(SD) CONTROL DATA

60497200

COBOL
VERSION 5
USER’S GUIDE

cDC® OPERATING SYSTEMS:

NOS 2
NOS/BE 1

REVISION RECORD

Revision
A (04/30/76)
B (06/01/77)

C (04/11/80)

D (07/24/81)

E (03/11/86)

Description

Original release.

This revision reflects COBOL 5.1 (feature CP176) at PSR level 446.

This revision reflects COBOL 5.3 at PSR level 508, Changes update documentation for the
Basic Access Methods 1.5, Advanced Access Methods 2.1, and CYBER Database Control

System 2.1. New sections include an interface to CYBER Record Manager, an interface to

MCS 1.0, and interactive usage.

This revision reflects COBOL 5.3 at PSR level 538. -Changes includevthe addition of
Multiple-Index Processor material and minor corrections.

This revision reflects COBOL 5.3 at PSR level 647. Changes include the deletion of all
references to operation under NOS 1 and miscellaneous technical and editorial changes.

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

©copyYRIGHT CONTROL DATA CORPORATION P. 0. Box 3492

1976, 1977, 1980, 1981, 1986 SUNNYVALE, CALIFORNIA 94088-3492

All Rights Reserved .

Printed in the United States of America or use Comment Sheet in the back of this manual
ii 60497200 E

LIST OF EFFECTIVE PAGES

’

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision Page Revision Page Revision

Front Cover - 3-52 E 14-6.1/14-6.2 D
Title Page - 3-53 thru 3-56 C 14-7 E
ii E 4-1 thru 4-4 C 14-8 thru 14-10 C
iii/iv E 4-5 E 15-1 thru 15-3 D
v/vi A 4-6 thru 4-8 C 15-4 E
vii E 4-9 E 15-5 thru 15-15 D
viii E 5-1 thru 5-6 c 15~16 E
ix D 5-7 thru 5-9 E 15-17 D
b4 c 5-10 thru 5-16 C 16-1 thru 16-3 E
xi D 6-1 C 16-4 [
xii D 6-2 D 16-5 E
xiii/xiv D 6-3 thru 6-8 . C 16~6 E
XV C 6-9 E 16-7 C
1-1 C 6~10 C 16-8 E
1-2 C 6-11 C 16-9 (o}
2-1 thru 2-4 C 7-1 thru 7-6 c 16-10 c
2-5 E 8~1 thru 8-9 C 16-11 E
2-6 C 9-1 Cc 16-12 E
3-1 E 9-2 c 17-1 thru 17-8 c
3-2 C 10-1 E A-1 E
3-3 thru 3-5 D 10-2 c A=-2 D
3-6 E 10-3 E A-3 C
3-6.1 D 10-4 E A-4 C
3-6.2 D 10-5 D A-5 E
3-7 c 10-6 thru 10-9 c A-6 C
3-8 C 11-1 [A-7 E
3-9 D 11-2 D A-8 C
3-10 thru 3-12 c 11-3 D B-1 [
3-13 E 11-4 E B-2 E
3-14 c 11-4.1/11-4.2 D B-3 D
3-15 D 11-5 E B-4 D
3-16 thru 3-18 C 11-6 (o} B-5 thru 59 E
3-19 E 11-7 [+ c-1 c
3-20 c 11-8 E c-2 E
3-21 E 11-9 c c-3 [
3-22 C 11-10 E D-1 thru D-4 C
3-23 C 11-11 thru 11-13 C Index—1 D
3-24 thru 3-27 D 11-14 E Index-2 E
3-28 thru 3-38 c 11-15 E Index-3 E
3-39 E 12-1 thru 12-3 C Index~4 D
3-40 thru 3-42 C 13-1 E Index-5 D
3-43 E 13~-2 E Index—-6 E
3-44 thru 3-47 c 13-3 thru 13-6 c Comment Sheet/Mailer E
3-48 E 14-1 thru 14-6 E Back Cover -
3-49 thru 3-51 C

60497200 E

iii/iv

ACKNOWLEDGEMENT

0 —

The following acknowledgement is reproduced in its

entirety at the request of the American National Standards -

Institute.

"Any organization interested in reproducing the COBOL
standard and specifications in whole or in part, using ideas
from this document as the basis for an instruction manual
or for any other purpose, is free to do so. However, all
such organizations are requested to reproduce the
following acknowledgment paragraphs in their entirety as
part of the preface to any such publication (any
organization using a short passage from this document,
such as in a book review, is requested to mention "COBOL"
in acknowledgment of the source, but need not quote the
acknowledgment):

COBOL is an industry language and is not the property of
any company or group of companies, or of any organization
or group of organizations.

No warranty, expressed or implied, is made by any
contributor or by the CODASYL Programming Language

60497200 A

Committee as to the accuracy and functioning of the
programming system -and language. Moreover, no
responsibility is assumed by any contributor, or by the
committee, in connection therewith.

The authors and copyright holders of the copyrighted
material used herein

FLOW-MATIC (trademark of Sperry Rand
Corporation), Programming for the
UNIVAC® 1 and 11, Data Automation Systems
copyrighted 1958, 1959, by Sperry Rand
Corporation; IBM Commercial Translator
Form Neo. F 28-8013, copyrighted 1959 by
IBM; FACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in
whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of
COBOL. specifications in programming manuals or similar
publications." : .

v/vi

PREFACE

#

This quide describes the usage of the COBOL Version 5.3
language. As described in this publication, COBOL 5
operates under control of the following operating systems:

NOS 2 for the CONTROL DATA® CYBER 180
Computer Systems; CYBER 170 Series; CYBER 70

Models 71, 72, 73, 74; and 6000 Series Computer
Systems.

NOS/BE 1 for the CDC® CYBER 180 Computer
Systems; CYBER 170 Series; CYBER 70 Models 71, 72,
73, 74; and 6000 Series Computer Systems.
COBOL 5 is designed to be a superset of the language
specified in American National Standard X3.23-1974,
COBOL. In this quide, no distinction is made between the

standard language and Control Data extensions to the
language.

The following publications are of primary interest:

Publication

COBOL Version 5 Diagnostic Handbook
COBOL. Version 5 Reference Manuai

COBOL Version 5 Reference Manual online
COBOL Version 5 Report Writer's User Guide

NOS Version 2 Reference Set,
Volume 3, System Commands

NOS/BE Version 1 Reference Manual

The following publications are of secondary interest:

Publicati on

CYBER Record Manager

Advanced Access Methods Version 2 Reference Manual

CYBER Record Manager

Basic Access Methods Version 1.5 Reference Manual

DMS-170 CYBER Database Control System

Version 2 Application Programming Reference Manual

DMS-170 DDL Version 3 Reference Manual
Volume 2: Subschema Definition for
CYBER Database Control System

Use With: COBOL QUERY UPDATE

60497200 E

This guide is written for a programmer familiar with the
COBOL language and with the operating system under
which the COBOL. 5 compiler is operating. The language is
presented in relation to specific features of COBOL 5. The
formats of statements and clauses are illustrated by
examples rather than by format specifications.

Detailed information can be found in the listed
publications. The publications are listed alphabetically
within groupings that indicate relative importance to
readers of this manual.

The NOS System Information Manual is an online manual
that includes brief descriptions of all NOS and NOS product
manuals. To access this manual, log in to NOS and enter
the command EXPLAIN.

Publication

Number NOS 2 NOS/BE 1
60482500 X X
60497100 X

L60497100 X

60496900 X X
60459680 X

60493800 X
Publication

Number NOS 2 NOS/BE 1
60499300 X X
60495700 X X
60485300 X X
60482000 X

vii @

® viii

DMS-170 FORM Version 1 Reference Manual 60496200
Message Control System Version 1 Reference Manual 60480300
NOS Full Screen Editor User's Guide 60460420
Update Version 1 Reference Manual 60449900

Sites within the United States can order CDC manuals from Control Data
Corporation, Literature and Distribution Services, 308 North Dale Street, St.

Paul, Minnesota 55103.

Other sites can order CDC manuals by contacting the local country sales

office.

This manual describes a subset of the features and
parameters documented in the COBOL 5 reference
manual. Control Data cannot be responsible for the
proper functioning of any features or parameters not
documented in the COBOL 5 reference manual.

X X X X

60497200 E

CONTENTS

NOTATIONS XV Indexed File Organization
File Definition
1. INTRODUCTION TO COBOL 5 1-1 FILE-CONTROL Paragraph
File Description Entry
COBOL 5 Features 1-1 Record Description Entry
COBOL 5 Job Processing 1-2 File Manipulation

Opening Indexed Files
Writing Indexed Files

2. PROGRAM STRUCTURE 2-1 Positioning Indexed Files
Reading Indexed Files
Program Organization 2-1 Updating Indexed Files
Identification Division 2-1 Closing Indexed Files
Environment Division 2-1 Direct File Organization
Data Division 2-1 File Definition
Procedure Division 2-1 FILE-CONTROL Paragraph
Language Elements 2-2 File Description Entry
Reserved Words 2-2 Record Description Entry
User-Defined Words 2-2 File Manipulation
Literals 2-2 Opening Direct Files
Numeric Literals 2-2 Writing Direct Files
Nonnumeric Literals 2-2 Positioning Direct Files
Punctuation 2-2 Reading Direct Files
Level Numbers 2-3 Updating Direct Files
Record Level Numbers 2-3 Closing Direct Files
Special Level Numbers 2-3 Actual-Key File Organization
Report Level Numbers 2-3 File Definition
Picture-Specifications 2-3 FILE-CONTROL Paragraph
COBOL 5 Coding Conventions 2-5 File Description Entry
Source Program Entries 2-5 Record Description Entry
Sequence Numbers -2-5 File Manipulation
Continuation Lines 2-5 Opening Actual-Key Files
Comment Lines 2-5 Writing New Actual-Key Files
Program Text Replacement 2-6 Positioning Actual-Key Files With
Alternate Keys
Reading Actual-Key Files
Updating Actual-Key Files
3. FILE PROCESSING 3-1 Closing Actual-Key Files

Word-Address File Organization

Alternate Key Processing 3-1 File Definition
Creating Alternate Keys 3-1 FILE-CONTROL Paragraph
Establishing the Key of Reference 3-2 File Description Entry
Accessing by Alternate Key 3-2 Record Description Entry
Sequential File Organization 3-3 File Manipulation
File Definition 3-3 ' Opening Word-Address Files
FILE-CONTROL Paragraph 3-3 Writing Word-Address Files
File Description Entry 3-3 Reading Word-Address Files
Record Description Entry 3-5 Closing Word-Address Files
File Manipulation 3-6.1 Error Handling ’
Opening Sequential Files 3-6.1 User-Supplied Error Procedures
Writing Sequential Files 3-7 Status Code
Reading Sequential Files 3-7 Sample Programs
Updating Sequential Files 3-7 Relative File Programs
Closing Sequential Files 3-8 Indexed File Programs
Relative File Organization 3-8 Direct File Programs
File Definition 3-8 Actual-Key File Programs
FILE-CONTROL Paragraph 3-8 Word-Address File Programs
File Description Entry 39
Record Description Entry 3-9
File Manipulation 3-10 4, ARITHMETIC AND BOOLEAN OPERATIONS
Opening Relative Files 3-10
Writing Relative Files 3-10 Arithmetic Expressions
Positioning Relative Files 3-11 Arithmetic Operators
Reading Relative Files 3-11 Evaluation of Expressions
Updating Relative Files 3-12 Simple Arithmetic Expressions
Closing Relative Files 3-12 Complex Arithmetic Expressions

60497200 D

1 U 1 1 1 [1 1 1 U 1 11] (]]] 1) I
PRI NN R NI N bt bt bt bt bt s b ot bt ot ot ot et o ot
VE WWN N

R Y N N A R R R R N e N R e R VW)

LA U A AU A A A A A AU I A A]
VWON NN UVMERLRPPUWUNEHHFOOOWVOOO®O®N NV N

£ AWM W AW WA W W W WA AN W AW WNN N NNNNRNNNDNN

B R R R R R R R A Y R RV A RV AV

OFRFOPRPLEPLPPUWUNWNNRFRFEFEFFOOOO

Arithmetic Statements
Addition of Items
Subtraction of Items
Multiplication of Items
Division of Items
Computing a Data Item Value
Rounding a Result
Checking for a Size Error

Number Representation
Display Code Operation
Integer Operation
Floating Point Operation

Sample Arithmetic Program

Boolean Expressions
Boolean Operators
Evaluation of Expressions

Sample Boolean Program

5. - CONDITIONAL OPERATIONS

Conditional Expressions
Simple Conditions
Relational Conditions
Class Conditions
Condition-Name Conditions
Switch-Status Conditions
Sign Conditions
Complex Conditions
Implied Elements
Order of Evaluation
Conditional Statements
Explicit Conditional Statements
IF Statement Without END-IF
IF Statement With END-IF
PERFORM Statement Without
END-PERFORM
PERFORM Statement With
END-PERFORM
SEARCH Statement Without END-SEARCH
SEARCH Statement With END-SEARCH
Implicit Conditional Statements
At End Condition
End-of-Page Condition
Invalid Key Condition
Overflow Condition
Size Error Condition
Sample Conditional Program

6. TABLE HANDLING

Table Definition
Assigning Individual Data-Names
Redefining a Table
Moving Values Into a Table
Table Reference
Unique Reference
Subscripting
Indexing
Table Handling Statements
PERFORM Statement
SEARCH Statement
Sequential Search
Binary Search
SET Statement
Sample Table Handling Programs
TABLE-SUBSCRIPTING Program
TABLE-SEARCHING Program

4-2
4-2
4-2
4-3
4-4
4-4
4-5
4-5
4-5
4-5
4-5
4-5
4-5
4-8
4-8
4-9
4-9

s
—

1
OOV E LD WU

\'ﬂ\.ﬂ\ln\."l
~ O\

¥
~

5-8.1
5-9
5-10
5-10
5-10
5-10
5-11
5-11
5-11

o
1
—

A A NN
6)~A\lm\n\.n-z>-l>4>wuNNNb—'Hb-

7. CHARACTER HANDLING

Setting the Value of a Data Item
Inspecting Characters in a Data Item

Inspection Cycle

Inspection Limitation

Tallying Operation

Replacing Operation

Tallying and Replacing Operation
Transferring Characters Between Data Items

STRING Statement

UNSTRING Statement
Referencing Part of a Data Item

8. SORT/MERGE PROCESSING

Sort/Merge File
Sort-Merge Description Entry
Key Items

Memary Allocation

Sort/Merge Operation
Input/Output Files
Input Procedure
Output Procedure

Sort/Merge Statements
SORT Statement
MERGE Statement
RELEASE Statement
RETURN Statement
SET Statement

Sample Sort Program

Sample Merge Program

9. SEGMENTATION

Types of Segments
Fixed Segments
Independent Segments
Overlays
Subprograms and Overlays
Structuring Segments

10. SUBPROGRAM INTERFACE

Transferring Control to a Subprogram
Entering Non-COBOL Subprograms
Calling COBOL. Subprograms

Sharing Files

"~ External Files
Data Base Files

Processing With Fast Dynamic Loader
Program Name Usage
FDL File Creation
Compilation With FDL Processing

Canceling a Subprogram

Writing a COBOL Subprogram
Procedure Division Header
Linkage Section
Common-Storage Section
Return of Control

Sample Programs
Entering a FORTRAN Subprogram

_Calling a COBOL Subprogram

~
1
—

[UL

\I\I\l\l\ll\l\l\l\l\l\l
VEWWUWNNN

8-3
8-3
8-4
8-4
8-5
8-6
8-6
8-6

9-1
9-1
9-1
9-1
9-1
9-2

10-1

10-1
10-1
10-1
10-2
10-2
10-3
10-3
10-3
10-3
10-3
10-3
10-4
10-4
10-4
10-4
10-4
10-4
10-4
10-4

60497200 E

11. COMPILATION AND EXECUTION

Compiling a Program
COBOL5 Control Statement
Input/Output File Parameters
Error Processing Parameters
Source Program Parameters
Output Listing Parameters
Debugging Parameters

COPY Statement Parameter

COBOL Subprogram Parameters

Sub-Schema File Parameter
Compilation Output Listings

Source Program Listing
Cross Reference Listing
Object Code Listing
Data Map Listing

Executing a Program

Sample Deck Structures

12. COBOL 5 SOURCE LIBRARY

Creating a COBOL Source Library

Maintaining a COBOL Source Library
Adding New Decks
Inserting New Cards
Deleting Cards Fom Decks
Restoring Cards to Decks
Removing Correction Sets
Removing Decks

Using a COBOL 5 Source Library

13. PROGRAM DEBUGGING AIDS

Debugging F eature
Debugging Lines
Debugging Sections
Monitoring Data Items
Monitoring Procedures
Monitoring Files
Debugging Register

Activating Debugging at Compile Time
Activating Debugging at Execution Time

Paragraph Trace Feature
Source Program Statements
Trace File
Termination Dump Feature
Obtaining a Termination Dump
Termination Dump Listing
Control Statement Debugging Options
Binary Output
Subscript and Index Checking

14, CDCS INTERFACE

Data Base Concepts
The Schema
COBOL Sub-Schemas
Relations
Processing an Area
The Data Base Status Block
Common CDCS Diagnostics
Processing a Relation
Structure of a Relation
CDCS Relation Processing
Record Qualification
Program Relation Processing

60497200 £

11-1

11-1
11-1
11-1
11-2
11-3
11-4
11-4.1/
11-4.2
11-5
11-5
11-5
11-5
11-5
11-10
11-10
11-10
11-10
11-14

13-1

13-1
13-1
13-1
13-1
13-2
13-2
13-2
13-2
13-2
13-3
13-3
13-3
13-4
13-4
13-4
13-4
13-4
13-4

14-1

14-1
14-1
14-1
14-1
14-1
14-2
14-2
14-2
14-3
14-3
14-4
14-4

Coding the Program
Environment Division
Data Division
Procedure Division

Compiling the Program

Executing the Program

Sample Program

15. CYBER RECORD MANAGER INTERFACE

File Information Table
FIT Fields Set With Source Statements
FIT Fields Set With the USE Clause
Setting the Index Block Padding
Changing the Record and Block Type
Setting the Old/New File
Organization
FIT Fields Set With the File Control
Statement
CRM Debugging Tools
Accessing File Status Codes
Accessing the CRM Error Status Code
Using the System Error File and FIT Dump
Controlling CRM Messages on the Dayfile
Setting the Trivial Error Limit
Multiple-Index Files
Defining Alternate Keys With MIPGEN
Positioning and Reading a File by
Alternate Key
File Structure and Efficiency Considerations
Determining the Best Block Size
Indexed Sequential Block Size
Actual-Key Block Size
Reducing Direct File Creation Time

16. INTERACTIVE USAGE

Concepts of Terminal Operation
NOS Terminal Operations Using IAF
Local Files Under NOS
Program Creation Using FSE and IAF
Under NOS
Program Compilation and Execution
Under NOS
Running the Program
Executing With local Data Files
NOS/BE Terminal Operations Using INTERCOM
Local Files Under NOS/BE

Program Creation Using INTERCOM EDITOR

Under NOS/BE
Program Compilation and Execution
Under NOS/BE
Running the Program
Execution With Local Data Files
Interactive Usage of COBOL ACCEPT and
DISPLAY Statements
Accepting Data From the Terminal
Accepting Data From a Connected File
Displaying Data Upon the Terminal
Displaying Data Upon a Connected File

17. MESSAGE CONTROL SYSTEM INTERFACE

General Concepts
Messages and Message Queues
Enqueuing and Dequeuing Messages
Queue Hierarchy
Enabling and Disabling Queues
Message Destination and Source
Data Mode and Command Mode

14-5
14-5
14-5
14-5
l4-6
14-6
14-6

15-1

15-1
15-1
15-2
15-2
15-2

15-7

15-7
15-8
15-8
15-9
15-9
15-9
15-9
15-11
15-11

15-11
15-11
15-15
15-16
15-16
15-17

17-1

17-1
17-2
17-2
17-2
17-2
17-2
17-2

xi

COBOL Communication Facility
The Communication Section
Sending and Receiving Messages
Receiving Messages
Sending Messages
Updating the CD Area
Accessing the Status Key
Execution of COBOL Programs Using MCS
An Interactive Session

APPENDIXES

A Standard Character Set

B Glossary

C Additional Software For Data
Base Programs

D

Additional Software for MCS Application

INDEX

FIGURES

3-1 Structure of the Alternate Key Index File

3-2 FILE-CONTROL Paragraph for a
Sequential File

3-3 File Description Entry for a
Sequential File

3-3.1 IBM EBCDIC Tape Conversion

3-4 Record Description Entry for a
Sequential File

3-5 FILE-CONTROL Paragraph for a
Relative File

3-6 File Description Entry for a
Relative File

3-7 Record Description Entry for a
Relative File

3-8 FILE-CONTROL Paragraph for an
Indexed File

3-9 File Description Entry for an
Indexed File

3-10 Record Description Entry for an
Indexed File

3-11 FILE-CONTROL Paragraph for a
Direct File

3-12 File Description Entry for a
Direct File

3-13 Record Description Entry for a
Direct File

3-14 FILE-CONTROL Paragraph for an
Actual-Key File.

3-15 File Description Entry for an
Actual-Key File

3-16 Record Description Entry for an
Actual-Key File

3-17 FILE-CONTROL Paragraph for a
Word-Address File

3-18 File Description Entry for a
Word-Address File

3-19 Record Description Entry for a
Word-Address File

3-20 Example of the USE Statement

3-21 Creating a File With Relative
Organization

3-22 Input Data for Creating the
Relative File

3-23 Updating a File With Relative
Organization

3-24 Input Data for Updating the Relative File

3-25 Output Report From Updating the
Relative File

xii

17-2
17-2
17-2
17-3
17-4
17-4
17-5
17-7
17-7

3-2
3-3

3-4
3-6

3-6.1

3-8

3-10
3-14
3-14
3-14
3-18
3-20
3-20
3-24
3-25
3-26
3-30
3-31

3-31
3-34

3-35
3-36

3-36
3-38

3-39

3-41
3-42
3-43
3-44
4-1

pee
S WN

R
AWV EUWN U

LN]
== \0 00~
Ll =]

BN -

0\0\0\0\?\0\0\0\
===\ O~ O\ \n
MEHEWNEHO

[U]] 1] 1 1)
BN AW N b e

Creating a File With Indexed Organization

Input Data for Creating the Indexed File

Accessing an Indexed File by
Alternate Key

Output Report From Accessing the
Indexed File

Creating a File With Direct Organization

Input Data for Creating the Direct File

Updating a File With Direct Organization

Input Data for Updating the Direct File

Output Report From Updating the
Direct File

Creating a File With Actual-Key
Organization

Input Data for Creating the Actual-Key
File

Updating a File With Actual-Key
-Organization

Input Data for Updating the Actual-Key
File

Output Report From Updating the
Actual-Key File

Creating a File With Word-Address
Organization

Input Data for Creating the Word-Address
File

Accessing a File With Word-Address
Organization

Input Data for Accessing the
Word-Address File

Output Report From Accessing the
Word-Address File

Addition of Corresponding Items

Sample Arithmetic Program

Input Data for Sample Arithmetic Program

Output Report From Sample Arithmetic
Program

Boolean Example

Using a Condition-Name Condition

Using a Switch-Status Condition

Setting a Switch

IF Statement With END-IF Example 1

IF Statement With END-IF Example 2

Varying Indexes in a PERFORM Statement

PERFORM Statement With END-PERFORM

SEARCH Statement With END-SEARCH

Sample Conditional Program

Sample Input for Conditional Program

Output Report From Sample Conditional
Program

Table Definition by Data-Names

Table Redefinition

Table Definition by the OCCURS Clause

Using PERFORM/END-PERFORM to Fill
a Table

Table Reference by Subscripting

Table Reference by Indexing

Table Searching, Sequential Search

Table Searching, Binary Search

Searching a Two-Dimensional Table

Sample Program Using Subscripts

Input Data for Subscripting Program

Output Report From Subscripting Program

Sample Program Using Index-Names

Input Data for Indexing Program

Output Report From Indexing Program

Initializing a Group Data Item

Out-of-Bounds Reference Modification

Reference Modification Examples

SD Entry and Key Items

Examples of the SORT Statement

Examples of the MERGE Statement

Examples of the RELEASE Statement

3-39
3-41

3-42
3-43
3-43
3-45
3-46
3-48
3-48
3-49
3-50
3-50
3-52
3.52
3-53
3.54
3-54
3-55
3-56
4-3
4-6
4-7
4-8
4-9
5-3
5-4
5-4
5-7

5-7
5-8

y
= b \O
N

T
o

PPy
NN

™ O l?\?\?\?\?\o\mc\
VNNV P WN
[y

[

PENNNT AR
O\ O\ b 0

J

B e
W

60497200 D

0
=000 ~NO\Wu

85
N—= O

I-‘I—JGJCDC'DQJCDO

13-1
13-2
14-1
14-2
14-3
14-4
14-5
1l4-6
14-7

14-8

15-1
15-2
15-3
15-4
15-5

Examples of the RETURN Statement
Establishing a Collating Sequence
Sample Sort Program

Input Data for Sample Sort Program

Output Report From Sample Sort Program

Sample Merge Program

Entering a FORTRAN Subprogram

Calling a COBOL Subprogram That Uses
the Linkage Section

Calling a COBOL Subprogram That Uses
the Common-Storage Section

Source Listing

COBOL 5 Diagnostics

Load Map

Standard Dump

Dayfile

Cross Reference Listing

Object Code Listing

Data Map Listing

Compiling and Executing a COBOL 5
Source Program

Executing a COBOL. 5 Object Program

Compiling and Executing a COBOL 5

Main Program and a COBOL 5 Subprogram
Compiling and Executing a COBOL 5 Main

Program with a Previously Compiled
Subprogram

Trace File Format

COBOL Program With Termination Dump

Data Base Status Block Description

Tree Structure for a Three-Area Relation

Record Qualification in the Sub-Schema

USE FOR ACCESS CONTROL Example

USE. FOR DEADLOCK Example

Source Listing for Sub-Schema BILLING

Sample Program for Reading a Data Base
Relation

Output Report Generated by Program
CBILLS

COBOL Input/Output Interfaces

COBOL File Processing

Accessing the File Status Code

Example of a FIT Dump

MIPGEN Example - NOS

60497200 D

t 1

[

1

o chlomoumm
o MOV oONOWUN

—

e
TP
oo™

11-7
11-8
11-9
11-10
11-11
11-12
11-13

11-14
11-14

11-15

11-15
13-3
13-5
14-2
14-3
14-4
14-6
14-6
14-7

14-8

14-10
15-2
15-3
15-8
15-10
15-12

Reading a File By Alternate Key

XEDIT Program Creation, Compilation,
and Execution

PSQ Parameter Example

INTERCOM Program Creation, Compilation,

and Execution
Accepting Data From a Terminal
Accepting Data From a Connected File

COBOL/MCS Communications Environment

A COBOL Communication Section

SAVINSQ Structure

Receiving Messages From a 2-level
Queue Structure

LOANQ Structure

Receiving Messages From a 3-level
Queue Structure

Sending Messages From a COBOL Program

COBOL/MCS Interactive Terminal User
Session

TABLES

17-2

Picture-Specification Characters

Block Type and Size for Sand L
Tape Files

Record Type Determination From
COBOL. Statements for Sequential,
Indexed, Direct, and Actual-Key Files

True Numeric Relational Conditions

True Nonnumeric Relational Conditions

True Boolean Relational Conditions

Non-Fatal CDCS Diagnostic Codes

File Organizations

FIT Fields by Record Type

FIT Fields Set From Source Code

Record Type and File Organization
Combinations

File Status Codes

CRM File Structure Terms and
Equivalents

MCS Status Key Codes

MCS Error Key Codes

2-4

N
1
&

bt et
YOV YYEYYY Y

-

1
@D NMEFHEFWWNNW

,_.
¥

15-16
17-6
17-7

xiit/xiv

NOTATIONS

. Underlining in examples indicates terminal .
user input. . Ellipses in examples indicate missing text.
IA]B]C] Boxes in examples indicate character position
in storage. An empty box means an Numerals are represented in decimal unless indicated
unpredictable resuit. otherwise.

60497200 C Y%

INTRODUCTION TO COBOL 5 1

The COBOL 5 language is a high-level programming
language that is problem oriented rather than machine
oriented. The programmer can thus concentrate on the
logic of the problem. The COBOL 5 language consists of
ordinary English words and arithmetic symbols that are
used in an ordered manner to define data and procedures.
Although the language is relatively unrestricted in its
simulation of English, it is governed by rules that enable
the COBOL 5 compiler to translate a COBOL source
program into an object program intelligible to the
computer.

COBOL 5 FEATURES

The COBOL 5 language provides a wide range of features.
In addition to implementing the 1974 ANSI COBOL
standard (X3.23-1974), a powerful set of Control Data
extensions is provided in COBOL 5. The features described
in this guide are summarized in the following paragraphs.

Six file organizations are available in COBOL 5:
sequential, relative, indexed, direct, actual-key, and
word-address. These organizations provide efficient
processing for a wide range of applications. File access
can be sequential, random, or dynamic; dynamic access
allows records to be accessed both sequentially and
randomly. Records in all file organizations except
sequential organization have an associated primary key
that is used for random access. Input/output statements
are provided to read, write, rewrite, and delete records in
a file and to position a file for subsequent processing. The
open mode established when the file is opened determines
which input/output statements can be executed for the file.

Indexed, direct, and actual-key file organizations can be
installed as either initial or extended. Extended Advanced
Access Methods (AAM) files are more efficient and are the
default for COBOL programs. Any further discussion of
AAM files in this manual implies extended AAM file
organization.

Indexed, direct, and actual-key file organizations allow
records to be accessed by a choice of keys. In these file
organizations, alternate keys can be defined in addition to
the primary key. When alternate keys are specified for a
file, any key (primary or alternate) can be used to access
records in the file.

A complete set of arithmetic statements provides the
means to perform operations involving addition,
subtraction, multiplication, and division. Each type of
operation is accomplished by an individual statement:
ADD, SUBTRACT, MULTIPLY, or DIVIDE. A series of
different arithmetic operations can be accomplished by the
COMPUTE statement; exponentiation, unary plus, and
unary minus can also be specified. Results of an
arithmetic operation can be rounded. Size error detection
on a result is also provided.

Boolean operations allow two operands to be compared bit
by bit for equality or inequality. Operations are
accomplished by statements that include the reserved
words BOOLEAN-AND, BOOLEAN-OR, BOOLEAN-EXOR
or BOOLEAN-NOT. The COMPUTE statement can be used
to assign values to boolean variables.

60497200 C

Conditional operations in COBOL 5 provide the means to
specify an alternate path of control that is followed only
when designated conditions are true. This decision making
capability allows the program to specify that certain
procedures or statements are executed under specified
conditions. The IF, PERFORM, and SEARCH statements
can specify an explicit condition that is tested each time
the statement 1is executed; the next statement or
procedure executed depends on the truth of the condition.
Implicit conditions are specified through the AT END,
INVALID KEY, ON SIZE ERROR, ON OVERFLOW, and AT
END-OF -PAGE options that can be included in arithmetic
and input/output statements. An implicit or explicit
condition must be true before the alternate path of control
is followed.

Delimited scope statements allow the COBOL user to write
structured programs more easily. Explicit scope
terminators END-IF, END-SEARCH, and END-PERFORM,
are used to explicitly terminate the scope of IF, SEARCH,
and PERFORM statements, respectively. A capability
similar to the FORTRAN do-loop is possible in COBOL
with a PERFORM V ARYING statement followed by in-line
imperative statements, and terminated by END-
PERFORM. The inclusion of END-IF with IF or
END-SEARCH with SEARCH allows the IF and SEARCH
statements to be used anywhere an imperative statement
can be used.

Tables of fixed or variable length can be specified in a
COBOL 5 program. A table can be described with up to 48
levels of OCCURS clauses. Table elements can be
referenced by subscripting or indexing. Indexing and
subscripting can be mixed. The SET statement can be used
to manipulate indexes. The SEARCH statement is used to
search a table for a specific element.

Records in sequentially organized files are sorted or
merged automatically by the SORT or MERGE statement.
Input and output procedures can be defined or the input and
output files can be named. One or more data items are
used as keys for the sort or merge operation. The collating
sequence for the sort or merge operation can be explicitly
specified by the SET statement. The SORT statement
causes records from one or more files to be sorted by the
specified key data items. The MERGE statement is used to
combine two or more identically sequenced files.

A COBOL 5 program can be segmented to reduce memory
requirements during program execution. In a segmented
program, the entire Procedure Division is written in
sections. Each ‘section is assigned a number that
designates the segment to which the section belongs. A
segment is either fixed or overlayable.” Fixed segments are
in memory at all times during execution; overlayable
segments are made available in memory when they are
needed.

Independently compiled subprograms can be accessed by a
COBOL 5 program. Subprograms can be written in
COBOL, COMPASS, and FORTRAN Extended. The CALL
statement is used to access a COBOL subprogram; other
subprograms are accessed by the ENTER statement. Data
can be passed between the main program and the
subprogram by specifying a parameter list in the ENTER or
CALL statement; the Common-Storage Section can also be

1-1

used for passing data. Fast Dynamic Loader processing
allows COBOL_ subprograms to be dynamically called and
canceled.

Portions of a COBOL 5 program can be copied from a
COBOL source library. The COPY statement can be
specified anywhere in the source program. During
compilation, the specified library deck is incorporated into
the program and replaces the COPY statement.
Modifications to the library deck can be specified in the
REPLACING phrase of the COPY statement.

Debugging procedures can be specified in the COBOL 5
program to monitor files, data items, or procedures during
program execution. A debugging section is included in the
Declaratives portion of the Procedure Division. A USE
FOR DEBUGGING statement specifies the files, data
items, or procedures for which the debugging section is
executed. A special register, DEBUG-ITEM, provides
information related to the condition that caused the
debugging section to execute. The paragraph trace feature
can be used to trace the flow of the program during
execution. The termination dump feature can be used to
obtain a formatted map of the contents of all data items
within the program.

Data base files can be processed by COBOL 5 programs
through an interface with the CYBER Database Control
System (CDCS). All references to CDCS in this manual
refer to CDCS 2 only. The files are described by a
sub-schema instead of by File Description entries in the
program. The files can be locked and unlocked by the
ENTER statement. Access control keys, as well as
recovery points, can be specified within the program.
Input/output operations are performed using standard
COBOL 5 statements. In addition to reading an individual
file, a read operation can retrieve records from several
files joined together in a logical relationship.

CYBER Record Manager (CRM) interfaces to COBOL
programs are generally transparent to the user. A file
information table (FIT) exists for each file and contains
descriptions of the file, such as file organization, blocking
structure, and record type. The FIT is the most important
element used for communication between COBOL and
CRM. The COBOL compiler uses the source statements to
set many FIT values. Other values are set as defaults. The
USE clause can set or override certain FIT fields that
might also be set or overridden by a FILE control card.

A COBOL 5 program can be written, compiled, and
executed interactively through the terminal. The ACCEPT
statement provides the means to input data to the
executing program from the terminal. Similarly, the
DISPLAY statement can be used to output data from the
program to the terminal.

1-2

The Message Control System (MCS), the Network Access
Method (NAM), and the COBOL Communication Facility
(CCF) together allow a COBOL program to communicate
with terminals. Messages are routed to and from terminals
with the SEND and RECEIVE statements.

COBOL 5 JOB PROCESSING

Creating a COBOL 5 program can be considered as a
three-step procedure. The first step is writing the source
program. The next step is compiling the source program
into executable code. The last step involves executing the
program and determining that no errors exist in the logic
of the program.

The COBOL 5 program is written according to the
specifications of the language. The coded program is then
punched on 80-column cards or entered through a terminal
as card images. The resulting source deck is input to the
COBOL 5 compiler.

Before the source program can be input to the COBOL 5
compiler, a set of control statements must be prepared to
precede the source program. This set includes the job
statement, the COBOL5 control statement, the program
call control statement for execution, permanent file
control statements when permanent files are involved
during execution, and any other control statements
required by the operating system or by a particular
installation. The set of control statements must be
terminated by a 7/8/9 card or its equivalent. The source
program can follow the control statements.

The source program is input to the COBOL 5 compiler for
translation into an object program containing executable
code. The compiler checks the program and reports any
errors in the diagnostics listing. The object program can
be punched on cards or written on a disk file for subsequent
execution of the program.

Execution of the COBOL 5 object program can be included
in the compilation run or it can be a separate job. When
execution immediately follows compilation, the object
program usually is written on the system file LGO and the
input data must follow the source program in the input
file. Once the program has been completely debugged, the
object program is usually punched on cards or stored on
disk by making it a permanent file or part of a permanent
file library in either absolute or relocatable form. Job
processing then consists of executing the object program
and providing the input data on the input files specified b

the program. i

60497200 C

PROGRAM STRUCTURE 2

A COBOL 5 program defines the data to be used and
specifies the manner in which the data is manipulated in
order to produce the desired results. The program is
organized according to a predefined structure. Various
components of the language are used in structuring the
program.

PROGRAM ORGANIZATION

A COBOL 5 program consists of a series of entries that are
organized into divisions, sections, and paragraphs. An
entry contains one or more language elements and is
terminated by a period. A COBOL 5 program has four
divisions; each division contains a specific type of
information. Within three of the divisions, the infarmation
can be further organized into sections that contain a series
of related paragraphs.

IDENTIFICATION DIVISION

The Identification Division is the first division in a
COBOL 5 program. It identifies the program by assigning
a program name. In addition, the Identification Division
can document the author's name, the date the program was
written, the date it was compiled, the installation's
identification, and a security entry.

Sections are not used in the Identification Division. Each
type of information is presented in a paragraph that begins
with a predefined name. Only the PROGRAM-ID
paragraph is required.

ENVIRONMENT DIVISION

The Environment Division documents the equipment to be
used to compile and execute the COBOL 5 source program
and assigns each data file in the program to a specific file.
It can also include other information related to input and
output and the assignment of special names. The
Environment Division is organized into two sections: the
Configuration Section and the Input-Output Section.

The Configuration Section documents the source and object
computers, which are the computers used, respectively, to
compile and to execute the source program. The debugging
feature can be activated for compilation and the collating
sequence to be used during execution of the program can
be specified. The SPECIAL-NAMES paragraph provides the
means to assign user-defined names to implementor-names
recognized by the compiler, to designate the name by
which a specific character code set is recognized, and to
specify the sub-schema for accessing data base files. In
addition, this paragraph can specify an alternate character
for the currency sign, the decimal point, and the quotation
mark; the default position of the operational sign for
signed numeric display data items can also be specified.

The Input-Output Section contains two paragraphs. The
FILE-CONTROL paragraph names each file used in the
source program, assigns the file to a system file-name, and
specifies other file related information such as file
organization, access mode, and key fields. The
I-O-CONTROL paragraph specifies the points at which

60497200 C

rerun is to be established, whether memory area is to be
shared by different files, and the location of files on a
multiple-file reel.

DATA DIVISION

The Data Division defines all data that is processed by the
object program. FEach data item referenced in the
Procedure Division is described in one of the seven possible
sections in the Data Division.

The File Section describes the data items within each file
processed by the object program. The Common-Storage
Section describes data items that are shared between the
main program and an independently compiled subprogram.
Data that is developed internally during operation of the
program is described in the Working-Storage Section. The
Secondary-Storage Section describes data to be stored in
extended memory. Data to be passed to a COBOL
subprogram (through the CALL statement in the main
program) is described in the Linkage Section of the COBOL
subprogram. When the Report Writer capability is used, the
output report is described in the Report Section. The
Communication Section is used when a COBOL object
program . communicates, through the Message Control
System (MCS), with local or remote communication devices
such as terminals.

Only those sections that are applicable need be specified in
the source program. Each item defined in the Data
Division contains (or will contain as a result of processing)
data used by the program.

The Data Division does not have paragraphs. Each data
item in a section is described completely in a Data
Description entry. This entry describes a data item in
terms of size and class.

PROCEDURE DIVISION

The Procedure Division specifies the manner in which data
is manipulated. Statements in this division perform
input/output operations, arithmetic processing, program
control, and data movement. In addition, files can be
sorted, tables can be searched, and reports can be written
through the Report Writer capability. Terminal messages
can be received from buffer areas called input queues and
placed in areas called output queues through the COBOL
Communication Facility (CCF). Refer to section 17.

Statements in the Procedure Division are combined into
sentences; sentences are organized into paragraphs. One
or more paragraphs can be designated as a section. If
sections are to be used, the entire Procedure Division must
be organized into sections. Section-names and
paragraph-names in this division are user-defined.

Declaratives can be included at the beginning of the
Procedure Division to specify procedures that are
automatically executed at the appropriate time.
Declarative procedures can be used with errar checking,
debugging, report writing, and key manipulation. Each
procedure is contained in a section that begins with a USE
statement.

2-1

LANGUAGE ELEMENTS

The COBOL 5 language is composed of various elements
that are combined to form entries in the source program.
The use of these elements is governed by specific rules.
Source program entries consist of reserved words,
user-defined words, literals, and punctuation. In the Data
Division, entries also include level numbers and
picture-specifications. The following paragraphs briefly
describe these COBOL 5 program elements, Detailed
descriptions are contained in the COBOL 5 reference
manual.

RESERVED WORDS

Reserved words are English words and abbreviations that
have special meanings to the COBOL 5 compiler. These
words can be wused only as shown in the format
specifications and must be spelled correctly. Reserved
words are divided into five categories:

Keywords

Words that are required in the format
specifications. A keyword conveys a special
meaning to the COBOL 5 compiler and is
necessary to correctly compile the entry or
statement.

Optional Words

Words that can be included in the format
specification to improve readability. An optional
word is not needed to compile the entry or
statement.

Connectives

Words used to associate a name with its qualifier
(OF and IN) or to logically join conditions (AND
and OR).

Special Registers

Words that identify compiler-generated data
related to specific COBOL 5 features. Five
special registers are available: LINE-COUNTER,
PAGE-COUNTER, LINAGE-COUNTER, DEBUG-
ITEM, and HASHED-V ALUE.

Figurative Constants

Words that represent fixed values. Six different
figurative constants are available: ZERO,
SPACE, HIGH-VALUE, LOW-VALUE, QUOTE,
and ALL. ALL can precede any of the other
figurative constants or their plural equivalents, or
it can be followed by a nonnumeric literal.

USER-DEFINED WORDS

Many of the format specifications include words that are
supplied by the user. Various types of names (such as
data-names, paragraph-names, section-names, and
file-names) are defined by the user.

2-2

A user-defined name can be up to 30 characters in length.
Only the characters A through Z, 0 through 9, and the
hyphen can be used; the hyphen cannot be the first or the
last character of a user-defined word. Level numbers and
segment numbers must be numeric. Paragraph-names and
section-names can be entirely numeric. All other
user-defined words must contain at least one alphabetic
character. A user-defined word cannot be spelled exactly
the same as a reserved word.

LITERALS

In some of the format specifications, literals are supplied
by the user. A literal is a string of characters that
represents a specific value. Literals are either numeric or
nonnumeric.

Numeric Literals

A numeric literal contains a combination of the digits 0
through 9, the decimal point, and the plus sign or minus
sign. The decimal point can be in any character position
except the rightmost position. If the plus sign or the minus
sign is included in the numeric literal, it must be the
leftmost character. A numeric literal can contain up to 18
digits.

Floating point numeric literals can also be specified in a
COBOL 5 program. These literals can be used only as
follows:

In the Data Description entry of an elementary
COMPUTATIONAL-2 data item.

In a Procedure Division statement that allows a
noninteger numeric literal.

A floating point numeric literal consists of a mantissa, the
letter E, and an exponent; a plus sign or minus sign can be
included in the mantissa and in the exponent. The mantissa
can contain up to 14 digits and must include a decimal
point. The largest value that can be specified as the
exponent is +308 or -279. If a sign character is specified,
it must be the leftmost character in the mantissa or
exponent.

Nonnumeric Literals

A nonnumeric literal is a string of up to 255 characters.
The string of characters must be enclosed in quotation
marks. Any character in the character set, including the
space, can be used in a nonnumeric literal. A quotation
mark can be included in the literal by specifying the
quotation mark twice for each occurrence. For example,
"PROGRAM ™ONE" REPORT" would yield the literal
PROGRAM "ONE" REPORT.

‘When the QUOTE IS APOSTROPHE clause is specified in

the Environment Division or the APO parameter is included
in the COBOLS control statement, the apostrophe
character is used to delimit nonnumeric literals.

PUNCTUATION

Most punctuation marks in a COBOL 5 program are
optional. In some instances, punctuation is essential to
program compilation and the rules must be followed
exactly. .

60497200 C

-Commas and semicolons are included or omitted at the
user's option and have no effect on program compilation.
A period is required to terminate each of the following
elements in a COBOL 5 program:

e Division header

® Section header

e Paragraph name

e Complete paragraph

e Environment or Data Division entry

® Procedure Division sentence

A period, comma, or semicolon must be followed by at
least one space.

A colon must be used in reference modified items, as
described in section 7.

Parentheses are used to delimit subscripts, indexes,
arithmetic expressions, reference modifiers, and
conditions. Parentheses must be specified in balanced
pairs of left and right parentheses.

Quotation marks are used to enclose nonnumeric literals
and must be specified in balanced pairs except when the
literal is continued on more than one line (refer to
COBOL 5 Coding Conventions in this section). The opening
quotation mark cannot be followed by a space, and the
closing quotation mark cannot be preceded by a space,
unless the space is considered part of the nonnumeric
literal.

Periods, commas, and parentheses can appear in
picture-specifications and as such characters are not
considered punctuation marks.

LEVEL NUMBERS

Level numbers can be used in the Data Division to
designate the hierarchical structure of the data items
being defined. Level numbers 01 through 49 are used to
define the structure of a record or a report. Level
numbers 66, 77, and 88 are special level numbers that do
not designate a hierarchical position.

Record Level Numbers

The hierarchy of data items within a record is defined with
level numbers 02 through 49. Level number Ol identifies
the record and is used in the entry that specifies the
record-name. The organization of the data items within
the record is indicated by the level numbers. Elementary
data items are assigned higher level numbers than the level
number of the group item to which they belong. Level
numbers need not be consecutive. Level number 01 can
also be used to define an independent data item or the
highest element in a group item that is not part of a file
description.

60497200 C

Special Level Numbers

- Three level numbers have been provided for particular

types of entries; these level numbers do not define the
hierarchy of data items:

L_evel Number 66

Used to rename a data item. Level number 66
can be used in any section of the Data Division,
except the Secondary-Storage and Report
- Sections, to rename one or more elementary
items or group items.

L_evel Number 77

Used in the Working-Storage, Common-Storage,
and Linkage Sections to define independent data
items. Level number 77 is used to define
elementary items that are not a part of any
record.

Level Number 88

Used to assign one or more values to a
condition-name. Level number 88 can appear in
any section in the Data Division except the
Secondary-Storage and Report Sections.

Report Level Numbers

In the Report Section of the Data Division, level numbers
are used to identify group and elementary items. A report
group item is assigned level number 01 and describes one
type of report line (heading, detail, or footing).
Subordinate group and elementary items are -assigned level
numbers 02 through 49; these items further describe the
characteristics of the report group item. Refer to the
Report Writer user's guide.

PICTURE-SPECIFICATIONS

Picture-specifications are used in the Data Division to
describe the characteristics of a data item and to specify
editing requirements for a data item. A
picture-specification can be associated only with an
elementary data item and is specified by the PICTURE
clause. A complete description of the use of the PICTURE
clause is contained in the COBOL 5 reference manual. The
following paragraphs summarize picture-specifications.

The type of characters used in the picture-specification
determines the data category of the data item. Each data
item belongs to one of six categories: alphabetic, numeric,
boolean, alphanumeric, alphanumeric-edited, or numeric-
edited. Table 2-1 lists each character that can be used in
a picture-specification and specifies the character
representation and the data categories for which it can be
used.

The picture-specification can contain up to 30 characters;
however, the size of the data item being described can be
more than 30 characters. Consecutively repeated
characters in the picture-specification can be abbreviated
by specifying the character followed by a number enclosed
in parentheses. For example, A(20) is equivalent to the
character A repeated 20 times.

2-3

TABLE 2-1. PICTURE-SPECIFICATION CHARACTERS

Character Representation Data Category
A Alphabetic character Alphabetic, alphanumeric, or
(including space) alphanumeric-edited
B Blank (space) insertion Alphabetic, a}phanumeric-edited;
or numeric-edited
9 Numeric character Numeric, alphanumeric,
: alphanumeric-edited, or numeric-
edited
P Assumed decimal scaling position Numeric or numeric-edited
S Operational sign Numeric
v Assumed decimal point Numeric or numeric-edited
X Alphanumeric character Alphanumeric or alphanumeric-edited
Z Zero suppression Numeric-edited
0 Zero insertion Alphanumeric-edited or numeric-
edited
1 Boolean character 0 or 1 Boolean
/ Slash insertion Alphanumeric-edited or numeric-
edited
T Comma insertion Numeric-edited
.1 Decimal point insertion Numeric-edited
CR CR insertion for negative value Numeric-edited
DB DB insertion for negative value Numeric-edited
+ Plus sign insertion Numeric-edited
- Minus sign insertion Numeric-edited
* Asterisk insertion Numeric-edited
$TT Currency sign insertion Numeric-edited

TIf the DECIMAL-POINT IS COMMA clause is specified, the representations of the comma and decimal

point characters are exchanged.

TT'The character # or the character specified in the CURRENCY SIGN clause can be used in place of the

character $ in the picture-specification.

The following rules apply to the picture-specification for

each data category:

2-4

Alphabetic

Only the characters A and B can be used.

Numeric

Only the characters 9, P, S, and V can be used.

Up to 18 digit positions can be described.

Each of the characters S and V can be used only

once.

Baoolean

Only the character 1 can be used.
Alphanumeric

Only the characters A, X, and 9 can be used.

At least one X, or at least one A and one 9, must
be specified.

Alphanumeric-Edited

Only the characters A, X, 9, B, 0, and / can be
used.

60497200 C

At least one X and one B, 0, or / must be
specified, or at least one A and one 0 or / must be
specified.

Numeric-Edited
Only the characters B, /, P, V, Z, 0, 9, comma (,),
decimal point (), *, +, -, CR, DB, and the
currency symbol can be used. :

Up to 18 digit positions can be described.

At least one character other than.P, V, or 9 must
be specified.

Each of the characters V, decimal point, CR, and
DB can be used only once; CR and DB cannot be
used in the same picture-specification.

COBOL 5 CODING CONVENTIONS

The COBOL 5 source program is written on COBOL coding
forms that correspond to 80-column punched card format.
The coding form is divided into five reference areas:

Reference Area Columns
Sequence Number Area 1-6
Indicator Area 7

Area A 8-11
Area B 12-72
Program Identification

Area 73-80

SOURCE PROGRAM ENTRIES

A source program entry is written according to the
applicable format specification. Entries on the coding
form must conform to the following rules:

o Division headers and the keywords DECLARATIVES
and END DECLARATIVES must begin in Area A; the
remainder of the line following the terminating period
must be blank.

e Section headers must begin in Area A; only a COPY or
USE sentence can follow a section header on the same
line.

e Paragraph names must begin in Area A; at least one
space must follow the terminating period.

e Sentences must be written in Area B; a sentence can
begin on a new line or follow a preceding sentence
separated by at least one space.

® Level indicators FD, SD, and RD and level numbers 01
and 77 must begin in Area A and must be followed by
at least one space.

e Level numbers 02 through 49, level number 66, and
level number 88 must begin in Area B and must be
followed by at least one space.

® Level numbers 01 through 09 can be written as a single
digit or can be preceded by a zero.

60497200 E

SEQUENCE NUMBERS

If the program sequence (PSQ) parameter is specified in
the COBOLS5 control statement, each line of the source
program must have a numeric sequence number not greater
than 65535, not equal to zers, and not consisting of ail
spaces. Diagnostics issued at compile time and at
execution time then reference the applicable sequence
numbers. Sequence numbers do not have to be in ascending
order; however, the numbers should be in order to
facilitate locating source lines referenced in diagnostics.
If a sequence number contains any character other than the
digits 0 through 9 and a space, a diagnostic is issued and
the last valid sequence number is used.

Processing of sequence numbers depends on the PSQ
parameter in the COBOLS5 control statement. When the
PSQ parameter is omitted, sequence numbers are optional
and can include any character in the computer character
set. The compiler does not perform any checking on the
sequence number.

When a program has been created with line sequence
numbers through a NOS interactive text editor facility
(EDITOR or XEDIT), or the NOS Full Screen Editor (FSE),
the PSQ parameter causes those sequence numbers to be
used for diagnostic message references. Refer to
section 16.

CONTINUATION LINES

A source program entry can be written on more than one
line. Continuation lines must begin in Area B. When a
word or a literal is continued from one line to the next, a
hyphen must be entered in the Indicator Area, and the
continuation is processed as follows:

e For a continued word or numeric literal, the first
nonblank character in Area B of the continuation line
is assumed -to immediately follow the last nonblank
character of the preceding line.

e For a nonnumeric literal, the first nonblank character
in Area B of the continuation line must be a quotation
mark; the first character following the quotation mark
is assumed to immediately follow the character in
column 72 of the previous line. All spaces at the end
of the continued line are considered part of the
nonnumeric literal.

A continuation line that does not contain a hyphen in the
Indicator Area assumes that a space follows the last
nonblank character in the preceding line.

COMMENT LINES

Comment lines can appear anywhere in the source program
after the Identification Division header. A comment line is
designated by entering an asterisk or a slash in the
Indicator Area. An asterisk causes the line to be printed in
the source program listing immediately following the
preceding line. A slash causes page ejection before the
line is printed. All characters in Area A and Area B are
considered to be a comment line and are printed on the
output listing.

2-5

PROGRAM TEXT REPLACEMENT

Source program text can be replaced anywhere in the
COBOL 5 source program by using the REPLACE
statement. Two contiguous equal signs are used to delimit
pseudo-test.

REPLACE ==TEST== BY ==TEST-AMT==,

This statement replaces the characters TEST with the
characters TEST-AMT, from the point at which the

statement is used, until either the end of the program or
until REPLACE OFF is encountered. TEST appears in the
source listing but the COBOL compiler uses TEST-AMT
instead. New reserved words can be replaced in this
manner to avoid diagnostics.

All REPLACE statements are processed by the compiler
after all COPY statements (see section 12) have been
processed; the program is then checked for syntactical
correctness.

60497200 C

FILE PROCESSING 3

—

Most data items used during execution of a COBOL 5
program are contained in files. The structure of a file as
specified in the source program determines the type of
device on which the file can reside, the organization of
records within the file, and the method used to input and
output records in the file.

COBOL 5 files can reside on magnetic tape or on mass
storage devices; card and' line printer files are mass
storage files. Records are positioned in a file sequentially
or according to a specified key. Depending on the file
organization, the access mode can be sequential, random,
or dynamic. Dynamic access allows records to be accessed
sequentially as well as randomly during program execution.

Six different file organizations are available for COBOL 5
files: sequential, relative, indexed, direct, actual-key, and
word-address, Records in all file organizations except
sequential are stored according to a primary key value.
The description of the file and the format of the
statements used to manipulate the file depend on the file
organization selected. File organization is established
when the file is created and remains the same as long as
the file exists.

Indexed, direct, and actual-key file organizations can be of
two types: extended or initial. Extended file organizations
are more efficient and are the COBOL default. All
references to indexed, direct, and actual-key files in this
section imply extended file organization unless otherwise
stated.

Alternate keys can be defined for a file with indexed,
direct, or actual-key organization. Alternate Kkey
processing allows records to be accessed by any one of
several key fields. An index of the alternate keys is
automatically created and maintained on an alternate key
index file that is separate from the data file. Alternate
keys can be included in the index file or omitted from it,
depending on conditions specified when the keys are
defined.

A file can be declared an External file. This allows the file
to be shared by programs in the same run unit. External
files are discussed in section 10, Subprogram Interface.

Data base files, which are accessed through the CYBER
Database Control System (CDCS), can be processed by a
COBOL. 5 program. The files are described in a subschema
instead of in the COBOL 5 program. Data base file
processing is discussed in section 14, CDCS Interface.

Errors and exception conditions encountered during file
processing can be handled in several different ways.
Special procedures can be specified in the COBOL 5
program; other procedures are performed automatically by
the system.

File processing is described in this section for each of the
six file organizations. The definition of a file and the use
‘of the applicable input/output statements are discussed
separately for each file organization. The user of this
section can refer to a specific file organization for
information related to file definition and file

60497200 £

manipulation. More detailed information on the interface
with CYBER Record Manager is in section 15.

ALTERNATE KEY PROCESSING

File processing can be greatly enhanced by the use of
alternate keys. This capability is provided for files with
indexed, direct, and actual-key organizations. Alternate
keys allow records in the file to be accessed by various
keys. As many as 255 alternate keys can be defined for a
file.

CREATING ALTERNATE KEYS

Alternate keys are defined when the file is being created.
An ALTERNATE RECORD KEY clause is included in the
FILE-CONTROL paragraph for each alternate key.
Alternate key fields are described in a Record Description
entry for the file. Alternate key fields can overlap and can
differ in length. An alternate key field can begin in the
same location as the primary key field or any other
alternate key field; however, overlapping keys must not be
the same length. The location and description of alternate
key fields must remain the same for the life of the file.

A data item described with the OCCURS clause can be an
alternate key field. This type of field is called a repeating
group, whether or not the data item is a group item.
Specifying a repeating group as an alternate key field
allows a record to have more than one value for the
alternate key. Each unique occurrence of the alternate
key provides a value by which the record can be accessed.

When the data file is being created, index entries are
automatically generated by Advanced Access Methods
(AAM) for each alternate key. An alternate key value is
included or excluded from the alternate key index file
depending on conditions specified by the USE or OMITTED
phrase in the ALTERNATE RECORD KEY clause.
Specifying one of these phrases allows an alternate key
value to be included in the index file or omitted from it on
the basis of a code value contained in the record. Keys
that have some values of little or no interest (sparse keys)
can be ignored.

The index file is specified in the ASSIGN clause for the
data file. The appearance of two file names in the ASSIGN
clause indicates an alternate key file, as shown in the
following statement:

SELECT CUSTOMERS ASSIGN TO CSTMRS, CSTINDX.

Whenever the data file TSTMRS is updated, the index file
CSTINDX is automatically updated by AAM. The index file
is a mass storage permanent file that must be preserved
between jobs. It must be made available to a job that
updates the data file or reads the data file by alternate key.

The index for an alternate key contains an entry for each
alternate key value encountered as records are written on
the data file. The entries for the alternate key are
maintained in sorted order by AAM. Each alternate key
entry contains the primary key values associated with that
alternate key value.

3-1

When the alternate key is a repeating group, the primary
key value for a record is associated with each occurrence
of the alternate key data item. If duplicate alternate key
values are not allowed, only one primary key value is
associated with an alternate key value. The structure of
the index file is illustrated in figure 3-1.

Alternate-key-1

Alternate-key-value-1

Primary-key-value-1 All primary
Primary-key-value-2 keys with
: alternate-
Primary-key-value-n) key-value-1
Alternate-key-value-2
Primary-key-value-1 Al primary
Primary—key-value-2 keys with
: alternate-
Primary—key-value-n) key-value-2
Alternate-key-value-3
Primary-key-value-1 All primary
Primary-key-value-2 keys with
: alternate-
key-value-3

Primary-key-value-n

Alternate-key-n

Alternate-key-value-1
Primary-key-value-1
Primary-key-value-2

see

Figure 3-1. Structure of the Alternate Key Index File

The order of primary key values in an alternate key entry
depends on whether or not the ASCENDING option is
included in the DUPLICATES phrase of the ALTERNATE
RECORD KEY clause. If ASCENDING is specified, the
primary key values are maintained in ascending sequence
(indexed). If ASCENDING is omitted, the primary key
values are maintained in the order in which the records are
written (FIFO).

ESTABLISHING THE KEY OF REFERENCE

For indexed, direct, and actual-key files, records are
accessed according to the current value of the key of
reference. The key of reference can be the primary key or
an alternate key. An alternate key is established as the
key of reference by executing either a START statement
or a random READ statement. The key of reference
remains the same until another START statement, a
random READ statement, or an OPEN statement is
executed.

The START statement is used to position the file to a
record that satisfies a specific condition. The file can then
be processed sequentially from that position. An alternate
key is established as the key of reference by specifying

either an alternate key or the leading portion of an
alternate key in the START statement. The alternate key
index is searched for the alternate key value that satisfies
the specified condition.- Sequential processing then
retrieves records in order by alternate key value. This
allows records to be accessed in alternate key sequence
beginning with any desired alternate key value. For
example, an employee file with the date hired field defined
as an alternate key can be positioned such that the records
subsequently accessed are those for employees hired after
a certain date; the records retrieved are in sequence by
alternate key value. The START statement is described in
more detail in the paragraphs related to the specific file
organizations.

A random READ statement can be used to establish an
alternate key as the key of reference. The KEY IS phrase
of the READ statement specifies the alternate key. When
the statement is executed, the alternate key index is
searched for a value equal to the current value of the key
of reference (the alternate key data item); the record
retrieved is the record with the first primary key
associated with the alternate key value. Sequential READ
statements can then be executed to access records with
the same alternate key value or in sequence by alternate
key value.

ACCESSING BY ALTERNATE KEY

Records can be read sequentially or randomly by alternate
key. The key of reference is established as an alternate
key before the record is accessed. When duplicate
alternate key values are allowed, the specific record
retrieved depends on the order of primary key values in the
alternate key index. The order is determined by the
ASCENDING option.

When the ASCENDING option is not specified for duplicate
alternate keys, records with duplicate alternate key values
are retrieved in the same chronological order they were
written on the file (first in, first out). When the
ASCENDING option is specified, records with duplicate
alternate key values are retrieved in ascending sequence of
primary key values. Access by alternate key is
considerably more efficient when primary key values are in
ascending sequence; therefore, the ASCENDING option
should be specified in the DUPLICATES phrase unless
chronological sequence is required for the application.

When the USE phrase or OMITTED phrase is specified for
an alternate key, only those records with keys satisfying
the condition specified in the phrase are retrieved. For
example, when the following clauses are specified, key
values equal to zero are not included in the index.

ALTERNATE RECORD KEY IS DAYS-DQ
OMITTED WHEN DAYS-DQ IS ZERO.

Similarly, particular values that are rare or of no concern
(sparse keys) can be excluded as illustrated in the following
clauses: . ’

ALTERNATE RECORD KEY IS EVENODD
OMITTED WHEN EVENODD CONTAINS
CHARACTER FROM "13579".

In this example, records are not to be indexed when the
EVENODD value is 1, 3, 5, 7, or 9. :

60497200 C

Random access by alternate key retrieves the first record
(chronologically or sequentially) for the alternate key
value. Additional records with the same alternate key
value can then be accessed by executing sequential READ
statements. When all records with the same alternate key
value have been read, the next sequential READ statement
retrieves the first record for the next alternate key value
in the index file. The final occurrence of a particular
alternate key value can be detected through the status
code returned in the FILE STATUS clause by testing for a
code value of 02.

SEQUENTIAL FILE ORGANIZATION

Records are read and written in sequence when the file
organization is sequential. The position of each record in
the file determines the order of access. Records can only
be written following the last record in the file. Sequential
file organization is most effective for files that are
normally read from beginning to end.

Magnetic tape, punched card, and line printer files must
have sequential organization. Other mass storage files can
have sequential organization if desired. Keys are not used
for sequential file organization; the file can only be
accessed sequentially.

FILE DEFINITION

The structure of a file with sequential organization is
described through the FILE-CONTROL paragraph in the
Environment Division and the File Description and Record
Description entries in the Data Division.

FILE-CONTROL Paragraph

For sequential file organization, the FILE-CONTROL
paragraph requires two clauses: SELECT and ASSIGN.
Five optional clauses can be included in this paragraph.
Refer to figure 3-2,

. Required Clauses

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE~-CONTROL.

SELECT CUSTOMER-FILE ASSIGN TO CSTMER

ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
RESERVE 2 AREAS
FILE STATUS IS FILE-CODE
USE "RT=Z".

Figure 3-2. FILE-CONTROL Paragraph for a Sequential File

The SELECT clause specifies the file-name used by the
COBOL 5 program; the same file-name is referenced in a
File Description entry. The ASSIGN clause associates the
program file-name with a logical file name that is used by
the operating system. If the logical file name duplicates a
name used in the program or a reserved word, with the
exception of the words INPUT and OUTPUT, it must be
enclosed in quotation marks.

The ORGANIZATION clause and the ACCESS MODE clause
can be specified in the FILE-CONTROL. paragraph for a

60497200 D

sequential file. These clauses, if included, must specify
SEQUENTIAL; this is the default value for both clauses.

The RESERVE clause is included to specify the number of
input/output areas to be used for file buffers. If the clause
is not specified, five input/output areas are allocated. In
many cases, performance can be improved significantly
when the RESERVE clause is used. The size of each
input/output area is the maximum block size.

The FILE STATUS clause names a data item that is used to
receive a status code whenever an input/output statement
is executed. The value of the status code indicates
whether or not the statement executed successfully. The
status code is discussed further in section 15.

The USE clause supplies file information used by Basic
Access Methads (BAM) to process the file. Certain FILE
control statement parameters can be specified in the USE
clause. These parameters supply file information that
cannot be specified through the clauses and statements in
the source program, or they override parameter values
normally obtained from the source program. Refer to
section 15 for a complete list of the parameters that can
be specified.

One additional parameter can be included in the USE
clause for a sequential file. A file that is not assigned to
OUTPUT in the ASSIGN clause can be designated as a print
file by specifying USE "PRINTF=YES". When this
parameter is specified, the user program does not supply a
carriage control character as the first character in the
record area. line spacing can be established with the
BEFORE/AFTER ADVANCING phrase of the WRITE
statement. If this phrase is not specified, all lines are
single spaced.

A FILE-CONTROL paragraph for a file with sequential
organization is illustrated in figure 3-2. The file-name
CUSTOMER-FILE is used within the COBOL 5 program to
reference the file; the logical file name recognized by the
operating system is CSTMER. The ORGANIZATION and
ACCESS MODE clauses are included for documentary
purposes.

File Description Entry

A sequential file named in a SELECT clause must be
defined by a File Description entry (FD entry) in the File
Section of the Data Division. The FD entry defines the
structure of the file, the manner in which data is stored,
and tape labeling conventions. Six clauses in the FD entry
are applicable to sequential file organization. Refer to
figure 3-3. :

The BLOCK CONTAINS clause is used to determine the
block type and block size for a sequential file that is on a
tape with S or L format. Table 3-1 shows the various block
types and block sizes that result from the BLOCK
CONTAINS clause for a tape with S or L format. For other
sequential files, the block type is always block type C; the
block size is determined as follows:

e On a mass storage device, block size is 640 characters.

e On a tape with SI or 1 format, block size is one
physical record unit (PRU). PRU device sizes are:

Binary SI tapes - 5120 characters
1 tapes - 5120 characters (supported on NOS only)

Coded SI tapes - 1280 characters (supported on
NOS/BE only)

3-3

DATA DIVISION.
FILE SECTION.
FD CUSTOMER-FILE

CODE-SET IS UNI

LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS "CF123"

BLOCK CONTAINS 10 RECORDS

RECORD VARYING FROM 60 TO 100 CHARACTERS
DEPENDING ON REC-LENGTH

RECORDING MODE IS DECIMAL
DATA RECORD IS CUSTOMER-REC.

Figure 3-3. File Description Entry for a Sequential File

TABLE 3-1. BLOCK TYPE AND SIZE FOR S AND L TAPE FILES
Block s oot
BLOCK CONTAINS Clause Type Block Size
Omitted K Number of characters in one record; number varies
as actual record lengths vary
BLOCK CONTAINS integer RECORDS K Number of characters in the specified number of
records; number varies as actual record lengths
vary
BLOCK CONTAINS integer TO integer RECORDS E Number of characters within the range first integer
times minimum record size and second integer times
maximum record size; maximum number of records
within the specified range, not exceeding maximum
block size
BLOCK CONTAINS integer CHARACTERS E Specified number of characters
BLOCK CONTAINS integer TO integer CHARACTERS E Number of characters within the specified range;
maximum number of records without exceeding maximum
block size

character.

"Block types K and E always have an even number of characters; if necessary, the system adds a padding

The CODE-SET clause is applicable primarily to tape and
card files. The clause indicates that the data in the file is
to be read or written according to the external alphabet
named in the ALPHABET clause of the Environment
Division. This allows information from another
manufacturer's system to be processed in correspondence
with the internal display code of the CDC system. The
conversion parameter on the LABEL statement (CV on NOS
or N on NOS/BE) overrides any external alphabet named in
the ALPHABET clause.

The LABEL RECORDS clause must be specified in every
FD entry. It indicates whether or not labels exist on the
file. Labels can be specified only for magnetic tape files.
When labels exist, values can be specified for certain fields
in the label record. For an input file, values specified in
the FD entry are checked against the values in the label
fields. For an output file, values specified in the FD entry
are placed in the label fields.

The RECORD clause specifies the number of characters in
arecord. If all records in the file are not the same length,
this clause indicates the least number of characters and
the most number of characters a record can contain. The
information supplied in the RECORD clause is used to
determine the record type and record size for input/output
processing by BAM. If the clause is omitted, record type
and size are determined by the Record Description entry.
Table 3-2 lists the record type for each format of the
RECORD clause. Refer to table 4-2 in section 4 of the
COBOL. 5 reference manual for record size information.

The RECORDING MODE clause is applicable only to tape
files. It specifies whether the tape file is recorded in
binary or decimal code. Conversion between internal and

external code sets occurs when the recording mode is
decimal. :)

60497200 D

TABLE 3-2. RECORD TYPES FOR SQ, IS, DA AND AK FILES

RECORD DESCRIPTION ENTRY

R?EgkgngtA¥SE 01 Entries 01 Entries Entry with Entry with

y of of OCCURS/DEPENDING ON OCCURS/DEPENDING ON
Same Length Different Length data-name in record data-name not in record

Clause omitted F W T W

RECORD CONTAINS integer +

CHARACTERS F F F F

RECORD CONTAINS :

integer-1 TO integer-2 W W T W

CHARACTERS

RECORD CONTAINS

integer-1 TO integer-2 D D D D

CHARACTERS DEPENDING ON

data-name in record

RECORD CONTAINS

integer-1 TO integer-2 W W W W

CHARACTERS DEPENDING ON

data-name outside record

respective record type.

TRecord type is Z if file name is INPUT, OUTPUT, or PUNCH.
Note: For each RECORD CONTAINS format, an equivalent RECORD VARYING format exists, giving the same

RECORDING MODE IS DECIMAL causes the CM field of
the FIT to be set to YES. RECORDING MODE IS BINARY
causes the CM field of the FIT to be set to NO (no
conversion occurs). For ASCIl and EBCDIC conversions the
tape driver makes the conversion only when the CM field in
the FIT contains YES. (YES is the COBOL default). For
7-track UNIVAC conversions, the COBOL library -makes
the conversion.

If the RECORDING MODE clause is omitted, conversion is
assumed (except for block-I-type-W records).

The terms CM=YES, RECORDING MODE IS DECIMAL., and
coded tapes with even parity (7 track) are equivalent.
Likewise, the terms CM=NO, RECORDING MODE IS
BINARY, and binary tapes with odd parity (7 or 9 track)
are equivalent.

Figure 3-3.1 illustrates a COBOL program that converts an
IBM EBCDIC tape to CDC display code, on the NOS
operating system. In this program, the ALPHABET clause
and the CODE-SET clause are documentary only. The
CV=EB parameter on the LABEL statment overrides the
COBOL statements and causes the conversion.

The LINAGE clause can be specified for a file that is to be
printed. It indicates the number of lines on a logical page
and can_optionally define the top margin and footing area
within the page. When the LINAGE clause is included in
the FD entry, the ADVANCING and AT END-OF-PAGE
phrases of the WRITE statement can be used to position
print lines within the boundaries of the logical page. The
value of the special register LINAGE-COUNTER indicates
the current line number. The LINAGE clause cannot be
specified for a report file generated through the Report
Writer feature.

60497200 D

A File Description entry for a tape file is illustrated in
figure 3-3. The file contains a standard label. If it is an
input file, the operating system issues a diagnostic message
and terminates the job if the FILE-ID field of the LABELS
RECORDS clause does not agree with the file-id set by the
file identifier (FI) parameter of the NOS LABEL control
statement. The usage of the FILE-ID field is not required.

The block type for the tape file is K and each block
contains 10 records; the actual length of the block can be
from 600 to 1000 characters, depending on the actual size
of each record. The record type is D and each record
contains from 60 to 100 characters; the value of the data
item REC-LENGTH, which is contained within the record,
specifies the actual size of the individual record. The
recording mode for the tape file is decimal. The DATA
RECORD clause is included for documentary purposes only;
it indicates that all records in the file are formatted
according to the Record Description entry for the record
named CUSTOMER-REC.

Record Description Entry

The File Description entry must include one Record
Description entry for each record format applicable to the
sequential file. A Record Description entry describes the
physical structure of a record and provides data-names
that are used to access specific data items within the
record. Records in sequential files can be either fixed

length or variable length.

When the RECORD clause is not included in the FD entry,
record type and record size are determined from the
Record Description entries for the file. Variable-length
records can be described with an OCCURS clause that
includes the DEPENDING ON option.

3-5

Control Statements (NOS)

JOB Statement

USER Statement .
LABEL,EB1,R,D=PE,F=S,PO=RM,CV=EB,VSN=XXXXX
COBOLS5.

LGO.

Source Program

IDENTIFICATION DIVISION.
PROGRAM-ID. TAPTST.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
ALPHABET IBM-CODE IS EBCDIC.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT REFORMAT-FILE ASSIGN TO "EB1“;
USE "RT=S,BT=C,EO0=AD,EFC=3",
SELECT CUSTOMER-FILE ASSIGN TO "CSTMER";
USE "“RT=Z,BT=C,E0=AD,EFC=3",
DATA DIVISION.
"FILE SECTION.
FD REFORMAT-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 107 CHARACTERS;
CODE-SET IS IBM-CODE;
RECORDING MODE IS DECIMAL;
DATA RECORD IS CUSTOMER-REC1.
01 CUSTOMER-REC1.
02 REC-1 PIC X(80).
FD CUSTOMER-FILE N .
LABEL RECORDS ARE OMITTED
DATA RECORD IS CUSTOMER-REC2.
01 CUSTOMER-REC2.
02 REC-2 PIC X(80).
PROCEDURE DIVISION.
OPENING.
OPEN INPUT REFORMAT-FILE .
OPEN OUTPUT CUSTOMER-FILE.
PERFORM 26 TIMES)
READ REFORMAT-FILE
WRITE CUSTOMER~REC2 FROM CUSTOMER-REC1
END-PERFORM
PERFORM WRAPUP.

WRAPUP.
CLOSE REFORMAT-FILE, CUSTOMER-FILE.
STOP RUN.

3-6

Figure 3-3.1. IBM EBCDIC Tape Conversion (Sheet 1 of 2)

60497200 E

Converted File

S358244038ADAMS BARBARA 220070900141409
S570327591BURCHELL DONALD 2200706701522019
S4634L45549CLEVELAND WILLIAM 22N0N070200170500
S207243050DAVIES DAVID 220073519219000
S571649574ELLIS ALAN F220070680081500
S562460661FERRERA ROBERT 220970060137100
S148169725GRAME CARL 220070800195000
S566208909HARVEY LAURENCE E220079450383500
$1322462431IMMITT SALVATOREJ2200706902904300
$572548172JENSEN HOWARD M220070070091250
S576246405KANE DAVID H220071190146999
S087222701LEAVITT MURRAY 220079640175700
S359304744MILTON JOHN 221070220079200
S551482673NEWTON PAULINE 220070410068550
S$5643883520"DONNELL DANIEL J220070630159800
S550429831PETERSON DENNIS 2209708207787090
S091403215QUEENSBURY TATIANA 22N00704002449590
S545014985ROKITIANSKY N 220070410280359
$384186384S0WYL JEROME 220070630225600
$571202817TREJO PAUL 220070090202250
S568283442UTTERBACH WILLIAM 220070270075300
$567451439VAN FOSSEN, L220970751365950
$555244713WILLEY GEORGE 220070720185800
$548546977XANDTHRUS ROGER 2210702560135500
$293305616YDLLES ROBERT 229070870044500
$568462813Z0FFMAN NORMA B220079622035850
Figure 3-3.1. 1BM EBCDIC Tape Conversion (Sheet 2 of 2)

A Record Description entry for a mass storage file with
sequential organization is illustrated in figure 3-4. The
record type, determined from the Record Description
entry, is record type T. All records in the file contain at
least 70 characters (60 characters in the fixed portion and
10 characters in one item in the trailing portion). The
maximum record size is 210 characters (60 characters in
the fixed portion and 10 characters in each of 15 items in
the trailing portion).

FILE MANIPULATION

Sequential files are processed through the use of five
Procedure Division statements. Records can be added at
the end of an existing sequential file; if the file resides on
a mass storage device, records can also be rewritten.
Individual data items in a record are processed by various
statements that are discussed in other sections of this
guide.

Opening Sequential Files

Before records in a sequential file can be input or output,
the file must be opened by the execution of an OPEN
statement. Any sequential file can be opened for input or
for output. A mass storage sequential file can also be
opened for input and output.

An input file is opened with the OPEN INPUT statement.
The file is available for read-only processing. If the file
contains a label, label checking is performed. The file is
positioned at the first record unless the file resides on the
file INPUT or unless the REVERSED or NO REWIND phrase
is specified in the OPEN statement. Records in the file
can then be read in sequence until the end of the file is
reached.

60497200 D

ENVIRONMENT DIVISION.

SELECT INVOICES ASSIGN TO INVFLE.

DATA DIVISION.
FILE SECTION.
FD - INVOICES

LABEL RECORDS ARE OMITTED
DATA RECORD IS INVOICE-REC.

01 INVOICE-REC.
03 CUST-NAME
03 CUST-ADDRESS.

05 STREET
05 CITY
05 STATE
05 z1p

03 NUM-ITEMS

PICTURE

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

03 ITEMS-ORDERED OCCURS 1 TO
DEPENDING ON NUM-ITEMS.

05 ITEM-NO
05 QUANTITY
05 CosT

PICTURE
PICTURE

PICTURE 999v99.

X(18)

X(18)
X(15)
AA.
9(5).
99.
15 T1

XXX.
99.

MES

Figure 3-4. Record Description Entry

for a Sequential File

3-6.10.

OPEN INPUT CUSTOMER-FILE.

Execution of this statement opens the file
CUSTOMER-FILE for input and positions the file at the
first record. Records can be read from the file but cannot
be written on it.

For a tape file that is contained on a single reel, the
REVERSED phrase can be included in the OPEN INPUT
statement. This phrase causes the file to be positioned at
its end; records are then read in sequence from the end to
the beginning. The REVERSED phrase can only be used
when the tape file records are record type F, W, R, or Z.
(Record type R or Z is specified through a FILE control
statement parameter or in the USE clause.) For record
type F, record length must be a multiple of 10 characters.
Reading a tape file from the end to the beginning results in
inefficient processing.

When the NO REWIND phrase is included in the OPEN
INPUT statement, the file is opened at its present
position. If this phrase is not specified, the file is rewound
during execution of the OPEN statement.

The OPEN OUTPUT statement is specified when a new
sequential file is being created. When this statement is
executed, the file is available for write-only processing. If
the LABEL RECORDS ARE STANDARD clause is specified
for a tape file, the beginning label is written on the file;
the file is then positioned immediately after the label.
Records are written in sequence on the file. When the last
record has been written, an ending label (if applicable) is
written on the file.

OPEN OUTPUT INVENTORY-FILE.

Execution of this statement causes the file
INVENTORY-FILE to be opened for output. If a label has
been specified for the file, the label is written. Records
are then written on the file in sequence.

I 3-6.2

The NO REWIND phrase can be included in the OPEN
OUTPUT statement to open the file at its present
position. This phrase is normally used to open an output
file that has already been closed during program
execution. When records are subsequently read from the
file, an end-of-file condition is encountered at the point
where the CLOSE statement was executed.

When records are to be added at the end of an existing
sequential file, the OPEN EXTEND statement is specified.
If the file contains labels, the labels are checked. The file
is positioned immediately after the last record in the file.
Records are then written following the last record. When
the file is subsequently opened for input, no distinction
exists between the records originally written and the
extended records. When a file is created through a COPY
control statement, the OPEN EXTEND statement causes it
to be positioned after an end-of-file condition.

OPEN EXTEND INVENTORY-FILE.

The existing file INVENTORY-FILE is opened for output
and the file is positioned immediately following the last
record in the file. Records are then written in sequence on
the file.

When more than one tape file is contained on a single reel
or on a set of reels, only one of the files can be open at any
given time. The files can be opened in any order when they
are opened for input. When a file is opened for output
(OPEN OUTPUT or OPEN EXTEND), the position number
of the file being written must be higher than that of any
existing files in the set. Once a file is opened for output,
any subsequent WRITE statements for the file destroy all
files positioned after the one being written.

When a file to be opened is contained in a multifile set,
that file must be specified in the MULTIPLE FILE TAPE
clause of the I-O-CONTROL paragraph. Refer to the
COBOL 5 reference manual for the format and usage of
this clause.

60497200 D

A mass storage sequential file is opened for input and
output by the OPEN I-O statement. When this statement is
executed, the file is available for reading or updating
records. Records: can be read or updated (through the
REWRITE statement) in sequence. The OPEN I-O
statement should only be used when the file is being
updated.

OPENI-O INVOICE-FILE.

The file INVOICE-FILE is a mass storage file and is opened
for both input and output. Records can be read from or
rewritten on the file. No additional records can be written
on this file.

Writing Sequential Files

The WRITE statement is used to write a record on a
sequential file that has been opened with the OPEN
OUTPUT or OPEN EXTEND statement. Three optional
phrases can be included in a WRITE statement for a
sequential file.

If the output file is not a print file, only the FROM phrase
is applicable. This phrase causes the data in the specified
area to be moved into the output record area and the
record to be written on the output file.

WRITE OUT-REC FROM TEMP-REC.

This statement causes the data in the storage area named
TEMP-REC to be moved to the output record area
OUT-REC. The output record is then written on its
associated file.

The ADVANCING phrase specifies print line positioning
before or after the output record is printed. A number of
lines to be skipped before or after printing can be specified
by either an integer or a data item that contains an
integer. If the integer is 1, the print line is single spaced.

WRITE PRINTLINE
BEFORE ADVANCING 3 LINES.

The data in the output record PRINTLINE is written on the
output file. The next record written on the output file
contains a carriage control character that causes the line
printer to advance, or skip ahead, three lines before the
record is printed.

The keyword PAGE can be specified in the ADVANCING
phrase to position the output to the top of the next page,
either for the present line or for the next line to be
printed. If the FD entry for the file contains the LINAGE
clause, the output is positioned to the top of the next
logical page; otherwise the output is positioned at the top
of the physical page (if a physical page concept exists).

WRITE PRINTLINE
AFTER ADVANCING PAGE.

Execution of this statement causes the record to be
written as the first line of the next page.

A mnemonic-name can also be specified in the
ADVANCING phrase to insert a carriage control character
as the first character of the output record.
Mnemonic-name is defined in the SPECIAL-NAMES
paragraph as one of the carriage control characters
recognized by the operating system. If the file is defined

60497200 C

with the LINAGE clause, a mnemonic-name cannot be
specified for line positioning.

WRITE PRINTLINE
BEFORE ADV ANCING TRIPLE.

The mnemonic-name is defined in the SPECIAL-NAMES
paragraph as "-" IS TRIPLE. The PRINTLINE record is
written on the output file and a hyphen is inserted as the
first character of the next record to be written.

When a WRITE statement without the ADV ANCING phrase
is ~executed following a WRITE statement with the
ADVANCING phrase (with no intervening OPEN
statement), the output record is written after advancing
one line if the first character of the line is a blank. If the
first character of the output record is a nonblank
character, the record is written according to the rules for
AFTER ADV ANCING.

The END-OF -PAGE phrase is only applicable to a print file
that includes the LINAGE clause in the FD entry for the
file. This phrase causes execution of an imperative
statement when the end of the page is reached. The
END-OF -PAGE phrase is described in more detail in
section 5, Conditional Operations.

Reading Sequential Files

Once a sequential file has been opened for input (OPEN
INPUT or OPEN I-0), individual records in the file are
made available to the COBOL program by -the READ
statement. Records are read in the sequence in which they
were written. The AT END phrase is included in the READ
statement to specify the action to be taken after the last
record has been read.

READ INVENTORY-FILE RECORD
AT END GO TO END-IT.

When this statement is executed, a record is read from the
file INVENTORY-FILE. Control is transferred to the
paragraph named END-IT when the end of the file is
reached.

The INTO phrase of the READ statement causes the record
to be read from the file and stored in a specified area. The
record is available in both the input record area and the
specified storage area. When the file is defined by more
than one Record Description entry, the INTO phrase cannot
be used if any entry is a level 01 elementary item that is
described as a numeric or numeric-edited data item.

READ INVOICE-FILE RECORD INTO TEMP-REC
AT END GO TO CLOSING.

Each time this statement is executed, a record from the
file INVOICE-FILE is read and is stored in both the input
record area and the storage area designated TEMP-REC.
When the end of the file is reached, control is transferred
to the paragraph named CLOSING.

Updating Sequential Files

Existing sequential mass storage files can be updated by
using the REWRITE statement to replace an existing record
in the file. Only files with record type F (fixed length) or
W (control word) can be rewritten. The file must be open
for input and output (OPEN I-O). Tape files cannot be
updated by the REWRITE statement. Rewriting records
does not result in efficient processing and should be
avoided when possible.

3-7

The record replaced is the last record read before the
REWRITE statement is executed. The new record must
contain the same number of characters as the record being
replaced. After the record has been read, individual data
items can be changed by program statements. The updated
record is then written in place of the original record.

REWRITE CUSTOMER-REC.

The current data in the record area for the file is written
in place of the last CUSTOMER-REC record read from the
file.

The FROM phrase is included in the REWRITE statement
when the new record is created in a storage area that is
not the record area for the file. The storage area must be
the same size as the record area.

REWRITE CUSTOMER-REC FROM TEMP-REC.

The data in the storage area TEMP-REC is moved to the
record area for CUSTOMER-REC. The record is then
written in place of the last record read from the file.

Closing Sequential Files

A sequential file that has been opened for processing is
closed by the CLOSE statement to terminate processing of
the file. When a CLOSE statement is executed for a file,
no input/output statement can reference that file until it
has been opened again.

The simplest form of the CLOSE statement specifies only
the file-name. The file is closed and labels are processed
as appropriate.

CLOSE INVENTORY-FILE.

The file INVENTORY-FILE is rewound and closed. If the
file has labels, the labels are checked for an input file or
written for an output file. No subsequent input/output
statement can access INVENTORY-FILE unless the file is
reopened.

When the REEL (or UNIT) phrase is included in the CLOSE
statement, a checkpoint takes place if the RERUN EVERY
END OF REEL clause is specified in the I-O-CONTROL
paragraph. For a mass storage file, no further action takes
place; for a tape file, processing stops on the current reel
and resumes on the next reel.

CLOSE INVENTORY-FILE REEL
WITH NO REWIND.

A checkpoint takes place if established for the end of a
reel; processing resumes with the next reel. The WITH NO
REWIND phrase inhibits the rewinding that normally takes
place during processing of the CLOSE statement.

The WITH LOCK phrase is included in the CLOSE
statement to prevent the file from being reopened during
execution of the current job step. The file is returned to
the system. If an attempt is made to reopen the file, the
program aborts.

When the file being closed is to be reopened immediately,
the C.FILE routine should be entered to override the
default COBOL setting of the CF field in the file
information table (FIT). If the value in the CF field is
changed from DET (the default) to R prior to the close,
buffer space and BAM capsules that would otherwise be

3-8

returned to the system are retained by the program. User
setting of the CF field is overridden if the REEL phrase or
WITH LOCK phrase is included in the CLOSE statement.

ENTER "C.FILE" USING INVENTORY-FILE,"CF=R".
CLOSE INVENTORY-FILE.

The CF field of the FIT for the file INVENTORY-FILE is
altered to contain the R option, and the file is closed.

RELATIVE FILE ORGANIZATION

A relative file is a mass storage file in which a record key
specifies the physical position of a record within the file.
Record position is relative to the first record in the file.
The key value for the first record is 1, for the second
record is 2, and so forth. All records in the file are fixed
length; if the file has multiple record descriptions of
different lengths, the length of the largest record is the
length used for all records. The access mode for a relative
file can be sequential, random, or dynamic.

Relative file organization can be effectively used for files
needing rapid access. Key values should be contiguous
beginning with key value 1. Space exists on the file for
unused key values. If the first record written on the file
has a key value of 100, the file is created with 99 empty
entries preceding the record with key value 100.

FILE DEFINITION

The FILE-CONTROL paragraph in the Environment
Division, as well as the File Description and Record
Description entries in the Data Division, describe the
structure of a file with relative organization.

FILE-CONTROL Paragraph

The FILE-CONTROL paragraph for a file with relative
organization must include three clauses: SELECT,
ASSIGN, and ORGANIZATION. Five optional clauses can
be included in this paragraph as needed. Refer to
figure 3-5.

- Required Clauses

ENVIRONMENT DIVISION.
INPUT-QUTPUT SECTION.
FILE-CONTROL.
SELECT BOX-FILE ASSIGN TO BOXFLE
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS REL-KEY.

Figure 3-5. FILE-CONTROL Paragraph for a Relative File

The file-name used by the program is specified in the
SELECT clause; the logical file name recognized by the
operating system is specified in the ASSIGN clause. If the
logical file name is the same as any other name used in the
program or as a reserved word, with the exception of
INPUT and OUPUT, it must be enclosed in quotation
marks. The ORGANIZATION clause must specify
RELATIVE for arelative file.

60497200 C

The ACCESS MODE clause establishes the manner in which
records can be processed during program execution. If
SEQUENTIAL is specified or if the clause is omitted,
records can only be processed sequentially; for a read
operation, empty record entries in the file are bypassed.
Records are processed randomly according to key value
when RANDOM is specified. If DYNAMIC is specified,
records can be processed both randomly by key value and
sequentially by position during program execution.

The key value used to access records randomly is contained
in the data item specified in the RELATIVE KEY clause.
This clause must be included when the access mode is
random or dynamic; it is required for sequential access
only if the START statement is used to position the file for
subsequent processing. The relative key data item cannot
be a data item contained in the record. When the
RELATIVE KEY clause is specified, it must immediately
follow the ACCESS MODE clause. If the file is an External
file, the relative key data item must be defined in the
Common-Storage Section.

The number of input/output buffer areas can be increased
by the RESERVE clause. Each input/output area is 64
words. When the file is processed sequentially, additional
buffer areas can improve program performance because
more records can be stored in memory at one time and the
number of accesses is reduced. For random processing,
however, the RESERVE clause should not be specified. If
the clause is omitted, two buffer areas are reserved.

The FILE STATUS clause is specified to make a status code
available to the program whenever an input/output
statement is executed for the file. The status code is a
value that designates successful or unsuccessful execution
of the statement. The value further identifies the type of
error that prevented the statement from executing. Refer
to section 15 for a description of the status code.

File information used by BAM can be specified in the USE
clause. Certain FILE control statement parameters can be
specified to override file information obtained from the
source program or to provide information that cannot be
obtained from the program. The parameter list is enclosed
in quotation marks and is in the same format used for the
FILE control statement. Refer to section 15 for a
complete list of parameters that can be specified.

One additional USE statement parameter can be specified
for a relative file. All records begin on a physical record
unit (PRU) boundary when PRUF=YES is specified in the
USE clause. Records are then read and written in
multiples of PRU size; PRU size is 640 characters. This
results in very efficient processing when the record size is
a multiple of PRU size minus 10 characters; COBOL adds
10 characters at the beginning of each record. If USE
"PRUF=YES" is specified, the RESERVE clause has no
effect on buffers; the record area is used as the buffer.

A FILE-CONTROL paragraph for a file with relative
organization is illustrated in figure 3-5. The COBOL 5
program uses the file-name BOX-FILE while the operating
system recognizes the file as BOXFLE. Random access is
specified for the file; therefore, Procedure Division
statements must access the file randomly by key value.
The data item REL-KEY contains the key value used for
random access.

60497200 D

File Description Entry

The structure of a relative file is defined in a File
Description entry (FD entry) in the File Section of the
Data Division. The FD entry specifies the program
file-name from the SELLECT clause. Two clauses in the FD
entry are applicable to files with relative organization.
Refer to figure 3-6.

DATA DIVISION.

FILE SECTION.

FD BOX-FILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 60 CHARACTERS
DATA RECORD IS BOX-REC.

Figure 3-6. File Description Entry for a Relative File

The LABEL RECORDS clause is required in every FD
entry. A relative file cannot have labels; this clause must
specify OMITTED.

All records in a relative file are fixed-length records
(record type F). The RECORD clause can be specified to
indicate the number of characters in each record. If a
range of characters is specified, the record size is the
maximum number of characters; otherwise, the record size
is the specified number of characters. If the RECORD
clause is omitted, record size is determined by the Record
Description entry.

Figure 3-6 illustrates a File Description entry for a
relative file. Each record in the file contains 60
characters. The DATA RECORD clause documents the

name of the record description for the file.

Record Description Entry

A Record Description entry is included in the File
Description entry for each record format applicable to the
relative file. All records in a relative file must be
fixed-length records. The Record Description entry
identifies each data item by a data-name and describes the
physical structure of a record.

Because all records are fixed length, the record type is
always record type F for relative files. The record size, if
not specified in the RECORD clause, is determined by the
number of character positions described in the Record
Description entry. If the File Description entry includes
more than one Record Description entry, the size of the
longest record described is the size of each record in the
file. For variable-length records, the record size of each
record is the maximum record length.

The Record Description entry shown in figure 3-7 is
applicable to the FILE-CONTROL paragraph (figure 3-5)
and the File Description entry (figure 3-6) for a relative
file. The format of the record BOX-REC describes 60
character positions, which is the number of characters
specified in the RECORD clause. Each record in the file
has a fixed length of 60 characters. The record key, which
is used to access the file randomly, is described in the
Working-Storage Section as a three-digit integer.

3-9

-

DATA DIVISION.
FILE SECTION.

01 BOX-REC.

03 CUST-NAME PICTURE X(20).

03 STREET PICTURE X(18).
03 CITY PICTURE X(15).
03 STATE PICTURE AA.

03 ZIP-CODE PICTURE 9(5).

WORKING-STORAGE SECTION.
01 REL-KEY

PICTURE 999.

Figure 3-7. Record Description Entry' for a Relative File

FILE MANIPULATION

Relative file input/output processing is specified through
seven Procedure Division statements. Once the relative
file has been created, records can be read, replaced,
deleted, inserted, and added to the file. Various
statements, which are discussed in other sections of this
guide, are available to process data items within the
records.

Opening Relative Files

A relative file is opened for input, for output, or for input
and output. The specific format of the OPEN statement
determines the open mode for the file.

A file is opened for input with the OPEN INPUT
statément. Records within the file are processed
sequentially or randomly depending on the access mode.
The OPEN INPUT statement makes the file available for
read-only processing. The file is positioned at the first
record stored in the file.

OPEN INPUT BOX-FILE.

This statement specifies that the file BOX-FILE is to be
opened for input. When the statement is executed, the file
is positioned at the first record. Records can be read from
BOX-FILE, but no record can be written on BOX-FILE,

When a relative file is being created, the OPEN OUTPUT
statement is specified for the file. Execution of this
statement makes the file available for write-only
processing. Records are written on the file sequentially or
randomly by key value.

OPEN OUTPUT REL-FILE.
When this statement is executed, the file REL-FILE is
opened for output and is positioned for the first record.

Records can then be written on the file in sequence or
randomly by key value.

3-10

The OPEN I-O statement is used to open an existing
relative file for input and output. Records in the file can
be read or updated. If the access mode is random or
dynamic, records can also be added to the file.

OPEN I-O REL-FILE.

Execution of this statement causes the file REL-FILE to be
opened for input and output. Records can subsequently be
read, deleted, and rewritten. If random or dynamic access
mode is specified for REL-FILE, records can also be
written on the file.

Writing Relative Files

Records are written on a relative file that has been opened
for output (OPEN OUTPUT for file creation or OPEN I-O
for file updating). The access mode established for the file
determines whether the records can be written sequentially
or randomly.

When the access mode is sequential, records are
automatically written in sequence. The system generates
the key values beginning with key value 1 for the first
record written on the file. As each record is written, the
key value is incremented to indicate the next record
position in the file. When a record is written, the relative
key data item, if specified, contains the key value for the
record just written. Creating a relative file by writing
records sequentially ensures that all record positions in the
file are filled.

WRITE BOX-REC.

Each time this statement is executed, a BOX-REC record
is written on its associated file. The record positions in
the file are used in sequence; no empty record positions
exist when the file is closed.)

If the access mode for the file is random or dynamic,
records are written on the file according to key values that
are supplied by the program. When the WRITE statement is
executed, the current value of the relative key data item
specifies the record position for the record being written.
An invalid key condition exists if the key value specifies a
record position that already contains a record.

WRITE REL-REC
INVALID KEY GO TO BAD-KEY.

For a relative file with random or dynamic access, this
statement causes a record (REL-REC) to be written on its
associated file in the record position corresponding to the
value of the relative key data item. If the key value is not
valid, control is transferred to the paragraph named
BAD-KEY.

The FROM phrase can be included in the WRITE statement
for either a sequential or random write operation. The
data in the specified storage area is moved to the output
record area before the record is written.

WRITE BOX-REC FROM TEMP-REC.
When this statement is executed, the data in the storage
area named TEMP-REC is moved to the output record area

for BOX-REC. The record is then written on its associated
file.

60497200 C

Positioning Relative Files

A relative file can be positioned to a specific record in the
file for subsequent sequential processing. The file must be
open for input (OPEN INPUT or OPEN I-O) and the access
mode must be either sequential or dynamic.

The START statement positions the file according to the
current value of the relative key data item. Records are
then retrieved sequentially beginning with the record at
which the file is positioned.

The KEY phrase, if included in the START statement, must
specify the relative key data item. Depending on the
relational operator selected, the file is positioned at the
record position equal to, greater than, or not less than the
current value of the relative key data item. The relational
operator NOT LESS THAN is equivalent to the equal to or
greater than condition. If the KEY phrase is not specified,
the file is positioned at the record position equal to the
value of the relative key data item.

START BOX-FILE
KEY IS EQUAL TO REL-KEY.

Execution of this statement causes the file BOX-FILE to
be positioned at the record position indicated by the value
of the relative key data item REL-KEY. Paositioning of the
file is the same whether or not the KEY phrase is specified.

The INVALID KEY phrase is included in the START
statement to indicate the action to be taken when the
specified condition cannot be satisfied by any record in the
file.

START REL-FILE
KEY IS GREATER THAN REC-NO
INVALID KEY GO TO CANT-FIND.

When this statement is executed, the file is positioned at -

the first record position following the record position
indicated by the current value of the relative key data
item REC-NO. If the value of REC-NO indicates the last
record in the file, the condition cannot be satisfied and
control is transferred to the paragraph named CANT-FIND.

