@ CONTROL DATA
CORPORATION

60481300

FORTRAN
VERSION 5
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:

NOS 1
NOS/BE 1
SCOPE 2

@ CONTROL DATA
CORPORATION

60481300

FORTRAN

VERSION 5
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:

NOS 1
NOS/BE 1
SCOPE 2

REVISION RECORD

REVISION DESCRIPTION

A Original release.
(7-20-79)

B Revised to reflect the released version of the FORTRAN 5 compiler. Numerous technical and
(9-28-79) miscellaneous corrections, including added shading, have been made.

C Revised to include SCOPE 2 operating system. Additional technical and miscellaneous corrections
(2-15-80) have been made.

D Released at PSR level 527. Revised to include CMM interface and update to PMD. Additional
(9-26-80) technical and miscellaneous corrections have been made.

E Revised at PSR level 533. Revised to reflect release of PMD and STATIC option under SCOPE 2
(1-16-81) operating system.

Publication No.

60481300

Address comments concerning
this manual to:

REVISION LETTERS I, O, Q AND X ARE NOT USED

©COPYRIGHT CONTROL DATA CORPORATION 1979, 1980, 1981
All Rights Reserved-
Printed in the United States of America

ii

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the .
back of this manual

LIST OF EFFECTIVE PAGES

P

New features, as well as changes,
in the margins or by a dot near the page num
indicates pagination rather than content has changed.

Page

Revision

Page Revision
Cover -
Title Page -
ii E
iii E
iv E
v E
vi E
vii D
viii thru xii E
xiii/iv E
XV B
1-1 D
1-2 D
1-3 B
1-4 C
1-5 D
1-6 B
1-7 E
1-8 B
1-9 thru 1-12 D
2-1 B
2-2 D
2-3 thru 2-5 E
2-6 D
2-7 E
2-8 thru 2-10 D
2-11 B
2-12 B
3-1 A
3-2 thru 3-4 B
3-5 thru 3-7 D
3-8 A
3-9 B
- 4-1 E
4-2 E
4-3 D
4-4 E
4-5 thru 4-10 D
5-1 thru 5-4 D
5-5 thru 5-7 £
5-8 C
5-9 thru 5-12 D
5-13 C
5-14 B
5-15 B
5-16 E
5-17 D
5-18 B
5-19. B
5-20 c
5-21 E
5-22 E
5-23 D
5-24 thru 5-26 B
5-27 : C
5-28 thru 5-30 E
5-31 D

thru 5-37
thru 6-5

thru 6-11

2

8
thru 7-6

1

-3
-3
-1
-2
-3
-6
-7
-8
-9
-1
-2
-3
-7
-8
-9
-1
-1
-1
-1

PWMN=O

-15 thru 7-17
-18 thru 7-20
.1/7-20.2

thru 7-31
thru 8-6

-1 thru 9-5
0-1 thru 10-5
1-1 thru 11-6

11-10 thru 11-16
11-16.1

11-16.2

11-17 thru 11-20
11-21

11-22

12-1

12-2

12-3

12-4

wm>>mcommmccmcmcwwnmnnwmmmwmmwnwnnccoomonncomm:p oMmMmMUOOMoOoOoem

60481300 E

deletions, and additions to information in this manual are indicated by bars
ber if the entire page is affected. A bar by the page number

iii @

Page

Revision

12-13 thru 12-21

A-3

thru B-37

thru C-4

TPPPPOROC TR
FPRAWNEFEFEACITRWN N 0D

thru E-4

thru F-5
thru F-9

G)'l'l"l'l’ﬂ'ﬂ

[2]
1
~N

Index-1 thru Index-6
Comment Sheet

Mailer

Back Cover

P I mMMmMmMooOoOMmMmOoOgoooMmMMmMoEOMmMMOoOmoe s MOODODITEDMPMEBODODBTO OO MO OO M

60481300 E

PREFACE

s

This manual describes the FORTRAN Version 5 language.
FORTRAN Version 5 complies with the American National
Standards Institute FORTRAN language described in
document X3.9-1978 and known as FORTRAN 77.
FORTRAN Version 5 extensions to FORTRAN 77 are
indicated by shading.

The reader should be familiar with FORTRAN Extended
Version 4 or an existing FORTRAN language. The reader
should also be familiar with the operating system on which
FORTRAN Version 5 jobs will be compiled and executed.

The FORTRAN Version 5 (FORTRAN 5) compiler is
available under contro!l of the following operating systems:

NOS 1 for the CONTROL DATA® CYBER 170 Series;
CYBER 70 Models 71, 72, 73, and 74; and 6000 Series
Computer Systems

NOS/BE 1 for the cbc® CYBER 170 Series;
CYBER 70 Models 71, 72, 73, and 74; and 6000 Series

Computer Systems

SCOPE 2 for CONTROL DATA® CYBER 170 Model
176, CYBER 70 Model 76, and 7600 Computer Systems.

Extended memory for the CYBER 170 Model 176 is large
central memory (LCM) or large central memory extended
(LCME). Extended memory for all other computer systems
is extended core storage (ECS) or extended semi-conductor
memory (ESM). In this manual, the acronym ECS refers to
all forms of extended memory unless otherwise noted.
Programming information for the various forms of
extended memory can be found in the COMPASS reference
manual and in the appropriate computer system hardware
reference manual. -

Related material is contained in the listed publications.
The NOS manual abstracts and the NOS/BE manual

abstracts are instant-sized manuals containing brief
descriptions of the contents and intended audience of all

NOS operating system and NOS product set manuals, and
NOS/BE operating system and NOS/BE product set
manuals, respectively. The abstracts manuals can be
useful in determining which manuals are of greatest
interest to a particular user. The Software Publications
Release History serves as a guide in determining which

revision level of software documentation corresponds to

the Programming System Report (PSR) level of installed
site software. Other publications serve as references for

information that requires greater detail.

The following publications are of primary interest:

Publication

Publication
Number

FORTRAN Extended Version 4 to FORTRAN Version 5

Conversion Aid Program Reference Manual

60483000

FORTRAN Version 5 Common Library Mathematical Routines

Reference Manual

FORTRAN Version 5 Instant

NOS Version 1 Reference Manual, Volume 1 of 2
NOS/BE Version 1 Reference Manual

SCOPE Version 2 Reference Manual

60483100
60483900
60435400
60493800
60342600

The following publications are of secondary interest:

Publication

Common Memory Manager Version 1 Reference Manual
COMPASS Version 3 Reference Manual

CYBER Interactive Debug Version 1 Reference Manual

CYBER Loader Version 1 Reference Manual

Publication
Number

60499200
60492600
60481400

60429800

CYBER Record Manager Advanced Access Methods

Version 2 Reference Manual

60499300

CYBER Record Manager Advanced Access Methods

Version 2 User's Guide

60481300 E

60499400

CYBER Record Manager Basic Access Methods
Version 1.5 Reference Manual

CYBER Record Manager Basic Access Methods
Version 1.5 User's Guide

DMS-170 DDL Version 3 Reference Manual
Volume 1: Schema Definition for Use Withs
COBOL
FORTRAN
Query Update
FORTRAN Data Base Facility Version 1 Reference Manual

INTERCOM Interactive Guide for Users of
FORTRAN Extended

INTERCOM Version 5 Reference Manual

Network Products
Interactive Facility Version 1 Reference Manual

NOS Version 1 Manual Abstracts —

NOS Version 1 Time-Sharing User's Reference Manual
NOS/BE Version 1 Manual Abstracts

SCOPE Version 2 Loader Reference Manual

SCOPE Version 2 Record Manager Reference Manual
Software Publications Release History

Sort/Merge Versions 4 and 1 Reference Manual

CDC manuals can be ordered from Control Data Corporation, Literature and

60495700
60495800

60481900

60482200

60455950
60455010

60455250
84000420
60435500
84000470
60454780
60495700
60481000
60497500

Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in
this document. Control Data cannot be responsible for
the proper functioning of undescribed features or

parameters.

60481300 £

CONTENTS

:

NOTATIONS

1. LANGUAGE ELEMENTS

Writing FORTRAN Statements
Nonsequenced Mode
Initial Lines

Continuation Lines
Statement Labels
Comment Lines
Compiler Directive Lines
Columns 73 through 80
Sequenced Column Usage
Symbolic Names
Constants
Integer
Real
Double Precision
Complex
Logical
Boolean
Hollerith
Octal
Hexadecimal
Character
V ariables
Integer Variables
Real Variables
Double Precision V ariables
Complex V ariables
l_ogical Variables
Boolean Variables
Character Variables
Arrays
Array Storage
Array References
Character Substrings
Substring References
Substrings and Arrays
Statement Order

2. SPECIFICATION STATEMENTS

Type Statements
INTEGER Statement
REAL Statement
DOUBLE PRECISION Statement
COMPLEX Statement
BOOLEAN Statement
LOGICAL. Statement
CHARACTER Statement
IMPLICIT Statement
DIMENSION Statement
PARAMETER Statement
COMMON Statement
EQUIVALENCE Statement
LEVEL Statement
SAVE Statement
EXTERNAL Statement
INTRINSIC Statement
DATA Statement
Implied DO List
Character Data Initialization

60481300 D

XV

v
=

1 1 L | 1] 1]

=k Bt bt bt b b b b e b bt b

fl
NNNNNOOOA VUV E DS PSWNNON

- Bt bt e b b b
OOOoEOOomO~d

L) L)
b= b= b b \O \O

Bt bttt bt e bt b e b

w°
A

A NNNNNII\’NNNN
OV ONOAVMELSUWWNNNNNE-

—
N -0

N
L)

[—

N

3. EXPRESSIONS AND ASSIGNMENT
STATEMENTS

Expressions
Arithmetic Expressions
Character Expressions
Relational Expressions
Logical Expressions
Boolean Expressions
General Rules for Expressions
Assignment Statements
Arithmetic Assignment Statement
Character Assignment Statement.
Logical Assignment Statement
Boolean Assignment Statement
Multiple Assignment

4. FLOW CONTROL STATEMENTS

GO TO Statement
Unconditional GO TO Statement
Computed GO TO Statement
Assign Statement
Assigned GO TO Statement
IF Statement
Arithmetic IF Statement
Logical IF Statement
Block IF Statement
ELSE Statement
ELSE IF Statement
END IF Statement
Block IF Structures
Nested Block IF Structures

DO Statement

DO Loops
Active and Inactive DO Loops
Nested DO Loops

CONTINUE Statement

PAUSE Statement

STOP Statement

END Statement

RETURN Statement

CALL Statement

5. INPUT/OUTPUT

File Usage
Formatted Input/Output
Input/Output Lists
Implied DO Loop in I/O List
Formatted READ
Formatted WRITE
Formatted PRINT
Formatted PUNCH
Format Specification
FORMAT Statement
Character Format Specifications
Noncharacter Format Specification
Edit Descriptors
1 Descriptor
E Descriptor
F Descriptor
G Descriptor

s
b

PYYYYYYY
OOV E

\HNYI\MM
0 O o

£
&

4-1
4-1
41
4-1
4-1
4-2
4-2
4-3
4-3
4-3
4-3
4-4
4-4
4-5
4-5
4-6

4:7
4-7

4-9

4-10
4-10
4-10
4-10

Y
S

(R RV, RV, RV, RV, RV, RV,]
i | U T L e
EWNN -

VY RPTYY Y
== OO B\t
oo

vii

D Descriptor

P Descriptor

BN and BZ Blank Interpretation

S, SP, SS Plus Sign Control

A Descriptor

A Descriptor for Noncharacter
List Items

R Descriptor

L Descriptor -

O Descriptor

Z Descriptor

H Descriptor

Apostrophe and Quote Descriptors

X Descriptor

T, TL, TR Descriptors

End-of-Record Slash

Repeated Edit Descriptors

Termination of Format Control

Carriage Control Character

Execution Time Format Specification

Unformatted Input/Output

Unformatted WRITE
Unformatted READ

List Directed Input/Output

List Directed Input
List Directed Output

Namelist Input/Output

Namelist Input
Namelist Output
Arrays in Namelist

Buffer Input/Output Statements

BUFFER IN
BUFFER OUT

Direct Access Files
Input/Output Status Statements

OPEN
CLOSE
INQUIRE

Internal Files

Standard Internal Files
Cutput
Input

Extended Internal Files

ENCODE
DECODE

File Positioning Statements

6.

REWIND
BACKSPACE

ENDFILE

PROGRAM UNITS AND PROCEDURES

Main Programs

PROGRAM Statement
PROGRAM Statement Usage

Procedures

Block Data Subprogram
Subroutine Subprogram
Function Subprogram

External Functions
Intrinsic Functions
Statement Functions
Multiple Entry

Procedure Communication
~ Actual Arguments

viii

Dummy Arguments
Argument Association

Character Length
V ariables :
Arrays

Procedure Arguments
Asterisk Arguments
Adjustable Dimensions

o
] 1 []
PN =

(17\0\?\0‘\0\
AC RV IRV

o O
-E'

EN:N
&

A
[R WG R

6

e
~N o

6-7
6-7
6-8
6-8
6-8
6-8
6-8

Using Common Blocks

Referencing a Procedure
Subroutine Call
Function Reference
Statement Function Reference
Return and Multiple Return
Alternate Return

FORTRAN SUPPLIED PROCEDURES

Intrinsic Functions

ABS
ACOS
AIMAG
AINT
ALOG
ALOGI0
AMAX0
AMAX1
AMINO
AMIN1
AMOD
AND
ANINT
ASIN
ATAN
ATANH
ATAN2
BOOL
CABS
CCOs
CEXP
CHAR
CLOG
CMPLX
COMPL
CONJG
COs
COSD
COSH
CSIN
CSART
DABS
DACOS
DASIN
DATAN
DATAN2
DBLE
DCOs
DCOsSH
DDIM
DEXP
DIM
DINT
DLOG
DLOGI0
DMAX1
DMIN1
DMOD
DNINT
DPROD
DSIGN
DSIN
DSINH
DSQRT
DTAN
DTANH
EQv
ERF
ERFC
EXP
FLOAT
1ABS

U
0

SN NN
= b b \O \D
~oOoo

3
[

"]]
P

NN NN NN

I)
-

1
O O

I ITTEIYEY Y
\D \D\0O \0 \D\O O VWYY

DCROONOMOON
\O0 \O\D \0 DV

N}

7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-11

60481300 E

ICHAR
IDIM
IDINT
IDNINT
IFIX
INDEX
INT
ISIGN
LEN
LGE
LGT
LLE
LLT
LOCF
LOG
LOGI10
MASK
MAX
MAX0
MAX1
MIN
MINO
MIN1
MOD
NEQV
NINT
OR
RANF
REAL
SECOND
SHIFT
SIGN
SIN
SIND
SINH
SNGL
SQRT
TAN
TAND
TANH
XOR

Miscellaneous Utility Subprograms

GETPARM
RANSET
RANGET

Operatir_;g System Interface Routines
DATE

JDATE
TIME or CLOCK
DISPLA
REMARK
SSWITCH
EXIT
CHEKPTX
RECOVR
Input/Output Status Checking .
UNIT
EOF
IOCHEC
Other Input/Output Subprograms
LENGTH
LABEL
MOVLEV
MOVLCH
CONNEC
DISCON
Mass Storage Input /Output
Random File Access
OPENMS
WRITMS

60481300 €

\l\l\l\l\lsl\l?lﬂﬂ\l\l\l\l\l\l

L L L L L |
vy

L
I I i ol o ol v v D A D A T < ol

Vl\ﬂV‘V“PP&PPP#&&#&#WV\AWUW\AUWW\A\AUUWN\A\NNNNNNNNNNNNNNF—‘HI—'

~N -~ ~ ~
LI L) "ﬂ' T‘?‘\l PR

NNNSNSNSNSNNSNNS
U D L L

1
—

1 1
b b

'\ITININI\ITI\I\I\I\I
Pt bt

L}
ot et et b et
o\ oN T\ \n

\I\l\l\lTl\l\l\l\l

7-18

7-20.1
7-20.1
7-21
7-21

READMS

CLOSMS

STINDX
Debugging Routines

DUMP and PDUMP

STRACE

LEGVAR

SYSTEM

SYSTEMC

LIMERR and NUMERR
Collating Sequence Control

COLSEQ

WTSET

CSOWN

STATIC Capsule Loading Routines

8.

FORTRAN-CYBER Record Manager Interface

PRODUCT INTERFACES

Parameters
Subroutires
CLOSEM
DLTE
ENDFILE
FILExx
FITDUMP
FLUSHM
FLUSHL
GET
CETN
GETNR
GETP
IFETCH
OPENM
PUT
PUTP
REPLC
REWND
SEEKF
SKIP
STARTM
STOREF
WEOR
WTMK
Error Checking
Multiple Index Processing

Common Memory Manager Interface
FORTRAN-Sort/Merge Interface

SMSORT
SMSORTB
SMSORTP
SMMERGE
SMFILE
SMKEY
SMSEQ
SMEQU
SMOPT
SMTAPE
SMOWN
SMEND
SMABT

Intermixed COMPASS Subprograms
Subprogram Linkage

Pass by Reference Sequence
Pass by Value Sequence
Function Result

Entry Point

Restrictions on Using Intrinsic Function

Names

7-22
7-22
7-22
7-23
7-26
7-26
7-26
7-26
7-26
7-29
7-29
7-30
7-30
7-30
7-30

8-1

8-1
8-1
8-1
8-1
8-1
8-1
8-3
8-3
8-3
8-3
8-3
8-3
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-4
8-5
8-6
8-6.1
8-6.1
8-6.1
8-6.1
8-6.1
8-6.1
8-7
8-7
8-8
8-8
8-8
8-8
8-8
8-9
8-9
8-10
8-11
8-11
8-11

8-11

ix

9. OVERLAYS

Overlays
Main, Primary, and Secondary Overlays
Overlay Communication
Creating Overlays
Calling Overlays
OVCAPS
Creating OVCAPS
Loading and Unloading OVCAPS

10. DEBUGGING AIDS

CYBER Interactive Debug
Program Compilation
DEBUG Contro!l Statement
DB Parameter
Initiating a Debug Session
Some CID Commands
GO Command
SET,BREAKPOINT Command
SET,TRAP Command
PRINT Command
Assignment Command
QUIT Command
Other CID Features
Post Mortem Dump
PMDARRY
PMDDUMP
PMDLOAD
PMDSTOP

11. COMPILATION AND EXECUTION

FTN5 Control Statement
Parameters
Binary Value Parameters
Specified Value Parameters
Multiple Binary Value Parameters
Multiple Appearances of Parameters

Parameter Options
ANSI Diagnostics
ARG Argument List Attributes
B Binary Output File
BL Burstable Listing
CS Collating Sequence
DB Debugging Options
DO Loop Control
DS Directive Suppression
E Error File .
EC Extended Memory Usage
EL Error Level
ET Error Terminate
G Get System Text File
GO Automatic Execution
I Input File
L List File
LCM Extended Memory
(LLCM or ECS Storage Access)
LO Listing Options
MD Machine Dependent Diagnostics
ML Modlevel Micro
OPT Optimization Level
PD Print Density
PL Print Limit
PN Pagination
PS Page Size
PW Page Width
QC Quick Syntax Check
REW Rewind Files
ROUND Rounded Arithmetic Options

9-5

10-1

10-1
10-1
10-1
10-1
10-1
10-1
10-2
10-2
10-2
10-2
10-2
10-2
10-2
10-2
10-4
10-5
10-5
10-5

11-1
11-1
11-1
11-1
11-1
11-2
11-2
11-2
11-2
11-3
11-3
11-3
11-3
11-4
11-4
11-4
11-4
11-4
11-4
11-5
11-5
11-5
11-5

11-5
11-5
11-6
11-6
11-6
11-7
11-7
11-8
11-8
11-8
11-8
11-8
11-8

S System Text File 11-8
SEQ Sequenced Input 11-9
STATIC Static Load 11-9
TM Target Machine 11-9
X External Text Name 11-9
FTNS Control Statement Examples 11-9
Compiler Listings 11-10
Short Line Listing Format 11-10
Listing Control Directive 11-10
Reference Map 11-10
General F ormat of Maps 11-11
Variables Map 11-11
Symbolic Constant Map 11-12
Procedure Map . 11-12
Statement Label Map 11-12
Entry Point Map 11-12
Input/Output Unit Map 11-13
NAMELIST Map 11-13
DO Loop Map 11-15
Common and Equivalence Map 11-15
Stray Names 11-15
Program Statistics 11-16
Debugging Using the Reference Map 11-16
Object Listing 11-20
Program Unit Structure 11-20
Naming Conventions 11-20
Register Name Conflicts 11-20
System-Supplied Procedure Names 11-20
Listing Format 11-21
Execution Control Statement 11-21
File Name Substitution 11-21
Print Limit Specification 11-21
User Parameters 11-22
Post Mortem Dump Parameters 11-22
Post Mortem Dump Output Parameter 11-22
Subscript Limit Specification 11-22
12. EXAMPLES 12-1
Sample Deck Structures 12-1
FORTRAN Source Program with Control
Statements 12-1
Compilation Only 12-2
OPT=0 Compilation 12-2
Compilation and Execution 12-3
FORTRAN Compilation with COMPASS
Assembly and Execution 12-3
Compilation and Execution with FORTRAN
Subroutine and COMPASS Subprogram 12-4
Compilation with Binary Card Output 12-4
Loading and Execution of Binary Program 12-5
Compilation and Execution with Relocatable
Binary Deck 12-5
Compilations and Two Executions with
Different Data Decks 12-6
Preparation of Overlays 12-7
Compilation and Two Executions with
Overlays 12-8
Sample Programs 12-8
Program OUT 12-8
Program B 12-9
Program STATES 12-9
Program EQUIV 12-10
Program COME 12-11
Program LIBS 12-12
Program ADD 12-13
Read 12-13
Write 12-14
Program PASCAL 12-15
Program PIE 12-16
Program X 12-16
Program ADIM 12-18
60481300 £

Program ADIM2
Subroutine SET
Subroutine IOTA
Subroutine PV AL
Function AVG
Function MULT
Main Program: ADIM2

Program CIRCLE

Program BOOL

Program EASY IO

Program BLOCK

Programs ONE and TWO

Program PMD2

Program PMD

Program DBUG

Program GOTO

Program ASK

Program SCORE

APPENDIXES

Standard Character Sets
FORTRAN Diagnostics

Glossary

Language Summary

C$ Directives

Input/Output Implementation
Future System Migration Guidelines

OTMTMOO®>

INDEX

FIGURES

Normal Column Usage
Listing of Sequenced Program
Sequenced Column Usage
Integer Constant

Real Constant

Double Precision Constant
Complex Constant
Logical Constant
Hollerith Constant

Octal Constant
Hexadecimal Constant
Character Constant

U
Pt bt ot et ot et et bt it et D OO S ON WV NN

VONAVESEWN O

1-Dimensional Array Storage
2-Dimensional Array Storage
3-Dimensional Array Storage
Array Element Reference
Character Substring Reference
INTEGER Statement

REAL Statement

DOUBLE PRECISION Statement
COMPLEX Statement
BOOLEAN Statement
LOGICAL Statement
CHARACTER Statement
IMPLICIT Statement
DIMENSION Statement
PARAMETER Statement
COMMON Statement
EQUIVALENCE Statement
LEVEL Statement

SAVE Statement
EXTERNAL Statement
INTRINSIC Statement

DATA Statement

Arithmetic Expression
Character Expression

NI Ll ol el el e

DS]
NAVEWN -

IR RO R RIRD B I NS R I 1D R
R bt bt bt ot fet fd et et 2 \O D
NV BEWN - O

60481300 E

Program on FORTRAN Coding Form

Declaration of Array Dimensions

12-19
12-19
12-19
12-19
12-19
12-20
12-20
12-22
12-23
12-24
12-25
12-27
12-28
12-30
12-30
12-34
12-35
12-36

B-1
C-1
D-1
E-1
F-1
G-1

AN
= VOIS WWWN

LI R | tor 11
FEWUWUWNNNRNEFE= VWY

0 1
SEFNO~EHVOONONUVWN
- O

\M\ANNNNNNNNNI'\)NNNNNNNHI-‘I—'H

(R RV VIRV, AV, RV, |

R R A R T R P U
===\ 00NN

RN N NI BN bt bt bt bt ot b b

AV R RV AV RV AR RV RV RV IV RN RN
VMEPWNHHOWOUVO~NAWVMPEUWNFO

'Relational Expression

L.ogical Expression

Boolean Expression

Arithmetic Assignment

Character Assignment

Logical Assignment

Boolean Assignment

Multiple Assignment

Unconditional GO TO Statement

Example of Unconditional GO TO
Statement

Computed GO TO Statement

Examples of Computed GO TO Statements

ASSIGN Statement

Examples of ASSIGN Statement

Assigned GO TO Statement

Example of Assigned GO TO Statement

Arithmetic IF Statement -

Example of Arithmetic IF Statement

Logical IF Statement

Examples of Logical IF Statements

Block IF Statement :

ELSE Statement

ELSE IF Statement

END IF Statement

Simple Block IF Structure

Example of Block IF Statement

Block IF Structure With EL.SE Statement

Example of Block IF Structure With
ELSE Statement

Block IF Structure With ELSE IF
Statements

Example of Block IF Structure With
ELSE IF Statements

Nested Block IF Structure

Example of Nested Block IF Structure

DO Statement

DO Loop Examples

Nested DO L/oops

Nested DO Loop Transfers

Nested DO Loop Examples

Branch to Shared Terminal Statement

Nested DO Loops With Different
Terminal Statements

CONTINUE Statement

CONTINUE Statement Examples

PAUSE Statement

STOP Statement

END Statement

Formatted READ Statement

READ Statement Examples

Formatted WRITE Statement

WRITE Statement Example

PRINT Statement

PUNCH Statement

FORMAT Statement

1 Output Examples

E Input Field

Example Showing E Input Incorrectly Read

Ew.d Input Examples

F Input Examples

F Output Examples

G Output Examples

D Input Field

Scaled F Output

Scaled E Output

Scaled G Output

A Input Examples

R Input Example

O Input Example

Z Input Example

T Output Example

Carriage Control Example

Unformatted WRITE Statement

U
~ v

= \0\0 ®©® P

4-5

4-5
4-5
4-5
4-6
4-7
4-8
4-8
4-8
4-9

1 1
ARV RV RV RV RN,)

U
—
AV

R R R R R A A A A A A A
—
S

—
S

5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-51
5-52
5-53
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
7-1
7-2
7.3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-21.1
7-22
7-23
7-24
7-25
7-26

xii

Unformatted READ Statement
List Directed READ Statement
List Directed Input Examples
List Directed WRITE Statement
List Directed PRINT Statement
List Directed PUNCH Statement
List Directed Output Examples
NAMELIST Statement
NAMELIST Example
NAMELIST READ Statement
NAMELIST Group Format
NAMELIST WRITE Statement
NAMELIST PRINT Statement
NAMELIST PUNCH Statement
BUFFER IN Statement
BUFFER IN Example

BUFFER OUT Statement
OPEN Statement

CLOSE Statement

INQUIRE Statement

Internal File Output Examples
Internal File Input Examples
ENCODE Statement

DECODE Statement

DECODE Example

REWIND Statement
BACKSPACE Statement
ENDFILE Statement
PROGRAM Statement

File Equivalencing Example
BLOCK DATA Statement
Example of BLOCK DATA
Subroutine Statement
Subroutine Call Example
FUNCTION Statement
Function Reference

Statement Function

Examples of Statement Functions
ENTRY Statement

Examples of ENTRY Statements
Using Common

CALL Statement

Function Reference

Statement Function Reference
RETURN Statement

Multiple Return Example
Alternate Return Example
LOCF Result for Character Argument
GETPARM Call

RANSET Call

RANGET Call

DATE Function

JDATE Function

TIME Function

CLOCK Function

DISPLA Call

REMARK Call

SSWITCH Call

EXIT Call

CHEKPTX Call

CHEKPTX Example

RECOVR Call

UNIT Function

EOF Function

IOCHEC Function

LENGTH Subprogram

LABEL Call

MOVLEV Call

MOVLCH Call

CONNEC Call

DISCON Call

OPENMS Call

WRITMS Call

READMS Call

5-22
5-22
5-24
5-24
5-24
5-24
5-25
5-25
5-26
5-26
5-26
5-27

5-27
5-27 .

5-28
5-29
5-29
5-31
5-32
5-33
5-35
5-35
5-36
5-36
5-37
5-37
5-38
5-38
6-2

6-3

6-3

6-3

6-3

6-4

6-4

6-5

6-5

6-6

6-6

6-7

6-9

6-9

6-10
6-10
6-10
6-10
6-11
7-12
7-14
7-14
7-14
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-16
7-16
7-16
7-17
7-18
7-18
7-18
7-18
7-19
7-19
7-19
7-20
7-20
7-21
7-21
7-22

7-27

-7-28

7-29
7-30
7-31
7-32
7-33
7-34

7-35

7-36
7-37
7-38
7-39
7-40
7-41
7-42
7-43
7-44
7-45
8-1

8-2
8-3
8-4
8-5 -
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22

CLOSMS Call

STINDX Call

Random File With Number Index

Random File With Name Index

Subindexed File With Number Index

DUMP Call

PDUMP Call

STRACE Call

LEGVAR Function

SYSTEM Call

SYSTEMC Call

Error Table Entry

Suppressing an Error Message

LIMERR Call

NUMERR Function

Suppressing Fatal Termination

COLSEQ Call

WTSET Call

CSOWN Call

FORTRAN-CYBER Record Manager
Interface Calls

RMOPNX Call

RMKDEF Call

STARTM Call

SMSORT Call

SMSORTB Call

SMSORTP Call

SMMERGE Call

SMFILE Call

SMKEY Call

SMSEQ Call

SMEQU Call

SMOPT Call

SMTAPE Call

SMOWN Cali

SMEND Call

SMABT Call

IDENT Statement

Intermixed COMPASS Code

Program SUBLNK and Function ZEUS

Object Listing for Program SUBLNK

Object Listing for Function ZEUS

Overlay Positioning

Overlay Positioning Showing Common

OVERLAY Statement

OVERLAY Call

Sample Overlay Structure

Format of an OVCAP Directive

Batch Job Set Up for OVCAPS

PMDARRY Call

PMDDUMP Call

PMDLOAD Call

PMDSTOP Call

FTNS Control Statement

Variable Map

Symbolic Constants Map

Procedures Map

Statement Label Map

Entry Point Map

Input/Output Unit Map

Namelist Map

DO Loop Map

Common Equivalence Map

Program Statistics Map

Program MAPS

Reference Map Example

FORTRAN Source Program With
Control Statements

Compilation Only

OPT=0 Compilation

Compilation and Execution

Compilation With COMPASS Assembly
and Execution

7-22
7-22
7-24
7-25
7-25
7-26
7-26
7-26
7-26
7-26
7-27
7-27
7-28
7-29
7-29
7-29
7-30
7-30
7-30

8-2
8-5
8-6
8-6
8-6
8-6.1
8-6.1
8-6.1
8-6.1
8-7
8-7
8-7
8-8
8-8
8-8
8-8
8-8
8-9
8-10
8-11
8-12
8-13
9-1
9-2
9-3
9-4
9-4
9-5
9-5
10-4
10-5
10-5
10-5
11-1
11-11
11-13
11-13
11-14
11-14
11-15
11-15
11-16
11-16.1
11-16.1
11-16.2
11-17
12-1
12-2
12-2
12-3

12-3

60481300 E

12-6

12-7
12-8

12-9
12-10

12-11
12-12

12-13
12-14
12-15
12-16
12-17
12-18

12-19
12-20
12-21
12-22
12-23

12-24
12-25
12-26
12-27
12-28
12-29
12-30
12-31
12-32

12-33

12-34
12-35
12-36
12-37
12-38
12-39
12-40

12-41
12-42

12-43
12-44

Compilation and Execution With
FORTRAN Subroutines and
COMPASS Subprogram

Compilation With Binary Card Output

Loading and Execution of Binary
Program

Compilation and Execution With
Relocatable Binary Deck

Compilation and Execution With
Different Data Decks

Preparation of Overlays

Compilation and Two Executions
With Overlays

Program OUT With Control Statements

Program OUT Output

Program B

Program B Output

Program STATES

Sample Input and Output for
Program STATES

Program EQUIV

INTEGER and REAL Internal Formats

Program EQUIV Output

Program COME

Storage Layout for V ariables in
Program COME

Program COME Output

Program LIBS

Program LIBS Output

Program ADD

Program ADD Input and Output

Program PASCAL

Program PASCAL Output

Program PIE and Output

Program X, Function EXTRAC, Output:
INTEGER Declaration Omitted From
Main Program

Program X, Function EXTRAC, Output:
INTEGER Declaration Included in
Main Program

Program ADIM and Subroutine IOTA

Program ADIM Output

Program ADIM2

Program ADIM2 Output

Program CIRCLE, Function DIM, Output

Rectangle and Circumscribed Circle

Program Circle With Correction
and Output

Program BOOL and Output

Program BOOL With Correction
and Output

Program EASYIO

Sample Input and Output for
Program EASYIO

60481300 E

12-4
12-4

12-5
12-5

12-6
12-7

12-8

12-8 .

12-9
12-9
12-9
12-9

12-10
12-10
12-10
12-11
12-11

12-11
12-12
12-12
12-13
12-14
12-15
12-15
12-16
12-16

12-17

12-17
12-18
12-19
12-20
12-21
12-22
12-22

12-22
12-23

12-24
12-24

12-25

12-45
12-46

12-47
12-48
12-49

12-50
12-51

12-52
12-53
12-54
12-55

12-56
12-57
12-58
12-59

Program BLOCK

Sample Input and Output for
Program BLOCK

Programs ONE and TWO

Program PMD2

Post Mortem Dump Output for
Program PMD2

Program PMD

Post Mortem Dump Output for
Program PMD

Program DBUG

Debug Session

Program GOTO

Sample Input and Output for
Program GOTO

Program ASK

Program ASK Output

Program SCORE and Subroutine AVG

Sample Input and Output for
Program SCORE

TABLES

W W
U
W N -

Preey
w &

-1
-1

— =00 O~ Tl\l o\

=

FORTRAN Character Set

Array Element Position

Statement Order

Correspondence of Data Types in DATA
Statements

Arithmetic Operators

Resulting Data Type for X1%¥X2

Resulting Data Type for X1+X2,X1-X2,
X1*X2 or X1/X2

Character Operator

Relational Operators

Logical Operators

Result of Logical Operators

Result of Logical Operators in Boolean
Expressions

Repeatable Edit Descriptors

Nonrepeatable Edit Descriptors

Printer Control Characters

Characteristics of Procedures and
Subprograms

Intrinsic Functions

Summary of Mathematical Intrinsic
Functions

STATIC Capsule Loading Routines

Owncode Exit Numbers

Argument List Format

Post Mortem Dump Arrays

Defaults for FTN5 Control Statement

12-25

12-26
12-27
12-28

12-29
12-30

12-31
12-33
12-33
12-34

12-34
12-35
12-35
12-36

12-36

mee
e
=)

)
[

1 1
BW W

U
N~~~ oo\

\|J1U‘!V'I\N \A\A\'A\A\A WAWN
o

1

TIO\
N

=

-
N &0 Wl
-

xidi/xiv |

NOTATIONS

Certain notations are used throughout the manual with ees In language syntax, an ellipsis
consistent meaning. The notations are: Ellipsis indicates that the preceding
optional item in brackets can
be repeated as necessary.
UPPERCASE In language syntax, uppercase
indicates a statement keyword :
or character that is to be . In program examples, an

written as shown. . ellipsis indicates that other
. FORTRAN statements or parts of
Lowercase In language syntax, lowercase Ellipsis the program have not been shown
indicates a name, number, because they are not relevant
symbol, or entity that is to be to the example.
supplied by the programmer.
A
[1 In language syntax, brackets Delta A delta indicates a blank
Brackets indicate an optional item that character.

can be used or omitted.

{ } In language syntax, braces

Braces indicate that only one of the
vertically stacked items can
be used.

60481300 B XV

LANGUAGE ELEMENTS 1

—

A FORTRAN program is written to perform a specific
sequence of operations. Each FORTRAN program
uniquely deals with the solution of a particular problem or
set of pfoblems. Each program typically works with input
values, performs calculations and data manipulation, and
produces output values that are either printed or saved in
some way. This manual describes the full capabilities of
FORTRAN Version 5. The FORTRAN programmer must
select and use the capabilities ‘needed for each particular
program.

CDC offers guidelines for the use of the software
described in this manual. These guidelines appear in
appendix G. Before using the software described in this
manual, the reader is strongly urged to review the content
of this appendix. The guidelines recommend use of this
software in a manner that reduces the effort required to
migrate application programs to future hardware or
software systems.

WRITING FORTRAN STATEMENTS

The FORTRAN character set is used for writing FORTRAN
statements. The FORTRAN character set consists of 26
letters, 10 digits, and 13 | pecial characters. The
FORTRAN character set is shown in table 1-1.

TABLE 1-1. FORTRAN CHARACTER SET

Type Characters

b=

Alphabetic through 7

o

Numeric through 9

Special
Characters

equal

plus

minus

asterisk

slash

left parenthesis
right parenthesis
comma

decimal point
currency symbol
apostrophe (CDC graphic 1)

+ H

- A v S %)

The representations of characters are described in
appendix A. In all but two cases, the FORTRAN
character and the representation are identical. If the
CDC 63-character set or 64-character set is in use, the
two exceptions are ' and ", which are represented as t and
#, respectively. If the ASCIl 63-character set or
64-character set is in wuse, the characters and
representations are all identical.

60481300 D

Characters that arz not included in the F
character set can be used in character and
n apostrophe, H, and
format specifications; and in comment lines.

FORTRAN statements can be written in normal
(nonsequenced) mode

written entirely in one
f job

The SEQ parameter of the
escribed in section 11) selects

sequenced mode.

NONSEQUENCED MODE

The FORTRAN source program can be written on the
coding form shown in figure 1-1. Each line on the coding
form represents a source line, either a card image or
terminal line.

The lines coded in a FORTRAN program are initial lines,
continuation lines, and comment lines. Lines can also be
compiler directives. The column usage for nonsequenced
mode lines is shown in figure 1-2.

A nonsequenced mode line consists of characters in
columns 1 through 72. The identification field in
columns 73 through 80 is not defined as part of the line.

Initial Lines

Each statement contains an initial line. The initial line of
a statement is written in columns 7 through 72. Blanks
can be used to improve readability. The initial line of a
statement can contain a statement label in columns 1
through 5.

Continuation Lines

Statements are coded in columns 7 through 72. If a
statement is longer than 66 characters, it can be
continued on as many as 19 continuation lines. A
character other than blank or zero in column 6 indicates a
continuation line. Columns 1 through 5 must be blank.

The length of a statement cannot exceed 1320
characters. The maximum length includes one initial line
and 19 continuation lines, at 66 characters per line since
the statement is contained in columns 7 through 72.

Statement Labels

A statement label (any 1l- to 5-digit positive nonzero
integer) can be written in columns 1 through 5 of the
initial line of a statement. A statement label uniquely
identifies a statement so that it can be referenced by
other statements. Statements that will not be referenced
do not need labels. Blanks and leading zeros are not
significant. lLabels need not occur in numerical order, but

1-1

GE%‘R&& FORTRAN CODING FORM

PROGRAM NAME
noute- DATE Irmo'
' STATE. c FORTRAN STATEMENT
Y| wenr |9 0= 2eR0 1= ONE 2-w0 m
M NO. T = ALPHA O 1=ALPHA S S=ALPHA Z
1f2y344)5 [6]7}8)910fvraprapregespropzgragsogeofanyze jaa)2e)28yas) 2228 29 30] 51 (523324 35196137, 8129 o] 2y 3y a5y 46147 pam am 5o 05259 34 5y 5 o7 sageeyeoengeay 1641850667 8860y 10]3, 72| 75y 74y 7578 724 781 91 00
i P Loy vva v v as sl rera g Lyt vyt ia gl
Lt lllIllllIlJilllI]llllIIIIIIIIIIIIlIl|l|IIIIIlIIIIllllllllllllllll
TH|LS UCES A PASCAL TR! LE SIRIMS oo i vl Ly
L1 et ettt ra v v rre v v e by rr e e g el sttt
i1 IJ15|)||11|||11:|1|||1|||1|1||11 L i ety v pa el
[M.lo..l.a.‘l.,.i.s......“... Lo 0 bbbttt pr by i bl syt
110, 4 | IL) WOTY = i Lo b faas v b veea bennagaaa e by g
L1l LNT (43 PASEAL T NGILE " X1, (15 l/iml |ZJISgh'||| |_L|M]'D|(1|S|)|:||1|1| vl
111 IL x ,JlllIlllllllllllllllllIllllllllIllllllllllllllll
111 IllIlllllllllllllllllI||IIIIIIIIlIIIIIIIIIIIIIIIIllllllllllllllll
11l éﬁOlJ:l’llll‘h;lz;ll-linlnx||||||||“||1|1||||11:||||||||l|a|||||||1|:
[Dﬂ_ﬁm_[&_iglm:lll‘hjllllllxllllllllllllllllllIllllllllllllllllllIllIIII
011 | kiR 3 Lo by by e e ve v e eirra by by i1
L1 1Rul N| 213'-1111151)”11” Lo bbb v i gl vty
5101 1) cm!_mﬁllllllllllllllIlllllllllllllllllll|l|llllIllllllllllllllll
G Lttty bbbl e e e v e et bbb e bbbttt bl it
111 %lePllllllllllllllllllIllllllIllllllllllllllllIJ Lty b et
lllEuql|lj||lll||lll|1||llllllllllllllllllllllilll NN NN
11 Lid by g e et v e br v e s v e b s b riat i i lii ittt
11} llllIIlllIIlIIIlIIIIIlllllllllllllljlllllJllIlIllIIllllIIlllllll
111 Lot P b b v e b b eev e ey v bt n e ar v bt taet i ittt
112)3)18]017] 8]0 [10]v112[13)1e 15161718 |10§20) 241 22§23) 2425 26 27 20 20]30) 31)32)33|34) 35 36{37)38) 39 | 4D{ 41 42| 43| 4945|451 47 [48}48 50 | 1) 52| 53} 5455 | 5657 58} 5960 1{62] 63 | 4{ 65 {66} 67) 6869} 0 | 1 72 13} 74 | 5] 761 77) 78 9 00

Figure 1-1. Program on FORTRAN Coding Form

a given label must not be defined more than once in the
same program unit. A label is known only in the program
unit containing it and cannot be referenced from a
different program unit. Any statement can be labeled,
but only FORMAT and executable statement labels can be
referenced by other statements.

Comment Lines

One of the characters C or * in column 1 indicates a
comment line. Comments do not affect the program and
can be placed anywhere within the program. Comments
can appear between an initial line and a continuation line,
or between two continuation lines. Comments provide a
method of placing program documentation in the source
program.

Any line with blanks in columns 1 through 72 is also a
comment line. Comment lines following an END

statement are listed at the beginning of the next program
unit.

Additional characters that are not in the FORTRAN
character set can be included in comment lines.
Comment lines can include any characters listed in
appendix A for the character set being used.

Columns 73 through 80

Any identification information can appear in columns 73
through 80 and is not considered part of the statement or
the line. Characters in the identification field are ignored
by the compiler but are copied to the source program
listing. If input comes from other than cards, columns 73
through 90 can be used for identification information.

