
(52)CONT1'0L DATA

CDC® CYBER 170
COMPUTER SYSTEMS

60458890

MODEL 815, 825, 835, 845, AND 855

CDC® CYBER 180
COMPUTER SYSTEMS
MODELS 810, 830, 835, 840, 845, 850,

855, 860, AND 990

CDC® CYBER 990E, 995E, 992, AND 994
COMPUTER SYSTEMS

VIRTUAL STATE

INSTRUCTION DESCRIPTIONS
PROGRAMMING INFORMATION

VOLUME 2 OF 2

HARDWARE REFERENCE MANUAL

Manual History

This manual is revision G, printed August 1988. It reflects Engineering Change Order
49723, which adds CYBER 992 and 994 information.

Change
Revision Order Date Reason for Change

01 06-06-83 Manual released.

A 04-15-84 Added support information for CYBER
170 Model 845 and CYBER 180 Models
810, 830, 835, 845, 855, and 990.

B 11-02-84 Added support information for CYBER
180 Models 840, 850, and 860.

c 40891 05-03-85 Manual revised.

D 47793 06-13-86 Added CIO information for the IOU.

E 48300 03-30-87 Manual revised.

F 49229 11-30-87 Manual revised.

G 49723 08-15-88 Manual revised.

©1983, 1984, 1985, 1986, 1987, 1988 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 60458890 Revision G

Contents
About This Manual

Audience
Organization
FCC Compliance
Related Manuals
Additional Related Manuals .
Ordering Manuals ..
Submitting Comments
Disclaimer

Instruction Descriptions

Virtual State CP Instructions .
CP Instruction Formats
Instruction Description

Nomenclature.
Interrupts
CP General Instructions
BDP Instruction Descriptions
Floating-Point Instruction

Descriptions.
Vector Instruction Descriptions
System Instruction Descriptions
Peripheral Processor Instruction

Descriptions.

Programming Information

CP Exchange Operations
CP Registers
CM Registers
IOU Registers
CP Condition and Mask

Registers
CP Interrupts
Stack Manipulating Operations
Business Data Processing

Programming.
Vector Programming
Floating-Point Programming
Program Monitoring
Virtual and Central Memory

Programming.

Figures

1-1. Gather Instruction

Revision G

7

7
7
7
7
9
9

10

10

1-1

1-1
1-2

1-4
1-5
1-6

1-47

1-71
1-81
1-91

1-116

2-1

2-2
2-7

2-19
2-22

2-24
2-29
2-41

2-46
2-51
2-53
2-69

2-80

1-88

Interstate Programming . . · . . 2-106
Exception Handling in CYBER

170 State 2-121
IOU Peripheral Processor

Programming. 2-128
Channel Input/Output Operations 2-131
Initialization 2-139
System Console Programming

(Channel 10s). 2-140
Real-Time Clock Programming
IOU Dedicated Channels .
Two-Port Multiplexer

Programming.
Maintenance Channel

Programming.
CIO PP Programming (Model 990

and CYBER 990E, 995E, 992,
and 994 Only) . . .

ISi Channel Adapter
Registers
DMA-Enhanced CYBER 170

Channel Adapter
Intelligent Peripheral Interface

(IPI) Channel Adapter.

Glossary

Edit Examples

Interface Information

Interfaces
Signals
PP and Channel Interaction .

Instruction Index . .

Fast DMA Transfers

Channel/CM Data Mapping
Data Paths

2-145
2-146

2-148

2-156

2-162
2-165
2-181

2-202

2-223

A-1

B-1

C-1

C-1
C-2
C-5

D-1

E-1

E-2
E-2

Index Index-I

1-2. Scatter Instruction 1-90

Contents 3

1-3. PP Data Format 1-118
1-4. PP Relocation Register Format 1-118
1-5. Relocation Address Formation 1-152
2-1. CP Calls, Returns, and

Interrupts 2-3
2-2. Virtual State Exchange

Package 2-5
2-3. Interrupt Flowchart . . 2-39
2-4. Format of XO for Call

Instructions 2-42
2-5. Virtual State Stack Frame

Save Area 2-42
2-6. Stack Frame Save Area

Descriptor 2-43
2-7. BDP Data Descriptor Format . 2-46
2-8. Floating-Point Data Formats 2-54
2-9. Debug List Entry 2-70
2-10. Debug Condition Select . . 2-71
2-11.· Central Memory Addressing
from CP 2-80

2-12. Process Virtual Address (PVA)
Format. 2-81

2-13. System Virtual Address (SVA)
Format. 2-83

2-14. Segment/Page Identifier
(SPID) Format. 2-85

2-15. Real Memory Address (RMA)
Format. 2-85

2-16. Virtual BN-to-Page
Number/Page Offset Conversion. 2-86

2-17. PVA-to-RMA Conversion . 2-87
2-18. Segment Descriptor Table

(SDT) Entry Format 2-89
2-19. Page Table Search, Start

RMA Formation. 2-91
2-20. Page Table Entry Format 2-93
2-21. Code Base Pointer Format . 2-94

Tables

1-1. CP Load and Store
Instructions

1-2. CP Integer Arithmetic
Instructions

1-3. CP Branch Instructions
1-4. CP Copy Instructions
1-5. CP Address Arithmetic

Instructions
1-6. CP Enter Instructions .
1-7. CP Shift Instructions
1-8. CP Logical Instructions

4 60458890

1-7

1-16
1-24
1-30

1-33
1-35
1-39
1-41

2-22. PVA-to-SVA Conversion,
Read/Write. 2-96

2-23. PVA-to-SVA Conversion,
Execute. 2-97

2-24. Call Indirect Access
Requirements 2-105

2-25. Interstate Calls, Returns, and
Interrupts 2-109

2-26. Interstate Exchange Package 2-113
2-27. CYBER 170 State Exchange

Package 2-118
2-28. Interstate Stack Frame Save

Area 2-119
2-29. Display Station Output

Function Code. 2-143
2-30. Coordinate Data Word 2-143
2-31. Character Data Word 2-143
2-32. Receive and Display Program

Flowchart 2-144
2-33. IOU Dedicated Channels,

Models 810, 815, 825, 830, and
990 and CYBER 990E, 995E, 992,
and 994 2-146

2-34. IOU Dedicated Channels,
Models 835, 840, 845, 850, 855,
and 860 2-147

2-35. Idle Mode Bus Busy/Attention
Bit Format 2-168

2-'36. Bus Unit Select Word 2-171
2-37. Bit Significant Response 2-171
2-38. IPI Channel Signals 2-225
C-1. Data Input Sequence C-6
C-2. Data Output Sequence C-7
C-3. MCH Input Sequence C-8
C-4. MCH Output Sequence C-10
C-5. Data Sequences Timing . C-11

1-9. CP Register Bit String
Instructions 1-43

1-10. Compare j Field and XI Bits
32 and 33 1-46

1-11. BDP Numeric Instructions . 1-47
1-12. BDP Divide Fault 1-51
1-13. BDP Byte Instructions . . . 1-56
1-14. BDP Subscript and Immediate

Data Instructions. 1-66
1-15. Floating-Point Conversion

Instructions 1-71

Revision G

1-16. Floating-Point Arithmetic
Instructions

1-17. Floating-Point Branch
Instructions

1-18. Vector Instructions ..
1-19. Nonprivileged Instructions .
1-20. Local Privileged Instruction
1-21. Mixed Mode Instructions ..
1-22. PP Instruction Formats and

Nomenclature
1-23. PP Load and Store

Instructions
1-24. PP Arithmetic Instructions
1-25. PP Logical Instructions
1-26. PP Replace Instructions ..
1-27. PP Branch Instructions ..
1-28. PP Central Memory Access

1-73

1-77
1-82
1-92

1-109
1-111

1-117

1-119
1-125
1-132
1-141
1-148

Instructions 1-152
1-29. PP Input/Output Instructions 1-164
2-1. Process State Registers . . 2-8
2-2. Processor State Registers . . 2-15
2-3. CM Maintenance Registers 2-19
2-4. IOU Maintenance Registers . 2-22
2-5. Monitor Condition/Mask

Register Bit Assignments 2-25
2-6. User Condition/Mask Register

Bit Assignments. 2-26
2-7. Interrupt Condition Groups . . 2-28
2-8. Condition of Flags Following

Call, Return, Pop, Exchange, and
Trap Operations. 2-40

2-9. BDP Operand Types and Field
Length a 2-4 7

Revision G

2-10. Vector Operations
2-11. Floating-Point Representation
2-12. FP Compare Results
2-13. FP Sum Results, UM Clear
2-14. FP Sum Results, UM Set
2-15. FP Difference Results, UM

Clear
2-16. FP Difference Results, UM

Set
2-17. FP Product Results, UM

Clear
2-18. FP Product Results, UM Set
2-19. FP Quotient Results, UM

Clear
2-20. FP Quotient Results, UM Set
2-21. Debug Conditions
2-22. System Instruction Privilege

and Mode
2-23. CYBER 170 State Exceptions
2-24. Keyboard Character Codes .
2-25. Display Character Codes .
2-26. MCH Function Word Bit

Assignments.
C-1. Maintenance Channel Signals
D-1. CP Instructions - Opcode

Sequence
D-2. CP Instructions - Mnemonic

Sequence
D-3. PP Instructions - Opcode

Sequence
D-4. PP Instructions - Mnemonic

Sequence

2-51
2-55
2-60
2-61
2-62

2-63

2-64

2-65
2-66

2-67
2-68
2-76

2-103
2-125
2-141
2-142

2-157
C-4

D-1

D-7

D-13

D-19

Contents 5

About This Manual

This manual contains hardware reference information for the CDC® CYBER 170
Models 815, 825, 835, 845, and 855 computer systems; and CYBER 180 Models 810,
830, 835, 840, 845, 850, 855, 860, and 990 computer systems; and CYBER 990E, 995E,
992, and 994 computer systems in their Virtual State of operation.

This manual provides model-independent information regarding the system description
and functional descriptions of the computer system hardware.

Audience

This manual is for use by programming and engineering services personnel who
operate, program, and maintain the computer systems.

Organization

Chapter 1 - contains the Virtual State central processor (CP) instruction descriptions
and peripheral processor (PP) instruction descriptions.

Chapter 2 - contains programming information.

The appendixes consist of a glossary, edit examples, interface information, instruction
index, and typical fast DMA transfers.

FCC Compliance

This equipment generates, uses and can radiate radio frequency energy and if not
installed and used in accordance with the instructions manual, may cause interference
to radio communications. As temporarily permitted by regulation, it has not been tested
for compliance with the limits for Class A computing devices pursuant to Subpart J of
Part 15 of the FCC Rules which are designed to provide reasonable protection against
such interference. Operation of this equipment in a residential area is likely to cause
interference in which case the user at his/her own expense will be required to take
whatever measures may be required to correct the interference.

Related Manuals

Additional hardware reference information regarding operation of the computer systems
in both their CYBER 170 State and Virtual State environments is available in manuals
listed in the system publications index on the following page.

Revision G About This Manual 7

SYSTEM PUBLICATION INDEX
HARDWARE REFERENCE MAt-.IJALS

CDC CYBER ITO/IED
t.(2)0ELS BIO. 815, 825. 830, 835. 840. 845.

850. 855. 860. 865. 8T5. At-0 990
CYBER 840S. 8455. 855S. 840A. 850A, 860A.

870A. 93JE, 995E. 992. AND 994

l
f

CYBER 170 STATE
HARDWARE REFERENCE MAt-.UALS

l
CYBER 170 lilGOELS 815 AN> 825

CCYEER 110 STATE>
HARDWARE REFEREN:E MAN.JAL

60469350

I
CYBER 18'.> lilGOELS 810 AN> B30

CCYEER 170 STATE>
HARDWARE REFEREN:E MAN.JAL

60469420

I
CYBER 170 ti.eDELS 835. 845. At.I) 855

CYBER 100 t.eOELS 835. 840.
845. 850. 855. 860. Ar-D 99J

CYBER 9~. 995E. AN> 994
CCYfER 170 STATE>

HARDWARE REFEREN:E M.WJAL
60469290

I
CYBER 170 M20ELS 865 AN> 875

CCYEER 170 STATE>
HARDWARE REFEREN:E MAN.JAL

60458~

_J

CYEER 8405. 8455. AN> 8555
CCYEER 170 STATE>

HARDWARE REFERENCE MANJAL
60463390

T
CYIER 84QA, BSOA. 860A. AN:> 870A

CCYEER 170 STATE>
HARDWARE REFEREt-.CE MmJAL

60463560

8 60458890

l
VIRTUAL STATE

HARDWARE REFERENCE MANUALS

I
CYBER 18'.> M2DELS 810 A~ 830

l VIRTUAL ST A TE > V0Ll.AE I
HARDWARE REFEREN:E MAN.JAL

60469600

T
C'rBER 1701100 tiroEL 835
C VIRTUAL ST ATE > V0Llt.E I

HARDWARE REFEREN:E MA~
60469600

T
C'l'BER 170 w:>ELS 845 AN> 855

CY8ER 100 LOOELS 840. 845. 8:D.
855. Af'.[) 860

(VIRTUAL STATE> V0LlA£ I
HARDWARE REFEREN:E MAN.JAL

604613ZO

T
CYBER 180 U00£L 900

CY BER 990E, 995E, 992, 00 994
(VIRTUAL STATE> V0Llt.E I
HARD~ARE REFERE~::'.E UA.~UAL

60462000

J
CY8ER 170 LOOELS 815. 825. 835.

845. At{) 855
CYBER 100 ~LS 810. 830. 835.
840. 845. 850. 855. 860. At{) 990

CYBER 990E. 995E • 992. 00 994
CVIRTUAL STATE> V0Ll..NE II
HARDWARE REFEREf'.CE MAtlJAl

60458890

J
CYBER 8405. 8455. 00 855S

CVIRTUAL STATE> V0LlAE I
HARDWARE REFEREflCE MAN.JAL

60463400

T
CY8ER 8405. 8455. 00 8555
!VIRTUAL STATE> V0LIJ,£ II
HARDWARE REFEREN:E MAtlJAL

60463410

I
CYBER 840A. B:DA. 860A. AN:> B70A

CVIRTUAL STATE) V0Llt.E I
HARDWARE REFEREf'.CE MAN.JAL

60463570

T
CYBER 840A. 850A. 860A. A1'D 870A

CVIRTUAL STATE> V0llt.E lI
HARDWARE REFEREf'.CE MANJAL

60463500

S'ISUIU 810
8Mai«>-IO-C

Revision G

Additional Related Manuals
Other manuals applicable to the CYBER 170, CYBER 180, and CYBER 990E, 995E,
992, and 994 computer systems are:

Title

NOS Version 2 Operator/Analyst Handbook

NOS Version 2 Systems Programmer's Instant

NOS Version 1 Operator's Guide

NOS Version 1 Systems Programmer's Instant

NOS/BE Version 1 Operator's Guide

NOS/BE Version 1 System Programmer's Reference
Manual, Volume 1

NOS/BE Version 1 System Programmer's Reference
Manual, Volume 2

NOSNE Analysis Usage

NOSNE Operations Usage

Codes Booklet

Maintenance Register Codes Booklet

CDC 721 Enhanced Display Terminal (CC634-B) HRM

CDC 19003 System Console (CC598-A/B) Hardware
Operation/Maintenance Guide

CYBER 170 Models 172, 173, 174, and 175 Computer
Systems Hardware Reference Manual

Publication Number

60459310

60459370

60457700

60457790

60457380

60458480

60458490

60463915

60463914

60458100

60458110

62950102

60463610

60420000

Publication ordering information and latest revision levels are available from the
Literature Distribution and Services catalog, publication number 90310500.

Ordering Manuals
Control Data manuals are available through Control Data sales offices or through:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103-2495

Revision G About This Manual 9

Submitting Comments
Control Data welcomes your comments about this manual. Your comments may include
your opinion of the usefulness of this manual, your suggestions for specific
improvements, and the reporting of any errors you have found.

You can submit your comments on the comment sheet on the last page of this manual.
If the manual has no comment sheet, mail your comments to:

Control Data Corporation
Technology and Publications Division ARH219
4201 Lexington Avenue North
St. Paul, Minnesota 55126-6198

Please indicate whether you would like a written response.

Disclaimer
This product is intended for use only as described in this document. Control Data
cannot be responsible for the proper functioning of undescribed features and
parameters.

10 60458890 Revision G

Instruction Descriptions

Virtual State CP Instructions

CP Instruction Formats

Instruction Description Nomenclature .

Interrupts

CP General Instructions
CP Load and Store Instructions

Load/Store Multiple
Load/Store Word
Load/Store Word, Indexed
Load/Store Address
Load/Store Address, Indexed
Load/Store Bytes
Load/Store Bytes, Immediate .
Load Bytes, Relative
Load/Store Bit

CP Integer Arithmetic Instructions .
Half-Word Integer Sum
Integer Sum
Half-Word Integer Difference .
Integer Difference
Half-Word Integer Product .
Integer Product
Half-Word Integer Quotient
Integer Quotient
Half-Word Integer/Integer Compare

CP Branch Instructions
Branch Relative
Branch Intersegment
Branch on Half-Word
Branch
Branch and Increment
Branch on Segments Unequal

CP Copy Instructions
Copy Address
Copy Half Word
Copy Full Word

CP Address Arithmetic Instructions
Address Increment, Indexed . . .
Address Increment, Signed Immediate
Address Relative
Address Increment, Modulo .

CP Enter Instructions
Enter Zeros/Ones/Signs
Enter, Immediate Positive/Negative .
Enter Xl/XO, Immediate Logical .
Enter XI/XO, Signed Immediate
Enter, Signed Immediate

CP Shift Instructions
Shift Word, Circular
Shift End-Off, Word/Half-Word . .

1

1-1

1-2

1-4

1-5

1-6
1-6
1-8

1-10
1-10
1-11
1-12
1-13
1-13
1-14
1-15
1-16
1-18
1-19
1-20
1-20
1-21
1-22
1-22
1-23
1-23
1-24
1-24
1-25
1-26
1-27
1-28
1-29
1-30
1-31
1-32
1-32
1-33
1-33
1-33
1-34
1-34
1-35
1-36
1-37
1-37
1-38
1-38
1-39
1-40
1-40

CP Logical Instructions
Logical Sum/Difference/Product
Logical Complement
Logical Inhibit

CP Register Bit String Instructions
Bit String Descriptor
Isolate Bit Mask .
Isolate
Insert

CP Mark to Boolean Instruction

BDP Instruction Descriptions
BDP Nomenclature
BDP Numeric Instructions

Decimal Arithmetic
Decimal Compare
Numeric Move . . .
Decimal Scale ...

BDP Byte Instructions .
Byte Compare
Byte Translate
Move Bytes ..
Edit

Edit Mask .
Edit Operation
MOP Description Nomenclature .
Skipping of Signs .
Microoperation 0 .
Microoperation 1 ..
Microoperation 2,3
Microoperation 4
Microoperation 5
Microoperation 6
Microoperation 7
Microoperation 8
Microoperation 9
Microoperation A
Microoperation B
Microoperation C
Microoperation D
Microoperation E
Microoperation F
Edit Function NUMERIC
Termination of the Edit Instruction

Byte Scan While Nonmember
BDP Subscript and Immediate Data Instructions . .

Calculate Subscript and Add .
Move Immediate Data
Compare Immediate Data ..
Add Immediate Data

Floating-Point Instruction Descriptions
Double-Precision Register Designators
Floating-Point Conversion Instructions ..

Convert From Integer to FP
Convert From FP to Integer

1-41
1-41
1-42
1-42

. 1-43
1-43
1-44
1-44
1-44
1-45

1-47
1-47
1-47
1-50
1-52
1-53
1-54
1-56
1-57
1-58
1-59
1-59
1-60
1-60
1-61
1-62
1-62
1-62
1-62
1-62
1-62
1-62
1-63
1-63
1-63
1-63
1-63
1-63
1-64
1-64
1-64
1-64
1-64
1-65
1-66
1-67
1-68
1-69
1-70

1-71
1-71
1-71
1-72
1-72

Floating-Point Arithmetic Instruction:s . .
Floating-Point Sum/Difference
Floating-Point Product
Floating-Point Quotient

Floating-Point Branch Instructions
Normal Exit
Branch Exit
Group Interrupt Conditions . . .
Floating-Point Branch on Comparison.
Floating-Point Branch on Condition ..
Floating-Point Compare . . .

Vector Instruction Descriptions
Vector Instruction Format . . .

Integer Vector Arithmetic
Integer Vector Compare
Logical Vector Arithmetic
Integer/Floating-Point Vector Conversion
Floating-Point Vector Arithmetic . .
Special Purpose Vector Instructions .

System Instruction Descriptions ...
Nonprivileged System Instructions

Program Error . .
Scope Loop Sync .
Exchange
Return
Pop
Copy Free-Running Counter
Test and Set Bit ..
Test and Set Page ..
Call Relative .
Compare Swap . . .
Call Indirect
Reserved Operation Codes
Execute Algorithm

Local Privileged System Instruction
Load Page Table Index

Global Privileged System Instruction
Processor Interrupt . . .

Monitor Mode Instructions
Mixed Mode Instructions .

Purge Buffer
Copy to/from State Register
Branch on Condition Register

Peripheral Processor Instruction Descriptions
PP Instruction Formats
PP Data Format
PP Relocation Register Format .
PP Load and Store Instructions

Load ... ·
Store

PP Arithmetic Instructions
Arithmetic Add ..
Arithmetic Subtract . . .

1-73
1-74
1-75
1-76
1-77
1-77
1-77
1-77
1-78
1-79
1-80

1-81
1-81
1-83
1-84
1-85
1-85
1-86
1-87

1-91
1-92
1-93
1-93
1-94
1-95
1-97
1-98
1-99

1-101
1-102
1-104
1-106
1-108
1-108
1-109
1-109
1-110
1-110
1-111
1-111
1-112
1-114
1-115

1-116
1-116
1-117
1-117
1-119
1-120
1-123
1-125
1-126
1-129

PP Logical Instructions
Logical Shift . . .
Logical Difference
Logical Product .
Selective Clear ..

PP Replace Instructions
Replace Add
Replace Subtract

PP Branch Instructions
Long Jump
Return Jump
Unconditional Jump .
Zero/Nonzero Jump . .
Plus/Minus Jump ..

PP Central Memory Access Instructions .
Central Load/Store .
Central Read
Central Write

PP Input/Output Instructions
Jump
Test/Clear
Input ...
Output ..
Activate/Deactivate
Function

Other IOU Instructions
Pass
Exchange Jumps .

1-132
1-133
1-133
1-138
1-140
1-141
1-142
1-146
1-148
1-148
1-149
1-149
1-150
1-151
1-152 .
1-153
1-154
1-159
1-163
1-165
1-166
1-168
1-171
1-173
1-175
1-177
1-177
1-178

Instruction Descriptions

This chapter contains the Virtual State central processor (CP) instruction descriptions
and peripheral processor (PP) instruction descriptions.

Virtual State CP Instructions
The Virtual State CP instructions comprise the following five groups:

• General

• Business data processing (BDP)

• Floating point (FP)

• Vector

• System

1

Revision E Instruction Descriptions 1-1

CP Instruction Formats

CP Instruction Formats
The CP instructions are 16 or 32 bits long, and have four basic formats.

• Format jkiD (32 Bits)

0 78 1112 1516 1920 31

I OPCODE I I k I I D

8 4 4 4 12

• Format SjkiD (32 Bits)

0 45 78 1112 1516 1920 31

D

5 3 4 4 4 12

Field Description

Opcode Operation code.

j,k,i Register designators.

D

s
Signed shift count, positive displacement, or bit string descriptor.

Suboperation code.

Business data processing (BDP) instructions using these formats also have one or
two 64-bit data descriptor words which are stored in central memory (CM)
immediately after the instruction. (Refer to BDP Data Descriptors in this chapter.)

1-2 60458890 Revision E

CP Instruction Formats

• Format jk (16 Bits)

Field

Opcode

j

k

0 78 1112 15

OPCODE I j I k I
8 4 4

Description

Operation code.

Register designator, suboperation code, or immediate operand.

Register designator or immediate operand.

BDP instructions using this format have two data descriptor words whichj are stored
in CM immediately after the instruction. (Refer to BDP Data Descriptors in this
chapter.)

• Format jkQ (32 Bits)

Field

Opcode

j,k

Q

Revision E

0 78 1112 1516 31

I OPCODE I j I k I a
8 4 4 16

Description

Operation· code.

Register designators, suboperation codes, or immediate operand value.

Signed displacement or immediate operand value.

Instruction Descriptions 1-3

Instruction Description Nomenclature

Instruction Description Nomenclature

The instruction descriptions in this chapter use the following address, register, and
instruction designators.

Designator

j,k,i,Q,D or S

Aj or Ak

Xj or Xk

XXj or XXk

XjL or Xk

XjR or XkR

2°*Xk
2n*Q
2°*D

BN

SEG

RN

()

Description

Refer to corresponding field in CP Instruction Formats in this chapter.

One of sixteen 48-bit A registers (AO-AF) specified by j or k field.

One of sixteen 64-bit X registers (XO-XF) specified by j or k field.

A double-length X register comprised of Xj and X(j + 1) or Xk and
X(k+l).

Bits 0 through 31 of an X register.

Bits 32 through 63 of an X register.

Xk, Q, or D left-shifted n places with zero fill on right (e.g., 8*Q shifts
Q three places).

Byte number field of a process virtual address.

Segment number field of a process virtual address.

Ring number field of a process virtual address.

Content of memory location (address is the quantity in parentheses).

Additional designators used with the BDP instructions are listed in BDP Nomenclature
in this chapter.

1-4 60458890 Revision E

Interrupts

Interrupts

Refer to CP Interrupts in chapter 2 of this manual for further information on
interrupts. Exceptions caused by instruction execution are listed with instruction
descriptions. The following exceptions occur independently of instruction execution and,
therefore, are not listed:

Bit Description

MCR 48 Detected uncorrectable error

MCR 50 Short warning

MCR 53 CYBER 170 State exchange request

MCR 56 External interrupt

MCR 59 System interval timer

MCR 62 Soft error log

MCR 63 Trap exception

UCR 51 Process interval timer

UCR 50 Free flag

Revision E Instruction Descriptions 1-5

CP General Instructions

CP General Instructions

The 84 CP general instructions are divided into 10 subgroups. Tables 1-1 through 1-9
list the instructions in each subgroup. The subgroups are as follows:

• Load and store

• Integer arithmetic

• Branch

• Copy

• Address arithmetic

• Enter

• Shift

• Logical

• Register bit string

• Mark to Boolean

CP Load and Store Instructions

The load and store instructions (table 1-1) transfer a single bit, byte string, 64-bit
word, or multiple 64-bit words between one or more registers and one or more CM
locations. Store instructions do not alter any register serving as the source of the data
transferred to CM.

1-6 60458890 Revision E

CP Load and Store Instructions

Table 1-1. CP Load and Store Instructions

Opcode Format Instruction · Mnemonic

80 jkQ Load multiple LMULT

81 jkQ Store multiple SMULT

82 jkQ Load word LX

83 jkQ Store word sx
84 jkQ Load address LA

85 jkQ Store address SA

86 jkQ Load bytes, relative LBYTP,j

88 jkQ Load bit LBIT

89 jkQ Store bit SBIT

AO jkiD Load address, indexed LAI

Al jkiD Store address, indexed SAi

A2 jkiD Load word, indexed LXI

A3 jkiD Store word, indexed SXI

A4 jkiD Load bytes LBYT,XO

A5 jkiD Store bytes SBYT,XO

D(0-7) SjkiD Load bytes, immediate LBYTS,S

D(8-F) SjkiD Store bytes, immediate SBYTS,S

The following interrupt conditions apply to all load and store instructions. Refer to CP
Interrupts in chapter 2 of this manual for descriptions of these conditions.

• Address specification error

• Invalid segment/ring number zero

• Access violation

• Page table search without find

• Debug

Revision E Instruction Descriptions 1-7

CP Load and Store Instructions

Load/Store Multiple

Opcode SOjkQ

Mnemonic LMULT Xk,Aj,Q

Instruction Load Multiple Registers, from (Aj displaced by 8*Q), selectivity per XkR

Opcode SljkQ

Mnemonic SMULT Xk,Aj,Q

Instruction Store Multiple Registers, at (Aj displaced by 8*Q), selectivity per XkR

Format

Remarks

1-8 60458890

0 78 1112 1516 31

I 80,81 Q

These instructions transfer data between the A and X registers and
contiguous word locations in CM.

The CM starting address forms by left-shifting Q three places with zero
insertion on right, and adding the shifted Q to the byte number (BN) field
of the process virtual address (PVA) from Aj.

XkR bits 48 through 63 specify which contiguous A and X registers are
transferred as follows:

XkR Bits

48-51

52-55

56-59

60-63

48 5152 5556 59 60 63
A- X- A- X

FIRST FIRST LAST LAST

Register Transferred

First A register.

First X register.

Last A register.

Last X register.

Revision E

Revision E

CP Load and Store Instructions

The A registers transfer first. When A-first exceeds A-last, no A registers
transfer. When X-first exceeds X-last, no X registers transfer.

For example, when:

A-first = Bis, X-first = 216
A-last = 416, X-last = C16

the instruction does not transfer any A registers and transfers X registers
2 through C.

The store multiple instruction clears CM hits 0 through 15 when storing
the A registers. The load multiple instruction unconditionally transfers bits
20 through 63 of each CM word to the corresponding hits of the designated
A registers. Bits 16 through 19 (RN-field) of each A register are set to the
largest of the following:

• Bits 16 through 19 of the CM word.

• Bits 16 through 19 of Aj.

• Bits 8 through 11 (Rl field) of the segment descriptor associated with
the PVA in Aj.

During a debug scan operation, the PVA resulting from the addition of Aj
and Q is the only data read argument for the load multiple instruction, or
the only data write argument for the store multiple registers instruction.
Refer to Debug in chapter 2 of this manual.

Instruction Descriptions 1-9

CP Load and Store Instructions

Load/Store Word

Opcode 82jkQ

Mnemonic LX Xk,Aj,Q

Instruction Load Xk, from (Aj displaced by 8*Q)

Opcode 83jkQ

Mnemonic SX Xk,Aj,Q

Instruction Store Xk, at (Aj displaced by S*Q)

Format 0 78 1112 1516 31

I 82,8~ I j I k I Q

Remarks These instructions transfer one word between Xj and CM. The CM address
of the word transferred is the sum eight times Q plus the BN field from
Aj.

Load/Store Word, Indexed

Opcode A2jkiD

Mnemonic LXI Xk,Aj ,Xi,Q

Instruction Load Xk, from (Aj displaced by 8*D and indexed by 8*XiR)

Opcode A3jkiD

Mnemonic SXI Xk,Aj,Xi,Q

Instruction Store Xk, at (Aj .displaced by 8*D and indexed by 8*XiR)

Format 0 78 1112 1516 1920 31

I A2,A3 I j I k I i I D

Remarks These instructions transfer one word between Xk and a word address in
CM. The CM address of the word is the BN field from Aj plus eight times
XiR (index), plus eight times D (displacement). For indexing, these
instructions interpret the XO contents as zeros. Aj bits 61 through 63 must
be zeros or an address specification error occurs.

1-10 60458890 Revision E

CP Load and Store Instructions

Load/Store Address

Opcode 84jkQ

Mnemonic LA Ak,Aj,Q

-Instruction Load Ak, from (Aj displaced by Q)

Opcode 85jkQ

Mnemonic SA Ak,Aj ,Q

Instruction Store Ak, at (Aj displaced by Q)

Format

Remarks

Revision E

0 78 1112 1516 31

1 84,85 I j I k I Q

These instructions transfer a 6-byte field between Ak and CM. The field's
leftmost byte address is the sum of Q (sign-extended to 32 bits) plus the
BN field from Aj.

The load Ak instruction transfers the rightmost 44 bits of the 6-byte CM
field to Ak bits 20 through 63. The value transferred to Ak bits 16
through 19 is the largest of the following:

• Leftmost four bits of the 6-byte CM field.

• Initial Aj bits 16 through 19.

• Bits 8 through 11 (Rl field) of the segment descriptor associated with
the PVA in Aj.

Instruction Descriptions 1-11

CP Load and Store Instructions

Load/Store Address, Indexed

Opcode AOjkiD

Mnemonic LAI Ak,Aj ,Xi,D

Instruction Load Ak, at (Aj displaced by D and indexed by XiR)

Opcode AljkiD

Mnemonic SA! Ak,Aj,Xi,D

Instruction Store Ak, at (Aj displaced by D and indexed by XiR)

Format

Remarks

0 78 1112 1516 1920 31

I AO,A 1 I j I k I i I D

These instructions transfer six bytes between Ak and a 6-byte CM field.
The starting (leftmost) CM address of the 6-byte field is the sum of the
displacement D plus the index value XiR plus the BN field from Aj. For
indexing, these instructions interpret the XO contents as zeros.

The load Ak instruction unconditionally transfers only the rightmost 44
bits of the 6-byte CM field to Ak bit positions 20 through 63. The
instruction transfers to Ak bits 16 through 19 a value that is the largest
of the following:

• Leftmost four bits of the 6-byte CM field.

• Aj bits 16 through 19.

• Bits 8 through 11 (Rl field) of the segment descriptor for the PVA in
Aj.

1-12 60458890 Revision .E

CP Load and Store Instructions

Load/Store Bytes

Opcode A4jkiD

Mnemonic LBYT,XO Xk,Aj,Xi,D

Instruction Load Bytes, to Xk from (Aj displaced by D and indexed by XiR), length
per XO

Opcode A5jkiD

Mnemonic SBYT,XO Xk,Aj,Xi,D

Instruction Store Bytes, from Xk at (Aj displaced by D and indexed by XiR), length
per XO

Format

Remarks

0 78 1112 1516 1920 31

I A4,A5 I j I k I i I D

These instructions transfer a field of bytes between Xk and CM. The byte
field length equals one plus XO bits 61 through 63. For lengths less than
eight, the load byte instruction right-justifies and zero-extends the bytes
loaded into Xk.

The beginning (leftmost) CM address of the byte field is the sum of D
(zero-extended to 32 bits) plus XiR, plus the BN field from Aj.

Load/Store Bytes, Immediate

Opcode DSjkiD

Mnemonic LBYTS,S Xk,Aj,Xi,D

Instruction Load Bytes, to Xk from (Aj displaced by D and indexed by XiR), length
per S (DS = DO through D7)

Opcode DSjkiD

Mnemonic SBYTS,S Xk,Aj,Xi,D

Instruction Store Bytes, from Xk at (Aj displaced by D and indexed by XiR), length
per S (DS = DB through DF)

Format

Remarks

Revision E

0 45 78 1112 1516 1920 31

D

These instructions transfer a field of bytes between Xk and CM. The field
length equals S plus one. For lengths less than eight, the load instruction
right-justifies and zero-extends the bytes loaded into Xk.

The beginning (leftmost) CM address of the byte string is the sum of D
(displacement) plus XiR (index), plus the BN field of Aj. For indexing,
these instructions interpret the XO contents as zeros.

Instruction Descriptions 1-13

CP Load and Store Instructions

Load Bytes, Relative

Opcode 86jkQ

Mnemonic LBYTP ,j

Instruction Load Bytes, to Xk at (P displaced by Q), length per j

Format

Remarks

0 78 1112 1516 31

I 86 I j I k I a

This instruction transfers a field of bytes from CM to Xk. The CM byte
field length is the value of the rightmost three bits of j plus one. For
lengths less than eight, the byte(s) loaded into Xk are right-justified and
zero-extended on the left. The starting (leftmost) CM byte address is the
sum of Q (sign-extended to 32 bits) plus the BN field from P.

For this instruction, the CP considers the read operation for the byte field
an instruction fetch rather than a data read, and therefore tests the fetch
for execute access validity. Refer to Access Protection in chapter 2 of this
manual.

1-14 60458890 Revision E

CP Load and Store Instructions

Load/Store Bit

Opcode 88jkQ

Mnemonic LBIT Xk,Aj,Q,XO

Instruction Load Bit, to Xk from (Aj displaced by Q and bit-indexed by XOR)

Opcode 89jkQ

Mnemonic SBIT Xk,Aj,Q,XO

Instruction Store Bit, from Xk at (Aj displaced by Q and bit-indexed by XOR)

Format

Remarks

Revision E

0 78 1112 1516 31

I 88,89 I j I k I Q

These instructions transfer a single bit between XkR bit 63 and a bit
position in CM. The load bit instruction also clears Xk bits 0 through 62.

The instructions first generate the CM address of the byte containing the
bit loaded or stored as follows:

1. Form byte index by right-shifting XOR three bit positions, end-off, and
sign-extend to 32 bits.

2. Form the sum of this 32-bit byte index plus Q (sign-extended to 32
bits) plus BN field from Aj.

These instructions then use the original XOR bits 61 through 63 to select
the bit position within the addressed byte. Binary values 0 through 7 for
these 3 bits select the corresponding bit position (O through 7) within the
byte.

The store bit (89) instruction executes as follows: the byte containing the
bit to be stored is read, modified in the appropriate bit position, and
written. No other accesses from any port to the addressed byte are
permitted between these read and write accesses. Clearing a
synchronization lock with this instruction requires preserialization which
can be achieved as follows: a test and set bit (14) instruction (which
postserializes) issues immediately before the store bit instruction. This
postserialization effectively preserializes the lock clearing.

For the store bit instruction, operand access validation consists of write
access validation only.

Instruction Descriptions 1-15

CP Integer Arithmetic Instructions

CP Integer Arithmetic Instructions

The instructions in this subgroup (table 1-2) perform integer arithmetic on signed twos
complement words or half words in Xk or Xk.R. The sign bit is bit 0 for full-word
integers or bit 32 for half-word integers.

Table 1-2. CP Integer Arithmetic Instructions

Opcode Format Instruction Mnemonic

20 jk Half-word integer sum ADDR

28 jk Half-word integer sum, immediate INCR

SA jkQ Half-word integer sum, signed immediate ADDRQ

24 jk Integer sum ADDX

10 jk Integer sum, immediate INCX

SB jkQ Integer sum, signed immediate ADDXQ

21 jk Half-word integer difference SUBR

29 jk Half-word integer difference, immediate DECR

25 jk Integer difference SUBX

11 jk Integer difference, immediate DECX

22 jk Half-word integer product MULR

SC jkQ Half-word integer product, signed immediate MULRQ

26 jk Integer product MULX

B2 jkQ Integer product, signed immediate MULXQ

23 jk Half-word integer quotient DIVR

27 jk Integer quotient DIVX

2C jk Half-word integer compare CMPR

2D jk Integer compare CMPX

1-16 60458890 Revision E

CP Integer Arithme~ic Instructions

The integer format is as follows:

01 63

REGISTER Xk FULL-WORD INTEGER

0 313233 63

HALF-WORD INTEGER

The half-word integer instructions do not alter X register bits 0 through 31.

The arithmetic overflow interrupt condition applies to all integer arithmetic
instructions. Individual instruction descriptions list additional interrupt conditions
where applicable. (Refer to CP Interrupts in chapter 2 of this manual for descriptions
of these conditions.)

Revision E Instruction Descriptions 1-17

CP Integer Arithmetic Instructions

Half-Word Integer Sum

Opcode 20jk

Mnemonic ADDR Xk,Xj

Instruction Half-Word Integer Sum, XkR replaced by XkR plus XjR

Format 0 78 1112 15

I 20 I j I k I
Remarks This instruction forms XkR plus XjR and transfers the 32-bit sum to XkR.

Opcode 28jk

Mnemonic INCR Xk,j

Instruction Half-Word Integer Sum, Immediate, XkR replaced by XkR plus j

Format 0 78 1112 15

I 28 I j I k I
Remarks This instruction forms XkR plus j zero-extended to 32 bits and transfers

the 32-bit sum to Xk.R.

Opcode 8AjkQ

Mnemonic ADDRQ Xk,Xj,Q

Instruction Half-Word Integer Sum, Signed Immediate, XkR replaced by XjR plus Q

Format 0 78 1112 1516 31

Q

Remarks This instruction forms XjR plus Q sign-extended to 32-bits and transfers
the 32-bit sum to XkR.

1-18 60458890 Revision E

CP Integer Arithmetic Instructions

Integer Sum

Opcode 24jk

Mnemonic ADDX Xk,Xj

Instruction Integer Sum, Xk replaced by Xk plus Xj

Format 0 78 1112 15

I 24 I j I k I
Remarks This instruction forms Xk plus Xj and transfers the 64-bit sum to Xk.

Opcode lOjk

Mnemonic INCX Xk,j

Instruction Integer Sum Immediate, Xk replaced by Xk plus j

Format 0 78 1112 15

I 10 I j I k I
Remarks This instruction forms Xk plus j zero-extended on the left to 64 bits and

transfers the 64-bit sum to Xk.

Opcode 8BjkQ

Mnemonic ADDXQ Xk,Xj,Q

Instruction Integer Sum Signed Immediate, Xk replaced by Xk minus Xj

Format

Remarks

Revision E

0 78 1112 1516 31

I BB a

This instruction forms Xk plus Q sign-extended to 64 bits and transfers the
64-bit sum to Xk.

Instruction Descriptions 1-19

CP Integer Arithmetic Instructions

Half· Word Integer Difference

Opcode 21jk

Mnemonic SUBR Xk,Xj

Instruction Half-Word Integer Difference, XkR replaced by XkR minus XjR

Opcode 29jk

Mnemonic DECR Xk,j

Instruction Half-Word Integer Difference, Immediate, XkR replaced by XkR minus j

Format

Remarks

0 78 1112 15

1 21,2s I j I k I

These instructions subtract the 32-bit subtrahend in XjR, or in the j field
zero-extended to 32 bits on the left, from the 32-bit minuend in XkR and
transfer the 32-bit difference to XkR. The instructions treat each half word
as a signed twos complement integer.

Integer Difference

Opcode 25jk

Mnemonic SUBX Xk,Xj

Instruction Integer Difference, Xk replaced by Xk minus Xj

Opcode lljk

Mnemonic DECX Xk,j

Instruction Integer Difference, Immediate, Xk replaced by Xk minus j

Format 0 78 1112 15

I 11,25

Remarks These instructions subtract Xj, or j zero-extended to 64 bits on the left,
from Xk and transfer the 64-bit difference to Xk. The instructions treat
each word as a signed twos complement integer.

1-20 60458890 Revision E

CP Integer Arithme~ic Instructions

Half-Word Integer Product

Opcode 22jk

Mnemonic MULR Xk,Xj

Instruction Half-Word Integer Product, XkR replaced by XkR times XjR

Format 0 78 1112 15

I 22 I j I k I
Remarks This instruction multiplies XkR by XjR and forms an intermediate 64-bit

product. The rightmost 32 bits of this product transfer to XkR as the final
product.

Opcode 8CjkQ

Mnemonic MULRQ Xk,Xj,Q

Instruction Half-Word Integer Product, Signed Immediate, XkR replaced by XjR
times Q

Format

Remarks

Revision E

0 78 1112 1516 31

I BC I j I k I a

The first instruction multiplies XkR by XjR. The second instruction
multiplies the Q field (sign-extended to 32 bits) by XjR. The multiplication
forms an algebraically-signed, 64-bit intermediate product. The rightmost
32 bits of this intermediate product transfer to XkR as the final product.

Instruction Descriptions 1-21

CP Integer Arithmetic Instructions

Integer Product

Opcode 26jk

Mnemonic MULX Xk,Xj

Instruction Integer Product, Xk replaced by Xk times Xj

Format 0 78 1112 15

I 26

Remarks This instruction multiplies the signed twos complement integers in Xk and
Xj to form an algebraically-signed, 128-bit intermediate product. The
rightmost 64 bits of this intermediate product transfer to Xk as the final
product.

Opcode B2jkQ

Mnemonic MULXQ Xk,Xj,Q

Instruction Integer Product, Signed Immediate, Xk replaced by Xj times Q

Format

Remarks

0 78 1112 1516 31

I 82 I j I k I a

The first instruction multiplies the signed twos complement integer from
Xk by Xj. The second instruction multiplies the Q field sign-extended to 64
bits by Xj. An algebraically-signed, 128-bit intermediate product forms. The
rightmost 64 bits of this intermediate product transfer to Xk as the final
product.

Half-Word Integer Quotient

Opcode 23jk

Mnemonic DIVR Xk,Xj

Instruction Half-Word Integer Quotient, XkR replaced by XkR divided by XjR

Format 0 78 1112 15

I 23

Remarks · This instruction divides XkR by XjR and transfers the algebraically-signed,
32-bit quotient to XkR. A divide fault (UCR bit 55) interrupt condition
occurs if XjR is equal to zero.

1-22 60458890 Revision E

CP Integer Arithmeti.c Instructions

Integer Quotient

Opcode 27jk

Mnemonic DIVX Xk,Xj

Instruction Integer Quotient, Xk replaced by Xk divided by Xj

Format

Remarks

0 78 1112 15

I 21 I j I k I
This instruction divides the word in Xk by the 64-bit word in Xj and
transfers the result, consisting of an algebraically-signed, 64-bit quotient to
Xk. A divide fault (UCR bit 55) interrupt condition occurs if Xj is equal to
zero. J

Half-Word Integer/Integer Compare

Opcode 2Cjk

Mnemonic CMPR Xl ,Xj ,Xk

Instruction Half-Word Integer Compare, XjR to XkR, result to XlR

Opcode 2Djk

Mnemonic CMPX Xl,Xj,Xk

Instruction Integer Compare, Xj to Xk, result to XlR

Format

Remarks

Revision E

0 78 1112 15

I 2C,2D I j I k I
These instructions algebraically compare the twos complement binary
integer in XjR or Xj to the signed twos complement binary integer in XkR
or Xk, re spec ti vely. XO consists of all zeros. Based on the comparison
result, XlR sets as follows:

Condition

Xj = Xk

Xj ~ Xk

Xj ~ Xk

Action Taken

Clear XlR bits 32 through 63.

Clear XlR bits 32 and 34 through 63, set bit 33.

Clear XlR bits 34 through 63, set bits 32 and 33.

Instruction Descriptions 1-23

CP Branch Instructions

CP Branch Instructions

This subgroup (table 1-3) consists of both conditional and unconditional branch
instructions. Each conditional branch instruction compares the contents of two general
registers to determine whether a normal or a branch exit is taken.

Table 1-3. CP Branch Instructions

Opcode Format Instruction Mnemonic

2E jk Branch relative BRREL

2F jk Branch intersegment BRDIR

90 jkQ Branch on half-word equal BRREQ

91 jkQ Branch on half-word not equal BRRNE

92 jkQ Branch on half-word greater than BRRGT

93 jkQ Branch on half-word greater than or equal BRR GE

94 jkQ Branch on equal BRXEQ

95 jkQ Branch on not equal BRXNE

96 jkQ Branch on greater than BRXGT

97 jkQ Branch on greater than or equal BRXGE

9C jkQ Branch and increment BRINC

9D jkQ Branch on segments unequal BRSEG

The debug interrupt condition applies to all branch instructions. Individual instruction
descriptions list additional interrupt conditions where applicable. Refer to CP Interrupts
in chapter 2 of this manual for a description of these conditions.

Branch Relative

Opcode 2Ejk

Mnemonic BRREL Xk

Instruction _ Branch to P Indexed by 2*XkR

Format a 1a 1112 1s

I 2E I j I k I
Remarks This instruction causes an unconditional branch to the CM address formed

by adding two times XkR to the BN field in P.

1-24 60458890 Revision E

CP Branch Instructions

Branch Intersegment

Opcode 2Fjk

Mnemonic BRDIR Aj,Xk

Instruction Branch to Aj Indexed by 2*XkR

Format

Remarks

Revision E

0 78 1112 15

I 2F

This instruction causes an unconditional branch by modifying the key
(KEY), segment number (SEG), and byte number (BN) fields of the PVA in
P, as follows:

1. The key in P copies to the lock of the branched-to segment. The branch
is permitted if the key and lock are equal, if the key is a master key,
or if the lock is zero or equals no lock.

2. The 12-bit SEG field in Aj (bits 20 through 31) transfers to P bits 20
through 31.

3. A value two times XkR adds to the rightmost 32 bits from Aj. XO
consists of all zeros. This sum transfers to bit positions 32 through 63
of P.

This instruction can cause the following exception conditions:

• Address specification error

• Invalid segment/ring number zero

• Access violation

Instruction Descriptions 1-25

CP Branch Instructions

Branch on Half-Word

Opcode 90jkQ

Mnemonic BRREQ Xj,Xk,Q

Instruction Branch to P Displaced by 2*Q, if XjR equal to XkR

Opcode 91jkQ

Mnemonic BRRNE Xj,Xk,Q

Instruction Branch to P Displaced by 2*Q, if XjR not equal to XkR

Opcode 92jkQ

Mnemonic BRRGT Xj,Xk,Q

Instruction Branch to P Displaced by 2*Q, if XjR greater than XkR

Opcode 93jkQ

Mnemonic BRRGE Xj,Xk,Q

Instruction Branch to P Displaced by 2*Q, if XjR greater than or equal to XkR

Format 0 78 1112 1516 31

190,91,92,931 j I k I Q

Remarks These instructions algebraically compare XjR with XkR, treating each as a
signed twos complement binary integer. XO consists of all zeros. If the
comparison between XjR and XkR does not satisfy the branch condition
specified, the instruction takes a normal exit by adding four to the BN
field in P to generate the next instruction address. If the Xj right (XjR)
and Xk right (XkR) comparison satisfies the branch condition, the
instruction takes a branch exit by adding two times Q to the BN field in P
to form the next instruction address.

1-26 60458890 Revision E

CP Branch Instructions

Branch

Opcode 94jkQ

Mnemonic BRXEQ Xj,Xk,Q

Instruction Branch to P Displaced by 2*Q, if Xj equal to Xk

Opcode 95jkQ

Mnemonic BRXNE Xj,Xk,Q

Instruction Branch to P Displaced by 2*Q, if Xj not equal to Xk

Opcode 96jkQ

Mnemonic BRXGT Xj,Xk,Q

Instruction Branch to P Displaced by 2*Q, if Xj greater than Xk

Opcode 97jkQ

Mnemonic BRXGE Xj,Xk,Q

Instruction Branch to P Displaced by 2*Q, if Xj greater than or equal to Xk

Format

Remarks

Revision E

0 78 1112 1516 31

194,95,96,971 j I k I Q

These instructions algebraically compare the Xj word with the Xk word,
treating each as a signed twos complement binary integer. XO consists of
all zeros.

If the comparison between Xj and Xk does not satisfy the branch condition
specified, the instruction takes a normal exit by adding four to the BN
field in P to generate the next instruction address. If the comparison
satisfies the branch condition, the instruction causes a branch exit by
adding two times Q to the BN field in P to form the the next instruction
address.

Instruction Descriptions 1-27

CP Branch Instructions

Branch and Increment

Opcode 9CjkQ

Mnemonic BRINC Xj,Xk,Q

Instruction Branch to P Displaced by 2*Q and Increment Xk, if Xj greater than Xk

Format

Remarks

1-28 60458890

0 78 1112 1516 31

I SC I j I k I Q

This instruction algebraically compares the Xj word with the Xk word,
treating each as a signed twos complement binary integer. For Xj only, the
instruction interprets XO as all zeros.

The comparison results are as follows:

Condition

Xj ~ Xk

Xj > Xk

Action Taken

Normal exit. Add four to BN field in P to form next
instruction address.

Branch exit. Add two times Q to BN field in P to form next
instruction address, and increase word in Xk by one.
Overflow is ignored.

Revision E

CP Branch Instructions

Branch on Segments Unequal

Opcode 9DjkQ

Mnemonic BRSEG Xi,Aj,Ak,Q

Instruction Branch to P Displaced by 2*Q, if segments unequal, else compare byte
numbers, result to XlR.

Format

Remarks

Revision E

0 78 1112 1516 31

I s0 I j I k I a

This instruction performs a bit-for-bit comparison between the SEG fields
in Aj and Ak (bits 20 through 31). If the SEG fields are unequal, the
instruction takes a branch exit by adding two times Q to the BN field in P
to form the next instruction address.

If the SEG fields are equal, the instruction takes a normal exit by adding
four to the BN field in P to form the next instruction address. The
instruction also algebraically compares Aj bits 32 through 63 with Ak bits
32 through 63, treating each 32-bit quantity as a signed twos complement
binary integer, and stores the comparison result in XlR, as follows:

Result

AJ = Ak

Aj > Ak

Aj < Ak

Action Taken

Clear XlR.

Clear XlR bits 32 and 34 through 63, set bit 33.

Clear XlR bits . 34 through 63, set bits 32 and 33.

Instruction Descriptions 1-29

CP Copy Instructions

CP Copy Instructions

The copy instructions (table 1-4) transfer information between registers.

Table 1-4. CP Copy Instructions

Opcode Format Instruction Mnemonic

09 jk Copy address, A to A CPYAA

OA jk Copy address, X to A CPYXA

OB jk Copy address, A to X CPYAX

oc jk Copy half word CPYRR

OD jk Copy full word CPYXX

1-30 60458890 Revision E

CP Copy Instructions

Copy Address

Opcode 09jk

Mnemonic CPYAA Ak,Aj

Instruction Copy, Ak replaced by Aj

Format 0 78 1112 15

I as

Remarks This instruction transfers the 48 bits in Aj to Ak.

Opcode OAjk

Mnemonic CPYXA Ak,Xj

Instruction Copy, Ak replaced by Xj

Format 0 78 1112 15

I OA I j I k I
Remarks This instruction unconditionally transfers Xj bits 20 through 63 to the

corresponding bit positions of Ak. The instruction also compares Xj bits 16
through 19 with P bits 16 through 19 and transfers the larger field to Ak
bits 16 through 19.

Opcode OBjk

Mnemonic CPYAX Xk,Aj

Instruction Copy, Xk replaced by Aj

Format a 78 1112 1s

I OB I j I k I
Remarks This instruction transfers the 48 bits in Aj to Xk bit positions 16 through

63 and clears Xk bits 0 through 15.

Revision E Instruction Descriptions 1-31

CP Copy Instructions

Copy Half Word

Opcode OCjk

Mnemonic CPYRR Xk,Xj

Instruction Copy, XkR replaced by XjR

Format

Remarks

0 78 1112 15

I oc I j I k I
This instruction transfers the half word in XjR to XkR. The XkL content
does not change.

Copy Full Word

Opcode ODjk

Mnemonic CPYXX Xk,Xj

Instruction Copy, Xk replaced by Xj

Format 0 78 1112 15

I OD I j I k I
Remarks _This instruction transfers the Xj word to Xk.

1-32 60458890 Revision E

CP Address Arithmetic Instructions

CP Address Arithmetic Instructions

Address arithmetic instructions (table 1-5) perform address arithmetic in twos
complement ignoring overflow.

Table 1-5. CP Address Arithmetic Instructions

Opcode Format Instruction

2A jk Address increment, indexed

SE jkQ Address increment, signed immediate

SF jkQ Address relative

A7 jkiD Address increment, modulo

Address Increment, Indexed

Opcode 2Ajk

Mnemonic ADDAX Ak,Xj

Instruction Address Ak Replaced by Ak plus XjR

Format 0 78 1112 15

I 2A I j I k I

Mnemonic

ADDAX

ADDAQ

ADDPXQ

AD DAD

Remarks This instruction adds XjR and Ak bits 32 through 63 and returns the sum
to Ak bits 32 through 63.

Address Increment, Signed Immediate

Opcode 8EjkQ

Mnemonic ADDAQ Ak,Aj,Q

Instruction Address Ak Replaced by Aj pl us Q

Format 0 78 1112 1516 31

BE I j I k I a

Remarks _ This instruction transfers Aj bits 16 through 31 to the corresponding Ak
bit positions. Also, the instruction adds Q (sign-extended to 32 bits) and Aj
bits 32 through 63 and transfers the sum to Ak bits 32 through 63.
Overflow is ignored.

Revision F Instruction Descriptions 1-33

·:·

m

CP Address Arithmetic Instructions

Address Relative

Opcode 8FjkQ

Mnemonic ADDPXQ Ak,Xj,Q

Instruction Address Ak Replaced by P plus 2*XjR plus 2*Q

Format

Remarks

0 78 1112 1516 31

Q

This instruction transfers P bits 16 through 31 to the corresponding 16 bit
positions of Ak. The instruction also adds two times Q (sign-extended to 32
bits) to the rightmost 32 bits of P, adds this 32-bit sum to two times the
XjR value, and transfers the final sum to Ak bits 32 through 63. Overflow
is ignored. The instruction interprets XO as all zeros.

Address Increment, Modulo

Opcode A 7jkiD

Mnemonic ADDAD Ak,Ai,D,j

Instruction Address Ak Replaced by Ai pl us D per j

Format

Remarks

1-34 60458890

0 78 1112 1516 31

I A7 I j I k I Q

This instruction transfers Ai bits 16 through 31 to the corresponding bit
positions of Ak. The instruction also adds D (zero-extended to 32 bits on
left) to Ai bits 32 through 63 and transfers bits 32 through 60 of this sum
to Ak bits 32 through 60. The instruction performs a logical product (AND)
between bits 61 through 63 of this 32-bit sum and the rightmost three bits
of j and transfers the 3-bit logical product to Ak bits 61 through 63.
Overflow is ignored.

The following is an example of the logical product (AND) operation.

First operand 0011
Second operand 0101

Result (AND) 0001

Revision F

CP Enter Instructions

CP Enter Instructions

The instructions in this subgroup (table 1-6) enter immediate operands (consisting of
logical quantities or signed twos complement binary integers) into the X registers.

Table 1-6. CP Enter Instructions

Opcode Format Instruction Mnemonic

lF jk Enter zeros ENTZ

lF jk Enter ones ENTO

IF jk Enter signs ENTS

3D jk Enter, immediate positive ENTP

3E jk Enter, immediate negative ENTN

39 jk Enter Xl, immediate logical ENTX

3F jk Enter XO, immediate logical ENTL

87 jkQ Enter Xl, signed immediate ENTC

B3 jkQ Enter XO, signed immediate ENTA

SD jkQ Enter, signed immediate ENTE

Revision E Instruction Descriptions 1-35

CP Enter Instruct.ions

Enter Zeros/Ones/Signs

Opcode lFjk

Mnemonic ENTZ Xk

Instruction Enter XkL with Zeros

Opcode lFjk

Mnemonic ENTO Xk

Instruction Enter XkL with Ones

Opcode lFjk

Mnemonic ENTS Xk

Instruction Enter XkL with Signs

Format

Remarks

1-36 60458890

0 78 1112 15

1F I j I k I
This instruction translates the rightmost two bits of j as follows:

j Field

xxOO

xxOl

xxlO

Action Taken

Clear XkL bits 0 through 31.

Set XkL bits 0 through 31.

Copy bit 32 (sign) of XkR to bits 0 through 31 of XkL.

Revision E

CP Enter Instructions

Enter, Immediate Positive/Negative

Opcode 3Djk

Mnemonic ENTP Xk,j

Instruction Enter Xk with plus j

Opcode 3Ejk

Mnemonic ENTN Xk,j

Instruction Enter Xk with minus j

Format 0 78 1112 15

I 3D,3E I j I k I
Remarks These instructions zero-extend j to 64 bits and transfer this result, or the

twos complement of this result, to Xk.

Enter Xl/XO, Immediate Logical

Opcode 39jk

Mnemonic ENTX Xl,jk

Instruction Enter Xl with Logical jk

Opcode 3Fjk

Mnemonic ENTL XO,jk

Instruction Enter XO with Logical jk

Format 0 78 1112 15

I 39,3F I j I k I
Remarks These instructions transfer k to bits 60 through 63 and j to bits 56

through 59 of XO or Xl. The instructions clear bits 0 through 55.

Revision E Instruction Descriptions 1-37

CP Enter Instructions

Enter Xl/XO, Signed Immediate

Opcode 87jkQ

Mnemonic ENTC Xl,jkQ

Instruction Enter Xl with Sign-Extended jkQ

Opcode B3jkQ

Mnemonic ENTA XO,jkQ

Instruction Enter XO with Sign-Extended jkQ

Format 0 78 1112 1516 31

1 a1 ,83 I j I k I Q

Remarks These instructions expand the 24-bit concatenation of j, k, and Q (bit
positions 8 through 31) to 64 bits (right-justified) by extending the leftmost
bit of j through bits 0 through 39. The 64-bit result transfers to XO or Xl.

Enter, Signed Immediate

Opcode 8DjkQ

Mnemonic ENTE Xk,Q

Instruction Enter Xk with Sign-Extended Q

Format 0 78 1112 1516 31

Q

Remarks This instruction sign-extends Q to 64 bits, and transfers this value to Xk.

1-38 60458890 Revision E

CP Shift Instructions

CP Shift Instructions

The shift instructions (table 1-7) shift the Xj 64 bits through the number of bit
positions determined from a computed shift count. The result transfers to Xk.

Table 1-7. CP Shift Instructions

Opcode Format Instruction Mnemonic

AS jkiD Shift word, circular SHFC

A9 jkiD Shift word, end-off SHFX

AA jkiD Shift half-word, end-off SHFR

The computed shift count is the sum of the D field rightmost eight bits plus XiR bits
56 through 63. An overflow from this 8-bit sum is ignored. The instructions interpret
XO as all zeros. The computed shift count is determined by the following:

1. The leftmost bit of the 8-bit computed shift count determines the shift direction:

Positive sign: Left shift

Negative sign: Right shift

2. The actual shift count is the twos complement of the rightmost five or six bits of
the computed shift count for 32- and 64-bit operands, respectively. Thus, half words
can be shifted from 0 to 31 places left or from 1 to 32 places right. Similarly, full
words can be shifted from 0 to 63 places left or from 1 to 64 places right. The
shifts are as follows:

Shift Count 32-Bit Shifts Shift Count 64-Bit Shifts

0111 1111 Left shift 31 0111 1111 Left shift 63
(repeating)

0010 0000 Left shift 0 0100 0000 Left shift O
0001 1111 Left shift 31 0011 1111 Left shift 63

0000 0000 Left shift 0 0000 0000 Left shift O

1111 1111 Right shift 1 1111 1111 Right shift 1

1110 0000 Right shift 32 1100 0000 Right shift 64
1101 1111 Right shift 1 1011 1111 Right shift 1

(repeating)

1000 0000 Right shift 32 1000 0000 Right shift 64

3. If the computed shift count results in an actual shift count of zero, Xj transfers to
Xk without shifting.

Revision E Instruction Descriptions 1-39

CP Shift Instructions

Shift Word, Circular

Opcode ASjkiD

Mnemonic SHFC Xk,Xj,Xi,D

Instruction Shift Circular, Xk replaced by Xj, direction and count per XiR plus D

Format 0 78 1112 1516 1920 31

I AB I j I k I i I D

Remarks This instruction shifts the Xj word by the computed shift count and
transfers the result to Xk. The shift is circular. Bits that shift out one end
of the word transfer into bit positions which become unoccupied at the
opposite end of the word.

Shift End-Off, Word/Half-Word

Opcode A9jkiD

Mnemonic SHFX Xk,Xj,Xi,D

Instruction Shift Word, End-Off, Xk replaced by Xj, direction and count per XiR plus
D

Opcode AAjkiD

Mnemonic SHFR Xk,Xj,Xi,D

Instruction Shift Half Word, End-Off, XkR replaced by XjR, direction and count per
XiR plus D

Format 0 78 1112 1516 1920 31

I A9,AA I I k I I D

Remarks These instructions shift the Xj word, or the XjR half-word, and transfer the
result to Xk or XkR. The computed shift count determines the direction
and number of bit positions to be shifted. In a right shift, the instruction
right-shifts the word end-off on the right and sign-extends on the left. In a
left shift, the instruction left-shifts the word end-off on the left and inserts
zeros on the right.

1-40 60458890 Revision E

CP Logi~al Instructions

CP Logical Instructions

The instructions in this subgroup (table 1-8) perform logical (Boolean) operations on
64-bit operands in the X registers.

Table 1-8. CP Logical Instructions

Opcode Format

IS jk

I9 jk

IA jk

lB jk

IC jk

Instruction

Logical sum

Logical difference

Logical product

Logical complement

Logical inhibit

Mnemonic

IORX

XORX

ANDX

NOTX

INHX

Logical Sum/Difference/Product

Opcode

Mnemonic

Instruction

Opcode

Mnemonic

Instruction

Opcode

Mnemonic

Instruction

Format

Remarks

Revision F

I8jk

IORX Xk,Xj

Logical Sum, Xk replaced by Xk OR Xj

.19jk

XORX Xk,Xj

Logical Difference, Xk replaced by Xk XOR Xj

lAjk

ANDX Xk,Xj

Logical Product, Xk replaced by Xk AND Xj

0 78 1112 15

I 18,19,1A I j I k I
These instructions form the logical sum, difference, or product between the
words in Xj and Xk, and return the 64-bit Boolean result to Xk. Examples

- of these operations are as follows:

Logical Logical
·Sum Difference Logical Product
(OR) (XOR) (AND)

First operand 0011 0011 0011
Second operand 0101 0101 0101

Result 0111 0110 0001

Instruction Descriptions 1-41

CP Logical Instructions

Logical Complement

Opcode lBjk

Mnemonic NOTX Xk,Xj

Instruction Logical Complement, Xk replaced by Xj NOT

Format 0 78 1112 15

I 18

Remarks This instruction transfers the ones complement of the Xj word to Xk. The
ones complement of a number results from subtracting the original
number, bit for bit, from a number consisting of all ones. For example:

Ones
Xj

Xk

Logical Inhibit

Opcode lCjk

Ones Complement

1111
0110

1001

Mnemonic INHX Xk,Xj

Instruction Logical Inhibit, Xk replaced by Xk AND Xj NOT

Format 0 78 1112 15

I 1C

Remarks This instruction forms the logical product (AND) between the ones
complement of the Xj number and the Xk number and returns the result
to Xk. For example:

1-42 60458890

Xj
NOT Xj
Xk

Xk AND Xj NOT

Logical Inhibit

0011
1100
0101

0100

Revision F

CP Register Bit String Instructions

CP Register Bit String Instructions

The instructions in this subgroup (table 1-9) address a contiguous string (field) of bits
within a register, beginning and ending at any bit position. The instructions interpret
XO as all zeros. ·

Table 1-9. CP Register Bit String Instructions

Opcode

AC

AD

AE

Format

jkiD

jkiD

jkiD

Bit String Descriptor

Instruction

Isolate bit mask

Isolate bit string

Insert bit string

Mnemonic

ISOM

ISOB

INSB

The beginning bit position and bit string length are specified by a bit string descriptor.
The descriptor is the rightmost 12 bits of the sum of D (sign-extended) plus XiR and
has the following format:

XiR Bits

52-57

58-63

Description

52 5758 63
Leftmost String
Position Len th-1

Beginning (leftmost) bit position.

Length, one less than the number of bits in the string.

The instruction specification error interrupt condition applies to all register bit string
instructions. Refer to CP Interrupts in chapter 2 of this manual for a description of
this condition.

Revision E Instruction Descriptions 1-43

CP Register Bit String Instructions

Isolate Bit Mask

Opcode ACjki.D

Mnemonic ISOM Xk,Xi,D

Instruction Isolate Bit Mask, into Xk per XiR plus D

Format

Remarks

Isolate

0 78 1112 1516 1920 31

I AC I j I k I i I D

This instruction generates a bit mask consisting of a contiguous field of
ones and places this field into Xk. The bit string descriptor defines the
leftmost bit position and the length of the Xk field. All Xk bits outside the
specified string clear.

Opcode ADjkiD

Mnemonic ISOB Xk,Xj,Xi,D

Instruction Isolate, into Xk from Xj per XiR plus D

Format 0 78 1112 1516 1920 31

D

Remarks This instruction clears Xk and transfers a field of contiguous data from Xj
into Xk, right-justified. The bit string descriptor defines the leftmost bit
position and Xj field length.

Insert

Opcode AEjkiD

Mnemonic INSB Xk,Xj,Xi,D

Instruction Insert, into Xk from Xj per XiR plus D

Format 0 78 1112 1516 1920 31

D

Remarks This instruction transfers a field of contiguous bits from Xj to Xk. The
field is obtained from the Xj rightmost bit positions, with the length
specified by the bit string descriptor. The field inserts into Xk with the
leftmost bit position and the field length also specified by the bit string
descriptor. All Xk bit positions outside the specified field remain
unchanged.

1-44 60458890 Revision E

CP Mark to Boolean Instruction

CP Mark to Boolean Instruction

The following instruction tests XlR bits 32 through 33 for values specified by the j
field.

Opcode lEjk

Mnemonic MARK Xk,Xi,j

Instruction Mark to Boolean, set Xk per j and XlR

Format

Remarks

Revision E

0 78 1112 15

I 1E I j I k I
This instruction tests XjR bits 32 through 33 for a bit combination by
comparing j and XlR bits 32 through 33 for an equal condition (EQ) as
shown in table 1-10. If XlR bits 32 through 33 equal a value specified by
j, the instruction clears Xk bits 01 through 63 and sets Xk bit 0. The
instruction clears Xk if no equality occurs.

From left to right, the four bits of j are individual pointers associated with
the four possible values of XlR bits 32 and 33 (00, 01, 10, and 11). When
set, the first bit in the j field tests bits 32 and 33 for a value of 00, the
second bit for 01, the third bit for 10, and the fourth bit for 11. For
example, if j equals 0101, equality occurs when bits 32 and 33 are either
01 or 11.

Instruction Descriptions 1-45

CP Mark w Boolean Instruction

Table 1-10. Compare j Field and Xl Bits 32 and 33

j Field 00 01 10 11

0000 1 1 1 1

0001 EQ

0010 EQ

0011 EQ EQ

0100 EQ

0101 EQ EQ

0110 EQ EQ

0111 EQ EQ EQ

1000 EQ

1001 EQ EQ

1010 EQ EQ

1011 EQ EQ EQ

1100 EQ EQ

1101 EQ EQ EQ

1110 EQ EQ EQ

1111 2 2 2 2

1. Unconditional unequality.

2. Unconditional equality.

1-46 60458890 Revision E

BDP Instruction Descriptions

BDP Instruction Descriptions

The business data processing (BDP) instruction group consists of 18 operation codes in
three subgroups:

• BDP numeric

o Byte

o Subscript and immediate data

Tables 1-11 through 1-14 list the instructions within each subgroup. For descriptions of
source and destination fields, data descriptors, access types, data formats, and data
types, refer to Business Data Processing Programming in chapter 2 of this manual.

BDP Nomenclature

The BDP instruction descriptions use the following additional terms:

Term

D(Aj)

D(Ak)

D(Ai+D)

Description

Source data field addressed by PVA in Aj.

Other source data field, or destination data field, addressed by PVA in
Ak.

Edit mask addressed by PVA in Ai plus displacement D. The edit (ED)
instruction uses this term.

BDP Numeric Instructions

The instructions in this subgroup (table 1-11) perform arithmetic, shift, conversion, and
comparison operations on byte fields from CM.

Table 1-11. BDP Numeric Instructions

Opcode Format Instruction Mnemonic

70 jk Decimal sum ADDN

71 jk Decimal difference SUBN

72 jk Decimal product MULN

73 jk Decimal quotient DIVN

74 jk Decimal compare CMPN

75 jk Numeric move MOVN

E4 jkiD Decimal scale SCLN

E5 jkiD Decimal scale rounded SCLR

Revision E Instruction Descriptions 1-47

BOP Numeric Instructions

After completing the required operation, the instructions store the right-justified result
in the destination field. These instruGtions also do the following:

• Zero-fill the high-order destination field positions if the decimal result is shorter
than the destination field.

• Truncate the result's leftmost bits if the result exceeds the destination field.

• Treat a decimal numeric value of minus zero as equal to plus zero.

• Do not store minus zero as a result, except when truncation takes place.

An instruction specification error occurs if the length and type fields in the source and
destination field data descriptors do not conform to the length and type allowed for a
particular instruction. This inhibits instruction execution and initiates the
corresponding program interrupt.

The following conditions apply to all BDP numeric instructions:

• Instruction specification error

• Address specification error

• Invalid segment/ring number zero

• Access violation

• Page table search without find

• Debug

• Invalid BDP data

A destination BDP operand of length zero transforms the instruction into a
no-operation. However, when the source field length is nonzero, exception sensing for
the source field occurs. This includes testing for arithmetic loss-of-significance and
overflow, but excludes testing for a divide fault.

Individual instruction descriptions list additional interrupt conditions, where applicable.
Refer to CP Interrupts in chapter 2 of this manual for descriptions of these conditions.
BDP data descriptor format is shown below.

01 34 78 1516 31

L I 0

1-48 60458890 Revision E

Field

F

D

T

L

0

Revision E

BDP Numeric Instructions

Description

Function of the L field (1 bit). Length retrieval information, as follows:

F = 0

F = 1

Length is obtained from the L field.

Length of the descriptor associated with Aj is obtained from XOR
bits 55 through 63. Length of the descriptor associated with Ak
is obtained from XlR bits 55 through 63. Other bits in XOR and
XlR are not used.

Reserved (3 bits).

Data type (4 bits) (refer to table 2-5).

Length (in bytes) of the source or destination field (8 bits) (refer to table
2-5). The maximum length is restricted according to the operand data type.
When the maximum length is exceeded, an instruction specification error
occurs, causing an interrupt or halt.

Offset (16 bits). PVA of the leftmost byte of source or destination field is
obtained by adding the sign-extended 0 field to the BN field of the base
PVA in Aj or Ak, respectively.

Instruction Descriptions 1-49

BDP Numeric Instructions

Decimal Arithmetic

Opcode

Mnemonic

Instruction

Opcode

Mnemonic

Instruction

Opcode

Mnemonic

Instruction

Opcode

Mnemonic

Instruction

Format

Remarks

70jk

ADDN,Aj,XO Ak,Xl

Decimal Sum, D(Ak) replaced by D(Ak) plus D(Aj) (2 descriptors)

71jk

SUBN,Aj,XO Ak,Xl

Decimal Difference, D(Ak) replaced by D(Ak) minus D(Aj) (2 descriptors)

72jk

MULN,Aj,XO Ak,Xl

Decimal Product, D(Ak) replaced by D(Ak) times D(Aj) (2 descriptors)

73jk

DIVN,Aj,XO Ak,Xl

Decimal Quotient, D(Ak) replaced by D(Ak) divided by D(Aj) (2 descriptors)

0 78 1112 15

f10,11,12,731 j I k I
These instructions perform arithmetic operations on the initial destination
field (an augend, minuend, multiplicand, or dividend) and the source field
(an addend, subtrahend, multiplier, or divisor). The decimal result (sum,
difference, product, or quotient) transfers to the destination field.

The instructions allow packed and unpacked decimal data types 0 through
6. They do not support unpacked decimal leading sign data types 7 and 8.
A numeric move (75) instruction must be used to format operands of these
types prior to use in arithmetic operations.

The instruction results are algebraically signed. If the results equal zero
with no loss-of-significance, a positive sign is entered. The result translates
to the preferred codes of the data type specified by the destination field
data descriptor.

· These instructions can cause the following exception conditions:

o Arithmetic overflow.

o Divide fault (instruction 73 only, refer to table 1-12).

1-50 60458890 Revision E

BDP Numeric Instructions

Table 1-12. BDP Divide Fault

k Field j Field
Length k Value Length j Value Divide Fault

0 1 0 1 No

0 1 Nonzero 0 No

0 1 Nonzero Nonzero No

Nonzero 0 0 1 Yes

Nonzero 0 Nonzero 0 Yes

Nonzero 0 Nonzero Nonzero No

Nonzero Nonzero 0 1 Yes

Nonzero Nonzero Nonzero 0 Yes

Nonzero Nonzero Nonzero Nonzero No

1. Since field length is zero, the data is disregarded.

Revision E Instruction Descriptions 1-51

BDP Numeric Instructions

Decimal Compare

Opcode 74jk

Mnemonic CMPN ,Aj,XO Ak,Xl

Instruction Decimal Compare, D(Aj) to D(Ak), result to XlR (2 descriptors)

Format

Remarks

1-52 60458890

0 78 1112 15

I 74 I j I k I
This instruction algebraically compares the decimal contents of the source
and destination fields, and depending on the comparison results, transfers a
half word to XlR as follows:

Condition

D(Aj) = D(Ak)

D(Aj) > D(Ak)

D(Aj) < D(Ak)

Action Taken

Clear XlR.

Clear XlR bits 32 and 34 through 63, set bit 33.

Clear XlR bits 34 through 63, set bits 32 and 33.

The instruction allows data types 0 through 6. The maximum operand
length is a function of the data type. The instruction accommodates
unequal field lengths by using decimal zero fill in the leftmost positions of
the shorter-length field.

Revision E

BDP Numeric Instructions

Numeric Move

Opcode 75jk

Mnemonic MOVN,Aj,XO Ak,Xl

Instruction Numeric Move, D(Ak) replaced by D(Aj) after formatting (2 descriptors)

Format

Remarks

Revision E

0 78 1112 15

I 75

This instruction obtains a number from the source field, validates the
number according to the T field from its associated data descriptor,
reformats it according to the T field in the destination field data
descriptor, and transfers the result to the destination field.

The instruction can convert and format any combination of data types 0
through 8 and 10 or 11. If the conversion is from a decimal data type to a
binary data type, the decimal data type determines the maximum length
for the source as follows:

Source Field
Data Type

0 through 3

4 through 8

Maximum
Source Field
Length (Bytes)

19

38

The maximum destination field length is eight bytes. The instruction
truncates the leftmost bytes if the destination field is not long enough to
accommodate the entire binary number, or extends the sign bit on the left

- if the destination field exceeds the conversion result. When truncation
places a negative zero into the destination field, it is not changed to
positive zero.

The same length restrictions apply if the source is a binary data type and
the destination is a decimal data type, except that if the receiving field
exceeds the converted number, the instruction adds leading zeros according
to the decimal data type [ASCII character zero (301a) or digit zero (Ou~].

When both operands are decimal, the destination field fills from right to
left. If the field lengths are unequal, the instruction either truncates

_ leading digits or inserts leading zeros according to the destination data
type.

This instruction can cause the arithmetic loss-of-significance exception
condition.

Instruction Descriptions 1-53

BDP Numeric Instructions

Decimal Scale

Opcode E4jki.D

Mnemonic SCLN,Aj,XO Ak,Xl,Xi

Instruction Decimal Scale, D(Ak) replaced by D(Aj), scaled per XiR plus D
(2 descriptors)

Opcode E5jki.D

Mnemonic SCLR,Aj,XO Ak,Xl,Xi

Instruction Decimal Scale Rounded, D(Ak) replaced by rounded D(Aj), scaled per XiR
plus D (2 descriptors)

Format

Remarks

1-54 60458890

0 78 1112 1516 1920 31

I E4,E5 I j I k I i ! D

These shift instructions move data from the source field to the destination
field, shifting the data under control of a computed shift count. This count
is the 8-bit sum of the twos complement 32-bit integer from XiR plus the
D-field rightmost eight bits of the instruction. Any overflow from the 8-bit
sum is ignored. The XO contents interpret as all zeros. The instruction acts
as a move instruction if the shift count equals zero.

With positive shift count (bit 56 = 0), the source data left-shifts as
determined by bits 57 through 63 of the computed shift count. A negative
shift count (bit 56 = 1) causes a shift to the right. In this case, the
number of positions is determined by the twos complement of bits 57
through 63 of the computed shift count. A value of 1000 0000 interprets as
a right shift of 128 positions.

A positive shift count effectively multiplies the source data by powers of
10; a negative shift count divides the source data by powers of 10. The
shifting occurs as the data moves from the source to the destination field.
Shifting is end-off with zero-fill as required to accommodate the length and
type specified for the destination field. The source field sign moves the
destination field unchanged.

Revision E

Revision E

BDP Numeric Instructions

The shift counts are interpreted as follows:

Shift Count Shifts

01111 1111 Left shift 127

0000 0000 Left shift 0

1111 1111 Right shift 1

1000 0001
1000 0000 Right shift 128

The instruction allows data types 0 through 6 for the source and
destination fields.

The decimal scale rounded (E5) instruction rounds upward the absolute
value of the right-shift result. This occurs by adding 5 to the last digit
shifted end-off, and propagating carries through the decimal result.

These instructions may cause the arithmetic loss-of-significance exception
condition.

Instruction Descriptions 1-55

BDP Byte Instructions

BDP Byte Instructions

The instructions in this subgroup (table 1-13) compare, translate, move, edit, or scan
byte fields in CM.

Table 1-13. BDP Byte Instructions

Opcode Format Instruction Mnemonic

77 jk Byte compare CMPB

E9 jkiD Byte compare, collated CMPC

EB jkiD Byte translate TRANB

76 jk Move bytes MOVB

ED jkiD Edit EDIT

F3 jkiD Byte scan while nonmember SCNB

The following conditions apply to all byte instructions:

• Instruction specification error

• Address specification error

• Access violation

• Page table search without find

• Debug

Individual instruction descriptions . list additional interrupt conditions where applicable.
Refer to CP Interrupts in chapter 2 of this manual for descriptions of these conditions.

1-56 60458890 Revision E

BDP B~ Instructions

Byte Compare

Opcode 77jk

Mnemonic CMPB,Aj,XO Ak,Xl

Instruction Byte Compare, D(Aj) to D(Ak), result to XlR, index to XOR (2 descriptors)

Opcode E9jkiD

Mnemonic CMPC,Aj,XO Ak,Xl,Ai,D

Instruction Byte Compare Collated, D(Aj) to D(Ak), both translated per (Ai plus D),
result to XlR, index to XOR (2 descriptors)

Format

Remarks

Revision F

0 78 1112 1516 1920 31

I 77,ES D

These instructions compare the bytes in the source and destination fields,
and set XlR according to the result. The comparison proceeds from left to
right. When the field lengths are unequal, trailing space characters (2016)
are used for the shorter field. The maximum operand length is 256 bytes.
Data types are ignored. The comparison continues until the longer field is
exhausted or the instructions detect an inequality, as follows:

Compare
(77)

Compare
Collated
(E9)

The byte comparison ends when the instruction detects an
inequality between corresponding bytes in the source and
destination field.

An inequality detected between corresponding bytes from the
source and destination fields results in the translation of both
bytes, using a translation table in CM. If the translated bytes
are unequal, the comparison stops with the results shown in
the following list. If the translated bytes are equal, the
comparison continues until the longer field is exhausted, or
until the instruction detects another inequality. In the latter
case, another translation and comparison occurs.

The comparison results are indicated in XIR as follows:

Condition

D(Aj) D(Ak)
D(Aj) > D(Ak)
D(Aj) < D(Ak)

Action Taken

XIR cleared.
Clear XlR bits 32 and 34 through 63, set bit 33.
Clear XlR bits 34 through 63, set bits 32 and 33.

An unequal comparison places the sequence number of the byte causing the
inequality into XOR. The instruction adds each field's leftmost byte address
to the sequence number in XOR to determine the byte addresses within the
source and destination fields causing the unequal comparison. Register XOR
does not change if inequalities do not exist.

The user determines the translation table contents used by the compare
collated instruction, and preloads the table into CM. The translation table
contains 256 bytes. Its starting address forms by adding the BN field in Ai
to the zero-extended D field from the instruction. Each translated byte adds
as a positive offset to the translation table starting address, forming the
address of the translated byte read from CM.

