O

‘”7.:.‘#{"

60458890

(@2 CONTROL DATA

CDC°® CYBER 170
COMPUTER SYSTEMS

MODELS 815,825,835, 845, AND 855

CDC° CYBER 180

COMPUTER SYSTEMS

MODELS 810, 830, 835, 840, 845,
850, 855, 860, AND 990

VIRTUAL STATE

VOLUME II
INSTRUCTION DESCRIPTIONS
PROGRAMMING INFORMATION

o Ne

HARDWARE REFERENCE MANUAL

REVISION RECORD

ﬂ\mﬁﬂ

4
REVISION . DESCRIPTION
01 - | Manual released.
(06-06-83)
Manual updated to add support of CYBER 170 Model 845 and CYBER 180 Models 810, 830, 835, 845, 855,
(04~15-84) and 990. Due to extensive changes, revision bars and dots are not used and all pages reflect the
latest revision level. This edition obsoletes all previous editioms.
B Manual updated to add support of CYBER 180 Models 840, 850, and 860.
(11-02-84) .
[Manual revised; includes Engineering Change Order 46891. Front Cover through 5, 7/8, 14, 16,
(05-03-85) 11-1-30, 11-2-1, 1I-2-78, 1I-2-127, II-2-129, I1I-2-130, II-2-134, II1-2-136 through I1- 2—138 and
11—2—145 through II-2- 147 are revised. Page I1-2-149 is added.
Cn_ S
‘{\ .

Publication No.
60458890

-REVISION LETTERS 1, 0, Q, S, X AND Z ARE NOT USED.

Address comments concerning this
manual to:

Control Data Corporation

Publications and Graphics Division

© 1983, 1984, 1985 4201 North Lexington Avenue
by Control Data Corporation St. Paul, Minnesota 55112

All rights reserved

Prlnted in the United States of America or use Comment Sheet in the back of

this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot

near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV I PAGE REV PAGE RE\d
Front Cover - II-1-42 A II-1-101 A 11-2-23 A I11-2-82 A
Title Page - II-1-43 A I1-1-102 A II-2-24 A 11-2-83 A
2 C II-1-44 A I1-1-103 A 11-2-25 A I1-2-84 A
3 C II-1-45 A II-1-104 A 11-2-26 A 11-2-85 A
4 C 1I-1-46 A 11-1~105 A I1-2-27 A I1-2-86 A
5 C II-1-47 A 11-1-106 A 11-2-28 A I1-2-~87 A
6 A II-1-48 A II-1-107 A 11-2-29 A 11-2-88 A
7/8 C I1-1-49 A II-1-108 A I1-2-30 A I1-2-89 A
9 B I1I-1-50 A I1-1-109 A I1-2-31 A 11-2-90 A
10 A I1-1-51 A II1-1-110 A 11-2-32 A 11-2-91 A
11 A II-1-52 A II-1-111 A 1I1-2-33 A 11-2-92 A
12 A II-1~53 A II-1-112 A I1-2-34 A 11-2-93 A
13 B II-1-54 A I1-1-113 A I1-2-35 A I1-2-94 A
14 C 11-1-55 A II-1-114 A 1I1-2-36 A II-2-95 A
15 B II-1-56 A II~-1-115 A 11-2-37 A 11-2-96 A
16 C I1-1-57 A I1I-1~116 A I1-2-38 A 1I1-2-97 A
II-1-1 A II-1-58 B II-1-117 A 11-2-39 A 11-2-98 A
I1-1-2 A I1-1-59 A I1-1-118 A 1I-2-40 A 1I-2-99 A
II-1-3 A 11-1-60 A II-1-119 A I1-2~-41 A I11-2-100 A
II-1-4 A IT-1-61 A 11-1-120 A 11~-2-42 A I1-2-101 A
I1I-1-5 B II-1-62 A II-1-121 A 11-2-43 A II-2-102 A
II-1-6 A II-1-63 B I1-1-122 A 1I-2-44 A 11-2-103 B
II-1-7 A II-1-64 A II-1-123 A II-2-45 A 1I-2-104 A
I1-1-8 A II-1-65 A I1-1-124 A I1-2-46 A 11-2-105 A
I1-1-9 B II-1-66 A I1-1-125 A 1I-2-47 A I11-2-106 A
11-1-10 B {1 I1-1-67 A I1-1-126 A 11-2-48 A 11-2-107 A
I1-1-11 A I11-1-68 A II-1-127 A 1I-2-49 A 11-2-108 A
II-1-12 A II-1-69 A 11-1-128 A I1I1-2-50 A I11-2-109 A
I1-1-13 A 1I1-1-70 A II-1-129 A I11-2-51 A I1-2-110 A
II-1-14 A I1-1-71 A I1-1-130 A 11-2-52 A I1-2-111 A
II-1-15 A II-1-72 A II-1-131 A II-2-53 A 11-2-112 A
11-1-16 A I1-1-73 A I1-1-132 A 11-2~54 A I1-2-113 A
11-1-17 A II-1-74 A I1-1-133 A II-2-55 A II-2~114 A
I11-1-18 A II-1-75 A I1-1-134 A I1-2-56 A I1-2-115 B
I1-1-19 A II-1-76 A II-1-135 A 11-2-57 A 11-2-116 A
I1-1-20 A I1-1-77 A II-1-136 A II-2-58 A I1-2-117 A
11-1-21 A 11-1-78 A I1I-1-137 A I1-2-59 A 11-2-118 A
I1-1-22 B I1-1-79 A 11-2-1 c 11-2-60 A II-2-119 A
11-1-23 B I1-1-80 A I1-2-2 A II1-2-61 A 11-2-120 A
II-1-24 B 11-1-81 A I1-2-3 A I1-2-62 A 11-2-121 B
1I-1-25 B II-1-82 A. I1-2-4 A II-2-63 A 11-2-122 A
II-1-26 B I1-1-83 A 11-2-5 A 1I-2-64 A 11-2-123 A
II-1-26.1/ II-1-84 A I11-2-6 A II-2-65 A I11-2-124 A

II-1-26,2 B I1-1-85 A I1-2-7 A I1-2-66 A I1~2~125 A
T1-1-27 A 1I-1-86 A II-2-8 A 11-2-67 A II-2-126 A
I1-1-28 A 11-1-87 A I1-2-9 A 11-2-68 A 11-2-127 (¢
I1-1-29 A I1I-1-88 A I1-2-10 A 11-2-69 A 11-2-128 A
11-1-30 C 1I1-1-89 A I1-2-11 A 11-2~70 A I1-2~129 C
II-1-31 A II-1-90 B I1-2-12 A 1I-2-71 A 11-2-130 C
I1-1-32 A I1-1-91 A 11-2-13 A I1-2-72 A I1-2-131 A
I1-1-33 A 1I-1-92 A II-2-14 B 11-2-73 A I1-2-132 A
I1-1-34 A I1-1-93 A I1-2-15 A 11-2-74 A 11-2-133 A
I1-1-35 A 1I-1-94 A 11-2-16 A 11-2-75 A 11-2-134 [
II-1-36 A I11-1-95 A 11-2-17 A I1T1-2-76 A I1-2-135 A
11-1-37 A 11-1-96 A 11-2-18 A 11-2-77 A 11-2~-136 C
I1-1-38 A I1-1-97 A I1-2-19 A I1-2-78 C 11-2-137 c
11-1-39 A I1-1-98 A 11-2-20 A 11-2-79 A I11-2-138 C
I1-1-40 A { II-1-99 A I1-2-21 A I1I1-2-80 A I1-2-139 A
I1-1-41 A II-1-100 A I1-2-22 A 11-2-81 A 11-2-140 A
60458890 C 3

PAGE

X
m
<

PAGE

REV

PAGE

REV

PAGE

REV

PAGE

REV

I1-2-141
11-2-142
I1-2-143
I1-2-144
I1-2-145
I1-2-146
I1-2-147
I1-2-148
I1-2-149
I1-A-1
II-A~-2
I11-A-3
II-B-1
1I-B-2
II-B-3
I1I-B-4
II-B-5
II-C-1
II-C-2
II-C-3
1I-C-4
II-C-5
II-C-6
I1I-C-7
II-C-8
II-C-9
II-C-10
II-C-11
II-D-1
II-D-2
II-D-3
II-D-4
II-D-5
1I-D-6
I1-D-7
II-D-8
I1-D-9
II-D-10
I1-D-11
II-D-12
I1-D-13
1I-D-14
I1-D-15
1I-D-16
Index-1
Index~2
Index-3
Index-4
Index-5
Index-6
Index-7
Comment Sheet
Back Cover

B e I T T o N R R N R N N R

60458890 C

PREFACE

This manual contains hardware reference information for the CDC® CYBER 170 Models 815, 825,
835, 845, and 855 computer systems, and the CYBER 180 Models 810, 830, 835, 840, 845, 850,
855, 860, and 990 computer systems, in their Virtual State of operation.

This manual provides model-independent instruction descriptions and programming information
relative to the computer systems hardware., Additional hardware reference information
regarding operation of the computer systems in both their CYBER 170 State and Virtual State
environments is available in manuals listed in the system publications index on the
following page.

AUDIENCE

This manual is for use by programming and engineering services personnel who operate,
program, and maintain the computer systems.

Other manuals applicable to the CYBER 170 and CYBER 180 computer systems are:

Control Data Publication Publication Number
‘NOS Version 2 Operator/Analyst Handbook 60459310
NOS Version 2 Systems Programmer”s Instant 60459370
NOS Version 1 Operator”s Guide 60457700
NOS Version 1 Systems Programmer”s Instant _ 60457790
NOS/BE Version 1 Operator”s Guide 60457380
NOS/BE Version 1 System Programmer”s Reference Manual, Volume 1 60458480
NOS/BE Version 1 System Programmer”s Reference Manual, Volume 2 60458490
NOS/VE Analysis Usage 60463915
NOS/VE Operations Usage ‘ _ 60463914
Codes Booklet 60458100
Maintenance Register Codes Booklet ’ 60458110
cpc®721 Enhanced Display Terminal (CC634B) HRM 62950102

Publication ordering information and latest revision levels are available from the
Literature Distribution and Services catalog, publication number 90310500.

60458890 C

This equipment generates, uses and can
radiate radio frequency energy and if not
installed and used in accordance with the
instructions manual, may cause interference
to radio communications. As temporarily
permitted by regulation, it has not been
tested for compliance with the limits for
Class A computing device pursuant to Subpart
J of Part 15 of the FCC Rules which are
designed to provide reasonable protection
against such interference. Operation of
this equipment in a residential area is
likely to cause interference in which case
the user at his own expense will be required
to take whatever measures may be required to
correct the interference.

PR

60458890 A A

SYSTEM PUBLICATI@N INDEX

CDC CYBER 170/180
MZDELS 835, 840, 845, 850. 855, AND 860

HARDWARE MANUALS

]

HARDWARE MAINTENANCE SYSTEM
MANUALS MANUALS
| |
[! |
CYBER 1707180
MBDEL 835 I I MPDEL B845/855 | IM@DEL 840/850/860 M@DELS 835, 840. 845. 850. B55.
T T T 860, AND 990 (CYBER 17O STATE)}
T/0 UNLT TrEDRY HARDWARE EROE:EFE?ZE‘_%CE MANUAL
60469310
I
I/@ UNIT MLB DIAGRAMS
CYBER 1707180
604690 M@DEL. 835

] 1

I/@ UNLIT MAINTENANCE/PARTS

(VIRTUAL STATE)
HARDWARE REFERENCE MANUAL. V@LUME I

60469840 60469630
I |
I/@ UNIT WIRE LIST
RF 60469110 CYBER 170/180

I I

I/@ UNIT LRGIC DIAGRAMS
60469100

|
L
|
|
|
|
|

CM THERRY J |

_ CP/CM THE@RY

60455910 60458170
] I
CP THE@RY CP/CM LO-L3
60469320 DIAGRAMS
60458180
I
CM M_B DIAGRAMS CP/CM L4 DIAGRAMS
6045?430 60458190

60469060 PARTS 60458200

CP MLB DIAGRAMS | ICP/CM MAINTENANCE/I |

CP/CM MAINTENANCE/ |

CM L@GIC DIAGRAMS
60457420
CP L@GIC DIAGRAMS
60463070
MAINTENANCE
60469050

PARTS 60462510
l

CPO/CMC WIRE LIST
MZDEL B840
GF_ 60462370

]
CPO/CMC WIRE LIST
M2DEL 850
GF 60462980

I
CPO/CMC WIRE LIST
MZDEL 860
GF_ 60461640

MZDELS 840, 845. 850.
855, AND 860 (VIRTUAL STATE}
HARDWARE REFERENCE MANUAL ., VBLUME I
60461320

CYBER 'ITO/180
MZDELS BIQ. 815, 825, 830, 835, 840.
845, B850, 855, 860, AND 930
(VIRTUAL STATEY)
HARDWARE REFERENCE MANUAL. V@QLUME II
60458830

1

SECTION |
SITE PREPARATION - GENERAL
60275100

|

SECTION 2
M@ODEL B35

SITE PREPARATION - SYSTEM DATA
60469010

SECTION 2
MZDELS 845 AND 855
SITE PREPARATION - SYSTEM DATA
60458210

CP/CMC WIRE LIST
GF 60457300 (845)
GF 60458240 (855)

CP WIRE LIST
GF 60463080

|
CP[/CMC WIRE LIST
M2DEL 860
GF 60462930
I

CM WIRE LIST CM WIRE LIST CM WIRE LIST
GF 60458290 GF 60458250 GF 60461630
I
CABLES WIPE LIST CABLES WIRE LIST CABLES WIRE LIST
GF 60469120 GF 60458230 CF 60461650

|

SECTIDN 2
MBDELS 840. 850, AND 860
SITE PREPARATION - SYSTEM DATA
60462300

|

SECTION 3
SITE PREPARATION -
PERIPHERAL EQUIPMENT

COOLING SYSTEM COPLING SYSTEM 60275300
60455930 60461610 I
T T T
P@WER DISTRIBUTIGN AND WARNING CM P@WER DISTR. SECTION 4

(EXCEPT.WIRE LISTS)
60455920

AND WARNING
60433221

1
CP/T@U POWER DISTR.
AND WARNING
(EXCEPT WIRE LISTS)
60461620

I
CP/10U POWER DISTR.

SITE PREPARATION -
MONITORING "AND P@WER DATA
60451300

CYBER 170/180
MODELS 835. 845, AND 855

POWER DISTRIBUTION AND WARNING HARDWARE _OPERATORS GUIDE
IRE LISTS AND WARNING
WIRE LISTS
oF 60459960 & Coisen |
CYBER (707180
INSTL/CHECK@UT INSTL/CHECK@UT INSTL/CHECKEUT MBDELS 840. B50. AND BEO
60463040 6045 8 0 604 e 660 HARDWARE GPERATZRS GUIDE
60463000
KEY 18 L@GIC SYMBDLS]
60456120
l I ECL 10K MICROCIRCUITS
60417700
40-KVA _CONTRGL CABINET AND
ASSOCIATED MGs HWM 60454720 |
| | _ | MAINTENANCE REGISTERS
80-KVA CONTROL CABINET AND CODES BOGKLET
ASSBCIATED MGs HWM 60455810 60458110
I - | I [
GENERAL DESCRIPTIGN CODES BORKLET
60458100

08/85

60458890 C

7/8 ®

©O

1. INSTRUCTION DESCRIPTIONS

Virtual State CP Instructions
CP Instruction Formats

Instruction Description Nomenclature

Interrupts
CP General Instructions

CP Load and Store Instructions
Load/Store Multiple
Load/Store Word
Load/Store Word, Indexed
Load/Store Address

Load/Store Address, Indexed

Load/Store Bytes

Load/Store Bytes, Immediate

Load Bytes, Relative
Load/Store Bit
CP Integer Arithmetic
Instructions
Half-Word Integer Sum
Integer Sum

Half-Word Integer Difference

Integer Difference
Half-Word Integer Product
Integer Product
Half-Word Integer Quotient
Integer Quotient
Half-Word Integer/Integer
Compare
CP Branch Instructions
Branch Relative
Branch Intersegment
Branch on Half-Word
Branch
Branch and Increment
Branch on Segments Unequal
CP Copy Instructions
Copy Address
Copy Half Word
Copy Full Word
CP Address Arithmetic
Instructions
Address Increment, Indexed
Address Increment, Signed
Immediate
Address Relative
Address Increment, Modulo
CP Enter Instructions
Enter Zeros/Ones/Signs
Enter, Immediate Positive/
Negative

60458890 B

CONTENTS

II-1-1

I1-1-1
II-1-1
II-1-2
I1-1-3
II-1-4
II-1-5
II-1-6
I1-1-7
IT-1-7
II-1-8
I1-1-8
I1-1-9
I1i-1-9
I1-1-9
I1-1-10

II-1-11
II-1-12
II-1-13
II-1-14
II-1-14
II-1-14
1I-1-15
II-1-15
1I-1-16

II-1-16
I1-1-17
I1-1-17
I1-1-18
II-1-18
I1-1-19
I1-1-19
I1-1-20
I1-1-20
I1-1-21
II1-1-21

CII-1-22

I1-1-22
I1-1-22

I1-1-23
I1-1-23
I1-1-23
II-1-23
II-1-24

II-1-24

BDP

Enter X1/X0, Immediate
Logical
Enter X1/X0, Signed
Immediate
Enter, Signed Immediate
CP Shift Instructions
Shift Word, Circular
Shift End-0ff, Word/Half-
Word
CP Logical Instructions
Logical Sum/Difference/
Product
Logical Complement
Logical Inhibit
CP Register Bit String
Instructions
Bit String Descriptor
Isolate Bit Mask
Isolate
Insert
CP Mark to Boolean
Instruction
Instruction Descriptions
BDP Nomenclature
BDP Numeric Instructions
Decimal Arithmetic
Decimal Compare
Numeric Move
Decimal Scale
BDP Byte Instructions
Byte Compare
Byte Translate
Move Bytes
Edit
Edit Mask
Edit Operation
MOP Description
Nomenclature
End Suppression Toggle

Special Characters Table

Symbol
Negative Sign Toggle
Zero Field Toggle

Skipping of Signs

Microoperation
Microoperation
Microopefhtion
Microoperation
Microoperation
Microoperation
Microoperation

NoO LN O

II-1-24

II-1-25
II-1-25
II-1-25
II-1-26

II-1-27
11-1-27

II-1-28
II-1-28
II-1-29

I1-1-29
I1-1-29
I1-1-30
II-1-30
II-1-30

I1-1-30
I1-1-31
I1-1-32
I1-1-32
II-1-34
II1-1-35
I1-1-36
I1-1-37
I1-1-38
I1-1-39
I1-1-40
II-1-40
IT-1-41
II-1-42
II-1-42

I1-1-42
I1-1-43
I1-1-43
II-1-43
I1-1-43
II-1-43
II-1-44
II-1-44
I1-1-44
II-1-44
II-1-44
II-1-44
II-1-45
II-1-45

Microoperation
Microoperation

Microoperation
Microoperation
Microoperation
Microoperation
Microoperation
Microoperation
Edit Function NUMERIC
Termination of the
Edit Instruction
Byte Scan While Nonmember
BDP Subscript and Immediate
Data Instructions
Calculate Subscript and Add
Move Immediate Data
Compare Immediate Data
Add Immediate Data
Floating-Point Instruction
Descriptions
Double-Precision Register
Designators
Floating-Point Conversion
Instructions
Convert From Integer to FP
Convert From FP to Integer
Floating—Point Arithmetic
Instructions
Floating-Point Sum/
Difference
Floating—~Point Product
Floating-Point Quotient
Floating-Point Branch
Normal Exit
Branch Exit
Group Interrupt Conditions
Floating-Point Branch on
- Comparison
Floating-Point Branch on
Condition '
Floating-~Point Compare
Vector Instruction Descriptions
Vector Instruction Format
Integer Vector Arithmetic
Integer Vector Compare
" Logical Vector Arithmetic
Integer/Floating—Point
Vector Conversion
Floating-Point Vector
Arithmetic
Special Purpose Vector
Instructions
System Instruction Descriptions
Nonprivileged System
Instructions
Program Error
Scope Loop Sync
Exchange

HEOOW> o

10

I1-1-45
II-1-45
I1I-1-46
II-1-46
I1I-1-46
I1-1-46
I1-1-47
1I-1-47
I1I-1-47

I1-1-47
II-1-48

II-1-48
II-1-49
II-1-50
II-1-51
I1-1-52

II-1-52.

