60484120

@ CONTROL DATA
CORPORATION

CYBER INTERACTIVE DEBUG
VERSION 1

GUIDE FOR USERS

OF COBOL VERSION 5

CDC® OPERATING SYSTEMS:
NOS 2
NOS/BE 1

60484120

@ CONTROL DATA
CORPORATION

CYBER INTERACTIVE DEBUG
VERSION 1

GUIDE FOR USERS

OF COBOL VERSION 5

CDC® OPERATING SYSTEMS:
NOS 2
NOS/BE 1

REVISION RECORD

Revision Description
A (03/23/82) Initial release under NOS 2 and NOS/BE 1; PSR level 552,
B (08/22/84) Revised at PSR level 601 to document support of the CYBER 170 800 Series models and the

CYBER 180 Computer Systems. This revision includes clarification of SET,OUTPUT default
options and definition of the underscore used in CID.

REVISION LETTERS I, O, Q, AND X ARE NOT USED . Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
) P. 0. Box 3492
OCOPYRIGHT CONTROL DATA CORPORATION 1982, 1984 SUNNYVALE, CALIFORNIA 94088-3492
All Rights Reserved

Printed in the United States of America or use Comment Sheet in the back of this manual

ii 60484120 B

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars

in the margins or by a dot near the page number if the entire page is affected.

indicates pagination rather than content has changed.

Page

Front Cover
Title Page

ii

iii/iv

v

vi

vii

viii

1-1

1-2

2-1 thru 2-8
3-1 thru 3-16
3-17

3-18

3-19

3-20 thru 3-30
4-1 thru 4-10
5-1 thru 5-15
A-1

A-2

B-1

C-1 thru C-4
D-1

D-2

Index~-1
Index~2

Comment Sheet/Mailer

Mailer
Back Cover

60484120 B

Bevision

S EdbEPEEPPPPEEW I |

A bar by the page number

iii/iv

PREFACE

This manual provides the COBOL programmer with
assistance in debugging COBOL Version 5 programs
under the control of the CDC® CYBER Interactive
Debug Facility.

As described in this publication, CYBER Interactive
Debug (CID) operates under the following operating
systems:

NOS 2 for the CDC CYBER 180 Computer Systems;
CYBER 170 Computer Systems; CYBER 70 Computer
Systems Models 71, 72, 73, 74; and 6000
Computer Systems

NOS/BE 1 for the CONTROL DATA® CYBER 180
Computer Systems; CYBER 170 Computer Systems;
CYBER 70 Computer Systems Models 71, 72, 73,
74; and 6000 Computer Systems

You should have a copy of the CYBER Interactive
Debug reference manual available for reference, but
you need not be familiar with the manual. In
addition, you should be familiar with COBOL 5 and
should be able to run jobs interactively under
either the NOS Interactive Facility, or NOS/BE
INTERCOM.

The following manuals are of primary interest:

This guide provides a tutorial approach to CID
beginning with basic features and proceeding
through more advanced features. Section 1 provides
some background information and presents a summary
of the features of CID. Section 2 describes the
method for initiating a debug session with CID, and
describes several useful CID commands; this section
contains sufficient information to allow the user
to make productive use of CID. Sections 3 through
5 describe features which are helpful in debugging
more complex programs, This guide is not com~
prehensive in its approach to CID; only those
features considered useful to COBOL programmers are
described.Most of the features described in this
manual are illustrated by actual examples of debug
sessions. This is intended to help you become
familiar with CID notational conventions and with
information produced by CID.

Additional information can be found in the publi-
cations listed below.

The Software Publications Release History serves as
a guide for determining which revision level of
software documentation corresponds to the
Programming System Report (PSR) level of installed
site software.

Publication
Publication Number
CYBER Interactive Debug Version 1 Reference Manual 60481400
CID Version 1 Reference Manual Online L60481400
COBOL Version 5 Reference Manual 60497100
COBOL Version 5 Reference Manual Online 160497100

The following manuals are of secondary interest:

Publication
Publication Number
INTERCOM Version 5 Reference Manual 60455010
NOS Version 2 Reference Set, Volume 1
Introduction to Interface Usage 60459660
NOS Version 2 Reference Set, Volume 3
System Commands 60459680
Software Publications Release History 60481000
XEDIT Version 3 Reference Manual 604557 30

60484120 B

CDC manuals can be ordered from Control Data Corporation, Liter-
ature and Distribution Services, 308 North Dale Street, St. Paul,
Minnesota 55103.

This manual describes a subset of the
features and parameters documented in the
CYBER Interactive Debug Version 1 Reference
Manual and the COBOL Version 5 Reference
Manual. Control Data cannot be responsible
for the proper functioning of any features
or parameters not documented in the CYBER
Interactive Debug Version 1 Reference
Manual.

60484120 A

CONTENTS

0

1. INTRODUCTION 1-1 Altering Program Values 3-15
i MOVE Command 3-15
What Is Interactive Debugging? SET Command 3-15

Why Use CID? Displaying CID and Program Status Information 3-16
Special CID Features for COBOL Programs Debug Variables 3-17
Programming for Ease of Debugging LIST Commands 3-17
What Effect Does CID Have on Program Size LIST,STATUS Command 3-18
and Execution Time? Control of CID Output 3-18 -
Restrictions on Programs That Can Be Debugged Types of Output 3-19
Using CID 1-2 ‘SET,OUTPUT Command 3-19
Batch Mode Debugging 1-2 SET,AUXILIARY Command 3-20
Interactive Input 3-21
Sample Debug Session: Displaying and
2. GETTING STARTED 2-1 Altering Values; Output Control 3-24
Beginning a Debug Session 2-1
DEBUG Control Statement 2-1 4. MULTIPLE PROGRAM UNITS 4-1
Executing Under CID Control 2-1
Entering CID Commands 2-2 Home Program 4-1
Short and Long Form of CID Commands 2-2 SET,HOME Command 4-1
Multiple Command Lines 2-2 fHOME Debug Variable 4-1
Referencing Source Statements 2-2 Referencing Locations Outside the Home Program 4-6
Line Number Specification 2-2 Program Unit Names 4-6
Procedure~Name Specification 2-2 Program Name Qualification 4-6
Some Essential Commands 2-3 Debugging Aids for Multiple Program Units 4-7
GO Command 2-3 Trap Scope Parameter 4-7
QUIT Command 2-3 STEP Scope Parameter 4~7
DISPLAY Command 2-3 LIST,MAP Command 4-7
SET,BREAKPOINT Command 2-3 Sample Debug Sessions: Multiple Program Units 4-8
HELP Command 2-4
Summary 2-4
Sample Debug Session 2-5 5. AUTOMATIC EXECUTION OF CID COMMANDS 5-1
Command Sequences 5-1
3. ADVANCED DEBUGGING TECHNIQUES 3-1 Collect Mode 5-2
Multiple Command Entry 5-2
Error and Warning Processing 3-1 Sequence Commands 5-2
Error Messages 3-1 Breakpoints and Traps With Bodies 5-2
Warning Messages 3-1 Displaying Breakpoint and Trap Bodies 5-4
Breakpoints and Traps 3-2 Groups 5-4
Suspending Execution With Breakpoints 3-2 Error Processing During Sequence Execution 5-5
Frequency Parameters 3-2 Receiving Control During Sequence Execution 5-8
Listing Breakpoints 3-3 . PAUSE Command 5-8
Removing Breakpoints 3-3 GO and EXECUTE Commands 5-8
Suspending Execution With Traps 3-4 Command Files 5-9
Trap Usage 3-4 Saving Breakpoint, Trap, and Group Definitions 5-10
Default Traps 3-4 Editing a Command Sequence 5-11
END Trap 3-5 Suspending a Debug Session 5-11
ABORT Trap 3-5 Editing Procedure 5-13
INTERRUPT Trap 3-6 Interrupting an Executing Sequence 5-13
User-Established Traps 3-6
SET,TRAP Command 3-6
LINE Trap 3-6
PROCEDURE Trap 3-7 APPENDIXES
Listing Traps 3-7
Removing Traps 3-7 A Standard Character Sets A-1
Summary of Breakpoint and Trap Characteristics 3-7 B Glossary B-1
Executing a Few Lines at a Time 3-8 C Batch Mode Debugging C-1
Altering Execution Flow 3-8 D Summary of CID Commands D-1
Sample Debug Session: Errors and Warnings;
Suspending Execution 3-9
Displaying Program Values 3-9
LIST,VALUES Command 3-9 INDEX
DISPLAY Command 3-14

60484120 A vii

FIGURES

2-1
2-2
2-3
2-4
2-5
2-6
3-1

3-2

3-3
3-4

3-5
3-6
3-7
3-8

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18

3-19
4-1
4-2
4-3

viii

Initiating a Debug Session

Example of HELP Command

Input File BIDS

COBOL Program

Sample Debug Session

Same Session Using Short Forms

Debug Session Illustrating Error
Messages :

Debug Session Illustrating Warning
Messages

Frequency Parameter Example

Program and Debug Session
Illustrating ABORT Trap

GO TO Command Example

Input File BIDS

Program FIND-HIGH-BID

Sample Debug Session Using the
Program FIND-HIGH-BID

LIST,VALUES Command Example

DISPLAY Command Examples

Displaying Debug Variables

LIST,STATUS Command Example

Output Options Example

Auxiliary Output File VALUES

Program FIND-HIGH-BID-2

Interactive Program Input (NOS)

Interactive Program Input (NOS/BE)

Sample Debug Session Using the
Program FIND-HIGH-BID

Auxiliary Output File AUXFILE

Home Program Example

Main Program PROCESS-BIDS

Subprogram SORT-THE-BIDS

3-4

3-5
3-6
3-7
5-1
5-2

5-3

Input File BIDS

STEP Scope Example

LIST,MAP Examples

Sample Debug Session A

Sample Debug Session B

Commands Entered Repeatedly

Debug Session With Breakpoint Body -

Tracing Program Execution

Displaying a Breakpoint Body

Defining and Executing a Group

Group Automatically Called From
Breakpoint Bodies

Command Sequence Erxor Processing

PAUSE Command Example

Saving and Reading Command Sequences

Editing a Command Sequence on NOS

Editing a Command Sequence on NOS/BE

Trap Types

Trap Scope Parameter

Allowable MOVE Command Sending and
Receiving Items

Allowable Format 1 SET Command
Sending and Receiving Items

Debug Variables

LIST Commands

CID Output Types

Sequence Commands

Responses to Error and Warning
Messages

Interrupt Responses

[} 1
=0 O e

[
o

: J>~JI>J>

NS PW e

5-8
5-9
5-12
5-14
5-15

60484120 A

INTRODUCTION 1

—

CYBER Interactive Debug (CID) Version 1, allows you
to interactively debug an executing COBOL 5 pro-
gram. CID can be wused with COBOL 5 programs
compiled under the NOS or NOS/BE operating systems.

Use of CID requires a mode of execution called
debug mode. Debug mode is turned on by a control
statement. As long as debug mode is in effect,
execution of all user programs takes place under
control of CID., CID, in turn, allows you to enter
commands that perform the following operations:

Suspend program execution at specified loca-
tioms.

Suspend program execution when selected con-
ditions occur, such as reaching the beginning
of a line.

Display the values of data—-items and tables
while execution is suspended.

Change the values of data—items within the
program while execution is suspended.

Resume program execution at the location where
execution was suspended.

WHAT IS INTERACTIVE
DEBUGGING?

Interactive debugging means that you debug your
program while it 1is exXecuting. In interactive
mode, CID allows you to suspend execution of your
program and enter commands directly from a terminal
while execution is suspended. CID executes each
command immediately after it is entered. Program
execution remains suspended until resumed by the
appropriate command. In this manner, you can
control and monitor the execution of your program,
stopping at desired points to examine and modify
the values within the program.

WHY USE CID?

Conventional debugging techniques oftemn require the
use of load maps, object listings, and octal
dumps. In addition, it 1is often necessary to
recompile a COBOL program several times to make
corrections or to add statements that print inter-
mediate program values. These debugging techmniques
can be expensive in terms of both machine time and
programmer time.

CID, however, does not require a knowledge of
assembly language or the ability to interpret

60484120 A

memory dumps. You can completely debug a program
with CID by referring only to a source listing and
by referencing data-items and line numbers symbol-
ically. In many cases, a COBOL program need be
compiled only once; the resulting object program
can be executed repeatedly with different CID
commands specified for each run. Since CID allows
you to make changes to your program’s data and flow'
of control as execution proceeds, you can often
accomplish, in a single session, debugging that
would normally require several compilatiomns. Thus,
considerable time can be saved, especially when you
are debugging programs that are time-consuming to
compile or execute.

SPECIAL CID FEATURES
FOR COBOL PROGRAMS

CID provides certain features available only to
COBOL 5 programs compiled for use with CID. These
features include commands with a COBOL-like syntax
and the capability of symbolically referencing
locations within the program. The commands avail-
able only for programs compiled for use with CID
are indicated in appendix D.

You can compile a COBOL 5 program for use with CID
by entering the COBOL5 control statement while
debug mode is turned on. For purposes of this

user’s guide, it is assumed that COBOL programs to
be executed under CID control are compiled for use

with CID; therefore, in the discussions of the CID
capabilities, no distinction is made between stan-—
dard CID features and the special features avail-
able to COBOL programs. It is possible, though
more difficult, to wuse CID with programs not
compiled for use with CID. Refer to the CYBER
Interactive Debug reference manual for a descrip-
tion of this capability.

PROGRAMMING FOR EASE OF
DEBUGGING

Even though CID offers many useful debugging fea-
tures, a well-written program is much easier to
debug than a badly-writtem program. You can use
CID more effectively if you follow good programming
practices such as:

Using an accepted design methodology

Using rules of structured programming style

CID should not be considered a substitute for good
programming practices.

1-1

WHAT EFFECT DOES CID HAVE ON
PROGRAM SIZE AND EXECUTION TIME?

If the special COBOL features are to be used in a

debug session, the program must be compiled for use

with CID. Additional code is generated when the
program is compiled for use with CID; this addi-
tional code increases execution time slightly.

The effect of CID on the field length is described
as follows. CID consists of several parts that are
similar to overlays. The main part is always in
memory and is approximately . 40003 words long.
The other parts are exchanged in memory with the
program being debugged and can require up to
540008 words of memory. Therefore, if your pro-
gram 1is smaller than 54000 words, the field
length requirement when your program is debugged
under CID is approximately 60000g words. If your
program is larger than 54000g words, the field
length requirement is 4000g words larger than the
size of your program.

RESTRICTIONS ON PROGRAMS THAT
CAN BE DEBUGGED USING CID

CID. cannot be used to debug programs that:

Have dynamically loaded subprograms.
Have fixed overlayable or independent segments.
Use the Message Control System (MCS).

Use the CYBER Database Control System (CDCS).

BATCH MODE DEBUGGING

Although CID is intended to be used interactively,
it can be used in batch mode. Batch mode debugging
is described in appendix C.

60484120 A

GETTING STARTED 2

This section summarizes the operations necessary to
conduct a debug session and introduces several
CYBER Interactive Debug (CID) notation conven—
tions. At the end of the section, several basic
commands are presented and used in a sample
session. These commands enable you to conduct a
simple but useful debug session.

BEGINNING A DEBUG SESSION

To execute a program under CID control (and to make
use of the COBOL capabilities), you must compile
and execute the program with debug mode turned on.
Debug mode is turned on by a system control state-
ment.

DEBUG CONTROL STATEMENT

The DEBUG control statement activates debug mode.
The format of this statement is:

DEBUG
or
DEBUG(ON)

When a COBOL program is compiled in debug mode, the
program is compiled for wuse with CID; special
symbol tables used by CID are generated as part of
the object code. When the program is subsequently
executed in debug mode, all of the CID features can
be used. Note that a program that has not been
compiled for use with CID can still be executed in
debug mode, but many of the features described in
this guide will not be available.

When debug mode is on, you can interact with the
operating system and perform all other terminal
activities in a normal manner; only compilations
and relocatable loads are affected.

The statement to deactivate debug mode is:
DEBUG (OFF)

When debug mode is off, programs that were compiled
for use with CID execute normally (although less
efficiently than programs that were not compiled
for use with CID). It is necessary to enter
DEBUG(OFF) only if you do not wish subsequent com-
pilations or executions to occur under CID control.

EXECUTING UNDER CID CONTROL

A debug session consists of the sequence of inter-
actions between you and CID which take place while
your object program is executing in debug mode.
The session begins when you initiate execution of
your object program and ends when you enter the
QUIT command.

60484120 A

The debug session is initiated by entering the name
of the file that contains your binary program after
the compilation has completed. (Usually, this file
is LGO.) The system loads the CID program module,
your binary program, and system and library mod-
ules. Control then transfers to an ‘entry point in
CID. CID then issues the message:

?

CYBER INTERACTIVE DEBUG

The ? character is a prompt signifying that CID is
waiting for user input. At this point you can
enter CID commands.

The examples in figure 2-1 show the statements
necessary for compiling a program and initiating a
debug session under the NOS and NOS/BE operating
systems. In this figure and all terminal sessions
in this guide, user input is lowercase, and system
response is uppercase.

NOS:
/debug
DEBUG.
/cobol5,i=program

/1lgo
CYBER INTERACTIVE DEBUG
?

NOS/BE:
COMMAND- debug
COMMAND- cobol5,i=program

COMMAND- Lgo
CYBER INTERACTIVE DEBUG
2

Figure 2-1. Initiating a Debug Session

Debugging a program can require more than one debug
session. If this is the case, you can terminate
the current session and initiate a new session.
Note that once a program has been compiled in debug
mode, it is not necessary to recompile in order to
conduct another debug session with the same pro-
gram. You can initiate another session merely by
entering the binary file name (the normal method of
executing a program).

ENTERING CID COMMANDS

The CID prompt for your response is a question mark
(?). In response to the ? character, enter a CID
command and press the transmission key (RETURN on
most terminals). CID then processes the command,
issuing a message 1if appropriate, and issues
another ? prompt. CID continues to issue prompts
after processing commands until you enter the
command to resume execution of your program, or
until you terminate the session.

If you enter a command incorrectly, CID displays a
diagnostic message. One such message is:

*ERROR - UNKNOWN COMMAND

If this message appears, determine the correct
format, and reenter the command. You can use the
HELP command, described later in this section, for
assistance with command formats.

SHORT AND LONG FORM OF
CID COMMANDS

Many CID commands have a long form that spells out
the name of the command and a short form that
abbreviates the command name and parameters. For
example, the long-form command

SET, TRAP,LINE,*
can be expressed as
ST,L,*

In this guide, both forms are described for com-
mands of this sort. However, to make sample debug
sessions as understandable as possible, long forms
are usually shown. (The D command described in
section 3 is always shown in short form to avoid
confusion with the COBOL CID DISPLAY command
described in this section.) You are encouraged to
use the short forms as you become familiar with
CID; they have the same effects as long forms.

A more detailed explanation of CID command syntax

and a list of long and short forms are given in
appendix D.

MULTIPLE COMMAND LINES
You can enter several CID commands on the same line
if you separate them with semicolons (;). For
example, entering

DISPLAY A; GO

has the same effect as entering

DISPLAY A
GO

2-2

REFERENCING SOURCE
STATEMENTS

Many of the CID command formats require you to
indicate a specific statement within the program
you are debugging. Source statements are referenced
either by line sequence number or procedure name
using the notations described in the following
paragraphs.

LINE NUMBER SPECIFICATION

The notation for specifying a line number is:
L.n

where n 1s the statement sequence number or the
number indicated on the compiler-generated source
listing for programs without sequence numbers.
This notation denotes the source line having the
specified sequence number. Leading zeros can be
omitted. Some examples of line number references
are as follows:

L.130 This example refers to the beginning of
the line with sequence number 130.

L.26 This example refers to the beginning of
the line with sequence number 26.

Some lines cannot be referenced through line number
specification. Only procedure-name lines and lines
in the Procedure Division that contain COBOL verbs
can be referenced.

Line-number references refer to the statement with

the first verb on the line. The beginning of the
statement is referenced.

PROCEDURE-NAME SPECIFICATION

The notation for specifying the beginning of a
paragraph or section in the Procedure Division is:

PR.procedure-name
The procedure-name can take one of these forms:

paragraph—name

section-name

paragraph-name OF section-name
The procedure—-name specification refers to the line
that contains the procedure-name (not to the entire
procedure). When specifying a paragraph-name that
is used in more than one section in the program,
you must qualify the paragraph-name with a section-

name to ensure that CID locates the correct para-
graph.

60484120 A

Some examples of procedure-name references are as
follows:

PR.GET-VALUES

This example refers to the line identifying
the GET-VALUES paragraph or section.

PR.GET-VALUES OF READ-IN-DATA

This example refers to the line identifying
the GET-VALUES paragraph in the READ-IN-
DATA section.

SOME ESSENTIAL COMMANDS

The following paragraphs describe several CID
commands that enable you to conduct simple debug
sessions. These are the GO command, the QUIT
command, the DISPLAY command, the SET,BREAKPOINT
command, and the HELP command. (All but the HELP
command are described in greater detail in later
sections.) The command forms presented here allow
you to debug programs consisting of a single
program unit only. To debug programs containing
multiple program wunits (main program and sub-
programs), .you must be familiar with concepts
described in section 4.

GO COMMAND

The command to initiate or resume program execution
is:

GO

If entered at the beginning of the debug session,
this command initiates program execution. 1f
entered after execution has been suspended, this
command causes execution to resume at the statement
where it was suspended.

Once execution of your program has been suspended,
any number of CID commands can be entered. Execu-
tion remains suspended until you enter GO.

QUIT COMMAND

The command to terminate a debug session is:
QUIT

In response to the QUIT command, CID displays the
following message:

DEBUG TERMINATED

The QUIT command causes an exit from the current
debug session and a return to system command mode.
Files accessed by the COBOL program are closed.
Note, however, that debug mode remains on until
DEBUG(OFF) is specified. You can initiate another
debug session for the same program, without recom-
piling, by entering the binary file name (as
described under Beginning a Debug Session).

Traps, breakpoints, and other alterations to the

object program exist only for the duration of the
debug session. When the session is terminated, any

60484120 A

changes made to the program are lost, and the
program reverts to its compiled version. You can
terminate a debug session any time you have control
(CID has issued a ? prompt). The object program
can then be executed normally, or it can be exe-
cuted again under CID control.

DISPLAY COMMAND

CID -provides several commands for displaying the
values of program variables. The simplest of these
is the command

DISPLAY list

where list is a list of identifiers and literals.
This command has the same format as the COBOL
DISPLAY statement. Identifiers can contain sub-
scripts and reference modifiers. This command
lists the values of the specified data-items.

Examples of the DISPLAY command are as follows:
DISPLAY ACCOUNT-NUMBER

This command displays the value of the
data-item ACCOUNT~NUMBER.

DISPLAY ACCT(1), " ", NAME OF CUST (1:5)

This command displays the value of the
first element of the table ‘ACCT, two
spaces, and the first five characters in
the data-item NAME in group-item CUST.

SET,BREAKPOINT COMMAND

A breakpoint is a location within a program where
execution is to be suspended. The command to
establish a breakpoint has the form

SET ,BREAKPOINT, loc

where loc is a line number specification (L.n) or
procedure-name specification (PR.procedure-~name) as
described under Referencing Source Statements. The
short form of SET,BREAKPOINT is SB. When the
specified statement is reached in the flow of
execution, control transfers to CID which then
allows you to enter CID commands. Typically,
commands are entered to examine the values of
program variables, and execution is resumed.

Examples of the SET,BREAKPOINT command are as
follows:

SET,BREAKPOINT,L.114
This command sets a breakpoint at line 114.
SET BREAKPQINT,PR.GET—VALUES IN READ-DATA

This command sets a breakpoint at the line
containing the paragraph-name GET-VALUES in
the READ-DATA section.

SB,PR.GET-VALUES IN READ-DATA

This command has the same effect as the
previous example.

You can establish breakpoints at any time in the
debug session when execution is suspended and CID
has issued a ? prompt.

A breakpoint can be established at any line in the
Procedure Division that contains a COBOL verb.
‘Execution is suspended before the statement con-
taining the first verb is executed. Only one
breakpoint can be set at a particular line.

Establishing a breakpoint at a specified location
does not alter execution of the statement at that
location. When a breakpoint is encountered during
execution, CID gains control before the statement
is executed. When execution is resumed, execution
begins with the statement at the breakpoint 1lo-
cation.

When a breakpoint is encountered, CID receives
control and issues the following message:

*B #n AT loc

where n is a breakpoint number assigned by CID, and
loc is the location (L.n or PR.procedure-name)
where the breakpoint was set. Up to 16 breakpoints
can be in effect at a given time; each breakpoint
is assigned a number in the range 1 through 16.

_ HELP COMMAND

CID provides a HELP command that displays a brief
summary of information about specific CID subjects
and commands. You can enter the HELP command when-—
ever you need assistance with a particular aspect
of CID.

Simply entering the command

HELP
causes CID to display .a 1list of subjects. To
obtain additional information about any subject in
the list, enter:

HELP,subject

For example, the command HELP,ERROR displays a
brief description of error processing.

A useful form of the HELP command is HELP,CMDS
which displays a complete list of CID commands and
a brief explanation of each. You can obtain a more
detailed explanation of any CID command by entering

HELP ,command

where command is any CID command. The HELP command
does not provide the same level of detail as the
CID reference manual, however, and should not be
considered a substitute for the reference manual.

The HELP command is illustrated in figure 2-2,
which shows the entry of the command HELP,SET,
BREAKPOINT to display a summary of the command
parameters.

SUMMARY

A significant characteristic of CID is that much of
its power exists in a few commands. It is not
necessary to have a complete knowledge of all the
CID commands to take advantage of the most useful
features of CID.

To conduct a simple debug session using the infor-
mation provided in this section, you can follow
these steps:

1. Type DEBUG to turn on debug mode.

2. Compile and load your program in a normal
manner. Control transfers to CID when execu-
tion begins. CID displays a message at the
terminal and waits for your input.

3. Set breakpoints as desired. To set a break-
point at a line number, enter

SET ,BREAKPOINT,L.n
where n is the line number. To set a break-
point at the beginning of a paragraph or
section in the Procedure Division, eunter

SET ,BREAKPOINT,PR.procedure-name

vwhere procedure-name is the name of the para-
graph or section.

? help,set, breakpoint

BREAKPOINT COMMAND 1IS.

EXECUTED.

SB -~ SET BREAKPOINT - ALLOWS YOU TO SET A BREAKPOINT AT A
SPECIFIC LOCATIONS IN USER'S PROGRAM. THE FORM OF THE SET

SB <LOCATION>,<FIRST>,<LAST>,<STEP>
WHERE <LOCATION> IS THE LOCATION IN YOUR PROGRAM AT WHICH
YOU WANT THE BREAKPOINT SET.
<FIRST>, <LAST> AND <STEP> ARE OPTIONAL AND ARE DEFAULTED TO
THE BREAKPOINT IS NOT HONORED
UNTIL <LOCATION> HAS BEEN HIT <FIRST> TIMES. BUT, IT WILL BE
HONORED WHEN <LOCATION> IS HIT THE <FIRST>TH TIME AND EACH
<STEP>TH TIME AFTER THAT AS LONG AS <LAST> IS NOT EXCEEDED.
IF YOU TERMINATE THE SB COMMAND WITH AN OPEN BRACKET [, THEN
ALL COMMANDS UP TO A CLOSE BRACKET 1 WILL BE COLLECTED SUCH
THAT WHEN THE BREAKPOINT IS HONORED, THOSE COMMANDS WILL BE

1, 131071 AND 1 RESPECTIVELY.

Figure 2-2. Ekample of HELP Command

2-4

60484120 A

4. Enter GO to begin execution of your program.

CID executes your program in a normal manner,
but returns control to you when a breakpoint
occurs or the program terminates.