Instruction Descriptions 1-57

BDP Byte Instructions

Byte Translate

Opcode EBjkiD

Mnemonic TRANB,Aj,XO Ak,Xi,D

Instruction Byte Translate, D(Ak) replaced by D(Aj), translated per (Ai plus D)
(2 descriptors)

Format

Remarks

1-58 60458890

0 78 1112 1516 1920 31

D

This instruction translates each source field byte according to a
user-generated translation table in CM and transfers the results to the
destination field. The source and destination field lengths are limited to
256 bytes. Data types are ignored.

The translation proceeds from left to right. The instruction uses each
source field byte as a positive offset which it adds to the translation table
address to locate the translated byte. Translated bytes transfer to the
destination field. The translation terminates after the destination field
length has been exhausted.

If the source field exceeds the destination field, the instruction truncates
the rightmost bytes of the source field. When the source field is shorter
than the destination field, the instruction fills the destination field
rightmost byte positions with translated space characters.

The user determines the translation table contents and preloads the table
into CM. This table contains 256 bytes; its starting address forms by
adding the BN field in Ai to the zero-extended D field from the
instruction.

Revision F

BDP Byte Instructions

Move Bytes

Opcode 76jk

Mnemonic MOVB,Aj,XO Ak,Xi

Instruction Move Bytes, D(Ak) replaced by D(Aj) (2 descriptors)

Format

Remarks

Edit

0 78 1112 15

I 16 I j I k I
This instruction moves bytes from the source field to the destination field.
The move operation is from left to right; data types are ignored. Maximum
field lengths are 256 bytes. Unequal field lengths result in truncating
trailing characters from the source field or inserting trailing space
characters into the destination field.

Opcode EDjki.D

Mnemonic EDIT ,Aj ,XO Ak,Xi,Ai,D

Instruction Edit, D(Ak) replaced by D(Aj) edited per D(Ai + D) (1 descriptor)

Format

Remarks

Revision E

0 78 1112 1516 1920 31

D

Under control of a CM byte field called an edit mask, this instruction edits
digits or characters from the source field and transfers the result to the
destination field. It can perform the following editing functions:

o Move source field digits/characters to destination field.

o Move characters from the edit mask to destination field.

o Specify and insert a string of 0 through 15 characters (symbol) into the
destination field.

• Specify an 8-byte special character table (SCT) and insert any character
from this table.

ct Insert suppression characters and floating signs to the left of the first
significant digit.

o Perform insertion of signs, suppression characters, blanks, symbols, or
SCT characters based on whether the source field is positive or
negative.

• Spread suppression character through the destination field.

o Write suppression characters if destination field is zero.

The source data descriptor type fields are restricted to data types O
through 9. The instruction ignores the destination data descriptor type
fields.

Instruction Descriptions 1-59

BDP Byte Instructions

Edit Mask

The edit mask consists of a length-indication byte followed by up to 254 microoperation
bytes. The length is a binary number indicating the number of bytes in the. edit mask
(including the length-indication byte). If the length-indicating byte is either zero or one,
the associated edit instruction results in a no-operation. After the length indicator, the
mask contains a string of 1-byte microinstructions.

The edit mask address is the sum of the BN field from Ai plus the zero-extended
D field from the instruction. The edit mask format is as follows:

Field

LENGTH

MOP

sv

Edit Operation

0 70 34 70 34 7

I LENGTH I MOP I sv I MOP I sv I
First byte Following bytes

Description

Binary number indicating the total number of bytes in the edit mask
(O to 25510).

Microoperator specifying the editing function.

Binary specification value from 0 through 15. Meaning varies according
to the associated MOP.

The edit operation uses the tables and toggles described in the following paragraphs.
Edit control proceeds from left to right on the mask, one character at a time. The
instruction performs the editing function specified by the MOP and the SV.

Indexing through the source field is by bytes unless its data type is packed numeric.
Packed-numeric data is indexed by half bytes. Indexing through the destination field is
by bytes.

1-30 60458890 Revision E

MOP Description Nomenclature

The MOP descriptions use the following additional terms:

Term

ES

SCT

sv
SM

SN

ZF

Description

End suppression toggle.

Special characters table.

Specification value (refer to Edit Mask, preceding).

Symbol.

Negative sign toggle.

Zero field.

End Suppression Toggle -

BDP B~ Instructions

The end suppression (ES) toggle controls zero suppression. Hardware sets the ES toggle
false at the start of edit. The ES toggle sets true when zero suppression ends, when
the first nonzero leading digit is encountered, or by a MOP.

Special Characters Table -

The eight-byte special characters table (SCT) is stored in hardware. Entries are written
by the microoperation code D. For proper editing, the SCT must be as follows:

Symbol -

Byte

Charact~r

Hexadecimal

0

'6
20

t6
20

2 3 4 5 6 7

+ - , $ I

28 20 2C 2E 24 2F

L Negative sign

Positive sign

Suppression c haracter

Blank fill character

The symbol (SM) is a string of 0 through 15 characters that the edit instruction
creates and inserts into the destination field, under edit mask control. Once the symbol
has been inserted, the instruction must recreate it before reinserting it. The symbol
has a length of zero when an edit operation begins. The system uses the symbol for
the floating"'.sign and floating-currency editing features, and for sign-sensitive and
significance-sensitive character string insertion.

Negative Sign Toggle -

The negative sign (SN)· toggle provides the source field sign. At start of edit, hardware
sets the SN toggle false if the source field is an alphanumeric, an unsigned numeric,
or a positive numeric. The SN toggle is initialized true only for a negative numeric
source field.

Revision E Instruction Descriptions 1-61

BDP Byte Instructions

Zero Field Toggle -

The zero field (ZF) toggle depicts a zero or nonzero source field. It is initialized true
and sets false after encountering the first nonzero character.

Skipping of Signs

The edit instruction (under edit mask control) automatically skips signs when reading
numeric data types. The signs interpret numerically when reading combined signed
data types, also under edit mask control.

Microoperation 0

This MOP translates source field characters to ASCII and moves thesej to the
destination field as follows. The translation performs as described in the Edit Function
NUMERIC in this chapter.

1. Set ES true if SV is not equal to zero.

2. Translate SV digits from the source field to the equivalent ASCII characters and
copy these into the destination field.

Microoperation 1

This MOP moves type 9 characters as follows:

1. Set ES true if SV is not equal . to zero.

2. Move SV characters from the source field to the destination field. The source field
must be type 9 or an invalid BDP data condition occurs.

Microoperation 2,3

These MOPs are no-operations.

Microoperation 4

This MOP moves the next edit mask SV bytes to the destination field.

Microoperation 5

This MOP sets the symbol to a single character from SCT, respresenting the source
data field sign as follows:

• Negative source data field. Copy SCT byte 3 to destination field.

• Positive source data field. Copy SCT byte SV into symbol field. The SV rightmost
three bits provide an index into the SCT.

Microoperation 6

This MOP moves the next edit mask SV bytes to the symbol.

1-62 60458890 Revision E

BOP B~ Instructions

Microoperation 7

This MOP conditionally translates source field SV digits to their equivalent ASCII
characters and copies them to the destination field. The translation performs as
described in the Edit Function NUMERIC in this chapter.

• ES false and zero source field digit. Copy SCT byte 1 to destination field.

• ES false and nonzero source field digit. Set ES true and copy symbol to destination
field followed by the translated digit.

• ES true. Copy translated digit to destination field.

Microoperation 8

This MOP conditionally copies the symbol to the destination field as follows:

• ES true. No operation.

o ES false. Copy symbol to destination field and set ES true.

Microoperation 9

This MOP conditionally copies the symbol or SCT character to the destination field as
follows:

o SV > 7. Copy symbol to destination field.

o SV ~ 7. Copy SCT byte SV into destination field. The SV rightmost three bits
provide an index into SCT.

Microoperation A

This MOP conditionally copies the symbol or SCT character to the destination field as
follows:

o SV > 7 and source field positive. Copy symbol to destination field.

o SV > 7 and source field negative. Copy SCT byte 0 to destination field, once for
each symbol character.

o SV ~ 7 and source field positive. Copy SCT byte SV into destination field. The SV
rightmost three bits provide an index into SCT.

o SV ~ 7 and source field negative. Copy SCT byte 0 into destination field.

Microoperation B

This MOP is identical to MOP A, but with the action caused by a reversal of the
source field sign.

M icrooperation C

This MOP conditionally copies the symbol or SCT character to the destination field as
follows:

Revision E Instruction Descriptions 1-63

BDP Byte Instructions

• SV > 7 and ES true. Copy symbol to destination field.

• SV > 7 and ES false. Copy SCT byte 1 character to destination field, once for each
symbol character.

• SV ~ 7 and ES true. Copy SCT byte SV into destination field. The SV rightmost
three bits provide an index into SCT.

• SV ~ 7 and ES false. Copy SCT byte 1 into destination field.

Microoperation D

This MOP copies the next edit mask character into the SCT byte determined by using
the SV rightmost three bits as an index into the SCT.

Microoperation E

This MOP copies SCT byte 1 into the destination field, SV times.

Microoperation F

This MOP conditionally copies the SCT character into the destination field as follows:

• No operation when SV = 0.

• ZF false and nonzero source field: terminate the edit instruction.

e ZF true and zero source field: reset to start of destination field and copy SCT byte
1 into destination field SV times.

Edit Function NUMERIC

Microoperations 0 and 7 translate and move a source digit into the destination field as
follows:

• Each source digit is checked. Invalid decimal digits cause an Invalid BDP Data
condition. A program interrupt occurs when enabled.

• When the source field is packed-numeric, appropriate ASCII zone bits are supplied
for the destination character.

• A nonzero digit causes the ZF toggle to be set false.

Termination of the Edit Instruction

The edit instruction terminates when the edit mask is exhausted, or when a MOP 15 is
read and the zero field (ZF) toggle is false. The CP detects no exception conditions for
either condition, even though the instruction may not have exhausted the source or
destination fields. If the instruction terminates with the destination field not full, the.
remaining portion of the destination field is not altered. If the source field is not
exhausted when the instruction terminates, the source field is checked for invalid BDP
data, and the sign is examined.

The edit instruction may cause the invalid BDP data exception condition.

1-64 60458890 Revision E

BDP Byte Instructions

Byte Scan While Nonmember

Opcode F3jkiD

Mnemonic SCNB,Aj,XO Ak,Xi

Instruction Byte Scan While Nonmember, D(Ak) for presence bit in (Ai+D), character
to XlR, index to XOR (1 descriptor)

Format

Remarks

Revision E

0 78 1112 1516 1920 31

F3 I j I k I i I D

This instruction detects possible unwanted characters in a character string
by inspecting a 256-bit table in CM. The starting byte address of the table
forms by adding the BN field from Ai to the zero-extended D field from
the instruction.

The scan proceeds from left to right, one character at a time. The data
type is ignored. The binary value of each character addresses a bit in the
table. The scan terminates if this bit is a one or if the source field has
been exhausted.

If the scan terminates because the addressed bit is set, the following
occurs:

o The binary value of the sequence number (index) pointing to the byte
causing scan termination is placed right-justified into XOR.

o The binary value of the character causing scan termination is placed
right-justified into XlR.

If the scan terminates from exhaustion of characters in the byte string,
XOR contains the original byte string length, XlR bit 32 sets, and bits 33
through 63 clear.

This instruction can also perform the Byte Scan While Member function. In
this case, the table specifying the nonallowed byte string characters is
logically complemented before the instruction executes.

Instruction Descriptions 1-65

BDP Subscript and Immediate Data Instructions

BDP Subscript and Immediate Data Instructions

The instructions in this subgroup are listed in table 1-14.

Table 1-14. BDP Subscript and Immediate Data Instructions

Opcode Format Instruction Mnemonic

F4 jkiD Calculate subscript and add CALDF

F9 jkiD Move immediate data MOVI

FA jkiD Compare immediate data CMPI

FB jkiD Add immediate data ADDI

The following conditions apply to all subscript and immediate data instructions.

• Instruction specification error

• Address specification error

• Invalid segmentJring number zero

• Access violation

• Page table search without find

• Debug

• Invalid BDP data

Individual instruction descriptions list additional interrupt conditions where applicable.
Refer to CP Interrupts in chapter- 2 of this manual.

1-66 60458890 Revision E

BDP Subscript and Immediate Data Instructions

Calculate Subscript and Add

Opcode F4jkiD

Mnemonic CALDF,Aj,XO Ak,Xi,Ai,D

Instruction Calculate Subscript and Add, D(Aj) checked and modified per (Ai plus D),
result added to Xk.R (1 descriptor)

Format

Remarks

Revision E

0 78 1112 1516 1920 31

D

This instruction uses a subscript range table (SRT) contained in CM. The
SRT contains one or more 64-bit entries with each entry divided into three
binary integer values as follows:

Field

SIZE

MIN

MAX

Description

Sixteen bits, unsigned. Specifies number of elements in one
dimension of an array (table).

Sixteen bits, signed. Specifies minimum allowable value of
source field.

Thirty-two bits, signed. Specifies maximum allowable value of
source field.

This instruction forms the PVA of the subscript range table entry using: 1)
RN and SEG from Ai, and 2) the byte number (BN) generated by adding
the BN field from Ai to the instruction D field (expanded to 32 bits using
zeros in the high-ordar bit positions). A signed, 32-bit twos complement
binary integer is obtained from the CM source field at location D(Aj). The
instruction uses binary source field data unchanged and converts decimal
data to its binary equivalent.

The occurrence number is the difference between the binary value of the
source field's rightmost 32 bits and the MIN value (sign-extended to 32
bits). The occurrence number is a signed, 32-bit twos complement integer.

D(Aj) - MIN = OCCURRENCE NUMBER

To calculate the subscript, the instruction multiplies the OCCURRENCE
NUMBER by SIZE and adds the product to the index value in the
destination register XkR. The CP does not detect overflow during any
arithmetic operation associated with this instruction.

The source field is restricted to data types 0 through 6, 10, and 11, with
the maximum field lengths determined by the source field data type.

Instruction Descriptions 1-67

BDP Subscript and Immediate Data Instructions

Move Immediate Data

Opcode F9jkiD

Mnemonic MOVI,Xi,D Ak,Xi,j

Instruction Move Immediate Data, D(Ak) replaced by XiR plus D per j (1 descriptor)

Format

Remarks

0 78 1112 1516 1920 31

D

The immediate data byte is the twos complement sum of XiR bits 56
through 63, plus the rightmost eight bits of the instruction D field.
Overflow is ignored on this summation. XO consists of all zeros.

This instruction moves the immediate data to the destination field after
format conversion specified by the destination field data type and the j-field
suboperation code. The conversion is encoded in the least significant 2 bits
(bits 10 and 11) of the instruction's j field as follows:

j Field
Bits 10,11

00

01

10

11

Operation

The positive, unsigned numeric value (type 10) in the
immediate data byte moves right-justified to the destination
field. The destination field is restricted to data types
10 or 11.

The decimal numeric (type 4) immediate data byte moves
right-justified to the destination field after reformatting (if
necessary). A positive sign is supplied as required. The
destination field is restricted to decimal data types
0 through 6.

The ASCII character in the immediate data byte repeats
left-to-right in the destination field. Destination data type is
ignored.

The ASCII character in the immediate data byte moves,
left-justified, into the destination field; the remainder of the
field fills with space characters. The destination data type is
ignored.

_ The slack digit of destination field types 1 and 3 is unchanged by this
instruction. The instruction may cause the arithmetic loss-of-significance
exception condition.

1..08 60458890 Revision E

BDP Subscript and Immediate Da!8 Instructions

Compare Immediate Data

Opcode FAjkiD

Mnemonic CMPI,Xi,D Ak,Xi,j

Instruction Compare Immediate Data, XiR plus D to D(Ak) per j, result to XiR
(1 descriptor)

Format

Remarks

0 78 1112 1516 1920 31

I FA I j I k I i I D

The immediate data byte is the twos complement sum of XiR bits 56
through 63, plus the rightmost eight bits of the instruction D field.
Overflow is ignored on this summation. XO consists of all zeros.

This instruction performs a format conversion on the immediate data byte
as specified by destination field data type and the j field suboperation code.
The instruction then compares the reformatted immediate data byte to the
contents of D(Ak). The instruction j field encodes the operation as follows:

j Field
Bits 10,11

00

01

10

11

Operation

The positive, unsigned numeric value (type 10) in the
immediate data byte compares to the contents of D(Ak). The
destination field is restricted to data types 10 or 11. If field
D(Ak) exceeds one byte, the immediate data byte zero-fills
in its high-order positions.

The decimal numeric (type 4) immediate data byte compares
to the contents of D(Ak) after reformatting (if necessary) to
match the data type of field D(Ak). A positive sign is
supplied as required. The D(Ak) field is restricted to decimal
data types 0 through 6. If D(Ak) exceeds one byte, the
immediate data byte zero-fills in its high-order positions.

The ASCII character in the immediate data byte compares
left-to-right to the D(Ak) field. Then (DAk) field data type is
ignored.

The ASCII character in the immediate data byte compares
to the leftmost byte in field D(Ak). If the comparison is
equal and field D(Ak) exceeds one byte, a space character
compares left-to-right with each successive byte remaining in
the D(Ak) field. The D(Ak) field data type is ignored.

A half word transfers to XlR to indicate the comparison result as follows:

Results of Compare Register XlR

Source = Destination Clear XlR.

Source > Destination Clear bits 32 and 34 through 63, set bit 33.

Source < Destination Clear bits 34 through 63, set bits 32 and 33.

Revision E Instruction Descriptions 1-69

BDP Subscript and Immediate Data Instructions

Add Immediate Data

Opcode FBjki.D

Mnemonic ADDI,Xl,D Ak,Xi,j

Instruction Add Immediate Data, D(Ak) replaced by D(Ak) plus XiR plus D per j
(1 descriptor)

Format

Remarks

0 78 1112 1516 1920 31

D

The add immediate instruction converts the source field immediate data to
match the destination field data type (if required) and adds the immediate
data byte to D(Ak). The immediate data byte stores the integer value of
the addend. The instruction j field encodes the data type contained in the
immediate data byte.

The j field least significant bit (bit 11) decodes as follows:

j Field
Bit 11

Data Type
Immediate Data Byte

0 Data type = 10. Unsigned (positive) binary integer value.

1 Data type = 4. One ASCII character representing a decimal
digit.

If the source field is data type 10, the destination field is restricted to data
type 10 or 11.

If source data is type 4, the destination is restricted to types 0 through 6.

This instruction may cause the arithmetic overflow exception condition.

1-70 60458890 Revision E

Floating-Point Instruction Descriptions

Floating-Point Instruction Descriptions

Refer to Floating-Point Programming in chapter 2 of this manual for descriptions of
floating-point data formats, standard and nonstandard numbers, and normalization. The
floating-point (FP) instructions consists of 18 operation codes in four subgroups:

• Conversion

• Arithmetic

• Branch

• Compare

Tables 1-15 through 1-17 list the instructions in the first three subgroups.

Double-Precision Register Designators

The double-precision FP add, subtract, multiply, and divide instructions operate on
double-length registers, designated as follows:

XXk or XXj Two successive registers Xk, X(k + 1) or Xj, X(j + 1) containing a
double-precision FP number. Xk or Xj contains the high order (leftmost)
part of this number.

Floating-Point Conversion Instructions

The instructions in this subgroup (table 1-15) convert 64-bit words between FP and
integer formats.

Table 1-15. Floating-Point Conversion Instructions

Opcode

3A

3B

Revision E

Format

jk

jk

Instruction

Convert from integer to FP

Convert from FP to integer

Mnemonic

CNIF

CNFI

Instruction Descriptions 1-71

Floating-Point Conversion Instructions

Convert From Integer to FP

Opcode 3Ajk

Mnemonic CNIF Xk,Xj

Instruction Convert, floating-point Xk formed from integer Xj

Format

Remarks

0 78 1112 15

I 3A I j I k I
This instruction converts the signed 64-bit twos complement binary integer
from Xj to its normalized FP representation and transfers the 64-bit result
to Xk.

During conversion, the instruction truncates the rightmost bits of integers
outside the range -248 through (248)-1. When Xj is all zeros, it transfers
unchanged to Xk.

Convert From FP to Integer

Opcode 3Bjk

Mnemonic CNFI Xk,Xj

Instruction Convert, integer Xk formed from floating-point Xj

Format

Remarks

0 78 1112 15

This instruction converts the 64-bit FP number in Xj to a signed twos
complement binary integer and transfers the result to Xk. The fractional
part of the binary equivalent truncates. This conversion results in an
integer consisting of all zeros if the FP number:

• Is indefinite.

• Has an exponent equal to zero.

• Has a fraction equal to zero.

• Is infinite.

- This instruction may cause the arithmetic loss-of-significance, FP indefinite,
and FP infinite exception conditions.

1-72 60458890 Revision E

Floating-Point Arithme.tic Instructions

Floating-Point Arithmetic Instructions

The instructions in this subgroup (table 1-16) perform arithmetic operations on FP
numbers.

Table 1-16. Floating-Point Arithmetic Instructions

Opcode Format Instruction Mnemonic

30 jk FP sum ADDF

31 jk FP difference SUBF

34 jk Double-precision FP sum ADDD

35 jk Double-precision FP difference SUBD

32 jk FP product MULF

36 jk Double-precision FP product MULD

33 jk FP quotient DIVF

37 jk Double-precision FP quotient DIVD

The following conditions apply to all FP arithmetic instructions:

• Exponent overflow

• Exponent underflow

• Floating-point loss-of-significance

• Floating-point indefinite

Individual instruction descriptions list additional interrupt conditions where applicable.
Refer to CP Interrupts in chapter 2 of this manual.

Revision E Instruction Descriptions 1-73

Floating-Point Arithmetic Instructions

Floating-Point Sum/Difference

Opcode

Mnemonic

Instruction

Opcode

Mnemonic

lnatruction

Opcode

Mnemonic

Instruction

Opcode

Mnemonic

Instruction

Format

Remarks

30jk

ADDF Xk,Xj

Floating-Point Sum, Xk replaced by Xk plus Xj

31jk

SUBF Xk,Xj

Floating-Point Difference, Xk replaced by Xk minus Xj

34jk

ADDD Xk,Xj

Double-Precision Floating-Point Sum, XXk replaced by XXk plus XXj

35jk

SUBD Xk,Xj

Double-Precision Floating-Point Difference, XXk replaced by XXk minus
XXj

0 78 1112 15

130,31,34,351 j I k I
The following instruction description applies to either single- or
double-precision operations. References to Xk or Xj in the description also
apply to XXk or XXj for the double-precision instructions.

These instructions algebraically compare the exponents of the two FP
operands in Xk and Xj. If the exponents are equal, no adjustment is
necessary. If the exponents are unequal, the instruction aligns the
coefficients by right-shifting the coefficient with the smaller exponent the
number of bit positions designated by the difference between the exponents.
The maximum shift is 48 positions for single-precision instructions or 96
positions for double-precision instructions.

The two aligned coefficients consist of a signed 48-bit single-precision or
96-bit double-precision fraction. The instructions add or subtract the two

· coefficients as determined by the operation code, using the Xj coefficient as
the addend or subtrahend. The algebraic result is a signed coefficient with
48 bits (single precision) or 96 bits (double precision), plus an overflow bit.
The overflow bit provides the required allowance for true addition (FP sum
of coefficients with like signs or FP difference of coefficients with unlike
signs).

If coefficient overflow occurs (overflow bit = 1), the instruction right-shifts
the coefficient one place, inserts the overflow bit in the high order bit
position (bit 16), increases the exponent by one, and places the result in
Xk. If the coefficient overflow bit is zero and the coefficient is not all
zeros, the instructions normalize the result before placing the result in Xk.

1-7 4 60458890 Revision E

Floating-Point Arithmetic Instructions

If either or both of the input operands in Xk and Xj consists of an infinite
or indefinite FP number,. the result transferred to Xk is a nonstandard FP
number. Refer to Standard and Nonstandard FP Numbers in chapter 2 of
this manual.

Floating-Point Product

Opcode 32jk

Mnemonic MULF Xk,Xj

Instruction Floating-Point Product, Xk replaced by Xk times Xj

Opcode 36jk

Mnemonic MULD Xk,Xj

Instruction Double Precision Floating-Point Product, XXk replaced by XXk times XXj

Format

Remarks

Revision E

0 78 1112 15

1 32,36 I j I k I

The following instruction description applies to either single- or
double-precision operations. References to Xk or Xj in the description also
apply to XXk and XXj for the double-precision instructions.

The multiply FP instructions algebraically add the signed exponents for the
two FP operands in Xk and Xj, using the result as an intermediate
exponent. The instructions multiply the coefficient in Xk by the coefficient
in Xj to produce an algebraically-signed product consisting of 96 bits
(single precision) or 192 bits (double precision). If the products high-order
bit (bit 16) is a one, the product is already normalized and the high-order
48 bits (single precision) or 96 bits (double precision) become an
intermediate coefficient.

If the high-order bit is a zero, the instructions left-shift the 96-bit or
192-bit product one bit position, decrease the intermediate exponent by one,
and use the high-order 48 bits (single precision) or 96 bits (double
precision) as the intermediate coefficient. This one-position shift results in
a normalized product if both input operands were normalized before
executing the multiply instruction. If the intermediate exponent (including
the adjustment for normalization) is not equal to an out-of-range value, the
intermediate exponent and the intermediate coefficient (with its sign)
transfer to Xk to form the final result.

If one or both of the input operands in Xk and Xj consist of an infinite,
indefinite, or zero FP number, the result transferred to Xk is a
nonstandard FP number. Refer to Standard and Nonstandard FP Numbers
in chapter 2 of this manual.

Instruction Descriptions 1..;75

Floating-Point Arithmetic Instructions

Floating-Point Quotient

Opcode 33jk

Mnemonic DIVF Xk,Xj

Instruction Floating-Point Quotient, Xk replaced by Xk divided by Xj

Opcode 37jk

Mnemonic DIVD Xk,Xj

Instruction Double-Precision Ploating-Point Quotient, XXk replaced by XXk divided by
XXj

Format

Remarks

0 78 1112 15

1 33,37 I j t k I

The following instruction description applies to either single- or
double-precision operations. References to Xk or Xj in the description also
apply to XXk or XXj for the double-precision instructions.

The divide FP instructions subtract the Xk exponent (divisor) from the Xk
exponent (dividend) and use the signed result as an intermediate exponent.

These instructions divide the Xk signed coefficient by the Xj signed
coefficient. If the Xj coefficient is unnormalized before instruction
execution, and can be divided into the Xk coefficient by a factor exceeding
or equal to two, the CP detects a divide fault.

If the CP does not detect errors, the division results in an
algebraically-signed quotient with 48 bits (single precision) or 96 bits
(double precision), plus an overflow bit. The overflow bit allows for cases in
which the divisor can be divided into the dividend by a factor equal to or
exceeding one, but less than two. If the overflow bit is a zero, the sign bit
and 48- or 96-bit quotient require no further adjustments. If the overflow
bit is a one, the instruction right-shifts the quotient one position, end-off,
with the overflow bit inserted into the high-order bit position, and the
exponent increased by one. The intermediate exponent and intermediate
coefficient (with its sign) transfer to Xk to form the final result. When one
or both of the input operands in Xk and Xj consist of an infinite,
indefinite, or zero FP number, the result transferred to Xk is a
nonstandard FP number. (Refer to Standard and Nonstandard FP Numbers

- in chapter 2 of this manual.)

This instruction may cause a divide fault exception condition.

1-76 60458890 Revision E

Floating-Point Bran~h Instructions

Floating-Point Branch Instructions

This subgroup (table 1-17) consists of five conditional branch instructions. Each
instruction compares two FP numbers and performs either a normal or branch exit
based on the comparison results.

Table 1-17. Floating-Point Branch Instructions

Opcode Format Instruction Mnemonic

98 jkQ FP branch on equal BRFEQ

99 jkQ FP branch on not equal BRFNE

9A jkQ FP branch on greater than BRFGT

9B jkQ FP branch on greater than or equal to BRFGE

9E jkQ FP branch on overflow BROVR

9E jkQ FP branch on underflow BRUND

9E jkQ FP branch on indefinite BRINF

3C jk FP compare CMPF

Normal Exit

The instruction takes a normal exit if the branch condition is not satisfied. The next
instruction address forms by adding four to the BN field of the current PVA in P.

Branch Exit

The instruction takes a branch exit if the branch condition is satisified. The next
instruction address forms by adding two times the Q field value (from the branch
instruction) to the BN field of the current PVA in P.

Group Interrupt Conditions

The following interrupt conditions apply to all FP branch instructions.

• Debug

• Floating-point loss-of-significance

• Floating-point indefinite

Refer to CP Interrupts in chapter 2 of this manual for descriptions of these conditions.

Revision E Instruction Descriptions 1-77

Floating-Point Branch Instructions

Floating-Point Branch on Comparison

Opcode 98jkQ

Mnemonic BRFEQ Xj,Xk,Q

Instruction Branch to P Displaced by 2*Q, if floating-point Xj equal to Xk

Opcode 99jkQ

Mnemonic BRFNE Xj,Xk,Q

Instruction Branch to P Displaced by 2*Q, if floating-point Xj not equal to Xk

Opcode 9AjkQ

Mnemonic BRFGT Xj,Xk,Q

Instruction Branch to P Displaced by 2*Q, if floating-point Xj greater than Xk

Opcode 9BjkQ

Mnemonic BRFGE Xj,Xk,Q

Instruction Branch to P Displaced by 2*Q, if floating-point Xj greater than or equal to
Xk

Format

Remarks

1-78 60458890

0 78 1112 1516 31

jsa,ss,sA,sej j I k I a

Each compare and branch instruction performs an algebraic comparison
between the 64-bit words in Xj and Xk. If the branch conditions are
satisfied, the instruction takes a branch exit. If the conditions are not
satisfied, a normal exit results.

These instructions treat the 64-bit words in Xj and Xk as single-precision
FP numbers. If Xj or Xk specifies register XO, these instructions interpret
XO as all zeros.

For the results with the various combinations of comparison input data,
refer to Standard and Nonstandard FP Numbers in chapter 2 of this
manual.

Revision E

Floating-Point Bra~ch Instructions

Floating-Point Branch on Condition

Opcode 9EjkQ

Mnemonic j Field Xk Tested For

00 Exponent overflow. BROVR Xk,Q

01 Exponent underflow. BRUND Xk,Q

10/11 Exponent indefinite. BRINF Xk,Q

Instruction Branch to (P) Displaced by 2*Q, if floating-point Xk is exception per j

Format

Remarks

Revision E

0 78 1112 1516 31

Q

The instruction takes a branch exit if the exception condition designated by
bits 10 and 11 of the instruction j field applies to the 64-bit FP number in
Xk. A normal exit occurs if the exception condition designated by j field
bits 10 and 11 does not apply to the 64-bit FP number in Xk.

Instruction Descriptions 1-79

Floating-Point Brench Instructions

Floating-Point Compare

Opcode 3Cjk

Mnemonic CMPF Xi,Xj,Xk

Instruction Compare Floating-Point Xj to Xk, result to XlR

Format

Remarks

1-80 60458890

0 78 1112 15

I 3c I j I k I
This instruction algebraically compares the Xj 64-bit word to the Xk 64-bit
word and indicates the result by setting bits in XlR. The instruction treats
the 64-bit words in Xj and Xk as single-precision FP numbers.

If Xj or Xk specifies register XO, the instruction interprets XO as all zeros.
XlR bits are set as follows:

Results of
Compare

Xj = Xk

Xj > Xk

Xj < Xk

Indefinite

Register XlR

Clear XlR.

Clear bits 32 and 34 through 63, set bit 33.

Clear bits 34 through 63, set bits 32 and 33.

Clear bits 33 through 63, set bit 32.

If the comparison results are indefinite, the CP records an FP indefinite
condition and sets register XlR as shown in the preceding table. If the
corresponding user mask bit is set and the trap enabled, the corresponding
program interrupt occurs.

Revision E

Vector Instructio!1 Descriptions

Vector Instruction Descriptions

The vector instruction group consists of 20 operation codes in six subgroups:

• Integer vector arithmetic

• Integer vector compare

• Logical vector arithmetic

• Integer/floating-point vector conversion

• Floating-point vector arithmetic

o Special-purpose vector instructions

Table 1-18 lists the instructions within each subgroup. For descriptions of vector
length, page size, broadcast, interrupts, and overlap, refer to Vector Programming in
chapter 2 of this manual.

Vector Instruction Format

The vector instruction group utilizes the jkill format (shown below).

0 78 1112 1516 1920 31

I OPCODE I j I k I I D

8 4 4 4 12

Designator Description

j Designates register Aj which contains the starting address of a source
vector, VAj.

k Designates register Ak which contains the starting address of a
destination vector, VAk.

i Designates register Ai which contains the starting address of a second
source vector, VAi. May also designate register Xi which contains the
interval for gather and scatter instructions.

D Specifies vector length (number of operations). For further information,
refer to Vector Length described under Vector Programming in chapter 2
of this manual.

Revision E Instruction Descriptions 1-81

Vector Instruction Format

Table 1-18. Vector Instructions

Opcode Format Instruction · Mnemonic

44 jkiD Integer Vector Sum ADD XV

45 jkiD Integer Vector Difference SUB XV

50 jkiD Integer Vector Compare, = CMPEQV

51 jkiD Integer Vector Compare, < CMPLTV

52 jkiD Integer Vector Compare, ~ CMPGTV

53 jkiD Integer Vector Compare '::/= CMPNEV
.J

48 jkiD Logical Vector Sum IORV

49 jkiD Logical Vector Difference XORV

4A jkiD Logical Vector Product ANDV

4B jkiD Convert Vector from Integer to FP CNIFV

4C jkiD Convert Vector from FP to Integer CNFIV

40 jkiD Floating-Point Vector Sum ADDFV

41 jkiD Floating-Point Vector Difference SUBFV

42 jkiD Floating-Point Vector Product MULFV

43 jkiD Floating-Point Vector Quotient DIVFV

4D jkiD Shift Vector Circular SHFV

54 jkiD Merge Vector MRGV

55 jkiD Gather Vector GTHV

56 jkiD Scatter Vector SCTV

57 jkiD Floating-Point Vector Summation SUMFV

1-82 60458890 Revision E

Vector Instruction Format

Integer Vector Arithmetic

The instructions in this subgroup perform arithmetic operations on pairs of integers
that compose source vectors from CM. After completing the required operation, the
instructions store the results in the destination vector into CM.

Opcode 44jkiD

Mnemonic ADDXV

Instruction Integer Vector Sum, V(Ak) replaced by V(Aj) plus V(Ai)

Opcode 45jkiD

Mnemonic SUB XV

Instruction Integer Vector Difference, V(Ak) replaced by V(Aj) minus V(Ai)

Remarks These instructions perform the indicated arithmetic operation on the first
element from V(Aj) and V(Ai) and store the result as the first element of
V(Ak). This operation repeats for successive elements until the required
number of operations has been performed.

Revision E Instruction Descriptions 1-83

Vector Instruction Format

Integer Vector Compue

The instructions in this subgroup perform comparisons between pairs of integers that
compose source vectors from CM. After completing the required operation, the
instructions store the results in a destination vector that returns to CM.

Opcode 50jki.D

Mnemonic CMPEQV

Instruction Integer Vector Compare, V(Ak) replaced by V(Aj) equal to V(Ai)

Opcode 51jki.D

Mnemonic CMPLTV

Instruction Integer Vector Compare, V(Ak) replaced by V(Aj) less than V(Ai)

Opcode 52jki.D

Mnemonic CMPGTV

Instruction Integer Vector Compare, V(Ak) replaced by V(Aj) greater than or equal to
V(Ai)

Opcode 53jki.D

Mnemonic CMPNEV

Instruction Integer Vector Compare, V(Ak) replaced by V(Aj) not equal V(Ai)

Remarks These instructions perform the indicated integer arithmetic comparison on
the first elements from V(Aj) and V(Ai). If the comparison is true, bit 0 is
set and bits 1 through 63 are cleared in the first element of V(Ak). If the
comparison is false, bits 0 through 63 are cleared in the first element of
V(Ak). This operation repeats for successive elements until the required
number of operations has been performed. When broadcast of V(Aj) is
selected and j=O, the content of XO interprets as all zeros (refer to Vector
Broadcast under Special Purpose Vector Instructions later in this chapter).

1-84 60458890 Revision E

Vector Instruction Format

Logical Vector Arithmetic

The instructions in this subgroup perform logical operations between pairs of elements
that compose source vectors from CM. After completing the required operation, the
instructions store the results in a destination vector that returns to CM.

Opcode 48jki.D

Mnemonic IORV

Instruction Logical Vector Sum, V(Ak) replaced by V(Aj) OR V(Ai)

Opcode 49jki.D

Mnemonic XORV

Instruction Logical Vector Difference, V(Ak) replaced by V(Aj) XOR V(Ai)

Opcode 4Ajki.D

Mnemonic ANDV

Instruction Logical Vector Product, V(Ak) replaced by V(Aj) AND V(Ai)

Remarks These instructions perform the indicated logical operation on the first
element from V(Aj) and V(Ai) and store the result as the first element of
V(Ak). This operation repeats for successive elements until the required
number of operations has been performed.

Integer/Floating-Point Vector Conversion

The instructions in this subgroup perform conversions on successive element that
compose a source vector from CM. After completing the required operation, the
instructions store the results in a destination vector that returns to CM.

Opcode 4BjkiD

Mnemonic CNIFV

Instruction Convert Vector, floating-point V(Ak) formed from integer V(Aj)

Opcode 4Cjki.D

Mnemonic CNFIV

Instruction Convert Vector, integer V(Ak) formed from floating-point V(Aj)

Remarks These instructions perform the indicated conversion on the first element
from V(Aj) and store the result as the first element of V(Ak). This
operation repeats for successive elements until the required number of
conversions has been performed.

Revision E Instruction Descriptions 1-85

Vector Instruction Format

Floating-Point Vector Arithmetic

The instructions in this subgroup perform arithmetic operations on pairs of
floating-point operands that compose source vectors from CM. After completing the
required operation, the instructions store the results in a destination vector that
returns to CM.

Opcode 40jkiD

Mnemonic ADDFV

Instruction Floating-Point Vector Sum, V(Ak) replaced by V(Aj) plus V(Ai)

Opcode 41jkiD

Mnemonic SUBFV

Instruction Floating-Point Vector Difference, V(Ak) replaced by V(Aj) minus V(Ai)

Opcode 42jkiD

Mnemonic MULFV

Instruction Floating-Point Vector Product, V(Ak) replaced by V(Aj) times V(Ai)

Opcode 43jkiD

Mnemonic DIVFV

Instruction Floating-Point Vector Quotient, V(Ak) replaced by V(Aj) divided by V(Ai)

Remarks These instructions perform the indicated arithmetic operations on the first
element from V(Aj) and V(Ai) and store the result as the first element of
V(Ak). This operation repeats for successive elements until the required
number of operations has been performed.

1-86 60458890 Revision E

Vector Instruction Format

Special Purpose Vector Instructions

The instructions in this subgroup perform various manipulative operations on source
vectors from CM.

Opcode 4Djki.D

Mnemonic SHFV

Instruction Shift Vector Circular, V(Ak) replaced by V(Ai), direction and count per
V(Aj)

Remarks This instruction performs a circular shift on the first element from V(Ai)
as directed by the first element of V(Aj) and stores the result as the first
element of V(Ak). This operation repeats for successive elements until the
required number of operations has been performed. ·

The shift count for each element in V(Ai) is taken from the rightmost
eight bits of the corresponding element of V(Aj). The sign bit in the
leftmost position of the 8-bit shift count determines the shift direction. A
positive shift count (sign bit = 0) left-shifts the instruction; a negative
shift count (sign bit = 1) right-shifts the instruction. Shifts may be from
zero through 63 bits left and from 1 through 64 bits right. (A shift count
of zero causes the associated instruction to transfer the initial element of
V(Ai) to the corresponding element in V(Ak) with no shift performed.)

When vector broadcast of V(Aj) is selected and j = 0, the XO contents
interpret as all zeros.

Opcode 54jkiD

Mnemonic MRGV

Instruction Merge Vector, V(Ak) partially replaced by V(Aj) per mask V(Ai)

Remarks This instruction replaces the first element of V(Ak) with the first element
of V(Aj) if bit 0 is set in the first element of V(Ai). If bit 0 is clear, the
first element of V(Ak) is left unchanged. This operation repeats for
successive elements until the required number of operations has been
performed.

Opcode 55jki.D

Mnemonic GTHV

Instruction Gather Vector, V(Ak) replaced by gathered V(Aj) with interval Xi

Remarks This instruction forms the contiguous vector V(Ak) by gathering elements
from V(Aj) at interval Xi (refer to figure 1-1). This instruction obtains the
first element from V(Aj) and stores it as the first element of V(Ak). The
second element to be stored in V(Ak) is taken from the address formed by
adding the rightmost 32 bits of Xi, left-shifted three places with zero-fill,
to the rightmost 32 bits of the previous address. The nth element of V(Ak)
is replaced by V(Ak) whose address is (Aj) + S*(n-l)(Xi). Execution does not
alter the Xi contents.

Revision E Instruction Descriptions 1-87

Vector Instruction Format

Xi Xi Xi

V(Aj)

t
(Aj]

Positive Interval

V(Ak)----------,.

V(Aj)

t
(Aj]

Zero Interval

V(Ak)----------~

1 • Xi Xi 1 • Xi

V(Aj)

Negative Interval

V(Ak)~------------_..

Figure 1-1. Gather Instruction

1-88 60458890 Revision E

Vector Instruction Format

Opcode 56jkiD

Mnemonic SCTV

Instruction Scatter Vector, V(Ak) replaced by scattered V(Aj) with interval Xi

Remarks This instruction scatters the contiguous V(Aj) elements in V(Ak) at interval
Xi (refer to figure 1-2). This instruction obtains the first element from
V(Aj) and stores it as the first element of V(Ak). The second contiguous
element from V(Aj) is stored into V(Ak) at the address formed by adding
the rightmost 32 bits of Xi, left-shifted three places with zero-fill, to the
rightmost 32 bits of A(k). Successive elements from V(Aj) are stored into
the addresses formed by adding the rightmost 32 bits of Xi, left-shifted
three places with zero-fill, to the rightmost 32 bits of the previous address.
The nth element of V(Aj) is stored into V(Ak) at (Aj) + S*(n-l)(Xi). Execution
does not alter the Xi contents.

Opcode 57jkiD

Mnemonic SUMFV

Instruction Floating-Point Vector Summation, Xk replaced by summation of elements
in V(Ai)

Remarks This instruction adds together all the elements in V(Ai) and stores the sum
in Xk. The individual add operations which together form this instruction
are single-precision sums and may be performed in any order.

Revision E Instruction Descriptions 1-89

Vector Instruction Format

V(Aj)----------.-

Positive Interval

(Ak]

i
V(Ak)

Xi . I Xi . I Xi .1

V(Aj) ----------...,.

Zero Interval

V(Ak)

t
fAk]

V(Aj) ----------~~

Negative Interval

V(Ak)

1. Xi Xi 1. Xi

Figure 1-2. Scatter Instruction

1-90 60458890 Revision E

System Instruction Descriptions

System Instruction Descriptions

The system instructions consist of 27 operation codes in six classes. The classes are
based on the characteristics of the code segment from which the instructions are
accessed, or the CP mode in which the instructions may operate. The classes are as
follows:

• Nonprivileged

• Local privileged

• Global privileged

• Virtual State

• Virtual State monitor mode

• Mixed mode

Local and global privileged instructions execute only when the XP field of the
associated segment descriptor designates the appropriate privilege (with the CP in any
mode). Virtual State monitor mode instructions execute only when the CP is in Virtual
State monitor mode. Mixed mode instruction parameters within the instruction
determine their privilege/mode requirements. Refer to Access Protection in chapter 2 of
this manual for more information.

Revision E Instruction Descriptions 1-91

Nonprivileged System Instructions

Nonprivileged System Instructions

The instructions in this subgroup are listed in table 1-19. In some cases, a portion of
the instruction word is unused, as indicated in the instruction format. Instruction
execution is not affected by these unused bits, but it is recommended these bits be
zeros.

Table 1-19.

Opcode

00

01

02

04

06

08

14

16

BO

B4

B5

BE,BF

C(0-7)

1-92 60458890

Nonprivileged Instructions

Format Instruction

jk Program error

jk Scope loop synchronization

jk Exchange

jk Return

jk Pop

jk Copy free-running counter

jk Test and set bit

jk Test and set page

jkQ Call relative

jkQ Compare swap

jkQ Call indirect

jkQ Reserved opcodes

SjkiD Execute algorithm

Mnemonic

HALT

SYNC

EXCHANGE

RETURN

POP

CPYTX

LB SET

TPAGE

CALLREL

CMPXA

CALLSEG

EXECUTE,S

Revision E

Nonprivileged System Instructions

Program Error

Opcode OOjk

Mnemonic HALT

Instruction Program Error

Format 0 78 15

00 -

Remarks This instruction causes an instruction specification error with the
corresponding program interrupt or halt.

Scope Loop Sync

Opcode Oljk

Mnemonic SYNC

Instruction Scope Loop Sync

Format

Remarks

Revision E

0 78 15

I 01 -
For the model 855, set CP breakpoint register 32 to 10116 by performing
the CMSE command ER2,32 = 10116. The instruction triggers at TP 44 at
location 3Al-C1C.

This instruction is a no-operation within the CP. The instruction generates
a pulse to a test point for oscilloscope synchronization.

Instruction Descriptions 1-93

Nonprivileged System Instructions

Exchange

Opcode 02jk

Mnemonic EXCHANGE

Instruction Exchange

Format

Remarks

1-94 60458890

0 78 15

I 02

This instruction exchanges the current process registers (formatted as an
exchange package) with another set stored in CM, and does the following:

e When executed with CP in Virtual State monitor mode, the processor
switches from monitor to job mode.

• When executed in Virtual State job mode, the processor switches from
job to monitor mode; and the system call bit sets in the monitor
condition register (MCR 10).

In either case, the P register stored in the outgoing exchange package
points to the next instruction that would have executed if the exchange
had not occurred.

This instruction can cause the following exception conditions:

• Environment specification error

• System call

Refer to CP Modes of Operation in chapter 2 of this manual for further
information.

Revision E

Nonprivileged System Instructions

Return

Opcode 04jk

Mnemonic RETURN

Instruction Return

Format

Remarks

Revision E

0 78 15

I 04

This instruction requires the following register assignments:

Register Description

(AO) Dynamic space pointer (DSP).

(Al) Current stack frame (CSF) pointer.

(A2) Previous save area (PSA) pointer.

In exchange Top of stack (TOS) pointer for current ring of execution.
package

In exchange TOS pointer for previous ring of execution.
package

This instruction reestablishes the stack frame and environment of the
previous procedure (which must be executing in an equal or less privileged
ring as the current procedure). This operation does not load MCR or UCR.
The instruction executes as follows:

1. Update the TOS pointer by storing the CSF pointer from Al into the
TOS pointer for the current ring of. execution. This has the effect of
cancelling the current stack frame.

2. Load the environment from the previous save area (as defined by PSA
pointer in A2 and the stack frame descriptor in PSA) as follows:

• P register (all fields).

• VMID (CP state switch may take place).

• CFF and OCF.

e User mask register.

• AO through At (per SFSA descriptor).

• Xs through Xt (per SFSA descriptor).

3. Set the RN field of each A register loaded from SFSA equal to the
largest of the following:

• A(RN) from SFSA.

• Initial A2(RN).

• Rl of SDE for initial A2.

Instruction Descriptions 1-95

Nonprivileged System Instructions

1-96 60458890

4. If the final P(RN) does not equal the initial P(RN), set any A(RN) not
loaded from PSA in step 2 (and less than the final P(RN)) equal to the
final P(RN).

5. Update TOS pointer in the exchange package.

6. Clear trap enable delay.

7. If any A(RN) loaded from PSA in step 2 is zero, set MCR 60 with
interrupt or halt. When this happens, the instruction execution
completes and UTP is unaltered.

This instruction can cause the following exception conditions:

• Address specification error

• Invalid segmentJring number zero

• Access violation

• Environment specification error

• Page table search without find

• Outward call/inward return

• Critical frame flag

• Debug

Revision E

Pop

Opcode

Mnemonic

Instruction

Format

Remarks

Revision E

Nonprivileged Syste.m Instructions

06jk

POP

Pop

0 78 15

I 06 ~

This instruction requires the following register assignments:

Register Description

(AO) Dynamic space pointer (DSP).

(Al) Current stack frame (CSF) pointer.

(A2) Previous save area (PSA) pointer.

In exchange Top of stack (TOS) pointer for current ring of execution.
package

This instruction moves the CSF, PSA, and TOS pointers to eliminate the
stack frame without changing the P-counter. This instruction reestablishes
the stack frame (but not the environment) of the previous procedure, which
must be in the same ring of execution as the current procedure. The stack
frame is reestablished as follows:

1. Obtain the stack frame descriptor from the PSA (SFSA for the previous
procedure) using the PSA pointer in A2.

2. Update the CSF pointer by loading Al with word 2 from the PSA. Set
Al ring number equal to P ring number.

3. Update the PSA pointer by loading A2 with word 3 from the PSA. Set
A2 ring number equal to the largest of: 1) the A2 initial ring number,
2) the A2 ring number from PSA, or 3) the RI field of the segment
descriptor associated with the PSA.

4. Load the critical frame flag (CFF) and the on-condition flag from the
PSA.

5. Update the TOS pointer by storing the CSF pointer from final Al into
the TOS pointer for the current ring of execution. This has the effect of
cancelling the current stack frame.

6. If any Al(RN) or A2(RN) loaded from PSA in step 2 is zero, set
MCR 60 with interrupt or halt. Instruction execution completes and
DTP is unaltered.

Instruction Descriptions 1.97

Nonprivileged System Instructions

This instruction may cause the following exception conditions:

• Address specification error

• Invalid segment/ring number zero

• Access violation

• Environment specification error

• Page table search without find

• Inter-ring pop

• Critical frame flag

• Debug

Copy Free-Running Counter

Opcode 08jk

Mnemonic CPYTX Xk,Xj

Instruction Copy Free-Running Counter to Xk at XjR

Format

Remarks

1-98 60458890

0 78 1112 15

I oa

This instruction copies the free-running counter in CM into Xk (the
free-running counter consists of either 64 bits of counter or 48 bits of
counter which are right-justified with zero-fill in the leftmost 16 bits). XjR
bits 32 and 34 through 63 are zeros. XjR bit 33 specifies which processor
port the instruction uses to read the counter as follows:

Bit 33

0

1

Port Selected

Local processor port to CM.

External processor port to CM of another system.

Revision E

Nonprivileged Syste~ Instructions

Test and Set Bit

Opcode 14jk

Mnemonic LBSET Xk,Aj,XO

Instruction Load Bit to XkR from Aj Bit Indexed by XOR and Set Bit in CM

Format

Remarks

Revision E

0 78 1112 15

I 14

This instruction transfers one bit from CM into Xk.R bit position 63 and
clears Xk bits 0 through 62. The instruction also sets that bit in CM
without changing any other bits in CM.

The instruction addresses the CM byte containing the bit by adding bits 32
through 60 of XOR (right-shifted three positions, end-off, with sign
extension on the left), to bits 32 through 63 of Aj. The instruction uses
XOR bits 61 through 63 to locate the bit position within the addressed
byte. Values 0 through 7 for these three bits select corresponding bits 0
through 7 from the addressed byte.

No other CM accesses (from any port) to the CM byte containing that bit
are permitted from the start of the read access until the end of the write
access (when the instruction sets the bit in CM).

The system performs a serialization function before and after instruction
execution. The CP delays instruction execution until all previous CM
accesses by previous instructions complete, and delays execution of the next
instruction until all CM accesses from this instruction complete.

To establish operand access validity, the instruction uses read- and
write-type CM accesses. The read access bypasses cache memory.
Termination of the write access purges the associated cache entry.

This instruction may cause the following exception conditions:

• Address specification error

o Invalid segment/ring number zero

• Access violation

• Page table search without find

• Debug

Instruction Descriptions 1-99

Nonprivileged System Instructions

To present the information in this chapter in a structured format, this
page has been left blank.

1-100 60458890 Revision E

Nonprivileged Sys~m Instructions

Test and Set Page

Opcode 16jk

Mnemonic TPAGE Xk,Aj

Instruction Test Page (Aj) and Set XkR

Format

Remarks

0 78 1112 15

16

This instruction tests CM for the presence of the page (corresponding to
the PVA in Aj) in the system page table with its valid bit set in the
associated page descriptor. If the tested page is in CM, the used bit in the
associated page descriptor sets, and the real memory address translated
from the PVA from Aj transfers to XkR. If the tested page is not in CM,
the instruction sets XkR bit 32 and clears XkR bits 33 through 63.

This instruction may cause the following exception conditions:

o Address specification error

o Invalid segment/ring number zero

Revision E Instruction Descriptions 1-101

Nonprivileged System Instructions

Call Relative

Opcode BOjkQ

Mnemonic CALLREL Aj,Ak,Q

Instruction Call to P Displaced by S*Q, binding chapter pointer per Aj, arguments per
Ak

Format

Remarks

0 78 1112 1516 31

I BO I j I k I a

Register assignments are as follows:

Register Description

(AO) Dynamic space pointer (DSP).

(Al) Current stack frame (CSF) pointer.

(A2) Previous save area (PSA) pointer.

(A4) Argument pointer.

In exchange Top of stack (TOS) pointer per RN in P.
package

This instruction saves the current procedure (caller) environment and calls
another procedure (callee) within the same segment as the caller. The RN
and SEG fields of P remain unaltered.

The caller's environment is saved by storing designated process and
processor registers into a stack frame save area (SFSA) generated on top of
the current stack frame. The DSP in AO, rounded to the next available
full-word address, is the PVA of the first word in this SFSA. The
instruction saves some CP registers in the SFSA unconditionally. These
registers are as follows:

• P register

• Stack frame descriptor

• User mask

• Virtual machine identifier

• Register AO

1-102 60458890 Revision E

Revision E

Nonprivileged System Instructions

The caller specifies other registers saved. AO is always the first register
saved, and XOR specifies .other A and X registers to be saved. XOR has the
following format:

XO Bits

52-55

56-59

60-63

52 55 56 5960 63

X-last

---A-last

"-----X-first

Registers Saved

First X register.

Last A register.

Last X register.

The call instruction does not store any X register if the value of X-last
exceeds X-fi.rst.

After storing the registers in the SFSA, the instruction executes as follows:

1. Modify dynamic space pointer (DSP) in AO by adding eight times the
number of SFSA words to the BN in AO.

2. Update the top of stack (TOS) pointer in the exchange package by
storing the modified DSP into the exchange package TOS entry
corresponding to the current ring of execution, as determined by the
RN in P. This creates a new stack frame.

3. Form the target address by adding eight times Q to the BN in P. Bits
61 through 63 of P are forced to zero.

4. Establish the stack frame of the callee by loading AO, Al, and A2 from
the PSA (SFSA of the callee).

5. Copy Aj to A3 and Ak to A4 to reflect parameter changes required to
transfer control to the callee.

This instruction may cause the following exception conditions.

• Instruction specification

• Address specification error

• Invalid segment/ring number zero

• Access violation

• Page table search without find

• Debug

Instruction Descriptions 1-103

Nonprivileged System Instructions

Compare Swap

Opcode B4jkQ

Mnemonic CMPXA Xk,Aj,XO,Q

Instruction Compare Xk to (Aj), if locked, branch to P displaced by 2*Q, if unlocked,
load/store (Aj), result to· XlR

Format

Remarks

0 78 1112 1516 31

Q

If the leftmost 32 bits of a 64-bit word in CM location Aj are all ones (Aj
locked), the instruction takes a branch exit. The target address forms by
adding the value 2 times Q (sign-extended) to the BN field of the PVA in
P.

If the above condition is absent, the instruction compares the Xk 64-bit
word with the word in CM location Aj (64-bit integer compare). If the two
words are equal, the instruction stores XO in location Aj and clears XlR. If
the two words are unequal, the instruction loads the word in CM location
Aj into Xk and sets XlR as follows (in either case, the instruction takes a
normal exit):

Results of
Compare

Xk = (Aj)

Xk > (Aj)

Xk < (Aj)

Action Taken

Store XO at (Aj), clear XlR.

Load (Aj) into Xk, clear XlR bits 32 and 34 through 63, set
XlR bit 33.

Load (Aj) into Xk, clear XlR bits 34 through 63, set XlR
bits 32 and 33.

Within a given CP, execution of this instruction delays until all previous
CM accesses complete. Execution of all subsequent instructions delays until
all CM accesses due to this instruction complete. In dual-CP systems, if a
second CP executes a compare swap instruction while the other CP is
processing one, the second CP reads the 64-bit word in location Aj, finds
the leftmost 32 bits all ones (locked), and branch-exits. The hardware,
however, does not inhibit other instruction codes issued from the other CP
(or any PP instructions) from accessing and altering location Aj.

The read access bypasses cache and the write access purges the associated
cache entry.

For the debug scan, Aj is both a read and a write address; whereas P + 2Q
is a branch target address only when the branch occurs.

1-104 60458890 Revision E

Nonprivileged System Instructions

This instruction may cause the following exception condition~:

• Instruction specification

• Address specification error

• Invalid segment/ring number zero

• Access violation

• Page table search without find

• Debug

Revision E Instruction Descriptions 1-105

Nonprivileged System Instructions

Call Indirect

Opcode B5jkQ

Mnemonic CALLSEG Aj,Ak,Q

Instruction Call per (Aj Displaced by 8*Q), arguments per Ak

Format

Remarks

0 78 1112 1516 31

I 85 I j I k I a

The instruction uses the following assigned registers:

Register

(AO)

(Al)

(A2)

(A3)

(A4)

In exchange
package

In exchange
package

In CM

Description

Dynamic space pointer (DSP).

Current stack frame pointer.

Previous save area pointer.

Binding chapter pointer.

Argument pointer.

Top of stack (TOS) pointer for the caller's ring of execution.

TOS pointer for the callee's ring of execution.

Code base pointer (CBP) addressed by A3 + B*Q.

This instruction saves the current procedure (caller) environment and calls
another procedure (callee) indirectly. The callee must be executing within
the same or in a higher privileged ring as the caller. The indirect target
address is listed in the CBP addressed by (Aj displaced by eight times
sign-extended Q). The instruction saves the environment (as specified by
XOR) in the SFSA generated on top of the current stack frame. For details,
refer to the call relative instruction described in this chapter.

The instruction executes as follows:

1. Add eight times Q to the BN field from register Aj to form the PVA of
a CBP from a binding chapter segment (which contains the target
PVA).

2. Round DSP upward as follows: Add seven to AO, then force AO bits 61
through 63 to zero.

3. Store environment in SFSA, per XOR.

4. Copy P bits 0 through 31 to XOR (caller's ID).

5. Modify DSP in AO by adding eight times the number of SFSA words to
AO bits 32 through 63.

1-106 60458890 Revision E

Revision E

Nonprivileged System Instructions

6. Adjust TOS pointer in the exchange package by storing this modified
DSP in the TOS entrY. for the current ring of execution, as determined
by the RN field in P.

7. Load P key with segment descriptor lock for callee.

8. If P ring number is less than callee segment descriptor R2 (inter-ring
call), go to step 12.

9. Set P ring number equal to callee segment descriptor R2.

10. Load P SEG and BN fields with code base pointer SEG and BN fields.

11. If CBP VMID = 1 (call is to CYBER 170 State), go to step 17.

12. If internal procedure (code base pointer EPF = O), go to step 16.

13. Load A3 with new binding chapter pointer, setting RN equal to the
larger of the RN in CBP and the new RN in P register.

14. If trap operation, go to step 17; if call instruction, copy Ak to A4 (pass
parameters). When k is 0 through 3, the final contents of A4 is with
respect to which A register is copied.

15. Copy (AO) to A2 (DSP from step 2 to PSA pointer).

16. Clear on-condition flag.

17. Load Al with top of stack pointer from exchange package per final P
ring number, and clear the critical frame flag.

18. Set dynamic space pointer in AO equal to current stack frame pointer
in Al.

19. Copy VMID from CBP to the VMID register.

NOTE

The trap interrupt operation unconditionally includes all the above steps
except steps 10, 11, and 14.

This instruction may cause the following exception conditions:

• Instruction specification

• Address specification error

• Invalid segment/ring number zero

• Access violation

• Environment specification error

• Page table search without find

• Outward call/inward return

• Debug

Instruction Descriptions 1-107

Nonprivileged System Instructions

Reserved Operation Codes

Opcode BEjkQ

Mnemonic (None)

Instruction Reserved for user

Opcode BFjkQ

Mnemonic (None)

Instruction Reserved for user

Format 0 78 1112 1516

I BE,BF I j I k I
31

a I
Remarks These instructions are reserved for the user for software simulation of

operations that executive state does not provide through trap interrupts.
These operation codes will not be used in future hardware extensions.

When not implemented, these instructions cause the unimplemented
instruction exception, with interrupt or halt.

Execute Algorithm

Opcode CSjkiD

Mnemonic EXECUTE,s j,k,i,D

Instruction Execute Algorithm per S

Remarks This instruction is reserved for future expansion.

When not implemented, this instruction causes the unimplemented
instruction exception, with interrupt or halt.

1-108 60458890 Revision E

Local Privileged Sys~m Instruction

Local Privileged System Instruction

Instructions in this subgroup (table 1-20) can execute only from segments which (by the
associated segment descriptor) have either local or global privilege. If a local privileged
instruction is fetched from a segment without either local or global privilege, the CP
detects a privileged instruction fault, inhibits execution, and initiates the corresponding
program interrupt or halt.

Table 1-20. Local Privileged Instruction

Opcode Format Instruction Mnemonic

17 jk Load page table index LPAGE

Load Page Table Index

Opcode 17jk

Mnemonic LPAGE Xk,Xj,Xi

Instruction Load Page Table Index per Xj to XkR and set XlR

Format

Remarks

Revision E

0 78 1112 15

I 17

This instruction searches the page table in CM for the presence of a page,
returns the final search index value to XkR, and sets XlR to indicate the
search results. The SVA in Xj defines the required page table entry.

The SVA determines the starting point in the page table search. The
search continues until the corresponding page descriptor is found, a
continue bit equal to zero is detected, or 32 entries have been searched. -
The validity bit is ignored.

When the page is found, the page table index associated with that entry
transfers to XkR, the number of entries searched transfers to XlR bits 33
through 63 (right-justified with zeros extended), and XlR bit 32 sets to
indicate the find.

When a page corresponding to the SVA in Xj is not found, the page table
index value of the last entry tested transfers to XkR, the number of
entries searched transfers to XlR bits 33 through 63 (right-justified with
zeros extended), and XlR bit 32 clears.

If the instruction's k field equals one, register XlR loads with the
result-indication bit and the number of entries searched instead of the
index value.

This instruction can cause the following exception conditions:

• Privileged instruction fault

• Address specification error

Instruction Descriptions 1-109

Global Privileged System Instruction

Global Privileged System Instruction

The processor interrupt instruction can execute only from segments which (by the
associated segment descriptor) have global privilege. If this instruction is fetched from
a segment without global privilege, the CP detects a privileged instruction fault,
inhibits execution, and initiates the corresponding program interrupt or halt.

Processor Interrupt

Opcode 03jk

Mnemonic INTRUPT Xk,j

Instruction Processor Interrupt per Xk

Format

Remarks

0 78 1112 15

I 0a I j I k I
This instruction sends an external interrupt to one or more CPs (including
the executing CP) through their CM ports. The interrupting CP sends Xk
to CM. CM then sends an external interrupt to the processor(s) connected
to the ports whose numbers correspond to the bits set in Xk as follows:

Xk Bit

60

61

62

63

Port Number

3

2

1

0

Bits 0 through 59 are not used to send interrupts and are ignored by the
CM, but have correct parity. When two ports of the same memory connect
to the interrupting CP, the state of Xk bit 33 selects the port the CP uses
to send Xk to CM along with the interrupt. (Xk bit 33 thus overrides RMA
bit 33 for memory port selection).

State of
Bit 33

Clear

Set

Memory Port Used

0

1

The system delays this instruction's execution until all previous CM
accesses by the interrupting CP complete. If a CP sends an interrupt to
itself, this instruction completes executing before the interrupt is taken.

This instruction can cause the privileged instruction fault exception
condition.

1-110 60458890 Revision E

Monitor Mode Instructions

Monitor Mode Instructions

Instructions in this subgroup can execute only with the processor in executive monitor
mode. Otherwise, the CP detects an instruction specification error, inhibits ·instruction
execution, and initiates the corresponding program interrupt. Refer to Mixed Mode
Instructions in the following text.

Mixed Mode Instructions

The execution of instructions in this subgroup (table 1-21) depends on an instruction
parameter. The parameter value determines whether the instruction is executable from
nonprivileged, local-privileged, or global-privileged segments, or whether the CP must
be in Virtual State monitor mode.

Table 1-21. Mixed Mode Instructions

Opcode Format Instruction Mnemonic

05 jk Purge buffer PURGE

OE jk Copy from state register CPYSX

OF jk Copy to state register CPYXS

9F jk Branch on condition register BRCR

Revision E Instruction Descriptions 1-111

Mixed Mode Instructions

Purge Buffer

Opcode 05jk

Mnemonic PURGE Xj,k

Instruction Purge Buffer k of Entry per Xj

Fornuit

Remarks

0 78 1112 15

I 05

This instruction invalidates entries in the cache (models 835, 845, 855, and
990 and CYBER 990E and 995E), map, or instruction buffer, selectable as
follows:

• All entries in cache (models 835, 845, 855, and 990 and CYBER 990E
and 995E), map or instruction buffer.

• All entries for a given segment in cache (models 835, 845, 855, and 990
and CYBER 990E and 995E) or map.

• All entries for a given page in cache (models 835, 845, 855, and 990
and CYBER 990E and 995E) or map.

• All entries for a given 512-byte block in cache (models 835, 845, 855,
and 990 and CYBER 990E and 995E).

Xj contains the required address information as either the system virtual
address (SVA) or the process virtual address (PVA). The k value determines
the buffer to be purged, the range of entries to be purged, and the
addressing type used, as follows:

Value of k

k = 0

k = 1

k = 2

k = 3

k = 4 through 7

k = 8

Description

Purge all cache entries in a 512-byte block defined
by SVA in Xj.

Purge all cache entries in ASID defined by SVA in
Xj.

Purge all cache entries.

Purge all cache entries in 512-byte block defined by
PVA in Xj.

Purge all cache entries in SEG defined by PVA in Xj.

Purge all map entries in page associated with page
table entry defined by SVA in Xj. (Page size is
determined from page size mask register.)

1-112 60458890 Revision E

Revision E

Value of k

k = 9

k=A

k = B

k = C through F

Mixed Mode Instructions

Description

Purge all map entries pertaining to page table
entries included in segment defined by SVA in Xj.

Purge all map entries pertaining to page table entry
defined by PVA in Xj. Page size mask register
specifies number of bytes in page.

Purge all map entries pertaining to segment table
entry defined by PVA in Xj and to all page table
entries included within that segment.

Purge all map entries, ignore Xj.

If k equal 0, 1, 2, or 8 through F, this instruction is a local-privileged
instruction. It is a nonprivileged instruction for all other k values.

The system performs a serialization function before this instruction begins
execution, and again when execution completes. The system delays
instruction execution until all previous accesses to CM by this processor
complete, and delays the fetch or execution of subsequent instructions until
all CM accesses for this instruction complete.

This instruction may cause the following exception conditions:

• Privileged instruction fault

• Address specification error (k = 0, 1, 8, or 9)

• Invalid segments

Instruction Descriptions 1-113

Mixed Mode Instructions

Copy to/from State Register

These instructions copy certain state registers to and from X registers.

If a copy instruction reads a nonexistent register or any register restricted to MCU
access only, the system clears all 64 bits of Xk. A copy instruction used to write a
nonexistent register, or any register restricted to read only or MCU access only, results
in a no-operation.

Opcode OEjk

Mnemonic CPYSX Xk,Xj

Instruction Copy to Xk from State Register per Xj

Format 0 78 1112 15

I OE I j I k I
Remarks This instruction copies the state register addressed by Xj into Xk.

Opcode OFjk

Mnemonic CPYXS Xk,Xj

Instruction Copy to State Register from Xk per Xj

Format 0 78 1112 15

Remarks This instruction copies Xk into the state register addressed by Xj.

These instructions can cause the following exception conditions:

• Instruction specification error

• Privileged instruction fault (CPYXS only)

1-114 60458890 Revision E

Mixed Mo~e Instructions

Branch on Condition Register

Opcode 9FjkQ

Mnemonic BRCR j,k,Q

Instruction Branch to P Displaced by 2*Q and Alter Condition Register per jk

Format

Remarks

0 78 1112 1516 31

I SF I j I k I a

This instruction tests the state of a bit in the monitor or user condition
register (MCR or UCR), as selected by the instruction j and k fields. The j
field selects the bit within the register; and the k field selects the register,
branch condition, and bit alteration. When the branch condition is satisfied,
the target address forms by adding two times Q (sign-extended) to the BN
in P. The instruction depends on k as follows:

Value of k

0 or 8

1 or 9

2 or A

3 or B

4 or C

5 or D

6 or E

7 or F

Description

If bit j of MCR is set, clear bit and branch.

If bit j of MCR is clear, set bit and branch.

If bit j of MCR is set, branch.

If bit j of MCR is clear, branch.

If bit j of UCR is set, clear bit and branch.

If bit j of UCR is clear, set bit and branch.

If bit j of UCR is set, branch.

If bit j of UCR is clear, branch.

When the k field is 0, 1, 8, or 9, this instruction executes in Virtual State
monitor mode only. If the processor is not in monitor mode with execution
restricted to that mode, the CP detects an instruction specification error,
inhibits instruction execution, and initiates the corresponding program
interrupt or halt.

This instruction can cause the following exception conditions:

o Instruction specification error

• Debug

Revision F Instruction Descriptions 1-115

Peripheral Processor Instruction Descriptions

Peripheral Processor Instruction Descriptions

The peripheral processor (PP) instruction set comprises the following eight subgroups:

• Load and store

• Arithmetic

• Logical

• Replace

• Branch

• Central memory (CM) access

• Input/Output {I/0)

• Other IOU

The Virtual State PP instruction set includes the CYBER 170 State PP instructions as
a subset. The instruction set uses a 7-bit operation code (opcode) which includes the
CYBER 170 State 6-bit operation code. Extensions to the instruction set allow programs
to manipulate 16-bit IOU words, 64-bit CM words (as both 12- and 16-bit byte~), and to
reference 28-bit CM addresses.

PP Instruction Formats

Table 1-22 shows and describes Virtual State PP instruction formats. PP instructions
are 16 or 32 bits long. In instruction descriptions, the opcode is represented by four or
five octal digits. The fifth digit, when used, indicates the state of bit 58/42 (zero or
one) in 1/0 instructions.

48 5758 63

I OPCODE I d I
32 4142 4748 5152 63

I OPCODE I d jooooj m I
48 575859 63

I OPCODE Isl c I
32 414243 4748 5152 63

I OPCODE Isl c looool m I

1-116 60458890 Revision F

PP Data Format

Table 1-22. PP Instruction Formats and Nomenclature

Designator Description

OPCODE Instruction operation code; bits 49 through 51 or 33 through · 35 of which
are zeros.

d

m

dm

s

c

A

p

R

()

(())

Operand, direct/indirect address, shift count.

Operand, direct address, or 1/0 function code.

Operand.

110 instruction subcode.

1/0 instruction channel number.

Eighteen-bit arithmetic register.

Twelve-bit program address counter.

Twenty-eight-bit relocation register for central memory addressing (bits
58 through 63 of R are appended zeros).

Quantity in brackets is a direct address (used when required for clarity).

Quantity in brackets is an indirect address (used when required for
clarity).

PP Data Format

Figure 1-3 shows PP data formats, the packing of PP data into CM words, and the
unpacking of CM words into PP words.

PP Relocation Register Format

Figure 1-4 shows the PP relocation register format. This register is loaded/stored by
instructions 24 and 25 (load/store R register).

Revision E Instruction Descriptions 1-117

PP Relocation Register Format

63 6059 4847 3635 2423 1211 0

looooj j b j c I d I e 160-bit data word
.... ___ ._ __ a ___ ..__---------~----._ ____ __._ _____ _. in central memory

0 1516

LOCATION

d

d+1

d+2

d+3

d+4

48 5152

0000

0000

0000

0000

0000

3132

a

b

c

d

e

63

60-bit data word
in PP memory

4748 63

I a I b I c I d j 64-bit data word .__ ______ _._ ________________ ___.. ______ ___. in central memory

LOCATION 48 63

d a

d+ 1 b
-------- 64-bit data word

d+2 c in PP memory

d+3 d

Figure 1-3. PP Data Format

36 4546 5758 63 48 51525354 63 LOCATION

I a I b I 000000 I 1::::e1 a

I
d

Relocation register b d+1
in PP hardware

Relocation register
in PP memory

Figure 1-4. PP Relocation Register Format

I.;118 60458890 Revision E

PP Load and Store Instructions

PP Load and Store Instructions

Load and store instructions (table 1-23) transfer 6-, 12-, 16-, and 18-bit quantities
between the PP A register and the PP memory.

Table 1-23. PP Load and Store Instructions

Opcode Format Instruction Mnemonic

0014 d Load d LDN

0015 d Load complement d LCN

0020 dm Load dm LDC

0030 d Load (d) LDD

1030 d Load (d) long LDDL

0040 d Load ((d)) LDI

1040 d Load ((d)) long LDIL

0050 dm Load (m+(d)) LDM

1050 dm Load (m + (d)) long LDML

0034 d Store (d) STD

1034 d Store (d) long STDL

0044 d Store ((d)) STI

1044 d Store ((d)) long STIL

·0054 dm Store (m+(d)) STM

1054 dm Store (m + (d)) long STML

Revision E Instruction Descriptions 1-119

PP Load and Store Instructions

Load

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

0014d

LDN d

Load d

48 5758 63

I 0014 I d I
This instruction clears the A register and loads the rightmost six bits of A
with a copy of the 6-bit positive integer in the d field. The leftmost 12 bits
of A are zeros.

0015d

LCN d

Load Complement d

48 5758 63

I 0015 I d I
This instruction clears the A register and loads the rightmost 6 bits of A
with a ones complement copy of the d field. The leftmost 12 bits of A are
ones.

Opcode 0020dm

Mnemonic LDC dm

Instruction Load dm

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

32 4142 4748 5152 63

0020 I d !ooool m

p P+1

This instruction clears the A register and loads A with an 18-bit operand
consisting of d as the leftmost 6 bits and m as the rightmost 12 bits.

0030d

LDD d

Load (d)

48 5758 63

I 0030 I d I
This instruction clears the A register and loads A with the rightmost
twelve bits of the positive integer from PP memory location d. The
leftmost 6 bits of A are zeros.

1-120 60458890 Revision E

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

Revision E

PP Load and Store Instructions

1030d

LDDL d

Load (d) Long

48 5758 63

I 1030 I d I
This instruction clears the A register and loads A with the 16-bit positive
integer from PP memory location d. The leftmost two bits of A are zeros.

0040d

LDI d

Load ((d))

48 5758 63

I 0040 I d I
This instruction clears the A register and loads A with the rightmost 12
bits of an operand obtained by indirect addressing. The leftmost 6 bits of A
are zeros. To perform indirect addressing, the IOU reads a word from PP
memory location d and uses it as the operand address.

1040d

LDIL d

Load ((d)) Long

48 5758 63

I 1040 I d I
This instruction clears the A register and loads A with a 16-bit operand
obtained by indirect addressing. The leftmost two bits of A are zeros. To
perform indirect addressing, the IOU reads a word from PP memory
location d and uses it as the operand address.

Instruction Descriptions 1-121

PP Load and Store Instructions

Opcode 0050dm

Mnemonic LDM m,d

Instruction Load (m + (d))

Format

Remarks

32 4142 4748 5152 63

0050 I d looool m

p P+1

This instruction clears the A register and loads A with the rightmost 12
bits of an operand read from PP memory using indexed direct addressing.
The leftmost 6 bits of A are zeros.

To accomplish indexed direct addressing, the IOU adds an index value to a
base address to form the operand address. The m field contains the base
address and the d field specifies the PP memory location containing the
index value. If d equals zero, the m field base address is the operand
address.

Opcode 1050dm

Mnemonic LDML m,d

Instruction Load (m + (d)) Long

Format

Remarks

32 4142 4748 5152 63

1050 I d looool m

p P+1

This instruction clears the A register and loads A with a 16-bit operand
read from PP memory using indexed direct addressing. The leftmost two
bits of A are zeros.

To accomplish indexed direct addressing, the IOU adds an index value to a
base address to form the operand address. The m field contains the base
address and the d field specifies the PP memory location containing the
index value. If d equals zero, the m field base address is the operand
address.

1-122 60458890 Revision E

Store

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

Revision E

PP Load and Store Instructions

0034d

STD d

Store (d)

48 5758 63

I 0034 I d I
This instruction stores the quantity contained in the A register rightmost
12 bits in location d and clears the leftmost 4 bits of location d. The
operation does not alter the contents of A.

1034d

STDL d

Store (d) Long

48 5758 63

I 1034 I d I
This instruction stores the A register rightmost 16 bits in location d. The
operation does not alter the contents of A.

0044d

STI d

Store ((d))

48 5758 63

I 0044 I d I
This instruction stores the A register rightmost 12 bits in the location
specified by the location d contents. The leftmost 4 bits of ((d)) are zeros
and the A register contents are unaltered.

1044d

STIL d

Store ((d)) Long

48 5758 63

I 1044 I d I
This instruction stores the A register rightmost 16 bits at a location
obtained by indirect addressing. The leftmost 4 bits of ((d)) are zeros and
the A register contents are unaltered.

Instruction Descriptions 1-123

PP Load and Store Instructions

Opcode 0054dm

Mnemonic STM m,d

Instruction Store (m + (d))

Format

Remarks

32 4142 4748 5152 63

0054 I d looool m

p P+1

This instruction stores the A register rightmost 12 bits in the location
determined by indexed direct addressing. Bits 48 through 51 of (m + (d))
clear.

To accomplish indexed direct addressing, the IOU adds an index value to a
base address to form the operand address. The m field contains the base
address and the d field specifies the PP memory location containing the
index value. If d equals zero, the m field base address is the operand
address.

Opcode 1054dm

Mnemonic STML m,d

Instruction Store (m + (d)) Long

Format

Remarks

32 4142 4748 5152 63

1054 I d looooj m

p P+1

This instruction stores the A register rightmost 16 bits in the location
determined by indexed direct addressing.

To accomplish indexed direct addressing, the IOU adds an index value to a
base address to form the operand address. The m field contains the base
address and the d field specifies the PP memory location containing the
index value. If d equals zero, the m field base address is the operand
address.

1-124 60458890 Revision E

PP Arithmetic Instructions

PP Arithmetic Instructions

The PP arithmetic instructions (table 1-24) perform integer arithmetic using the PP A
register contents as one operand, with the other operand specified by the instruction.
The result replaces the original contents of A. The IOU considers the operands as ones
complement integers and performs the arithmetic in ones complement.

Table 1-24. PP Arithmetic Instructions

Opcode Format Instruction Mnemonic

0016 d Add d ADN

0021 dm Add dm ADC

0031 d Add (d) J ADD

1031 d Add (d) long ADDL

0041 d Add ((d)) ADI

1041 d Add ((d)) long ADIL

0051 dm Add (m+(d)) ADM

1051 dm Add (m+(d)) long ADML

0017 d Subtract d SBN

0032 d Subtract" (d) SBD

1032 d Subtract (d) long SBDL

0042 d Subtract ((d)) SBI

1042 d Subtract ((d)) long SBIL.

0052 dm Subtract (m + (d)) SBM

1052 dm Subtract (m + (d)) long SBML

Revision E Instruction Descriptions 1-125

PP Arithmetic Instructions

Arithmetic Add

Opcode 0016d

Mnemonic ADN d

Instruction Add d

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

48 5758 63

I 0016 I d I
This instruction adds d (treated as a 6-bit positive quantity) to the A
register contents.

002ldm

ADC dm

Add dm

32 4142 4748 5152 63

I 0021 I d looool m I
p P+1

This instruction adds an 18-bit value comprised of the 6-bit d field and the
m field rightmost 12 bits to the A register operand. The d field becomes
the rightmost 6 bits and m becomes the rightmost 12 bits of the value.

003ld

ADD d

Add (d)

48 5758 63

I 0031 I d I
This instruction adds the rightmost 12 bits of the operand in location d to
the A register. contents.

1-126 60458890 Revision E

Opcode

Mnemonic

Instruction

Format

Remarks

PP Arithmetic Instructions

103ld

ADDL d

Add (d) Long

48 5758 63

I 1031 I d I
This instruction adds the 16-bit operand in location d to the A register
contents.

Opcode 0041d

Mnemonic ADI d

Instruction Add ((d))

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

Revision E

48 5758 63

I 0041 I d I
This instruction reads a 12-bit operand from PP memory (PPM) using
indirect addressing and adds the rightmost 12 bits to the A register
contents. To perform indirect addressing, the PP reads a word from PPM
location d and uses it as the operand address.

1041d

ADIL d

Add ((d)) Long

48 5758 63

I 1041 I d I
This instruCtion reads a 16-bit operand from PP memory (PPM) using
indirect addressing and adds the operand to the A register contents. To
perform indirect addressing, the PP reads a word from PPM location d and
uses it as the operand address.

Instruction Descriptions 1-127

PP Arithmetic Instructions

Opcode 0051dm

Mnemonic ADM m,d

Instruction Add (m + (d))

Format

Remarks

32 4142 4748 5152 63

0051 I d looool m

p P+1

This instruction reads an operand from PP memory (PPM) using indexed
direct addressing and adds the rightmost 12 bits to the A register contents.

To accomplish indexed direct addressing, the PP adds an index value to a
base address to form the operand address. The m field contains the base
address and the d field specifies the PPM location containing the index
value. If d equals zero, the m field base address is the operand address.

Opcode 1051dm

Mnemonic ADML m,d

Instruction Add (m + (d)) Long

Format

Remarks

32 4142 4748 5152 63

1051 I d looool m

p P+1

This instruction reads a 16-bit operand from PP memory (PPM) using
indexed direct addressing and adds the operand to the A register contents.

To accomplish indexed direct addressing, the PP adds an index value to a
base address to form the operand address. The m field contains the base
address and the d field specifies the PPM location containing the index
value. If d equals zero, the m field base address is the operand address.

1-128 60458890 Revision E

PP Arithmetic Instructions

Arithmetic Subtract

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

0017d

SBN d

Subtract d

48 5758 63

I 0017 I d I
This instruction subtracts d (treated as a 6-bit positive quantity) from the
A register contents.

0032d

SBD d

Subtract (d)

48 5758 63

I 0032 I d I
This instruction subtracts the 12-bit operand in location d from the A
register contents.

Opcode 1032d

Mnemonic SBDL d

Instruction Subtract (d) Long

Format

Remarks

Revision E

48 5758 63

I 1032 I d I
This instruction subtracts the 16-bit operand in location d from the A
register contents.

Instruction Descriptions 1-129

PP Arithmetic Instructions

Opcode 0042d

Mnemonic SBI d

Instruction Subtract ((d))

Format 48 5758 63

I 0042 I d I
Remarks This instruction reads a 12-bit operand from PP memory (PPM) using

indirect addressing and subtracts the operand from the A register contents.
To perform indirect addressing, the PP reads a word from PPM location d
and uses it as the operand address.