60481300 D

Line:

Unlabeled Initial Line:

1 67 72
|statement |

L blank or zero

Labeled Initial Line:

1 67
liabel] | [statement |

L blank or zero

Continuation Line:

67 72
continuation of statement]

L any character except blank or zero

Comment Line:

12 72
C jcomment]
* |comment 1
|all blanks]
C$ Directive:

1 7 72
c$ |directive |

Figure 1-2. Normal Column Usage

60481300 B 1-3

SYMBOLIC NAMES

A symbolic name is assigned by the user and consists of

one through letters and digits (ANSI only allows six),

beginning with a letter. Symbolic names are used for the
following:
Main program name
Common block name
Subroutine name
External function name
Block data subprogram name
Variable name
Array name
Symbolic constant name
Intrinsic function name

Statement function name

Dummy procedure name

= e

Names which are FORTRAN keywords can be used as
user-assigned symbolic names without conflict. For
example:

PROGRAM TEST
PRINT = 1.0

PRINT*, PRINT:

The name PRINT is legally used as a variable name and
FORTRAN keyword.

In general, however, it is good programming practice to
avoid naming conflicts by assigning unique names to
program entities. Certain of these conflicts are illegal
and are diagnosed. For example:

PROGRAM ALPHA
ALPHA = 1.0

illegally uses the name ALPHA as a program unit name
and a variable name.

CONSTANTS

A constant is a fixed quantity. The seven types of
tants are integer, real, double precision, complex,
logical, and character constants. The
PARAMETER statement described in section 2 can be
used to declare a symbolic constant. Integer, real, double

ean constants are considered

arithmetic constants.

INTEGER

An integer constant is a string of 1 through 18 decimal
digits written without a decimal point, as shown in
figure 1-5. It can be positive, negative, or zero. If the
integer is positive, the plus sign can be omitted; if it is
negative, the minus sign must be present. An integer
constant must not contain a comma. The range of an
integer constant is - (259.1) to 2591
(259-1 =576 460 752 303 423 487).

[+] d[d]...
d Is a decimal digit.

Figure 1-5. Integer Constant

Integers used in multiplication, division, and
exponentiation, whether constant or variable, should be in
the range -(248_1) to 2481 (248.1 - 281474976 710 655).
The result of such operations must also be in this range.
For integer addition and subtraction (where both operands
are integers), the full 60-bit word is used.

Examples:
237
-74
+136772
-0024
Examples of invalid integer constants:
46. Decimal point not allowed.

23A Letter not allowed.

7,200 Comma not allowed.

60481300 C

When an integer constant is _used as a subscript, the
maximum value is 217-1 (217-1=131071) and minimum
is -(217-1) except when LCM=G is selected; the range
then is -(220-8) through 220-8,

When an integer constant is used as an index in a_DO
statement or implied DO, the maximum value is 2172
(217-2=131070) and the minimum value is -(217-2)
except when DO=LONG is selected or a DO (LONG=1)
directive is in effect; a DO index then can exceed 217_3,

When values are converted (in an expression or assignment
statement) from real to integer or from integer to real, the
valid range is also from -(248.1) to 248.1. For values
outside this range, the high erder bits are lost and no
diagnostic is provided.

REAL

A real constant consists of a string of decimal digits
written with a decimal point or an exponent, or both, as
shown in figure 1-6. Commas are not allowed. The plus
sign can be omitted if the exponent is positive, but the
minus sign must be present if the exponent is negative.

[+] coeff
[£] coeff E [+] exp
[+t] n E [%] exp
coeff Is a coefficient in the form of a real
constant:
n.
n.n
.n
n Is an unsigned integer constant.
exp Is an unsigned integer exponent {base 10).

Figure 1-6. Real Constant

The range of a real constant is 10-293 o 10+322; if
this range is exceeded, a diagnostic is printed. Precision is
approximately 14 decimal digits, and the constant is stored
internally in one computer word.

Examples:

7.5
-3.22
+4000.
5

Examples of invalid real constants:
33,500. Comma not allowed.
2.5A Letter not allowed.

Optionally, a real constant can be followed by a decimal
exponent, written as the letter E and an integer constant
indicating the power of ten by which the number is to be
multiplied. If the E is present, the integer constant
following the letter E must not be omitted. The plus sign
can be omitted if the exponent is positive, but the minus
sign must be present if the exponent is negative.

60481300 D

Examples:
42,E1 Value 42. X 101 =420.
.00028E+5 Value .00028 X 10° = 28.
6.205E6 Value 6.205 X 106 = 6 205 000.
700.E-2 Value 700. X 10-2=7.

Example of invalid real constant:

7.2E3.4 Exponent not an integer.

DOUBLE PRECISION

A double precision constant is written in the same way as a
real constant with exponent, except that the exponent is
prefixed by the letter D instead of E, as shown in
figure 1-7. Double precision values are represented
internally by two computer words, giving additional
precision. A double precision constant is accurate to
approximately 29 decimal digits. The plus sign can be
omitted if the exponent is positive, but the minus sign must
be present if the exponent is negative.

[£] coeff D [] exp
[t] n D [] exp
coeff Is a coefficient in the form of a real
constant:
n.
n.n
.n
n Is an unsigned integer constant.
exp Is an unsigned integer exponent (base 10).

Figure 1-7. Double Precision Constant

Examples:
5.834D2 Value 5.834 X 102 = 583.4
14.D-5 Value 14. X 10-> =.00014
9.2D03 Value 9.2 X 103 = 9200.
3120D4 Value 3120. X 104 = 31 200 000.

Examples of invalid double precision constants:

7.2D Exponent missing.
D5 Exponent alone not allowed.
2,001.3D02 Comma illegal.

3.14159265 D and exponent missing.

COMPLEX

Complex
constants
enclosed i

s a pair of real or integer
3 separated by a comma and
wn in figure 1-8.

(real,imag)
real Is a real or integer constant for the real
part.
imag Is a real or integer constant for the
imaginary part.

Figure 1-8. Complex Constant

Examples:
(1, 7.54) 1. +7.54i
(-2.1E1, 3.24) -21. +3.24i
(4, 5) 4.0 +5.0i
(., -1.) 0.0 - 1.0

The first constant represents the real part of the complex
number, and the second constant represents the imaginary
part. The parentheses are part of the constant and must
always appear. FEither constant can be preceded by a plus
or minus sign. Complex values are represented internally
by two consecutive computer words containing real values.

Examples of invalid complex constants:

(12.7D-4 16.1) Comma missing and double
precision not allowed.

4,76 +2,1.942 Parentheses missing.

Real constants which form _the complex constant can
range from 10-293 to 10+322, Division of complex
numbers might result in underflow or overflow even when
this range is not exceeded.

LOGICAL

A logical constant takes one of the two forms shown in
figure 1-9. The periods are part of the constant and must
appear.

.TRUE.
.FALSE.

.TRUE. Represents the logical value true.

.FALSE. Represents the logical value false.

Figure 1-9. Logical Constant
Examples:

TRUE.
FALSE.

1-6

Tz —I Cnm@‘)
.= ©

Examples of invalid logical constants:

o

JRUE No terminating period.
.F. Abbreviation not recognized.

60481300 B

CHARACTER

A character constant has the form shown in figure 1-13.
Apostrophes are used to enclose the character string.
Within the character string, an apostrophe is represented
by two consecutive apostrophes.

s Is a string of characters.

Figure 1-13. Character Constant

60481300 E

-implicitly, or by default as integer.

The minimum number of characters in a character
constant is one, and the maximum number of characters in
a character constant is (215-1) or 32767. The length is
the number of characters in the string. Blanks are
significant in a character constant. Any characters in the
operating system character set can be used.

Character positions in a character constant are numbered
consecutively as 1, 2, 3, and so forth, up to the length of
the constant. The length of the character constant is
significant in all operations in which the constant is used.
The length must be greater than zero.

Examples:

'ABC!
123
'YEAR''S'

Examples of invalid character constants:

'ABC Terminating apostrophe is missing.

i

Invalid number of apostrophes.

'YEARS'S!

VARIABLES

A variable represents a quantity with a value that can be
changed repeatedly during program execution. V ariables
are identified by a symbolic name of one to six of se
letters or digits, beginning with a letter. A variable is
associated with a storage location. Whenever a variable is
used, it references the value currently in that location. A
variable must be defined before being referenced for its
value. The types ‘of variables are integer, real, double
precision, complex, B logical, and character.
V ariables typed by default are integer if the first letter is
I, J, K, L, M, or N, and are real if the first letter is any
other letter. Implicit and explicit typing of variables is
described in section 2, Specification Statements.

INTEGER VARIABLES

An integer variable is a variable that is typed explicitly,
An integer variable
occupies one storage word. The range restrictions for
integer variables are the same as for integer constants.
See section 4 for restrictions on integers used in DO
statements.

Examples:

ITEM1
NSUM
JSUM
N72

J
K2504

REAL VARIABLES

A real variable is a variable that is typed explicitly,
implicitly, or by default as real. The value range is
10-293 through 10+32Z with approximately 14 significant
digits of precision. A real variable occupies one storage
word.

1-7

Examples:

AVAR
SUM3
RESULT
TOTAL2
BETA
XXXX

DOUBLE PRECISION VARIABLES

A double precision variable is a variable that is typed
explicitly or implicitly as double precision. The value of a
double precision variable can range from 10-293 through
10+322 with approximately 29 significant digits of
precision. Double precision variables occupy two
consecutive storage words. The first word contains the
more significant part of the number and the second
contains the less significant part.

Example:
IMPLICIT DOUBLE PRECISION (A)
DOUBLE PRECISION OMEGA, X, IOTA

The variables OMEGA, X, IOTA, and all variables whose
first letter is A are double precision.

COMPLEX VARIABLES

A complex variable is a variable that is typed explicitly or
implicitly as complex. A complex variable occupies two
storage words; each word contains a real number. The

first word represents the real part of the number and the
second represents the imaginary part.

Example:

COMPLEX ZETA, MU, LAMBDA

LOGICAL VARIABLES

A logical variable is a variable that is typed explicitly or
implicitly as logical. A logical variable occupies one
storage word.

Example:

LOGICAL L33, PRAVDA, VALUE

BOOLEAN VARIABLES

A Boolean variable is a variable that is typed explicitly or
implicitly *as Boolean. A Boolean variable occupies one
storage word. Hollerith, octal, or hexadecimal values are
generally assigned to Boolean variables.

Example:

BOOLEAN HVAL, 277, R34

CHARACTER VARIABLES

A character variable is a variable that is typed explicitly
or implicitly as character. The length of the character
variable is specified when the variable is typed as
character.

1-8

Example:

CHARACTER NAM*15, C3*3

ARRAYS

A FORTRAN array is a set of elements identified by a
single name. The name is composed of one to sev
letters and digits and begins with a letter. Each array
element is referenced by the array name and a subscript.
The type of the array elements is determined by the array
name in the same manner as the type of a variable is
determined by the variable name. The array name can be
typed explicitly with a type statement, implicitly with an
IMPLICIT statement, or by default typing. The array
name and its dimensions must be declared in a
DIMENSION, COMMON, or type statement.

When an array is declared, the declaration of array
dimensions takes the form shown in figure 1-14. Arrays
can have one through seven dimensions.

array (d[,d}. . .)
array Is the symbolic name of the array.

d Specifies the bounds of an array dimension
and takes the form:

[lower:] upper

lower Optionally specifies the lower bound of the
dimensic wer bound can be an
intege! lean expression with a
positive, zero, or negative value. If omitted,
the lower bound is assumed to be 1.

upper Specifies the upper bound of the dimension.
The upper bound can be an integel
Boolean expression with a positive, zero, or
negative value. The upper bound must be
greater than or equal to the lower bound.
In the case of an assumed-size array, the
upper bound of the last dimension can be
specified as *

Figure 1-14. Declaration of Array Dimensions

The dimension bounds can be positive, negative, or zero.
If the lower bound is omitted, the lower bound is assumed
to be one. In this case, the upper bound must be positive.
The general rule is that the upper bound must always be
greater than or equal to the lower bound. The size of
each dimension is indicated by the distance between the
lower bound and upper bound. For example:

DIMENSION RX(0:5)

declares a l-dimensional array of six elements such as
that shown in figure 1-15.

DIMENSION TABLE(4,3)

declares a 2-dimensional array of four rows and three
columns, for a total of twelve elements such as that
shown in figure 1-16.

INTEGER STOR(4,6,3)
declares a 3-dimensional array of six rows, six columns

and three planes, for a total of one hundred and eight
elements.

60481300 B

The span of an array dimension is given by (u-£+1) where u
is the subscript upper bound and £ is the subscript lower
bound. An array of type integer, | real, or logical
occupies n words of storage, where n is the product of the
spans of all dimensions. An array of type complex or
double precision occupies 2*n words. An array of type
character occupies (n*len+offset+9)/10 words, where len is
the length in characters of an array element, and offset is
the starting character position (0 to 9) of the array in the
first word of the array storage.

An array in central memory must occupy less than 217
words. An array in extended memory can occupy up to
220.8 words if LCM=G is selected.

must not include a function
reference or array element reference. Presence of a
variable makes the size of the array adjustable. Presence
of an asterisk as the upper bound of the last dimension
makes the array an assumed-size array. An assumed-size
array can only be used in a subroutine or function, as
described under Procedure Communication in section 6.

ARRAY STORAGE

The elements of an array have a specific storage order,
with elements of any array stored as a linear sequence of
storage words. The first element of the array begins with
the first storage word or character storage position, and
the last element ends with the last storage word or
character storage position.

The number of storage words reserved for an array is
determined by the type of the array and its size. For real,
integer, | 1y and logical arrays, the number of storage
words in an array equals the array size. For complex and
double precision arrays, the number of storage words
reserved is twice the array size. For character arrays, the
number of words is calculated from the number of
characters stored, at ten characters per storage word. For
example, an array defined as CHARACTER*5 X(8), that is,
eight 5-character elements, would require storage for 40
characters, or 4 storage words at offset zero.

Storage patterns for a l-dimensional, 2-dimensional, and
3-dimensional array are shown in figure 1-15, figure 1-16,
and figure 1-17, respectively. Arithmetic values are
shown for the array elements, but an array can be any
data type. Array elements are stored in ascending
locations by columns. The first subscript value increases
most rapidly, and the last subscript value increases least
rapidly.

Row 0 10.0
Row 1 55.0
Row 2 11.2
Row 3 72.6
Row 4 91.9 fee—Value of (4) is 91.9
Row 5 7.1

Figure 1-15. 1-Dimensional Array Storage

Columnk1 Column2 Column3
Row 1 44 10 105
Row 2 72 20 200 ——Value of (2,3)
Row 3 3 11 30 is 200
Row 4 91 76 714

\
Value of (3,2) is 11

Figure 1-16. 2-Dimensional Array Storage

ARRAY REFERENCES

Array references can be references to complete arrays or
to specific array elements. A reference to a complete
array is simply the array name. A reference to a specific
element involves the array name followed by a subscript
specification. An array element reference is also called a
subscripted array name.

Plane 1

Column1 Column2 Column3

Value of (1,3,2) is 7

Row 1 3 7 4
Row 2 7 | 8 9
Row 3 0 33 2

Value of (3,2,1) is 33

Plane 2

Column2 Column 3

Column 1
Row 1_L— 22

51 7
Row 2 0 98 6 Plane 3
Row 3 3 207 99 — Column1 Column2 Column 3
Row 1’_-l—->2 1 552
Row 2 77 60 3
Value of (2,1,3) is 77 %] 86 100 8

60481300 D

Figure 1-17. 3-Dimensional Array Storage

1-9

A reference to the complete array references all elements
of the array in the order in which they are stored. For
example:

DIMENSION XT(3)
DATA XT/1.,2.,3./
CALL CALC(XT)

uses the array reference XT in the DATA statement and
the CALL statement.

A reference to an array element references a specific
element and takes the form shown in figure 1-18.

array (el,e]. . .)
array Is the symbolic name of the array.

e Is a subscript expression that i

-

expression. Each subscript expre: has a
value that is within the bounds of the cor-
responding dimension.

Figure 1-18. Array Element Reference

An array element reference must specify a value for each
dimension in the array. Array element references are not
legal unless a value is supplied for each dimension. There
can be up to seven dimensions in an array element.

An array element reference specifies the name of the
array followed by a list of subscript expressions enclosed
in parentheses. FEach subscript expression can be an
integer,

A subscript

and array element
references; however, evaluation of a function reference
must not alter the value of any other subscript expression
in the array element reference.

Each valu must not be less
than the lower bound or greater than the upper bound of
the dimension. If the array is an assumed-size array with
the upper bound of the last dimension specified as
asterisk, the value of the subscript expression must not
exceed the actual size of the dimension. The results are
unpredictable if an array element reference exceeds the
size of an array. For each array element reference,
evaluation of the subscript expressions yields a value for
each dimension and a position relative to the beginning of
the complete array.

The position of an array element is calculated as shown in
table 1-2. The position indicates the storage location of
an array element.
Example 1:

INTEGER DZ(12)

DZ(6)= 79

The array element reference DZ(6) refers to the element
at position 6 in the array, that is, (1+(6-1)).

TABLE 1-2. ARRAY ELEMENT POSITION

Dimensions Position of Array Element

B 1 1+ (s1-31) ﬁj=7

(s1-41)
(s2-32)*m

+

(AN
—
+ +

(s1-31)
fsz-qz)*nl
$3-33)*n*n)

+ + +

~N e oo
—

(s1-31)
gsz-azg*nl
$3-33)*n2*n1
(s4-ja)*n3*nz*n
s5-Jj5 ;*n4*n3*ng*n1
S6-J6)*n5*ng*n3*na*ng
(s7-37)*ng*ns*ng*n3*ng*n)

+ ++ A+ +

Ji Lower bound of dimension i.

ks Upper bound of dimension §.

n; Size of dimension i. If the lower
bound is one, nj=kj. Otherwise,
ni=(kj-ji+l).

S§ Value of the subscript expression
specified for dimension 1.

Example 2:

COMMON /CHAR/ CQ
CHARACTER*5 CQ(6,4)

CQ6,3) = RUN'

The array element reference CQ(6,3) refers to the
element at position 18, that is, (1+(6-1)+(3-1)*6). The
character storage position is 86, that is, l+(element
position -1)*character length. Character position 86
indicates that storage for the element begins at the sixth
character position in the ninth element of the array. (The
COMMON declaration causes CQ to begin on a word
boundary; in general, the compiler does not necessarily
align character variables on word boundaries.)

CHARACTER SUBSTRINGS

When a character variable or character entity is declared,
the entire character string can be defined and
referenced. Specific parts of the character string can
also be defined or referenced with character substring
references. A character entity must be declared with the
CHARACTER statement described in section 2. The
declaration of a character entity specifies the length in
characters.

SUBSTRING REFERENCES

If the name of a character entity is used in a reference,
the value is the current value of the entire string.

60481300 D

Example:

CHARACTER*6 S1,S2
DATA S1/'STRING'/
S2 =51

The reference to Sl is a reference to the full string
'STRING'. A reference to part of the string would be
written as a character substring reference. A character
substring reference has the form shown in figure 1-19.

char ([first] : [last])

char Is the name of a character variable or array
and can be an array element reference.

first Optionally specifies an integer ubl
preei 1 expression
for the position of the first character of the
substring. |f first is omitted, the value is
one. :
last

gan: expression
for the position of the last character in the
substring. If last is omitted, the value is
the length of the string.

Figure 1-19. Character Substring Reference

va :
g The expression can contain array elemen
references and function references, but evaluation of a
function reference must not alter the value of the other
expression in the substring reference. If the specification
of first is omitted, the value is one and all characters
from one to the value of the specification of last are
included in the substring.

The specification of last in the substring is an expression
subject to the same rules as the specification of first. If
last is omitted, the value is the length of the string and all
characters from the specified first position to the end of
the string are included in the substring. For a string
length len, the values of first and last must be:

1< first<last<len

For example, substring references to the string S1 with
the value 'STRING' could be any of the following:

51(1:3) Value 'STR!'
S1(3:4) Value 'RI'
S1(4:) Value 'ING'
S1(:4) Value 'STRI'
51(:) Value 'STRING'

Note that the substring reference S1(:) has the same
effect as the reference S1, since all characters in the
string are referenced.

60481300 D

SUBSTRINGS AND ARRAYS

If a substring reference is used to select a substring from
an array element of a character array, the combined
reference * includes specification of the array element
followed by specification of the substring. For example:

CHARACTER*8 Z5(5)
CHARACTER*4 RSEN

Z5(4)(5:6)=F G
RSEN=ZS(1)(:4)

The first reference refers to characters 5 and 6 in
element 4 of array ZS. The second reference refers to
the first four characters of the first element of array ZS.

STATEMENT ORDER

The order of various statements within the program unit is
shown in table 1-3. Within each group, statements can be
ordered as necessary, but the groups must be ordered as
shown. Statements that can appear anywhere within more
than one group are shown on the right in boxes that extend
vertically across more than one group.

A PROGRAM statement can appear only as the first
statement in a main program. The first statement of a
subroutine, function, or block data subroutine is
respectively a SUBROUTINE statement, FUNCTION
statement, or BLOCK DATA statement. The END
statement is the last statement of each of the preceding
program units.

Comments can appear anywhere within the program unit.
Note that any comment following the END statement is
considered part of the next program unit.

FORMAT statements can appear anywhere in the program
unit.

ENTRY statements can appear anywhere in the program
unit, subject to two restrictions. An ENTRY statement
cannot appear within the range of a DO loop (between the
DO statement and the terminating statement) or within a
block IF construction (between the IF statement and the
ENDIF statement). The ENTRY statement cannot be used
in the main program unit, where an alternate entry point
would have no meaning.

Specification statements in general precede the
executable statements in the program unit. The
nonexecutable specification statements describe
characteristics of quantities known in the program unit,
and the executable statements describe the actions to be
taken.

All specific precede all DATA
statements, NA statement function
definitions, and ments. Within the
specification statements, all IMPLICIT statements must
precede all other specification statements except
PARAMETER statements. PARAMETER statements can
appear anywhere among the specification statements, but
each PARAMETER statement must precede any

1-11

references to i:he symbolic constant defined by the
PARAMETER statement.

All statement function definitions must precede all
executable statements in the program unit. Statement

function definitions cannot be “used in block data Executable statements must follow all specification
subroutines. statements and any statement function definitions.

Executable statements such as assignment, flow control,
DATA statements can be used anywhere among statement or I/O statements can appear in whatever order required
function definitions and executable statements. in the program unit. Executable statements cannot be

used in block data subroutines.

The END statement must be the last statement of each
program unit.

TABLE 1-3. STATEMENT ORDER

Statement

PROGRAMT, SUBROUTINE, FUNCTION, or BLOCK DATA

IMPLICIT ’ PARAMETER FORMATTT ENTRY 1

(must (except within
INTEGER precede range of block IF
REAL first or DO Toop)
DOUBLE PRECISION reference)
COMPLEX ' {Type specification
LOGICAL statements)
CHARACTER

DIMENSION
EQUIVALENCE
COMMON

SAVE
EXTERNAL
INTRINSIC J

(Specification statements)

Statement function definition't

Assignment

DO
CONTINUE
IF

ELSE
ELSEIF
ENDIF ¢ (Executable statements)™
GOTO
ASSIGN
CALL
RETURN
PAUSE
STOP J DATA
OPEN
CLOSE .
INQUIRE
READ
WRITE
PRINT

¢ (Executable I/0
statements)tt

D)
REWIND
‘BACKSPACE
ENDFILE

END

™Cannot be used in a BLOCK DATA subprogram.
tCannot be used in a main program or BLOCK DATA subprogram.

1-12 60481300 D

SPECIFICATION STATEMENTS 2

Specification statements are nonexecutable and are used
to specify the characteristics of symbolic names used in
the program. Specification statemen must appear
before all DATA statements, [NAMELIST statements,
statement function definitions, an able statements
in the program unit.

DATA statements are not specification statements but
are described in this section.

The specification statements are:
o IMPLICIT

o DIMENSION

e PARAMETER

e EQUIVALENCE

¢ COMMON

e SAVE
o EXTERNAL
e INTRINSIC

e Type (INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, BOOLEAN; LOGICAL, CHARACTER)

5

The IMPLICIT and type statements are used to specify the
data type of variables. Default typing of variables takes
place unless the IMPLICIT statement or the type
statements are used to change the data type of specific
variables. Any IMPLICIT statements must precede all
other specification statements, except PARAMETER
statements.

The DIMENSION statement is used to specify the number
of dimensions in an array and the bounds for each
dimension.

The PARAMETER statement is used to give a symbolic
name to a constant. PARAMETER statements can be
used anywhere among the specification statements, but
each symbolic constant must be defined in a PARAMETER
statement before the first reference to the symbolic
constant.

The EQUIVALENCE, COMMON, and LEVEL statements
are used to define the storage characteristics of variables,
or to define whether storage can b

The SAVE statement is used to preserve the values of
variables after execution of a RETURN or END statement
in a subprogram. Variables that would become undefined
remain defined and can be used in any subsequent
executions of the same subprogram.

60481300 B

The EXTERNAL and INTRINSIC statements are used to
control the recognition of function names. The
EXTERNAL statement specifies that a function name
refers to a user-written function rather than an intrinsic

- function. The INTRINSIC statement specifies that a

function name refers to an intrinsic function rather than a
user-written function.

If any specification statement appears after
cutable statement, DATA statement, IF
ment, or statement function definition, a fatal
c is issued.

DATA statements are used to give initial values to
variables. DATA statements must appear after all
specification statements in the program unit. DATA
statements can appear anywhere among the statement
function definitions and executable statements. Usually,
DATA statements are placed after the specification
statements but before the statement function definitions
and executable statements. A variable is considered
undefined until a value is assigned with a DATA
statement, input statement, or assignment statement. A
variable must be defined before the first reference to the
value of the variable.

TYPE STATEMENTS

Each variable, array, symbolic constant, statement
function, or external function name has a type. Entities
yped as integer, real, double precision, complex,
logical, or character. The name of a main
proggam, subroutine, or block data subroutine cannot be
typed.

Default typing occurs in the absence of any implicit
typing or explicit typing. The type of the symbolic name
is implied by the first character of the name. The letter
I, J, K, L, M, or N implies type integer, and any other
letter implies type real.

Implicit typing is controlled by the IMPLICIT statement.
The IMPLICIT statement specifies a different typing
according to the first character of each name. One or
more IMPLICIT statements can be included in each
program unit.

Explicit typing defines the types of individual names. The
REAL, DOUBLE PRECISION, COMPLEX,
AN, LOGICAL, or CHARACTER statements are
type statements. An explicit type statement can

also be used to supply dimension information for an array.

Intrinsic functions are typed by default and need not
appear in any explicit type statement in the program.
Explicitly typing a generic intrinsic function name does
not remove the generic properties of the name. Intrinsic
functions are described in section 7.

2-1

INTEGER STATEMENT

The INTEGER statement shown in figure 2-1 can be used
to define a variable, array, symbolic constant, function

name, or dummy procedure name as type integer.

Examples:

INTEGER ITEM1, NSUM, JSUM
INTEGER A72, H2SQ4
INTEGER M5(2)

INTEGER namel[,name]. . .

name Is explicitly typed as integer. Each name
is one of the forrqs:

var

array [(d[,d]. . .)]

var Is a variable, function name, or function entry.
array Is an array name.
d Specifies the bounds of a dimension.

Examples:

DOUBLE PRECISION DPROD, DEIGV
DOUBLE PRECISION RMAT(10, 10)

DOUBLE PRECISION name[,name]. . .

name Is explicitly typed as a double precision.
Each name is one of the forms:

var

array [(d[,d]. . .)]

var Is a variable, function name, or function entry.
array~ Is an array name.
d Specifies the bounds of a dimension.

Figure 2-1. INTEGER Statement

REAL STATEMENT

The REAL statement shown in figure 2-2 can be used to

define a variable, array, symbolic constant, function
name, or dummy procedure name as type real.

Examples:

REAL IVAR, NSUM3, RESULT
REAL TOTAL2, BETA, XXXX
REAL TR(10, 5)

REAL name[,name]. . .

name Is explicitly typed as real. Each name
is one of the forms:

var

array [(d[,d}. . .)]

var Is a variable, function name, or function entry.
array Is an array name.
d Specifies the bounds of a dimension.

Figure 2-2. REAL Statement

DOUBLE PRECISION STATEMENT

The DOUBLE PRECISION statement shown in figure 2-3
can be used to define a variable, array, symbolic constant,

function name, or dummy procedure name as type double
precision.

Figure 2-3. DOUBLE PRECISION Statement

COMPLEX STATEMENT

The COMPLEX statement shown in figure 2-4 can be used

to define a variable, array, symbolic constant, function
name, or dummy procedure name as type complex.

Examples:

COMPLEX CPVAR
COMPLEX RES(S5, 5)

COMPLEX name[,name]. . .

name Is explicitly typed as a complex. Each name
is one of the forms:

var

array [(d[d]. . .)]

var Is a variable, function name, or function entry.
array Is an array name.
d Specifies the bounds of a dimension.

Figure 2-4. COMPLEX Statement

60481300 D

LOGICAL STATEMENT

The LOGICAL statement shown in figure 2-6 can be used
to define a variable, array, symbolic constant, function
name, or dummy procedure name as type logical.

Example:

LOGICAL SWITCH, TEST

LOGICAL name[,name]. . .

name Is explicitly typed as logical. Each name
is one of the forms:

var

array [(d[,d]. . .)]

var Is a variable, function name, or function entry.
array Is an array name.
d Specifies the bounds of a dimension.

Figure 2-6. LOGICAL Statement

CHARACTER STATEMENT

The CHARACTER statement shown in figure 2-7 can be
used to define a variable, array, symbolic constant,

function name, or dummy procedure name as type
character.

A length specification immediately following the word
CHARACTER applies to each entity not having its own
length specification. A length specification immediately
following an entity is the length specification only for that
entity. Note that for an array, the length specified is for
each array element. If a length is not specified for an
entity, either explicitly or by an IMPLICIT statement, the
length is one. The unit of length for CHARACTER is
characters.

The length specification for a variable or array declared in
a CHARACTER statement must be an unsigned nonzero
integer constant, or an integer constant expression.

Example:

CHARACTER A*3, B(10)*(12+3%2)

60481300 E

CHARACTERI[*len] [,] name[,name]. . .

name Is explicitly typed as character. Each name
is one of the forms:

var [*len]

array [(d[,d]. . .)] [*len]

len Specifies the length and can be: an un-
sighed- nonzero integer constant; an integer
constant expression, enclosed in parentheses,
with a positive value; or an asterisk enclosed
in parentheses.

var Is a variable, function name, or function entry.
array Is an array name.
d Specifies the bounds of a dimension.

Figure 2-7. CHARACTER Statement

The example defines a character variable A that is 3
characters long; and a character array B that has 10
elements, each of which is 18 characters long. '

If a dummy argument has the length (*) specified, the
dummy argument assumes the length of the associated
actual argument for each reference to the subroutine or
function. If the associated actual argument is an array
name, the length assumed by the dummy argument is the
length of each array element in the associated actual
argument.

Example:

PROGRAM MN
CHARACTER *3 CC, A(4)

CALL TSUB (CC, A(X2:3)

SUBROUTINE TSUB (CHAR, Z)
CHARACTER *(*) CHAR, Z(4)

The dummy argument CHAR in subroutine TSUB will have
length 3 and each element of the array Z will have
length 2.

If an external function has the length (¥) specified in a
function subprogram, the function name must appear as the
name of a function in a FUNCTION or ENTRY statement
in the same subprogram. When a reference to such a
function is executed, the function has the length specified
in the referencing program unit.

The length specified for a character function, in the
program unit that references the function, must be an
integer constant or integer constant expression and must
agree with the length specified in the function. Note that
there is always agreement of length if the length (*) is
specified in the function.

If a symbolic constant of type character has the length (*)
specified, the constant has the length of its corresponding
constant expression in a PARAMETER statement. If the
length specification is a symbolic constant, it must be
enclosed in parentheses.

2-3

Example:

PARAMETER (N=5)
CHARACTER *(N) AB

If the parentheses are omitted, the compiler cannot
distinguish between the length specification and the
variable name. (Blanks do not function as delimiters, and
an error message is issued.)

The length specified for a character statement function, or
statement function dummy argument of type character,
must be an integer constant or integer constant expression.

Exampleﬁ
CHARACTER*10 ASTR, ABC(5), XR*20

The variable ASTR and each element of the array ABC
have the length 10. The variable XR has the specified
length of 20.

Example:

CHARACTER AR*5, BR*8

CALL ZC(BR)

SUBROUTINE ZC(STR)
CHARACTER STR*(*)

In the example, the variable STR has the length 8 when
subroutine ZC is called. If subroutine ZC is called with
varisble AR passed, the variable STR has the length 5.
Note that the length is not directly known, and certain
types of reference to STR cannot be used. See Procedure
Communication in section é.

Character substrings are described in section 1.

IMPLICIT STATEMENT

The IMPLICIT statement can be used to change or confirm
the default typing according to the first letters of the
names. The IMPLICIT statement is shown in figure 2-8.

IMPLICIT type(ac[,ac] . ..) [type(ac[,ac]. . .)]...

type Is INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, CHAR-
ACTER, or CHARACTER[*len].

ac Is a single letter, or range of letters represented
by the first and last letter separated by a hyphen,
indicating which variables are implicitly typed.

len Specifies the length and can be an unsigned
’ nonzero integer constant; or an integer con-
stant expression, enclosed in parentheses, with
a positive value.

Figure 2-8. IMPLICIT Statement

The statement specifies the type of variables, arrays,
symbolic constants, and functions beginning with the
letters ac. The IMPLICIT statements in a program unit

2-4

must precede all other specification statements except
PARAMETER statements. An IMPLICIT statement in a
function or subroutine subprogram affects the type

associated with dummy arguments and the function name,
as well as other variables in the subprogram. Explicit

typing of a variable name or array element in a type
statement or FUNCTION statement overrides an IMPLICIT
specification.

The specified single letters or ranges of letters specify the
entities to be typed. A range of letters has the same
effect as writing a list of the single letters within the
range. The same letter can appear as a single letter, or be
within a range of letters, only once in all IMPLICIT
statements in a program unit.

The length can be specified implicitly for entities of type
character. If length is not specified, the length is one.
The length can be specified as an unsigned nonzero integer
constant, or an integer constant expression, enclosed in
parentheses, with a positive value. The specified length
applies to all entities implicitly typed as character.

Example:
IMPLICIT CHARACTER*20 (M, X-Z)

The default typing is effective in all cases except for
names beginning with the letters M, X, Y, or Z. Names
beginning with M are typed as character rather than
integer, and names beginning with X, Y, or Z are character
rather than real.

Note that any explicit typing with a type statement is
effective in overriding both the default typing and any
implicit typing.

Example:

IMPLICIT LOGICAL (L)
INTEGER L, LX, TT

Names beginning with L are typed as logical rather than
integer, Names L and LX are explicitly typed as integer
and are not affected by the implicit typing. The name TT
is explicitly typed as integer and does not take the default
type real.

DIMENSION STATEMENT

The DIMENSION statement shown in figure 2-9 defines
symbolic names as array names and specifies the bounds of
each array. More than one array can be declared in a
single DIMENSION statement. Dummy argument arrays
specified within a procedure subprogram can have
adjustable dimension specifications. A further explanation
of adjustable dimension specifications appears under
Procedure Communication in section 6.

Within the same program unit, only one definition of an

array is permitted. Note that dimension information can .

be specified in COMMON statements and type statements.
The dimension information defines the array dimensions
and the bounds for each dimension.

The description of arrays is in section 1. The description
covers the properties of arrays, the storage of arrays, and
array references.

Example:

REAL NIL)
DIMENSION NIL(6, 2, 2)

60481300 E

¥

DIMENSION array(d[,d]. . .) [array(d[.d]. . 7)]. ..
array Is an array name.

d Specifies the bounds of a dimension in one
of the forms:
upper
lower:upper
upper Is the upper bound of the dimension and is

a dimension bound expression in which all
constants, symboli tants, and variables

lower Is the lower bound of the dimension and is
a dimension bound expression in which all
constants, symbolic i
are of type integer: \
upper bound is specified, value of the lower
bound is one.

Figure 2-9. DIMENSION Statement

These statements could be combined into one statement
with 24 real elements declared for array NIL:

REAL NIL(é, 2, 2)
Example:

COMPLEX BETA
DIMENSION BETA(2, 3)

BETA is an array containing six compiex elements.
Example:

CHARACTER*8 XR
DIMENSION XR(0:4)

XR is an array containing five character elements, and
each element has a length of eight characters. A
reference to the third and fourth characters of the second
element would be XR(1)(3:4).

PARAMETER STATEMENT

The PARAMETER statement shown in figure 2-10 is used
to give a symbolic name to a constant.

PARAMETER (p=e [,p=e]. . .)
p Is a symbolic name.

e Is a constant, constant expression,

Figure 2-10. PARAMETER Statement

60481300 E

If a symbolic name is of type integer, real, double

precision, complex, th corresponding
expression constant
expression If the

symbolic name is of type character or logical, the
corresponding expression must be a character constant
logical constant expression, L
Each symbolic name becomes defined
he expression that appears to the right
of the equals, according to the rules for assignment. Any
symbolic constant that appears in an expression e must
have been previously defined in the same or a different
PARAMETER statement in the program unit.

A symbolic name of a constant can be defined only once in
a program unit, and can identify only the corresponding
constant. The type of a symbolic constant can be specified
by an IMPLICIT statement or type statement before the
first appearance of the symbolic constant in a
PARAMETER statement. If the length of a symbolic
character constant is not the default length of one, the
length must be specified in an IMPLICIT statement or type
statement before the first appearance of the symbolic
constant. The easiest way to do this is to explicitly type
the symbolic constant as character with length (*). The
actual length of the constant is determined by the length
of the string defining it in the PARAMETER statement.
The length must not be changed by ancther IMPLICIT
statement or by subsequent statements.

Once defined, a symbolic constant can appear in the
program unit in the following ways:

e In an expression in any subsequent statement

e In a DATA statement as an initial value or a repeat
count

A symbolic constant cannot appear in a format statement.

2-5

Examples:

PARAMETER (ITER= 20, START=5)
CHARACTER CC*(*)
PARAMETER (CC= '(14, F10.5)")

.

DATA COUNT /START/

DO 410 J=1, ITER

READ CC, IX, RX

The symbolic constant START is used to assign an initial
value to variable COUNT, the symbolic constant ITER is
used to control the DO loop, and the symbolic constant CC
is used to specify a character constant format
specification.

COMMON STATEMENT

The COMMON statement shown in figure 2-11 provides a
means of associating entities in different program units.
The use of common blocks enables different program units
to define and reference the same data without using
arguments, and to share storage units. Within a program
unit, an entity in a common block is known by a specific
name. Within another program unit, the same data can be
known by a different symbolic name with the scope of that
program unit.

COMMON [/[eb] /] nlist [[.]/[cb] Inlist] . . .

cb Is a common block name identifying a
named common block containing the
entities in nlist. If the name is omitted,
the nlist entities are in blank common.

nlist Is a list of entities to be included in the
common block. The entities are separated
by commas and can take the form:

var
array
array (d[,d]. . .)

var Is a variable.
array Is an array name.
d Specifies the bounds of an array dimension.

Figure 2-11. COMMON Statement

A single variable name or array name can appear only once
in any COMMON statement within the program unit.
Function or entry names cannot be included in common
blocks. In a subprogram, names of dummy arguments
cannot be included in common blocks.

If the common block name is omitted, the common block is

blank common. When the first specification in the
COMMON statement is for blank common, the slashes can

2-6

also be omitted. If a common block name is specified, the
common block is a named common block. Within a program
unit, declarations of common blocks are cumulative. The
nlist following each successive appearance of the common
block name (or no name for blank common) adds more
entities to the common block and is treated as a
continuation of the specification. Variables and arrays are
stored in the order in which they appear in the
specification.

If any character variable or character array is included in a
common block, all entities in the common block must be
type charactegs Note that since a common block name has
the scope of the executable program, the common block
name can be used within a program unit as a variable or
array name, without conflict.

The maximum number of common blocks in an executable
program, including blank common and all named common,
is 500. The maximum size of each common block is
131071 storage words (for character data, 1310710
characters). The use of ECS/LCM residence and LCM=G
for any common block increases the maximum possible size
to 1048568 storage words (for character data, 10 485 680
characters).

The actual size of any common block is the number of
storage words required for the entities in the common
block, plus any extensions associated with the common
block by EQUIVALENCE statements. Extensions can only
be made by adding storage words at the end of the common
block. See the description of the EQUIVALENCE
statement in this section. A blank common block can be
treated as having a different size in separate program
units. The length of a common block, other than blank
common, must not be increased by a subprogram using the
If a program
ocations reserved in a common block,
unused variables can be inserted in the COMMON
declaration to ensure proper correspondence of common
areas.

Entities in named common blocks can be initially defined
by a DATA statement in a block data subprogram
A Entities in blank
common cannot be initially defined. After an entity in a
named common block has been initially defined, the value
is available to any subprogram in which the named common
block appears.

Entities in blank common remain defined at all times and
do not become undefined on execution of a return from a
subprogram. Entities in named common can become
undefined on execution of a retum from a subprogram,
unless the SAVE statement is used. See the description of
the SAVE statement in this section.

Example:

COMMON A, B
COMMON /XT/ C, D, E

SUBROUTINE P(Q, R)
COMMON /XT/ F, G, H

FUNCTION T(U)
COMMON Y, Z

60481300 D

The entities C, D, and E in the main program are in the
common block named XT. The same storage words are
known by the names F, G, and H in subroutine P. The
entities A and B in the main program are in blank
common. The same storage words are known by the names
Y and Z in function T.

Example:

COMMON JCOUNT

JCOUNT= 6

FUNCTION AB(A)
COMMON /C/ STX(4)

i

Since an entity in blank common cannot be initiaily defined
with a DATA statement, an assigment statement must b
used to define the value of JCOUNT. n A

Note that JCOUNT is not common to function AB.

Example:

CHARACTER*15 D, E
COMMON /CVAL/ D, E
DATA D, E/'TEST', 'PRODY/

The common block named CVAL contains character
variables. The variables D and E are initially defined in a
DATA statement.

Example:

COMMON /SUM/ A, B(20)

.

.

SUBROUTINE GR
COMPLEX FR(10)
COMMON /SUM/ X, FR

The common block SUM in the main program is declared to
contain the variable A and the array B. In the subroutine
GR, the same storage words are associated with X and the
array FR. Even if X is not used in the subroutine, X holds
the place so that array FR matches the placement of
arrayB. Note also that array FR is complex. The
elements B(1) and B(2) are known in GR as FR(1); B(3) and
B(4) are FR(2); and so forth. Each specification of common
block SUM accounts for 21 storage words.

EQUIVALENCE STATEMENT

The EQUI VALENCE statement shown in figure 2-12 can be
used to specify the sharing of storage by two or more
entities in a program unit. Equivalencing causes
association of the entities that share the storage.
Equivalencing associates entities within a program unit,
and common blocks associate entities across program
units. Equivalencing and common can interact.

60481300 E

EQUIVALENCE (nlist) [(nlist)]. . .

nlist s a list of variable names, array names,
array element names, or character substring
names. The names are separated by commas.

Figure 2-12. EQUIVALENCE Statement

If the equivalenced entities are of different data types,
equivalencing does not cause type conversion. If a variable
and an array are equivalenced, the variable does not
acquire array properties and the array does not lose the
properties of an array. An entity of type character can be
equivalenced only to another entity of type character. The
lengths of the equivalenced character entities can be
different.