II-1-53

IT1-1-53
II-1-53
I1-1-53

II-1-54

II-1-55
II-1-56
II-1-57
II1-1-58
II-1-58
II-1-58
I1-1-58

II-1-59

IT-1-59
II-1-60
II-1-60
II-1-61
II-1-63
I1-1-63
II-1-64

IT-1-64
II-1-64

II-1-65
I1-1-71

I11-1-72
I1-1-72
I1-1-73
I1-1-73

Return
Pop
Copy Free Running Counter
Test and Set Bit
Test and Set Page
Call Relative
Compare Swap
Call Indirect
Reserved Operation Codes
Execute Algorithm
Local Privileged System
Instructions
Load Page Table Index
Global Privileged System
Instruction
Processor Interrupt
Monitor Mode Instructions
Mixed-Mode Instructions
Purge Buffer
Copy to/from State Buffer
Branch on Condition Register
Peripheral Processor Instruction
Descriptions
PP Instruction Formats
PP Data Format
PP Relocation Register Format
PP Load and Store Imnstructions
PP Arithmetic Instructions
PP Logical Imnstructions
PP Replace Instructions
PP Branch Instructions
PP Central Memory Access
Instructions
PP Input/Output Imstructions
Other IOU Instructions
Exchange Jumps

2, PROGRAMMING INFORMATION

CP Exchange Operations
Virtual State Job—-to-Monitor
Exchange Operations
Virtual State Monitor-to-Job
Exchange Operations
Exchange Packages
CP Registers
Process State Registers
CP Base Constant (BC)
Register
CP Debug Index (DI) Register
CP Debug List Pointer (DLP)
Register
CP Debug Mask Register (DM) -
Register
CP Flag Register
Critical Frame Flag
(CFF)

II-1-74
II-1-75
II-1-76
I1-1-77
II-1-77
II-1-78
I1-1-80
I1-1-81
II-1-83
I1-1-83

IT1-1-83
I1-1-84

I1-1-84
II-1-84
II-1-85
II-1-86
I1-1-86
I1-1-87
IT-1-88

I1-1-90
II-1-90
I1-1-90
I1-1-91
II-1-93
I1-1-97
II-1-103
I1-1-108
II-1-113

II-1-116
II-1-124
II-1-135
I1-1-136
I1-2-1
I1-2-1
I1-2-3
I1-2-3
II-2-3
I1-2-6
II-2-6

I1-2-6
I1-2-6

I1-2-6

11-2-7
I1-2-8

11-2-8

60458890 A

On-Condition Flag (OCF) II-2-8 CP Job Process State (JPS)

Process~Not-Damaged . Register II-2~-14
(PND) Flag I1-2-8 CP Model Dependent Word (MDW)
CP Largest Ring Number (LRN) Register I1-2-14
Register I11-2-8 CP Monitor Process (MPS)
CP Last Processor) Register II-2-15
Identification (LPID) CP System Interval Timer)
Register I1-2-8 (SIT) Register I1-2-15
CP Monitor Condition Register CP Virtual Machine
(MCR) ‘ 11-2-8 Capability List (VMCL) 11-2-15
CP Monitor Mask Register =~ II-2-8 CM Registers I1-2-16
Operand X Registers I1-2-9 CM Corrected Error Log (CEL)
CP Process Interval Timer Register I1-2-16
(PIT) ‘ II-2-9 CM Element Identifier (EID)
CP Program Address (P) Register I11-2-17
i Register II-2-9 CM Environment Control (EC)
o CP Segment Table Address Register I11-2-17
: (STA) Register II-2-10 CM Free-Running Counter Register II-2-17
CP Segment Table Length CM Options Installed (0I) ‘
(STL) Register I1-2-10 Register 11-2-17
CP Top-of-Stack (TOS) CM Port Bounds Register I11-2-17
Pointer Register I1-2-10 CM Status Summary Register I1-2-17
CP Trap Enable (TE) Register II-2-10 CM Uncorrectable Error Log
CP Trap Pointer (TP) (UEL) Register II-2-18
Register I1-2-10 I0U Registers I1-2-18
CP Untranslatable Pointer IOU Element Identifier (EID)
('j.\ - (UTP) Register I1-2-11 Register 11-2-19
L CP Untranslatable Virtual IOU Environment Control (EC)
Machine Identifier Register I1-2-19
(UVMID) Register I1I-2~-11 I0U Fault Status (FS) Registers II-2-19
CP User Condition Register IOU Fault Status Mask Register II-2-19
(UCR) I1-2-11 10U Options Installed (OI)
CP User Mask Register (UMR) II-2-1l Register I1-2-19
CP Virtual Machine IOU 0S Bounds Register I1-2-19
Identifier (VMID) Register I1-2-12 IOU Status Summary Register 1I-2-20
CP Processor State Registers I11-2-12 IOU Test Mode (TM) Register I11-2-20
CP Options Imstalled (OI) CP Condition and Mask Registers I1-2-20
- Register 11-2-13 CP Condition Register Bit
(b" CP Page Size Mask (PSM) Grouping I1-2-23
Register I1-2-13 CP Interrupts I1-2-25
CP Page Table Address Exchange Interrupts I1-2-25
(PTA) Register I1-2-13 Trap Interrupts I1-2-25
CP Page Table Length (PTL) Interrupt Conditions 11-2-26
Register I11-2-13 Access Violation (MCR 54) 11-2-26
CP Processor Fault Status Address Specification
(PFS) Registers I1-2-13 Error (MCR 52) 11-2-27
CP Processor Identifier Arithmetic Loss—of-—
(PID) Register I1-2-13 Significance (UCR 62) 11-2-27
CP Processor Test Mode (PTM) Arithmetic Overflow (UCR 57) II-2-27
Register I1-2-13 Critical Frame Flag (UCR 53) II-2-28
CP Status Summary (SS) Debug (UCR 56) 11-2-28
Register I1-2-13 Divide Fault (UCR 55) 11-2-28
CP Cache/Map Corrected Environment Specificatiomn
Error Log (CCEL/MCEL) * Error (MCR 55) I11-2-28
Register II-2-14 Exponent Overflow (UCR 58) II-2-29
: CP Dependent Environment Exponent Underflow (UCR 59) II-2-29
Control (DEC) Register II-2-14 External Interrupt (MCR 56) II-2-29
0’ CP Element Identifier (EID) Floating-Point Indefinite
A Register I1-2-14 (UCR 61) I11-2-29

60458890 A 11

Floating-Point Loss-of- Data Type 1: Packed

Significance (UCR 60) I1-2-30 Decimal, Unsigned Slack
Free Flag (UCR 50) I1-2-30 Digit 11~-2-42
Instruction Specification Data Type 2: Packed
Error (MCR 51) II-2-30 Decimal, Signed v II-2-43
Inter-Ring Pop (UCR 52) I1-2-31 Data Type 3: Packed
Invalid BDP Data (UCR 63) I1-2-31 Decimal, Signed, Slack
Invalid Segment/Ring Digit 11-2-43
Number Zero (MCR 60) I1-2-31 Data Type 4: Unpacked
Not Assigned (MCR 49) I1-2-31 Decimal, Unsigned I1-2-43
Outward Call/Inward Return Data Type 5: Unpacked
(MCR 61) II1-2-31 Decimal, Trailing Sign
Page Table Search Combined Hollerith I1-2-44
Without Find (MCR 57) 11-2-32 Data Type 6: Unpacked
Privileged Instruction Decimal, Trailing Sign
Fault (UCR 48) 11-2-32 Separate II-2-44
Process Interval Timer Data Type 7: Unpacked
(UCR 51) 11-2-32 Decimal, Leading Sign
Detected Uncorrectable Combined Hollerith I1-2-44
Error (MCR 48) I1-2-32 Data Type 8: Unpacked
CYBER 170 State Exchange Decimal, Leading Sign
Request (MCR 53) I1-2-32 Separate I1I-2-44
Short Warning (MCR 50) 11-2-32 Data Type 9: Alphanumeric II-2-45
Soft Error Log (MCR 62) I1-2-33 Data Type 10: Binary, '
System Interval Timer Unsigned II-2-45
(MCR 59) I1-2-33 Data Type 1l: Binary,
Trap Exception (MCR 63) I1-2-33 Signed II-2~45
Unimplemented Instruction Slack Digit I1-2-45
(UCR 49) I1-2-33 Undefined Results II-2-45
Multiple Interrupt Conditions I1-2-33 Overlap 11-2-45
Flags I11-2-35 Invalid Data I1-2-45
Stack Manipulating Operations I1-2-36 Vector Programming I11-2-46
Stack Frames and Save Areas 11-2-36 Vector Length (Number of
Stack Frame Save Area Format II-2-36 Operations) II-2-47
Stack Frame Save Area Vector Page Size I1-2-48
Descriptor Field "I1-2-37 Vector Broadcast 1I-2-48
Virtual Machine Identifier Vector Interrupts I1-2-48
(VMID) Field I1-2-38 Vector Overlap II-2-48
User Mask/Condition and Floating-Point Programming I1-2-48
Monitor Condition Fields II-2-39 Floating-Point Data Formats II-2-49
Assigned Registers During Stack Standard and Nonstandard FP
Operation I1-2-39 Numbers I1-2-51
Top-of-Stack Pointers - I1-2-39 Floating-Point Zero I1-2-51
Dynamic Space Pointer (AO0) II-2-39 Floating-Point Nonzero II1-2-51
Current Stack Frame Pointer Floating-Point Infinite I11-2-51
(A1) 11-2-39 Floating-Point Indefinite 11-2-52
Previous Save Area Pointer Double-Precision Non-
(A2) I11-2-39 standard FP Numbers 1I-2-52
Binding Section Pointer Exponent Arithmetic I1~-2-52
(43) I1-2-40 Normalization 11-2~52
Argument Pointer (A4) I1-2-40 Floating-Point Sum and
Exceptions During Stack Difference II-2-52
Operations I1-2-40 Floating-Point Multiply I1I-2-53
Business Data Processing Floating-Point Divide II1-2-53
Programming I1-2-40 Floating-Point End Cases II-2-54
BDP Data Descriptors I1-2-40 Program Monitoring II-2-64
BDP Data Types II-2-41 Debug I1-2-64
Data Type 0: Packed Debug List II-2-64
Decimal, Unsigned 11-2-42 Debug List Pointer Register II-2-65

12 60458890 A

ol

Debug Index Register
Debug Mask Register
Enabling Debug

Debug Scan Operation

Interrupts During Debug Scan

Debug—-Software Interaction,
Debug Enabled
Debug-Software Interaction,
Debug Disabled
Virtual and Central Memory
Programming
Process Virtual Memory
System Virtual Memory
Real Memory
Address Tables R
Segment Descriptor Table
System Page Table
Page Table Search
Page Table Entries
PTE Control Fields
PTE Segment/Page
Identifier Field
PTE Page Frame KMA Field
Listing of Pages in
Page Table
Process Binding Section
Access Protection
Ring Structure
Ring Voting
Effect of RN = 0
RN for Read/Write Access
RN for Execute Access
RN Effect on Pop
Instruction
Effect of RN Violations
Execute Access Privilege/
Mode
Keys/Locks
Interstate Programming
Operation in CYBER 170 State
Memory Addressing in CYBER 170
State
Cache Invalidation in CYBER 170
State (Models 835 through
860 Only)
State-Switching Operations
Virtual State Monitor Mode-
to—-CYBER 170 State
Exchange
CYBER 170 State-to-
Virtual State Monitor
Mode Exchange
Exchanges Within CYBER 170
State
Call from Virtual State
to CYBER 170 State
Trap Interrupt from
CYBER 170 State to
Virtual State

60458890 B

II-2-65
II-2-66
I1-2-68
I1-2-68
I1-2-69

I1-2-70
I1-2-70

I1-2-77
I11-2-78
I11-2-78
I1-2-79
I1-2-83
I1-2-84
I1-2-86
11-2-86
I1-2-87
11-2-88

11-2-88
11-2-89

I11-2-90
I1-2-90
I1-2-91
I11-2-95
I1-2-95
11-2-96
I1-2-96
I1-2-96

I1-2-97
I11-2-98

I1-2-98
I1-2-99
I1-2-102
I1-2-102
I1-2-103

I1-2-103
I1-2-104

11-2-104

II-2-104
I1-2-104

I1-2-105

I1-2-105

Return from Virtual State
to CYBER 170 State
Exchange Packages used in
CYBER 170 State
Interstate Exchange Package
Program Address (P)
Register
Stack Pointers
EM Register
Flags
Unified Extended Memory
(UEM) Enable Flag
Expanded Addressing
Select Flag
Enhanced Block Copy Flag
Software Flag (Word 4,
Bit 28)
Instruction Stack Purge
Flag
Software Flag (Word 4,
Bit 26)
CYBER 170 State Monitor
Flag
Exit Mode Halt Flag
RAC Register
FLC Register
Monitor Address (MA)
Register
Address (A) Registers
RAE Register
FLE Register
Virtual State Ring
Numbers
Index (B) Registers
Operand (X) Registers
CYBER 170 State Exchange Package
Interstate Stack Frame Save Area
Code Modificaton in CYBER 170
State
Debug/Performance Monitoring

Exception Handling in CYBER 170

State

Software Exception Conditions
Address Errors
Illegal Instructions
Extended Memory Transfer

Exceptions
Hardware Exceptions in
CYBER 170 State

I0U Peripheral Processor

Programming
Central Memory Addressing by
PPs
Absolute and Relocation
Addressing
0S Bounds Test
PP Central Memory Read
PP Central Memory Write
PP Memory Addressing by PPs

1I1-2-105

II-2-107
I1-2-107

I1-2-109
I11-2-109
I1-2-109
II-2-110

I1-2-110

I1-2-110
II-2-110

I1-2-110

II-2-111

II-2-111

I1-2-111
II-2-111
I1-2-111
I1-2-111

II-2-111
I1-2-112
I1-2-112
I1-2-112

I1-2-112
II-2-112
I1-2-112
II-2-112
I1-2-113

II-2-115
II-2-115

IT-2-115
I1-2-115
I1-2-119
I1-2-120

. I1-2-120

I1-2-121
I1-2-121
I1-2-121
II-2-121
I1-2-122
I1-2-122

II-2-122
I1-2-123

13

Direct 6-Bit Operand
Direct 18-Bit Operand
Direct 6-Bit Address
Direct 12-Bit Address
Indexed 12-Bit Address
Indirect 6-Bit Address
Channel Input/Output Operations
Channel Flags
Channel Active Flag
Register—-Full Flag
Channel (Marker) Flag
Error Flag
Programming for Channel Input/
Output .
Inter-PP Communications
PP Program Timing Consideration
Cache Invalidation
Error Detection and Recovery
PP Hardware Errors
Channel Parity Errors
Parity Errors on Output
Data
Parity Errors on Input
Data
Timeout
Initialization
Display Station Programming
(Chamnel 10g)
Keyboard
Data Display
Character Mode
Dot Mode
Codes
Programming Example
Program Timing Consideration
Real-Time Clock Programming

A. GLOSSARY
B. EDIT EXAMPLES

C. INTERFACE INFORMATION

Interfaces
Twelve-Bit External
Interface
Maintenance Channel
Interface
Two-Port Multiplexer
Interface
Signals

14

11-2-123 I0U Dedicated Channels II-2-136
I1-2-123 Two—Port Multiplexer Programming 11-2-138
I1-2-123 Function Words 11-2-139
11-2-123 Terminal Select (7XXX) I11-2-139
11-2-123 Terminal Deselect (6XXX) I1-2-139
11-2-123 Calendar Clock/Auto Dial-
1I-2-124 Out (1XXX) I1-2-140
11-2-124 Read Summary Status (00XX) II-2-141
11-2-124 PP Terminal Data (01XX) 11-2-141
11-2-124 PP Write Output Buffer
1I1-2-125 (02XX) I1-2-142
11-2-125 Set Operation Mode to
Terminal (03XX) I1-2-142
11-2-125 Set/Clear Data Terminal
11-2-126 Ready (DTR) (04XX) I1T-2-143
I1-2-127 Set/Clear Request to Send
11-2-127 (RTS) (05%XX) I1-2-143
11-2-128 Master Clear (07XX) I1-2-143
I1-2-128 Programming Considerations II1-2-143
I1-2-128 Data Output I1-2-143
Data Input 1I-2-144
I1-2-128 Maintenance Channel Programming II-2-144
MCH Function Words 11-2-144
11-2-129 MCH Control Words I1-2-145
I1-2-129 MCH Programming for Halt/
I1-2-129 Start (Opcode 0/1) I1-2-145
MCH Clear LED (Opcode 3) I1-2-145
I1-2-130 MCH Programming for Read/
11-2-130 Write (Opcode 4/5) 1I-2-146
I1-2-130 MCH Programming for Master
I1-2-130 Clear/Clear Errors
1I-2-130 (Opcode 6/7) II1-2-147
I1-2~-133 MCH Echo (Opcode 8) II-2-147
11-2-134 MCH Programming for Read
I11-2-134 I0U Summary Status
I11-2-136 (Opcode C,I0U Only) 1I-2-147
APPENDIXES
II-A-1 Twelve—Bit Channel
Control Signals 11-C-2
Maintenance Channel
II-B-1 Signals IT-C-3
Control Signals II-C-3
Signals and Cables II-C-3
II-C-1 Data Signals II-C-5
PP and Channel Interaction II-C-5
I1-C-1 Active Flag II-C-5
Full Flag II-C-5
II-C-1 Function Instructions II-C-5
External Channel Input/
II-C-1 Output Sequences II-C-5
II-C-1
II-C-2 D. INSTRUCTION INDEX II-D-1
60458890 C

SN

®

II-1-1
II-1-2
I1-1-3
II-1-4

II-1-5
1I-1-6

I1-1-7
I1-2-1
I1-2-2

1I-2-3
II-2-4

I1-2-5

I1-2-6

I1-2-7
IT-2-8

I1-2-9
IT-2-10

I1-2-11

I1-2-12
II-2-13
I1-2-14

I1-2-15

I1-1-6
I1-1-7
II-1-8
II-1-9

I1-1-10

Vector Instruction Format

Gather Instruction

Scatter Instruction

PP Instruction Formats
and Nomenclature

PP Data Format

PP Relocation Register
Format

Relocation and Address
Formation

CP Calls, Returns and
Interrupts

Virtual State Exchange
Package

Interrupt Flowchart

Format of X0 for Call
Instructions

Virtual State Stack Frame
Save Area

Stack Frame Save Area
Descriptor

BDP Data Descriptor Format

Floating—-Point Data
Formats

Debug List Entry

Debug Condition Select

Central Memory Addressing
from CP

Process Virtual Address
(PVA) Format

System Virtual Address
(SVA) Format

Segment/Page Identifier
(SPID) Format

Real Memory Address (RMA)
Format

CP Load and Store
Instructions

CP Integer Arithmetic
Instructions

CP Branch Instructions

CP Copy Instructions

CP Address Arithmetic
Instructions

CP Enter Instructions

CP Shift Instructions

CP Logical Instructions

CP Register Bit String
Instructions

Compare j Field and X1
Bits 32 and 33

60458890 B

INDEX
'FIGURES
I1-1-61 I1-2-16

II-1-67
II-1-69 I1-2-17
I1-2-18
I1-1-91
I1-1-92 I1-2-19
II-1-92 I1-2-20
I1-2-21
I1-1-117 I1-2-22
II1-2-2 I1-2-23
I1-2-5 I1-2-24
I1-2-34
I1-2-25
I1-2-37
I1-2-26
I1-2-37
I1-2-27
I1-2-38
II-2-41 I1-2-28
I1-2~-49 I1-2-29
II-2-67
II-2-66 I1-2-30
I1-2-31
I1-2-77 I1-2-32
I1-2-78 I1-2-33
I1-2-79
11-2-34
I1-2-80
I1-2-81 I1-C-1
TABLES
II-1-11
II-1-5 I1-1-12
II-1-13
II-1-11 IT-1-14
I1-1-17
I1-1-20
II-1-15
I1-1-22
I1-1-23 I1-1-16
I1-1-25
I1-1-27 I1-1-17
I1-1-29 II-1-18
II-1-19
I1-1-31

