CONTROL DATA

CORPORATION

CONTROL DATA’

CYBER 70 COMPUTER SYSTEMS
MODELS 72,73,74,76

7600 COMPUTER SYSTEM

6000 COMPUTER SYSTEMS

ALGOL REFERENCE MANUAL
CYBER 70 SERIES VERSION 4
6000 SERIES VERSION 4
7600 SERIES VERSION 4

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

REVISION RECORD

REVISION DESCRIPTION

A Original printing.

(8-15-73)

Publication No.

60384700
Additional copies of this manual may be Address comments concerning
obtained from the nearest Control Data this manual to:

Corporation sales office.
CONTROL DATA CORPORATION
Software Documentation
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

©
1973
Control Data Corporation or use Comment Sheet in the

Printed in the United States of America back of this manual

PREFACE

This manual describes the ALGOL-60 language (Version 4.0) for the CONTROL DATA® CYBER 70/Models 72,
73, 74 or 76, the 6000 Series computers; and the 7600 computer. It is assumed that the reader has knowledge of an
existing ALGOL language and the CONTROL DATA CYBER 70 and 6000 Series computer systems.

The compiler operates under control of the SCOPE 2.0, 2.1, and 3.4 operating systems. It utilizes SCOPE multi-
programming features to provide compilation and execution within a single job operation.

Related manuals in which the ALGOL user may find additional information:

Publication No.

SCOPE 2 Reference Manual 60342600
SCOPE 3.4 Reference Manual 60307200
LOADER Reference Manual 60344200
COMPASS 2 Reference Manual 60279900
COMPASS 3 Reference Manual 60360900
Record Manager 60307300

This product is intended for use only as described in this document. Control Data cannot be
responsible for the proper functioning of undescribed features or undefined parameters.

60384700 A iii

CONTENTS

INTRODUCTION

CHAPTER 1

CHAPTER 2

60384700 A

ALGOL SYSTEM DESCRIPTION
1.1 Compiler Features

1.2 Compiler Package

1.3 Compiler Structure

1.4 Library Subprograms

1.5 Operating System Interface
1.6 Machine Configuration

LANGUAGE COMPARISON WITH THE ALGOL-60 REVISED REPORT
2.1 Language Conventions

Revised Report on the Algorithmic Language ALGOL-60

Contents of Report

Introduction

1. Structure of the Language

1.1

Formalism for Syntactic Description

2. Basic Symbols, Identifiers, Numbers and Strings, Basic Concepts

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

Letters

Digits and Logical Values
Delimiters

Identifiers

Numbers

Strings

Quantities, Kinds and Scopes
Values and Types

3. Expressions

3.1
3.2
33
34
3.5

Variables

Function Designators
Arithmetic Expressions
Boolean Expressions
Designational Expressions

4, Statements

4.1
4.2
4.3
4.4
45
4.6
4.7

Compound Statements and Blocks
Assignment Statements

go to Statements

Dummy Statements

Conditional Statements

For Statements

Procedure Statements

ix

1-1
1-1
1-2
-2
1-3
1-3
1-3

2-1

2-2
2-3
24
2-7
2-7
2-8
2-8

29
2-11
2-12
2-14
2-15
2-15
2-15
2-15
2-17
2-19
2-23
2-26
2-27
2-27
2-29
2-31
2.32
2-32
2-35
2-38

CHAPTER 3

CHAPTER 4

CHAPTER 5

vi

5. Declarations
5.1 Type Declarations
5.2 Array Declarations
5.3 Switch Declarations
5.4 Procedure Declarations

Alphabetic Index of Definitions of Concepts and Syntactic Units

INPUT-OUTPUT

3.1 Comparison with ACM Proposal for Input-Output
A Proposal for Input-Output Conventions in ALGOL-60

A. Formats
A.1 Number Formats
A.2 Other Formats
A.3 Format Strings
A.4 Summary of Format Codes
A.5 *“Standard” Format
B. Input and Output Procedures
B.1 General Characteristics
B.2 Horizontal and Vertical Control
B.3 Layout Procedures
B.4 List Procedures
B.5 Input and Output Calls
B.6 Control Procedures
B.7 Other Procedures
C. Example
D. Machine-dependent Portions
3.2 Additional Input-Output Procedures
3.3 Control Procedures
3.4 Hardware Function Procedures
3.5 Miscellaneous Procedures
3.6 Input-Output Errors
3.7 End-of-File
3.8 End-of-Tape
3.9 Efficient Use of Formatted Input-Output

3.10 Extended Core Storage, Large Core Memory Procedures

INPUT TO COMPILATION

4.1 Source Program Definition
4.2 Source Procedure Definition
4.3 Source Input Restrictions
4.4 Language Conventions

4.5 Card Conventions

4.6 Source Deck

OUTPUT FROM COMPILATION

5.1 Binary Output

5.2 Assembly-Language Object Code
5.3 Source Listing

2-41
242
2-44
2-46
246
2-57

3-1

3-1

3-2

3-2

33

3-7
3-11
3-12
3-13
3-13
3-13
3-17
3-19
3-23
3-26
341
3-43
344
345
346
3-50
3-51
3-52
3-53
3-54
3-54
3-54
3-56

41
4-1
4.2
43
43
4-4
4.4

5-1
5-1
5-1
5-2

60384700 A

CHAPTER 6

CHAPTER 7

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

60384700 A

ALGOL CONTROL CARD
6.1 Control Card Parameters
6.2 Restrictions and Errors

CHANNEL CARDS

7.1 Channel Define Card

7.2 Channel Equate Card

7.3 Duplication of Channel Numbers
7.4 Duplication of File Names

7.5 Standard ALGOL Channel Cards
7.6 Typical Channel Cards
EXECUTION TIME OPTIONS

8.1 Stack Statistics

8.2 Abnormal Termination Dump Format
8.3 C,PandT options

DEBUGGING FACILITIES

9.1 General

9.2 Debugging Directives

9.3 The trace Directive

9.4 The snap Directive

9.5 The snapoff Directive

9.6 Debugging Output

9.7 Label Monitoring

9.8 Procedure Monitoring

9.9 Simple Variable Monitoring
9.10 Array and Subscripted Variable Monitoring

OVERLAYS

10.1 Overlay Declarations
10.2 Example

10.3 Semantics

10.4 Restrictions

10.5 Examples

USE OF LCM AND ECS
11.1 General

11.2 Virtual Arrays
11.3 Example

OPTIMIZATIONS
12.1 Language Dependent Optimizations
12.2 Vector Functions

12.3 Efficient Programming for Run-time Performance

OBJECT-TIME ABNORMAL TERMINATION DUMP

13.1 Structured Dump
13.2 Environmental Information
13.3 Cross-reference Listing

6-1
6-1
6-4

7-1
7-1
7-2
72
7-3
7-3
7-3

8-1
8-1
8-1
8-2

9-1
9-1
9-1
9-2
9-3
9-3
9-5
9-5
9-6
96
9-8

10-1
10-1
10-1
10-1
10-2
10-3

11-1
11-1
11-1
11-1

12-1
12-1
12-2
12-2

13-1
13-1
13-1
13-2

vii

CHAPTER 14

CHAPTER 15

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

viii

OBJECT-TIME DESCRIPTION
14.1 Object Program and Stacks
14.2 Stack Entries

14.3 Details of Descriptions

ALGOL DIAGNOSTICS
15.1 Compiler Diagnostics
15.2 Object-time Diagnsotics

STANDARD SCOPE CHARACTER SET

INTERFACE MACROS

CHARACTER REPRESENTATION OF ALGOL SYMBOLS

STANDARD PROCEDURES FOR VECTOR
AND MATRIX MANIPULATIONS

14-1
14-1
14-5
14-8
15-1
15-1
154

A-l

C-1

D-1

60384700 A

INTRODUCTION

This reference manual presents the rules and details involved in writing a program in the ALGOL language; it includes
sufficient information to prepare, compile, and execute such a program.

The ALGOL programming language and a compiler for translating ALGOL programs into machine language for
execution by the CONTROL DATA CYBER series computers are described. CONTROL DATA ALGOL closely con-
forms to the definition of the international algorithmic language ALGOL published in The Communications of the
ACM, 1963, vol. 6 no. 1, pp. 1-17; “The Revised Report on the Algorithmic Language, ALGOL-60", and also in the
International Organization for Standardization’s Draft ISO Recommendation No. 1538, which includes the input-
output definitions. Control Data’s Programming Standard 1.86.003 has been used to clarify the aforementioned
documents.

The ALGOL-60 Revised Report is presented in its entirety, and wherever Control Data’s implementation of the
language differs from the Report, a full explanation of the differences are listed for all systems. The ALGOL-60
Revised Report is printed in bold type, and the explanation of the differences is in standard type. The name N
ALGOL means CYBER ALGOL, unless otherwise specified.

60384700 A

ALGOL SYSTEM DESCRIPTION 1

1.1 COMPILER FEATURES

The ALGOL compiler for the CYBER series computers is originally based in design on the ALGOL compiler
developed by Regnecentralen, Copenhagen, Denmark, for the GIER computer. This design was adopted and, to a
great degree, modified and extended by Control Data to provide the most generally advantageous features
for an ALGOL compiler.

These features include:

Implementation of the complete ALGOL-60 revised language (wherever feasible and not in conflict with other
advantages).

Comprehensive input-output procedures.

Extensive compile-time and object-time diagnostics.

Wide variety of compilation options, such as the ability to compile both ALGOL programs and ALGOL
procedures.

Ability to generate and execute the object program in either overlay or non-overlay form.
Optimization facilities.

The use of a Large Core Memory and Extended Core Storage for the storage of arrays.

SOURCE INPUT

Source input is normally a card deck. The source may also be specified from a different device by a control
card option. Source input can consist of both ALGOL source programs and ALGOL source procedures. More
than one source program and/or source procedure may be compiled with a single call.

COMPILE TIME ERROR DETECTION

The compiler detects all source language infringements and prints a diagnostic for each. The compiler also incorporates
further checking into the object program to detect program errors which can be found only at execution time. All
compilations proceed to the end of the source deck with normal error checking regardless of the occurrence of a
source language error: but object code generation is suppressed if any errors are detected during compilation.

60384700 A 1-1

COMPILER OUTPUTS

Compiler output is normally printed on the standard system output file. Qutput also may be requested on a different
device with a control card option. The object code is in standard relocatable binary format.

OPTIMIZATION FACILITIES

The user has the option of requesting optimization of his program at both the source language and machine code
levels.

OBJECT PROGRAM EXECUTION

Execution of the object program is controlled by the Run-Time System, which is external to the generated program.

OBJECT ERROR DETECTION
The object program includes code which detects errors not detected during compilation. An error message is issued,

a symbolic dump if selected is printed, and the run is terminated. The dump displays current values of declared vari-
ables in a form easily related to the source program.

1.2 COMPILER PACKAGE
The ALGOL compiler package consists of the following subprograms recorded on the system library:

The compiler: ALGOL, ALGO, ALG1, ALG2, ALG3, ALG4, ALGS, and ALG6.

The library subprograms which are available to object programs generated by the compiler.

1.3 COMPILER STRUCTURE

ALGOL is the internal controller of the compiler and its main function is to load and pass control to each subprogram
as required.

ALGO processes the control card options delivered by the operating system.
ALG]1 through ALG6 each form one overlay of the compiler. Each subprogram overlays the previous one in a
separate load. Each overlay generates an intermediate form of the source text which is used as input to the next

overlay.

ALG1 performs syntactic analysis of source text. If any fatal errors have been encountered, compilation
terminates after this pass, providing the F option has been selected.

ALG2 performs semantic analysis of the source text. If any fatal errors have been encountered in this
pass or in ALGI1, compilation terminates after this overlay.

1-2 60384700 A

ALG3 performs actual/formal procedure parameter checking and starts source language optimization. For any
non-fatal errors a warning message is printed. There are no fatal errors detected by this pass. If no optimization
has been requested, this overlay is not called and compilation proceeds directly from ALG2 to ALG4.

ALG4 completes source language optimization and performs the source text translation in a form suitable
for code generation in ALGS.

ALGS produces final output from the compiler, such as the object code in standard relocatable binary format.

ALG6 produces the cross-reference map and creates the dumpfile to be used at execution time by the
dump routine. This overlay is called only if the R or D option is selected.

14 LIBRARY SUBPROGRAMS
The library subprograms contain all standard procedures which can be called without prior declaration in an

ALGOL source text. They also contain subprograms to perform object-time control functions external to the
generated object program.

1.5 OPERATING SYSTEM INTERFACE

The compiler is designed to run under control of the SCOPE 3.4 or SCOPE 2.0 operating system. Compilation

is requested by a SCOPE control card specifying the name ALGOL. This call results in the loading and execution
of the subprogram ALGOL which controls the compilation process. The compiler obtains the control card param-
eters from SCOPE.

1.6 MACHINE CONFIGURATION

The CDC CYBER 70 ALGOL 4.0 compiler will operate under the minimum (and maximum) basic machine
configuration required by the SCOPE 3.4 and SCOPE 2.0 operating systems.

60384700 A 1-3

LANGUAGE COMPARISON WITH THE
ALGOL-60 REVISED REPORT

2.1 LANGUAGE CONVENTIONS

In this manual, ALGOL is described in terms of three languages: reference, hardware, and publication language, as
indicated in the introduction to the ALGOL-60 Revised Report.

The reference language is computer independent and uses the basic ALGOL symbols, such as begin and end, to define
the language syntax and semantics.

The hardware language is the representation of ALGOL symbols in characters acceptable to the computer; this is the
language used by the programmer. For example, when the reference language calls for the basic ALGOL symbol
begin, the programmer writes the seven hardware characters 'BEGIN' The hardware representations of ALGOL
symbols are shown in Table 1, Appendix C.

Unless otherwise stated or implied, the basic ALGOL symbols (reference language) rather than their character
equivalents (hardware language) are used consistently throughout this manual. This convention simplifies the
explicit and implicit references to the ALGOL language as defined in the ALGOL-60 Revised Report.

For publication purpeses only, the underlining convention delineates the basic ALGOL symbols. These symbols
have no relation to the individual letters of which they are composed. Other than this convention, the publication
language is not considered in this manual.

All descriptions of language modifications are made at the main reference in the Report; when feasible, language
modifications are also noted at other points of reference. The reader should assume that modifications apply to all
references to the features, noted or otherwise. If no comments appear at the main reference in the Report regarding
language modifications to a particular section or feature, it is implemented in full accordance with the Report.

In addition to the language descriptions in this chapter, reserved identifiers which reference input-output procedures
are described in Chapter 3.

The ALGOL-60 Revised Report as published in The Communications of the ACM, vol. 6,no. 1, pp 1-17 follows.

Wherever Control Data’s implementation of the language differs from the Report, the Report is printed first in
boldface and the Control Data modification follows in standard type.

60354700 A 2-1

REVISED REPORT ON THE ALGORITHMIC LANGUAGE ALGOL-BO%

Peter Naur (Editor)

J. W. Backus C. Katz H. Rutishauser J. H. Wegstein
F. L. Bauer J. McCarthy K. Samelson A. van Wijngaarden
J. Green A. J. Perlis B. Vauquois M. Woodger

Dedicated to the memory of William Turanski.

SUMMARY

The report gives a complete defining description of the international algorithmic language ALGOL-60. This isa
language suitable for expressing a large class of numerical processes in a form sufficiently concise for direct automatic
translation into the language of programmed automatic computers.

The introduction contains an account of the preparatory work leading up to the final conference, where the language
was defined. In addition, the notions, reference language, publication language and hardware representations are
explained.

In the first chapter, a survey of the basic constituents and features of the language is given, and the formal notation,
by which the syntactic structure is defined, is explained.)

The second chapter lists all the basic symbols, and the syntactic units known as identifiers, numbers and strings are
defined. Further, some important notions such as quantity and value are defined.

The third chapter explains the rules for forming expressions and the meaning of these expressions. Three different
types of expressions exist: arithmetic, Boolean (logical) and designational.

The fourth chapter describes the operational units of the language, known as statements. The basic statements are:
assignment statements (evaluation of a formula), go to statements (explicit break of the sequence of execution of
statements), dummy statements, and procedure statements (call for execution of a closed process, defined by a
procedure declaration). The formation of more complex structures, having statement character, is explained. These
include: conditional statements, for statements, compound statements, and blocks.

In the fifth chapter, the units known as declarations, serving for defining permanent properties of the units entering
into a process described in the language, are defined.

The report ends with two detailed examples of the use of the language and an alphabetic index of definitions.

22 60384700 A

CONTENTS

Introduction

1. Structure of the Language
1.1 Formalism for syntatic description
2. Basic Symbols, Identifiers, Numbers, and Strings. Basic Concepts

2.1 Letters

2.2 Digits, Logical values

2.3 Delimiters

2.4 ldentifiers

2.5 Numbers

26 Strings

2.7 Quantities, kinds and scopes
2.8 Values and types

3. Expressions

3.1 Variables

3.2 Function designators

3.3 Arithmetic expressions
3.4 Boolean expressions

3.5 Designational expressions

4. Statements

4.1 Compound statements and blocks
4.2 Assignment statements

4.3 Go to statements

4.4 Dummy statements

45 Conditional statements

4.6 For statements

4.7 Procedure statements

5. Declarations

5.1 Type declarations

5.2 Array declarations

5.3 Switch declarations
5.4 Procedure declarations

Examples of Procedure Declarations

Alphabetic Index of Definitions of Concepts and Syntatic Units

60384700 A

INTRODUCTION

Background

After the publication of a preliminary report on the algorithmic language ALGOLT, as prepared at a conference in
Zurich in 1958, much interest in the ALGOL language developed.

As a result of an informal meeting held at Mainz in November 1958, about forty interested persons from several
European countries held an ALGOL implementation conference in Copenhagen in February 1959. A “hardware
group”’ was formed for working cooperatively right down to the level of the paper tape code. This conference also
led to the publication by Regnecentralen, Copenhagen, of an ALGOL Bulletin, edited by Peter Naur, which served
as a forum for further discussion. During the June 1959 ICIP Conference in Paris several meetings, both formal and
informal ones, were held. These meetings revealed some misunderstandings as to the intent of the group which was
primarily responsible for the formulation of the language, but at the same time made it clear that there exists a
wide appreciation of the effort involved. As a result of the discussions it was decided to hold an international
meeting in January 1960 for improving the ALGOL language and preparing a final report. At a European ALGOL
Conference in Paris in November 1959 which was attended by about fifty people, seven European representatives
were selected to attend the January 1960 Conference, and they represented the following organizations: Association
Francaise de Calcul, British Computer Society, Gesellschaft fiir Angewandte Mathematik und Mechanik, and
Nederlands Rekenmachine Gennotschap. The seven representatives held a final preparatory meeting at Mainz in
December 1959.

Meanwhile, in the United States, anyone who wished to suggest changes or corrections to ALGOL was reiuested to
send his comments to the Communications of the ACM, where they were published. These comments then became

the basis of consideration for changes in the ALGOL language. Both the SHARE and USE organizations established
ALGOL working groups, and both organizations were represented on the ACM Committee on Programming Languages.
The ACM Committee met in Washington in November 1959 and considered all comments on ALGOL that had been
sent to the ACM Communications. Also, seven representatives were selected to attend the January 1960 international
conference. These seven representatives held a final preparatory meeting in Boston in December 1959.

January 1960 Conference

The thirteen representatives, from Denmark, England, France, Germany, Holland, Switzerland, and the United States,
conferred in Paris from January 11 to 16, 1960. Prior to this meeting a completely new draft report was worked out

from the preliminary report and the recommendations of the preparatory meetings by Peter Naur and the conference
adopted this new form as the basis for its report. The Conference then proceeded to work for agreement on each item

of the report. The present report represents the union of the Committee’s concepts and the intersection of its agree-
ment.

April 1962 Conference (Edited by M. Woodger)

A meeting of some of the authors of ALGOL-60 was held on April 2-3, 1962 in Rome, Italy, through the facilities
and courtesy of the International Computation Centre.

TPreliminary report — International Algebraic Language. Comm ACM1, 12 (1958), 8.
Report on the Algorithmic Language ALGOL by the ACM Committee on Programming Languages, edited by
A. J. Perlis and K. Samelson. Num, Math. 1 (1959), 41-60.

2 60384700 A

The following were present:

Authors Advisers Observer

F. L. Bauer M. Paul W. L. van der Poel (Chairman IFIP TC 2.1 Working
J. Green R. Franciotti Group ALGOL)
C. Katz P. Z. Ingerman
R. Kogon

(representing J. W. Backus)
P. Naur
K. Samelson G. Seegmiiller
J. H. Wegstein R. E. Utman
A. van Wijngaarden
M. Woodger P. Landin

The purpose of the meeting was to correct known errors in, attempt to eliminate apparent ambiguities in, and
otherwise clarify the ALGOL-60 Report. Extensions to the language were not considered at the meeting. Various
proposals for correction and clarification that were submitted by interested parties in response to the Questionnaire
in ALGOL Bulletin No. 14 were used as a guide.

This report constitutes a supplement to the ALGOL-60 Report which should resolve a number of difficulties therein.
Not all of the questions raised concerning the original report could be resolved. Rather than risk hastily drawn conclu-
sions on a number of subtle points, which might create new ambiguities, the committee decided to report only those
points which they unanimously felt could be stated in clear and unambiguous fashion.

Guestions concerned with the foliowing areas are ieft for further consideration by Working Group 2.1 of IFIP, in the
expectation that current work on advanced programming languages will lead to better resolution:

1. Side effects of functions

2, The call by name concept

3. own: static or dynamic

4. For statement: static or dynamic

5. Conflict between specification and declaration

The authors of the ALGOL Report present at the Rome Conference, being aware of the formation of a Working
Group on ALGOL by IFIP, accepted that any collective responsibility which they might have with respect to the

development, specification and refinement of the ALGOL language will from now on be transferred to that body.

This report has been reviewed by IFIP TC 2 on Programming Languages in August 1962 and has been approved by
the Council of the International Federation for Information Processing.

As with the preliminary ALGOL report, three different levels of language are recognized, namely a Reference
Language, a Publication Language and several Hardware Representations.

60384700 A 2-5

REFERENCE LANGUAGE
1. It is the working language of the committee.
2. It is the defining language.

3. The characters are determined by ease of mutual understanding and not by any computer limitations, coders
notation, or pure mathematical notation.

4. It is the basic reference and guide for compiler builders.
5. It is the guide for all hardware representations.
6. It is the guide for transliterating from publication language to any locally appropriate hardware representations.

7. The main publications of the ALGOL language itself will use the reference representation.

PUBLICATION LANGUAGE

1. The publication language admits variations of the reference language according to usage of printing and
handwriting (e.g., subscripts, spaces, exponents, Greek letters).

2. Itis used for stating and communicating processes.
3. The characters to be used may be different in different countries but univocal correspondence with reference
representation must be secured.
HARDWARE REPRESENTATIONS

1. Each one of these is a condensation of the reference language enforced by the limited number of characters
on standard input equipment.

2. Each one of these uses the character set of a particular computer and is the language accepted by a translator
for that computer.

3. Each one of these must be accompanied by a special set of rules for transliterating from Publication or
Reference language.

For transliteration between the reference language, and a language suitable for publication, among others, the
following rules are recommended.

Reference Language Publication Language

Subscript bracket [] Lowering of the line between the brackets and removal of the brackets
Exponentiation * Raising of the exponent

Parentheses () Any-form of parentheses, brackets, braces

Basis of ten 10 ‘ Raising of the ten and of the following integral number, inserting of the

intended multiplication sign.

2-6 60384700 A

DESCRIPTION OF THE REFERENCE LANGUAGE

1. Structure of the Language

As stated in the introduction, the algorithmic language has three different kinds of representations—reference,
hardware, and publication—and the development described in the sequel is in terms of the reference representation.
This means that all objects defined within the language are represented by a given set of symbols—and it is only in
the choice of symbols that the other two representations may differ. Structure and content must be the same for
all representations.

The purpose of the algorithmic language is to describe computational processes. The basic concept used for the
description of caicuiating ruies is the weii-known arithmetic expression containing as constituents numbers, variabies,
and functions. From such expressions are compounded, by applying rules of arithmetic composition, self-contained
units of the language—explicit formulae—called assignment statements.

To show the flow of computational processes, certain nonarithmetic statements and statement clauses are added
which may describe, e.g., alternatives, or iterative repetitions of computing statements. Since it is necessary for the
function of these statements that one statement refer to another, statements may be provided with labels. A
sequence of statements may be enclosed between the statement brackets m and end to form a compound
statement.

Statements are supported by declarations which are not themselves computing instructions but inform the translator
of the existence and certain properties of objects appearing in statements, such as the class of numbers taken on as
vaiues by a variabie, the dimension of an array of numbers, or even the set of rules defining a function. A sequence

of declarations followed by a sequence of statements and enclosed between begin and end constitutes a block.
Every declaration appears in a block in this way and is valid only for that block.

A program is a block or compound statement which is not contained within another statement and which makes no
use of other statements not contained within it.

In the sequel the syntax and semantics of the language will be given.'*'

1.1 FORMALISM FOR SYNTACTIC DESCRIPTION

The syntax will be described with the aid of metalinguistic formulae.i Their interpretation is best explained by an
example

<ab>:=(l[I<ab>(1<ab><d>

tWhenever the precision of arithmetic is stated as being in general not specified, or the outcome of a certain
process is left undefined, or said to be undefined, this is to be interpreted in the sense that a program only
fully defines a computational process if the accompanying information specifies the precision assumed, the
kind of arithmetic assumed, and the course of action to be taken in all such cases as may occur during the
execution of the computation.

iCf. J.W. Backus, The syntax and semantics of the proposed international algebraic language of the Zurich
ACM-GAMM conference. Proc. Internat. Conf. Inf. Proc., UNESCO, Paris, June 1959.

60384700 A 2-7

Sequences of characters enclosed in the brackets <> represent matalinguistic variables whose values are sequences
of symbols. The mark ::= and | (the latter with the meaning of or) are metalinguistic connectives. Any mark in a
formula, which is not a variable or a connective, denotes itself (or the class of marks which are similar to it). Juxta-
position of marks and/or variables in a formula signifies juxtaposition of the sequences denoted. Thus the formula
above gives a recursive rule for the formation of values of the variable < ab > . It indicates that < ab > may have
the value (or [or that given some legitimate value of < ab >, another may be formed by following it with the
character (or by following it with some value of the variable < d >. If the values of < d > are the decimal digits,
some values of < ab> are:

[(((1(37{
(12345(
(t

[86
In order to facilitate the study, the symbols used for distinguishing the metalinguistic variables (i.e., the sequences
of characters appearing within the brackets <>> as ab in the above example) have been chosen to be words describing
approximately the nature of the corresponding variable. Where words which have appeared in this manner are used
elsewhere in the text they will refer to the corresponding syntactic definition. In addition some formulae have been
given in more than one place.

Definition:
<empty > .=

{i.e., the null string of symbols).

2. Basic Symbols, Identifiers, Numbers, and Strings. Basic Concepts.

The reference language is built up from the following basic symbols:

< basic symbol > ::= < letter > | < digit > | < logical value > | < delimiter >

2.1 LETTERS

<letter>=albicidlelflgihliljlkltiminlolplqirlslitliulviwlxlylzl

AlBicIDlEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ

2-8 60384700 A

This alphabet may arbitrarily be restricted, or extended with any other distinctive character (i.e., character not
coinciding with any digit, logical value or delimiter). Letters do not have individual meaning. They are used for
forming identifiers and strings’ (Cf. sections 2.4 Identifiers, 2.6 Strings).

2.2.1 DIGITS

<digit>:=0{112/31415/6/718/9

Digits are used for forming numbers, identifiers, and strings.

2.2.2 LOGICAL VALUES

< logical value > ::= true | false

The logical values have a fixed obvious meaning.

2.3 DELIMITERS
< delimiter > = < operator > | < separator > | < bracket > | < declarator > | < specificator >
< operator > ::= < arithmetic operator > | < relational operator > | < logical operator > |

< sequertial operator >

HEY S PP N = i |
thinetic operator > .=+ 11—

X

VAR
< relational operator > =< < |=|>|>|#
< logical operator >:=={D|VvIAl

< separator>:=,|.|10 |: |;|:=|,__,|st;ep|until | while | comment

Jrlt should be particularly noted that throughout the reference language underlining is used for defining independent
basic symbols (see sections 2.2.2 and 2.3). These are understood to have no relation to the individual letters of which
they are composed. Within the present report {not including headings) underlining will be used for no other purpose.

ido is used in for statements. It has no relation whatsoever to the do of the preliminary report, which is not
included in ALGOL-60.

60384700 A 29

< bracket>:=(:)I[1]1]*|"|begin|end

< declarator > .= own | Boolean | integer | real | array | switch | procedure

< specificator > = string | label | value

Delimiters have a fixed meaning which for the most part is obvious or else will be given at the appropriate place in
the sequel. '

Typographical features such as blank space or change to a new line have no significance in the reference language.
They may, however, be used freely for facilitating reading. For the purpose of including text among the symbols of
a program the following “‘comment’’ conventions hold:

The sequence of basic symbols: is equivalent to:
; comment < any sequence not containing ;> ; H
begin comment < any sequence not containing ; > ; begin
end < any sejuence not containing end or ; or else > end

By equivalence is here meant that any of the three structures shown in the left hand column may be replaced, in

any occurrence outside of strings, by the symbol shown on the same line in the right hand column without any
effect on the action of the program. It is further understood that the comment structure encountered first in the
text when reading from left to right has precedence in being replaced over later structures contained in the sequence.

,? 3 Dehmlters

:{'The symbols code gol and fortran deﬁned beiow are added to the language to pemut reference to sepa te}y ;

2-10 60384700 A

2.4 IDENTIFIERS

2.4.1 SYNTAX

< identifier > ::= < letter > | < identifier > < letter > | < identifier > < digit >

2.4.2 EXAMPLES

q

Soup

V 17a
a34kTMNs
MARILYN

2.4.3 SEMANTICS

Identifiers have no inherent meaning, but serve to the identification of simple variables, arrays, labels, switches, and
procedures. They may be chosen freely (cf., however, section 3.2.4 Standard Functions).

The same identifier cannot be used to denote two different quantities except when these quantities have disjoint
scopes as defined by the declarations of the program (cf. section 2.7. Quantities, Kinds and Scopes, and section 5.,
Declarations).

69384700 A

1
W
=

2.5 NUMBERS

2.6.1 SYNTAX
< unsigned integer >::= < digit > | < unsigned integer > < digit >
< integer > = < unsigned integer > | + < unsigned integer > | - < unsigned integer >
< decimal fraction > ::= . < unsigned integer >
< exponent part > :i= 10 < integer >
< decimal number > ::= < unsigned integer > | < decimal fraction > |
< unsigned integer > < decimal fraction >
< unsigned number > ::= < decimal number > | < exponent part > |
< decimal number > < exponent part >
< number > ;= < unsigned number > | + < unsigned number > |

- < unsigned number >

2.5.2 EXAMPLES

0 -200.084 -.083 10 -02
177 +07.43 108 -107

.5384 9.3410+10 10-4

+0.7300 210-4 +10+5

2.5.3 SEMANTICS

Decimal numbers have their conventional meaning. The exponent part is a scale factor expressed as an integral
power of 10.

2-12 60384700 A

2.5.4 TYPES

Integers are of type integer. All other numbers are of type real {(cf. Section 5.1 Type Declarations).

real and integer numbers are represented internally

Signed numbers are treated as expressions.

60384700 A

2.6 STRINGS

2.6.1 SYNTAX

< proper string > :'= < any sequence of basic symbols not containing ‘or’> [< empty >
< open string > ;= < proper string > | ‘< open string >’ |
< open string > < open string >

< string > ::=°< open string >’

2.6.2 EXAMPLES
‘Bk,-[[[‘A=1/:"Tt”
‘. ThisUisLall‘string’’

2.6.3 SEMANTICS

In order to enable the language to handle arbitrary sequences of basic symbols the string quotes “and’ are
introduced. The symbol L| denotes a space. It has no significance outside strings.

Strings are used as actual parameters of procedures (cf. sections 3.2. Function Designators and 4.7. Procedure

Statements).

rbitrary sequences

60384700 A

2.7 QUANTITIES, KINDS AND SCOPES
The following kinds of quantities are distinguished: simple variables, arrays, labels, switches, and procedures.

The scope of a quantity is the set of statements and expressions in which the declaration of the identifier associated
with that quantity is valid. For labels, see section 4.1.3.

2.8 VALUES AND TYPES

A value is an ordered set of numbers (special case: a single number), an ordered set of logical values (special case: a
single logical value), or a label.

Certain of the syntactic units are said to possess values. These values will in general change during the execution of
the program. The values of expressions and their constituents are defined in section 3. The value of an array identifier
is the ordered set of values of the corresponding array of subscripted variables (cf. section 3.1.4.1).

The various “types” (integer, real, Boolean) basically denote properties of values. The types associated with syntactic
units refer to the values of these units.

3. Expressions

In the language the primary constituents of the programs describing algorithmic processes are arithmetic, Boolean,
and designational expressions. Constituents of these expressions, except for certain delimiters, are logical values,
numbers, variables, function designators, and elementary arithmetic, relational, logical, and sequential operators.
Since the syntactic definition of both variables and function designators contains expressions, the definition of
expressions, and their constituents, is necessarily recursive.

< expression > ;= < arithmetic expression > | < Boolean expression > | < designational expression >

3.1 VARIABLES

3.1.1 SYNTAX

< variable identifier > ::= < identifier >

< simple variable > = < variable identifier >

< subscript expression > ;= < arithmetic expression >

< subscript list > 1 := < subsci'ipt expression > | < subscript list > < subscript expression >

60384700 A 2-15

< array identifier > ::= < identifier >
< subscripted variable > ::= < array identifier > | < subscript list >]

< variable > ;= < simple variable > | < subscripted variable >

3.1.2 EXAMPLES

epsilon

detA

al7

Ql7.2]

x[sin(nXpi/2), Q [3, n, 4]}

3.1.3 SEMANTICS

A variable is a designation given to a single value. This value may be used in expressions for forming other values

and may be changed at will by means of assignment statements {section 4.2). The type of the value of a particular
variable is defined in the declaration for the variable itself (cf. section 5.1. Type Declarations) or for the corresponding
array identifier (cf. section 5.2 Array Declarations).

3.1.4 SUBSCRIPTS

3.1.4.1 Subscripted variables designate values which are components of multidimensional arrays (cf. section 5.2
Array Declarations). Each arithmetic expression of the subscript list occupies one subscript position of the sub-
scripted variable, and is called a subscript. The complete list of subscripts is enclosed in the subscript brackets [].
The array component referred to by a subscripted variable is specified by the actual numerical value of its sub-
scripts (cf. section 3.3 Arithmetic Expressions).

3.1.4.2 Each subscript position acts like a variable of type integer and the evaluation of the subscript is understood
to be equivalent to an assignment to this fictitious variable (cf. section 4.2.4). The value of the subscripted variable
is defined only if the value of the subscript expression is within the subscript bounds of the array (cf. section 5.2
Array Declarations).

2-16 60384700 A

3.2 FUNCTION DESIGNATORS

3.2.1 SYNTAX
< procedure identifier > ::= < identifier >
< actual parameter > ;= < string> | < expression > | < array identifier > |
< switch identifier > | < procedure identifier >
< letter string > :.= < letter > | < letter string > < letter >
< parameter delimiter > ::= ,|) < letter string>: (
< actual parameter list > ;= < actual parameter > |
< actual parameter list > < parameter delimiter > < actual parameter >
< actual parameter part > ;= < empty > | (< actual parameter list >)

< function designator > ::= < procedure identifier > < actual parameter part >

3.2.2 EXAMPLES

sin {a-b) S(s-5) Temperature: (T) Pressure: (P)
J (v+s,n) Compile(* :=")Stack: (Q)
R

3.2.3 SEMANTICS

Function designators define single numerical or logical values, which result through the application of given sets of
rules defined by a procedure declaration (cf. section 5.4. Procedure Declarations) to fixed sets of actual parameters.
The rules governing specification of actual parameters are given in section 4.7. Procedure Statements. Not every
procedure declaration defines the value of a function designator.

(9]

60384700 A 17

3.2.4 STANDARD FUNCTIONS

Certain identifiers should be reserved for the standard functions of analysis which will be expressed as procedures. It
is recommended that this reserved list should contain:

abs(E) for the modulus {absolute value) of the value of the expression E
sign(E) for the sign of the value E (+1 for E > 0, 0 for E=0, -1 for E < 0)
sqrt(E) for the square root of the value of E

sin(E) for the sine of the value of E

cos(E) for the cosine of the value of E

arctan(E) for the principal value of the arctangent of the value of E

In(E) for the natural logarithm of the value of E
exp(E) for the exponential function of the value of E (eE).

These functions are all understood to operate indifferently on arguments both of type real and integer. They will all

yield values of type real, except for sign (E) which will have values of type integer. In a particular representation
these functions may be available without explicit declarations {(cf. section 5 Declarations).

2 o

' The list of reserved identifiers is ve‘xpandedft”q include the fo:u,&’)?f’ing:)»‘l‘ e "

CINLIST
" OUTLIST
CINPUT
- OUTPUT

2-18 60384700 A

3.2.5 TRANSFER FUNCTIONS

It is understood that transfer functions between any pair of quantities and expressions may be defined. Among the
standard functions it is recommended that there be one, namely,

entier(E),

which “transfers’” an expression of real type to one of integer type, and assigns to it the value which is the largest
integer not greater than the value of E.

3.3 ARITHMETIC EXPRESSIONS

3.3.1 SYNTAX
< adding operator > .=+ | -
< multiplying operator > =X | /| +
< primary > ::= < unsigned number > | < variable > |
< function designator > | { < arithmetic expression >)
< factor > ::= < primary > | < factor > 1< primary >
< term > ;= < factor > | < term > < multiplying operator > < factor >
< simple arithmetic expression > ;= < term > |

< adding operator > < term > | < simple arithmetic expression > < adding operator > < term >

<if clause > = if < Boolean expression > then

< arithmetic expression > ::= < simple arithmetic expression > |

< if clause > < simple arithmetic expression > else < arithmetic expression >

60384700 A 2-19

3.3.2 EXAMPLES
Primaries:

7.394:0-8
sum

w [i+2,8]
cos (y+zX3)
(a~3/y+vu18)

Factors:

omega
sum tcos{y+zX3)
7.394: 0-8 Twli+2,8] 1 (a-3/y+vut8)

Terms:

U
omegaX sumTcos{y+zX3)/7.3491 0-81wli+2,8] 1 (a-3/y+vu 1 8)

Simple arithmetic expression:

U-Yu+omegaX sum?cos(y+zX 3)/7.3491 0 -8twli+2,8] 1
(a-3/y+vut8)

Arithmetic expressions:

wXu-Q(S+Cu)t 2

if 9 > 0 then S+3XQ/A else 2XS+3Xq

if a <0 then U+V else if aXb> 17 then U/V else if k#y then V/U else 0
aXsin(omegaXt)

0.571012Xa[NX(N-1)/2,0]

{AXarctan(y)+2)1(7+Q)

ifqthen n-1elsen

ifa<0then A/B else if b= 0 then B/A else

3.3.3 SEMANTICS

An arithmetic expression is a rule for computing a numerical value. In case of simple arithmetic expression this value
is obtained by executing the indicated arithmetic operations on the actual numerical values of the primaries of the
expression, as explained in detail in section 3.3.4 below. The actual numerical value of a primary is obvious in the
case of numbers. For variables it is the current value (assigned last in the dynamic sense), and for function designa-
tion it is the value arising from the computing rules defining the procedure (cf. section 5.4.4. Values of Function
Designators) when applied to the current values of the procedure parameters given in the expression. Finally, for
arithmetic expressions enclosed in parentheses the value must through a recursive analysis be expressed in terms of
the values of primaries of the other three kinds.

2-20 60384700 A

In the more general arithmetic expressions, which include if clauses, one out of several simple arithmetic expressions
is selected on the basis of the actual values of the Boolean expressions (cf. section 3.4 Boolean Expressions). This
selection is made as foliows: The Boolean expressions of the if clauses are evaluated one by one in sequence from
left to right until one having the value true is found. The value of the arithmetic expression is then the value of the
first arithmetic expression following this Boolean (the largest arithmetic expression found in this position is
understood). '

The construction:
else < simple arithmetic expression >

is equivalent to the construction

else if true then < simple arithmetic expression >

3.3.4 OPERATORS AND TYPES

Apart from the Boolean expressions of if clauses, the constituents of simple arithmetic expressions must be of types
real or integer (cf. section 5.1. Type Declarations). The meaning of the basic operators and the types of the expres-
sions to which they lead are given by the following rules:

3.3.4.1 The operators +, -, and X have the conventional meaning {(addition, subtraction, and multiplication). The
type of the expression will be integer if both of the operands are of integer type, otherwise real.

3.3.4.2 The operations < term >/ < factor > and < term > + < factor > both denote division, to be understood
as a multiplication of the term by the reciprocal of the factor with due regard to the rules of precedence (cf. section
3.3.5). Thus for example

a/bX7/(p-a)Xv/s

means

(((aX (" NXDX ((p-q) "X WX (s

60384700 A 2-21

The operator / is defined for all four combinations of types real and integer and will yield results of real type in any
case. The operator + is defined only for two operands both of 1y type mteger and will yield a result of type mteger
mathematically defined as follows:

a+b=sign(a/b)X entier(abs(a/b))

(cf. sections 3.2.4 and 3.2.5).

3.3.4.3 The operation < factor > 1 < primary > denotes exponentiation, where the factor is the base and the
primary is the exponent. Thus, for example

2tntk means (2MK
while
2t (nTm) means 2("m)

Writing i for a number of integer type, r for a number of real type, and a for a number of either mteger or real type,
the result is given by the following rules:

ati 1fi>0, axaX. . .Xa(i times), of the same type as a.
1fi=0,if a# 0,1, of the same type as a.
if a= 0, undefined.
1£i <0, if a# 0,1/(aXaX. . .Xa) (the denominator has -i factors), of type real.

if a = 0, undefined.

60384700 A

£
N
[)

afr 1fi> 0, exp(rXin(a)), of type real.
Ifa=0,if r> 0,0.0, of type real.

if r <0, undefined.

If a <0, always undefined.

3.3.56 PRECEDENCE OF OPERATORS

The sequence of operations within one expression is generally from left to right, with the following additional rules:

3.3.5.1 According to the syntax given in section 3.3.1 the following rules of precedence hold:

first: 1
second: X/+
third: +-

3.3.5.2 The expression between a left parenthesis and the matching right parenthesis is evaluated by itself and this
value is used in subsequent calculations. Consequently the desired order of execution of operations within an ex-
pression can always be arranged by appropriate positioning of parentheses.

3.3.6 ARITHMETICS OF REAL QUANTITIES

Numbers and variables of type real must be interpreted in the sense of numerical analysis, i.e. as entities defined
inherently with only a finite accuracy. Similarly, the possibility of the occurrence of a finite deviation from the
mathematically defined result in any arithmetic expression is explicitly understood. No exact arithmetic will be
specified, however and it is indeed understood that different hardware representations may evaluate arithmetic
expressions differently. The control of the possible consequences of such differences must be carried out by

methods of numerical analysis. This control must be considered a part of the process to be described, and will
therefore be expressed in terms of the language itself.