Reading Relative Files

When a relative file has been opened for input (OPEN
INPUT or OPEN I-0O), the READ statement makes a record
in the file available to the COBOL 5 program for
subsequent processing. Depending on the access mode
established for the file, records are read sequentially by
position in the file or randomly by relative key value. The
format of the READ statement differs for reading
sequentially and randomly.

Accessing Sequentially

When the access mode for a relative file is established as
sequential or dynamic, records can be read sequentially.
The first time the READ statement is executed, the record
retrieved is either the first record in the file or the record
at which the file has been positioned by the START
statement. If the access mode is dynamic and a random
READ statement has been executed, the next record in
sequence is retrieved. Subsequent executions of the READ
statement cause the records to be read in the order they
appear in the file. Only records that have been written are
retrieved; empty record positions are bypassed. After a

60497200 C

successful read operation, the relative key data item, if
specified, contains the key value for the record just read.
The AT END phrase designates the action to be taken when
the last record in the file has been read.

READ BOX-FILE RECORD
AT END GO TO CLOSE-FILE.

This statement causes records to be read sequentially from
the file BOX-FILE. When the end of the file has been
reached, control is transferred to the paragraph named
CLOSE-FILE.

The INTO phrase can be included in the READ statement
to store the record in a specified storage area. The record
is then available in both the storage area and the input
record area. When the file is defined by more than one
Record Description entry, the INTO phrase cannot be used
if any entry is a level 01 elementary item that is described
as a numeric or numeric-edited data item.

READ REL-FILE RECORD INTO REC-AREA
AT END GO TO FINISHED.

When this statement is executed, the next record in
sequence in the file REL-FILE is read and stored in the
input record area and in the storage area named
REC-AREA., Control is transferred to the paragraph
named FINISHED when the end of the file has been reached.

If the access mode is dynamic, the keyword NEXT must be
included in the READ statement to access the records
sequentially. For sequential access, the keyword NEXT
only provides documentation.

READ BOX-FILE NEXT RECORD
AT END GO TO CLOSING.

Execution of this statement causes records from the file
BOX-FILE to be read in sequence. If dynamic access is
established for BOX-FILE, the keyword NEXT is required;
otherwise, NEXT is optional. When the end of the file is
reached, control is transferred to the paragraph named
CLOSING.

Accessing Randomly

Relative file records are read randomly by relative key
when the access mode is established as random. Records
can also be read randomly when the access mode is
dynamic. The value of the data item defined as the
relative key indicates the record number of the record to
be read. If the key value indicates an empty record
position or is greater than the record number of the last
record on the file, an invalid key condition exists. The
INVALID KEY phrase is included in the READ statement
to designate the action to be taken when the key value is
not valid.

READ BILL-FILE RECORD
INVALID KEY GO TO END-IT.

This statement reads a record from the file BILL-FILE
according to the value of the relative key data item. If the
key value is not valid, control is transferred to the
paragraph named END-IT.

The INTO phrase can also be included in a random access
READ statement to store the record in a specified storage
area. This phrase is executed in the same manner as for a

'sequential read operation.

3-11

Updating Relative Files

Existing relative files are updated through the DELETE and
REWRITE statements. The WRITE statement is used to
insert records in empty record positions and to add records
to the end of a file. The file must be open for input and
output (OPEN I1-0).

The DELETE statement is used to remove a record from
the file. Once a record is deleted, the record position is
considered to be an empty record position. Depending on
the access mode for the file, the record deleted is either
the last record read or the record in the record position
indicated by the current value of the relative key data
item.

When the access mode is sequential, the last input/output
statement executed before the DELETE statement must be
a valid sequential READ statement. The record retrieved
by the READ statement is then the record that is deleted.

READ REL-FILE RECORD.

DELETE REL-FILE RECORD.

Execution of this statement causes the record retrieved by
the READ statement to be deleted from the file
REL-FILE. The record can no longer be accessed from the
file.

When the access mode for the file is either random or
dynamic, the record identified by the value of the relative
key data item is the record that is deleted. The INVALID
KEY phrase is included in the DELETE statement to
specify the action to be taken when the record to be
deleted does not exist on the file.

DELETE BOX-FILE RECORD
INVALID KEY GO TO NO-RECORD.

The record in the record position identified by the relative
key data item is deleted from the file BOX-FILE, If the
designated record position does not contain a record,
contral is transferred to the paragraph named
NO-RECORD.

The REWRITE statement is used to replace an existing
record in the file. The current data in the record area
replaces the data stored on the file. The FROM phrase is
included in the REWRITE statement when the updated
record is stored in an area other than the record area. The
data in the specified area is moved to the record area
before the record is rewritten on the file.

If the access mode is sequential, the input/output
statement preceding the REWRITE statement must be a
sequential READ statement. The record replaced is then
the last record read.

READ REL-FILE RECORD INTO TEMP-REC.
REWRITE REL-REC FROM TEMP-REC.
When the REWRITE statement is executed, the data in the
storage area TEMP-REC is moved to the record area for

REL-REC. The record read by the preceding READ
statement is then replaced by the data in the record area.

3-12

If the access mode is random or dynamic, the record to be
replaced is identified by the value of the relative key data
item. An invalid key condition occurs when the key value
does not identify an existing record.

REWRITE BILL-REC
INVALID KEY GO TO BAD-KEY.

Execution of this statement rewrites the BILL-REC record
staored in the record position that is indicated by the value
of the relative key data item. If the key value does not
specify an existing record, control is transferred to the
paragraph named BAD-KEY.

Closing Relative Files

Processing of a relative file is terminated by clesing the
file with the CLOSE statement. Once the CLOSE
statement is executed, input/output statements cannot
access the file until it is opened again. When a relative file
is closed, a partition boundary exists at the end of the file.
The boundary is overwritten when records are added to the
end of the file.

When the WITH LOCK phrase is included in the CLOSE
statement, the file is closed and returned to the system. It
cannot be reopened during execution of the current control
statement; an attempt to reopen the file causes the
program to abort. :

When a file is to be reopened immediately after being
closed, the C.FILE routine should be entered to change the
FIT setting of the CF field from DET to R. If this action
is taken before the CLOSE statement is executed, buffer
space and BAM capsules that are normally returned to the
system are preserved for the program. If the WITH LOCK
phrase is specified in the CLOSE statement, the CF field
setting cannot be overridden by the user.

ENTER "C.FILE" USING REL-FILE, "CF=R".
CLOSE REL-FILE.

Execution of these statements causes the CF field setting
for the file REL-FILE to be changed to the R option. When
the file is closed, buffer space and system capsules used by
the file are not released.

INDEXED FILE ORGANIZATION

When the file organization is indexed, records are stored in
sequence according to the primary key values. Records
can be accessed sequentially and randomly. Indexed files
can reside only on mass storage devices.

Indexed file organization is used most effectively for very
large mass storage files that need to be accessed both
randomly and sequentially. Each record is identified by a
primary key. The value of the primary key is unique for
each record in the file. Alternate keys can also be
specified and used to access records in the file.

FILE DEFINITION

The structure of an indexed file is described through the
FILE-CONTROL paragraph in the Environment Division
and the File Description and Record Description entries in
the Data Division.

60497200 C

FILE-CONTROL Paragraph

For indexed file organization, four clauses are required in
the FILE-CONTROL paragraph: SELECT, ASSIGN,
ORGANIZATION, and RECORD KEY. Four additional
clauses can be included in this paragraph as needed. Refer
to figure 3-8.

The SELECT clause specifies the file-name used by the
program; the ASSIGN clause specifies the logical file name
recognized by the operating system. If alternate keys are
specified for the file, the ASSIGN clause must also include
the logical file name of the alternate key index file. If
either logical file name is identical to any other name used
in the program or to a reserved word, it must be enclosed
in quotation marks. The ORGANIZATION clause must
specify INDEXED far an indexed file.

The RECORD KEY clause designates the data item that is
the primary key for indexed file records. The primary key
must be a data item embedded in each record or defined in
the Working-Storage Section. The data item can be an
elementary or group item. It can be described as an
alphanumeric or unsigned numeric data item. Each
primary key value in the file must be unique. As records
are written on the file, they are stored in ascending
sequence by primary key value.

Alternate keys are specified for indexed files by
ALTERNATE RECORD KEY clauses. The clause is
included once for each alternate key desired. If the
primary key is embedded in the record, it must begin in a
unique location within the record. Alternate keys can
begin in unique or identical locations; however, if they
begin in the same location, they must not be the same
length. The location and description of the key data items
must remain the same for the life of the file. Duplicate
alternate key values can exist in the file only if the
DUPLICATES phrase is included in the ALTERNATE
RECORD KEY clause; otherwise, each value for the
alternate key must be unique.

The ASCENDING option of - the DUPLICATES phrase
determines the order in which records with duplicate
alternate key values are retrieved for sequential access by
alternate key. If ASCENDING is not specified, the records
with duplicate key values are retrieved in the order they
were written. The records are retrieved in ascending
primary key order when ASCENDING is specified..

Conditions for including an alternate key index entry in the
alternate key index file are specified in the USE phrase and
the OMITTED phrase of the ALTERNATE RECORD KEY
clause. If neither phrase is included in the clause, index
entries for all alternate keys in the file are stored in the
index file. THE USE WHEN phrase identifies a
one-character data item contained within each record and
a literal of one to 36 characters in length. The alternate
key index entry is stored in the index file when the
character contained inthe data item is the same as one of
the characters in the literal. Both the data item and the
literal must be alphanumeric. A single data-name can be
used in more than one ALTERNATE RECORD KEY clause.
Each character in the literal must be unique.

The OMITTED phrase of the ALTERNATE RECORD KEY -

clause can include either the KEY option or, as in the USE
phrase, a data-name and literal. When KEY IS SPACES is
specified, the alternate key index entry is omitted from
the index file if the key value is all spaces and is described
with USAGE IS DISPLAY. If KEY IS ZEROS is specified,
the index entry is not stored in the index file when the key
value is all zeros and has a usage of COMPUTATIONAL-1
or COMPUTATIONAL-2.

60497200 E

When the option of specifying a data-name and a literal is
chosen in the OMITTED WHEN phrase, the alternate key
index entry is excluded from the index file if the dataitem
contains a character included in the literal. The literal and
data item are set up in the same manner as described in
the USE WHEN phrase. Refer to the example in the
discussion on alternate key processing at the beginning of
this section.

An alternate key in an indexed file record has more than
one value when the alternate key is described with the
OCCURS clause. When a record is written on the file, the
value in each unique occurrence of the alternate key is
indexed on the alternate key index file. The record can
then be retrieved by the value in any occurrence of the

“alternate key.

The manner in which records are accessed during program
execution is determined by the ACCESS MODE clause. If
this clause is omitted or if SEQUENTIAL is specified,
records can only be processed sequentially. All records are
accessed randomly by key value when RANDOM is
specified. Dynamic access mode allows records to be
processed both sequentially and randomly during program
execution. When an indexed file is being created, the
sequential access mode should be used.

The FILE STATUS clause specifies a data item to receive a
status code each time an input/output statement is
executed. The status code value indicates whether or not
the statement executed successfully. The status code is
described in section 15.

The USE clause can supply file information used by AAM to
process the indexed file. Certain FILE control statement
parameters can be specified to supply file information that
cannot be obtained from other clauses and statements in
the source program, or to override file information
normally obtained from the source program. The
parameter list specified in the USE clause is enclosed in
quotation marks. Refer to section 15 for a complete list
of the parameters that can be specified in this clause.

The type of indexed file to be used is determined by the
ORG parameter of the USE clause. If extended AAM files
have been installed and either the parameter is omitted or
ORG=NEW is specified, the file is treated as an extended
indexed sequential file. ORG=0LD is required for files in
the initial indexed sequential format.

The FILE-CONTROL paragraph illustrated in figure 3-8
describes a file with indexed organization. The file-name
used within the COBOL 5 program is EMP-FILE. The
ASSIGN clause specifies two logical file names; EMPFLE
identifies the data file and INDFLE identifies the index file
for the alternate keys. Dynamic access is specified for the
file; therefore, the file can be processed both randomly and
sequentially, The primary key for each record is the data
item EMP-ID. Two alternate keys, HIRE-DATE and
JOB-ID, are also specified; duplicate alternate key values
are allowed. If records are retrieved by either alternate
key, records with duplicate key values are returned in
ascending sequence by primary key values.

File Description Entry

The File Description entry (FD entry) for an indexed file
defines the physical structure of the file. The same
program file-name specified in the SELECT clause is
specified in the FD entry. Three specific clauses in the FD
entry are applicable to indexed files. Refer to figure 3-9.

3-13

. - Required Clauses
ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL. :

SELECT EMP-FILE !
ASSIGN TO EMPFLE, INDFLE
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS EMP-ID
ALTERNATE RECORD KEY IS HIRE-DATE

- WITH DUPLICATES ASCENDING
ALTERNATE RECORD KEY IS JOB-ID

WITH DUPLICATES ASCENDING
FILE STATUS IS CODE-RETURN
USE "RT=Z". .

Figure 3-8. FILE-CONTROL Paragraph for an Indexed File

DATA DIVISION.

FILE SECTION.

FD EMP-FILE
LABEL RECORD IS OMITTED
BLOCK CONTAINS 20 RECORDS
RECORD CONTAINS 90 CHARACTERS
DATA RECORD IS EMPLOYEE.

Figure 3-9. File Description Entry for an Indexed File

The LABEL RECORDS clause, which is required in every
FD entry, specifies whether or not labels exist on the file.
Indexed files cannot have labels and the clause must
specify OMITTED.

Records in an indexed file are stored in data blocks. The
size of a data block is calculated by the system; however,
the calculation is affected by the BLOCK CONTAINS
clause. The data block size is calculated by rounding

upward to a multiple of physical record unit (PRU) size less

50 characters; PRU size is 640 characters. The value used
for rounding upward is as follows:

® If the clause is omitted, the value is the maximum
record size. (This can be very inefficient; it is usually
best to specify the clause.)

e If a number of records is specified, the value is the
maximum record size multiplied by the specified
number of records.

e If a number of characters is specified, the value is the
specified number.

The RECORD clause is used by AAM to determine the
record type and record size for inputfoutput processing. If

this clause is omitted, the Record Description entry is’

3-14

used. For indexed file organization, the format of the
RECORD clause determines record type and record size
the same as described for sequential file organization.
Refer to table 3-2 for the effect of the RECORD clause.

A File Description entry for an indexed file is shown in
figure 3-9. A data block in the file EMP-FILE contains 20
records of 90 characters each for a total of 1800
characters; the actual block size is 1870 characters (three
PRUs less 50 characters). The record type is F (fixed
length). The DATA RECORD clause documents the name
of the record format for the file.

The best maximum block length can be calculated with the
FLBLOK utility. Refer to the AAM reference manual for
details.

Record Description Entry

A Record Description entry is included in the FD entry for
each record format applicable to the indexed file. This
entry provides data-names used to access individual data
items and describes the physical structure of the record.
Indexed file records can be fixed or variable length.

The record type and record size used by AAM are
determined by the Record Description entry if the
RECORD clause is not specified in the FD entry. The
number of Record Description entries and the length of
each entry determine record type and size in the same
manner as described for sequential file organization.

The Record Description entry illustrated in figure 3-10
defines a record format for the indexed file described in
figures 3-8 and 3-9. The primary key EMP-ID and the
alternate keys HIRE-DATE and JOB-ID are contained
within each EMPLOYEE record. Records can be accessed
by any of the three keys. The Record Description entry
describes a fixed-length record containing 90 character "
positions; this corresponds to the record type and record
size specified by the RECORD clause in the FD entry.

[DATA DIVISION.
FILE SECTION.

01 EMPLOYEE.
03 EMP-ID
03 EMP-NAME
03 EMP-ADDRESS.

PICTURE 999.
PICTURE X(20).

05 STREET PICTURE X(20).

05 cCcI1T7Y PICTURE X(20).

05 STATE PICTURE AA.

05 ZIP-CODE PICTURE 9(5).
03 4J4o0B-ID PICTURE X(5).
03 DEPT PICTURE 999.
03 DIV PICTURE 999.

03 HIRE-DATE
03 LOCATION

PICTURE 9(6).
PICTURE 999.

Figure 3-10. Record Description Entry for an Indexed File

60497200 C

FILE MANIPULATION

Input/output processing of indexed files is accomplished
through the use of seven Procedure Division statements.
An existing indexed file can have records read, replaced,
deleted, and inserted. Individual data items within a
record are manipulated by various statements discussed in
other sections of this guide.

Opening Indexed Files

Before any record in an indexed file can be accessed, the
file is opened for input, for output, or for input and
output. The open mode established by the OPEN statement
determines the input/output statements that can be
executed. The OPEN statement establishes the primary
key as the key of reference; for an existing file, the
current value of the key of reference is the primary key
value for the first record in the file.

An input file is opened with the OPEN INPUT statement.
The file is positioned at the first record; because records
are stored in ascending sequence by primary key value, the
record with the lowest primary key value is the first record
in the file. Records are then read from the file
sequentially or randomly depending on the access mode.
The collating sequence for an indexed file with alternate
keys is determined the first time the file is opened for
output; the collating sequence in use within the program
when the file is opened becomes the collating sequence for
the file and remains the same as long as the file exists.

OPEN INPUT EMP-FILE.

When this statement is executed, the file EMP-FILE is
opened for input processing. Records can be read from but
not written on the file.

An indexed file is created by opening the file for output.
Records are then written on the file randomly or
sequentially depending on the access mode.

OPEN OUTPUT INV-FILE.

Execution of this statement causes the file INV-FILE to be
opened in the output mode for file creation. Records can
only be written on the file.

An indexed file is opened for input and output processing
by the OPEN I-O statement. The file is positioned at the
first record; the primary key of the first record becomes
the current key of reference.

OPEN I-O EMP-FILE.

This statement causes the file EMP-FILE to be opened for
input and output. Records in the file can be read, deleted,
inserted, and updated.

Writing Indexed Files

When an indexed file is opened for output (OPEN OUTPUT
for file creation or OPEN I-O for file updating), records
are written on the file sequentially or randomly depending
on the access mode for the file. If the access mode is
sequential, the file must be open for output only. Records
are then written on the file sequentially; the records must
be in ascending sequence by primary key value. An invalid

60497200 D

key condition exists if the primary key value of the record
being written is not greater than the primary key value of
the previous record. If duplicate alternate keys are not
allowed, duplication of an alternate key value creates an
invalid key condition.)

WRITE EMPLOYEE
INVALID KEY GO TO BAD-RECORD.

This statement causes an EMPLOYEE record to be written
on the indexed file. In sequential access mode, the records
must be in ascending sequence by primary key value. An
invalid key condition causes control to be transferred to
the paragraph named BAD-RECORD; the record is not
written on the file.

Records are written randomly when the access mode is
random or dynamic. The records are placed in the file
according to the primary key values. When the file is
closed, the records are in order by ascending sequence of
primary key values. An invalid key condition exists if the
primary key value is not unique or if an alternate key value
is duplicated when the NO DUPLICATES phrase is used in
the ALTERNATE RECORD KEY clause. The format of the
WRITE statement is the same for sequential and random
writing. Creating an indexed file randomly can result in
very inefficient processing; it is always best to create the
file sequentially.

When alternate keys are defined for the indexed file
without the USE or OMITTED phrase, an entry is made in
the alternate key index file for each alternate key in the
record being written. When the USE or OMITTED phrase is
included in the definition, entries are made for keys
according to conditions specified in the phrase. For a
repeating group alternate key, an entry is made for each
occurrence of the alternate key.

The FROM phrase is included in the WRITE statement
when the data for the record to be written is stored in an
area other than the output record area. The data in the
specified area is moved to the record area before the
record is written.

WRITE STOCK-REC FROM NEW-REC
INVALID KEY GO TO DUP-KEY.

The data in the storage area named NEW-REC is moved to
the STOCK-REC record area; the record is then written on
the file. If the primary key value for the record to be
written already exists on the file, control is transferred to
the paragraph named DUP-KEY.

Positioning Indexed Files

Sequential processing of an indexed file can begin at a
position other than the first record in the file. The access
mode must be sequential or dynamic and the file must be
open for input (OPEN INPUT or OPEN I-0).

The START statement positions the file at the record that
satisfies a specified condition and establishes the key of
reference for subsequent sequential READ statements.
The primary key, an alternate key, or the leading portion
of either key can be specified in the relational condition.
The designated primary or alternate key becomes the key
of reference when the START statement is executed. The
value of the key in the record at which the file is
positioned becomes the current value of the key of
reference.

3-15

The KEY phrase specifies the data item and the relational
condition to be tested. If the phrase is omitted, the
primary key is the key of reference and the file is
positioned at the record with the primary key value equal
to the current value of the primary key data item. When
the KEY phrase is specified, the file is positioned at the
first record with a key value that is equal to, greater than,
or not less than the current value of the designated key
data item,

START EMP-FILE
KEY IS GREATER THAN EMP-ID.

When this statement is executed, the file EMP-FILE is
positioned at the first record with a primary key value that
is greater than the current value of the EMP-ID data item.
Sequential processing of the file then begins at that
position.

A repeating group alternate key can be used to position the
file; however, the data-name of the alternate key cannot
be subscripted or indexed in the START statement. The
current value in the first occurrence of the alternate key
data item is the value that is used to position the file. In
the record at which the file is positioned, the value
satisfying the condition can be in any occurrence of the
alternate key.

The data item specified in the KEY phrase can be the first
subordinate item of the primary key. It can be the first
subordinate item of an alternate key if the alternate key
begins in a unique location. If two alternate keys begin in
the same character position, the KEY phrase cannot
specify an item subordinate to either key. If a subordinate
item is specified, it must begin in the first character
position of the key field and must be described as an
alphanumeric data item. For example:

03 HIRE-DATE.

05 YEAR PICTURE XX.
05 MONTH PICTURE 99.
05 DAE PICTURE 99.

These three entries describe an alternate key. The KEY
phrase of the START statement can specify either
HIRE-DATE or YEAR; the data items MONTH and DAE
cannot be specified.

START EMP-FILE
KEY IS NOT LESS THAN YEAR.

In this statement, the KEY phrase specifies the leading
portion of the alternate key HIRE-DATE. Only the first
two characters of the alternate key values in the index file
are checked against the two characters of the current
value of the YEAR data item. The file is positioned at the
first record with a YEAR value that is equal to or greater
than the current value of YEAR.

The INVALID KEY phrase specifies the action to be taken
when no record in the file satisfies the condition of the
START statement.

START STOCK-FILE
INVALID KEY GO TO BAD-ID.

The primary key values in the file STOCK-FILE are
checked for a value equal to the current value of the
primary key data item. If no record in the file satisfies
this condition, control is transferred to the paragraph
named BAD-ID.

3-16

Reading Indexed Files

Once an indexed file has been opened for input (OPEN
INPUT or OPEN I-O), records are read from the file by the
READ statement. Depending on the access mode
established for the file and the format of the READ
statement, records are read sequentially or randomly.

Accessing Sequentially

Records in an indexed file can be accessed sequentially
when the access mode is established as sequential or
dynamic. When the READ statement is executed, the order
in which records are retrieved depends on the key of
reference. The key of reference is determined as follows:

e When the file is opened, the primary key is the key of
reference.

e If the file is positioned by the START statement, the
primary or alternate key used to position the file
becomes the key of reference.

e In dynamic access mode, a random read executed
before the sequential read establishes the key used for
the random read as the key of reference.

When the primary key is the key of reference, records are
retrieved in the order they are stored in the file. In an
indexed file, records are stored in ascending sequence by
primary key value. When the primary key is the key of
reference and it is defined in the Working-Storage Section
(rather than embedded in the record), the primary key
value is stored in the data item named in the RECORD
KEY clause. If an alternate key is the key of reference,
records are retrieved in the order of the key values in the
alternate key index file.

If the access mode is sequential, the first record read is
either the first record in the file or the record at which the
file has been positioned by the START statement. Records
are then read in sequence according to the key of
reference until the end of the file is reached. The FILE
STATUS clause can be used to determine the final
occurrence of a particular value for the key of reference
by testing for a status code of 02,

READ EMP-FILE RECORD
AT END GO TO FINISHED.

This statement causes the records in the file EMP-FILE to
be read sequentially; the access mode for EMP-FILE is
sequential. Records are read in stored order if the primary
key is the key of reference or in index file order if an
alternate key is the key of reference. When the end of the
file is reached, control is transferred to the paragraph
named FINISHED.

If the access mode is dynamic, the first record retrieved by
a sequential READ statement is one of the following:

® The first record in the file.

® The record at which the file has been positioned by the
START statement.

e The next record in sequence according to the key of

reference used in the preceding random READ
statement.

60497200 C

Subsequent records are retrieved sequentially by stored
position (if the primary key is the key of reference) or by
the order of alternate key values in the index file (if an
alternate key is the key of reference). The keyword NEXT
must be included in a sequential READ statement when the
access mode is dynamic. A change in values for the key of
reference can be detected through the FILE STATUS
clause.

READ STOCK-FILE NEXT RECORD
AT END GO TO CLOSING.

The access mode for the file STOCK-FILE is dynamic.
This statement causes records in STOCK-FILE to be
retrieved sequentially according to the key of reference.
When the end of the file is reached, control is transferred
to the paragraph named CLOSING.

The INTO phrase is included in the READ statement to
store the record in a specified area as well as in the input
record area. The record is moved into the specified
storage area when the READ statement is executed. When
the file is defined by more than one Record Description

- entry, the INTO phrase cannot be used if any entry is a
level 01 elementary item that is described as a numeric or
numeric-edited data item.

READ INV-FILE NEXT RECORD INTO TEMP-REC.
When this statement is executed, the next record in
sequence is read from the file INV-FILE. The record is

stored in the input record area and in the storage area
named TEMP-REC.

Accessing Randomly

Records in an indexed file can be read randomly when the
access mode is random or dynamic. The primary key or an
alternate key can be the key of reference for reading a
record randomly.

The key of reference for a random read is established by
the KEY IS phrase of the READ statement. If this phrase
is not specified, the primary key is the key of reference.
The key of reference designated by the KEY IS phrase can
be either the primary key or an alternate key. When the
READ statement is executed, the current value of the key
of reference is compared with the key values of records in
the file. The first record that contains a key of equal
value is retrieved from the file. If no record contains a
key of equal value, an invalid key condition exists.

READ EMP-FILE RECORD
KEY IS JOB-ID
INVALID KEY GO TO NO-JOB-ID.

In the file EMP-FILE, the data item JOB-ID is an alternate
key and duplicate keys are allowed. Execution of this
READ statement causes the index file to be searched for
the first alternate key value that is equal to the current
value of the JOB-ID data item. If no record in the file has
an equal value, control is transferred to the paragraph
named NO-JOB-ID. When this statement executes
successfully, a sequential read can be executed to retrieve
the next record in alternate key sequence.

When a repeating group alternate key is specified in the
KEY IS phrase, the data-name of the alternate key cannot
be subscripted or indexed. The current value in the first
occurrence of the alternate key data item is the value that
is used to retrieve a record from the file. When the READ
statement is executed, the index file is searched for the

60497200 C

matching alternate key value and the first record with that
value is read from the file. The matching value can be in
any occurrence of the alternate key in the record that is
retrieved. A sequential read can then be performed to
retrieve the next record in sequence in the alternate key
index. Because a record has multiple values for a
repeating group alternate key, the same record can be
retrieved more than once.

A record read randomly can be stored in a specified area
by including the INTO phrase in the READ statement. The
record is then available in both the input record area and
the specified storage area.

READ EMP-FILE RECORD INTO NEW-REC
INVALID KEY GO TO BAD-KEY.

This statement reads a record randomly; because the KEY
IS phrase is not specified, the primary key is the key of
reference. After a successful read, the record is available
in the storage area named NEW-REC as well as in the input
record area. If the file does not contain a record with a
primary key equal to the current value of the key of
reference, control is transferred to the paragraph named
BAD-KEY.

Updating Indexed Files

The DELETE and REWRITE statements are used to update
existing records in indexed files. The WRITE statement is
used to write additional records on the file; it cannot be
used to replace an existing record. The file must be open
for input and output (OPEN I-O); any access mode is
allowed.

The DELETE statement removes a record from the indexed
file. Once the DELETE statement is executed, the record
can no longer be accessed. The record deleted is either the
last record read or the record with the primary key equal
to the current value of the primary key data item.

If the access mode is sequential, the input/output
statement preceding the DELETE statement must be a
valid sequential READ statement. The last record read is
then the record that is deleted.

READ EMP-FILE RECORD.

DELETE EMP-FILE RECORD.

The record read from the file EMP-FILE is removed from
the file when the DELETE statement is executed. The
record can no longer be accessed.

Records are deleted by primary key when the access mode
is random or dynamic. The current value of the primary
key data item identifies the record to be deleted. The
INVALID KEY phrase is included to specify the action to
be taken if the file does not contain the record to be
deleted.

DELETE EMP-FILE RECORD
INVALID KEY GO TO NO-RECORD.

This statement deletes the EMP-FILE record whose
primary key is equal to the current value of the primary
key data item. If no record in the file contains the
designated primary key value, control is transferred to the
paragraph named NO-RECORD.

3-17

The REWRITE statement is used to update data in an
existing record in the file. The primary key value
identifies the record to be rewritten. The data in the
record area replaces the data stored in the file. If the
FROM phrase is included in the REWRITE statement, the
data in the specified storage area is moved to the record
area befaore the record is rewritten.

If the access mode is sequential, the input/output
statement preceding the REWRITE statement must be a
sequential READ statement. The record replaced is then
the last record read. The primary key value cannot be
changed between execution of the READ statement and
execution of the REWRITE statement.

READ INV-FILE RECORD INTO UPD-REC.

.

REWRITE INV-REC FROM UPD-REC.

A record is read from the file INV-FILE and stored in the
area named UPD-REC. Statements executed before the
REWRITE statement can update fields other than the
primary key field in UPD-REC. When the REWRITE
statement is executed, the data in UPD-REC is moved to
the record area (INV-REC) and the updated record
replaces the record read by the previous READ statement.

If the access mode for the file is random or dynamic, the
record to be replaced is identified by the current value of
the primary key data item, which must correspond to the
primary key of an existing record in the file. If the
primary key does not identify an existing record, an invalid
key condition exists. When the file contains alternate keys,
the replacing record can specify new values for the
existing key items; however, the new key values cannot
duplicate any current alternate key values in the file unless
the DUPLICATES phrase is included in the key definitions.

REWRITE EMPLOYEE
INVALID KEY GO TO BAD-KEY.

Execution of this statement causes the data in the
EMPLOYEE record area to replace the record that
contains the primary key value currently stored in the
primary key data item. If the file has no record with the
current primary key value, control is transferred to the
paragraph named BAD-KEY.

Closing Indexed Files

When a CLOSE statement is executed for an indexed file,
processing of the file is terminated. AAM updates the
internal tables that are part of the file. If the file is
subsequently reopened, it is positioned at the first record
in the file.

When the WITH LOCK phrase is included in the CLOSE
statement, the file is returned to the system and cannot be
reopened during the execution of the current control
statement. If an attempt is made to reopen the file within
the same program, the program is aborted.

If the file is to be reopened immediately after the close
and the WITH LOCK phrase is not specified in the CLOSE
statement, the routine C.FILE should be entered. Through
this routine, the CF field of the FIT can be reset from the
default setting DET to the setting R, thus preventing the
release to the system of buffer space and AAM capsules
needed for the file.

ENTER "C.FILE" USING EMP-FILE, "CF=R".,
CLOSE EMP-FILE.

3-18

Execution of these statements causes the file EMP-FILE to
be closed and buffer space and system capsules associated
with the file to be retained by the program.

DIRECT FILE ORGANIZATION

When file organization is direct, records are stored
randomly in blocks on a mass storage device. Each record
contains a primary key field; the value in this field is
hashed to a number that indicates a home block in the file.
The hashing technique uses a formula to convert the
primary key value to a number that distributes records
evenly across the home blocks. A hashing routine is
provided by the system; however, a user hashing routine
can be supplied in the Declaratives portion of the
Procedure Division.

The primary key must be specified for a direct file. In
addition, alternate keys can be specified and used to access
the file. Alternate keys are not hashed; the values are
indexed on a separate file that must be maintained as a
permanent file. The access mode for a direct file can be
sequential, random, or dynamic.

Direct file organization is used most effectively for large
mass storage files requiring rapid random access. A direct
file can be read sequentially; however, the order of the
records has no relationship to the primary key values or to
the order in which the records were written.

FILE DEFINITION

The structure of a file with direct organization is specified
through the FILE-CONTROL paragraph in the Environment
Division and the File Description and Record Description
entries in the Data Division.

FILE-CONTROL Paragraph

In the FILE-CONTROL paragraph for a file with direct
organization, five clauses are required: -SELECT, ASSIGN,
ORGANIZATION, BLOCK COUNT, and RECORD KEY.
Four optional clauses can also be included in this
paragraph. Refer to figure 3-11.

Required Clauses

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INVENTORY —=
ASSIGN TO INVNTRY, INVIDX
ORGANIZATION IS DIRECT
BLOCK COUNT IS 11
ACCESS MODE IS DYNAMIC
RECORD KEY IS PART-NOQ =
ALTERNATE RECORD KEY IS WHERE-USED
WITH DUPLICATES ASCENDING
OMITTED WHEN KEY IS SPACES
FILE STATUS IS CODE-RETURN
USE "ORG=0LD".

Figure 3-11. FILE-CONTROL Paragraph for a Direct File

60497200 C

The SELECT clause specifies the filé-name used in the
COBOL program. The ASSIGN clause specifies the logical
file name recognized by the operating system. When
alternate keys are specified for the file, the ASSIGN clause
must also include the logical file name of the alternate key
index file. If either logical file name is the same as any
other name in the program or as a reserved word, it must
be enclosed in quotation marks. The ORGANIZATION
clause must specify DIRECT for a direct file.

The BLOCK COUNT clause is used only when the direct
file is opened in the output mode; it is ignored if it is
specified at any other time. This clause designates the
number of home blocks for the file being created. The
specific block in which a record is written is determined by
the hashing routine. For the system hashing routine, more
efficient processing results when the number of blocks is a
prime number.

The primary key for direct file records is specified by the
RECORD KEY clause. The data item designated as the
primary key must be a fixed-length data item embedded in
each record or within the Working-Storage Section. The
primary key data item can be an alphanumeric elementary
or group item or it can be an unsigned numeric elementary
item. The primary key value for each record must be a
unique value; duplicate primary keys are not allowed in a
direct file. When a record is written on the file, the
hashing routine uses the primary key value to determine
the home block for the record.

The ALTERNATE RECORD KEY clause specifies an
alternate key for the direct file. Multiple alternate keys
are specified by repeating the clause for each desired key.
An alternate key must be a data item contained in a direct
file record. When the primary key is contained in the
record, it must begin in a unique character position if they
are different lengths; alternate keys of the same length
must begin in unique positions. Duplicate alternate key
values are not allowed unless the DUPLICATES phrase is
included in the ALTERNATE RECORD KEY clause.

The ASCENDING option of the DUPLICATES phrase
determines the - order of retrieval when records with
duplicate alternate key values are read sequentially by
alternate key. If the option is omitted, records with
duplicate alternate keys are retrieved in the order they
were written. Including the ASCENDING option causes the
records with duplicate alternate key values to be retrieved
in ascending sequence by primary key value.

The condition specified in the USE phrase or the OMITTED
phrase determines whether or not an entry is made in the
alternate key index file for each alternate key in the data
file. When neither phrase is included, an entry is made for
every key in the file. The USE WHEN phrase specifies a
data-name and an alphanumeric literal. The item
referenced by the data-name must be defined within the
record as a one-character alphanumeric item. The same
data-name can be used in more than one ALTERNATE
RECORD KEY clause for a file. The literal must contain
from one to 36 unique characters. When the character in
the data item of an alternate key duplicates a character in
the literal, an entry is made for the key in the alternate
key index. If the character in the item is not present in
the literal, no entry is made. .

The OMITTED phrase of the ALTERNATE RECORD KEY
clause can specify either a data-name and literal, as in the
USE phrase, or the KEY option.. When the data-name and
literal are included in the phrase, no entry is made in the
index file for an alternate key if the character in the data
item duplicates any character in the literal. The data item
and literal are set up in the same manner as described in
the USE phrase.

60497200 E

The KEY option of the OMITTED phrase can specify either
SPACES or ZERQS. SPACES indicates that no entry is to
be made in the index file for any key with the usage of
DISPLAY and a value of spaces. When ZEROS is specified,
no entry is made for a key described as
COMPUTATIONAL-1 or COMPUTATIONAL-2 with a value

of zero.

An alternate key described with the OCCURS clause has
more than one value for the alternate key. When the
record is written, the value in each unique occurrence of
the alternate key is indexed on the alternate key index
file. Reading the file by alternate key can then retrieve
the record for the value in any occurrence of the alternate
key.

The ACCESS MODE clause determines the manner in which
records in the direct file can be accessed during program
execution. If SEQUENTIAL is specified or if the clause is
omitted, records can only be accessed sequentially.
Records are accessed randomly by primary or alternate key
value when RANDOM is specified. If DYNAMIC is

- specified, both random and sequential processing can be

intermixed in the program.

The FILE STATUS clause is used to specify a data item to
receive a status code whenever an input/output statement
is executed for the file. The status code is a value that
designates whether or not the statement executed
successfully. Refer to section 15 for a description of the
status code.

The USE clause supplies file information used by AAM to
process the direct file. Certain FILE control statement
parameters can be specified in this clause. These
parameters can supply file information that cannot be
specified through other clauses and statements in the
source program, or they can override parameter values
normally obtained from the source program. The
parameter list is enclosed in quotation marks. Refer to
section 15 for a complete list of parameters that can be
specified.

o

The type of direct file to be used is determined by the
ORG parameter of the USE clause. If extended AAM files
have been installed and either the parameter is omitted or
ORG=NEW is specified, the file is treated as an extended
direct file. ORG=0LD is required for files in the initial
direct format.

A FILE-CONTROL paragraph for a file with direct
organization is illustrated in figure 3-11. The direct file is
referenced in the COBOL 5 program by the: file-name
INVENTORY; the logical file name used by the operating
system is INVNTRY. The index file for the alternate keys
is identified by the logical file name INVIDX. The number
of home blocks for the file is 11. Dynamic access allows
the file to be processed sequentially and randomly during
program execution. The hashed value of the primary key
(PART-NO) determines the home block for the record. The
alternate key (WHERE-USED) can be duplicated within the
file; duplicate alternate key - values are. retrieved in
ascending sequence of the primary key values.

File Description Entry

The physical structure of a direct file is defined by a File
Description entry (FD entry) in the File Section of the
Data Division. The program file-name specified in the
SELECT clause is also specified in the FD entry. Three
clauses in the FD entry are applicable to files with direct
organization. Refer to figure 3-12.

3-19

DATA DIVISION.

FILE SECTION.

FD INVENTORY
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 20 RECORDS
RECORD CONTAINS 55 TO 80
DATA RECORD IS INV~-REC.

Figure 3-12. File Description Entry for a Direct File

The LABEL. RECORDS clause is required in every FD entry
and specifies whether or not the file contains labels.
Direct files cannot contain labels and the clause must
specify OMITTED.

Direct file records are stored in home blocks. The size of
a home block is calculated by the system using the BLOCK
CONTAINS clause. The home block size is calculated by
rounding upward to a multiple of physical record unit
(PRU) size less 50 characters; PRU size is 640 characters.
The value used for rounding upward is as follows:

e If the clause is omitted, the value is the average
record size multiplied by two. (This can result in
inefficient processing; it is best to specify the clause.)

e If a number of records is specified, the value is the
maximum record size multiplied by the specified
number of records.

e If a number of characters is specified, the value is the
specified number.

The RECORD clause is used by AAM in determining the
record type and record size for input/output processing of
direct files. If this clause is not specified, the Record
Description entry is used. The record type and record size
for a direct file are determined according to the specific
format of the RECORD' clause in the same manner as
described for sequential file organization. Refer to
table 3-2 for the effect of the RECORD clause.

A File Description entry for a direct file is illustrated in
figure 3-12. Each home block can contain 20 records with
lengths ranging from 55 to 80 characters. The home block
size is rounded upward to 1870 characters (three PRUs
minus 50 characters). The DATA RECORD clause is
documentary only and provides the record name (INV-REC)
for the file.

Record Description Entry

Each record format applicable to the direct file is
described by a Record Description entry. This entry
specifies the physical structure of the record and provides
the data-names .used to access data items within the
record. Direct file records can be fixed or variable length.

When the RECORD clause is not specified in the FD entry,
the Record Description entry is used to determine the
record type and record size for input/output processing.
The number of Record Description entries for the file and
the length of each entry determine record type and size in
the same manner as described for sequential file
organization.

3-20

The Record Description entry illustrated in figure 3-13
defines the record format for the direct file described in
figures 3-11 and 3-12. Both the primary key (PART-NO)
and the alternate key (WHERE-USED) are defined within
the record. Either key can be used to access an INV-REC
record. The entry describes a record with a 50-character
fixed-length portion and a S5-character trailer portion that
occurs from one to six times. The NUM-USED data item
indicates the number of occurrences of the trailer portion
in a specific record.

DATA DIVISION.
FILE SECTION.

01 INV-REC.

03 PART-NO

03 DESCRIPTION

03 QTY-ON-HAND

03 QTY-ON-ORDER

03 AQTY-RESERVED

03 ORDER-DATE

03 REORDER-POINT

03 REORDER-QTY

03 QTY-PER-UNIT

03 NUM-USED PICTURE 9.

03 WHERE-USED PICTURE X(5).
OCCURS 1 TO 6 TIMES
DEPENDING ON NUM-USED.

PICTURE 9(5).
PICTURE X(15).
PICTURE 9(4).
PICTURE 9(4).
PICTURE 9(5).
PICTURE 9(6).
PICTURE 9(4).
PICTURE 9(4).
PICTURE 99.

Figure 3-13. Record Description Entry for a Direct File

FILE MANIPULATION

Input/output processing of direct files is specified through
seven Procedure Division statements. Records in an
existing direct file can be read, replaced, deleted, and
inserted. Various statements, which are discussed in other
sections of this guide, are provided to manipulate
individual data items in the records.

_Opening Direct Files

A direct file is opened for input, for output, or for input
and output before file processing can begin. The
input/output statements that can be executed depend on
the open mode established by the OPEN statement. The
primary key is established as the key of reference when the
OPEN statement is executed; for existing files, the current
value of the key of reference is the primary key value for
the first record in the file.

The OPEN INPUT statement opens a direct file for input
processing only. Records can be read from but not written
on the file. Execution of the OPEN INPUT statement
positions the file at the first record in the first home
block. Records are then read sequentially by position in
the file or randomly by key value depending on the access
mode. - :

60497200 C

OPEN INPUT INVENTORY.

When this statement is executed, the file INVENTORY is
opened for input. The file is positioned at the first record.

If a direct file is being created, the file is opened for
output by the OPEN OUTPUT statement. Records can be
written on but not read from the file. Records are written
according to the hashed value of the primary key.

OPEN OUTPUT CUSTOMERS.

This statement causes the file CUSTOMERS to be opened
for output. Records are subsequently written on the file at
locations indicated by the primary key hashed values.

The OPEN 1-O statement opens the file for input and
output processing. Records can be read, inserted, deleted,
or updated. The file is positioned at the first record
currently existing in the file.

OPEN I-O PERS-FILE.

Execution of this statement opens the file PERS-FILE for
input and output processing. Records can then be read,
inserted, deleted, and rewritten.

Writing Direct Files

Records are written on a direct file at locations
determined by the hashed values of the primary keys. The
file must be open for output (OPEN OUTPUT for file
creation or OPEN I-O for file updating) and can have any
access mode. When a direct file is being created,
processing is more efficient if records are written in the
sequence of hashed key values. An AAM utility, CREATE,
is available to create direct files efficiently. Refer to the
AAM reference manual for a description of the CREATE
utility.

The value of the primary key in the record being written is
hashed to determine the home block in which the record is
written. The hashing routine, which can be the system
routine or a user-supplied routine, converts the primary
key value to a home block number within the limits
specified in the BLOCK COUNT clause in the
FILE-CONTROL paragraph. The record is then written in
the home block indicated by the hashed value.

If the home block designated by the hashed value is full, an
overflow block is created and the record is written in the
overflow block. Retrieving a record in an overflow block
increases access time because an additional mass storage
access is required to read the record.

When the direct file is closed, the physical order of the
records is completely random. Primary key values and the
order in which the records are written have no effect on
the stored order of the records.

When alternate keys are defined for the direct file without
the USE or OMITTED phrase, the primary key is entered in
the alternate key index file for each alternate key in the
record being written. When the USE or OMITTED phrase is
included in the key definition, an entry is made in the
alternate key index file according to the condition
specified in the phrase. For a repeating group alternate
key, an entry is made in the index file for each unique
occurrence of the alternate key in a record.

60497200 E

An invalid key condition occurs if the primary key value is
duplicated or if the hashed value is greater than the
number of home blocks allocated for the file. If duplicate
alternate keys are not allowed, duplication of an alternate
key value also creates an invalid key condition.

WRITE INV-REC
INVALID KEY GO TO BAD-RECORD.

When this statement is executed, the record INV-REC is
written on its associated file. The hashed value of the
primary key designates the home block in which the record
is written. If an invalid key condition exists, control is
transferred to the paragraph named BAD-RECORD.

The FROM phrase is included in the WRITE statement
when the data for the record to be written is stored in an
area other than the output record area. The data in the
specified area is moved to the output record area and then
the record is written on the file.

WRITE PERS-REC FROM NEW-REC
INVALID KEY GO TO NO-GOOD.

This statement causes the data in the storage area named
NEW-REC to be moved to the record area for PERS-REC.
The record is then written in the home block indicated by
the hashed value of the primary key. If an invalid key
condition is encountered, control is transferred to the
paragraph named NO-GOOD.

Positioning Direct Files

Direct files can be positioned to a record within the file
for subsequent sequential processing. The file must be
open for input (OPEN INPUT or OPEN I-O) and the access
mode must be either sequential or dynamic.

The START statement establishes the key of reference for
subsequent sequential READ statements and positions the
file at the first record that satisfies a specified condition.
The KEY phrase indicates the data item and the condition
to be used for positioning the file.. The data item must be
an alternate key or the leading portion of an alternate key;
it cannot be the primary key. When the START statement
is executed, the index file is searched for a value that is
greater than, equal to, or not less than the current value of
the designed data item. The file is positioned at the first
record that satisfies the specified condition.

START PERS-FILE
KEY IS NOT LESS THAN HIRE-DATE.

Execution of this statement causes the index for the
alternate key HIRE-DATE to be searched for a key value
that is equal to or greater than the current value of the
HIRE-DATE data item. The index file is positioned at the
first alternate key value that satisfies the condition.
Records can then be retrieved from the direct file in the
sequential order of the alternate keys in the index file.

When a repeating group alternate key is specified in the
KEY phrase, the data-name is not subscripted or indexed.
The current value in the first occurrence of the alternate
key data item is used to position the file. The value that
satisfies the specified condition can be in any occurrence
of the alternate key in the record at which the file is
positioned.

3-21

The data item specified in the KEY phrase can be the
leading portion of an alternate key if the alternate key
begins in a unique character position. If two alternate keys
begin in the same position, the KEY phrase cannot specify
~an item subordinate to either key. When the leading
portion of an alternate key is used in the KEY phrase, it
- must begin in the first character position of the alternate
. key and must be described as an alphanumeric data item.

03 DIV-CODE.
05 LOCATION PICTURE XXX.
05 FUNCTION PICTURE %(5).

The alternate key DIV-CODE is described with two
subordinate items. Either DIV-CODE or LOCATION can
be specified in the KEY phrase.

The INVALID KEY phrase is included in the START
statement to designate the action to be taken when the
specified condition is not satisfied by any record in the file.

START EMP-FILE
KEY IS GREATER THAN LOCATION
INVALID KEY GO TO BAD-KEY.

When this statement is executed, the alternate key values
in the index file are tested for a value greater than the
current value of LOCATION, which is the first three
character positions of the alternate key data item
DIV-CODE. If the condition cannot be satisfied, control is
transferred to the paragraph named BAD-KEY.

Reading Direct Files

Records are retrieved from a direct file by the READ
statement. The file must be open for input (OPEN INPUT
or OPEN [-O). The access mode and the format of the
READ statement determine whether records are read
sequentially or randomly.

Accessing Sequentially

When the access mode for a direct file is sequential or
dynamic, records can be read sequentially. The sequence
in which records are read depends on the key of reference
at the time the READ statement is executed. The key of
reference is determined as follows:

e When the file is opened, the primary key is the key of
reference. '

e If the file has been positioned by the START
statement, the alternate key used to position the file
becomes the key of reference. ’

° In dynamic access mode, a random read executed
before the sequential read establishes the key used for
the random read as the key of reference.

If the key of reference is the primary key, the records are
read in the order they are stored in the file. This order
bears no relationship to the primary key values or to the
order in which the records were written. If the primary
key is the key of reference and it is defined in the
Working-Storage Section (rather than embedded in the
record), the primary key value is stored in the data item
designated by the RECORD KEY clause. When an alternate
key is the key of reference, the records are read in the
order of the key values in the alternate key index file.

3-22

If the access mode is sequential and the key of reference is
the primary key, records are read in stored sequence from
the beginning of the file or from the record that satisfied
the condition in the START statement. An alternate key
as the key of reference causes reading to begin with the
record at which the file has been positioned by the START
statement; the sequential read then proceeds in the order
of the alternate key values in the index file. The FILE
STATUS clause, discussed in section 15, can be used to
detect a change of values for the key of reference by
testing for a status code value of 02.

READ INVENTORY RECORD
AT END GO TO END-IT.

This statement reads records sequentially. The file
INVENTORY is a direct file with sequential access mode.
If the primary key is the key of reference, the records are
read in the order they are stored in the home blocks of the
file. If an alternate key is the key of reference, the
records are read in sequence by the alternate key values in
the index file. Control is transferred to the paragraph
named END-IT when the end of the file has been reached.

If the access mode is dynamic, the first record retrieved by
a sequential READ statement is one of the following:

® The first record in the first home block of the file.

e The record at which the file has been positioned by the
START statement.

e The next record in sequence according to the key of
reference used in the preceding random READ
statement.

Subsequent records are retrieved sequentially by stored
position (if the primary key is the key of reference) or by
the order of alternate key values in the index file (if an
alternate key is the key of reference). The keyword NEXT
must be included in a sequential READ statement when the
access mode is dynamic. A change in the value of the key
of reference can be determined through the FILE STATUS
clause, discussed in section 15.

READ PERS-FILE NEXT RECORD
AT END GO TO FINISHED.

Befare this statement is executed, the access mode for the
file PERS-FILE has been established as dynamic and a
record has been randomly read by alternate key. Execution
of this statement then reads the next record in sequence
according to the alternate key index file. When the last
record has been read, control is transferred to the
paragraph named FINISHED.

The INTO phrase is included in a sequential READ
statement when the input record is to be stored in a
specified area in addition to the input record area. When
the READ statement is executed, the record is moved into
the specified storage area and is then available in the
storage area and in the input record area. When the file is
defined by more than one Record Description entry, the
INTO phrase cannot be used if any entry is a level 01
elementary item - that is described as a numeric or
numeric-edited data item.

READ INVENTORY NEXT RECORD
INTO TEMP-REC.

60497200 C

Execution of this statement causes the next record in
sequence according to the key of reference to be read from
the input file INVENTORY. The record is available in both
the input record area and the storage area named
TEMP-REC.

Accessing Randomly

The access mode for a direct file must be random or
dynamic to access records randomly. Either the primary
key value or an alternate key value is used to read a record
randomly.

The KEY IS phrase of a random READ statement
establishes the key of reference. The data-name specified
in the phrase identifies the primary key or an alternate
key. If the KEY IS phrase is omitted, the primary key is
the key of reference. When the READ statement is
executed, the current value of the key of reference
determines the record to be read. An invalid key condition
exists if no record in the file contains a key of equal value.

When the key of reference is an alternate key with
duplicate values, the record with the first primary key
indexed for the alternate key value is the record that is
retrieved. The order in which the primary keys are indexed
depends on whether or not the ASCENDING option is
specified in the ALTERNATE RECORD KEY clause. If
ASCENDING is specified, the primary keys are indexed in
ascending sequence; otherwise, the primary keys are
indexed in the order the records were written on the file.

READ PERS-FILE RECORD
KEY IS HIRE-DATE
INVALID KEY GO TO NONE.

When this statement is executed, a record is read from the
file PERS-FILE. The alternate key HIRE-DATE, which can
have duplicate values, is the key of reference for the
random read. The index file is searched for the alternate
key value equal to the current value of the HIRE-DATE
data item. The record with the first primary key indexed
for that value is then read from the file. If an alternate
key of equal value does not exist on the index file, control
is transferred to the paragraph named NONE.

A repeating group alternate key can be specified in the
KEY IS phrase; however, the data-name of the alternate
key cannot be subscripted or indexed. The index file is
searched for a value equal to the current value in the first
occurrence of the alternate key data item. The record
with the first primary key indexed for the alternate key
value is read from the file. The value can be in any
occurrence of the alternate key in the record read from
the file. When records are read by repeating group
alternate key values, the same record can be retrieved for
the value in each occurrence of the alternate key.

READ INVENTORY RECORD
KEY IS WHERE-USED
INVALID KEY GO TO NOT-FOUND.

The key of reference for this statement is the data item
WHERE-USED, which is a repeating group alternate key for
the file INVENTORY. When this statement is executed,
the alternate key index for WHERE-USED is searched for a
value equal to the current value in the first occurrence of
the WHERE-USED data item. If no key value in the
alternate key index equals the current value in
WHERE-USED, control is transferred to the paragraph
named NOT-FOUND.

60497200 C

The INTO phrase in a random READ statement specifies an
additional storage area for the input record. The record
retrieved is stored in both the input record area and the
specified storage area.

READ INVENTORY RECORD INTO NEW-REC
INVALID KEY GO TO NOC-USE.

This statement reads a record randomly from the file
INVENTORY and stores it in the storage area named
NEW-REC as well as in the input record area. The KEY IS
phrase is omitted and the primary key is the key of
reference by default. If the read operation is not
successful, control is transferred to the paragraph named
NO-USE.

Updating Direct Files

Records in an existing direct file are updated by the
DELETE and REWRITE statements. New records are added
to the file by the WRITE statement; existing records cannot
be replaced through execution of the WRITE statement.
The file can have any access mode; it must be opened for
input and output (OPEN I-O).

A record is removed from the direct file by the DELETE
statement. Depending on the access mode, the record
deleted is either the last record read or the record with the
primary key value equal to the current value of the key of
reference.

If the access mode is sequential, a sequential READ
statement must be the last input/output statement
executed before the DELETE statement. The record
accessed by the READ statement is then the record that is
deleted.

READ INVENTORY RECORD.

bELETE INVENTORY RECORD.

When the DELETE statement is executed, the record
retrieved by the READ statement is removed from the file
INVENTORY. The record can no longer be accessed.

For random or dynamic access mode, records are deleted
by primary key value. The current value of the primary
key data item identifies the record to be deleted. An
invalid key condition exists if the record to be deleted
cannot be found on the file.

DELETE PERS-FILE RECORD
INVALID KEY GO TO NOT-FOUND.

Execution of this statement deletes the record in the file
PERS-FILE with the same primary key value as the current
value of the primary key data item. If the record does not
exist on the file, control is transferred to the paragraph
named NOT-FOUND.

Existing records in a direct file can be updated with new
data by the REWRITE statement. The record to be
rewritten is identified by the primary key. The record
stored on the file is replaced by the data in the record
area. The FROM option is included in the REWRITE
statement when the data to be rewritten is stored in an
area other than the record area. The data in the specified
storage area is moved to the record area and the record.is
then rewritten.

3-23

For sequential access mode, the last record read is the
record that is replaced. Between execution of the
sequential READ statement and the REWRITE statement,
no other input/output statement can be executed and the
primary key value cannot be changed.

READ INVENTORY RECORD INTO UPDATING.

I.:{EWRITE INV-REC FROM UPDATING.

When the READ statement is executed, the next record in
sequence is read from the file INVENTORY and stored in
the area named UPDATING. Data manipulation
statements are then executed to update fields in
UPDATING other than the primary key field. The
REWRITE statement causes the updated record stored in
UPDATING to be moved to the record area for INV-REC
and the record to be rewritten in place of the record
retrieved by the READ statement.

For random or dynamic access mode, the current value of
the primary key data item identifies the record to be
replaced. The current primary key value must correspond
to the primary key value of an existing record in the file.
An invalid key condition exists when the current primary
key value does not identify an existing record. Alternate
key values in the replacing record can differ from those in
the record being replaced, but the new values cannot
duplicate any existing values in the file unless the
DUPLICATES option is included in the key definition.

REWRITE PERS-REC
INVALID KEY GO TO BAD-KEY.

When this statement is executed, the record containing the
primary key value currently stored in the primary key data
item is replaced by the data in the PERS-REC record
area. If no record in the file contains the primary key
value, control is transferred to the paragraph named
BAD-KEY.

Closing Direct Files

Processing of a direct file is terminated by the CLOSE
statement. AAM updates the internal tables that are part
of the file. Input/output statements cannot access the file
until it has been opened again.

The WITH LOCK phrase of the CLOSE statement prevents
a file from being opened again during the execution of the
current control statement. When the CLOSE statement
with the WITH LOCK phrase is executed, the file is closed
and returned to the system. An attempt to reopen the file
results in a program abort.

The utility routine C.FILE should be entered when a file is
to be reopened immediately after it is closed. By
overriding the default option DET of the FIT with the
option R, this routine can prevent the release to the
system of buffer space and AAM capsules associated with
the file. If the WITH LOCK phrase is specified in the
CLOSE statement, the C.FILE routine cannot override the
default setting for the CF field.

ENTER "C.FILE" USING INVENTORY, "CF=R".
CLOSE INVENTORY

When these statements are executed, the file INVENTORY

is closed and the buffer space and system capsules used for
the file are retained by the program.

3-24

ACTUAL-KEY FILE ORGANIZATION

In an actual-key file, records are stored according to the
record number specified by the primary key value.
Records are accessed sequentially or randomly depending
on the ACCESS MODE clause. A file with actual-key
organization can reside only on a mass storage device.

Actual-key file organization is used for rapid access by
alternate key. The primary key is system-oriented rather
than data-oriented; the value of the key identifies the
actual location of the record in the file. The system
generates the primary key values when the records are
written on the file. Multiple alternate keys can be defined
for an actual-key file. Alternate key values are stored on
a separate index file.

FILE DEFINITION

The FILE-CONTROL paragraph in the Environment
Division and the File Description and Record Description
entries in the Data Division describe the structure of a file
with actual-key organization.

FILE-CONTROL Paragraph

The FILE-CONTROL paragraph for a file with actual-key
file organization requires four clauses: SELECT, ASSIGN,
ORGANIZATION, and RECORD KEY. Four optional
clauses can also be included in this paragraph. Refer to
figure 3-14.

. Required Clauses
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CUSTOMERS
ASSIGN TO CSTMRS, CSTINDX
ORGANIZATION IS ACTUAL-KEY
ACCESS MODE IS RANDOM
RECORD KEY IS ACT-KEY -1
ALTERNATE RECORD KEY IS CUST-ID
ALTERNATE RECORD KEY IS CUST-TYPE

WITH DUPLICATES ASCENDING
FILE STATUS IS CODE-RETURN
USE "ORG=0LD".

Figure 3-14. FILE-CONTROL Paragraph
for an Actual-Key File

The file-name that is used in the COBOL 5 program is
specified in the SELECT clause. The ASSIGN clause
specifies the logical file name recognized by the operating
system; if alternate keys are defined for the file, the
ASSIGN clause also designates the logical file name for the
alternate key index file. If either logical file name
duplicates any other name used in the program or a
reserved word, it must be enclosed in quotation marks. For
an actual-key file, the ORGANIZATION clause must
specify ACTUAL-KEY.

60497200 D

The RECORD KEY clause specifies the primary key, which
must be an elementary COMPUTATIONAL-1 or
COMPUTATIONAL-4 data item consisting of one to eight
digits. The primary key must be a data item embedded in
each record in the file or within the Working-Storage
Section. Each primary key value is unique; duplicate
primary keys cannot exist in the file because the primary
key indicates the storage location for the record.

Alternate keys are specified by ALTERNATE RECORD
KEY clauses. The clause is included once for each
alternate key field. An alternate key must be a data item
within the actual-key recerd. The first character position
of each alternate key must be different from the primary
key when the primary key is contained in the record. An
alternate key must begin in a different character position
from another alternate key when the keys are the same
length; if the keys are not the same length, they can begin
in the same position. Duplicate values for an alternate key
are allowed only when the DUPLICATES option is included
in the ALTERNATE RECORD KEY clause for the alternate
key.

The order in which records with duplicate alternate keys
are retrieved during sequential reading by alternate key
depends on whether or not the ASCENDING option is
included in the DUPLICATES phrase. If the option is
included, records with duplicate alternate keys are
retrieved in sequential order of primary keys; otherwise,
the records are retrieved in the order they were written.

An alternate key value is included in or excluded from the
alternate key index file depending on whether the USE
phrase or the OMITTED phrase is specified in the
ALTERNATE RECORD KEY clause. If neither phrase is
included in the clause, an entry is made in the index file
for each alternate key value in the data file. The USE
phrase, which includes a one-character alphanumeric data
item and an alphanumeric literal, specifies a condition for
including an index entry in the index file. When the
character contained in the data item is the same as one of
the characters in the literal, an entry is made in the index
file. When the specified condition is not satisfied, no entry
is made. The literal in the phrase must consist of 1 to 36
unique characters. The data item must be contained within
the record; the data-name used to reference the data item
can be used in more than one ALTERNATE RECORD KEY
clause for an actual-key file.

The access mode for an actual-key file can be sequential,
random, or dynamic. Access mode determines the
input/output statements that can be executed for the file.
If the ACCESS MODE clause is omitted or if it specifies
SEQUENTIAL, records can only be accessed sequentially.
Records in an actual-key file can be accessed randomly if
the access mode is random or dynamic. If dynamic access
is specified, records can be accessed both randomly and
sequentially during program execution.

The FILE STATUS clause specifies a data item to receive a
status code each time an input/output statement is
executed. The status code value indicates whether or not
the statement executed successfully. The status code is
discussed further in section 15.

The USE clause supplies file information used by AAM to
process the actual-key file. Certain FILE control
statement parameters can be specified to override
parameter values obtained from other clauses and
statements in the source program and to supply parameter
values that cannot otherwise be specified in the source
program. The parameter list must be enclosed in quotation
marks. Refer to section 15 for a complete list of the
parameters that can be specified.

60497200 D

The type of actual-key file to be used is determined by the
ORG parameter of the USE clause. If extended AAM files
have been installed and either the parameter is omitted or
ORG=NEW is specified, the file is treated as an extended
actual-key file. ORG=0LD is required for files in the
initial actual-key format.

The OMITTED phrase of the ALTERNATE RECORD KEY
clause can specify either a data-name and a literal (as in
the USE phrase) or the KEY option. When a data-name and
literal are specified, the alternate key index entry is not
stored in the index file if the character in the data item
named by the data-name is identical to any character in
the literal. The literal and data item are set up in the
same manner as described in the USE phrase. The option
KEY IS SPACES indicates that an alternate key index entry
is not stored in the index file when the alternate key item
contains all spaces and has a usage of DISPLAY. When
KEY IS ZEROS is specified, the alternate key index entry
is omitted from the index file if the key item contains all
zeros and has a usage of COMPUTATIONAL-1 or
COMPUTATIONAL-2. An alternate key in an actual-key
file record has more than one value when the key is
described with the OCCURS clause. When a record is
written, the value in each occurrence of the alternate key
is indexed on the alternate key index file. The record can
then be retrieved by the value in any occurrence of the
alternate key.

The FILE-CONTROL paragraph shown in figure 3-14
describes a file with actual-key organization. The program
name for the file is CUSTOMERS and the logical file name
used by the operating system is CSTMRS. The logical file
name for the alternate key index file is CSTINDX. The
access mode for the actual-key file is established as
random; records can only be processed randomly by key
value. The data item ACT-KEY is the primary key; its
value identifies the block number and record slot in which
the record is stored. Two alternate keys are specified; the
data item CUST-ID must be unique for each record while
the data item CUST-TYPE can be duplicated within the
file. Records with duplicate CUST-TYPE alternate key
values are retrieved in sequential order of primary key
values.

File Description Entry

The File Description entry (FD entry) in the File Section of
the Data Division describes the physical structure of the
actual-key file. The program file-name, as specified in the
SELECT clause, is specified in the FD entry. Three
specific clauses in the FD entry are applicable to
actual-key files. Refer to figure 3-15.

DATA DIVISION.

FILE SECTION.

FD CUSTOMERS
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 10 RECORDS
RECORD CONTAINS 165 CHARACTERS
DATA RECORD IS CUST-REC.

Figure 3-15. File Description Entry
for an Actual-Key File

3-25

The LABEL RECORDS clause is required in every FD entry
and specifies whether or not the file contains labels.
Actual-key files cannot contain labels and OMITTED must
be specified in this clause.

The BLOCK CONTAINS clause provides information that
the system uses in determining the physical size of a block
in the file. The block size is calculated by rounding upward
to a multiple of physical record unit (PRU) size less 50
characters; PRU size is 640 characters. The value used for
rounding upward is as follows:

If the clause is omitted, the value is determined by
adding 90 to the result of the maximum record size
multiplied by 8.

If a number of records is specified, the value is
determined by adding together the following results:

1. The specified number of records plus one,
multiplied by 10.

2. The maximum record size multiplied by the
specified number of records.

If a number of characters is specified, the value is the
number of characters.

When primary keys are user-generated, it is usually simpler
to generate key values if the number of records in a block
is a power of 2.

The RECORD clause determines the record type and
record size used by AAM for input/output processing of
actual-key files. If the clause is omitted, the Record
Description entry is used for record size and type. The
specific format of the RECORD clause determines record
type and record size in the same manner as described for
sequential file organization. Refer to table 3-2 for the
effect of the RECORD clause.

Figure 3-15 illustrates a File Description entry for an
actual-key file named CUSTOMERS. Each block in the file
contains 10 records and a record consists of 165
characters. The DATA RECORD clause is included to
document the record-name for the file.

Record Description Entry

The File Description entry for an actual-key file includes
one Record Description entry for each record format
applicable to the file. The Record Description entry
provides data-names for individual data items within the
record and describes the physical structure of the record.

If the FD entry does not include the RECORD clause, the
record type and record size used for input/output
processing are determined from the Record Description
entry. The record type and record size are determined in
the same manner as described for sequential file
organization.

The record format defined by the Record Description entry
illustrated in figure 3-16 is applicable to the actual-key
file described in’ figures 3-14 and 3-15. The primary key
ACT-KEY is described in the Record Description entry as
an eight-digit number with COMP-1 usage. The value of
ACT-KEY identifies the sequential record number in which
the record is stored. The two alternate keys, CUST-ID and
CUST-TYPE, are also described in the record format. A

3-26

CUST-REC record can be accessed by any of the three
defined keys. The record type and record size specified by
the Record Description entry is the same as determined by
the RECORD clause far the file. The records are fixed
length (record type F) with 165 characters per record.

DATA DIVISION.
FILE SECTION.

01 CUST-REC.
03 ACT-KEY PICTURE 9(8)
USAGE IS COMP-1.

03 CusT-ID PICTURE X(6).
03 CUST-NAME PICTURE X(15).
03 CUST-TYPE PICTURE XX.
03 MONTHLY-ORDERS OCCURS 12 TIMES.

05 NO-ORDERS PICTURE 99.

05 MONTH-AMT PICTURE 9(5)Vv99.
03 YTD-ORDERS.

05 TOTAL-ORDERS PICTURE 999.

05 TOTAL-AMT PICTURE 9(7)V99.
03 CURRENT-BAL PICTURE 9(6)Vv99.
03 LAST-ACTIVITY PICTURE 9(6).

Figure 3-16. Record Description Entry
for an Actual-Key File

FILE MANIPULATION

Seven Procedure Division statements are provided for
input/output processing of actual-key files. Once the file
has been created, records can be read, replaced, deleted,
and inserted. Individual data items within actual-key
records are manipulated through various statements that
are described in other sections of the guide.

Opening Actual-Key Files

Before records in an actual-key file can be accessed, the
file must be opened by the OPEN statement. The file is
opened for input, for output, or for input and output
processing. The open mode established for the file
determines the input/output statements that can be
executed. The primary key becomes the key of reference
when the OPEN statement is executed; for an existing file,
the current value of the key of reference is the primary
key value for the first record in the file.

An actual-key file is opened for input with the OPEN
INPUT statement. The file is then available for read-only
processing. When the OPEN INPUT statement is executed,
the file is positioned at the first record slot of the first
block in the file. Depending on the access mode
established for the file, records are then read sequentially
or randomly.

OPEN INPUT CUSTOMERS.
This statement causes the actual-key file CUSTOMERS to

be opened for input. Records can be read from but not
written on the file.

60497200 D

The OPEN OUTPUT statement is used when an actual-key
file is being created. Records can only be written on the
file; they cannot be read or updated. Records are
subsequently written in the location specified by the value
of the primary key.

OPEN OUTPUT MASTER-FILE.

Execution of this statement opens the file MASTER-FILE
for write-only processing. Records cannot be read from
the file.

An existing actual-key file is opened for input and output
processing by the OPEN I-O statement. The open mode
established by this statement allows records in the file to
be read, deleted, inserted, and updated. The file is
positioned at the first record currently existing in the file.

OPEN I-O STOCK-FILE.

When this statement is executed, the file STOCK-FILE is
opened for input and output processing. Records can be
read, inserted, deleted, and rewritten.

Writing New Actual-Key Files

Records are written on a new actual-key file when the file
has been opened for output (OPEN OUTPUT). The primary
key specifies the record number. AAM converts the record
number to the storage location of the record.

WRITE MASTER-REC.

Execution of this statement causes a MASTER-REC record
to be written in the location specified by the
system-generated primary key value. Records are written
serially beginning with the first record position.

The primary key values can be generated by AAM. If AAM
is to generate primary key values, the primary key data
item must be set to zero before each record is written on
the file. The system-generated key value is returned to
the program in the primary key data item when the record
is written on the file. These values must be preserved by
the program if the file is to be accessed by primary key.

An invalid key condition exists if the key value indicates a
location that already contains a record or if it indicates a
block number that is more than one greater than the
highest existing block number. If duplicate alternate keys
are not allowed, a duplicate alternate key value also causes
an invalid key condition.

WRITE CUST-REC
INVALID KEY GO TO KEY-ERROR.

When this statement is executed, a CUST-REC record is
written in the location indicated by the primary key value
supplied by the program. If an invalid key condition is
encountered, control is transferred to the paragraph named
KEY-ERROR.

60497200 D

If alternate keys are defined for the actual-key file
without the USE or OMITTED phrase, the primary key is
indexed in the alternate key index file for each alternate
key in the record being written. When the USE or
OMITTED phrase is specified in the key definition, the
primary key is entered in the index file on the basis of the
condition specified in the phrase. A repeating group
alternate key causes the primary key to be indexed for
each occurrence of the alternate key.

The FROM phrase is included in the WRITE statement
when the data for the output record is stored in an area
other than the output record area. The data is moved from
the storage area to the record area and the record is then
written on the file.

WRITE STOCK-REC FROM TEMP-REC
INVALID KEY GO TO BAD-WRITE.

Before the STOCK-REC record is written on the file, the
data in the storage area TEMP-REC is moved to the output
record area. If an invalid key condition occurs, control is
transferred to the paragraph named BAD-WRITE.

Positioning Actual-Key Files With Alternative Keys

Retrieval of records in an actual-key file with alternate
keys can begin with a record other than the first record in
the file. The file is positioned to a record that meets a
specified condition. The access mode for the file must be
sequential or dynamic and the file must be open for input
(OPEN INPUT or OPEN I-0).

The START statement positions the file for subsequent
sequential READ statements and establishes the key of
reference. The file is positioned at a record that satisfies
a specified condition. The KEY phrase establishes the key
of reference and specifies the condition used in positioning
the file. The key of reference specified in the phrase must
be an alternate key or the leading portion of an alternate
key; it cannot be the primary key. When the START
statement is executed, the index file is searched for a
value that is greater than, equal to, or not less than the
current value of the designated data item. The file is
positioned at the first record that satisfies the specified
condition.

START MASTER-FILE
KEY IS GREATER THAN MASTER-NO.

When this statement is executed, the index for the
alternate key MASTER-NO is searched for a value greater
than the current value of the MASTER-NO data item. The
index file is positioned at the first alternate key value that
satisfies the condition. Retrieval of the records in the
actual-key file (MASTER-FILE) proceeds in the order of
the alternate key values in the index file.

3-27

A repeating group alternate key can be specified in the
KEY phrase; however, the data-name of the key cannot be
subscripted or indexed. The value that is used to position
the file is the current value in the first occurrence of the
alternate key data item. In the record at which the file is
positioned, the value satisfying the specified condition can
be in any occurrence of the alternate key.

The leading portion of an alternate key can be specified in
the KEY phrase if the alternate key does not begin in the
same character position as another alternate key; when
two alternate keys begin in the same position, the KEY
phrase cannot specify an item subordinate to them.

If the leading portion of an alternate key is specified in the
KEY phrase, it must begin in the first character position of
the alternate key and must be described as an
alphanumeric data item. For example:

03 MASTER-NO.
05 TYPE-CODE
05 MST-NUMBER

PICTURE XX.
PICTURE 9(4).

The alternate key MASTER-NO is described with two
subordinate data items. The KEY phrase can specify either
MASTER-NO or TYPE-CODE, but not MST-NUMBER.

An invalid key condition occurs when the condition
specified in the KEY phrase cannot be satisfied by any
record in the file. The INVALID KEY phrase designates
the action to be taken when this condition occurs.

START MASTER-FILE
KEY IS NOT LESS THAN TYPE-CODE
INVALID KEY GO TO NO-TYPE.

Execution of this statement causes the alternate key index
file to be searched for a value with the first two
characters of MASTER-NO equal to or greater than the
current value of TYPE-CODE. If the value cannot be
found, control is transferred to the paragraph named
NO-TYPE.

Reading Actual-Key Files

When an actual-key file is opened for input (OPEN INPUT
or OPEN I-O), records are retrieved from the file by the
READ statement. Records are read randomly or
sequentially depending on the access mode established for
the file and the format of the READ statement. The key
of reference for reading an actual-key file can be the
primary key or an alternate key.

Accessing Sequentially

Sequential read operations can be executed when the
access mode for the actual-key file is sequential or
dynamic. At the time the READ statement is executed,
the key of reference determines the order in which records
are retrieved. The key of reference is determined as
follows:

e When the file is opened, the primary key is the key of
reference.

e If the file has been positioned by the START
statement, the alternate key used to position the file
becomes the key of reference.

® In dynamic access mode, a random read executed

before the sequential read establishes the key used for
the random read as the key of reference.

3-28

When the primary key is the key of reference, records are
read in the order they are stored in the file; if the primary
key is defined in the Working-Storage Section (rather than
within the record), the key value is stored in the data item
designated by the RECORD KEY clause. If an alternate
key is the key of reference, records are read in the order
of the key values in the alternate key index file.

For sequential access mode, records read by primary key
are retrieved in stored sequence beginning with the first
record in the first block of the file or with the record that
satisfied the condition in the START statement. When an
alternate key is the key of reference, the first record read
is the record at which the file has been positioned by the
START statement; sequential reading then proceeds in the
order of the alternate key values in the index file. The
final occurrence of a particular alternate key value can be
detected through the FILE STATUS clause (described in
section 15) by testing for a status code of 02,

READ MASTER-FILE RECORD
AT END GO TO CL.OSING.

Records in the actual-key file MASTER-FILE are read
sequentially. The access mode for the file is established as
sequential. If the primary key is the key of reference,
records are read in stored order. When an alternate key is
the key of reference, records are read in sequence by the
alternate key values. When the last record has been read,
control is transferred to the paragraph named CLOSING.

For dynamic access mode, the first record retrieved by a
sequential READ statement is one of the following:

The first record in the first block of the file.

The record at which the file has been positioned by the
START statement.

The next record in sequence according to the key of
reference used in the preceding random READ
statement.

Subsequent records are retrieved sequentially by stored
position (if the primary key is the key of reference) or by
the order of alternate key values in the index file (if an
alternate key is the key of reference). The keyword NEXT
must be included in a sequential READ statement when the
access mode is dynamic. The FILE STATUS clause,
described in section 15, can be used to determine the final
occurrence of an alternate key value during sequential
retrieval by alternate key.

READ CUSTOMERS NEXT RECORD
AT END GO TO FINISHED.

This statement reads a record sequentially from the file
CUSTOMERS. If the key of reference is the primary key,
the next record in stored sequence is read. If an alternate
key is the key of reference, the next record in alternate
key sequence is read. When the end of the file has been
reached, control is transferred to the paragraph named
FINISHED.

A sequential READ statement includes the INTO phrase
when the input record is to be stored in a specified area.
The record is then available in both the input record area
and the specified storage area. When the file is defined by
more than one Record Description entry, the INTO phrase
cannot be used if any entry is a level 01 elementary item
that is described as a numeric or numeric-edited data item.

READ STOCK-FILE NEXT RECORD
INTO UPDATING.

60497200 C

When this statement is executed, the next record in
sequence according to the key of reference is read from
the file STOCK-FILE. The record is stored in the input
record area and in the storage area named UPDATING.

Accessing Randomly

Records in an actual-key file can be accessed randomly by
key value when the access mode for the file is established
as random or dynamic. The key of reference for the
random read can be the primary key or an alternate key.

The KEY IS phrase specifies the key of reference for a
random READ statement. If the phrase is omitted, the
primary key is the key of reference. Either the primary
key or an alternate key can be designated in the KEY IS
phrase as the key of reference. At the time the READ
statement is executed, the record retrieved is the record
with the key value equal to the current value of the key of
reference.

When the key of reference is an alternate key with
duplicate values, the first primary key indexed for the
alternate key value determines the record to be retrieved.
The order in which the primary keys are indexed depends
on whether or not the ASCENDING option is specified in
the ALTERNATE RECORD KEY clause. If ASCENDING is
specified, the primary keys are indexed in ascending
sequence; if it is not specified, the primary keys are
indexed in the order the records were written on the file.

READ CUSTOMERS RECORD
KEY IS CUST-TYPE
INVALID KEY GO TO KEY-ERROR.

The KEY IS phrase establishes the alternate key
CUST-TYPE as the key of reference. CUST-TYPE can
have duplicate values and the primary keys are indexed in
ascending sequence. Execution of this statement causes
the alternate key index file to be searched for a
CUST-TYPE value that is equal to the current value of the
data item CUST-TYPE. The record with the first primary
key indexed for the CUST-TYPE value is read from the
file. If a key of equal value cannot be found, control is
transferred to the paragraph named KEY-ERROR.

When a repeating group alternate key is specified in the
KEY IS phrase, the data-name of the alternate key cannot
be subscripted or indexed. The current value in the first
oceurrence of the alternate key data item is used to search
the index file for an equal value. The record with the first
primary key indexed for the alternate key value is read
from the file. The value can be in any occurrence of the
alternate key in the record that is read from the file. When
records are read by repeating group alternate key values,
the same record can be retrieved for the value in each
occurrence of the alternate key.

The INTO phrase is included in the random READ
statement to specify an additional storage area for the
input record. When the record is read, it is stored in the
input record area and in the specified storage area.

READ MASTER-FILE RECORD INTO NEW-REC
KEY IS MAST-NO
INVALID KEY GO TO BAD-KEY.

When this statement is executed, a record is read from the
actual-key file MASTER-FILE; the record is then available
in the input record area and in the storage area named
NEW-REC. The alternate key MAST-NO is established as

the key of reference. If an invalid key condition exists, -

control is transferred to the paragraph named BAD-KEY.

60497200 C

Updating Actual-Key Files

Records in an existing actual-key file are updated by the
DELETE and REWRITE statements. The WRITE statement
is used to add new records to the file; it cannot be used to
replace an existing record in the file. Any access mode is
allowed and the file must be open for input and output
(OPEN I-0).

Records are removed from the actual-key file by the
DELETE statement. After the DELETE statement is
executed, the record can no longer be accessed. The
record deleted is either the last record read or the record
indicated by the current value of the primary key.

If the access mode is sequential, the last input/output
statement preceding the DELETE statement must be a
valid sequentiai READ statement. The record deleted is
then the last record read.

READ MASTER-FILE RECORD.

DELETE MASTER-FILE RECORD.

A record is read in sequence from the file MASTER-FILE.
When the DELETE statement is executed, the record read
from MASTER-FILE is removed from the file and can no
longer be accessed. '

Records are deleted by primary key value when the access
mode is random or dynamic. The record in the location
specified by the current value of the primary key data item
is deleted from the file. If the specified location does not
contain a record, an invalid key condition exists.

DELETE CUST-FILE RECORD
INVALID KEY GO TO NO-RECORD.

This statement deletes the CUST-FILE record in the
location indicated by the current value of the primary key
data item. If a record does not exist in the specified
location, control is transferred to the paragraph named
NO-RECORD.

Data in an existing record in the actual-key file can be
updated through the REWRITE statement. The record to be
rewritten is identified by the primary key value. The
FROM phrase is included in the REWRITE statement when
the updated record is stored in a location other than the
record area. The data in the storage area is moved to the
record area before the record is rewritten on the file.

If the access mode is sequential, a sequential READ
statement must precede the REWRITE statement. The
record rewritten is then the previously read record. The
primary key value must not be changed before the
REWRITE statement is executed. An invalid key condition
exists if the key value is changed.

READ STOCK-FILE RECORD INTO UPDATING.

REWRITE STOCK-REC FROM UPDATING.

The record read from the file STOCK-FILE is stored in the
area named UPDATING. Data in any field except the
primary key field can be updated before the REWRITE
statement is executed. The updated record is moved from
UPDATING to the record area for STOCK-REC and then
replaces the record retrieved by the previous READ
statement.

3-29

If the access mode is random or dynamic, the current value
of the primary key data item specifies the record to be
rewritten. An invalid key condition occurs if the record
position indicated by the primary key value does not
contain a record. When a record containing alternate key
data items is rewritten, new values can be specified for the
key items; however, the new values cannot duplicate any
existing alternate key values in the file unless the
DUPLICATES phrase is included in the key definition.

REWRITE MASTER-REC
INVALID KEY GO TO KEY-ERR.

When this statement is executed, the data in the
MASTER-REC record area replaces the record stored in
the location identified by the current value of the primary
key data item. If a record does not exist at that location,
control is transferred to the paragraph named KEY-ERR.

Closing Actual-Key Files

Processing of an actual-key file is terminated by execution
of the CLOSE statement. AAM updates the internal tables
that are part of the file. The file can be reopened for
further processing; it is then positioned at the first record
in the file.

The WITH LOCK phrase is included in the CLOSE
statement to prevent the actual-key file from being
reopened during the execution of the current control
statement. When the file is closed, it is returned to the
system. If an attempt is made to reopen the file, the
program aborts.

If a file is to be reopened immediately after it has been
closed, the routine C.FILE should be entered to prevent the
release to the system of buffer space and AAM capsules
used for the file. The routine C.FILE overrides the default
setting DET of the CF field in the file information table
with the setting R. The R parameter indicates that the
buffer space and system capsules associated with the file
are retained by the program. The ENTER statement should
immediately precede the CLOSE statement. If the WITH
LOCK statement is included in the CLLOSE statement, the
default setting for the CF field cannot be overridden.

ENTER "C.FILE" USING STOCK-FILE, "CF=R".
CLOSE STOCK-FILE.

The file STOCK-FILE is closed and the system resources
associated with the file are retained for subsequent use
when the file is reopened.

WORD-ADDRESS FILE ORGANIZATION

A word-address file is a mass storage file in which the
word-address key specifies the number of the first word in
the record. Word numbers begin with 1 for the first word
of the first record in the file and continue in sequence to
the end of the file. Each record begins in a new word; a
word contains 10 character positions. Boundaries do not
appear between records. A word-address file is similar to
a table in which any entry can be identified by an index
into the table. ‘

Word-address file organization is used most often in

specialized applications that require immediate access.
Records are read or written beginning with the word

3-30

number indicated by the word-address key value. The
number of words read or written is determined by the
Record Description entry. The system performs no
checking of the data being read or written to ensure that
the information is valid. If the file is created sequentially,
unused words do not exist in the file., Alternate keys
cannot be specified for word-address files.

FILE DEFINITION

The FILE-CONTROL paragraph in the Environment
Division and the File Description and Record Description
entries in the Data Division define the structure of a file
with word-address organization.

FILE-CONTROL Paragraph

In the FILE-CONTROL paragraph for a word-address file,
four clauses must be included: SELECT, ASSIGN,
ORGANIZATION, and WORD-ADDRESS KEY. Four
optional clauses can be included in this paragraph. Refer
to figure 3-17.

Required Clauses

ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT PARTS-FILE ASSIGN TO PARTFLE

ORGANIZATION IS WORD-ADDRESS
ACCESS MODE IS DYNAMIC
WORD-ADDRESS KEY IS PART-KEY
RESERVE 1 AREA
FILE STATUS IS FILE-CODE
USE "DFC=3".

Figure 3-17. FILE-CONTROL Paragraph
for a Word-Address File

The SELECT clause specifies the file-name used in the
COBOL. 5 program. The ASSIGN clause specifies the
logical file name recognized by the operating system. If
the logical file name is the same as any other name in the
program or as a reserved word, it must be enclosed in
quotation marks. The ORGANIZATION clause designates
the file as a word-address file.

The WORD-ADDRESS KEY clause specifies the data item
that contains the key value used to access word-address
records randomly. During program execution, the key
value must be a numeric integer that identifies the word
number at which the record begins. The data item
containing the key value must not be included in the record
stored in the file. If the file is an External file, the
word-address key data item must be defined in the
Common-Storage Section.

The access mode for a word-address file can be sequential,
random, or dynamic. If the ACCESS MODE clause is
omitted or if it specifies SEQUENTIAL, records are read or
written sequentially. Records are accessed randomly by
key value when the clause specifies RANDOM. If
DYNAMIC is specified, records can be accessed
sequentially and randomly during program execution.

60497200 C

The RESERVE clause can specify the number of
input/output buffer areas for the word-address file. The
specified number of areas, plus two additional words, are
reserved. If the ‘clause is omitted, the system allocates
«wo buffer areas. The size of each input/output buffer
area is the maximum block size.

The FILE STATUS clause is used to specify a data item to
receive a status code whenever an input/output statement
is executed for the_file. The status code is a value that
indicates whether or not the statement executed
successfully. Refer to section 15 for a description of the
status code.

The USE clause supplies file information used by BAM to
process the word-address file. Certain FILE control
statement parameters can be specified in this clause.
These parameters supply file information that cannot be
specified through the clauses and statements in the source
program, or they override parameter values normally
obtained from the source program. Refer to section 15 for
a complete list of parameters that can be specified.

A FILE-CONTROL paragraph for a file with word-address
organization is illustrated in figure 3-17. The file-name
PARTS-FILE is used in the COBOL 5 program and the
logical file name PARTFLE identifies the file for the
operating system. Records in the file can be accessed
sequentially or randomly since the access mode is
established as dynamic. The key value used to access a
record is contained in the data item PART-KEY.

File Description Entry

The physical structure of the word-address file is described
in the File Description entry (FD entry) of the Data
Division. The program file-name specified in the SELECT
clause is also specified in the FD entry. Two clauses,
LABEL RECORDS and RECORDS, are applicable to
word-address files. Refer to figure 3-18.

DATA DIVISION.

FILE SECTION.

FD PARTS-FILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 30 CHARACTERS
DATA RECORD IS PART-REC.

Figure 3-18. File Description Entry
for a Word-Address File

The LABEL RECORDS clause, which is required in every
FD entry, must specify that label records are omitted.
Labels cannot exist on a word-address file.

Record type and record size are used by BAM for
input/output processing of word-address files. The
RECORD clause, if included, is used to determine record
size. For a word-address file, record type is always U
(unless overridden by a FILE control statement).

The File Description entry illustrated in figure 3-18 is for
a word-address file named PARTS-FILE.. The file contains
U type records with 30 characters per record. The DATA
RECORD clause documents the record name as PART-REC.

60497200 C

Record Description Entry

The File Description entry for a word-address file must
include a Record Description entry for each record format
applicable to the file. Records can be fixed or variable in
length. The Record Description entry assigns data-names
to individual data items and describes the physical
structure of the record.

When the RECORD clause is not included in the FD entry,
the record size used by BAM is determined by the Record
Description entry. If all records contain the same number
of characters, the record size is the maximum number of
character positions described in the Record Description
entry. If Record Description entries are not all the same
size and no OCCURS...DEPENDING ON phrase exists in
the RECORD clause, the record size is the actual size of
the named record.

The Record Description entry illustrated in figure 3-19 is
applicable to the word-address file described in
figures 3-17 and 3-18. The record format defines a record
with 30 character positions; each stored record occupies
three words. The record key, which is used to access
records randomly, is described in the Working-Storage
Section as a four-digit integer.

DATA DIVISION.
FILE SECTION.

01 PART-REC.
03 PART-NAME
03 USED-WITH
03 AQTY-ON-HAND
03 MFG-CODE

PICTURE X(10).
PICTURE X(5).
PICTURE 9(5).
PICTURE X(10).

WORKING-STORAGE SECTION.
01 PART-KEY

PICTURE 9(4).

Figure 3-19. Record Description Entry
for a Word-Address File

FILE MANIPULATION

Input/output processing of word-address files is
accomplished through four Procedure Division statements.
Records in an existing word-address file can be read,
replaced, and inserted. Individual items within a record
are manipulated through various statements that are
discussed in other sections of this guide.

Opening Word-Address Files
Word-address files are opened for input, for output, or for

input and output. The specific format of the OPEN
statement determines the open mode for the file.

3-31

The OPEN INPUT statement opens the word-address file
for input only. Records are read from the file sequentially
or randomly depending on the access mode. The file is
positioned at the first record (word 1 of the file).

OPEN INPUT PARTS-FILE.

This statement causes the word-address file PARTS-FILE
to be opened for input. Records can then be read from but
not written on the file.

When a word-address file is being created, the file is
opened for output. The OPEN OUTPUT statement makes
the file available for write-only processing. Records are
written sequentially or randomly depending on the access
mode established for the file.

OPEN OUTPUT WORD-FILE.

Execution of this statement causes the file WORD-FILE to
be opened for output. Records are then written on but not
read from the file.

An existing word-address file can be opened for input and
output. The OPEN I-O statement allows records to be read
from and written on the file. The file is positioned at the
first record (word 1 of the file). Subsequent statements
read and write records sequentially or randomly depending
on the access mode.

OPEN I-O PARTS-FILE.

When this statement is executed, the file PARTS-FILE is
opened for input and output. The program can then read or
write records on the file.

Writing Word-Address Files

Records are written on a word-address file sequentially or
randomly depending on the access mode established for the
file. The file must be open for output (OPEN OUTPUT for
file creation or OPEN I-O for file updating) when records
are to be written. The word-address key data item is
updated after each write operation to indicate the
beginning word number for the next record. The key should
be initialized to one or to a specific value to avoid a large
word address.

For sequential access mode, the file must be open for
output only. Records are written on the file beginning with
word number 1; each record uses a designated number of
words. If the records are fixed length, the number of
words used is the same for all records in the file. The
number of words used for variable-length records depends
on the actual size of the record being written. When the
record is written on the file, the system returns the
beginning word number for the record to the word-address
key data item.

WRITE WORD-RECORD.

Execution of this statement in sequential access mode
causes the record WORD-RECORD to be written on its
associated file. The record begins in the next word in
sequence; the system returns the word number for the
record to the word-address key data item.

3-32

For random or dynamic access mode, the record is written
according to the current value of the word-address key
data item. The key value specifies the word number in
which to begin the record. The record is written at the
designated location, whether or not a record already exists
at that location. An invalid key condition occurs when the
key value is not an integer.

WRITE PART-REC
INVALID KEY GO TO BAD-KEY.

When this statement is executed, the record PART-REC is
written on the file beginning with the word number
indicated by the word-address key value. If an invalid key
condition exists, control is transferred to the paragraph
named BAD-KEY.,

The FROM phrase is included in the WRITE statement when
the record data is in a storage area other than the record
area. The data in the specified area is moved into the
record area and then the record is written on the file.

WRITE WORD-RECORD FROM TEMP-REC.

This statement specifies that the data in the storage area
named TEMP-REC is to be moved into the record area
before the record is written on its associated file.

Reading Word-Address Files

Records are retrieved from a word-address file by the
READ statement. The file must be open for input (OPEN
INPUT or OPEN [-O). Depending on the access mode

- established for the file and the format of the READ.

statement, records are read sequentially or randomly.

The number of words retrieved when a READ statement is
executed depends on the record size established by the
Record Description entry. If multiple record descriptions
are used, and there are no DEPENDING ON phrases in
either the RECORD clause or the Record Description
entry, the read operation uses the number of characters in
the largest record description. If variable length records
are to be used, the user must define the record length
before a read operation occurs. Each time the READ
statement is executed, the designated word-address key is
updated to point to the next available word by using the

" record length of the record just read.

Accessing Sequentially

Word-address records can be read sequentially when the
access mode is sequential or dynamic. When the file is
opened, it is positioned at the first record. The READ
statement retrieves the designated number of words
beginning at the current file position. The AT END phrase
is included in the sequential READ statement to specify
the action to be taken when the end of the file is reached.

READ WORD-FILE RECORD
AT END GO TO DONE.

Execution of this statement reads a record from the file
WORD-FILE. When the end of the file is reached, control is
transferred to the paragraph named DONE.

60497200 C

The INTO phrase can be included in the READ statement
to store the record in a specified area. The record
retrieved is available in both the input record area and the
specified storage' area. When the file is defined by more
than one Record Description entry, the INTO phrase cannot
be used if any entry is a level 01 elementary item that is
described as a numeric or numeric-edited data item.

READ PARTS-FILE RECORD
INTO REC-AREA.

When this statement is executed, a record is retrieved from
the file PARTS-FILE. The record is available in both the
input record area and the storage area named REC-AREA.

For sequential reading in dynamic access mode, the
keyword NEXT must be included in the READ statement.
In sequential access mode, the keyword NEXT is
documentary only.

READ PARTS-FILE NEXT RECORD
AT END GO TO FINISHED.

This statement reads the next record in sequence when the
access mode for the file PARTS-FILE is dynamic. If the
last record in the file has been read, control is transferred
to the paragraph named FINISHED.

Accessing Randomly

If the access mode established for the word-address file is
random or dynamic, records can be read randomly by key
value. The data item defined as the word-address key
contains a value that indicates the first word number of
the record to be read. An invalid key condition exists if
the key value is not an integer within the range of words in
the file or if the attempt to read a record extends beyond
the end of the file.

READ WORD-FILE RECORD
INVALID KEY GO TO BAD-READ.

When this statement is executed, a record is read from the
file WORD-FILE beginning at the word number indicated by
the value of the word-address key. An invalid key
condition causes control to be transferred to the paragraph
named BAD-READ.

A random READ statement can also include the INTO
phrase to store the record in a specified area. This phrase
is executed in the same manner as for reading sequentially.

Closing Word-Address Files

The CLOSE statement terminates processing of a
word-address file. Once the - statement is executed,
input/output statements cannot access the file until it has
been opened again. When a word-address file is closed, a
partition boundary exists at the end of the file. The
boundary is overwritten when records are added to the end
of the file.

The WITH LOCK phrase of the CLOSE statement specifies
that the file being closed cannot be reopened during
execution of the current control statement. The file is
returned to the system. An attempt to reopen the file
causes the program to abort.

If the file being closed is to be reopened immediately, the
C.FILE routine should be entered before the file is closed.
The routine changes the file information table CF field
from the default DET setting to the R setting. The

60497200 C

R parameter causes the program to retain the buffer space
and BAM capsules associated with the file that are
otherwise returned to the system. The setting of the CF
field cannot be overridden if the WITH LOCK phrase is
included in the CLOSE statement.

ENTER "C.FILE USING PARTS-FILE, "CF=R".
CLOSE PARTS-FILE.

When these statements are executed, the file PARTS-FILE
is closed; the associated buffer space and system capsules
are retained for subsequent use when the file is reopened.

ERROR HANDLING

File-related errors and exception conditions encountered
during program execution are handled in various ways.
Some actions are performed automatically by the system
while others are specified in the COBOL 5 program.
Whenever an input/output statement is executed, the
system generates a status code. This code can be used by
the program to determine the course of action following
execution of the input/output statement.

Input/output errors are handled in the following order:

1. Standard input/output error routines are automatically
executed by the system.

2. If a user-supplied error procedure is specified for the
file, the procedure is executed.

For at end and invalid key conditions, the program is
responsible for determining subsequent action. Processing
continues in one of two ways with the following order of
precedence:

1. Control is transferred to the imperative statement
specified in the AT END or INVALID KEY phrase of
the input/output statement.

2. The user-supplied error procedure specified for the
file is executed.

If neither method is used to provide for processing of at
end and invalid key conditions, the program is aborted
when the condition occurs.

USER-SUPPLIED ERROR PROCEDURES

The source program can specify procedures that are
executed when input/output errors or exception conditions
ocecur during file processing. A user-supplied procedure is
executed after the standard input/output error routine has
been performed. A USE statement introduces the error
procedure to be executed. The keywords ERROR and
EXCEPTION are synonymous; the choice between words is
provided for documentary purposes only. An error
procedure is executed for any file organization.

Execution of a user-supplied error procedure occurs under
any of the following conditions:

® A standard input/output error routine has been
executed.

e An at end condition exists for an input/output

statement that does not include the AT END phrase.
e An invalid key condition exists for an input/output

statement that -does not include the INVALID KEY
phrase.

3-33

User-supplied error procedures are specified in the
Declaratives portion of the Procedure Division. Each error
procedure is contained in a named section. The first
statement in the section is a WUSE statement that
designates the files to which the error procedure applies.
This is followed by one or more paragraphs containing the
statements to be executed when an input/output error or
exception condition occurs.

The error procedure is executed only for those files
indicated by the USE statement. If specific file-names are
included in the USE statement, the errar procedure is
invoked for the named files regardless of the open mode of
the files. If an open mode is specified in the USE
statement, the error procedure applies to all files in the
specified open mode.

Figure 3-20 shows two USE statements and the order in
which they appear in the Procedure Division. Statements
following paragraph-name INPUT-ERROR are executed
when one of the conditions that invoke a USE statement is
encountered for any input file. If the condition is
encountered for the file named FILE-1, the statements
following paragraph-name FILE1-ERROR are executed; the
error procedure for input files is not executed if FILE-1 is
an input file.

PROCEDURE DIVISION.

DECLARATIVES. -

INPUT-PROC SECTION.

USE AFTER STANDARD ERROR PROCEDURE
ON INPUT.

INPUT-ERROR.

FILE1-PROC SECTION.

USE AFTER STANDARD EXCEPTION PROCEDURE
ON FILE-1.