5. At this point, you can display the values of
program variables with the statement:

DISPLAY list
To resume execution, enter GO.

6. Enter QUIT to terminate the session. Enter
DEBUG(OFF) to turn off debug mode.

Debug sessions can become complicated. Always try
to keep debug sessions short and simple: If neces-
sary, correct known bugs, recompile your program,
and conduct additional debug sessions.

SAMPLE DEBUG SESSION

The commands described in this section are used to
conduct a simple debug session. As you study the
examples in this guide, keep in mind that these
examples are intended to illustrate the various CID
features; they are not intended to present a sug-
gested sequence of commands for debugging all
programs. The actual commands that you enter in a
debug session depend on your program and, often, on
your intuition.

The input data shown in figure 2-3 is a list of
bids submitted for one item at an auction. The
COBOL program in figure 2-4 is intended to sort the
bids in descending order to facilitate finding the
highest bid. However, the program contains an
error: The bids are never sorted.

You might try to debug the program under CID con-
trol, as shown in figure 2-5. 1In this example,
each bid is displayed as it is read to see that it
has the correct value. Then the sorting input
procedure is monitored; this procedure appears to
execute correctly. Next, the sorting output
procedure is monitored, and it is seen that data is
not moved from the sort file back to the table of
bids. Analysis of the program shows that a period
left off of the RETURN statement in the sorting
output procedure caused a MOVE statement to be part
of the AT END clause. One error has been found.

At this point, the program should be corrected and
recompiled. The program can then be reexecuted to
see if other errors are present.

Figure 2-6 shows the same debug session using short
forms of the CID commands.

444332
011023
648234
003325

Figure 2-3. Input File BIDS

IDENTIFICATION DIVISION.
PROGRAM-ID. SORT-BIDS.

* ¥ % %

BID
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

INPUT-QUTPUT SECTION.
FILE-CONTROL.

THIS PROGRAM SORTS A LIST OF BIDS SUBMITTED FOR ONE ITEM
AT AN AUCTION. EACH INPUT LINE TAKES THE FORM:

PICTURE 9999V99.

SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.

WWWWWNNVNNNNNNNNNN o owdedad od ad ed ol = w -
FURUYB R NI RORN N OmIaaranIgo®NonsuN

SELECT IN-FILE ASSIGN TO '"BIDS".
SELECT OUT-FILE ASSIGN TO "OUTPUT".
SELECT SORT-FILE ASSIGN TO SFILE.
DATA DIVISION.
FILE SECTION.
FD IN-FILE
LABEL RECORD IS OMITTED
‘DATA RECORD IS LINE-IN.

01 LINE-IN.
05 BID PICTURE 9999V99.
05 FILLER PICTURE X(4).
FD OUT-FILE

LABEL RECORD IS OMITTED
DATA RECORD IS LINE-OUT.
01 LINE-OUT.
05 FILLER
05 BID
SD SORT-FILE
RECORD CONTAINS 6 CHARACTERS
DATA RECORD IS SORT-RECORD.
01 SORT-RECORD.
05 BID

PICTURE X(10).
PICTURE $9999.99.

PICTURE 9999V99

60484120 A

Figure 2-4. COBOL Program (Sheet 1 of 2)

35
36
37
38

39 -

40
4
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72

74
75
76
7
78
79
80
81
82
83
84

86
87

89
90
2

WORKING-STORAGE SECTION.
01 BID-INFORMATION.

05 NUMBER-OF-BIDS PICTURE 99V.
05 BID-TABLE OCCURS 10 TIMES
INDEXED BY BID-INDEX.
10 BID PICTURE 9999Vv99.

PROCEDURE DIVISION.
INITIALIZATION SECTION.

OPEN~FILES.
OPEN INPUT IN-FILE
OUTPUT OUT-FILE.
INITIALIZE-VALUES.
MOVE ZERO TO NUMBER-OF-BIDS.
PROCESS-A-BID SECTION.
READ-BIDS.
READ IN-FILE AT END GO TO SORTING.
ADD 1 TO NUMBER-OF-BIDS.
MOVE LINE-IN TO BID OF BID-TABLE (NUMBER-OF-BIDS).
GO TO READ-BIDS.
SORTING SECTION.
SORT-THE-BIDS.
SORT SORT-FILE
ON DESCENDING KEY BID OF SORT-RECORD
INPUT PROCEDURE IS SORT-IN-PROC
OUTPUT PROCEDURE IS SORT-OUT-PROC.
GO TO WRITE-RESULTS.
SORT-IN~PROC SECTION.
START-OF~SECTION.
PERFORM VARYING BID-INDEX FROM 1 BY 1
UNTIL BID-INDEX IS GREATER THAN NUMBER-OF-BIDS
RELEASE SORT-RECORD FROM BID OF BID-TABLE (BID-INDEX)
END-PERFORM.
SORT-OUT-PROC SECTION.
START-OF~-SECTION.
PERFORM SORTING-PARAGRAPH VARYING BID-INDEX FROM 1 BY
UNTIL BID-INDEX IS GREATER THAN NUMBER-OF-BIDS.
GO TO END-OF-SECTION.
SORTING~PARAGRAPH.
RETURN SORT-FILE RECORD
AT END GO TO END-—OF-SECTION
MOVE SORT-RECORD TO BID OF BID-TABLE (BID-INDEX).
END-OF-SECTION.
WRITE-RESULTS SECTION.
WRITE-BIDS. .
PERFORM WRITE-ONE-BID VARYING BID-INDEX FROM 1 BY 1
UNTIL BID-INDEX IS GREATER THAN NUMBER-OF-BIDS.
GO TO END-OF-RUN
WRITE-ONE-BID.
MOVE BID OF BID-TABLE (BID-INDEX) TO BID OF LINE-OUT.
WRITE LINE-OUT.
END-OF-RUN SECTION.
CLOSE~FILES.
CLOSE IN-FILE, OUT-FILE.
STOP-RUN.
STOP RUN.

Figure 2-4. COBOL Program (Sheet 2 of 2)

60484120 A

uoLSSag m:noo 91dweg °¢-z aJnbig

*GIJ 9Sh 30U [|LM UOLINJAXD JO UOL3e| Ldwod
IX3U Byl J| PaJIIUD G ISNW JUSWSIRIS [0J4JUOD (440)9NE3Q AUl ‘uOLSSSS Bngap By3 SleULWUS)

*asne|d ON3 lv 9yl 30 jJed pauspisuod S| Juswslels JAOW 9YL °G/ Sul| UL juswajels
NUNLIY dY3 JO Bsne|d QNI LV 3yY3 JO pud 3y3 jO 3jO 349| sem poluad a8yl jeyy smoys weuboud ay3

J = T3INV) ¥0 NN¥ dOLS LV 43S0TD JON indilno 3114

= 3nb ¢

‘ €2°71 1Y ‘h# ax
ob ¢

JO sisAleuy °pajndaxe J9AdU S| JUBWIILIS JAOW Y3 $4nD20 J0U S0P g7 BuL| B JuLOANRIUq BY[

~ €2°71 LV ‘4 ax
ob ¢
¢

*pajn2aXe S| JUBWIIRIS JAQW 9Y3 JL 99S 03 9/ dul| 3B JuLodiesdq e 3aS

= 9)“173uLodyeasq’ 3as
2gcehyy
(1) °19e3-piq 40 pLq Aeldsip ¢

*pE°28p9 SL eyl ‘IsaybLy dy3 3q pLnhoys 31gyL-aIg O3 PIAOW PLQ ISl YL

*34npd204d 3ndino Burldos ay3 JojLuow 03 €/ BUL| 3@ JuLodyeadq e 33S

*K13994409
S?IN0AXD unpadoud ayy ‘A19YL| Isow “3eyl SMoys aunpasoad 3ndur Bur3aos dyj 40 BuLuao3iuol

*PS3N23Xd S1 99 SUL| 840J3q SAND20 JuLodYeIAq BY3 Bsneddq ‘A3dwS SL PU0IL B[14-3A0S BYL

*UOLINIBXB BUNSIY
*34npadoad Indup Buijuos ayl Jojiucw 03 g9 dul| e Juiodiyesuq e 385
*ydedbeuded J0¥d-LNO-LY0S 943 Jo Buiuuibaq sy e juiodyesuq e 33

*A13094400 peds dJ4dM A3y3 Jey3 93s 03 spLq ay3 Aeidsiq

*payoRaL S| UOL3eD0| JuULOAYe3Uq DY UBYM UOLINIDXD Spuadsns Q)
*uoLqndaxa seLyLul

*U0L39S ONILY0S 9Y3 Jo Bupuurbeq ayy e jurodyessq e 38

€2°71 AV ‘94 ax
ob ¢

€L VY “‘yi ax
ob

é
- ¢)*143uLodyeadq’ias ¢

§2£€00

PJ028J=340s Aeydstp ¢
J04d-1N0~1¥40S"¥d LV “2# 8x
ob ¢

$£28%9
p40284-140s AeydsLp ¢

99°7 LV “‘S# 8x
ob ¢

- €20L10
pJo23J-1J0s Aerdsip ¢
99°7 1V ‘S# 8«
ob ¢
143N A4
p40234-3J40s Aejdsip ¢
9977 LV ‘i 8«
ob ¢

= PJ0IJJ-340S Aejdsip ¢

99°71 LV ‘c# 8x
= 0b

O O

——————————= 504d~3N0-340S *4d” JuL0odyeIIq’ 335

= 90*143uL0d)easq’ 1as

o

s2°gs

(%) 219e3-piq 40 pLq Aeydsip
4E°28%9

(£) 219e3-piq 40 piq Aeydsip

o

o

- €2 0Ll

[

(2) #1Gei-piq jo pLq Aejdstp
[A N 44

(1) @19e1-pLq jo piq Aeydsip
ki

spLg-jo-daqunu Aejdstp ¢

o

=—ONIL¥0S"4d IV ‘L# 8%

llomm
-»— BuilJos-Jd’iurodyeauq’ias ¢
9N830 IATLOVYIINI ¥38AD

2-7

60484120 A

CYBER INTERACTIVE DEBUG

? sb,pr.sorting

?

*B #1, AT PR.SORTING

? display number-of-bids
4

? display bid of bid-table (1)
4443,.32

? display bid of bid-table (2)
110.23

? display bid of bid-table (3)
6482.34

? display bid of bid-table (4)
33.25

? sb,pr.sort-out-proc

? sb,L.66

? go

*B #3, AT L.66

? display sort-record

?

¢ 8o
- *B #3, AT L.66

? display sort-record
444332
? go

*B #3, AT L.66
? display sort-record
011023
? go

*B #3, AT L.66
? display sort-record

648234
? go

*B #2, AT PR.SORT-OUT-PROC
? display sort-record

003325
? sb,L.73
? go

*B #4, AT L.73
? go

*B #4, AT L.73
? display bid of bid-table (1)

4443 .32
? sb,Ll.76
? go

*B #4, AT L.73
? go

*B #4, AT L.73
? quit
FILE OUTPUT NOT CLOSED AT STOP RUN OR CANCEL - C

Figure 2-6. Same Session Using Short Forms

60484120 A

ADVANCED DEBUGGING TECHNIQUES 3

ﬁ

The preceding section presented some elementary
commands that can be used to conduct a simple debug
session. This section provides you with additional
information on the commands presented in section 2
and describes some other commands and CID features
that allow you to make more productive use of CID.
The commands discussed in this section enable you
to:

Suspend program execution

Display current program values at the terminal
while execution is suspended

Change current program values while execution
is suspended :

ERROR AND WARNING
PROCESSING

Each time you enter a command, CID checks the
command for correctness. If errors are detected,
CID issues either an error or a warning message.

ERROR MESSAGES

CID issues an error message whenever it encounters
a command that cannot be executed. Error messages
are usually caused by a misspelled command or an
illegal or misspelled parameter. CID does not
attempt to execute an erroneous command. CID error
messages, which are followed by a user prompt, have
the form:

*ERROR - text
?

The text contains a brief description of the error.

In response to an error message, you should consult
the CID reference manual or use the HELP command to
determine the correct command form, then reenter
the command. Figure 3-1 illustrates some typical
error messages. The first message is caused by a
misspelled DISPLAY command. In the second example,
the command is syntactically correct but the
program does not contain an IN-PROC paragraph;
correcting the paragraph-name to SORT-IN-PROC makes
the SET,BREAKPOINT command acceptable.

? disply number-of-bids
*ERROR - UNKNOWN COMMAND
? display number-of-bids
4
? set,breakpoint,pr.in-proc
*ERROR - NO PROCEDURE NAME IN-PROC

? set ,breakpoint,pr.sort-in-proc
?

Figure 3-1. Debug Session Illustrating
Error Messages

WARNING MESSAGES

CID issues a warning message if a command you have
entered will have consequences you might not be
aware of or if the command will result in CID
action other than that which you have specified.
The warning message is followed by a special input
prompt; in response to this prompt, you can tell
CID either to execute the command or to ignore it.
The format of a warning message is:

*WARN - text
OK?

The message describes the action CID will take if
allowed to execute the command. In response to a
warning message you can enter the following:

YES or OK

CID executes the command.

CID disregards the command.
Any CID Command

CID disregards the previous command and
executes the new one.

- Some examples of warning messages are illustrated

in figure 3-2. The first message is generated when
an attempt is made to set a breakpoint in line 5,
outside the Procedure Division. In this case, line
50 was intended. The correct command is entered in
response to the OK? prompt. The second message

? set,breakpoint,l.5

*WARN - LINE 5 NOT EXECUTABLE - LINE 41 WILL BE USED
0K ? set,breakpoint,L.50

? clear,breakpoint

*WARN - ALL WILL BE CLEARED

0K ? ok
?

Figure 3-2. Debug Session IlLlustrating Warning Messages

60484120 A

occurs after a CLEAR,BREAKPOINT command is
entered., CID warns that this command removes all
existing breakpoints, and allows you to recon-
sider. An affirmative response is entered, and CID
executes the CLEAR,BREAKPOINT command. :

Warning messages can be suppressed by an option on
the SET,OUTPUT command; described later in this
section under Control of CID Output. In this case,
CID automatically takes the action indicated in the
message, without providing notification.

Refer to the CID reference manual for a complete
list of warning messages and an explanation of each.

BREAKPOINTS AND TRAPS

When conducting a debug session, you must initially
provide for gaining interactive control at some
point within your program. CID provides break-
points and traps for this purpose.

A breakpoint (introduced in section 2) causes
program execution to be suspended when a specified
statement is reached in the flow of execution. A
trap causes execution to be suspended when a speci-
fied condition is detected during execution. Both
breakpoints and traps cause CID to give control to

you so that you can examine and alter the status of

your program at various points during execution.

In a typical debug session, you establish break-
points and traps prior to initiating execution of
the program. When a breakpoint is detected during
execution or a trap condition occurs, CID receives
control and, in turn, gives you the opportunity to
enter CID commands.

In most debugging situations, breakpoints, rather
than traps, are recommended for suspending execu-
tion. Traps can be useful in certain cases, but
some trap types require you to be familiar with
compiled object code; only trap types useful to
most COBOL programmers are covered here. Break-
points allow you to suspend execution at any exe-
cutable statement in your program and can, in most
cases, be substituted for traps.

Breakpoints and traps exist only for the duration
of a debug session. Once a session is terminated,
all breakpoints and traps set during a session
cease to exist (unless they are saved on a file as
described in section 5). An object program is not
permanently altered by any breakpoints or traps
established during a session.

CID provides commands that enabie you to:
Establish breakpoints and traps
Display a list of existing breakpoints and traps
Remove existing breakpoints and traps

Save breakpoint and trap definitions on a
separate file for use in a later debug session

SUSPENDING EXECUTION
WITH BREAKPOINTS

A breakpoint is a mechanism established at a speci-
fied location within a program such that when the
location is reached during program execution,
control passes to CID which displays a message and
gives control to you.

The SET,BREAKPOINT command (described in section 2)
can be used to set breakpoints at the beginning of
lines, paragraphs, or sections in the Procedure
Division.

It is important to note that breakpoints set at
lines suspend execution before the line is exe-
cuted. TFor example, assume a program contains the
following statements

31 MOVE ZERO TO COUNT.
32 ADD 1 TO COUNT.

and that a breakpoint is set at line 32. Then when
line 32 is reached, execution is immediately
suspended before the statement at line 32 is exe-
cuted. Thus, COUNT has the value zero, not one.
When execution is resumed, the statement at line 32
is executed and the value of COUNT is increased to
one. Breakpoints set at paragraphs or sections in
the Procedure Division are set at the line contain-
ing the procedure-name.

FREQUENCY PARAMETERS

When a breakpoint is set, execution is suspended
each time the breakpoint location is reached. For
example, if a breakpoint is set within a paragraph
specified in a PERFORM statement, suspension occurs
on each pass through the paragraph. This can
result in many unnecessary suspensions during the
course of a debug session. To alleviate this
situation, CID provides frequency parameters for
the SET,BREAKPOINT command that are extremely
useful for debugging sections of a program which
are executed frequently. The command appears as
follows

SET ,BREAKPOINT,loc,first,last,step

where first, last, and step are frequency param—
eters. The parameter first indicates the first
time the breakpoint suspends execution. The param-
eter last indicates the last time the breakpoint
suspends execution. The parameter step indicates
how often the breakpoint suspends execution. For
example, the command

SET,BREAKPOINT,L.50,10,100,5

sets a breakpoint at line 50 which suspends execu-
tion the tenth time the statement is reached and
every fifth time thereafter, up through the hun-
dredth time.

60484120 A

As an example of the use of the frequency param-
eters, consider the statements shown. in figure
3-3. To examine the progress of the COMPUIE state-
ment, you can set a breakpoint at paragraph PAR],
specifying frequency parameters to suspend execu-
tion at an interval rather than on each pass
through the loop. For example

SET ,BREAKPOINT,PR.PAR1,2,1000,100
sets a breakpoint that suspends execution on every

hundredth pass through the paragraph, starting with
the second pass.

PERFORM PAR1
VARYING I FROM 1 BY 1
UNTIL I IS GREATER THAN 1000.

PAR?T.
COMPUTE RATE(I) = 1.57 * B(I).

Figure 3-3. Frequency Parameter Example

LISTING BREAKPOINTS
You can display a list of breakpoints defined in a

debug session by entering the LIST,BREAKPOINT
command :

LIST,BREAKPOINT,*

This command displays a list of all breakpoints in

the program. The short form of LIST,BREAKPOINT is
LB.

The LIST,BREAKPOINT command 1lists the breakpoints
that exist at the time the command is entered. The
list contains the number and location of each
breakpoint in the following form :

*B #1 = loc

where i 1is the breakpoint number assigned by CID
and loc is the location (line number or procedure
name) where the breakpoint is set. 1If frequency
parameters were specified when the breakpoint was
set, they also appear in the list.

You can list a specific breakpoint by its break-
point number by entering the command

LIST,BREAKPOINT,#n
where n is the number of the breakpoint.
If no breakpoints exist when a LIST,BREAKPOINT
command is entered, CID displays the following

message:

NO BREAKPOINTS

Examples of the LIST,BREAKPOINT command are as -

follows:
LIST,BREAKPOINT,#4

This command lists breakpoint 4.

60484120 A

LIST ,BREAKPOINT,L.137

This command lists the breakpoint at line
137.

LB,L.137

This command has the same effect as the
previous example.

REMOVING BREAKPOINTS
As the debug session proceeds, breakpoints set
early in the session might no longer be desired.
You can remove breakpoints during a debug session -
by entering one of the following commands:

CLEAR ,BREAKPOINT , *

This command clears all currently defined
breakpoints. '

CLEAR ,BREAKPOINT, loc-list
This command clears the breakpoints from
the specified locations; loc-list is a list
of locations separated by commas. Each
location has one of the following forms:
L.n
This form refers to line n.
Pr.procedure-name
This form refers to the beginning

of a paragraph or section in the
Procedure Division.

#n

This form refers to breakpoint
number n.

If a breakpoint does not exist at a specified
location, CID displays the message

NO BREAKPOINT loc

where loc is the breakpoint location, and no action
is taken. The short form of CEAR,BREAKPOINT is CB.

Examples of the CLEAR,BREAKPOINT command are as
follows: '

CLEAR,BREAKPOINT,L.114,L.220 ,PR.SORTING
This command removes the breakpoints from

lines 114 and 220 and from the line iden-
tifying the paragraph or section named

SORTING.
CLEAR ,BREAKPOINT, #3,#5, #6
This command removes breakpoints 3, 5, and
6.)
CB,#3,#5,#6

This command has the same effect as the
previous example.

SUSPENDING EXECUTION
WITH TRAPS

Traps suspend execution and give you control when-
ever specified conditions occur. For example,
traps can give you control when you enter a termi-
nal interrupt, when execution terminates, or when
the beginning of a new line is reached.

TRAP USAGE

The most useful traps to the COBOL programmer are
the LINE and PROCEDURE traps. (The END, ABORT, and
INTERRUPT traps are also used, but they are estab-
lished automatically by CID.) The remaining CID
traps are oriented toward COMPASS programs and are
not described in this guide. The traps described
in this section are listed in table 3-1. See the
CYBER Interactive Debug reference manual for infor-
mation on other types of traps.

When a trap condition is detected, execution is
suspended, CID gains control, and CID issues a
message identifying the trap, followed by a ?
prompt for your input. The message gives informa-
tion about the trap, including the trap type, the
trap number, and the location (L.n or PR.procedure-
name) where the trap occurred. The trap number is
a decimal integer assigned by CID. An example of a
trap message is:

*T #3, LINE AT L.345
?

In this example, a LINE trap has been detected at
line 345; this trap was the third one established.

In response to the ? prompt, you can enter any CID
command. Typically, you will use this opportunity
to examine the values of program variables, and
make any desired changes to these values. Program
execution can be resumed by entering the GO command.

Traps suspend execution when a specific event
occurs. Some traps suspend execution before the
event, while others suspend execution after the
event., This is an important distinction because it
can affect the status of variables you are display-
ing or altering. For example, assume that execu-
tion is suspended at 1line 32 of the following
program segment: :

31 MOVE ZERO TO COUNT.
32 ADD 1 TO COUNT.

If the trap suspended execution before the state-
ment at line 32 was executed, COUNT contains zero.
If the trap suspended execution after the statement
was executed, COUNT contains one. Table 3-1 indi-
cates, for each trap, the point in execution where

' CID gets control.

The traps described in this section are of two
types: default traps and user-established traps.
User-established traps are set by the SET,TRAP
command. The default traps always exist; it is not
necessary to specify a SET,TRAP command for these
traps. Table 3-1 indicates default traps and
user—established traps.

DEFAULT TRAPS

CID provides default traps that are automatically
set at the beginning of a debug session. These
traps allow you to gain control without actually
establishing any traps or breakpoints. The default
traps are the END, ABORT, and INTERRUPT traps.

Together, the END and ABORT traps transfer control
to CID on any program termination. Thus, for the
initial debug session, you can allow your program
to terminate; by examining the status of the pro-
gram at. the point of termination, you can determine
where traps or breakpoints should be set for sub-
sequent sessions.

TABLE 3-1. TRAP TYPES
Trap Type Short Condition Established User Gets Control
Form by
= ———— = =
LINE L Beginning of an executable source line User Before the line is executed
that is not continued from a previous ‘
line. The LINE trap also occurs at the
beginning of procedure-name lines.
PROCEDURE PROC Procedure-name line.. User Before the line is executed
INTERRUPT User interrupt. Default After the interrupt
END Normal program termination (through a Default After termination occurs
STOP RUN statement).
ABORT Abnormal program termination. Default After termination occurs
3-4 60484120 A

END Trap

The END trap gives control to CID on normal program
termination. This trap always occurs when a pro-
gram terminates normally, regardless of any CID
commands that have been entered to set or clear
traps.

Note that the debug session does not end when your
program terminates. The END trap allows you to
enter commands and continue the session until you
enter the QUIT command.

When the program terminates, CID gains control and
issues the message:

*T #17, END IN L.n
?

CID permanently assigns the number 17 to the END
trap. The line where execution terminated is given
by n. In response to the ? prompt, you can display
program variables as they exist at the time of
termination or you can terminate the session by
entering QUIT. You cannot enter a GO command
following an END trap.

ABORT Trap

The ABORT trap is useful because it allows you to
gain control when abnormal termination of program
execution occurs. Program values can be examined
as they exist at the precise time of termination.

To illustrate how the ABORT trap works, a program
containing a reference modification error is exe-
cuted under CID control. The source listing and
debug session are shown in figure 3-4. The MOVE
statement in 1line 13 specifies an out-of-range
reference modification. As shown in the figure,
you can observe program values after the ABORT trap
occurs.

The ABORT trap can also occur when the execution
time limit is exceeded. On NOS/BE, the trap occurs
immediately after the time limit is exceeded.

On NOS, the operating system first gains control.
You can then direct the operating system to con-
tinue or to stop execution. If you direct the-
operating system to continue execution, the program
resumes execution and the ABORT trap does not
occur. However, if you direct the operating system
to stop execution, CID gains control and the ABORT
trap occurs.

Deciding whether or not to continue execution
depends on the reason the time limit was exceeded.
If you program is executing an infinite loop, you
want execution to stop. However, if your program
simply requires more time to execute, you want
execution to continue. If you are not sure about
whether to continue or stop execution, it is
usually best to stop execution and consult your
program listing to see if your program has an
infinite loop.

On both operating systems, you are given a small
amount of time to execute CID commands; if this
time is exceeded, the debug session is terminated.

IDENTIFICATION DIVISION.
PROGRAM-ID. SHOW-ABORT-TRAP.
ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

PROCEDURE DIVISION.
BAD-REFERENCE-MODIFICATION.
MOVE 8 70 B.
MOVE A (B : 5) TO C.
STOP RUN.

- b ad b b W~y W N -
au~d°~o ~ s W

CYBER INTERACTIVE DEBUG
9

? display a (b : 5)
*ERROR - REFERENCE MOD OUT OF RANG|
? display a, b . -

01 A PICTURE X(10)
VALUE "ABCDEFGHIJ".

01 8 PICTURE 9V.

01 ¢ PICTURE X(5).

? go
*T #18, ABORT ILLEGAL REFERENCE MODIFICATION IN L.13 -«——— ABORT trap suspends execution in line 13.

Program values are displayed while execu-

ABCDEFGHIJ 8

? display a (b : 2)
HI

? quit

DEBUG TERMINATED

tion is suspended.

Figure 3-4. Program and Debug Session Illustrating ABORT Trap

60484120 A

When the ABORT trap occurs, the number of the line
in which execution stopped is displayed in the trap
report message. You can then analyze your program
listing to find the cause of abnormal termination.
For example, in the case of a time 1limit ABORT
trap, you could look for an infinite loop in the
area where the time limit occurred. Sometimes it
is useful to initiate another debug session and set
breakpoints to monitor program values before the
time limit is reached.

The ABORT trap is permanently assigned the number
18 by CID.

INTERRUPT Trap

The INTERRUPT trap gives control to CID when you
issue a terminal interrupt. The procedure for
issuing a terminal interrupt depends on the ter-
minal type and on the interactive communication
system in use. See interrupt in the Glossary,
appendix C.

When you enter the appropriate interrupt sequence,
the process currently active is interrupted; CID
gets control, issues the INTERRUPT trap message,
and gives control to you. The INTERRUPT trap can
be used to terminate excessive output to the ter-
minal, although it will cause the remaining output
to be lost. It can also be used to interrupt a
program that you believe to be looping excessively
at some unknown location.

The INTERRUPT trap is ' permanently assigned the
number 19 by CID.

USER-ESTABLISHED TRAPS

In addition to the default traps, CID provides
traps that can be established whenever you have
control. Up to 16 user-established traps can be in
effect at a given time.