3.4 BOOLEAN EXPRESSIONS

3.4.1 SYNTAX
< relational operator > =<|<|= > |> [+

< relation > ::= < simple arithmetic expression > < relational operator > < simple arithmetic expression >

60384700 A 2-23

< Boolean primary > ;= < logical value > | < variable > |

< function designator > | < relation > | { < Boolean expression >)
< Boolean secondary > ;= < Boolean primary >|71< Boolean primary >
< Boolean factor > ::= < Boolean secondary > |

< Boolean factor > A < Boolean secondary >

< Boolean term > .:= < Boolean factor > | < Boolean term > V < Boolean factor >

< implication > ::= < Boolean term > | < implication > D < Boolean term >
< simple Boolean > ;= < implication > |

< simple Boolean > = < implication >
< Boolean expression > ;= < simple Boolean > |

<if clause > < simple Boolean > else < Boolean expression >

3.4.2 EXAMPLES

x=-2

Y>Vvz<q

ath > -5Az-d > q12

PAQGVXFY

g= “laAbA levdveD 1f
ifk<1thens>welse h<c

if if if a then b else c then d else f then g else h <k

3.4.3 SEMANTICS

A Boolean expression is a rule for computing a logical value. The principles of evaluation are entirely analogous to
those given for arithmetic expressions in section 3.3.3.

3.4.4 TYPES

Variables and function designators entered as Boolean primaries must be declared Boolean (cf. section 5.1. Type
Declarations and section 5.4.4 Values of Function Designators).

2-24 60384700 A

3.4.5 THE OPERATORS

Relations take on the value true whenever the corresponding relation is satisfied for the expressions involved,
otherwise false.

The meaning of the logical operators “1(not), A (and), v/ (or), D (implies), and = (equivalent), is given by the
following function table.

b1 false false true true
b2 false true false true
161 true true false false
b1Ab2 false false false true
blvb2 false true true true
b1Ob2 true true false true
b1=b2 true false false true

3.4.6 PRECEDENCE OF OPERATORS

The sequence of operations within one expression is generally from left to right, with the following additional rules:

3.4.6.1 According to the syntax given in section 3.4.1 the foliowing rules of precedence hold:
first: arithmetic expressions according to section 3.3.5

second: <<=>>+

third: 71

fourth: A

fifth: v

sixth: O

seventh: =

3.4.6.2 The use of parentheses will be interpreted in the sense given in section 3.3.5.2.

60384700 A 2-25

3.5 DESIGNATIONAL EXPRESSIONS

3.6.1 SYNTAX

< label > ::= < iidentifier > | < unsigned integer >

< switch identifier > ;.= < identifier >

< switch designator > ::= <switch identifier > [< subscript expression >]

< simple designational expression > ;= < label > | < switch designator > |
(< designational expression >)

< designational expression > ::= < simple designational expression > |

< if clause > < simple designational expression > else < designational expression >

3.5.2 EXAMPLES

17

p9

Choose [n-1]

Town [if y <0 then N else N+1]

if Ab < c then 17 else q [if w <0 then 2 else n]

3.6.3 SEMANTICS

A designational expression is a rule for obtaining a label of a statement (cf. section 4. Statements). Again the
principle of the evaluation is entirely analogous to that of arithmetic expressions (section 3.3.3). In the general
case the Boolean expressions of the if clauses will select a simple designational expression. If this is a label the
desired result is already found. A switch designator refers to the corresponding switch declaration (cf. section 5.3
Switch Declarations) and by the actual numerical value of its subscript expression selects one of the designational
expressions listed in the switch declaration by counting these from left to right. Since the designational expression
thus selected may again be a switch designator this evaluation is obviously a recursive process.

3.5.4 THE SUBSCRIPT EXPRESSION

The evaluation of the subscript expression is analogous to that of subscripted variables (cf. section 3.1.4.2). The
value of a switch designator is defined only if the subscript expression assumes one of the positive values 1,2,3,. . ..n,
where n is the number of entries in the switch list.

2-26 60384700 A

3.6.5 UNSIGNED INTEGERS AS LABELS

Unsigned integers used as labels have the property that leading zeros do not affect their meaning, e.g. 00217 denotes
the same label as 217.

4. Statements

The units of operation within the language are called statements. They will normally be executed consecutively as
written. However, this sequence of operations may be broken by go to statements, which define their successor
explicitly, and shortened by conditional statements, which may cause certain statements to be skipped.

In order to make it possible to define a specific dynamic succession, statements may be provided with labels.
Since sequences of statements may be grouped together into compound statements and blocks the definition of

statement must necessarily be recursive. Also since declarations, described in section 5, enter fundamentally into
the syntactic structure, the syntactic definition of statements must suppose declarations to be already defined.

4.1 COMPOUND STATEMENTS AND BLOCKS

4.1.1 SYNTAX
< uniabelled basic statement > ::= < assignment statement > |
< go to statement > | < dummy statement > | < procedure statement >
< basic statement > ::= < unlabelled basic statement > | < label > : < basic statement >
< unconditional statement > 1= < basic statement > |
< compound statement > | < block >
< statement > = < unconditional statement > |
< conditional statement > | < for statement >

< compound tail > = < statement > end| < statement >; < compound tail >

60384700 A 2.7

< black head > ;= begin < declaration > | < block head > ; < declaration >

< unlabelled compound > ::= begin < compound tail >

< unlabelled block > ::= < block head > ; < compound tail >
< compound statement > ::= < unlabelled compound > |
< label > : < compound statement >
< block > ::= < unlabelled block > | < label > : < block >
< program > = < block > | < compound statement >

This syntax may be illustrated as follows: Denoting arbitrary statements, declarations, and labels, by the letters S,D,
and L, respectively, the basic syntactic units take the forms:

Compound statement:

L:L:. .begin S;S;. . .S;S end

Block:

L:L:. . .beginD;D;. . .D;S;S;. . .S;

Send

It should be kept in mind that each of the statement S may again be a complete compound statement or block.

4.1.2 EXAMPLES
Basic Statements:

a:=pt+q
go to Naples
START:CONTINUE:W:=7.993

Compound Statement:

begin x:=0:f_g: y:=1 step 1 until n.d_o_
x:=x+Alyl;
_i_f_x>qthengoto STOPEIielf_x> w-2thengoto S;

Aw:St:W:=x+bob end

2-28 60384700 A

Block:

Q:begin integer i k;real w;
fof 1 = 5165 1 unll m do
fork : = it+1 step 1 until mdo
beginw:=A[ikl;
T Alixl :=A kil ;

A [k,i] :=w end for i and k
end block Q

4.1.3 SEMANTICS

Every block automatically introduces a new level of nomenclature. This is realized as follows: Any identifier
occurring within the block may through a suitable declaration (cf. section 5. Declarations) be specified to be
local to the block in question. This means (a) that the entity represented by this identifier inside the block has
no existence outside it, and {b) that any entity represented by this identifier outside the block is completely
inaccessible inside the block.

Identifiers (except those representing labels) occurring within a block and not being declared to this block will be
non-local to it, i.e., will represent the same entity inside the block and in the level immediately outside it. A label
separated by a colon from a statement, i.e., labelling that statement, behaves as though declared in the head of the
smallest embracing block, i.e., the smallest block whose brackets begin and end enclose that statement. In this
context a procedure body must be considered as if it were enclose?b—y' begilTa—nd end and treated as a block. Since
a statement of a block may again itself be a block the concepts local and nonlocal to a block must be understood
recursively. Thus an identifier, which is nonlocal to a block A, may or may not be nonlocal to the block B in which
A is one statement.

4.2 ASSIGNMENT STATEMENTS

4.2.1 SYNTAX

<left part > ::= < variable > : = | < procedure identifier > : =

< left part list > 1= < left part > | < left part fist > < left part >

60384700 A 2-29

< assignment statement > ;= < left part list > < arithmetic expression > |

< left part list > < Boolean expression >

4.2.2 EXAMPLES

s :=pl0]l :=n:=nt1+s
n:=nt1

A: = B/C-vqX$

S [v,k+2] : = 3-arctan(sX zeta)
V:=Q>YAZ

4.2.3 SEMANTICS

Assignment statements serve for assigning the value of an expression to one or several variables or procedure identifiers.
Assignment to a procedure identifier may only occur within the body of a procedure defining the value of a function
designator (cf. section 5.4.4). The process will in the general case be understood to take place in three steps as follows:

4.2.3.1 Any subscript expressions occurring in the left part variables are evaluated in sequence from left to right.

4.2.3.2 The expression of the statement is evaluated.

4.2.3.3 The value of the expression is assigned to all the left part variables, with any subscript expressions having
values as evaluated in step 4.2.3.1.

2-30 60384700 A

4.2.4 TYPES

The type associated with all variables and procedure identifiers of a left part list must be the same. If this type is
Boolean the expression must likewise be Boolean. If the type is _re_al or integer, the expression must be arithmetic.
If the type of the arithmetic expression differs from that associated with the variables and procedure identifiers,
appropriate transfer functions are understood to be automatically invoked. For transfer from real to integer type,
the transfer function is understood to yield a result equivalent to

entier{E+0.5)

where E is the value of the expression. The type associated with a procedure identifier is given by the declarator
which appears as the first symbol of the corresponding procedure declaration (cf. section 5.4.4).

43 GO TO STATEMENTS

4.3.1 SYNTAX

< go to statement > .= go to < designational expression >

4.3.2 EXAMPLES

go to Town [if y <0 then N else N+1]

go to if Ab < c then 17 else q [if w < 0 then 2 else n]

4.3.3 SEMANTICS

A go to statement interrupts the normal sequence of operations, defined by the write-up of statements, by defining
its successor explicitly by the value of a designational expression. Thus the next statement to be executed will be
the one having this value as its label.

60384700 A 2-31

4.3.4 RESTRICTION

Since labels are inherently local, no go to statement can lead from outside into a block. A go to statement may,

however, lead from outside into a compound statement.

4.3.5 GO TO AN UNDEFINED SWITCH DESIGNATOR

A go to statement is equivalent to a dummy statement if the designational expression is a switch designator whose
value is undefined.

4.4 DUMMY STATEMENTS

4.4.1 SYNTAX
< dummy statement > ::= < empty >
4.4.2 EXAMPLES

L:

begin. . .;John: ﬂ

4.4.3 SEMANTICS

A dummy statement executes no operation. It may serve to place a label.

4.5 CONDITIONAL STATEMENTS

4.5.1 SYNTAX

< if clause > .= if < Boolean expression > then

< unconditional statement > = < basic statement > |
< compound statement > | < block >

< if statement > = < if clause > < unconditional statement >

t;)
w
[3]

60384700 A

< conditional statement > ::= < if statement > | < if statement > else < statement > |

< if clause > < for statement> < label > : < conditional statement >

4.5.2 EXAMPLES

if x>0 then n:= nt1

.i_f_v>ug_1_e£V: q:=n+m else go to R

ifs <0V P<Qthen AA: ;bgir_lﬁq<v£l_1£|_a:=v/s
else y := 2Xa end
-e_|s-;ifv>sth;a:=v-q else if v>s-1
——ti;angot-o_s. -

4.5.3 SEMANTICS

Conditional statements cause certain statements to be executed or skipped depending on the running values of
specified Boolean expressions.

4.5.3.1 If statement. The unconditional statement of an if statement will be executed if the Boolean expression of
the if clause is true. Otherwise it will be skipped and the operation will be continued with the next statement.

4.5.3.2 Conditional statement. According to the syntax two different forms of conditional statements are possible.
These may be illustrated as follows:

if B1 then $1 else if B2 then S2 else S3; S4
and
if B1 then S1 else if B2 then S2 else if B3 then S3; S4

Here B1 to B3 are Boolean expressions, while S1 to S3 are unconditional statements. $4 is the statement following
the complete conditional statement.

The execution of a conditional statement may be described as follows: The Boolean expression of the if clauses are
evaluated one after the other in sequence from left to right until one yielding the value true is found. Then the
unconditional statement following this Boolean is executed. Unless this statement defines its successor explicitly the
next statement to be executed will be 84, i.e., the statement following the complete conditional statement. Thus
the effect of the delimiter else may be described by saying that it defines the successor of the statement it follows to
be the statement following the complete conditional statement.

60384700 A 2-33

The construction

else < unconditional statement >

is equivalent to

else if true then < unconditional statement >

If none of the Boolean expressions of the if clause, is true, the effect of the whole conditional statement will be
equivalent to that of a dummy statement.

For further explanation the following picture may be useful:

T T i
if B1 then S1 else if B2 then S2 else S3 ; S4
$ 31 i)
B1 false B2 false

4.5.3.2 Conditional statement
According to the syntax, three forms of unlabelled conditional statements are possible.
These may be illustrated as follows:
ifBthenS
ifBthenSelse T
_if_B then U
Here B is a Boolean expression, S is an unconditional statement, T is a statement, and U is a fﬂ statement.

The execution of a conditional statement may be described as follows:

The Boolean expression B is evaluated. If its value is true, the statement S or U is executed. If its value is false and
if the conditional statement has the second form, the statement T is executed (this statement may of course be

another conditional statement, to be interpreted according to the same rule).

4.5.4 GOTO INTO A CONDITIONAL STATEMENT

The effect of a go to statement leading into a conditional statement follows directly from the above explanation of
the effect of else.

2-34 60384700 A

4.6 FOR STATEMENTS

4.6.1 SYNTAX
< for list element > ::= < arithmetic expression > |
< arithmetic expression > step < arithmetic expression > until

< arithmetic expression > | < arithmetic expression > while < Boolean expression >

< for list > ;:= < for list element > | < for list > , < for list element >
< for clause > = for < variable > : = <for list> do_
< for statement > = < for clause > < statement > |

< label > : < for statement >

4.6.2 EXAMPLES

forg:=1stepsuntiindo Algl : =B gl
for k : = 1, VIX2 while Vi <N do
f(zl:j: =I+G,L,1.stﬁ3.1 E_l:l_'fi_lN,C‘f‘D_d_O.
A lk,j] : =B [k,j]

4.6.3 SEMANTICS

A for clause causes the statement S which it precedes to be repeatedly executed zero or more times. In addition, it
performs a sequence of assignments to its controlled variable. The process may be visualized by means of the
following picture:

i T

Initialize ; test ; statementS ; advance ; successor
{ t
| for list exhausted |

In this picture the word initialize means: perform the first assignment of the for clause. Advance means: perform the
next assignment of the for clause. Test determines if the last assignment has been done. If so, the execution continues
with the successor of the for statement. If not, the statement following the for clause is executed.

60384700 A 2.35

4.6.4 THE FOR LIST ELEMENTS

The for list gives a rule for obtaining the values which are consecutively assigned to the controlled variable. This
sequence of values is obtained from the for list elements by taking these one by one in the order in which they are
written. The sequence of values generated by each of the three species of for list elements and the corresponding
execution of the statement S are given by the following rules:

4.6.4.1 Arithmetic expression. This element gives rise to one value, namely the value of the given arithmetic
expression as calculated immediately before the corresponding execution of the statement S.

2-36 60384700 A

4.6.4.2 Step-until-element. An element of the form A step B until C, where A B and C are arithmetic expressions,
gives rise to an execution which may be described most conclsely in terms of additional ALGOL statements as follows:

V:i=A;
L1 :if(V-C)Xsign(B) > 0 then go to element exhausted;
“statement S ; -
V:=V+B;
gotolL1;

where V is the controlled variable of the for clause and element exhausted points to the evaluation according to the
next element in the for list, or if the step-until-element is the last of the list, to the next statement in the program.

4.6.4.3 While element. The execution governed by a for list element of the form E whlle F, where E is an arithmetic
and F a Boolean expression, is most concisely described in terms of additional ALGOL statements as follows:

L3: V:=E;
if "1 F then go to element exhausted ;
Statements S ;
wwl3;

where the notation is the same as in 4.6.4.2, above.

4.6.5 THE VALUE OF THE CONTROLLED VARIABLE UPON EXIT

Upon exit out of the statement S (supposed to be compound) through a go to statement the value of the controlled
variable will be the same as it was immediately preceding the execution of the go to statement.

If the exit is due to exhaustion of the for list, on the other hand, the value of the controlled variable is undefined
after the exit.

2
w
~

60384700 A

4.6.6 GO TO LEADING INTO A FOR STATEMENT

The effect of a go to statement, outside a for statement, which refers to a label within the for statement, is undefined.

4.7 PROCEDURE STATEMENTS

4.7.1 Syntax

< actual parameter > ;= < string > | < expression > | < array identifier > |
< switch identifier > | < procedure identifier>

<letter string > = < letter > | < letter string > < letter >

< parameter delimiter > ::= |) < letter string > : (

< actual parameter list > ::= < actual parameter > | < actual parameter list > < parameter delimiter > < actual parameter >
< actual parameter part > = < empty > |

(< actual parameter list >)

< procedure statement > ::= < procedure identifier > < actual parameter part >

2-38 60384700 A

4.7.2 EXAMPLES

Spur(A)Order: (7)Result to: (V)
Transpose (W, v+1)

Absmax (A,N,M,Yy,1 K)

innerproduct (A [t,P,u] ,B [P] ,10,P.Y)

These examples correspond to examples given in Section 5.4.2.

4.7.3 SEMANTICS

A procedure statement serves to invoke (call for) the execution of a procedure body (cf. Section 5.4. Procedure
Declarations). Where the procedure body is a statement written in ALGOL the effect of this execution will be
equivalent to the effect of performing the following operations on the program at the time of execution of the
procedure statement:

4.7.3.1 Value assignment {call by value)

All formal parameters quoted in the value part of the procedure declaration heading are assigned the values (cf. section
2.8. Values and Types) of the corresponding actual parameters, these assignments being considered as being performed
explicitly before entering the procedure body. The effect is as though an additional block embracing the procedure
body were created in which these assignments were made to variables local to this fictitious block with types as given
in the corresponding specifications (cf. Section 5.4.5). As a consequence, variables called by value are to be considered
as non local to the body of the procedure, but local to the fictitious block (cf. section 5.4.3).

4.7.3.2 Name replacement (call by name)

Any formal parameter not quoted in the value list is replaced, throughout the procedure body by the corresponding
actual parameter, after enclosing this latter in parentheses wherever syntactically possible. Possible conflicts between
identifiers inserted through this process and other identifiers already present within the procedure body will be
avoided by suitable systematic changes of the formal or local identifiers involved.

4.7.3.3 Body replacement and execution

Finally the procedure body, modified as above, is inserted in place of the procedure statement and executed. If the
procedure is called from a place outside the scope of any nonlocal quantity of the procedure body the conficts
between the identifiers inserted through this process of body replacement and the identifiers whose declarations
are valid at the place of the procedure statement or function designator will be avoided through suitable systematic
changes of the latter identifiers.

60384700 A 2-39

4.7.4 ACTUAL-FORMAL CORRESPONDENCE

The correspondence between the actual parameters of the procedure statement and the formal parameters of the
procedure heading is established as follows: the actual parameter list of the procedure statement must have the same
number of entries as the formal parameter list of the procedure declaration heading. The correspondence is obtained
by taking the entries of these two lists in the same order.

4.7.5 RESTRICTIONS

For a procedure statement to be defined it is evidently necessary that the operations on the procedure body defined
in sections 4.7.3.1. and 4.7.3.2. lead to a correct ALGOL statement. This imposes the restriction on any procedure
statement that the kind and type of each actual parameter be compatible with the kind and type of the corresponding
formal parameter. Some important particular cases of this general rule are the following:

4.7.5.1 If a string is supplied as an actual parameter in a procedure statement or function designator, whose defining
procedure body is an ALGOL-60 statement (as opposed to non-ALGOL code, cf. Section 4.7.8.), then this string
can only be used within the procedure body as an actual parameter in further procedure calls. Ultimately it can only
be used by a procedure body expressed in non-ALGOL code.

4.7.5.2 A formal parameter which occurs as a left part variable in an assignment statement within the procedure body
and which is not called by value can only correspond to an actual parameter which is variable (special case of
expression).

4.7.5.3 A formal parameter which is used within the procedure body as an array identifier can only correspond to an
actual parameter which is an array identifier of an array of the same dimensions. In addition, if the formal parameter
is called by value the local array created during the call will have the same subscript bounds as the actual array.

4.7.5.4 A formal parameter which is called by value cannot in general correspond to a switch identifier or a procedure
identifier or a string, because these latter do not possess values (the exception is the procedure identifier of a proce-
dure declaration which has an empty formal parameter part (cf. section 5.4.1) and which defines the value of a func-
tion designator (cf. section 5.4.4). This procedure identifier is in itself a complete expression).

4.7.5.5 Any formal parameter may have restrictions on the type of the corresponding actual parameter associated
with it (these restrictions may, or may not, be given through specifications in the procedure heading). In the proce-
dure statement such restrictions must evidently be observed.

240 60384700 A

4.7.6 DELETED

4.7.7 PARAMETER DELIMITERS

All parameter delimiters are understood to be equivalent. No correspondence between the_ parameter d_elimiters used
in a procedure statement and those used in the procedure heading is expected beyond their number being the same.
Thus the information conveyed by using the elaborate ones is entirely optional.

4.7.8 PROCEDURE BODY EXPRESSED IN CODE

The restrictions imposed on a procedure statement calling a procedure having its body expressed in noin-ALGOL code
evidently can only be derived from the characteristics of the code used and the intent of the user and thus fall outside

the scope of the reference language.

5. Declarations

Declarations serve to define certain properties of the quantities used in the program, and to associate them with
identifiers. A declaration of an identifier is valid for one block. OQutside this block the particular identifier may
be used for other purposes (cf. section 4.1.3.).

Dynamically this implies the following? at the time of an entry into a block {through the begin, since the

labels inside are local and therefore inaccessible from outside) all identifiers declared for the block assume the
significance implied by the nature of the declarations given. If these identifiers had already been defined by
other declarations outside, they are for the time being given a new significance. 1dentifi hich are not declared

for the block, on the other hand, retain their old meaning.

At the time of an exit from the block (through end, or by a go to statement) all identifiers which are declared for
the block lose their local significance.

A declaration may be marked with the additional declarator own. This has the following effect: upon a re-entry into
the block, the values of own quantities will be unchanged from their values at the last exit, while the values of
declared variables which are not marked as own are undefined. Apart from labels and formal parameters of procedure
declarations and with the possible exception of those for standard functions (cf. sections 3.2.4 and 3.2.5), all
identifiers of a program must be declared. No identifier may be declared more than once in any one block head.

Syntax

< declaration > ::= < type declaration > | < array declaration > | < switch declaration > | < procedure declaration >

60384700 A 241

5.1 TYPE DECLARATIONS

5.1.1 SYNTAX

< type list > = < simple variable > | < simple variable >, < type list >

<typé>::=_r2l|_i_tm|Boolean
< local or own type > ::= < type > | own < type >

< type declaration > = < local or own type > < type list >

5.1.2 EXAMPLES

integer p,q,s
own Boolean Acryl,n

242 60384700 A

5.1.3 SEMANTICS

Type declarations serve to declare certain identifiers to represent simple variables of a given type. Real declared
variables may only assume positive or negative values including zero. Integer declared variables may only assume
positive and negative integral values including zero. Boolean declared variables may only assume the value frue
and false. —

In arithmetic expressions any position which can be occupied by a real declared variable may be occupied by an
integer declared variable.

For the semantics of own, see the fourth paragraph of Section 5 ahove.

s

e

S
-

60384700 A 243

5.2 ARRAY DECLARATIONS

5.2.1 SYNTAX

< lower bound > ::= < arithmetic expression >

< upper bound > := < arithmetic expression >

< bound pair > '= < lower bound > : < upper bound >

< bound pair list > ::= < bound pair > | < bound pair list> , < bound pair >

< array segment > ;.= < array identifier > [< bound pair list >]| < array identifier > , < array segment >
< array list > := < array segment > | < array list > , < array segment >

< array declaration > :'= array < array list > | < local or own type > array < array list >

5.2.2 EXAMPLES
array a,b,c [7:n,2:m] ,s [-2: 10]
own integer array A [if ¢ <0 then 2 else 1:20]
real array q [-7:-1]
5.2.3 SEMANTICS
An array declaration declares one or several identifiers to represent multidimensional arrays of subscripted variables

and gives the dimensions of the arrays, the bounds of the subscripts and the type of the variables.

5.2.3.1 Subscript bounds. The subscript bounds for any array are given in the first subscript bracket following the
identifier of this array in the form of a bound pair list. Each item of this list gives the lower and upper bound of a
subscript in the form of two arithmetic expressions separated by the delimiter : The bound pair list gives the bounds
of all subscripts taken in order from left to right.

5.2.3.2 Dimensions. The dimensions are given as the number of entries in the bound pair lists.

244 60384700 A

5.2.3.3 Types. All arrays declared in one declaration are of the same quoted type. If no type declarator is given, the
type real is understood.

5.2.4 LOWER UPPER BOUND EXPRESSIONS

5.2.4.1 The expressions will be evaluated in the same way as subscript expressions (cf. section 3.1.4.2.).

5.2.4.2 The expressions can only depend on variables and procedures which are non local to the block for which the
array deciaration is valid. Consequentiy in the outermost biock of a program oniy array deciarations with constant
bounds may be declared.

5.2.4.3 An array is defined only when the values of all upper subscript bounds are not smaller than those of the
corresponding lower bounds.

5.2.4.4 The expressions will be evaluated once at each entrance into the block.

5.2.5 THE IDENTITY OF SUBSCRIPTED VARIABLES

The identity of a subscripted variable is not related to the subscript bounds given in the array declaration. However,
even if an array is declared own the values of the corresponding subscripted variables will, at any time, be defined
only for those of these variables which have subscripts within the most recently calculated subscript bounds.

60384700 A 245

5.3 SWITCH DECLARATIONS

5.3.1 SYNTAX

< switch list >::= < designational expression > | < switch list > < designational expression >

< switch declaration > = switch < switch identifier > := < switch list >

5.3.2 EXAMPLES

switch S := $1,52,Q[m] ,if v> -5 then S3 else S4

switch Q:= p1,w

5.3.3 SEMANTICS

A switch declaration defines the set of values of the corresponding switch designators. These values are given one by
one as the values of the designational expressions entered in the switch list. With each of these designational expres-
sions there is associated a positive integer, 1,2,. . ., obtained by counting the items in the list from left to right. The
value of the switch designator corresponding to a given value of the subscript expression (cf. section 3.5. Designational
Expressions) is the value of the designational expression in the switch list having this given value as its associated
integer.

5.3.4 EVALUATION OF EXPRESSIONS IN THE SWITCH LIST

An expression in the switch list will be evaluated every time the item of the list in which the expression occurs is
referred to, using the current values of all variables involved.

535 INFLUENCE OF SCOPES
If a switch designator occurs outside the scope of a quantity entering into a designational expression in the switch
list, and an evaluation of this switch designator selects this designational expression, then the conflicts between the

identifiers for the quantities in this expression and the identifiers whose declarations are valid at the place of the
switch designator will be avoided through suitable systematic changes of the latter identifiers.

5.4 PROCEDURE DECLARATIONS

5.4.1 SYNTAX
< formal parameter > = < identifier >
< formal parameter list > ;= < formal parameter > |

< formal parameter list > < parameter delimiter > < formal parameter >

2-46 60384700 A

< formal parameter part > ;= < empty > | { < formal parameter list >)
< identifier list > = < identifier > | < identifier list > , < identifier >

< value part > ::= value < identifier list> ; | < empty >

< specifier > = string | < type > | aray | < type > array | label | switch | procedure | < type > procedure

< specification part > = < empty > | < specifier > < identifier list > ; |

< specification part > < specifier > < identifier list> ;

< procedure heading > ::= < procedure identifier > < formal parameter part > : < value part > < specification part >

< procedure body > ::= < statement > | < code >

< procedure declaration > .= prooedure<prooedureheading><procedurebody>l

< type > procedure < procedure heading > < procedure body >

650384700 A 247

5.4.2 EXAMPLES (SEE ALSO THE EXAMPLES AT THE END OF THE REPORT)

procedure Spur (a) Order: (n) Result: {s); value n;
array a; integer n; r_ea_!s;

begin integer k;

s:=0;

for k:=1 step 1 until ndo s:=s+a [k k]

end

procedure Transpose {a) Order: (n) ; value n ;
array a ; integer n ; -
begin real w ; integer ik ;

for i:= —1—step 1 until ndo

— for k:=1+i ste step n untll n do

begm w:=a ikl
a[ik] :=a [k,i]
alk,i]l :==w
end

end Transpose

integer procedure Step(u) ; realu ;
Step =if 0<u Au<1then n 1 else 0

procedure Absmax (a) size: (n,m) Result : {y) Subscripts : (ix);
comment The absolute greatest element of the matrix a, of size n by m is
transferred to y, and the subscripts of this element toiand k ;
array a; mteger nm,ik; real Y,
begin mteger P.q;
Y= 0
forp =1 step 1 untll ncloforq =1 step1 until mdo
|f abs (alpql) >y then my =abs (alp,gl) ;i:==p;
k:=q
end end Absmax

procedure Innerproduct (a,b} Order: (k,p) Result: (y) ; value k ;
integer k.p ; real y,a,b ; T
beginreal s ;—

£=0;

for p:= 1step 1 Eriilkdos:=s+a><b;

y:i=s -

ﬂl_ Innerproduct

5.4.3 SEMANTICS

A procedure deciaration serves to define the procedure associated with a procedure identifier. The principal
constituent of a procedure declaration is a statement or a piece of code, the procedure body, which through

the use of procedure statements and/or function designators may be activated from other parts of the block

in the head of which the procedure declaration appears. Associated with the body is a heading, which specifies
certain identifiers occurring within the body to represent formal parameters. Formal parameters in the procedure

248 60384700 A

body will, whenever the procedure is activated (cf. section 3.2 Function Designators and section 4.7 Procedure
Statements) be assigned the values of or be replaced by actual parameters. Identifiers in the procedure body which

are not formal will be either local or nonlocal to the body depending on whether they are declared within the body
or not. Those of them which are nonlocal to the body may well be local to the block in the head of which the pro-
cedure declaration appears. The procedure body always acts like a block, whether it has the form of one or not.
Consequently the scope of any label labelling a statement within the body or the body itself can never extend beyond
the procedure body. In addition, if the identifier of a formal parameter is declared anew within the procedure body
(including the case of its use as a label as in section 4.1.3.), it is thereby given a local significance and actual parameters
which correspond to it are inaccessible throughout the scope of this inner local quantity.

5.4.4 VALUES OF FUNCTION DESIGNATORS

For a procedure declaration to define the value of a function designator, there must, within the procedure body, occur
one or more explicit assignment statements with the procedure identifier in the left part; at least one of these must be
executed, and the type associated with the procedure identifier must be declared through the appearance of a type
declarator as the very first symbol of the procedure declaration. The last value so assigned is used to continue the
evaluation of the expression in which the function designator occurs. Any occurrence of the procedure identifier
within the body of the procedure other than in a left part in an assignment statement denotes activation of the
procedure.

5.4.5 SPECIFICATIONS

In the heading of a specification part, giving information about the kinds and types of the formal parameters by means
of an obvious notation, may be included. In this part no formal parameter may occur more than once. Specifications
of formal parameters called by value (cf. section 4.7.3.1) must be supplied and specifications of formal parameters
called by name (cf. section 4.7.3.2) may be omitted.

60384700 A 2.49

5.4.6 CODE AS PROCEDURE BODY

It is understood that the procedure body may be expressed in non-ALGOL language. Since it is intended that the use
of this feature should be entirely a question of hardware representation, no further rules concerning this code language

can be given within the reference language.

60384700 A

. T T——— it T e e e i -;,v»w;«;,xm s
e s p,sas:g«‘y;m ;Z «w»«»—w=~':>§sz~~gsz¢::§~;tf>‘;ﬁz IR RS S ,.«ga-,;g;@.pg ,W;:zw,,*? e et Ew, .A{,:z«‘ m o >«?gs:‘z,g;;*;q:étz;:§ g ‘va);«;},,.'i{;u!,':ﬁi'
The declaration may, but i ot nces ﬁm’ &mf“ Seations of ail formal parameisrs of the procedure.
i ration o cohut o L CSPCLAIILALIOITS x ‘s;, aaltal s paldiilb t Ol the PIroCec w&w»"a&‘
ﬁ e f - *“a § e e o
ms »iwxlf’lv"5~‘ » ,\:z*v >-, Mw C: w ‘; ;Lgtv» 2":"?1‘;»,‘ . e g it mm 5«:7_ “—»;{ffv'«'»«;,w,y“,,z;(ég'«,ﬁx;::&:j;«,;.” i f«, Lk,yiq,;;zég;‘s‘, i),: ;',M ,w‘u:,««;\i
i O i it : R S R TR e i
Séz 3 Qi zw : AR i g GUEe e i SRR e s.m;y e ,«,d,w«;,.,,w S
d TR ot » »x ol e «w«nxz,\:w‘v“iz o : . Sl e e e
:w;i-,“ff';fnf«z;?l".‘vﬂtt«' < e G + L e w»r;«,:;g?‘u zy‘itl‘é?i*%”ih . :"‘:ii;{’gi‘:'ig‘»,'-;;‘:ﬁ‘,ﬁvi{,;;%;&}%;
P i 3 m;vw; Z,f#i;:;hg:‘;é1,;;“7:455;:;%»,\ B Sina gggy;w‘k,“gzw Bl »,w e nxm’tgy:,yq;x,lf!)ﬁ,éx_‘~~ L
[“‘H* o “‘;‘5' . Lg 1‘ z‘i~~’<¥tﬁ“~if~ . ‘w”'w e 1 mw L ,.uwm;:: 5&-’ e
S m Lo L . Qﬁl{m $ﬁP y from
».,;; P : : C urESA i B e DU AN ey -y,] g,/,ﬁ«,,,u,e.‘,.u,; SR it i"*"*u*;z:-%:: vwscwa(; et
{.:1» f ‘ .z « Geles ol gl beckmia it et o &972,;«3* Aa SRR f G L it il rrm*«r‘rxwxu(",’u'vmwtz«z i
S e, zww.;m b ,, (‘w.:‘,‘li@;, wr»wéwzx,«:' A ;«m;«ﬁ' g.u,\,«gu Foaman u.«fﬂ~-;~ o End e et e
w«‘«»-"»‘-":« o G m\u;«' ts‘@%‘ty i S g S S %,, : f’:;'; i e
i “fr ¥ i‘ Are e ﬁ 5 Bt S SR B o
o i ¢ oy atc 1 holmminnthop it it A e Lt e
i i »,,m:zm»«ug,‘ 1 _«M;»«;M;wlwzzrg’%h i : i L dhn
i L B e SE R e R ; : ‘s R R et
s S s zz’f’;ty%:"; @«’,ﬁ;,c”ﬁ»t';‘«;xim’ L ;’;«;‘:‘” 'fzv;i’wwm,‘« R ,a,m i nh,‘* e R
= ~,"<«~,«;;K.ﬁ» m;»,z,V,m@,r;r:;é,az;n@z,y’w;.;,> Lanhany 9; W»“«;‘E’[{l:(”u‘wa::x G ,xﬁa : - G e :’:w»-,:ag.:«é e
£ : wsrmv«“i‘ et ‘“WI Lf’év S ,;' ‘fv'&‘”" s e e g i v N
o v ~~5 e amhg,a > q G S : i il
i e i ‘, el «\; P ‘ 5 f:, \ E b S
. es. Y ~~“iﬂ '“Ej ~=‘~2" f' Iv fﬁ E e S gz«,w;?sggm b :z?\:sz’«L‘,J;'«{?ié‘;;'%ziéifﬁ?’zé
e m;i .r,:,{w;z,g e . e i e
i IEDACTE g elaag e
L AREA ER GE* are compiled program. .. |
- st o p mse;»::;z»;s:~s:=.téﬁ~~"&¢‘::LL, SR S ‘7':3",“‘,‘33;,,;ﬁuii*«ii’"g:i"%3321351?E:Ei‘::’«_?::%?;;;;é? i z:&z{“gz’g‘:h;séa§xi‘ﬁwsx
F ‘?’;;.>§§,’,§f§;;g¢§<L§},\,=};‘«2;;:‘iizz%xi%igg;%ﬂg;igﬁz i w»-m;x,;gt;‘:‘,§s’r§";*~‘;4,:;gnf,§“‘xz;¢~ . SREh IS
b s sl Ml ‘;;“I“w; S S e 1& i e
- o e o *s‘ S - L L
s '; '1‘ - ‘Iw o b fi e e . . o
[Bs e G o o e e i x..k.‘b.‘g;g b L .
| Q% L. S e . .. e
L e e L :;15,15;;sygu;y;;fgg@;g;;;::ggézz
: i S e R ,zz:«,:’z:w»g:ﬁu‘mvwi‘:;ig Connle T e Sndsrianbasn e
. . o ;z {‘ L,?»;F‘;M - o .
S s s e e e e prnsli e s e s i el Sl
Sl L «.‘:s»x:‘,f.gfsgff’wxm sl
Soini e).&mm,. Sl e cie il e e e
T e .. e o . ..
Gk Sl R s i e S e Ca e e e e e e R i & e e
| i .. ;ﬁ:s;w:é%fﬁ:ﬁ.z:é« . e s;;*;z%éff%gi%e%g'fséz:r;*i‘?::3;<5’éa=i¥3£z L e o
TmmEREMR G 'm,‘z;»u,-nz;;,:}\,q~;3¢zzgu.;'¢~(§:55;,; ,,MH ":_ﬁ«, e e el s i K s
g s e e i S «M.»;w,:w(,-r,zW»«m, D R i G S
& A», it uuzm..mna—,\r, SIS e i S e - SR SRR e R S
St e e S ey m};: i ?\e}qﬁ“ i L L R R e
R e e T C1id N ALK RN WE ¥ o iy s G Rl S s e i LR
S :“m‘:“r-ﬂwg».:ﬁs&&!ﬁ?@tiw DL ,u%ﬁ;‘:‘z St il s Wm} “ - e e
. .uwa—,—lw—a———v——u v&:ﬁ:::a':'«mz:t,,::"‘?s‘cii‘""z‘gﬁ%‘ﬁ:~'x%‘:»::ﬁ>’ :“éa‘wgm e ss‘&s‘wi s e ~"~‘;L;11;§:i ‘:;ii%iz;::w? o
i‘"v'?”"‘%‘:litvcb"ﬁ"‘» Loiia ,m - »; w;;; e - B s . o
s xm f nl
e UC LAIWIELE, Ut] ;“’ i e . e e
e .»gt i ‘“«’:*»:m;(g :‘,:H,, oy R e s S e
o R b e e i e
szs'ax,ﬁ«:el"rgz»m ’:’;wit;m' L m;;, . e
L 1T OWER 1] *tiki«(;‘;w%;‘».z;%«, . L
G am o a% i . L
e e Eutiv«»-,;ﬁ Y mng;»;:w i s e R
Ll - ol el L e e e
£I;7&‘§;;wz",‘w>“ i ,’.’qcm‘ L -,&z*'»: ‘, St 5 i e e
LRty i y ,« VB .f; moi & Al G B e e
e ‘z g‘, L AY BT 7 e T Lo
M. SRR e g 'r,wﬁg;,w;‘- S R R P e]
L o u«.uuxz‘m,,»i ‘m,a.u,;;ev;:«.aL;a:«k,;gg:' o L
fle ey e i e e 4 i Mt S s
G i L - R
Ty S i o i i i:»»safﬂ-f»r».,;f::w'w:?r,?im%‘,
fie i i S ;y:zzm i el e
e Ev{‘sa;?’ssaati':lse‘-i%asz&%,, : ;i?n«-#‘!"liiié“ . e
s . %avriv’si;z»:“%%‘zi::’”"“;, P S Gin R
fd e ,‘,~~;:—'*’-‘rth‘iz:,fif« L ¥ e
fros v vediy v ?é%“‘r-"x S
f : ! L o senaenies e
e | aiar s neaienil ,@z e e S
N S L . - .
e 4’:' itk e b S e 5 SEb
o i M Imz’: i “"M"“:ﬁ :f,ﬁ‘ G ;* s S . *‘k“*’*"’kz« Bl .
f i if i m :‘»t’ : o o e >~,“,>:*¢1>L,: i *anm e ”’”x o Baad ’E‘iz;:a;v’f;
o B 5 Sheindy ;:w= e - ;,w;:kf\i; \""a§~;~';v:“:=,, e e ‘ﬁs'xizi.«i‘f;:s;k:@z e
£ tx,:%f%ea« "=§«~«xz:;=,‘;z.‘:‘:% . ,g‘t“’tfsip%’z‘ﬁ;;z,%%‘z;fizsﬁ:m'f‘;"::“*ﬂ - - 55“2’;,1’\ w&;i:w . "z%ﬁ' L z:‘,»mgf?cvzig;z‘z=
fo g' s R S i e i mw; e h:: W«; e
na B Sa i?"mtr;V(‘u,7:,‘,‘,7“*“«"‘34::*«"‘6“«&*“**‘,“:-’;"'w‘z»z’"‘f*'"*“‘-7‘;*“‘7’3 S x;féi‘;*‘{:;‘:rr»x.:;;,’a%ﬁ:;‘s«:s, i ';r; g ey
bl . ks) fi»i;l"t:iw el i s e S R e
¢ i L u,M-‘N Ry ,,;;M Aol SRR B RIS R Ry i t ;'\'»L S
e '?»‘“,’j‘)&;%;{u»#i;kf, {"’H.;w‘».,i&« G S e s e Gt . ",z::‘*z“
G P ; mli»'esl,.zn e G *,"“L«i‘v’ i) T A o »»v\,;‘;g:}gtmt”'” % 2 i il
)‘ 4 i 4 b 2 5 " i %d N f i Yk SRR it o
?Ef’»#‘—"iﬁ':”¢“:"-~r""2*1‘4““ o (\;2, J,‘r"f‘;.:«i?{:fi;‘&is? ; g mm‘; P e t" it »,v i ‘Tiﬂ‘n}u ::vz STRLL T e i ““w{:iw%;?ﬁ‘;%*aj-ﬁvviﬁa(;z;‘;,jw ’mﬁ W Lo o ««,wi, o *,;;:ga*‘,
P :,,Mg‘;;‘:w»Q%’»“»i‘)”;i};ii‘[lA ""_"”T' “‘E" il n’:z;géé*%‘:iii;‘}fg‘fr‘;gté§‘-A£:ém;~s:‘«§i’5’$2 75;3.; :-«z‘:%r:wt‘:w ‘z‘«"”‘,'r“:;‘f‘%il“i‘,é‘% S w«;\\;:;!;y;;s,kg, ‘ ,g ~; i 51
hr&"i‘tr::m:,w,w i t”»ll’/rr E o S 3 i LR r,(»;;(,z'néi;rbu hed '&7% ’1;‘*
i S S i L s o L o
o e g;’»,’ éﬂd* m-é e L s nn e
S TR R o £ 8 £ 8 Ruri e Sl SRR G e S -
xm;?ﬁm%&m:«-.“w i t‘ﬁ:' S i ;;m e »;;‘«m;yz.:vxq, e Ciiiienae gﬁ, m S
. zw"w“ ,§:%‘;‘é:n*"bnmx;‘x sa:m::zg-«u ; m%‘,s»%"“""‘ L ‘Qﬁ;’:*u Gy 1"231 . = e
bt e e A i : 5 i i A ««vtx({ i et
Elsii A Bk «»«nw f«»‘z» R R e Gndinindad
i ,.w»::,. x:u £ '-,\«;%wwn;t‘ ~~" Gaiat G G = b i i
@ Xﬁ,.gii, 3{"‘*‘%"5’““% fy I L o . L Bt
A Iﬁ(’:&"y i o i »»»mz~-m;yz1xa«ﬁ-‘:w‘q g L G ft
B ‘m:‘«' L 2 e o S e e
oo 1 ,.%1&,;aszuﬁém,%,f::t' i “gg ;;»:;kgg;:iﬁmgg L
G . o 4 e “ﬁ*“-ﬁ"ﬁ&‘:!&‘xi?ii\;ﬁz&eié::?‘
A ; i o i e e
bl e o Ll f e e x»mgcz;g« s e > L
oy B . ;quf S ,.ymg‘; il Ax",:;l;, e »
¢~“xi?ié’;?§‘i}‘§z S o Sh Ll e e S
G i y "'\3 i e e e %
&x{ﬁ;@g@;‘ : : - J..,{‘,xw e S i
b e, y. i i % L LG SR , i e w i R
T L L L S T . L C
S S0 =0 S . o . . “S‘M w’;’fe
o o Batheti b %wza i 4 R 5 o
. m&s‘%ﬁ%} S Lan z%“:?fﬁ i Gl i o L ww
by . M*Mug Al o e e L
i?’;?‘«!%ﬂ”ﬁ?*,‘r‘r?%‘at‘!r:u s z: Cog ¥ e *‘~:xz%«‘ - e ; <.=,%;s’.‘;ﬁxga,;;g
e %m 'ﬂ 1 a0 ”n‘x‘g o &M .
. . il = e e e §L‘3>§:;;wiw,,iw‘z‘ﬂ‘»’*’ .v“ ”\z-zw &
MR s w.Vuc}Ai;fiﬁf 7 L - e e ““5"““ s -v*‘f‘i‘"’*’“ “‘"‘“‘-"‘“’“’ “’1”“ %
L e e . 5;&;»;; . .
b % ;,wwzx«iw;‘;;«,m,z,: i ,~‘»=~,:;ux o R ,z: R {.(W
bon e Gl e Gy i U e e 2
A e ~«z‘~§.~ata»‘w«‘*;’»*” :'*«,,gsw;z, Sl e . : wg«
iﬁi‘tx’;&tfﬁ’fi‘l;‘é 5 o i ‘1‘ SR ?a«",
A Ganlan s e R S o
. ,-wisf,‘ o "5236’5;);?{;{1@111Q,—%%ﬂé‘z%%f'.ggitiiﬁi - o
foe . O ; @»«,W T L fn
A a».x ot :wmzz ,h;‘:w o \ i
A L - e‘ e G
. - : L s
o e e
L o ..
fis .7 L@LL,Z”’“"?E‘%;&: S
Do T i s it
St i o e 1»::’,‘;1;1 ﬁ“’xw’w LR -
T z;yn:««wmt" e ,11?1:"%‘;;31:,2,247:,’;w*»;,};. o s ”5I?*%?*’%’Ervztsﬁ"?‘{f” e G : o
e o S :f;‘wh;:, o L QY B TA i :
R e iy di o
i L S SR o
1&;’." «um,u: i S ;w;«(M,m o
e li«i e
o Hii »’v,Z,li'.?a;,Ii R :
o b o
b e o % f:l*«tsx‘~'.s>."«;‘,,;:‘«»£'~- r;ui piha
«,ieg»,'j;’j*‘v:ayt,fr,:«tza,;zngw1}:nw:.:w.z~ u.'z‘gm,““ i i i Zz?é:',,z-,s'ﬁft,it‘y‘?& frgaitinil , i Sl :
e T e ;‘f’;,m,mwwz:r»"w "r,;' Lol -
;,ugs:;m«»,;a:«:sz;wenﬂ LA e :w.«:':u’;m;«q.:'m;:v;:‘,:i B S
e v B u. f‘ir«z"“‘,"‘,“";«t‘ﬂ{f»,'“r G s i i
L e o v'-iéfs?tn»x“~>-%**~f»'*‘-i‘t“ié‘% ~*’>i;"ﬂ~=w - -
o S «‘:“,"’»*:»’"';"L’Lw S b sl e »f';‘; e ,\»,;ta
S e e 1 P
i ;;(w, .;z 1,»,, W S ,,i 4 hm,‘,k q S .
n h, cn::xdtexample the.,fi‘ust -p.. [d -rns rep, : g nun w,b.s;r« L
’:n s U i e i b e 1 _ h f 3
: he adiy }g, ~t~he:~,zdemlfyw g na: A SE has't eeﬂ ange eu Qr al paramgter nam s
,M Al i ™ G o “. i «, o i EEL S e L ,.;t.. R
AandB : o thispron . ‘name MEAN . The A '*ERAAGE sh' id be
.»B Referel}ces to th], To, a:e o fh name | EAN; e called AVERAGE should be ¢
s & i i i R R e R T “zz;w e ‘x i
S e ,, g e s iy ,, .L,,;,u,sk, e 3 :«z,(«,;;«,«,)uun,.,ly Q,Ih.a“w.-m, ‘31\, i ~;;.=w. G z‘:{;yn«»‘,-,,k, xtw; m‘w-ﬂ “;’L i
: p tei ZW" t e co e'n . L
e e " ,,,, t‘i‘ R "m g G _g_:;«m i e ;m FRate e w__uh,'f\”_j.' S B e i