Opcode 1042d

Mnemonic SBIL d

Instruction Subtract ((d)) Long

Format 48 5758 63

I 1042 I d I
Remarks This instruction reads a 16-bit operand from PP memory (PPM) using

indirect addressing and subtracts the operand from the A register contents.
To perform indirect addressing, the PP reads a word from PPM location d
and uses it as the operand address.

Opcode 0052dm

Mnemonic SBM m,d

Instruction Subtract (m + (d))

Format

Remarks

32 4142 4748 5152 63

0052 . I d jooooj m

p P+1

This instruction reads an operand from PP memory (PPM) using indexed
direct addressing and subtracts the rightmost 12 bits of the operand from
the A register contents.

To accomplish indexed direct addressing, the PP adds an index value to a
base address to form the operand address. The m field contains the base
address and the d field specifies the PPM location containing the index
value. If d equals 0, the m field base address is the operand address.

1-130 60458890 Revision E

PP Arithmetic Instructions

Opcode 1052dm

Mnemonic SBML m,d

Instruction Subtract (m + (d)) Long

Format

Remarks

Revision E

32 4142 4748 5152 63

1052 I d f ooool m

p P+1

This instruction reads a 16-bit operand from PP memory (PPM) using
indexed direct addressing and subtracts this operand from the A register
contents.

To accomplish indexed direct addressing, the PP adds an index value to a
base address to form the operand address. The m field contains the base
address and the d field specifies the PPM location containing the index
value. If d equals zero, the m field base address is the operand address.

Instruction Descriptions 1-131

PP Logical Instructions

PP Logical Instructions

The logical instructions (table 1-25) perform operations with one operand as the PP A
register contents, and the other as specified by the instruction. The result replaces the
original contents of A.

Table 1-25. PP Logical Instructions

Opcode Format Instruction Mnemonic

0010 d Shift d SHN

0011 d Logical difference d LMN

0023 dm Logical difference dm LMC
J

0033 d Logical difference (d) LMD

1033 d Logical difference (d) long LMDL

0043 d Logical difference ((d)) LMI

1043 d Logical difference ((d)) long LMIL

0053 dm Logical difference (m + (d)) LMM

1053 dm Logical difference (m + (d)) long LMML

0012 d Logical product d LPN

0022 dm Logical product dm LPC

1022 d Logical product (d) long LPDL

1023 d Logical product ((d)) long LPIL

1024 dm Logical product (m + (d)) long LPML

0013 d Selective clear d SCN

1-132 60458890 Revision E

PP Logic~! Instructions

Logical Shift

Opcode

Mnemonic

Instruction

Format

Remarks

OOlOd

SHN d

Shift A by d

48 5758 63

I 0010 I d I
This instruction shifts the A register operand in the direction and by the
number of places specified by the d field value. If d is in the range 00
through 37 (a positive value), the shift is left-circular, d positions. A
circular shift means that a bit shifted out of the highest-order position
moves into the lowest-order position.

If d is in the range 40 through 77 (a negative value), the shift is to the
right, end-off. Thus, d equal to 06 causes a left shift of six places; d equal
to 71 causes a right shift of six places.

Logical Difference

Opcode

Mnemonic

Instruction

Format

Remarks

Revision F

OOlld

LMN d

Logical Difference d

48 5758 63

I 0011 I d I
This instruction forms the logical difference between the d field contents
and the rightmost 6 bits of the A register operand. The operation does not
alter the most significant 12 bits of A.

The logical difference (exclusive OR) results from a bit-for-bit logical
comparison of the two binary quantities, as illustrated by the following
example:

Operand 1 0011
Operand 2 0101

Result 0110

This comparison is equivalent to complementing the first operand bits
corresponding to the second operand bits that are ones.

Instruction Descriptions 1-133

PP Logical Instructions

Opcode 0023dm

Mnemonic LMC dm

Instruction Logical Difference dm

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

32 4142 4748 5152 63

0023 I d jooooj m

p P+1

This instruction replaces the A register contents with the bit-for-bit logical
difference between the A register operand and the 18-bit quantity dm.

The logical difference (exclusive OR) results from a bit-for-bit logical
comparison of the two binary quantities, as illustrated by the following
example:

Operand 1 0011
Operand 2 0101

Result 0110

This comparison is equivalent to complementing the first operand bits
corresponding to the second operand bits that are ones.

0033d

LMD d

Logical Difference (d)

48 5758 63

I 0033 I d I
This instruction replaces the A register contents with the logical difference
between the A register rightmost 12 bits and the rightmost 12 bits of the
operand in the location specified by the d field. The operation does not
alter the leftmost 6 bits of A.

1033d

LMDL d

Logical Difference (d) Long

48 5758 63

I 1033 I d I
This instruction replaces the A register contents with the logical difference
between the A register rightmost 16 bits and the operand in the location
specified by the d field. The operation does not alter the most significant 2
bits of A.

1-134 60458890 Revision F

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

Revision F

PP Logi~al Instructions

0043d

LMid

Logical Difference ((d))

48 5758 63

I 0043 I d I
This instruction replaces the A register contents with the logical difference
between the A register rightmost 12 bits and the rightmost 12 bits of an
operand read by indirect addressing. The operation does not alter the
leftmost 6 bits of A. The d field contents specify the PP memory location
containing the operand address.

The logical difference (exclusive OR) results from a bit-for-bit logical
comparison of the two binary quantities, as illustrated by the following
example:

Operand 1 0011
Operand 2 0101

Result 0110

This comparison is equivalent to complementing the first operand bits
corresponding to the second operand bits that are ones.

1043d

LMIL d

Logical Difference ((d)) Long

48 5758 63

I 1043 I d I
This instruction replaces the A register contents with the logical difference
between the A register rightmost 16 bits and an operand read by indirect
addressing. The operation does not alter the leftmost 2 bits of A. The d
field contents specify the PP memory location containing the operand
address.

The logical difference (exclusive OR) results from a bit-for-bit logical
comparison of the two binary quantities, as illustrated by the following
example:

Operand 1 0011
Operand 2 0101

Result 0110

This comparison is equivalent to complementing the first operand bits
corresponding to the second operand bits that are ones.

Instruction Descriptions 1-135

~~ ~
~i~

PP Logical Instructions

Opcode 0053dm

Mnemonic LMM m,d

Instruction Logical Difference (m + (d))

Format

Remarks

32 4142 4748 5152 63

0053 I d looool m

p P+1

This instruction replaces the A register contents with the logical difference
between the A register rightmost 12 bits and the rightmost 12 bits of an
operand read by indexed direct addressing. The operation does not alter the
most significant 6 bits of A. Indexed direct addressing uses the m field
contents as a base address. The d field specifies the PP memory location
containing the index value which the PP adds to the base address to form
the operand address.

The logical difference (exclusive OR) results from a bit-for-bit logical
comparison of the two binary quantities, as illustrated by the following
example:

Operand 1 0011
Operand 2 0101

Result 0110

This comparison is equivalent to complementing the first operand bits
corresponding to the second operand bits that are ones.

1-136 60458890 Revision F

PP Logic~l Instructions

0pcode 1053dm

Mnemonic LMML m,d

Instruction Logical Difference (m + (d)) Long

Format

Remarks

Revision F

32 4142 4748 5152 63

1053 I d looool m

p P+1

This instruction replaces the A register contents with the logical difference
between the A register rightmost 16 bits and an operand read by indexed
direct addressing. The operation does not alter the leftmost 2 bits of A.
Indexed direct addressing uses the m field contents as a base address. The
d field specifies the PP memory location containing the index value which
the PP adds to the base address to form the operand address.

The logical difference (exclusive OR) results from a bit-for-bit logical
comparison of the two binary quantities, as illustrated by the following
example:

Operand 1 0011
Operand 2 0101

Result 0110

This comparison is equivalent to complementing the first operand bits
corresponding to the second operand bits that are ones.

Instruction Descriptions 1-137

!l!

PP Logical Instructions

Logical Product

Opcode 0012d

Mnemonic LPN d

Instruction Logical Product A and d

Format

Remarks

48 5758 63

I 0012 I d I
This instruction forms the logical product of the d field contents and the
rightmost 6 bits of the A register operand. The leftmost 12 bits of A are
zeros.

The logical product results from a bit-for-bit logical comparison of the two
binary quantities, as illustrated by the following example:

Operand 1 0011
Operand 2 0101

Result 0001

The individual result bits are ones if the corresponding bits in the first
and second operand are ones.

Opcode 0022dm

Mnemonic LPC dm

Instruction Logic Product dm

Format

Remarks

32 4142 4748 5152 63

0022 I d f ooooj m

p P+1

This instruction forms the bit-for-bit logical product of the A register
operand and an 18-bit operand consisting of d as the leftmost 6 bits and m
as the rightmost 12 bits.

The logical product results from a bit-for-bit logical comparison of the two
binary quantities, as illustrated by the following example:

Operand 1
Operand 2

Result

0011
0101

0001

1-138 60458890 Revision F

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

PP Logi~al Instructions

1022d

LPDL d

Logical Product (d) Long

32 4142 4748 5152 63

I 1022 I d !ooool m I - p P+1

This instruction forms the bit-for-bit logical product of the A register
operand and the 16-bit quantity from location d. The result replaces the
original contents of A; bits 46 and 47 of A clear.

The logical product results from a bit-for-bit logical comparison of the two
binary quantities, as illustrated by the following example:

Operand 1 0011
Operand 2 0101

Result 0001

1023d

LPIL d

Logical Product ((d)) Long

32 4142 4748 5152 63

I 1023 I d !ooool m I
p P+1

Remarks This instruction forms the logical product ·of a 16-bit operand read from
storage (using indirect addressing) and the original contents of A. Bits 46
and 47 of A clear. The d field contents specify the PP memory location
containing the operand address.

Opcode 1024dm

Mnemonic LPML m,d

Instruction Logical Product (m + (d)) Long

Format

Remarks

Revision F

32 4142 4748 5152 63

1024 I d jooool m

p P+1

This instruction replaces the A register contents with the logical product of
the A register rightmost 16 bits and a 16-bit operand read by indexed
direct addressing. Bits 46 and 47 of A clear. Indexed direct addressing uses
the m field contents as a base address. The d field specifies a PP memory
location containing the index value which adds to the base address to form
the operand address.

Instruction Descriptions 1-139

PP Logical Instructions

Selective Clear

Opcode

Mnemonic

Instruction

Format

Remarks

0013d

SCN d

Selective Clear d

48 5758 63

I 0013 I d I
This instruction clears each of the rightmost 6 bits of the A register
operand if the corresponding d field bit is a one. The operation does not
alter the leftmost 12 bits of A.

1-140 60458890 Revision F

PP Replace Instructions

PP Replace Instructions

The replace instructions (table 1-26) perform integer arithmetic with one operand as
the contents of A and the other as specified by the instruction. The result replaces the
original contents of A and the contents of the other operand's location. The result
stored in location d is either the rightmost 12 bits (for the normal instructions) or the
rightmost 16 bits (for the long instructions) of the A register. Therefore, since A
contains 18 bits, the value remaining in A cannot equal the value stored in PP
memory location d.

The PP considers the operands as ones complement integers and performs ones
complement arithmetic.

Table 1-26. PP Replace Instructions

Opcode Format Instruction Mnemonic

0035 d Replace add (d) RAD

1035 d Replace add (d) long RADL

0036 d Replace add one (d) AOD

1036 d Replace add one (d) long AODL

0045 d Replace add ((d)) RAI

1045 d Replace add ((d)) long RAIL

0046 d Replace add one ((d)) AOI

1046 d Replace add one ((d)) long AOIL

0055 dm Replace add (m+(d)) RAM

1055 dm Replace add (m + (d)) long RAML

0056 dm Replace add one (m+(d)) AOM

1056 dm Replace add one (m+(d)) long AOML

0037 d Replace subtract one (d) SOD

1037 d Replace subtract one (d) long SODL

0047 d Replace subtract one ((d)) SOI

1047 d Replace subtract one ((d)) long SOIL

0057 dm Replace subtract one (m + (d)) SOM

1057 dm Replace subtract one (m + (d)) long SOML

Revision E Instruction Descriptions 1-141

PP Replace Instructions

Replace Add

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

0035d

RAD d

Replace Add (d)

48 5758 63

I 0035 I d I
This instruction adds the rightmost 12 bits of the location d contents to
the A register and stores the rightmost 12 bits of A, zero-extended, at
location d. The result also remains in A at the end of the operation, with
the original contents purged.

1035d

RADL d

Replace Add (d) Long

48 5758 63

I 1035 I d I
This instruction replaces the operand in the PP memory (PPM) location d
with the sum of the PPM location d operand plus the A register rightmost
16 bits. The result also remains in A at the end of the operation, with the
original contents purged.

0036d

AOD d

Replace Add One (d)

48 5758 63

I 0036 I d I
This instruction clears the A register, loads A with the location d
rightmost 12 bits, and adds one to A. The instruction then stores the
rightmost 12 bits of A, zero-extended, at location d. The result remains in
the A register at the end of the operation, with the original contents
purged.

1-142 60458890 Revision E

PP Repla~e Instructions

Opcode 1036d

Mnemonic AODL d

Instruction Replace Add One (d) Long

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

Revision E

48 5758 63

I 1036 I d I
This instruction replaces the operand in PP memory (PPM) location d with
the sum of the original operand value plus one. The result remains in the
A register at the end of the operation, with the original contents purged.

0045d

RAI d

Replace Add ((d))

48 5758 63

I 0045 I d I
This instruction replaces the rightmost 12 bits of the operand at the
address specified by the PP memory (PPM) location d contents with the
sum of the original operand value plus the A register rightmost 12 bits.
The result also remains in A at the end of the operation, with the original
contents purged.

1045d

RAIL d

Replace Add ((d)) Long

48 5758 63

I 1045 I d I
This instruction replaces the 16-bit operand at the address specified by the
PP memory (PPM) location d contents with the sum of the original operand
value plus the A register contents. The result also remains in A at the
end of the operation, with the original contents purged.

lnstructi~n Descriptions 1-143

PP Replace Instructions

Opcode 0046d

Mnemonic AOI d

Instruction Replace Add One ((d))

Format 48 5758 63

I 0046 I d I
Remarks This instruction replaces the rightmost 12 bits of the operand at the

address specified by the PP memory (PPM) location d contents with the
sum of the original operand value plus one. The result remains in the A
register at the end of the operation, with the original contents purged.

Opcode 1046d

Mnemonic AOIL d

Instruction Replace Add One ((d)) Long

Format 48 5758 63

I 1046 I d I
Remarks This instruction replaces the operand at the address specified by the PP

memory (PPM) location d contents with the sum of the original operand
value plus one. The result remains in the A register at the end of the
operation, with the original contents purged.

Opcode 0055dm

Mnemonic RAM m,d

Instruction Replace Add (m + (d))

Format

Remarks

32 4142 4748 5152 63

0055 I d !ooool m

p P+1

This instruction reads the rightmost 12 bits of an operand from PP
memory (PPM) using indexed direct addressing and adds the operand to
the the A register contents. The sum's rightmost 12 bits replace the
original PPM operand. The result remains in A at the end of the
operation, with the original contents of A purged. Indexed direct addressing
uses the m field contents as a base address. The d field specifies the PPM
location containing the index value which the PP adds to the base address
to form the operand address.

1-144 60458890 Revision E

PP Replace Instructions

Opcode 1055dm

Mnemonic RAML m,d

Instruction Replace Add (m + (d)) Long

Format 32 4142 4748 5152 63

1055 I d looooj m

p P+1

Remarks This instruction reads a 16-bit operand from PP memory (PPM) using
indexed direct addressing, adds the operand to the A register contents, and
replaces the original PPM operand with the sum's rightmost 16 hits. The
result remains in A at the end of the operation. Indexed direct addressing
uses the m field contents as a base address. The d field specifies the PPM
location containing the index value which the PP adds to the base address
to form the operand address.

Opcode 0056dm

Mnemonic AOM m,d

Instruction Replace Add One (m + (d))

Format 32 4142 4748 5152 63

0056 I d looooj m

p P+1

Remarks This instruction adds one to the rightmost 12 hits of a PP memory (PPM)
operand read using indexed direct addressing and replaces the original
PPM operand with the sum's rightmost 12 bits. Indexed direct addressing
uses the m field contents as a base address. The d field specifies the PPM
location containing the index value which the PP adds to the base address
to form the operand address.

Opcode 1056dm

Mnemonic AOML m,d

Instruction Replace Add One (m + (d)) Long

Format

Remarks

Revision E

32 4142 4748 5152 63

1056 I d looool m

p P+1

This instruction adds one to a 16-bit PP memory (PPM) operand read
using indexed direct addressing and replaces the original PPM operand
with the sum's rightmost 16 bits. Indexed direct addressing uses the
m field contents as a base address. The d field specifies the PPM location
containing the index value which the PP adds to the base address to form
the operand address.

Instruction Descriptions 1-145

PP Replace Instructions

Replace Subtract

Opcode 0037d

Mnemonic SOD d

Instruction Replace Subtract One (d)

Format 48 5758 63

I 0037 I d I
Remarks This instruction replaces the rightmost 12 bits of the operand in PP

memory (PPM) location d with the original operand value minus one. The
result remains in the A register at the end of the operation, with the
original contents purged.

Opcode 1037d

Mnemonic SODL d

Instruction Replace Subtract One (d) Long

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

48 5758 63

I 1037 I d I
This instruction replaces the operand in PP memory (PPM) location d with
the difference of the original operand value minus one. The result remains
in the A register at the end of the operation, with the original contents
purged.

0047d

SOI d

Replace Subtract One ((d))

48 5758 63

I 0047 I d I
This instruction replaces the rightmost 12 bits of the operand at the
address specified by the PP memory (PPM) location d contents with the
original operand value minus one. The result remains in the A register at
the end of the operation, with the original contents p-urged.

1-146 60458890 Revision E

PP Repla~e Instructions

Opcode 1047d

Mnemonic SOIL d

Instruction Replace Subtract One ((d)) Long

Format 48 5758 63

I 1047 I d I
Remarks This instruction replaces the operand at the address specified by the PP

memory (PPM) location d contents with the original operand value minus
one. The result remains in the A register at the end of the operation, with
the original contents purged.

Opcode 0057dm

Mnemonic SOM m,d

Instruction Replace Subtract One (m + (d))

Format 32 4142 4748 5152 63

0057 I d jooooj m

p P+1

Remarks This instruction subtracts one from the rightmost 12 bits of a PP memory
(PPM) operand read using indexed direct addressing, and replaces the
original PPM operand with the rightmost 12 bits ·of the difference. The
result remains in the A register at the end of the operation, with the
original contents purged. Indexed direct addressing uses the m field
contents as a base address. The d field specifies the PPM location
containing the index value which the PP adds to the base address to form
the operand address.

Opcode 1057dm

Mnemonic SOML m,d

Instruction Replace Subtract One (m + (d)) Long

Format

Remarks

Revision E

32 4142 4748 5152 63

1057 I d jooooj m

p P+1

This instruction subtracts one from a 16-bit PP memory (PPM) operand
read using indexed direct addressing and replaces the original PPM
operand with the rightmost 16 bits of the difference. The result remains in
the A register at the end of the operation, with the original contents
purged. Indexed direct addressing uses the m field contents as a base
address. The d field specifies the PPM location containing the index value
which the PP adds to the base address to form the operand address.

Instruction Descriptions 1-147

PP Branch Instructions

PP Branch Instructions

The branch instructions (table 1-27) allow departure from sequential instruction
execution.

Table 1-27.

Opcode

0001

0002

0003

0004

0005

0006

0007

PP Branch Instructions

Format Instruction

dm Long jump to m + (d)

dm Return jump to m+(d)

d Unconditional jump d

d Zero jump d

d Nonzero jump d

d Plus jump d

d Minus jump d

Mnemonic

LJM

RJM

UJN

ZJN

NJN

PJN

MJN

Long Jump

Opcode

Mnemonic

Instruction

Format

Remarks

OOOldm

LJM m,d

Long Jump to m+(d)·

32 4142 4748 5152 63

I 0001 I d !ooool m I
p P+1

The long jump instruction branches to the address formed by adding the m
field r_ightmost 12 bits to the location d rightmost 12 bits. The result is
the first word's address in the new instruction sequence. If d equals zero,
the m field contents is the jump address.

1-148 60458890 Revision E

PP Branch Instructions

Return Jump

Opcode 0002dm

Mnemonic RJM m,d

Instruction Return Jump to m+(d)

Format

Remarks

32 4142 4748 5152 63

0002 I d looool m

p P+1

This instruction stores the current program address plus two (P + 2) in the
address formed from m + (d). (If the d field is zero, the m field contents is
the address.) The instruction then branches to location m + (d) + 1.

This instruction interrupts the current program sequence and jumps to a
subroutine while providing the means for a return to the original program.
The entry point address to the subroutine forms from m + (d). The called
subroutine must have a common exit point in the form of a long-jump-to-m
instruction (operation code 0001) preceding the entry point (location
m + (d)-1). The return jump instruction stores the current program address
plus two (P + 2) in the first word of the subroutine (location m + (d)). This
word is the second half of the long jump instruction (its m field) and is the
return address to the original program sequence. The instruction then
branches to m + (d) + 1. When the subroutine completes, the long jump
instruction at location m + (d)-1 executes and performs a branch to the
return address in the original program sequence.

Unconditional Jump

Opcode

Mnemonic

Instruction

Format

Remarks

Revision E

0003d

UJN d

Unconditional Jump d

48 5758 63

I 0003 I d I
This instruction causes an unconditional branch to any address up to 31
(decimal) locations forward or backward from the current program address.
If d is positive (ls through 37s), the jump is forward. If d is negative (40s
through 76s), the jump is backward.

Instruction Descriptions 1-149

PP Branch Instructions

Zero/Nonzero Jump

Opcode

Mnemonic

Instruction

Formnt

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

0004d

ZJN d

Zero Jump d

48 5758 63

I 0004 I d I
If the contents of A is zero, this instruction causes an unconditional branch
to any address up to 3110) locations forward or backward from the current
program address. The instruction adds the d value to the current program
address. If d is positive (ls through 37s), the jump is forward. If d is
negative (40s through 76s), the jump is backward.

0005d

NJN d

Nonzero Jump d

48 5758 63

I 0005 I d I
If the contents of A is nonzero, this instruction causes an unconditional
branch to any address up to 3110 locations forward or backward from the
current program address. If d is positive (ls through 37s), the jump is
forward. If d is negative (40s through 76s) the jump is backward.

1-150 60458890 Revision E

PP Branch Instructions

Plus/Minus Jump

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

Revision E

0006d

PJN d

Plus Jump d

48 5758 63

I 0006 I d I
If the contents of A is positive, this instruction causes an unconditional
branch to any address up to 3110 locations forward or backward from the
current program address. The instruction adds the d value to the current
program address. If d is positive (ls through 37s, the jump is forward. If d
is negative (40s through 76s), the jump is backward.

0007d

MJN d

Minus Jump d

48 5758 63

I 0007 I d I
If the contents of A is negative, this instruction causes an unconditional
branch to any address up to 3110 locations forward or backward from the
current program address. The instruction adds the d value to the current
program address. If d is positive (ls through 37s), the jump is forward. If d
is negative (40s through 76s), the jump is backward.

Instruction Descriptions 1-151

PP Central Memory Access Instructions

PP Central Memory Access Instructions

The CM access instructions (table 1-28) provide the capability to read and write CM
words to and from PP memory. The PPs have read access to all CM storage locations,
while the OS bounds register controls write and exchange accesses. (Refer to IOU
Maintenance Registers in chapter 2 of volume 1.) The IOU performs CM addressing
with real memory word addresses. To address all locations in the larger CM sizes
available, the IOU uses address relocation to modify the CM address in the A register
of the PP. Refer to figure 1-5. If bit 46 in A is a one during a PP central memory
read or write instruction, the IOU adds the R register contents to A register bits 47
through 63 to produce the CM address. If bit 46 of A is zero, the IOU does not
perform address relocation but uses the A address. The R register contains an absolute
64-word starting boundary within CM. When relocation is desired, an absolute CM
address forms by concatenating six zeros to the rightmost end of the R contents, and
adding bits 47 through 63 of A.

Table 1-28. PP Central Memory Access Instructions

Opcode Format Instruction Mnemonic

0024 d Load R register LRD

0025 d Store R register SRD

0060 d Central read from (A) to d CRD

1060 d Central read from (A) to d long CRDL

0061 dm Central read (d) words from (A) to m CRM

1061 dm Central read (d) words from (A) to m long CRML

1000 d Central read and set lock from d to (A) RDSL

1001 d Central read and clear lock from d to (A) RDCL

0062 d Central write to (A) from d CWD

1062 d Central write to (A) from d long CWDL

0063 dm Central write (d) words to (A) from m CWM

1063 dm Central write (d) words to (A) from m long CWML

1-152 60458890 Revision E

PP Central Memory Acce~s Instructions

36 5758 63

R I 000000 I
46 63

A

36 63

CM ADDRESS

Figure 1-5. Relocation Address Formation

Central Load/Store

Opcode

Mnemonic

Instruction

Format

Remarks

Opcode

Mnemonic

Instruction

Format

Remarks

Revision E

0024d

LRD d

Load R Register

48 5758 63

I 0024 I d I
See figure 1-4. This instruction loads the 22-bit R register from PP
memory (PPM) locations d and d + 1. If the instruction d field is not zero,
the instruction loads bits 47 through 57 of R from bits 52 through 63 of
location (d) + 1. Bits 36 through 45 of R are· loaded from bits 54 through 63
of (d). If the d field is zero, this instruction is a pass.

0025d

SRD d

Store R Register

48 5758 63

I 0025 I d I
See figure 1-2. This instruction stores the 22-bit R register contents into
PP memory locations d and d + 1. If d is nonzero, the instruction stores
bits 46 through 57 of R in bit positions 52 through 63 of (d)+ 1, and bits
36 through 45 of R store in bit positions 54 through 63 of (d). Bits 48
through 51 of (d) + 1 and 48 through 53 of (d) clear. If the d field is zero,
this instruction is a pass.

Instruction Descriptions 1-153

PP Central Memory Access Instructions

Central Read

Opcode 0060d

Mnemonic CRD d

Instruction Central Read from (A) to d

Format

Remarks

0 34

48 5758 63

I 0060 I d I
This instruction transfers the rightmost 60 bits of one CM word to the
rightmost 12 bits of five consecutive PP memory (PPM) words. The IOU
discards the leftmost 4 bits of the CM word and disassembles the
remaining 60 bits from left to right into five 12-bit bytes. The following
illustrations show this unpacking. R +A specifies the CM word address
(refer to figure 1-5); d specifies the first PPM word address.

The CM word is as follows:

1516 2728 3940 5152 63

a (12) t b (12) I c (12) I d (12) I e (12)

The PPM words formed by unpacking one CM word are as follows:

48 5152 63

0 (4) a (12)

0 (4) b (12)

0 (4) c (12)

0 (4) d (12)

0 (4) e (12)

1-154 60458890 Revision E

PP Central Memory Access Instructions

Opcode 1060d

Mnemonic CRDL d

Instruction Central Read from (A) to d Long

Format

Remarks

0

Revision E

48 5758 63

I 1060 I d I
This instruction transfers one CM word to four consecutive PP memory
(PPM) words. The IOU disassembles the CM word from the left. The
following illustrations show this unpacking. R +A specifies the CM word
address (refer to figure 1-5); d specifies the first PPM word address. The
CM word is as follows:

1516 3132 4748 63

a (16) b (16) c (16) d (16)

The PP memory words formed by unpacking one CM word are as follows:

48 63

a (16)

b (16)

c (16)

d (16)

Instruction Descriptions 1-155

PP Central Memory Access Instructions

Opcode 0061dm

Mnemonic CRM m,d

Instruction Central Read (d) Words from (A) to m

Format

Remarks

32 4142 4748 5152 63

0061 I d jooooj m

p P+1

This instruction transfers the rightmost 60 bits of consecutive CM words to
the rightmost 12 bits of consecutive PP memory (PPM) words. The PP
discards the leftmost 4 bits of each CM word and disassembles the
remaining 60 bits from the left into five 12-bit bytes. Refer to instruction
0060 for an illustration of unpacking. R+ A specifies the first CM word
address (refer to figure 1-5), m specifies the first PPM word address, and
location d specifies the number of CM words transferred. Upon completion,
A contains the nonrelocated portion of the CM address (plus one) for the
last word transferred.

NOTE

If the value of the rightmost 17 bits of A exceeds (217)-1, the leftmost bit
toggles, switching the operation from direct address to relocation address
mode. If the last word transferred is from a relative address of 377776s
and relocation is in effect, the PP clears the A register and the value
returned to A may not point to the last word transferred plus one. Also,
when bit 17 switches to zero, addressing switches to the direct addressing
mode.

1-15S 60458890 Revision E

PP Central Memory Access Instructions

Opcode 106ldm

Mnemonic CRML m,d

Instruction Central Read (d) Words from (A) to m Long

Format

Remarks

32 4142 4748 5152 63

1061 I d looooj m

p P+1

This instruction transfers consecutive CM words to consecutive PP memory
(PPM) words. The IOU disassembles each CM word from the left. Refer to
the 1060 instruction for an illustration of this unpacking. R+A specifies
the first CM word address (refer to figure 1-5), m specifies the first PP
memory word address, and location d specifies the number of CM words
transferred. On completion, A contains the nonrelocated portion of the CM
address (plus one) for the last word transferred.

NOTE

If the value of the rightmost 17 bits of A exceeds (217)-1, the leftmost bit
toggles, switching the operation from direct address to relocation address
mode. If the last word transferred is from a relative address of 377776s
and relocation is in effect, the PP clears the A register and the value
returned to A may not point to the last word transferred plus one. Also,
when bit 17 switches to zero, addressing switches to the direct addressing
mode.

Opcode lOOOd

Mnemonic RDSL d

Instruction Central Read and Set Lock from d to (A)

Format

Remarks

Revision E

48 5758 63

t 1000 I d I
This instruction performs a logical OR function between four consecutive
PP memory (PPM) words and one CM word. The original CM word
contents replace the four PPM words; the logical OR result replaces the
original CM word. Refer to the instructions 1060 and 1062 for packing and
unpacking of the words. R +A specifies the CM word address (see figure
1-5); d is the first PPM word address. The IOU verifies each CM address
against the OS bounds address.

The instruction does not start execution until the IOU completes all
previous CM accesses. The CM does not permit any other port to access
the CM word from the start of the read until the end of the write. The
instruction delays subsequent instruction execution by the IOU until all
CM accesses for the instruction complete.

Instruction Descriptions 1-157

PP Central Memory Access Instructions

Opcode lOOld

Mnemonic RDCL d

Instruction Central Read and Clear Lock from d to (A)

Format

Remarks

48 5758 63

I 1001 I d I
This instruction performs a logical AND function between four consecutive
PP memory (PPM) words and one CM word. The original CM word
contents replace the four PPM words; the logical AND result replaces the
original CM word. See the 1060 and 1062 instructions for packing and
unpacking of the words. R +A specifies the CM word address (see figure
1-5); d is the first PPM word address. The IOU verifies each CM address
against the OS bounds address. The instruction does not start execution
until all previous CM accesses by the IOU complete. The CM does not
permit any other port to access the CM word from the start of the read
until the end of the write. The instruction delays execution of subsequent
instructions by the IOU until all CM accesses for the instruction complete.

1-158 60458890 Revision E

PP Central Memory Access Instructions

Central Write

Opcode 0062d

Mnemonic CWD d

Instruction Central Write to (A) from d

Format

Remarks

0 34

Revision E

48 5758 63

I aas2 I d I
This instruction transfers the rightmost 12 bits of five consecutive PP
memory (PPM) words to the rightmost 60 bits of one CM word. (The IOU
ignores the leftmost 4 bits of the words.) These words are assembled from
left to right, as shown in the following illustration. R +A specifies the CM
word address (see figure 1-5); d specifies the first PPM word address. The
IOU verifies each CM address against the OS bounds address. PPM words
are as follows:

48 5152 63

0 (4) a (12)

0 (4) b (12)

0 (4) c (12)

0 (4) d (12)

0 (4) e (12)

The CM word formed by packing five 12-bit PP memory words is as
follows:

1516 2728 3940 5152

a (12) I b 1121 I c 1121 I d 1121 I e 1121

63

Instruction Descriptions 1-159

PP Central Memory Access Instructions

Opcode 1062d

Mnemonic CWDL d

Instruction Central Write to (A) from d Long

Format

Remarks

0

48 5758 63

I 1062 I d I
This instruction transfers four consecutive PP memory (PPM) words to one
CM word, as shown in the following illustration. R +A specifies the CM
word address (see figure 1-5); d specifies the first PPM word address. The
IOU verifies each CM address against the OS bounds address. The PPM
words are as follows:

48 63

a (16)

b (16)

c (16)

d (16)

The CM word formed by packing four 16-bit PPM words is as follows:

1516 3132 4748 63

a (16) b (16) c (16) d (16)

1-160 60458890 Revision E

PP Central Memory Access Instructions

Opcode 0063dm

Mnemonic CWM m,d

Instruction Central Write (d) Words to (A) from m

Format

Remarks

Revision E

32 4142 4748 5152 63

0063 I d looool m

p P+1

This instruction transfers the rightmost 12 bits of consecutive PP memory
(PPM) words to the rightmost 60 bits of consecutive CM words. Refer to
the instruction 0062 for an illustration of this packing. R+ A specifies the
first CM word address (see figure 1-5), m specifies the first PPM word
address, and d specifies the number of CM words transferred. The IOU
verifies the CM address against the OS bounds address. On completion, A
contains the nonrelocated portion of the CM address (plus 1) for the last
word transferred.

NOTE

If the value of the rightmost 17 bits of A exceeds (217)-1, the leftmost bit
toggles, switching the operation from direct address to relocation address
mode. If the last word transferred is from a relative address of 377776s
and relocation is in effect, the PP clears the A register and the value
returned to A may not point to the last word transferred plus one. Also,
when bit 17 switches to zero, addressing switches to the direct addressing
mode.

Instruction Descriptions 1-161

PP Central Memory Access Instructions

Opcode 1063dm

Mnemonic CWML m,d

Instruction Central Write (d) Words to (A) from m Long

Format

Remarks

32 4142 4748 5152 63

1063 I d looool m

p P+1

This instruction transfers consecutive PP memory (PPM) words to
consecutive CM words. The IOU packs four PPM words (from the left) into
each CM word. R+ A specifies the first CM word address (see figure 1-5),
m specifies the first PPM word address, and d specifies the number of CM
words transferred. The IOU verifies each CM address against the OS
bounds address. On completion, A contains the nonrelocated portion of the
CM address (plus 1), for the last word transferred.

NOTE

If the value of the rightmost 17 bits of A exceeds (217)-1, the leftmost bit
toggles, switching the operation from direct address to relocation address
mode. If the last word transferred is from a relative address of 377776s
and relocation is in effect, the PP clears the A register and the value
returned to A may not point to the last word transferred plus 1. Also,
when bit 17 switches to zero, addressing switches to the direct addressing
mode.

1-162 60458890 Revision E

PP Input/Output Instructions

PP Input/Output Instructions

The 26 instructions (table 1-29) direct activity on the UO channels. They select an
external device and transfer data to or from that device. The instructions also
determine whether a channel or external device is available and ready to transfer data.
The preparatory steps ensure that the channels carry out an orderly data transfer.
Each external device has a set of external function codes the PP uses to establish
operation modes, and to start and stop data transfer. The devices can also detect
certain errors which are indicated to the controlling PP.

Revision E Instruction Descriptions 1-163

PP Input/Output Instructions

Table 1-29. PP Input/Output Instructions

Opcode Format Instruction Mnemonic

00640 cm Jump to m if channel c active AJM

1064X cm Jump to m if channel c flag set FSJM

00650 cm Jump to m if channel c inactive IJM

1065X cm Jump to m if channel c flag clear FCJM

00660 cm Jump to m if channel c full FJM

00670 cm Jump to m if channel c empty EJM

00641 cm Test and set channel c flag SCF

00651 cm Clear channel c flag CCF

00661 cm Test and clear channel c error flag set SFM

00671 cm Test and clear channel c error flag clear CFM

00700 c Input to A from channel c when active IAN

00701 c Input to A from channel c if active IAN

00710 cm Input A words to m from channel c IAM

10710 cm Input A words to m from channel c packed IAPM

00720 c Output from A to channel c when active OAN

00721 c Output from A on channel c if active OAN

00730 cm Output A words from m on channel c OAM

10730 cm Output A words from m on channel c OAPM
packed

00740 c Activate channel c ACN

00741 c Unconditionally activate channel c ACN

00750 c Deactivate channel c DCN

00751 c Unconditionally deactivate channel c DCN

00760 c Function A on channel c when inactive FAN

00761 c Function A on channel c if inactive FAN

00770 cm Function m on channel c when inactive FNC

00771 cm Function m on channel c if inactive FNC

1-164 60458890 Revision E

PP Input/Output Instructions

Jump

Opcode 00640cm

Mnemonic AJM m,c

Instruction Jump to m if Channel c Active

Format 32 414243 4748 5152 63

I 0064 lol c I 0000 I m

p P+1

Remarks This instruction branches to the location specified by m if channel c is
active.

Opcode 1064Xcm

Mnemonic FSJM m,c

Instruction Jump to m if Channel c Flag Set

Format 32 414243 47 48 5152 63

I 1064 H c looooj m

p P+1

Remarks This instruction branches to the location specified by m if the channel c
flag is set.

Opcode 00650cm

Mnemonic IJM m,c

Instruction Jump to m if Channel c Inactive

Format 32 414243 4748 5152 63

I 0065 lol c I 0000 I m

p P+1

Remarks This instruction branches to the location specified by m if channel c is
inactive.

Opcode 1065Xcm

Mnemonic FCJM m,c

Instruction Jump to m if Channel c Flag Clear

Format 32 414243 4748 5152 63

I 1065 1x1 c I 0000 I m

p P+1

Remarks This instruction branches to the location specified by m if the channel c
flag is clear.

Revision E Instruction Descriptions 1-165

PP Input/Output Instructions

Opcode 00660c:m.

Mnemonic F JM m,c

Instruction Jump to m if Channel c Full

Format 32 414243 47 48 5152 63

I 0066 1o1 c I 0000 I m

p P+1

Remarks This instruction branches to the location specified by m if channel c is full.

Opcode 00670cm

Mnemonic EJM m,c

Instruction Jump to m if Channel c Empty

Format

Remarks

Test/Clear

32 414243 4748 5152 63

I 0067 lol c I 0000 I m

p P+1

This instruction branches to the location specified by m if channel c is
empty.

Opcode 00641cm.

Mnemonic SCF m,40B + c

Instruction Test and Set Channel c Flag

Format

Remarks

32 414243 4748 5152 63

I 0064 H c I 0000 I m

p P+1

This instruction branches to the location specified by m if the channel c
flag is set. Otherwise, it sets the channel flag and exits. Setting m to P + 2
unconditionally sets the channel flag.

NOTE

A conflict condition may occur when two or more PPs in the same time
slot attempt to simultaneously execute a 00641 instruction on the same
channel. Only the maintenance channel (178) resolves this condition by
letting the PP in the lowest physical barrel see the true status of the flag.
The flag appears set to the other PPs in conflict and the PPs take the
branch.

1-166 60458890 Revision E

PP InpuUOutput Instructions

Opcode 00651cm

Mnemonic ·CCF C

Instruction Clear Channel c Flag

Format 32 414243 4748 5152 63

I 0055 H c jooool m

p P+1

Remarks This instruction clears the channel c flag and requires, but does not use,
the m field.

Opcode 00661cm

Mnemonic SFM m,40B + c

Instruction Test and Clear Channel c Error Flag Set

Format 32 414243 4748 5152 63

I 0066 H c jooool m

p P+1

Remarks If the channel c error flag is set, this instruction branches to the location
specified by m and clears the error flag.

Opcode · 00671cm

Mnemonic CFM m,40B + c

Instruction Test and Clear Channel c Error Flag Clear

Format 32 414243 47 48 5152 63

I 0061 '1j c jooooj m

p P+1

Remarks If the channel c error flag is clear, this instruction branches to the location
specified by m. If the error flag is set, this instruction clears it.

Revision E Instruction Descriptions 1-167

PP lnputJOutput Instructions

Input

Opcode 00700c

Mnemonic IAN C

Instruction Input to A from Channel c When Active

Format

Remarks

48 575859 63

I 0010 Jal c I

This instruction transfers one word from channel c to the low-order 16 bits
of A. The high-order 2 bits of A are zeros. The instruction waits for the
channel to become active and full.

NOTE

If the channel uses a 12-bit external interface, the high-order 6 bits of A
are zeros. If it uses an 8-bit external interface, the high-order 10 bits of A
are zeros.

Opcode 00701c

Mnemonic IAN 40B + C

Instruction Input to A from Channel c if Active

Format

Remarks

48 575859 63

I 0010

This instruction transfers one channel .c word to the low-order 16 hits of A.
The high-order 2 bits of A are zeros. If the channel is inactive or becomes
inactive before becoming full, no transfer occurs and the instruction exits
with A = 0.

NOTE

If the channel uses a 12-bit external interface, the high-order 6 bits of A
are zeros. If it uses an 8-bit external interface, the high-order 10 bits of A
are zeros. If the addressed channel is not connected, the instruction exits
with A = 177777s.

1-168 60458890 Revision E

PP Input/Output Instructions

Opcode 00710cm

Mnemonic IAM m,c

Instruction Input A Words to m from Channel c

Format

Remarks

Revision E

32 414243 4748 5152 63

I 0011 lol c I 0000 I m

p P+1

This instruction tr~nsfers successive words from channel c to PP memory
(PPM). The m field specifies the first PPM word address; (A) specifies the
number of words transferred.

The transfer completes when either A = 0 or the channel becomes
inactive. If an inactive channel caused termination, the instruction clears
the next PPM word, and A contains the difference between its initial value
and the number of channel words actually transferred.

No transfer takes place if the instruction executes with the channel
initially inactive. The instruction exits with A unchanged and the PPM
word specified by m sets to zero. However, if the addressed channel is not
connected, the instruction exits with A = 177777s.

NOTE

If the channel uses a 12-bit external interface, the high-order 4 bits of the
PP memory word are zeros. If it uses an 8-bit external interface, the
high-order 8 bits of the PP memory word are zeros.

Instruction Descriptions 1-169

PP Input/Output Instructions

Opcode 10710cm

Mnemonic IAPM m,c

Instruction Input A Words to m from Channel c Packed

Format

Remarks

32 414243 47 48 5152 63

I 1011 lol c I 0000 I m

p P+1

This instruction transfers the low-order 12 bits of successive channel c
words to consecutive PP memory (PPM) words. During this transfer, the
IOU packs four 12-bit words (48 bits) into three PPM words. (Refer to the
following paragraphs.) The high-order 4 bits of the channel words are
ignored. The m field specifies the first PPM word address; A specifies the
number of channel words transferred.

A complete transfer depends on the channel word count being a multiple of
4. If the channel word count is not a multiple of 4, the IOU fills the bits
left over when A is counted to zero (these bits copy the corresponding bits
on the channel). When the channel is inactive or empty, these bits are
zeros and, hence, the fill is with zeros. When, however, the external device
and the PP have different word counts, or for some other reason the
channel bits are nonzero, the fill is not zero-fill.

The instruction exits when A is zero or when the channel becomes
inactive. If an inactive channel causes termination, the leftover bits from
the previous channel word will fill up to the next four-channel-word
bound.ary as described above.

No transfer takes place if the instruction executes with the channel
initially inactive. The instruction exits with A unchanged, and the next
three PPM words specified by m, m + 1, and m + 2 fill as described above.

This instruction allows 16-bit PPM words to be read from 12-bit external
devices. The channel words are as follows:

48 5152 63

(4) a (12)

(4) b (4)1 c (8)

(4) d (8) le (4)

(4) f (12)

The PPM words are as follows.

48 5152 5556 5960 63

a (12) I b (4)

c (8) l d (8)

e (4)1 f (12)

1-170 60458890 Revision E

PP Input/Output Instructions

Output

Opcode 00720c

Mnemonic OAN c

Instruction Output from A on Channel c When Active

Format

Remarks

48 575859 63

I 0012 lol c I

This instruction transfers one word from the A register low-order 12 bits
to channel c. The instruction waits for an active and empty channel before
executing.

NOTE

If the channel uses a 12-bit interface, it does not transmit the channel
word high-order 4 bits to the external device. Similarly, if it uses an 8-bit
external interface, it does not transmit the channel word high-order 8 bits.

Opcode 00721c

Mnemonic OAN 40B + c

Instruction Output from A on Channel c if Active

Format

Remarks

Revision E

32 414243 47

I 0012 H c I
p

This instruction transfers the A register low-order 16 bits to channel c: If
the channel is inactive, no transfer occurs and the instruction exits. The
operation does not alter the contents of A.

NOTE

If the channel uses a 12-bit interface, it does not transmit the channel
word high-order 4 bits to the external device. Similarly, if it uses an 8-bit
external interface, it does not transmit the channel word high-order 8 bits.

Instruction Descriptions 1-171

PP Input/Output Instructions

Opcode 00730cm.

Mnemonic OAM m,c

Instruction Output A Words from m on Channel c

Format

Remarks

32 414243 4748 5152 63

I 0013 ~I c jooooj m

p P+1

This instruction transfers the contents of successive PP memory (PPM)
words as successive words on channel c. The m field specifies the first
PPM word address; A specifies the number of words to be transferred. The
transfer completes when either A = 0 or the channel becomes inactive. If
an inactive channel caused termination, A contains the difference between
its initial value and the number of words transferred on the channel. If the
instruction executes with the channel initially inactive, no transfer occurs
arid the instruction exits with A unchanged.

NOTE

If the channel uses a 12-bit interface, it does not transmit the channel
word high-order 4 bits to the external device. Similarly, if it uses an 8-bit
external interface, it does not transmit the channel word high-order 8 bits.

Opcode 10730cm.

Mnemonic OAPM m,c

Instruction Output A Words from m on Channel c Packed

Format

Remarks

32 414243 4748 5152 63

I 1013 lol c looool m

p P+1

This instruction transfers consecutive PP memory (PPM) words as the
low-order 12 bits of successive words on channel c. During the transfer,
processing occurs such that the contents of three PPM words result in four
channel words. The high-order 4 bits of the 16-bit channel words set to
zeros. This packing is illustrated in the 1071 instruction. The m field
specifies the first PP word address; A specifies the number of channel
words to be transferred. The tr an sf er completes when either A = 0 or the
channel becomes inactive. If an inactive channel caused termination, A
contains the difference between its initial value and the number of words
actually transferred on the channel.

If the instruction executes with the channel initially inactive, no transfer
occurs and the instruction exits with A unchanged.

1-172 60458890 Revision E

PP Input/Output Instructions

Activate/Deactivate

Opcode 00740c

Mnemonic ACN c

Instruction Activate Channel c

Format 48 575859 63

I 0074
1°1

c I
Remarks This instruction sets channel c active to prepare it for I/O transfer

operations. If the channel is initially active, the instruction waits for the
channel to become inactive before executing.

Opcode 00741c

Mnemonic ACN 40B + c

Instruction Unconditionally Activate Channel c

Format 48 575859 63

I 0074 f1I c I
Remarks This instruction sets channel c active to prepare it for I/O transfer

operations. The instruction executes regardless of the channel's
active/inactive status.

Opcode 00750c

Mnemonic DCN c

Instruction Deactivate Channel c

Format

Remarks

Revision E

48 575859 63

1 0075 lol c I

This instruction sets channel c inactive to terminate 1/0 operations on the
channel. If the channel is initially inactive, the instruction waits for the
channel to become active before executing.

If this instruction executes after an output instruction without waiting for
the channel to become empty, the last channel word transferred may be
lost.

Instruction Descriptions 1-173

PP Input/Output Instructions

Opcode 00751c

Mnemonic DCN 40B+c

Instruction Unconditionally Deactivate Channel c

Format

Remarks

48 575859 63

I 0075 H c I
This instruction sets channel c inactive to terminate 1/0 operations on the
channel. If the channel is initially inactive, the instruction executes
regardless of the channel's active/inactive state. If this instruction executes
after an output instruction without waiting for the channel to become
empty, the last channel word transferred may be lost.

1-174 60458890 Revision E

PP Input/Out~ut Instructions

Function

Opcode 00760c

Mnemonic FAN c

Instruction Function A on Channel c When Inactive

Format

Remarks

48 575859 63

I 0076 lol c I

This instruction transfers the low-order 16 bits of A to channel c as a
function code. If the channel is initially active, the instruction waits for
the channel to become inactive before executing. The operation does not
alter the contents of A.

NOTE

If the channel uses a 12-bit interface, it does not transmit the channel
word high-order 4 bits to the external device. Similarly, if it uses an 8-bit
external interface, it does not transmit the channel word high-order 8 bits.
Parity, however, is always calculated on the rightmost 16 bits of A when
outputting a function word from A.

Opcode 00761c

Mnemonic FAN 40B+c

Instruction Function A on Channel c if Inactive

Format

Remarks

Revision E

48 575859 63

I 0076 '11 c I
This instruction transfers the low-order 16 bits of A to channel c as a
function code. If the channel is initially active, the IOU does not transfer
the function on the channel, and the instruction exits.

NOTE

If the channel uses a 12-bit interface, it does not transmit the channel
word high-order 4 bits to the external device. Similarly, if it uses an 8-bit
external interface, it does not transmit the channel word high-order 8 bits.

Instruction Descriptions 1-175

PP lnpuUOutput Instructions

Opcode 00770cm

Mnemonic FNC m,c

Instruction Function m on Channel c When Inactive

Format

Remarks

32 414243 4748 5152 63

I 0011 I~ c jooooj m

p P+1

This instruction transfers the m field contents to channel c as a function
code. If the channel is initially active, the instruction waits for the channel
to become inactive before executing.

NOTE

If the channel uses a 12-bit interface, it does not transmit the channel
word high-order 4 bits to the external device. Similarly, if it uses an 8-bit
external interface, it does not transmit the channel word high-order 8 bits.

Opcode 00771cm

Mnemonic FNC m,40B + c

Instruction Function m on Channel c if Inactive

Format

Remarks

32 414243 4748 5152 63

I 0011 '1j c jooooj m

p P+1

This instruction transfers the m field contents to channel c as a function
code. If the channel is initially active, the IOU does not transfer the
function on the channel and the instruction exits.

NOTE

If the channel uses a 12-bit interface, it does not transmit the channel
word high-order 4 bits to the external device. Similarly, if it uses an 8-bit
external interface, it does not transmit the channel word high-order 8 bits.

1-176 60458890 Revision E

Other IOU Instructions

Other IOU Instructions

Pass

Opcode 002400

Mnemonic PSN

Instruction Pass

Opcode 0000

Mnemonic PSN

Instruction Pass

Opcode 002500

Mnemonic PSN

Instruction . Pass

Format 48 575859 63

I 0024 lol d I

Remarks The pass instructions perform no operation.

Opcode 0027 d

Mnemonic KPT d

Instruction PP Keypoint

Format 48 5758 63

I 0021 I d I
Remarks This instruction executes as a pass instruction, but allows test-point

sensing of its execution by way of external monitoring equipment.

Revision E Instruction Descriptions 1-177

Other IOU Instructions

Exchange Jumps

The exchange jump instructions allow PP programs to request CYBER 170 State
exchanges in the CP. The IOU transmits the exchange request to the CP designated for
executing CYBER 170 State instructions. Bit 05 of the monitor condition register sets
to indicate an outstanding IOU exchange request.

If an exchange request for any PP is outstanding, another exchange request from any
other PP causes the second PP to wait until the outstanding exchange request
completes.

The d field value controls the action taken to process the exchange request in CYBER
170 State, as described in the following paragraphs.

Opcode 00260x

Mnemonic EXN d

Instruction Exchange Jump

Format 48 5758 63

I 0026 I Ox I
Remarks This is an unconditional exchange jump performed with the exchange

package at address R+ A (see table 1-22). The IOU verifies this address
against the OS bounds address and, if in the prohibited region, the
exchange does not occur. In this case, the OS bounds fault sets and, if the
enable error stop bit is set in the environment control register, the PP is
idled.

Opcode 00261x

Mnemonic MXN d

Instruction Monitor Exchange Jump

Format

Remarks

48 5758 63

1 0026 I 1x I
This is a conditional exchange jump performed with the exchange package
at address R+ A (see figure 1-5). The IOU verifies this address against the
OS bounds address and, if in the prohibited region, the exchange does not
occur. The OS bounds fault sets and, if the enable error stop is set in the
environment control register, the PP is idled. If monitor flag is clear, the
exchange jump occurs and the monitor flag sets. If the monitor flag is set
before this instruction begins to execute, the exchange jump is not
performed.

1-178 60458890 Revision E

Other IOU Instructions

Opcode 00262x

Mnemonic MAN d

Instruction Monitor Exchange Jump to MA

Format

Remarks

Opcode

Mnemonic

Instruction

Opcode

Mnemonic

Instruction

Format

Remarks

Revision E

48 5758 63

I 0026 I 2x I
This is a conditional exchange jump performed with the exchange package
at the address in the CP monitor address register. If the monitor flag is
clear, the exchange jump occurs and the monitor flag sets. If the monitor
flag is set before this instruction begins to execute, the exchange jump is
not performed.

00263x

(None)

Instruction executes as if d = 2x.

1026d

INPN d

Interrupt Processor

48 5758 63

I 1026 I d I
This instruction causes the IOU to transmit an interrupt for a CP on the
memory port specified by d. This interrupt signal causes the external
interrupt hit to set in the monitor condition register. Refer to CP
Interrupts in chapter 2 of this manual.

Instruction Descriptions 1-179

Programming Information

CP Exchange Operations
Virtual State Job-to-Monitor Exchange Operations .
Virtual State Monitor-to-Job Exchange Operations .
Exchange Packages

CP Registers
CP Process State Registers

CP Base Constant (BC) Register .
CP Debug Index (DI) Register . .
CP Debug List Pointer (DLP) Register
CP Debug Mask (DM) Register
CP Flag Register

Critical-Frame Flag (CFF)
On-Condition Flag (OCF)
Process-Not-Damaged (PND) Flag

CP Largest Ring Number (LRN) Register
CP Last Processor Identification (LPID) Register
CP Monitor Condition Register (MCR)
CP Monitor Mask Register (MMR)
Operand (X) Registers
CP Process Interval Timer (PIT)
CP Program Address (P) Register . . .
CP Segment Table Address (STA) Register .
CP Segment Table Length (STL) Register
CP Top-of-Stack (TOS) Pointer Registers . .
CP Trap Enable (TE) Register
CP Trap Pointer (TP) Register
CP Untranslatable Pointer (UTP) Register .
CP Untranslatable Virtual Machine Identifier (UVMID) Register
CP User Condition Register (UCR)
CP User Mask Register (UMR)
CP Virtual Machine Identifier (VMID) Register

CP Processor State Registers
CP Options Installed (QI) Register ...
CP Page Size Mask (PSM) Register . . .
CP Page . Table Address (PTA) Register .
CP Page Table Length (PTL) Register .
CP Processor Fault Status (PFS) Registers .
CP Processor Identifier (PID) Register . . .
CP Processor Test Mode (PTM) Register . .
CP Status Summary (SS) Register
CP Cache/Map Corrected Error Log (CCEL/MCEL) Register .
CP Dependent Environment Control (DEC) Register
CP Element Identifier (EID) Register
CP Job Process State (JPS) Register
CP Model-Dependent Word (MDW) Register
CP Monitor Process State (MPS) Register .
CP System Interval Timer (SIT) Register .
CP Virtual Machine Capability List (VMCL)

CM Registers
CM Corrected Error Log (CEL) Register
CM Element Identifier (EID) Register . .

2

2-2
2-4
2-4
2-4

2-7
2-7
2-9
2-9
2-9
2-9
2-9
2-9
2-9

2-10
2-10
2-10
2-10
2-10
2-10
2-11
2-11
2-11
2-12
2-12
2-12
2-12
2-13

: 2-13
2-14
2-14
2-14
2-15
2-16
2-16
2-16
2-16
2-16
2-16
2-16
2-16
2-17
2-17
2-17
2-17
2-17
2-18
2-18
2-18

2-19
2-19
2-20

CM Environment Control (EC) Register .
CM Free-Running Counter Register
CM Options Installed (01) Register . . .
CM Port Bounds Register
CM Status Summary Register
CM Uncorrectable Error Log (UEL) Registers

IOU Registers
IOU Element Identifier (EID) Register .
IOU Environment Control (EC) Register
IOU Fault Status (FS) Registers . .
IOU Fault Status Mask Register . .
IOU Options Installed (01) Register
IOU OS Bounds Register . . .
IOU Status Summary Register .
IOU Test Mode (TM) Register .

CP Condition and Mask Registers .
CP Condition Register Bit Grouping .

CP Interrupts
Exchange Interrupts
Trap Interrupts ...
Interrupt Conditions

Access Violation (MCR 54)
Address Specification Error (MCR 52)
Arithmetic Loss-of-Significance (UCR 62) .
Arithmetic Overflow (UCR 57) .
Critical Frame Flag (UCR 53)
Debug (UCR 56)
Divide Fault (UCR 55)
Environment Specification Error (MCR 55) .
Exponent Overflow (UCR 58) . . .
Exponent Underflow (UCR-59)
External Interrupt (MCR 56)
Floating-Point Indefinite (UCR 61)
Floating-Point Loss-of-Significance (UCR 60) .
Free Flag (UCR 50)
Instruction Specification Error (MCR 51) .. .
Inter-Ring Pop (UCR 52)
Invalid BDP Data (UCR 63)
Invalid Segment/Ring Number Zero (MCR 60)
Not Assigned (MCR 49)
Outward Call/Inward Return (MCR 61) . . .
Page Table Search Without Find (MCR 57)
Privileged Instruction Fault (UCR 48) . . .
Process Interval Timer (UCR 51)
Detected Uncorrectable Error (MCR 48) ..
CYBER 170 State Exchange Request (MCR 53)
Short Warning (MCR 50)
Soft Error Log (MCR 62)
System Interval Timer (MCR 59) . . .
Trap Exception (MCR 63)
Unimplemented Instruction (UCR 49) .

Multiple Interrupt Conditions .
_Flags

2-20
2-20
2-20
2-21
2-21
2-21

2-22
2-22
2-22
2-22
2-23
2-23
2-23
2-23
2-23

2-24
2-27

2-29
2-29
2-29
2-30
2-30
2-31
2-31
2-32
2-32
2-32
2-32
2-33
2-33
2-33
2-34
2-34
2-34
2-34
2-34
2-35
2-35
2-35
2-35
2-35
2-36
2-36
2-36
2-36
2-36
2-36
2-37
2-37
2-37
2-37
2-38
2-40

Stack Manipulating Operations ...
Stack Frames and Save Areas . .

Stack Frame Save Area Format .
Stack Frame Save Area Descriptor Field .
Virtual Machine Identifier (VMID) Field .
User Mask/Condition and Monitor Condition Fields .

Assigned Registers During Stack Operation .
Top of Stack Pointers
Dynamic Space Pointer (AO)
Current Stack Frame Pointer (Al)
Previous Save Area Pointer (A2)
Binding Section Pointer (A3) . . .
Argument Pointer (A4)

Exceptions During Stack Operations

Business Data Processing Programming
BDP Data Descriptors
BDP Data Types

Data Type 0: Packed Decimal, Unsigned
Data Type 1: Packed Decimal, Unsigned, Slack Digit.
Data Type 2: Packed Decimal, Signed
Data Type 3: Packed Decimal, Signed, Slack Digit ..
Data Type 4: Unpacked Decimal, Unsigned
Data Type 5: Unpacked Decimal, Trailing Sign Combined Hollerith
Data Type 6: Unpacked Decimal, Trailing Sign Separate
Data Type 7: Unpacked Decimal, Leading Sign Combined Hollerith
Data Type 8: Unpacked Decimal, Leading Sign Separate .
Data Type 9: Alphanumeric . . .
Data Type 10: iunary, Unsigned
Data Type 11: Binary, Signed
Slack Digit ...

Undefined Results
Overlap ...
Invalid Data ..

Vector Programming
Vector Length (Number of Operations)
Vector Page Size
Vector Broadcast
Vector Interrupts .
Vector Overlap .

Floating-Point Programming
Floating-Point Data Formats
Standard and Nonstandard FP Numbers

Floating-Point Zero ..
Floating-Point Nonzero .
Floating-Point Infinite . .
Floating-Point Indefinite
Double-Precision Nonstandard FP Numbers

Exponent Arithmetic
Normalization
Floating-Point Sum and Difference .
Floating-Point Multiply .
Floating-Point Divide ..
Floating-Point End Cases

2-41
2-41
2-42
2-43
2-44
2-44
2-44
2-44
2-44
2-44
2-44
2-45
2-45
2-45

2-46
2-46
2-47
2-47
2-47
2-48
2-48
2-48
2-48
2-49
2-49
2-49
2-49
2-49
2-49
2-50
2-50
2-50
2-50

2-51
2-52
2-52
2-52
2-52
2-52

2-53
2-53
2-56
2-56
2-56
2-56
2-56
2-56
2-56
2-57
2-57
2-57
2-58
2-59

Program Monitoring .
Debug

Debug List .. .
Debug List Pointer Register
Debug Index Register . .
Debug Mask Register
Enabling Debug
Debug Scan Operation . . .
Interrupts During Debug Scan .
Debug-Software Interaction, Debug Enabled
Debug-Software Interaction, Debug Disabled

Virtual and Central Memory Programming
Process Virtual Memory .
System Virtual Memory . . .
Real Memory
Address Tables

Segment Descriptor Table
System Page Table . .

Page Table Search . . .
Page Table Entries ...
PTE Control Fields . . .
PTE Segment/Page Identifier Field . .
PTE Page Frame RMA Field . .
Listing of Pages in Page Table .

Process Binding Section
Access Protection .

Ring Structure
Ring Voting
Effect of RN = 0 .
RN for Read/Write Access ..
RN for Execute Access . . .
RN Effect on Pop Instruction
Effect of RN Violations . . .

Execute Access Privilege/Mode .
Keys/Locks

Interstate Programming
Operation in CYBER 170 State
Memory Addressing in CYBER 170 State .
Cache Invalidation in CYBER 170 State (Models 835, 840, 845, 850, 855, and

860 Only)
State-Switching Operations .

Virtual State Monitor Mode-to-CYBER 170 State Exchange
CYBER 170 State-to-Virtual State Monitor Mode Exchange
Exchanges Within CYBER 170 State
Call from Virtual State to CYBER 170 State
Trap Interrupt from CYBER 170 State to Virtual State
Return from Virtual State to CYBER 170 State . .

Exchange Packages Used in CYBER 170 State .
Interstate Exchange Package

Program Address (P) Register . .
Stack Pointers . .
EM Register
Flags
RAC Register
FLC Register

2-69
2-69
2-69
2-69
2-71
2-71
2-72
2-72
2-74
2-74
2-75

2-80
2-81
2-83
2-84
2-87
2-88
2-90
2-90
2-92
2-92
2-92
2-92
2-92
2-94
2-95
2-98
2-98
2-99
2-99

2-100
2-100
2-101
2-101
2-104

2-106
2-107
2-107

2-108
2-108
2-110
2-110
2-110
2-110
2-111
2-111
2-112
2-112
2-114
2-114
2-114
2-115
2-116
2-116

Monitor Address (MA) Register
Address (A) Registers
RAE Register
FLE Register
Virtual State Ring Numbers
Index (B) Registers
Operand (X) Registers

CYBER 170 State Exchange Package
Interstate Stack Frame Save Area ..
Code Modification in CYBER 170 State
Debug/Performance Monitoring

Exception Handling in CYBER 170 State
Software Exception Conditions

Address Errors
11legal Instructions
Extended Memory Transfer Exceptions

Hardware Exceptions in CYBER 170 State

IOU Peripheral Processor Programming .
Central Memory Addressing by PPs . .

Absolute and Relocation Addressing .
OS Bounds Test
PP Central Memory Read . .
PP Central Memory Write . .

PP Memory Addressing by PPs .
Direct 6-Bi t Operand .
Direct 18-Bit Operand .
Direct 6-Bit Address .
Direct 12-Bit Address .
Indexed 12-Bit Address
Indirect 6-Bit Address .

Channel Input/Output Operations
Channel Flags

Channel Active Flag .
Register-Full Flag ...
Channel (Marker) Flag
Error Flag

Programming for Channel Input/Output
Inter-PP Communications
PP Program Timing Consideration .
Cache Invalidation
Error Detection and Recovery .

PP Hardware Errors
Channel Parity Errors . . .

Parity Errors on Output Data .
Parity Errors on Input Data
Timeout

Initialization . .

System Console Programming (Channel 10s) .
Keyboard
Data Display Terminals

Character Mode
Dot Mode

2-116
2-116
2-116
2-117
2-117
2-117
2-117
2-118
2-119
2-120
2-120

2-121
2-121
2-122
2-123
2-123
2-124

2-128
2-128
2-128
2-128
2-129
2-129
2-130
2-130
2-130
2-130
2-130
2-130
2-130

2-131
2-131
2-131
2-131
2-133
2-133
2-134
2-136
2-137
2-137
2-137
2-137
2-137
2-138
2-138
2-138

2-139

2-140
2-140
2-140
2-140
2-140

Codes 2-143
Programming Example 2-144
Program Timing Consideration 2-144

Real-Time Clock Programming 2-145

IOU Dedicated Channels 2-146

Two-Port Multiplexer Programming . 2-148
Function Words 2-150

Terminal Select (7XXX) 2-150
Terminal Deselect (6XXX) . . . 2-150
Calendar Clock/Auto Dial-Out (lXXX) 2-151
Read Pre-DS Copies of P, Q, K, amd A Registers (1X20-26) . 2-151
Read Pre-DS Copies of Channel Status (1X27) . 2-151
Read Summary Status (OO:XX) 2-152
PP Read Terminal Data (Ol:XX) 2-152
PP Write Output Buffer (02:XX) 2-152
Set Operation Mode to Terminal (03XX) 2-153
Set/Clear Data Terminal Ready (DTR) (04XX) . . 2-153
Set/Clear Request to Send (RTS) (05XX) 2-154
Master Clear (07XX) . . . 2-154

Programming Considerations 2-155
Data Output 2-155
Data Input 2-155
Request to Send and Data Terminal Ready 2-155

Maintenance Channel Programming 2-156
MCH Function Words 2-156
MCH Control Words 2-159

MCH Programming· for Halt/Start (Opcode 0/1) 2-159
MCH Clear LED (Opcode 3) 2-159
MCH Programming for Read/Write (Opcode 415) 2-160
MCH Programming for Master Clear/Clear Errors (Opcode 617) . 2-161
MCH Echo (Opcode 8) . 2-161
MCH Programming for Read IOU Summary Status (Opcode C, IOU Only) 2-161

CIO PP Programming (Model 990 and CYBER 990E and 995E Only) 2-162
Definition of ISi Terms 2-163

Intelligent Standard Interface (ISi) 2-163
Control Module 2-163
Master Control Module 2-163
Slave Control Module 2-163
ISI Channel Adapter 2-163
Bus Master . 2-163
Bus Slave . . 2-164
Bus Unit . . 2-164
Port 2-164
Transaction Mode 2-164
Idle Mode 2-164

ISi Channel Adapter
ISi Signal Definition .

Data (Bidirectional)
Attention
Busy
Bus Parity (Bidirectional)

2-165
2-165
2-165
2-165
2-165
2-165

Select Hold (Bus Master)
Select Active (Bus Slave)
Command Sequence (Bus Master)
Sync Out (Bus Master) .. .
Sync In (Bus Slave)
Pause (Bus Slave)

Idle Bus Mode Bit Definitions
Bus Unit Attention
Bus Unit Busy

Bus Unit Protocol Procedures .
Bus Unit Selection Operation
Function Transfer
Information Exchange
Broadcast Master Reset

Function Codes
Master Clear Channel (0000) .
Read Control Register 16 Bits (0100)
Write Control Register (0101) .. .
Read Flag Mask Register (0200) .. .
Write Flag Mask Register (0201) ..
Read Error Status Register (0300) . .
Read Operational Status Register (0400)
Request ISi Idle Status (0500)
Read T Registers (0600)
Write T Registers (0601)
Read Test Seed (0700) . .
Write Test Seed (0701) .
Clear Select Hold (0800)
s·et Select Hold (0801) .
Clear Command Sequence (0900)
Set Command Sequence (0901) .
Force Sync Out (OAOO) .
Set PP Mode (OBOO) . . .
Clear DMA Mode (OCOO)
Set DMA Mode (OCOl) .
Clear Echo Mode (ODOO)
Set Echo Mode (ODOl) .
Clear T Registers (OEOO)
Illegal Function (OFOO)

Registers
Control Register .

Bit Descriptions
Enable Cache Invalidate (Bit 48) .
Port B Enable (Bit 49)
Disable ISi Timeout (Bit 50) . .
Enable Test Mode (Bit 51) ...
Inhibit Test Mode Increment (Bit 52)
Inhibit Sync Out (Bit 53)
Inhibit Outstanding Request Counter (Bit 54) .
Enable Idle Test (Bit 55)
Enable Force Error Codes (Bit 56) .
Force Error Codes (Bits 59-63) . . .

Operational Status Register (Read Only)
Bit Descriptions

Input Buffer Full (Bit 49)
Pause (Bit 50)

2-166
2-166
2-166
2-166
2-167
2-167
2-168
2-168
2-168
2-169
2-169
2-172
2-174
2-174
2-175
2-175
2-175
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-177
2-177
2-177
2-177
2-177
2-178
2-178
2-178
2-178
2-179
2-179
2-180
2-180
2-180
2-180

2-181
2-181
2-181
2-181
2-181
2-181
2-182
2-182
2-182
2-182
2-182
2-182
2-183
2-186
2-186
2-186
2-186

Sync In (Bit 51)
Sync Out (Bit 52)
Command Sequence (Bit 53)
Select Active (Bit 54)
Select Hold (Bit 55) . .
Echo Mode (Bit 57) .
Output Mode (Bit 58)
PP Mode (Bit 59) . .
DMA Mode (Bit 60) .
Noninterlocked Mode (Bit 61)
T-Prime (T') Register Empty (Bit 62)
Transfer in Progress (Bit 63) . .

Error Status Register (Read Only) .
Bit Descriptions

Uncorrected CM Error (Bit 50)
CM Reject (Bit 51)
Invalid Response Code (Bit 52)
Response Code Parity Error (Bit 53) .
CMI Read Data Parity Error (Bit 54)
Test Mode Error (Bit 55)
Overflow Error (Bit 56)
ISi Input Error (Bit 57) .
ISI Timeout (Bit 58) . . .
JY Data Error (Bit 59) .
BAS Parity Error (Bit 60) .
JZ Error (Bit 61) ..
JY Error (Bit 62) .
JX Error (Bit 63) .

Flag Mask Register . .
Bit Descriptions . . .

Transfer Complete (Bit 54)
T-Prime (T') Register Empty (Bit 55)
ISi Attention Bits 0-7 (Bits 56-63)

DMA Channel Registers .
T Register
T-Prime (T') Register ..

Programming Examples . .
Broadcast Master Reset .
Select Bus Slave with BSR .
Output PP Data
Input ISi Data or Status . .
DMA Output with Control Word
Built-in Test Facilities
Echo Mode

Checking Receivers and Transmitters
Checking Flag Mask Network .
Forcing Input Buffer Overflow

Test Mode
Testing DMA Paths
Testing Operand Generator
Testing Comparator

DMA-Enhanced CYBER 170 Channel Adapter . .
Function Register and Decode PROMs . .

Master Clear (8000)
Clear T (8200)
Start DMA Input/Output (84XX/86XX)

2-186
2-186
2-187
2-187
2-187
2-187
2-187
2-188
2-188
2-189
2-189
2-189
2-190
2-190
2-190
2-190
2-190
2-190
2-191
2-191
2-191
2-191
2-191
2-191
2-191
2-192
2-192
2-192
2-193
2-193
2-193
2-193
2-193
2-194
2-194
2-194
2-195
2-195
2-195
2-195
2-196
2-196
2-197
2-197
2-197
2-198
2-198
2-199
2-199
2-200
2-201

2-202
2-203
2-203
2-203
2-204

Clear DMA Mode (8800) .
Disable Test Mode (8COO)
Enable Test Mode (8EOO) .
Read Control Register (9000) .
Write Control Register (9200)
Read Error Status Register (9400) .
Read Operational Status Register (9800)
Read T (9COO)
Write T-Prime (T') (9EOO)

Control Register
Enable Cache Invalidate (Bit 48)
60-Bit Mode (Bit 50)
Enable Test Clock (Bit 51) .. .
Disable External Clock (Bit 52)
Block Full Out (Bit 53)
Enable Overflow (Bit 54)
Disable Error Register Clear (Bit 55) .
Enable Force Error Codes (Bit 56)
Force Error Codes (Bits 59-63)

Invert PROM Parity (01)
Invert Input Data Parity (02) . .
Force Invalid Response (04) ...
Invert Response Code Parity (05) .
Invert Control Register Parity (06) .
Invert Shifter Parity (1 O)
Invert Conversion Parity (11)
Invert Transmit Register Parity (12) .
Invert Input Parity (13)
Force Channel Input Parity 0,1 (20,21)
Force T Parity Low (22)
Invert Output Parity Upper/Lower (23,24) .
Force Address Parity Prediction Error (25)
Force Byte Count Equal to Zero (26) .

Operational Status Register
Output Buffer Full (Bit 52)
Input Buffer Full (Bit 53)
Data Available to Channel (Bit 54)
Fast Transfer (Bit 55)
External Clock Present (Bit 56) . .
Test Mode (Bit 57)
PP Word Count Equal to Zero (Bit 58) .
DMA Output (Bit 59) . . .
DMA Input (Bit 60)
DMA Halted (Bit 61) . . .
T Register Empty (Bit 62)
Transfer in Progress (Bit 63)

Error Status Register
Uncorrectable CM Error (Bit 50)
CM Reject (Bit 51)
Invalid Response (Bit 52)
Any Response Code Parity Error (Bit 53)
CMI Read Data Parity Error (Bit 54) .
Clock Fault (Bit 55)
Overflow Error (Bit 56)
Input Data Error (Bit 57) . . .
12/16 Conversion Error (Bit 58)
AID Data Error (Bit 59)

2-204
2-204
2-204
2-204
2-205
2-205
2-205
2-205
2-205
2-206
2-206
2-206
2-206
2-206
2-206
2-207
2-207
2-207
2-207
2-207
2-207
2-207
2-207
2-208
2-208
2-208
2-208
2-208
2-208
2-209
2-209
2-209
2-209
2-210
2-210
2-210
2-210
2-210
2-210
2-210
2-211
2-211
2-211
2-212
2-212
2-212
2-213
2-213
2-213
2-213
2-214
2-214
2-214
2-214
2~214

2-214
2-214

BAS Parity Error (Bit 60)
KZ Error (Bit 61)
JY Error (Bit 62)
KX Error (Bit 63)

MAC Interface ...
DMA Transfers . . .
Programming Examples

PP to/from an External Device
DMA Output Without PWC
DMA Input With PWC

Built-in Test Facilities .
Test Mode

PP Transfers .
DMA Transfers

Intelligent Peripheral Interface (!Pl) Channel Adapter
IPI Term Definitions .

Bus Master .
Bus Slave .. .
Port
Bus Exchange
Bus Control .
Information Transfer
Ending Status . . .
Idle

IPI Signal Definitions
Bus A .. .
Bus B .. .
Select Out
Slave In ..
Master Out .
Attention In
Sync Out ..
Sync In ...

Data Transfer Modes .
Interlocked Mode ;
Data Streaming Mode .

Bus Slave Termination of Data Streaming
Bus Master Termination of Data Streaming .

IPI Protocol Procedures
Bus Slave Selection Operation
Request Interrupts Sequence
Request Transfer Settings Sequence .
Bus Control Transfer . .
Ending Status Sequence
Information Transfer
Information Transfer Sequence .

Operation Command Transfer
Operation Response Transfer
Data Transfer Out .
Data Tran sf er In . .

Master Reset Sequence
Maintenance Mode ...
Selective Reset Sequence

Function Codes
Internal Functions .
Channel Functions .

2-214
2-215
2-215
2-215
2-216
2-218
2-219
2-219
2-219
2-220
2-221
2-221
2-221
2-221

2-223
2-223
2-223
2-223
2-223
2-223
2-223
2-224
2-224
2-224
2-224
2-225
2-225
2-226
2-226
2-226
2-226
2-226
2-226
2-226
2-226
2-227
2-227
2-228
2-228
2-228
2-229
2-229
2-229
2-230
2-230
2-230
2-231
2-231
2-231
2-231
2-232
2-232
2-232
2-232
2-233
2-233

Status
IPI Status Register
DMA Operational Status Register .
DMA Error Status Register

IPI Programming Examples .
Selective Reset
Select Bus Slave
Output PP Data to IPI
Input IPI Data to PP
DMA Transfer

2-233
2-233
2-234
2-235
2-235
2-235
2-235
2-236
2-236
2-236

Programming Information 2

This chapter contains programming information for:

• The central processor (CP)

• The central memory (CM)

• The input/output unit (IOU)

• The system console

• The two-port multiplexer

Revision E Programming Information 2-1

CP Exchange Operations

CP Exchange Operations
Figure 2-1 shows CP modes of operation. Exchange operations switch the CP between
monitor and job modes in both Virtual State and CYBER 170 State. Exchange
operations may also switch states while switching modes. Refer to Interstate
Programming Information in this chapter for a description of state-switching operations.

An exchange operation exchanges the process running in CP with another process and
switches CP modes. The exchange stores the CP registers of the outgoing process in
CM as an exchange package (refer to Exchange Packages, figure 2-2), and reads the
registers of the incoming process from another exchange package in CM into the CP
registers. Exchange operations are caused by the following:

• Execution of a Virtual State exchange instruction in the CP.

• Execution of the interrupt processor (0026) instruction in any peripheral processor
(PP).

• Hardware-detected fault or exception with the CP in Virtual State job mode. Such
exchange operations are called exchange interrupts.

2-2 60458890 Revision E

.-----EXCHANGE TO MPS----..

CRAP TO EXCHANGE PACKAGE ITP

TRAP CONDITION ----c

DEADSTART

----- CP 02(EXCHANGE I

...._ __ EXCHANGE CONDIT! ON

[TRAP TO EXCHANGE PACK

TRAP CONDITION

AGE (TP)-+

VIRTUAL
STATE

MONITOR
MODE

PROCESSES

VMID•O

VIRTUAL
STATE

JOB
MODE

PROCESSES

VMID .. 0/1

Virtual State Monitor Mode

• Virtual State (VMID•OI

• CYBER 170 State (illegal)

CP Exchange Operations

t------- CP 02(EXCHANGE) --------.

CP 04(RETURN) I
CP BO/B5(CALL~

--------POP STACK ·

-------- PUSH STACK

EXECUTION HALT CONDITION~

I-EXECUTION H ALT CONDITION~
XCHANGE TO JPS --------'

..._

E

CP BO/B5(CALL) -------....,

04(RETURN)-------..... CP

POPSTACK---~----

PUSH STACK--------....

Virtual State Job Mode

• Virtual State (VMI0-0)

• CYBER 170 State monitor mode (VM1D=1)

• CYBER 170 Stau job mode (VMID•1)

Figure 2-1. CP Calls, Returns, and Interrupts

Revision E Programming Information 2-3

CP Exchange Operations

Virtual State Job-to-Monitor Exchange Operations

The CP performs an exchange from Virtual State job mode to Virtual State monitor
mode as follows:

1. It stores the outgoing job process registers as an exchange package starting at the
CM address in the job process state (JPS) pointer register.

2. It disables exchange interrupts.

3. It loads the incoming monitor process registers (from another exchange package in
CM) into the CP registers, starting at the CM address in the monitor process state
(MPS) pointer register.

Exchange interrupt conditions occurring with the CP in monitor mode do not cause an
exchange interrupt, but may cause a trap interrupt. Refer to CP Interrupts in this
chapter.

Virtual State Monitor-to-Job Exchange Operations

The CP performs an exchange from Virtual State monitor mode to Virtual State job
mode as follows:

1. It stores the outgoing monitor process registers as an exchange package starthlg at
the CM address in the monitor process state (MPS) pointer register.

2. It enables exchange interrupts.

3. It loads the incoming job process registers (stored in CM as another exchange
package into the CP registers) starting at the CM address in the job process state
pointer register.

When a Virtual State monitor-to-job mode exchange operation sets MCR bit 55
(environment specification error), the CP completes the exchange and initiates a
job-to.:.monitor mode (JPS) exchange in response to the error. Refer to Interrupts in this
chapter.

Exchange Packages

Before initiating a Virtual State monitor-to-job exchange, the operating system specifies
the process environment by composing in CM an exchange package for that process.
When the process is suspended, hardware records system conditions into the same
exchange package in CM, permitting process reactivation (in the absence of
uncorrectable errors) without violating process integrity.

Each suspended process (including the monitor program) has one exchange package
stored in CM. Each exchange package contains the process registers in fifty-two 64-bit
words as shown in figure 2-2. Refer to Process State Registers in this chapter for
descriptions of the exchange package entries.

2-4 60458890 Revision E

VIRTUAL STATE EXCHANGE PACKAGE

BYTE(HEX)
00

0

8 VMIO UVMID

10 flags 1Tn1p Enables

18 User Mask

2D Monitor Mask

28 UM!r Condition

JD Monitor Condition

38 Reserved T LPID

40 Reserved

48 Reserved

50

58 Process Int. Timer

6D

68 Base Const1nt

70

7B Model Dependent flags

BO Segment Table Length

BB

90

::~

CD

CB

DO

08

ED
EB

FD

FB
100

108

110 Segment Table Address

118

120 Debug lndeJ Debug M1sk

128 Largest Ring Number

p

AO

Al

A2

AJ

A4

AS

A6
A7

AB

A9

AA

AB

AC

AD

AE

AF

XO

Xl

X8

X9

XA
XB

xc
XO

XE
XF

Model Dependent Word

Untransl1uble Pointer

Trap Pointer

Debug list Pointer

Top of Stack Ring Number 1

CP Exchange Operations

WORDIDEC)
63

0

2

3

4

6

B

9

10

11

12

13

14

15

16

17

18

=~

24

25

26

27

28

29

30

31

32

33

34

35

36

37

r 51
198] 11~111•• . : . '. .•...... + · li-~------!-op_o_f -St_ec_k_R-in_g_N_u_m_be_~-1-5---------i

00 07 08 15 16 63
r

Figure 2-2. Virtual State Exchange Package

Revision E Programming Information 2-5

CP Exchange Operations

The CP uses the following types of exchange packages:

• For exchanges between Virtual State monitor and job modes (exclusively within
Virtual State), the exchange package format is shown in figure 2-2.

• For exchanges between Virtual State monitor and job modes (including switching
between Virtual State and CYBER 170 State), the exchange package format is
shown in figure 2-27.

• For exchanges with CYBER 170 State monitor and job modes, the exchange package
format is shown in figure 2-28.

