
Ga CONTKOL DATA
COR,!'OMTION

SORT/MERGE VERSIONS 4 AND 1
REFERENCE MANUAL

CDC@ OPERATING SYSTEMS:
NOS 1
NOWBE 1
SCOPE 2

Ga CONTKOL DATA
COR,!'OMTION

SORT/MERGE VERSIONS 4 AND 1
REFERENCE MANUAL

CDC@ OPERATING SYSTEMS:
NOS 1
NOWBE 1
SCOPE 2

REVISION RECORD
REVISION

i
A

(11-01-75)

B

DESCRIPTION

Manual released.

This revision documents version 4.4 of SortIMerge; changes include feature CP156, Performance

(03-01-76)

(1 1-15-76) I Common Memory ~ a n & e r for space allocation. This manual is at PSR level 439.
I

Enhancements.

C

D I This revision documents feature CP1731 at PSR level 446. Changes include key comparison
I

I

This revision documents version 4.5 of SortIMerge. Changes include feature CP173, use of the
I

1 (04-1 5-78) 1 162, interface with B A ~ 1 S.

(03-01 -77)

E

technique for macro sorts.

This revision documents version 4.6 of SortIMerge at PSR level 472. Changes include feature

Publication No.

60497500

F
!

REVISION LETTERS I, 0, Q AND X ARE NOT USED

This revision documents the Sort/Merge interface with FORTRAN 5 at PSR level 528.

@COPYRIGHT CONTROL DATA CORPORATION 1975,1976,1977,1978,1980

Alt Rights Reserved

Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

o r use Comment Sheet in the
back of this manual

New features, as wel l as changes, deletions, and addit ions t o information i n t h i s manual are ind ica ted by bars
i n the margins or by a dot near the page number i f the en t i r e page i s affected. A bar by the page number
indicates p a g ~ n a t l on rather than content has changed.

Page

Cover
T i t l e Page . .
: l i i / iv
v
v i
v 1 i
1-1 th ru 1-3
2-1
2-2
2 -3
2 -4
2-5
2-6
3-1
3-2
3-3 th ru 3-5

4-1
4-2
4 -3
4-4
4-5
4 -6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17 t h ru 4-23
4-24 t h ru 4-27
5-1 t h ru 5-3
5 -4
5-5
5 -6
5-7
5 -8
5 -9
5-10
5-11
5-12
5-13 t h ru 5-15
6 -1
6-2
6-3 t h ru 6-10
6-10.1
6-10.2
6-11

Revision Page

6-12
6-13
6-14
6-15
6-16
7-1 t h ru 7-15
A-3. t h ru A-4
B-1 t h ru 8-4
B-5 t h ru 8-7
B-8
B-9
B-10
B-11 t h ru €3-13
C-1
C-2
C-3
D-1 t h ru 0-11
D-12 t h ru D-15
E-1 t h ru E-15
F-1 t h ru F-3
G-1 t h ru 6-5
H-1
H-2
Index-1 t h ru -6
Comment Sheet
Mai 1 er
Back Cover

Revision

PREFACE

SortIMerge high-speed record processing facilities are available through the use of control statements and
directives. User programs can call Sort/Merge with the COMPASS assembly language macros, t h e
FORTRAN interface routine calls, or through the COBOL language.

The user is assumed to be familiar with the operating system on which Sort/Merge is to be run as well as
with the calling language.

The Sort/Merge system is available under the following operating systems:

SortIMerge Version 4.6 operates under NOS 1 for the CONTROL DATA' CY BER 170 Series; CY BER 70
Models 71, 72, 73, and 74 and 6000 Series Computer Systems.

Sort/Merge Version 4.6 operates under NOS/BE for the CDC@CYBER 170 Series; CYBER 70 Models 71,
72, 73, and 74; and 6000 Series Computer Systems.

SortlMerge Version 1.0 operates under SCOPE 2.1 for the CONTROL DATA CYBER 170 Model 176 ,
CYBER 70 Model 76 and 7600 Computer Systems.

Documents of primary interest (in alphabetic order) to SortIMerge users include the following:

Publication

COBOL Version 5 Reference Manual

COMPASS V ersion 3 Reference Manual

CYBER Record Manager Basic Access Methods 1.5
Reference Manual

FORM Version 1 Reference Manual

FORTRAN Extended Version 4 Reference Manual

FORTRAN Version 5 Reference Manual

NOS Version 1 Reference Manual, Volume 1 of 2

NOS/BE Version 1 Reference Manual

SCOPE Version 2 Reference Manual

SCOPE Version 2 Record Manager Reference Manual

SortIMerge Version 4 and 1 Instant

Publication
Number

Sort/Merge Version 4 Users Guide

The following documents (in alphabetic order) are of secondary interest to users of SortIMerge:

Publication
Publication
Number

CYBER Record Manager Basic Access Methods 1.5
Users Guide

NOS Version 1 Manual Abstracts 84000420

NOS/BE Version 1 Manual Abstracts 84000470

Software Publications Release History 6048 1000

The NOS manual abstracts and the NOSIBE manual abstracts are instant-sized manuals containing brief
descriptions of the contents and intended audiences of all NOS and NOS product set manuals, and NOS/BE
and NOS/BE product set manuals, respectively. The abstracts manuals can be useful in determining which
manuals are of greatest interest to a particular user. The Software Publications Release History serves as
a guide in determining which revision level of software documentation corresponds to the Programming
System Report (PSR) level of installed site software.

CDC manuals can be ordered from Control Data Corporation Literature and Distribution
Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in this
document. Control Data cannot be responsible for the proper
functioning of undescribed features or parameters.

1. INTRODUCTION

Comparison of SortIMerge 1
and Sort/Merge 4

Sort/Merge 1
Sort/Merge 4
SortIMerge Capabilities
Records and Files
Checkpoint/Restart
Sort/Merge Dayf ile Messages

2. SORT KEYS

Sort Key Description
Key Length and Position
Key Type
Collating Sequence
Sort Order
Signed Numeric Data
Multiple Keys

Alternate Specification of Key Types

3. OWNCODE ROUTINES

Exit 1: Processing of Input Records
Exit 2: Processing of Input Files
Exit 3: Processing of Output Records
Exit 4: Processing of Output Files
Exit 5: Processing of Duplicate Keys
Exit 6: Processing of Nonstandard Labels

Ineut
Out put

Owncode Summary
Job Example

4. DIRECTIVE SORTIMERGE PROCESSING

Control Statement Requirements
SORTMRG Statement

Parameters
SortIMerge Directive Conventions
SortIMerge Directives

SORT
MERGE
BY TESIZE
FILE
FIELD
KEY
SEQUENCE
EQUATE
OPTIONS
OWNCODE

A Character Sets
B SortIMerge Diagnostics
C Incompatibilities
D SortIMergeandRecordManager

TAPE (Sort/Merge Version 4 Only) 4-17
END 4-18

Job Examples
Sample Deck Structures

Job Deck Containing a Single Sort/Merge Run 4-26
Job Deck Containing Two Sort/Merge Runs 4-27

5. MACRO CALLS 5-1

System File Macro
Sort/Merge Macro Calls

SORT
MERGE
BY TESIZE
FILES
KEY
SEQUENCE
EQUATE
OPTIONS
OWNCODE
TAPE
POINTER
SMLIST

6. FORTRAN EXTENDED CALLS 6-1

FORTRAN Extended Calls to Sort/Merge
SMSORT, SMSORTB, SMSORTP, and SMMERGE
SMFILE
SMKEY
SMSEQ
SMEQU
SMOPT
SMTAPE
SMEND
SMOWN and SMRTN
SMABT

Sample Program

7. FORTRAN 5 CALLS

FORTRAN 5 Calls to Sort/Merge
SMSORT,SMSORTB,SMSORTP, and SMMERGE
SMFILE
SMKEY
SMSEQ
SMEQU
SMOPT
SMTAPE
SMEND
SMOWN and SMRTN
SMABT

Sample Program

APPENDIXES

A-1 E Tape SortIMerge Processing Options
B-1 P Merge Order
C-1 G Glossary
D-1 H Future System Migration Guidelines

vii

INTRODUCTION

The primary function of Sort/Merge is the manipulation and rearrangement of records into a prescribed
order, according to a user specification.

CDC offers guidelines for the use of the software described in this manual. These guidelines appear in
appendix H. Before using the software described in this manual, t h e reader is strongly urged to review t h e
content of this appendix. The guidelines recommend use of this software in a manner that reduces the
effort required to migrate application programs to future hardware or software systems.

COMPARISON OF SORT/MERGE 1 AND SORTMERGE 4

Some of t h e material in this manual applies only to Sort/Merge Version 1; other material applies only t o
Sort/Merge Version 4. The difference is indicated as follows:

Material shaded in this mannw is applicable orily to -~ort!~erge V ersion 1, suppr ted under SCOPE 2.

~ateriat shaded in this manner is applicable only to Sort/Merge Version 4,-supported under NOS h d
Hosisa.

Material presented without shading is appliable t o both Version 1 and Version 4 of sort/Merge.

SORT/MERGE CAPABILITIES

The modular construction of the Sort/Merge program enhances the record processing options by providing
the following capabilities:

Sor t-only Sorts records from one or more input files into an order specified by the user.

Merge-only Combines from 2 to 100 presorted input file

Sort and Merge Sorts from 1 to 100 input files into an order or sequence specified by the user and
merges the output with from 1 to 100 presorted files. No more than 100 files can
be used in both phases combined.

RECORDS AND FILES

An understanding of Record Manager requirements for records and files in terms of structure and format as
presented in appendix D is essential for proper application of the Sort/Merge program. More detail may be
found in the Record Manager reference manuals.

Upon successful completion of a Sort/Merge run, tallies are printed in the dayfile, providing stat istics for
that run. The following messages are output, indicating how many records were inserted, deleted, sorted,
and output.

** INSERTIONS DURING INPUT ********** n
** DELETIONS DURING INPUT ********** n
** TOTAL RECORDS SORTED ********** n
** INSERTIONS DURING OUTPUT ********** n
** DELETIONS DURING OUTPUT ********** n
** TOTAL RECORDS OUTPUT **********n

e following message is printed if intermediate merge files ar e used:

** MERGE ORDER USED WAS ********** n
The following message is printed when records occur out of sequence on a merge run without the VERIFY
option:

** RECORDS OUT OF SEQUENCE **********n

After all tally messages, one of the following messages is printed, depending on the kind of run:

** END SORT RUN

** END MERGE RUN

SORT KEYS

A sort key is a field of information within each record in a sort or merge input file that is used by Sort/
Merge to determine the order in which records will be written to the output file.

An example of a record with sort keys is a typical record in a personnel file. Each such record might contain
the name, age, department number, salary, and employment date of an individual employee.

This file could be sorted by any one of these fields or by a combination of fields. For example, the file could
be sorted by the name field, or it could be sorted by age (as the major key) and salary (as the minor key).
In the latter case, if two or more employees were the same age, their records would appear on the output file
in order by salary.

SORT KEY DESCRIPTION

Every field to be used as a sort key must be described by the user. The user of the directive version describes
fields with the FIELD directive and the KEY directive (section 4); the user of the macro version describes
fields with the KEY macro (section 5).

Sort key descriptions include the following information:

Key length

Starting location of key within record

Type of data found in key field

Sort order

Collating sequence to be used (for character keys only)

KEY LENGTH AND POSITION

Key field length is specified on the FIELD directive or KEY macro as the number of bytes and bits in the
field; the default byte is a 6-bit character. The length of any single key must not exceed minimum record
length for any file.

Starting position of a sort key field may be anywhere within the record, but it must be the same fo r all
records of all files to be sorted or merged. Character coded keys that span a word boundary must begin on
a character boundary. Keys in variable length records must lie wholly within the fixed length portion of the
record; if the last character of any key is not within the minimum record length, sort order is undefined.
If more than one sort key field exists, fields may overlap.