Virtual BN-to-Page Number/
Page Offset Conversion

PVA-to—-RMA Conversion

Segment Descriptor Table
Entry Format

Page Table Search, Start
RMA Formation

Page Table Entry Format

Code Base Pointer Format

PVA-to-SVA Conversion,
Read/Write

PVA-to-SVA Conversion,
Execute

Call Indirect Access
Requirements

Interstate Calls, Returns
and Interrupts

Interstate Exchange
Package

CYBER 170 State Exchange
Package

Interstate Stack Frame
Save Area

Display Station Output
Function Code

Coordinate Data Word

Character Data Word

Receive and Display
Program Flowchart

10U Dedicated Channels,
Models 810, 815, 825,
and 830

I0U Dedicated Channels,
Models 835, 840, 845,
850, 855, 860, and 990

Data Sequences Timing

BDP Numeric Instructions

BDP Divide Fault

BDP Byte Instructions

BDP Subscript and
Immediate Data
Instructions

Floating-Point Conversion
Instructions

Floating~Point Arithmetic
Instructions

Floating—-Point Branch
Instructions

Vector Instructions

Nonprivileged Instructions

I11-2-82
I1-2-83

I1-2-85
I1-2-87
I1-2-89
I1-2-91
I1-2-93
I1-2-94
II-2-101
I1-2-106
I1-2-108
I1-2-113
I1-2-114
I1-2-133
I1-2-133
I1-2-133

I1-2-135

II-2-136

I1-2-137
I1-C-11

II-1-32
II-1-35
II-1-38
I1-1-48
I1-1-53
II-1-54
II-1-58

I1-1-62
I1-1-72

15

II~-1-20

II-1-21
11-1-22

I1-1-23
I1-1-24
I1-1-25
I1-1-26
I1-1-27

I1-1-28
II-2~1
I1-2-2
I1-2-3
I1-2-4
I1-2-5
II-2-6

I1-2-7
I1-2-8

I1-2-9

I1-2-10
I1-2-11

16

Local Privileged

Instructions 11-1-83
Mixed Mode Instructions II-1-86
PP Load and Store

Instructions I1-1-93
PP Arithmetic Instructions TII-1-98
PP Logical Instructions II-1-103
PP Replace Instructions I1-1-108
PP Branch Instructions I1-1-113
PP Central Memory Access

Instructions II-1-116
PP Input/Output

Instructions II-1-124
Process State Registers 11-2-7
Processor State Registers I11-2-12
CM Maintenance Registers 11-2-16
I0U Maintenance Registers I1I-2-18
Monitor Condition/Mask

Register Bit Assignments II-2-21

User Condition/Mask Register

Bit Assignments 11-2-22
Interrupt Condition Groups II-2-24
Condition of Flags

Following Call, Return,

Pop, Exchange, and Trap

Operations II-2-35
BDP Operand Types and Field

Lengths 11-2-42
Vector Operations 1I-2-47
Floating Point

Representation I1-2-50

I1-2-12
I1-2-13
I1-2-14
I1-2-15

I1-2-16
I1-2-17
I1-2-18
I1-2-19
I11-2-20

I1-2-21
I1-2-22

I1-2-23
II-2-24
I1-2-25
I11-2-26

II-C-1

II-C-2
I1-Cc-3
I1-C-4
1I-C-5

FP Compare Results I1-2-55,
FP Sum Results, UM Clear 11-2-56
FP Sum Results, UM Set I1-2-57
FP Difference Results,

UM Clear I1-2-58
FP Difference Results,

UM Set I1-2-59
FP Product Results,

UM Clear I1-2-60
FP Product Results,

UM Set 11-2-61
FP Quotient Results,

UM Clear I1-2-62
FP Quotient Results,

UM Set I1-2-63
Debug Conditions 11-2-72
System Instruction

Privilege and Mode 11-2-99
CYBER 170 State Exceptions I1I1-2-117
Keyboard Character Codes I1-2-131
Display Character Codes II-2-132
MCH Function Word Bit

Assignments II-2-148 I
Maintenance Channel

Signals II-C-3
Data Input Sequence . II-C-6
Data Output Sequence I11-Cc-7
MCH Input Sequence 11-C-8
MCH Output Sequence I1-C-9

60458890 C

olel

INSTRUCTION DESCRIPTIONS 1
This section contains the Virtual State CP instruction descriptions and PP instruction
descriptions. . :
VIRTUAL STATE CP INSTRUCTIONS
The Virtual State CP instructions comprise the following five groups:
e General
e Business data processing (BDP)
e Floating-point (FP)
e Vector
. System
CP INSTRUCTION FORMATS
The CP instructions are 16 or 32 bits long, and have 4 basic formats.
Format jkiD (32 Bits)
0 78 1112 1516 1920 31
OoPCOD™ i k i D
8 4 4 4 12
Format SjkiD (32 Bits)
0 45 78 1112 1516 1920 31
oP- . .
cope | S | 1 | ki D
5 3 4 4 4 12
Field Description
Opcode Operation code.
jok,1i Register designators.
D Signed shift count, positive displacement, or bit string descriptor.
S Suboperation code.
60458890 A II-1-1

Business data processing (BDP) instructions using these formats also have one or two 64-bit
data descriptor words which are stored in CM immediately after the instruction. (Refer to
BDP Data Descriptors in this section.)

Format jk (16 Bits)

0 78 1112 15
I— OPCODE] k
8 4 4
Field Description
Opcode Operation code. 7
‘i\,ﬂ)5
j Register designator, suboperation code, or immediate operand.
k Register designator or immediate operand.
BDP instructions using this format have two data descriptor words which are stored in CM
immediately after the instruction. (Refer to BDP Data Descriptors in this section.)
Format jkQ (32 Bits) i
0 78 1112 1516 31 RN
OPCODE i k Q
8 4 4 16
Field Description
Opcode Operation code.
jok ' Register designators, suboperation codes, or immediate operand value.)
Q Signed displacement or immediate operand value.
INSTRUCTION DESCRIPTION NOMENCLATURE
The instruction descriptions in this section use the following address, register, and
instruction designators:
Designator Description
j,k,1i,qQ, Refer to corresponding field in CP Instruction Formats in this section.
Dor S
Aj or Ak One of sixteen 48-bit A registers (AO-AF) specified by j or k field.
Xj or Xk One of sixteen 64-bit X registers (X0-XF) specified by j or k field. @[“m
¢ o
b4

| | y
11-1-2 v 60458890 A s

Designator

XXj or XXk
XjL or XkL
XjR or XkR
204Xk

2n%Q

2n%p

BN

SEG

RN

)

Description
A double-length X register comprised of Xj and X(j+l), or Xk and X(k+l).
Bits O through 31 of an X register.
Bits 32 through 63 of an X register.
Xk, Q or D left-shifted n places with zero fill on right (e.g., 8*Q'
shifts Q three places). ’
Byte number field of a process virtual address.
Segment number field of a process virtual address.
Ring number field of a process virtual address.

Content of memory location (address is the quantity in parentheses).

Additional designators used with the BDP instructions are listed in BDP Nomenclature in this

section.

INTERRUPTS

Refer to CP Interrupts in section 2 of this volume for further information on interrupts.
Exceptions caused by instruction execution are listed with instruction descriptions. The
following exceptions occur independently of instruction execution and, therefore, are not

listed:
Bit
MCR 48
MCR 50
MCR 53
MCR 56
MCR 59
MCR 62
MCR 63
UCR 51

UCR 50

60458890 A

Description
Detected uncorrectable error.
Short warning.
CYBER 170 State exchange request.
External interrupt.
System interval timer.
Soft errér log.
Trap exception.
Process interval timer.

Free flag.

I1-1-3

/‘Tﬁ' i
Wkw
CP GENERAL INSTRUCTIONS
The 84 CP general instructions are divided into 10 subgroups. Tables II-1-1 through II-1-10
list the instructions in each subgroup. The subgroups are as follows:
e Load and store.
° Integer arithmetic.
e Branch.
° Copy.
® Address arithmetic.
e Enter. ’ TN
e Shift. o
e Logical.
e Register bit string.
e Mark to Boolean.
N
Ay
1I-1-4 60458890 A _ kf

CP LOAD AND STORE INSTRUCTIONS

The load and store instructions (table II-1-1) transfer a single bit, byte string, 64-bit
word, oxr multiple 64-bit words between one or more registers and one or more CM locationmns.
Store instructions do not alter any register serving as the source of the data transferred

to CM,
Table II-1-1. CP Load and Store Instructions
Opcode Format Instruction Mnemonic.
S 80 jkQ Load multiple LMULT
C 81 jkQ Store multiple SMULT
‘ 82 ij Load word » LX
83 jkQ Store word SX
84 jkQ Load address LA
85 jkQ Store address SA
Cb 86 jkQ Load bytes, relative LBYTP, j
h‘ 88 jkQ Load bit LBIT
89 jkQ Store bit SBIT
A0 jkiD Load address, indexed LAT
Al jkiD Store address, indexed SAI
A2 jkiD Load word, indexed LXI
C: A3 jkiD Store word, indexed SXI1
. A4 jkiD Load bytes LBYT,XO
A5 jkiD Store bytes SBYT,XO
DO-D7 SjkiD Load bytes, immediate LBYTS,S
D8-DF SjkiD Store bytes, immediate . SBYTS, S

0‘ 60458890 B | 11-1-5

The following interrupt conditions apply to all load and store instructions. Refer to CP
Interrupts in section 2 of this volume for descriptions of these conditions.

e Address specification error.
e Invalid segment/ring number zero.
e Access violation.

e Page table search without find.

e Debug.
Load/Store Multiple
80jkQ Load Multiple Registers, from LMULT Xk,Aj,Q

(Aj displaced by 8*Q), selectivity per XkR

81jkQ Store Multiple Registers, SMULT Xk,Aj,Q
at (Aj displaced by 8*Q), selectivity per XkR ’

0 78 1112 1516 31

80,81 i k Q

These instructions transfer data between the A and X registers and contiguous word locations
in CM.

The CM starting address forms by left-shifting Q three places with zero insertion on right,
and adding the shifted Q to the byte number (BN) field of the process virtual address (PVA)
from Aj. i

XkR bits 48 through 63 specify which contiguous A and X registers are transferred as follows:
48 5152 5556 5960 63

A- | X- | A- X-
FIRST|FIRST|FIRST|LAST

XkR Bits Register Transferred

48-51 First A register.
52-55 First X register.
56-59 Last A register.
60-63 Last X register.
I1-1-6 60458890 A

)

"

‘vkw i

AR

PN
o

The A registers transfer first. When A-first exceeds A-last, no A registers transfer. When
X~-first exceeds X-last, no X registers transfer.

For example, when: A-first = Bjg, X-first = 2j¢
A-last = 414, X-last = Cjg

the instruction does not transfer any A registers and transfers X registers 2 through C.
The store multiple instruction clears CM bits O through 15 when storing the A registers.
The load multiple instruction unconditionally transfers bits 20 through 63 of each CM word
to the corresponding bits of the designated A registers. Bits 16 through 19 (RN-field) of
each A register are set to the largest of the following:

® Bits 16 through 19 of the CM word.

e Bits 16 through 19 of Aj.

e Bits 8 through 11 (Rl field) of the segment descriptor associated with the PVA in Aj.
During a debug scan operation, the PVA resulting from the addition of Aj and Q is the only

data read argument for the load multiple instruction, or the only data write argument for
the store multiple registers instruction. Refer to Debug in section 2 of this volume.

Load/Store Word
823kQ Load Xk, from (Aj displaced by 8*Q) LX Xk,Aj,Q
83jkQ Store Xk, at (Aj displaced by 8*Q) SX Xk,Aj,Q
0 78 1112 1516 31
82,83 j k Q

These instructions transfer one word between Xj and CM. The CM address of the word
transferred is the sum 8 times Q plus the BN field from Aj.

Load/Store Word, Indexed "

A2§kiD Load Xk, from (Aj displaced by 8*D and
: indexed by 8*XiR) LXI Xk,Aj,Xi,Q
A3jkiD Store Xk, at (Aj displaced by 8*D and
indexed by 8*XiR) SXI Xk,Aj,Xi,Q
[1] 78 1112 1516 1920 31
A2,A3 i k i D

These instructions transfer one word between Xk and a word address in CM. The CM address of
the word is.the BN field from Aj plus 8 times XiR (index), plus 8 times D (displacement).
For indexing, these instructions interpret the X0 contents as zeros.. Aj bits 61 through 63
must be zeros or an address specification error occurs. :

60458890 A I1-1-7

Load/Store Address

843kQ Load Ak, from (Aj displaced by Q) LA Ak,Aj,Q
85jkQ Store Ak, at (Aj displaced by Q) SA Ak,Aj,Q
0 78 1112 1516 31
84,85 j k Q

These instructions transfer a 6-byte field between Ak and CM. The field”s leftmost byte
address is the sum of Q (sign-extended to 32 bits) plus the BN field from Aj.

The load Ak instruction transfers the rightmost 44 bits of the 6-byte CM field to Ak bits 20
through 63. The value transferred to Ak bits 16 through 19 is the largest of the following:

e Leftmost 4 bits of the 6-byte CM field.
o Initial Aj bits 16 through 19.

e Bits 8 through 11 (Rl field) of the segment descriptor associated with the PVA in Aje

Load/Store Address, Indexed

AOjkiD Load Ak, from (Aj displaced by D
and indexed by XiR) LAT Ak,Aj,Xi,D
AljkiD Store Ak, at (Aj displéced by D
and indexed by XiR) SATI Ak,Aj,Xi,D
0 78 1112 1516 1920) 31
A0,A1 i k i D

These instructions transfer 6 bytes between Ak and a. 6-byte CM field. The starting
(leftmost) CM address of the 6-byte field is the sum of the displacement D plus the index
value XiR plus the BN field from Aj. For indexing, these instructions interpret the X0
contents as zeros.
The load Ak instruction unconditionally transfers only the rightmost 44 bits of the 6-byte
CM field to Ak bit positions 20 through 63. The instruction transfers to Ak bits 16 through
19 a value that is the largest of the following:

e Leftmost 4 bits of the 6-byte CM field.

e Aj bits 16 through 19,

e Bits 8 through 11 (Rl field) of the segment descriptor for the PVA in Aje.

I1-1-8 : : 60458890 A

U

.1%

Load/Store Bytes
A4jkiD Load Bytes, to Xk from (Aj displaced
by D and indexed by XiR), length per X0 LBYT,X0 Xk,Aj,Xi,D
A5jkiD Store Bytes, from Xk at (Aj displaced
by D and indexed by XiR), length per XO SBYT,X0 ~ Xk,Aj,Xi,D
0 78 1112 1516 1920 31
A4,A5 j k i D

These instructions transfer a field of bytes between Xk and CM. The byte field length
equals 1 plus XO bits 61 through 63. For lengths less than 8, the load byte imstruction.
right-justifies and zero-extends the bytes loaded into Xk.

The beginning (leftmost) CM address of the byte field is the sum of D (zero-extended to 32
bits) plus XiR, plus the BN field from Aj.

Load/Store Bytes, Immediate

DSjkiD Load Bytes, to Xk from (Aj displaced
by D and indexed by XiR), length per S LBYTS,S Xk,Aj,Xi,D
(DS = DO through D7)

DSjkiD Store Bytes, from Xk at (Aj displaced
by D and indexed by XiR), length per § SBYTS,S Xk,Aj,Xi,D

(DS = D8 through DF)

0 45 78 1112 1516 1920 31

DO-DF | § i k i D

These instructions transfer a field of bytes between Xk and CM., The field length equals §
plus one., For lengths less than eight, the load instruction right—justifies and
zero—extends the bytes loaded into Xk.

The beginning (leftmost) CM address of the byte string is the sum of D (displacement) plus

XiR (index), plus the BN field of Aj. For indexing, these instructions interpret the X0
contents as zeros.

Load Bytes, Relative

86jkQ Load Bytes, to Xk LByTP,j
from (P displaced by Q), length per j

0 78 1112 1516 31

86 j k a

60458890 B I1-1-9

This instruction transfers a field of bytes from CM to Xk. The CM byte field length is the
value of the rightmost 3 bits of j plus 1. For lengths less than 8, the byte(s) loaded into
Xk are right-justified and zero-extended on the left. The starting (leftmost) CM byte
address is the sum of Q (sign-extended to 32 bits) plus the BN field from P.

For this instruction, the CP considers the read operation for the byte field an instruction

fetch rather than a data read, and therefore tests the fetch for execute access validity.
Refer to Access Protection in section 2 of this volume.

I.oad/ Store Bit

88jkQ Load Bit, to Xk from (Aj displaced
by Q and bit-indexed by XOR) LBIT Xk,Aj,Q,XO -
. N
89ikQ Store Bit, from Xk at (Aj displaced Y
by Q and bit-indexed by XOR) SBIT Xk,Aj,Q,X0 :
0 78 1112 1516 31
88,89 j k Q
These instructions transfer a single bit between XkR bit 63 and a bit position in CM. The
load bit instruction also clears Xk bits 0 through 62. o
&
The instructions first generate the CM address of the byte containing the bit loaded or o
stored as follows:
1. Form byte index by right-shifting XOR 3 bit positions, end-off, and sign-extend to
32 bits,
2. TForm the sum of this 32-bit byte index plus Q (sign-extended to 32 bits) plus BN
field from Aj.
These instructions then use the original XOR bits 61 through 63 to select the bit position Pt
within the addressed byte., Binary values 0 through 7 for these 3 bits select the 7
corresponding bit position (0 through 7) within the byte. S

The store bit (89) instruction executes as follows: the byte containing the bit to be
stored is read, modified in the appropriate bit position, and written. No other accesses
from any port to the addressed byte are permitted between these read and write accesses.
Clearing a synchronization lock with this instruction requires preserialization which can be
achieved as follows: a test and set bit (14) instruction (which postserializes) issues
immediately before the store bit instruction. This postserialization effectively
preserializes the lock clearing.

For the store bit instruction, operand access validation consists of write access validation
only.

1I-1-10 60458890 B L W

CP INTEGER ARITHMETIC INSTRUCTIONS

The instructions in this subgroup (table II-1-2) perform integer arithmetic on signed two”s

complement words or half words in Xk or XkR. The sign bit is bit O for full-word integers,

or bit 32 for half-word integers.

@? 60458890 A

Table I1I-1-2,

CP Integer Arithmetic Instructions

Opcode Format Instruction Mnemonic
10 ik Integer sum, immediate INCX
11 ik Integer difference SUBX
20 jk Half-word integer sum ADDR
21 jk Half-word integer difference SUBR
22 jk Half-word integer product MULR
23 jk Half-word integer quotient DIVR
24 ik Integer sum ADDX
25 ik Integer difference SUBX
26 ik Integer product MULX
27 jk Integer quotient DIVX
28 jk Half-word integer sum, INCR
immediate

29 jk Half-word integer difference, DECR
immediate

2C jk Half-word integer compare CMPR

2D jk Integer compare CMPX

8A jkQ Half-word integer sum, ADDRQ
signed immediate

8B jkQ Integer sum, signed immediate ADDXQ

8C jkQ Half-word integer product, MULRQ
signed immediate

B2 jkQ Integer proéuct, signed MULXQ

immediate

The integer format is as follows:

01 63
|S REGISTER Xk FULL-WORD INTEGER

3233 : . 63

U

The half-word integer instructions do not alter X register bits O through 31.

HALF-WORD INTEGER

L2

The arithmetic overflow interrupt condition applies to all integer arithmetic instructions.
Individual instruction descriptions list additional interrupt conditions where applicable.
(Refer to CP Interrupts in section 2 of this volume for descriptions of these conditions).

Half-Word Integer Sum

20jk Half-Word Integer Sum,

XkR replaced by XkR plus XjR ADDR Xk,Xj
0 78 1112 15
20 i k

This instruction forms XkR plus XjR and transfers the 32-bit sum to XkR.

28jk Half-Word Integer Sum Immediate,
XkR replaced by XkR plus j INCR Xk,j
0 78 1112 15
28 j k

This instruction forms XkR plus j zero—extended to 32 bits, and transfers the 32-bit sum to
XkR.

I1-1-12 60458890 A

ole

8A3ikQ Half-Word Integer Sum, Signed Immediate, ,
XkR replaced by XjR plus Q ADDRQ Xk,Xj,Q
0 78 1112 1516 31
8A i k Q

This instruction forms XjR plus Q sign—extended to 32-bits, and transfers the 32-bit sum to
XkR.

Integer Sum

24k Integer Sum, Xk replaced by Xk plus Xj ADDX Xk,Xj

0 78 1112 15

24 i k

This instruction forms Xk plus Xj and transfers the 64-bit sum to Xk.

10jk Integer Sum Immediate,
Xk replaced by Xk plus j INCX Xk,j

1] 78 1112_15

10 i k

This instruction forms Xk plus j zero—extended on the left to 64 bits, and transfers the
64-bit sum to Xk.

8BjkQ Integer Sum Signed Immediate,
Xk replaced by Xk minus Xj ADDXQ Xk,Xj,Q
0 78 1112 1516 31
8B i k Q

This instruction forms Xk plus Q sign—extended to 64 bits, and transfers the 64-bit sum to
xk.

60458890 A . ' I1-1-13

Half-Word Integer Difference -

213k Half-Word Integer Difference,
XkR replaced by XkR minus XjR SUBR Xk,Xj
29jk Half-Word Integer Difference Immediate,
XkR replaced by XkR minus j : DECR Xk,j
0 78 1112 15
21,29 i k

These instructions subtract the 32-bit subtrahend in XjR, or in the j field zero—extended to
32 bits on the left, from the 32-bit minuend in XkR, and transfer the 32-bit difference to
XkR. - The instmctions treat each half-word as a signed two”s complement integer.