60384700 A

: ffil p'rbcedurf': SQUAREAVERAGE i
WI__t_l_qLDWHIGH o
real LOW HIGH;

 codesat;
| realX,Y,8,50Q;

2-52 60384700 A

Examples of Procedure Declarations

Example 1.
procedure euler (fct, sum, eps, tim) ; value eps, tim ;
integer tim ; real procedure fct ; real sum, eps

comment euler computes the sum of fct (i) for i from zero up to infinity by means of a suitable refined euler
transformation. The summation is stopped as soon as tim times in succession the absolute value of the terms
of the transformed series are found to be less than eps. Hence, one should provide a function fct with one
integer argument, an upper bound eps, and an integer tim. The output is the sum sum. euler is particularly
efficient in the case of slowly convergent or divergent alternating series ;

60384700 A 2

_ibggi_g lr__tzg_g ik,n,t;array m (0:15) ;@mn,mp,ds
ir=n:=t:=0;m(0): = fct(0) ; sum: =m(0) /2;
nextterm:i: =j+1 ; mn: =fct(i) ;
for k : = 0 step 1 until n do
begin mp : = {mn + mik]1)/2;m[k] : =mn;
mn : = mp end means ;
if (abs(mn) <abs(m[n])) A (n<15) then

begin ds: = mn/2 ; n:=n+1;min] :=

mn end accept
elseds:=mn;
sum: =sum +ds;
if abs(ds)<eps then t : =ttlelset: =0;
if t<tim then go to nextterm
end euler
Example 2.T
procedure RK(x,y,n,FKT eps,eta,xE,yE fi) ;!a_lu_e_ XY

integer n ; Boolean fi ;real x,eps,eta,xE ; array

v.YE ; procedure FKT ;

comment: RK integrates the system Yk’ = fk(x,y1y2,. .. ,yn) (k= 1,2, ...) of differential equations with
the method of Runge-Kutta with automatic search for appropriate length of integration step. Parameters are:
The initial values x and y [k] for x and the unknown functions yk(x). The order n of the system. The proce-
dure FKT(x,y.n,z) which represents the system to be integrated, i.e. the set of functions fk' The tolerance
values eps and eta which govern the accuracy of the numerical integration. The end of the integration internal
xE. The output parameter yE which represents the solution at x = xE. The Boolean variable fi, which must

TThis RK-program contains some new ideas which are related to ideas of S. Gill, A process for the step-by-step
integration of differential equations in an automatic computing machine, [Proc. Camb. Phil. Soc. 47 (1951}, 96] ;
and E. Froberg, On the solution of ordinary differential equations with digital computing machines, [Fysiograf.
Salisk; Lund, Férhd. 20,11 (1950), 136-152]. It must be clear, however, that with respect to computing time and
round-off errors it may not be optimal, nor has it actually been tested on a computer.

2-54 60384700 A

always be given the value true for an isolated or first entry into RK. If however the function y must be

available at several meshpoints XgXqs + + Xpe then the procedure must be called repeatedly (with X=Xy,
xE=xy 44, fork=0,1, . .. ,n-1) and then the later calls may occur with fi=false which saves computing

time. The input parameters of FKT must be x,y,n, the output parameter z represents the set of derivatives
z[k] = fk(x,y['l] ,yl21, ... ,yIn}) for x and the actual y’s. A procedure comp enters as a nonlocal identifier;

begin

array z,y1,y2,y3[1:n] ;E.' x1,x2,x3,H ; Boolean out ;
integer k.j ; own real s,Hs ;

procedure RK1ST (x,y,h, xe,ye) ;real x 5, xe jarray

y.ye.
comment: RK1ST integrates one single RUNGE-KUTTA with initial values x,y [k] which yields the output
parameters xe=x+h and ye[k], the latter being the solution at xe. Important: the parameters n, FKT, z
enter RK1ST as nonlocal entities ;

begin

array w[1:n], a[1:5] ; integer k.j ;

a[1] := ai2j := a[b] :=0n/2;a[3] := al4] :=h;
xe :=X ;

for k := 1 step 1 until ndo yelk] := w(k] :=y[k] ;

-t

7 j:= 1step 1 until 4do

begin

FKT(xe,w,n,z) ;
xe :=x+aljl ;

for k := 1 step 1 until n do

begin

wlk] :=ylkl+aljl X z[k] ;

velk]l := ye[k] +a[j+1] X z[k] /3
end k

end j

end RK1ST ;

60384700 A 2-55

Begin of program:
j_f_fi@be‘_g_i_rlH:=xE-x;s: =0endelse H: =Hs;
out: = false ;
AA:if(x+2.01XH-xE>0)=(H>0) then_
begin Hs: = H ; out: = true ; H : = (xE-x)/2
end if ;
RK1ST (x,y,2XH x1,y1) ;
BB:RK1ST (x,y,H,x2,y2) ; RK1ST (x2,y2,H,x3,y3) ;
fork: = 1step 1untilndo_
if comp(y1[k] ,y3[k] ,eta) > eps then go to CC ;
comment: comp(a,b,c,) is a function designator, the value of which is the absolute value of the difference
of the mantissae of a and b, after the exponents of these quantities have been made equal to the largest
of the exponents of the originally given parameters a,b.c ;
x:=x3;ifoutthengoto DD ;
fork: = 1step 1until ndo ylk] : =y3[k] ;
i_fs=5th_£n_ms:=0 H :=2XHeﬂif;
s:=st1;goto AA;
CC: H :=0.5XH ; out :=false ; x1 :=x2
for k :=1 step 1 until n do y1[k] :=y2[k] ;
90t BB;
DD:for k :=1 step 1 until n do yE [k] :=y3[k] ;

end RK

2-56 60384700 A

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS AND SYNTACTIC UNITS

All references are given through section numbers. The references are given in three groups:
def Following the abbreviation “def’’, reference to the syntactic definition (if any) is given.
synt Following the abbreviation “synt”, references to the occurrences in metalinguistic formulae are given.
References already quoted in the def-group are not repeated.
text Following the word “‘text”, the references to definitions given in the text are given.
The basic symbols represented by signs other than underlined words have been collected at the beginning.

The examples have been ignored in compiling the index.

+, see: plus

-, see: minus

X, see: multiply

/, =, see: divide

1, see: exponentiation

<, S, =, 2, >, #, see: <relational operator >
=, D, V,A, M, see: <logical operator >
,» S€e: comma

., see: decimal point

10, see: ten

:, see: colon

;, see: semicolon

:=, see: colon equal

Ll, see: space

(), see: parentheses

[1, see: subscript brackets

¢ see: string quotes

< actual parameter > , def 3.2.1, 4.7.1
< actuai parameter iist >, def 3.2.1, 4.7.1
< actual parameter part> , def 3.2.1, 4.7.1
< adding operator >, def 3.3.1
alphabet, text 2.1
arithmetic, text 3.3.6
< arithmetic expression >, def 3.3.1 synt 3, 3.1.1,
3.3.1,3.4.1,4.2.1,4.6.1,5.2.1 text 3.3.3
< arithmetic operator > , def 2.3 text 3.3.4
array, synt 2.3, 5.2.1, 5.4.1
m, text 3.1.4.1
< array declaration > , def 5.2.1 synt 5 text 5.2.3
< array identifier >, def 3.1.1 synt 3.2.1, 4.7.1,
5.2.1 text 2.8
< array list> , def 5.2.1
< array segment > , def 5.2.1
< assignment statement >, def 4.2.1 synt 4.1.1
text 1, 4.2.3

60384700 A

< basic statement > , def 4.1.1 synt 4.5.1
< basic symboi > , def 2
begin, synt 2.3, 4.1.1
<block >, def 4.1.1 synt 4.5.1 text 1, 4.1.3,5
< block head >, def 4.1.1
Boolean, synt 2.3, 5.1.1 text 5.1.3
< Boolean expression > , def 3.4.1 synt 3, 3.3.1, 4.2.1,
4.5.1,4.6.1 text 3.4.3
< Boolean factor >, def 3.4.1
< Boolean primary > , def 3.4.1
< Boolean secondary > , def 3.4.1
< Boolean term > , def 3.4.1
< bound pair > , def 5.2.1
< bound pair list > , def 5.2.1
< bracket> , def 2.3

<code>, synt5.4.1 text 4.7.8, 5.4.6
colon:,synt 2.3,3.2.1,4.1.1,45.1,4.6.1,4.7.1,5.2.1
colon equal :=, synt 2.3, 4.2.1, 4.6.1, 5.3.1
comma,,synt2.3,3.1.1,3.2.1,4.6.1,4.7.1,5.1.1,

5.2.1,5.3.1,5.4.1

comment, synt 2.2
comment convention, text 2.3

< compound statement >, def 4.1.1 synt 4.5.1 text 1

< compound tail > , def 4.1.1

< conditional statement > , def 4.5.1 synt 4.1.1 text 4.5.3

< decimal fraction > , def 2.5.1
< decimal number > , def 2.5.1 text 2.5.3
decimal point . , synt 2.3,2.5.1,

< declaration> , def 5 synt 4.1.1 text 1, 5 (complete
section)

< declarator > , def 2.3

< delimiter > , def 2.3 synt 2

< designational expression > , def 3.5.1 synt 3, 4.3.1,
5.3.1 text 3.5.3

2-57

< digit> , def 2.2.1synt 2, 2.4.1, 2.5.1
dimension, text 5.2.3.2
divide / +, synt 2.3, 3.3.1 text 3.3.4.2
do, synt 2.3, 4.6.1

< dummy statement > , def 4.4.1 synt 4.1.1 text 4.4.3

else, synt 2.3,3.3.1,3.4.1,3.5.1,4.5.1 text 4.5.3.2
< empty >, def 1.1synt 2.6.1, 3.2.1, 4.4.1, 4.7.1, 5.4.1
end, synt 2.3,4.1.1
entier, text 3.2.5
exponentiation 1, synt 2.3, 3.3.1 text 3.3.4.3
< exponent part >, def 2.56.1 text 2.5.3
< expression > , def 3 synt 3.2.1, 4.7.1 text 3
(complete section)

< factor >, def 3.3.1
false, synt 2.2.2
for, synt 2.3, 4.6.1
< for clause > , def 4.6.1 text 4.6.3
< for list >, def 4.6.1 text 4.6.4
< for list element > , def 4.6.1 text 4.6.4.1, 4.6.4.2,
46.4.3
< formal parameter > , def 5.4.1 text 5.4.3
< formal parameter list > , def 5.4.1
< formal parameter part > , def 5.4.1)
< for statement > , def 4.6.1 synt 4.1.1, 4.5.1 text 4.6
(complete section)
< function designator > , def 3.2.1 synt 3.3.1, 3.4.1
text 3.2.3,5.4.4

go to, synt 2.3, 4.3.1
< go to statement > , def 4.3.1 synt 4.1.1 text 4.3.3

< identifier > , def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1, 5.4.1
text 2.4.3
< identifier list > , def 5.4.1
if, synt 2.3, 3.3.1, 4.5.1
< if clause > , def 3.3.1, 4.56.1 synt 3.4.1, 3.5.1
text 3.3.3, 4.5.3.2
< if statement > , def 4.5.1 text 4.5.3.1
< implication > , def 3.4.1
integer, synt 2.3,5.1.1 text 5.1.3
< integer > , def 2.5.1 text 2.5.4

label, synt 2.3, 5.4.1
< label > , def 3.5.1synt4.1.1,4.5.1, 4.6.1 text 1,
413
< left part> , def 4.2.1
< left part list > , def 4.2.1

2-58

< letter > , def 2.1 synt 2, 2.4.1,3.2.1,4.7.1
< letter string > , def 3.2.1, 4.7.1
local, text 4.1.3
< local or own type > , def 5.1.1 synt 5.2.1
< logical operator > , def 2.3 synt 3.4.1 text 3.4.5
< logical value >, def 2.2.2 synt 2, 3.4.1
< lower bound > , def 5.2.1 text 5.2.4

minus -, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
multiply X, synt 2.3, 3.3.1 text 3.3.4.1
< multiplying operator > , def 3.3.1

nonlocal, text 4.1.3
< number >, def 2.5.1 text 2.5.3,2.5.4

< open string > , def 2.6.1
< operator > , def 2.3
own, synt 2.3,5.1.1text 5,5.2.5

< parameter delimiter > , def 3.2.1, 4.7.1 synt 5.4.1
text 4.7.7
parentheses (}, synt 2.3, 3.2.1, 3.3.1, 3.4.1,35.1,
4.7.1,5.4.1 text 3.3.5.2
plus +, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
< primary > , def 3.3.1
procedure, synt 2.3, 5.4.1
< procedure body > , def 5.4.1
< procedure declaration > , def 5.4.1 synt 5 text 5.4.3
< procedure heading > , def 5.4.1 text 5.4.3
< procedure identifier > , def 3.2.1 synt 3.2.1, 4.7.1,
5.4.1text4.7.5.4
< procedure statement > , def 4.7.1 synt 4,1.1 text 4.7.3
< program >, def 4.1.1 text 1
< proper string > , def 2.6.1

quantity, text 2.7

Lea_l, synt 2.3,5.1.1 text 5.1.3
< relation > , def 3.4.1 text 3.4.5
< relational operator > , def 2.3, 3.4.1

scope, text 2.7

semicolon ; , synt 2.3, 4.1.1, 5.4.1

< separator > , def 2.3

< sequential operator > , def 2.3

< simple arithmetic expression > , def 3.3.1 text 3.3.3

< simple Boolean > , def 3.4.1

< simple designational expression > , def 3.5.1

< simple variable > , def 3.1.1 synt 5.1.1 text 2.4.3
spacel], synt 2.3 text 2.3, 2.6.3

60384700 A

< specification part> , def 5.4.1 text 5.4.5 then, synt 2.3, 3.3.1, 4.5.1

< specificator > , def 2.3 transfer function, text 3.2.5
< specifier > , def 5.4.1 true, synt 22.2
standard function, text 3.2.4, 3.2.5 < type> ,def 5.1.1 synt 5.4.1 text 2.8
< statement > , def 4.1.1 synt 4.5.1, 4.6.1,5.4.1 text 4 < type declaration > , def 5.1.1 synt 5 text 5.1.3
(complete section) < type list > , def 5.1.1

statement bracket, see: begin (_e_rl(_i
step, synt 2.3, 4.6.1 text 4.6.4.2

string, synt 2.3, 5.4.1 < unconditional statement > , def 4.1.1, 4.5.1
<string> , def 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3 < unlabelled basic statement > , def 4.1.1
string quotes (), synt 2.3, 2.6.1 text 2.6.3 < unlabelled block > , def 4.1.1
subscript, text 3.1.4.1 < unlabelled compound > , def 4.1.1
subscrint bound, text 5.2.3.1 < unsigned integer > def 25,1, 3.5.1
subscript brackets {1, synt 2.3, 3.1.1, 3.5.1, 5.2.1 < unsigned number > , def 2.5.1 synt 3.3.1
< subscripted variable > , def 3.1.1 text 3.1.4.1 until, synt 2.3, 4.6.1 text 4.6.4.2
< subscript expression > , def 3.1.1 synt 3.5.1 < upper bound >, def 5.2.1 text 5.2.4

< subscript list >, def 3.1.1
successor, text 4

switch, synt 2.3, 5.3.1, 5.4.1 value, synt 2.3, 5.4.1
< switch declaration >, def 5.3.1 synt 5 text 5.3.3 value, text 2.8, 3.3.3
< switch designator > , def 3.5.1 text 3.5.3 <value part >, def 5.4.1,text 4.7.3.1
< switch identifier > , def 3.5.1 synt 3.2.1, 4.7.1, 5.3.1 < variable > , def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1, 4.6.1
< switch list > , def 5.3.1 text 3.1.3

< variable identifier > , def 3.1.1
<term >, def 3.3.1
ten;, ,synt 2.3, 2.5.1 while, synt 2.3, 4.6.1 text 4.6.4.3

60384700 A 2-59

INPUT-OUTPUT 3

The processes of input and output deal with the mapping of basic characters onto input and output devices under
the control of format rules. Characters are grouped to form lines, and lines are grouped to form pages. A page con-
sists of printed lines and a line may be a printed line or card image.

The relation between lines and pages and physical entities (such as records and blocks) depends on formatting rules,
channel specifications (B.i.1), SCOPE inpui-ouiput, and the physical device invoived in the input-output process.
The user need not, in general, be aware of the details of this relationship, since the input-output process is symmetric.
Given the same specifications, a file output by the system is disassembled into the same lines and pages as input by

the system.

3.1 COMPARISON WITH ACM PROPOSAL FOR INPUT-OUTPUT

The following descriptions explain the differences between the input-output procedures included in ALGOL and

the procedures defined in the ACM proposal.f To facilitate cross referencing, the same numbering system is used

in this chapter as in the proposal. The ACM proposal is a continuation of the ALGOL-60 Revised Report, and should
be considered a continuation of Chapter 2 of this manual.

All descriptions of the modifications to the input-output procedures are made at the main reference in the proposal;
and wherever feasible, all other references are noted. The reader should assume, however, that such modifications
apply to all references to the features, noted or otherwise.

A section or feature not mentioned in this chapter is implemented, in this version of ALGOL, in exact accordance
with the proposal.

This chapter also contains descriptions of additional input-output procedures which are not defined in the ACM
proposal, and a description of the transmission error, end-of- ﬁle and end-of-tape functions automatically supplied
within the framework of the input-output procedures.

fep Proposal for Input-Output Conventions in ALGOL-60”, published in The Communications of the ACM,
vol. 7 no. 5, May 1964.

60384700 A 3-1

A Proposal for Input-Output Conventions in ALGOL-60

A Report of the Subcommittee on ALGOL of the ACM Programming Languages Committee

D. E. Knuth, Chairman
L. L. Bumgarner P.Z.Ingerman J.N.Merner
D. E. Hamilton M. P. Lietzke D.T. Ross

The ALGOL-60 language as first defined made no explicit reference to input and output processes. Such processes
appeared to be quite dependent on the computer used, and so it was difficult to obtain agreement on those matters.
As time has passed, a great many ALGOL compilers have come into use, and each compiler has incorporated some
input-output facilities. Experience has shown that such facilities can be introduced in a manner which is compatible
and consistent with the ALGOL language, and which (more importantly) is almost completely machine-independent.
However, the existing implementations have taken many different approaches to the subject, and this has hampered
the interchange of programs between installations. The ACM ALGOL committee has carefully studied the various
proposals in an attempt to define a set of conventions for doing input and output which would be suitable for use
on most computers. The present report constitutes the recommendations of that committee.

The input-output conventions described here do not involve extensions or changes to the ALGOL-60 language. Hence
they can be incorporated into existing processors with a minimum of effort. The conventions take the form of a set
of procedures,1 which are to be written in code for the various machines; this report discusses the function and use
of these procedures. The material contained in this proposal is intended to supplement procedures in real, out real,

in symbol, out symbol which have been defined by the international ALGOL committee; the procedures described
here could, with trivial exceptions, be expressed in terms of these four.2

The first part of this report describes the methods by which formats are represented; then the calls on the input and
output procedures themselves are discussed. The primary objective of the present report is to describe the proposal
concisely and precisely, rather than to give a programmer’s introduction to the input-output conventions. A simpler
and more intuitive (but less exact) description can be written to serve as a teaching tool.

Many useful ideas were suggested by input-output conventions of the compilers listed in the references below. We
are also grateful for the extremely helpful contributions of F. L. Bauer, M. Paul, H. Rutishauser, K. Samelson,

G. Seegmiiller, W. L. v.d. Poel, and other members of the European computing community, as well as A. Evans, Jr.,
R. W. Floyd, A. G. Grace, J. Green, G. E. Haynam, and W. C. Lynch of the USA.

A. Formats

In this section a certain type of string, which specifies the format of quantities to be input or output, is defined, and
its meaning is explained.

1Throughout this report, names of system procedures are in lower case, and names of procedures used in illustrative
examples are in upper case.

2De.'fined at meeting IFIP/WG2.1 — ALGOL in Delft during September, 1963.

3-2 603384700 A

A.1 Number Formats (cf. ALGOL Report 2.5)
A.1.1 Syntax

Basic components:

< replicator > .= < unsigned integer > | X

< insertion > = Bl < replicator > Bl < string >

< insertion sequence > :'= < empty > | < insertion sequence > < insertion >

<Z>:=2Zi < replicator > Z | Z < insertion sequence > Ci < repiicator > Z < insertion sequence > C

<Zpart>:=<Z>1<Zpart>< 2> |< Zpart>< insertion>
< D> =D | <replicator > D | D < insertion sequence > C|
< replicator > D < insertion sequence > C
<Dpart>:=<D>|<D part > <D > | <D part > < insertion >
< T part > = < empty > | T < insertion sequence >
<sign part > .= < empty > | < insertion sequence > + |
< insertion sequence >~
<integer part > = < Z part> | <D part > | < Z part > < D part>
Format Structures:
< unsigned integer format > ::= < insertion sequence > < integer part >
< decimal fraction format > ::= < insertion sequence > < D part > < T part >|
V < insertion sequence > < D part > < T part >
< exponent part format > ::= 10 < sign part > < unsigned integer format >
< decimal number format > ::= < unsigned integer format > < T part> |
< insertion sequence > < decimal fraction format > |

< unsigned integer format > < decimal fraction format >

60384700 A

33

< number format > .= <sign part > < decimal number format > |

< decimal number format > + < insertion sequence > |

< decimal number format > - < insertion sequence > |

< sign part > < decimal number format > < exponent part format >

Note. This syntax could have been described more simply, but the rather awkward constructions here have been
formulated so that no syntactic ambiguities (in the sense of formal language theory) will exist.

A.1.2 Examples. Examples of number formats appear in Figure 1.

Number format Result from -13.296 Resuit from 1007.999
+ZZ22CDDD.DD —-013.30 +1,008.00
+3ZC3D.2D —-013.30 +1,008.00
—3D2B3D.2DT —000 013.29 001 007.99
5Z2.5D— 13.29600— 1007.99900
‘integerLipartL’ —4ZV integer part -13, integer part 1007,
¢, Ufraction’B3D fraction 296 fraction 999
—5D10+2D". .. —-.1329610+02. . . .1008010+04. ..
+ZD 1022 -13 +1010 2
+D.DDBDDBDDB 10
+DD —1.32 96 00 10+01 +1.00 79 99 10 +03
XB.XD 10—-DDD (depends on call) (depends on call)
Figure 1

A.1.3 Semantics. The above syntax defines the allowable strings which can comprise a ‘“number format.”” We will

first describe the interpretation to be taken during output.

A.1.3.1 Replicators. An unsigned integer n used as replicator means the quantity is repeated n times; thus 3B is
equivalent to BBB. The character X as replicator means a number of times which will be specified when the format

is called (see Section B.3.1).

34

60384700 A

A.1.3.2 Insertions. The syntax has been set up so that strings, delimited by string quotes, may be inserted anywhere
within a number format. The corresponding information in the strings {except for the outermost string quotes) will
appear inserted in the same place with respect to the rest of the number. Similarly, the letter B may be inserted
anywhere within a number format, and it stands for a blank space.

A.1.3.3 Sign, zero, and comma suppression. The portion of a number to the left of the decimal point consists of an
optional sign, then a sequence of Z’s and a sequence of D’s with possible C's following a Z or a D, plus possible
insertion characters.

The convention on signs is the following: (a) if no sign appears, the number is assumed to be positive, and the treat-
ment of negative numbers is undefined; (b) if a plus sign appears, the sign will appear as + or - on the external
medium; and (c) if a minus sign appears, the sign will appear if minus, and will be suppressed if plus.

The letter Z stands for zero suppression, and the letter D stands for digit printing without zero suppression. Each Z
and D stands for a single digit position; a zero digit specified by Z will be suppressed, i.e., replaced by a blank space,
when all digits to its left are zero. A digit specified by D will always be printed. Note that the number zero printed
with all Z’s in the format will give rise to all blank spaces, so at least one D should usually be given somewhere in
the format. The letter C stands for a comma. A comma following a D will always be printed; a comma following a

Z will be printed except when zero suppression takes place at that Z. Whenever zero or comma suppression takes
place, the sign (if any) is printed in place of the rightmost character suppressed.

A.1.3.4 Decimal points. The position of the decimal point is indicated either by the character *'.” or by the letter V.
In the former case, the decimal point appears on the external medium; in the latter case the decimal point is “implied”
i.e., it takes up no space on the external medium. {This feature is most commonly used to save time and space when
preparing input data). Only D’s (no Z's) may appear to the right of the decimal point.

—

A.1.3.5 Truncation. On output, nonintegral numbers are usually rounded to fit the format specified. If the letter T is

used, however, truncation takes place instead. Rounding and truncation of a number X to d decimal places are
defined as follows:

10

Rounding entier (109 X + 0.5)

10-d

Truncation sign (X) entier (10d abs (X})

60384700 A 35

A.1.3.6 Exponent part. The number following a 10" is treated exactly the same as the portion of a number to the
left of a decimal point (Section A.1.3.3) except if the “D" part of the exponent is empty, i.e., no D’s appear, and if
the exponent is zero, the 10" and the sign are deleted.

A.1.3.7 Two types of numeric format. Number formats are of two principal kinds: (a) Decimal number with no
exponent. In this case, the number is aligned according to the decimal point with the picture in the format, and it
is then truncated or rounded to the appropriate number of decimal places. The sign may precede or follow the
number.

(b). Decimal number with exponent. In this case, the number is transformed into the format of the decimal number
with its most significant digit non-zero; the exponent is adjusted accordingly. If the number is zero, both the decimal
part and the exponent part are output as zero. If in case (a) the number is too large to be output in the specified
form, or if in case (b) the exponent is too large, an overflow error occurs. The action which takes place on overflow
is undefined; it is recommended that the number of characters used in the output be the same as if no overflow has
occurred, and that as much significant information as possible be output.

A.1.3.8 Input. A number input with a particular format specification should in general be the same as the number
which would be output with the same format, except less error checking occurs. The rules are, more precisely:

(a) leading zeros and commas may appear even though Z’s are used in the format. Leading spaces may appear even
if D's are used. In other words, no distinction between Z and D is made on input.

(b) insertions take the same amount of space in the same positions, but the characters appearing there are ignored on
input. In other words, an insertion specifies only the number of characters to ignore, when it appears in an input
format.

{c) If the format specifies a sign at the left, the sign may appear in any Z, D or C position as long as it is to the left
of the number. A sign specified at the right must appear in place.

(d) The following things are checked: The position of commas, decimal points, “10” and the presence of digits in
place of D or Z after the first significant digit. If an error is detected in the data, the result is undefined; it is recom-
mended that the input procedure attempt to reread the data as if it were in standard format (Section A.5) and also
to give some error indication compatible with the system being used. Such an error indication might be suppressed
at the programmer’s option if the data became meaningful when it was reread in standard format.

36 60384700 A

A.2 Other formats

A.2.1 Syntax
< 8> =8| <replicator > S
< string format > ;= < insertion sequence > < $ > | < string format > < S > | < string format > < insertion >
< A> = Al < replicator > A
< alpha format > ::= < insertion sequence > < A> | < alpha format > < A > |
< alpha format > < insertion >
<nonformat>:=1|RIL
< Boolean part >::=P|5F | FFFFF | F
< Boolean format > ;= < insertion sequence > < Boolean part > < insertion sequence >
< titie format > = < insertion > | < titie format > < insertion >
< alignment mark > :'=/ |1 | < replicator > /| < replicator > 1
< format item 1> = < number format > | < string format > |
< alpha format > | < nonformat > | < Boolean format > | < title format > |
< alignment mark > < format item 1>

< format item > ’= < format item 1> | < alignment mark > | < format item > < alignment mark >

60384700 A 3-7

A.2.2 Examples

162.5D///
35¢=76S4B
AA=?

R

P
[Execution.*t

3-8 60384700 A

A.2.3 Semantics

The maximum length of a format item, after expanding each quantity in it by the corresponding replicator, is 136
characters; the expanded format item corresponds to the data on the external device.

A.2.3.1 String format. A string format is used for output of string quantities. Each of the S-positions in the format
corresponds to a single character in the string which is output. If the string is longer than the number of S’s, the left-
most characters are transferred; if the string is shorter, L}-symbols are effectively added at the right of the string.

The word “character” as used in this report refers to one unit of information on the external input or output
medium; if ALGOL basic symbols are used in strings which do not have a single-character representation on the
external medium being used, the result is undefined.

A.2.3.2 Alpha format. Each letter A means one character is to be transmitted; this is the same as S-format except
the ALGOL equivalent of the alphabetics is of type integer rather than a string. The translation between the external
and internal code will vary from one machi r, and so programmers should refrain from using this feature
in a machine dependent manner. Each implementor should specify the maximum number of characters which can be
used for a single integer variable. The following operations are undefined for quantities which have been input using
alpha format; arithmetic operations, relations except ="' and “#", and output using a different number of A's in
the output format. If the integer is output using the same number of A’s, the same string will be output as was input.

A programmer may work with these alphabetic quantities in a machine-independent manner by using the transfer
function equiv(S) where S is a string; the value of equiv(S) is of type integer, and it is defined to have exactly the
same value as if the string S had been input using alpha format. For example, one may write

if X = equiv(*ALPHA?) then go to PROCESS ALPHA

where the value of X has been input using the format “AAAAA".

60384700 A 39

A.2.3.3 Nonformat. An |, R or L is used to indicate that the value of a single variable of integer, real or Boolean
type, respectively, is to be input or output from or to an external medium, using the internal machine representation.
If a value of type integer is output with R-format or if a value of type _rg_l is input with I-format, the appropriate
transfer function is invoked . The precise behaviour of this format, and particularly its interaction with other formats,
is undefined in general.

A.2.3.4 Boolean format. When Boolean quantities are input or output, the format P, F, 5F or FFFFF must be
used. The correspondence is defined as follows:

Internal to ALGOL P F 5F=FFFFF
true 1 T TRUEL/
false 0 F FALSE

On input, anything failing to be in the proper form is undefined.

3-10 60384700 A

A.2.3.5 Title format. All formats discussed so far have given a correspondence between a single ALGOL real, integer,
Boolean, or string quantity and a number of characters in the input or output. A title format item consists entirely
of insertions and alignment marks, and so it does not require a corresponding ALGOL quantity. On input, it merely
causes skipping of the characters, and on output it causes emission of the insertion characters it contains. (If titles
are to be input, alpha format should be used; see Section A.2.3.2).

A.2.3.6 Alignment marks. The characters /" and 4" in a format item indicate line and page control actions. The
precise definition of these actions will be given later (see Section B.5); they have the following intuitive interpreta-
tion: (a) **/"” means go to the next line, in a manner similar to the “carriage return’’ operation on a typewriter. (b)
%4 means do a /-operation and then skip to the top of the next page.

Two or more alignment marks indicate the number of times the operations are to be performed; for example, *'//*’
on output means the current line is completed and the next line is effectiveiy set to aii bianks. Aiignment marks at
the left of a format item cause actions to take place before the regular format operation, and if they are at the right
they take place afterwards.

Note. On machines which do not have the character 1 in their character set, it is recommended that some convenient
character such as an asterisk be substituted for T in format strings.

A.3 Format Strings

The format items mentioned above are combined into format strings according to the rules in this section.

A.3.1 Syntax

< format primary > ;= < format item > |

< format secondary > ::= < format primary > |
< format secondary > , < format primary >
< format string > ;= ¢ < format secondary > | ¢*®

A.3.2 Examples

4 (152ZD) ,//*

o

+5D10+D,X (2 (20B.8D10+D) ,10S) *

“, . ThisLlisL!allpeculiar LI*format Listring®**

60384700 A 3-11

A.3.3 Semantics. A format string is simply a list of format items, which are to be interpreted from left to right. The
construction “* < replicator > (< format secondary >) " is simply an abbreviation for “replicator” repetitions of
the parenthesized quantity (see Section A.1.3.1). The construction * { < format secondary >) ”" is used to specify
an infinite repetition of the parenthesized quantity.

All spaces within a format string except those which are part of insertion substrings are irrelevant.

It is recommended that the ALGOL compiler check the syntax of strings which (from their context) are known to
be format strings as the program is compiled. In most cases it will also be possible for the compiler to translate for-
mat strings into an intermediate code designed for highly efficient input-output processing by the other procedures.

A.4 Summary of Format Codes

A alphabetic character X arbitrary replicator
represented as integer
4 zero suppression
B blank space

+ print the sign
C comma
D digit - !Jrfnt t.he sign if
i1t Is minus

F Boolean TRUE or FALSE
10 exponent part indicator

1 integer untranslated
() delimiters of replicated

L Boolean untranslated format secondaries

P Boolean bit . separates format items

R real untranslated / line alignment

S string character t page alignment

T truncation €% delimiters of inserted string
\" implied decimal point . decimal point

3-12 60384700 A

A.5 “Standard”’ Format

There is a format available without specifications {cf. Section B.5) which has the following characteristics.

{a) On input, any number written according to the ALGOL syntax for < number > is accepted with the conventional
meaning. These are of arbitrary length, and they are delimited at the right by the following conventions: (i) A letter
or character other than a decimal point, sign, digit, or **10” is a delimiter. (ii) A sequence of k or more blank spaces
serves as a delimiter as in {i); a sequence of less than k blank spaces is ignored. This number k = 1 is specified by the
implementor (and the implementor may choose to let the programmer specify k on a control card of some sort).

{iii) If the number contains a decimal point, sign, digit or 10" on the line where the number begins, the right-hand
margin of that line serves as a delimiter of the number. However, if the first line of a field contains no such charac-
ters, the number is determined by reading several lines until finding a delimiter of type (i) or (ii). In other words, a
number is not usually split across more than one line, unless its first line contains nothing but spaces or characters
which do not enter into the number itself (see Section B.5 for further discussion of standard input format).

{b) On output, a number is given in the form of a decimal number with an exponent. This decimal number has the
amount of significant figures which the machine can represent; it is suitable for reading by the standard input format.
Standard output format takes a fixed number of characters on the output medium; this size is specified by each
ALGOL installation. Standard output format can aiso be used for the output of strings, and in this case the number
of characters is equal to the length of the string.

B. Input and Output Procedures

B.1 General Characteristics

The over-all approach to input and output which is provided by the procedures of this report will be introduced here
by means of few examples, and the precise definition of the procedures will be given later.

60384700 A 3-13

Consider first a typical case, in which we want to print a line containing the values of the integer variables N and M,
each of which is nonnegative, with at most five digits; also the value of X(M), in the form of a signed number with a
single nonzero digit to the left of the decimal point, and with an exponent indicated; and finally the value of cos (t)
using a format with a fixed decimal point and no exponent. The following might be written for this case:

output 4(6, ‘2(BBBZZZZD) ,38+ D.DDDDDD4o+DDD,3B,
-Z.DDDDBDDDD/’,N,M,X(M),cos(t)).

This example has the following significance. (a) The ““4” in output 4 means four values are being output. (b) The
‘6" means that output is to go to unit 6.

This is the logical unit number, i.e., the programmer’s number for that unit, and it does not necessarily mean physical
unit number 6. See Section B.1.1, for further discussion of unit numbers. {(c) The next parameter, 2(BBB. . .DDDD/*,
is the format string which specifies a format for outputting the four values. (d) The last four parameters are the values
being printed. If N = 500, M = 0, X[0] = 18061579, and t = 3.1415926536, we obtain the line

uouuyusoo LuLuuUIL ouUIL +1.8061581 0+007 LI LILI- 1.0000 LI 6000

as output.

Notice the “/"” used in the above format; this symbol signifies the end of a line. If it had not been present, more
numbers could have been placed on the same line in a future output statement. The programmer may build the
contents of a line in several steps, as his algorithm proceeds, without automatically starting a new line each time
output is called. For example, the above could have been written

output 1(6,‘BBBZZZZD’ N);

output 1(6,‘BBBZZZZD°*M);

output 2(6,3B+D.DDDDDD10+DDD,3B,- Z.0DDDBDDDD?, X[M],cos(t)) ;

output 0(6,/*);

with equivalent results.

In the example above a line of 48 characters was output. If for some reason these output statements are used with a
device incapable of printing 48 characters on a single line, the output would actually have been recorded on two or
more lines, according to a rule which automatically keeps from breaking numbers between two consecutive lines
wherever possible. (The exact rule appears in Section B.5).

Now let us go to a slightly more complicated example:

the real array A[1:n,1:n] is to be printed, starting on a new page. Supposing each element is printed with the format
"BB-ZZZ2.DD", which uses ten characters per item, we could write the following program:

output 0(6,*1);
fori:=1 step 1 until n do

3-14 60384700 A

begin for j := 1 step 1 until n do output 1(6,8B-2222.DD?,

Ali,jl; output 0(6,%/%) end.

if 10n characters will fit on one line, this little program will print n lines, double spaced, with n values per line; other-
wise n groups of k lines separated by blank lines are produced, where k lines are necessary for the printing of n values.
For example, if n = 10 and if the printer has 120 character positions, 10 double-spaced lines are produced. If, how-
ever, a 72-character printer is being used, 7 values are printed on the first line, 3 on the next, the third is blank, then

7 more values are printed, etc.