SET,TRAP Command
The traps describéd in the following paragraphs are
‘established with the SET,TRAP command. This com—
mand has the form

SET,TRAP, type,scope
where type is one of the trap types listed in table

3-1, and scope is one of the notation forms listed
in table 3-2. The short form of SET,TRAP is ST.

TABLE 3-2. TRAP SCOPE PARAMETER

Scope Trap is Set
* Everywhere
L.n In line n
Len...L.m Everywhere within the range
of lines n through m (n<m)

3-6

The scope parameter of the SET,TRAP command speci-
fies the program locations for which the trap is
effective. The scope of a trap can be a single
COBOL 1line, several lines, or the entire program.
To specify a single line, you enter L.n as the
scope of the trap. To specify the entire program,
you enter-an asterisk (*) as the scope.

To specify several lines as the trap scope, Yyou
specify the following ellipsis notation

Len...L.m

where n is less than m. This notation refers to
all of the lines in the source program consisting
of lines n through m. You must not enter spaces
between the three periods in this notation.

Not all forms of the scope listed in table 3-2 are
valid for all CID trap types; valid forms depend on
the - particular type of trap you set. The forms
listed in table 3-2 are wvalid for the particular
trap types described in this user’s guide.

Traps can be established whenever program execution
is suspended and CID has issued a ? prompt. If a
condition for which you have established a trap
does not occur, the program executes normally.

LINE Trap

The LINE trap suspends program execution and gives
control to CID immediately prior to execution of
each executable COBOL line that is within the scope
and that is not continued from a previous 1line.
This trap allows you to examine and alter program
values before each statement 1is executed. The
command to set a LINE trap has the form

SET,TRAP,LINE,scope

where scope has one of the following forms:

*
The trap is set fdr each line in the entire
program. .

Len...L.m

The trap is set for each of lines n through
m (n < m.

Examples of setting a LINE trap are as follows:
SET, TRAP,LINE,*

This command suspends execution before each
executable line in the entire program. i

SET,TRAP,LINE,L.221...L.254

This command suspends execution before each
of lines 221 through 254 is executed.

ST,LINE,L.221...L.254

This command has the same effect as the
previous example.

60484120 A

PROCEDURE Trap

The PROCEDURE trap suspends program execution and
gives control to CID immediately prior to execution
of any procedure-name line at the beginning of a
paragraph or section in the Procedure Division.
The command to set a PROCEDURE trap has the form:

SET, TRAP,PROCEDURE, scope

The scope has one of the following forms:

*
The trap is set for each procedure-name
line in the entire program.

L.n...L.m

The trap is set for each procedure—name
line in lines n through m (n < m).

Examples of setting a PROCEDURE trap are as follows:
SET, TRAP , PROCEDURE , *

This command suspends execution at each
procedure-name line in the entire program.

SET, TRAP ,PROCEDURE,L.34...L.93

This command suspends execution at each
procedure name line in lines 34 through 93.

ST,PROCEDURE,L.34...L.93

This command has the same effect as the
previous example.

LISTING TRAPS

To display a list of traps defined for a debug
session, enter the command:

LIST,TRAP,*
This command displays the number, type, and scope
of all traps that exist at the time the command is
entered. The short form of LIST,TRAP is LT.
LIST,TRAP output has the following form:

T #n = type scope
where n is the trap number assigned by CID, type is
the trap type as listed in table 3-1, and scope is
the trap scope in the form that you specified in
the SET,TRAP command.

You can list a specific trap by its trap number by
entering the command

LIST,TRAP,#n
where n is the number of the trap.

If no traps exist when LIST,TRAP is entered, CID
displays the message:

NO TRAPS

60484120 A

Examples of the LIST,TRAP command are:
LIST,TRAP,#7
This command lists trap 7.
LT, #7

This command has the same effect as the
previous example.

REMOVING TRAPS

A trap defined by you can be removed ‘at any time
during a debug session with the CLEAR,TRAP com- -
mand. This command has the following forms:

CLEAR, TRAP, *

This command removes all of the traps that
you have defined.

CLEAR,TRAP , t ype ,*

This command removes all traps of the
specified type.

CLEAR,TRAP ,number-list

This command removes the traps identified
by the specified number-list; number-list
is a list of trap numbers of the form #n
separated by commas.

The type parameter can be any of the types listed
in table 3~1 except for the default INTERRUPT, END,
and ABORT traps, which cannot be removed.

The CLEAR,TRAP command can be used to remove traps
that are no longer needed in a debug session. The

" command is also useful when editing command
- sequences, as described in section 5. The follow-

ing are examples of the CLEAR,TRAP command:
CLEAR,TRAP,LINE,*
This command clears all LINE traps.
CLEAR,TRAP,#2,#4,#5

This command clears the traps identified by
trap numbers 2, 4, and 5.

SUMMARY OF BREAKPOINT AND
TRAP CHARACTERISTICS

The following is a summary of breakpoint and trap
information presented in this section:

You can set, clear, or list breakpoints and
traps any time CID has control and has prompted
you for input.

Only one breakpoint can be established at a
single statement; however, a single breakpoint

and multiple traps can be set to occur at a
single statement.

Breakpoints and traps exist for the duration of
the debug session unless removed by the CLEAR
command .

The frequency parameters of the SET,BREAKPOINT

command can be used to avoid suspending execu-
tion every time a location is reached.

CID automatically establishes END, ABORT, and
INTERRUPT traps so that you receive control on
program termination or terminal interrupt, even
if you have not explicitly established any
breakpoints or traps.

Breakpoints suspend execution before the state-
ment at the breakpoint location 1is executed.
The point in the execution of a statement at
which a trap suspends execution depends on the
trap type. The statement at the breakpoint or
trap location is executed in the normal manner
when execution is resumed.

EXECUTING A FEW LINES AT
A TIME

The STEP command can be used to execute a few lines
and then give you control. The format of the STEP
command is as follows: :

STEP,n,LINE

The parameter n indicates the number of lines to be
executed. The short form of STEP is S.

When you enter the STEP command, CID resumes or
initiates program execution and counts ‘each line
when the first COBOL verb in the line is reached

(or at the beginning of the line in the case of:

procedure-name lines). CID counts only procedure—
name lines and lines that contain verbs. When the
number of lines counted is equal to n, CID suspends
execution and displays the following message:

*S LINE AT L.n
CID suspends execution at the beginning of the
statement containing the first COBOL verb. CIb

then gives you control.

The following considerations apply to the STEP
command :

If a breakpoint or trap suspends program exe-

cution before CID has counted n 1lines, CID

ignores the STEP command; execution 1is not
suspended when n lines have been executed.

If a breakpoint or trap suspends program exe-
cution at the same time as CID has counted n
lines, CID ignores the STEP command and dis-
plays the breakpoint or trap message.

The STEP command can also be used to execute your
program until n procedure-name lines have been
counted. The format of this command is as follows:

STEP,n,PROCEDURE

When n procedure-name lines have been counted, CID
issues the message:

*S PROCEDURE AT PR.procedure-name

If the procedure-name is a paragraph within a
section, CID displays only the name of the para-
graph. CID suspends execution at the beginning of
the procedure.

If the STEP command is entered with no parameters,
the previous STEP command is repeated. If no
previous STEP command has been entered, the default
is STEP,1,LINE. :

ALTERING EXECUTION FLOW

Sometimes it is useful to alter the flow of program
execution. For example, you might want to reexe- .
cute a COBOL procedure without reexecuting the
statements that precede that procedure, or you
might want to pass over a paragraph or section that
you know is faulty. The GO TO command alters
execution flow.

The GO TO command resumes execution at the begin-
ning of a paragraph or section. This command has
the same form as the COBOL format 1 GO TO statement:

GO TO procedure-name
or
GO procedure-name

where procedure-name is the name of the paragraph
or section where execution is to resume.

You should be careful when you enter this command,
because altering execution flow changes your
program logic: program values and file positions

are not necessarily the same when you use this
command to execute a paragraph as they are when
execution reaches the paragraph normally.

NOTE

You should only enter this command to
resume execution (mot to initiate execu-
tion). Program initialization that must
take place will not occur if you begin a
debug session with this command.

Examples of the GO TO command are:
GO TO COUNT-ONE

This command resumes execution at the
beginning of the COUNT-ONE paragraph or
section.

GO TO COUNT-ONE OF COUNT-ALL

This Vcommand resumes execution at the
beginning of the COUNT-ONE paragraph in the
COUNT-ALL section.

A sample debug session using the GO TO command is
shown in figure 3-5. The program FIND-HIGH-BID
with input file BIDS (both shown in section 3) are
executed under CID control. The GO TO command is
used to skip over the SORTING section causing the
bids not to be sorted.

60484120 A

CYBER INTERACTIVE DEBUG

? set,breakpoint,pr.sorting
? go

*B #1, AT PR.SORTING

? go to write-results —=

CUSTOMER BID
ID NUMBER
CUST? 3344.22 <<HIGH BID
CUST2 5544.62
CUST8 3189.44
CUSTS 2266.44
cUsT3 9062.21
CUSTG 9111.32
“CUST9 0010.13

«T #17, END IN L.160
? quit :
DEBUG TERMINATED

Skip the SORTING section and resume execution at the
WRITE-RESULTS section. Notice that the bids are not
sorted.

Figure 3-5. GO TO Command Example

SAMPLE DEBUG SESSION:
ERRORS AND WARNINGS;
SUSPENDING EXECUTION

The following paragraphs describe a sample debug
session. Figure 3-6 shows the file BIDS used as
input to the program FIND-HIGH-BID in figure 3-7.
FIND-HIGH-BID is a more complicated version of the
COBOL program presented in section 2. Each input
record in BIDS contains a customer identification
number and the amount of the bid submitted by that
customer. FIND-HIGH-BID sorts the bids in descend-
ing order; the program prints the sorted list of
customer identification numbers and bids, and

indicates which bid is the highest. The program

FIND-HIGH-BID contains no errors.

In figure 3-8, the program FIND-HIGH-BID is run
under CID control. This debug session shows how
traps, breakpoints, and the STEP command are used
and how you respond to error and warning messages
during a debug session.

Customer Bid

ID.
e et

CUST4334422
CUST2554462
CUST8318944
CUST5226644
CUST3906221
CUST4911132
CuUsT9001013

Figure 3-6. Input File BIDS

60484120 A

DISPLAYING PROGRAM VALUES

When execution of your program is suspended and CID

‘has prompted you for input, you can enter commands

to display program values as they exist at the time
of suspension. This discussion. shows the display
commands: that are most useful to the COBOL pro-
grammer .

CID provides two commands for displaying program
values: .

The LIST,VALUES command lists the values of all
data-items in the program. :

The DISPLAY command 1lists particular values
that you specify in the command.

LIST,VALUES COMMAND

The LIST,VALUES command lists all the data names in
the ‘Data Division of the source program and the
current values of each elementary data-item. Names
are listed in the same order that they are speci-
fied in the Data Division. The LIST,VALUES command
has the form:

LIST,VALUES

The LIST,VALUES command provides a formatted snap-
shot of the status of program variables; however,
it can produce a large amount of output, particu-
larly if the program contains large tables. To
avoid a large amount of output, you can send the
output to an auxiliary file as described later in
this section or use the DISPLAY command to avoid
large amounts of output. The short form of
LIST,VALUES is LV.

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. FIND-HIGH-BID.

3 *

4 * THIS PROGRAM READS IN BIDS SUBMITTED FOR ONE ITEM
5 * AT AN AUCTION AND SORTS THE BIDS IN DESCENDING
[} * ORDER. RESULTS ARE PRINTED OUT, AND THE HIGHEST
7 * BID IS INDICATED. .
8 *

9 * EACH. INPUT LINE TAKES THE FORM: ’
10 * CUSTOMER-ID PICTURE X(5).
11 * BID PICTURE 9999V99.
12 »

13 ENVIRONMENT DIVISION.

14

15 CONFIGURATION SECTION.)

16 SOURCE-COMPUTER. CYBER-170.

17 OBJECT-COMPUTER. CYBER-170.

18

19 INPUT-OUTPUT SECTION.

20

21 FILE~-CONTROL. :

22 SELECT IN-FILE ASSIGN TO "BIDS".

23 SELECT OUT-FILE ASSIGN TO "OUTPUT".

24 SELECT SORT-FILE ASSIGN TO SFILE.

25

26 DATA DIVISION.

rid

28 FILE SECTION.

29

30 FD IN-FILE

3 LABEL RECORD IS OMITTED

32 DATA RECORD IS LINE-IN.

13

34 01 LINE-IN.

35 05 CUSTOMER-ID PICTURE X(5).

36 05 BID PICTURE 9999V99.
k14 05 FILLER PICTURE X(9).
38

39 FD QUT-FILE

40 LABEL. RECORD IS OMITTED

41 DATA RECORD IS LINE-QUT.

42 .

43 01 LINE-OUT.

44 05 FILLER PICTURE X€10).
45 05 CUSTOMER-ID PICTURE X(10).
46 0S5 BID PICTURE 9999.99.
47 05 HIGH-BID-OR-SPACES PICTURE X(13).
48

49 SD SORT-FILE

S0 RECORD CONTAINS 11 CHARACTERS

51 DATA RECORD IS SORT-RECORD.

52

53 01 SORT-RECORD.

54 05 BID PICTURE 9999v99.
55 05 CUSTOMER-ID PICTURE X(5).

56

Figure 3-7. Program FIND-HIGH-BID (Sheet 1 of 3)

3-10 60484120 A

57
59
60
61
62

64
65

67
69

7
72

7

75

76

79

81
82
83

85
87
89
9
92
93
9%
95

97
98

100
101

- 102

103
104
105
106
107
108
109
110
11
112
13
114
115
116
117
118

WORKING-STORAGE SECTION.
01 SPACE-LINE

01 HEADING-1

PICTURE X(100) VALUE SPACES.

PICTURE X(25)

VALUE " CUSTOMER BID".

01 HEADING-2 PICTURE X(20)
VALUE " ID NUMBER".

01 HIGH-BID PICTURE X(13)

VALUE " <<HIGH BID".

01 BID-INFORMATION.
05 NUMBER-OF-BIDS
05 BID-TABLE

10 sId
10 CUSTOMER-ID

PICTURE 9V.

OCCURS 10 TIMES
INDEXED BY BID-INDEX.
PICTURE 9999v99.
PICTURE X(5).

PROCEOURE DIVISION.
INITIALIZATION SECTION.

OPEN-FILES.
OPEN INPUT IN-FILE
OUTPUT OUT-FILE.
INITIALIZE-VALUES.
MOVE ZERO TO NUMBER-OF-BIDS.

PROCESS-A-BID SECTION.

READ-A-BID.
READ IN-FILE AT END GO TO SORTING.
ADD 1 TO NUMBER-OF-BIDS.
MOVE CORRESPONDING LINE-IN
TO BID-TABLE (NUMBER~OF-BIDS).
READ-NEXT-BID.
GO TO READ-A-BID.

SORTING SECTION.

SORT-THE-BIDS.
SORT SORT-FILE
ON DESCENDING KEY BID OF SORT-RECORD
INPUT PROCEDURE IS SORT-IN-PROC
OUTPUT PROCEDURE IS SORT-QUT-PROC.
DONE-SORTING.
GO TO WRITE-RESULTS.

SORT-IN-PROC SECTION.

START-OF~SECTION.

PERFORM SORTING-PARAGRAPH VARYING BID-INDEX FROM 1 BY 1

UNTIL BID-INDEX IS GREATER THAN NUMBER-OF-BIDS.
GO TO END-OF-SECTION.
SORTING-PARAGRAPH.
MOVE CORRESPONDING BID-TABLE (BID~INDEX)
TO SORT-RECORD.
RELEASE SORT-RECORD.
END-OF-~SECTION.

60484120 A

Figure 3-7. Program FIND-HIGH-BID (Sheet 2 of 3)

3-11

119 SORT-OUT-PROC SECTION.

120

121 START-OF-SECTION.

122 PERFORM SORTING-PARAGRAPH VARYING BID-INDEX FROM 1 B8Y 1

123 UNTIL BID-INDEX IS GREATER THAN NUMBER-OF-BIDS.

124 GO TO END-OF-SECTION.

125 SORTING-PARAGRAPH.

126 RETURN SORT-FILE RECORD

127 ~ AT END GO TO END-OF-SECTION.

128 MOVE CORRESPONDING SORT-RECORD

129 TO BID-TABLE (BID-INDEX).

130 END-OF-SECTION.

131 ,

132 WRITE-RESULTS SECTION.

133 WRITE-HEADINGS.

134 WRITE LINE-OUT FROM SPACE-LINE.

135 WRITE LINE-QUT FROM SPACE-LINE.

136 WRITE LINE-OUT FROM HEADING-1.

137 WRITE LINE-OUT FROM HEADING-2.

138 WRITE-HIGH-BID. -

139 WRITE LINE-QUT FROM SPACE-LINE.

140 MOVE HIGH-BID TO HIGH-BID-OR-SPACES OF LINE-OUT.

141 MOVE CORRESPONDING BID-TABLE (1) TO LINE-OUT.

142 WRITE LINE-OUT.

143 WRITE LINE-OUT FROM SPACE-LINE.

144 WRITE-REMAINING-BIDS.

145 PERFORM WRITE-A-BID VARYING BID-INDEX FROM 2 BY 1

146 UNTIL BID~INDEX IS GREATER THAN NUMBER-OF-BIDS.

147 GO TO END-WRITE.

148 WRITE-A-BID.

149 MOVE CORRESPONDING

150 BID-TABLE (BID-INDEX) TO LINE-QUT.

151 WRITE LINE-OUT.

152 END-WRITE.

153 WRITE LINE-OUT FROM SPACE-LINE.

154

155 END~OF~RUN SECTION.

156

157 CLOSE-FILES.

158 CLOSE IN-FILE, OUT-FILE.

159 STOP-RUN.

160 STOP RUN.

161

Figure 3-7. Program FIND-HIGH-BID (Sheet 3 of 3)

CYBER INTERACTIVE DEBUG
? set,trap,procedure,* - Set PROCEDURE trap to suspend execution when-
? go ever the beginning of a paragraph or section
*T #1, PROCEDURE IN PR.INITIALIZATION in the Procedure Division is reached.
? go

;*T #1, PROCEDURE IN PR.OPEN-FILES
;*30#1, PROCEDURE IN PR.INITIALIZE-VALUES
;*$0#1, PROCEDURE IN PR.PROCESS-A-BID

o7 #1, PROCEDURE IN PR.READ-A-BID

? list,trap,* -
T #1 = PROCEDURE *
? clear,trap,* --=

List the currently established traps.

? list,trap,*

Clear all traps.

NO TRAPS
2 set,breakpoint,1.92,1,50,2 %
? set,breakpoint,pr.sort-the-bids

Set breakpoint at line 92. The frequency
parameters indicate that the breakpoint
occurs every other time execution reaches
line 92.

Figure 3-8. Sample Debug Session Using the Program FIND~-HIGH-BID (Sheet 1 of 2)

3-12

60484120 A

? go
*B #1, AT L.92
? display number-of-bids
1
? go
*B #1, AT L.92
? display number-of-bids

Breakpoint number 1 occurs every other time

? go - y .
execution reaches line 92.

*B #1, AT L.92
? display number-of-bids
S

? go
*B #1, AT L.92
? display number-of-bids

7
? step,30,lines — Breakpoint number 2 suspends execution before
*B #2, AT PR.SORT-THE-BIDS the STEP command has finished. The STEP com-
? list,breakpoint , * = - mand is no longer in effect.
*B #1 = L.92,,50,2, *B #2 = PR.SORT-THE-BIDS
? clear,breakpoint #2 -= List all currently established breakpoints.
27 List,breakpoint,* \ '
*B #1 =1.92,,50,2 Clear breakpoint number 2.
? step,1,procedure —= - ~—_ :
*S PROCEDURE AT PR.SORT-IN-PROC) Resume execution until the beginning of the
? set,breakpoint,pr.write-results next paragraph or section is reached.
? set,trap,procedure,.109...1.118 —= ~——
*WARN - LINE 118 NOT EXECUTABLE - LINE 117 WILL BE USED Set PROCEDURE trap with a range of lines as
0K ? ok the scope.
? go . .
*T #1, PROCEDURE IN PR.START-OF-SECTION
? go
*T #1, PROCEDURE IN PR.SORTING-PARAGRAPH
7 go
*T #1, PROCEDURE IN PR.SORTING-PARAGRAPH
? go
«T #1, PROCEDURE IN PR.SORTING-PARAGRAPH
? go \
*T #1, PROCEDURE IN PR.SORTING-PARAGRAPH
? clear,trap,#1 <= : Clear the PROCEDURE trap (trap number 1).
? go
*B #2, AT PR.WRITE-RESULTS
17 go
“CUSTOMER BID
ID NUMBER

CUST4 9111.32 <<HIGH BID

CuUsT3 9062.21

cusT2 5544 .62

cusT? 3344.22

CuUsT8 3189.44

CUSTS 2266.44

CusT9 0010.13 :
: - The END trap occurs when the STOP RUN state-
*T #17, END IN L.160 o ment is executed.
? go
- *ERROR ~ PROGRAM HAS.COMPLETED —== This error message tells you that execution
? quit cannot be resumed in this manner after the
DEBUG TERMINATED END trap has occurred.

Figure 3-8. Sample Debug Session Using the Program FIND-HIGH-BID (Sheet 2 of 2)

60484120 A i 3-13

An example of LIST,VALUES command output is shown
in figure 3-9. The example is from a debug session
executing the program FIND-HIGH-BID shown earlier
in this section. Input is from the file BIDS, also
shown earlier in this section.

The values listed in figure 3-9 were obtained when
execution was suspended by a breakpoint set at the
beginning of the WRITE-RESULTS = section. The
following points are illustrated in the figure:

LIST,VALUES output is formatted so that as much
information as possible dis displayed in as
little space as possible. Although this format
is difficult to read, the format increases the
chances of fitting all of the output on a
terminal screen.

Data names are displayed in the same order as
they are specified in the Data Division. Every
data name in the Data Division is displayed.

The level number of a data name is enclosed in
a less than sign and a greater than sign; for
example, the level number of a level 05 item
appears as <05>. The level number appears to
the left of the data name.

Index names are preceded by <IXD.

A group-item name is followed by a colon to
indicate that the next item listed is part of
that group-item.

An elementary data-item name is followed by an
equal sign (=) and the value of the data-item.

Subscripts are enclosed in brackets ([]). The
table name is displayed only for the first
table element.

DISPLAY COMMAND

The DISPLAY command, introduced in section 2, is
the most useful command for displaying COBOL
program values. This command is a restricted form
of the COBOL DISPLAY statement. The format is:

DISPLAY item-1, item-2,..., item-n

The items can be separated by commas or spaces and
can be literals or identifiers.

The same types of identifiers can be specified in
the DISPLAY command as can be specified in the
COBOL DISPLAY statement:

Identifiers specified in the DISPLAY command
can be qualified or unqualified.

Subscripted table names can be specified to
display specific elements.

Reference-modified table items can be specified.

Group—item names as well as the names of ele-
mentary data-items can be specified.

Examples of the DISPLAY command are shown in figure
3-10. The examples were obtained from the program
FIND-HIGH-BID with input file BIDS, both shown
earlier in this section. In the examples, exe-
cution is suspended at the beginning of the WRITE-
RESULTS section. Program values are identical to
those displayed earlier in the LIST,VALUES command
example.

? list,values
P.FIND-HI %

<05>HIGH-BID-OR-SPACES=
<05>CUSTOMER-ID=CUST9
<01>SPACE-LINE=

<01>HEADING-1=

<01>HEADING-2= ID NUMBER <01>HIGH-BID=

<01>SORT-RECORD : <05>

<01>LINE-IN:<05>CUSTOMER-1D=CUST9<05>BID= 10.13<01>LINE-OUT Group-item names are followed
<05>CUSTOMER-ID= <05>B1D= ,/j‘(/"‘"“\\\\\\\\\ by a colon.

CUSTOMER
<<HIGH BID
<01>BID-INFORMATION: <OS>NUMBER-OF-BIDS= 7<05>BID-TABLE
<IX>BID-INDEX= 8<10>BID[1]= 9111.32[21= 9062.21031= 5544.62[41=3344.22
[51= 3189.44[61= 2266.44L[71= 10.13[8]= . [931=
<10>CUSTOMER-1D [13=CUST4[2]=CUST3[3]=CUST2[41=CUST7[5I=CUST8L61=CUSTS

The program name is displayed.

BID= 10.13
Level numbers are enclosed in
a less than sign (<) and a
greater than sign (>).

BID
The value of an elementary
data-item is displayed after
an equals sign.

[10]= . :

Subscripts are enclosed in

[71=CUST9[81= [91= [101= brackets. The table name is
displayed only for the first
‘ table element.
Index names are preceded by
<IX>.
Figure 3-9. LIST,VALUES Command Example
3-14 60484120 A

? display heading-2 —=
ID NUMBER
? display number-of-bids of bid-information -

Unqualified identifier

Qualified identifier

7.
? display customer—-id of bid-table (2) —=

Table element

CUST3

? display customer-id of bid-table (2) (3:2) —=
ST

? display heading-2 (12:3) =

Reference-modified table element

Reference-modified identifier

NUM

? display bid-information —

3cusT9

7911132CUST4906221CUST 3554462CUST2334422CUS T7318944CUSTB226644CUST500101

Group-item name

? display bid-index
8
? display bid-index, number~of-bids, high-bid

Index name

List of identifiers

8 7 <<HIGH BID

Figure 3-10. DISPLAY Command Examples

ALTERING PROGRAM VALUES

Once an error has occurred during a debug session,
incorrect program values are usually present. At
this point, you can terminate the debug session,
correct and recompile your program, and start a new
debug session to find the remaining errors.

Alternatively, you can make a note of the error you.

found, alter the incorrect values to make them
correct, and then resume execution of the same
debug session to find the remaining errors. Alter-
ing program values does not actually correct the
program; however, it does allow you to find more
than one error during a debug session.

CID provides several commands to alter program
values. This wuser’s guide describes two CID
commands that alter program values:

The MOVE command, which alters data items

The SET command, which alters index names and
index data items

MOVE COMMAND

The MOVE command is a restricted form of the COBOL
MOVE statement. The MOVE command has the form:

MOVE value TO identifier-1
A literal or identifier must be specified for
value, and identifier-1 must be an acceptable
receiving item. The following restrictions are
placed on the MOVE command:

Only one receiving item is allowed.

MOVE CORRESPONDING is not allowed.

The sending and receiving items must be alpha-

betic, alphanumeric, numeric (other than COMP-1 .

or COMP-4) or group items. If either the
sending or receiving item is COMP-2, both items
must be COMP-2. Edited items are allowed, but
they are moved without editing.

The sending item must not be a figurative
constant. :

60484120 A

The allowable forms of sending and receiving items
are shown in table 3-3., If an unallowed combina-
tion of sending and receiving items is specified,
CID issues an . error message, The MOVE command
functions exactly as in COBOL: identifier-1
receives the specified value. You can enter a MOVE
command whenever CID has prompted you for inmput.
For example, if program execution is suspended and
you have detected a data-item that has an incorrect
or illegal value, you can use the MOVE command to
correct the. value of the data-item. When you
resume execution of the program, the new value is
used in subsequent computations involving the
altered data-item.

Changes made through the MOVE command do not exist
beyond the end of the debug session. When a
program is reexecuted, either in debug mode or in
normal mode, all data-items have the values defined
in the original compiled version.
Following are some examples of the MOVE command:
MOVE 5 TO A
This command changes the value of A to five.
MOVE COUNT OF INPUT-LINE TO SIZE
This command changes the value of SIZE to
the value of COUNT in the group-item
INPUT-LINE.
MOVE NAME (15:10) TO FIRST-NAME
This command moves the ten characters

beginning in the 15th character position of
NAME to the data-item FIRST-NAME.