FILE1-~ERROR.

END DECLARATIVES.

Figure 3-20. Example of the USE Statement

STATUS CODE

The system generates a status code each time an
input/output statement is executed. If this code is to be
used by the program, the FILE STATUS clause in the
Environment Division specifies the data item to receive
the status code. The data item can be tested to determine
the execution status of the input/output statement. Usage
of the file status code (and other CRM debugging tools) is
illustrated in section 15.

3-34

SAMPLE PROGRAMS

The sample programs included in this section illustrate the
six file organizations. Each program uses at least one
sequential file and one file with a different file
organization. Two programs are shown for each of the
following file organizations: relative, indexed, direct,
actual-key, and word-address. The first program creates
the file and the second program accesses the existing file.

RELATIVE FILE PROGRAMS

A file with relative organization is created by the program
shown in figure 3-21. This file contains the name and
address of each person who has a safe-deposit box. When
customers are billed, the relative file is used to print
address labels.

Each input record contains a customer's box number, name,
and address (see figure 3-22). The box number is moved to
the relative key data item (line 50), the customer's name
and address are moved to the output record area (line 51),
and the record is written on the relative file (line 52). The
record is stored in the record position that corresponds to
the box number.

The program shown in figure 3-23 uses the relative file
created by the preceding program. This program is used to
update the existing file and to create ‘address labels for
billing the customers. The first input card contains either
the letter A or the letter B in the CARD-CODE field. The
letter A indicates that the following cards contain
information to update records in the relative file (lines 72
and 73). The letter B indicates that address labels are to
be printed for the box numbers on the following cards
(lines 74 and 75).

The UPDATING procedure reads an input record (line 79),
moves the box number to the relative key data item
(line 83), and rewrites the record using the new
information (lines 84 and 85). This procedure is repeated
until the CARD-CODE field contains the letter B (line 81)
or the end of the input file is reached (line 80).

The BILLING procedure reads an input record (line 92),
moves the box number to the relative key data item
(line 94), and reads the corresponding record from the
relative file (line 95). The name and address from the
relative file record are used to create the address label on
the output file (lines 97 through 103).

The format of the input records used to access the relative
file is illustrated in figure 3-24. The output labels created
by the program are shown in figure 3-25.

INDEXED FILE PROGRAMS

Two programs illustrate indexed file organization. The
first program creates the indexed file and the second
program accesses the file by alternate key.

The indexed file EMP-FILE is created by the program
shown in figure 3-26. The alternate key index file is
assigned the logical file name INDFLE (line 10). Two
alternate keys, HIRE-DATE and JOB-ID, are specified
(lines 14 through 17); duplicate key values are allowed for
both alternate keys. When records are accessed by
alternate key, records with duplicate alternate key values
are retrieved in ascending sequence by the value of the
primary key EMP-ID.

60497200 C

O NOTN S WN =

IDENTIFICATION DIVISION.
PROGRAM-ID. NEW-REL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARDFILE ASSIGN TO INPUT.
SELECT BOX-FILE ASSIGN TO BOXFLE
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS REL-KEY.
DATA DIVISION.
FILE SECTION.
FD CARDFILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD-IN.
01 CARD-IN.

03 BOX-NO PICTURE 999.
03 CUST-NAME PICTURE X(20).
03 FILLER PICTURE X.

03 STREET PICTURE X(18).
03 FILLER PICTURE XX.

03 cITY PICTURE X(15).
03 FILLER PICTURE X(5).
03 STATE PICTURE AA.

03 FILLER PICTURE XXX.
03 ZIP-CODE PICTURE 9(5).
03 FILLER PICTURE X(6).

FD BOX-FILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 60 CHARACTERS
DATA RECORD IS BOX-REC.

01 BOX-REC,

03 CUST~NAME PICTURE X(20).
03 STREET PICTURE X(18).
03 CITY PICTURE X(15).
03 STATE PICTURE AA.
03 ZIP-CODE PICTURE 9(5).
WORKING-STORAGE SECTION,
01 REL-KEY PICTURE 999.
PROCEDURE DIVISION.
STARTING.

OPEN INPUT CARDFILE.
OPEN OUTPUT BOX-FILE.
CREATING.
READ CARDFILE RECORD
AT END GO TO CLOSING.
MOVE BOX-NO TO REL-KEY.
MOVE CORRESPONDING CARD-IN TO BOX-REC.
WRITE BOX-REC
INVALID KEY GO TO BAD-KEY.
GO TO CREATING.
BAD-KEY.
DISPLAY "INVALID KEY " REL-KEY.
GO TO CREATING.

CLOSING.
CLOSE CARDFILE, BOX-FILE.
STOP RUN.

60497200 C

Figure 3-21. Creating a File with Relative Organization

3-35

o> 2 ® &
& & &

o\‘\'& & \°& o & ¢
<P P P ® P
O01JOHN J SMITH 1580 HAPPY LANE MAYS LANDING NJ 08330
OD02ROBERT K RILEY P.0. BOX 124 EGG HARBOR CITY NJ 08215
O03ELIZABETH JONES 9377 FIRST ST RICHLAND NJ 08350
OO4MICHAEL M MARTIN 2598 LAWRENCE AVE MC KEE CITY NJ 08310
O0OS5RUTH L STEPHENS 6403 KILGORE RD RICHLAND NJ 08350
O006JEFFREY J CARTER 3354 WELLINGTON ST MAYS LANDING NJ 08330
OD7RICHARD S GREEN P.0. BOX 57A EGG HARBOR CITY NJ 08215
OO8CHRISTOPHER A BURNS 4816 PEACHTREE RD MC KEE CITY NJ 08310
O09JEAN L RICHARDSON P.0. BOX 36C EGG HARBOR CITY NJ 08215
010GEORGE R BROWN 1269 HIDDEN LANE MAYS LANDING NJ 08330
011JANICE WHEELER 5528 THIRD ST RICHLAND NJ 08350
012ALBERT L ANDERSON P.0. BOX 35C EGG HARBOR CITY NJ 08215
013MARVIN VAN DYKE 2012 CENTER ST MC KEE CITY NJ 08310
N14PAUL J GRIFFITH 70046 WILLOW LANE MAYS LANDING NJ 08330
015FRANK PATTERSON 4619 COLLEGE AVE MC KEE CITY NJ 08310
O16LORETTA D BURKE P.0. BOX 19L EGG HARBOR CITY NJ 08215
O17EDWARD N MILLER 6825 ASHFIELD RD RICHLAND NJ 08350
D18CRAIG SULLIVAN 1221 ORCHARD LANE MAYS LANDING NJ 08330
ND19BARBARA FINNEGAN 4545 WEBSTER AVE RICHLAND NJ 08350
N20STEVEN TREADWELL 3779 GILBERT AVE MC KEE CITY NJ 08310

Figure 3-22. Input Data for Creating the Relative File

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. USE-REL.

3 ENVIRONMENT DIVISION.

4 CONFIGURATION SECTION.

5 SOURCE-COMPUTER. CYBER-170.

<] OBJECT-COMPUTER. CYBER-170.

7 INPUT-OUTPUT SECTION.

8 FILE-CONTROL.

9 SELECT CARDFILE ASSIGN TO INPUT.

10 SELECT BOX-FILE ASSIGN TO BOXFLE

1 ORGANIZATION IS RELATIVE

12 ACCESS MODE IS RANDOM

13 RELATIVE KEY IS REL-KEY.

14 SELECT PRINTFILE ASSIGN TO OUTPUT.
15 DATA DIVISION.
16 FILE SECTION.
17 FD CARDFILE
18 LABEL RECORDS ARE OMITTED
19 DATA RECORD IS CARD-REC.
20 01 CARD-REC.
21 03 BOX-NO PICTURE 999.
22 03 CUST-NAME PICTURE X(20).
23 03 FILLER PICTURE X.
24 03 STREET PICTURE X(18).
25 03 FILLER PICTURE XX.
26 03 cITY PICTURE X(15).
27 03 FILLER PICTURE X(5).
28) 03 STATE PICTURE AA.
29 03 FILLER . PICTURE XXX.
30 03 ZIP-CODE PICTURE 9(5).
31 03 FILLER PICTURE X(5).
32 03 CARD-CODE PICTURE X.
33 FD BOX-FILE
34 LABEL RECORDS ARE OMITTED
35 RECORD CONTAINS 60 CHARACTERS
36 DATA RECORD IS BOX-REC.

Figure 3-23. Updating a File With Relative Organization (Sheet 1 of 3)
3-36 60497200 C

01 BOX-REC.

03 CUST-NAME PICTURE X(20).
03 STREET PICTURE X(18).
03 CITY PICTURE X(15).
03 STATE PICTURE AA.

03 ZIP-CODE PICTURE 9(5).

FD PRINTFILE
LABEL RECORD IS OMITTED
DATA RECORD IS LISTLINE.

01 LISTLINE PICTURE X(50).
WORKING-STORAGE SECTION.
01 REL-KEY PICTURE 999.
01 LINE-1.
03 FILLER PICTURE X VALUE SPACE.
03 NAME-OUT PICTURE X(20).
03 FILLER PICTURE X(29) VALUE SPACES.
01 LINE-2.
03 FILLER PICTURE X VALUE SPACE.
03 STREET-0UT PICTURE X(18).
03 FILLER PICTURE X(31) VALUE SPACES.
01 LINE-3.
03 FILLER PICTURE X VALUE SPACE.
03 CITY PICTURE X(15).
03 FILLER PICTURE XX VALUE SPACES.
03 STATE PICTURE AA.
03 FILLER PICTURE XX VALUE SPACES.
03 ZIP-CODE PICTURE 9(5).
03 FILLER PICTURE X(23) VALUE SPACES.
PROCEDURE DIVISION.
OPENING.

OPEN INPUT CARDFILE.
OPEN I-0 BOX-FILE.
OPEN OUTPUT PRINTFILE.
READ CARDFILE RECORD
AT END GO TO ERROR-1.
IF CARD-CODE EQUALS "A"™
GO TO UPDATING.
If CARD-CODE EQUALS "B"
GO0 TO BILLING.
DISPLAY "INVALID CODE " CARD-CODE.
STOP RUN.
UPDATING.
READ CARDFILE RECORD
AT END GO TO CLOSING.
IF CARD-CODE EQUALS "B"
GO TO BILLING.
MOVE BOX-NO TO REL-KEY.
MOVE CORRESPONDING CARD-REC TO BOX-REC.
REWRITE BOX-REC
INVALID KEY GO TO BAD-RECORD.
GO TO UPDATING.
BAD-RECORD.
DISPLAY "NO EXISTING RECORD FOR " REL-KEY.
GO TO UPDATING.
BILLING.
READ CARDFILE RECORD
AT END GO TO CLOSING.
MOVE BOX-NO TO REL-KEY.
READ BOX-FILE RECORD
INVALID KEY GO TO NO-RECORD.
MOVE CUST-NAME OF BOX-REC TO NAME-OUT.
WRITE LISTLINE FROM LINE-1
AFTER ADVANCING 5 LINES.
MOVE STREET OF BOX-REC TO STREET-0UT.
WRITE LISTLINE FROM LINE-2.
MOVE CORRESPONDING BOX~REC TO LINE-3.
WRITE LISTLINE FROM LINE-3,
GO TO BILLING.

60497200 C

Figure 3-23. Updating a File With Relative Organization (Sheet 2 of 3)

3-37

105 NO-RECORD.

106 DISPLAY "BOX NUMBER " REL-KEY.

107 MOVE SPACES TO LISTLINE.

108 WRITE LISTLINE

109 AFTER ADVANCING 3 LINES.

110 GO TO BILLING.

111 ERROR-1.

112 DISPLAY “NO INPUT RECORDS".

113 CLOSING.

114 CLOSE CARDFILE, BOX-FILE, PRINTFILE.
115 STOP RUN.

Figure 3-23. Updating a File With Relative Organization (Sheet 3 of 3)

N ® ® & Q@
& & & & & &
o R § S
< Y & ey P *
| J | = b J
012ALBERT L ANDERSON 7004 WILLOW LANE MAYS LANDING NJ 08330
014PAUL J GRIFFITH P.0. BOX 35C EGG HARBOR CITY NJ 08215
OO3ELIZABETH JONES 8612 FIRST STREET RICHLAND NJ 08350
B
015
002
017 _ Box numbers for Frank Patterson, Robert K. Riley,
006 o Edward Miller,
009
020

Figure 3-24. Input Data for Updating the Relative File

Two input records are used to create an indexed file record
(lines 70 through 82). Since the access mode for
EMP-FILE is sequential (line 12), the input records must be
in ascending sequence by primary key value. An invalid
key condition exists when the primary key for the record
being written is not greater than the primary key for the
preceding record. As each record is written on the file,
the primary key is automatically entered in each alternate
key index. The format of the input records is illustrated in
figure 3-27.

The program shown in figure 3-28 uses the indexed file

EMP-FILE to generate a listing of all employees hired -

since a certain date. The date to be used is accepted from
the system file INPUT (line 71) and is moved to the
alternate key data item HIRE-DATE (line 72). The date is
represented on a punch card with the digits' 700101 in
columns 1 through 6. The START statement is then used
to search the HIRE-DATE index for the first date that is
equal to or greater than the date currently stored in
HIRE-DATE (lines 73 through 75). Records are then read
from the file EMP-FILE in the order of the HIRE-DATE
values in the alternate key index (line 77). An output line
is generated and printed for each record read from
EMP-FILE (lines 79 through 83). The report shown in
figure 3-29 lists the employees that were hired on or after
January 1, 1970.

3-38

DIRECT FILE PROGRAMS

The two programs that illustrate direct file organization
‘create and then access a file containing inventory records.
Under certain conditions, records are updated and
rewritten on the file.

The program shown in figure 3-30 creates the direct file
INVENTORY. The primary key is the data item PART-NO
(line 14). The hashed value of PART-NO determines the
home block in which the record is stored. One alternate
key WHERE-USED) is specified for the file (line 15);
duplicate alternate key values are allowed. The primary
keys associated with an alternate key value are in
ascending sequence because DUPLICATES- ASCENDING is
specified. The description of the WHERE-USED data item
(lines 54 through 56) indicates that it is a repeating group
alternate key. Each record contains from one to six values
for the WHERE-USED data item.

Each time the WRITE-FILE paragraph is executed, an input
record is read (see figure 3-31), the data is moved to the
output record area, and the record is written on the file
INVENTORY (lines 64 through 73). When a record is
written on the file, the primary key is entered in the index
file for each WHERE-USED value in the record.

60497200 C

FRANK PATTERSON
4619 COLLEGE AVE

The direct file INVENTORY is accessed by alternate key
in the program shown in figure 3-32. This program reads
an input card containing the code of an ordered item and

the quantity ordered. Records are then read from the file
INVENTORY to reserve the parts needed and to determine
whether parts must be ordered. The records are updated to
reflect the reserved quantities and, if applicable, the
ordering of parts.

MC KEE CITY NJ 08310

ROBERT K RILEY
P.0. BOX 12J
EGG HARBOR CITY NJ 08215

The access mode for the file INVENTORY is dynamic
(line 13) to allow records to be read both randomly and
sequentially. The FILE STATUS clause (line 13) specifies a
data item to receive a status code after execution of an
input/output statement referencing the file.

The file is opened for input and output (line 86) so that
records can be read and rewritten on the file. An input
card is read (line 92) and the item code is moved to the
first occurrence of the repeating group alternate key
WHERE-USED (line 94).

EDWARD N MILLER
6825 ASHFIELD RD
RICHLAND NJ 08350

The random READ statement (line 95) specifies an
alternate key value from the input card as the key of
reference. When this statement is executed, the index file
is searched for an alternate key value that is equal to the
current value in the first occurrence of WHERE-USED in
the record area. The record with the first primary key
indexed for the WHERE-USED value is then retrieved from
the file INVENTORY. The status code returned to the
KEY-CHECK data item is moved to the KEY-SAVE data
item (line 97) for later reference.

JEFFREY J CARTER
3854 WELLINGTON ST
MAYS LANDING NJ 08330

JEAN L RICHARDSON

P.0. BOX 36C

EGG HARBOR CITY NJ 08215
After the record is updated (lines 99 through 110), a line is

‘written on the output report and the updated record is
rewritten on the file INVENTORY (lines 112 through 119).
The status code saved after the read operation is then
checked to determine whether the file contains another
record with the same WHERE-USED value. If the status
code in KEY-SAVE is 02 (lines 120 and 121), the next
record in alternate key sequence is indexed for the same
WHERE-USED value and a sequential read should be
executed (lines 126 and 127). If KEY-SAVE is not equal to
02, all records with the same WHERE-USED value have
been read and another input card should be read (line 124).

STEVEN TREADWELL
3779 GILBERT AVE
MC KEE CITY NJ 08310

Figure 3-25. Output Report from Updating
the Relative File

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. NEW-IND.

3 ENVIRONMENT DIVISION.

4 CONFIGURATION SECTION.

S SOURCE-COMPUTER. CYBER-170.

[OBJECT-COMPUTER. CYBER-170.

7 INPUT-OUTPUT SECTION.

8 FILE-CONTROL.

9 SELECT CARD-IN ASSIGN TO INPUT.

10 SELECT EMP-FILE ASSIGN TO EMPFLE, INDFLE
1 ORGANIZATION IS INDEXED

12 ACCESS MODE IS SEQUENTIAL

13 RECORD KEY IS EMP-ID

14 ALTERNATE RECORD KEY IS HIRE-DATE
15 : WITH DUPLICATES ASCENDING

16 ALTERNATE RECORD KEY IS JOB-ID
17 WITH DUPLICATES ASCENDING.
18 DATA DIVISION.

19 FILE SECTION.

20 FD CARD-IN

21 LABEL RECORD IS OMITTED

22 DATA RECORDS ARE CARD-1, CARD-2.

Figure 3-26. Creating a File With Indexed Organization (Sheet 1 of 2)

60497200 E 3-39

“23 01 CARD-1.

24 03 EMP-ID-1 PICTURE 999.

25 03 FILLER PICTURE X.

26 03 EMP-NAME PICTURE X(20).

27 03 EMP-ADDRESS.

28 05 STREET PICTURE X(20).

29 05 CITY PICTURE Xx(20).

30 05 STATE - PICTURE AA.

31 05 FILLER PICTURE X.

32 05 ZIP-CODE PICTURE 9(5).

33 03 FILLER PICTURE X(8).

34 01 CARD-2.

35 03 EMP-ID-2 PICTURE 999.

36 03 FILLER PICTURE X.

37 03 JOB-1D-IN PICTURE X(5).

38 03 FILLER PICTURE X(5).

39 03 DEPT PICTURE 999.

40 03 FILLER PICTURE XX.

41 03 »pI1vV PICTURE 999.

42 03 FILLER PICTURE XX.

43 03 HIRE-DATE-IN PICTURE 9(6).

44 03 FILLER PICTURE X(4).

45 03 LOCATION PICTURE 999.

46 03 FILLER PICTURE X(43).

47 FD EMP-FILE

48 LABEL RECORD IS OMITTED

49 BLOCK CONTAINS 20 RECORDS

50 RECORD CONTAINS 90 CHARACTERS

51 DATA RECORD IS EMPLOYEE.

52 01 EMPLOYEE.

53 03 EMP-ID PICTURE 999.

S4 03 EMP-NAME PICTURE X(20).

55 03 EMP-ADDRESS. .

56 05 STREET PICTURE X(20).

57 05 CITY PICTURE X(20).

58 05 STATE PICTURE AA.

59 05 ZIP-CODE PICTURE 9(5).

60 - 03 Jo0B-ID PICTURE X(5).
) 61 03 DEPT PICTURE 999.

62 03 b1V PICTURE 999.

63 03 HIRE-DATE PICTURE 9(6).

64 03 LOCATION PICTURE 999.
65 PROCEDURE DIVISION. .
66 OPEN-FILES.

67 OPEN INPUT CARD-IN.

68 OPEN OUTPUT EMP-FILE.

69 READ-CARDS.

70 READ CARD-IN RECORD

71 AT END 60 TO CLOSE-FILES.

72 MOVE EMP-ID-1 TO EMP-ID.

73 MOVE CORRESPONDING CARD-1 TO EMPLOYEE.
74 " READ CARD-IN RECORD

75 AT END GO TO INPUT-ERROR.

76 IF EMP-ID-2 NOT EQUAL TO EMP-ID

77 60 TO INPUT-ERROR.

78 .~ MOVE JOB-ID-IN TO:JOB-ID.

79 MOVE HIRE-DATE-IN TO HIRE-DATE.

80 MOVE CORRESPONDING CARD-2 TO EMPLOYEE.
81 WRITE EMPLOYEE

82 INVALID KEY GO TO BAD-RECORD.

83 GO TO READ-CARDS.

84 INPUT-ERROR.

85 DISPLAY "CARD-2 MISSING OR IN ERROR ".
86 DISPLAY EMPLOYEE.

87 GO TO READ-CARDS.

88 BAD-RECORD.

89 DISPLAY "INVALID RECORD - " EMPLOYEE.

90 © 60 TO READ-CARDS.

91 CLOSE-FILES.

92 CLOSE CARD-IN, EMP-FILE.

93 STOP RUN.

Figure 3-26. Creating a File With Indexed Organization (Sheet 2 of 2)

3-40 . ‘ 60497200 C

S oo 0'1‘? ® Qé’ &
& N

\0& A\Q& \\’& & \o& &

CP (P CP (P 00 00

120 CATHERINE WILCOX 3316 ELM ST MAPLEWOOD MO 63143

120 DEV68 658 659 720801 306

158 GERALD MURPHY 4489 W BAYFIELD AVE ST LOUIS MO 63122

158 PBS25 227 659 620115 125

269 JOHN GRIFFITH 1234 ASHFIELD AVE ST LOUIS MO 63122

269 ACT97 409 831 640413 215

277 PAUL RICHARDSON 5523 MARYLAND AVE ST LOUIS MO 63134

277 DEV6S 658 659 711119 302

304 MARY ELLEN RICHARDS 2175 ROARING CREEK WELLSTON MO 63112

304 ACTO97 409 831 741001 216

346 FRANK ANDERSON 2446 RUSHING CREEK WELLSTON MO 63112

346 ACTO7 409 831 680330 219

411 CHRISTOPHER WHEELER 3621 FIFTEENTH ST EAST ST LOUIS IL 62206

411 ACT97 409 831 740604 222

476 JUDITH PETERSON 925 DELANEY ST RICHMOND HEIGHTS MO 63117

476 PRG14 167 659 710707 189

522 LAWRENCE HAVERSTON 1198 FOURTEENTH ST EAST ST LOUIS IL 62206

522 ACT97 409 831 690322 214

583 RICHARD STEVENS 2675 TWELFTH ST EAST ST LOUIS IL 62206

583 PBS25 227 659 730114 123

629 JANICE GREEN 1492 OAK ST MAPLEWOOD MO 63143

629 PRG14 167 659 680520 185)

683 ROBERT MARTIN 5678 ROARING CREEK WELLSTON MO 63112

683 PBS25 227 659 721001 126 ‘

715 RUTH VAN DYKE 1188 CENTER ST RICHMOND HEIGHTS MO 63117

715 PRG14 167 659 711205 182

791 JOSEPH ARMSTRONG 5633 PINE AVE MAPLEWOOD MO 63143

791 PRG14 167 659 701116 186

804 ELIZABETH RILEY 1069 DELANEY ST RICHMOND HEIGHTS MO 63117

804 DEV6S 658 659 750228 305

850 MICHAEL BURNS 6977 OAKRIDGE AVE ST LOUIS MO 63122

850 PBS25 227 659 700715 121

930 ALEXANDER COLLINS 6700 DELAWARE AVE ST LOUIS MO 63134

930 ACT97 409 831 660505 220

938 LORRAINE SMITH 4890 WASHINGTON AVE ST LOUIS MO 63134

938 PRG14 167 659 700910 183

Figure 3-27. Input Data for Creating the Indexed File

The format of the input cards used to access the direct file
INVENTORY is illustrated in figure 3-33. An output
report generated by the program is shown in figure 3-34.

ACTUAL-KEY FILE PROGRAMS

A file with actual-key organization is created and then
updated by two programs shown in this section. The
actual-key file is a file of customer records. Each
customer record contains order totals on a monthly basis as
well as year-to-date totals.

The program shown in figure 3-35 creates the actual-key
file CUSTOMERS. The primary key is the data item
ACT-KEY, which is described as an eight-digit COMP-1
item (lines 13 and 34). The value of ACT-KEY specifies
the location of the record in the file. Two alternate keys
(CUST-D and CUST-TYPE) are specified (lines 14
through 16). Because each customer has a unique
identification number, duplicate CUST-ID values are not
allowed. Duplicate values are allowed for the alternate
key CUST-TYPE.

60497200 C

Before each record is written, the primary key ACT-KEY
is set to zero (line 53). The system then generates the
primary key value automatically and stores it in the
ACT-KEY data item. Data from the input card (see
figure 3-36) is moved into the output record area (lines 54
through 58). The remaining data items in the output
record are initialized with a value of zero (lines 59
and 60). The record is then written on the file
CUSTOMERS (line 61).

Records in the file CUSTOMERS are updated by the
program shown in figure 3-37. Each input card contains
the date and amount of an order for a customer. When an
input card is read, the customer identification
(CUST-ID-IN) is moved to the alternate key data item
CUST-ID (lines 81 through 83). A CUSTOMERS file record
is then read by the alternate key CUST-ID (line 84). The
record is updated to reflect the new order (lines 86
through 88) and is rewritten on the file (line 95).

An output report is also generated during program
execution. This report shows the customers for which
orders were processed and the new year-to-date totals.

The format of the input cards is illustrated in figure 3-38.

An output report generated by the program is shown in
figure 3-39.

3-41

VNP W=

IDENTIFICATION DIVISION.
PROGRAM-ID. LST-IND.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-QUTPUT SECTION.
FILE-CONTROL.
SELECT EMP-FILE ASSIGN TO EMPFLE, INDFLE
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS EMP-ID
ALTERNATE RECORD KEY IS HIRE-DATE
WITH DUPLICATES ASCENDING
ALTERNATE RECORD KEY IS JOB-ID
WITH DUPLICATES ASCENDING.
SELECT PRINTOUT ASSIGN TO OUTPUT.
DATA DIVISION.
FILE SECTION.
FD EMP-FILE
LABEL RECORD IS OMITTED
BLOCK CONTAINS 20 RECORDS
RECORD CONTAINS 90 CHARACTERS
DATA RECORD IS EMPLOYEE.

01 EMPLOYEE.
03 EMP-ID PICTURE 999.
03 EMP-NAME PICTURE X (20).
03 EMP-ADDRESS.
05 STREET PICTURE X(20).
05 cIvTy PICTURE X(20).
05 STATE PICTURE AA.
05 ZIP-CODE PICTURE 9(5).
03 JoOB-ID PICTURE X(5).
N3 DEPT PICTURE 999.
N3 »bIvV PICTURE 999.
03 HIRE-DATE PICTURE 9(6).
N3 LOCATION PICTURE 999.
FD PRINTOUT
LABEL RECORD IS OMITTED
DATA RECORD IS PRINTLINE.
01 PRINTLINE PICTURE X(136).
WORKING-STORAGE SECTION.
01 DATE-CARD.
N3 DATE-IN PICTURE 9(6).
03 FILLER PICTURE X(74).
01 HEAD-OUT.
03 FILLER PICTURE 9 VALUE 1.
N3 FILLER PICTURE X(5) VALUE " DATE".
03 FILLER PICTURE X(13) VALUE SPACES.
03 FILLER PICTURE X(4) VALUE '"NAME".
03 FILLER PICTURE X(11) VALUE SPACES.
03 FILLER PICTURE X(11) VALUE "JOB-1ID ".
03 FILLER PICTURE X(11) VALUE "EMPLOYEE-ID".
03 FILLER PICTURE X (80> VALUE SPACES.
01 LINE-OUT.
03 FILLER PICTURE X VALUE SPACES.
03 DATE-QOUT PICTURE 9(6).
03 FILLER PICTURE X (4) VALUE SPACES.
03 EMP-NAME-OUT PICTURE X(20).
03 FILLER PICTURE X (4) VALUE SPACES.
03 ID-0UT PICTURE X(5).
03 FILLER PICTURE X(9) VALUE SPACES.
03 EMP-ID-OUT PICTURE 999.
03 FILLER PICTURE X(84) VALUE SPACES.

PROCEDURE DIVISION.
OPENING.

OPEN INPUT EMP-FILE.
OPEN OUTPUT PRINTOUT.
PERFORM PRINT-HEAD.

3-42

Figure 3-28. Accessing an Indexed File by Alternate Key (Sheet 1 of 2)

60497200 C

70 SETTING-UP.

71 ACCEPT DATE-CARD.

72 MOVE DATE-IN TO HIRE-DATE.

73 START EMP-FILE

74 KEY IS NOT LESS THAN HIRE-DATE
75 INVALID KEY GO TO BAD-DATE.
76 READING.

7 READ EMP-FILE NEXT RECORD

78 AT END GO TO CLOSE-OUT.

79 MOVE HIRE-DATE TO DATE-OUT.

0 MOVE EMP-NAME TO EMP-NAME-OUT.
81 MOVE JOB-ID TO ID-OUT.

82 MOVE EMP-ID TO EMP-ID-OUT.

83 WRITE PRINTLINE FROM LINE-OUT.
84 GO TO READING.

85 PRINT-HEAD.

86 WRITE PRINTLINE FROM HEAD-OUT.
87 MOVE SPACES TO PRINTLINE.

88 WRITE PRINTLINE.

89 BAD-DATE.

90 DISPLAY "NO EMPLOYEES HIRED FROM " DATE-IN.
91 CLOSE~-OUT.

92 CLOSE EMP-FILE, PRINTOUT.

93 STOP RUN.

Figure 3-28. Accessing an Indexed File by Alternate Key (Sheet 2 of 2)

DATE NAME JOB-ID EMPLOYEE~-ID
700715 MICHAEL BURNS PBS25 850
700910 LORRAINE SMITH PRG14 938
701116 JOSEPH ARMSTRONG PRG14 791
710707 JUDITH PETERSON PRG14 476
711119 PAUL RICHARDSON DEV68 277
711205 RUTH VAN DYKE PRG14 715
720801 CATHERINE WILCOX DEV68 120
721001 ROBERT MARTIN PBS25 683
730114 RICHARD STEVENS PBS25 583
740604 CHRISTOPHER WHEELER ACT97 411
741001 MARY ELLEN RICHARDS ACT97 304
750228 ELIZABETH RILEY DEV63 804

Figure 3-29. Output Report from Accessing the indexed File

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. NEW-DIR.

3 ENVIRONMENT DIVISION.

4 CONFIGURATION SECTION.

5 SOURCE-COMPUTER. CYBER-170.

6 OBJECT-COMPUTER. CYBER-170.

7 INPUT-QUTPUT SECTION.

8 FILE-CONTROL.

9 SELECT CARD-FILE ASSIGN TO INPUT. :
10 SELECT INVENTORY ASSIGN TO INVNTRY, INVIDX
11 ORGANIZATION IS DIRECT
12 BLOCK COUNT IS 50
13 ACCESS MODE IS DYNAMIC
14 RECORD KEY IS PART-NO
15 ALTERNATE RECORD KEY IS WHERE-USED
16 WITH DUPLICATES ASCENDING.

Figure 3-30. Creating a File With Direct Organization (Sheet 1 of 2)

60497200 £ 3-43

74
75
76
77
78
79
80
81
82

DATA DIVISION.
FILE SECTION.

FD CARD-FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD-REC.
01 CARD-REC.
03 PART-NUM PICTURE 9(5).
03 DESCRIPTION PICTURE X(15).
03 QTY-ON-HAND PICTURE 9(4).
03 QTY-ON-ORDER PICTURE 9(4).
03 QTY-RESERVED PICTURE 9(5).
03 ORDER-DATE PICTURE 9(6).
03 REORDER-POINT PICTURE 9(4).
03 REORDER-QTY PICTURE 9(4).
03 QTY-PER-UNIT PICTURE 99.
03 NO-USED PICTURE 9.
03 USED-WITH PICTURE X(5)
OCCURS 1 TO 6 TIMES
- DEPENDING ON NO-USED.
FD INVENTORY
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 25 RECORDS
RECORD IS VARYING IN SIZE FROM 55 TO 80 CHARACTERS
DATA RECORD IS INV-REC.
01 INV-REC.
03 PART-NO PICTURE 9(5).
03 DESCRIPTION PICTURE X(15).
03 QTY-ON-HAND PICTURE 9(4).
03 QTY-ON-ORDER PICTURE 9(4).
03 QTY-RESERVED PICTURE 9(5).
03 ORDER-DATE PICTURE 9(6).
03 REORDER-POINT PICTURE 9(4).
03 REORDER-QTY PICTURE 9(4).
03 QTY-PER-UNIT PICTURE 99.
03 NUM-USED PICTURE 9.
03 WHERE-USED PICTURE X(5)

WORKING-STORAGE SECTION.
01 CNTR

OCCURS 1 TO 6 TIMES
DEPENDING ON NUM-USED.

PROCEDURE DIVISION.

OPENING.

PICTURE

OPEN INPUT CARD-FILE.
OPEN OUTPUT INVENTORY.

WRITE-FILE.

READ CARD-FILE RECORD
AT END GO TO CLOSING.
MOVE CORRESPONDING CARD-REC TO INV-REC.
MOVE PART-NUM TO PART-NO.
MOVE NO-USED TO NUM-USED.
MOVE 1 TO CNTR.
PERFORM MOVE~ALT-KEY NO-USED TIMES.
WRITE INV-REC
INVALID KEY GO TO BAD-RECORD.
GO TO WRITE-FILE.

MOVE-ALT-KEY.

MOVE USED-WITH (CNTR) TO WHERE-USED (CNTR).
ADD 1 TO CNTR.

BAD-RECORD.
DISPLAY

"RECORD NOT WRITTEN. REC IS

GO TO WRITE-FILE.

CLOSING.

CLOSE CARD-FILE, INVENTORY.
STOP RUN. .

CARD-REC.

Figure 3-30. Creating a File With Direct Organization (Sheet 2 of 2)

60497200 C

N e » PR PP RES S & & A A

& & & & & & LS & & & & & & &
\0& \é'o \0(0 \\’(Q \0& \0& \0& \\"‘Q \0&\0&*& \0& \\"& \\"& \°<° \06\
¢ & < Y N < ¢ F F PR P PP PP

U T UL SO UK TN L T R N I

60072BRWN CHAIR SEAT040012000000076022806001200046MPL15MPL460AK120AK77PNEL4L4PNEDS
67138NILE CHAIR SEAT008002000000076021601000200042GRN38GRN82
68524WHTE CHAIR SEAT120000000000000000004000800042WHT25WHT60
302960AK TABLE LEG 06000000000000000000200040004620AK120AK77
31903MAPLE TABLE LEGD26000000000000000002000400042MPL15MPL46
32765PINE TABLE LEG 030000000000000000001000200042PNE44PNE9YS
34518BLACK TABLE LEG008002000000076013101000200042GRN38WHT25
37624BRASS TABLE LEG026000000000000000002000400042GRN82WHT60
70612BRASS LEG SCREW052000000000000000004000800082GRN82WHT60
71385BROWN LEG SCREW2320000000000000000100020000860AK120AK77MPL15MPL46PNELLPNEDS
73470BLACK LEG SCREW016004000000076013102000400082GRN38WHT25
91672BROWN LEG BRACE1160000000000000000050010000460AK120AK77MPL15MPL46PNE44LPNESS
95208BLACK LEG BRACED08002000000076013101000200042GRN38WHT25
98093BRASS LEG BRACE026000000000000000002000400042GRN82WHT60
410470AK CHAIR FRAME0600000000000000000020004000420AK120AK77
43528MPL CHAIR FRAME026000000000000000002000400042MPL15MPL46
44378PNE CHAIR FRAME(030000000000000000001000200042PNE44PNEYS
46592BLK CHAIR FRAME008002000000076013101000200042GRN38WHT25
49061WHT CHAIR FRAME026000000000000000002000400042GRN82WHT60
52149BRN CHAIR SCREW1600480000000760228240048001660AK120AK77MPL15MPL46PNEL4PNEYS
57073BLK CHAIR SCREW032008000000076013104000800162GRN38WHT25
59868WHT CHAIR SCREW104000000000000000008001600162GRN82WHTS60
146970AK GRAIN TOP 0100000000000000000005001000110AK12
146980AK GRAIN LEAF (0200000000000000000010002000210AK12
15923MPLE GRAIN TOP 005500000000000000000500100011MPL46
15924MPLE GRAIN LEAF011000000000000000001000200021MPL46
18306PINE GRAIN TOP 005000000000000000000250050011PNE9S
18307PINE GRAIN LEAF010000000000000000000500100021PNE95
19123NILE GREEN TOP 001000250000076013100250050011GRN38
19124NILE GREEN LEAFD02000500000076013100500100021GRN338
19740WHITE/GOLD TOP 005500000000000000000500100011WHT60
19741WHITE/GOLD LEAF011000000000000000001000200021WHT60
146900AK TABLE TOP 0050000000000000000002500500110AK77
146910AK TABLE LEAF 0100000000000000000005001000210AK77
15904MPLE TABLE TOP 001000500000076022800250050011MPL15
159NSMPLE TABLE LEAF0D02001000000076022800500100021MPL15
18348PINE TABLE TOP 002500000000000000000200040011PNE44
18349PINE TABLE LEAF005000000000000000000400080021PNE44
19176GRNE TABLE TOP 001000400000076013100200040011GRN82
19177GRNE TABLE LEAF002000800000076013100400080021GRN82
19700WHTE TABLE TOP 001000000000000000000050010011WHT25
19701WHTE TABLE LEAFD02000000000000000000100020021WHT25

Figure 3-31. Input Data for Creating the Direct File

60497200 C

3-45

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. UPD-DIR.
3- ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. CYBER-170.
6 OBJECT-COMPUTER. CYBER-170.
7 INPUT-OUTPUT SECTION.
8 FILE-CONTROL.
9 SELECT ORDER-FILE ASSIGN TO INPUT.
10 SELECT INVENTORY ASSIGN TO INVNTRY, INVIDX
11 ORGANIZATION IS DIRECT
12 BLOCK COUNT IS 11
13 ACCESS MODE IS DYNAMIC
14 FILE STATUS IS KEY-CHECK
15 RECORD KEY IS PART-NO
16 ALTERNATE RECORD KEY IS WHERE-USED
17 WITH DUPLICATES ASCENDING.
18 SELECT PRINT-FILE ASSIGN TO OUTPUT.
19 DATA DIVISION.
20 FILE SECTION.
21 FD ORDER-FILE
22 LABEL RECORDS ARE OMITTED
23 DATA RECORD IS ORDER-REC.
24 01 ORDER-REC.
25 03 ITEM PICTURE XXX99.
26 03 FILLER PICTURE X(5).
27 03 NO-ORDERED PICTURE 999.
28 03 FILLER PICTURE X(67).
29 FD INVENTORY
30 LABEL RECORDS ARE OMITTED
31 BLOCK CONTAINS 20 RECORDS
32 RECORD IS VARYING IN SIZE FROM 55 TO 80 CHARACTERS
33 DATA RECORD IS INV-REC.
34 01 INV-REC.
35 03 PART-NO PICTURE 9(5).
36 03 DESCRIPTION PICTURE X(15).
37 03 QTY-ON-HAND PICTURE 9(4).
38 03 QTY-ON-ORDER PICTURE 9(4).
39 03 QTY-RESERVED PICTURE 9(5).
40 03 ORDER-DATE PICTURE 9(6).
41 03 REORDER-POINT PICTURE 9(4).
42 03 REORDER-QTY PICTURE 9(4).
43 03 QTY-PER-UNIT PICTURE 99.
44 03 NUM-USED PICTURE 9.
45 03 WHERE-USED PICTURE X(5)
46 OCCURS 1 TO 6 TIMES
47 DEPENDING ON NUM-USED.
48 FD PRINT-FILE
49 LABEL RECORDS ARE OMITTED
50 DATA RECORD IS PRINTLINE.
51 01 PRINTLINE PICTURE X(136).
52 WORKING-STORAGE SECTION.
53 01 TEMP PICTURE 9(5).
54 01 QTY-NEEDED PICTURE 9(5).
55 01 ORD-DATE PICTURE 9(6).
56 01 KEY-CHECK PICTURE XX.
57 01 KEY-SAVE PICTURE 99.
58 01 HEAD.
59 03 FILLER PICTURE 9 VALUE 1.
60 03 FILLER PICTURE XX VALUE SPACES.
61 03 FILLER PICTURE X(12) VALUE "ITEM ORDERED".
62 03 FILLER PICTURE X(8) VALUE SPACES.
63 03 FILLER PICTURE X(11) VALUE "PART NEEDED".
64 03 FILLER PICTURE X(10) VALUE SPACES.
65 03 FILLER PICTURE X(11) VALUE "DESCRIPTION".
66 03 FILLER PICTURE X(10) VALUE SPACES.
67 03 FILLER PICTURE X(12) VALUE "QTY RESERVED".
68 03 FILLER PICTURE X(8) VALUE SPACES.
69 03 FILLER PICTURE X(12) VALUE "ORDER AMOUNT".
70 03 FILLER PICTURE X(39) VALUE SPACES.
Figure 3-32. Updating a File With Direct Organization (Sheet 1 of 2)

3-46

60497200 C

118
119
120

121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

01 OUT-LINE.

03 FILLER PICTURE X(6) VALUE SPACES.
03 ITEM-OUT PICTURE X(5).

03 FILLER PICTURE X(15) VALUE SPACES.
03 PART-OUT PICTURE 9(5).

03 FILLER PICTURE X(11) VALUE SPACES.
03 DESC-0UT PICTURE X(15).

03 FILLER PICTURE X(12) VALUE SPACES.
03 RESERVED-OUT PICTURE Z1zZ.

03 FILLER PICTURE X(16) VALUE SPACES.
03 REORD-QTY-OUT PICTURE Z1Z1Z.

03 FILLER PICTURE X(43) VALUE SPACES.

PROCEDURE DIVISION.
OPEN-FILES.
OPEN INPUT ORDER-FILE.
OPEN I-0 INVENTORY.
OPEN OUTPUT PRINT-FILE.
ACCEPT ORD-DATE FROM DATE.
WRITE PRINTLINE FROM HEAD
BEFORE ADVANCING 2 LINES.
ITEM-READ.
READ ORDER-FILE RECORD
AT END GO TO CLOSE-FILES.
MOVE ITEM TO WHERE-USED (1), ITEM-OUT.
READ INVENTORY RECORD KEY IS WHERE-USED
INVALID KEY GO TO NOT-FOUND.
MOVE KEY-CHECK TO KEY-SAVE.
QTY-CHECK.
COMPUTE QTY~NEEDED = NO-ORDERED * QTY-PER-UNIT.

COMPUTE TEMP = QTY-ON-HAND + QTY-ON-ORDER - QTY-RESERVED.

IF QTY-NEEDED GREATER THAN TEMP
GO TO REORDER.
SUBTRACT QTY-NEEDED FROM TEMP.
IF TEMP GREATER THAN REORDER-POINT
MOVE ZERO TO REORD-QTY-OUT
GO TO WRITE-LINE.
REORDER.
MOVE REORDER-QTY TO REORD-QTY-OUT.
ADD REORDER-QTY TO QTY-ON-ORDER.
MOVE ORD-DATE TO ORDER-DATE.
WRITE-LINE.
ADD QTY-NEEDED TO QTY-RESERVED.
MOVE QTY-NEEDED TO RESERVED-OUT.
MOVE PART-NO TO PART-OUT.
MOVE DESCRIPTION TO DESC-0UT.
WRITE PRINTLINE FROM OUT-LINE.
MOVE SPACES TO ITEM-OUT.
REWRITE INV-REC
INVALID KEY PERFORM NO-REWRITE.
IF KEY-SAVE IS EQUAL TO 02
GO TO NEXT-PART.
MOVE SPACES TO PRINTLINE.
WRITE PRINTLINE.
GO TO ITEM-READ.
NEXT-PART.
READ INVENTORY NEXT RECORD
AT END GO TO ITEM-READ.
MOVE KEY-CHECK TO KEY-SAVE.
GO TO QTY-CHECK.
NO-REWRITE.
DISPLAY "RECORD NOT REWRITTEN FOR ABOVE PART".
NOT-FOUND. ‘
DISPLAY "NO RECORDS FOR ITEM " ITEM.
GO TO ITEM-READ.
CLOSE-FILES.
CLOSE ORDER-FILE, INVENTORY, PRINT-FILE.
STOP RUN.

60497200 C

Figure 3-32. Updating a File With Direct Organization (Sheet 2 of 2)

3-47

N :\'\
& &
&
O
C:o\ 00\0
0AK12 040
WHT60 225
GRN38 050

Figure 3-33. Input Data fon; Updating the Direct File

WORD-ADDRESS FILE PROGRAMS

Word-address file organization is illustrated in two
programs. The first program creates the word-address file
and the second program reads records from the file.

The word-address file PARTS-FILE is created by the
program shown in figure 3-40. Input data is shown in
figure 3-41. The word-address key is the Working-Storage

 data item PART-KEY (lines 13 and 40). When a record is

written on the file, the value of PART-KEY identifies the
number of the word in which the record begins. Each
30-character record is stored in three words; the part
numbers, which are assigned in sequence, cannot be the key
values, The key value for a record is computed by
multiplying the part number by three and then subtracting
two from the result (line 48).

The program shown in figure 3-42 reads records from the
file PARTS-FILE in order to determine whether enough
parts are on hand to satisfy the quantity needed. A record
is read from the file CARD-FILE; the part number is used
to calculate the word-address key value (lines 68
through 70). A record is then read from the file
PARTSFILE according to the calculated key value
(line 71). The USED-FOR value in the CARD-FILE record
is compared with the USED-WITH value in the
PARTS-FILE record to ensure that a valid record has been
read from PARTSFILE (lines 73 and 74). A line is printed
on the output report whenever the quantity on hand is less
than the quantity needed (lines 79 through 83). The input
records illustrated in figure 3-43 were used to create the
output report shown in figure 3-44.

ITEM ORDERED PART NEEDED DESCRIPTION QTY RESERVED ORDER AMOUNT
0AK12 14697 OAK GRAIN TOP 40
14698 -OAK GRAIN LEAF 80
30296 OAK TABLE LEG 160
41047 OAK CHAIR FRAME 160
52149 BRN CHAIR SCREW 640
60072 BRWN CHAIR SEAT 160
71385 BROWN LEG SCREW 320
91672 BROWN LEG BRACE 160
WHT60 19740 WHITE/GOLD TOP 225 100
19741 WHITE/GOLD LEAF 450 200
37624 BRASS TABLE LEG 900 400
49061 WHT CHAIR FRAME 900 400
59868 WHT CHAIR SCREW 3600 1600
68524 WHTE CHAIR SEAT 900 800
70612 BRASS LEG SCREW 1800 800
98093 BRASS LEG BRACE 900 400
GRN38 19123 NILE GREEN TOP 50 50
19124 NILE GREEN LEAF 100 100
34518 BLACK TABLE LEG 200 200
46592 BLK CHAIR FRAME 200 200
57073 BLK CHAIR SCREW 800 800
67138 NILE CHAIR SEAT 200 200
73470 BLACK LEG SCREW 400 400
95208 BLACK LEG BRACE 200 200
Figure 3-34. Output Report from Updating the Direct File
3-48 60497200 E

VXNV WN =

IDENTIFICATION DIVISION.
PROGRAM-ID. NEW-AK.
ENVIRONMENT DIVISLON.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARD-INPUT ASSIGN TO INPUT.
SELECT CUSTOMERS ASSIGN TO CSTMRS, CSTINDX
ORGANIZATION IS ACTUAL-KEY
ACCESS MODE IS RANDOM
RECORD KEY IS ACT-KEY
ALTERNATE RECORD KEY IS CUST-ID
ALTERNATE RECORD KEY IS CUST-TYPE
WITH DUPLICATES ASCENDING.
DATA DIVISION.
FILE SECTION.
FD CARD-INPUT
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD.

01 CARD.
03 CUST-ID-IN PICTURE Xx(6).
03 FILLER PICTURE XXX.
03 CUST-TYPE-IN PICTURE XX.
03 FILLER PICTURE XXX.
03 CUST-NAME-IN PICTURE X(15).
03 FILLER PICTURE X(51).

FD CUSTOMERS
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 50 RECORDS -
DATA RECORD IS CUST-REC.

01 CUST-REC.

03 ACT-KEY PICTURE 9(8) USAGE IS ComMP-1.
03 CusT-ID PICTURE X(6).
03 CUST-NAME PICTURE X(15).
03 CUST-TYPE P1ICTURE XX.
03 MONTHLY-ORDERS OCCURS 12 TIMES.
05 NO-ORDERS PICTURE 99.
05 MONTH-AMT PICTURE 9(5)V99.
03 YTD-ORDERS.
05 TOTAL-ORDERS PICTURE 999.
05 TOTAL-AMT PICTURE 9(7)V99.
03 CURRENT-BAL PICTURE 9(6)V99.
03 LAST-ACTIVITY PICTURE 9(6).
WORKING~-STORAGE SECTION.
01 COUNTER PICTURE 99.
PROCEDURE DIVISION.
BEGIN-1.

OPEN INPUT CARD-INPUT.
OPEN OUTPUT CUSTOMERS.
CREATING.
MOVE ZEROS TO ACT-KEY.
READ CARD-INPUT RECORD
AT END GO TO END-IT.

MOVE CUST-~ID-IN TO CUST-ID.
MOVE CUST-TYPE-IN TO CUST-TYPE.
MOVE CUST-NAME-IN TO CUST-NAME.

INITIALIZE COUNTER, YTD-~ORDERS, CURRENT-BAL, LAST-ACTIVITY.

PERFORM ZERO-SET 12 TIMES.
WRITE CUST-REC
INVALID KEY GO TO BAD-RECORD.
GO TO CREATING.
BAD-RECORD.
DISPLAY "RECORD NOT WRITTEN " CUST-ID.
GO TO CREATING.
ZERO-SET.
ADD 1 TO COUNTER.
MOVE ZEROS TO MONTHLY-ORDERS (COUNTER).

END~IT.
CLOSE CARD-INPUT, CUSTOMERS.
STOP RUN.

60497200 C

Figure 3-35. Creating a File With Actual-Key Organization

3-49

N N NS
& & &
\0& \°‘° \\‘6\
4 P <P

B69513 C4 ABC DISTRIBUTOR
626078 X9 FRIENDLY SALES
A13289 C4 SMITH AND SON
M44071 R2 WORLD SALES CO
M50066 R2 RETAILERS INC
R31492 X9 DAY AND NIGHT
L85734 Cé4 OAKVILLE CORP
$25897 X9 SELECT SALES €O
617953 R2 YOUNG BROTHERS
Y48206 $6 CORP SALES INC

Figure 3-36. Input Data for Creating the
Actual Key File

VXNV SWN

IDENTIFICATION DIVISION.
PROGRAM-ID. UPD-AK.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE~-CONTROL.
SELECT INVOICES ASSIGN TO INPUT.
SELECT CUSTOMERS ASSIGN TO CSTMRS, CSTINDX
ORGANIZATION IS ACTUAL-KEY
ACCESS MODE IS DYNAMIC
RECORD KEY IS ACT-KEY
ALTERNATE RECORD KEY IS CUST-ID
ALTERNATE RECORD KEY IS CUST-TYPE
WITH DUPLICATES ASCENDING.
SELECT PRINT-OUT ASSIGN TO OUTPUT.
DATA DIVISION.
FILE SECTION.
FD INVOICES
LABEL RECORDS ARE OMITTED
DATA RECORD IS INV-RECORD.
01 INV-RECORD.

03 CUST-ID-IN PICTURE X(6).

03 FILLER PICTURE XXX.

03 ORDER-DATE PICTURE 9(6).

03 FILLER PICTURE XXXX.

03 ORDER-AMT PICTURE 9(5)V99.
03 FILLER PICTURE XXX.

03 MONTH PICTURE 99.

03 FILLER PICTURE X(49).

FD CUSTOMERS
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 50 RECORDS
DATA RECORD IS CUST-REC.
01 CUST-REC.

03 ACT-KEY PICTURE 9(8) USAGE IS COMP-1.
03 CcusT-ID PICTURE X(6).
03 CUST-NAME PICTURE X(15).
03 CUST-TYPE PICTURE XX.
03 MONTHLY-ORDERS OCCURS 12 TIMES.
05 NO-ORDERS PICTURE 99.
05 MONTH-AMT PICTURE 9(5)Vv99.

3-50

Figure 3-37. Updating a File With Actual-Key Organization (Sheet 1 of 2)

60497200 C

03 YTD-ORDERS.
05 TOTAL-ORDERS PICTURE 999.
05 TOTAL-AMT PICTURE 9(7)V99.
03 CURRENT-BAL PICTURE 9(6)V99.
03 LAST-ACTIVITY PICTURE 9(6).

FD PRINT-OUT

01 OUT-LINE PICTURE X(136).
WORKING-STORAGE SECTION.
01 HEADER.
03 FILLER PICTURE X(8) VALUE " CUST-ID".
03 FILLER PICTURE X(6) VALUE SPACES.
03 FILLER PICTURE X(13) VALUE "CUSTOMER NAME".
03 FILLER PICTURE X(6) VALUE SPACES.
03 FILLER PICTURE X(10) VALUE "NO. ORDERS".
03 FILLER PICTURE X(7) VALUE SPACES.
03 FILLER PICTURE X(10) VALUE "YTD AMOUNT".
03 FILLER PICTURE X(76) VALUE SPACES.
01 LINE-1.
03 FILLER PICTURE X VALUE SPACES.
03 ID-0UT PICTURE X(6).
03 FILLER PICTURE X(6) VALUE SPACES.
03 NAME-OUT PICTURE X(15).
03 FILLER PICTURE X(9) VALUE SPACES.
03 ORDERS-0OUT PICTURE 9.
03 FILLER PICTURE X(9) VALUE SPACES.
03 AMT-OUT PICTURE $3%,$%%$,$99.99.
03 FILLER PICTURE X(75) VALUE SPACES.

LABEL RECORDS ARE OMITTED
LINAGE IS 50 LINES
DATA RECORD IS OUT-LINE.

PROCEDURE DIVISION.
OPEN-FILES.

OPEN INPUT INVOICES.
OPEN I-0 CUSTOMERS.
OPEN OUTPUT PRINT-OUT.
PERFORM HEAD-OUT.

UPDATING.

READ INVOICES RECORD
AT END GO TO CLOSE-OUT.
MOVE CUST-ID-IN TO CUST-ID.
READ CUSTOMERS RECORD KEY IS CUST-ID
INVALID KEY GO TO NO-RECORD.
MOVE ORDER-DATE TO LAST-ACTIVITY.
ADD 1 TO NO-ORDERS (MONTH), TOTAL-ORDERS.
ADD ORDER-AMT TO MONTH-AMT (MONTH), TOTAL-AMT.
MOVE CUST-ID TO ID-OUT.
MOVE CUST-NAME TO NAME-OUT.
MOVE TOTAL-ORDERS TO ORDERS-OUT.
MOVE TOTAL-AMT TO AMT-0UT.
WRITE OUT-LINE FROM LINE-1
AT END-OF-PAGE PERFORM HEAD-OUT.
REWRITE CUST-REC
INVALID KEY GO TO KEY-ERROR.
GO TO UPDATING.

HEAD-QUT.

WRITE OUT-LINE FROM HEADER
BEFORE ADVANCING 2 LINES.

NO-RECORD.

DISPLAY "NO RECORD FOR " CUST-ID.
GO TO UPDATING.

KEY-ERROR.

DISPLAY "RECORD NOT REWRITTEN " CUST-ID.
GO TO UPDATING.

CLOSE-0OUT.

CLOSE INVOICES, CUSTOMERS, PRINT-OUT.
STOP RUN.

60497200 C

Figure 3-37. Updating a File With Actual-Key Organization (Sheet 2 of 2)

3-51

N) o o@
& & &

Q§§ Q§> &ép Qﬁp
P P v '0°
B69513 081575 0289042 08
626078 100675 0861775 10
M50066 100875 0062055 10
A13289 092975 0052330 09
M44071 Q71775 0334950 07
R31492 082775 0767545 08
L85734 102675 0936785 10
$25897 101875 0454647 10
617953 091975 0088735 09
Y48206 103175 0092843 10

Figure 3-38. Input Data for Updating the

Actual-Key File

CUST~ID

B69513
G26078
M50066
A13289
M44071
R31492
L85734
$25897
G17953
Y 48206

CUSTOMER NAME

ABC DISTRIBUTOR
FRIENDLY SALES
RETAILERS INC
SMITH AND SON
WORLD SALES CO
DAY AND NIGHT
OAKVILLE CORP

SELECT SALES CO
YOUNG BROTHERS
CORP SALES INC

NO.

ORDERS

sSSP S BW

YTD AMOUNT

$12,282.92
$28,619.83
$11,203.11

$9,810.29
$28,424.86
$27,335.96
$43,735.87
$29,467.63
$14,970.53
$23,122.90

3-52

Figure 3-39. Output Report from Updating the Actual-Key File

60497200 E

L oO~NOUVIPHWN -

IDENTIFICATION DIVISION.
PROGRAM-ID. NEW-WA.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARD-IN ASSIGN TO INPUT.
SELECT PARTS-FILE ASSIGN TO PARTFLE
ORGANIZATION IS WORD-ADDRESS
ACCESS MODE IS DYNAMIC
WORD-ADDRESS KEY IS PART-KEY.
DATA DIVISION.
FILE SECTION.
FD CARD-IN
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD-REC.
01 CARD-REC.

03 PART PICTURE 9(4).
03 FILLER PICTURE X(5).
03 PART-NAME PICTURE X(10).
03 FILLER PICTURE X(5).
03 USED-WITH PICTURE X(5).
03 FILLER PICTURE X(5).
03 QTY-ON-HAND PICTURE 9(5).
03 FILLER PICTURE X(5).
03 MFG-CODE PICTURE X(10).
03 FILLER PICTURE X(26).

FD PARTS~FILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 30 CHARACTERS
DATA RECORD IS PART-REC.

01 PART-REC.

03 PART-NAME PICTURE X(10).
03 USED-WITH PICTURE X(5).
03 QTY-ON-HAND PICTURE 9(5).
03 MFG-CODE PICTURE X(10).
WORKING-STORAGE SECTION.
01 PART-KEY PICTURE 9(4).

PROCEDURE DIVISION.
OPEN-FILES.
OPEN INPUT CARD-IN.
OPEN OUTPUT PARTS-FILE.
CREATE-FILE.
READ CARD-IN RECORD
AT END GO TO CLOSE-FILE.
COMPUTE PART-KEY = PART * 3 - 2.
MOVE CORRESPONDING CARD-REC TO PART-REC.
WRITE PART-REC
INVALID KEY GO TO NO-GOOD.
GO TO CREATE-FILE.
NO-GOOD.
DISPLAY "BAD KEY " PART.
GO TO CREATE-FILE.
CLOSE-FILE.
CLOSE CARD-IN, PARTS-FILE.

60497200 C

Figure 3-40. Creating a File with Word-Address Organization

3-53

0\ ® cﬁ? cﬁ? ®

& &
6§9 ‘s? 6§9 s§9 S§&
f () () <
0001 SCREW-10 CX48J 00192 YOUNGBRO10
0002 SCREW-15 GT26L 00048 ABCDISTO15
0003 SCREW-23 AVS0Q 00099 HGHDWRES23
0004 SCREW-58 RM132 00753 ABCDISTOS8
0005 B-BRACKT CX48J 00298 YOUNGBRO69
00n06 W-BRACKT AVS0Q 00040 HGHDWRES40
0007 G-BRACKT RM132 00983 ABCDIST125
o008 S-BRACKT GT26L 00480 ABCDIST163
0009 PEDSTL1S BUS7F 00316 MILLERS115
0010 PEDSTL74 KY96P 00789 JHNSNSP174
0011 PEDSTLS82 HDS52W 00946 MILLERS182
0012 PEDSTL36 NI38E 00130 JHNSNSP136
0013 SHADE-43 HD52W 00488 XYZSUPLY43
0014 SHADE-16 KY96P 00697 MASNDIST16

Figure 3-41. Input Data for Creating the Word-Address File

NVONOINDS W

IDENTIFICATION DIVISION.
PROGRAM-ID. READ-WA.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARD-FILE ASSIGN TO INPUT.
SELECT PARTS-FILE ASSIGN TO PARTFLE
ORGANIZATION IS WORD-ADDRESS
ACCESS MODE IS DYNAMIC
WORD-ADDRESS KEY IS PART-KEY.
SELECT LIST-FILE ASSIGN TO OUTPUT.
DATA DIVISION.
FILE SECTION.
FD CARD-FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD-IN.
01 CARD-IN.

03 USED-FOR PICTURE X(5).

03 FILLER PICTURE X(4).
03 PART-NO PICTURE 9(4).
03 FILLER PICTURE X(6).
03 NO-NEEDED PICTURE 9(5).
03 FILLER PICTURE X(56).

FD PARTS-FILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 30 CHARACTERS
DATA RECORD IS PART-REC.
01 PART-REC.
03 PART-NAME
03 USED-WITH
03 QTY~ON-HAND
03 MFG-CODE
FD LIST-FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS LIST-LINE.
01 LIST-LINE PICTURE X(60).
WORKING-STORAGE SECTION.
01 PART-KEY

PICTURE X(10).
PICTURE X(5).
PICTURE 9(5).
PICTURE X(10).

PICTURE 9(4).

1 HEADS.
03 FILLER PICTURE 9 VALUE
03 FILLER PICTURE X(9) VALUE
03 FILLER PICTURE X(5)

1.

"

PART NO.".

VALUE SPACES.

3-54

Figure 3-42. Accessing a File With Word-Address Organization (Sheet 1 of 2)

60497200 C

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

01

03 FILLER PICTURE X(11)

03 FILLER PICTURE X(5)
03 FILLER PICTURE X(10)
03 FILLER PICTURE X(5)
03 FILLER PICTURE X(10)
03 FILLER PICTURE X (4)
LINE-OUT.

03 FILLER PICTURE X (4)
03 PART-NUM PICTURE 9(4).
03 FILLER PICTURE X (10)
03 ON-HAND PICTURE 22719.
03 FILLER PICTURE X(10)
03 NEEDED PICTURE 7717119.
03 FILLER PICTURE X(8)
03 MANUFACTURER PICTURE X(10).
03 FILLER PICTURE X(4)

PROCEDURE DIVISION.
OPENING.

OPEN INPUT CARD-FILE, PARTS-FILE.
OPEN OUTPUT LIST-FILE.
PERFORM HEADINGS.

PARTS-CHECK.

READ CARD-FILE RECORD
AT END GO TO CLOSE-OUT.

COMPUTE PART-KEY = PART-NO * 3 - 2.

READ PARTS-FILE RECORD
INVALID KEY GO TO BAD-KEY.

IF USED-FOR NOT EQUAL TO USED-WITH
GO TO BAD-KEY.

IF QTY-ON-HAND LESS THAN NO-NEEDED
PERFORM PRINT-LINE.

GO TO PARTS-CHECK.

PRINT-LINE.

MOVE PART-NO TO PART-NUM.

MOVE QTY-ON-HAND TO ON-HAND.
MOVE NO-NEEDED TO NEEDED.

MOVE MFG-CODE TO MANUFACTURER.
WRITE LIST-LINE FROM LINE-OUT.

HEADINGS.

WRITE LIST-LINE FROM HEADS.
MOVE SPACES TO LIST-LINE.
WRITE LIST-LINE.

BAD-KEY.

DISPLAY "BAD NUMBER " PART-NO.
GO TO PARTS-CHECK.

CLOSE-QUT.

CLOSE CARD-FILE, PARTS-FILE, LIST-FILE.

STOP RUN.

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

VALUE

"QTY ON HAND".
SPACES.

"QTY NEEDED".
SPACES.

"ORDER CODE".
SPACES.
SPACES.
SPACES.
SPACES.
SPACES.

SPACES.

60497200 C

Figure 3-42. Accessing a File With Word-Address Organization (Sheet 2 of 2)

~N O 49
& & &
o o o

ey e P
RM132Z 0004 00250
BUS7F 0009 00400
BUS7F 0016 00400
GT26L nno2 nooz7s
AVS50Q 0003 no1s50
AVS50Q 0006 00075
CX48J 0001 00100
CX484 0005 000s0
NI38E no12 00140

Figure 3-43. Input Data for Accessing the Word-Address File

3-56

1 PART NO. QTY ON HAND QTY NEEDED ORDER CODE

0009 316 400 MILLERS115
BAD NUMBER 16

0002 48 75 ABCDISTO15
0003 99 150 HGHDWRESZ23
0006 40 75 HGHDWRES40
0012 130 140 JHNSNSP136
Figure 3-44. Output Report from Accessing the Word-Address File

60497200 C

ARITHMETIC AND BOOLEAN OPERATIONS 4

The COBOL 5 program can specify various arithmetic
operations to be performed at execution time. These
operations include addition, subtraction, multiplication,
division, and exponentiation. Arithmetic operations can be
specified through five Procedure Division statements:
ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE.
Arithmetic expressions, which are used in COMPUTE
statements, can also be specified in conditional
statements. An arithmetic operation can be performed in
display code, integer, or floating point mode of operation.

The COBOL 5 program can also specify boolean operations
to be performed at execution time. Boolean operations can
be specified through Procedure Division statements that
include the boolean operators BOOLEAN-AND,
BOOLEAN-OR, BOOLEAN-EXOR, or BOOLEAN-NOT.
Boolean expressions can be used in COMPUTE statements
and in conditional statements. The boolean character
values can only be 0 or 1.

ARITHMETIC EXPRESSIONS

An arithmetic expression consists of data-names, numeric
literals, and arithmetic operators, which are used to
separate pairs of data-names and literals. A simple
arithmetic expression contains two or more data-names
and literals separated by arithmetic operators. A complex
arithmetic expression contains two or more simple
expressions separated by arithmetic operators.
Parentheses can enclose arithmetic expressions to specify
the order of evaluation or to clarify the logic of the
expression.

ARITHMETIC OPERATORS

Two types of arithmetic operators can be used in
arithmetic expressions: binary and unary. Five binary
arithmetic operators are available:

Operator Function

+ Addition

- Subtraction

* Multiplication
/ Division

*x Exponentiation

An arithmetic expression can be preceded by one of the
following unary arithmetic operators:

Operator Function

+ Multiplication by +1

- Multiplication by -1
A unary operator can also precede an element (data-name
or literal) within an arithmetic expression. The value of

the data item or literal is effectively multiplied by the
value +1 or -1.

60497200 C

An arithmetic operator must be preceded and followed by a
space. With one exception, an arithmetic operator must be
followed by a data-name or a literal; the one exception is
that a binary operator can be followed by a unary
operator. When parentheses are used, the data-name or
literal can be preceded by a left parenthesis.

EVALUATION OF EXPRESSIONS

The order of evaluation for arithmetic expressions is
determined by the arithmetic operators:

Operator Order of Evaluation
Unary + and - First

** Second

* and / Third

Binary + and - Fourth

7
Expressions at the same level are evaluated from left to
right.

Parentheses can be used to modify the normal sequence of
evaluation. Expressions enclosed in parentheses are
evaluated first, beginning with the innermost pair and
proceeding to the outermost pair. Within a pair of
parentheses, evaluation occurs according to the
hierarchical order of evaluation.

SIMPLE ARITHMETIC EXPRESSIONS

A simple arithmetic expression consists of two or more
data items separated by arithmetic operators. Each data
item can be either a numeric literal or a data~-name that
identifies an elementary numeric data item described in
the Data Division. The following examples are typical
simple expressions:

SUBTOT + TAX
PRICE * DISCOUNT
SALARY / 40 * HOURS

COMPLEX ARITHMETIC EXPRESSIONS

A series of two or more simple expressions can be specified
in a statement. The expressions are separated by
arithmetic operators; parentheses can be used to enclosed
each simple expression. The following examples are
typical complex expressions:

(PRICE * QTY) + (PRE-BAL - DISCT)

(SALARY / 40) * (TOT-HRS - 40)
In the first example, PRICE is multiplied by QTY and
DISCT is subtracted from PRE-BAL; the result of the first

operation is then added to the result of the second
operation.

4-1

For more complex expressions, parentheses can be nested
within other pairs of parentheses. The expression within
the innermaost pair of parentheses is evaluated first. In the
following example, C is added to D; B is then divided by
the result of that operation.

(Z+A)*xB/(C+D))

ARITHMETIC STATEMENTS

Arithmetic operations are specified through arithmetic
statements in the Procedure Division of a COBOL 5
program. Basic arithmetic operations can be performed
using the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements. More complex operations are performed
through the COMPUTE statement.

Items to be used for computation in the arithmetic
statements are referred to as operands. All operands must
be elementary numeric items. Items in which results of
arithmetic operations are stored are referred to as
receiving items. A receiving item can be an operand or it
can be a separate item that is not involved in the
computation. Receiving items must be either elementary
numeric items or elementary numeric-edited items. The
storage location of a receiving item should not overlap that
of any of the items involved in the computation; if the
fields do overlap, unpredictable results might occur.

Numeric literals, data items described in the Data
Division, and special registers can be specified as items in
arithmetic statements. If the Data Division description of
a data item includes the USAGE clause, the usage must be
DISPLAY, COMPUTATIONAL, COMPUTATIONAL-1,
COMPUTATIONAL -2, or COMPUTATIONAL-4. Display
usage is assumed by default when the USAGE clause is not
specified for a data item. Four special registers can be
specified in arithmetic statements: LINAGE-COUNTER,
HASHED-V ALUE, LINE-COUNTER, and PAGE-
COUNTER. The special register LINE-COUNTER cannot
be used as a receiving item.

When the receiving item is a numeric-edited item, the
result of the computation is edited before it is moved to
the receiving item. Decimal point alignment is supplied
automatically throughout computation.

ADDITION OF ITEMS

Two or more items are added together by the ADD
statement. The receiving item for the result can be one of
the operands or a separate item. The choice of the
keyword TO or GIVING in the ADD statement determines
whether the receiving item is an operand or a separate
item.

The receiving item is an operand when the keyword TO is
used. The operand preceding TO is added to the receiving
item. When more than one operand precedes TO, the
operands are added together and the result is added to the
receiving item. If more than one receiving item is
specified, the operand, or the result of multiple operands,
is added to each receiving item.

The simplest format of the ADD statement adds one item
to another item.

ADD ITEM-AMT TO ACCUM.
ADD 1 TO PAGE-COUNTER.

In the first statement, the value of the data item
ITEM-AMT is added to the value of ACCUM and the result
of the addition is stored as the new value of ACCUM. The
second statement adds 1 to the special register
PAGE-COUNTER.

A more complex addition operation occurs when multiple
operands are specified.

ADD FED-TAX, SOC-SEC, STATE-TAX
TO TOT-TAX, TOT-DED.

The three operands preceding TO are added together. The
result of this addition is then added to each of the
receiving items TOT-TAX and TOT-DED.

The keyword GIVING in the ADD statement indicates that
the receiving item is not included in the addition
operation. The operands preceding GIVING are added
together and the result is stored in the receiving item. If
more than one receiving item is specified, the result is
stored in each receiving item.

ADD REG-PAY, OT-PAY GIVING GROSS-PAY.

When this statement is executed, the data item
GROSS-PAY contains the result of adding the values of
REG-PAY and OT-PAY.

The third available format of the ADD statement allows
items within a group item to be added to corresponding
items within another group item. The ADD statement
specifies the data-name of each group item. When the
statement is executed, the elementary items that have the
same data-names and qualifiers are added together. The
corresponding items are added and the results are stored in
the receiving group item.

Figure 4-1 illustrates the use of the ADD
CORRESPONDING statement. When this ADD statement
is executed, only three items in RATE-TABLE are
changed: the RATE data items for NEW-YORK, BOSTON,
and LOS-ANGELES.

In the ADD CORRESPONDING statement, one or more
receiving items are specified after the keywerd TO. If
more than one receiving item is specified, the
corresponding items in the group item preceding TO are
added to each receiving item.

Within the group items, data items described by (or
subordinate to a data item described by) a REDEFINES
clause or an OCCURS clause are ignored during the
addition. Neither group item can contain any data item
described with a RENAMES clause or a USAGE IS INDEX
clause.

SUBTRACTION OF ITEMS

One or more items can be subtracted from another item
through the SUBTRACT statement. The difference is
stored in the receiving item, which can be an operand or a
separate item.

When the receiving item is an operand, the result of the
subtraction is stored as the new value of the item following
the keyword FROM.

SUBTRACT DISCT FROM ACCUM.

SUBTRACT 5 FROM TEMP.

60497200 C

DATA DIVISION.

01 UPDATE-TABLE.
03 EASTERN-REG.
05 NEW-YORK.

07 RATE S
05 BOSTON.
07 RATE v

03 WESTERN-REG.
05 LOS-ANGELES.
07 RATE .
01 RATE-TABLE.
03 EASTERN-REG.
05 NEW-YORK.

07 RATE ea
05 BOSTON.

07 RATE “ e
05 PHILADELPHIA.

07 RATE -

03 WESTERN-REG.
05 LOS-ANGELES.

07 RATE cee
05 SAN-FRANCISCO.
07 RATE -

PROCEDURE DIVISION.

ADD CORRESPONDING UPDATE-TABLE
TO RATE-TABLE.

Figure 4-1. Addition of Corresponding Items

The value of DISCT is subtracted from ACCUM; the
difference is stored as the new value of ACCUM. In the
second statement, the numeric literal 5 is subtracted from
the value of TEMP; the difference is stored as the new
value of TEMP.

More than one item can be subtracted from another item.
The sum of the items preceding the keyword FROM is
subtracted from the item following FROM.

SUBTRACT SOC-SEC, FED-TAX
FROM GROSS-PAY.

The values of SOC-SEC and FED-TAX are added together
and the sum is subtracted from GROSS-PAY. The
difference is then stored as the new value of GROSS-PAY.

Multiple operands can also be specified after the keyword
FROM. The sum of the operands preceding FROM is then
subtracted from each operand following FROM and the
difference is stored as the new value in each case.

SUBTRACT DISCT FROM TOTAL, AMT-DUE.
The value of DISCT is subtracted from TOTAL and from

AMT-DUE. The differences are stored as the new values
of TOTAL and AMT-DUE, respectively.

60497200 C

The difference computed by the SUBTRACT statement can
be stored in a separate item by including the GIVING
phrase. The subtraction is performed and the difference is
stored in the item specified in the GIVING phrase.

SUBTRACT SOC-SEC, FED-TAX
FROM GROSS-PAY GIVING NET-PAY.

The sum of SOC-SEC and FED-TAX is subtracted from
GROSS-PAY. The difference is stored as the new value of
NET-PAY.

Items within a group item can be subtracted from
corresponding items within another group item. The
data-names specified in the SUBTRACT CORRE-
SPONDING statement identify the group items. Execution
of the statement causes the elementary items in the first
group item to be subtracted from the corresponding
elementary items in the receiving group item.
Corresponding items have the same data-names and
qualifiers up to the group item level.

SUBTRACT CORRESPONDING UPDATE-TABLE
FROM RATE-TABLE.

Using the data descriptions in figure 4-1, execution of this
statement causes the three RATE data items in
UPDATE-TABLE to be subtracted from the corresponding
RATE data items in RATE-TABIL_E. ’

When more than one receiving item is specified in the
SUBTRACT CORRESPONDING statement, the data items
in the group item preceding FROM are subtracted from the
corresponding data items in each receiving item.

During subtraction of corresponding items, data items
described by, or subordinate to items described by, a
REDEFINES clause or an OCCURS clause are ignored.
Neither the sending nor the receiving group item can
contain any data item described with a RENAMES clause
or a USAGE IS INDEX clause.

MULTIPLICATION OF ITEMS

Multiplication of two items is accomplished through the
MULTIPLY statement. The product of the multiplication
process is stored in an operand or in one or more separate
items.

The simplest format of the MULTIPLY statement
multiplies one item by another item.

MULTIPLY INTEREST BY NEW-PRINC.

The value of INTEREST is multiplied by the value of
NEW-PRINC. The resulting product is stored as the new
value of NEW-PRINC.

More than one operand can be specified as a receiving
item. Each of the receiving items stores the product of
the operand preceding the keyword BY and the operand
receiving item.

MULTIPLY 1.05 BY EARNINGS, OT-RATE,
SOC-SEC, FED-TAX.

The numeric literal 1.05 is multiplied by each of the four

receiving items. The product of each multiplication
operation is stored in the respective receiving item.

4-3

The product can be stored in a receiving item that is not an
operand by including the GIVING phrase in the MULTIPLY
statement. One or more receiving items are specified to
store the product of the two operands.

MULTIPLY .10 BY AMOUNT
GIVING PERCENT, ACCUM.

The numeric literal .10 is multiplied by the value of
AMOUNT. The product is then stored in the two receiving
items PERCENT and ACCUM.

DIVISION OF ITEMS

One item can be divided by another item through the
DIVIDE statement. The result of the division is stored

either in an operand or in a separate item depending on the
format of the statement.

A data item or a numeric literal can be divided into a data
item that subsequently stores the quotient (the result of
the division).

DIVIDE 1.5 INTO TEMP.

The numeric literal 1.5 (the divisor) is divided into the
value of TEMP (the dividend). The quotient is then stored
as the new value of TEMP.

If two or more dividends are specified, the divisor is
divided into each dividend. The quotient resulting from
each division operation is stored in the respective data
item used as the dividend.

DIVIDE TEMP INTO CNTR1, CNTR2,

When this statement is executed, two division operations
take place. The value of TEMP is divided into the value of
CNTR1 and the quotient is stored as the new value of
CNTR1. The value of TEMP is then divided into the value
of CNTR2 and the resulting quotient is stored as the new
value of CNTR2.

The GIVING phrase is used to specify one or more
receiving items that are not operands. The position of the
divisor and the dividend in the statement depends on the
choice of the keyword INTO or BY. When INTO is
specified, the first operand is the divisor and the second
operand is the dividend. When BY is specified, the first
operand is the dividend and the second operand is the
divisor.

DIVIDE CNTR INTO TEMP GIVING AVERAGE.
DIVIDE TEMP BY CNTR GIVING AVERAGE.

In both examples, the divisor is CNTR and the dividend is
TEMP. The quotient is stored as the new value of
AVERAGE.

The remainder resulting from a division operation can also
be stored in a data item. The remainder is calculated by
subtracting the product of the quotient and the divisor
from the dividend.

DIVIDE 12 INTO AMOUNT
GIVING PAYMENT REMAINDER TEMP.

The quotient resulting from dividing 12 into the value of

AMOUNT is stored in the data item PAYMENT. The
remainder is calculated and stored in the data item TEMP.

4-4

The quotient that is used to calculate the remainder is an
intermediate item. The picture-specification of the
intermediate item is the same as the quotient and contains
an operational sign; however, editing symbols are excluded
from the intermediate item. Rounding, if specified for the
receiving item, is not performed on the intermediate item.
If the quotient is described as COMPUTATIONAL-2, the
calculation for the remainder is always zero.

COMPUTING A DATA ITEM VALUE

The value of a data item is sometimes determined by
performing a series of arithmetic operations. With the
basic arithmetic statements already discussed, several
statements could be required to obtain the desired result.
A single COMPUTE statement can cause several different
operations to be performed and the final result to be stored
in the data item.

The arithmetic operations are specified in the COMPUTE
statement as an arithmetic expression. Arithmetic
operations that can be performed include addition,
subtraction, multiplication, division, and exponentiation.
When the COMPUTE statement is executed, the expression
is evaluated and the result is stored in one or more
receiving items.

The arithmetic expression consists of data-names, literals,
and arithmetic operators. The structure of arithmetic
expressions and the order of evaluation have been discussed
previously in this section.

COMPUTE AMT-DUE = ACCUM - DISCT + TAX.

The value of DISCT is subtracted from the value of
ACCUM. The difference is then added to the value of TAX
and the result is stored as the new value of AMT-DUE.

The order of evaluation of the arithmetic expression can be
explicitly stated by enclosing operands in parentheses.
Arithmetic operations within parentheses are evaluated
first.

COMPUTE TAX = (ACCUM - DISCT) * 0.06.

The expression enclosed in parentheses is evaluated; the
result is then multiplied by the numeric literal 0.06. If
parentheses are not used, the value of DISCT is multiplied
by 0.06 and the product is then subtracted from the value
of ACCUM.

In more complex expressions, parentheses can be nested.
The expression within the innermaost pair of parentheses is
evaluated first. The result of the evaluation is then used
to evaluate the expression within the next pair of
parentheses. This process continues until the expression
within the outermost pair of parentheses has been
evaluated.

COMPUTE XVAL = X1 + (X2 * (X3 + X4)) -
(X5 / (X6 + X7)).

In this example, four pairs of parentheses are used to
explicitly specify the order of evaluation. The value of
XVAL is computed as follows:

1. X3 is added to X4.

2. X2 is multiplied by the result of step 1.

3. X6 is added to X7.

4. X5 is divided by the result of step 3.

60497200 C

5. Xl is added to the result of step 2.

6. The result of step 4 is subtracted from the result of
step 5.

Whenever possible, division should be the final arithmetic
operation in order to preserve the accuracy of the result.
Operands should not be described as COMPUTATIONAL-2
items.

ROUNDING A RESULT

The result computed by an arithmetic statement is stored
in the receiving item according to the data description of
the item. If the number of decimal places in the receiving
item is less than the number of decimal places in the
computed result, the excess digits are truncated. Rounding
of a truncated result is performed when the ROUNDED
option is specified for a receiving item.

When rounding is requested, the least significant digit of
the receiving item is increased by 1 when the most
significant truncated digit is 5 or greater. The following
examples illustrate rounding for a receiving item that is
described as PICTURE 99V 99. The symbol ¢ indicates the
decimal position.

Computed Stored
Result Result
25427 2543

t t
91622 9162

t t
63109 6311

t t

A receiving item that is described with the character P in
the rightmost positions can be rounded in the least
significant stored digit position. Rounding occurs in the
rightmost stored digit when the most significant truncated
digit is equal to or greater than 5.

CHECKING FOR A SIZE ERROR

A size error occurs when the number of integral positions
in the receiving item is less than the number of integral
digits in the result. The SIZE ERROR option in an
arithmetic statement provides the means to perform a
specific function when a size error condition exists.

Size error checking is performed on the intermediate result
and on the final result of any arithmetic operation. A size
error always occurs for each of the following conditions:

e Anexponentiation error.

e A floating point exponent overflow or underflow.

e Division by zero.

Exponent overflow or underflow causes program
termination, unless a MODE control statement is in effect
for these conditions.

The SIZE ERROR option specifies an imperative statement
that is to be executed when a size error occurs. The
imperative statement can transfer control to an error

routine, print a message, or perform any required function.

ADD ITEM-AMT TO ACCUM
ON SIZE ERROR GO TO ERR-PROC.

60497200 E

When this statement is executed, the resuit of the addition
operation is checked for a size error. If a size error exists,
control is transferred to the paragraph named ERR-PROC.

If the SIZE ERROR option is specified for an ADD
CORRESPONDING or SUBTRACT CORRESPONDING
statement, each individual arithmetic operation is checked
for a size error condition. A size error detected for an
individual operation does not cause the imperative
statement to be executed immediately. All the individual
additions or subtractions are performed before the
imperative statement is executed.

When a size error occurs and the SIZE ERROR option is not
included in the arithmetic statement, the value stored in
the affected receiving item is undefined. If the SIZE
ERROR option is specified, the receiving item is not
changed when a size error occurs. A size error condition
for one receiving item does not affect other receiving
items included in the arithmetic operation.

NUMBER REPRESENTATION

All operands in arithmetic expressions and arithmetic
statements must be numeric items. Arithmetic operations
are performed in one of three modes: display code,
integer, or floating point. The specific operation and the
description of the operands determine the mode of
operation.

DISPLAY CODE OPERATION

Addition and subtraction can be performed in the display
code mode of operation. The operands must be described
as display items with a maximum result size of 18 digits.
Results obtained in the display code mode of operation are
exact results.

INTEGER OPERATION

Integer mode of operation is performed on operands that
are described as COMP-1 or COMP-4. This is the most
efficient mode of operation and should be used whenever
possible. For addition and subtraction, the size of the
intermediate result, which is determined by aligning the
operands on the decimal points, cannot exceed 14 digits.
Multiplication in integer mode of operation requires that
the sum of the operand sizes does not exceed 14 digits.
Exponentiation can be performed only with zero point
location. '

FLOATING POINT OPERATION

Floating point mode of operation is used whenever the
arithmetic operation cannot be performed in display code
or integer mode. The maximum size of a floating point
number is 28 digits. Floating point operations do not yield
exact results.

SAMPLE ARITHMETIC PROGRAM

The use of the basic arithmetic statements is illustrated in
the sample program shown in figure 4-2. The input file
contains one record for each item on an invoice. The
output file is a report that lists each item and its computed
amount as well as the computed totals for each invoice.
Figure 4-3 shows the input records used to create the
output report shown in figure 4-4.

4-5

NV OONON NN =

IDENTIFICATION DIVISION.
PROGRAM-ID.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARD=-IN ASSIGN TO
SELECT OUTFILE ASSIGN TO
DATA DIVISION.
FILE SECTION.
FD CARD-IN :

ARITHMETIC-EXAMPLE.

INPUT.
OUTPUT.

LABEL RECORD IS OMITTED
DATA RECORD IS IN-REC.

01 IN-REC.
03 INVOICE-NO PICTURE 9(6).
03 FILLER PICTURE X(5).
03 ITEM-ID PICTURE 999.
03 FILLER PICTURE X(5).
03 QUANTITY PICTURE 999.
03 FILLER PICTURE X(5).
03 COST-PER-UNIT PICTURE 99V99.
03 FILLER PICTURE X(48).
03 END-FLAG PICTURE A.
FD OUTFILE
LABEL RECORD IS OMITTED
DATA RECORD IS PRINTLINE.
01 PRINTLINE PICTURE X(136).
WORKING-STORAGE SECTION.
01 ITEM-AMT PICTURE 9(4)V99 VALUE ZERO.
01 DISCT PICTURE 9(4)V99 VALUE ZERO.
01 TAX PICTURE 9(4)V99 VALUE ZERO.
01 ACCUM PICTURE 9(5)V99 USAGE COMP-1.
01 TEMP PICTURE 9(6)V99 USAGE COMP-1.
01 CNTR PICTURE 999 USAGE COMP-1.
01 QUANT PICTURE 999 USAGE COMP-1.
01 UNIT-COST PICTURE 99V99 USAGE COMP-1.
01 AVERAGE PICTURE $22,229.99.
01 HEAD.
03 FILLER PICTURE X VALUE "1".
03 FILLER PICTURE X(12) VALUE ™ INVOICE ".
03 FILLER PICTURE X(6) VALUE " ITEM".
03 FILLER PICTURE X(8) VALUE " QTY".
03 FILLER PICTURE X(8) VALUE SPACES.
03 FILLER PICTURE X(12) VALUE "COST ",
03 FILLER PICTURE X(13) VALUE "DISCOUNT "
03 FILLER PICTURE X(12) VALUE "SALES TAX ",
03 FILLER PICTURE X(12) VALUE " AMOUNT DUE".
N3 FILLER PICTURE X(52) VALUE SPACES.
01 OUTPUT-LINE-1.
03 FILLER PICTURE X(5) VALUE SPACES.
03 INVOICE-NUM PICTURE 9(6).
03 FILLER PICTURE X(5) VALUE SPACES.
03 ITEM-IDENT PICTURE 999.
03 FILLER PICTURE X(5) VALUE SPACES.
03 aTy PICTURE Z19.
03 FILLER PICTURE X(5) VALUE SPACES.
03 AMOUNT PICTURE $2,229.99.
03 FILLER PICTURE X(95) VALUE SPACES.
01 OUTPUT-LINE-2.
03 FILLER PICTURE X(31) VALUE SPACES.
03 INV-TOTAL PICTURE $22,279.99.
03 FILLER PICTURE X(5) VALUE " - ',
03 DISCOUNT PICTURE $Z,229.99.
03 FILLER PICTURE X(5) VALUE "™ + ",
03 SALES-TAX PICTURE $2,229.99.
03 FILLER PICTURE X(5) VALUE " = ",
03 AMT-DUE PICTURE $22,229.99. .
03 FILLER PICTURE X(52) VALUE SPACES.

4-6

Figure 4-2. Sample Arithmetic Program (Sheet 1 of 2)

60497200 C

PROCEDURE DIVISION.

72 OPENING.
73 OPEN INPUT CARD-IN.
74 OPEN OUTPUT OUTFILE.
75 MOVE ZEROS TO ACCUM, TEMP, CNTR.
76 WRITE PRINTLINE FROM HEAD.
77 MOVE SPACES TO PRINTLINE, WRITE PRINTLINE.
78 READ-CARD.
79 READ CARD-IN AT END GO TO CLOSING.
80 MOVE INVOICE-NO TO INVOICE-NUM.
81 MOVE ITEM-ID TO ITEM-IDENT.
82 MOVE QUANTITY TO QTY, QUANT.
83 MOVE COST~PER-UNIT TO UNIT-COST.
84 MULTIPLY UNIT-COST BY QUANT GIVING ITEM-AMT.
85 ADD ITEM-AMT TO ACCUM.
86 MOVE ITEM-AMT TO AMOUNT.
87 WRITE PRINTLINE FROM OUTPUT-LINE-1.
88 IF END~-FLAG EQUALS "E"
89 GO TO INVOICE-TOTAL.
90 GO TO READ-CARD.
91 INVOICE-TOTAL.
92 MOVE ACCUM TO INV-TOTAL.
93 MULTIPLY ACCUM BY .1 GIVING DISCT ROUNDED.
94 MOVE DISCT TO DISCOUNT.
95 SUBTRACT DISCT FROM ACCUM.
96 MULTIPLY ACCUM BY .06 GIVING TAX ROUNDED.
97 MOVE TAX TO SALES-TAX.
98 ADD TAX TO ACCUM.
99 MOVE ACCUM TO AMT-DUE.
100 ADD ACCUM TO TEMP.
101 ADD 1 TO CNTR.
102 WRITE PRINTLINE FROM OUTPUT-LINE-2
103 AFTER ADVANCING 2 LINES.
104 MOVE ZEROS TO ACCUM.
105 MOVE SPACES TO PRINTLINE.
106 WRITE PRINTLINE
107 AFTER ADVANCING 3 LINES.
108 GO TO READ-CARD.
109 CLOSING.
110 DIVIDE CNTR INTO TEMP GIVING AVERAGE ROUNDED.
111 DISPLAY "AVERAGE INVOICE AMOUNT IS " AVERAGE.
112 CLOSE CARD-IN, OUTFILE.
113 STOP RUN.
Figure 4-2. Sample Arithmetic Program (Sheet 2 of 2)
N Q,\q, » qub oq’Q
&
\0& \0& \0@ \5‘0 \"&
‘0° < oy fo
175256 465 005 1095
175256 103 020 0495
175256 9216 002 2495 E
175257 696 012 0895 E
175258 309 100 1475
175258 682 050 2250
175258 916 010 2495
175258 277 125 0725 E
180696 103 030 0495
180696 456 045 1650
180696 916 005 2495 E
180697 465 023 1095
180697 599 040 3200 E
180698 196 020 2495
180698 696 050 0895
180698 456 050 1650 E
Figure 4-3. Input Data for Sample Arithmetic Program
60497200 C 4-7

INVOICE ITEM QrTy cosT
175256 465 5 $ 54.75
175256 103 20 $ 99.00
175256 916 2 $ 49.90

$ 203.65
175257 696 12 $ 107.40

$ 107.40
175258 309 100 $1,475.00
175258 682 50 $1,125.00
175258 916 10 $ 249.50
175258 277 125 $ 906.25

$ 3,755.75
180696 103 30 $ 148.50
180696 456 45 $ 742.50
180696 916 5 $ 124.75

$ 1,015.75
180697 465 23 $ 251.85
180697 599 40 $1,280.00

$ 1,531.85
180698 196 20 $ 499.00
180698 696 50 $ 447.50
180698 456 50 $ 825.00

$ 1,771.50

AVERAGE INVOICE AMOUNT IS $ 1,333.36

 DISCOUNT SALES TAX AMOUNT DUE

11.00

]
()

$ 20.37, + s 194.28

$ 10.74 + 8 5.80 = s 102.46
$ 375.58 + $ 202.81 = $ 3,582.98
$ 101.58 + s 54.85 = $ 969.02
$ 153.19 + s 82.72 = $ 1,461.38
$ 177.15 + s 95.66 = $ 1,690.01

Figure 4-4. Output Report from

Each input record contains the quantity of the invoice item
and the cost of one item. The total cost for the specified
quantity is computed (line 84) and an output line is
generated for the invoice item (line 87).

The last record for an invoice is identified by the letter E
in the last character position of the input record (line 88).
When all records for an invoice have been processed, the
totals for the invoice are computed (lines 93 through 98)
and an output line is generated.

As each invoice is completed, a running total of invoice
amounts is maintained (line 100). When all invoices have
been processed, the average amount for all invoices is
computed (line 110) and displayed on the output report.

BOOLEAN EXPRESSIONS

A boolean expression consists of boolean variables, boolean
literals (consisting of the characters 0O or 1), and boolean
operators that are used to separate pairs of boolean
variables and literals. Boolean expressions can be used in
COMPUTE statements to define a boolean variable and its
value. Boolean expressions can be used in relational
conditions to compare boolean variables and/or literals for
equality or inequality.

A simple boolean expression can contain a single boolean
variable or literal, or two boolean variables or literals
separated by a boolean operator. A complex boolean
expression contains two or more simple boolean expressions

Sample Arithmetic Program

separated by boolean operators. Parentheses can enclose
boolean expressions to specify the order of evaluation or to
clarify the logic of the expression.

BOOLEAN OPERATORS

Two types of boolean operators can be used in boolean
expressions: binary and unary. Three binary boolean
operators are available:

Operator Function

BOOLEAN-AND Boolean conjunction

BOOLEAN-OR Boolean inclusive OR

BOOLEAN-EXOR Boolean exclusive OR
A boolean expression can also be preceded by the following
unary boolean operator:

Function

Operator

BOOLEAN-NOT Boolean negation

A boolean operator must be preceded and followed by a
space. With one exception, a boolean operator must be
followed by a boolean variable or literal; the one exception
is that a binary operator can be followed by a unary
operator. When parentheses are used, the variable or
literal can be preceded by a left parentheses.

60497200 C

EVALUATION OF EXPRESSIONS

The order of evaluation for boolean expressions is
determined by the boolean operators:

Order of
Operator evaluation
BOOLEAN-NOT First
BOOLEAN-AND Second
BOOLEAN-OR and
BOOLEAN-EXOR Third

Expressions at the same level are evaluated from left to
right.

Parentheses can be used to modify the normal sequence of
evaluation. Expressions enclosed in parentheses are
evaluated first, beginning with the innermost pair and
proceeding to the outermast pair. Within a pair of
parentheses, evaluation occurs according to the
hierarchical order of evaluation.

The following boolean expression:
B"001010110"

is a boolean literal that produces the 9-character boolean
value 001010110.

The boolean expression:
CODE-VALUE1 BOOLEAN-AND CODE-VALUE2
praduces the boolean conjunction (logical multiplication) of

CODE-VALUE1l and CODE-VALUE2. For instance, if
CODE-VALUE1 is 10110 and CODE-VALUEZ2 is 01101:

CODE-VALUE1L 10110
CODE-VALUE2 01101
Result of conjunction 00100

The boolean expression:

MISC-ITEM BOOLEAN-OR(BOOLEAN-NOT
STANDARD-ITEM)

produces the boolean disjunction (logical addition) of
MISC-ITEM and the complement of STANDARD-ITEM.
For instance, if MISC-ITEM has a value of 01101 and
STANDARD-ITEM has a value of 11010:

MISC-ITEM 01101
Complement of STANDARD-ITEM 00101
Result of disjunction 01101

Boolean expressions can be used in Procedure Division
statements. The COMPUTE statement can be used to
define a boolean variable.

COMPUTE NEW = MISC-ITEM BOOLEAN-OR
(BOOLEAN-NOT STANDARD-ITEM)

This statement defines the boolean variable NEW and sets
its value to 01101 (using values from the previous example).

The IF statement can be used to compare two boolean
variables or literals for equality.

F M-CODE BOOLEAN-AND B-VAL = B"10010"
GO TO PROC-A ELSE GO TO PROC-B.

In this statement, the boolean variable M-CODE is
compared with the boolean variable B-VAL. If the result
of the conjunction is 10010, then the branch to PROC-A is
taken; otherwise, the branch to PROC-8B is taken.

SAMPLE BOOLEAN PROGRAM

The use of boolean statements is illustrated in figure 4-5.
VALL and CONST are defined in the Working-Storage
Section as boolean variables. The IF statement performs a
logical AND operation on VALl and CONST. The
COMPUTE statement performs the same operation and
places the result in VAL before displaying it.

A. Program Listing

DATA DIVISION.

01 STRS.

02 VAL1

02 CONST
PROCEDURE DIVISION.
STRT.

ELSE

STOP RUN.

B. Program Output

G00D :
RESULT=0100010101

IDENTIFICATION DIVISION.
PROGRAM-ID. BOOL .

WORKING-STORAGE SECTION.

PIC 1(10) VALUE B"0101011101".
PIC 1(10) VALUE B"1100110101".

IF VAL1 BOOLEAN-AND CONST = B"0100010101"
DISPLAY "GOOD"

DISPLAY "BAD".
COMPUTE VAL1 = CONST BOOLEAN-AND VAL1
DISPLAY "RESULT=" VAL1

Figure 4-5. Boolean Example

60497200 E

4-9

CONDITIONAL OPERATIONS S

Conditional operations are used in a COBOL 5 program to
select an alternate path of control. A conditional
expression is tested for its truth value, which is either true
or false. The path of control to be executed depends on
the truth value of the condition. Conditional expressions
can be either simple or complex and are specified in the IF,
PERFORM, and SEARCH statements.

Implicit conditional operations can be designated through
five different options that can be included in various
Procedure Division statements. These options specify
imperative statements that are executed when the implied
conditions exist. The five conditional options that can be
specified are AT END, AT END-OF -PAGE, INVALID KEY,
ON O VERFLOW, and ON SIZE ERROR.

CONDITIONAL EXPRESSIONS

A conditional expression specifies the condition that is
tested to determine the next statement to be executed.
The condition can be either a simple condition or a
complex condition.

In an IF or SEARCH statement, the conditional expression
is followed by an imperative statement that is executed
when the condition is true. In a PERFORM statement, the
procedure is performed repeatedly until the specified
condition is true; control is then passed to the statement
following the PERFORM statement.

SIMPLE CONDITIONS

A simple condition specifies one condition that is to be
tested for its truth value. Five different types of
conditions can be tested: relational, class, condition-name,
switch-status, and sign conditions.

Relational Conditions

A relational condition causes two numeric or boolean
operands to be compared. If the specified relationship
exists, the condition is true. A relational condition not
involving boolean expressions specifies that the first
operand is one of the following:

o Greater than or not greater than the second operand.

e Less than or not less than the second operand.

e Equal to or not equal to the second operand.