There is another way to achieve the above output and to obtain more control over the page format as well. The
subject of page format will be discussed further in Section B.2, and we will indicate here the manner in which the
above operation can be done conveniently using a singie output statement. The procedures cutput 0, cutput 1, ete,
mentioned above provide only for the common cases of output, and they are essentially a special abbreviation for
certain calls on the more general procedure out list. This more general procedure could be used for the above

problem in the following manner:

out list (6,LAYOUT,LIST)
Here LAYOUT and LIST are the names of procedures which appear below. The first parameter of out list is the
logical unit number as described above. The second parameter is the name of a so-called “layout procedure”’; general
layout procedures are discussed in Section B.3. The third parameter of out list is the name of a so-called “list proce-
dure”’; general list procedures are discussed in Section B.4. In general, a layout procedure specifies the format control
of the input or output. For the case we are considering, we could write a simple layout procedure (named
“LAYOUT") as follows:
procedure LAYOUT; format 1(41,(X(BB-2Z22.DD),//) n)
The 1 in format 1 means a format string containing one X is given.
The format string is 1.
{X(BB-2Z2z.DD),//)
which means skip to a new page, then repeat the format X(BB-2Z2ZZ.DD),// until the last value is output. The latter
format means that BB-ZZZZ.DD is to be used X times, then skip to a new line. Finally, format 1 is a procedure

which effectively inserts the value of n for the letter X appearing in the format string.

A list procedure serves to specify a list of quantities. For the problem under consideration, we could write a simple
list procedure (named “LIST") as follows:

procedure LIST(ITEM);for i := 1 step 1 until n do
for j := 1 step 1 until n do ITEM(A[ij1)
Here “ITEM Al(i,j)"" means that A(i,j) is the next item of the list. The procedure ITEM is a formal parameter which

might have been given a different name such as PIECE or CHUNK; list procedures are discussed in more detail in
Section B.4.

60384700 A 3-15

The declarations of LAYOUT and LIST above, together with the procedure statement out list (6, LAYOUT,LIST),
accomplish the desired output of the array A.

Input is done in a manner dual to output, in such a way that it is the exact inverse of the output process wherever
possible. The procedures in list and input n correspond to out list and output n {n = 0,1,. . .}. Two other procedures,
get and put, are introduced to facilitate storage of intermediate data on external devices. For example, the statement
put (100,LIST) would cause the values specified in the list procedure named LIST to be recorded in the external
medium with an identification number of 100. The subsequent statement get (100,LIST) would restore these values.
The external medium might be a disk file, a drum, a magnetic tape, etc.; the type of device and the format in which
data is stored there is of no concern to the programmer.

B.1.1 Unit numbers. The first parameter of input and output procedures is the logical unit number, i.e., some number
which the programmer has chosen to identify some input or output device. The connection between logical unit
numbers and the actual physical unit numbers is specified by the programmer outside of the ALGOL language, by
means of “control cards” preceding or following his program, or in some other way provided by the ALGOL imple-
mentor. The situation which arises if the same physical unit is being used for two different logical numbers, or if the
same physical unit is used both for input and for output, is undefined in general.

It is recommended that the internal computer memory (e.g. the core memory) be available as an “input-output
device”’, so that data may be edited by means of input and output statements.

o

; Unit Numbers Wherever the term umt number a_ppearskm the ACM Repozt channe numi)er apphes T' |
chzmnel number is syn‘ (nymous wnth umt numben the ACM eport

3-16 ' 60384700 A

B.2 Horizontal and Vertical Control

This section deals with the way in which the sequence of characters, described by the rules of formats in Section A,
is mapped onto input and output devices. This is done in a manner which is essentially independent of the device
being used, in the sense that with these specifications the programmer can anticipate how the input or output data
will appear on virtually any device. Some of the features of this description will, of course, be more appropriately
used on certain devices than on others.

We will begin by assuming we are doing output to a printer. This is essentially the most difficult case to handle, and
we wiil discuss the manner in which other devices fit into the same generai framework. The page format is controiied
by specifying the horizontal and the vertical layout. Horizontal layout is controlled essentially in the same manner
as vertical lavout, and this symmetry hetween the horizontal and vertical dimensions should be kept in mind for
easier understanding of the concepts of this section.

Refer to figure 2, the horizontal format is described in terms of three parameters (L,R,P), and the vertical format
has corresponding parameters (L’,R’,P’). The parameters L, L" and R, R’ indicate left and right margins, respectively;
Figure 2 shows a case where L = L' = 4 and R = R’ = 12. Only position L through R of a horizontal line are used,
and only lines L’ and R’ of the page are used; we require that 1 <L <R and 1 <L’< R’. The parameter P is the
number of characters per line, and P’ is the number of lines per page. Although L, R, L’ and R’ are chosen by the
programmer, the values of P and P’ are characteristics of the device and they are usually out of the programmer’s
control. For those devices on which P and P’ can vary (for example, some printers have two settings, one on which
there are 66 lines per page, and another on which there are 88), the values are specified to the system in some man-
ner external to the ALGOL program, e.g. on control cards. For certain devices, values P or P’ might be essentially
infinite.

60384700 A 3-17

Although Figure 2 shows a case where P = R and P’ = R’, it is of course quite possible that P < R or P’ < R’ (or both)
might occur, since P and P’ are in general unknown to the programmer. In such cases, the algorithm described in
Section B.5 is used to break up logical lines which are too wide to fit on a physical line, and to break up logical pages
which are too large to fit a physical page. On the other hand, the conditions L <P and L’ <P’ are insured by setting
L or L’ equal to 1 automatically if they happen to be greater than P or P’, respectively.

Characters determined by the output values are put onto a horizontal line; there are three conditions which cause a
transfer to the next line: (a) normal line alignment, specified by a ““/”" in the format; (b) R-overflow, which occurs
when a group of characters is to be transmitted which would pass position R; and (c) P-overflow, which occurs when
a group of characters is to be transmitted which would not cause R-overflow but would pass position P. When any
of these three things occurs, control is transferred to a procedure specified by the programmer in case special action
is desired (e.g. a change of margins in case of overflow; see Section B.3.3).

L

L R P

AN /. A

M 23456 7 8 91011121314 15 16 17 18

© © O N O U & WN =

-
N =

R ST S S y
N oA W

/3
/

Figure 2.

Similarly, there are three conditions which cause a transfer to the next page: (a’) normal page alignment, specified by
a 1" in the format; (b’) R’-overflow, which occurs when a group of characters is to be transmitted which would
appear on line R'+1; and (¢') P’-overflow, which occurs when a group of characters is to be transmitted which would
appear on line P'+1<R’'+1, The programmer may indicate special procedures to be executed at this time if he wishes,
e.g. to insert a page heading, etc.

3-18 60384700 A

Further details concerning pages and lines will be given later. Now we will consider how devices other than printers
can be thought of in terms of the ideas above.

A typewriter is, of course, very much like a printer and it requires no further comment.

Punched cards with, say, 80 columns, have P = 80 and P’ = . Vertical control would appear to have little meaning
for punched cards, although the implementor might choose to interpret *“1’* to mean the insertion of a coded or
blank card.

With paper tape, we might again say that vertical control has little or no meaning; in this case, P could be the number
of characters read or written at a time.

On magnetic tape capable of writing arbitrarily long blocks, we have P = P’ = o, We might think of each page as being
a “record”, i.e., an amount of contiguous information on the tape which is read or written at once. The lines are sub-
divisions of a record, and R’ lines form a record; R characters are in each line. In this way we can specify so-called
“blocking of record.” Other interpretations might be more appropriate for magnetic tapes at certain installations,

e.g. a format which would correspond exactly to printer format for future offline listing, etc.

These examples are given merely to indicate how the concepts described above for printers can be applied to other
devices. Each implementor will decide what method is most appropriate for his particular devices, and if there are

choices to be made they can be given by the programmer by means of control card
in which this is done is of no concern in this report; our procedures zre defined solely

B.3 Lavout Procedures

Whenever input or output is done, certain “standard’’ operations are assumed to tzke place, unless otherwise
specified by the programmer. Therefore one of the parameters of the input or output procedure is a so-called
“layout” procedure, which specifies all of the nonstandard operations desired. This is achieved by using any or all
of the six “descriptive procedures” format, h end, v end, h lim, v lim, no data described in this section.

The precise action of these procedures can be described in terms of the mythical concept of six “hidden variables,”
H1, H2, H3, H4, H5, H6. The effect of each descriptive procedure is to set one of these variables to a certain value;
and as a matter of fact, that may be regarded as the sum total of the effect of a descriptive procedure. The pro-
grammer normally has no other access to these hidden variables (see, however, Section B.7). The hidden variables
have a scope which is local to in list and to out list.

60384700 A 3-19

B.3.1 Format Procedures. The descriptive procedure call

format (string)

has the effect of setting the hidden variable H1 to indicate the string parameter. This parameter may either be a string
explicitly written, or a formal parameter; but in any event, the string it refers to must be a format string, which
satisfies the syntax of Section A.3, and it must have no X" replicators.

The procedure format is just one of a class of procedures which have the names formatn(n =20, 1, . . .). The name
format is equivalent to format 0. In general, the procedure format n is used with format strings which have exactly
n X-replicators. The call is

format n (string, X4,X,, . . . X)

where each X; is an integer parameter called by value. The effect is to replace each X of the format string by one of
the X;, with the correspondence defined from left to right. Each X; must be nonnegative.

For example,
format 2 (XB . XD 10+DD? ,5,10)
is equivalent to

format (6B . 10D10+DDY.

‘B3 FormatProcedures
The single procedure with call
~ FORMAT (string, X,

e the 1 proeducs

3-20 60384700 A

B.3.2 Limits. The descriptive procedure call

h lim {L,R)
has the effect of setting the hidden variable H2 to indicate the two parameters L and R. Similarly,

vlim (L’,R")

sets H3 to indicate L’ and R’. These parameters have the significance described in Section B.2. If h lim and v lim
arenotused, L=L'=1and R=R’'=o0,

B.3.3 End Control. The descriptive procedure
h end (PN,PR,PP); v end (PN,,PR.,PP.)

have the effect of setting the hidden variables H4 and Hb, respectively, to indicate their parameters. The parameters
PN'PR'PP' PN"PR"PP" are names of procedures (ordinally dummy statements if h end and v end are not specified)
which are activated in case of normal line-alignment, R-overflow, P-overflow, normal page alignment, R"-overflow
and P’-overflow, respectively.

B.3.4 End of Data. The descriptive procedure call

no data (L)

has the effect of setting the hidden variable H6 to indicate the parameter L. Here L is a label. End of data as defined
here has meaning only on input, and it does not refer to any specific hardware features; it occurs when data is
requested for input but no more data remains on the corresponding input medium. At this point, a transfer to
statement labelled L will occur. If the procedure no data is used, transfer will occur to a “/label”” which has effec-
tively been inserted just before the final end in the ALGOL program, thus terminating the program. (In this case
the implementor may elect to provide an appropriate error comment).

60384700 A 3-21

B.3.5 Examples. A layout procedure might look as follows:

procedure LAYOUT; begin format (¢/?);
_i_f B then begin format 1(*XB%,Y + 10); no data (L32) end;
h tlim (if B then 1 else 10,30) end;

Note that layout procedures never have formal parameters; this procedure, for example, refers to three global
quantities, B, Y and L32. Suppose Y has the value 3; then this layout accomplishes the following:

Hidden

Variable Procedure if B = true if B = false
H1 format ¢3B’ i

H2 h lim . (1,30) (10,30)

H3 v lim (1, {1,00)

H4 h end (.. ()

H5 v end () (.

As a more useful example, we can take the procedure LAYOQUT of Section B.1 and rewrite it so that the horizontal
margins (11,110) are used on the page, except that if P-overflow or R-overflow occurs we wish to use the margins
(16,105) for overflow lines.

procedure LAYOUT; begin
format 1 (4,(X(BB-2222.DD) ,//)* ,n);
h lim (11,110); h end (K,L L) end;
procedure K; h lim (11,110);

procedure L; h lim (16,105);

3-22 60384700 A

This causes the limits (16,105) to be sét whenever overflow occurs, and the ““/” in the format will reinstate the
original margins when it causes procedure K to be called. (If the programmer wishes a more elaborate treatment
of the overflow case, depending on the value of P, he may do this using the procedures of Section B.6).

B.4 List Procedures

B.4.1 General characteristics. The concept of a list procedure is quite important to the input-output conventions
described in this report, and it may also prove useful in other applications of ALGOL. It represents a specialized
application of the standard features of ALGOL which permit a procedure identifier, L, to be given as an actual
parameter of a procedure, and which permit procedures to be declared within procedures. The purpose of a list
procedure is to describe a sequence of items which is to be transmitted for input or output. A procedure is written
in which the name of each item V is written as the argument of a procedure, say ITEM, thus: ITEM(V). When the
list procedure is calied by an input-output system procedure, another procedure {such as the internai system proce-
dure ou? item) will be “substituted”” for ITEM, V will be called by name, and the value of V will be transmitted for
input or output. The standard sequencing of ALGOL statements in the body of the list procedure determines the
sequence of items in the list.

A simple form of list procedure might be written as follows:

procedure LIST (ITEM);

begin ITEM(A); ITEM(B); ITEM(C) end
which says that the values of A, B, and C are to be transmitted.
A more typical list procedure might be:

procedure PAIRS (ELT);

for i := 1 step 1 until n do begin ELT(A[i]);

ELT(B[i]l) end

This procedure says that the values of the list of items A[1]1,B[1], A[2],BI[2] , ..., Alnl, Bn] are to be trans-
mitted, in that order. Note that if n < 0 no items are transmitted at all.

The parameter of the “item” procedure (i.e., the parameter of ITEM or ELT in the above examples) is called by
name. It may be an arithmetic expression, a Boolean expression, or a string, in accordance with the format which
will be associated with the item. Any of the ordinary features of ALGOL may be used in a list procedure, so there
is great flexibility.

Unlike layout procedures which simply run through their statements and set up hidden variables H1 through H6, a
list procedure is executed step by step with the input or output procedure, with control transferring back and forth.
This is accomplished by special system procedures such as in item and out item which are “interlaced” with the list
procedure, as described in Sections B.4.2 and B.5. The list procedure is called with in item (or out item) as actual
parameter, and whenever this procedure is called within the list procedure, the actual input or output is taking place.
Through the interlacing, special format control, including the important device-independent overflow procedures,
can take place during the transmission process. Note that a list procedure may change the hidden variables by calling
a descriptive procedure; this can be a valuable characteristic, e.g. when changing the format, based on the value of
the first item which is input.

60384700 A 3-23

cal!s thh each of the subschpted vanables of the array a pafa'meters,m !exwographmal m’der
subscnpt varymg fastest Note that each subscnpted vanable uses one format 1tmn :

324 60384700 A

B.4.2 Other applications. List procedures can actually be used in many ways in ALGOL besides their use with input
or output routines; they are useful for manipulating linear lists of items of a quite general nature. To illustrate this
fact, and to point out how the interlacing of control between list and driver procedures can be accomplished, here

is an example of a procedure which calculates the sum of all of the elements in a list (assuming all elements are of

integer or real type):

procedure ADD(Y,Z); begin

procedure A(X); Z := Z+X

Z2:=0;Y(A) end

The call ADD (PAIRS,SUM) will set the value of SUM to be the sum of all of the items in the list PAIRS defined in
Section B.4.1. The reader should study this example carefully to grasp the essential significance of list procedures. It

is a simple and instructive exercise to write a procedure which sets all elements of a list to zero.

B.5 Input and Output Calls

Here procedures are described which cause the actual transmission of input or output to take place.

<procedurebody> e

60384700 A 3-25

. integer g{qced~‘1};r¢fCHLENGTHZ (string);

The value of CHLENGTH (smng) e qu
ween the outermost string quotes.

6 60384700 A

60384700 A 3-27

proc edure outstrmg (channe st ng),
mng to the output devnce‘ :

3-28 60384700 A

i S

B.5.1 M
An output process is initiated by the call:
out list (unit, LAYOUT,LIST)
Here unit is an integer parameter called by value, which is the number of an output device (cf. Section B.1.1}. The
parameter LAYOUT is the name of a layout procedure (Section B.3) and LIST is the name of a list procedure

(Section B.4).

There is also another class of procedures, named output n, for n = 0,1,2, . . . ,which is used for output as follows:

output n (unit, format string, e1.8q, . . .€,

JUTPUT 1 (chanr;ei;"

60384700 A 3-29

Each of these latter procedures can be defined in terms of out list as follows:
procedure output n (unit, format string, e4.e,, . . ., e,)
_begin procedure A; format (format string);
procedure B(P); begin Pe,); Pley); ;Ple) end;

out list (unit, A,B) end

The procedure OUTPUT is deﬁned m terms of ot TLIST as,f‘d,lidvé?é:,_ -

procedure OUTPUT (channe} format strmg, el,ez, o R O

vaiue channel ntege channel smng stnng, comment e

3-30 60384700 A

We will therefore assume in the following rules that out list has been called.

Let the variables p and p’ indicate the current position in the output for the unit under consideration, i.e., lines
1,2, ... ,p’ of the current page have been completed, as well as character positions 1,2, . . . ,p of the current line
(i.e., of line p’+1). At the beginning of the program, p = p’ = 0. The symbols P and P’ denote the line size and page
size (see Section B.2). Output takes place according to the following algorithm:

Step 1. The hidden variables are set to standard values:
H1 is set to the “‘standard” format * * .
H2issetsothatL =1, R=o
H3issetso thatL’'= 1, R' =

H4 is set so that Py, PR, Pp are all effectively equal to the DUMMY procedures defined as follows:
““procedure DUMMY ;;”.

H5 is set so that PN" PR" PP’ are all effectively equal to DUMMY.
H6 is set to terminate the program in case the data ends (this has meaning only on input).
Step 2. The layout procedure is called; this may change some of the variables H1, H2, H3, H4, H5, H6.

Step 3. The next format item of the format string is examined. (Note. After the format string is exhausted,
“standard”” format, Section A5, is used from then on until the end of the procedure. In particular, if the format
string is ¢?, standard format is used throughout.) Now if the next format item is a title format, i.e., requires no

data item, we proceed directly to step 4. Otherwise, the list procedure is activated; this is done the first time by
calling the list procedure, using as actual parameter a procedure named out item; this is done on all subsequent times
by merely returning from the procedure out item, which will cause the list procedure to be continued from the
latest out item cali. (Note: The identifier out item has scope iocal to out list, so a programmer may not cail this
procedure directly). After the list procedure has been activated in this way, it will either terminate or will call the
procedure out item. In the former case, the output process is completed; in the latter case, continue at step 4.

Step 4. Take the next item from the format string. (Notes. If the list procedure was called in step 3, it may have
called the descriptive procedure format, thereby changing from the format which was examined during step 3. In
such a case, the new format is used here. But at this point the format item is effectively removed from the format
string and copied elsewhere so that the format string itself, possibly changed by further calls of format, will not be
interrogated until the next occurrence of step 3. If the list procedure has substituted a title format for a nontitle
format, the ““item” it specifies will not be output, since a title format consists entirely of insertions and alignment
marks.)

Set ““toggle” to false. (This is used to control the breaking of entries between lines.) The alignment marks, if any,
at the left of the format item, now cause process A (below) to be executed for each *//”*, and process B for each
1. If the format item consists entirely of alignment marks, then go immediately to step 3. Otherwise the size of
the format (i.e., the number of characters specified in the output medium) is determined. Let this size be denoted
by S. Continue with step 5.

Step 5. Execute process C, to ensure proper page alignment.

60384700 A 3-31

Step 6. Line alignment: if p < L - 1, effectively insert blank spaces so that p = L - 1. Now if toggle = true, go to
step 9; otherwise, test for line overflow as follows: If o + S > R, perform process D, then call PR and go to step 8;
otherwise, if p + S > P, perform process D, call PP‘ and go to step 8.

Step 7. Evaluate the next output item and output it according to the rules given in Section A; in the case of a title
format, this is simply a transmission of the insertions without the evaluation of an output item. The pointer p is set
to p + S. Any alignment marks at the right of the format item now cause activation of process A for each **/" and
of process B for each “1”". Return to step 3.

Step 8. Set toggle to true. Prepare a formatted output item as in step 7, but do not record it on the output medium
yet (this is done in step 9). Go to step 5. (It is necessary to re-examine page and line alignment, which may have
been altered by the overflow procedure; hence we go to step 5 rather than proceeding immediately to step 9.)

Step 9. Transfer as many characters of the current output item as possible into positions p + 1, . . . , without
exceeding position P or R. Adjust p appropriately. If the output of this item is still unfinished, execute process D
again, call P (ifR<P)or Pp (if P <R), and return to step 5. The entire item will eventually be output, and then
we process alignment characters as in step 7, finally returning to step 3.
Process A. (**/” operation) Check page alignment with process C, then execute process D and call procedure P),.
Process B. {(““1*’ operation) If p > 0, execute process A. Then execute process E and call procedure Py
Process C, (Page alignment)

If p'< L'~ 1 and p > 0: execute process D, call procedure PN' and repeat process C.

I p'< L' - 1and p = 0: execute processD until p’ =L"- 1.

if p'+ 1> R": execute process E, call procedure PFI" and repeat process C.

If p'+ 1> P': execute process E, call procedure PP" and repeat process C.

Process D. Skip the output medium to the next line, setp = 0, and set p’ = p’' + 1.

Process E. Skip the output medium to the next page, and setp’ = 0.

3-32 60384700 A

60384700 A 3-33

is the tab spacing

3-34 60384700 A

B.5.2 Input
The input process is initiated by the call:
in list (unit, LAYOUT, LIST)

The parameters have the same significance as they did in the case of output, except that unit is in this case the num-
ber of an input device. There is a class of procedures input n which stand for a call with a particularly simple type
of layout and list, just as discussed in Section B.5.1 for the case of output. In the case of input, the parameters of
the “item’’ procedure within the list must be variables.

60384700 A 3-35

The various steps which take place during the execution of in list are very much the same as those in the case of out
list, with obvious changes. Instead of transferring characters of title format, the characters are ignored on input. if
the data is improper, some standard error procedure is used. (Cf. Section A.1.3.8.)

The only significant change occurs in the case of standard input format, in which the number S of the above algorithm
eannot be determined in step 4. The tests p + S> R and p + S > P now become a test on whether positionsp + 1,
p+2,..., min (R, P) have any numbers in them or not. If so, the first number, up to its delimiter, is used; the R
and P positions serve as delimiters here. I not, however, overflow occurs, and subsequent lines are searched until a
number is found (possibly causing additional overflows). The right boundary min (R, P} will not count as a delimiter
in the case of overflow. This rule has been made so that the process of input is dual to that of output: an input item

is not split across more than one line unless it has overflowed twice. Notice that the pragrammer has the ability to
determine the presence or absence of data on a card when using standard format, because of the way overflow is
defined. The following program, for example, will count the number n of data items on a single input card and will
read them into A[1], A[2] , ..., A[n]. (Assume unit 5 is a card reader.) '

procedure LAY; h end (EXIT,EXIT EXIT);

procedure LIST (ITEM); ITEM (Aln + 11);

procedure EXIT; go to L2;

N:=0; L% inlist (5,LAY,LIST);n: =n+ Lgotolt;

L2 :; comment mission accomplished;

3-36 60384700 A

60384700 A 3-37

: number has been found, (in which case p is advanced to the po "tron followmg the number, and step 9 s exeeuted)
or posrtmn min (R, P) has. been reached w:th no srgn, drglt decrmai point or 10 encoumered In this case; step 8 is
-executed with p = min (R, P). If N format is not used step 8is executed 1f 3 +$> min (R P) or step 9 1f
,,'p+s<mm(R P) S0 : ,

' Step 8 (Processmg of overﬂow)

Process H (p + s) is performed and the followmg procedure
N format: Characters are input until a number followed by a delimiter is found and stéj') 9is execr,rted or if po'smorz
min (R, P) is reached, a partial number may have been examined, Step 8 is repeated until a number followed bya

delrmrter has been input.

A format Characters are mput as with N format until a basic symbol has been mput (This basre symboi may use
several character posmons on the 1nput mediuvm.) ' :

’ ()ther if p+s<R and p+s< P step 9 is executed otherwrse rnput k= min (R P) -p characters set p mm(R P),»f‘
. deerease s by k and repeat thrs Step : o : Lo :

: ,S p 9 (Frmsh the ltem)

3-38 60384700 A

S

AR

B.5.3 Skipping
Two procedures are available which achieve an effect similar to that of the ““tab’’ key on a typewriter:
h skip (position, OVERFLOW)
v skip (position, OVERFLOW)
where position is an integer variable called by value, and OVERFLOW is the name of a procedure. These procedures
are defined only if they are called within a list procedure during an in list or out list operation. For h skip, if
o < position, set p = position; but if p = position, call the procedure OVERFLOW. For v skip, an analogous proce-

dure is carried out: if p’ < position, effectively execute process A of Section B.5.1 {position - p°) times; but if
p’ = position, call the procedure OVERFLOW.

60384700 A 3-39

B.5.4 Intermediate data storage

The procedure call
put (n, LIST)

where n is an integer parameter called by value and LIST is the name of a list procedure (Section B.4), takes the
value specified by the list procedure and stores them, together with the identification number n. Anything pre-
viously stored with the same identification number is lost. The variables entering into the list do not lose their
values.

The procedure call
get (n, LIST)

where n is an integer parameter called by value and LIST is the name of a list procedure, is used to retrieve the set
of values which has previously been put away with identification number n. The items in LIST must be variables.
The stored values are retrieved in the same order as they were placed, and they must be compatible with the type

of the elements specified by LIST; transfer functions may be invoked to convert from real to integer type or vice
versa. If fewer items are in LIST than are associated with n, only the first are retrieved; if LIST contains more items,
the situation is undefined. The values associated with n in the external storage are not changed by get.

, B 54 Intermed;ate Data Storagg

; The procedures GET an ?U'F,are mplemented as specaal cases of GETLIST and PUTLIST assummg the spec:ai
channel _number 0 and us mg an index denved fmm the mteger parameter Thzs mdex is not avaalabte't

B.6 Control Procedures

The procedure calls
out control (unit, x1,x2,x3,x4)

in control (unit, x1,x2,x3,x4)

may be used by the programmer to determine the values of normally “hidden’’ system parameters, in order to have
finer control over input and output. Here unit is the number of an output or input device, and x1,x2,x3,x4 are
variables. The action of these procedures is to set x1,x2,x3,x4 equal to the current values of p,P,p' P, respectively,
corresponding to the device specified.

3.40 60384700 A

adummystatement Eias S

60384700 A 341

B.7 Other Procedures

Other procedures which apply to specific input or output devices may be defined at installations, (tape skip and
rewind for controlling magnetic tapes, etc.). An installation may also define further descriptive procedures (thus
introducing further hidden variables); for example, a procedure might be added to name a label to go to in case of
an input error. Procedures for obtaining the current values of hidden variables might also be incorporated.

I/O,Piop?@urés for = : |
- Direct Access Devices

' I/O Procedures for
Binary Sequential Files

- Control Broc::edur_és-«:{'. s

342

8¢ :
SKIPF f R
~ J ENDFILE
CiBARKSEACEL L

Hardware Function Procedures -

Yz
FETCHLIST
 STORELIST
| FETCHITEM
{_STOREITEM

(iGETA_RRAY
| PUTARRAY -

PARITY
EOF

ERROR

[ARTHOFLW

,,,,,,,

BADDATA

| cHanerrOR

60384700 A

C. An Example

A simple example follows, which is to print the first 20 lines of Pascal’s triangle in triangular form:

These first 20 lines involve numbers which are at most five digits in magnitude. The output is to begin a new page,
and it is to be double-spaced and preceded by the title “PASCALS TRIANGLE". We assume that unit number 3 is
a line printer.

Two solutions of the nroblem are given, each of which uses slightly different portions of the input-output conventions.
begin integer N, K, printer;

integer array A[0:19];

procedure AK (ITEM); ITEM (A[K]);

procedure TRIANGLE; begin format (¢62%); h lim (58 -3 X N, 63 + 3 X N)
end;

printer: = 3;
output O (printer $t ‘PASCALS LI TRIANGLE?//);

for N': = 0 step 1 until 19 do
begin A[N] : = 1;
for K: = N - step - 1 until 1do A[K] : = A[K - 1] + A[K];
for K: = 0 step 1 until N do out list (printer, TRIANGLE,AK);
output O (printer,*//*)
end

end

60384700 A 343

begin integer N, K, printer;
integer array A[0:19];
procedure LINES;format 2(‘XB,X(62),//*,567-3XN,N+1);
procedure LIST(Q); for K : = 0 step 1 until N do Q(A[KI);
printer: = 3;
output 1 (printer, $1208//° $SPASCALS LI TRIANGLEY);
for N : = 0 step 1 until 19 do
begin A [N] : = 1;
for K: = N - 1step - 1 until 1do A[K] :=A[K-1] + AIK];
out list (printer, LINES,LIST)
end
end

D. Machine-dependent Portions

Since input-output processes must be machine-dependent to a certain extent, the portions of this proposal which
are machine-dependent are summarized here.

1. The values of P and P’ for the input and output devices.
2. The treatment of |, L, and R (unformatted) format.

3. The number of characters in standard output format.

4. The internal representation of alpha format.

5. The number of spaces, K, which will serve to delimit standard input format values.

REFERENCES
Naur, P. {(Ed.) Revised report on the algorithmic language ALGOL-60 Comm. ACM 6 (1963), 1-17.
Extended ALGOL reference manual for the Burroughs B-5000. No. 5000-2102, Burroughs Corp., Detroit, 1963.

SHARE ALGOL-60 translator manual. No. 1426, 1577, SHARE Distr. Agency. Oak Ridge ALGOL compiler for
the Control Data 1604 computer. Oak Ridge Nat. Lab., Oak Ridge, Tenn.

Duncan, F. G. Input and output for ALGOL-60 on KDF 9. Comp. J. 5 (1963), 341-344.
Hoare, C. A. R. The Elliott ALGOL input/output system. Comp. J. 5 (1963), 345-348.

McCracken, D. D. Guide to ALGOL programming. Wiley, New York, 1962. AED compiler. Electronic Systems lab.,
MIT, Cambridge, Mass.

Ingerman, P. Z. A syntax-oriented compiler, etc. U of Penn., Moore School of Elect. Engineering, Philadeiphia, Pa. 1963.

Ingerman, P. A., and Merner, J. N. Revised revised ALGOL-60 report. Unpublished.

344 60384700 A

Perlis; A. J. A format language. Comm. ACM 7 (1964}, 89-97.

Baumann, R. ALGOL-Manual der ALCOR-Gruppe, Elektron, Rechen, H. 5/6 (1961), H.2 (1962).
3.2 ADDITIONAL INPUT-OUTPUT PROCEDURES T

3.2.1 PRIMITIVE PROCEDURES

An additional set of primitive procedures exists without declaration, as follows:
CHLENGTH (siring)
STRING ELEMENT (sl, i, s2, x)

CHLENGTH

CHLENGTH is an integer procedure with a string as a parameter. The value of CHLENGTH (string) is equal to
the number of characters of the open string enclosed between the outermost string quotes. It is introduced to
make it possible to calculate the length of a given (actual or formal) string.

CHLENGTH may be defined as follows:

integer procedure CHLENGTH (string);

string string;

comment evaluate the number of character positions string would
require if output using S format;

< procedure body >

STRING ELEMENT

The procedure STRING ELEMENT is introduced to enable the scanning or interpretation of a given string (actual or
formal) in a machine independent manner. It assigns to the integer variable x an integer corresponding to the ith
character of the string s1 as encoded by the string s2.

STRING ELEMENT can be defined as follows:

procedure STRING ELEMENT (s1, i, 52, x); value i; integer i, x;
string sl, s2;

‘comment select the ith symbol in s, search string s2: if a

match is found assign to x the position number of the corresponding
symbol in string s2, if no match is found assign O to x;

< procedure body >

tSince the remainder of this chapter deals entirely with Control Data only features, shading is not used.

60384700 A 3-45

Effectively an OUT CHARACTER (Section B.5) process is performed on the string s1 according to the integer
variable i. An IN CHARACTER process is then performed with the resultant character on the string s2, producing
an integer value to be stored in the integer variable X, as follows:

REWIND (channel);
OUTCHARACTER (channel, sl, i);
REWIND (channel);
INCHARACTER (channel, s2, x);

3.2.2 INPUT-OUTPUT PROCEDURES FOR DIRECT ACCESS DEVICES

3.2.2.1 INDEXED LIST INPUT AND OUTPUT

GETLIST (channel, index, list)
PUTLIST (channel, index, list)

Here channel is an integer parameter called by value and is the number associated with the input-output device. The
parameter index is an integer called by value which is used to identify the list of items on the input-output device.

The parameter list is the name of a list procedure (cf. Section B.4)

These 2 procedures form a pair. The effect of PUTLIST is to output to the output device the items presented by a
call of the list procedure, the whole set being indexed by the index.

The effect of GETLIST is to input from the input device the items indexed by the index, and transfer the values to
the items presented by a call of the list procedure.

Any item output by PUTLIST can be input to a compatible item by GETLIST where compatibility is defined as:

item type for PUTLIST item types for GETLIST
real or_integer array real or integer array
Boolean array compatible Boolean array

real or integer value real or integer variable
Boolean value Boolean variable

If an attempt is made to use GETLIST with an incompatible item an error message is given.

In the case of arrays, the elements are taken in lexicographical order, without regard to any multi-dimensional
structure. Any necessary type-conversion takes place during GETLIST according to the standard rules. If an
array on the input medium is larger than the GETLIST item, superfluous elements are ignored; if smaller,
superfluous elements in the item are unchanged.

If during the evaluation of an I/O item, an attempt is made to input or output to the same channel, the result is
undefined, e.g.:

procedure A (x); procedure X;
begin GETITEM (3, 72, B); x (B);
end;

PUTLIST (3, 64, A)

346 60384700 A

In this example, the call to GETITEM will be in error and a message will be issued.
The items provided by the list procedure can be arrays or arithmetic or Boolean expressions. (See Section B.4.1.1.)
An index is a non-negative parameter used to identify the location of the items on the external device. If more than

one list of items with the same index is output to an indexed file and an attempt is made to input a list with that
index from that file, then the effect is undefined.

3.2.2.2 INDEXED ITEM INPUT AND OUTPUT

GETITEM (channel, index, €150 - - - - ,en)
UTITEM (channel, index, €585 - - - ,en)

These procedures may be defined in terms of GETLIST and PUTLIST as follows:
procedure GETITEM (channel, index, e 1€ - - - - ,en);
value channel, index; integer channel, index;
comment €p>€y, - - - ¢, May be:
— any integer, real or Boolean variable,

— any integer, real or Boolean array;

begin procedure a (p); procedure p;

begin p(e;); p(ez); e ;p(en) end;
GETLIST (channel, index, a)

end
procedure PUTITEM (channel, index, €1s€ - - ,en)

value channel, index; integer channel, index;

comment ey, €, ,¢, may be any of the above or any
integer, real or Boolean expression;

begin procedure a (p); procedure p;

begin p(el);p(ez);;ple,) end;
PUTLIST (channel, index, a)

end

60384700 A 347

3.2.2.3 INDEXED LIST INPUT AND OUTPUT ON STANDARD STORAGE MEDIA

GET (index, list)
PUT (index, list)

These procedures are the same as GETLIST and PUTLIST except that they always use channel 0, which specifies
standard storage media. Information output to this channel is lost on termination of execution of the program.

3.2.2.4 WORD-ADDRESSABLE LIST INPUT AND OUTPUT

FETCHLIST (channel, address, list)
STORELIST (channel, address, list)

Channel is an integer parameter called by value and is the number associated with the file on the external device.
Address is an integer variable called by name: on entry it contains the word address within the file where items are
to be stored/retrieved; on exit it contains the word address of the next item in the file. List is a list procedure giving
the items to be stored or retrieved.

These two procedures form a pair. The effect of STORELIST is to output to the output device the items presented
by a call of the list procedure, in sequential words, starting from the item whose word address is given by address.
The effect of FETCHLIST is to input from the input device values starting from the value whose word address is
given by address and to assign them to the items presented by the list procedure.

The items presented by the list procedure can be of the following type:

1. an array — real, integer or Boolean

2. an arithmetic or Boolean expression.

On the external device, word addresses are sequential starting from 1 Each value (real, integer or Boolean) occupies
1 address. Values of different types may not be mixed on the same channel.

3.2.2.5 WORD-ADDRESSABLE ITEM INPUT AND OUTPUT

FETCHITEM (channel, address, €€y .- .- ,en)

STOREITEM (channel, address, €€y e v ,en)

These procedures can be defined in terms of FETCHLIST and STORELIST in a way entirely analogous to the
definitions of GETITEM and PUTITEM in 3.2.2.2 above.
3.2.3 INPUT-OUTPUT PROCEDURES FOR BINARY SEQUENTIAL FILES

The procedures GETARRAY and PUTARRAY are provided for the retrieval and storage of arrays with binary
sequential files.

GETARRAY (channel, destination)
PUTARRAY (channel, source)

Destination and source are the names of arrays.

348 60384700 A

GETARRAY reads one record of the same length as destination directly from the channel into destination. The
record is not stored first in a format area and no regard is made for maximum record size. The record should contain
the array arranged by rows (as defined in Section B.5, Array Transmission).

PUTARRAY writes one record, equal in length to source, directly from source to the channel. The record is not
stored first in a format area and no regard is made for maximum record size. The record reflects exactly how the
array is stored in memory, by rows.

3.3 CONTROL PROCEDURES

Each one of these procedures establishes a label to which control transfers
in the event of an arithmeiic error {overfiow, underflow or division fauit),
irrecoverable parity error, end-of-file condition, or mismatch of input data
and the corresponding format. Each procedure can be called as many times
as necessary to modify the label in the course of a program. PARITY, EOF

ARTHOFLW (label) and BAD DATA must be called once for each channel for which a label is
PARITY (channel, label) to be established. If a procedure has not been called, or if the label is no
EOF (channel,label) longer accessible when the corresponding condition occurs, the object
BAD DATA (channel, label) program terminates abnormally with an error message.

If IN LIST is in operation, a label may be established by the NO DATA
procedure (Section B.3.4) instead of by the EOF procedure. During the
execution of the IN LIST procedure, any label established by NO DATA
Lproce(iure takes precedence over an EOF label.

ERROR (key, destination) is an execution-time trapping procedure. Key is an integer and is the key
of the particular execution error to be trapped. Destination is a label. In
the event of the keyed error occurring after a call of ERROR and being
within its scope (see below), the destination is jumped to.

The scope of a call of ERROR is defined as the smallest block or procedure
body surrounding the call plus any procedures called from this scope.

The values of key for ERROR are:

: any error

1 overflow

: array/switch error

parameter mismatch

standard function parameter errors
stack overflow

(2 AR VS I S)

60384700 A 349

CHANERROR (channel, key, is an execution-time error trapping procedure for input-output entirely
destination) analogous to ERROR. Channel is an integer called by value.

The values of key for CHANERROR are:

any error
parity error

EOF

bad data

formatting errors

illegal operation

auxiliary procedure errors

SN b W —=O

3.4 HARDWARE FUNCTION PROCEDURES

A channel is input if last used for a read operation, output if last used for a write operation, and closed if not
previously referenced by a closing procedure such as ENDFILE.

If any of the following procedures are called for an external device which cannot perform the operation, the proce-
dure is treated as a dummy procedure; and at the completion of the procedure, the channel is considered to be

closed. On mass-storage devices the procedures REWIND and UNLOAD position the external device to the
beginning of the information.

SKIPF {channel)

This procedure spaces forward past one end-of-file mark on coded or binary sequential file. It is treated as a dummy
procedure on an output channel, on indexed and word addressable file.

SKIPB (channel)

This procedure spaces backwards past one end-of-file mark on coded or binary sequential file. On an output channel
before the spacing occurs, any information in the format area is written out and an end-of-file mark is written and
backspaced over. If the channel is associated with indexed or word addressable file, the procedure is treated as a
dummy procedure.

ENDFILE (channel)

This procedure writes an end-of-file mark on the external device. It is treated as a dummy procedure on an input
channel. Before the end-of-file mark is written, any information in the format area is written out.

REWIND (channel)

This procedure rewinds the external device to load point. On output before rewind occurs, any information in the
format area is written out; an end-of-file mark is written and backspaced over.

3-50 60384700 A

UNLOAD (channel)

This procedure unloads the external device. On output before unloading occurs, any information in the format area
is written out; and an end-of-file mark is written and backspaced over.

BACKSPACE (channel)

The procedure backspaces past one logical record on a sequential file, i.e., one unit record (print line or card)
produced by coded sequential I/O or one record produced by a put array call. Backspace is only allowed on
files of record type F, S or W or blocked files with one record/block.

35 MISCELL ANEQUS PROCEDURES AND FUNCTIONS
10LTH (channel)

This integer procedure returns as its value the length of the last item list read from or written to the external device
associated with the value of the integer parameter channel. This procedure may only be used with indexed, binary
sequential or word-addressable channels; use with other channels will give a zero result.

The length of the last item list is 1 if the item list was a single value and is the number of elements if it was an
array.

POSITION (element, item)

This integer procedure returns as its value the displacement of the element (must be an array element) within the
item (must be an array). This displacement, when added to the word address of the item, gives the word address
of the element.

DUMP (identifying integer, option)

This procedure may be used to obtain output of the local (and formal) variables in the currently active block (proce-
dure body). The format is that of the object-time abnormal termination dump (Chapter 13). The dump is entitled

DYNAMIC CALL TO DUMP NUMBER < identifying integer > AT LINE < line number >

Identifying integer is an integer type variable

Option is an arithmetic expression taking on the same values as the post mortem dump options.

no dump

traceback of program execution

reduced octal dump of local quantities and formals

reduced symbolic dump (decimal) of local quantities and formals
complete symbolic dump (decimal) of local quantities, formals and arrays.

W -0

Note options 24 include the traceback.

60384700 A 351

The following convention has been added:
positive value of option : dump of the dynamic chain of execution
negative value of option : dump restricted to current block
CLOCK

This is a real procedure whose value at any instant is the elapsed CPU time in seconds at the control point at which
the ALGOL program is executing. The value is accurate to one millisecond.

THRESHOLD (function, destination)

This is an environmental enquiry procedure. Function is an integer specifying the quantity to be accessed and
destination is a variable of suitable type to hold the quantity. The available values for function are:

Function Quantity to be accessed
1 Largest absolute integer
2 Largest absolute real
3 Smallest absolute real
4 Precision for unity

The largest integer N is defined as the representation in normalized floating point for which the following
conditions are true:

N+l =N
N-1 # N

This number is 2 148 which is 281 474 976 710 656
The largest real number distinguishable from machine infinity is
(2148-1) * (211022) which is 1.279322.

The smallest number distinguishable from zero by the machine in ALGOL 4.0 is (2147) * (2 1-1022) which
is v 1.619-294. This is the smallest normalized number.

Precision for unity is defined to be the smallest real number that can be added to 1.0 in ALGOL 4.0 to
produce a result distinguishable from 1.0. This number is 2 1 47 which is v 3.61¢-15.

INRANGE (param)

This boolean function has one real value parameter that returns the value false if the parameter is infinite or
indefinite, and true otherwise.

3-52 60384700 A

Specific representations exist for * infinity and for *+ indefinite. If such operands are used in arithmetic opera-
tions, a mode error will result. In ALGOL, infinite operands are caused by overflow and indefinite operands are
the result of dividing zero by zero. Such operands also can be present in variables when storage space has been
so preset and before the variable has been assigned a value by the program. Presetting of this kind may be
either the result of the program loading operation or of object time stack space requests with the P-option on
(Chapter 8).

MOVE {array 1, array 2)
This procedure moves the contents of array 1 to array 2. These arrays may be either normal or virtual arrays
and they may reside either in CM [or SCM] or in ECS [or LCM] (Chapter 11). They must have the same

dimensions. Any dimension errors will be trapped at execution time. When array 1 and array 2 are of different
arithmetic types, the transfer is made without conversion.