SET COMMAND

The SET command is a restricted form of the COBOL

"SET statement. This command is used to change the

values of index-names during the course of a debug
session. : i

The SET command has two formats. The format 1 SET
command appears as follows:

SET name TO value

TABLE 3-3. ALLOWABLE MOVE COMMAND SENDING AND RECEIVING ITEMS

Receiving Item
Sending Item
Group Alphabetic Alphanumeric Numeric COMP-2
= - = e — S ——————— — r—

Group YesT Yes Yes Yes No
Alphabetic Yes"" Yes Yes No No
Alphanumeric YesT Yes Yes Yes No

Numeric YesT No Yes Yes No

COMP-2 No No No No Yes

tcIp 1ssues a warning message before this kind of move takes place.

In this format, name is an index-name or the iden-
tifier of an integer or index data-item; value is
an integer literal, an index—name, or the identi-
fier of an integer or index data-item.

Some combinations of sending-items and receiving-
items are not allowed in the format 1 SET command.
Table 3-4 shows the allowable combinations.

TABLE 3-4. ALLOWABLE FORMAT 1 SET COMMAND
SENDING AND RECEIVING ITEMS

Receiving Item

Sending Item Integer Index

Data ;::zx Data

Item Item
Integer literal No Yes No
Integer data No Yes . No
item
Index name Yes Yes Yes
Index data No Yes Yes
item

The format 2 SET command appears as follows:
SET index UP BY amount
or

SET index DOWN BY amount

In this format, the index is an index-name; amount
is an integer literal or the identifier of an
elementary numeric data-item. When you enter this
command, the value of index is increased or de-
creased by the specified amount.

3-16

Following are examples of the two formats of the
SET command:

SET INDEX-A TO 6

This command changes the value of INDEX-A
to six.

SET INDEX-A UP BY 3

This command increases the value of INDEX-A
by three.

SET BID-INDEX TO NUMBER-OF-BIDS

This command changes the value of BID-INDEX
to the value of NUMBER-OF-BIDS.

SET FIRST-INDEX DOWN BY STEP-AMOUNT

This command decreases the value of FIRST-
INDEX by the value of STEP-AMOUNT. In this
case, STEP-AMOUNT must contain an integer
value.

As with the MOVE command, changes that you make to
index names do not exist beyond the end of the
debug session. When a program is reexecuted, the
index names have the values defined in the original
program.

DISPLAYING CID AND PROGRAM
STATUS INFORMATION

The following paragraphs describe some CID features
and commands that allow you to obtain various kinds
of information about the current debug session.
These features include:

Debug variables that contain useful information
about the current session; the values of these

variables can be displayed at the terminal.

LIST commands that can display such things as
load map information, and trap and breakpoint
information.

60484120 A

DEBUG VARIABLES

CID provides variables that contain information
about the current status of a debug session and of
the executing program. You can display the con-
tents of debug variables whenever you have con-
trol. CID updates these variables, and you cannot
alter their contents directly.

Although many of the debug variables are intended
for use by assembly language programmers, some of
them can provide information useful to COBOL pro-
grammers. Those variables that are most useful to
COBOL programmers are listed in table 3-5. See the
CID reference manual for a description of other
debug variables.

TABLE 3-5. DEBUG VARIABLES

Variable Description
#LINE The number of the COBOL line
. executing at the time of suspension.
#PROC The name of the paragraph or section
executing at the time of suspension.
#BP - The number of defined breakpoints.
#TP The number of defined traps.
#GP The number of defined groups;
groups are described in section 5.
#HOME The name of the home program; the
home program is the program unit
currently being debugged. See
section 4.

The #LINE debug variable contains the number of the
COBOL source line that was executing at the time of
suspension. The form of #LINE is P.progname L.n,
where the underscore (_) indicates a relative
address in a program module or common block,
progname is the name of the currently executing
program, and n is the number of the currently
executing line within that program. CID normally
prints this information automatically when a trap
or breakpoint occurs, but you might wish to display
the value yourself at times.

The #PROC debug variable contains the name of the
currently executing paragraph or section in the
COBOL program. The form of #PROC is

P.progname PR.procedure-name

where progname is the name of the currently execu-
ting program; procedure-name is usually the name of
the currently executing paragraph. When execution
is suspended between a section name line and a
paragraph name line, procedure—name is the name of
the currently executing section. When execution is
suspended within a paragraph that has the same name
as a paragraph in a different section, #PROC does
not indicate which of the two paragraphs was exe-
cuting when suspension occurred.

60484120 B

The - #iOME variable contains the name of the current
home program. The home program is described in
section 4. (When you are debugging a single main
program, the home program is the program you are
debugging.) The form of #HOME is P.name. This
variable is useful for programs that contain mul-
tiple program units.

The #BP, #TP, and #GP variables contain the numbers
of breakpoints, traps, and groups, respectively,
that are currently defined for the debug session.
These variables are especially useful for longer,
more complex debug sessions.

To display the contents of a debug variable, you
must use the D command; debug variables cannot be
displayed with the DISPLAY command or LIST,VALUES
command. The format of the D command is as follows:

D,variable

In this format, variable is the name of the debug
variable that you want to display. Only one vari-
able can be specified in the D command.

NOTE

D is actually the short form of the command
name. DISPLAY. 1In the CID reference manual,
this command is called the language-
independent DISPLAY command; in this guide,
it is called the D command so that it is
‘not confused with the COBOL CID DISPLAY
command that displays data items and
literals. If you use the long form of the
D command, you must enter a comma after the
command name.

Examples of the D command are shown in figure
3-11. 1In this figure, the program FIND-HIGH-BID is
executed with the input file BIDS. The program and
input file are listed earlier in this section.

oS
LIST COMMANDS

The LIST commands allow you to list various types
of information relevant to the current debug
session or to your program. The LIST commands are
summarized in table 3-6.

TABLE 3-6. LIST COMMANDS

Command Description

LIST ,BREAKPOINT | Lists breakpoint information

LIST,GROUP Lists group information

LIST,TRAP Lists trap information

LIST,STATUS Lists information about the
current status of the debug
session

LIST,VALUES Lists all current program values

3-17

CYBER INTERACTIVE DEBUG

? set,breakpoint,pr.write-results
? go

*B #1, AT PR.WRITE-RESULTS
? d,#line —==

#LINE = P.FIND-HI L.132

? d,#proc —= —

#PROC = P.FIND-HI_PR.WRITE-RESULTS
? d,#bp =

#BP = 1

? list,breakpoint,*

*B #1 = PR.WRITE-RESULTS

? d #tp —=

#P =0

? list,trap,*

NO TRAPS

? d, fgp —=

HGP = 0

? d,#home —=

#HOME = P.FIND-HI

? quit

#LINE is the line where execution is suspended.
#PROC is the paragraph or section where execution is suspended.

#BP is the number of currently defined breakpoints.
#TP is the number of currently defined traps.

#GP is the number of currently defined groups.

#HOME is the name of the home program.

Figure 3-11. Displaying Debug Variables

The LIST commands are particularly useful with
longer debug sessions in which you are constantly
changing the status of the session. For example,
you can initially set some breakpoints or traps,
clear some or all of them later in the session, and
set new ones; or you can change output options
several times during the course of a session. With
the LIST commands you can keep track of this and
other CID information.

Some of the LIST commands can produce a large
volume of output. You can prevent this output from
appearing at the terminal by writing it, instead,
to a separate file that can then be printed. The
commands to accomplish this are described later in
this section under Control of CID Output.

The LIST,BREAKPOINT and LIST,TRAP commands are
described earlier in this section; the LIST,GROUP
command is described in section 5. The LIST,STATUS
command is described in the following paragraphs.

LIST,STATUS COMMAND

The LIST,STATUS command displays a brief summary of
the status of a debug session as it exists at the
time the command is issued. This command has the
form:

LIST, STATUS

The short form of LIST,STATUS is LS. Information
displayed by the LIST,STATUS command includes:

The home program name. The home program is
described in section 4.

The number of breakpoints currently defined.
The number of traps currently defined.

The number of groups currently defined. Groups
are described in section 5.

The status of veto mode (ON or OFF). Veto mode
is described in the CID reference manual.

The status of interpret mode (ON or OFF).
Interpret mode is described in the CID refer-
ence manual.

The current output options. Output options are
controlled by the SET,O0UTPUT command, which
specifies the types of CID output sent to the
terminal. The SET,QUTPUT command is described
later in this section.

The current auxiliary file options. These
options are specified by the SET,AUXILIARY
command, which defines an auxiliary output file
and specifies the type of output to be sent to
that file. The SET,AUXILIARY command 1is
described later in this section.

An example of the LIST,STATUS command is shown in
figure 3-12.

CONTROL OF CID OUTPUT

The output produced by commands such as the LIST
commands and the DISPLAY command can become volu-
minous. As an alternative to displaying all CID
output at the terminal, you can define an auxiliary
output file and specify certain types of CID output
to be written to the file. The commands that
control CID output are:

The SET,OUTPUT command, which specifies the
types of output to be displayed at the terminal

The SET,AUXILIARY command, which defines an
auxiliary output file and specifies the types
of output to be sent to the file

For most - debug sessions, these commands are not
necessary.

60484120 A

? Llist,status

HOME = P_FIND-HI, 1 BREAKPOINTS, NO TRAPS, NO GROUPS, VETO OFF

INTERPRET OFF, OUT OPTIONS = I W E D, AUXILIARY CLEAR

Figure 3-12., LIST,STATUS Command Example

TYPES OF OUTPUT

For purposes of the SET,OUTPUT and SET,AUXILIARY
commands, CID output is classified as to type, with
each type represented by a one-letter code. The
output codes, along with a description of each
code, are listed in table 3-7.

TABLE 3-7. CID OUTPUT TYPES

Output Code Description
E Error messages.
w Warning messages.
D Output produced by execution of

CID commands. Includes output
produced by LIST, DISPLAY, D,
and TRACBACK commands.

I Informative messages. Includes
breakpoint and trap messages.

R The text of each command when it
is executed from a group or file
command sequence.

B The text of each command when it
is executed from a trap or
breakpoint body.

T The text of each command entered
from the terminal.

SET,OUTPUT COMMAND

The SET,QUTPUT command specifies the types of
output to be displayed at the terminal. The
SET,OUTPUT command has the form

SET ,OUTPUT, type-list
where type-list is a list of output type codes as
shown in table 3-7. The type codes can be sepa-
rated by commas, or they can be entered without
separators. The short form of SET,OUTPUT is SOUT.

If you include an output code in the option list of
the SET,OUTPUT command, the associated output type

60484120 B

is displayed at the terminal. Omitting an output
code from the option list suppresses the associated
output type. Thus, when a SET,OUTPUT command is
specified, any output type not included in the
option ‘list is not displayed at the terminal, For
example, the command:

SET,OUTPUT,E,W,I

causes output types E, W, and I to be displayed at
the terminal while it suppresses types D, R, and B.

When the 1list is omitted, the default options are
E, W, D, and I for interactive jobs, and E, W, D,
I, R, B, and T for batch jobs. If a SET,0UTPUT
command is not entered, these output types are
displayed at the terminal. It is unnecessary to
specify type T in a SET,OUTPUT command, because
terminal input is displayed at the terminal when
you enter it.

The only output types not automatically displayed
are commands executed in command sequences (types R
and B). Command sequences are described in section
5. To display both this output and the default
output types, enter the command:

SET,OUTPUT ,E,W,I,D,R,B

If you specify the R option on the SET,OUTPUT
command, then whenever a READ command is executed,
each command in the specified group or file command
sequence is displayed at the terminal as it is
executed. If you specify the B option, whenever a
breakpoint or trap body is executed, each command
in the body is displayed as it is executed.

The only output types that cannot be suppressed are
the informative messages issued when breakpoints or
traps are detected (these are included in type I).
These messages are always displayed, regardless of
SET ,OUTPUT specifications. Error messages (type E)
can be suppressed only if you have provided for
writing them to an auxiliary file with the
SET ,AUXILIARY command. If you attempt to suppress
error messages and you have not provided for
writing them to an auxiliary file, CID issues an
error message.

If you suppress warning messages by omitting W from
the SET,OUTPUT command, CID executes all commands
that would normally generate a warning message. No
user prompt is issued; CID takes the action
described in the warning message, responding as if
you had entered a YES or OK response (described
earlier in this section under Error and Warning
Processing).)

3-19

To suppress all output to the terminal (except
breakpoint and trap messages), you can issue either
a SET,OUTPUT command with no option list or the
command :

CLEAR, OUTPUT
The short form of CLEAR,OUTPUT is COUT.

Prior to entering either of these commands, how-
ever, you must provide for writing error messages
to an auxiliary file.

After a CLEAR,OUTPUT command has been issued, you
can restore output to default conditions with the
command :

SET,OUTPUT,E,W,D,T

The SET,OUTPUT command can be used in conjunction
with the SET,AUXILIARY command to suppress certain
types of output to the terminal and to send that
output type to an auxiliary file. The most common
output to suppress is type D (output produced by
the execution of CID commands). This includes
output produced by the LIST,VALUES and DISPLAY
commands, both of which can produce large amounts
of output.

SET,AUXILIARY COMMAND

The SET,AUXILIARY command defines an auxiliary
output file and specifies which types of CID output
are to be written to that file. The SET,AUXILIARY
command has the following form

SET ,AUXILIARY,1fn,type-list

where 1fn is the name of the auxiliary file and
type-list is a list of output type codes as shown
in table 3-7. The type codes can be separated by
commas, or they can be entered without separators.
The short form of SET,AUXILIARY is SAUX.

The SET,AUXILIARY command has no effect on output
that 1is being displayed at the terminal. For
example, the command

SET,AUXILIARY,FAUX,I1,D

creates a file named FAUX and writes all inform-—
ative and command output messages to the file.
These messages are also displayed at the terminal
unless the appropriate SET,OUTPUT command has been
used to suppress these output types.

The option specifications for an auxiliary file can
be changed simply by entering another SET,AUXILIARY
command that specifies file name and a new option
list; it is not necessary to close the file before-
hand.

Only one auxiliary file can be in use at a time.
The QUIT command closes the auxiliary file cur-
rently in use. To close an auxiliary file before
the end of a debug session, enter the command:

CLEAR,AUXILIARY
The short form of CLEAR,AUXILIARY is CAUX. An

auxiliary file can. be closed at any time during a
debug session.

- 3-20

The auxiliary file is a local file. After you
terminate the debug session, you can display the
auxiliary file at the terminal, send it to a
printer, or store it on a permanent storage
device. CLEAR,AUXILIARY does not rewind the file;
after issuing a CLEAR,AUXILIARY you can issue a
SET,AUXILIARY for the same file in the same or
subsequent sessions, and the additional information
is written after the end-of-record.

A common use of the SET,AUXILIARY command is to
preserve a copy of a debug session log. For
example, the command

SET,AUXILIARY,OUTF,E,W,D,I,T

writes the output types E, W, D, I, and T to file
OUTF. If you enter this command at the beginning
of a debug session, a copy of the session is
created exactly as displayed at the terminal. Note
that when you are using an auxiliary file, you must
specify the T option to include in the file the
commands you entered.

The example in figure 3-13 illustrates a SET,OUTPUT
command used in conjunction with a SET,AUXILIARY
command to suppress output to the terminal and
write it instead to an auxiliary file. 1In this
example, the program FIND-HIGH-BID was executed
under CID control with the input file BIDS. In the
figure, execution is suspended at the beginning of
the WRITE-RESULTS section. The program FIND-HIGH-
BID and the input file BIDS are shown earlier in
this section.

set ,output e, w,i

set ,auxiliary,values,d
List,values
clear,auxiliary

set ,output, e, w,i,d

D e W)

Figure 3-13. Output Options Example

The example in figure 3-13 suppresses all output
produced by CID commands (output type D), creates
an auxiliary file called VALUES to which this
output is to be written, writes all program values
to the file VALUES, closes VALUES, and resets
output options to original conditions. The result-
ing file VALUES is shown in figure 3-14.

The following example illustrates a CLEAR,OUTPUT
command used with a SET,AUXILTARY command:

?SET,AUXILIARY,AUXF,D,E
?CLEAR, OUTPUT

This example defines an auxiliary file named AUXF
to receive error messages and output from CID
commands and turns off output to the terminal
(except for trap and breakpoint messages). To
close AUXF and restore terminal output to the
default conditions, you can enter:

2SET,0UTPUT,E,W,D, T
?CLEAR, AUXILTARY

60484120 A

1 ‘ CYBER INTERACTIVE DEBUG 1.2-552.

0
P.FIND-HI
<01>LINE-IN:<05>CUSTOMER-ID=CUST9<05>BIp= 10. 13<D1>LINE-0UT
<05>CUSTOMER-ID= <05>BID=
<05>HIGH-BID~OR~SPACES= <01>SORT-RECORD:<05>BID= 10.13

<05>CUSTOMER-ID=CUST9
<01>SPACE-LINE=

<01>HEADING-1= CUSTOMER BID
<01>HEADING-2= ID NUMBER <O01>HIGH-BID= <<HIGH BID
<01>BID-INFORMATION: <OS>NUMBER-0F~BIDS= 7<05>BID~TABLE -
<IX>BID-INDEX= 8<10>BID[1]= 9111.32[21= 9062.21[31= 5544.62L41= 3344.22

£5]= 3189.44[61= 2266.44[71= 10.13[81= . [91= . [031=
<10>CUSTOMER-IDL11=CUST4L21=CUST3L31=CUST2L[41=CUST7L5]=CUST8L6]= CUSTS
[71=CuUsT9L8]= [91= 0101=

Figure 3-14. Auxiliary Output File VALUESV

INTERACTIVE INPUT following modifications were made to form the new
program FIND-HIGH-BID-2:

Programs receiving input from the terminal can be Line 22 was changed to reference the file INPUT

executed under CID control. A program that is to rather than file BIDS.

receive input from the terminal should be written

in such a way as to differentiate between a program Lines 60 through 66 were inserted so that the

request for input and a CID request for input. program. could request input. from you and the

Likewise, you should have some method of distin-~ program could prompt you for input using a

guishing program output from CID output. This is greater than sign (>).

particularly important when you are running pro-

grams under NOS since the system automatically Lines 98 and 99 were inserted to make the

inserts a question mark (?) prompt (identical to program issue the input request line before the

the CID prompt) at the beginning of a line to list of bids is entered from the terminal.

indicate a program request for terminal input.
Line 101 was inserted to make the program

In figure 3-15, the program FIND-HIGH-BID has been display the greater than sign before each input
modified to accept input from the terminal. The - line is entered from the terminal.

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. FIND-HIGH-BID-2.

3 *

4 * THIS PROGRAM READS IN BIDS SUBMITTED FOR ONE ITEM

5 * AT AN AUCTION, AND SORTS THE BIDS IN DESCENDING

[* ORDER. RESULTS ARE PRINTED OUT, AND THE HIGHEST

7 * BID IS INDICATED.

8 * ' .

9 * EACH INPUT LINE TAKES THE FORM:

10 * CUSTOMER-ID PICTURE X(5).

1" * BID i PICTURE 9999v99.

12 *

13 ENVIRONMENT DIVISION.

14 :

15 CONFIGURATION SECTION.

16 SOURCE-COMPUTER. CYBER-170.

17 OBJECT-COMPUTER. CYBER-~170.

18 :

Figure 3-15. Program FIND-HIGH-BID-2 (Sheet 1 of 4)

60484120 A]) 3-21

19

21
22
23
24
25
26
27
28
29

3
32
33
34
35

37

39
40
41
42
- 43

45
47

49
50
51
52
53
54
55
56
57
58
59

61
62

65
66
67

69
70
7
74
76

78
9

81
82
83

85

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IN-FILE ASSIGN TO "INPUT".
SELECT OUT-FILE ASSIGN TO "OUTPUT".
SELECT SORT-FILE ASSIGN TO SFILE.

DATA DIVISION.
FILE SECTION.

FD IN-FILE -
LABEL RECORD IS OMITTED
DATA RECORD IS LINE-IN.

01 LINE-IN.
05 CUSTOMER-ID
05 8ID
05 FILLER

FO OUT-FILE
LABEL RECORD IS OMITTED
DATA RECORD IS LINE-OUT.

01 LINE-OUT.
05 FILLER
05 CUSTOMER-ID
05 BID
05 HIGH-BID-OR-SPACES
05 FILLER

SO SORT-FILE

PICTURE X(5).

PICTURE 9999Vv99.

PICTURE X(9).

PICTURE X(10).
PICTURE X(10).

PICTURE 9999.99.

PICTURE X(13).
PICTURE X(30).

RECORD CONTAINS 11 CHARACTERS

DATA RECORD IS SORT-RECORD.

01 SORT-RECORD.
05 BID
05 CUSTOMER-ID

WORKING-STORAGE SECTION.

01 INPUT-REQUEST-LINE.
05 PART-1

VALUE " ENTER LIST OF CUSTOMER-IDS AND BIDS ™.

05 PART-2

PICTURE 9999Vv99.

PICTURE X(5).

PICTURE X(37)

PICTURE X (30)

VALUE "IN THE FORM XXXXX9999V99".

01 PROMPT-LINE

01 SPACE-LINE

PICTURE X(3) VALUE " > ",

PICTURE X(100) VALUE SPACES.

01 HEADING-1 PICTURE X(25)
VALUE " CUSTOMER BID". -

01 HEADING-2 PICTURE X(20)
VALUE " ID NUMBER".

01 HIGH-BID PICTURE X(13)

VALUE " <<HIGH BID".

01 BID-INFORMATION.
05 NUMBER-OF-BIDS
05 BID-TABLE

10 BID
10 CUSTOMER-ID

PICTURE 9V.

OCCURS 10 TIMES
INDEXED BY BID-INDEX.
PICTURE 9999V99.

PICTURE X(5).

Figure 3-15. Program FIND-HIGH-BID-2 (Sheet 2 of 4)

60484120

87

88

89

90

91

92

93

9%

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
m
112
13
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

PROCEDURE DIVISION.
INITIALIZATION SECTION.

OPEN-FILES.
OPEN INPUT IN-FILE
OUTPUT OUT-FILE.
INITIALIZE-VALUES.
MOVE ZERO TO NUMBER-OF-BIDS.

PROCESS-A-BID SECTION.

REQUEST-INPUT. i

WRITE LINE-OUT FROM INPUT-REQUEST-LINE.
READ-A-BID.

WRITE LINE-OUT FROM PROMPT-LINE.

READ IN-FILE AT END GO TO SORTING.

ADD 1 TO NUMBER-OF-BIDS. '

MOVE CORRESPONDING LINE-IN

' TO BID-TABLE (NUMBER-OF-BIDS).

READ-NEXT-BID.

GO TO READ-A-BID.

SORTING SECTION.

SORT-THE-BIDS.
SORT SORT-FILE
ON DESCENDING KEY BID OF SORT-RECORD
INPUT PROCEDURE IS SORT~IN~PROC
OUTPUT PROCEDURE IS SORT-OUT-PROC.
DONE-~SORTING.
GO TO WRITE-RESULTS.

SORT-IN-PROC SECTION.
START-OF~SECTION.

PERFORM SORTING-PARAGRAPH VARYING BID-INDEX FROM 1 BY 1

UNTIL BID-INDEX IS GREATER THAN NUMBER-OF-BIDS.
GO TO END~OF~SECTION.
SORTING-PARAGRAPH.
MOVE CORRESPONDING BID-TABLE (BID-INDEX)
TO SORT-RECORD.
RELEASE SORT~-RECORD.
END~OF-SECTION.

SORT-QUT-PROC SECTION.

START-OF-SECTION.
PERFORM SORTING-PARAGRAPH. VARYING BID-INDEX FROM 1 BY
UNTIL BID-INDEX IS GREATER THAN NUMBER-OF-BIDS.
GO TO END-OF-SECTION.
SORTING-PARAGRAPH.
RETURN SORT-FILE RECORD
AT END GO TO END-OF-SECTION.
MOVE CORRESPONDING SORT-RECORD
TO BID-TABLE (BID-INDEX).
END-OF-SECTION.

60484120 A

Figure 3-15. Program FIND-HIGH-BID-2 (Sheet 3 of 4)

3-23

144 WRITE-RESULTS SECTION.

145 WRITE-HEADINGS.

146 WRITE LINE-OUT FROM SPACE-LINE.

147 WRITE LINE-OUT FROM SPACE-LINE.

148 WRITE LINE-OUT FROM HEADING-1.

149 WRITE LINE-OUT FROM HEADING-2.

150 WRITE-HIGH-BID.

151 WRITE LINE-OUT FROM SPACE-LINE.

152 MOVE HIGH-BID TO HIGH-BID-OR-SPACES OF LINE-OUT.
153 MOVE CORRESPONDING BID-TABLE (1) TO LINE-OUT.
154 - WRITE LINE-OUT.

155 WRITE LINE-OUT FROM SPACE-LINE.

156 WRITE-REMAINING-BIDS.

157 PERFORM WRITE-A-BID VARYING BID-INDEX FROM 2 BY 1
158 UNTIL BID-INDEX IS GREATER THAN NUMBER-OF-BIDS.
159 G0 TO END-WRITE.

160 WRITE-A-BID. ;

161 MOVE CORRESPONDING

162 BID-TABLE (BID-INDEX) TO LINE-OUT.

163 WRITE LINE-OUT.

164 END-WRITE. _

165 WRITE LINE-OUT FROM SPACE-LINE.

166

167 END-OF-RUN SECTION.

168

169 CLOSE-FILES.

170 CLOSE IN-FILE, OUT-FILE.

171 STOP-RUN.

172 STOP RUN.

173

Figure 3-15.

A debug session for FIND-HIGH-BID-2 using NOS is
shown in figure 3-16. Notice in the figure that
question mark prompts for input to the program can
be confused with prompts for CID commands. The
greater than signs printed just before the input
lines tell you that the input is being requested by
the program rather than by CID. When you are
debugging a program that requests terminal input
you should carefully read messages that are dis-
played at the terminal to see if the input request
is from your program or from CID.

A debug session for FIND-HIGH-BID-2 using NOS/BE is
shown in figure 3-17. NOS/BE gives no prompt for
input; the greater than sign is therefore important
in the program using NOS/BE, because it prompts you
directly for program input. Without this prompt,
it can be difficult to determine whether you should
enter program input or wait for either CID output
or program output when the terminal is inactive.

SAMPLE DEBUG SESSION:
DISPLAYING AND ALTERING
VALUES; OUTPUT CONTROL

The program FIND-HIGH-BID and its associated input
file BIDS (both shown earlier in this section) are
used for the sample debug session described in the
following paragraphs. The debug session is shown
in figure 3-18; the auxiliary file created during
the debug session is shown in figure 3-19.

3-24

Program FIND-HIGH-BID-2 (Sheet 4 of 4)

In this debug session, a breakpoint is set at the
beginning of the SORTING section and execution is
initiated. When the breakpoint occurs, all seven
of the bids on file BIDS have been read by the
program., Using MOVE commands, an eighth bid is
given to the program while execution is suspended.

At this point, an auxiliary file AUXFILE is created
with the E, W, I, D, and T output optiomns, and the
standard output file is ' changed so that the D
option is not in effect. Error messages, warning
messages, and informative messages are written to
both files. Commands entered from the terminal are
written to the auxiliary file. CID output is
written to the auxiliary file only. The debug
variables are then displayed on the auxiliary file
(see figure 3-19) to document on the file where
execution was suspended when the file was created.
When the LIST,VALUES command is entered, values are
listed on the auxiliary file and not on the ter-
minal. The auxiliary file is then closed by the
CLEAR,AUXILIARY command, and the D output option is
reinstated for the standard output file by the
SET ,OUTPUT command.