Each nlist specification must contain at least two names of
entities to be equivalenced. In a subprogram, names of
dummy arguments cannot appear in the list. Function and
entry names cannot be included in the list. Equivalencing
specifies that all entities in the list share the same first
storage word. For character entities, equivalencing
specifies that all entities in the list share the same first
character storage position. Equivalencing can indirectly
cause the association of other entities, for instance when
an EQUIVALENCE statement interacts with a COMMON
statement.

If an array element is included in nlist, the number of
subscript expressions must match the number of dimensions
declared for the array name. If an array name appears in
the list, the effect is as if the first element of the array
had been included in the list. Any subscript expression
must be an integer . constant expression. For
charact ities, any substring expression must be an
i constant expression.

Example:

DIMENSION Y(4), B(3, 2)
EQUIVALENCE (Y(Q1), B(3, 1)
EQUIVALENCE (X, Y(2))

Storage is shared so that 6 storage words are needed for Y,
B, and X. The associations are:

B(1, 1)
B(2, 1)
Y(1) B, 1)
Y(2) B(1, 2) X

Y(3) B(2, 2)
Y(4) BG, 2)

Example:

CHARACTER A*5, C*3, D(2)*2
EQUIVALENCE (A, D(1)), (C, D(2)

Storage is shared so that 5 character storage positions are
needed for A, C, and D. The associations are:

A(1:1) D(1X1:1)
A(2:2) D(1X2:2)
A(3:3) D(2X1:1) C(1:1)
Al4:4) D(2X2:2) C(2:2)
A(5:5) C(3:3)

2-7

Variables of different data types can be equivalenced,
except for character data. The equivalencing associates
the first storage word of each entity. For example:

REAL TR(4)
COMPLEX TS(2)
EQUIVALENCE (TR, TS)

causes the following associations:

TRI) TS(1)-real part
TR(2) TS(1)-imaginary part
TR(3) TS(2)-real part
TR(4) TS(2)-imaginary part

Equivalencing must not reference array elements in such a
way that the storage sequence of the array would be
altered. The same storage unit cannot be specified as
occurring more than once in the storage sequence. For
example:

REAL FAQ3)
EQUIVALENCE (FAQ1), B), (FA(3), B)

would be illegal. Also, the normal storage sequence of
array elements cannot be interrupted to make consecutive
storage words no longer consecutive. For example:

REAL BZ(7), CZ(5)
EQUIVALENCE (Bz, CZz), (Bz(3), CZ(4))

would also be illegal.

The interaction of COMMON and EQUIVALENCE
statements is restricted in two ways:

® An EQUIVALENCE statement must not attempt the
association of two different common blocks in the
same program unit. For example:

COMMON /LT/ A, T
COMMON /LX/ S, R
EQUIVALENCE (T, S)

is not legal.

® An EQUIVALENCE statement must not cause a
common block to be extended by adding storage words
before the first storage word of the common block.
On the other hand, a common block can be extended
through equivalencing if storage words are added at
the end of the common block. For example:

COMMON /X/ A
REAL B(5)
EQUIVALENCE (A, B(4))

is not legal, whereas:
COMMON /X/ A

REAL B(5)
EQUIVALENCE (A, BQ1))

can be used to extend the common block.

60481300 D

SAVE STATEMENT

The SAVE statement shown in figure 2-14 is used to retain
the definition status of entities after the-execution of a
RETURN or END statement in a subprogram. A SAVE
statement in a main program is opti has no effec

SAVE {a[,al. . .]

a Is a variable name, array name, or common
block name enclosed in slashes. Redundant
appearances are not permitted.

Figure 2-14. SAVE Statement

Dummy argument names, procedure names, and names of
entities in a common block must not appear in the SAVE
statement. - A common block name (or // indicating blank
common) has the effect of specifying all of the entities in
the common block. A SAVE statement with no list is
treated as though it contained the names of all allowable
items in the program unit. If a common block name is
specified in a SAVE statement in a subprogram, the
common block name must be specified by a SAVE
statement in every subprogram in which the common block
appears.

Execution of a RETURN statement or an END statement
within a subprogram causes the entities within the
subprogram to become undefined, except in the following
cases:

e Entities specified by SAVE statements do not become
undefined.

e Entities in blank common do not become undefined.

e Entities that have been initially defined (and not
redefined) do not become undefined.

e Entities in a named common block that appears in the
subprogram and in the referencing program unit do not
become undefined.

If a local variable or array that is specified in a SAVE

statement and is not in a common block is defined in a
subprogram at the time a RETURN or END statement is

60481300 D

executed, that variable or array remains defined with the
same value at the next reference to the subprogram.

Within a subprogram, an entity in a common block can be
defined or undefined, depending on the definition status of
the associated storage. If a named common block is
specified in a SAVE statement in a subprogram and the
entities in the common block are defined, the common
block storage remains defined at the time a RETURN or
END statement is executed and is available to the next
program unit that specifies the named common block. The
common block storage can become undefined or redefined
in another program unit.

Example:

COMMON /C1/ G, H
SAVE /CL/
CALL XYZ

- SUBROUTINE XYZ
COMMON A, D, F
COMMON /C1/ GVAL, HVAL
SAVE . oo
DATA JCOUNT /5/
X=6.5

.

RETURN
END

The SAVE statement in subroutine XYZ has the effect of
saving the value of X as 6.5 for any later invocations of the
subroutine. Saving of certain other values does not depend
on the presence of the SAVE statement. The three
entities in blank common remain defined. The two entities
in common block C1 remain defined because common block
C1 appears in the referencing program unit. Finally, since
JCOUNT is initially defined and not redefined in the
subroutine, JCOUNT remains defined for any later
invocations of the subroutine.

EXTERNAL STATEMENT

The EXTERNAL statement shown in figure 2-15 is used to
identify a name as representing an external procedure and
to permit such a name to be used as an actual argument.

EXTERNAL proc[,proc]. . .

proc Is the name of an external procedure,
dummy procedure, or block data subprogram.

Figure 2-15. EXTERNAL Statement

Only one appearance of a symbolic name in all of the
EXTERNAL. statements of a program unit is permitted. If
an external procedure name is an actual argument in a
program unit, it must appear in an EXTERNAL statement
in the program unit. A statement function name must not
appear in an EXTERNAL statement.

If an intrinsic function name appears in an EXTERNAL
statement in a program unit, the name becomes the name
of some external procedure. The intrinsic function with
the same name cannot be referenced in the program unit.

2-9

Example:

SUBROUTINE ARGR
EXTERNAL SQRT

;(-_- SQRT(X)

FUNCTION SQRT(XVAL)

The name SQRT is declared as external. The function
reference SQRT(X) is therefore taken to reference the
user-written function SQRT rather than the intrinsic
function SQRT.

Example:

SUBROUTINE CHECK
EXTERNAL LOW, HIGH

CALL AR (LOW, VAL)

CALL AR (HIGH, VAL)

SUBROUTINE AR(FUNC, VAL)
VAL= FUNC (VAL)

REAL FUNCTION LOW (X)

REAL FUNCTION HIGH (X)

The names LOW and HIGH are declared as external. In
one call to subroutine AR, LOW is passed as an actual
argument and the function reference FUNC(VAL) is
equivalent to LOW(VAL). In the second call to subroutine
AR, the function reference FUNC(VAL) is equivalent to
HIGH(VAL).

INTRINSIC STATEMENT

The INTRINSIC statement shown in figure 2-16 is used to
identify a name as representing an intrinsic function. The
INTRINSIC statement also enables use of an intrinsic
function name as an actual argument.

e Type conversion function

INTRINSIC funl[,fun]. .

fun Is an intrinsic function name.

Figure 2-16. INTRINSIC Statement

2-10

-Appearance of a name in an INTRINSIC statement

declares the name as an intrinsic function name. If an
intrinsic function name is used as an actual argument in a
program unit, it must appear in an INTRINSIC statement
in the program unit. The following intrinsic function
names must not be used as actual arguments:

CHAR, CMPLX,
DBLE, FLOAT, ICHAR, IDIN , INT, REAL, and

SNGL

e Lexical relationship functions LGE, LGT, LLE, and
LLT

e Largest/smallest value functions AMAX0, AMAXI,
AMINO, AMIN1, DMAX1, DMIN1, MAX, MAXaQ,
MAX1, MIN, MINO, MIN1

The appearance of a generic intrinsic function name in an
INTRINSIC statement does not remove the generic
properties of the name.

An intrinsic name can appear only once in all INTRINSIC
statements in a program unit. Note that a symbolic name
must not appear in both an EXTERNAL and an INTRINSIC
statement in the program unit.

Example:

SUBROUTINE DC
INTRINSIC SQRT

.

CALL SUBA (X,Y, SGRT)

SUBROUTINE SUBA (A, B, FNC)
B= FNC(A)

The name SGRT is declared intrinsic in subroutine DC and
passed as an argument to subroutine SUBA. Within SUBA,
the reference FNC(A)-references the intrinisic function
SQRT.

Example:

SUBROUTINE CHECK
INTRINSIC SIN, COS

CALL AR(SIN, VAL)

CALL AR(COS, VAL)

SUBROUTINE AR(FUNC, VAL)
VAL= FUNC(VAL)

The names SIN and COS are declared as intrinsic and can
therefore be passed as actual arguments.” In the first call
to subroutine AR, the reference FUNC(VAL) is equivalent
to SIN(VAL); in the second call, FUNC(VAL) is equivalent
to COS(VAL). In each case, the intrinsic function is
referenced.

60481300 D

DATA STATEMENT

The DATA statement shown in figure 2-17 is used to
provide initial values for _variables, arrays, array
elements, and substrings. The DATA statement is

nonexecutable and can appear anywhere after the
specification statements in a program unit.

Entities that are initially defined by DATA statements are
defined when the program begins execution. Entities that
are not initially defined, and not associated with an
initially defined entity, are undefined at the beginning of
execution of the program.

A variable, array element, or substring must not be
initially defined more than once in the program. If two
‘entities are associated, only one can be initially defined
by a DATA statement.

Names of dummy arguments, functions, and entities in
blank common (including any entities associated with an
entity in blank common) cannot be initially defined.
Entities in a named common block can be initi i
within a block data subprogram, i

For each list nlist, the same number of items must be
specified in the corresponding list clist. A one-to-one
correspondence exists between the items specified by nlist
and the constants specified by clist. The first item of
nlist corresponds to the first constant of clist, the second
item to the second constant, and so forth. If an
unsubscripted array name appears as an item in nlist, a
constant in clist must be specified for each element of the
array. The values of the constants are assigned according
to the storage order of the array.

For arithmetic data types, the constant is converted to
the type of the associated nlist item if the types differ.
For all other types, the data type of each constant in clist
must be compatible with the data type of the nlist item.
The correspondence is shown in table 2-1.

TABLE 2-1. CORRESPONDENCE OF DATA TYPES
IN DATA STATEMENTS

Data Type of
Data Type of Corresponding

nlist Item clist Constant
e eee— e

Integer, real, double | Integer, real, double
precision, complex, precision, complex,

. The value
o} item is
the same as would
result from an assign-
ment statement of the
form nlist-item=clist-

constant.
Logical Logical
Character Character

60481300 B

DATA nlist/clist/ [[,] nlist/clist/]. . .

nlist

var
array

element

substring

dolist

dlist

init

term

incr

clist

Is a list of names to be initially defined.
Each name in the list can take the form:

var
array
element
substring '
dolist
Is a variable name.
Is an array name.

Is an array element name (that is, sub-
scripted array name).

Is a substring of a character variable or
array element.

Is an implied-DO list of the form:
(dlist, i = init, term [,incr])

Is a list of array element names and
implied-DO lists. Subscript expressions
must consist of integer constants and
active control variables from DO list.

Is an integer variable called the implied-
DO variable.

Is an integer constant, symbolic constant,
or expression specifying the initial value, as
for DO loops.

Is an integer constant, symbolic constant,
or expression specifying the terminal value,
as for DO loops.

Is an integer constant, symbolic constant,
or expression specifying the increment, as
for DO loops.

Is a list of constants or symbolic con-
stants specifying the initial values. Each
item in the list can take the form:

Is a constant or symbolic constant.

Is a repeat count that is an unsigned non-
zero integer constant or the symbolic name
of such a constant. The repeat count can
val i

Figure 2-17. DATA Statement

2-11

Each subscript expression used in an array element name
in nlist must be an integer constant expression, except
that implied-DO variables can be used if the array
element name is in dlist. Each substring expression used
for an item in nlist must be an integer constant expression.

Examples:

INTEGER K(6)

DATA JR/4/

DATA AT/5.0/, AQ/7.5/
DATA NRX, SRX/17.0, 5.2/
DATA K/1, 2, 3, 3, 2, 1/

The variables JR, AT, AQ, and SRX are initially defined
with the values 4, 5.0, 7.5, and 5.2, respectively. The
variable NRX is initially defined with the value 17, after
type conversion of the real 17.0 to the integer 17. The
array K with 6 elements is initially defined with a value
for each array element.

Example:

REAL R(10, 10)
DATA R/50%5,0, 50%75.0/

The array R is initially defined with the first 50 elements
set to the value 5.0 and the remaining 50 elements set to
the value 75.0.

Example:

DIMENSION TQ(2)
EQUIVALENCE (RX, TQ(2))
DATA TQ(1)/32.0/

DATA RX/47.5/

The first element of array TQ is initially defined with the
value 32.0. The variable RX and the second element of
array TQ are initially defined as 47.5, since TQ(2) is
equivalenced to variable RX.

IMPLIED DO LIST

An implied DO list can be used as an item in nlist. An
iteration count and the values of the implied DO variable
are established from init, term, and the optional incr just
as for DO loops, except that the iteration count must be
positive. When the implied DO list appears in a DATA
statement, the list items in dlist are specified once for
each iteration of the implied DO list, with appropriate
substitution of values for each occurrence of the implied
DO variable i.

2-12

The appearance of a name as an implied DO variable in a
DATA statement does not affect the value or definition
status of a variable with the same name in the program
unit. An implied DO variable has the scope of the implied
DO list.

Each subscript expression used in dlist must be an integer
constant expression, except that any expression can
contain an implied DO variable if the subscript expression
is within the corresponding implied DO list.

Example 1:

REAL X(5, 5) :
DATA ((X(3, I), 1= 1, J), J= 1, 5)/15%1.0/

Elements of array X are initially defined with the DATA
statement. Elements in the lower diagonal part of the
matrix are set to the value 1.0. The elements initialized
are:

(1,1)

(2,1) (2,2

Gn G2 (3,3

61 42 4,3 (48

G 6,2 53 (58 (55

Example 2:

PARAMETER (PI1=3.14159)
REAL Y(5,5)
DATA ((Y(3+1,D),J=1+1,4),1=1,3)/6*P1/

CHARACTER DATA INITIALIZATION

For initialization by DATA statement, a character item in
nlist must correspond to a character constant in clist.
The initial value is assigned according to the
following rules:

e If the length of the character item in nlist is greater
than the length of the corresponding character
constant, the additional character positions in the
item are initially defined as blanks.

e If the length of the character item in nlist is less than
the length of the corresponding character constant,
the additional characters in the constant are ignored.

Note that initial definition of a character item causes
definition of all character positions. FEach character
constant initially defines exactly one character variable,
array element, or substring.

Examples:

CHARACTER STR1*6, STR2*3
DATA STR1/'ABCDE!/
DATA STR2/'FGHIK'/

The character variables STR1 and STR2 are initially
defined. Variable STR1 is set to 'ABCDEA, with the sixth
character position defined as blank. Variable STR2 is set
to 'FGH', with the fourth and fifth characters of the
constant ignored.

60481300 B

EXPRESSIONS AND ASSIGNMENT STATEMENTS

—

This section describes the ways in which expressions are
written and evaluated. Expressions can be arithmetic,
character, relational, logical, expressions.
Expressions are formed from a combination of operators,
operands, and parentheses.

This section also describes assignment statements, which
are executable statements. The assignment statements in
a program use expressions to define or redefine the values
of variables.

EXPRESSIONS

Arithmetic, character, relational, and logical
expressions are described separately. The relational
expressions are not fully independent and are used as parts
of logical expressions.

A constant expression is an expression in which only
constants (or symbolic constants) and operators are used.
If an arithmetic expression is written using only constants
and operators, the expression is an arithmetic constant
expression. A | . character, or logical expressmn
that contains only constants and operators is,
respectively, a | character
constant expression, or logical constant expression.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of unsigned
constants, symbolic constants, variables, array elements,
and function references separated by operators and
parentheses. For example:

(A-B)*F + C/D**E

is a valid arithmetic expression.

An arithmetic expression can be an unsigned arithmetic
constant, symbolic name of an arithmetic constant,
arithmetic variable reference, arithmetic array element
reference, or arithmetic function reference. More
complicated arithmetic expressions can be formed by
using one or more arithmetic operands
together with arithmetic operators and parentheses.
Arithmetic operands identify values of type integer, real,
double precision, or complex.

The arithmetic operators are shown in table 3-1. Each of
the operators **, [, and * operates on a pair of operands
and is written between the two operands. Each of the
operators + and - either operates on a pair of operands and
is written between the two operands, or operates on a
single operand and is written preceding that operand.

The syntax for an arithmetic expression is shown in
figure 3-1.

The interpretation of a division can depend on the data
types of the operands. A set of rules establishes the
interpretation of an arithmetic expression that contains
two or more operators. A precedence among the
arithmetic operators determines the order in which the
operands are to be combined:

** Highest
* and / Intermediate
+ and - Lowest

For example, in the expression:
- A*%2

the exponentiating operator (¥*) has precedence over the
negation operator (-). The operands of the exponentiation
operator are combined to form an expression used as the
operand of the negatxon operator. The above expression is
the same as the expression:

- (A %% 2)

TABLE 3-1. ARITHMETIC OPERATORS

Operator Representing Use of Operator Meaning
*k Exponentiation x1 ** x2 Exponentiate x1 to the power x2.
* Multiplication x1 * x2 Multiply x1 and x2.
/ Division x1 / x2 Divide x1 by x2.
+ Addition x1 + x2 Add x1 and x2.
+ Identity + x2 Same as x2.
- Subtraction x1 - x2 Subtract x2 from x1.
- Negation - X2 Negate x2.

60481300 A 3-1

arithexp

arithexp Is an arithmetic expression in one of the

forms:

term

+ term

- term

arithexp + term
arithexp - term

term Is an arithmetic term in one of the forms:

fact
term * fact
term / fact

fact Is an arithmetic factor in one of the
forms:

prim
prim ** fact

prim Is an arithmetic primary. An arithmetic
primary can be an arithmetic expression
enclosed in parentheses, or any of the
following:

Unsigned arithmetic constant
Arithmetic symbolic constant
Arithmetic variable

Arithmetic array element reference
Arithmetic function reference

Figure 3-1. Arithmetic Expression

Successive exponentiations are combined from right to
left. For example:

2%X3%%D
has the same interpretation as:
2%%(3%%2)

Two or more multiplication or division operators are
combined from left to right.

Two or more addition or subtraction operators are
combined from left to right. Note that arithmetic
expressions containing two consecutive arithmetic
operators, such as A**-B or A+-B are not permitted.
However, expressions such as A**-B) and A+(-B) are
permitted.

3-2

Subexpressions containing operators of equal precedence
are evaluated from left to right. The compiler may
reorder individual operations that are mathematically
associative andf/or commutative to perform optimizations
such as removal of repeated subexpressions. The
mathematical results of the reordering are correct but the
specific order of evaluation is indeterminate. For
example, the expression A/B*C is guaranteed to
algebraically equal (AC)/B, not A/(BC), but the specific
order of evaluation by the compiler is indeterminate.

An arithmetic constant expression contains only
arithmetic constants, symbolic names of arithmetic
constants, arith i i i

\oper'atorm is
type integer

exponentiation

Note that variable, array ;lement, and
function references are not allowed.

An integer.
. & L

expression ean

constant or symbolic name of a constant i

which each
int

Note that variable, array
element, and function references are not allowed. The
following are examples of integer constant expressions:

3
-3

The data type of an arithmetic expression containing one
or more arithmetic operators is determined from the data
types of the operands. Integer expressions, real
expressions, double precision expressions, and complex
expressions are arithmetic expressions whose values are of
type integer, real, double precision, and complex,
respectively. When the operator + or - operates on a
single operand, the data type of the resulting expression is
f th

the same as the data t

When an arithmetic operator operates on a pair of
& : operands, the data type of the resulting
expression is given in table 3-2 for exponentiation and
table 3-3 for the other operators. Four entries in
table 3-2 specify a value raised to a complex power. In
these cases, the value of the expression is the principal
value.

If two operands are of different type, the
operand that differs in type from the result of the
operation is converted to the type of the result. The
operator then operates on a pair of operands of the same
type. The exception to this is an operand of type real,
double precision, or complex raised to an integer power;
the integer operand is not converted. If the value of J is
negative, the interpretation of I**J is the same as the
interpretation of 1/(I**ABS(J)), which is subject to the
rules for integer division. For example, 2**(-3) has the
value of 1/(2*%3), which is zero.

60481300 B

TABLE 3-2. RESULTING DATA TYPE FOR X1**X2
Type of x1 Type of x2 x1 Value Used x2 Value Used Resulting Data Type

Integer Integer x1 x2 Integer

Integer Real REAL{x1) x2 Real

Integer Double precision DBLE(x1) x2 Double precision
Integer CompTex CMPLX(REAL(x1),0.) x2 Complex

Real Integer x1 X2 Real

Real Real x1 x2 Real

Real Double precision DBLE(x1) X2 Double precision
Real Complex CMPLX(x1,0.) x2 Complex

Double precision Integer x1 x2 Double precision
Double precision Real x1 DBLE(x2) Double precision
DoubTe precision Double precision x1 X2 Doub1e precision

Double precision
Complex
“Complex
Complex

Complex

Complex

Integer

Real

Double precision

Complex

x1

Double precision Comblex
Complex Integer x1 x2 Complex
Complex Real x1 CMPLX(x2,0.) Complex
Complex Double precision
Complex Complex x1 x2 Complex
TABLE 3-3. RESULTING DATA TYPE FOR X1+X2, X1-X2, X1¥X2 OR X1/X2

Type of x1 Type of x2 x1 Value Used x2 Value Used Resulting Data Type
Integer Integer x1 X2 Integer
Integer Real REAL (x1) x2 Real
Integer Double precision DBLE(x1) x2 Double precision
Integer Complex CMPLX(REAL(x1),0.) x2 Complex
Real Integer x1 REAL(x2) Real
Real Real x1 x2 Real
Real Double precision DBLE(x1) X2 Double precision
Real Complex CMPLX(x1,0.) x2 Complex
Double precision Integer x1 DBLE(x2) Double precision
Double precision Real x1 DBLE(x2) Double precision
Double precision Double precision x1 x2 Double precision

CMPLX(REAL(x2),0.)

CMPLX(x2,0.)

x2

Complex

Complex

Comp 1ex

60481300 B

One operand of type integer can be divided by another
operand of type integer to yield an integer result. The
result is the signed nonfractional part of the
mathematical quotient. For example, (-10)/4 is -2,
formed by discarding the fractional part of the
mathematical quotient -2.5.

CHARACTER EXPRESSIONS

A character expression is used to express a character
string. Evaluation of a character expression produces a
result of type character. The simplest form of a
character expression is a character constant, symbolic
name of a character constant, character variable
reference, character array element reference, character
substring reference, or character function reference.
More ccmplicated character expressions can be formed by
using one or more character operands together with
character operators and parentheses. The character
operator is shown in table 3-4.

TABLE 3-4. CHARACTER OPERATOR

s Use of :
Operator | Representing Operator Meaning
// Concatenation x1//x2 Concatenate
x1 and x2.

The result of a concatenation operation is a character
string concatenated on the right with another string and
whose length is the sum of the lengths of the strings. For
example, the value of 'AB' // 'CDE' is the string '"ABCDE".

A character expression and the operands of a character
expression must identify values of type character. Except
in a character assignment statement, a character
expression must not involve concatenation of an operand
whose length specification is an asterisk in parentheses,
unless the operand is a symbolic constant.

The syntax for a character expression is shown in
figure 3-2.

Two or more concatenation operators are combined from
left to right to interpret the expression. For example, the
interpretation of the character expression:

'‘AB! // D! // 'EF!

is the same as the interpretation of the character
expression:

('AB' // 'CD") /] 'EF'
The value of the preceding expression is the same as that
of the constant 'ABCDEF'. Note that parentheses have no
effect on the value of a character expression. Thus, the
expression:

'ABY//(CD'//'EF)

has the same value as the preceding expressions.

3-4

charexp
charexp Is a character expression in either form:

charprim
charexp // charprim

charprim Is a character primary. A character
primary can be a character expression
enclosed in parentheses, or any of the
following:

Character constant

Character symbolic constant
Character variable

Character array element reference
Character substring reference
Character function reference

Figure 3-2. Character Expression

A character constant expression is a character expression
in which each operand is a character constant, the
symbolic name of a character constant, or a character
constant expression enclosed in parentheses. Note that
variable, array element, substring, and function
references are not allowed.

RELATIONAL EXPRESSIONS

Relational expressions can appear only within logical
expressions. Evaluation of a relational expression
produces a logical result with a true or false value.

A relational expression is used to compare the values of
two arithmetic C expressions or two character
expressions. A relational expression cannot be used to
compare the value of an arithmetic expression with the
value of a character expression.

The relational operators are shown in table 3-5. " The
syntax of a relational expression is shown in figure 3-3.

An operand of type complex is permitted only when the
relational operator is .EQ. or .NE.

An arithmetic relational expression has the logical value
true only if the values of the operands satisfy the relation
specified by the operator. If the two arithmetic
expressions are of different types,
the value of the relational expression:

X1 relop X2
is the value of the expression:
((X1) - (X2)) relop O

where 0 (zero) is of the same type as the expression. Note
that the comparison of a double precision value and a
complex value is not permitted.

A character relational expression has the logical value
true only if the values of the operands satisfy the relation
specified by the operator. The character expression X1 is
considered to be less than X2 if the value of X1 precedes
the value of X2 in the collating sequence; X1 is greater
than X2 if the value of X1 follows the value of X2 in the
collating sequence. Note that the collating sequence in
use determines the result of the comparison. The default
collating sequence is ASCII6 as shown in appendix A. Also
refer to Collation Control in appendix E.

60481300 B

TABLE 3-5.

RELATIONAL OPERATORS

Operator Representing Use of Operator Meaning
.LT. Less than x1.LT.x2 Is x1 less than x2?
.LE. Less than or equal to x1.LE.x2 Is x1 less than or equal to x2?
.EQ. Equal to x1.EQ.x2 Is x1 equal to x2?
.NE. Not equal to x1.NE.x2 Is x1 not equal to x2?
.GT. Greater than x1.G6T.x2 Is x1 greater than x2?
.GE. Greater than or equal to x1.GE.x2 Is x1 greater than or equal to x27?
The logical operators are shown in table 3-6. The syntax
relexp of a logical expression is shown in figure 3-4.
relexp Is a relational expression used as a pri- A set of rules establishes the interpretation of a logical
mary in a logical expression. A relational expression that contains two or more logical operators. A
expression is in one of the forms: precedence among the logical operators determines the
order in which the operands are to be combined, unless the
order is changed by the use of parentheses. The
precedence of the logical operators is:
Highest
rop
Lowest
ALT.
.LE.
.EQ.
.NE. . I
GT. logexp Is a logical expression in one of the
.GE. forms:
. . . . logdis
arithexp Is an arithmetic expression. logexp .EQV. logdis
logexp .NEQV. logdis
(OR: 1oge
charexp Is a character expression. logdis Is a logical disjunction in either form:
logterm
Figure 3-3. Relational Expression logdis .OR. logterm
. logt Is a logical t in either form:
Character relational expressions in PARAMETER ogterm $ @ logical term [n exther form
$1 statements are alwa logfact
8 quence. logterm .AND. logfact
If the operands are of unequal length, the shorter operand . L .
is extended on the right with blanks to the length of the fogfact Is @ logical factor in either form:
longer operand. logprim
.NOT. logprim
LOGICAL EXPRESSIONS fogprim Is a logical primary. A logical primary
. . . . can be a logical expression enclosed in
A logical expression is used to express a logical parentheses, a relational expression, or
computation. Evaluation of a logical expression produces any of the following:
a result of type logical, with a value of true or false.
X Logical constant
The simplest form of a logical expression is a logical Logical symbolic constant
constant, symbolic name of a logical constant, logical Logical variable
variable reference, logical array element reference, Logical array element reference
logical function reference, or relational expression. More Logical function reference
complicated logical expressions can be formed by using

one or more logical operands
operators and parentheses.

together with logical

60481300 D

Figure 3-4. lLogical Expression

3-5

TABLE 3-6. LOGICAL OPERATORS

Operator Representing Use of Operator Meaning
= - —— = ===

-NOT. Logical negation <NOT. x Complement x

.AND. Logical conjunction x1.AND.x2 - Boolean product of x1 and x2

.OR. Logical inclusive disjunction x1.0R.x2 Boolean sum of x1 and x2

.EQV. Logical equivalence x1.EQV.x2 Is x% logically equivalent
to x2?

.NEQV. Logical nonequivalence x1.NEQV.x2 Is x1 not logically equiva~
lent to x27

For example, in the expression:

A .OR.B .AND.C

the .AND. operator has higher precedence than the .OR.
operator; therefore, the interpretation is the same as:

A .OR. (B .AND. C)

In interpreting a logical expression containing two or more
.AND. operators; two or more .OR. operators; or two or
more JEQV., NEQV., . operators, the logical
quantities are combined from left to right.

The value of a logical factor involving any logical GENERAL RULES FOR EXPRESSIONS

operator is shown in table 3-7,

The order in which operands are combined using operators

A logical constant expression contains only logical is determined by:

constants, symbolic names of logical constants, relational

expressions which contain only constant expressions, or 1. Use of parentheses

logical constant expressions enclosed in parentheses.

Note that variable, array element, and function 2. Precedence of the operators

references are not allowed.
3. Right-to-left interpretation of exponentiations

4. Left-to-right interpretation of multiplications and
divisions

5. Left-to-right interpretation of additions and
subtractions in an arithmetic expression

6. Left-to-right interpretation of concatenations in a
character expression

7. Left-to-right interpretation of .AND. operators

8. Left-to-right interpretation of .OR. and .NOT.
operators

and

9. Left-to-right interpretation of .EQV., NEQV.
R. operators in a logical expression

" TABLE 3-7. RESULT OF LOGICAL OPERATORS

x1 X2 .NOT.x2 x1.AND.x2 x1.0R.x2 x1.EQV.x2 x1.NEQV.x2
.TRUE. .TRUE. .FALSE. .TRUE. .TRUE. .TRUE. .FALSE.
.TRUE. .FALSE. .TRUE. .FALSE. .TRUE. .FALSE. .TRUE.
.FALSE. .TRUE. .FALSE. .FALSE, .TRUE. .FALSE. .TRUE.
.FALSE. .FALSE. .TRUE. LFALSE. JFALSE. .TRUE. .FALSE.

3-6 60481300 D

60481300 D

Precedences have been established among the arithmetic
and logical operators. There is only one character
operator. No precedence is established among the
relational operators. The precedences among the
operators are:

Arithmetic Highest
Character
Relational
Logical Lowest

An expression can contain more than one kind of
operator. For example, the logical expression:

L.OR.A+B.GE.C

where A, B, and C are of type real, and L is of type
logical, contains an arithmetic operator, a relational
operator, and a logical operator. This expression would be
interpreted as:

L .OR. ((A + B) .GE. C)

Any variable, array element, function, or character
substring involved in an expression must be defined at the
time the reference is made. An integer operand must be
defined with an integer value rather than a statement
label value. Note that if a character string or substring is
referenced, all of the referenced character positions must
be defined at the time the reference is executed.

Any arithmetic operation whose result is not
mathematically defined is prohibited; for example,
dividing by zero and raising a zero-valued primary to a
zero-valued or negative-valued power.

A function reference in a statement must not alter the
value of any other entity within the statement in which
the function reference appears. The execution of a
function reference in a statement must not alter the value
of any entity in common that affects the value of any
other function reference in that statement. However,
execution of a function reference in the expression of a
logical IF statement can affect entities in the statement
that is executed when the value of the expression is true.
If a function reference causes definition of an actual
argument of the function, that argument or any associated
entities must not appear elsewhere in the same
statement. For example, the statements:

A = F(D
Y = G(X) + X

are prohibited if the reference to F defines I, or the
reference to G defines X.

3-7

All of the operands of an expression are not necessarily
evaluated if the value of the expression can be determined
otherwise. For example, in the logical expression:

X .GT. Y .OR. L(Z)

where X, Y, and Z are real, and L is a logical function, the
function reference L(Z) need not be evaluated if X is
greater than Y. If a statement contains a function
reference in a part of an expression that need not be
evaluated, all entities that would have become defined in
the execution of that reference become undefined at the
completion of evaluation of the expression containing the
function reference. In the example above, evaluation of
the expression causes Z to become undefined if L. defines
its argument.

If a statement contains more than one function reference,
the functions can be evaluated in any order, except for a
logical IF statement and a function argument list
containing function references. For example, the
statement:

Y = F(G(X))

where F and G are functions, requires G to be evaluated
before F is evaluated.

Any expression contained in parentheses is always treated -

as an entity. For example, in evaluating the expression
A*(B*C), the product of B and C is evaluated and then
multiplied by A; the mathematically equivalent expression
(A*B)*C is not used.

ASSIGNMENT STATEMENTS

There are five types of assignment statements:
Arithmetic
L ogical

Statement label (with the ASSIGN statement as
described in section 4)

Character

ARITHMETIC ASSIGNMENT STATEMENT

The form of an arithmetic assignment statement is shown
in figure 3-6.

After evaulation of arithmetic expression e, the result is
converted to the type of v in the following way:

Integer INT (e)
Real REAL(e)
Double precision DBLE (e)
Complex CMPLX (e)

The result is then assigned to v, and v is defined or
redefined with that value.

CHARACTER ASSIGNMENT STATEMENT

The form of a character assignment statement is shown in
figure 3-7.

v Is the name of a character variable, character array
element, or character substring.

e Is a character expression.

Figure 3-7. Character Assignment

The character expression e is evaluated, and the result is
then assigned to v. None of the character positions being
defined in v can be referenced in e.

The variable v and expression e can have different
lengths. If the length of v is greater than the length of e,
e is extended to the right with blank characters until it is
the same length as v. If the length of v is less than the
length of e, e is truncated from the right until it is the
same length as v. '

Only as much of the value of e must be defined as is
needed to define v. In the example:

CHARACTER A*2, B¥4

the assignment A=B requires that the substring B(1:2) be
defined. It does not require that the substring B(3:4) be
defined. If v is a substring, e is assigned only to the
substring. The definition status of substrings not specified
by v is unchanged.

LOGICAL ASSIGNMENT STATEMENT

The form of a logical assignment statement is shown in
figure 3-8. The logical expression is evaluated and the
result is then assigned to v. Note that e must have a
value of either .TRUE. or .FALSE.

v Is the name of a variable or array element of type
integer, real, double precision, or complex.

e Is an arithmetic expression.

v Is the name of a logical variable or logical array
element.

e Is a logical expression.

Figure 3-6. Arithmetic Assignment

Figure 3-8. Logical Assignment

60481300 A

60481300 B 3-9

“

FLOW CONTROL STATEMENTS 1

r

FORTRAN flow control statements provide a means of
altering, interrupting, terminating, or otherwise modifying
the normal sequential flow of execution. The flow control
statements are as follows:

Unconditional GO TO ELSE IF PAUSE
Computed GO TO ELSE END
Assigned GO TO END IF CALL
Arithmetic IF DO RETURN
Logical IF CONTINUE

Block IF) STOP

Control can be transferred only to an executable
statement.

A statement can be identified by a label consisting of an
integer in the range 1 through 99999, with leading zeros
and embedded blanks ignored. Each statement label must
be unique in the program unit (main program or
subprogram) in which it appears.

GO TO STATEMENT

The three types of GO TO statements are unconditional
GO TO, computed GO TO, and assigned GO TO. The
ASSIGN statement is used in conjunction with the assigned
GO TO and is therefore described in this subsection.

UNCONDITIONAL GO TO STATEMENT

The unconditional GO TO statement is shown in figure 4-1.

GO TO sl

] Is the label of an executable statement.

Figure 4-1. Unconditional GO TO Statement

The unconditional GO TO statement transfers control to
the statement identified by the specified label. The
labeled statement must appear in the same program unit
as the GO TO statement. An example of an unconditional
GO TO statement is shown in figure 4-2.

10 A=B+Z
100 B=X+Y
IF(A-B)20,20,30
20 Z=A
GO TO 10 —«—— Transfers control to statement 10.
30 z=B
STOP
END

Figure 4-2. Example of Unconditional GO TO Statement

60481300 E

COMPUTED GO TO STATEMENT

The computed GO TO statement is shown in figure 4-3.
This statement transfers control to the statement
identified by one of the specified labels.

GO TO(si[,s1]. .. M.lexp

sl Is the label of an executable statement that
appears in the same program unit as the
GO TO statement.

Figure 4-3. Computed GO TO Statement

The label selected is determined by the value of the

expression. If exp has a value of one, control transfers to]

the statement identified by the first label in the list; if exp
has a value of i, control transfers to t
identified by the ith label in the list

If the value of exp is less than one or greater than the
number of labels in the list, execution continues with the
statement following the computed GO TO.

Figure 4-4 illustrates some examples of computed GO TO
statements.

ASSIGN STATEMENT

The ASSIGN statement is shown in figure 4-5. This
statement assigns a statement label to an integer
variable. The value assigned to iv represents the label of
an executable or a FORMAT statement. The labeled
statement must appear in the same program unit as the
ASSIGN statement. Once iv is used in an ASSIGN
statement, it cannot be used in any statement other than
an assigned GO TO statement, an ASSIGN statement, or
an I/O statement, until it has been redefined.

The assignment must be made prior to execution of the
assigned GO TO statement or the input/output statement
that references assigned label sl.
Figure 4-6 illustrates some ASSIGN
statements.

examples of

ASSIGNED GO TO STATEMENT

The assigned GO TO statement transfers contro! to the
executable statement last assigned to iv by the execution
of a prior ASSIGN statement. The assigned GO TO
statement is shown in figure 4-7.

4-1

Example 1:

GO T0(10,20,30,20)L

The next statement executed is:

10ifL=1
2 if L =2
0ifL=3
20ifL=4

Example 2:
K=2

GO T0(100,150,300),K

Statement 150 is executed next.

Example 1: ‘

ASSIGN 10 TO LSWIT
GO TO LSWIT (5,10,15,20)

Control transfers to the statement labeled 10.

Example 2:

ASSIGN 24 TO IFMT
WRITE (2,IFMT)AB

The variables A and B are formatted according to the
FORMAT statement labeled 24.

Figure 4-6. Examples of ASSIGN Statement

Example 4:

M=4
GO T0(100,200,300),M
A=B+C

Execution continues with the statement A=B+C,
since the value of M is greater than the number of
labels enclosed in the parentheses.

Figure 4-4. Examples of Computed GO TO Statements

GO TO iv [[1(stls1]... 1
iv Is an integer variable.
sl Is the label of an executable statement that

appears in the same program unit as the
assigned GO TO statement.

ASSIGN sl TO iv

sl Is the label of an executable or FORMAT
statement.
iv Is an integer variable.

Figure 4-5. ASSIGN Statement

The variable iv must not be defined by any statement other
than an ASSIGN statement. The list of statement labels is
optional. All labels in a statement label list must be in the
same program unit as both the ASSIGN and assigned GO TO
statements. Also, iv must be one of the labels in the list.
Figure 4-8 illustrates an example of an assigned GO TO
statement.

Figure 4-7. Assigned GO TO Statement

ASSIGN 50 TO JUMP

10 GO TO JUMP,(20,30,40,50) Statement 50 is executed

immediately after state-

20 CONTINUE ment 10.

30 CAT=ZERO+HAT

40 CAT=10.1-3.

50 CAT=25.2+7.3

Figure 4-8. Example of Assigned GO TO Statement

IF STATEMENT

The IF statement evaluates an expression and
conditionally transfers control or executes another
statement, depending on the outcome of the test. The
kinds of IF statements are as follows:

Arithmetic IF

Logical IF
Block IF

The ELSE, ELSE IF, and END IF statements are also
discussed in this subsection since they are used in
conjunction with a block IF statement.

ARITHMETIC IF STATEMENT

The arithmetic IF statement is shown in figure 4-9.

60481300 E

IF (exp) slqslpsla

exp Is an integer, real, double precision,
] 0 expression.

Are statement labels of executable
statements that appear in the same
program unit as the arithmetic IF

statement.

S'1,S|2,S|3

Figure 4-9. Arithmetic IF Statement

The arithmetic IF statement transfers control to the
statement labeled slj if the value of exp is less than zero,
to the statement labeled sl if it is equal to zero,
the statement labeled slz if it is greater than zero.

Figure 4-10 illustrates an example of an arithmetic IF
statement.

PROGRAM IF
READ (5,100} 1,J.K,N
100 FORMAT (10X,414)

IF(I-N) 3,4,6

3 ISUM=J+K

6 CALL ERROR1
WRITE (6,2) ISUM

2 FORMAT (110)

4 STOP
END

Figure 4-10. Example of Arithmetic IF Statement

LOGICAL IF STATEMENT

The logical IF statement is shown in figure 4-11.

IF (exp) stat
exp Is a logical expression.
stat Is any executable statement except a DO, block

IF, ELSE, ELSE IF, END, END IF, or another
logical |F statement.

Figure 4-11. Logical IF Statement

The logical IF statement allows for conditional execution
of a statement. If the value of exp is true, statement stat
is executed. If the value of exp is false, stat is not
executed; execution continues with the next statement.
Figure 4-12 illustrates some examples of logical IF
statements. :

BLOCK IF STATEMENT

The block IF statement provides for conditional execution
of a block of executable statements. The block IF
statement is used with the END IF and, optionally, the
ELSE and ELSE IF statements to form block IF
structures. The block IF statement is shown in
figure 4-13.

60481300 D

IF (P.AND.Q) RES=7.2
50 TEMP=ANS*Z

If P and Q are both true, the value of the variable RES
is replaced by 7.2; otherwise, the value of RES is
unchanged. In either case, statement 50 is executed.

IF (A.LT.B) CALL SUB1
20 ZETA=TEMP+RES4

If A is less than B, the subroutine SUB1 is called. Upon
return from this subroutine, statement 20 is executed.

If A is greater than or equal to B, statement 20 is
executed and SUB1 is not called.

Figure 4-12. Examples of Logical IF Statements

IF {(exp} THEN

exp Is a logical expression.

Figure 4-13. Block IF Statement

If the logical expression exp is true, execution continues
with the next executable statement. If exp is false,
control transfers to an ELSE or ELSE IF statement, or if
none are present, to an END IF statement.

ELSE STATEMENT

The ELSE statement provides an alternate path of
execution for a block IF statement or an ELSE IF
statement. The ELSE statement is shown in figure 4-14.

An ELSE statement can have a statement label; however,
the label cannot be referenced in any other statement.

ELSE

Figure 4-14, ELSE Statement

ELSE IF STATEMENT

The ELSE IF statement combines the functions of the
ELSE and block IF statements. This statement provides
an alternate path of execution for a block IF or another
ELSE IF statement and performs a conditional test. The
ELSE IF statement makes it possible to form a block IF
structure with more than one alternative. The ELSE IF
statement is shown in figure 4-15.