• For exchanges exclusively within CYBER 170 State, the exchange package format is
shown in the appropriate CYBER 170 State hardware reference manual listed in the
system publication index in About This Manual.

Exchange package addresses, used by hardware to locate exchange packages during
exchange operations, are real memory addresses (RMAs) in hardware registers
designated as follows:

• For exchanges to Virtual State monitor mode, the RMA is in the monitor process
state (MPS) pointer register.

• For exchanges to Virtual State job mode, the RMA is in the job process state (JPS)
pointer register.

Exchange operations do not copy an exchange package into cache memory.

2-6 60458890 Revision E

CP Registers

CP Registers

The CP registers comprise two classes: process state registers and processor state
registers. This distinction arises because the state of the process, and the state of the
processor, characterize CP operation. Both classes of registers are accessible to the CP
and PPs. Bits within the registers number consecutively from left to right, with the
rightmost bit always numbered 63.

CP Process State Registers

The process state registers relate to a specific Virtual State process executing in the
CP. Various process state registers also support CYBER 170 State operation. The
contents of the process state registers can be written into memory as a Virtual State
exchange package for either a Virtual State process or a CYBER 170 State process
(refer to figures 2-2 and 2-27).

The exchange package for each process contains the step-by-step operating register
contents as directed by process execution. In addition, the exchange package holds other
detailed process state information such that the CP may dynamically switch between
exchange packages (processes) while preserving process integrity. When a process
executes in the CP, its exchange package resides in the process state registers. When a
process awaits execution, its exchange package resides in central memory.

Table 2-1 lists the processor state registers and permissible access types for CP
Copy-To/From-State-Register instructions and for maintenance channel (MCH) access.

Revision E Programming Information 2-7

CP Registers

Table 2-1. Process State Registers

No. Access Access
of Type Type

Register Name Bits Address Copy MCH

Address (AO through AF) (16 registers) 48
Base constant (BC) 32 47 R R/W
Debug index (DI) 6 E4 R/W R/W
Debug list pointer (DLP) 48 C5 RJL R/W
Debug mask (DM) 7 E5 R/W R/W
Flags
Critical-frame flag (CFF) 1 EO,El R/W R/W
On-condition flag (OCF) 1 E2,E3 RJW R/W
Process-not-damaged (PND) flag 1
Largest ring number (LRN) 4 CM
Last processor identification (LPID) 8
Monitor condition (MCR) 16 43 R R/W
Monitor mask (MMR) 16 60 R/W RJW
Operand (XO through XF) (16 registers) 64
Process interval timer (PIT) 32 C9 RJL RJW
Program address (P) 64 40 R RJW
Segment table address (STA) 32 45 R RJW
Segment table length (STL) 12 45 R RJW
Top-of-stack (TOS) pointer (15 registers) 48 CM
Trap enable (TE) 2 CO-C3 RJL RJW
Trap pointer (TP) 48 C4 RJL RJW
Untranslatable pointer (UTP) 48 44 R R/W
Untranslatable virtual machine
identifier (UVMID) 4
User condition (UCR) 16 43 R RJW
User mask (UMR) 16 E6 RJW RJW
Virtual machine identifier (VMID) 4

Notes:

R: Unprivileged read
W: Unprivileged write
L: Locally-privileged write
CM: In central memory (indirectly accessible)

2-8 60458890 Revision E

CP Registers

CP Base Constant (BC) Register

The 32-bit BC register provides a means for communication with the operating system.
The contents of this register do not directly affect hardware operation.

CP Debug Index (DI) Register

The 6-bit DI register is added to the debug list pointer (DLP) register to form the
process virtual address (PVA) of each word read from the debug list (DL). DI
increments after each word is read. When a DL match occurs, DI+ DLP points to the
second word of the matched DL entry.

CP Debug List Pointer (DLP) Register

The 48-bit DLP register contains the PVA of the first debug list entry. DLP bits 61
through 63 must be zeros or an address specification error (MCR 52) occurs.

CP Debug Mask (DM) Register

The 7-bit DM register contains two flag bits and five mask bits. The flag bits control
debug initiation and termination. A mask bit, when set, enables the corresponding
debug interrupt. DM has the following bit assignments.

DM Bit

9
10
11
12
13
14
15

CP Flag Register

Description

End-of-list-seen flag
Debug scan-in-progress flag
Data-read mask
Data-write mask
Instruction-fetch mask
Branch target instruction-fetch mask
Call target instruction-fetch mask

The 4-bit flag register contains the flag bits described in the following paragraphs.

Critical-Frame Flag (CFF)

Software sets this flag to indicate that the stack frame in use (when the flag is set)
requires special attention before this frame may be abandoned. Executing return/pop
instructions with CFF set causes an interrupt (other enables-permitting). Call
instructions and trap interrupts record CFF in the stack frame save area (SFSA) and
proceed to clear CFF; return instructions restore the previous CFF condition.

On-Condition Flag (OCF)

. Software sets this flag to assist the operating system in the handling of certain trap
interrupts. Call instructions and trap interrupts record OCF in the SFSA and proceed
to clear OCF; return instructions restore the previous OCF condition.

Revision E Programming Information 2-9

CP Registers

Process-Not-Damaged (PND) Flag

Hardware sets this flag in the outgoing exchange package after an uncorrectable error
(MCR 48) occurs. PND indicates that the interrupted process is undamaged and may be
restarted. Hardware ignores PND in an incoming exchange package.

CP Largest Ring Number (LRN) Register

The 4-bit LRN register contains the largest ring number for which there is a
top-of-stack (TOS) entry in the associated TOS register. (In model 835, this register is
not used as the TOS pointers are kept in CM.)

CP Last Processor Identification (LPID) Register

In dual-CP systems, the 8-bit LPID register identifies the last CP which executed the
process defined by the exchange package.

CP Monitor Condition Register (MCR)

The 16-bit MCR register records system exception conditions which the operating
system must resolve (for example, hardware errors, instruction specification errors, and
access violations). Refer to CP Interrupts in this chapter for further information.

CP Monitor Mask Register (MMR)

The 16-bit MMR register enables or masks certain software-specified conditions directly
associated with the monitor condition register (MCR). An interrupt occurs when an
MCR bit is set with the corresponding MMR bit set (other enables-permitting). Refer to
CP Interrupts in this chapter for further information.

Operand (X) Registers

The sixteen 64-bit X registers, XO through XF, supply operands for arithmetic
operations and data manipulation. Depending on the operation, the registers contain a
logical quantity, a signed binary integer, or a signed FP number. CP instructions
which only require 32 data bits access the X registers as X-left (bits 0 through 31) or
X-right (bits 32 through 63). The X-register formats are as follows (the S-field is the
sign bit):

0 63

X Register

0 3132 63

X Register Left X Register Right

Store operations to X-left (XkL) do not alter X-right (XkR). Store operations to XkR do
not alter XkL.

2-10 60458890 Revision E

CP Registers

CP Process Interval Timer (PIT)

The 32-bit PIT register allows each process to track its own execution time. PIT is set
either by a Copy-To-State-Register instruction with local privilege or from an incoming
exchange package. The CP records PIT in an outgoing exchange package. PIT can be
read via a Copy-From-State-Register instruction.

PIT decrements at a I-microsecond rate without stopping. A trap interrupt occurs
whenever the count equals zero (other enables-permitting).

CP Program Address (P) Register

The 64-bit P register contains the PVA of an instruction during the time the CP
interprets and executes it. The P register also contains bits which define memory
access protection. The P-register format is as follows.

0 910 1516 1920 313233 63

- KEY IRNI SEG BN

Field Name

KEY Key

RN Ring
Number

SEG Segment
Number

v Valid bit

BN Byte
Number

Description

Access permission attribute (refer to Access Protection under
Virtual Memory Programming in this chapter).

Access privilege indicator (refer to Access Protection under Virtual
Memory Programming in this chapter).

Process segment number (refer to Access Protection under Virtual
Memory Programming in this chapter).

Validity indicator (refer to Process Virtual Memory under Virtual
Memory Programming in this chapter.

Byte displacement within the 231 bytes in a segment. Bit 32 in
the final PVA used as a validity indicator and must be a zero or
the PVA is rejected. Bit 32 in an A register may be a one,
provided indexing or displacement changes this bit to a zero in
the final PVA.

CP Segment Table Address (STA) Register

The 32-bit STA register contains the real memory address (RMA) of the first segment
descriptor table entry (interpreted as a byte address). Hardware ignores the rightmost 3
bits of STA. Refer to Virtual Memory Programming in this chapter for further
information.

Revision E Programming Information 2-11

CP Registers

CP Segment Table Length (STL) Register

The 12-bit STL register contains a count equal to one less than the number of 64-bit
entries in the associated segment descriptor table. The virtual addressing mechanism
uses this count to verify that segment table references are to an address within the
segment table boundaries. Refer to Virtual Memory Programming in this chapter for
further information.

CP Top-of-Stack (TOS) Pointer Registers

The operating system has for each process fifteen 48-bit TOS pointers to guarantee
access protection. The TOS pointers are located in words 37 through 51 of an exchange
package in CM. Each TOS is associated with one of the 15 rings of access protection;
hardware uses the pointers to switch stacks during call/return instructions. Each TOS
is a PVA pointing to the top of its associated stack when this stack is not in active
use. Refer to Stack Manipulating Operations in this chapter, and Access Protection
under Virtual Memory Programming in this chapter, for further information.

CP Trap Enable (TE) Register

The 2-bit TE register contains information that determines how traps are enabled. The
TE register bits are represented as follows:

o Trap-enable flip-flop (TEF)

When set, TEF is one of the conditions which enable trap interrupts. TEF is
normally set by a Copy-To-State-Register instruction and cleared by hardware when
a trap interrupt occurs. TEF can also be cleared by another Copy-To-State-Register
instruction.

• Trap-enable delay (TED) flip-flop

The TED flip-flop disables a trap interrupt until after the next return instruction
completes execution. TED is normally set by a Copy-To-State-Register instruction
and cleared by a return instruction. TED can also be cleared by another
Copy-To-State-Register instruction.

CP Trap Pointer (TP) Register

The 48-bit TP register contains a PVA which is the indirect address of the entry point
into the trap interrupt target procedure (refer to CP Interrupts in this chapter). The
code base pointer (CBP) is the direct address to which TP points. An incoming
exchange package loads the TP register. TP can also be written by a
Copy-To-State-Register instruction with local privilege, and read by a
Copy-From-State-Register instruction.

2-12 60458890 Revision E

CP Registers

CP Untranslatable Pointer (UTP) Register

When an interrupt occurs because the CP cannot translate a PVA or system virtual
address (SVA) to an RMA, the 48-bit UTP register contains the untranslatable PVA or
SVA. UTP is set to PVA when the following MCR conditions occur:

• MCR 52 sets (except during load-page or purge instructions).

• MCR 54 or 57 sets.

• MCR 60 sets due to invalid SDE or exceeded STL.

• MCR 60 sets due to code base pointer (CBP) RN-field of zero during a call-indirect
instruction.

In the following cases, UTP may be set to either PVA or SVA:

• MCR 52 sets during load-page instruction.

o MCR 52 sets during purge instruction with k = 0/1/8/9.

No other interrupt alters the UTP register.

CP Untranslatable Virtual Machine Identifier (UVMID) Register

Hardware sets the 4-bit UVMID register when an exchange operation, call-indirect
instruction, or return instruction is interrupted due to an attempt to switch the CP to
a state for which there is no set bit in the virtual machine capability list. In such a
case, hardware sets the UVMID code to indicate which virtual machine capability list
(VMCL) bit is missing. Values of 0 through 15 of UVMID correspond to VMCL bits 48
through 63 as follows:

UVMID Missing VMCL Bit

0 48 (Virtual State)

1 49 (CYBER 170 State)

2 through FF 50 through 63 (reserved)

Revision E Programming Information 2-13

CP Registers

CP User Condition Register (UCR)

The 16-bit UCR register records conditions that normally do not require an exchange
to monitor mode for corrective action. Each bit indicates detection of a particular error
or exception condition in the CP (for example, divide fault, arithmetic overflow and
underflow, or invalid BDP data). A trap interrupt occurs when a UCR bit sets with the
trap enable flip-flop set, the corresponding user mask register (UMR) bit set, and
trap-enable delay flip-flop clear. Refer to CP Interrupts in this chapter for further
information.

CP User Mask Register (UMR)

The 16-bit UMR register enables or masks certain software-specified conditions directly
associated with the user condition register (UCR). An interrupt occurs when a UCR bit
is set with the corresponding UMR bit set (other enables-permitting). Refer to CP
Interrupts in this chapter for further information.

CP Virtual Machine Identifier (VMID) Register

The 4-bit binary code in the VMID register identifies the virtual machine capability
being used, as follows:

VMID Virtual Machine Capability

0 Virtual State

1 CYBER 170 State

2 through FF Reserved

2-14 60458890 Revision E

CP Registers

CP Processor State Registers

The processor state registers contain information about the state of the CP hardware,
rather than a unique process. Included among this category of registers are the CP
maintenance registers, which provide additional information about the condition of the
CP hardware for diagnostic purposes. Other processor state registers contain such
information as parameters of tables and pointers to exchange packages in CM.

Table 2-2 lists the processor state registers and permissible access types for CP
Copy-To/From-State-Register instructions and for maintenance channel (MCH) access.

Table 2-2. Processor State Registers

No. Access Access
of Type Type

Register Name Bits Address Copy MCH

Cache/map corrected error log 64 92/93 RIG RJW
(CCEL/MCEL)
Dependent environment control (DEC) 64 30 RJW
Element identifier (EID) 32 10 R R
Job process state (JPS) 32 61 RIM RJW
Model-dependent word (MDW) 64 51 R RJW
Monitor process state (MPS) 32 41 R RJW
Options installed (Ol) 64 12 R R
Page size mask (PSM) 7 4A R RJW
Page table address (PTA) 32 48 R RJW
Page table length (PTL) 8 49 R RJW
Processor fault status (PFS) 64 80-81 RIG R/W
Processor identifier (PID) 8 11 R R
Processor test mode (PTM) 64 AO RIG R/W
Status summary (SS) 6 00 R
System interval timer (SIT) 32 62 RIM R/W
Virtual machine capability list (VMCL) 16 13 R R

Notes:

R: Unprivileged read
W: Unprivileged write
G: Globally-privileged write
M: Virtual State monitor mode write

Revision E Programming Information 2-15

CP Registers

CP Options Installed (01) Register

The 64-bit OI register is a hardwired register identifying the options installed in the
CP. Refer to the Maintenance Register Codes Booklet listed under Additional Related
Manuals in About This Manual for model-dependent information contained in the OI
register.

CP Page Size Mask (PSM) Register

The 7-bit PSM register specifies the page size used in allocating real memory. Page
sizes are selectable at system initialization time and range from 2K to 16K bytes.
Refer to Virtual Memory Programming in this chapter for further information.

CP Page Table Address (PTA) Register

The 32-bit PTA register is a real-memory byte address pointing to the first page table
entry. Refer to Virtual Memory Programming in this chapter for further information.

CP Page Table Length (PTL) Register

The 8-bit PTL register is a mask specifying the page table length. The page table
ranges from 512K to 131K words in 512K-word increments. Refer to Virtual Memory
Programming in this chapter for further information.

CP Processor Fault Status (PFS) Registers

The PFS registers record hardware-detected errors occurring within the CP. Refer to
the Maintenance Register Codes Booklet listed under Additional Related Manuals in
About This Manual for model-dependent information contained in the PFS registers.

CP Processor Identifier (PID) Register

The 8-bit PID register is a hardwired register identifying each processor in the system.
Refer to the Maintenance Register Codes Booklet listed under Additional Related
Manuals in About This Manual for model-dependent information contained in the PID
register.

CP Processor Test Mode (PTM) Register

The 64-bit PTM register provides a maintenance capability which forces faults for the
purpose of testing hardware-fault sensing within the CP. Refer to the Maintenance
Register Codes Booklet listed under Additional Related Manuals in About This Manual
for model-dependent information contained in the PTM register.

CP Status Summary (SS) Register

The 6-bit SS register indicates CP status (similar registers exist in the CM and IOU).
Aside from the Virtual State monitor mode bit, if any SS bit is set the SS bit also sets
in the IOU status summary register. Refer to the Maintenance Register Codes Booklet
listed under Additional Related Manuals in About This Manual for further information.

2-16 60458890 Revision E

CP Registers

CP Cache/Map Corrected Error Log (CCEL/MCEL) Register

The CCEL/MCEL register contains model-dependent diagnostic information. Refer to the
Maintenance Register Codes Booklet listed under Additional Related Manuals in About
This Manual for further information.

CP Dependent Environment Control (DEC) Register

The 64-bit" DEC register is a maintenance register which controls CP operating
conditions. The model-independent bit is as follows:

Bit

35

Description

Disable corrected error to status summary. When set, disables the
setting of corrected error (bit 62) in the CP status summary
register.

Refer to the Maintenance Register Codes Booklet listed under Additional Related
Manuals in About This Manual for model-dependent bit descriptions.

CP Element Identifier (EID) Register

The 32-bit EID register is a backpanel-wired register identifying each system hardware
element. The EID bits are represented as follows:

EID Bits

32 through 39

40 through 47

48 through 63

Description

Element type

Model number

Serial number (hexadecimal)

Refer to the Maintenance Register Codes Booklet listed under Additional Related
Manuals in About This Manual for model-dependent information contained in the EID
register.

CP Job Process State (JPS) Register

The 32-bit JPS register contains the real-memory address (RMA) of the first word of a
Virtual State job mode exchange package. Hardware aligns the JPS address with bits
32 through 63 of RMAs and interprets the JPS address as 0, modulo 16. The CP
ignores bit 32 and interprets bits 60 through 63 as zeros. System deadstart procedures
load the initial JPS.

CP Model-Dependent Word (MDW) Register

The MDW register (models 810, 815, 825, 830, and 835 only) contains the PVA of the
instruction that caused the last branch to take place in the CP. The PVAs include
those of call and return instructions. In model 990 and CYBER 990E, 995E, 992, and
994 this 64-bit register contains the PVA of the next location in central memory for
writing keypoint data. Bits 0 through 15 are unused. Bits 16 through 63 contain the
PVA.

Revision G Programming Information 2-17

CP Registers

CP Monitor Process State (MPS) Register

The 32-bit MPS register contains the real memory address (RMA) of the first word of a
Virtual State monitor mode exchange package. Hardware aligns the MPS address with
bits 32 through 63 of RMAs, and interprets the MPS address as zero, modulo 16. The
CP ignores bit 32 and interprets bits 60 through 63 as zeros. System deadstart
procedures load the initial MPS.

Bit

58

59

60

61

62

63

Description

Virtual State monitor mode.

Short warning. Sets to warn the system of an imminent
environmental failure (for example, system power failure, local
50-Hz/60-Hz power failure, or cooling unit fault).

Processor halted.

Uncorrectable error. Sets whenever the detected uncorrectable error
(DUE) bit in MCR sets.

Corrected error. Sets after the CP corrects an error. The dependent
environment control (DEC) register can be set to disable the
recording of corrected errors.

Long environment warning. Sets to indicate an imminent failure
condition (for example, high-temperature warning, blower fault, or
low-temperature fault).

CP System Interval Timer (SIT) Register

The 32-bit SIT register is a timer which establishes maximum time intervals for
process execution. The operating system first sets the timer to the desired value. The
timer then decrements at a I-microsecond rate until the count equals zero (the timer
does not stop counting at zero; it decrements to all ones and continues decrementing).
Vihen enabled, the zero count causes an interrupt.

CP Virtual Machine Capability List (VMCL)

The 16-bit VMCL register is a backpanel-wired register indicating CP capabilities. The
VMCL format is as follows:

VMCL Bit

48

49

50 through 63

2-18 60458890

Capability

Virtual State

CYBER 170 State

Reserved

Revision E

CM Registers

CM Registers

The CM contains maintenance registers which hold memory status and error
information (table 2-3). CM maintenance registers are accessible through the
maintenance channel (register 80 is also accessible through the memory ports).

Table 2-3. CM Maintenance Registers

Register Name

Corrected error log (CEL)
Element identifier (EID)
Environment control (EC)
Free-running counter1

Options installed (OI)
Port bounds register
Status summary
Uncorrectable error log (UEL) 1
Uncorrectable error log (UEL) 2

No.
of
Bits

64
32
64
48
4
64
6
64
64

Address

AO
10
20
BO
12
21
00
A4
AS

1. The free-running counter can be read from the CP by the
Copy-Free-Running-Counter (08) instruction.

CM Corrected Error Log (CEL) Register

Access
Type
Copy

R

Access
Type
MCH

RJW
R
R/W
w
R
R/W
R
RJW
RJW

The 64-bit CEL register contains details concerning the first corrected error since this
register was last reset. The model-independen~ bits are represented as follows:

Bit

0

1

Description

Valid bit. Indicates that the CEL contains a valid entry. When this
bit is set, further correctable errors are discarded.

Unlogged corrected error. Indicates that a correctable error occurred
but could not be logged because the CEL already contained an entry.

The CEL register contains model-dependent information regarding the address, parity,
and encoded number of the memory port associated with the error. Refer to the
Maintenance Register Codes Booklet listed under Additional Related Manuals in About
This Manual for model-dependent information contained in the CEL register.

Revision E Programming Information 2-19

CM Registers

CM Element Identifier (EID) Register

The 32-bit EID register is set by switches on logic panels. EID identifies each system
hardware element according to the following bit assignments:

Bits

32 through 39

40 through 4 7

48 through 63

Description

Element type

Model number

Serial number (hexadecimal)

Refer to the Maintenance Register Codes Booklet listed under Additional Related
Manuals in About This Manual for model-dependent information contained in the EID
register.

CM Environment Control (EC) Register

The 64-bit EC register controls CM error-checking and interleaving. Refer to the
Maintenance Register Codes Booklet listed under Additional Related Manuals in About
This Manual for information contained in the EC register.

CM Free-Running Counter Register

This 64-bit counter register consists of 48 counter bits right-justified with zero-fill in
the leftmost 16 bits. The counter increments at a !-microsecond rate. Successive reads
of the free-running counter guarantee different values.

The free-running counter can be written at any time through the maintenance channel.
The CP can read the counter using the Copy-Free-Running-Counter (08) instruction.

CM Options Installed (01) Register

The 32-bit OI register (4 bits are used) identifies the memory configuration and is set
by field-modifiable switches on logic panels. Refer to the Maintenance Register Codes
Booklet listed under Additional Related Manuals in About This Manual for
model-dependent information contained in the 01 register.

2-20 60458890 Revision E

CM Registers

CM Port Bounds Register

This 64-bit register controls the range of addresses accessible during a write operation
through specified ports. For ports specified by bounds-register bits, write access is
limited to an area between two real-memory addresses (RMAs) in this register. Refer
to Maintenance Channel Programming in this chapter for further information.

CM Status Summary Register

This 64-bit register (6 bits are used) provides information about the CM clock, error
status, and physical environment condition. Refer to the Maintenance Register Codes
Booklet listed under Additional Related Manuals in About This Manual for specific
information contained in the CM status summary register.

CM Uncorrectable Error Log (UEL) Registers

The two 64-bit UEL registers contain details of the first two uncorrected CM errors
which occurred since the registers were last reset. The model-independent bits are
represented as follows:

Bit

0

1

Description

Valid bit. Indicates that the UEL contains a valid entry. When this
bit is set, further uncorrectable errors are discarded.

Unlogged uncorrectable error. Indicates that an uncorrectable error
occurred but could not be logged because the UEL already contained
an entry.

The UEL registers also contain information about the source of the error. This
information includes the illegal function, memory bounds fault, and multiple-bit
memory error. Refer to the Maintenance Register Codes Booklet listed under Additional
Related Manuals in About This Manual for model-dependent information contained in
the UEL registers.

Revision E Programming Information 2-21

IOU Registers

IOU Registers

The IOU contains maintenance registers which hold IOU status and error information
(table 2-4). IOU registers are accessible through the maintenance channel.

Table 2-4. IOU Maintenance Registers

No. Access Access
of Type Type

Register Name Bits Address Copy MCH

Element identifier (EID) 32 10 R
Environment control (EC) 32 30 R/W
Fault status (FS) 1 64 80 R/W
Fault status (FS) 2 64 81 R/W
Fault status mask 64 18 R/W
Options installed (01) 64 12 R
OS bounds 64 21 R/W
Status summary 6 00 R
Test mode (TM) 16 AO R/W

IOU Element Identifier (EID) Register

The 32-bit EID register is a backpanel-wired register identifying each system hardware
element. The EID bits are represented as follows:

Bits

32 through 39

40 through 4 7

48 through 63

Description

Element type

Model number

Serial number (hexadecimal)

IOU Environment Control (EC) Register

The 64-bit EC register (32 bits are used) controls timing margins, test mode and
deadstart, PP memory dumps, reconfiguration, and stop-on-error conditions for the IOU.
It also selects PP internal registers for reading. Refer to the Maintenance Register
Codes Booklet listed under Additional Related Manuals in About This Manual for
further information.

IOU Fault Status (FS) Registers

The 64-bit FS registers indicate the presence of uncorrectable faults in the IOU, PP
memories, 1/0 channels, or PP hardware. Refer to the Maintenance Register Codes
Booklet listed under Additional Related Manuals in About This Manual for further
information.

2-22 60458890 Revision E

.IOU Registers

IOU Fault Status Mask Register

This 64-bit register controls IOU fault reporting to the IOU fault status (FS) registers.
Refer to the Maintenance Register Codes Booklet listed under Additional Related
Manuals in About This Manual for further information.

IOU Options Installed (OI) Register

The 64-bit OI register (30 bits are used) identifies the options installed in the IOU.
Refer to the Maintenance Register Codes Booklet listed under Additional Related
Manuals in About This Manual for further information.

IOU OS Bounds Register

The 64-bit operating system (OS) bounds register divides the CM into an upper and a
lower region for system protection. The OS bounds register contains a bit for each PP
which indicates the region in CM into which the specified PP may initiate exchange
operations or writes. Refer to the Maintenance Register Codes Booklet listed under
Additional Related Manuals in About This Manual for further information.

IOU Status Summary Register

The status summary register indicates errors in the CP, CM, and IOU. It also provides
information about the PP-halt, error status, and physical environment conditions. Refer
to the Maintenance Register Codes Booklet listed under Additional Related Manuals in
About This Manual for further information.

IOU Test Mode (TM) Register

The 64-bit TM register (16 bits are used) forces faults in the IOU for testing of the
fault sensing logic. Bits 48 through 63 of this register serve a dual role. With the
Enable Test Mode Register bit set in the EC register, these bits are used to force test
conditions (refer to the Maintenance Register Codes Booklet listed under Additional
Related Manuals in About This Manual for further information). When the Enable Test
Mode Register bit is clear, these read/write bits can be used by software as
interlock/flag status bits.

Revision E Programming Information 2-23

CP Condition and Mask Registers

CP Condition and Mask Registers
The CP contains a monitor condition register (MCR) and a user condition register
(UCR), each of which records interrupt causes and displays flag conditions. Each
condition register has a corresponding mask register controlling the action taken when
a condition register bit sets. Table 2-5 lists the bit assignments in the monitor
condition and mask registers. Table 2-6 lists the bit assignments in the user condition
and mask registers. The significance of the individual bits is further described in
Interrupt Conditions in this chapter. Chapter 2 in volume 1 also describes all CP
registers.

In general, MCR and UCR bits may be altered by the following:

• CP hardware indicating a processor condition or external event.

• Branch-on-condition register (9F) instruction.

• PP communication over the maintenance channel.

• Software with the condition register stored in an exchange package in CM.

• Trap interrupts which clear any condition register bits for which the corresponding
mask register bit is set.

Monitor condition and user mask register bits may be altered by the following:

• Copy-To-State-Register (OF) instruction.

• PP communication over the maintenance channel.

• Software with the mask register stored in an exchange package in CM.

2-24 60458890 Revision E

CP Condition and Mask Registers

Table 2-5. Monitor Condition/Mask Register Bit Assignments

Exchange
MCR Package Job Mon Job Mon Any
Bit Bit Type Description * * ** ** ***

48 0 xx Detected uncorrect- Exch Trap Exch Halt Halt
able error.

49 1 xx Not assigned. Exch Trap Ex ch Halt Halt
50 2 EN Short warning. Exch Trap Exch Stack Stack
51 3 ST Instruction Ex ch Trap Exch Halt Halt

specification error.
52 4 ST Address Exch Trap Ex ch Halt Halt

specification error.
53 5 EN CYBER 170 State Exch Trap Ex ch Stack Stack

exchange request.
54 6 ST Access violation. Ex ch Trap Exch Halt Halt
55 7 s 1 Environment Exch Trap Ex ch Halt Halt

specification error.
56 8 EN External interrupt. Exch Trap Ex ch Stack Stack
57 9 ST Page table search Exch Trap Exch Halt Halt

without find.
58 10 EN System call None None None None None

(status bit).
59 11 EN System interval Exch Trap Exch Stack Stack

timer.
60 12 S2 Invalid segment/ Exch Trap Exch Halt Halt

ring number zero.
61 13 ST Outward call/ Ex ch Trap Exch Halt Halt

Inward return.
62 14 EN Soft error. Exch Trap Exch Stack Stack
63 15 ST Trap exception None None None None None

(status bit).

Notes:

Refer to Interrupt Conditions in this chapter for bit descriptions.

Stack: Test for opportunity to trap or exchange at each instruction fetch.
X: Either condition may happen.
E: Execution completed.
S: Execution suppressed.
N: P = PVA of next instruction.
T: P = PVA of this instruction.
1: For RN = 0 on Load A, Return or Pop, 1 = N; for RN = 0 on Call or Trap,
1 = T; for invalid segment, 1 = T.
2: For exchange operations, 2 = N; Call, Return or Pop, 2 = T.

*CP mode of operation - Trap Enabled; associated MCR bit set.
**CP mode of operation - Trap disabled; associated MCR bit set.
***CP mode of o:eeration - Not affected by tra:e condition; associated MCR bit clear.

Revision E Programming Information 2-25

CP Condition and Mask Registers

Table 2-6. User Condition/Mask Register Bit Assignments

Exchange
UCR Package Job Mon Job Mon Any
Bit Bit Type Description * * ** ** ***

48 0 ST Privileged in-
struction fault. Trap Trap Exch Halt

49 1 ST Unimplemented
instruction. Trap Trap Exch Halt

50 2 EN Free flag. Trap Trap Stack Stack
51 3 T Process interval

timer. Trap Trap Stack Stack
52 4 ST Inter-ring pop. Trap Trap Exch Halt
53 5 T Critical frame Trap Trap Exch Halt

flag.
54 6 Reserved. Trap Trap Stack Stack
55 7 SN Divide fault. Trap Trap Stack Stack Stack
56 8 ST Debug. Trap Trap Stack Stack Stack
57 9 ST Arithmetic Trap Trap Stack Stack Stack

overflow.
58 10 ET Exponent overflow. Trap ·Trap Stack Stack Stack
59 11 ET Exponent Trap Trap Stack Stack Stack

underflow.
60 12 ET FP loss of

significance. Trap Trap Stack Stack Stack
61 13 ST FP indefinite. Trap Trap Stack Stack Stack
62 14 ST Arithmetic loss

of significance. Trap Trap Stack Stack Stack
63 15 ET Invalid BDP data. Trap Trap Stack Stack Stack

Notes:

Refer to Interrupt Conditions in this chapter for bit descriptions.

Stack: Test for opportunity to trap or exchange at each instruction fetch.
E: Execution of instruction completed.
S: Execution of instruction suppressed.
N: P = PVA of next instruction.
T: P = PVA of this instruction.

*CP Mode of Operation - Trap Enabled; associated MCR bit set.
**CP Mode of Operation - Trap disabled; associated MCR bit set.
***CP Mode of Operation - Not affected by trap condition; associated MCR bit clear.

2-26 60458890 Revision E

CP Condition and Mask Registers

CP Condition Register Bit Grouping

Refer to Interrupt Conditions in this chapter for bit descriptions. The four groups of
condition register bits shown in table 2-7 are a function of the characteristics of the
event detected, and of the P register PVA at time of interrupt.

The PVA from the P register stored in the exchange package during exchange
interrupts [or in the stack frame save area (SFSA) during trap interrupts] points to an
instruction address dependent on the condition register bit group as follows:

Group

1

2a,2b

3

Revision E

PVA in P Stored During Interrupt

Points to the instruction executing when the malfunction was detected.
This instruction did not necessarily initiate the activity resulting in the
malfunction.

J

Points to the instruction that would have been executed if the interrupt
had not occurred. After executing an exchange or return to the interrupted
procedure, processing continues (from the PVA stored in the exchange
package) as though the interrupt had not occurred.

Points to the instruction causing the interrupt.

Programming Information 2-27

CP Condition and Mask Registers

Table 2-7. Interrupt Condition Groups

CY170 Virtual
MCR/UCR Occur- Occur-

Group Interrupt Condition Bit Type rence rence

1 Detected uncorrectable error MCR 48 Mon x x

2a Short warning MCR 50 Sys x x
System interval timer MCR 51 Sys x x
Soft error MCR 52 Sys x x
External interrupt MCR 59 Sys x x
Free flag UCR 50 User x x
Process interval timer UCR 51 User x x
CYBER 170 State exchange MCR 53 Sys x x
request

2b System call MCR 58 Status x
Exponent overflow UCR 58 User x
Exponent underflow UCR 59 User x
FP loss-of-significance UCR 60 User x
Invalid segment/RN zero1 MCR 60 Mon x x
Environment specification error2 MCR 55 Mon x x

3 Instruction specification error MCR 62 Mon x
Address specification error MCR 52 Mon x x
Invalid segment/RN zero1 MCR 60 Mon x x
Access violation MCR 54 Mon x x
Environment specification error2 MCR 55 Mon x x
Page table search without find MCR 57 Mon x x
Outward call/inward return MCR 61 Mon x x
Trap exception MCR 63 Status x x
Privileged instruction fault UCR 48 Mon x x
Unimplemented instruction UCR 49 Mon x x
Inter-ring pop UCR 52 Mon x
Critical frame flag UCR 53 Mon x x
Divide fault UCR 55 User x
Debug UCR 56 User x
Arithmetic overflow UCR 57 User x
FP indefinite UCR 61 User x
Arithmetic loss-of-significance UCR 62 User x
Invalid BDP data UCR 63 User x

1. MCR 60 set by load address, return, or pop instruction when RN = 0 is in
group 2b. MCR 60 set by call or trap instruction when RN = 0, or set by an invalid
segment, is in group 3.

2. MCR 55 set by exchange operations is in group 2b. MCR 55 set by call, return, or
pop instruction is in group 3.

2-28 60458890 Revision E

CP Interrupts

CP Interrupts
Exchange interrupts and trap interrupts comprise the CP interrupt structure. The
following paragraphs describe the characteristics of the two interrupt types.

Exchange Interrupts

An exchange interrupt causes an exchange operation as described in Exchange
Operations in this chapter. Exchange interrupts switch the system from Virtual State
job mode (Virtual State or CYBER 170 State environment) to Virtual State monitor
mode. Exchange interrupts are disabled in Virtual State monitor mode.

Exchange interrupts initiate from conditions that set a bit in the monitor condition
register (and in some cases in the user condition register). Exchange interrupts can
only occur when the CP is in Virtual State job mode and the corresponding mask
register bit is set. Refer to tables 2-5 and 2-6.

Trap Interrupts

A trap interrupt acts as an implicit call indirect (BO) instruction to an
interrupt-handling procedure. Trap interrupts save the current stack frame save area
(SFSA) environment, push the stack, and switch control to a software procedure for
trap handling. Trap interrupts occur in response to the setting of UCR or MCR bits (as
shown in tables 2-5 and 2-6) in the following environments:

o Within Virtual State monitor mode.

o Within Virtual State job mode.

o Upon switch from CYBER 170 state to Virtual State job mode (refer to State
Switching Operations in this chapter).

The trap interrupt creates the maximum (33 word) SFSA descriptor and preserves the
contents of the following in the associated SFSA: the P register, A and X registers,
VMID, SFSA descriptor, monitor mask and condition registers, and user mask and
condition registers. After the trap interrupt stores these registers in the SFSA, the CP
clears the UCR or MCR bits causing the trap interrupt.

The trap interrupt target address is obtained by the CP using the PVA in the trap
pointer register to access a code base pointer (CBP) in a system binding chapter. This
CBP contains the PVA of the next instruction to be executed. The external procedure
flag must be set in the CBP. Refer to Stack Manipulating Operations in this chapter.

A trap interrupt disables further trap interrupts. Software may reenable traps by either
setting the trap enable delay flip-flop and executing the return (04) instruction, or by
setting the trap enable flip-flop. The return instruction reestablishes the suspended
environment but does not load the monitor/user condition registers from the SFSA into
the CP.

Revision E Programming Information 2-29

CP Interrupts

If an exception condition arises during execution of a trap operation, the trap interrupt
aborts and the following actions occur:

1. The trap exception bit (MCR 63) sets.

2. The appropriate UCRJMCR bit sets for the condition causing the trap to abort.

3. The trap enable flip-flop condition (set) is recorded in the exchange package stored
for the interrupted procedure.

4. The exchange or halt performs as indicated in tables 2-5 and 2-6.

Virtual State job mode processes can control trap interrupts by setting bits in the user
mask register. Bits set in the user mask register permit the trap interrupt when the
corresponding UCR bit sets. Trap conditions occurring when traps are disabled have
effect as listed in tables 2-5 and 2-6.

Interrupt Conditions

The following paragraphs present the various conditions causing system interrupts.
Each condition description includes a reference to the corresponding MCR or UCR bit
that sets upon condition detection. Refer to CP Condition and Mask Registers in this
chapter.

Access Violation (MCR 54)

This bit sets when the CP attempts a CM access without the required access
permission. The CM access is blocked. The following conditions result in a CM access
violation:

• Attempt to read a nonreadable segment.

• Attempt to read outside the read ring limit.

• Attempt to write into a nonwritable segment.

• Attempt to write outside the write ring limit.

• Attempt to execute from a nonexecutable segment.

• Attempt to execute from outside the execute ring bracket.

• Attempt to call indirect when the code base pointer is not in a binding chapter
segment.

• Attempt to call indirect from a process outside the code base pointer call ring limit.

• Key/lock violation.

The PVA in P points to the instruction attempting the illegal access.

2-30 60458890 Revision E

CP Interrupts

Address Specification Error (MCR 52)

This bit sets when the CP attempts to use an improper address. This includes:

• Data address with nonzero bits 61 through 63 generated by the following
instructions:

Opcode

04
B5
80
81
82
83
BO
F4

Instruction

Return.
Call indirect.
Load multiple.
Store multiple.
Load word.
Store word.
Call relative.
Calculate subscript.

• Instruction address with nonzero bits 62 and 63 generated by unconditional branch
(2F) instruction.

• Any PVA with nonzero bit 32.

The following instructions may also detect an address specification error:

• Decimal arithmetic (70 to 75, E4, and E5).

• Move immediate data (F9).

• Convert from floating point to integer (3B).

" Test and set page (16).

The PVA in P points to the instruction specifying the incorrect address.

Arithmetic Loss-of-Significance (UCR 62)

This bit sets when significant digit(s) in the result are truncated or not stored in CM
during execution of the following instructions:

• Decimal arithmetic (70 to 75, E4, and E5).

• Move immediate data (F9).

o Convert from floating point to integer (3B).

The PVA in P points to the instruction causing this condition.

Revision E Programming Information 2-31

CP Interrupts

Arithmetic Overflow (UCR 57)

This bit sets as a result of one of the following conditions:

• Integer sum instructions (10, 20, 24, 28, SA, and SB) when augend and addend have
same signs but sum has opposite sign.

• Integer difference instructions (11, 21, 25, and 29) when minuend and subtrahend
have opposite signs but difference sign is opposite of minuend sign.

e Half-word integer product instructions (22 and SC) when most significant 32 bits of
intermediate product are not equal to sign bit.

• Integer product instructions (26 and B2) when leftmost 64 bits of intermediate
product are not equal to sign bit.

o Half-word integer quotient (23) instruction when -231 is divided by -2°.

• Integer quotient (27) instruction when -264 is divided by -20.

• Decimal arithmetic instructions (70 to 73) when result length exceeds destination
field length.

o Add immediate data (FB) instruction when source or destination field data
descriptors specify invalid data type.

The PVA in P points to the instruction causing the arithmetic overflow condition.

Critical Frame Flag (U CR 53)

This bit sets when the CP attempts to execute a pop or return instruction from a
critical stack frame. The PVA in P points to the pop or return instruction causing this
interrupt.

Debug (UCR 56)

This bit sets when a debug match occurs. Refer to Debug in this chapter for a
description of this condition. The PVA in P points to the instruction causing the debug
interrupt.

Divide Fault (UCR 55)

This bit sets when the CP detects a divisor equal to zero during execution of one of
the integer quotient instructions (23, 27, 33, 37, and 73). Also, for the floating point
quotient instructions (33 and 37), the CP detects a divide fault if the divisor coefficient
is a nonstandard value of zero, or is unnormalized and divisible into the dividend
coefficient by a factor exceeding or equal to 2. The PVA in P points to the instruction
causing the divide fault condition.

2-32 60458890 Revision E

CP Interrupts

Environment Specification Error (MCR 55)

This bit sets when the CP detects an error in the environment during a call, return, or
pop instruction, or during an exchange or trap operation. The PVA in P at the time of
interrupt points to the instruction causing the error when the error results from any of
the following conditions:

• A mismatch between VMCL and the VMID obtained from the code base pointer on
a call indirect (B5) instruction.

• A mismatch between VMCL and the VMID obtained from the stack frame save area
(SFSA) on a return (04) instruction.

• Initial A2 (previous save area pointer) not equal to AO (dynamic space pointer) in
the SFSA on a return (04) or pop (06) instruction.

• In the previous stack frame descriptor, the field value designating the last A
register to be loaded is less than 2 on a return (04) instruction.

When this error results from the following condition, the PVA in P at the time of
interrupt points to the next instruction which would have executed:

• A mismatch between VMCL and the VMID obtained from the exchange package
during an exchange operation.

When this error results from the following conditions, the PVA in P at the time of
interrupt points to the instruction as defined under the condition causing the trap
operation:

• A mismatch between VMCL and the VMID obtained from the code base pointer
during a trap interrupt.

• External procedure flag not set in the code base pointer during a trap interrupt.

• The VMID from the code base pointer not equal to zero when executing a trap
interrupt.

Exponent Overflow (UCR 58)

Exponent overflow occurs when an FP comparison or arithmetic instruction produces an
exponent with an actual value between 2[4096] and 2[12187]. The PVA in P points to
the next instruction that would have executed.

NOTE

Quantity in brackets indicates power factor.

Exponent Underflow (UCR 59)

Exponent underflow occurs when an FP arithmetic instruction produces an intermediate
exponent value between -2[4096] and -2[12287]. The PVA in P points to the next
instruction that would have executed.

NOTE

Quantity in brackets indicates power factor.

Revision E Programming Information 2-33

CP Interrupts

External Interrupt (MCR 56)

This bit sets as a result of a processor interrupt (03) instruction in the interrupted CP
(or in another CP in a multiprocessor system), through the CM port the instruction
specifies. At the time of interrupt, the PVA in P points to the next instruction that
would have executed.

Floating-Point Indefinite (UCR 61)

This bit sets when an FP arithmetic instruction produces a final nonstandard indefinite
result. The PVA in P points to the instruction causing the FP indefinite condition.

Floating-Point Loss-of-Significance (UCR 60)

This bit sets when an FP arithmetic instruction produces an intermediate result with
an overflow bit and coefficient of all zeros. The PVA in P points to the next instruction
that would have executed.

Free Flag (U CR 50)

The free flag is normally set by software in an exchange package in CM: this bit
causes an immediate trap interrupt after an exchange operation loads this exchange
package into the CP. Software conventions dictate the use of this flag; hardware does
not set this bit. The PVA in P points to the next instruction that would have executed.

Instruction Specification Error (MCR 51)

This bit sets:

• During isolate/insert instructions (AC, AD, and AE) when the sum of the leftmost
position designator plus the length designator exceeds 63.

e During business data processing (BDP) instructions when the length specified by the
data descriptor L field exceeds the maximum length for applicable data type.

o If data type fields in source and/or destination data descriptors are invalid during
the following BDP instructions:

Opcode

70
71
72
73
74
75
E4
E5
ED
F4
F9
FA
FB

2-34 60458890

Instruction

Decimal sum.
Decimal difference.
Decimal product.
Decimal quotient.
Decimal compare.
Numeric move.
Decimal scale.
Decimal scale rounded.
Edit.
Calculate subscript and add.
Move immediate data.
Compare immediate data.
Add immediate data.

Revision E

CP Interrupts

• Execution of BDP calculate subscript and add (FA) instruction when PVA bits 61
through 63 [used to access the subscript range table (SRT)] do not equal zero.

o Execution of the program error (00) instruction.

• Execution of the Copy-To-State-Register (OF) instruction, or the Branch-on-Condition
Register (9F) instruction, when execute access is restricted to Virtual State monitor
mode with the CP not in this mode.

• Execution of a call (BO/B5) instruction when the number of the last A register field
[(At) in XOR bits 56 through 59] is less than two.

The P register contains the PVA of the instruction with the error.

Inter-Ring Pop (UCR 52)

This bit sets from an attempt to pop a stack frame in one ring with a pop (06)
instruction executing in a different ring. The pop instruction moves the current stack
frame (CSF), previous save area (PSA), and TOS pointers to eliminate the stack frame
without changing the P-counter. The PVA in P points to the pop instruction attempting
the inter-ring pop.

Invalid BDP Data (UCR 63)

This bit sets when the CP detects an invalid decimal digit during execution of the
following instructions: BDP decimal numeric, calculate subscript and add, compare
immediate data, move immediate data, edit, and convert floating point to integer. The
PVA in P points to the instruction causing this condition.

Invalid Segment/Ring Number Zero (MCR 60)

This bit sets for the following reasons:

• A PVA was untranslatable into an RMA because the segment table length was
exceeded or the segment descriptor was invalid. The PVA in P points to the
instruction attempting the CM access.

• A call (BO or B5) instruction attempted to execute with a code base pointer (CBP)
ring number (RN) equal to zero. The PVA in P points to the instruction attempting
the CM access.

• An A register was loaded with a PVA with RN equal to zero during a load A (80,
84, AO), return (04) or pop (06) instruction. The PVA in P points to the next
instruction that would have executed.

Not Assigned (MCR 49)

When set explicitly by software, this bit causes an interrupt identical to the detected
uncorrectable error (MCR 48).

Outward Call/Inward Return (MCR 61)

This bit sets when the CP attempts an outward call or an inward return. The PVA in
P points to the instruction attempting the outward call or inward return.

Revision E Programming Information 2-35

CP Interrupts

Page Table Search Without Find (MCR 57)

This bit sets when a page table search does not locate the requested page table entry.
The PVA in P points to the instruction attempting the CM access that resulted in this
condition, except when this exception is caused by an instruction fetch directly after a
branch exit. In this case, the PVA in P points to the branched-to instruction.

Privileged Instruction Fault (UCR 48)

This bit sets when:

• An attempt is made to execute a local privileged instruction from other than a
locally-privileged or globally-privileged segment.

• An attempt is made to execute a globally-privileged instruction from other than a
globally-privileged segment.

• A trap (017) instruction executes in CYBER 170 State.

The PVA in P points to the instruction causing the privileged instruction fault
interrupt.

Process Interval Timer (UCR 51)

This bit sets when the process interval timer decrements to zero. The PVA in P points
to the next instruction that would have executed.

Detected Uncorrectable Error (MCR 48)

This bit sets when the CP detects an uncorrectable error condition in the processor, or
on a processor-initiated memory reference. Typical examples are a parity error in data
from memory that cannot be retried, an uncorrectable error in control storage, and CP
errors that cannot be corrected or retried. A CM bounds violation also causes this
exception.

The PVA in P does not necessarily point to the instruction causing the malfunction.

CYBER 170 State Exchange Request (MCR 53)

This bit sets when the CP receives the CYBER 170 State exchange request signal from
the IOU, indicating that a PP in the IOU has executed one of the following
instructions: exchange jump (00260X), monitor exchange jump (00261X), or monitor
exchange jump MA (00262X). When the CP is in Virtual State, the operating system
must switch the CP to CYBER 170 State job mode before the exchange can occur. The
PVA in P points to the next instruction that would have executed.

Short Warning (MCR 50)

This bit sets when certain power distribution and warning system faults occur (refer to
the appropriate power system manual listed in system publication index in About This
Manual). The PVA in P points to the next instruction that would have executed. This
bit remains set until the condition returns to normal, at which time it clears.

2-36 60458890 Revision E

CP Interrupts

Soft Error Log (MCR 62)

This bit sets to indicate error detection and correction by the hardware regarding the
following:

• A corrected error in CM for the port used by this CP (also recorded in the CM
corrected-error register).

• A corrected hardware malfunction in the CP.

The PVA in P points to the next instruction that would have executed.

System Interval Timer (MCR 59)

This bit sets when the system interval timer decrements to zero. The PVA in P points
to the next instruction that would have executed.

Trap Exception (MCR 63)

This bit sets when the system detects a fault during a trap interrupt operation. In such
a case, at least one other MCR bit indicates the cause of the trap exception. The PVA
in P points to the PVA that would have been stored in the stack frame, word 0, if the
trap had completed without any exception conditions.

Unimplemented Instruction (UCR 49)

This bit sets when an instruction not implemented in the CP attempts to execute. The
instruction descriptions in chapter 1 specify which instructions are model-dependent.
The PVA in P points to the instruction causing the interrupt.

The CYBER 170 State compare/move instructions (464-467) also cause this interrupt.

Revision E Programming Information 2-37

CP Interrupts

Multiple Interrupt Conditions

Tables 2-5 and 2-6 list the interrupt action taken in various operating modes. When
more than one bit sets in the MCR/UCR, the interrupts are processed with the
following priority:

1. Halt (any halt condition present).

2. Exchange (no halt condition present, and any exchange condition present).

3. Trap (no halt or exchange condition present, and any trap condition present).

4. Stack (none of the above conditions present).

Figure 2-3 is a flowchart showing the CP detecting an exception condition and taking
action on it.

2-38 60458890 Revision E

CP Interrupts

START

RNI

n
RNI

EXCHANGE TRAP

TRAP RNI

EXCHANGE

Notes:

1. RNI: read next instruction.

2. Traps enabled implies: trap enable (TEF) set and trap enable delay (TED) clear.

Figure 2-3. Interrupt Flowchart

Revision E Programming Information 2-39

CP Interrupts

Flags

Table 2-8 indicates the state of the critical frame flag, on-condition flag, trap enable
flip-flop, and trap enable delay flip-flop following the execution of the Virtual State
call, return, pop, exchange, and trap operations.

Table 2-8. Condition of Flags Following Call, Return, Pop, Exchange, and Trap
Operations

CFF OCF TEF TED
Operations Flag Flag Flag Flag

Call c c A A

Return PS PS A c
j

Pop PS PS A A

Exchange XP XP XP XP

Trap c c c A

Notes:

C: Cleared by operation.
A: As is (unchanged by operation).
PS: Loaded by operation from previous stack frame save area.
XP: Loaded by operation from exchange package.
CFF: Critical frame flag.
OCF: On-condition flag.
TEF: Trap enable flip-flop.
TED: Trap enable delay.

2-40 60458890 Revision E

Stack Manipulating Operations

Stack Manipulating Operations
Each process has up to 15 stacks: one for each ring of execution privilege as defined by
the RN field (bits 16 through 19) of the hardware P register. Hardware accesses these
stacks to save/restore the process registers and operating conditions during trap
interrupts, and during the following Virtual State instructions:

• Call indirect

• Call relative

• Return

• Pop

• Trap

These 15 stacks are used as parts of a single stack divided solely to guarantee access
protection. The buildup and reduction of the 15 stacks always occurs through the same
locations (in opposite directions), switching from stack to stack only when the P
register ring number changes.

The operating system allocates stack space to each process. One use of the critical
frame flag (CFF) is to mark the first frame in each stack to indicate the beginning of
the stack. The operating system may also check for a maximum allowable stack length
when assigning a new page to the stack through the virtual memory demand paging
mechanism.

The 15 stacks operate in conjunction with assigned registers AO through A4 and 15
top-of-stack (TOS) pointers for the specific process. An exchange operation switches
stacks by providing new AO through A4 and new TOS pointers.

Stack Frames and Save Areas

A pro.cedure may use its stack for storing its dynamic variables. At times it may call
another procedure, which in turn may call another procedure, and so on. Also, at any
time, a trap interrupt condition may initiate a call-type operation. Each time a call
occurs, hardware saves the registers of the suspended part of the process (the caller) in
the currently active stack, together with some status information. This leaves these
registers free for use by the branched-to software (the callee). The area in which the
registers are stored is the stack frame save area (SFSA). The SFSA combines with the
previously stored dynamic variables (if any) to comprise a stack frame.

The CP hardware design provides that the string of successively-called procedures may
include previously called procedures (recursive calls), provided code modification is not
used.

Revision E Programming Information 2-41

Stack Manipulating Operations

Stack Frame Save Area Format

For call instructions, the programmer specifies the number of registers stored in SFSA
.(from 4 to 33) by way of a descriptor placed into XO, as shown in figure 2-4. Trap
interrupts always generate the maximum save area of 33 words. Figure 2-5 shows the
format of SFSA.

Field

X(s)
A(t)
X(t)

Notes

52 55 56 59 60 63

I x(s) I A(t) I x(t) I
Register Saved

Starting (first) X register.
Terminating (last) A register.
Terminating (last) X register.

1. If X(s) exceeds X(t), nothing is stored.
2. First A register is always AO.
3. If A(t) is less than 2, an instruction specification error

interrupt occurs.

Figure 2-4. Format of XO for Call Instructions

BVTE(HEXI WORD(DECI

0

1

~
MIN!UM

0 P REGISTER

8 }VMID} AO REGISTER (DYNAMIC SPACE POINTER)
SAVE
AREA

!

MAXIMUM

SAVE

AREA

_y

10 FRAME DESCRIPTION A1 REGISTER (CURRENT STACK FRAME POINTER)

18 USER MASK A2 REGISTER (PREVIOUS SAVE AREA POINTER)

20 A3 REGISTER !BINDING SECTION POINTER)

28 USER CONDITION A4 REGISTER (ARGUMENT POINTER)

30 MONITOR CONDITION A5 REGISTER

38 AS REGISTER

40 A7 REGISTER

•
* ~ •

I •
80 00 1>15 AF REGISTER

88 XO REGISTER

•
* • • T 100 XF REGISTER

00 ~ 63

Figure 2-5. Virtual State Stack Frame Save Area

2

3

4

5
6

7

8

16

17

32

2-42 60458890 Revision E

Stack Manipulating Operations

Stack Frame Save Area Descriptor Field

The SFSA descriptor (figure 2-6) is in word 2, bits 0 through 15 of the SFSA. It
records the number of X and A registers saved in the SFSA, and also the state of the
critical-frame flag (CFF), the on-condition flag (OCF), and the process-not-damaged
(PND) flag when the SFSA is generated.

The CFF and the OCF are hardware register flags set/cleared by Copy To/From State
Register instructions, and which may also be prerecorded in an exchange package or
the SFSA. CFF set for the current stack frame inhibits instruction execution and
causes an interrupt when encountered during a return or pop instruction.

Executing a call instruction or a trap interrupt stores the CFF and OCF in the SFSA
descriptor generated for the current stack frame and clears these flags. Executing a
return instruction loads these flags from the previous SFSA.

The PND flag indicates whether or not a process being executed was damaged and
whether the process may be restarted. This flag is intended to allow recovery of
monitor mode processes where possible.

The PND flag is valid when set during a Virtual State monitor mode trap operation
caused by an uncorrectable error. In this case, the flag indicates that the executing
process was undamaged and that it may be restarted. The PVA in P of the stack frame
is the restart address for the process, but is not necessarily the address of the
instruction which initiated the malfunction.

The default (clear) state of the PND flag interprets the process as damaged. The
hardware ignores the flag when loading a stack frame.

Revision E

01234 78 1112 15

Field

CFF
OCF
PND
X(s)
A(t)
X(t)

Note:

Alt) X(t)

Description

Critical frame flag.
On-condition flag.
Process not damaged.
Starting (first) X register.
Terminating (last) A register.
Terminating (last) X register.

If X(s) exceeds X(t), nothing is loaded.

Figure 2-6. Stack Frame Save Area Descriptor

Programming Information 2-43

Stack Manipulating Operations

Virtual Machine Identifier (VMID) Field

A call instruction or a trap interrupt stores the virtual machine identifier in SFSA
word 1, bits 4 through 7. A return instruction loads the VMID from the previous SFSA
into the CP, with the exception that an attempt to load a VMID = 1 requires global
privilege.

User Mask/Condition and Monitor Condition Fields

A trap interrupt (but not a call instruction) stores the UCR and MCR in words 5 and
6, respectively (bits 0 through 15), in the SFSA. The CP clears the condition register
bit(s) causing the trap interrupt. The return instruction does not restore the condition
registers from the SFSA to the CP.

Assigned Registers During Stack Operation

Stack manipulating operations change registers AO through A4 and TOS pointers from
the exchange package. For proper operation, the programmer must use registers AO
through A4 as designated.

Top of Stack Pointers

An exchange package contains 15 top-of-stack (TOS) fields which initially point to the
next available vacant word in each stack, as set by the operating system. In
subsequent use, TOS for the active stack points to the first word in the current stack
frame. Hardware updates TOS when any stack frame is pushed or popped. Hardware
uses TOS only when stacks switch.

The TOS pointers remain in the exchange package stored in CM and are accessed from
there by hardware.

Dynamic Space Pointer (AO)

Register AO has the role of dynamic space pointer (DSP), pointing to the first available
vacant byte number in the active stack. Hardware updates DSP when a stack frame is
pushed or popped. Software must update DSP when storing/removing process dynamic
variables in the stack.

Current Stack Frame Pointer (Al)

Register Al has the role of current stack frame (CSF) pointer, pointing to the first
word in the current stack frame. CSF updates when a stack frame is pushed or popped.
The process must not reduce a stack frame below CSF, and must not change CSF.

Previous Save Area Pointer (A2)

Register A2 has the role of previous save area (PSA) pointer, pointing to the first word
of the previous save area (not necessarily in the currently active stack). PSA updates
when a stack frame is pushed or popped. The process must not change PSA.

2-44 60458890 Revision E

Stack Manipulating Operations

Binding Section Pointer (A3)

A binding chapter pointer (BSP) points to the first word in a list of indirect addresses
(called code base pointers, or CBP) for use by call indirect instructions or other
information determined by software conventions. During call indirect instructions to an
external procedure (which has its own binding chapter), register A3 always provides
the BSP of this external procedure. The call indirect instruction first uses the BSP in
Aj to access the CBP containing the target address. When this CBP has its external
procedure flag set, the word stored in CM immediately after this CBP loads into A3.

Argument Pointer (A4)

Register A4 has the role of argument pointer, used through software conventions. It
copies from Ak during call indirect instructions. The process may use A4 as permitted
through software conventions.

Exceptions During Stack Operations

When an exception causes a call instruction or trap interrupt to abort, the following
may precede the abort:

o Dynamic space pointer (AO) may be rounded up.

• Portions of the environment may be stored into the save area on top of the current
stack frame.

Revision E Programming Information 2-45

Business Data Processing Programming

Business Data Processing Programming

Business data processing (BDP) instructions operate on CM data fields which may be 1
through 8, 19, 38, or 256 bytes in length. BDP instructions utilize two forms of data
fields in CM: 1) the source field, and 2) the destination field. The former modifies,
replaces, or compares to the latter. These fields are independently designated by BDP
data descriptors, described in the following paragraphs. The CP accommodates nine
types of packed and unpacked binary-coded decimal (BCD) data, plus alphanumeric,
binary-unsigned, and binary-signed data types. In many cases the data types may be
freely mixed as the hardware performs the necessary type translations. The CP also
manipulates alphanumeric data fields.

BDP Data Descriptors

The source and destination field data is described by one or two data descriptors
obtained from the CM at locations immediately following a BDP instruction. The
instructions using the format jk have two descriptors. The instructions using the format
jkQ have either one or two descriptors.

As shown in figure 2-7, each BDP data descriptor is a 32-bit half word describing the
source or destination field data type, number of bytes, and relative memory location.

01 34 78 1516 31

L 0

Field Description

F (1 bit) Function of the L field. Length retrieval information, as follows:

F • 0 Length is obtained from the L field.

F • 1 Length of the descriptor associated with Aj is obtained from XOR
bits 55 through 63. Length of the descriptor associated with Ak
is obtained from XlR bits 55 through 63. Other bits in XOR and
XlR are not used.

D (3 bits) Reserved.

T (4 bits) Data type (refer to table 2-5).

L (8 bits) Length (in bytes) of the source or destination field (refer to
table 2-5). The maximum length is restricted according to the operand
data type. When the maximum length is exceeded, an instruction
specification error occurs, causing an interrupt or halt.

0 (16 bits) Offset. PVA of the leftmost byte of source or destination field
is obtained by adding the sign-extended 0 field to the BN field of the base
PVA in Aj or Ak, respectively.

Figure 2-7. BDP Data Descriptor Format

2-46 60458890 Revision E

Business Data Processing Programming

BDP Data Types

The 12 data types listed in table 2-9 are described in this subchapter, including the
permitted range of values for each data type with respect to digits (D), characters (C),
signs (S), and maximum length (L).

Table 2-9. BDP Operand Types and Field Lengths

Data
Type

0
1
2
3
4
5
6
7
8
9
10
11

Description

Packed decimal, no sign.
Packed decimal, no sign, leading slack digit.
Packed decimal, signed.
Packed decimal, signed, leading slack digit.
Unpacked decimal, unsigned.
Unpacked decimal, trailing sign combined Hollerith.
Unpacked decimal, trailing sign separate.
Unpacked decimal, leading sign combined Hollerith.
Unpacked decimal, leading sign separate.
Alphanumeric.
Binary, unsigned.
Binary, signed.

Data Type 0: Packed Decimal, Unsigned

Byte

..l. _ -, F

DD DD DD
....i _
J F

0 1 2

D: Hex 0 through 9.
L: 19 bytes maximum.

DD DD DD

16 17 18

Maximum Length
(Bytes)

19

38

256
8

This format corresponds to an even number of digits in the decimal number.

Data Type 1: Packed Decimal, Unsigned, Slack Digit

Byte

~ \.
J J

DD DD DD
~ \. -, F

0 1 2

0: Hex O.
D: Hex 0 through 9.
L: 19 bytes maximum.

DD DD DD

16 17 18

This format corresponds to an odd number of digits in the decimal number.

Revision E Programming Information 2-47

Business Data Processing Programming

Data Type 2: Packed Decimal, Signed

Byte

~ _

I I

DD DD DD DD DD DS
~ \.
I I

0 1 2 16 17 18

D: Hex 0 through 9.
S: (Positive sign) hex A, B, C, E, or F (C preferred);

(Negative sign) hex D.
L: 19 bytes maximum.

This format corresponds to an odd number of digits in the decimal number.

Data Type 3: Packed Decimal, Signed, Slack Digit

Byte

_
r

DD DD DS
_
I

16 17 18

0: Hex O.
D: Hex 0 through 9.
S: (Positive sign) hex A, B, C, E, or F (C preferred);

(Negative sign) hex D.
L: 19 bytes maximum.

This format corresponds to an even number of digits in the decimal number.

Data Type 4: Unpacked Decimal, Unsigned

Byte

~ _
7 I

D D D D D D D D
~ ' I I

00 01 02 03 34 35 36 37

D: ASCII characters 0 through 9 (represented by hex 30 through 39).
L: 38 bytes maximum.

Data Type 5: Unpacked Decimal, Trailing Sign Combined Hollerith

~ _ ,, ,,
D D D D D D D c

....'.\ \.
I ,f

Byte 00 01 02 03 34 35 36 37

In the following, the preferred characters and codes are underlined.

D: ASCII character 0 to 9 (represented by hex 30 through 39).
C: ASCII character decoded as follows:

ASCII 1 to 9 (hex 31 through 39) represents +l through +9, or
ASCII A through I (hex 41 through 49) represents +1 through +9.
ASCII J through R (hex 4A through 4F and hex 50 through 52)
represents -1 through -9.

L:

2-48 60458890

ASCII {, [, 0, 8 (hex 7B, 3C, 30, 26) represents +o.
ASCII I,], - (hex 7D, 21, 2D) represents -0.

38 bytes maximum.

Revision E

Business Data Processing Programming

Data Type 6: Unpacked Decimal, Trailing Sign Separate

Byte

\ ,
D D D D s

\. ,
33 34 35 36 37

D: ASCII character 0 through 9 (hex 30 through 39).
S: ASCII character + (hex 2B), positive sign;

ASCII character - (hex 2D), negative sign.
L: 38 bytes maximum.

Data Type 7: Unpacked Decimal, Leading Sign Combined Hollerith

Byte

_ ,
_ ,

D: Same as data type 5.
C: Same as data type 5.
L: 38 bytes maximum.

D

34

D D D

35 36 37

Data Type 8: Unpacked Decimal, Leading Sign Separate

Byte

_ ,
'\. ,

S: Same as data type 6.
D: Same as data type 6.
L: 38 bytes maximum.

Data Type 9: Alphanumeric

_ ,
_ ,

Byte

D

34

c

252

C: Any ASCII character code.
L: 256 bytes maximum.

Data Type 10: Binary, Unsigned

L: 8 bytes maximum.

D D D

35 36 37

c c c

253 254 255

The L bytes of the type 10 data field contain the positive binary operand value.
Negatively-signed data moved to a type 10 destination field is considered positive.

Data Type 11: Binary, Signed

L: 8 bytes maximum.

The L bytes of the type 11 data field contain the signed binary operand value.
Negative values are represented in twos complement form.

Revision E Programming Information 2-49

Business Data Processing Programming

Slack Digit

With data types 1 and 3, the slack digit value as read from CM is ignored and treated
as zero. The slack digit value as written into CM is forced to zero and is not affected
by any arithmetic overflow or arithmetic loss-of-significance that may occur.

Undefined Results

Overlap

BDP instruction execution produces undefined results whenever the source and
destination fields overlap and the leftmost and rightmost byte positions do not coincide.

Invalid Data

As a rule, invalid BDP data causes undefined results to be stored in the destination
field in CM only when the corresponding mask bit is clear or traps are disabled. An
exception: the decimal-compare and numeric-move instructions always store undefined
results in XlR when invalid BDP data is detected.

2-50 60458890 Revision E

Vector. Programming

Vector Programming

Vector operations are memory-to-memory operations; that is, the CP accesses one or
two source vector streams from CM, repeats an operation on successive elements, and
returns the results to CM in a destination vector stream. These operations occur
without modifying the CP operating registers. Refer to Vector Instruction Descriptions
in chapter 1 of this manual for detailed descriptions of the vector instructions.

Most vector instructions stream results at a one-clock-period rate. The source and
destination vectors may be consecutive streams of:

• Floating-point operands (12-bit exponent plus sign bit, 48-bit coefficient plus sign
bit).

e 64-bit integers.

• 64-bit elements (shift/compare/logical data).

Refer to table 2-10 for the source- and destination-vector characteristics of each type of
vector operation.

Table 2-10. Vector Operations

Vector Operation

Integer Arithmetic

Integer Compare

Logical Arithmetic

Floating-Point
Arithmetic

Floating-Point
Summation

Shift Circular

Merge

Gather

Scatter

Source Vector A

64-bit integers

64-bit integers

64-bit elements

FP operands

64-bit elements

64-bit elements

Nonconsecutive
64-bit elements

Consecutive 64-bit
elements

1. Stored in an X register; not sent to CM.

2. Accessed from an X register.

Revision E

Destination
Source Vector B Vector

64-bit integers 64-bit integers

64-bit integers 64-bit elements

64-bit elements 64-bit elements

FP operands FP operands

FP operands FP operand1

64-bit elements 64-bit elements

64-bit elements 64-bit elements

Interval2 Consecutive 64-bit
elements

Interval2 Nonconsecutive
64-bit elements

Programming Information 2-51

Vector Programming

Vector Length (Number of Operations)

The D-field rightmost 10 bits, when nonzero, specify the length or number of operations
to be performed (1 through 512). XlR specifies the length when the D-field rightmost
10 bits equal zeros, as follow:

• When XlR is positive and less than 512, this number provides the vector length.

Q When XlR is positive and greater than 512, the vector length is 512.

An instruction specification error (MCR 51) occurs when XlR is negative or when the
D-field rightmost 10 bits are greater than 512. When the D-field rightmost 10 bits and
all 32 bits of XlR are zeros, no memory reference occurs but the instruction undergoes
normal address-exception detection.

Vector Page Size

Vector operations require a page size of 4096 bytes (512 words) or larger. (A page size
of less than 4096 bytes inhibits the vector instruction and results in an environment
specification error, MCR 55.) Since a vector may be from 1 to 512 elements long and
may overlap page boundaries, it may occupy at most two partially-filled pages.
Exceptions to this are the gather and scatter instructions, which by nature may require
up to 512 pages per vector.

Vector Broadcast

Vector broadcast is an additional feature for use with all vector instructions except
Floating-Point Summation. Vector broadcast generates a source vector by repeating a
single 64-bit element contained in the Xj register in place of V(Aj) if the leftmost
D-field bit is a one.

Vector Interrupts

Vector instructions (other than gather and scatter) may not be interrupted after any
results in the destination vector stream have been stored in CM. Instruction execution
completes before a monitor mode routine can process the interrupt. A program
interrupt occurring before any results are stored inhibits the instruction. For the
gather and scatter instructions, interrupts may occur after- results have been partially
stored in CM.

Interrupting a vector instruction prevents the addressing chapter from making
additional memory requests, and purges all unused operands assembled for execution.

Vector Overlap

Source and destination vectors for the same instruction may overlap only when the
destination-vector starting address is less than or equal to the source-vector starting
address. All other cases of source- and destination-vector overlap within a single
instruction cause undefined results.

2-52 60458890 Revision E

Floating-Point Programming

Floating-Point Programming
Floating-point (FP) arithmetic automatically maintains binary point placement during
computations involving large numeric values or values within a widely varying range.
This occurs by separating a number's significant digits from the number size to express
the number as a fraction multiplied by a power of 2. Thus, each FP number contains
two values as follows:

• Coefficient (fraction) represents the number's significant digits. The binary point of
the coefficient is always directly left of its most significant bit.

o Exponent (characteristic) is a power of 2 by which the coefficient must be
multiplied to obtain the whole FP number value .

.l

Floating-Point Data Formats

FP data exists in 64- and 128-bit fixed-length formats (single precision and double
precision), as shown in figure 2-8.

Revision E Programming Information 2-53

Floating-Point Programming

0 1 1516

S BIASED EXPONENT COEFFICIENT (leftmost 48 bits)

Format of single precision FP number and of the leftmost part of double precision FP
number

6465 7980

S BIASED EXPONENT COEFFICIENT (rightmost 48 bits)

Format of rightmost part of double precision FP number

Bits

0,64

16-63
80-127

4-15,
65-79

1-3

Description

Coefficient sign
0 Coefficient positive.
1 Coefficient negative.

Double-precision FP sign bit 64 is set equal to bit 0 in results.

Coefficient nagnitude (leftmost 48 bits).
Coefficient nagnitude (rightmost 48 bits).

The coefficient without the sign bit is an unsigned, exclusively positive
fraction with the binary point directly left of bit 16. Double-precision
FP number bits 64 through 79 are set equal to bits 0 through 15 in results.

Exponent sign, biased.
Exponent value, two's complement.

The exponent is a biased-signed two's complement integer. A bias of
16,384 (400016) adds to the exponent to allow encoding of exponent
values from -4096 to +4095 inclusive (within the 15 exponent bits) as
shown in table 2-11.

Coded to
oox
oxo
011
100
101
110
111

indicate the following FP numbers
FP zero.
FP zero.
Standard FP number.
Standard FP number.
FP infinity.
FP infinity.
FP indefinite.

Figure 2-8. Floating-Point Data Formats

63

127

2-54 60458890 Revision E

Floating-Point .Programming

Table 2-11. Floating-Point Representation

Exponent
With

Coefficient Actual Term Used for
Sign Exponent Input Numbers in

Hexadecimal (Binary) Arguments This Range

Positive Numbers (Coefficient sign • O)

7XXX --- Indefinite +IND

6FFF 12278

t t Infinite +a:>

5000 4096

4FFF 4095

t t +N

4000 0 Standard
3FFF -1

t t +Z3

3000 -4096
2FFF -4097

t t Zero +Z2

1000 -12288
oxxx -- Zero +Zl

Negative Numbers (Coefficient sign G 1)

8XXX Zero -Zl

9000 -12288

i i Zero -Z2
AFFF -4096
8000 -4096

i i -Z3

8FFF -1 Standard
cooo 0

i i -N
CFFF 4095
DOOO 4096

i i Infinite -CD

EFFF 12287
FXXX -- Indefinite -IND

Revision E Programming Information 2-55

Floating-Point Programming

Standard and Nonstandard FP Numbers

Nonstandard FP numbers are FP numbers outside the capacity of standard FP
numbers. Special exponent field codes identify the three nonstandard FP numbers: zero
(±Zl,±Z2), infinity (±co), and indefinite (±INDEF). Table 2-11 lists hexadecimal
exponent codes for nonstandard and standard FP numbers.

Floating-Point Zero

Nonstandard FP operands with bits 01 and 02, or 01 and 03 clear, are treated as if
consisting of all zeros.

The nonstandard zero FP numbers are represented as ±Zl or ±Z2 as shown in table
2-11. The specific number in the + Zl range which consists of all (64) zeros is termed
+ 0. Thus, wherever ± Zl is indicated, the + 0 is also included since it is a member of
+Zl.

The standard zero FP numbers are represented as ± Z3 as shown in table 2-11.

Floating-Point Nonzero

Standard FP operands which have nonzero coefficients are represented as ± N in
table 2-11.

Floating-Point Infinite

Nonstandard FP operands with bit 01 set, and bit 02 not equal to bit 03, are treated
as infinite values.

The nonstandard FP numbers in the Infinite range are represented as ±CO as shown in
table 2-11. The specific number in the +co range consists of 5000---000. The specific
number in the - co range consists of D000---000.

Floating-Point Indefinite

Nonstandard FP numbers with bits 01, 02, and 03 set are treated as indefinite values.

The nonstandard FP numbers in the Indefinite range are represented as ±IND as
shown in table 2-11. The specific number in the +IND range consists of 7000---000.
The specific number in the -IND range consists of F000---000.

Double-Precision Nonstandard FP Numbers

When nonstandard results are generated, the rightmost part of a double-precision FP
result is made identical to the leftmost part.

Exponent Arithmetic

When the operand exponent fields are added (as in FP multiplication) or subtracted (as
in FP division), the exponent arithmetic performs algebraically in twos complement
mode. Such operations take place as if the bias were removed.

Exponent underflow and overflow conditions are detected for all single-precision results,
but only for the leftmost part of double-precision results.

2-56 60458890 Revision E

Floating-Point .Programming

Normalization

Normalized operands ensure the highest possible precision in the result. An FP number
is normalized when the coefficient bit 16 is a one.

Normalization takes place when intermediate results become final results. It occurs by
left-shifting the 48-bit fraction until bit 16 is a one, and by reducing the exponent
value by the number of positions shifted. Numbers with zero fractions cannot be
normalized and remain equal to zero.

When normalizing a double-precision FP number, the entire 96-bit fraction left-shifts
until bit 16 is a one, with a corresponding exponent value reduction.

If the coefficient of an intermediate result overflows, the fraction right-shifts one bit
position and the exponent increases by one. If the input operands for the FP multiply
(32 and 36) and the FP divide (33 and 37) instructions are unnormalized, the result
may be unnormalized.

Floating-Point Sum and Difference

When two FP operands with unequal exponents are added or subtracted, the hardware
aligns copies of these operands before the addition or subtraction performs, as follows:
the fraction with the smaller exponent is right-shifted, end-off, by the number of bit
positions equal to the difference between the exponents. The maximum shift is 48
positions (single-precision) or 96 positions (double-precision). After copies of the
fractions have been aligned in this manner, they are added or subtracted. The result
generated is 48 bits (single-precision) or 96 bits (double-precision).

When summing coefficients with like signs or subtracting coefficients with unlike signs,
the result may overflow/underflow by one bit; this bit is saved. In such case, the 48- or
96-bit intermediate result fraction shifts right one position, end-off. The overflown bit
inserts into the high-order position. The result's exponent increases by one to adjust for
the right shift of the coefficient. The adjusted exponent and the 48-bit or 96-bit fraction
and its sign bit are the final result.

Floating-Point Multiply

The signed exponents for the two input operands to be multiplied are algebraically
added, with the result used as an intermediate exponent.

The multiplied fractions generate an intermediate product with 96 bits (single-precision)
or 192 bits (double-precision). The correct sign bit is algebraically determined. If the
high-order bit in the product is a one, the product is already normalized and remains
unchanged. If the high-order bit in the product is a zero, the entire 96- or 192-bit
product left-shifts one bit position and the intermediate exponent decreases by one. This
one-position shift normalizes the product if the original input operands were
normalized. The high-order 48 or 96 bits of the product or shifted product become an
intermediate coefficient. If the final intermediate exponent indicates a standard FP
number, the intermediate exponent and the intermediate coefficient with its sign bit
are the final result.

Revision E Programming Information 2-57

Floating-Point Programming

Floating-Point Divide

During execution of an FP divide instruction, the divisor (Xj or XXj) exponent is
subtracted from the dividend (Xk or XXk) exponent, and the signed result provides an
intermediate exponent.

The dividend (Xk or XXk) fraction is divided by the divisor (Xj or XXj) fraction. The
result's sign is determined algebraically from the operand signs.

If the fraction in Xj or XXj is initially unnormalized and can be divided into the
fraction in Xk or XXk by a factor equal to or exceeding two, a divide fault occurs,
setting UCR bit 55, with an interrupt (when enabled).

If no error occurs, the intermediate quotient generated is 48 or 96 bits. When the
divisor can be divided into the dividend by a factor equal to or exceeding one, but less
than two, an overflow bit also generates. If the overflow bit is a zero, the sign bit and
the 48- or 96-bit fraction require no further adjustment. When the overflow bit is a
one, the 48- or 96-bit fraction right-shifts one position, end-off, and the overflow bit
inserts into the high-order bit position. In such a case, the exponent increases by one
to compensate for the shift.

The intermediate exponent and the intermediate fraction (with its sign) then transfer
as the final result to the Xk register.

2-58 60458890 Revision E

Floating-Point .Programming

Floating-Point End Cases

Tables 2-12 through 2-20 list FP end cases. The nomenclature used is as follows:

N Standard FP number: (3000)16 == exponent < (5000)16 nonzero, coefficient
normalized or unnormalized.

0 Zero: sign bit followed by 63 zero bits.

Zl Zero: FP numbers with exponents in the range 000016 == exponent <
100016·

Z2 Underflow, zero: FP numbers with exponents in the range 100016 ==
exponent < 300016.

Z3 Zero: An unnormalized FP number with a zero coefficient and a standard
exponent. That is, 300016 == exponent < 500016.

INF FP numbers with exponents in the range 500016 == exponent < 700016

INDEF

+IND

INDC

s
D

p

Q

DVF

OVL

UNL

LOS

IND

Revision E

Infinite: The nonstandard FP number sign, 5000 0000 0000 000016.

FP numbers with exponents in the range 700016 == exponent == 7FFF16

Indefinite: The nonstandard FP number 7000 0000 0000 000016·

A result of indefinite generated by the FP compare instruction. That is, a
value for XlR = 8000 000016.

Algebraic sum of two FP numbers (excluding Z3).

Algebraic difference of two FP numbers (excluding Z3).

Algebraic product of two FP numbers (excluding Z3).

Algebraic quotient of two FP numbers (excluding Z3).

Divide fault condition.

Exponent overflow, FP.

Exponent underflow, FP.

Loss of significance, FP.

Indefinite, FP.

Programming Information 2-59

Floating-Point Programming

Table 2-12. FP Compare Results

Standard Numbers Nonstandard Numbers

rz +N -N +Z3 -Z3 +Zl +INF -INF +INDEF

+Z2

+D, +Z2(+D, +Z2(
+N -D, -Z2) < +Z3 - < < > <

+Z3 -
+D, +Z2(-D, -Z2>

-N > -D, -Z2) > +Z3 - > > <
+Z3 -

-D, -Z2> Note 1
+Z3 +Z3 - < +Z3 - < < > <

+D, +Z2<
-Z3 > +Z3 - > +Z3 - > > <

+Zl > < > < - > <
+z2

+INF < < < < < Note 1 <

-INF > > >)) > Note 1

+INDEF Note 1

Note: 1. FP branch instructions perform normal exit and record FP
indefinite (UCR 61). FP compare instructions set Xl to INDC
and record FP indefinite (UCR 61), except when UMR 61 is set
traps are enabled, in which case Xl is unaltered.

2-60 60458890 Revision E

Floating-Point .Programming

Table 2-13. FP Sum Results, UM Clear

Standard Numbers Nonstandard Numbers

~ +N -N +Z3 -Z3 +Zl +INF -INF +INDEF

+Z2

+S +S +S +S
+CO OVL +o UNL +o UNL +o UNL +N +6::> OVL +ct> OVL +IND IND

+N +0 UNL +0 LOS +O LOS +0 LOS +0 UHL

-s -s -s
-N - OVL +0 UNL +o UNL -N +CO OVL +co OVL +IND IND

+O UNL +0 LOS +0 LOS +0 UHL

+Z3 +0 LOS +0 LOS +0 LOS +co OVL +co OVL +IND IND

-Z3 +o LOS +0 LOS +<D OVL +CO OVL +IND IND

+Zl
+0 LOS +0 LOS +o +co OVL +CO OVL +IND IND

+Z2

+INF +CO OVL +IND IND +IND IND

+INF +CO OVL +IND IND

+INDEF +IND.IND

Revision E Programming Information 2-61

Floating-Point Programming

Table 2-14. FP Sum Results, UM Set

Standard Numbers Nonstandard Numbers

~ +N -N +Z3 -Z3 +Zl +INF -INF +INDEF

+Z2

+S +S +S +s
+co OVL +z2 UNL +Z2 UNL +Z2 UNL +N +co OVL -co OVL +IND IND

+N +Z2 UNL +z3 LOS +Z3 LOS +Z3 LOS +Z2 UNL

-s -s -s
-N -co OVL -Z2 UNL -Z2 UNL -N +CO OVL -CO OVL +IND IND

+Z2 UNL +Z3 LOS +Z3 LOS -Z2 UNL +<O OVL +CO OVL

+Z3 +Z3 LOS +Z3 LOS +Z3 LOS +CO OVL +CO OVL +IND IND

-Z3 +Z3 LOS +Z3 LOS +CO OVL +CO OVL +IND IND

+Zl
+Z3 LOS +Z3 LOS +o +a> OVL +CO OVL +IND IND

+Z2

+INF +CO OVL +IND IND +IND IND

+INF -co OVL +IND IND

+INDEF +IND IND

Note: This chart is for traps disabled. For traps enabled, replace +IND with Xk..

