN=
string limits.

B-37 I

Note 1 Infinites can be generated by dividing a nonzero number by zero, or by an addition, substraction,
multiplication, or division whose result was greater than 10322 in absolute value. Indefinites
are usually generated by dividing zero by zero.

Note 2 Check for undefined argument; if argument is calculated, check for undefined or illegal operand.

60481300 E



j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j
j

j

I
j

I
j

j

j



GLOSSARY c

This glossary does not include terms defined in the ANSI
standard for FORTRAN, X3.9-1978.

Advanced Access Methods (AAM) -
A file manager that processes indexed sequential,
direct access, and actual key file organizations, and
supports the Multiple-Index Processor. See CYBER
Record Manager.

Basic Access Methods (BAM) -
A file manager that processes sequential and word
addressable file organizations. See CYBER Record
Manager.

Beginning-of-Information (BOI) -
CYBER Record Manager defines beginning-of­
information as the start of the first user pecord in a
file. System-supplied information, such as an index
block, control word, or tape label, exists prior to
beginning-of-information.

Blank Common Block-
An unlabeled common block. No data can be stored
into a blank common block at load time. The size of
the block is determined by the largest declaration for
it. Contrast with Labeled Common Block.

Block -
In the context of input/output, a physical grouping of
data on a file that provides faster data transfer.
CYBER Record Manager defines four block types on
sequential files: I, C, K, and E. Other kinds of blocks
are defined for indexed sequential, direct access, and
actual key files. Also refers to a common block.

Buffer -
An intermediate storage area used to compensate for
a difference in rates of data flow, or times of event
occurrence, when transmitting data between central
memory and an external device during input/output
operations.

Buffer Statement -
One of the input/output statements BUFFER IN or
BUFFER OUT.

Common Block -
An area of memory that can be declared in a
COMMON statement by more than one relocatable
program and used for storage of shared data. See
Blank Common Block and Labeled Common Block.

CYBER Record Manager (CRM) -
A generic term relating to the common products
AAM and BAM that run under the NOS and NOS/BE
operating systems, and which allow a variety of
record types, blocking types, and file organizations to
be created and accessed. The execution time
input/output of COBOL 5, FORTRAN 5, Sort/
Merge 4, ALGOL 4, and the DMS-170 products is
implemented through CRM. Neither the input/
output of the NOS and NOS/BE operating systems
themselves, nor any of the system utilities such as
COpy or SKIPF, is implemented through CRM. All
CRM file processing requests ultimately pass through
the operating system input/output routines.

60481300 C

Default Type -
The data type assumed by a variable in the absence of
any type declarations for the variable. Variables
whose names begin with one of the letters A through
H or 0 through Z have a default type of real.
Variables whose names begin with one of the letters I
through N have a default type of integer.

Direct Access Input/Output -
A method of input/output in which re.cords can be
read or written in any order. Direct access
input/output is performed by direct access READ and
WRITE statements.

End-of-File (EOF) -
A particular kind of boundary on a sequential file,
recognized by the END= parameter, the functions
EOF and UNIT, and written by the ENDFILE
statement. Any of the following conditions is
recognized as end-of-file:

End-of-section (for INPUT file only)

End-of-partition

End-of-information (EOI)

W type record with flag bit set and delete bit not
set

Tape mark

Trailer label

Embedded zero length level 17 block

End-Of-Information (EOI) -
The end of the last programmer record in a file.
Trailer labels are considered to be past
end-of-information. End-of-information is undefined
for unlabeled S or L tapes.

Entry Point -
A location within a program unit that can be
branched to from other program units. Each entry
point has a unique name.

Equivalence Class -
A group of variables and arrays whose position
relative to each other is defined as a result of an
EQUIVALENCE statement.

Extended Memory -
Extended memory for the CDC CYBER 170 Models
171, 172, 173, 174, 175, 720, 730, 750, and 760 is
extended core storage (ECS). Extended memory for
the CDC CYBER 170 Model 176 is large central
memory (LCM) or large central memory extended
(LCME). ECS, LCM, and LCME are functionally
equivalent, except as follows:

• LCM and LCME cannot link mainframes and do
not have a distributive data path (DDP)
capability.

C-l



• LCM and LCME transfer errors initiate an error
exit, not a half exit. Refer to the COMPASS
reference manual for complete information and a
definition of half exit.

• The CYBER 170 Model 176 supports direct LCM
and LCME transfer COMPASS instructions (octal
machine language instruction codes 014 and 015).
Refer to the COMPASS Reference Manual for
complete information.

The storage level can be selected; refer to the LEVEL
statement in section 2.

External File -
A file residing on an external storage device. An
external file starts at beginning-of-information and
ends at end-of-information. See File.

External Reference -
A reference in one program unit to an entry point in
another program unit.

Field Length -
The area (number of words) in central memory
assigned to a job.

File -
A logically related set of information; the largest
collection of information that can be addressed by a
file name. FORTRAN 5 recognizes two types of files,
internal files and external files.

File Control Statement -
A control statement that contains parameters used to
build the file information table for processing. Basic
file characteristics such as organization, record type,
and description can be specified on this statement.

File Information Table (FIT) -
A table through which a user program communicates
with CYBER Record Manager. All file processing
executes on the basis of fields in the table. Some
fields can be set by the FORTRAN user in the FILE
control statement.

Generic Function Name -
The name of an intrinsic function that can have
arguments of any data type. Except for data type
conversion generic functions, the data type of the
result is the same as the data type of the arguments.

Implicit Type -
The type of a variable as declared in an IMPLICIT
statement.

Internal File -
A character variable, array, or substring on which
input/output operations are performed by formatted
READ and WRITE statements. Internal files provide a
method of transferring and converting data from one
area of memory to another.

Labeled Common Block -
A common block into which data can be stored at load
time. The first program unit declaring a labeled
common block determines the amount of memory
allocated. Contrast with Blank Common Block.

Logical File Name -
The name by which a file is identified; consists of one
through seven letters or digits, the first a letter. Files
used in standard FORTRAN 5 input/output statements
can have a maximum of six letters or digits.

C-2

Main Overlay -
An overlay that must remain in memory throughout
execution of an overlayed program.

Mass Storage Input/Output -
The type of input/output used for random access to
files; it involves the subroutines OPENMS, READMS,
WRITMS, CLOSMS, and STINDX.

Object Code -
Executable code produced by the compiler.

Object Listing -
A compiler-generated listing of the object code
produced for a program, represented as COMPASS
code.

Offset -
The starting position of the array in the first word of
its storage (0 to 9).

Optimizing Mode -
One of the compilation modes in the FORTRAN 5
compiler, indicated by the control statement options
OPT=0, 1, 2 or 3.

Overlay -
One or more relocatable programs that were relocated
and linked together into a single absolute program. It
can be a main, primary, or secondary overlay.

Partition -
CYBER Record Manager defines a partition as a
division within a file with sequential organization.
Generally, a partition contains several records or
sections. Implementation of a partition boundary is
affected by file structure and residence. Partition
boundaries are shown in table C-l.

Notice that in a file with W type records a short PRU
of level 0 terminates both a section and a partition.

Pass by Name -
A method of referencing a subprogram in which the
addresses of the actual arguments are passed.

Pass by Value -
A method of referencing a subprogram in which only
the values of the actual arguments are passed.

Primary Overlay -
A second level overlay that is subordinate to the main
overlay. A primary overlay can call its associated
secondary overlays and can reference entry points and
common blocks in the main overlay.

Procedure -
A FORTRAN function subprogram, subroutine, or
statement function.

Program Unit -
A sequence of FORTRAN statements terminated by an
END statement. The FORTRAN program units are
main programs, subroutines, functions, and block data
subprograms.

PRU -
Under NOS and NOS/BE, the amount of information
transmitted by a single physical operation of a
specified device. The size of a PRU depends on the
device: a PRU which is not full of user data is called
a short PRU; a PRU that has a level terminator, but
not user data, is called a zero-length PRU. PRU sizes
are shown in table C-2.

60481300 D



TABLE C-l. PARTITION BOUNDARIES

Record Block
Device Type Type Physical Boundary

(RT) (BT)

PRU W I A short PRU of
devicet level 0 containing

a one-word deleted
record pointing
back to the last I
block boundary,
followed by a con-
tro1 word with a
flag indicating a
partition boundary.

W C A short PRU of
level 0 containing
a control word
with a flag indi-
cating a partition
boundary.

D,F,R, C A short PRU of
T,U,Z level 0 followed by

a zero-length PRU
of level 178'

S - A zero-length PRU
of level number 178.

S or L W I A separate tape
format block containing as
tape many deleted rec-

ords of record
length 0 as re-
quired to exceed
noise record size,
followed by a de-
leted one-word
record pointing
back to the last I
block boundary,
followed by a con-
tro1 word with a
flag indicating a
partition boundary.