Next, a procedure trap is set with lines 99 through
106 as the scope. Because the scope is.restricted
to these lines only, this trap can suspend execu-
tion only when the SORT-THE-BIDS and DONE~SORTING
paragraphs are reached. A breakpoint is then set
at the beginning of the WRITE-RESULTS sectiom, and
execution is resumed.

60484120 A

? go

CYBER INTERACTIVE DEBUG
? set,breakpoint,pr.read-next-bid
? go

ENTER LIST OF CUSTOMER-IDS AND BIDS IN THE FORM XXXXX9999V99
>

? cus0452144

*B #1, AT PR.READ-NEXT-BID

? display bid of bid-table (number-of-bids)
521.44 .

? go

>

? cus71061318 -

*8 #1, AT PR.READ-NEXT-BID

? display bid of bid-table (number-of-bids)
613.18

? go

>

? cus08042500 =

*B #1, AT PR.READ-NEXT-BID

? display bid of bid-table (number-of-bids)
425.00

? go

>

? cus97071133 -

#8 #1, AT PR.READ-NEXT-BID

? display bid of bid-table (number-of-bids)
711.33

? go

>

? cus36055400 -

*B #1, AT PR.READ-NEXT-BID .

? display bid of bid-table (number-of-bids)
554.00

>
?

CUSTOMER - BID
ID NUMBER

CUS97 0711.33 <<HIGH BID
CUST1 0613.18
CUS36 0554.00
CUSO4 0521.44
CUsO8 0425.00
*T #17, END IN L.172
2

DEBUG TERMINATED

- Program

Program

Program

Program

Program

input

input

input

input

input

60484120 A

figure 3-16. Interactive Program Input (NOS)

3-25

CYBER INTERACTIVE DEBUG.

?7set breakpoint pr.read-next-bid
2

790

ENTER LIST OF CUSTOMER-IDS AND

>cus04052144 —= -
*8 #1, AT PR.READ-NEXT-BID
2?display bid of bid-table (number-of-bids)
521.44

BIDS IN THE FORM XXXXX9999V99

Program input

g0
>cus71061318 = -
*B #1, AT PR.READ-NEXT-BID
?display bid of bid-table (number-of-bids)
613.18
2
- >cus 08042500 —=
#B #1, AT PR.READ-NEXT-BID
2display bid of bid-table (number-of-bids)
425.00 ' :

?go
>cus97071133 =
*8 #1, AT PR.READ-NEXT-BID

2display bid of bid-table (number-of-bids)
711.33

Program input

Program

input

Program input

290 : .
>cus36055400 —= - Program input
*8 #1, AT PR.READ-NEXT-BID

2?display bid of bid-table (number-of-bids)

554.00
?go
>Xeof
CUSTOMER BIb
ID NUMBER
cUs97 0711.33 <<HIGH BID
cus71 0613.18
. CUS36 0554.00
CUSO4 0521.44
cusos 0425.00
*T #17, END IN L.172
2quit

DEBUG TERMINATED

Figure 3-17. Interactive Program Input (NOS/BE)

CYBER INTERACTIVE DEBUG

? set ,breakpoint,pr.sorting
?

'*B #1, AT PR.SORTING
? display number~of-bids

Display the value of
NUMBER-OF-BIDS.

Through MOVE commands, place
an additional bid in

BID-INFORMATION.
? move 8 to number-of-bids
? move "custé" to customer-id of bid-table (8) Because no-D option is speci-
? move 596.25 to bid of bid-table (8) /fied, CID output will not
? set, output,e,w,i - i appear at the terminal.
? set,auxiliary,auxfile,e, w,i,d,t \
? d,#proc Establish the auxiliary file
? d,#line AUXFILE. - The output options
? list,values in the SET,OUTPUT and
SET,AUXILIARY commands cause
CID output to be sent to the
auxiliary file, but not to
the terminal.
Figure 3-18. Sample Debug Session Using the Program FIND-HIGH-BID (Sheet 1 of 3)
3-26 60484120

7 setoutput e, i,d —e Specify the D option to

? clear,auxiliary e resume sending CID output to
? set,trap,procedure,l.99...1.106 the terminal.

*WARN - LINE 106 NOT EXECUTABLE - LINE 105 WILL BE USED

0K ? ok Close the auxiliary file.

? set ,breakpoint,pr.write-results : :

? go ;

*T #1, PROCEDURE IN PR.SORT-THE-BIDS

? go) , Establish AUXFILE again as
*T #1, PROCEDURE IN PR.DONE-SORTING : the auxiliary output file.

? go Output is appended to the end
*B #2, AT PR.WRITE-RESULTS of the file.

? set,auxiliary,auxfile,e,w,i,d, t =

? d,#proc The debug variables are dis-
#PROC = P.FIND-HI_PR.WRITE-RESULTS { __ played both at the terminai
? d, #line and on the auxiliary file,
#LINE = P.FIND-HI L.132 because the D output option
7 Llist,status - is in effect for both the
HOME = P.FIND-HI, 2 BREAKPOINTS, 1 TRAPS, NO GROUPS, VETO OFF standard and auxiliary output
INTERPRET OFF, OUT OPTIONS = I W E D files.

AUX FILE = AUXFILE, OPTIONS = I WE D T
7 set,output,e,w,i e The D option is suppressed
? Llist,values from the standard output

? list,trap,* file. CID output will not
? list,breakpoint * appear at the terminal.
? set,breakpoint,pr.write-a-bid
? go
" CUSTOMER BID
ID NUMBER

CUST4 9111.32 <<HIGH BID

*B #3, AT PR.WRITE-A-BID

? go
CcuUsT3 9062.21

*B #3, AT PR.WRITE-A-BID

? go)
cusT2 5544 .62

«B #3, AT PR.WRITE-A-BID !

? go ’
CusT? 3344.22

*B #3, AT PR.WRITE-A-BID

? display bid-index i

? set bid-index down by 2 - The format 2 SET command

? go alters BID-INDEX.
CusT2 5544.62

*B #3, AT PR.WRITE-A-BID

? go

CuUsT? 3344.22
*B #3, AT PR.WRITE-A-BID
? go

CUST8 3189.44
*B #3, AT PR.WRITE-A-BID
? display bid-index . :
? set bid-index to 3 - The format 1 SET command
? go alters BID-INDEX.

. CUST2 5544.62

*B #3, AT PR.WRITE-A-BID
? clear,auxiliary Close the auxiliary output
? step,1,line : file.
*S LINE AT L.149
? step,1,line
*S LINE AT L.151
? step,1,line

CuUsT? 3344.22
*B #3, AT PR.WRITE-A-BID

Figure 3-18. Sample Debug Session Using the Program FIND-HIGH-BID (Sheet 2 of 3)

60484120 A A 3-27

? d, #tp -

? set,output,e,w,i,d,t —=
? d, #tp

#TP =1

? d, #bp

#BP =3

? Llist,breakpoint *

? clear,breakpoint,#3
? d,#bp —=

*B #1 = PR.SORTING, *B #2 = PR.WRITE-RESULTS,

*B #3 = PR.WRITE-A-BID

#BP = 2

? go
CusT8 3189.44
CUSTS 2266.44
CusTé 0596.25
CUST9 0010.13

*T #17, END IN L.160
? quit
DEBUG TERMINATED

#TP is not displayed, because
the D option is not in effect.
for the standard output file.

The D option is specified in
the SET,OUTPUT command so
that #TP can be displayed.

#BP is decreased by one when
breakpoint number 3 is
cleared.

Figure 3-18. Sample Debug Session Using the Program FIND-HIGH-BID (Sheet 3 of 3)

b,#PROC :

D, #LINE

#LINE = P.FIND-HI L.97
LIST,VALUES

P.FIND-HI

<05>HIGH-BID-OR-SPACES=
<05>CUSTOMER-1ID=
<01>SPACE-LINE=

#PROC = P.FIND-HI_PR.SORTING

<01>HEADING-1=
<01>HEADING-2= ID NUMBER <O01>HIGH-BID=
<01>BID-INFORMATION: <OS>NUMBER-OF-BIDS= 8<05>BID-TABLE
<IX>BID-INDEX=-306783378<10>BID[1]= 3344.22[2]= 5544.62[3]1= 3189.44[4]=
2266.44[51= 9062.21061= 9111.32L7]= 10.13[81= 596.25[9]= . [103=
. <10>CUSTOMER-IDL11=CUST7L21=CUST2[3]=CUST8L41=CUSTSL51=CUST3L6]1=

CUST4L7]=CUSTIL[8I=CUST6L[9]=

CYBER INTERACTIVE DEBUG 1.2-552.

<01>LINE-IN:<05>CUSTOMER-ID=CUST9<05>BID= 10.13<01>LINE-OUT
<05>CUSTOMER-1ID= <05>BIb=
<01>SORT-RECORD:<05>BID= .

CUSTOMER BID
<<HIGH BID

The SET,AUXILIARY command
is specified when execu-
tion is suspended at line
97, the beginning of the
SORTING section. CID out-
put and commands entered
at the terminal are
listed, because the D and
T options are specified in
the SET,AUXILIARY command.

SET ,OUTPUT E,W,I,D

CLEAR,AUXILIARY = The auxiliary output file
is closed. Output is not
sent to this file until
the next SET,AUXILIARY
command is entered.

Figure 3-19. Auxiliary Output File AUXFILE (Sheet 1 of 2)
3-28 60484120 A

1 CYBER INTERACTIVE DEBUG 1.2-552.
0

D, #PROC \ A new heading is written
#PROC = P.FIND-HI PR.WRITE-RESULTS to the auxiliary file when
D,HLINE - the SET,AUXILIARY command
#LINE = P.FIND-HI L.132 is entered.

LIST,STATUS -

HOME = P.FIND-HI, 2 BREAKPOINTS, 1 TRAPS, NO GROUPS, VETO OFF
INTERPRET OFF, OUT OPTIONS = I W E D

AUX FILE = AUXFILE, OPTIONS = I WE D T

SET,OUTPUT,E,W,I

LIST,VALUES

P.FIND-HI

<01>LINE-IN:<05>CUSTOMER-ID=CUST9<05>BID= 10.13<01>LINE-OUT
<05>CUSTOMER-ID= <05>B1D= :
<05>HIGH-BID-OR-SPACES= . <01>SORT-RECORD: <05>BID= 10.13
<05>CUSTOMER-ID=CUST9

<01>SPACE-LINE=

<01>HEADING-1= CUSTOMER BID
<01>HEADING-2= : ID NUMBER <O1>HIGH-BID= <<HIGH BID
<01>BID-INFORMATION: <O5>NUMBER-OF-BIDS= 8<05>BID-TABLE
<IX>BID-INDEX= 9<10>BID[1]1= 9111.32[21= 9062.21[31= 5544.62L[41= 3344.22

[51= 3189.44[61= 2266.44[71= 596.25[81= 10.13[(91= . [1031= .
<10>CUSTOMER-IDL11=CUST4[21=CUST3[31=CUST2L41=CUST7[5]1=CUSTBL61=CUST5
[71=CUST6L[81=CUSTIL9]= [101=

LIST,TRAP, *

T #1 = PROCEDURE L.99...L.106

LIST,BREAKPOINT , *

*B #1 = PR.SORTING, *B #2 = PR.WRITE-RESULTS

SET ,BREAKPOINT ,PR.WRITE-A-BID

G0

*B #3, AT PR.WRITE-A-BID —=s - Program output does not
GO appear on the auxiliary
*B #3, AT PR.WRITE-A-BID) file.

GO

*B #3, AT PR.WRITE-A-BID

G0

*B #3, AT PR.WRITE-A-BID

DISPLAY BID-INDEX

5

SET BID-INDEX DOWN 8Y 2

GO

*B #3, AT PR.WRITE-A-BID

G0

*B #3, AT PR.WRITE-A-BID

G0

*B #3, AT PR.WRITE-A-BID

DISPLAY BID-INDEX
6

SET BID-INDEX TO 3

GO

*B #3, AT PR.WRITE-A-BID

CLEAR,AUXILIARY -~ The auxiliary file is
‘ : closed.

Figure 3-19. Auxiliary Output File AUXFILE (Sheet 2 of 2)

60484120 A A 3-29

When execution is suspended at the beginning of the
WRITE-RESULTS section, the auxiliary file AUXFILE
is again established with the E, W, I, D, and T
options. #PROC and #LINE are again displayed to
document on the auxiliary file where execution is

suspended. The debug variables are also displayed.

at the terminal, because the D option has not been
suppressed. The status of the debug session is
then listed on both the auxiliary file and at the
terminal. :

After the status is listed, the SET,OUTPUT command
is entered to suppress CID output at the terminal.
Program values, traps, and breakpoints are listed
on the auxiliary file, and a breakpoint is set at
the WRITE-A-BID paragraph. Execution is resumed.

Execution is suspended and resumed several times at
the WRITE-A-BID paragraph. When BID-INDEX is equal
to five, its value is displayed on the auxiliary
file. The. format 2 SET command is entered to
. decrease BID-INDEX by two; this action causes two
output lines to be repeated. When BID-INDEX is
six, the format 1 SET command changes the value to
3, and several output lines are again repeated.
Notice that program output does not appear on the
auxiliary file. The next time execution is
suspended, the auxiliary file is closed.

3-30

The STEP command is then entered several times.
The first time STEP,1,LINE is entered, execution is
suspended at line 149. The second time STEP,1,LINE
is entered, execution is suspended at line 151, two
lines after line 149. Line 150 is skipped, because
line 150 is continued from line 149. The third
time STEP,1,LINE is entered, execution is suspended
by the breakpoint at the WRITE-A~BID paragraph
instead of by the STEP command. When a breakpoint
and STEP command cause execution to be suspended at
the same line, the breakpoint suspends execution
and the STEP command is ignored.

When execution is suspended, an attempt is made to
display #TP, wusing the D command. #TP is not
displayed, however, because the D option has been
suppressed from the standard output file. The
SET,QUTPUT command is entered to reinstate the D
option, and then #TP is displayed. One trap is
currently established.

Next, #BP is displayed, and three breakpoints are
established. The three breakpoints are listed and
breakpoint number three is cleared. #BP decreases
to two as a result of this clear command.

Execution is resumed. The program ' executes to
completion.

60484120 A

MULTIPLE PROGRAM UNITS 4

L R

This section describes CID features for debugging
COBOL programs that call one or more subprograms.
In this user’s guide, the main program and each
subprogram is called a program unit.

Special features are necessary when you are debug-
ging a main program with subprograms, because
identifiers, line numbers, and procedure-names in a
program unit are local to that program unit.
Different program units might have some of the same
lide numbers, procedure-names, and identifiers.
CID allows you to specify particular program units
in many commands, and CID issues program unit
information when program execution is suspended in
different program units.

HOME PROGRAM

The home program is a program unit designated by
CID or by you. Whenever execution is suspended by
a breakpoint, a trap, or the STEP command, CID
automatically designates the suspended program unit
as the home program. You can designate the home
program explicitly by entering the SET,HOME com-
mand, but the next time execution is suspended, the
home program reverts to the suspended program unit.

When you refer to line numbers and procedure-names
in the home program, no special notation is neces-
sary. However, when you refer to line numbers and
procedure-names that are outside the home program,
you must use program name qualification, described
later in this section.

CID commands with a COBOL syntax can only specify

identifiers and procedure names inside the home .

program. The CID commands of this type that are
described in this user’s guide are as follows:

DISPLAY command

GO TO command

MOVE command

SET command
If you want to enter one of these commands and
specify an identifier outside the home program, you
must first enter the SET,HOME command to designate

the program unit containing the identifier as the
home program.

60484120 A

The following paragraphs describe the SET,HOME
command and the {#HOME debug variable. An example
debug session is shown in figure 4-1 to illustrate
these concepts. The session is run using the main
program PROCESS-BIDS (figure 4-2), which calls the
subprogram SORT-THE-BIDS (figure 4-3). The input
file BIDS is shown in figure 4-4.

SET,HOME COMMAND

To explicitly designate the home program, you enter
the SET,HOME command:

SET,HOME, program—-unit

where program-unit specifies which program unit is
the home program. Only the first seven characters
in the program unit name need to be specified. The
short form of SET,HOME is SH.

Examples of the SET,HOME command are:
SET,HOME , PREPARE-PAYROLL

This command designates PREPARE-PAYROLL as
the home program.

SET,HOME , PREPARE

This command has the same effect as the
previous example, because only the first
seven characters in the program unit name
need to be specified.

SH,PREPARE

This command has the same effect as the
previous example.

#HOME DEBUG VARIABLE

The debug variable #HOME contains the first seven
characters of the name of the current home pro-
gram. You can display the value of #HOME by enter-
ing the D command as follows:

D, #HOME

The D command is described in section 3.

CYBER INTERACTIVE DEBUG
? set,breakpoint, pr.sorting
? go

*B #1, AT PR.SORTING

Execution is suspended in PROCESS-BIDS. Therefore, PROCESS-BIDS

#HOME =
? display number-of-bids

7 .
? display counter -

is designated the home program. #HOME contains the first seven
characters of the home program name.

COUNTER {in SORT-THE-BIDS) cannot be displayed when PROCESS-BIDS

*ERROR - NO PROGRAM VARIABLE COUNTER
? step,1,procedure

*S PROCEDURE AT PR.CALL~SORT-THE-BIDS
? step

*S PROCEDURE AT P.SORT~TH_PR.SORTING
? set,breakpoint,pr.done-sorting

? go
*B #2, AT PR.DONE-SORTI
? d,#home

#HOME = P.SORT-TH

7
? display counter
8
? display high-bid
*ERROR - NO PROGRAM VARIABLE HIGH-BID
? set , home,process =

fft/////////”/”~—_
? display number-of-bids

—

is the home program.

SORT-THE-BIDS is designated the home program when execution is
suspended within that program.

NUMBER-OF-BIDS can be displayed, because it is defined in the
Data Division of SORT-THE-BIDS.

COUNTER can be displayed when SORT-THE-BIDS is the home program.

HIGH-BID cannot be displayed when SORT-THE-BIDS is the home
program.

The SET,HOME command designates PROCESS BIDS as the HOME program.
Only the first seven characters of PROCESS-BIDS are specified.

—

? display high-bid
<<HIGH BID
? display counter —a

T HIGH-BID can be displayed when PROCESS-BIDS is. the home program.

*ERROR — NO PROGRAM VARIABLE COUNTER
? go

*T #17, END IN L.125
? display counter
*ERROR - NO PROGRAM VARIABLE COUNTER
? set,home,sort-th
? display counter
8
quit
DEBUG TERMINATED

?

L COUNTER cannot be displayed.

CUSTOMER 8ID
ID NUMBER
CUsT4 9111.32 <<HIGH BID
CUST3 9062.21
cusT2 5544 .62
CusT? 3344.22
CUST8 3189.44
CUST5 2266.44
CUST?9 0010.13

Figure 4-1. Home Program Example

60484120 A

NN AN N AA NN NN N NN) = b b b o 2 o ch s 3 2O 00
S%mﬂomﬁumdsoaﬂomawwaoowﬁombuono NowsuWn -

IDENTIFICATION DIVISION.
PROGRAM-ID. PROCESS-BIDS.

THIS PROGRAM READS IN BIDS SUBMITTED FOR ONE ITEM
AT AN AUCTION AND SORTS THE BIDS IN DESCENDING
ORDER. RESULTS ARE PRINTED OUT, AND THE HIGHEST
BID IS INDICATED.

SORTING IS DONE BY SUBPROGRAM SORT-THE-BIDS.
EACH INPUT LINE TAKES THE FORM:

CUSTOMER-ID PICTURE X(5).
BID PICTURE 9999v99.

N Ok k¥ X X K ¥ ¥ ¥ ¥

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL. ~

- SELECT IN-FILE ASSIGN TO "BIDS".

SELECT OUT-FILE ASSIGN TO "OQUTPUT".

DATA DIVISION.
FILE SECTION.
FD IN-FILE

LABEL RECORD IS OMITTED
DATA RECORD IS LINE-IN.

01 LINE-IN.
05 CUSTOMER-ID PICTURE X(5).
05 BID . PICTURE 9999V99.
05 FILLER PICTURE X(9).

FD OUT-FILE

LABEL RECORD IS OMITTED
DATA RECORD IS LINE-OUT.

01 LINE-QUT.
05 FILLER PICTURE X(10).
05 CUSTOMER-ID PICTURE X(10).
05 BID PICTURE 9999.99.
05 HIGH-BID-OR-SPACES PICTURE X(13).

WORKING~STORAGE SECTION.

01 SPACE-LINE PICTURE X(100) VALUE SPACES.
01 HEADING-1 PICTURE X(25)
VALUE " CUSTOMER BID".
‘01 HEADING-2 PICTURE X(20)
VALUE " ID NUMBER".
01 HIGH-BID PICTURE X(13)
VALUE " <<HIGH BID".
01 BID-INFORMATION.
05 NUMBER-OF-BIDS PICTURE 9V.
05 BID-TABLE OCCURS 10 TIMES
INDEXED. BY BID-INDEX.
10 8ID PICTURE 9999V99.
10 CUSTOMER-ID PICTURE X(5).

60484120 A

Figure 4-2. Main Program PROCESS-BIDS (Sheet 1 of 2)

7

PROCEDURE DIVISION.

72
73 INITIALIZATION SECTION.
74
75 OPEN-FILES.
76 OPEN INPUT IN-FILE
7 OUTPUT OUT-FILE.
78 INITIALIZE-VALUES.
79 MOVE ZERO TO NUMBER-OF-BIDS.
80 .
81 PROCESS—-A-BID SECTION.
82
83 READ-A-BID.
84 READ IN-FILE AT END GO TO SORTING.
85 ADD 1 TO NUMBER-OF-BIDS.
86 MOVE CORRESPONDING LINE-IN
87 TO BID-TABLE (NUMBER-OF-BIDS).
88 READ-NEXT-BID.
89 GO TO READ-A-BID.
90
91 SORTING SECTION.
92
93 CALL-SORT-THE-BIDS.
94 CALL ''SORT-TH"
95 USING BID-INFORMATION.
96
97 WRITE-RESULTS SECTION.
98 WRITE-HEADINGS.
99 WRITE LINE-OUT FROM SPACE-LINE.
100 WRITE LINE-OUT FROM SPACE-LINE.
101 WRITE LINE-OUT FROM HEADING-1.
102 WRITE LINE-OUT FROM HEADING-2.
103 WRITE-HIGH-BID. :
104 WRITE LINE-OUT FROM SPACE-LINE.
105 MOVE HIGH-BID TO HIGH-BID-OR-SPACES OF LINE-OUT.
106 MOVE CORRESPONDING BID-TABLE (1) TO LINE-OUT.
107 WRITE LINE-OUT.
108 WRITE LINE-OUT FROM SPACE-LINE.
109 WRITE-REMAINING-BIDS.
110 PERFORM WRITE-A-BID VARYING BID-INDEX FROM 2 BY 1
1M1 UNTIL BID-INDEX IS GREATER THAN NUMBER-OF-BIDS.
112 GO TO END-WRITE.
113 WRITE-A-BID.
114 MOVE CORRESPONDING
115 BID-TABLE (BID-INDEX) TO LINE-OUT.
116 WRITE LINE-OUT. .
117 END-WRITE.
118 WRITE LINE-OUT FROM SPACE-LINE.
119
120 END-OF-RUN SECTION.
121
122 CLOSE-FILES.
123 CLOSE IN-FILE, OUT-FILE.
124 STOP-RUN.
125 STOP RUN.
126
Figure 4-2. Main Program PROCESS-BIDS (Sheet 2 of 2)
1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. SORT-THE-BIDS.
3 *
4 * THIS SUBPROGRAM SORTS THE BIDS FOR THE MAIN
5 * PROGRAM PROCESS-BIDS.
6 *
7 ENVIRONMENT DIVISION.
8
9 CONFIGURATION SECTION.
10 SOURCE-COMPUTER. CYBER-170.
1 OBJECT-COMPUTER. CYBER-170.
12

Figure 4-3. Subprogram SORT-THE-BIDS (Sheet 1 of 2)

60484120 A

13 INPUT-OQUTPUT SECTION.

14

15 FILE~CONTROL.

16 SELECT SORT-FILE ASSIGN TO SFILE.

17

18 DATA DIVISION.

19

20 FILE SECTION.

21

22 SD SORT-FILE

23 RECORD CONTAINS 11 CHARACTERS

24 DATA RECORD IS SORT-RECORD.

25
26 01 - SORT-RECORD.

27 05 8BID PICTURE 9999V99.
28 05 CUSTOMER-ID PICTURE X(5).

29

30 WORKING-STORAGE SECTION.

31

32 01 COUNTER . PICTURE 99.

33

34 LINKAGE SECTION.

35

36 01 BID-INFORMATION.

37 05 NUMBER-OF-BIDS PICTURE 9V.

38 05 BID-TABLE OCCURS 10 TIMES
39 INDEXED BY BID-INDEX.
40 10 8Ip PICTURE 9999V99.
) : 10 CUSTOMER-ID PICTURE X(5).

42

43 PROCEDURE DIVISION USING BID-INFORMATION.

44

45 SORTING SECTION.

46

47 SORT-STATEMENT.

48 SORT SORT-FILE

49 ON DESCENDING KEY BID OF SORT-RECORD
50 INPUT PROCEDURE IS SORT-IN-PROC

51 OUTPUT PROCEDURE IS SORT-OUT-PROC.

52 DONE-SORTING.

53 EXIT PROGRAM.

54

55 SORT-IN-PROC SECTION.

56

57 START-OF-SECTION.

58 PERFORM SORTING-PARAGRAPH VARYING COUNTER FROM 1 BY 1
59 UNTIL COUNTER IS GREATER THAN NUMBER-OF-BIDS.
60 GO TO END-OF-SECTION.

61 SORTING-PARAGRAPH.

62 MOVE CORRESPONDING BID-TABLE (COUNTER)

63 TO SORT-RECORD.

64 RELEASE SORT-RECORD.

65 END-OF~SECTION.

66

67 SORT-OUT-PROC SECTION.

68

69 START-OF~SECTION.

70 PERFORM SORTING-PARAGRAPH VARYING COUNTER FROM 1 BY 1
7 UNTIL COUNTER IS GREATER THAN NUMBER-OF-BIDS.
72 GO TO END-OF-SECTION.

73 SORTING-PARAGRAPH.

74 RETURN SORT-FILE RECORD

75 AT END GO TO END-OF~SECTION.

76 MOVE CORRESPONDING SORT-RECORD

7 TO BID-TABLE (COUNTER).

78 END~OF-SECTION.

9

80

Figure 4-3. Subprogram SORT-THE-BIDS (Sheet 2 of 2)

60484120 A

CUST7334422
CUST2554462
CUST8318944
CUST5226644
CUST3906221
CUST4911132
CUST9001013

Figure 4-4. Input File BIDS

’REFERENCING LOCATIONS
OUTSIDE THE HOME PROGRAM

In many CID commands, you can specify line numbers
and procedure-name. references outside the home
program by wusing program unit names and program
name qualification. The commands of this sort
described in this guide are as follows:

CLEAR ,BREAKPOINT
CLEAR, TRAP
LIST,BREAKPOINT
LIST,MAP

LIST, TRAP
LIST,VALUES
SAVE ,BREAKPOINT
SAVE, TRAP

SET ,BREAKPOINT
SET , HOME

SET, TRAP

STEP

PROGRAM UNIT NAMES

Program unit names can be specified in many CID
commands, including the SET,BREAKPOINT; SET,TRAP;
and LIST,VALUES commands. Program unit names take
the following form

P.program-unit

where program-unit specifies a main program or a
subprogram. Only the first seven characters in the
program unit name should be specified. If one or
more of these characters are hyphens, the name must
be enclosed in dollar signs ($). For example, the
program unit PREPARE-PAYROLL is referenced as
P.PREPARE, and the program unit COUNT-THE-BILLS is
referenced as P.$COUNT-TS.