KEY TYPE

Data in sort key fields can be of any of the following types:

LOGICAL Unsigned binary integers of any length (any number of bits); they are assumed to be non-
negative, and are sorted by magnitude. Under certain conditions, described later in this
section, data of other types can be sorted more efficiently when it is specified as logical type.

INTEGER 6Gbit integers; they can start anywhere within the record (not necessarily on a character
or word boundary), and are sorted by numeric value. Integer data includes numbers of
FORTRAN Extended INTEGER type when written by a binary write. Under certain con-
ditions, described later in this section, data of other types can be sorted more efficiently
when it is specified as type INTEGER.

The range of INTEGER keys must not exceed 259-1(259-1 = 576 460 752 303 423
487). If two sort keys differ by more than 259-1, improper sorting may take place
with no diagnostic issued. -0 is considered equal to +O.

FLOAT 60-bit normalized or unnormalized floating point numbers; they can start at any bit
position within the record, and are sorted by numeric value. When written by a binary
write, ALGOL numbers of #REAL# or #INTEGER# type, FORTRAN Extended num-
bers of REAL type, and COBOL COMPUTATIONAL-1 and COMPUTATIONAL-2 num-
bers are all valid FLOAT keys.

The full range of floating point numbers is permitted in FLOAT keys. This range is:

Infinite numbers, positive or negative, and indefinite numbers are also allowed. A positive
indefinite number is treated as though it had a value near 140 737 488 355 327.5,
which cannot be represented exactly as a floating point number, and a negative indefinite
number is treated as though it had a value near -140 737 488 355 327.5, which cannot
be represented exactly as a floating point number.

INTBCD Key fields written in internal BCD character code (appendix A); they can be any integral
number of characters in length (any integral multiple of 6 bits). Some tapes written b y
CDC 3000 Series computers are internal BCD, but the code is not standard in the oper-
ating systems which support Sort/Merge. INTBCD keys are sorted according to the spec-
ified collating sequence.

DISPLAY Key fields written in display code (appendix A); they can be any integral number of
characters in length (any integral multiple of 6 bits). DISPLAY keys are sorted according
to the specified collating sequence. The special case of signed numeric data is discussed
below.

COLLATlNG SEQUENCE

Collating sequence applies only to character data, not to numeric data. Unless the key is specified as INTBCD or
DISPLAY, a collating sequence is not needed. The collating sequence can be any of the following:

ASCII6 The American Standard Code for Information Interchange collating sequence (appendix A)

COBOL6 A CDC collating sequence (appendix A)

DISPLAY The CDC display code collating sequence (appendix A)

INTBCD Internal BCD collating sequence (appendix A)

In addition, the user can specify a collating sequence with the SEQUENCE and EQUATE directives or macros.
The collating sequence chosen need not correspond to the character set used in coding the data; collating
sequence is independent of character set. The character set determines the translation that will take place
from a 6-bit binary value occupying a character position to one of the letters, digits, and special characters
available as graphics. The collating sequence, on the other hand, determines the precedence given to each
character already translated, when the key is sorted.

For example, a file written using the internal BCD character set can be sorted by any of the collating sequences.
Three-records in a file have key fields whose contents are as follows:

Record 1 0707030303

Record 2 433 I626333

Record 3 1212121313

When INTBCD is specified as the character set and INTBCD as the collating sequence, records are written to
the output fde in the following order:

Collating Position of
Record Key (octal) Key (INTBCD) Characters in Key (INTBCD)

Record 1 0707030303 77333 07,07,03 ,03 ,03

Record 3 1212121313 -- 12,12,12,13,13 . ..-- ...

Record 2 4331626333 LIST. 43 3 1,62,63,33

The same records sorted according to INTBCD character set and DISPLAY collating sequence would be written.
in the following order:

Collating Position of
Record Key (octal) Key @VTBCD) Characters in Key (DISPLAY)

Record 3 1212121313 - 00,00,00,54,54 .. .-- ...

Record 2 433 1626333 LIST. 14,11,23,24,57

Record 1 0707030303 77333 42 ,42,36,36,36

If these records were sorted again according to the DISPLAY character set and the DISPLAY collating sequence,
they would be written in the following order:

Collating Position of
Record Key (octal) Key (DISPLAY) Characters in Key (DISPLAY)

Record 1 0707030303 GGCCC 07 ,07,03,03,03

Record 3 1212121313 JJJKK 12,12,12,13,13

Record 2 433 1626333 8Y] O/oO 43,3 1,62,63,33

SORT ORDER

The order for sorting keys can be specified as ascending or descending.

Ascending Numeric keys are sorted so that the record having the key with the highest value is
written last on the output file. Character keys are sorted according t o the collating
sequence specified.

Descending Numeric keys are sorted so that the record. having the key with the lowest value is
written last on the output file. Character keys are sorted according t o the collating
sequence specified, taken in reverse.

SIGNED NUMERIC DATA

Signed numeric data is integer data stored internally in display code, rather than in 6Cbbit integer for
numeric data is specified either by the word SIGN on the sort or merge key descriptor or by #SIGN
M@ARATE# on the SMKEY call. Embedded blanks cannot appear within a signed numeric data
In contrast to data specified as type DISPLAY that sorts according to display code values, signed numeric data
sorts according to the magnitude and value of the integer the display code represents.

The sign of the integer can be specified as any of the following:

Sign overpunch representation of the last digit in the field. The display code value of the low order digit
is equivalent to the key punch code resulting when a digit is overstruck with a + or - sign, as shown in the
list below. The sign of the overpunch specifies the sign of the integer. The overpunch can be omitted im-
plying a positive integer.

Sign overpunch representation of the first digit in the field. The display code value of the high order
digit is equivalent t o the key punch code resulting when a digit is overstruck with a + or - sign, as
shown in the list below. The sign of the overpunch digit specifies the sign of the integer.

SEPARATE specifies that the positive and negative signs are the characters + and - respectively. If
SEPARATE is specified, the + or - character can be the first or last character of the field.

When the character is shown in printed output or is received in input as a card image, the signed
digit appears as specified in the third column of the sign overpunch code list. When the item is to
be received as input from a card, the signed digit must be punched as specified in the second column
of the list. Positive or unsigned integers can be mixed with integers represented by a sign overpunch
in an input file. The negative sign is represented by a - overpunch in row 1 1; the positive s ign is
represented by the absence of an overpunch or the presence of a + overpunch in row 12.

Sign overpunch codes are:

Sign and Digit Hollerith Punch Output Representation

Positive integers can be mixed with integers represented by a sign overpunch in an input file.

MULTIPLE KEYS

At least one sort key must be specified for each sort or merge run; as many as 100 keys can be specified.
When multiple keys are specified, they can differ as t o type, collating sequence, and sort order.

If more than one key is specified, the order (left to right) in which they appear in the KEY directives or
macros determines their precedence for sorting. The key fields on the first KEY directive or macro, from left
to right, are compared first; then those on subsequent KEY directives or macros are compared until tt field is
found in which the two records have unequal values. Then, the records are sequenced appropriately. If all the
key fields for the two records have the same value, they are sequenced arbitrarily, unless the RETAIN option
has been selected causing records with identical keys to be written in the order they were read.

ALTERNATE SPEC1 FlCATlON OF KEY TYPES

Because Sort/Merge processes integer and logical keys more quickly than floating point or character coded keys,
it is advantageous for the user to specify key type as INTEGER or LOGICAL whenever such specification will
result in a correct sorting order.

For example, floating point keys will sort properly as integers if either of the following two conditions is true:

1. All keys in the file are normalized. FORTRAN Extended numbers of REAL type, ALGOL numbers
of #REAL# or #INTEGER# type, and COBOL COMPUTATIONAL-2 numbers are all normalized
floating point numbers. In addition, all keys in the fde must lie within one of the following ranges:

X=O or 4 X < (non-negative values)

-1 0322 4 X < -10-293 or X=O (non-positive values)

2. All keys in the file have the same exponent. This condition is true for COBOL COMPUTATIONAL-1
numbers, when they contain 14 or fewer decimal digits.

Certain kinds of character keys can be sorted more efficiently as integers. The most common example is a key
consisting of a COBOL item defined by the clause

PICTURE 9(n) SYNCHRONIZED RIGHT USAGE IS DISPLAY.

where 1 < n < 9. Since an item of this description always occupies a full word, and the leftmost digit is
always a display code 0 (33 octal), sorting keys of this description as integers results in a proper sort by mag-
nitude.

For character keys, when the character set and the collating sequence have the same name (INTBCD character
set and INTBCD collating sequence, or DISPLAY character set and DISPLAY collating sequence), SortIMerge
sorts them as logical keys, since logical keys sort faster than character keys.

Alternate key type specification also can be used to sort fields that do not conform to the characteristics of
any data types recognized by SortIMerge. For example, if a field whose length is 64 bits contains positive
aild negative integer values in ones complement form, it cannot be sorted as INTEGER type since fields of
INTEGER type must be 60 bits long; nor does it sort properly as LOGICAL type, since fields of LOGICAL
type are assumed to be unsigned. If the field is divided into two subfields, however, one consisting of the sign
bit and the other of the magnitude of the integers, the field can be sorted by the following specifications:

FIELD,SIGN(. 1 ,. 1 ,LOGICAL)
FIELD,MAGNITUDE(.2 ,.63 ,LOGICAL)
KEY ,SIGN(D),MAGNITUDE(A)

In this case, unlike INTEGER keys, keys equal to -0 are less than keys equal to to.

OWNCODE ROUTINES

Owncode routines represent closed subroutines written by the user as COMPASS language programs. Although
owncode routines are not required for SortlMerge execution, they provide the capability for the user to insert,
substitute, modify, or delete input and output records. Refer to appendix H for recommendations o n the use
of COMPASS owncode routines. I
All owncode routines specified by the OWNCODE directive must be assembled previously in relocatable binary
form and placed in the file "INPUT" or on an alternative source as specified on the SORTMRG control
statement (see section 4).

I

Owncode routines can be specified with the OWNCODE macro call. The routines are assembled in t h e program
calling Sort/Merge or assembled and referenced in a program occupying memory at the same time a s the program I
calling Sort /Merge.

The following program exits can occur during SortIMerge processing.

Exit 1 After reading each record from any sort input file while the record is still in the intermediate
input area, or during a search for a new record when no input file is specified. (This exit is
not allowed in a merge-only run.)

Exit 2 After reading the last record from each sort input file, but before file disposal action is
initiated. (This exit is not allowed in a merge-only run.)

Exit 3 After each record is selected for output but before the record is moved into the f ina l output
area, or when no output file has been specified.

Exit 4 After the last record has been moved into the final output area, but before Ale disposal
action is initiated.

Exit 5 When two records with identical sort keys are encountered.

Exit 6 Each time'a file with a .user spixified nonstandard Iabel is to be checked, while the label is
being read during input or written during output.

Upon entry to all owncode exits, register A2 contains the address of the current data record and register XO
contains the record length. In addition, during entry into owncode exit 5, registers A3 and X4 are used for
the address and length of the second record of a comparison involving identical sort key data.

Exits 1 and 2 owncode routines are not allowed in a merge-only run. Their purpose can be fulfilled b y using
Exits 3 and 4 owncode routines in a merge-only run, or by using Exits 1 and 2 owncode routines in a sort run
with supplementary merge files. An Exit 1 or 2 owncode routine specified in a merge-only run is ignored except
that a non-fatal diagnostic message is issued.

When SortlMerge transfers control to the user routine, the upper 30 bits of the XO register contain t h e record
length in characters of the current record, and the lower 30 bits contain the length in words of this record.

Example

Transfer to owncode routines is accomplished with a return jump (RJ) instruction which fills the entry point
of the owncode routine with a return to the Sort/Merge program. To re-establish SortlMerge control, the user
must jump to the entry point of the owncode routine. The user can req,uest specific processing action by
altering the return address in the entry point of the owncode routine.