3.6 INPUT-OUTPUT ERRORS
At object-time, two types of errors not directly concerned with programming are detected: illegal input-output
operation requests and invalid transmission of data (Chapter 8).
3.6.1 ILLEGAL INPUT-OUTPUT OPERATIONS
The object program terminates abnormally with a diagnostic if:
An input (output) operation is requested on a channel associated with a device which cannot read (write),

or on a device which is prevented by the operating system from reading (writing). A read operation
immediately follows a write operation or vice-versa.

60384700 A 3-53

3.6.2 TRANSMISSION ERRORS

Transmission errors are first treated by standard recovery procedures. If an error persists, it is irrecoverable.

On an irrecoverable parity error, control transfers to the label established for the channel by the PARITY procedure.
If the PARITY procedure was not called or if the established label is no longer accessible, the object program ter-
minates abnormally with the diagnostic UNCHECKED PARITY.

3.7 END-OF-FILE

When an end-of-file is encountered on an external input device, control transfers to the label established for the
channel by the NO DATA procedure (within IN LIST only) or the EQF procedure. If neither procedure has been
called and if a label established by either is no longer accessible, the object program terminates abnormally with
the message UNCHECKED EOF. During execution of the IN LIST procedure, any label established by NO DATA
takes precedence over a label established by EOF.

3.8 END-OF-TAPE

If an end-of-tape is detected during writing, the standard system end of tape procedure is executed.

3.9 EFFICIENT USE OF FORMATTED INPUT-OUTPUT

The simplest procedures for formatted I/O are INPUT and OUTPUT. If the optimizing mode has been selected
an attempt is made to analyze and simplify calls to these two procedures at compile time and if an actual call
satisfies all the conditions below, a faster call will be made at execution time:

3

1. The list of items to be input or output contains no procedure calls or formal parameters.
2. The format is valid and the format string is an actual string.
3. Each format item is a simple format item (see below).
4. The format does not contain the alignment mark J.
Using the definitions of format items in Chapter 3, Section A, the following are defined:

< simple number format > :'= < number format without insertion sequences >

< simple format item > := < simple number format > | < standard format > |

< Boolean part > | < non format > | <S> | <A > | < insertion > | < alignment mark >

In general, a simple format item cannot contain associated or embedded alignment marks or insertion sequences
orJorX.

3.54 60384700 A

Below are examples of simple format items:

4DD +3ZD.2D -ZD
N P

L A

58 ‘A STRING’
6B t

H

The following are valid format items but are not simple format items:

‘INTEGER’ +ZD.2B ‘FRACTION’ 4D
{F
N/
‘ABC’ 7S

The following declarations are assumed for the example given below:

real a, b, c; integer i, j;

Boolean p, q;

armay X [1:6,1:3],Y[0:5];
SIN and COS are standard functions.
Examples
Calls that satisfy conditions 1-4

(i) INPUT (60, “ *, a,Y[i]);

ODITPITT (
VU LL UL (&

(i)
(iii) OUTPUT (7, ‘3(N),/", a, b, ¢ ¥2+ 4.5);
(iv) OUTPUT (2, ‘(/, 3(+2ZD,3B))’, Y);

Calls that do not satisfy all of the above conditions:

v) INPUT (60, ‘J,N’, a);

(vi) OUTPUT (7, ", a, SIN (a), COS (a) *2.0);

| =
s 21

~m=®mz

(vii) OUTPUT (2, ‘/, ‘ANSWER’ 3B+3ZD.",",F’ a,p);

PN
» Qo)y

Note that the results of examples (ii) and (viii) are the same; however, example (ii) will require less time to execute.

60384700 A

3.55

3.10 EXTENDED CORE STORAGE, LARGE CORE MEMORY PROCEDURES

The procedures, READECS and WRITEECS, are provided for reading from or writing to ECS or LCM. They
are included only for compatibility with previous versions of ALGOL.

It is recommended that the procedure MOVE be used instead (Chapter 3, section 3.5).

READ ECS (ADDRESS, ARRAY, LABEL)

This procedure transfers the contents of successive locations from the user direct access area of ECS [or LCM]
addressed by the integer expression, ADDRESS, into the array, ARRAY, in central memory. Control transfers

to the label, LABEL, if an irrecoverable parity error occurs. If the parameter, LABEL, is omitted, irrecoverable
parity error will cause an abnormal termination dump.

WRITE ECS (ADDRESS, ARRAY, LABEL)
This procedure transfers the contents of array, ARRAY, to the user direct access area of ECS [or LCM] beginning
at the first word address given by the value of the integer expression, ADDRESS. Control transfers to the label,

LABEL. if an irrecoverable parity error occurs. If the parameter, LABEL, is omitted, irrecoverable parity error
will cause an abnormal termination dump.

3-56 60384700 A

INPUT TO COMPILATION 4

Input to the compiler may be an ALGOL source program or an ALGOL source procedure. More than one source
program or source procedure may be compiled with a single call tothe compiler.

In the following definitions, the symbol eop indicates the delimiter 'EOP' which separates successive ALGOL
programs.

4.1 SOURCE PROGRAM DEFINITION
The following definition for an ALGOL source program is based on the definition of an ALGOL program (Section
4.1.1., Chapter 2), plus the following definition of implicit outer block head.
4.1.1 SYNTAX
< implicit outer block head >!:=<block head >;

< implicit outer block head list >::=< implicit outer block head > implicit cuter block head list >
< implicit outer block head >

< pre >:'=< any sequence of symbols except begin, code, algol, or
procedure >1< empty >

< post >::=< any sequence of symbols except eop>|< empty >
< source program >::=<pre > < program > < post > | < implicit outer block head> <program> < post>
< source program list >!:=< source program >|< source program list > eop <source program >

4.1.2 SEMANTICS

A source program must contain declarations of all variables referenced in it. It must contain declarations for all
procedures (except standard) it calls, including those that are compiled separately from the main program as ALGOL
source procedures (Section 5.4.6., Chapter 2). However, the facility exists for adding implicit outer blocks to a
program at compile time. This allows the user to reference identifiers in his program which are not explicitly de-
clared therein but which will be present in the added outer blocks. A source library of such outer blocks can be main-
tained and included at compile time via control card options. Any number of such blocks may be added provided that
the nested block level does not exceed the imposed limit.

Implicit outer blocks cause nesting of the source program. To ensure syntax correctness the compiler automatically
supplies as many end’s as necessary and issues a warning message telling that end’s were missing.

60384700 A 4-1

Compilation of an ALGOL source program (generation of object code) starts with the ALGOL symbol '‘BEGIN
in the source deck and terminates with the ggd symbol which causes the number of begin and end symbols
to be equal or with the eop, whichever occurs first; however, a diagnostic is issued if the number of begin’s
is not equal to the number of end’s.

Any information in the source deck prior to the first begin or between the final end and the eop is treated as a
commentary, printed as part of the source listing and included in the line count.

A program name is generated from the characters in columns 1-7 of the first source deck card, provided the
character in column 1 is alphabetic. This name is terminated with the seventh character or by the first non-
alphanumeric character encountered. If the character in column 1 is not alphabetic, the name generated is XXALGOL.

The generated name is assigned to the subprogram output from the source program (Chapter 5) and is printed on the
page headings of the source listing.

4.2 SOURCE PROCEDURE DEFINITION

The following definition of an ALGOL source procedure is based on the definition of a procedure declaration in the
ALGOL-60 Revised Report (Chapter 2, Section 5.4.1).

4.2.1 SYNTAX

< pre >'=< empty >|< any sequence of symbols except begin,code, algol, or procedure >

< mid >!'=< empty >|< any sequence of symbols except procedure, real, integer, or Boolean >

< post >!:=< empty >|< any sequence of symbols except eop >

<d> =<digit>

< code number >::=<d>|<d> <d>I<d> <d> <d>I<d> <d> <d> <d>IKA> <d> <d><d><d>
<external identifier >2'=< identifier with less than or equal to 7 digits and/or letters >

< code identifier >::=< code number >|< external identifier >|< empty >

< code head >::=< pre > _c&d_g < code identifier > ; < mid >|< pre > M < code identifier > ; < mid >

< source procedure >::=< code head > ; < procedure declaration > ; < post >

< source procedure list >::=< source procedure >|< source procedure list > eop < source procedure >

4.2.2 SEMANTICS
A source procedure must contain declarations for all variables referenced in it. It must contain declarations for all
procedures (except standard) it calls, including procedures which are compiled separately as ALGOL source pro-

cedure (Section 5.4.6., Chapter 2).

A source procedure may employ the same language features as a procedure declared in a source program.

4.2 60384700 A

Compilation of an ALGOL source procedure is initiated by the ALGOL symbol code ('CODE") or algol
('ALGOL"). These symbols are followed by the code identifier which is either a number in the range 0-99999,
an external identifier of seven or fewer letters or numbers, or empty, and then by a semi-colon. In the case
where it is empty the name declared in the procedure heading is taken to be the external identifier of the
ALGOL source procedure. The same code number or external identifier is included in the body of the decla-
rarion for this procedure in the source program or source procedure referencing it. (Section 5.4.6, Chapter 2).

Compilation of an ALGOL source procedure starts with the symbol procedure (‘PROCEDURE') which may be
preceded by one of the type declarators real ('REAL"), integer (‘INTEGER'), or Boolean ('BOOLEAN").

If the procedure symbol is encountered before the code or algol symbol, compilation of the procedure starts
normally, but an error message is issued and a code number of 00000 is supplied.

Compilation of an ALGOL source procedure ends at the normal end of the procedure declaration. If the body
of the procedure is a single statement, the end is at the semi-colon terminating that statement. If the body is

a compound statement or block, the end is at the semi-colon following the balance of begin and end symbols.

If the eop occurs before the single statement is complete or before begin and end symbols balance, a diagnostic
is issued.

The name generated for the procedure is the external identifier or CPXXXXX, where XXXXX is the code num-
ber, when the symbol code is used. If five digits are not specified the number is zero-filled on the left. For
example, 20 becomes 00020. Any error in the specification of the code number or external identifier results in
00000. When the code identifier is empty, the name of the procedure which is declared in the code body will
be assumed to be the external identifier. The generated name is assigned to the subprogram output from the
source procedure and is also printed on the page headings of the source listing.

A source procedure cannot contain overlays.

4.3 SOURCE INPUT RESTRICTIONS

A single source program or single source procedure, or any combination of these, may be compiled with one call
of the compiler.

The object program resulting from the compilation of a single source program, with no special binary subpro-
gram input, is always executable, provided there are no compilation errors.

Source input for compilation must be on the standard system input file, described here only as cards.

Various SCOPE control cards are required to request an ALGOL compilation. Included in these is the ALGOL
control card (Chapter 6).

4.4 LANGUAGE CONVENTIONS

The input cards contain the character representations for the ALGOL symbols shown in APPENDIX C. For
example, to include the ALGOL symbol begin, the user punches the characters 'BEGIN'.

A blank character has no effect on the compilation process, except in strings (Chapter 2). Blanks may be freely used
elsewhere to facilitate reading. For example, MEAN UPPER BOUND, MEAN UPPERBOUND, and MEANUPPER-
BOUND are treated as being identical (the same name). Similarly, blanks may be included in the character representa-
tion of the ALGOL symbols. The ALGOL symbol real may be punched as ‘R E A L’ instead of the normal ‘REAL’.

60384700 A 4.3

45 CARD CONVENTIONS

Source input file is constituted of cards in the sense of the standard system input file. Maximum card length
is 126 characters.

An installation option can specify the number N of first characters of the card to be significantly interpreted by the
compiler; any language structure may be across two or more cards provided it has no characters after N, since no
syntactic meaning is attached to the characters appearing between N+1 and 126. At compile time, each card is
counted and assigned a line count (beginning at 1) for reference by error messages. The line count is included in all
source language listings as are characters beyond N.

The number of significant characters is established by default to 72, but it can be changed to another value by
the K option of the ALGOL control-card (Chapter 6).

Example:

ALGOL K=nn. 1 <nn <126

4.6 SOURCE DECK
A source deck consists of the cards which constitute one ALGOL source program or one ALGOL source procedure.

The source decks to be compiled are stacked consecutively, following the SCOPE control cards. The stack may con-
tain any number of source programs or source procedures in any order within the restrictions described above. The
source stack appears as one logical record on the input file.

If more than one source deck is submitted to the compiler, each source deck must be separated from the fol-
lowing by the delimiter, 'EOP'. This may be placed anywhere on a card; the following program must, however,
begin on a new line. The last source deck must not be followed by an eop.

44 60384700 A

OUTPUT FROM COMPILATION 5

5.1 BINARY OUTPUT

The binary output (machine code) generated from one ALGOL compilation (one library call of the ALGOL compiler)
may be requested by a control card option.

The maximum size of the binary output generated from a single source program or source procedure deck is
131,072 words.

The compiler generates an object program which can be loaded for execution by the system loader. When the object
program and its data requirement will not fit as a whole into available memory, a combination of the S option and
the virtual and overlay delimiters should be used (see Chapters 6 and 10).

For each source procedure deck in the source input stack (Chapter 4), the compiler generates a SCOPE binary re-
locatable subprogram. A source program is generated as a SCOPE binary relocatable main program. These subpro-
grams* are written out on the load-and-go file in accordance with SCOPE specifications.

After compilation, the load-and-go file contains any subprograms* written on it in the same job prior to the
compilation. These subprograms* may be written in any way — by an assembly, copy or another ALGOL
compilation.

An object program to be loaded for execution must contain only one program generated from a source program, but
it may contain the subprograms for any number of separately compiled source procedures. Any attempt to load an
object program which is not legal in this sense may result in a system loader error or unpredictable execution.

Since the output from compilation need not be executed, there are no compiler restrictions on the number and order

Each subprogram* contains an external name for any separately compiled source procedures or standard library or
run-time system procedures called in that subprogram*.

Thus, a legal object program causes the loading of the object program itself, the standard library subprograms and
separately compiled source procedures called, and the controlling program ALGORUN.

5.2 ASSEMBLY—-LANGUAGE OBJECT CODE

The compiler generates the object code directly into binary form, with no intermediate assembly language form. If an
assembly language form of the object code is requested, the compiler encodes the binary form into COMPASSTt format
which may be listed or punched. The listing has the same format as a COMPASS listing, with each COMPASS instruc-
tion appearing on one line. The punch form results in a legal COMPASS assembly deck, with one COMPASS instruc-
tion punched in the proper positions in each card.

*or program

+See the reference manual for the COMPASS version available under the operating system.

60384700 A 5-1

5.3 SOURCE LISTING

The user may request a printed listing of any source program or source procedure compiled. Each line in the listing
corresponds to one card in the source deck (one line on the ALGOL coding sheet). The lines appear in the same
order as the cards in the source deck. Each line contains an exact image of the corresponding card, right shifted

for readability.

Each source card in a deck is assigned a line number by the compiler, beginning at 1. Every line of the listing
contains the line number assigned to the corresponding card.

Diagnostics generated during compilation are printed following the source listing. Each consists of a summary of the
error condition and the approximate source line number on which the error was detected.

Diagnostics are printed even if the source listing is suppressed. Chapter 15 contains a description of system
diagrostics.

5-2 60384700 A

ALGOL CONTROL CARD 6

The ALGOL compiler is called from the library by a SCOPE library card, which is the ALGOL control card.
The name ALGOL in columns 1-—5 is optionally followed by a parameter list. If no parameter list is given, a period
must follow ALGOL. If a parameter list is specified, it must conform to the control statement syntax for job control
statements as defined in the SCOPE Reference Manual.
The parameter list is enclosed in parentheses or preceded by a comma and terminated by a period. The param-
eters are separated by commas and may appear in any order. All parameters must be fully contained on one
card. Cards columns following the final terminator may be used for comments.
The general formats of the card are:

ALGOL (p1,p2,p3, ..o e e , pn)

ALGOL ,p1,p2,p3,....c...... , pn.
Each installation may select default parameters which are assumed to be active when no conflicting parameters are
given on the control card. In other words, the installation preset parameters need not appear on the control card. If a
parameter other than the preset default parameter is desired, it must be explicitly selected;otherwise its absence is
equivalent to its suppression. Except for), where it has an intrinsic meaning,the writing of keyword =0 means the

explicit suppression of the corresponding parameter effects. This way must be used to remove an unwanted installa-
tion default parameter.

6.1 CONTROL CARD PARAMETERS

6.1.1 SYNTAX

< external identifier >!:=<identifier with length less than or equal to 7 letters and/or digits >
<value >1=<digit >I< digit > < digit >| < external identifier >

<value list >::=<value >|< value list >/< value >

<keyword>!= IIUILIAIRIBIPIQICIEINIDIFIS|K|X |

< parameter >::=< keyword >|< keyword > = < value list >| < empty >
< parameter list >!'=< parameter >|< parameter list > , < parameter >

< control card >!'= ALGOL, < parameter list > .| ALGOL (< parameter list >) | ALGOL.

60384700 A 6-1

Indeed this syntactic description does not show:
a) if a parameter need not be present it is not necessary to have an empty parameter between two commas.
b) the number of <value> in a <value list> is limited according to the keyword.

In any case this is definitely specified in the following section about semantics. A keyword may not appear more
than once.

6.1.2 SEMANTICS
| Source input

I : source input is on standard input file (INPUT)
I=1fn : source input is on file fn.

I=0 : no source input.
L List control

L : list source program with fatal diagnostics on the standard output file (OUTPUT).
L = fn : list source program, fatal diagnostics on file fn.
L = 0 : list only fatal diagnostics on standard output file (QUTPUT)

R Cross reference map

R : produce and list a cross reference map at compile time, for the identifiers in the source program, on
the file specified by the L option.

R =0 : no cross reference map.
A Assembly listing

A : list the assembly language form of the object code on the file specified by the L option.
A =0 : no assembly language listing.

N Advisory diagnostics.

N : listing of advisory diagnostics is performed in the file specified by the L option

N = 0 : list of advisory diagnostics is suppressed; only diagnostics fatal to code generation are listed.
0] Optimization of generated code

Specifies the level of optimization the compiler is to perform.

@ =0 : compile program in the fast compile mode. This generated code is produced in the most general
fashion without regard to special situations which can give rise to more efficient code.

® =1 : performs linguistic optimization by optimizing procedure calling. Eliminates certain redundant
compilations. For a further explanation of optimization, see chapter 12.

Q@ =2 : performs the optimizations of @ = 1 and also subscript and for statement optimization.

6-2 60384700 A

U User implicit outer block head input supplementary to I, on standard file COMPILE.

U=1n : precede source program by the implicit outer block head list on file fn. Block heads precede
the source program in their sequential order and must be in source form.

U=0 : no file for irriplicit outer blocks.

For further information on implicit outer block heads, see Chapter 4.

C Comments interpretation for special delimiters. This option present requires the compiler to search
comments for special delimiters interpretation.

These delimiters are:
a) debugging directives trace, snap, snapoff (Chapter 9)

b) overlay directive overlay (Chapter 10)
c) array bound checking directives checkon and checkoff

C=20 : no comments interpretation.

C =1 : debugging directives which are present in comments are detected by the compiler and cause
debugging code to be inserted into the object program.

C =2 : overlay directives which are present in comments are detected by the compiler and cause overlay
directives in loader input format to be inserted into the object program.

C =3 : array bound checking directives which are present in comments are detected by the compiler.
The checkon directive causes array bound checking at execution time for each index of an array. All
arrays are checked until the checkoff directive is encountered.

Multiple selection for the C option can be performed by separating each value by a slash. For example
C = 3/2/1 is acceptable.)

Note the virtual array directive is always detected by the compiler and is not dependent on the C option
(see Chapter 11)

S Array storage allocation

S=0 : all arrays are allocated to CM [or SCM].
S=1 : virtual arrays are allocated to ECS [or LCM].

S=2 : all arrays are allocated to LCM. Note this option applies only for programs to be executed on a
CYBER 70/Model 76.

See Chapter 11 for an expianation of ECS/LCM usage

60384700 A 6-3

Punch assembly language

P : punch assembly language form of the object code in standard assembly language card format on
standard punch file (PUNCH).

P=1fn : punch assembly language on file fn.
P=0 : suppress assembly language punching.
P should not be used in overlay mode.

Exit parameter

Abort the job to an EXIT control card if a fatal error occurs during compilation.

E = 0 : suppress abort in case of fatal error.
Object program in standard relocatable binary load-and-go form.

B : output object program to standard load-and-go file (LGO)
B =1{n : output object program to file fn.

B =0 : no binary object program

Dumpfile assignment

D : create the symbol file on standard dump file (DMPFILE).
D = fn : create the symbol file on file fn.

D = 0 : suppress the symbol file.

Note that to have a symbolic dump at execution time (option D > 3 in Chapter 8), the symbolic
file must be created at compile time.

Fatal error termination

F : if a fatal error is found in the first pass (ALG1), terminate the compilation at the end of this
pass.

F = 0 : continue until the normal end of compilation.

Input record size

K = n : n is the number of significant characters to be interpreted by the compiler on the source
card image.

The maximum number of characters that can be interpreted is K = 126.
The default value is K= 72.

Real - Integer correspondence between formal and actual parameters (see Chapter 2, section 4.7.5.).
X = 0 : forbid any real-integer (or integer-real) correspondence between formal and actual parameters.

X or X =1 : allow real-integer (or integer-real) correspondence between formal and actual parameters
and in the case real to integer perform the conversion.

k]

Note that selection of this option will significantly degrade the performance of the program.

60384700 A

6.2 RESTRICTIONS AND ERRORS

Specification of certain parameters precludes specification of others; conflicting file names are illegal. Illegal
meaningless, or contradictory combinations of parameters and/or file names are diagnosed by the compiler, which
outputs the following diagnostic to the dayfile:

CONTROL CARD ERROR : abcdefghij

where a b ¢ . . . is the list of options having caused the error. A maximum of ten options is printed.

60384700 A 6-5

CHANNEL CARDS 7

All input-output statements (Chapter 3) specify a channel on which the operation is to be performed and each
channel is referenced by an identification number called a channel number (Section B.1.1.). Each channel is associ-
ated with a set of characteristics, some of which are defined on channel cards.

Channel cards appear as the first record of the channel card input file (see option C of Chapter 8); if C =0

PN

is selected on the card which cails for execution, no channei cards: are read and only standard channels 60
and 61 (see 7.6.) will be defined; they are interpreted by the controlling routine before the object program
is entered. The two types are: channel define and channel equate; all must contain the characters CHANNEL,
in columns 1-8.

The relationship between the structure of a file created by the input-output statements of a program and its physical
representation as a SCOPE file is defined by the channel card. The restrictions imposed by SCOPE must be consid-
ered in creating a channel card.

7.1 CHANNEL DEFINE CARD

This card describes the characteristics to be associated with one channel number.

CHANNEL, cn=file name, P1> Py -5 Py

The eight characters CHANNEL, appear in columns 1—38 followed by a list of parameters; spaces are not allowed in
the parameters and cause termination of the card.

Each parameter p;, defined below, describes a different characteristic. Parameters are separated by commas. The last
parameter has no delimiter, but the information for one channel must be contained on a single card. Only the cn=file
name parameter is required; the others are optional and may be specified in any order.

cn channel number, unsigned integer, maximum 14 decimal digits

file name SCOPE file name.

The parameter defining the type of file may be:

C Coded sequential

B Binary sequential
I Indexed

w Word-addressable

Only one of these may appear. The default option is C.

Note that if the file is specified as being binary sequential, no other parameters are available.

60384700 A 7-1

7.1.1 SERIAL FILE PARAMETERS

Any of the following parameters may be included when the C file type option or no file type option has been
specified.

Pr r indicates maximum line width; when omitted P136 is assumed.

PPs s indicates maximum length of page (s lines). If PPO is specified or if the parameter is omitted, no paging
operations are performed. If the user defines page width or page length beyond the capabilities of the
corresponding external device, data may be lost.

Kb b determines the number of consecutive blanks that serves as a delimiter for a number read or written in
standard format. Omission of this parameter is equivalent to K2. The number specified must be in the
range I<b<r

7.1.2 INDEXED FILE AND WORD—ADDRESSABLE FILE PARAMETERS

The following parameter may be included when the I or W file type option has been specified.

Ls s indicates the size of the work storage area. The default value is 16 for indexed and 64 for word-

addressable channels. A larger WSA will reduce the number of calls to SCOPE when each invocation
of a standard 1/O routine transfers a large amount of data.

7.2 CHANNEL EQUATE CARD

Channel equate cards permit the user to reference the same channel with more than one channel number:
CHANNEL, cn; = cn,

cn; and cn, are unsigned integers with a maximum of 14 decimal digits each.

Either cnj, or a number to which cnj is linked by other channel equate cards, must appear on a previous

channel define card. The channel defined on that card can be referenced by the number cny as well as cny.
Any number of channel numbers may be equated in this way with the same channel.

7.3 DUPLICATION OF CHANNEL NUMBERS

Although a channel may be associated with more than one channel number, a channel number must refer to only
one channel. Therefore, the same channel number may not appear in more than one channel define card in a set.
Similarly, a channel number which appears on a channel define card may not be included on the left-hand side of a
channel equate card, since this is equivalent to associating that number with more than one channel.

7-2 60384700 A

7.4 DUPLICATION OF FILE NAMES
The following rule applies to both user-defined channels and those automatically supplied by ALGOL.

A file name may appear on any number of channel define cards; although the channels remain independent of each
other, all input-output operations specifying any of the different channel numbers refer to the same file.

7.5 STANDARD ALGOL CHANNEL CARDS

Two channel cards with standard channel numbers and characteristics are automatically supplied by the ALGOL
system for the SCOPE standard input and output devices, as follows:

CHANNEL, 60 = INPUT, P80
CHANNEL, 61 = OUTPUT, P136, PP60

The two standard files may be referenced by the channel numbers 60 and 61 and do not require channel cards;
however, these two cards are printed as part of the channel card listing as if they were specified by the user.

7.6 TYPICAL CHANNEL CARDS

Some typical channel cards are:
CHANNEL, 35 =NUCLEAR, P120
CHANNEL, 47 = UNCLEAR, P400
CHANNEL, 29 =35

CHANNEL, 4 =DISK,W, 1200

60384700 A 7-3

EXECUTION-TIME OPTIONS 8

Execution-time options control the running of an ALGOL-60 object program. Options are specified by means of
control cards.

Control card options are provided as parameters on the SCOPE control card (i.e., program call card) which initiates
execution of the ALGOL program. It has the following format:

LGO (< options >) or EXECUTE (< options>) or Ifn (< options >)
Each installation will have its own default values for these parameters.

The format of the options field follows:

< options > may be option-i <option-1>{, ..., <option k >}
isS {=0 |=1}
orD{=0 |=n |=fn |=n/fn}
or C {=0 |=fn}
or P {=0 |=Z |=U}
orT {=0 |=n}

8.1 STACK STATISTICS (S)

S option forms:

S=0 : no stack statistics

SorS=1 : output of stack statistics

This option allows the user to select either no output of statistics or the monitoring of the size of the stacks
(SCM and LCM/ECS) during program execution. In the case of monitoring, upon termination (normal or ab-

normal) the amount of unused core in each stack is recorded on the standard output device. Monitoring will
degrade the performance of the program.

8.2 ABNORMAL TERMINATION DUMP FORMAT (D)
D option forms:

D=0 : nodump
DorD =1 : traceback of program execution

D =2 : reduced octal dump of local quantities and formals

60384700 A 8-1

D=3 : reduced symbolic dump (decimal) of local quantities and formals

D=4 : complete symbolic dump (decimal) of local quantities, formals and arrays
Note options 2 to 4 include the traceback.

The user may declare his own dump file by adding /fn. However fn must be the same file name as the dumpfile
created during compilation. The default name is DMPFILE.

For example:
D =4/MYDUMP
will use the dump file MYDUMP and in the case of abnormal termination will give a complete symbolic dump
and traceback.
8.3 C,P, AND T OPTIONS
C Channel card input file.

C=0 : no channel card input file
C : channel cards are read from file INPUT.

C=1fn : channel cards are read from file fn.
P Array preset option.

P=0 : no array presetting
P=1Z : presets arrays to zeros

P=1U : presets arrays to floating point undefined (177. .. 7)

The array space at each array declaration is preset; simple variables always are preset to O.

Use of this option will degrade the performance of a program, especially if array activity is heavy.

T Debugging and dump output limit option

T=0 : no debugging or dump output

T=n : causes debugging and dump output to be suppressed after the number of messages specified
by n have appeared. Program execution will continue.

8.3.1 EXAMPLE

LGO (C,P=Z D=3/MYDUMP) Load LGO file. Read channel cards from INPUT file. Preset stack to zeroes. In

case of abnormal termination, give traceback and a reduced symbolic dump
using the file MYDUMP.

8-2 60384700 A

DEBUGGING FACILITIES 9

A source program may contain debugging directives which are designed to assist in the detection of faults during
subsequent program execution. Under the normal mode of compilation these directives are ignored by the compiler
and thus have no effect during execution of the resultant object code. However, if the debugging-option (Chapter 6,
section 6.1.2, D-option) is selected any debugging directives which are present are selected by the compiler and cause
debugging code to be inserted into the object program. The form of these debugging directives is such that they are
acceptable ALGOL-60 character sequences. It is therefore unnecessary to remove them from a source program which
one wishes to submit to an ALGOL compiler in which the directives are not recognizable.

9.1 GENERAL

The debugging directives are keyed to identifiers in the source program. There are two directives, trace and snap. The
first of these, trace, monitors the flow of control through a program, whereas snap monitors changes in the values of
program variables. Thus the trace directives apply to identifiers which represermels and procedures, and the snap
directives apply to identifiers which represent simple variables or arrays. An identifier which is the object of a snap
directive may be monitored in certain specified areas of the source program by judicious placing of the snap directive
and by use of the snapoff directive to return the identifier to normal status. However, a trace directive causes an
associated identifier to retain that attribute permanently so that it is monitored throughout program execution.

The debugging directives affect the object code only when the debugging option has been specified on the compiler
control card. In this case the object program will include code which performs monitoring during subsequent exe-
cution by producing appropriate messages either on the standard output file or on any other channel selected, at
execution time, to receive debugging messages (Chapter 8, section 8.2.). If an object program has been compiled
under the debugging option then it is possible to suppress debugging output or to limit the amount thereof by
selecting suitable options at execution time (Chapter 8, section 8.2.) but the source program should be recompiled in
non-debugging mode in order to obtain an efficient object program or in order to select optimization options which
are not permissible with the debugging mode.

The following sections describe in detail the syntax of debugging directives, their meaning and the format of the de-
bugging messages which result from monitoring the various kinds of identifiers.

9.2 DEBUGGING DIRECTIVES

Debugging directives may be present in the source program at all stages of its development whether it is desired to
activate them or not. This is achieved by requiring debugging directives to be included only within commentary

sequences. By this means it is possible to maintain debugging directives in a source program which is compatible with
several other compilers.

60384700 A 9-1

A debugging directive takes the form of < debugging directive > in the following definition:—

< identifier list > ::=< identifier >'<identifier > , < identifier list >
< directive > ::= trace | snap | snapoff
< debugging directive >::=< directive > <identifier list >

e.g. snap a, b, marilyn
trace L1

snapoff b

" (N.B. trace, snap, snapoff, have the same hardware representation as compound delimiters.)

The debugging directives are inserted in a source program within commentary sequences according to the following
rules: A commentary sequence may contain only one debugging directive. Any commentary sequence may be ex-
panded to contain a debugging directive by inserting the debugging directive after the last symbol in the sequence and
immediately before the semicolon which terminates the sequence.

e.g. ; comment *** snap a, b;
begin comment first of all trace L1, Failure;
; comment snapoff a ;

(NB. directives will not be recognized in text following end)

If the debugging option is not requested at compile time, the previous example would be equivalent to semi-
colon, begin, semicolon. However, in debugging mode (Chapter 8, section 8.3, T-option) all comment structures
are examined to detect the presence of trace, snap, or snapoff. The comment sequence does not have to con-
tain a debugging directive, but if it does, a syntax error will result if the commentary sequence does not con-
form to the above definition of a debugging directive. Erroneously constructed debugging directives will not be
recognized as such in the absence of the T-option.

The following sections assume that a syntactically correct debugging directive of the appropriate type has been
encountered and that the debugging option is enabled.

9.3 TRACE DIRECTIVE
This directive monitors the flow of control within an object program. A trace directive is of the form
trace idy , , idy

where the identifier list must contain at least one identifier. The order of the identifiers within the list is irrevelant
and any member of the list will be referred to as a trace identifier. A trace directive may appear anywhere in a block
but the identifiers in the identifier list must each be declared in the same block as either labels, typed procedures, or
no-type procedures. The trace directive does not refer to any previous declaration of a trace identifier in an outer
block or in a disjoint block. Nor can the trace directive refer to some subsequent declaration of a trace identifier

in an inner block (this will cause a normal re-declaration of the identifier).

Any transfer to, reference to, or call of a trace identifier while its associated declaration is within the current scope,
or by means of an actual-formal correspondence, will be monitored throughout program execution. It is not possible
to suppress monitoring within specific areas of the source program (with a snapoff directive, 9.5).

9-2 60384700 A

The format of the messages produced by trace monitoring at execution time is described in the following sections
referring to the various kinds of identifiers.

9.4 SNAP DIRECTIVE

This directive monitors changes in value of specified program variables during object program execution. A snap
directive is of the form

where the identifier list contains at least one identifier. The order of the identifiers within the list is irrevelant and any
member of the list will be referred to as a snap identifier. Unlike the trace directive, the snap directive does not require

the associated identifiers to be declared in the same block. The snap directive can appear anywhere in any block de-
pending on the specific areas of the source program in which monitoring of snap identifiers is required.

A snap identifier must be declared as a simple variable or as an array. It must be declared in a block that
embraces the block where the snap directive is to occur.

The snap identifier is monitored only in statements between the occurrence of the snap directive and the end of
the block in which the snap directive occurred, including statements in inner blocks.

Since the snap directive is not itself executable, with its interpretation being made at compile-time only, the above
definitions of the range of a snap directive are static (i.e., lexicographic) and refer to the physical program sequence

rather than to the sequence in which the program is executed. This is more important in the next section in which a
further method of terminating the effect of a snap directive is described.

The statements which cause monitoring of a snap identifier to take place at execution time are dependent upon the
kind of variable represented by the identifier; therefore a list of statements and corresponding message formats is
given in the following sections for the various kinds of identifiers.

9.5 SNAPOFF DIRECTIVE

This directive provides an additional means of control over the monitoring process initiated by a snap directive.
A snapoff directive is of the form

snapoff idy, , idy

where the identifier list contains at least one identifier. The order of the identifiers within the list is irrelevant.
If any of the identifiers in the list is a snap identifier, the effect of the snapoff directive is to stop monitoring
of that identifier in statements following the snapoff directive, unless the identifier appears in a subsequent snap
directive. The snapoff directive is thus the logical opposite of the snap directive,and since it can appear in any
part of the source program, it provides a statement-by-statement control of the monitoring of snap identifiers.
It will be noted that, upon exit of the block in which a snap directive occurred, the effect of the directive
terminates just as if a corresponding snapoff directive had appeared at the end of the block. The snapoff di-
rective cannot be used to terminate monitoring of trace identifiers.

It should again be noted that the above definitions of monitoring ranges are physical and not logical, since the
debugging directives are interpreted at compile time only.

60384700 A 9-3

Thus if a snapoff directive is specified in a conditionally executed area of the source program, no monitoring
code will be assembled for subsequent references to the associated identifiers irrespective of the actual flow of
control at execution time.

A snap identifier will thus be subject to monitoring in the statement subsequent to

a) the occurrence of the snap directive, or

b) the first declaration of the identifier,

whichever of a) or b) occurs the later; and in all lexicographically subsequent statements until

a) the occurrence of a snapoff directive for that identifier. or

b) exit from the block in which the identifier was declared

whichever of a) or b) occurs the earliest.

The following cases are worthy of note:

i) If a snap identifier occurs in a snap directive in a block in which the snap identifier is undeclared, then
an advisory message is provided and the identifier is removed from the snap list.

ii) Ifit is desired to monitor usage of an identifier not only in a certain block but within a procedure declared in

that block which may modify the identifier, then it is necessary to insert the snap directive ahead of the pro-
cedure body (i.e., amongst the declarations in that block).

e.g. begin
integer i ;
comment snap i;
procedure p(x) ; integer x ;

begin i ;= i+x ; comment i is monitored ;

e.g. ifi=jthen

begin comment snap i ;

i = complicated (x, Y, z) ;
comment snapoff i ;j : =1+ 1 9_@

else ...

9.4 60384700 A

9.6 DEBUGGING OUTPUT

The format and content of debugging output is dependent both upon the kind of variable being monitored and also
upon the context in which it has been used. The information that may be obtained by applying debug directives is
described in detail in the following sections categorized according to the kind of the monitored variable; however, a
summary of the general formats of debugging output is given in this section.

A single item of debugging output will be referred to as a monitoring message. In the following list of monitoring
messages the portions in lower case are replaced during execution by the appropriate line number, identifier, or value.
The identifier produced will correspond to that used in the debugging directive, but if the original identifier contained
more than eight characters then only the first eight will appear in the monitoring message.

** INE linenumber identifier AS PARAMETER
. . . produced for simple variables by snap

** INE linenumber identifier [*] AS PARAMETER
. . . produced for arrays and subscript variables by snap

**] INE linenumber identifier : = value
. . . produced for simple variables by snap

** INE linenumber identifier [*] : = value
. . . produced for subscripted variables by snap

**] INE linenumber GOTO identifier FROM LINE linenumber
. . . produced for labels by trace

**] INE linenumber CALL TO identifier FROM LINE linenumber
. . . produced for procedures by trace

**LINE linenumber EXIT FROM identifier
. . . produced for procedure by trace

In the following sections the appearance of a monitoring message of one of the above general formats is represented
by a particular example.

9.7 LABEL MONITORING

When applied to a label identifier the trace directive produces monitoring messages during execution which indicate
when and from where a transfer to that label occurred. If it is desired to monitor a label in this way, a trace directive
referring to the label identifier must be inserted at some point in the block in which the label is declared, e.g., just be-
fore the label, or in the block head.

The flow of program control may pass through a label either by means of a go to statement or sequentially after
completion of a preceding non-transfer statement. No monitoring message will be produced for sequential execution,
but all transfers of control by means of go to statements will be monitored. This includes cases where the designated
label is obtained as a switch element, as the value of a designational expression, or by use of a corresponding formal
parameter label identifier.

60384700 A 9-5

The monitoring message produced during execution contains the line number from which the transfer occurred, as
in the following example:

**LINE 231 GO TO INFEAS FROM LINE 120

In this case a transfer to the label INFEAS has occurred at line number 120 in the source program. INFEAS
occurs at line 231.

9.8 PROCEDURE MONITORING

When applied to a procedure identifier the trace directive produces monitoring messages during execution which
indicate when and from where that procedure has been invoked. In order to monitor a procedure in this way it is
necessary to insert a trace directive at some point in the block in which the procedure is declared, e.g., prior to the
procedure declaration in the block head.

Procedures may be invoked either by means of a procedure statement or by the appearance of a function designator
(typed procedure) in an arithmetic or Boolean expression. Monitoring will be produced for the appropriate invokation
of the trace identifier unless it is an external procedure or represents a standard procedure or standard function. Use
of this latter class of procedures as trace identifiers is not permitted.

The monitoring message produced during execution contains the line number from which the procedure was invoked,
as in the following example:

**LINE 250 CALL TO PRODUCT FROM LINE 512

In this case, the procedure PRODUCT, (declared in line 250) has been invoked from a statement on line num-
ber 512.

9.9 SIMPLE VARIABLE MONITORING

The snap directive permits monitoring of arrays and simple variables. In the case of simple variables, the snap directive

is used to monitor changes, or possible changes, in the value of integer, real or Boolean variables. In order to monitor

a variable, the associated identifier must be specified as a snap identifier according to the rules given in section 9.4.
Monitoring can be terminated on a statement-by-statement basis by use of the snapoff directive, as described in section 9.5
The value of a simple variable may be changed if it is:

a) one of the left parts in an assignment statement, or

b) the controlled variable of a for clause, or

c) used as a call-by-name actual parameter corresponding to a formal parameter which undergoes a change of
value.

The monitoring message for a direct assignment to a monitored variable as in cases a) and b) above takes the following
format: '

**1INE 71 INDEX :=9

9-6 60384700 A

This message contains the new value of the variable in addition to the line number and the identifier name, INDEX.
In the above example the type of the monitored variable is integer. If the variable type is real then the value is output
in decimal standard format. If the variable type is Boolean then the output representation is ‘TRUE’ or ‘FALSE’.

Monitoring of changes in value caused by actual/formal correspondence as in case ¢) above is more complicated. If
the variable appears in the actual parameter list of a procedure statement or a function designator and is not specified
as call-by-value, then its value will change whenever the corresponding formal variable is altered, as in cases a), b), ¢),
above. Since the monitoring process should indicate all possible changes in the value of a snap identifier variable and
since the bodies of procedures and function designators are not necessarily available at compilation time, it is assumed
for debugging purposes that a variable may be altered whenever it appears by itself as an actual parameter. All such
usages of the snap identifier will result in a monitoring message at execution time.

The format of the message or messages produced depends upon the context of the usage of the snap identifier as a
parameter since it cannot always be guaranteed that control will be returned to the code that will monitor the final
value of the variable. Thus the following example of usage of the monitored variable as an actual parameter in a pro-
cedure statement will produce the following message:

comment check the determinant, snap DET;
INVERT (array, DET);
comment DET is the determinant of array, snagoff DET;

The following type of message will always be produced:

**LINE 102 DET AS PARAMETER

Example:
comment snap M, N;
M :=2 *unstack (N) + 1;

would produce the following messages

— 11
=11

M
N AS PARAMETER

9.10 ARRAY AND SUBSCRIPTED VARIABLE MONITORING
The snap directive, when applied to array identifiers, is mainly used to monitor occasions on which the elements of
the array may have been altered. Since the element or elements concerned are generally dependent on the execution-

time value of one or more subscript expressions, the monitoring usually supplies only the point of usage.

One exception is the case of direct assignment to the array element as a result of its appearance as a left part in an
assignment statement. Thus the following source text:

comment snap A;
Afj3%j—-2] =2%=5;

would produce the following message:

** LINE 127 A [*] =32

60384700 A 9-7

It will be noted that the monitoring message contains the new value of the subscripted variable whether it be integer,
real or Boolean but does not supply the values of the subscript expressions.

Apart from direct assignment, the values of an array may change either if it is the controlled variable of a for clause,
or if it or one of its elements is used as a call-by-name parameter of kind array or kind subscripted variable, respec-
tively. As in the case of simple variable parameters, the use of an array or subscripted variable is considered to be
capable of changing the array values if the actual parameter consists of either the array identifier or a single sub-
scripted variable. Thus the following source text:

comment snap A, B,C;
ifi=0thenp (A,B[j] +1,C[]);

where A, B, C are array identifiers, would cause the following type of message to appear if i were zero:

+LINE 53 A[] AS PARAMETER
+LINE 53 C[] AS PARAMETER

It will be noted that no attempt is made to record the values of an array in the monitoring messages since the elements
altered are in the general case not easily established at compilation time. The monitoring process is therefore primarily
concerned with simply identifying critical usages of array identifiers rather than the detailed results of those usages.