Program unit names used alone specify entire
program units. You can specify entire program
units when clearing and listing breakpoints; when
setting, clearing, and listing traps; and when
entering the STEP command.

You can also specify program unit names in the
LIST,VALUES command

LIST,VALUES,program-list

where program-list is a list of program unit names
in the form P.program-unit. List elements are
separated by commas. When the LIST,VALUES command
is entered in this way, values in the specified
program units are listed.

Examples of CID commands that use program unit
names to specify entire program wunits are as
follows:

LIST,VALUES,P.$END-IT$,P.PROGRAM

This command lists the values in the pro-
gram units END-IT and PROGRAM. END-IT is
enclosed in dollar signs, because it
contains a hyphen.

LV,P.$END-ITS,P.PROGRAM

This command has the same effect as the
previous example.

CLEAR ,BREAKPOINT,P.INVNTRY

This command clears all breakpoints in the
program unit INVNTRY.

LIST,TRAP,P.$TRY-ONES$

This command lists all traps in the program
unit TRY-ONE.

PROGRAM NAME QUALIFICATION

Program unit names can be combined with line number
references and procedure-name references to form
program name qualification. This notation allows
you to specify single lines in program units out-
side the home program. Program name qualification
is called qualification notation in other CID
manuals and appears as a program unit name linked
with an underline to a location:

P.program-unit_loc

In this notation, loc can be a line number refer-
ence or a procedure-name reference.

One example of program—name qualification is as
follows:

P.PREPARE L.215

This notation refers to line 215 in the program
unit PREPARE.

Another example is as follows:
P.$COUNT-T$ PR.WRITE-A~LINE
This mnotation refers to the beginning of the

WRITE-A-LINE section or paragraph in the program
unit COUNT-T.

60484120 A

Program name qualification can be used anywhere
line number references and procedure-name refer-
ences are allowed. For example, you might use this
notation to set a breakpoint, as follows:

SET ,BREAKPOINT,P.$ADD-ONE $_PR.REPORT-ERROR

This command sets a breakpoint at the beginning of
the REPORT-ERROR paragraph or section in the pro-
gram unit ADD-ONE.

You can also use program name qualification in the
ellipsis notation. An example of this usage is as
follows:

SET,TRAP,LINE,P._PROG__L. 110...P.PROG L.127

This command sets a LINE trap with a scope of lines
110 through 127 in the program unit PROG.)

CID uses the program name notation when it issues
STEP command, trap, and breakpoint report mes-
sages. Whenever the home program changes as a
result of execution being suspended, the new home
program name is listed along with the line number.
For example, if you enter the STEP command, the
following message might be issued:

*S LINE AT P.ADD-ONE L.137

This message indicates that the home program has
changed to ADD-ONE. Execution is suspended at line
137 of the program unit ADD-ONE. If you enter the
STEP command again, the following message might be
issued:

*S LINE AT L.138

This message indicates that execution is suspended
at line 138. The home program is still ADD-ONE.

DEBUGGING AIDS FOR
MULTIPLE PROGRAM UNITS

CID provides features that can be helpful when you
are debugging a main program with subprograms. The
following paragraphs describe how you can set traps
with scopes outside the home program, specify a
scope for the STEP command, and enter a command to
list load map information.

TRAP SCOPE PARAMETER

The trap scope can consist of an entire program
unit or of several lines within a program unit. To
specify the entire program unit, you wuse the
program unit name. To specify several lines, you
use program name qualification within the ellipsis
notation.

Examples of setting traps with these kinds of
scopes are as follows:

60484120 A

SET,TRAP,PROCEDURE, P.ACCOUNT

This command sets a PROCEDURE trap in the
program unit ACCOUNT. Execution is
suspended every time the beginning of a
paragraph or section in the Procedure
Division of ACCOUNT is reached.

SET ,TRAP,LINE,P.PROG L.135.. -P.PROG L.187

This command sets a LINE trap in lines 135
through 187 in the program unit PROG.
Execution is suspended whenever the begin-
ning of one of these lines is reached.

STEP SCOPE PARAMETER

The STEP command has a scope parameter similar to
the scope parameter in the SET,TRAP command. The
format of a STEP command with a scope is as follows:

STEP,n,type,scope

In this command, the scope is either a range of
lines specified by the ellipsis notation or a pro-
gram unit name. The parameter n is the number of
lines or procedure-names to count before resuming
execution; type is either LINE or PROCEDURE.

When the scope is specified, only lines (or
procedure-names) within that scope are counted, as

- shown in the following examples:

STEP, 3,LINE,P.PAYROLL

This command causes execution to be resumed
until three 1lines in the program unit
PAYROLL have been counted. Lines in any
other program unit are not counted.

STEP, 5,PROCEDURE, P +PAY L.85...P.PAY L.132

This command causes execution to be resumed
until five procedure-name lines in lines 85
through 132 of the program unit PAY have
been counted. Procedure-name lines outside
of lines 85 through 132 are not counted.

A debug session, in which the STEP command with a
scope is entered, is shown in figure 4-5. This
session uses the program units PROCESS-BIDS and-
SORT-THE-BIDS and the input file BIDS, all shown
earlier in this section.

LISTMAP COMMAND

The LIST,MAP command displays load map informa-
tion. This command is useful when you are debug-
ging multiple program units, because it provides a
list of all modules currently in memory, including
the names of every program unit being debugged.
The LIST,MAP command can also provide information
about specific modules. This information consists
of the first word address (FWA), the length (in
octal words), and the entry point names associated
with each module. :

CYBER INTERACTIVE DEBUG

2 step,1,procedure,l.73...1.76 == The STEP command is entered with a scope of lines 73 through
*S PROCEDURE AT PR.INITIALIZATION through 76. The INITIALIZATION section is in this scope.

? step =

*S PROCEDURE AT PR.OPEN-FILES L The STEP command is repeated. The OPEN-FILES paragraph is

? step‘\—_—within the scope.
. The STEP command is repeated. Execution is not suspended

CUSTOMER BID until program termination, because no procedure-name 1ines
ID NUMBER ‘ within line 73 through 76 are encountered. ~

CUSTA 9111.32 <<HIGH BID

CUST3 9062.21
cusT2 5544.62
CusT? 3344.22
CUST8 3189.44
CUSTS 2266 .44
CusT9 0010.13

*T #17, END IN L.125
? quit

"DEBUG TERMINATED

Figure 4-5. STEP Scope Example

The LIST,MAP command has the following forms: SAMPLE DEBUG SESS|ONS:
’ MULTIPLE PROGRAM UNITS
LIST,MAP
The sample debug sessions shown in figures 4-7 and
This form lists the names of all modules 4-8 show how CID -processes multiple program units.
(including program units) in the field Both debug sessions use the program units PROCESS-
length. BIDS and SORT-THE-BIDS and the input file BIDS, all
shown earlier in this section.
LIST,MAP,program-list The following ;:oncepts are illustrated in the

sample debug sessions:
For each specified program unit, this form

lists the name of the program unit, the Initially, the main program (PROCESS-BIDS) is
first word address (FWA), the length (in the home program.

octal words), and the entry point names.

The program-list is a list of program units Program name qualification must be used to set
in the form P.program-unit. List elements breakpoints and traps outside the home program.
are separated by commas. Unqualified line numbers and procedure—names

can be used for breakpoints and traps inside
the home program.
The short form of LIST,MAP is IM. Examples of the

LIST,MAP command are shown in figure 4-6., These CID informs you when the home program has
examples use the program units PROCESS-BIDS and changed by using program name qualification in
SORT-THE-BIDS and the input file BIDS, all shown STEP, breakpoint, and trap report messages.

earlier in this section.

4-8 60484120 A

COBOL programs
? Llist,map / /
DBUG., PROCESS, /CCOMMON/, /C.HASHV/, SORT-TH, C$ADSUB
cs$comIo, C$EDIT, CSENTRY, C$FILLT, CS$INIT, /STP.END/, CSMOVE
CMSG, COMM, C$SMEX, C$SORT4, C$SQOC, C$SQRD, C$SQWR
C$STOPR, CSUO8R1, CSADVAN, CSCLOSF, C$COLSQ, C$CVCS, C3LDCAP
CSPRTRC, C$RMASK, C$STRP, CIN, CR1UD6, SMSRTSZ, SMCON?7
SMcIo, SMLOAD, CPU.CPM, CPU.SYS, CMF.AGR, CMF.ALF, CMF.FGR
CMF.FRF, CMF.GFS, CMF.POE, Lob=, FDL.MMI, /FDL.COM/, UCLOAD
CTLLBL, CTLRM, CTL$SKP, CTLSWR, CTRLSAA, GPWR$RM, CMM.CIA
CMF.CSF, CMF.DOE, CMM.FFA, CMM.GOA, CMF.GOS, CMM.R, CMF.SLF
FDL.RES, ERR$RM, LISTSRM, RM$SYS=, RM$X, CPU.MVE, CMM.MEM
CMM.POA
? Llist,map,p.process
PROGRAM - PROCESS, FWA = 34478, LENGTH = 651B
ENTRY POINTS - PROCESS
? list,map,p.$sort-th$
PROGRAM - SORT-TH, FWA = 43208, LENGTH = 4358
ENTRY POINTS - SORT-TH
Figure 4-6. LIST,MAP Examples

CYBER INTERACTIVE DEBUG Initially, the main program PROCESS-BIDS is
? d,#home “——,.———””ﬂf”’i home program.
#HOME = P.PROCESS
? step,1,procedure,p.$sort-th$ —= The STEP command is entered with program unit
*S PROCEDURE AT P.SORT-TH_PR.SORTING SORT-THE-BIDS as scope. Execution is not sus-
? d,#home pended until a procedure-name line in SORT-
#HOME = P.SORT~TH THE-BIDS is encountered.
? set,trap,procedure,p.proces;_[.97...p.procesg_[.105 :
? go Program name qualification is used in the STEP
*T #1, PROCEDURE IN P.PROCESS PR.WRITE-RESULTS report message to indicate that the home pro-
? go gram has changed to SORT-THE-BIDS.
*T #1, PROCEDURE IN PR.WRITE-HEADINGS
? go A PROCEDURE trap is set with lines 97 through
105 in the program unit PROCESS-BIDS as the
scope.
CUSTOMER BID
ID NUMBER Program name qualification is used in the trap
*T #1, PROCEDURE IN PR.WRITE-HIGH-BID report message to indicate the home program has
? go changed to PROCESS-BIDS.
CUST4 9111.32 <<HIGH BID Program name qualification is not used, because
the home program has not changed.
CusT3 9062.21
CUST2 5544 .62 - No more PROCEDURE traps occur, because
cusT? 3344.22 execution is outside the trap scope.
CusT8 3189.44 :
CUST5 2266.44
CUsT9 0010.13
*T #17, END IN L.125
? quit
DEBUG TERMINATED
Figure 4-7. ‘Sample Debug Session A

60484120 A

4-9

CYBER INTERACTIVE DEBUG Y Because no program name qualification was used,
? set,breakpoint,pr.sorting ’ the breakpoint is set at the SORTING section in

? set,breakpoint,p.$sort-th$_pr.sorting the home program PROCESS-BIDS.
? List,breakpoint,* ‘_—\

*B #1 = PR.SORTING, *B #2 = P.$SORT~TH$ PR.SORTING Program name qualification is necessary when
- setting breakpoints outside the home program.

? go
*B #1, AT PR.SORTING-._____________

? d,#home The home program is still PROCESS-BIDS; note

#HOME = P.PROCESS that CID did not use program name qualification

? go. in the breakpoint report message.

*B #2, AT P.$SORT-TH§_?R.SORTING)

? d,#home —————————— (1D uses program name qualification to indicate
#HOME = P.SORT-TH . that the home program has changed to SORT-THE-BIDS.

? step,1,Line,p.process-<‘~______~____‘
*S LINE AT P.PROCESS_L.98 A STEP command is entered with program unit
? step PROCESS-BIDS as the scope. Execution is not

*S LINE AT L.99 suspended until a line in PROCESS-BIDS is reached.
? go

Program name qualification is used in the STEP
report message, because the home program has
CUSTOMER BID ‘ changed to PROCESS-BIDS.
ID NUMBER
No program name qualification is used, because the
CUST4 ©9111.32 <<HIGH BID home program has not changed.

cusT3 9062.21
cusT2 5544.62
cusT? 334462
CUST8 . 3189.44
CusTS 2266.44
cusT9 0010.13

*T #17, END IN L.125
? quit
DEBUG TERMINATED

Figure 4-8. Sample Debug Session B

4-10 ' 60484120 A

AUTOMATIC EXECUTION OF CID COMMANDS

“

In many cases, you will find it necessary to enter
the same command or sequence of commands - repeatedly
during the course of a debug session. This type of
situation is 1illustrated in figure 5-1. (This
debug session uses the program FIND-HIGH-BID with
dinput file BIDS, both shown in section 3.) In
figure 5-1, the DISPLAY command is entered each
time a breakpoint occurs. Entering the DISPLAY
command in this example is a tedious process. It
is also difficult to enter the lengthy command
without making an error.

To eliminate the need for repeatedly entering
sequences of commands, CYBER Interactive Debug
(CID) allows you to define, save, and automatically
execute command sequences. This feature can be
used to improve debugging efficiency whenever the
same group of CID commands must be entered
repeatedly. Automatic command execution is com-
monly used when you are debugging parts of the
program that execute many times (for example, as
the result of a PERFORM statement).

COMMAND SEQUENCES

A command = sequence, which is a series of CID
commands, is executed automatically either when
certain conditions occur or when you enter the
appropriate command from the terminal.

There are three ways to establish a command se-
quence:

By defining a command sequence as part of a
trap or breakpoint. This causes the sequence
to be executed whenever the breakpoint or trap
occurs. A sequence defined in this manner is
called a breakpoint body or trap body.

By defining a command sequence called a group.
A group is executed by issuing a READ command
from the terminal or from another command
sequence. :

By creating a file, outside of CID, which
contains a sequence of CID commands. The
commands in this file are executed by a READ
command, which is either entered at the ter-
minal or executed by another command sequence.

During normal execution, CID prompts you for input
after a command is executed. During sequence
execution, however, CID executes all the commands
in the sequence without interruption. Once execu-
tion of the sequence is completed, execution of
your program resumes at the point where it was
suspended. You do not get control during sequence
execution unless you provide for it using the PAUSE
command, described later in this section.

Command sequences can be nested; that is, command
sequences can be executed by other command se-
quences. However, a command sequence must have
finished executing before it can be executed
again. (It cannot execute itself, directly or
indirectly.)

60484120 A

CYBER INTERACTIVE DEBUG

? set,breakpoint,l.94

? go

*B #1, AT L.%9%4

? display number-of-bids
1

? display bid-table (1)
334422CUST7

7 go

*B #1, AT L.94

? display number-of-bids
2 N

? display bid-table (2)
554462CUST2

? go

*B #1, AT L.94

? display number-of-bids
3

? display bid-table (3)
318944CUST8

? go

*B #1, AT L.9%

? display number-of-bids

? display bid-table (4)

226644CUST5

? go

*B #1, AT L.94

? display number-of-bids
5 :

? display bid-table (5)
906221CUST3

? go

*B #1, AT L.9

? display number-of-bids
6

? display bid-table (6)

911132CUST4

? go

*B #1, AT L.9%

? display number-of-bids
7 .

? display bid-table (7)

001013¢cUsST9

? go

CUSTOMER BID

ID NUMBER

CUST4 9111.32

CusT3 9062.21
cusT2 5544.62
cusT? 3344.22
CUsT8 3189.44
CUSTS5 2266.44
CuUsT9 0010.13

*T #17, END IN L.160
? quit
DEBUG TERMINATED

<<HIGH BID

Figure 5-1. Commands Entered Repeatedly

COLLECT MODE

Collect mode is a mode of execution in which CID
commands are not executed immediately after they
are entered, but are included in a command sequence
for execution at a later time. To define a break-

point body, trap body, or group, you must first

activate collect mode. The procedure for entering
and leaving collect mode is described later in this
section under Breakpoints and Traps With Bodies.

Commands in a sequence that you are creating cannot
be altered while CID is in collect mode. If you
wish to change a command that you have entered in
collect mode, you must leave collect mode and
proceed as described under Editing a Command
Sequence, or you must reenter .the entire command
sequence.

MULTIPLE COMMAND ENTRY

~ You can enter more than one command on a single
line by separating the commands with a semicolon,
as in the following example:

DISPLAY X;SET,BREAKPOINT,L.134;GO0

In interactive mode, CID does mnot execute the
commands until you press the RETURN key; it then
executes the commands in the order you entered
- them. In collect mode, the commands are not
executed immediately, but are included in the
command sequence for later execution.

SEQUENCE COMMANDS

CID provides a set of commands intended specifi-
cally for use with command sequences. The commands
of this type described in this user’s guide are
summarized in table 5-1.

TABLE 5-1. SEQUENCE COMMANDS

Command Description

EXECUTE Resumes execution of your program
GO : Resumes the process most recently
suspended

PAUSE Temporarily suspends execution of
the current command sequence and
reinstates interactive mode allow-
ing commands to be entered from the
the terminal

READ Initiates execution of a command
sequence defined as a group or
stored on a file; reestablishes
breakpoint, trap, and group def-
initions stored on a file

BREAKPOINTS AND TRAPS
WITH BODIES

A body is a sequence of commands specified as part
of a SET,BREAKPOINT or SET,TRAP command. To define

a breakpoint or trap with a body, you must first
initiate collect mode by including a left bracket

([) as the last parameter of the SET,BREAKPOINT or
SET,TRAP command. For example:

SET, TRAP,LINE,P.MAIN [

The bracket and the preceding parameter must not be
separated by a comma; the blank separator is
optional.

When you enter the above command, CID displays the
message and prompt:

IN COLLECT MODE
?

You then enter the commands that make up the body.

Each command entered while CID is in collect mode .
becomes part of the body. CID scans the command

for syntax errors but does not execute the com-

mand. You can include any number of commands in a

body, although command sequences should be kept

short and simple.

To leave collect mode and return to interactive
mode, enter a right bracket (]) in response to the
question mark (?) prompt or at the end of a command
line. CID then displays:

END COLLECT MODE
?

You can then continue the session.

An example of a breakpoint definition with a body
is as follows:

SET ,BREAKPOINT,L.8 [

MOVE 5 TO NUMBER-OF-BIDS

SET BID-INDEX UP BY 1

DISPLAY NUMBER-OF-BIDS, BID-INDEX
]

When a breakpoint or trap with a body is encoun-
tered, program execution is suspended and the
commands in the body are executed automatically.
Program execution then resumes at the trap or
breakpoint location; CID does not give control to
you upon completion of the sequence.

A short breakpoint or trap body can be specified in
the line containing the SET,BREAKPOINT or SET,TRAP
command. For example, the following SET,BREAKPOINT
command causes #LINE and data item A to be dis-
played when line 507 is reached:

SET ,BREAKPOINT,L.507 [D,#LINE;DISPLAY A]

This breakpoint body can also be defined as follows: -
SET , BREAKPOINT,L.507 |
D,#LINE

DISPLAY A
]

60484120 A

When a breakpoint or trap with a body is encoun-
tered during execution, the normal trap or break-
point message is not displayed. However, you can
provide your own notification of the execution of a
breakpoint or trap body by including a DISPLAY
command in the sequence.

You do not receive control during execution of a
sequence unless you have provided for it by includ-
ing a PAUSE command (described under Receiving
Control During Sequence Execution) in the body.
When the body has been executed, execution of your
program automatically resumes at the location where
it was suspended.

Figure 5-2 shows a debug session in which two
breakpoint bodies are defined. The session in
figure 5-2 is a variation of the session in figure
5-1; both sessions display the same data and use
the” program FIND-HIGH-BID with input file BIDS
(shown in section 3).

Figure 5-3 shows how a trap body can be used to
trace program execution. In the session, a
PROCEDURE trap with a body is set. The: trap body
displays the value of the debug variable #PROC.
Similarly, you can set a LINE trap that displays
#LINE to trace execution line-by-line. The debug
session in figure 5-3 uses the program FIND-HIGH-
BID with input file BIDS.

CYBER INTERACTIVE DEBUG

? set,breakpoint,l.94 [

IN COLLECT MODE

? display "number-of-bids: ", number-of-bids

? display "
2?1

END COLLECT
? go

NUMBER-OF-BIDS: 1 \
BID-TABLE (NUMBER-OF-BIDS): 334422CUST7

NUMBER-OF-BIDS: 2
BID-TABLE (NUMBER-OF-BIDS): 554462CUST2

NUMBER-OF-BIDS: 3
BID-TABLE (NUMBER-OF-BIDS): 318944CUST8

NUMBER-OF-BIDS: 4

? display "bid-table (number-of-bids): ", bid-table (number-of-bids)) «.«—— Breakpoint body

BID-TABLE (NUMBER-OF-BIDS): 226644CUSTS >

NUMBER-OF-BIDS: 5
BID-TABLE (NUMBER-OF-BIDS): 906221CUST3

NUMBER-OF-BIDS: 6
BID-TABLE (NUMBER-OF-BIDS): 911132CUST4

NUMBER-OF-BIDS: 7
BID-TABLE (NUMBER-OF-BIDS): 001013CUST9

CUSTOMER BID
ID NUMBER

CUsT4 9111.32 <<HIGH BID

CUST3 9062.21
cusT2 5544.62
CuUsT? 3344 .22
CUsT8 3189.44
CUST5 2266.44
cusT9 0010.13

*T #17, END IN L.160
? quit
DEBUG TERMINATED

-

Breakpoint body output

Figure 5-2. Debug Session With Breakpoint Body

60484120 A

5-3

CYBER INTERACTIVE DEBUG

? set,trap,procedure,* [d,#procl

? go

#PROC = P.FIND-HI_PR.INITIALIZATION
#PROC = P.FIND-HI PR.OPEN-FILES
#PROC = P.FIND-HI PR.INITIALIZE-VALUES
#PROC = P.FIND-HI PR.PROCESS-A-BID
#PROC = P.FIND-HI_PR.READ-A-BID
#PROC = P.FIND-HI PR.READ-NEXT-BID
#PROC = P.FIND-HI_PR.READ-A-BID
#PROC = P.FIND-HI_PR.READ-NEXT-BID
#PROC = P.FIND-HI PR.READ-A-BID
#PROC = P.FIND-HI PR.READ-NEXT-BID
#PROC = P.FIND-HI_PR.READ-A-BID

Figure 5-3. Tracing Program Execution

DISPLAYING BREAKPOINT
AND TRAP BODIES

You can display a list of the commands in a break-
point body by specifying the breakpoint location ‘in
the following LIST,BREAKPOINT commands:

LIST ,BREAKPOINT,loc-1list

This command displays the complete defini-
tions, including the bodies, of the break-
points at statements given by locations ‘in
the loc-list. Each location has one of the
forms L.n, PR.name, P.program-unit L.n, or
P.program-unit PR.name.

LIST,BREAKPOINT ,number-1list

This command displays the complete defini-
tions, including the bodies (if any), of
the breakpoints with the listed numbers.
Each breakpoint number has the form #n.
(CID assigns the number when the breakpoint
is established.)

Other forms of the LIST,BREAKPOINT command list the
breakpoint location but not the commands in the
body.

_ To display a list of the commands in a trap body,
enter the following form of the LIST,TRAP command:

LIST,TRAP, ,number-list

This command displays the types, locations, and
bodies (if any) of the traps with the listed
numbers. Each trap number has the form #n. (CID
assigns the trap numbers when the traps are estab-
lished.) :

Other forms of the LIST,TRAP command list only the
trap type and location.

Figure 5-4 illustrates a LIST,BREAKPOINT command
for the breakpoint established in figure 5-2.

GROUPS

A group is a sequence of commands established and
assigned a name during a debug session, but not
explicitly associated with a breakpoint or trap. A
group exists until you clear it or terminate the
debug session and is executed by entering an appro-
priate READ command. The command to establish a
group is

SET,GROUP ,name [

where name is a name by which you will reference
the group. The left bracket activates collect
mode, as with breakpoint and trap bodies. Any
number of CID commands subsequently entered become
part of the sequence until you terminate the
sequence by entering a right bracket. The short
form of SET,GROUP is SG.)

The command to execute a group is
READ,name

where name is the group name assigned in the

SET,GROUP command. You can issue a READ command
directly from the terminal or from another command

sequence. In response to a READ command, CID
executes the commands in the group. After a group
has been executed, control returns to CID (if the
READ was entered from the terminal) or to the next
command in the sequence that issued the READ.

A group can be used when the same sequence of
commands is to be executed at different locations

'in a program. A breakpoint or trap body is exe-

cuted only when the breakpoint or trap occurs, but
a group can be executed at any time. Following is
an example of a simple group definition:

SET,GROUP ,GRPA [.
SET INDEX-A UP BY 1

DISPLAY "INDEX-A = ", INDEX-A

1

2 List,breakpoint,#1
*B #1 = L.9%
SET,BREAKPOINT,L.94 C

DISPLAY " "
]

DISPLAY "NUMBER-OF-BIDS: ', NUMBER-OF-BIDS
DISPLAY "BID-TABLE (NUMBER-OF-BIDS):

", BID-TABLE (NUMBER-OF-BIDS)

Figure 5-4. Displaying a Breakpoint Body

5-4

60484120 A

This command sequence is executed by entering the
command :

READ,GRPA

When a group is established, it is assigned a
number in the same manner as traps and break-
points. You can refer to a group by number or by
name in the LIST,GROUP, CLEAR,GROUP, and SAVE,GROUP
commands.

You can list group information by entering the
following commands:

LIST,GROUP,*

This command lists the names and numbers of
all groups defined for the current debug
session; it does not 1list the commands
contained in the groups.

LIST,GROUP ,name~-list

This command lists the commands contained
in the specified groups. Group names are
separated by commas.

LIST,GROUP,number-list

This command lists the commands contained
in the groups identified by the 1listed
numbers. Each group number has the form
#n. (CID assigns the group numbers when
the groups are established.)

Note that the first command form lists only the
names and numbers of groups, whereas the second and
third forms 1list the commands that make up the
specified groups. The short form of LIST,GROUP is
1G.

Normally, a group exists for the duration of a
debug session. You can remove existing groups from
the current debug session by entering one of the
following commands:

CLEAR,GROUP, *

This command removes all currently-defined
groups.

CLEAR,GROUP ,name-list
This command removes the specified groups.
CLEAR,GROUP,number-1list

This command removes'the groups identified
by the listed numbers. Each group number
has the form #n.

The short form of CLEAR,GROUP is CG.

Figures 5-5 and 5~6 illustrate debug sessions using
groups; both sessions use the program FIND-HIGH-BID
with input file BIDS (shown - in section 3). In
figure 5-5, two breakpoints are set. When either
breakpoint is reached, the READ command is issued
from the terminal. In figure 5-6, the same break-
points are established, except that a body contain-
ing a READ command is defined for each breakpoint.
This causes the body to be executed automatically
when the breakpoints are encountered. By defining

60484120 A

a single group instead of a body for each break-
point, it is necessary to enter the command se-
quence only once. The group is listed with the
LIST,GROUP command.

In figure 5-6, note that there are three levels of
execution: the program, the breakpoint body, and
the group. When the breakpoint is reached, the
program is suspended, and execution of the break-
point body is initiated. When the READ command is
encountered, execution of the breakpoint body is
suspended while the group is executed. When exe-
cution of the group is complete, execution of the
suspended breakpoint body resumes at the command
following the READ, When execution of the break-
point body is complete, execution of the suspended
program resumes.