2-62 60458890 Revision E

Floating-Point .Programming

Table 2-15. FP Difference Results, UM Clear

Standard Numbers Nonstandard Numbers

~ +N -N +Z3 -Z3 +Zl +INF -INF +INDEF

+Z2

-D +D +D +D
+N +o UNL +co OVL +0 UNL +0 UNL +N -co OVL +CO OVL +IND IND

+O LOS +0 UNL +o LOS +0 LOS +o UNL

-D +D -D -D
-N -co OVL +o UNL +O UNL +o UNL -N -co OVL +CO OVL +IND IND

+O UNL +0 LOS +0 LOS +0 LOS +O UNL

-D +D
+Z3 +0 UNL +O DNL +0 LOS +0 LOS +o LOS +CO OVL +CO OVL +IND IND

+O LOS +0 LOS

-D +D
-Z3 +0 UNL +0 UNL +0 LOS +o LOS +0 LOS +CO OVL +CO OVL +IND IND

+0 LOS +0 LOS

+Zl -N +N +O LOS +o LOS +0 +CO OVL +CO OVL +IND IND
+O UNL +O UNL

+Z2

+INF +CO OVL +CO OVL +CO OVL +CO OVL +CO OVL +IND IND +CO OVL +IND IND

-INF -CO OVL -CO OVL -CO OVL - CO OVL -CO OVL -CO OVL +IND IND +IND IND

-
.:t_INDEF +IND IND +IND IND +IND IND +IND IND +IND IND +IND IND +IND IND +IND IND

Revision E Programming Information 2-63

Floating-Point Programming

Table 2-16. FP Difference Results, UM Set

Standard Numbers Nonstandard Numbers

~ +N -N +Z3 -Z3 +Zl +INF -INF +INDEF - -
+Z2 -

+D +D +D +D
+N +z2 UNL +CD OVL +Z2 UNL +Z2 UNL +N -co OVL +co OVL +IND IND

+'z3 LOS +Z2 UNL +Z3 LOS +Z3 LOS +Z2 UNL

-D +D -D -D
-N -CD OVL +zz UNL -zz UNL -Z2 UNL -N -co OVL +co OVL +IND IND

-Z2 UNL +z3 LOS +Z3 LOS +Z3 LOS -Z2 UNL

-D +D
+Z3 -Z2 UNL +Z2 UNL +Z3 LOS +Z3 LOS +Z3 LOS +CO OVL +co OVL +IND IND

+Z3 LOS +Z3 LOS

-D +D
-Z3 +Z2 UNL +Z3 UNL +Z3 LOS +Z3 LOS +Z3 LOS +CD OVL +CO OVL +IND IND

+Z3 LOS +Z3 LOS

+Zl -N +N
-Z2 UNL +Z2 UNL +Z3 LOS +z3 LOS +0 +CD OVL +CO OVL +IND IND

+Z2 -

+INF +co OVL +co OVL +co OVL +co OVL +CD OVL +IND IND +CD OVL +IND IND

-INF -CD OVL -CD OVL -CD OVL -CD OVL -<D OVL -CD OVL +IND IND +IND IND

+INDEF +IND IND +IND IND +IND IND +IND IND +IND IND +IND IND +IND IND +IND IND

Note: This chart is for traps disabled. For traps enabled, replace +IND with Xk..

2-64. 60458890 Revision E

Floating-Point .Programming

Table 2-17. FP Product Results, UM Clear

Standard Numbers Nonstandard Numbers

~ +N -N +Z3 -Z3 +Zl +INF -INF +INDEF

+Z2

+P -P +CD OVL +CD OVL
+co OVL - OVL +0 UNL +0 UNL +0 -CD OVL +CD OVL +IND IND

+N +0 UNL +0 UNL +Z3 +Z3
+Z3 +Z3

+P -co OVL +co OVL
+CD OVL +O UNL +O UNL +0 -co OVL +co OVL +IND IND

-N +0 UNL +Z3 +Z3
+Z3

+co OVL -co OVL
+Z3 +O UNL +o UNL +O +Cl) OVL +co OVL +IND IND

+Z3 +Z3

+CD OVL
-Z3 +o UNL +0 -CD OVL +CD OVL +IND IND

+Z3

+Zl
+0 +0 +0 +IND IND +IND IND +IND IND

+Z2

+INF +co OVL -CD OVL +IND IND

-INF +<D OVL +IND IND

+INDEF +IND IND

Revision E Programming Information 2-65

Floating-Point Programming

Table 2-18. FP Product Results, UM Set

Standard Numbers Nonstandard Numbers

rs +N -N +Z3 -Z3 +Zl +INF -INF +INDEF

+Z2 -

+P -P +P OVL -P OVL
+ex:> OVL -co OVL +Z2 UNL +Z2 UNL +0 -w OVL +w OVL +IND IND

+N +Z2 UNL +Z2 UNL +Z3 +Z3
+Z3 +Z3

+P -P OVL +P OVL J

+co OVL -Z2 UNL +Z2 UNL +0 -(X) OVL +W OVL +IND IND
-N +Z2 UNL +Z3 +Z3

+Z3

+P OVL -P OVL
+Z3 +Z2 UNL -Z2 UNL +0 +CO OVL -CO OVL +IND IND

+Z3 +Z3

+P OVL
-Z3 +Z2 UNL +0 -(X) OVL +(X) OVL +IND IND

+Z3

+Zl
+0 +0 +0 +IND IND +IND IND +IND IND

+Z2

+INF +CO OVL -CO OVL +IND IND

-INF +CO OVL +IND IND

:!:_INDEF +IND IND

Note: This chart is for traps disabled. For traps enabled, replace +IND with Xk..

2-66 60458890 Revision E

Floating-Point Programming

Table 2-19. FP Quotient Results, UM Clear

Standard Numbers Nonstandard Numbers

~ +N -N +Z3 -Z3 +Zl +INF -INF +INDEF)
-

+Z2 -

+Q -Q
+co OVL - CO OVL

+N +0 OVL +0 OVL Xk DVF Xk DVF Xk DVF +0 +0 +IND IND
+Z3 +Z3
Xk DVF Xk DVF

-Q +Q -P OVL +P OVL
+CO OVL +co OVL

-N +0 UNL +0 UNL Xk DVF Xk DVF Xk DVF +0 +0 +IND IND
+Z3 +Z3
Xk DVF Xk DVF

+CO OVL +co OVL
+Z3 +0 UNL +0 UNL Xk DVF Xk DVF Xk DVF +0 +0 +IND IND

+Z3 +Z3

+co OVL +co OVL
-Z3 +0 UNL +0 UNL Xk DVF Xk DVF Xk DVF +0 +0 +IND IND

+Z3 +Z3

+Zl
+O +O +0 +0 Xk DVF +o +o +IND IND

+Z2

+INF +CO OVL +CO OVL +CO OVF -CO OVF Xk DVF +IND IND +IND IND +IND IND

-INF +CO OVL +CO OVL -a:> OVF +<X> OVF Xk DVF +IND IND +IND IND +IND IND

+INDEF +IND IND +IND IND IND IND IND IND Xk DVF +IND IND +IND IND +IND IND

Revision E Programming Information 2-67

Floating-Point Programming

Table 2-20. FP Quotient Results, UM Set

Standard Numbers Nonstandard Numbers

~
+N -N +Z3 -Z3 +Zl +INF -INF +INDEF -

+Z2 k -

+O + -0
+CO OVL -co OVL

+N +Z2 UNL -Z2 UNL Xk DVF Xk DVF Xk. DVF +0 +0 +IND IND
+Z3 +Z3
Xk DVF Xk DVF

-o +o +
-CO OVL +CO OVL

-N +Z2 UNL +Z2 UNL Xk DVF Xk. DVF Xk DVF +O +0 +IND IND
+Z3 +Z3
Xk DVF Xk DVF

+Q OVL -Q OVL
+Z3 +Z2 UNL +Z2 UNL Xk. DVF Xk DVF Xk DVF +o +0 +IND IND

+Z3 +Z3

-Q OVL +Q OVL
-Z3 -Z2 UNL +Z2 UNL Xk DVF Xk. DVF Xk DVF +O +0 +IND IND

+Z3 +Z3

+Zl
+0 +0 +0 +O Xk DVF +0 +o +IND IND

+Z2

+INF +CO OVL -co OVL +co OVF -a:> OVF +a:> OVF +IND IND +IND IND +IND IND

-INF -CD OVL +a:> OVL -CO OVF +a:> OVF -CO OVF +IND IND +IND IND +IND IND

+INDEF +IND IND +IND IND +IND IND +INO IND +IND IND +IND IND +IND IND +IND IND

Note: This chart is for traps disabled. For traps enabled, replace +IND with Xk..

2-68 60458890 Revision E

Program Monit.oring

Program Monitoring
The CP provides a debug feature to aid the debugging of new Virtual State programs.

The debug feature causes a debug trap interrupt (when enabled), when a CM access of
a given type into a given PVA range occurs. The user can specify up to 32 access
ranges and 5 access types for simultaneous debugging.

Debug

When enabled, the debug feature tests all executive state memory accesses by scanning
a list of up to 32 entries of selected access type and PVA range combinations. When a
match is found, UCR bit 56 sets and, if enabled, a trap interrupt occurs.

A debug address range may span an entire process virtual segment or any contiguous
byte field within the segment. Any or all of the following access types can be selected:

• Data read.

• Data write.

• Instruction fetch (excluding target instruction fetch).

o Branch or return target instruction fetch (excluding call target instruction fetch).

• Call target instruction fetch.

Debug is enabled by setting UMR bit 56 and the trap enable flip-flop. Debug is
controlled by the following:

o Debug list - lists access types and PVA ranges.

• Debug list pointer register - PVA of first entry in debug list.

• Debug mask register - enables/disables any or all access types.

• Debug index registers - record number of debug list entries scanned during debug of
a single instruction.

Debug List

The debug list has up to 32 double-word entries (refer to figure 2-9), each one aligned
at a word boundary. The end of list (debug code bit 5) is interpreted after all other
bits in the same debug code have been interpreted and acted upon. Any or all access
types can be selected for debug by the debug code. Access types are defined by the
type of access privilege required (read, write, or execute).

Debug List Pointer Register

This register is a process register containing a PVA that points to the first debug list
entry.

Revision E Programming Information 2-69

Program Monitoring

0 78 1920 3132

DC SEG BN (Low)

0 3132

Field

BN

SEG

DC

DC Bit

BN (High)

Description

Byte numbers of the first and last bytes in the contiguous byte field in
memory to which the debug code applies.

Process segment number to which the debug code applies.

Debug code (listed below).

Operations Triggering Scan

0 Data read. Activates debug scan on all CM read accesses.

Data write. Activates debug scan on all CM write accesses.

2 Instruction fetch. Activates debug scan on all CM execute accesses,
after instruction fetch.

3 Branch or return target instruction fetch, if branch occurs. PVA
bracket applies to the PVA branched to. Call (BS/BO) target addresses
are excluded. Branch address generated during compare and swap
instruction (B4) is excluded.

4 Call (BS/BO) target instruction fetch. Address bracket applies to
address of the called procedure. For the call indirect (BS)
instruction, this is the code base pointer address; for the call
relative (BO) instruction, this is the address in the P register plus
displacement.

5 End of list. Denotes the last debug list entry.

Figure 2-9. Debug List Entry

63

63

2-70 60458890 Revision E

Progra.m Monitoring

Debug Index Register

This register is a process register which increments as the debug scan proceeds. It
contains a 6-bit word index that is added to the debug list pointer register contents.
This generates the debug list entry addresses during a debug scan initiated by each
instruction accessing virtual memory. The debug index register format is as follows:

Debug Mask Register

58 63

I s-e1T WORD INDEX I

This register (figure 2-10) is a process register which activates the access types
selected in the debug code field of a debug list entry. Each access type selected in the
debug code is activated for debugging only if the corresponding debug mask bit is also
set, as shown in figure 2-10.

Call target . f tch mrtrucuon a

Branch/retu m target instruction fetch

Instruction fetch

Data write

Data read

Debug sea

End of Iii

n in progress

t ceen

DEBUG MASK
(Word 36 in exchange package)

DEBUG SC AN ENABLES

Data read

Data write

Instruction fetch

rn target instruction fetch Branch/retu

Call target instruction fetch

FLAG

End of list flag

DEBUG CODE
(in debug list entry)

1 l 't_ .. , •
,091101111 12 113 l 14 115 J

_J
0 I 1 l 2 l 3 l 4 l 5 J L • • • -. • 4

Figure 2-10. Debug Condition Select

Revision E Programming Information 2-71

Program Monitoring

Enabling Debug

The debug operation may be enabled by any of the following:

• Exchange to a Virtual State process where traps are enabled and UMR 56 is set.

• Return (04) to a Virtual State process where the return operation enables traps and
UMR 56 is set in the user mask register being loaded.

o Set UMR 56 by way of Copy-To-State-Register instruction when traps are enabled.
The debug flags and index must be zero prior to execution of the
Copy-To-State-Register instruction or an undefined initial debug scan follows the
instruction.

• Enable traps by way of Copy-To-State-Register instruction when UMR 56 is set. The
debug flags and index must be zero prior to execution of the Copy-To-State-Register
instruction or an undefined initial debug scan follows the Copy-To-State-Register
instruction.

Debug Scan Operation

Debug conditions apply to specific instructions as described in table 2-21. BN(low) and
BN(high) are matched against the address of the leftmost byte of a piece of information
only, whether it is a word, half word, byte string, or 16-bit instruction. The match is
as follows:

BN(low) ~ Address ~ BN(high)

If BN(low) exceeds BN(high) in any debug list entry, the scan proceeds to the next
double-word entry. If either BN(low) or BN(high) bit 32 is set, the comparison results
are undefined.

The CP starts the debug list scan (after instruction fetch but before instruction
execution) if all of the following conditions exist:

• Traps are enabled.

• Debug mask bit in user mask register is set (UMR 56).

• One or more bits in debug mask register are applicable to the type of access. Refer
to table 2-19.

• End-of-list flag in debug mask register is clear.

When the debug scan initiates, the debug scan-in-progress flag is clear and the debug
index register is zero. The debug scan locates a debug list entry by adding the debug
list pointer and debug list index registers. The debug scan proceeds (not necessarily in
the exact order given) as follows:

1. Set debug scan-in-process flag in debug mask register.

2. Read first half of debug list entry. If end-of-list code, set end-of-list-seen flag in
debug mask register.

3. Add one to d.ebug index register and read second half of debug list entry.

2-72 60458890 Revision E

Program Monitoring

4. Set UCR 56 (triggering a trap interrupt) if a debug list match is found as follows:

o Accessed PVA is within address bracket of debug list entry.

• One or more debug code bits of debug list entry -match the type of access, with
the corresponding bit set in the debug mask register.

5. If step 4 triggered a debug interrupt, proceed to step 8.

6. If end-of-list flag is set, or 32 entries have been read, proceed to step 8.

7. Add one to debug index register and repeat from step 2.

8. Clear debug index register, debug scan-in-process flag, and end-of-list-seen flag to
complete the debug scan.

9. Execute the instruction triggering the scan.

Debug list scanning prior to instruction execution includes all instruction results except
the following (which may occur before the debug scan completes):

1. Setting the page-used bit, either explicitly as in test and set page (16) instruction,
or implicitly as with any instruction.

2. Setting of condition register bits.

3. Rounding of AO on call instructions.

4. Storing the environment into SFSA on call instructions (a debug trap also stores
the environment into SFSA).

The exception testing and debug scan are not constrained to occur in any given
sequence relative to each other. Two or more matches within the same entry produce
only one trap. The traps due to execution testing may occur concurrently with a debug
trap (several bits set in MCR and/or UCR) or separately, either before or after the
debug scan.

Revision E Programming Information 2-73

Program Monitoring

Interrupts During Debug Scan

The debug index and flags provide the means for properly initiating, resuming, and
terminating debug scan operations, particularly when an instruction's execution has
been inhibited by one or more interrupts. These interrupts may either be trap or
exchange interrupts.

Exchange interrupts cause the flags and debug index register to be stored in the
exchange package, for example, to allow resumption of a partially completed debug
entry list scan.

On trap interrupts, the processor retains the flags and index register to allow proper
completion of the debug scan upon return from the trap interrupt.

When enabling traps during the processing of a debug trap interrupt, software must
not reenable debug to prevent loss of integrity of the interrupted debug scan.

Debug-Software Interaction, Debug Enabled

The following items describe interactions with the debug facility that are available with
debug enabled:

e Debug mask bits 11 through 15 of debug mask register may be set or cleared by
way of a Copy-To-State-Register instruction; the new bits will be in effect for the
debug scan on the instruction following the copy instruction.

• Any copy to the debug flags or index must clear both flags and the index or the
following debug scan is undefined.

• UMR 56 may be cleared or traps disabled by way of a Copy-To-State-Register
instruction with no scan performed on the instruction following the copy instruction.

• A return instruction disables debug by loading a user mask register with bit 56
clear, or by entering CYBER 170 State. In such a case, no scan is performed on the
next instruction.

2-7 4 60458890 Revision E

Progr8:m Monitoring

Debug-Software Interaction, Debug Disabled

When debug is disabled after a debug match (after which an exchange or trap
interrupt occurs), the scan-in-progress flag sets and, if applicable, the end-of-list flag
sets. In this case, the following software action may be taken through a
Copy-To-State-Register instruction after a trap interrupt, or through altering the
exchange package in CM after an exchange interrupt:

• Any of the debug mask register bits 11 through 15 may be set or cleared. The new
mask bits affect the first debug scan when debug is reenabled for this process.

• Debug flags and index may be cleared to reinitiate the debug scan from the
beginning when debug is reenabled.

• Debug index may he modified by multiples of 2 as the final value is greater than
or equal to 1 and less than or equal to 61.

• End-of-list-seen flag may be set to terminate the current debug scan when debug is
reenabled. The scan-in-progress flag may (but need not) he altered when setting this
flag.

• The end-of-list-seen flag may be cleared and the scan-in-progress flag set to
continue a scan that terminated. The debug index may also be modified by
multiples of 2 as long as the final value is greater than or equal to 1 and less than
or equal to 61.

When a debug match is absent, the debug may also be disabled by any of the
following:

• Trap interrupt.

• Exchange interrupt.

• Copy-To-State-Register instruction which clears UMR 56 or disables traps.

• Call to CYBER 170 State.

• Return which clears UMR 56.

• Return to CYBER 170 State.

When a debug match is absent, and the debug is disabled by any of the six methods
described in the preceding paragraph, only the following software actions may be taken:

• Any of the debug mask register bits 11 through 15 may be set or cleared. The new
mask bits affect the first debug scan when debug is enabled for this process.

• The debug flags and index may be cleared to reinitiate the full debug scan when
debug is enabled.

Revision E Programming Information 2-75

Program Monitoring

Table 2-21. Debug Conditions

Opcode Mnemonic Instruction Debug Condition

Bit 0: Data Read

DO-DB LBYTS Load bytes, immediate LO 6 Aj+Xi+D 6 HI

A2 LXI Load word, indexed LO 6 Aj+8*Xi+8*D 6

HI

82 LX Load word LO 6 Aj+B*Q 6 HI

A4 LBYT Load bytes LO 6 Aj+Xi+D 6 HI

88 LBIT Load bit LO 6 Aj+Q+X0/8 6

HI

AO LAI Load address, indexed LO < Aj+Xi=D 6 HI

84 LA Load address LO 6 Aj+Q 6 HI

80 LMULT Load multiple LO 6 Aj+B*Q 6 HI

70 ADDN Decimal sum LO ~ Aj+Ol ~ HI
LO 6 Ak+02~ HI

71 SUBN Decimal difference LO 6 Aj+Ol 6 HI
LO 6 Ak+02 6 HI

72 MULN Decimal product LO 6 Aj+Ol 6 HI
LO 6 Ak+02 6 HI

73 DIVN Decimal quotient LO 6 Aj+Ol 6 HI
LO ~ Ak+02 6 HI

E4 SCIN Decimal scale LO 6 Aj+Ol 6 HI

E5 SCLR Decimal scale, rounded LO 6 Aj+Ol 6 HI

74 CMPN Decimal compare LO 6 Aj+Ol ~ HI
LO 6 Ak+02 6 HI

77 CMPB Byte compare LO 6 Aj+Ol 6 HI
LO 6 Ak+02 6 HI

E9 CMPC Byte compare, collated LO 6 Aj+Ol 6 HI
LO 6 Ak+02 6 HI
LO 6 Ai+D 6 HI

F3 SCNB Byte scan while LO 6 Ak+Ol 6 HI
nonmember LO 6 Ai+D 6 HI

ES TRANB Byte translate LO 6 Aj+Ol 6 HI
LO 6 Ai+D 6 HI

76 MOVB Move bytes LO 6 Aj+Ol 6 HI

(Continued)

2-76 60458890 Revision E

Progra.m Monitoring

Table 2-21. Debug Conditions (Continued)

Opcode Mnemonic Instruction Debug Condition

Bit 0: Data Read

ED EDIT Edit LO ~ Aj+Ol ~ HI
LO ~ Ai+D ~ HI

75 MOVN Numeric move LO ~ Aj+Ol ~ HI

F4 CALDF Calculate subscript and add LO ~ Aj+Ol ~ HI
LO ~ Ai+D ~ HI

B5 CALLSEG Call indirect LO ~ Aj+8*Q ~ HI

04 RETURN Return LO ~ A2 ~ HI

06 POP Pop LO ~ A2 ~ HI

14 LB SET Test and set bit LO ~ Aj+X0/8 ~ HI

B4 CMPXA Compare swap LO ~ Aj ~HI

FA CMPI Compare immediate data LO ~ Ak+Ol :!: HI

FB ADDI Add immediate data LO ~ Ak+Ol

Bit 1: Data Write

D8-DF SBYTS Store bytes, immediate LO ~ Aj+Xi+D ~ HI

A3 SXI Store word, indexed LO ~ Aj + 8*Xi + 8*D ~
HI

83 sx Store word LO ~ Aj+8*Q ~ HI

A5 SBYT Store bytes LO ~ Aj+Xi+D ~ HI

89 SBIT Store bit LO ~ Aj+Q+X0/8 ~
HI

Al SAi Store address, indexed LO ~ Aj+Xi+D ~ HI

85 SA Store address LO ~ Aj+Q ~ HI

81 SM ULT Store multiple LO ~ Aj+8*Q ~ HI

70 ADDN Decimal sum LO ~ Ak+02 ~ HI

71 SUBN Decimal difference LO ~ Ak+02 ~ HI

72 MULN Decimal product LO ~ Ak+02 ~ HI

73 DIVN Decimal quotient LO ~ Ak+02 ~ HI

E4 SCLN Decimal scale LO ~ Ak+02 ~ HI

(Continued)

Revision F Programming Information 2-77

Program Monitoring

Table 2-21. Debug Conditions (Continued)

Opcode Mnemonic Instruction Debug Condition

Bit 1: Data Write

E5 SCLR Decimal scale, rounded LO ~ Ak+02 ~ HI

EB TRANE Byte translate LO ~ Ak+02 ~ HI

76 MOVB Move bytes LO ~ Ak+02 ~ HI

ED EDIT Edit LO ~ Ak+02 ~ HI

75 MOVN Numeric move LO ~ Ak+02 ~ HI

B5 CALLSEG Call indirect LO ~ AQ+7,mod 8 ::!'f

HI

BO CALLREL Call relative LO ~ AQ+7,mod 8 ~
HI

14 LB SET Test and set bit LO ~ Aj+X0/8 ::!'f HI

B4 CMPXA Compare swap LO ~ Aj ~ HI

F9 MOVI Move immediate data LO ~ Ak+Ol ~

FB ADDI Add immediate data LO ~ Ak+Ol ~

Bit 2: Instruction Fetch

All instruction fetches initiate a debug trap interrupt when the PVA accessed is
within an address bracket on the debug list. However:

• The load bytes relative (DO-D7) reference to P + Q is not detected.

• Unimplemented instruction, program error, and execute algorithm is not
necessarily detected.

• The descriptors for BDP instructions are not detected.

• The test is applied for each instruction rather than for each instruction word.

Bit 3: Branch Target Instruction

94 BRXEQ Branch on equal LO ~ P+2*Q ~

95 BRXNE Branch on not equal LO ~ P+2*Q ~

96 BRXGT Branch on greater than LO ~ P+2*Q ~

97 BRXGE Branch on greater than or LO ~ P+2*Q ~
equal

HI

HI

HI

HI

HI

HI

(Continued)

2-78 60458890 Revision F

Progra.m Monitoring

Table 2-21. Debug Conditions (Continued)

Opcode Mnemonic Instruction Debug Condition

Bit 3: Branch Target Instruction

90 BRREQ Branch on half-word equal LO ~ P+2*Q ~ HI

91 BRRNE Branch on half-word not LO ~ P+2*Q ~ HI
equal

92 BRR GT Branch on half-word greater LO ~ P+2*Q ~ HI
than

93 BRR GE Branch on half-word greater JLO ~ P+2*Q ~ HI
than or equal

9C BRINC Branch and increment LO ~ P+2*Q ~ HI

9D BRSEG Branch on segments unequal LO ~ P+2*Q ~ HI

2E BRREL Branch relative LO ~ P+2*Xk ~ HI

2F BR DIR Branch intersegment LO ~ Aj+2*Xk ~ HI

98 BRFEQ FP branch on equal LO ~ P+2*Q ~ HI

99 BRFNE FP branch on not equal LO ~ P+2*Q ~ HI

9A BRFGT FP branch on greater than LO ~ P+2*Q ~ HI

9B BRFGE FP branch on greater than LO ~ P+2*Q :::!:: HI
or equal

9E BROVR FP branch on overflow LO ~ P+2*Q ~ HI

9E BRUND FP branch on underflow LO ~ P+2*Q ~ HI

9E BRINF FP branch on indefinite LO ~ P+2*Q ~ HI

04 RETURN Return LO ~ FINAL P ~HI

9F BRCR1 Branch on condition register LO ~ P+2*Q ~ HI

Bit 4: Call Target Instruction Fetch

B5 CALLSEG Call indirect LO ~ CBP ~HI

BO CALLREL Call relative LO ~ P+S*Q,mod 8 ~
HI

1. Not supported on model 840.

Revision E Programming Information 2-79

Virtual and Central Memory Programming

Virtual and Central Memory Programming
Figure 2-11 shows how a process virtual address (PVA) converts to a system virtual
address (SVA), and then to a real memory address (RMA). The operating system
provides a segment descriptor table and a system page table to make the conversion
possible.

2-80 60458890

START

PROGRAM REQUESTS
DATA/CODE PVA FROM

A OR P REGISTER

CONVERT
PVA TO SVA

no

no

SET MCR54
ACCESS

VIOLATION

SET MCR60
INVALID
SEGMENT

SET MCR57
,,_ __,.PAGE TABLE SEARCH

CONVERT
SVA TORMA

CONTINUE
PROGRAM

WITHOUT FIND

INTERRUPT TO
OPERATING

SYSTEM

Figure 2-11. Central Memory Addressing from CP

Revision E

Virtual and Central Memory . Programming

Process Virtual Memory

To the user, memory is a set of segments in process virtual memory space. Each
segment is a contiguous byte string of 231-1 bytes. A maximum of 4096 segments may
exist for each process at any one time. During process execution, the CP presents
process virtual addresses (PVAs) for hardware translation, first to system virtual
addresses (SVAs), and then to real memory addresses (RMAs) where the requested data
resides in CM. The PVA is the address seen by the user and used by executing code.
The PVA may identify a P register address or a CM operand address. The PVA format
is shown in figure 2-12.

16 19 20

I RN I
Field

RN

SEG

BN

313233

SEG
1°1

Name

Ring Number

Segment

Byte number

63

BN

Description

Access privilege indicator that selectes l of 16 rings.
Refer to Access Protection in this section for further
information.

Process segment number. The same shared segment may be
addressed by different segment numbers.

Byte location within the 231-1 bytes in a segment. Bit 32
in the final PVA used is a validity indicator and must be a
zero or the PVA is rejected. Bit 32 in an A register may be
a one provided indexing or displacement changes this bit to
a zero in the final PVA.

Figure 2-12. Process Virtual Address (PVA) Format

Revision E Programming Information 2-81

Virtual and Central Memory Programming

To present the information in this chapter in a structured format, this page has been
left blank.

2-82 60458890 Revision E

Virtual and Central Memory . Programming

System Virtual Memory

The operating system sees virtual memory as a set of system-wide active segments that
totals all of the process segments. An active segment is the virtual memory division for
uniquely identifying system data. System virtual addresses (SVAs) address the active
segments. Figure 2-13 shows how hardware translates a PVA to an SVA.

In the translation, an active segment identifier (ASID) replaces the RN and SEG fields
of the PVA. All segments active in the system are assigned unique ASIDs to ensure
unique system data. The 16-bit ASID field in the SVA defines a total of 65,536 active
segments that may simultaneously exist in the system. The ASID resides in the
segment descriptor table that the operating system maintains for each process. Any
number of ASIDs can be listed in various process segment descriptor tables against the
same segment. This forms the basis for code sharing.

During the translation, hardware also verifies permission to access the segment
containing the SVA. This occurs by way of the access protection attributes listed in the
segment descriptor table for that segment.

16 19 20 313233 63

I RN I SEG lei
16 313233 63

I ASID lei i.--~~~~~~~~i-.i...~~~~~~~~B-N~~~~~~~~~' SVA

Field

ASID

BN

Revision E

Name

Active
segment
identifier

Byte numbe:

Description

Global name that uniquely identifies any active segment in
the system.

Byte location within a segment.

Figure 2-13. System Virtual Address (SVA) Format

Programming Information 2-83

Virtual and Central Memory Programming

Real Memory

The operating system sees real memory as pages in CM or external mass storage. It
maintains the necessary tables to identify, address, and retrieve the stored information
when an executing process requests it. A page ranges in size from 2K bytes to 16K
bytes, as selected at system initialization via the page size mask register.

CM corresponds with virtual memory by page frames. Page frames are the same size
as pages, and provide the means for swapping pages between CM and external mass
storage. A page frame may be empty, contain new information being created, or
contain a copy of a page from external mass storage that is being examined, modified,
or executed.

The operating system manages CM by way of demand paging. In demand paging, the
CP retrieves the requested page(s) from external mass storage to CM as needed for
process execution. This frees the operating system from having to collect in CM all the
pages necessary to complete process execution. In operation, the CP executes a process
until a page fault occurs, whereby the CP switches execution to another process while
it retrieves the page from external mass storage.

The CP always retrieves a copy of a page, and not the page itself, from external mass
storage. Pages in such storage remain unaltered unless or until the CP overwrites the
new page back to its location in external mass storage. (Hardware keeps track of pages
in CM which are still true copies of pages in external mass storage.) The CP writes
pages back to external mass storage to make room for new pages. The operating
system identifies candidate pages for transfer by way of an algorithm which determines
the least-used and least-recently-used pages.

Hardware uses the system page table in CM (described under Address Tables later in
this chapter) to convert SVAs to RMAs and to complete address translation. In the
SVA-to-RMA conversion, hardware uses a hashing algorithm to replace the ASID and
PN fields of the SVA with a system/page identifier (SPID) (refer to figure 2-14). The
SPID resides in the single system page table that the operating system maintains for
all processes.

Once obtained, the SPID provides an index into a list of coincident hashed entries in
the system page table. The CP linearly searches up to 32 coincident entries in
comparing the true SPID (maintained by the operating system) to the system page
table entries. The search continues until a valid page with the requested entry is
found, or until 32 entries have been searched. If the requested entry is not found
among the 32 entries, a page fault occurs and the CP retrieves the page and
accompanying entry from external mass storage.

A successful search of the system page table results in identifying the desired page and
the corresponding page frame address listed with the SPID. The page frame address
lists the destination of the page in real memory. The page offset (carried directly from
the SVA) identifies the memory word containing the requested byte. The rightmost 3
bits select the requested byte within the word. The RMA, formed by the page frame
address and the page offset, has a format as shown in figure 2-15. The conversion of
the virtual byte number (BN) to the page number and page offset is shown in
figure 2-16.

2-84 60458890 Revision E

Virtual and Central Memory .Programming

16 313233 63 Page
(a) ~,:..._ ____ A_S_l_D_(1_6_) ----~~,o·f;:;.;;.. _______________ B_N_(_3_1) ______________,, ~k

Bytes
In
Page

~I ~~~~~~~~l~l~~~~~~~~~~~~~~__.1111100

1111000
16 31 33 47 48 1110000

2K
4K
BK

(b) I ASID(16) lol PN(15-22 bits) I I P0(9-16) 1100000 16K

I 54
1
55

4 41

lcl L.l ________________ s_P_1o_l3_8_l _________ ~I

Field

ASID

BN

PN

PO

SPID

42

(a)

(b)

33

Name

Active
segment
identifier

Byte number

Page number

Page offset

Segment/

Description

Global name that uniquely identifies any segment active in
the system.

Byte location within a segment •.

Part of BN which is hashed with the ASID to form the SPID.
Its length varies from 15 to 22 bits, depending on system
page size.

Byte location within a page. Length varies from 9 to 16
bits, depending on system page size.

Identifies page in a particular global segment for conversion
page to RMA.
identifier

Figure 2-14. Segment/Page Identifier (SPID) Format

PAGE FRAME
ADDRESS (22)

5657 63

48 5455 63

I PAGE I ..._ ____ !OFFSET (9-16)

32 34 3738 6061 63

le) lol ~ REAL MEMORY ADDRESS (RMA) I I
Bits

(a)42-63

(b)48-63

(c)32
33
34,35
36,37
38-60
61-63

Description

Page frame address from system page table. Where the page offset has
significant bits, the page frame address rightmost bits must be zeros in
the system page table.

Page offset from SVA, unchanged from PVA. Where the page frame address
has corresponding significant bits, the page offset leftmost bits are
set to zero by the page size mask.

Must be zero.
Selects the port when CP has two memory ports.
Reserved.
Not used.
CM word address.
Byte address within a CM word.

Figure 2-15. Real Memory Address (RMA) Format

Revision E Programming Information 2-85

Virtual and Central Memory Programming

16 20 32

PVA I RN I SEG

To be converted
to ASID

PSM

1111100

1111000

1110000

1100000

•
AND

WITH
COPY PSM

j j
2K-BYTE PAGES

16K-BYTE PAGES

PN to be matched against SPIDs
listed in page table

4748 5455 5960 63

Part of BN

BYTES
IN PAGE

2K

4K

8K

16K

1
T

AND
WITH

NOT PSM

j
00000 I
0000 I
000 l
oo I

+l

COPY

j
2K-BYTE PAGES

16K-BYTE PAGES

Page offsets used in
RMAs to address CM

Figure 2-16. Virtual BN-to-Page Number/Page Offset Conversion

2-86 60458890 Revision E

Virtual and Central Memory. Programming

Address Tables

The PVA-to-SVA-to-RMA translation with access protection depends upon the operating
system keeping the following tables in CM:

• A segment descriptor table (SDT) for each process. Hardware accesses the SDT for
converting PVAs to SVAs and for enforcing access protection.

• A system page table (SPT) common for all processes. Hardware accesses the SPT
for converting SVAs to RMAs and for keeping track of modified/used pages.

The PVA-to-RMA conversion with reference to· the address tables is shown in
figure 2-17.

PVA

SVA

RMA

RN SEG

VERIFY ACCESS
PERMISSION

Type/mode
Ring number
Keys/Locks
Privilege

CONVERT SEG TO ASID

(by segment table)

ASID

FORM PAGE TABLE
SEARCH ST ART
ADDRESS

(By hashing
ASID,PN,PTA,PTL)

BN

SEPARATE BYTE NUMBER
TO PAGE NUMBER AND
PAGE OFFSET

(by page size mask)

PN

SEARCH PAGE TABLE FOR
PAGE FRAME ADDRESS

• If found, replace PN with
page frame.

• If not listed, interrupt to
the operating system.

(By sa.rching up to 32 entries of
page table)

PAGE FRAME RMA

OFFSET

OFFSET

Figure 2-17. PVA-to-RMA Conversion

Each process obtaining call-indirect and trap-interrupt target addresses requires binding
chapter segments. Hardware accesses the binding segments during call-indirect
instructions and trap interrupts to obtain entry point addresses (code base pointers) and
additional access protection information.

Revision E Programming Information 2-87

Virtual and Central Memory Programming

Segment Descriptor Table

A segment descriptor table (SDT) for each process lists the process segments against
the active system segments and provides access protection information. The SDT starts
at a word boundary and is defined by the following fields in an incoming exchange
package:

• Segment table address (STA): An RMA pointing to the first SDT entry.

• Segment table length (STL): The number of SDT entries, minus 1.

For each process segment, the SDT maintains an entry listing the corresponding ASID
and access attributes, and whether or not the segment is a cache bypass segment.
Refer to figure 2-18 for the SDT entry format. The CP reads cache bypass segments
directly from CM without copying the accessed information to cache memory. The CP
purges the relevant cache entry when it writes cache bypass segments. The CP does
not update or purge cache when it reads or writes CM using an RMA stored in
hardware such as MPS or JPS.

The SDT entry (SDE) lists the ASID corresponding to each segment number. The
segment numbers index the table, and combine with the STA to provide the required
SDT address. Invalid SDEs can be marked as such; thus, process segment numbers
need not form a consecutive set (although this is often the case).

An interrupt condition occurs when:

• Hardware attempts to use a segment number for which there is no valid SDE.

• Hardware attempts to use a segment number which exceeds the segment table
length.

Each SDE also lists the segment access protection attributes as established by software
convention. (Refer to Access Protection in this chapter for further information.)

The information in CM which is subject to change without cache update or purge must
be kept in cache bypass segments. For example, Virtual State exchange operations to
MPS and JPS use RMAs; thus, the CP does not update cache data because cache is
organized by SVAs. (CYBER 170 State exchange operations treat target addresses as
PVAs; thus, cache is updated.)

2-88 60458890 Revision E

Virtual and Central Memory Programming

012345678 1112 1516
31 34

3233 3940 63

Field

VL

XP

RP

WP

Rl

R2

ASID

LOCK

Name

Validity

Execute
permission

Read
permission

Write
permission

Ring 1

Ring 2

Active
segment
identifier

Lock

ASID

Description

Entry validity indicator
00 Invalid entry.
01 Reserved.

01 LOCK

10 Valid entry, regular segruent.
11 Valid entry, cache bypass segment.

Permissible access type indicator
00 Nonexecutable segment.
01 Nonprivileged executable segment.
10 Locally privileged executable segment.
11 Globally privileged executable segment.

Permissible access type indicator
00 Nonreadable segment.
01 Read controlled by key/lock.
10 Read not controlled by key/lock.
11 Binding section segment, read not controlled by key/lock

(may be read as if RP • 10).

Permissible access type indicator
00 Nonwritable segment.
01 Write controlled by key/lock.
10 Write not controlled by key/lock.
11 (Reserved).

Ring requirement indicator
• For execute access, RN of PVA used may not be lees than

Rl of the accessed segment's SDE.

Ring

• For write access, RN of PVA used may not exceed Rl of
the accessed segment's SDE.

requirement indicator

• For execute access, RN of PVA used may not exceed R2
the accessed segment's SDE.

• For read access, RN of PVA used may not exceed R2 of
accessed segment's SDE.

A global segment name which uniquely identifies each active
segment in the system

One of 64 locks. A zero value indicates a no-lock condition.

of

the

Figure 2-18. Segment Descriptor Table (SDT) Entry Format

Revision E Programming Information 2-89

Virtual and Central Memory Programming

System Page Table

The system has a system page table which lists via an SPID each virtual page resident
in CM against the physical address of the assigned page frame. This table is defined
by the following:

• Page table address (PTA). This is an RMA pointing to the first page table entry,
which must be zero, modulo the page table length.

• Page table length (PTL). The page table length in modulo 512 words is as follows.

PTL Words in Page Bytes in Page

0000 0000 512 4 096

0000 0001 1 024 8 192

0000 0011 2 048 16 384

0000 0111 4 096 32 768

0000 1111 8 192 65 536

0001 1111 16 338 131 072

0011 1111 32 768 262 144

0111 1111 65 536 524 288

1111 1111 131 072 1 048 576

• Page size mask (PSM). The page size in modulo 512 bytes is as follows.

PSM

111 1100

111 1000

111 0000

110 0000

Page Table Search

Words in Page

256

512

1 024

2 048

Bytes in Page

2 048

4 096

8 192

16 384

Hardware converts SVAs to RMAs by searching up to 32 page table entries for a SPID
matching the SVA (ASID-PN) being converted. Figure 2-19 depicts how hardware
obtains a starting address for the 32-entry linear search by combining information from
the ASID, page table length, and virtual page number. The technique is called hashing.
The page table search is necessary because many SVAs hash to the same page table
search starting address.

2-90 60458890 Revision E

Virtual and Central Memory . Programming

ASID FROM SOE

PTL

00000000

00000001

00000011

00000111

00001111

00001111

00111111

01111111

11111111

3233

0 PTA

EOR

PT
WORDS

512

f
HASH INDEX

45 5253 59

8 AND

131K

6

ZEROS

OR

5960 63

0000

AMA OF FIRST PT LOCATION SEARCHED

2K-BYTE PAGES

PN
FROM SVA

(16 rightmost
bits)

16K-BYTE PAGES

Figure 2-19. Page Table Search, Start RMA Formation

Revision E Programming Information 2-91

Virtual and Central Memory Programming

Page Table Entries

Page table entries (refer to PTE in figure 2-20) list all pages residing in CM by listing
the SPID against the allocated CM page frame (physical) address. The operating system
ensures that only one copy of any active page exists in CM at a time. The PTEs
described also contain four control bits.

PTE Control Fields

The PTE contains four control bits: valid (V), continue (C), used (U), and modified (M).
Hardware decodes and translates these fields during the page table search as follows:

• The valid (V) bit, when set, causes the PTE under examination to be tested for a
SVA-RMA match. When clear, that PTE is ignored.

• The continue (C) bit, when set, causes the hardware search to continue with the
next PTE. When clear, the hardware search may be halted after testing the current
PTE.

• The used (U) bit is set by hardware whenever a PTE is used for address
translation. This bit is cleared by software only.

• The modified (M) bit is set by hardware whenever a PTE is used for a write access
to indicate that the page has been modified.

PTE Segment/Page Identifier Field

The segment/page identifier (SPID) is the PTE field tested for a match against the
38-bit ASID-PN combination from the SVA. When the page size exceeds 512 bytes, the
PN is less than 22 bits. In this case, the unused rightmost bits are zeros to obtain
proper alignment.

PTE Page Frame RMA Field

This 22-bit field is the page frame physical starting address. When the page size
exceeds 512 bytes, the rightmost address bits must be zeros to obtain proper alignment.

Listing of Pages in Page Table

To continuously guarantee the same data for all processes, the operating system
ensures that only one copy of a page resides in CM at a time. Therefore, each page
has the same page frame address and is listed against a unique ASID in the page
table. Also, the operating system lists pages in the page table so that a page table
search always results in finding the requested page if it is in CM.

Due to the vast number of possible virtual pages, special techniques are used to list
pages in the page table. The system page table length is, typically, 2 to 4 times the
number of available page frames, and the 16-bit ASID numbers are assigned
nonsequentially to facilitate page listing.

If a vacant spot is not found when attempting to list a page, the operating system
takes further action such as cancelling a page to make room for the new page,
changing the ASID number, or rearranging CM and enlarging the page table size.

2-92 60458890 Revision E

Virtual and Central Memory. Programming

16 3132 4647 55

--+~'~~-1s_v_A_lA_s_1D~~---1l.__~~s-v_A_IP_N_l~~-~-~-~-~-~-~-~-~_~_.9

01234

Field

(SVA)ASID

SVA(PN)

v

c

u

M

SPID

PAGE
FRAME
ADDRESS

Valid

Continue

Used

Modified

Segment/page
Identifier

62
4142 61 63

SPID PAGE FRAME ADDRESS lolol

Description

Active segment identifies part of SVA.

Page number part of SVA.

(bit 00) Coded as follows:
V = 1 PTE tested.
V = 0 PTE ignored.

(bit 01) Coded as follows:
C = 1 Search continued.
C = 0 Search aborted.

(bit 02) Cleared by software only. Indicates whether a
page was accessed by the CPU:

U • 1 An SVA-PTE match occurred.
u - 0 No SVA-PTE match occurred.

(bit 03) Cleared by software only and coded as follows:
M • 1 This PTE has been used for a write access

since it was entered.
M 0 This PTE has not been used for a write access

since it was entered.

(38-bits) Identical to the ASID-PN field combination
from SVA. Refer to figure 2-14.

Real memory starting address of the page frame. When the
page size exceeds 2K bytes, the rightmost bits of this
field are zeros (corresponding to the unused rightmost bits
in SPID and SVA-PN).

Figure 2-20. Page Table Entry Format

Revision F Programming Information 2-93

Virtual and Central Memory Programming

Process Binding Section

Binding chapters bind different segments into one process. Each process has at least
one binding section for use by hardware during the call indirect (CALLSEG,B5)
instruction and during trap interrupts.

A binding section used for such purposes resides in a segment for which the
SDE(RP) = 11; such a segment represents a binding segment and lists entry points
(CBPs) into called code segments. The 64-bit CBPs (figure 2-21) reside at a word
boundary and are addressed by PVAs as follows:

• For use by CALLSEG: The relevant CBP is addressed by (Aj + 8*Q) from the
instruction.

• For use by trap interrupts: The relevant CBP is addressed by the trap pointer (TP)
field from the exchange package.

A called procedure may have, and a trap interrupt target procedure always has, its
own binding section. In such a case, the external procedure flag (EPF) sets in the
relevant CBP. After a CBP with its EPF set is accessed, the word stored following that
CBP loads into A3 as the new binding section pointer.

0 34 789 1112 1516 1920 3132

.vMioJ~ R3
EPF

I Field Name

VMID Virtual
machine
identifier

EPF External
procedure
flag

R3 Call limit
ring number

RN CBP ring
number

SEG, Segment
BN Number,

Byte number

RN SEG BN

Description

Specifies the state of the CP after a call indirect instruction
or after a trap interrupt, as follows:

VMID = 0000 Virtual State.
VMID = 0001 CYBER 170 State.

When EPF = 1, hardware loads the word stored following the CBP
as a new binding section pointer into register A3. When the CSP
is used for trap interrupts, this bit must be a 1.

Highest ring number from which a call indirect instruction to
the listed target PVA may be issued. Initial P(RN) and Aj(RN)
must both not exceed R3.

When zero, causes a ring-number zero-exception condition,
setting MCR bit 60. When nonzero, prevents this exception with
no other effects.

Part of PVA of entry point into branched-to code.

Figure 2-21. Code Base Pointer Format

63

2-94 60458890 Revision F

Virtual and Central Memory ~rogramming

Access Protection

Access protection is by way of segments, based on the following elements:

• Process segment table: The process segment table defines the process address space.
A process may access only the segments listed in its segment descriptor table. Refer
to Segment Descriptor Table in this chapter.

• Ring structure: All PVAs used have a 4-bit ring number (RN) field specifying an
access privilege from 1 to 15. (A lower RN in a PVA indicates a higher PVA access
privilege.) All SDEs and CBPs list access privilege requirements. (A lower RN
listed indicates a higher privilege requirement.)

• Type of access: SDE control fields permit the type of access attempted (read, write,
or execute). Refer sto figure 2-18.

• Execute access privilege: Some system instructions require special codes in SDE
execute permission control fields. (A local/global execution privilege requirement.)

• Execute access mode: Some system instructions may execute only in Virtual State
monitor mode.

• Keys and locks: SDE control fields may further specify that a 6-bit key number in
the P register must equal a 6-bit lock number in the SDE.

• Code base pointers: Call indirect instructions and trap interrupts use additional
access protection attributes in CBPs, which must be listed in binding section
segments.

Figures 2-22 and 2-23 illustrate access protection as it pertains to the PVA-to-SVA
conversion for the read/write and execute cases, respectively.

Revision E Programming Information 2-95

Virtual and Central Memory Programming

RN

PVA STA REGISTER

SEG SEGMENT TABLE AMA

AMA OF SOE

SOE

P REGISTER

KEY RN SEG BN

RING NUMBER
TESTS

ACCESS TYPE
TESTS

KEY-LOCK tart met when:
• SDE!LOCKI • 0
• P!KEYI • 0
• SDE!LOCKI •PIKEY)

General access requirements:

KEV-LOCK
TESTS

PVA(SEG) ~ STL, SDE(VL • 10/11) SOE ADRS BIT 32 • 0

Read access requirements:
PVA(RN) ~ SDE(R2)
SDE(RP) • 10/11
SDE(RP) • 01, KEY - LOCK test met

Write access requirements:
PVA(RN) ~ SDE(Rl)
SDE(WP) • 10
SDE(WP) • 01, KEY - LOCK test met

Figure 2-22. PVA-to-SVA Conversion, Read/Write

2-96 60458890 Revision E

Virtual and Central Memory ~rogramming

STA REGISTER

SEG SEGMENT TABLE RMA

+

RMA OF SOE

RING NUMBER
TESTS

ACCESS TYPE
TESTS

KEV-LOCK test mat when:
e SDE(LOCK) • 0
• P(KEV) • 0
• SDE(LOCK) • P(KEV)

General access requirements:
PVA(SEG) ,S STL, SDE(VL) • 10/11 SDE ADRS BIT 32 • O.

Execute access requirements:

o SDE(Rl) ~ P(RN) ~SDE(R2).

o When segment supplies unprivileged instructions only, SDE(XP) s 01.

• When segment supplies unprivileged and local privileged instructions,
SDE(XP) • 10.

• When segment supplies unprivileged, local privileged and global privileged
instructions, SDE(XP) • 11.

Figure 2-23. PVA-to-SVA Conversion, Execute

Revision E Programming Information 2-97

Virtual and Central Memory Programming

Ring Structure

The ring hierarchy controls read, write, and execute accesses to a segment, as follows:

• All PVAs have a 4-bit ring number (RN) field specifying an access privilege from 1
to 15.

o Rl and R2 fields in SDEs, and the R3 field in CBPs, specify (PVA)RN requirements
for access.

Ring Voting

During certain conditions, the RN loaded into an A register is the largest of the
following:

c The RN initially in the A register.

o The RN accessed in memory.

e The Rl of the SDE used to access the RN in memory.

Such conditions and the resulting RN loaded are as follows:

o Load AK (AO, 84) instructions load a new Ak(RN) which is the largest of the
following:

1. Initial Aj(RN).

2. SDE(Rl) addressed by initial Aj(SEG).

3. Aj(RN) from memory.

o Load multiple (80) instruction loads new A(RN)s which are the largest of the
following:

1. Initial Aj(RN).

2. SDE(RN) addressed by initial Aj(SEG).

3. The relevant A(RN) from memory.

• Call indirect (B5) instruction, when the caller's CBP(EPF)
which is the largest of the following:

1. New CBP(RN) from (Aj + 8*Q + 8).

2. New P(RN).

2-98 60458890

1, loads a new A3(RN)

Revision E

Virtual and Central Memory .Programming

• Return (04) instruction loads new A(RN)s which are the largest of the following:

1. Initial A2(RN).

2. SDE(RN) addressed by initial A2(SEG).

3. A(RN) from SFSA in memory.

When the return instruction loads new P(RN), any A(RN) not specified for loading
by the SFSA descriptor are set to the largest of the following:

1. Initial A(RN) of the relevant A register.

2. New P(RN).

Effect of RN = 0

RN = 0 can serve as a flag to the operating system to link segments on a demand
basis. RN = 0 causes an interrupt condition (setting MCR bit 60), when detected as
follows:

• Call indirect (B5) instruction and CBP(RN) = 0.

• Return (04) instruction and an A(RN) in memory (specified for loading by SFSA
descriptor) is zero.

• Pop (06) instruction and Al(RN) or A2(RN) in SFSA is zero.

• Load Ak (80, 84) instructions and new Ak(RN) in memory are zero.

• Load multiple (80) instruction and any A(RN) accessed in memory is zero.

• Trap interrupt and CBP(RN) is zero.

No test occurs for RN zero when the A registers are loaded by an exchange operation,
or when an A register serves as an address source to access memory.

RN for Read/Write Access

PVAs used for read/write are in A registers and must have RN as follows:

• For a write access, the A(RN) used may not exceed the accessed segment's SDE(Rl):

A(RN) ~ SDE(Rl) (write limit test).

• For a read access, the A(RN) used may not exceed the accessed segment's SDE(R2):

A(RN) ~ SDE(R2) (read limit test).

Revision E Programming Information 2-99

Virtual and Central Memory Programming

RN for Execute Access

The RN for execute access are verified only for operations having the capability to
switch segments. The PVA used may originate from an A register, from a CBP, or
from the P register. PVA(RN) requirements are as follows:

• For accessing a branch intersegment target instruction, initial P(RN) and Aj(RN)
must fall within the execute bracket given by target segment's SDE(Rl) and
SDE(R2):

SDE(Rl) ~ P(RN) ~ SDE(R2) (prevents branches to outside the execute ring
bracket of the target segment).

SDE(Rl) ~ Aj(RN) ~ SDE(R2) (prevents branches to outside the execute ring
bracket of the target segment).

• For access to a call indirect target instruction, initial P(RN) must not exceed R3 of
CBP used, and also not less than Rl of SDE for target instruction. Refer to figure
2-24. Also, the initial Aj(RN) must not exceed R3 of CBP used:

P(RN) ~ CBP(R3) (a limit set by the operating system).

P(RN) ~ SDE(Rl) (prevents outward calls).

Aj(RN) ~ CBP(R3) (a limit set by the operating system).

• For accessing a trap interrupt target instruction, initial P(RN) must not exceed R3
of CBP used, and also not less than Rl of SDE for target instruction. Also, the trap
pointer (TP) ring number must not exceed R3 of CBP used:

P(RN) ~ CBP(R3) (a limit set by operating system).

P(RN) ~ SDE(Rl) (prevents outward trap interrupts).

TP(RN) ~ CBP(R3) (a limit set by operating system).

For access to a return target instruction, P(RN) loaded from SFSA may not be less
than initial previous save area pointer A2(RN):

Initial A2(RN) ~ final P(RN) [prevents user from setting P(RN) in SFSA for an
inward return as user cannot diminish A2(RN)].

RN Effect on Pop Instruction

A pop instruction loads Al, A2, CFF, and OCF from SFSA, and updates TOS pointer.
It does not alter P or AO, and must not alter the ring number in which the stack
resides. The entire initial A2 must equal AO in SFSA, and the initial A2(RN) must
equal P(RN). The tests are:

Initial A2 = AO in SFSA

Initial A2(RN) = P(RN) (which equals AO(RN) by the previous test).

2-100 60458890 Revision E

Virtual and Central Memory. Programming

Effect of RN Violations

Ring number violations and the detection of RN = 0 have effect as follows:

Operation

Write

Read

Branch
In tersegmen t

Call Indirect

Return

Pop

Load A

Trap interrupt

Violation

Aj(RN) > SDE(Rl)

Aj(RN) > SDE(R2)

SDE(Rl) > P(RN) >
SDE(R2)

P(RN) > CBP(R3)
Aj(RN) > CBP(R3)
P(RN) < SDE(Rl)
CBP(RN) = 0

A2(RN) > P(RN) in SFSA
Any A(RN) from SFSA = 0

Initial A2 '=I= AO in SFSA

Initial A2(RN) '=I= P(RN)
Al(RN) from SFSA = 0
A2(RN) from SFSA = 0

Accessed A(RN) = 0

P(RN) > CBP(R3)
TP(RN) > CBP(R3)
P(RN) < SDE(Rl)
CBP(RN) = 0

Execute Access Privilege/Mode

Effect

Access violation (MCR 54)

Access violation (MCR 54)

Access violation (MCR 54)

Access violation (MCR 54)
Access violation (MCR 54)
Outward call (MCR 61)
RN zero (MCR 60)

Inward return (MCR 61)
RN zero (MCR 60)

Environment specification error
(MCR 55)
Interring pop (UCR 52)
RN zero (MCR 60)
RN zero (MCR 60)

RN zero (MCR 60)

Access violation (MCR 54)
Access violation (MCR 54)
Outward call (MCR 61)
RN zero (MCR 60)

Execution of some system instructions may occur only in a Virtual State monitor
process, or require global/local privilege. An instruction is globally privileged when it is
fetched from a segment for which the SDE(XP) is 11. An instruction is locally
privileged when it is fetched from a segment for which the SDE(XP) is 10. An
instruction which has global privilege also has local privilege. In some cases the
requirements are dependent on an instruction parameter. Such system instructions are
listed in table 2-22.

Revision E Programming Information 2-101

Virtual and Central Memory Programming

To present the information in this chapter in a structured format, this page has been
left blank.

2-102 60458890 Revision E

Virtual and Central Memory . Programming

Table 2-22. System Instruction Privilege and Mode

Instruction

Interrupt processor (03)

Copy-To-State-Register

60-7F

80-BF

CO-DF

Return (04) with SFSA(VMID) = 0

Load page table index (17)

Branch, alter condition register (9F)

k = 0/1/8/9

Purge buffer k (05)

k = 0/1/2/8-F

Notes:

UCR 48: Privileged instruction fault.
MCR 55: Environment specification error.
MCR 51: Instruction specification error.

Revision E

Privilege
Required

Global

None
Global

Local/global

Global

Local/global

None

Local/global

Mode Effect of
Required Violation

Any UCR 48

Monitor
Any

Any

Any

Any

Monitor

Any

MCR 51
UCR 48

UCR 48

MCR 55

UCR 48

MCR 51

UCR 48

Programming Information 2-103

Virtual and Central Memory Programming

Keys/Locks

The key/lock access protection mechanism is independent of other access protection
facilities, and consists of the following:

• Each SDE has a 6-bit field specifying a lock.

• The P register has a 6-bit field specifying a key.

Unlike the ring mechanism, the key-lock mechanism is not hierarchical. For access
permission, a specified lock requires an exact match with the key tested, except as
follows:

• A zero lock is a no-lock condition accessible by any key.

• A zero key is a master key opening all locks.

Key/lock tests perform under the following conditions:

o For read access when the accessed segment's SDE(RP) = 01.

• For write access when the accessed segments SDE(WP) = 01.

Any segment, except a binding segment used during call indirect access, can be locked
as follows:

• When LOCK 0, the segment is unlocked.

• When LOCK ':/::. 0, the segment is locked.

Read or write access to a segment is permitted only when the P register providing the
PVA of the instruction attempting the access has a KEY as follows:

• To access a locked segment, P(KEY) must exactly equal the accessed segment's
SDE(LOCK), P(KEY) must be a master key, or the segment's SDE(LOCK) must be
a no-lock.

Call indirectJrelative instructions always set the final P(KEY) equal to the accessed
segment's SDE(LOCK). The call indirect access requirements are shown in figure 2-24.

2-104 60458890 Revision E

Virtual and Central Memory .Programming

SEG BN

SFSA ACCESS

SOE FOR SFSA

AOIRN) ~ R1
WP..10 or
WP-01 and
KEYS .. LOCKS

VL XP RP WP R1 R2 ASID 01 LOCK

CSP ACCESS

AilRN) S R2
RP..11

Aj(RN) S R3
__ __...~ P(RN) < R3

R4 ~ 0-
VMID in VMCL

TARGET
INSTRUCTION
ACCESS

STA

SOE FOR CBP

VL XP RP WP

PTE FOR CBP

VL UM

SEG (PN) BN (PO)

+ AMA of SOE

01 LOCK

PAGE FRAME RMA

RMA of CBP

RJ R4 SEG BN

---• P(RN) ~ R1

'----• XP-00

SOE FOR TARGET INSTRUCTION

FINAL P

FINAL P REGISTER

NOTES:

• Final PIKEY)• callee's SDE(LOCK)

• When initial P(RNI greater than callee's
SDE(R2), final P(RNI •.callee's SDEIR2).

ASID 01 LOCK

BN

Figure 2-24. Call Indirect Access Requirements

Revision E Programming Information 2-105

Interstate Programming

Interstate Programming
The CYBER 170 State environment is a substate of Virtual State job mode, within
which the CP uses CYBER 170 State compatible instructions, exchanges, and data
formats.

This subsection contains some general aspects of the CYBER 170 State and a detailed
description of interaction between the CYBER 170 State and Virtual State. The CYBER
170 State is described in detail in the appropriate computer system (CYBER 170 State)
hardware reference manual listed in the system publication index in About This
Manual.

The general characteristics of the CYBER 170 State are as follows:

• The CYBER 170 State user sees the P register as a CYBER 170 State register.
Hardware, however, treats the P register the same as in Virtual State and performs
the PVA-to-SVA-to-RMA conversion with access protection.

• The CYBER 170 State user sees CM addresses as CYBER 170 State addresses.
Hardware, however, treats these as PVAs and fills in the missing RN and SEG
fields from P register data.

• The entire CYBER 170 State memory exists in one system virtual segment with an
ASID of FFFF1s.

• Virtual pages into which PPs write 60-bit words map 1:1 into real memory.

• Virtual State procedures execute the CYBER 170 State compare/move (464 through
467) instructions by way of trap interrupts.

• Virtual State procedures handle some CYBER 170 State exception conditions, such
as system or job timer interrupts, hardware errors, or conditions which halt model
173. For the latter case, refer to the CYBER 170 Model 173 hardware reference
manual listed under Additional Related Manuals in About This Manual.

2-106 60458890 Revision E

Interstate .Programming

Operation in CYBER 170 State

Virtual State programs establish the CYBER 170 State environment and provide
recovery facilities for all hardware and some software errors occurring in CYBER 170
State. The general operation is as follows:

o Virtual State programs build the page table, segment table, and exchange packages
for the CYBER 170 State environment.

o A Virtual State program switches the CP to CYBER 170 State through one of the
following:

An exchange from Virtual State monitor mode to Virtual State job mode,
CYBER 170 State monitor/job mode.

A call/return within Virtual State job mode, from Virtual State to CYBER 170
State monitor/job mode.

• The CP runs in CYBER 170 State, with exchanges between CYBER 170 State
monitor and job modes, until one of the following occurs:

An exchange interrupt to Virtual State monitor mode.

A trap interrupt within Virtual State job mode, from CYBER 170 State to
Virtual State.

• Virtual State programs determine the cause of the exchange or trap interrupt and
take appropriate action.

Memory Addressing in CYBER 170 State

The CM space allocated to CYBER 170 State is addressed as a single segment. An
ASID of FFFF16 is globally reserved for this segment. For models 835, 845, and 855,
hardware uses this ASID value for cache invalidation, described under Cache
Invalidation in CYBER 170 State in this chapter.

Hardware treats all CM addresses supplied by CYBER 170 State programs as PVAs
and converts these first to SVAs, and then to RMAs. The P register provides the key,
ring number, and segment number for all CM accesses. The PVA-to-RMA conversion
includes instruction fetch, load/store, extended memory transfers, and CYBER 170 State
exchanges to MA, Bj + K, or R +A.

The operating system supplies the P register KEY, RN, and SEG fields to make the
PVA-to-RMA conversion possible; these cannot be changed by CYBER 170 State
programs. The entire P register, including the KEY, RN, and SEG fields, loads as
follows:

• During Virtual State monitor mode-to-CYBER 170 State monitor/job mode exchanges
from the exchange package at JPS. The exchange package used is specially
formatted for such an exchange.

• During calls from Virtual State job mode to CYBER 170 State job/monitor mode,
from the code base pointer.

• During returns from Virtual State job mode to CYBER 170 State job/monitor mode,
from the stack frame save area.

Revision E Programming Information 2-107

Interstate Programming

Cache Invalidation in CYBER 170 State (Models 835, 840, 845, 850,
855, and 860 Only)

When a PP writes a 60-bit word into CM, cache memory is updated by cancelling any
copy of that word in cache memory. The RMA used to write CM is also supplied to
cache memory. Hardware treats this RMA as a SVA with an ASID of FFFF (hex).

To fulfill the requirements of cache invalidation addressing, the operating system
assigns an ASID of FFFF16 for the virtual memory segment used as CYBER 170 State
memory, and must also map the virtual pages into which PPs write 60-bit words, 1:1,
into real memory. In such a case, the RMA supplied is numerically equal to the SVA
information necessary to locate the addressed word in cache memory. The operating
system maps CYBER 170 State address 0 into BN 0 of system virtual segment FFFF
(hex).

Cache is not purged when PPs write 64-bit words into CM. Therefore, it is possible to
have other than 1:1 mapping of CM for CYBER 170 State PP-write-to-CM instructions
in conjunction with software cache invalidation.

State-Switching Operations

Figure 2-25 depicts the state-switching operations. The CP switches states when its
virtual machine identifier (VMID) changes states through the following:

• Exchanges between Virtual State monitor mode and CYBER 170 State. The new
VMID loads from the exchange package.

• Calls within Virtual State job mode, from Virtual State to CYBER 170 State. The
new VMID loads from the code base pointer.

o Returns within Virtual State job mode, from Virtual State to CYBER 170 State.
The new VMID loads from the stack frame save area.

o Trap interrupts within Virtual State job mode, from CYBER 170 State to Virtual
State. The new VMID is loads from the code base pointer addressed by the trap
pointer.

2-108 60458890 Revision E

-----EXCHANGE TO MPS---~

[TRAP TO EXCHANGE PACKAGE ITPI

TRAP CONDITION-----1

DEADSTART

VIRTUAL STATE MONITOR MODE --- --- --- ---V 1 R TU AL STATE JOB MODE

.,_ ___ CP 02(EXCHANGE)

---EXCHANGE CONDIT! ON

TRAP TO EXCHANGE PAC KAGE (TPI ...

----TRAP CONDITIO N

PP 1026(1NPN)

EXCHANGE CONDITION

CYBER 170 HALT CONDITION

TRAP CONDITION

CP 017(TRAP)

EXCHANGE TO MA

[CHANGE TO R+A

PP 00261(MXNI

CP 01J(XJ)

PP 00262(MANI

EXIT CONDITION

TRAP CONDITION

CP 017(TRAPl

PP 1026(1NPN)

EXCHANGE CONDITION

VIRTUAL
STATE

MONITOR
MODE

PROCESSES

VMID•O

VIRTUAL
STATE

JOB
MODE

PROCESSES

VMID-0

CYBER
170STATE
MONITOR

MODE
PROCESSES

VMID•l
170MF•1

CYB ER
170 STATE

JOB
MODE

PROCESSES

VMI0-1
170MF•O

NOTE: 170MF• CYBER 170 STATE MONITOR FLAG

Interstate .Programming

------- CP 02(EXCHA NGEI

------- CP 80/BS(CAL

------- CP 04(RETURN)

----POP STACK--STACK

M-----PUSH STACK--CBP

EXECUTION HALT CONDITION.,

L:VMID~O =:J I
(VMIDl•O

HALT I

-- -- --

I-EXECUTION HALT HALT I
E PACKAGE(VMIDl•O_. i.--EXCHANGE TO

CONDITION-+)

JPS EXCHANG

CP 80/BS(CAL

P 04IRETURN)

ACK--CBP(V

CK-- STACK

LI

c
..... PUSH ST MIDl•O

POP STA (VMIDl•O-

EXCHANGE TO J
EXCHANGE PACKAGE(VM

PUSH STACK CBP(VMIDI•

PS
ID•1.MF•1)

1,A4(MF•ll

POP ST ACK - STACK IVM

t------- PP D0260(EXNI

------ EXCHANGE TO R

ID•1,MF•11 ___.,.

+A I
----CP OlJ(XJI ----

EXECUTION HALT CONDITION.,

EXECUTION HALT CONDITION.,

-----EXCHANGE TO Bj+K

------PP D0260(EXNI-

,... ____ EXCHANGE TO R+A

HALT

HALT

I

I

I
l,A4(MF•OI PUSH STACK CBP(VMID=l

POP STACK - STACK(VM IDml.MF=OI-

. -EXCHANGE TO JPS EXCHANGE PACKAGE(VMID 1.MF 01

Figure 2-25. Interstate Calls, Returns, and Interrupts

Revision E Programming Information 2-109

Interstate Programming

Virtual State Monitor Mode-to-CYBER 170 State Exchange

The interstate exchange (02) instruction executes the same as a Virtual State exchange
instruction, except the incoming exchange package is formatted as shown in figure
2-26.

CYBER 170 State-to-Virtual State Monitor Mode Exchange

An exchange from a CYBER 170 State process to Virtual State monitor mode is
through an interstate exchange interrupt, which executes the same as a Virtual State
exchange interrupt, except the outgoing interstate exchange package is formatted as
shown in figure 2-27. Such an interrupt initiates as follows:

• By conditions which set a bit in the monitor or user condition register (when
enabled).

• By software conditions which cause a model 173 CP to halt. Such conditions set the
exit mode halt flag in the interstate exchange package at JPS. Refer to the CYBER
170 Model 173 hardware reference manual listed under Additional Related Manuals
in About This Manual.

• By a central exchange jump (013) instruction when the CYBER 170 State monitor
flag is set.

This exchange does not update the CYBER 170 State exchange package. Virtual State
monitor mode software may, however, perform the update. Refer to the operating
systems manual listed in the About This Manual for further information.

Exchanges Within CYBER 170 State

Within the CYBER 170 State, CYBER 170 State-compatible exchange jumps and
interrupts occur between the CYBER 170 State monitor and job modes. Refer to the
appropriate computer system (CYBER 170 State) hardware reference manual listed in
the system publication index in About This Manual. Such exchanges use the exchange
package format shown in figure 2-27. The interstate exchange package is not altered by
this exchange.

Call from Virtual State to CYBER 170 State

The interstate call indirect (B5) instruction executes identical to a Virtual State call
indirect instruction, except the stack frame save area (SFSA) has the format shown in
figure 2-28. The operating system arranges the Virtual State A and X registers so the
required parameters pass to the CYBER 170 State procedure (the call instruction
leaves these registers unchanged in hardware). Figure 2-28 also shows the register
formats in hardware. The call instruction does not store the user and monitor condition
registers in SFSA.

The BN of P supplied by the code base pointer is the P + RAC of the called procedure
target address; BN bits 32 through 39 and 61 through 63 must be zeros.

2-110 60458890 Revision E

Interstate . Programming

Trap Interrupt from CYBER 170 State to Virtual State

The interstate trap interrupt causes the same action as the Virtual State trap interrupt
described in this chapter, except the SFSA has the format shown in figure 2-28. This
trap interrupt occurs when traps are enabled and a bit sets in the user condition
register.

Bits 0 through 3 of the X register fields in SFSA are undefined. The VMID and the
P register ring number load from the code base pointer addressed by the trap pointer.

The BN of P stored in SFSA is the P + RAC of the interrupted procedure; BN bits 32
through 39 and 63 are zeros, and bits 61 and 62 denote the parcel address within the
instruction word.

Return from Virtual State to CYBER 170 State

The interstate return (04) instruction executes the same as the Virtual State return
instruction, except the SFSA from which the CYBER 170 State registers are restored is
formatted as shown in figure 2-28. The return instruction with VMID = 1 in SFSA is
a global-privileged instruction.

The BN of P loaded from SFSA must be P +RAC into the CYBER 170 State process,
where BN bits 32 through 39 and 63 are zeros, and bits 61 and 62 denote the parcel
where execution starts.

Revision E Programming Information 2-111

Interstate Programming

Exchange Packages Used in CYBER 170 State

The CP uses two types of exchange packages with CYBER 170 State operations:

• Exchange package for interstate exchanges.

• Exchange package for exchanges within CYBER 170 State.

Before Virtual State monitor mode initiates an exchange to CYBER 170 State
monitor/job mode, the following exchange packages must be ready in CM:

• An interstate exchange package for exchanging from Virtual State monitor mode to
CYBER 170 State monitor/job mode.

• An interstate exchange package for exchanging back to Virtual State monitor mode.

• A CYBER 170 State exchange package for a possible immediate exchange to
CYBER 170 State monitor mode (when exchanging from Virtual State monitor mode
to CYBER 170 State job mode).

Interstate Exchange Package

The job process state (JPS) pointer locates the first word in this exchange package. The
exchange package format is shown in figure 2-26. The format is a modified format of
the exchange package used within Virtual State. The CYBER 170 State A, B, X, and
other registers reside in locations occupied by the Virtual State A and X registers in
the Virtual State exchange package. Therefore, after a trap interrupt, the Virtual State
program entered has access to these CYBER 170 State registers by accessing the
registers as if they were Virtual State registers.

The following paragraphs describe the modified fields of the exchange package. For
other fields, refer to Exchange Package in this chapter.

2-112 60458890 Revision E

Interstate _Programming

BYTE(HEX) WDRD(DECI

DO 0304 D708 1112 1516 19202223 282131 32 45U 5751 83

C170 P + RAC 0

B VMID Virtual State AO

10 Flags rap Enebles Virtual StJte A1

18 User Mask Virtual State A2

20 Monitor Muk RAC 4

28 User Condition FLC 5

30 Monitor Condition MA 6

38 ReS1JV1d LPID

40 Reserved

4B Rnerved

50 A1 10

58 Procns Int. Timer A2 11

60 A3 12

BB Bise Consuint A4 13

70 AS 14

7B Model DepHd1nt Flags A6 15

BO

BB

90

CO ~~~~~;;;..;.;.;.;.;;;;;.;.;;;,;;;;;,;;;,;;;;;,;,;;;;;;.;;;;;;;;;;;;~~..;.;.;;;;;~~;;;..;.;.;.;;.;;;;;..~;....;..;,;,J...~-=.B7:__~~~~~
CB s XO 25

i
DO g X1 26

DB n XZ 27

ED ~ X3 28

EB ~ X4 29

FD ~ XS JO

FB ~ X& 31

100 n X7
!-----'---~

32

108..._ ______________ ..,..... ________ M __ od_e_l_D~ep~e_nd_e_m __ w_o_~ ______________________ ~ 33

110 Segment Table Addms Untranslmble Pointer 34

1181--------..--------+-------------T-~~p_P_o_in_te_r __________________________ -1 35

120 Debug Index Debug Mask Debug List Pointer 36
128 ·.·.:.::.:<<"· · LRN Top of Steck Ring Number 1 37

1981., .. '.:.•.·.,··.,··,··.,,•, .. , ',· ~::1···•·•·•·•·'---+.:: I _ __.;__+ ~-+ -~
_ ::::: ::::::::::.:::::::::::::::: :;::::.:::.;::•: ;.:ij1--------------T-op--of_S_tac: __ k_R_in_g_N_u_m_ber __ l_6 ________________ -1

... ·j·.···.··.·.·{" . ·;-· I T" DD 03040708 1112 1516

• Flags:
Bit 23, Word 4
Bit 24, Word 4
Bit 25, Word 4
Bit 26, Word 4
Bit 27, Word 4
Bit 28, Word 4
Bit 29, Word 4
Bit 30, Word 4
Bit 31, Word 4
Bit 31, Word 5
Bit 31, Word 6

454ti 63

UEM Enable Flag
Expanded Addressing Select Flag (ESM Mode Flag)
Extended Block Copy Flag
Software Flag
Instruction Stack Purge Flag
Software Flag
EM-Indefinite Operand
EM-Infinite Operand
EM-Address out of Range
C170 Monitor Flag
Exit Mode Halt

Figure 2-26. Interstate Exchange Package

Revision E Programming Information 2-113

Interstate Programming

Program Address (P) Register

The P field (word 1, bits 0 through 63) contains the Virtual State P register, which
supplies the PVA for the CYBER 170 State where instruction execution is to begin or
resume. The KEY field contains the process key for access protection. The BN field of
the PVA interprets as the CYBER 170 State P register plus RAC, appended with the
parcel address. The P register part of the parcel address must not exceed 18 bits
(because exchanges within CYBER 170 State truncate the P register to 18 bits). The
user must also ensure that the CYBER 170 State P register does not count past 18
bits, which is possible. The format is as follows:

Bits

00-01
02-07
08-09
10-15
16-19
20-31
32-43
43-60
61-62
63

Description

Not used.
Not used.
Not used.
Key (KEY).
Ring number (RN).
Process segment (SEG).
Must be zero.
P + RAC (word address).
Parcel address.
Must be zero.

CP operation is out of range or undefined when CYBER 170 State P + RAC >
7777777s, or when P > 777777s.

Stack Pointers

The 48-bit AO, Al, and A2 fields (words 1 through 3, bits 16 through 63) are Virtual
State A registers. These registers function as stack pointers after a trap interrupt from
CYBER 170 State to Virtual State.

EM Register

The EM register contains the exit mode selection bits for use in CYBER 170 State:

Interstate
Exchange Package

Word 4 Bit 20
Word 4 Bit 21
Word 4 Bit 22
Word 4 Bit 29
Word 4 Bit 30
Word 4 Bit 31

NOTE

Description

Hardware error (not used).
Hardware error (not used).
Hardware error (not used).
Indefinite operand.
Infinite operand.
Address out of range.

CYBER 170 State
Exchange Package

Word 3 Bit 59
Word 3 Bit 58
Word 3 Bit 57
Word 3 Bit 50
Word 3 Bit 49
Word 3 Bit 48

Hardware errors in CYBER 170 State cause an exchange to Virtual State monitor
mode. Bits 20 through 22 function as software flags preserved during exchanges.

2-114 60458890 Revision E

Flags

The flag formats are as follows:

Virtual State
Exchange Package

Word 4 Bit 23
Word 4 Bit 24
Word 4 Bit 25
Word 4 Bit 26
Word 4 Bit 27
Word 4 Bit 28
Word 5 Bit 31
Word 6 Bit 31

Description

UEM enable flag.
Expanded addressing select flag.
Enhanced block copy flag.
Software flag.
Instruction stack purge flag.
Software flag.
CYBER 170 State monitor flag.
Exit mode halt flag.

Unified Extended Memory (UEM) Enable Flag -

Interstate .Programming

CYBER 170 State
Exchange Package

Word 4 Bit 56
Word 4 Bit 55
Word 4 Bit 54
Word 4 Bit 53
Word 4 Bit 52
Word 4 Bit 51

If set, this flag enables the CM block copy and single-word copy (011, 012, 014, and
015) instructions to access CM.

Expanded Addressing Select Flag -

If set, selects expanded addressing mode, which provides addressing up to 24 bits in a
30-bit format for data transfer between CM and UEM. If clear, selects standard
addressing mode, which provides addressing up to 21 bits in a 24-bit format for data
transfer between CM and UEM.

Enhanced Block Copy Flag -

If set, CYBER 170 State block copy (011, 012) instructions use XO bits 30 through 50
rather than AO to determine the CM address.

Software Flag (Word 4, Bit 28) -

This is a reserved flag described in software documentation.

Instruction Stack Purge Flag -

If set, this flag causes instruction stack purges as described under Code Modification in
CYBER 170 State in this chapter.

Software Flag (Word 4, Bit 26) -

This is a reserved flag described in software documentation.

Revision E Programming Information 2-115

Interstate Programming

CYBER 170 State Monitor Flag -

If set in an incoming exchange package, this flag indicates that the CYBER 170 State
process is to start (or resume) execution in CYBER 170 State monitor mode. If set in
an outgoing exchange package, this flag indicates that the interrupted process was
executing in CYBER 170 State monitor mode.

Exit Mode Halt Flag -

If set, this flag indicates a software error that would halt a model 173 CP. This bit
does not set for hardware errors that would have halted a model 173 CP. Refer to the
hardware reference manual (listed under Additional Related Manuals in About This
Manual) that describes the CYBER 170 Model 173.

RAC Register

The 32-bit RAC field (word 4, bits 31 through 63) contains the 21-bit CYBER 170 State
reference address for CM addressing. CP operation is undefined when RAC > 7777777s
or RAC + FLC > 7777777s.

FLC Register

The 32-bit FLC field (word 5, bits 31 through 63) contains the 21-bit CYBER 170 State
field length for CM addressing. CP operation is undefined when FLC > 7777777s or
RAC + FLC > 7777777s.

Monitor Address (MA) Register

The 32-bit MA field (word 6, bits 31 through 63) contains the 18-bit CYBER 170 State
MA register pointing to the CYBER 170 State exchange package starting address used
when executing the following instructions with the CP in CYBER 170 State job mode:

• CYBER 170 State central exchange jump (013).

• PP monitor exchange jump to MA (262x).

CP operation is undefined when MA > 777777s.

Address (A) Registers

The eight 18-bit A fields (words 9 through 16, bits 46 through 63) are CYBER 170
State CM address (A) registers.

RAE Register

The 32-bit RAE field (word 7, bits 31 through 63) contains the 21-bit CYBER 170 State
RAE register supplying the reference address for UEM addressing (instructions 011,
012, 014, 015). CP operation is undefined when RAE > 77777778 or when the RAE
rightmost 6 bits are nonzero.

2-116 60458890 Revision E

Interstate .Programming

FLE Register

The 32-bit FLE field (word 8, bits 31 through 63) contains the 24-bit CYBER 170 State
FLE register supplying the field size for UEM addressing (instructions 011, 012, 014,
and 015). CP operation is undefined when FLE > 77777777s or when the FLE
rightmost 6 bits are nonzero.

Virtual State Ring Numbers

The operating system supplies the A register Virtual State ring numbers (words 4
through 16, bits 16 through 19) for use after an interrupt to Virtual State. These must
not be altered in CYBER 170 State.

Index (B) Registers

The 18-bit CYBER 170 State B registers 1 through 7 (words 18 through 24, bits 46
through 63) are used primarily as indexing registers. Register BO is not included in the
exchange package; this register always contains all zeros.

Operand (X) Registers

Words 25 through 32, bits 4 through 63 contain the CYBER 170 State operand (X)
registers. Hardware sign-extends the X registers in an outgoing exchange package to
64 bits. The operating system sign-extends the X registers in an incoming exchange
package to 64 bits.

Revision E Programming Information 2-117

Interstate Programming

CYBER 170 State Exchange Package

The CYBER 170 State exchange package (figure 2-27) resides within the CYBER 170
State process segment in memory. During exchange operations between CYBER 170
State monitor and job modes, the current CP CYBER 170 State registers store into an
outgoing CYBER 170 State exchange package and reload from the incoming CYBER
170 State exchange package. These two exchange packages store into the same CM
locations and, thus, the outgoing exchange package replaces the incoming exchange
package in CM. Refer to the appropriate computer system (CYBER 170 State) hardware
reference manual listed in the system publication index in About This Manual for
further information.

C170 BIT: WORD
59 56 53 50 47 1817 0 36 35

i i

.\ p AD ~·•·•··•••••Tj_____ 0
:: RAC A1 81
·:

•< FLC A2 82

EM Flags• JeM J > 12 2 i >I Al 83

RAE A4 84

FLE AS 85

""<>I MA A6 86

·:~__:____a · s< <>< ______.____ z A7 87

XO

X1

X2

XJ

X4

XS

X6
X7

* REFER TO FLAG BIT DESCRIPTIONS ON PRECEDING PAGES.

Figure 2-27. CYB ER 170 State Exchange Package

2-118 60458890

2

3

4

s
6

7

8

9

10

11

12

13

14

15

Revision E

Interstate .Programming

Interstate Stack Frame Save Area

Interstate calls/returns and trap interrupts use a SFSA with the format shown in figure
2-28. For the description of modified fields, refer to the corresponding fields in the
Interstate Exchange Package in this chapter, except as follows:

• The user and monitor condition registers are stored only during trap interrupts.

• The user and monitor condition registers are not loaded by a return instruction to
CYBER 170 State.

• X register field bits 0 through 3 are undefined in the SFSA after a call, return, or
trap interrupt. Hardware does not sign-extend these fields.