59 47 30 17 0

EXIT 1: PROCESSING OF INPUT RECORDS

XO

Exit 1 is taken after reading each record from the input file while the record is still in the intermediate input
area, orrduring a search for a new record when no input file is specified. The user must specify processing
action with a jump to one of the following addresses. Exit 1 is not allowed in a merge-only run.

Normal return address

0

Normal return address+l.

Normal return address +2

Normal return address+3

characters

SortlMerge accepts the record whose address is in register A2 and whose
length is in register XO. Before returning to this address the user can :

Retain current record without modification; A2 and XO are unchanged.

0

Modify record in central memory without changing its address in A2.
XO should contain the correct length of the modified record; the
record length must not exceed the maximum for the run.

words

Replace the current record by changing the contents of A2 and XO
to reflect the address and length of a replacement record.

Provide an input record when no input files have been specified. The
address and length of the record are put in A2 and XO.

SortIMerge deletes current input record.
L-

SortlMerge inserts a user specified record after current record is read.
Address and length of record t o be inserted are returned by the user in
the A2 and XO registers. SortIMerge continues to return control t o the
Exit 2 routine until a transfer is made by the user to a different return
address. The address and length of the original input record are put in
registers A2 and XO each time SortlMerge returns control.

f

SortlMerge terminates record input from current input file and proceeds to
next input file. If current file is the last,,Sort/Merge proceeds t o Exit 2, if
specified, or to the merge phase. Current record is not processed.

EXlT 2: PROCESSING OF INPUT FILES

Exit 2 is taken after the last record is read-from each file but before final file handling action is initiated.
The user can specify a jump to either of the following addresses. Exit 2 is not allowed in a merge-only run.

Normal return address SortlMerge continues normal record processing by proceeding to the nex t
input file or to the next phase of SortlMerge.

Normal return address+l SortlMerge inserts a user specified record after the last record read. Address
and length of record are put by the user in registers A2 and XO. Control
returns to Exit 2 until a normal return is executed.

EXlT 3: PROCESSING OF OUTPUT RECORDS

Exit 3 is taken before each record is moved into the final output area or when no output file has been speci-
fied. The user can specify one of the following addresses:

Normal return address SortlMerge writes the record whose address is in register A2 and whose
length is in register XO. Before returning to this address the user may:

Retain current output record without modification; A2 and XO a r e
unchanged.

Modify record in central memory without changing address in A2.
XO should contain the correct length of the modified record; t h e
record' length must not exceed the maximum for the run.

Replace the current record by changing the contents of A2 and XO
to reflect the address and length of a replacement record.

Normal return address+l SortlMerge deletes the output record. If no output file has been specified,
all output records must be deleted.

Normal return addresst2 SortlMerge inserts a user specified record before current record is written.
Address and length of record to be inserted are in A2 and XO registers.
Sort/Merge continues to return control to the Exit 3 routine until a return
is made to a different address. The address and length of the original output
record are put in registers A2 and XO each time SortlMerge returns control.

Normal return address+3 Sort/Merge terminates record output to the current output file and proceeds
with Exit 4 execution if specified. Current record is not processed.

EXlT 4: PROCESSING OF OUTPUT FILES

Exit 4 is taken after the last record is moved into the final output area but before final file handling action
is initiated. The user can specify either of the following addresses:

Normal return address Sortmerge continues normal record processing by proceeding to the end-if-
fde procedures for the output file.

' Normal return addresstl Sortmerge inserts a user specified record after the last record is written.
Address and length of record are in registers A2 and XO. Control returns to
Exit 4 until a normal return is executed.

EXlT 5: PROCESSING OF DUPLICATE KEYS ..

Exit 5 is taken when two records with identical sort keys are encountered, One of the following addresses
must be specified if this exit is selected.

Normal return address Sort/Merge accepts two records: one with address in register A2 and length
in register XO, and the other with address in register A3 and length in
register X4. Before returning to this address the user may:

Retain both current records without modification; address and length
registers of current records are unchanged.

Modify either record, or both records, in central memory without
changing the addresses in A2 and A3. The corresponding X registers
(XO and X4) should contain the correct lengths of the modified
records; the record length must not exceed the maximum for the run.

Replace either record, or both records, by changing the contents of
the address and length registers to reflect addresses and lengths of
replacement records.

Normal return address+l SortlMerge deletes one of two records with identical sort keys. The user
provides address and length of the record to be retained in registers A2
and XO.

OWNCODE SUMMARY

Processing Action

Substitute record

Insert record

Delete record

Verify label
record during read

Verify last label
record during read

Sapply a label
record during write

Supply last label
record during write

Terminate filettf'

Normal record
processing

Exit 1 Exit 2

NR

NRt2 NR+ 1

NRt 1

Exit 3

NR

NR+2

NR+ 1

NR+3

NR

Exit 4

NR+ 1

NR

Exit 5

N R ~

N R + I ~ ~

NR

?Both records, designated by the A2 and XO and the A3 and X4 registers, can be substituted with new
address and length specifications.

??Record designated by A3 and X4 registers is deleted.

j-??Current record designated by A2 and XO registers is not included in Sort or Merge processing.

JOB EXAMPLE

The following SortlMerge job example illustrates the use of an exit 1 owncode routine to supply input records
from a multifile set to a directive sort. The example consists of a COMPASS subroutine, SortlMerge directives,
and job control statements.

OWNCODE ROUTINE

Through the COMPASS subroutine shown below, records are retrieved from the input fde set SORTIN. When
al l records have been obtained, the file set is closed and a branch is taken to normal return address + 3. This
branch indicates that SortIMerge is to terminate record input and proceed to the merge phase.

LOCATION

MULTIFL

OPENED
L
SORTl N

BUF
R EC

IDENT
SST
ENTRY
BSS
SA1
NZ
MX6
SA6
OPENM

GET
CHECK
FETCH
LXO

SA2
EQ
BSS
FETCH
SX1
NZ
CLOSEM
CHECK
SA1
LX1
SB7
J P
DATA
EQU
Fl LE

BSS
BSS
END

VARIABLE SUBFIELDS

MU LTI F L

MULTIFL
1
OPENED
X1,MULTlFLl
1
A1
SORTIN,INPUT,R

R EC
MULTIFL
1
SORTIN,FP,XI
X~-EEEOIEE
X I ,MULTI FL1
SORTIN
SORTl N
MULTIFL
30
X I
B7+3
0
10026
BT=C,RT=Z,F L=QO,BFS= L,
FWB=BUF,WSA=REC,
DX=MULTI FL2

L
4

--

COMMENTS

DEFINE ENTRYIEXIT WORD
CHECK AND SET OPEN FLAG

0

OPEN FlLE FOR INPUT WITH
REWIND

READ RECORD
0

SET XO TO RECORD LENGTH
SHIFT REC LENGTH TO UPPER

30 BITS
SET A2 TO WSA
EXIT, SUPPLYING RECORD
DEFINE ENTRYIEXIT WORD
CHECK FOR END-OF-INFORMATIOP

CLOSE FlLE

BRANCH TO NHA + 3

OPEN FLAG
LENGTH OF BUFFER
SORTIN F l LE DESCRIPTION

0

DEFINE FWB
DEFINE WSA

The SortIMerge directives used for this example include an OWNCODE that specifies the exit number 1 and
the entry point name MULTIFL for the owncode routine. The maximum record length of the input records is
defined in this directive as 40 characters. Because input records are being supplied by the exit 1 owncode
routine, no input fde is specified in the FILE directive.

JOB CONTROL STATEMENTS

The COMPASS control statement causes the owncode routine to be assembled in relocatable binary form. A
FILE statement is included to describe the output fde SORTOUT. A FILE statement for the input file s e t
SORTIN is not needed because a FILE macro is specified within the owncode routine. The COPYBR state-
ments copy three records from the system INPUT fde onto three separate fdes. The fdes are then copied onto
one multifde set by the COPYBF statements. SortIMerge processing begins with the SORTMRG control state-
ment. The OWN parameter indicates that the owncode binaries are located on the fde LGO.

COMPASS(S=IOTEXT, A)
FILE(SORTOUT,BT=C ,RT=Z,FL=40)
COPYBR(INPUT,FILEl)
COPY BR(INPUT,FILE2)
COPY BR(INPUT,FILE3)
REWIND(FILE1 ,FILE2,FILE3)
COPYBF(F1LE 1 ,SORTIN)
COPYBF(FILE2,SORTIN)
COPYBF(FILE3,SORTIN)
SORTMRG(0WN)

DIRECTIVE S O R T / M E R G E PROCESSING 4

CONTROL STATEMENT REQUIREMENTS

Processing of SortlMerge directives is accomplished through the SORTMRG control statement. The directives
are assumed t o be the next unexecuted section on the INPUT file unless an alternative source is specified on
the SORTMRG statement. Sample deck structures for various types of Sort/Merge runs are illustrated at the
end of this section.

Because SortlMerge performs all input and output through Record Manager, a Record Manager FILE control
statement must be provided for every input or output file to be processed by a directive sort or merge. This
control statement specifies the record and block structure of the file as well as file handling options. The
FILE control statement is described in appendix D.

In Sort/Merge Version 1, if the file INPUT is used ad a sort input file, its HI& statement should specify
OF=N and CF=N (no rewind on open or close).

Internally, SortlMerge requires a value for maximum record length, even for Record Manager record t y p e s
that do not require this specification. This value can be specified by the MRL or FL parameters on the
FILE control statement, or by the MRL parameter on the OWNCODE directive. The largest value provided
is used by SortlMerge as the value for all files.

SORTMRG STATEMENT

The SORTMRG statement calls for execution of a sort and/or merge based on specifications provided b y Sort/
Merge directives. This statement can take one of two forms:

SORTMRG.

SORTMRG (parameter list)

Parameters can be specified in any order with default values supplied for omitted parameters. The following
parameters can be included on the SORTMRG control statement.

PARAMETERS

DIRECTIVE FORMAT PARAMETERS 6C AND 7C

The format of the SortlMerge directives is indicated by specification of 6C or 7C:

6C Indicates SortlMerge directives are in the formats that apply for SortlMerge Version 3.

7C Default; indicates SortIMerge directives are in Sort/Merge Version 4 format.

SOURCE INPUT PARAMETER I

This parameter specifies the file on which the Sort/Merge directives are located. The directives must be a
separate section on this file, terminated by an end-of-section delimiter (71819 card equivalent). The format
of this parameter is:

I=lfn/R or I=lfn/NR or I=lfn or I or omitted

I=lfn SortlMerge directives are on the file whose logical file name is lfn.

R File is rewound before opening.

NR Default; file is not rewound before opening.

I Sort/Merge directives are on the file COMPILE.

omitted Sort/Merge directives are on the file INPUT.

If the system INPUT file is indicated, R should not be specified.

LIST FILE PARAMETER 0

This parameter identifies the file to which output by SortIMerge is written. The output includes directives
and any diagnostics. The format of this parameter is:

O=lfn/R or O=lfn/NR or O=lfn or 0 or omitted

O=lfn

0 or
omitted

Listings are written to the file whose logical file name is lfn.

The format of the file is BT=C, RT=Z, and FL=140. Specification of different
parameters can result in 110 errors.

The format of the file is RT=W, unblocked, and FL=137, unless a FILE control
statement overrides this format. Specification of different parameters can result
in 110 errors.

R File is rewound before opening.

NR Default; file is not rewound before opening.

Listings are written to the file OUTPUT.

OWNCODE FILE PARAMETER OWN

This parameter indicates the name of the file on which the owncode binaries are located. It has the following
format :

OWN=lfn/R or OWN=lfn/NR or OWN=lfn or OWN or omitted

OWN=lfn Owncode binaries are located on file whose logical file name is lfn.