W C A separate tape
block containing as
many deleted rec-
ords of record
1ength 0 as re-
quired to exceed
noise record size,
followed by a con-
tro1 word wi th a
flag indicating a
partition boundary.

D,F,T, C,K,E A tapemark.
R,U,Z

S - A tapemark.

Any - - Undefined.
other
tape
format

t NOS and NOS/BE only.

60481300 D

TABLE C-2. PRU SIZES

Device Size in Nu mber
of 60-Bit Words

Mass storage (N 0Sand 64
NOS/BE only).

Tape in SI form at with 128
coded data (N 0SIB E only).

Tape in S1 form at with 512
binary data.

Tape in 1form at (N OS 512
only).

Tape in any other form at. Undefined.

PRU Device-
A mass storage device or a tape in SI (NOS and
NOS/BE), I (NOS and NOS/BE), or X (NOS/BE only)
format, so called because records on these devices are
wri tten in PRUs.

Record -
CYBER Record Manager defines a record as a group of
related characters. A record or a portion thereof is
the smallest collection of information passed between
CYBER Record Manager and a user program in a
single read or write operation. Eight different record
types exist, as defined by the RT field of the file
information table.

Other parts of the operating systems and their
products might have additional or different definition
of records.

Record Length -
The length of a record measured in words for
unformatted input/output and in characters for
formatted input/output.

Record Type -
The term record type can have one of several
meanings, depending on the context. CY~ER Record
Manager defines eight record types established by an
RT field in the file information table.

Reference Listi ng -
A part of listing produced by a FORT':~N

compilation, which displays some or all of the entities
used by the program, and provides other information
such as attributes and location of these entities.

Relocation -
Placement of object code into central memory in
locations that are not predetermined, and adjusting
the addresses accordingly.

SCOPE 2 Record Manager-
The record manager used under the SCOPE 2
operating system. It processes all files read and
written as a result of user requests at execution time,
as well as all files read and written at compile time by
the compiler. The SCOPE 2 Record Manager
processes all input/output files.

C-3



Secondary Overlay -
The third level of overlays. A secondary overlay is
called into memory by its associated primary overlay.
A secondary overlay can reference entry points and
common blocks in both its associated primary overlay
and the main overlay.

Section -
CYBER Record Manager defines a section as a division
within a file with sequential organization. Generally,
a section contains more than one record and is a
division within a partition of a file. A section
terminates with a physical representation of a section
boundary. Section boundaries are described in
table C-3.

The NOS and NOS/BE operating systems equate a
section with a system-logical-record of level 0
through 168.

Sequential -
A file organization in which the location of each
record is defined only as occurring immediately after
the preceding record. A file position is defined at all
times, which specifies the next record to .be read or
written.

Sequential Access Input/Output -
A method of input/output in which records are
processed in the order in which they occur on a
storage device.

Source Code -
Code written by the programmer in a language such as
FORTRAN, and input to a compiler.

Source Listi ng -
A compiler-produced listing, in a particular format, of
the user's original source program.

Specific Function Name -
The name of an intrinsic function that accepts
arguments of a particular data type, and returns a
result of a particular data type.

System-Logi cal-Record -
Under NOS/BE, a data grouping that consists of one or
more PRUs terminated by a short PRU or zero-length
PRU. These records can be transferred between
devices without loss of structure.

Unit Specifier -
An integer constant, or an integer variable with a
value of either 0 to 999, or an L format logical file
name. In input/output statements, it indicates on
which unit the operation is to be performed. It is
linked with the actual file name by the PROGRAM
statement or OPEN statement.

Word Addressable -
A file organization in which the location of each
record is defined by the ordinal of the first word in the
record, relati ve to the beginning of the file.

Working Storage Area -
An area within the user's field length, intended for
receipt of data from a file or transmission of data to a
file. Transmission to or from a buffer intervenes,
except for buffer statements.

Zero-Byte Terminator -
12 bits of zero in the low order position of a word that
marks the end of the line to be displayed at a

C-4

TABLE C-3. SECTION BOUNDARIES

Record Block PhysicalDevice Type Type
(R T) (BT) Representation

PRU W I A deleted one-word
device record pointing

back to the last I
block boundary
followed by a con-
trol word with
flags indicating a
section boundary.
At least the con-
trol word is in
a short PRUof
levelO.

W C Acontrol word with
flags indicating a
section boundary.
The control word
is in a short PRU
of level O.

D,F,R, C Ashort PRU with a
T,U,Z level less than

178.

S - Undefined.

S or L W I Aseparate tape
format block containing
tape as many deleted

records of record
length 0 as re-
quired to exceed
noise record size,
followed by a de-
leted one-word
record pointing
back to the last I
block boundary,
followed by a con-
trol word with
flags indicating a
section boundary.

W C Aseparate tape
block containing
as many deleted
records of record
length 0 as re-
quired to exceed
noise record size,
followed by a con-
trol word with
flags indicating a
section boundary.

D,F,R, C,K,E Undefined.
T,U,Z

S - Undefined.

Any - - Undefined.
other
tape
format

60481300 D



LANGUAGE SUMMARY

The following symbols are used in the descriptions of the FORTRAN 5 statements:

v variable name, array name, or array element

sl statement label

iv integer variable

name symbolic name

D

u input/output unit specifier, which can be an integer expression with a value of 0 through 999, or a 1111:illll!!
1••IIIIBcontaining a display code file name in L format

fs format specifier

iolist input/output list

ios input/output status spec ifier

recn record number

Other symbols are defined individually in the statement descriptions.

ASSIGNMENT

v = arithmetic expression

character v = character expression

logical v = logical or relational expression

TYPE DECLARATION

INTEGER v[,v] •••

REAL v [,v] •••

DOUBLE PRECISION v[, v] •.•

COMPLEX v [,v] •••

LOGICAL v [,v] •••

CHARACTER [*length] [,] v [*length] [,v [*lengthl] •••

IMPLICIT type(ac [,ac] •••) [,type(ac [,ac] ... )] ...

ac Is a single letter, or range of letters represented by the first
and last letter separated by a hyphen, indicating which variables
are implici tly typed.

3-8

3-9

3-8

3-8

3-9

2-2

2-2

2-2

2-2

2-2

2-3

2-3

2-4

I

60481300 E D-1



EXTERNAL DECLARATION
EXTERNAL name [,name] •••

INTRINSIC DECLARATION
INTRINSIC name [,name] •••

STORAGE ALLOCATION
type arrayed) [,array(d)] •••

DIMENSION arrayed) [,arrayed)] •••

type Is INTEGER, CHARACTER, BOOLEAN, REAL, COMPLEX, DOUBLE PRECISION,
or LOGICAL.

d Is one through seven array bound expressions separated by commas,
as described in section 2.

COMMON [I ~name] I] nlist [[,] I[ name]/nlist] •••

nlist Is a list of variables or arrays, separated by commas, to be included
in the common block.

DATA nlist/clistl [[ ,]nlist/clist/] ••.

nlist Is a list of names to be initially defined. Each name in the list
can take the form:

variable
array
element
substring
implied DO list

clist Is a list of constants or symbolic constants specifying the initial
values. Forms for list items are described in section 2.

EQUIVALENCE (nlist) [,(nlist)] •••

nlist Is a list of variable names, array names, array element names, or
character substring names. - The names are separated by· commas.

PARAMETER (name=exp [,name=exp] ••. )

exp Is a constant or constant expression.

I SAVE [name [,name] •••]

FLOW CONTROL
GO TO sl

GO TO (sl [,sl] •••) [,] expression

GO TO iv [[,](sl [,sl] •••)]

ASSIGN sl TO iv

IF (arithmetic or

IF (logical expression) statement

IF (logical expression) THEN

ELSE IF (logical expression) THEN

0-2

2-9

2-10

2-4

2-4

2-6

2-11

2-7

2-8

2-5

2-9

4-1

4-1

4-2

4-2

4-2

4..3

4-3

4-3

60481300 E



ELSE

END IF

DO sl [,] v=e1,e2 [,e3 ]

4-3

4-4

4-5

PAUSE [n]

STOP [n]

~t~.iQ.~~.!~!.Qi~...e~~~.m'~i~f!rs. They can be integer, real, double precision,
11;lllllllill1,l!1lilillli.jsymbolic constants, variables, or expressions.

4-9

4-10

n Is a string of 1 through 5 digi ts, or a character constant.