The only exception to this rule is that of the direct assignment to an element, in which case the new value is provided.

It is suggested that if preliminary use of the snap directive on an array identifier is not sufficiently detailed or too
indiscriminate, then a more selective monitoring should be attempted by use of the snap directive on a temporary
variable introduced to sample critical array elements at the points indicated by the original monitoring of the array
itself.

9-8 60384700 A

OVERLAYS 10

The overlay declaration provides the capability of overlaying blocks so that a program may be executed in less memory
than would otherwise be needed. From a code generation point of view, the only effect of an overlay declaration is to
alter the memory allocation scheme of the translated statements.

Prior to execution, the sections of an overlay program are linked by the loader and placed on a mass storage device

or tape file in their absolute form, thus no time is required for linking at execution time. However, one of the effects

of using overlays in a program is that execution time is increased. This is because each time an overlay is to be exe-
cuted, it must first be loaded into memory.

10.1 OVERLAY DECLARATIONS

10.1.1 SYNTAX
< primary level >'=< digit >|< digit > < digit >
< secondary level >1:1=<digit >| < digit > < digit >
< overlay parameter part >:= (< external identifier > , <primary level > , < secondary level >)
< overlay declaration >:= overlay <overlay parameter part >

< declarative comment >:= comment < overlay declaration>;

10.2 EXAMPLE

comment overlay (ovfile,1,0);

10.3 SEMANTICS

Primary level may be any positive integer number in the range 1:63 inclusive. Secondary level may be any positive
integer number in the range 0:63 inclusive. The main overlay is defined by the system and contains the outermost
block of the program as well as the run-time system. Therefore, the user must not declare the main overlay.

In any case, a maximum of three overlay levels, including the main overlay is allowed. The external identifier
is the file name onto which the loader is creating the absolute program. The same file name must be used in
all overlay declarations. Overlay declaration applies only to blocksand procedure bodies (which always con-
stitute a block), thus the comment containing the overlay declaration must appear after the begin of the block
to be overlayed.

60384700 A 10-1

The overlay declaration in a program must conform to the following rules:

1. A secondary overlay must be a block nested in a primary overlay block.

2. An overlay cannot be a block nested in an overlay block of the same level.

A primary overlay is defined by setting

a) < primary level > #0 and

b) <secondary level >=0.

A secondary overlay is defined by setting

a) its <primary level > equal to the pﬁ@w level of the primary overlay it is attached to and
b) its <secondary level > +# 0

For example:

overlay (myfile,1,0) defines a primary overlay and

overlay (myfile,1,1) defines a secondary overlay of the preceding primary

All primary overlays are stored at the same point immediately following the main overlay (0,0). Therefore, the
loading of a primary overlay will destroy the preceding primary overlay.

A secondary overlay is stored immediately following its primary overlay. Again, the loading of a secondary overlay
will destroy the preceding secondary overlay.

Note that the SCOPE control cards are different for programs with overlays and for those without overlays. The user
is referred to the SCOPE Reference Manual.

10.4 RESTRICTIONS

A code procedure cannot contain overlay declarations.

10-2 60384700 A

10.5 EXAMPLES

Example 1 :

This example demonstrates a simple, direct way of programming overlay structures and produces the most

efficient execution time overlay handling.
Di is a declaration
Si is a statement
begin comment block 1;
Di1; S1;
begin comment block 2;
comment overlay (F1, 1, 0);
D2; S2;
begin comment block 3;
D3;
comment overlay (F1,1,1);
if exprl then goto L;
S3
end of overlay (1,1);
begin comment block 4;
comment overlay (F1,1,2);
D454
end of overlay (1,2)
end of overlay (1,0);
L: begin comment block 5;
comment overlay (F1,2,0);
D5; S5;

if expr2 then

60384700 A

10-3

begin comment block 6;
comment overlay (F1,2,1):
D6;S6
end of overlay (2,1)
end of overlay (2,0)

end

The preceding program structure consists of two primary level overlays; the first contains two secondary level
overlays; the second refers only to one secondary level overlay.

main

1,0) , 2.0

(11 (1,2) 2.1)

The order of execution of the blocks and the structure of memory at execution time are as follows:

104 60384700 A

Execution Phases

60384700 A

Execution of main is started.

Block 2 is initiated and overlay (1,0) is loaded.

Block 3 is initiated and overlay (1,1) is loaded.

If exprl is true, then block 3 execution is ended
and block 5 is initiated causing overlay (2,0) to
be loaded.

Otherwise block 3 is executed to its end, and
block 4 is started, causing overlay (1,2) to be
loaded.

At the end of block 4, block 5 is started, causing
overlay (2,0) to be loaded.

If expr2 is true, then block 6 is initiated which
results in the loading of overlay (2,1), otherwise
the program is ended.

Memory Map for
Generated Code

main

main

(1,0)

main
(1,0)
(W)

main

(2,0)

main
1,0)
1,2)
main

(2.0)

main
(20)

1)

10-5

Example 2 :
This example demonstrates a more sophisticated and time consuming use of overlays,
begin integer J;
procedure F(N); integer N;
comment procedure body in block 2;
comment overlay (File,1,0);
begin J:=N/2;
if J > 0 then F(J-3);
end of procedure body and overlay (1,0);
begin comment block 3;
comment overlay (File,2,0);
integer K;
K:=5;
F(K**2)
end of overlay (2,0)
end

The program consists of two primary level overlays.

main

body of F(1,0) block 3 (2,0)

Procedure F is declared in main. The procedure body, however, is a primary level overlay; it will be loaded
only when procedure F is executed.

The order of execution of the blocks and the structure of memory at execution time are as follows:

10-6 60384700 A

Execution Phases

60384700 A

Execution starts with main, then overlay (2,0) is
loaded. A call is made to procedure F.

Procedure body is loaded overlaying block 3.

When executing J:=N/2 in procedure F, block 3
is loaded, overlaying the procedure body to

evaluate the called-by-name formal parameter N
whose actual parameter originates from block 3.

Overlay (1,0) is then reloaded to continue
procedure execution.

Further recursive executions of F will only
refer to elements local to main and the
procedure body, and will therefore cause the
loading of no other overlays.

When F(K**2) is evaluated, return to block 3
is executed and overlay (2,0) is loaded one
more time.

Memory Map for
Generated Code

main

(2.0)

main

(1.0)

main

(2.0)

main

(2,0)

main

(2.0)

10-7

USE OF LCM AND ECS 1

11.1 GENERAL

By a combination of the S option and the virtual comment delimiter, the user is given control of the allocation of his
arrays between SCM and ECS [or LCM]. An array can be declared to be a virtual array, the primary function being to
enable the more effective use of ECS. A virtual array can be referenced only as a whole, not by individual elements and
is permitted only as a parameter to a procedure, in particular to the MOVE procedure (See section 3.5, Chapter 3). For
example, if A is a virtual array and B is a normal array, the procedure MOVE (A B) will move the entire array A into
B, where it can be modified and then returned by MOVE (B,A). Please note that the S = 1 option will allocate all
virtual arrays to ECS [or LCM]. If S = 0 is selected, all virtual arrays will be stored in SCM, but still will remain ac-
cessible only as a whole.

The S option controls the allocation of arrays (See Chapter 6).

S=0 : all arrays are allocated to CM [or SCM].
S=1 : virtual arrays are allocated to ECS [or LCM].
S=2 : all arrays are allocated to LCM. Note this option applies only for programs to be executed on a CYBER 76.

11.2 VIRTUAL ARRAYS

When a virtual comment directive is encountered, all arrays in the immediately following array declaration will be
virtual. When a virtual array is used as a formal parameter, the virtual comment directive must precede the array
specification in the procedure heading.

virtual array is incompatible with an

=]

Wwn array.

A virtual array used as a formal parameter cannot be specified to be a value array.

11.3 EXAMPLE

In the following example A is declared to be a virtual array and B is declared to be a normal array. The sole
use of a virtual array is as a parameter to a procedure, either a normal procedure (shown by P(A)) or the
special procedure MOVE. In this example, the normal array B is moved to the virtual array A.

60384700 A 11-1

The allocation of A and B to SCM or ECS/LCM, depends upon the previous selection of the S option.

begin comment virtual;array A [1:5,1:5];

array B [1:5,1:5);

procedure P(A); comment virtual;array A;
begin;
MOVE (B,A)
end;

P(A)

11-2 60384700 A

OPTIMIZATIONS 12

The compiler optionally performs four kinds of optimization while the runtime system is itself organized to perform
optimally at all times. In addition, the compiler is provided with a set of standard vector functions which allow the
user to optimize source programs at the algorithm level and benefit from certain hardware.

12.1 LANGUAGE DEPENDENT OPTIiMIZATiONS

Machine independent optimizing involves subscript variable handling, the calling of procedures and the handling of
formal variables and special treatment of the procedures INPUT and OUTPUT.

12.1.1 SUBSCRIPTS

For subscript variables the source program is delimited into nodes, for statements and blocks, in each of which code
is to be generated so that as many subscript computations as possible will share common code while still retaining the
explicit statement ordering. The largest gains from this obviously come from the for statement in which as many
hidden computations as possible are removed out of the loop. To permit this however, it is necessary to re-compute
the values of those removed sequences when any of the dependent operands is changed. Such changes can occur

at assignment statements and in procedure calls due to assignment to actual parameters or by global side-effect. For
dealing with procedure calls a side-effect table is constructed before code generation starts and this is consulted after
every procedure call in a for statement.

12.1.2 PROCEDURES

1 ap rmal enaci

nintima in ATONT hapance nf t ~ - tho fn 3
C oI L CNCCK Ul 10rmai SpeCilt

oong no af r
COLISUINilE do LTUlitie i AL AF UL oblduse U

J
cations against the actual parameters. The optimizing of this aspect involves an examination of all the calls to any
procedure to determine parameter correctness. Simultaneously the set of all actual parameters corresponding to each
formal is found which permits special case code to be generated in the procedure body for all call-by-name formals.
The ALGOL Report states that the procedure bodies are to be considered as being inserted in the program at calls
with the actual parameters replacing the formals as in macros, and of course this would lead to optimal code at each
call. This compiler does not do that; it provides one copy of the code of each declared procedure but generated so
that the actual parameters of the calls are all treated in the least general manner which accommodates them all. This
is not true of pre-compiled procedures in which each call-by-name formal is given the most general treatment.

12.1.3 SIMPLE FORMATTED 1/0

The formatted 1/O procedures INPUT and OUTPUT are the most commonly used I/O routines and the compiler
examines their calls to determine if the parameters obey certain restrictions. If they do then calls are generated to
special library routines which execute faster than the general case. The restrictions which will produce these calls are
first that the format string include no items with insertion sequences (see Chapter 3, section A.1.3.2) and that
the data parameters be simple local variables or arrays but not subscripted variables or formals.

60384700 A 12-1

12.2 VECTOR FUNCTIONS

These procedures available in standard library are designed to take advantage of the hardware instruction stack.
Without the stack, on model 72, the gain from using the vector functions over programmed loops performing the
same operations is about a factor of 5. With the stack, on models 74 and 76 the gain is of the order 10 or more. In
all cases, the vectors concerned need to be of size 10 or greater before the gains are appreciable, owing to initializa-
tions performed within the functions. The vector functions are described in Appendix D.

12.3 EFFICIENT PROGRAMMING FOR RUN TIME PERFORMANCE

ARRAYS: within each block like arrays of the same size should be declared in a single declaration.

PROCEDURES: Actual parameters should agree in type with the formal specifications.(The ALGOL Report states
they should anyway but this compiler allows real actual parameters to correspond to integer formals.)
Integer actuals and real formals are also allowed but performance is not affected in this case.

PROCEDURES INPUT AND OUTPUT: The format parameter should be a literal string in which numeric items do
not contain insertion sequences. The data parameters should be local, simple variables or arrays,and not
either formals or expressions.

GENERATED MACHINE CODE: It is not possible to influence this directly but the code is obviously a function of
the preceding optimizations.

THE VECTOR FUNCTIONS: When the program is handling vectors and arrays these functions should be employed
wherever possible in place of programmed loops. Overall gain in total program execution time of a factor
of 6 is possible with suitably structured algorithms in amenable programs on models 74 and 76.

LCM/ECS USAGE: Arrays situated in SCM on the model 76 are faster to access than those in LCM. For optimal usage
of LCM use should be made of the virtual array concept for the arrays situated in LCM while declaring just suf-
ficient normal arrays in SCM, for working purposes. This requires careful programming to keep track of the
contents of work arrays at any time. On models 72 and 74 only virtual arrays can be in ECS and only consid-
erations of size dictate its use (see Chapter 11).

12-2 60384700 A

OBJECT-TIME ABNORMAL TERMINATION DUMP 13

Upon detection of a fatal error during program execution, the ALGOL control routines perform the following
actions:

(1) Empty all output format areas onto their associated files.

(2) Print the appropriate diagnostic on the standard output file — ie., channel 61.
(3) Print a structured dump.

See Chapter 15 for a list and description of the object-time diagnostics.

The amount of information given by (3) is determined by the execution-time option parameter D (see Chapter 8).

13.1 STRUCTURED DUMP

The structure dump traces back the execution path from the point where the error occurred through the block

structure to the entry point of the program. The information relevant to the program will be selected in accordance

with the D option.

The following information will be available:

(1) The line number at which the error occurred.

(2) The line number and name in which each active block was declared. This name may be the procedure
name, the code procedure identifier, the external procedure identifier or the standard procedure name

if the block is a standard procedure.

Code procedures are always dumped in octal.

13.2 ENVIRONMENTAL INFORMATION

Environmental information consists of values of formal (by value) and/or local variables belonging to the block cur-
rently being dumped. Formal variables appear only if the particular block is a procedure.

Simple local variables and simple formal parameters are represented by their values.
Arrays may also be dumped according to the D option.
For boolean variables the values *T* (true), and *F* (false) will be printed.

Note that values not yet affected will contain garbage.

60384700 A 13-1

13.3 CROSS—REFERENCE LISTING

The user may optionally request a cross-reference listing of the identifiers used in his program. This listing is a useful
debugging aid in conjunction with the error messages. The identifiers are listed in the order in which they are declared.

For each non-standard identifier, the following information is supplied:

Name of the identifier

Type : real, own, integer.

Kind : array, procedure, switch

For arrays : number of dimensions

For procedures : number of formal parameters

Line number of identifier declaration or specification
Identifier block number

List of line numbers which reference the identifier.

For each standard identifier, the list of line numbers that reference the identifier is supplied at the beginning
of the cross-reference list.

13-2 60384700 A

OBJECT-TIME DESCRIPTION 14

14.1 OBJECT PROGRAM AND STACKS

14.1.1 RUN-TIME SUPERVISORY PROGRAM

A Run-Time Supervisory program, ALGORUN, controls the object-time execution of an ALGOL program. In this
function it acts as the interface between the compiled program and the SCOPE operating system. Certain functions

are shared between the compiled program and ALGORUN (e.g., stack handling), whereas others (e.g., overlay handling)
are solely the province of the latter.

Calls to the Run-Time System and Library are treated as references to externals during compile time and are satisfied
by the loader at load time.

14.1.2 OBJECT CODE STRUCTURE

The object-time form of each main program or code procedure consists of a program block and severallabeled
common blocks. The program block contains the block map and the code for the program itself. The labeled
common blocks contain constants, strings, labels, and procedure constants, the own variables, and a special
parameter area. The object code is generated forward, from the first begin to the last end, and forms the
SCOPE binary relocatable file.

In overlay mode, the program block is organized according to the overlay structure specified, each overlay being
preceded by the overlay directive to the loader. The labeled common biocks are attached to the main overlay.

14.1.3 LIBRARY SUBPROGRAMS

The Library subprograms obey the same structural rules as a binary subprogram generated by the compiler. Each
standard procedure is represented in the library by one subprogram. In overlay mode, a required subprogram is at-
tached to the earliest overlay that requests it.

14.1.4 SCALAR SPACE

The “scalar space” of a block includes storage for all those items which can be quantified at compile time, such as

simple variables declared in the block, array descriptors, dope vectors and various compiler generated locations. It
does not include storage for subscripted variables.

60384700 A 14-1

14.1.5 PROGRAM DEPTH AND PROGRAM LEVEL
The “program depth” of a block is the number of nested procedure declarations within which the block is contained.

A “program level” is the largest set of blocks of the same depth, such that one block of the set encloses all of the other
blocks (if any) of the set. The enclosing block is called the “first block™ of the set and has the property that its depth
is one greater than the depth of its own enclosing block (if any). The program level is the unit of allocation of scalar
space for blocks, such that the relative positions of scalar space for all blocks within a program level are determined at
compile time. The address to which the variables in a program level are relative is called the “relocation base™.

“Program level zero” is the unique program level whose constituent blocks have a zero program depth. The “first
block” of program level zero is the outermost block of the main program.

14.1.6 OBJECT TIME STACKS

According to the rules of the ALGOL language, a variable is active (available for reference) in any block to which it is
local or global. A variable is local to the block in which it is declared and global to the sub-blocks within the block in
which it is declared.

Depending on the block structure and the variables declared at each level, not all variables are active at the same time.
The object programs produced by ALGOL overlap variables which are not simultaneously active. The overlap process
is described below.

During execution of an object program, all variables are contained in variable-length memory stacks consisting of 60-
bit entries, one or more pertaining to each variable. Since the stacks include only active entries, their sizes fluctuate.

The SCM stack is located in SCM and contains the scalar space for program levels, the actual parameters and return
information for procedures and the SCM-resident arrays.

The LCM/ECS stack (if it exists) is located in LCM or ECS. It only contains the virtual arrays (see Chapter 11). Non
virtual arrays may be also allocated in LCM under the S storage option (see Chapter 6).

14.1.7 REFERENCING THE STACKS

Every reference to simple variables in the SCM stack is generated as the relative position of the variable in its program
level plus an index register which contains the appropriate relocation base.

When a call to a procedure is made, the environment of the procedure has to be established because this cali constitutes
an entry into a new program level. The entry into the new program level is achieved by assigning the first available (in-
active) position in the stack to the relocation base for the new program level and by requesting the necessary amount
of stack for the scalar space of the complete program level (i.e., including all its blocks). Also a “display” is built into
the stack, containing the relocation bases for all the statically enclosing program levels.

When a new block is entered, its position within the program level in which it is contained is known and its scalar

space requirements have already been reserved. It only remains to physically record its stack limit before handing
control to the block’s code.

14-2 60384700 A

Array storage in SCM is physically assigned starting at the first available position in the SCM stack after the allocation
for a complete program level, and its stack limit is recorded in the block where the arrays are declared. Arrays here
are indirectly addressed through array descriptors and dope vectors contained in the scalar space of their declaring
block. ’

Arrays in LCM/ECS are also indirectly addressed through array descriptors and dope vectors in the scalar storage of
their declaring block (i.e., located in SCM stack). Array storage in LCM/ECS is assigned starting at the first available
position in the LCM/ECS stack and its stack limit is also recorded in the declaring block in SCM stack.

When a block is exited, the space in the stacks (SCM and LCM/ECS) occupied by its local arrays is released, so that it
may be allocated by a new stack space request, however the amount of SCM stack occupied by its scalar space can
only be utilized by a parallel block in the same program level.

When a procedure is exited, the scalar space of the complete program level is then released.

A go to reference from one block in a nest to an outer one results in an exit from that block and from all of the blocks
up to but not including the referenced block. Thus the effect is to change the environment of the active variables to
be only those local or global to the referenced block.

14.1.8 OWN VARIABLES

All own quantities are assigned entries in the labeled common block area. Own variables are treated as global
in definition (local to the whole program), though they are only local to the block in which they are declared,
just iike other variables.

14.1.9 STACK LISTING

The compiler assigns a block number to each block in the program and constructs the BLOCK MAP which contains
information about the block and procedure structure of the program for use during traceback.

The object program controlling system includes a routine which produces the active contents of the stack in a mean-

ingful format upon abnormal object program termination. This structured dump may also be called by the procedure
DUMP.

60384700 A 14-3

14.1.10 EXAMPLE
Consider the following program outline:

. — begin array I
procedure R
— begin

procedure Q

begin

end

— begin array J
U Q

_end

L end
procedure S
begin
end
—begin array K
— begin
Al X R
—end
— begin array M

Y goto L

— end

—end

—Liend

Block P is the program itself; block A and procedures R and S are at the same level within P; block U and procedure

Q are contained in procedure R at the same level. Blocks X and Y are at the same level within block A.

14-4

60384700 A

Block X contains a call to procedure R; block U a call to procedure Q, and procedure Q a call to procedure S;
block Y contains a jump to label L within the outermost block. Blocks P, U, A and Y declare respectively arrays I,
J,K, and M. The changes in the stack and in the displays can be visualized in figure 14.1.

Following the entry into the program, the stack is already reserved for blocks A, X and Y, although it is not yet used.
The array I follows in the stack. The display at P indicates that only program level P is accessible by having its reloca-
tion base address p.

On entry to block A, array K is allocated after I in the stack. When procedure R is called, space for all of its program
level is reserved after K and the display in R indicates that both p and r are accessible. The compiler knows which
blocks are accessible (as opposed to program levels, which are dynamic) and since space for them is always pre-
reserved, it becomes unnecessary to include block information in the displays.

On entry to U, array J is placed after U in the stack. When procedure Q is called, its display contains p, r and q. How-
ever when procedure S is entered, its display only contains p, and although R, U, J and Q are still in the stack, they

become inaccessible.

On exiting S and releasing its stack space, R, U, J and Q become active automatically, since the display at Q already
exists. When eventually R is exited, the display at P will indicate that only p is accessible.

On entering block Y, the compiler knows that space is already available and only allocates stack for array M. This

exactly follows the rules described in the ALGOL 60 Revised Report concerning the accessibility of variables during
and after return from a procedure call.

14.2 STACK ENTRIES

14.2.1 VALUE OF VARIABLES

Simple local variables and simple formal parameters called by value are represented in the stack as follows:

REAL

60-bit entry in standard floating-point format (Section 5.1.3, Chapter 2)
INTEGER

60-bit entry in standard floating point format (Section 5.1.3, Chapter 2)
BOOLEAN

60-bit entry in which bits 580 are irrelevant and bit 59 is set to 1 for true and O for false.

60384700 A 14-5

91

V 00LP8€09

Dispiay in P E]

DISPLAYS AND THEIR CONTENTS AT THE SAME STAGES

[¢] Bl B B [[2

Display in R lplrl Iplrl Iplrl Iplrl
Display in Q |plrlq| IpIrIqulrqu
Display in §
STACK CONTENTS AT DIFFERENT STAGES DURING PROGRAM EXECUTION
After After After After After After After After After After After After After After
Relocation entry entry entry entry entry entry entry exit exit exit exit exit entry exit
Buse toP to A to X toR toU toQ toS from S fronQ fromU fromR fromX toY fromY
Address |
P P P P P P P P P P P P |4 P P
PA A A A A A A A A A A A A I i
1 1 i
= r H ! I
X ! 1 ! X X X X X X X X X i | Y | (
- __{' Y : ' I] | |
o i i i i] i i P [1 v | ! I 1
1 I 1 1 1 1 1 1 | I | 1 | |
K K K K K K K K K K K K
r R R R R R R R M
1 U U U U 0] v H 1
[— [I—
J J
q Q Q Q
[S

14.2.2 DESCRIPTION OF VARIABLES

All descriptions of variables in the stack have the following general form:

XXXX XXXXXX XXXX XXXXXX
x=0:<x>1<i>1<o>3<k>4<t>3 address 1 <s>1<o>4 address 2
<overl>7

x=1:<x > <T>; < 7>3 <K >, <i>3

X is the transform bit; if x = 1 no transformation is required and the following 11 bits are complemented

if x =0 a transformation from real to integer is necessary

i is the expression bit;if i = 1 no expression evaluation is required

if i = 0 expression evaluation is necessary

s is the storage bit for arrays, virtual arrays and subscripted variables

k is the kind as follows:
k Kind Possible use
00 Switch D
01 String
0z Label of designational expression
03 No-type procedure > Formal and local
04 Type procedure
05 Array
12 Virtual array J
06 Constant A
07 Expression
10 Simple variable
11 Subscripted variable y Formal only
13 No-parameters, no-type procedure
14 No-parameters, type procedure)

60384700 A 14-7

t is the type of the variable

t Type Possible use
0 No type
1 Integer
Formal and local
2 Real
3 Boolean

overl is an index to the overlay table (when necessary)
The interpretation of address 1 and address 2 depends on the kind (k) of the description as explained below.

A stack entry representing an arithmetic value may have a structure which makes it appear to be a description.

14.3 DETAILS OF DESCRIPTIONS

The following detailed explanations of the descriptions are ordered according to the kind k. Return information for
a procedure call does not have a kind; it is described first.

14.3.1 TERMINOLOGY

All references to the stack in the object program are relative to the beginning of the stack area for a particular
program level (i.e., procedure). When a program level is entered at execution time, the base address of the correspond-
ing stack area is assigned. This absolute base address is

the relocation base RRRRRR of the program level (and of all of the blocks it encloses).

the term program address PPPPPP, means an address pointing to a position in the object program.

the term stack address, AAAAAA, means an absolute address pointing to a particular stack entry.

the term common address, CCCCCC, means an absolute address pointing to a particular labelled common area.

14.3.2 DESCRIPTION

Return XXXXX XXX XXXXXX XXXXXX
Information for

Expressions ‘ LINE OVERL RRRRRR PPPPPP
PPPPPP Program address of next instruction following the evaluation of the expression.
RRRRRR Relocation base of the program level where the expression evaluation is requested.

14-8 60384700 A

OVERL

LINE

Return
Information for
Procedures
RRRRRR
PPPPPP

OVERL

60384700 A

Index of the overlay where the expression evaluation is requested.

The source line number where expression evaluation is requested.

XXXX XXXXXX XXXX XXXXXX
Number of formals RRRRRR OVERL PPPPPP
Relocation base of the program level where the call is made
Program address of next instruction following the procedure cail
Index of the overlay where the call is made
149

XXXX XXXXXX XXXX XXXXXX
00 Switch

5777 NNNNNN 0000 AAAAAA
NNNNNN Number of elements in the switch list
AAAAAA Stack address for the first element in the list

The descriptions of the labels or designational expressions (see kind 02 below) which constitute the switch list is as

follows:

th

< Designational expression of the n™" switch element >¢

< Designational expression of the (n—l)th switch element >

aaaaaa < Designational expression of the 1st switch element> ¢

01 String
XXXX XXXXXX XXXX XXXXXX
5767 <C> <T> <X>(<N>g 0000 ccccece
< C > format flag ; if < ¢>= 1, the string has been analyzed and can be used as a format string
if < ¢ >= 0, the string must be analyzed
< T> translation flag ; if <T >= 1, the string has been translated
< X> X Replicator count
< N> Number of characters in the string
CCCCCC Address of first word of the string in a labelled common
02 Label
XXXX XXXXXX XXXX XXXXXX
5757 AAAAAA OVERL PPPPPP
AAAAAA Block header’s address (in the stack) of the block where the label is declared
OVERL Index of the overlay where the label is contained
PPPPPP Program address of the instruction corresponding to the label
14-10 60384700 A

02 Designational

Expression

AAAAAA

OVERL

PPPPPP

03 No-type
procedure

and

04 Type
- procedure

RRRRRR
OVERL
PPPPPP

05 Array

AAAAAA
FWA

LBE
DDDDDD

S

60384700 A

XXXX

XXXXXX

5757

AAAAAA

OVERL

PPPPPP

Block header’s address (in the stack) of the block where the designational expression is

contained

Index of the overlay which contains the expression

Program address of the code which evaluates the expression and jumps to the resulting

address
XXXX XXXXXX XXXX XXXXXX
5747 RRRRRR OVERL PPPPPP
XXXX XXXXXX XXXX XXXXXX
573t RRRRRR OVERL PPPPPP

204t

Relocation base of the program level where the procedure is declared

Index of the overlay where the procedure is declared

Program address of the code for the procedure
XXXX XXXXXX XXXX XXXXXX
572t AAAAAA s | oooo DDDDDD
205t

Stack address where the quantity FWA-LBE is contained

is the base address of the array elements in stack

is the lower bound effect for the array

Stack address of the dope vector (see below)

Flag indicating if the array is in LCM (=1) or in SCM (=0) (Bit 29)

14-11

The elements of an array are assigned after the last location reserved for the program level where the array’s declaring
block is contained. Own arrays are handled in the same way, except that their elements are assigned among the own
variables. —

The elements of an array called by value are copied (and transformed as necessary) to a position after the last location
reserved for the program level from where the array is called.

The dope vector for the array declaration

array A [Ly:U;,Ly:Uy, ... Lo :U] s

< Ch>60)
< Co-1%Ca 260
<Cy*Ca* i *Cp-17Ca 260
<LENGTH=C*Cy* *Cp-1*Cu>60
DDDDDD— < Lower Bound Effect = LBE >60
< Number of dimensions = n 60 Dope Vector
~ ~ o
< L> 60 Size = 3n + 2 words
This part of < U1> 60
dope vector
exists only < L>
when array 2760
bound check-
ing is required < U>> 60
< L.>60
< Un>60 ~
-
AAAAAA~ < FWA -LBE >¢,

whereCi=Ui—Li+ 1
and

LBE=(((...(L *CptLy*C3+Ly)*..)*C +L

14-12 60384700 A

The address of any element A [il dg, o .oy] is calculated as follows:

address = FWA + (((. . .1 *Cy+i))*C3+ig)* ...)*C i) — LBE

For example, the declaration array A [1:3, 2:5] has a dope vector:

< 4> ¢o
< 12> 60
dddddd-> < 6260
< 2>60
< 1>¢0
< 3>60
< 2>60
< 5260
and a descriptor
<5725 aaaaaa 0000 dddddd> ¢
where aaaaaa~> < FWA-6> ¢
06 Constant
XXXX XXXXXX XXXX XXXXXX
{ 57 1?] 000000 0000 cceece
206t
CCccce Common address at which the constant is found.
07 Expression XXXX - XXXXXX XXXX XXXXXX
{ 7 70?} RRRRRR OVERL PPPPPP
007t

RRRRRR
OVERL
PPPPPP

60384700 A

Relocation base of the program level where the expression is situated.

Index of the overlay containing the expression

Program address of the code that evaluates the expression

14-13

10 Simple Variable

XXXX XXXXXX XXXX XXXXXX
567t 000000 0000 AAAAAA
210t

AAAAAA Stack address of the variable

11 Subscripted

Variable XXXX XXXXXX XXXX XXXXXX
766t RRRRRR S | OVERL PPPPPP
011t

RRRRRR Relocation base of the program level where the code to evaluate the address is found

OVERL Index of the overlay containing the code

PPPPPP Program address of the code which computes the address

S Flag indicating if the variable is in LCM (=1) or SCM (=0) (Bit 29)

12 Virtual Array
XXXX XXXXXX XXXX XXXXXX
565t AAAAAA 0000 DDDDDD
212t

The only difference between this kind of array and the SCM array described above is that
the elements of the array are assigned in LCM or ECS

AAAAAA and are as described above

DDDDDD

13 No-parameters

No-type procedure XXXX XXXXXX XXXX XXXXXX
7647 RRRRRR OVERL PPPPPP
0130
RRRRRR Relocation base of the program level where the expression’s code to call the procedure
is found.
OVERL Index of the overlay containing the expression’s code
PPPPPP Program address of the code where the procedure call is made.

14-14 60384700 A

14 No-parameters
Type procedure

RRRRRR, OVERL and PPPPPP are as described for kind 13.

60384700 A

XXXX XXXXXX XXXX XXXXXX
763t RRRRRR OVERL PPPPPP
014t
14-15

ALGOL DIAGNOSTICS 15

Two types of diagnostics are issued by the ALGOL compiler system: compiler generated diagnostics and
those generated at object time.
15.1 COMPILER DIAGNOSTICS
Every error detected during compilation causes a diagnostic to be printed following the source listing. If the
source listing is suppressed, the diagnostics are output to the standard output device. Each card of the source
deck is assigned a line number, which is printed as part of the source listing, and each diagnostic inlcudes the
line number of the source card in error and a summary of the error condition.
The diagnostics are grouped under the following headings:

LEXICOGRAPHIC AND SYNTACTIC DIAGNOSTICS

PRE-SEMANTIC DIAGNOSTICS

SEMANTIC DIAGNOSTICS

PROCEDURE CHECKING WARNINGS (OPTIMIZING MODE)

GOTO AND LABEL DIAGNOSTICS

SYMBOLIC FILE CONSTITUTION WARNINGS — FILE SUPPRESSED
A heading appears only when a corresponding diagnostic occurs.
Compiler diagnostics are either alarms or advisory messages; alarms cause the generation of object code to be
suppressed but advisory messages do not.
15.1.1 COMPILER ALARMS
A compiler alarm indicates that a serious error has been found in the source text and causes the suppression
of code generation regardless of any user request, although normal compilation and error checking continue
until the end of the source text. Source errors will cause otherwise legal text to become invalid but the
compiler will attempt to localize the effect of each individual error.
The error messages are self-explanatory. Upon detection of an error, the diagnostic is dynamically constructed

with additional relevant information inserted into the message (such as identifier name, identifier type, operand
name, syntax structure, line number, etc.). In the following examples the underlined parts indicate the additional

60384700 A 15-1

information inserted into the diagnostic:

LINE 123 : ILLEGAL (AFTER , IN ARRAY DECLARATION

LINE 456 : BB SPECIFIED PROCEDURE IS ILLEGAL BY VALUE
LINE 789 : UNRECOGNIZED COMPOUND DELIMITER #SKIP# ... IGNORED EXCEPT LAST #

For a lexicographic error, the illegal character is replaced by a blank and the resulting operands are proc-
essed according to the current state of the compiler. This often results in a second diagnostic being issued.

Example:
The statement #INTEGER# HSI;
produces the following diagnostics:

LINE 22 : ILLEGAL CHARACTER § OCCURS IN COLUMN 34 ... ACTS AS A LEXICOGRAPHIC
SEPARATOR

LINE 22 : MISSING DELIMITER BETWEEN H and I ... FIRST OPERAND DELETED

There are two error messages related to the creation of the dumpfile:

ERROR IN BLOCK TABLE and

NO SYMBOL FILE FOR CODE PROCEDURE
These diagnostics indicate an internal failure in the compiler and should be brought to the attention of
CONTROL DATA.
156.1.2 RECOVERY MESSAGES
In some cases the error message is preceded by RECOVERY : to indicate a fatal error has been detected and
the compiler has attempted to correct the error and continue the compilation. However, it is still considered a
fatal error. Furthermore, it is possible that the compiler has guessed incorrectly, in which case the recovery
might have provoked additional diagnostics which do not necessarily indicate the presence of other errors. The
following are examples of recovery diagnostics:

LINE 15 : RECOVERY : ILLEGAL = AFTER #FOR# REPLACED BY :=

LINE 120 : RECOVERY : #QRRAY# REPLACED BY # ARRAY#

15-2 60384700 A

15.1.3 ADVISORY MESSAGES

Advisory messages do not necessarily indicate the presence of an error in the source text but provide infor-
mation which may be useful in detecting errors not recognized as language infringements.

For example:
LINE 55 : ADVISORY : NON-FORMAT STRING

LINE 92 : ADVISORY : DELIMITER(S) BEFORE PROGRAM START
May indicate a missing # BEGIN#

LINE 115 : ADVISORY : ERROR IN DUMP FILE WRITING

Indicates a hardware error; DMPFILE is suppressed and compilation continues.
The advisory messages, particularly NON-FORMAT STRING, can be a nuisance. They can be suppressed,
however, using the option N=0 on the control card. Fatal errors will always be output.
15.1.4 ADVISORY MESSAGES IN OPTIMIZING MODE
When optimization is requested, as indicated in Chapter 6, additional checking is performed upon the use of
procedures and parameters. In the case of a type or kind mismatch between an actual parameter and a formal
parameter, an advisory message is issued.

LINE 104 : ADVISORY : KIND ERROR IN ACTUAL PARAMETER

LINE 189 : ADVISORY : ACTUAL PARAMETER CANNOT CORRESPOND TO LEFT-HAND SIDE
USAGE OF FORMAL.

LINE 237 : ADVISORY : ACTUAL PARAMETER SHOULD BE A PROCEDURE WITH PARAMETERS
In non-optimizing mode, as well as for the cases listed above, the correspondence between actual and formal
parameters will be checked at run-time. Any parameter mismatch will only lead to an error if the procedure
call is executed.

15.1.5. COMPILER STOP

For a violation of an implementation restriction, a compiler stop occurs. A diagnostic indicating the nature of
the error is printed on the output file, followed by a message indicating the compiler stop.

15.1.6 COMPILE ABORT

If the compiler should fail, the following message will be printed on the dayfile:

COMPILER ABORT IN LINE SCAN ——— .

Indicates an internal error in the ALGOL compiler and should be brought to the attention of CONTROL DATA.

60384700 A 15-3

15.2. OBJECT-TIME DIAGNOSTICS

Upon normal exit from an object program, the contents of all non-empty format areas are output.

Upon abnormal termination, a diagnostic is printed on the standard output device to indicate the nature of
the error, and the contents of all non-empty format areas are output. If asked for at execution time, infor-
mation which traces the execution path through the currently active block structure and stack information for
each block are then printed on the standard output device (see D option, Chapter 8).

15.2.1 DUMP SYMBOL FILE DIAGNOSTICS

In case of an error involving the dump symbol file, the following messages are issued:

® on the dayfile

- UNKNOWN ACTION IN SYMBOL FILE File given as symbol file in D option has not been created
or it has been partially destroyed.

- /O ERROR DURING DUMP A hardware error has occurred during dump on output file
or DMPFILE.

- STOP DUMP TOO LONG Each call to dump is limited to approximately 6 pages of
printing.

® inside the dump printout

***** SYMBOL FILE NOT PROVIDED- Option D must be explicitly set at compile-time to get a
OCTAL DUMP REPLACING symbolic dump at run-time.

&k WRONG SYMBOL FILE - The symbol file has not been created at the last compilation
OCTAL DUMP REPLACING of the program or pertains to another program.

#¥*** ERROR IN SYMBOL FILE - Hardware error in DMPFILE during reading.

16.2.2 ERROR CONTROL PROCEDURES

ERROR and CHANERROR are execution-time error trapping procedures which permit the user to regain

control after the detection of an error of the same type as the given key (Chapter 3, section 3.3). In the
following list of diagnostics a key is given for each message. A call to ERROR or CHANERROR will trap
all errors with the corresponding key.

154 60384700 A

15.2.3 OBJECT-TIME DIAGNOSTICS

Object-Time Diagnostics

AIPHA FORMAT ERROR

ALGOL I/O ERROR

ARITHMETIC OVERFLOW

ARRAY DIMENSION ERROR -
DIMENSION NO.:

ARRAY LOWER BOUND ERROR -
DIMENSION NO.: VALUE:

ARRAY UPPER BOUND ERROR -

DIMENSION NO.: VALUE:
BAD DIAGNOSTIC
LIB: ERNUM:

EXPONENTIAL PARAMETER ERROR

FETCH ITEM/LIST TYPE ERROR

FORMAT ITEM ERROR

FORMAT MISMATCH

FORMAT REPLICATOR ERROR

60384700 A

ERROR
KEY

Output value is too large.

I/O error detected by SCOPE on
ALGOL channel.

Evaluation of an expression results 1
in an arithmetic error (e.g., if the
operand is infinite). This is the same

as a mode 2 error as defined by
SCOPE.

Number of dimensions in actual 3
parameter array in procedure call

differs from number in formal

parameter array.

Computed element address in an 3
array is not within lower array bound.

Computed element address in an array 3
is not within upper array bound.

This indicates an internal error in
ALGOL. This information should be
sent to CONTROL DATA
CORPORATION,

Argument of EXP procedure is too 1
large.

Attempt to mix variable types on
word addressable channel in FETCH
ITEM/LIST call.

More characters in expanded format
item than permitted in INPUT, OUT-
PUT, INLIST, and OUTLIST.

Format item and corresponding I/O
item have incompatible types or
kinds.

Replicator in call to FORMAT proce-
dure not in proper range.

CHANERROR

KEY

4

5

15-5

Object-Time Diagnostics

FORMAT STRING ERROR

GET ITEM/LIST TYPE ERROR

H/V LIM ERROR

ILLEGAL CHANNEL NUMBER
VALUE :

ILLEGAL KEY
VALUE:

ILLEGAL OPERATION -
SEQUENTIAL FILE
INDEXED FILE
WORD-ADDRESSABLE FILE
BINARY SEQUENTIAL FILE

ILLEGAL STRING INPUT

ILLEGAL STRING OUTPUT

INPUT KIND ERROR

INSUFFICIENT SCM FOR
OVERLAY -
OVERLAY INDEX :

LAYOUT CALL ERROR

LCM/ECS ARRAY SIZE ERROR

15-6

Incorrect format string.

Type of data does not match
variable on GET ITEM/LIST call.

H LIM AND V LIM arguments
L, R, and L', R' out of range.

A negative, undefined or infinite
channel number was found in proce-
dure CHANERROR.

The key used in procedure ERROR or
CHANERROR is not defined. It is
changed to zero and execution
proceeds.

An attempt has been made to use

an incompatible I/O operation on the
type of channel specified in the
diagnostic (e.g., calling GETLIST on a
sequential file).

Attempt to read into a string param-
eter during a call to INPUT or
INLIST.

Illegal character in string output.

Input destination is neither simple
variable, array, or subscripted variable.

The indicated overlay requires more
SCM.

Procedures established by H END
and V END and label set by
NODATA are not accessible after
return from the layout procedure
called by INLIST or OUTLIST.

Computed LCM/ECS array size is
negative or zero.

ERROR CHANERROR

KEY

KEY

4

60384700 A

Object-Time Diagnostics

LCM/ECS STACK OVERFLOW

LOGARITHM PARAMETER ERROR

NEGATIVE SWITCH INDEX

NON-FORMAT INPUT

NUMBER SYNTAX

NUMERIC INPUT ERROR

OPERATION ON ACTIVE CHANNEL

OUTCHARACTER ERROR

OVERLAY FILE NOT PRESENT
OVERLAY INDEX :

NUTDT ALY NN N ™
VYLDNLAX l‘Ul ruuiNg

OVERLAY INDEX :

PARAMETER COUNT ERROR

PARAMETER KIND ERROR -
PARAMETER NO. :

PARAMETER NOT STRING NOR
INTEGER ARRAY

PARAMETER TYPE ERROR
PARAMETER NO.

60384700 A

Required array space in LCM/ECS
exceeds available memory.

Argument to LN procedure may
not be negative or zero.

Value of switch designator is neg-
ative.

In non-formats I, R, L, or M, input
field contains non-octal characters.

Number input in standard format
does not conform to proper syntax.

Data input under format control
does not conform to numeric
input format.

An attempt has been made to input
or output to an indexed channel
while that channel is active.

Parameter to OUTCHARACTER
call is not in proper range.

The file for the indicated overlay
is not present.