ERROR PROCESSING DURING
SEQUENCE EXECUTION

When CID is in collect mode and you are defining a
command sequence, CID scans each command you enter
for syntax errors. If a syntax error is detected,
CID displays an error message followed by a ques-
tion mark (?), after which you can reenter the
command. Other errors, however, such as nonexis-
tent line number or data name, cannot be detected
until CID attempts to execute the command.

CID issues normal error and warning messages during
sequence execution. When an ‘error or warning
condition is detected, CID suspends execution of
the sequence, displays the command in error, and
issues a message followed by an input prompt (? for
error messages; OK? for warning messages) on the
next line. You then can instruct CID to disregard
the command, replace the command with another
command, or, in the case of warning messages,
execute the command. The ways in which you can
respond to error and warning messages are summar-
ized in table 5-2.

TABLE 5-2. RESPONSES TO ERROR AND
WARNING MESSAGES

Your Response CID Action

OK or YES For warning messages
only, execute the com-

mand .

NO Disregard the command.
Execution resumes at the
next command in the
sequence.

NO,SEQ : Disregard the command
and all remaining com-
mands in the sequence.

Execute the specified
command line in place of
the current command, and
resume execution of the
sequence.

Any CID command
(or sequence of
commands sep-
arated by sem-
icolons)

CYBER INTERACTIVE DEBUG
? set,group,dspty [
IN COLLECT MODE
display " "

display " "

display bid-table (1)
displtay bid-table (2)
display bid-table (3)
display bid-table (4)
display bid-table (5)
display bid-table (6)
display bid-table (?)
]

D oD 2D D e D 0D 2D) D)

END COLLECT

? set,breakpoint,L.97
? set ,breakpoint,l.132
? go

*B #1, AT L.97
? read,dsply —=

display "bid-table displayed by group:"

BID-TABLE DISPLAYED BY GROUP

334422CUST7
554462CUST2
318944CUST8
226644CUSTS
906221CUST3
911132CUST4
001013CUST9

. ? go

*B #2, AT L.132
? read,dsply

BID-TABLE DISPLAYED BY GROUP

911132CUST4
906221CUST3
554462CUST2
334422CUST7
318944CUST8
226644CUSTS
001013CcuUsT9
? go

CUSTOMER BID
ID NUMBER

CUST4 9111.32 <<HIGH BID

CUsT3 9062.21
cusT2 5544.62
CUsT?7 3344.22
CUST8 3189.44
CUST5 2266.44
CUsT9 0010.13

*T #17, END IN L.160
? quit
DEBUG TERMINATED

—s—— A group is defined.

The READ command causes the group to execute.

Figure 5-5. Defining and Executing a Group

60484120 A

CYBER INTERACTIVE DEBUG
? set,group,dsply [
IN COLLECT MODE

display " "
display "bid-table displayed by group:"
display " "

display bid-table (1)
display bid-table (2)
display bid-table (3)
display bid-table (4)
display bid-table (5)
display bid-table (6)
display bid-table (7)
]

-=— Group definition.

D 2D 2D D 2D D 2D e D D D

END COLLECT

set breakpoint,L.97 [read,dsplyl }--;___-_-__ ints are defined to read the group automatically.
set ,breakpoint,L.132 [reaé,dspty] BreakaIn s r‘ group y‘

go
BID-TABLE DISPLAYED BY GROUP

)) i

334422CUST7

554462CUST2

318944CUST8 - Output caused by breakpoint at line 97.
226644CUSTS .

906221CUST3

911132CUST4

001013CusT9

BID-TABLE DISPLAYED BY GROUP)

911132CUST4
906221CUST3
554462CUST2 ’ >“‘ Output caused by breakpoint at line 132.
334422CUST7
318944CUST8
226644CUSTS
001013CUST9) 7

CUSTOMER 8Id
1D NUMBER

CUsTS 9111.32 <<HIGH BID

CusT3 9062.21
. CUsST2 5544.62
cusT? 3344.22
CuUsT8 3189.44
CUSTS 2266.44
CusT9 0010.13

*T #17, END IN L.160
? quit
DEBUG TERMINATED

Figure 5-6. Group Automatically Called From Breakpoint Bodies

60484120 A

An example of error processing during sequence
execution 1is illustrated in figure 5-7. During
execution of group ABC, CID issues warning -and
error messages. After each message is issued, CID
gives you control. In response to the first
message, NO is entered, and CID disregards the
command. In response to the second message, a new
command is entered and executed in place of the
sequence command. In response to the third mes-
sage, NO,SEQ 1is entered, instructing CID to dis-
regard the incorrect command and all remaining
commands in the sequence and to give you control.

RECEIVING CONTROL DURING
SEQUENCE EXECUTION

Normally, a command sequence executes to completion
without giving you control. There might be in-
stances, however, when you would like to temporar-
ily gain control during execution of a sequence for
the purpose of entering other commands. You can do
this by using the PAUSE command.

PAUSE COMMAND

The purpose of the PAUSE command is to suspend
execution of a command sequence. The formats of
the PAUSE command are

PAUSE
PAUSE, ‘string’

where string is any string of characters. When CID
encounters this command in a sequence, execution of
the sequence is suspended and CID gets control,
allowing you to enter commands. If string is
specified, the character string is displayed when
the PAUSE command is executed.

The PAUSE command is valid only in a command
sequence; it cannot be entered directly from the
terminal.

When a PAUSE command is encountered in a breakpoint
or trap body, CID displays the breakpoint or trap
message followed by any message included in the
PAUSE command, and prompts for user input.

Execution of the suspended sequence can be resumed
by either the GO or the EXECUTE command. These
commands are explained in the following paragraphs.

GO AND EXECUTE COMMANDS

The functions of the GO and EXECUTE commands are
identical except when the commands are executed
following suspension of a command sequence. When
program execution has been suspended by a break-
point or trap, both commands resume program exe-
cution. However, when execution of a command
sequence has been: suspended, the GO and EXECUTE
commands differ as follows:

GO resumes execution of the suspended sequence.

EXECUTE causes an immediate exit from the
sequence and resumes execution of the program.
The short form of EXECUTE is EXEC.

The debug session in figure 5-8 illustrates the -
PAUSE, GO, and EXECUTE commands. This session was
produced using the program FIND-HIGH-BID and - input
file BIDS. The group LASTBID is defined with a
PAUSE command in it. LASTBID 1is executed twice
during the session. The first time . the PAUSE
command is encountered, the GO command is entered
to resume execution of the command sequence. The
second time the PAUSE command is encountered, the
EXECUTE command is entered to resume execution of
the program. Note that ‘the DISPLAY command at the
end of the sequence is not executed in this case.

CYBER INTERACTIVE DEBUG

? set,group,abc [

IN COLLECT MODE

display bid-table (number-of-bids)
move 899.23 to bid-table (1)

move 8 to count

display "end of group abc"

J .

END COLLECT

? set,breakpoint,pr.read-a-bid

D

D W) W

? go

*B #1, AT PR.READ-A-BID Responding with NO causes the
? read,abc command in error to be disre-
*CMD - (DISPLAY BID-TABLE (NUMBER-OF-BIDS)) *ERROR -~ SUBSCRIPT OUT garded. Processing continues
OF RANGE with the next command in the
? NO =

DONE

sequence.

*CMD - (MOVE 899.23 TO BID-TABLE (1)) *WARN - --NO EDITING WILL BE

0K ? move 899.23 to bid of bid-table (1)“%

? no,seq —at

*CMD ~ (MOVE 8 TO COUNT) *ERROR -~ NO PROGRAM VARIABLE COUNT

Responding with a CID command
causes the sequence command to
be replaced with the response

? go
*B #1, AT PR.READ-A-BID

command.
‘x\\\\\\

Responding with NO,SEQ causes
all of the commands remaining
in the sequence to be
disregarded.

Figure 5-7. Command Sequence Error Processing

60484120 A

CYBER INTERACTIVE DEBUG
? set,group,lastbid [

IN COLLECT MODE :

? display "bid-number: ', number-of-bids

? display "customer-id: - ", customer-id of bid-tabte (number-of-bids)
', bid of bid-tabLe (number-of-bids)

? pause, '"changes?'" —=
? display "end of group"
21
END COLLECT

? set,breakpoint,L.94

? go
*B #1, AT L.9%

? read,lastbid
BID-NUMBER: 1
CUSTOMER-ID: CUST?
AMOUNT OF BID: 3344 .22

2
4
? display "amount of bid:
]
2
2

The group LASTBID contains a
PAUSE command.

The PAUSE command suspends

execution of the sequence,
displays a message, and gives

CHANGES? —%
? move "ywqxt" to customer-id of b1d table (1)
9 [o s

you control.

The GO command causes execu-

END OF GROUP

? go

*B #1, AT L.9

? read,lastbid
BID-NUMBER: 2
CUSTOMER-ID: CUST2
AMOUNT OF BID: 5544.62

tion of the group to continue.
Note that END OF GROUP is :
displayed.

4_~—__,____—-The PAUSE command suspends

CHANGES? —==-
? move 0 to bid of bid-table (2)
? execute -

execution.

MeEﬁaﬂEcmmmdcmwﬁ'

*B #1, AT L.9%
? clear ,breakpoint *
? go

CUSTOMER 8ID
ID NUMBER

CUST4 9111.32 <<HIGH BID

CcusT3 9062.21
YWaxT 3344.22
CUsT8 3189.44
CUsTS 2266 .44
CUsT9 0010.13
cusT2 ~ 0000.00

«T #17, END IN L. 160
? quit
DEBUG TERMINATED

program execution to resume.
- END OF GROUP is not displayed.

Figure 5-8. PAUSE Command Example

COMMAND FILES

In addition to executing command sequences estab-
lished within a debug session, you can execute
command sequences stored on a separate file. You
can create such a file wusing a text editor and
include any sequence of CID commands in the file.
Command files can also be created with the SAVE
command (discussed under Saving Breakpoint, Trap,
and Group Definitions). There are two reasons why

you might want to create a separate file of CID

commands:
By storing commands on a file, you have a

permanent copy of the command sequence that can
" ‘be used for future debug sessionms.

60484120 A

Editing a file of commands using a text. editor
is easier than editing a sequence of commands
in a group or body while executing under CID
control. (See Editing a Command Sequence.)

To execute the commands in a file, enter the
command : T

READ,file-name

where file-name is the name of the file that
contains the commands. CID reads the file and
automatically executes the commands in the same
manner as for a group. When execution of the
commands is complete, program execution remains
suspended, and control returns to you. To resume
program execution, enter GO.

5-9

Executing commands from a file can be time-
consuming since the file must be read each time the
command = sequence 1is executed. If ‘a command
sequence is to be executed many times in a single
- session, a more efficient method of executing the
commands is to create a command file containing a
SET,GROUP command and to include the command
sequence in the group. When the file is read by
the READ command, the SET,GROUP command is auto-
matically executed and the command sequence is
established as a group within the debug session.
The group can subsequently be executed without the
necessity of reading the file. For example, a file
containing the following commands could be created
with a text editor:

DISPLAY NUMBER-OF-BIDS
DISPLAY BID-TABLE (NUMBER-OF-BIDS)

If the file is called COMF, the command READ,COMF
must - be 1ssued whenever the sequence is to be
executed. An alternative is to create COMF as
follows:

SET,GROUP ,GRPX [
DISPLAY NUMBER-OF-BIDS
DISPLAY BID-TABLE (NUMBER-OF-BIDS)

1

The command READ,COMF reads the file and causes the
SET,GROUP command to be executed, establishing GRPX
for the current session. Thereafter, the command
READ,GRPX executes the commands in the group and
the file COMF is only read once.

The use of text editors under NOS and NOS/BE to
create and edit files containing CID commands is
described under Editing a Command Sequence.

SAVING BREAKPOINT, TRAP,
AND GROUP DEFINITIONS

As with other CID commands, command sequences exist
only for the duration of the session in which they
are defined. CID provides the capability of saving
and breakpoint, trap, and group definitions on a
separate file. You can print this file or make it
permanent. There are two reasons for copying CID
definitions to a file:

To preserve a copy of the definitions for use
in current or subsequent debug sessions

To make it easier to edit command sequences
with the system text editor

The following commands save CID definitions:
SAVE ,BREAKPOINT, file—-name,list

This command copies the definitions of the
breakpoints specified in list to the named
file; list is an optional 1list of break-
point locations (L.n or PR.n) or breakpoint
numbers (#n) - separated by commas. If list
is * or omitted, all breakpoints are
saved. The short form of SAVE,BREAKPOINT
is SAVEB,

5-10

SAVE ,TRAP, file-name,type,scope

- This command copies to the named file the
definitions of the traps of the specified
type defined for the specified scope. Type
and scope are optional and are the same as
for the SET,TRAP command; if they are * or
omitted, all existing traps are saved. The
short form of SAVE,TRAP is SAVET.

SAVE,GROUP,file-name,list

This command copies the groups specified in
list to the named file; list is an optional
list of group names or numbers (#n) sepa-
rated by commas. If list is * or omitted,
all groups defined for the current session
are saved. The short form of SAVE,GROUP is
SAVEG.

The SAVE commands copy the complete definition of
the specified breakpoints, traps, or groups to the
specified file. (The definition of a breakpoint,
trap, or group includes the SET command and any
other commands in the body.)

You can combine breakpoint, trap, and group defini-
tions on a single file by specifying the same file
name for multiple SAVE commands. A single READ
command reestablishes all the definitions stored in

the file. Another way to combine definitions on a
single file is to enter the command:

SAVE,*,file-name

This command copies all existing breakpoint, trap,
and group definitions to the specified file.

Some examples of SAVE commands are as follows:
SAVE , BREAKPOINT,SBPF ,*

This command copies to file SBPF all exist-
ing breakpoints. ')

SAVE ,BREAKPQOINT,BPFILE,L.10,P.SUBX L.20
This command copies to BPFILE the defini-
tions of the breakpoints established at
line 10 of the home program and line 20 of
program unit SUBX.

SAVE ,BREAKPOINT,FILEA,#2,#5

This command copies to FILEA the defini-
tions of breakpoints #2 and #5.

SAVEB,FILEA,#2,#5

This command has the same effect as the
previous example. :

SAVE, TRAP,TFILE,*

This command copies to TFILE all existing
traps. :

SAVE, TRAP, TTT,LINE, P.PROGA

This command copies to TTT the definition
of all LINE traps established in program
unit PROGA.

60484120 A

SAVET ,TTT,LINE,P.PROGA

This command has the same effect as the
previous example.

SAVE ,GROUP,GFIL,WRT,RDD,GRPX

This command copies to GFIL the definitions
of the groups named WRT, RDD, and GRPX.

SAVEG,GFIL,WRT,RDD,GRPX

This command has the same effect as the
previous example. ‘

The file on which the definitions are saved is a
local file. If you want to access these defini-
tions after logging out, you must make the file
permanent.

Definitions stored on a file can be altered (as
described under Editing a Command Sequence) and
then restored in the current or in a subsequent
session. The command to restore the definitions
stored on a file is

READ, file-name

where the named file contains the definitions. You
can issue a READ command in the current session or
in a later session. If READ,file-name is executed
in the current session and the definitions previ-
ously saved on the file have not been removed by
‘the appropriate CLEAR command, CID displays a
message of the form:

*WARN - EXISTING BREAKPOINTS WILL BE REDEFINED
OK? :

A positive response (YES or OK) causes the existing
definitions to be redefined according to the infor-
mation in the file; a negative response (NO) causes
the read command to be ignored.

Note that the READ command only restores the
definitions stored in the specified file; it does
not cause the commands in the definitions to be
executed.

The following example READ commands assume that
GFIL and TIT are as defined in the preceding
examples:

READ, TTT

This command restores the LINE trap defini-
tion contained in file TTT.

READ,GFIL

This command restores the group definitions
contained in file GFIL.

Debug sessions using the SAVE,BREAKPOINT and READ
commands are shown in figure 5-9. These debug
sessions use the program FIND-HIGH-BID and input
file BIDS, both shown in section 3. 1In the first
session, two breakpoints and one trap are defined,
all with bodies. The program is executed, and at

the end of the session the breakpoints are saved on .

the local file BKFILE. In the second debug ses-
sion, the breakpoint definitions are read from
BKFILE using the READ command.

| 60484120 A

EDITING A COMMAND SEQUENCE

If you wish to make a change to a command sequence
in a breakpoint body, trap body, or group, you can
remove the definition with the appropriate CLEAR
command and reenter the entire sequence. This
procedure is both time-consuming and difficult for
lengthy sequences.

CID provides two alternate methods for making
changes to a command sequence:

You can save the breakpoint, trap, or group
definition on a separate file and edit the file.

You can turn on veto mode and edit the sequence
interactively each time the sequence is exe~-
cuted. See the CYBER Interactive Debug refer—
ence manual for an explanation of this method.

To apply the first method, you must suspend the
current debug session.

SUSPENDING A DEBUG SESSION

CID provides the capability - of suspending the
current session, returning to system command mode,
and resuming the session at a later time. This
feature can be used whenever you wish to perform a
function outside of CID, but it is especially
useful for leaving a session to edit a command
sequence.

The following commands suspend the current debug
session, copy information about - the session
environment to a file, and return countrol to the

operating system:
SUSPEND

This command saves the debug session on the
local file ZZZZZDS.

SUSPEND, file-name

This command saves the debug session on the
local file specified by file-name.

The information saved on the local file includes
copies of:

The executing program
All trap, breakpoint, and group definitions
All CID internal tables

In short, the file contains all the information
necessary to continue the session. (Program data
files are not saved, but them are unaffected if you
do not change their positions or log out.)

The information contained in the file created by a

SUSPEND command is intended for use by CID only;

you - should not access this information directly.

The suspend file preserves the status of a debug

session exactly as it existed when the SUSPEND

command was executed. The suspend file is a local-
file. .

5-11

CYBER INTERACTIVE DEBUG
? set,breakpoint,pr.sorting [

IN COLLECT MODE
? d,#proc

? display "number of bids: ', number-of-bids
23]

END COLLECT

? set,breakpoint,l.132 [

IN COLLECT MODE

? d,#proc

? pause

23]

END COLLECT

? set,trap,procedure,l.77...1.87 [d,#procl

? go

#PROC = P.FIND~-HI_PR.INITIALIZATION
#PROC = P.FIND-HI_PR.OPEN-FILES

#PROC = P.FIND-HI PR.INITIALIZE-VALUES
#PROC = P.FIND-HI PR.SORTING

NUMBER-OF-BIDS:

#PROC = P.FIND-HI_?R.HRITE-RESULTS
*B #2, AT L.132

? move 2 to number-of-bids

? go

CUSTOMER BID
ID NUMBER

CUST4 9111.32 <<HIGH BID
CuUsT3 9062.21

*T #17, END IN L.160

? List,breakpoint *

*B #1 = PR.SORTING , *B #2 = L.132
? Llist,trap,* .

T #1 = PROCEDURE L.77...L.87

? save,breakpoint ,bkfile,* =

? quit

DEBUG TERMINATED

/lgo

CYBER INTERACTIVE DEBUG

? list ,breakpoint,* =
NO BREAKPOINTS

? list,trap,*

NO TRAPS

? read,bkfile —s
? list,breakpoint,*

*#B #1 = PR.SORTING , *B #2 = L.132
? List,breakpoint, #1,#2

*B #1 = PR.SORTING
SET,BREAKPOINT,PR.SORTING L[

D,#PROC

DISPLAY "NUMBER-OF-BIDS: ", NUMBER-OF-BIDS
]

*B #2 = L.132

SET,BREAKPOINT,L.132 [

D,#PROC

PAUSE

1

? list,trap,*

NO TRAPS

? quit

DEBUG TERMINATED

A1l breakpoints are saved on the file BKFILE.

No breakpoints exist at the beginning of the second
debug session.

Breakpoint definitions are read from BKFILE.

Figure 5-9. Saving and Reading Command Sequences

5-12

60484120

In general, you should not log out after suspending
the debug session, because the file positions of
your input files are not saved. However, if your
program has not begun reading from the input files
or if it has finished reading from them, you can
make the suspend file permanent and then log out.
The suspended debug session can then be resumed in
another terminal session.

You should not alter the status of any files used
by your program after you issue a SUSPEND command.
If you perform any file manipulation operationms,
such as REWIND, on files used by your program, you
might not be able to restart the session normally.

To resume the suspended debug session enter one of
the following commands:

DEBUG(RESUME)

This command resumes the debug session that
was suspended on the file ZZZZZDS.

DEBUG(RESUME, file-name)

This command resumes the debug session that
was suspended on the file specified by
file-name.

The session is then restored to its status as it
existed at the time of suspension. All breakpoint,
trap, and group definitions are restored, and all
program and debug variables have the values that
existed when SUSPEND was executed.

Remember that the most effective debug sessions are
short and simple. Thus, it will rarely be neces-

sary to use the SUSPEND/RESUME capability, except
to edit command sequences.

EDITING PROCEDURE

To edit a breakpoint body, trap body, or command
group, proceed as follows:

1. Save the breakpoint, trap, or group definition
with the appropriate SAVE command.

2. Suspend the current session with the SUSPEND
command.

3. Use a text editor to make desired changes to
the command sequence.

4. Resume the session with the DEBUG(RESUME)
command.

5. Remove -the old breakpoint, trap, or group
definition with the appropriate CLEAR command.

6. Establish the altered definition with the READ
command .

60484120 A

After a SUSPEND, be sure that you do not modify or
change the position of any files wused by your
program, because the DEBUG(RESUME) command does not
restore these to their status at suspension time.

An example of the procedure for editing a command
sequence is shown as performed under NOS (figure
5-10) and NOS/BE (figure 5-11). In the session,
the group DISGRP is mistakenly defined to display
BID-TALE (3). The command sequence is then edited
to change the characters TALE to the characters
TABLE.

INTERRUPTING AN EXECUTING
SEQUENCE

A terminal interrupt allows you to gain control at
any time during a debug session. If your program
is executing at the time of the interrupt, the
INTERRUPT trap occurs as described in section 3.
However, if a command sequence is executing at the
time of the interrupt, execution of the sequence is
suspended and CID displays the message:

INTERRUPTED
?

The ways in which you can respond to th1s message
are shown in table 5-3.

If CID is in the process of displaying information
when the interrupt occurs, the information remain-
ing to be printed is lost. A terminal interrupt is
therefore an effective means of stopplng excessive
CID output.

TABLE 5-3. INTERRUPT RESPONSES

Your Response CID Action

OK or YES Resumes sequence execu-
tion at the point of
the interrupt. ‘

GO or NO,SEQ Disregards all remaining

commands_in the sequence
and resumes execution of
the program.

Any CID command Executes the specified
command and resumes
execution of the sequence
at the point of the
interrupt.

5-13

CYBER INTERACTIVE DEBUG

? set ,group,disgrp [—=

IN COLLECT MODE

display bid-table (1)
display bid-table (2)
display bid-tale (3)
display bid-table (4)
display bid-table (5)
display bid-table (6)
display bid-table (7)

]
END COLLECT

? set,breakpoint,pr.sorting
? go

*B #1, AT PR.SORTING

? read,disgrp

334422CUST?

554462CUST2

*CMD - (DISPLAY BID-TALE (3))

e 1D) D 4D D))

Group DISGRP is defined.

An error exists in the group.
The group must be edited.

*ERROR - NO PROGRAM VARIABLE BID-TALE

? no,seq
4"”'

? save,group,savfile,disgrp
? suspend —=

The group is saved on file
SAVFILE.

DEBUG SUSPENDED
/xedit , savfile
XEDIT 3.1.00 =

T The current session is
suspended.

?? Locate/tale/

DISPLAY BID-TALE (3)

?? change/tale/table/
DISPLAY BID-TABLE (3)
?? quit

SAVFILE IS A LOCAL FILE

The group, saved on SAVFILE, is
edited with a text editor.

/debug (resume) —
CYBER INTERACTIVE DEBUG RESUMED
? clear,group,disgrp —=

The debug session is resumed.

? read,savfile =

The old group definition is

? Llist,group,disgrp
*G #1 = DISGRP
SET,GROUP,DISGRP [
DISPLAY BID-TABLE
DISPLAY BID-TABLE
DISPLAY BID-TABLE
DISPLAY BID-TABLE
DISPLAY BID-TABLE
DISPLAY BID-TABLE
DISPLAY BID-TABLE
]

? read,disgrp
334422CUST7
554462CUST2
318944CUST8
226644CUSTS
906221CUST3
911132CUST4
001013CuUsT9

? d,#proc
#PROC = P.FIND-HI_PR.SORTING

? go

1)
@)
3)
%)
)
)
(49

removed.

The corrected group definition
is read from SAVFILE.

CUSTOMER BID
ID NUMBER
CUST4 9111.32 <<HIGH BID
CUST3 9062.21
CuUsT2 5544 .62
cusT? 3344.22
cusT8 3189.44
CUSTS 2266.44
CUsST9 0010.13
*T #17, END IN L.160
? quit
Figure 5-10. Editing a Command Sequence on NOS
5-14 60484120 A

CYBER INTERACTIVE DEBUG

?set group,disgrp =

IN COLLECT MODE
?display bid-table
?display bid-table

?display bid-tale (3)

?display bid-~table
?display bid-table
?display bid-table
?display bid-table
2]

END COLLECT

?set ,breakpoint,pr
?go

*B #1, AT PR.SORTING

?read,disgrp
334422CUST?
554462CUST2

*CMD - (DISPLAY BID-TALE (3))

?no,seq

?save,group,savfile,disgrp-—"

?suspend —=

Group DISGRP is defined.

(4D
(€))

W)’
)
6)
(49

.sorting An error exists in the group.

The group must be edited.

*ERROR - NO PROGRAM VARIABLE BID-TALE

The group is saved on file
SAVFILE.

DEBUG SUSPENDED
COMMAND- editor —es

T~ The current session is

..edit, savfile,seq
../tale/=/table/

1 CHANGE(S)
..save, newfile,noseq

..bye

COMMAND- debug(resume) =
CYBER INTERACTIVE DEBUG RESUMED
?clear,group,disgrp e

~\\\\\\\\suspended.

The group, saved on SAVFILE,
is edited with a text editor.
The corrected group is saved
on NEWFILE.

The debug session is resumed.

?read, newfile =
?list,group,disgrp
*G #1 = DISGRP
SET,GROUP,DISGRP [
DISPLAY BID-TABLE
DISPLAY BID-TABLE
DISPLAY BID-TABLE
DISPLAY BID-TABLE
DISPLAY BID-TABLE
DISPLAY BID-TABLE
DISPLAY BID-TABLE
]

?read,disgrp
334422CUST7
554462CUST2
318944CUST8
226644CUSTS
906221CUST3
911132CUSTS
001013CuUsT9
2d,#proc

#PROC = P.FIND-HI_PR.SORTING

?go

CUSTOMER
ID NUMBER

CUST4

CUST3
cusT2
cusT?
CUST8
CUSTS
CUST9

*T #17, END IN L.160

2quit

The old group definition is
\\\\\\\\;removed.

The corrected group definition
m is read from NEWFILE.
2)

3)

%)

5)

(]

(¢p]

BID

9111.32 <<HIGH BID
9062.21
5544.62
3344.22
3189.44
2266.44
0010.13

60484120 A

Figure 5-11. Editing a Command Sequence on NOS/BE

STANDARD CHARACTER SETS

m-

Control Data operating systems offer the following
variations of a basic character set: :

CbC 64—-character set
CDC 63-character set
ASCII 64-~character set
ASCII 63-character set

The set in use at a particular installation is
specified when the operating system is installed.

Depending . on another installation option, the
system assumes an input deck has been punched
either in 026 or in 029 mode (regardless of the
character set in use). Under NOS/BE, the alternate
mode can be specified by a 26 or 29 punched in
columns 79 and 80 of the job statement or any 7/8/9

60484120 A

card. The specified mode remains in effect
throughout the job unless it is reset by specifi-
cation of the alternate mode on a subsequent 7/8/9
card.