ELSE IF (exp) THEN

exp Is a logical expression.

Figure 4-15. ELSE IF Statement

An ELSE IF statement can have a statement label;
however, the label cannot be referenced by any other
statement.

The effect of executing an ELSE IF statement is the same
as for a block IF statement. :

END IF STATEMENT

The END IF statement terminates a block IF structure.
For each block IF statement there must be a corresponding
END IF statement. A statement label for an END IF
statement cannot be referenced. The END IF statement is
shown in figure 4-16.

An example of a simple block IF structure is shown in
figure 4-18. In this and subsequent examples, indentation
is used to indicate levels of block IF structures.

IF (1.LEQ.0) THEN
X=X+DX
Y=Y+DY

END IF

If I is zero, the subsequent statements are executed.
If not, control transfers to the statement following
END IF.

END IF

Figure 4-16. END IF Statement

BLOCK IF STRUCTURES

Block IF structures provide for alternative execution of
blocks of statements. A block IF structure begins with a
block IF statement, ends with an END IF statement and,
optionally, includes one ELSE or one or more ELSE IF
statements. Each block IF, ELSE, and ELSE IF statement
is followed by an associated block of executable
statements called an if-block.

The simplest form of a block IF structure is shown in
figure 4-17.

Figure 4-18. Example of Block IF Statement

A block IF structure can contain one ELSE statement to
provide an alternative path of execution within the
structure. Figure 4-19 shows a block IF structure
containing an ELSE statement.

IF (exp) THEN
if-block-1

ELSE
if-block-2

END IF

IF (exp) THEN

if-block
END IF

Figure 4-17. Simple Block IF Structure

If exp is true, execution continues with the first
statement in the if-block. If exp is false, control
transfers to the statement following the END IF
statement. The if-block can contain any number of
executable statements, including block IF statements.

Control can be transferred out of an if-block from inside
the if-block. However, control cannot be transferred into
an if-block from outside the if-block. It is not permissible
to branch directly to an ELSE, ELSE IF, or END IF
statement. However, it is permissible to branch directly
to a block IF statement.

When execution of the statements in an if-block has
completed, and if control has not been transferred outside
an if-block, execution continues with the statement
following END IF.

Figure 4-19. Block IF Structure With ELSE Statement

In this structure, if exp is true, execution continues with
the first statement in if-block-1. If the last statement of
if-block-1 does not transfer control, control transfers to
the statement following END IF.

If exp is false, control transfers to the first statement in
if-block-2. If the last statement in if-block-2 does not
transfer control, execution continues with the statement
following END IF.

A block IF statement can have at most one associated
ELSE statement.

An ‘example of an ELSE statement is illustrated in
figure 4-20.

READ (2,12) AB
IF (XSUM.LT.XLIM) THEN
X(1)=A/2.0+B/2.0
XSUM=XSUM+X(1)
WRITE (3,74) X(1),XSUM
ELSE
Y(1)=A*B
YSUM=Y(I)
WRITE (3,16) YSUM,Y (1)
END IF

Figure 4-20. Example of Block IF Structure
With ELSE Statement

60481300 E

An IF structure can contain one or more ELSE IF
statements to provide for alternative execution of
additional block IF statements. This capability allows the
user to form IF structures containing a number of possible
execution paths depending on the outcome of the
associated IF tests. The IF structure with ELSE IF
statements is shown in figure 4-21.

IF (exp1) THEN
if-block-1

ELSE IF {exp2) THEN
if-block-2

ELSE IF (expé) THEN
if-block-3

END IF

Figure 4-21. Block IF Structure With ELSE IF Statements

In this structure, the initial block IF statement and each
ELSE IF or ELSE statement has an associated if-block.
Only one if-block in this structure is executed (if no
nested levels appear). Each logical expression is
evaluated until one is found that is true. Control then
transfers to the first statement of the associated
if-block. When execution of the if-block has completed,
and if control has not been transferred, control transfers
to the statement following END IF. If none of the logical
expressions are true and no ELSE statement appears, no
if-blocks are executed; control transfers to the statement
following END IF. In this structure, at most one if-block
is executed.

If an ELSE statement appears, it must follow the last
ELSE IF statement. If no logical expression is true,
control transfers to the statement following ELSE.

Control can transfer out of a block IF structure from
inside any if-block; however, control cannot transfer from
one if-block to another if they are at the same nesting
level.

An example of a block IF structure with ELSE IF
statements is illustrated in figure 4-22.

NESTED BLOCK IF STRUCTURES

Block IF structures can be nested, that is, any if-block
within a structure can itself contain block IF structures.
Within a nesting hierarchy, control can transfer from a
lower level structure into a higher level structure;
however, tontrol cannot transfer from a higher level
structure into a lower level structure. Nested block IF
structures are illustrated in figure 4-23. Figure 4-24
shows an additional example of a nested block IF structure.

60481300 D

IF (N.EQ.1) THEN
CALL ASUB(X,R)
CALL BSUB(X,S)

ELSE IF (N.EQ.2} THEN
DO 6 1=1,100

6 X(1)=0.0

ELSE {F (N.EQ.3) THEN
GO TO 8

ELSE

END IF

8 CONTINUE

Since no executable statements appear between ELSE
and END IF, ELSE has no effect.

Figure 4-22. Example of Block IF Structure
With ELSE IF Statements

IF (exp) THEN
if-block-1
IF (exp) THEN
if-block-2
END IF
ELSE
if-block-1
END IF

Figure 4-23. Nested Block IF Structure

IF (X.GT.Y) THEN
5 Y=Y+YINCR
IF (K.EQ.J) THEN
XT=X
YT=Y
ELSE
K=K+1
GO TO 5
END IF
ELSE
X=X+XINCR
END IF

Each level contains a block IF and an ELSE statement.
The inner structure is executed only if X is greater than
Y. The inner structure contains a legal branch to the
outer structure.

Figure 4-24. Example of Nested Block IF Structure

DO STATEMENT

The DO statement is used to specify a loop, called a DO
loop, that repeats a group of statements. The DO
statement is shown in figure 4-25.

4-5

DO sl [] v=eq.eyl.e3]

sl Is the label of an executable statement cafled
the terminal statement of the DO loop.

v Is an integer, real, or double precision
control variable.

eq Is an initial parameter.

ey Is a terminal parameter.

eg Is an optional increment parameter;
default is 1.

eq, ey, and ez are called indexing parameters; they can
be integer, real, double precisian, constants,
symbolic constants, variables, or expressions.

Figure 4-25. DO Statement

The terminal statement of a DO loop is an executable
statement that must physically follow and reside in the
same program unit as its associated DO statement. The
terminal statement must not be an unconditional GO TO,
assigned GO TO, arithmetic IF, block IF, ELSE IF, ELSE,
END IF, RETURN, STOP, END, or DO statement. If the
terminal statement is a logical IF statement, it can contain
any statement except a DO, block IF, ELSE IF, ELSE, END
IF, END, or another logical IF.

DO LOOPS

The range of a DO loop consists of all the executable
statements following the DO statement up to and including
the terminal statement. Execution of a DO statement
causes the following sequence of operations:

L. The expressions e}, ez and e3 are evaluated
and, if necessary, converted to the type of the control
variable v.

2. Control variable v is assigned the value of el.

3. The iteration count is established; this value is
determined by the following expression:

MAX(INT{(m2-m1+m3)/m3),mtc)

mi1, m2, m3
are the values of the expressions ej, eg,
and e3, respectively, after conversion to
the type of v.

mtc

is the minimum trip count;

4. If the iteration count is not zero, the range of the DO
loop is executed. If the iteration count is zero,
execution continues with the statement following the
terminal statement of the DO loop; the control
variable retains its most recent value.

5.. Control variable v is incremented by the value of es.
6. The iteration count is decremented by one.
Steps 4 through 6 are repeated until the iteration count

attains a value of zero.

If the DO=LONG control statement parameter is selected,
the trip count for DO loops can exceed 217.1. If
DO=LONG is not selected, the trip count must not exceed
217_1, and the following conditions must be satisfied:

Jmy +m3j<217.3

|mz +m3]<217.1
If a DO loop appears within an if-block, the range of the
DO loop must be entirely contained within the if-block. If
a block IF statement appears within the range of a DO

loop, the corresponding END IF statement must also appear
within the range of that DO loop.

ACTIVE AND INACTIVE DO LOOPS

Initially, a DO loop is inactive. A DO loop becomes active
only when its DO statement is executed.

Once active, a loop becomes inactive when any of the
following occur:

Its iteration count is determined to be zero.

A RETURN, STOP, or END statement is executed
within the program unit containing the loop.

The control variable becomes undefined or is redefined
(by a process other than loop incrementation).

It is in the range of another loop that becomes
inactive.

It is in the range of another loop whose DO statement
is executed.

If a DO loop executes zero times, the control variable
value equals mj. Otherwise, the value is the most
recent value of the control variable plus the increment
parameter value.

60481300 D

If a DO loop becomes inactive but has not executed to
completion (iteration count does not equal zero), its

control variable retains its most recent value unless it has
become undefined.

Transfer into the range of an inactive DO loop from
outside the range is not permitted.

Figure 4-26 illustrates some examples of DO ioops.

Example 1:

DO 10 1-1,11,3
IF(ALIST(1)-ALIST(1+1))15,10,10
15 ITEMP=ALIST(I)"
10 ALIST{1)=ALIST(i+1)
300 WRITE(6,200)ALIST

The statements following DO up to and including
statement 10 are executed four times. The DO
loop is executed with | equal to 1, 4, 7, and 10.
Statement 300 is then executed. After completion
of the loop, | has a value of 13.

Example 2:

DO 10 1=5,1,-1
PRINT 100, B(1)
10 IF (X .GT. B(1) .AND. X .LT. H) Z=EQUATE
6 A=ZERO+EXTRA

This example illustrates the use of a negative
increment parameter. Statement 10 is executed

five times, whether or not Z = EQUATE is executed.
Statement 6 is executed only after the DO loop

is satisfied.

Example 3:

IVAR = 9

DO 20 I = 1,200

IF (I .GE. IVAR) GO TO 10
20 CONTINUE
10 IN =11

An exit from the range of the DO is made to

- statement 10 when the value of the control variable
I is equal to IVAR. The value of the integer variable
IN becomes 11.

Example 4:

K=3

J=5

DO 100 i=J,K

RACK=2.-3.5+ANT(l}
100 CONTINUE

=0T is not specified, the
loop is not executed.

Figure 4-26. DO Loop Examples

60481300 D

NESTED DO LOOPS

When a DO loop entirely contains another DO loop, the
grouping is called a DO nest. The range of a DO statement
can include other DO statements providing the range of
each inner DO is entirely within the range of the
containing DO statements.

The last statement of an inner DO loop must be either the
same as the las
occur before

y and the label can be referenced in any GO TO or IF
ment in the nest. Figure 4-27 illustrates some
possible DO loop nests. Note that loops can be completely
nested or can share a terminal statement.

A DO loo

A transfer from the range of an outer DO into the range of
an inner DO loop is not allowed; however, a transfer out of
the range of an inner DO into the range of an outer DO is
allowed because such a transfer is within the range of the
outer DO loop. Subprograms can be called from within a
DO loop. A transfer back into the range of an innermost
DO loop is allowed if a transfer has been made from the
same loop and is still active. Legal and illegal transfers
are illustrated in figure 4-28.

Figure 4-29 illustrates some examples of nested DO loops.

A terminal statement that is shared by more than one DO
loop can be referenced in a GO TO or IF statement in the
range of any of the loops, provided the referencing loop is
active, as illustrated in figure 4-30. If the terminal
statement is referenced in an inactive loop, results are
undefined.

When an IF or GO TO statement is used to bypass several
inner loops, different terminal statements are required for
each loop. Figure 4-31 illustrates nested DO loops with
different terminal statements.

CONTINUE STATEMENT

The CONTINUE statement is shown in figure 4-32.

The CONTINUE statement performs no operation. It is an
executable statement that can be placed anywhere in the
executable statement portion of a source program without
affecting the sequence of execution. The CONTINUE
statement is most frequently used as the last statement of
a DO loop. It can provide loop termination when a GO TO
or IF would normally be the last statement of the loop. If
the CONTINUE statement does not have a label, an
informative diagnostic is issued. Figure 4-33 shows an
example using a CONTINUE statement.

4-7

DO 5 1=156
DO 5 J=1,10
DO 5 K=J,15

5 A = B*C

DO 1 1=1,10,2 DO 100 L=2,LIMIT i
DO 2 J=156 DO 10 J=1,10
i)O 3 K=2,8 10 CONTINUE
3 bONTlNUE DO 20 K=K1,K2
- 2 CONTINUE 20 CONTINUE
———— DO 4 L=1,3 100 CONTINUE
— 4 CONTINUE
1 CONTINUE

Figure 4-27. Nested DO Loops

~=— |llegal

N

Figure 4-28. Nested DO Loop Transfers

Example 1:

N=0
DO 100 I=1,10
J=|
DO 100 K=15
L=K

100 N=N+1

101 CONTINUE

After execution of these DO loops and at the execution
of the CONTINUE statement, I=11, J=10, K=6, L=5,
and N=50.

Figure 4-29. Nested DO Loop Examples (Sheet 1 of 2)

Example 2:

N=0
DO 200 1=1,10
J=1
DO 200 K=5,1
L=K

200 N=N+1

201 CONTINUE

If DO=0T is not specified on the FTN
he i | i

Example 3:
DIMENSION A(5,4,4), B(4,4)
DO21=14
DO2J=14
DO1K=15
1 AKJI) = 0.0
2 B(J,I) = 0.0

This example sets arrays A and B to zero.

Figure 4-29. Nested DO Loop Examples (Sheet 2 of 2)

60481300 D

DO 10
DO 10
DO 10

J=1,50
1=1,50
M=1,100

- GO TO 10

10 CONTINUE

Figure 4-30. Branch to Shared Terminal Statement

DO 10 K=1,100
IF(DATA(K).NE.10) GO TO 101
20 DO 30 L=1,20
IF(DATA(L).NE.FACT*K-10.) GO TO 30%
40 DO 50 J=15

GO TO (101,102,50),INDEX
101 TEST=TEST+1
"GO TO 104
103 TEST=TEST-1
DATA(K)=DATA(K)*2.0

50 CONTINUE
30 CONTINUE
10 CONTINUE

GO TO 104
102 DO 109 M=1,3

109 CONTINUE

104 CONTINUE

T Transfer bypasses inner loops.

Figure 4-31. Nested DO Loops With Different
Terminal Statements

Example:

DO 101 =11
IF(A(1).GE.A(1+1)) GO TO 10

A (1) = A (1+1)
10 CONTINUE

Figure 4-33. CONTINUE Statement Examples

PAUSE STATEMENT

The PAUSE statement is shown in figure 4-34. When a
PAUSE statement is encountered during execution, the
program halts and PAUSE n appears as a dayfile message
on the operator console. If the job is executing
interactively, PAUSE n appears as a dayfile message at the
user terminal (does not apply to SCOPE 2). For batch
originated programs, the console operator can continue or
terminate the program with an entry from the console.

For programs executing interactively through INTERCOM
under NOS/BE and SCOPE 2, the user types GO to continue
execution or DROP to terminate. For any other type-in, a
diagnostic message is issued and INTERCOM waits for a
correct type-in.

For programs executing interactively through IAF under
NOS, the user types the user break 2 sequence to
terminate program. execution. Any other type-in causes
execution to continue.

For programs executing interactively through the NOS
Time-Sharing System, the user types STOP to terminate
execution. Any other type-in causes execution to continue.
Examples:

PAUSE 45321

PAUSE 'EXAMPLE TWO'

CONTINUE

PAUSE[n]

n Is a string of 1 thr
character constant .

Figure 4-32. CONTINUE Statement

60481300 D

Figure 4-34. PAUSE Statement

4-9

STOP STATEMENT

The STOP statement is shown in figure 4-35.

STOP[n]

n s a string of 1 through 5 decim
character constant ¢ :

Wt

Figure 4-35. STOP Statement

A STOP statement terminates program execution. When a
STOP statement is encountered during execution, STOP n
is displayed in the dayfile (or at the terminal if executing
interactively), the program terminates, and control
returns to the operating system. If n is omitted, blanks
are implied. A program unit can contain more than one
STOP statement.

Example:

STOP 'PROGRAM HAS ENDED!

END STATEMENT

The END staterﬁent is shown in figure 4-36.

END

Figure 4-36. END Statement

The END statement indicates the end of the program unit
to the compiler. Every program unit must physically
terminate with an END statement. The END statement
can be labeled. If control flows into or branches to an
END statement in a main program, execution terminates.
If control flows into or branches to an END statement in a
function or subroutine, it is treated as if a RETURN
statement had preceded the END statement.

An END statement cannot be continued; it must be
completely contained on an initial line. A line following
an END statement is considered to be the first line of the
next program unit, even if it has a continuation character
in column 6.

RETURN STATEMENT

The RETURN statement is described in section 6,
Program Units and Procedures.

CALL STATEMENT

The CALL statement is described in section 6, Program
Units and Procedures.

60481300 D

INPUT/OUTPUT

Processing that results from input/output statements
depends on the type of statement used. For each
category, there are one or more input statements and
corresponding output statements. The categories are:

Formatted (READ, WRITE, PRINT
statements with format specifier)

Unformatted (READ and WRITE without format
specifier)

List directed (READ, WRITE, PRINT,
with an * replacing the format specifier)

In addition, there are file status statements OPEN,

and the file
positioning statements ’ KCKSPACE, and
ENDFILE, all discussed in this section. Format
specifications, input/output lists, and internal files which
provide for memory-to-memory transfer of data, are also
discussed in this section.

FILE USAGE

Input and output involve reading records from files and
writing records to files. Every file must have a logical
file name of one to seven letters and digits beginning with
a letter. The logical file name is defined only for the
current job, and is the name by which the file is referred
to in control statements.

60481300 D

Sequential files need not be declared on
an OPEN statement. If a file is not declared on the
OPEN statement, a buffer is created

on the first reference to the file

O - OPEN statements |
pecify maximum record length
In the absence of user specification,

A file should not be processed both by unformatted
operations and by formatted, name or list directed
operations without an intervening rewind. If rewound, it
can then be rewritten in a different mode.

For every formatted, list directed, namelist, or
unformatted READ, end-of-file status can be checked by
use of the END= or IOSTAT= parameter in the READ
statement. If end-of-file is encountered and a test is not
included, the program terminates with a fatal error.

Record length on card files should not exceed 80
characters. Record length on print files should not exceed
137 characters; the first character is always used as
carriage control and is not printed. The second character
appears in the first print position. Carriage control
characters are listed in this section under Format
Processing.

The following keyword=value forms are wused in
input/output statements.

UNIT=u

An asterisk implying unit INPUT in a
READ statement and unit OUTPUT in a
WRITE statement.

5-1

FMT=fn

REC=rn

END=sl

5-2

The name of a character variable, array,
array element, or substring identifying
an internal file.

An integer | xpression having
the following characteristics:

INT(u) has a zvalue in the range 0
h E

The characters UNIT= can be omitted, in
which case u must be the first item in
the control information list.

File names default to the unit name
unless a different fi
ified

statement.

Specifies a format to be used for formatted
input/output; fn can be one of the following:

A statement label identifying a
FORMAT statement in the program unit
containing the input/output statement.

The name of a character array, variable,
expression or array element containing
the format specification.

An integer variable that has been
assigned the statement number of a
FORMAT statement by an ASSIGN
statement.

An asterisk, indicating list directed 1/0.

The characters FMT= can be omitted, in
which case the format designator must
be the second item in the control
information list, and the first item must
be the wunit specifier without the
characters UNIT=,

Specifies the number of the record to be read
or written in the file; must be a positive
nonzero integer. Valid for files opened for
direct access only.

Specifies the label of an executable statement
to which control transfers when an end-of-file
is encountered during an input operation.

ERR=sl Specifies the label of an executable
statement to which control transfers if an
error condition is encountered during

input/output processing.

IOSTAT=ios Specifies an integer variable into which one
of the following values is placed after the
input/output operation is complete:

<0 End-of-file

=0 Operation completed normally

>0 Number of error condition
detected (see appendix B,
table B-4).

>1000 CRM error; the rightmost 3
digits correspond to an octal
error code in the CYBER
Record Manager reference
manual. For example, error
number 1355 corresponds to
CRM error number 355.

iolist Input/output list specifying items to be trans-
mitted (described under Input/Output Lists).

FORMATTED INPUT/OUTPUT

For formatted input/output, a format specifier must be
present in the input/output statement. The input/output
list is optional. Each formatted input/output statement
transfers one or more records. The formatted input/output
statements are READ, WRITE, PRINT

INPUT/OUTPUT LISTS

The list portion of an input/output statement specifies the
items to be read or written and the order of transmission.
The input/output list can contain any number of items.
List items are read or written sequentially from left to
right.

If no list appears on input, one or more records are
skipped. Only information completely contained within the
FORMAT statement, such as character strings, can be
output with a null (empty) output list.

A list item consists of a variable name, an array name, an
array element name, a character substring name, or an
implied DO list, On output the list items can also include
logical, or arithmetic expressions. No
expression in an input/output list can reference a function
if such reference would cause any input/output operations
to be executed or would cause the value of any element of
the input/output statement to be changed. List items are
separated by commas.

An array name without subscripts in an input/output list
specifies the entire array in the order in which it is stored.
The entire array (not just the first word of the array) is
read or written. Assumed-size array names are illegal in
input/output lists.

Subscripts in an input/output list can be any valid subscript
(section 1).

60481300 D

Example of input/output lists:

READ (2,100) A,B,C,D

READ (3,200) A,B,C(1),D(3,4),E(1,3,7),H

READ (4,101) J,A(3),1,B(1,3)

WRITE (2,202) DELTA

WRITE (4,102) DEL TA(5%3+2,5%-3,5%K),C,D(1+7)

On formatted input or output, the I/O list is scanned and
each item in the list is paired with the field specification
provided by the FORMAT statement. After one item has
been input or output, the next format specification is taken
together with the next element of the list, and so on until
the end of the list.

Example:

READ (5,20) L,M,N
20 FORMAT (I3,12,I7)

Input record:
100223456712

100 is read into the variable L under the specification I3.
22 is read into M under the specification 12, and 3456712 is
read into N under specification i7.

IMPLIED DO LOOP IN 1/0 LIST
An implied DO specification has the following farm:
(diist,i=ej,ez[,e3])

The elements i, ejep, and e3 have the same
meaning as in the DO statement, and dlist is an
input/output list. The range of an implied DO specification
is that of dlist. The value of i must not be changed within
the range of the implied DO list by a READ statement.
Changes to the values of ej, ey, and e3 have no
effect upon the execution of the implied DO. However,
their values can be changed in a READ statement if they
are outside the range of the implied DO, and the change
does have effect. For example:

READ 100, K, (A(I)I=1,K)

reads a value into K and uses that value as the terminal
parameter of the implied DO.

The statements:

K=2
READ 100, (A(I),I=1,K)
100 FORMAT (F10.3)

read two records, each containing a value for A.

An implied DO loop can be used to transmit a simple
variable more than one time. For example, the list
(A(K),B,K=1,5) causes the variable B to be transmitted five
times.

Input/output of array elements can be accomplished by
using an implied DO loop. The list of variables followed by
the DO loop index is enclosed in parentheses to form a
single element of the input/output list.

60481300 D

Example:
READ (5,100) (A(I),I=1,3)
has the same effect as the statement:

READ (5,100) A(1),A(2),A(3)

Example:

WRITE (3,20) (CAT,DOG,RAT,I=1,10)

CAT, DOG, and RAT are written 10 times each.

A variable cannot be used as a control variable more than
once in the same implied DO nest, but iolist items can
appear more than once. The value of a control variable
within an implied DO specification is defined within that
specification. On exit from the implied DO specification
the control variable retains the first value to exceed the
upper limit (e2). -

Implied DO loops can be nested, that is, the iolist in an
implied DO can itself contain implied DO loops. The first
(innermost) control variable varies most rapidly, and the
last (outermost) control variable varies least rapidly. For
example, a nested implied DO with two levels has the form:

((list,vy=e),e9,e3),vp=e€],E07,0€3)

Nested implied DO loops are executed in the same manner
as nested DO statements.

The nested form can be used to read into and write from
arrays.

Example:

READ (2,100) ((A(JV,3X),JV=2,20,2),IX=1,30)
READ (2,300) ((ITMLIST(I,J+1,K-2),I=1,25),3=2,N),
*K=IVAR,IVMAX,4)

Example:

DIMENSION VECTOR(3,4,7)
READ (3,100) VECTOR
100 FORMAT (16)

is equivalent to the following:

DIMENSION VECTORC(3,4,7)
READ (3,100) (((VECTOR(,J,K),1=1,3),J=1,4),K=1,7)

5-3

The following statement transmits nine elements into the
array E in the order: E(1,1), E(1,2), E(Q1,3), E(2,1), E(2,2),
E(2,3), E(3,1), E(3,2), E(3,3):

READ (1,100) ((E(1,3),3=1,3),1=1,3)

Each execution of an input or output statement transmits
at least one record regardless of the FORMAT statement.
Once a READ is initiated, the FORMAT statement
determines when a new record will be transmitted. For
example:

READ (5,100) (VECTOR (1),I=1,10)
100 FORMAT (F7.2)

reads data (consisting of one constant per record) into the
first 10 elements of the array VECTOR. The following
statements have the same effect:

DO 401 =1,10
40 READ (5,100) VECTOR (I)
100 FORMAT (F7.2)

In this example, numbers are read, one from each record,
into the elements VECTOR(1) through VECTOR(10) of the
array VECTOR. The READ statement is encountered each
time the DO loop is executed; and a new record is read for
each element of the array.

If statement 100 FORMAT (F7.2) had been 100 FORMAT
(4F7.2), only three records would be read by the first

example; the second example would still read ten records.
Both examples would read ten values.

FORMATTED READ

The formatted READ statement is shown in figure 5-1.

READ ([UNIT=]u,[FMT=] fn[,IOSTAT=ios]
[LERR=sl] [,END=sl]) [iolist]

READ fn/[,iolist]

Figure 5-1. Formatted READ Statement

These statements transmit data from unit u, or the unit
INPUT (the second form of read), to storage locations
named in iolist according to FORMAT specification fn.
The number of items in the list and the FORMAT
specifications must conform to the record structure on the
input unit. If the list is omitted, one or more input records
will be bypassed. The number of records bypassed is one
plus the number of slashes interpreted in the FORMAT
statement.

The user should specify the END= or IOSTAT= parameter
to avoid termination when an end-of-file is encountered. If
an attempt is made to read on unit u and an end-of-file was
encountered on the previous read operation on this unit,
execution terminates and an error message is printed.
Records following an end-of-file can be read by issuing a
CLOSE followed by an OPEN on the file or by using the
EOF function (section 7). CLOSE/OPEN, described later in
this section, is the preferred method.

Examples of formatted READ statements are shown in
figure 5-2.

Example 1:

PROGRAM IN
OPEN (4, FILE="INPUT’)
OPEN (7, FILE="OUTPUT’)
: READ (4,200)AB,C

200 FORMAT (3F7.3)
A=B*C+A
WRITE (7,50) A

50 FORMAT (50X,F7.4)
STOP
END

The READ statement transfers data from logical unit 4
(externally, the file INPUT) to the variables A, B, and C,
according to the specifications in the FORMAT statement
labeled 200.

Example 2:

PROGRAM RLIST
READ5,X.Y,Z
5 FORMAT (3G20.2)

RESULT = X-Y+Z
PRINT 100, RESULT

100 FORMAT {10X,G10.2)
STOP
END

The READ statement transfers data from file INPUT
to the variables X, Y, and Z, according to the specifica-

tions in the FORMAT statement labeled 5. Result is
printed on file OUTPUT.

Example 3:

OGRAM

,100,ERR=16,END=18) A B

100 FORMAT (2F10.4)
C=A+B
PRINT *AB,C
STOP

16 PRINT 101

101 FORMAT ('Al/O ERROR')
STOP

18 PRINT 102

102 FORMAT ('AEND OF FILE')
sTOP
END

Variables are read according to the FORMAT statement
labeled 100. If an error occurs during the read, control
transfers to statement 16; if an end-of-file is en-
countered, control transfers to statement 18.

Example 4:

In example 3, the READ and FORMAT statements can
be combined as follows:

READ (2,'(2F10.4)', ERR=16,END=18)A,B

Figure 5-2. READ Statement Examples

60481300 D

FORMATTED WRITE

The formatted WRITE statement is shown in figure 5-3.

WRITE ([UNIT=]u,[FMT=]n[,IOSTAT=ios]
[,LERR=sl]) [iolist]

Figure 5-3. Formatted WRITE Statement
The formatted WRITE statement transfers information
from the storage locations named in the input/output list
to the unit specified by u, according to the FORMAT
specification, fn.

Examples:

WRITE (4,50)
50 FORMAT ("THE IOLIST CAN BE OMITTED")

WRITE (¥,FMT=12) L,M,S(3)
12 FORMAT (3E16.5)
In the following example, the format specification appears
in the WRITE statement:
WRITE (2,(2E16.5)',ERR=12) X,Y

Figure 5-4 shows a program segment containing a WRITE
statement.

PROGRAM RITE

X=2.1

Y=3.

M=7

WRITE (6,100,ERR=200) X,Y,M
100 FORMAT (2F6.2,14)
200 STOP

END

Figure 5-4. WRITE Statement Example

FORMATTED PRINT

The PRINT statement is shown in figure 5-5.

PRINT fn [iolist]

Figure 5-5. PRINT Statement

This statement transfers information from the storage
ions named in the input/output list o |
: according to the specified format.
a batch job, file OUTPUT is normally sent to the printer.

Example:

PROGRAM PRINT
CHARACTER B*3
A=1.2
='YES'
N=19
PRINT 4,A,8,N
4 FORMAT (G20.6,A,15)
STOP
END

60481300 E

FORMAT SPECIFICATION

Format specifications are used in conjunction with
formatted input/output statements to produce output or
read input that consists of strings of display code
characters. On input, data is converted from a specified
format to its internal binary representation. On output,
data is converted from its internal binary representation to
the specified format before it is transmitted. Formats can
be specified by:

The statement label of a FORMAT statement.

An integer variable which has been assigned the
statement label of a FORMAT statement (see ASSIGN
Statement, section 4).

A character array name or any character expression,
except one involving assumed-iength character
entities.

FORMAT STATEMENT

The FORMAT statement is shown in figure 5-7.

sl FORMAT (flist)
sl Is a statement label.

flist Is a list of items, separated by commas,
having the following forms:

[rled
ned
[r] (flist)
ed Is a repeatable edit descriptor.

ned Is a nonrepeatable edit descriptor.

r Is a nonzero unsigned integer constant
repeat specification.

Figure 5-7. FORMAT Statement

FORMAT is a nonexecutable statement which specifies the
formatting of data to be read or written with formatted
1/0. It is used in conjunction with formatted input and
output statements, and it can appear anywhere in the
program after the PROGRAM, FUNCTION or
SUBROUTINE statement. An example of a READ
statement and its associated FORMAT statement is as
follows:

READ (5,100) INK,NAME,AREA
100 FORMAT (10X,14,12,F7.2)

The format specification consists of edit descriptors in
parentheses. Blanks are not significant except in H, quote,
and apostrophe descriptors.

Generally, each item in an input/output list is associated
with a corresponding edit descriptor in a FORMAT
statement. The FORMAT statement specifies the external
format of the data and the type of conversion to be used.
Complex variables always correspond to two edit
descriptors. Double precision variables correspond to one
floating-point edit descriptor (D,E,F,G). The D edit
descriptor corresponds to exactly one list item. Complex
editing requires two (D,E,F,G) descriptors; the two
descriptors can be different.

The type of conversion should correspond to the type of the
variable in the input/output list. The FORMAT statement
specifies the type of conversion for the input data, with no
regard to the type of the variable which receives the value
when reading is complete. For example, the statements:

INTEGER N
READ (5,100) N
100 FORMAT (F10.2)

assign a floating point number to the variable N which
could cause unpredictable results if N is referenced later
as an integer.

CHARACTER FORMAT SPECIFICATIONS

A format specification can also be specified as a character
expression or as the name of a character variable or array
containing a format specification. The form of these
format specifications is the same as for FORMAT
statements without the keyword FORMAT. Any character
information beyond the terminating parenthesis is ignored.
The initial left parenthesis can be preceded by blanks.

Example:

CHARACTER FORM#¥1]
DATA FORM/\13,2E14.4)/
READ (2, FMT=F ORM,END=50) N,A,B

is equivalent tos:

READ (2,FMT=100,END=50) N,A,B
100 FORMAT (13,2E14.4)

The preceding examples can also be expressed as:

READ (2, FMT=X13, 2E14.4),END=50) N,A,B
or

CHARACTER FORM#*(¥)

PARAMETER (FORM=X13,2E14.4)")

READ (2,FMT=FORM,END=50)N,A,B

5-6

If a format specification is contained in a character array,
the specification may cross element boundaries. Only the
array name need be specified in the input/output
statement; all information up to the closing parenthesis is
considered to be part of the format specification. For
example:

CHARACTER AR(2)*10
DATA AR/(10X,212,1','0X,F6.2)'/
READ (5,AR) 1,3,X

is equivalent to:

READ (5,000) 1,3,X
100 FORMAT (10X,212,10X,F6.2)

NONCHARACTER FORMAT SPECIFICATION

Format specifications can be contained in a noncharacter
array. The rules for noncharacter format specifications
are the same as for character format specifications.

EDIT DESCRIPTORS

Format specifications are composed of edit descriptors
which specify the data conversions to be performed.
Tables 5-1 and 5-2 list the edit descriptors and give a brief
description of each. The descriptors listed in table 5-1 can
be preceded by an unsigned nonzero decimal integer
indicating the number of times the descriptor is to be
repeated (as described later in this section under Repeated
Edit Descriptors). Uppercase letters indicate the type of
conversion. Lowercase letters indicate wuser-supplied
information that has the following meaning:

w Nonzero unsigned integer constant specifying the
field width in number of character positions in the
external record. This width includes any leading
blanks, + or - signs, decimal point, and exponent.

d Unsigned integer constant specifying the number
of digits to the right of the decimal point within
the field. On output all numbers are rounded.

e Nonzero unsigned integer constant specifying the
number of digits in the exponent; the value of e
cannot exceed six.

m Unsigned integer constant specifying the
minimum number of digits to be output.

k Integer constant scale factor.
n Positive nonzero decimal integer.

The field width w must be specified for all conversion
codes except A.

Field separators are used to separate descriptors and
groups of descriptors. The format field separators are the
slash (/), the comma, and the colon. The slash is also used
to specify demarcation of formatted records.

LLeading blanks are not significant in numeric input
conversions; other blanks in numeric conversions are
ignored unless BLANK='ZERO' was specified for the file on
an OPEN statement or a BZ edit descriptor is in effect.
Plus signs can be omitted. An all-blank field is considered
to be zero, except for logical input, where an all-blank
field is considered to be FALSE.

60481300 £

TABLE 5-1. REPEATABLE EDIT DESCRIPTORS

Descriptor

conversion is less than the field width, leading blanks are
inserted in the output field unless w.m is specified, in
which case leading zeros are produced as necessary. The
number of characters produced by an output conversion

Descriptor

Type

Description

must not be greater than the field width. If the field width

Ew.d

Ew.dEe

Fw.d

Dw.d

Gw.d

Gw.dEe

Iw

Iw.m

Numeric

Single precision
floating-point with
exponent

Single precision
floating-point with
explicitly specified
exponent length

Single precision
floating-point with-
out exponent

Double precision
floating-point with
exponent

Single precision
floating-point with
or without exponent

Single precision
floating-point with
or without explic-
itly specified expo-
nent length

Decimal integer
Decimal integer with

minimum number of
digits

Lw

Logical

Logical

Character

Character with data-
dependent length

Aw

Character
P

Character or Bool
with specified
Tength

is exceeded, asterisks are inserted throughout the field.

TABLE 5-2. NONREPEATABLE EDIT DESCRIPTORS
Descriptor Descriptor Description
Type
sp Plus signs (+) produced.
Numeric
SS output Plus signs (+) suppressed.
control :
S Plus signs (+) suppressed.
nX Position forward.
Tn Position forward or back-
Tabulation| ward.
control
TRn _Position forward.
TLn Position backward.

: Format Terminate format control.
control

/ End of Indicates end of current
record input or output record.

kP Scale Scaling for numeric
factor editing.

BN Numeric Blanks ignored.
input

BZ control Blanks treated as

zZeros

Complex data items are converted on input/cutput as two

independent

floating-point

quantities. The format

specification uses two conversion elements.

Example:

For the E, F, G, and D input conversions, a decimal point in
the input field overrides the decimal point specification of
the field descriptor.

The output field is right-justified for all output
conversions. If the number of characters produced by the

60481300 E

COMPLEX A,B,C,D
WRITE (6,10)A

10 FORMAT (F7.2,£8.2)
READ (5,11) B,C,D

11 FORMAT (2E10.3,2(F8.3,F4.1))

Different types of data can be read by the same FORMAT
specification. For example:

10 FORMAT (15,F15.2)

specifies two numbers, the first of type integer, the second
of type real.

Example:

CHARACTER R*4
READ (5,15) NO,NONE,INK,A,B,R
15 FORMAT (315,2F7.2,A4)

reads three integer values, two real values, and one
character string.

Following are descriptions of the edit descriptors.

| Descriptor

The 1 descriptor specifies integer conversion. This
descriptor has the forms:

Iw Iw.m

Input

The plus sign can be omitted for positive integers. When a
sign appears, it must precede the first digit in the field.
An Iw.m specification has no effect on input. An all blank
field is considered to be zero. Decimal points are not
permitted. The value is stored in the specified variable.
Any character other than a decimal digit, blank, or the
leading plus or minus sign in an integer field on input will
cause an error.

Example:
OPEN (2,BLANK="NULL"
READ (2,10) 1,J,K,L,M,N
10 FORMAT (13,17,12,13,12,14)
Input Record:

139 -15 18 7 14

In memory:

I contains 139
J contains -15
K contains 18

L contains 7
M contains 0
N contains 14

If BLANK='ZERQO' were specified on the OPEN statement,
J ‘would contain -1500 and N would contain 104. Other
values would not be affected. (The OPEN statement is
described later in this section.)

Output

If the integer is positive, the plus sign is suppressed unless
an SP specification is in effect. Leading zeros are
suppressed.

If Iw.m is used and the output value occupies fewer than
m positions, leading zeros are generated to fill up to m
digits. If m=0, a zero value will produce all blanks. If
m=w, no blanks will occur in the field when the value is
positive, and the field will be too short for any negative
value. If the field is too short, asterisks occupy the field.

5-8

Figure 5-8 shows some examples of I output. Note that
the first character of a printer output record is used for
carriage control and is not printed. More information on
carriage control appears later in this section.

Example 1:

PRINT 10,1,J,K
10 FORMAT (19,110,15)

I contains -3762
J contains +4762937

K contains +13

Printed result:

AAA-3762|AA04762937|44013 |
N, e "~ e
8 10 5

First blank taken as printer
control character

Example 2:

WRITE (6,100)N,M,I
100 FORMAT (15,16,19)

N contains +20
M contains -731450
| contains +205

Printed result:

AA20]** ****|annAnn205]
e I et me®
4 6 9

!

First blank taken as Specification too small,
printer control * indicates field is too
character short

Figure 5-8. I Output Examples

E Descriptor

The E descriptor specifies conversion between an internal
real or double precision value and an external number
written with an exponent. This descriptor has the forms:

Ew.d Ew.dEe

Input

The width w includes plus or minus signs, digits, decimal
point, E, and exponent. If an external decimal point is not
provided, d acts as a negative power-of-10 scaling factor.
The internal representation of the input quantity is:

(integer subfield) X 10-d x 10 (exponent subfield)
For example, if the specification is E10.8, the input

quantity 3267E+05 is converted and stored as:
3267 X 10-8 X 105 = 3.267.

60481300 C .

If an external decimal point is provided, it overrides d; e,
if specified, has no effect on input. An input field
consisting entirely of blanks is interpreted as zero.

The diagram in figure 5-9 illustrates the structure of the
input field. It shows the characters allowed to start a
subfield.

input field
+ . +
digit EorD
integer fraction exponent
subfield subfield

Figure 5-9. E Input Field

The integer subfield begins with a + or - sign, a digit, or a
blank; and it can contain a string of digits. The integer
field is terminated by a decimal point, E, +, - or the end of
the input field.

The fraction subfield begins with a decimal point and
terminates with an E, +, - or the end of the input field. It
can contain a string of digits.

The exponent subfield can begin with E, + or -. When it
begins with E, the + is optional between E and the string of
digits in the subfield. For example, the following are valid
equivalent forms for the exponent 3:

E+03 EOG3 EO3 E3 +3

The range, in absolute value, of permissible values is
approximately 10-293 o 10322, "Numbers below the
range are treated as zero; numbers above the range cause a
fatal error message.

Valid subfield combinations are as follows:

+1.6327E-04 Integer-fraction-exponent

-32.7216 Integer-fraction
+328+5 Integer-exponent
.629E-1 Fraction-exponent
+136 Integer only

136 Integer only
.07628431

Fraction only

If the field length specified by w in Ew.d is not the same
as the length of the field containing the input number,
incorrect numbers might be read, converted, and stored.
The example in figure 5-10 illustrates a situation where
numbers are read incorrectly, converted, and stored; yet
there is no immediate indication that an error has
occurred. First, +647E-01 is read, converted and placed in
location A. The second specification E7.2 exceeds the
width of the second field by two characters. The number

60481300 D

-2.36 +5 is read instead of -2.36. The specification error
(E7.2 instead of E5.2) caused the two extra characters to
be read. The number read (-2.36 +5) is a legitimate input
number. Since the second specification incorrectly took
two digits from the third number, the specification for the
third number is now incorrect. The field .321E+02AAis
read. The OPEN statement specifies that trailing blanks
are to be treated as =zeros; therefore the number
.321E +0200 is read converted and placed in location C.
Here again, this is a legitimate input number which is
converted and stored, even though it is not the number
desired.

OPEN (3,BLANK='ZERO')
READ (3,20) AB,C
20 FORMAT (E9.3,E7.2,E10.3)

On the input record, quantities are in three adjacent
fields, columns 1 through 24:

(+6.47E-01]-2.36|+5.321E+02 |
N e gt v’
9 5 10

would be read as:

9 7 10
-2.36+5

321E+02A4A

Figure 5-10. Example Showing E Input Incorrectly Read

Some additional examples of Ew.d input specifications are
shown in figure 5-11.

Converted

Input Field | Specification Value Remarks

+143.26E-03 E11.2 0.14326 |All subfields

present.
327.625 E7.3 327.625 [No exponent
subfield.
-.0003627+5 E11.7 -36.27 |Integer subfield

only a minus sign
and a plus sign
appears instead of
E.

-.0003627E5 E11.7 -36.27 |Integer subfield
left of decimal
contains minus
sign only.

All subfields
empty.

blanks E4.1 0.

Figure 5-11. Ew.d Input Examples

5-9

Output

The width w, must be sufficient to contain digits, plus or
minus signs, decimal point, E, the exponent, and blanks.
Generally, w>d+6 or w2>d+e+4 for negative numbers
and w2>2d+5 or w>d+e+3 for positive numbers. Positive
numbers need not reserve a space for the sign of the
number unless an SP specification is in effect. If the field
is not wide enough to contain the output value, asterisks
are inserted throughout the field. If the field is longer
than the output value, the quantity is right-justified with
blanks on the left.