BYTE(HEX)
REGISTERS

00 03 04 07 OB 15 16 19 2022 23 28293132 45 46 57 58 63

0 p p

8 VMID (Virtual State) AO AO

10 Frame Description (Virtual State) Al Al

18 User Mask (Virtual State) A2 A2

20 RAC AJ

28 User Condition FLC A4

30 MA A5

RAE 00-00 AS

FLE 00-00 A7

AO AB

Al A9

A2 AA

AJ AB
A4 AC
A5 AD

A6 AE

00 OJ 04 45 46 63

* REFER TO FLAG BIT DESCRIPTIONS ON PRECEDING PAGES.

Figure 2-28. Interstate Stack Frame Save Area

Revision E Programming Information 2-119

Interstate Programming

Code Modification in CYBER 170 State

In model 173, the CYBER 170 State return jump (010), extended memory read or write
(011, 012), exchange jump (013), or long jump (02) instruction purges the instruction
buffer. This is also the case in models 810 through 860.

Additionally, when the operating system sets the CYBER 170 State instruction stack
purge flag in the interstate exchange package or SFSA, the conditional jump (03
through 07) instructions and store (50 through 57 with i = 6 or 7) instructions also
purge the instruction stack. In such case, the modified code always executes, even with
the previous code in the same instruction word as the modifying code.

With the instruction stack purge flag clear, execution of unmodified code in the
instruction buffer may occur but can never be guaranteed, since an exchange interrupt
may clear all instructions in the buffer at any time, including instructions in the same
instruction word as the code-modifying instruction.

Debug/Performance Monitoring

The CYBER 170 State environment does not support the Virtual State debug feature.
Other information related to performance monitoring may be collected through the
maintenance channel.

2-120 60458890 Revision E

Exception Handling in CYB~R 170 State

Exception Handling in CYBER 170 State

During execution of CYBER 170 State programs, certain hardware or software errors
cause an exchange to Virtual State monitor mode, or a trap interrupt to Virtual State,
as described in the following paragraphs. Such exceptions do not set exit condition bits
or store the P register at location RAC. Instead, RAC+ P stores in the outgoing
exchange package or in SFSA.

Software Exception Conditions

Table 2-23 lists CYBER 170 State exception conditions. In general, software errors
occurring in CYBER 170 State job mode with the corresponding exit mode selected
cause an exchange to CYBER 170 State monitor mode. Corresponding software errors
occurring in CYBER 170 State monitor mode which result in an exchange from CYBER
170 State to Virtual State monitor mode with no MCR bits set and the CYBER 170
State halt flag in the outgoing exchange package set are as follows:

• Illegal instruction in CYBER 170 State monitor mode.

• Read or write address out of range (with exit mode selected for this error) in
CYBER 170 State monitor mode.

• Instruction fetch address or branch target address out of range in CYBER 170 State
monitor mode.

• Infinite or indefinite value detected (with exit mode selected for this error) in
CYBER 170 State monitor mode.

• 00 instruction in CYBER 170 State monitor mode.

Exceptions that may only occur immediately after entering or leaving the CYBER 170
State environment, and which cause an exchange from CYBER 170 State to Virtual
State monitor mode, with an MCR bit set and the CYBER 170 State halt flag in the
outgoing exchange package clear, are as follows: ·

Bit

MCR 55

MCR 60

MCR 52

MCR 54

MCR 61

MCR 63

Revision E

Description

Environment specification error.

Invalid segmenUring number zero.

Address specification error.

Access violation.

Outward call/inward return.

Trap exception.

Programming Information 2-121

Exception Handling in CYBER 170 State

The following exception causes an exchange from CYBER 170 State to Virtual State
monitor mode with an MCR bit set and the CYBER 170 State halt flag in the outgoing
exchange package clear:

Bit Description

MCR 57 Page table search without find.

Exceptions that may occur only immediately after entering or leaving the CYBER 170
State environment, and which cause a trap interrupt from CYBER 170 State to Virtual
State, with a UCR bit set, are as follows:

Bit

UCR 50

UCR 53

Description

Free flag set in incoming exchange package.

Return with critical frame flag set.

Exceptions causing a trap interrupt from CYBER 170 State to Virtual State, with a
UCR bit set, are as follows:

Bit

UCR 48

UCR 49

Description

Trap to Virtual State (017) instruction in the CYBER 170 State
instruction set.

Unimplemented instructions.

A trap interrupt attempted with trap interrupts disabled causes an exchange or stack
operation.

Address Errors

An address error does not change the destination CM location or register. Read/write
address errors occurring in CYBER 170 State monitor mode initiate an exchange to
Virtual State monitor mode only with the corresponding exit mode selected. Instruction
fetch address errors and target instruction fetch address errors in CYBER 170 State
monitor mode always initiate the exchange.

A page-table-search-without-find fault (page fault) in CYBER 170 State (MCR bit 57)
causes an exchange to Virtual State monitor mode only in the absence of a
simultaneous FLC or FLE violation. When the exchange does occur, the interrupted
process is restartable only when the page fault occurred during execution of a CYBER
170 State UEM transfer (011, 012, 014, 015) instruction.

When the page fault causes the exchange, the CP places the PVA causing the page
fault into the untranslatable pointer register, including the SEG and RN fields of the
PVA.

The CP tests each CM reference for an address specification error, invalid segment, or
access violation. When an interrupt occurs because of these conditions, the interrupted
CYBER 170 State process may not be restartable.

2-122 60458890 Revision E

Exception Handling in CYB.ER 170 State

Illegal Instructions

The following CYBER 170 State instructions, when executed in CYBER 170 State
monitor mode, cause an exchange to Virtual State monitor mode with the CYBER 170
State halt flag set in the exchange package:

• Any 30-bit instruction at parcel 3.

• Instructions 011 through 013 at parcel 1, 2, or 3.

• Instruction 016.

• Instructions 011, 012, 014, and 015 with certain parameters as described in the
following text.

Extended Memory Transfer Exceptions

Instructions 011 and 012 in CYBER 170 State monitor mode, with exit mode selected,
cause exceptions with the following priority:

Exception Response

1. Not in parcel 0 Illegal instruction.

2. UEM enable flag clear (exchange package) Illegal instruction.

3. FLC violation Address range error.

4. Negative block length Address range error.

5. FLE violation Address range error.

6. Zero block length Fetch next instruction.

Instructions 014 and 015 in CYBER 170 State monitor mode, with exit mode selected,
cause exceptions with the following priority:

Exception Response

1. UEM enable flag clear (exchange package) Illegal instruction.

2. FLE violation Address range error.

3. Xk (CYBER 170 State) bit 21/22123 set Address range error.

Revision E Programming Information 2-123

Exception Handling in CYBER 170 State

Hardware Exceptions in CYBER 170 State

Table 2-23 lists CYBER 170 State exception conditions. In general, hardware exceptions
cause an exchange to Virtual State monitor mode or a trap interrupt to Virtual State
job mode.

Hardware exceptions causing an exchange from CYBER 170 State to Virtual State
monitor mode are as follows:

Bit

MCR 48

MCR 50

MCR 56

MCR 59

MCR 62

Description

Detected uncorrectable error.

Short warning.

External interrupt.

System interval timer.

Soft error.

Hardware exceptions causing a trap interrupt to Virtual State job mode are as follows:

Bit Description

UCR 53 Process interval timer.

2-124 60458890 Revision E

Exception Handling in CYB.ER 170 State

Table 2-23. CYBER 170 State Exceptions

JPS
MCR/ Ex ch
UCR Pkg Exit
Bit Bit Error Mode Mode Response

MCR 48 Hard errors: Parity Any Any When address error,
Double SECDED CM inhibit write to that
port bounds. address.

Complete current
instruction; exchange
to (MPS); P = RAC
+ next fetch address
(not necessarily
related to error).

MCR 50 Short warning. Any Any Complete current
instruction; exchange
to (MPS); P = RAC
+ next fetch address
(not necessarily
related to condition).

MCR 53 CYBER 170 State
exchange request (PP).

MCR 56 External interrupt
(CP).

MCR 59 System interval timer.

MCR 62 Soft error.

MCR 55 No CYBER 170 State Any Any Inhibit execution of
bit in VMCL on target instruction;
entering CYBER 170 exchange to (MPS); P
State. = RAC + target

fetch address.

MCR 60 RN = 0 on return to
CYBER 170 State.

MCR 52 Address specification Any Any Inhibit execution of
error when CYBER target instruction;
170 State entered. exchange to (MPS); P

= RAC + target
fetch address.

(Continued)

Revision E Programming Information 2-125

Exception Handling in CYBER 170 State

Table 2-23. CYBER 170 State Exceptions (Continued)

JPS
MCR/ Ex ch
UCR Pkg Exit
Bit Bit Error Mode Mode Response

MCR 54 Access violation when
CYBER 170 State
entered.

MCR 60 Invalid segment when
CYBER 170 State
entered.

MCR 60 RN = 0 on call to
CYBER 170 State or
trap from CYBER 170
State.

MCR 61 Outward call/inward
return to CYBER 170
State.

MCR 63 Trap exception on trap
from CYBER 170
State.

MCR 57 Page fault without Any Any Interrupt execution;
FLC or FLE violation. exchange to (MPS); P

= RAC + this/next
fetch address.

UCR 48 Trap to executing Any Any Trap to TP in
instruction (017). exchange package; P

= RAC + next fetch
address.

UCR 49 Unimplemented Any Any Inhibit execution; trap
instruction fetched. to TP in exchange

package; P = RAC +
this fetch address.

UCR 50 Free flag in incoming Any Any Inhibit next
exchange package. instruction; trap to TP

in exchange package;
P = RAC + next
fetch address.

UCR 51 Process interval timer.

(Continued)

2-126 60458890 Revision E

Exception Handling in CYB~R 170 State

Table 2-23. CYBER 170 State Exceptions (Continued)

JPS
MCR/ Ex ch
UCR Pkg Exit
Bit Bit Error Mode Mode Response

UCR 53 Critical frame on Any Any Inhibit execution of
return to CYBER 170 target instruction; trap
State. to TP in exchange

package; P = RAC +
target fetch address.

29 FP indefinite. FP Mon Sel Exchange to (MPS); P
infinite. = RAC + this/next

fetch address.

30 FP indefinite. Mon Sel Exchange to (M,PS); P
FP infinite. = RAC + this/next

fetch address.

31 FLC violation, Mon Sel Interrupt execution; X
incremental read or or CM = unchanged;
write. A = read address less

RAC; exchange to
(MPS); P = RAC +
this/next fetch address.

31 FLE violation, block Mon Sel Execute as pass;
transfer instruction exchange to (MPS); P
011, 012. = RAC + next fetch

address.

31 FLE violation, Mon Sel Execute as pass;
single-word transfer exchange to (MPS); P
instruction 014, 015. = RAC + this/next

fetch address.

Revision E Programming Information 2-127

IOU Peripheral Processor Programming

IOU Peripheral Processor Programming

Refer to volume 1 for IOU functional characteristics and a description of nonconcurrent
inputJoutput (NIO) and concurrent inputJoutput (CIO) PPs. The next paragraphs contain
NIO programming information. Subsequent paragraphs contain CIO programming
information.

The NIO PPs may access all CM storage locations. One CM word or a block of CM
words can transfer from a peripheral processor memory (PPM) to CM or from CM to a
PPM. Data from external devices is read into a PPM, and with additional instructions,
transfers to CM. Conversely, data is transferred from CM to a PPM and then transfers
by way of additional instructions to external devices.

Central Memory Addressing by PPs

Addresses sent to CM from PPs are real memory addresses. PPs address CM using
either absolute or relocation addressing. Every PP can read all CM locations without
restriction. Every PP has write access to CM as determined by the OS bounds register
in the IOU. The port bounds register in CM may also be set to limit write access from
IOU.

Absolute and Relocation Addressing

If A register bit 46 is a zero, bits 47 through 63 of A specify an absolute CM address
0 through 377777 8· If bit 46 of A is a one, bits 4 7 through 63 of A are added to the
28-bit relocation register R to specify an absolute CM address 0 through 1777777777&
If bit 46 of A changes during a transfer, the addressing mode changes accordingly.

Instructions 0024/0025 load/store the relocation register. The leftmost 7 bits of R
represent (unused) extra addressing capacity. The rightmost 6 bits of R are appended
zeros.

OS Bounds Test

The OS bounds test restricts write access from selected PPs to an upper or a lower
region in CM. The PP instructions for which the OS bounds test performs are as
follows:

Exchange jumps (00260, 00261, 00262).

Central write (0062, 1062).

Central write (d) words (0063, 1063).

Central read and setJclear lock (1000/1001).

2-128 60458890 Revision E

IOU Peripheral Processor .Programming

PP Central Memory Read

Instructions which· read CM data into PPM are as follows:

• 60-bit CM words to five 12-bit PP words

Central read from A to d (0060).

Central read (d) words from (A) to m (0061).

• 64-bit CM words to four 16-bit PP words

Central read from A to d long (1060).

Central read (d) words from (A) to m long (1061).

Central read and set lock from d to (A) (1000).

Central read and clear lock from d to (A) (1000).

It is possible, by way of block read (0061, 1061) to read up to 4095 CM words,
over-writing PP memory cyclically. Hardware, however, uses PPM location 0 to hold
the program counter during block transfers. Refer to instructions 0061 and 1061 in
chapter 1.

PP Central Memory Write

Instructions which write PPM data from into CM are as follows:

• Five 12-bit PP words to 60-bit CM words

Central write to (A) from d (0062).

Central write (d) words to (A) from m (0063).

• Four 16-bit PP words to 64-bit CM words

Central write to (A) from d long (1062).

Central write (d) words to (A) from m long (1063).

It is possible by way of block write (0063, 1063) to write up to 4095 CM words,
repeating PP memory cyclically. Hardware, however, uses PPM location 0 to hold the
program counter during block transfers. Refer to instructions 1062 and 1063 in
chapter 1.

Revision E Programming Information 2-129

IOU Peripheral Processor Programming

PP Memory Addressing by PPs

PP instructions use 6-bit/18-bit direct operands or obtain the operand from PP memory
using direct, indirect, or indexed addressing.

Direct 6-Bit Operand

PP instructions of this type are no-address instructions. They have the format
OPCODEd. The d-field provides a 6-bit direct operand zero-extended to 18 bits in
calculations.

Direct 18-Bit Operand

PP instructions of this type are constant address instructions. They have the format
OPCODEdm. The combined d and m field provides an 18-bit operand.

Direct 6-Bit Address

PP instructions of this type are direct address instructions. They have the format
OPCODEd. The d field provides a 6-bit direct address, accessing PPM locations 0 to
77g.

Direct 12-Bit Address

PP instructions of this type are indexed direct address instructions, with zero index.
They have the format OPCODEdm, ·d = 0. The m field provides a 12-bit direct
address, accessing PP memory locations 0 through 7777g.

Indexed 12-Bit Address

PP instructions of this type are indexed direct address instructions. They have the
format OPCODEdm, d = 0. The m field provides a 12-bit direct address (base address).
The d field specifies a PP memory location from 0 to 77g, the contents of which is a
12-bit index. The indexed direct address forms by adding the index to the base address
as signed ones complement numbers, ignoring overflow. When m + (d) = 7777 the
result sets to 0000, except in the addition 7777 + 7777 = 7777.

Indirect 6-Bit Address

PP instructions of this type are indirect address instructions. They have the format
OPCODEd. The 6-bit d field addresses PP locations 0 through 77g. The 12 rightmost
bits of the addressed location provide an address to access PP memory locations 0
through 7777g.

2-130 60458890 Revision E

Channel lnpuUOutp~t Operations

Channel Input/Output Operations
All PPs may access all external devices through internal and external interfaces. Each
internal interface contains a data register and channel control flags. The internal
interfaces connect to external interfaces communicating with the external devices.

Channel Flags

Channel operation is controlled by the channel flags, which are set/reset by PP
instructions and by signals from the external devices. The channel flags are as follows:

• Channel active/inactive flag.

• Register full/empty flag.

• Channel (marker) flag.

• Error flag.

The active flag and the full flag control the channel input/output transfers. The status
of these two flags determines the channel active, inactive, full, or empty. The marker
flag is for software use, and the error flag indicates transmission parity errors.

Channel Active Flag

A PP sets the active flag to indicate a reserved channel (channel active). The PP or
the external device clears the active flag to indicate a free channel (channel inactive).
Devices connected through the CYBER 170 State 12-bit channels may also set this flag
to request attention.

A PP sets the active flag by the activate (0074) instruction or function (0076, 0077)
instructions. A PP clears the active flag with the deactivate (0075) instruction.
Normally, external devices clear the active flag in response to a function instruction, or
when they have no more data to send. A PP senses the active flag state using the
jump on active/inactive (00640 and 00650) instructions.

Register-Full Flag

A register is full when it contains a function or data word for an external device, or
when it contains a similar word received from the external device. The register is
empty after the word is read. The flag turns on or off as the register changes states. A
channel can only be full when it is active.

When set, the register-full flag signals the destination that data is available, and
signals the sender that no more immediate data can be sent. When clear, full flag
signals the destination to wait for the next data word, and signals the sender to send
another word. During block transfers, the register-full flag sets once for each word
written into the register.

The register-full flag also clears when the channel goes inactive for any reason. The
PPs can sense the flag state using the jump-on-full/empty (00660/00670) instructions.

Revision E Programming Information 2-131

Channel Input/Output Operations

To present the information in this chapter in a structured format, this page has been
left blank.

2-132 60458890 Revision E

Channel Input/Outp~t Operations

Channel (Marker) Flag

This flag is used by software as a marker and does not affect hardware operation. The
flag provides dual PP 1/0 driver programs with a synchronization mechanism. The flag
is inaccessible to external devices.

The marker flag is set/cleared by the channel flag (00641/00751) instructions. A PP can
sense the marker flag state using the jump-on-set/clear (1064/1065) instructions.

Priority conflicts exist when PPs in the same time slot use this flag. Hardware
resolves the marker flag priority conflicts for the maintenance channel 17s. For other
channels, the problem is resolved by software interlocks kept in CM, or by not
assigning PPs in the same time slot to the same channel. Any five
consecutively-numbered PPs are not in the same time slot.

Error Flag

This flag indicates a data parity error on a channel transfer. The IOU interface sets
the error flag when it detects a data parity error on input data. External devices
connected through 16-bit channels can also set this flag when detecting an output data
parity error. When this flag sets in any internal interface, the channel parity error bit
also sets in the IOU fault status register. PP instructions 00661 and 00671 clear and
sense the error flag.

Revision E Programming Information 2-133

Channel Input/Output Operations

Programming for Channel Input/Output

Data transfers to/from external devices are controlled by PP instructions 0064 through
0077. The same instruction set services 8-, 12-, and 16-bit channels. The assignment of
PPs, transfer priorities, and resolution of conflicts is a software responsibility.

The channel marker flag and/or software interlocks in central memory provide for
channel parity and reservation. Proceed as follows after resolving conflicts:

1. Clear error flag. A typical instruction might be: Jump if error flag set, and clear
flag (00661).

2. Verify channel availability. A typical instruction might be: Jump if active (00640).

3. Verify device availability:

Request device to send status. A typical instruction might be: Function m
(00770).
Wait until device responds. A typical instruction might be: Jump if active
(00640).
Activate channel. A typical instruction might be: Activate (00740).
Read device status. A typical instruction might be: Input to A (00700).
Verify error status. A typical instruction might be: Jump if error flag set
(00661).
Analyze device status. A typical instruction might be: Logical product (0012),
zero jump (0004).

4. Prepare for input/output:

Enter number of words to A. A typical instruction might be: Load d (0014).
Verify channel inactive. A typical instruction might be: Jump if active (00640).
Prepare device for read/write. A typical instruction might be: Function m
(00770).
Wait until device responds. A typical instruction might be: Jump if active
(00640).

2-134 60458890 Revision E

Channel Input/Outp~t Operations

5. Read/write data:

Activate channel. A typical instruction might be: Activate (00740).
Read/write data. A typical instruction might be: lnputJoutput A words
(0071/0073).
If write, loop until empty. A typical instruction might be: Jump if full (00660).
Disconnect Channel. A typical instruction might be: Deactivate (00750).
Verify inactive status. A typical instruction might be: Jump if active (00640).

6. Verify transfer integrity:

Verify A words were transferred. 1 A typical instruction might be: Nonzero jump
(0005).
Verify error status. A typical instruction might be: Jump if error flag set
(00661).
Verify inactive status. A typical instruction might be: Jump if active (00640).
Request device. A typical instruction might be: Function m (00770).
Wait until the device responds. A typical instruction might be: Jump if active
(00640).
Activate channel. A typical instruction might be: Activate (00740).
Read device status. A typical instruction might be: Input to A (00700).
Verify error status. A typical instruction might be: Jump if error flag set
(00661).
Analyze device status. A typical instruction might be: Logical product (0012),
nonzero jump (0005).
Verify inactive status. A typical instruction might be: Jump if active (00640).

1. If A = original value, no words were transferred. If A is not equal to 0, device or another PP ended
transfer.

Revision E Programming Information 2-135

Channel Input/Output Operations

Inter-PP Communications

An NIO PP can communicate with any other NIO PP using any NIO channel. CIO PPs
(model 990 and CYBER 990E and 995E only) can only communicate with other CIO
PPs on channels accessible by the given CIO. Communication between NIO and CIO
PPs is limited to channels 158 and l 7g.

Either the sending PP or the receiving PP can activate the channel used, after which
the sending PP outputs data into the data register and the receiving PP inputs data
from the same register.

The transfer rate is one word every 250 nanoseconds, except when the transfer is
between PPs in different barrels but the same time slot. In such a case, the transfer
rate is one word every 500 nanoseconds. PPs using the same time slots are as follows:

Models 810, 815, 825, and 830

Slot PP Number

1 0 10
2 1 11
3 2 12
4 3 13
5 4 14
6 5 15
7 6 16
8 7 17
9 8 18
10 9 19

Models 835, 840, 845, 850, 85f?, and 860

Slot PP Number

1 0, 5, 20, 25
2 1, 6, 21, 26
3 2, 7, 22, 27
4 3, 10, 23, 30
5 4, 11, 24, 31

Model 990 and CYBER 990E and 995E

Slot NIO PP Number CIO PP Number

1 0, 5, 20, 25 0, 5
2 1, 6, 21, 26 1, 6
3 2, 7, 22, 27 2, 7
4 3, 10, 23, 30 3, 10
5 4, 11, 24, 31 4, 11

Software must resolve priority and reservation problems arising in inter-PP
communications.

2-136 60458890 Revision E

Channel Input/Outp.ut Operations

PP Program Timing Consideration

Some external equipment requires timing considerations in issuing a function, activate,
or input instruction. Refer to the applicable external equipment reference manual. Such
timing considerations may be required, for example, to ensure that the equipment
attains a proper speed before data is sent (required by some magnetic tape equipment).
Also, equipment terminating a data transfer by resetting the active flag often requires
timing considerations in issuing the next function instruction.

Cache Invalidation

When a PP executes 60-bit central write instructions, the IOU sends cache memory
invalidation requests to the CP. The CP responds by purging the cache memory of any
former copies of the words stored in CM. Such invalidation requests are sent during
the following central write instructions:

• Central write A to d (0062), with every 60-bit word.

• Central write (d) words from m to (A) (0063), when an address with bits 62 and 63
set is sent to CM, and with the last word written.

NOTE

Cache is not invalidated during the execution of instructions 1001, 1002, 1062, and
1063.

Error Detection and Recovery

The IOU and each PP have fault detection and reporting hardware. The IOU generates
and checks parity on all data transferred between PP and PP memory, CM and IOU,
and IOU and external devices.

PP Hardware Errors

When a PP hardware error occurs with the enable error stop bit set in the IOU
environment control register, the PP with the fault halts (idles). In this case, another
PP may perform error detection and logging. When one PP halts from error detection,
the remaining PPs are affected only when a PP is waiting for the halted PP to
perform some action.

Error reporting from any PP with a fault can be disabled by setting the relevant bit in
the IOU fault status mask register. This is normally done when removing a PP from
service, and restores normal error reporting from other PPs through the summary
status byte.

Channel Parity Errors

The output register 16 bits are checked for parity whenever the register is full. When
a parity error is detected, the following takes place:

• Channel error flag in the channel concerned sets.

• Fault status register bit for this channel sets.

• Uncorrected error bit in IOU status summary register sets.

Revision E Programming Information 2-137

Channel lnputJOutput Operations

Error reporting from any channel with a fault can be disabled by setting the relevant
bit in the IOU fault status mask register. This is normally done when removing a
channel from service, and restores normal error reporting from other PPs through the
summary status byte.

Parity Errors on Output Data

The IOU sends a data or function word to the channel with parity calculated on all 16
bits of the channel output register. In case of 8- and 12-bit channels, software must
ensure that the missing bits in the output register are zeros. This ensures correct
channel parity after the unused bits discard.

Software must verify the integrity of a 12-bit channel output data transfer by
requesting a status word from the device concerned. When a device detects a parity
error on a 12-bit function word output, it does not send any response and the channel
remains active and full.

Devices connected through 16-bit channels or the maintenance channel respond to a
data word parity error detected at the device by resetting the channel full flag and
setting the error flag. The channel remains active and execution of the current output
instruction continues. These devices respond to a function word parity error by
resetting the active flag and setting the error flag.

The 12-bit channel contains a switch to disable parity checking.

Parity Errors on Input Data

For all channels, the IOU sets the channel error flag whenever it detects a parity
error on input data. The IOU regenerates correct parity before storing the data into PP
memory.

Timeout

The maintenance channel interface provides a 1 OD-microsecond timeout counter to
ensure that the PP dealing with that channel continues operations when the
maintenance channel does not respond to a data transfer command. The timeout
interval starts when the maintenance channel goes active or full, and resets when the
channel goes inactive or empty. If the IOU receives no response by the end of the
timeout interval, it clears the channel active flag.

Function word output does not activate the timeout counter. This allows software to
recover from a maintenance access control malfunction.

To allow inter-PP communications without timeout, the timeout is disabled when the
maintenance channel interface is deselected from channel 17 a using connect codes 8
through F.

2-138 60458890 Revision E

Initialization

Initialization
System initialization begins with the IOU, which requires no external hardware or
software aid to initialize itself. After the operator presses the deadstart button (CC545)
or presses the CTRL G, CTRL R, then M key (CC634-B, model 990, and CYBER 990E
and 995E only), a storage device in the IOU provides initialization programs and data
for further action.

After the IOU has self-initialized, any or all of the following operations may be
performed by way of the system console and deadstart options:

o Load CP control memory.

o Initialize CM.

o Dump CM.

o Run CP quicklook test.

• Begin maintenance system load.

o Begin operating system load.

Revision E Programming Information 2-139

System Console Programming (Channel 10

System Console Programming (Channel 108)

Keyboard

A PP must transmit a one-word function code (7020s) to request data from the system
console keyboard. The code prepares the display controller for an input operation. The
PP then activates the input channel and receives one character from the keyboard.
This character enters as the lower 6 bits of the word, and the upper bits clear. There
is no status report by the keyboard. Table 2-24 lists the keyboard character codes.

Data Display Terminals

Data is displayed within an 203.2-mm (8-in) area on a cathode-ray tube (CRT) of the
CC545 display terminal. The display can be alphanumeric (character mode) or graphic
(dot mode). There are 262 144 dot locations arranged in a 512-by-512 format. Each dot
position is determined by the intersection of X and Y coordinates. The lower left corner
dot is octal address X = 6000 and Y = 7000, and the upper right corner dot is octal
address X = 6777 and Y = 7777. (Model 990 and CYB ER 990E and 995E also use a
CC634-B display terminal. For NOSNE, only the CC634-B display terminal can be
used. For all other operating systems, either the CC545 or CC634-B display terminal
can be used. Refer to the hardware reference manual listed in the system publication
index in About This Manual for information regarding the CC634-B terminal.)

Character Mode

Large, medium, and small characters are provided in character mode. Large characters
are arranged in a 32-by-32 dot format with 16 characters per line. Medium characters
are arranged in a 16-by-16 dot format with 32 characters per line. Small characters
are arranged in an 8-by-8 dot format with 64 characters per line. Table 2-25 lists the
display character codes.

Dot Mode

In dot mode, display dots are positioned by the X and Y coordinates. The X coordinates
position the dots horizontally. The Y coordinates position the dots vertically and
unblank the CRT for each dot. Horizontal lines form from a series of X and Y
coordinates. Vertical lines form from a single X coordinate and a series of Y
coordinates.

2-140 60458890 Revision E

System Console Programmin~ (Channel 10

Table 2-24. Keyboard Character Codes

Character Code Character Code

No data 00 0 33

A 01 1 34

B 02 2 35

c 03 3 36

D 04 4 37

E 05 5 40

F 06 6 41

G 07 7 42

H 10 8 43

I 11 9 44

J 12 + 45

K 13 46

L 14 * 47

M 15 I 50

N 16 51

0 17 52

p 20 Left blank key 53

Q 21 = 54

R 22 Right blank key 55

s 23 56

T 24 57

u 25 Carriage return 60

v 26 Backspace 61

w 27 Space 62

x 30

y 31

z 32

Revision E Programming Information 2-141

System Console Programming (Channel 10

Table 2-25. Display Character Codes

Character Code Character Code

No data 00 0 33

A 01 1 34

B 02 2 35

c 03 3 36

D 04 4 37

E 05 5 40

F 06 6 41

G 07 7 42

H 10 8 43

I 11 9 44

J 12 + 45

K 13 46

L 14 * 47

M 15 I 50

N 16 51

0 17 52

p 20 Space 53

Q 21 54

R 22 Space 55

s 23 56

T 24 57

u 25

v 26

w 27

x 30

y 31

z 32

2-142 60458890 Revision E

System Console Programmin!? (Channel 10

Codes

A single function word transmits to select the presentation, mode, and character size
(character mode only). Figure 2-29 illustrates the function word format. The word
following the function word specifies the starting coordinates for the display (for either
mode). Figure 2-30 illustrates the coordinate data word. Figure 2-31 illustrates the
character word.

The controller regulates character spacing on the line once the display operation starts.
A new Y coordinate data word must be sent to start each line. If a new Y coordinate
is not specified, data is written on the line specified by the active Y coordinate word,
and information already on that line is overwritten. Character sizes can be mixed by
sending a new function word and coordinate word for each size change. Spacing on a
line can be varied by sending a coordinate word for the character which is to be
spaced differently.

Revision E

11

FIRST
CHARACTER

56

SECOND
CHARACTER

Figure 2-29. Display Station Output Function Code

6=X COORDINATE
7=Y ADDRESS

0

,___--JA'~---~---------A----------~ 1 ~ ~

I I I
NOTE:

IN DOT MODE, EACH Y COORDINATE TRANSMITTED FORCES
A DOT DISPLAY.

Figure 2-30. Coordinate Data Word

0 = SMALL CHARACTERS
0 = LEFT PRESENTATION 1 = MEDIUM CHARACTERS
1 = RIGHT PRESENTATION 2 = LARGE CHARACTERS

I
0 = CHARACTER MODE I

7=EOUIPMENT NOT 1 = DOT MODE
SELECT USED 2 = KEYBOARD INPUT _____ A I ____A A A----..

'11 s's~ svs 3v2 o'

I 11 I I I

Figure 2-31. Character Data Word

Programming Information 2-143

System Console Programming (Channel 10

Programming Example

The following programming example (figure 2-32) requests an input of one line of data
from the system console, and displays this data on the CRT as it is being typed.

Program Timing Consideration

When performing an output operation, the computer must wait for a channel empty
condition at the end of the output to prevent loss of coordinates or data. A full jump at
the end of the output ensures the channel empty and acceptance of the last output
word by the display controller before disconnecting from the channel.

2-144 60458890

START

ASSEMBLE
DATA IN
CHARACTER
MODE FORMAT

OUTPUT
ASSEMBLED DATA
PLUS INITIAL
COORDINATES

END

Figure 2-32. Receive and Display Program Flowchart

Revision E

Real-Time Clock rrogramming

Real-Time Clock Programming
Channel 14s is reserved for the real-time clock. This channel is always active and full,
and may be read at any time. The real-time clock is a 12-bit free-running counter
incrementing at a I-megahertz rate from 0 to 409510.

Revision F Programming Information 2-145

IOU Dedicated Channels

IOU Dedicated Channels
Figure 2-33 illustrates the IOU dedicated channels for models 810, 815, 825, 830, and
990 and CYBER 990E, 995E, 992, and 994. Figure 2-34 illustrates the IOU dedicated
channels for models 835, 840, 845, 850, 855, and 860.

DEA DST ART

©
CHANNEL

108

©

CC545
CONSOLE

©

CHANNEL
149

REAL· TIME
CLOCK

CALENDAR
CLOCK

RS3615
AUTO

DIA LOUT

© f,.'6:,~~A~go~~~~~R c:,~~L!N~vg~~~LE
© OPTIONAL WITH MODELS 810 AND 830.

© UODELS 810, 815, 825, AND 830 ONLY.

© ~~~~~o~~~Y~Rc::~~'::~0:n~0:Ho H4.
A CC5fli-A CONSOLE IS USED FOR CYBER 802.

REMOTE
TERUINA

KEYLOCK
SWITCH

PORT 0, 1

DAUD RATE
S\VITCll

PORT o, 1

50/60 ltl
POWER
SUPPLY

- ... -i.,
I 4~~ I
L-.J

(NOT USED)

r------------------.,
I

UODEU UODEM REUOTE
TERUINAL

I I

L------------------J
M01456·3

Figure 2-33. IOU Dedicated Channels, Models 810, 815, 825, 830, and 990 and
CYBER 990E, 995E, 992, and 994

2-146 60458890 Revision G

CHANNEL
109

DISPLAY
CONTROLLER

CX&46
COfolSOLE

DEADSTART
PANEL

(SWITCHES I

CHAMNEL
149

REAL-TIW:
CLOCK

BAUD
RATE

SWITCHES

PORT 0
RS232

LOCAL
TERLCINAL

PERIPHERAL
PROCESSORS

l'ORT 1
RS232

REMOTE
TERMINAL

CHANNEL
179

MAC
IOU

BlS.900
AND CYDER
990E, D!l6E

IOU
MAINTENANCE

REGISTERS

IOU Dedicated Channels

RADIAL INTERFACES

MAC
CMU13>1

CP/CM l&40-ell0)
CP/CM lr.>O>
AND CYDER
OOOE. C96E

MAC
CP ls:lti)

--1
Ir Rll

.c I
L-..1

I OPTIONAL)

UAC
OPTIONALCP

nzs.cro
ANO CYDER
l:'::OE, 1195E

Figure 2-34. IOU Dedicated Channels, Models 835, 840, 845, 850, 855, and 860

Revision E Programming Information 2-147

Two-Port Multiplexer Programming

Two-Port Multiplexer Programming
Channel 15s provides serial communications capability with two external devices
through _the two-port multiplexer. One port is reserved for maintenance use. With both
ports deselected, this channel can also be used for PP-to-PP communications. The
arrangement is as shown below.

CHANNEL 158

STANDARD
INTERNAL

INTERFACE

CALENDAR
CLOCK

FIFO

FIFO

UART

UART

PORT 0 (RS232CI ---

PORT 1 IRS232Cl __ __..

AUTO

AUTO
DIA LOUT

--------------------DIALOUT (RS33GA)

FIFO First-in-first-out output butt.r PORT

The two-port multiplexer can communicate with all devices which use EIA standard
RS-232 serial asynchronous interface at baud rates of 110, 300, 600, 1200, 2400, 4800,
or 9600. (Additionally, a baud rate of 19 200 can be used with the models 815 and
825.) The baud rate for each port is independently selectable by switches on the
two-port multiplexer PCB.

The multiplexer ports can accommodate data with odd/even parity, 5 to 8 bits per
character, and 1 or 2 stop bits. The format is set by issuing appropriate function codes.

The following table lists the devices which the two-port multiplexer can use to display
the system deadstart settings:

2-148 60458890 Revision E

Two-Port Mux Display
CC 545 System Console

Two-Port Mux Display
CC634-B System Console

Two-Port Mux Display
19003 System Console

Two-Port Mux Display
CDC 7521722 Terminal

Two-Port Mux Display
CDC 721 Terminal

Switch Panel Display

NOTE

IOU
(Models
810,815)

x

IOU IOU
(Model (Model
825) 830)

x x

x x

x

The IOU with Models 835-860 uses a switch panel display.

Two-Port Multiplexer Programming

IOU
(Model 990
and IOU
CYB ER (CYB ER
990E and 992 and
995E) 994)

x

x

x x

The models 810, 815, 825, 830, and 990 and CYBER 990E, 995E, 992, and 994 IOU
multiplexer supports the following special features:

• Remote deadstart.

• Calendar clock.

• Internal port-baud-rate selection.

The models 810 and 830 IOU multiplexer additionally supports the following special
features:

• Auto dial-out.

• Remote power control.

Revision G Programming Information 2-149

Two-Port Multiplexer Programming

Function Words

The two-port multiplexer uses the channel 15s rightmost 12 bits as a function word
from the PP. The function word specifies the following:

Octal
Code

7XXX

6XXX

lXXX

ooxx

Ol:XX

02XX

03XX

04XX

05XX

06XX

07XX

Description

Terminal select.

Terminal deselect.

Calendar clock/auto dial-out operations.

Read summary status.

Read terminal data.

Output to first in, first out (FIFO) buffer.

Set operation mode to terminal.

SetJclear terminal control signal Data Terminal Ready (DTR).

SetJclear terminal control signal Request to Send (RTS).

Not used.

Master clear selected port.

Terminal Select (7XXX)

This code selects the terminal to which the function codes and data transmissions
apply:

Code Description

7000 Select port 0 (future use).

7001 Select port 1 (maintenance use).

Terminal Deselect (6XXX)

This code deselects the two-port multiplexer from channel 15s. When deselected,
channel 15s can be used for 16-bit PP-to-PP communications. Inter-PP communications
over channel 15s should be used with caution since the transfer rate is variable (5
microseconds/word through 1 millisecond/word, with 100 microseconds/word typical).

2-150 60458890 Revision E

Two-Port Multiplexer Programming

Calendar Clock/Auto Dial-Out (lXXX)

This code can select several functions which pertain mostly to the calendar clock and
auto dial-out functions. These particular functions involve a data transfer from the
microprocessor memory to the PPs.

Code

1X02

1X04

1X05

lXlO

Description

Read Deadstart Portfferminal Type. Identifies the port which initiated the
last deadstart operation. The multiplexer stores the terminal type and port
number of the logged-in deadstart device.

Read Calendar Clock. Reads the calendar clock after the multiplexer
selects either port 0 or port 1.

Write Calendar Clock. Writes the calendar clock after the multiplexer
selects either port 0 or port 1.

Abandon Call (models 810 and 830 only). Requests that the multiplexer
abandon the call currently being attempted.

Read Pre-DS Copies of P, Q, K, and A Registers (1X20-26)

These codes read the values of the P, Q, K, and A registers that are stored in the two
port mux immediately prior to either a short or long deadstart. Either port 0 or port 1
must be selected. The logical barrel is selected as shown below.

1X20 NIO Barrel 0
1X21 NIO Barrel 1
1X22 NIO Barrel 2
1X23 NIO Barrel 3
1X24 CIO Barrel 0 (Model 990 and CYBER 990E, 995E, 992, and 994 only)
1X25 CIO Barrel 1 (Model 990 and CYBER 990E, 995E, 992, and 994 only)
1X26 All Barrels

Read Pre-DS Copies of Channel Status (1X27)

This code is used to read the copies of NIO and CIO (model 990 and CYBER 990E,
995E, 992, and 994 only) channel status stored in the two-port mux immediately prior
to either a short or long deadstart. Either port 0 or port 1 must be selected.

Revision G Programming Information 2-151

Two-Port Multiplexer Programming

Read Summary Status (OOXX)

This code prepares the channel for status input from the selected terminal. A one-word
input must follow to read the 12-bit status response, which is as follows:

Bit

52 through 58

59

60

61

62

63

Description

Not used.

Output buffer not full.

Input ready.

Data carrier detect or carrier on.

Data set ready.

Ring indication.

PP Read Terminal Data (OlXX)

This code prepares the channel for data input from the selected terminal. Channel 15s
must be activated and one word data input instructions must follow to read in the
terminal data. The 12-bit data word has the following format:

Bit

52

53

54

55

56 through 63

Description

Data set ready. Indicates that the Data Set Ready (DSR) signal is
active.

Data set ready and data carrier detector. Indicates that both Data
Set Ready (DSR) and Data Carrier Detector (DCD) signals are
active.

Overrun. Indicates that the previously received character was not
read by the PP before the present character over-wrote the previous
character.

Framing or parity error. Indicates that the received character does
not have a valid stop bit (framing error) or that the received
character parity does not agree with the selected parity (parity
error).

Data character.

PP Write Output Buffer (02XX)

This code prepares the multiplexer for an output operation to the 64-character output
buffer memory. The channel 15s active flag must be set before an output operation can
proceed.

When an output operation fills the buffer completely and no more locations are
available, the multiplexer arbitrarily resets the channel active flag.

2-152 60458890 Revision E

Two-Port Multiplexer .Programming

Set Operation Mode to Terminal (03XX)

This code sets data terminal operation mode as follows.

Bit

58

59

60

61 through 62

63

Description

Enable loop back (models 815, 825, and 990 only). When set, this bit
enables a round-trip data path from channel 15s to the selected
RS-232 port and back to channel 15s. The RS-232 interface does not
transmit data externally in this mode.

No parity. When set, this bit eliminates parity bit from transmitted
and received character. In such a case, stop bit(s) immediately follow
the last data bit.

Number of stop bits. Selects number of stop bits (1 or 2) which
follow immediately after parity bit:

Bit 60

Clear

Set

Description

1 stop bit.

2 stop bits.

Number of bits per character. Select 5, 6, 7, or 8 bits per character:

Code

00

01

10

11

Bits/Character

5

6

7

8

Odd/even parity select. Selects type of parity appended immediately
after data bits. Also determines the parity checked on input. When
set, selects even parity.

SetJClear Data Terminal Ready (DTR) (04XX)

This code conditions the data terminal to send or discontinue the Data Terminal Ready
(DTR) control signal as follows:

Code Bit 63 Action Taken

Set DTR set active.

Clear DTR set inactive.

Revision E Programming Information 2-153

Two-Port Multiplexer Programming

Set/Clear Request to Send (RTS) (05XX)

This code sets or clears the terminal control signal Request to Send (RTS) as follows:

Code Bit 63 Action Taken

Set RTS set active.

Clear RTS set inactive.

Master Clear (07XX)

This code master clears the selected port, including any buffer-stored data. The DTR
and RTS terminal control signals are not affected.

2-154 60458890 Revision E

Two-Port Multiplexer .Programming

Programming Considerations

Channel 15s communicates one at a time with the terminals connected to the external
interface. To establish communications between a PP and the terminal, the following
takes place:

1. PP issues a coded function word to select the terminal.

2. Multiplexer responds by resetting the channel active flag to acknowledge receipt of
the function code.

The multiplexer now routes all data to the selected terminal; other function words and
data input/output follow.

Data Output

The multiplexer can buffer-store a maximum of 64 characters per port. After 64
characters are stored in the buffer, the multiplexer resets the channel active flag on
the last output word. The multiplexer terminates an output transfer when it receives
an inactive signal from the channel.

The multiplexer does not permit output to a full buffer. Whenever the output buffer is
full and the multiplexer decodes a function code 02XX (PP write output buffer), the
multiplexer resets the channel active flag.

Data Input

The multiplexer does not buffer-store input data from the terminal. When the PP does
not input the previous data before the new data arrives, a lost data condition (overrun)
exists.

Request to Send and Data Terminal Ready

Request to send and data terminal ready signals are automatically brought up by the
hardware under the following conditions (regardless of the software RTS and DTR bits):

• Data in the universal asynchronous receiver-transmitter (UART) output register.

• Data in the FIFO output buffer register.

When no data is in the FIFO or UART, the software bit determines RTS and DTR.

Revision F Programming Information 2-155

Maintenance Channel Programming

Maintenance Channel Programming

Any PP in the IOU can be programmed to perform any or all of the following
operations on the CP, CM, and IOU through the 8-bit maintenance channel (MCH):

• Initializing registers, controls, and memories.

• Monitoring and recording error information.

• Verifying error detection and correction hardware.

The PP performing such operations is often called the maintenance control unit. The
MCH consists of the MCH interface on channel 178, a maintenance access control in
CP, CM, and IOU, and two sets of interconnecting cables. The second IOU in a
dual-IOU option contains only a maintenance access control in IOU.

The MCH interface contains a selector that connects the MCH to one of up to seven
isolated sets of cables. The IOU is element 0 and its maintenance access control
connects internally to the selector. The CP and the CM (models 810, 815, 825, 830, and
835) are assigned arbitrary element numbers depending on the connector used at the
MCH interface. (The models 845 and 855 CM shares a common cable and element
number with the CP .)

The CP and the CM (models 810, 815, 825, 830, and 835) connect to the IOU by
separate cables and gates. This arrangement results in a radial connection that allows
the CP or the CM (models 810, 815, 825, 830, and 835) to be shut down or removed
without affecting communication with the other unit.

MCH Function Words

The MCH function word consists of the connect, opcode, and type fields used as
described below. Table 2-26 describes the MCH function word bit assignments.

The connect field specifies the unit to which the MCH is connected [CP, CM (models
810, 815, 825, 830, and 835), or IOU], controlling selection within the IOU only. The
unit remains connected until another connect code selects a different unit. Connect
codes 10s to 17s leave the MCH unconnected; in this state the interface can be used for
PP-to-PP communications without timeout restrictions.

The OPCODE field controls the unit selected by the connect code; preparing the unit
for a coming read/write/echo operation; or causing the unit to halt, start, clear, or
deadstart.

The use of the TYPE field depends on the connected unit. With the CP the connected
unit, type codes 1 to A16 (models 810 through 835) or 1 through 7 (models 840 through
860) specify the CP register connected. Also, for the CP, type code 0 specifies that the
internal address of the CP register to be connected is specified in a control word sent
as two data words immediately following the function word. With the IOU the
connected unit, type codes 0 to 7 specify the starting byte number for read/write
operations (all models except 990 and CYBER 990E, 995E, 992, and 994). For model
990 and CYBER 990E, 995E, 992, and 994, the TYPE field must be set to all zeros.
For the models 810, 815, 825, 830, and 835, the CM ignores the type code. For the
models 845 and 855, type code A selects access to CM.

2-156 60458890 Revision G

Maintenance Channel. Programming

Table 2-26. MCH Function Word Bit Assignments

Field
Code
(Hex)

MCH Function Word to CP

CONNECT
(bits 8-11)

OPCODE

TYPE (bits 0-3)

0

8-F

4
5
6
7
8
c

0-7

Description

Connect IOU maintenance registers.

PP-to-PP communications.

Prepare for read (control word required).
Prepare for write (control word required).
Master clear ADU and R barrel.
Clear fault status registers.
Echo.
Read IOU summary status (reads one byte,
control word not required).

IOU registers are read circularly (byte 0 follows
byte 7) from the byte specified by the TYPE field.

MCH Function Word to CM (Models 810, 815, 825, 830, and 835 Only)

CONNECT
(bits 8-11)

OPCODE

1

4
5
6
7
8

MCH Function Word to CP

CONNECT
(bits 8-11)

OPCODE

Revision E

2

0
1
4
5
6
7
8

Connect CM maintenance register.

Prepare for read (control word required).
Prepare for write (control word required).
Master clear.
Clear fault status register.
Echo.

Connect CP maintenance registers.

Halt processor.
Start processor.
Prepare for read (control word required).
Prepare for write (control word required).
Master clear.
Clear errors.
Echo.

(Continued)

Programming Information 2-157

Maintenance Channel Programming

Table 2-26. MCH Function Word Bit Assignments (Continued)

Field

TYPE (Models 810,
815, 825, 830, and
835

TYPE (Models 840,
845, 850, 855, and
860)

TYPE (Model 990
and CYBER 990E,
995E, 992, and
994)

2-158 60458890

Code
(Hex)

0
1
2
3
4
5
6
7
8
A

0
1
3
4
5
6
7
A

0
1
2
3
4
5
6
7
8
9
A
B
C-F

Description

Control word required.
Read/write cache data buffer.
Read/write map segment files.
Read maintenance scan.
Read map page files.
Read/write register file A.
Read/write register file B.
Write maintenance scan limit.
Read/write control store.
Read AD register.

CP process state register.
Control store micrand data.
Maintenance access control reference (ROM).
Soft control memories.
BDP control memories.
Instruction fetch decode memories.
Register file.
CMC maintenance registers.

CP process state register.
Control store micrand data.
Maintenance access control (echo) function.
Reserved for future use.
Soft control memories.
BDP control memories.
Operand cache.
Register file.
Load and store section control memories.
Error processing network.
CMC maintenance registers.
Maintenance access control extended echo.
Reserved for future use.

Revision G

Maintenance Channel Programming

MCH Control Words

Some function words must be followed by a 16-bit control word specifying the internal
address of the register to be connected. The control word must issue as two 8-bit data
words (sometimes called address bytes). This is accomplished by outputting two 16-bit
words from PP memory where each word's rightmost 8 bits comprise the 16-bit control
word. Such control words are required after the following:

1. Function words to CP (models 810, 815, 825, 830, and 835) with opcodes 4/5
(read/write) and typecode 0.

2. Function words to CP (models 840, 845, 850, 855, 860, and 990 and CYBER 990,
995E, 992, and 994) with opcodes 4/5.

3. Function words to CM and IOU with opcodes 4/5.

4. Function words to CP, CM, and IOU with opcode 8 (echo).

MCH Programming for Halt/Start (Opcode 0/1)

These operations consist of the function word output. A halt opcode halts the processor
without damaging the executing process, including the integrity of the halted
processor's interunit communications such as CYBER 170 State exchange request
communication, central memory communications, and the process state. If the process is
restarted without performing any other MCH operations, or after performing read/write
with precautions as described in the operating systems manual, the process continues
undamaged.

MCH Clear LED (Opcode 3)

This operation clears all LEDs associated with pak errors and is intended, however not
required, for use at system initialization. For maintenance reasons, this operation can
also clear LEDs without initializing and master clearing.

Revision G Programming Information 2-159

Maintenance Channel Programming

MCH Programming for Read/Write (Opcode 415)

Refer to Programming for PP Data Input/Output in this chapter for a more complete
procedure. In general terms, proceed as follows:

1. Issue function with opcode 415.

2. Output data word (leftmost half of control word).

3. Verify error flag clear.

4. Output data word (rightmost half of control word).

5. Verify error flag clear.

6. Inputloutput required number of data words.

7. Verify error flag clear.

Reading a nonexistent register returns all zeros. Writing to a read-only register, or to
a nonexistent register, does not alter any register. Most registers are read/written as
64-bit (8-byte) registers, requiring the inputloutput of eight MCH data words. Most
registers physically smaller than eight bytes are right-justified with zero-fill. Reading a
status summary register is an exception in that the status information repeats in each
byte.

The IOU may disconnect the MCH without affecting subsequent MCH operations after
the following:

• Reading one to eight bytes from any register.

o Writing one byte to a corrected error log register.

• Writing one byte to a uncorrectable error log register.

The following MCH operations on CP registers can be performed with the CP running
or halted (when reading or writing registers which may change while being accessed,
the CP should be halted to avoid erroneous results):

o Read CP status summary register.

• Read CP fault status register.

• Read CP corrected error log registers.

• Read CP options installed.

• Read CP equipment ID register.

o Read/write CP dependent environmental control register.

• Read/write test mode control registers.

• Clear errors.

To read/write other CP registers, the CP must be running since microcode accesses
these registers. Refer to table 2-26. When reading or writing registers which may
change while being accessed, precautions must be taken as described in the operating
systems manual listed in About This Manual.

2-160 60458890 Revision E

Maintenance Channel .Programming

MCH Programming for Master Clear/Clear Errors (Opcode 6/7)

These operations consist of a single function word output. The master clear
immediately and arbitrarily clears the connected unit without regard to possible
information loss. The clear-errors operation clears the connected unit error indicators.
The unit concerned should be halted to avoid loss of possible (next) error reporting
while the errors are cleared.

MCH Echo (Opcode 8)

This operation checks the data path between the MCH and the IOU MAC. Following
the operation MCH is activated and two bytes are sent to IOU MAC. IOU ignores the
first byte and latches the second byte in the Address Holding Register, in any data
pattern. MCH is deactivated after the second byte is accepted in IOU MAC and the
channel is activated followed by an input sequence. IOU MAC sends data (contents of
Address Holding Register) upon receiving the Active signal and subsequent Empty
signals. There is no restriction on the number of data words read.

MCH Programming for Read IOU Summary Status (Opcode C, IOU Only)

This operation is an alternative, faster means of reading the IOU summary status
register. In general terms, proceed as follows:

1. Issue function with opcode c.

2. Input summary status byte.

Revision E Programming Information 2-161

CIO PP Programming (Model 990 and CYBER 990E, 995E, 992, and 994 Only)

CIO PP Programming (Model 990 and CYBER 990E,
995E, 992, and 994 Only)

The NIO and CIO PPs use the same instruction set and operate identically when
operating in the CYBER 170 compatible mode. Refer to the IOU Peripheral Processor
Programming section in this manual for information on CYBER 170-compatible IOU
programming.

The CIO PPs are also capable of transferring data directly to and from CM without
using the PP memory. The following are explained in detail:

• Definition of ISI terms.

• Description of ISi adapter function codes.

• Explanation of unique ISi adapter registers.

• ISI programming examples.

• Sequences using the ISI built-in test facilities.

• Description of 170 adapter function codes.

• Explanation of unique 170 adapter registers.

• CYBER 170 DMA adapter programming examples.

• Sequences using the 170 adapter built-in test facilities.

2-162 60458890 Revision G

CIO PP Programming (Model 990 and CYBER 990E an~ 995E Only)

Definition of ISi Terms

NOTE

A working knowledge of the terms described below is desirable before attempting to
program the CIO PPs.

Intelligent Standard Interface (ISi)

This refers to the electrical interface channel between an ISI adapter and Control
Module(s) and the protocol used to communicate between them. This interface is
defined as an ISI-DIFF interface containing differential transmitters/receivers with
interlocked and noninterlocked data transfer capabilities.

Control Module

An intelligent peripheral controller that has an ISI interface and accomplishes the
functions and definitions of the ISI Specification. A control module normally will have
peripheral devices (i.e., disk or tape drives) attached and act as the subsystem
controller for these devices.

Master Control Module

A Control Module which is designed to operate as a Bus Master on the ISI channel
and function as a Host or as a Bus Slave. It can select a Bus Unit to become a Bus
Slave and issue command blocks to it.

Slave Control Module

A Control Module which only can act as a slave on behalf of either a Master Control
Module or a ISI adapter.

ISi Channel Adapter

The DMA-Enhanced ISi Channel Adapter (ISI adapter) is the interface between the
CYBER 180 PP I/O Bus and an ISi channel. This Adapter contains control and status
registers and manages the data transfer between a CYBER PP and an ISI peripheral.
The PP addresses the adapter by its channel number. A CYBER adapter is always the
Bus Master.

An ISI adapter with the added capability of directly transferring data between CYBER
180 Central Memory and an ISi channel. This data transfer is initiated by a CYBER
PP but runs independently, of and concurrently with, CYBER PP instruction execution.

Bus Master

That ISi adapter which is currently controlling the ISI channel by controlling the
Select Hold, Command Sequence, and Sync Out signal lines. It can thus select other
Bus Units and control their operation. One and only one Bus Master must always be
assigned to an ISI channel. This assignment will be controlled by the ISi channel Bus
Director.

Revision E Programming Information 2-163

CIO PP Programming (Model 990 and CYBER 990E and 995E Only)

Bus Slave

That Control Module which has been selected to respond to but not control the Select
Hold, Command Sequence, and Sync Out signal lines on the ISi channel. Only one Bus
Slave can be selected by a Bus Master at any one time. It is this unit with which the
Bus Master will communicate when the Bus is in the Transaction mode.

Bus Unit

Any Control Module attached to a ISi channel which may be selected to be either a
Bus Slave or a Bus Master. A maximum of eight Bus units can be attached to a single
ISI channel if multiple Bus Masters are allowed, otherwise a single Bus Master Unit
and up to 8 Bus Slave Units can be attached.

Port

This refers to the interfacing hardware that comprises one ISI compatible interface on
a Bus Unit. This consists primarily of drivers and receivers only and does not include
the main control logic of the Bus Unit itself. All Bus Units will have Port A while
multi-channel units will also have a Port B. When two channels interface a single
CYBER Adapter or Control Module they are referred to as Channel A and Channel B
and attach to Port A and Port B respectively.

Transaction Mode

The mode of the ISI data bus when the Bus Master has activated the Command
Sequence line. Either Bus Master or Bus Slave data (function, status or data) may be
enabled onto the bus, depending upon the direction of the information transfer in
progress. Two way communication between a Bus Master and a Bus Slave occurs in
this mode.

Idle Mode

The mode of the ISI data bus when the Command Sequence line is inactive. Each Bus
Unit continuously transmits its Attention and Busy state on the Attention and Busy
data lines that correspond to its Bus Unit address to all ISI Bus Units on its
channel(s). This mode allows any Bus Unit to ascertain the current state of every other
Bus Unit by reading the Bus during Idle mode.

2-164 60458890 Revision E

ISI Channel Adapter

ISi Channel Adapter

Programming information for the DMA-enhanced ISI adapter is described in the
following paragraphs.

ISi Signal Deimition

The ISI channel consists of 16 bidirectional bus lines, two bidirectional bus parity lines,
and seven unidirectional control signals. The Bus Master provides three of these control
signals to the Bus Slave and the Bus Slave responds by generating three control
signals for use by the Bus Master. The Bus Director provides one signal to the
potential Bus Masters. Except for special conditions described later, these control
signals are said to be "interlocked" since a given Bus Master signal will lead to the
generation of a corresponding response by the Bus Slave, which in turn allows the Bus
Master to continue with the next operation. The handshaking is interlocked to allow
easy control of signal timing over longer cable length regardless of internal clock rates.
This also allows the implementation of Bus Units that operate at varying transfer
rates.

Data (Bidirectional)

These 16 bidirectional lines transfer information (functions, status and data) between
the Bus Master and the Bus Slave. The data bus operates in either the Idle or
Transaction mode.

Attention

A Data Bus signal line which is defined during Bus Idle mode that, when active,
indicates the Bus Unit assigned to this bit address is requesting the Bus Master to
read its Status to determine the reason for the Attention request. The Bus Master
intelligence will normally poll the Bus Units for their Attention signals and act upon
their requests for action.

Busy

A Data Bus signal which is defined during Bus Idle mode that, when active, indicates
that the Bus Unit assigned to this bit address is not able to currently respond to any
transaction dialog. This signal is usually activated by a Bus Unit when it is "Busy"
performing an operation requested by the Bus Master.

Bus Parity (Bidirectional)

A given Bus Parity line will be activated or deactivated as needed to ensure that the
associated nine lines (eight data plus Parity) will have an odd number of lines
activated when valid data is being transferred. Correct parity will not be present on
the bus during the Idle bus mode.

During the Bit Significant Response (BSR) transfer if more than one Bus Unit responds
(error condition), the parity may be incorrect.

Revision E Programming Information 2-165

ISi Channel Adapter

Select Hold (Bus Master)

The Bus Master activates this line at the beginning of all transfers to a Bus Unit and
this line remains active until the transfer is complete. When this line goes active, all
Bus Units expect either a Bus Slave Selection Sequence or a Broadcast Master Reset
Sequence. The Bus Unit selected is the Bus Slave. When this line is deactivated, the
selected Bus Slave deselects by deactivating its Select Active. The channel then has no
Bus Slave selected.

Select Active (Bus Slave)

A bus Unit activates this signal when it recognizes its own address during unit
selection and maintains the signal until the Bus Master deactivates Select Hold or
until an error beyond the Bus Slave's error handling capabilities occurs causing the
Bus Slave to terminate the command being executed by the Bus Slave. The Bus Unit
which activated this signal is called the Bus Slave. The Select Active line may not be
valid during execution of the diagnostics command.

Command Sequence (Bus Master)

This line is used by the current Bus Master to control the I/O protocol and bus
utilization. Whenever Command Sequence is inactive (Idle mode), each Bus Unit places
its respective Attention and Busy status onto the 2 bus lines assigned to each Bus
Unit for this purpose. During a Bus Unit select sequence, the Command Sequence line
activiates so that all of the Bus Units relinquish the bus. Once a Bus Unit is selected
to be the current Bus Slave, the Command Sequence line is used to control the protocol
of the I/O transfer sequence. Each leading edge of Command Sequence causes the Bus
Units to deactivate their Attention and Busy signals and also causes the selected Bus
Slave to monitor the bus for the pending Function Word transfer. Between Function
Word sequences (after Command Sequence is deactivated for one function but prior to
its activation for the next function), the ISi data bus assumes the Idle mode (each Bus
Unit enables its Attention and Busy status onto the data bus) so that the Bus Master
may sample activity in all Bus Units while remaining selected to a particular Bus
Unit.

Sync Out (Bus Master)

The Bus Master uses this signal to validate the information and control signals
transmitted by it on the ISi channel. Except for the Broadcast Master Reset function,
this signal must have a corresponding Sync In signal from the selected Bus Slave. The
interchange of Sync Out and Sync In signals varies, depending on whether interlocked
or noninterlocked mode of operation is being used.

In noninterlocked mode, information exchanges are initiated by the Sync Out signal
from the Bus Master. The Bus Master may send a train of up to sixteen Sync Out
pulses without waiting for a Sync In pulse from the Bus Slave, and may activate a
Sync Out pulse whether a Sync In pulse is active or not.

When operating in noninterlocked mode, the Bus Master must maintain a Sync
Out/Sync In difference counter to ensure that a Sync In is received for every Sync Out
pulse sent by it. If the difference count reaches sixteen, the Bus Master must stop
sending Sync Outs until it has received a Sync In to reduce the count below sixteen.
(Note that an interlocked mode of operation may thus be achieved, using pulsed Sync
Outs and Sync Ins, with the Bus Slave being in control of the transfer rate). In
interlocked mode, the Sync Out and Sync In pulses are exchanged with a handshake
being maintained.

2-166 60458890 Revision E

ISi Ch~nnel Adapter

Sync In (Bus Slave)

This signal is used to validate information and control signals transmitted on the ISi
channel by the Bus Slave. Except for the Broadcast Master Reset function, it must
have a one-to-one correspondence with Sync Out signals sent by the Bus Master. The
Bus Slave responds to a legally issued (i.e., Busy and Pause signals are inactive) Sync
Out with a Sync In signal within one millisecond maximum, including cable delay. If
the Bus Slave does not respond within this time, the Bus Master considers it to be
down and that a time-out has occurred.

In the CYB ER Adapter, if this occurs the transfer in progress will be terminated and
the time-out status flag will be set.

During the interlocked mode of operation, the Sync In signal is sent in response to a
Sync Out signal fnom the adapter, and must stay active until Sync Out is deactivated.

During the noninterlocked mode of operation, Sync In is a pulse of defined duration
and period. A Sync In pulse is sent by the Bus Slave in response to each Sync Out
pulse received, delayed in time only by the internal logic of the Bus Slave. The
internal delay may be several Sync Out pulses in time, however. To ensure that all
Sync Out pulses are responded to, the Bus Master maintains a difference count of Sync
Outs received and responded to.

The pulse width and period of the Sync Out pulse that the Bus Slave will transmit is
a function of its maximum transfer rate. This may be determined from the Bus Slave
characteristic word.

The pulse width is one-half the minimum period plus or minus 10 percent. The
minimum period is defined by the maximum frequency that the Bus Slave being
addressed can accept. The maximum period is undefined.

(Example: A Control Module has a maximum transfer rate of six megabytes per second.
Because the data bus is two bytes wide, the exchange rate is 3 megawords, or three
megahertz Sync Out/Sync In pulses. The minimum period is, therefore, 333 ns and the
maximum pulse width is 166 +/- 16 ns).

A Sync In pulse may be activated at any time after the trailing edge of the Sync Out
pulse, whether there is another Sync Out active or not.

Pause (Bus Slave)

This signal is used by the Bus Slave to tell the Bus Master that it is unable to
respond to the Bus Master Sync Out at this time. The Pause line is most commonly
used to indicate buffer full or buffer empty conditions or other similar conditions which
are temporary in nature. The Pause signal is active only when the current Bus Slave
is selected, and in many cases will not be activated until the Bus Master attempts a
particular function which the Bus Slave cannot perform at present. The Bus Master
may then decide to perform a different function or wait until pause is deactivated.

T.L .1us Slave guarantees the timing relationship of the Pause line during data
transfers so that the Bus Master will have adequate time to inhibit the next Sync Out.
If the Pause line is used for applications other than data buffer control, the Bus Slave
must guarantee that the Pause line will go active at a point that will allow the host to
react accordingly (see individual product specifications for exact usage of the Pause
line). The Pause signal differs from the Bus Slave Busy signal in that the Bus Slave is
still available for communication with the Bus Master but on a limited basis. When
the Busy line is active, no communication can be performed with the Bus Slave.

Revision E Programming Information 2-167

ISi Channel Adapter

Idle Bus Mode Bit Definitions

When the bus is in the Idle mode, i.e., when the Command Sequence is inactive, the
bus will be defined as eight Attention lines (one from each Bus Unit) and eight Busy
lines (one from each Bus Unit) as shown in figure 2-35, Idle Mode Bus Busy/Attention
Bit Format.

Bus Unit Attention

When one of these eight signal lines goes active, the Bus Unit assigned to this line is
requesting the current Bus Master to read the Bus Unit Status to determine the reason
for the Attention request. The Bus Master either polls the signals or treats them as
interrupts to determine when a Bus Unit requires service. Refer to figure 2-35 for bit
format.

Bus Unit Busy

When one of these eight signal lines goes active, the Bus Unit assigned to this line is
Busy and is informing the Bus Master that no transaction dialog will be recognized by
this Bus Unit. The active state of the Busy Signal signifies that this Bus Unit will not
be able to respond to the Bus Master. This line is usually activated in response to an
"operation" requested by the Bus Master. When this line is active, the Bus Master may
request a transaction dialog with the Bus Unit. The Busy signal may not be valid
during execution of the diagnostic command. Refer to figure 2-35 for bit format.

Busy BITS I Attention BITS
BUS I
BIT 15 14 13 12 11 10 9 s I 1 6 5 4 3 2 0

I 0 2 3 4 5 6 7 I o 2 3 4 5 6 71
Bus Unit Address Bus Unit Address

Figure 2-35. Idle Mode Bus Busy/Attention Bit Format

2-168 60458890 Revision E

ISi Ch~nnel Adapter

Bus Unit Protocol Procedures

The Bus Unit protocol is grouped into five categories, four of which· use the bus in the
Transaction mode and one which uses the bus in the Idle mode. The five categories
are:

1. Bus Unit Selection Operation - Selects one of the eight Bus Units on the bus for
further bus dialog.

2. Function Word Transfer - Defines the utilization of the bus to transfer a one word
function which defines the bus direction and the generalized contents of the
subsequent information exchange blocks to be transferred.

3. Information Exchange - The information following the Function Word transfer. The
specific type of information is defined by the "Function Word" transferred between
the Bus Master and the Bus Slave.

4. Broadcast Master Reset - A single word transmitted by the Bus Master
simultaneously to all Bus Units on the bus, which requests all available Bus Units
to simultaneously perform a master reset operation.

5. Bus Idle Mode - Defines the bus as containing each Bus Unit's Attention and Busy
status signals.

Bus Unit Selection Operation

The Bus Unit select operation, which is always executed in Interlocked mode, allows
the Bus Master to select one of the Bus Units for further bus dialogs.

The parallel interface is designed to allow multiple Bus Units to be daisy chained. Up
to eight Bus Units can be connected to one ISi channel, each with its own unique
address. The Bus Master can only communicate directly with one Bus Unit at a time
but can clear all eight Bus Units simultaneously using a Broadcast Master Reset
function. Bus Unit selection is only required once per transfer sequence. Once
connected, a Bus Master can transfer multiple information exchange blocks without
repeating the Bus Unit select sequence. Bus Unit selection is only necessary in two
instances:

1. After the Bus Master has terminated a transfer sequence and has de-selected the
previously selected Bus Slave by deactivating Select Hold, or

2. The Bus Slave has terminated the transfer by deactivating Select Active (this will
only occur if any error conditions occurs which is beyond the Bus Slave's ability to
recover).

Revision E Programming Information 2-169

ISi Channel Adapter

The Bus Unit select process begins when the Bus Master activiates the Select Hold
signal. Select Hold remains active throughout the entire transfer sequence. The Bus
Master next activates the Command Sequence line to terminate the bus Idle mode and
define the start of the Bus Unit select sequence. Command Sequence remains active
throughout the selection operation. The Bus Master places the Bus Unit Select Word
(refer to figure 2-36) on the bus and activates the Sync Out line to validate the bus
contents.

If the Bus Unit Select bit in the Select Word is set and the Broadcast Master Reset bit
is clear, each Bus Unit samples the three bit Bus Unit address portion of the word. If
the bits match the Bus Unit address, the unit responds with Select Active and Sync In.
The Select Active signal is held active as long as the Bus Unit is communicating with
the Bus Master and does not drop until Select Hold goes inactive (except in the case of
an error). Once Sync In goes active, the Bus Master may deactivate Sync Out, wait for
Sync In to be deactivated and continue with the selected Bus Slave.

Following the select sequence, the Bus Master has the option of requesting a Bit
Significant Response (BSR) from the selected Bus Unit or concluding the selection
operation (refer to figure 2-37). The BSR is significant for daisy chained Bus Units.
The BSR is used by the Bus Master to verify that only the correct Bus Unit responded
to the Select Word. In multiple Bus Unit systems, it is possible for hardware failures
to cause more than one Bus Unit to respond to an address code. It is also possible that
the wrong Bus Unit select code could be received so that the wrong Bus Unit might
respond.

The BSR can, therefore, be useful for maintaining system integrity. If the BSR is
desired, the Bus Master must generate a Sync Out signal to request the BSR prior to
deactivating Command Sequence. Once the Sync In goes active, the Bus Master must
wait a delay time to ensure that all Bus Units have had a chance to respond either
correctly or incorrectly to the address code, then it will deactivate Sync Out. When the
Sync In signal is deactivated by the Bus Unit, the Bus Master may deactivate
Command Sequence which will conclude the Bus Unit Select Sequence. If the BSR is
not desired, Command Sequence must be deactivated without activating the Sync Out
for the BSR.

From a systems standpoint, it is important to note that the amount of time the Bus
Master must delay to ensure that all Bus Units have had time to respond to the BSR
request is dependent on the type of Bus Units present on the daisy chain.

2-170 60458890 Revision E

ISI Channel Adapter

1
5

0

1
4

0

1
3

1
2

(Reserved)

0 0 0

1
0

0

9 8

liSS
0

7 6 5 4 3 2 0
BM Not Bus Slave

PO R RS Address
Used 2 1 0

BSS lius Slave Select. Hust be set for IMS select format. (Not to be used
for broadcast master reset operations). (Also called Intelligent
Module Select.)

PO Priority Override (Dual-channel option only).

R Reserve (Dual-channel option only). This bit, when set, forces
deselection of the alternate ISI interface port and selection via the
requesting port.

BMRS Broadcast Master Reset. This bit, when set, causes all bus units to
perform a Master Reset Function. This bit takes precedence over all
other bits in the Select word.

Figure 2-36. Bus Unit Select Word

1
5

1
4

1
3 2

(Unused)
Must be zero

1
0

*Selected Bus Unit Addresses

9 8 7 6 5 4

o* I* 3*

3

4*

Figure 2-37. Bit Significant Response

2

5* 6*

0

7*

Revision E Programming Information 2-171

ISI Channel Adapter

Function Transfer

After an individual Bus Unit has been selected and becomes the Bus Slave, Function
Word transfers may be made by the Bus Master. Function Word transfers must precede
every information exchange operation and are always executed in interlocked mode. A
Function Word transfer is defined as the first word transferred to a selected Bus Unit
(Bus Slave) after the activation of the Command Sequence line.

To transfer a Function Word, the Bus Master activates Command Sequence, places the
Function Word on the data bus, and activates Sync Out. The selected Bus Slave
activates Sync In as a response. The Bus Master may then deactivate Sync Out and
continue with the defined information exhange (if required).

The format of the Function Word transferred to the Bus Slave is shown below. This
word contains bits which are used for control of the electrical interface as well as bits
to define the contents of the following information exchanges at a higher level. The
bits for higher level interpretation are: the function code bits, terminate, zero fill
inhibit, data/function and selective reset. The bits applicable for the Interface Control
are: bus unit select, clear attention, selective reset, noninterlocked, write/read.

1 1 1
5 4 3

1
2

1
0 9 8 7 6 5 4 3 2

Cir Non Function Buffer Address

0

W/R SR D/F ZFI Ter Int
Att Lk BSS 7 6 5 4 3 2 0

2-172 60458890 Revision E

W/R

SR

D/F

CLR
A'IT

ZFI

TER

NON
INT
LK

BSS

Function
Code

Revision E

ISI Channel Adapter

Write/Read Select Bit. This bit, when set, defines the bus direction for
the following information exchange is to be from the Bus Master to the
Bus Slave (the Bus Slave receives information). When clear, the bus
direction for the following information exhange is defined to be from the
Bus Slave to the Bus Master (the Bus Slave transmits information).

Select Reset. This bit, when set, causes the Bus Slave to terminate all
ongoing processes and perform a master reset operation. An information
exchange will not occur following the Function Word.

Data/Function Bit. This bit differentiates between two general types of
information exchanges. When set, the information exchange content is
defined as data. When clear, the information exchange information
content is defined as function (command, status).

Clear Attention. When set, this bit deactivates the Attention line of the
selected Bus Unit (if any) which is defined during the bus Idle mode of
operation. The clear is accomplished at the deactivation of Command
Sequence.

Zero Fill Inhibit. This bit applies only for data information exchanges to
the Bus Slave. When clear, the zero fill function is performed. When set,
the zero fill function is inhibited. The zero fill operation will not occur
until the transfer is terminated using the Terminate bit.

Terminate. This bit applies only for data information exchanges. When
set, this bit allows a data information exchange to be terminated
prematurely. Termination of a data information exchange does not occur
until Command Sequence is deactivated and both the Terminate bit and
the Data/Function bit are set in the function word.

Noninterlocked. When set, information transfers between the Bus Master
and the Bus Slave will be in the noninterlocked mode. When clear,
information interchanges are in the interlocked mode. Bus units not
capable of operating in a noninterlocked mode will not recognize bit 9.
The Bus Master must provide a time-out for receipt of the first Sync In
pulse to determine if a malfunction has occurred.

Bus Slave Select. Must be clear for a function word.

This 8-bit code further defines the type of information exchange. This
address is a pointer into the 256-word function buffer.

Programming Information 2-173

ISI Channel Adapter

Information Exchange

Information exchanges are defined as information (data, status, command blocks)
transferred between the Bus Master and the selected Bus Unit via the bus after the
function word transfer and until the command Sequence line is deactivated. Note that
multiple information exchanges may occur during the time the Bus Unit is selected.

Information exchanges may take place in two ways, interlocked mode and
noninterlocked mode. All selection and function word transfers must be handled in
interlocked mode. Data, status, and command block transfers may be handled in either
mode.

For information exchanges to the Bus Slave (write), the data bus will contain the
information to be transferred and the Sync Out will inform the Bus Slave when to
sample the bus. For information exchanges from the Bus Slave (read), the data bus
contains the information to be transferred and Sync In will inform the Bus Master
when to sample the bus. The handshaking of Sync Out and Sync In continues until
either all of the information has been transferred or an error condition has been
detected.

An information exchange can be terminated with or without deselection of the selected
Bus Unit. If an information exchange is terminated wihout deselecting the Bus Unit,
then a subsequent function word may be sent to the same Bus Unit to specify another
type of information exchange without reselcting the Bus Unit. If an information
exchange is terminated and the Bus Slave is to be deselected (Select Hold deactivated),
then a new Bus Unit select operation must occur before another function word can be
transmitted to define another information exchange.

Broadcast Master Reset

The Broadcast Master Reset function enables the Bus Master to Master Resent all
daisy chained bus units connected to the bus with a single word bus transfer. The
interface control of the Select Hold and Command Sequence signals which specify a
Broadcast Master Reset function is the same as for the beginning of the bus unit select
operation, i.e., activation of both lines. Bit 5 of the bus unit select word is set for a
reset operation and reset for a bus unit select operation.

This operation is unique as no Sync In responses are generated by any of the bus units
in response to the adapter Sync Out pulse that initiates the reset. This eliminates bus
conflicts and ensures that all units on the bus have a guaranteed time interval in
which to recognize the reset. Once a master reset operation has been initiated, it
cannot be stopped by the bus master. Each bus unit will indicate completion of its
reset operation by activating its Attention bus line. The adapter must wait for the
Attention response before attempting to communicate with any available bus unit.

2-174 60458890 Revision E

ISi Channel Adapter

Function Codes

The CYBER DMA-enhanced ISI adapter is an interface between the CYBER PP 1/0
channel bus and an ISi channel. This adapter is totally controlled by a PP through the
issuance of functions and data transfers to it using standard PP 1/0 instructions. An
adapter is addressed by a PP through the 1/0 channel it occupies on the PP 1/0 bus.

The ISI channel adapter uses the least significant 12 bits of data from a PP as the
function code. The function word from the PP is translated to specify the operating
condition of the adapter as shown below. The adapter responds with an inactive status
only when a legal function code is translated.

Hex Octal Function

0000 000000 Master Clear
0100 000400 Read Control Register
0101 000401 Write Control Register
0200 001000 Read Mask Register
0201 001001 Write Mask Register
0300 001400 Read Error Status
0400 002000 Read Operational Status
0500 002400 Request ISI Idle Status
0600 003000 Read T Registers
0601 003001 Write T Registers
0700 003400 Read Test Seed
0701 003401 Write Test Seed
0800 004000 Clear Select Hold
0801 004001 Set Select Hold
0900 004400 Clear Command Sequence
0901 004401 Set Command Sequence
OAOO 005000 Force Sync Out
OBOO 005400 Set PP Mode
ocoo 006000 Clear DMA Mode
OCOl 006001 Set DMA Mode
ODDO 006400 Clear Echo Mode
ODOl 006401 Set Echo Mode
OEOO 007000 Clear T Registers
OFOO 007400 Illegal

NOTE

Bits 48 through 51 and bits 56 through 62 are Don't Care bits.

Master Clear Channel (0000)

This function will master clear the ISI adapter and place it in its power-on state. All
registers and internal data buffers will be cleared. The channel will be deselected
(Command Sequence and Select Hold clear) and the adapter will revert to a non-bus
master state. The channel is set inactive and empty with the error and channel flag
clear.

Read Control Register 16 Bits (0100)

This function is used to read the adapter control register. After the PP has sent this
function and an activate signal, the ISI adapter responds with a Full signal
accompanied by the contents of the control register.

Revision E Programming Information 2-175

ISi Channel Adapter

Write Control Register (0101)

This function is used to write the adapter control register. After the PP has sent this
function and an activate, the ISi adapter will accept the following output data as
control register write data.

Read Flag Mask Register (0200)

This function is used to read the adapter flag mask register. After the PP has sent
this function and an activate, the adapter will respond with a Full signal accompanied
by a copy of the flag mask register contents.

Write Flag Mask Register (0201)

This function is used to write the adapter flag mask register. After the PP has sent
this function and an activate, the adapter will accept the following data as flag mask
register write date.

Read Error Status Register (0300)

This function is used to read the adapter error status register. After the PP has sent
this function and an activate, the adapter reponds with a Full signal and the contents
of the error status register. The error status register is cleared when read.

Read Operational Status Register (0400)

This function is used to read the adapter operational status register. After the PP has
sent this function and an activate, the adapter responds with a Full signal and the
contents of the operational status register.

Request ISi Idle Status (0500)

This function is used to read the idle bus status word. After the PP has sent this
function and an activate, the adapter responds with a Full signal and a copy of the
current contents of the ISi data bus. If the command sequence line is set, the adapter
will clear it and wait the appropriate amount of time before sampling the ISi bus.

Read T Registers (0600)

This function is used to read the contents of the adapter's T registers. After the PP
has sent this function and an activate, the adapter will send three 16-bit channel words
which contain the current contents of the T register. The T registers are read in the
following order:

First word
Second word
Third word

2-176 60458890

Byte count
Most significant CM address bits
Least significant CM address bits

Revision E

ISi Ch~nnel Adapter

Write T Registers (0601)

This function is used to initiate writing the adapter T registers. After the PP has sent
this function and an activate, the adapter will accept the next three chanel words as T
register write data. If the PP sends more than three words to the adapter, the fourth
word will remain in the adapter channel data register with the Full flag set. The T
registers are written in the following order:

First word
Second word
Third word

Byte count
Most significant CM address bits
Least significant CM address bits

Read Test Seed (0700)

This function is used to read the contents of the test mode operand generator (test
seed). After the PP has sent this function and an activate, the adapter will respond
with a Full signal and a copy of the current contents of the 8-bit operand generator.
The upper eight bits of the read data are always a copy of the lower eight bits.

NOTE

Data and parity errors may occur if the operand generator is read during a data
transfer with test mode enabled.

Write Test Seed (0701)

This function is used to write to the operand generator (test seed). After the PP has
sent this function and an activate, the adapter will accpet the following data as
operand generator write data. Only the least significant 8-bits of write data are used.

Clear Select Hold (0800)

This function is used to deactivate the Select Hold and Command Sequence lines on
the !SI channel. Deactivating this line will deselect any selected bus slaves.

Set Select Hold (0801)

This function is used to activate the Select Hold line on the IS! channel. This line
remains active until one of the following conditions occur:

1. The Clear Select Hold function is sent.

2. The Clear Echo Mode function is sent.

3. The Master Clear function is sent.

4. The IOU is deadstarted (either SDS or LDS).

5. The channel is deadstarted via the maintenance register.

6. The adapter is powered down.

Revision E Programming Information 2-177

ISI Channel Adapter

Clear Command Sequence (0900)

This function is used to deactivate the Command Sequence line on the ISi channel.
Deactivating this line puts the ISi channel into the idle mode.

Set Command Sequence (0901)

This function is used to activate the Command Sequence and Select Hold lines of the
ISi channel. This function also puts the adapter into PP mode, thus enabling PP to ISI
communication. The Command Sequence line remains active until one of the following
conditions occurs:

1. The Clear Command Sequence function is sent.

2. The Request Idle Status function is sent.

3. The Clear Select Hold function is sent.

Force Sync Out (OAOO)

This function is used to force a Sync Out on the ISi channel. This is used during the
select process to request the Bit Significant Response or it can be used during a PP
input to start the data transfer between a bus slave and the adapter. This function also
puts the adapter into PP and input mode.

NOTE

The Select Hold and Command Sequence lines must be active prior to sending the
Force Sync Out function or the sync out will not be issued.