® Exceeds the second operand.

A relational condition involving boolean expressions
specifies that the first operand is equal to or is not equal
to the second operand.

The operands in a relational condition can be data items
described in the Data Division, literals, boolean, or
arithmetic expressions. When an arithmetic expression is

specified, the result of evaluating the arithmetic
expression is used for the comparison.

60497200 C

Comparing Numeric Operands

A numeric comparison is based on the algebraic values of
the numeric operands. The operands can be different
lengths; decimal point alignment is performed
automatically. Unsigned numeric operands are considered
to be positive values. Numeric comparisons can be made
between operands that are described with different
usages. For example, a display item can be compared with
a computational item.

GROSS-PAY IS GREATER THAN 150.99

The data item GROSS-PAY is compared with the numeric
literal 150.99. If the value of GROSS-PAY is greater than
150.99, the condition is true; if GROSS-PAY is equal to or
less than 150.99, the condition is not true.

The keyword NOT can be included in the relational
condition to test for a negative condition.

AGE IS NOT LESS THAN 21

In this example, the condition is true when the value of the
data item AGE is equal to or greater than 21. If the value
of AGE is less than 21, the condition is not true.

Zero is considered a unique value regardless of the sign of
the operand. Positive zero values are equal to negative
zero values.

Operands described as COMPUTATIONAL-2 items
typically do not have exact values. Because comparisons
compare exact values, a range test should be used for a
COMPUTATIONAL-2 operand.

Table 5-1 lists some numeric operand values and relational
operators that result in a true condition.

Comparing Nonnumeric Operands

A nonnumeric comparison is performed when one or both
operands are nonnumeric items. This type of comparison is
based on a specified collating sequence. The collating
sequence to be used can be selected by:

e Specifying the program collating sequence in the
Environment Division.

e Changing the program collating sequence with a SET
statement that is executed before the relational
condition is tested.

Execution of a SET statement takes precedence over a
collating sequence previously specified. If a collating
sequence is not explicitly specified, the default collating
sequence is used for the comparison.

A numeric operand that is compared with a nonnumeric
operand must be an integer data item or literal or an
arithmetic expression containing only integer operands.
Both operands must be display items. If the nonnumeric
operand is an elementary item, the numeric operand is
treated as if it were moved to an alphanumeric item of the

5-1

same size as the nonnumeric item; any sign associated with
the numeric operand is ignored. A nonnumeric group item
causes the numeric operand to be treated as if it were
moved to a group item of the same size as the nonnumeric
item. :

Operands of equal length are compared character by
character as specified by the relational operator.
Comparison begins with the leftmost character of each
operand and continues until a pair of unequal characters is
encountered or the last pair of characters has been
compared. If no unequal pair is detected, the operands are
equal. Unequal characters are evaluated according to their
relative positions in the collating sequence. The operand
that contains the higher character in the collating
sequence is considered the greater operand.

When the operands are not the same length, the shorter
operand is considered to be extended on the right with
spaces up to the length of the longer operand. The
comparison then proceeds as described for operands of
equal length.

Table 5-2 lists some nonnumeric comparisons that result in
a true condition. The comparisons are based on the CDC
64-character collating sequence; at least one operand in
each comparison is described as a nonnumeric item.

The keyword NOT can also be included in a nonnumeric
comparison to test for a negative condition.

Comparing Boolean Operands

Boolean operands of equal size are compared character for
character, starting from the leftmost character of each
operand, until either an unequal pair is encountered or the
last pair of characters has been compared. If no unequal
pair is detected, the operands are equal. If the operands
are of unequal length, the shorter operand is treated as
though it were extended on the right with boolean
character zeros to make the operands of equal length.

Table 5-3 lists some boolean comparisons that result in a
true condition.

TABLE 5-1. TRUE NUMERIC RELATIONAL CONDITIONS

Value of Operand-1

Relational Operator

Value of Operand-2

1]0]

=
[on]
Jo

IS LESS THAN
or IS <

ca
=
o

8

[o]o]

IS GREATER THAN
or IS >

ol
o

<]
=

or EXCEEDS
[0fof3]9]5] IS EQUAL TO

or IS =

or EQUALS

5 E
[}l]
[]

IS NOT LESS THAN

or IS NOT <
43@ IS NOT GREATER THAN 7]s
E or IS NOT >]::EI

or IS NOT EQUAL TO

TABLE 5-2.

TRUE NONNUMERIC RELATIONAL CONDITIONS

Value of Operand-1

Relational Operator

Value of Operand-2

IS EQUAL TO
or IS =
or EQUALS

IS GREATER THAN
or IS >

[Fl1[s[c[HE[R]

or EXCEEDS
IS LESS THAN [5[7T9]0]0]
or IS <
Fl8]9]o] IS NOT LESS THAN £]F{7]8]0]0]
or IS NOT <

IS NOT GREATER THAN
or IS NOT >
or IS NOT EQUAL TO

[3{o[u[n]s]o]M

5-2

60497200 C

TABLE 5-3. TRUE BOOLEAN RELATIONAL CONDITIONS

Value of Operand-1

Relational Operator

Value of Operand-2

0]1]1]o]o[1]1]

or IS =

IS EQUAL TO
or EQUALS

[of1]1]ofo[1]1]

[of1]1]of1]

or IS =

IS EQUAL TO
or EQUALS

fof1]1fo]1fofofo]

[o]1f1]ofs]

IS NOT EQUAL TO
or IS NOT =
or IS UNEQUAL TO

Lo[1[1]ofs]o[1]o]

Class Conditions

A class condition tests a data item to determine whether
the value of the data item is either numeric or alphabetic.
The keyword NOT in the expression tests for a value that is
not numeric or not alphabetic.

A numeric or alphanumeric data item can be tested for a
numeric value. For a true condition, the value consists of
the digits 0 through 9 and optionally can contain an
operational sign.

An operational sign is indicated in the data description by
the character S in the picture-specification. If the SIGN IS
SEPARATE clause is also included in the description, the
operational sign is the plus or the minus character (+ or -).
Without the SIGN IS SEPARATE clause, the sign is
combined with the first or last digit of the data item.

PART-NO IS NUMERIC

The data item PART-NO must have a numeric value for
the class condition to be true. If the data description of
PART-NO does not specify an operational sign, the value
cannot contain an operational sign; however, the
operational sign can be present if the SIGN clause is
specified in the data description.

When the data item is described as COMPUTATIONAL-1,
the numeric test is true only if the leftmost 12 bits of the
computer word containing the data item are either all ones
or all zeros. For a data item described as
COMPUTATIONAL-2 or COMPUTATIONAL.-4, the numeric
test is always true.

An alphabetic or alphanumeric data item can be tested for
an alphabetic value. The data item being tested can
contain only the characters A through Z and the space for
a true condition.

EMP-ID IS ALPHABETIC

The data item EMP-ID is checked for an alphabetic value.
If the value contains any character other than A through Z
and the space, the class condition is not true.

The keyword NOT is included in the class condition
expression to test for a value that is not numeric or not
alphabetic. ‘The condition is true when the value does not
satisfy the specified class condition.

EMP-ID IS NOT ALPHABETIC

60497200 C

If the value of EMP-ID contains any character other than A
through Z and the space, the condition is true.

Condition-Name Conditions

A conditional expression can specify a condition-name.
This causes the value of a conditional variable to be
tested. A conditional variable is a data item that is
established in the Data Division; condition-names are
assigned to the values that can be associated with the data
item. A condition-name can be assigned one or more
individual values or ranges of values.

When a condition-name is specified as a conditional
expression, the value of the conditional variable is tested
to determine whether or not it is equal to one of the values
assigned to the condition-name. The condition is true if
the value of the conditional variable is the same as a value
associated with the specified condition-name.

Figure 5-1 illustrates the wuse of a condition-name
condition in an IF statement. The conditional variable
PAY-PERIOD is associated with three condition-names;
each condition-name is assigned one numeric value. When
the IF statement is executed, PAY-PERIOD is tested for
the value 2; if the value of PAY-PERIOD is 2, control is
transferred to the paragraph named BI-WEEKLY-PAY.

DATA DIVISION.

03 PAY~-PERIOD PICTURE 9.
88 WEEKLY VALUE IS 1.
88 BI-WEEKLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

PROCEDURE DIVISION.

IF BI-WEEKLY GO TO BI-WEEKLY-PAY.

Figure 5-1. Using a Condition-Name Condition

5-3

Switch-Status Conditions

The on or off status of a switch can be tested through a
switch-status condition. The condition-name specified as a
switch-status condition is established in the Environment
Division. Six external switches (SWITCH-1 through
SWITCH-6) and 120 internal switches (SWITCH-7 through
SWITCH-126) can be associated with condition-names; both
the on status and the off status can be assigned
condition-names. A condition-name should be associated
with only one condition because condition-names cannot be
qualified in the Procedure Division.

- When a switch-status condition-name is specified as a
conditional expression, the switch is tested for the on or
off status associated with the condition-name. If the
switch setting is the same as specified for the
condition-name, the switch-status condition is true.

Figure 5-2 illustrates the use of a switch-status condition.
The condition-name TAPE-OUTPUT is assigned to the on
status of SWITCH-1. When the IF statement is executed,
SWITCH-1 is tested to determine whether or not it has been
set to on. If SWITCH-1 is on, control is transferred to the
paragraph named WRITE-TAPE.

ENVIRONMENT DIVISION.

SPECIAL-NAMES.
SWITCH-1 ON STATUS IS TAPE-OUTPUT.

PROCEDURE DIVISION.

IF TAPE-OUTPUT GO TO WRITE-TAPE.

Figure 5-2. Using a Switch-Status Condition

The status of an external switch can be set by the SWITCH
control statement before the program is executed. This
statement can also be used to set an external switch when
the program is executing from a terminal and when a STOP
literal statement is specified to cause a program pause.
The status of an external switch or an internal switch can
be set during program execution by a SET statement.
Figure 5-3 illustrates switch setting during program
execution. If the SET statement is executed before the
switch-status condition is tested, the condition is true and
control is transferred to the paragraph named WRITE-RPT.

Sign Conditions

The sign condition tests the value of a data item or an
arithmetic expression to determine if it is a positive value,
a negative value, or a zero value. If an arithmetic
expression is specified, it must contain at least one
reference to a variable item. The value zero, whether
signed or not, is considered to be neither positive nor
negative.

(ON-HAND - ORDERED) IS POSITIVE

5-4

ENVIRONMENT DIVISION.

SPECIAL-NAMES.
SWITCH-4 IS PRINT-CHECK
ON STATUS IS PRINT-OUT.

PROCEDURE DIVISION.

SET PRINT-CHECK TO ON.

IF PRINT-0OUT GO TO WRITE-RPT.

Figure 5-3. Setting a Switch

The arithmetic expression is evaluated and the result is
then tested for a positive value. The sign condition is true
if the value is greater than zero; if the value is zero or less
than zero, the condition is not true.

The keyword NOT can be included in a sign condition
expression. The value is tested to determine if it is not
positive, not negative, or not zero.

(ON-HAND - ORDERED) IS NOT NEGATIVE
In this example, the condition is true if the resuit of the

arithmetic expression is not a negative value. It can be a
positive value or a zero value for a true condition.

COMPLEX CONDITIONS

" A complex condition tests more than one condition for a

truth value. The conditions are connected by logical
operators. The function of each logical operator is as
follows:

AND Both simple conditions must be true for the
complex condition to be true. If either
condition is not true, the complex condition
is not true.

OR At least one of the simple conditions must be
true; both conditions can be true. If neither
condition is true, the complex condition is
not true.

NOT The truth value is reversed (negated). If the
expression is true, the complex condition is
not true.

Parentheses can be used to designate the order of
evaluation for complex conditional expressions.
Expressions within parentheses are tested for a truth value
first; the complete expression is then evaluated for a truth
value. When parentheses are nested, evaluation begins with
the innermost pair of parentheses and proceeds to the

60497200 C

outermost pair. If parentheses are not used, evaluation
begins at the left; all expressions connected with AND are
evaluated first and then all expressions connected with OR
are evaluated.

AGE>20 OR MARITAL = "M" AND
CLASS>50

In this example, the complex conditional expression is true
under either of the following conditions:

® The data item MARITAL is equal to M and the data
item CLASS is greater than 50.

e The data item AGE is greater than 20.

If at least one of these conditions is true, the complex
condition is true; if neither one is true, the complex
condition is false.

(AGE>20 OR MARITAL = "M") AND
CLASS>50

This example is the same as the previous example except
that parentheses have been added. The parentheses cause
the complex condition to be evaluated in a different
manner. The complex condition is true under either of the
following conditions:

e The data item AGE is greater than 20 and the data
item CLASS is greater than 50.

e The data item MARITAL is equal to M and the data
item CLLASS is greater than 50.

The complex condition yields a true condition when at least
one of these conditions is true; the complex condition is
not true when neither condition is true.

The reverse of the condition just described can be specified
by including the logical operator NOT before the complex
expression.

NOT ((AGE>20 OR MARITAL = "M") AND
CLASS>50)

The inclusion of the logical operator NOT specifies that
one of the following conditions must exist for the complex
condition to be true:

e The data item CLASS is less than or equal to 50.

® The data item AGE is less than or equal to 20 and the
data item MARITAL is not equal to M.

A complex conditional expression contains a series of
elements. The following rules apply to the order in which
the elements can be specified:)

e A simple condition can be the first or last element in
the expression.

e A simple condition can be followed by the logical
operator OR or AND or by a right parenthesis; it can
be preceded by a logical operator (OR, NOT, or AND)
or a left parenthesis.

e The logical operator OR or AND cannot be the first or
the last element in the expression. It can be preceded
by a simple condition or by a right parenthesis and
followed by a simple condition, NOT, or a left
parenthesis.

60497200 C

e The logical operator NOT can be the first but not the
last element in the expression. It can be preceded by
OR, AND, or a left parenthesis and followed by a
simple condition or a left parenthesis.

e A left parenthesis can be the first but not the last
element in the expression. It can be preceded by OR,
NOT, AND, or another left parenthesis and can be
followed by a simple condition, NOT, or another left
parenthesis.

e A right parenthesis can be the last, but not the first,
element in the expression. It can be preceded by a
simple condition or another right parenthesis and can
be followed by OR, AND, or another right parenthesis.

Implied Elements

A complex conditional expression can contain a series of
two or more relational conditions. In certain instances,
some elements of the relational conditions can be omitted
from the expression. These omitted elements become
implied elements.

When two or more consecutive relational conditions have
the same operand preceding the relational operator, the
operand can be omitted in the succeeding relational
conditions. The operand must be specified in the first
condition.

AGE>20 AND<66

Two relational conditions are specified in this example.
The operand AGE is implied in the second condition. If the
value of AGE is greater than 20 and it is less than 66, the
complex condition is true.

When the first operand and the relational operator are the
same in consecutive relational conditions, these two
elements can be omitted following the first occurrence of
the elements.

HRS-WORKED = 40 OR TEMP

The operand HRS-WORKED and the relational operator =
are implied in the relational condition following the logical
operator OR. If the value of HRS-WORKED is equal to
either the numeric literal 40 or the value of TEMP, the
complex condition is true.

The keyword NOT can be a part of the relational operator
or it can be a logical operator. The usage of NOT is
determined as follows:

o When NOT is immediately followed by GREATER, >,
LESS, <, EQUAL, or =, it is part of the relational
operator.

e In all other cases NOT is a logical operator.

As a relational operator, NOT can be an implied element;
however, NOT cannot be an implied element as a logical
operator.

Logical operators cannot be implied elements. Parentheses
can be used to apply the logical operator to more than one

condition.

NOT (TEMP1>TEMP2 AND ACCUM)

5-5

This example illustrates the use of parentheses and also
includes a relational condition that has two implied
elements. The two relational conditions are evaluated
first; the logical operator NOT is then applied to the truth
value of the two conditions. If both conditions are true,
the complex condition is not true; if either or both
conditions are not true, the complex condition is true. This
example in expanded form is:

NOT TEMP1>TEMP2 AND NOT TEMP1>ACCUM

Order of Evaluation

A complex conditional expression contains a series of
simple conditions that are evaluated individually and
collectively to determine a final truth value for the
complex condition. The hierarchical order of evaluation
for a complex condition is as follows:

1. Arithmetic expressions within simple conditions.
2. Simple conditions in the following order:
Relational
Class
Condition-name
Switch-status
Sign

3. Conditions connected by logical operators in the
following order:

AND
OR
NOT

Conditions at the same level in the order of evaluation are
evaluated from left to right.

Parentheses can be used to change the order of evaluation.
Conditions within parentheses are evaluated first; when
parentheses are nested, evaluation begins with the
innermost pair of parentheses and proceeds to the
outermost pair. After the conditions enclosed by
parentheses have been evaluated, the final truth value is
determined according to the hierarchical order of
evaluation.

It is good programming practice to avoid abbreviations and
to use parentheses whenever both the logical operators
AND and OR are included in the conditional expression.
This ensures that the expression is evaluated in the desired
order.

CONDITIONAL STATEMENTS

A conditional statement specifies that the next operation
to be performed depends on the truth value of a specific
condition. The condition is explicitly specified in some
statements as a conditional expression. In other
statements, the condition is implied by the use of certain
phrases.

5-6

Within the same sentence, a conditional statement can be
preceded by an imperative statement. The imperative
statement is executed regardless of the truth value of the
conditional statement.

The inclusion of an explicit scope terminator makes a
conditional statement into an imperative statement. This
section includes discussion of END-IF, END-PERFORM,
and END-SEARCH terminators even though the associated
IF, PERFORM, and SEARCH statements are not considered
conditional in this context.

EXPLICIT CONDITIONAL STATEMENTS

An explicit conditional statement depends on the
evaluation of a specified conditional expression. The truth
of the condition determines what statement is executed
next. Three different statements in the Procedure Division
can specify an explicit condition: the IF statement, the
PERFORM statement, and the SEARCH statement.

IF Statement Without END-IF

An IF statement specifies a conditional expression that is
evaluated to determine whether or not the next statement
is executed. The statement following the conditional
expression is executed if the condition is true; it is
bypassed if the condition is not true.

IF MARITAL ="M" ADD 1 TO MARRIED.

The conditional expression MARITAL = "M" is evaluated
for a truth value. If the data item MARITAL contains the
letter M, the condition is true and 1 is added to the data
item MARRIED. If the condition is not true, the ADD
statement is not executed. Control is then passed to the
next sentence.

The IF statement can also specify a statement to be
executed when the condition is not true. The keyword
ELSE precedes the statement that is executed for a false
condition.

IF MARITAL ="M" ADD 1 TO MARRIED
ELSE ADD 1 TO SINGLE.

The evaluation of the conditional expression determines
which data item (MARRIED or SINGLE) is incremented. If
the condition is true, 1 is added to MARRIED; if the
condition is not true, 1 is added to SINGLE. Control is
then passed to the next sentence.

The phrase NEXT SENTENCE can be substituted for the
statement following the conditional expression or the
statement following ELSE. This phrase causes control to
be transferred to the next executable sentence.

IF PART-NO IS NUMERIC NEXT SENTENCE
ELSE GO TO BAD-NUMBER.

In this example, a true condition causes control to be
transferred to the next sentence. If the condition is false,
control is transferred to the paragraph named
BAD-NUMBER.

The statements following the conditional expression can be

imperative or conditional statements; either statement can
be followed by a conditional statement. IF statements are

60497200 C

considered to be nested when either statement following
the conditional expression contains another IF statement.
When IF statements are nested, each ELSE phrase is paired
with the immediately preceding IF statement that is not
already paired with another ELSE phrase.

IF INV-NO = TEMP ADD COST TO ACCUM
IF FLAG = 1 PERFORM DISC-ITEM
ELSE NEXT SENTENCE

ELSE GO TO NEW-INV.

The conditional expression in the first IF statement is
evaluated. If the condition is true, the value of COST is
added to the data item ACCUM and the data item FLLAG is
checked for the value 1. If this second condition is also
true, the procedure DISC-ITEM is performed and control
returns to the next executable sentence. If FLAG does not
contain the value 1, control is immediately passed to the
next sentence. When the first conditional expression is
evaluated and the condition is false, control is immediately
transferred to the paragraph named NEW-INV.

IF Statement With END-IF

The inclusion of an END-IF terminator with an IF
statement makes the IF statement an imperative
statement. This structure can eliminate the repetition of a
condition that identifies a major category, as shown in
figure 5-4.

PROCEDURE DIVISION.

IF CATEGORY = "ANIMALS"
IF SPECIES = "CAT"
IF HABITAT = "PET"
PERFORM CAT-PET-ROUTINE
END-IF
IF HABITAT = "Z00"
PERFORM CAT-ZOO0-ROUTINE
END-IF
ELSE
PERFORM NOT-CAT-ROUTINE
END-IF
IF SPECIES = "FISH"
IF HABITAT = "PET"
PERFORM FISH-PET~ROUTINE
END-IF
IF HABITAT = "Z00"
PERFORM FISH~ZOO-ROUTINE
END-IF)
ELSE
PERFORM NOT—-ANIMAL-ROUTINE
END~-IF

The IF statement with the END-IF terminator is allowed in
all places that allow imperative statements, such as
following the AT END phrase in a READ statement. When
the end of INFILE is reached in figure 5-5, control passes
to ROUTINE-2, ROUTINE-3, or ERROR-ROUTINE,
depending on the specific condition.

READ INFILE
AT END
IF CONDITION = 2
PERFORM ROUTINE~2
ELSE
IF CONDITION = 3
PERFORM ROUTINE-3
ELSE
PERFORM ERROR-ROUTINE
END-IF
CLOSE INFILE OUTFILE
STOP RUN.

Figure 5-4. IF Statement with END-IF Example 1

60497200 E

Figure 5-5. |F Statement with END-IF Example 2

PERFORM Statement Without END-PERFORM

The PERFORM statement causes a procedure or a range of
procedures to be performed. It is a conditional statement
when the procedure is performed repeatedly until one or
more specified conditions are true.

If WITH TEST BEFORE is specified or if the WITH TEST
phrase is omitted, the conditional expression is evaluated
before control is transferred to the procedure. If the
condition is not true, the procedure is performed and the
condition is then tested again. Each time that the
condition is not true, the procedure is performed. When
the condition is true, control is transferred to the next
statement after the PERFORM statement.

PERFORM ROUTINE1 WITH TEST BEFORE
UNTIL TEMP = CNTR.

The conditional expression is evaluated and if it is true, the
procedure is not perforrned and control is immediately
passed to the next sentence. If the condition is not true,
the procedure ROUTINEL is performed and the condition is
tested again. This process continues until the condition is
true; control is then transferred to the next sentence.

If the WITH TEST AFTER phrase is specified, the
conditional expression is evaluated after the last statement
in the procedure is executed. The statements are executed
at least once, regardless of the initial conditions.

A data item or an index can be varied while performing a
procedure until a specified condition is true. The
PERFORM statement specifies the initial value of the data
item or index and the value by which it is incremented or
decremented each time the procedure is performed.

PERFORM RATE-CALC THRU RC-EXIT

VARYING QUANT FROM 50 BY 5
UNTIL QUANT GREATER THAN TEMP,

5-7

Before the range of procedures is executed, the data item
QUANT is set to 50 and the condition is evaluated. If the
condition is true, the procedures are not performed and
contro! is passed to the next executable statement. If the
condition is not true, the procedures are executed, QUANT
is incremented by 5, and the condition is evaluated again.
This cycle is repeated until the value of QUANT is greater
than the value of TEMP; control then passes to the next
statement following the PERFORM statement.

Up to three data items or indexes can be varied during
execution of the PERFORM statement. Each data item or
index is varied until a specified condition is true. At the
beginning of the PERFORM statement processing, each
item to be varied is set to its specified initial value. If the
first condition is true at this point, the procedure is not
perfarmed and control is immediately transferred to the
next statement. The procedure is performed varying the
last data item or index until its associated condition is
true. This loop is repeated each time the preceding
condition is not true. When all conditions are true,
processing of the PERFORM statement is complete and
control is passed to the next statement.

Execution of a PERFORM statement with more than one
variable item is best described through an example.
Figure 5-6 illustrates a PERFORM statement with three
variable items. When this PERFORM statement is entered,
the three indexes are each set to the initial value of 1.
The procedure MPY-ROUTINE. is executed as follows:

PERFORM MPY-ROUTINE
VARYING I-INDEX FROM 1 BY 1
UNTIL I-INDEX > CNTR
AFTER J-INDEX FROM 1 BY 7T
UNTIL J-INDEX > CNTR
AFTER K-INDEX FROM 1 BY 1
UNTIL K-INDEX > CNTR.

Figure 5-6. Varying Indexes in a PERFORM Statement

1. MPY-ROUTINE is executed repeatedly until the value
of K-INDEX is greater than the value of CNTR;
K-INDEX is incremented by 1 each time the procedure
is executed.

2. K-INDEX is reset to its initial value of 1; J-INDEX is
incremented by 1 and tested for a value greater than
CNTR.

3. If JJINDEX is not greater than CNTR, steps 1 and 2
are repeated; if it is greater than CNTR, J-INDEX is
reset to its initial value of 1 and I-INDEX is
incremented by 1 and tested for a value greater than
CNTR.

4. I I-INDEX is not greater than CNTR, steps 1, 2, and 3
are repeated; if it is greater than CNTR, contral is
passed to the next statement following the PERFORM

statement.
PERFORM Statement With END-PERFORM
The inclusion of an END-PERFORM terminator with a

PERFORM statement makes the PERFORM statement an
imperative statement and provides the COBOL user with a

®5.8

capability similar to a FORTRAN do-loop. This structure
does not have a procedure-name following the PERFORM
verb. Instead, the in-line code is performed until the
END-PERFORM terminator is reached. Figure 5-7
illustrates this capability and the structure of the
PERFORM statement with an END-PERF ORM terminator.

A. Program Listing

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. PERF.

3 DATA DIVISION.

4 WORKING-STORAGE SECTION.

5 01 STOR1 PIC 99.

6 PROCEDURE DIVISION.

7 SRTR.

8 MOVE ZEROS TO STOR1

9 PERFORM 2 TIMES

10 DISPLAY "1"

1 DISPLAY 2"

12 PERFORM VARYING STOR1
13 FROM 1 BY 1

14 UNTIL STORT = 5
15 DISPLAY "STOR1=" STOR1
16 END-PERFORM

17 DISPLAY "A"

18 PERFORM WITH TEST AFTER
19 VARYING STOR1
20 FROM 1 BY 1

21 UNTIL STORT = 5
22 DISPLAY "STOR1=" STOR1
23 END-PERFORM

24 DISPLAY "B"

25 END-PERFORM

26 DISPLAY "zZ"

27 STOP RUN.

B. Program Output

1
2
STOR1=
STOR1=
STOR1=
STOR1=

SN -

A

STOR1=
STOR1=
STOR1=
STOR1=
STOR1=

VA WN -
\

STOR1=
STOR1=
STOR1=
STOR1=

NUAN =

STOR1=
STOR1=
STOR1= -
STOR1=
S$TO51=

Vi W

Figure 5-7. PERFORM Statement with END-PERFORM

60497200 E

In the example in figure 5-7, two PERFORM statements
are nested within a higher level PERFORM. The
PERFORM at line 9 has within it, at lines 12 and 18, two
PERFORMS that are independent of each other. The
PERFORM at line 18 also demonstrates the WITH TEST
AFTER phrase; the data-item STORI is tested for a value
of 5 after the DISPLAY statment has executed. The
omission of the WITH TEST phrase (or inclusion of a WITH
TEST BEFORE phrase) would cause STOR1 to be evaluated
before the DISPLAY statement execution.

SEARCH Statement Without END-SEARCH

The SEARCH statement is used to search a table for a
specific element within the table. The element is
designated by specifying a condition; when the condition is
true, the desired element has been lacated. The use of the
SEARCH statement is described in detail in section 6,
Table Handling.

60497200 E

The condition that must be satisfied to terminate a search
operation depends on the type of search performed:

® A sequential search is terminated when any one of the
specified conditions is true.

e A binary search is terminated when all the specified
conditions are true.

The table to be searched must be described in the Data
Division with an OCCURS clause that includes the
INDEXED BY phrase. The index-name specified in this
phrase is used to search the table. At the end of a
successful search, the index-name points to the table
element that satisfies the search criteria.

5-8.1/5-8.2]

A sequential search begins at the current setting of the
index-name and continues to the end of the table. Each
table element is tested for the specified conditions. Any
valid relational condition can be specified. Multiple
conditions are tested in the order specified. When a table
element satisfies a condition, the imperative statement
associated with that condition is executed. If the end of
the table is reached, control is passed to the imperative
‘statement of the AT END phrase (if specified) or to the
next executable statement.

A binary search is specified by the SEARCH ALL format of
the SEARCH statement. One or more conditions can be
specified; all conditions must be true for the search
operation to terminate successfully. Each specified
condition can be a condition-name condition or an equal
condition. If no element in the table satisfies the
conditions, control is passed to the imperative statement
of the AT END phrase (if specified) or to the next
executable statement.

The sample program at the end of this section illustrates
the use of the SEARCH statement to perform a sequential
search operation. Additional examples of the SEARCH
statement can be found in section 6.

SEARCH Statement With END-SEARCH

The inclusion of an END-SEARCH terminator with a
SEARCH statement makes the SEARCH statement an
imperative statement. This structure can eliminate the
repetition of searching for an item at a major level, as
shownin figure 5-8.

In the example in figure 5-8, the value 13 is found in the
table TBL by finding the first digit in one SEARCH and the
second digit in another SEARCH. The table values above
and below 13 are also displayed.

A. Program Listing

IDENTIFICATION DIVISION.
PROGRAM-ID. ENDSEARCH.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 TBL.
02 LEVEL-1
03 LEVEL-2
13 L21 PIC 9.
13 L22 PIC 9.
PROCEDURE DIVISION.
STRT.

SET L1INDX, L2INDX TO 1
SEARCH LEVEL-1

SEARCH LEVEL-2
AT END DISPLAY

END-SEARCH

SET L2INDX UP BY 2

END-SEARCH
DISPLAY "ALL DONE"™
STOP RUN.

B. Program Output

18T DIGIT FOUND- 1
FOUND 2ND DIGIT- 3
NUMBER BELOW IS-12
NUMBER ABOVE IS-14
ALL DONE

OCCURS 3 INDEXED BY LT1INDX.
OCCURS 5 INDEXED BY L2INDX.

MOVE "000102030410111213142021222324" TO TBL

AT END DISPLAY "1ST DIGIT NOT FOUND"
WHEN L21 (L1INDX, L2INDX) =1
DISPLAY "1ST DIGIT FOUND-" L2171 (LT1INDX, L2INDX)

"2ND DIGIT NOT FOUND"
WHEN L22 (LT1INDX, L2INDX) = 3

DISPLAY "FOUND 2ND DIGIT-" L22 (LT1INDX, L2INDX)

SET L2INDX DOWN BY 1
DISPLAY "NUMBER BELOW IS-" LEVEL-2 (LTINDX, L2INDX)

DISPLAY "NUMBER ABOVE IS-" LEVEL-2 (L1INDX, L2INDX)

Figure 5-8. SEARCH Statement with END-SEARCH

60497200 E

IMPLICIT CONDITIONAL STATEMENTS

Implicit conditions are indicated in certain optional phrases
that can be included in specific Procedure Division
statements. When one of these phrases is included, it is
followed by an imperative statement that is executed when
the condition implied by the phrase is true.

Five phrases imply a conditions AT END, AT
END-OF -PAGE, INVALID KEY, ON OVERFLOW, and ON
SIZE ERROR. Each phrase can be used with specific
statements.

At End Condition

The AT END phrase can be used in conjunction with the
READ, RETURN, and SEARCH statements. The condition
implied by this phrase is true when the end of a file or
table has been reached. When a true condition occurs,
control is passed to the imperative statement associated
with the AT END phrase.

Execution of a READ statement causes a record to be
made available to the program. The AT END phrase can be
included in a READ statement that accesses records
sequentially. If it is included, the associated imperative
statement is executed when the end-of-file condition is
detected while attempting to read a record.

READ CARD-IN RECORD
AT END GO TO CLOSING.

Execution of this statement causes the next sequential
record in the input file CARD-IN to be read. If the
end-of-file condition is true when the READ statement is
executed, control is transferred to the paragraph named
CL.OSING.

The AT END phrase is required in the RETURN statement.
This statement accesses a record in a sort file or a merge
file and makes the record available for processing. The
imperative statement associated with the AT END phrase
is executed when the end-of-file condition is true.

RETURN SORT-FILE RECORD
AT END GO TO ENDIT.

Each time this statement is executed, a record is retrieved
from the file SORT-FILE until an end-of-file condition
exists. When this condition is true, control is transferred to
the paragraph named ENDIT.

The SEARCH statement can include the AT END phrase.
If it is included, the imperative statement associated with
the AT END phrase is executed when no element in the
table satisfies the search criteria.

SEARCH PART-ITEM AT END GO TO NOT-FOUND
WHEN PART-ITEM (PI-INDEX) = PART-NO
GO TO FOUND.

When this statement is executed, the table PART-ITEM is
searched for an element that satisfies the specified
condition. If the end of the table is reached and the
condition has not been satisfied, control is transferred to
the paragraph named NOT-FOUND.

5-10

End-of-Page Condition

The AT END-OF-PAGE (or AT EOP) phrase can be used
only with a WRITE statement that prepares an output file
for printing; the FD entry for the file must include the
LINAGE clause. This phrase is usually specified to control
the printing of headings and footings. The AT
END-OF -PAGE phrase includes an imperative statement
that is executed when the end of a page is reached. The
limits of the page must be defined by the LINAGE clause.

An end-of-page condition exists when execution of the
WRITE statement causes printing or spacing in the footing
area (if specified) or beyond the page limit. The
imperative statement associated with the AT
END-OF -PAGE phrase is executed before page positioning
if printing occurs in the footing area or after page
positioning if printing extends beyond the page limit.

WRITE PRINT-LINE
AT END-OF-PAGE GO TO PRINT-HEADS.

When the end-of-page condition occurs, control is
transferred to the paragraph named PRINT-HEADS.
Assuming that the LINAGE clause for the print file does
not specify a footing area, the GO TO statement is
executed after the file is positioned at the next page.

WRITE PRINT-LINE
AT END-OF -PAGE GO TO LAST-LINE.

In this example, the end-of-page condition causes control
to be transferred to the paragraph named LAST-LINE.
Assuming that the LINAGE clause for the print file
specifies a footing area, the GO TO statement is executed
before the file is positioned at the next page.

Invalid Key Condition

An invalid key condition can occur when a DELETE, READ,
REWRITE, START, or WRITE statement is being executed
for a file that is accessed by a key data item. The
INVALID KEY phrase implies that the attempted operation
is illegal. In most cases, the invalid key condition oeccurs
when the record cannot be found in the file. For a WRITE
statement, an invalid key condition occurs when the record
already exists in the file.

The INVALID KEY phrase specifies an imperative
statement that is executed when the condition is true; the
statement containing the INVALID KEY phrase is not
executed. An invalid key condition can exist under the
following circumstances:

DELETE statement - any file organization except
sequential or word-address; random or dynamic access
mode.

The record to be deleted cannot be found.
READ statement - any file organization except
sequential; random access mode or dynamic access
mode when records are accessed randomly.

The record to be read cannot be found; for

word-address file organization, an attempt - is
made to read past the last word of the file.

60497200 C

REWRITE statement - any file organization except
sequential or word-address; random or dynamic access
mode.

The record to be rewritten cannot be found.

REWRITE statement - indexed, direct, or actual-key
file organization; any access mode.

The primary key has been changed between
reading and rewriting in sequential access mode
or the record to be rewritten would create a
duplicate alternate key when duplicate alternate
keys are not allowed.

START statement - any file organization except
sequential or word-address; sequential or dynamic
access mode.

No record in the file satisfies the specified
relational condition.

WRITE statement - any file organization except
sequential or word-address; any access mode.

The record to be written already exists in the file
with the same primary key.

WRITE statement - indexed, direct, or actual-key file
organization; any access mode.

The record to be written already exists with the
same alternate key when duplicate alternate keys
are not allowed.

WRITE statement - indexed file organization;
sequential access.

The record to be written does not have a primary
key that is greater than the primary key of the
previous record written.

WRITE statement - actual-key organization; random or
dynamic access mode.

The key of the record to be written is not a valid
actual key.

Overflow Condition

The CALL, STRING, and UNSTRING statements include
the optional ON OVERFLOW phrase. When an overflow
condition occurs during execution of the statement, the
imperative statement associated with the ON OVERFLOW
phrase is executed.

An overflow condition exists for a STRING or UNSTRING
statement when the receiving item or items cannot contain
the complete sending item. If the ON OVERFLOW phrase
is not specified, an overflow condition causes control to be
passed to the next executable statement.

For a CALL statement, an overflow condition exists when
there is insufficient room to load a dynamic subprogram.
This occurs when the maximum field length would be
exceeded by loading the subprogram. When the ON
OVERFLOW phrase is not specified and an overflow
condition occurs, the run is aborted.

60497200 C

Size Error Condition

The ON SIZE ERROR phrase can be included in any of the
arithmetic statements: ADD, SUBTRACT, MULTIPLY,
DIVIDE, and COMPUTE. A size error condition occurs
when the number of integral digits in the result of an
arithmetic operation exceeds the number of integral
positions in the receiving item. Size error testing is
performed on intermediate and final results of all
arithmetic operations. When a size error exists, the
imperative statement associated with the ON SIZE ERROR
phrase is executed. The ON SIZE ERROR phrase is
described in more detail in section 4, Arithmetic
Operations.

SAMPLE CONDITIONAL PROGRAM

Various types of conditional operations are used in the
sample program shown in figure 5-9. Both implicit and
explicit conditions are included in the program.
Figure 5-10 illustrates the format of the input records used
by the program. An output report generated by the
program is shown in figure 5-11.

The input file used by this pragram contains four different
types of records. The first group of input records
(CUSTOMER-REC records) is used to enter data into the
table CUST-TABLE. The second group of input records is
used to enter data into the table ITEM-TABLE. The third
group of input records contains two types of records
(NAME-REC and LINE-REC records) that are used to
process an order for a customer.

Two PERFORM statements are utilized to access the input
data and to enter it into the two tables. The first
PERFORM statement (lines 84, 85, and 86) causes data to
be stored in the table CUST-TABLE (lines 91
through 100). This statement is executed repeatedly until
the data item DISC-FLAG contains the letter E (line 86).
When this condition is true, the next PERFORM statement
is executed. The second PERFORM statement (lines 87,
88, and 89) causes data to be stored in the table
ITEM-TABLE (lines 101 through 109). This statement is
executed repeatedly until the data item ITEM-ID equals
zero (line 89). When this condition is true, control is passed
to the procedure ORDER-PROCESSING (line 90).

A customer order consists of at least two input records.
The first record for an order (NAME-REC record) is
identified by the letter A in the REC-CODE field
(lines 113 and 132). This record is followed by one record
(LINE-REC record) for each item of the order; LINE-REC
records are identified by the letter B in the REC-CODE
field (line 130). When the first record is read for an order,
the CUSTOMER-ID field is used to search the table
CUST-TABLE for the name of the customer (lines 116
through 119). As each LINE-REC record is read, the table
ITEM-TABLE is searched for the description of the item
specified by the ITEM-NO field (lines 136 through 139).

As the item records are processed, a total for the order is
accumulated (line 143). When all line items for an order
have been read, a discount is computed if the discount
conditions for the order have been satisfied (lines 150
through 153).

5-11

-
VRNV WN =

- e
W =

14

IDENTIFICATION DIVISION.
PROGRAM-ID. CONDITIONAL-EXAMPLE.
ENVIRONMENT DIVISION.)
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT IN-FILE ASSIGN TO INPUT.
SELECT PRINT-FILE ASSIGN TO OUTPUT.
DATA DIVISION.
FILE SECTION.
FD IN-FILE
LABEL RECORD IS OMITTED
DATA RECORDS ARE CUSTOMER-REC, ITEMS-REC,
NAME-REC, LINE-REC.
01 CUSTOMER-REC.

03 CuUsT-ID PICTURE XXX.
03 CUST-NAME PICTURE X(20).
03 FILLER PICTURE X(56).
03 DISC-FLAG : PICTURE X.
01 ITEMS-REC.
03 ITEM-ID PICTURE 999.
03 ITEM-DESC PICTURE X(20).
03 FILLER PICTURE X(57).
01 NAME-REC.
03 REC-CODE PICTURE X.
03 FILLER PICTURE XXX.
03 INV-NO PICTURE 9(6).
03 FILLER PICTURE XXXX.
03 CUSTOMER-ID PICTURE XXX.
03 FILLER PICTURE X(63).
01 LINE-REC.
03 REC-CODE PICTURE X.
03 FILLER PICTURE XXX.
03 ITEM-NO PICTURE 999.
03 FILLER PICTURE X(7).
03 QUANTITY PICTURE 999.
03 FILLER : PICTURE X(7).
03 cosT PICTURE 9(5)Vv99.
03 FILLER PICTURE X(49).

FD PRINT-FILE
LABEL RECORD IS OMITTED
DATA RECORD IS PRINTLINE.

01 PRINTLINE PICTURE X(136).
WORKING-STORAGE SECTION.

01 SAVE PICTURE X.

01 ACCuM PICTURE 9(7)V99 USAGE
01 DISCOUNT PICTURE 9(6)V99 USAGE

01 CUST-TABLE.
03 CUSTOMER OCCURS 50 TIMES
INDEXED BY C-INDEX.

05 C-IDENT PICTURE XXX.
05 C-NAME PICTURE X(20).
05 C-FLAG PICTURE X.

01 ITEM-TABLE.
03 ITEM OCCURS 100 TIMES
INDEXED BY I-INDEX.
05 I-IDENT PICTURE 999.
05 1I-DESC PICTURE X(20).

COMP-1.
CoMP.

5-12

Figure 5-9. Sample Conditional Program (Sheet 1 of 3)

60497200 C

01 LINE-1. i
03 FILLER PICTURE X(5) VALUE SPACES.
03 CUST-NAME PICTURE X(20).
03 FILLER PICTURE X(5) VALUE SPACES.
03 INVOICE PICTURE 9(6).
03 FILLER PICTURE X(100) VALUE SPACES.
07 LINE-2.
03 FILLER PICTURE X(10) VALUE SPACES.
03 aTy PICTURE Z1Z9.
03 FILLER PICTURE X(5) VALUE SPACES.
03 DESCRIPTION PICTURE X(20).
03 FILLER PICTURE X(5) VALUE SPACES.
03 PRICE PICTURE $$$%$9.99.
03 FILLER PICTURE X(85) VALUE SPACES.
01 LINE-3.
03 FILLER PICTURE X(42) VALUE SPACES.
03 AMOUNT PICTURE $$$%$$9.99.
03 FILLER PICTURE X(85) VALUE SPACES.

PROCEDURE DIVISION.
SETTING-UP.
OPEN INPUT IN-FILE.
OPEN OQUTPUT PRINT-FILE.
MOVE SPACES TO CUST-TABLE, ITEM-TABLE.
PERFORM TABLE-SETUP-1 THRU TSET-1A
VARYING C-INDEX FROM 1 BY 1
UNTIL DISC-FLAG EQUALS "E".
PERFORM TABLE-SETUP-2 THRU TSET-2A
VARYING I-INDEX FROM 1 BY 1
UNTIL ITEM-ID EQUALS ZERO.
GO TO ORDER-PROCESSING.
TABLE-SETUP-1.
READ IN-FILE RECORD
AT END GO TO TSET-1A.
IF DISC-FLAG = "g"
GO TO TSET-1A.
MOVE CUST-ID TO C-IDENT (C-INDEX).
MOVE CUST-NAME OF CUSTOMER-REC TO C-NAME (C-INDEX).
MOVE DISC-FLAG TO C-FLAG (C-INDEX).
TSET-1A.
EXIT.
TABLE-SETUP-2.
READ IN-FILE RECORD
AT END GO TO TSET-2A.
IF ITEM-ID EQUALS ZERO
GO TO TSET-2A.
MOVE ITEM-ID TO I-IDENT (I-INDEX).
MOVE ITEM-DESC TO I-DESC (I-INDEX).
TSET-2A.
EXIT.
ORDER-PROCESSING.
READ IN-FILE RECORD
AT END GO TO ERROR-1.
IF REC~CODE OF NAME-REC NOT EQUAL TO "A"
GO TO ERROR-2.
HEADER-ITEM.
SET C-INDEX TO 1.
SEARCH CUSTOMER AT END GO TO ID-NOT-FOUND
WHEN CUSTOMER-ID EQUALS C-IDENT (C-INDEX)
NEXT SENTENCE.
MOVE C-FLAG (C-INDEX) TO SAVE.
MOVE C-NAME (C-INDEX) TO CUST~-NAME OF LINE-1.

60497200 C

Figure 5-9. Sample Conditional Program (Sheet 2 of 3)

5-13

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

HI-1.
MOVE INV-NO TO INVOICE.
WRITE PRINTLINE FROM LINE-1
AFTER ADVANCING 3 LINES.
MOVE ZEROS TO ACCUM.
READ-RECORD.
READ IN-FILE RECORD
AT END GO TO CLOSING.
IF REC-CODE OF LINE-REC EQUALS "B"
GO TO LINE-ITEM.

IF REC-CODE OF NAME-REC EQUALS "A" PERFORM TOTALS

ELSE GO TO ERROR-2.
GO TO HEADER-ITEM.
LINE~-ITEM.
SET I-INDEX TO 1.
SEARCH ITEM AT END GO TO NOT-FOUND
WHEN I-IDENT (I-INDEX) EQUALS ITEM-NO
MOVE I-DESC (I-INDEX) TO DESCRIPTION.
LI-1.
MOVE QUANTITY TO QTY.
MOVE COST TO PRICE.

ADD COST TO ACCUM ON SIZE ERROR PERFORM ERROR-3.

WRITE PRINTLINE FROM LINE-2.
GO TO READ-RECORD.
TOTALS.
MOVE ACCUM TO AMOUNT.
WRITE PRINTLINE FROM LINE-3
AFTER ADVANCING 2 LINES.
IF ACCUM GREATER THAN 100.00 AND SAVE EQUALS
NEXT SENTENCE
ELSE GO TO HEADER-ITEM.
COMPUTE DISCOUNT ROUNDED = ACCUM * _10.
MOVE DISCOUNT TO AMOUNT.
WRITE PRINTLINE FROM LINE-3.
SUBTRACT DISCOUNT FROM ACCUM GIVING AMOUNT.
WRITE PRINTLINE FROM LINE-3
AFTER ADVANCING 2 LINES.

ERROR-1.
DISPLAY "NO INPUT RECORDS".
STOP RUN.
ERROR-2. A
DISPLAY "ILLEGAL REC-CODE - " REC-CODE OF NAME-REC.

GO TO READ-RECORD.
ID-NOT-FOUND.

MOVE CUSTOMER-ID TO CUST-NAME OF LINE-1.

GO TO HI-1.
NOT-FOUND.

MOVE ITEM-NO TO DESCRIPTION.

GO TO LI-1.
ERROR-3.

DISPLAY "ACCUMULATOR OVERFLOW".
CLOSING.

PERFORM TOTALS.

CLOSE IN-FILE, PRINT-FILE.

STOP RUN.

5-14

Figure 5-9. Sample Conditional Program (Sheet 3 of 3)

60497200 C

Column 1 Column 80

| J

A13FASHIONS INC D
A4L9IDA"S DRESSES
C25THE MOD BOUTIQUE

GBATODAY"S FASHIONS INC b
K49MARY"S DRESS SHOPPE
L91COUNTRY GIRL FASHION D
V73ANN"S FASHION SHOP
MS8THE CLOTHES RACK INC D

J92CARY"S SPORTSWEAR
R64MR SMITH FASHIONS

.
.

SN7JILL"S BOUTIQUE
TSOWILDA"S DRESS SHOPPE
W62EDITH"S CASUALS D

023NILE-GR PANTS - 5
024NILE-GR PANTS - 7
025NILE-GR PANTS - 9
026NILE-GR PANTS -11
027NILE-GR PANTS -13
041LEMON-YEL PANTS - 5
N42LEMON-YEL PANTS - 7
043LEMON-YEL PANTS - 9
044LEMON-YEL PANTS -11
O45LEMON-YEL PANTS -13
150BROWN PANTS - 5
151BROWN PANTS - 7
152BROWN PANTS - 9
153BROWN PANTS -11
154BROWN PANTS -13

962TARTAN JACKET - 9
963TARTAN JACKET -11
964TARTAN JACKET -13

000

A 265401 Ré64

B N41 020 0021900
B 042 025 0027375
B 043 030 0032850
B 044 025 0027375
B 045 020 0021900
B 604 010 0014950
B 606 015 0024425
B 654 010 0022500
B 656 015 0033750
A 265403 D16

B 527 . 012 0017940
8 577 012 0027000
B 741 010 0016950

Figure 5-10. Sample Input for Conditional Program

60497200 C 5-15

MR SMITH FASHIONS

041
042
043
044
045
604
606
654
656

HIS-N-HERS FASHIONS

12
12
10
10
6
10
8
10
6

GUYS AND
15
15
15
15

10
10

10
15
17
12
10
15
17
12

527
577
741
781
024
026
044
152
154

GALS
195
196
201
202

152
236

410
411
412
413
490
491
492
493

THE CLOTHES RACK

363
364
388
389
816
817
818
876
877
878

INC

265401

265403

265405

265406

$219.00
$273.75
$328.50
$273.75
$219.00
$149.50
$244.25
$225.00
$337.50

$2270.25

$179.40
$270.00
$169.50
$285.00
$65.70
$109.50
$87.60
$109.50
$65.70

$1341.90
$134.19

$1207.71

$207.00
$207.00
$315.00
$315.00

$109.50
$225.00

$152.50
$228.75
$259.25
$183.00
$265.00
$397.50
$450.50
$318.00

$3633.00

$457.50
$305.00
$795.00
$530.00
$387.50
$620.00
$542.50
$643.75
$1030.00
$901.25

$6212.50
$621.25

$5591.25

5-16

Figure 5-11. Output Report from Sample Conditional Program

60497200 C

TABLE HANDLING

#

Data used by a COBOL 5 program is frequently organized
into a table as a group of constant values. Three methods
are available for describing a table and referencing
specific elements within a table:

e Each table element is named, described, and assigned
a value; elements are referenced by data-name.

Y A table described by the above method is redefined
and described with the OCCURS clause; individual
elements are referenced by subscripting or indexing.

e During program execution, data can be moved into a
table described with the OCCURS clause; individual
elements are referenced by subscripting or indexing.

Table elements are referenced by indexing when the
INDEXED BY option is included in the OCCURS clause. If
the INDEXED BY option is not included, table elements
must be referenced by subscripting. Indexing and
subscripting can be mixed within a table. An index, which
is identified by the index-name specified in the OCCURS
clause, contains a value that points to a specific table
element. A subscript is either an integer or a data item
that contains an integer value; it locates a specific table
element.

Indexing is more efficient than subseripting and should be
used whenever possible. When subscripting is used,
subscripts should be COMPUTATIONAL-1 items for the
most efficient results. Constant indexing or subscripting
should always be specified by a literal.

TABLE DEFINITION

Tables used during program execution are described in the
Data Division. The values for the table elements can be
assigned in the table description, or the values can be
entered in the table during program execution. Table
definition can involve the VALUE, REDEFINES, and
OCCURS clauses as well as the PICTURE clause.

ASSIGNING INDIVIDUAL DATA-NAMES

A data-name can be assigned to each element in the table.
This allows direct reference to a specific table element.
Values are stored in the table by specifying the VALUE
clause for each table element.

Figure 6-1 illustrates a table that contains the number of
male students and the number of female students for each
of the 12 grades. The 24 numbers in the table are
organized by grade level with the male number preceding
the female number.

During compilation, the processor associates the 24
numbers with particular areas i-» memory. At execution
time, all of the numbers are stored in memory and are
available for reference by the object program. The table
elements are referenced by data-name; however, a specific
male or female number must be qualified when it is
referenced.

ADD MALE OF GRADE-2, MALE OF GRADE-3
TO COUNTER.

60497200 C

DATA DIVISION.

01 GRADE-COUNT.
03 GRADE-1.
05 MALE PICTURE 999 VALUE 215.
05 FEMALE PICTURE 999 VALUE 257.
03 GRADE-2.
05 MALE PICTURE 999 VALUE 245.
05 FEMALE PICTURE 999 VALUE 289.
03 GRADE-3.
05 MALE PICTURE 999 VALUE 198.
05 FEMALE PICTURE 999 VALUE 232.

03 GRADE-12.
05 MALE PICTURE 999 VALUE 202.
05 FEMALE PICTURE 999 VALUE 248.

Figure 6-1. Table Definition by Data-Names

This statement causes the values 245 and 198 to be added
to the data item COUNTER. The values stored in the table
GRADE-COUNT are constant values that remain the same
each time the program is executed.

REDEFINING A TABLE

Elements within a table can be referenced by position in
the table rather than by data-name. This is accomplished
by describing a table that assigns values and then
redefining the table as a series of repeating data items.
Procedure Division statements then reference the table
data by specifying the redefined data-name along with a
subscript or index-name. The REDEFINES and OCCURS
clauses are required to redefine a table.

The table shown in figure 6-1 is redefined in figure 6-2.
The level Ol entry in figure 6-2 must immediately follow
the last level 05 entry for GRADE-12 in figure 6-1. The
redefined table is given the data-name GRADE-TABLE.
The table elements are organized into 12 sets named
GRADE; each set contains two values named
SEX-COUNT. Subsequent references to the redefined
table can specify GRADE-TABLE (the entire table),
GRADE (one set of two values, identified by one subscript),
or SEX-COUNT (one value in one set, identified by two
subscripts).

MOVE SEX-COUNT (12, 1) TO TEMP.

This statement causes the first value (number of males) in
the twelfth set (GRADE-12) to be moved to a data item
named TEMP. If the subscript had been (12, 2), the female
number of the GRADE-12 set would have been maved.

‘DATA DIVISION.

01 GRADE-TABLE REDEFINES GRADE-COUNT.
03 GRADE OCCURS 12 TIMES.
05 SEX-COUNT PICTURE 999
OCCURS 2 TIMES.

Figure 6-2. Table Redefinition

A data-name rather than an integer can be used as a

subscript. This allows one statement to re ference
different table elements at different times during
processing. Indexing can also be used for a redefined

table. Subscripts and indexes are described in detail later
in this section.

MOVING VALUES INTO A TABLE

A table that is described with the OCCURS clause cannot
specify values to be stored in the table. When the entry
containing the OCCURS clause is not subordinate to an
entry that redefines a table with specified values, the
values can be entered into the table during program
execution.

When a table is described in the Data Division and values
are not entered in the table, statements in the Procedure
Division can supply the data and store it in the table.
Figure 6-3 illustrates the description of a table for which
values are supplied at execution time. The table contains
50 sets named CUSTOMER; each set contains one value for
each of the three subordinate items. Reference to an
element in this table must include the index-name
C-INDEX unless it is a constant reference, in which case a
literal can be specified. The sample program in section 5
(figure 5-5) reads an input file and stores the information
in this table.

DATA DIVISION.

CUST-TABLE. ‘
03 CUSTOMER OCCURS 50 TIMES
INDEXED BY C-INDEX.

01

05 C-IDENT PICTURE XXX.
05 C-NAME PICTURE X (20).
05 C-FLAG PICTURE X.

Figure 6-3. Table Definition by the OCCURS Clause

The example in figure 6-4 illustrates how to use the
PERFORM statement with an END-PERFORM terminator
to store information in a table (STOCK-TABLE). Refer to
section 5 for more detail on the usage of the PERFORM
statement with END-PERFORM.

TABLE REFERENCE

Table elements are referenced in Procedure Division
statements in one of three ways depending on the
description of the table. The first type of reference is
used when the table is not described with the OCCURS
clause. Each element in the table can be identified by a
unique data-name or a data-name that can be made unique
by qualification. When a table is described with the
OCCURS clause, either subscripting or indexing must be
used to reference table elements.

UNIQUE REFERENCE

When a table is described without using the OCCURS
clause, data-names are assigned to all table elements. A
specific table element can then be referenced by its
data-name. If the data-name is not unique, it must be
made unique by qualification.

01 STOCK-TABLE.
03 PART-ITEM
OCCURS 10 TIMES
INDEXED BY INDEX-B.
05 PART PICTURE 999
OCCURS 20 TIMES
INDEXED BY INDX-P.

PERFORM VARYING INDEX-B FROM 1 BY 1
UNTIL INDEX-B = 10
UNTIL INDEX-P = 20

END-PERFORM
END-PERFORM.

PERFORM VARYING INDEX-P FROM 1 BY 1

MOVE PART-LIST (INDEX-B, INDEX-P) TO PART (INDEX-B, INDEX=P)

Figure 6-4. Using PERFORM/END-PERFORM to Fill a Table

60497200 D

Unique reference is used with the table shown in
figure 6-1. The MALE or FEMALE element for any grade
level must be qualified by the group data-name of the
specific grade level.

FEMALE OF GRADE-1
MALE OF GRADE-9

The first example references the FEMALE element in the
set of two values associated with the group item
GRADE-1. The MALE element in the set of two values
associated with GRADE-9 is referenced in the second
example. Group data-names in this table can be
referenced without qualification.

MOVE GRADE-3 TO GRADE-QUT.

This example references the third set of values in the
table. The data-name GRADE-OUT references a group
item consisting of two elementary data items to receive
the MALE and FEMALE values in the GRADE-3 set.

SUBSCRIPTING

A table described by the OCCURS clause can be
referenced by subscripts. A subscript is either an integer
or the data-name of an elementary numeric data item
containing an integer value. The integer points to a
specific group or elementary item within the table.

Subscripts are enclosed in parentheses following the
data-name of the table element. The lowest valid
subscript number is one; the highest valid number
corresponds to the maximum number of occurrences of the
element as specified in the OCCURS clause. The system
does not automatically check the subscript for a valid
number; this can be performed by Procedure Division
statements or by specifying DB=SB in the COBOLS5 control
statement.

The table description can contain up to 48 levels of nested
OCCURS clauses. In this case, one subscript is required
for the first entry and one for each subordinate entry
containing the OCCURS clause.. When more than oane
subscript is required, the subscripts are written in
descending order of inclusiveness. The subscripts can, but
need not, be separated by commas. A separating comma
must be followed by a space. The table shown in figure 6-2
contains two levels of nesting; reference to the
SEX-COUNT items requires two subscripts.

SEX-COUNT (4, 2)

The first subscript refers to the fourth occurrence of the
group item GRADE and the second subscript refers to the
second occurrence of SEX-COUNT within the fourth group
item; that is, the subscripts point to the female population
of the fourth grade.

When a data-name is used as a subscript, it must refer to a
numeric elementary data item that represents an integer;
the usage "of the data item cannot be INDEX or
COMPUTATIONAL -2. For most =fficient usage, the data
item should be COMPUTATIONAL-1; otherwise, it should
be as small as possible. A subscript data-name can be
qualified; however, it cannot be subscripted. . When the
table referemce is executed, the current value of the
subscript data item is used to calculate the table element
desired.

60497200 C

Figure 6-5 illustrates the use of a data-name subscript.
The data item COUNTER is described in the Data Division
as an integer. In the Procedure Division, COUNTER is
given an initial value of 1. The paragraph
TABLE-LOOKUP is executed repeatedly until one of the
two conditions is satisfied. Each time TABLE-LOOKUP is

- executed, the subscript COUNTER has been incremented

by 1 and points to the next element in the table. '

DATA DIVISION.

01 TEMP PIC 9(5).
01 COUNTER PIC 999 USAGE COMP-1.
01 PARTS-TABLE.
03 PART-ITEM PIC 9(5)
OCCURS 100 TIMES.

PROCEDURE DIVISION.

MOVE 1 TO COUNTER.
TABLE-LOOKUP. '
ILF PART-ITEM (COUNTER) = TEMP
GO TO PART-FOUND.
IF COUNTER > 100 GO TO NOT-FOUND.
ADD 1 TO COUNTER.
GO TO TABLE-LOOKUP.

Figure 6-5. Table Reference by Subscripting

INDEXING

When a table description includes the INDEXED BY option
in the OCCURS clause, table elements are referenced by
indexing. The INDEXED BY option specifies the
index-name to be used for referencing an element within
the table. The index-name cannot be described anywhere
else in the program; the allocation and format of the index
associated with the index-name are controlled by the
compiler. The index is not data and cannot be part of a
data hierarchy. Indexing is more efficient than
subscripting and should be used if possible. Indexes and
integers can be mixed in a table reference. Indexes and
subscripts can also be mixed.

Up to 48 levels of nested OCCURS clauses can be specified
in the table description. Each level is assigned an
index-name in an INDEXED BY phrase. Table references
include the index-names in descending order of
inclusiveness. Index-names are enclosed in parentheses and
can, but need not, be separated by commas. A separating
comma must be followed by a space.

The value of the index at the time of execution
corresponds to the occurrence number of an element in the
associated table. An index must be initialized before it is
used as a table reference; a SET, SEARCH, or PERFORM
statement can be used to give an initial value to an index.
An index value cannot be less than 1 or greater than the
highest permissible occurrence number for the element.

6-3

Figure 6-6 illustrates a table description with two levels of
nested OCCURS clauses. An index-name is specified for
each level. The MOVE statement in the Procedure
Division references a specific YEAR element in the table.
The two index-names (S-INDEX and Y-INDEX) point to a
location in the table corresponding to the current values of
the respective indexes.

DATA DIVISION.

01 POPULATION TABLE.
03 STATE OCCURS 50 TIMES
INDEXED BY S-1INDEX.
05 YEAR PICTURE 9(10)
OCCURS 10 TIMES
INDEXED BY Y-INDEX.

PROCEDURE DIVISION.

MOVE YEAR (S-INDEX, Y-INDEX)
TO MALE-POP.

Figure 6-6. Table Reference by Indexing

The type of indexing used in figure 6-6 is called direct
indexing. The table element referenced is located by the
absolute value of the index associated with the specified
index-name. Relative indexing is specified when the
index-name is followed by a plus sign or a minus sign and
an integer. The table element referenced in this manner is
located by using the value of the index and incrementing or
decrementing that value by the specified integer; the
actual value of the index is not changed.

The table shown in figure 6-6 contains 10 population

numbers for each of 50 states. The 10 numbers represent
the number of males followed by the number of females for
each of five years. Assuming that execution of the MOVE
statement in this figure references the first number for the
first state, the male population number for the first year is
moved to the data item MALE-POP. The female
population number for the same year can then be
referenced by relative indexing.

MOVE YEAR (S-INDEX, Y-INDEX + 1)
TO FEMALE-POP.

The value associated with an index-name can only be used
as a table reference. The value can be stored in an index
data item when the index value is to be used as data. The
index data item is described in the Data Division with the
USAGE IS INDEX clause. A SET statement in the
Procedure Division can store an index value in the index
data item. Anindex data item can be used in SEARCH and
SET statements and in relational conditions; it can also be

specified in the USING phrases of the Procedure Division-

header and the CALL statement.

6-4

TABLE HANDLING STATEMENTS

Three COBOL 5 statements provide the means to
effectively enter data in tables or to access data stored in
tables. The PERFORM statement with the VARYING
phrase can be used for a table that is either subscripted or
indexed. The SEARCH statement is used only for a table
that is indexed. An index can be set to a value by the SET
statement.

Data can be entered into tables by using the PERFORM
statement with the END-PERFORM terminator (see
figure 6-4). A table can be searched for a specific value
by using the SEARCH statement with the END-SEARCH
terminator (see figure 5-8 in section 5).

PERFORM STATEMENT

An index or a data-name subscript can be automatically
incremented or decremented by a specified value eacn
time a PERFORM statement is executed. The index or
subscript points to a different element in the table each
time the procedure is performed.

The VARYING phrase of the PERFORM statement
specifies the index-name or subscript data-name. This
phrase also specifies the initial value for the index or
subscript, the value by which it is incremented or
decremented, and the condition that determines when
execution of the PERFORM statement is complete. A
negative value is specified when the index or subscript is to
be decremented. The procedure is performed repeatedly
until the specified condition is true.

PERFORM TABLE-SETUP-1 THRU TSET-1A
VARYING C-INDEX FROM 1 BY 1
UNTIL DISC-FLAG EQUALS "g".

The procedure to be performed is a series of paragraphs
beginning with TABLE-SETUP-1 and ending with TSET-1A.
The index associated with C-INDEX is initialized with the
value 1. Each time the procedure is executed, C-INDEX is
incremented by 1. When the data item DISC-FLAG
contains the letter E, the procedure is not performed and
control passes to the sentence following the PERFORM
statement.

The PERFORM statement can specify up to 48 indexes or
48 data-name subscripts to be varied. The initial value,
the increment or decrement value, and the condition to be
satisfied are specified for each index or subscript. The
manner in which three items are varied and the procedure
(or range of procedures) is performed is discussed in
section 5, Conditional Operations. The sample program in
section 5 uses the PERFORM statement to enter data in a
table by varying an index.

SEARCH STATEMENT

A table referenced by indexing can be searched for an
element that satisfies one or more conditions. Two
different types of search procedures can be specified by
SEARCH statements. The format of the statement
determines whether the search procedure is a sequential or
binary search.

The description of the table to be searched must include
the OCCURS clause with the INDEXED BY phrase. This
phrase specifies the index-name that is used to search the
table. After a successful search, the index-name points to
a table element that satisfies the search criteria.

60497200 C

Sequential Search

A sequential search begins at the current setting of the
index-name. If the current value of the index-name points
to the first element in the table, the search starts at the
beginning of the table; otherwise, the search begins at the
indicated position within the table, If the current value of
the index-name exceeds the upper limit defined for the
table, control is passed to the imperative-statement of the
AT END phrase (if specified) or to the next executable
statement following the SEARCH statement.

The table element indicated by the index-name setting is
tested for the specified condition. If the condition is true,
the search is complete and the imperative statement
associated with the condition is executed. If the condition
is not true, the next element in the table is tested for the
condition. This procedure continues until the condition is
true or the end of the table is reached.

More than one condition can be specified for the search
operation. A table element is then tested for each
specified condition. When any one of the conditions is true,
the search is complete and the imperative statement
associated with the true condition is executed.

Figure 6-7 illustrates the SEARCH statement for a
sequential search. Index-name P-INDEX is set to 1 so that
the search will begin with the first element in the table.
The condition PART-ITEM (P-INDEX) = PART-NO is
tested for each element in the table until a true condition
is encountered. When the condition is true, control is
transferred to the paragraph named PART-FOUND., If the
end of the table is reached before a true condition occurs,
control passes to the paragraph named NOT-FOUND.

DATA DIVISION.

03 PART-NUMBERS.
05 FILLER PICTURE 9(3) VALUE 075.
05 FILLER PICTURE 9(3) VALUE 212.
05 FILLER PICTURE 9(3) VALUE 153.

U5 FILLER PICTURE 9(3) VALUE 010.
03 PART-TABLE REDEFINES PART-NUMBERS.
05 PART-ITEM PICTURE 9(3) :
OCCURS 20 TIMES
INDEXED BY P-INDEX.

PROCEDURE DIVISON.

SET P-INDEX TO 1.

SEARCH PART-ITEM
AT END GO TO NOT-FOUND
- WHEN PART-ITEM (P-INDEX) = PART-NO
GO TO PART-FOUND.

Figure 6~7. Table Searching, Sequential Search

60497200 C

Binary Search

A binary search is an efficient means of searching a large
table for an element that satisfies one or more conditions.
The table must be ordered in the sequence of the
ASCENDING/DESCENDING KEY phrase in the OCCURS
clause. If more than one condition is specified, all the
conditions must be true for a successful search.

The SEARCH ALL format of the SEARCH statement
designates a binary search operation. The OCCURS clause
for the table must include the KEY IS phrase as well as the
INDEXED BY phrase. One or more of the data-names
specified in the KEY IS phrase are used to search the
table. The data-narme can be referenced by specifying a
condition-name associated with the data-name or by
specifying the data-name in a relational condition that
tests for equality. The data-name must be indexed by the
index-name in the INDEXED BY phrase; if more than one
index-name is specified, the first index-name is used.

When a condition-name is specified, the description of the
condition-name can designate only one value. The
condition-name must be associated with a data-name in the
KEY IS phrase of the table description.

The SEARCH ALL statement can specify a relational
condition that uses the EQUALS relational operator or one
of its equivalent forms. The operand preceding the
relational operator must be one of the data-names in the
KEY IS phrase of the table description. The operand
following the relational operator can be a literal, an
arithmetic expression, or a data item that is not
referenced in the KEY IS phrase.

When the SEARCH ALl. statement is executed, the table
elements are tested for the specified condition. The
search ends if the condition is true for a table element;
when more than one condition is specified, all conditions
must be true for a successful search. Control is then
passed to the imperative statement associated with the
specified conditions. If a table element that satisfies the
conditions cannot be found, control is passed to the
imperative statement of the AT END phrase (if specified)
or to the next executable statement following the SEARCH
ALL statement.

A SEARCH ALL statement with two conditions specified is
illustrated in figure 6-8. The table DATA-LIST is searched
for an element that satisfies both conditions; the values of
ITEM1 and TEMP1 must be equal and the values of ITEMZ
and TEMP2 must also be equal. ITEM. and ITEM2 are
subscripted by the index-name LIST-INDEX. When a table
element that satisfies both conditions is found, control is
transferred to the paragraph named LIST-ITEM. If no
element in the table satisfies both conditions, control is
passed to the next executable sentence after the SEARCH
ALL statement.

SET STATEMENT

The SET statement can be used to initialize an index-name
or to transfer the value of an index-name to another
index-name, an index data item, or an integer data item.
It can also be used to increment or decrement the value of
an index-name. '

The initial value given to an index-name can be specified
as a numeric literal, a data-name, or another index-name.
If a data-name is specified, it must refer to either an index
data item or an elementary integer data item; the current
value of the data item becomes the value of the

DATA DIVISION.

U2 DATA-LIST OCCURS 25 TIMES
INDEXED BY LIST-INDEX
DESCENDING KEY IS ITEM1

04 ITEMT1 PICTURE XX.
04 ITEMA PICTURE 9(7).
04 1TEMZ PICTURE 99.

ITEMZ.

PROCEDURE DIVISION.

SEARCH ALL DATA-LIST
WHEN ITEM1 (LIST-INDEX) = TEMP1
AND ITEM2 (LIST-INDEX) = TEMP2
GO TO LIST-ITEM.

Figure 6-8. Table Searching, Binary Search

index-name. When a data-name or an index-name is
specified as the initial value of an index-name, the storage
areas of the sending and receiving items should not
overlap; if the areas do overlap, unpredictable results
might occur during execution.

SET INDX-P TO 1.

Initializes the index-name (INDX-P) with a value
of 1. :

SET INDX-D TO INDX-P.

Transfers the current va!ue of one index-name
(INDX-P) to another index-name (INDX-D).

SET INDX-C TO SAVE.

Initializes the index-name (INDX-C) with the
current value of the data item (SAVE).

SET SAVE TO INDX-C.

Transfers the current value of the index-name
(INDX-C) to the data item (SAVE).

The capability to store the value of an index-name in a-
data item (as shown in the last of the preceding examples)
provides the means to retain the value for later reference.
This feature is particularly advantageous for input/output
because an index-name cannot be defined as part of a file
but an index data item (or integer data item) can be
defined as part of a file.

The value of an index-name can be incremented or
decremented by the SET statement. A numeric literal or a
data-name that references an elementary integer data
item can be specified for the increment or decrement
value. Incrementing is indicated by the keywords UP BY;

decrementing is indicated by the keywords DOWN BY. The .

6-6

value of the index-name after execution of the SET
statement must correspond to a valid occurrence number
for the table. When the value of an index-name is
incremented or decremented by a value contained in a data
item, the storage areas of the items should not overlap; if
the areas do overlap, unpredictable results might occur
during execution.

Figure 6-9 illustrates the use of the SET statement in
searching a table that has nested OCCURS clauses. The
table is searched for the first population number greater
than 1,000,000. The index-name values for the found item
are saved for future reference. Before the search
operation begins, the two index-names are initialized with
a value of 1. The value of Y-IDX is incremented
automatically during the search operation; the value of
5-IDX does not change. If the ten YEAR elements for the
current setting of S-IDX do not satisfy the condition,
control is transferred to the paragraph named
TRY-AGAIN. The value of S-IDX is incremented by I,
Y-IDX is set to a value of 1, and the next ten YEAR
elements are searched. If S-IDX reaches a value greater
than 50, the entire table has been searched unsuccessfully
and control is passed to the paragraph named CANT-FIND.

DATA DIVISION.

01 SAVA USAGE IS INDEX.
01 SAVB USAGE IS INDEX.

01 POPULATION-TABLE.
03 STATE OCCURS 50 TIMES
INDEXED BY S-IDX.
05 YEAR PICTURE 9(10)
OCCURS 10 TIMES
INDEXED BY Y-IDX.

PROCEDURE DIVISION.

SET S$-1IDX, Y-IDX TO 1.
SRCH.
SEARCH YEAR
AT END G0 TO TRY-AGAIN
WHEN YEAR (S-IDX,Y-IDX) > 1000000
SET SAVA TO S-IDX
SET SAVB TO Y-IDX
GO TO MILLION-PLUS.
TRY-AGAIN.
SET S-IDX UP BY 1.
SET Y-IDX TO 1.
IF S-IDX > 50 GO TO CANT-FIND
ELSE GO TO SRCH.

Figure 6-9. Searching a Two-Dimensional Table

60497200 C

SAMPLE TABLE
HANDLING PROGRAMS

Two sample programs are included in this section to show
two different methods of table handling. The first program
uses subscripting and the second program uses indexing and
table searching. Both of these programs specify the table
values in the Working-Storage Section of the Data
Division. Refer to the sample program in section 5
(figure 5-8) for an example of entering values into a table
during program execution and wusing the SEARCH
statement to locate table elements.

TABLE-SUBSCRIPTING PROGRAM

The use of subscripts in table references is shown in the
sample program illustrated in figure 6-10. This program
reads a record (line 87), obtains the fare for the designated
class from one table (line 92), obtains the city code for the
destination from another table (line 94), and writes a line
on the output report (line 95). The input data shown in
figure 6-11 is used to create the output report shown in
figure 6-12,

IDENTIFICATION DIVISION.
PROGRAM~ID. TABLE-SUBSCRIPT
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARDIN

DATA DIVISION.
FILE SECTION.

N=maaaasaaaaa
DOV NOOVMPUNL2DIOXNTASUWN—

ING.

ASSIGN TO INPUT.
SELECT PRINTOUT ASSIGN TO OUTPUT.

FD CARDIN
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD.
01 CARD.

03 NumB PICTURE IS 99.

03 NAME PICTURE IS X(18).

03 CLSS PICTURE IS 9.

03 DEST PICTURE IS 9.
21 03 FILLER PICTURE X(58).
22 FD PRINTOUT
23 LABEL RECORDS ARE OMITTED
24 DATA RECORD IS PRINTLINE.
25 01 PRINTLINE PICTURE IS X(136).
26 WORKING-STORAGE SECTION.
27 01 DISP.
28 03 FILLER PICTURE IS X.
29 03 NUMBA PICTURE IS 99.
30 03 FILLER PICTURE IS X(10).
31 03 NAMEA PICTURE IS X(18).
32 03 FILLER PICTURE IS X(10).
33 03 CLASSA PICTURE IS 9.
34 03 FILLER PICTURE IS X(8).
35 03 DESTA PICTURE IS XXX.
36 03 FILLER PICTURE IS X(10).
37 03 FAREA PICTURE IS $$$3.99.
38 03 FILLER PICTURE IS X(66).
39 - 01 FARES.
40 03 FIRST-CLASS.
41 05 LAX PICTURE IS 9(5) VALUE 12750.
42 05 BUR PICTURE IS 9(5) VALUE 14500.
43 05 O0AK PICTURE IS 9(5) VALUE 24000.
44 05 SsFoO PICTURE IS 9(5) VALUE 27250.
45 05 SEA PICTURE IS 9(5) VALUE 52500.
46 03 SECOND-CLASS.
47 05 LAX PICTURE IS 9(5) VALUE 10750.
48 05 BUR PICTURE IS 9(5) VALUE 12500.
49 05 O0AK PICTURE IS 9(5) VALUE 22500.
50 05 sFoO PICTURE IS 9(5) VALUE 25000.
51 05 SEA PICTURE IS 9(5) VALUE 50000.
52 03 TOURIST.
53 a5 LAX PICTURE IS 9(5) VALUE 8750.
54 05 BUR PICTURE IS 9(5) VALUE 10500.
55 05 O0AK PICTURE IS 9(5) VALUE 20000.
56 05 SsFo PICTURE IS 9(5) VALUE 23000.
57 05 SEA PICTURE IS 9(5) VALUE 47500.

Figure 6-10. Sample Program

60497200 C

Using Subscripts (Sheet 1 of 2)

6-7

58 01 FARE-TABLE REDEFINES FARES.

59 03 CLASS-CODE OCCURS 3 TIMES.

60 05 FARE OCCURS 5 TIMES PICTURE IS 999Vv99.

61 01 CITY-TABLE.

62 03 A PICTURE IS XXX VALUE "LAX".
63 03 B PICTURE IS XXX VALUE "BUR".
64 03 ¢ PICTURE IS XXX VALUE "OAK".
65 03 PICTURE IS XXX VALUE “"SFO".
66 03 E PICTURE IS XXX VALUE “SEA".
67 01 CITY-ID REDEFINES CITY-TABLE.

68 03 CITY OCCURS S TIMES PICTURE IS XXX.

69 01 HEAD.

70 03 FILLER PICTURE IS 9 VALUE 1.

71 03 FILLER PICTURE IS XX VALUE "1ID".
72 03 FILLER PICTURE IS.X(17) VALUE SPACES.
73 03 FILLER PICTURE IS XXXX VALUE "NAME".
74 03 FILLER PICTURE IS X(15) VALUE SPACES.
75 03 FILLER PICTURE IS X(5) VALUE "CLASS".
76 03 FILLER PICTURE IS X(6) VALUE SPACES.
77 03 FILLER PICTURE IS XXXX VALUE "CITY".
78 03 FILLER PICTURE IS X(10) VALUE SPACES.
79 03 FILLER PICTURE IS XXXX VALUE "FARE".
80 03 FILLER PICTURE IS X(68) VALUE SPACES.
81 PROCEDURE DIVISION.

82 START-UP.

83 OPEN INPUT CARDIN.

84 OPEN OUTPUT PRINTOUT.

85 PERFORM WRITE-HEAD.

86 GET-FARE.

87 READ CARDIN RECORD

88 AT END GO TO CLOS-ROUTINE.

89 MOVE SPACES TO PRINTLINE.

90 MOVE NUMB TO NUMBA.

91 MOVE NAME TO NAMEA.

92 MOVE FARE (CLSS, DEST) TO FAREA.

93 MOVE CLSS TO CLASSA.

04 MOVE CITY (DEST) TO DESTA.

95 WRITE PRINTLINE FROM DISP.

96 GO TO GET-FARE.

97 WRITE-HEAD.

98 WRITE PRINTLINE FROM HEAD.

99 MOVE SPACES TO PRINTLINE.

100 WRITE PRINTLINE.

101 CLOS-ROUTINE.

102 CLOSE CARDIN, PRINTOUT.

103 STOP RUN.

Figure 6-10. Sample Program Using Subscripts (Sheet 2 of 2)

N

&
o o‘éo v

O1DENIS FISHER
02JOHN FOSTER
O3DAVID BROWN

O4CHARLES SANDS

O5HAROLD SHERMAN

O6ALBERT JONES

O7MATTHEW BARNETT
O8ROBERT WILLIAMS

O9STEVEN SMITH
10MARTHA SMITH

11SUSAN J ANDERSON
12JEROME LANDERS

13SHARON CARTER

T4WILLIAM RICHARDS

15ROBERT KATZ
16JUDITH EVANS

6-8

Figure 6-11. Input Data for Subscripting Program

Two tables are described in the Data Division of this
program. Each table is redefined in order to reference the
table elements by subscripting. The input record contains
the data items CLSS and DEST (lines 19 and 20); these
data items are used as subscripts to reference a specific
element in the table FARE-TABLE (line 58). The table
element FARE (line 60) requires two subscripts. The table
CITY-ID (line 67) contains only one OCCURS clause and
therefore uses only one subscript. The input data item
DEST is used to reference a specific CITY element in this
table.

TABLE-SEARCHING PROGRAM

Table reference by indexing is illustrated by the sample
program shown in figure 6-13. This program reads an input
record (line 92), searches a table for the part number in
the input record (line 96), obtains the part description from
a corresponding table (line 100), and writes the description
on the output report (line 101). Sample input data and the
resulting report are shown in figures 6-14 and 6-15,
respectively.

60497200 C

0 NAME CLASS CITY
0 DENIS FISHER 1 LAX
02 JOHN FOSTER 2 LAX
03 DAVID BROWN 3 LAX
04 CHARLES SANDS 1 SEA
05 HAROLD SHERMAN 2 SEA
06 ALBERT JONES 3 SEA
a7 MATTHEW BARNETT 2 LAX
08 ROBERT WILLIAMS 2 SFO
09 STEVEN SMITH 1 0AK
10 MARTHA SMITH 3 SFO
" SUSAN J ANDERSON 2 SEA
12 JEROME LANDERS 1 SFO
13 SHARON CARTER 3 BUR
14 WILLIAM RICHARDS 2 BUR
15 ROBERT KATZ 1 SEA
16 JUDITH EVANS 3 0AK

FARE

$127.50
$107.50
$87.50
$525. 00
$500. 00
$475.00
$107. 50
$250. 00
$240.00
$230. 00
$500. 00
$272.50
$105.00
$125. 00
$525.50
$200. 00

Figure 6-12. Output Report from Subscripting Program

O 00NN NN

IDENTIFICATION DIVISION.
PROGRAM-ID. TABLE-SEARCHING.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT~OUTPUT SECTION.
FILE-CONTROL.
SELECT CARD-FILE ASSIGN TO INPUT.
SELECT LIST-FILE ASSIGN TO OUTPUT.
DATA DIVISION.
FILE SECTION.
FD CARD-FILE
LABEL RECORD IS OMITTED
DATA RECORD IS CARD.

01 CARD.
03 PART-NO PICTURE 999.
03 FILLER PICTURE X(77).

FD LIST-FILE
LABEL RECORD IS OMITTED
DATA RECORD IS LIST-LINE.

01 LIST-LINE PICTURE X(136).

WORKING-STORAGE SECTION.

01 NUM PICTURE 999.

01 PRT PICTURE 999.

01 PART-NOS.
03 FILLER PICTURE 999 VALUE 075.
03 FILLER PICTURE 999 VALUE 212.
03 FILLER PICTURE 999 VALUE 153.
03 FILLER PICTURE 999 VALUE 609.
03 FILLER PICTURE 999 VALUE 024.
03 FILLER PICTURE 999 VALUE 030.
03 FILLER PICTURE 999 VALUE 121.
03 FILLER PICTURE 999 VALUE 174.
03 FILLER PICTURE 999 VALUE 185.
03 FILLER PICTURE 999 VALUE '186.
03 FILLER PICTURE 999 VALUE 187.
03 FILLER PICTURE 999 VALUE 205.
03 FILLER PICTURE 999 VALUE 339.
03 FILLER PICTURE 999 VALUE 216.
03 FILLER PICTURE 999 VALUE 206.

60497200 E

Figure 6-13. Sample Program Using Index-Names (Sheet 1 of 2)

6-9

03 FILLER PICTURE 999 VALUE
03 FILLER PICTURE 999 VALUE
03 FILLER PICTURE 999 VALUE
03 FILLER PICTURE 999 VALUE
03 FILLER PICTURE 999 VALUE

01 PART-TABLE REDEFINES PART-NOS.
03 PART-ITEM PICTURE 999
OCCURS 20 TIMES
INDEXED BY INDX-P.
01 TABLE-DESCRIPT.

03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X (20D VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE

01 PART-DESC REDEFINES TABLE-DESCRIPT.
03 PART-LIST PICTURE X(20)
OCCURS 20 TIMES
INDEXED BY INDX-D.

01 HEAD.
03 FILLER - PICTURE X(10) VALUE
03 HEADLINE PICTURE X(20) ° VALUE
03 FILLER PICTURE X(106) VALUE
01 LINE-OUT.
03 FILLER PICTURE X(10).
03 LIST-NAME PICTURE X(20).
03 FILLER PICTURE X(106).
PROCEDURE DIVISION.
START~UP.

OPEN INPUT CARD-FILE.
OPEN OUTPUT LIST-FILE.
MOVE HEAD TO LIST-LINE.
WRITE LIST-LINE
BEFORE ADVANCING 2 LINES.
FIND.
READ CARD-FILE RECORD
AT END GO TO CLOS.
MOVE PART-NO TO PRT.
SET INDX-P TO 1.
SEARCH PART-ITEM
AT END GO TO NOT-FOUND
WHEN PART-ITEM (INDX-P) = PRT NEXT
SET INDX-D TO INDX-P.
MOVE PART-LIST (INDX-D) TO LIST-NAME.
WRITE LIST-LINE FROM LINE-OUT.
GO TO FIND.
NOT-FOUND.
DISPLAY "PART " PRT " NOT FOUND".
GO TO FIND.
CLOS.
CLOSE CARD-FILE, LIST-FILE.
STOP RUN.

159.
157.
163.
002.
010.

"CLOTH SHADES ".
"TEXTURED SHADES ".
"WOODEN ROMAN SHADES ".
"WASHABLE SHADES .
"DECORATOR SHADES "
"LIGHTPROOF SHADES "
"OPAQUE SHADES ".
"WOVEN ALUMINUM SHADE".
"TRANSPARENT SHADES .
“DECORATOR AWNINGS .
"METAL-STRIP AWNINGS ".
"WOODEN SHUTTERS ".
"ALUMINUM SHUTTERS ".
"VENETIAN BLINDS WOOD".
"VENITIAN BLINDS ,ALUM".
"VENETIAN BLINDS WHIT".
"VENETIAN BLINDS,GREY".
"STRIPED CANVAS SHADE".
"LAMINATED SHADES ".
"DRAPERY HARDWARE Y.
SPACES.

“NAME OF PART ORDERED".
SPACES.

SENTENCE.

6-10

Figure 6-13. Sample Program Using index-Names (Sheet 2 of 2)

60497200 C

o\
\06\

075
024
609
159
002
111
121

Figure 6-14. Input Data for Indexing Program

The first table described in this program specifies 20
different part numbers (lines 26 through 46). The second
table specifies the corresponding description for each of
the 20 part numbers (lines 51 through 71). Each table is
redefined and assigned an index-name.

60497200 C

NAME OF PART ORDERED

CLOTH SHADES

DECORATOR SHADES

WASHABLE SHADES

VENETIAN BLINDS WHIY

LAMINATED SHADES
PART 111 NOT FOUND

OPAQUE SHADES

Figure 6-16. Output Report from Indexing Program

The table PART-TABLE is searched for the PART-ITEM
element that is the same as the part number in the input
record (line 98). When the table element is found, the
value of the index-name (INDX-P) is transferred to the
index-name (INDX-D) for the description table (line 99).
The PART-LIST element that corresponds to the
PART-ITEM element found by the search is then moved to
the line for the output report (line 100).

6-11

CHARACTER HANDLING 7

Character handling is a term that is used to define special
operations that can be performed on selected data items.
Four types of special operations are provided in COBOL 5:
setting the value of a data item, inspecting characters in a
data item, transferring characters between data items, and
referencing a part of a data-item. These operations are
performed by the INITIALIZE, INSPECT, STRING, and
UNSTRING statements, and with the reference
modification structure.

SETTING THE VALUE OF A
DATA ITEM

A data item can be set to a predetermined value by the
INITIALIZE statement. The value that is used depends on
the format of the statement and the category of the data
item. One or more data items are specified as receiving
items for the value.

An elementary item or a group item can be specified as a
receiving item. When a group item is specified, subordinate
elementary items are considered receiving items. The
specified item cannot be an index data item, a renamed
data item (level 66), or a data item described with the
OCCURS DEPENDING ON clause. An item that is
subordinate to the specified receiving item and that
contains the REDEFINES clause, or any item subordinate
to such an item, is not allowed. However, the receiving
item itseif can have a REDEFINES clause or be subordinate
to a data item with a REDEFINES clause. When a group
item is specified, subordinate index data items and
elementary FILLER data items are not affected. Named
data items subordinate to a FILLER group item, however,
are receiving items.

In the simplest format of the INITIALIZE statement,
receiving items are set to zeros or spaces. Numeric and
numeric-edited receiving items are set to zeros; all other
data items are set to spaces.

INITIALIZE COUNTER, TOTALS, LINE-OUT.

When this statement is executed, the numeric items
COUNTER and TOTALS are given values of zero. . The data
item LINE-OUT is an alphanumeric item and is set to
spaces.

The REPLACING phrase is included in the INITIALIZE
statement to set the value of the receiving item (or items)
to a specified value. The value of the sending item is
indicated by specifying a literal or the data-name of the
item that contains the value. An index data item cannot
be specified as the sending item. The category of the
sending item and each elementary receiving item must be
consistent with the category specified in the REPLACING
phrase. If a receiving item is a group item, only those
elementary items in the specified category are affected by
the INITIALIZE statement; all occurrences of table items
in the group item are affected.

60497200 C

The INITIALIZE statement in figure 7-1 illustrates the use
of the REPLACING phrase. The sending item is specified
by the figurative constant ALL and a nonnumeric literal.
The receiving item is the group item LINE-OUT. When the
statement is executed, the elementary alphanumeric data
items COL-1, COL-2, and COL-3 are set to asterisks. The
FILLER data items are not affected by the INITIALIZE
statement. An output line produced from LINE-OUT would
then print three groups of five asterisks.

DATA DIVISION.

01 LINE-OUT.
03 FILLER PICTURE X(10) VALUE SPACE.
03 COL-1 PICTURE X(5).
03 FILLER PICTURE X(10) VALUE SPACE.
03 COoL-2 PICTURE X(5).
03 FILLER PICTURE X(10) VALUE SPACE.
03 CoL-3 PICTURE X(5).

03 FILLER PICTURE X(91) VALUE SPACE.

PROCEDURE DIVISION.

INITIALIZE LINE-OUT REPLACING
ALPHANUMERIC DATA BY ALL "*".

Figure 7-1. Initializing a Group Data Item

INSPECTING CHARACTERS IN A
DATA ITEM

A data item can be inspected for the occurrences of one or
more characters in order to perform tallying and/or
replacing operations. The character string for which the
data item is inspected and the operation to be performed
are specified in the INSPECT statement. When the
statement is executed, the inspection occurs as a series of
cycles. The number of inspection cycles performed
depends on the inspection criteria specified in the
INSPECT statement.

INSPECTION CYCLE

An inspection cycle consists of comparing the character
string to be tallied or replaced with an equal number of
characters in the data item. The first inspection cycle
begins at the first character position of the data item or at
the first character position after a specified character
string.

When a single character is being tallied or replaced,
successive inspection cycles begin at the next character in
sequence. When a group of characters is being tallied or
replaced, the beginning position for successive inspection
cycles depends on whether or not the preceding comparison
resulted in a match:

e If a match occurred, the beginning position is the next
position to the right of the matching characters.

e If amatch did not occur, the beginning position is the
next position to the right of the previous beginning
position.

INSPECTION LIMITATION

The inspection cycles for tallying or replacing can be
limited to the portion of the data item preceding or
following the initial occurrence of a specified character
string. The limiting character string can be specified as a
nonnumeric literal, a figurative constant, or the data-name
of a data item containing the character string. A
figurative constant is considered to be one character in
length. If a data item contains the limiting character
string, it must be an elementary alphabetic, alphanumeric,
or numeric data item; a numeric data item must be
described with display usage.

The BEFORE INITIAL phrase limits the inspection cycles
to the characters before the first occurrence of the
limiting character string. The inspection cycles begin with
the first character and include all characters preceding the
first character of the limiting character string.

Only those characters following the first occurrence of the
limiting character string are included in the inspection
cycles when the AFTER INITIAL phrase is specified. The
inspection cycles begin with the character immediately
following the limiting character string and continue to the
end of the data item.

TALLYING OPERATION

Inspection of a data item counts the number of occurrences
of the character string when the keyword TALLYING is
specified in the INSPECT statement. The data item to be
tallied can be a group item or an elementary item with
display usage; implicit display usage exists for a group item
or for an elementary item without the USAGE clause. An
elementary numeric item must be specified to hold the
tally. This data item is not initialized by the INSPECT
statement; one is added to the current value of the tally
data item each time the character string occurs in the data
item being inspected.

Character positions in the data item are tallied when the
keyword CHARACTERS is specified. If the BEFORE/
AFTER INITIAL phrase is included, only those character
positions within the specified limit are tallied.

INSPECT ITEM-1 TALLYING ACCUM-1
FOR CHARACTERS BEFORE INITIAL "X".

This statement causes the character positions in ITEM-1 to
be tallied; the inspection begins with the first character
and continues until the character X is encountered. One is
added to ACCUM-1 for each character position preceding
the X.

7-2

The data item is inspected for all occurrences of a
character string when the keyword ALL is specified. If the
inspection is limited by the BEFORE/AFTER INITIAL
phrase, only those occurrences within the specified limit
are tallied.

INSPECT ITEM-2 TALLYING ACCUM-2
FOR ALL "G5" AFTER INITIAL. "A",

When this statement is executed, the first inspection cycle
begins with the character immediately following the first
A in ITEM-2, Each occurrence of the character string G5
during the inspection cycles causes one to be added to the
current value of ACCUM-2.

The keyword LEADING specifies that the data item is
inspected for consecutive occurrences of the character
string beginning with the first inspection cycle. The tally
data item is incremented by one for each consecutive
inspection cycle where the comparison results in a match.
The characters to be inspected can be limited by the
BEFORE/AFTER INITIAL phrase.

INSPECT ITEM-3 TALLYING ACCUM-3
FOR LEADING ZEROS.

This statement inspects ITEM-3 for leading zeros. The
inspection begins with the first character position and
continues until a nonzero character is encountered. One is
added to ACCUM-3 for each leading zero.

REPLACING OPERATION

The replacing operation is performed when the keyword
REPLACING is specified in the INSPECT statement. This
operation inspects the data item for occurrences of the
character string and replaces each occurrence with another
character string of equal length. A group item or an
elementary item with display usage can be inspected for
the replacing operation; implicit display usage exists for a
group item or for an elementary item without the USAGE
clause.

The replacing character string can be specified as a
nonnumeric literal, a figurative constant, or the data-name
of a data item containing the character string; it must
have the same number of characters as the character
string to be replaced. If a figurative constant is specified
for the replacing character string, the character string to
be replaced must be one character in length. When a
data-name is specified for the replacement character
string, the storage areas of the replacing string and the
string to be replaced should not overlap; if the areas do
overlap, unpredictable results might occur during program
execution.

Each character in the data item is replaced by another
character when the keyword CHARACTERS is specified.
If the BEFORE/AFTER INITIAL phrase is included, only
those characters within the specified limit are replaced.
The replacing character string must be a single character
when the keyword CHARACTERS is specified.

INSPECT ITEM-4 REPLACING CHARACTERS
BY SPACE BEFORE INITIAL "X".

When this statement is executed, the replacing operation
begins with the first character and continues until the
character X is encountered. Each character preceding the
initial X is replaced by a space.

60497200 C

The keyword ALL is specified when each occurrence of the
character string is to be replaced. The BEFORE/AFTER
INITIAL phrase can be specified to place a limit on the
characters being inspected for the replacement.

INSPECT ITEM-5 REPLACING ALL "ABC"
BY "XYZ".

Execution of this statement causes ITEM-5 to be inspected
for the character string ABC. The character string XYZ
replaces each occurrence of ABC within the data item
ITEM-5,

Consecutive occurrences of the character string are
replaced by another character string when the keyword
LEADING is specified. The first inspection cycle must
result in a matching comparison for any replacement to
take place; only consecutive occurrences of the character
string are replaced. If the BEFORE/AFTER INITIAL
phrase is included, inspection cycles are only within the
specified limits.

INSPECT ITEM-6 REPLACING LEADING "W»
BY SPACE AFTER INITIAL "A'",

When this statement is executed, the first inspection cycle
begins in the character position immediately following the
first A in ITEM-6. Each leading W is then replaced by a
space; once an inspection cycle does not result in a
matching comparison, the replacing operation is
terminated.

Only the first occurrence of the character string is
replaced when the keyword FIRST is specified. The
inspection cycles are performed within the limit of the
BEFORE/AFTER INITIAL phrase, if specified, and are
terminated when a match is found.

INSPECT ITEM-7 REPLACING FIRST "m"
BY SPACE BEFORE INITIAL "-".

This statement inspects ITEM-7 for the first occurrence of
the letter M. The inspection cycles begin with the first
character position and continue until the letter M or a
hyphen is found. If the letter M is found, it is replaced by
a space.

TALLYING AND REPLACING OPERATION

The INSPECT statement can specify that the operation to
be performed on the data item includes both tallying and
replacing. Each operation is specified in the same manner
as described in the preceding paragraphs. Tallying can be
performed before or after replacing; before is assumed by
default.

INSPECT ITEM-8 TALLYING ACCUM-8 FOR
ALL ZEROS BEFORE INITIAL "X"
BEFORE REPLACING ALL SPACES BY "*",

When this statement is executed, ITEM-8 is inspected for
tallying and replacing; tallying is performed before
replacing. For each zero before the first X in ITEM-8, one
is added to the current value of ACCUM-8. All spaces in
ITEM-8 are then replaced by asterisks.

INSPECT ITEM-9 TALLYING ACCUM-9 FOR

LEADING "*" AFTER REPLACING
ALL SPACES BY """,

60497200°C

This statement specifies that tallying is performed after
all spaces in ITEM-9 have been replaced by asterisks. One
is then added to ACCUM-9 for each leading asterisk in
ITEM-9.

TRANSFERRING CHARACTERS BETWEEN
DATA ITEMS

The STRING and UNSTRING statements provide the
capability to join and separate the contents of data items.
All or part of a sending item can be transferred to a
receiving item.

STRING STATEMENT

The characters in two or more data items are transferred
to a receiving data item by the STRING statement. The
transfer begins with the first sending item and continues
with the remaining sending items in the order specified.
The transfer terminates when all sending items have been
transferred or when the receiving item is filled.

The sending items can be data items, nonnumeric literals,
and figurative constants. Data items must be described
with implicit or explicit display usage. A figurative
constant specified as a sending item is considered to be one
character in length. Sending items cannot be boolean data
items.

The receiving item can be a group item or an elementary
item without editing symbols; the usage of the item must
be display. Receiving items cannot be boolean data items
and cannot be reference modified. Only those character
positions that receive a sending character are affected by
execution of the STRING statement.

The sending item and the receiving item should not share
any part of their storage areas; if the items are not
uniquely defined, unpredictable results might occur when
the program is executed.

Transfer of characters begins with the first character in
the sending item and terminates as specified in the
DELIMITED BY phrase. All characters are transferred
when the keyword SIZE is specified.

STRING ITEM-A, ITEM-B DELIMITED BY SIZE
INTO GROUP-1.