The Ew.d specification produces output in the following

formats:
s.a...ak + ee For values where the magnitude of

the exponent is less than one

hundred

S.8...a + eee For values where the magnitude of

the exponent exceeds one hundred

s Is a minus sign if the number is
negative, and omitted if the number
is positive.

a...a Are the most significant digits of
the value correctly rounded.

When the specification Ew.dEe is used, the exponent is
preceded by E, and the number of digits used for the
exponent field not counting the letter and sign is
determined by e. If e is specified too small for the value
being output, the entire field width as specified by w will
be filled with asterisks.

If an integer variable is output under the Ew.d
specification, results are unpredictable since the internal
formats of real and integer values differ. An integer
value normally does not have an exponent and will be
printed, therefore, as a very small value or 0.0.

Example:

WRITE (2,10)A
10 FORMAT (E9.3)

A contains -67.32 or +67.32

Result: -.673E+02 or A.673E+02
Example:

WRITE (2,10)A
10 FORMAT (E12.3)

F Descriptor

The F descriptor specifies conversion between an internal
real or double precision number and an external
floating-point number without an exponent. This
descriptor has the form:

Fw.d

Input

On input the F specification is treated identically to the E
specification. Some examples are shown in figure 5-12.

Output

The F descriptor outputs a real number without a decimal
exponent.

The plus sign is suppressed for positive numbers. If the
field is too short, all asterisks appear in the output field.
If the field is longer than required, the number is
right-justified with blanks on the left. If the value being
converted is indefinite, an I is printed in the field; if it is
out of range (exceeds the capacity of the machine), an R
is printed.

The specification Fw.d outputs a number in the following
format:

sn.n

n Is a field of decimal digits.
s Is a minus sign if the number is negative, or
omitted if the number is positive.

Some examples of F output are shown in figure 5-13.

G Descriptor

The G descriptor specifies conversion between an internal
real or double precision number and an external
floating-point number written either with or without an
exponent, depending on the magnitude of the number.
This descriptor has the forms:

Gw.d Gw.dEe

Input

Input under control of G specification is the same as for
the E specification. The rules which apply to the E
specification also apply to the G specification. For
example:

READ (5,11) A,B,C

Result: : AAA-.673E+02 or AAAA.673E+02 11 FORMAT (G13.6,2G12.4)

Input Field Specification Converted Value Remarks

367.2593 F8.4 367.2593 Integer and fraction field.
62543 F6.5 .62543 No integer subfield.
62543 F6.2 .62543 Decimal point overrides d of specification.

+144.15E-03 F11.2 .14415 Exponents are allowed in F input.

50000 F5.2 500.00 No fraction subfield; input number converted as 50 000x10'2.
AAAAA F5.2 0 Blanks in input field interpreted as 0.

Figure 5-12. F Input Examples

5-10

60481300 D

Value of A | FORMAT Statement

PRINT Statement Printed Result

+32.694 10 FORMAT (1H ,F6.3)
+32.694 11 FORMAT (1H ,F10.3)
-32.694 12 FORMAT (1H ,F6.3)
.32694 13 FORMAT (1H ,F4.3,F6.3)
32.694 14 FORMAT (1H ,F6.0)

The specification 1H is the carriage control character.

PRINT 10,A 32.694
PRINT 11,A AAAA32.694
PRINT 12,A Rk
PRINT 13,AA .327AA.327
PRINT 14,A AAA33.

Figure 5-13. F Output Examples

Qutput

Output under control of the G descriptor depends on the
size of the floating-point number being edited. For values
in the range greater than or equal to .1 and less than
10%*d the number is output under F format. For values
outside this range, Gw.d output is identical to Ew.d and
Gw.dEe is identical to Ew.dEe.

If a number is output under the Gw.d specification without
an exponent, four spaces are inserted to the right of the
field (these spaces are reserved for the exponent field
E+ee). Therefore, for output under G conversion, w must
be greater than or equal to d+6. The six extra spaces are
required for sign and decimal point plus four spaces for
the exponent field. If the Gw.dEe form is used for a
number output without an exponent, then e + 2 spaces are
inserted to the right of the field. For example:

Y=77.132
WRITE (7,200)Y
200 FORMAT (G10.3)
writes the following:
AAT77.1AANA
EXIT=1214635.1
WRITE (4,100) EXIT
100 FORMAT (G10.3)
writes the following:

A21E407

Additional examples of G output are shown in figure 5-14.

READ (5,50) SAMPLE
50 FORMAT (E20.5)

.
.

WRITE (6,60) SAMPLE
60 FORMAT (1X,G14.8)

Data Read By Data Format

READ Statement Printed Option
.1415926535AE-10 | A.14159265E-10 E conversion
AAA.8979323846 A.89793238 F conversion
AAA2643383279. A.26433833E+10 E conversion
AAA-693.9937510 | -693.99375 F conversion

Figure 5-14. G Output Examples

60481300 D

D Descriptor

The D descriptor specifies conversion between an internal
double precision real number and an external
floating-point number written with an exponent. This
descriptor has the form:

Dw.d

NOTE
The E descriptor is preferred over the D
descriptor.
Input

D editing corresponds to E editing and can be used to input
all the same forms as E.

The diagram in figure 5-15 illustrates the structure of the
input field. It shows the characters allowed to start a
subfield.

Input field
+ 3 +
digit Dor E
integer fraction exponent
subfield subfield

Figure 5-15. D Input Field

Output

Type D conversion is used to output double precision
values. D conversion corresponds to E conversion except
that D 1 E at the beginni f th t

5-11

Examples of type D output:

DOUBLE PRECISION A,B,C
A =111111.11111D0
B = 222222.22222D0
C=A+B
WRITE (2,10) A,B,C

10 FORMAT (3D23.11)

.11111111111D+06
.33333333333D+06

.22222222222D+06
The specification Dw.d produces output in the following
format:

s.ateee For values where the magnitude of the
exponent exceeds one hundred

s.aD+ee For values where the magnitude of the
exponent is less than one hundred

s Minus sign if the number is negative, or
blank if the number is positive

a One or more most significant digits

ee Digits in the exponent

P Descriptor
The P descriptor has the form:

kP

where k is a signed or unsigned integer constant called the
scale factor.

The P descriptor is used to change the position of a
decimal point of a real number when it is input or output.
Scale factors can precede D, E, F, and G format
specifications or appear independently. Forms are as
follows:

kPDw.d

kPEw.dEe

kPEw.d

kPFw.d

kPGw.d

kP
A scale factor of zero is established when each FORMAT
specification is first referenced; it holds for all F, E, G,
and D field descriptors until another scale factor is
encountered.
Once a scale factor is specified, it holds for all D, E, F,
and G descriptors in that FORMAT specification until
another scale factor is encountered. To nullify this effect
~ for subsequent D, E, F, and G descriptors a zero scale
factor (OP) must be specified.

Example:

15 FORMAT(2P,E14.3,F 10.2,G16.2,0P,4F 13.2)

5-12

The 2P scale factor applies to the E14.3 format
specification and also to the F10.2 and Gl6.2 format
specifications. The OP scale factor restores normal scaling
(100 =1) for the subsequent specification 4F 13.2.

Example:
20 FORMAT(3P,5X,E12.6,F10.3,0PD18.7,-1P,F 5.2)

E12.6 and F10.3 specifications are scaled by 103, The
D18.7 specification is not scaled, and the F5.2
specification is scaled by 10-1,

The specification (3P,319,F10.2) is the same as the
specification (319,3PF 10.2).

Input

For F, E, D, and G editing, provided that the number in the
input field does not have an exponent, the number is
divided by 10K and stored. For example, if the input
quantity 314.1592 is read under the specification 2PF8.4,
the internal number is 314.1592X10-2= 3.141592.
However, if an exponent is read the scale factor is ignored.

Output

For F editing, the number in the output field is the internal
number multiplied by 10K. In the output representation,
the decimal point is fixed; the number is adjusted to the
left or right, depending on whether the scale factor is plus
or minus. For example, the internal number-3.1415926536
can be represented on output under scaled F specifications
as shown in figure 5-16.

..............................

(-1PF13.6) -.314159
(F13.6) -3.141593
(1PF13.06) -31.415927
(3PF13.6) =3141.562054

..............................

Figure 5-16. Scaled F Output

For E and D editing, the effect of the scale factor kP is to
shift the output coefficient left k places and reduce the
exponent by k. In addition, the scale factor controls the
decimal normalization between the coefficient and the
exponent such that: if k<0, there will be exactly -k leading
zeros and d + k significant digits after the decimal point; if
k>0, there will be exactly k significant digits to the left of
the decimal point and d-k + 1 significant digits to the right
of the decimal point. For example, the number
-3.1415926536 is represented on output under the indicated
Ew.d scaling as shown in figure 5-17.

..............................

(-3PE20.4) -.0003E+04
(-1PE20.4) -.0314E+02
(£20.4) -.3142E+01
(1PE20.4) -3.1416E+00

(3PE20.4) -314.16E-0

...... 44 s e 0088 s s s e e e s e e 0

Figure 5-17. Scaled E Output

60481300 D

For G editing, the effect of the scale factor is nullified
unless the magnitude of the number to be output is outside
the range that permits. effective use of F conversion
(namely, unless the number N<10-1 or N210d), In these
cases, the scale factor has the same effect as described
for Ew.d and Dw.d scaling. For example, the numbers
-3.1415926536 and -.00031415926536 are represented on
output under the indicated Gw.d scaling as shown in
figure 5-18.

..............................

(-3PG20.6) -3.14159

(-1PG20.6) -3.14159

(G20.6) ~3.14159

(1PG20.6) -3.14159

(3PG20.6) -3.14159

(5PG20.6) -3.14159

(7PG20.6) -3.14159

(-3PG20.6) -.000314E+00

(-1PG20.6) ~.031416E-02

(G20.6) -.314159E-03

(1PG20.6) -3.141593E-04

(3PG20.6) -314.1593E-06 .

(5PG20.6) -31415.93E-08
-3141593.E-10

(7PG20.6)

----- v e D I I R

Figure 5-18. Scaled G Output

BN and BZ Blank Interpretation

The BN and BZ descriptors can be used with the I, F, E, D,
and G edit descriptors, on input, to specify the
interpretation of blanks (other than leading blanks). In the
absence of a BN or BZ descriptor, blanks in input fields
are interpreted as zeros or are ignored, depending on the
value of the BLANK= specifier currently in effect for the
input/output unit. BLANK=NULL' is the default for
input. If a BN descriptor is encountered in a format
specification, all blank characters in succeeding numeric
input fields are ignored; that is, the field is treated as if
blanks had been removed, the remaining portion of the
field right-justified, and the field padded with leading
blanks. A field of all blanks has a value of zero.

If a BZ descriptor is encountered in a format
specification, all blank characters in succeeding numeric
input fields are interpreted as zeros.

For example, assuming BLANK = 'NULL', if the statement:
READ (6,13, BZ, I3, BN, I3))1,3,K

reads the input record:
1AA2AN3AL

then the I, J, and K have the following values:

I=1 J=200 K=3

60481300 C

S$,SP,SS Plus Sign Control

The S, SP and SS descriptors can be used on output with
the LF,E,D, and G descriptors to control the printing of
plus (+) characters. S, SP and SS have no effect on input.

Normally, FORTRAN does not precede positive numbers
by a plus sign on output. If an SP descriptor is
encountered in a format specification, all succeeding
positive numeric fields will contain the plus sign (w must
be of sufficient length to include the sign). If an SS or S
descriptor is encountered, the optional plus signs will not
appear.

S, SP, and SS have no effect on plus signs preceding
exponents, since those signs are always provided. For
example:

A =10.5
B=73
C =26.0

WRITE (2,"(1X,F6.2,5P,F6.2,55,F6.2)")A,B,C
prints the following:

AA10.50A+7.30A26.00

A Descriptor

The A descriptor can b
item of type character
has the forms:

This descriptor

A Aw

Input

If w is less than the length of the list item, the input
quantity is stored left-justified in the item; the remainder
of the item is filled with blanks. If w is greater than the
length of the item, the rightmost characters are stored
and the remaining characters are ignored. If w is omitted,
the length of the field is equal to the length of the list
item. Examples of A input are shown in figure 5-19.

Output

If w is less than the length of the list item, the leftmost
characters in the item are output. For example, if a
variable A, declared CHARACTER A*8, contains:

SAMPLE AA
and A is output with the following statement:

WRITE (6,"(1X,A4)NA
then the characters SAMP are output.
If w is greater than the length of the list item, the
characters are output right-justified in the field, with
blanks on the left. For example, if A in the previous

example is output with the following statements:

WRITE (6,400)A
400 FORMAT (1X,A12)

output is as follows:
AAAASAMPLEAA

If w is omitted, the length of the character list item
determines the length of the output field.

5-13

Example 1 (character list item):
CHARACTER A*9
READ (5,100) A
100 FORMAT (A7)
‘Input record:
EXAMPLE

In location A:

EXAMPLEAA
Example 2:
CHARACTER B*10
READ (5,200)B
200 FORMAT (A13)

Input record:

1 13
SPECIFICATION

In location B:

1 10
CIFICATION
Example 3:

CHARACTER Q*8,P*12,R*9
READ (5,10) Q,P,R
10 FORMAT (A8,A12,A5)

Input record:

— " e, ——

8 12 5

THIS IS AN EXAMPLE | KNOW
A’

In storage:

P THISAISA
Q ANAEXAMPLEAI
R AKNOWAAAA

Example 4:

CHARACTER NAME*30,PHONE*7
READ (5,/(A,A)) NAME PHONE

Note that if no length is specified for an A edit
descriptor, the length of the list item is used.

5-14

Figure 5-19. A Input Examples

L Descriptor

The L descriptor is used to input or output logical items.
This descriptor has the form:

Lw

Input

If the first nonblank characters in the field are T or .T,
the logical value .TRUE. is stored in the corresponding list
item, which should be of type logical. If the first
nonblank characters are F or .F, the value .FALSE. is
stored. If the first nonblank characters are not T, .T, F
or .F, a diagnostic is printed. :

60481300 B

Output

Variables output under the L specification should be of
type logical. A value of .TRUE. or .FALSE. in memory is
output as a right-justified T or F with blanks on the left.

Example:

LOGICAL L3,K

1=.TRUE.

J = .FALSE.

K = .TRUE.

WRITE (4,5) 1,3,K
S FORMAT (3L3)

Printed output:

ATAAFAAT

60481300 B 5-15

H Descriptor

The H descriptor is used to output strings of characters.
This descriptor is not associated with a variable in the
output list. The H descriptor has the form:

nHstring

n Is the number of characters in the
string including blanks.

string Is a string of characters.
The H descriptor cannot be used on input.
Note that although using apostrophes to designate a
character string precludes the need to count characters,
the H descriptor may be more convenient if the string
contains apostrophes.
Example:
Source statements:
A=15
WRITE (2,30)A
30 FORMAT (6HALMAX=,F5.2)
Output:
LMAX = 1.50

Replacing the H descriptor in the preceding example with
'ALMAX=' would produce the same output.

Apostroph

er strings delimited by a pair of apostrophe (*) @t
} symbols can be used as alternate forms of the H
specification for output. The paired symbols delineate the
string. If the string is empty or invalidly delimited, a
fatal compilation error oce an error message is
printed. The apostrophe descriptors must not
be used on input.

5-16

Examples:
Source statements:

PRINT 10
16 FORMAT (*ASUBTOTALS")

Printed output:
SUBTOTALS
Source statements:
WRITE (6,20)
20 FORMAT ("ARESULT OF CALCULATIONS ISA'
*AS FOLLOWSY)
Output:

RESULT OF CALCULATIONS IS AS FOLLOWS

be represented by two consecutive
occurrences of the symbol. sy

Source statements:

PRINT 3
3 FORMAT('ADON''T")

Output:

DON'T

X Descriptor

The X descriptor is used to skip character positions in an
input line or output line. X is not associated with a
variable in the input/output list. The X descriptor has the
form:

nX
n Is the number of character positions to be skipped

from the current character position; n is a
nonzero unsigned integer.

60481300 E

within a string delimited by the J

The specification nX indicates that transmission of the
next character to or from a record is to occur at the
position n characters forward from the current position.
Examples:

Source statements:

A = -342,743
B =1.53190
J=22

WRITE (6,'(1X,F9.4,4X,F7.5,4X,I3)") A,B,J
Output:

-342.7430AAAA1.53190AAAAA22
Source statement:

READ (3,'(F5.2,3X,F5.2,6X,F5.2)") R,S,T
Input:
14.62AA$13.78ACOSTA15.97

In storage:

R 14.62
S 13.78
T 1597

T,TL, TR Descriptors

The T, TL, and TR descriptors provide for tabulation
control. These descriptors have the forms:

Tn TLn TRn

n Is a nonzero unsigned decimal integer.
When a Tn descriptor is encountered in a format

specification, input or output control skips right or left to
column n; the next edit descriptor is then processed.

When a TLn descriptor is encountered, control skips
backward (left) n columns. If n is greater than or equal to
the current character position, control skips to the first
character position.

When a TRn descriptor is encountered, control skips
forward (right) n characters.

On card input, control can be positioned beyond column
80, but a succeeding descriptor would read only blanks.
Example:

READ 40, A,B,C
40 FORMAT (T2,F5.2,TR5,F6.1,TR3,F5.2)

Input:
A684.T3ANANA2436.2A0AA89.14

A is set to 684.7, B to 2436.0, and C to 89.0.
Example:

WRITE (31,10)
10 FORMAT (T20,'_ABELS")

60481300 D

Positions to column 20 of the output record and writes the
characters LABELS.

With a T, TR, or TL specification, the order of a list need
not be the same as that of the input or output record, and
the same information can be read more than once.

Example:
READ (2,(F5.2,TL5,F5.2))A,B
Input record:
76.05

Both A and B contain 76.05.

When a T, TR, TL specification causes control to pass
over character positions on output, positions not
previously filled during record generation are set to
blanks; those already filled are left unchanged. An
example is shown in figure 5-23.

The following example shows that it is possible to destroy
a previously formed field:

WRITE (2,8)
8 FORMAT ('DISASTERS',T5,3H123)

Output record before printing:
DISA123RS

If the output record is printed, the first character is not
printed. See Carriage Control Character in this section.

End-of-Record Slash

The slash indicates the end of a record anywhere in the
FORMAT specification. When a slash is used to separate
edit descriptors, a comma is allowed but not required.
Consecutive slashes can be used and need not be separated
from other elements by commas. When a slash is the last
format specification to be processed, it causes a blank
record to be written on output or an input record to be
skipped. Normally, the slash indicates the end of a record
during output and specifies that further data comes from
the next record during input.

Example:

WRITE (2,10)
10 FORMAT (6X,7HHEADING///1X,5HINPUT,
*7THAOUTPUT)

Printed output:

AAAAAHE ADING
(blank line)
(blank line)
INPUT OUTPUT

Each line corresponds to a formatted record. The second
and third records are blank and produce the line spacing
illustrated.

81-§

g 00£18%09

PROGRAM TEST
1 FORMAT(12(' 123456789'))
PRINT 1
PRIKT 60
60 FORMAT (T80, "COMMENTS',T60, '"HEADINGY ', THO,
* 'HEADING3',T20, 'HEADING2,T2, '"HEADING1")
PRINT 10
10 FORMAT (20X, *'THIS IS THE END OF THIS RUN',T52, 'HONEST')
PRINT 1
STOP
ERD

12345678901234567890123U5678301234567890123456749012345678901234567490123U567890123456789012345678901234567890123456789
HEADING1 HEADING2 HEADING3 HEADINGY COMMEKRTS

THIS IS5 THE EMD OF THIS RUH HONEST
123456789012345678901234567800123456 7880123456 T8G01234567890123456789C1234567890123456789012345678901234567890123U456789

For the FORMAT statement labeled 60, control passes over the first print position (the one used for
carriage control); therefore, it is automatically set to a blank, which causes the line to be single spaced.

Figure 5-23. T Output Example

Example:

1=5
J=6
K=7

WRITE (2,1)1,J,K
1 FORMAT (315/F10.4)

WRITE (2,2)
2 FORMAT ("AA BLANK LINE SHOULD PRECEDEA,

*THIS LINEY)

Printed output:
AAASAAANA6AANAAT
A BLANK LINE SHOULD PRECEDE THIS LINE

The variable list (I, J, K) is exhausted and processing
continues until a variable conversion is encountered
(F10.4). Since the slash has been processed, it causes a
blank line to be printed, and F10.4 is ignored because
there is nothing to be converted.

Example:
DIMENSION B(3)

READ (5,100)IA,B
100 FORMAT (I5/3£7.2)

These statements read two records; the first contains an
integer number, and the second contains three real
numbers.

Example:

WRITE (3,11)A,B,C,D
11 FORMAT (1X,2E10.2/1X,2F7.3)

In storage:

A -11.6
B .325
C 46.327
D -14.261

Printed output:

AA-.12E+02AAA.33E+00
A46.327-14.261

Example:

WRITE (1,11)A,B,C,D
11 FORMAT (1X,2E10.2//1X,2F7.3)

Printed output:

AA-.12E+02AAA.33E+00
(blank line)
A46.327-14.261

The second slash causes the blank line.

Repeated Edit Descriptors

Certain edit descriptors can be repeated by prefixing the
descriptor with a nonzero unsigned integer constant
specifying the number of repetitions required. The
repeatable edit descriptors are D, E, F, G, I, A, L,
The other edit descriptors cannot be repeated.

60481300 B

Examples:
100 FORMAT (314,2E7.3)
is equivalent to:
100 FORMAT (14,14,14,E£7.3,E7.3)
50 FORMAT (4G12.6)
is equivalent to:

50 FORMAT (G12.6,G12.6,G12.6,G12.6)

A group of descriptors can be repeated by enclosing the
group in parentheses and prefixing it with the repetition
factor. If no integer precedes the left parenthesis, the
repetition factor is 1.

Example:
1 FORMAT (13,2(E15.3,F 6.1,214))

is equivalent to the following specification if the number
of items in the input/output list does not exceed the
number of format conversion codes:

1 FORMAT (I3,E15.3,F6.1,14,14,E15.3,F 6.1,14,14)

A maximum of nine levels of parentheses is allowed in
addition to the parentheses required by the FORMAT
statement.

If there are fewer items in the input/output list than
indicated by the format conversions in the FORMAT
specification, the excess conversions are ignored.

If the number of items in the input/output list exceeds the
number of format conversions when the final right
parenthesis in the FORMAT statement is reached, the line
formed internally is output. The format control then
scans to the left looking for a right parenthesis within the
FORMAT statement. If none is found, the scan stops
when it reaches the beginning of the format
specification. If a right parenthesis is found, however, the
scan continues to the left until it reaches the field
separator which precedes the left parenthesis pairing the
right parenthesis. Output resumes with the format
control moving right until either the output list is
exhausted or the final right parenthesis of the FORMAT
statement is encountered.

If n slashes are indicated, a repetition factor can be used
to indicate multiple slashes; n-1 lines are skipped on
output.

Example:

DIMENSION A(9)
DATA A/3.62,-4.03,-9.78,-6.33,7.12,3.49,6.21,
*-6.74,-1.18/

WRITE (3,15)XA(D),I=1,9)
15 FORMAT (8HARESUL TS,4(/),(1X,3F8.2))

Format statement 15 is equivalent to:
15 FORMAT (8HARESULTS,//// (1X,3F8.2))
Output:

RESULTS

(blank line)

(blank line)

(blank line)
AAAA3.620A0A-4.03AAA-9.78
AAA-6.3300AAT7.12 AAAN3.49
AAAA6.21AAA-6.74ANAAN-1.18

Example:

READ (5,300) 1,J,E,K,F,L,M,G,N,R
300 FORMAT (13,2(14,F 7.3),17)

Data is stored in I with format I3, J with 14, E with F7.3,
K with 14, F with F7.3, and L with I7. A new record is
then read; data is stored in M with the format 14, G with
F7.3, N with 14, and R with F7.3.

Example:

READ (5,100) NEXT,DAY,KAT,WAY,NAT,
*RAY,MAT
100 FORMAT (17,(F12.7,I3))

NEXT is input with format 17, DAY is input with F12.7,
KAT is input with I3. The FORMAT statement is
exhausted (the right parenthesis has been reached), a new
record is read, and the statement is rescanned from the
group (F12.7,I3). WAY is input with the format F12.7,
NAT with I3, and from a third record, RAY with F12,7,
and MAT with I3,

Termination of Format Control

A colon () in a format specification terminates format
control if there are no more items in the input/output
list. The colon has no effect if there are more items in
the input/output list. This descriptor is useful in forms
where nonlist item edit descriptors follow list item edit
descriptors; when the iolist is exhausted, the subsequent
edit descriptors are not processed. For example:

o0®@>»

Buwnwn

RINT 10, A, B, C, D
ORMAT (4(F4.1,:,",")

"'I'U

10
Output:
1.0,A2.2,A3.1,A5.7

In this example, format control terminates after the value
of D is printed, and the last comma is not printed.

Carriage Control Character

The first character of a printer output record is used for
carriage control and is not printed. It appears in other
forms of output as data. Carriage control also applies to
records listed at a terminal under INTERCOM; the
meaning of carriage control characters depends on the
type of terminal. (See the INTERCOM reference

5-20

manual.) Carriage control does not apply to records listed
at a terminal under the NOS Time-Sharing System; the
first character is listed as data.

The carriage control characters are shown in table 5-3.

TABLE 5-3. PRINTER CONTROL CHARACTERS

Character Action
Blank Space vertically one line, then
print.
0 Space vertically two lines, then
print.
1 Eject to the first Tine of the next
page before printing.
+ No advance before printing; allows
overprinting.

For output directed to the card punch or any device other
than the line printer or terminal, control characters are
not required. If carriage control characters are
transmitted to the card punch, they are punched in column
one.

Carriage control characters are required at the beginning
of every record to be printed, including new records
introduced by means of a slash. Carriage control
characters can be generated by any means.

Examples:
10 FORMAT (1H0,F7.3,12,G12.6)
20 FORMAT (* 4I5,RESULT=',F8.4)
30 FORMAT ('1',14,2(F7.3))
40 FORMAT (1X,14,G16.8)

A program using carriage control characters, and resulting
output, is shown in figure 5-24. The program constructs a
tic tac toe diagram. A 'l' specification causes the first
output line to appear at the top of a page. FORMAT
statement 20 causes three lines to be skipped. In
FORMAT statements 30 and 40, a slash skips to the next
output record and a plus character causes the record to
begin on the same line as the previous record, resulting in
overprinting of a row of X characters and = characters.
FORMAT statement 60 uses a '0' specification to skip two
lines before writing the last output line.

EXECUTION TIME FORMAT SPECIFICATION

Variable format specxflcatlons can be read in as part of
the data at execution time and used wherever a normal
format can be used. The format can be read in under the
A specification and stored in a character array, variable,

60481300 C

Example:

PROGRAM CHARCON

Output:

REGIM TIC TAC TOF

X %

X %X
32600 A A A A KKK
x %
HAI AR AR RAXK
X %

X X

PRINT 10
10 FORMAT('1', 5X, 'HERE WE ARE AT THE TOP OF A NEW PAGE')
PRINT 20
20 FORMAT(3(/))
C
DO 50 I=2, 8
IF (I .EQ. 4 .OR. I .EQ. 6) THEH
PRINT 30
30 FORMAT (20X, ' XXXXXXXXXX '/'+', 19X, ' ===z=z==zz== ')
ELSE
PRINT 40
40 FORMAT(21X, ' X X ',/'+',20X, ' = = ')
ENDIF
50 CONTIHUE
C
PRINT 60
60 FORMAT('0'. 5X, 'BEGIHN TIC TAC TOE ')
5TOP
END

YFERE WFE ARE AT THF TOP OF A NEW PAGF

Figure 5-24. Carriage Control Example

or array element; or it can be included in a DATA
statement. Formats can also be generated by the program
at execution time.

!f an array or array element is used
In elther" case, the format must consist of a list of
descriptors and editing characters enclosed in

parentheses, but without the keyword FORMAT and the
statement label.

The name of the entity containing the specifications is
used in place of the FORMAT statement number in the
associated input/output statement. The name specifies
the location of the first word of the format information.
Example:

Input record:
(E7.2,G20.5,F 7.4,13)

60481300 £

This specification can be read and
referenced as follows:

subsequently

CHARACTER F*30

READ (2,(A)") F

WRITE (3,F) A,B,C,N
Example:

Input record:

(E12.2,F8.2,17,2E£20.3,F 9.3,14)

This specification can be read by the statements:
CHARACTER VAR*40
READ (2,'(A)) VAR

A subsequent output statement in the same program can

refer to these format specifications as:

WRITE (2,VAR) A,B,1,C,D,E,J

s-21 |

If PRTFLG is zero, the program produces the same result
as WRITE (2,'(3110)") 1,J,K.

UNFORMATTED INPUT/OUTPUT

Unformatted READ and WRITE statements do not use
format specifications and do not convert data in any way
on input or output. Instead, data is transferred as is
between memory and the external device. Each
unformatted input/output statement transfers exactly one
record. If data is written by an unformatted WRITE and
subsequently read by an unformatted READ, exactly what
was written is read; no precision is lost since no conversion
is performed.

UNFORMATTED WRITE

The unformatted WRITE statement is shown in figure 5-25.

WRITE ([UNIT=]u[,IOSTAT=ios] [LERR=sl]) [iolist]

Figure 5-25. Unformatted WRITE Statement

This statement is used to output binary records.
Information is transferred from the items iolist to the
specified output unit u with no format conversion. One
record is created by an unformatted WRITE statement. If
the list is omitted, the statement writes a null record on
the output device. A null record has no data but contains
all other properties of a legitimate record.

Example:

PROGRAM OUT
DIMENSION A(260), B(4000)

.

WRITE (10,ERR=16) A,B
END

The 4260 words of arrays A and B are written as one record
on unit 10,

UNFORMATTED READ

The unformatted READ statement is shown in figure 5-26.

encountered on the previous read operation on this unit,
execution terminates and an error message is printed.
Records following an end-of-file can be read by issuing a
CLOSE followed by an OPEN on the file or by using the
EOF function (section 7). CLOSE/OPEN, described later in
this section, is the preferred method.

Example:

PROGRAM AREAD
READ (2,END=30,ERR=40) X,Y,Z
SUM = X+Y+Z/2.

END

LIST DIRECTED INPUT/OUTPUT

List directed input/output involves the processing of coded
records without a FORMAT statement. Each record
consists of a list of values in a freer format than is used
for formatted input/output. This type of input/output is
particularly convenient when the exact form of data is not
important.

LIST DIRECTED INPUT

The list directed READ statement is shown in figure 5-27.

READ ([UNIT=]u,[FMT=]*[,I0OSTAT=ios] [,ERR=sl]
[LEND=sl]) [iolist]

READ *[,iolist}

READ ([UNIT=]u[,10STAT=ios] [,ERR=sl] [,END=sl])
[iolist]

Figure 5-26. Unformatted READ Statement

One record is transmitted from the specified unit u to the
storage locations named in iolist. Records are not
converted; no FORMAT statement is used. The
information is transmitted from the designated file in the
form in which it exists on the file without any conversion.
If the number of words in the list exceeds the number of
words in the record, an execution diagnostic results. If the
number of locations specified in iolist is less than the
rumber of words in the record, the excess data is ignored.
If iolist is omitted, the unformatted READ skips one record.

The user should specify the END= or IOSTAT= parameter

to avoid termination when an end-of-file is encountered. If
an attempt is made to read on unit u and an end-of-file was

5-22

Figure 5-27. List Directed READ Statement

Data is transmitted from unit u or the file INPUT (if u is
omitted or unit=* specified) to the storage locations
named in iolist. The input data items are free-form with
separators rather than in fixed-size fields.

A list directed READ following a list directed READ that
terminated in the middle of a record starts with the next

data record.

The user should specify the END= or IOSTAT= parameter
to avoid termination when an end-of-file is encountered. If
an attempt is made to read on unit u and an end-of-file was
encountered on the previous read operation on this unit,
execution terminates and an error message is printed.
Records following an end-of-file can be read by issuing a
CLOSE followed by an OPEN on the file or by using the
EOF function (section 7). CLOSE/OPEN, described later in
this section, is the preferred method.

Input data consists of a string of values separated by one or
more blanks, or by a comma or slash, either of which can
be preceded or followed by any number of blanks. Also, a
line boundary, such as end-of-record or end-of-card, serves
as a value separator; however, a separator adjacent to a
line boundary does not indicate a null value.

Embedded blanks are not allowed in input values, except
character values and complex numbers. The format of

values in the input record is as follows:

Same format as for integer
constants.

Integers

60481300 E

Real numbers Any valid FORTRAN format
for real or double precision
numbers. In addition, the
decimal point can be omitted;
it is assumed to be to the right
of the mantissa.

Complex numbers Two real values, separated by a
comma, and enclosed by
parentheses. The parentheses
are not considered to be a
separator. The decimal point
can be omitted from either of
the real constants. Each of the
real values can be preceded or
followed by blanks.

Character values A string of characters (which
can include blanks) enclosed by
apostrophes. A delimiting
apostrophe can be represented
within a string by two
successive occurrences. Char-
acter values can only be read
into character arrays, variables
and substrings. If the string
length exceeds the length of
the list item, the string is
truncated. If the string s
shorter than the list item, the
string is left-justified and
remaining character positions
are blank filled.

Logical values

An optional period, followed by
a T or F, followed by optional
characters which do not include
separators (slashes or commas).

To repeat a value, an integer repeat constant is followed
by an asterisk and the constant to be repeated. Blanks
cannot be embedded in the repeat part of the specification.

A null can be input in place of a constant when the value
of the corresponding list entity is not to be changed. A
null is indicated by the first character in the input string
being a comma or by two commas separated by an
arbitrary number of blanks. Nulls can be repeated by
specifying an integer repeat count followed by an asterisk
and any value separator. The next value begins
immediately after a repeated nuil. A null cannot be used
for either the real or imaginary part of a complex
constant; however, a null can represent an entire complex
constant.

When the value separator is a slash, remaining list

elements are treated as nulls and the remainder of the
current record is discarded.

60481300 D

Input values must correspond in type to variables in the
input/output list. Note that the form of a real value &an
be the same as that of an integer value.

Some examples of list directed input are illustrated in
figure 5-28.

LIST DIRECTED OUTPUT

The list directed output statements consist of a WRITE, a
PRINT, statement. These statements are
shown in figures 5-29, 5-30, and 5-31, respectively.

Data is transferred from storage locations specified by
the iolist to the designated unit in a manner consistent
with list directed input.

List directed output is consistent with the input; however,
null values, slashes, repeated constants, and the
apostrophes used to indicate character values are not
produced. For real or double precision variables with
absolute values in the range of 10-6 to 109, an F format
type of conversion is used; otherwise, output is of the 1PE
type. Trailing zeros in the mantissa and leading zeros in
the exponent are suppressed. Values are separated by
blanks.

List directed output statements always produce a blank
for carriage control as the first character of the output
record.

Logical values are output as T or F. Complex values are
enclosed in parentheses with a comma separating the real
and imaginary parts.

Some examples of list directed output are shown in
figure 5-32.

5-23

Example 1:

PROGRAM LDR
READ *, CAT, BIRD, DOG
PRINT 10, CAT, BIRD, DOG
10 FORMAT(' CAT = ', E9.3,/'
STOP
END

Input:
13.3, -5.2, .01

Example 2:

PROGRAM LDIN

100 READ(#*,¥* END=99) J,K
PRINT 1, J,K

1 FORMAT (T20,2I5)
GO TO 100

99 STOP
END

12
.3
LR
28
/9

BIRD = ',

Output:

CAT
BIRD
DOG

O O = = =

E9.3,/

o o W w N

DOG = ',E9.3)

.133E+02
-.520E+01
.100E-01

Figure 5-28. List Directed Input Examples

WRITE ([UNIT=]u,[FMT=]1*[OSTAT=ios]
[,ERR=sl}) [iolist]

Figure 5-29. List Directed WRITE Statement

PRINT*[,iolist]

5-24

Figure 5-30. List Directed PRINT Statement

60481300 B

Example 1:
PROGRAM LDW
INTEGER J(4)
COMPLEX Z(2)
DOUBLE PRECISION Q :
DATA J,Z2,Q /1,-2,3,=-4,(7.,-1.),(-3.,2.),1.D=5
PRINT ¥, J
PRINT *, Z,Q
STOP
END

Output:
1 -2 3 -4 v
(7.,-1.) (-3.,2.) .00001

Example 2: :
PROGRAM K

PRINT *, 'TYPE IN X'
READ ¥, X

PRINT *, 'TYPE IN Y°'
READ ¥, Y

END

Terminal listing under NOS:

TYPE IN X
? 1.234
TYPE IN Y
? 5.678

Figure 5-32. List Directed Output Examples

60481300 B

5-25

S

.

=

& e
.

. sSHip 5.7 ,B=1
... e

.

i
o

.

.

S
:
.

. .
..

G
o

e

ipt
 mist

i

e

o
.
. ;f;%g@
o .
-
, §2§§
.

e

48 a3 . . i
‘ . - . L - . : .
- - e Y A
o S) | . :
R i R Bkl L L b L

e
e AR

5-26 60481300 B

60481300 C 5-27

5-28 . 60481300 E

60481300 E

DIRECT ACCESS FILES

Direct access file manipulations differ from conventional
sequential file manipulations. In a sequential file, records
are stored in the order in which they are written, and can
normally be read back only in the same order. This can be
slow and inconvenient in applications where the order of
writing and of retrieving records differs and, in addition, it
requires a continuous awareness of the current file position
and the position of the required record. To remove these
limitations, a direct access file capability is provided by
the FORTRAN input/output statements.

In a direct access file, any record can be read, written, or
rewritten directly, without concern for the position or
structure of the file. This is possible because the file
resides on a random access mass storage device that can be
positioned to any portion of a file. Thus, the entire

5-29

concept of file position does not apply to a direct access
file. The notion of rewinding a direct access file is, for
instance, without meaning. .

To create a direct access file the user must specify an
OPEN statement with ACCESS='DIRECT' and include the
RECL (record length) specifier. For example:’

OPEN(2,FILE='DAFL',ACCESS='"DIRECT,RECL=120)

opens an unformatted file DAFL for direct access. The
file is associated with unit 2 and has a record length of 120
words.

The record length of a direct access file must be specified
in the OPEN statement, and all records have the same
length.

The record length for a formatted direct access file is
specified in characters. The record length for an
unformatted direct access file is specified in words. If the
iolist for an unformatted WRITE contains character data,
the record length to be written is still specified in words
and can be determined by the following rules:

1. Each noncharacter item counts as one word except for
double precision and complex items, which count as
two words.

2. The length in words of each contiguous group of
character items is determined by adding 9 to the
combined length of the items in characters and
dividing this result by 10, discarding the fractional
part.

3. The lengths calculated in steps 1 and 2 are added to
determine the record length in words.

Example:

CHARACTER A*7,B%9,C*10,D*20,E%15,F*12
INTEGER IA,IB,IC,ID(5)
OPEN (5,ACCESS="DIRECT",
*F ORM="UNF ORMATTED',RECL =100)
WRITE (5,REC=1) A,B,IA,C,IB,E,D,ID,F

The length of the output record is determined by the
following calculation:

(length of A + length of B + 9)/10
1A

(length of C + 9)/10

B

(length of E + length of D + 9)/10
D

(T T TR TR TR
NS e =N
E3
o
-

Q.

w

(length of F + 9)/10
Record length = 2+1+1+1+4+5+2=16 words

Records in a direct access file are identified by a record
number. The record number is a positive decimal integer
that is assigned when the record is written. Once a record
is written with a record number, it can always be accessed
with the same number. The order of records on a direct
access file is the order of their record numbers. Records
can be written, rewritten, or read by specifying the record
rumber in a READ or WRITE statement. Records can be
read or written in any order; they need not be referenced
in the order of their record numbers. The number of the
record to be read or written is specified in a READ or
WRITE statement with the REC=rn specifier.

5-30

If the length of the iolist in a direct access formatted
WRITE statement is less than the record length of the
direct access file, the unused portion of the record is blank
filled. A direct access WRITE statement must not write a
record longer than, the record length.

A direct access file can be opened for formatted or
unformatted input/output. However, list directed
input/output cannot be used with direct access files.

An internal file cannot be opened for direct access. A
discussion of internal files follows in this section.

Example:

WRITE(2,(3E10.4),REC=6)A,B,C
WRITE(2,%(214,G20.10),REC=1)I,J,X

Variables A, B, and C are written to record number 6, and
variables 1, J, and X are written to record number 1 of the
direct access file associated with unit 2.

Example:

OPEN(2,FILE="DARG',ACCESS="DIRECT",
*FORM=F ORMATTED',RECL=72)
DO 14 1=10,2,-2
READ(2,99,REC=I,ERR=20) (A(J),J=1,6)
99 FORMAT (6E12.6)

14 CONTINUE

Records 10, 8, 6, 4, and 2 are read from the direct access
file DARG.

INPUT/OUTPUT STATUS STATEMENTS

FORTRAN provides three statements that can be used to
establish, examine, or alter certain attributes of files used
for input or output. These are the OPEN, INQUIRE, and
CLOSE statements.

OPEN

The OPEN statement can be used to associate an existing
file with a unit number, to create a new file and associate
it with a unit number, or to change certain attributes of an
existing file. The OPEN statement is shown in figure 5-43.

The UNIT= parameter is required; all other parameters are
optional except that the RECL parameter must be
specified if a file is being opened for direct access. If a
STATUS of OLD or NEW is specified, a FILE=specifier must
be given.

60481300 E

OPEN ([UNIT=]u[,108
[,LBLANK=bInk]

ios

sl

fin

sta

fm

rl

bink

R=sl] [, FILE=fin] [, STATUS=sta] [,ACCESS=acc] [,FORM=fm] [, RECL=rl]

Specifies the unit number of the file to be opened. (See File Usage.)

Is an integer variable that contains an error number if an error occurs during the open, or zero if no errors
oceur.

Is the label of an executable statement to which control transfers if an error occurs during the open.

Is a character expression (seven characters or fewer; first character must be a letter) whose value is the name of the
file to be opened. Trailing blanks are removed. This file becomes associated with unit u.

Is a character expression specifying file status. Valid values are:

'oLp' File fl currently exists.
'NEW! File fl does not currently exist.
'SCRATCH!' Delete the file associated with unit u on program termination or execution of CLOSE

that specifies unit u; must not appear if FILE parameter is specified.
'UNKNOWN! File status is unknown.
Default is STATUS= "UNKNOWN'.
s a character expression specifying the access method of the file. Valid values are:
ISEQUENTIAL' File is to be opened for sequential access.

'DIRECT' File is to be opened for direct access.

Default is ACCESS='SEQUENTIAL'.
If the file exists, the access method must be valid for the existing file.

Is a character expression having one of the following values:
'FORMATTED' File is being opened for formatted input/output.
'UNFORMATTED' File is being opened fof unformatted input/output.
Default is FORM='FORMATTED' for sequential access files, FORM="UNFORMATTED' for direct access files.

For an existing file, the specified form must be valid for that file.

Is an integer variable or positive integer constan ifyi i access
i ECL i ired for a direct access file

Is a character expression having one of the following values:

'NuLL! Blank values in numeric formatted input fields are ignored, except that a field of all
blanks is treated as zeros.