Set PP Mode (OBOO)

This function is used to put the adpter into PP mode. In PP mode the adapter transfer
registers are connected to the channel data register. Once connected, any PP output to
the adapter will cause the output data to be transmitted on the ISi channel. If data is
available on the ISi channel, the adapter channel data register is set full and the PP
can input the contents. The adapter remains in PP mode until one of the following
functions is sent:

1. Set PP Mode.

2. Set Command Sequence.

3. Set Echo Mode.

4. Force Sync Out.

If the adapter is in DMA mode when the Set PP Mode function is received, the
function word will be held in the channel data register (the channel remains active and
full) until the Transfer in Progress signal clears. At this time the channel will go
inactive and the channel data register will be connected to the transfer register.

2-178 60458890 Revision E

ISi Ch~nnel Adapter

Clear DMA Mode (OCOO)

This function is used to clear DMA mode. After the PP has sent this function, the
DMA mode bit of the Operation Status register will clear. The adapter will inhibit
issuing any further request to either CM or the ISi channel. The Transfer in Progress
bit in the Operation Status Register will clear when all outstanding requests are
honored.

NOTE

A DMA transfer taking place at the time the Clear DMA Mode function is issued
cannot be restarted.

Set DMA Mode (OCOl)

This function is used to set the adapter into DMA mode. This function is only valid
after the Command Sequence is set for the DMA transfer. If this function precedes the
Transfer Function Word, then DMA mode will not set until the function word Sync In
signal has been received. This sequence is required because the Transfer Function
Word must originate from a PP, and it also contains the direction of the transfer.
While DMA mode is enabled,

1. DMA mode bit is set in the Operational Status Register.

2. The assembly/disassembly unit (ADU) registers are connected to the ISI transfer
registers.

3. DMA transfers will occur provided the T register is not equal to zero and the bus
slave is in the proper state.

4. All other registers on the adapter can be accessed by the PP without affecting the
transfer.

DMA remains set until one of the following conditions occur:

1. Clear DMA Mode function is sent.

2. Set PP Mode function is sent and Transfer in Progress is clear.

3. A Master Clear function is sent.

4. A Clear T Register function is sent.

5. Command Sequence line drops (refer to the earlier description on Set Command
Sequence for conditions that will drop the command sequence line).

NOTE

If the Command Sequence line drops while Transfer in Progress is set, the state of the
adapter is undefined and a Master Clear function must be issued.

Revision E Programming Information 2-179

ISI Channel Adapter

Clear Echo Mode (ODOO)

This function is used to clear Echo mode and return the adapter's receivers and
transmitters to their normal state. This function will also clear the Select Hold and
Command Sequence lines.

Set Echo Mode (ODOl)

This function is used to set Echo mode. Echo mode enables data to flow from the
output buffer through the transmitters and receivers and into the input buffer. When
this function is issued, it will also:

1. Set Command Sequence.

2. Set Select Hold.

3. Inhibit the Sync Out transmitter.

4. Connect Sync Out to Sync In internally on the adapter.

Clear T Registers (OEOO)

This function is used to clear the T register and the T-Prime (T') register as well as
any internal data buffers.

Illegal Function (OFOO)

This is the only illegal adapter function and will be ignored. An inactive will not be
returned upon the issuance of this function.

2-180 60458890 Revision E

Registers

Registers

The registers used in the CIO subsystem of the UO unit are described in the following
text.

Control Register

The control register is used to select the different operating modes of the ISi adapter.
This register can be read or written with the 010X16 functions. Power-on Master Clear
or the Master Clear Channel function (0000) will also clear this register.

Bit Descriptions

Control register bit assignments and descriptions are as follows:

Bit

48
49
50
51
52
53
54
55
56
57 through 58
59 through 63

Description

Enable Cache Invalidate
Port B Enable
Disable ISi Timeout
Enable Test Mode
Inhibit Test Mode Increment
Inhibit Sync Out
Inhibit Outstanding Request Counter
Enable Idle Test
Enable Force Error Codes
Not Used
Force Error Codes (0-4)

Enable Cache Invalidate (Bit 48)

This bit, when set, generates a Cache Invalidate signal with every fourth and last CM
write of a transfer.

Port B Enable (Bit 49)

This bit, when set, enables the adapter to connect to the ISi channel on port B. When
the bit is clear, the adapter is connected to the ISi channel on port A.

NOTE

The user should ensure that all bus slaves on the selected port are deselcted prior to
enabling the other port. If this is not done, the ISi channel could hang in an
undetermined state, and a Master Clear function must be issued.

Disable ISI Timeout (Bit 50)

This bit, when set, prevents the ISi deadman timer from timing out.

Revision E Programming Information 2-181

Registers

Enable Test Mode (Bit 51)

This bit, when set, enables the test mode feature of the adapter. In test mode, the
receivers and tranmitters are diabled and the operand generator (test seed) provides
the necessary data and handshaking signals to simulate high speed I/O transfers. The
feature does not test the actual receivers and transmitters.

Inhibit Test Mode Increment (Bit 52)

This bit, when set, prevents the test mode operand generator (test seed) from
incrementing. This bit is also used to enable solid data patterns during test mode
execution.

Inhibit Sync Out (Bit 53)

This bit, when set, prevents the sending of Sync Out. If this bit is set during a DMA
output, the output requests will backup in the adapter, filling the output buffer and the
disassembly registers. This provides a good method of checking all the logic responsible
for controlling the output data flow.

Inhibit Outstanding Request Counter (Bit 54)

This bit is used in conjunction with Echo Mode to test the input buffer overflow
detection network. With this bit set and Echo Mode enabled, the adapter is allowed to
issue more than 16 requests without getting a Sync In. This causes an input buffer
overflow error.

Enable Idle Test (Bit 55)

This bit is used in conjunction with Echo Mode to test the setting of the Channel Flag.
With this be set and echo mode enabled, the adapter translates output data as ISI
channel idle data. This makes it possible to test the Flag Mask network. The sequence
for testing is:

1. Set Echo Mode.

2. Set Enable Idle Test.

3. Output Idle word. (The flag will set at this time if enabled.)

4. Clear Enable Idle Test.

5. Input Idle word.

6. Clear Echo Mode.

Enable Force Error Codes (Bit 56)

This bit, when set, enables the decoding of the Force Error Code bits (bits 59-63 of the
Control Register). These code bits are used to test the various parity networks in the
adapter.

2-182 60458890 Revision E

Registers

Force Error Codes (Bits 59-63)

These bits are enabled by the Enable Force Error Code bit of the Control Register. The
bit decodes are as follows:

Octal

00

01

02

03

04

05

06

07

10

Revision E

Description

Not used.

Invert Function Decode PROM Parity

This condition inverts the parity bit for the function decode PROMs.
The JX error sets in the Error Status register, along with the JX
board LED.

Invert Mask Register Parity

This condition inverts the parity bit at the parity checker for the
Mask register. The JX error sets in the Error Status register along
with the JX board LED.

Invert T Register Parity

This condition inverts the parity at the parity checker for the T
register Byte Count. An error condition is forced only when a T' = T
condition occurs. The JX error sets in the Error Status register
along with the JX board LED.

Force Invalid Response

This condition forces an illegal tranlation of the CM response code.
This error condition is forced only during an actual CM response.
Therefore a CM reference must be made in order to force this error.
The Invalid Response bit sets in the Error Status register.

Invert Response Code Parity

This condition inverts the parity of the CM response code at the
parity checker. An error is detected only if a CM response occurs.
The JX error sets in the Error Status register along with the JX
board LED.

Invert Control Register Parity

This condition inverts the parity for the Control register at the
parity checker. The JX error sets in the Error Status Register along
with the JX board LED.

Not used

Force Zero Input Buffer Parity

This condition forces the parity bits for the input data to zero. If an
even number of bits in a byte is being input, a parity error occurs.
The JZ error sets in the Error Status register along with the JZ
board LED.

Programming Information 2-183

Registers

Octal

11

12

13

14

15

16, 17

2-184 60458890

Description

Force Zero A Port A Input Parity

This condition forces the parity bit for port A input data to zero. If
an even number of bits in a byte is being input on port A, an error
occurs. The JZ and ISi input errors set in the Error Status register
along with the JZ board LED.

Force Zero Port B Input Parity

This condition forces the parity bit for port B input data to zero. If
an even number of bits in a byte is being input on port B, an error
occurs. The JZ and ISi input errors set in the Error Status register
along with the JZ board LED.

Invert Test Mode Operand Generator Parity

This condition inverts the parity bit associated with the test mode
operand generator (test seed). An error occurs whenever this
condition is enabled and the operand generator is used. The
following table describes the error conditions and their results.

Condition

Reading Operand Generator

Test Mode and DMA Write

Test Mode and DMA Read

Invert Output Byte 1 Parity

Error Result

JX error
JX board LED lights.

ISi Input Error
JZ Error
JZ board LED

Test Mode Compare Error

This condition inverts the parity bit associated with output data bits
56-63. Any output done with this condition enabled generates an
error. The JZ error sets in the Error Status register along with the
JZ board LED. Bad parity is also transmitted to the external device.

Invert Output Byte 0 Parity

This condition inverts the parity bit associated with output data bits
48-55. Any output done with this condition enabled generates an
error. The JZ error sets in the Error Status Register along with the
JZ board LED. Bad parity is also transmitted to the external device.

Not used

Revision E

Octal

20

21

22

23

24

25

26

27

Revision E

Registers

Description

Force Channel Input Parity Bit 0 Low

This condition forces the parity bit low for bits 48-55 as the data is
written into the assembly buffer. When the 64-bit CM word is read
from the assembly buffer, a parity error is detected. This sets bits
59 and 62 of the Error Status register.

Force Channel Input Parity Bit 1 Low

This condition forces the parity bit low for bits 56-63 as the data is
written into the assembly buffer. When the 64-bit CM word is read
from the assembly buffer, a parity error is detected. This sets bits
59 and 62 of the Error Status register.

Force T Data Parity Bit Low

This condition forces the parity bit low for the T register data as it
enters the T' register. When the T' register is transferred to the T
register, a parity error is detected, setting bit 62 of the Error Status
register. This error condition inhibits CM requests and remains
present until the channel is master cleared or a Clear T Register
function is performed on the channel.

Invert Upper Channel Output Parity Bit

This condition inverts the parity bit for bits 48-55 as the data is
read from the disassembly buffer, setting bits 59 and 62 of the Error
Status register.

Invert Lower Channel Output Parity Bit

This condition inverts the parity bit for bits 56-63 as the data is
read from the disassembly buffer, setting bits 59 and 62 of the Error
Status register.

Force Address Parity Prediction Error

This condition forces the real-memory address (RMA) parity
predictor to predict that the parity bit will change state on every
reference to CM An error condition sets bit 62 of the Error Status
register. This error inhibits CM requests and will remain present
until the channel is master cleared or a Clear T Register function is
sent to the channel.

Force Byte Count Equal to Zero on JY Board

This condition forces the CM request counter to report an error after
16 CM requests have been issued. This condition is used to
stimulate the constant CM request checker. This error sets bit 62 of
the Error Status register and inhibit CM requests until a master
clear or Clear T Register function is sent to the channel.

Not used

Programming Information 2-185

Registers

Operational Status Register (Read Only)

The Operational Status Register is a read-only register which provides information
regarding the state of the ISi adapter and channel. This status is used by the PP to
control the operation of the adapter. The register can be read with the 2000s function.

Bit Descriptions

Operational Status Register bit assignments and descriptions are as follows:

Bit

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Description

(Set to O)
Input Buffer Full
Pause
Sync In
Sync Out
Command Sequence
Select Active
Select Hold
(Set to O)
Echo Mode
Output Mode
PP Mode
DMA Mode
Noninterlocked Mode
T' Register Empty
Transfer in Progress

Input Buffer Full (Bit 49)

This bit, when set, indicates that the input buffer contains 16 channel words. If a Sync
In is received with the input buffer full, an overflow occurs and data will be lost.
Under normal operating conditions, the adapter's Outstanding Request Counter prevents
more than 16 requests from being issued, thus preventing the possibility of an
overflow.

Pause (Bit 50)

This bit reflects the current state of the ISi channel Pause signal line. It changes state
as the Pause signal line goes active and inactive and follows the line directly.

Sync In (Bit 51)

This bit reflects the current state of the ISI channel Sync In signal and changes state
as the Sync In line goes active and inactive and follows the line directly.

Sync Out (Bit 52)

This bit reflects the current state of the ISI channel Sync Out signal line. This bit
follows the adapter's Sync Out flip-flop and not the actual channel line.

2-186 60458890 Revision E

Registers

Command Sequence (Bit 53)

This bit reflects the current state of the ISI channel Command Sequence line. This bit
follows the adapter's Command Sequence flip-flop and not the actual channel line.

Select Active (Bit 54)

This bit reflects the current state of the ISi channel Select Active signal and directly
follows this signal.

Select Hold (Bit 55)

This bit reflects the current state of the ISi channel Select Hold signal. This bit
follows the adapter's Select Hold flip-flop and not the actual channel line.

Echo Mode (Bit 57)

This bit, when set, indicates that the adapter is in Echo Mode. This mode is used
during testing the adapter's receivers and transmitters. This bit is set by a OD0116
function and remains set until one of the following functions is sent.

1. Clear Echo Mode.

2. Master Clear Adapter.

3. Clear Command Sequence.

4. Clear Select Hold.

Output Mode (Bit 58)

This bit, when set, indicates that the adapter is in Output Mode. In output mode the
data flow is from either PP or CM to the external device. The following conditions set
this bit.

1. Master Clear adapter function.

2. Set Command Sequence function.

3. Set Echo Mode function.

4. Echo Mode set and PP is in output mode.

The following conditions clear the Output Mode bit.

1. Force Sync Out function and the Sync Out signal is active.

2. ISi function word has bit 48 clear (reset) and a Sync In signal is active.

3. Echo Mode and PP activated.

Revision E Programming Information 2-187

Registers

PP Mode (Bit 59)

This bit, when set, indicates that the adapter is in PP mode. In PP mode the adapter's
input and output buffers are connected to the channel data registers and all data flow
will be between a PP and an external device. Only the following conditions set this bit.
All other functions clear the bit.

1. Set Command Sequence function.

2. Set PP Mode function and Transfer in Progress is clear.

3. Set Echo Mode function.

4. Force Sync Out function.

DMA Mode (Bit 60)

This bit, when set, 'indicates that the adapter is in DMA mode. In DMA mode the
adapter's input and output buffers are connected to the ADU buffers, and a DMA
transfer will occur whenever the T register byte count is not zero. The bit sets when
the Set DMA Mode function is performed and the Sync In signal has been received
from the ISI function word. The following conditions clear the bit.

1. Set PP Mode function and Transfer in Progress is clear.

2. Clear DMA Mode function.

3. Master Clear adapter function or Power-On Master Clear.

4. Clear Command Sequence Function.

5. Clear Select Hold function.

6. Set Command Sequence function.

2-188 60458890 Revision E

Registers

Noninterlocked Mode (Bit 61)

This bit indicates the mode of communication between the adapter and a bus slave.
When set it indicates noninterlocked mode and when clear indicates interlocked mode.
Noninterlocked mode is supported only if the adapter is in the DMA mode.
Noninterlocked mode will set if the ISi function word bit 54 is set and the bus slave
has returned the Sync In. The following conditions clear the bit.

1. Set Command Sequence function.

2. Master Clear Adapter function or Power-on Master Clear.

3. Set PP Mode function and Transfer in Progress is clear.

T-Prime (T') Register Empty (Bit 62)

This bit, when set, indicates that the T' register is empty and can be written into with
a Write T Registers function 060116.

Transfer in Progress (Bit 63)

This bit, when set, indicates that the adapter has issued a request (CM or ISi) and has
not received a response. In DMA mode this bit is set during the entire transfer
provided the T register is nonzero and all outstanding requests have not been honored.

Revision E Programming Information 2-189

Registers

Error Status Register (Read Only)

The Error Status register is a read-only register which provides information in the
event of a hardware detectable error. This information is used by the PP for isolation
of a fault and in determining the validity of a transfer. All error bits are "OR'd" into
the channel error flag and also sent to the CIO Fault Status 2 register. The Error
Status register is cleared when read by a Read Error Status function or a Master
Clear function.

NOTE

The Read Error Status function clears the Error Status Register but does not clear the
Channel Error Flag. The flag is cleared by the appropriate PP instruction.

Bit Descriptions

Error Status Register bit assignments and descriptions are as follows:

Bit

48 to 49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Description

(Set to 0)
Uncorrected CM Error
CM Reject
Invalid CM Response
Response Code Parity Error
CMI Read Data Parity Error
Test Mode Compare Error
Overflow Error
ISI Input Error
ISI Timeout
JY Data Error
BAS Parity Error
JZ Error
JY Error
JX Error

Uncorrected CM Error (Bit 50)

This bit, when set, indicates that an uncorrected error response was received from CM
on a write or read request.

CM Reject (Bit 51)

This bit, when set, indicates that a reject response was received from CM.

Invalid Response Code (Bit 52)

This bit, when set, indicates that the response code received from CM decoded into an
illegal value.

Response Code Parity Error (Bit 53)

This bit, when set, indicates that a parity error was detected on the CM response code.
If the JX error bit is set, the parity error (PE) was detected on the lJXH pak. If not
set, the error was detected in the CMI logic.

2-190 60458890 Revision E

Registers

CMI Read Data Parity Error (Bit 54)

This bit, when set, indicates that the CMI logic has detected a read data parity error
on a DMA transfer from this adapter.

Test Mode Error (Bit 55)

This bit, when set, indicates that the output data did not compare to the data
generated by the Operand Generator. This check is done only during an output (DMA
or PP) and when Test Mode is enabled.

Overffow Error (Bit 56)

This bit, when set, indicates that a Sync In was received after the input buffer was
full. The first word written into the input buffer will be overwritten with the last word
received.

ISI Input Error (Bit 57)

This bit, when set, indicates that a parity error was received on the input data. This
input data could be from a bus slave (normal 1/0 transfer), the Operand Generator
(test mode), or the adapter output data (Echo Mode).

ISI Timeout (Bit 58)

This bit, when set, indicates that a channel timeout has occurred. A channel timeout
occurs when the adapter sends a Sync Out and does not receive a Sync In within
1 second.

JY Data Error (Bit 59)

This bit, when set, indicates that the JY board has detected a data parity error. When
.this bit is set, bit 62 of the Error Status register should also be set.

BAS Parity Error (Bit 60)

This bit, when set, indicates that the JX has detected a parity error on the data
received from a PP. This data is either an output word or a function word. When this
bit is set, bit 63 of the Error Status register should also be set.

Revision E Programming Information 2-191

Registers

JZ Error (Bit 61)

This bit, when set, indicates that the JZ board has detected an error. The following
error conditions set this bit.

1. ISI input data error.

2. Input buffer data error.

3. Overflow error.

4. Output buffer data error.

JY Error (Bit 62)

This bit, when set, indicates that the JY board has detected an error. When bit 59 is
also set, this indicates a data error and the transfer will continue. When bit 59 is
clear, the error is either a byte count parity error, RMA parity error, or a constant
CM request error. These conditions inhibit CM requests until the channel is master
cleared or a Clear T Register function is performed on the channel.

JX Error (Bit 63)

This bit, when set, indicates that the JX board has detected an error. The following
conditions set this error.

1. Control Register parity error.

2. Mask Register parity error.

3. T Register byte count parity error.

4. Function decode PROM parity error.

5. Channel data register parity error.

6. JN response code parity error.

2-192 60458890 Revision E

Registers

Flag Mask Register

This register is used to enable the selective setting of the Channel Flag on certain
defined conditions. This capability allows the PP to quickly test for these conditions
using the Jump if Channel Flag Set or Clear instructions. If all bits in this register
are clear, then the Channel Flag acts the same as the Channel Flag on the NIO
channels. The register is cleared by:

1. Writing zeros with the Write Mask Register function.

2. Master Clear Adapter function.

3. Power-on Master Clear.

Bit Descriptions

The register bit assignments and their descriptions are as follows:

Bit

48 through 53
54
55
56 through 63

Description

Not used
Transfer Complete
T' Register Empty
ISi Attention Bits 0-7

Transfer Complete (Bit 54)

When this bit is set, the channel flag sets when Transfer in Progress clears. This
indicates the completion of a DMA transfer.

T-Prime (T') Register Empty (Bit 55)

When this bit is set, the channel flag will set when the T' register empties. This
indicates that the current transfer has completed arid the T' register transferred its
contents to the T register. The PP can then set up for the next transfer.

ISI Attention Bits 0-7 (Bits 56-63)

If these conditions are enabled, the channel flag sets when the adapter senses an active
attention line. This test is enabled only when the ISi channel is in Idle mode.

Revision E Programming Information 2-193

Registers

DMA Channel Registers

Each ISI DMA adapter contains two transfer registers, the T register and the T'
register which hold control information for a DMA I/O transfer operation. The registers
are treated as a pair, with the T' register acting as a temporary holding register for
the T register. Data can only be written into the T' register, and can only be read
from the T register.

T Register

The T Register is comprised of a 16-bit Byte Count register and a 32-bit Real Memory
Address (RMA) register. The most significant bit and the three least significant bits of
the RMA are not used and are always read as being clear. The T register must be
loaded by the PP before any DMA operation may proceed. The Byte Count register is
decremented by 2 for every channel word as it is written into or read from the ADU
buffer. The RMA register is incremented by 8 after every CM reference.

The T register is 48 bits long, and may be read at any time by issuing a Read T
Registers function, activating the channel, inputing 3 PP words, and then deactivating
the channel. The T register can be loaded only through the T' register.

T-Prime (T') Register

The T' register is comprised of a 16-bit Byte Count register and a 32-bit RMA register.
These registers may be written whenever the T' Empty status bit is set. The T'
register is 48 bits long, and may be written by issuing a Write T Registers function,
activating the channel, inputing 3 PP words, and then deactivating the channel.

The contents of the T' register transfer to the T register when the T' register is full
and:

1. DMA transfer not in progress, T Register Byte Count equal to zero, and ADU
buffers are empty. This transfers all 48 bits to the T register and sets the T'
Register Empty status bit.

2. DMA transfer in progress and T Register Byte Count equal to zero. This transfers
only the 16-bit byte count. During output operations, this will also set the T'
Register Empty status bit.

3. DMA transfer in progress and the last CM reference of transfer will transfer the
32-bit RMA. During input oerations, this will also set the T' Register Empty status
bit.

2-194 60458890 Revision E

Registers

Programming Examples

These coding sequences show the level of coding effort needed to control the CYBER
ISi adapter. All programs are written in the following format:

Mnemonic Hex Coding Comments

c = channel number

m = PPM address for data transfer

wc = word count

Refer to the Instruction Descriptions section of this manual for further information on
programming.

Broadcast Master Reset

FNC 0901,c Set Select Hold and Command Sequence
ACN c
LDC 0040 Broadcast Master Reset select word
OAN c Output select word
DCN c
FNC 0900,c Clear Command Sequence

An 1/0 timeout will occur if the Clear Command Sequence function is not issued within
one second after outputing the Broadcast Master Reset Select Word.

Select Bus Slave with BSR

FNC
ACN
LDC
OAN
DCN
FNC
ACN
IAN
DCN
FNC

0901,c
c

Set Select Hold and Command Sequence

c
c
OAOO,c
c
c
c
0900,c

Output PP Data

Bus unit select word
Output select word

Force Sync Out

Input BSR

Clear Command Sequence

(Assume Bus Slave previously selected and is not busy.)

FNC 0901,c Set Command Sequence
ACN c
LDC Transaction function word
OAN c
LDC WC Data block word count
OAM m,c Output data block from PP memory
DCN c
FNC 0900,c Clear Command Sequence

Revision E Programming Information 2-195

Registers

Input ISi Data or Status

(Assume Bus Slave previously selected and is not busy.)

FNC 0901,c Set Command Sequence
ACN c
LDC Transaction function word
OAN c
FJM Delay
LDC WC Load word count
IAM m,c Input data block to PP memory
DCN c
FNC 0900,c Clear Command Sequence

DMA Output with Control Word

(Assume Bus Slave is selected and is not busy.)

FNC 0601,c Write T' Register
LDN 3
ACN c
OAM m,c Output Length/address pair of first CM page to T'
DCN
FNC
ACN
LDC
OAN
LDN
OAM
DCN
FNC
FNC
LDN
ACN
OAM

Loop DCN
FNC
ACN
IAN
LPN
NJN
DCN
FNC
ACN
IAN

DCN
FNC

NOTE

c
0901,c
c

c
2
m,c
c
OCOl,c
0601,c
3
c
m,c
c
0400
c
c

Loop
c
0300
c
c

c
0900,c

Set Command Sequence

Transaction function code

Output disk control words from PPM

Enable DMA Mode
Write T' Register

Output length/address pair of second CM page to T'

Read Operational Status

Input Operational Status
Mask off all bits except Transfer in Progress
Jump if transfer is not complete

Read Error Status

Input Error Status
Test for error

Clear Command Sequence

The following procedures are intended for engineering services personnel only.

2-196 60458890 Revision E

Registers

Built-in Test Facilities

The IS! channel adapter provides two different methods for testing the adapter
hardware and interfaces. These features complement each other and enable the PP to
test all the data paths and almost all of the control logic. The features are Echo mode
and Test mode.

Echo Mode

Echo mode is use to test the PP-to-channel interface, the IS! channel receivers and
transmitters, the IS! Attention bits to the mask network, and the input buffer overflow
detection network. The following sequence of events should be followed in order to
ensure valid results.

Checking Receivers and Transmitters

1. Select Port to be tested.

2. Deselect any connected bus slave.

3. Set Echo Mode (function OD0116). This function will:

a. Activate Select Hold

b. Activate Command Sequence

c. Inhibit Sync Out transmitter

The ISi channel is now in transaction mode with no bus slaves selected.

4. Activate channel.

5. O~tput up to 16 data words.

6. Deactivate channel.

7. Activate channel.

8. Input data words (same quantity as output in step 5).

9. Compare input and output data.

10. Check -for adapter errors.

11. Loop on steps 5-10 until all test patterns have been completed.

12. Deactivate channel.

13. Clear Echo Mode (function 6400g). This function will:

a. Deactivate Select Hold

b. Deactivate Command Sequence

Revision E Programming Information 2-197

Registers

Checking Flag Mask Network

1. Select Port to be tested.

2. Deselect any connected bus slave.

3. Set Enable Idle test (Control register bit 55).

4. Set Echo Mode.

5. Activate the channel.

6. Output test word. This word will be translated as an ISi idle word.

7. Deactivate channel.

8. Verify the channel flag for the correct state.

9. Clear Enable Idle test.

10. Activate the channel.

11. Input the test word.

12. Compare output test word with input test word.

13. Check adapter for errors.

14. Loop on steps 6-12 until all test patterns have been completed.

15. Clear Echo Mode.

Forcing Input Buffer Overfiow

1. Select Port to be tested.

2. Deselect any connected Bus slave.

3. Set Inhibit Oustanding Request Counter (Control Register bit 54).

4. Set Echo Mode.

5. Activate channel.

6. Output 17 words. Word 17 will generate an overflow.

7. Deactivate channel.

8. Activate channel.

9. Input 16 words. The first word output in step 6 will be lost. The input data will
consist of words two through word seventeen.

10. Check adapter for overflow error.

11. Clear Echo Mode.

2-198 60458890 Revision E

Registers

Test Mode

Test mode is used to test all the adapter internal data paths, the paths to and from
CM, the T and T' registers, and all of the control logic associated with DMA transfers.
In Test Mode, the adapter is exercised at the maximum transfer rates. This allows
testing the CMI logic under worst traffic conditions.

Special hardware has been added to the adapter to provide these features. This
hardware includes an operand generator (test seed) and a compare network. The
operand generator is an 8-bit incrementer that can be written by a 070116 function and
read by a 070016 function. The eight-bit output of the generator is replicated to form a
16-bit operand, making the upper byte a duplicate of the lower byte. The operand
generator increments by one for every l/O transfer.

If Test Mode is enabled, and the adapter is conditioned for a PP input or DMA write,
the operand generator will supply the input data. The generator continues to supply
data until the DMA transfer completes or the PP terminates the input.

If Test Mode is enabled and the adapter is conditioned for a PP output or a DMA read,
the operand generator will supply an operand to use for comparison with the output
data. If the data doesn't compare equally, a bit is set in the Error Status Register.

Testing DMA Paths

The following sequence is a hypothetical use of the Test Mode to test the DMA logic.
In this example, the data generated during the write cycle is used as the read data.
Therefore, if the operand generator is initiated with the same value at the start of the
write and read cycles, the read data should compare with the operands generated
during the read cycle.

Write Cycle -

1. Write Test Seed (function 070116).

2. Enable Test Mode (set Control Register bit).

3. Select Operand Generator.

a. Set Select Hold (function 08011s)

b. Set Command Sequence (function 09011s)

c. Output Select Word

4. If BSR is requested, the operand generator will provide the first operand as the
BSR and will increment to the second operand.

5. Clear Command Sequence (function 090016). (Exit Select Sequence.)

6. Set Command Sequence (function 090116). (Start Transmission mode.)

7. Output transaction function word (bit 48 must be 0 indicating an l/O input).

8. Write T' register (function 06011s). Starting address and byte count of DMA write.

9. Enable DMA Mode. The operand generator will supply the data for the transfer.

10. At the end of the transfer, Clear Command Sequence (end of write cycle).

Revision E Programming Information 2-199

Registers

Read Cycle -

1. Write Test Seed with original value written in Write Cycle step 1.

2. Write T' register with same starting address and byte count used in step 8 of Write
Cycle.

3. Set Command Sequence.

4. Output transaction function word (bit 48 must be set indicating an 110 output.

5. Enable DMA Mode. The comparator will compare the operand generator date to the
read data and flag the errors in the Error Status register.

6. At the end of the transfer, Clear Command Sequence.

7. Check for Error Status.

Testing 0 perand Generator

The operand generator can be tested by the following sequence:

1. Write Test Seed.

2. Enable test mode.

3. Select Operand Generator.

a. Set Select Hold

b. Set Command Sequence

c. Output select word

d. Operand generator will return the Select Active line

4. Clear Command Sequence. (Exit Select Sequence.)

5. Set Command Sequence.

6. Output transaction function code (bit 48 must be clear indicating an 1/0 input).

7. Loop waiting for channel to go empty.

8. PP inputs from the channel and compares the data with a preset result.

9. Clear Command Sequence.

2-200 60458890 Revision E

Registers

Testing Comparator

The comparator can be checked using the following sequence:

1. Write Test Seed.

2. Enable Test Mode.

3. Select operand generator.

a. Set Select Hold

b. Set Command Sequence

c. Output select word

d. Operand generator will return the Select Active line

4. Clear Command Sequence. (Exit Select Sequence.)

5. Set Command Sequence.

6. Output transaction function code (bit 48 must be 1 indicating an 1/0 output).

7. Output preset data patterns that correspond to the expected operand. Use data
patterns that compare to test for no error, or use patterns that do not compare to
test for error detection.

8. Monitor the adapter error status to determine pass/fail.

9. Clear Command Sequence.

Revision F Programming Information 2-201

DMA-Enhanced CYBER 170 Channel Adapter

DMA-Enhanced CYBER 170 Channel Adapter
The DMA-Enhanced CYBER 170 Channel Adapter (170 adapter) can be installed in any
of ten channel locations in the CIO cabinet. This option provides an interface between
a CIO PP and a standard 170 channel. In addition to the standard 170 protocol, this
adapter supports the fast-transfer capabilities of extended semiconductor memory (ESM)
II low-speed port. A PP controls the adapter by issuing functions and sending data
using standard PP 110 instructions.

The adapter enables the PP to transfer data between the external device and PP
memory using standard 1/0 instructions. In addition, the adapter may transfer data
between the external device and central memory (CM). This data flow is called
direct-memory access (DMA). The PP operates concurrently with the adapter during
DMA data transfers. This allows the PP more time to process 110 requests from the
CPU. The primary purpose of the adapter is to allow DMA transfers between a buffer
residing in scattered pages of CM and an external device.

An 110 request consists of a list of commands. This list contains control information for
the external device and data transfer length/address pairs for the adapter. These
length/address pairs define the real-memory address (word boundary) and length (bytes)
in the CM buffer. Due to the physical sectoring of some external devices, the PP
separates single length/address pairs into multiple pairs. This forces a transfer to end
on a physical boundary. For disk 110 devices, the PP adds control words to the
beginning of each sector.

Programming information for the 170 channel adapter is described in the following
text.

2-202 60458890 Revision F

DMA-Enhanced CYBER 170 Ch~nnel Adapter

Function Register and Decode PROMs

The adapter monitors the most significant bit of the 16-bit function word from the PP.
If bit 48 is a one, the function word is an adapter function. If zero, the lower 12 bits
of the function word go to the external device. The adapter translates the function
word to determine the specified operation. Adapter function codes are listed below and
described in the following paragraphs.

Code (Hex)

8000
8200
84XX
86XX
8800
8COO
8EOO
9000
9200
9400
9800
9COO
9EOO

NOTE

Function

Master Clear
Clear T
Start DMA Input
Start DMA Output
Clear DMA Mode
Disable Test Mode
Enable Test Mode
Read Control Register
Write Control Register
Read Error Status Register
Read Operational Status Register
Read T
Write T-Prime (T')

XX specifies PP word count.

Function codes 8AXX, 96XX, and 9AXX are not used. If these codes are received, the
adapter remains active and full. The adapter responds with an inactive status only
when a used function is received.

Master Clear (8000)

This function clears the Control, Error Status, and T Registers. The adapter goes
inactive and empty with the channel and error flags cleared. Also, DMA mode clears
and a I-microsecond master clear pulse goes to the external device.

Clear T (8200)

This function clears the T Registers, DMA mode, and all DMA buffers and holding
registers. An inactive out signal is not sent to the external device when DMA mode
clears.

Revision F Programming Information 2-203

DMA-Enhanced CYBER 170 Channel Adapter

Start DMA Input/Output (84XX/86XX)

These functions initiate DMA transfers. The start DMA input function transfers data
from the external device to CM. The start DMA output function transfers data from
CM to the external device. Bit 55 (set) of the function word enables the transfer
between CM and an ESM-11 in fast transfer mode. Bits 56 through 63 specify the
number of words the PP may transfer before going into DMA mode. After receiving
these functions, the adapter performs the following tasks.

1. Sends an active out signal to the external device.

2. Clears DMA mode (if previously set).

3. Loads bits 56 through 63 into the PP Word Counter.

The DMA transfer starts when the PP word count is zero and the T Register byte
count is greater than zero.

Clear DMA Mode (8800)

This function terminates DMA mode. If a transfer is in progress, it stops and cannot
be restarted. The adapter sends an inactive out signal to the external device indicating
the end of a tr an sf er.

Disable Test Mode (8COO)

This function clears test mode and DMA mode. The adapter returns to the normal
state.

Enable Test Mode (8EOO)

This function enables three separate testing options.

1. If adapter is not in DMA mode, PP output data feeds back through Adapter Output
Register Rank I, Transmit Register, Deskew Register, Input Resynchronize Buffer,
and Adapter Input Register Rank II where it is available to the PP.

2. If adapter is in DMA input mode, PP output data is assembled and written into
CM.

3. If adapter is in DMA output mode, CM data is disassembled into Adapter Input
Register Rank II where it is available to the PP.

Read Control Register (9000)

This function enables the PP to read the Control Register. After the PP sends this
function and an activate, the adapter responds with an input register full and the
contents of the Control Register.

2-204 60458890 Revision F

OMA-Enhanced CYBER 170 Chapnel Adapter

Write Control Register (9200)

This function enables the PP to write to the Control Register. After the PP sends this
function and an activate, the adapter accepts the following output data as Control
Register write data.

Read Error Status Register (9400)

This function enables the PP to read the Error Status Register. After the PP sends
this function and an activate, the adapter responds with an input register full and the
contents of the Error Status Register. This function clears the Error Status Register
and the error flag.

Read Operational Status Register (9800)

This function enables the PP to read the Operational Status Register. After the PP
sends this function and an activate, the adapter responds with an input register full
and the contents of the Operational Status Register.

Read T (9COO)

This function enables the PP to read the T Register. After the PP sends this function
and an activate, the adapter sends three 16-bit words which contain the current
contents of the T Register in the following order.

1. Byte count bits 0-15

2. CM address bits 36-51

3. CM address bits 52-63

Write T-Prime (T') (9EOO)

This function enables the PP to write to the T' Register. After the PP sends this
function and an activate, the adapter accepts the next three 16-bit words as T Register
write data in the following order.

1. Byte count bits 0-15

2. CM address bits 36-51

3. CM address bits 52-63

If the PP sends more than three words, the fourth word remains in Adapter Input
Register Rank II and the full flag remains set.

Revision F Programming Information 2-205

OMA-Enhanced CYBER 170 Channel Adapter

Control Register

The Control Register selects the different operating modes for the adapter. The PP
reads or writes this register using the 9000 or 9200 function, respectively. A master
clear function (8000), power on master clear, or channel master clear through IOU
MAC clears this register. Bit assignments are listed below and described in the
following paragraphs.

Bit

48
49
50
51
52
53
54
55
56
57 through 58
59 through 63

Description

Enable Cache Invalidate
Not Used
60-Bit Mode
Enable Test Clock
Disable External Clock
Block Full Out
Enable Overflow
Disable Error Register Clear
Enable Force Error Codes
Not Used
Force Error Codes

Enable Cache Invalidate (Bit 48)

This bit enables a cache invalidate signal with every fourth and last word written to
CM during a DMA transfer.

60-Bit Mode (Bit 50)

When set, this bit allows DMA data transfers between 12-bit channel words and 60-bit
CM words. When clear, this bit allows transfers between 12-bit channel words and
64-bit CM words.

Enable Test Clock (Bit 51)

This bit enables the generation of a 10-MHz clock which simulates the external clock
from the Extended Semiconductor Memory II (ESM-11) (an external device). This allows
the testing of fast transfers. Setting or clearing this bit causes a clock fault in the
Error Status Register.

Disable External Clock (Bit 52)

This bit disables the test clock or the clock from the ESM-II. (This bit allows the
adapter to be tested in a synchronous state when the external device is an ESM-II.)
Setting this bit causes a clock fault in the Error Status Register if an external clock is
present.

Block Full Out (Bit 53)

This bit prevents sending full out signals to the external device. If this bit is set
during a DMA output transfer, output data backs up in the Disassembly Buffer. This
allows checking the output data path.

2-206 60458890 Revision F

OMA-Enhanced CYBER 170 Ch~mnel Adapter

Enable Overflow (Bit 54)

When in test mode, this bit enables testing the Input Resynchronize Buffer overflow
detection network. An overflow error occurs if the PP outputs more than ten words.

Disable Error Register Clear (Bit 55)

This bit disables clearing the Error Status Register during a PP test and clear
channel c error flag set (SFM) or clear (CFM) instruction. After this bit is set, the
Error Status Register is cleared only by a read error status register function, a master
clear function, or a channel master clear through the IOU MAC.

Enable Force Error Codes (Bit 56)

This bit enables the decoding of Control Register bits 59 through 63.

Force Error Codes (Bits 59-63)

When bit 56 is set, these bits are decoded to enable testing of the parity networks.
Octal codes 01, 02, 04 through 06, 10 through 13, and 20 through 26 are described in
the following paragraphs.

Invert PROM Parity (01)

This code inverts the parity bit for the Function Decode PROMs. The KX error sets in
the Error Status Register and the KX board LED lights.

Invert Input Data Parity (02)

With this code and the adapter full, the KX error sets in the Error Status Register
and the KX board LED lights. If the PP inputs data, bad parity goes back to the
barrel and slot. This causes a conversion error on the JW board (bit 44 of fault status
I). The JW board LED lights and an error bit sets in fault status I for the PP
inputting the data.

Force Invalid Response (04)

This code causes an illegal translation of the CM response code during an actual CM
reference. The invalid response bit sets in the Error Status Register.

Invert Response Code Parity (05)

This code inverts the parity bit of the CM response code at the parity checker during
an actual CM reference. The KX error sets in the Error Status Register and the KX
board LED lights.

Revision F Programming Information 2-207

OMA-Enhanced CYBER 170 Channel Adapter

Invert Control Register Parity (06)

This code inverts the parity bit of the Control Register at the parity checker. The KX
error sets in the Error Status Register and the KX board LED lights.

Invert Shifter Parity (10)

This code inverts the parity bit of the 12/16 Conversion Shifter at the parity generator
during a DMA input or output transfer. The 12/16 conversion error and KZ error set
in the Error Status Register and the KZ board LED lights.

Invert Conversion Parity (11)

This code inverts the parity bit of the conversion data at the parity checker during a
DMA input or output transfer. The 12/16 conversion error and KZ error set in the
Error Status Register and the KZ board LED lights.

Invert Transmit Register Parity (12)

This code inverts the parity bit of the Transmit Register at the parity checker during
a DMA output transfer. The KZ error sets in the Error Status Register and the KZ
board LED lights. If not in test mode, bad parity goes to the external device. If in test
mode, input data error sets in the Error Status Register.

Invert Input Parity (13)

This code inverts the parity bit of the input data at the parity checker during a DMA
input transfer. The KZ error and input data error set in the Error Status Register and
the KZ board LED lights.

Force Channel Input Parity 0,1 (20,21)

These codes force the parity bit low for bits 48 through 55 (parity 0) and 56 through
63 (parity 1) as DMA input data enters the Assembly Buffer. When the 64-bit CM
word leaves the buffer, a parity error is detected. The JY error and
assembly/disassembly data error set in the Error Status Register and the JY board
LED lights.

2-208 60458890 Revision F

DMA-Enhanced CYBER 170 Cha,nnel Adapter

Force T Parity Low (22)

This code forces the parity bit low for T Register data as it enters the T-Prime
Register. When T-prime data transfers to the T Register, a parity error is detected.
The JY error sets in the Error Status Register and the JY board LED lights. This
error inhibits CM requests until the adapter is master cleared or a clear T function is
issued by the PP.

Invert Output Parity Upper/Lower (23,24)

These codes invert the parity bit for bits 48 through 55 (upper) and 56 through 63
(lower) as DMA output data leaves the Disassembly Buffer. The JY error, KZ error,
and assembly/disassembly data error set in the Error Status Register and the JY and
KZ board LEDs light.

Force Address Parity Prediction Error (25)

This code forces the real-memory-address parity predictor to predict the parity bit will
change state on every CM reference. A parity prediction error causes the JY error to
set in the Error Status Register and the JY board LED lights. This error inhibits CM
requests until the adapter is master cleared or a clear T function is issued by the PP.

Force Byte Count Equal to Zero (26)

This code forces the CM request counter to report an error after 16 CM requests are
issued. This condition stimulates the constant CM request counter. The JY error sets in
the Error Status Register and the JY board LED lights. This error inhibits CM
requests until the adapter is master cleared or a clear T function is issued by the PP.

Revision F Programming Information 2-209

OMA-Enhanced CYBER 170 Channel Adapter

Operational Status Register

This read-only register provides information regarding the state of the adapter and 170
channel during DMA transfers. The PP reads this register using the 9800 function.
This status allows the PP to control the operation of the adapter. Bit assignments are
listed below and described in the following paragraphs.

Bit

48 through 51
52
53
54
55
56
57
58
59
60
61
62
63

Description

(Set to zero)
Output Buffer Full
Input Buffer Full
Data Available to Channel
Fast Transfer
External Clock Present
Test Mode
PP Word Count Equal to Zero
DMA Output
DMA Input
DMA Halted
T Register Empty
Transfer in Progress

Output Buffer Full (Bit 52)

This bit indicates the Output Resynchronize Buffer contains four 12-bit channel words.

Input Buffer Full (Bit 53)

This bit indicates the Input Resynchronize Buffer contains eight 12-bit channel words.

Data Available to Channel (Bit 54)

This bit indicates the Input Resynchronize Buffer contains at least one 12-bit channel
word.

Fast Transfer (Bit 55)

This bit indicates the adapter is in DMA mode with fast transfers enabled.

External Clock Present (Bit 56)

This bit indicates the adapter is receiving a clock from the Extended Semiconductor
Memory II (ESM-Il) (an external device). This clock must be present before fast
transfers are executed.

Test Mode (Bit 57)

This bit indicates the adapter is in test mode which allows checking all internal data
paths and associated control circuits. The PP puts the adapter in test mode using the
8EOO function. The adapter remains in test mode until the PP issues a disable test
mode function (8COO) or a master clear function (8000), or the IOU MAC sends a
master clear.

2-210 60458890 Revision F

DMA-Enhanced CYBER 170 Channel Adapter

PP Word Count Equal to Zero (Bit 58)

This bit indicates the PP Word Counter has decremented to zero. The PP Word
Counter is loaded from the least significant eight bits of the start DMA functions
(84XX or 86XX) and is decremented by one for each word transferred.

DMA Output (Bit 59)

This bit indicates the adapter is attempting a DMA output transfer. The transfer
occurs if the T Register byte count is nonzero and DMA halted (bit 61) is not present.
This bit sets when a start DMA output function (86XX) is issued and the PP word
count is zero. This bit clears when any of the following conditions occur.

• Master clear function (8000)

• Clear T function (8200)

o Start DMA input function (84XX)

• Clear DMA mode function (8800)

o Disable test mode function (8COO)

o Master clear from IOU MAC

o Power on master clear

DMA Input (Bit 60)

This bit indicates the adapter is attempting a DMA input transfer. The transfer occurs
if the T Register byte count is nonzero and DMA halted (bit 61) is not present. This
bit sets when a start DMA input function (84XX) is issued and the PP word count is
zero. This bit clears when any of the following conditions occur.

o Master clear function (8800)

• Clear T function (8200)

o Start DMA output function (86XX)

• Clear DMA mode function (8800)

D Disable test mode function (8COO)

• Master clear from IOU MAC

• Power on master clear

Revision E Programming Information 2-211

DMA-Enhanced CYBER 170 Channel Adapter

DMA Halted (Bit 61)

This bit indicates the external device sent an inactivate signal to the adapter during a
DMA transfer.

If this condition occurs during a DMA output transfer, the data transfer to the external
device is terminated. If the transfer is incomplete (byte count nonzero), the PP must
issue a clear T function (8200) or a master clear function (8000) before starting a new
transfer.

If this condition occurs during a DMA input transfer, the data transfer from the
external device is terminated. All data in the Input Resynchronize Buffer is written
into CM. If the transfer is incomplete (byte count nonzero), the PP must issue a clear
T function (8200) or a master clear function (8000) before starting a new transfer.

T Register Empty (Bit 62)

This bit indicates the T-Prime Register is empty. The PP can now issue a write
T function (9EOO) which writes the T-Prime Register.

Transfer in Progress (Bit 63)

This bit indicates the adapter issued a request to CM or the external device and has
not received a response. In DMA mode, this bit is set during the entire transfer,
provided the T Register is nonzero and all outstanding requests have not been honored.

2-212 60458890 Revision E

OMA-Enhanced CYBER 170 Ch~nnel Adapter

Error Status Register

This read-only register monitors the adapter's error checking circuits to determine if
any hardware errors have occurred. The PP uses this error status for fault isolation
and to determine the validity of a transfer. All error bits are- ORed to form the
adapter's error flag.

The Error Status Register and error flag are cleared differently in native 170 mode
and enhanced mode. In native 170 mode with Control Register bit 55 clear, the Error
Status Register and error flag are cleared when the PP executes a test and clear
channel c error flag set (SFM) or clear (CFM) instruction. This allows the error flag to
operate the same as for non-DMA 170 channels. In the enhanced mode with Control
Register bit 55 set, the Error Status Register and error flag are not cleared by the
SFM and CFM instructions. This allows the PP to use the SFM ad CFM instructions to
determine if an error exists. Then the PP uses the read error status register function
(9400) to determine the specific error and isolation information. In both modes, the
Error Status Register and error flag are cleared by:

• Read error status register function (9400)

• Master clear function (8000)

• Master clear from IOU MAC

Bit assignments are listed below and described in the following paragraphs.

Bit

48 through 49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Description

(Set to zero)
Uncorrectable CM Error
CM Reject
Invalid Response
Any Response Code Parity Error
CMI Read Data Parity Error
Clock Fault
Overflow Error
Input Data Error
12/16 Conversion Error
AJD Data Error
BAS Parity Error
KZ Error
JY Error
KX Error

Uncorrectable CM Error (Bit 50)

This bit indicates an uncorrectable error response was received from CMI.

CM Reject (Bit 51)

This bit indicates a reject response was received from CMI.

In valid Response (Bit 52)

This bit indicates the response code received from CMI decoded into an illegal value.

Revision E Programming Information 2-213

DMA-Enhanced CYBER 170 Channel Adapter

Any Response Code Parity Error (Bit 53)

This bit indicates a parity error was detected on the CM response code. If KX error
(bit 63) is set, the parity error was detected on the KX board; if not set, the error was
detected in CMI.

CMI Read Data Parity Error (Bit 54)

This bit indicates the CMI detected a read data parity error during a DMA output
transfer.

Clock Fault (Bit 55)

This bit indicates a change was detected in the external clock. If this occurs during a
DMA transfer, the adapter must be master cleared.

Overflow Error (Bit 56)

This bit indicates data was received after the Input Resynchronize Buffer was full. The
first word written into the buffer is overwritten by the last word received.

Input Data Error (Bit 57)

This bit indicates a parity error was detected on the input data. The data is from the
external device (normal DMA input transfer) or the Adapter Output Register Rank I
(test mode).

12/16 Con version Error (Bit 58)

This bit indicates a parity error was detected in the Conversion Network. The KZ error
(bit 61) also sets.

AID Data Error (Bit 59)

This bit indicates a parity error was detected during assembly/disassembly of CM data.
The JY error (bit 62) also sets.

BAS Parity Error (Bit 60)

This bit indicates a parity error was detected in the output or function word received
from the PP. The KX error (bit 63) also sets.

2-214 60458890 Revision E

OMA-Enhanced CYBER 170 Ch~nnel Adapter

KZ Error (Bit 61)

This bit indicates the KZ board detected one of the following errors.

• Input data parity error

• Output data parity error

• 12/16 Conversion Shifter error

• Input Resynchronize Buffer overflow error

JY Error (Bit 62)

This bit indicates the JY board detected an error. If bit 59 is also set, the error was
during assembly/disassembly and the transfer continues. If bit 59 is not set, one of the
following errors occurred.

• RMA parity predictor error

• T Register byte count parity error

o Constant CM request error

KX Error (Bit 63)

This body indicates the KX board detected one of the following errors.

o Control Register parity error

o Adapter Output Register Rank I parity error

o Adapter Input Register Rank II parity error

• Function Decode PROM parity error

• KX response code parity error

Revision F Programming Information 2-215

OMA-Enhanced CYBER 170 Channel Adapter

MAC Interface

Any PP can read certain registers in the adapter by doing a maintenance register read
of the appropriate channel status register. For example, if the adapter is installed in
CIO channel location 0, the PP does a maintenance register read on register BO. If
installed in location 1, the read is on register Bl. This continues through channel
location 11 (octal) with the read on register B9. The format for the adapter's channel
status is in the following listing.

Byte

0

1

2

3

2-216 60458890

Description

Error Status Register Bits 50-55

Bit Description

0 Zero
1 Zero
2 Uncorrected CM Error
3 CM Reject
4 Invalid Response
5 Any Response Code Parity Error
6 CMI Read Data Parity Error
7 Clock Fault

Error Status Register Bits 56-63

Bit Description

8 Overflow Error
9 Input Data Error
10 12/16 Conversion Error
11 AID Data Error
12 BAS Parity Error
13 KZ Board Error
14 JY Board Error
15 KX Board Error

PP Word Counter Bits 56-63 (Bits 16-23)

Operational Status Register Bits 52-55

Bit

24
25
26
27
28
29
30
31

Description

Zero
Zero
Zero
Zero
Output Buffer Full
Input Buffer Full
Data Available to Channel
Fast Transfer

Revision F

Byte

4

5

6

7

Revision F

DMA-Enhanced CYBER 170 Ch1:J.nnel Adapter

Description

Operational Status Register Bits 56-63

Bit Description

32 External Clock Present
33 Test Mode
34 PP Word Count = 0
35 DMA Output
36 DMA Input
37 DMA Halted
38 T Register Empty
39 Transfer in Progress

Channel Flags

Bit Description

40 Zero
41 Zero
42 Full I
43 Full II
44 Active
45 Full I or Full II
46 Error Flag
47 Channel Flag

Control Register Bits 48-55

Bit Description

48 Enable Cache Invalidate
49 Zero
50 60-Bit Mode
51 Enable Test Clock
52 Disable External Clock
53 Block Full Out
54 Enable Overflow
55 Disable Error Register Clear

Control Register Bits 56-63

Bit

56
57
58
59
60
61
62
63

Description

Enable Force Error Codes
Zero
Zero
Force Error Code Bit 0
Force Error Code Bit 1
Force Error Code Bit 2
Force Error Code Bit 3
Force Error Code Bit 4

Programming Information 2-217

OMA-Enhanced CYBER 170 Channel Adapter

DMA Transfers

The PP specifies a DMA transfer by sending the starting CM address and the byte
count to the adapter. All DMA transfers start on a CM address and end on a 16-bit
CM word parcel. If the transfer does not end on a CM word boundary, the word is
filled with ones.

The adapter holds the address and byte count in the T and T-Prime Registers. DMA
transfers execute from the T Register. T-Prime is a shadow register which maintains
the 1/0 transfer rate across discontinuous pages in CM. If the byte count in T
decrements to zero and T-Prime is empty, the DMA transfer is suspended until a new
T value is available or the PP issues a clear DMA mode function.

The PP initiates a DMA transfer by issuing a start DMA input or output function and
ends the transfer with a clear DMA mode function. Before starting a DMA transfer,
the PP prepares the external device. For example, the PP issues a read function to the
external device before issuing a start DMA input function to the adapter. After
receiving the start DMA function, the adapter sends an activate out signal to the
external device to indicate the start of a transfer. After receiving the clear DMA mode
function, the adapter sends an inactivate out signal to the external device to indicate
the end of a transfer.

By specifying the number of words to be transferred in the PP word count field of a
start DMA function, the PP writes or reads data on the front end of a transfer. Each
word transferred decrements the PP word count. When the count reaches zero, the
DMA transfer starts. Uses of this feature include supplying header information for disk
systems and addresses for ESM-11.

2-218 60458890 Revision F

DMA-Enhanced CYBER 170 Cha,nnel Adapter

Programming Examples

These coding sequences are examples to show the level of coding effort needed to
control the 170 adapter.

Mnemonic Hex Coding Comments

c = channel number

m = PPM address for data transfer

wc = word count

Refer to the Instruction Descriptions section of this manual for further information on
programming.

PP to/from an External Device

These sequences are the same as the NIO 170 channel with the exception that the
adapter should be master cleared before starting or after an error. This can be done
with a master clear function or a master clear channel through the IOU MAC.

DMA Output Without PWC

FNC xxxx,c External device write
FNC 9EOO,c Write T' Register
LDN 3
ACN c
OAM m,c Output length/address pair of first CM page to T'
DCN c
FNC 8600,c Start DMA output
FNC 9EOO,c Write T' Register
LDN 3
ACN c
OAM m,c Output length/address pair of second CM page to T'

Loop DCN c
FNC 9800,c Read operational status
ACN c
IAN c Input operational status
LPN Mask off all bits except transfer in progress
NJN Loop Jump if not set
DCN c
FNC 8800,c Clear DMA mode

Revision F Programming Information 2-219

DMA-Enhanced CYBER 170 Channel Adapter

DMA Input With PWC

FNC xxxx,c External device read
FNC 9EOO,c Write T' Register
LDN 3
ACN c
OAM m,c Output length/address pair of first CM page to T'
DCN c
FNC 8420,c Start DMA input with PWC = 2016
ACN c
IAM m,c Input 2016 words to PP memory

Loop DCN c
FNC 9800,c Read operational statusl
ACN c
IAN c Input operational status
LPN Mask off all bits except transfer in progress
NJN Loop Jump if not set
DCN c
FNC 8800,c Clear DMA mode

2-220 60458890 Revision F

OMA-Enhanced CYBER 170 Ch~nnel Adapter

Built-in Test Facilities

NOTE

The following procedures are intended for engineering services personnel only.

Test Mode

The following paragraphs describe data paths and typical programming sequences for
the adapter in test mode.

PP Transfers

This test substitutes the PP for the external device during PP input and output
transfers. Up to ten 12-bit words pass from the PP back to the PP through Adapter
Output Register Rank I, Transmit Register, Deskew Register, Input Resynchronize
Buffer, and Adapter Input Register Rank II. All ten words are held in the adapter
before they return to the PP for compare testing. The eighth word in the Input
Resynchronize Buffer is a duplicate of the Transmit Register contents. The
programming sequence is:

1. Function adapter to set test mode.

2. Activate adapter.

3. Output up to ten 12-bit words.

4. Input data.

5. Check adapter for errors.

6. Compare data.

7. Repeat output/input until all patterns are checked.

8. Function adapter to clear test mode.

DMA Transfers

This test substitutes the PP for the external device during the DMA input and output
transfers. For DMA output transfers, data passes from CM to the PP through the
Disassembly Buffer, Conversion Network, Output Resynchronize Buffer, Transmit
Register, Deskew Register, Input Resynchronize Buffer, and Adapter Input Register
Rank II. If fast transfer is enabled, data backs up in the buffers because the PP is
slower than the fast transfer. For DMA input transfers, data passes from the PP to
CM through Adapter Output Register Rank I, Transmit Register, Deskew Register,
Input Resynchronize Buffer, Conversion Network, and Assembly Buffer. If fast transfer
is enabled (Function Register bit 55 set), the enable test clock bit (Control Register bit
51) must be set. If the PP Word Count is zero, the programming sequence is:

1. Function adapter to set test mode.

2. Function adapter to write T-Prime Register.

3. Activate adapter.

4. Output T values.

Revision F Programming Information 2-221

OMA-Enhanced CYBER 170 Channel Adapter

5. Deactivate adapter.

6. Function adapter to start DMA output or input.

7. Activate adapter.

8. Output or input test data.

9. Deactivate adapter.

10. Function adapter to clear DMA mode.

11. Function adapter to clear test mode.

12. Check Error Registers.

13. Check data.

If the PP word count is nonzero, the adapter goes into the outstanding DMA mode.
Meanwhile, the PP simulates a PP input or output transfer of up to ten 12-bit words.
When the PP transfer completes the PP word count decrements to zero. The adapter
goes into DMA mode and starts the DMA transfer. The programming sequence is:

1. Function adapter to set test mode.

2. Function adapter to write T-Prime Register

3. Activate adapter.

4. Output T values.

5. Deactivate adapter.

6. Function adapter to start DMA output or input. PP word count field contains
quantity of 12-bit words to be echoed back to PP before DMA transfer starts.

7. Activate adapter.

8. Output up to ten 12-bit words.

9. Input words from step 8.

10. Check Error Register for PP transfers errors.

11. Repeat steps 8 through 10 until PP word count is zero.

12. Output or input test data.

13. Deactivate adapter.

14. Function adapter to clear DMA mode.

15. Function adapter to clear test mode.

16. Check Error Register for DMA transfer errors.

17. Check data.

2-222 60458890 Revision F

Intelligent Peripheral Interface (!Pl) Chf:lnnel Adapter

Intelligent Peripheral Interface (IPI) Channel Adapter

The IPI channel adapter (IPI adapter) is the interface between the CYBER 180 PP I/O
bus and an IPI channel. The IPI adapter contains control and status registers and
manages the data transfer between a CYBER PP and an IPI peripheral. The PP
addresses the IPI adapter by its channel number. The IPI adapter is always the bus
master.

The IPI adapter has the added capability of directly transferring data between central
memory and an IPI channel. This direct memory access (DMA) data transfer is
initiated by a PP but runs independently of, and concurrently with, PP instruction
execution.

Programming information for the DMA-enhanced IPI adapter is described in the
following paragraphs.

IPI Term Definitions

Bus Master

The IPI adapter that currently controls the IPI channel with the select out, master out,
and sync out signal lines. It can select bus slaves and control their operation.

Bus Slave

The control module selected to respond to but not control the select out, master out,
and sync out signal lines on the IPI channel. Only one bus slave can be selected by a
bus master at any one time. The bus master communicates with this unit. A maximum
of eight bus slaves are attached to one IPI port.

Port

The hardware that comprises one !PI-compatible interface. This consists primarily of
drivers and receivers and does not include the main control logic. The IPI adapter
contains two ports that are designated A and B. Only one port may be active at a
time.

Bus Exchange

The bus control sequence (initiated by the bus master) and the ending status sequence
(initiated by the bus slave) that are used to frame an actual or attempted information
transfer. For every bus control sequence, there must be an ending status sequence.

Bus Control

The 8-bit byte (octet) placed on bus A by the bus master during the bus control
sequence. It defines the bus configuration for the subsequent information transfer.

Revision F Programming Information 2-223

Intelligent Peripheral Interface (IPI) Channel Adapter

Information Transfer

The mode of the IPI data bus when the bus master activates the master out line.
Either bus master or bus slave data, commands, or responses may be placed onto the
bus, depending on the directon of the information transfer in progress. This mode
allows two-way communication between a bus master and a bus slave.

Ending Status

The status octets provided by the bus slave immediately following an information
transfer.

Idle

The state of the IPI when all the control signals are inactive. Abnormal entries to the
idle state occur whenever the bus master and bus slave recognize an undefined state or
state transition. The buses are released prior to entering the idle state except during
the request interrupts and master reset sequences.

IPI Signal Definitions

The IPI channel consists of buses A and B. Each bus has nine bidirectional lines (eight
data and one parity) and six unidirectional control signals. The bus master provides
three of these control signals to the bus slave and the bus slave responds by
generating three control signals for use by the bus master. Except for special
conditions described in Data Streaming Mode, these control signals are in interlocked
mode. For instance, a given bus master signal leads to a corresponding response by the
bus slave, which in turn allows the bus master to continue with the next operation.
The exchanged signals are interlocked to allow easy control of signal timing over
longer cable lengths regardless of internal clock rates. This also allows use of bus
slaves that operate at varying transfer rates. The IPI channel signals are shown in
figure 2-38.

2-224 60458890 Revision F

Intelligent Peripheral Interface (IPI) Ch~nnel Adapter

t
""" s elect Ou

...
-- Slave In

aster O ut ho ...
B
u
s

M
B
u -s ._ Sync In

t s
L

~
A

+ Parity) v ,..
E

M
A
s
T

(*) ~ E
R

Sync Ou

Bus A (8

~ (*)
..... Bus B (8 + Parity)

In - At --- tentlon

*Bl-dlrectlonal In double-octet mode. M02118

Figure 2-38. IPI Channel Signals

Bus A

This bus has nine lines consisting of data bits 0 through 7 and a parity bit. Bit 7 is
the most significant bit. Parity is odd.

The bus master uses Bus A for all control sequences. In single-octet mode, all
information passes from the bus master to the bus slave on Bus A. In double-octet
mode, information passes either from the bus master to the bus slave or from the bus
slave to the bus master on Bus A. Bus A is the first octet of double-octet information
and bus B is the second octet. Bus A is released by all slaves when Select Out goes
inactive.

Bus B

This bus has nine lines consisting of data bits 0 through 7 and a parity bit. Bit 7 is
the most significant bit. Parity is odd.

The bus slave uses Bus B for all control sequences. In single-octet mode, all
information passes from the bus slave to the bus master on Bus B. In double-octet
mode, information passes either from the bus slave to the bus master or from the bus
master to the bus slave on Bus B. Bus B is the second octet of double-octet
information and bus A is the first octet.

Revision F Programming Information 2-225

Intelligent Peripheral Interface (IPI) Channel Adapter

Select Out

This signal is sent from the bus master to the bus slaves to select a bus slave and to
maintain selection. When select out goes inactive, all bus slaves release Bus A.

Slave In

This signal is used by the bus slave to acknowledge control sequences initiated by the
bus master, or to terminate information transfers.

Master Out

This signal is used by the bus master to initiate or terminate information transfers,
request interrupts, request transfer mode, or reset bus slaves.

Attention In

This signal is a wired-or gate for all bus slaves. It informs the bus master that service
is requested. The bus master services the interrupts as required. This signal does not
contribute to the state of the interface. It can be activated regardless of whether or not
a bus slave is selected. It is driven active only by an unselected bus slave and cannot
be driven inactive.

Sync Out

This signal is activated during transfers in (bus slave to bus master) to indicate that
the bus master has accepted information. It is activated during transfers out (bus
master to bus slave) to indicate that valid information is on the buses. The information
out is present on the bus a minimum time before sync out is activated. Sync out is
activated to initiate the bus control sequence. During reset, sync out is activated
without response for a minimum time.

Sync In

This signal is activated during transfers in to indicate that valid information is on the
buses. It is activated during transfers out to indicate that the bus slave is ready to
accept information. The information is placed on the buses a minimum time before
sync in is activated. Sync in is activated to acknowledge the bus control octet during
the bus control sequence.

Data Transfer Modes

Data is transferred between the bus master and bus slave in either the interlocked
mode or data streaming mode.

Interlocked Mode

In this mode, the bus master sends sync out in response to a sync in from the bus
slave. Sync out stays active until sync in is deactivated.

2-226 60458890 Revision F

Intelligent Peripheral Interface (IPI) Ch~nnel Adapter

Data Streaming Mode

This mode allows high transfer rates over long cable lengths. This is accomplished by
not interlocking sync in and sync out to eliminate a round-trip cable delay. Therefore,
cable delay is not considered in determining transfer rate. Data streaming is used only
during information transfers. All control and status sequences use interlocked mode.
Normal IPI state sequences do not apply during data streaming since fully interlocked
operation is not required.

The request transfer settings sequence returns transfer mode information to the bus
master. Transfers on the bus slave may be interlocked only, data streaming only, or
both interlocked and data streaming. In the latter case, the bus master selects the
mode to be used during bus slave selection.

The transfer begins with the bus slave activating sync in and then inactivating it to
generate a pulse. The period between successive pulses is determined by the transfer
rate. The bus master generates a complementary sync out pulse when it recognizes the
sync in pulse. The bus master must answer every sync in pulse with a sync out pulse.

The bus master generates the sync out pulse by using a clock value to create a pulse
which is greater than 40 percent of the cable configuration dependent (CDD) value.
This is the value that a bus slave can recognize at the IPI which is equal to or faster
than its own transfer rate.

The transmitter must ensure proper setup and hold times with respect to the active
edge of its sync pulse. If the hold time is greater than the one-way cable delay plus
setup times, the transfers appear inter locked.

A bus slave transferring from a buffer may be able to permit the bus master to stop
and start the transfer stream.

If the bus slave has transmitted eight unanswered sync in pulses, it waits a mm1mum
of 25 milliseconds for a complementary sync out pulse. If a sync out pulse is received,
operations continue normally. If a sync out pulse is not received, the bus slave ends
the transfer sequence.

After the first eight sync in pulses are transmitted by the slave, all successive sync in
pulses are generated only upon receipt of a sync out pulse. This allows the bus master
to dictate the period between sync in pulses and throttle the speed at which the bus
slave can transfer information. The number of sync in pulses may differ from eight if
vendor dependent or otherwise specified by the bus master.

The bus master must ensure that the sync out pulses sent to the bus slave exceed 40
percent of the CDD value.

Bus Slave Termination of Data Streaming

The bus slave first stops transmitting sync in pulses to terminate a data streaming
transfer. It then waits for an equal number of sync out pulses from the bus master or
until a minimum of 25 milliseconds has expired without receiving sync out pulses. It
then terminates the transfer by inactivating slave in and following the normal
interlocked ending status sequence.

Revision F Programming Information 2-227

Intelligent Peripheral Interface (!Pl) Channel Adapter

Bus Master Termination of Data Streaming

The bus master substitutes an inactive pulse on the master out line for the sync out
pulse to terminate a data streaming transfer. This pulse has the same pulse width and
period requirements as the sync out pulse. The bus master then continues to answer
every sync in pulse with complementary sync out pulses.

For transfers out, the bus master must not transmit information with the master out
pulse or subsequent sync out pulses. For transfers in, the bus master must accept
information with up to eight sync in pulses following generation of the master out
pulse. This allows all information transmitted by the bus slave, before its acceptance of
the master out pulse, to be received by the bus master in order to maintain data
integrity.

If bus master termination of data streaming is used when the bus master does not
require a precise match between the number of octets transferred by the bus master
and bus slave, the bus master does not need to accept information after generation of
the master out pulse.

When the bus slave senses the master out pulse, it stops transmitting sync in pulses
and waits until it receives an equal number of sync out pulses including the master
out pulse. For transfers out, the bus slave does not latch any information on the
master out pulse and subsequent sync out pulses.

After the bus slave detects that the number of sync in pulses equals the number of
sync out pulses, including the master out pulse, or a minimum of 25 milliseconds has
expired without receiving sync out pulses, it inactivates slave in, and follows the
normal interlocked ending status sequence.

IPI Protocol Procedures

Protocol procedures for the bus slave and bus master are described in the following
paragraphs.

Bus Slave Selection Operation

The bus slave select operation, which is always executed in interlocked mode, allows
the bus master to select one of the bus slaves for further bus dialogs.

The parallel interface is designed to allow multiple bus units to be daisy chained. Up
to eight bus units can be connected to one IPI channel, each with its own unique
address.

The bus master can only communicate directly with one bus unit at a time.

Bus unit selection is required only once per transfer sequence. Once connected, a bus
master can transfer multiple information exchange blocks without repeating the bus
unit select sequence.

Bus unit selection is necessary only after the bus master has terminated a transfer
sequence and has de-selected the previously selected bus slave by deactivating select
out.

The selection sequence occurs as follows when the bus master addresses the bus slave:

1. The bus master places the select octet containing the slave address on bus A. Then,
it activates select out to enter the select state.

2-228 60458890 Revision F

Intelligent Peripheral Interface (IPI) Ch1;1nnel Adapter

2. If the bus slave can process bus exchanges or information transfers, it places the
bus slave's bit significant address (BSA) in the address octet on bus B. Then, it
activates slave in to enter the slave acknowledge (SLAVACK) state.

3. If the bus slave cannot process bus exchanges or information transfers, but is
otherwise functioning normally, it activates only slave in to report the busy
condition by entering the SLAVACK state. The busy condition reflects only the
current condition of the bus slave.

4. If there is a parity error on bus A, none of the bus slaves is selected and slave in
is not activated.

5. The bus slave remains selected as long as select out remains active. When select
out is inactivated, the addressed bus slave is deselected.

Request Interrupts Sequence

This sequence allows the bus master to interrogate the bus slaves to determine the
service or class of service desired.

The bus master initiates the sequence by setting the bus monitor on bus A and
activating master out. Bus slaves with interrupts meeting the request monitor
conditions place their BSA in the address octet on bus B and activate slave in.
Appropriate latching may be required at the bus master because interrupts from the
bus slaves can dynamically change. Parity on bus B is not checked by the bus master.
The bus master inactivates master out to return to the idle state.

The response of the bus slaves is not synchronous, and the bus master must wait a
time equal to that of the slowest bus slave to respond before latching or sampling bus
B. In addition, the bus master must wait for a time equal to that of the slowest slave
to detect the idle state before it releases the BSA on bus B and starts another
sequence.

Request Transfer Settings Sequence

This sequence allows the bus master to interrogate the specified bus slave about its
information transfer characteristics.

The bus master initiates the sequence by placing the request transfer settings octet on
bus A and activating master out. The addressed bus slave responds by setting the
transfer settings response octet on bus B and activating slave in. The bus master then
inactivates master out to reach the deselection state. Slave in is inactivated and a
return is made to the idle state.

Bus Control Transfer

The bus master may make bus control transfers after a bus slave is selected. Bus
control transfers must precede every information exchange operation and are always
executed in interlocked mode.

The bus control transfer allows the bus master to establish the bus configuration for
the subsequent information transfer.

Revision F Programming Information 2-229

Intelligent Peripheral Interface (IPI) Channel Adapter

The bus control transfer is initiated by the bus master after either select status
(following bus slave selection) or slave status (following an information transfer) is
accepted. The bus master sets the bus control octet on bus A and activates sync out.
The bus slave responds by setting the bus acknowledge octet on bus B and activating
sync in. The bus master ends the sequence by inactivating sync out.

Ending Status Sequence

This sequence allows the bus slave or (optionally) the bus master and bus slave to
present status, if any, of the previous information transfer.

The bus slave terminates the information transfer by releasing bus B (transfers in,
double-octet mode) and inactivating slave in. The bus master responds by releasing bus
B (transfers out, double-octet mode), setting the master status octet on bus A, and
inactivating master out. The bus slave then sets the slave status octet on bus B and
re-activates slave in to enter the slave acknowledge state.

Information Transfer

Information transfers are data or status transferred between the bus master and
selected bus slave on the bus after the bus control word transfer. Multiple information
exchanges may occur during the time the bus slave is selected.

Information transfers occur in interlocked mode and data streaming mode. Interlocked
and streaming modes are methods used to handle sync out and sync in signals and
associated data bus information.

All selection words, bus control words, and status transfers must be handled in
interlocked mode. Data transfers must be handled in either interlocked or data
streaming mode.

For information transfers to the bus slave (write), the data bus contains the
information and sync out informs the bus slave when to sample the bus. For
information transfers to the bus master (read), the data bus contains the information
and . sync in informs the bus master when to sample the bus. The signal exchange of
sync out and sync in continues until all information is transferred or an error condition
is detected.

An information transfer can be terminated with or without deselection of the bus slave.
If termination occurs without deselection of the bus slave, another bus control word
may be sent to the bus slave specifying another information transfer without
reselecting the bus slave. If termination occurs with deselection of the bus slave, select
out is inactivated. Then, a new select operation must occur before another bus control
word is sent to the bus slave specifying another information transfer.

Information Transfer Sequence

The following paragraphs give the sequence for the different types of information
transfers. Each transfer has a bus control sequence, an information transfer sequence,
and an ending status sequence.

The bus master initiates the end of an information transfer, and the bus slave
terminates the transfer with the ending status sequence. The bus slave may also
terminate the transfer without initiation from: the bus master.

2-230 60458890 Revision F

Intelligent Peripheral Interface (IPJ) ChB:nnel Adapter

An information transfer sequence differs when the ending is initiated by the bus
master or bus slave. The bus slave may terminate a sequence without transfer of
information.

Operation Command Transfer

1. Condition bus for transfers out (bus control sequence).

2. Request transfer out.

3. Transfer out (information transfer sequence).

4. Bus master initiated termination, if any.

5. Ending status sequence.

Operation Response Transfer

1. Condition bus for transfers in (bus control sequence).

2. First transfer in (information transfer sequence).

3. Additional transfers in.

4. Ending status sequence.

Data Transfer Out

1. Condition bus for transfers out (bus control sequence).

2. Request transfer out.

3. Transfer out (information transfer sequence).

4. Bus master initiated termination, if any.

5. Ending status sequence.

Data Transfer In

1. Condition bus for transfers in (bus control sequence).

2. Request transfer in.

3. Transfer in (information transfer sequence).

4. Master initiated termination, if any.

5. Ending status sequence.

Revision F Programming Information 2-231

Intelligent Peripheral Interface (!Pl) Channel Adapter

Master Reset Sequence

This sequence allows the bus master to initiate the maintenance mode. The bus master
ensures that the select out and master out are inactive, and then activates sync out for
a minimum of 10 microseconds.

Recognition of the maintenance (MAINT) state is independent of normal state
processing logic. The bus slave must not enter maintenance mode until MAINT state is
active for a minimum of two microseconds.

Maintenance Mode

This mode provides a communication path for error recovery and fault isolation when a
failure exists in the IPI or attached bus slave.

The bus master uses the master reset sequence to force the IPI into maintenance mode
and block normal use of the IPL

Failure modes such as IPI signal lines continually stuck open or closed or a
malfunctioning bus slave may prevent IPI bus communication necessary to collect fault
isolation information or to implement real-time error recovery procedures.

The maintenance mode permits using the IPI for some basic functions during most
predicted failure modes, except those that block the bus master from activating sync
out and inactivating select out and master out when entering the MAINT state.

Selective Reset Sequence

This sequence allows the bus master to reset a single bus slave and terminate the
maintenance mode.

The bus master initiates the sequence by placing the selective reset control octet on
bus A and activating master out. The bus master then allows the bus slave time to
respond with slave in, but disregards slave in and bus B contents if activated by the
bus slave. The bus master then activates sync out for a minimum of 10 microseconds
before inactivating it.

The bus slave neither initiates its reset action nor releases its IPI bus lines until the
selective reset sequence is active for a minimum of two microseconds. The bus master
then allows the bus slave time to respond with slave in. Whether or not the bus slave
responds, the bus master completes the sequence by inactivating master out and
monitoring the IPI to ensure that the bus slave inactivates slave in.

Function Codes

The function word from the PP is decoded by IPI adapter to determine the adapter's
specified operation. The adapter responds with an inactive status only when a legal
function is decoded. The following types of functions are used by the adapter.

• Functions for control of internal operations.

• Functions for control of IPI channel.

These functions are listed in the following paragraphs. A detailed description of the
functions is contained in the Input/Output LO-L3 Theory of Operation and Diagrams
Manual listed in Volume 1.

2-232 60458890 Revision F

Intelligent Peripheral Interface (IPI) ChB;nnel Adapter

Internal Functions

The following internal functions are used by the IPL

Code (Hex)

0000
0004
0014
0022
OX22
XX42
OX62
0100
0200
0300
0400
0500
0600
0700
0800
0900
OAOO
OBOO
ocoo
ODOO
OEOO
XFOO

Function

Master Clear
Read Random Data Generator
Write Random Data Generator
Clear IPI Error
Force Error
Set Sync Period
External Clock/Port Select
Clear Error
Read Control Register
Write Control Register
Select PP from DMA
Select PP to DMA
Read Error Status Register
Read Operational Status Register
DMA Terminate
Illegal Function
Read T Register
Write T Prime Register
Select IPI to DMA
Select DMA to IPI
Clear T Registers
Illegal Function

Channel Functions

The following channel functions are used by the IPL

OOAl
OOCl
OOEl
OOFl
OX81

Status

Master Terminate
Attention Present
Read IPI Status Register
Read IPI Error Register
Data Transfer Functions

The status register bits are listed in the following paragraphs. A detailed description of
status register bits is contained in the Input/Output LO-L3 Theory of Operation and
Diagrams Manual listed in Volume 1.

IPI Status Register

This read-only register provides information regarding the state of the IPI channel
during DMA transfers. Bit assignments are listed below.

Bit

48
49
50
51
52

Revision F

Status

Error
Attention
Buffer Not Empty
Select Out
Slave In

Programming Information 2-233

Intelligent Peripheral Interface (IPI) Channel Adapter

53
54
55
56-63

Master Out
Sync In
Sync Out
Not Used

DMA Operational Status Register

This read-only register provides information regarding the state of the adapter and IPI
channel during DMA transfers. The PP reads this register using the 0700 function.
This status allows the PP to control the operation of the adapter. Bit assignments are
listed below.

Bit

48
49
50
51
52
53
54, 55
56
57
58
59
60
61
62
63

Description

Function Register Parity Error
Control Register Parity Error
Data Register Input Parity Error
Data Register Output Parity Error
T Register Counter Parity Error
Deadman Timer Counter Parity Error
Not Used
DMA Transfer in Progress
IPI Transfer in Progress
Output Mode
Not Used
DMA/IPI Mode
PP/IPI Mode
T Prime Register Empty
Transfer in Progress

2-234 60458890 Revision F

Intelligent Peripheral Interface (IPI) Ch~nnel Adapter

DMA Error Status Register

This read-only register monitors the adapter's error checking circuits to determine if
any hardware errors have occurred. The PP uses this error status for fault isolation
and to determine the validity of a transfer. All error bits are ORed to form the
adapter's error flag. This register is cleared by a master clear (0000) function or a
clear error (0100) function. Bit assignments are listed below.

Bit Description

48 Not Used
49 Illegal Function or Sequence
50 Uncorrected CM Error
51 CM Reject
52 Invalid Response Code
53 CM Response Code Parity Error
54 CMI Read Data Parity Error
55 IPI Error
56 DMA Register Parity Error
57 MAC Status Parity Error
58 Timeout
59 JY Data Error
60 BAS Parity Error
61 LZ Error
62 JY Error
63 LX Error

IPI Programming Examples

These coding sequences show the level of coding effort needed to control the IPI
adapter. All programs are written in the following format:

Mnemonic Hex coding Corrments

c = channel number
m = PPM address for data transfer
wc = word count

Refer to the Instruction Descriptions chapter of this manual for further information on
programming.

Selective Reset

FNC
ACN
IAN
FCN
FCN

xx29,c
c
c
0008,c
0001,c

Select Bus Slave

FNC
ACN
IAN

xx29,c
c
c

Revision F

Set Select Out (xx = bus slave address)

Input Status when Slave In is received
Set Sync Out
Clear Select Out and Sync Out

Set Select Out (xx = bus slave address)

Input Status when Slave In is received

Programming Information 2-235

Intelligent Peripheral Interface (IPI) Channel Adapter

Output PP Data to IPI

(Assume bus slave previously selected and not busy.)

FNC Ox81,c Output IPI transfer function
ACN c
LDC WC Data block word count
OAM m,c Output data block from PP memory
DCN c

Input IPI Data to PP

(Assume bus slave previously selected and not busy.)

FNC Ox81,c Output IPI transfer function
ACN c
LDC WC Load word count
IAM m,c Input data block to PP memory
DCN c

DMA Transfer

(Assume 'bus slave previously selected and not busy.)