R File is rewound before opening.

NR Default; file is not rewound before opening.

OWN Owncode binaries are on file LGO.

omitted Owncode binaries are on the file INPUT.

If the system INPUT file is indicated, R should not be specified.

EXAMPLES

Calls for execution of SortlMerge based on directives located on the file INPUT, and owncode binaries
on the file MYFILE. Listings are written to the file OUTPUT. The directives are in SortlMerge Version
3 format.

Calls for execution of Sort/Merge based on directives located on the INPUT file, which is not rewound.
These directives are in Sort/Merge Version 4 format. Any owncode binaries are on the INPUT file.
Listings are written on LISFL, which is rewound before it is opened.

SORTMRG.

This call is equivalent to:

SORT/MERGE D l RECTlVE CONVENTIONS

SottlMerge directives can begin in column 1 but must not continue beyond column 72 on any one source line.
Directives can be continued but must have a comma in column 1. The number of continuations for any one
directive is limited only by the parameter specifications for the particular directive. As an alternative to con-
tinuation, the same directive can be respecified with additional parameters. Blank source lines are allowed.

An asterisk in column 1 indicates the statement is used strictly for comments. The comment statement is ignored
by the system during processing and can be placed anywhere in the SortIMerge input deck. Contents of comment
statements are printed out where they occur in the deck.

The following characters are reserved by the program as field or parameter separators for directives. Restrictions
placed on separators allowed for each directive type depend on the syntax rules for each directive.

To simplify presentation, only the comma is used as a separator in the directive description. Blanks occurring
. before and after separators are ignored by the system, except in the case of the SEQUENCE directive. The

comma is recommended, but any of the following separators can be used in directives.

(left parenthesis - minus sign

) right parenthesis / slash

blank * asterisk

. period

+ plus sign

= equals sign

Unique user parameters can consist of any number of letters and digits, the first a letter, with no embedded
blanks, for such specifications as field names, names assigned to user defined collating sequences, filename, etc.
The first seven characters, however, must be unique for each specification within a single Sort/Merge run
input deck.

SORTIMERGE DIRECTIVES

The Sort/Merge directives for execution are presented below. The order in which they are listed does not imply
a standard input order. With the exception of the END directive, which must appear as the last statement of
each section of SortlMerge directives, the directives specified for any single SortIMerge run can appear in any
sequence.

SORT

MERGE

BYTESiZE

FILE

FIELD

KEY

SEQUENCE

EQUATE

OPTEONS

OWNCODE

END

SORT

The SORT directive is required to specify the kind of Sort Oaly or SortIMerge processing.

OPERATING SYSTEM INCOMPATIBILITIES

FORMAT

tY Pe Processing indicators as listed below. If this parameter is omitted, the system assumes mass
storage.

DISK Mass storage Sort /Merge processing.

TAPE , Polyphase tape

POLYPHASE Polyphase tape
or POLY

BALANCED Balanced tape
or BAL

ba Optional parameter specifies, in decimal, the total large core memory (LCM) buffer &ea for
SCOPE 2 Record Manager for all intermediate scratch files developed internally by SortIMerge,

- Default value is an installatian parameter.

EXAMPLES

Using a default value as follows, selects a mass storage sort:

MERGE

The MERGE directive specifies merge-only processing. The SORT directive is omitted when merge only is

I selected. See example 5, under JOB EXAMPLES in this section.

FORMAT

MERGE

BYTESIZE

The BYTESIZE directive specifies the number of bits per byte. Defining the bytesize with this directive
establishes a standard bytesize for subsequent parameter references to bytes in the FIELD directive. If this
directive is omitted, a default value of 6 bits per byte is assumed by the system.

FORMAT

nn Decimal number of bits per byte.

EXAMPLE

To specify 60 bits per byte:

A FILE directive is required to specify all the input and output files to be used during a SortlMerge run. For
a merge run, only MERGE and OUTPUT fde types can be specified; for a sort run, SORT, MERGE, INPUT,
and OUTPUT file types can be specified.

Each input file is opened with rewind unless the system INPUT file is specified; INPUT is opened w i t h no
rewind.

FORMAT

FILE,type=name(action),name(action), ...,typ e=...

Either FILE or FILES can be specified as the first word of the FILE directive.

The = and () symbols are required as shown in this directive; therefore they cannot be used as
separators in other positions.

type File type identifier; dl files of a particular type must be specified in one group

INPUT or SORT Sort input file. If no input file is specified, the user must specify
Exit 1 on the OWNCODE directive to read in the input records.

MERGE Merge input file.

OUTPUT Sort or merge output fde. If no output file is specified, the u s e r must
indicate owncode Exit 3 to write the output records. Only one output
file is allowed for each sort or merge.

name Logical file name of a file to be processed by SortlMerge. The name must have been specified
previously on a FILE control statement..

action Specifies system action to be performed after file processing is complete.

C Close the file
R Rewind the file
U Close and unload the fde
N No action is to be taken; however, if type=OUTPUT, an end-of-file is written
CR Close and rewind the file
RC Close and rewind the file; default
CU Close and unload the file

EXAMPLE

The FILE directive example has the following parameter specifications.

Two input files, WN02 and IN2, and one output file named RESULT.

The system is requested to close the two input files and unload the output file.

FIELD

The FIELD directive is required to specify the starting position, length, and data type of a sort or merge key
field. These attributes of a key field are described in section 2. At least one FIELD directive must be included
in a SortlMerge run; no more than 100 fields can be specified.

Any sort key can be defined or referenced more than once during a single SortlMerge run providing a new
keyname is specified.each time the sort key is defined.

The size of the bytes referenced in the FIELD directive for each job is predefined in the BYTESIZE directive.
If BYTESIZE is omitted, the default value of 6 bits per byte is assumed.

OPERATING SYSTEM INCOMPATIBILITIES

The separate .sign feature for signed numeric data and the sign overpunch in the leading clraracter position are
supported under SorVMerge Version 4; therefore, the location and SEPARATE options are applicable to Sort/
Merge Version 4.

FORMAT

FIELD,keyname(start ,length,type,SIGN J o c a t i o n S E P T) , . . . ,ke yname(...)

The left and right parentheses and the periods are required as shown for this directive; therefore, they
cannot be used in other positions.

keyname Name assigned by user to sort key; keyname can be any number of letters and digits.
The first seven characters must be unique and at least one must be alphabetic.

start Starting position of the sort key as follows:

byte Byte number in the record in which the sort key first appears. Bytes
are numbered from 1.

.bit Bit number, numbered from 1, within the first byte in which the sort
key first appears. The system assumes a value of one for an unspecified
byte position. The bit number may exceed the number of b i t s per byte.

byte.bit Combination of the byte number and the number of the first bit within
that byte in which the sort key first appears.

length Length of the sort .key in one of the following formats:

nbytes

.nbits

nby tesmbits

Number of bytes in the key. A default value of 6 bits per byte is
assumed unless specified differently by the BYTESIZE directive.

Number of bits in key. The number of bits may exceed the number of
bits per byte.

Number of bits and bytes in key. A default of 6 bits per byte is
assumed -unless specified differently by the BYTESIZE directive. The
number of bits may exceed the number of bits per byte.

Sort key type identifier as follows:

DISPLAY Internal display code

FLOAT Floating point data

INTBCD Internal BCD code

INTEGER Signed integer data

LOGICAL Unsigned integer data (assumed by system if parameter is omitted)

SIGN Optional valid only for sort keys containing numeric data in display code. It
indicates the sign is represented by an overpunch on the low order digit of the sort key.

Optional parameter, valid oflly for sort keys containing numeric data in display code. It
indicates the sign is represented either by an overpunch digit or a separate + or - sign, as
described by the two following parameters. If SEPARATE is not used, the sign character is
an overpunch.

location Sign position indicator, valid only if SIGN is used, as follows:

LEADING Sign character or overpunch digit is at the beginning of the data field.

TRAILJNG Sign character or overpunch digit is at the end of the data field (assumed
if parameter is omitted).

The sign character is an overpunch character unless SEPARATE appears.

SEPARATE Indicator signifying the sign .character is a separate t or - character appearing at the beginning
or end of the data field- Valid only if SIGN is used.

EXAMPLE

The FIELD directive example has the following specifications.

Names assigned t o the two sort key fields are NAME and JOB.

Starting positions for each sort key field are specified in terms of bytes and bits; the NAME sort key
begins in the first byte and the first bit; JOB sort key field begins in byte eleven, bit one. (A BYTESIZE
directive has defined bytes to be 12 bits long.)

Length of both sort key fields is specified in terms of bytes length of the NAME key is ten bytes;
length of the JOB key is one byte.

Both keys are written in DISPLAY code.

KEY

The KEY directive is required to specify the order and collating sequence of 1 to 100 sort keys for a Sort1
Merge run.

FORMAT

KEY ,keynarne(order,colseq), ..., keyname(...)

The left and right parentheses are required as shown for this directive; therefore, they cannot be used in
other positions.

keyname

order

colseq

Name assigned to sort key; it must be specified in the FIELD directive.

Specifies the order in which keys are to be sorted and merged.

A = ascending order (assumed if parameter is omitted)
D = descending order

Name of user specified collating sequence defined in the SEQUENCE directive or one of the
following standard collating sequence identifiers. These standard collating sequences are
presented in appendix A. A collating sequence is not needed unless the sort key type has been
defined to be INTBCD or DISPLAY on the FIELD directive.

ASCII6 &bit ASCII collating sequence; default for installations using the ASCII
character set.

COBOL6 &bit COBOL collating sequence; default for installation using the CDC
character set.

DISPLAY Internal display collating sequence

INTBCD Internal BCD collating sequence

The default collating sequences can be replaced and respecified with an alternate collating sequence using the
SEQUENCE directive.

EXAMPLE

This KEY directive example has the following parameter specifications:

Two sort keys are named ACCOUNTS and INVEST; both keys are to be sorted in ascending order.

The ACCOUNTS key is to be collated according to the 6-bit ASCII collating sequence. Internal BCD
is the collating sequence assigned to the INVEST sort key.

SEQUENCE

The SEQUENCE directive provides the following capabilities:

Specification of user's own unique collating sequence.

Redefining a standard collating sequence or a user collating sequence to be the default collating sequence.

The collating sequence may be specified by means of characters, octal values, or both. Characters occurring in
a user collating sequence are interpreted according to the character set specified as the type parameter o f the
FIELD directive. Octal values are interpreted as the contents of character positions in memory, regardless of
the character set specified.

FORMAT

The left and right parentheses and comma are required in the positions shown for this directive; therefore,
they may not be used in other positions.

colseq Specifies collating sequence to be used:

Name of user's unique collating sequence.

One of the standard collating sequence identifiers for respecifying a default collating sequence
(appendix A):

ASCII6 6-bit ASCII collating sequence; default for installations using the ASCII
character set

COBOL6 &bit COBOL collating sequence; default for installation using the CDC
character set

DISPLAY Internal display collating sequence

INTBCD Internal BCD collating sequence

Omitted; indicates the collating sequence in parentheses is to be the default collating sequence.

Each c is a character or octal value specified in the sequence in which it is t o appear in the
user collating sequence. Characters or values not specified are considered equal and collated
after the specified characters or values.

The system assumes a twodigit number is an octal value (the number must not be followed
by a B). When this value occurs as the contents of a character position in a sort key, it is
sorted according to the position the value occupies in the user collating sequence, regardless
of what character it represents in the character code specified in the FIELD directive.

When a character is specified, the system translates it to a value according t o the character
set (DISPLAY or INTBCD) specified in the FIELD directive. When this value occurs in a
character position in a sort key, it is sorted according to the position the character c occupies
in the user collating sequence. A single digit is assumed to be a character, not an octal value.

If colseq identifies a standard collating sequence, no list is provided by the user.
If colseq is omitted, the list in parentheses redefines the default collating sequence.