When this statement is executed, all characters in ITEM-A
are transferred to GROUP-1 followed by all characters in
ITEM-B. Character transfer terminates when ITEM-A and
ITEM-B are exhausted or GROUP-1 is filled.

Transfer of characters can be terminated by the
occurrence of a specific character string in the sending
item. The character string is a literal or the contents of a
data item specified in the DELIMITED BY phrase. The
literal can be a nonnumeric literal or a figurative constant;
a figurative constant is considered to be one character in
length. If a data item is used to delimit the transfer of
characters, it must be a display data item.

STRING ITEM-C, ITEM-D, ITEM-E
DELIMITED BY SPACE INTO GROUP-2.

This statement specifies that characters are to be
transferred from ITEM-C, ITEM-D, and ITEM-E to
GROUP-2. Character transfer in each sending item begins
with the first character and terminates when a space is
encountered; the space is not transferred to the receiving
item.

7-3

Sending items can have different delimiting character
strings. The DELIMITED BY phrase is specified for each
sending item or group of sending items to which it applies.

STRING ITEM-F DELIMITED BY "
ITEM-G DELIMITED BY TEMP
INTO GROUP-3.

Execution of this statement transfers characters from
ITEM-F and ITEM-G to GROUP-3. All characters in
ITEM-F up to the first asterisk are transferred to the
receiving item, and then all characters in ITEM-G up to a
character string equal to the contents of TEMP are
transferred to the receiving item.

The beginning position within the receiving item for the
transfer of characters can be other than the first character
position. The POINTER phrase specifies an elementary
integer data item that contains the number of the
character position to which a character is transferred. The
data item is incremented by one each time a character is
transferred to the receiving item. The initial value of the
pointer data item must be set by the program before the
STRING statement is executed.

STRING ITEM-H, ITEM-1 DELIMITED BY SIZE
INTO GROUP-4 WITH POINTER COUNT-4,

When this statement is executed, all characters in [TEM-H
and- ITEM-1 are transferred to GROUP-4. The value of
COUNT-4 specifies the character position within GROUP-4
in which character transfer begins. When all characters
have been transferred, the value of COUNT-4 points to the
position immediately following the last character
transferred.

The ON OVERFLOW phrase is included in the STRING
statement to specify the action to be taken if the receiving
item is filled before the transfer operation is completed.
The statement specified in this phrase is also executed if
the value of the pointer data item does not indicate a
position within the receiving item (less than one or greater
than)the number of character positions in the receiving
item). -

STRING ITEM-J, ITEM-K
DELIMITED BY SPACE INTO GROUP-5
ON OVERFLOW GO TO GROUP-FULL.

Execution of this statement transfers characters in ITEM-J
and ITEM-K preceding the first space in each sending item
to GROUP-5. If an overflow condition is encountered,
control is passed to the paragraph named GROUP-FULL.

UNSTRING STATEMENT

The UNSTRING statement provides the means to separate
data from a sending item into one or more receiving
items. Characters are transferred to a receiving item until
the item is filled or until a specified delimiter is
encountered in the sending item. The transfer of
characters occurs according to the COBOL MOVE rules.

The sending item must be an elementary alphanumeric data
item or a group data item and must not be reference
modified. Each receiving item must be an elementary data
item with display usage or a group data item. The
PICTURE clause for a receiving item can describe the item
as alphabetic without the symbol B, alphanumeric, or
numeric without the symbol P. The sending item and the
receiving item should not share any part of their storage
areas; if the items are not uniquely defined, unpredictable
results might occur during program execution.

7-4

The UNSTRING statement specifies the sending item and
one or more receiving items. When no optional phrases are
included in the statement, character transfer begins with
the first character position in the sending item and
continues until all sending item characters are transferred
or all receiving items are filled.

UNSTRING GROUP-6
INTO ITEM-L, ITEM-M, ITEM-N.

When this statement is executed, character transfer begins
from the first character position in GROUP-6 to the first
character position in ITEM-L. When ITEM-L is filled, the
next character in GROUP-6 is transferred to the first
character position in ITEM-M. Characters are transferred
to ITEM-N after ITEM-M is filled. Transfer of characters
terminates when all characters have been transferred from
GROUP-6 or when ITEM-N has been filled.

A delimiter for the transfer of characters from the sending
item to a receiving item is specified by the DELIMITED BY
phrase. A literal or the contents of a data item can be
specified for the delimiter. The data item must be an
elementary or group alphanumeric data item. If a literal is
specified, it can be either a nonnumeric literal or a
figurative constant; a figurative constant represents a
single-character delimiter.

Characters are transferred from the sending item to the
first receiving item beginning with the first character
position. Transfer to subsequent receiving items begins
with the first character following the delimiter for the .
previous transfer operation. Transfer to a receiving item
terminates when the delimiter is encountered or when the
receiving item is filled. The following events occur when
transfer terminates due to the receiving item being filled:

e The sending item is searched for a delimiter; a
delimiter is located.

e The sending item is moved to the receiving item,
according to the COBOL MOVE rules.

e The receiving item is filled; truncation of characters
occurs; transfer stops.

If the keyword ALL is specified preceding the delimiter,
character transfer resumes following all consecutive
occurrences of the delimiter; otherwise, each consecutive
occurrence of the delimiter causes a subsequent receiving
item to be zero or space filled, according to the
description of the individual receiving item.

UNSTRING GROUP-7 DELIMITED BY "*"
INTO ITEM-O, ITEM-P.

Execution of this statement transfers characters from
GROUP-7 into ITEM-O until an asterisk is encountered or
ITEM-O is filled. If the character following the asterisk is
another asterisk, ITEM-P is zero or space filled; otherwise,
the character and succeeding characters are transferred
until another asterisk is encountered or ITEM-P is filled.
Character transfer is terminated and control is
immediately passed to the next statement if the end of
GROUP-7 is reached.

More than one delimiter can be specified in the
DELIMITED BY phrase. The occurrence of any specified
delimiter terminates transfer to the current receiving
item. If the DELIMITER IN phrase is specified for a
receiving item, the delimiter that terminated transfer to
the receiving item is moved to a separate data item. The
data item to receive the delimiter must be an
alphanumeric elementary or group data item.

60497200 C

UNSTRING GROUP-8 DELIMITED BY ALL ZEROS,
OR ALL SPACES, OR ALL "
INTO ITEM-Q, DELIMITER IN Q-SEP
ITEM-R, DELIMITER IN R-SEP.

This statement transfers characters from GROUP-8 to
ITEM-Q and ITEM-R. The transfer to ITEM-Q is
terminated when a zero, a space, or an asterisk is
encountered in GROUP-8; the actual delimiter is moved to
Q-5EP. The next character following all consecutive
appearances of the delimiter is transferred to ITEM-R;
character transfer continues until one of the three
delimiters is encountered. The delimiter that terminates
transfer to ITEM-R is then moved to R-SEP. If the
transfer of characters to either receiving item is
terminated by reaching the end of the sending item, the
data item to receive the delimiter is set to spaces.

When a delimiter is specified for the sending item, a count
of the characters preceding the delimiter can be stored in
a data item. The count indicates the number of characters
between the preceding delimiter and the current delimiter,
whether or not all characters are transferred to the
receiving item. The COUNT IN phrase specifies the data
item to receive the character count for the associated
receiving item. The data item must be an elementary
numeric integer data item.

UNSTRING GROUP-9
DELIMITED BY ALL ZERQOS
INTO ITEM-S, COUNT IN S-CNTR
ITEM-T, COUNT IN T-CNTR.

Execution of this statement transfers characters from
GROUP-9 to ITEM-S and ITEM-T. Transfer to the
receiving items is terminated when zeros are encountered
in the sending item. The count of characters up to the
first delimiter is stored in S-CNTR. The character count
between the first and second delimiters is stored in
T-CNTR; if the sending item does not contain a second
delimiter, T-CNTR contains the number of characters
between the first delimiter and the end of GROUP-9.

The POINTER phrase is specified when the transfer of
characters from the sending item is to begin in a position
other than the first character position. For the first
character to be transferred, the data item indicates the
beginning position. It is incremented by one each time a
character is transferred. The data item must be an
elementary numeric integer data item. The initial value of
the pointer data item must be established by the program
before the UNSTRING statement is executed.

UNSTRING GROUP-10 INTO ITEM-U,
ITEM-V WITH POINTER COUNT-10.

When this statement is executed, the current value of
COUNT-10 indicates the position of the first character
within GROUP-10 to be transferred to ITEM-U. As each
character is transferred, COUNT-10 is updated to reflect
the next character position in GROUP-10.

The TALLYING phrase is used to maintain a count of the
receiving items to which characters are actually
transferred when the UNSTRING statement is executed.
The data item specified in this phrase must be an
elementary numeric integer data item and the initial value
must be set by the program.

UNSTRING GROUP-11
DELIMITED BY ALL SPACES
INTO ITEM-W, ITEM-X
TALLYING IN COUNTER.

60497200 C

Each time this statement is executed, COUNTER is
incremented by one for each receiving item to which
characters are transferred. Character transfer from
GROUP-11 to ITEM-W and to ITEM-X is terminated by the
occurrence of spaces in GROUP-11. The initial value of
COUNTER is set before the first execution of the
UNSTRING statement.

Action to be taken if the transfer terminates before the
end of the sending item is reached is specified in the ON
OVERFLOW phrase. The statement in this phrase is
executed when the receiving items are filled and the
sending item is not exhausted, or when the value of the
pointer data item does not indicate a position within the
sending item.)

UNSTRING GROUP-12 INTO ITEM-Y,
ITEM-Z WITH POINTER COUNT-12
ON OVERFLOW GO TO SEND-AGAIN.

This statement transfers characters from GROUP-12 to
ITEM-Y and ITEM-Z; transfer begins at the position
indicated by the current value of COUNT-12. If transfer
to the two receiving items terminates befare the end of
GROUP-12 is encountered, or if the value of COUNT-12 is
less than one or greater than the number of character
positions in GROUP-12, control is passed to the paragraph
named SEND-AGAIN.

REFERENCING PART OF A
DATA ITEM

Reference modification allows the referencing of a portion
of a data item without predefining the item in the Data
Division (with level number, name, size, and usage). Data
item usage can only be DISPLAY. With the exception of
boolean items, which remain in the boolean class, the class
of reference modified items is always alphanumeric.

Reference modification can be used to eliminate complex
REDEFINES clauses and to unstring data into areas of
variable length.

In its simplest structure, an item is described in the
Working-Storage Section. A portion of the characters in
the item is then referenced in a Procedure Division
statement.

WORKING-STORAGE SECTION.
01 NAMES PICTURE X(7) VALUE "JOHNSON".

.

.

PROCEDURE DIVISION.

.

;\/IO VE NAMES (1:5) TO HOLD

This MOVE statement moves five characters, beginning
with the first character of NAMES. The characters JOHNS
are moved to the data item HOLD.

The example in figure 7-2 illustrates an out-of-bounds
reference that is undetected by the COBOL compiler.
Unless DB=RF is specified on the COBOLS5 control
statement, the values that are used in referencing a data

7-5

item are not checked to be within the range of the data
item's length. If DB=RF is specified, bounds checking is
performed. If illegal reference modification is used, a
message appears in the dayfile at execution time and the
job aborts. Program output (without the DB parameter
specified) is also shown.

The first ordinal within the parentheses specifies the
position of the leftmost character of interest within the
data item. This ordinal must be a positive non-zero integer
not greater than the number of characters in the data
item. An arithmetic expression is also allowed.

The second ordinal within the parentheses specifies the
total number of consecutive characters of interest. This

_ordinal must be a positive non-zero integer. Alternatively,

END can be used to include all characters to the end of the
data item. An arithmetic expression is also allowed.

The sum of the first and the second ordinals, minus one,
cannot exceed the number of characters in the data item.

Figure 7-3 illustrates valid statements involving reference
modification. The subscript is evaluated first in the final
MOVE statement.

A. Program Listing

PROGRAM-1ID.

STR.

DISPLAY
STOP RUN.

B. Program Output

**QUTPUT IS -
CDEFGH

DEFGHI
DEFGHIJ99
GooD

IDENTIFICATION DIVISION.
REFMOD.
DATA DIVISION.
WORKING-STORAGE SECTION.

X(10) VALUE "ABCDEFGHIJ".
X(10) VALUE ALL "9".

9 VALUE 3.

9 VALUE 3.

PROCEDURE DIVISION.

01 STRS.
02 STRT PIC
02 PIC
02 A PIC
02 B PIC

DISPLAY "**QUTPUT IS -"
DISPLAY STRT (3 : A
DISPLAY STRT (4 : A
DISPLAY STRT (4 : 9)
IF STRT (3 A+ B) = "CDEFGH"

"G00D".

+ B)
+ B)

Figure 7-2. Out-of-Bounds Reference Modification

PROCEDURE DIVISION.

WORKING-STORAGE SECTION.
01 NUMERALS PICTURE X(10) VALUE "0123456789".
01 CONST PICTURE 9 VALUE IS 3. ’

MOVE NUMERALS (2
MOVE NUMERALS (3
MOVE N(3) (4 : END) TO ITEM (CONST : 3).

6) TO N(C1).
I + K) TO N(2).

Figure 7-3. Reference Modification Examples

7-6

60497200 C

SORT/MERGE PROCESSING 8

\

Records in files can be sorted or merged automatically by
internal routines that are executed as a result of a SORT
or MERGE statement. The sort or merge operation uses
one or more keys to pracess the records; the data items to

be used as keys are specified in the SORT or MERGE
statement.

Sorting or merging records is a three-phase operation:

1. Input phase - Transfers records from the input file or
files to the sort/merge file.

2. Sort/merge phase - Sorts or merges the records in the
sort/merge file.

3. Output phase - Transfers sorted or merged records to
the output file.

The sort operation causes records from one or more files to
be arranged in order according to a specified sequence.
The merge operation combines records from two or mare
identically sequenced files.

SORT/MERGE FILE

The sort/merge file is not an actual file although it is
logically treated as a file during sort/merge operation. It
must be specified in SELECT and ASSIGN clauses in the
FILE-CONTROL paragraph of the Environment Division; no
other clauses are allowed for a sort/merge file.

A Sort-Merge Description (SD) entry must be specified in
the Data Division for the sort/merge file. At least one
Record Description entry must be included in the SD entry
to describe the key items that are used to sort or merge
the files. When a key item is a nonnumeric data item, the
collating sequence used to determine the order of records
in the output file can be specified for the sort/merge
operation.

SORT-MERGE DESCRIPTION ENTRY

Whenever a sort or merge operation is to be performed
during program execution, the file to be used for the sort
or merge procedure is described in the File Section by a
Sort-Merge Description entry (SD entry). The file-name
from the SELECT clause is specified in the SD entry. Two
optional clauses can be specified. The RECORD clause
indicates the size of the sort/merge record; however,
actual record size is determined by the Record Description
entries for the file. The DATA RECORDS clause
documents the names of the record formats for the
sort/merge file.

At least one record format must be described for the
sort/merge file. The size of the largest record described
establishes the maximum record length. If a record
processed during the sort/merge operation exceeds the
maximum record length, the record is truncated. When
fixed-length records are being merged, records should be at
least 10 characters in length; otherwise, an extra record
exists at the end of the output file for each input file used
in the merge operation.

60497200 C

A file described in an SD entry can be referenced in the
Procedure Division only by sort/merge statements. An SD
entry for a sort file is illustrated in figure 8-1.

DATA DIVISION.
FILE SECTION.
FD GEN-FILE
LABEL RECORD IS OMITTED
DATA RECORD IS GEN-REC.
01 GEN-REC.
03 IDENT-A PICTURE 9(8).
03 IDENT-B PICTURE 99.
03 IDENT-C PICTURE X(20).
SD SORT-FILE :
DATA RECORD IS SORT-REC.
01 SORT-REC.
03 IDENT-1 PICTURE 9(8).
03 IDENT-2 PICTURE 99.
03 IDENT-3 PICTURE X(20).

PROCEDURE DIVISION.

SORT SORT-FILE ON ASCENDING KEY
IDENT-1, IDENT-2, IDENT-3
USING GEN-FILE
GIVING SORTED-FILE.

Figure 8-1. SD Entry and Key Items

KEY ITEMS

One or more data items in the Record Description entry
for a sort/merge file are specified as key items for the
sort/merge operation. The actual value of a key item is
used to determine the order of records in the output file.
When more than one Record Description entry is specified
for a sort/merge file, each key item must be described in
at least one record.

Key item values are sequenced in either ascending or
descending order as specified in the SORT or MERGE
statement. Ascending order causes the values to be
sequenced from the lowest value to the highest value;
descending order is from the highest value to the lowest
value. The position of a key item value in the sorted or
merged order is determined according to the rules for
comparison of operands in relational conditions; in this
instance, the full range of COMPUTATIONAL-2 items can
be properly compared. Relational conditions are discussed
in section 5, Conditional Operations.

8-1

Data items used as keys for a sort/merge operation must
be fixed-length items. A key item cannot be described by
or be subordinate to an item described by the OCCURS
clause. A key data item cannot be described with
COMPUTATIONAL-4 usage.

When two or more key items are specified for the
sort/merge operation, the order of the key items
determines the order of significance. The first key
specified is the most significant key and the last key
specified is the least significant key. Comparisons for
sorting or merging records proceed from the most
significant to the least significant key.

For a sort operation, records with duplicate values for all
specified keys are sequenced in the order the records were
released to the sort file. This is called initial sequence and
requires 10 extra characters for each record sorted. A
significant amount of overhead can be involved when initial
sequence is maintained. If the sequencing of records with
duplicate key values is not important, the overhead can be
reduced by executing the following statement to remove
the initial sequence option:

ENTER "C.SORTP".,

After this statement is executed, initial sequence is not
maintained for a sort operation. Refer to the discussion of
memory allocation for the effect on the initial sequence
option when this statement is used to change the central
memory block size for a sort operation.

The SD entry shown in figure 8-1 describes three
elementary items. The SORT statement in the Procedure
Division specifies each of these items as a key item for the
sort operation. The most significant key is the data item
IDENT-1. If two records contain the same value for
IDENT-1, the values for the IDENT-2 data items are
compared. When the first two key data items have
identical values, the third key items (IDENT-3) are
compared. The record with the lower key item value (on
the first, second, or third comparison) is the first of the
two records in the sorted file.

MEMORY ALLOCATION

A block of 92161g words of central memory is allocated
for the sort or merge operation. For most operations, this
default size is sufficient; however, more efficiency can be
gained by increasing or decreasing the size of the memory
block when a large or a small sort/merge operation is
performed. Memory size is changed by executing the
following statement:

ENTER "C.SORTP" USING data-name-1, data-name-2.

Data-name-1 specifies a COMPUTATIONAL-1 data item
that contains the memory size to be used for all subsequent
sort and merge operations. It cannot be omitted or equal
to zero; if only data-name-2 is of interest, data-name-1
must specify the default value.

Data-name-2 refers to the initial sequence option for
duplicate sort keys. If it is omitted or is equal to zero, the
initial sequence option is removed; a value other than zero
in the COMPUTATIONAL-1 data item causes initial
sequence to be maintained.

8-2

SORT/MERGE OPERATION

The input and output phases of a sort/merge operation are
performed automatically when input and output files are
specified in the SORT or MERGE statement. For a sort
operation, the input phase can be program-controlled by
providing an input procedure. The output phase is
program-controlled for either a sort or a merge operation
when an output procedure is specified in the SORT or
MERGE statement.

INPUT/OUTPUT FILES

Input files are specified for the sort/merge operation when
the records to be sorted or merged reside on files. The
MERGE statement must indicate at least two input files.
If an output file is specified, the sorted or merged records
are automatically written on the output file.

The USING phrase of the SORT or MERGE statement
specifies the input files. The following functions are then
performed automatically:

1. The input files are opened for input and the
sort/merge file is opened for output.

2. All the input records are transferred to the sort/merge
file.

3. The input files and the sort/merge file are closed.

At this point in the sort/merge operation, the records are
available in sorted or merged sequence. When an output
file is specified in the GIVING phrase, the following
functions are performed automatically:

1. The sort/merge file is opened for input and the output
file is opened for output.

2, The sorted or merged records are transferred to the
output file.

3. The sort/merge file and the output file are closed.

INPUT PROCEDURE

The input phase of a sort operation is controlled by the
program when the INPUT PROCEDURE phrase is specified
instead of the USING phrase. An input procedure, which
must be written in one or more contiguous sections in the
Procedure Division, allows the user to control the release
of records to the sort file. It can include statements that
select, create, or modify records for the sort operation.
At least one RELEASE statement must be included to
transfer records to the sort file; records are transferred
one at a time. Execution of a SORT statement with the
INPUT PROCEDURE phrase proceeds as follows:

1. The sort file is opened for output.

2. Control is passed to the input procedure until the last
statement of the procedure has been executed.

3. The sort file is closed.

Processing then continues with the sort and output phases.
A SORT or MERGE statement cannot be specified within
the input procedure sections of the source program.
Control cannot be explicitly transferred outside the input

procedure; however, implicit transfer of control to
declarative procedures is allowed.

60497200 C

OUTPUT PROCEDURE

An output procedure provides the means for the user to
control the use of records returned from the sort/merge
file during the output phase of the sort/merge operation.
The OUTPUT PROCEDURE phrase replaces the GIVING
phrase in the SORT or MERGE statement and specifies the
section or range of sections that contains the statements
to be executed for the output phase.

The output procedure can include statements that select,
madify, or copy the sorted or merged records. At least one
RETURN statement must be specified to return a record
from the sort/merge file for subsequent processing by the
output procedure. Records are returned one at a time in
sorted or merged sequence.

The output phase of a sort/merge operation that specifies
an output procedure is as follows:

1. The sort/merge file is opened for input.

2. Control is transferred to the output procedure until all
sorted or merged records have been returned; the AT
END phrase of the last RETURN statement is
executed.

3. The sort/merge file is closed.

A SORT or MERGE statement cannot be specified within
the output procedure sections of the source program.
Control cannot be explicitly transferred outside the output
procedure; however, implicit transfer of control to
declarative procedures is allowed.

SORT/MERGE STATEMENTS

Five Procedure Division statements are applicable to the
sort/merge operation. The SORT statement sequences
records according to specified key items. The MERGE
statement combines two or more identically sequenced
files. An input procedure for a sort operation requires the
RELEASE statement; the RETURN statement must be used
in an output procedure for a sort or merge operation. The
collating sequence for sort/merge operations can be
established through the SET statement.

SORT STATEMENT

The SORT statement causes records from one or more files
to be sorted on a set of specified keys. Records are
transferred to the sort file during the input phase, sorted
on the key items during the sort phase, and returned from
the sort file during the output phase. Only one file on a
multifile tape reel can be specified in the SORT statement.

The sort file designated in the SORT statement is
described in an SD entry in the File Section of the Data
Division. This file receives the records to be sorted during
the input phase, contains the records in sorted order at the
end of the sort phrase, and provides the records to be
returned during the output phase.

One or more key items are specified in the SORT
statement. A record is placed in the sorted sequence
according to the contents of the key items. Key values are
sequenced as specified by the keyword ASCENDING or
DESCENDING.

60497200 C

The collating sequence for a nonnumeric sort can be
specified in the SORT statement. The alphabet-name in
the COLLATING SEQUENCE phrase is defined by an
ALPHABET clause in the SPECIAL-NAMES paragraph of
the Environment Division. A collating sequence
established by a SET statement before execution of the
SORT statement overrides the COLLATING SEQUENCE
phrase.

The USING phrase specifies one or mare input files for the
sort operation. Input files can have any file organization
and are described by FD entries in the File Section.
Automatic transfer of input records to the sort file occurs
as if sequential READ statements were being executed.

If the USING phrase is not specified, the INPUT
PROCEDURE phrase must specify the Procedure Division
section or range of sections containing the statements to
process and transfer records to the sort file. Control is
passed to the input procedure through the SORT statement;
the procedure must not be entered directly.

The sorted records are automatically written on the output
file when the GIVING phrase is specified. The output file
can have sequential, relative, indexed, or actual-key file
organization. If the output file has indexed file
organization, the most significant key for the sort
operation must be the primary key and the key values must
be in ascending sequence. The output file is described by
an FD entry in the File Section; record size must be the
same size described by the SD entry for the sort file.

The OUTPUT PROCEDURE phrase replaces the GIVING
phrase when the output phase of the sort operation is
program-controlled. The phrase specifies the section or
range of sections that contains the statements to return
and process the sorted records. The output procedure must
not be entered directly; it receives control through the
SORT statement.

Example 1

SORT SORT-FILE ON ASCENDING KEY IDENT-1
ON DESCENDING KEY IDENT-3
COLLATING SEQUENCE IS SORT-SEQ
USING FILE-1, FILE-2
GIVING FILE-3

Example 2

SORT SORT-FILE ON ASCENDING KEY IDENT-1
INPUT PROCEDURE IS INP-1
OUTPUT PROCEDURE IS OUT-1 THRU OUT-3.

Figure 8-2. Examples of the SORT Statement

Two sample SORT statements are shown in figure 8-2.
Example 1 specifies two key items for the sort operation.
The most significant key, IDENT-1, is sequenced in
ascending order. The second key item, IDENT-3, is used
when two or more records contain the same value for
IDENT-1; it is sequenced in descending order. The
collating sequence for the nonnumeric key, IDENT-3, is
specified as SORT-SEQ; SORT-SEQ is defined by the
ALPHABET clause in the Environment Division. Two files
are designated for input; records from FILE-1 and FILE-2
are automatically transferred to the sort file. The sorted
records are written on the file named FILE-3.

8-3

Example 2 in figure 8-2 illustrates a SORT statement that
uses input and output procedures. One key item, IDENT-1,
is specified and the records are to be sequenced with the
values of IDENT-1 in ascending order. The input
procedure, which is contained in a section named INP-1,
receives control during the input phase of the sort
operation. Execution of the statements in INP-1 causes
records to be transferred to the sort file. The output
procedure is contained in the sections beginning with
OUT-1 and ending with OUT-3. Execution of the
statements in these sections includes the return of sorted
records from the sort file.

MERGE STATEMENT

The MERGE statement causes records from two or more
identically sequenced files to be combined based on the
values of specified key items. During the input phase, the
records are transferred to the merge file. The merge
phase merges the records into a single file with the records
in order according to the key items. The output phase
returns the records from the merge file.

The merge file specified in the MERGE statement is
described in an SD entry in the File Section of the Data
Division. This file receives the records from the input
files, contains the merged records at the end of the merge
phase, and provides the records in merged order to the
output file or output procedure.

At least one key item is specified for the merge operation.
Additional key items are specified for use when duplicate
values can exist for a key item. The merged sequence for
a key item is as specified by the keyword ASCENDING or
DESCENDING.

When a key item for the merge operation is a nonnumeric
data item, the collating sequence to be used for the
comparison can be specified in the MERGE statement. The
COLLATING SEQUENCE phrase specifies an
alphabet-name that is defined by an ALPHABET clause in
the SPECIAL-NAMES paragraph of the Environment
Division. A SET statement executed before the MERGE
statement can also specify the collating sequence for the
merge operation. The collating sequence established by
the SET statement overrides a collating sequence specified
in the MERGE statement.

Two or more input files are specified in the USING phrase.
These files must have sequential file organization and must
be described by FD entries in the File Section of the Data
Division. Record sizes for all input files must be the same
as described in the SD entry. The records in the input files
are transferred automatically to the merge file as if
sequential READ statements were being executed.

The output phase of the merge operation proceeds
automatically when an output file is specified in the
GIVING phrase. The output file is described by an FD
entry in the File Section and must have the same record
size as described in the SD entry for the merge file. The
file organization for the output file can be sequential,
relative, indexed, or actual-key. For indexed file
organization, the most significant key for the merge
operation must be the primary key and the sequence must
be ascending.

If the GIVING phrase is not specified, the OUTPUT
PROCEDURE phrase must specify the Procedure Division
section or range of sections containing the statements to
return and process the merged records. Control is passed
to the output procedure through the MERGE statement;
the procedure must not be entered directly.

8-4

The use of the MERGE statement is illustrated in
figure 8-3. Example 1 shows a statement that merges the
records from two files (INFILE-1 and INFILE-2) and
transfers the merged records to a third file (QUTFILE).
The key field ITEM-A is used to merge the records with the
key values in ascending sequence.

Example 1

MERGE MERGE-FILE ON ASCENDING KEY ITEM-A
USING INFILE-1, INFILE-2
GIVING OUTFILE.

Example 2

MERGE MERGE-FILE ON ASCENDING KEY ITEM-A
ON DESCENDING KEY ITEM-B
USING INFILE-1, INFILE-2
OUTPUT PROCEDURE IS MERGE-OUT.

Figure 8-3. Examples of the MERGE Statement

Example 2 in figure 8-3 shows a MERGE statement that
specifies an output procedure to be executed during the
output phase. The input records are merged with the
values of the key item ITEM-A in ascending sequence; the
key item ITEM-B, which is used when more than one record
contains the same value for ITEM-A, is sequenced in
descending order. The output procedure is contained in the
section named MERGE-OUT; the statements in the section
return and process the records from the merge file.

RELEASE STATEMENT

The RELEASE statement is used in an input procedure for
the SORT statement. At least one RELEASE statement
must be included in the input procedure. When this
statement is executed, a record is transferred to the sort
file.

The record-name specified in the RELEASE statement is a
record-name in the Data Division SD entry for the sort
file. After the RELEASE statement is executed, the sort
record is no longer available in the sort file record area.

The FROM phrase is included in the RELEASE statement
to move the contents of a data area to the sort record area
before transferring the sort record to the sort file. This
phrase can be effectively used when the data for a sort
record is created in a Working-Storage area; the FROM
phrase eliminates the need to move the data into the sort
record area.

Two examples using the RELEASE statement are shown in
figure 8-4. In both examples, the section named INP-1 has
been specified as the input procedure in a SORT
statement. Example 1 reads an input record and moves the
corresponding data to the sort record; the RELEASE
statement then transfers the sort record to the sort file.
Example 2 creates a record (TEMP-REC) from an input
data item and an item resulting from an ADD statement;
the RELEASE statement moves the data from TEMP-REC
to the sort record (SORT-REC) and then releases the sort
record to the sort file.

60497200 C

RETURN STATEMENT

The RETURN statement is used in an output procedure for
a SORT or MERGE statement. At least one RETURN
statement must be included in an output procedure.
Execution of this statement causes the next record in
sorted or merged sequence to be made available to the
output procedure for processing.

The file-name of the sort/merge file is specified in the
RETURN statement. An AT END phrase is included to
specify the action to be taken after the last record has
been returned from the sort/merge file. After the
RETURN statement is executed, the record is available for
processing by the output procedure. When the INTO phrase

Example 1

PROCEDURE DIVISION.

INP-1 SECTION.
IN-RECORDS.
READ CARD-IN RECORD
AT END GO TO IN-END.
MOVE CORRESPONDING CARD TO SORT-REC.
RELEASE SORT-REC.
GO TO IN-RECORDS.

Example 2

DATA DIVISION.

01 TEMP-REC.
03 ITEM-A PICTURE 9(5).
03 ITEM-B PICTURE 9(7).

PROCEDURE DIVISION.

‘
-

INP-1 SECTION.
IN-RECORDS.
READ CARD-IN RECORD
AT END GO TO IN-END.
MOVE ITM-A TO ITEM-A.
ADD ITM=-C, ITM-B GIVING ITEM-B.
RELEASE SORT-REC FROM TEMP-REC.

is included in the RETURN statement, the sort/mel;ge
record is moved from the sort/merge file into the specified
storage area as well as into the sort/merge record area.

The use of the RETURN statement in output procedures is
illustrated in figure 8-5. In both examples, the section
named OUT-1 has been specified as the output procedure in
a SORT or MERGE statement. Example 1 returns the
sorted record, moves the corresponding data to OUT-REC,
and writes the record on the output file. Example 2
returns a record from the merge file and at the same time
stores it in an area named TEMP-REC; the value of an
additional item in TEMP-REC is computed and the record
is then written on the output file.

Example 1

PROCEDURE DIVISION.

OUT~1 SECTION.
OUT-RECORDS.
RETURN SORT~FILE RECORD
AT END GO TO OUT-END.
MOVE CORRESPONDING ST-REC TO OUT-REC.
WRITE OUT-REC.
GO TO OUT-RECORDS.

Example 2

DATA DIVISION.

01 TEMP-REC.)
03 ITEM-A PICTURE 9(5).
03 1ITEM-B PICTURE 9(7)..
03 ITEM-C PICTURE 9(5).

PROCEDURE DIVISION.

OUT-1 SECTION.
OUT-RECORDS.
RETURN MERGE~FILE RECORD INTO TEMP-REC
AT END GO TO OUT-END.
COMPUTE ITEM-C = ITEM-A - ITEM-B.
WRITE TEMP-REC.
GO TO OUT-RECORDS.

Figure 8-4. Examples of the RELEASE Statement

60497200 C

Figure 8-5. Examples of the RETURN Statement

8-5

SET STATEMENT

The SET statement can be used to establish the collating
sequence for sort or merge operations. The collating
sequence of a SET statement executed prior to the SORT
or MERGE statement overrides any other collating
sequence. A SET statement in a subprogram does not
affect the collating sequence of any other program.

The alphabet-name specified in the SET statement must be
defined in the SPECIAL-NAMES paragraph in the
Environment Division. Depending on the keyword used in
the SET statement, the specified collating sequence can
apply to sort operations only, merge operations only, or
both sort and merge operations.

The SET statement shown in figure 8-6 establishes the
collating sequence for the subsequent SORT statement.
The collating sequence S-SEQ is defined in the
SPECIAL-NAMES paragraph as CDC-64; the collating
sequence of the CDC 64-character code set is used for the
sort operation.

SAMPLE SORT PROGRAM

The sample program shown in figure 8-7 illustrates a sort
operation that is controlled by input and output
procedures. The program reads an input deck, selects
records for the sort file, and produces an output listing.
The input data shown in figure 8-8 is used to create the
output report shown in figure 8-9.

The input phase of the sort operation is controlied by the
input procedure contained in the section INP-1 (lines 76
through 87). Records are read from the input file
CARD-FILE; only those records that contain the letter A
in the data item FLLAG are released to the sort file.

The sort phase sorts the records in the sort file in
ascending order according to the value of the key item
S-NAME (line 72). Because no collating sequence is
specified for the sort operation, the program collating
sequence is used.

ENVIRONMENT DIVISION.

SPECIAL-NAMES.
ALPHABET S-SEQ IS CDC-64.

PROCEDURE DIVISION.

SET SORT COLLATING SEQUENCE TO S-SEQ.
SORT SORT-FILE

ON ASCENDING KEY IDENT-3

USING FILE-1

GIVING FILE-2.

Figure 8-6. Establishing a Collating Sequence

The output phase of the sort operation is controlled by the
output procedure contained in the section OUT-1 (lines 88
through 105). Records are returned from the sort file and
stored in the data area TEMP-REC. Output lines are
created and written on the output file PRINT-FILE.

SAMPLE MERGE PROGRAM

The sample program shown in figure 8-10 illustrates a
merge operation. The program reads two input files and
merges them into a single output file. The first five
characters of each record represent the merge key and are
used to merge the records in ascending order.

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. SORT-EXAMPLE.

3 ENVIRONMENT DIVISION.

4 CONFIGURATION SECTION.

5 SOURCE-COMPUTER. CYBER-170.

) OBJECT-COMPUTER. CYBER-170.

7 INPUT-OUTPUT SECTION.

8 FILE-CONTROL.

9 SELECT CARD-FILE ASSIGN TO
10 SELECT PRINT-FILE ASSIGN TO
11 SELECT SORT-FILE ASSIGN TO
12 .DATA DIVISION. ‘

13 FILE SECTION.

14 FD CARD-FILE

15 LABEL RECORD IS OMITTED
16 DATA RECORD IS CARD-REC.
17 01 CARD-REC.

18 03 CUST-ID PICTURE
19 03 CUST-NAME PICTURE
20 03 CUST-ADDRESS PICTURE
21 03 FILLER PICTURE
22 03 LIST-DATE PICTURE
23 03 FILLER PICTURE
24 03 FLAG PICTURE

INPUT.
OUTPUT.
SORTFLE.

999.
X(20).
X(45) .
X.
X(8).
XX.

X.

8-6

Figure 8-7. Sample Sort Program (Sheet 1 of 3)

60497200 C

SD SORT-FILE
DATA RECORD IS SORT-REC.
01 SORT-REC.
03 S-NAME PICTURE X(20).
03 S-ADDRESS PICTURE X(45).
FD PRINT-FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS PRINTLINE.

01 PRINTLINE PICTURE X(136).
WORKING-STORAGE SECTION.
01 CNTR) PICTURE 99.
01 TEMP-REC.
03 T-NAME PICTURE X(20).
03 T-ADDRESS.
05 T-STREET PICTURE X (20).
05 T-CcITY PICTURE X(20).
05 T-z1P PICTURE 9(5).
01 OUT-LINE-1.
03 FILLER PICTURE 9 VALUE 1.
03 FILLER PICTURE X(27) VALUE SPACES.
03 FILLER PICTURE X(16) VALUE "CUSTOMER LIST ON".
03 FILLER PICTURE X VALUE SPACES.
03 DATE-OUT PICTURE X(8).
03 FILLER PICTURE X (84) VALUE SPACES.
01 OUT-LINE-2.
03 FILLER PICTURE X(5) VALUE SPACES.
03 NAME-OUT PICTURE X(20).
03 FILLER PICTURE X(5) VALUE SPACES.
03 STREET-0UT PICTURE X(20).
03 FILLER PICTURE X(5) VALUE SPACES.
03 CITY-OUT PICTURE X(20).
03 FILLER PICTURE X(5) VALUE SPACES.
03 zIiP-o0UT PICTURE 9(5).
03 FILLER PICTURE X(51) VALUE SPACES.

PROCEDURE DIVISION.
READ-CARD SECTION.
READ-IN.
OPEN INPUT CARD-FILE.
OPEN OUTPUT PRINT-FILE.
MOVE ZEROS TO CNTR.
READ CARD-FILE RECORD
AT END GO TO ERROR-1.
IF LIST-DATE NOT EQUAL TO SPACES
MOVE LIST-DATE TO DATE-OUT
ELSE GO TO ERROR-1.
SORT~-CARD SECTION.
SORTING.
SORT SORT-FILE ON ASCENDING KEY S-NAME
INPUT PROCEDURE IS INP-1
OUTPUT PROCEDURE IS 0OUT-1.
GO TO END-SORT.
INP-1 SECTION.
IN-1.
READ CARD-FILE RECORD
AT END GO TO IN-2.
IF FLAG NOT EQUAL TO "A"
GO TO IN-1.
MOVE CUST-NAME TO S-NAME.
MOVE CUST-ADDRESS TO S~ADDRESS.
RELEASE SORT-REC.
GO TO IN-1.
IN-2.
CLOSE CARD-FILE.
OUT-1 SECTION.
oT-1.
WRITE PRINTLINE FROM OUT-LINE-1.
MOVE SPACES TO PRINTLINE.
WRITE PRINTLINE
BEFORE ADVANCING 2 LINES.

60497200 C

Figure 8-7. Sample Sort Program (Sheet 2 of 3)

8-7

94 0T-2.

95 RETURN SORT-FILE RECORD INTO TEMP-REC

96 AT END GO TO OT-3.

97 MOVE T-NAME TO NAME-OUT.

98 MOVE T-STREET TO STREET-0UT.

99 MOVE T-CITY TO CITY-OUT.

100 MOVE T-ZIP TO ZIP-OUT.

101 WRITE PRINTLINE FROM OUT-LINE-2.

102 ADD 1 TO CNTR.

103 GO TO OT-2.

104 oT-3.

105 CLOSE PRINT-FILE.

106 END-SORT SECTION.

107 CLOSING.

108 DISPLAY SPACES.

109 DISPLAY " CUSTOMER LIST CONTAINS " CNTR " NAMES".

110 STOP RUN. .

111 ERROR-1.

112 DISPLAY * BAD INPUT DECK ".

113 STOP RUN.

Figure 8-7. Sample Sort Program (Sheet 3 of 3)
S oq?‘ °«° o@
\0<° \~><° \°‘° \\"&
P < ¢y <
¢) 4))
01/31/776
259ABC DISTRIBUTORS 5820 MARKET ST ARCADIA, CA 91006 A
029ACME DISTRIBUTING 9802 VENICE BLVD MAR VISTA, CA 90066 A
ND46JONES COMPANY 4156 WARNER AVE CULVER CITY, CA 90230 A
44619 04683 55025 17802
0O89PREMIUM PRODUCTS 3691 SPRING ST LOS ANGELES, CA 90012 A
73294 50721 64325 73815
134XYZ COMPANY 7708 WILSHIRE BLVD LOS ANGELES, CA 90046 A
04513 97625 43581 44300
178MASON MERCHANDISERS 2764 ROSECRANS AVE HAWTHORNE, CA 90250 A
88303 46165 73259 90707
263COURTESY SALES CORP 2700 W MAGNOLIA BLVDBURBANK, CA 91506 A
33450 79165 11950 73259
339RETAILERS INC 14391 E BROADWAY WHITTIER, CA 90604 A
22870 94059 61667 53123
372SMITH AND SONS 1163 N ANAHEIM BLVD ANAHEIM, CA 92801 A
99735 82701 00567 39462
428WORLD SALES COMPANY 3930 LANKERSHIM BLVDNORTH HOLLYWOOD, CA 91604 A
90921 77345 64521 50640
4L85DAY AND NIGHT INC 8529 BELLFLOWER AVE BELLFLOWER, CA 90706 A
S110AKVILLE CORP 1744 LINCOLN BLVD SANTA MONICA, CA 90404 A
76456 28904 20164 65077
620SELECT SALES COMPANY9635 SANTA MONICA BLBEVERLY HILLS, CA 90210 A
644YOUNG AND YOUNG 20125 DEVONSHIRE CHATSWORTH, CA 91311 A
97894 35610 27059 08431
656QUALITY SALES €O 1276 W VICTORY BLVD BURBANK, CA 91502 A
729DARRELL BROTHERS 5509 WESTMINSTER BL SANTA ANA, CA 92703 A
45612 64302 50189 79532
TL7TMERCHANTS INC 2268 E ORANGETHORPE ANAHEIM, CA 92806 A
67943 52146 76285 90431
788IDEAL SALES COMPANY 7125 SEPULVEDA BLVD VAN NUYS, CA 91405 A
805SHOUSEHOLD PRODUCTS 802 N LA BREA AVE INGLEWOOD, CA 90302 A
73158 62490 05137 44630
84L6EXECUTIVE SALES INC 5893 S FIGUEROA ST LOS ANGELES, CA 90003 A
863ROYAL SALES COMPANY 11601 PARAMOUNT DOWNEY, CA 90241 A
929MORGAN BROTHERS INC 8523 W OLYMPIC BLVD LOS ANGELES, CA 90035 A
951A-1 PRODUCTS 16053 S CRENSHAW BL TORRANCE, CA 90506 A
976INTERNATIONAL SALES 1049 ATLANTIC BLVD ALHAMBRA, CA 91803 A
210MI CORPORATION 1732 CALIFORNIA AVE LONG BEACH, CA 90813 A
Figure 8-8. Input Data for Sample Sort Program
8-8 60497200 C

A-1 PRODUCTS

ABC DISTRIBUTORS
ACME DISTRIBUTING
COURTESY SALES CORP
DARRELL BROTHERS
DAY AND NIGHT INC

CUSTOMER LIST ON 01/31/76

16053 S CRENSHAW BL
5820 MARKET ST

9802 VENICE BLVD
2700 W MAGNOLIA BLVD
5509 WESTMINSTER BL
8529 BELLFLOWER AVE

5893
802 N
7125
1049
4156
2764
2268
1732
8523

EXECUTIVE SALES INC
HOUSEHOLD PRODUCTS
IDEAL SALES COMPANY
INTERNATIONAL SALES
JONES COMPANY

MASON MERCHANDISERS
MERCHANTS INC

MI CORPORATION
MORGAN BROTHERS INC

OAKVILLE CORP 1744
PREMIUM PRODUCTS 3691
QUALITY SALES CO 1276
RETAILERS INC 14391
ROYAL SALES COMPANY 11601

SELECT SALES COMPANY
SMITH AND SONS
WORLD SALES COMPANY

1163

XYZ COMPANY 7708
YOUNG AND YOUNG 20125
CUSTOMER LIST CONTAINS 25 NAMES

S FIGUEROA ST
LA BREA AVE
SEPULVEDA BLVD
ATLANTIC BLVD

WARNER AVE
ROSECRANS AVE
E ORANGETHORPE
CALIFORNIA AVE
W OLYMPIC BLVD
LINCOLN BLVD
SPRING ST
W VICTORY BLVD
E BROADWAY
PARAMOUNT

9635 SANTA MONICA BL

N ANAHEIM BLVD

3930 LANKERSHIM BLVD

WILSHIRE BLVD
DEVONSHIRE

TORRANCE, CA 90506
ARCADIA, CA 91006
MAR VISTA, CA 90066
BURBANK, CA 91506
SANTA ANA, CA 92703
BELLFLOWER, CA 90706
LOS ANGELES, CA 90003
INGLEWOOD, CA 90302
VAN NUYS, CA 91405
ALHAMBRA, CA 91803
CULVER CITY, CA 90230
HAWTHORNE, CA 90250
ANAHEIM, CA 92806
LONG BEACH, CA 90813
LOS ANGELES, CA 90035
SANTA MONICA, CA 90404
LOS ANGELES, CA 90012
BURBANK, CA 91502
WHITTIER, CA 90604
DOWNEY, CA 90241
BEVERLY HILLS, CA 90210
ANAHEIM, CA 92801
NORTH HOLLYWOOD, CA 91604
LOS ANGELES, CA 90046
CHATSWORTH, CA 91311

Figure 8-9. Output Report From Sample Sort Program

A. Program Listing

IDENTIFICATION DIVISION.
PROGRAM-1D. MERGE-FILES.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT IFILE1 ASSIGN TO INP
USE "RT=Z"

SELECT IFILE ASSIGN TO INO
USE "RT=z2"

SELECT MFILE ASSIGN TO M

SELECT OFILE ASSIGN TO OT
USE "RT=Z"

DATA DIVISION.

FILE SECTION.

FD IFILET LABEL RECORDS
01 IREC1 PIC X(30).

FD IFILE LABEL RECORDS OMITTED.
01 IREC PIC X(30).

SD MFILE.
01 MREC.
02 MKEY PIC X(5).
02 PIC X(25).
FD OFILE LABEL RECORDS OMITTED.
01 OREC PIC X(30).
PROCEDURE DIVISION.
STRT.

USING IFILE, IFILE1
GIVING OFILE.
STOP RUN.

OMITTED.

MERGE MFILE ON ASCENDING KEY MKEY

Program' Input
FILE INP:

OO010AAAAAAAAAAAAAAAAAAAAAAAAA
000158BBBBBBBBBBEBBBBBBBBBBEBB
00020cccccccccccccccccecccccccce

FILE INO:

00009XXXXXXXXXXXXXXXXXXXXXXXXX
D00 TAYYYYYYYYYYYYYYYYYYYYYYYYY
0001722227277122222222222222222

Program Output: Merged file OT

OO0009XXXXXXXXXXXXXXXXXXXXXXXXX
OOO010AAAAAAAAAAAAAAAAAAAAAAAAA
O00TAYYYYYYYYYYYYYYYYYYYYYYYYY
000158BBBBBBBEBBBBBBEBBB8BBBBBB
0001722222222222271222222122211
gooz20ccccccccccecccecccccecccecccccce

Figure 8-10. Sample Merge Program

60497200 C

8-9

SEGMENTATION 9

When a COBOL 5 program is executing, segmentation
provides a way to conserve memory space by overlaying
sections of the program in central memory. The entire
Procedure Division in a segmented program is written in
sections that are separated into fixed and independent
segments. The segment number assigned to a section
determines whether it is a fixed or an independent segment.

If any reordering of the object program is required to
handle the flow from segment to segment, the compiler
provides the control transfers to maintain the logic flow
specified in the source program. An automatic jump is
made when the succeeding section is in a different
segment. Control can be transferred to any paragraph in a
section; it is not mandatory tec transfer control to the
beginning of a section.

The use of the Fast Dynamic Loader (FDL) can serve as an
alternative to segmentation (see section 10).

TYPES OF SEGMENTS

A segment of the Procedure Division is either a fixed
segment or an independent segment. The segment number
designates the type of segment; segment numbers 0
through 49 identify fixed segments, and numbers 50
through 99 identify independent segments. Sections with
the same segment number are part of the same segment.

FIXED SEGMENTS

Fixed segments are logically treated as if they are always
in memory; therefore, those segments should contain the
sections that are referenced most frequently. A fixed
segment is either permanent or overlayable.

A fixed permanent segment is always available for
reference. It cannot be overlaid by another segment.
Sections that must be available at all times are included in
the fixed permanent segments.

A fixed overlayable segment can overlay and can be
overlaid by another overlayable segment (fixed or
independent). If it is overlaid, it is returned in its last used
state; last used state refers to modified GO TO statements.

The range of segment numbers for fixed segments
(0 through 49) is divided into numbers that define
permanent segments and numbers that define overlayable
segments. The SEGMENT-LIMIT clause in the Environment
Division specifies the lowest number that can be used for
fixed overlayable segments. Segment numbers up to, but
not including, the specified number are used for fixed
permanent segments; segment numbers from the specified
number up to and including 49 are used for fixed
overlayable segments. When the SEGMENT-LIMIT clause is
not specified, all segments with segment numbers O
through 49 are treated as fixed permanent segments.

60497200 C

INDEPENDENT SEGMENTS

Independent segments, which are identified by segment
numbers 50 through 99, are considered overlayable. These
segments can overlay and can be overlaid by ancther
overlayable segment (fixed or independent). In future
standards, independent segments might be deleted;
therefore, it is best to avoid using independent segments, if
possible.

When control is transferred to an independent segment, it is
in its initial state only under the following conditions:

e Execution of a PERFORM, USE, SORT, MERGE, or
GO TO statement transfers control to the independent
segment.

e Execution of the last statement in the preceding
segment implicitly transfers control to the
independent segment.

An independent segment is in its last used state when it
receives control under any other circumstances. Initial
state and last used state refer to modified GO TO
statements.

OVERLAYS

Both fixed overlayable segments and independent segments
are called overlays. Only one overlay can be present in
memory with the fixed permanent segments. As each
overlay is referenced, it is loaded into memory over the
last overlay. This conserves memory because it need be
only as large as the fixed permanent segments plus the
largest overlay.

If the BBH field of the file information table (FIT) is set to
YES through the USE clause or through a FILE control
statement, the associated file must be opened and closed
with no intervening call to a fixed overlayable or
independent segment.

SUBPROGRAMS AND OVERLAYS

Subprograms should not be written in segments because
they are not actually broken up into segments; therefore,
no advantage in memory space is gained and some is lost.

A subprogram can be called from a segmented main
program. If the statement calling the subprogram is in an
overlayable segment and it specifies a literal that is not a
program-name in the FDL file, the subprogram must reside
on a user library. The user library must be made availabie
to the job before the main (calling) program is loaded. The
subprogram is initialized each time the overlay is loaded.
To prevent this, the subprogram must be loaded with the
fixed permanent segments. An unexecuted ENTER or
CALL statement in a fixed permanent segment or an
LDSET,USE control statement can be used to load the
subprogram with the fixed permanent segments.

9-1

STRUCTURING SEGMENTS

The Procedure Division of a segmented program is
organized into sections. Each section is assigned to a
specific segment and is part of either a fixed segment or
an independent segment. More than one section can be
included in a segment.

Segmentation does not affect the logical sequence of the
program as specified in the source program. Control can
be transferred to any paragraph in a segment; it need not
be transferred to the beginning of a section.

A section is assigned to a segment by specifying a segment
number in the section header. The segment number further
identifies the segment as a fixed or independent segment.
Fixed segments are assigned segment numbers 0 through
49; independent segments are assigned segment numbers 50
through 99.

READ-INPUT SECTION 4.

UPDATE-MASTER SECTION 53.

The first section header specifies that the section named
READ-INPUT is assigned to segment number 4, which is a
fixed segment. The section named UPDATE-MASTER is
assigned to segment number 53, which is an - independent
segment.

The SEGMENT-LIMIT clause is used to divide the fixed
segment numbers (0 through 49) into permanent and
overlayable segments. This clause is specified in the
OBJECT-COMPUTER paragraph of the Environment
Division. The designated number is the lowest segment
number for fixed overlayable segments. Segment numbers
that are less than the designated number identify fixed
permanent segments.

SEGMENT-LIMIT IS 45

This clause specifies that segment numbers 0 through 44
are used for fixed permanent segments. Segment numbers
45 through 49 are used for fixed overlayable segments.

When segment numbers are being assigned, consideration
should be given to the frequency with which the section is
used.

® Sections that must be available at all times should be
assigned to fixed permanent segments.

e Frequently referenced sections should be assigned to
fixed permanent segments.

e Sections that frequently reference each other should
be assigned to the same segment.

e Declarative sections must be assigned to permanent
segments.

9-2

The coding requirements for a segmented program are
summarized in the following rules:

e Overlay segments (fixed or independent) are made
available when:

A PERFORM statement references a procedure
within the segment.

A GO TO statement references a procedure
within the segment.

The segment logically follows the previously
executed statement.

A SORT or MERGE statement references a
procedure within the segment.

e A PERFORM statement in a fixed segment can
reference one of the following:

Procedures in fixed segments (permanent or
overlayable).

Procedures in any one independent segment.

e A PERFORM statement in an independent segment
can reference one of the following:

Procedures in fixed segments (permanent or
overlayable).

Procedures in the independent segment that
contains the PERFORM statement.

e An ALTER statement that changes the
procedure-name for a GO TO statement to a
procedure in an independent segment must be within
that independent segment.

® A SORT or MERGE statement in a fixed segment can
reference one of the following:

Input or output procedures in fixed segments
(permanent or overlayable).

Input or output procedures in any one independent
segment.

e A SORT or MERGE statement in an independent
segment can reference one of the following:

Input or output procedures in fixed segments
(permanent or overlayable).

Input or output procedures in the independent

segment that contains the SORT or MERGE
statement.

60497200 C

SUBPROGRAM INTERFACE ' 10

5

An independently compiled subprogram can be used within
the structure of a COBOL 5 source program. The
subprogram can be written in COBOL, COMPASS, or
FORTRAN and is compiled and tested .as an independent
program. Two typical instances in which a subprogram
could be used are:

e A subroutine written in one of the acceptable
languages has already been coded, compiled, and
tested.

e A square root is needed and can be calculated more
efficiently with a FORTRAN routine.

Control is transferred to a subprogram when an ENTER or
CALL statement in the main program is executed. The
ENTER statement is used for subprograms that are not
written in COBOL. For COBOL subprograms, the CALL
statement is specified. (Mode errors might occur if CALL
is used with FORTRAN subprograms.)

Data can be passed between the main program and the
subprogram through the USING phrase of the ENTER or
CALL statement. The Common-Storage Section can also
be used for passing data. External files and the CYBER
Database control system (CDCS) data base files can be
shared between programs.

Fast Dynamic Loader (FDL) processing allows COBOL
subprograms to be dynamically loaded and unloaded during
execution of the main program. Fast Dynamic Loader is
not required for subprograms to access data base files
under CDCS 2.

TRANSFERRING CONTROL TO A
SUBPROGRAM

Depending on the language used to write the subprogram,
either the ENTER statement or the CALL statement is
specified in the COBOL 5 program (main program). When
the statement is executed, contro! is transferred to the
specified subprogram. Control returns to the main
program at the statement immediately following the
ENTER or CALL statement.

ENTERING NON-COBOL SUBPROGRAMS

A subprogram written in COMPASS or FORTRAN can be
entered from the COBOL 5 main program to perform
specific functions. Common data can be passed between
the main program and the subprogram through the USING
phrase of the ENTER statement or the Common-5torage
Section in the Data Division.

The ENTER statement is specified in the main program to
transfer control to a non-COBOL subprogram. This
statement specifies the language of the subprogram and
the entry point into the subprogram. COMPASS is the
default. If COMPASS or FTN 5 is not specified, COMPASS
is assumed. When the ENTER statement is executed,
control is transferred to the subprogram at the designated
entry point. The entry point is defined in the subprogram;
it can be a program name, subroutine name, function name,
or statement label. The entry point must be specified as a

60497200 E

nonnumeric literal if it contains characters other than
letters and digits or if it duplicates a COBOL reserved
word.

ENTER COMPASS TESTL.

This statement specifies that the subprogram is written in
COMPASS. The entry point into the subprogram is named
TESTI.

The USING phrase is included in the ENTER statement to
designate data that is common to the main program and
the subprogram. The parameter list specified in this
phrase can include data-names, file-names, procedure-
names, and literals.

ENTER FTN5 HYP USING LEGI,
LEG2, DIAG.

When this statement is executed, the FORTRAN
subprogram is entered at the entry point named HYP. The
data items LEGI1, LEG2, and DIAG are shared between the
main program and the subprogram.

When a FORTRAN subprogram is entered, best results are
obtained by passing the following types of data items:

e An item described as COMPUTATIONAL-1
e An item described as COMPUTATIONAL-2

o A level 01 item that is a multiple of 10 characters in
length

e Literals

COMPUTATIONAL-1 and COMPUTATIONAL-2 data items
in COBOL 5 correspond to integer and real items,
respectively, in FORTRAN. Data items with any other
COBOL usage are treated as character strings. A numeric
literal without a decimal is treated as an integer item in
FORTRAN. A numeric literal with a decimal is treated as
a real item. An alphanumeric literal is treated as a
character string.

Data to be passed between the main program and the
subprogram can also be specified in the Common-Storage
Section. The data is allocated to a labeled common block
named CCOMMON. The FORTRAN or COMPASS
subprogram accesses this data by referencing the common
block CCOMMON.

CALLING COBOL SUBPROGRAMS

A subprogram written in COBOL is called into execution by
a CALL statement in the COBOL main program. Data to
be passed between the main program and the subprogram
can be specified in the CALL statement or it can be passed
through the Common-Storage Section. External files and
data base files can also be shared between the programs.

The CALL statement in the main program specifies the
program name from the PROGRAM-ID paragraph in the
subprogram. The program name is specified as a
nonnumeric literal of no more than seven characters when

10-1

" the FDL parameter is not included in the COBOLS5 control

statement. When the FDL parameter is specified, the"

program name can be contained in an alphanumeric data
item and can be up to 30 characters in length. FDL
processing is discussed later in this section.

CALL "COMPAY™.

Execution of this statement transfers control to the
COBOL subprogram named COMPAY. The program name
is specified as a nonnumeric literal and must be enclosed in
quotation marks. The program name must begin with an
alphabetic character and must not contain a space or a
hyphen.

The subprogram can also contain CALL statements;
however, it must not call the main program or call ancther
subprogram that calls the main program. When the
subprogram is called, all data fields and alterable switches
are the same as when the subprogram was last exited. The
status and positioning of all local files used by the
subprogram are also unchanged; however, External files
might have been changed by other programs.

Data items that are common to the main program and the
subprogram are specified in one of two ways:

e The USING phrase can be included in the CALL
statement to name the common data items.

e The Common-Storage Section can be used to describe
the common data items.

Sharing External files and data base files is discussed later
in this section.

The USING phrase of the CALL statement specifies the
data items that are to be passed between the main program
and the subprogram. FEach data item specified must be a
level 01 or level 77 item that is described in either the
File Section or the Working-Storage Section of the main
program. If the subprogram is called by another
subprogram, the data items can also be described in the
Linkage Section of the calling program. When the USING
phrase is specified in the CALL statement to identify
common data, the subprogram must identify the common
data items in the Procedure Division header and describe
the data items in the Linkage Section of the Data
Division. The data-names in the CALL statement
correspond by position to the data-names in the Procedure
Division header; therefore, the names can differ while the
number of names must be identical. Both data items in
each corresponding pair shoild be defined at the same level
(level 01 or level 77) to ensure proper synchronization. If
items of different levels are in correspending positions, the
ANSI=77LEFT parameter must be specified in the COBOL5

control statement. When the parameter is specified for the .

main program, it should be specified for all subprograms to
avoid conflicts between level 77 items.

CALL "SUBPRO3" USING SUB-REC.,

When this statement is executed, control is transferred to
the COBOL subprogram named SUBPRO3. The data item
SUB-REC, which is described in the Working-Storage
Section of the main program as a level Ol data item, is
made available to the subprogram. Items subordinate to
SUB-REC pass values to be used by the subprogram and
receive values determined through execution of the
subprogram.

10-2

Data to be passed between the main program and the
COBOL subprogram can be specified in the
Common-Storage Section of the Data Division. This
section, in both the main program and the subprogram,
describes the shared data. The data-names and
descriptions need not be the same in both sections;
however, the data in each section must be identical. For
example, a table can be fully described in one
Common-Storage Section and be described with an
OCCURS clause in the other Common-Storage Section; the
complete size of the table must be the same in both
sections.

The initial value of a data item shared between the main
program and the COBOL subprograms can be set only in
the main program by the VALUE clause; the initial value
cannot be set in the subprograms.

SHARING FILES

Files declared in the main program can be shared with any
subprogram in the same run unit. Various types of files
can be shared between programs. External files and data
base files are two special types of files with particular
requirements and considerations that are discussed in the
following paragraphs. Any other type of file that is shared
must be described in each subprogram that references it.
The file must be closed before the subprogram is exited so
that another program using the file can open it for
processing. This method of sharing files should be avoided;
External files provide more efficient processing.

EXTERNAL FILES

External files can be referenced by any program in the run
unit. File information exists external to the programs.
The record areas are shared in the same manner as
Common-Storage Section items are shared. External files
do not have to be closed by one program and reopened by
another program processing the files.

All External files must be declared in the main program.
The File Description (FD) entry for an External file
includes the EXTERNAL clause. The following restrictions
apply to an External file:

e Data items specified in the File-Control and FD
entries must be defined in the Common-Storage
Section. (This includes data-names in clauses such as
the BLOCK COUNT and RECORD KEY clause, but
does not include the Record Description entries of
levels 01 and subordinate entries.)

e The LABEL RECORDS clause in the FD entry must
specify OMITTED.

e The Report Writer feature cannot be used.

e The RERUN and SAME AREA clauses in the
I-O-CONTROL paragraph cannot be specified.

A subprogram describes only those External files it
references. The file description must be exactly the same
as it is in the main program; therefore, COPY statements
or UPDATE common decks should be used for External file
descriptions.

60497200 C

DATA BASE FILES

Data base files are accessed through the CYBER Database

Control System (CDCS). The interface with CDCS is
described in detail in section 14. When data base files are

shared between programs in a run unit, the main program
specifies the name of the subschema describing the data
base files in the SUB-SCHEMA clause in the
SPECIAL-NAMES paragraph. A subprogram that accesses
at least one data base file must also include the
SUB-SCHEMA clause in the SPECIAL-NAMES paragraph.
There are no other requirements.

PROCESSING WITH FAST
DYNAMIC LOADER

Fast Dynamic Loader (FDL) processing provides additional
capabilities during execution of COBOL subprograms. The
information on the FDL file, which must be created before
FDL processing can be used, allows the main program and
any subprogram in the same run unit to perform operations
related to the usage of program names.

PROGRAM NAME USAGE

The usage of program names affects the CALL statement
and allows the CANCEL statement to be executed for
dynamic subprograms. With FDL processing, program
names can be up to 30 characters in length. The CALL and
CANCEL statements can also specify a data item that
contains the program name instead of specifying a literal.
The FDL file indicates whether a subprogram is static or
dynamic. All static subprograms are loaded with the base
module. A dynamic subprogram is not loaded until a CALL
statement for that subprogram is executed. - After the
subprogram has been executed, the CANCEL statement
can be used to release the memory space occupied by the
subprogram.

For a dynamic subprogram, the ON OVERFLOW phrase can
be included in the CALL statement. This phrase specifies
a statement that is executed when there is not enough
room to load the dynamic subprogram. This could occur if

the maximum field length for the job or the field length
specified in the job statement ‘is reached. If the ON

OVERFLOW phrase is not specified and an overflow
condition occurs, the run is aborted. The phrase is ignored
if it is specified for a static program.

CALL "DEDUCTIONS"
USING DEDUCT-REC
ON OVERFLOW GO TO CANT-LOAD.

The dynamic subprogram DEDUCTIONS is called for the
first time. If the subprogram cannot be loaded within the

program field length, control is transferred to the
paragraph named CANT-LOAD.

FDL FILE CREATION

The FDL file, which must be made available to the
COBOL 5 compiler to initiate Fast Dynamic Loader
processing, consists of a series of card images containing
FDL processing information. The Program Equivalence
section of the file contains statements related to program
name usage.

60497200 £

A program equivalence statement equates the. program
name from the PROGRAM-ID paragraph of a subprogram
with the internal name used by the system. The program
name, which is also used .in CALL and CANCEL
statements, can be up to 30 characters in length. The
internal name cannot exceed seven characters and must be
unique within the run unit. If the subprogram is static, the
key word STATIC must be included in the program
equivalence statement; otherwise, the subprogram is
considered to be dynamic.

COMPILATION WITH FDL PROCESSING

When COBOL. 5 programs that use FDL processing are
compiled, the FDL parameter must be specified in the
COBOL5 control statement. This parameter designates the
FDL file to be used during compilation. The main program
and all subprograms are compiled as one compilation job.
The programs are input to the compiler in the following
order: main program, static subprograms, and dynamic
subprograms.

During compilation, overlay capsules are generated for the
dynamic subprograms as part of the relocatable binary
file. The capsule format allows subprograms to be
dynamically loaded and unloaded during execution.
Operating system control statements must then be
specified to load the binary file. Once the load file is
created, the overlay capsules and the main program must
be maintained as a unit. The unit can be executed from a
sequential file or it can be placed on a user library.

Another subprogram can be compiled and added to the user
library. The COBOL5 control statement must include the
SB parameter and the FDL parameter, which must specify
the same FDL file as when the library was created. The
COPYL utility can then be used to replace the subprogram
capsule on the original binary file. The load sequence must
then be repeated in order to create a new library.

CANCELING A SUBPROGRAM

When Fast Dynamic Loader processing is used, a dynamic
subprogram can be canceled. This releases the memory
space occupied by the subprogram. Once the subprogram
has been called and dynamically loaded, it cannot be
canceled until an EXIT PROGRAM statement has been
executed.

The CANCEL. statement specifies one or more dynamic
subprograms to be canceled. A subprogram is indicated by
specifying either the program name as a nonnumeric literal
or an alphanumeric data item containing the program
name. If the subprogram to be canceled is not currently
loaded, no action takes place and control is passed to the
next executable statement.

CANCEL "DEDUCTIONS", PROG-NAME.

The subprogram DEDUCTIONS and the subprogram
identified by the current contents of the data item
PROG-NAME are canceled when this statement is
executed, If either subprogram has not been loaded or has
already been canceled, no action takes place for that
subprogram.

10-3

WRITING A COBOL SUBPROGRAM

A COBOL subprogram is written the same as any other
COBOL program. When data is shared between the main

program and the subprogram, certain requirements must be

met. The specific requirements depend on the method used
to specify the common data in the main program.

PROCEDURE DIVISION HEADER

The USING phrase must be included in the Procedure
Division header when the CALL statement in the main
program specifies shared data in a USING phrase. Each
data item specified in the main program CALL statement
must be referenced in the subprogram Procedure Division
header.

The data-names in the subprogram need not match the
data-names in the main program; the data items
correspond by position in the USING phrases rather than by
data-names. The use of the Procedure Division header to
identify shared data is shown in the second sample program
at the end of this section of the guide.

LINKAGE SECTION

The Linkage Section is included in the subprogram when
shared data is specified through the USING phrases in the
Procedure Division header of the subprogram and in the
CALL statement of the main program. This section
describes the common data items for processing by the
subprogram.

The data-names specified in the Procedure Division header
are described in the Linkage Section as level 77 or level 01
entries. The data descriptions of these data items must
match the corresponding data descriptions in the main
program. Values cannot be assigned to Linkage Section
items; if a VALUE clause is specified, it is ignored and
causes a trivial diagnostic to be issued.

Results are unpredictable if a Procedure Division
statement references a Linkage Section item that is not
specified in the Procedure Division header or is not
subordinate to one of those items.

An item defined in the Linkage Section should be moved to
a Working-Storage item if it is referenced frequently. This
eliminates the additional overhead created by Linkage
Section references.

COMMON-STORAGE SECTION

The Common-Storage Section provides the most efficient
method for sharing data between programs. This section
must be included in the subprogram when it is called by a
COBOL 5 program that specifies shared data in the
Common-Storage Section. It is also used when the
subprogram is called by a FORTRAN or COMPASS program
that shares data through the common bleck CCOMMON. If
an External file is used by the subprogram, data items
specified in the File-Control entry and the FD entry are
defined in the Common-Storage Section. For example, if
data-names are used in the BLOCK COUNT clause or FILE
STATUS clause, they wmust be defined in the
Common-Storage Section. However, level 01 and
subordinate Record Description entries must not be defined
in the Common-Storage Section.

10-4

Data-names and descriptions in the main program and the
subprogram can be different, but the storage allocations
must be the same. For example, a table described with the
OCCURS clause in the main program can be described as
individual elements in the subprogram as long as the table
size is not changed. For COBOL 5 programs, it is best to
use the COPY statement or UPDATE common decks to
ensure that the descriptions are the same.

Level 77 entries and Record Description entries can be
specified in the Common-Storage Section. The initial
value of a data item can be set by the VALUE clause in
the main program but not in the subprogram. If an initial
value is specified in the Common-Storage Section of the
subprogram, the value is ignored and a warning diagnostic
is issued.

RETURN OF CONTROL -

The subprogram returns control to the main program when
the EXIT PROGRAM statement is executed. Control is
returned to the statement immediately following the CALL
statement in the main program.

SAMPLE PROGRAMS

Three examples are included in this section to illustrate
the use of subprograms. The first example shows a
COBOL 5 main program that enters a subprogram written
in FORTRAN 5. The second and third examples call a
COBOL 5 subprogram; the programs are the same
application, but the method of describing shared data
differs.

ENTERING A FORTRAN SUBPROGRAM

The use of a FORTRAN subprogram by a COBOL 5 main
program is illustrated in figure 10-1. The COBOL 5
program enters the subprogram (which is written in
FORTRAN) to determine the diagonal of a right triangle.

The ENTER statement in the COBOL 5 program (line 24)
specifies three data items to be used for passing data
between the main program and the subprogram. When the
ENTER statement is executed, the data items LEG1 and
LEG2 contain the triangle dimensions that are passed to
the FORTRAN subprogram; the data item DIAG is used to
receive the result computed by the subprogram. The
subprogram identifies the three data items as A, B, and C,
respectively.

CALLING A COBOL SUBPROGRAM

Two different ways to specify the data to be passed
between a COBOL 5 main program and a COBOL 5
subprogram are shown in the programs illustrated in
figures 10-2 and 10-3. In figure 10-2, the main program
specifies the shared data in the CALL statement; the
subprogram specifies the data in the USING phrase of the
Procedure Division and describes the data in the Linkage
Section. The main program and the subprogram in
figure 10-3 specify common data in the Common-Storage
Section.

60497200 E

COBOL 5 Main Program

1 IDENTIFICATION DIVISION.

2 PROGRAM~ID. FIND-DIAGONAL.

3 ENVIRONMENT DIVISION.

4 CONFIGURATION SECTION.

5 SOURCE-COMPUTER. CYBER-170.

6 OBJECT-COMPUTER. CYBER-170.

7 DATA DIVISION.

8 WORKING~STORAGE SECTION.

9 01 DIAG USAGE IS COMPUTATIONAL-2.
10 01 LEG1 USAGE IS COMPUTATIONAL-2.
11 ‘01 LEG2 USAGE IS COMPUTATIONAL-2.
12 01 DISPLAY-ITEM PICTURE 9(4).

13 01 CARD-IN.

14 03 AA PICTURE 9(4).
15 03 BB PICTURE 9(4).
16 03 FILLER PICTURE X(72).
17 PROCEDURE DIVISION.

18 START-UP.

19 ACCEPT CARD-IN.

20 DISPLAY "LEGT1 = " AA.

21 DISPLAY "LEG2 = " BB.

22 MOVE AA TO LEG1.

23 MOVE BB TO LEG2.

24 ENTER FTN5 HYP USING LEG1, LEG2, DIAG.
25 MOVE DIAG TO DISPLAY-ITEM,

26 DISPLAY "DIAG = " DISPLAY-ITEM.
27 STOP RUN.

FORTRAN Subprogram

Input

Output

SUBROUTINE HYP (A,B,C)
C=SQRT(A*A + B#B)
RETURN

END

00030004

LEGT
LEG2
DIAG

oo
Vi W

Figure 10-1. Entering a FORTRAN Subprogram

two data items are described in the File Section;

In both examples, the same application and the same
data-names are used. The main program reads a record
from the input file PAY-FILE, accumulates the total of
merchandise charges to be deducted, and then calls the
subprogram to compute the net pay. The subprogram
performs four calculations to determine the net pay and
then returns control to the main program. The result of
the computations is output by the main program and the
process is repeated for the next record in the input file.

The main program in figure 10-2 indicates the shared data
in the USING phrase of the CALL statement (lines 54

and 55). Three level 01 data items are specified:
INPUT-CARD, OUT-GOING, and WORK-REC. The first

60497200 D

WORK-REC is described in the Working-Storage Section.
The Procedure Division header in the subprogram
designates the same three data items by the data-names to
be used in the subprogram (line 23). The data items are

described as level 01 items in the Linkage Section.

The main program in figure 10-3 specifies the data to be
shared in the Common-Storage Section. Eight individual
level 01 data items and one group item are described in
this section. The subprogram describes the same eight
elementary data items and the group item in its
Common-Storage Section.

10-5

COBOL 5 Main Program

VXN NN -

IDENTIFICATION DIVISION.

PROGRAM-ID. PAYROLL.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. CYBER-170.

OBJECT-COMPUTER. CYBER=-170.

INPUT-OUTPUT SECTION.

FILE-CONTROL. :
SELECT PAY-FILE ASSIGN TO INPUT.
SELECT PAY~LIST ASSIGN TO OUTPUT.

DATA DIVISION. : :

FILE SECTION.

FD PAY-FILE

LABEL RECORDS ARE OMITTED
DATA RECORD IS INPUT-CARD.
01 INPUT-CARD.

03 ID-NUMBER PICTURE 9(8).
03 NAME-IN PICTURE A(30).
03 GROSS-PAY PICTURE 9(5).
03 NO-OF-CHARGES PICTURE 9.

03 MONTHLY-CHARGES PICTURE 999v99

OCCURS 7 TIMES.
FD PAY-LIST
LABEL RECORDS ARE OMITTED
DATA RECORD IS OUT-GOING.
01 OUT-GOING.

03 FILLER PICTURE X.
03 ID-NUMBER PICTURE 9(8)BB.
03 NAME-OUT PICTURE A(30).
03 NET-PAY PICTURE $$999.99BCR.
WORKING-STORAGE SECTION. .
01 1 PICTURE 9 . VALUE 1.
01 WORK-REC.
03 FICA-RATE PICTURE V9(4) VALUE .0300.
03 FED-RATE . PICTURE V9(4) VALUE .0775.
03 MERCH-DEDUCT PICTURE 9(4)V99.
03 TOTAL-DEDUCT PICTURE 999Vv99.
03 FED-DEDUCT PICTURE 999v99.
03 FICA-DEDUCT PICTURE 999Vv99.

PROCEDURE DIVISION.
INIT SECTION.
INIT-PARA.
OPEN INPUT PAY-FILE.
OPEN OUTPUT PAY-LIST.
MOVE " NUMBER NAME NET-PAY"
TO OUT-GOING.
WRITE OUT-GOING BEFORE ADVANCING 2 LINES.
PROCESS-CARD SECTION.
PROCESS-CARD-PARA.
READ PAY-FILE RECORD
AT END GO TO END-OF-PROG.
COMPUTE MERCH-DEDUCT = 0.
PERFORM ACCUM-CHARGES NO-OF-CHARGES TIMES.
CALL "COMPAY"
USING INPUT-CARD, OUT-GOING, WORK-REC.
MOVE ID-NUMBER OF INPUT-CARD TO ID-NUMBER OF OUT-GOING.
MOVE NAME-IN TO NAME-OUT.
WRITE OUT~GOING AFTER ADVANCING 1 LINE.
COMPUTE I = 1.
GO TO PROCESS-CARD.
ACCUM-CHARGES SECTION.
ACCUM-CHARGES-PARA.
COMPUTE MERCH-DEDUCT = MERCH-DEDUCT + MONTHLY-CHARGES (I).
COMPUTE I =1 + 1.
END-OF-PROG SECTION.,
END-OF-PROG-PARA.
CLOSE PAY-FILE, PAY-LIST.
STOP RUN.

10-6

Figure. 10-2. Calling a COBOL Subprogram that Uses the Linkage Section (Sheet 1 of 2)

60497200 C

COBOL 5 Subprogram
1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. COMPAY.
3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. CYRER-170.
6 OBJECT-COMPUTER. CYBER-170.
7 DATA DIVISION.
8 LINKAGE SECTION.
9 01 IN-REC.
10 03 FILLER
11 03 GROSS-PAY
12 03 FILLER
13 01 OUT-REC.
14 03 FILLER
15 03 NET-PAY-AMT
16 01 WORK-REC.
17 03 FICA-RATE
18 03 RATE-FED
19 03 MERCH-DEDUCT
20 03 TOTAL-DEDUCT
21 03 DEDUCT-FED
22 03 FICA-DEDUCT
23 PROCEDURE DIVISION USING IN-REC,
24 PARA.
25 COMPUTE DEDUCT-FED = RATE-FE
26 COMPUTE FICA-DEDUCT = FICA-R
27 COMPUTE TOTAL-DEDUCT = DEDUC
2R MERCH-DEDUCT.
29 COMPUTE NET-PAY-AMT = GROSS-
30 GO-BACK.
31 EXIT PROGRAM.
Input
Column 1
123456783J0HN SMITH
S50449786WILLIAM JOHNSON
98765432PAUL JONES
41639890ROBERT CARRINGTON
39NH65152CHARLES RUTHERFORD
Output
NUMBER NAME
12345678 JOHN SMITH
504649786 WILLIAM JOHNSON
98765432 PAUL JONES
41639890 ROBERT CARRINGTON
39065152 CHARLES RUTHERFORD

PICTURE
PICTURE
PICTURE

X(38).
9(5).
X(36).

X(41).
$8999.99BCR.

PICTURE
PICTURE

V9 (4).
Vo (4).
9(4)IV99.
999V99.

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE 999V99.

PICTURE 999Vv99.

OUT-REC, WORK-REC.

D * GROSS-PAY.
ATE * GROSS-PAY.
T-FED + FICA-DEDUCT +

PAY - TOTAL~DEDUCT.

Column 39

00500000000000000000000000000000000000000
00580703575009250045500820021000069500510
00400202460005200000000000000000000000000
00475401050016100048000615000000000000000
00615600380002900124502035009650115000000

NET-PAY

$446.25
$426.85
$327.20
$386.39
$488.24

Figure 10-2. Calling a COBOL Subprogram that Uses the Linkage Section (Sheet 2 of 2)

60497200 C

10-7

COBOL 5 Main Program

IDENTIFICATION DIVISION.
PROGRAM-ID. PAYROLL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT~COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PAY-FILE ASSIGN TO INPUT.
10 SELECT PAY-LIST ASSIGN TO OUTPUT.
11 DATA DIVISION.
12 FILE SECTION.
13 FD PAY-FILE

QNN NN =

14 LABEL RECORDS ARE OMITTED

15 DATA RECORD IS INPUT-CARD.

16 01 INPUT-CARD.

17 03 ID-NUMBER PICTURE 9(8).

18 03 NAME-IN PICTURE X(30).

19 03 GROSS-PAY PICTURE 9(5).

20 03 NO-OF-CHARGES PICTURE 9.

21 03 MONTHLY-CHARGES PICTURE 999v99

22 OCCURS 7 TIMES.

23 FD PAY-LIST

24 LABEL RECORDS ARE OMITTED

25 DATA RECORD IS OUT-GOING.

26 01 OUT-GOING.

27 03 FILLER PICTURE X.

28 03 ID-NUMBER PICTURE 9(8)BB.

29 03 NAME-OUT PICTURE X(30).

30 03 NET-PAY PICTURE $$999.99BCR.

31 COMMON-STORAGE SECTION.

32 01 1 PICTURE 9 VALUE 1.
33 01 FICA-RATE PICTURE V9(4) VALUE .0300.
34 01 FED-RATE PICTURE V9(4) VALUE .0775.
35 01 MERCH-DEDUCT : PICTURE 9(4)V99 VALUE O.
36 01 TOTAL-DEDUCT PICTURE 999Vv99.

37 N1 FED-DEDUCT PICTURE 999Vv99.

38 01 FICA-DEDUCT PICTURE 999V99.

39 01 NET-PAY-AMT PICTURE 9(4)V99.

40 N1 IN-REC.

41 03 PICTURE X(38).

42 03 GROSS-IN PICTURE 9(5).

43 03 PICTURE X(36).

44 PROCEDURE DIVISION.
45 INIT SECTION.
46 INIT-PARA.

47 OPEN INPUT PAY-FILE.

48 OPEN OUTPUT PAY-LIST.

49 MOVE " NUMBER NAME , NET-PAY"
50 TO OUT-GOING.

51 WRITE OUT-GOING BEFORE ADVANCING 2 LINES.

52 PROCESS-CARD SECTION.
53 PROCESS-CARD-PARA.

54 READ PAY-FILE RECORD INTO IN-REC

55 AT END GO TO END-OF-PROG.

56 COMPUTE MERCH-DEDUCT = O.

57 PERFORM NO-OF-CHARGES TIMES

58 COMPUTE MERCH-DEDUCT = MERCH-DEDUCT + MONTHLY-CHARGES (I)
59 COMPUTE I = 1 + 1

60 END-PERFORM.

61 CALL "COMPAY"

62 MOVE ID-NUMBER OF INPUT-CARD TO ID-NUMBER OF OUT-GOING.
63 MOVE NAME-IN TO NAME-OUT.

64 MOVE NET-PAY-AMT TO NET-PAY.

65 WRITE OUT-GOING AFTER ADVANCING 1 LINE.

66 COMPUTE I = 1.

10-8

Figure 10-3. Calling a COBOL Subprogram that Uses the Common-Storage Section (Sheet 1 of 2)

60497200 C

COBOL 5 Main Program (Cont'd)

67 GO TO PROCESS-CARD.

68 END-OF-PROG SECTION.

69 END-OF-PROG-PARA.

70 CLOSE PAY-FILE, PAY-LIST.
71 STOP RUN.

COBOL 5 Subprogram

12345678J0HN SMITH
50449786WILLIAM JOHNSON
98765432PAUL JONES
41639890ROBERT CARRINGTON
39065152CHARLES RUTHERFORD

Output
NUMBER NAME
12345678 JOHN SMITH
50449786 WILLIAM JOHNSON
98765432 PAUL JONES
41639890 ROBERT CARRINGTON
39065152 CHARLES RUTHERFORD

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. COMPAY.
3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
S SOURCE-COMPUTER. CYBER-170.
6 OBJECT-COMPUTER. CYBER-170.
7 DATA DIVISION.
8 COMMON-STORAGE SECTION.
9 01 1
10 01 FICA-RATE
11 01 RATE-FED
12 01 MERCH-DEDUCT
13 01 TOTAL-DEDUCT
14 01 DEDUCT-FED
15 01 FICA-DEDUCT
16 N1 NET-PAY-AMT
17 01 IN-REC.
18 03
19 03 GROSS-PAY
20 03
21 PROCEDURE DIVISION.
22 PARA.
23 COMPUTE DEDUCT-FED =
24 COMPUTE FICA-DEDUCT =
25 COMPUTE TOTAL-DEDUCT =
26 MERCH-DEDUCT.
27 COMPUTE NET-PAY-AMT = GROSS-
28 GO-BACK.
29 EXIT PROGRAM.
Input
Column 1

PICTURE 9.
PICTURE V9(4).
PICTURE V9(4).
PICTURE 9(4)V99.
PICTURE 999V99.
PICTURE 999V99.
PICTURE 999V99.
PICTURE 9(4)V99.

X(38).
9¢5).
X(36).

PICTURE
PICTURE
PICTURE

RATE-FED * GROSS—PAY.
FICA-RATE * GROSS-PAY.
DEDUCT-FED + FICA-DEDUCT +

PAY - TOTAL-DEDUCT.

Column 39

0500000000000000000000000000000000000000
00580703575009250045500820021000069500510
00400202460005200000000000000000000000000
00475401050016100048000615000000000000000
00615600380002900124502035009650115000000

NET-PAY

$446.25
$426.85
$327.20
$386.39
$488.24

Figure 10-3. Calling a COBOL Subprogram

60497200 C

that Uses the Common-Storage Section (Sheet 2 of 2)

10-9

COMPILATION AND EXECUTION 11

Y

A COBOL 5 source program is coded on standard COBOL
coding sheets according to the applicable format
specifications. Coded information is punched on 80-column
cards or entered through a terminal. The resulting source
program is input to the COBOL 5 compiler to compile it
into executable code.

Compilation and subsequent execution of a COBOL 5
program are controlled by a set of control statements
preceding the source program. The control statements
provide information for the operating system and for the
COBOL 5 compiler. The set of control statements begins
with a job statement and ends with a 7/8/9 card or its
equivalent.

COMPILING A PROGRAM

Source program compilation is controlled by the COBOLS5
control statement. Optional parameters can be specified
in this statement to designate the files to be used for input
and output and the compiler options to be selected for
compilation of the source program. The format and
number of control statements preceding the source
program depend on the operating system and the specific
requirements of the program. The input file can contain
more than one source program to be compiled; the
COBOL 5 compiler recognizes the Identification Division
header as the start of a new source program. Compilation
can be followed immediately by execution of the object
program.

COBOL5 CONTROL STATEMENT

The COBOL5 control statement calls the COBOL 5
compiler and provides information related to compilation
of the source program. This statement must be included in
the set of control statements preceding the source program
to be compiled.

The control statement consists of the word COBOLS5
optionally followed by a parameter list. The word COBOLS5
and the specified parameters are separated by any valid
control statement separator. The complete control
statement is terminated by either a period or a right
parenthesis. The control statement cannot be continued
from one card or card image to another.

A wide range of compiler options can be specified in the
parameter list. Each option is identified by a
parameter-name. The option is selected by specifying the
parameter-name; in some instances, the parameter-name is
followed by an equal sign and a value. Parameters can be
specified in any order; any parameter can be omitted.
System default values are in effect for omitted
parameters. The default values discussed in this guide are
the system release values; default values might be changed
by individual installations.

Input/Output File Parameters
Four input/output files are used during compilation of a

source program: the input source file, the output binary
file, the output error file, and the output listing file. One

60497200 C

additional file, the update file, is used when the program is
to be stored in a COBOL 5 source library using the
UPDATE utility program. Any of these files can be
specified in the COBOLS5 control statement.

The input file containing the source program is specified by
the I parameter. If this parameter is omitted, the source
program must reside on the file INPUT. The I parameter is
interpreted as follows:

omitted Source program resides on the system file
INPUT.

I Source program resides on the file
COMPILE.

I=lfn Source program resides on the file with the

designated logical file name.

The file on which the binary output from compilation is
written is specified by the B parameter. If this parameter
is omitted, the binary output is written on the file LGO.
The B parameter is interpreted as follows:

omitted Binary output is written on the system file
LGO.

B Binary output is written on the file BIN.

B=0 No binary output is produced.

B=Ifn Binary output is written on the file with

the designated logical file name.

The listing file is specified by the L parameter. This file
contains the source listing, diagnostics, and any other
listings selected in the COBOL5 control statement. The L
parameter is interpreted as follows:

omitted Source listing, diagnostics, and selected
listings are written on the system file
OUTPUT.

L Source listing, diagnostics, and selected
listings are written on the file LIST.

L=1fn Source listing, diagnostics, and selected
listings are written on the file with the
designated logical file name.

L=0 No listing is produced.

The output error file, which is specified by the E
parameter, contains information related to errors
encountered during compilation. If the error file is the
same as the listing file, error information is written only
on the listing file. If the error file is not the same as the
listing file and full listing is selected by the LO (listing
options) parameter, error information is written on both
files. The E parameter is interpreted as follows:

omitted Error information is written on the system
file OUTPUT.
E=0 Error information is written on the system

file OUTPUT.

E Error information is written on the file
ERRS.
E=lfn Error information is written on the file

with the designated logical file name.

The update file is specified by the U parameter.
COMPASS line images of the generated program are
written on this file in a format acceptable to the UPDATE
utility program. The first image written on the file is a
DECK directive with the first seven characters from the
PROGRAM-ID paragraph as the deck name. The second
image is an IDENT directive with the same deck name.
The U parameter is interpreted as follows:

omitted No update file is created.
U=0 No update file is created.

U COMPASS line images of the source
program are written on the file COMPS.

U=Ifn COMPASS line images of the source
program are written on the file with the
designated logical file name.

Error Processing Parameters

The level of errors to be listed, the error level that causes
execution to be aborted, and the diagnosing of ANSI
extensions as errors can be specified by COBOLS5 control
statement parameters. Parameters can also be used to
diagnose and control ANSI extensions and to note language
elements that do or do not conform to a specified Federal
Information Processing Standard (FIPS) level. Another
parameter indicates that only syntax checking of the
source program is to be performed.

Four levels of errors can be detected during compilation.
The lowest error level to be listed on the error file is
determined by the EL parameter. The error levels in
increasing order of severity are trivial (T), warning (W),
fatal (F), and catastrophic (C). A trivial error indicates a
suspicious usage; the syntax is correct, but the usage is
questionable. A warning error indicates that the syntax is
incorrect, but the compiler has made an assumption and
continued compilation. A fatal error indicates an error
that prevents compilation of the statement. A
catastrophic error indicates a compiler error; compilation
usually continues but a system analyst should be notified.
The EL parameter is interpreted as follows:

omitted Errors of levels W, F, and C are listed.

EL=W Errors of levels W, F, and C are listed.

EL Errors of levels F and C are listed.
EL=F Errors of levels F and C are listed.
EL=T Errors of levels T, W, F, and C are listed.

FIPS errors are also listed.
EL=C Errors of level C are listed.

The action taken by the compiler after compilation of the
source program is determined by the ET parameter. The
error level (T, W, F, or C) indicated by the ET parameter is
the lowest error level that causes the compiler to abort
execution of the object program. Level T or W errors
usually produce good binary output that can be executed.
The binary output with level F or C errors will abort the
loader unless the DB (debugging) parameter specifies the B
option. The ET parameter is interpreted as follows:

11-2

omitted When compilation terminates, the next
control statement in the job is executed,
regardless of errors diagnosed during

compilation.

ET=T Errors of level T, W, F, or C abort the
compiler.

ET=W Errors of level W, F, or C abort the

compiler.
ET=F Errors of level F or C abort the compiler.
ET=C Errors of level C abort the compiler.

If the compiler is aborted, the job resumes after any EXIT
control statement in the job stream.

Language extensions that do not conform to ANSI standard
X3.23-1974 can be diagnosed and treated as errors by
specifying the ANSI parameter in the COBOLS5 control
statement. These errors can be detected as either trivial
or fatal errars. Non-ANSI errors are not listed unless the
error level (EL) parameter specifies that trivial errors are
to be listed (EL=T); the errors are listed as level N errors.

Editing of numeric display items is normally performed
when the DISPLAY statement is executed, but can be
suppressed by specifying the ANSI parameter; items with
embedded decimal points and/or overpunched signs are
displayed without editing. The ANSI parameter must be
included in the COBOL5 control statement when the
corresponding data items in the USING phrase of a CALL
statement and the USING phrase of the Procedure Division
header are not both level 77 items or level 01 items. When
the parameter is used, level 77 items, which are normally
synchronized right within computer words, are
synchronized left to agree with the level 01 items. The
ANSI parameter is interpreted as follows:

Non-ANS! extensions are allowed in
the program, numeric display items
are edited by the DISPLAY
statement, and level 77 items are
right justified within computer
words. If non-ANSI reserved words
are used as user-defined words,
diagnostics result.

omitted

ANSI Non-ANSI extensions are diagnosed
and treated as trivial errors.

ANSI=T Non-ANSI extensions are diagnosed
and treated as trivial errors.

ANSI=F Non-ANSI extensions are diagnosed
and treated as fatal errors.

ANSI=NOEDIT Numeric display items are not edited
by the DISPLAY statement;
non-ANSI extensions are diagnosed
and treated as trivial errors.

ANSI=77LEFT Level 77 items are synchronized left
within the computer word; non-ANSI
extensions are diagnosed and treated
as trivial errors.

Non-ANSI reserved words are not
recognized as reserved words. Also,

ANSI=AUDIT

the conditions described for
ANSI=NOEDIT and ANSI=77LEFT are
in effect.

60497200 D

When multiple options are selected in the ANSI parameter,
the options are separated by slashes.

Support of selected language features at a particular level
of the Federal Information Processing Standard (FIPS) can
be diagnosed by specifying the FIPS parameter in the
COBOLS5 control statement. Four levels of usage can be
indicated. FIPS diagnostics are not listed unless the ANSI
parameter specifies that non-ANSI extensions are to be
diagnosed, and the EL parameter specifies that trivial
errors are to be listed (EL=T). The FIPS parameter is
interpreted as follows:

omitted No FIPS diagnostics are issued.

FIPS=1 Support of language features at levels 1, 2,
3, and 4 is diagnosed.

FIPS5=2 Support of language features at levels 2, 3,
and 4 is diagnosed.

FIPS=3 Support of language features at levels 3
and 4 is diagnosed.

FIPS Support of language features at level 4 is
diagnosed.

FIPS=4 Support of language features at level 4 is
diagnosed.

Generation of executable code can be inhibited during
compilation through the SY parameter in the COBOLS
control statement. This option is useful when syntax
checking without execution is desired. If executable code
is not generated, compilation time is greatly reduced. The
SY parameter is interpreted as follows:

omitted Source program is compiled and executable
code is generated.

SY Source program is checked for correct
syntax, but executable code is not
generated.

Source Program Parameters

Special source program processing can be specified through
several COBOLS5 control statement parameters. These
parameters are provided mainly for processing existing
programs.

The PSQ parameter is specified when sequence numbers
are to be processed by the compiler. Sequence numbers
containing digits and spaces only must be specified. for
every line in the source program; the sequence number
cannot be all spaces, however. Compilation and execution
diagnostics then reference the sequence numbers. If this
parameter is omitted, sequence numbers are optional and
can contain any character in the computer character set.
The PSQ parameter is interpreted as follows:

omitted Compiler-generated line numbers are
referenced in all diagnostics; sequence
numbers are optional and are not processed
by the compiler.

PsSQ Sequence numbers must be specified and
are referenced in all diagnostics.

60497200 D

v

An illustration of the PSQ parameter with a. program
created through a terminal, using a NOS text editor, is
shown in section 16.

The apostrophe character can be specified as the
delimiting character for nonnumeric literals by the APO
parameter. This option is the same as specifying the
QUOTE IS APOSTROPHE clause in the SPECIAL-NAMES
paragraph of the Environment Division. When this option is
selected, the apostrophe and not the quotation mark
delimits nonnumeric literals and the quotation mark
character can then be used within the literals the same as
?nl)i other character. The APO parameter is interpreted as
ollows:

omitted Nonnumeric literals in the source program
are delimited by the quotation mark
character.

APO Nonnumeric literals in the source program
are delimited by the apostrophe character.

The CC1 parameter provides the means to convert data
items described in the source program as
COMPUTATIONAL to COMPUTATIONAL-1 items. This
option allows programs written for other compilers to gain
the efficiencies of COMPUTATIONAL-1 processing. The
CC1 parameter is interpreted as follows:

omitted Data items described as COMPU-
TATIONAL are stored and processed as
COMPUTATIONAL items.

CCl1 ‘Data items described as COMPU-
TATIONAL are stored and processed as
COMPUTATIONAL-1 items.

The UCL parameter should be used only when files created
by COBOL. 4 are being processed under COBOL 5. In
COBOL 4, COMPUTATIONAL-1 data items have a
different format than COMPUTATIONAL-1 data items
under - COBOL 5. COBOL 4 COMPUTATIONAL-1 data
items that contain more than 14 digits are represented as
two COMPUTATIONAL-2 data items; the UCL -parameter
does not apply to these data items. Specifying UCI in the
COBOLS control statement causes all COMPU-
TATIONAL-1 items to be converted to integer format
during processing. This results in a larger and slower
object program. The UCl parameter is interpreted as
follows:

omitted All COMPUTATIONAL-1 data items are
processed in integer format.

ucCl1 All COMPUTATIONAL-1 items are
converted to integer format before
processing.

When arithmetic statements and comparisons are
performed, numeric fields cannot have leading blanks. For
these operations, the LBZ parameter specifies that leading
blanks are treated as zeros. Selection of this option
significantly slows execution time and increases the size of
the object program. The LBZ parameter is interpreted as
follows:

omitted Numeric fields that contain leading blanks
are in error.

LBZ Leading blanks in numeric fields are

treated as zeros in arithmetic statements
and comparisons.

11-3

Ovutput Listing Parameters

The listings that are produced when the source program is
being compiled and the format of the output pages are
determined by several COBOL5 control statement
parameters, All listings are written on the listing file
specified by the L parameter; if this parameter is omitted,
the listings are written on the system file OUTPUT.

Output listings are selected by the LO parameter. One or
more of four listings can be specified: source program,
cross reference, object code, and data map. The LO
parameter is interpreted as follows:

omitted Source program listing is produced.

LO=S . Source program listing is produced.

LO=-S Source program listing is not produced;
other listings can be selected.

LO=R Source program listing and cross reference
listing of program entities and locations of
definitions and use within the program are
produced.

LO=0 Source program listing and generated
object code with COMPASS mnemonics are
produced.

LO=M Source program listing and data map listing
that correlates program entities, attributes
such as data class and size, and physical
storage are produced.

LO Source program, cross reference, and data
map listings are produced.

LO=0 None of the listings that can be selected
are produced.

When multiple listings are selected, slashes are used to
separate the option letters (LO=S/R). :

The spacing between sections of listings produced by the
compiler is controlled by the BL parameter. Normally
(parameter omitted), a triple space separates the listings;
however, a page eject can be specified to start each
section on a new page. A page eject occurs before printing
the Procedure Division, the cross reference, the generated
object code, the data map, and the diagnostics. The BL
parameter is interpreted as follows:

omitted Triple space separates the sections.

BL Page eject occurs between the sections.

The density of output print lines is. determined by the PD
parameter. Lines are printed at either six or -eight lines
per inch and are either single or double spaced. The PD
parameter applies to the listings written on the listing file
and the error file, which are specified by the L and E
parameters, respectively. This parameter is ignored for
connected interactive terminal listings. The option
specified by this parameter must be supported by the
printer on which the listings will be output. The PD
parameter is interpreted as follows:

omitted Listings are printed according to the job
default print density (user changeable,
installation parameter).

PD Listings are printed single spaced at eight
lines per inch.

PD=8 Listings are printed single spaced at eight
lines per inch.