Integer Difference

25jk Integer Difference,
Xk replaced by Xk minus Xj DECX Xk,j
11k Integer Difference Immediate,
Xk replaced by Xk minus j) SUBX Xk,Xj
0 78 1112 15

11,25 i k

These instructions subtract Xj, or j zero-extended to 64 bits on the left, from Xk, and
transfer the 64-bit difference to Xk. The instructions treat each word as a signed two”s
complement integer.

Half-Word Integer Product

22jk Half-Word Integer Product,
XkR replaced by XkR times XjR MULR Xk,Xj

0 78 1112 15

22 i k-

11-1-14 : S , 60458890 A

,(

P

-

8CjkQ Half-Word Integer Product Signed Immediate,
XkR replaced by XjR times Q MULRQ Xk,Xi,Q
(1] 78 1112 1516 31
8C i k Q

The first instruction multiplies XkR by XjR. The second instruction multiplies the Q field

(sign~extended to 32 bits) by XjR. The multiplication forms an algebraically-signed, 64-bit
intermediate product. The rightmost 32 bits of this intermediate product transfer to XkR as
the final product.

Integer Product

26jk Integer Product, Xk replaced by Xk times Xj MULX Xk,Xj

0 78 1112 15

26 i k

This instruction multiplies the signed two”s complement integers in Xk and Xj to form an
algebraically—signed, 128-bit intermediate product. The rightmost 64 bits of this
intermediate product transfer to Xk as the final product. :

B2ikQ Integer Product Signed Immediate,
Xk replaced by Xj times Q MULXQ Xk,Xj,Q
0 78 1112 1516 31
B2 i k Q

The first instruction multiplies the signed two”s complement integer from Xk by Xj. The
second instruction multiplies the Q field sign—extended to 64 bits by Xj. An algebraically-
signed, 128-bit intermediate product forms. The rightmost 64 bits of this intermediate
product transfer to Xk as the final product.

Half-Word Integer Quotient

23jk Half-Word Integer Quotient, i
XkR replaced by XkR divided by XjR DIVR Xk,Xj
0 78 1112 15
23 j k

This instruction divides XkR by XjR, and transfers the algebraically-signed, 32-bit quotient
to XkR. A divide fault (UCR bit 55) interrupt condition will occur if XjR is equal to zero.

60458890 A I1-1-15

Integer Quotient

273k Integer Quotient, Xk replaced
by Xk divided by Xj

0 78 1112 15

27 i K

This instruction divides the word in Xk by the 64-bit word in Xj, and transfers the result,

consisting of an algebraically-signed, 64-bit quotient to Xk.
interrupt condition will occur if Xj is equal to zero.

" Half-Word Integer/Integer Compare

2Cjk Half-Word Integer Compare,
XjR to XkR, result to XIR

2Djk Integer Compare, Xj to Xk, result to XIR

0 78 1112 15

2¢,2D i k

A divide fault (UCR bit 55)

“ S

These instructions algebraically compare the two”s complement binary integer in XjR or Xj to

the signed two”s complement binary integer. in XkR or Xk, respectively.
zeros. Based on the comparison result, XIR sets as follows:

Condition

Xj = Xk Clear XI1R bits 32 through 63.
Xj 2 Xk Clear XIR bits 32 and 34 through 63, set bit 33.

Xj £ Xk Clear X1R bits 34 through 63, set bits 32 and 33.

11-1-16

Action Taken

X0 consists of all

=
.

Sy

ST

im\
-

60458890 A

ey

CP BRANCH INSTRUCTIONS
This subgroup (table II-1 -3) consists of both conditional and unconditional branch

instructions. Each conditional branch instruction compares the contents of two general
registers to determine whether a normal or a branch exit is taken.

Table II-1-3. CP Branch Instructions

Opcode Format - Instruction Mnemonic
2E jk Branch relative BREL
2F jk Branch intersegment BRDIR
90 jkQ Branch on half-word equal BRREQ
91 jkQ Branch on half-word not equal BRRNE
92 jkQ Branch on half-word greater than BRRGT
93 jkQ Branch on half-word greater than BRRGE

or equal
94 jkqQ Branch on equal BRXEQ
95 ‘ jkQ Branch on not equal BRXNE
96 jkQ Branch on greater than BRXGT
97 jkQ Branch on greater than or equal BRXGE
9C jkQ Branch and increment BRINC
9D ikQ .Branch on segments unequal BRSEG

The debug interrupt condition applies to all branch instructions.
Individual instruction descriptions list additional interrupt conditions where applicable.
Refer to CP Interrupts in section 2 of this volume for a description of these conditions.

Branch Relative

2Ejk Branch to P Indexed by 2*XkR ' BRREL Xk

0 78 1112 15

2E i k

This instruction causes an unconditional branch to the CM address formed by adding 2 times
XkR to the BN field in P.

60458890 A I1-1-17

Branch Intersegment

2Fjk Branch to Aj indexed by 2%*XkR BRDIR Aj,Xk

0 78 1112 15

2F i k

This instruction causes an unconditional branch by modifying the key (KEY), segment number
(SEG), and byte number (BN) fields of the PVA in P, as follows:

1. The key in P copies to the lock of the branched-to segment. The branch is permitted
if the key and lock are equal, if the key is a master key, or if the lock is zero or
equals no lock. i

2. The 12-bit SEG field in Aj (bits 20 through 31) transfers to P bits 20 through 31.

3. A value 2 times XkR adds to the rightmost 32 bits from Aj. X0 consists of all
zeros. This sum transfers to bit positions 32 through 63 of P.

This instruction can cause the following exception conditions:
® Address specification error.
e Invalid segment/ring number zero.

° Access violation.

Branch on Half-Word

90ikQ Branch to P Displaced by Z*Q,

if XjR equal to XkR BRREQ Xj,Xk,Q
91jkQ Branch to P Displaced by 2*Q,
if XjR not equal to XkR BRRNE Xj,Xk,Q
92jkQ Branch to P Displaced by 2*Q,
if XjR greater than XkR BRRGT Xj,Xk,Q
93jkQ Branch to P Displaced by 2*Q,
if XjR greater than or equal to XkR BRRGE Xj,Xk,Q
0 78 1112 1516 31
90,91,9293 j [3 Q

These instructions algebraically compare XjR with XkR, treating each as a signed two”s
complement binary integer. XO consists of all zeros. If the comparison between XjR and XkR
does not satisfy the branch condition specified, the instruction takes a normal exit by
adding 4 to the BN field in P to generate the next instruction address. If the Xj right
(XjR) and Xk right (XkR) comparison satisfies the branch condition, the instruction takes a
branch exit by adding 2 times Q to the BN field in P to form the next instruction address..

I1-1-18 - 60458890 A

n,

b

S

Branch
943kQ Branch to P Displaced by 2*Q, if '
Xj equal to Xk BRXEQ Xj,Xk,Q
95jkQ Branch to P Displaced by 2*Q, if .
Xj not equal to Xk BRXNE Xj,Xk,Q
96jkQ Branch to P Displaced by 2*Q, if
Xj greater than Xk BRXGT Xj,Xk,Q
973kQ Branch to P Displaced by 2*Q, if
Xj greater than or equal to Xk : BRXGE Xj,Xk,Q
("w‘ 0 78 1112 1516 31
e) [94,95,96,97 j k Q

These instructions algebraically compare the Xj word with the Xk word, treating each as a
signed two”s complement binary integer. XO consists of all zeros.

If the comparison between Xj and Xk does not satisfy the branch condition specified, the
instruction takes a normal exit by adding 4 to the BN field in P to generate the next
instruction address. If the comparison satisfies the branch condition, the instruction
causes a branch exit by adding 2 times Q to the BN field in P to form the the next
instruction address. |

Branch and Increment

9CjkQ Branch to P Displaced by 2*Q and '
Increment Xk, if Xj greater than Xk BRINC Xj,Xk,Q

0 78 1112 1516 31

f ac j k Q
‘»‘

This instruction algebraically compares the Xj word with the Xk word, treating each as a
signed two”s complement binary integer. For Xj only, the instruction interprets X0 as all
zZeros.

The comparison results are as follows:

Condition) ‘ Action Taken
Xj < Xk Normal exit. Add 4 to BN field in P to form next instruction address.
Xj > Xk Branch exit. Add 2 times Q to BN field in P to form next instruction

address, and increase word in Xk by l. Overflow is ignored.

:45 R

60458890 A I1-1-19

Branch on Segments Unequal

9DjkQ

0

Branch to P Displaced by 2*Q, if‘segments
unequal, else compare byte numbers,
result to XIR.

78 1112

1516

31

BRSEG

9D

Xi,Aj,Ak,Q

This instruction performs a bit-for-bit comparison between the SEG fields in Aj and Ak (bits

20 through 31).

adding 2 times Q to the BN field in P to form the next instruction address.

If the SEG fields are unequal, the instruction takes a branch exit by

1f the SEG fields are equal, the instruction takes a normal exit by adding 4 to the BN field
The instruction also algebraically compares Aj
bits 32 through 63 with Ak bits 32 through 63, treating each 32-bit quantity as a signed
two”s complement binary integer, and stores the comparison result in X1R, as follows:

in P to form the next instruction address.

Result

AJ = Ak
Aj > Ak

Aj < Ak

CP COPY INSTRUCTIONS

Clear XIR.

Clear XIR bits 32 and 34 through 63, set bit 33.

Clear XIR bits 34 through 63, set bits 32 and 33.

Action Taken

The copy instructions (table II-1-4) transfer information between registers.

-11I-1-20

Table I1I-1-4.

CP Copy Instructions

Opcode Format Instruction Mnemonic
09 jk Copy address, A to A CPYAA
OA jk Copy address, X to A CPYXA
OB jk Copy address, A to X CPYAX
oC jk Copy half word CPYRR
oD ik Copy full word CPYXX
60458890 A

C:

Copy Address
09jk Copy, Ak replaced by Aj CPYAA Ak,Aj

0 78 111215

09 i k

This instruction transfers the 48 bits in Aj to Ak.

OAjk Copy, Ak replaced by Xj CPYXA Ak,Xj

0 78 1112 15

0A i k

This instruction unconditionally transfers Xj bits 20 through 63 to the corresponding bit
positions of Ak. The instruction also compares Xj bits 16 through 19 with P bits 16 through
19, and transfers the larger field to Ak bits 16 through 19.

OBjk Copy, Xk replaced by Aj CPYAX Xk,Aj

0 78 1112 15

0B i k

This instruction transfers the 48 bits in Aj to Xk bit positioms 16 through 63, and clears
Xk bits O through 15.

Copy Half Word
0Cik Copy, XkR replaced by XjR °’ CPYRR Xk,Xj
0 78 1112 15
oc j k

This instruction transfers the half-word in XjR to XkR. The XkL content does not change.

60458890 A I1-1-21

Copy Full Word
0Djk Copy, Xk replaced by Xj CPYXX Xk,Xj

0 78 1112 15

oD i k

This instruction transfers the Xj word to Xk.

CP ADDRESS ARITHMETIC INSTRUCTIONS

Address arithmetic instructions (table II-1-5) perform address arithmetic in two’s
complement ignoring overflow.

Table II-1-5. CP Address Arithmetic Instructions

Opcode Format Instruction Mnemonic
2A jk Address increment, indexed ADDAX
8E jkQ Address increment, signed immediate ADDAQ
8F jkQ Address relative ADDPXQ
A7 jkiD Address increment, modulo ADDAD

Address Increment, Indexed.
2Ajk Address Ak Replaced by Ak plus XjR ADDAX Ak,Xj
0 78 1112 15
2A k

This instruction adds XjR and Ak bits 32 through 63, and returns the sum to Ak bits 32

through 63.

I1-1-22

60458890 B

C

C
C

Address Increment, Signed Immediate
8EjkQ Address Ak replaced by Aj plus Q. ADDAQ Ak,Aj,Q

0 78 1112 1516 31

8E i k Q

This instruction transfers Aj bits 16 through 31 to the corresponding Ak bit positions.
Also, the instruction adds Q (sign-extended to 32 bits) and Aj bits 32 through 63, and
transfers the sum to Ak bits 32 through 63. Overflow is ignored.

Address Relative

8FjkQ Address Ak replaced by P plus
2*X4R plus 2*Q ADDPXQ Ak,Xj,Q
0 78 1112 1516 31
8F j k Q

This instruction transfers P bits 16 through 31 to the corresponding 16 bit positions of
Ak, The instruction also adds Q (sign-extended to 32 bits) to the rightmost 32 bits of P,
adds this 32-bit sum to 2 times the XkR value, and transfers the final sum to Ak bits 32
through 63. Overflow is ignored. The instruction interprets X0 as all zeros.

Address Increment, Modulo

A7jkiD Address Ak Replaced by Ai plus D per j ADDAD Ak,Ai,D,j

0 78 1112 1516 1920 31
A7 | k i D

This instruction transfers Ai bits 16 through 31 to the corresponding bit positions of Ak.
The instruction also adds D (zero-extended to 32 bits on left) to Ai bits 32 through 63, and
transfers bits 32 through 60 of this sum to Ak bits 32 through 60. The instruction performs
a logical product (AND) between bits 61 through 63 of this 32-bit sum and the rightmost 3
bits of j, and transfers the 3-bit logical product to Ak bits 61 through 63. Overflow is
ignored.

The following is an example of the logical product (AND) operation:

First operand 0011
Second operand 0101
Result (AND) 0001

CP ENTER INSTRUCTIONS

The instructions in this subgroup (table II-1-6) enter immediate operands (consisting of
logical quantities or signed two”s complement binary integers) into the X registers,

60458890 B II-1-23

Table II-1-6. CP Enter Instructions

Opcode Format Instruction Mnemonic
1F jk Enter zeros ENTZ
1F jk Enter omnes ENTO
1F jk Enter signs ENTZ
39 jk Enter X1, immediate logical ENTX
3D jk Enter, immediate positive ENTP
3E jk Enter, immediate negative ENTN
3F ik Enter X0, immediate logical ENTL
87 jkQ Enter X1, signed immediate ENTC
8D jkQ Enter, signed immediate ENTE
B3 ikQ Enter X0, signed immediate ENTA

Enter Zeros/Ones/Signs
1Fjk Enter XkL with Zeros ENTZ Xk
1Fjk Enter XkL with Ones ENTO Xk
1Fjk Enter XkL with Signs ENTS Xk
0 78 1112 15
1F i k
This instruction translates the rightmost 2 bits of j as follows:
j Field Action Taken
xx00 Clear XkL bits O through 31.
xx01 Set XkL bits 0 through 31.
xx10 Copy bit 32 (sign) of XkR to bits 0 through 31 of XkL.
I1-1-24

60458890 B

s

e

v

Entey Immediate Positive/ Negative

3Djk Enter Xk with plus j
3Ejk Enter Xk with minus j
0 78 1112 15

3D.3E i k

These instructions zero-extend j to 64 bits and transfer this result, or the two’s

complement of this result, to Xk.

Enter X1/X0, Immediate Logical

39jk Enter X1 with Logical jk
3Fjk Enter X0 with Logical jk
0 ’ 78 1112 15

39,3F i k

ENTP

ENTN

ENTX

ENTL

Xk,j

Xk, j

X1,jk

X0, jk

These instructions transfer k to bits 60 through 63, and j to bits 56 through 59 of X0 or

Xl. The instructions clear bits O through 55,

Enter X1/XO0, Signed Immediate

873kQ Enter X1 with Sign—-Extended jkQ

B3jkQ Enter X0 with Sign-Extended jkQ

0 78 1112 1516 31
87,B3 i k o]

These instructions expand the 24-bit concatenation of j, k, and Q to 64 bits
(right—justified) by extending the leftmost bit of j through bits 0 through 39.

result transfers to X0 or Xl.

60458890 B

ENTC

ENTA

X1,jkQ

X0,3kQ

The 64-bit

II1-1-25

Enter, Signed Immediate -

8DjkQ

0

Enter Xk with Sign-Extended Q ' ENTE Xk,Q

78

1112 1516

31

8D

k

This instruction sign-extends Q to 64 bits, and transfers this value to Xk.

CP SHIFT INSTRUCTIONS

The shift instructions (table II-1-7) shift the Xj 64 bits through the number of bit
positions determined from a computed shift count.,

Table II-1-7. CP Shift Instructions

The result transfers to Xk.

Opcode Format Instruction Mnemonic
A8 jkiD Shift word, circular SHFC
A9 jkiD Shift word, end-off SHFX
AA jkiD Shift half word, end-off SHFR

The computed shift count is the sum of the D field rightmost 8 bits plus XiR bits 56 through
overflow from this 8-bit sum is ignored.

63. An
zeros,

1.

11-1-26

The computed shift count is determined by the following:

The leftmost bit of the 8-bit computed shift count determines the shift direction:

Positive sign:

Negative sign:

Left shift.

Right shift.

The instructions interpret X0 as all

60458890 B

S0

—

o

l\.LV K

4

00

2. The actual shift count is the two”s complement of the rightmost 5 or 6 bits of the
computed shift count for 32- and 64-bit operands, respectively. Thus, half words
can be shifted from 0 to 31 places left or from 1 to 32 places right, Similarly,
full words can be shifted from O to 63 places left or from 1 to 64 places right.
The shifts are as follows:

Shift Count 32-Bit Shifts Shift Count 64—Bit Shifts
0111 1111 Left shift 31 0111 1111 Left shift 63
l (rep:ating) l l
0010 0000 Left shift 0 0100 0000 Left shift O
0001 1111 Left shift 31 0011 1111 Left shift 63
0000 0000 Left shift O 0000 0000 Left shift O
1111 1111 Right shift 1 1111 1111 Right shift 1
1110 0000 Right shift 32 1100 0000 Right shift 64
1101 1111 Right shift 1 1011 1111 Right shift 1
(repeating)
1000 0000 Right shift 32 1000 0000 Right shift 64

3. If the computed shift count results in an actual shift count of zero, Xj transfers
to Xk without shifting.

Shift Word, Circular -

A8jkiD Shift Circular, Xk replaced by Xj,
direction and count per XiR plus D SHFC Xk,Xj,Xi,D

0 78 1112 1516 1920 31

AB i k i D

This instruction shifts the Xj word by the computed shift count, and transfers the result to
Xk. The shift is circular. Bits that shift out one end of the word transfer into bit
positions which become unoccupied at the opposite end of the word.

60458890 B ‘ I1-1-26.1/11-1-26.2

ﬁ \hu..ﬂwy,., \ & rM’J

OO0

Shift End-Off, Word/Half-Word

A9ikiD Shift End-Off, Xk replaced by Xj,
direction and count per XiR plus D SHFX Xk,Xj,Xi,D
AAjkiD Shift End-0ff, XkR replaced by XjR,
direction and count per XiR plus D SHFR Xk,Xj,Xi,D
0 78 1112 1516 1920 31
A9 i k i D

These instructions shift the Xj word, or the XjR half-word, and transfer the result to Xk or
XkR. The computed shift count determines the direction and number of bit positions to be
shifted. In a right shift, the instruction right-shifts the word end-off on the right, and
sign-extends on the left. In a left shift, the instruction left—-shifts the word end-off on
the left and inserts zeros on the right.

CP LOGICAL INSTRUCTIONS

The instructions in this subgroup (table II-1-8) perform logical (Boolean) operations on
64-bit operands in the X registers:

Table II-1-8. CP Logical Instructions

Opcode Format Instruction i Mnemonic
18 jk Logical sum IORX
19 jk Logical difference XORX
1A jk ~ Logical product ANDX
1B jk Logical complement ~ NOTX
1C ik Logical inhibit INHX
60458890 A 11-1-27

logicol Sum/ Difference/Product
18jk Logical Sum, Xk replaced by Xk OR Xj

19jk . Logical Difference,
Xk replaced by Xk XOR Xj

1Ajk Logical Product,
Xk replaced by Xk AND Xj

0 78 1112 15

18,19,1A i

k

IORX XK,Xj
. XORX Xk,Xj
ANDX Xk,Xj

These instructions form the logical sum, difference, or product between the words in Xj and

Xk, and return the 64-bit Boolean result to Xk.

Xk replaced by Xj NOT

follows:
Logical
Sum
(OR)
First operand 0011
Second operand 0101
Result 0111
. Logical Complement
1Bjk Logical Complement,

0 78 1112 15

1B i

k

Examples of these operations are as

Logical Logical
Difference Product
(XOR) (AND)
0011 0011
0101 0101
0110 0001

NOTX Xk,Xj

This instruction transfers the one”s complement of the Xj word to Xk. The one”s complement
of a number results from subtracting the original number, bit for bit, from a number

consisting of all ones.