If the following symbols are included in the user's collating sequence, they must be specified in the c parameter
according to their octal equivalent.

Character
Display Code
Octal Equivalent

Internal BCD
Octal Equivalent

The collating sequence may be continued if necessary. In this case, specification of the collating sequence should
extend through column 72 of the first statement and recommence immediately with column 2 of the second
statement. Extraneous blanks should not appear because they are not ignored by Sort/Merge. If consecutive
blanks appear in the parameter list of the SEQUENCE directive, the system interprets the first blank as a sepa-
rator, the second blank as the occurrence of the blank character in the collating sequence, the third blank as a
separator, and so on. To avoid ambiguity, blanks should not occur within the SEQUENCE directive except to
indicate the collating position of the blank character,.

EXAMPLES

In this example the nonstandard collating sequence is named NEWSEQ and A, B, C, D, E, F, G, H, I, J,
K comprise the collating sequence.

The default collating sequence is replaced in the following example:

N C B D F H + L N R T v , I I I I I

A continuation statement is used:

EQUATE

The EQUATE directive specifies two or more characters already in the collating sequence as equal for com-
parison purposes.

FORMAT

Parentheses and 'commas are required for this directive in the positions shown; therefore, they may not
be used in other positions.

colseq Collating sequence:

Name of a user collating sequence specified in the SEQUENCE directive.

One of the standard collating sequence identifiers:

ASCII6 &bit ASCII collating sequence; default for installations using the ASCII
character set

COBOL6 &bit COBOL collating sequence; default for installations using the CDC
character set

DISPLAY Internal display collating sequence

INTBCD Internal BCD collating sequence

Characters or values to be equated. The collating position of the list specified within the
parentheses is equal to the position of the last character or value specified in the list. Mean-
ing of specification of characters or values is explained under the SEQUENCE directive.

m e following symboIs, if included in the user's collating sequence, must be specified in the c parameter
according to their octal equivalent.

Character
Display Code Internal BCD
Octal Equivalent Octal Equivalent

EXAMPLE

In this example, the collating sequence is named LIST.

The characters L, R, T, and 5 are to be equated or assigned a collating value equal t o B in the first
character string.

In the second character string, the collating values of the characters M and Q are equated to the col-
lating value of ,the character 3.

OPTIONS

The OPTIONS directive allows the user to specify special record handling options or operations for sort or merge
processing.

OPERATING SYSTEM INCOMPATI 61 LIT1ES
, (. , - -;. ' * . ' .: ' '

* - ;< ,y - , * -- ; ' < '

"The checkpoGtdump:featufes (voH~'MP;Du*, a h d : . ~ ~ ~ ~ ~ ~ ~ o f ~ $ b r f ~ e r ~ e are sufjported orily &;
SartlMerge Version 4.

The ORDER option is applicable only to SortlMerge'Version 4.

The COMPARE and EXTRACT options are applicable only to Sortrnerge Version 4,

FORMAT

option Record handling option identifiers:

VERIFY Output file is checked for correct sequencing. If the order of records on
the output file is incorrect, the job terminates and the output file is lost.
This option verifies that records from merge input files, or inserted through
owncode Exits 3 ,4, and 5, are in order; it need never be specified fo r a sort
with no-owncodes.

If this parameter is omitted, a sequencing error during a merge run with no
inserted records produces a non-fatal error message; all records are written
to the output file, but they will not be in order. When records are inserted,
no checking takes place; thus omission of this parameter allows t h e user to
to deliberately insert records (such as page headers) out of sequence.

RETAIN Records with identical sort keys that are read from sort input files are
written in the order they are read. That is, all the records from each file are
grouped together, and the groups occur in the order that the files are speci-
fied in the FILE directive. Records from merge files are sequenced arbitrarily.
When this parameter is omitted, records with identical sort keys a r e
sequenced arbitrarily.

OWNCODE

The OWNCODE directive is required t o specify legal entry point names to a user's relocatable owncode exit routines.

OPERATING SYSTEM I NCOMPATIBI LITIES

Owncode exit 6 for checking nonstandard labels dn input files is provided only under S o r t m r g e Version 4. Therefore,
exit 6 cannot be specified for the exitno parameter under SottflMerge Version 1.

FORMAT

The equals sign is required for this directive in the positions shown; therefore, it cannot be used otherwise.

11x1 Maximum decimal record length in 6-bit characters. This parameter is required if an input file
has not been specified, and not required otherwise.

exitno Number of the owncode exit desired.

entry Corresponding entry point name of exit.

When using OWNCODE binaries, SortIMerge momentarily uses lOOOOB more words than when first called. The
additional 1 OOOOB word requirement must be included in the maximum field length. The maximum field length is
determined by the CM parameter on the JOB control statement. If CM is not specified, the maximum field length is
the machine capacity.

If the extra lOOOOB words required for loading OWNCODE binaries are not available, a diagnostic message is issued. i
During the actual sort or merge, no more than the initial field length is used.

EXAMPLE

In this example, the maximum record length is forty 6-bit characters; exits 2 and 4 are specified with the
entry point names INTRO and OUTFROM.

END

The END directive is required to signify the end of each SortlMerge run deck.

FORMAT

END

JOB EXAMPLES

The following SortlMerge job examples provide direct applications of the SortlMerge directives.

The structure of the records used as input for .these examples is defined below. The record format dimensions
are represented in 6-bit characters.

RECORD FORMAT

Name

Job

k p t

Salary

1 24 26 27 33 39 41 42

23-character ihternal BCD coded field

2character internal BCD coded field containing a job grade identifier

2 employee
4 foreman
6 supervisor
8 manager
10 general manager
12 director

Salary Name

C

l-character display coded field containing a department identifier

A S M
e

e x s
Start Date

D
0

A production department
B shipping department
C personnel department
D accounting department
E sales department

g

6-character display. coded field

Start Date G-character display coded field in the format mmddyy:

rnm month
dd day
YY year

Age 2character internal BCD coded field

Sex

MS

1 character display coded field

1-character display coded field containing marital status

M married
S single
D divorced

EXAMPLE 1

Job Requirements:

1 . Sort the records located on the input file IN1 on the basis of:

Department in alphabetical order

Name in alphabetical order

Salary beginning with the highest paid

2. Return the output to file OUT1.

Job Code:

Code Interpretation:

73 1 74 175 1 76 1 77 178 1 79 1 80

L i e Si@~cance

I I I I I I I I I i

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1

1 ! 1 1

1 SORT directive specifies a mass storage sort.

L I N E 2 -
1 1 1 , 1 I I !

L I N E 3

L I N E 4 -
L I N E 5 -
L I N E 6 -
L I N E 7

2 FILE directive specifies the input file as IN1 and the output file as OUT1.

Line

3 & 4 FIELD directive defines:

NAME key, 23 bytes in length, beginning in byte 1, and coded in internal BCD.

DEPARTMENT key, 1 byte in length, beginning in byte 26, and coded in display.

SALARY key, 6 -bytes in length, beginning in byte 27, and coded in display.

KEY directive specifies:

DEPARTMENT key to be sorted in ascending order according t o the display collating
sequence.

NAME key to be sorted in ascending order according to the display collating sequence.

SALARY key to be sorted in descending order according to the display collating
sequence.

EXAMPLE 2

Job Requirements:

1 . Sort the records on the input file IN1 on the basis of:

Department, in the order: sales, personnel, accounting, shipping, and production

Salaries within these departments beginning with the highest salary

Ages, beginning with the oldest, of employees in each department and salary level

2. Return the output to file OUT1.

Job Code

K,EIY ID,EIPIAIR~,MIEN T I ([AII IOIWINI) , ISIAILIAIRIY (D,, 1 ~ ~ , ~ , ~ 1 ~ , ~ ~ ,)

I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I

I l l l l l l l l l l t l l l l ! l l I I I I I I l ~ I I l t

,LII,NIEl ,5
G E (D , D I S P L A Y) L I N E 6 -

El,,,W,Nl(El, C,Dl , lB l , lA l) l , , I I I I I I I I I ,LII,NIEl ,7

Code Interpretation

Line Significance

1 SORT directive specifies a mass storage sort.

2 FILE directive specifies the input fie as IN1 and the output me as OUT1.

3 & 4 FIELD directive defmes:

DEPARTMENT key, 1 byte in length, beginning in byte 26, and coded in display.

SALARY key, 6 bytes in length, beginning in byte 27, and coded in display.

AGE key, 2 bytes in length, beginning in byte 39, and coded in internal BCD.

5 & 6 KEY directive specifies:

DEPARTMENT key to be sorted in ascending order according to a unique collating
sequence assigned t b name OWN.

SALARY key to be sorted in descending order according to the display collating
sequence.

AGE key to be sorted in descending order according to the display collating sequence.

7 SEQUENCE directive specGes the unique collating sequence, OWN, used for sorting the
DEPARTMENT key in the order requested.

EXAMPLE 3

Job Requirements:

Sort records on the input frle IN1 on the basis of:

Employee start dates beginning with the most recently hired

Ages of employees starting with the oldest

Marital status; divorced and single employees are to be considered on an equal basis

Names of employees in alphabetical order

Return the output to file OUTl.

Job Code:

 KEY^., Y IEIAIRl(IDl9 lDI I IS

(A , D I S P L A Y)
I I I I I I I I I l l I I I I I I I I l i l l l l l l l l l l 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 ~

I N T B C D (S , D) L I N E 9 -
E N D L I N E 10 -
Code Interpretation:

1 SORT directive specifies a mass storage sort.

2 FILE directive specifies the 'input fde as IN1 and the output file as OUT1.

3, 4, 5 FIELD directive defines:

YEAR key extracted from the last two bytes of the START DATE field. The key
begins in byte 37, is 2 bytes in length, and is coded in display.

MONTH key extracted from the START DATE field. The key begins in byte 33,
is 2 bytes in length; and is coded in display.

DAY key taken from the START DATE field. The key begins in byte 35, is 2
bytes in length, and is coded in display.

AGE key, begins in byte 39, is 2 bytes in length, and is coded in INTBCD.

MS key begins in byte 42, is one byte in length, and is coded in display.

NAME key, begins in byte 1, is 23 bytes in length, and is coded in INTBCD.

6, 7 , 8 KEY directive specifies:

YEAR key is to be sorted in descending order according to the display collating
sequence.

MONTH key is to be sorted in descending order 'according to the display collating
sequence.

DAY key is to be sorted in descending order according to the display collating
sequence.

AGE key is to be sorted in descending order according to the display collating
sequence,

MS key is to be sorted in descending order according to the internal BCD collating
sequence.

NAME key is to be sorted in ascending order according to the display collating
sequence.

9 EQUATE directive assigns equal processing value to marital status indicators, for divorced
@) and single (S).

I EXAMPLE 5

Job Requirements:

I 1. Merge the records located on the pre-sorted files, IN1 and IN2.

1 2. Return the output to fde OUT1.

Job Code:

Code Interpretation:

Line Significance

1 MERGE directive specifies merge-only processing.

2 FILE directive specifies the merge files as IN1 and IN2 and the output file as O U T 1 .

3 FIELD directive defines:

NAME key, 23 bytes in length, beginning in byte 1, and coded in display.

DEPARTMENT key, 1 byte in length, beginning in byte 26, and coded in display.

SALARY key, 6 bytes in length, beginning in byte 27, and coded in display.

KEY directive specifies:

NAME key to be sorted in ascending order according to the display collating
sequence.

DEPARTMENT key to be sorted in ascending order according to the display
collating sequence.

SALARY key to be sorted in ascending order according to the display collating
sequence.

Processing of a MERGE directive is accomplished through the SORTMRG control statement, which m u s t
immediately precede the MERGE directive. A Record Manager FILE control statement must be provided for
every file processed by a directive sort or merge.

