
~(@]m
ADVA 1

DATE: November 20, 1974

TO: R~' E; Wagner

THIS DOCUfolENT CONTAINS INFORHATION PROPRIETARY
TO THE NATIONAL CASH REGISTER Cor'lPANY AND CONTROL
DATA CORPORATION, ITS CONTENTS SHALL NOT BE

DIVULGED OUTSIDE OF EITHER CO~'PANY NOR REPRODUCED
WITHOUT EXPlICIT PERHISSION OF THE DIRECTOR AND
GENERAL HANAGER, NCRICDC ADVANCED SYSTEr"S LABORATORY.

LO(';ATION: - rbI\A~L.-

FROM:

SUBJECT:

Ell C.. Crary .-JZ-.-C <:!....-- LOCATION: ESCASL

OS STRUCTURE-----'

EXT: 57

\ 'i ;["", j j" , ", 'i"
Atter our discu~sions durin~ my last trip, I came away with the
impression that some confusion exists concerning Address Spaces
and their relationship to Processor States, Asynchronous Processing
and Serialization of Access. Perhaps theconfusiQn~s only mine,
but I would like to express my understanding of these concepts
if for no other reason than to demonstrate its inadequacy and
thus the need for further doc~mentation.

Processor State is used to protect the OS environment from cor
ruption by errant code of a less trusted nature; in particular,
to protect the OS from its user. In this context, the OS environ
ment is a collection of services upon which the user code may make
requests. The user requests are normally of an explicit nature,
but may be implicit as a result of some signal. A page fault is
the most obvious case of an implicit service request.

With the advent of mass storage and larger memories, t~e OS grew
to include functions that are not services to be performed for
the user code, but are jobs in their own right.' These System Jobs
include spooling and job scheduling. A distinction ~ust be made
between system jobs and services as;they are structured in a
different manner within the framework of the OS.

Address'Spaces are used to define jobs, or in some systems, job
~teps. The address space is the basic unit of accountability and
the unit to which resources are assigned. With the inception of
multi-programming, the address space also became a mechanism for
relocation ..

The tonfusion on the user of addr~ss space arises because it does
not always have a complete definition or cause total relocation.
We are apt-to lose si9ht of the relationship of the QSservices
to the user code. But if address space is considered from the
services point of view instead of the users, then we see that the
u.er resides in the same address space ..

R. E. Wagner -2- November 20, 1974

The point I wish ·to make is that the address space is not a
--mechanism used to isolate the OS services environment from the

user code. In terms of isolation, it is only u~ed to protect one
job from another. In particular, the OS-services, of paging ~I/O
by implicit request} and explicit I/O are not jobs, but belong in

. the';,'s:ame address space as their requestor. .

This whole discussion comes around, of course, because I am told
that paging and device drivers will not be in the same address space· '
as their requestors'. And that structure, I do not understand. lam
given as many reasons for this as people whom I asked. One reason

·'was for protection, another reason was because of the privileged
nature of the code--again, a. pratect~an,prablem. ,I also heard that
it gave riladul'ari ty, it provi ded for a'synchronous processing, it
provided for serialization of access to the IORP queues,· and even
that it had something to do with the amount of "nailed down" memory.
The rest of this note will try to explore these variou~ ideas~

Protection is becoming a sacred cow, ~nd I would like to see soma
confidence in ·all the mechanisms we have specified in the virtual
memory apparatus- First, we have rings--these, i~'connection. with
Read/Write/Execute permit·bits allows any portion of the OS services
to be made totally inaccessible from the user. To protect the
tables of one portion of the system from access by some arbitrary
other system routine, we have a local lock/key mechanism. This
~as~ures us that ccide in on~, and only one segment can modify a
data structure in another segment; so the OS environment is pro
tected from errant code in itself. Symbolic, as opposed to linear
segmentation, is in itself a protection mechanism; a bad index
cannot arbitrarily point to a different segment. And finally,
privileged instructions are not enabled b~,thest~te of the
processor, but by special enable bits in the segment descriptor.
I am not convinc~d th~separating the services from their requestor
by usin~ a different address space could isolate them from errant
code any further. A single bit failure in the Segment 7able.
Address register is potentially more dangerous than the failure

'of any bi~ in these other mechanisms.

Modularity is like structured programming; it is a good thing but
we all have our own explanation of what it is and how to achieve
it. I submit that while there are mechanical methods for achieving
modularity, these do not guarantee the survival of clean interfaces.
The development of special tases, of short cuts and of paths. for
optimizing performance soon destroy the clean interface and the· .
mPdularity it provides. The externalizing ~f th~ implementation
of a function soon proliferates the use of a particular implementation
of the function throughout the system and crEates am:onOlith·rather
than modularity. Separation of OS 'services into, diff~r~nt address
spaces will not cause modularity if performanc~,suffers or the
interfaces are not properly defined in the first place.

-3-

for the moment, I skip to the issue of "nailed memory". I don't
see any reason less memory is nailed if the service is in a
separate address space rather than the user's address space and
shared. There still must be a copy of the code available when
it is to be executed, and it can.be paged out when not needed.
~he logic that says less memory is nailed appears to be a snow
job o

Asynchronous--or paraliel--processing may be either at the job
l~vel or at the service level; it does not imply automatically a
separate address space. At the job levcl, or with a separate
address space, we have known the function ~s multiprogramming.
At the service level, I believe the literature uses the term
~~lti-taskin9 to describe parallel processing. We in Control .~~ ..
Data are more familiar with this latter as RA+1 calls for ser~ic~s
in CYBER. In any case, the asynchronous processing of service
requests takes place in the same address spa~e as the requesting
code.

Serialization of Access can be created in several manners •. The
CYBER uses a dedicated PPU in a master/slave relationship to the
rest of the processors to allocate access to shared resources,
while IPL plans to use special memory port functions to tie-break
random requests by multi-processors. Likewise, if a processor
is "locked out" so it cannot safely have access, there are two
~olicies·that can be taken. The first of these is the "wait"
policy where the CPU continues to test the interlock structure
until it is available. This is an uninteresting policy since
it appears as simply apart of the task. .

Th~ second ~olicy is the "give up and resch~dule" policy. In this
case, the CPU as a resource is given up by the executing task and
another task is dispatched. The task that gives up in this case
is scheduled to be re-dispatched whenever the resource for which
'it ~as vying becomesavailableo

The point is that dispatching, and the enqueuing of tasks on the
disp~tch lists, create serialization of access; and itis not
~reated by mere separation of address space. It is not the con
version of a ,system service to a system job in a separate address
space that provides serialization of access, asynchronous processing,
modularity, protection or memory compaction.

A~ain, I must ask: Why should device drivers not be in the address
space of the requesting user? Do I misunderstand some issue?

cc: M. Carter
f", Clapp'
L. Monheit
G • . Nelson
V. Raman