Ones
Xj
Xk

I1I-1-28

Complement

For example:

60458890 A

s

G

Logical Inhibit

1Cjk Logical Inhibit,
Xk replaced by Xk AND Xj NOT INHX Xk,Xj
0 78 1112 15
1Cc i k

This instruction forms the logical product (AND) between the one”s complement of the Xj
number and the Xk number, and returns the result to Xk. For example:

Logical -
Inhibit

Xj 0011

NOT Xj 1100

Xk 0101

Xk AND Xj NOT 0100

CP REGISTER BIT STRING INSTRUCTIONS
The instructions in this subgroup (table 1I-1-9) address a contiguous string (field) of bits

within a register, beginning and ending at any bit position. The instructions interpret X0
as all zeros.

Table II-1-9. CP Register Bit String Instructions

Opcode Format Instruction Mnemonic
AC jkiD Isolate bit mask ISOM
AD jkiD Isolate bit string ISOB
AE jkiD Insert bit string INSB

Bit String Descriptor

The beginning bit position and bit string length are specified by a bit string descriptor.
The descriptor is the rightmost 12 bits of the sum of D (sign—extended) plus XiR, and has
the following format:

52 5758 63

Leftmost| String
Position |Length -1

XiR Bits Description
52-57 Beginning (leftmost) bit position.
58-63 Length, one less than the number of bits in the string.

The instruction specification error interrupt condition applies to all register bit string
instructions. Refer to CP Interrupts in section 2 of this volume for a description of this
condition.

60458890 A ' 1I-1-29

Isolate Bit Mask

- ACjkiD Isolate Bit Mask, into Xk per XiR plus D IsoM Xk,Xi,D

31

AC

i

k

0 78 1112 1516 1920

D

This instruction generates a bit mask consisting of a contiguous field of ones, and places

this field into Xk.

length of the Xk field.

The bit string descriptor defines the leftmost bit position and the
All Xk bits outside the specified string clear.

Isolate
ADjkiD Isolate, into Xk from Xj per XiR plus D ISOB Xk ,Xj,X1i,D
0 78 1112 1516 1920 31

AD

k

D

This instruction clears Xk and transfers a field of contiguous data from Xj into Xk, right-
justified. The bit string descriptor defines the leftmost bit position and Xj field length.

Insert
AEjkiD Insert, into Xk from Xj per XiR plus D INSB Xk,Xj,Xi,D
0 78 1112 1516 1920 31

AE

i

k

This instruction transfers a field of contiguous bits from Xj to Xk, The field is obtained
from the Xj rightmost bit positions, with the length specified by the bit string descriptor.
The field inserts into Xk with the leftmost bit position and the field length also specified

by the bit string descriptor.

unchanged.

CP MARK TO BOOLEAN INSTRUCTION

All Xk bit positions outside the specified field remain

The following instruction tests X1R bits 32 through 33 for values specified by the j field.

1Ejk Mark to Boolean, set Xk per j and XIR MARK Xk,Xi,j
0 78 1112 15
1E j k

This instruction tests XjR bits 32 through 33 for a bit combination by comparing j and XIR
bits 32 through 33 for an equal condition (EQ) as shown in table II-1-10. If XIR bits .32
through 33 equal a value specified by j, the instruction clears Xk bits Ol through 63 and
The instruction clears Xk if no equality occurs.

‘'sets Xk bit O.

From left to right, the 4 bits of j are individual pointers associated with the 4 possible

values of XIR bits 32 and 33 (00, 01, 10, 11).

When set, the first bit in the j field tests

bits 32 and 33 for a value of 00, the second bit for 01, the third bit for 10, and the

fourth bit for 1ll.
either 01 or 11.

I1-1-30

For example, if j equals 0101, equality occurs when bits 32 and 33 are

60458890 ¢

S

b

00

Table II-1-10. Compare j Field and X1 Bits 32 and 33

3 Register XIiR Bits 32, 33
Field 00 [ol [10 [11

0000 Unconditional Inequality

0001 EQ

0010 EQ

0011 EQ EQ
0100 EQ

0101 EQ EQ

0110 EQ EQ

0111 EQ EQ EQ

1000 | EQ

1001 | EQ EQ

1010 EQ EQ

1011 EQ EQ EQ

1100 | EQ EQ

1101 | EQ EQ EQ

1110 | EQ EQ EQ

1111 Unconditional Equality

BDP INSTRUCTION DESCRIPTIONS

The business data processing (BDP) instruction group consists of 18 operation codes in 3
subgroups:

e BDP numeric.
° Byte.
e Subscript and immediate data.
Tables II-1-11 through II-1-14 list the instructions within each subgroup. For descriptions

of source and destination fields, data descriptors, access types, data formats, and data
types, refer to Business Data Processing Programming in section 2 of this volume.

60458890 A ' 11-1-31

BDP NOMENCLATURE

The BDP instruction descriptions use the following additional terms:

Term Description

D(Aj) Source data fiéld addressed by PVA in Aj.

D(Ak) Other source data field, or destination data field, addressed by PVA in Ak.
D(Ai+D) Edit mask addressed by PVA in Ai plus displacement D. The edit instruction

(ED) uses this term.

BDP NUMERIC INSTRUCTIONS , \~‘,

The instructions in this subgroup (table II-1-11) perform arithmetic, shift, conversion, and
comparison operations on byte fields from CM.

Table II-1-11. BDP Numeric Instructions

Opcode Format Instruction Mnemonic)
70 jk Decimal sum ADDN,Aj ,X0 \Q:QD
71 ik Decimal difference SUBN,Aj,XO0
72 ik Decimal product MULN,Aj ,X0
73 jk Decimal quotient DIVN,Aj,X0
74 ik Decimal compare CMPN,Aj ,X0
75 jk Numeric move MOVN,Aj,X0 o
E4 jkiD Decimal scale SCLN,Aj ,X0 g
E5 jkiD Decimal scale rounded SCLR,Aj ,X0

After completing the required operation, the instructions store the right-justified result
in the destination field. These instructions also do the following:

e Zero~fill the high—order destination field positions if the decimal result is
shorter than the destination field.

° Truncate the result”s leftmost bits if the result exceeds the destination field.:
e Treat a decimal numeric value of minus zero as equal to plus zero.

e Do not store minus zero as a result, except when truncation takes place.

O

11-1-32 ~ ‘ 60458890 A %

Nezi

00

An instruction specification error occurs if the length and type fields in the source and
destination field data descriptors do not conform to the length and type allowed for a
particular instruction. This inhibits instruction execution and initiates the corresponding
program interrupte.
The following conditions apply to all BDP numeric instructions:

e Instruction specification error.

e Address specification error.

e Invalid segment/ring number zero.

® Access violation.

e Page table search without find.

e Debug.

e Invalid BDP data.
A destination BDP operand of length zero transforms the instruction into a no—-operation.
However, when the source field length is nonzero, exception sensing for the source field
occurs. This includes testing for arithmetic loss—of-significance and for overflow, but

excludes testing for a divide fault.

Individual instruction descriptions list additional interrupt conditions, where applicable.
Refer to CP Interrupts in section 2 of this volume for descriptions of these conditions.

60458890 A ' I1-1-33

Decimal Arithmetic -

70ik (2 descriptors) Decimal Sum,
D(Ak) replaced by D(Ak) plus D(Aj) ADDN,Aj X0 Ak,Xi

71jk (2 descriptors) Decimal Difference,
D(Ak) replaced by D(Ak) minus D(Aj) SUBN,Aj,X0 Ak,Xi

72jk (2 descriptors) Decimal Product,
D(Ak) replaced by D(Ak) times D(Aj) MULN,Aj,X0 Ak,Xi

73jk (2 descriptors) Decimal Quotient, D(Ak)
replaced by D(Ak) divided by D(Aj) DIVN,Aj,X0 Ak,Xi

0 78 1112 15

70,71,72,73| j k

N

These instructions perform arithmetic operations on the initial destination field (an
augend, minuend, multiplicand, or dividend) and the source field (an addend, subtrahend,
multiplier, or divisor). The decimal result (sum, difference, product, or quotient)
transfers to the destination field. :

The instructions allow packed and unpacked decimal data types 0 through 6. They do not
support unpacked decimal leading sign data types 7 and 8. A numeric move instruction (75)
must be used to format operands of these types prior to use in arithmetic operations.

The instruction results are algebraicaliy signed. If the results equal zero with no loss-
of-significance, a positive sign is entered. The result translates to the preferred codes
of the data type specified by the destination field data descriptor.

These instructions can cause the following exception conditions:

° Arithmetic overflow.

e Divide fault (instruction 73 only, refer to table II-1-12).

11-1-34 - 60458890 A

AN

o0

Table II-1-12., BDP Divide Fault

K K J K Divide
Field Value Field Value Fault
Length Length

0 * 0 * No

0 * Nonzero 0 No

0 * Nonzero Nonzero No
Nonzero 0 0 * Yes
Nonzero 0 Nonzero 0 Yes
Nonzero 0 Nonzero Nonzero No
Nonzero Nonzero 0 * Yes
Nonzero Nonzero Nonzero 0 Yes
Nonzero Nonzero Nonzero Nonzero No

*Since field length is zero, the data is disregarded.

Decimal Compare

743k (2 descriptors) Decimal Compare,

D(Aj) to D(Ak), result to XIR CMPN,Aj,X0 Ak,Xi

0 78 1112 15

74 i k

This instruction algebraically compares the decimal contents of the source and destination
fields, and depending on the comparison results, transfers a half word to X1R as follows:

Condition Action Taken

D(Aj) = D(Ak) Clear XIR.

D(Aj) > D(Ak) Clear XIR bits 32 and 34 through 63, set bit 33.

D(Aj) < D(Ak) Clear XIR bits 34 through 63, set bits 32 and 33.

The instruction allows data types 0 through 6. The maximum operand length is a function of
the data type. The instruction accommodates unequal field lengths by using decimal zero
£ill in the leftmost positions of the shorter-length field.

60458890 A I1-1-35

Numeric Move

755k (2 déscriptors) Numeric Move,) MOVN,Aj,X0 Ak,Xi
D(Ak) replaced by D(Aj) after formatting

0 78 1112 15

75 i k

This instruction obtains a number from the source field, validates the number according to
the T field from its associated data descriptor, reformats it according to the T field in
the destination field data descriptor, and transfers the result to the destination field.

The instruction can convert and format any combination of data types O through 8, and 10 or
11. If the conversion is from a decimal data type to a binary data type, the decimal data
type determines the maximum length for the source as follows:

Maximum
Source Field Source Field
Data Type Length (Bytes)
0 through 3 19
4 through 8 38

The maximum destination field length is eight bytes. The instruction truncates the leftmost
bytes if the destination field is not long enough to accommodate the entire binary number,
or extends the sign bit on the left if the destination field exceeds the conversion result.
When truncation places a negative zero into the destination field, it is not changed to
positive zero.

The same length restrictions apply if the source is a binary data type and the destination
is a decimal data type, except that if the receiving field exceeds the converted number, the
instruction adds leading zeros according to the decimal data type [ASCII character zero
(301¢) or digit zero (03g)1.

When both operands are decimal, the destination field fills from right to left. If the
field lengths are unequal, the instruction either truncates leading digits or inserts
leading zeros according to the destination data type.

This instruction can cause the arithmetic loss~of-significance exception condition.

I1-1-36 60458890 A

O

-~

,'/' \\\
\rk‘u-’ ; oS
e N
W w
3 " o
A S

00

Decimal Scale

E4jkiD (2 descriptors) Decimal Scale,
D(Ak) replaced by D(4j),
scaled per XiR plus D SCLN,Aj,X0 = Ak,X1,Xi
E5jkiD (2 descriptors) Decimal Scale Rounded,
D(Ak) replaced by rounded D(Aj), scaled
per XiR plus D SCLR,Aj,X0 Ak,X1,Xi
0 78 1112 1516_1920 31
E4,E5 j k i D

These shift instructions move data from the source field to the destination field, shifting
the data under control of a computed shift count. This count is the 8-bit sum of the two’s
complement 32-bit integer from XiR plus the D-field rightmost 8 bits of the instruction.
Any overflow from the 8-bit sum is ignored. The X0 contents interpret as all zeros. The
instruction acts as a move instruction if the shift count equals zero.

With positive shift count (bit 56 = 0), the source data left-shifts as determined by bits 57
through 63 of the computed shift count. A negative shift count (bit 56 = 1) causes a shift
to the right. In this case, the number of positions is determined by the two”s complement
of bits 57 through 63 of the computed shift count. A value of 1000 0000 interprets as a
right shift of 128 positions.

A positive shift count effectively multiplies the source data by powers of 10; a negative
shift count divides the source data by powers of 10. The shifting occurs as the data moves
from the source to the destination field. Shifting is end~off with zero—fill as required to
accommodate the length and type specified for the destination field. The source field sign
moves the destination field unchanged.

The shift counts are interpreted as follows:

Shift Count Shifts
01111 1111 Left shift 127
0000 0000 Left shift O
1111 1111 Right shift 1
1000 0001 l

1000 0000 Right shift 128

The instruction allows data types O through 6 for the source and destination fields.
The decimal scale rounded (E5) instruction rounds upward the absolute value of the
right-shift result. This occurs by adding 5 to the last digit shifted end-off, and
propagating carries through the decimal result.

These instructions may cause the arithmetic 1oss?of-significance exception condition.

60458890 A I1-1-37

O

BDP BYTE INSTRUCTIONS

The instructions in this subgroup (table II-1-13) compare, translate, move, edit, or scan
byte fields in CM. ‘

Table II-1-13, BDP Byte Instructions

Opcode . Format 'Instruction Mnemonic
76 jk Move bytes) MOVB,Aj,XO0
77 jk Byte compare CMPB,Aj ,X0
E9 jkiD Byte'compare, collated CMPC,Aj X0
EB jkiD Byte translate TRANB,Aj ,X0
ED jkiD Edit EDIT,Aj,X0
F3 jkiD Byte scan while nonmember SCNB, X0

The following conditions apply to all byte instructions: 7
° Instruction specification error. -
® Address specification error.
® Access violation.
e Page table search without find.
e Debug.
Individual instruction descriptions list additional interrupt conditions where applicable. « -

Refer to CP Interrupts in section 2 of this volume for descriptions of these conditionms.

I1-1-38 - - 60458890 A @;;E

(”"5

O

00

Byte Compare

77jk (2 descriptors) Byte Compare, D(Aj)
to D(Ak), result to XIR, index to XOR CMPB,Aj,X0 Ak,X1
0 78 1112 15
77 i k
E9jkiD (2 descriptors) Byte Compare Collated,

D(Aj) to D(Ak), both translated per
(Ai plus D), result to XIR,
index to XOR . CMPC,Aj,X0 Ak,X1,Ai,D

0 78 1112 1516 1920 31

E9 i k i D

These instructions compare the bytes in the source and destination fields, and set XIR
according to the result. The comparison proceeds from left to right. When the field
lengths are unequal, trailing space characters (20]4) are used for the shorter field. The
maximum operand length is 256 bytes. Data types are ignored. The comparison continues
until the longer field is exhausted or the instructions detect an inequality, as follows:

Compare The byte comparison ends when the instruction detects an inequality
7 between corresponding bytes in the source and destination field.
Compare An inequality detected between corresponding bytes from the source and
Collated destination fields results in the translation of both bytes, using a
(E9) translation table in CM. If the translated bytes are unequal, the

comparison stops with the results shown in the following list. If the
translated bytes are equal, the comparison continues until the longer
field is exhausted, or until the instruction detects another
inequality. In the later case, another translation and comparison
OCCUrLS. :

The comparison results are indicated in X1R as follows:

Condition Action Taken

D(Aj) = D(Ak) X1R cleared.

D(Aj) > D(Ak) Clear XIR bits 32 and 34 through 63, set bit 33.
D(Aj) < D(Ak) Clear XIR bits 34 through 63, set bits 32 and 33.

An unequal comparison places the sequence number of the byte causing the inequality into
XOR. The instruction adds each field”s leftmost byte address to the sequence number in XOR
to determine the byte addresses within the source and destination fields causing the unequal
comparison. Register XOR does not change if inequalities do not exist.

The user determines the translation table contents used by the compare collated instruction,
and preloads the table into CM. The translation table contains 256 bytes. Its starting ‘
address forms by adding the BN field in Ai to the zero—extended D field from the

instruction. Each translated byte adds as a positive offset to ‘the translation table
starting address, forming the address of the translated byte read from CM.

60458890 A I1-1-39

Byte Translate

EBjkiD (2 descriptors) Byte Translate,
D(Ak) replaced by D(Aj), translated
per (Ai plus D) TRANB,Aj,X0 Ak,Xi,D
0 - 78 1112 1516 1920 31
EB i k i D

This instruction translates each source field byte according to a user—generated translation
table in CM, and transfers the results to the destination field. The source and destination
field lengths are limited to 256 bytes. Data types are ignored.

The translation proceeds from left to right. The instruction uses each source field byte as
a positive offset which it adds to the translation table address to locate the translated
byte. Translated bytes transfer to the destination field. The translation terminates after
the destination field length has been exhausted. ’

If the source field exceeds the destination field, the instruction truncates the rightmost
bytes of the source field. When the source field is shorter than the destination field, the
instruction fills the destination field rightmost byte positions with translated space
characters.

The user determines the translation table contents and preloads the table into CM. This
table contains 256 bytes; its starting address forms by adding the BN field in Ai to the
zero—extended D field from the instruction.

Move Bytes
76jk (2 descriptors) Move Bytes,
D(Ak) replaced by D(Aj) MOVB,Aj,X0 Ak,Xi
0 78 1112 15
76 i k

This instruction moves bytes from the source field to the destination field. The move
operation is from left to right; data types are ignored. Maximum field lengths are 256
bytes. Unequal field lengths result in truncating trailing characters from the source field
or inserting trailing space characters into the destination field.

I1-1-40 , 60458890 A

AN
o’

>
=N
=

/ N

S/
// -

N

kﬁ?f

Edit
EDjkiD (1 descriptor) Edit, D(Ak) replaced by
D(Aj) edited per D(Ai+D) EDIT,Aj,X0 Ak,Xi,Ai,D
0 78 1112 1516 1920 31
ED i k i D

Under control of a CM byte field called an edit mask, this instruction edits digits or
characters from the source field and transfers the result to the destination field. It can
perform the following editing functions:

‘:i?a' e Move source field digits/characters to destination field.

® Move characters from the edit mask to destination field.

® Specify and insert a string of O through 15 characters (symbol) into the destination
field.

e Specify an 8-byte special character table (SCT) and insert any character from this
table.

° Insert suppression characters and floating signs to the left of the first

C) significant digit.

° Perform insertion of signs, suppression characters, blanks, symbols, or SCT
characters based on whether the source field is positive or negative.

° Spread suppression character through the destination field.
® Write suppression characters if destination field is zero.

The source data descriptor type fields are restricted to data types O through 9. The
instruction ignores the destination data descriptor type fields.

0 60458890 A II-1-41

Edit Mask

The edit mask consists of a length—~indication byte followed by up to 254 micro—operation
bytes. The length is a binary number indicating the number of bytes in the edit mask
(including the length—indication byte). If the length-indicating byte is either zero or
one, the associated edit instruction results in a no-operation. After the length indicator,
the mask contains a string of one-byte microinstructiomns.

The edit mask address is the sum of the BN field from Ai plus the zero—extended D field from
the instruction. The edit mask format is as follows:

(1] 70 34 70 34 7

LENGTH | MOP| SV |MOP | SV

First byte Following bytes
Field Description
LENGTH Binary number indicating the total number of bytes in the edit mask
(0 to 2555¢).
MOP Microoperator specifying the editing function.
sV Binary specification value from 0 through 15. Meaning varies according to

the associated MOP.

Edit Operation

The edit operation uses the tables and toggles described in the following paragraphs. Edit
control proceeds from left to right on the mask, one character at a time. The instruction
performs the editing function specified by the MOP and the SV.

Indexing through the source field is by bytes unless its data type is packed-numeric.

Packed-numeric data is indexed by half-bytes. Indexing through the destinatiom field is by
bytes. .

MOP Description Nomenclature

The MOP descriptions use the following additional terms:

Term Description

ES End suppression toggle.

SCT Special characters table.

sV Specification value (Refer to Edit Mask, preceding).
SM Symbol.

SN Negative sign toggle.

ZF Zero field.

11-1-42 ' 60458890 A

A

C

End Suppression Toggle

The end suppression (ES) toggle controls zero suppression. Hardware sets the ES toggle
false at the start of edit. The ES toggle sets true when zero suppression ends, when the
first nonzero leading digit is encountered, or by a MOP.

Special Characters Table

The eight-byte special characters table (SCT) is stored in hardware. Entries are written by
the micro operation code D. For proper editing, the SCT must be as follows:

Byte 0 1 2 3 4 5 6
Character b|b|+]|-1]. K

Hexadecimal value |20 (20|2B{2D|2C|2E |24 | 2F

l—-—- Negative sign

Positive sign

7
/

Suppression character

Blank fill character

Symbol

The symbol (SM) is a string of O through 15 characters that the edit instruction creates and
inserts into the destination field, under edit mask control. Once the symbol has been
inserted, the instruction must recreate it before reinserting it. The symbol has a length
of zero when an edit operation begins. The system uses the symbol for the floating-sign and
floating-currency editing features, and for sign—sensitive and significance-sensitive
character string insertion.