Tha indicatad
The indicated
(<

found on th

v arla "
viiiad

de clared file.

cannoct ha
valiiive ve

Number of actual parameters in
procedure call is incorrect.

Kind of actual parameter in proce-
dure call does not correspond to

kind of associated formal parameter.

A formal I/O string can only be
matched by an actual string or
array.

Types of actual and formal param-
eters in procedure call do not
correspond.

ERROR
KEY

5

o

CHANERROR

KEY

15-7

Object-Time Diagnostics

SCM ARRAY SIZE ERROR

SCM STACK OVERFLOW

SIN-- COS ERROR

SQUARE ROOT PARAMETER ERROR

STORAGE INCOMPATIBILITY
FOR ARRAY

STRING ELEMENT ERROR

SWITCH BOUNDS ERROR

SYSPARAMETER ERROR - F -

SYSPARAMETER ERROR - Q -

TABULATION ERROR

THRESHOLD ERROR

UNASSIGNED CHANNEL

UNCHECKED EOF

UNCHECKED PARITY

ZERO SWITCH INDEX

15-8

Computed SCM array size is
negative or zero.

Data requirements of program ex-
ceed available memory.

Argument to SIN or COS pro-
cedure is too large.

Argument to the SQRT procedure
may not be negative.

Storage allocation (SCM or LCM/
ECS) in an actual array differs from
that of the format array in a pro-
cedure call.

Rules of STRING ELEMENT
violated.

Value of switch designator out of
range.

SYSPARAM called with incorrect
F parameter.

SYSPARAM called with incorrect
Q parameter.

Argument of TABULATION not in
proper range.

Request for invalid function to
standard procedure THRESHOLD.

No channel defined for channel
number used in program.

End-of-file mark detected, but no

provision made with EOF procedure.

No PARITY procedure for parity
error detected.

Value of switch designator is zero.

ERROR
KEY

2

CHANERROR

KEY

60384700 A

V 00L+8€£09

—

ASCII Hollerith External | ASCII ASClI Hollerith | External ASCH
CDC Graphic | Display Punch BCD Punch | ASCII CDC Graphic Display Punch BCD Punch ASCII
Graphic Subset Code (026) Code (029) Code Graphic Subset Code (026) Code (029) Code

ot : 00t 8-2 00 8-2 072 6 6 41 6 06 6 066
A A 01 1241 61 1241 101 7 7 42 7 07 7 067
B B 02 12-2 62 12-2 102 8 8 43 8 10 8 070
(o o 03 12-3 63 12-3 103 9 9 44 9 11 9 o7
D D 04 12-4 64 124 104 + + 45 12 60 12-8-6 053
E E 05 125 65 12-5 105 - - 46 1 40 11 055
F F 06 12-6 66 126 106 * * 47 11-8-4 54 11-8-4 052
G G 07 12-7 67 12-7 107 / / 50 0-1 21 0-1 057
H H 10 128 70 128 110 ((51 0-8-4 34 1285 050
! | 11 129 71 129 11 -)) 52 12.8-4 74 11-8-5 051
J J 12 1141 41 111 112 $ $ 53 11-8-3 53 11-8-3 044
K K 13 11-2 42 11-2 113 = = 54 8-3 13 8-6 075
L L 14 11-3 43 11-3 114 blank blank 55 no punch 20 no punch 040
M M 15 11-4 a4 11-4 1156 , {comma) , {comma) 56 0-8-3 33 0-8-3 054
N N 16 115 45 11-5 116 . {period) . {period) 57 12-8-3 73 12-8-3 056
o o 17 11-6 46 11-6 117 = 60 0-8-6 36 8-3 043
P P 20 11-7 a7 11-7 120 [[61 8-7 17 12-8-2 133
Q Q 21 118 50 11-8 121]] 62 0-8-2 32 11-8-2 135
R R 22 119 51 119 122 %+t % 63 8-6 16 0-8-4 045
S S 23 0-2 22 0-2 123 Ftttt '"{quote) 64 8-4 14 8-7 042
T T 24 0-3 23 0-3 124 -> _ lundertine) 65 0-8-5 35 0-8-5 137
] U 25 0-4 24 0-4 125 v ! 66 11-0 or 52 12-8-7 or 041
\% \% 26 0-5 25 0-5 126 11-8-2ttt 11-0ttt
w W 27 0-6 26 0-6 127 A & 67 0-8-7 37 12 046
X X 30 0-7- 27 0-7 130 t ! {apostrophe) 70 11-8-5 55 85 047
Y Y 31 0-8 30 0-8 131 { ? 7 11-8-6 56 0-8-7 077
z 4 32 09 31 09 132 < < 72 12-0 or 72 12-84 or 074
0 0 33 0 12 0 060 12-8-2ttt 12-01tt

1 1 34 1 01 1 061 > > 73 11-8-7 57 0-8-6 076
2 2 35 2 02 2 062 < @ 74 8-5 15 8-4 100
3 3 36 3 03 3 063 > \ 75 12-8-5 75 0-8-2 134
4 4 37 4 04 4 064 L ~(circumflex) 76 12-8-6 76 11-8-7 136
5 5 40 5 05 5 065 ; (semicolon) ; {semicolon) 77 12-8-7 77 11-8-6 073

t+ Twelve or more zero bits at the end of a 60-bit word are interpreted as end-of-line mark rather than two colons. End-of-line mark is converted to

external BCD 1632.

t11n installations using the CDC 63-graphic set, display code 00 has no associated graphic or Hollerith code; display code 63 is the colon (8-2 punch).

t 1t The alternate Hollerith (026) and ASCII (029) punches are accepted for input only.
t1ttThe # character replaces the apostrophe in the new character set.

S13S ¥YILOVAVHO 3dO0OS AYVANVIS

INTERFACE MACROS B

A number of COMPASS coded macros are provided to expand the areas of application of ALGOL-60 programs.
ALGOL programs can make use of subprograms coded in COMPASS (by using code) to perform tasks which
require the compactness of extreme code efficiency.

These macros are subdivided into four groups: Entry/Exit Macros, which provide the link between the ALGOL
declaration of a procedure and the COMPASS subprogram; Specification Macros, which supply the means for
analyzing the parameters passed to the COMPASS subprogram; Formal Handling Macros, which enable certain

operations with these parameters; and a macro for requesting local stack space.

No restrictions are imposed upon register use, since -all registers used by the Run Time System are restored
whenever they are needed within the macros. Care must be taken, however, to save any registers that may
be destroyed as a result of a macro call.

The following text uses the symbols { , } to signify that there is a choice between the items enclosed with-
in the braces and separated by commas.

B.1. ENTRY/EXIT MACROS

The following two macros provide entry from a procedure statement or function designator in an ALGOL
main program, and return, with a value in the latter case, to the appropriate point in the calling program.

B.1.1 ALGOL

This macro provides a linkage between the code declaration of an external procedure in an ALGOL main
program and the corresponding COMPASS subprogram. Control will transfer to the ALGOL macro expansion,
and the statements which immediately follow the macro will constitute the first executable code in the
procedure. The macro expansion creates a new program level in the stack and establishes the environment for
the macros.

name ALGOL number

name Optional location field parameter, up to 7 characters. A name for the COMPASS subprogram
initiated at this point. This name will be used during traceback in event of an execution
time error. If omitted, it is assumed to be: CP + number.

number Optional, up to 5 digits. The code number used in the declaration of the associated pro-

cedure in the ALGOL main program. This number, given as CP ~ number, links the
COMPASS subprogram with the ALGOL declaration.

60384700 A B-1

If more than 7 characters are used for the name or more than 5 digits for the number, they will be truncated
and a warning message given. The name and the number are related as follows:

name number traceback name link for loader

blank blank CP0O0000 CP00000

blank number CP~ number CP > number

name blank name name

name number name CP ~ number
Examples:

ALGOL declaration Entry Macro

procedure A(x,y); code 0; ALGOL

procedure A(x,y); code; A ALGOL

procedure A(x,y); code 100;

{ ALGOL 100
AAA ALGOL 100

procedure A(x.,y); code PROCA; PROCA ALGOL

B.1.2. RETURN

This macro causes a normal return from a COMPASS coded procedure. Although the procedure may terminate
in other ways (GOTO, ERROR, and XEQ 1nacras, for instance) thxswﬂl be the normal point of exit, and will return
control to the point in the main program from which the ALGOL macro was entered. If invocation was by a
function designator, the value of the function must be present in an X register at this stage. Additionally, it
performs an optional conversion of the contents of the X register.

RETURN xreg,type

xreg

type

Optional X register designator. The X register contains the value of the function represented
by the preceding code in accordance with the type. If xreg is omitted, it is assumed the
code was executed from a procedure statement.

Optional{R,I,B,F} . If none given, the default is R. The contents of xreg are assumed to
be: .

(R) Floating point and will be normalized

4] Floating point and will be an integer (in the ALGOL sense, i.e., entier (xreg+0.5))
(B) boolean and will be passed straight through without any additional operation

") Machine integert and will be converted to floating point and normalized

tThroughout this appendix a distinction is made between the term machine integer as used in COMPASS, and
the ALGOL type integer, which is stored internally in floating point.

60384700 A

Examples:

RETURN If called as procedure

RETURN X4 If called as function. The result in X4 is assumed to be floating point and will
be normalized.

N EQU 5

RETURN X.NB If called as function. Result in X5 is boolean (bit 59 determines value).

B.2. SPECIFICATION MACROS

The following macros are used within a COMPASS coded procedure to establish the number, kinds, and
types of actual parameters in the current invocation of the procedure.

B.2.1. PARAMS

This macro specifies the number of actual parameters in the current invocation of the COMPASS procedure.
No check is performed on the parameter count.

PARAMS xreg

xreg X register designator. The X register will receive the number (in machine integer form)
of actual parameters transmitted in the current call.

Example:

PARAMS XS

B.2.2. KIND

This macro provides a numerical representation of the kind of an actual parameter. No check is made on the
parameter.

KIND param,xreg
param {Absolute address expression, X register designator } . The value or contents of param is the

ordinal of the actual parameter to be examined; 2 indicates the second parameter, for
example.

60384700 A B-3

xreg X register designator. The X register will receive the numerical kind code (in machine integer form)
of the specified actual parameter. The register may be the same as param. The codes corres-
ponding to each kind of actual parameter are:

switch 0 simple variable 8
string 1 subscripted variable 9
label 2 virtual array 10
no type procedure 3 no-parameter, no-type
typed procedure 4 procedure 11
array 5 no-parameter, typed
constant 6 procedure 12
expression 7
Examples:
FORMAT EQU 5
SX2 4
KIND FORMAT X6
KIND 3X1
KIND X2.X3
KIND X2.X2
B.2.3 TYPE

This macro provides a numerical representation of the type of an actual parameter. No check is made on the
parameter.

TYPE param xreg

param { Absolute address expression, X register designator} . The value or contents of param is
the ordinal of the actual parameter to be examined.

xreg X register designator. The X register will receive the numerical type code (in machine integer
form) of the specified actual parameter and may be the same register as param.
no type 0
integer 1
wl 2
boolean 3
Examples:
TYPE 2.X5
TYPE X3,X3
TYPE ACTUAL X7

B4 60384700 A

B.2.4. SPEC

This macro permits the programmer to restrict the kinds of actual parameters. Since allowable kinds for a given
parameter may be run-time dependent, this check occurs in-line. This macro may produce abnormal termination
with a diagnostic, and it does not provide direct information about the kind of the actual parameter. Any
number of parameters may be checked with a single call to this macro, the only limit is imposed by COMPASS,
which allows up to 9 continuation lines per statement.

SPEC (PAR1:SPC1, PAR2:SPC2, . . . ,PARn:SPCn)

PARI1 {Absolute address expression,X register designator } .
PAR2 ... PARn Absolute address expression. The value or contents of PARI is the ordinal of the

actual parameter to be examined. Only PAR1 may be an X register, the second
and subsequent PARi must be absolute address expressions.

: (colon) Separates PARi part from the SPCi part.

SPCi String of up to 12 alphabetic characters. A string of one or more single
character Spec Codes, where each is an alphabetic character representing an
allowable kind. Only Spec Codes may appear in the string, and none more than
once. The string defines all allowable kinds for this parameter. The Spec Codes
for each kind of actual parameter are:

simple variable

subscripted variable

virtual array

no-parameter, no type procedure
no-parameter, typed procedure

switch w
string G
label L
no type procedure P
typed procedure F
array A
constant C
expression X
A%
N
R
N
T

Since there are 13 kinds, the string may have up to 12, to avoid checking when all kinds are allowed.

If the actual parameter is not of the specified kinds, the diagnostic PARAMETER KIND ERROR is produced
and the program will abort (See 3.3).

60384700 A B-5

Examples:

SX1 2 The second actual parameter must be a constant, expression, simple
SPEC (X1:CXVST,5:VS) variable, subscripted variable or typed procedure without parameter;
the fifth parameter must be a simple variable or subscripted variable.
SPEC (3:AV X2:W) The macro call is erroneous because the second pair contains an
X register.

B.3. FORMAL HANDLING MACROS

Any kind of actual parameter may be passed to the COMPASS subprogram, and subsequent handling of them
as formals is the responsibility of the subprogram. None of the macros in this section is applicable to all kinds
of parameters. The most efficient way to ensure correct execution is by use of the macros KIND and SPEC.
An alternative method is provided by optional checking within the macro itself to ensure that the parameter
kind is consistent with the specified operation. This automatic checking is less efficient since it must be
processed in line to maintain flexibility, and the same parameter may be checked several times if it is used by
different macros.

B.3.1. VALUE
This macro will cause the current value of a parameter to be computed. It is applicable to the following kinds
of parameters only: constant (6), expression (7), simple variable (8), subscripted variable (9) or no-parameters-
typed procedure (12) (i.e., CXVST). Optionally, the parameter may be checked for kind.
VALUE param,xreg kind, check
param {Absolute address expression, X register designator} . Indicates the ordinal of the parameter.
xreg X register designator. The X register will contain the value of the indicated actual parameter.

The value may be a floating point quantity in the case of real or integer. If boolean only
bit 59 is used (see 5.1.3).

kind Optional, absolute address expression. Numerical kind code of the actual parameter, if
known. This specification will produce a more efficient expansion. It will be ignored if its
value cannot be ascertained at assembly time.

check Optional. If this specification is present (non-blank) the actual parameter will be tested for

kind. Abnormal termination with a PARAMETER KIND ERROR diagnostic may occur
at execution time. :

B-6 60384700 A

Examples:

VALUE 3X1,,CHECK Evaluates the third parameter into X1. Checks that the kind is correct.

VALUE 5,X2,6 Evaluates the fifth parameter into X2 and assumes that it is a constant (6).
SX3 1 Evaluates the first parameter into X3.
VALUE X3,X3
B EQU 6 Evaluates the sixth parameter into X6. Checks correctness of kind and assumes
VALUE BX6.8,C that it is a simple variable (8).
B.3.2. ASSIGN

This macro is applicable only to a parameter which is either a simple variable (8) or a subscripted variable (9)
(i..,VS); and it optionally will check for these kinds. It assigns the contents of an X register to the specified
parameter. Care must be taken to provide either a normalized floating point quantity or a boolean value in
the X register. Use of the macro XFORM (See B.3.7) is advised for this purpose. Assignments will take place
only into stack addresses in SCM; assigning into a subscripted variable in LCM not only will not produce the
correct result, but it will destroy the contents of an SCM address.

ASSIGN param xreg kind check

param {Absolute address expression, X register designator } . See B.3.1.
xreg X-register designator. X register contains the value to be assigned to specified actual.
kind Optional, absolute address expression. See B.3.1.
check Optionai. See B.3.1
Examples:
SX1 3 Assigns the value 3 (after converting it to floating point) to the fifth
XFORM X1, X1,FR parameter. Assumes that it is a simple variable (8) and checks correctness
ASSIGN 5,X18,C of kind.
MX2 1 Assigns the boolean value true to the second parameter after checking that
N SET 2 it is the correct kind.

ASSIGN NX2,,C

60384700 A B-7

B.3.3. ADDRESS

This macro is applicable to the following kinds of parameters only: a string (1), an array (5), a constant (6),
a simple variable (8), a subscripted variable (9) or a virtual array (10), (i.e., GACVSR). Optionally, it will
check for these kinds. It calculates the address, or first word address, of the specified parameter. The macro
will also tell whether the computed address is in CM/SCM or in LCM.

Arrays and strings always grow from RA toward RA+FL, as opposed to the stack which grows from RA+FL
toward RA. '

ADDRESS param xreg kind check
param {Absolute address expression, X register designator} . See B.3.1.
xreg X register designator. The X register will receive in the lower 18 bits the addresst of a

constant or a variable, or the first word address of an array or a string. Bit 59 will be
1 if the address is in LCM and O if in SCM (for arrays only).

kind Optional. Absolute address expression. See B.3.1.
check Optional. See B.3.1.

Examples:
ADDRESS 3,X1,5 Returns in X1 the fwa of the third parameter, assumed to be an array (5).
SX2 4 Returns in X3 the address of the fourth parameter and checks correctness
ADDRESS X2X3,C of kind.

B.3.4. LENGTH
This macro is applicable to the following kinds of parameters: string (1), array (5), or virtual array (10).
Optionally, it will check kind. It will calculate the number of elements in the array or the number. of characters
in a string.

LENGTH param xreg kind ,check

param { Absolute address expression, X register designator } . See B.3.1.

Xreg X register designator. X register will receive the length of the actual parameter in machine
integer form.

kind Optional. Absolute address expression. See B.3.1.

check Optional. See B.3.1.

TALGOL 4.0 allows only 18 bit addresses for LCM

B-8 60384700 A

A string is stored in the coefficient part of a word with zero exponent, eight characters per word, and the
count will include at least six characters for the initial and terminal string quotes.

Examples:

Y EQU

3 Return in X2 the number of characters in the string (1) given by the

LENGTH Y . X2,1 third parameter.

LENGTH 4,X4,10 Returns in X4 the length of the virtual array (10) given by the fourth

SX1 1
LENGTH Xi

B.3.5. ORDER

parameter.

Returns the length of the array or string given by the first parameter
7,,C after checking correctness of kind.

This macro operates only on array (5) or virtual array (10) parameters. It returns the order, or dimensionality
of the array (the number of subscripts required to address the array in its original declaration). Optionally, it
checks that the kind is correct.

ORDER
param

xreg

check
Examples:

B.3.6. GOTO

param xreg,check
{Absolute address expression, X register designator } . See B.3.1.

X register designator. The X register will receive, in machine integer form, the order of
the specified actual array parameter.

Optional. See B.3.1.

A X2 C

2y, Kz,

X3 X7

tx1

»
¢
v
¥

This macro applies only to a switch or a label parameter (or a designational expression), and will optionally
check kind. It causes a transfer to a label outside the COMPASS subprogram in accordance with the rules
applying to the ALGOL go to statement, and it can be used on the occurrence of abnormal conditions within
the COMPASS procedure. If the actual parameter is a switch (not a switch element), the value of the index
for the required switch element must be supplied in the macro call.

60384700 A

B9

GOTO
param

index

check

Examples:
GOTO

SX1
GOTO

B.3.7. XFORM

param, index,check

{ Absolute address expression, X register designator} . See B.3.1.

Optional. {Absolute address expression, X register designator} . If omitted, the actual is
assumed to be a label, and control will be transferred to that point. If present the actual

is assumed to be a switch, and the value or contents of index (machine integer form) must
be the subscript of the required switch. The switch element if found after checking that the
index is within the bounds of the switch (otherwise a fatal error will occur) and control

is transferred accordingly.

Optional. See B.3.1. The specified actual will be checked to ascertain it is a label or a
switch depending on the absence or presence of index.

3, ,CCC Checks whether the third parameter is a label and transfers control to it.

Transfers control to the second switch element of the switch given by the fifth

X1,2 parameter.

This macro provides for the conversion of quantities into various data formats.

XFORM

operand

result

action

B-10

operand, result, action

X register designator. The X register contains the quantity to be transformed according
to the action.

X register designator. The X register will receive the result of the conversion. The same
register may be used as operand.

{ RI, REFR} .
If RI, the operand is assumed to be a real and the result will be an integer in the ALGOL

sense, i.e.: result:=entier (operand+0.5)

If RF, the operand is a floating point quantity (real or integer) and the result will be a
machine integer.

If FR, the operand is a machine integer quantity and the result will be a floating point
number.

60384700 A

Examples:

SX2 3 The contents of X3 will be the value 3 expressed as a normalized
XFORM X2,X3,FR floating point quantity.
XFORM X6,X6,RI The contents of X6 before the macro call are assumed to be a floating

point real quantity. After the macro call it will be a floating point
integer quantity.

B.3.8. STRING

2o PRy PPN iy c a Sz, aberiena Jemd i o odfeas oooida a £ Py == o d4g P e
This macro transforms a given COMPASS siring into a string suitable for ALGOL and builds its descriptor.
0

The resulting string may be passed as an actual parameter to an ALGOL procedure via the macr
(See B.3.10).
STRING name, string
name A COMPASS symbol. This name will be used by the macro as the symbol to define the
address where the descriptor will be placed, hence it must not be used anywhere in the
location field in the COMPASS subprogram.

string The string may contain any character from the character set, except the $. It may be
formed by any number of characters, including zero (the empty string).

Usage of this macro will produce the non-fatal COMPASS error number 9 because it is not possible to change
the micro marks (') of COMPASS, and they are used in ALGOL for opening and closing a string:
'(‘THIS IS NOT A MICRO")'
Examples:
STRING MYSTRG,(THIS STRING CONTAINS . ,:;[])
STRING A, (/,3B,-Z.DDDBDDD)

STRING B This string is empty

B.3.9. ERROR

This macro will print a given string and pass control to the routines which produce the traceback, according
to the abnormal termination dump format option. (See 8.2.). Then the program will abort.

ERROR string

string The string may contain any character from the character set, except the $. The number of
characters is limited to 135 and the empty string is not allowed.

Example:

ERROR (THIS IS AN ERROR MESSAGE)

60384700 A B-11

B.3.10. XEQ

This macro operates only on an actual parameter that is a no-type procedure with parameters (3) or without
(13). The macro invokes this formal procedure from within the COMPASS subprogram. It permits the
COMPASS subprogram to pass parameters to the formal procedure but they may be only simple variables
(of types real, integer, or boolean), strings defined by the macro STRING, or alternatively other formals of
the COMPASS subprogram. With the first type of parameter (3), the subprogram can transmit simple values
to the formal procedure and receive results after execution. These parameters will be local to the COMPASS
subprogram. With the last type of parameter (13), more complex kinds (arrays, switches, labels, procedures)
can be transmitted from the original main program to the formal procedure via the COMPASS subprogram.

The XEQ macro always will produce code to check that the specified actual parameter is a notype procedure.

According to ALGOL up to 63 parameters could be passed to the formal procedure. The only limit imposed
by the macro is that imposed by COMPASS, which allows up to 9 continuation lines per statement (See 5.4.3.).

XEQ proc, (P1,P2,...,Pn)

proc { Absolute address expression, X register designator} . The value, or contents, of proc
is the ordinal of the no type procedure parameter. This parameter is referred to as
the formal procedure.

P1,...,Pn Optional. If omitted, the formal procedure is assumed to be a no-parameter procedure;
and control will be given to it immediately.

If given, Pi may have two forms:
param : typknd

param { Relocatable address expression, name given to a string } . If it is a
relocatable address expression, param is assumed to be the address
of a variable local to the COMPASS subprogram which provides an
input value to the formal procedure or expects to receive a result
from it. If it is a name for a string use must have been made of
the macro STRING.

Separator.

typknd { R,I,B,S} . The variable local to the COMPASS subprogram is of
type real (R), integer (I) or boolean (B). For a string, S must be

used.
*param
* The asterisk means a special parameter.
param {Absolute address expression, X register designator } The value or

contents of param is the ordinal of the original parameter to the
COMPASS subprogram which is to be transmitted to the formal
procedure as its ith parameter.

B-12 60384700 A

Examples:

W DATA

Z BSSZ

XEQ

Q EQU
SX1
SX2
STRING
XEQ

XEQ

35
1/1,59/0
1

3, (W:R,Y:B,*5,Z:R)

Checks that the third parameter to the COMPASS subprogram is a no-type procedure.
It transmits the real variable W, the boolean variable Y, the 5th parameter (to the
COMPASS subprogram) and the real Z (where it expects a result) as the 1st, 2nd, 3rd,
and 4th parameters respectively to the formal procedure given. Then the procedure is
executed.

10
4
6
AJ(/,6ZDD.DDD)
X1,(*Q,*X2,A:S)

Checks that the 4th parameter to the COMPASS subprogram is a no-type procedure.
It transmits its 10th parameter, 6th parameter and the string named A as the Ist, 2nd,
and 3rd parameters, respectively, to the formal procedure and executes it.

5

Checks that the 5th parameter to the COMPASS subprogram is a no-type procedure; and
since there are no parameters, it executes it as a procedure without parameters.

B.4. STACK REQUEST MACRO (GETSCM)

This macro grants a given number of words in the local stack assigned to the COMPASS subprogram. The user
requests this amount of core and provides a register where the fwa for his stack space will be found.

The stack grows from RA+FL towards RA; therefore, this area must be used by indexing the fwa negatively.

This macro must be used with extreme care, otherwise the stack and the code are liable to undetected
destruction. Additionally, the space granted may be preset in accordance with the execution-time option S

(See 8.3.).
GETSCM

size

fwa

60384700 A

size fwa

{ X register designator, absolute address expression} . The contents or value of size indicate
the number of words to be requested.

X register designator. This X register will have the fwa of the granted stack space. It may
be the same register as size. This area comprises from fwa to fwa-size+l (from RA+FL
towards RA).

B-13

Examples:

SX5 7

GETSCM X5,X6 In both cases 7 words of stack are requested; and when granted, the fwa will be
GETSCM 7,X6 found in X6.

B.5. EXAMPLES

In the following examples, both the calling ALGOL program and the COMPASS subprogram are given.
To assemble the COMPASS subprogram, the control card must be:

COMPASS(S=ALGTEXT)

B.5.1 EXAMPLE 1

The calling ALGOL program is:

'‘BEGIN' 'COMMENT' THIS PROGRAM WILL PRINT THE VALUES 1 2 3 4 IF THE COMPASS
PROCEDURE JUMP IS CORRECT, OTHERWISE VALUES LIKE 300, 400, 500 AND
1000 WILL APPEAR;

'SWITCH' S:=L5,1L4,L3;
'PROCEDURE' JUMP(A B,C);
‘LABEL' A; 'SWITCH' B; 'BOOLEAN' C; 'CODE' 100;
OUTREAL(61,1);
JUMP(L1,S, 'TRUE"),
OUTREAL(61,300);
L1: OUTREAL(612);
JUMP(L2,S,'FALSE');
L5: OUTREAL(61,500);

'GOTO' END;
L4: OUTREAL(61,400);
'‘GOTO' END;

L2: OUTREAL(61,1000);
'‘GOTO' END;

L3: OUTREAL(61,3);
END: OUTREAL(614)
'END' '

The COMPASS subprogram is:

IDENT JUMPS
SST

*THIS PROGRAM TESTS THE 3RD PARAMETER (A BOOLEAN). IF IT IS 'TRUE' WILL GIVE

*CONTROL TO THE LABEL (1ST PARAMETER). IF IT IS 'FALSE' WILL GIVE CONTROL TO
*THE THIRD ELEMENT IN THE SWITCH LIST SPECIFIED BY THE 2ND PARAMETER

B-14 60384700 A

ALGOL 100
SPEC (1:L2:W 3:CV)

VALUE 3X7
PL X7,FALSE
GOTO 1 A LABEL
JpP FIN
FALSE GOTO 23 A SWITCH
FIN RETURN
END

B.5.2. EXAMPLE 2

The calling ALGOL program is:

'BEGIN' 'COMMENT' THIS PROGRAM WILL OUTPUT THE 10 ELEMENTS OF THE ARRAY R, WHERE
THE COMPASS PROCEDURE TEST HAS STORED THE FOLLOWING ITEMS:
NUMBER OF PARAMETERS IN THE CALL (8), KIND OF A (0), KIND OF D (3),
KIND OF G (6), TYPE OF B (0), TYPE OF E (2), TYPE OF H (2), LENGTH OF B
(10), LENGTH OF F (10), ORDER OF F (1).
FINALLY Q IS ALSO OUTPUT (100);
'REAL' P;
'‘PROCEDURE' ONE(A); REAL' A; A:=A;
'REAL' 'PROCEDURE' TWO(A); 'REAL' A; TWO:=A;
'PROCEDURE' TEST (A,B,C,D.EF,GH);
'SWITCH' A; 'STRING' B; 'LABEL' C;
'PROCEDURE' D; 'REAL"PROCEDURE' E; 'ARRAY' F; 'REAL' G,H;
'‘CODE';
'SWITCH' S:=L1,L2;
‘ARRAY' R[1:10];
‘REAL' Q;
L1:TEST(S,'('TEST')',L2,0NE,TWO,R,100,Q);
L2:0UTARRAY(61,R);
OUTREAL(61,Q);
iENDi

The COMPASS subprogram is:

IDENT PASSPAR
SST

*THE FOLLOWING MACRO STORES A REAL QUANTITY IN SUCCESSIVE ARRAY ELEMENTS

STORE MACRO

XFORM X7,X6,FR PUT IN X6 THE FLOATING POINT VALUE OF
* THE FIXED POINT QUANTITY ORIGINALLY IN X7
SA1 FWAARR
SA6 X1
SX7 X1+1
SA7 FWAARR STORE INTO ARRAY
ENDM

60384700 A B-15

B-16

TEST

FWAARR

ALGOL
SPEC
ADDRESS
SA6
PARAMS
STORE
KIND
STORE
KIND
STORE
KIND
STORE
TYPE
STORE
TYPE
STORE
TYPE
STORE
VALUE
ASSIGN
LENGTH
STORE
LENGTH
STORE
ORDER
STORE
RETURN
DATA
END

(1:W,2:G,3:L4:PFNT 5:FT,6:A,7:CXVST 8:VS)
6,X6,5

FWAARR STORE FWA FOR ARRAY
X7

1,X7

4,X7

7,X7

2,X7

5,X7

8.X7

7,X6,6

8,X6

2,X7,1

6,X7,5

6,X7

60384700 A

CHARACTER REPRESENTATION OF ALGOL SYMBOLS C
Table 1. Character Representation of ALGOL Symbols
ALGOL 48-Character Additional ALGOL 48 -Character
Symbol Representation Representation Symbol Representation
A-Z AZ true 'TRUE'
a-z ~ false 'FALSE'
09 09 0 to ‘GO TO'
+ + if 'IF'
- then 'THEN'
X * else 'ELSE'
/ / for 'FOR'
& 'POWER' #% or 1 do 'DO'
+ /" or 'DIV' Il step 'STEP'
> 'GREATER' > until 'UNTIL'
> 'NOT LESS' > while 'WHILE'
= = or 'EQUAL’ comment 'COMMENT"
'NOT EQUAL' -= begin 'BEGIN'
< NOT GREATER < end '‘END'
< 'LESS' < own 'OWN'
A 'AND' A Boolean 'BOOLEAN'
Y, 'OR' v integer 'INTEGER'
= '"EQUIV' = real 'REAL'
- 'NOT' - array 'ARRAY'
> 'IMPL' = switch 'SWITCH'
: ' procedure 'PROCEDURE'
’ ’ string 'STRING'
: : label 'LABEL'
; - ; value 'VALUE'
10 ' codett 'CODE'
u U algolt 'ALGOL'
((eoptt 'EOP'
1= =or..= = '
))
[(/ [
] /)‘]
< l(
2 l)l
tIn a format string, must be represented by an asterisk.
1 Not defined in the ALGOL-60 Revised Report; code and | algo] are defined in Section 5.4.1., Chapter 2;
eop in Chapter 4. A
60384700 A C-1

ALGOL 4.0 allows two forms of character representation of ALGOL symbols: the ALGOL Extended 62-character
set and the 48-character subset formerly required by an earlier CDC ALGOL compiler. With an installation param-
eter, the installation keypunch format standard can be selected as 026 or 029; the installation parameter can also
allow a user to override the standard: a user may select a keypunch mode for his input deck by punching 26 or

29 in columns 79 and 80 of his JOB card or any 7/8/9 end-of-record card. The mode remains set for the remainder
of the job or until it is reset by a different mode selection on another 7/8/9 card.

The following sample program is in the form that is punched into cards according to the 48-character subset:

TWO-DIMENSIONAL ARRAY: 'BEGIN' 'INTEGER' I.,

'COMMENT' THIS PROGRAM DECLARES A SERIES OF ARRAYS OF EVER-
INCREASING DIMENSION, THE ARRAY IS THEN FILLED WITH COMPUTED
VALUES, ONE OF WHICH IS ALTERED. THE ALTERED VALUE IS THEN
SEARCHED FOR AND PRINTED.

THE PRCGRAM HALTS WHEN THE DECLARED ARRAY SIZE EXCEEDS THE
AVAILABLE MEMORY. WHEN THIS OCCURS, THE PROGRAM EXITS WITH

THE MESSAGE STACK OVERFLOW ON THE STANDARD
OUTPUT UNIT,,

1..=10.,
L..I..=I+1.,
ouTPUT(61, 'C'/,3D')',I1D.,
"BEGIN' "ARRAY' A(/-3%I.,.-1,1..2%¥I/)., 'INTEGER' P,Q.,
'"FOR' P,.=-3¥1 'STEP' 1 'UNTIL' -I 'DO'
"FOR' Q..=I 'STEP' 1 'UNTIL' 2¥I 'DO’
AC/P,Q/)..=-P+100%Q.,
AC/=2%1,1+2/)..=AC/-2%1,1+42/)+10000.,
"FOR' P,.==-3¥1 'STEP' 1 'UNTIL' -I 'DO'
'"FOR' Q..=I 'STEP' 1 'UNTIL' 2¥I 'DO'
"IF' AC/P,Q/) 'NOT EQUAL' 100¥Q-P 'THEN'
'"BEGIN' OQUTPUT(C61,'C'/,5D')',AC/P,Q/D) 'END'.,
'GOTO'" L
"END'
'END'

C-2 60384700 A

The same program punched according to the ALGOL Extended 62-character set would look as follows:

TWO-DIMENSTONAL ARRAY: 'BEGIN' 'INTEGER' I;

'COMMENT' THIS PROGRAM DECLARES A SERIES OF ARRAYS OF EVER-
INCREASING DIMENSION. THE ARRAY IS THEN FILLED WITH COMPUTED
VALUES, ONE OF WHICH IS ALTERED. THE ALTERED VALUE IS THEN
SEARCHED FOR AND PRINTED.

THE PROGRAM HALTS WHEN THE DECLARED ARRAY SIZE EXCEEDS THE
AVATLABLE MEMORY., WHEN THIS OCCURS, THE PROGRAM EXITS WITH

THE MESSAGE STACK OVERFLOW ON THE STANDARD
OUTPUT UNIT;

1:=10;
L: [:=1+1;

QUTPUT(61,'("'/,3D")", 1);

"BEGIN' 'ARRAY' A[=-3¥I:-I, [:2¥I]; 'INTEGER'P,Q;

'FOR' P:=-3¥] 'STEP' 1 'UNTIL' -I 'DO’

'FOR' Q:=I 'STEP' 1 'UNTIL' 2%I 'DO!
A[P,Q] :==-P+100%Q;
A[-2%1, I+2] :=A[-2%I,1+2] + 10000;

'"FOR' P:=-3X] 'STEP' 1 'UNTIL' -1 'DO!

'FOR' Q:=I 'STEP' 1 'UNTIL' 2%I 'DO’

"IF' A[P,Q]D= 100%¥Q-P 'THEN'

"BEGIN' OQUTPUT (61,'C'/,5D')',A[P,Q]lD) 'END';

'GOTO!' L

'END'

TEND'

60384700 A C-3

STANDARD PROCEDURES FOR VECTOR D
AND MATRIX MANIPULATIONS

A set of built-in procedures will be provided for certain operations on arrays. These procedures take full ad-
vantage of the characteristics of the CDC CYBER 70 models 74 and 76 instruction stack. Each procedure is mainly
equivalent to ALGOL for statements as will be shown in the definitions of these procedures.

The provision of the array procedures invests the computer with pipelined functional streaming units at the
level of the source language. By defining the machine code for the macro expansions so that it loops wholly
within the instruction stack, an emulation of pipelining is achieved with very fast execution speed. Only those
array procedures whose machine code can so fit within the instruction stack are provided. There is no general
user macro definition facility at the source language level at present.

The use of these procedures will produce execution speed gains on all machine models due to the compacting
of the code. However, such gains are more significant for Models 74 and 76, where they can be very appreciable.

In all cases, a vector must be of length 10 or greater before gains are appreciable (see Chapter 12, section 12.3).

Except for initialization, all the procedures will execute within the instruction stack of both Model 76 and
Model 74.

At present, only a preliminary list of the procedures can be given. The list could be extended.

D.1 MATRIX AND VECTOR PROCEDURES

Twelve procedures are added to the standard procedure set. Their designs are given here in terms of ALGOL
procedures, but they do not imply that they are implemented as such.

Note: in the examples,upb and Iwb are used to represent the upper and lower bounds of an array. They do not
represent ALGOL procedures and are only used to facilitate the explanation.

D.1.1 MATRIX PROCEDURE

MATMULT: The standard procedure MATMULT does the crossed product of two matrices M1 (m,n) by M2 (n,p)
giving the matrix M3 (m,p). The bound pairs are assumed to be compatible, else a run-time error occurs. And arrays
M1, M2 and M3 must have 2 dimensions.

procedure MATMULT (M1,M2 M3 M N,P); value MN,P; integer M,N,P; array M1,M2M3;
begin integer [,J K,L1,L2,1.3)R1,R2,R3;
leal S;

ifM<1vN<1 Vv P<I] then ERROR (‘MATMULT — NEGATIVE DIMENSIONS’);

L1: = 1lwb (M1,1); R1:=1wb (M1,2);
L2: = lwb (M2,1); R2:=1wb (M2,2);
L3:= 1wb (M3,1); R3:=1wb (M3,2);

60384700 A D-1

if ((upb (M3,1)-L3+1) #M)
v ((upb (M1,2) - R1+1) #N)
V ((upb (M2,2) - R2+1) #P) then ERROR (‘MATMULT - INCONSISTANT MATRIX SIZES"):

for 1:=0step 1 until M-1 do
for J:=0step 1 until P-1 do
begin S:=0;
for K:=0step 1 until N-1 do
S:=S + M1 [L1+], R1+K] *M2 [L2+K, R2+J];
M3 [L2+I, R2+J]:=S
en

end MATMULT

D.1.2 VECTOR PROCEDURES

Twelve procedures are concerned with vectors. By vector is meant a one-dimensional array, the type of which is
either boolean or real (but they can‘t be mixed).

Their designs are given, in terms of ALGOL procedure, below. Here is some information, in the case where lower-
bound = 0 and upper-bound = N for each vector:

VINIT (OP,ES, V1)

build constant vector: OP<1;VI[I]:=E, I from0toN

arithmetic progression: OP =2;V1[0]:=E; V1[I]:=VI1[I-1]+4S, [from 1 to N
geometric progression: ~ OP> 3;V1[0]:=E; V1[I]:=V1[I-1]*S, I from 1 to N

VXMIT (OP, V1, V2, INIT, STEP);
OP < 1 transfers V1 to part of V2: V2[INIT+i*STEP] :=V1[i]
OP > 2 transfers part of V2 to V1: V1[i] := V2 [INIT+i*STEP]

VXMIT is a function that transfers a row or a column of a matrix to or from a vector.

VMONOD (0P, V1, V2)
V2[i} :=0P V1[I] where QP is a monadic operation as follows:

OP < 1 transmit
= 2 reversed transmit
= 3 real to integer transform
= 4 negate
= 5 absolute
= 6 entier (floor)
= 7 ceiling
= 8 sign
= 9 delta V2[i] ;== V1[i+1] - V1[i]
>10 mean V2[i] ;== (V1[it1] +V1[i])/2

D-2 60384700 A

VDIAD (0P, V1,V2,V3)
V3[i] := V1[i] OP V2[i] where QP is a diadic operation as follows:

opP

V2 | B V| N

A N AW -

add

subtract

multiply

divide

average V3[i] :=(V1 [i] + V2[i])/2
average difference V3 [i]:= (V1 [i] - V2 [i])/2

VSDIAD (OP, E, V2, V3)
V3[i] := E OP V2[i] where E is a (broadcasted) real expression and OP as for VDIAD. E is evaluated only
once, on entry to the procedure.

VPROSUM (OP, V1)

sigma: VPROSUM:=V1[0] + V1[1] + ...+ V1[N] when OP <1
product: V1[0] *V1{1] *...*VI[N] when OP >2
VDOT (V1,V2)
dot product: VDOT:=V1[0] * V2[0]+ V1[1] * V2[1]+...+V1[N]*V2|N]
BNOT (S1,52)
monadic operation: S2[i] :=7181[i]
VBOOL (OP, S1,52,53)
S3[1]:=S1[I]OP S2[I] where QP is a diadic operation as follows:
OP <1 or OP =7 pierce
= 2 and 2 8 inhibit
= 3 imply
= 4 equivalence
= 5 exclusive or
= 6 stroke

The truth table for boolean operations is (0 stands for false and 1 for true):

Source Excl.
XY v A > = or Stroke Pierce Inhibit
0 0 0 0 1 1 0 1 1 0
0 1 1 0 1 0 1 1 0 0
1 0 1 0 0 0 1 1 0 1
1 1 1 1 1 1 0 0 0 0

VSBOOL (OP, B, S2,53)

S3[i] :=B OP S2[i] where B is a (broadcasted) boolean expression and OP as in VBOOL. E is evaluated only
once, on entry to the procedure.

Note: VSBOOL (1,true,V1,V1) sets each element of V1 to true
VSBOOL (2.false,V1,V1) sets each element of V1 to false
VSBOOL (2,true, V1,V2) copies V1 into V2

60384700 A

VREL (OP, V1, V2, S3)
compare element by element vectors V1 and V2:
S3[i] := V1[i] QP V2[i] where OP is an operation as follows:

opP <1

- NI RN
#*VVIAA

v

Furthermore, VREL takes the value true if and only if every element of the result vector S3 is true.
VSREL (OP,E,V2,S3)
as in VREL but E is a broadcasted real expression. E is evaluated only once, on entry to the procedure.