Under NOS, the alternate mode can be specified by a
26 or 29 punched in columns 79 and 80 of any 6/7/9
card, as described above for a 7/8/9 card. In
addition, 026 mode can be specified by a card with
5/7/9 multipunched in column 1; 029 mode can be
specified by a card with 5/7/9 mnmultipunched in
column 1 and a 9 punched in column 2.

Graphic character representation appearing at a
terminal or printer depends on the installation
character set and the terminal type. Characters
shown in the CDC Graphic column of table A-l1 are
applicable to BCD terminals; ASCII graphic char-
acters are applicable to ASCII-CRT and ASCII-TTY
terminals.

TABLE A-1. STANDARD CHARACTER SETS

cDC ASCH
Display Hollerith External .
Code Graphic " Punch BCD (;Lag::tc 73;;? (g:;‘:)
{octal) (026) Code
oot : (coton) TT 8-2 ‘00 : (colon) 1T 8-2 072
01 A 1241 61 A 121 101
02 B 12-2 62 B 12-2 102
03 (o 12-3 63 Cc 12-3 103
04 D 124 64 D 124 104
05 E 125 65 E 125 105
06 F 12-6 66 F 126 106
07 G 12-7 67 G 12-7 107
10 H 12-8 70 H 12-8 110
11 1 129 71 1 129 "M
12 J 11 41 J 1141 112
13 K 11-2 42 K 11-2 113
14 L 11-3 43 L 11-3 114
15 M 114 44 M 11-4 115
16 N 116 45 N - 115 116
17 (o] 11-6 46 (o} 11-6 117
20 P 117 47 P 117 120
21 Q 11-8 - 50 Q 118 121
22 R 119 51 R 119 122
23 S 02 22 S 02 123
24 T 0-3 23 T 03 124
25 U 04 24 U 04 125
26 \Y 05 25 v 05 126
27 w 0-6 26 w 06 127
30 X 07 27 X 0-7 130
31 Y 08 30 Y 08 131
32 F4 09 31 z 09 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 11 9 9 071
45 + 12 60 + 12-8-6 053 .
46 ; 1 40 * 1 055
47 1184 54 11-8-4 052
50 / 0-1 21 / 0-1 057
51 (08-4 34 (1286 050
52) 12-8-4 74) 1185 051
53 $ 11-8-3 53 $ 11-8-3 044
54 = 8-3 13 = 8-6 075
55 blank no punch 20 blank no punch 040
56 , {comma) 0-8-3 33 , (comma) 0-8-3 054
67 . (period) 12-8-3 73 . {period) 12-8-3 056
60 = 0-8-6 36 # 8-3 043
61 [87 17 (1282 133
62] 082 32] 11-8-2 135
63 %1t 86 16 % Tt 084 045
64 = 8-4 14 " (quote) 8-7 042
65 r~ 0-8-5 35 _ (underiine) 085 137
66 v 11-0 52 ! 12-8-7 041
67 A 087 37 & 12 046
70 t 1185 55 ' (apostrophe) 856 047
71 } 11-8-6 56 ? 087 077
72 < 120 72 < 12-8-4 074
73 > 11-8-7 57 > 086 076
74 < 85 15 @ 84 100
75 > 1285 75 \ 082 134
76 = 12-8-6 76 ~ (circumflex) 11-8-7 136
77 ; (semicolon) 12-8-7 77 ; {semicofon) 11-8-6 073

TTwelve zero bits at the end of a 60-bit word in a zero byte record are an end-of-record mark rather than

two colons.

110 installations using a 63-graphic set, display code 00 has no associated graphic or card code; display
code 63 is the colon (8-2 punch).

yield a blank (56g).

The % graphic and related card codes do not exist and translations

60484120 A

GLOSSARY

Abort -
To terminate a program or job when an error
condition (hardware or software) exists from
which the program or computer cannot recover.

Auxiliary File -
An optional file, established by the
SET,AUXILIARY command, to which CYBER Inter-
active Debug (CID) output is written. The
output types written to this file are specified
by special output codes.

Batch Mode -
A mode of CID execution which allows programs
intended for batch execution to be executed
under CID control.

Breakpoint -
A designated location in a program where exe-
cution is to be suspended.

Collect Mode -

A mode of CID execution in which the commands
you enter are not executed, but are included in
a group, trap, or breakpoint bedy. Collect
mode is initiated by a left bracket ([) at the
end of a SET,TRAP, SET,GROUP, or SET,BREAKPOINT
command; collect mode is terminated by a right
bracket (1).

Debug Mode -
A mode of execution in which special CID tables
are generated during compilation and in which
programs are executed under CID control. Debug
mode 1is initiated by the DEBUG(ON) control
statement, and terminated by the DEBUG(OFF)
control statement.

Debug Session -
A sequence of interactions between you and CID,
beginning when execution of your program is
initiated in debug mode, and ending when a QUIT
command is executed.

Group -
A CID command sequence established and assigned
a name by a SET,GROUP command and executed when
a READ command is issued.

Home Program -’ .

The program unit in which variables, 1line
numbers, and procedure names referenced in CID
commands are assumed to be located unless
appropriate qualifiers appear. By default, the
home program is the program unit being executed
when CID gains control. You can change the
default with the SET,HOME command.

Interactive -
Job processing in which you and the system
communicate with each other, rather than proc-
essing in which you submit a job and receive
output later.)

60484120 A

Interactive Mode -
The normal mode of CID execution. You enter
commands directly from the terminal and CID
immediately executes the commands. CID can
also execute in batch mode.

Interrupt (noun) -
A control signal that you issue from the ter- -
minal. If your program is executing when CID
detects an interrupt, an INTERRUPT trap occurs;
if a CID command sequence is executing, the
command sequence is suspended and you gain
control.

On NOS, CID interprets both the user-break-1
and the user-break-2 terminal keys as the
interrupt key. The wuser—break-l and user-
break-2 keys differ, depending on the terminal
type (see the Network Products Interactive
Facility reference manual). On most terminals,
these keys are CONTROL P and CONTROL T, respec-—
tively; you can issue an interrupt by pressing
CONTROL P (or CONTROL T) followed by a carriage
return.

On NOS/BE, you can issue an interrupt by press-—
ing ZA followed by a carriage return (see the
INTERCOM reference manual).

Interrupt (verb) -
To stop a running program in such a way that it
can be resumed at a later time.

Module -

A named section of coding or data. An object
module is output from a compiler or assembler.
A source module is written by a programmer as
input to a compiler or assembler. The word
module alone wusually refers to an object
module. The components of system libraries are
also modules.

Program Unit -
A COBOL program or subprogram.

Terminal Session -
The sequence of interactions between you and a
terminal which begins when you log in, and
terminates when you log out. Contrast with
Debug Session.

Trap (noun) -
A mechanism that detects the occurrence of a
specified condition, suspends execution of your
program at that point, and transfers control to
CID.

Trap (verb) -
To suspend program execution and transfer
control to CID upon the detection of a speci-
fied condition.

BATCH MODE DEBUGGING - C

S

CYBER Interactive Debug (CID) i§ primarily intended
for interactive use, but can be used in batch
mode.. Possible reasons for wusing batch mode
include a potentially large volume of output or
lack of access to a terminal. In batch mode,
however, you must plan the entire session in
advance. This requires care and a knowledge of
what errors are likely to occur.

To conduct a debug session in batch mode, commands
must exist on a file of card images called DBUGIN
from which CID reads all input. You can create
this file by using the system text editor, or you
can punch the commands on cards, include them as
part of the job deck, and copy file INPUT to
DBUGIN. Commands are punched or writtem in the
same - format as in interactive mode; each card
contains a single CID command (or a sequence of
commands separated by semicolons).

As in interactive execution, debug mode is estab-
lished by the DEBUG control statement. The debug
session 1is initiated by a statement to load and
execute the program. Control transfers immediately
to CID, which begins executing the commands in
DBUGIN. When CID encounters a GO or EXECUTE in the
command stream, control transfers to your program.
The program executes until a breakpoint or trap is
encountered. In this manner, control transfers
between the program and CID with no user inter-
vention.

A QUIT command is normally the last command of the
sequence. However, this command can be omitted and
CID will terminate after the last command has been
executed.

Following are some restrictions that apply to batch
mode debugging:

Invalid commands are disregarded; when CID
encounters such a command, processing continues
with the next command.

Commands that would generate a warning message
in interactive mode are executed in batch mode.

All commands are executed except when execution
is impossible.

60484120 A

In batch mode, all output from CID is written to a
file named DBUGOUT. This is a local file and it is
the user’s responsibility to print the file or make
it permanent. You can control the types of output
sent to DBUGOUT with the SET,OUTPUT command.
Output can also be sent to a separate file with the
SET ,AUXILIARY command.

Batch output from a debug session does not normally
show the user-specified CID commands as they are
executed. CID reads the commands from DBUGIN but
does not copy them to DBUGOUT unless the T option
is specified on the SET,OUTPUT command. ~Use of
this option usually improves the readability of a
batch debug session.

All of the CID commands described in this guide are
valid in batch mode. You can set breakpoints and
traps, define command sequences, display and alter
program values, and resume program execution. The
commands in DBUGIN should be specified in the same
order as in interactive mode. CID accesses DBUGIN
for all input that you would normally enter from
the terminal.

A suggested technique for batch mode debugging is
to use only breakpoints and traps with bodies.
This way, the commands to be executed on suspension
of execution appear in the input stream immediately
after the SET,BREAKPOINT or SET,TRAP command that
caused suspension. In addition, only one GO com-
mand is required.

An example of a program to be debugged in batch
mode (under NOS) is illustrated in figure C-1. (To
execute this program under NOS/BE, replace the job,
user, and charge statements with a job statement
containing the appropriate accounting informa-
tion.) The contents of the output file DBUGOUT are
shown in figure C-2.

In this batch example, the output options in the

SET,OUTPUT command make the results in file DBUGOUT

readable. The T option causes the SET,BREAKPOINT
commands (and the commands that make up the break-
point bodies) to be written to DBUGOUT when the
breakpoints are established. The B option causes
the commands within the bodies to be written when
they are executed. The R option is meaningless in
this example; this option would have caused group
and sequence file commands to be written when they
were executed.

JOB STATEMENT.

USER STATEMENT.

CHARGE STATEMENT.

COPYBR,INPUT ,DBUGIN.

DEBUG (ON)

COBOLS.

LGO.

REWIND,DBUGOUT .

COPY,DBUGOUT ,OUTPUT.

7/8/9 in column 1

SET ,OUTPUT E,W,1,0,T,B,R

SET ,BREAKPOINT,PR.SORTING [

DISPLAY BID OF BID-TABLE (1)

DISPLAY BID OF BID-TABLE (2)

DISPLAY BID OF BID-TABLE (3)

DISPLAY BID OF BID-TABLE (4)

1

SET ,BREAKPOINT,L.66 [

gISPLAY SORT-RECORD

SET ,BREAKPOINT ,PR.SORT-0UT-PROC [

DISPLAY SORT-RECORD

]

GO

QUIT

7/8/9 in column 1
IDENTIFICATION DIVISION.
PROGRAM-ID. SORT-BIDS-2.

THIS PROGRAM SORTS A LIST OF BIDS SUBMITTED FOR ONE ITEM
AT AN AUCTION. EACH INPUT LINE TAKES THE FORM:
BID PICTURE 9999V99.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT IN-FILE -ASSIGN TO "INPUT".
SELECT OUT-FILE ASSIGN TO "OUTPUT".
SELECT SORT-FILE ASSIGN TO SFILE.
DATA DIVISION.
FILE SECTION.
FD IN-FILE
LABEL RECORD IS OMITTED
DATA RECORD IS LINE-IN.

*
*
*
*

01 LINE-IN.
05 8ID ‘ PICTURE 9999V99.
05 FILLER PICTURE X(4).

FD OUT-FILE

LABEL. RECORD IS OMITTED

DATA RECORD IS LINE-OUT.
01 LINE-OUT. :

05 FILLER PICTURE X(10).

05 BID . PICTURE $9999.99.
SD SORT-FILE

RECORD CONTAINS 6 CHARACTERS

DATA RECORD IS SORT~RECORD.
01 SORT-RECORD.

05 BID . PICTURE 9999V99.

Figure C-1. Card Deck for Batch Debug Session (Sheet 1 of 2)

60484120 A

WORKING~STORAGE SECTION.
01 BID-INFORMATION.

05 NUMBER-OF-BIDS PICTURE 99V.
05 BID-TABLE OCCURS 10 TIMES
INDEXED BY BID-INDEX.
10 BID PICTURE 9999V99.

PROCEDURE DIVISION.
INITIALIZATION SECTION.

OPEN-FILES.
OPEN INPUT IN-FILE
OUTPUT OUT-FILE.
INITIALIZE-VALUES.
MOVE ZERO TO NUMBER-OF-BIDS.
PROCESS-A-BID SECTION.
READ-BIDS.
READ IN-FILE AT END GO TO SORTING.
ADD 1 TO NUMBER-OF-BIDS.
MOVE = LINE-IN TO BID OF BID~TABLE (NUMBER-OF-BIDS).
GO TO READ-BIDS.
SORTING SECTION.
SORT-THE-BIDS.
SORT SORT-FILE
ON DESCENDING KEY BID OF SORT—RECORD
INPUT PROCEDURE IS SORT-IN-PROC
OUTPUT PROCEDURE IS SORT-OUT-PROC.
GO TO WRITE-RESULTS.
SORT-IN-PROC SECTION.
START-OF-SECTION.
PERFORM VARYING BID-INDEX FROM 1 BY 1
UNTIL BID-INDEX IS GREATER THAN NUMBER-OF-BIDS
RELEASE SORT~RECORD FROM BID OF BID-TABLE (BID-INDEX)
END-PERFORM.
SORT-OUT-PROC SECTION.
START-OF-SECTION.
PERFORM SORTING-PARAGRAPH VARYING BID-INDEX FROM 1 BY
UNTIL BID-INDEX IS GREATER THAN NUMBER-OF-BIDS.
GO TO END-OF-SECTION.
SORTING-PARAGRAPH.
RETURN SORT-FILE RECORD
AT END GO TO END-OF-SECTION
MOVE SORT-RECORD TO BID OF BID-TABLE (BID-INDEX).
END-OF-SECTION.
WRITE-RESULTS SECTION.
WRITE-BIDS.
PERFORM WRITE-ONE-BID VARYING BID-INDEX FROM 1 BY 1
UNTIL BID-INDEX IS GREATER THAN NUMBER-OF-BIDS.
GO TO END-OF-RUN
WRITE-ONE-BID.
" MOVE BID OF BID-TABLE (BID-INDEX) TO BID OF LINE-OUT.
WRITE LINE-OQUT.
END-OF-RUN SECTION.
CLOSE-FILES.
CLOSE IN-FILE, OUT-FILE.
STOP-RUN.
STOP RUN.
7/8/9 in column 1
444332
011023
648234
003325
6/7/8/9 in column 1

60484120 A

figure C-1. Card Deck for Batch Debug Session (Sheet 2 of 2)

CYBER INTERACTIVE DEBUG
SET,OUTPUT,E,W,1,D,T,B,R:
SET ,BREAKPOINT ,PR.SORTING [
IN COLLECT MODE

DISPLAY BID OF BID-TABLE (1)
DISPLAY BID OF BID-TABLE (2)
DISPLAY BID OF BID-TABLE (3)
DISPLAY BID OF BID-TABLE (4)
]

END COLLECT

SET,BREAKPOINT ,L.66 [

IN COLLECT MODE

DISPLAY SORT~RECORD

]

END COLLECT

SET,BREAKPOINT ,PR.SORT-OUT-PROC [
IN COLLECT MODE

DISPLAY SORT-RECORD

]

END COLLECT

60

DISPLAY BID OF BID-TABLE (1)
4443.32

DISPLAY BID OF BID-TABLE (2)
110.23

DISPLAY BID OF BID-TABLE (3)
6482.34

DISPLAY BID OF BID-TABLE (4)
33.25

]

DISPLAY SORT-RECORD

]
DISPLAY SORT-RECORD
444332

]

DISPLAY SORT-RECORD
011023

1

DISPLAY SORT-RECORD
648234

]

DISPLAY SORT-RECORD
003325

i
*T #17, END IN L.90
auIt '

CYBER INTERACTIVE DEBUG 1.2-552.

C-4

Figure C-2.

Listing of File DBUGOUT

60484120 A

SUMMARY OF CID COMMANDS

This section provides a summary of the CID commands
‘described in this user’s guide. (This user’s guide
describes a subset of the CID commands available;
see the CID reference manual for a descrlption of
all available CID commands.)

CID commands are divided into two types: language-
dependent and language-independent commands. The
language-dependent commands are similar in format
and action to statements in the language in which
the home program is written; language-independent
commands are the same in format and action for all
programming languages.

LANGUAGE-DEPENDENT
COMMANDS

Language-dependent commands are similar in format
and action to statements in the language in which
the home program was written. All of the language-
dependent commands described in this manual are
COBOL CID commands. An example of a language-
dependent command is the MOVE command described in
section 3. The MOVE command has the following form:

MOVE value TO identifier-1

This command is a restricted form of the COBOL MOVE
statement; therefore, it is a language-dependent
CID command. Table D-1 shows the language-
dependent commands described in this guide, and the
pages on which they are described.

TABLE D-1. LANGUAGE-DEPENDENT COMMANDS

Command

Name Page Description

DISPLAY 3-14 Displays the values of data
items and literals

GO TO 3-8 Resumes execution at a
paragraph or section

MOVE 3-15 Changes the value of a data
item

SET 3-15 Changes the value of an
index

60484120 A

Each of the COBOL CID commands has the same name as
a language-independent command. If you specify a
comma after a COBOL CID command name, CID assumes
the command is a language-independent command, and
the results can be unpredictable. See the subsec-
tion Language-Independent Commands for a further
discussion of this problem.

LANGUAGE-INDEPENDENT
COMMANDS

Language-independent commands have a format de~
signed specifically for use with CID. These com-
mands appear as follows:

command-name,parameter-list

When the home program is a COBOL program, a comma
must follow the command name. Parameters in the
parameter list can be separated by commas or spaces.

Many language—-independent commands have a short
form that can be used in place of the command
name. When the short form is used, the comma is
optional; a space can separate the short form from
the parameter list.

Table D-2 shows the language~independent commands
described in this guide and the pages on which they
are described.

Many of the language-independent commands have the
same names as COBOL CID commands. When you enter
the name of one of these commands, CID must deter-
mine whether you have entered the COBOL CID command
or the language-independent command.

Assuming the home program is a COBOL program, you
can force CID to interpret the command as a
language-independent command by entering a comma
after the command name or by .entering the short
form of the command. Otherwise, CID interprets the
command as a COBOL CID command.

TABLE D-2. LANGUAGE-INDEPENDENT COMMANDS

C;g::nd gﬁg;t Page Description

CLEAR,AUXILIARY CAUX 3-20 Closes. the auxiliéry output. file

CLEAR,BREAKPOINT CB 3-3 Removes breakpoints

CLEAR ,GROUP CG 5-5 Removes groups

CLEAR , OUTPUT couT 3-20 Turns off CID output to the terminal

CLEAR , TRAP CT 3-7 Removes traps

DISPLAYT D 3-17 Displays debug variables

EXECUTE EXEC 5-8 Resumes program execution

GO 2-3 .Resumes execution of your program or of a suspended command se-
quence

HELP 2~4 Displays information about CID commands

LIST,BREAKPOINT LB 3-3 Displays defined breakpoints

LIST,GROUP LG 5-5 Displays defined groups

LIST,MAP M 4-7 Displays load map information

LIST,STATUS LS 3-18 Displays information about the status of the debug session

LIST,TRAP LT 3-7 Displays defined traps

LIST,VALUES v 3-9 SDisplays program values

PAUSE 5-8 Suspends execution of a command sequence

QUIT 2-3 Terminates the debug session

READ 5-4 Executes a group or a sequence of commands stored on a file;
defines groups and traps previously saved

SAVE ,BREAKPOINT SAVEB 5-10 Saves breakpoint definitions onto a file

SAVE ,GROUP SAVEG 5-10 Saves group definitions onto a file

SAVE, TRAP SAVET 5-10 Saves trap definitions onto a file

SAVE ,* 5-10 Saves all breakpoint, group, and trap definitions onto a file

SET,AUXILIARY l SAUX 3-20 Establishes an éuxiliary output file

SET ,BREAKPOINT SB 3-2 Establishes a breakpoint v

SET, GROUP SG 5-4 Establishes a group

SET ,HOME SH 4-1 Designates the home program

SET, OUTPUT SOUT 3-19 Selects output types to be displayed at the terminal

SET , TRAP ST 3-6 Establishes a trap

STEP S 3-8 Executes a few statements or procedures

SUSPEND 5-11 Suspends the debug session

1'The language-independent DISPLAY command is called the D command in this guide.

60484120 A

INDEX

—

Abort 3-5, B-1

ABORT trap 3-5

Advanced debugging techniques 3-1
Altering execution flow 3-8

Altering program values 3-15

Automatic execution of CID commands 5-1
Auxiliary output file 3-20, B-1

Batch mode B-1, C-1
Beginning a debug session 2-1
BIDS
Getting started 2-5
Other sessions 3-9
Bodies 5-2
Breakpoint bodies 5-2
‘Breakpoints
Clearing 3-3
Command sequences 5-4
Definition B-1
Frequency parameters 3-2
Getting started 2-3
Listing 3-3, 5-4
Outside the home program 4-6

CID commands (entering) 2-2
CLEAR,AUXILIARY command 3-20
CLEAR ,BREAKPOINT command 3-3
CLEAR,GROUP command 5-5
CLEAR,OUTPUT command 3-20
CLEAR,TRAP command 3-7
Closing the auxiliary output file 3-20
COBOL CID commands D-1
Collect mode 5-2, B-1
Command files 5-9

Command sequences 5-1
Command summary D-1
Compilation 2-1

Control of CID output 3-~18

D command 3-17

DBUGIN C-1

DBUGOUT C-1

DEBUG control statement 2-1
Debug mode 2-1, B-1

Debug session 2-1, B-1

Debug variables 3-17, 4~1
Default traps 3-4

DISPLAY command 2-3, 3-14
Displaying body sequences 5-4
Displaying breakpoints 3-3, 5-4
Displaying groups 5-5
Displaying program values 3-9
Displaying traps 3-7, 5-4

Editing a command sequence 5-11
Ellipsis notation 3-6

END trap 3-5

Error processing 3-1, 5-5
EXECUTE command 5-8

Execution time 1-2

Execution under CID control 2-1

60484120 A

File BIDS

Getting started 2-5

Other sessions 3-9
Files

Auxiliary 3-20

Command 5-9

Output 3-19

Suspend 5-11
FIND-HIGH-BID 3-10
FIND-HIGH-BID-2 3-21
Frequency parameters 3-2

Getting Started 2-1
Glossary B-1

GO command 2-3, 5-8
GO TO command 3-8
Groups 5-4, B-1

HELP command 2-4
Home program 4-1, B-1

Initiating a debug session 2-~1
Initiating execution 2-3
Interactive B-1
Interactive input 3-21
Interactive mode B-1
Interrupt .
Definition B-1
INTERRUPT trap 3-6
Interrupting a command sequence

Language-dependent commands D-1
Language-independent commands D-1
Line number specification 2-2, 4-6
LINE trap 3-6

LIST commands 3-17

Listing body sequences 5-4
LIST,BREAKPOINT command 3-3, 5-4
LIST,GROUP command 5-5

LIST,MAP command 4-7

LIST,STATUS command 3-18
LIST,TRAP command 3-7, 5-4
LIST,VALUES command 3-9, 4-6

Long forms 2-2, D-2

L.n 2-2, 4-6

Map 4-7

Module B-1

MOVE command 3-15

Multiple command lines 2-2, 5~2
Multiple program units 4~1

NO 3-1, 5-5

0K 3-1, 5-5
Output control 3-18
Output types 3-19

5-13

Index~-1

Paragraph names 2-2, 4-6
PAUSE command 5-8
PROCEDURE trap 3-7
Procedure-name specification 2-2, 5-6
PROCESS-BIDS 4-3
Program name qualification 4-6
Program size 1-2
Program units 4-1, B-1
Programs
FIND-HIGH-BID 3-10
FIND-HIGH-BID-2 3-21
PROCESS-BIDS 4-3
SORT-BIDS 2-5
SORT-THE-BIDS 4-4
P.program-unit 4-6
PR.procedure~name 2-2, 4-6

Qualification 4-6
QUIT command 2-3

READ command 5-4, 5-9
Referencing source statements 2-2, 4-6
Removing breakpoints 3-3
Removing groups = 5-5
Removing traps 3-7
Report messages
Breakpoint 2-4
STEP command 3-8
Trap 3-4
Responses to errors and warnings 3-1, 5-5
Restrictions on programs using CID 1-2
RESUME commarid 5-13
Resuming execution
EXECUTE command 5-8
GO command 2-3, 5-8
GO TO command 3-8
STEP command 3-8

Sample debug sessions
Displaying and altering values; output control
3-24
Errors and warnings; suspending execution 3-9
Getting started 2-5
Multiple program units 4~8
SAVE ,BREAKPOINT command 5-10
SAVE,GROUP command 5-10
SAVE,TRAP command 5-10
SAVE,* command 5-10
Scope
STEP command 4-7
Trap 3-6, 4-7
Section names 2-2, 4-6
Sequence commands 5-2

Index-2

Sequences 5-1
SET command 3-15
SET,AUXILIARY command 3-20

SET,BREAKPOINT command 2-3, 3-2, 5-2

SET,HOME command 4-1
SET,OUTPUT command 3-19
SET,TRAP command 3-6, 4-7, 5-2
Short forms 2-2, D-2
SORT-BIDS 2-5

SORT-THE-BIDS 4-4

STEP command 3-8, 4-7

STEP scope 4-~7

Subprograms 4-1

Summary of commands D-1
SUSPEND command 5-11
Suspending Execution 2-3, 3-4

Terminal session B-l
Terminating a debug session 2-3
Terminating execution 3-5
Time limit 3-5
Trap bodies 5-2
Trap scope 3-6, 4-7
Traps
Clearing 3-7
Command sequences 5-2
Definition B-1
Listing 3-7, 5-4
Scope 3-6, 4-7
Setting 3-4, 5-2

User-established traps 3-6

Variables 3-17, 4-1

Warning messages 3-1, 5-5

YES 3-1, 5-5

; 2-2, 5-2

#BP 3-17

#GP 3-17

#HOME 3-17, 4-1
#LINE 3-17
#PROC 3-17

#TP 3-17

$ 4-6

60484120 A

NN ONOV 1nD

COMMENT SHEET

MANUAL TITLE: CYBER Interactive Debug Version 1
Guide for Users of COBOL Version 5

PUBLICATION NO.:

REVISION: B

This form is not intended to be used as an order blank.
welcomes your evaluation of this manual.
additions or deletions, or

60484120

Control Data Corporation
Please indicate any errors, suggested
general comments on the back (please include page number

references).
Please reply No reply necessary
FOLD FOLD
NO POSTAGE
NECESSARY
iF MAILED
IN THE
UNITED STATES
T
BUSINESS REPLY MAIL e —
FIRST CLASS PERMIT NO. 8241} MINNEAPOLIS, MINN. []
L]
POSTAGE WILL BE PAID BY T
CONTROL DATA CORPORATION EE——
Lo . L : L
Publications and Graphics Division
L]
P.0. BOX 3492
.]
Sunnyvale, California 94088-3492 [Fr—
L]
L]
L]
FOLD FOLD
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE
NAME:
COMPANY :
STREET ADDRESS:
CITY/STATE/ZIP:
TAPE TAPE

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN U.§
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G

CONTROL DATA CORPORATION

/0650323