PD=3 Listings are printed double spaced at six
lines per inch. .)

PD=4 Listings are printed double spaced at eight
lines per inch.

PD=6 Listings are printed single spaced at six

lines per inch.

The number of lines printed on an output page can be
specified by the PS parameter.

The PS parameter is interpreted as follows:

omitted Number of lines on a printed output page is
determined by the job default page size
(user changeable, installation parameter).

PS=n Number of lines on a printed output page is
the specified number (n).

The width of an output printed page is designated by the
PW parameter. The PW parameter is interpreted as
follows:

omitted Length of lines printed output is
determined by the job default print width
(user changeable, installation parameter).

PW Lines of printed output are 72 characters
in length. ’
PW=n Lines of printed output are the specified

number of characters in length; listing
lines are reformatted to this length.

60497200 E

Debugging Parameters

In addition to the debugging features that can be included

in the source program, two debugging aids available under -

COBOL 5 can be selected by parameters in the COBOL5
control statement. The DB parameter indicates one or
more debugging options. The TDF parameter can be
included to obtain a formatted dump of the contents of
program data items.

Debugging options are selected by the DB parameter. One
or more of four options can be specified: compilation of
debugging lines, production of binary executable code,
tracing of program flow, and checking of subscript and
index references. The DB parameter is interpreted as
follows:

omitted None of the DB parameter options are
performed.

DB=0 None of the DB parameter options are
performed.

60497200 E

DB=B

DB=DL

DB=ID

DB=5B

DB=TR
DB=RF

Binary executable code is produced
regardless of all errors in the source
program.

Debugging lines in the source program are
compiled.

Debugging lines in the source program

‘(lines with a D in column 7) are compiled

as executable code. When the DB=ID
parameter is specified at compilation time,
DB=RF and DB=58 are automatically
selected.

Subscript and index references are checked
during execution for out-of-bounds
references.

Execution flow of the program is traced.

Reference modification values are checked
for out-of-bound references.

11-4.1/11-4.2

DB Debugging lines are compiled, subscript
and index references are checked, and
binary executable code is produced. This
option is the same as specifying
DB=DL/SB/B.

When multiple options are selected in the DB parameter,
the options are separated by slashes.

When the TDF parameter is included in the COBOL5
control statement, a termination dump can be obtained by
specifying the CS5TDMP control statement after the
COBOL5 control statement. The dump is produced
regardless of whether the program terminates normally or
abnormally. The dump consists of a formatted map -of the
contents of all data items in the program. The TDF
parameter is interpreted as follows:

omitted No termination dump processing infor-
mation is written.

TDF Termination dump processing information
is written on the file TDFILE.

TOF=1fn Termination dump processing information
is written on the file with the designated
logical file name.

COPY Statement Parameter

When COPY statements are included in the source program,
the COBOL 5 source library containing the text to be
copied into the source program is specified by the X
parameter. This is the default library for COPY
statements that do not specify a library-name. The source
library must be an UPDATE random program library. The
X parameter is interpreted as follows:

omitted COBOL source library resides on the file
OLDPL.

X=0 COBOL. source library resides on the file
OLDPL.

X COBOL. source library resides on the file
NEWPL.

7 X=lfn COBOL source library resides on the file

with the designated logical file name.

COBOL Subprogram Parameters

When a COBOL 5 subprogram is being compiled, the SB
parameter must be specified in the COBOLS5 control
statement. If the main program is not a COBOL program,
the MSB parameter must also be specified. The FDL
parameter is specified when fast dynamic loader processing
is used.

The SB parameter is used only if the subprogram is being
compiled independently; if the subprogram follows a
COBOL. 5 main program in the input file, this parameter is
not required. The SB parameter is interpreted as follows:

omitted Source program is compiled as a main
program. ’
sB Source program is compiled as a
subprogram.
60497200 E

When the subprogram being compiled is called by a main
program that is written in a language other than COBOL,
the MSB parameter must also be specified. Only the first
COBOL subprogram called in a group of independently
compiled subprograms should specify the MSB parameter.
The MSB parameter is interpreted as follows:
omitted Source program is compiled normally.
MSB Source program is compiled as a subroutine
that includes COBOL. initiation.

Fast dynamic loader (FDL) processing is activated when
the FDL parameter is specified. . This parameter designates
the FDL file that contains the information required for
fast dynamic loader processing. When the FDL parameter
is specified, subprograms can be canceled; the CALL
statement can specify a literal or an identifier and the
program name can be longer than seven characters. If the
FDL parameter is not specified in the COBOLS5 control
statement, program names must be seven characters or
less and must be unique within the run unit. If the TDF
parameter is specified to obtain a termination dump of all
programs in the FDL file, the FDL parameter must also be
specified; if the FDL parameter is not specified, a dump of
only the main program is produced. The FDL parameter is
interpreted as follows:
omitted Subprograms cannot be canceled.
FDL=lfn FDL processing information is contained .on
the file with the designated logical file
name.

FDL FDL processing information .is contained on
the file FDLFILE. :

Sub-Schema File Parameter

When a program in the run unit accesses a data base file
through a subschema, the COBOL5 control statement must
include the D parameter. This parameter specifies the file
that contains the subschema. If the D parameter is not
specified and the SUB-SCHEMA clause appears in the
program, a fatal error occurs during compilation. The D
parameter is interpreted as follows:

omitted A CDCS subschema is not used.

D=0 A CDCS subschema is not used.

D=lfn The CDCS subschema resides on the file
: with the designated logical file name.

D The CDCS subschema resides on the file

with the - name specified in. the
SUB-SCHEMA clause.

COMPILATION OUTPUT LISTINGS

Various listings can be produced when a source program is
being compiled. The LO parameter in the COBOL5 control
statement is used to select the desired listings.

Source Program Listing

The source program listing is the normal listing desired
when compiling a COBOL 5 program. This listing includes
the source program images, diagnostics, the load map, and
the job dayfile.

11-5

Each line of the source program is printed on the output
listing, unless the OFFSOURCE or OFFALLLIST command
‘is specified in the source program. The format and order
of each line on the listing is identical to that of the
COBOL coding sheet.

The source listing commands can be used to control the

printing of the source program listing. The commands are
specified on comment lines (lines with an asterisk in
column 7) and must begin in column 8; they can appear
anywhere a comment line is legal. When the command
ONSOURCE or ONALLLIST is specified, the source
program listing is turned on. When the command
OFFSOURCE or OFFALLLIST is specified, printing of the
source listing is suppressed; however, the OF F SOURCE and
OFFALLLIST commands themselves are always printed.
The listing is initially turned on for every program in the
compilation. The listing can be turned off and on again as
many times as desired. When the L=0 or LO=-S parameter
is included in the COBOLS control statement, the source
listing commands are ignored. Figure 11-1 illustrates a
source listing produced by the COBOL 5 compiler.

Diagnostics are printed immediately following the source
program listing. The error level (N, T, W, F, or C), the
source line number and the column number in which the
error occurs, the diagnostic number, and the message are
listed for each error. If the PSQ parameter is specified in

the COBOL5 control statement, the sequence number of
the source program line is referenced in the diagnostic
instead of the compiler-generated line number. Only those
errors designated by the EL parameter in the COBOLS
control statement are printed. After the last error
message is printed, the number of listed errors and the
number and type of unlisted errors are printed. If the
program compiles with no errors diagnosed, a diagnostic
listing is not produced. Figure 11-2 illustrates sample
diagnostics produced by the COBOL. 5 compiler.

The load map is a printed listing that contains the names
and locations of program and block entry points. (A
system-defined default can produce the load map or it can
be selected by the MAP control statement.) The address
and length for each entry point are expressed in terms of
octal numbers. All addresses are relative addresses, not
absolute addresses. The addresses listed on the load map
can be helpful in debugging a program when an error
address is listed in the dayfile. Figure 11-3 illustrates a
load map produced for a compilation run.

If the compilation terminates abnormally, an exchange
package dump (DMPX) is printed following the load map.
This dump lists the exchange jump package, the contents of
the first 100 words of field length, and the contents of the
100 words preceding and following the address where the
job terminated. Figure 11-4 illustrates the standard dump
that is printed when a job terminates abnormally.

SOURCE LISTING OF

18 DATA DIVISION.
19 FILE SECTION.

81 MOVE JOB-ID TO ID-OUT.

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. LST-IND.

3 ENVIRONMENT DIVISION. -

4 CONFIGURATION SECTION.

5 SOURCE-COMPUTER. CYBER-170.

6 OBJECT-COMPUTER. CYBER-170.

7 INPUT-OUTPUT SECTION.

3 FILE-CONTROL.

9 SELECT EMP-FILE ASSIGN TO EMPFLE, INDFLE
10 ORGANIZATION IS INDEXED

11 ACCESS MODE IS DYNAMIC
12 RECORD KEY IS EMP-ID

13 ALTERNATE RECORD KEY IS HIRE-DATE
14 WITH DUPLICATES ASCENDING
15 ALTERNATE RECORD KEY IS JOB-ID
16 WITH DUPLICATES ASCENDING.
17 SELECT PRINTOUT ASSIGN TO OUTPUT.

82 MOVE EMP-ID TO EMP-ID-OUT.
83 WRITE PRINTLINE FROM LINE-QUT.
84 GO TO READING.
&5 PRINT-HEAD.
86 WRITE PRINTLINE FROM HEAD-OUT.
87 MOVE SPACES TO PRINTLINE.
88 - WRITE PRINTLINE.
89 BAD-DATE.
90 DISPLAY "NO EMPLOYEES HIRED FROM " DATE-IN.
91 CLOSE-~-OUT.
92 CLOSE EMP-FILE, PRINTOUT.
93 STOP RUN.
COLUMN 1 2 3

12345678901234567890123456789012345678901234567890123456789012345678901 234567890

5 6 7 8

Figure 11-1. Source Listing

11-6

60497200 C

sonsoubelq G 70800 ‘Z-LL @nbiy

a3asn s23 8000000 “S23S NdI ¥86° ‘W3 8000590
¥ ¥0¥¥3 IVIAIYL 43LSITINN | *¥
™ 431SIT syoy¥y¥3d vl ¥

“3IN3Y343Y IWYN VIVG GINIJIIAND

{

*~39yd- ¥0 ‘3IWYN JINOWINW V “IVY¥3ILIT ¥3IOILNI NV “¥3TJILNIGI- NV A€ A3IM0TT04 38 LSNW -OINIINVAGY-
*G3YONOST SI 3INO ONIQ3D3¥d 3IHL °"QIYILNNOIN3 N338 SVYH A0I¥3d 3LVIITdNa VvV

*A3WNSSY SI 37VdS ONINIAYILNI NV °¥31IVUVHO ONIA323¥d 3IHL MOTT04 LON AVW ¥3LIV¥VHI SIHL

"3SNVYII 3NTIVYA V NI Q3¥IND3Y SI VIILIT V

“INNOJ NOILIL3d3¥ STIHL NI ONISSIW SI wwxm: a3¥IND3IY¥ “SISIHLNIYYd LHOTIY 3IHL

3714 SIHL ¥04 3SNVID SNIVLNOD d¥023¥ 3IHL NI @G3TJ4I03dS
HLON3T a¥023Y WNWINIW 3HL NVHL $S37 ST NOILJIY¥IS3Q Q¥0O23¥ SIHL A8 G3INIJ3C HION3T Q¥0I3Y¥ WNWINIW 3HL

*Y3¥Y v 3IHL NI NID3E LON AVW LN3W3T3 SIHL

766L 'S¢ Z8 4

§22L g €L 4
eLee L% LS M
LooL 2% 2§ M

6%0¢ 9% LS 4

2602 2¢ 82 4

640% VN %2 M
9201 8 kj M

Jody3 100 3INIT A3S

d¥-3WYN NI SIILSONDVIQ 40§ 13A37 - €76 10800 242

11-7

60497200 C

dey peoq °g-L| enbiy

S3NOW 378VL ¢

a3sn 39vV¥0LS W) 800L0S

9eY0L [4%/1]% 92401
2¢9L €192 4272 2ssl Less

SINVLISNOD GNV NOILVZIVILINI

Q7314 Q31143 NV OL W3LI NV JAOW
3714 INdLNO NO 3NIT V AVdSIQ
WYy 90dd 10809

SLN3WWOD

39vd "8€°6S°60 "0L/0L/S8

2082
LLlY L9y

(41719
LL9S
4259
9259
§2s9

I 2Y9 9°¢ SSVdWO0)

2%9 9°¢ SSVdWOD
279 9°¢ SSVdWOI

I %9 %9 €°s 10802

- -

JUYMAQYYH 13A37 Y3A ¥SSI0¥d

2Y9=-6° L ¥3IQV0T ¥3AA

V09" WO

Y°WWO
30d4°4W)
47Y° W)

WigTL)
WygTILd
YV$TaLd
VV$TILD
VV$TYLD

SERLENEEEL]

%2/80/58

%2/80/S8
%2/80/58
oL/0L/s8

3lva

435

SAN0J3s dd 2.L°

4950l AS*WWI

YOd"WWI €S%0L YOd" Wi

WKW WWY %9401 W3W *WWD

VOO°WWO 21%0!L VOO WWD

¥IVIMx Wyl $4q

*AVIMx OS$AIHI

*AVIMx LI WYY

*MVIMx ANISUYY

*»IVIMx LISWYY

WY¥90dd SS3daay AYLINT

“SLNIOd AYINZ

§710800-1S |12 Lot LINI$D
L 0oLl /AN3"dlS/

§710809-1S 90Y Ly 11033
610800-1S L2L 2039 A1dSas$d
091 91 2Ll ds

l Lk /AHSYH®J/

0 AL /NOWWO033/

37Id HLON3T $s3UQQY A%078

“SLNIWNOISSY XJ018 ANV WYY 90¥d

dS ~- SINIOd A¥LNT WYY 90¥d

2Ll IdS -- SS3UAQY YIASNVAHL
€090L QVv07 JHL 40 L+VM1

121 av01 3HL 40 VM4

IdS ~ dVW avo1

60497200 E

®11-8

dwnq plepueig “p-LL 3inbiyg

TeLeLL
2%0L0
00000
Ly1L0
0009%
0009%
00094
11901
10000
16102
156902
$LL90
49490
0009¢
0009%
L6190
0009%
9061
1%490
0009%
91490
0LYEY
oLYyEY
9€202
4%9%S
12496
0009%
%0490
92990

10000

00000

00000
00000

L0706
00914
oLLLL
0021L
11192
$10L0
12L€L
9t 102
00000
€00.0
19921
0TEED
00040
96190
09102
0T1€0
00000
9099¢
00020
00019
otLLo
€6LLL
LLLEL
00101
0122
L22€S
00019
0%2¢0
0051¢

00000

00004

00000
00000

090240
60L22
LLLLL
940L0
SEOLO
000%0
oLl
$10L0
$E9E0
012¢0
91942
€L102
$1€02
00010
0€t00
10000
0LLe0
€0002
949190
0009%
11001
LereeL
geeet

1101

L22%¢

91490
20190
9T1LE

94990

00000

00000

00000
00000

0€0€0
00901
LiLlL
00T1TL
011€0
020€6
L0L0S
00116
00000
€2102
€091
091¢€S
20912
26902
0011L
00116
09946
ot192¢
00419
9229¢
0LLE9
L1001
LL001
€2yLE
22901
010¢€0
00020
L1961
022¢€0

00000

00000

00000
00000

0000 0000
0009 &612
1299 €€Lt
0000 0000
0009 %612
4100 0000
0000 0000

0000
4000
€EH9E
0000
%000
0000
0000

0T1EL
T9LLL
00000
LLlel
00000
00094
9tLiL
19LLL
9%LLL
00094
019€L
0009%
2999¢
TLL90
46190
%9490
00000
0009%
00094
922L¢
9€902
0009%
00094
§2490
00000
0009%
9€ETE
SLLLL
9€202
0009%
00000
00000

00000
52421
00000
0009
L1000

0000
9150
9500
0000
9150
0000
0242

yyT12
L0€06
00000
LLLiLL
oLLzo
00019
L0206
20906
L0906
00019
19121
00019
26902
[28¢1)
00010
00040
00000
00019
00019
9€902
9EE9E
00019
11241
092€0
00000
00019
LELES
L0L19
001071
69000
00000
00000

00000
00010
00000
00000
00000

0000
09¢€Y
021¢
0000
09€Y
5051
2010

LT
2l
920L0
m
0ELE9
15100
0€020
0€9€L
90411
£0020
0£902
¥2L90
v1€02
10000
10000
¥6190
25010
12990
05290
0EELE
91921
12990
9£902
90911
»OTTIT
LY9%¢
sy 01
1E€9€
120t
0021¢
00000
00000

00000
00000
€9000
95420
00000

01921
L0206
00050
LLLLL
020€¢
00010
010€0
90€T2
00912
000%0
099€L
000%0
2091L
0011¢
00114
0011¢
000%0
0049y
00020
00901
9€902
00%9%
92221
L009¢
000%0
L2296
9229¢
1229¢
€2%.¢€
eeLon
00000
00000

00000
0000%
00040
05999
05041

=(L8))
=(99))
«{68))
=(%8))
=(€9)D
=(28))
={18)2

0000
0000
L200
00€9
0000
91.i¢
0000

22002
0009¢
€0000
0009%
JL23¥3
00094
94020
LELGT
L0907
0009%
00000
10000
00094
00094
0009%
€9.90
00000
0€921
91290
99001
0009%
15290
9€L90
Y9091
0009¢
91L90
125%¢€¢
00099
00094
99LTY
10000
10000
10000

00000
Y0y ¥9
10000
$5000
00000

0000 0000
0000 0000
0000 %262
€066 04€0
0000 0000
0000 0000
0000 0000

0T0%L
00492
00000
00019
L0EOQS
09601
00010
90€T12
00010
€2102
00000
00112
00019
00019
11901
0TE€0
00000
14990
0TLLO
2%L90
22190
00020
0%€€0
e2zL90
00019
0T10€0
L0290
00019
00019
00001
00000
00000
00000

00000
L0000
00916
o11€0
00000

0000
0242
0282
0000
0000
0000
0242

199249
009¢Y
00000
$€040
9eLlL
00010
28LLL
YoLLL
10000
9119¢
L7X41/]
LLL90
64290
14490
66490
99000
00000
00916
11001
OLEED
00020
CEL90
24990
0%€E0
€1490
ETTLE
090€0
LE9ES
L1290
00000
00000
00000
00000

00000
00000
09000
10000
00024

0919¢
19L4¢
00000
000%0
L020¢
0119L
L0406
10906
00119
09942
000%0
011€0
%00%0
90040
00916
00116
00€10
02921
0LLES
0L%EY
y222¢
00419
0091L
%5001
0T1€0
11€9L
11299
Y4901
00020
0€000
00000¢99990
00000
00000

04628
0000%
04040
0011s
22010

0000 =(LV))
2010 ={9v))
G2LT =(g¥Y))
0009 - =(&V))
0000 =(€EV)D
0000 =(2V))
2010 =(TIV))

0009% 00019
TL9%6 0ELLL
00000 00000
04040 %0010

0009¢

LE0LO 022€0

00094
99.LEY

00000 00000

€10L0

0009% 00019
10000 0011¢
96190 00010
04490 O0T1€0

00094
0009%

00000 00000

0%021
00094
9LLlLE
9€%02
52000
L5490
*T1E9L
LLLYS
194%¢
LEEEL
L2HES
L1230
10000
00000
00000
00000

10000
Y0411
10000
96000
0TLYs
00000

0000
0000
L1200
0000
0000
0000
0000
0000
146200
141400
900L€0
000000
15914500
200000
100000
000000

10%¢%
0zZ9LL
00000
A ZYRA
€9901
0€0L0
$20L0
LyliL
esect
9€902
96190
SLL90
1999¢
10000
T191ET
00040
L9490
2€002
11990
2000
€sLlLL
1€490
69290
91490
00094
yozze
sbiLd
20490
Locz2
00000
00000
00000
00000

00000
$2€2¢
y2€26
LLLL
01180
00000

0000
0000
Y262
0000

019€9
19L%S
00000
L0E0S
00010
%0212
090€0
L0906
000%0
9TIET
oooto
010€0
06102
00116
199¢1
0T19%6
000%0
611
0049¢
00912
LOYTL
0LEED
00L19
0L0€0
EITLE
22901
L0419
090€0
%901
00000
00000
00000
00000

000% &¢
12040
12040
Lyv19¢
[398214
00000

0000
0282
0242
0000

0000 0000
0¥€9 2000

0000

0000

0062 19€0

$60%00

v

100000 9v

94110
»L19¢€0
010500

(1)
vy
€V

290%00 2V
100000 1v

6%0%00

ov

»60L0
050240
%50L0
04040
»€0L0
0€0L0
$20L0
020L0
%1040
010L0
%0020
000L0
$LL90
0L290
49290
09290
5490
0sL90
4290
0%L90
YEL90
Q€490
%2290
02290
%1190
01290
0490
00490
%1990
04990
%9990
099990
94990

00100
oL000
%9000
19000
%4000
00000

0000 X
2010 oxX
$2LT oxX
0000 ¥X
0000 €x
0000 2X
0000 X
%010 oOX

009000 VW
000000 34
9€0000 3¥
004002 W3
0022%0 14
002290 vi
961900 d

11-9

60497200 C

The final printed output for any job is the dayfile. The
dayfile records the history of job execution. Each control
statement is listed with the time it was encountered.
Other information on the dayfile includes equipment
assignments, operating system diagnostics, job accounting
information, and job statistics. The time of day associated
with each processing event is printed on the dayfile.
Figure 11-5 illustrates the dayfile produced at the end of
job execution. :

Cross Reference Listing

The cross reference listing is an optional listing that
provides alphabetic lists of data-names and
procedure-names used in the source program. This listing
is divided into four parts: referenced data-names,
unreferenced data-names, referenced procedure-names,
and unreferenced procedure-names.

Fach list contains the applicable program names and the
line number and column number where the name is
defined. The referenced data-names and referenced
procedure-names. parts of the listing also list all line
numbers that reference the name. Figure 11-6 illustrates
a cross reference listing produced by the COBOL 5
compiler.

Obiject Code Listing

The object code listing can be selected for output. This
listing contains the object code generated during
compilation along with the corresponding COMPASS
mnemonics. Since all corrections should be made at the
source program level, the entire listing is probably of little
value to the COBOL 5 programmer. Selected portions of
the object listing, can be printed through the LLIST/NOLIST
commands. The commands, which are specified on
comment lines beginning in column 8 (immediately
following the asterisk), can appear anywhere within the
Procedure Division that a comment line is legal; commands
specified outside the Procedure Division are ignored. The
OFFOBJLIST and OFFALLLIST commands suppress
printing of the listing; however, the OFFOBJLIST and
OFFALLIST commands themselves are always printed. The
listing is initially turned on for every program in the

compilation if the LO=0 parameter is specified in the
COBOL5 control statement; the listing can be turned off
and on again as often as desired. If the LO=0 parameter is
not specified or the L=0 parameter is specified, the object
code listing commands are ignored. Figure 11-7 illustrates
the object code listing produced during a COBOL 5
cornpilation run.

Data Map Listing

The data map listing contains an entry for each item
defined in the Data Division. The data items are listed in
the order of section appeararice. The data map shows the
level number, name, size, usage or class, and other
relevant information. Figure 11-8 illustrates the data map
listing generated during a COBOL 5 compilation run.

EXECUTING A PROGRAM

Once a COBOL 5 source program has been compiled and an
object program has been generated, the program is ready
for execution. Execution can be initiated immediately
following compilation as part of the same job. When the
source program is completely debugged, the object
program can be punched on cards or stored on disk as a
permanent file for execution at alater time.

The program is called into execution by a program call
control statement. This statement specifies the logical
file name of the file containing the object program,
optionally followed by a parameter list. The statement is
specified according to operating system syntax and cannot
be continued from one card image to another. The
program call control statement can be used when execution
immediately follows compilation and when execution is
initiated in a separate run. The file that contains the
object program is specified by the B parameter in the
COBOL5 control statement.

When execution of a COBOL 5 progran follows
compilation in the same job, the program call control
statement immediately follows the COBOL5 control
statement. The program call control statement specifies
either the logical file name in the COBOLS5 control
statement B parameter or, if the B parameter is omitted,
the system file LGO.

09.55.34.CINDX.
~ 09.55.34,USER,USR1765, .

09.55.34.ABSC, B.

09.55.34 .MAP (OFF)
09.55.35.DEFINE, INVNTRY
09.55.35.DEFINE, INVIDX

09.55.34.CHARGE 8347 ,ACCT175.

FULL DAYFILE. 85/10/10. 09.55.39.%09.55.34% PAGE 1

09.55.35.C0BOLS.
09.55.37.0664008 CM, .231 CPS, 0000008 ECS
09.55.37.160.
10.19.03.ucLP, 03, 116, 0.896KLNS .
Figure 11-5. Dayfile

11-10

60497200 E

CbC COBOL 5.3 - LEVEL 518 CROSS REFERENCE FOR NEW-IND AOPT= 66/CDC/CDCS2
REFERENCED DATA-NAMES LINE COLUMN REFERENCE (S)

CARD-IN 20 12 9 67 70 74 92

CARD-1 23 12 22 73

CARD-2 34 12 22 80

CiTY 29 20 73

CITY 57 20 73

DEPT 39 16 80
REFERENCED DATA-NAMES LINE COLUMN REFERENCE (S)

CbC COBOL 5.3 - LEVEL 518 CROSS REFERENCE FOR NEW-IND AOPT= 66/CDC/CDCS2
REFERENCED DATA-NAMES LINE COLUMN REFERENCE (S)

DEPT 61 16 80

DIV . 41 16 80

DIV 62 16 80

EMP~-FILE 47 12 10 68 92

EMP-1D 53 16 13 72 76

EMP-ID-1 24 16 72

EMP-ID-2 35 16 76

EMP-NAME 26 16 73

EMP-NAME 54 16 73

EMPLOYEE 52 12 51 73 80 81 86 89

HIRE-DATE 63 16 14 79

HIRE-DATE-IN 43 16 79

JoB-10 60 16 16 78

JOB-ID-IN 37 16 78

LOCATION 64 16 80

LOCATION 45 16 80

STATE 30 20 73

STATE 58 20 73

STREET 28 20 73

STREET 56 20 73

LIP-CODE 32 20 73

LIP-CODE 59 20 73

" REFERENCED DATA-NAMES LINE COLUMN REFERENCE (S)

CDC COBOL 5.3 - LEVEL 518 CROSS REFERENCE FOR NEW-IND POPT= 66/CDC/CDCS2
UNREFERENCED DATA-NAMES LINE COLUMN

EMP-ADDRESS 27 16

EMP-ADDRESS 55 16
UNREFERENCED DATA-NAMES LINE COLUMN

CbC COBOL 5.3 - LEVEL 518 CROSS REFERENCE FOR NEW-IND AOPT= 66/CDC/CDCS2
REFERENCED PROCEDURE-NAMES LINE COLUMN REFERENCE (S)

BAD-RECORD 88 8 82

CLOSE-FILES 91 8 71

INPUT-ERROR 84 8 75 77

READ-CARDS 69 8 83 87 90
REFERENCED PROCEDURE-NAMES LINE COLUMN REFERENCE (S)

CbC COBOL 5.3 - LEVEL 518 CROSS REFERENCE FOR NEW-IND AOPT= 66/CDC/CDCS2
UNREFERENCED PROCEDURE-NAMES LINE COLUMN

OPEN-FILES 66 8
UNREFERENCED PROCEDURE-NAMES LINE COLUMN

‘Figure 11-6. Cross Reference Listing

60497200 C 11-11

Bunsi] 8poy 109[qQ *£-LL @by

€6 ANI-M3N aN3
€6 1d1n0*2 1X3
€6 1n0d0°) 1x3
€6 : NIdO*") 1X3
€6 480712°) 1X3
€6 STYYM") 1X3
€6 NI¥dLS®) 1X3
€6 4d0LS" D 1X3
€6 OSNQY*") 1X3
€6 0Sd0" 1X3
26 86666666665666656656¢ viva
£6 866669666666566566666 viva
€6 866655S5%091L1L19%225091 viva
€6 AYAILIT asn
€6 0 ss4
£6 8s¢1000 Sd
1) 9SW"IX= ry

8000000000000L0000000 viva
80000000000%252029L1L1L viva

0 ssg

S1Id asn
801000 ss8
800000000000000000000 v.ivd
0 ssg

93¥S asn
810000 ssg

Q ssa
/AHSYH")/ asn
821000 ssd

0 ssg

811000 ssg

0 S$s8g

0 ssg

LEERMEL] asn

866666666666566566665=13S3¥d 13841

dJISAS*2/Q¥0d"I=LINO 13SQN
QYOUN"I/dAISWA/dNSWA I /MIYWA"I /20 WA"I/LAYNG I=LINO L3SG1
CUMWATD/ LYMWA I /ULSWA"D/T13GWA"I/STOWA I /NJOWA"I=1TWO L3SA7
A8139°)3=3Sn 13SqQ"

8I7WYE8/570803=911 13841

GNI-M3IN IN3QI

ANI-M3N

+ 000000
£L0000d
SLId#
0L0000
93ys#
L00000
AHSVH"J#
210000
¢000001
110000
1000007
LEER MERT

40 ONILSIT 123r80

§55665655555555566656
G56655555555656565566
SS6SSSSY09LLL9YL25091L

se1L0000000
* 0000000010

000000000000 L0O0O0000
0000000000%2520291LLL

00000000000000000COO

221000
L4L000
041000

471000

971000

.
.
.

222000
22000
1£2000

122000
022000
022000

000000
uoooou

902000
902000
§21000
21000
$21000

60497200 C

11-12

FILE SECTION

MAP OF NEW-IND

*k% DATA MAP (ADDR/BCP IN OCTAL, SZ IN DECIMAL) **x*

FD CARD-IN BLOCK=PROGRAM ADDR/BCP=000231/ LNR=20
(INPUT)

* 01 CARD-1 000175700 $z=80 GROUP 23
03 EMP-ID-1 000175/00 3 NUMERIC 24
03 FILLER 000175/03 1 AN 25
03 EMP-NAME 000175/04 20 AN 26
03 EMP-ADDRESS 000177/04 48 GROUP 27
05 STREET 000177/04 20 AN- 28
05 CITY 000201/04 20 AN 29
05 STATE 000203704 2 ALPHA 30
05 FILLER 000203/06 1 AN 31
05 ZIP-CODE 000203/07 5 NUMERIC 32
03 FILLER 000204/02 8 AN 33

* 01 CARD-2 000175700 80 GROUP 34
03 EMP-ID-2 000175/00 3 NUMERIC 35
03 FILLER 000175703 1 AN 36
03 JOB-ID-IN 000175/04 5 AN 37
03 FILLER 000175711 5 AN 38
03 DEPT 000176/04 3 NUMERIC 39
03 FILLER 000176/07 2 AN 40
03 DIV 000176711 3 NUMERIC 41
03 FILLER 000177/02 2 AN 42
03 HIRE-DATE-IN 000177/04 6 NUMERIC 43
03 FILLER 000200/00 4 AN 44
03 LOCATION 000200/04 3 NUMERIC 45
03 FILLER 000200/07 43 AN 46

FD EMP-FILE 000303/ 47
(EMPFLE)

* 01 EMPLOYEE 000206700 90 GROUP 52
03 EMP-ID 000206/00 3 NUMERIC 53
03 EMP-NAME 000206/03 20 AN 54
03 EMP-ADDRESS 000210703 47 GROUP 55
05 STREET 000210/03 20 AN 56
05 CITy 000212/03 20 AN 57
05 STATE 000214/03 2 ALPHA 58
05 ZIP-CODE 000214/05 5 NUMERIC 59
03 JOB-ID 000215/00 5 AN 60
03 DEPT 000215705 3 NUMERIC 61
03 DIV 000215710 3 NUMERIC 62
03 HIRE-DATE 000216/01 6 NUMERIC 63
03 LOCATION 000216/07 3 NUMERIC 64

**% PROCEDURE MAP (ADDR IN OCTAL) **%
OPEN-FILES ADDR=000004 LNR=66
READ-CARDS 000014 69
INPUT-ERROR 000115 84
BAD-RECORD 000124 88
CLOSE-FILES 000134 91

*kk END MAP ***
Figure 11-8. Data Map Listing
60497200 C 11-13

If a program is not compiled and executed in the same job,
execution can be accomplished in one of two ways. A
program call control statement that specifies the logical
file name of the file containing the object program causes
the program to be executed. The second way to execute an
object program requires the LOAD and EXECUTE ceontrol
statements; the LOAD control statement specifies the
logical file name of the file containing the object program
and the EXECUTE control statement causes the program
to be executed. More than one LOAD control statement is
required when subprograms are loaded from more than one
file. When the object program has been stored as a
permanent disk file, the file must be attached by an
ATTACH control statement before a program call control
statement or a LOAD control statement can be executed.

Three of the parameters that can be specified in the
program call control statement cause informative
messages to be printed on the job dayfile following
program execution. The file equivalence parameter allows
one file name to be substituted for another file name
during OPEN statement processing. Any characters in the
program call contrel statement that are not recognized by
the compiler are assumed to be user parameters; user
parameters are processed within the logic of the COBOL 5
program.

The *CORE, *MSGS, and *TIME parameters cause three
different types of information to be displayed on the job
dayfile. The maximum amount of central memory used
during execution is displayed in octal when *CORE is
specified. Messages issued by the Sort/Merge facility
indicating the number of records processed are printed
when *MSGS is specified. The amount of central
processing time used during execution is displayed on the
job dayfile when *TIME is specified.

An alternate file name can be specified for a file name
already defined in the program; two file names are
specified, on an operating system control statement, with a
separating equals sign. The name to the left of the equals
sign is the implementor-name specified in the ASSIGN
clause of a File-Control entry. When the file is opened, the
name to the right of the equals sign becomes the new
logical file name of the file information table (FIT).
Subsequent operating system control statements must
specify the alternate file name. Parameters can be passed
to a COBOL 5 program at execution time through the
program call control statement.

The entire statement is considered as one parameter string
of 80 characters. The string is made available to the
COBOL program by entering the C.GETEP routine. When
the routine is entered, the entire 80-character field is
returned to the data item specified in the ENTER
statement. The data item must be alphanumeric and
should be 80 characters in length. Truncation of the

parameter string on the right occurs when the item is less

than 80 characters. If the item is larger than 80
characters, it is blank filled. Once the parameter string
has been transferred to the data item, it can be separated
into smaller data items by the UNSTRING statement and
can be used within the program logic. The UNSTRING
statement is discussed in section 7, Character Handling.

SAMPLE DECK STRUCTURES

Four sample deck structures are shown in figures 11-9
through 11-12. The control statements other than the
COBOL5 control statement are described in detail in the
applicable operating system reference manual.

11-14

ol

JLData Deck

Y

lJCBBOL 5 Source Deck '||

LGO.
/ COBOLS.
ACCOUNT usernumber,password.

Job Statement

t1f required by the operating system.

Figure 11-9. Compiling and Executing a COBOL 5
Source Program

e
Y

/ Data Deck "

(/ EXECUTE.

| / LOAD,PROGT. ’]

! / ATTACH,PROG1,ID=MINE. 11 '
ACCOUNT usernumber,password.t

/ Job Statement

t1f required by the operating system.
11Use the permanent file ATTACH format appropriate
to the operating system.

Figure 11-10. Executing a COBOL 5 Object Program

The NOS/BE job deck structure shown in figure 11-9 is l
used to compile a source program and execute the resulting
object program. The binary object program is written on
the system file LGO. The program call control statement
(LGO.) calls the object program inte execution. .

60497200 E

J Figure 11-10 illustrates a NQOS/BE deck structure that
executes an object program generated by a previous
compilation run. At compilation time, the object program
was stored as a permanent disk file with the logical file
name PROG1. The ATTACH and LOAD control statements
specify the logical file name for the object program. The
EXECUTE control statement causes the object program to
be executed. The LOAD and EXECUTE control statements
can be replaced by a program call control statement that
specifies PROG1.

Compilation and execution of a COBOL 5 main program
I and a COBOL 5 subprogram are accomplished by the NOS

/%ata Deck

L

COBOL 5 Source Deck (Subprogram)

L

i y.
: /COBOL 5 Source Deck {Main Program) TI

LGO.

/COBOLS.
l] / 'USER,username,password.T
: Job Statement

Tlf required by the operating system.

Figure 11-11. Compiling and Executing a COBOL 5 Main
Program and a COBOL 5 Subprogram

60497200 E

job deck structure shown in figure 11-11. The COBOLSI
control statement controls compilation of the main
program and the subprogram. The binary output is written
on the system file LGO.

The NOS job deck structure illustrated in figure 11-12'
shows the compilation and execution of a COBOL 5 main
program where the subprogram has been previously
compiled. The LOAD control statement specifies that the
binary object subprogram is to be loaded from the system
file INPUT because the object subprogram resides on
punched cards. The main program is called into execution
by the program call control statement (LGO.).

-
Y s

/ "Data Deck |

i =

/ Binary Subprogram Deck

. |
1 =
/COBOL 5 Source Deck (Main Program)]l

/
: / LGO.
LOAD,INPUT. l
/ COBOLS.
/ USER username, password.T |
7 Job Statement

Tie required by the operating system.

Figure 11-12. Compiling and Executing a COBOL 5 Main
Program with a Previously Compiled
Subprogram

11-15

'COBOL 5 SOURCE LIBRARY 12

A COBOL 5 source library contains source program entries
and statements that can be copied into a COBOL 5
program when it is being compiled. Copying portions of a
program from the library into a source program eliminates
duplication of effort. Code that is identical in more than
one COBOL 5 program, or that is easily modified for use in
more than one program, can be stored on the library for
subsequent access by the COBOL 5 compiler.

The Update utility program is used to create and maintain
a COBOL 5 source library. The library generated by
UPDATE is a random program library that is structured in
groups of COBOL 5 source entries or statements. Each
group is referred to as a deck and is identified by a unique
name.

The COPY statement is used in the COBOL 5 source
program to indicate the source library deck to be copied
into the program. This statement can also specify certain
modifications to the library deck. The entries or
statements in the library deck replace the COPY
statement when the source program is compiled.

CREATING A COBOL SOURCE
LIBRARY

A COBOL 5 source library is created as a random program
library through the Update utility program. Source decks
are stored on the library in compressed symbolic format.
A source deck consists of an entire program or a portion of
a program.

The COBOL 5 source program entries and statements that
are to be stored on the source library are grouped into
decks. A deck usually contains only a portion of a program
because an entire program is not usually copied. Each deck
to be stored on the library is preceded by a DECK or
COMDECK directive. This directive introduces a new
source deck and specifies the name by which the deck is
identified. The name can consist of up to nine characters
that form a unique identifier for the deck. The source
deck is terminated by the next DECK or COMDECK
directive or by a 7/8/9 card (or its equivalent).

*DECK EMPREC1

This. directive specifies that the name EMPRECI is
assigned to the source deck following the DECK directive.
A COBOL 5 source program COPY statement that
references EMPREC1 causes the source deck to be copied
into the program.

The set of control statements preceding the library source
file includes a job control statement, an UPDATE control
statement, and the control statements necessary to make
the library a permanent. file. The specific control
statements used for permanent files depend on the
particular operating system and are described in the
operating system reference manual. The UPDATE control
statement is described in detail in the Update reference
manual. The F and N parameters must be specified for
creating the library; other parameters are included in the
UPDATE control statement as applicable.

60497200 C

MAINTAINING A COBOL SOURCE
LIBRARY

After a COBOL. 5 source library has been created, the
contents of decks can be changed, new decks can be added,
and existing decks can be deleted through the Update
utility program. Correction directives are used to update
the source library; these directives are described in detail
in the Update reference manual.

Correction directives that update the source library on a
card basis are grouped into correction sets. A correction
set begins with an IDENT directive, which specifies the
identifier for the correction set. The Update program uses
the identifier and adds a sequence number to uniquely
identify each card affected by the correction set.

The source library can also be updated on a deck or
correction set basis. Correction directives are provided to
add new decks to the library and to temporarily or
permanently remove decks or correction sets from the
library.

ADDING NEW DECKS

The ADDFILE directive is used when a deck is being added
to the source library. This directive specifies the file
containing the new deck and the placement of the deck in
the source library. If the new deck follows the ADDFILE
directive in the Update input file, the file name can be
omitted from the directive. The deck is placed after a
specific card or deck in the source library by specifying in
the ADDFILE directive a comma and either the identifier
of the card or the name of the deck; if this parameter is
not specified, the deck is added at the end of the file.

*ADDFILE FILEA, XYZ

*ADDFILE, XYZ

The first ADDFILE directive causes the deck (or decks) on
the file named FILEA to be added to the source library
immediately following the deck named XYZ. The second-
ADDFILE directive indicates that the UPDATE input file
contains the deck to be added after the deck named XYZ.

INSERTING NEW CARDS

New cards are inserted into existing decks by the INSERT
and BEFORE directives. The directive designates the card
before or after which the new cards are to be inserted by
specifying the card identifier. The INSERT directive
causes cards to be inserted after the specified card while
the BEFORE directive causes cards to be inserted before
the specified card. The new cards must immediately
follow the INSERT or BEFORE directive on the input file.

12-1

*INSERT XYZ.12

This directive causes the cards following it to be inserted
into the source library immediately after the card with the
identifier XYZ.12.

*BEFORE SET1.5

The cards following this directive are inserted into the
source library immediately preceding the card with the
identifier SET1.5. ‘

DELETING CARDS FROM DECKS

One or more cards are deleted from a deck by the DELETE
directive. This directive causes the temporary removal of
- cards; the cards can be restored to the deck at a later
time. The deleted cards can be replaced by new cards; if
this is desired, the new cards must immediately follow the
DELETE directive in the input file.

A single card is deleted by specifying the identifier of the
card in the DELETE directive. A block of cards is deleted
by specifying the identifiers of the first and last cards to
be deleted; all cards with identifiers in the specified range
are deleted. Any new cards following the DELETE
directive replace the deleted cards.

*DELETE XYZ.5, XYZ.10

This directive causes the cards with identifiers XYZ.5
through XYZ.10 to be deleted from the deck. Because this
is a temporary deletion, the cards can be restored to the
deck by a subsequent correction set.

RESTORING CARDS TO DECKS

Cards that have been deleted by the DELETE directive are
restored to the deck by the RESTORE directive. This
directive causes a deleted (inactive) card or block of cards
to be reactivated. If new cards are to be inserted
immediately after the last reactivated card, the new cards
must follow the RESTORE directive.

The RESTORE directive specifies the identifier of a single
card to be reactivated or the range of identifiers for a
block of cards to be reactivated. When a range of
identifiers is specified, any active cards within the range
are not affected by the RESTORE directive. Any new
cards following the RESTORE directive are inserted after
the last card reactivated.

*RESTORE XYZ.5, XYZ.8

This directive causes the cards with identifiers XYZ.5
through XYZ.8 to be reactivated. New cards following the
RESTORE directive are inserted after the card with
identifier XYZ.8.

REMOVING CORRECTION SETS

The effects of a correction set are removed by the YANK,
SELYANK, PURGE, and SELPURGE directives. The
YANK and SELYANK directives are temporary removals;
the correction sets can be reactivated at a later time. The
PURGE and SELPURGE directives permanently remove
correction sets; a purged correction set cannot be
reactivated.

12-2

The YANK directive specifies the correction sets to be
removed; individual correction sets or a range of
correction sets can be specified in one directive. Cards
that were deactivated by the correction sets are
reactivated; cards that were activated by the correction
set are deactivated. AIll source library cards affected by
the correction set are affected by the YANK directive.

*YANK CSET1

This directive removes the effects of the correction set
with the identifier CSET1. All cards with identifiers
beginning with CSET1 are changed.

The SELYANK directive operates in the same way as the
YANK directive except that the correction set is removed
from the specified deck only. Other decks that were
changed by the correction set are not affected by the
SELYANK directive.

*SELYANK XYZ.CSET1

The effects of the correction set with the identifier CSET1
are removed from the deck named XYZ. Other decks in
the source library are not changed.

The PURGE directive permanently removes the specified
correction sets; individual correction sets or a range of
correction sets can be specified. A correction set is
purged from all decks. Once a correction set has been
purged, it cannot be reactivated.

*PURGE CSETS

This directive causes the correction set with the identifier
CSET5 to be permanently removed. It is no longer
accessible. ‘

The SELPURGE directive is the same as the PURGE
directive except that a correction set is purged only from
the specified deck. Other decks in the source library are
not affected by the SELPURGE directive.

*SELPURGE ABC.CSET4

This directive purges from the deck named ABC all cards
that belong to the correction set with the identifier
CSET4. Only the deck ABC is affected by this SELPURGE
directive.

REMOVING DECKS

Complete decks are removed from the source library by
the YANKDECK and PURDECK directives. The
YANKDECK directive temporarily removes decks while
the PURDECK directive permanently removes decks.

The YANKDECK directive deactivates all cards within the
specified decks. A deactivated deck can be reactivated at
a later time.

*YANKDECK XYZ

The deck named XYZ is deactivated by this directive. All
cards in the deck are deactivated regardless of the
correction set to which they belong.

The PURDECK directive permanently removes a deck or

group of decks from the source library. All cards in the
deck are purged regardless of correction set identifiers.

60497200 C

*PURDECK ABC

This directive causes the deck named ABC to be
permanently removed from the source library. It cannot be
reactivated by a subsequent correction set.

USING A COBOL 5 SOURCE LIBRARY

Decks in a COBOL 5 source library are incorporated into
the source program when COPY statements are executed.
The' library deck can be copied exactly as it exists on the
library or with certain modifications specified in the COPY
statement. The entire COPY statement, which can appear
gnyl:mere in the source program, is replaced by the copied
eck.

The source library containing the decks to be copied must
be attached before the source program is compiled. The X
parameter in the COBOLS5 control statement specifies the
default source library for COPY statements that do not
specify a library name.

When a COPY statement is encountered in the source
program, the specified library deck is copied into the
program. If the library deck does not reside on the default
source library, the COPY statement must specify the
library name.

COPY EMPRECI IN MYLIB.

When this statement is encountered, the library deck named
EMPRECI is copied into the source program exactly as it
appears on the library file. The deck is contained in the
source library named MYLIB.

The REPLACING option is included in the COPY statement
to specify the changes to be made when the library deck is

60497200 C

copied into the program. This option contains one or more
sets of operands separated by the keyword BY. The first
operand in a set is the library text that is to be changed;
the second operand is the text that is to replace the library
text. :

COPY EMPRECI IN MYLIB
REPLACING EMP-REC BY SORT-REC.

Execution of this statement causes the library deck named
EMPREC1 to be copied into the source program. The
data-name EMP-REC in the library deck is changed to
SORT-REC in the source program.

An operand in the REPLACING option can be a series of
data-names, reserved words, and literals called
pseudo-text. In a COPY REPLACING statement, a
complete COBOL word, literal, picture character-string, or
comment entry must be referenced. This provides the
means to change a complete entry or statement in the
library deck. When pseudo-text is specified as the first
operand in a set, library text that is the same as the
pseudo-text is replaced by the second operand. The second
operand in a set can also be specified as pseudo-text. Two
contiguous equal signs are used to delimit pseudo-text.

COPY TOTALS REPLACING
==SUBTRACT DISCOUNT FROM ACCUM==
BY ==SUBTRACT DISCOUNT FROM ACCUM
GIVING AMOUNT ==.

When this statement is executed, the library deck named
TOTALS is copied into the source program with one
modification. The library text SUBTRACT DISCOUNT
FROM ACCUM is changed in the source program to
SUBTRACT DISCOUNT FROM ACCUM GIVING AMOUNT.

12-3

PROGRAM DEBUGGING AIDS 13

COBOL 5 contains three features that aid the programmer
in debugging a COBOL program. These features are:

e The debugging feature is used to monitor specific
files, data items, and procedures during program
execution. With this feature, debugging sections are
executed when specific conditions occur.

e The paragraph trace feature is used to trace the flow
of a program during execution. With this feature,
information is written to a trace file that can later be
printed.

e The termination dump feature is used to obtain a
listing of the contents of all data items, or of selected
data items in the program. With this feature,
information is written to an output file which can be
printed upon program execution.

Snap-shot dumps can also be taken at any time during
execution. With this feature, an informative map is
produced regardless of whether the program terminates
normally or abnormally. '

DEBUGGING FEATURE

The debugging feature provides two types of debugging
procedures that can be included in the COBOL 5 source
program. Debugging lines, which can appear in various
parts of the program, are always executed if the lines are
compiled as executable code. Debugging sections, which
can appear only as declarative sections, are executed only
when the debugging option is selected at execution time.

Executing debugging lines and debugging sections generally
results in a longer execution time. The activation or
deactivation of the debugging feature is specified through
caompile-time and execution-time switches that are
controlled by the pragrammer.

DEBUGGING LINES

When a program is being coded, debugging lines are
included anywhere in the program after the
OBJECT-COMPUTER paragraph. A debugging line is
indicated by the letter D in the Indicator Area (column 7).
The content of a debugging line must be syntactically
correct as a line of executable code whether or not the
debugging feature is activated. For example, a debugging
line in the Data Division must conform to the rules for a
Data Division entry.

Debugging lines are compiled as executable code only when
the debugging feature is activated during compilation.
Whenever the object program is executed, the debugging
lines are executed. If the debugging feature is not
activated during compilation, debugging lines are compiled
as comment lines.

DEBUGGING SECTIONS

Debugging sections are specified in the Declaratives
portion of the Procedure Division. A debugging section is a

60497200 E

procedure that is executed for the file, data item, or
procedure being monitored. Each section has an associated
USE FOR DEBUGGING statement.

The USE FOR DEBUGGING statement identifies what is
being monitored. It can specify a file-name, a data-name,
or a procedure-name, or it can specify that all procedures
are to be monitored. The paragraphs following the USE
statement specify the procedure to be executed at the
appropriate time.

PROCEDURE DIVISION.
DECLARATIVES.
DEBUG-PROC SECTION.
USE FOR DEBUGGING ON ALL PROCEDURES.
DPROC-1.

.

END DECLARATIVES.

This USE statement specifies that the debugging section is
to be executed for all procedures in the program. The
statements in the paragraph DPROC-1 and any other
paragraphs in the section DEBUG-PROC are executed
whenever a procedure is executed.

The debugging feature must be activated during
compilation in order to compile debugging sections as
executable code. Subsequent execution of the debugging
sections is then controlled by the setting of switch 6 at
execution time; if switch 6 is not turned on, the debugging
sections are not executed. If the debugging feature is not
activated when the program is compiled, the debugging
sections are compiled as comments and cannot be
executed; the setting of switch 6 then has no effect on the
debugging sections.

Monitoring Data ltems

One or more data items can be specified in a USE FOR
DEBUGGING = statement. The debugging section is
executed in conjunction with the execution of a statement
referencing the data item. The order of execution depends
on the statement referencing the data item and whether or
not the ALL REFERENCES OF phrase is specified in the
USE statement:

e RELEASE, REWRITE, or WRITE statement; USE
statement with or without the ALL REFERENCES OF

phrase.

The debugging section is executed before the
statement is executed; if the statement includes
the FROM phrase, the debugging section is also
executed after the move operation is performed.

e PERFORM statement with the VARYING, AFTER, or
UNTIL phrase; USE statement with or without the
ALL REFERENCES OF phrase.

The debugging section is executed after each

initialization, modification, or evaluation of the
data item.

13-1

® GO TO statement with the DEPENDING ON phrase;
USE statement with the ALL REFERENCES OF phrase.

The debugging section is executed before control
is transferred to the procedure and before any
debugging section associated with that procedure

is executed.

e All other statements; USE statement with the ALL
REFERENCES OF phrase.

The debugging section is executed after the
statement is executed.

e All other statements; USE statement without the ALL
REFERENCES OF phrase.

The debugging section is executed after the
statement is executed only if the content of the
data item changed during execution.

Monitoring Procedures

The USE FOR DEBUGGING statement can name one or
more procedures to be monitored or it can specify that all
procedures are to be monitored. When an individual
procedure is monitored, the debugging section is executed
before the specified procedure is executed; an ALTER
statement that references the procedure causes the
debugging section to be executed after the ALTER
statement is executed.

If the USE statement specifies ALL PROCEDURES, the
debugging section is executed before each procedure is
executed. (Procedures in debugging sections are not
monitored.) The debugging section is also executed after an
ALTER statement referencing a procedure is executed.
When ALL PROCEDURES is specified, individual
procedures cannot be named for monitoring in a USE
statement.

Monitoring Files

One or more files can be specified for monitoring in a USE
FOR DEBUGGING statement. The execution of a
statement that references a file being monitored causes
the debugging section to be executed.

e OPEN, CLLOSE, DELETE, or START statement.

The debugging section is executed after the
statement is executed.

e RETURN statement not resulting in an at end
condition.

The debugging section is executed after the
statement and any other specified USE procedures
are executed,

® READ statement not resulting in an at end or invalid
key condition.

The debugging section is executed after the

statement and any other specified USE procedures
are executed.

DEBUGGING REGISTER

When debugging is activated during program execution, the
~ special register DEBUG-ITEM is automatically generated
by the compiler. Each time a debugging section is

13-2

executed, DEBUG-ITEM is updated with information
related to the condition that caused the debugging section
to execute.

The special register DEBUG-ITEM contains four types of
information:

® The line number of the source statement causing
execution of the debugging section.

® The file-name, procedure-name, or data-name causing
execution of the debugging section.

e If the item being monitored requires subscripting or
indexing, the occurrence number for each applicable
level of subscripting or indexing.

® The content of the data item being monitored or a
phrase related to the procedure being monitored (for
example, SORT INPUT).

The information in DEBUG-ITEM can be output to the
printer. The printed information can be inspected to
determine whether or not the data is being processed
properly. : ’

ACTIVATING DEBUGGING AT COMPILE TIME

The debugging feature is activated during compilation in
one of two ways. The DEBUGGING MODE clause can be
specified in the SOURCE-COMPUTER paragraph of the
Environment Division or the DL option of the DB
parameter can be specified in the COBOL5 control
statement. [f neither the clause nor the parameter is
specified, debugging lines and debugging sections are
compiled as comments rather than as executable code.

ACTIVATING DEBUGGING AT EXECUTION TIME

The debugging feature cannot be activated at execution
time unless it was activated at compilation time.
Debugging lines that have been compiled as executable
code are always executed when the program executes.
Execution of debugging sections, however, depends on the
setting of a compile-time switch, switch 6. The switch
must be turned on to activate execution of debugging
sections. '

Switch 6 is set either within the program by a SET
statement or external to the program by a control
statement. If switch 6 is controlled internally, it must be
assigned a name in the SPECIAL-NAMES paragraph of the
Environment Division. The switch can then be set on or off
by a SET statement. :

SPECIAL-NAMES,
SWITCH-6 IS DEBUG-SWITCH.

PROCEDURE DIVISION.
SET DEBUG-SWITCH TO ON.

When this SET statement is executed, switch 6 is set to on
and debugging sections are executed.

The SWITCH control statement can also be used to set
switch 6 before the program executes. Execution of a
SWITCH control statement reverses the current setting (on
or off) of the switch. At the start of the job, switch 6 is
off.

SWITCH, 6.

60497200 E

The first time the SWITCH control statement is executed,
switch 6 is turned on. Execution of a second SWITCH
control statement turns off switch 6 (reverses the setting).

PARAGRAPH TRACE FEATURE

The paragraph trace feature is selected through the DB
parameter in the COBOLS5 control statement (DB=TR).
This feature produces object code that traces the flow of
the program during execution. Use of the paragraph trace
feature results in slightly slower program execution speeds
and larger program field length; however, the default field
length is sufficiently large to accommodate loading.

When the paragraph trace feature is selected, messages are
written on a trace file. These messages indicate the name
of a paragraph and the time the paragraph was executed.

SOURCE PROGRAM STATEMENTS

The control statement parameter selects the paragraph
trace feature and causes the object code to be generated;
however, the trace must be initiated by an ENTER
statement in the source program. The ENTER statement
can be used to turn the paragraph trace feature on, turn it
off, or reinitialize it.

The paragraph trace feature is turned on by the following
statement in the source program:

ENTER "C.ONTR".
When this statement is executed, the trace is turned on.
The first record written on the trace file contains the
following message:

**%% TRACE ON FROM LINE nnnnn

The next record written on the trace file contains the
name of the next paragraph entered.

The paragraph trace feature is turned off by the following
statement in the source program:

ENTER "C.OFFTR".

Execution of this statement turns off the trace. A record
is written on the trace file with the following message:

**%* TRACE OFF FROM LINE nnnnn

No further tracing is performed until the trace feature is
turned on again.

The trace file is closed by the following statement in the
source program:

ENTER "C.STPTR".

When this statement is executed, a final record is written
on the trace file and the file is then closed and rewound.
The record written on the trace file contains the following
message:

**** TRACE CLOSED LINE nnnnn

If the trace file is not closed by an ENTER statement in
the source program, execution of the STOP RUN statement
automatically calls the routine C.STPTR. The trace file
can be processed by the source program after the ENTER
"C.STPTR" statement is executed.

TRACE FILE

Two types of records are written on the trace file, which
has the logical file name COBTRFL. Each record contains
50 characters; the CYBER Record Manager record type is
Z with C type blocking. The file is described in the source
program only if it is processed by the program. The job is
responsible for preserving the file when the program ends.

A COBOL 5 description of the trace file is shown in
figure 13-1. The first record described is a paragraph
trace message that is written on the file each time a
paragraph is executed. The second record is a status
message that is written on the file whenever the trace
feature is turned on or off, or when the trace file is closed.

SELECT TRFILE ASSIGN TO COBTRFL
USE "RT=Z".

FD TRFILE LABEL RECORDS ARE OMITTED.
01 TRREC.

02 CP-TIME

02 CP-TIME

02 FILLER

02 PARA-NAME PICTURE X(30).-~~——Paragraph name.
PICTURE 9(10).<«——Central processor time used since start of job.
02 TR-NUMBER PICTURE 9(8).-«——Consecutive number.

PICTURE XXXX.-<w———Four asterisks, if this is a message record from

02 FILLER PICTURE XX.--=——7ero bytes.
01 TRMSREC.
02 STARS
directive.
02 FILLER PICTURE X(26).w«——Message.

PICTURE 9(10).w——Central processor time used since start of job.
02 TR-NUMBER PICTURE 9(8)..——Consecutive number.
PICTURE XX.-————7ero bytes.

Figure 13-1.

60497200 C

Trace File Format

13-3

TERMINATION DUMP FEATURE

The termination dump feature, along with the C5TDMP
control statement, is selected through the TDF parameter
in the COBOLS5 control statement. This feature produces a
listing of every data item within the COBOL program, as
well as the value and data type of each item. A dump can
be taken regardless of whether the program terminates
normally or abnormally.

When the termination dump feature is selected, information
needed for the dump is written to a termination dump file
at compilation time. Following execution, this file is used
along with a system file to produce the dump listing.

OBTAINING A TERMINATION DUMP

The TDF parameter in the COBOLS5 control statement
selects the termination dump feature and causes extra
information required for the dump to be generated by the
compiler; however, the dump is produced only if the
C5TDMP control statement is specified after program
execution. .

At compilation time, tables to be used in producing a dump
are written to the file specified by the TDF parameter; if
no file is specified, the tables are written to the file
TOFILE. At execution time, the system file ZZZZZ4P,
which contains the data values at any given time, is
produced. When the program completes execution, the
C5TDMP utility uses both TDFILE (or the file specified)
and the system file to produce a dump listing of the
program data items. The dump is taken of the main
program and any COBOL. 5 subprograms that are specified
on an FDL file and are in memory when execution
terminates. The system file is returned at the completion
of C5TDMP. If successive dumps are desired, the file must
be saved prior to execution of the C5TDMP control
statement.

Four optional parameters can be included in the CSTDMP
control statement:

T Specifies the file from which compiler
information is to be obtained. The file named by
the T parameter must be the same as that named
by the TDF parameter; if omitted the default file
is TDFILE. :

L Indicates the file on which the termination dump
is to be written; if omitted, the default file is
OUTPUT.

I Specifies the directive file to be used to select
specific data-names or the number of occurrences
of a data-name to be included in the dump. If 1 is
specified without a logical file name, the file
INPUT is assumed to contain the directives. If
C5TDMP is entered through a terminal, a prompt
{question mark) appears and the directives can
then be entered.

NA Specifies that no array items are to be listed in
the dump. Duplicate items within an array are
indicated.

Figure 13-2 illustrates a COBOL program that uses the
termination dump. The COBOLS5 control statement used to
compile the program includes the TDF and the DB=TR
parameters. In the example in figure 13-2, the ENTER
"C.ONTR" statement turns the trace on, and the ENTER

13-4

"C.SNAP" statement calls the snap dump routine. Without

~ the ENTER "C.ONTR" statement, the PARAGRAPH

TRACE-BACK portion of the output shown .in figure 13-2
is not produced. Instead, the dump shows the last I-O
statement that executed before the dump. i

TERMINATION DUMP LISTING

The termination dump . listing contains an entry for each
elementary -item defined in the Data Division. The data
items are listed in the order of section appearance. The
termination dump shows the data name, usage or class, and
value of each item. Figure 13-2 illustrates the termination
dump listing generated (following execution of the
COBOL 5 program) by using the C5TDMP utility from a
terminal. In the C5TDMP control statement, the
characters =INPUT can be omitted since INPUT is the
default file. (Underlining, in figure 13-2, indicates
terminal user input.)

CONTROL STATEMENT
DEBUGGING OPTIONS

Two optional parameters in the COBOLS5 control statement
can be used to select certain debugging features. The
termination dump feature is chosen by the TDF parameter,
which has been previously described in this section. One or
more of the following values can be specified in the DB
parameter:

B Causes binary output to be produced regardless of
errors in the source program.

DL Causes debugging lines and sections to be
compiled as object code; has the same effect as
the WITH DEBUGGING MODE clause.

SB Causes subscripts and indexes to be checked for
values within the designated bounds.

TR Causes execution flow of the program to be
traced.

If the parameter name (DB) is specified alone, the DL, SB,
and B values are selected by default.

The DL and TR options have been previously discussed in
this section. The B and SB parameters are described in the
following paragraphs.

BINARY OUTPUT

Binary executable code is not produced when level F or C
errors are encountered during compilation. For debugging
purposes, the B option of the DB parameter causes this
code to be produced regardless of errors in the source
program. Level C or F errors in the source program result
in compilation of a call to an execution time abort routine;
execution of the code aborts the program.

SUBSCRIPT AND INDEX CHECKING

The SB option of the DB parameter causes subscript and
index references to be checked during execution. These
references are checked to ensure that they are within the
declared bounds. Detection of out-of-bounds references
aborts the program; a dayfile message identifies the line of
incorrect reference.

60497200 C

A. COBOL5 Compiler Call Statement

cobol5,i=tdum5p,tdf, db=tr

B. Program Listing

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. TDUMP.

3 ENVIRONMENT DIVISION.

4 CONFIGURATION SECTION.

5 SOURCE-COMPUTER. CYBER-170.

6 OBJECT-COMPUTER. CYBER-170.

7 DATA DIVISION.

8 WORKING-STORAGE SECTION.

9 01 STOR.

10 02 sT1 PIC X(5) VALUE "AB-1S5".
11 02 sT2 PIC 9 VALUE O.

12 02 ST3 PIC 9 VALUE 0.

13 01 TBL.

14 02 TABL OCCURS 5 PIC 9.

15 PROCEDURE DIVISION.

16 STRT.

17 ENTER "C.ONTR".

18 PERFORM A1.

19 PERFORM A2 5 TIMES.

20 ENTER "C.SNAP"™ USING "SNAP 1".
21 MOVE "AB-17" TO ST1.

22 PERFORM A3

23 VARYING ST3 FROM 1 BY 1
24 UNTIL ST3 GREATER 3.

25 MOVE "56789" To TBL.

26 STOP RUN.

27 _ Al

28 MOVE "AB-16" TO ST1.

29 A2.

30 ADD 1 TO ST2.

31 MOVE ST2 TO TABL (ST2).
32 A3.

33 DISPLAY "TABLE IS-" TABL (ST3).

C. Program Output
TABLE Is- 1

TABLE IS~ 2
TABLE IS- 3

D. C5TDMP Control Statement and Selection Criteria

/c5tdmp,i=input
? ect st1 st2 occu nces 2 3 of tab

Turns on trace.

Causes snap dump.

Figure 13-2. COBOL Program with Termination Dump (Sheet 1 of 2)

60497200 C

13-5

E.

Termination Dump Qutput

1CDC COBOL 5.3 - LEVEL 518 TERMINATION DUMP

SELECT ST1 ST2 OCCURRENCES 2 TO 3 OF TABL
1CbC COBOL 5.3 - LEVEL 518 TERMINATION DUMP

SNAP DUMP - SNAP 1
--------- PARAGRAPH TRACE-BACK -—-=====-
A1
A2
A2
A2
A2
A2
LAST LINE EXECUTED 20
--------- PROGRAMS-TI1ID —=~===-- TDUMP
DATA NAME TYPE CONTENTS
ST1 AN AB-16
STZ2 cp 5
TABL
OCCURRENCE 2 cp 2

3 3

1CDC COBOL 5.3 - LEVEL 518 TERMINATION DUMP OF TDUMP

————————— PARAGRAPH TRACE-BACK —--------

Al
A2
A2
A2
A2
A2
A3
A3
A3
LAST LINE EXECUTED 26
--------- PROGRAMS-1ID -——=—=-- TDUMP
DATA NAME TYPE CONTENTS
ST1 AN AB-17
ST2 CP 5
TABL
OCCURRENCE 2 cP 6

3 7

13-6

Figure 13-2. COBOL Program with Termination Dump (Sheet 2 of 2)

60497200 C

CDCS INTERFACE 14

COBOL 5 interfaces with the CYBER Database Control
I System (CDCS) through the subschema facility. This
allows the program to perform input/output operations on
"data base files. Data and data descriptions are shared by
applications programs that utilize the CDCS interface.

Entering the data base environment presents some new
terminology and processing concepts. These are described
briefly before discussing COBOL 5 processing of data base
files. Detailed information is contained in the CDCS 2
reference manual and the DDL 3 reference manual,
volume 2. Refer to section 10 for detailed information on
the subprogram interface with CDCS.

DATA BASE CONCEPTS

A centralized data base allows multiple applications
programs to access the same data, thus eliminating
redundant storage of data. Several files are consolidated
into the data base. An applications program can then
process one or more of the files (areas, in data base
terminology), which are described in a manner that meets
the requirements of the program. The words file and area
are used interchangeably in this section.

The COBOL 5 program uses conventional input/output
statements to process data base files. The data base
access requests are monitored and interpreted by CDCS,
which is the controlling interface between the program and
the data base. CDCS executes calls to Advanced Access
Methods (AAM) to perform input/output operations.

The schema describes the complete data base; a COBOL
subschema describes the portion of the data base to be
processed by an applications program. The creation of the
schema and subschemas, which is not normally performed
by the applications programmer, is not discussed in this
guide.

THE SCHEMA

The entire data base is described by a schema saved in a
permanent file. The schema defines the structure and
organization of the files (areas in data base terminology)
and describes the characteristics of the data in each record
type applicable to an area. In addition, the schema can
join areas that have common data items.

The file organization for an area can be extended indexed,
extended direct, or extended actual-key. All areas have a
primary key and can have one or more alternate keys.

COBOL SUB-SCHEMAS

The portion of the data base to be made available to a
COBOL 5 program is described in a COBOL subschema.
The program can process only those areas specified in the
subschema. For a specified area, the subschema describes
the structure and content of each applicable record type.
The description does not necessarily have to be the same as
the schema description; data format can be changed to
satisfy program requirements. - The subschema also

60497200 E

indicates the relations that can be accessed by the
applications program.

however, a COBOL 5 program can utilize only one
subschema. The availability of multiple subschemas allows
record structures and individual data items to be defined
according to the needs of different programs. The
subschemas reside on a permanent file subschema library
that must be attached by the user for program compilation.

Any number of subschemas can exist for a data base;l

The subschema, as well as the schema, is created through
the Data Description Language (DDL) compiler. The DDL
source listing for the subschema can be used to obtain
data-names and other information needed to process data
base files. The listing is similar to the Data Division in a
COBOL source listing. The COBOL programmer uses the
RECORD DIVISION of the subschema listing to obtain data ||
item descriptions. The RELATION DIVISION is used to
obtain the names of areas in a relation. If a subschemal
source listing is not available, data item descriptions can
be obtained by using the L.O=M parameter on the COBOL5
control statement. Data items in the REPORT SECTION
are not included when the parameter is used.

RELATIONS

Areas that have a common data item can be joined
together in a relation. This allows the COBOL 5 program
to access several areas with one read operation. All
relations are defined in the schema; the subschema |
indicates the specific relations that can be accessed by the
program. Records retrieved in a relational read operation
can be restricted to those records that meet the
qualification criteria specified in the subschema.

An area in a relation is joined to another area through an
identical data item in both areas. A relation can have
several areas joined together where one area is joined by a
data item to another area that, in turn, is joined by a
different data item to still another area. When arelational
read operation is performed, a record from each area in
the relation is available to the COBOL 5 program.
Relational reading is discussed in detail later in this
section.

The subschema can specify qualification criteria for al
relation. Record retrieval from any of the areas in the
relation can be restricted by qualification. When
qualification is specified, only those records that satisfy
the specified criteria are read from the area. This
eliminates the need for the COBOL 5 program to test for
various conditions before processing the records.

PROCESSING AN AREA

Input/output processing of a data base area is the same as
it is for conventional files. Before the area can be
processed, it must be opened. Records in the area can then
be read, written, deleted, and rewritten with the standard
COBOL 5 statements. File access can be controlled by
defining specific passwords in the schema; the COBOL

14-1

program must include the proper password to access
specific files. The START statement can be used to
position the area for subsequent sequential reading. The
area must be closed before the program terminates.

THE DATA BASE STATUS BLOCK

The DB$DBST routine can be used to obtain extensive data
base status and error information. (The DB$DBST routine
combines the features of the C.DMRST and the C.IOST
routines.) The COBOL application program defines a
central memory area that is automatically updated by
CDCS after every operation on a data base file. One call
to DB$DBST establishes the status block location in
memory; no further calls are needed. After any
input/output operation, the information returned to the
data base status block is available for use by the COBOL
programmer.

Figure 14-1 illustrates a COBOL description of a data base
status block. Items must appear in the order shown. If any
item is defined in the data base status block, all previous
items must be defined and sufficient length must be
specified. The status block length must be at least one
word, and not greater than 11 words. COMP-1 must be
used for the fields indicated in figure 14-1.

01 DATABASE~STATUS-BLOCK.

02 DATABASE-STATUS PIC 9(5) COMP-1.

02 AUX-STATUS.
03 ITEM-ORDINAL PIC 9¢(5) COMP-1.
03 FILE-POSITION PIC 9(3) COMP-1.
03 FILLER PIC X(10). :

02 DB-FUNCTION PIC AC10).

02 REL-RANK-STATUS.
03 DB-REL~ERROR PIC 9(3) COMP-1.
03 DB-REL-CTLBK PIC 9(3) COMP-1.
03 DB-REL-NULL PIC 9(3) cOMP-1.

02 DB-REALM PIC X(30).

Figure 14-1. Data Base Status Block Description

e The item in the first word, DATABASE-STATUS, is
defined for the return of the CRM or CDCS error
code. Codes of 384 or greater can be found in the
CDCS 2 reference manual. Codes lower than 384 can
be found in the AAM reference manual. The decimal
codes returned by DB$DBST must be converted to
octal to correspond to the codes listed in the AAM
reference manual.

e The next three-word item, AUX-STATUS, is defined
for the return of CDCS subschema item level errors
and for file position codes. For example, if a
RECORD MAPPING ERROR (code 445) occurs, the
item ordinal in the first word of AUX-STATUS
indicates the item causing the error. The item
ordinals appear on the subschema listing.

File position codes are taken from the FP field of the
file information table (FIT). For example,
FILE-POSITION contains the decimal codes:

16 when arecord is sucessfully returned
during a read operation.

8 when the end of a keylist is reached on
aread by alternate key.

64 when end-of-information is reached.

14-2

All three words must be defined for any information to
be returned to the AUX-STATUS field.

e The one-word item DB-FUNCTION is defined for the
return of the characters indicating the file function
being performed (such as OPEN, CLOSE, DELETE,
LOCK).

e Al three words of REL-RANK-STATUS must be
defined for any information to be returned to the field.

e The one-word item DB-REL-ERROR is defined for the
return of the rank (in a relation operation) on which a
CYBER Record Manager (CRM) or CDCS error
occurred.

e The one-ward item DB-REL-CTLBK item is defined
for the return of the lowest numbered rank (in a
relation operation) on which a control break occurred.

® The one-word item DB-REL-NULL is defined for the
return of the lowest numbered rank (in a relation
operation) for which there is a null record.

e The three-word item DB-REALM is defined for the
return of the name of the realm or area on which an
error occurred.

The DB$DBST routine can be called at any point in a
COBOL. program as follows:

MOVE 11 TOBLK-LENGTH.

.

iZNTER "DB$DBST" USING DB-STATUS-BLOCK,
BLK-LENGTH

The ENTER statement communicates the length

(BLK-LENGTH) of the field and the location of the field

(DB-STATUS-BLOCK) in which the data base status
information is to be returned. BLK-LENGTH must be
defined as a COMP-1 data item. In the preceding example,
the value 11 is moved to BLK-LENGTH prior to the
ENTER statement.

COMMON CDCS DIAGNOSTICS

Table 14-1 contains some common CDCS non-fatal
diagnostic codes (shown in decimal for the COBOL user)
and corresponding messages. The codes are returned in the
first word of the data base status block. The following
paragraphs discuss the significance of the 426, 428, and 435
codes to the user:

o The 426 diagnostic code indicates that an open was
attempted on a file already opened. This diagnostic
can occur on the statements OPEN or CLOSE of a
relation or a file. '

e The 428 diagnostic code indicates that a close was
attempted on a file already closed. This diagnostic
can occur on the statements OPEN or CLOSE of a
relation or a file.

® The 435 code indicates a deadlock condition; that is, a
situation arising in concurrent data base access when
two or more applications programs are contending for
a resource that is locked by one of the other
programs. The 435 code indicates that CDCS has
unlocked all locks held by the COBOL program. The
user should provide appropriate code to handle
recovery from a deadlock. Refer to the CDCS 2
reference manual for more information on deadlocks.

60497200 E

The 423 diagnostic, PFM ERROR 002 AREA XXX, is a
common fatal error that occurs while attaching files for
data base processing under the NOS operating system. The
user should refer to volume 2 of the NOS operating system
reference manual for code 002.

TABLE 14-1. NON-FATAL CDCS DIAGNOSTIC CODES

Decimal
Code Message
= —

385 VIOLATION OF CONSTRAINT xxx ON xxx
OF RECORD xxx

386 CRM ERROR xxx ON AREA xxx IN
CONSTRAINT PROCESSING

426 AREA xxx ALREADY OPEN

427 CRM ERROR xxx DURING xxx ON AREA xxx

428 AREA xxx NOT OPEN

431 INCORRECT RECORD TYPE DURING xxx,
AREA xxx

432 KEY MAPPING ERROR DURING xxx,
AREA xxx

435 DEADLOCK ON AREA xxx

436 ILLEGAL REQUEST ON AREA xxx, READ
OR FILE LOCK REQUIRED BEFORE xxx

440 CANNOT CHANGE RECTYPE ON xxx,
AREA xxx

443 xxx ABORT BY DBPROC xxx

445 RECORD MAPPING ERROR DURING xxx
ON RECORD xxx

a record in the second area. More than one record in the
second area can contain the same value; thus, one record in
the root area can lead to several records in the second area.

The second area in the relation can be joined to a third
area through a common data item. Once again, a record in
the second area can lead to several records in the third
area. This -branching out from the root of the tree
continues through each area in the relation.

Parent-child relationships exist. All records in one area
that branch from the same record in another area are
called children. A record that has one or more branches
into a numerically higher ranked file is called the parent to
the children records. The root area is numerically the
lowest rank of the tree structure (rank 1); the last area in
the relation is numerically the highest rank of the tree
structure.

Each area joined in a relation is assigned a rank in the
relation. Figure 14-2 illustrates the tree structure of a
relation that joins three areas. The first area, which is the
root of the structure, consists of a master record for each
customer. The second area contains a summary record for
each current order. The third area, the highest rank in the
structure, contains a record for each line item in an order.
The common data item joining the first area to the second
area is the customer number; the order number is used to
join the second area to the third area.

PROCESSING A RELATION

Relational processing greatly simplifies the programming
when several related areas are required by the applications
program. A single READ statement can be executed to
make available a record from each area in the relation. In
addition, selective retrieval of records in the relation can
be performed by CDCS. Before discussing relational
processing within the COBOL 5 program, it is necessary to
examine the structure of a relation and the manner in
which CDCS returns records to the program.

STRUCTURE OF A RELATION

Areas that are logically related can be joined together
through common data items. The structure of a relation is
defined when the schema is created. The subschema listing
provides the names of the areas in the relation in the order

they are joined.

A relation can be described as a hierarchical tree
structure. The root of the tree is the area through which
the relation is entered; this is the first area listed for a
relation. A data item in the area at the root of the
structure joins the area to a common data item in the next
area listed for the relation. When the relation is entered,
the value of the data item in the root area record leads to

60497200 E

‘parent CUSTOMER Record {Rank 1)
]
|
]
1
children
parent ORDERS Records
' (Rank 2)
:
1
]
' LINE-ITEM
! Records
children (Rank 3)

Figure 14-2. Tree Structure for a Three-Area Relation

CDCS RELATION PROCESSING

CDCS returns records to the COBOL 5 program when
relational read operations are executed. One record from
each area in the relation is available to the program for
processing. All normal read operations can be performed
on a relation.

A random read of a relation accesses the root area
randomly by primary or alternate key. A record is
retrieved from each area in the relation. The relation can
then be read sequentially to retrieve additional records
related to the record accessed by the random read.

As sequential relation reads are executed, CDCS retrieves
records only from the area with the highest rank until all
records related to the current record in the next lower
rank have been read. In the example shown in figure 14-2,
CDCS returns three records to the program for the first
read of the relation: a CUSTOMER record, an ORDER
record, and a LINE-ITEM record. The next two sequential
reads cause CDCS to retrieve only the two LINE-ITEM
records joined to the ORDERS record. For the next
sequential read, CDCS retrieves the next ORDERS record

14-3

joined to the CUSTOMER record and the first LINE-item
record joined to that ORDERS record. This process
continues until all records related to the CUSTOMER
record have been retrieved.

The status block created by the ENTER DB$DBST
statement can be used to determine whether or not an
error occurred for any area in the relation. Two conditions
encountered during relational reads are also diagnosed by
CDCS: a null record condition, and a control break
condition. Information on a null record condition is
returned by DB$DBST in the eighth word of the data base
status block. Information on a control break condition is
returned by DB$DBST in the seventh word of the data base
status block.

A null record condition exists when no record in the
specified area can be retrieved by CDCS. This occurs
when either no record in that area is joined to the record
at the next lower rank in the relation or no record in that
area qualifies for retrieval. The null record condition can
occur at any rank from the lowest (root area) to the
highest.

If the null record condition exists in an area that is not the
highest rank, the null record condition automatically exists
in all areas higher in rank. If the relation shown in
figure 14-2 is read and no ORDERS record is joined to the
CUSTOMER record, a null record condition exists for both
the ORDERS area and the LINEITEMS area. This is also
true when ORDER records are joined to the CUSTOMER
record but none of the records qualify for retrieval.

When a null record condition occurs, CDCS returns a
record to the program consisting of a display code right
bracket (]) in each character position.

The second condition that is encountered while reading a
relation is a contral break condition. During sequential
reading of a relation, a control break occurs when CDCS
retrieves a new child record for any area other than the
highest ranked area. If the records in the relation shown in
figure 14-2 are read sequentially, a control break condition
occurs when the first and second ORDERS records are
returned to the program.

The DB$DBST routine can be used to obtain extensive data
base status and relation error information. Refer to the
previous subsection entitled Processing an Area. An
example of the DB$DBST routine is illustrated later in this
section.

RECORD QUALIFICATION

Record qualification is the method by which the records
returned to the program are restricted to records that
satisfy specific requirements. This can greatly limit the
number of records that CDCS returns to the program.
Qualification criteria can be specified for records in any
area in the relation.

The subschema specifies the record qualification criteria
that must be satisfied in order to return a record to the
COBOL. 5 program. The Relation Division in the

subschema listing indicates the requirements for record
retrieval. A RESTRICT clause is included for each record
type to be qualified for retrieval.

Qualification is specified in much the same way a
relational condition is specified in a COBOL 5 program.
The two operands, which are separated by a relational
operator, are compared by CDCS. If the condition
indicated by the relational operator exists for the record to
be retrieved, CDCS returns the record to the program.
The first operand is a data item in the record being
qualified. The second operand can be another data item in
the record, a literal, or a data item defined in the
COBOL 5 program. If the second operand is a program
dataitem, it must be initialized before reading the relation.

Qualification can be specified for more than one data item
in the record. The logical operator connecting the
qualification criteria determines the complete requirement
for record retrieval. Both data items must qualify (logical
operator AND), at least one data item must qualify (logical
operator OR), or only one data item must qualify (logical
operator XOR).

CDCS checks record qualification from the lowest ranked
area to the highest ranked area. An unqualified record at
any rank automatically causes all records joined to it in
higher ranking areas to be disqualified.

The Relation Division of a COBOL subschema is shown in
figure 14-3. Two RESTRICT clauses are included for the
CREDIT-RISK relation. When the relation is read, a
SLS-CHK record, which is in the root area, is retrieved
only if the value of the AMOUNT-DUE dataitem is greater
than the value of the AMOUNT-REC data item. For a
qualified SLS-CHK record, a CUSTOMER-REC record is
retrieved only if the value of the CURRENT-ORDERS data
item is greater than 1000.

PROGRAM RELATION PROCESSING

All files joined in a relation can be opened with a single
relational OPEN statement.

OPEN INPUT CREDIT-RISK

This statement is perfarmed as if a separate OPEN were
executed far each file within the relation CREDIT-RISK, in
the order of the rank of the files. A relation is normally
opened for input processing only., However, the files can
be opened fer I-O if locking of records or updating of
individual files is desired.

All files joined in a relation can be closed with a single
relational CLOSE statement.

CL OSE CREDIT-RISK.
This statement is performed as if a separate CLOSE were

executed for each file within the relation CREDIT-RISK, in
the order of the rank of the files.

RELATION DIVISION,
RN IS CREDIT-RISK

RESTRICT SLS—CHK WHERE AMOUNT-DUE GR AMOUNT-REC
RESTRICT CUSTOMER-REC WHERE CURRENT-ORDERS GR 1000.

Figure 14-3. Record Qualification in the Subschema

144

60497200 E

The COBOL 5 program reads a relation by executing a
READ statement that specifies a relation-name instead of
a fileename. The root area can be positioned for
subsequent sequential reading of the relation by a random
relational READ statement or a START statement.
Relation processing invalves only the retrieval of records
from the areas in the relation. Update operations can be
performed on an individual record retrieved by a relational
read; however, care must be exercised to maintain the
integrity of the relation.

A random relational READ statement accesses the root
area randomly. The primary key or an alternate key for
the root area is specified in the KEY IS phrase. The record
retrieved from the root area is one with the key value
equal to the current value of the specified key data item.
A record is also retrieved from each area joined in the
relation.

READ CREDIT-RISK RECORD
KEY IS CUSTOMER-ID
INVALID KEY GO TO NO-SALES.

Execution of this statement accesses the root area in the
CREDIT-RISK relation randomly. The current value of the
alternate key CUSTOMER-ID is used to retrieve a record
from the root area. If no record in the root area contains
an alternate key of equal value, control is transferred to
the paragraph named NO-SALES.

The relation can be read sequentially to retrieve all
records related to a root area record. A sequential READ
statement can be executed for the first read of the
relation, after a random relational READ statement is
executed, or after the root area is positioned by the
START statement. If the root area-name is specified in a
random READ statement, a sequential read of the relation
then returns the next record in the root area and records
joined to it. Qualification criteria specified in the
lsubschema and the number of records joined at each rank
in the relation determine the actual number of records
retrieved by a sequential read.

READ CUST-ORDERS NEXT RECORD
AT END GO TO FINISHED.

When this statement is executed, the CUST-ORDERS
relation is read sequentially. Control is transferred to the
paragraph named FINISHED when the end of the root area
is reached. The status block created by the ENTER
DB$DBST statement can be used after a relational read to
determine the status of the areas in the relation.

The root area in a relation can be positioned to a specific
record before reading the relation sequentially. File
positioning is extremely important during sequential
reading; therefore, areas must not be repositioned while
reading a relation sequentially in order to ensure accurate
record retrieval.

Records returned to the program by a relational read can
be updated; however, precaution must be taken to ensure
that existing relationships are not destroyed. Changing the
common data items that join areas in the relation can
destroy the positioning within existing relationships. When
arecord is to be deleted and records in a higher rank area
are joined to it, the records in the area with higher rank
should be deleted first.

Two or more relations can be read in parallel as long as no
common areas exist between the relations being read.
Results can be unpredictable if the relations have common
areas.

60497200 E

CODING THE PROGRAM

Coding a COBOL 5 program that interfaces with CDCS is
basically the same as coding any other COBOL 5 program.
Changes in program coding occur in the Environment
Division and the Data Division. No new Procedure Division
statements are required; however, some statements cannot
reference data base areas. Coding requirements for
subprograms that access data base areas are discussed in
section 10, Subprogram Interface.

ENVIRONMENT DIVISION

The SPECIAL-NAMES paragraph in the Configuration
Section must include the SUB-SCHEMA clause. This clause
identifies the COBOL subschema that provides the
interface between the program and CDCS. The name of
the subschema can be found in the Title Division of the
subschema source listing or can be provided by the data
administrator.

The FLE-CONTROL paragraph need not include a
File-Contral entry for each subschema area that is
accessed by the program. The SELECT and ASSIGN
clauses are required for data base files only when the FILE
STATUS clause is used. No other clause is allowed in the
entry. If used, the SELECT clause specifies an area-name
from the Realm Division of the subschema source listing.
The ASSIGN clause specifies a logical file name for the
area and for any associated alternate key index file.
Logical file names are user defined.

DATA DIVISION

The File Description entries and associated Record
Description entries are not specified in the File Section for
data base areas. The descriptions of these areas are
obtained from the COBOL subschema during compilation.
Other files, such as input and output files, are described in
the File Section. The section header must be specified
even if the only files used by the program are data base
areas.

PROCEDURE DIVISION

Conventional input/output statements are used in
processing data base areas. The COBOL subschema source
listing provides the relation-names, record-names, and
data-names to be used in the Procedure Division
statements. The names are found in the Record Division
and the Relation Division of the listing.

The USE FOR ACCESS CONTROL statement can be used
to provide file passwords; the statement defines the
optional keys required to gain access to files with
passwords. If a file requires passwords (defined in the
schema) and the correct passwords are not provided in the
COBOL program, the PRIVACY BREACH ATTEMPT error
occurs and the job aborts.

Figure 14-4 illustrates the USE FOR ACCESS CONTROL
statement. Access control locks are defined within the
schema. In the COBOL statements, read access is
specified by the ON INPUT phrase. The KEY IS
PART-KEY phrase identifies the data item (PART-KEY)
containing the access control key. The FOR PARTSFILE
phrase identifies the file (PARTS-FILE) for which the
access control key appliess The MOVE statement
designates the value 4320 for the key. The MOVE
statement must be specified within a paragraph in the
same section that contains the USE FOR ACCESS
CONTROL statement.

14-5

PROCEDURE DIVISION.
DECLARATIVES.
ACCESS~CTL SECTION.
USE FOR ACCESS CONTROL ON INPUT
KEY IS PART-KEY FOR PARTS-FILE.
ACC-CTL-PARAGRAPH.
MOVE '4320' TO PART-KEY.
END DECLARATIVES.

Figure 14-4. USE FOR ACCESS CONTROL Example

The USE FOR DEADLOCK statement can be used to
identify the procedure to be executed when a deadlock
situation occurs. When the statement is included and a
deadiock situation occurs, a non-fatal error (435) is
returned to the data base status block. If the USE FOR
DEADLOCK statement is omitted and a deadlock situation
occurs for a given file, the job aborts. A deadlock
situation is one that arises in concurrent data base access
when two or more applications programs are contending for
a resource that is locked, and none of the programs can
proceed without that resource. An example of the USE
FOR DEADLOCK statement is shown in figure 14-5.

WORKING-STORAGE SECTION.
01 DEADLOCK-FLAG PICTURE 99.

PROCEDURE DIVISION.
DECLARATIVES.
ADEADLOCK SECTION.
USE FOR DEADLOCK ON ANY-FILE.
BEGIN-DEADLOCK.
MOVE 99 TO DEADLOCK-FLAG.
END DECLARATIVES.

OPEN-PAR.
MOVE 0 TO DEADLOCK-FLAG.
OPEN 1I-0 ANY-FILE.

READ-PAR.
READ ANY-FILE KEY IS ANY-KEY.
IF DEADLOCK-FLAG NOT EQUAL O
MOVE O TO DEADLOCK~-FLAG
GO TO READ-PAR.

Figure 14-5. USE FOR DEADLOCK Example

The ACCEPT statement and the DISPLAY statement
cannot reference data base areas. The SORT statement
cannot specify a data base area in the GIVING phrase. A
data base area cannot be specified in either the USING
phrase or the GIVING phrase of the MERGE statement.
Any other Procedure Division statement can reference a
data base area.)

14-6

COMPILING THE PROGRAM

Compilation of a COBOL 5 source program that accesses
the data base has two special requirements. The

permanent file subschema library that contains the

subschema specified in the SUB-SCHEMA clause must be
attached before compilation can begin. The COBOLS
control statement must include the D parameter. This
parameter specifies the logical file name of the subschema
library.

EXECUTING THE PROGRAM

Execution of a program compiled for data base processing
requires no file attachments except when wsing the CDCS
Batch Facility; attaching the master directory and any
required log files are then necessary. Otherwise, errors
result if the data base files, log files, master directary, or
the data base procedure library are attached.

Permanent file names and specific requirements of the
schema (such as the necessary access control keys) should
be provided by the individual responsible for controlling
and monitoring the data base. The logical file name far

‘the subschema library must be the same name specified for

the D parameter in the COBOLS control statement when
the program was compiled.

SAMPLE PROGRAM

Accessing data base files is illustrated by the sample
program included in this section. The program reads a
relation that joins together three areas. The subschema
listing shown in figure 14-6 contains information needed to
code the source program. Source listings of the schema,
the master directory, and the program that creates the
data base files are in appendix C.

Figure 14-7 shows the source program CBILLS. To compile
the program,; the subschema library containing the
subschema BILLING is attached. To execute the program,
no file attachments are needed.

The subschema to be used by the program is identified by
the SUB-SCHEMA cdauwe (ine8). The only File
Description entry and File-Control entry needed are for
the output file.

The tree structure of the CUST-ORDERS relation read by
this program is the same as the one illustrated in
figure 14-2. The area ADDRESSES is the root area in the
relation and is joined to the area ORDERS, which in turn is
joined to the area LINEITEMS. When the file is opened,
the root area is positioned at the first record.

The DB$DBST routine is entered (line 80) to establish
automatic updating of the data base status items described
under the group item DB-STATUS-BLOCK. All areas in
the relation CUST-ORDERS are opened with a single OPEN
statement (line 81).

60497200 E

A sequential read of the relation (lines 87 and 88) accesses
the root area record and records joined to it. A value
other than zero in DATABASE-STATUS indicates that an
error occurred during the relational read. If
DATABASE-STATUS contains zero, control passes to the
paragraph ITEM-WRITE to generate a detailed output line.
The last statement in the paragraph ITEM-WRITE transfers
control to the paragraph READ-RELATION to execute the
next sequential read of the relation.

DB-REL-NULL is tested for a null record condition
(line 92). This means that at least one area in the relation
does not have a record joined to the root area record.
Additional processing is not desired when the null record
condition occurs at either level joined to the root area;
therefore, control is transferred to read the relation for
the next record in the root area.

60497200 D

DB-REL-CTLBK is tested for a control break condition
(line 93). When this occurs, the paragraphs NEW-ORDER
through NEW-EXIT are performed before control is
transferred to the paragraph ITEM-WRITE. The first
statement in the paragraph NEW-ORDER checks the
control block status item for a 3. DB-REL-CTLBK
contains a 3 when a new ORDERS record is retrieved for
the same customer. Notice that the control break
condition occurs on rank 3 (child record) due to a change in
value of record items at rank 2 (parent record). The user
should always test for a value that is numerically one
larger than the rank that causes the control break.

Figure 14-8 illustrates the output report generated by this
program.

14-6.1/14-6.2

ONIT1G ewayosqns 1oy Bupsi] sounog "9-pi 8.nbiy

IYNIGYO
AVNIGYO
TYNIQ¥O
AYNIGNO
IVNIGYHO
TVYNTIQYO

IYNTQNO0
SWILTINTY NIHLIR
TYNIQYHO
TYNIGY¥O
TYNT QYO
TYNIGHO
IVNIQNO
TYNIQHO
SHIOGNO NIHLIM
IAYNTQ¥0
TYNIQYO
YNIGHO
IYNIQY¥O
TYNIGHO
AYNIQHO
AYNIQYO
IYNIGYO
S3SS3YAAV NIHIIM

- NN O - TN O

— (M NON 0

sy
L2 4
L X3
LL]
>
sy
L2
.

————— JONVNILNIVW 3714 40 ONJ

0022€1L€9906226129661L
WASAI3HD

————— JINVYNILINIVW 3TT4 YWIHIS-8NS NIO3IE

SWILTINIT - v3¥V
S¥3040 -~ V3NV
$3SS3¥44Y - V3IYY SNIOPr SY¥Y3Q¥0-18N)
“yuny SJITLSILVLS NOTLVI3Y

LNdNT 3J¥N0S VYW3HIS-8NS 40 ON3
“0 ¥9 JdIHS=-ALD 3¥3IHM WILI-3INTT LOTINLSIY
wdu B3 3dAL-03Y¥ 3¥IHM YBWOLSND LITYULS3Y
SY3AQYO0-LSNY ST N¥
“NOISIAIQ NOTLVYI3Y
SWILIANIN - WIV3Y¥ ¥04 G303IN LON ST ONIddVW Q¥0I3Y
s¥3q¥0 - W1v3Y¥ 304 G3G33IN LON SI ONIdJVW 0403
s3ss3yaay - WIV3¥ ¥04 43033N LON SI ONIJdVW Q¥0I3Y
SW3LI3NIT VIYY ¥O4 AIN-0LNV
SY¥Y3Q¥0 VIYY ¥O0J A3NOLNV
$3SS34¥04AQV V3IHdVY ¥O04 WAN-1SNI

*L-dW0) ST 39VYSn (9)6 38NLITd A3N-o1ny €0
*66A(¥)6 3¥NLIT 3)I¥d-LINN £0
“(%)6 3¥NLDId dIHS-ALD €0
*(¥)6 3¥NLITd ¥30¥0-A10 €0
“(9)X 3IYNLITH ¥38WAN-Q¥0 €0
*(02)X 3¥NLOTd 2$36-13¥d €0
“(9)X 3¥NLIId WAN-L¥Yd €0
"W3LI-3NIT L0
*i-dW0d ST 39V¥SN (9)6 3¥NLITd A3d0OLNY €0
*66A(9)6 3¥NLITM LNNOWY-1118 €0
“(9)6 3¥NLIId alvae-1118 €0
*(9)6 3¥NLITd 31VQ-334¥0 €0
*(9)6 3¥NLIId ON-1SN) €0
*(9)X 3¥NLITd ON-¥30¥0 €0
. *"a3¥3q¥0 L0
*(0E)X 3¥NLIId JWYN-L1SN) €0
"(S)6 3I¥NLITL 3009~-d1Z €0
*XX 3IUNLITd 31V1ls €0
“(SL)X 3¥NLITd | ALID €O
“(SL)X 3¥NLITd 133¥1S €0
*(S)X 3¥nLITd ON-13381S €0
*X 3¥NLILd 3dAL-23¥ €0
*(9)6 3¥NLIId WNN-1SND §0

“y3wolsnd 1o

“NOISIATA a¥033¥

“SW3LIINIT “S¥Y3Q¥0 “S3ISS3Y0AV ay

"NOISIAIQ WIV3I¥

“3IWYN-1SND S3IW0I38 3IWYN-LSNI-N3A ViVa Qv
“WAN-1SN3 $3W0238 ON-LSNJ~N3A VIVG 4V
"Y3WOLSN) S3IW0D38 YIWOLSNI-YOAN3A Q¥0IIN AV
“NOTSIAIQ SYITV

*$37148¢ NIHLIM ONITTIE SS

"NOISIAIG 37LIL

ONITTIA
VW3HIS8Nns

LD0 NOTLVI3Y
LXY Y]

rrruy
2£000
9£000
S£000
%€000
XX)
*runy
[X22 1S
€€000 AN AYYWIY¥d
$2000 A3N A¥VWIY¥d
L1000 A3X AUVWIN¥d
£€000
2€000
L£000
0€£000
62000
82000
42000
92000
§2000
%2000
£2000
22000
L2000
02000
61000
gL000
21000
91000
§1000
%1000
£1000
21000
L1000
01000
60000
80000
20000
90000
0000
%0000
€0000
20000
Lonoo

14-7

60497200 E

NVOCONOVMPWN=

IDENTIFICATION DIVISION.
PROGRAM-ID. CBILLS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
SPECIAL-NAMES.

SUB-SCHEMA IS BILLING.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINT-FILE ASSIGN TO OUTPUT.

DATA DIVISION.
FILE SECTION.
FD PRINT-FILE

01

PRINT-LINE

LABEL RECORDS ARE OMITTED
DATA RECORD IS PRINT-LINE.

PICTURE X(136).

WORKING~-STORAGE SECTION.

01
01
01
01

READ-PASSWORD-ORD PIC X(30).
READ-PASSWORD-ADDR PIC X(30).
BLK-LENGTH PIC 99 CcomP-1.
DB-STATUS-BLOCK.

02 DATABASE-STATUS PIC 9(5) COMP-1.

02 AUX-STATUS OCCURS 3 TIMES PIC 9(10) COMP-

02 DB-FUNCTION PIC AC10).

02 DB-REL-ERROR PIC 9(3) COMP-1.

02 DB-REL-CTLBK PIC 9(3) COMP-1.

02 DB-REL-NULL PIC 9(3) COMP-1.

02 DB-REALM PIC X(30).
01 HLINE-1.

03 FILLER PICTURE X(5) VALUE

03 NAME-OUT PICTURE X(30).

03 FILLER PICTURE X(101) VALUE
01 HLINE-2.

03 FILLER PICTURE X(5) VALUE

03 NoO-OuT PICTURE X(5).

03 FILLER PICTURE X VALUE

03 STREET-0UT PICTURE X(15).

03 FILLER PICTURE X(110) VALUE
01 HLINE-3.

03 FILLER PICTURE X(5) VALVE

03 CITY-OUT PICTURE X(15).

03 FILLER PICTURE X VALUE

03 STATE-OUT PICTURE XX.

03 FILLER PICTURE XX VALUE

03 zip-ourt PICTURE 9(5).