FNC Ox81,c Output IPI Transfer Function

FNC OxOO;c DMA Output or Input Function (OCOO= read, ODOO =write)
LDK 3
ACK c
OAM m,c Output length/address pair of first CM page to T'
DCN c
FCN OBOO,c Write T' Register
LDN 3
ACN c
OAM m,c Output length/address pair of second CM page to T'
DCN c,Loop
FNC 0700 Read Operational Status
ACN c
IAN c Input Operational Status
LPN Mask off all bits except transfer in progress
NJN Loop Jump if tr an sf er is not complete
FNC 0600,c Read Error Status
ACN c
IAN c Input Err-0r Status

Test for Error

2-236 60458890 Revision F

Appendixes

Glossary A-1

Edit Examples . B-1

Interface Information C-1

Instruction Index .. D-1

Fast DMA Transfers E-1

Glossary

A

ADU

Assembly/disassembly unit

A register

Address register

ASCII

American Standard Code for Information Interchange

ASID

Active segment identifier

B

B register

Indexing register

BAS
Barrel and slot

BC
Base constant

BCD
Binary-coded decimal

BDP
Business data processing

BMRS
Broadcast master reset

BN

Byte number

BS
Binding section

BSP
Binding section pointer

BSR
Bit significant response

BSS
Bus slave select

Revision F

A

Glossary A-1

CBP DEC

c

CBP
Code base pointer

CCEL/MCEL

Cache/map corrected error log

CEJ/MEJ

Central exchange jump/monitor exchange jump

CEL

Corrected error log

CEM

Configuration environment monitor

CF
Critical frame pointer

CFF
Critical frame flag

CIO

Concurrent input/output

CM

Central memory

CMC

Central memory control

CP
Central processing unit

CRT
Cathode-ray tube

CSF
Current stack frame pointer

D

DC

Debug code

DCD

Data carrier detector

DEC

Model-dependent environment control

A-2 60458890 Revision F

D/F

D/F

Data/function bit

DI

Debug ~ndex

DLP
Debug list pointer

DM

Debug mask

DMA

Direct memory access

DMR

Debug mask register

DSC
Display station controller

DSP
Dynamic space pointer

DSR
Data set ready

DTR
Data terminal ready

DUE

Dependent environment control

E

EBCDIC

Expanded binary coded decimal interchange code

EC

Environment control

ECL
Emitter-coupled logic

ECM

Extended central memory

ECS
Extended core storage

EIA

Electronics Industries Association

Revision F

EIA

Glossary A-3

EID

EID

Element identifier

EM

Exit mode

EPF

External procedure flag

EQ

Equal condition

ES

End suppression toggle (BDP edit instruction)

ESM-11

Extended semiconductor memory II

F

FIFO

First-in, first-out

FL

Field length

FLC

Central memory field length register

FLE

Extended core storage field length register

FP

Floating-point

FS

Fault status

G

G/L

Global/local

I

IC

Integrated circuit

ILH

Instruction look-ahead

A-4 60458890

ILH

Revision F

1/0

110

Input/output

IOU

InpuUoutput unit

IPI
Intelligent peripheral interface

ISi
Intelligent standard interface

J

JPS
Job process state pointer

K

KEY
Key

L

LED

Light-emitting diode

LOCK
Lock

LPID

Last processor identification

LRN
Largest ring number

LSB

Least significant bit

LSI

Large-scale integration

M

MA

Monitor address

MAC

Maintenance access control

Revision F

MAC

Glossary A-5

MCH

MCH
Maintenance channel

MCR
Monitor condition register

MCU
Maintenance control unit

MDF
Model-dependent flags

MDW
Model-dependent word

MF
l\fonitor flag

MMR
Monitor mask register

MOP

Micro-operator (BDP edit instruction)

MOS

Metal-oxide-semiconductor

MPS

Monitor process state pointer

MSB

Most significant bit

N

NIO

N oncurrent input/output

NOS

Network Operating System

NOS/VE

Network Operating SysternNirtual Environment

NS

Negative sign toggle

A-6 60458890

NS

Revision F

OCF

0

OCF

On-condition flag

01

Options installed

ON
Occurrence number

OPCODE
Operation code

OS
Operating system

p

P register

Program address register

PCH
Printed-circuit board

PE
Parity error

PFA

Page frame address

PFS

Processor fault status

PID

Processor identifier

PIT

Process interval timer

PMF

Performance monitoring flag

PN
Page number

PND
Process-not-damaged flag

PO
Page offset

Revision F

PO

Glossary A-7

pp RN

pp

Peripheral processor

PPM
Peripheral processor memory

PROM
Programmable read-only memory

PSA
Previous save area pointer

PSF
Previous stack frame

PSM
Page size mask

PTA
Page table address

J>TE

Page table entry

J>TL

Page table length

J>TM

Processor test mode

PVA
Process virtual address

R

RAC
Central memory reference address register

RAE
Extended core storage reference address register

RAM
Random-access memory

RI

Radial interface

RMA
Real memory address

RN
Ring number

A-8 60458890 Revision F

ROM SS

ROM

Read-only memory

RP

Read permission (segment descriptor field)

RTS

Request to send

s

SCT
Special characters table (BDP edit instruction)

SDE
Segment descriptor table entries

SDT
Segment descriptor table

SECDED
Single error correction/double error detection

SEG

Process segment number

SFSA
Stack frame save area

SIT
System interval timer

SM
The symbol (BDP edit instruction)

SN
Negative sign (BDP edit instruction)

SPID

Segment page identifier

SPT

System page table

SR

Select reset

SRT

Subscript range table

SS

Status summary

Revision F Glossary A-9

STA UEM

STA
Segment table address

STL
Segment table length

sv
Specification value

SVA
System virtual address

T

T'
T-prime register

TE
Trap enable

TED
Trap-enable delay

TEF
Trap-enable flip-flop

TER
Terminate

TM
Test mode

TOS
Top of stack

TP

Trap pointer

u

UART
Universal asynchronous receiver-transmitter

UCR
User condition register

UEL
Uncorrected error log

UEM
U nilled extended memory

A-10 60458890 Revision F

UMR

UMR

User mask register

UTP
Untranslatable pointer

UVMID

Untranslatable virtual machine identifier

v

v
Valid bit

vc
Search control code (page descriptor field)

VL

Segment validation (segment descriptor field)

VMCL

Virtual machine capability list

VMID

Virtual machine identifier

w

WP
Write access control (segment descriptor field)

WR

Write/read

x

X register

Operand register

XP
Execute access control (segment descriptor field)

z

ZF

Zero field toggle (BDP edit instruction)

ZFI

Zero fill inhibit

Revision F

ZFI

Glossary A -11

Edit Examples

This appendix contains edit examples for the BDP edit (ED) instruction.

NOTE

For examples in this appendix, the destination field is assumed to have the same
length and decimal point position as the source field, except for the differences
necessitated by insertion characters.

B

Revision E Edit Examples B-1

Edit Masks 1 through 25

These edit masks are used in the examples given in the following pages.

Edit Mask (Hexadecimal with insertion
Mask COBOL characters *, $, 0, I, b, C and R shown
Number Picture as alphanumerics)

1 $ZZ,ZZ9.99 08 96 72 C4 72 01 95 02

2 $ZZ,ZZZ.99 07 96 72 C4 73 95 02

3 $ZZ,ZZZ.ZZ 08 96 72 C4 73 95 02 FA

4 -ZZZZ9.99 06 B3 74 01 95 02

5 ZZZZ9.99+ 07 74 01 95 02 52 98

6 ZZ.999,99 06 72 C5 03 94 02 (Decimal point is comma)

7 $$$$.99CR OB 61 $ 73 80 95 02 62 C R BS

8 $$$,$$$.$$ OA 61 $ 72 C4 73 80 95 02 FA

9 $$$$99 ,99CR OC 61 $ 73 80 02 94 02 62 C R BS

10 $$$,$$9.99 DA 61 $ 72 C4 72 80 01 95 02

11 $99.99 05 96 02 95 02

12 $**,**9.99 OA 96 Dl * 72 C4 72 01 95 02

13 $**, ***. **BCR 11 96 Dl * 72 C4 73 95 02 63 b C R BS F7
95 E5

14 $**,***.** OC 96 Dl * 72 C4 73 95 02 F7 95 E2

15 **,***,** + OD Dl * 72 C4 73 95 02 52 98 F6 95 E3

16 --99999,99 07 50 71 80 05 94 02

17 ----.99 06 50 73 80 95 02

18 + +++99 05 52 73 80 02

19 00999.00 09 42 0 0 03 95 42 0 0

20 99,999 05 02 C4 03 F6 (blank when zero)

21 XX/XX/XX 08 12 41 I 12 41 I 12

22 BBB99.99- 09 43 b b b 02 95 02 B3

23 999.00 06 03 95 42 0 0

24 999.BB 06 03 95 42 b b

25 9B9B9 06 01 91 01 91 01 or 08 01 41 b 01 41 b 01

B-2 60458890 Revision E

Edit Examples Using Edit Masks 1 through 8

Example Source Field Mask Used Destination Field

1 00000.00 1 $bbbbb0.00

2 00000.01 1 $bbbbb0.01

3 000000.10 1 $bbbbb0.10

4 00001.00 1 $bbbbbl.OO

5 00010.00 1 $bbbb10.00

6 00100.00 1 $bbb100.00

7 01000.00 1 $bl,OOO.OO

8 10000.00 1 $10,000.00

9 00000.00 2 $bbbbbb.OO

10 00000.00 3 bbbbbbbbbb

11 00000.01 3 $bbbbbb.01

12 00001.00 3 $bbbbbl.OO

13 10000.00 3 $10,000.00

14 -00000.00 4 -bbbb0.00

15 +00000.00 4 bbbbb0.00

16 -12345.67 5 12345.67-

17 +00012.34 5 bbb12.34+

18 00000.00 6 bbb000,00

19 01000.00 6 bl.000,00

20 -123.45 7 $123.45CR

21 -023.45 7 b$23.45CR

22 003.45 7 bb$3.45bb

23 000.45 7 bbb$.45bb

24 00000.00 8 bbbbbbbbbb

25 00000.01 8 bbbbbb$.01

Revision E Edit Examples B-3

Edit Examples Using Edit Masks 9 through 16

Example Source Field Mask Used Destination Field

26 00001.00 8 bbbbbb$.10

27 00001.00 8 bbbbb$1.00

28 00010.00 8 bbbb$10.00

29 00100.00 8 bbb$100.00

30 01000.00 8 b$1,000.00

31 10000.00 8 $10,000.00

32 -0000000 9 bbb$00,00CR

33 0010000 9 bb$100,00bb

34 0100000 9 b$1000,00bb

35 -1000000 9 $10000,00CR

36 00000.00 10 bbbbb$0.00

37 10000.00 10 $10,000.00

38 00.00 11 $00.00

39 12.34 11 $12.34

40 00000.00 12 $*****0.00

41 00000.01 12 $*****0.01

42 00000.10 12 $*****0.10

43 00001.00 12 $*****1.00

44 00010.00 12 $****10.00

45 00100.00 12 $***100.00

46 01000.00 12 $*1,000.00

47 10000.00 12 $10.000.00

48 00000.00 13 ******* *****

49 -00000.01 13 $**,***.OlbCR

50 00000.01 13 $**,***.Olbbb

51 -00000.00 13 ******* *****

B-4 60458890 Revision E

Example Source Field Mask Used Destination Field

52 00000.00 14 ******* **

53 -00000.01 14 $******.01

54 00000.00 15 ****** ***

55 -00000.00 15 ****** ***

56 12345.67 15 12,345.67+

57 -12345.67 15 12,345.67-

58 -00000000 16 b-00000,00

59 -12345678 16 -123456,78

60 00000000 16 bb00000,00

61 12345678 16 b123456,78

Revision E Edit Examples B-5

Edit Examples Using Edit Masks 17 through 25

Example Source Field Mask Used Destination Field

62 -000.00 17 bbb-.00

63 000.00 17 bbbb.00

64 -001.00 17 bb-1.00

65 010.00 17 bbl0.00

66 -100.00 17 -100.00

67 00000 18 bbb+OO

68 -00000 18 bbb-00

69 00012 18 bbb+12

70 -00123 18 bb-123

71 01234 18 b+1234

72 -12345 18 -12345

73 000 19 00000.00

74 -123 19 00123.00

75 123 19 00123.00

76 00000 20 bbbbbb

77 00001 20 00,001

78 HHMMSS 21 HH/MM/SS

79 -00.00 22 bbb00.00-

80 00.00 22 bbbOO.OOb

81 12.34 22 bbb12.34b

82 000 23 000.00

83 -123 23 123.00

84 123 23 123.00

85 000 24 000.bb

86 -123 24 123.bb

87 123 24 123.bb

88 000 25 ObObO

89 123 25 lb2b3

B-6 60458890 Revision E

Edit Mask 26

COBOL Picture: $ $ $ $, $ $ $, $ $ $, $ $ $, $ $ $, $ $ $
Edit Mask: 11 61 $ 73 C4 73 C4 73 C4 73 80 95 03 94 03 FF E9

Example Number 90 Using Edit Mask Number 26.

Source Field: 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0
Destination Field: b

Example Number 91 Using Edit Mask Number 26.

Source Field: 1 2 3 4 5 6 7 8 9 0 1 2 . 6 5 4 3 2 1
Destination Field: $ 1 2 3 , 4 5 6 , 7 8 9 , 0 1 2 . 6 5 4 , 3 2 1

Revision E Edit Examples B-7

Interface Information c
Interfaces

This appendix contains signal description and sequencing information for models 810
through 990 and CYBER 990E and 995E inputloutput channel interfaces. The following
interfaces are available.

o External interface, 12-bit

• Maintenance channel interface

o Two-port multiplexer interface

Twelve-Bit External Interface

The 12-bit external interface uses bidirectional, synchronous communication to transmit
data between bits 52 through 63 of the channel data register and a number of CDC
CYBER 170 external devices. The transmission is over separate input and output
coaxial cables using an AC transmission scheme. In addition to 13 data signals (12
data, 1 parity), the cables also transmit eight control signals from a PP to an external
device, and four from an external device to a PP. Maximum cable length between
repeaters is 21 meters (70 feet).

Maintenance Channel Interface

The maintenance channel interface (channel 17 s) uses unidirectional, asynchronous
communication. It transmits only 9 data bits (8 data, 1 parity) in each direction. The
data transfers between bits 56 through 63 of the channel data register and the external
device.

Two-Port Multiplexer Interface

The two-port multiplexer interface is an EIA standard RS-232 serial interface. Refer to
this standard for more information.

Revision E Interface Information C-1

Signals

Signals
The following signals are described below.

Twelve-Bit Channel Control Signals

The 12-bit channel uses the following control signals:

Signal Description

Active Pulse Sent by a data sending device to a data receiving device to begin
a data transmission. Normally sent by a PP to an external
device. An external device can send this signal to a PP only on
the 12-bit channel.

Inactive Pulse Sent from either a data sending or data receiving device to
signify end of a data transmission; clears active and full flags.

Full Pulse Sent from a data sending device to a data receiving device with
transmitted data. The full pulse directs the receiving device to
sample the data signals.

Empty Pulse Sent by a data receiving device to a data sending device to
acknowledge receipt of a full pulse and associated data. This
pulse signals the sender to transmit more data.

Function Pulse Sent by IOU to an external device to indicate that the associated
data signals are control signals.

Master Clear Sent by IOU to all external devices on the I/O channel. It
indicates to those devices that all activity is to cease and initial
conditions are to be restored.

10-Megahertz Clock Consists of a pulse sent every 100 nanoseconds. This clock
synchronizes all external devices to IOU.

1-Megahertz Clock A pulse every 1 microsecond; sent by the IOU to an external
device.

C-2 60458890 Revision E

Signals

Maintenance Channel Signals

The maintenance channel uses the following control signals.

Control Signals

Signal

Active

Inactive

Ready

Function

Error

Signals and Cables

Description

Sent from IOU to external device to indicate start of data
transmission.

Sent from either data sending or data receiving device to indicate
end of transmission.

Sent from data sending device to data receiving device with
transmitted data; instructs receiving device to sample the data
lines. The receiving device then sends a ready pulse back to
acknowledge receipt of the data and to indicate it is ready for
more data.

Sent only to an external device to indicate that signals on data
lines are control signals.

Sent by external device to IOU to indicate that the device
detected an error.

Table C-1 lists the signals used by the maintenance channel interface.

Data Signals

A data sending device transmits the data signals to a data receiving device along with
the associated full pulses. The IOU also transmits a function code over the data lines
to an external device, with a function pulse.

Revision E Interface Information C-3

Signals

Table C-1. Maintenance Channel Signals

Signal Name

Data out bit 20 (unidirectional)

Data out bit 21 (unidirectional)

Data out bit 22 (unidirectional)

Data out bit 23 (unidirectional)

Data out bit 24 (unidirectional)

Data out bit 25 (unidirectional)

Data out bit 26 (unidirectional)

Data out bit 27 (unidirectional)

Data out parity (unidirectional)

Data in bit 2° (unidirectional)

Data in bit 21 (unidirectional)

Data in bit 22 (unidirectional)

Data in bit 23 (unidirectional)

Data in bit 24 (unidirectional)

Data in bit 2s (unidirectional)

Data in bit 26 (unidirectional)

Data in bit 27 (unidirectional)

Data in parity (unidirectional)

Function out

Ready out

Spare

Active out

Inactive out

Ready in

Spare

Inactive in

Summary status in

Exchange accept in

Error in

C-4 60458890

Connector Pins

Al/A2

A3/A4

A5/A6

A7/A8

A9/A10

Bl/B2

B3/B4

B5/B6

B7/B8

Cl/C2

C3/C4

C5/C6

C7/C8

C9/C10

Dl/D2

D3/D4

D5/D6

D7/D8

El/E2

E3/E4

E5/E6

E7/E8

E9/E10

Fl/F2

F3/F4

F5/F6

F7/F8

D9/D10

B9/B10

Revision E

PP and Channel Interaction

PP and Channel Interaction

Channel transmissions are controlled by the active and full flags. When a PP executes
an 1/0 instruction, the state of these flags is altered and control signal(s) sent to the
external devices. When the devices send control signals to the IOU, the state of these
flags is again altered.

Active Flag

When the PP sets the active bit with a 00740 or 00741 instruction, the IOU sends an
active pulse on the external channel. The IOU sends an inactive pulse when the PP
clears the active bit. An active pulse sent by an external device sets the active bit; an
inactive pulse sent by an external device clears the active bit.

Full Flag

When a PP sets the full bit using a 00720, 00721, 0073, or 1073 instruction, the IOU
sends a full pulse and data pulses for the data contained in the channel data register
to an external device. When a PP clears the full bit with a 00700, 00701, or 1071
instruction, the system sends an empty pulse.

When an external device sends a full pulse, the associated data pulses set the channel
data register, and the system sets the full bit. When an external device sends an
empty pulse, the IOU clears the full bit.

Function Instructions

When a function instruction (00760, 00761, 00770, 00771) executes, the IOU sets active
and full bits, writes a word into the channel data register, and transmits the word
from the data register to an external device. The IOU transmits a function pulse to the
external device to indicate that the word is a control signal rather than data. The
external device sends an inactive pulse to acknowledge the receipt of the function,
thereby setting the active hit and the full bit to zero.

External Channel Input/Output Sequences

Figures C-1 (Data Input Sequence) and C-2 (Data Output Sequence) show the sequences
followed by the channels during data input and output over an external interface.

Similarily, figures C-3 (MCH Input Sequence) and C-4 (MCH Output Sequence) show
input and output sequences for the maintenance channel (17s).

Data Sequences Timing is shown in figure C-5.

Revision E Interface Information C-5

PP and Channel Interaction

Flags pp

A F E
0 0 0

0 (1.)

0 0 0 ---
1 0 0 (3.)

--
0 ---

0 0 (5.)

0 0 0 ---

NOTE

F unction Pul se

I al nactive Sign

Active Signa

1 2/16 Data B

Full Signal

Empty Signa

In active Signa

I

its

I

I*

Figure C-1. Data Input Sequence

..... .

.. --

..... .

External
Device

(2.)

(4.)

(6.)

Repeated
for each
data word

*The inactive signal is normally sent from the external device to the IOU. However, in
certain cases, the IOU may deactivate the channel. This is determined by the external
device and the function being executed.

Key to figure C-1:

A, F, E are the active, full, and error flags.

1. PP executes a function instruction which sets the active and full flags in the
internal interface, places a word in the channel register, and sends a function pulse.

2. The external device acknowledges the acceptance of the function by sending an
inactive signal which clears the active flag, the full flag, and the channel register.

3. PP sets the active flag to indicate that data flow may start.

4. The external device sends a 12-bit word (plus parity) to the channel register, with a
full signal which sets the full flag.

5. PP stores the data word in PPM and clears the full flag which, in turn, sends an
empty signal to the external device.

6. Steps 4 and 5 repeat until the device completes the data transfer. Then the external
device clears its active condition and sends an inactive signal to the PP, which
clears the channel active flag.

C-6 60458890 Revision E

Flags pp

A F E
0 0 0

1 1 0 (1.)

0 0 0

0 0 (3.)

1 0 (4.)

1 0 0

0 0 0 (6.)

Key to figure C-2:

IA. -

--

F e unction Puls

nactive Signa

Active Signal

I I

1 2/16 Data B

Full Signal

its

I

I Empty Signa

nactive Signa I

Figure C-2. Data Output Sequence

A, F, E are the active, full, and error flags.

_,... -
....... -

_,,.. --
....... -

PP and Channel Interaction

External
Device

(2.)

(5.)

Repeated
for each
data word

1. PP executes a function instruction which sets the active and full bits in the
internal interface, places a word into the channel register, and sends the function
pulse.

2. The external device acknowledges the acceptance of the function by sending an
inactive signal. This, in turn, clears the active flag, the full flag, and the channel
register.

3. PP sets the active flag to indicate that data flow is about to start.

4. PP places a 12-bit data word (plus parity) into the channel register, which sets the
full flag and sends the full signal.

5. The external device accepts the data word and sends an empty signal which clears
the channel register and the full flag.

6. Steps 4 and 5 repeat until the PP has sent all the data to complete the data
transfer. Then the PP clears the channel active flag, which turns off the external
device with an inactive signal.

Revision E Interface Information C-7

PP and Channel Interaction

Flags pp

A F E
0 0 0

1 0 (1.)

0 0 0

1 0 0 (3.)

1 1 0

1 0 0

0 0 0 (6.)

1 0 0 (7.)

1 0

1 0 0 (9.)

0 0 0 (10.)

C-8 60458890

--

~ -
--

8

Function Puls e

I nactive Signa

Active Signal

Bit Control W

Reedy Signal

JI

Ready Signal

nactive Signa

Active Signal

8 Data Bits

Ready Signe I

I Ready Signs

Inactive Signa

I

ord

I

I

--.....

-.....
-.....
-.....
...
...

--.......

...

Figure C-3. MCH Input Sequence

External
Device

(2.)

(4.)

(5.)

(8.)

Repeated
twice (for
two control
bytes)

Repeated
for each
data byte

Revision E

PP and Channel Interaction

Key to figure C-3:

A, F, E are the active, full, and error flags.

1. PP executes a function instruction which sets the active and full flags in the
internal interface, places a word in the channel register and sends a function pulse.

2. The external device acknowledges the acceptance of the function by sending an
inactive signal. This, in turn, clears the active flag, the full flag, and the channel
register.

3. The PP sets the active flag to indicate that control word data flow is about to start.

4. The PP places a control byte into the channel register, which sets the full flag and
sends the ready signal.

5. The external device accepts the control byte and sends the ready signal, which
clears the channel register and the full flag.

6. Steps 4 and 5 are repeated for a second control byte. The two control bytes contain
the upper and lower portions of the address of the data to be read.

7. The PP ensures that the channel is empty and then deactivates the channel, which
clears the active flag.

8. The PP sets the active flag to indicate that data flow may start.

9. The external device sends an 8-bit byte to the channel register with a ready signal
which, in turn, sets the full flag.

10. The PP stores the data word and clears the full flag which, in turn, sends the
ready signal to the external device.

11. Steps 8 and 9 repeat until the data transfer is complete. The PP deactivates the
channel, which turns off the external device with an inactive signal.

Revision E Interface Information C-9

PP and Channel Interaction

Flags pp

A F E
0 0 0

0 (1.)

0 0 0 --
0 0 (3.)

1 0

0 0 ---
0 0 0 (6.)

0 0 (7.)

0 (8.)

0 0 --
0 0 0 (10.)

Key to figure C-4:

8

Function Pulse

I nactive Signa I

I Active Signa

Bit Control W ord

I

I

Ready Signa

Ready Signa

I

I

nactive Signal

Active Signa

8 Data Bits

Ready Signs

Ready Signa

I

I

I

nactive Signs I

-"" --

--.
_...
-...

--...

-"" -...

_... --
....... .

--...

Figure C-4. MCH Output Sequence

A, F, E are the active, full, and error flags.

Dov ice

(2.)

(4.)

(5.)

(9.)

Repeated
twice (for
two control
bytes)

Repeated
for each
data byte

1. PP executes a function instruction which sets the active and full bits in the
internal interface, places a word in the channel register and sends the function
pulse.

2. The external device acknowledges the acceptance of the function by sending an
inactive signal. This, in turn, clears the active flag, the full flag, and the channel
register.

3. The PP sets the active flag to indicate that control word data flow is about to start.

4. The PP places a control byte into the channel register, which sets the ready flag
and sends the full signal.

5. The external device accepts the control byte and sends the ready signal which
clears the channel register and the full flag.

6. The PP ensures that the channel is empty and then deactivates the channel, which
clears the active flag.

7. The PP sets the active flag to indicate that data flow is about to start.

C-10 60458890 Revision E

PP and Channel Interaction

8. The PP places an 8-bit byte into the channel register, which sets the full flag and
sends the ready signal.

9. The external device accepts the data byte and sends the ready signal, which clears
the channel register and the full flag.

10. Steps 8 and 9 repeat a sufficient number of times to complete the data transfers.
The PP deactivates the channel, which turns off the external device with an
inactive signal.

FUNCTION
FULL
EMPTY

INACTIVE
EMPTY
FULL

IO Mti1 CLOCK
TRAH31o1TTED
ON CKA*IEL

lllASTER C1.EAll
TRANSMITTED
ON CKANNEL

--! l.-t5! 5 ··&
I I
I;-'----..

u u

~
SENT BY : I £ I
EXTERNAL OEVICE----------'-----"""1--..U--- I I

Rt:CEIVED AT PP

: I l?~fttl I ~5 "l:
I: I~

,_135 .. _J L 135 ftl _;:

I CAllLE D£L.AY I I CABLE DELAY. 1 I
iW'f'ROXIMATELYll IW'fROXIM,UELYJI :
I ---
1 EXTERNAL DEVICE :
1 RESPONSE TIM£ I

:. & .:
NOTES:

& ALL TRANSMISSION PIA.SE WIDTHSllNCLUDING DATA,FULL,EMPTY,ETClARE Z5!.5u.

& TO AVOID LOST DATA, ALL INPUTS FROM THE CHANNEL TO THE PP MUST ARRIVE
WITHIN THE 70 n1 INPIJTS MAY BE EARLIER OR LATER BY 100 n1 MULTIPLES.

£ TOTAL TlHINAROUND TIU[BETWEEN FUNCTION AND INACTIVE IS MEASURED AT PP.
THIS TIME VARIES DUE TO EXTERNAL DEVICE RESPONSE TIME BUT MUST BE Wrn11N
310± 35 ftl TO WAlllTAIN THE 500 n& CYCLE TIME.

Figure C-5. Data Sequences Timing

u

Revision E Interface Information C-11

Instruction Index D

This appendix lists the central processor and peripheral processor instructions, in both
opcode and mnemonic sequences.

Table D-1. CP Instructions - Opcode Sequence

Opcode Mnemonic Instruction Page

00 HALT Program error 1-93

01 SYNC Scope loop synchronization 1-93

02 EXCHANGE Exchange 1-94

03 INTRUPT Processor interrupt 1-110

04 RETURN Return 1-95

05 PURGE Purge buffer 1-112

06 POP Pop 1-97

08 CPYMX Copy free running counter 1-98

09 CPYAA Copy address, A to A 1-31

OA CPYXA Copy address, X to A 1-31

OB CPYAX Copy address, A to X 1-31

oc CPYRR Copy half-word 1-32

OD CPYXX Copy full-word 1-32

OE CPYSX Copy from state register 1-114

OF CPYXS Copy to state register 1-114

10 INCX Integer sum, immediate 1-19

11 DECX Integer difference, immediate 1-20

14 LB SET Test and set bit 1-99

16 TPAGE Test and set page 1-101

17 LPAGE Load page table index 1-109

18 IORX Logical sum 1-41

19 XORX Logical difference 1-41

lA ANDX Logical product 1-41

lB NOTX Logical complement 1-42

IC INHX Logical inhibit 1-42

(Continued)

Revision E Instruction Index D-1

Table D-1. CP Instructions - Opcode Sequence (Continued)

Opcode Mnemonic Instruction Page

lE MARK Mark to Boolean 1-45

lF ENTZ Enter zeros 1-36

lF ENTO Enter ones 1-36

lF ENTS Enter signs 1-36

20 ADDR Half-word integer sum 1-18

21 SUBR Half-word integer difference 1-20

22 MULR Half-word integer product 1-21

23 DIVR Half-word integer quotient 1-22

24 ADDX Integer sum 1-19

25 SUBX Integer difference 1-20

26 MULX Integer product 1-22

27 DIVX Integer quotient 1-23

28 !NCR Half-word integer sum, immediate 1-18

29 DECR Half-word integer difference, immediate 1-20

2A ADDAX Address increment, indexed 1-33

2C CMPR Half-word integer compare 1-23

2D CMPX Integer compare 1-23

2E BRREL Branch relative 1-24

2F BRDIR Inter-segment branch 1-25

30 ADDF FP sum 1-74

31 SUBF FP difference 1-74

32 MULF FP product 1-75

33 DIVF FP quotient 1-76

34 ADDD Double-precision FP sum 1-74

35 SUBD Double-precision FP difference 1-74

36 MULD Double-precision FP product 1-75

37 DIVD Double-precision FP quotient 1-76

39 ENTX Enter Xl, immediate logical 1-37

(Continued)

D-2 60458890 Revision E

Table D-1. CP Instructions · Opcode Sequence (Continued)

Opcode Mnemonic Instruction Page

3A CNIF Convert from integer to FP 1-72

3B CNFI Convert from FP to integer 1-72

3C CMPF FP compare 1-80

3D ENTP Enter immediate, positive 1-37

3E ENTN Enter immediate, negative 1-37

3F ENTL Enter immediate, logical 1-37

40 ADDFV FP vector sum 1-86

41 SUBFV FP vector difference 1-86

42 MULFV FP vector product 1-86

43 DIVFV FP vector quotient 1-86

44 ADD XV Integer vector sum 1-83

45 SUB XV Integer vector difference 1-83

48 IORV Logical vector sum 1-85

49 XORV Logical vector difference 1-85

4A ANDV Logical vector product 1-85

4B CNIFV Convert vector from integer to FP 1-85

4C CNF IV Convert vector from FP to integer 1-85

4D SHFV Shift vector circular 1-87

50 CMPEQV Integer vector compare, = 1-84

51 CMPLTV Integer vector compare, < 1-84

52 CMPGTV Integer vector compare, > 1-84

53 CMPNEV Integer vector compare, ':/:: 1-84

54 MRGV Merge vector 1-87

55 GTHV Gather vector 1-87

56 SCTV Scatter vector 1-89

57 SUMFV FP vector summation 1-89

70 ADDN Decimal sum 1-50

71 SUBN Decimal difference 1-50

(Cont~nued)

Revision E Instruction Index D-3

Table D-1. CP Instructions - Opcode Sequence (Continued)

Opcode Mnemonic Instruction Page

72 MULN Decimal product 1-50

73 DIVN Decimal quotient 1-50

74 CMPN Decimal compare 1-52

75 MOVN Numeric move 1-53

76 MOVB Move bytes 1-59

77 CMPB Byte compare 1-57

80 LMULT Load multiple 1-8

81 SM ULT Store multiple 1-8

82 LX Load word 1-10

83 sx Store word 1-10

84 LA Load address 1-11

85 SA Store address 1-11

86 LBYTP Load bytes, relative 1-14

87 ENTC Enter Xl, signed immediate 1-38

88 LBIT Load bit 1-15

89 SBIT Store bit 1-15

BA ADDRQ Half-word integer sum, signed immediate 1-18

SB ADDXQ Integer sum, signed immediate 1-19

BC MULRQ Half-word integer product, signed 1-21
immediate

SD ENTE Enter, signed immediate 1-38

SE ADDAQ Address increment, signed immediate 1-33

SF ADDPXQ Address relative 1-34

90 BRREQ Branch on half-word equal 1-26

91 BRRNE Branch on half-word not equal 1-26

92 BRR GT Branch on half-word greater than 1-26

93 BRR GE Branch on half-word greater than or 1-26
equal

(Continued)

D-4 60458890 Revision E

Table D-1. CP Instructions - Opcode Sequence (Continued)

Opcode Mnemonic Instruction Page

94 BRXEQ Branch on equal 1-27

95 BRXNE Branch on not equal 1-27

96 BRXGT Branch on greater than 1-27

97 BRXGE Branch on greater than or equal 1-27

98 BRFEQ FP branch on equal 1-78

99 BRFNE FP branch on not equal 1-78

9A BRFGT FP branch on greater than 1-78

9B BRFGE FP branch on greater than or equal 1-78

9C BRINC Branch and increment 1-28

9D BRSEG Branch on segments unequal 1-29

9E BROVR FP branch on overflow 1-79

9E BRUND FP branch on underflow 1-79

9E BRINF FP branch on indefinite 1-79

9F BRCR Branch on condition register 1-115

AO LAI Load address, indexed 1-12

Al SAI Store address, indexed 1-12

A2 LXI Load word, indexed 1-10

A3 SXI Store word, indexed 1-10

A4 LBYT Load bytes 1-13

A5 SBYT Store bytes 1-13

A7 ADDAD Address increment, modulo 1-34

AB SHFC Shift word, circular 1-40

A9 SHFX Shift word, end-off 1-40

AA SHFR Shift half-word, end-off 1-40

AC ISOM Isolate bit mask 1-44

AD ISOB Isolate 1-44

AE INSB Insert 1-44

(Continued)

Revision E Instruction Index D-5

Table D-1. CP Instructions - Opcode Sequence (Continued)

Opcode Mnemonic Instruction Page

BO CALLREL Call relative 1-102

B2 MULXQ Integer product, signed immediate 1-22

B3 ENTA Enter XO, signed immediate 1-38

B4 CMPXA Compare swap 1-104

B5 CALLSEG Call indirect 1-106

BE (None) Reserved for user 1-108

BF (None) Reserved for user 1-108

C0-7 EXECUTE,S Execute algorithm per S 1-108

D0-7 LBYTS Load bytes, immediate 1-13

D8-F SBYTS Store bytes, immediate 1-13

E4 SCLN Decimal scale 1-54

E5 SCLR Decimal scale, rounded 1-54

E9 CMPC Byte compare, collated 1-57

EB TRANB Byte translate 1-58

ED EDIT Edit 1-59

F3 SCNB Byte scan while nonmember - 1-65

F4 CALDF Calculate subscript and add 1-67

F9 MCVI Move immediate data 1-68

FA CMPI Compare immediate data 1-69

FB ADDI Add immediate data 1-70

D-6 60458890 Revision E

Table D-2. CP Instructions - Mnemonic Sequence

Mnemonic Opcode Instruction Page

ADD AD A7 Address increment, modulo 1-34

ADDAQ SE Address increment, signed immediate 1-33

ADDAX 2A Address increment, indexed 1-33

ADDD 34 Double-precision FP sum 1-74

ADDF 30 FP sum 1-74

ADDFV 40 FP vector sum 1-86

ADDI FB Add immediate data 1-70

ADDN 70 Decimal sum 1-50

ADDPXQ SF Address relative 1-34

ADDR 20 Half-word integer sum 1-18

ADDRQ SA Half-word integer sum, signed 1-18
immediate

ADDX 24 Integer sum 1-19

ADDXQ SB Integer sum, signed immediate 1-19

ADD XV 44 Integer vector sum 1-S3

ANDV 4A Logical vector product 1-S5

ANDX lA Logical product 1-41

BRCR 9F Branch on condition register 1-115

BR DIR 2F Inter-segment branch 1-25

BRFEQ 9S FP branch on equal 1-78

BRFGE 9B FP branch on greater than or equal 1-78

BRFGT 9A FP branch on greater than 1-78

BRFNE 99 FP branch on not equal 1-78

BRINC 9C Branch and increment 1-28

BRINF 9E FP branch on indefinite 1-79

BROVR 9E FP branch on overflow 1-79

BRREL 2E Branch relative 1-24

(Continued)

Revision E Instruction Index D-7

Table D-2. CP Instructions - Mnemonic Sequence (Continued)

Mnemonic Opcode Instruction Page

BRREQ 90 Branch on half-word equal 1-26

BRR GE 93 Branch on half-word greater than or 1-26
equal

BRRGT 92 Branch on half-word greater than 1-26

BRRNE 91 Branch on half-word not equal 1-26

BRSEG 9D Branch on segments unequal 1-29

BRUND 9E FP branch on underflow 1-79

BRXEQ 94 Branch on equal 1-27

BRXGE 97 Branch on greater than or equal 1-27

BRXGT 96 Branch on greater than 1-27

BRXNE 95 Branch on not equal 1-27

CALDF . F4 Calculate subscript and add 1-67

CALLREL BO Call relative 1-102

CALLSEG B5 Call indirect 1-106

CMPB 77 Byte compare 1-57

CMPC E9 Byte compare, collated 1-57

CMPEQV 50 Integer vector compare, = 1-84

CMPF 3C FP compare 1-80

CMPGTV 52 Integer vector compare, > 1-84

CMPI FA Compare immediate data 1-69

CMPLTV 51 Integer vector compare, < 1-84

CMPN 74 Decimal compare 1-52

CMPNEV 53 Integer vector compare, ~ 1-84

CMPR 2C Half-word integer compare 1-23

CMPX 2D Integer compare 1-23

CMPXA B4 Compare swap 1-104

CNFI 3B Convert from FP to integer 1-72

CNF IV 4C Convert vector from FP to integer 1-85

CNIF 3A Convert from integer to FP 1-72

(Continued)

D-8 60458890 Revision E

Table D-2. CP Instructions - Mnemonic Sequence (Continued)

Mnemonic Opcode Instruction Page

CNIFV 4B Convert vector from integer to FP 1-85

CPYAA 09 Copy address, A to A 1-31

CPYAX OB Copy address, A to X 1-31

CPYMX 08 Copy free running counter 1-98

CPYRR oc Copy half-word 1-32

CPYSX OE Copy from state register 1-114
J

CPYXA OA Copy address, X to A 1-31

CPYXS OF Copy to state register 1-114

CPYXX OD Copy full-word 1-32

DECR 29 Half-word integer difference, immediate 1-20

DECX 11 Integer difference, immediate 1-20

DIVD 37 Double-precision FP quotient 1-76

DIVF 33 FP quotient 1-76

DIVFV 43 FP vector quotient 1-86

DIVN 73 Decimal quotient 1-50

DIVR 23 Half-word integer quotient 1-22

DIVX 27 Integer quotient 1-23

EDIT ED Edit 1-59

ENTA B3 Enter XO, signed immediate 1-38

ENTC 87 Enter Xl, signed immediate 1-38

ENTE SD Enter, signed immediate 1-38

ENTL 3F Enter immediate, logical 1-37

ENTN 3E Enter immediate, negative 1-37

ENTO lF Enter ones 1-36

ENTP 3D Enter immediate, positive 1-37

ENTS lF Enter signs 1-36

ENTX 39 Enter Xl, immediate logical 1-37

ENTZ lF Enter zeros 1-36

(Continued)

Revision E Instruction Index D-9

Table D-2. CP Instructions - Mnemonic Sequence (Continued)

Mnemonic Opcode Instruction Page

EXCHANGE 02 Exchange I-94

EXECUTE,S C0-7 Execute algorithm per S I-108

GTHV 55 Gather vector I-87

HALT 00 Program error 1-93

INCR 28 Half-word integer sum, immediate I-18

INCX 10 Integer sum, immediate 1-I9

INHX IC Logical inhibit I-42

INSB AE Insert 1-44

INTRUPT 03 Processor interrupt 1-110

IORV 48 Logical vect.or sum 1-85

IORX I8 Logical sum 1-41

ISOB AD Isolate 1-44

ISOM AC Isolate bit inask 1-44

LA 84 Load address 1-11

LAI AO Load address, indexed 1-12

LBIT 88 Load bit I-15

LBS ET 14 Test and set bit 1-99

LBYT A4 Load bytes 1-13

LBYTP 86 Load bytes, relative 1-14

LBYTS D0-7 Load bytes, iminediate 1-13

LMULT 80 Load inultiple 1-8

LPAGE 17 Load page table index 1-109

LX 82 Load word 1-10

LXI A2 Load word, indexed I-IO

MARK IE Mark to Boolean I-45

MCVI F9 Move iinmediate data I-68

MOVB 76 Move bytes 1-59

MOVN 75 Numeric move I-53

(Continued)

D-10 60458890 Revision E

Table D-2. CP Instructions - Mnemonic Sequence (Continued)

Mnemonic Opcode Instruction Page

MRGV 54 Merge vector 1-87

MULD 36 Double-precision FP product 1-75

MULF 32 FP product 1-75

MULFV 42 FP vector product 1-S6

MULN 72 Decimal product 1-50

MULR 22 Half-word integer product 1-21

MULRQ SC Half-word integer product, signed 1-21
immediate

MULX 26 Integer product 1-22

MULXQ B2 Integer product, signed immediate 1-22

NOTX lB Logical complement 1-42

POP 06 Pop 1-97

PURGE 05 Purge buff er 1-112

RETURN 04 Return 1-95

SA S5 Store address 1-11

SAI Al Store address, indexed 1-12

SBIT S9 Store bit 1-15

SBYT A5 Store bytes 1-13

SBYTS D8-F Store bytes, immediate 1-13

SCLN E4 Decimal scale 1-54

SCLR E5 Decimal scale, rounded 1-54

SCNB F3 Byte scan while nonmember 1-65

SCTV 56 Scatter vector 1-S9

SHFC AS Shift word, circular 1-40

SHFR AA Shift half-word, end-off 1-40

SHFV 4D Shift vector circular 1-S7

SHFX A9 Shift word, end-off 1-40

SMULT 81 Store multiple 1-8

SUBD 35 Double-precision FP difference 1-74

(Continued)

Revision E Instruction Index D-11

Table D-2. CP Instructions - Mnemonic Sequence (Continued)

Mnemonic Opcode Instruction Page

SUBF 31 FP difference 1-74

SUBFV 41 FP vector difference 1-86

SUBN 71 Decimal difference 1-50

SUBR 21 Half-word integer difference 1-20

SUBX 25 Integer difference 1-20

SUB XV 45 Integer vector difference 1-83

SUMFV 57 FP vector summation 1-89

sx 83 Store word 1-10

SXI A3 Store word, indexed 1-10

SYNC 01 Scope loop synchronization 1-93

TPAGE 16 Test and set page 1-101

TRANB EB Byte translate 1-58

XORV 49 Logical vector difference 1-85

XORX 19 Logical difference 1-41

(None) BE Reserved for user 1-108

(None) BF Reserved for user 1-108

D-12 60458890 Revision E

Table D-3. PP Instructions - Opcode Sequence

Opcode Mnemonic Instruction Page

0000 PSN Pass 1-177

OOOldm LJM Long jump to m+(d) 1-148

0002dm RJM Return jump to m + (d) 1-149

0003d UJN Unconditional jump d 1-149

0004d ZJN Zero jump d 1-150

0005d NJN Nonzero jump d 1-150

0006d PJN Plus jump d 1-151

0007d MJN Minus jump d 1-151

OOlOd SHN Shift A by d 1-133

OOlld LMN Logical difference d 1-133

0012d LPN Logical product d 1-138

0013d SCN Selective clear d 1-140

0014d LDN Load d 1-120

0015d LCH Load complement d 1-120

0016d ADN Add d 1-126

0017d SBN Subtract d 1-129

0020dm LDC Load dm 1-120

0021dm ADC Add dm 1-126

0022dm LPC Logical product dm 1-138

0023dm LMC Logical difference dm 1-134

002400 PSN Pass 1-177

0024d LRD Load R 1-153

002500 PSN Pass 1-177

0025d SRD Store R 1-153

00260x EXN Exchange jump 1-178

00261x MXN Monitor exchange jump 1-178

00262x MAN Monitor exchange jump MA 1-179

00263x (None) Executes as if d = 2x 1-179

(Continued)

Revision E Instruction Index D-13

Table D-3. PP Instructions · Opcode Sequence (Continued)

Opcode Mnemonic Instruction Page

0027d KPT Keypoint 1-177

0030d LDD Load (d) 1-120

0031d ADD Add (d) 1-126

0032d SBD Subtract (d) 1-129

0033d LMD Logical difference (d) 1-134

0034d STD Store (d) 1-123

0035d RAD Replace add (d) 1-142

0036d AOD Replace add one (d) 1-142

0037d SOD Replace subtract one (d) 1-146

0040d LDI Load ((d)) 1-121

0041d ADI Add ((d)) 1-127

0042d SBI Subtract ((d)) 1-130

0043d LMI Logical difference ((d)) 1-135

0044d STI Store ((d)) 1-123

0045d RAI Replace add ((d)) 1-143

0046d AOI Replace add one ((d)) 1-144

0047d SOI Replace subtract one ((d)) 1-146.

0050dm LDM Load (m+(d)) 1-122

0051dm ADM Add (m+(d)) 1-128

0052dm SBM Subtract (m + (d)) 1-130

0053dm LMM Logical difference (m+(d)) 1-136

0054dm STM Store (m+(d)) 1-124

0055dm RAM Replace add (m + (d)) 1-144

0056dm AOM Replace add one (m + (d)) 1-145

0057dm SOM Replace subtract one (m + (d)) 1-147

0060d CRD Central read from (A) to d 1-154

0061dm CRM Central read (d) words from (A) to m 1-156

0062d CWD Central write to (A) from d 1-159

(Continued)

D-14 60458890 Revision E

Table D-3. PP Instructions - Opcode Sequence (Continued)

Opcode Mnemonic Instruction Page

0063dm CWM Central write (d) words to (A) from m 1-161

00640cm AJM Jump to m if channel C active 1-165

00641cm SCF Test to m and set channel C flag 1-166

00650cm IJM Jump to m if channel C inactive 1-165

00651cm CCF Clear channel C flag 1-167

00660cm FJM Jump to m if channel C full 1-166

00661cm SFM Jump to m if channel C error flag set 1-167

00670cm EJM Jump to m if channel C empty 1-166

00671cm CFM Jump to m if channel C error flag clear 1-167

00700c IAN Input to A from channel C when active 1-168

00701c IAN Input to A from channel C if active 1-168

00710cm IAM Input A words to m from channel C 1-169

00720c OAN Output from A on channel C when active 1-171

00721c OAN Output from A on channel C if active 1-171

00730cm OAM Output A words from m on channel C 1-172

00740c ACN Activate channel C 1-173

00741c ACN Unconditionally activate channel C 1-173

00750c DCN Deactivate channel C 1-173

00751c DCN Unconditionally deactivate channel C 1-174

00760c FAN Function a on channel C when inactive 1-175

00761c FAN Function a on channel C if inactive 1-175

00770cm FNC Function m on channel C when inactive 1-176

00771cm FNC Function m on channel C if inactive 1-176

lOOOd RDSL Central read and set lock from d to (A) 1-157

lOOld RDCL Central read and clear lock from d to (A) 1-158

1002 Pass 1-177

1003 Pass 1-177

1004 Pass 1-177

(Continued)

Revision E Instruction Index D-15

Table D-3. PP Instructions · Opcode Sequence (Continued)

Opcode Mnemonic Instruction Page

1005 Pass 1-177

1006 Pass 1-177

1007 Pass 1-177

1010 Pass 1-177

1011 Pass 1-177

1012 Pass 1-177

1013 Pass 1-177

1014 Pass 1-177

1015 Pass 1-177

1016 Pass 1-177

1017 Pass 1-177

1020 Pass 1-177

1021 Pass 1-177

1022d LPDL Logical product (d) long 1-139

1023d LPIL Logical product ((d)) long 1-139

1024dm LPML Logical product (m + (d) long 1-139

1025 Pass 1-177

1026d INPN Interrupt processor 1-179

1027 Pass 1-177

1030d LDDL Load (d) long 1-121

1031d ADDL Add (d) long 1-127

1032d SBDL Subtract (d) long 1-129

1033d LMDL Logical difference (d) long 1-134

1034d STDL Store (d) long 1-123

1035d RADL Replace add (d) long. 1-142

1036d AODL Replace add one (d) long 1-143

1037d SODL Replace subtract one (d) long 1-146

1040d LDIL Load ((d)) long 1-121

(Continued)

D-16 60458890 Revision E

Table D-3. PP Instructions - Opcode Sequence (Continued)

Opcode Mnemonic Instruction Page

1041d ADIL Add ((d)) long 1-127

1042d SBIL Subtract ((d)) long 1-130

1043d LMIL Logical difference ((d)) long 1-135

1044d STIL Store ((d)) long 1-123

1045d RAIL Replace add ((d)) long 1-143

1046d AOIL Replace add one ((d)) long 1-144

1047d SOIL Replace subtract one ((d)) long 1-147

1050dm LDML Load (m+(d)) long 1-122

1051dm ADML Add (m + (d)) long 1-128

1052dm SBML Subtract (m + (d)) long 1-131

1053dm LMML Logical difference (m + (d)) long 1-137

1054dm STML Store (m + (d)) long 1-124

1055dm RAML Replace add (m + (d)) long 1-145

1056dm AOML Replace add one (m + (d)) long 1-145

1057dm SOML Replace subtract one (m + (d)) long 1-147

1060d CRDL Central read from (A) to d long 1-155

1061dm CRML Central read (d) words from (A) to m long 1-157

1062d CWDL Central write to (A) from d long 1-159

1063dm CWML Central write (d) words to (A) from m long 1-162

1064Xcm TSJM Jump if channel C flag set 1-165

1065Xcm FCJM Jump if channel C flag clear 1-165

1066 Pass 1-177

1067 Pass 1-177

1070 Pass 1-177

10710cm IAPM Input A words to m from channel C packed 1-170

1072 Pass 1-177

10730cm OAPM Output A words from m on channel C packed 1-172

(Continued)

Revision E Instruction Index D-17

Table D-3. PP Instructions - Opcode Sequence (Continued)

Opcode Mnemonic Instruction Page

1074 Pass 1-177

1075 Pass 1-177

1076 Pass 1-177

1077 Pass 1-177

D-18 60458890 Revision E

Table D-4. PP Instructions - Mnemonic Sequence

Mnemonic Opcode Instruction Page

0000 Pass 1-177

002500 Pass 1-177

1002 Pass 1-177

1003 Pass 1-177

1004 Pass 1-177

1005 Pass 1-177

1006 Pass 1-177

1007 Pass 1-177

1010 Pass 1-177

1011 Pass 1-177

1012 Pass 1-177

1013 Pass 1-177

1014 Pass 1-177

1015 Pass 1-177

1016 Pass 1-177

1017 Pass -1-177

1020 Pass 1-177

1021 Pass 1-177

1025 Pass 1-177

1027 Pass 1-177

1066 Pass 1-177

1067 Pass 1-177

1070 Pass 1-177

1072 Pass 1-177

1074 Pass 1-177

1075 Pass 1-177

1076 Pass 1-177

1077 Pass 1-177

(Continued)

Revision E Instruction Index D-19

Table D-4. PP Instructions - Mnemonic Sequence (Continued)

Mnemonic Opcode Instruction Page

ACN 00740c Activate channel C 1-173

ACN 00741c Unconditionally activate channel C 1-173

ADC 0021dm Add dm 1-126

ADD 003ld Add (d) 1-126

ADDL 1031d Add (d) long 1-127

ADI 004ld Add ((d)) 1-127

ADIL 1041d Add ((d)) long 1-127

ADM 0051dm Add (m+(d)} 1-128

ADML 1051dm Add (m + (d)) long 1-128

ADN 0016d Add d 1-126

AJM 00640cm Jump to m if channel C active 1-165

AOD 0036d Replace add one (d) 1-142

AODL 1036d Replace add one (d} long 1-143

AOI 0046d Replace add one ((d}) 1-144

AOIL 1046d Replace add one ((d)} long 1-144

AOM 0056dm Replace add one (m + (d)} 1-145

AOML 1056dm Replace add one (m+(d)} long 1-145

CCF 00651cm Clear channel C flag 1-167

CFM 00671cm Jump to m if channel C error flag clear 1-167

CRD 0060d Central read from (A) to d 1-154

CRDL 1060d Central read from (A} to d long 1-155

CRM 0061dm Central read (d) words from (A) to m 1-156

CRML 1061dm Central read (d) words from (A) to m long 1-157

CWD 0062d Central write to (A) from d 1-159

CWDL 1062d Central write to (A) from d long 1-159

CWM 0063dm Central write (d) words to (A) from m 1-161

(Continued)

D-20 60458890 Revision E

Table D-4. PP Instructions - Mnemonic Sequence (Continued)

Mnemonic Opcode Instruction Page

CWML 1063dm Central write (d) words to (A) from m long 1-162

DCN 00750c Deactivate channel C 1-173

DCN 00751c Unconditionally deactivate channel C 1-174

EJM 00670cm Jump to m if channel C empty 1-166

EXN 00260x Exchange jump 1-178

FAN 00760c Function a on channel C when inactive 1-175

FAN 00761c Function a on channel C if inactive 1-175

FCJM 1065Xcm Jump if channel C flag clear 1-165

FJM 00660cm Jump to m if channel C full 1-166

FNC 00770cm Function m on channel C when inactive 1-176

FNC 00771cm Function m on channel C if inactive 1-176

!AM 00710cm Input A words to m from channel C 1-169

IAN 00700c Input to A from channel C when active 1-168

IAN 00701c Input to A from channel C if active 1-168

IAPM 10710cm Input A words to m from channel C packed 1-170

!JM 00650cm Jump to m if channel C inactive 1-165

INPN 1026d Interrupt processor 1-179

KPT 0027d Keypoint 1-177

LCH 0015d Load complement d 1-120

LDC 0020dm Load dm 1-120

LDD 0030d Load (d) 1-120

LDDL 1030d Load (d) long 1-121

LDI 0040d Load ((d)) 1-121

LDIL 1040d Load ((d)) long 1-121

LDM 0050dm Load (m+(d)) 1-122

LDML 1050dm Load (m + (d)) long 1-122

LDN 0014d Load d 1-120

(Continued)

Revision E Instruction Index D-21

Table D-4. PP Instructions - Mnemonic Sequence (Continued)

Mnemonic Opcode Instruction Page

LJM OOOldm Long jump to m + (d) 1-148

LMC 0023dm Logical difference dm 1-134

LMD 0033d Logical difference (d) 1-134

LMDL 1033d Logical difference (d) long 1-134

LMI 0043d Logical difference ((d)) 1-135

LMIL 1043d Logical difference ((d)) long 1-135

LMM 0053dm Logical difference (m + (d)) 1-136

LMML 1053dm Logical difference (m + (d)) long 1-137

LPC 0022dm Logical product dm 1-138

LPDL 1022d Logical product (d) long 1-139

LPIL 1023d Logical product ((d)) long 1-139

LPML 1024dm Logical product (m + (d) long 1-139

LPN 0012d Logical product d 1-138

LRD 0024d Load R 1-153

MAN 00262x Monitor exchange jump MA 1-178

MJN 0007d Minus jump d 1-151

MXN 00261x Monitor exchange jump 1-178

NJN 0005d Nonzero jump d 1-150

OAM 00730crn Output A words from m on channel C 1-172

OAN 00720c Output from A on channel C when active 1-171

OAN 00721c Output from A on channel C if active 1-171

OAPM 10730crn Output A words from m on channel C packed 1-172

PJN 0006d Plus jump d 1-151

PSN 002400 Pass 1-177

RAD 0035d Replace add (d) 1-142

RADL 1035d Replace add (d) long 1-142

RAI 0045d Replace add ((d)) 1-143

(Continued)

D-22 60458890 Revision E

Table D-4. PP Instructions · Mnemonic Sequence (Continued)

Mnemonic Opcode Instruction Page

RAIL 1045d Replace add ((d)) long 1-143

RAM 0055dm Replace add (m + (d)) 1-144

RAML 1055dm Replace add (m + (d)) long 1-145

RDCL IO Old Central read and clear lock from d to (A) 1-158

RDSL lOOOd Central read and set lock from d to (A) 1-157

&JM 0002dm Return jump to m + (d) 1-149

SBD 0032d Subtract (d) 1-129

SBDL 1032d Subtract (d) long 1-129

SBI 0042d Subtract ((d)) 1-130

SBIL 1042d Subtract ((d)) long 1-130

SBM 0052dm Subtract (m+(d)) 1-130

SBML 1052dm Subtract (m + (d)) long 1-131

SBN 0017d Subtract d 1-129

SCF 00641cm Test to m and set channel C flag 1-166

SCN 0013d Selective clear d 1-105

SFM 00661cm Jump to m if channel C error flag set 1-167

SHN 0010d Shift A by d 1-133

LMN OOlld Logical difference d 1-133

SOD 0037d Replace subtract one (d) 1-146

SODL 1037d Replace subtract one (d) long 1-146

SOI 0047d Replace subtract one ((d)) 1-146

SOIL 1047d Replace subtract one ((d)) long 1-147

SOM 0057dm Replace subtract one (m + (d)) 1-147

SOML 1057dm Replace subtract one (m + (d)) long 1-147

SRD 0025d Store R 1-153

STD 0034d Store (d) 1-123

STDL 1034d Store (d) long 1-123

(Continued)

Revision E Instruction Index D-23

Table D-4. PP Instructions - Mnemonic Sequence (Continued)

Mnemonic Opcode Instruction Page

STI 0044d Store ((d)) 1-123

STIL 1044d Store ((d)) long 1-123

STM 0054dm Store (m + (d)) 1-124

STML 1054dm Store (m + (d)) long 1-124

TSJM 1064xcm Jump if channel C flag set 1-165

UJN 0003d Unconditional jump d 1-149

ZJN 0004d Zero jump d 1-150

(None) 00263x Executes as if d = 2x 1-179

D-24 60458890 Revision E

Fast DMA Transfers E

The adapter supports the fast-transfer mode of the ESM-II low-speed port. Fast
transfers are in DMA mode and have a transfer rate of one 12-bit word every 100
nanoseconds (120 million bits per second). An external clock from ESM-II enters the
adapter to enable this fast transfer rate. Bit 55 of the start DMA inputJoutput function
enables fast transfers.

External interface signals are the same as standard 170 channels except active in,
empty in, and empty out. Active in receives the asynchronous 10-MHz clock from
ESM-II. All input/output transmissions are synchronized to this clock. A switch in the
ESM-II low-speed port enables this clock. Empty out controls inputs from ESM-II. If the
adapter issues an empty out, ESM-II inhibits the next full in. Empty in controls
outputs from the adapter. If ESM-II issues an empty in, the adapter inhibits the next
full out.

A typical sequence for executing a fast transfer is:

1. Master clear adapter.

2. Master clear ESM-II low-speed port.

3. Function adapter to read Operational Status Register. Check for external clock
present.

4. Function adapter to write T-Prime Register.

5. Function ESM-11 low-speed port to enable fast transfers.

6. Function ESM-11 low-speed port for a write operation.

7. Function adapter to start DMA output bit 55 set, and PP Word Count equals two.

8. Output two words from PP. This is ESM-II address. DMA output transfer starts
immediately after last word of address.

9. Function adapter to read Operational Status Register. Wait for transfer to complete.

10. Function adapter to clear DMA mode.

11. Function ESM-II low-speed port to read status.

12. Verify that transfer completed without errors.

Revision E Fast DMA Transfers E-1

Channel/CM Data Mapping

Channel/CM Data Mapping

For 60-bit CM, five 12-bit channel words map evenly into a CM word. The four
most-significant bits (O through 3) in the CM word are not used for reads and zeros for
writes. Fifteen channel words map into parcels 0 through 3 at three CM locations as
shown below.

0 15 31. 47 63

I PARCEL 0 I PARCEL 1 I PARCEL 2 I PARCEL 3 I

I I

1

I

2 3 4 5

I
6 7 8 9 10

11 12 13 14 15

For 64-bit CM, the 12-bit channel words do not map evenly into a CM word. Three CM
locations are required for 16 channel words as shown below.

0 15 31 47 63
I PARCEL 0 I PARCEL 1 I PARCEL 2 I PARCEL 3 I

1 2 3 4 5 6

6 7 8 9 10 11

11 12 13 14 15 16

Data Paths
The following paragraphs describe the adapter data paths for each of the transfers.

PP to T-Prime Register

The PP writes three words into the T Prime Register through Adapter Output Register
Rank I and T Register Data In and Out.

PP from T Register

The PP reads three words from the T Register through Adapter Input Register
Rank II.

PP to Function Register, Control Register, PP Word Counter

The PP writes these registers and counter through Adapter Output Register Rank I.

PP from Status and Control Registers

The PP reads these registers through Adapter Input Register Rank II.

Inter-PP Transfer

Data passes from one PP to another PP through Adapter Output Register Rank I and
Adapter Input Register Rank II.

E-2 60458890 Revision E

Data Paths

PP Output Transfer

Data passes from the PP to the external device through Adapter Output Register
Rank I and the Transmit Register. The data also enters rank II but is not used. Data
remains in the Transmit Register until the external device sends an empty signal.

PP Input Transfer

Data passes from the external device to the PP through the Deskew Register, Input
Resynchronize Buffer, and Adapter Input Register Rank II. Up to eight words enter the
buffer before input data stops. The adapter sends empty status to the external device
until the buffer is full. When rank II accepts a word, the buffer accepts another word
from the external device.

DMA Output Transfer

Data passes from CM to the external device as follows:

1. CM sends a 64-bit word to the Disassembly Buffer.

2. Disassembly Buffer separates the 64-bit word into four 16-bit parcels.

3. Conversion Network converts the 16-bit CM parcels to 12-bit channel words.
Residue of the four bits from the first parcel is held until the second parcel arrives.
Residue from the first parcel and eight bits from the second parcel form the second
channel word. This process continues until all CM data is exhausted.

4. Conversion Network sends 12-bit channel words to the external device through the
Output Resynchronize Buffer and Transmit Register.

DMA Input Transfer

Data passes from the external device to CM as follows:

1. External device sends 12-bit channel words to the Conversion Network through the
Deskew Register and Input Resynchronize Buffer.

2. Conversion Network converts 12-bit channel words to 16-bit CM parcels. The first
channel word is held until the second word arrives to form the first CM parcel.
Residue of the eight bits from the second word is held until the third word arrives
to form the second CM parcel. This process continues until all channel data is
exhausted.

3. Conversion Network sends 16-bit CM parcels to the Assembly Buffer.

4. Assembly Buffer combines four 16-bit CM parcels into a 64-bit word and sends it to
CM.

Revision E Fast DMA Transfers E-3

Index

Index

A
Address arithmetic instructions, CP 1-33
Address translation, see Virtual and

Central Memory Programming
Arithmetic instructions,

floating-point 1-73
Arithmetic instructions, PP 1-125

B
BDP byte instructions 1-56
BDP data descriptors 2-46
BDP data types

Slack digit 2-50
Type 0: packed decimal,

unsigned 2-4 7
Type 1: packed decimal, unsigned

slack digit 2-47
Type 10: binary, unsigned 2-49
Type 11: binary, signed 2-49
Type 2: packed decimal, signed 2-48
Type 3: packed decimal, signed slack

digit 2-48 ,
Type 4: unpacked decimal,

unsigned 2-48
Type 5: unpacked decimal, trailing

sign combined Hollerith 2-48
Type 6: unpacked decimal, trailing

sign separate 2-49
Type 7: unpacked decimal, leading

sign combined Hollerith 2-49
Type 8: unpacked decimal, leading

sign separate 2-49
Type 9: alphanumeric 2-49

BDP instruction descriptions 1-47
BDP instruction nomenclature 1-47
BDP numeric instructions 1-47
BDP operand types and field

lengths 2-4 7
BDP subscript and immediate data

instructions 1-66
BDP undefined results

Invalid data 2-50
Overlap 2-50

Branch instructions, CP 1-24
Branch instructions, floating-point 1-77
Branch instructions, PP 1-148
Bus unit protocol procedures 2-169
Business data processing (BDP)

programming 2-46
Byte instructions, BDP 1-56

Revision F

c
Central memory access instructions,

PP 1-152
Central memory programming, see

Virtual and Central Memory
Programming

Character data word, display
station 2-143

Character mode word, display
station 2-140

CIO Function Codes 2-175
CIO PP Programming 2-162
CIO Programming Examples 2-195
CIO Registers

Control 2-181
DMA Channel 2-194
Error Status 2-190
Flag Mask 2-193
Operational Status 2-186
T and T' 2-194

CIO Test Facilities 2-197
Clock, real-time, programming 2-145
CM registers

Corrected error log (CEL) 2-19
Element identifier (EID) 2-20
Environment control (EC) 2-20
Free-running counter 2-20
Options installed (01) 2-20
Port bounds 2-21
Status summary (SS) 2-21
Uncorrectable error log (UEL) 2-21

Codes, display station 2-143
Condition and mask registers, CP 2-24
Conversion instructions,

floating-point 1-71
Coordinate data word, display

station 2-143
Copy instructions, CP 1-30
CP address arithmetic instructions 1-33
CP branch instructions 1-33
CP condition and mask registers 2-24
CP condition register bit grouping 2-27
CP copy instructions 1-30
CP exchange operations 2-2
CP general instructions 1-6
CP instruction description

nomenclature 1-4
CP instruction formats 1-2
CP instruction index

Mnemonic sequence D-7
Opcode sequence D-1

CP integer arithmetic instructions 1-16
CP interrupts 1-5

Conditions, see Interrupt Conditions
Exchange 2-29
Trap 2-29

CP load and store instructions .l-6

60458890 Index-1

CP logical instructions

CP logical instructions 1-41
CP mark to Boolean instruction 1-45
CP register bit string instructions 1-43
CP registers

Address A 2-7
Base constant (BC) 2-9
Cache/map corrected error log

(CCEL/MCEL) 2-17
Debug index (DI) 2-9
Debug list pointer (DLP) 2-9
Debug mask (DM) 2-9
Dependent environment control

(DEC) 2-17
Element identifier (EID) 2-17
Flag register

Critical-frame flag (CFF) 2-9
On-condition flag (OCF) 2-9
Process-not-damaged (PND)

flag 2-10
Job process state (JPS) 2-17
Largest ring number (LRN) 2-10
Last processor identification

(LPID) 2-10
Model dependent word (MDW) 2-17
Monitor condition (MCR) 2-10
Monitor mask (MMR) 2-10
Monitor process state (MPS) 2-18
Operand (X) 2-10
Options installed (QI) 2-16
Page size mask (PSM) · 2-16
Page table address (PTA) 2-16
Page table length (PTL) 2-16
Process interval timer (PIT) 2-11
Processor fault status (PFS) 2-16
Processor identifier (PID) 2-16
Processor test mode (PTM) 2-16
Program address (P) 2-11
Segment table address (STA) 2-11
Segment table length (STL) 2-12
Status summary (SS) 2-16
System interval timer (SIT) 2-18
Top-of-stack (TOS) pointer 2-12
Trap enable (TE)

Trap-enable delay flip-flop
(TED) 2-12

Trap-enable flip-flop (TEF) 2-12
Trap pointer (TP) 2-12
Untranslatable pointer (UTP) 2-13
Untranslatable virtual machine

identifier (UVMID) 2-13
User condition (UCR) 2-14
User mask (UMR) 2-14
Virtual machine capability list

(VMCL) 2-18
Virtual machine identifier

(VMID) 2-14
CP shift instructions 1-39
CYBER DMA-enhanced ISI

adapter 2-175
CYBER 170 DMA programming

examples 2-218

Index-2 60458890

Floating-point <i;:P) end cases

CYBER 170 State exchange
package 2-118

D
Data descriptors, BDP 2-46
Data format, PP 1-117
Data formats, FP 2-45
Data sequences timing C-11
Data types, BDP, see BDP data types
Debug, see Program Monitoring
Dedicated channels, IOU 2-146
Difference, FP 2-55
Divide, FP 2-58
DMA-enhanced CYBER 170 channel

adapter 2-175
DMA transfers 2-217
Double-precision nonstandard FP

numbers 2-56
Double-precision register

designators 1-71

E
Edit examples

Edit mask 26 B-7
Edit masks 1 through 25 B-2
Using edit masks 1 through 8 B-3
Using edit masks 17 through 25 B-6
Using edit masks 9 through 16 B-4

End cases, floating-point, see
Floating-Point End Cases

ESM-II and fast DMA transfers E-1
Exceptions during stack operations 2-45
Exchange interrupt 2-29
Exchange jumps 1-178
Exchange operations, CP 2-2
Exchange packages 2-4

CYBER 170 State exchange
package 2-118

Interstate exchange package 2-112
Virtual State exchange package 2-5

Exponent arithmetic, FP 2-56

F
Fast DMA transfer

Channel/CM Data Mapping E-2
Data Paths E-2

Fast DMA transfers E-1
Flags 2-40
Floating-point arithmetic

instructions 1-73
Floating-point branch instructions 1-77
Floating-point conversion

instructions 1-71
Floating-point (FP) end cases

FP compare results 2-60
FP difference results, UM clear 2-63
FP difference results, UM set 2-64

Revision F

Floating-point (FP) programming

FP product results, UM clear 2-65
FP product results, UM set 2-66
FP quotient results, UM clear 2-67
FP quotient results, UM set 2-68
FP sum results, UM clear 2-61
FP sum results, UM set 2-62

Floating-point (FP) programming
Exponent arithmetic 2-56
FP data formats 2-53
FP divide 2-58
FP double-precision nonstandard

numbers 2-56
FP indefinite numbers 2-56
FP infinite numbers 2-56
FP multiply 2-57
FP nonzero numbers 2-56
FP standard and nonstandard

numbers 2-56
FP sum and difference 2-57
FP zero numbers 2-56
Normalization 2-57
Representation 2-55

Floating-point instruction
descriptions 1-71

Format

G

BDP data descriptor 2-46
FP data 2-53
Integer 1-17
Of XO for call instructions 2-42
Page table entry 2-93
PP data 1-117
PP instructions 1-116
PP relocation register 1-117
Process virtual address (PVA) 2-81
Real memory address (RMA) 2-85
Segment/page identifier (SPID) 2-85
System virtual address (SVA) 2-83
Vector instruction 1-81

General instructions, CP 1-6
Global privileged system

instructions 1-110
Glossary A-1

I
Idle bus mode bit definitions 2-168
Immediate data instruction, BDP 1-66
Indefinite numbers, FP 2-56
Infinite numbers, FP 2-56
Input/output instructions, PP 1-163
Instruction description nomenclature,

CP 1-4
Instruction descriptions, BDP 1-4 7
Instruction descriptions,

floating-point 1-71
Instruction descriptions, peripheral

processor 1-116

Revision F

Interr¥pt conditions

Instruction descriptions, system 1-91
Instruction descriptions, vector 1-81
Instruction format, vector 1-81
Instruction formats, PP 1-116
Instruction index

CP instructions - mnemonic
sequence D-7

CP instructions - opcode sequence D-1
PP instructions - mnemonic

sequence D-19
PP instructions - opcode

sequence D-13
Instruction nomenclature, BDP 1-47
Instructions, mixed mode 1-111
Instructions, monitor mode 1-111
Integer arithmetic instructions, CP 1-16
Integer format 1-17
Interface information

Active flag C-5
Control signals C-3
Data input sequences C-6
Data output sequences C-7
Data sequences timing C-11
Data signals C-3
External channel UO sequences C-5
Full flag C-5
Function instructions C-5
Interfaces C-1
Maintenance channel interface C-1
Maintenance channel signals C-3
MCH input sequence C-8
MCH output sequence C-10
PP and channel interaction C-5
Signals C-2
Signals and cables C-3
Two-port multiplexer interface C-1
12-bit channel control signals C-2
12-bit external interface C-1

Interrupt conditions
Access violation (MCR 54) 2-30
Address specification error (MCR

52) 2-31
Arithmetic loss of significance (UCR

62) 2-31
Arithmetic overflow (UCR 57) 2-32
Critical frame flag (UCR 53) 2-32
CYBER 170 State exchange request

(MCR 53) 2-36
Debug (UCR 56) 2-32
Detected uncorrectable error (MCR

48) 2-36
Divide fault (UCR 55) 2-32
Environment specification error (MCR

55) 2-33
Exponent overflow (UCR 58) 2-33
Exponent underflow (UCR 59) 2-33
External interrupt (MCR 56) 2-34
FP indefinite (UCR 61) 2-34
FP loss of significance (UCR 60) 2-34
Free flag (UCR 50) 2-34

60458890 Index-3

Interrupt flowchart

Instruction specification error (MCR
51) 2-34

Inter-ring pop (UCR 52) 2-35
Invalid BDP data (UCR 63) 2-35
Invalid segment/ring number zero

(MCR 60) 2-35
Multiple 2-38
Not assigned (MCR 49) 2-35
Outward call/inward return (MCR

61) 2-35
Page table search without find (MCR

57) 2-36
Privileged instruction fault (UCR

48) 2-36
Process interval time (UCR 51) 2-36
Short warning (MCR 50) 2-36
Soft error log (MCR 62) 2-37
System interval timer (MCR 59) 2-37
Trap exception (MCR 63) 2-37
Unimplemented instruction (UCR

49) 2-37
Interrupt flowchart 2-39
Interrupts, CP 1-5; 2-29
Interrupts, multiple 2-38
Interstate exchange package 2-112
Interstate programming

Address errors 2-122
Cache invalidation in CYBER 170

State 2-108
Call from Virtual State to CYBER 170

State 2-110
Calls, returns, and interrupts 2-109
Code modification in CYBER 170

State 2-120
CYBER 170 State exchange

package 2-118
CYBER 170 State-to-Virtual State

monitor mode exchange 2-110
De bug/performance monitoring 2-120
Exception handling in CYBER 170

State 2-121
Exchange packages used in CYBER

170 State 2-112
Exchanges within CYBER 170

State 2-110
Extended memory transfer

exceptions 2-123
Hardware exceptions in CYBER 170

State 2-124
Illegal instructions 2-123
Interstate calls, returns, and

interrupts 2-109
Interstate exchange package 2-112
Interstate stack frame save area

(SFSA) 2-119
Memory addressing in CYBER 170

State 2-107
Operation in CYBER 170 State 2-107
Return from Virtual State to CYBER

170 State 2-111
Software exception conditions 2-121

Index-4 60458890

ISi definitions

State-switching operations 2-108
Trap interrupt from CYBER 170 State

to Virtual State 2-111
Virtual State monitor mode-to-CYBER

170 State exchange 2-110
IOU dedicated channels 2-146
IOU pass· instructions 1-177
IOU peripheral processor (PP)

programming
Absolute and relocation

addressing 2-128
Cache invalidation 2-137
Central memory addressing by

PPs 2-128
Channel active flag 2-131
Channel flags 2-131
Channel input/output (110)

operations 2-131
Channel (marker) flag 2-133
Channel parity errors 2-137
Direct 12-bit address 2-130
Direct 18-bit operand 2-130
Direct 6-bit address 2-130
Direct 6-bit operand 2-130
Error detection and recovery 2-137
Error flag 2-133
Indexed 12-bit address 2-130
Indirect 6-bit address 2-130
Initialization 2-139
Inter-PP communications 2-136
Operating system (OS) bounds

test 2-128
Parity errors on input data 2-138
Parity errors on output data 2-138
PP central memory read 2-129
PP central memory write 2-129
PP hardware errors 2-137
PP memory addressing by PPs 2-130
PP program timing

consideration 2-137
Programming for channel

input/output 2-134
Register-full flag 2-131
Timeout 2-138

IOC registers
CIO, see CIO Registers
Element identifier (EID) 2-22
Environment control (EC) 2-22
Fault status (FS) 2-22
Fault status mask 2-23
Operating system (OS) .bounds 2-23
Options installed (01) 2-23
Status summary (SS) 2-23
Test mode (TM) 2-23

IPI channel adapter 2-223
ISI channel adapter 2-165
ISI channel adapter function codes 2-175
ISI channel programming

examples 2-195
ISI channel registers 2-181
ISi definitions 2-156

Revision F

ISI signal definitions

ISi signal definitions 2-165

J
Job-to-monitor exchange operations,

Virtual State 2-4

K
Keyboard character codes, display

station 2-141
Keyboard, display station 2-140

L
Load and store instructions, CP 1-6
Load and store instructions, PP 1-119
Local privileged system

instructions 1-109
Logical instructions, CP 1-41
Logical instructions, PP 1-132

M
Maintenance channel programming

For halt/stop (opcode 0/1) 2-159
For master clear/clear errors (opcode

617) 2-161
For read IOU summary status (opcode

C, IOU only) 2-161
For read/write (opcode 4/5) 2-160
MCH control words 2-159
MCH function word bit

assignments 2-157
MCH functions words 2-156

Maintenance registers
CM 2-19
IOU 2-22

Mark to Boolean instruction, CP 1-45
Mixed mode instructions 1-111
Monitor condition/mask register bit

assignments 2-25
Monitor mode instructions 1-111
Monitor-to-job exchange operations,

Virtual State 2-4
Multiple interrupt conditions 2-38
Multiply, FP 2-57

N
Nonprivileged system instructions 1-92
Nonstandard numbers, FP 2-56
Nonzero numbers, FP 2-56
Normalization, FP 2-57
Numeric instructions, BDP 1-47

Revision F

p

Page table entry format 2-93
Page table search, start RMA

formation 2-91

Registers

Page, virtual memory, see Virtual and
Central Memory Programming

Pass instructions, IOU 1-177
Peripheral processor instruction

descriptions 1-116
PP arithmetic instructions 1-125
PP branch instructions 1-148
PP central memory access

instructions 1-152
PP data format 1-117
PP input/output instructions 1-163
PP instruction formats 1-116
PP instruction index

Mnemonic sequence D-19
Opcode sequence D-13

PP load and store instructions 1-119
PP logical instructions 1-132
PP relocation register format 1-117
PP replace instructions 1-141
Process state registers, CP 2-7
Process virtual address (PVA)

format 2-81
Processor state registers, CP 2-15
Program monitoring

Debug 2-69
Debug condition select 2-71
Debug conditions 2-76
Debug index register 2-71
Debug list 2-69
Debug list entry 2-70
Debug list pointer register 2-69
Debug mask register 2-71
Debug scan operation 2-72
Debug-software interaction, debug

disabled 2-75
Debug-software interaction, debug

enabled 2-74
Enabling debug 2-72
Interrupts during debug scan 2-74

Programming information 2-1

R
Real memory address (RMA)

format 2-85
Real-time clock programming 2-145
Register bit string instructions, CP 1-43
Register designators,

double-precision 1-71
Registers

CIO, see CIO Registers
CM, see CM Registers
CP, see CP Registers
IOU, see IOU Registers
Stack operations, see Stack Operations,

Assigned Registers

60458890 Index-5

Relocation register format, PP

Relocation register format, PP 1-117
Replace instructions, PP 1-141

s
Segment/page identifier (SPID)

format 2-85
SFSA descriptor 2-43
SFSA descriptor field 2-43
Shift instructions, CP 1-39
Stack frame save area (SFSA)

format 2-42
Stack frames and save areas 2-41
Stack manipulating operations 2-41
Stack operations, assigned registers

Argument pointer (A4) 2-45
Binding section pointer (A3) 2-45
Current stack frame pointer (Al) 2-44
Dynamic space pointer (AO) 2-44
Previous save area pointer (A2) 2-44
Top-of-stack pointers 2-44

Stack operations, exceptions during 2-45
Standard numbers, FP 2-56
Subscript and immediate data

instructions, BDP 1-66
Sum, FP 2-57
System console programming (channel

10)
Character data word 2-143
Character mode 2-140
Codes 2-143
Coordinate data word 2-143
Data display 2-140
Display character codes 2-142
Display station output function

code 2-143
Dot mode 2-140
Keyboard 2-140
Keyboard character codes 2-141
Program timing consideration 2-144
Programming example 2-144
Receive and display program

flowchart 2-144
System instruction descriptions 1-91
System instruction privilege and

mode 2-103
System instructions, global

privileged 1-110
System instructions, local

privileged 1-109
System instructions, nonprivileged 1-92
System publication index 8
System virtual address (SVA) 2-83

Index-6 60458890

Virtual and central memory .programming

T
Trap interrupt 2-29
Two-port multiplexer programming

Calendar clock/auto dial-out

u

(lXXX) 2-151
Data input 2-155
Data output 2-155
Function words 2-150
Master clear (07XX) 2-154
PP read terminal data (OlXX) 2-152
PP write output buffer (02XX) 2-152
Programming considerations 2-155
Read status summary (OOXX) 2-152
Set/clear data terminal ready (DTR)

(04XX) 2-153
Set/clear request to send (RTS)

(05XX) 2-154
Set operation mode to terminal

(03XX) 2-153
Terminal deselect (6XXX) 2-150
Terminal select (7XXX) 2-150

Undefined results, BDP 2-50
User condition/mask register bit

assignments 2-26
User mask/condition and monitor

condition fields 2-44

v
Vector instruction descriptions 1-81
Vector instruction format 1-81
Vector operations 2-51
Vector programming

Vector broadcast 2-52
Vector interrupts 2-52
Vector length (number of

operations) 2-52
Vector overlap 2-52
Vector page size 2-52

Virtual and central memory
programming

Access protection 2-95
Address tables 2-87
BN-to-page number/page offset

conversion 2-86
Call indirect access

requirements 2-105
CM addressing from CP 2-80
Code base pointer format 2-94
Effect of RN violations 2-101
Effect of RN = 0 2-99
Execute access privilege/mode 2-101
Keys/locks 2-104
Listing of pages in page table 2-92
Page table entries (PTE) 2-92
Page table entry format 2-93

Revision F

Virtual machine identifier (VMID) field

Page table search 2-90
Page table search, start RMA

formation 2-91
Process binding section 2-94
Process virtual address (PVA)

format 2-81
Process virtual memory 2-81
PTE control fields 2-92
PTE page frame RMA field 2-92
PTE segment/page identifier field 2-92
PVA-to-RMA conversion 2-87
PVA-to-SVA conversion, execute 2-97
PVA-to-SVA conversion,

read/write 2-96
Real memory 2-84
Real memory address (RMA)

format 2-85
Ring structure 2-98
Ring voting 2-98
RN effect on pop instruction 2-100

Revision F

Virtual State monitor-to-job exchan_ge operations

RN for execute access 2-100
RN for read/write access 2-99
Segment descriptor table entry

format 2-89
Segment descriptor table (SD1') 2-88
Segment/page identifier (SPID)

format 2-85
System instruction privilege and

mode 2-103
System page table (SPT) 2-90
System virtual address (SVA)

format 2-83
System virtual memory 2-83

Virtual machine identifier (VMID)
field 2-44

Virtual State exchange package 2-5
Virtual State job-to-monitor exchange

operations 2-4
Virtual State monitor-to-job exchange

operations 2-4

60458890 Index-7

Comments (continued from other side)

'lease fold on dotted line;
eal edges with tape only.
- - - - - - - - - - - - -

'OLD

BUSINESS REPLY MAIL
First-Class Mail Permit No. 8241 Minneapolis, MN

POSTAGE WILL BE PAID BY ADDRESSEE

CONTROL DATA
Technical Publications
ARH219
4201 N. Lexington Avenue
Arden Hills, MN 55126-9983

1.1.1 .. 1.1 11 .. 1.1.11ii1.1 •• 1.1 •• 1 •• 1 ••• 11 ••• 1.11

NO POSTAGE
NECESSARY
IF MAILED

FOLD

FOLD

IN THE
UNITED STATES

I' ¥¥"
AMl*W¥

- -
(I#

W·W

IA

60458890 60458890 G

We would like your comments on this manual to help us improve it. Please take a few minutes to fill out
this form.

Who are you? How do you use this manual?

D Manager D As an overview

D Systems analyst or programmer

D Applications programmer

D To learn the product or system

D For comprehensive reference

D Operator D For quick look-up

D Other D Other __________________ _

What programming languages do you use? ---------------------------

How do you like this manual? Answer the questions that apply.

Yes Somewhat No
0 0 D Does it tell you what you need to know about the topic?

0 0 0 Is the technical information accurate?

0 0 0 Is it easy to understand?

0 0 0 Is the order of topics logical?

0 0 0 Can you easily find what you want?

0 0 0 Are there enough examples?

0 0 0 Are the examples helpful? (O Too simple? O Too complex?)

0 0 0 Do the illustrations help you?

0 0 0 Is the manual easy to read (print size, page layout, and so on)?

0 0 0 Do you use this manual frequently?

Comments? If applicable, note page and paragraph. Use other side if needed.

Check here if you want a reply: D

Name Company

Phone

Please send program listing and output if applicable to your comment.

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN 55440 LITHO IN U.S
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

(5 2) CONT1'0L DATA