'ZERO' Blanks, other than leading blanks, are treated as zeros.

Default is BLANK='NULL'.

60481300 D

Figure 5-43. OPEN Statement

5-31

Once properties of a file have been established in an OPEN
statement, only the BLANK= parameter can be changed in
a subsequent OPEN statement for that file, unless the file
is first closed in a CLOSE statement.

Example:

OPEN (3,FILE="XXX'STATUS="0OL.D',BLANK="ZERO")

When data is read from the existing file XXX, blanks will
be interpreted as zeros.

Example:

OPEN (2,STATUS='NEW,ERR=12,FILE="NEWF L',
*ACCESS="SEQUENTIAL"

A new file, NEWFL, is associated with unit 2 and is to be a
sequential access file.

If a file is associated with a unit and a succeeding OPEN
statement associates a different file with the same unit,
the effect is the same as performing a CLOSE without a
STATUS= specifier on the currently associated file before
associating the new file with the unit. For example:

OPEN (2,FILE="MYFILE"
WRITE (2,'(AA,B,C
OPEN (2,FILE='"PART2"

In this example, the second OPEN statement closes
MYFILE before opening PART2.

5-32

CLOSE

The CLOSE statement disconnects a file from a specified
unit and specifies whether the file connected to that unit is
to be kept or released. The CLOSE statement is shown in
figure 5-44.

CLOSE ([UNIT=]ul,IOSTAT=ios] [ERR=sl] [, STATUS=sta])
u Is the unit designator of the file to be closed.

ios Is an integer variable which, upon completion
of the CLOSE, contains the error number; a
value of 0 indicates no errors occurred.

sl Is the label of an executable statement to
which control transfers if an error occurs
during the close.

sta Is a character expression that determines the
disposition of the file associated with the speci-
fied unit. Valid values are:

'KEEP' The file is kept after exe~
cution of the CLOSE
statement.

'DELETE' The file is unloaded after

execution of the CLOSE
statement.

Default is STATUS='DELETE' if file status
is 'SCRATCH'; otherwise, the default is
STATUS='KEEP'.

IKEEP! is not valid for a file whose status is
ISCRATCH'.

Figure 5-644. CLOSE Statement

A CLOSE statement can appear in any program unit in the
program; it need not appear in the same program unit as
the OPEN statement specifying the same unit.

A CLOSE statement that references a unit that does not
have a file connected to it has no effect.

After a unit has been disconnected by a CLOSE statement,
it can be connected again within the same program to the
same file or to a different file. A file connected to a unit
specified in a CLOSE statement can be connected again to
the same or to another unit, provided the file still exists.

File equivalence established on the PROGRAM statement
or on the execution control statement is no longer in effect
after the CLOSE statement is executed.

When a program terminates normally, an implicit CLOSE
(u,STATUS="KEEP") occurs for each connected unit unless
the status of the file was SCRATCH; in this case, a CLOSE
(u,STATUS='"DELETE") occurs.

Example:

CLOSE (2,ERR=25,STATUS='DELETE")

60481300 E

INQUIRE

There are two forms of the INQUIRE statement: inquire by
unit is used to obtain information about the current status
of a specified unit; inquire by file is used to obtain
information about the current status of a file. The
INQUIRE statement is shown in figure 5-45.

Either a file name (inquire by file) or a unit specifier
(inquire by unit), but not both, must be specified in an
INQUIRE statement. The file or unit need not exist when
INQUIRE is executed. Following execution of an INQUIRE
statement, the specified parameters ccntain values that
are current at the time the statement is éxecuted. If a
unit number is specified and the unit is opened, the

FILE=fin

[,RECL=rcl] [NEXTREC=nr] [BLANK=blnk])

errors occurred.

.TRUE. The file (unit) exists.

od Is a logical variable:

if the file is not associated with a unit.
nmd Is a logical variable:

.TRUE. The file has a name.

'DIRECT!

If the file is not opened, acc is undefined.

.FALSE. The file {(unit) does not exist.

.FALSE. The file does not have a name.

INQUIRE ({ [UNIT=] “} [IOSTAT=ios] [,ERR=sl] [EXIST=ex] [,OPENED=0d] [, NUMBER=num] [, NAMED=nmd] [[NAME=fn]
[.ACCESS=acc] [SEQUENTIAL=seq] [,DIRECT=dir] [,FORM=fm] [, FORMATTED=fmt] [,UNFORMATTED=unf]

u Is the external unit for which information is to be 'returned; if the unit is associated with a file, information about
the file is returned. (The format of this parameter is described under File Usage.)
fin Is a character expression specifying the name of the file for which information is to be returned.

ios Is an integer variable which, upon completion of the INQUIRE, contains an error number; the value is 0 if no

sl Is a user-specified statement label of an executable statement to which control passes if an error occurs during
an inquire.
ex Is a logical variable:

.TRUE. The file (unit) is connected to a unit (file).
.FALSE. The file (unit) is not connected to a unit (file).

num Is an integer variable containing the external unit number of the unit currently associated with the file; undefined

fn Is a character variable containing the name of the file associated with unit u.
acc Is a character variable indicating the access method of the file:
'SEQUENTIAL' The file is opened for sequential access input/output.

The file is opened for direct access input/output.

seq Is a character variable indicating whether the file can be opened for sequential access input/output:
'YES! The file can be opened for sequential access input/output.
'NO! The file cannot be opened for sequential access input/output.
'UNKNOWN' Cannot be determined.

dir Is a character variable indicating whether the file can be opened for direct access input/output:
'YES! The file can be opened for direct access input/output.
'NO' The file cannot be opened for direct access input/output.
'UNKNOWN' Cannot be determined.

Figure 5-45. INQUIRE Statement (Sheet 1 of 2)

60481300 E

5-33 1

'FORMATTED!'

file is not opened for direct access.

If the file has not been opened, fm is undefined.

fm Is a character variable indicating formatted or unformatted input/output:
The file is opened for formatted input/output.

'UNFORMATTED!' The file is opened for unformatted input/output.

fmt Is a character variable specifying whether the file can be opened for formatted input/output:

'YES' “The file can be opened for formatted input/output.

'NO' The file cannot be opened for formatted input/output.

'UNKNOWN' It cannot be determined if the file can be opened for formatted input/output.
unf Is a character variable specifying whether the file can be opened for unformatted input/output:

'YES! The file can be opened for unformatted input/output.

'NO! The file cannot be opened for unformatted input/output.

'TUNKNOWN' It cannot be determined if the file can be opened for unformatted input/output.

rel Is an integer variable containing the record length of a file opened for direct access. If the file is 'FORMATTED',
rcl contains the record length in characters; if 'UNFORMATTED', the record length is in words; undefined if the

nr Is an integer variable; for a direct access file, nr contains the record number of the next record tc be read or
written. [f no records have been read or written, nr contains 1. Undefined for sequential files.

bink Is a character variable:
'NuLL' Null blank control is in effect for a file opened for formatted input/output.
'ZERO!' Zero blank control is in effect for a file opened for formatted input/output.

Undefined if the file is not opened for formatted input/output.

Figure 5-45. INQUIRE Statement (Sheet 2 of 2)

NAMED, NAME, ACCESS, SEQUENTIAL, DIRECT, FORM,
FORMATTED, UNFORMATTED, RECL, NEXTREC,
OPENED, EXIST, NUMBER, ACCESS, and BLANK
specifiers will contain information about the file
associated with the unit. If a file name is specified, the
NAMED, NAME, SEQUENTIAL, DIRECT, FORMATTED,
UNFORMATTED, OPENED, EXIST, NUMBER, ACCESS,
FORM, RECL, NEXTREC, and BLANK specifiers will
contain information about the file and the unit it is

If a nonexistent file or unit is specified, no error results
but certain parameters are not assigned values. Note that
if a unit that is not associated with a file is specified, only
the IOSTAT and EXIST parameters contain values.

If an error occurs during an INQUIRE, only IOSTAT
contains a value.

Example:

LOGICAL EX
CHARACTER*10 AC

INQUIRE (FILE='AFILE', ERR=100, EXIST=EX,
*ACCESS=AC)

fs3

INTERNAL FILES

Internal files provide a means of reformatting and
transferring data from one area of memory to another.
Input and output on internal files rformed b
statements
However, no input/output
devices are involved. Internal files allow data to be
‘reformatted without the necessity of writing it and
rereading it under a different format specification.
Internal files also allow numeric conversion to or from
character data type. The two types of internal files are
standard internal files :

STANDARD INTERNAL FILES

A standard internal file can be any character variable,
array, or substring. If the file is a variable or substring, it
consists of a single record whose length is the length of the
variable or substring. If the file is an array, each array
element constitutes a single record. For example:

CHARACTER *20 A(100)

The internal file A contains 100 records of 20 characters
each,

60481300 £

Records of an internal file are defined by storing data into
the records, either with an output statement or an
assignment statement.

It is not necessary to declare internal files in the same
manner as external files. Only formatted input/output can
matted, list directed, B By
are not valid for internal files. In addition,
ion and file status statements cannot be used
with internal files. Some sample programs using internal
files are included in section 12.

Output

Data is written to standard internal files using a formatted
WRITE statement (figure 5-3) in which the internal unit
specifier u is a character variable, array, or substring
name. The WRITE statement transmits data from the
variables specified in iolist to consecutive locations
starting with the leftmost character of the location
specified by u; data is converted from internal to
character format according to the format specification.
The number of characters transmitted is determined by the
record length.

Figure 5-46 shows some examples of internal files used for
output.

Example 1:
INTEGER AB,C.D
CHARACTER*4 AR(4)

A=123

B=-27

C=104

D=1234

WRITE (AR, '(14)')A,B,C,D

In memory:

[2123 [a-27 |a108 | 1234 |

The WRITE statement defines an internal file, AR, and
writes four records to the file.

Example 2:
CHARACTER*8 BIRD(3),A*1,B,C

A= Izl
B='ABCDE'
C= 12345678

WRITE (BIRD, (A1/A5/A8))A,BC

In memory:

zaaasssA| ABCDEAAA | 12345678 |

BIRD(1) BIRD (2) BIRD(3)

The WRITE statement defines an internal file, BIRD,
which contains three records (array elements).

Figure 5-46. Internal File Output Examples

60481300 E

Input

Data is read from a standard internal file using a
formatted READ statement (figure 5-1) in which the
internal unit identifier is a character variable, array, or
substring. Data is transferred from consecutive locations
starting at the first character position of u, converted
under format specification, and stored in the variables
specified in iolist.

Some examples of internal files used for input are shown in
figure 5-47.

Example 1:

CHARACTER*3 ZT(6),A,B,C

READ (ZT, (A3)')A B,C

Contents of ZT:

{caT | poG | RUN|

ZT(1) ZT(2) ZT(3)

Stored in A, B, C:

A CAT

B DOG

C RUN
Example 2:

CHARACTER CN*12

READ (CN, Y413)')1J,K,L
Contents of CN:
2AAABE6A4AAAS

Stored in 1,J,K,L (internal integer format):

1 2
J 56
K 4
L 8

Figure 5-47. Internal File Input Examples

5-35

5-36 . 60481300 E

60481300 E

FILE POSITIONING STATEMENTS

Three statements can be used to position files connected
for sequential access: REWIND, BACKSPACE, and
ENDFILE.

REWIND

The REWIND statement, shown in figure 5-51 positions a
file at beginning-of-information so that the next
input/output operation references the first record in the
file, even though several ENDFILE statements may have
been issued to that unit since the last REWIND. If the file
is already at beginning-of-information, no action is taken.
(Refer to BACKSPACE/REWIND, appendix F, for further
information.)

Example:

REWIND 3

REWIND ([UNIT=]u[,1I0STAT=ios] [,ERR=sl])

REWIND u
u Is an external unit specifier.
ios Is an integer variable which, after execution

of REWIND, contains an error number; a
value of O indicates no errors occurred.

sl Is a statement label of an executable
statement to which control transfers if an
error occurs during the rewind.

Figure 5-51. REWIND Statement

5-37

BACKSPACE

The BACKSPACE statement, shown in figure 5-52,
backspaces unit u one record. When the file is positioned
at beginning-of-information, this statement acts as a
do-nothing statement. Backspace operations should not be
used on direct access files or on records created by list
directed or NAMELIST output.

BACKSPACE ([UNIT=]u[,IOSTAT=ios] [,ERR=sl])
BACKSPACE u
u, ios, and sl are as described for REWIND.

Figure 5-52. BACKSPACE Statement

Example:

DO1LUN=L4
1 BACKSPACE LUN

The files associated with units 1 through 4 are backspaced
one record.

5-38

ENDFILE

The ENDFILE statement, shown in figure 5-53 writes an
end-of-partition (end-of-file) on the designated unit.
ENDFILE is not permitted on units opened for direct
access. The end-of-partition boundary can be detected by
the END= and IOSTAT= specifiers.

ENDFILE ([UNIT=]ul,IOSTAT=ios] [LERR=sl])
ENDFILE u
u, ios, and sl are as described for REWIND.

Figure 5-53. ENDFILE Statement

Because the file mode (formatted or unformatted) ecannot
be detected, ENDFILE should not be the first operation on
a file.

Example:

IoUT =7
ENDFILE (UNIT=IOUT, ERR=100)

End-of-partition is written on unit 7.

60481300 B

PROGRAM UNITS AND PROCEDURES 6

An executable program contains one main program unit
and zero or more subprograms. FEach subprogram is a
program unit. A program unit is a group of FORTRAN
statements, with optional comments, terminated by an
END statement.

A main program is a program unit that does not begin with
a SUBROUTINE, FUNCTION, or BLOCK DATA
statement. Usually, a main program begins with a
PROGRAM statement, but this statement can be
omitted. Execution of any program begins with the main
program unit.

A subprogram is a program unit that begins with a
SUBROUTINE, FUNCTION, or BLOCK DATA statement.
A subprogram is defined separately and can be compiled
independently of a main program. A subprogram that
begins with a SUBROUTINE or FUNCTION statement is a
procedure subprogram and can accept one or more values
through a list of arguments, through common blocks, or
both. A subprogram that begins with a BLOCK DATA
statement is a specification subprogram.

A procedure can be a function subprogram (external or

Functions return single values through the function
names. Function subprograms defined by the programmer
can also return values through a list of arguments, through
common blocks, or both.

This section discusses programmer-written procedures,
which include statement functions, function subprograms,
and subroutine subprograms. FORTRAN-supplied
procedures, which include intrinsic functions and utility
subprograms, are discussed in section 7. The only
subprogram that is not a procedure is the block data
subprogram, which is not executable.

Table 6-1 summarizes the characteristics of procedures
and subprograms.

MAIN PROGRAMS

A main program can contain any FORTRAN statements
except FUNCTION, SUBROUTINE, BLOCK DATA, or
ENTRY. The main program should have a PROGRAM
statement and at least one executable statement followed

intrinsic), a
function.
procedures and
(section 7).

subroutine
Intrinsic

functions,

subprogram,
functions are
are available to
External

or a statement

FORTRAN-supplied

any programmer
subroutines, and

statement functions are provided by the programmer.

by an END statement

TABLE 6-1. CHARACTERISTICS OF PROCEDURES AND SUBPROGRAMS

No executable progr

Main Program

_

User-written

Separate
program unit

Not typed

Subroutine

Procedure

Subprogram

User-written

Separate program
unit

Not typed

Alternate RETURN
allowed

Accepts values
through arguments
or common blocks

e

External Function

Intrinsic Function

Procedure
Subprogram
Function
User-written

Separate program
unit

Typed implicitly
or explicitly

RETURN allowed

Accepts values
through arguments
or common blocks

Returns a value
for the function
name

Procedure

Function
Supplied

In the FORTRAN
library

Typed by intrinsic
function name, or
generic

Single RETURN,
effectively

Accepts values
through arguments

Returns a value
for the function
name

Statement Function

Procedure

Function
User-written

Within a program
unit

Typed implicitly
or explicitly

Immediate RETURN,
effectively

Accepts values
through arguments

Returns a value
for the function
name

Block Data
Subprogram

e e e |

Subprogram
User-written

Separate
program unit

Not typed

60481300 D

6-1

The main program can be compiled independently of any
subprograms. When a main program is loaded into
memory for execution, all the required subprograms must
also be loaded and ready for execution.

PROGRAM STATEMENT

The PROGRAM statement defines the program name that
is used as the entry point name and as the object deck

name for the loader. Figure 6-1 shows the syntax for the
PROGRAM statement.

PROGRAM

name Is the program name that cannot be
used elsewhere in the program as a
user-defined name.

6-2

60481300 D

PROCEDURES

The main program unit is a procedure. Other procedures
can be suwroutines, function subprograms, intrinsic
functions, and statement functions. The use of additional
procedures depends on the needs of the program. If the
program requires the evaluation of a standard function,
then a FORTRAN intrinsic function can be used. If a
single computation is needed repeatedly, a user-written
statement function can be included in the program. If
several statements are required to obtain a single value, a
function subprogram can be written. If several statements
are required to obtain more than one value, a subroutine
can be written.

Procedures enable multiple executions of the same
routine. Communication can be controlled through the use
of common blocks or through passing actual arguments.
Procedures (except statement functions) can be compiled
independently of the main programs or other procedures.

BLOCK DATA SUBPROGRAM

A block data subprogram is the only subprogram that is not
a procedure. The block data subprogram is a
nonexecutable specification subprogram that can be used
to enter initial values for variables and array elements in
named common blocks. A program can have more than one
subprogram

The BLOCK DATA statement must appear as the first
statement of the block data subprogram. The name used
for the block data subprogram must not be the same as any
local variables in the subprogram. The name is global and
must not be the same as any other program unit or entry
name in the program. The BLOCK DATA statement is
shown in figure 6-3.

BLOCK DATA [sub]

sub Is the name of the block data
subprogram.

Figure 6-3. BLOCK DATA Statement

60481300 E

Block data subprograms can contain IMPLICIT,
PARAMETER, DIMENSION, type, COMMON, SAVE,
EQUIVALENCE, or DATA statements. A block
data subprogram ends with an END statement. Data can
be entered into more than one common block in a block
data program. All variables having storage in the named
common must be specified even if they are not all initially
defined. A sample block data subprogram with two named
common blocks is shown in figure 6-4.

BLOCK DATA ANAME

COMMON /CAT/ X,Y,Z /DEF/ R,S,T
COMPLEX X,Y

DATA X,Y /2%(1.0,2.7)/, R/7.6543/
END

Figure 6-4. Example of BLOCK DATA

In the example, not all entities in the common blocks are
initially defined. The variable Z in block CAT, and the
variables S and T in block DEF are not initially defined.

SUBROUTINE SUBPROGRAM

A subroutine subprogram is executed when a CALL
statement naming the subroutine is encountered in a
program unit. A subroutine must not directly or indirectly
call itself. The subroutine communicates with the calling
program unit through a list of arguments passed with the
CALL statement or through common blocks.

The SUBROUTINE statement must appear as the first
statement of the subroutine subprogram and contains the
symbolic name that is the main entry point of the
subprogram. The subprogram name is not used to return
results to the calling program. The name must not be the
same as any other program unit or entry name. The name
also cannot be the same as any name in the subroutine.
The SUBROUTINE statement is shown in figure 6-5.

SUBROUTINE sub[{[d[,d]. . .1)]

sub Is the name of the subroutine
subprogram. If there are no dummy
arguments, either sub or sub() can be
used.

d Is a dummy argument that can be a
variable name, array name, dummy
procedure name, or *.

Figure 6-5. Subroutine Statement

6-3

Subroutines can contain any statements except a
PROGRAM, BLOCK DATA, FUNCTION, or another
SUBROUTINE statement. Subroutines begin with a
SUBROUTINE statement and end with an END statement.
If control flows into the END statement, then a RETURN
is implied. Control is returned to the calling program unit
when a RETURN or END statement is encountered.

An example of a subroutine call is shown in figure 6-6.

Subroutine ERROR1 is called and executed if A-B is less
than zero. Control returns to statement 20. The example
illustrates that arguments need not be used.

In a subroutine subprogram, the symbolic name of a
dummy argument is unique to the program unit and must
not appear in an EQUIVALENCE, PARAMETER, SAVE,
INTRINSIC, DATA, or COMMON statement, except as a
common block name. The dummy arguments are replaced
with the actual arguments during a subroutine call, The
SUBROUTINE statement can also have dummy arguments
for statement labels; these arguments are represented by
asterisks.

Dummy arguments that represent array names must be
dimensioned by a DIMENSION or type statement.
Adjustable dimensions are permitted .in subroutine
subprograms. More details can be found later in this
section under Referencing a Procedure.

FUNCTION SUBPROGRAM

Function subprograms can be external functions, intrinsic
functions, or statement functions. Both external and
intrinsic functions are specified externally from the
program unit that referenced them; statement functions
are contained within the referencing program unit.

External Functions

A function subprogram performs a set of calculations
when the name appears in an expression in the referencing
program unit. A function must not directly or indirectly
reference itself. The function subprogram communicates
with the referencing program unit through a value
associated with the function symbolic name, through a list
of arguments, or through common blocks.

The function statement must appear as the first
statement of the function subprogram. The FUNCTION
statement contains the symbolic name that is used as the

main entry point of the subprogram. A function can have
more than one entry point. The FUNCTION statement is
shown in figure 6-7.

[typ] FUNCTION fun([d[d]. . .])

typ Is INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, BOOLEAN, or
CHARACTER™*len. The len value specifies the
length of the result of the character function.

fun Is the name of the function subprogram;
fun is an external function name.

d Is a dummy argument that can be a
variable name, array name, or dummy
procedure name.

Figure 6-7. FUNCTION Statement

The symbolic name of a function subprogram, or an
associated entry name of the same type, is a variable
name in the function. The symbolic name specified in a
FUNCTION or ENTRY statement must not appear in any
other nonexecutable statement, except a type statement.
If the type of a function is specified in a FUNCTION
statement, then the function name cannot appear in a
type statement. In an executable statement, the symbolic
name can appear only as a variable. During execution,
this variable becomes defined and can be referenced or
redefined. The value of the function is the value of this
variable when control returns to the referencing program
unit.

The type of the function name must be the same in the
referencing program unit and the referenced function
subprogram. When type is omitted, the type of the
function is determined by the first character of the
function name. Implicit typing by the IMPLICIT
statement takes effect only when the function name is not
explicitly typed. The name cannot have its type explicitly
specified more than once.

If the name of a function subprogram is of type character,
then each entry name must be type character and vice
versa. The length of the function symbolic name and any
entry names in the function must be specified with the
same length. For example, if the function name has a
length of (*), all entry names must have a length of (¥).

PROGRAM MAI
INTEGER A.B
READ(5,1C0) A.B
100 FORMAT(21I2)
IF (A-B) 10,20,20
CALL ERROR1

N -
[oR e}

STOP
END

SUBROUTINE ERROCRI1
WRITE(6.1)

RETURW
END

RESULT = (A¥100) + 375.2

1 FORMAT(5X, 'MUMBER IS OUT OF RANGE')

Figure 6-6. Subroutine Call Example

6-4

60481300 E

The symbolic name of a functiol
ame as any other name,
am The name can be the same as a name in the
function subprogram, if used as a variable name.

Function subprograms can contain any statements except
PROGRAM, BLOCK DATA, SUBROUTINE, or another
FUNCTION statement. They begin with a FUNCTION
statement and end with an END statement. Control is
returned to the referencing program unit when a RETURN
or END is encountered; a RETURN statement of the form
RETURN e.(described under Referencing a Procedure) in a
function subprogram is not allowed.

Although alternate returns are prohibited for function
subprograms, multiple entries are allowed, as described
later in this section. An example is shown in figure 6-8.

appear after the specification statements and before the
first executable statement in the program unit. A
statement function must not directly or indirectly
reference itself.

A statement function is specified by a single statement and
is similar to an arithmetic, logical, i or character
assignment statement. The syntax e statement
function is shown in figure 6-9.

PROGRAM MAIN
INTEGER Z

Z = JOR(5,3)
7Z = JAM(5,3)
PRINT *, Z,7Z
STOP

END

'FUNCTION JOR (X,Y)
INTEGER X,Y

JOR = X-Y

RETURN

ENTRY JAM(X,Y)
JAM=X+Y

RETURN

END

fun([d[,d]. . .]) = expr

fun Is the function name.
d Is a statement function dummy argument.
expr Is an expression in which each primary is an

expression expr enclosed in parentheses, or is
one of the following:

Constant

Symbolic constant

Variable reference

Array element reference

Intrinsic function reference

Reference to a statement function which
-appears in the same program unit,
‘either before er this statement

External function reference

Dummy procedure reference

Figure 6-8. Function Reference

Function subprogram JOR is executed when the name
appears in the calling program unit. The alternate entry
point is entry JAM in function JOR.

In a function subprogram, the symbolic name of a dummy
argument is unique to the program unit and must not
appear in an EQUIVALENCE, PARAMETER, SAVE,
INTRINSIC, DATA, or COMMON statement, except as a
common block name. The dummy arguments are replaced
with the actual arguments during a function reference.

Dummy arguments that represent array names must be
dimensioned by a DIMENSION or type statement.
Adjustable dimensions are permitted in function
subprograms, as described later in this section under
Referencing a Procedure.

Intrinsic Functions

Intrinsic functions are supplied by the FORTRAN library.
The rules for using intrinsic functions are the same as for
user-written function subprograms. An IMPLICIT
statement does not change the type of an intrinsic
function. Section 7 discusses intrinsic functions in detail,
including generic and specific names, function definitions,
type of arguments, and type of results.

Statement Functions
A statement function is a user-defined, single-statement
computation that applies only to the program unit

containing the definition. A statement function is a
norexecutable statement. A statement function must

60481300 E

Figure 6-9. Statement Function

The symbolic name of the function is a variable and
contains the value of the expression after execution.
During executi th tual t ions are

]
argument cannot be an array name or a function name. In
addition, if a character variable or array element is used as
an actual argument, a substring reference to the
corresponding dummy argument must not be specified in
the statement function expression. The expression of the
function is evaluated, and the resulting value is converted
as necessary to the data type of the function. An example
of a program that uses statement functions is shown in
figure 6-10.

The symbolic name of a statement function is local and
must not be the sa as any other local name in the
program unit, ' ; The name of
a statement argument and
must not appear in an INTRINSIC or EXTERNAL
statement. If the statement function is used in a function
subprogram, then the statement function can contain a
reference to the name of the function subprogram or any
of its entry names as a variable, but not as a function.

Each varisble reference in the expression can be either a
reference to a variable within the same program unit or to
a dummy argument of the statement function. Statement
functions can reference dummy variables that appear in a
SUBROUTINE, FUNCTION, or ENTRY statement, but that
statement must precede the statement function. If a
statement function dummy argument is the same as
another variable in the program unit and that name is
referenced in the expression of the statement function, the
reference is to the statement function dummy argument
and not to the other variable. The names used for
statement function dummy arguments have a scope of the
statement function definition.

6-5

PROGRAM SFUNC

INTEGER 3N

DIMENSION AVG(25)
ADD(A,B,C,D) = A+B+C+D
AVRG(T1,T2,T3,T4) =
GRADE (SCORE,HSCORE) =
Sh=1
READ(#*,100,END=20)
FORMAT(U4F5.1)
AVG(SN)=AVRG(S1,582,53,54)
NS=SH

SN = S# +1

GO TO 1

HIGH = AVG(1)
DO 30 SH = 1,
IF(AVG(SH)
CONTINUE

DO 40 3H=1,
CRVEDG =
PRINT %,
CONTINUE
STOP

END

1
100

20
N
.GT.

30
KN

CRVEDG
40

ADD(T1,T2,T3,T4) /4
(SCORE/HSCORE) * 100

51,82,83,34

MIGH) HIGH

GRADE(AVG(SN),HIGH)

= AVG(SK)

Figure 6-10. Examples of Statement Functions

the reference is to the statement function dummy
argument and not tc the other variable. The names used
for statement function dummy arguments have a scope of
the statement function definition.

Multiple Entry

Each procedure subprogram has a primary entry point
established by the SUBROUTINE or FUNCTION statement
that begins the program unit. A subroutine call or
function reference usually invokes the procedure at the
primary entry point, and the first statement executed is
the first executable statement in the program unit.
ENTRY statements can be used to define other entry
points. A procedure that contains one or more ENTRY
statements has multiple entry points. The ENTRY
statement is shown in figure 6-11.

ENTRY ep{{[d[d]. . .])]
ep Is an entry point name in a function or
subroutine.
d Is a dummy argument that can be onz of
the following:

A variable name
An array name
A dummy procedure name

An asterisk, only if in a subroutine
subprogram

Figure 6-11. ENTRY Statement

An ENTRY statement can appear anywhere after the
SUBROUTINE or FUNCTION statement in the
subprogram. An ENTRY statement cannot appear
between a block IF statement and its corresponding END
IF statement, or between a DO statement and the
terminal statement of the DO loop.

6-6

When an entry name is used to reference a procedure,
execution begins with the first executable statement that
follows the referenced entry point. An entry name is
available for reference in any program unit, except in the
procedure that contains the entry name. The entry name
can appear in an EXTERNAL statement and (for a
function entry name) in a type statement.

Each reference to a procedure must use an actual
argument list that corresponds in number of arguments
and type of arguments with the dummy argument list in
the corresponding SUBROUTINE, FUNCTION, or-ENTRY
statement. Type agreement is not required for actual
arguments that have no type, such as a dummy subroutine
name. The dummy arguments for an entry point can
therefore be different from the dummy arguments for the
primary entry point or another entry point. No dummy
argument can be used in an executable statement of a
procedure unless it has already appeared in a FUNCTION,
SUBROUTINE, or ENTRY statement.

A procedure with multiple entry points is shown in
figure 6-12,

PROCEDURE COMMUNICATION

Communication between the referencing program unit and
the referenced procedure can be through common blocks
or by passing actual arguments to the procedure.
Common blocks cannot be used to pass data to intrinsic
functions or statement functions; the method used to pass
data to these procedures is through an argument list.
Common blocks and argument lists can be used for
external, that is, user-written procedures, but passing
procedure names to the external procedures can only be
through an argument list.

ACTUAL ARGUMENTS

Actual arguments appear in the argument list of the
referencing program unit. The referencing program unit
passes actual arguments to the referenced procedure. The
procedure receives values from the actual arguments and
returns values to the referencing program unit. Actual
arguments can be constants, symbolic names of constants,

60481300 C

PROGRAM MAIN

DIMENSION SET1(25)

READ 5,N

5 FORMAT(I1)
IF(N .EQ. 0) GO TO 900
IF(N .EQ. 1) CALL CLEAR(SET1)
IF(N .EQ. 2) CALL FILL(SET1)

s

DO 99 I=1,25
PRINT 6, SET1(I)
6 FORMAT (F5.2)
99 CONTINUE
GO TO 1
900 STOP
END
C
SUBROUTINE CLEAR(ARRAY)
DIMENSION. ARRAY(25)
20 DO 10 I= 1,25
ARRAY(I) = 0.0
10 CONTINUE

ENTRY FILL(ARRAY)

READ *, VALUE,IPLACE
IF(IPLACE .GT. 25) RETURN
ARRAY(IPLACE) = VALUE
RETURN

END

Figure 6-12. Examples of ENTRY Statements

variables, array names, array elements, function
references, and expressions. An actual argument cannot
be the name of a statement function within the
referencing program unit.

DUMMY ARGUMENTS

Dummy arguments appear in the argument list of the
referenced procedure. Within the referenced procedure,
the dummy arguments are associated with the actual
arguments passed. Procedures use dummy arguments to
indicate the types of actual arguments, the number of
arguments, and whether each argument is a variable,
array, procedure, or statement label. Dummy arguments
for statement functions can only be variables. Since all
names are local to the program unit, the same dummy
argument name can be used in more than one procedure.
A dummy argument appearing in a SUBROUTINE,
FUNCTION, or ENTRY statement must not appear in
EQUIVALENCE, DATA, PARAMETER, SAVE, INTRINSIC,
or COMMON statements except as a common block
name. Dummy arguments used in array declarations for
adjustable dimensions must be type integer. Dummy
arguments representing array names must be dimensioned.

ARGUMENT ASSOCIATION

When a procedure is executed, the actual arguments and
dummy arguments are matched up and each actual
argument replaces each dummy argument. The type of
the actual argument and the dummy argument must be the
same. The actual arguments must be in the same order
and there must be the same number as the dummy
arguments in the referenced procedure. The actual
arguments that are evaluated before the association of
arguments include: expressions, substring expressions, and
array subscripts. If the actual argument is a procedure
name, the procedure must be available for execution at
the time of the reference to the procedure.

60481300 C

A dummy argument is undefined unless it is associated
with an actual argument. Argument association can exist
at more than one level of procedure reference, and
terminates within a program unit at the execution of a
RETURN or END statement.

A subprogram reference can cause a dummy argument to
be associated with another dummy argument in the
referenced procedure. Any dummy arguments that
become associated with each other can be referenced but
must not be stored into during the execution of the
procedure. For example, if a procedure is defined as:

SUBROUTINE ALPHA(X,Y)
and referenced with:

CALL ALPHA(A,A)

then the dummy arguments X and Y would each be
associated with the actual argument A. X and Y would be
associated with each other and therefore must not be
stored into.

A subroutine reference can cause a dummy argument to
become associated with an entity in a common block. For
example, if a procedure contains the statements:

SUBROUTINE ALPHA(X)
COMMON Y

and the referencing program unit contains:
COMMON A

CALL ALPHA(A)

then the actual argument A causes the dummy
argument X to become associated with Y, which is in
blank common. In this case, X and Y cannot be stored
into during execution of the subroutine.

Character Length

For type character, both the dummy and actual arguments
must be of type character, and the length of the actual
argument must be greater than or equal to the length of
the dummy argument. If the length of the actual
argument of type character is greater than the length of
the dummy argument, only the leftmost characters of the
actual argument, up to the length of the dummy
argument, are used as the dummy argument.

If a dummy argument is an array name, length applies to
the entire array and not to each array element. Length of
array elements in the dummy argument can be different
from length of array elements in the actual argument.
The total length of the actual argument array must be
greater than or equal to the total length of the dummy
argument array.

When an actual argument is a character substring, the
length of the actual argument is the length of the

substring. If the actual argument expression involves
concatenation, the sum of the lengths of the operands is
the length of the actual argument.

Variables

A variable in a dummy argument can be associated with a
variable, array element, substring, or expression in the
actual argument. A procedure can define or redefine the
associated dummy argument if the actual argument is a
variable name, array element name, or substring name.
The procedure cannot redefine the dummy argument if the
actual argument is a constant, a symbolic constant, a
function reference, an expression using operators, or an
expression enclosed in parentheses.

Arrays

The array declaration in a type, COMMON, or
DIMENSION statement provides the information needed
for the array during the execution of the program unit.
The actual argument array and the dummy argument array
can differ in the number of the dimension and size of the
array. A dummy argument array can be associated with
an actual argument that is an array, array element, or
array element substring.

If the actual argument is a noncharacter array name, the
size of the actual argument array cannot be less than the
size of the dummy argument array. Each actual argument
array element is associated with the dummy argument
array element that has the corresponding subscript value.

An association exists for array elements in a character
array. Note that unless the lengths of the elements in the
dummy and actual argument agree, the dummy and actual
argument array elements might consist of different
characters. For example, if a program unit has the
following statements:

DIMENSION A(2)
CHARACTER A*2

CALL SUB(A)
and the subroutine has the following statements:

SUBROUTINE SUB(B)
DIMENSION B(2)
CHARACTER B*1

then the first character of A(1) corresponds to B(1) and
the second character of A(1) corresponds to B(2).

If the actual argument is a noncharacter array element
name, the size of the dummy argument cannot exceed
(as+l-av), where as is the size of the actual argument
array and av is the subscript value of the array element.
For example, if the program unit has the following
statements:

DIMENSION ARRAY(20)

CALL CHECK(ARRAY(3))

then the value of as is 20, and av is 3. The maximum
dummy array size is 18 for the subroutine:

SUBROUTINE CHECK (DUMMY)
DIMENSION DUMMY/(18)

.

SWAP= DUMMY(2)

6-8

The actual argument array elements are associated wih
dummy argument array elements, starting with the first
element passed. In the example, DUMMY(2) is associated
with ARRAY(4), and DUMMY(18) is associated with
ARRAY(20).

The association for characters is basically the same as for
noncharacter array elements. The actual argument for
characters can be an array name, array element name, or
array element substring name. If the actual argument
begins at character storage position acu of an array, then
the first character storage position of the dummy
argument array becomes associated with character
storage position acu of the actual argument array, and so
forth to the end of the dummy argument array.

Procedure Arguments

A dummy argument that is a dummy procedure can be
associated only with an actual argument that is an
intrinsic function, external function, subroutine, or
another dummy procedure. If the dummy argument is
used as an external function, the actual argument that is
passed must be a function or dummy procedure. The type
of the dummy argument must agree with the type of
result of all specific actual arguments that become
associated with the dummy argument. When a dummy
argument is used as an external function and is the name
of an intrinsic function, the intrinsic function name
corresponding to the dummy argument name is not
available. If the dummy argument is referenced as a
subroutine, the actual argument must be the name of a
subroutine or dummy procedure, and the dummy argument
must not appear in a type statement or be referenced as a
function.

Asterisk Arguments

A dummy argument that is an asterisk can only appear in
the argument list of a SUBROUTINE or ENTRY statement
in a subroutine subprogram. The actual argument is an
alternate return specifier in the CALL statement.

Adjustable Dimensions

Adjustable dimensions enable creation of a more general
subprogram that can accept varying sizes of array
arguments. For example, a subroutine with a fixed array
can be declared as:

SUBROUTINE SUM(A)
DIMENSION A(10)

The maximum array size subroutine SUM can accept is 10
elements. If the same subroutine is to accept an array of
any size, it can be written as:

SUBROUTINE SUM(A, N)
DIMENSION A(N)

In this case, the value N is passed as an actual argument.

Character strings and arrays can also be adjustable, as in
the subroutine:

SUBROUTINE MESSAG(X)
CHARACTER X*(*)
PRINT *, X

The subroutine declares X with a length of (*) to accept

strings of varying size. Note that the length of the string
is not passed explicitly as an actual argument.

60481300 B

Another form of adjustable dimension is the assumed-size
array. In this case, the upper bound of the last dimension
of the array is specified by an asterisk. The value of the
dimension is not passed as an argument, but is determined
by the number of elements stored into the array. If an
array is dimensioned ¥, the array in the calling program
must be large enough to contain all the elements stored
into it in the subprogram. For example:

SUBROUTINE CAT (A,M,N,B,C)
REAL A(M), B(N), C(¥)
DO 10 I=1, M
10 (=AM
DO 20 I=1, N
20 C(1+M)=B(I)
RETURN
END

Subroutine CAT places the contents of array A followed by
the contents of array B into array C. The dimension of C
in the calling program must be greater than or equal
to M+N.

Use of the asterisk form of the adjustable dimension
prevents subscript checking for the array, so the user must
be careful not to reference outside the array bounds. Use
of this form is preferable to the common practice of
declaring arrays to have dimension 1.

USING COMMON BLOCKS

Common blocks can be used to transfer values between a
referencing program unit and a subprogram. Common
blocks can reduce the number of storage units required for
a program by enabling two or more subprograms to share
some of the same storage units. The variables and arrays
in a common block can be defined and referenced in all
subprograms that contain a declaration of that common
block. The names of the variables and arrays in the
common block can be different for each subprogram. The
association is by storage and not by name.

A reference to data in a common block is valid if the data
is defined and is the same type as the type of the name
used in the main program or subprogram. The exceptions
to agreement between the type in common and the type of
the reference are:

Either part of a complex entity can be referenced as
real.

In a subprogram, entities declared in a labeled common
block can remain defined or become undefined at execution
of an END or RETURN statement. If a labeled common
block with the same name has been declared in a program
unit that is directly or indirectly referencing the
subprogram, the entities remain defined. Entities specified
in a SAVE statement remain defined. Entities that are
initially defined by DATA statements, and have neither
been redefined nor become undefined, remain defined.
Execution of a RETURN or END statement does not cause
entities in blank common, or entities in any labeled
common block that appears in the main program, to
become undefined.

An example using common blocks in a subroutine is shown
in figure 6-13.

60481300 E

PROGRAM AVRG

COMMON NUMBR(10), STORE
REAL NUMBR, STORE

READ *, NUMBR

CALL SUM

STORE = STORE/10

PRINT ¥, 'AVERAGE= ', STORE
END

SUBROUTINE SUM
COMMON A(10), B
REAL A,B
B = 0.
DO 10 I= 1, 10
B =B + A(I)

10 CONTINUE
RETURN
END

Figure 6-13. Using Common

The array NUMBR in program AVRG and the array A in
subroutine SUM share the same locations in common. The
values read into locations NUMBR(1) through NUMBR(lO)
are available to subroutine SUM.

REFERENCING A PROCEDURE

The CALL statement is used to reference a subroutine, the
function name is used to reference a function, and the
statement function name is used to reference a statement
function. Multiple entry points can be used, and alternate
return can be used for subroutines.

Subroutine Call

A subroutine subprogram is executed when a CALL
statement is encountered in a program unit. The syntax
for the the CALL statement is shown in figure 6-14.

CALL subf(fal,a]. . .]]]

sub Is the name of subroutine or dummy
procedure.
a Is an actual argument that can be one

of the following:
An expression (except a character
expression involving concatenation
of a dummy argument with length (*))
An array name
An intrinsic function name
An external procedure name

A dummy procedure name

An alternate return specifier of
the form *s

s Is the statement label of an executable
statement that appears in the same
program unit as the CALL statement.

Figure 6-14. CALL Statement

6-9

The CALL statement can contain actual arguments and
statement labels which must correspond in order, number

An actual argument in a subroutine call can be a dummy
argument name that appears in the dummy argument list of
the subprogram containing the subroutine call. An asterisk
dummy argument cannot be used as an actual argument.

Function Reference

A function is executed when the name is referenced in an
expression. A function must not directly or indirectly
reference itself. The function reference can appear
anywhere in an expression where an operand of the same
type can be used. The syntax of a function reference is
shown in figure 6-15.

fun(lal,al. . .1}
fun Is the name of the statement function.
a Is an actual argument that must be an

expression (except a character expression
involving concatenation of a dummy

argument with length (*)).

fun([al,al. . .])

fun Is the name of the function or dummy
procedure.
a Is an actual argument that can be one

of the following:
An expression (except a character
expression involving concatenation
of a dummy argument with length (*))
An array name
An intrinsic function name

An external procedure name

A dummy procedure name

Figure 6-15. Function Reference

The type of the function result is the type of the function
name. The arguments must agree in order, num
type with the corresponding dummy arguments.

Intrinsic and external functions can be referenced in any
procedure subprogram. Intrinsic functions are predefined
and are described in section 7.

Statement Function Reference

A statement function is evaluated when the name is
referenced in an expression. The actual arguments are
evaluated and converted to the type of the corresponding
dummy argument; the resulting values are used in place of
the corresponding dummy arguments in evaluation of the
statement function expression. The definition of a
statement function must not directly or indirectly
reference itself. The statement function reference can
appear anywhere in an expression where an operand of the
same type can be used. The syntax of a statement function
reference is shown in figure 6-16.

6-10

Figure 6-16. Statement Function Reference

The type of the statement function result is the type of the
statement function name. The arguments must agree in
order and number with the corresponding dummy
arguments.

A statement function can only be referenced in the
program unit where the statement function appears.