END 4~O

MAIN PROGRAM

SUBPROGRAM
SUBROUTINE name [(argument [,argument] •••)]

[type] FUNCTION name( [argument [,argumentJ] ...)

type Is •••I"J1l1lcHARACTER, INTEGER, REAL, COMPLEX, DOUBLE PRECISION,
or LOGICAL

BLOCK DATA [name]

STATEMENT FUNCTION
name ([argument [,argumentJ] •.. )=expression

SUBROUTINE CALL
CALL name [(argument [ ,argument] •••)]

FUNCTION REFERENCE
name ( [argument, [argument]] •••)

ENTRY POINT
ENTRY name [( argument [,argument]••• )]

RETURN
RETURN [expression J

60481300 C

6-1

6-3

6-4

6-3

6-5

6-9

6-10

6-6

6-10

0-3



FORMATTED INPUT/OUTPUT
READ ([UNIT=] u, [FMT=] fs [,IOSTAT=ios] [,ERR=sl] [,END=sl]) [ioUst]

READ fs [,ioUst]

WRITE ([UNIT=] u, [FMT=] fs [,lOSTAT=ios] [,ERR=sl]) [ioUst]

PRINT fs [,iolist]

UNFORMATTED INPUT/OUTPUT
READ ([UNIT=] u [,IOSTAT=ios] [,ERR=sl] [,END=sl]) [iolist]

WRITE ([UNlT=] u[,IOSTAT=ios] [,ERR=sl]) [ioUst]

LIST DIRECTED INPUT/OUTPUT
READ ([UNIT=] u,[FMT=] * [,IOSTAT=ios] [,ERR=sl] [,END=sl]) [ioUst]

READ * [,ioUst]

WRITE ([UNIT=] u,[FMT=] * [,IOSTAT=ios] [,ERR=sl]JI-ioUst]

PRINT * [,ioUst]

DIRECT ACCESS INPUT/OUTPUT
READ ([UNIT=] u,{FMT=l fs[,IOSTAT=ios] [,ERR=sl] [,REC=recn]) (ioUst]

WRITE ([UNIT=] u,[FMT=] fs[,IOSTAT=ios] [,ERR=sl] [,REC=recn]) [ioUst]

0-4

5-4

5-4

5-5

5-5

5-5

5-22

5-22

5-22

5-22

5-24

5-24

5-24

5-29

5-30

5-25

5-26

5-26

5-27

5-27

5-27

5-28

5-29

60481300 B



FORMAT SPECIFICATION
sl FORMAT (flist)

flist Is a list of items, separated by commas, having the following forms:

[r]ed
ned
[rl (flist)

ed Is a repeatable edit descriptor.
ned Is a nonrepeatable edit descriptor.
r Is a nonzero unsigned integer constant repeat specification.

EDIT DESCRIPTORS

5-36

5-36

5-5

srEw.d

srEw.dEe

srFw.d

srDw.d

srGw.d

srGw.dEe

rlw

rlw.m

rLw

rA

rAw

Single precision floating-point with exponent.

Single precision floating-point with specified exponent length.

Single precision floating-point without exponent.

Double precision floating-point with exponent.

Single precision floating-point with or without exponent.

Single precision floating-point with or without specified
exponent length.

Decimal integer.

Decimal integer with specified minimum number of digits.

Logical.

Character with variable length.

Character with specified length.

5-8

5-8

5-10

5-11

5-10

5-10

5-8

5-8

5-14

5-13

5-13

5-14

5-15

5-15

5-15

5-15

s
r
w
d
e
m
n

Is an optional scale factor of the form kP.
Is an optional repetition factor.
Is an integer constant indicating field width.
Is an integer constant indicating digits to right of decimal point.
Is an integer constant indicating digits in exponent field.
is an integer constant indicating minimum number of digits in field.
is a positive nonzero decimal digit. I

BN Blanks ignored on numeric input.

60481300 E

5-13

0-5



BZ

SP

SS

S

nX

Tn

TRn

TLn

nH

'...'

J

Blanks treated as zeros on numeric input.

+ characters produced on output.

+ characters suppressed on output.

+ characters suppressed on output.

Skip n spaces.

Tabulate to nth column.

Tabulate forward.

Tabulate backward.

Hollerith or character string output.

Hollerith or character string output.

Format control.

End of FORTRAN record.

5-13

5-13

5-13

5-13

5-16

5-17

5-17

5-17

5-16

5-16

5-16

5-20

5-17

FILE POSITIONING
BACKSPACE ([ UNIT=] u [,lOSTAT=ios] [,ERR=sl])

BACKSPACE u

REWIND ([UNIT=] u [,IOSTAT=ios] [,ERR=sl])

REWIND u

ENDFILE ([UNIT=] u [,IOSTAT=ios] [,ERR=sl])

ENDFILE u

FILE STATUS
OPEN ([UNIT=] u [,IOSTAT=ios] [,ERR=sl] [,FILE=fin] [,STATUS= ta

[,ACCESS=acc] [,FORM=fm] [,RECL=rl] [,BLANK=blnk]

I ({ [UNIT=] u} [ . ] [ ]INQUIRE FILE=fin ,lOSTAT=10S ,ERR=sl

[,EXIST=ex] [,OPENED=od] [,NUMBER=num] [,NAMED=nmd]
[,NAME=fn] [,ACCESS=acc] [,SEQUENTIAL=seq] [,DIRECT=dir]
[,FORM=fm] [,FORMATTED=FMT] [,UNFORMATTED=unf] [,RECL=fc1]

[,NEXTREC=nr] [,BLANK=blnk])

CLOSE ([UNIT=] u [,IOSTAT=ios] [,ERR=sl] [,STATUS=sta])

0-6

5-38

5-38

5-37

5-37

5-38

5-38

5-30

5-33

5-32

9-3

9-3

Also see
CYBER Loader
reference manual

60481300 E



C$ DIRECTIVES E

60481300 B E-1



E-2 60481300 B



60481300 B E-3



E-4 60481300 B



INPUT/OUTPUT IMPLEMENTATION F

This section describes the structure of files read and
written by FORTRAN 5. All files read and written as a
result of user requests at execution time are processed
through Record Manager. The files read and written at
compile time by the compiler itself (including source input,
coded output, and binary output) are processed by
operating system routines when compilation is under NOS
or NOS/BE, and by SCOPE 2 Record Manager when
compilation is under SCOPE 2.

EXECUTION·TIME INPUTjOUTPUT

All input and output between a file referenced in a
program and the file storage device is under control of
Record Manager. The version of Record Manager used
depends on the operating system.

!'OS and NOS/BE use CYBER Record Manager Basic
Access Methods (BAM), encompassing sequential and word
addressable file organizations, for standard input/output
statements, and CYBER Record Manager Advanced Access
Methods (AAM) for indexed sequential, direct access, and
actual key file organizations, and multiple-index
capability, through the CYBER Record Manager interface
routines.

SCOPE 2 uses the SCOPE 2 Record Manager for all
input/outpu t.

CYBER Record Manager can be called directly, as
described in section 8, to use the extended file structure
and processing available. SCOPE 2 Record Manager
cannot be called directly from the FORTRAN 5 compiler.
This appendix deals only with Record Manager processing
that results from standard language use.

File processing is governed by values compiled into the file
information table (FIT) for each file. If a file or its FIT is
changed by other than standard FORTRAN input/output
statements, subsequent FORTRAN input/output to that file
may not function correctly. Thus, it is recommended that
the user not try to use both standard FORTRAN and
nonstandard input/output on the same file within a program.

FILE AND RECORD DEFINITIONS

A file is a collection of records referenced by its logical
file name. It begins at beginning-of-information and ends
with end-of-information. A record is data created or
processed by:

• One execution of an unformatted READ or WRITE

• One card image or a print line defined within a
formatted, list directed, or namelist READ or WRITE

• One call to READMS or WRITMS

• One execution of BUFFER IN or BUFFER OUT

60481300 D

On storage, a file can have records in one of eight formats
(record types) defined to Record Manager. Only four of
these are part of standard processing:

Z Record is terminated by a 12-bit zero byte in the
low order byte position of a 60-bit word.

W Record length is contained in a control word
prefixed to the record by Record Manager.

U Record length is defined by the user.

S System logical record.

The remaining types can be formatted within a program
under user control and written to a device using a WRITE
statement if the FILE control statement is used to specify
another record type. Similarly, these types can be read by
a READ statement.

The user is responsible for supplying record length
information appropriate to each type before a write and
for determining record end for a read. For example, a
D type record requires a field within the record to specify
record length, and F type records require that the user I
READ/WRITE exactly FL characters in each record.

Unformatted READ and WRITE are implemented through
the GETP and PUTP macros of Record Manager;
consequently, record operations must conform to macro
restrictions. Specifically, RT=R and RT=Z cannot be
speci fi ed for unformatted operations.

Direct access I/O must be done with R T=U. R T=U is the
default.

STRUCTURE OF INPUTjOUTPUT FILES

FOR TRAN 5 sets certain values in the file information
table depending on the nature of the input/output operation
and its associated file structure. Table F-1 lists these
values for their respective FIT fields; all except those
marked with an asterisk (*) can be overridden at execution
time by a FILE control statement. (Numbers in
parentheses refer to notes listed following the table.)

Sequential Files

The following information is valid, unless the FIT field is
overriden by a FILE control statement.