SAMPLE DECK STRUCTURES

The NOS operating system requires a job name statement and a USER statement. Depending on installation
option, a CHARGE statement might also be required.

Both the NOSIBE and SCOPE operating systems require a job name statement, An ACCOUNT statement
might be required as an installation option.

JOB DECK CONTAINING A SINGLE SORT/MERGE RUN WITH OWNCODE

BINARY DECK
7 t
8 I
9 1

k
- 7 f 1 * /SORT DIRECTIVES -

9 -
I

/ SORTMRG Statement
I
Fl LE Control Statement

7 / Appropriate Operating System Statement(s) .
8 I

?A binary deck run on NOS/BE must be followed by two 7/8/9 cards.

JOB DECK CONTAINING TWO SORT/MERGE RUNS WITH OWNCODE

I /SORTMRG Statement I
I

I

SORTM RG Statement I I
17 / Fl LE Control Statement

1 9/ Fl LE Control Statement

/ Appropriate Operating System Statement(s)

?A binary deck run on NOS/BE must be followed by two 71819 cards.

MACRO CALLS 5

When SortlMerge functions as a COMPASS subroutine for a COMPASS program or as a relocatable program
generated for the COBOL SORT verb, the calling sequence is written as a series of macro instructions. In
specifiing macro instructions, the user must satisfy the following requirements:

1. A SORT or MERGE macro call must precede all other SortlMerge macro calls specified.

st be specified in a continuous sequence,

3. The system control statement LIBRARY(SRTL1B) is required preceding the relocatable load of the
macro binaries.

4. The SortIMerge macros should not be assembled with the COMPASS LIST M or F options turned
on because of the large number of source statements they generate. LIST G can be used to check
the macro formats generated.

5. SZSMTEW is required on tha c d for COWASS assembly to ensure proper expansion of Sort/
"

Merge macros under SortlMerge Version 4.

6. To ansure proper expansion of SxtfMerge maekwith Sort/Merge Venion 1, the control hatkment

- ATTACH(SRTMACS, SRTMACS, ID=PRDLIB)

must precede the COMPASS control statement, and the COMPASS program must include the statement

SRTMACS X'IEXT

with SRTMACS in t?ie location fidd md XTEXT in the operation fietd.

After processing each series of macro calls, SortIMerge returns control to the location immediately following
the last macro specified in that series.

Sort@!.erge Version 4 uses the Co-n Memory Manager (CMM) to, allocate its spa&; it does not use the
area specified by RA+65B through field length. At least 22000B words of space should be available for
SortlMerge. Sorts with more than 2000 character records, with many user-supplied merge input files, or with
other exceptional conditions might require more words. If an insufficient field length for the sort is specified
in the CM parameter on the job statement, or if the memory limit is reached during the sort, SortIMerge
issues a diagnostic and aborts.

SYSTEM FILE MACRO

Every input or output file to be processed by SortlMerge macros must have a valid file information table when
macros are executed. Usually, this table is created through the Record Manager FILE macro. Record Manager e-
requirements for macro sorts and merges are described in appendix D.

Internally, SortIMerge requires a value for maximum record length in characters, even for Record Manager fde struc-
tures which do not require this specification (for example, BT=I, RT=W). This value can be specified by the MRL or

1

FL parameters on the FILE control statement, FILE macro, or STORE macro for input o r output files, o r by
the MRL parameter in the OWNCODE macro. SortlMerge will use the greatest of the values provided.

For SortIMerge Version 1, if the input fde is the standard system INPUT file (fdename on the FILE macro is
INPUT), the FILE macro should be specified with no rewind for the open fde and close fde parameters.

SORT/MERGE MACRO CALLS

Each macro call presented in this section is described for all operating systems. Incompatibilities among the
systems in terms of macro call specification are identified within the presentation of each macro call.

The following macro calls are provided for SortlMerge execution under the operating systems:

SORT

MERGE

BYTESIZE

FILES

KEY

SEQUENCE

EQUATE

OPTIONS

OWNCODE

SORT

The SORT macro call is required to initiate SortIMerge functions as a subprogram within a job requesting
SortIMerge processing.

OPERATING SYSTEM INCOMPATIBILITIES

The tape variant of Sortmerge is supported only under SortIMerge Version 4. Therefore SORTB and SORTP
macro call variants of the SORT macro are available only under Version 4.

The MAXCM and CM parameters can be specified only under SortIMerge Version 4.

The ba parameter can be specified only under SortlMerge Version 1.

FORMAT

I LOCATION I OPERATION I VARIABLE SUBFIELDS

ba This optional0para&ter specif& in decimal the total large core memory (LCM) buffm area
: for SCOPE 2 Record Manager for all intermediate scratch fdes constructed internally by

" Sort/Merge. The default d u e is an installation parameter,

MERGE

The MERGE macro call specifies merge-only processing.

FORMAT

VARIABLE SUBFIELDS L O C A T I O N

MAXCM=n This required parameter specifies the maximum number of central memory (CM) words
r

that Sortmerge is to use for its working storage area, including space needed for Sort/
Merge subroutines. At least 220008 words should be provided, If zero is specified,
SortIMerge uses a default size. n can specify a register.

OPERATION

CM=BELOWHHA This optional patairrettn is meaningfd only for oveday programs. If specified; the
Common Memory Manager preferentially allocates the working storage area for Sort/
Merge between the last word address (LWA) of the last loaded overlay and the high-
est LWA of all overlays, which is the highest high address (HHA). If the parameter
is omitted, the working storage area for SortlMerge begins higher than the highest
LWA of all overlays. If an overlay containing a sort does not load other overlays
during its execution, this parameter should be specified in order to reduce the amount 1

of memory required for the program. The parameter should not be specified if over-
lays are loaded during the sort, since the contents of the working storage area for
Sortmerge would be overlayed and lost.

The BYTESIZE macro call specifies the number of bits per byte. Defining the bytesize with this macro call
establishes a standard bytesize for subsequent parameter references to bytes in the KEY macro call:

FORMAT

M Specifies the number of bits per byte.

EXAMPLE

Specifies 60 bits per byte with the BYTESIZE macro call:

FILES

The FILES macro call defines the names of a l l input and output files to be used during SortlMerge processing.
-v

VARIABLE SUBFIELDS L O C A T ION

The files to be defined can be specified in any order. With the exception of the output file which is limited to
one specification, any of the remaining file types listed below can have up to 62 individual files specified with
a maximum of 63 fdes per macro call. A FILES macro is required to specify all the input and output files
to be used during a SortIMerge run. For a merge run, only MERGE and OUTPUT fde types can be specified;
for a sort run, SORT, MERGE, INPUT, and OUTPUT file types can be specified.

OPERATION

If an input file is not specified, the user must define owncode Exit 1 for record input. Omission of an output
file specification requires the user to specify owncode Exit 3 to provide for record output.

Each input file is opened with rewind unless the file is already open or unless the system N U T file is speci-
fied; INPUT is opened with no rewind.

FORMAT

WPe Type identifiers:

SORT Sort input file

INPUT Sort input fde

MERGE Merge input file

OUTPUT Output file

name Location of file information table for file to be processed by SortIMerge.

VARIABLE SUBFIELDS

(type,name,name),(type,name, . . .
LOCATION

EXAMPLE

This example has two input files named ACCOUNTS and ASSETS. One output file is specified, named

OPERA1 ION

Fl LES

RESULT.

LOCATION

I Fl LES (I NPUT,ACCOUNTS,ASSETS) ,(OuTPUT,R ESU LT)

KEY

The KEY macro call specifies each sort key used in sort and merge processing. A single KEY macro call is
required for each sort key specified. A maximum of 100 sort keys can be specified in any one run.

The placement of the individual KEY macro calls within the program determines the processing priority of
each sort key. Each sort key specified within a macro call is processed before subsequent sort keys specified
in additional macro calls.

Sort keys are discussed more fully in section 2.

OPERATING SYSTEM INCOMPATIBILITIES

The separate sign feature for signed numeric data and the sign overpunch in the leading character position are support-
w ed under Sort/Merge Version 4; therefore. the location and SEPARATE options are applicable to Sort/Merge Version 4.

3

bytepos Position of first byte of sort key in relation to first byte of record, counting from I.

bitpos Position of first bit of sort key in the byte indicated by bytepos, counting from 1.

nbytes Specifies number of complete bytes in sort key.

nbits Specifies number of bits in sort key in addition to number of complete bytes specified in the
previous parameter. The number of bits per byte is 6 unless a BYTESIZE macro is provided.

The following parameters are optional.

type Coding identifier; this parameter always must precede any colseq parameter specified.

DISPLAY Intern& display code

F m A T Floating point data

INTBCD Internal BCD code

INTEGER Signed integer data

LOGICAL Unsigned integer data

colseq Name of a user specified collating sequence defined in the SEQUENCE macro call or one
of the following collating sequence identifiers (appendix A). A collating sequence need be speci-
fied only if the sort key type is identified as INTBCD or DISPLAY.

ASCII6 &bit ASCII collating sequence; default for installations using the ASCII character
set

COBOL6 &bit COBOL collating sequence; default for installations using the CDC character
set

DISPLAY Internal display collating sequence

INTBCD Internal BCD collating sequence

The default collating sequences can be replaced and respecified with an alternate collating
sequence using the SEQUENCE macro call.

order Sequencing order of sort and merge processing:

A Ascending (assumed if parameter is omitted)
D Descending

SIGN This optional parameter is valid o d y for sort keys.containing numeric data in display code.
It indicates the sign is represented by an overpunch on the low order digit of the sort key.

ntis optional parameter is valid o d y for sort keys containing numeric data in display code.
It &dicates the sign is represented either by an overpunch digit or a separate + or - sign, as
described by the two following parameters. If SEPARATE is not used, the sign character is
an overpunch.

EXAMPLE

The KEY macro call example has the following specifications.

Sort key begins in byte 1, bit 7.

Key size consists of 1 byte and 12 bits.

Sort key is coded in DISPLAY.

Sort key is to be sequenced according to the internal BCD collating sequence.

Sequencing is ascending.

SEQUENCE

The SEQUENCE macro call provides the following capabilities:

Specification of user's own unique collating sequence.

Redefining as default a user collating sequence or a standard collating sequence other than the system default.

A collating sequence need be specified only if the sort key type is specified as ZNTBCD or DISPLAY.

FORMATS

To specify a complete sequence with a single statement:

VARl AB LE SUBFl E LDS

1,7,1,12,DISPLAY,INTBCD,A

LO CAT1 ON OPERATION

KEY

LO CAT1 ON OPERATION

SEQUENCE

VARIABLE SUBFIELDS

colseq,(e,c ,...),END

To define a continuing sequence with successive macro calls:

LOCATION

colseq Collating sequence:

SEQUENCE
SEQUENCE

Name of user's unique collating sequence; it cannot be A, D, SIGN, or END.

OPERATION

co~~eq,(c,c,c,c,c,c,c,c,c,c,c)
(c,c,c,c,c,c,c),END

Standard collating sequence identifier for respecifying the default collating sequence
(appendix A).

VARIABLE SUBFIELDS

ASCII6 ASCII collating sequence; default for installations using the ASCII character set

COBOL6 COBOL collating sequence; default for installations using the CDC character set

DISPLAY Internal display collating sequence

INTBCD . Internal BCD collating sequence

I

Omitted; indicates the collating sequence in parentheses is to be the default collating sequence.

Each c is a character or octal value specified in the sequence in which it is to appear in
the user collating sequence. Characters or values not specified are considered equal and col-
lated after the specified characters or values.

The system assumes a two-digit number is an octal value (the number must not be followed by
a B). When this value occurs as the contents of a character position in a sort key, it is sorted
according to the position the value occupies in the user collating sequence, regardless of what
character it represents in the character code specified in the KEY macro.