03 FILLER PICTURE X(106) VALUE
01 HLINE-4.

03 FILLER PICTURE X(5) VALUE

03 FILLER PICTURE X(12) VALUE

03 ORDER-OUT PICTURE X(6).

03 FILLER PICTURE X(5) VALUE

03 FILLER PICTURE X(13) VALUE

03 cCcusT-ouT PICTURE 9(6).

03 FILLER PICTURE X(5) VALUE

03 FILLER PICTURE X(11) VALUE

03 DATE-OUT PICTURE 9(6).

03 FILLER PICTURE X(5) VALUE

03 FILLER PICTURE X(11) VALUE

03 TOTAL-OUT PICTURE $$$%,999.99.

03 FILLER PICTURE X(40) VALUE
01 1ITEMS. ’

03 FILLER PICTURE X(13) VALUE

03 aTy-our PICTURE Z2Z9.

1.

"q "
SPACES.
SPACES.
SPACE.

SPACES.
SPACES.
SPACE.

SPACES.

SPACES.

"“INVOICE NO. ".

SPACES.
"CUSTOMER NO. ".

SPACES.
"ORDER DATE .

SPACES.
"AMOUNT DUE .

SPACES.

SPACES.

14-8

Figure 14-7. Sample Program for Reading a Data Base Relation (Sheet 1 of 2)

60497200 C

03 FILLER PICTURE X(21) VALUE SPACES.

03 DESC-0UT PICTURE X(20).

03 FILLER PICTURE X(21) VALUE SPACES.
03 AMT-OUT PICTURE 2,229.99.

03 FILLER PICTURE X(49) VALUE SPACES.

PROCEDURE DIVISION.
DECLARATIVES.
CUST-ACC-CONTROL SECTION.
USE FOR ACCESS CONTROL ON INPUT
KEY IS READ-PASSWORD-ADDR FOR ADDRESSES.
ACC-1.
MOVE "READ ADDRESSES" TO READ-PASSWORD-ADDR.
END DECLARATIVES.
OPENING.
MOVE 11 TO BLK-LENGTH.
ENTER "DB$DBST" USING DB-STATUS-BLOCK, BLK-LENGTH.
OPEN INPUT CUST-ORDERS.
OPEN OUTPUT PRINT-FILE.
IF DATABASE-STATUS NOT = 0
DISPLAY "FILE OPEN ERROR = ' DATABASE-STATUS
GO TO FINISHED.
READ-RELATION.
READ CUST-ORDERS NEXT RECORD
AT END GO TO FINISHED.
IF DATABASE-STATUS NOT EQUAL TO ZERO
DISPLAY "ERROR OCCURRED ON FILE " DATABASE-STATUS
' " DB-REALM * " DB-FUNCTION.
IF DB-REL-NULL NOT EQUAL TO ZERO GO TO READ-RELATION.
IF DB-REL-CTLBK NOT EQUAL TO ZERO PERFORM NEW-ORDER
THRU NEW-EXIT, GO TO ITEM-WRITE.
ITEM~WRITE.
MOVE QTY-SHIP TO QTY-OUT.
MOVE PART-DESC TO DESC-0OUT.
COMPUTE AMT-0UT = QTY-SHIP * UNIT-PRICE.
WRITE PRINT-LINE FROM ITEMS.
GO TO READ-RELATION.
NEW-ORDER.
IF DB-REL-CTLBK EQUALS 3 GO TO SAME-CUSTOMER.
MOVE CUST-NAME TO NAME-OUT.
WRITE PRINT-LINE FROM HLINE-1.
MOVE STREET-NO TO NO-OUT.
MOVE STREET TO STREET-0UT.
WRITE PRINT-LINE FROM HLINE-2.
MOVE CITY TO CITY-O0UT.
MOVE STATE TO STATE-QUT.
MOVE ZIP-CODE TO ZIP-OUT.
WRITE PRINT-LINE FROM HLINE-3.
SAME-CUSTOMER.
MOVE ORDER-NO TO ORDER-OUT.
MOVE CUST-NO TO CUST-0UT.
MOVE ORDER~DATE TO DATE-0QUT.
MOVE BILL-AMOUNT TO TOTAL-0UT.
WRITE PRINT-LINE FROM HLINE-4
AFTER ADVANCING 2 LINES.
MOVE SPACES TO PRINT-LINE.
WRITE PRINT-LINE.
NEW-EXIT.
EXIT.
FINISHED.
CLOSE CUST-ORDERS, PRINT-FILE.
STOP RUN.

60497200 C

Figure 14-7. Sample Program for Reading a Data Base Relation (Sheet 2 of 2)

14-9

1236
SAN JOSE CA
INVOICE NO. 030667
100

25

50

100

INVOICE NO. 149020

30
50

ALL AMERICAN BIKES
11185 MAIN STREET
FAIRFIELD CA

INVOICE NO. 095188

125

125

75

INVOICE NO. 206193
50
50
250
125
30

INTERNATIONAL TRIKE PARTS .
INDUSTRIAL DR

95151

CUSTOMER NO. 216800 ORDER DATE 041176
BLACK EXTENSION TUBE

8 INCH TIRE

HANDLE BAR

CHALN LINKS

CUSTOMER NO. 216800 ORDER DATE 042576
BRAKE ASSEMBLY

REAR WHEEL

94533

CUSTOMER NO. 649025 ORDER DATE 040776
BRAKE PAD LEFT
BRAKE PAD RIGHT
REAR WHEEL BRACE
CUSTOMER NO. 649025 ORDER DATE 042176
REAR WHEEL HUB ASSY
BACK WHEEL ASSEMBLY
FLAT SEAT COVER
MASTER CHAIN LINK

HANDLE BAR

AMOUNT DUE

45.00
237.50
1,037.50
125.00

AMOUNT DUE

675.00
865.00

AMOUNT DOUE
118.75
118.75
435.00
AMOUNT DUE
625.00
1,297.50
487.50
1,031.25
622.50

$1,445.00

$1,540.00

$672.50

$4,063.75

14-10

Figure 14-8. Output Report Generated by Program CBILLS

60497200 C

CYBER RECORD MANAGER INTERFACE 15

%

CYBER Record Manager (CRM) is the input/output
processor that provides an interface between a COBOL
program and the operating system routines that process
files on hardware devices. CRM file processing
capabilities are divided into two categories: the Basic
Access Methods (BAM) and the Advanced Access Methods
(AAM). BAM is a group of routines that process sequential
and word-addressable files. AAM includes the
Multiple-Index Processor and the CRM routines that
process indexed sequential, direct access, and actual-key
files. MIP provides the means to access records by more
than one field (that is, alternate access paths are available.

Six different file organizations are defined in COBOL 5
and supported by CRM to allow the COBOL user flexibility
in file structure and usage. The COBOL. file organizations
(identified through the ORGANIZATION IS clause) and the
equivalent CRM file organizations are shown in
table 15-1. The terms are used interchangeably in this
section.

TABLE 15-1. FILE ORGANIZATIONS

CRM
coBoL CRM Mnemonic

Sequential Sequential SQ
Word-address Word Addressable WA
Relative (No corresponding

file organization;

Word Addressable

implemented)
Direct Direct Access DA
Indexed Indexed Sequential IS
Actual-key Actual Key AK

The COBOL language provides for virtually all types of file
processing. Most interaction between COBOL and CRM is
transparent to the COBOL programmer. CRM is of
interest when designing new files, when changing the
structure of an existing file, and when attempting to obtain
file status or input/output error information. As long as
the file is read by the same method used to write it, the
user is not concerned with physical representation.
However, physical record format is important when reading
an existing file from another computer vendor or through a
language different from that used is creating the file.

It is assumed that the reader understands the file
processing concepts in section 3 of this guide. This section
discusses CRM features that are most useful to the
experienced COBOL programmer., For further details
about CRM, refer to the BAM and AAM reference manuals
and user's guides.

60497200 D

FILE INFORMATION TABLE

The file information table (FIT) is the most important
element in the COBOL interface with CYBER Record
Manager; all communication between COBOL and CRM is
performed through the FIT. The FIT is a 35-word table
that contains descriptions of an individual file's
organization, record size and type, blocking structure, and
processing options; the logical file name by which the file
is known to the operating system; and other pertinent data
such as labeling information, buffer size, and record area
location.

To establish communication with CRM, the COBOL
compiler creates a FIT for each file. The compiler places
file information in the table for each file specified in the
program as it encounters applicable source program
statements. In response to read or write requests, CRM
uses the information in this table to request file processing
action by the operating system. CRM updates file
information, such as processing direction and file position,
during program execution. Figure 15-1 illustrates COBOL

input/output interfaces.

The file characteristics in the FIT can be specified by the
COBOL user in three ways:

e By source program statements other than the USE
clause

e By the USE clause
e By FILE control statements

The three methods are listed in order of override. That is,
a FILE control statement parameter can override a USE
clause parameter. A USE clause parameter can override
other source-statement-generated parameters. Caution
must be used in all FIT field overrides. The USE clause
should be used in preference to a FILE card, whenever
possible.

FIT FIELDS SET WITH SOUR’CE
STATEMENTS

Most FIT fields are set automatically by the COBOL
compiler. For example:

e SELECT CREDIT ASSIGN TO ISFILE sets the LFN
field to ISFILE.

e ORGANIZATION IS INDEXED sets the FO field to IS.

e BLOCK CONTAINS 5100 CHARACTERS sets the MBL
field to 5100 and the BT field to K.

Figure 15-2 illustrates other FIT fields set through the
COBOL language. Table 15-2 lists FIT fields set for each
record type. Table 15-3 lists FIT fields set for each file
organization.

15-1

FIT FIT for File B
FIT FIT for File A
| LFN
RT|BT|PD [EMK

L ...

Peripheral External
Processing Devices

Units AN
MN—

© FILE A

Operating
System

. etc,
CYBER
RECORD
MANAGER
ie .
Length mip
COBOL , BAM
WSA AAM
BUFFER
LOGICAL 1/0

|

FNT

File A
File B

PHYSICAL 1/0

Figure 15-1. COBOL INPUT/OUTPUT INTERFACES

FIT FIELDS SET WITH THE USE CLAUSE

The USE clause in the Environment Division can specify
file characteristics that cannot otherwise be specified
through COBOL language statements. The USE clause can
also be used to override some file characteristics that are
specified through COBOL statements. Certain FIT fields
cannot be overridden, and the USE clause parameter is
then ignored.

The USE clause can set the following FIT fields:
BBH DFC ERL MUL RMK

BCK DP FLM NL RT
BFS EFC Fwl ORG SBF
BT EO P PC SPR

Only the most commonly used parameters are discussed in
this section. The following paragraphs discuss the use of
the USE clause for the BT, IP, RT and ORG parameters.
DFC, EFC, and ERL are discussed in the subsection
entitled CRM Debugging Tools.

Setting the Index Block Padding

Index block padding is set by the IP field. For indexed
sequential files, index blocks can be padded to minimize
the automatic block splitting and creation of new index
levels that can result from file growth.

15-2

SELECT PMASTER ASSIGN TO "PMASTER"
USE "IP=5".

In this example, the index block padding factor is set to 5
percent. Each index block in the file PMASTER has 5
percent of its available space free for adding new index
entries; this allows for a 10 percent growth in a two-level
file.

Changing the Record and Block Type

Files used by COBOL input/output statements are
organized into logical records. CRM recognizes eight
record types. All record types are available to the COBOL
user:

Decimal character count
Fixed length

System

Record mark

Trailer count

Undefined

Control word

Zero byte terminated

NZEC-2D»Mo

The record type specification defines the format of every
record in a file and enables CRM to determine the length
of a record on a read or write. The COBOL compiler can
derive the record type indirectly from the RECORD clause
or the OCCURS...DEPENDING ON clause, and the
lengths of the 01 level entries.

60497200 D

IDENTIFICATION DIVISION.

PROGRAM-ID. DELINQUENT.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL. -
SELECT CREDIT ASSIGN TO ISFILE Sets LFN to ISFILE

ORGANIZATION IS INDEXED -= Sets FO to IS
RECORD KEY IS CREDIT-ID.-= Used to set RKW and RKP

DATA DIVISION.
FILE SECTION.
FD CREDIT

LABEL RECORD OMITTED

BLOCK CONTAINS 5710 CHARACTERS. Sets MBL to 5740 (9 PRUs) and
01 BAD-RISK. BT to K

02
02
02
02
02

PROCEDURE DIVISION.

PIC X(10).
CREDIT-ID PIC X(10). Sets RKW to 1 and RKP to zero
PIC X(40).
KOUNT PIC 99.
PAYMENT OCCURS 1 TO 12 TIMES DEPENDING ON KOUNT. _ - = -
03 MONTH-LATE PIC X(3). } éﬁfg R;&I:£L-62’ T3, CPes0,
=2, =

OPEN-IT.
OPEN INPUT CREDIT.
READ-IT.
READ CREDIT NEXT AT END GO TO CLOSE-IT.
WRITE BAD-RISK. GO TO READ-IT.
CLOSE-IT.
CLOSE CREDIT.
STOP RUN.

Corresponding FILE control statements:

FILE (ISFILE,FO=IS,BT=K,RT=T,HL=62,TL=3,CP=60,CL=2 MRL=98,)
FILE(ISFILE,RKW=1,RKP=0,KL=10,KT=S)

Notes:

Notice that both the RECORD KEY clause and the record description are required to set RKP and
RKW. AAM will expect the key for each record to be located in word 1, position O.

The OCCURS . . . DEPENDING ON clause (and the fact that KOUNT is included in the record
description) cause the RT field of the FIT to be set to T. The fixed portion of the record
description (HL) is 62 characters. The trailer length portion (TL) is three characters. The
beginning character position (CP) of the trailer count field of the record is position 60
(counting from 0), determined by location of KOUNT. The maximum number of characters in the
record (MRL) is 98.

60497200 D

Figure 15-2. COBOL File Processing

15-3

TABLE 15-2. FIT FIELDS BY RECORD TYPE
R$;:£d ;i!ﬁzg?:d Description Setting
D RT Record type D (decimal character count)
MNR Minimum record length integer-1 from RECORD clause
MRL Maximum record length integer-2 from RECORD clause
LP Start of count field Length of items preceding data-name in DEPENDING ON
option
LL Length of count field Length of data-name in DEPENDING ON option
F RT Record type F (fixed length)
FL Fixed length Length of longest Record Description entry
R RT Record type R (record mark)
RMK Record mark character Right bracket character] (628)
MRL Maximum record length Calculated from Record Description
T RT Record type T (trailer count)
MNR Minimum record length Calculated from integer-1 in OCCURS option
MRL Maximum record length Calculated from integer-2 in OCCURS option
cp Start of trailer count field Length of items preceding data-name in DEPENDING ON
option
CL Length of trailer count field Length of data-name in DEPENDING ON option
HL Header length Length of jtems preceding subject of OCCURS clause
T Length of trailer item Length of subject of OCCURS clause
W RT Record type W (control word)
MRL Maximum record length Length of longest Record Description entry plus 10
characters
RL Record length Length of specified Record Description entry (reset
for each WRITE)
z RT Record type Z (zero byte terminated)
FL Full length Length of longest Record Description entry
NOTES:
If the file name is INPUT, OUTPUT, or PUNCH, RT is set to Z.
If RECORD CONTAINS.. . CRARACTLRS 16 spacTried, RY 1o, a0t tg Fo" o3 2re the sane Tength, CRH sets KT to F-
If there exists an OCCURS...DEPENDING ON clause in the record description and the data-name is defined
within the record, RT is set to T.
If the RECORD clause (FD entry) specifies RECORD CONTAINS x TO x CHARACTERS DEPENDING ON data-name in
records, RT is set to D.
If none of the above conditions exist, RT is set to W.

15-4

60497200 E

TABLE 15-3. FIT FIELDS SET FROM SOURCE CODE

FIT Field Set Symbolic COBOL Clause or Statement Used

A1l Organizations

FO ORGANIZATION Clause

SQ SEQUENTIAL
WA RELATIVE

IS INDEXED

DA DIRECT

AK ACTUAL-KEY
WA WORD-ADDRESS

RT, MNR, MRL RECORD clause, Record Description entry, WRITE with ADVANCING
phrase, FD entry, LINAGE clause. See table 15-2.

RL RECORD clause, Record Description Description entry (See the
SIZE and TYPE table in section 4 of the COBOL 5 reference
manual).

Other record Record Description

description

fields

PD OPEN statement

INPUT INPUT

QUTPUT OUTPUT

1-0 1-0

EXTEND EXTEND
LFN ASSIGN clause first implementor name
LT LABEL RECORDS clause

uL OMITTED

S STANDARD

uLpP VALUE OF phrase in LABEL RECORDS clause

Sequential files

BT, MNB, MBL BLOCK CONTAINS clause (for K and E type blocks)

BFS RESERVE clause

™ RECORDING MODE clause (overrides COBOL default, CM=YES)

YES DECIMAL

NO BINARY
MFN, PNO MULTIPLE FILE TAPE clause
OF R,N,E OPEN statement

Indexed files
Ip

DpP

KT, KA, KP, KL

IBL

60497200 D

Installation parameter

Installation parameter

RECORD KEY clause, ALTERNATE RECORD KEY clause, and item
description

Installation parameter

15-5

TABLE 15-3. FIT FIELDS SET FROM SOURCE CODE (Contd)

FIT Ffe]d Set S¥g?3;ic COBOL Clause or Statement Used
MBL BLOCK CONTAINS clause
XN ASSIGN clause second implementor-name
CDT/DCT Program collating sequence
ON OPEN statement

NEW OUTPUT

OLD Other
REL EQ, GE, LE START statement
Direct files
RKP, RKW, KA, KL RECORD KEY clause, ALTERNATE RECORD KEY clause, and item

description

HMB BLOCK COUNT clause
MBL BLOCK CONTAINS clause
HRL USE FOR HASHING declarative
XN ASSIGN clause second implementor-name
ON OPEN statement

NEW OUTPUT

OLD Other
REL EQ, GE, LE START statement
Actual-key files
KA, KL RECORD KEY clause, ALTERNATE RECORD KEY clause, and item

description

MBL BLOCK CONTAINS clause
REL EQ, GE, LE START Statement
RB BLOCK CONTAINS clause and Record Description
RKP, RKW Item description (for AK files with alternate keys)
ON OPEN statement

NEW OUTPUT

OLD Other
XN ASSIGN clause second implementor - name
Word-address files
BFS RESERVE clause
OF R, N OPEN statement
Relative files
BFS RESERVE clause
OF R, N OPEN statement

60497200 D

Table 3-2 in section 3 shows the record types selected by
the compiler according to RECORD clause and File

Description entry interactions, for all except relative and
word-address files. Table 15-4 shows the possible record
types for all COBOL file organizations.

TABLE 15-4. RECORD TYPE AND FILE
ORGANIZATION COMBINATIONS

Record Types

File
Sequential D, F, T, W R, S, U, Z
Word-address U F, W
Relative F -
Direct D, F, T, W R, S, U, Z
Indexed D, F, T, W R, S, U, Z
Actual key D, F, T, W R, S, U, Z

During input/output operations, logical records on
sequential files are grouped into physical blocks for
transfer between a buffer and an external storage device.
The number of logical records in the block depends on the
file organization and structure. Sequential files can have
one of four block types:

K Fixed number of records per block
C Character count

E Exact records

I Internal control word

Record type and block type are set by the RT and BT
fields, respectively. The COBOL.-generated block type and
record type can be overridden as follows:

SELECT MYFILE ASSIGN TO CZFILE
USE "BT=C, RT=2".

These clauses can be used when processing a file that has
been created through a terminal. (The file, therefore, has
CZ format.)

Setting the Old/New File Organization

Direct, indexed, and actual-key file organizations can be of
two types: initial or extended. If both types are available,
the user should be aware of differences in processing.
Extended AAM file organization is generally more
efficient. If extended files have been installed, they are
the default for COBOL programs; ORG=0OLD must be
specified in the USE clause if initial file organization is
desired.

SELECT MYFILE ASSIGN TO "MYFILE"
USE "ORG=0LD".

This statement specifies initial file organization for the
file MYFILE.

60497200 D

FIT FIELDS SET WITH THE FILE
CONTROL STATEMENT

At execution-time, the FILE control statement establishes
FIT field values that have not already been established at
compile-time. The FILE control statement is used to
override FIT parameter values normally assigned by
COBOL. Any parameter can be used on a FILE control
statement; however, the following fields will have no
effect:

EX KL LBL MKL
FO KP LFN ULP
HRL KT LT WSA
KA LA LX

In general, parameters used on a FILE control statement
are confined to those permitted by the USE clause.

Every file processed through CRM must have a valid FIT at
the time the file is opened. For files referenced in COBOL
programs, the COBOL compiler establishes a table for each
file during compilation and sets fields in the table to
appropriate values based on the clauses and statements
within the program. These tables become part of the
compiled object program. Most of the FIT fields needed
for a given file are set during compilation; some can be
reset by the COBOL execution time routines. For
example, the block type (BT) field for a sequential file is
reset if the COBOL execution time routines determine that
the block type originally selected is inappropriate for the
device on which the file actually resides. In most cases,
however, the values selected during compilation remain in
effect throughout program execution.

If one or more FILE control statements have been provided
for a file, the values they specify are placed in the FIT
when the file is opened during program execution.

The FILE control statement has two uses of interest to the
COBOL programmer. The first use enables other
processors or languages to use files created through
COBOL programs. For example, a FORTRAN program can
read a COBOL-created file if a FILE control statement
specifies the same file structure produced by the original
COBOL program. Even file structures not provided as part
of standard FORTRAN input/output (such as D, R, or T
type records, or K or E type blocks) can be specified
through the FILE control statement.

The second use of the FILE control statement alters or
supplements default COBOL processing. FIT settings
provided by the FILE control statement take effect when
the file is opened at execution time, and override values
established by COBOL during compilation. Thus, file
structures other than those defined in the source program
result when the program is executed.

NOTE

The COBOL language contains adequate provision
for most file processing likely to be of value to
the programmer; unexpected results can occur
from incorrect FIT field overrides.

The following example illustrates the format of the FILE
control statement: :

FILE(PMASTER,BT=C,RT=Z)

This statement places a value of Z in the RT field of the
FIT, and a value of C in the BT field of the FIT.

15-7

CRM DEBUGGING TOOLS

The system error file (ZZZZZEG) is a local mass storage
file that disappears at job termination. The CRMEP
control statement can be used to read the error file and
list its contents.

CRM automatically performs certain checks and error
processing, and maintains file status and error information
in certain FIT fields. The following FIT fields can be set
by the COBOL user to obtain error information:

EFC Error file control
DFC Dayfile eontrol
ERL Trivial error limit

The following FIT field is automatically set by CRM and
can be displayed by the COBOL user:

ES Error Status

A file status code area can be defined by the COBOL user.
CRM puts file status codes into the area during
input/output operations. The codes can then be displayed
by the COBOL user.

ACCESSING FILE STATUS CODES

The COBOL compiler generates a status code each time an
input/output statement is executed. If this code is to be
used by the program, the FILE STATUS clause in the
Environment Division specifies the data item to receive
the status code. Refer to figure 15-3. .

TABLE 15-5, FILE STATUS CODES

Status Code

Meaning

SELECT PMASTER ASSIGN TO 'PMASTER'
FILE STATUS IS CODE-RETURN.

WORKING-STORAGE SECTION.
01 CODE-RETURN PIC XX.

READ PMASTER NEXT RECORD
AT END GO TO END-ROUTINE.
IF CODE-RETURN EQUALS "90"
DISPLAY "STATUS CODE IS" CODE-RETURN.

Figure 15-3. Accessing the File Status Code

The status code data item must be described as a
two-character alphanumeric data item; it cannot be
described in the File Section or Report Section. Status
code values that can be received by the data item are as
shown in table 15-5.

When status code 90 is returned to the status code data
item, the specific CRM error can be determined by
executing the ENTER "C.IOST" statement. Similarly, when
status code 99 is returned, the specific COBOL.-detected
error can be determined by using the C.IOST routine.
COBOL -detected ‘error codes are listed in section 3 of the
COBOL5 reference manual. (Refer to the following
subsection for an example of the C.IOST routine usage.)

For data base files, the DB$DBST routine can be used to

obtain file status or errors. Refer to section 14 for further
discussion on data base files.

15-8

00

02

10

21

22

23

24

30

34

90

99

The statement executed
successfully.

The statement executed
successfully; a duplicate
alternate key value is in-
volved, If a record was read
by alternate key, the next
record in that alternate key
sequence contains the same
value for the alternate key.
For a WRITE or REWRITE state-
ment, the record written
created a duplicate value for
one or more alternate keys.

An at end condition occurred
for a READ, RETURN, or SEARCH
statement.

An invalid key condition
occurred due to a primary key
sequence error. For an in-
dexed file with sequential
access, the primary key value
in the record being written is
not in ascending sequence.
For a REWRITE statement, the
primary key value changed
between execution of the se-
quential READ statement and
the REWRITE statement.

An invalid key condition
occurred because the record
being written or rewritten
creates a duplicate key value
when duplicates are not
allowed.

An invalid key condition
occurred because no record in
the file contains the speci-
fied key value.

An invalid key condition
occurred for a relative or
indexed file due to a boundary
violation.

A permanent error occurred
(parity error, transmission
error, mass storage not
available, and so forth).

A permanent error occurred
(boundary violation, file
limit established by FILE
control statement parameter
is reached, and so forth).

A CYBER Record Manager error

other than those indicated by
a specific status code value

occurred.

An 1/0 error occurred and was
detected by the COBOL compiler.

60497200 D

ACCESSING THE CRM ERROR STATUS
CODE

CRM stores a three-digit octal error status code into the
ES field of the FIT when a trivial or fatal! input/output
error occurs. This is the value returned to a user-specified
field in a COBOL program when the C.IOST routine is
used. The C.IOST routine multiplies each octal digit by its
corresponding power of ten and returns a decimal
representation of the octal code. The code returned by
C.IOST can be used, without conversion, when referencing
the codes listed in the BAM and AAM reference manuals.
For example, a 142 decimal number returned by C.IOST is
listed in the manuals as 142 octal.

The following COBOL statements can be used to access the
CRM error status code and severity level when an I/O error
occurs on the file named PMASTER:

WORKING-STORAGE SECTION.
01 CRM-CODE PIC 9999 COMP-1.
01 SEVERITY PIC X.

.

ENTER "C.IOST" USING PMASTER CRM-CODE
TRAGEDY.

The CRM error code for the error encountered while
processing the file PMASTER is returned to CRM-CODE,
which must be a four-digit integer described with COMP-1
usage. TRAGEDY is defined as one alphanumeric
character and receives one of the following letters:

F Indicates that any [-O statement, other than
CLOSE, causes the job to abort.

T Indicates that the job does not abort.

These indicators are not the same as the CRM severity
indicators.

USING THE SYSTEM ERROR FILE
AND FIT DUMP

The error file control (EFC) field of the FIT controls the
CRM messages that are written to a special system error
file named ZZZZZEG. The possible values of the EFC field
are as follows:

0 No errors or notes written (default)
1 Errors written

2 Notes written

3 Errors and notes written

The COBOL user can set the EFC field with the USE clause
as follows:

SELECT PMASTER ASSIGN TO "PMASTER"
USE "EFC=3".

If a non-zero value exists in the EFC field, the CRMEP
control statement can be used to read the error file, and
list its contents. An example of the CRMEP control
statement format is:

CRMEP,LO,RU

60497200 D

This statement selects notes, fatal and trivial errors, and
data manager messages. It also returns and unloads the
error file after processing.

The FIT dump is a useful debugging tool. The contents of
the FIT can be written to the system error file as a note.
The COBOL user then sets a value of 2 or 3 in the EFC
field and calls the FITDMP macro as follows:

SELECT ISDATA ASSIGN TO ISFILE
USE "EFC=3".

.

.

OPEN OUTPUT ISDATA.
ENTER FITDMP USING ISDATA.

The CRMEP control statement can then list the error file.
A sample FIT dump is shown in figure 15-4.

CONTROLLING CRM MESSAGES
ON THE DAYFILE

The DFC field of the FIT controls the listing of CRM
messages written to the user's job dayfile. The possible
values of the DFC field are as follows:

0 Fatal messages only (default)
1 All error messages

2 Notes only

3 Error messages and notes

The COBOL user can set the DFC field with the USE
clause as follows:

SELECT PMASTER ASSIGN TO "PMASTER"
USE "DFC=3".

In this example, all CRM error messages and notes are to
be written to the job dayfile.

SETTING THE TRIVIAL ERROR LIMIT

The trivial error limit (ERL) field of the FIT places a limit
on the number of trivial CRM errors allowed. When the
limit is reached, a fatal error occurs. If the value in the
field is zero, no error count is performed and an infinite
number of trivial errors is permitted. If a value is
specified, the job aborts when the value of the ERL field
equals the value of the trivial error count (ECT) field. The
ECT field of the FIT is automatically incremented by CRM
whenever a trivial error occurs. The field is decremented
by COBOL when errors producing INVALID KEY or AT
END are encountered.

The COBOL user can set the ERL. field with the USE clause
as follows:

SELECT PMASTER ASSIGN TO "PMASTER"
USE "ERL=5".

In this example, program execution is terminated when five
trivial CRM errors occur.

15-9

dwng 14 e jo sidwexy “p-G| 24nbiq

00000000000000
000000
00000000

0
0000000000
€0

0

0

00
$0000000

0

0

00

0

0

0

S0

L0
00000000
0000

00

0

0
0000000000
L£00
00000000
0o
00000000

¥d1

SQY¥OM

oNOOO

0%£000

o

OMO e 00O ND
o

00

12100000
£9000000
1LS000000

000
000000000000
%s211000
000000

Sl

4

29000000

Lo

L0

20

L0

000000
22s0veseiostioe
0

ov9

*xxV3YVYNSTA IVIOLxxx
N3d0 SIHL SLIX3N 139 J0 ¥3BWNNx*xx
N3d0 STIHL S31373C 30 ¥Y38WNNxxx
N3d0 STIHL S3IV1d3a¥ 40 YIdWNNxxx
N3d0 SIHL1 SINd 40 ¥3IGWNNx¥x
"N3d0 SIHL S139 40 ¥3GWNNxx=x
0 ST3A3T X3AGNTI 40 ¥38WNN
43S0 3714
1871 00000000
av1 00
vl 000000
D BN
¥3 0000
d3 00
EL D]
% s00
V3 0%€000
S¥I 000
dI 000
381 00000000
T¥H 000000
gWH 00000000
IH £9000000
gH 0
Ind O
amd $9¢220
S14 9¢
8d4 0
dd4 020
04 ¢
iNd O
WIS 22222220202
74 12100000
44 0
ax3 |
X3 S0.2000
$3 000
T¥3 000
VMIO3 L000000000
(0%4%000 1v 114) dWna 114

43N3d0 3714

Y31SVWd N34T NO 0LOL
¥31SYWd N4 NO €£01
¥3LSYWd N4 NO 2001
¥3ILSYWd N47 NO 9001
¥3LSYWd N37 NO SO0
¥3LSYWd N34T NO %001
¥3L1SYWd N3 NO €001
¥3ILSYWd N4 NO 2001
03 0
SERY
243 ¢
123 000
Xd 000000
1AQ LL%0
da 000
a0
97440 0
240 0
134 §51500
¥24 000000
26 00
12 0
vdd 000000
d) 29000000
NI 0
L7dWd L
W) 0
13 L0
2 0
142 000000
iga 0
418 0%%000
18 €
N8 0000000000
sig 000000
o8 0
HEg 0
va 0
I10SY O

¥3LSYWd N4 NO 000L
Y3LSVWd N34T NO LOOL
“37I40=104701743aW¥)

310N WY
JL0N WY
310N WY
JION WY
JLON WY
J10N WY
ALON WY
JION Wy

JLON WY
JLON WY

l

60497200 D

15-10

MULTIPLE-INDEX FILES

All AAM files must have a key associated with each
record. This key, called the primary key, is used by CRM
to locate the records in the file when the file is read or
written randomly.

Additional keys, called alternate keys, can be defined
through COBOL statements when the data file is created,
or through an index generation utility. The MIPGEN utility
is used to define alternate keys for an existing file. It is
usually more efficient to use MIPGEN to add alternate
keys to an existing file than to define the alternate keys
when the data file is created. MIPGEN is also used to
redefine or delete existing alternate keys.

AAM creates an index file consisting of entries for each
alternate key defined for a data file. AAM updates the
index file whenever the data file is updated, or whenever
the MIPGEN utility is used to add, delete, or replace
alternate keys.

DEFINING ALTERNATE KEYS WITH MIPGEN
MIPGEN is a utility used for AAM files to:

e Define alternate keys and create an index file for an
existing file that does not have them.

e Define or modify alternate keys for an existing
multiple index file.

- The MIPGEN utility can only be called by control
statements. It reads directives from a file and creates or
modifies an index file according to those directives and the
contents of the data file.

If MIPGEN is being used to define a new alternate key and
no index file currently exists, permanent file space must be
allocated for the index file (with write permission). If
MIPGEN is being used to redefine existing alternate keys,
the existing index file must be attached (with write
permission).

The MIPGEN utility is the only method by which the user
can change alternate key definitions after an index file has
been created. The COBOL user cannot add, replace, or
delete alternate keys through source language statements.

Once an index file has been associated with a data file, the
index file must be attached to any job that either:

e Attaches and updates the data file
or
e Retrieves records by alternate key.

Figure 15-5 illustrates the MIPGEN utility on the NOS
operating system.

60497200 D

POSITIONING AND READING A FILE
BY ALTERNATE KEY

When the data file is read by alternate key, the index
entries for that alternate key are searched for the desired
alternate key value. The first primary key in the list of
primary keys associated with that alternate key value is
used to retrieve a record in the data file containing the
desired alternate key value. Subsequent records also
containing that alternate key value can be retrieved by
executing a sequential read by alternate key.

MOVE "PNE44" TO WHERE-USED

START PMASTER KEY EQUALS WHERE-USED
INVALID KEY PERFORM SEE-CODE.

REAb PMASTER NEXT RECORD AT END GO TO
START-IT.

These statements cause the index file to be positioned at
the alternate key entry for WHERE-USED with a value of
PNE44. The index file can then be read sequentially with
READ...NEXT. Figure 15-6 illustrates a COBOL
program that accesses the file LIBCONG by its alternate
keys (STACK and WROTE-IT).

FILE STRUCTURE AND
EFFICIENCY CONSIDERATIONS

The structure of a file and the method in which a file is
accessed involves:

e The physical format of its records (record type).
e The physical grouping of records into blocks.

e The record length (and whetﬁer fixed or variable).
e Any record compression.

e The amount of padding, if any, used within blocks of
records.

e. The existence and composition of keys (and whether or
not embedded).

e The existence of indexes used to locate records.

e The sequential or random nature of storing records.
e The size of a file.

e Any labels attached to the beginning of a file.

e File boundaries.

15-11

/define,birdmip/m=w

/file,libcong,fo=is,rt=f,org=new,xn=bi rdmip,emk=yes\

FILE,LIBCONG,FO=IS,RT=F,ORG=NEW,XN=BIRDMIP,EMK=Y

/mipgen,libcong
1 MIPGEN DIRECTIVES 81/01/29. 14.23.49.

? rmkdef(libcong,0,9,3,0,s,1)
RMKDEF(LIBCONG,0,9,3,0,S,I)
? rmkdef(libcong,3,8,8,0,s,1)

RMKDEF(LIBCONG,3,8,8,0,5,1)
2

MIPGEN COMPLETE

/flstat,libcong

1STATISTICS FOR FILE LIBCONG

~ORGANIZATION---~--~- IS
CREATION DATE-~~—~-- 81/01/29.
DATE OF LAST CLOSE- 81/01/29.
TIME OF LAST CLOSE- 14.24.48.

FILE IS MIPPED

COLLATION IS STANDARD

PRIMARY KEY INFORMATION

STARTING WORD POSITION —--=--- 0
STARTING CHARACTER POSITION - O
TYPE -~ COLLATED SYMBOLIC

LENGTH IN CHARACTERS --==-—=-- 8

MAXIMUM RECORD SIZE 80
MINIMUM RECORD SIZE 80

TOTAL TRANSACTIONS
NUMBER OF PUTS --—~-=-- 15
NUMBER OF GETS ------
NUMBER OF DELETES ---
NUMBER OF REPLACES --
NUMBER OF GETNEXTS --

o000

CIO CALLS FOR FILE
NUMBER OF READS -----
NUMBER OF WRITES =----
NUMBER OF RECALLS ---
NUMBER OF REWRITES ~--

nNonNN

-

NUMBER OF BLOCKS-------
NUMBER OF EMPTY BLOCKS- O
BLOCK SIZE IN PRUS=—=--- 8
NUMBER OF DATA RECORDS- 15

FILE LENGTH IN PRUS 10
NUMBER OF INDEX LEVELS IN USE 0
FLSTAT,LIBCONG.

Allocates permanent file storage
space for index file

Identifies data file characteristics
Requests the MIPGEN utility

Identifies new alternate key

Identifies a second new alternate key

The index file BIRDMIP has been
created.

The data file LIBCONG can now be
accessed by any one of 3 keys.

Figure 15-5. MIPGEN Example - NOS

® 15-12

60497200 D

Control Statements

lattach,libcong/m=w

lattach,birdmip/m=u

/file, libcong,fo=1’s,rt=f,org=new,xn=b1‘rdm'ip,emk=yes
FILE,LIBCONG,F0=IS,RT=F,0RG=NEU,XN=BIRDMIP,EMK=Y
/lgo

Source Program

IDENTIFICATION DIVISION.
PROGRAM-ID. BIRD-BOOKS.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL. /
SELECT LIBCONG ASSIGN TO "LIBCONG" BIRDMIP Defines data file
USE "EFC=3, DFC=3" LIBCONG and index file
FILE STATUS IS CODE-RETURN BIRDMIP
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC :
RECORD KEY IS LIBRARY-CONG Identifies primary key
ALTERNATE RECORD KEY IS WROTE-IT WITH DUPLICATES ASCENDING s
ALTERNATE RECORD KEY IS STACK WITH DUPLICATES ASCENDING. } Identifies 2 alternate
DATA DIVISION. keys: WRQTE-IT and
FILE SECTION. STACK
FO LIBCONG
LABEL RECORD OMITTED
DATA RECORD IS B-REC.
01 B-REC.
05 LIBRARY-CONG PICTURE X(8).
05 FILLER PICTURE X.
05 STACK PICTURE X(3).
05 TITLE PICTURE X(26).
05 WROTE-IT PICTURE X(8).
05 FILLER PICTURE X(12).
05 REC-NO PICTURE XX.
05 FILLER PICTURE X(20).
WORKING-STORAGE SECTION.
01 CODE-RETURN PICTURE XX.

01 SEVERITY PICTURE X.
PROCEDURE DIVISION.
OPEN-EM.

OPEN I-0 LIBCONG.

DISPLAY SPACES.
READ-PRIME.

READ LIBCONG NEXT RECORD

AT END GO TO START-IT. { _

01 ERR-CODE PICTURE 9999 USAGE IS COMP-1.};‘

DISPLAY B-REC.

GO TO READ-PRIME.
START-IT.

DISPLAY SPACES.

DISPLAY SPACES.

DISPLAY "---~PRINTED FROM START-IT PARAGRAPH---".

DISPLAY SPACES.
MOVE "13A" TO STACK.
START LIBCONG KEY EQUALS STACK
INVALID KEY PERFORM SEE-CODE.
SEE-STACK-A.
READ LIBCONG NEXT RECORD
AT END GO TO END-INDEX.
DISPLAY B-REC, " " CODE-RETURN.
IF CODE-RETURN NOT EQUAL "02" THEN
DISPLAY "END OF RECORDS WITH ALTERNATE KEY
60 79 HEXT~RECZ
END-IF.
GO TO SEE-STACK-A.

Identifies items to
contain error
information when ENTER
C.IOST is executed

Processes the entire
file ’

—— Processes all records

with key value 13A in
the STACK field

Figure 15-6. Reading a File by Alternate Key (Sheet 1 of 3)

60497200 D

15-13 @

Source Program (Contd)
NEXT-REC. .
READ LIBCONG NEXT RECORD AT END DISPLAY SPACES.
DISPLAY " STACK VALUE AFTER SEQUENTIAL READ IS " STACK
“ PRIME RECORD KEY IS " LIBRARY-CONG.
AUTHOR-SEE.
DISPLAY SPACES.
MOVE "A " TO WROTE-IT.
START LIBCONG KEY GREATER THAN WROTE-IT
INVALID KEY DISPLAY " BAD AUTHOR-SEE START",
DISPLAY SPACES.
A r——————
DISPLAY "----AUTHOR-SEE EXECUTING---". Processes all records
SEE-INDEX. alphabetically by the
READ LIBCONG NEXT RECORD AT END GO TO DONE. WROTE-IT key
DISPLAY B-REC.
GO TO SEE-INDEX.
SEE-CODE.
DISPLAY " ERROR OCCURED".
DISPLAY " CODE IN CODE-RETURN IS " CODE-RETURN.
ENTER "C.I0ST" USING LIBCONG ERR-CODE SEVERITY.
DISPLAY * CRM CODE IS " ,
ERR-CODE " SEVERITY IS " SEVERITY.
END-INDEX.
DISPLAY " END OF INDEX REACHED IN SEE-STACK-A".
DONE.
CLOSE LIBCONG.
STOP RUN.
Output
618998 138 ICELAND SyMMER SUTTON 03
6216745 12B TREASURY OF BIRDLORE KRUTCH 02
6352622 12A HNDBK BIRDS INDIA & PAK RIPLEY 15
s
6823181 12A BIRD NAVIGATION MATTHEWS 07
6855824 12A COURTSHIP HABITS GREBES. HUXLEY 13
72143678 13A BIRD STUDY BERGER 04
72151434 13B HIGH ARCTIC SUTTON 09
7283709 128 BEND IN A MEXICAN RIVER SUTTON 06
7317833 13A ORNITHOLOGY OF US & CAN. NUTTALL 10
736826 128 HNDBK OF WESTERN BIRDS BROWN ' 1
7415911 13A PORTRAITS MEXICAN BIRDS SUTTON 14
745811 128 BIRDS OF THE SEYCHELLES PENNY 12
75122251 12A HUNGRY BIRD BOOK ARBIB 01
7520430 12A FUND. OF ORNITHOLOGY VAN TYNE 05
75619273 13A RAILS OF THE WORLD RIPLEY 08
---~PRINTED FROM START-IT PARAGRAPH---
72143678 13A BIRD STUDY BERGER 04
02
7317833 13A ORNITHOLOGY OF US & CAN. NUTTALL 10
Q2

Figure 15-6. Reading a File by Alternate Key (Sheet 2 of 3)

® 15-14 60497200 D

Output (Contd)
7415911 13A PORTRAITS MEXICAN BIRDS SUTTON 14
75619273 1gi RAILS OF THE WORLD RIPLEY 08
END OF REngbs WITH ALTERNATE KEY 13A
STACK VALUE AFTER SEQUENTIAL READ IS 13B PRIME RECORD KEY IS 618998

--—-AUTHOR-SEE EXECUTING---

75122251 12A HUNGRY BIRD BOOK ARBIB 01
72143678 13A BIRD STUDY BERGER 04
736826 128 HNDBK OF WESTERN BIRDS BROWN 11
6855824 12A COURTSHIP HABITS GREBES HUXLEY 13
6216745 128 TREASURY OF BIRDLORE KRUTCH 02
6823181 12A BIRD NAVIGATION MATTHEWS 07
7317833 13A ORNITHOLOGY OF US & CAN. NUTTALL 10
745811 128 BIRDS OF THE SEYCHELLES PENNY 12
6352622 12A HNDBK BIRDS INDIA & PAK RIéLEY\ 15
75619273 13A RAILS OF THE WORLD RIPLEY 08
618998 13B ICELAND SUMMER SUTTON 03
72151434 13B HIGH ARCTIC SUTTON 09

7283709 128 BEND IN A MEXICAN RIVER SUTTON 06
7415911 13A PORTRAITS MEXICAN BIRDS SUTTON 14
7520430 12A FUND. OF ORNITHOLOGY VAN TYNE 05
/RM NOTE 1010 ON LFN LIBCONG 640

Figure 15-6. Reading a File by Alternate Key (Sheet 3 of 3)

Since the terminology for file components and boundaries
is not consistent, table 15-6 shows the general terms used
by CRM and the equivalent terms for COBOL, operating
system, disk, card, and tape.

Several CRM utilities can be helpful in determining the
most efficient file structure when designing new files, and
in processing and maintaining existing files. A brief
description of some of the utilities most useful to the
experienced COBOL user are discussed in the following
paragraphs. Refer to the BAM or AAM reference manuals
or user's guides for more detail and usage. File
reformatting is described in the FORM reference manual.

DETERMINING THE BEST BLOCK SIZE

If a file is usually processed sequentially, large data blocks
are most efficient because the next record to be accessed
usually exists in the block currently in the buffer and
transfer of another block into central memory is not
required. If a file is usually processed randomly, small
data blocks are most efficient because the next record to
be accessed usually does not exist in the block currently in
the buffer in central memory. Therefore, fewer records
are handled in the block transfer.

60497200 D

The system uses the BLOCK CONTAINS clause to
determine block size for sequential, indexed, direct, and
actual-key file organizations. For sequential files,
blocking is dependent on the block type and the device on
which the file resides. For indexed, direct, and actual-key
files, block size is always a multiple of PRU size. For any
block size specified by the program, CRM adds five words
(50-characters) for variable length records or four words
(40 characters) for fixed length records, and rounds upward
to the next PRU. For example, if the block contains 590
characters, one PRU is involved. A 591-character block
involves two PRUs. :

NOTE

If records are of variable length, the number of
records specified in the BLOCK CONTAINS
clause might not fit in one block because CRM
requires an additional one-half word for each
record in an indexed, direct, or actual-key file.

Buffer length can then be specified directly through the
BFS parameter in the USE clause or on the FILE control
statement.

15-15

TABLE 15-6. CRM FILE STRUCTURE TERMS AND EQUIVALENTS

General File Terminology COBOL Term CRM Term Nogggﬁa¥grms Disk Card SI Tape
Beginning of physical file BOI BOI BOI - - -
A single record Line image Data record %ine)image - Card Line imagé
NOS
Unit record
(NOS/BE)
End of record - EOR - - - -
End of group of records EOF (for EOS EOR Short PRU 7/8/9 Short PRU
(end of system logical record) | file named
INPUT only)
End of larger group of records | EOF EOP EOF Short PRU 6/7/9 Short PRU
(end of logical file) (NOS
» only)
End of physical file EOF EOQI EOF End of table | 6/7/8/9 | Tape mark
BOI = Beginning-of-information EOS = End-of-section
EOR = End-of-record EOP = End-of-partition
‘EOF = End-of-file EOI = End-of-information
l i [I I 1] l '
BOI EOS EoOP EOI

SELECT MY-FILE ASSIGN TO MYFILE
USE "BF S=3000"

This statement sets the buffer length to 3000 characters
for the sequential file MYFILE. For sequential files, one
PRU is the default. However, a larger buffer size reduces
the number of times I-O is performed and increases overall
performance.

Indexed Sequential Block Size

Block size has a major effect on both the physical
structure and the performance of an indexed sequential
file. AAM uses the values in various FIT fields when data
blocks are created. When creating data blocks, the COBOL
user has three options:

e Specify the BLOCK CONTAINS and the RECORDS
CONTAIN clauses. The numbers specified in these
~ clauses are then used by COBOL to calculate MBL.
(Refer to the discussion in section 3 entitled File

" Description Entry for an example.)

15-16

e Define the MBL directly through the FILE control
statement.

e Accept the default block size calculated by AAM.

MBL is the maximum number of characters in the data
block. The block size specified by the MBL field must be
large enough to hold at least one maximum-length record
plus enough words to hold the primary key (if not
embedded). The maximum record length (MRL) is
determined by COBOL from the record description entries.

The FLBLOK utility should be used to help select the
appropriate value for the MBL field. FLBLOK is described
in the AAM reference manual.

AAM increases the specified MBL to use mass storage
efficiently. The resulting data block size (MBL) will be:

[(Specified MBL + 50 characters) rounded to the next
PRU multiple] - 20 characters

If the user wants to set MBL to specify a certain number of
PRUs per block, the BLOCK CONTAINS clause values
should be set to 590, 1230, 1870, 2510, and so on (that is 50
characters less than the PRU multiple desired).

60497200 E

Actual-Key Block Size

Block size has a major effect on both the physical
structure and the performance of an actual-key file. AAM
uses the values in various FIT fields when data blocks are
created. When creating data blocks, the COBOL user has
three options:

e Specify the BLOCK CONTAINS and the RECORDS
CONTAIN clauses. The numbers specified in these
clauses are then used by COBOL to calculate MBL.
(Refer to the discussion in section 3 entitled File
Description Entry for an example.)

e Define the MBL directly through the FILE control
statement.

e Accept the default block size calculated by AAM.

The user can determine the data block size by defining the
maximum block length (MBL) field and the number of
records per block (RB) field, as follows:

1. Set MBL by multiplying the average number of
characters per record (RL) by an estimated
number of records per block (RB). Start with 3 to
10 records per block to favor random processing
and to keep central memory usage low.

2. Round RL times RB up to a PRU multiple and
subtract 50 characters that are needed by AAM.
The resulting MBL characters is the physical
limitation on the size of data blocks.

3. Adjust the number of records per block used in
step 1 so that RB times RL is as close to MBL as
possible. By specifying an RB value in the
BLOCK CONTAINS...RECORDS clause, the user
sets a maximum number of records that can be
stored logically within each data block that has
MBL characters.

AAM increases the specified MBL to use mass storage
efficiently. The resulting data block size (MBL) will be:

[(Specified MBL + 50 characters) rounded to the next
PRU multiple] - 20 characters

If the user wants to set MBL to specify a certain number of
PRUs per block, the BLOCK CONTAINS clause should be
set to 590, 1230, 1870, 2510, and so on (that is, 50
characters less than the PRU multiple desired).

REDUCING DIRECT FILE CREATION TIME

CREATE is a utility that can be called through a COBOL
program to create a direct file with embedded keys. The
default hashing routine or a user-supplied hashing routine

60497200 D

can be used. CREATE should be used for large files (more
than 1000 records). It significantly reduces creation time,
since all records that hash to a given home block can be
written in one mass storage access; otherwise, a home
block must be transferred from the central memory buffer
to mass storage for each record written.

The CREATE utility hashes the key from an input record
and prefixes the key to the record. Sort/Merge is then
used to sort the hashed keys. After the sort operation, the
prefixed keys are removed and the CREATE utility uses
AAM to produce the direct file.

The following COBOL statements illustrate a call to the
CREATE utility for creation of a direct file.

SELECT DAFILE ASSIGN TO "DAFILE"
ORGANIZATION IS DIRECT

.

ENTER SDACRTU USING REC1
CUSTOMER-ID REC-SIZE

.

.

ENTER SDAENDC.

The ENTER SDACRTU statement must exist within a loop
for each record read. The statement generates a hashed
value for the primary key value for CUSTOMER-ID. The
number of characters in the record is indicated by
REC-SIZE. The first time this statement is executed, the
CREATE directive is expected as the next unexecuted
record in the file named INPUT. The following statement
follows the end-of-record mark (or 7/8/9 card) at the end
of the COBOL source program:

CREATE(DAFILE)

When the ENTER SDAENDC statement is executed, the
records are sorted by the hashed primary key values. AAM
then creates the direct file. The file DAFILE is not
explicitly opened through COBOL statements.

A FILE control statement must be supplied before
execution of the COBOL program that creates the direct
file with CREATE. The following FILE control statements
can be used to describe the direct file DAFILE that is to be
created.

FILE(DAFILE,FO=DA,0RG=NEW,HMB=3,MBL=100,
EFC=3)

FILE(DAFILE,RT=F,MRL=50,KT=5,KL=10,RKW=2,
RKP=0,EMK=YES)

The SORT library must be available in the system when
using the CREATE utility.

15-17 ®

INTERACTIVE USAGE 16

COBOL programs can be created, compiled, and executed
through a terminal. Interactive processing enables a user
at a remote site to enter a COBOL source program into a
terminal. Compilation and execution results can be
displayed at the terminal. This section illustrates

interactive processing of COBOL programs in which a’

command is entered into a terminal, the command is
processed, a response is displayed, another command is
entered, and so on. Description of remote batch processing
is not included.

It is assumed that the COBOL user is not familiar with any
standard CDC communications product - such as
INTERCOM, Interactive Facility (IAF), or Transaction
Facility (TAF) - but is familiar with procedures for using
permanent files and batch processing under either the NOS
or the NOS/BE operating system. Specifically, it is
assumed that the NOS user is familiar with the ATTACH,
ASSIGN, DEFINE, and SAVE commands. It is assumed that
the NOS/BE user is familiar with the ATTACH, RETURN,
REWIND, COPY, and CATALOG commands. It is also
assumed that the user is familiar with the system files
INPUT, OUTPUT, and LGO.

This section includes the following:
® Some basic concepts of terminal usage

e A method of creating and executing COBOL programs
through a terminal, using either IAF under the NOS
operating system or INTERCOM under the NOS/BE
operating system

® Some interactive uses of the COBOL verbs ACCEPT
and DISPLAY

In all examples, underlining indicates terminal user input.
All user input shown in the examples is to be terminated by
pressing a carriage RETURN key (or its equivalent).

CONCEPTS OF TERMINAL OPERATION

Terminal operations require the use of commands. A
command is a user entry that calls for action from the
communication software product in use. Commands are
identified by a keyword. Optional parameters can follow
the keyword and are separated by commas. Commands are
not complete until a RETURN key (or its equivalent) is
pressed.. Command formats and parameters shown in this
section represent a subset of the commands and
parameters available. Refer to the appropriate
communications software product manual for a complete
list.

Terminal operations require - the establishment of a
communication link between the terminal and the
computer at the central site. The terminal might be
hard-wired, or a dial-in procedure might be necessary. A
login procedure is usually required to identify the terminal
to the system, to identify the user's right to use the
system, and to establish accounting information. These
procedures differ according to the operating system, the
interactive facility, and the installation. The user should
have access to any procedure required to establish a
connection with the computer, to log in, and to log out.

60497200 E

The period of time between the login and the logout is
called a terminal session. Files available during a given
terminal session are called local files. Most files used by
the beginning terminal user are local files. Before a file
can be used at a terminal it must be a local file; local file
status results automatically from most user commands. A
file's local status pertains only to a given terminal session.

Files created during a terminal session must be preserved
(allocated to permanent mass storage) at the end of a
terminal session if they are to be used in a future session.
A permanent file can be attached for use in a terminal

session, thus becoming a local file for the duration of the
session. local files can include temporary files as well as
attached permanent files.

The following summarizes the characteristics of a local
file under both the NOS and the NOS/BE operating system.

® A local file is immediately accessible from a terminal.

e A local file is a file that is created during the current
terminal session or is an attached permanent file (or
an accessible copy of a permanent file).

e A local file can be made permanent if it is not already
permanent.

® A local file can be used during execution of a program.

® A local file is lost at logout unless it is has been made
permanent.

® A local file must have a unique name; that is, only one
local file can exist with a given file name.

e There is a limited number of local files for a terminal
session. A message appears at the terminal when the
limit for a particular installation is reached.

NOS TERMINAL OPERATIONS
USING IAF

The Interactive Facility (IAF) is a network product that
provides a terminal user with the interactive capabilities
of NOS. The following paragraphs contain procedures that
can be used to create and execute a COBOL program
through IAF (Batch subsystem), under the NOS operating
system.

Two commands are useful in most NOS terminal operations:
e ENQUIRE,F is used to obtain a list of local files.

e CATLIST is used to obtain a list of permanent files.

LOCAL FILES UNDER NOS

Local files in NOS terminal operations include the
followings

® Temporary files created during the current terminal
session.

16-1

e Accessible copies of indirect access permanent files.
e Attached direct access permanent files.

e Files assigned to a terminal through the ASSIGN,TT
command.

Local file names are listed at the terminal with a file type
of LO, PM, or PT when a ENQUIRE,F command is entered.
A direct access permanent file is indicated by PM. A
primary file is indicated by PT. All other local files are
indicated by LO. Local file characteristics are listed in
the earlier discussion on basic terminal concepts.

Temporary files created during the current terminal
session are files that are used only during the terminal
session. A temporary file is lost when the terminal user
logs off. A file created through an interactive text editor
facility is a temporary file until it is saved as a permanent
file.

A local file can be assigned to the terminal through the
ASSIGN, TT,Ifn command, where Ifn is a local file name.
Upon login, the system files INPUT and QUTPUT are
assigned by default to the terminal. This concept is
equivalent to the concept of connected files under the
NOS/BE system. When the term connected file is used (in
this guide, under the NOS system), it means that a file has
been assigned to TT with the ASSIGN command or that a
file has been assigned to the terminal by default.

PROGRAM CREATION USING FSE AND IAF
UNDER NOS

The Full Screen Editor can be used to create and madify a
program. The program being created or madified is
contained in a temporary file called an edit file. The edit
file must be saved before the user logs off or it will be
lost. Saving the edit file is discussed in a later subsection.

Figure 16-1 illustrates how to create, list, and alter a
COBOL program by using FSE in line mode. The user
entries in figure 16-1 are described below:

1. Enter the FSE command to call the Full Screen Editar
and assign the file named EXPROG as the file to
contain the source program:

FSE,EXPROC
FSE responds with:

CREATE: EXPROG
NOS FULL SCREEN EDITOR

SCOPE TABS SET
??

2. Enter SET TAB 8,12,16,20 to set the tab stop positions
corresponding to columns 8, 12, 16, and 20. FSE
responds with the ?? prompt.

3. Enter SET CHAR SEM to define the semicolon
character as the tab control character. FSE responds
with the ?? prompt.

®16-2

4. Enter the directive INSERT to enter input mode. FSE
responds with the 1 ? prompt.

5. Enter the source program, line by line, pressing
RETURN after each line. After entering the last line,
press RETURN again. FSE responds with the ??
prompt, indicating that you can again enter directives.

6. Enter the PA directive to list the program. This
displays the entire program on the terminal screen.

7. For further editing, a pointer must be positioned to
the line of text that is to be changed. Entering P16
positions the pointer to the line of text to be changed,
in this case line 16.

8. Enter the ALTER directive. FSE responds by
displaying line 16 again, followed by the prompt:

A??

9. You then space over to where the change is to be
made and enter the correction underneath the error.
When you press RETURN, the corrected line is
displayed.

You can make further changes to the program by using
other FSE directives, some of which are described below.

e The INSERT directive allows you to insert new lines.
The following example inserts a new line after existing
line 14:

il4
FSE prompts you with:
15?

Enter the new line and then press RETURN twice.
FSE responds with the ?? prompt.

e The DELETE directive allows you to delete a line.
The following example deletes line 9:

d9

The deleted line is then displayed at your terminal,
followed by the ?? prompt.

Entering the QUIT REPLACE directive terminates editing
and saves the edit file as a permanent file. The old version
of the file is replaced with the new version. Entering the
QUIT directive terminates editing without saving the
revisions to the edit file.

For further information on the NOS Full Screen Editor,
refer to the NOS Full Screen Editor User's Guide.

PROGRAM COMPILATION AND EXECUTION
UNDER NOS :

The following discussion includes two aspects of
interactive program execution: the compilation and
execution of a program that has been created through FSE,
and the execution of a program with local data files.

60497200 E

/line
LINE.

727 set tab 8,12,16,20

Your entries are underlined:

Sets Full Screen Editor in line mode.

Starts FSE.

/fse,exprog —e—
CREATE:
NOS FULL SCREEN EDITOR

SCOPE TABS SET

EXPROG

?? set char semi =

Sets tab positions in columns 8, 12, 16, and 20.
Sets the semicolon as the tab control character.

Creates the file named EXPROG.

—~— Stores COBOL. source program in the file name
EXPROG.

Carriage return exits line mode.

Lists contents of the file and repositions to
beginning.

Repositions edit file to line 17.

Enter alter mode to change the line.

Space over to the error and enter correction.

Stops FSE and makes the file permanent.

?2? insert =
T 2 ;identification division, \
2 ? ;program—id. products.
3 2 ;environment division.
4 ? :sconfiguration section.
5 2 ;source-computer. cyber=170.
6 ? ;object-computer, cyber=170.
7 ? ;data division.)
8 ? ;working-storage section.
9 2 ;01 result pic 9(9). >
10 2 ;07T multl pic 9(5).
11 2?2 ;01 mult2 pic 9(4).
12 ? ;procedure division.
13 2 ;first-par.]
14 2 ;;accept multl. accept mult2.
15 2 ;;multiply multl by mult2 giving
16 resutt. :
17 ? ;;display "answar is " result.
18 ? ;;stop run. /
19 7 -
')? E‘
1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. PRODUCTS.
3 ENVIRONMENT. DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. CYBER-170.
6 OBJECT-COMPUTER. CYBER-170.
7 DATA DIVISION.
8 WORKING-STORAGE SECTION.
9 01 RESULT PIC 9(9).
10 01 MULT? PIC 9(5).
1M1 01 MULT2 PIC 9(4).
12 PROCEDURE DIVISION.
13 FIRST-PAR.
14 ACCEPT MULT1. ACCEPT MULTZ2.
15 MULTIPLY MULT1 BY MULTZ2 GIVING
16 RESULT.
17 DISPLAY "ANSWAR IS " RESULT.
18 STOP RUN.
27 p17 —~-—
17 DISPLAY "ANSWAR IS " RESULT.
72?7 alter == -
17 DISPLAY "ANSWAR IS " RESULT.
A?? e
17 DISPLAY “ANSWER IS " RESULT.
2?7 Qr -
FILE: EXPORG (PERMANENT)
FILE: FSEPROC (NO CHANGES)

/cobol5,i=exprog,l=0 —=

0664008 cM,

.130 cPs, 0000008 ECS

Compiles the COBOL program.

28452

Executes the COBOL program.
Supplies data when the ACCEPT statements are

? 1065 encountered.
ANSWER IS 69685080 —== Displays the results.
LGO.
!/ -
Figure 16-1. FSE Program Creation, Compilation, and Execution
60497200 E 16-3 @

] Running the Program

The COBOL program can be compiled through the terminal

by entering the COBOL5 control statement, specifying
input (I parameter) as the local file name that contains the

source program. Other parameters can also be specified, if
desired.

COBOLS5,I=EXPROG,L=LISTFIL.

This COBOLS5 control statement causes relocatable binary
instructions to be created on the file named LGO. The file
EXPROG contains the source program and is used for
compilation input. The file LISTFIL contains the source
listing and any diagnostics after the statement has been
executed. (If the L parameter is omitted, compilation
results are displayed at the terminal, unless
ASSIGN,MS,O0UTPUT has been specified.) If compilation
errors exist, the program must be changed, the file
rewound, and the program compiled again.

When no errors exist, the executable instructions can be
loaded and executed through the terminal by entering the
command LGO. When execution is completed, the system
responds by displaying the characters LGO and rewinds the
file LGO.

Figure 16-1 illustrates program compilation and execution.

IWhen a COBOL program has been created through FSE,
with line sequence numbers and if the PSQ parameter is
used on the COBOL5 control statement, the sequence
numbers are used for any diagnostic message references.
An example is shown in figure 16-2.

Executing With Local Data Files

A COBOL program can be run using local input data files.
Program execution can involve one or more of the
following possibilities:

Io A data file that has been created through FSE is used
by the program.

® A permanent direct access file is attached or a
permanent indirect access file copy is used as input
data.

e Dataisinput directly through the terminal.

Using Files Created Through FSE

The file entered through FSE does not need to be a
program. Any type of character data can be input. In
addition to creating a program, the user can create a file
of data that will be read by a program.

All local data files created through FSE have system
symbols to mark the end of the file. FSE automatically
inserts end-of-record and end-of-file markers at the end of
each edit file. When a file is read by a executing COBOL
program, the end-of-file marker is sensed by the AT END
clause of the COBOL READ statement.

By using the (EOR) and (EOF) directives, similar markers
can be written to separate multirecord data files under
construction in FSE:

e (EOR) corresponds to a 7/8/9 end-of-record card.

e (EOF) corresponds to a 6/7/8/9 end-of-file card.

164

Using Attached Permanent Files

A COBOL program can use an attached permanent file as
input data. Record format can be any format allowed by
COBOL.

Direct access permanent files can be altered through FSE
only if they are attached in write mode; M=W must be
specified on the ATTACH statement.

The use of the NOS system permanent file commands is
similar in both an interactive environment and a batch
environment. With interactive use, however, the user must
exit FSE before issuing NOS permanent file commands.

Using Files Assigned to The Terminal

The COBOL ACCEPT and DISPLAY statements can be
used to read and write small volume data on a file assigned
to the terminal. Data can be input directly through the
terminal to an executing program by using the ACCEPT
verb. Data can be displayed upon (or written to) a file by
using the DISPLAY verb. More detail is provided in the
subsection that discusses interactive usage of COBOL
ACCEPT and DISPLAY statements.

ASSIGN, TT,ANYFILE

This NOS command assigns the file ANYFILE to the
terminal.

NOS/BE TERMINAL OPERATIONS
USING INTERCOM »

INTERCOM Version 5 provides the interactive terminal
user with the time-sharing capabilities of NOS/BE. The
following paragraphs contain procedures that can be used
to create and execute a COBOL program through
INTERCOM and the NOS/BE operating system.

" Several commands are useful in most NOS/BE terminal

operations:

e FILES is used to obtain a list of local files.

e AUDIT,AI=P,ID=USERID is used to obtain a list of the

. permanent files cataloged under the name USERID.
The system file OUTPUT must be connected befare
the AUDIT command is entered if the response is to be
displayed at the terminal.

e CONNECT,ANYFILE is used to connect the file
ANYFILE to the terminal.

® DISCONT,ANYFILE is used to disconnect the file
ANYFILE from the terminal. :

LOCAL FILES UNDER NOS/BE .

Local files, in NOS/BE terminal operations, include the
following:

e Temporary files created during the current terminal
session.

e Permanent mass storage files that have been attached.

e Connected files.

60497200 C

ajdwex3y Jejswieied DSd "Z-91 84nbig ’ :

$23-8000000 “Sd) %L§° ‘W)
. a3LSI7 SYO¥¥3 € ¥

*Q3WNSSY ST 27 NWNT0D ONIMOTTIO4 310ND ¥V *310ND TYNIWY¥IL ON SYH TVE3ILIT JIYIAWAN-NON SIHL LLOL 02 O

“IIN3YIIIY FWYN VIVA GINTILIANN %664 €2 O
SIN3W313 ONTA3A)I¥d 3IHL ¥31JV Q3YINDIY SI 40T¥3d Vv L2201 mu\\m
-sefessows anysoubelp u) pesn siequinu auj| souenbesg

/
8000590

22 4
Le 4

21 M

¥y0y¥¥Y3 0J IAINIT A3S

28342/343/%9 =ldov JVYILNI NI SOIILSONIVIG

2%9 13A37 - €76 108023 2402

068296%€21L068296%52L068.95%9€2L0682L969€21068L95%521068.96%521068.96%221L068L95%¢2]

8 L 9 S ki |3 2 l

“NNY¥ dOlS

"ON-J3¥ SI ¥3IMSNVY, AVIdSIAQ

, “ON-2¥ OL OL 3AOMW
“UVd-1S¥Id
"NOISIAIG 3¥NA3JI0¥d
66 JId ON-23¥ LO
“NOTL33S 39YVYOLS-ONINUOM
"NOISIAIG V.iva
“T0dLNOJ-3TId
*NOILJ3S INdLNO-LNdNI
“NOTLI3S NOILVINOIINOD
“NOISIAIQ LNIWNOYIANZ
JATLIVYU3LINT "AI-WVY¥90dd
“NOISIATIQ NOILVITJILN3AI

‘g HIGWNN L3S purwwios 354 oyl YbnoaYl PaleIus 8q ued siequinu aul| sousnbeg

NWNI032

0€200
02200
0L200
00200
06100
0gLoo
o0.i00
09100
0sL00
0%L00
asgLo0
0zLo0
oLL00
00100

W

JVYILNT 40 SNILSIT 32¥N0OS

2%9 13aA37 - £°6 10802 24D

-igjowesed DS oy YPim welbosd 10809 sejidwo)

‘_Uma:wu:.ru_.smdonou\

16-5

60497200 E

When a FILES command is entered, local files are liste:d at
the terminal under the LOCAL category. The previous
discussion on terminal concepts includes the

characteristics of local files.

Files that are used only during a given terminal session are
called temporary files. A temporary file is lost when the
terminal user logs off. Until it is saved as a permanent
file, a file that is created through the interactive text
editing facility of INTERCOM is a temporary file.

A file created through a REWIND or a COPY command is
automatically local and is a temporary file unless it is
made permanent through a CATALOG command.

Permanent files must be made local by using the ATTACH
command if they are to be used at the terminal. The file's
permanent status is retained. The RETURN command is
used to disassociate a permanent file from the terminal.
On the list of local files displayed by using the FILES
command, attached permanent file names are preceded by
an asterisk.

Connected files are associated with the keyboard or
terminal display. Information written to a file while it is
connected goes to the executing program for use or to the
terminal for immediate display. No mass storage copy
exists for the information. On the list of local files
displayed by using the FILES command, connected files are
preceded by a dollar sign.

The CONNECT command connects a file; the DISCONT
command disconnects a file. A connected file must be
disconnected before it can be disassociated from the
terminal by using a RETURN command. The system file

INPUT must be connected by using the CONNECT
" command if input is expected from the keyboard (as with
the interactive usage of the COBOL ACCEPT verb). The
system file OUTPUT must be connected if the printed
results of a program compilation or execution are to be
displayed at the terminal.

PROGRAM CREATION USING INTERCOM
EDITOR UNDER NOS/BE

The EDITOR facility of INTERCOM can be used to create
and modify a COBOL program. EDITOR has its own set of
commands. All NOS/BE operating commands can be
performed while in EDITOR mode.

Upon successfully logging in to the terminal, INTERCOM
responds with the word COMMAND followed by a hyphen.
Additional commands can then be entered.

Figure 16-3 illustrates program creation and listing through
INTERCOM EDITOR. The user entries are described below.

The source program can be created as follows:

l. Enter EDITOR to call the editor program. INTERCOM
responds with two dots, indicating that EDITOR is
ready to accept a command.

2. Enter FORMAT,COBOL to set the semicolon (3) as the
tab character and to set tab stop positions in
columns 8, 12, 16, 20, and 24.

3. Enter CREATE to begin the process of building an edit
file containing the COBOL program. The system
responds with the first line sequence number, 100,
followed by an equals sign.

4. Enter the program line by line, pressing RETURN
after each line. Use the semicolon as a tab character

16-6

to position the text at the columns designated as the
COBOL tab stops.

5. Enter the single character = and press RETURN to
exit from CREATE. INTERCOM supplies an
end-of-record marker (equivalent to a CYBER Record
Manager end-of-section marker) to the file at this
point.

The program can be saved as a local file with a local file
name (Ifn), if desired. MYPROG (the file containing the
program) is saved, with no sequence numbers, by using the
following command:

SAVE,MYPROG,NOSEQ

The program can be examined by the LIST command in

~ either of the following ways:

e LIST,2,10 displays the portion of the program between
line 2 and line 10.

e LIST,ALL lists the entire program.

The file containing the program can be changed as follows:

® The linenum=newtext command adds or maodifies a
single line. The following adds or replaces the text
beginning in column 12 on line 150 with the characters
ITEM-NUMBER PIC 9(5).

150=5ITEM-NUMBER PIC 9(5).

® The DELETE command deletes one or more lines. The
following deletes the text on line 180.

DELETE,180

e The /oldtext/=/newtext/ command changes the text
string TEXT to CHANGED-TEXT on line number 210.

JTEXT/=/CHANGED-TEXT/,210

The edit file MYPROG can be made local and the
corrected source program can be substituted for the
previous version, with the SAVE command.

SAVE,MYPROG,NOSEQ,O

This statement causes the edit file to overwrite the
previously saved file MYPROG. A CATALOG command
can be used to save the file as a permanent file. A
REQUEST,Ifn,PF statement is not needed because
INTERCOM always places the edit file on a permanent file
device.

If the program is saved as a permanent file MYPROG, the
following commands can be used to later attach the file
and place a copy in the edit file for review or change.

ATTACH,MYPROG,ID=USERID
EDIT,MYPROG,S

PROGRAM COMPILATION AND EXECUTION
UNDER NOS/BE

The following discussion includes two aspects of
interactive program execution: the compilation and
execution of a program that has been created through
EDITOR, and the execution of a program with local data
files.)

60497200 E

COMMAND- editor

..format,cobol

..Create

100=; identification division.

110=;program-id. products.

120=;environment division.

130=;configuration section.

140=;wource-computer. cyber-170.

150=;0bject-computer. cyber-170.

160=;data division.

170=;working-storage section.

180=;01 result pic 9(9).

190=;01 multl pic 9(5).

200=;01 mult2 pic 9(4).

210=;procedure division.

220=;first-par.

230=;;accept multl. accept mult2.

Establishes INTERCOM EDITOR mode.
Establishes tab positions in columns 8, 12, 16, and 20.

Establishes creation mode.

Stores COBOL source program in edit file.

Exits from creation mode.

Saves edit file, without sequence numbers, as a local file
named myprog.
Lists contents of edit file.

240=;;multiply mult1l by mult2 giving result.
250=;;display '"answer is " résult.
260=;;stop run.
270==
..save,myprog,noseq
..list,all
100= IDENTIFICATION DIVISION.
110= PROGRAM-ID. PRODUCTS.
120= ENVIRONMENT DIVISION.
130= CONFIGURATION SECTION.
140= WOURCE-COMPUTER. CYBER-170.
150= OBJECT-COMPUTER. CYBER-170.
160= DATA DIVISION.
170= WORKING~STORAGE SECTION.
180= 01 RESULT PIC 9(9).
190= 01 MULT1 PIC 9(5).
200= 01 MULT2 PIC 9(4).
210= PROCEDURE DIVISION.
220= FIRST-PAR.
230= ACCEPT MULT1. ACCEPT MULTZ2.
240= MULTIPLY MULT1 BY MULTZ2 GIVING RESULT.
250= DISPLAY "ANSWER IS " RESULT.
260= STOP RUN.

Figure 16-3. INTERCOM Program Creation, Compilation, and Execution (Sheet 1 of 2)

60497200 C

16-7

../wource/=/source/ ,140

1 CHANGE(S)

Changes wource to source on line 140 of edit file.

..save,myprog,noseq,overwrite

Replaces previously-saved local file myprog with
changed version.

..connect,input }

-sCONnect,output

Connects system files INPUT and OUTPUT to terminal.

..cobol5,i=myprog, lo=~s

0652008 CMm, .521 CPs, 0000008 ECS

Compiles COBOL program, suppressing listing.

238195592 =

..lgo Executes COBOL program.
276541 Supplies data when ACCEPT statements are
- encountered.
2?3112
ANSWER IS Displays result.

Figure 16-3. INTERCOM Program Creation, Compilation, and Execution (Sheet 2 of 2)

l Ruhning the Program

The COBOL program can be compiled through the terminal
by entering the COBOL5 control statement, specifying
input (I parameter) as the local file name that contains the
saved source program. Other parameters can also be
specified, if desired.

COBOLS5,I=MYPROG,|_=LISTFIL.

This COBOL5 control statement causes relocatable binary
instructions to be created on the file named LGO. The file
MYPROG contains the source program and is used for
compilation input. The file LISTFIL contains the source
listing and any diagnostics after the statement has been
executed. (If the L parameter is omitted, and the OUTPUT
file is connected, compilation results are displayed at the
terminal.) If compilation errors exist, the program must be
changed, the file rewound, and the program compiled again.

When no errors exist, the executable instructions can be
loaded and executed through the terminal by entering the
command LGO. When execution is complete, the system
rewinds the file LGO. .

Figure 16-3 illustrates program compilation and execution.

Execution With Local Data Files

A COBOL program can be run using local input data files.
Program execution can involve one or more of the
following possibilities:

e A data file that has been created through the EDITOR
CREATE command is used by the program.)

® A permanent file or files are attached for use as input
data. .

e A connected file is used to input data directly through
the terminal. .

16-8

COBOL rewinds data files whenever an OPEN or CLOSE
statement is executed (unless the source program contains
statements preventing the rewind); an exception exists for
connected files, however. The system files INPUT and
OUTPUT are always rewound by the software during
interactive use. If a file needs to be repositioned to
beginning-of-information, the REWIND command is used:

REWIND,FILENAME

This command rewinds the file FILENAME.

Using Files Created Through EDITOR

The file entered through EDITOR need not be a program.
Any type of character data can be input. In addition to
creating a program, the user can create a file of data to be

‘read by a program, :

All local data files created through EDITOR have
end-of-record markers, designating the end of a system
logical record; this is equivalent to a CYBER Record
Manager end-of-section. When a file is read by an
executing COBOL program, the file ending marker is
sensed by the AT END imperative in the COBOL READ
statement. Similar markers can be written to separate two
data files under construction in EDITOR:

® *EOR corresponds to a 7/8/9 card.

e *EOI corresponds to a 6/7/8/9 card.

All local data files created through EDITOR have C-type
blocking and Z-type record format. The COBOL compiler
does not normally expect this format. Therefore, when
using a file that has been created through EDITOR, the
user must do one of the following:

e Specify RT=Z in the USE clause of the
FILE-CONTROL paragraph.

e Specify RT=Z on a FILE control statement before
execution.

60497200 E

Using Attached Permanent Files

A COBOL program can use an attached permanent file as
input data. Record format can be any format allowed by
COBOL. The following INTERCOM commands correspond
to the CATALOG, ATTACH, and PURGE commands,
respectively:

e STORE,FILENAME makes the local file FILENAME
permanent.

e FETCH,FILENAME attaches the permanent file
FILENAME.

e DISCARD,FILENAME deletes the local file
FILENAME (which can be an attached permanent file).

Conceptually, there is no difference between the use of
permanent files in interactive processing and the use of
permanent files in batch processing.

Using Connected Files

Connected files are associated directly with the keyboard
or terminal display. Information passed to or from a
terminal leaves no mass storage copy.

Data can be input directly through the terminal to an
executing program by using the COBOL ACCEPT verb.
This is illustrated later in the section.

COBOL. does not rewind a connected data file whenever an
OPEN or CLOSE statement is executed.

INTERACTIVE USAGE OF COBOL
ACCEPT AND DISPLAY STATEMENTS

The COBOL DISPLAY and ACCEPT statements can be
used interactively to communicate with the program during
execution. Data can be accepted from or displayed on a
terminal during execution. The SPECIAL-NAMES
paragraph is used in the COBOL program to equate a
user-defined mnemonic-name with a particular
implementor-name, such as "TERMINAL". The advantages
of using connected files to accept and display data follow:

° ACCEPT and DISPLAY use system resources mare
efficiently than READ and WRITE, and are convenient
for low volume files.

® SELECT, ASSIGN, and File Description (FD) entries
are not needed when using ACCEPT and DISPLAY.
Data is described in the Working-Storage Section.

e Messages can be displayed directly from a program
executing at the terminal; this capability is useful as a
debugging tool.

A disadvantage of using connected files to accept and

display data is that files are limited to block type C,

record type Z, and sequential file organization.

The SPECIAL-NAMES paragraph can be used to equate a
user-defined mnemonic-name with one of the following:

o "INPUT"
e "OUTPUT"
e "OUTPUT-C"

e "TERMINAL"

60497200 C

e "TERMINAL-C"
® Any file connected to a terminal

With the exception of "INPUT" and "OUTPUT", these
special names cannot be used in a SELECT clause of a
File-Control entry. The user-defined mnemonic-name is
then used in ACCEPT and DISPLAY statements in the
Procedure Division.

In all ACCEPT statements, FROM "INPUT" is the default
if the FROM phrase is omitted. In all DISPLAY
statements, UPON "OUTPUT" is the default when the
UPON phrase is omitted.

ACCEPTING DATA FROM THE TERMINAL

The ACCEPT FROM statement can be used to accept data
from a terminal as the program executes. The
SPECIAL-NAMES paragraph is required.

SPECIAL-NAMES
"TERMINAL" IS TERML.

.

ACCEPT KEY-IN FROM TERML.,

These statements are used to associate terminal input with
the special name "TERMINAL". TERML is the
user-defined mnemonic-name. to be equated with
"TERMINAL",

e When the ACCEPT statement is encountered,
execution pauses and a question mark is displayed at
the terminal. The pause continues until the user
enters data and presses a carriage RETURN key.

e KEY-IN specifies the data item to receive data from a
terminal and should be defined with USAGE IS
DISPLAY. See figure 16-4 for an example of the
ACCEPT statement with the special name
"TERMINAL",

e The input data must be terminated by a carriage
return. If the receiving data item exceeds 300
characters, a prompt (question mark) is displayed for
each multiple of 300. The data item named KEY-IN is
blank filled if the input data is less than the size of
the record. Input characters exceeding the size of
KEY-IN are lost.

ACCEPTING DATA FROM A CONNECTED FILE

The ACCEPT FROM statement can be used to accept data
from a terminal as the COBOL program executes. The
SPECIAL-NAMES paragraph is required.

SPECIAL-NAMES
"MY-FILE" IS MY-FILE.

ACCEPT MORE-KEYS FROM MY-FILE.

The ACCEPT statement specifies that data is to be
accepted from the file named MY-FILE, which is
connected to the terminal, during execution. MY-FILE
must be explicitly connected under the NOS/BE system
with the CONNECT command. MY-FILE must be assigned
to TT under the NOS system with the ASSIGN command.

16-9

define,ifile . Defines permanent file ifile, to be created in COBOL program.
/cobol5,i=figl164 —= Compiles COBOL program.

CDC COBOL 5.3 - LEVEL 518 SOURCE LISTING OF DATA-RE
1 IDENTIFICATION DIVISION.

2 PROGRAM-1ID. DATA-READ.

3 ENVIRONMENT DIVISION.

4 CONFIGURATION SECTION.

5 SOURCE-COMPUTER. CYBER-170.

6 OBJECT~COMPUTER. CYBER-170.

7 SPECIAL-NAMES.

8 "TERMINAL" IS TERML.

9 INPUT-OUTPUT SECTION.

10 FILE-CONTROL.

11 SELECT IFILE ASSIGN TO "IFILE".

12 DATA DIVISION.

13 FILE SECTION.

14 FD IFILE

15 LABEL RECORD OMITTED

16 DATA RECORD IS I-REC.

17 01 I-REC PIC X(18).

18 WORKING-STORAGE SECTION.

19 01 INREC.

20 02 FIELD1 PIC X(5).

21 02 FILLER PIC X(8).

22 02 FIELD2 PIC X(5).

23 PROCEDURE DIVISION.

24 STRT.

25 OPEN OUTPUT IFILE.

26 ACCEPT FIELD1.

27 : DISPLAY "RECORD WRITTEN FOR ID " FIELD1.
28 PERFORM UNTIL FIELD1 = ZEROS

29 IF FIELDT = FIELD2

30 MOVE INREC TO I-REC

31 WRITE I-REC

32 i DISPLAY "RECORD WRITTEN FOR ID " FIELD1
33 END~IF

34 ACCEPT INREC FROM TERML

35 END-PERFORM

36 CLOSE IFILE.

37 STOP RUN.

COLUMN 1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890
0651008 CM, .944 CPS, 000000B ECS

/lgo

? 12345 12345 -

RECORD WRITTEN FOR ID 12345

2 22222 22222 -

RECORD WRITTEN FOR 1D 22222 —— Accepts data into INREC field from the terminal.
? 66666 66676 =

? 89898 89898 —-=

RECORD WRITTEN FOR ID 89898

? 00000 = Causes program termination.
LGO.

/

Figure 16-4. Accepting Data From a Terminal

16-10 60497200 C

The file from which data is accepted is assumed to have Z
record type and C block type. The field length is set to the
size of the receiving data item, up to a maximum of 300
characters. The USE clause and the FILE control
statement are not needed for setting these fields.
However, an FL value less than 300 on a FILE control
statement can override the value of 300.

Figure 16-5 illustrates program execution with data being
accepted from a connected file, INVENT, which was
created with the Full Screen Editor.

DISPLAYING DATA UPON THE TERMINAL

The DISPLAY UPON statement transfers the contents of a
data item to the terminal during execution of a COBOL
program. A literal alone, or a combination of literals and
data items, can also be transferred. Each DISPLAY
statement produces one line (record) of terminal output.
Multiple items in a single DISPLAY statement appear in
the order specified, within the allowable character limits.
The SPECIAL-NAMES paragraph is required.

SPECIAL-NAMES
"TERMINAL" IS TERML.

DISPLAY MY-RECORD UPON TERML.

These statements are used to associate terminal output
with the special implementor-name "TERMINAL". TERML
is a user-defined mnemonic-name to be equated with
"TERMINAL". The DISPLAY statement causes
MY-RECORD to be displayed at a terminal during program
execution. .

The maximum number of characters that can be displayed
on a single line on the terminal is 72 for both NOS and
NOS/BE. Under NOS/BE, however, the SCREEN command
can override the default value.

DISPLAY MY-RECORD UPON TERM-C.

This statement can be used under NOS/BE to display
information at a terminal, beginning with the second

character of MY-RECORD. (Normally, all output is single
spaced.) The first character of the record is used for
carriage control. TERM-C is equated with "TERMINAL-C"
in the SPECIAL-NAMES paragraph.

DISPLAY MY-RECORD UPON TERML WITH NO
ADVANCING.

This statement causes the data in MY-RECORD to be
displayed at the terminal with no carriage return. A
subsequent ACCEPT statement then accepts data
beginning with the position following the last displayed
character, under NOS/BE, and following the prompt, under
NOS. Under NOS/BE, two successive DISPLAY WITH NO
ADVANCING statements result in overprinting of the first
displayed data. Under NOS, two successive DISPLAY WITH
NO ADVANCING statements cause the second displayed
data to print immediately following the first displayed data.

DISPLAYING DATA UPON A CONNECTED FILE

The DISPLAY UPON statement transfers the contents of a
data item to a connected file during execution of a COBOL
program. The SPECIAL-NAMES paragraph is required.

SPECIAL-NAMES
"MY-FILE" IS MY-FILE

DISPLAY MY-RECORD UPON MY-FILE.

This DISPLAY statement illustrates data being received by
MY-FILE. My-record is defined in the Working-Storage
Section. MY-FILE must be explicitly connected under the
NOS/BE system with the CONNECT command. MY-FILE
must be assigned to TT under the NOS system with the
ASSIGN command.

Unless the FL parameter on a FILE control statement is
set to a value, a maximum of 72 characters can be
received by the file from MY-RECORD.

The file that receives data is assumed to have sequential
format with C type blocking and Z type records.

A. INTERACTIVE SESSION

Attaches permanent file named invent.

//get,enterd?2

Attaches permanent file (enterd2) containing COBOL

/get,invent

/cobol5,i=enterd2

source program.

CDC COBOL 5.3 - LEVEL 507

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
“"TERMINAL" IS TERML
“"INVENT" IS IFILE.
INPUT-OUTPUT SECTION.
- FILE-CONTROL.
0 DATA DIVISION.

= V00NV HWN =

SOURCE LISTING OF ENTER-D

IDENTIFICATION DIVISION.
PROGRAM-ID. ENTER-DATA.

Compiles COBOL program, using file enterd2; results are
displayed at terminal.

Figure 16-5. Accepting Data from a Connected File (Sheet 1 of 2)

60497200 E

16-11

11 WORKING-STORAGE SECTION.

12 01 REC-NO PIC 9.
13 01 ANSWER PIC X.
14 01 SAVE-REC.
15 02 FIELD1 PIC X(5).
‘16 02 FILLER PIC X(8).
17 02 FIELDZ2 PIC X(5).
18 PROCEDURE DIVISION.
19 FIRST-PAR.
20 MOVE ZERO TO REC-NO.
21 SECOND-PAR.
22 ACCEPT SAVE-REC FROM IFILE.
23 ADD 1 TO REC-NO.
24 DISPLAY "RECORD NUMBER " REC-NO "™ " SAVE-REC.
25 IF FIELD1 EQUALS 99999 GO TO TOTAL-PAR.
26 [GO TO SECOND-PAR.
27 TOTAL-PAR.
28 DISPLAY "TOTAL RECORDS " REC-NO.
29 MORE.
30 DISPLAY "DO YOU WANT TO ADD ANOTHER RECORD?".
31 ACCEPT ANSWER.
32 IF ANSWER EQUALS "N" GO TO CLOSING.
33 DISPLAY "ENTER 5-DIGIT NUMBER"™ WITH NO ADVANCING.
34 ACCEPT SAVE-REC. ADD 1 TO REC-NO.
35 DISPLAY "NEW TOTAL IS "™ REC-NO.
36 GO TO MORE.
37 . CLOSING.
38 STOP RUN.
COLUMN 1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890
1071008 cM, 1.599 cPs, 0000008 ECS

/lgo —= Executes COBOL program; results are displayed at
RECORD NUMBER 1 12345 12345 terminal.

RECORD NUMBER 2 22222 22222

RECORD NUMBER 3 63654 63654

RECORD NUMBER 4 77777 7777 ~g———————— Executes DISPLAY Statements.
RECORD NUMBER 5 87878 87878

RECORD NUMBER 6 99999 99999

TOTAL RECORDS 6

DO YOU WANT TO ADD ANOTHER RECORD?

? y - - Executes ACCEPT ANSWER statement.
ENTER 5-DIGIT NUMBER? 65543 — Accepts data for SAVE-REC.

NEW TOTAL IS 7
DO YOU WANT TO ADD ANOTHER RECORD?
2

ENTER 5-DIGIT NUMBER? 54890 —-= Accepts data for SAVE-REC.
NEW TOTAL IS 8)

DO YOU WANT TO ADD ANOTHER RECORD?

?2 N - Terminates execution.
LGO.

/

B. RECORDS IN INVENT FILE

12345 12345
22222 22222
63654 63654
77 777
87878 87878
99999 99999

Figure 16-5. Accepting Data from a Connected File (Sheet 2 of 2)

16-12 60497200 £

THE MESSAGE CONTROL SYSTEM INTERFACE

17

0

The Message Control System (MCS) provides a means of
sending and receiving data between COBOL programs and
communication devices such as terminals. MCS is the
network software, available under the NOS operating
system only, that performs the following functions:

e Controls the routing of messages from a COBOL
program to a terminal.

e Controls the routing of messages from a terminal to a
COBOL program.

o Performs message queuing and maintains queue status
information.

Entering the COBOL/MCS communications environment
presents some new terminology and processing concepts.
These are described briefly before discussing specific
COBOL Communications F acility (CCF) features.

Figure 17-1 illustrates the COBOL/MCS communications
environment.

GENERAL CONCEPTS

MCS provides the COBOL user with a telecommunications
message handling capability. To use MCS, application
definitions must be established through an Application

Definition Language (ADL) to define relationships between
the MCS application components:

e Terminals

e COBOL programs

o Queues

e Special message files (called journals)

The creation of the MCS application definition, which is
not normally performed by the COBOL programmer, is not
discussed in this section. An example of an MCS
application is described in appendix D. (It is recommended
that the reader become familiar with this application,
named FINANCE, before proceeding; it will be referenced

in later examples in this section.)

To use an MCS application, the COBOL programmer must
be aware of the following information:

e The name of the MCS application.

® The names of any destinations (terminals) to which the
COBOL program is to send data, using the SEND verb.

® The names of any input queues from which the COBOL
program is to receive data, using the RECEIVE verb.

COBOL Program Message Control System Terminals
l (MCS)
1 I
Input Qtéeues
A U, N N—
—) —— <
e : N |
RECEIVE g \ N1 £,
— / B \ \ e
—— o] .
f—— = <
RECEIVE “ g = E]
_ [a} w
—— |
SEND s o ———]
o— g [a)
‘g Output Oueues/\ =
3 ¥
E ! - B |
: / 2 L
P (&) w
SEND 4+— | /.

COBOL/MCS MCS/Terminal
Interface Interface
Figure 17-1. COBOL/MCS Communications Environment

60497200 C

17-1

o The hierarchal structure of the queues.

e The status and error codes that MCS returns to
indicate an exception condition (such as, no data
available or disk errors).

This information is usually provided by the individual
responsible for defining the MCS application. Answers to
the following questions can also be of use to the COBOL
programmer using MCS:

e Is the COBOL program an on-line program or an
off-line program?

e Is the COBOL program automatically initiated by
MCS? If so, under what conditions?

e Is the COBOL program automatically terminated by
MCS? If so, under what conditions? If not, should the
COBOL program test for certain conditions to
terminate processing?

MESSAGES AND MESSAGE QUEUES

Messages are the fundamental units of data transmitted
and processed in a COBOL/MCS telecommunications
environment. A message consists of an arbitrary amount
of information (usually character data). Messages or
message segments are transmitted through COBOL with
the SEND and RECEIVE statements.

An input message queue contains messages that have been
transmitted from terminals and are awaiting transmission
to a COBOL program. An output message queue contains
messages that have been transmitted from COBOL
programs and are awaiting transmission to a terminal.

Message segments are delimited by end-of-segment
indicators (ESI). Messages are logically separated from
other messages by end-of-message indicators (EMI).
Groups of messages are logically separated from other
groups of messages by end-of-group indicators (EGI).

ENQUEUING AND DEQUEUING MESSAGES

The process by which complete messages are placed into a
queue is called enqueuing. The process by which messages
or segments are removed from a queue is called
dequeuing. A selection algorithm can be specified by the
user for certain messages to be placed in a given input
queue, or for all messages for a given destination to be
placed in a given output queue. Dequeuing can be
performed on a first-in, first-out basis, or priorities can be
established by the user.

QUEUE HIERARCHY

"Four levels of input queues can be defined in the ADL:
queue, sub-queue-l, sub-queue-2, and sub-queue-3. The
four-level queue hierarchy allows MCS to route messages
based on user-defined conditions.

A queue with no subqueues is a simple queue. A queue with
subqueues is a compound queue. All incoming messages are
tested at each level of the queue hierarchy, based on the
specified conditions, and are then stored in the lowest level
simple queue. Messages are stored only in simple queues.
When a COBOL RECEIVE statement requests a message
from a compound queue, MCS searches all levels of the
named queue (from highest level to lowest level) until a

17-2

nonempty simple queue is encountered; the next message
or message segment in that queue is returned to the
COBOL program.

ENABLING AND DISABLING QUEUES

An input queue must be enabled before MCS places
messages in it., MCS can enable or disable queues based on
time of day, message activity, or other factors. The
COBOL programmer can also enable or disable queues with
the ENABLE or DISABLE statements. Refer to the
COBOL 5 reference manual for a description of these
statements.

MESSAGE DESTINATION AND SOURCE

A message destination is the communication device to
which the message is being sent. A message source is the
communication device from which the message is being
sent. Other COBOL programs can also be the source or
destination of a message. Symbolic names for message
sources and destinations are defined in the ADL description
and referenced in the COBOL program.

DATA MODE AND COMMAND MODE

In data mode, MCS attempts to route all input from the
terminal to the appropriate input queue where it becomes
available to COBOL programs within the application. In
command mode, the user can enter commands to control
certain aspects of MCS operations.

COBOL COMMUNICATION FACILITY

COBOL programs perform message processing for a
specific application through the following language
features:

e A Communication Section in the Data Division that
describes message queues and other MCS-related data.

e Message handling statements such as SEND and
RECEIVE.

THE COMMUNICATION SECTION

The Communication Section is required in the Data
Division of a COBOL program when MCS is used. The
section must appear after the Linkage Section and before
the Report Section (if applicable). Input Communications
Descriptions (CD) entries define input queues; output CD
entries define the destinations to receive messages.
Figure 17-2 illustrates a Communication Section that can
be used in a COBOL program for the FINANCE application
defined in appendix D. The clauses in both the input CD
and the output CD must be written in the order shown in
the figure.

SENDING AND RECEIVING MESSAGES

Messages can be received from a terminal for use in a
COBOL program by using the RECEIVE statament. After
execution of the RECEIVE statement, the input CD area is
updated. Messages can be sent from a COBOL program to
a terminal by using the SEND statement. After execution
of the SEND statement, the output CD area is updated.

60497200 C

COMMUNICATION SECTION.

CD MSG-IN; FOR INPUT
SYMBOLIC QUEUE IS LOANQ-IN
SYMBOLIC SUB-QUEUE-1 IS LOANQ-IN-1
SYMBOLIC SUB-QUEUE-2 IS LOANQ-IN-2
SYMBOLIC SUB-QUEUE-3 IS LOANQ-IN-3
MESSAGE DATE IS TRAN-DATE
MESSAGE TIME IS TRAN-TIME
SYMBOLIC SOURCE IS IN-SOURCE
TEXT LENGTH IS IN-LENGTH
END KEY IS IN-KEY
STATUS KEY IS STATUS-CODE
MESSAGE COUNT IS IN-COUNT.

Cb MSG-0UT; FOR OUTPUT
DESTINATION COUNT IS OUT-DCOUNT
TEXT LENGTH IS OUT-LENGTH
STATUS KEY IS OUT-STATUS
DESTINATION TABLE OCCURS 6 TIMES

INDEXED BY D-TABLE
ERROR KEY IS OUT-KEY
SYMBOLIC DESTINATION IS OUT-DEST.

Figure 17-2. A COBOL Communication Section

After a RECEIVE statement is executed and MCS has
removed a message from the input queue, the message is
not available for further RECEIVES unless a journal file
has been created.

Receiving Messages

In the FINANCE application, simple queues are used for
each of the two savings transaction types. Figure 17-3
illustrates the queue structure for the queue named
SAVEPMTQUE.

Queue { SAVINGSQ

Sub-queue-1 { SAVEPMTQUE SAVECHGQUE

Figure 17-3. SAVINGSQ Structure

The RECEIVE statement is used in the Procedure Division
of a COBOL program to acquire a message (or part of a
message) from an input queue. The statements shown in
figure 17-4 can be used to receive a message from the
simple queue SAVEPMTQUE. The following should be
noted:

e INBUF is defined in the Working-Storage Section and is
used to hold messages from the queue named
SAVEPMTQUE.

e If no messages exist in the queue, a program branch to
PRINT-EMPTY is taken.

e Input fields for transaction type need not be tested (as
would be necessary without MCS) because MCS has
performed such testing in routing messages to the
proper input queues.

WORKING-STORAGE SECTION.
01 INBUF.

COMMUNICATION SECTION.

CD SV-MSG; FOR INPUT

SYMBOLIC QUEUE IS SAVINGSQ-IN
SYMBOLIC SUB-QUEUE-1 IS SAVQ-IN-1

MOVE '"SAVINGSQ" TO SAVINGSQ-IN

MOVE "SAVEPMTQUE" TO SAVSQ-IN-1

RECEIVE SV-MSG MESSAGE INTO INBUF;
NO DATA GO TO PRINT-EMPTY.

Figure 17-4. Receiving Messages from a 2-level
Queue Structure

In the FINANCE application, a compound queue is used for
accepting loan payment transactions. (The
FASTLOANPMT queue is used before 5 o'clock; the
SLOWLOANPMT queue is wused after 5 o'clock.)
Figure 17-5 illustrates the queue hierarchy of the
compound queue LOANPMTQUE.