WI. th READ and WRITE statements, the record type (RT)
depends on whether the access is formatted or unformatted
(applies only to NOS and NOS/BE). A formatted WRITE
produces RT=Z records, with each record terminated by a
system-supplied zero byte in the low order bits of the last
word in the record. An unformatted WRITE produces R T=W
records, in which each record is prefixed by a
system-supplied control word. Blocking is type C for
formatted and I for unformatted records. The files named
INPUT, OUTPUT, and PUNCH always have record type Z
and block type C. These files should only be processed by
formatted, list directed, and namelist input/output
statements.

F-l



On SCOPE 2 only with READ and WRITE statements, the
record type is W for all file types; blocking is I for tape
files, and unblocked for all other files.

PRINT and PUNCH statements produce Z type records
with C type blocks or on SCOPE 2 only, W type records
unblocked for processing on unit record equipment.

BUFFER IN and BUFFER OUT assume S type records or,
on SCOPE 2 only, W type records. Formatting is
determined by the parity designator in each BUFFER
statement. An unformatted operation does not convert
character codes during tape reading or writing (CM=NO),
while a formatted operation does.

The ENDFILE statement writes a boundary condition
known as an end-of-partition. When this boundary is
encountered during a read, the EOF function returns
end-of-file status. An end-of-partition may not
necessarily coincide with end-of-information, however,
and reading can continue on the same file until
end-of-information on the file has been encountered.

End.".of-partition is written as the file is closed during
program termination. A third boundary for sequential
files, a section, is not recognized during reading except
for the special case of the file INPUT.

Mass Storage Input/Output

Files created by the random mass storage routines
OPENMS, WRITMS, STINDX, and CLOSMS described in
section 7 are word addressable files. The master index,
which is the last record in the file, is created and
maintained by FORTRAN routines rather than Record
Manager routines~

One WRITMS call creates one U type record; one
READMS call reads one U type record. If the length
specified for a READMS is longer than the actual record,
the excess locations in the user area are not changed by
the read. If the record is longer than the length specified
fora READMS, the excess words in the record are skipped.

Direct Access Input/Output

Files created by direct access READ and WRITE
statements are word addressable files. There is no index.
Except where the format specifies multiple records, one
direct access WRITE creates one U type record and one
direct access READ reads one U type record.

FILE CONTROL STATEMENT

The FILE control statement provides a means to override
FIT field values compiled into a program and consequently
a means to change processing normally supplied for
standard input/output. In particular, it can be used to
read or create a file with a structure that does not
conform to the assumptions of default processing.

A FILE control statement can also be used to supplement
standard processing. For example, setting DFC can
change the type of Record Manager information listed in
the dayfile.

At execution time, FILE control statement values are
placed in the FIT when the referenced file is opened.
These values have no effect if the execution routines do
not use the fields referenced. Furthermore, FORTRAN

F-2

routines may, in some cases, reset FIT fields after the
FILE control statement is processed. These fields are
noted in table F-1.

The format of the FILE control statement is shown in
figure F-1.

FI LEOfn,field=valuel,field=value] ... )

Ifn Is the file name as it appears on the
execution control statement; if file name
does not appear there, then Ifn is file name
as it appears in the PROGRAM or OPEN
statement.

field Is a FIT field mnemonic.

value Is a symbolic or integer value.

Figure F-1. FILE Control Statement

The FILE control statement can appear anywhere in the
control statements prior to program execution, but it
must not interrupt a load sequence.

This deck shown in figure F-2 illustrates the use of the
FILE control statement to override default values supplied
by the FORTRAN compiler. Assuming the source program
is using formatted writes and 100-character records are
always written, the file is written on magnetic tape with
even parity, at 800 bpi. No labels are recorded, and no
information is written except that supplied by the user.
The following values are used:

Block type = character count

Record type = fixed length

Record length = 100 characters

Conversion mode = YES

SEQUENTIAL FILE OPERATIONS

The sequential file operations are BACKSPACE/REWIND
and ENDFILE.

Backspace/ Rewind

Backspacing on FORTRAN files repositions them so that
the previous record becomes the next record.

BACKSPACE is permitted only for files with F, S, or W
record type or tape files with one record per block.

The user should remember that formatted input/output
operations can read/write more than one record;
unformatted input/output and BUFFER IN/OUT
read/write only one record.

The REWIND operation positions a magnetic tape file so
that the next FORTRAN input/output operation
references the first record. A mass storage file is
positioned to the beginning-of-information.

Table F-2 details the actions performed prior to
positioning.

60481300C



TABLE F -1. DEFAULTS FOR FIT FIELDS

Formatted,
FIT Fields NAMELIST, and Unformatted BUFFER IN/ Mass Storage Direct Access

List Directed Sequential I/O Formatted
Meaning Mnemonic Sequential READ/WRITE BUFFER OUT Input/Output and Unformatted

READ/WRITE

CIO buffer size (words) (1) BFSt (1) (1) (1) (1) (1)

Buffer Below Highest BBH 0 0 n/a 0 0
Address

Block type BT Ct /(9)tt It /(9)tt ct /( 9)tt n/a c*

Close flag (positioning CF N* N* N* N*t /R*tt N*
of file after close)

Length in characters of CL 0 0 0 n/a n/a
record trailer count
field (T type records
only)

Conversion mode CM VESt /NO NO (2) n/a n/a

Beginning character CP 0 0 0 n/a n/a
position of trailer
count field, numbered
from zero (T type
records only)

Length field (D type CIt NO NO NO n/a n/a
records) or trailer
count field (T type
records) is binary

Type of information to DFCt 3 3 3 3 3
be listed in dayfile

Type of information to EFCt 0 0 0 0 0
be listed on error file

Error options EO AD AD AD AD AD

Trivial error limit ERL 0 0 0 0 0

Fata1 Fl ush FF t , 0 0 n/a 0 0

Length in characters FLt 150(5)* n/a n/a n/a n/a
of an F or Z type
record (same as MRL)

File organization FO SQ * SQ * SQ * WA * WA *

Character length of HL 0 0 0 n/a n/a
fixed header for T
type records

Length of user's label (7) LBL o * o * o * n/a n/a
area (number of
characters)

Logical file name LFN (3) (3) (3) (3) (3)

Length in characters of LL 0 0 0 n/a n/a
record length field
(D type records)

I

I

60481300 E F-3



I

TABLE F-1. DEFAULTS FOR FIT FIELDS (Contd)

Formatted,
FIT Fields NAMELI ST, and Unformatted BUFFER INf Mass Storage Direct Access

list Directed Sequential I/O Formatted
Meaning Mnemonic Sequential READ/WRITE BUFFER OUT InputfOutput and Unformatted

READfWRITE

Beginning character lP 0 0 0 nfa nfa
position of record
length, numbered from
zero (0 type records)

label type (7) IT ANY ANY ANY nfa nfa

Maximum block 1ength MBl 0 0 0 nfa nfa
in characters

Mi nimum block length MNBt 0 0 0 nfa nfa
in characters

Minimum record length MNRt 0 0 0 nfa nfa
in characters

Maximum record length (5) MRl nfa 223_1 (8) * nfa nfa
in characters

Multiple of characters MUlt 2 2 2 nfa nfa
per K, E type block

Open flag (positioning (7) OF N* N* N* N*t /Rtt * N*
of file after open)

Padding character for PCt 76B 76B 76B nfa nfa
K, E type blocks

Processing direction PO 10 10 10 10 10

Number of records per RB 1 1 1 nfa nfa
K type block

Record mark character RMK 62B nfa 62B nfa nfa
(R records)

Record type RT zt fW tt (10) W(6) st fWtt U U*

length field (0 type SBt NO NO NO nfa nfa
records) or trailer
count field (T type
records) has sign
overpunch

Suppress buffering SBF t NO* NO* YES(ll) NO* NO*

Suppress read ahead SPR NO NO NO nfa nfa

Character length of TL 0 0 0 nfa nfa
trailer portion of
T type records

User label processing (7) UlP NO NO NO NO nfa

End of volume flag VF U U U U U
(positioning of file
at volume CLOSEM time)

F-4 60481300 E



TABLE F-1. DEFAULTS FOR FIT FIELDS (Contd)

Notes:

n/a FIT field not applicable to this input/output mode.

* Default cannot be overridden by a FILE control statement.

(1) Buffer size can be declared on the PROGRAM statement, OPEN statement, or FILE control
statement. Otherwise, CRM chooses the buffer size accordi ng to devi ce type. Buffer is
allocated on the first I/O operation and deallocated when the file is closed.

(2) Set by parity designator in BUFFER IN or BUFFER OUT statement.

(3) Set by PROGRAM statement, OPEN statement, or execution control statement.

(4) Set by CYBER Record Manager.

(5) Default can be changed on PROGRAM or OPEN statement. For formatted, NAMELIST, and list directed
READ/WRITE statements, a FILE control statement can decrease but not increase the maximum record
length declared on the PROGRAM statement.