When a character is specified, the system translates it to a value according to the character
set (DISPLAY or INTBCD) specified in the KEY macro. When this value occurs in a char-
acter position in a sort key, it is sorted according to the position the character c occupies
in -the collating sequence. A single digit is assumed to be a character, not an octal value.

If colseq identifies a standard collating sequence, no list is provided by the user.

If colseq is omitted, the list in parentheses redefines the default collating sequence.

The following symbols, if included in the user's collating sequence, must be specified in the c parameter
according to their octal equivalent or by the corresponding descriptive identifiers assigned t o the symbol.
The descriptive identifiers are considered to be characters, as defined above.

Character

(
1
blank

Display code Internal BCD
octal equivalent octal equivalent

Descriptive
Identifier

LEFT
RIGHT
BLANK or SPACE
COMMA
ARROW

EXAMPLES

This example names the nonstandard collating sequence, NEWSEQ, and specifies the characters
comprising the sequence.

The default collating sequence is replaced by the following collating sequence to be used by the system
as a new default value for the KEY macro.

I LOCATION OPERATION I V A R ~ I E SUBFIELDS

EQUATE

SEQUENCE

The EQUATE macro call equates or specifies two or more characters already specified in a collating sequence
as equal when comparisons are made between these characters for sort and/or merge processing.

,(B,D,FJ,L,N,P,R,T,V),END

FORMAT

mhq Collating sequence

r

t O C A T l O N

Name of a user specified collating sequence specified on the SEQUENCE macro call

OQERATION

EQUATE

VARIABLE SUBFIELDS

colseq,(c,c,c),(c,c) ,END

Collating sequence identifier:

ASCII6 6-bit ASCII collating sequence; default for installations using the ASCII
character set

COBOL6 &bit COBOL collating sequence; default for installations using the CDC char-
acter set

DISPLAY Internal display collating sequence

INTBCD Internal BCD collating sequence

c Characters or values to be equated. The collating position of the list specified within the parentheses
is equal to the position of the last character or value specified in the list. Meaning of specification
of characters or values is explained under the SEQUENCE macro.

The following symbols, if included in -the user's collating sequence, must be specified in the c parameter
according to their octal equivalent or by their descriptive identifiers assigned to the symbol.

Character

(
1
blank

Display code Internal BCD
octal equivalent octal equivalent

Descriptive
Identifier

74 LEFT
34 RIGHT
60 BLANK or SPACE
73 COMMA
75 t ARROW

Descriptive identifiers are considered the same as characters, as defined under the SEQUENCE macro.

EXAMPLE

The name assigned to the collating sequence is LIST; the characters L, R, T, and 5 are to be equated
and assigned a collating value equal to B in the first character string.

In the second grouping of characters the collating values of the characters M and Q are equated t o the
collating value of the character 3.

LOCATtON OPERA1 ION

EQUATE

VARIABLE SUBFIELDS

LlST,(L,R,T,S,B),(M,Q,3),END

OPTIONS

The OPTIONS macro call specifies special record handling options or operations for sort and/or merge
processing.

OPERATING SYSTEM INCOMPATlBlLlTlES

The kheckpoint dump features of SortlMerge are supported only under SortiMerge Version 4; therefore, the
VOLDUMP, DUMP, NODLJMP options are applicable to SortIMerge Version 4.

The ORDER option is applicable only to SortIMerge Version 4.

The COMPARE and EXTRACT options are applicable only to Sortlklerge Version 4. '

The OPTIONS macro must immediately follow the SORT or MERGE macro under SorttMerge Version 1.

FORMAT

option One or a combination of the following record handling identifiers:

VERIFY Output file is checked for correct sequencing. If the order of records on the
output file is incorrect, the job terminates and the output file is lost. T h i s
option verifies that records from merge input files, or inserted through owncode
exits 3,4, and 5, are in order; it need never be specified for a sort with no owncodes.

VARIABLE SUBFIELDS LOCATION

If this parameter is omitted, a sequencing error during a merge run with n o
inserted records produces a non-fatal error message; all records are written to
the output file, but they will not be in order. When records are inserted, no
checking takes place; thus omission of this parameter allows the user to de-
liberately insert records (such as page headers) out of sequence.

OPERATION

RETAIN Records with identical sort keys that are read from sort input files are written in
the order they are read. That is, all the records from each file are grouped together,
and the groups occur in the order that the files are specified in the FILE directive.
Records from merge files are sequenced arbitrarily. If this parameter is omitted,
records with identical sort keys are sequenced arbitrarily.

VOLDUMP Checkpoint dump is taken when any end-of-volume condition is encountered on the
input file or when a new volume condition is detected on the output file. A check-
point frle must have been previously requested. See the NOS or NOS/BE reference
manual for information about requesting checkpoint files.

(DUMPpn) Checkpoint dump is taken when nn records (decimal) are read and written. A check-
point file must have been previously requested. See the NOS or NOSlBE reference

I
manual for information about requesting checkpoint files.

If nn is not specified, a checkpoint dump is taken after each group of 50,000 xecords
is read and after each group of 50,000 records is written. A checkpoint file m u s t

I
have been previously requested. See the NOS or NOSIBE reference manual f o r
information about requesting checkpoint files.

NODUMP No checkpoint dumps are taken; default.

I

OWNCODE

The OWNCODE macro call is required to specify the entry point names to a user's relocatable owncode exit
routines.

OPERATING SYSTEM INCOMPATIBILlTIES

An - . ow&ode. Exit 6.f& 7he &ecking of ltibels 6; i & p ~ $iles is provided 'bilf d d e r ~dfi.fM&ge %mion' 4;
therefore, Exit 6 is an allowable specification for the exitno parameter of the OWNCODE macro only under
Version 4. - *

FORMAT

mrl Maximum record length in dbi t characters. This parameter is required if an input file has
not been specified, and not required otherwise.

exitno Number of owncode exit.

entry Entry point name for exit specified.

EXAMPLE

In this example, the maximum record length is forty 6-bit characters.

Exits 2 and 4 are specified with the entry point names INTRO and OUTFROM

LOCATION OPERATION

OWNCODE

VARIABLE SUBFIELDS

(MR ~,40),(2,1Nf R0),(4,0UTFROM)

FORTRAN EXTENDED CALLS

A set of library routines is provided for calling SortlMerge from a FORTRAN Extended program, All are
called by standard FORTRAN Extended CALL statements; all conventions for FORTRAN Extended statements
must be observed.

The FORTRAN Extended calls and corresponding SortlMerge directives are listed below:

CALL SMSORT SORT directive

A U SMSOR~B SORT directive (Sort/Merge Version 4)

CALL SMSORTP SORT directive (SortlMerge Version 4)

CALL SMMERGE MERGE directive

CALL SMFILE FILE directive

CALL SMKEY KEY directive

CALL SMSEQ SEQUENCE directive

CALL SMEQU EQUATE directive

CALL SMOPT OPTIONS directive

CALL SMTAPE' TAPE directive (Soit/Merge Version 4)

CALL SMEND END directive

CALL SMOWN OWNCODE directive

CALL SMRTN No corresponding directive

CALL SMABT No corresponding directive

The first call must be to SMSOR or SMMERGE. The last call for any one sor t must be
to SMEND, which initiates proces collected by the other calls.

Any Hollerith constants shown below as parameters delimited by the paired symbols # # can be indicated by the
nHf (left justified with blank fill) representation of a Hollerith constant or a variable containing such a value. nRf
and nLf representations are required in some instances, as noted below.

FORTRAN EXTENDED CALLS TO SORTIMERGE

One of these calls must be the first call for any sort.

SMSORTB is used for a balanced tape sort, SMSORTP for a polyphased tape sort, and SMMERGE for merge only
processing. All other sorts use the call to SMSORT.

OPERATiNG SYSTEM INCOMPATIBILITIES

The tape variant of SortlMerge is not supported under Sortmerge Version 1. Therefon, SMSORTB and
SMSORTP calls are allowed only under Version 4.

FORMAT

CALL SMSORT(mr1 ,ba)

CALL SMMERGE(mr1,ba)

mrl Maximum length, in characters, of record to be sorted.

SMFI LE

This call defines the names of all input and output files to be used during SortlMerge processing. One call is
needed for each unless the output file is handled by SMOWN, which requires no call to SMFILE.

A file should be positioned before any SortlMerge processing.

FORMAT

CALL SMFI LE(smo,type,lfn,action)

Specifies file processing:

#SORT#
+MERGE#
+OUTPUT#

Indicates type of input/output used for file access:

#FORMATTED+ Formatted
or f CODED#

f BINARY# Unformatted

0 (zero) Record Manager interface routines

action Indicates action to be taken with the file upon SortIMerge completion:

f REWIND#
f UNLOAD+
#NONE# (Default)

EXAMPLE

The fde TAPE1 is an input file for a sort. As no action is specified, the default (#NONE#) is used.

CALL SMFI LE(#SORT#,#FORMATTEW, 1)

SMKEY

One SMKEY call is required to describe each sort key to be used. Sort keys are discussed more fully in section 2.

OPERATING SYSTEM INCOMPAT lBl LITIES

The-separate sign feature for signed numeric data ahd the sign overpunch h the leading character position a r e
supported under Sortlhlerge Version 4; therefore, the LEADING, TRAILING, and SEPARATE options are appli-
cable to Sort/Merge Version 4.

FORMAT

CALL SMKEY(bytepos,bitpos,nbyte,nbits,type,coIseq,order)

bytepos Starting position of the sort key in relation to the first &bit byte of the record,
bitpos) counting from 1. bytepos gives the byte, bitpos gives the bit within the byte.

] Length of sort key in &bit bytes, or characters (nbyte), plus bits (nbits).
nbits

The remaining three parameters are optional:

t~ pe Specifies the type of code used to interpret keys. Type is a character expression
having the following values: I

#DISPLAY# Internal display code

+FLOAT# Floating point data

#INTEGER# Signed integer data

LOGICAW Unsigned integer data (default)

I The identifiers +SIGN#, +SEPARATE+, +']~&~ILING+, and ~ L E A ~ I N W must be preceded by type I +DISPLAY#; the identifiers must be separated by commas, as indicated:

- 2

'&ISPLAY#, . ,~ir~ri6& data in display code; represented by an
#SIGN# overpunch on the low order character of the key.

colseq Name of user supplied collating sequence defined by SMSEQ call, or one of the follow-
ing collating sequences:

#ASCII6# 6-bit ASCII collating sequence (default for installations using
ASCII character set)

#COBOM# 6-bit COBOL collating sequence (default for installations using
CDC character set)

+DISPLAY# lnternal display code collating sequence

#INTBCD# Internal BCD collating sequence

name Name of a collating sequence specified by a call to SMSEQ

A colseq parameter cannot be used unless the type parameter specifies #DISPLAY#.

I When a type parameter other than #DISPLAY# is used, the colseq parameter must be omitted. No indication of
the omitted parameter is necessary.

order Sequencing order for sort processing. It can be either of the following:

Ascending (default)

Descending

EXAMPLE

The SMKEY call example has the following specifications:

Sort key begins in byte 1, bit 1.

Key size is 20 bytes.

Sort key is coded in #DISPLAY#.

Sort key is to be sequenced according to the installation default,

Sequencing is ascending.

CALL SMKEY(1,1,20,0,#DISPLAY#,#A#).

The order parameter follows the sort key parameter when colseq is not needed.

The following SMKEY example is invalid:

CALL SMKEY(13,6,10,0 ,#INTEGER# ,O,#A#)

SortIMerge interprets the second 0 (zero) as the name of a collating sequence because it is not a key type o r #A#
or #D#. Inclusion of a collating sequence parameter with a non-character key type is invalid.