The corresponding procedures are designed in such a way that the length of the result vector has priority on
other vectors lengths: if necessary, operand vectors are truncated or filled with zeroes or false.

procedure VINIT (OP,E,S,V1);value OP.E,S;
integer OP; real E,S; array Vi;
begm integer I;
_1_f.OP 1 then begin for I: =lwb(V1,1) step 1 until upb (V1,1)
do V1[1}:=E
end
else
if OP = 2 then begin V1[lwb(V1,1)] :=S;
for I:=lwb(V1,1+1 step 1 until upb(V1,1)
do V1[I]:=V1 [I-1]+E
end
else
if OP > 3 then begin V1[lwb(V1,1)]:=S;
- _ for I:=wb(V1,1)+1 step 1 until upb(V1 1)
do VI[I]:=VI[I-1]*E
end

end VINIT

procedure VXMIT (OP,V1,V2,INIT STEP); _value OP, INIT, STEP;
array V1,V2;integer OP, INIT, STEP

begin integer ,J,L1,L2;
L1:=1wb (V1,1); Ul:=upb (V1,1)-L1;
L2:= 1wb (V2,1); U2:=upb (V2,1)-L2;
_if OP <1 then

begin for I:= 0 step 1 until Ul do

MJ = INIT+I*STEP;
Af T 20 AJ<U2 then V2[L2+J] :=V1[L1+]

znd

end

D-4 60384700 A

else for I:=0 step 1 until Ul do
begin J:= INIT+*STEP;
V1[L141]:=if J > 0AJ < U2 then V2[L2+J] else O

end
end VXMIT;

procedure VMONOD (OP, V1 ,V2); value OP; integer OP; array V1 V2,
begin integer L1,U1,L2,U2,L,];

switch ACTION:=XMIT, REVERS,XFORM,NEGATE,ABSOLUTE,FLOOR ,CEILING ,SIGNE,

DELTAMEAN;

L1:=1wb (V1,1); Ul:=upb (V1,1)-L1;
L2:=1wb (V2,1); U2:=upb (V2,1)-L2;
L:=if U2 < U1 then U2 ¢lse Ul;
goto ACTION [if OP <1 then 1 else if OP > 10 then 10 else OP];

XMIT: OP equals 1:
for I:=0 step 1 until L do V2[L2+I] :=VI[L1+I];
goto FILLING;

REVERS: OP equals 2:
for 1:=0 step 1 until L do V2[L2+I] :=V1[U1+L1-I];
goto FILLING;

XFORM: OP equais 3:
for I:=0 step 1 until L do V2[L2+I] :=entier (V1[L1+I] +.5);
goto FILLING; :

NEGATE: OF equals 4:
for I:=0 step 1 until L do V2[L2+I]:= -V1[L1+1];
goto FILLING;

ABSOLUTE: OP equals 5:
for I:=0 step 1 until L do V2[L2+I] := abs(V1[L1+]);
goto FILLING;

FLOOR: OP equals6:
for I:=0 step 1 until L do V2[L2+1] :=entier (V1{L1+]);
goto FILLING;

CEILING: OPequals7:°
for I:=0 step 1 until L do V2[L2+] :=if V1[L1+I]=entier(V1[L1+1])
then V1 [L1+I] else entier(V1 [L1+I]+1);
goto FILLING;

SIGNE: OP equals 8:

for 1:=0 step 1 until L do V2[L2+1] :=sign (V1[L1+I]);
goto FILLING;

60384700 A

D-§

DELTA: OP equals9:
for [:=0 step 1 until L-1 do
V2[L2+I] := V1[L2+I+1]- V1[L14];
V2[L2+L]:= (if L+1 < Ul then V1 [L1+L+1] else 0) - V1[L1+L}];
goto FILLING;

MEAN: OP equals 10:
for I:=0 step 1 until L-1 do,
V2[L2+I] :=(V1[L2+I+1]- V1[L1+1])/2;
V2[L2+L] :=(Gf L+1 <U1 then V1[L1+L+1] else 0)-V1[L1+L])/2;

FILLING: Fill V1 with zeroes:
for I:=L+1 step 1 until U2 do V2{L2+I]:=0

end VMONOD;

procedure VDIAD (OP,V1,V2,V3); value OP; integer OP; array V1,V2,V3;

begin integer L1,U1,L2,U2,L3,U3[;
Ieal procedure action (OP,X,Y); value OP.X,Y;
integer OP; real X,Y;
action:= _if OP <1 then X+Y else
if OP =2 then X-Y else
if OP =3 then X*Y else
ifOP =4 then X/Y else
IfOP =5 then (X+Y)/2
ese (XY)/2;

L1:=iwb (V1,1); Ul:=upb (V1,1)-L1;

L2:=1wb (V2,1); U2:=upb (V2,1)-L2;

L3:=1wb (V3,1); U3:=upb (V3,1)-L3;

for I:=0 step 1 until U3 do
V3[L3+[] :=action (OP, if I <U1 then V1{L1+I] else 0,
JfT<U2 then V2[L2+1] else 0)
end VDIAD;

procedure VSDIAD (OP,E,V2,V3); value OP,E;
integer OP; real E; array V2,V3;

begin integer L2,U2,L3,U3,1;

Ieal procedure action (OP,X,Y) value OP X,Y;
integer OP; real X,Y;

action:= jf OP<< 1 then X+Y else

JfOP = 2 then X-Y else

if OP =3 then X*Y

else X/Y;

L2:=1wb (V2,1); U2:=upb (V2,1)-L2;
L3:=1wb (V3,1); U3:=upb (V3,1)-L3;

for I:=0 step 1 until U3 do
V3[L3+I] :=action (OP,E, if I < U2_then V2[L2+I] else 0)
end VSDIAD;

D-6 60384700 A

real procedure VPROSUM (OP,V1); value OP;
integer OP, array V1;

begin integer I,LB;real P;
T LB:=lub(V1,1)P:=V1[LB];
for I:=LB+1 step 1 until upb (V1,1) do
P:=if OP < 1 then P+V1[I]
else P*V1[I];
VPROSUM:=P
end VPROSUM ;

real procedure VDOT (V1,V2); array V1,V2;

begin integer 1L.1,U1,1.2,U2,L,I;
zeal R;
R:=0;
L1:=1wb (V1,1); Ul:=upb (V1,1)-L1;
L2:=1wb (V2,1); U2:=upb (V2,1)-L2;
L:=jf U1 <U2 then Ul else U2;
for I:=0 step 1 until L do R:=R+V1[L1+I]*V2[L2+I];
VDOT:=R
end VDOT;

procedure BNOT (S1,S2); boolean array S1,S2;

begin integer L1,U1,L2,U2,L,I;
Li:=1wb (81,1); Ul=upb (S1,1)-L1;
L2:=1wb (S2,1); U2:=upb (S2,1)-L.2;
L:=if Ul < U2 then U1 else U2;
for I:=0 step 1 until L do S2[L2+I] :=71S1[L1+1};
for I:=L+1 step 1 until U2 do S2[L2+1] :=false
end BNOT;

procedure VBOOL (OP,S1,52,S3); value OP;
integer OP; boolean array S1,52,S3;

begin integer L1,U1,L2,U2,1.3,U3 I,

boolean procedure action (OP,X,Y); value OP,X,Y;
integer OP; boolean X,Y;
action:=if OP < 1 then XVY else
if OP = 2 then XAY else
if OP = 3 then XDOY else
if OP = 4 then X=Y else
if OP = 5 then “(X=Y) else
if OP = 6 then V(XAY) else
if OP = 7 then "W(XVY)
else XAY;

60384700 A

L1:=1wb (S1,1); Ul:=upb (S1,1)-L1;
L2:=1wb (82,1); U2:=upb (S2,1)}-L2;
L3:=1wb (83,1); U3:=upb (S3,1)-L3;
for I:=0 step 1 until U3 do
S3[L3+I] :=action (OP, if I < Ul then S1[L1+I] else false,
AfI<U2 then S2[L2+I] else false)
end VBOOL;

procedure VSBOOL (OP,B,S2,S3); value OP,B; integer OP; boolean B; boolean array S2,53;

begin integer 1.2,U2,1.3,U3,I;
boolean procedure action (OP,X,Y); value OP,X,Y;
integer OP; boolean X,Y;

action:= if OP <1 then XVY else
if OP = 2 then XAY glse
if OP =3 then XDY glse.
if OP =4 then X=Y else
if OP =S5 then "I(X=Y) else
if OP =6 then "I(XAY) else
if OP =7 then "1(XVY)
glse XATTY;

L2:=1wb (S2,1); U2:=upb (82,1)-L2;
L3:=1wb (S3,1); U3:=upb (S3,1)-L3;

for I:=0 step 1 until U3 do
S3[L3+I] :=action (OP,B.if I < U2 then S2[L2+I] else false)
end VSBOOL;

boolean procedure VREL (OP,V1,V2,83); value OP; integer OP; array V1,V2; boolean array S3;
begin integer L1 ,U1,L2,U2,L3,U3,I; boolean B;

boolean procedure action (OP,X,Y); value OPX,Y; integer OP; real X,Y;

action:=if OP < 1 then X < Y else
if OP = 2 then X < Y else
if OP = 3 then X = Y else
if OP = 4 then X > Y else
if OP =5 then X > Y
else X #Y;

B=true;
L1:=1wb(V1,1);Ul:=upb(V1,1)-L1;
L2:=1wb(V2,1);U2:=upb(V2,1)-L2;
L3:=1wb(S3,1);U3:=upb(S3,1)-L3;

for 1:=0 step 1 until U3 do
begin
"TS3[L3+]:=action (OP, if I < Ul then V1[L1+I] else 0,
if 1< U2 then V2[L2+4]] else 0)
B:=BAS3[L3+I];
end;
VREL:=B
end VREL;

D-8 60384700 A

boolean procedure VSREL (OP,E,V2,S3); value OP,E; integer OP; real E; array V2; boolean array S3;

begin integer 1.2,U2,1.3,U3,I; boolean B;
boolean procedure action (OP,X,Y); value OP,X,Y; integer OP; real X,Y;

action:=if OP < 1 then X <Y else
if OP =2 then X <Y else
if OP=3 then X =Y else
if OP =4 then X > Y else
ifOP=5then X>Y
else X#Y;

L2:=lwb(V2,1);U2:=upb(V2,1)-L2;
L3:=lwb($3,1);U3:=upb($3,1 }-L3;

B:=true;
firlz=03t§2 1 until U3§_o
begin

S3[L3+I] :=action (OP,E if 1<<U2 then V2[L2+]] else 0)
B:=BAS3[L3+I]; - - -
end;
end VSREL;

Note: Due to the CYBER—ALGOL implementation of arrays (row by row), the eleven vector procedures may be
used by replacing one or more one-dimension arrays by n-dimensional arrays (of the same kind).

Example 1: array M[1:3,2:4]; M[1,2] :=1;
VINIT (2,1,M)
L:...

when control reaches the label L, M is filled as follows:

/i 2 3\
4 5 6
7 8 9

Example 2: array V,W[-4:4] M\N [1:3,2:4];

wi4]l:=1;
VINIT (1,1,V); VINIT(2,1,W);

VDIAD(1,V. W M); VMONOD(2 M N);
L:

when control reaches the label L, N is filled as follows:

10 9 8
7 6 5
4 3 2

60384700 A

D9

Example 3: array C[1:N,1:N], T[1:M,1:P], VM[1:M], VN[1:N-1], VP[1:P];
FETCH UPPER SUB DIAGONAL OF C:
VXMIT(2,VN,C 2 N+1);

SEND 0 INTO EACH ELEMENT OF ROW 4 OF T:
VINIT(1,0,0,VP);
VXMIT(1,VP.T 4 M);

D-10 60384700 A

INDEX

A

Parameters I, L, R, A, N, O on ALGOL Control Card 6-2
Abnormal Termination

Object Time Abnormal Termination Dump 13-1

Abort
Compiler Abort 15-3
Actual
Definition of Procedure Identifier, Actual Parameter, Function Designator
2-17

Correspondence between Actual Parameter and Formal Parameter 2-40
ADDRESS
Macro ADDRESS B-8
Advisory lMessages
Advisory Messages 15-3
Alarms
Compiler Alarms 15-1
ALGOL
ALGOL Compiler Features 1-1
Additional Delimiters Code, Algol, Fortran 2-10
Code, Algol Fortran for Separate Compilation of Procedure 2-41
Use of Symbols Code, Algol, Fortran 2-50
ALGOL Control Card Syntax 6-1
Parameters U, C, S on ALGOL Control Card 6-3
Parameters P, E, B, D, F, K, X on ALGOL Control Card 6-4
Macro ALGOL B-1
Character Representation of ALGOL Symbols C-1
Parameters I, L, R, A, N, O on ALGOL Control Card 6-2
ALGOL-60 '
Contents of Revised Report on ALGOL-60 2-3
Introduction to Revised Report on ALGOL-60 2-4
Index of Revised Report on ALGOL-60 2-57
Input/Output Proposal for ALGOL-60 3-2
Revised Report on ALGOL-60 2-2
ALGORUN
Run Time Supervisory Program ALGORUN 14-1
Alignment Mark
Semantics of Title Format, Alignment Mark 3-11
Alpha Format
Definition of String Format, Alpha Format, Boolean Format 3-7
Semantics of String Format, Alpha Format 3-9
Arithmetic Operator
Definition of Delimiters, Arithmetic Operator, Relational Operator 2-9
Definition of Arithmetic Expression, Primary, Factor, Term 2-19
Description of Arithmetic Operator 2-20

60384700 A Index-1

Type of Operand in Arithmetic Expression 2-22
Precedence of Arithmetic Operator 2-23
Arithmetic Expression in a For List 2-36
Array
Array Subscript Bounds 2-44
Array Dimension 2-44)
Array Type 2-45
.Virtual Array 2-45
Array and Subscripted Variable Monitoring 9-7
Virtual Array 11-1
Array Declaration
Definition of Array Declaration 2-44
ARTHOFLW
Control Procedures ARTHOFLW, PARITY, EOF 3-49
Assembly Language
Assembly Language Object Code 5-1
. ASSIGN
Macro ASSIGN B-7
Assignment Statement
Definition of Assignment Statement 2-30
Evaluation of Expression in Assignment Statement 2-30
Definition of Type of Variable in Assignment Statement 2-31

B
Parameters P, E, B, D, F, K, X on ALGOL Control Card 6-4
Parameters C, B, I, W on CHANNEL Card 7-1

BACKSPACE

Hardware Function Procedures UNLOAD, BACKSPACE 3-51
Backus Normal Form

BNF (Backus Normal Form) Syntax Description 2-7
BAD DATA

Control Procedures BAD DATA, ERROR 3-49
Basic Symbol

Definition of Basic Symbol 2-8
Binary

Binary Output from Compilation 5-1
Block

Definition of Statement, Block Head, Block 2-27

Description of Block and Program 2-29
Block Head

Definition of Statement, Block Head, Block 2-27
BNF

BNF (Backus Normal Form) Syntax Description 2-7
BNOT

Text of Procedures BNOT, VBOOL D-7

Procedures VDOT, BNOT, VBOOL, VSBOOL D-3
Body Replacement

Body Replacement and Execution of Procedure 2-39
Boolean

Variables of Type Boolean 2-24

Data Type Real, Integer, Boolean 2-43
Boolean Expression

Definition of Boolean Expression 2-24

Definition of String Format, Alpha Format, Boolean Format 3-7

Semantics of Non-format, Boolean Format 3-10

Index-2

60384700 A

Boolean Operator
Truth Table for Boolean Operator 2-25
Precedence of Boolean Operator 2-25
Bounds
Array Subscript Bounds 2-44
Bracket
Definition of Bracket, Declarator, Specificator 2-10
Brackets
<and > as Metalinguistic Brackets 2-8

C
Parameters U, C, S on ALGOL Control Card 6-3
Parameters C, B, I, W on. CHANNEL Card 7-1
arameters C, P, T on LGO Car 8-2

Call-by-Name
Call-by-Value and Call-by-Name for Procedure 2-39
Call-by-Value
Call-by-Value and Call-by-Name for Procedure 2-39
Card
Card Conventions 4-4
Card Deck
Source Input in Card Deck Form 1-1
CHANERROR
Control Procedures CHANERROR 3-50
Error Control Procedures ERROR and CHANERROR 15-4
CHANNEL
Parameters C, B, I, W on CHANNEL Card 7-1
Channel Equate Card 7-2
Serial File Parameters on CHANNEL Card 7-1
Channel Cards
Channel Cards 7-1
Standard ALGOL Channel Cards 7-3
Channel Number
Unit Number and Channel Number 3-16
Character
Character Representation of ALGOL Symbols C-1
Standard Character Sets A-1
Checkoff
Additional Delimiters Overlay, Virtual, Checkon, Checkoff
Checkon
Additional Delimiters Overlay, Virtual, Checkon, Checkoff
CHLENGTH
Procedures CHLENGTH, IN REAL, OUT REAL 3-26
Procedures CHLENGTH, STRING ELEMENT 3-45
CLOCK
Procedures CLOCK, THRESHOLD, INRANGE 3-52
Code
Additional Delimiters Code, Algol, Fortran 2-10
Code, Algol,Fortran for Separate Compilation of Procedure
Definition of Code 2-47
Code as Procedure Body 2-50
Use of Symbols Code, Algol, Fortran 2-50
Example of Use of Code 2-51
Use of Code in Source Procedure 4-3

60384700 A

2-10
2-10

2-41

Index-3

Comma
Suppression of Sign, Zero, Comma 3-5
Comment
Definition of Comment 2-10
Compilation
Input to Compilation 4-1
Output from Compilation 5-1
Source Listing Produced by Compilation 5-2
Compiler
ALGOL Compiler Features 1-1
Compiler Output 1-2
Routines Included in Compiler 1-2
Compiler Structure 1-2
Compiler Diagnostics 15-1
Compiler Abort 15-3
Compiler Stop
Compiler Stop 15-3
Compile Time
Compile Time Error Detection 1-1
Compound Statement
Definition of Compound Statement, Program 2-28
Conditional Statement
Definition of Conditional Statement 2-33
Controlled
Controlled Variable in a For Clause 2-37
Control Card
ALGOL Control Card Syntax 6-1
Parameters U, C, S on ALGOL Control Card 6-3
Parameters P, E, B, D, F, K, X on ALGOL Control Card 6-4
Parameters I, L, R, A, N, O on ALGOL Control Card 6-2
Control Procedures
Control Procedures ARTHOFLW, PARITY, EOF 3-49
Control Procedures BAD DATA, ERROR 3-49
Control Procedures CHANERROR 3-50
Cross Reference
Cross Reference Listing 13-2

D
Parameters P, E, B, D, F, K, X on ALGOL Control Card 6-4
Parameters S and D on LGO Card 8-1
Debugging
Debugging Facilities 9-1
Debugging Directives Trace, Snap, Snapoff 9-1
Debugging Output and Label Monitoring 9-5
Decimal Number
Definition of Integer, Decimal Number, Number 2-12
Decimal Point
Decimal Point on Input/Output 3-5

Declaration

Definition of Declaration 2-41
Declarator

Definition of Bracket, Declarator, Specificator 2-10
Delimiters

Definition of Delimiters, Arithmetic Operator, Relational Operator 2-9
Additional Delimiters Code, Algol, Fortran 2-10

"Index-4 60384700 A

Additional Delimiters Trace, Snap, Snapoff 2-10

Additional Delimiters Overlay, Virtual, Checkon, Checkoff

Depth
Program Depth and Program Level 14-2
Designational Expression
Definition of Designational Expression, Label, Switch
Diagnostics
Diagnostics in Source Listing 5-2
Compiler Diagnostics 15-1
Object Time Diagnostics 15-4
Dump File Diagnostics 15-4
Object Time Diagnostics 15-5
Digit
Definition of Digit 2-9
Dimension
Array Dimension 2-44
Direct Access
Direct Access Procedures 3-46
Dummy Statement
Definition of Dummy Statement 2-32
DUMP
Procedures IOLTH, POSITION, DUMP 3-51
Structured Dump 13-1
Dump File Diagnostics 15-4
Object Time Abnormal Termination Dump 13-1

E

Parameters P, E, B, D, F, K, X on ALGOL Control Card
ECS

ECS, LCM Procedures READ ECS, WRITE ECS 3-56

Use of LCM and ECS 11-1

LCM, SCM, and ECS Used at Object Time 14-2
Else

Meaning of If, Then, Else 2-33
ENDFILE

Hardware Function Procedures ENDFILE, REWIND 3-50
End-of-File

End-of-File and End-of-Tape 3-54
End-of-Tape

End-of-File and End-of-Tape 3-54
Entier

Transfer Function such as Entier 2-19
EOF

Control Procedures ARTHOFLW, PARITY, EOF 3-49
EOP
Symbol EOP 4-1
Error
Compile Time Error Detection 1-1
Control Procedures BAD DATA, ERROR 3-49
Input and Output Error Processing 3-53
Transmission Error Processing 3-54
Error Control Procedures ERROR and CHANERROR 15-4
Macro ERROR B-11
Evaluation
Side-Effect during Evaluation of Function Designator

60384700 A

2-26

6-4

Index-5

Example
Example of Procedure 2-48
Example of Use of Code 2-51
Example of Procedure Declaration 2-55
Example of Number Format 3-4
Example of Layout Procedure 3-22
Example of Use of Input/Output Procedures 3-28
Pascals Triangle Example of Input/Output 3-43
Example of Overlay Use 10-3
Example of Virtual Array 11-1
Example of Object Time Stack 14-4
Example of Macro Usage B-14
Example Programs C-2, (-3
Example of Vector Procedure Use D-9
Execution
Object Time Program Execution 1-2
Body Replacement and Execution of Procedure 2-39
Execution Time Options 8-1
Object Time Execution 14-1
Run Time Execution 14-1
Exponent Part
Exponent Part on Input/Output 3-6
Expression
Definition of Expression, Simple Variable 2-15
Evaluation of Expression in Assignment Statement 2-30
Extended Core Storage
Extended Core Storage, Large Core Memory Procedures READ ECS, WRITE ECS
Use of Large Core Memory and Extended Core Storage 11-1
External Identifier
Definition of External Identifier 2-11

F

Parameters P, E, B, D, F, K, X on ALGOL Control Card 6-4
Factor

Definition of Arithmetic Expression, Primary, Factor, Term 2-19
False

Logical Values True and False 2-9

FETCHITEM

Procedures FETCHITEM, STOREITEM 3-48
FETCHLIST

Procedures FETCHLIST, STORELIST 3-48
For

Meaning of For 2-35
Formal

Correspondence between Actual Parameter and Formal Parameter 2-40
Definition of Formal Parameter 2-46
Format
Example of Number Format 3-4
Use of Format on Input 3-6
Definition of Non-Numeric Format 3-7
Summary of Format Codes 3-12
Procedure FORMAT 3-20
Formats
Hints for Efficient Use of Formats 3-54

3-56

Index-6 60384700 A

Formatted
Optimization of Simple Formatted Input and Output 12-1
Format String
Definition of Format String 3-11
Fortran
Additional Delimiters Code, Algol, Fortran 2-10
Code, Algol,Fortran for Separate Compilation of Procedure 2-41
Use of Symbols Code, Algol, Fortran 2-50
For Clause
Controlled Variable in a For Clause 2-37
For List
For List Elements 2-36
Arithmetic Expression in a For List 2-36
Step Until Element in a For List 2-37
While Element in a For List 2-37
For Statement
Definition of For Statement 2-35
Go to into a For Statement 2-38
Function Designator
Definition of Procedure Identifier, Actual Parameter, Function Designator
2-17
Side-Effect during Evaluation of Function Designator 2-17
Value of Function Designator 2-49

GET
Procedures PUT, GET 3-40
Procedures GET, PUT 3-48

GETARRAY

Procedures GETARRAY, PUTARRAY 3-48
GETITEM

Procedures GETITEM, PUTITEM 3-47
GETLIST

Procedures GETLIST, PUTLIST 3-46
GETSCM

Macro GETSCM B-13
GOTO

Macro GOTO B-10
Go to

Definition of Go to Statement 2-31
Go to into a For Statement 2-38

Hardware Function Procedures
Hardware Function Procedures SKIPF, SKIPB 3-50
Hardware Function Procedures ENDFILE, REWIND 3-50
Hardware Function Procedures UNLOAD, BACKSPACE 3-51
Reference Language, Hardware Language and Publication Language, 2-1, 2-6

Hardware Language Representation 4-3
Hints

Hints for Efficient Use of Formats 3-54
Horizontal

Horizontal and Vertical Control 3-17
H END

Procedures H LIM, V LIM, H END, V END 3-21
H LIM

Procedures H LIM, V LIM, H END, V END 3-21

60384700 A Index-7

H SKIP
Procedures H SKIP, VSKIP 3-39

Parameters C, B, I, W on CHANNEL Card 7-1
Parameters I, L, R, A, N, O on ALGOL Control Card 6-2
Identifier
Definition of Identifier 2-11
Standard Procedures and Reserved Identifier 2-18
If
Meaning of If, Then, Else 2-33
If Statement
Definition of If Statement 2-32
Implicit Outer Block Head
Implicit Outer Block Head 4-1
INARRAY
Procedures INARRAY, OUTARRAY 3-27
INCHARACTER
Procedures INCHARACTER, OUTCHARACTER 3-25
Index
Index of Revised Report on ALGOL 60 2-57
Indexed
Indexed List Input and Output 3-46
Indexed Item Input and Output 3-47
Indexed File and Word Addressable Parameters on CHANNEL Card
Innuendo
Lies, Rumors, and Innuendo about Input and Output 3-57
Input
Use of Format on Input 3-6 .
Input and Output Procedure 3-13
Input and Output Procedures 3-25
Input Procedures 3-35
Procedures INPUT, IN LIST 3-35
List of Other Input and Output Procedures 3-42
Additional Input and Output Procedures 3-45
Indexed List Input and Output 3-46
Indexed Item Input and Output 3-47
Input and Output Error Processing 3-53
Lies, Rumors, and Innuendo about Input and Output 3-57
Optimization of Simple Formatted Input and Output 12-1

Input/Output

Input/Output Proposal for ALGOL-60 3-2
INRANGE

Procedures CLOCK, THRESHOLD, INRANGE 3-52
Insertion

Meaning of Insertion 3-5

Definition of Number Format, Replicator, Insertion Sequence
Integer

Definition of Integer, Decimal Number, Number 2-12

Integer and Real Type 2-13

Unsigned Integer Label 2-27

Data Type Real, Integer, Boolean 2-43
Interface Macros

Interface Macros B-1

Index-8

7-1

3-3

60384700 A

IN CONTROL
Procedures OUT CONTROL, IN CONTROL 3-40
IN LIST
Procedures INPUT, IN LIST 3-35
Algorithm for Executing Procedure IN LIST 3-36

IN REAL

Procedures CHLENGTH, IN REAL, OUT REAL 3-26
IOLTH

Procedures IOLTH, POSITION, DUMP 3-51
Item

Indexed Item Input and Output 3-47

K

Parameters P, E, B, D, F, K, X on ALGOL Control Card 6-4
KIND

Macro KIND B-3
Kinds

Quantities, Kinds, Scopes, Values, Types 2-15

L
Parameters I, L, R, A, N, O on ALGOL Control Card 6-2
Label
Definition of Designational Expression, Label, Switch 2-26
Unsigned Integer Label 2-27
Debugging Output and Label Monitoring 9-5
Large Core Memory
Extended Core Storage, Large Core Memory Procedures READ ECS, WRITE ECS
Use of Large Core Memory and Extended Core Storage 11-1
LAYOUT
Procedure LAYOUT and LIST 3-15
Layout Procedures 3-18
Example of Layout Procedure 3-22

LCM
ECS, LCM Procedures READ ECS, WRITE ECS 3-56
Use of LCM and ECS 11-1
LCM, SCM, and ECS Used at Object Time 14-2
LENGTH
Macro LENGTH B-8
Letter
Definition of Letter 2-8
Upper Case and Lower Case Letter 2-9
Level .
Program Depth and Program Level 14-2
LGO Card

Parameters S and D on LGO Card 8-1

Parameters C, P, T on LGO Card 8-2
Library

Library Subprograms 1-3

Library Subprograms 14-1
Lies

Lies, Rumors, and Innuendo about Input and Output 3-57
LIST

Procedure LAYOUT and LIST 3-15

List Procedures 3-23

60384700 A Index-9

Indexed List Input and Output 3-46
Listing

Source Listing Produced by Compilation 5-2
Logical Operator

Definition of Logical Operator, Sequential Operator, Separator

Logical Value

Definition of Logical Value 2-9
Lower Bound

Definition of Lower Bound, Upper Bound 2-44
Lower Case

Upper Case and Lower Case Letter 2-9

Machine

Machine Configuration 1-3
Macro

Macro ALGOL B-1

Macro RETURN B-2

Macro PARAMS B-3

Macro KIND B-3

Macro TYPE B-4

Macro SPEC B-5

Macro VALUE B-6

Macro ASSIGN B-7

Macro ADDRESS B-8

Macro LENGTH B-8

Macro ORDER B-9

Macro GOTO B-10

Macro XFORM B-10

Macro STRING B-11

Macro ERROR B-11

Macro XEQ B-12

Macro GETSCM B-13

Example of Macro Usage B-14
MATMULT

Procedure MATMULT D-1
Matrix

Standard Procedures for Vector and Matrix Manipulation
Metalinguistic

Metalinguistic Entities 2-7
MOVE

Procedure MOVE 3-53

N
Parameters I, L, R, A, N, O on ALGOL Control Card 6-2
Non-format
Semantics of Non-format, Boolean Format 3-10
Non-Numeric
Definition of Non-Numeric Format 3-7
NO DATA
Procedures TABULATION, NO DATA 3-21
Number
Definition of Integer, Decimal Number, Number 2-12
Format of a Number, 2-12, 2-13

Index-10

D-1

2-9

60384700 A

Example of Number Format 3-4
Number Format
Definition of Number Format, Replicator, Insertion Sequence

0
Parameters I, L, R, A, N, O on ALGOL Control Card 6-2
Object Code
Assembly Language Object Code 5-1
Object Code Structure 14-1
Object Time
Object Time Program Execution 1-2
Object Time Error Detection 1-2
Object Time Execution 14-1
Object Time Stack 14-2
LCM, SCM, and ECS Used at Object Time 14-2
Example of Object Time Stack 14-4
Format of Entities in Object Time Stack 14-5
Object Time Diagnostics 15-4 :
Object Time Diagnostics 15-5
Object Time Abnormal Termination Dump 13-1
Operating System
Operating System Interface 1-3
Optimization
Optimization Facilities 1-2
Optimization 12-1
ORDER
Macro ORDER B-9
OUTARRAY
Procedures INARRAY, OUTARRAY 3-27
OUTCHARACTER
Procedures INCHARACTER, OUTCHARACTER 3-25
Output
Input and Output Procedure 3-13
Input and Output Procedures 3-25
Output Procedures 3-29
Procedures OUTPUT, OUT LIST 3-29
List of Other Input and Output Procedures 3-42
Additional Input and Output Procedures 3-45
Indexed List Input and Output 3-46
Indexed Item Input and Output 3-47
Input and Output Error Processing 3-53
Lies, Rumors, and Innuendo about Input and Cutput 3-57
Optimization of Simple Formatted Input and Output 12-1
OUT CONTROL
Procedures OUT CONTROL, IN CONTROL 3-40
OUT LIST
Procedures OUTPUT, OUT LIST 3-29
Algorithm for Executing Procedure OUT LIST 3-31
OUT REAL .
Procedures CHLENGTH, IN REAL, OUT REAL 3-26
Overlay
Additional Delimiters Overlay, Virtual, Checkon, Checkoff
Example of Overlay Use 10-3

60384700 A

3-3

2-10

Index-11

Overlay Declaration

Overlay Declaration Semantics 10-1
Own

Own Declaration 2-42

Own Variables at Object Time 14-3

P
Parameters P, E, B, D, F, K, X on ALGOL Control Card 6-4
Parameters C, P, T on LGO Card 8-2

Parameter
Definition of Procedure Identifier, Actual Parameter, Function Designator

2-17 '

Correspondence between Actual Parameter and Formal Parameter 2-40
Definition of Formal Parameter 2-46
Parameter Delimiters 2-41

PARAMS
Macro PARAMS B-3

PARITY

Control Procedures ARTHOFLW, PARITY, EOF 3-49
Pascals Triangle
Pascals Triangle Example of Input/Output 3-43
POSITION
Procedures IOLTH, POSITION, DUMP 3-51
Precedence
Precedence of Arithmetic Operator 2-23
Precedence of Boolean Operator 2-25
Primary
Definition of Arithmetic Expression, Primary, Factor, Term 2-19
Procedure
Call-by-Value and Call-by-Name for Procedure 2-39
Body Replacement and Execution of Procedure 2-39
Code, Algol,Fortran for Separate Compilation of Procedure 2-41
Example of Procedure 2-48
Specification in a Procedure 2-49
Input and Output Procedure 3-13
Procedure LAYOUT and LIST 3-15
Procedure and Simple Variable Monitoring 9-6
Procedure Optimization 12-1
Standard Procedures and Reserved Identifier 2-18
Layout Procedures 3-18
List Procedures 3-23
Input and Output Procedures 3-25
Output Procedures 3-29
Input Procedures 3-35
List of Other Input and Output Procedures 3-42
Additional Input and Output Procedures 3-45
Definition of Procedure Identifier, Actual Parameter, Function Designator 2-17
Definition of Procedure Statement 2-38
Definition of Procedure Body 2-47
Definition of Procedure Declaration 2-47
Code as Procedure Body 2-50
Example of Procedure Declaration 2-55
Program
Definition of Compound Statement, Program 2-28
Source Input for ALGOL Program 4-1
Description of Block and Program 2-29

Index-12 60384700 A

Publication Language
Reference Language, Hardware Language and Publication Language, 2-1, 2-6

PUT

Procedures PUT, GET 3-40

Procedures GET, PUT 3-48
PUTARRAY

Procedures GETARRAY, PUTARRAY 3-48
PUTITEM :

Procedures GETITEM, PUTITEM 3-47
PUTLIST

Procedures GETLIST, PUTLIST 3-46
Quantities

Quantities, Kinds, Scopes, Values, Types 2-15
Quotes

Hardware Representation of String Quotes 2-14

R
Parameters I, L, R, A, N, O on ALGOL Control Card 6-2
READ ECS :
Extended Core Storage, Large Core Memory Procedures READ ECS, WRITE ECS 3-56
Real
Integer and Real Type 2-13
Data Type Real, Integer, Boolean 2-43
Truncation and Rounding Real Number on Input/Output 3-5
Recovery Messages
Recovery Messages 15-2
Reference Language
Reference Language, Hardware Language and Publication Language, 2-1, 2-6
Description of Reference Language 2-7
Relational Operator
Definition of Delimiters, Arithmetic Operator, Relational Operator 2-9
Definition of Relational Operator 2-23
Replicator
Definition of Number Format, Replicator, Insertion Sequence 3-3
Meaning of Replicator 3-4
RETURN
Macro RETURN B-2
Revised Report
Contents of Revised Report on ALGOL-60 2-3
Introduction to Revised Report on ALGOL-60 2-4
Index of Revised Report on ALGOL-60 2-57
Revised Report on ALGOL-60 2-2

REWIND
~ Hardware Function Procedures ENDFILE, REWIND 3-50
Rounding

Truncation and Rounding Real Number on Input/Output 3-5
Rumors

Lies, Rumors, and Innuendo about Input and Output 3-57

Parameters U, C, S on ALGOL Control Card 6-3

60384700 A Index-13

Parameters S and D on LGO Card 8-1

SCM
LCM, SCM, and ECS Used at Object Time 14-2
. Scopes
Quantities, Kinds, Scopes, Values, Types 2-15
Separator

Definition of Logical Operator, Sequential Operator, Separator
Sequential Operator
Definition of Logical Operator, Sequential Operator, Separator
Serial File ’
Serial File Parameters on CHANNEL Card 7-1
- Shading
Use of Shading in Manual Defined 2-1
Side-Effect
Side-Effect during Evaluation of Function Designator 2-17
Sign
Suppression of Sign, Zero, Comma 3-5
Simple Variable
Definition of Expression, Simple Variable 2-15
Procedure and Simple Variable Monitoring 9-6
SKIPB
Hardware Function Procedures SKIPF, SKIPB 3-50
SKIPF
Hardware Function Procedures SKIPF, SKIPB 3-50
Snap
Additional Delimiters Trace, Snap, Snapoff 2-10
Debugging Directives Trace, Snap, Snapoff 9-1
Debugging Directive Snap 9-3
Snapoff -
Additional Delimiters Trace, Snap, Snapoff 2:10
Debugging Directives Trace, Snap, Snapoff 9-1
Debugging Directive Snapoff 9-3
Source
Source Listing Produced by Compilation 5-2
Source Deck
Source Deck 4-4
Source Input
Source Input in Card Deck Form 1-1
Source Input for ALGOL Program 4-1
Source Input Restrictions 4-3
Source Program
Definition of Source Program 4-1
Definition of Source Procedure 4-2
Use of Code in Source Procedure 4-3
SPEC
Macro SPEC B-5
Specificator
Definition of Bracket, Declarator, Specificator 2-10
Specification in a Procedure 2-49
Stack
Object Time Stack 14-2
Example of Object Time Stack 14-4
Format of Entities in Object Time Stack 14-5
Standard
Standard Procedures and Reserved Identifier 2-18

Index-14

2-9

2-9

60384700 A

Standard Format
Discussion of Standard Format 3-13
Standard Procedures
Standard Procedures for Vector and Matrix Manipulation D-1
Statement
Definition of Statement, Block Head, Block 2-27
Step
Step Until Element in a For List 2-37
STOREITEM
Procedures FETCHITEM, STOREITEM 3-48
STORELIST
Procedures FETCHLIST, STORELIST 3-48
String
Definition of String 2-14
Hardware Representation of
Macro STRING B-11
STRING ELEMENT
Procedures CHLENGTH, STRING ELEMENT 3-45
String Format
Definition of String Format, Alpha Format, Boolean Format 3-7
Semantics of String Format, Alpha Format 3-9
Structure
Structure of ALGOL 2-7
Subscript
Definition of Subscript List 2-15
Description of Subscript and Subscripted Variables 2-16
Array Subscript Bounds 2-44
Subscript Optimization 12-1
Description of Subscript and Subscripted Variables 2-i6
Array and Subscripted Variable Monitoring 9-7
Evaluation of Subscript Expression 2-26
Suppression
Suppression of Sign, Zero, Comma 3-5
Switch
Definition of Designational Expression, Label, Switch 2-26
Switch Declaration
Switch Declaration 2-46
Switch List
Switch List 2-46
Symbols
Character Representation of ALGOL Symbols C-1
Syntax
BNF (Backus Normal Form) Syntax Description 2-7
SYSPARAM
Procedure SYSPARAM 3-41

3 2_1A7
String Quotes 2-14

T

Parameters C, P, T on LGO Card 8-2
TABULATION

Procedures TABULATION, NO DATA 3-21
Term

Definition of Arithmetic Expression, Primary, Factor, Term 2-19
Then

Meaning of If, Then, Else 2-33
THRESHOLD

Procedures CLOCK, THRESHOLD, INRANGE 3-52

60384700 A

Index-15

Title Format
Semantics of Title Format, Alignment Mark 3-11
Trace
Additional Delimiters Trace, Snap, Snapoff 2-10
Debugging Directives Trace, Snap, Snapoff 9-1
Debugging Directive Trace 9-2
Transfer Function
Transfer Function such as Entier 2-19

Transmission

Transmission Error Processing 3-54
True

Logical Values True and False 2-9
Truncation

Truncation and Rounding Real Number on Input/Output 3-5
Truth Table
Truth Table for Boolean Operator 2-25
Type
Integer and Real Type 2-13
Type of Operand in Arithmetic Expression 2-22
Variables of Type Boolean 2-24
Definition of Type of Variable in Assignment Statement 2-31
Data Type Real, Integer, Boolean 2-43
Array Type 2-45
Macro TYPE B-4
Types
Quantities, Kinds, Scopes, Values, Types 2-15
Type Declaration
Definition of Type Declaration 2-42

U

Parameters U, C, S on ALGOL Control Card 6-3
Unit Number

Unit Number and Channel Number 3-16
UNLOAD

Hardware Function Procedures UNLOAD, BACKSPACE 3-51
Until

Step Until Element in a For List 2-37
Upper Bound

Definition of Lower Bound, Upper Bound 2-44
Upper Case

Upper Case and Lower Case Letter 2-9

VALUE

Macro VALUE B-6
Values

Quantities, Kinds, Scopes, Values, Types 2-15
Variable

Definition of Variable 2-16

Definition of Type of Variable in Assignment Statement 2-31

Controlled Variable in a For Clause 2-37
VBOOL

Text of Procedures BNOT, VBOOL D-7

Procedures VDOT, BNOT, VBOOL, VSBOOL D-3

Index-16

60384700 A

VDIAD
Procedures VDIAD, VSDIAD, VPROSUM D-3
Text of Procedures VDIAD, VSDIAD D-6
VDOT
Text of Procedures VPROSUM, VDOT D-7
Procedures VDOT, BNOT, VBOOL, VSBOOL D-3
Vector
Optimization of Vector Functions 12-2

Standard Procedures for Vector and Matrix Manipulation D-1

Example of Vector Procedure Use D-9
Vertical
Horizontal and Vertical Control 3-17
VINIT
Procedures VINIT, VXMIT, VMONOD
Text of Procedures VINIT, VXMIT
Virtual
Additional Delimiters Overlay, Virtual, Checkon, Checkoff
Virtual Array 2-45
Virtual Array 11-1
Example of Virtual Array 11-1
VMONOD
Procedures VINIT, VXMIT, VMONOD D-2
Text of “Procedure VMONOD D-5
VPROSUM
Procedures VDIAD, VSDIAD, VPROSUM D-3
Text of Procedures VPROSUM, VDOT D-7
VREL
Procedures VREL, VSREL D-4
Text of Procedures VSBOOL, VREL D-8
VSBOOL
Text of Procedures VSBOOL, VREL D-8
Procedures VDOT, BNOT, VBOOL, VSBOOL D-3
VSDIAD
Procedures VDIAD, VSDIAD, VPROSUM D-3
Text of Procedures VDIAD, VSDIAD D-6

[wwile)
LN N

VSKIP

Procedures H SKIP, VSKIP 3-39
VSREL

Procedures VREL, VSREL D-4
VXMIT

Procedures VINIT, VXMIT, VMONOD D-2

Text of Procedures VINIT, VXMIT D-4
V END

Procedures H LIM, V LIM, H END, V END 3-21
V LIM

Procedures H LIM, V LIM, H END, V END 3-21

W

Parameters C, B, I, W on CHANNEL Card 7-1
While

While Element in a For List 2-37
Word Addressable

2-10

Indexed File and Word Addressable Parameters on CHANNEL Card 7-1

WRITE ECS

Extended Core Storage, Large Core Memory Procedures READ ECS, WRITE ECS

60384700 A

3-56

Index-17

X

Parameters P, E, B, D, F, K, X on ALGOL Control-Card 6-4
XEQ

Macro XEQ B-12
XFORM

Macro XFORM B-10

Zero
Suppression of Sign, Zero, Comma 3-5

<
<and > as Metalinguistic Brackets 2-8

Index-18 60384700 A

CUT ON THIS LINE

——— s Sm—— cw— S—

MEN

COMMENT SHEET CONTROL DATA
CORPORATION

TITLE: ALGOL 4

PUBLICATION NO. 60384700 REVISION A

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: POSITION:

COMPANY
NAME :

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

FOLD

STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Documentation Department

215 Moffett Park Drive
Sunnyvale, California 94086

STAPLE

CUT ON THIS LINE

Pub. No. 60384700 — Litho in U.S.A,

	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	06-01
	06-02
	06-03
	06-04
	06-05
	07-01
	07-02
	07-03
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	11-01
	11-02
	12-01
	12-02
	13-01
	13-02
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	replyA
	replyB
	xBack