(6)

(7)

(8)

(9)

(10)

(11)

Default can be overridden by a FILE control statement only if RT~ R and RT~ Z. For RT=F, FL
must be a multiple of 10.

The LABEL subroutine (section 7) sets LBL=80, LT=ST, OF=R, and ULP=F.

Maximum record length equal to length of r§cord specified in BUFFER IN or BUFFER OUT statement.

Unblocked if mass storage file; I if tape file.

Default can be overridden by FILE control statement only if RT~ U.

On a CYBER 170 Model 176, SBF must be set to NO on a FILE control statement if a level 2 or
3(LCM) variable is used in a buffer statement under NOS/BE.

I

I

tApplies to NOS and NOS/BE only.
ttApplies to SCOPE 2 only.

End File

Tables F -3 and F-4 indicate the action taken when an
ENDFILE statement is executed. The action depends on
the record and block type, as well as the device on which
the file resi des.

INPUTjOUTPUT RESTRICTIONS

Meaningful results are not guaranteed in the following
circumstances:

• Mixed formatted and unformatted read or write
statements and buffer input/output statements on the
same file (without an intervening REWIND, ENDFILE,
or without encountering an end-of-file as determined
by the EOF Function).

• Requesting a LENGTH function or LENGTHX call on
a buffer unit before requesting a UNIT function.

• Two consecutive buffer input/output statements on
the same file without the intervening execution of a
UNIT function call.

60481300 E

• Writing formatted records on a 7-track S or L tape
without specifying CM=NO on a file control statement.

• Using items in an input list after encountering
end-of-file in a read.

• Attempting to write a noise record on an S or L tape.
This can occur with block types K and E (and C for
SCOPE 2) using record types F,D,R,T, or U with MNB
< noise size.

• Sequential I/O operations REWIND, BACKSPACE, and
ENDFILE on a direct access file.

COMPILE TIME INPUT/OUTPUT
The compiler expects source input files to have certain
characteristics and it produces coded and binary files
which must be structured in specific ways according to
the operating system under which it runs. A program
compiled under SCOPE 2 must be executed under control
of SCOPE 2; a program compiled under other operating
systems cannot be executed under SCOPE 2. Programs
compiled under NOS or NOS/BE can be executed under
either of these operating systems.

F-5



, 6
7
8 I
9 /

/

( Data Deck

I 7 I .....
8 I
9 I FORTRAN source program-I

I
/7- 8

9 -
I--

l-

f LGO.
tt'I FILE(TAPE1,BT=C,RT=F,FL=100,CM=YES)

/ REQUEST(TAPE1,MT,HY,VSN=HAVEN)

( FTN5,ET.

Y Accounting statements -
/ Job statement I--

I--

~

-

t As required by the operating system.
ttFormat applicable to NOS/BE.

Figure F-2. FILE Control Statement Example

Under SCOPE 2, the compiler uses SCOPE 2 Record
Manager for all input/output operations. However, a FILE
control statement should not be used since the compiler
overrides file information table settings after this control
statement is processed. Under NOS and NOS/BE, the
compiler makes direct calls to the operating system for
input/output; CRM is not used.

SOURCE INPUT FILE STRUCTURE

A source input file must have a certain structure. Only
the first 90 characters of each record are processed or
reproduced in the listing output file. The characteristics
are described in table F-5.

F-6

CODED OUTPUT FILE STRUCTURE

Two coded output files can be produced: the listing file
and the errors file. The characteristics are described in
table F-6.

BINARY OUTPUT FILE STRUCTURE

The content of the executable object code file differs,
depending on the loader supported by the operating
system. The characteristics are described in table F-7.

60481300 C



TABLE F-2. ACTION BEFORE POSITIONING FOR BACKSPACE/REWIND

Condition Device Type Action

Mass StorageLast operation was
WRITE or BUFFER OUT

Any unwritten blocks for the file are written. An
end-of-partition is written. If record format is W, a deleted
zero length record is written.

Unlabeled Magnetic Tape Any unwritten blocks for the file are written. If record
format is W, a deleted zero length record is written. Two
file marks are written.

Labeled Magnetic Tape

Last operation was Mass Storage
WRITE or BUFFER OUTtt

Any unwritten blocks for the file are written. If record
format is W, a deleted record is written. A file mark is
written~ A single EOF label is written. Two file marks are
written.

ENDFILE is issued. Any unwritten blocks for the file are
written. End-of-information is written.

Unlabeled Magnetic Tape None.

Last operation was
READ, BUFFER IN or
BACKSPACE

Unlabeled Magnetic
S or L Tape

Labeled Magnetic Tape
or Unlabeled System
Magnetic Tape

Mass Storage

ENDFILE is issued. Any unwritten blocks for the file are
written. Two file marks are written.

ENDFILE is issued. Any unwritten blocks for the file are
written. A tape mark is written. A single EOF label is
written. Two tape marks are written.

None.

Labeled Magnetic Tape

No previous operation All Devicest

Mass Storagett

Magnetic Tapett

Previous operation
was REWIND

tApp 1i es to NOS and NOS/BE only.
ttApplied to SCOPE 2 only.

None.

REWIND request causes the file to be rewound when first
referenced.

If the file is assigned to on-line magnetic tape, a REWIND
request is executed. For SCOPE 2, if the file is staged, the
REWIND request has no effect. The file is staged and rewound
when it is first referenced.

Current REWIND is ignored.

TABLE F-3. ENDFILE ACTION (NOS AND NOS/BE)

Record Type
Device Type

S or L Tape Other Device

W An end-of-partition flag is written. An end-of-partition flag is written.

The block is terminated. The block is terminated with a short PRU
of level O.

Other The block is terminated. The block is terminated with a short PRU
of level o.

A tape mark is written. A zero length PRU of level 17 is written.

60481300 C F-7



TABLE F -4. ENDFILE ACTION (SCOPE 2)

Record Type

w

Z

S

Others
on Mass
Storage

Others
on Magnetic
Tape

Blocking

Blocked

An end-of-partition flag is written.

The block is terminated.

If C type blocking, the block is
terminated. Otherwise, the block is ter­
minated and a tape mark recovery control
word is written.

If C type blocking, the block is
terminated with a zero length PRU of
level 17. Otherwise, the block is termi­
nated and a tape mark recovery control
word is written.

The block is terminated. A tape mark
recovery control word is written.

The block is terminated. A tape mark is
written.

Unblocked

An end-of-partition flag is written.

A level 17 PRU is written.

Not applicable.

Ignored.

Not applicable.

TABLE F-5. SOURCE INPUT FILE STRUCTURE

Fil e NOS/BE and NOS SCOPE 2Charac ter i sti cs

File organization Sequential operating system default format with file Sequential (FO=SQ)
terminated by a short or zero length PRU unblocked

Record type Zero-byte terminated Control word (RT=W)

Maximum record 158 characters 158 characters
length (MRL=158)

Conversion mode Not applicable No (CM=NO)

Label type of Under operating system control Unlabeled (LT=UL)
tape

F-8 60481300 C



File
Characteristics

File organization

Maximum block
length

Record type

Maximum record
1ength

Conversion mode

Tape label type

File
Characteristics

File organization

Record type

Maximum record
1ength

Conversion mode

Tape label type

60481300 C

TABLE F-6. CODED OUTPUT FILE STRUCTURE

NOS/BE and NOS

Sequential operating system default format with file
terminated by a short PRU

Not app1icab1e

Zero-byte terminated (equivalent to Record Manager
Z type)

137 characters

Not applicab1e

Under operating system control

TABLE F-7. BINARY OUTPUT FILE STRUCTURE

NOS/BE and NOS

Sequential operating system default format with file
termi nated by a zero 1ength PRU wh i ch is then back­
spaced over

Operating system logical record (equivalent to
Record Manage~ S type)

None

Not app li cab1e

Under operating system control

SCOPE 2

Sequential (FO=SQ)
unblocked

None

Control word (RT=W)

137 characters

No (CM=NO)

Unlabeled
(LT=UL)

SCOPE 2

Sequential (FO=SQ)
unblocked

Control word
(RT=W)

1,310,710
characters

No (CM=NO)

Unlabeled (LT=U)

F-9





FUTURE SYSTEM MIGRATION GUIDELINES G

This appendix contains programming practices
recommended by CDC for users of the software described
in this manual. When possible, application programs based
on this software should be designed and coded in
conformance with these recommendations.

Two forms of guidelines are given. The general guidelines
minimize application program dependence on the specific
characteristics of a hardware system. The feature use
guidelines ensure the easiest migration of an application
program to future hardware or software systems.

GENERAL GUIDELINES

Programmers should observe the following practices to
avoid hardware dependency:

• Avoid programming hardcoded constants. Manip­
ulation of data should never depend on the occurrence
of a type of data in a fixed multiple such as 6, 10, or
60.

• Do not manipulate data based on the binary
representation of that data. Characters should be
manipulated as characters, rather than as octal
display-coded values or as 6-bit binary digits.
Numbers should be manipulated as numeric data of a
known type, rather than as binary patterns within a
central memory word.