Negative Sign Toggle

The negative sign toggle (SN) provides the source field sign. At start of edit, hardware
sets the SN toggle false if the source field is an alphanumeric, an unsigned numeric, or a
positive numeric. The SN toggle is initialized true only for a negative numeric source
field.

Zero Field Toggle

The zero field (ZF) toggle depicts a zero or nonzero source field. It is initialized true,
and sets false after encountering the first nonzero character.

60458890 A I1-1-43

Skipping of Signs

The edit instruction (under edit mask control) automatically skips signs when reading
numeric data types. The signs interpret numerically when reading combined signed data
types, also under edit mask control. ’

Microoperation O

This MOP translates source field characters to ASCII and moves these to the destination
field as follows. The translation performs as described in the Edit Function NUMERIC in
this section.

l. Set ES true if SV is not equal to zero.

2. Translate SV digits from the source field to the equivalent ASCII characters and
copy these into the destination field.

Microoperation 1

This MOP moves type 9 characters as follows:
1. Set ES true if SV is not equal to zero.

2. Move SV characters from the source field to the destination field. The source field
must be type 9 or an invalid BDP data condition occurs.

Microoperation 2,3

These MOPs are no—operations.

Microoperation 4

This MOP moves the next edit mask SV bytes to the destination field.

Microoperation 5

. . This MOP sets the symbol to a single character from SCT, respresenting the source data field
sign as follows:

® Negative source data field.
Copy SCT byte 3 to destination field.

° Positive source data field.

Copy SCT byte SV into symbol field. The SV rightmost 3 bits provide an index
into the SCT. ‘

I1-1-44 : 60458890 A

3
L

'
X

)

¥

G
y

Microoperation 6

This MOP moves the next edit mask SV bytes to the symbol.

Microoperation 7

This MOP conditionally translates source field SV digits to their equivalent ASCII
characters and copies them to the destination field. The translation performs as described
in the Edit Function NUMERIC in this section.

e ES false and zero source field digit.
Copy SCT byte one to destination field.

e ES false and nonzero source field digit.
Set ES true and copy symbol to destination field followed by the translated
digit.

e ES true.
Copy translated digit to destination field.

Microoperation 8

This MOP conditionally copies the symbol to the destination field as follows:

° ES true.
No operation.

e ES false.
Copy symbol to destination field and set ES true.

Microoperation 9

This MOP conditionally copies the symbol or SCT character to the destination field as
follows:

e SV>7
Copy symbol to destination field.

° sv <7

Copy SCT byte SV into destination field. The SV rightmost 3 bits provide an
index into SCT. ‘

60458890 A II-1-45

Microoperation A

This MOP conditionally copies the symbol or SCT character to the destination field as
follows:

e SV > 7 and source field positive,
Copy symbol to destination field.

e SV > 7 and source field negative.
Copy SCT byte O to destination field, once for each symbol character.

e SV <7 and source field positive. .
Copy SCT byte SV into destination field. The SV rightmost 3 bits provide an
index into SCT.

e SV £ 7 and source field negative.
Copy SCT byte O into destination field.

Microoperation B

This MOP is identical to MOP A, but with the action caused by a reversal of the source field
sign.

Microoperation C

This MOP conditionally copies the symbol or SCT character to the destination field as
follows:

e SV > 7 and ES true.
Copy symbol to destination field.

e SV > 7 and ES false.
Copy SCT byte 1 character to destination field, once for each symbol character.

e SV<L7 and ES true.
Copy SCT byte SV into destination field. The SV rightmost 3 bits provide an
index into SCT.

e SV <7 and ES false.
Copy SCT byte 1 into destination field.

Microoperation D

This MOP copies the next edit mask character into the SCT byte determined by using the SV
rightmost 3 bits as an index into the SCT.

11~-1-46 ’ 60458890 A

O

k1"';:,3"

Microoperation E

This MOP copies SCT byte 1 into the destination field, SV times.

Microoperation F

This MOP conditionally copies SCT character into the destination field as follows:
[No—-operation when SV = O,
e ZF false and nonzero source field: terminate the edit instructionm.

e ZF true and zero source field: reset to start of destination field and copy SCT
c;":{»\) byte 1 into destination field SV times.

Edit Function NUMERIC

Micro-operations 0 and 7 translate and move a source digit into the destination field as
follows:

e Each source digit is checked. Invalid decimal digits cause an Invalid BDP Data
condition. A program interrupt occurs when enabled.

mJ ® When the source field is packed-numeric, appropriate ASCII zone bits are supplied
for the destination character.

e A nonzero digit causes the ZF toggle to be set false.

Termination of the Edit Instruction

The edit instruction terminates when the edit mask is exhausted, or when a MOP 15 is read
and the zero field (ZF) toggle is false. The CP detects no exception conditions for either

' § condition, even though the instruction may not have exhausted the source or destination
fields. If the instruction terminates with the destination field not full, the remaining
portion of the destination field is not altered. If the source field is not exhausted when
the instruction terminates, the source field is checked for invalid BDP data, and. the sign
is examined. ’

The edit instruction may cause the invalid BDP data exception condition.

©0

60458890 A I1-1-47

Byte Scan While Nonmember

F3jkiD (1 descriptor) Byte Scan While Nonmember,
D(Ak) for presence bit in (Ai+D),
character to X1R, index to XOR SCNB,Aj,X0 Ak,Xi
0 78 1112 1516_1920 31
F3 i k i D

This instruction detects possible unwanted characters in a character string by inspecting a
256-bit table in CM. The starting byte address of the table forms by adding the BN field
from Ai to the zero—extended D field from the instruction.

The scan proceeds from left to right, one character at a time. The data type is ignored.
The binary value of each character addresses a bit in the table. The scan terminates if
this bit is a 1 or if the source field has been exhausted.

If the scan terminates because the addressed bit is set, the following occurs:

e The binary value of the sequence number (index) pointing to the byte causing scan
termination is placed right—justified into XOR.

° The binary value of the character causing scan termination is placed right-justified
into X1R.

If the scan terminates from exhaustion of characters in the byte string, XOR contains the
original byte string length, XIR bit 32 sets, and bits 33 through 63 clear.

This instruction can also perform the-Byte Scan While Member function. In this case, the
table specifying the nonallowed byte string characters is logically complemented before the
instruction executes,

BDP SUBSCRIPT AND IMMEDIATE DATA INSTRUCTIONS

The instructions in this subgroup are listed in table II-1-14,

Table II-1-14, BDP Subscript and Immediate
Data Instructions

Opcode Format Instruction Mnemonic
F4 jkiD Calculate subscript and add CALDF,Aj,XO0
F9 jkiD Move immediate data MOVI,Xi,D
FA jkiD Compare immediate data CMPI,Xi,D
FB jkiD Add immediate data ADDI , Xi,D

I1-1-48 . 60458890" A

4

=

./

OO0

The following conditions apply to all subscript and immediate data instructions.
e Instruction specification error.
o Address specification error.
e Invalid segment/ring number zero.
® Access violation.
e Page table search without find.
e Debug.
e Invalid BDP data.

Individual instruction descriptions list additional interrupt conditions where applicable.
Refer to CP Interrupts in section 2 of this volume.

Calculate Subscript and Add

F4jkiD (1 descriptor) Calculate Subscript
and Add, D(Aj) checked and modified per
(Ai plus D), result added to XkR CALDF,Aj,X0 Ak,Xi,Ai,D
0 78 1112 1516 1920 3
F4 i k i D

This instruction uses a subscript range table (SRT) contained in CM. The SRT contains one
or more 64-bit entries with each entry divided into three binary integer values as follows:

0 78 1112 15

3A j k

Field Description

SIZE Sixteen bits, unsigned. Specifies number of elements in one dimension of an
array (table).

MIN Sixteen bits, signed. Specifies minimum allowable value of source field.
MAX Thirty-two bits, signed. Specifies maximum allowable value of source field.

This instruction forms the PVA of the subscript range table entry using 1) RN and SEG from
Ai, and 2) the byte number (BN) generated by adding the BN field from Ai to the instruction
D field (expanded to 32 bits using zeros in the high—order bit positions). A signed, 32-bit
two”s complement binary integer is obtained from the CM source field at location D(Aj). The
instruction uses binary source field data unchanged and converts decimal data to its binary
equivalent.

60458890 A II-1-49

The occurrence number is the difference between the binary value of the source field”s
rightmost 32 bits and the MIN value (sign—-extended to 32 bits). The occurrence number is a
signed, 32-bit two”s complement integer.

D(Aj) - MIN = OCCURRENCE NUMBER
To calculate the subscript, the instruction multiplies the OCCURRENCE NUMBER by SIZE, and
adds the product to the index value in the destination register XkR. The CP does not detect

overflow during any arithmetic operation associated with this instruction.

The source field is restricted to data types O through 6, 10, and 11, with the maximum field
lengths determined by the source field data type. :

Move Immediate Data

F93jkiD (1 descriptor) Move Immediate Data,
D(Ak) replaced by XiR plus D per j MOVI,Xi,D Ak,Xi,j
0 78 1112 1516 1920 31
F9 j k i D

The immediate data byte is the two”s complement sum of XiR bits 56 through 63, plus the
rightmost 8 bits of the instruction D field. Overflow is ignored on this summation. XO
consists of all zeros.

This instruction moves the immediate data to the destination field after format conversion
specified by the destination field data type and the j—field suboperation code. The
conversion is encoded in the least significant 2 bits (bits 10, 11) of the instruction”s j
field as follows:

j Field
Bits 10,11 Operation

00 The positive, unsigned numeric value (type 10) in the immediate data
byte moves right—justified to the destination field. The destination
field is restricted to data types 10 or 1l1.

01 The decimal numeric (type 4) immediate data byte moves right—-justified
to the destination field after reformatting (if necessary). A positive
sign is supplied as required. The destination field is restricted to
decimal data types O through 6.

10 The ASCII character in the immediate data byte repeats left—to-right in

~the destination field. Destination data type is ignored.

11 The ASCII character in the immediate data byte moves, left-justified,

into the destination field; the remainder of the field fills with space
characters. The destination data type is ignored.

The slack digit of destination field types 1 and 3 is unchanged by this instruction. The
instruction may cause the arithmetic loss—of-significance exception condition.

I1-1-50 o - 60458890 A

s

0

:\k»/‘}'

T

- \mr
J}

ele

o

O

Compare Immediate Data

FAjkiD (1 descriptor) Compare Immediate Data,
XiR plus D to D(Ak) per j, result to XiR CMPI,Xi,D Ak,Xi,j
0 78 1112 1516 1920 -3
FA i k i D

The immediate data byte is the two”s complement sum of XiR bits 56 through 63, plus the
rightmost 8 bits of the instruction D field. Overflow is ignored on this summation. XO
consists of all zeros.

This instruction performs a format conversion on the immediate data byte as specified by
destination field data type and the j field suboperation code. The instruction then
compares the reformatted immediate data byte to the contents of D(Ak). The instruction j
field encodes the operation as follows:

j Field
Bits 10,11 Operation

00 The positive, unsigned numeric value (type 10) in the immediate data
byte compares to the contents of D(Ak). The destination field is
restricted to data types 10 or 11, If field D(Ak) exceeds one byte, the
immediate data byte zero-fills in its high-order positions.

01 The decimal numeric (type 4) immediate data byte compares to the
contents of D(Ak) after reformatting (if necessary) to match the data
type of field D(Ak). A positive sign is supplied as required. The
D(Ak) field is restricted to decimal data types O through 6. If D(Ak)
exceeds one byte, the immediate data byte zero—fills in its high-order
positions.

10 The ASCII character in the immediate data byte compares left—to-right to
the D(Ak) field. Then (DAk) field data type is ignored.

11 The ASCII character in the immediate data byte compares to the leftmost

byte in field D(Ak). If the comparison is equal and field D(Ak) exceeds
one byte, a space character compares left-to-right with each successive
byte remaining in the D(Ak) field. The D(Ak) field data type is ignored.

A half-word transfers to X1R to indicate the comparison result as follows:

Results of Register
Compare X1R
Source = Destination Clear XIR.
Source > Destination Clear bits 32 and 34 through 63, set bit 33.
Source < Destination Clear bits 34 through 63, set bits 32 and 33.

60458890 A II-1-51

Add Immediate Data

FBjkiD (1 descriptor) Add Immediate Data,
D(Ak) replaced by D(Ak) plus XiR
plus D per j ADDI,X1,D Ak,Xi,j
0 78 1112 1516 _1920 31
FB i k i D

The add immediate instruction converts the source field immediate data to match the

destination field data type (if required), and adds the immediate data byte to D(Ak). The

immediate data byte stores the integer value of the addend. The instruction j field encodes P
the data type contained in the immediate data byte. '

The j field least significant bit (bit 11) decodes as follows:

j Field Data Type
Bit 11 Immediate Data Byte
0 Data type = 10. Unsigned (positive) binary integer value.

1 - Data type 4., One ASCII character representing a decimal digit.

If the source field is data type 10, the destination field is restricted to data types 10 or
11. \

If source data is type 4, the destination is restricted to types 0 through 6.

This instruction may cause the arithmetic overflow exception condition.

FLOATING-POINT INSTRUCTION DESCRIPTIONS
Refer to Floating-Point Programming in section 2 of this volume for descriptions of - TN
floating-point data formats, standard and nonstandard numbers, and normalization. The
floating-point (FP) instructions consists of 18 operation codes in 4 subgroups:

. Conversion.

° Arithmetic.

e Branch.

° Compare.

Tables II-1-15 through II-1-17 list the instructions in the first 3 subgroups.

I1-1-52 60458890 A {)

oNe

DOUBLE-PRECISION REGISTER DESIGNATORS

The double-precision FP add, subtract, multiply, and divide instructions operate on double-
length registers, designated as follows:

XXk or XXj Two successive registers Xk, X(k+1l) or Xj, X(j+1) containing a

double-precision FP number. Xk or Xj contains the high order (leftmost)
part of this number.

FLOATING-POINT CONVERSION INSTRUCTIONS

The instructions in this subgroup (table II-1-15) convert 64-bit words between FP and
integer formats.

Table II-1-15. Floating-Point Conversion Instructions

Opcode Format Instruction Mnemonic
3A jk Convert from integer to FP CNIF
3B jk Convert from FP to integer CNFI1

Convert From Integer to FP

3Ajk Convert, floating-point Xk
formed from integer Xj CNIF Xk,Xj

0 78 1112 15

3A i k

This instruction converts the signed 64-bit two”s complement binary integer from Xj to its
normalized FP representation, and transfers the 64-bit result to Xk.

During conversion, the instruction truncates the rightmost bits of integers outside the
range 248 through (248)-1. When Xj is all zeros, it transfers unchanged to Xk.

Convert From FP to Integer

3Bjk Convert, integer Xk formed from
floating-point Xj. CNFL Xk, Xj
0 78 1112 15
3B j k
60458890 A I1-1-53

This instruction converts the 64-bit FP number in Xj to a signed two”s complement binary
integer and transfers the result to Xk. The fractional part of the binary equivalent
truncates. This conversion results in an integer consisting of all zeros if the FP number:

e Is indefinite.

e Has an exponent equal to zero.

° Has a fraction equal to zero.

® Is infinite.

This instruction may cause the arithmetic loss-of-significance, FP indefinite, and FP
infinite exception conditions.

FLOATING-POINT ARITHMETIC INSTRUCTIONS

The instructions in this subgroup (table II-1-16) perform arithmetic operations on FP
numbers.

Table II-1-16., Floating-Point Arithmetic Instructions

Opcode Format Instruction Mnemonic
30 jk FP sum ADDF
31 ik FP difference SUBF
32 jk FP product MULF
33 jk FP quotient DIVF
34 ik Double-precision FP sum ADDD
35 ik Double—-precision FP difference SUBD
36 ; ik Double-precision FP product MULD
37 k jk Double-precision FP quotient DIVD

II-1-54 ' 60458890 A

OO0

The following conditions apply to all FP arithmetic instructions:
e Exponent overflow.
e Exponent underflow.
o. Floating-point loss—of-significance.
o Floating-point indefinite.

Individual instruction descriptions list additional interrupt conditions where applicable.
Refer to CP Interrupts in section 2 of this volume.

Floating-Point Sum/ Difference

30jk Floating-Point Sum,
Xk replaced by Xk plus Xj ADDF Xk,Xj
31jk Floating-Point Difference,
Xk replaced by Xk minus Xj SUBF Xk ,Xj
34k Double-Precision Floating-Point Sum,
XXk replaced by XXk plus XXj ADDD Xk,Xj
35k Double~Precision Floating-Point Difference,
XXk replaced by XXk minus XXj SUBD Xk,Xj
0 78 1112 15
30,31,34,35| | k

The following instruction description applies to either single—~ or double—précision
operations. References to Xk or Xj in the description also apply to XXk or XXj for the
double-precision instructions.

These instructions algebraically compare the exponents of the two FP operands in Xk and Xj.
If the exponents are equal, no adjustment is necessary. If the exponents are unequal, the
instruction aligns the coefficients by right-shifting the coefficient with the smaller
exponent the number of bit positions designated by the difference between the exponents.
The maximum shift is 48 positions for single-precision instructions or 96 positions for
double-precision instructions.)

The two aligned coefficients consist of a signed 48-bit single—precision or 96-bit double-
precision fraction. The instructions add or subtract the two coefficients as determined by
the operation code, using the Xj coefficient as the addend or subtrahend. The algebraic
result is a signed coefficient with 48 bits (single—precision) or 96 bits (double-
precision), plus an overflow bit. The overflow bit provides the required allowance for true
addition (FP sum of coefficients with like signs or FP difference of coefficients with
unlike signs).

60458890 A I1-1-55

If coefficient overflow occurs (overflow bit = 1), the instruction right-shifts the
coefficient one place, inserts the overflow bit in the high order bit position (bit 16),
increases the exponent by one, and places the result in Xk. If the coefficient overflow bit
is zero and the coefficient is not all zeros, the instructions normalize the result before
placing the result in Xk.

If either or both of the input operands in Xk and Xj consists of an infinite or indefinite

FP number, the result transferred to Xk is a nonstandard FP number. Refer to
Floating—-Point Standard and Nonstandard Numbers in section 2 of this volume.

Floating-Point Product

32jk Floating-Point Product,
Xk replaced by Xk times Xj) MULF Xk,Xj
36ik Double Precision Floating-Point Product,
XXk replaced by XXk times XXj MULD - Xk,Xj
0 78 1112 15
32,36 i k

The following instruction description applies to either single— or double-precision ‘ \
‘operations. References to Xk or Xj in the description also apply to XXk and XXj for the W
double~precision instructions.)

The multiply FP instructions algebraically add the signed exponents for the two FP operands
in Xk and Xj, using the result as an intermediate exponent. The instructions multiply the
coefficient in Xk by the coefficient in Xj to produce an algebraically-signed product
consisting of 96 bits (single-precision) or 192 bits (double precision). If the products
high-order bit (bit 16) is a one, the product is already normalized and the high—order 48
bits (single-precision) or 96 bits (double~precision) become an intermediate coefficient.

If the high—order bit is a zero, the instructions left-shift the 96-bit or 192-bit product Ve
one bit position, decrease the intermediate exponent by one, and use the high~order 48 bits
(single-precision) or 96 bits (double-precision) as the intermediate coefficient. This one-
position shift results in a normalized product if both input operands were normalized before
"~ executing the multiply instruction. If the intermediate exponent (including the adjustment
for normalization) is not equal to an out-of-range value, the intermediate exponent and the
intermediate coefficient (with its sign) transfer to Xk to form the final result.

If one or both of the input operands in Xk and Xj consist of an infinite, indefinite, or
zero FP number, the result transferred to Xk is a nonstandard FP number. Refer to
Floating-Point Standard and Nonstandard Numbers in section 2 of this volume.

{2
1I-1-56 . 60458890 A ‘(J’

C

Floating-Point Quotient

33jk Floating-Point Quotient,
Xk replaced by Xk divided by Xj DIVF Xk,Xj
37k Double-Precision Floating-Point Quotient,
XXk replaced by XXk divided by XXj DIVD Xk,Xj
0 78 1112 15
33,37 j k

The following instruction description applies to either single~ or double-precision
operations. References to Xk or Xj in the description also apply to XXk or XXj for the
double-precision instructions.

The divide FP instructions subtract the Xk exponent (divisor) from the Xk exponent
(dividend), and use the signed result as an intermediate exponent.

These instructions divide the Xk signed coefficient by the Xj signed coefficient. If the Xj
coefficient is unnormalized before instruction execution, and can be divided into the Xk
coefficient by a factor exceeding or equal to 2, the CP detects a divide fault.