Return and Multiple Return

Each procedure subprogram ends with an END statement.
Execution of the END statement terminates the
procedure. The RETURN and END statements are often
used together at the end of the procedure. The RETURN
statement also terminates execution of the procedure.
RETURN statements can be used wherever appropriate to
terminate the procedure. A procedure that contains more
than one RETURN statement (or a single RETURN
statement that is separated from the END statement by
other statements) has multiple returns. The RETURN
statement is shown in figure 6-17.

RETURN e]

e Is an: pap. expression. |If
e is not of type integer, the value INT(e)
is used. The optional expression e can
only be used in a subroutine subprogram.

Figure 6-17. RETURN Statement

For a-simple return, the optional expression e is not used.
An example is shown in figure 6-18.

PROGRAM MAIHN
READ *, X,Y.Z
CALL VAL(X,Y.Z)
END

SUBROUTINE VAL(A,B.C)
IF(A .LT. 0.0) GO TO 12
PRINT *, "A IS POSITIVE'

- KRETURH

12 COKTINUE

PRINT ¥, *A IS NEGATIVE'
RETURN
END

Figure 6-18. Multiple Return Example

60481300 E

Alternate Return

Execution of a RETURN or END statement returns control
to the next executable statement in the referencing
procedure. Control can be returned to a different place in
the referencing procedure if the RETURN statement in the
form RETURN e is used. A procedure that includes any
RETURN e statements has alternate returns. Alternate
returns can only be used in subroutine subprograms.

An alternate return returns control to a specified point
other than the next executable statement following the
procedure reference. The specified point is a statement
label in the referencing procedure. The statement labels
must be included in the actual argument list, each
preceded by an asterisk. Control returns to the statement
label determined by the integer value of the alternate
return expression. If the value of the expression is less
than one, or greater than the number of asterisks in the
SUBROUTINE statement or ENTRY statement that is the
current entry point, control returns to the statement
following the CALL statement. For example, if a CALL
statement contains five statement labels and if the
alternate return expression evaluates to three, control
returns to the third statement label specified in the actual
argument in the alternate return list.

An example of an alternate return is shown in figure 6-19.

RETURN 1 is a return to statement 20 in the calling
program; RETURN 2 is a return to statement 303

60481300 E

RETURN 3 is a return to statement 40. The subroutine
contains both the normal RETURN statement and alternate
RETURN,

PROGRAM MAIN
READ *, A,B,C
CALL XCOMP(A,B,C,*20,%*30,*40)

20 CONTINUE
PRINT *, 'RETURNED TO STMT 20°'
GO TO 10
30 CONTINUE
PRINT *, 'RETURNED TO STMT 30'
GO TO 10
40 CONTINUE
PRINT #*, 'RETURNED TO STMT 40:
10 END
C

SUBROUTINE XCOMP(B1,B2,G,%*, %, *)
IF(B1¥B2 - 4.159) 11,12,13
11 CONTINUE
RETURN 2
12 CONTINUE
RETURN 1
13 CONTINUE
IF(B1 .GT. 32.) RETURN 3
RETURN
END

Figure 6-19. Alternate Return Example

6-11

FORTRAN SUPPLIED PROCEDURES 7

L .

FORTRAN 5 provides certain procedures that are of
general utility or are difficult to express in FORTRAN.
The supplied procedures are referenced in the same way as
user-written procedures. The two classes of supplied
procedures are intrinsic functions and utility subprograms.

INTRINSIC FUNCTIONS

An intrinsic function is a compiler-defined procedure that
returns a single value. Intrinsic functions are referenced in
the same way as user-written functions. If a variable,
array, or statement function is defined with the same name
as an intrinsic function, the name is a local name that no
longer refers to the intrinsic function. If a function
subprogram is written with the same name as an intrinsic
function, use of the name references the intrinsic function,
unless the name is declared as the name of an external
function with the EXTERNAL statement described in
section 2. Intrinsic functions are typed by default and
need not appear in any explicit type statement in the
program. Explicitly typing a generic intrinsic function
name does not remove the generic properties of the name.
If an intrinsic function is typed something other than the
default for that function, the compiler does not honor the
type statement and generates an error.

Certain intrinsic functions are generic. If a generic name
and specific names exist, a generic name can be used in
place of a specific name and is more flexible than a
specific name. Except for type conversion generic
functions, the type of the argument determines the type of
the result.

For example, the generic function name LOG computes the
natural logarithm of an argument. Its argument can be
real, double precision, or complex. The type of the result
is the same as the type of the argument.

Specific function names ALOG, DLOG, and CLOG also
compute the natural logarithm. The specific function
name ALOG computes the log of a real argument and
returns a real result. Likewise, the specific name DLOG is
for double precision arguments and results, and the specific
name CLOG is for complex arguments and results.

Only a specific name can be used as an actual argument
when passing the function name to a user-defined
procedure or function. The intrinsic functions are listed in
table 7-1. For specific names, the types of the arguments
and results are shown.

The mathematical intrinsic functions are listed in
table 7-2. The domains and ranges of the functions are
shown in the table.

60481300 E

ABS

ABS(a) is a generic function that returns an absolute
value. The result is integer, real, or double precision,
depending on the argument type. For an integer, real, or
double precision argument, the result is |al. For a complex
argument, the result is the square root of (ar2+ai2).
The specific names are 1ABS, ABS, DABS, and CABS.

ACOS

ACOS(a) is a generic function that returns an arccosine.
The result is expressed in radians. The result is real or
double precision, depending on the argument type. See
table 7-2. The specific names are ACOS and DACOS.

AIMAG

AIMAG(a) returns the imaginary part of a complex
argument. The real result is ai, where the complex
argument is (ar,ai).

AINT

AINT(a) is a generic function that returns an integer after
truncation. The result is real. For a real or double
precision argument, the result is 0 if |al<1. If |a] 21, the
result is the largest integer with the same sign as
argument a that does not exceed the magnitude of a. The
specific names are AINT and DINT.,

ALOG
ALOG(a) is a specific function that returns the natural

logarithm of the argument. The argument is real and the
result is real. The generic name is LOG.

ALOG10

ALOG10(a) is a specific function that returns the logarithm
base 10 of the argument. The argument is real and the
result is real. The generic name is LOGI10.

AMAXO

AMAX0(ay,ag[,an]...) is a specific function that
returns the value of the largest argument. The 2 through
500 arguments are integer, and the result is real. The
generic name is MAX.

AMAX1

AMAX1(ay,az[,an]...) is a specific function that
returns the value” of the largest argument. The 2 through
500 arguments are real, and the result is real. The generic
name is MAX.

TABLE 7-1. INTRINSIC FUNCTIONS

Intrinsic Definition Number of Generic Specific Type of Type of
Function Arguments Name Name Argument Function
e e e
Type Conversion 1 INT - Integer Integer
conversion to integer, INT Real Integer
int(a) IFIX Real Integer
IDINT Double Integer
- Complex Integer
Conversion 1 REAL FLOAT Integer Real
to real REAL Integer Real
- Real Real
- Complex Real
SNGL Double Real
- Complex Real
Conversion 1 DBLE - Integer Double
to double - Real Double
- Double Double
- Complex Double
Conversion lor?2 CMPLX - Integer Complex
to complex - Real Complex
- Double Complex
- Complex Complex
Character 1 None ICHAR Character Integer
conversion
to integer
Integer 1 None CHAR Integer Character
conversion
to character
Truncation Defined as 1 AINT AINT Real Real
int(a) DINT Double Double
Nearest Defined as 1 ANINT ANINT Real Real
whole int(a + .5) DNINT Double Double
number if a is
positive or
zero;
int{a - .5)
if a is
negative
Nearest Defined as 1 NINT NINT Real Integer
integer int(a + .5) IDNINT Double Integer
if a is
positive or
zero;
int(a - .5)
if a is
negative
7-2 60481300 B

TABLE 7-1. INTRINSIC FUNCTIONS (Contd)

Intrinsic Definition Number of Generic Specific Type of Type of
Function Arguments Name Name Argument Function
Absolute Defined as 1 ABS IABS Integer Integer
value la]; if a is ABS Real Real
complex, DABS Double DoubTle
square root CABS " Complex Real
of ((real a§2 +
(imaginary a)2)
Remaindering Defined as 2 MOD MOD Integer Integer
a-int(a1/az)*ap AMOD Real Real
DMOD Double Double
Transfer of Defined as 2 SIGN ISIGN Integer Integer
sign lag} if a2 is SIGN Real Real
positive or DSIGN Double Double
zero; - |aj|
if ap is
negative
Positive Defined as 2 DIM IDIM Integer Integer
difference aj-ap if aj is DIM Real Real
greater than ap; DDIM Double Double
0 if a3 is not
greater than ap
Double Defined as 2 None DPROD Real Double
precision aj*ap
product
Choosing Defined as 2 - 500 MAX MAXO Integer Integer
largest max AMAX1 Real Real
value (ag,a2 Ean]...) DMAX1 Double Double
None AMAXO Integer Real
MAX1 Real Integer
Choosing Defined as 2 - 500 MIN MINO Integer Integer
smallest min AMIN1 Real Real
value (a1,a2 [an]---) DMINI Double Double
None AMINO Integer Real
MIN1 Real Integer
Length Length of 1 None LEN Character Integer
character
string
Index of Location of 2 None INDEX Character Integer
a substring substring as
in string aj
60481300 A 7-3

TABLE 7-1. INTRINSIC FUNCTIONS (Contd)

Intrinsic sogas Number of Generic Specific Type of Type of
Function Definition Arguments Name Name Argument Function
Imaginary Imaginary part 1 None AIMAG Complex Real
part of of (ar,ai)
complex = ai
argument
Conjugate of Negation of 1 None CONJG Complex Complex
complex imaginary
argument part (ar,-ai)
Square root Square root 1 SQRT SQRT Real Real
of (a) DSQRT Double Double
CSQRT Complex Complex
Exponential Defined as 1 EXP EXP Real Real
etxy DEXP Double Double
CEXP Complex Complex
Natural Defined as 1 LOG ALOG Real Real
Togarithm Toge (a) DLOG Double Double
CLOG Complex Complex
Common Defined as 1 LOG10 ALOG10 Real Real
Togarithm Togig (a) DLOG1O Double Double
Sine Defined as 1 SIN SIN Real Real
sin (a), where DSIN Double Double
a is in radians CSIN Complex Complex
Cosine Defined as 1 cos coS Real Real
cos (a), where DCOS Double Double
a is in radians ccos Complex Complex
Tangent Defined as 1 TAN TAN Real Real
tan (a), where DTAN Double Double
a is in radians
Arcsine Defined as 1 ASIN ASIN Real Real
arcsin (a) DASIN Double Double
7-4

60481300 A

TABLE 7-1. INTRINSIC FUNCTIONS (Contd)

Intrinsic s osas Number of - Generic Specific Type of Type of
Function Definition Arguments Name Name Argument Function
Arccosine Defined as 1 ACOS ACOS Real Real
arccos (a) DACOS Double Double
Arctangent Defined as 1 ATAN ATAN Real Real
arctan (a) DATAN Double Double
Defined as 2 ATAN2 ATAN2 Real Real
arctan (ay/ap) DATAN2 Double Double
Hyperbolic Defined as 1 SINH SINH Real Real
sine sinh (a) DSINH Double Double
Hyperbolic Defined as 1 COSH COSH Real Real
cosine cosh (a) DCOSH Double Double
Hyperbolic Defined as 1 TANH TANH Real Real
tangent tanh (a) DTANH Double Double

Lexically
greater than
or equal

Lexically
greater
than

Lexically
less than
or equal

Lexically
Tess than

60481300 A

True if a3
follows aj,

or al=32, in
ASCIT collating
sequence

True if a)
follows as in
ASCII collating
sequence

True if ap
precedes ap,
or a =32, in
ASCI} co11ating
sequence

True if a1
precedes as in
ASCII collating
sequence

None

None

None

LGT

LLE

LLT

Character

Character

Character

Character

Logical

Logical

Logical

Logical

TABLE 7-1. INTRINSIC FUNCTIONS (Contd)

Intrinsic
Function

Definition

Number of
Arguments

Generic
Name

Specific
Name

Type of
Argument

Type of
Function

o
.

G

e
.

.

.
o
o

Enn e
.
.

e

e

.

o
a,

.

.
P

B
-

.

B

e
.
.

e

o

mwx

T

—

G
o

-

.
.

b

.

60481300 A

TABLE 7-2. SUMMARY OF MATHEMATICAL INTRINSIC FUNCTIONS

Function

arccosine
(result in
radians)

arcsin
(result in
radians)

arctangent
(result in
radians)

arctangent

(2 arguments,
result in
radians)

trigonometric
cosine
(argument in
radians)

hyperbolic
cosine

exporential

natural
logarithm

60481300 E

_

Syntax T%g;eof Domain Definition Range
— =
ACOS(y) Generic | |y|<1 cos'l(y) O0<ACOS(y)<~
ACOS(y) Real
DACOS(y) Double
ASIN(y) Generic | Iyl <1 sin"L(y) ~n/2<ASIN(y) € /2
ASIN(y) Real
DASIN(y) Double
ATAN(y) Generic tan'l(y) -m/2< ATAN(Y)< n/2
ATAN(y) Real
DATAN(y) Double
ATAN2(y,x) | Generic | x<0,y<0 -r+tan”L(y/x) -T<ATAN2(y,x) < -1/2
ATAN2(y,x) Real x=0,y<0 -1r/21
DATAN2(y,x) | Double x>0 tan™ " (y/x) -1/2 <ATAN2(y,x) < 7/2
x=0,y >0 /2 -1
x<0,y20 r+tan” " (y,x) /2 < ATAN2(y,x)< =
x=0,y=0 error

C0S{x)
€0S(x)
DCOS(x)

CCOS(x)

COSH(x)
COSH{x)
DCOSH(x)

EXP(x)
EXP(x)
DEXP(x)

CEXP{x)

LOG(x)
ALOG(x)
DLOG(x)

CLOG(x)

Generic
Real
Double

Complex

Generic
Real
Double

Generic
Real
Double

Complex

Generic
Real
Double

Complex

lx|<247

MES 1r*246
|y} < 741.66

| x| < 742.36

-675.81 < x<741.66
-675.81 <x<741.66
[y] < n*2

x>0

x2+y2f0

cos(x)

cos{x+iy)

cosh(x)

o (x¥iy)

Tog,(x)

Tog, (x+iy)

-1<Cos(x)<1

1< COSH(x)

0< EXP(x) |
-m<imaginary
part<n

7-7

TABLE 7-2. SUMMARY OF MATHEMATICAL INTRINSIC FUNCTIONS (Contd)

Function Syntax T%g;eof Domain Definition Range
common LOG10(x) Generic | x>0 10910(x)
logarithm ALOG10(x) Real
(base 10) DLOG10(x) Double
trigonometric | SIN(x) Generic | [x| <2 sin(x) -1<SIN(x) <1
sine SIN(x) Real
{argument in DSIN(x) Double
radians) 46

CSIN(x) Complex | |x|<a*2 sin{x+iy)

hyperbolic
sine

square
root

trigonometric
tangent
(argument in
radians)

hyperbolic
tangent

SINst)
SINH(x)
DSINH(x)

SQRT(x)
SQRT(x)
DSQRT({x)

CSQRT(x)

TAN(x)
TAN(x)
DTAN(x)

TANH(x)
TANH(x)

Generic
Real
Double

Generic
Real
Double

Complex

Generic
Real
Double

Generic
Real

|x1<742.36

x>0,x<0

[x| < wx2%6

sinh(x)

x0.5

tan(x)

tanh(x)

SQRT(x) 20

value in right half
plane

-1 < TANH(x) < 1

AMINO

AMNO(S}.B 2 2[an]- J is a

returns t

specific

function that
alue of the smallest argument. The 2 through

500 arguments are integer, and the result is real. The
generic name is MIN.

7-8

AMIN1

AMINX(a;,a 2[,an]: - M)
returns t#e v

specific
alue of the smallest argument. The 2 through

function that

500 arguments are real, and the result is real. The generic

name is MIN,

60481300 E

AMOD

AMOD(a1,az) is a specific function that returns aj
modulus ap;. The arguments are real and the result is
real. If a; is zero, results are undefined. The generic
name is MOD.

ANINT

ANINT(a) is a generic function that returns the nearest
whole number. The result is real or double precision,
depending on the argument type. The specific names are
ANINT and DNINT.

ASIN

ASIN(a) is a generic function that returns an arcsine. The
result is expressed in radians. The result is real or double
precision, depending on the argument type. See
table 7-2. The specific names are ASIN and DASIN.

ATAN

ATAN(a) is a generic function that returns an arctangent.
The result is expressed in radians. The result is real or
double precision, depending on the argument type. See
table 7-2. The specific names are ATAN and DATAN,

ATAN2

ATAN2(aj,ap) is a generic function that returns an
arctangent. The result is expressed in radians. The result
is real or double precision, depending on the type of the
arguments. The arguments must not both be zero. See
table 7-2. The specific names are ATAN2 and DATANZ.

CABS

CABS(a) is a specific function that returns a real result
from a complex argument. The generic name is ABS.

60481300 B

CCOs

CCOS(a) is a specific function that returns a complex
result from a complex argument. The generic name is
COsS.

CEXP

CEXP(a) is a specific function that returns a complex

result from a complex argument. The generic name is
EXP.

CHAR

CHAR(a) returns the character value of an integer
argument. The value returned depends on the collating
sequence used. If the ASCII collating sequence is used,
the argument must be in the range Osa<63; the first
character in the collating sequence corresponds to
value 0, the second character to value 1, the third to
value 2, and so forth. The result is the selection of a
single character from the collating sequence. If, in a
user-specified collating sequence, more than one
character has weight a, the character returned can be
any of them.

CLOG

CLOG(a) is a specific function that returns a complex

result from a complex argument. The generic name is
LOG.

CMPLX

CMPLX(a) or CMPLX(aj,a2) is a generic function that
performs type conversion and returns a complex value.
CMPLX can have one or two arguments. A single
argument can be integer, real, double precision, or
complex. If two arguments are used, the arguments must
be of the same type and must both be integer, real, or
double precision. For a single integer, real, or double
precision argument, the result is complex, with the
argument used as the real part and the imaginary part
zero. For a single complex argument, the result is the
same as the argument. For two arguments ap and a3, the
result is complex, with argument aj used as the real part
and argument ap used as the imaginary part. There are no
specific names.

CONJG

CONJG(a) returns a conjugate of a complex argument.
The result is complex. For a complex argument (ar,ai),
the result is (ar,-ai) with the imaginary part negated.

Cos

COS(a) is a generic function that returns a cosine. The
argument is assumed to be in radians. The result is real,

7-9

double precision, or complex, depending on the argument
type. See table 7-2. The specific names are COS, CCOS,
and DCOS.

COSH

COSH(a) is a generic function that returns a hyperbolic
cosine. The resuit is real or double precision, depending
on the argument type. See table 7-2. The specific names
are COSH and DCOSH.

CSIN

CSIN(a) is a specific function that returns the sine of the

argument. The argument and result are complex. The
generic name is SIN.

CSQRT

CSQRT(a) is a specific function that returns a complex
result from a complex argument. The generic name is
SQRT.

DABS

DABS(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is ABS,

DACOS

DACOS(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is ACOS.

DASIN

DASIN(a) is a specific function that returns a double
precision resuit from a double precision argument. The
generic name is ASIN.

DATAN

DATAN(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is ATAN.

DATAN2

DATAN2(aj,az) is a specific function that returns a

double precision result from a double precision argument.
The generic name is ATAN2,

DBLE

DBLE(a) is a generic function that performs type
conversion and returns a double precision result. The
argument can be integer, real, double precision, or

complex. For an integer or real argument, the result has
as much precision as the double precision field can
contain. For a double precision argument, the result is
the argument. For a complex argument, the real part is
used, and the result has as much precision as the double
precision field can contain. There are no specific hames.

DCOS

DCOS(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is COS.

DCOSH

DCOSH(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is COSH.

DDIM

DDIM(a,,ay) is a specific function that returns a double
precision result from double precision arguments. It
returns the value of aj-ap; if aj<ap, it returns zero. The
generic name is DIM.

DEXP

DEXP(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is EXP.

DIM

DIM(a},a2) is a generic function that returns a positive
difference. The result is integer, real, or double
precision, depending on the argument type. Both
arguments must be the same type. The result is aj-ag if
aj>ap, and the result is 0 if aj<ap. The specific names
are DIM, IDIM, DDIM.

DINT
DINT(a) is a specific function that returns a double

precision result from a double precision argument. The
generic name is AINT.

DLOG
DLOG(a) is a specific function that returns a double

precision result from a double precision argument. The
generic name is LOG.

DLOG10
DLOGI10(a) is a specific function that returns a double

precision result from a double precision argument. The
generic name is LOG10,

DMAX1

DMAX1(ay,ap[,an]...) is a specific function that returns a
double precision” result from 2 through 500 double
precision arguments. The generic name is MAX.

60481300 C

DMIN1

DMINI(aj,az[,ap]...) is a specific function that returns a
double precision result from 2 through 500 double
precision arguments. The generic name is MIN,

DMOD

DMOD(ay,az) is a specific function that returns a double
precision result from two double precision arguments. If
ap is zero, results are undefined. The generic name is
MOD.

DNINT

DNINT(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is ANINT.

DPROD
DPROD(a),ap) returns a double precision product. The

arguments are real, and the result is double precision.
The result is aj *ap.

DSIGN
DSIGN(aj,ap) is a specific function that returns a double

precision result from two double precision arguments.
The generic name is SIGN.

DSIN

DSIN(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is SIN.

DSINH

DSINH(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is SINH.

DSQRT
DSQRT(a) is a specific function that returns a double

precision result from a double precision argument. The
generic name is SQRT.

DTAN

DTAN(a) is a specific function that returns a double
precision result from a double precision argument. The
generic name is TAN.

DTANH

DTANH(a) is a specific function that returns a double

precision result from a double precision argument. The
generic name is TANH.

60481300 C

EXP

EXP(a) is a generic function that returns an exponential.
The result is real, double precision, or complex, depending
on the argument type. See table 7-2. The specific names
are EXP, DEXP, and CEXP.

FLOAT

FLLOAT(a) is a specific function that returns a real result
from an integer argument. The generic name is REAL.

1ABS

IABS(a) is a specific function that returns an integer
result from an integer argument. The generic name is
ABS.

ICHAR

ICHAR(a) returns an integer value from a character
argument. The value returned depends on the collating
weight of the character in the collating sequence used.
For the ASCII collating sequence, the first character in
the collating sequence is at position 0, the second
character at position 1, the third at position 2, and so
forth. For a user-specified collating sequence, two or
more characters can have the same value. The argument
is a character value with a length of one character, and
the value returned is the integer position of that
character in the collating sequence.

IDIM
IDIM(ay,ap) is a specific function that returns an integer

result from integer arguments. It returns the value of
a)-ap; if aj< ap, it returns zero. The generic name is DIM.

IDINT

IDINT(a) is a specific function that returns an integer
result from a double precision argument. The generic
name is INT.

7-11

IDNINT

IDNINT(a) is a specific function that returns an integer
result from a double precision argument. The generic
name is NINT.

IFIX

IFIX(a) is a specific function that returns an integer resuit
from areal argument. The generic name is INT.

INDEX

INDEX(aj,ap) returns the location of a substring within a
string. Both arguments must be character string
arguments. If string ap occurs as a substring within
string aj, the result is an integer indicating the starting
position of the substring ap within aj. If ap does not
occur as a substring within aj, the result is 0. If ap
occurs as a substring more than once within aj, only the
starting position of the first occurrence is returned.

INT

INT(a) is a generic function that performs type conversion
to integer. The result is integer, and the argument can be
integer, real, double precision, or complex. For an integer
argument, the result is the argument. For a real or double
precision argument where |al<1, the result is 0. Where
|al 21, the result is the largest integer with the same sign
as argument a that does not exceed the magnitude of a.
For a complex argument, the real part is used, and the
result is the same as for a real argument. The specific
names are INT, IFIX and IDINT.

ISIGN

ISIGN(aj,ap) is a specific function that returns an integer
result from two integer arguments. The generic name is
SIGN.

LEN

LEN(a) returns the length of a character string. The
argument is a character string, and the result is an integer
indicating the length of the string.

LGE)

LGE(a),ap) returns a result indicating lexically greater
than or equal to. The arguments are character strings.
The result is true only if ay follows ap or aj is equal to aj
in the ASCII collating sequence (shown in appendix A).

LGT

LGT(a1,ap) returns a result indicating lexically greater
than. The arguments are character strings. The result is
true only if aj follows ap in the ASCII collating sequence
(shown in appendix A).

LLE

[LLE(aj,ap) returns a.result indicating lexically less than
or equal to. The arguments are character strings. The
result is true only if aj precedes ay or aj is equal to ap in
the ASCII collating sequence (shown in appendix A).

LLT

LLT(aj,ap) returns a result indicating lexically less than.
The arguments are character strings. The result is true
only if a) precedes ap in the ASCII collating sequence
(shown in appendix A).

LOG

LOG(a) is a generic function that returns a natural
logarithm. The result is real, double precison, or complex,
depending on the argument type. See table 7-2. For a
complex argument {ar,ai), the range of the imaginary part
of the result is -w<ai<w. The imaginary part of the
result is only zero when ar>0 and ai=0. The specific
names are ALOG, DLOG, and CLOG.

LOG10

LOG10(a) is a generic function that returns a common
logarithm. The result is real or double precision,
depending on the argument type. See table 7-2. The
specific names are ALOG10 and DLOGLO0.

7-12

60481300 D

MAX

MAX(al,GZPGn]---) is a generic function that returns the
largest value.” The result is integer, real, or double
precision, depending on the type of the 2 through 500
arguments. The specific names are MAX0, AMAX], and
DMAX1.

MAXO0

MAXU(al,az[,an ...) is a specific function that returns as
an integer result the largest value from 2 through 500
integer arguments. The generic name is MAX.

MAX1

MAXl(al,az[,an{...) is a specific function that returns as
an integer result the largest value from the 2 through 500
real arguments.

MIN

MIN(a},a2[,an]...) is a generic function that returns the
smallest value from the 2 through 500 arguments. The
result is integer, real, or double precision, depending on
the type of arguments. The specific names are MIND,
AMIN1, and DMIN1.

MINO
MINO(a,a[,an]...) is a specific function that returns as

an integer result the smallest value from the 2 through
500 integer arguments. The generic name is MIN.

MIN1

MIN1(ay,a9[,apn]...) is a specific function that returns as
an integer result the smallest value from the 2 through
500 real arguments.)

MOD

MOD(aj,ap) is a generic function that returns the
remainder of a; divided by ap. The result is integer, real,
or double precision, depending on the argument type. The
result is aj-(int(aj/az)*ap). If a is zero, results are
undefined. The specific names are MOD, AMOD, and
DMOD. .

60481300 E

NINT

NINT(a) is a generic function that returns the nearest
integer. The result is integer, and the argument can be
real or double precision. For a real or double precision
argument where a is zero or positive, the result is
(int(a+.5)). For an argument where a is negative, the
result is (int(a-.5)). The specific names are NINT and
IDNINT. i

REAL

REAL(a) is a generic function that performs type
conversion and returns a real result. The argument can be
integer, real, double precision, or complex. For a complex
argument (ar,ai), the result is real(ar). The specific names
are REAL, FLOAT, and SNGL.

SIGN

SIGN(ay,ap) is a generic function that returns a value
after a transfer of sign. The result is integer, real, or
double precision, depending on the argument type. The
result is |ay| if a2 is zero or positive. The result is

-laj| if ap is negative. The specific names are SIGN,
ISIGN, and DSIGN.

SIN

SIN(a) is a generic function that returns a sine. The
argument is assumed to be in radians. The result is real,
double precision, or complex, depending on the argument
type. See table 7-2. The specific names are SIN, DSIN,
and CSIN.

SINH

SINH(a) is a generic function that returns a hyperbolic
sine. The result is real or double precision, depending on
the argument type. See table 7-2. The specific names
are SINH and DSINH.

SNGL

SNGL(a) is a specific function that returns a real result
from a double precision argument. The generic name is
REAL.

SQRT

SQRT(a) is a generic function that returns a principal
square root. The result is real, double precision, or
complex, depending on the argument type. See table 7-2.
The specific names are SGRT, DSQRT, and CSQRT.

TAN

TAN(a) is a generic function that returns a tangent. The
argument is assumed to be in radians. The result is real or
double precjsion, depending on the argument type. See
table 7-2. The specific names are TAN and DTAN.

TANH

TANH(a) is a generic function that returns a hyperbolic
tangent. The result is real or double precision, depending
on the argument type. See table 7-2. The specific names
are TANH and DTANH.

7-14

60481300 D

60481300 C 7-15

QI%

7-16 60481300 C

.

T

-

60481300 C 7-17

7-18 60481300 D

7-19

60481300 D

7-20

60481300 D

7-20.1/7-20.2 |

60481300 D

60481300 C 7-21

7-22

60481300 C

60481300 B 7-23

.

.
L

. . - sz&%

7-24 60481300 C

60481300 B 7-25

60481300 E

7-26

,
.
o

L

S wgg

Mol
o
N

60481300 B

.
v

7-28 60481300 B

60481300 E 7-29

7-30) 60481300 E

60481300 £ 7-31

PRODUCT INTERFACES » 8

80481300 E

8-2 60481300 E

.
e
;a%%«gggw

7

=

.
.

.

.

60481300 E 8-3

® 8-4 60481300 E

.

. ﬁéggés?;gﬁgg
-

& a : ol . 1118 Cd f : 1Y ~ ,
e = . e 1 .] = - . i o
%ﬁg{ ;ﬁg G . | L m%‘%‘?ﬁ % - . - . §
... . . i ' , - O AA [o
L ~;§m§,§§§b§i&w p - _ £ . i e : - : st
o . ﬁgg’% . ; gmgm . .
. - - o b ...
. - L }

. . ;
: o
-

o

e
L

ecifice
L

.

80481300 £ 8-5

e

8-6 60481300 E

80481300 E 8-6.1/8-6.2 |

.

.
.
.

60481300 B : 8-7

o

i
.

o

.
.

L

égﬁ%“?‘ig

ORDER 1
'COMPARE!

60481300 C

60481300 C o 8-9

8-10 60481300 B

8-11

60481300 C

60481300 B

8-12

OVERLAYS 9

60481300 D 9-1

led comme

60481300 D

60481300 D

60481300 D

9-4

60481300 D 9-5 @

60481300 E 10-1 o

60481300 E

10-3 @

60481300 E

® 10-4 60481300 E -

|
b

60481300 E 10-5 @

COMPILATION AND EXECUTION 11

60481300 D 11-1

o

f&m

.
o

11-2 60481300 D

11-3

60481300 D

11-4 60481300 D

60481300 D . 11-5

o
S
-

-
e
o

4 'iﬁ% .

. o " - . : " °%5”§§§‘;§§ai’ e
. 4 ' - .
L

o
-
i

o

G
i

-
.
.

-

L
i 2hose

11-6 60481300 D

o
.

L

.
-

=

it e i

or o
. %}@gu‘a”‘?” §§%w .
L .

11-
60481300 E 7

60481300 D

11-8

.

=
i

60481300 D 11-9

60481300 E

11-10

60481300 E ‘ 11-11

i 11-12
60481300 E

o
s

o
e

- = - - , .
. . ‘ - . ° . .

foos

.
;

=

.

L
.

.
-

60481300 E ‘ : 11-13 1

I 11-14 60481300 E

60481300 E 11-15

.

| 116 60481300 £

-
-
-

.
e

.

.
S e
.

60481300 E .

] 1162 60481300 E

o
-
.

L o
.

.

L
o ﬁ‘”‘% wmﬁ % 4 .
-

L
. l
. g . . . -
. . . .g%x .. -
& b
-

.
.
.

e
%‘"‘:%%%@ . =

_ aa

w %@g@:ﬁé

.
.
.

o

- @}5@%5@%%*%:: - :
gﬂ - .
St

%é@?@g‘»% . L
...

. . -
o . - _ “@ggm ’
- @ - .

60481300 C -

60481300

11-18

| 60481300 C 11-19

o

ed

e

11-20 60481300 C

60481300 D 11-21

11-.22) 60481300 E

EXAMPLES ' 12

—

The first part of this section contains sample deck Refer to the operating system reference manual for
structures, including control statements, illustrating details of control statements.

compilation and execution of FORTRAN programs. The

second part contains sample executable programs

illustrating various features of FORTRAN., Examples of
input and output are included. FORTRAN SOURCE PROGRAM WITH
CONTROL STATEMENTS

SAMPLE DECK STRUCTURES Figure 12-1 shows a deck structure for compiling and
executing a FORTRAN program that contains a function
Following are some typical deck structures that can be and a subroutine.

used for compiling and executing FORTRAN programs.

CRNO

END

AL
L
L

L
{ FORTRAN statements
(SUBROUTINE RVIE (C.J,L)

l[END FORTRAN

—7 FORTRAN statements §:’:;:’:m
/' FUNCTION RTSM (A,B)

/ END

A
r FORTRAN statements
—7 PROGRAM MAIN
(1]
9 { LGO.
(FTNS.
(fAccounting statements
Job statement

Control
Statements

Tas applicable for operating system or installation

Figure 12-1. FORTRAN Source Program With Control Statements

60481300 A 12-1

COMPILATION ONLY OPT=0 COMPILATION

Figure 12-2 'shows a deck structure for compiling a Figure 12-3 illustrates a deck structure for compiling a
program; the program is not executed after compilation. program in OPT=0 mode. No binary object file is
produced and no execution occurs.

6
7
8
9 lL
/7
W
FORTRAN source deck
7
8
9.
/ FTNS(QC,EL=T)
Job statement \
N EL=T — Al diagnostics (excluding
ANS}) listed on file
OUTPUT
Qac — Full syntactic error
scan of program

Figure 12-2. Compilation Only

FORTRAN source deck

e~

/ FTN5(OPT=0,8=0)

Job statement \
-OPT=0 — OPT=0 compilation mode is
desired.
B=0 - Binary object file is
not produced.

Figure 12-3. OPT=0 Compilation

12-2 60481300 A

COMPILATION AND EXECUTION

Figure 12-4 illustrates a deck structure for compiling and
executing a program that reads data from cards.

FORTRAN COMPILATION -WITH COMPASS
ASSEMBLY AND EXECUTION

Figure 12-5 illustrates a deck structure containing a
FORTRAN and a COMPASS program unit. The FORTRAN
and COMPASS source decks can be in any order.
COMPASS source decks must begin with a line containing
the word:

IDENTA

in columns 11 through 16. Columns 1 through 10 of the
ident line must be blank.

6
7
8 y=:
9 a—
(Data
7
8 y- l
9 L
(FORTRAN source deck
7
8
9
{ LGO.
[FINS.
Job statement

Figure 12-4. Compilation and Execution

6
7 £
8 V4
9 (Data
/7 |
8
9
COMPASS source deck
Vs
L
y 4
(FORTRAN source deck
(7
8 / LGO.
9 / FTNS(LO=R EL=T LO=R — Source program and cross-
{ - ! reference listing on file
/' Job statement OUTPUT
EL=T — All diagnostics (excluding

ANSI) listed on file
OUTPUT

Figure 12-5. Compilation With COMPASS Assembly and Execution

60481300 B

12-3

COMPILATION AND EXECUTION WITH FORTRAN
SUBROUTINE AND COMPASS SUBPROGRAM

Figure 12-6 illustrates a deck structure containing a
FORTRAN subroutine, and a COMPASS subprogram,
showing the COMPASS IDENT and ENTRY statements. In
this example, the LGO statement specifies the output file
(as described in section 11).

COMPILATION WITH BINARY CARD OUTPUT

Figure 12-7 illustrates a deck structure to compile and
produce a binary object deck.

Source deck

. |
ll

(PROGRAM BOB

[-N-- RN

FTN5 (B=PUNCHB,OPT=3) J

Job statement / .
OPT=3 specifies

full optimization.

Figure 12-7. Compilation With Binary Card Output

}

Data

[ENTRY A1

/ IDENT SUB

L

L

SUBROUTINE S1(P1,P2)

1
) |
1

({ PROGRAM DONE (INPUT,TAPE2)

[-X--R]

//

LGO (,OUTPUT)™

L

FTNS.

Job statement

p—Data is written to OUTPUT
rather than TAPE2.

Figure 12-6. Compilation and Execution With FORTRAN Subroutines and COMPASS Subprogram

12-4

60481300 B

LOADING AND EXECUTION OF
BINARY PROGRAM

Figure 12-8 illustrates a deck structure to load and
execute a binary object program. The MAP(OFF)
statement suppresses the load map.

COMPILATION AND EXECUTION WITH
RELOCATABLE BINARY DECK

Figure 12-9 illustrates a deck structure to compile a
FORTRAN program and load and execute a binary
program along with the FORTRAN program.

6
7
8
9 L
A
1
Data
7
8
9 /5
8
9 / -
1
(Binary deck
7
8
9 .
INPUT. |
MAP(OFF) |
Job statement

6
7
8
9
V4
VA
—
Vi
(Data
7 I
8 (7
8 Vi
9 Vs
(Binary deck
7
8
9
L
Vi
L
Z
4 Source deck

(PROGRAM ALFRED
/7

8
9

{ EXECUTE.

(LOAD(LGO)
—(LOAD(INPUT)

FTNS. |

(Job statement

Figure 12-8. Loading and Execution of Binary Program

60481300 £

Figure 12-9. Compilation and Execution With
Relocatable Binary Deck

12-5

COMPILATIONS AND TWO EXECUTIONS WITH
DIFFERENT DATA DECKS

Figure 12-10 illustrates a deck structure to compile a
program and to execute the program twice with two
different data decks. Output from the two executions is
sent to separate output files.

©OoN®

m)am #2 :

[-N--RN)

/

Wm A

©o~N

f PROGRAM SUBS (INPUT,QUTPUT)

//

© o ~)

/ LGO, TAPE2.*~

LGO, TAPEL.” |

FTNS.

Output will be on two
separate files; output
from data #1 will be on
TAPE1, output from
data #2 on TAPE2.

/ Job statement

Figure 12-10. Compilation and Execution With Different Data Decks

12-6

60481300 B

PREPARATION OF OVERLAYS

Figure 12-11 illustrates a deck structure to compile, load
and execute a program containing overlays.

- |

PROGRAM MLT |

Secondary Overlay
(1,1)

Source Deck

Primary Overlay
(1,0) 4

Source Deck

N

Main Overlay
(0,0)

Source Deck

OVERLAY (FRANK,1,1)

END I
(CALL OVERLAY (5HFRANK,1,1,0)

P
Z
&

P

~ PROGRAM RDY]
/~ OVERLAY(FRANK10) |
END |

SUBROUTINE GROUCH(X) I

/ END

(/ CALL OVERLAY (5HFRANK,1,0,0)
CALL GROUCH(40.0)

L
pa

f PROGRAM LEO
OVERLAY (FRANK,0,0) |
7 |
3 / FRANK.]
f NOGO.
[LOAD(LGO)
(FTNS.
Job statement

Cail to
Primary Overlay
FRANK 1,0

60481300 C

Figure 12-11. Preparation of Overlays

12-7

COMPILATION AND TWO EXECUTIONS
WITH OVERLAYS

Figure 12-12 illustrates a deck structure to compile an
overlay and to execute the overlay two times,

WoON®
N

Source deck

(OVERLAY/(CH,0,0)

000~

CH. (ABSOLUTE OVERLAY) |—
X. (RELOCATABLE) |
FTN5(B=X) |
Job statement

Figure 12-12. Compilation and Two Executions
With Overlays

SAMPLE PROGRAMS

This subsection shows sample FORTRAN programs which
illustrate various features of the FORTRAN language.

PROGRAM OUT

Program OUT, shown in figure 12-13, illustrates the
following FORTRAN features:

Control statements for batch execution
WRITE and PRINT statements
Carriage control

PROGRAM statement

The control statement:
BIRD, T10.

is the job statement. A job statement must precede every
job. BIRD is the job name. T10 specifies a maximum of
10 seconds of central processor time (can be either octal
or decimal, depending on installation option).

The statement:
FTNS5.

specifies the FORTRAN compiler. The default
parameters (described in section 10) are used. Since no
alternative files are specified on the FTN5 control
statement, the FORTRAN compiler reads from file INPUT
and outputs to files OUTPUT and LGO. Listings,
diagnostics, and maps are written to OUTPUT and the
relocatable object code is written to LGO.

The statement:

LGO.
causes the binary object code to be loaded and executed.
The statement:

7/8/9

separates control statements from the remainder of the
job deck (file INPUT). This statement contains a 7, 8, and
9 multipunched in column 1; it follows the control
statements in every batch job.

The OPEN statement (line 2) associates unit 6 with file
OUTPUT.

The WRITE statement (line 6) outputs the variable INK to
file OUTPUT. The format specification is included in the
WRITE statement. If the following PRINT statement had
been used instead of WRITE:

PRINT YIS, "= INK OUTPUT BY PRINT",
*STATEMENT")', INK

the OPEN statement would not be needed. The
specification uses quotes to delimit the literal and the
carriage control character 1 to cause the line to be
printed at the top of a page.

Lineé 6 and 7 print the variable INK. In both output
statements, a blank carriage control character is specified
to cause single spacing. Line 6 uses the specification 1X

BIRD,T10.

FTNS.

LGO.

7/8/9 IN COLUMN 1
PROGRAM 0UT
OPEN (6, FILE='QUTPUT')
PRINT 100

INK= 2000 + 4000
STOP

END
6/7/6/9 IN COLUMN 1

100 FURMAT ("1 THIS WILL PRINT AT THE TOP OF A PAGE")

WRITE (6,'(1X,I4," = INK OUTPUT BY WRITE STATEMENT")') INK
PRINT '(1H ,I4, 30H = OUTPUT FROM PRINT STATEMENT)', INK

Figure 12-13. Program OUT With Control Statements

12-8

60481300 B

to produce a blank in column 13 line 7 uses the
specification 1H for the same effect.

The 6/7/8/9 card contains the characters 6, 7, 8, and 9
multipunched in column 1. It is the last card in every job
deck (INPUT file), indicating to the system the end of the
job.

Output from program OUT is shown in figure 12-14.

THIS WILL PRINT AT THE TuP OF A PAGE
6000 = INK OUTPUT BY WRITE STATEMENT
6000 = QUTPUT FRUM PRINT STATEMENT

Figure 12-14. Program OUT Oufput

PROGRAM B

Program B, shown in figure 12-15, generates a table of 64
characters. The internal bit configuration of any
character can be determined by its position in the table.

Each character occupies six bits.

Features illustrated in this example include:
Octal constants
Simple DO loop
PRINT statement
FORMAT with /,[,X and A editing
Character constant as a format specifier

The PRINT statement (line 2) has no output list; it prints
out the heading at the top of the page using the
information provided by the format specification. The 1
is the carriage control character, and the two slashes
cause one line to be skipped before the next string is
printed. The slash at the end of the format specification
skips another line before the program output is printed.

The DO loop (lines 4 through 6) generates numbers 0
through 7 (note that a DO index can be zero). The PRINT
statement (line 5) prints 0 through 7 (the value of J) on the
left and the 8 characters in NCHAR on the right. The first
iteration of the DO loop prints NCHAR as it appears on
line 3. The octal value 01 is a display code A, 02 is a B, 03
is a C, etc. Lineé adds the octal constant
10101010101010100000 to NCHAR; when this is printed on
the second iteration of the DO loop, the octal value 10 is
printed as a display code H, 11 as I, 12 as J, etc. Compare
these values with the character set listed in appendix A.