• Do not identify or classify information based on the
location of a specific value within a specific set of
central memory word bits.

• Avoid using COMPASS in application programs.
COMPASS and other machine-dependent languages can
complicate migration to future hardware or software
systems. Migration is restricted by continued use of
COMPASS for stand-alone programs, by COMPASS
subroutines embedded in programs using higher-level
languages, and by COMPASS owncode routines in CDC
standard products. COMPASS should only be used to
create part or all of an application program when the
function cannot be performed in a higher-level
language or when execution efficiency is more
important than any other consideration.

FEATURE USE GUIDELINES

The recommendations in the remainder of this appendix
ensure the easiest migration of an application program for
use on future hardware or software systems. These
recommendations are based on known or anticipated
changes in the hardware or software system, or comply
with proposed new industry standards or proposed changes
to existing industry standards.

ADVANCED ACCESS METHODS

The Advanced Access Methods (AAM) offer several
features within which choices must be made. The
following paragraphs indicate preferred usage.

60481300 D

Access Methods

The recommended access methods are indexed sequential
(IS), direct access (DA), and multiple index processor (MIP).

Record Types

The recommended record types are either F for fixed
length records, or W for variable length records. Record
length for W records is indicated in the control word; the
length must be supplied by the user in the RL FIT field on a
put operation and is returned to the user in RL on a get
operation.

FORTRAN Usage

The following machine-independent coding practices are
encouraged for a FORTRAN programmer using AAM:

• Initialize the FIT by FILExx calls or by the FILE
control statement.

• Modify the FIT with STOREF calls.

• Use the FORTRAN 5 CHARACTER data type when
working with character fields rather than octal values
of display code characters; specify lengths of fields,
records, and so forth, in characters rather than words.

BASIC ACCESS METHODS

The Basic Access Methods (BAM) offer several features
within which choices must be made. The. following
paragraphs indicate preferred usage.

File Organizations

The recommended file organization is sequential (SQ). For
files with word-addressable (WA) organization, use an
accessing technique that can easily be modified to byte
addresses.

Block Types

The recommended block type is C.

Record Types

The recommended record types are F for fixed length
records and W for variable length records. For purely
coded files that are to be listed, Z type records can be used.

Block Size

Set the Maximum Block Length (MBL) to 640 characters
for mass storage files and 5120 characters for tape files.

G-l



Host Language Input/Output

Use of host language input/output statements (for example,
a FORTRAN READ statement) to process BAM files is
always a safe procedure. Host language statements
provide appropriate default values for record type, block
type, and block size. Do not use the CYBER Record
Manager FORTRAN interface routines to process
sequential files.

Collating Sequence

The default collating sequence or the ASCII collating
sequence should be used.

FORTRAN 5

FORTRAN 5 offers users several capabilities that are
processor-dependent. The use of such capabilities restrict
FORTRAN 5 program migration. The following paragraphs
indicate preferred usages.

Processor-dependent Values

Coding should not depend on the internal representation of
data (floating-point layout, number of characters per word,
and so forth). Where coding must depend on these
representations, use parameter variables for
processor-dependent characteristics such as the number of
characters per word.

Boolean Data Types

Do not use Boolean data types and operations (SHIFT,
MASK, and so forth) because they can be
processor-dependent. Use type CHARACTER instead, if
working wi th character data.

LOCF Function

Do not use the intrinsic function LOCF. For most
applications, this function should not be necessary.

ENCODE and DECODE Statements

Do not use ENCODE and DECODE; use the ANSI standard
internal files feature instead. ENCODE and DECODE are
generally dependent on the number of characters per word.

DATE, TIME, and CLOCK Functions

Do not dismantle values returned by the DATE, TIME, and
CLOCK functions; use these functions only for printing out
values as a whole.

G-2

BUFFER IN and BUFFER OUT Statements

Do not use BUFFER IN and BUFFER OUT, especially when
use depends on the number of characters per word.

CYBER Record Manager Interface Routines

Do not use the CYBER Record Manager interface routines
for sequential files. Instead, use FORTRAN input/output
statements such as READ or WRITE.

Overlays

If possible, use segmented loading instead. If overlays
must be used, do not depend on such properties as
reinitialization of variables when an overlay is reloaded.

LABEL Subroutine

Avoid use of the LABEL subroutine. Changes to the ANSI
standard for tape labels might require changes to the
interface used by this subroutine.

STATIC Memory Management and
Capsule Loading

Do not use this capability unless absolutely necessary. Use
of Common Memory Manager and OVCAPs is preferred.

The user must be thoroughly aware of the capsules needed
to perform the types of I/O operations required. It is the
user's responsibility to ensure that the capsules are loaded
by explicitly specifying the appropriate STLxxx subroutine
call. Only default block and record types are supported by
the STLxxx subroutines. To force load nondefault block
type/record type handling of capsules, the user must use
the following control statement sequence:

FILE,LFN, ••• ,RT= ••• , BT= ••• , •••USE= •••
LDSET(STAT=lfn)

SORT/ MERGE VERSIONS 4 AND 1

Sort/Merge offers several features among which choices
must be made. The following paragraphs indicate
preferred usage.

Key Alignment

Ensure that SORT keys are aligned on character or word
boundaries. Do not place SORT keys in arbitrary bit
positions within words.

SORT and MERGE Statements

Always perform logically separated SORT and MERGE
operations with separate control statements.

60481300 E



A edit descriptor 5-13
Abort, recovery 7-16
ABS 7-1
ACOS 7-1
Actual arguments 6-6
Adjustable dimensions 6-8
AIMAG 7-1
AINT 7-1
AlOG 7-1
AlOGI0 7-1

I Alternate return 6-11
AMAXO 7-1
AMAXI 7-1

I AMINO 7-8
AMINI 7-8
AMOD 7-9
AND 7-9
ANINT 7-9
Argument list format 8-11
Arguments

Actual 6-6
Dummy or formal 6-7

Arithmetic
Assignment 3-8
Expressions 3-1
IF statement 4-2
Operators 3-1

Arrays
And Substrings 1-10
Assumed-size 1-9, 6-9
Dimensions 1-8
Element location 1-10
EQUIV ALENCE 2-7
In subprogram 6-8
NAMELIST 5-23
Structure 1-9
Subscripts 1-9
Transmission 6-9
Type statements 1-8, 2-1

ASIN 7-9
ASSIGN statement 4-1
Assigned GO TO 4-1
Assignment statements

Arithmetic 3-8
Boolean 3-9
Character 3-8
logical 3-8
Multiple 3-9
Statement label 4-1

Asterisk
Comment 1-2
In SUBROUTINE statement 6-8
Multiplication 3-1

ATAN 7-9
ATANH 7-9
ATAN2 7-9

BACKSPACE 5-38
Binary

I I/O, see Unformatted input/output 5-22
Program execution 11-1, 11-3, 11-21

Blank Common 2-6

60481300 E

INDEX

Block
Common 2-6, 6-9
Data subprogram 6-3

Block IF
Nested 4-5
Statement 4-3
Structures 4-4

BN ed it descriptor 5-13
BOOl 7-9
Boolean

Constants 1-6
Expressions 3-6
Type statement 2-2
Variables 1-8

BOOLEAN statement 2-2
Buffer

In OPEN statement 5-30
In PROGRAM statement 6-2
Input/output 5-28

BUFFER IN statement 5-28
BUFFER OUT statement 5-29
BZ edit descriptor 5-13

C comment line 1-2
CABS 7-9
CALL statement 6-9
Calling

Overlay 9-3
Subroutine 6-3, 6-9

Carriage control 5-20
CCOS 7-9
CEXP 7-9
CHAR 7-9
Character

Argu ments 6-6
Constants 1-7
OATA initialization 2-12
Editing 5-13
Expressions 3-4
String 5-16
Substrings 1-10
Type statement 2-3
Variables 1-8

Character set
CDC 1-1, A-I
FORTRAN 1-1, A-I

CHARACTER statement 2-3
CHEKPTX 7-16
CLOCK 7-15
CLOG 7-9
CLOSE statement 5-32
CLOSEM 8-1
CLOSEMS 7-22
CMPLX 7-9
Collation control 7-29, E-l, A-5
COLSEQ 7-30
Column usage 1-1
Comment line 1-2
Common

And equivalence 2-7
Overlay communication 9-2
Statement 2-6
Usage 2-6, 6-9

Index-l

I

I

I

I



I Common Memory Manager 8-5
COMMON statement 2-6
COMPASS

Calling sequence 8-9
Program entry points 8-11
Subprogram 8-9

Compilation
Control statement 11-1
Listings 11-10
Modes 11-5, 11-6
Optimization 11-6