Queue { LOANQ
" Sub-queue-1 { LOANPMTQUE LOANCHGQUE
Sub-queue-2 { FASTLOANPMT SLOWLOANPMT

Figure 17-56. LOANQ Structure

60497200 C

17-3

The statements shown in figure 17-6 can be used to receive
a message from the compound queue LOANPMTQUE. The
following should be noted:

e The RECEIVE statement shown in figure 17-6
receives a message from either of two subqueues:
FASTLOANPMT or SLOWLOANPMT.

e Before the RECEIVE statement is executed, the input
CD area LN-MSG contains the symbolic queue name
LOANPMTQUE that identifies the queue from which
the next message is to be received.

e MCS returns the first message encountered by
searching the FASTLOANPMT queue and then
searching the SLOWLOANPMT queue.

e During the RECEIVE statement execution, MCS
returns either the characters FASTLOANPMT or the
characters SLOWLOANPMT to the data item
LOANQ-IN-2; this indicates from which queue the
message was received. If no data is available, MCS
fills the CD area with blanks.

WORKING-STORAGE SECTION.
01 INBUF.
02 MSG-1Ib PIC X(8).
02 ACCT-NO PIC 9(C11).
02 TRAN-CODE PIC X(3).
02 AMOUNT PIC 9(9).

COMMUNICATION SECTION.

CD LN-MSG FOR INPUT
SYMBOLIC QUEUE IS LOANSQ-IN
SYMBOLIC SUB-QUEUE-1 IS LOANQ-IN-1
SYMBOLIC SUB-QUEUE-2 IS LOANQ-IN-2

MOVE "LOANQ@" TO LOANSQ-IN.

MOVE "LOANPMTQUE"™ TO LOANQ-IN-1.

RECEIVE LN-MSG MESSAGE INTO INBUF
NO DATA GO TO PRINT-EMPTY.

Figure 17-6. Receiving Messages from a 3-level
Queue Structure

Alternatively, if the following COBOL statements are used:
COMMUNICATION SECTION

CD LN-MSG; FOR INPUT
SYMBOLIC QUEUE IS LOANSGQ-IN

MO VE "LOANG" TO LOANSQ-IN
RECEIVE LN-MSG MESSAGE INTO INBUF;
NO DATA GO TO PRINT-EMPTY.

MCS returns the first message encountered by searching
queues in the following order: -

e FASTLOANPMT
e SLOWLOANPMT
e LOANCHGQUE

17-4

In the preceding COBOL statements, no queue name is
moved into the data item LOANQ-IN-1. During the
RECEIVE statement execution, MCS returns either the
characters LOANPMTQUE or the characters
LOANCHGQUE to the data item LOANQ-IN-1. If
LOANPMTQUE is returned, either the characters
FASTLOANPMT or the characters SLOWLOANPMT are
returned to the data item LOANQ-IN-2.

Sending Messages

The SEND statement is used in the Procedure Division of a
COBOL program to release a message (or part of a
message) to MCS for enqueuing in an output queue. MCS
determines when to transmit the message to a specific
destination. The statements shown in figure 17-7 can be
used to send a message from a COBOL program to a
terminal. The following should be noted:

e OUTBUF is defined in the Working-Storage Section and
is used to hold messages, before the messages are sent
to terminals.

e A record is read from the loan account file
LMASTER. Appropriate code follows to update
account records according to the payment transaction
code in the message previously received. This code is
not shown in figure 17-7. .

e The CLEAR-TABLE routine is executed to initialize
the items in the output CD area.

e Before execution of the SEND statement, values are
moved into the OUTBUF area and into the output CD
area.

e The STATUS-CHECK-OUT routine is executed, after
the SEND statement execution, to verify successful
execution or to perform appropriate error recovery.

Updating the CD Areas

Whenever a RECEIVE statement is executed, updated
values are returned to the input CD area. For example,
referencing the CD in figure 17-2, the following occur
when a RECEIVE statement is executed:

e MCS updates the contents of TRAN-DATE with the
year, month, and day on which MCS received the
complete message.

e MCS updates the contents of TRAN-TIME with the
hours, minutes, and seconds that MCS received the
complete message.

e MCS provides the symbolic name of the terminal that
is. the source of the message in the data item
IN-SOURCE.

e MCS indicates the number of message character
positions filled in the data item IN-LENGTH.

e MCS indicates a status condition that exists after the
RECEIVE statement is executed by providing a code
in the data item STATUS-CODE (code 00 indicates
normal execution).

60497200 C

WORKING-STORAGE SECTION.
01 OUTBUF.
02 MSGOUT PIC X(32).
02 AMT-0UT PIC 9(9).
02 AC PIC X(8) VALUE I1s " ACCT .
02 ACCT-0QUT PIC 9(C11).

COMMUNICATION SECTION.

Cb MSG-0UT; FOR OUTPUT
DESTINATION COUNT IS OUT-DCOUNT
TEXT LENGTH IS OUT-LENGTH
STATUS KEY IS OUT-STATUS
DESTINATION TABLE OCCURS 6 TIMES

INDEXED BY D-TABLE
ERROR KEY IS OUT-KEY
SYMBOLIC DESTINATION IS OUT-DEST.

PROCEDURE DIVISION.

READ LMASTER INVALID KEY GO TO NO-ACCT.--=— Reads a record from a data base file.

PERFORM CLEAR-TABLE.

MOVE ACCT-NUM TO ACCT-OUT.
MOVE LBAL TO AMT-0OUT.

MOVE 1 TO OUT-DCOUNT. =

- {Missing code updates data base file, etc.)

MOVE "TRANSACTION COMPLETE NEW BAL IS " TO MSGOUT.I

MOVE "LOAN200" TO OUT-DEST (1).-e——— Tells MCS the destination to which the message is to be sent.

MOVE 60 TO OUT-LENGTH. =

PERFORM STATUS-CHECK-QUT.

SEND MSG-OUT FROM OUTBUF WITH EMI.-=————Sends message from COBOL program to output queue and

—_— updates output CD area.
Vi

Definition of area that holds output message before it goes to
output queue.

Output CD area definition.

‘. Moves values to OUTBUF area.
Tells MCS how many destinations are referenced.
Tells MCS the number of characters in message to be sent.

erifies status of previous operation.

Figure 17-7. Sending Messages from a COBOL Program

Whenever a SEND statement is executed, updated values
are returned to the output CD area. For example,
referencing the CD in figure 17-2, the following occurs
when a SEND statement is executed:

® MCS indicates a status condition that exists after the
SEND statement is executed by providing a code in the
data item OUT-STATUS (code 00 indicates normal
execution).

° MCS indicates more detailed status by providing a
code in the data item OUT-KEY (code 0 indicates
normal execution).

ACCESSING THE STATUS KEY

The STATUS KEY clause in the input CD is important to
the COBOL user in error processing.

CD INPUT-AREA; FOR INPUT
STATUS KEY IS IN-CODE

.

RECEIVE INPUT-AREA MESSAGE INTO INBUF.
IF IN-CODE NOT EQUAL "oo"
GO TO ERROR-ROUTINE.

60497200 C

When the preceding RECEIVE statement is executed, MCS
returns a status code to IN-CODE. If a message has not
been successfully received (indicated by code 00), a
program branch is taken to ERROR-ROUTINE. The codes
indicate conditions such as system errors, invalid password,
disabled terminal, and invalid application name. Status
codes are listed in table 17-1.

Similarly, the STATUS KEY clause in the output CD can be
used for error processing.

CD OQUTPUT-AREA; FOR OUTPUT
STATUS KEY IS OUT-CODE

SENb OUTPUT-AREA FROM OUTBUF WITH EMI.
IF QUT-CODE NOT EQUAL "00"
GO TO DEBUG-ROUTINE.

When the preceding SEND statement is executed, MCS
returns a status code to OUT-CODE. If a message has not
been successfully accepted (indicated by code 00), a
program- branch is taken to DEBUG-ROUTINE. Status
codes are listed in table 17-1. Error key codes are listed in
table 17-2.

TABLE 17-1. MCS STATUS KEY CODES

Code Description

00 The CCF statement executed successfully.

10 The CCF statement executed successfully for all destinations referenced; however, one or more
destinations are currently disabled.

15 One or more of the queue source paths were already enabled or disabled. Disable or enable
action applied to other paths.

20 One or more symbolic queue names or destination names are invalid or unknown. Action taken only -
for valid destinations.

21 Symbolic source name invalid or unknown. No action taken while executing the CCF statement.

30 DESTINATION COUNT invalid or exceeds the maximum value possible. No action was taken while
executing the CCF statement.

40 Password invalid. No action was taken while executing the CCF statement, except that DISABLE
OUTPUT or ENABLE OUTPUT are applied to valid destinations.

50 TEXT LENGTH invalid or exceeds the maximum value possible. No action was taken while executing
the SEND statement.

60 A portion of a segment or message is to be sent, but no message area is referenced and/or TEXT
LENGTH is set to zero. No action was taken while executing the SEND statement.

70 One or more destinations do not have partial messages associated with them. PURGE statement
successfully completed for other destinations.

80 Two or more of the conditions designated by the STATUS KEY codes 10, 15, 20, 40, 70, and 95 have
occurred. Action successfully completed for those destinations for which no exception condition
exists.

90 System error. The results of the CCF statement are unpredictable and the program should termi-

nate processing.

91 MCS is not running or MCS is not defined as a system control point. No action was taken while
executing the CCF statement.

92 No valid application name parameter was specified on the program call statement or the specified
application is not rumning. No action was taken while executing the CCF statement. Code occurs
only if the program was not initiated by MCS.

93 The program name is unknown or a duplicate program name has been established with MCS.

No action was taken while executing the CCF statement.
94 MCS or the application is shutting down. No action was taken while executing the CCF statement.
95 Output queue threshold for one or more destinations exceeded. SEND statement successfully com-

pleted for other destinations. :

96 Sufficient resources (such as central memory) are not available to satisfy the request.
No action was taken while executing the CCF statement. The program may repeat the request.

97 MCS encountered a CIO error when accessing a mass storage queue. The results of the request are
unpredictable and the program should terminate processing. Further attempts to access the queue
by any part of the application results in the application being closed down by MCS.

17-6 60497200 C

EXECUTION OF COBOL
PROGRAMS USING MCS

A COBOL program is executed in the MCS environment,
under the NOS operating system, by using the *APPL
parameter on the execution call statement. For example,
all COBOL programs within the FINANCE application can
use the following statement for program execution:

LGO,*APPL=FINANCE.

In an MCS environment, a COBOL program can be
submitted as a batch job or can be stored on an invocation
file and submitted with the MCS INVOKE command.
Alternatively, a COBOL program can be automatically
invoked upon specific conditions (defined in the ADL).
Refer to the MCS reference manual for further discussion
of invocation files and job submission.

AN INTERACTIVE SESSION

Figure 17-8 illustrates a terminal user session for the
FINANCE application. The terminal operator enters three
loan transactions that are processed by the COBOL
program LNMONEY. The COBOL program updates loan
account balances on the data base file LMASTER, prints a
message to the operator that the transaction is complete,

60497200 C

and indicates the new account balance. An invalid account
number is then entered, and the COBOL program responds
with an appropriate message.

TABLE 17-2. MCS ERROR KEY CODES

Code Description

0 No exception condition for this destina-
tion.

1 Symbolic destination name invalid or
unknown.

2 Destination disabled.

3 Password invalid for this destination.

4 No partial message associated with this
destination.

5 Destination already disabled.

6 Output queue threshold for this destina-
tion exceeded.

17-7

uoISSag JasM) jeulwIa] AARORIIU| SON/TOF0D ‘8-£L by

“S0°¢0°00 3IWIL 1J3NNOD

SIW 0s°%1°81L “8L/10/08 A3AN3 SIW

*uoIssas sajeulnay JtolesedQ

gl % : KA
JG0W ANVWWOD

'apoW PUBIWOD O} Y3UMS OF 18)oRieyd Z-dealg

-

‘wetboid 108909 wouy ssuodsey ——————= $209€2%0000 192V 000000000 ON LNROJJY QGIVANT

. i = YIGWNN IVI¥3S

*JaqWINU JUNOJJE plleAUl uR SI3lUd i0lesadQ > 66665 addY2095290000/ LNIJWAVL

‘weaboid OO Woly BSUCHSaY ————m=) §2 1 9GG5SHS 12DV YHe2elL2 ST vE8 M3N 3L137dW0D NOTILIVSNVYHL

¢ = ¥IGWNAN TVI¥IS

*L-YZLpGGG-GPE Iunodde ueoj o) 1di3das 00'S69$ B Si9lud sojeladQ = 008698 ddLY2LYSGSSYS INIWAYCL
‘wesboid 10900 woly ssucdsay —————m— cH2 2226941 LIIV SLYS88L¢ ST v8 M3IN 3137dW0D NOTILIVSNVYL

4 = Y¥YIGWNN TYI¥3S

'G-¥Z1222S-vPL 3unodde ueoj 0} 1diadas 00'GEGS © SisIud JojesadQ 00569¥¥dSY21222S9% L LNIWAYDE
‘wesboid 100D WOy 8su0dsey ————— v 468 95Hs2| 130V SSYLS29 ST IvE MIN 3L37d4W0OD NOILIVSNVYHL

"V-$S89GY-£Z1 1UN0OOE UBO| 0} luswWasINgSIP 0Q'GE € Sieus JojesadQ

l = d¥3GWAN VTI¥3s

1S0000A¥dY9S8296%C2 L INIWAYL
dO¥ 3JHL 3Y,N0A - 07173H
JA0W Yiva

‘pesn Bulaq jeulwsa) ayy saiyiuapl ioesedQ
‘piomssed pue aweu uonesidde SO 8yl saipnuapl JoiessdQ

> 002ZNVYOTL IWYN-IT108WAS
—_—— o CT T

= dOYNT IINYNTIE NOTLVITddY SOW
“6STLL"8L "8L/1L0/08 0°L SIW

60497200 C

17-8

STANDARD CHARACTER SET A

e

CONTROL. DATA operating systems offer the folliowing
variations of a basic character set:

CDC 64-character set
CDC 63-character set
ASCII 64-character set
ASCII 63-character set

The installation can specify the 63-character set option in
either CDC or ASCII mode. In either case, the colon
becomes 63g and collates properly. In the ALPHABET
clause, the mnemonic-name CDC-64 and ASCII-64 refer to
CDC-63 and ASCII-63 character sets, respectively.

The set in use at a particular installation was specified
when the operating system was installed.

Depending on another installation option, the system
assumes an input deck has been punched either in 026 or in
029 mode (regardless of the character set in use). Under
NOS/BE 1, the alternate mode can be specified by a 26 or
29 punched in columns 79 and 80 of the job statement or
any 7/8/9 card. The specified mode remains in effect
through the end of the job unless it is reset by specification
of the alternate mode on a subsequent 7/8/9 card.

60497200 £

Under NOS 2, the alternate mode can be specified by a 26 I
or 29 punched in columns 79 and 80 of any 6/7/9 card, as
described above for a 7/8/9 card. In addition, 026 mode
can be specified by a card with 5/7/9 multipunched in
column 1, and 029 mode can be specified by a card with
5/7/9 multipunched in columnl and a 9 punched in
column 2.

Graphic character representation appearing at a terminal
or printer depends on the installation character set and the
terminal type. Characters shown in the CDC Graphic
column of the standard character set table are applicable
to BCD terminals; ASCII graphic characters are applicable
to ASCII-CRT and ASCII-TTY terminals.

Character sets are shown in the following tables:

e Table A-1l. COBOL and Standard Character Sets

® Table A-2. CDC Character Set Collating Sequence
e Table A-3, ASCII Character Set Collating Sequénce

e Table A-4. EBCDIC 64-Character Subset Collating
Sequence

e Table A-5. UNIVAC 1100 Series Collating Sequence
(UND

TABLE A-1. COBOL AND STANDARD CHARACTER SETS
cDC ASCII
Display Hollerith External .
COBOL Code Graphic Punch BCD ‘;’:g’"f ':3'2‘;'; ‘°°"°”
{octal) {026) Code se octa
oo! : {colon)TT 8-2 00 : (colon) T1 8-2 072
A (] A 12-1 61 A 121 o
8 02 B 12-2 62 B 12-2 102
C 03 Cc 12-3 63 [12-3 103
D 04 D 12-4 64 D 124 104
E 05 E 125 65 E 126 105
F 06 F 12-6 66 F 126 106
G 07 G 12-7 67 G 127 107
H 10 H 128 70 H 128 110
| 1 { 129 71 1 129 111
J 12 J 111 41 J 1141 112
K 13 K 11-2 42 K 11-2 113
L 14 L 11-3 43 L 11-3 114
M 15 M 11-4 a4 M 114 115
N 16 N 116 45 N 116 116
0 17 0 11-6 46 [0} 116 117
P 20 P 11-7 47 P 117 120
Q 21 Q 11-8 50 Q 118 121
R 22 "R 119 51 R 119 122
S 23 S 0-2 22 S 02 123
T 24 T 0-3 23 T 0-3 124
U 25 u 0-4 24 u 04 125
\ 26 Vv 05 25 v 05 126
w 27 w 0-6 26 w 0-6 127
X 30 X 0-7 27 X 0-7 130
Y 31 Y 0-8 30 Y 08 131
4 32 z 09 31 Z 09 132
0 33 0 4] 12 0 0 060
1 34 1 1 01 1 1 061
2 35 2 2 02 2 2 062
3 36 3 3 03 3 3 063
4 37 4 4 04 4 4 064
5 40 5 5 05 5 5 065
6 41 6 6 06 6 6 066
7 42 7 7 07 7 7 067
8 43 8 8 10 8 8 070
9 44 9 9 1" 9 9 071
+ 45 + 12 60 + 12-8-6 053
* 46 ; 1 40 n 1 055
a7 11-8-4 54 1184 052
/ 50 / 0-1 21 / 01 057
(51 (084 34 (12-8:5 050
) 52) . 1284 74) 1185 051
$ 53 $ 11-8-3 53 $ 11-8-3 044
= 54 = 8-3 13 = 8-6 075
blank 55 blank no punch 20 blank no punch 040
, {comma) 56 , (comma) 083 33 , (comma) 08-3 054
. {period) 57 . {period) 12-8-3 73 . (period) 12-8-3 056
" (quote) 60 = 086 36 # 83 043
61 [87 17 (12.8-2 133
62] 08-2 32] 11-8-2 135
63 %1t 86 16 o 11 084 045
64 P 8-4 14 " {quote) 8.7 042
65 (nd 085 35 _ {underline) 0-8-5 137
] 66 v 110 52 ! 1287 041
67 A 08-7 37 12 046
70 t 1185 55 ' (apostrophe) 85 047
71 | 11-8-6 56 ? 087 077
1 < 72 < 12.0 72 < 12-8-4 074
> 73 > 11.8.7 57 > 086 076
74 < 85 15 @ 8-4 100
75 > 12.85 75 N\ 082 134
76 - 12-8-6 76 ~ {circumflex) 11-8-7 136
; {semicolon) 77 ; (semicolon) 12-8-7 77 ; {semicolon) 11-8-6 073
*Twelve zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than two colons.
Ttin installations using a 63-graphic set, display code 00 has no associated graphic or card code; display code 63 is the colon (8-2 punch)
' The % graphic and related card codes do not exist and translations yield a blank (55g).

A-2

60497200 D

TABLE A-2.

CDC CHARACTER SET COLLATING SEQUENCE

Collating
Sequence
Decimal/Octal
| —_————
00 00
01 01
02 02
03 03
04 04
05 05
06 06
07 07
08 10
09 1
10 12
1 13
12 14
13 15
14 16
15 17
16 20
17 21
18 22
19 23
20 24
21 25
22 26
23 27
24 30
25 31
26 32
27 33
28 34
29 35
30 36
31 37

cDC
Graphic

blank

s+ = LI VV——=>1 | —g|A

~

OMMmMOOm>»A K I~~~

Display
Code

——— e—e——

55
74
63 T
61
65
60
67
70
71
73
75
76
57
52
77
45
53
47
46
50
56
51
54
64
72
01
02
03
04
05
06
07

Collating
External Sequence cbcC Display External
BCD Decimal/QOctal Graphic Code BCD
———e— e = — : —

20 32 40 H 10 70
15 33 41 1 1" Al
16T 34 42 v 66 52
17 35 43 J 12 41
35 36 44 K 13 42
36 37 45 L 14 43
37 38 46 M 15 44
55 39 47 N 16 45
56 40 50 0] 17 46
57 41 51 P 20 47
75 42 52 Q 21 50
76 43 53 R 22 51
73 44 54] 62 32
74 45 55 S 23 22
77 46 56 T 24 23
60 47 57 U 25 24
63 48 60 \Y 26 25
54 49 61 w 27 26
40 50 62 X 30 27
21 51 63 Y 31 30
33 52 64 4 32 31
34 53 65 : o0t nonet
13 54 66 0 33 12
14 55 67 1 34 01
72 56 70 2 35 02
61 57 71 3 36 03
62 58 72 4 37 04
63 59 73 5 40 05
64 60 74 6 41 06
65 61 75 7 42 07
66 62 76 8 43 10
67 63 77 9 44 11

+1n installations using the 63-graphic set, the % graphic does not exist. The : graphic is display code 63,
External BCD code 16.

60497200 C

A-3

TABLE A-3.

ASCIT CHARACTER SET COLLATING SEQUENCE

Sequence | gramic | Dl | ossen | SuUsie R oty | s
Decimal/Octal Subset Decimal/Octal Subset
00 00 blank 55 20 32 40 @ 74 40
01 01 ! 66 21 33 a1 A 01 41
02 02 n 64 22 34 42 B 02 42
03 03 # 60 23 35 43 c 03 43
04 04 $ 53 24 36 44 D 04 44
05 05 % 637 25 37 45 E 05 45
06 06 & 67 26 38 46 F 06 46
07 07 ' 70 27 39 47 6 07 47
08 10 (51 28 0 50 H 10 48
09 11) 52 29 41 51 I 11 49
10 12 * 47 2A 42 52 J 12 4A
11 13 + 45 2B 43 53 K 13 48
12 14 , 56 2c 44 54 L 14 ac
13 15 - 46 2D 45 55 M 15 4D
14 16 57 2E 46 56 N 16 4
15 17 / 50 2F 47 57 0 17 4F
16 20 0 33 30 48 60 P 20 50
17 21 1 34 31 49 61 Q 21 51
18 22 2 35 32 50 62 R 22 52
19 23 3 36 3 51 63 S 23 53
20 24 4 37 34 52 64 T 24 54
21 25 5 40 35 53 65 U 25 55
22 26 6 41 36 54 66 v 26 56
23 27 7 42 37 55 67 W 27 57
24 30 8 43 38 56 70 X 30 58
25 31 9 44 39 57 71 Y 31 59
26 32 oo’ 3A 58 72 z 32 5A
27 33 ; 77 38 59 73 [61 5B
28 34 < 72 3C 60 74 \ 75 5C
29 35 = 54 3D 61 75] 62 5D
30 36 > 73 3E 62 76 - 76 5E
31 37 ? 71 3F 63 77 B 65 5F

In installations using a 63-graphic set, the % graphic does not exist. The :

code 63.

graphic is display

A-4

60497200 C

TABLE A-4. EBCDIC 64-CHARACTER SUBSET COLLATING SEQUENCE

g:(;tl;\nci Graphic EBCDIC Display EBCDIC
Decimal/Octal Punch Code Code
00 00 blank no punch 55 40
01 01 12-8-3 57 4B
02 02 < 12-8-4 72 ac
03 03 (12-8-5 51 4D
04 04 + 12-8-6 45 4E
05 05 | 12-8-7 66 4F
06 06 & 12 67 50
07 07 $ 11-8-3 53 58
08 10 . 11-8-4 47 5C
09 11) 11-8-5 52 5D
10 12 ; 11-8-6 77 5E
1113 - 11-8-7 76 5F
12 14 - 1 46 60
13 15 / 0-1 50 61
14 16 , 0-8-3 56 68
15 17 % 0-8-4 63 6C
16 20 — 0-8-5 65 6D
17 21 > 0-8-6 73 6E
18 22 ? 0-8-7 7 oF
19 23 82 00 A
20 24 # 8-3 60 B
21 25 @ 8-4 74 7C
22 2 ' 8.5 20 .
23 27 - 8.6 - e
24 30 " 87 64 -
% 3 ¢ 12-8-2/12-0 61 A
26 32 A 12-1 01 c1
27 33 B 12-2 02 c2
28 34 c 12-3 03 3
29 35 D 12-4 04 ca
30 36 E 12-5 05 ce
31 37 F 12-6 06 ce

A-5

TABLE A-4.

EBCDIC 64-CHARACTER SUBSET COLLATING SEQUENCE (Contd)

g:c:f;;ge Graphic EBCDIC Display EBCDIC
Decimal/Octal Punch Code Code
32 40 G 12-7 07 c7
33 4 H 12-8 10 cs
34 42] 12-9 11 co
356 43 ! 11-8-2/11-0 62 5A
36 44 J 11-1 12 D1
37 45 K 11-2 13 D2
38 46 L 11-3 14 D3
39 47 M 11-4 15 D4
40 50 N 11-5 16 D5
41 51 0] 11-6 17 D6
42 52 P 11-7 20 D7
43 53 Q 11-8 21 D8
44 54 R 11-9 22 D9
45 55 none 0-8-2 75 EO
46 56 S 0-2 23 E2
47 57 T 0-3 " E3
48 60 U 0-4 25 E4
49 61 \Y% 0-5 2 ES5
50 62 w 0-6 27 E6
51 63 X 0-7 30 E7
52 64 Y 0-8 31 E8
53 65 Z 0-9 32 EQ
54 66 0 0 33 Fo
55 67 1 1 34 F1
56 70 2 2 35 F2
57 71 3 3 36 F3
58 72 4 4 37 Fa
59 73 5 5 - 40 5
60 74 6 6 4 F6
61 75 7 7 42 £7
62 76 8 8 43 F8
63 77 9 9 44 Fg
60497200 C

TABLE A-5. UNIVAC 1100 SERIES COLLATING SEQUENCE (UNI)

60497200 E

g;;f::‘ci 1108 Card Display CYBER
Decimal/Octal Graphic Punch Code Graphic
00 00 A @ 8-7 61 [
01 01 { 12-8-5 75 =
02 02 | 11-8-5 70 t
03 03 ~ 12-8-7 77 :
04 04 A 11-8-7 73 >
05 05 blank no punch 55 blank
06 06 A 12-1 01 A
07 07 B 12-1 02 B
08 10 C 12-3 03 Cc
09 M D 12-4 04 D
10 12 E 12-5 05 E
1 13 F 12-6 06 F
12 14 G 12-7 07 G
13 15 H 12-8 10 H
14 16 | 12-9 " |
15 17 J 11-1 12 J
16 20 K 1-2 13 K
17 21 L 11-3 14 L
18 22 M 11-4 15 M
19 23 N 11-5 16 N
20 24 (0] 11-6 17 (0]
21 25 P 11-7 20 P
22 2% Q 11-8 21 Q
23 27 R 11-9 22 R
24 30 S 0-2 23 S
25 31 T 0-3 24 T
26 32 U 0-4 25 u
27 33 Y 0-5 26 \Y
28 34 w 0-6 27 w
29 35 X 0-7 30 X
30 36 Y 0-8 31 Y
31 37 z 0-9 32 p4

TABLE A-5. UNIVAC 1100 SERIES COLLATING SEQUENCE (UNI) (Contd)

A-8

g:é'f:'n'li 1108 Card Display CYBER
Decimal/Octal Graphic Punch Code Graphic
—
32 40) 12-8-4 52)
33 4 - 11 46 _
34 42 + 12 45 +
35 43 < 12-8-6 76 -
36 44 = 8-3 54 _
37 45 > 8-6 63 %
38 46 & 8-2 00
39 47 $ 11-8-3 53
40 50 * 11-8-4 47 *
41 o (0-8-4 51 (
42 52 % 0-8-5 65 -
43 53 8-5 74 <
44 54 ? 12-0 72 <
45 55 ! 11-0 66 v
46 56 , 0-8-3 56 ,
47 58 \ 0-8-6 60 =
48 60 0 0 33 0
49 61 1 1 ” 1
50 62 2 2 35 2
51 63 3 3 36 3
52 64 4 4 37 4
53 65 5 5 40 5
54 66 6 6 41 6
55 67 7 7 42 ;
56 70 8 8 43 8
57 71 9 9 44 9
58 72 4 8-4 64 -
59 73 ; 11-8-6 71 !
60 74 / 0-1 50 /
61 75 12-8-3 57
62 76 a 0-8-7 67 A
63 77 0-8-2 62]
60497200 C

GLOSSARY B

Access Control -
Protection of data from unauthorized access or
modification. Access control is provided by the CDCS
privacy module.

Access Control Key -
The value an applications program must supply to
CDCS in order to gain access to a particular data base
area.

Access Mode -
Manner in which records can be inserted into or
retrieved from a file. Can be sequential, random, or
dynamic, depending on the ACCESS MODE clause.
Access mode, open mode, and file organization affect
subsequent operations permitted.

Actual-Key File -

File described by ORGANIZATION IS ACTUAL-KEY
clause. For initial actual-key files, the primary key
specifies the block and record slot number in which
the record is stored. For extended actual-key files,
the primary key is a record number that AAM converts
to the storage location of the record. Program must
perform any key indexing.

Advanced Access Methods (AAM) - -
File manager that processes indexed sequential, direct
access, and actual-key file organizations and supports
the Multiple-Index Processor. See CYBER Record
Manager.

Alphabetic Character -
Character belonging to set of letters A through Z, and
the space.

Alphanumeric Character -
Any character in a computer character set defined in
appendix A. Most formats allow only characters from
the COBOL. character set.

Alternate Record Key -

Record key defined by ALTERNATE RECORD KEY
clause. Can be used to read, but not write or update,
a record in an indexed, direct, or actual-key file.
System creates an index that relates alternate record
keys to primary record keys using the file defined by
the second implementor-name of an ASSIGN clause.
Job must preserve index file.

ANSI Standard L.anguage -
L.anguage defined in American National Standard
X3.23-1974, COBOL, on which this COBOL 5 compiler
is based. Control Data extensions to the language are
not shaded in this guide.

Application -
In the context of MCS, the COBOL programs, sources,
destinations, queues, and journals that are defined as
an application through the Application Definition
Language (ADL). Typical examples are order entry,
inventory control, and accounting.

60497200 C

Application Definition Language (ADL) -
A language that defines and describes application
components to MCS.

Area -
Uniquely named data base subdivision that contains
data records; a file.

Arithmetic Expression -
Any combination of numeric elementary items,
numeric literals, and the figurative constant ZERO
connected by arithmetic operators to form an
expression that reduces to a single value when it is
evaluated during program execution.

Arithmetic Operator -
+ to indicate addition; - to indicate subtraction; * to
indicate multiplication; / to indicate division; ** to
indicate exponentiation.

Assumed Decimal Point -
Decimal point position that does not involve the
existence of an actual character in a data item. Has
logical meaning but no physical representation.

At End Condition -
Condition that exists when no further records or data
are available for processing during execution of:
READ statement, RETURN statement, SEARCH
statement when no conditions are satisfied. Sets FILE
STATUS data item.

Basic Access Methods (BAM) -
File manager that processes sequential and word
addressable file organizations. See CYBER Record
Manager.

Beginning-of-Information (BOI) -
CYBER Record Manager defines beginning-of-
information as the start of the first user record in a
file. System-supplied information, such as an index
block or control word, does not affect
beginning-of-information. Any label on a tape exists
prior to beginning-of-information.

Blocks -
The term block has several meanings depending on
context. On tape, a block is information between
interrecord gaps. CYBER Record Manager defines
blocks according to organization. See table B-1.

TABLE B-1. BLOCK MEANINGS

Organization Blocks

Indexed sequential Data Block; index block

Direct access Home block; overflow block
Actual Key Data block

Sequential Block type I, C, K, E

B-1

Body Group -
In Report Writer, generic name for a report group
defined by a TYPE clause with a DETAIL, CONTROL
HEADING, or CONTROL FOOTING phrase.

Boolean Data Item -
A data item consisting entirely of the boolean
characters zero and one. .,

Boolean Expression -
An identifier of a boolean data item, a boolean literal,
such identifiers and/or literals separated by a boolean
operator, two boolean expressions separated by a
boolean operatar, or a boolean expression enclosed in
parentheses.

Boolean Literal -
A literal composed of one or more boolean characters
delimited on the left by the separator B" and on the
right by the quotation mark separator.

Break Control Item -
In Report Writer, item defined by CONTROL clause.
Synonymous with control data item defined by ANSI
standard.

Called Program -
Program that is the object of a CALL statement.

Calling Program -
Program that executes a CALL statement.

Capsule -
A relocatable collection of one or more programs
bound together in a special format that allows the
programs to be loaded and unloaded dynamically from
an executing program by the Fast Dynamic Loader
facility.

Character-String -
Sequence of contiguous characters that form a COBOL
word, a literal, a PICTURE clause character-string, or
a comment-entry.

Clause -
Ordered set of COBOL character-strings that make up
an entry.

COBOL Character Set -
51-character set defined by ANSI standard. Contrast
with computer character set.

COBOL Communication Facility (CCF) -
The part of the COBOL language that allows a user to
send and receive messages from terminals. CCF
allows the COBOL user to interface with the Message
Control System (MCS). This interface is allowed only
under the NOS operating system.

Collating Sequence -
Sequence in which the characters that are acceptable
to a computer are ordered for purposes of sorting,
merging, and comparing. Defined by default,
COLLATING SEQUENCE clause, ALPHABET clause,
or SET statement.

Comment-Entry -
Entry in Identification Division that can contain any
combination of characters from computer character
set. :

B-2

Comment Line - .
Source program line with asterisk or slash in column 7
and any characters from computer character set in
area A and area B of that line. Documentary only.
/ in column 7 ejects page before comment is listed in
source listing.

Compilation Time -
Time at which a COBOL source program is translated
by the COBOL 5 compiler to an object program that
can be loaded and executed. Defined by control
statement in batch job or interactive command.
Contrast with execution time.

Computer Character Set -
Character set listed in appendix A.

Control Break -
In Report Writer, change in value of data item defined
by CONTROL clause that is used to control
hierarchical structure of a report. Control totals are
accumulated and formatted for presentation to the
report file when a control break occurs.

Control Data Item -
In Report Writer, a synonym for break control item.

Control Word -
A system-supplied word that precedes each W type
record in storage.

Currency Symbol -
Character in program character set equivalent to
display code value 53; or character defined by
CURRENCY SIGN clause.

CYBER Record Manager (CRM) -

A generic term relating to the common products BAM
and AAM, which run under the NOS and NOS/BE
operating systems, that allows a variety of record
types, blocking types, and file organizations to be
created and accessed. The execution time
input/output of COBOL, Sort/Merge 5, ALGOL., and
the DMS 170 products is implemented through CYBER
Record Manager. Neither the input/output of the NOS
and NOS/BE operating systems themselves nor any of
the system utilities such as COPY or SKIPF is
implemented through CYBER Record Manager. All
CYBER Record Manager file processing requests
ultimately pass through the operating system
input/output routines.

Data Base -
Collection of information defined by a schema.
Subschema defines portion of data base that is to be
accessed by a COBOL program. Created through Data
Description Language; accessed through CYBER
Database Control System.

Data-Name -
User-defined word that names a data item described in
a Data Description entry. Cannot be subscripted,
indexed, qualified, or reference modified unless
specifically permitted by a given format.

Deadlock - -
A situation that arises in concurrent data base access
when two or more applications programs are
contending for a resource that is locked, and none of
the programs can proceed without that resource.

60497200 E

Debugging Facility -
Capability within COBOL 5 compiler and execution
routines that implements the DEBUGGING MODE
clause, lines with D in column 7, and debugging
declarative sections.

Debugging Line -
Any line with D in column 7 of the source program.
Compiled as executable code if DEBUGGING MODE
clause is used or DB=DL parameter appears on
compiler call; otherwise, compiled as comment line.

Delimited Scope Statement -
Any statement that includes an explicit scope
terminator.

Delimiter -
Character or sequence of contiguous characters that
identify the end of a string of characters and separate
that string of characters from the following string of
characters. Not part of the string of characters that
it delimits.

Dequeue -
The process of removing a message from a queue.

Destination -
A named terminal or collection of terminals that can
receive messages under MCS. The recipient of a
transmission from an output queue.

Direct Access File -
In the context of AAM, a direct access file is one of
the three file organizations. It is characterized by the
system hashing of the unique key within each file
record to distribute records randomly in blocks, called
home blocks, of the file. Synonymous with direct file.

In the context of NOS permanent files, a direct access
file is a file that is accessed and modified directly, as
contrasted with an indirect access permanent file.

Direct File -
File described by ORGANIZATION IS DIRECT clause.
Characterized by preallocated home blocks. Location
of record determined by hashing key of record to a
home block number. A direct file is implemented
according to AAM direct access (DA) files.

Disable -
The term that indicates deactivating the logical
connection between MCS and one or more
communications devices under the NOS operating
system.

Dynamic Access -
Access mode that allows a nonsequential file on mass
storage to be accessed randomly or sequentially
depending on the format of the access statement.

Dynamic Program -
Program loaded by Fast Dynamic Loader facility at
the time the first CALL statement referencing the
program is executed.

Edited Item -

Item whose PICTURE clause contains an editing
symbolB 0 + - CR DB Z *$, .or/.

Embedded Key -
A key that is an integral part of a record, as opposed
to a key that is defined in the Working-Storage Section
of a COBOL program.

60497200 D

Enable -
A term used to indicate activating or reactivating the
logical connection between MCS and one or more
given communication devices under the NOS operating
system.

End-of-Group Indicator (EGI) -
A character defined in the application definition that
logically separates a group of several messages from
succeeding messages and signals the end of a group of
messages to MCS or a COBOL program.

End-of-Information (EQI) -
CYBER Record Manager defines end-of-information in
terms of the file organization and file residence. See
table B-2.

TABLE B-2. END-OF-INFORMATION BOUNDARIES

File File Physical
Organization | Residence Position
Sequential | Mass Storage {After last user
record,
Labeled tape |After last user
in SI, I, S, |record and before any
L format file trailer labels.
Unlabeled After Tlast user record
tape in SI and before any file
or X format |trailer labels.
Unlabeled Undefined.
tape in S or
L format
Word Mass storage |After last word allo-
Address cated to file, which
might be beyond the
last user record.
Indexed, Mass storage |After record with
Actual-Key highest key value.
Direct Mass storage |After last record in
most recently created
overflow block or home
block with the highest
relative address.

End-of-Message Indicator (EMI) -
A conceptual indicator that delimits one message from
the next message and notifies MCS or a COBOL
program that the end-of-message condition exists.

End-of-Segment Indicator (ESI) -
A conceptual indicator that delimits one segment
within a message from the next segment within a
message and notifies MCS or a COBOL program that
the end-of-segment condition exists.

Entry -
Descriptive set of consecutive clauses terminated by a
period and written in Identification, Environment, or
Data Division.

B-3

Execution Time -
Time at which a compiled source program is
executed. Also known as object time. Defined by
LGO or EXECUTE control statement or their
equivalent in a batch job or interactive command.

Explicit Scope Terminator -
A reserved word that is included in a delimited scope
statement and terminates the scope of a particular
conditional statement. Examples are END-IF,
END-SEARCH, and END-PERFORM.

Extended -
A term used in conjunction with indexed, direct, and
actual-key files to denote a specific type of internal
processing by AAM and MIP. Processing is indicated
by setting the ORG FIT field to NEW. Contrast with
Initial.

Extended Memory -
Core type storage which is physically located outside
- of the machine. Formerly referred to as Extended
Core Storage (ECS) or Large Central Memory (LCM).

External File -
A file that contains the EXTERNAL clause in the FD
entry for the file. The file can be described in any
program in the run unit, but it exists externally to the
program and is shared by all programs that describe
it. All External files in a run unit must be described in
the main program.

File -
Collection of records defined by SELECT clause and
described by FD, SD, or RD entry.

File Information Table (FIT) -
A table through which a COBOL program
communicates with CRM. All file processing executes
on the basis of information in this table. COBOL sets
the majority of the fields automatically.

File Organization -
Defined by ORGANIZATION clause. Can be
sequential, indexed, relative, direct, actual-key, or
word-address. Established at the time the file is
created and cannot change as long as the file exists.
Affects access mode, open mode, and formats of
statements that can be used to manipulate file records.

High-Order End -
Leftmost character of string of characters; leftmost
bit of a string of bits.

Home Block -
Mass storage allocated for a file with direct
organization at the time the file is created.

Implementor-Name -
System-name that refers to a particular feature
available in COBOL 5. Particular implementor-names
such as CDC-64 and SWITCH-6 are unique to
COBOL 5 but are within ANSI standard.

Index -
In the context of AAM, a series of keys and pointers to
records associated with the keys. The system creates
an index for AAM files which relates alternate record
keys to primary keys, using the file defined by the
second implementor-name of an ASSIGN clause.

In general context, a computer storage area or
register, the content of which represents the
identification of a particular element.

Index Data Item -
Data item defined by USAGE IS INDEX clause. Can
hold index-names.

Index File -
In the context of AAM, a file that contains a series of
keys and pointers to records associated with the keys.
The index file, once created, must be preserved by a
job. See Index.

Index-Name -
User-defined word that names an index associated
with a specific table. Defined by INDEXED phrase of
OCCURS clause.

Indexed File -
File described by ORGANIZATION IS INDEXED
clause. Implemented according to AAM indexed
sequential (IS) files. Characterized by records always
being in physical and logical order by prime record key
values. Synonymous with indexed sequential file.

Indirect Access File -
A mass storage permanent file. Indirect access files
can be accessed only through a working copy of the
file. If requested, the working copy replaces the
permanent file.

Initial -
A term used in conjunction with indexed, direct, and
actual-key files to denote a specific type of internal
processing by AAM and MIP. Processing is indicated
by setting the ORG FIT field to OLD. Contrast with
Extended.

Input File -
File referenced in OPEN statement with INPUT phrase
after OPEN statement execution and before CLOSE
statement execution.

Input Procedure -
In Sort/Merge, set of statements defined by INPUT
PROCEDURE phrase of SORT statement. Executes
prior to physical sort. Alternative to USING phrase.
Must include RELEASE statement for each record to
be sorted.

Integer -
Numeric literal or numeric data item that does not
include any character positions to the right of the
assumed decimal point. Must not be signed or have a
zero value unless explicitly allowed for a given format.

Interactive -
Job processing in which the user and the system
communicate with each other, rather than the user
submitting his job at a central site and receiving
output. Interactive processing provides the user with
control over his job during processing.

Invalid Key Condition -
Condition that exists during execution when a specific
value of the key associated with an indexed, direct,
actual-key, or relative file is not valid for the access
being attempted. Sets FILE STATUS data item.

Journal -
A file that receives copied messages as they are
transferred into or out of queues. The journal provides
a record of message transfer activities for recovery
purposes.

60497200 D

Key Item -
Data item that defines the location, size, and
characteristics of a key for a relative, indexed, direct,
actual-key, or word-address file. During execution,
contents of item specifies information the system can
use to locate record in file. Also, data item that
serves to identify the ordering of data.

Key of Reference -
Either the primary key or alternate record key
currently being used to access record in an indexed,
direct, or actual-key file.

Keyword -
Reserved word whose presence is required when the
format in which the word appears is used in a source
program.

Language-Name -
System-name that specifies a particular programming
language.

Level -
Value of a level-number that indicates either the
hierarchical position of a data item or the special
properties of a Data Description entry. Value can be
01 through 49, 66, 77, or 88.

For system-logical-records, an octal number O through
17 in the system-supplied 48-bit marker that
terminates a short or zero-length PRU.

Library -
In COBOL, source of text to be used during COPY
statement processing. In operating system context,
file produced by EDITLIB utility containing executable
code in format required by system loader.

Library-Name -
User-defined word that names a file containing a
random UPDATE program library that is to be used by
the compiler during compilation of a source program
containing COPY statements. Also used to specify the
library from which a dynamic subprogram is to be
loaded.

Literal -
Character-string whose value is implied by the ordered
set of characters that make up the string. See
nonnumeric literal and numeric literal.

Local File -
A file type that refers to a temporary file other than
the primary file. It often contains a copy of an
indirect access file or data from a magnetic tape.

A file currently assigned to a job.

Logical Record -
In COBOL, equivalent to a record.

Under NOS, a data grouping that consists of one or
more PRUs terminated by a short PRU or zero-length
PRU. Equivalent to a system-logical-record under
NOS/BE.

Low Order End -
Rightmost character of a string of characters;
rightmaost bit of a string of bits.

Mass Storage -

Disk pack or other rotating mass storage device. Not
a magnetic tape.

60497200 E

Mass Storage File -
File assigned by control statements to a disk or disk
pack. Can have any organization.

Message ~
Data associated with an EMI or an EGI.

Message Control System (MCS) -
The software that provides a generalized method of
queuing, routing, and journaling of messages that pass
between COBOL programs and telecommunications
equipment. It can only be used under the NOS
aperating system.

Mnemonic-Name -
User-defined word associated with an implementor-
name in the SPECIAL-NAMES paragraph of the
Environment Division.

Mode-Name -
System-name that refers to a particular method of
data representation on a magnetic tape. DECIMAL
and BINARY in the RECORDING MODE clause are the
only two mode-names.

Multiple File Set -
Tape reel or reels with more than one individually
labeled file.

Multiple-Index File -
An indexed sequential, direct access, or actual key file
for which additional keys, called alternate keys, are
defined.

Native Character Set -
Character set associated with system. Defined by
installation when COBOL 5 is installed.

Native Collating Sequence -
Collating sequence associated with native character
set. Defined by installation. Can be overridden by
COLLATING SEQUENCE clause or SET statement.

Network Access Method (NAM) -
The software routines that allow MCS and COBOL
programs access to a network of terminals.

Noise Record -
Number of characters the tape drivers discard as being
extraneous noise rather than a valid record. Value
depends on installation settings.

Nonnumeric L iteral -
Literal bounded by quotation marks. Can include any
character in computer character set. To represent a
single quotation mark character within a nonnumeric
literal, two contiguous quotation marks must be used.

Numeric Character -
Digit 0 through 9.

Numeric Literal -
Literal composed of one or more numeric characters.
Can contain decimal point, algebraic sign, or both.
Decimal point must not be the rightmost character.
Algebraic sign must be leftmost character.

Object Time -
See execution time.
On-Line -

Interacting with the network; connected to the
network.

B-5

Open Mode -
File state that allows records to be either written to
or read from a file. Defined by OPEN statement

phrase. Affects subsequent statements that can be
used to access file,

Operand -
Data referenced by any lowercase word or words that
appear in a statement or entry format.

Output Procedure -
In Sort/Merge, set of statements defined by OUTPUT
PROCEDURE phrase of SORT or MERGE statement.
Executes after physical sort or merge. Alternative to
GIVING phrase. Must include RETURN statement for
each record to be retrieved from sort or merge.

Overflow Block -
Mass storage the system adds to a file with direct
organization when records cannot be accommodated in
the home block.

Paragraph -
In Procedure Division, paragraph-name followed by
separator period and zero, one, or more entries. In
Identification Division and Environment Division,
paragraph header followed by zero, one, or more
entries.

Paragraph Header -
In Identification Division and Environment Division,
specific predefined reserved words followed by
separator period.

Partition -
Defined by BAM as a division within a file with
sequential organization. Generally, a partition
contains several records or sections. Implementation
of a partition boundary is affected by file structure
and residence. See table B-3.

Notice that in a file with W-type records, a short PRU
of level O terminates both a section and a partition.

Permanent File -
Feature of operating system. When the job requests
permanent file status, the file remains on mass
storage when the job terminates so that it can be
accessed by other jobs in the future. Requested by
control statements outside source program.

Phrase -
Optional portion of a clause or statement.

Physical Record Unit (PRU) -
Under NOS and NOS/BE, the amount of information
transmitted by a single physical operation of a
specified device. The size of a PRU depends on the
device (see table B-4). A PRU that is not full of user
data is called a short PRU; a PRU that has a level
't::)erminator but no user data is called a zero-length
RU.

Primary Key - .
Record key defined by RECORD KEY IS clause for
indexed, direct, or actual-key file. Determines
physical placement of a record. File creation and
updating is only by key. Synonym for prime key.
Contrast with alternate record key.

Printable Item -

In Report Writer, printable line is defined by a LINE
NUMBER clause.

B-6

TABLE B-3.

PARTITION BOUNDARIES

Device

RT

BT

Physical Boundary

PRYU
device

Sorl
format
tape

Any
other
tape
format

C,K,E

A short PRU of
level 0 containing
one-word deleted
record pointing
back to last I
block boundary,
followed by a
control word with
flag indicating
partition boundary.

A short PRU of
level 0 containing
a control word with
a flag indicating
partition boundary.

A short PRU of

level 0 followed
by a zero-length
PRU of level 17g.

A zero-length PRU
of level number
17g.

Separate tape block
containing as many
deleted records of
record length 0 as
required to exceed
noise record size,
followed by a
deleted one-word
record pointing
back to the last

I block boundary,
followed by a
control word with
flag indicating a
partition boundary.

Separate tape

block containing as
many deleted re-
cords of record
length 0 as required
to exceed noise
record size, follow-
ed by a control word
with a flag indicat-
ing a partition
boundary.

Tapemark .
Zero-Tlength PRU of
level number 0.

Undefined.

60497200 E

TABLE B-4. PRU SIZES

Size in Number of

Device 60-Bit Words

Mass storage 64
Tape in SI format 128
with coded data
Tape in SI format 512
with binary data
Tape in I format 512
Tape in other Undefined
format

Procedure -

In Procedure Division, paragraph or group of logically
successive paragraphs or a section or group of
logically successive sections.

Procedure-Name -
In Procedure Division, user-defined word that names a
paragraph or section.

PRU Device -
Under NOS and NOS/BE, a mass storage device or a
tape in SI or I format, so called because records on
these devices are written in PRUs.

Pseudo-F ile-Name -
User-defined word that names a file residing on a tape
referenced in a MULTIPLE TAPE FILE clause for
which no FD entry is specified. File cannot be
accessed in program.

Pseudo-Text -
Source program text consisting of character-strings,
comment lines, and/or separators bounded by, but not
including, pseudo-text delimiters ==.

Queue -
A storage area for messages. A logical collection of
messages stored in an area on disk or in central
memory before being transmitted or delivered to a
specified destination.

Queue (compound) -
A queue that has subqueues; a hierarchical structure.

Queue (input) - ,
A queue that accumulates messages acquired from
external sources.

Queue (output) -
A queue that accumulates messages to be delivered to
external destinations.

Queue (simple) -
A queue that does not have subqueues. Output queues
and interprogram queues are simple queues. Input
queues can be either simple or compound queues.

Random Access -

Access mode that allows a nonsequential file on mass
storage to be accessed by key value.

60497200 E

Random File -
In the context of CYBER Record Manager, a file with
word addressable, indexed sequential, direct access, or
actual key organization in which individual records can
be accessed by the values of their keys.

In the context of the NOS or NOS/BE operating
systems, a file with the random bit set in the file
information table in which individual records are
accessed by their relative PRU numbers.

Rank -
The level of a record occurrence in the hierarchical
tree structure of a relation.

Realm -
File that is described by the user in a subschema. A
named collection of data base records subject to
access by a COBOL program.

Record -
* In COBOL, unit of a file. Defined by level 01 Data
Description entry.

CYBER Record Manager defines a record as a group of
related characters. A record or a portion thereof is
the smallest collection of information passed between
CYBER Record Manager and a user program. Eight
-different record types exist, as defined by the RT field
of the file information table.

Other parts of the operating systems and their
products have additional or different definitions of
records.

Record Area -
.Memory area used to process record. Named by
record-name in level 01 Data Description entry.

Record Key -
For indexed, direct, and actual-key files, primary key
or alternate record key. For relative files, the key
item defined by the RELATIVE KEY clause. For
word-address files, key item defined by
WORD-ADDRESS KEY clause.

Record Type -

The term record type can have one of several
meanings, depending on the context. CYBER Record
Manager defines eight record types established by an
RT field in the file information table. Tables output
by the loader are classified as record types such as
text, relocatable, or absolute, depending on the first
few words of the tables.

Reference Modification -
A method of referencing a data item at a position
other than the first character position by specifying
its leftmost character position and length.

Relation -
The logical structure formed by the joining of records
based on common identifiers.

Relative File -
File described by ORGANIZATION IS RELATIVE
clause. Characterized by fixed-length records with
key values equivalent to ordinal positions of records in
file.

Repeating Group - .
A group data item which is described with an OCCURS
clause or a group data item subordinate to a data item
which is described with an OCCURS clause.

B-7

Report File - ' :
In Report Writer, file whose FD entry contains
REPORT clause. Details of report are specified in RD
entry in Report Section.

Reserved Word -
COBOL word that can be used in a COBOL source
progran but must not appear iIn program as
user-defined words or system-names.

Root File - .
The file that ranks lowest in a relation; its record
occurrences are pictured at the root of a tree in a
hierarchical tree structure.

Run Unit -
Main program and any subprogram it calls plus
execution routines needed to execute the main and
subprograms.

Schema -
A detailed description of the internal structure of a
data base. A schema is not specified in the COBOL
environment.

Section -
In COBOL, group of one or more paragraphs
introduced by section header; predefined in
Environment and Data Divisions, user-defined in
Procedure Division.

Defined by BAM as a division within a file with
sequential organization. Generally, a section contains
moare than one record and is a division within a
partition of a file. A section terminates with a
physical representation of a section boundary. See
table B-5.

The NOS and NOS/BE operating systems equate a
section with a system-logical-record of level D
through 1ég.

Sentence -
One or more consecutive statements terminated by a
separator period.

Sequential Access -
Access mode that allows a sequential or nonsequential
file to be accessed by record position.

Sequential File - h
File described by ORGANIZATION IS SEQUENTIAL
clause. Characterized by access to records only by
position of record in file. Can reside on magnetic tape
or mass storage.

Short PRU -
A PRU that does not contain as much user data as the
PRU can hold and that is terminated by a system
terminator with a level number.

Under NOS, a short PRU defines EOR.

Under NOS/BE, a short PRU defines the end of a
system-logical-record. In the CYBER Record Manager
context, a short PRU can have several interpretations
depending on the record and blocking types.

Source -
A terminal from which messages can be received by an
MCS-application.

TABLE B-5. SECTION BOUNDARIES

Device RT BT Physical Representation

PRU W I Deleted one-word record
device pointing back to last I
block boundary followed by
a control word with flags
indicating a section boun-
dary. At least the control
word is in a short PRU of

Tevel 0.

W c Control word with flags
indicating a section
boundary. The control
word is in a short PRU of
Tevel 0.

D,F,R, c Short PRU with level less
T,U,Z than 17 octal.
S Any | Undefined.

Sorl W I A separate tape block
format containing as many deleted
tape records of record length O
as required to exceed
noise record size followed
by a deleted one-word re-
cord pointing back to last
I block boundary followed
by a control word with
flags indicating a section
boundary.

A separate tape block
containing as many deleted
records of record length 0
as required to exceed
noise record size followed
by a control word with
flags indicating a section
boundary.

sR, {C,K,E | Undefined.
A
Any | Undefined.

Undefined.
other
tape
format

Source Program -
Syntactically correct set of COBOL statements
beginning with an Identification Division and ending
with the end of the Procedure Division. Also known as
program.

Sparse Key - :
An alternate key that is used infrequently. Only those
alternate key values of interest are included in the
index file. The ALTERNATE RECORD KEY WITH
DUPLICATES clause is used to specify keys of interest.

60497200 E

Statement -
Syntactically valid combination of words and symbols

written in Procedure Division.

Static Program -
Program that is loaded with the base module.
Contrast with dynamic program.

l Subschema -
Description of part of a data base that is to be
accessed by COBOL program. Created through Data
Description Language; accessed through CYBER
Database Control System interfaces. Items can be
used in a program, but the description of the items is
| in the subschema rather than the program itself.

Sum Counter -
In Report Writer, signed numeric data item established
by SUM clause. Contains result of summing operations.

Switch -

Software convention that can have the status OFF or
ON. SWITCH-1 through SWITCH-126 can be defined in
SPECIAL-NAMES paragraph. First six switches are
external and can be manipulated by SWITCH control
statement, terminal user, operator, or SET statement.
Switches 7 through 126 are internal and can be
manipulated by the SET statement.

System-Logical-Record -
Under NOS/BE, a data grouping that consists of one or
more PRUs terminated by a short PRU or zero-length
PRU. These records can be transferred between
devices without loss of structure.

Equivalent to a logical record under NOS.
Equivalent to a CYBER Record Manager S type record.
Table - .
Set of repeated items of data that is defined by
OCCURS clause.
Text Editor Facility -
A software routine that allows the user to make many

changes to a job or to a file while at an interactive
terminal.

60497200 E

Time-Sharing -
The simultaneous sharing of a computer's resources by
many people at many terminals. Each terminal user is
unaware of other users and is given the impression
that the computer is servicing him only.

Update -
Product running under operating system that allows a
program library to be created in a special format
which can be used by COPY statement processing.
Described in UPDATE reference manual.

User-Defined Waord -
Word supplied by programmer to satisfy format of
clause or statement. 1 through 30 characters A
through Z, 0 through 9, or hyphen; hyphen cannot be
first or last character. Different types of words might
have futher restrictions for uniqueness, length, or
characters.

Variable-Occurrence Data Item -
Data item described with OCCURS clause that has a
DEPENDING ON phrase.

Word-Address File -
File described by ORGANIZATION IS WORD-
ADDRESS clause. Characterized by records identified
by a key that indicates the relative word within mass
storage file at which the record begins.

W-Type Record -
One of the eight record types supported by CYBER
Record Manager. Such records appear in storage
preceded by a system supplied control word. The
existence of the control word allows files with
sequential organization to have both partition and
section boundaries.

Zero-Byte Terminator -
12 bits of zero in the low order position of a word that
marks the end of the line to be displayed at a terminal
or printed on a line printer. The image of cards input
through the card reader or terminal also has such a
terminator. :

Zero-Length PRU -
A PRU that contains system information, but no user
data. Under CYBER Record Manager, a zero-length
PRU of level 17 is a partition boundary. Under NOS, a
zero-length PRU defines EOF.

ADDITIONAL SOFTWARE FOR DATA BASE PROGRAMS C

s

ﬂ

I Section 14, CDCS Interface, includes a COBOL subschema Figure C-1 shows the source listing for the schema

listing and a COBOL 5 program that accesses data base DBFILES, which is used in the execution of the COBOL 5
files. This appendix contains listings of the schema, the program shown in section 14. Figure C-2 shows the
master directory, and the program that creates the data creation of the master directory. The COBOL 5 program
base files. shown in figure C-3 creates the data base files; the input

data for the program is shown in figure C-4.

SCHEMA NAME IS DBFILES.
AREA NAME IS ADDRESSES
ACCESS-CONTROL LOCK FOR UPDATE IS "UPDATE ADDRESSES"
ACCESS-CONTROL LOCK FOR RETRIEVAL IS "READ ADDRESSES".
RECORD IS VENDOR-CUSTOMER WITHIN ADDRESSES.

02 VEN-CUST-NO PICTURE "9(6)".
02 REC-TYPE PICTURE "X".

02 STREET-NO PICTURE "X (5)".
02 STREET PICTURE "X(15)".
02 CITY PICTURE "X(15)".
02 STATE PICTURE “XX".

02 ZiP-CODE PICTURE "9(5)".
02 VEN-CUST-NAME PICTURE "X (30)".

AREA NAME IS ORDERS :
- ACCESS-CONTROL LOCK FOR UPDATE 1S "UPDATE ORDERS".
RECORD IS ORDERED WITHIN ORDERS.

02 ORDER-NO PICTURE "X(6)".
02 CUST-NO PICTURE "9(6)".
02 ORDER-DATE PICTURE "9(6)".
02 BILL-DATE PICTURE "9(6)".
02 BILL-AMOUNT PICTURE "9(6)V99".
02 AUTOKEY TYPE FIXED 10.

AREA NAME IS LINEITEMS.
RECORD IS LINE-ITEM WITHIN LINEITEMS.

02 PART-NUM PICTURE "X (6)".

02 PART-DESC PICTURE "X (20)".
02 ORD-NUMBER PICTURE "X(6)".

02 QTY-ORDER PICTURE "9(4)".

02 QTY-SHIP PICTURE "9(4)".

02 UNIT-PRICE PICTURE "9(4)V99".
02 AUTO-KEY TYPE FIXED 10.

DATA CONTROL.
AREA IS ADDRESSES
KEY IS VEN-CUST-NO.
AREA IS ORDERS
KEY IS AUTOKEY.
AREA IS LINEITEMS
KEY IS AUTO-KEY.)
RELATION NAME IS CUST-ORDERS
JOIN WHERE VEN-CUST-NO EQ CUST-NO
ORDER-NO EQ ORD-NUMBER.

Figure C-1. Source Listing for Schema DBFILES

60497200 E ' Cc-1

SCHEMA NAME IS DBFILES
FILE NAME IS DBFILES.
AREA NAME IS ADDRESSES

PFN IS "CSTFLE"
UN IS "USER123",
AREA NAME IS ORDERS
PFN IS "ORDFLE"
UN IS "USER123",
AREA NAME IS LINEITEMS
PFN IS "ITMFLE"
UN IS "USER123",

SUBSCHEMA NAME IS BILLING

FILE NAME IS SUBLIB.

Figure C-2. Source Listing for Master Directory

SOV NOCVNDPUWN=
o

-
-

N o e e) b e
OV ~NOUVMLHUWN

NN
N =

23
24
25
26

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

48
49
50

IDENTIFICATION DIVISION.
PROGRAM-ID. CREATDB.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
SPECIAL-NAMES.

SUB-SCHEMA IS BILLING.
INPUT-OUTPUT SECTION.
FILE~CONTROL.

SELECT CARD-IN ASSIGN TO INPUT.
DATA DIVISION.

FILE SECTION.
FD CARD-IN
LABEL RECORDS ARE OMITTED

DATA RECORDS ARE CUST-REC, ORD-REC, LINE-REC.

01 CUST-REC.

03 CUST-NUMBER PICTURE 9(6).
03 REC-TYPE PICTURE X.
03 STREET-NO PICTURE X(5).
03 STREET PICTURE X(15).
03 CITY PICTURE X(15).
03 STATE PICTURE XX.
63 ZIP-CODE PICTURE 9(S).
03 CUST-NAME PICTURE X(30).
03 CARD-CODE-1 PICTURE 9.

01 ORD-REC.
03 ORDER-NO PICTURE X(6).
03 CUST-NO PICTURE 9(6).
03 ORDER-DATE “ PICTURE 9(6).
03 BILL-DATE PICTURE 9(6).
03 BILL-AMOUNT PICTURE 9(6)V99.
03 FILLER PICTURE X(47).
03 CARD-CODE-2 PICTURE 9.

01 LINE-REC.
03 PART-NUM PICTURE X(6).
03 PART-DESC PICTURE X(20).
03 ORD-NUMBER PICTURE X(6).
03 QTY-ORDER PICTURE 9(4).
03 QTY-SHIP PICTURE 9(4).
03 UNIT-PRICE PICTURE 9(4)V99.
03 FILLER PICTURE X(33).
03 CARD-CODE-3 PICTURE 9.

WORKING-STORAGE SECTION.
01 UPDATE-PASSWORD-ORD PIC X(30).
01 UPDATE-PASSWORD-ADDR PIC X(30).
PROCEDURE DIVISION.
DECLARATIVES.
CUST-ACC-CONTROL SECTION.

USE FOR ACCESS CONTROL ON I1-0

C-2

Figure C-3. Program for Creating Data Base Files (Sheet 1 of 2)

60497200 C

649025C11185MAIN

FRMOOSREAR WHEEL
WHLO11REAR WHEEL
WHLOOOBACK WHEEL

FRMOO9HANDLE BAR

51 KEY IS UPDATE-PASSWORD-ADDR FOR ADDRESSES.
52 ACC-1.

53 MOVE “UPDATE ADDRESSES" TO UPDATE-PASSWORD-ADDR.
54 ORDERS-ACC-CONTROL SECTION.

55 USE FOR ACCESS CONTROL ON I-0

56 KEY IS UPDATE-PASSWORD-ORD FOR ORDERS.

57 ACC-2.

58 MOVE "UPDATE ORDERS" TQO UPDATE-PASSWORD-ORD.
59 END DECLARATIVES.

60 OPENING.

61 OPEN INPUT CARD-IN.

62 OPEN OUTPUT ADDRESSES, ORDERS, LINEITEMS.

63 WRITING.

64 READ CARD-IN RECORD AT END GO TO CLOSING.

65 IF CARD-CODE-1 EQUALS 1 PERFORM CUST-WRITE.
66 IF CARD-CODE-2 EQUALS 2 PERFORM ORD-WRITE.
67 IF CARD-CODE-3 EQUALS 3 PERFORM LINE-WRITE.
68 GO TO WRITING.

69 CUST-WRITE.

70 MOVE CUST-NUMBER TO CUST-NUM.

71 MOVE CORRESPONDING CUST-REC TO CUSTOMER.

72 WRITE CUSTOMER INVALID KEY GO TO KEY-ERROR.
73 ORD=WRITE.

74 MOVE ZEROS TO AUTOKEY.

75 MOVE CORRESPONDING ORD-REC TO ORDERED.

76 WRITE ORDERED INVALID KEY GO TO KEY-ERROR.
77 LINE-WRITE.

78 MOVE ZEROS TO AUTO-KEY.

79 MOVE CORRESPONDING LINE-REC TO LINE-ITEM.

80 WRITE LINE-ITEM INVALID KEY GO TO KEY-ERROR.
81 KEY-ERROR.

82 DISPLAY "BAD KEY FOR RECORD " CUST-REC.

83 GO TO WRITING.

84 CLOSING.

85 CLOSE CARD-IN, ADDRESSES, ORDERS, LINEITEMS.
86 STOP RUN.

Figure C-3. Program for Creating Data Base Files (Sheet 2 of 2)
100150C2331 WINNETKA AVE MINNEAPOLIS MN55411POLAR GEAR AND SUPPLY CO.
101333V11347BROADWAY HOLLYWOOD CA90025CHEAP PART COMPANY
216800C1236 INDUSTRIAL DR SAN JOSE CA951ST1INTERNATIONAL TRIKE PARTS

STREET FAIRFIELD CA94533ALL AMERICAN BIKES

03066721680004117600000000144500
14902021680004257600000000154000
09518864902504077600000000067250
20619364902504217600000000406375
TRKO30BLACK EXTENSION TUBEO3066700000100000045

TRK2108 INCH TIRE 03066700000025000950
FRMOO9HANDLE BAR 03066700000050002075
DRVOOTCHAIN LINKS 03066700000100000125
BRK891BRAKE ASSEMBLY 14902000000030002250
TRK200OREAR WHEEL 14902000000050001730
BRPOO1BRAKE PAD LEFT 09518800000125000095
BRPOD2BRAKE PAD RIGHT 09518800000125000095

BRACE 09518800000075000580
HUB ASSY 20619300000050001250
ASSEMBLY 20619300000050002595

BKSO20FLAT SEAT COVER 20619300000250000195
DRVOO2MASTER CHAIN LINK 20619300000125000825

20619300000030002075

WHWWWHWRWHHRWUHRWWENNRNN = = ==

60497200 C

Figure C-4. Input Data for Créating Data Base Files

C-3

ADDITIONAL SOFTWARE FOR MCS APPLICATION

Figure D-1 illustrates a Message Control System (MCS)
application, named FINANCE, for a financial institution.
There are three major functional subsystems within the
organization: savings, loans, and general ledger. The three
subsystems represent one MCS application.

Within the savings subsystem, there are six terminals
(SAVINGS001, SAVINGS002,...,5AVINGS006) from which
savings-type transactions are entered. Two COBOL
programs (SVMONEY and SVCHANG) exist to handle the
two different types of transactions.

COBOL Programs
for Savings Sub-system

FINANCE APPLICATION

COBOL Programs
for Loan Sub-system

COBOL Programs
for General Ledger

Sub-system
SVCHANG LNCHANG
SVMONEY LNMONEY GLEDGER
------on-line -----|
Application
Definition Library Message Queues and Journals
Mcs =] =
FINANCE ‘ LEDGERQ
LOANPMTOQUE SAVINGSQ
p LCOUT l:]
= LPOUT
LOANCHGQUE FASTLOG
SCOUT
NAM LOANQ

SPOUT savELOG
GLOUT

SAVINGS001
SAV INGS002
SAVINGS003
SAVINGS004

SAVINGS005

000000000 =

SAVINGS006
LOAN200

LOAN201
LEDGER300

60497200 C

Figure D-1.

An Overview of the FINANCE Application

Within the loan subsystem, there are two terminals
(LOANS200 and LOANS201) from which loan-type
transactions are entered. Two COBOL programs
(LNMONEY and LNCHANG) exist to handle the two
different types of transactions. A simple queue is used for
one type of transaction; a compound queue is used for the
other type.

Within the general ledger subsystem, there is one terminal
(LEDGER300) from which general-ledger-type transactions
are entered. One COBOL program (GLEDGER) exists to
handle the credit or debit posting transactions.

Two of the COBOL programs (LNMONEY and SVMONEY)
are on-line programs that are automatically invoked when
the FINANCE application is initiated. The programs
execute until 5 o'clock for the processing of all loan
monetary transactions and savings monetary transactions.
At 5 o'clock, all savings and loan terminals are sent a
five-minute warning message. LNMONEY is terminated by
MCS at 5:15. SVMONEY is terminated after 5:15 and

after the appropriate queue is empty (as determined withii
the COBOL program by the NO DATA clause of thi
RECEIVE statement).

Three of the COBOL programs (SVCHANG, LNCHANG
and GLEDGER) are off-line programs and are invokec
automatically by MCS at 5 o'clock for the processing o
statistical record changes (such as customer name o
address change) and general ledger posting.

The Application Definition Language (ADL) shown ir
figure D-2 defines the following:

® The COBOL programs within the FINANCE application
e The message queues to be used by the COBOL program:
® The terminals to be used by the FINANCE application

e The journal files to be used by the FINANCE
application

APPLICATION GLOBAL DIVISION
APPLICATION-NAME IS FINANCE

OPERATOR IS LOANLIST PASSWORD IS "LNAOPﬂ
INITIATION IS AUTOMATIC

APPLICATION PROGRAM DIVISION

PROGRAM IS LNMONEY

PROGRAM IS LNCHANG

PROGRAM IS SVMONEY

PROGRAM IS SVCHANG

PROGRAM IS GLEDGER

APPLICATION DATA DIVISION

MESSAGE IS LOANMSG

SERIAL-NUMBER IS GENERATED WITH ECHO
SEGMENT IS LOANSEG

FIELD IS FIELD1

CONDITION IS LOANCH VALUE "CHANGE"

CONDITION IS LOANPY VALUE "PAYMENT"
MESSAGE IS SAVINGSMSG

SERIAL-NUMBER IS GENERATED WITH ECHO
SEGMENT IS SAVINGSSEG

FIELD IS FIELDZ2

CONDITION IS SAVECH VALUE "CHANGE"
CONDITION IS SAVEPY VALUE "PAYMENT"

INVOCATION-FILE IS SPJOB OWNER Is "

STARTS AT CHARACTER 1 EXTENDS TO INSTANCE 1 OF ","

INVOCATION-FILE IS LPJOB OWNER Is " BRAERRE"

INVOCATION-FILE IS LCJOB OWNER Is “HENERE%-

Defines five COBOL programs in FINANCE
application.

INVOCATION-FILE IS SCJOB OWNER Is "SRR

INVOCATION-FILE IS 6LJ0B OWNER IS "PBREER

Defines message types and conditions used
for routing.

STARTS AT CHARACTER 1 EXTENDS TO INSTANCE 1 OF ",

Figure D-2. ADL Source Listing for FINANCE (Sheet 1 of 3)

60497200 C

SOURCE-DESTINATION DIVISION

INVITATION=-LIST IS LOANLIST
SOURCES ARE LOAN200 AND LOAN201
MESSAGES ARE LOANMSG
MODE IS DATA
STATUS IS ENABLED
BROADCAST-LIST IS LOANDISPLAY

SYMBOLIC-NAME IS LOAN200

TYPE IS INTERACTIVE
SYMBOLIC-NAME IS LOAN201

TYPE IS INTERACTIVE
INVITATION-LIST IS SAVINGSLIST

MESSAGES ARE SAVINGSMSG

MODE IS DATA

STATUS IS ENABLED
BROADCAST-LIST IS SAVDISPLAY

SYMBOLIC-NAME IS SAVINGSOO1
TYPE IS INTERACTIVE
SYMBOLIC~-NAME IS SAVINGS002
TYPE IS INTERACTIVE
SYMBOLIC~-NAME IS SAVINGS003
TYPE IS INTERACTIVE
SYMBOLIC-NAME IS SAVINGSOO4
TYPE IS INTERACTIVE
SYMBOLIC-NAME 1S SAVINGSOOS
TYPE IS INTERACTIVE
SYMBOLIC-NAME IS SAVINGSO0O06
TYPE IS INTERACTIVE
SYMBOLIC-NAME IS LEDGER300
TYPE 1S INTERACTIVE

SYMBOLIC-NAME IS FASTLOG
TYPE IS JOURNAL

ALIAS IS FLLOG

SYMBOLIC-NAME IS SAVELOG
TYPE 1S JOURNAL
ALIAS IS SPLOG

QUEUE DIVISION
INPUT SECTION

QUEUE IS LOANGQ
SUB-QUEUE-1 IS LOANPMTQUE
SUB-QUEUE~2 IS FASTLOANPMT
JOURNAL IS FASTLOG
SUB-QUEUE-2 IS SLOWLOANPMT
MEDIUM IS DISK
RESIDENCY IS SLPFILE
SUB-QUEUE-1 IS LOANCHGQUE
MEDIUM IS DISK
RESIDENCY IS LCQFILE

QUEUE IS LEDGERQ
MEDIUM IS DISK
RESIDENCY IS GLFILE

QUEUE IS SAVINGSQ
SUB~QUEUE-1 IS SAVEPMTQUE
JOURNAL IS SAVELOG
SUB-QUEUE-1 IS SAVECHGQUE
MEDIUM IS DISK
RESIDENCY IS SCQFILE

DESTINATIONS ARE SAVINGSOO1 AND SAVINGS002 AND SAVINGSUU3
AND SAVINGSOO04 AND SAVINGSOO5 AND SAVINGSOO06

DESTINATIONS ARE LOANZ200 AND LOANZ201

SOURCES ARE SAVINGSOOT AND SAVINGSOU2 AND SAVINGSO003
AND SAVINGSO0O4 AND SAVINGSOOS5 AND SAVINGSO006

Defines symbolic names
of terminals; specifies
which terminals can
receive and which
terminals can send
messages.

Defines the simple input queue LOANCHGQUE (on disk) and the
compound queue LOANPMTQUE (one subqueue on disk; one
subqueue in central memory).

Defines three simple input queues: LEDGERQ and SAVECHGQUE
{on disk) and SAVEPMTQUE (in central memory).

Figure D-2. ADL Source

60497200 C

Listing for FINANCE (Sheet 2 of 3)

OUTPUT SECTION

QUEUE IS LCOUT STATUS IS ENABLED
QUEUE IS LPOUT STATUS IS ENABLED Defines five output queues.
QUEUE IS SCOUT STATUS IS ENABLED
QUEUE IS SPOUT STATUS IS ENABLED
QUEUE IS GLOUT STATUS. IS ENABLED

ROUTING SECTION \
SELECT INPUT QUEUES BASED ON SOURCE

SELECT SUB-QUEUES OF LOANQ BASED ON CONTENTS OF FIELD1
SELECT SUB-QUEUES OF LOANPMTQUE BASED ON TIME

SELECT SUB-QUEUES OF SAVINGSQ BASED ON CONTENTS OF FIELD2

SELECT OUTPUT QUEUES BASED ON DESTINATION

ROUTE TO LOANQ FROM LOANLIST
ROUTE TO LEDGERQ FROM LEDGER300
ROUTE TO SAVINGSQ FROM SAVINGSLIST

ROUTE TO LOANCHGQUE FOR LOANCH
ROUTE TO LOANPMTQUE FOR LOANPY

ROUTE TO FASTLOANPMT WHEN BEFORE "17.00.00" >
ROUTE TO SLOWLOANPMT OTHERWISE

ROUTE TO SAVEPMTQUE FOR SAVEPY
ROUTE TO SAVECHGQUE FOR SAVECH

ROUTE TO LCOUT TO LOAN20O
ROUTE TO LPOUT TO LOAN201

ROUTE TO SPOUT TO SAVINGSO0O02

ROUTE TO SCOUT TO SAVINGS0O01 /
ROUTE TO GLOUT TO LEDGER300

APPLICATION PROCESSING DIVISION

USE

USE

WHEN INITIATION
INVOKE LNMONEY
INVOKE SVMONEY -
WHEN TIME "17.00.00"

MESSAGE 'MONETARY PAYMENTS CANNOT BE ACCEPTED AFTER 5 MINUTES"

TO LOANDISPLAY

MESSAGE "MONETARY PAYMENTS CANNOT BE ACCEPTED AFTER 5 MINUTES"

TO SAVDISPLAY

DISABLE LOANPMTQUE
DISABLE SAVEPMTQUE

USE

USE

WHEN TIME "17.15.00"
REVOKE LNMONEY
WHEN TIME "17.30.00"
INVOKE LNCHANG
INVOKE SVCHANG
INVOKE GLEDGER

Specifies criteria for routing
messages.

Specifies time period when
COBOL programs are to be
active.

Figure D-2. ADL Source Listing for FINANCE (Sheet 3 of 3)

60497200 C

INDEX

ACCEPT statement 16-1, 16-4, 16-6, 16-9
ACCESS MODE clause
Actual-key files 3-25
Direct files 3-19
Indexed files 3-13
Relative files 3-9
Sequential files 3-3
Word-address files 3-30
Actual-key files
Alternate key processing 3-1, 15-11
File Description entry 3-25
File manipulation
CLOSE statement 3-30
DELETE statement 3-29
OPEN statement 3-26
READ statement 3-28
REWRITE statement 3-29
START statement 3-27
WRITE statement 3-27
File processing 3-26
FILE-CONTROL. paragraph 3-25
Key of reference 3-2, 3-28, 3-29
Record Description entry 3-26
Sample programs 3-41
ADD statement 4-2
Alternate key index file
Actual-key files 3-25, 15-11
Direct files 3-19, 15-11
Indexed files 3-15, 15-11
Structure 3-2
Alternate keys
Actual-key files 3-25, 15-11
Direct files' 3-19, 15-11
File processing 3-1, 15-11
Indexed files 3-15, 15-11
Key of reference 3-1, 3-16, 3-22, 3-28, 3-29
Random access 3-17, 3-23, 3-29
Repeating group 3-1, 3-16, 3-21, 3-27
ALTERNATE RECORD KEY clause
Actual-key files 3-25
Direct files 3-19
Indexed files 3-13
Arithmetic expressions
Complex 4-1
COMPUTE statement 4-4
Order of evaluation 4-1
Relational conditions 5-1
SEARCH statement 6-4
Sign conditions 5-4
Simple 4-1
Arithmetic operations
ADD statement 4-2
COMPUTE statement 4-4
DIVIDE statement 4-4
MULTIPLY statement 4-3
Rounding a result 4-5
‘Sample program 4-6
Size error checking 4-5
SUBTRACT statement 4-2
Arithmetic operators 4-1
ASSIGN clause
Actual-key files 3-24
Data base files 14-5
Direct files 3-18
" Indexed files 3-13

60497200 D

ASSIGN clause (Contd)
Relative files 3-8
Sequential files 3-3
Word-address files 3-30

At end condition
Exception condition 3-33
Implicit condition. 5-10
READ statement

Actual-key files 3-28
Direct files 3-22
Indexed files 3-16
Relative files 3-11
Sequential files 3-7
Word-address files 3-29
RETURN statement 8-5
SEARCH statement 6-4

BLOCK CONTAINS clause
Actual-key files 3-26, 15-15
Direct files 3-20, 15-15
Indexed files 3-14, 15-15
Sequential files 3-3, 15-15

BLOCK COUNT clause 3-18

Block size
Actual-key files 3-26, 15-17
Direct files 3-19
Indexed files 3-14, 15-16
Sequential files 3-3

Block type 3-4

Boolean

. Character 2-4, 4-1

Data item 2-3,7-3, 7-5

Example 4-9 -

Expressions 4-1, 4-8, 5-1

Operands 5-2

Operations 4-1

Operators
BOOLEAN-AND 4-1, 4-8
BOOLEAN-EXOR 4-1, 4-8
BOOLEAN-NOT 4-1, 4-8
BOOLEAN-OR 4-1, 4-8

Relational conditions 5-3

CALL statement 10-1
CANCEL statement 10-3
CCF 2-1,17-2
CD Areas 17-4 '
CDCS 2 interface (See data base file usage)
Class conditions 5-3
CLOSE statement
Actual-key files 3-30
Direct files 3-24
Indexed files 3-18
Relative files 3-12
Sequential files 3-8
Word-address files 3-33
COBOL Communication Facility
Communications Descriptions 17-2
DISABLE statement 17-1, 17-2
ENABLE statement 17-1, 17-2
SEND statement 17-2, 17-4
RECEIVE statement 17-2, 17-3

Index-1

COBOL subprograms
Calling 10-1
Sample program 10-4
Writing 10-4
COBOLS5 control statement parameters
COBOL subprograms 10-3, 11-5
COPY statement 2-6, 11-5
Debugging 11-4
Error processing 11-2
Input/output files 11-1
Output listing 11-3
Source program 11-3
Subschema file 11-5
Collating sequence
Comparisons 5-2
Sort/merge operations 8-1, 8-6
Comment lines 2-5
Communication Section 2-1, 17-2
Comparing operands
Nonnumeric comparison 5-1
Numeric comparison 5-1
Sort/merge operation 8-1
COMPASS subprograms 10-1
Compilation
CDCS 2 interface 14-6
COBOLS control statement 11-1
Deck structures 11-14 '
FDL processing 10-3
Output listings 11-5
COMPUTE statement 4-4
Condition-name
Condition-name condition 5-4, 5-9
SEARCH statement 5-8, 6-4
Switch-status condition 5-4
Conditional expressions
Complex conditions 5-4
Implied elements 5-5
Order of evaluation 5-6

PERFORM statement without END-PERFORM 5-7,

6-4 .

SEARCH statement without END-SEARCH 5-8, 6-4

Simple conditions 5-1

Conditions
- Atend 5-10
Class 5-3

Condition-name 5-4
Control break 14-2, 14-3
End-of-page 5-10
Null record 14-2, 14-4
Overflow 5-11
Relational 5-1
Sample program . 5-12
-Sign 5-4
Size error 5-11
Switch-status 5-4
Connected Files 16-2, 16-4, 16-6, 16-8
Connectives 2-2
Continuation lines 2-5
COPY statement. 10-4, 11-5, 12-3
CREATE utility program 3-21, 15-9
CRM debugging tools 15-8
CRM interface 15-1
Cross reference listing 11-10
C5TDMP utility 13-4

Data base file usage]
CLOSE statement 14-4
Common CDCS diagnostics 14-2
Concepts 14-1
Data base status block 14-2
Error information 14-2

Index-2

Data base file usage (Contd)
FDL file 10-1
File-Control entry 14-5
OPEN statement 14-4
READ statement 14-5
Record qualification 14-4
Relations 14-1, 14-2
Sample program 14-6
Schema 14-1
Subprogram usage 10-3
Subschema 14-1
SUB-SCHEMA clause 10-3, 14-5
START statement 14-5

Data base status block 14-2

Data division 2-1, 14-5

Data item
Alternate key 3-13, 3-19, 3-25
Category 2-4
Primary key 3-13, 3-19, 3-23
Relative key 3-9, 3-10, 3-11
Replacing characters 7-2
Setting the value 7-1
Tallying and replacing characters 7-3
Tallying characters 7-2
Word-address key 3-30

Data map listing 11-10

Dayfile 11-10

DB$DBST 14-2 .

Debugging feature

Activating debugging 13-2
Configuration Section 2-1
Debugging lines 13-1
Debugging register 13-2
Debugging sections 13-1
Switch 6 13-1
Debugging tools - CRM
CRMEP control statement 15-9
Dayfile control 15-9
Error file control 15-9
Error status 15-9
FIT DUMP 15-9
Trivial error limit 15-9
Declarative sections
Debugging sections 13-1
Error and exception procedures 3-33
Hashing routine 3-18
Segmented program 9-2
DELETE statement
Actual-key files 3-29
Direct files 3-23
Indexed files 3-17
Invalid key condition 5-10
Relative files 3-12
Diagnostics 11-6
Direct files
Alternate key processing 3-1
File Description entry 3-19
File manipulation
CLOSE statement 3-24
DELETE statement 3-23
OPEN statement 3-20
READ statement 3-22
REWRITE statement 3-24
START statement 3-21
WRITE statement 3-21
File processing 3-20
FILE-CONTROL paragraph 3-18
Key of reference 3-2, 3-22
Record Description entry 3-20
Sample programs 3-38
DISPLAY-statement 16-1, 16-9, 16-11
DIVIDE statement 4-4

60497200 E

END statement terminators
END-IF 5-6
END-PERFORM 5-6, 5-7, 6-2, 6-4
END-SEARCH 5-6, 5-9

End-of-page condition
Implicit condition 5-10
Sequential files 3-7

ENTER statement
C.DMRST routine 14-2
C.IOST routine 14-2, 15-8
C.SORTP routine 8-2

CYBER Record Manager error code 3-34, 15-9

Paragraph trace routines 13-3
Relational read status 14-2, 14-4
Subprograms 10-1
Environment Division 2-1, 14-5
Errors and exception conditions 3-33
Exchange package dump 11-6
EXECUTE control statement 11-14
Execution 11-14, 14-6
Explicit scope terminator
END-IF 5-6
END-PERFORM 5-6, 5-7, 6-2, 6-4
END-SEARCH 5-6, 5-9
External files
Status code data item 3-34
Subprogram usage 10-2
Relative key data item 3-9
Word-address key data item 3-30

Fast Dynamic Loader Processing
Canceling subprograms 10-3
COBOLS control statement 11-5
FDL file 10-3
Subprogram interface 10-3

Figurative constants 2-2

FILE control statement 15-1, 15-7

File Description entry
Actual-key files 3-25
Data base files 14-5
Direct files 3-19
Indexed files 3-13
Relative files 3-9
Sequential files 3-3
Word-address files 3-31

File Information Table (see FIT)

FILE STATUS clause
Actual-key files 3-25, 15-8
Data base files 14-5, 15-8
Direct files 3-19, 15-8
Indexed files 3-13, 15-8
Relative files 3-9, 15-8
Sequential files 3-3, 15-8
Status codes 3-34, 15-8
Word-address files 3-31, 15-8

FILE-CONTROL paragraph
Actual-key files 3-24
Data base files 14-5
Direct files 3-18
Indexed files 3-13
Relative files 3-8
Sequential files 3-3
Word-address files 3-30

FIT
Dump 15-7
Field overrides 15-1, 15-2
Fields set with FILE control statement 15-7
Fields set with source statements 15-1
Fields set with USE clause 15-2
Interface for COBOL/CRM 15-1

60497200 E

Fixed segments 9-1

FLBLOK utility 15-16

Floating point
Mode of operation 4-5
Numeric literal 2-2

FORTRAN Extended subprograms
Entering from COBOL main program
Sample program 10-5

Full Screen Editor (FSE) 2-5, 16-2

Hashing routine 3-18, 3-21

IAF terminal operations 16-1
Identification Division 2-1
IF statement with END-IF 5-7
IF statement without END-IF 5-6
Implicit conditions 5-10
Independent segments 9-1
Index data item 6-3
Index manipulation
PERFORM statement 5-7, 6-2, 6-3
SEARCH statement 5-8, 6-4
Indexed files
Alternate key processing 3-1
File Description entry 3-13
File manipulation
CLOSE statement 3-18
DELETE statement 3-17
OPEN statement 3-15
READ statement 3-16
REWRITE statement 3-18
START statement 3-15
WRITE statement 3-15
File processing 3-15
FILE-CONTROL paragraph 3-13
Key of reference 3-2, 3-15
Record Description entry 3-14
Sample programs 3-34
Indexes
Initial value 6-5
Out-of-bounds detection 13-4
PERFORM statement 6-4
Sample program 6-9
SEARCH statement 6-4
Table reference 6-2
INITIALIZE statement 7-1
INSPECT statement 7-1
Inspection cycle 7-1
Interactive usage 2-5, 16-1
INTERCOM terminal operations 16-4
Intermediate item
Arithmetic operations 4-4
Integer mode of operation 4-5
Size error checking 4-5
Invalid key condition
Actual-key files 3-27, 3-28
Direct files 3-21, 3-22, 3-23
Exception condition 3-32
Implicit condition 5-10
Indexed files 3-15, 3-16, 3-17
Relative files 3-11, 3-12
Word-address files 3-32, 3-33

Key of reference
Actual-key files 3-26, 3-27
Alternate key 3-2
Direct files 3-22
Indexed files 3-15
Keywords 2-2

10-1

Index-3

LABEL. RECORDS clause
Actual-key files 3-31
Direct files 3-20
External files 10-2
Indexed files 3-14
Relative files 3-9
Sequential files 3-4
Word-address files 3-31

Level numbers 2-3

Library, source 12-1

LINAGE clause 3-5

LOAD control statement 11-10

LLoad map 11-6

Local files 16-1, 16-4, 16-8

L ogical operators 5-5

MCS
Error Key Codes 17-1
Interface with COBOL 17-1
Status Key Codes 17-6
Merge operation
Input/output files 8-2
Key items 8-1, 8-4
Memory allocation 8-2
Merge file 8-1, 8-4
MERGE statement 8-4
Output procedure 8-3
Sample program 8-6
SD entry 8-1
MERGE statement 8-4, 9-2
Message
Control System 2-1, 17-1
Destination 17-2
Queue 17-2.
Sending and receiving 17-2
Source 17-2
MIP 15-1, 15-11
MIPGEN 15-7, 15-11
Multiple index files 15-1
MULTIPLY statement 4-3

Nested IF statements 5-7
Nonnumeric literals 2-2

NOS interactive usage 16-1
NOS/BE interactive usage 16-4
Numeric literals 2-2

Object code listing 11-10
OPEN statement
Actual-key files 3-26
Direct files 3-20
Indexed files 3-15
Relative files 3-10
Sequential files 3-6.1
Word-address files 3-31
Optional words 2-2
Order of evaluation
Arithmetic expressions 4-1
Boolean expressions 4-9
Conditional expressions 5-5
ORGANIZATION clause
Actual-key files 3-24
Direct files 3-18
Indexed files 3-13
Relative files 3-8
Sequential files 3-3
Word-address files 3-30

Index-4

Overflow condition
CALL statement 5-11, 10-3
Dynamic subprograms 10-3
Implicit condition 5-11
STRING statement 7-3
UNSTRING statement 7-4

Paragraph trace feature 13-3

‘ Parentheses

Arithmetic operations 4-4
Boolean operations 4-9
Conditional expressions 5-6
Indexes 6-3
Order of evaluation 5-6
Subscripts 6-3
PERFORM statement
Conditional expressions 5-7
Index setting 6-3
Segmented program 9-2
With END-PERFORM 5-8
With TEST AFTER phrase 5-7, 5-8
With TEST BEFORE phrase 5-7, 5-8
Picture-specification 2-3
Primary keys
Actual-key files 3-25
Direct files 3-19
Indexed files 3-12
Key of reference 3-15, 3-20, 3-26
Order in alternate key index 3-2
Random access 3-17, 3-23, 3-27
Procedure Division
CDCS 2 interface 14-5
Structure 2-1
Subprogram header 10-4
Program call control statement 11-10
Pseudo-text 12-3
Punctuation 2-2

Queues 2-1,17-2

READ statement
Access by alternate key 3-2
Actual-key files 3-28
At end condition 5-10
Direct files 3-22
Establish key of reference 3-2
Indexed files 3-16
Invalid key condition 5-10
Relations 14-1, 14-5
Relative files 3-11
Sequential files 3-7
Word-address files 3-32
RECORD clause
Actual-key files 3-23
Direct files 3-20
Indexed files 3-14
Relative files 3-9
Sequential files 3-4
Word-address files 3-31
Record Description entry
Actual-key files 3-26
Direct files 3-20
Indexed files 3-14
Relative files 3-9
Sequential files 3-5
Word-address files 3-31

60497200 D

Record key
Actual-key files 3-24
Direct files 3-18
Indexed files 3-12
Relative files 3-9
Word-address files 3-30
RECORD KEY clause
Actual-key files 3-25
Direct files 3-19
Indexed files 3-13
Record qualification 14-4
Record size
Actual-key files 3-26
Direct files 3-20
Indexed files 3-14
Relative files 3-9
Sequential files 3-4
Word-address files 3-31
Record type
Actual-key files 3-26
Direct files 3-20
Indexed files 3-14
Relative files 3-9
Sequential files 3-4, 3-5
Word-address files 3-31
RECORDING MODE clause 3-4
Reference modification 7-1, 7-5
Reference modifier 2-3
Referencing part of a data item 7-5
Relational conditions
Implied elements 5-5
SEARCH statement 5-8, 6-4
Simple condition 5-1
START statement 3-11, 3-15, 3-21, 3-27
Relational processing 14-1, 14-4
Relations 14-1
Relative files
File Description entry 3-9
File manipulation
CLOSE statement 3-12
DELETE statement 3-12
OPEN statement 3-10
READ statement 3-11
REWRITE statement 3-12
START statement 3-11
WRITE statement 3-10
File processing 3-10
FILE-CONTROL. paragraph 3-8
Record Description entry” 3-9
Sample programs 3-34
RELATIVE KEY clause 3-9
RELEASE statement 8-2, 8-4
Repeating group alternate key
Actual-key files 3-27, 3-29
Direct files 3-17, 3-21, 3-23
Index file structure 3-2
Indexed files 3-15
REPLACE statement 2-6
RESERVE clause
Relative files 3-9
Sequential files 3-3
Word-address files 3-31
Reserved words 2-2
RETURN statement
At end condition 5-10
Output procedure 8-3, 8-5
REWRITE statement
Actual-key files 3-29
Direct files 3-24
Indexed files 3-18
Invalid key condition 5-11
Relative files 3-12
Sequential files 3-8

60497200 D

SEARCH statement
At end condition 5-10
Binary search 5-9, 6-4
Index setting 6-3
Sequential search 5-9, 6-4
With END-SEARCH 5-9
Segment numbers 9-1
Segmentation 9-1
SELECT clause
Actual-key files 3-24
Data base files 14-5
Direct files 3-18
Indexed files 3-13
Relative files 3-8
Sequential files 3-3
Word-address files 3-30
Sequence numbers 2-5, 11-3, 16-4
Sequential files
File Description entry 3-3
File manipulation
CLOSE statement 3-8
OPEN statement 3-6.1
READ statement 3-7
REWRITE statement 3-8
WRITE statement 3-7
File processing 3-3
FILE-CONTROL paragraph 3-3
Record Description entry 3-5
SET statement
Collating sequence 5-1
Debugging switch 13-2
Index setting 6-3, 6-5
Sort/merge collating sequence 8-6
Switch-status conditions 5-4
Sign conditions 5-4
Size error condition :
Arithmetic operations 4-5
Implicit condition 5-11
MODE control statement 4-5
Snap-shot dumps 13-1
Sort operation
Initial sequence 8-2
Input procedure 8-2
Input/output files 8-2
Key items 8-1, 8-3
Memory allocation 8-2
Output procedure 8-3
Sample program 8-6
SD entry 8-1
Sort file 8-1, 8-3
SORT statement 8-3
SORT statement 8-3, 9-2
Source library 12-1
Source program listing 11-5
Special registers
Arithmetic operations 4-2
Reserved words 2-2
SPECIAL-NAMES paragraph 14-5, 16-9
START statement
Actual-key files 3-27
Data base files 14-4
Direct files 3-21
Establish key of reference 3-2
Indexed files 3-16
Invalid key condition 5-10
Relative files 3-11
Status code 3-30, 15-9
STATUS KEY clause 17-5
STRING statement
Overflow condition 5-11, 7-4
Transferring characters 7-3

Index-5

Subprograms
Calling COBOL subprograms 10-1
Common-Storage Section 10-4
Data base files 10-3
Dynamic 10-3
Entering non-COBOL subprograms 10-1
External files 10-2
Linkage Section 10-4
Overlays 9-1
Sample programs 10-4
Static 10-3
Subscripts .
Out-of-bounds detection 13-4
PERFORM statement 6-4
Sample program 6-7
Table reference 6-2
SUBTRACT statement 4-3
SWITCH control statement
Debugging switch 13-2
Switch-status conditions 5-4
Switch-status conditions 5-4

TDF parameter 13-4

TOFILE 13-4

Terminal operations
NOS/BE/INTERCOM 16-4
NOS/IAF 16-1

Termination Dump 13-4

UNSTRING statement
Overflow condition 5-11, 7-5
Transferring characters - 7-4
UPDATE utility program 10-2, 12-1
USE clause
Actual-key files 3-25
Direct files 3-19
FIT fields settings
Block type 15-2
Index block padding 15-2
Old/new file organization 15-7

Index-6

USE clause (Contd)
FIT fields settings (Contd)
Record type 15-2
Indexed files 3-13
Relative files 3-9
Sequential files 3-3
Word-address files 3-31

USE FOR ACCESS CONTROL statement 14-5

USE FOR DEADLOCK statement 14-6
USE statement
Debugging section 13-1
Error/exception conditions 3-34
User-defined words 2-2

WITH TEST AFTER phrase 5-7, 5-8
WITH TEST BEFORE phrase 5-7, 5-8
Word-address files
File Description entry 3-31
File manipulation
CLOSE statement 3-33
OPEN statement 3-31
READ statement 3-32
WRITE statement 3-32
File processing 3-30
FILE-CONTROL paragraph 3-30
Record Description entry 3-31
Sample programs 3-48
WORD-ADDRESS KEY clause 3-30
WRITE statement
Actual-key files 3-27
Direct files 3-21
End-of-page condition 3-7, 5-10
Indexed files 3-15
Invalid key condition 5-10
Relative files 3-10
Sequential files 3-7
Word-address files 3-32

XEDIT 2-5

60497200 E

COMMENT SHEET

MANUAL TITLE: COBOL Version 5 User”s Guide

PUBLICATION NO.: 60497200

H REVISION: E

This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested

additions or deletions, or general comments on the back (please include page number
references).

Please reply No reply necessary

FOLD N FOLD

' -
NO POSTAGE
NECESSARY

{F MAILED

IN THE
UNITED STATES|

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MN.

POSTAGE WILL BE PAID BY ADDRESSEE

(G2 CONTROL DATA

Publications and Graphics Division
Mail Stop: SVL104

P.O. Box 3492

Sunnyvale, California 94088-3492

FOLD FOLD

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE '

NAME:
COMPANY.:
STREET ADDRESS:

CITY/STATE/ZIP:

TAPE TAPE

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G,

CONTROL DATA CORPORATION