If the CP does not detect errors, the division results in an algebraically-signed quotient
with 48 bits (single-precision) or 96 bits (double-precision), plus an overflow bit. The
overflow bit allows for cases in which the divisor can be divided into the dividend by a
factor equal to or exceeding one, but less than two. If the overflow bit is a zero, the
sign bit and 48- or 96-bit quotient require no further adjustments. If the overflow bit is
a one, the instruction right-shifts the quotient one position, end-off, with the overflow
bit inserted into the high-order bit position, and the exponent increased by one. The
intermediate exponent and intermediate coefficient (with its sign) transfer to Xk to form
the final result. When one or both of the input operands in Xk and Xj consist of an
infinite, indefinite, or zero FP number, the result transferred to Xk is a nonstandard FP
number. (Refer to Floating-Point Standard and Nonstandard Numbers in section 2 of this
volume.) '

This instruction may cause a divide fault exception condition.

60458890 A | 11-1-57

FLOATING-POINT BRANCH INSTRUCTIONS

This subgroup (table II-1-17) consists of five conditional branch instructions. Each
instruction compares two FP numbers and performs either a normal or branch exit based on the
comparison results.

Table II-1-17. Floating-Point Branch Instructions

Opcode Format Instruction Mnemonic
98 jkQ FP branch on equal BRFEQ
99 jkQ FP branch on not equal BRFNE
9A ij FP branch on greater than BRFGT
98 jkQ FP branch on greater than or equal to BRFGE
9E jkQ FP branch on overflow BROVR
9E jkQ FP branch on underflow BRﬁND
9E jkQ FP branch on indefinite BRINF
3C jk FP compare CMPF
Normal Exit

The instruction takes a normal exit if the branch condition is not satisfied. The next
instruction address forms by adding 4 to the BN field of the current PVA in P.

Branch Exit
The instruction takes a branch exit if the branch condition is satisified. The next

instruction address forms by adding 2 times the Q field value (from the branch instruction)
to the BN field of the current PVA in P.

Group Interrupt Conditions

The following interrupt conditions apply to all FP branch instructions.
° Debug.
e Floating—-point loss—of-significance.
. Floating—point indefinite.

Refer to CP Interrupts in section 2 of this volume for descriptions of these conditions.

I1-1-58 60458890 B

00

FIoating-Point Branch on Comparison

983jkQ Branch to P Displaced by 2*Q,
if floating-point Xj equal to Xk BRFEQ Xj,Xk,Q
99ikQ - Branch to P Displaced by 2*%Q,
if floating—point Xj not equal to Xk BRFNE Xj,Xk,Q
9AjkQ Branch to P Displaced by 2*Q,
if floating—point Xj greater than Xk BRFGT Xj,Xk,Q
9BjkQ Branch to P displaced by 2*Q,
if floating-point Xj
greater than or equal to Xk BRFGE Xj ,Xk,Q
0 78 1112 1516 31
98,99,9A,98| j k Q

Each compare and branch instruction performs an algebraic comparison between the 64-bit
words in Xj and Xk. If the branch conditions are satisfied, the instruction takes a branch
exit. If the conditions are not satisified, a normal exit results.

These instructions treat the 64-bit words in Xj and Xk as single-precision FP numbers.
If Xj or Xk specifies register XO,‘these instructions interpret X0 as all zeros.

For the results with the various combinations of comparison input data, refer to
Floating-Point Standard and Nonstandard Numbers in section 2 of this volume.

Floating-Point Branch on Condition

9EjkQ " Branch to (P) Displaced by 2*Q,
if floating-point Xk is exception per j

j Field Xk Tested For
00 Exponent overflow. BROVR Xk,d
01 Exponent underflow. BRUND Xk,Q
10/11 Exponent indefinite. . BRINF Xk,Q
0 78 1112 1516 31
9E j k Q k

The instruction takes a branch exit if the exception condition designated by bits 10 and 11
of the instruction j field applies to the 64-bit FP number in Xk. A normal exit occurs if
the exception condition designated by j field bits 10 and 11 does not apply to the 64-bit FP
number in Xk.

60458890 A II-1-59

FIoating-Poﬁnt Compare

3Cjk Compare Floating-Point Xj to Xk,
result to X1R CMPF Xi,Xj,Xk
0 78 1112 15
3c i K

This instruction algebraically compares the Xj 64-bit word to the Xk 64~bit word, and
indicates the result by setting bits in X1R. The instruttion treats the 64-bit words in Xj
and Xk as single-precision FP numbers.

If Xj or Xk specifies register X0, the instruction interprets X0 as all zeros. XIR bits are
set as follows:

Results of Register

Compare X1R
Xj = Xk Clear XI1R.
Xj > Xk Clear bits 32 and 34 through 63, set bit 33.
Xj < Xk Clear bits 34 through 63, set bits 32 and 33.
Indefinite Clear bits 33 through 63, set bit 32.

If the comparison results are indefinite, the CP records an FP indefinite condition and sets
register X1R as shown in the preceding table. If the corresponding user mask bit is set and
the trap enabled, the corresponding program interrupt occurs.

VECTOR INSTRUCTION DESCRIPTIONS

The vecfor instruction group consists of 20 operation codes in 6 subgroups:
e Integer vector arithmetic.
° Integer vector compare.
e Logical vector arithmetic.
° Integer/floating~point vector conversion.)
e Floating-point vector arithmetic.
° Special-purpose vector instructions.
Table II-1-18 lists the instructions within each subgroup. For descriptions of vector

length, page size, broadcast, interrupts, and overlap, refer to Vector Programming in
section 2 of this manual.

I1-1-60 60458890 A

il
'y

U

©0

VECTOR INSTRUCTION FORMAT

The vector instruction group utilizes the jkiD format (refer to figure II-1-1).

0 78 1112 1516 1920 31

OPCODE i k i D

8 4 4 4 12

Field

60458890 A

Figure II-1-1. Vector Instruction Format

Designates register Aj which contains the starting address of a source
vector, VAj.

Designates register Ak which contains the starting address of a destination
vector, VAk.)

Designates register Ai which contains the starting address of a second
source vector, VAi. May also designate register Xi which contains the
interval for gather and scatter instructions.

Specifies vector length (number of operations). For further information,

refer to Vector Length described under Vector Programming in section 2 of
this manual.

I1-1-61

Table II-1-18,

Vector Instructions

Instruction Name Opcode Mnemonic
Integer Vector Sum 443kiD ADDXV
Integer Vector Difference 453kiD SUBXV
Integer Vector Compare, = 503jkiD CMPEQV
Integer Vector Compare, < 51 jkiD CMPLEV -
Integer Vector Compare, > 52ikiD CMPGEV
Integer Vector Compare # 533jkiD CMPNEV
Shift Vector Circular 4D jkiD SHFV
Logical Vector Sum 48 5kiD IORV
Logical Vector Difference 493kiD XORV
Logical Vector Product 4A 3kiD ANDV
Convert Vector from Int. to FP 4B jkiD CNIFV
Convert Vector from FP to Integer 4C jkiD CNFIV
Floating Point Vector Sum 403kiD ADDFV
Floating Point Vector Difference 41 jkiD SUBFV
Floating Point Vector Product 42 3kiD MULFV.
Floating Point Vector Quotient 433kiD DIVFV
Floating Point Vector Summation 57 jkiD SUMFV
Merge Vector 54 jkiD MRGV
Gather Vector 553jkiD GTHV
Scatter Vector 56 jkiD SCTV

11-1-62 60458890 A

U

O
C

Integer Vector Arithmetic

The instructions in this subgroup perform arithmetic operations on pairs of integers that
compose source vectors from CM. After completing the required operation, the instructions
store the results in the destination vector into CM.

445kiD Integer Vector Sum, V(Ak) replaced ADDXV
by V(Aj) plus V(A1)

45jkiD Integer Vector Difference, V(Ak) SUBXV
replaced by V(Aj) minus V(Ai)

These instructions perform the indicated arithmetic operation on the first element from
V(Aj) and V(Ai) and store the result as the first element of V(Ak). This operation repeats
for successive elements until the required number of operations has been performed.

Integer Vector Compare

The instructions in this subgroup perform comparisons between pairs of integers that compose
source vectors from CM, After completing the required operation, the instructions store the
results in a destination vector that returans to CM.

50ikiD Integer Vector Compare, V(Ak) CMPEQV
replaced by V(Aj) equal to V(Ai)

51jkiD Integer Vector Compare, V(Ak) CMPLTV
replaced by V(Aj) less than
V(Ai)

52jkiD Integer Vector Compare, V(Ak) CMPGTV

replaced by V(Aj) greater than
or equal to V(Ai)

53jkiD Integer Vector Compare, V(Ak) CMPNEV
replaced by V(Aj) not equal
V(AL)

These instructions perform the indicated integer arithmetic comparison on the first elements
from V(Aj) and V(Ai). If the comparison is true, bit O is set and bits 1 through 63 are
cleared in the first element of V(Ak). If the comparison is false, bits 0 through 63 are
cleared in the first element of V(Ak). This operation repeats for successive elements until
the required number of operations has been performed. When broadcast of V(Aj) is selected
and j=0, the content of X0 interprets as all zeros (refer to Vector Broadcast under Special
Purpose Vector Instructions later in this section). :

60458890 B I1-1-63

-

It

3 % %\‘
e vg;

Logical Vector Arithmetic

The instructions in this subgroup perform logical operations between pairs of elements that
compose source vectors from CM. After completing the required operation, the instructions
store the results in a destination vector that returns to CM.

483ikiD Logical Vector Sum, V(Ak) replaced TORV
by V(Aj) OR V(Ai)

49§kiD Logical Vector Difference, V(Ak) XORV
replaced by V(Aj) exclusive-OR V(Ai)

4AjKkiD Logical Vector Product, V(Ak) ANDV
replaced by V(Aj) AND V(Ai)

These instructions perform the indicated logical operation on the first element from V(Aj)
and V(Ai) and store the result as the first element of V(Ak). This operation repeats for
successive elements until the required number of operations has been performed.

Integer/Floating-Point Vector Conversion 4
.
The instructions in this subgroup perform conversions on successive element that compose a
source vector from CM. After completing the required operation, the instructions store the
results in a destination vector that returns to CM.
4BjkiD Convert Vector, floating-point V(Ak) CNIFV
formed from integer V(Aj)
4CjikiD Convert Vector, integer V(Ak) CNFIV
formed from floating-point V(Aj)
.

These instructions perform the indicated conversion on the first element from V(Aj) and
store the result as the first element of V(Ak). This operation repeats for successive
elements until the required number of conversions has been performed. :

Floating-Point Vector Arithmetic

The instructions in this subgroup perform arithmetic operations on pairs of floating-point
operands that compose source vectors from CM. After completing the required operation, the
instructions store the results in a destination vector that returns to CM.

I1-1-64 . : © 60458890 A

D

B

@

403kiD Floating-Point Vector Sum, ADDFV
V(Ak) replaced by V(Aj) plus V(Ai)

41 3kiD Floating-Point Vector Difference, SUBFV
V(Ak) replaced by V(Aj) minus
V(Ai)

42 3kiD Floating-Point Vector Product, MULFV
V(Ak) replaced by V(Aj) times
V(AL)

43 3kiD Floating-Point Vector Quotient, DIVFV
V(Ak) replaced by V(Aj) divided by
V(Ai)

These instructions perform the indicated arithmetic operations oun the first element from
V(Aj) and V(A1) and store the result as the first element of V(Ak). This operation repeats
for successive elements until the required number of operations has been performed.

Special Purpose Vector Instructions

The instructions in this subgroup perform various manipulative operations on source vectors
from CM.

4D §kiD Shift Vector Circular, V(Ak) SHFV
replaced by V(Ai), direction '
and count per V(Aj)

This instruction performs a circular shift on the first element from V(Ai) as directed by
the first element of V(Aj) and stores the result as the first element of V(Ak). This
operation repeats for successive elements until the required number of operations has been
performed.

The shift count for each element in V(Ai) is taken from the rightmost 8 bits of the
corresponding element of V(Aj). The sign bit in the leftmost position of the 8-bit shift
count determines the shift direction. A positive shift count (sign bit = 0) left-shifts the
instruction; a negative shift count (sign bit = 1) right-shifts the instruction. Shifts may
be from O through 63 bits left and from 1 through 64 bits right. (A shift count of O causes
the associated instruction to transfer the initial element of V(Ai) to the corresponding
element in V(Ak) with no shift performed.)

When vector broadcast of V(Aj) is selected and j=0, the X0 contents interpret as all zeros.

60458890 A II-1-65

54 §kiD Merge Vector, V(Ak) partially MRGV
replaced by V(Aj) per mask V(Ai)

This instruction replaces the first element of V(Ak) with the first element of V(Aj) if bit
0 is set in the first element of V(Ai). If bit O is clear, the first element of V(Ak) is
left unchanged. This operation repeats for successive elements until the required number of
operations has been performed.

553kiD Gather Vector, V(Ak) replaced by GTHV
gathered V(Aj) with interval Xi

This instruction forms the contiguous vector V(Ak) by gathering elements from V(Aj) at
interval Xi (refer to figure II-1-2). This instruction obtains the first element from V(Aj)
and stores it as the first element of V(Ak). The second element to be stored in V(Ak) is
taken from the address formed by adding the rightmost 32 bits of Xi, left-shifted 3 places
with zero-fill, to the rightmost 32 bits of the previous address. The nth element of

V(Ak) is replaced by V(Ak) whose address is (Aj)+8*(n-1)(Xi). Execution does mnot alter the
Xi contents.)

I1-1-66 - : 60458890 A

N
\ i
A /7
"

*_) Yy

Xi Xi Xi
e
[Aj]
C . \ I / Positive Interval
V(Ak)
V(Aj)
Zero Interval
J
\ N ™
V(Ak) >
‘ v
Xi Xi Xi
V(Aj) o
\\\\\ \ ////, T
[Aj]
e /‘/ w\ Negative Interval
V(Ak) -
0”," Figure II-1-2. Gather Instruction
0’ 60458890 A

I1-1-67

56 jkiD Scatter Vector, V(Ak) replaced by SCTV
scattered V(Aj) with interval Xi

This instruction scatters the contiguous V(Aj) elements in V(Ak) at interval Xi (refer to
figure II-1-3). This instruction obtains the first element from V(Aj) and stores it as the
first element of V(Ak). The second contiguous element from V(Aj) is stored into V(Ak) at
the address formed by adding the rightmost 32 bits of Xi, left-shifted 3 places with
zero~fill, to the rightmost 32 bits of A(k). Successive elements from V(Aj) are stored into
the addresses formed by adding the rightmost 32 bits of Xi, left—shifted 3 places with
zero—fill, to the rightmost 32 bits of the previous address. The nth element of V(Aj) is
stored into V(Ak) at (Aj)+8*(n-1)(Xi). Execution does not alter the Xi contents.

;: j
\
4

11-1-68 : 60458890 A @ “

00

V(Aj) >
/ \ \ ~ Positive Interval
[Ak]
V(AK) / \ N
Xi R Xi ‘ Xi
V(Aj)
NN \\\
Zero Interval
V(Ak)
[Ak]
V(Aj)

Negative Interval

V(Ak) d ‘

Xi

Figure II-1-3.

60458890 A

Scatter Instruction

57 3kiD Floating~Point Vector Summation, SUMFV
Xk replaced by summation of
elements in V(Ai)

This instruction adds together all the elements in V(Ai) and stores the sum in Xk. The
individual add operations which together form this instruction are single-precision sums and

may be performed in any order.

C

. ™
11-1-70 : 60458890 A {J

C0

00

SYSTEM INSTRUCTION DESCRIPTIONS

The system instructions consist of 27 operation codes in 5 classes. The classes are based
on the characteristics of the code segment from which the instructions are accessed, or the
CP mode in which the instructions may operate. The classes are as follows:

e Nonprivileged.

e Local privileged.

® Global privileged.

e Virtual State.

e Virtual State monitor mode.

e Mixed mode.
Local and global privileged instructions execute only when the XP field of the associated
segment descriptor designates the appropriate privilege (with the CP in any mode). Virtual
State monitor mode instructions execute only when the CP is in Virtual State monitor mode.

Mixed mode instruction parameters within the instruction determine their privilege/mode
requirements. Refer to Access Protection in section 2 of this volume for more information.

60458890 A I1-1-71

NONPRIVILEGED SYSTEM INSTRUCTIONS
The instructions in this subgroup are listed in table 1II-1-19. In some cases, a portion of

the instruction word is unused, as indicated in the instruction format. Instruction
execution is not affected by these unused bits, but it is recommended these bits be zeros.

Table II-1-19. Nonprivileged Instructions

Opcode Format Instruction Mnemonic
00 jk : Program error HALT
01 ik Scope loop synchronization SYNC
02 ik Exchange EXCHANGE
04 jk Return RETURN
06 jk Pop POP
08 ik Copy free running counter CPYTX
14 jk Test and set bit » LBSET
16 jk Test and set page TPAGE
BO jkQ Call relative CALLREL
B4 jkQ Compare swap CMPXA
B5 jkQ Call indirect CALLSEG
BE,BF jkQ Reserved opcodes -
co-c7 SjkiD Execute algorithm EXECUTE, S

Program Error

00jk Program Error HALT

This instruction causes an instruction specification error with the corresponding program
interrupt or halt.

I1-1-72 60458890 A

‘e’

Aﬁi\\

alle

O
C

Scope Loop Sync
0ljk Scope Loop Sync ‘ SYNC

For the model 855, set CP breakpoint register 32 to 10ljg by performing the CMSE command
ER2,32 = 101}, The instruction triggers at TP 44 at location 3Al-ClC.

This instruction is a no—operation within the CP. The instruction generates a pulse to a
test point for oscilloscope synchronization.

Exchange
02jk Exchange EXCHANGE

0 78 15

This instruction exchanges the current process registers (formatted as an exchange package)
with another set stored in CM, and does the following:

e When executed with CP in Virtual State monitor mode, the processor switches from
monitor to job mode.

e When executed in Virtual State job mode, the processor switches from job to monitor
mode and the system call bit sets in the monitor condition register (MCR 10).

In either case, the P register stored in the outgoing exchange package points to the next
instruction that would have executed if the exchange had not occurred.

This instruction can cause the following exception conditions:
° Environment specification error.
e System call,

Refer to CP Modes of Operation in section 2 of this volume for further information.

60458890 A : I1-1-73

Return

04jk

Return) RETURN

78

This instruction requires the following register assignments:

(A0) Dynamic space pointer (DSP).

(A1) Current stack frame (CSF) pointer.

(A2) Previous save area (PSA) pointer.

In exchange package Top of stack (TOS) pointer for current ring of execution.
In exchange package TOS pointer for previous ring of execution.

This instruction reestablishes the stack frame and environment of the previous procedure
(which must be executing in an equal or less privileged ring as the current procedure).
This operation does not load MCR or UCR. The instruction executes as follows:

1.

3.

4.

I1-1-74

Update the TOS pointer by storing the CSF pointer from Al into the TOS pointer for
the current ring of execution. This has the effect of cancelling the current stack

frame.

Load the environment from the previous save area (as defined by PSA pointer in A2

and the stack frame descriptor in PSA) as follows:
e P register (all fields).
. ® VMID (CP state switch may take place).
e CFF and OCF.
e User mask register.
e A0 through At (per SFSA descriptor).

e Xs through Xt (per SFSA descriptor).

Set the RN field of each A register loaded from SFSA equal to the largest of the-

following:
e A(RN) from SFSA. o
e Initial A2(RN).

° Rl of SDE for initial A2,

If the final P(RN) does not equal the initial P(RN), set any A(RN) not loaded from

PSA in step 2 (and less than the final P(RN)) equal to the final P(RN).

Update TOS pointer in the exchange package.

60458890 A

00

6. Clear trap enable delay.

7. If any A(RN) loaded from PSA in step 2 is zero, set MCR 60, with interrupt or halt.
When this happens, the instruction execution completes and UTP is unaltered.

This instruction can cause the following exception conditions:
e Address specification error.
e Invalid segment/ring number zero.
® Access violation.
e Environment specification error.
e Page table search without find.
e Outward call/inward return.

o Critical frame flag.

e Debug.

Pop

06jk Pop POP
0 78 15

This instruction requires the following register assignments:

(A0) Dynamic space pointer (DSP).

(Al) Current stack frame (CSF) pointer.

(A2) Previous save area (PSA) pointer.

In exchange package Top of stack (TOS) pointer for current ring of execution.