I Compile-time diagnostics B-1

I
Compiler

Call 11-1
Diagnostics B-1

I Output listings B-1, B-25
Supplied functions 7-1

COMPL 7-9
Complex

Constants 1-5
Editing 5-7
Type statement 2-2
Variables 1-8

I COMPLEX statement 2-2
Computed GO TO 4-1
Concatenation 3-4
CONJG 7-9
CONNEC 7-19
Constants

Boolean 1-6
Character 1-7
Complex 1-5
Double precision 1-5
Hexadecimal 1..7
Hollerith 1-6
Integer 1-4
Logical 1-6
Octal 1-7
Real 1-5
Symbolic 1-4, 2-1

I Types of 1-4
Continuation line 1-1
CONTINUE statement 4-7
Control

Carriage 5-20
Column 5-17
Listing 5-22

Control statement
DEBUG 10-1
EXECUTION 11-21
FILE F-2
FTN5 11-1

Conversion
Data on input/output 5-22
Mixed mode 3-1, 3-8
Specification for input/output 5-6

COS 7-9
COSO 7-10
COSH 7-10
Cross-reference map 11-10, 11-17
CSIN 7-10
CSO\NN 7-30
CSQRT 7-10
CYBER Interactive Debug 10-1
CYBER Record Manager

I File handling F-l
Interface 8-1

I Parameters 8-1
Slbroutines 8-1

C$ Directives 1-2, E-l

Index-2

o edit descriptor 5-11
DABS 7-10
DACOS 7-10
DASIN 7-10
Data conversion on input/output 5-6
DATA statement 2-7,2-11
DATAN 7-10
DATAN2 7-10
DATE 7-15
Dayfile messages 7-15
DBLE 7-10
DCOS 7-10
DCOSH 7-10
DDIM 7-10
DEBUG control statement 10-1
Debugging aids

CYBER Interactive Debug 10-1
LIMERR 7-29
NUMERR 7-29
Post Mortem Dump 10-2
Reference map 11-16

Deck structure 12-1
Declarative statements (see Specification statements)

DECODE statement 5-36
DEXP 7-10
Diagnostics

Compilation B-1, B-2
Compiler output listing messages B-1, B-25
Execution B-1, B-26
Special compilation B-1, B-25

DIM 7-10
DIMENSION

Adjustable 6-8
Statement 2-4

DINT 7-10
Direct access input/output 5-30
DISCON 7-20
DISPLA 7-15
Display code A-I
Division 3-1
DLOG 7-10
DLOGI0 7-10
DLTE 8-1
DMAXI 7-10
DMINI 7-11
DMOD 7-11
DNINT 7-11
DO loops

Active and inactive 4-6
Implied in OATA list 2-12
Implied in I/O list 5-3
Nested 4-7
Range 4-6

DO statement 4-5
Double precision

Constants 1-5
Editing 5-8, 5-11
Type declaration 2-2
Variables 1-8

DOUBLE PRECISION statement 2-2
DPROD 7-11
DSIGN 7-11
DSIN 7-11
DSINH 7-11
DSQRT 7-11
DTAN 7-11
DTANH 7-11
DUMP 7-26

60481300 E

I

I

I

I

I



E edit descriptor 5-8
ECS (see Extended memory)
ELSE statement 4-3
ELSE IF statement 4-3
ENCODE statement 5-36
END IF statement 4-4
END statement 4-10
ENDFILE 8-1

I ENDFILE statement 5-38
END= 5-4
ENTRY statement 6-6
EOF 7-18

I EQUIVALENCE statement 2-7
EQV 7-11
ERF 7-11
ERFC 7-11
Error processing

By CYBER Record Manager 8-4
SYSTEM or SYSTEMC 7-26

ERR= 5-2
Evaluation of expressions 3-6
Execution control statement 11-21
Execution time

I Diagnostics B-1, B-26
File name handling F-1
FORMAT 5-20
Input/output 5-20

EXIT 7-15
EXP 7-11
Exponentiation 3-1
Expressions

Arithmetic 3-1
Boolean 3-6
Character 3-4
Evaluation 3-6

I General rules for 3-6
Logical 3-5
Relational 3-4
Subscripts 1-8

Extended memory 2-8
External function 2-9, 6-4
EXTERNAL statement 2-9

F edit descriptor 5-10
FALSE 1-6
FILE control statement F-2
File

Definition F-1
Labeled 7-19

I
Name substitution 11-21
Name (TAPEu) 5-2, 11-21
Positioning 5-37

I Sequential F-1
Status 5-30
Structure F-l

I Usage 5-1
File information table (FIT)

Defaults for standard I/O F-3
I Defined F -1

Direct call by CYBER Record Manager 8-1
FILExx 8-1
FITDUMP 8-3
FLOAT 7-11
FLUSHM 8-3
FMT= 5-2
Formal argument (parameter) (see Dummy argument)
FORMAT statement 5-5
Format

I Control, termination of 5-20
Execution time 5-20
Specification 5-5

60481300 E

Formatted
Input/output 5-2
PRINT statement 5-4
READ statement 5-4
WRITE statement 5-5

FORTRAN
Compiler call 11-1
Syntax summary 0-1

FTN5 control statement 11-1
Function

External 6-4
Intrinsic 2-10, 6-5, 7-1
Referencing 6-10
Statement 6-5
Subprogram 6-4

Future System migration G-l

G edit descriptor 5-10
GET 8-3
GETN 8-3
GETNR 8-3
GETP 8-3
GETPARM 7-14
GO TO statements

Assigned GO TO 4-1
Computed GO TO 4-1
Unconditional GO TO 4-1

H edit descriptor 5-16
H specification

In format specification 5-16
Hollerith constant 1-6

Hexadecimal/octal conversion 5-15
Hexadecimal constant 1-7
Hierarchy in expressions 3-1, 3-5
Hollerith

Constant 1-6
Format specification 5-16

I edit descriptor 5-8
lABS 7-11
ICHAR 7-11
101M 7-11
IDINT 7-11
IDNINT 7-12
IF statements

Arithmetic IF 4-2
Block IF 4-3
Logical IF 4-3

IFETCH 8-4
IFIX 7-12
IMPLICIT statement 2-4
Implicit typing of variables 2-1, 2-4
Implied DO

In DATA list 2-12
In I/O list 5-3

INDEX 7-12
Index

DO loop 4-6
Mass storage files 7-22
Multiple (CYBER Record Manager) files 8-4

Initial line 1-1
INPUT file 5-35
Input/output

BUFFER 5-28
Compile time 5-5
Direct access 5-29
Execution time 5-20
Formatted 5-2
Implementation F-1

I
I

I

I

I

I

Index-3



I

I

I

Input/output (Contd)
List directed 5-22
Lists 5-2
Mass storage 7-20
NAMELIST 5-23

I Status checking 7-17
Status statements 5-30
Unformatted 5-22

I INQUIRE statement 5-33
INT 7-12
Integer

Constants 1-4
Editing 5-6
Type declaration 2-2
Variables 1-7

INTEGER statement 2-2
Internal files

I Extended 5-36
Standard 5-34

I Intrinsic functions 2-10, 6-5, 7-1
INTRINSIC statement 2-10
IOCHEC 7-18
10 list 5-2

I IOSTAT= 5-2,5-22
ISIGN 7-12

JDATE 7-15
Job decks, examples 12-1

L edit descriptor 5-14
L format Hollerith constant 1-6
LABEL 7-19
Labeled

Common 2-6
Files 7-19

Labels
Statement labels 1-1
Use in alternate return 6-11

LCM (see Extended memory)
LEGVAR 7-26
LEN 7-12
LENGTH, LENGTHX 7-18
LEVEL Statement 2-8
Levels, overlay 9-1
LGE 7-12

I LGO 11-3, 11-21
LGT 7-12
Library functions 7-1
LIMERR 7-29
List directed

Input 5-22
PRINT 5-23
PUNCH 5-23
Output 5-23
READ 5-22
WRITE 5-24

Listings
Control of 11-10
Object 11-20
Reference map 11-10
Source 11-10

L List File 11-5
LLE 7-12
LLT 7-12
LOCF 7-12
LOG 7-12
Logical

Assignment statement 3-8
Constants 1-6
Expressions 3-5
File names 1-4, 5-1
IF statement 4-3

Index-4

Logical (Contd)
Operators 3-5
Unit number 5-1
Variables 1-8

LOGICAL statement 2-3
LOGI0 7-12
Loops

DO 4-6
Implied in OATA statement 2-12
Implied in input/output statements 5-3
Nested 4-7

Main program 6-1
Map, reference 11-10
MASK 7-13
Mass storage input/output

CLOSMS 7-22
OPENMS 7-21
REAOMS 7-22
STINDX 7-22
WRITMS 7-21

Mathematical functions 7-1
MAX 7-13
MAXO 7-13
MAXI 7-13
Messages

Compilation diagnostics B-1
Compiler output listing B-1, B-25
Execution diagnostics B-1, B-26
Special compilation diagnostics B-1, B-25