Output from program B is shown in figure 12-16.

TABLE OF INTERNAL VALUES
01234567

:ABCDEFG
HIJKLMNO
PQRSTUVW
XYZ01234
56789+-%
/0)s= ,.
#L1%"- 14
'7<> @\

~NoOOPrUNE—C

Figure 12-16. Program B Output

PROGRAM STATES

Program STATES, shown in figure 12-17, reads employee
names and home states, ignoring all but the first two
letters of the state name. If the state name starts with
the letters CA, the name is printed. This program
illustrates character handling.

The first PRINT statement (line 3) directs the printer to
start a new page, print the heading NAME, and skip 3 lines.

The READ statement (line 5) reads the last name into
LNAME, first name into FNAME, home state into STATE,
and tests for end-of-file.

PROGRAM STATES
CHARACTER*10 FNAME, LNAME, STATE
PRINT 1

1 FORMAT (1H1l, 5X, 4HNAME, ///)
3 READ (*, '(3A)', END=99) LNAME,
X FNAME, STATE
C
C IF FIRST TWO CHARACTERS OF STATE ARE CA
C PRINT LAST NAME AND FIRST NAME
C

IF (STATE(1:2) .EQ. 'CA') THEW
PRINT '(5X, 2A)', LNAME, FNAME
ENDIF
Gu TO 3

99 STUP

END

Figure 12-17. Program STATES

PROGRAM B

0o 3 J =u,7

SToP
END

PRINT '("1TABLE UF INTERNAL VALUES",//,"
NCHAR= 0"0U vl 02 u3 04 05 U6 07 6O 0O"

PRINT '(I3, 1X, A8)', J, NCHAR
3 NCHAR= NCHAR + 0"10 10 iv 10 10 10 10 10 ou OO"

01234567",/)"'

Figure 12-15. Program B

60481300 E

12-9

The relational operator .EQ. tests to determine if the first
two letters read into variable STATE match the two
letters of the constant 'CA'. If a match occurs, FNAME
and LNAME are printed.

Sample input and output for program STATES are shown in
figure 12-18.

Input:

BROUWN, PHILLIP M.CA
BICARDI, R. J. KENTUCKY
CROWN, SYLVIA CAL
HIGENBERF ,ZELDA MAINE
MUNCH, GARY G. CAL1F
SMITH SIMON CA

DEAN, ROGER GEORGIA
RIPPLE SALLY NEW YORK
JUNES STAN OREGUN
HEATH BILL NEW YORK
Output:

NAME

BROWN, PHILLIP M.

CRUWN, SYLVIA

MUNCH, GARY G.

SMITH SIMON

Figure 12-18. Sample Input and Output
for Program STATES

PROGRAM EQUIV

Program EQUIV, shown in figure 12-19, places values in
variables that have been e$uivalenced and prints these
values using the NAMELIST statement. The following
features are illustrated:

EQUIVALENCE statement
NAMELIST statement

Line 2 equivalences two real variables X and Y; the two
variables share the same location in storage, which can be
referred to as either X or Y. Any change made to one

PROGRAM EQUIV '
EQUIVALENCE (X,Y), (Z,I)
NAMELIST /OUT/ X, Y, Z, 1
OPEN (6, FILE='OUTPUT')

X= 1.

Y= 2.

= 3.

I= 4

WRITE (6,0UT)
STOP

END

Figure 12-19. Program EQUIV

variable changes the value of the others in an equivalence
group -as illustrated by the output of the WRITE
statement, in which both X and Y have the value 2.. The
storage location shared by X and Y contains first
1. (X=1.), then 2. (Y=2.).

The real variable Z and the integer variable ! are
equivalenced, and the same location can be referred to as
either real or integer. Since integer and real internal
formats differ, however, the output values will not be the
same.

For example, the storage location shared by Z and I
contained first 3.0 (real value), then 4 (integer value).
When 1 is output, no problem arises; an integer value is
referred to by an integer variable name. However, when
this same integer value is referred to by a real variable
name, the value 0.0 is output, because the internal
formats of real and integer values differ. The integer and
real internal formats are shown in figure 12-20.

Although a value can be referred, to by names of different
types, the internal bit configuration does not change. An
integer value output as a real variable has a zero exponent
and its value is zero.

When variables of different types are equivalenced, the
value in the storage location must agree with the type of

the variable name, or unexpected results might be
obtained.

59 58 0
Integer i
59
Sign —t
59 58 47 0
Real Biased Fraction(m)
Exp

Sin

48

Figure 12-20. INTEGER and REAL Internal Formats

12-10

60481300 B

This NAMELIST WRITE statement (line 10) outputs both
the name and the value of each member of the NAMELIST
group OUT defined in the statement NAMELIST/
OUT/X,Y,Z,]. The NAMELIST group is preceded by the
group name, OUT, and terminated by the characters
$END. Output is shown in figure 12-21.

$ouT

X = J2E+01,
Y = .2E+01,
Z = 0.0,

I = 4,

$END

Figure 12-21. Program EQUIV Output

PROGRAM COME

Program COME, shown in figure 12-22, places variables
and an array in common and declares another variable and
array equivalent to the first element in common. It
places the numbers -1 through -12 in each element of the
array IA and outputs values in common using the
NAMELIST statement. Features illustrated include:

COMMON and EQUIVALENCE statements
NAMELIST statement

Negative subscript

Negative DO loop parameters

Variables are stored in common in the order of appearance
in the COMMON statement: A,B,C,D,F,G,H. All
variables with the exception of G are declared integer. G
is implicitly typed real.

The EQUIVALENCE statement assigns the first element
of the arrays IA and E to the same storage location as the
variable A. The subscript of IA has a lower bound of -12.
Since A is in common, E and IA will be in common.
Variables and array elements are assigned storage as
shown in figure 12-23.

PROGRAM COME

COMMON A,B,C,D, F,G,H

INTEGER A,B,C,D,E(3,4),F, H,IAg-lZ:-l)
EQUIVALENCE (A, E, IA)

NAMELIST /V/ A,B,C,D,E,F,G,H,IA

C
UPEN (6, FILE='OUTPUT')
DO 2 J=- -12, -1
2 IA(J)=J
WRITE (6,V)
c
SToP
END

Figure 12-22. Program COME

The DO loop places values -1 through -12 in IA using a
negative DO index. The first element of IA (indexed by
-12) shares the same location as the first element of E.
This location is also shared by A. IA(-11) is equivalent to
E(2,1) and B; IA(-10) is equivalent to E(3,1) and C, and so
forth.

Any change made to one member of an equivalence group
changes the value of all members of the group. When -12
is stored in IA(-12), both E(1,1) and A have the value -12.
When -11 is stored in IA(-11), B and E(2,1) have the
value -11. Although B and E(2,1) are not explicitly
equivalenced to IA(-11), equivalence is implied by their
position in common.

The implied equivalence between the array elements and
variables is illustrated by the output shown in figure 12-24.

The NAMELIST statement is wused for output. A
NAMELIST group, V, containing the variables and arrays
A,B,C,D,E,F,G,H,IA is defined. The NAMELIST WRITE
statement, WRITE(6,V), outputs all the members of the
group in the order of appearance in the NAMELIST
statement. Array E is output on one line in the order in
which it is stored in memory. There is no indication of
the number of rows and columns (3,4).

G is equivalent to E(3,2) and yet the output for E(3,2) is 6
and G is 0.0. G is type real and E is type integer. When
two names of different types are used for the same
element, their values will differ because the internal bit
configuration for type real and type integer differ. (Refer
to Program EQUIV.)

Output from program COME is shown in figure 12-24,

Relative
Address 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11
|
E(1,1) | E(2,1) | E(3,1)| E(1,2) | E(2,2) | E(3,2) | E(1,3) | E(2,3) | E(3,3) | E(1,4) E(2,4) E(3,4)
A B c D F G H
TAI2){IA(-11)[1A(-10)] IA(-9) | IA(-8) | 1A(-7) | 1A(-6) | IA(-5) | IA(-4) [1A(-3) IA(—2) 1A(-1)

Figure 12-23. Storage Layout for Variables in Program COME

60481300 B

12-11

sV

A = -12,
B = 11,
c = -10,
D = -9,

E = -1z,
F = -u,

G = v.v,
H = -6,

1A = -lg,
SEND

-11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1,

-11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1,

PROGRAM LIBS

Program LIBS, shown in figure 12-25,
following features:

Figure 12-24, Program COME Output

illustrates the INTRINSIC used to pass an intrinsic function name as
: a parameter to another library routine

Use of FORTRAN library subroutines and intrinsic Division by zero

functions

LEGVAR function used to test for overflow or divide

EXTERNAL used to pass a library subroutine name as error conditions

a parameter to another library routine

PROGRAM LIBS

PRINT 3, TYME,

Y= 0.0
WoW= 7.2/Y
IF (LEGVAR({WOW)

STOP
END

RETURN
END

C
CHARACTER*1uU TODAY, CLOCK, DATE, TIME
EXTERNAL DATE
INTRINSIC SQRT, SIN
¢
TODAY= DATE()
CLOCK= TIME()
¢
PRINT 2, TODAY, CLOCK
Z FORMAT ('1TODAY= ', A, ' CLOCK= ', A)
¢
TYME= SECOND()
CALL RANGET (SEED)
Y= FUNC(SQRT)
Y1= FUNC(SIN)
c

Y, Y1, SEED, SEED
3 FORMAT (' THE ELAPSED CPU TIME 1S',Gl4.5,' SECONDS.'//,' SQRT(2.4
| *)/P1l = ',Gl4.5,

*HE RANF SEED 1S',022,', UR',/G30.15,' IN G30.15 FURMAT.')

4 FORMAT (LHU,50(2H*-)/' DIVIDE ERRUR, WUW PRINTS AS:',610.2)

FUNCTION FUNC(F)
FUNC= F(2.4)/35.14159

/' SIN(2.4)/P1 = ',G1l4.5,/' THE INITIAL VALUE OF T

.NE. 0) PRINT 4, WOW

12-12

Figure 12-25. Program LIBS

60481300 C

The following functions and subroutines are used in LIBS:
DATE
TIME
SECOND
RANGET
SQRT
SIN

DATE is a library function which returns the date entered
by the operator from the console.

SQRT is an intrinsic function that calculates the square
root of its argument. SIN is an intrinsic function that
calculates the sine of its argument. These functions are
declared INTRINSIC so that they can be passed as
arguments to a subprogram.

The PRINT statement in line 10 prints the date and time.
The arguments TODAY and CLOCK are declared
character with length 10 because the DATE and TIME
functions each return 10 characters. The leading and
trailing blanks appear with the 10 characters returned by
the subroutine DATE, because the operating system
formats the date in this manner. (The date format is
system and installation dependent.) The value returned by
TIME is changed by the system once a second, and the
position of the digits remains fixed; a leading blank always
appears.

When SECOND is called (line 13), the variable name
TYME is used. A variable name cannot be spelled the
same as an intrinsic function name if that intrinsic
function is used in the same program unit. If program
LIBS had not called the function TIME, a variable name
could be spelled TIME.

Library subroutine RANGET returns the seed used by the
random number generator RANF.
after RANF has been used, RANGET will return the value
currently being processed by the random number
generator. With the library subroutine RANSET, this
same value could be used to initialize the random number
generator at a later date.

The PRINT statement in line 18 prints out the values
returned by the routines SECOND, FUNC, and RANGET.

Lines 25 through 27 illustrate the use of the library
function LEGVAR within an IF statement to test the
validity of division by zero. LEGVAR checks the variable

If RANGET is called’

WOW. This function returns a result of -1 if the variable
is indefinite, +1 if it is out of range, and O if it is normal.
Comparing the value returned by LEGVAR with 0 shows
that the number is either indefinite or out of range. The
output R shows the variable is out of range.

NOTE

This example will not work on a CYBER 76/176
or 7600 machine because division by zero causes
an immediate program interrupt before LEGVAR
can be called.

The line of *- on the output is produced by the FORMAT
specification in statement number 4: 50(2H*-),

Output from program LIBS is shown in figure 12-26.

PROGRAM ADD

Program ADD, shown in figure 12-27, illustrates the use
of internal files. Any character variable or array can be
treated as an internal file. Input and output for internal
files is performed by formatted READ and WRITE
statements. Program ADD uses a formatted READ
statement to read data from an internal file.

Read

A formatted READ statement for an external file places
the image of each record read into an input buffer.
Compiler routines convert the character string in the
record into floating-point, integer, or logical values, as
specified by the FORMAT statement, and store these
values in the locations associated with the variables
named in the list.

With internal files, the specified file (character variable,
substring, or array) is used as the input buffer. The record
length is equal to the length, in characters, of the variable
if the file is a character variable, of a single array
element if the file is an array, or of the substring.

With external files, when the format specification
indicates a new record is to be processed (by a slash or the
final right parenthesis of the FORMAT statement), a new
record is read into the input buffer.

With internal files, when the format specification
indicates a new record is to be processed (by a slash or
final right parenthesis), the next element of the array is
used as the input buffer.

TODAY= 79/08/17. CLOCK= 12.12.21.
THE ELAPSED CPU TIME IS 3.1010
SQRT(2.4)/PL = 49312
SIN(2.4)/PI = .21501

THE INITIAL VALUE JF THE RANF SEED IS
.170998394044023

SECONDS.

IN G30.15 FURMAT.

17171274321477413155, UR

Kakok ok k k Kk _k_k_k ok _k_k_k_k_k_k_ k_k_k_ k_k_k_k_ k_ k_k_k_Kk_k_k_k_k_k_Kk_k_k_k_*_*k_%_

DIVIDE ERRUR. WUW PRINTS As: R

Figure 12-26. Program LIBS Output

60481300 B

12-13

10

40
12

PROGRAM ADD

DIMENSION IN(79)

CHARACTER CARD*79, FM(3)*6

DATA FM/'(7911)', '(3912)*, '(2613)'/

OPEN (5, FILE="INPUT")

OPEN (6, FILE='OUTPUT')

READ (5, '(I1,A)', END=100) KEY, CARD
N= MAX(1, MIN(KEY, 3))

LIM= T79/N

READ (CARD, FM(N)) (IN(I),I=1,LIM)

ITOT=0

DO 40 I=1,LIM

1T0T= ITOT + IN(I)

WRITE (6,12) ITOT, LIM, N, CARD, (IN(I),I=1,LIM)

FORMAT (/16,20H IS THE TOTAL OF THE ,13,20H NUMBERS ON THE CARD/
1 12,A79,/16H THE NUMBERS ARE/(2014))

GO TO 10
100 STOP
EnND

Figure 12-27. Program ADD

Write

A formatted WRITE statement for external files causes
the output buffer to be cleared. Data in the WRITE
statement list is converted into a character string
according to the format specified in the format
specification, and placed in the output buffer. When the
format specification indicates the end of a record with
either a slash or the final right parenthesis, the character
string is passed from the output buffer to the output
system; the output buffer area is reset, and the next
string of characters is placed in the buffer.

The WRITE statement for internal files is processed by
compiler routines in the same way as for external files,
but with the internal file specified within the WRITE
statement used as the output buffer. The number of
words per record in the array is determined by the length
of an element.

In the sample program, the format of data on input is
specified in column 1 of each input card. If column 1
contains a one or zero or blank, each of the remaining
columns contains a data item. If column 1 is a two, each
pair of the remaining columns is a data item. If column 1
contains a number equal to or greater than 3, each triplet
of the remaining columns is a data item. Based on the
information in column 1, the correct format specification
is selected. The program then totals and prints out the
items in each input record.

12-14

CARD is a character variable 79 characters long, which is
to receive the characters in columns 2 through 80 of the
input record. IN is dimensioned 79 to receive the
converted input items. FM is a character array which
contains three elements, each six characters long. The
DATA statement (line 4) loads a format specification into
each element of FM.

The READ statement in line 8 reads the first column of
an input record into KEY wunder 1 format and the
remaining 79 characters into CARD under A format.
When an end-of-file is encountered, control transfers to
statement 100, a STOP statement.

Line 9 ensures that the value of KEY is between 1 and 3;
this value is stored in N.

Line 10 calculates the number of values to be transferred
to IN,

The READ statement in line 12 transmits the characters
in CARD to IN, converting them to integers according to
the format specification stored in FM; N selects the array
element containing the correct format specification.

Lines 14 through 20 sum the values in IN, print the input
and output values, and branch back to process the next
input record.

Sample input and output records for program ADD are
shown in figure 12-28.

60481300 B

Input:

21322554766988775533210332245666877965541233322112365478965412365547896541¢50025
30214456699877456632214455666655233655222144455663325566699885666554778854887029
55566663223666552332214455666998877655222144455611223303324456669988774558896030
10234566688899887789965554444556665533222111233023333669985555222114444777885031

Output:

1900 IS THE TOTAL OF THE 39 NUMBERS ON THE CARD

21322554766988775533210332245666877965541233322112365478965412365547896541236028
THE NUMBERS ARE
13 22 55 47
23 33 22 11

66
23

98
65

87
47

75
89

53
65

32
41

10
23

33
65

22
54

45
78

66
96

63
54

17
12

Y6 55
36 2

41

14380 1S THE TUuTAL OF THE 26 NUMBERS ON THE CARUD
30214456699877456632214455666655233655222144455663325566699885666554778854887029
THE NUMBERS ARE

21 445 669 987 745 663 221 445 566 6bb 523 365 522 214 445 506 332 556 669 yBy
566 655 477 835 488 702

13840 IS THE TOTAL OF THE 26 NUMBERS ON THE CARD ‘
35566663223666552332214455660998877655222144455611223303324456669988774558896030
THE NUMBERS ARE

556 666 322 366 655 233 221 445 566 699 887 765 52z 214 445 561 122 330 332 445
666 998 877 455 889 603

370 1S THE TOTAL OF THE 79 NUMBERS uUN THE CARD
10234566688899887789965554444556665533222111233023333669985555222114444777885031
THE NUMBERS ARE

0 2 3 4 5 6 6 6 8 8 8 9 9 8 8 7 7 8 9 9
6 5 5 5 4 4 4 4 5 5 6 0 [5 5 3 3 2 Z 2
1 1 1 2 3 3 0 2 3 3 3 3 6 6 9 9 8 5 5 b
5 2 2 2 1 1 4 4 4 4 7 7 7 8 8 5 0 3 1

Figure 12-28. Program ADD Input and Output

PROGRAM PASCAL

Program PASCAL, shown in figure 12-29, produces a table
of binary coefficients (Pascal's triangle). The foilowing
features are illustrated:

Nested DO loops
Implied DO loop
The DO loop in lines 6 and 7 initializes the integer array

LROW to 1. The PRINT statement in line 8 prints a
heading and the the first two rows of the triangle.

The nested DO loops (lines 11 through 15) calculate the
remaining elements of the triangle. These statements
illustrate the technique of going backward through an
array by using a negative incrementation parameter.

Each pass through the inner DO loop generates one row of
the triangle. The row elements are written in line 14
using an implied DO loop.

Output from program PASCAL is shown in figure 12-30.

PROGRAM PASCAL
c
C THIS PRUGRAM PRODUCES A PASCAL T

INTEGER LROW(15)
vo 10 I=1,15

10 LROW(1)= 1
PRINT '("1 PASCAL TRIANGLE *
* LROW(14), LROW(15)
c
DO 50 J = 14, 2, -1
DO 40 K=J,14
40 LROW(K)= LROW(K) + LROW(K+1)
PRINT '(1X, 15I5)', (LROW(M)
50 CONTINUE
c
STOP
END

RIANGLE WITH 15 ROWS

//1X, 15,/1X, 215)', LROW(15),

, M=Jd-1,15)

Figure 12-29. Program PASCAL

60481300 B

12-15

PASCAL TRIANGLE
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1
1 12 66 220 495 792 924 792 495 220 66 12 1
1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1
1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
Figure 12-30. Program PASCAL Output
PROGRAM PIE PROGRAM X
Program PIE, shown in figure 12-31, calculates an Program X, shown in figures 12-32 and 12-33, references

approximation of the value of 7. This program illustrates
the use of the intrinsic function RANF.

The random number generator, RANF, is called twice
during each iteration of the DO loop, and the values
obtained are stored in the variables X and Y.

The DATA statement (line 2) initializes the variable
circle with the value 0.0.

Each time RANF is called, a random number, uniformly
distributed over the range 0 through 1, is returned. A
random number is stored in X and in Y.

and the arithmetic expression
4.0*CIRCLE/1000.0. calculate an approximation of the
value of 7. The value of 7 is calculated using Monte
Carlo techniques. The IF statement counts those points
whose distance from the point (0., 0.) is less than or equal
to one. The ratio of the number of points within the
quarter circle to the total number of points approximates
1/4 ofw. The value PI is printed by the list directed
output statement PRINT*, 'PI=', PI.

The IF statement

a function EXTRAC which squares the number passed as
an argument. This program illustrates the following
features:

Referencing user-defined functions
Function type

Program X illustrates that a function type must agree
with the type associated with the function name in the
calling program.

In the example shown in figure 12-32, the first letter .of
the function name EXTRAC is E and the function is
therefore implicitly typed real. EXTRAC is referenced,
and the value 7 is passed to the function as an argument.
However, the function subprogram is explicitly defined
integer, INTEGER FUNCTION EXTRAC(K), and the
conflicting types produce erroneous results.

PROGRAM PIE
DATA CIRCLE /0.0/
C
DO 1 1 = 1,1000
X= RANF ()
Y= RANF ()
IF (X*X + Y*Y _LE.
1 CONTINUE
C
PI= 4,0*CIRCLE/1000.0
PRINT*, ' PI = ', Pl
c
STOP
END
Output:
Pl = s5.148

1.0) CIRCLE= CIRCLE + 1.0

Figure 12-31. Program PIE and Output

12-16

60481300 B

The argument 7 is type integer which agrees with the type
of the dummy argument K in the subprogram. The result
49 is correctly computed. However, when this value is
returned to the calling program, the integer value 9 is
returned to the real name EXTRAC; and an integer value
in a real variable produces an erroneous result. (Refer to
program EQUIV.)

This problem arises because the programmer and the
compiler regard a program from different viewpoints.
The programmer often considers a complete program to
be one unit, whereas the compiler treats each program
unit separately. To the programmer, the statement:

INTEGER FUNCTION EXTRAC(K)

defines the function EXTRAC integer. The compiler,
however, compiles integer function EXTRAC and the main
program separately. In the subprogram, EXTRAC is
declared integer; in the main program it is declared real.
Information (in this instance the type of the function)
which the main program needs regarding a subprogram,
must be supplied in the main program.

There is no way for the compiler to determine if the type
of a program unit agrees with the type of the name in the
calling program; therefore, no diagnostic help can be
given for errors of this kind.

In figure 12-33, EXTRAC is declared integer in the calling
program, and the correct result is obtained.

PROGRAM X
C ZERO
c

K= EXTRAC(7)
PRINT '(''1K = '*, 15)', K
STOP
END

¢

Function EXTRAC:

INTEGER FUNCTION EXTRAC (K)
EXTRAC= K*K

RETURN

END

C IF EXTRAC IS DECLARED TYPE INTEGER THE RESULT 1S 49, UTHERWISE IT 1S

Figure 12-32. Program X, Function EXTRAC, Output: INTEGER Declaration Omitted From Main Program

PRUGRAM X
C ZERO
C

INTEGER EXTRAC
K= EXTRAC(7) .
PRINT '(''1K = "', I5)', K
STOP
END

¢

Function EXTRAC:

INTEGER FUNCT1ON EXTRAC (K)
EXTRAC= K*K

RETURN

END

Output:
K = 49

C IF EXTRAC IS DECLARED TYPE INTEGER THE RESULT 1S 4y, OTHERWISE IT 1>

Figure 12-33. Program X, Function EXTRAC, Output: INTEGER Declaration Included in Main Program

60481300 B

12-17

PROGRAM ADIM

Program ADIM, shown in figure 12-34, illustrates the use
of adjustable dimensions to allow a subroutine to operate
on arrays of various sizes. The following features are
-included in this example:

Passing an array to a subroutine as a parameter

Specifying an array name, with no dimension

information, in an argument list

Specifying an array with a negative lower subscript
bound

Two arrays, X and Z, are dimensioned and placed in
common. Z is dimensioned (-2:3). This means that Z has
six elements; the lower subscript bound is -2 and the upper
subscript bound is 3. The elements are: Z(-2), Z(-1), Z(0),
2(1), 2(2), Z(3).

The array Y is dimensioned (6) and is explicitly typed
real. It is not in common.

In subroutine IOTA, the adjustable dimension for array A
is indicated by M. Whenever the main program calls

IOTA, it can provide the name and the dimensions of the
array; since A and M are dummy arguments, IOTA can be
called repeatedly with different dimensions replacing M at
each call. IOTA contains a DO loop which stores
consecutive integers into the array A.

The main program calls subroutine IOTA three times. In
the first call, the first argument is array X and the second
argument is the number of elements in the array, 12.
Consecutive integers are stored into the 12 elements of X.

In the second call to IOTA, the arguments (Y,6) are
passed. Consecutive integers are stored into the six
elements of Y. .

In the third call to IOTA, the arguments (Z,6) are passed.
The subscript bounds specified in the subroutine need not
be the same as the ones specified in the calling program.
Although Z is dimensioned (-2:3) in the main program, it
can be dimensioned (6) in IOTA.

The PRINT statements output the arrays X, Y, and Z. The
second PRINT statement illustrates the use of a negative
DO index to output the array Z. The output is shown in
figure 12-35.

PROGRAM ADIM
COMMON X(4,3), 2(-2:3)
REAL Y{6)

CALL 10TA (X,12)
CALL 10TA (Y,6)
CALL IOTA (Z,6)

<

¢
PRINT 1luu, X, Y, Z
100 FORMAT ('LlARRAY X =
* /' ARRAY Z = ',6F6.0)
C .
DO 81 =-2,3
8 ()= 1
PRINT 110, Z
élO FORMAT (' ARRAY Z = ',6F6.0)
STOP
END
c
SUBROUTINE IOTA (A,M)
c
Cc
g STARTING AT 1
DIMENSION A(M)
VO 11 =1,M
1 A(l)=1
RETURN
END

',12F6.0/"' ARRAY Y = ‘',

6F6.0,

IOTA STORES CUNSECUTIVE INTEGERS IN EVERY ELEMENT UF THE ARRAY A

Figure 12-34. Program ADIM and Subroutine IOTA

12-18

60481300 B

ARRAY X = 1. 2. 3. 4,
ARRAY Y = 1. 2. 3. 4.
ARRAY Z = 1. 2. 3. 4.
ARRAY Z = -2. -1. 0. 1.

5. 6. 7 8 9 10. 11. 12
5. 6.
5. 6.
2. 3.

Figure 12-35. Program ADIM Output

PROGRAM ADIM2

ADIM2, shown in figure 12-36, is an extension of program
ADIM. Subroutine IOTA is used; in addition, another
subroutine and two functions are used. The following
features are illustrated:

Parameter statement

Negative array subscripts

Negative DO parameters

Use of an expression for an array dimension

Multiple entry points

Adjustable dimensions

EXTERNAL statement

Passing values through COMMON

Use of intrinsic functions ABS and REAL

Calling functions through several levels

Passing a subprogram name as an argument
Program ADIM2 illustrates the method of a main program
calling subprograms and subprograms calling each other.
Since the program is necessarily complex, each

subprogram is described separately followed by a
description of the main program.

Subroutine SET

Subroutine SET places the value V into every element of
the array A. The dimension of A is specified by M.

Subroutine SET has an alternate entry point INC. When
SET is entered at ENTRY INC, the value V is added to
each element of the array A. The dimension of A is
specified by M.

The first DO loop in subroutine SET clears the array to
zerao.

Subroutine IOTA

Subroutine IOTA is as described for program ADIM except
that the input array A is given negative upper and lower
subscript bounds. The DO loop uses negative control
variables and places consecutive negative integers in A,

60481300 B

Subroutine PVAL

Function PVAL references a function specified by the

calling program to return a value to the calling program. -
This value is forced to be positive by the intrinsic function

ABS.

The main program first calls PVAL with the statement
AA=PVAL(M,AVG), passing the integer M (assigned the
value 12 in the PARAMETER statement) and the function
AVG as parameters. The type of the argument in the
main program (INTEGER M) agrees with the
corresponding dummy argument (ISIZE) in the subprogram.

The value of PVAL is computed in line 7. This value will
be returned to the main program through the function
name PVAL. Two functions are referenced by this
statement; the intrinisic function ABS and the
user-written function AVG. The actual arguments M and
AVG replace ISIZE and WAY. The second time PVAL is
called, the actual arguments M and MULT replace ISIZE
and WAY.

Function AVG

This function computes the average of the first J
elements of common. J is a value passed by the main
program through the function PVAL.

This function subprogram is an example of a main program
and a subprogram sharing values in common. The main
program and function AVG declare common to be a total
of 12 words. Values placed in common by the main
program are available to the function subprogram.

The number of values to be averaged is passed to function
PVAL by the statement AA=PVAL(12,AVG) and function
PVAL passes this number (in ISIZE) to function AVG:
PVAL=ABS(WAY(ISIZE)).

AVG uses a PARAMETER statement to assign symbolic
names to the constants 4 and 3. These constants are then
used in an expression that calculates the dimension for A.
The expression itself is used as the dimension for A. AVG
declares a total of 12 locations for common.

Lines 4 through 6 sum the 12 elements and divide by the
number of elements to calculate the average. The
intrinsic function REAL is used to convert the integer 12
to a real number to avoid mixed mode arithmetic,
although in this case mixed mode is permissible and
produces the same result.

The average is returned to the statement
PVAL=ABS(WAY(ISIZE)) in function PVAL.

12-19

Function MULT

MULT multiplies the first and twelfth words in COMMON
and subtracts the product from the average (computed by
the function AVG) of the first J/2 words in common.

The declaration COMMON ARRAY (-1:10) assigns 12
elements to ARRAY and places it in common. The 12
elements are referenced by a subscript in the range -1
through 10. Line 8 multiplies the first element
(ARRAY(-1)) by the twelfth element (ARRAY(10)) and
subtracts the average (computed by function AVG) of the
first J/2 elements in common.

Main Program: ADIM2

The main program calls the subroutines and functions
described.

The array Y has six elements, with subscript bounds of

(-2:3). MULT and AVG appear in an EXTERNAL

statement so that they can be passed to subprograms as
arguments.

Lines 12 through 16 call the user-written subprograms
SET, IOTA, and PVAL; CALL INC calls subroutine SET
through the alternate entry point INC. The calls to PVAL
pass a symbolic constant and a function name. Results
are returned to AA and AM, respectively.

The namelist PRINT statement outputs the values
calculated by the subprograms. The output is shown in
figure 12-37.

PROGRANM ADIMC

ADJUSTABLE
COMCFPTS

THIS PROGRAM USES
AMD “ANY SUBPROUGRAM

annon

PARAMETER (I=U4, =ze?2
cOomMOb X(I1,d)
REAL Y(K:J)

EXTERUEAL MULT,

NAMELIST /%7 K,

J=3.

AVG
Y,
0.)
-5.0)

AR, A
CALL SET (Y,
CALL IoTA(X,
CALL IHC (X,
AA= PVAL(M,
A= PVAL (M,
PRINT ¥
sSTOP

ALY

M,
M)
M,

AVG)

MULT)

SURRCUTINE SET (A, ¥, V)

SET PUTS THE VALUE V TIdTO EVFE

(e NoXe] (g}

DIMEHSTON A(%)
Do 11 1,V
A(l)= 0.0

FYTRY THC(A,+, V)
INC ADDS THE VALUE V TO EVERY

DO 21 = 1,4
A(I)= A(I) + V
RETUR

END

N OO0 Oa

NEGATIVFE ARHAY ROUNDS,

K212, H=6)

WY ELEMERT OF THF 4RRAY A
FLEMERT IH THE)‘\F.“A\Y A

Figure 12-36.

12-20

Program ADIM2

60481300 B

o

SUBROUTINE IOTA (A,M)

I0TA PUTS CONSECUTIVE NEGATIVE INTEGERS STARTING AT -1 INTO EVERY
ELEMENT OF THE ARRAY A

cocc

DIMENSION A(-M:-1)

po11=-1, -M, -1
1 AMl)=1

RETURN

END

FUNCTION PVAL (ISIZE, WhY)

PVAL COMPUTES THE ABSOLUTE VALUE OF THE REAL VALUE OF P FUNCTION
PASSED TO PVAL. ISIZE IS AN INTEGER WHICH PVAL PASSES TO THE
FUNCTION

PVAL= ABS{WAY(ISIZE))
RETURN
END

OO0 OO0 (g

FUNCTION AVG(J)
AVG COMPUTES THE AVERAGE OF THE FIRST J ELEMENTS OF COMMON

ooOoe [

PARAMETER (M=4, N=3)
COMMOUN A (M*N)
AVG= 0.
bo 11l =1,J
1 AVG= AVG + A(1)
AVG= AVG/REAL(J)
RETURN
END

REAL FUNCTION MULT(J)

MULT MULTIPLIES THE FIRST AND TWELFTH ELEMENTS OF COMMUN AND
SUBTRACTS FROM THLIS THE AVERAGE (COMPUTED BY THE FUNCTIUN AVG)
OF THE FIRST J/Z WORDS IN COUMMON

ocCcoOoc o

CUMMON PRRAY(-1:10)

MULT= ARRAY(LO)*ARRAY(-1) - AVG(J/2)
RETURN

END

Figure 12-36. Program ADIM2 (Sheet 2 of 2)

3V

X = -, 17E+02, -.16E+02, -.15E+U2, -.l4E+02, -.13E+02,
-.12E+02, -.11E+02, -.l1E+02, -.9E+01, -.8E+01,
-.7JE+01, -.6E+U1,

Y = 0.0, V.0, 0.0, V.U, V.U, V.0,

AA .115E+0¢,

ll

AM .1165E+035,

$END

Figure 12-37. Program ADIM2 Output

60481300 B 12-21

PROGRAM CIRCLE

Program CIRCLE, shown in figure 12-38, finds the area of
a circle which circumscribes a rectangle with short sides
of length 3 and long sides of length 4. This example
illustrates the use of FUNCTION subprograms and of
statement functions. The program contains an error.

Program CIRCLE:

PROGRAM CIRCLE

A= 4.0

B= 3.0

AREA= 3.1416/4.0 * DIM{A,B)**2
PRINT 1, AREA

1 FORMAT (' AREA ="', G20.10)
STOP
END
Function DIM:
C

FUNCTION DIM(X, Y)
DIM= SQRT(X*X + Y*Y)
RETURN

END

. Qutput:

AREA = . 7854000000

Figure 12-38. Program CIRCLE, Function DIM, Output

Figure 12-39 shows a rectangle and circumscribed circle.
The area of a circle is given by R2, which is
approximated by the FORTRAN expression:

3.1416/4.0%D**2
where R is the radius and D is the diameter of the circle.
The user-written function DIM computes the diameter of

the rectangle given the lengths of the sides using the
relation:

DIM=SQRT(X*X + Y*Y)

The result shown in figure 12-38 is incorrect. The area of
a circle circumscribing a rectangle with sides 3 and 4 is
clearly greater than .785.

The error occurred because the function DIM has the same
name as an intrinsic function. If the name of an intrinsic
function is used for a user-written function, the
user-written function is ignored. -

12-22

Figure 12-39. Rectangle and Circumscribed Circle

There are several ways of correcting this error:

Change the function name so that it is not the same
as an intrinsic function name.

Declare DIM external; in this case, the user-written
external function will be used.

Write the function DIM as a statement function; the
function name can be the same as an intrinsic
function name, and the user-written function is used.
This is the most efficient method. Since FORTRAN
compiles statement functions in-line, the program
- executes much faster because no function call is
used. This solution is limited to functions of a single
statement.

A corrected version of the program, in which DIM is
written as a statement function, is shown in figure 12-40.

Program CIRCLE:

PROGRAM CIRCLE

DIM(X,Y)= SQRT{X*X + Y*Y)

A= 4.0

B= 3.0

AREA= 3.1416/4.0*DIM(A,B)**2
PRINT 1, AREA

1 FORMAT ('1AREA IS ',G20.10)
: STOP
END
Output:
AREA IS 19.63500000

Figure 12-40. Program Circle With Correction and Output

60481300 C

60481300 B 12.23

PROGRAM EASY 10

Program EASY IO, shown in figure 12-43, illustrates the
use of list directed input/output.

List directed input/output eliminates the need for fixed
data fields. It is especially useful for input since the user
need not be concerned with punching data in specific
columns. List directed input does not require the user to
name each item as does NAMELIST input.

Used in combination, list directed input and NAMELIST
output simplify program design. Such a program is easy to
write, even for persons just learning the language;
knowledge of the format specifications is not required.
This feature is particularly useful when FORTRAN
programs are being run from a remote terminal.

Program EASY IO calculates the area and radius of a
circle inscribed in a triangle, given the lengths of the
sides of the triangle. A list directed READ statement is
used for input, and NAMELIST is used for output.
Figure 12-44 shows some sample input and output.

The user can enter the three input values in whatever way
is convenient, such as: one item per line (or card), one
item per line with each item followed by a comma, all
items on a single line with spaces separating each item,
all items on a line with a comma and several spaces
separating each item, or any combination of the
foregoing. Furthermore, even though all input items are
real, the decimal point is not required when the input
value is a whole number.

PRUGRAM EASY 10

GLVEW THE SIDES UF A TR1ANGLE, CUMPUTE THE AREA AND RAUD1US GF THE
INSCRIBED CIRCLE

[N N ol]

REAL S1UES(3)
EQUIVALENCE (SIUES(1),A), (SIVES(2),B), (SIULES(3),¢)
NAMELIST /UUT/ SLDES, AREA, RADIUS
3 READ (*, *, END=50) SIDES
$= (A + B + (C)/2.0
AREA= SQRT(S*(5-A) * (s-B) * (5-C))
RADIUS= AREA/S
WRITE (*, OUT)
60 TO 3
50 STuP
END

Figure 12-43. Program EASYIO

12-24 60481300 B

Input:

345

6,7,8

3*1

4

5

6

Output:

$0UT

SIDES = .3E+ul, .4E+01, .5E+01,
AREA = .oE+Ul,

RADIUS = .1lE+U1,

$END

$0UT

SIDES = .6E+01, .7E+ULl, .BE+UL,
AREA = .2033310256758YE+02,
RADIUS = .19364916731037E+01,
$END

$0UT

SIDES = .1E+ul, .1E+01, .1E+01,
AREA = .43301270189222E+00,
RADIUS = .28867513459481E+00,
$END

$0UT

SIDES = J4E+01, .5E+Ul, .6E+Ul,
AREA = .99Y215674164922E+01,
RADIUS = .13228756555323E+01,
$END

PROGRAM BLOCK

Program BLOCK, shown in figure 12-45, illustrates block
IF structures.

Block IF structures allow the user to specify alternate
paths of execution, based on the outcome of IF tests.
Block IF structures eliminate the need for branching when
IF tests are performed. This feature can make programs
simpler and more readable.

Program BLOCK reads an integer into the variable K, and
two sets of real numbers into the arrays A and B. K is
tested and the following action is taken:

K=1 Calculate C{D=AD)**2 + B(I)**2.
K=2 Calculate C{I)=A()*B(I).

All other Set array C to zero.

values of K

These tests could be performed by conventional methods,
using logical IF and GO TO statements. However, with
block IF structures the program is much clearer.

The program includes a block IF statement (line 7), and
ELSE IF statement (line 11), and an ELSE statement
(line 15). These statements provide for three alternate
paths of execution. After the appropriate block has been
executed, control transfers to the WRITE statement

‘following END IF. The program then branches back to

process the next input record.

Sample input and output are shown in figure 12-46.

Figure 12-44. Sample Input and Output
for Program EASYIO

60481300 C

PROGRAM BLUCK

PARAMETER (M=b)

DIMENSLIUN A(M), B{M), C(M)
NAMELIST /0uUT/ K, A, B, C

¢
2 READ (*, *, ENU=100) K, A, B
IF (K .EQ. 1) THEN
DO 51 = I,M
5 C(I)= A(1)**2 + B(l)**2
L
ELSE 1F (K .EQ. 2) THEN
DO LU 1 = 1,M
10 C(I)= A(1)*B(I)
c
ELSE
DO 15 1 = 1,M
15 ¢{1)= 0.u
c
END 1F
WRLITE (*, 0UT)
GO TO 2
100 STOP
END

Figure 12-45. Program BLOCK

12-25

$END
$0UT

SEND
$OUT

SEND
$ouT

SEND

i

5,
-9E+01, .9E+01, .8E+01, .8E+01, .7E+01,
.5E+U1, .3E+01, .3E+01, .2E+01, .6E+01,

0.0, 0.0, 0.0, v.0, 0.0,

i,
.1E+01, 0.0, 0.0, .7E+01, .7E+01,
.4E+01, 0.0, V.0, 0.0, v.0,

-17e+02, 0.0, 0.0, .49E+02, .4YE+02,

4,

<4E+01, .4E+01, .4E+01, .7E+01, .8E+01,
.S5E+01, 0.0, 0.0, .3E+01, .2E+01,

0.v, 0.0, 0.0, 0.0, v.0,

3,
<3E+01, .3E+Ul, .2E+01, .2E+01, .1E+01,
LbE+UL, .8E+01, v.0, .1E+01, .1E+01,

0.0, 0.0, 0.0, v.0, V.0,

12-26

Figure 12-46. Sample Input and Output
for Program BLLOCK

60481300 B

PROGRAMS ONE AND TWO

Programs ONE and TWO, shown in figure 12-47, illustrate
internal file usage.

Program ONE writes a single record to an internal file.
The array A and the variables B and C are declared type
character of length 10. The character variable ALPHA,
to be used as the internal file, has length 40. The DATA
statement loads character data into A, B, and C.

The WRITE statement defines ALPHA to be an internal
file and writes the values of A, B, and C to the file
according to the format specification (2A4, A5, A6). The
following formatting is performed:

Characters ABCD from A(l) are transmitted to
positions 1 through 4 of ALPHA.

Characters KLMN from A(2) are transmitted to
positions 5 through 8 of ALPHA.

Characters UVWXY from B
positions 9 through 13 of ALPHA.

are transmitted to

Characters Z12345 from C are
positions 14 through 19 of ALPHA.

transmitted to

Positions 20 through 40 of ALPHA are blank filled.

Program TWO is identical to program ONE except that
ALPHA is dimensioned 2 and the format specification is
changed to cause two records to be written to ALPHA.
The characters in A(l) and A(2) are transmitted to
ALPHA(1) as before. The slash, however, causes
subsequent data to be transmitted to ALPHA(2). Unused
portions of both records are blank filled.

Example 1:

PROGRAM OMNE

PRINT 2 ,ALPHA

2 FORMAT ('1COMTEMTS OF ALPHA
STOP
END

Output:

COMTENMTS OF ALPHA

CHARACTER A(2)*10,8*10,C*10,ALPHAXA0
DATA A.R,C /'ABCDEFGHIJ','KLMNOPQRST', 'UVHXY' K '7123456'/
WRITE (ALPHA,'(2A4 A5,A6)"') A,R.C

"L /1X . A4Q)

[ABCDKLMMUVWXYZ7123458

Example 2:

PROGRAM TWOQ

WRITE (ALPHA,'(2A4/A5 AE)")
PRIMNT 2,ALPHA

FORMAT ('1CONTEMTS OF ALPHA
STOP

END

Output:

COMTENTS OF ALPHA

SECONDS EXECUTIOM TIME.

A