This instruction moves the CSF, PSA, and TOS pointers to eliminate the stack frame without
changing the P-counter. This instruction reestablishes the stack frame (but not the
environment) of the previous procedure, which must be in the same ring of execution as the
current procedure. The stack frame is reestablished as follows:

1. Obtain the stack frame descriptor from the PSA (SFSA for the previous procedure}
using the PSA pointer in A2.

2. Update the CSF pointer by loading Al with word 2 from the PSA. Set Al ring number
equal to P ring number.

60458890 A . 1I-1-75

3. Update the PSA pointer by loading A2 with word 3 from the PSA. Set A2 ring number
equal to the largest of: a) the A2 initial ring number, b) the A2 ring number from
PSA, or c) the Rl field of the segment descriptor associated with the PSA.

4. Load the critical frame flag (CFF) and the on-condition flag from the PSA.

5. Update the TOS pointer by storing the CSF pointer from final Al into the TOS pointer
for the current ring of execution. This has the effect of cancelling the current
stack frame. :

6. 1If any A1(RN) or A2(RN) loaded from PSA in step 2 is zero, set MCR60, with interrupt
or halt. Instruction execution completes and UTP is unaltered.

This instruction may cause the following exception conditions:
e Address specification error.
e Invalid segment/ring number zero.
e Access violation.
) Environment specification error.
° Page table search without find.
o Inter-ring pop.
° Critical frame flag.

e Debug.

Copy Free Running Counter

08jk Copy Free Running Counter to Xk at XjR CPYTX Xk,Xj

0 78 1112 15

08 i k

This instruction copies the free running counter in CM into Xk (the free-running counter
consists of either 64 bits of counter, or 48 bits of counter which are right-justified with
zero—fill in the leftmost 16 bits). XjR bits 32 and 34 through 63 are zeros. XjR bit 33
specifies which processor port the instruction uses to read the counter as follows:

Bit 33 Port Selected
0 Local processor port to CM.
1 External processor port to CM of another system.
I1-1-76 ' " - 60458890 A

& O

0O
C

Test and Set Bit

14k Load Bit to XkR from Aj Bit Indexed by
XOR and Set Bit in CM LBSET Xk,Aj,X0
0 78 1112 15
14 i k

This instruction transfers one bit from CM into XkR bit position 63 and clears Xk bits 0
through 62. The instruction also sets that bit in CM without changing any other bits in CM.

The instruction addresses the CM byte containing the bit by adding bits 32 through 60 of XOR
(right-shifted 3 positions, end-off, with sign extension on the left), to bits 32 through 63
of Aj. The instruction uses XOR bits 61 through 63 to locate the bit position within the
addressed byte. Values O through 7 for these 3 bits select corresponding bits O through 7
from the addressed byte.

No other CM accesses (from any port) to the CM byte containing that bit are permitted from
the start of the read access until the end of the write access (when the instruction sets
the bit in CM). :
The system performs a serialization function before and after instruction execution. The CP
delays instruction execution until all previous CM accesses by previous instructions
complete, and delays execution of the next instruction until all CM accesses from this
instruction complete.
To establish operand access validity, the instruction uses read- and write-type CM
accesses. The read access bypasses cache memory. Termination of the write access purges
the associated cache entry.
This instruction may cause the following exception conditions:

® Address specification error.

e Invalid segment/ring number zero.

° Access violation.

Page table search without find.

Debug.

Test and Set Page

16jk Test page (Aj) and set XkR TPAGE Xk,Aj
0 78 1112 15
16 i k

60458890 A 11-1-77

This instruction tests CM for the presence of the page (corresponding to the PVA in Aj) in
the system page table with its valid bit set in the associated page descriptor. If the
tested page is in CM, the used bit in the associated page descriptor sets, and the real
memory address translated from the PVA from Aj transfers to XkR. If the tested page is not
in CM, the instruction sets XkR bit 32 and clears XkR bits 33 through 63.

This instruction may cause the following exception conditions:
® Address specification error.

e Invalid segment/ring number zero.

Call Relative P
BOjkQ Call to P displaced by 8%*Q, s
binding section pointer per Aj,
arguments per Ak CALLREL Aj,Ak,Q
0 78 1112 1516 3
BO i k Q

Register assignments are as follows:

(A0) Dynamic space pointer (DSP). g
(Al) Current stack frame (CSF) pointer.
(A2) Previous save area (PSA) pointer.
(A4) Argument pointer.
In exchange package Top of stack (TOS) pointer per RN in P.
This instruction saves the current procedure (caller) environment and calls another’ «

procedure (callee) within the same segment as the caller. The RN and SEG fields of P remain
unaltered.

The caller”s environment is saved by storing designated process and processor registers into
a stack frame save area (SFSA) generated on top of the current stack frame. The DSP in A0,
rounded to the next available full word address, is the PVA of the first word in this SFSA.
The instruction saves some CP registers in the SFSA unconditionally. These registers are as
follows:

) P register.

° Stack frame descriptor.

e User mask.

° Virtual machine identifier.

® Register AO.

PR

()
11-1-78 . : ' 60458890 A ajy

The caller specifies other registers saved. AO is always the first register saved, and XOR
specifies other A and X registers to be saved. XOR has the following format:

52 5556 5960 63

]
L X-last

A-last
X-first
X0 Bits Registers Saved
52-55 First X register.
56-59 Last A register.
60-63 Last X register.

The call instruction does not store any X register if the value of X-last exceeds X-first.

After storing the registers in the SFSA, the instruction executes as follows:

10

2

3.

4‘

5'

Modify dynamic space pointer (DSP) in A0 by adding 8 times the number of SFSA words
to the BN in AO.

Update the top of stack (TOS) pointer in the exchange package by storing the

modified DSP into the exchange package TOS entry corresponding to the current ring
of execution, as determined by the RN in P. This creates a new stack frame.

Form the target address by adding 8 times Q to the BN in P. Bits 61 through 63 of P
are forced to zero.

Establish the stack frame of the callee by loading A0, Al, and A2 from the PSA (SFSA
of the callee).

Copy Aj to A3 and Ak to A4 to reflect parameter changes required to transfer control
to the callee.

This instruction may cause the following exception conditions.

° Instruction specification.
® Address specification error.
e Invalid segment/ring number zero.
e Access violation.
e Page table search without find.
° Debug.
60458890 A II-1-79

-

~

Compare Swap
B43jkQ Compare Xk to (Aj), if locked, branch
to P displaced by 2*Q, if unlocked,
load/store (Aj), result to X1R CMPXA Xk,Aj,X0,Q
0 78 1112 1516 31
B4 j k Q

If the leftmost 32 bits of a 64-bit word in CM location Aj are all ones (Aj locked), the
instruction takes a branch exit. The target address forms by adding the value 2 times Q
(sign—-extended) to the BN field of the PVA in P.

If the above condition is absent, the instruction compares the Xk 64-bit word with the word N
in CM location Aj (64-bit integer compare). If the two words are equal, the instruction

stores X0 in location Aj and clears X1R. If the two words are unequal, the instruction

loads the word in CM location Aj into Xk and sets X1R as follows (in either case, the

instruction takes a normal exit): ’

Results of
Compare Action Taken
Xk = (Aj) Store X0 at (Aj), clear XIR.
Xk > (Aj) , Load (Aj) into Xk, clear XIR bits 32 and 34 through 63, set .
X1R bit 33.
Xk < (Aj) Load (Aj) into Xk, clear X1R bits 34 through 63, set XIR

bits 32 and 33.
Within a given CP, execution of this instruction delays until all previous CM accesses
complete. Execution of all subsequent instructions delays until all CM accesses due to this
instruction complete. 1In dual CP systems, if a second CP executes a compare swap
instruction while the other CP is processing one, the second CP reads the 64-bit word in
location Aj, finds the leftmost 32 bits all ones (locked), and branch-exits. The hardware,
however, does not inhibit other instruction codes issued from the other CP (or any PP
instructions) from accessing and altering location Aj.
The read access bypasses cache, and the write access purges the associated cache entry.

For the debug scan, Aj is both a read and a write address, whereas P+2Q is a branch target
address only when the branch occurs.

This instruction may cause the following exception conditions:
e Instruction specification. 4
® Address specification error.
e Invalid segment/ring number Zero.
® Access violation.
e Page table search without find. “n

e Debug.

%
¢ jﬁ
I1-1-80 60458890 A & ;

Call Indirect
B5ikQ Call per (Aj Displaced by 8%*Q),
arguments per Ak : CALLSEG Aj,Ak,Q
0 78 1112 1516 31
B5 i k Q

The instruction uses the following assigned registers:

Register Description
0 ‘ (A0) Dynamic space pointer (DSP).

(Al) Current stack frame pointer.

(A2) Previous save area pointer.

(A3) Binding section pointer.

(A4) Argument pointer.

In exchange package pr of stack (TOS) pointer for the caller”s ring of
0 execution.

In exchange package TOS pointer for the callee”s ring of execution.

In CM Code base pointer (CB?) addressed by A3+8%Q.

This instruction saves the current procedure (caller) environment and calls another

procedure (callee) indirectly. The callee must be executing within the same or in a higher

privileged ring as the caller. The indirect target address is listed in the CBP addressed

by (Aj displaced by 8 times sign—extended Q). The instruction saves the environment (as

specified by XOR) in the SFSA generated on top of the current stack frame. For details,
‘::x refer to the call relative instruction described in this section.

The instruction executes as follows:

1‘

2.

©0

Add 8 times Q to the BN field from register Aj to form the PVA of a CBP from a
binding section segment (which contains the target PVA).

Round DSP upward as follows: Add 7 to AO, then force A0 bits 61 through 63 to zero.
Store environment in SFSA, per XOR.

Copy P bits O through 31 to XOR (callers ID).

Modify DSP in AO by adding 8 times the number of SFSA words to AO bits 32 through 63.

Adjust TOS pointer in the exchange package by storing this modified DSP in the TOS
entry for the current ring of execution, as determined by the RN field in P.

60458890 A 11-1-81

10.
11.
12,

13.

14.

15,

16.

17.

18.

19.

Load P key with segment descriptor lock for callee.

If P ring number is less than callee segment descriptor R2 (inter-ring call), go to
step 12,

Set P ring number equal to callee segment descriptor R2.

Load P SEG and BN fields with code base pointer SEG and BN fields.
If CBP VMID = 1 (call is to CYBER 170 State),‘go to step 17.

If internal procedure (code base pointer EPF = 0), go to step 16.

Load A3 with new binding section pointer, setting RN equal to the larger of the RN
in CBP and the new RN in P register.

1f trap operation, go to step 17; if call instruction, copy Ak to A4 (pass o
parameters). When k is O through 3, the final contents of A4 is with respect to

which A register is copied.

Copy (AO) to A2 (DSP from step 2 to PSA pointer).

Clear on—condition flag.

Load Al with top of stack pointer from exchange package per final P ring number, and
clear the critical frame flag.

Set dynamic space pointer in A0 equal to current stack frame pointer in Al.

N v
Copy VMID from CBP to the VMID register.
NOTE
The trap interrupt operation unconditionally
includes all the above steps except items
10, 11, and 14. PE
t\‘t., P

This instruction may cause the following exception conditions:

I1-1-82

Instruction specification.
Address specification error.
Invalid segment/ring number zero.
Access violation.

Environment specification error.
Page table search without find.

Outward call/inward return.

Debug. @:iﬁ

kN
/‘ ‘-[
60458890 A ‘{rw

00

Reserved Operation Codes

BEjkQ Reserved for user
BFjkQ Reserved for user
0 78 1112 1516 31
BE,BF i k Q

These two instructions are reserved for the user for software simulation of operatioms that
executive state does not provide through trap interrupts. These operation codes will not be
used in future hardware extensions.

When not implemented, these instructions cause the unimplemented instruction exception, with
interrupt or halt.

Execute Algorithm
CSjkiD Execute Algorithm per S EXECUTE,s j,k,1i,D
This instruction is reserved for future expansion.

When not implemented, this instruction causes the unimplemented instruction exceptiom, with
interrupt or halt.

LOCAL PRIVILEGED SYSTEM INSTRUCTIONS

Instructions in this subgroup (table II-1-20) can execute only from segments which (by the
associated segment descriptor) have either local or global privilege. If a local privileged
instruction is fetched from a segment without either local or global privilege, the CP
detects a privileged instruction fault, inhibits execution, and initiates the corresponding
program interrupt or halt.

Table 1I-1-20., Local Privileged Instructions

Opcode Format Instruction Mnemonic

17 ik Load page table index LPAGE

60458890 A II-1-83

Load Page Table index

17k Load Page Table Index per Xj to XkR
and set XIR LPAGE Xk,Xj,Xi
0 78 1112 15
17 i k

This instruction searches the page table in CM for the presence of a page, returns the final
search index value to XkR, and sets X1R to indicate the search results. The SVA in Xj
defines the required page table entry. . -

-

The SVA determines the starting point in the page table search. The search continues until
the corresponding page descriptor is found, a continue bit equal to zero is detected, or 32
entries have been searched. The validity bit is ignored.

When the page is found, the page table index associated with that entry transfers to XkR,
the number of entries searched transfers to X1R bits 33 through 63 (right—-justified with
zeros extended), and X1R bit 32 sets to indicate the find.

When a page corresponding to the SVA in Xj is not found, the page table index value of the
last entry tested transfers to XkR, the number of entries searched transfers to XIR bits 33
through 63 (right—justified with zeros extended), and X1R bit 32 clears.

If the instruction”s k field equals 1, register X1R loads with the result—indication bit and
the number of entries searched instead of the index value.

This instruction can cause the following exception conditions:
e Privileged instruction fault.

e Address specification error.

GLOBAL PRIVILEGED SYSTEM INSTRUCTION
The processor intérrupt instruction can execute only from segments which (by the associated
segment descriptor) have global privilege. If this instruction is fetched from a segment

without global privilege, the CP detects a privileged instruction fault, inhibits execution,
and initiates the corresponding program interrupt or halt.

Processor Interrupt

03jk Processor Interrupt per Xk INTRUPT Xk,j

0 78 1112 15

03 i k

I1-1-84 60458890 A

J

N
< ,/“
N s

el

o

O

O

This instruction sends an external interrupt to one or more CPs (including the executing
CP) through their CM ports. The interrupting CP sends Xk to CM. CM then sends an external
interrupt to the processor(s) connected to the ports whose numbers correspond to the bits
set in Xk as follows:

Xk Bit Port Number
60 3
61 2
62 1
63 0

Bits 0 through 59 are not used to send interrupts and are ignored by the CM, but have
correct parity. When two ports of the same memory connect to the interrupting CP, the state
of Xk bit 33 selects the port the CP uses to send Xk to CM along with the interrupt. (Xk
bit 33 thus overrides RMA bit 33 for memory port selection).

State of Memory
Bit 33 Port Used
Clear 0
Set 1

The system delays this instruction”s execution until all previous CM accesses by the
interrupting CP complete. If a CP sends an interrupt to itself, this instruction completes
executing before the interrupt is taken.

This instruction can cause the privileged instruction fault exception condition.

MONITOR MODE INSTRUCTIONS

Instructions in this subgroup can execute only with the processor in executive monitor
mode. Otherwise, the CP detects an instruction specification error, inhibits instruction
execution, and initiates the corresponding program interrupt. Refer to Mixed Mode
Instructions in the following description.

60458890 A II-1-85

MIXED MODE INSTRUCTIONS

The execution of instructions in this subgroup (table II-1-21) depends on an instruction
parameter. The parameter value determines whether the instruction is executable from

nonprivileged, local-privileged, or global-privileged segments, or whether the CP must be in
Virtual State monitor mode.

Table II-1-21. Mixed Mode Instructions

Opcode Format Instruction Mnemonic
05 jk Purge buffer PURGE
OE ik Copy from state register’ CPYSX
OF jk Copy to state register CPYXS
9F jk Braﬁch on condition register BRCR

Purge Buffer

053k Purge buffer k of entry per Xj © PURGE Xj,k

0 78 1112 15

05 i k

This instruction invalidates entries in the cache (models 835, 845, 855, and 990), map, or
instruction buffer, selectable as follows:

e All entries in cache (models 835, 845, 855, and 990), map or instruction buffer.
e All entries for a given segment in cache (models 835, 845, 855, and 990) or map.
e All entries for a given page in cache (models 835, 845, 855, and 990) or map.

e All entries for a given 512-byte block in cache (models 835, 845, 855, and 990).

11-1-86 60458890 A

0

i %"‘E: >

O

Xj contains the required address information as either the system virtual address (SVA) or
the process virtual address (PVA). The k value determines the buffer to be purged, the
range of entries to be purged, and the addressing type used, as follows:

Value of k Description

k=0 Purge all cache entries in a 512-byte block defined by SVA in Xj.

k=1 "Purge all cache entries in ASID defined by SVA in Xj.

k=2 Purge all cache entries.

k=3 Purge all cache entries in 512-byte block defined by PVA in Xj.

k = 4 through 7 Purge all cache entries in SEG defined by PVA in Xj.

k=28 Purge all map entries in page associated with page table entry
defined by SVA in Xj. (Page size is determined from page size mask
register.)

k=9 Purge all map entries pertaining to page table entries included‘in

segment defined by SVA in Xj.

k=A Purge all map entries pertaining to page table entry defined by PVA
in Xj. Page size mask register specifies number of bytes in page.

k=8 Purge all map entries pertaining to segment table entry defined by
PVA in Xj, and to all page table entries included within that
segment.

k = C through F Purge all map entries, ignore Xj.

If k =0, 1, 2, or 8 through F, this instruction is a local privileged instruction. It is a
nonprivileged instruction for all other k values.

The system performs a serialization function before this instruction begins execution, and
again when execution completes. The system delays instruction execution until all previous
accesses to CM by this processor complete, and delays the fetch or execution of subsequent
instructions until all CM accesses for this instruction complete.
This instruction may cause the following exception conditions:

e Privileged instruction fault.

e Address specification error (k = 0, 1, 8, or 9).

) Invalid segments.

Copy to/from State Buffer

These instructions copy certain state registers to and from X registers.

If a copy instruction reads a nonexistent register or any register restricted to MCU access
only, the system clears all 64 bits of Xk. A copy instruction used to write a nonexistent
register, or any register restricted to read only or MCU access only, results in a
no—operation.

60458890 A ‘ 11-1-87

ey’

i

OEjk Copy to Xk from State Register per Xj CPYSX Xk,Xj

0 78 1112 15

OE i k

This instruction copies the state register addressed by Xj into Xk.

OFjk Copy to state register from Xk per Xj CPYXS Xk ,Xj
0 78 1112 15
OF i k

This instruction copies Xk into the state register addressed by Xj. Refer to tables I-2-1
and I-2-2 in volume 1.

These instructions can cause the following exception conditions:
e Instruction specifiéation errore.

e Privileged instruction fault (CPYXS only).

Branch on Condition Register

9FjkQ Branch to P Displaced by 2*Q and
Alter Condition Register per jk BRCR j,k,Q
V] 78 1112 1516 31
9F i k Q
This instruction tests the state of a bit in the monitor or user condition register (MCR or g

UCR), as selected by the instruction j and k fields. The j field selects the bit within the
register, and the k field selects the register, branch condition, and bit alteration. When
the branch condition is satisfied, the target address forms by adding 2 times Q (sign-
extended) to the BN in P. The instruction depends on k as follows:

Value of k Description

k =0 or 8 If bit j of MCR is set, clear bit and branch.

k=1o0r?9 If bit j of MCR is clear, set bit and branch.

k=2o0rA If bit j of MCR is set, branch.

k=3 or B If bit j of MCR is clear, branch.

k=4orcC If bit j of UCR is set, clear bit and branch.

k=50rD If bit j of UCR is clear, set bit and branch. @f ﬁ

I1-1-88 60458890 A — 4

Value of k Description

k

6 or E If bit j of UCR is set, branch.

k=7o0rF If bit j of UCR is clear, branch.

When the k field is 0, 8, 1, or 9, this instruction executes in Virtual State monitor mode

only. If the processor is not in monitor mode with execution restricted to that mode, the

CP detects an instruction specification error, inhibits instruction execution, and initiates
the corresponding program interrupt or halt.

This instruction can cause the following exception conditions:

° Instruction specification error.

C s e Debug.

C

0 60458890 A

I1-1-89

PERIPHERAL PROCESSOR INSTRUCTION DESCRIPTIONS

The peripheral processor (PP) instruction set comprises the following eight subgroups:

° Load and store.

e Arithmetic.

e Logical.

e Replace.

e Branch.

e Central memory (CM) access.

e Input/Output (I/0).

e Other 10U,
The Virtual State PP instruction set includes the CYBER 170 State PP instructions as a
subset. The instruction set uses a 7-bit operation code (opcode) which includes the CYBER
170 State 6-bit operation code. Extensions to the instruction set allow programs to
manipulate 16-bit IOU words, 64-bit CM words (as both 12- and 16-bit bytes), and to
reference 28-bit CM addresses.
PP INSTRUCTION FORMATS
Figure II-1-4 shows and describes Virtual State PP instruction formats. PP instructions.are
16 o