MIN 7-13
MINO 7-13
MINI 7-13
Mixed mode arithmetic conversion 3-1, 3-3, 3-8
MOD 7-13
Mode

Debug 10-1
Nonsequenced 1-1
Optimizing 11-6
Sequenced 1-3

MOVLCH 7-19
MOVLEV 7-19
Multiple

Assignment statement 3-9
Entry 6-6
Return 6-10

Multiple-Index processing 8-4

Named common 2-6
Namelist

PRINT 5-25
PUNCH 5-25
READ 5-26
WRITE 5-27

NAMELIST statement 5-25
Names

Common block 2-6
File 1-4, 5-1
Program unit 1-4, 6-1
Symbolic 1-4
Variable 1-7

NEQV 7-13
Nesting

Block IF structures 4-5
DO loops 4-7
Parentheses 3-7

NINT 7-13
Nonsequenced mode 1-1
Number

Formats (see Constants)
Statement label 1-1

NUMERR 7-29

60481300 E

I

I

I



I

I 0 edit descriptor 5-15
Object code 11-5, 11-20

I Octal Constants 1-6, 1-7
Offset 1-9, 5-30
OPEN statement 5-30
OPENM 8-4
OPENMS 7-21
Operands, evaluation of 3-1

I Operating system interface routines 7-14
Operators

Arithmetic 3-1
Boolean 3-6
Character 3-4
Logical 3-5
Relational 3-4

Optimization
Object code 11-6
Source code 11-6
Unsafe 11-6

Options, FTN5 control statement 11-2
OR 7-13
Order, statements in program unit 1-11
Output (see Input/output)

File 5-5
Print limit specification 11-21
Record length 5-28

OVCAPS 9-4
o VERLAY statement 9-3
Overlays 9-1

P scale factor 5-12
Parameter, see Argument
PARAMETER statement 2-5
Parameters, FTN5 control statement 11-2
Pass by reference 8-10
Pass by value 8-11
PAUSE statement 4-9
PDUMP 7-26
PMD 10-3

I PMDARRY 10-4
PMDLOAD 10-5
PMDSTOP 10-5
PMDDUMP 10-5
Post Mortem Dump 10-2
Precedence of operators 3-1
Print

.Control characters 5-20
Limit specification 11-21

PRINT statement 5-5
Procedures 6-3
Program

I Examples 12-8
Maps 11-10
Units 6-1

PROGRAM statement 6-2
Punch codes A-I
PUNCH

File 5-1
Statement 5-5

PUT 8-4
PUTP 8-4

Quote
Character string delimiter 1-6
Edit descriptor 5-16

R edit descriptor 5-14
R format Hollerith constant 1-6
Random

Access 7-20.1/7 -20.2
Number routines 7-14

60481300 E

RANF 7-13
Range of DO loops 4-6
RANGET 7-14
RANSET 7-14
READ statements

Direct access 5-30
Formatted 5-4
Internal 5-35
List directed 5-22
Namelist 5-26
Unformatted 5-22

READMS 7-22
Real

Constant 1-5
Variable 1-7

REAL 7-13
REAL statement 2-2
Record

Definition F-1
Length 5-2, 5-22, 6-2
Types F-1

Record Manager (see CYBER Record Manager)
Recovery 7-16
RECOVR 7-16
Reference, function 6-10
Reference map 11-10
Relational

Evaluation 3-4
Expressions 3-4
Operators 3-4

REMARK 7-15
REPLC 8-4
RETURN statement 6-10
REWIND statement 5-37
REWND 8-4
RMKDEF 8-6
RMOPNX 8-5

S edit descriptor 5-13
Sample

Coding form 1-1
COMPASS subprogram 8-10
Decks 12-1
FTN5 control statement 11-9
Programs 12-8

SA VE statement 2-9
Scale factor 5-12
Scaling 5-13
SECOND 7-13
SEEKF 8-4
Sense switch 7-15
Separator, slash and comma 5-17
Sequenced mode 1-3
Sequential access input/output 5-29
Sequential file structure F-1
SHIFT 7-13
SIGN 7-13
SIN 7-13
SIND 7-13
SINH 7-14
SKIP 8-4
Slash in FORMAT statement 5-17
SNGL 7-14
Sort/Merge

Subroutines 8-6
Future migration guidelines G-2

SP edit descriptor 5-13
Specification statements 2-1
SQRT 7-14
SS edit descriptor 5-13
SSWTCH 7-15
Standard, FORTRAN ANSI v
STARTM 8-4

Index-5

I

I

I



Statement
Format 1-1
FORTRAN (see individual statement name)
Function name 1-4
Labels 1-1 '
Order in program unit 1-11

I 'Statement functions 6-5
STATIC capsule loading 7-30
STINDX 7-22
STOP statement 4-10
STOREF 8-4

I
STRACE 7-26
Structure

Block IF 4-4
Program unit 6-1

Subprogram linkage 8-11
Subprograms

Block data 6-3
Function 6-4
Miscellaneous utility 7-14
Subroutine 6-3

Subroutines, calling 6-3

I
SUBROUTINE statement 6-3
Subscripts 1-8
Substrings 1-10
Symbolic names 1-4
Syntax summary 0-1
SYSTEM and SYSTEMC 7-26

Tabulation control 5-17
TAN 7-14
TAND 7-14
TANH 7-14

I TAPEu 5-2, 6-2, 11-21
Terminal interface 7-19
Texts, system 8-9
TIME 7-15
Tn edit descriptor 5-17
Traceback 10-2
TRUE 1-6
Type of

Arithmetic expressions 3-1
Functions 6-5
Variables 1-7

Type statements
Dimension information in 1-8, 2-1
Explicit 2-1
Implicit 2-1

I Unconditional GO TO 4-1
Unformatted input/output

READ 5-22
WRITE 5-22

UNIT 7-17
UNIT= 5-1
Utility subprograms 7-14

Index-6

Variable
FORMAT statements 5-5
Name and type 1-7

Variables
Boolean 1-8
Character 1-8
Complex 1-8
Double precision 1-8
Integer 1-7
Logical 1-8
Real 1-7

Weight tables A-5
WEOR 8-4
VJRITE statement

Direct access 5-30
Formatted 5-5
Internal 5-35
List directed 5-24
Namelist 5-27
Unformatted 5-22

VJRITMS 7-21
WTMK 8-4
WTSET 7-30

X edit descriptor 5-16
XOR 7-14

Z edit descriptor 5-15

.AND. 3-5

.EQ. 3-5

.EQV. 3-5

.FALSE. 1-6

.GE. 3-4

.GT. 3-4

.LE. 3-4

.LT. 3-4

.NE. 3-4

.NEQV. 3-5

.NOT. 3-5

.OR. 3-5

.TRUE. 1-6

.XOR. 3-5

*
In column 1 1-2
In SUBROUTINE statement 6-8

" or ~
Hollerith constant 1-1, 1-6
In FORMAT specification 5-16

/ end-of-record indicator 5-17
, or t

Character constant 1-1, 1-7
In FORMAT specification 5-16

in FORMAT specification 5-20

60481300 E

I

I



MANUAL TITLE:

COMMENT SHEET

FORTRAN Version 5 Reference Manual

PUBLICATION NO.: 60481300 REVISION: E

NAME:
_

COMPANY:
_

STREET ADDRESS:
_

CITY: STATE: ZIP CODE: _

This form is not intended to be used as eln order blank. Control Data Corporation welcomes your evaluation ofthis manual. Please indicate any errors, suggested additions or deletions, or general comments below (pleaseinclude page number references).

w
Z
:::i

oz
o
'<
~

:::>u

o Please reply o No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE



APE
TAPE i ..

t

f
t

:"~
t
t

•I ~: ~
t
I

I
t
t
t
t
t
I
t
t
[

i
I
I
•I
I
t
t
t
t
t
t
t
t
I
I
I

FOLD
FOLD I

--------------------------------------------------------
-------------------------------------------------------~

111111

BUSINESS REPLY MAIL

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED S1ATES

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. w
Z
::;

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division

215 Moffett Park Drive
Sunnyvale, California 94086

---------------------------------------------
---------------------------------------------

---------------------~

FOLD
FOLD

C)
zo
~

<{

I­
::::>u



CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440

SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

<S~
CONT~OLDATA CORPO~TION

LITHO IN U.S.A.


	Revision Record
	List of Effective Pages
	Preface
	Contents
	Notations
	1. Language Elements
	2. Specification Statements
	3. Expressions and Assignment Statements
	4. Flow Control Statements
	5. Input/Output
	6. Program Units and Procedures
	7. FORTRAN Supplied Procedures
	8. Product Interfaces
	9. Overlays
	10. Debugging Aids
	11. Compilation and Execution
	12. Examples
	A. Standard Character Sets
	B. FORTRAN Diagnostics
	C. Glossary
	D. Language Summary
	E. C$ Directives
	F. Input/Output Implementation
	G. Future System Migration Guidelines
	Index