The correct calling sequence is:

CALL SMKEY(13,6,~0,0,#lNTEGER#,#A#)

SMSEQ

This call specifies and names a user supplied collating sequence. I

FORMAT

CALL SMSEQ(colseq,array)

colseq Names the collating sequence being defined. The collating sequence cannot be #ASCI16#,
PCOBOL6#, f DISPLAYS: or #INTBCD+. I

array Name of array containing characters in the order they are to be collated. Each character
should be in nRx format (right justified with zero fill) or ijB format (octal). Unspecified
characters collate high and equal. The collating sequence is terminated by a negative
number.

EXAMPLE

A new collating sequence is specified:

INTEGER COL(8)
DATA COL / IRA, l R , 1R1, 1R1, 57B, 1R$, SIB, -11
* . .
CALL SMSEQ(#MINE#,COL)

SMEQU

This call specifies two or more characters (already specified in a collating sequence) as equal when comparisons
are made between these characters for SortIMerge processing.

FORMAT

CALL SMEQU(colseq,array)

I colseq Specifies the collating sequence containing the characters to be equated. The collating
sequence cannot be #ASCIIW, #COBOIh#, #DISPLAY# or #INTBCD#.

array Name of array specifying the characters to be equated. Each character should be in
nRx format (right justified with zero fill) or ijB format (octal). The end of the list
of characters to be equated is indicated by a negative number.

EXAMPLE

The characters A, B, and 1 in the collating sequence #MINE# are equated:

INTEGER EQ(4)
DATA EQ / IRA, lRB, 1R1, -I/
. . .
CALL SMEQU(#MINW,EQ)

SMOPT
This call specifies special record handling options or operations for SortlMerge processing.

OPERATING SYSTEM INCOMPATIBI LIT1 ES

The checkpoint dump features of SortIMerge are supported only by Sort/Merge Version 4; .therefore the
#VOLDUMP#, #DUMP#, and #NODUMP# options are applicable only for the option parameter of the
SMOPT call under Sortmerge Version 4.

The +ORDER+, #NODAY#, #COMPARE#, and #EXTMCT# options are also applicable only under
SortlMerge Version 4.

If SMOPT is called under Sortmerge Versian 1, the call must be made immediately after the call to SMSORT
or SMMERGE.

FORMAT

CALL SMOPT(optionl, . . . , optionn)

optioni Any of the following record handling options may be specified:

+VERIFY# Output file is checked for correct sequencing. If the records
are not in correct order, the job terminates and the output
file is lost. This option verifies that records from t h e merge
input file or inserted through owncode exits 3, 4, a n d 5 are
in order; it need never be specified for a sort with n o
owncodes.

If this parameter is omitted, a sequencing error during a
merge run with no inserted records produces a nonfatal error
message. All records are written to the output file, but they
will not be in order. When records are inserted, n o checking
takes place; thus, omission of this parameter allows the user
to insert records (such as page headers) out of sequence.

#RETAIN# Records with identical sort keys that are read from sort input
fdes are written in the order they are read. That is, all the
records from each file are grouped together. Records from I
merge files are sequenced arbitrarily. When this parameter is
omitted, records with identical sort keys are sequenced
arbitrarily.

EXAMPLE

This example requests the #VERIFY# option and a checkpoint dump after each 10,000 records are read from
the input fde or written to the output file.

CALL SMOPT(#VERIFY#,#DUMP#,lOOOO)

EXAMPLE

Names are assigned t o four intermediate merge files:
8

CALL SMTAPE(SLPOPPY ,SLPANSY ,SLDAISY,~LVIOLA)

SMEND

This call initiates Sort/Merge processing. It must be the last call for any one sort or merge,

FORMAT

CALL SMEND

This call has no parameters.

SMOWN A N D SMRTN

The call to SMOWN allows owncode routines to be set up. This call provides the capability to insert, substitute,
modify, or delete input and output records.

If the owncode routine is a FORTRAN Extended subroutine, the call to SMRTN is used to return f r o m the
owncode subroutine and resume Sort/Merge processing. Specific processing action can be requested f r o m Sort/
Merge by altering the return address with a parameter on the SMRTN call.

An owncode routine must be supplied for each owncode exit specified in the call t o SMOWN. Exits t h a t may
be specified and the use of COMPASS owncode routines are discussed in section 3.

FORMAT

CALL SMOWN(exitnuml ,subname . . . ,exitnum,,subnamen)

exitnumi Number of owncode exit to be taken.

subnamei Name of the user-supplied owncode exit subroutine to be called when exitnumi
is taken.

Each name specified in a call to SMOWN must appear in an EXTERNAL statement in the calling program.
For each subname specified, the user must supply a subroutine that exits through a call to system subroutine
SMRTN, in accordance with the owncode exit number and return address as follows:

Exi tnum Entry E&

1 or 3 SUBROUTINE subname(a,rl) CALL SMRTN(retaddr), for retaddr=l or 3

CALL SMRTN(retaddr ,b ,rl), for retaddr=O or 2

Exitnum

2 or 4

Entw

SUBROUTINE subname

E X

CALL SMRTN(retaddr), for retaddr=O

CALL SMRTN(retaddr ,b jl), retaddr=l

SUBROUTINE subname(a ,rl ,a2 ,'I2) CALL SMRTN(b 1 ,rll ,bZ,dZ), for retaddr=O

CALL SMRTN(b ,rll), for retaddr=l

a Integer array of length r1+9/10 in which Sort/Merge stores a record when subname is
called. Storing into array a causes indeterminate results.

b Integer array of length r1+9/10 in which the user stores a record when subname is
called. Array b should not be the same as a.

r l Record length in characters.

retaddr Alters the normal return address used to resume SortlMerge processing as follows:

retaddr Return address:

Normal return address
Normal return address t 1
Normal return address +2
Normal return address 4-3

The retaddr parameter of the SMRTN call determines the processing action requested. Actions that can be
requested are discussed in section 3. These actions are summarized as follows:

Processing Action Exit 1 Exit 2 Exit 3 Exit 4 Exit 5

Substitute a retaddr
record

retaddr retaddr

Insert a record retaddrt2 retaddr+l retaddrt2 retaddrtl

Delete a record retaddrt 1 retaddr+l retaddr-tl

Terminate a file retaddr+3 retaddrt3

Normal processing retaddr retaddr retaddr retaddr retaddr

When the processing action requested is file termination, the current record in array a is not included in
Sort /Merge processing .

Special factors t o consider when using Exit 5 owncode routines are:

If SMRTN is called from an Exit 5 owncode routine, the number of parameters on the SMRTN call
determines the processing action requested.

If an Exit 5 owncode routine is used for record subsitution, the record contained in both area a and
array b can be substituted with both new address and new field length specifications.

If an Exit 5 owncode routine is used to delete a record, the record contained in array b is deleted.

SMABT

This call terminates a sequence of Sort/Merge interface calls without initiating an execution of SortlMerge.
The state of the interface is the same as if no calls had been made.

The format of the SMABT subroutine is as follows:

CALL SMABT

This call has no parameters.

EXAMPLE

CALL SMOWN(3 ,SUB3)
. . .
SUBROUTINE SU33(X,N)
DIMENSION X(20)
. . I

CALL SMRTN(1)

SAMPLE PROGRAM

The following sample program adds new records to a master file,-merges two files containing updates to the
master file, updates the master file, and produces a report.

The master file is a list of students by name and student number, along with the grade to date. T h e updates
are the results of an exam. The updated grade is used to produce the report.

A main program and two subprograms, one of them an owncode routine, were used:

STOP

The following files were used as input to the program:

The program was run using the following control statements:

FTN.

LGO.

The foliowing report was produced:

NAME Sf UDE-NT NUMHEH

MARTINqP4THICIA 111111
ANOERSONI~AMES 111113
A N D E R S O N ~ ~ U ~ L C I A M 111.1 12
SMITHqJOHN 105432
WAtSON*JOSEPH 102782
HENDEHSgGERALD 11 8538
JONESgCHRISTWHER 115741
HALL* MARY 104725
SHARP*DANIEL 108467
NORTH*PATHfCfA 107043
DOE,CHERYL 100222
CARTER~BARBARA 116315
8ROWNgWILLIAM 113751
tHOMPSON&OlJIEE 101886
LYNCH~OENNIS 112373

FAILING

GORDON,f?O8ERT
PETERS* SANDRA
ANOERSON*PETEH
SMITH,CATHERINE
GRAYqHENRY
ROLLINS,SARAH
NO€ 9 JANE
HARRISgJEAN

Four scratch files were used; when the job finished execution, they were as follows:

TAPE 22 100222
1 0 1 U 6
102778
102782
103167
103759
104725
105432
1 0 7 0 4 3
107461
10846'7
111111
11111%
111113
I l l 6 3 6
112373
113542
113751
114154
1 lSi?S4
1 IS T4l
116315
3 18538

FORTRAN 5 CALLS

Fortran 5 provides the capability for processing d a t a ~ c o r d s under Sort/Merge. Fortran 5 interfaces with
Sort/Merge through the subroutines described in this section. Because Sort/Merge uses the unused part of
the field length as a scratch area, the ARG=FIXED control statement option is not permitted for programs
using Sort/Merge. All conventions for FORTRAN 5 statements must be observed.

The Fortran 5 calls and corresponding Sort/Merge directives are as follows:

CALL SMSORT SORT directive

CALL SMSORTB SORT directive (SortfMerge V ersion 4)

CALL SMSORTP SORT directive &&Merge Version 4)

CALL SMMERGE MERGE directive

CALL SMFILE FILE directive

CALL SMKEY KEY directive

CALL SMSEQ SEQUENCE directive

CALL SMEQU EQUATE directive

CALL SMOPT OPTIONS directive

CALL SMEND END directive

CALL SMOWN OWNCODE directive

CALL SMRTN No corresponding directive

CALL SMABT No corresponding directive

FORTRAN 5 CALLS TO SORT/MERGE

The series of calls to Sort/Merge subroutines must begin with a call to SMSORT, SMSORTB, SMSORTP or
SMMERGE. If a file is processed by CYBER Record Manager subroutines, OPENM should be called before
any of these routines. The last call for any one sort must be to SMEND, which intiates processing using the
information collected by the other calls.

In an overlay structured program using blank common, the Sort/Merge interface routines must not be called
from the 0,O overlay.

SMSORT, SMSORTB, SMSORTP, AND SMMERGE

One of these calls must be the first call for any sort.

SMSORTB is used for a balanced tape sort, SMSORTP for a polyphased sort, and SMMERGE for merge only
processing. All other sorts use the call to SMSORT.

OPERATING SYSTEM INCOMPATIBILITIES

The tape variant of SortIMerge is not supported under SortIMerge Version 1. Therefore, SMSORTB and
SMSORTP are allowed only under erdon 4.

F O R M A T

CALL SMSORT (mrl, ba)

CALL SMMERGE (mrl, ba)

mrl Maximum length in characters of record to be sorted.

ba Optional total. in decimal of large core memory (LCM) buffer area for SCOPE 2 Record
manager for all intermediate scratch files constructed internally by Sort/Merge. ba can be
zero. Default is the installation parameter.

Optional umber 0 4 words of central memory to be used by SortfMerge for working
storage, Default is 22000B.

SMFILE
This call defines the names of all input and output files to be used during SortIMerge processing. SMPILE
must be called for each file to be sorted or merged and must be called once for the file t o receive the
output (unless SMOWN is called).

Files should be properly positioned before any SortIMerge processing.

F O R M A T

CALL SMFILE (dis, ilo, lfn, action)

d is Character expression indicating file processing:

'SORT' File is to be sorted.

'MERGE1 File is to be merged.

'OUTPUT File is to receive output.

Character expression indicating mode of file input/output:

'FORMATTED1 File accessed with formatted inputloutput.

'CODED1 File accessed with formatted input/output.

'BINARY' File accessed with unformatted inputloutput.

0 (zero) File accessed with interfacing Record Manager Subroutines.

Character or boolean file name indicator:

u Logical unit number, 0 through 99

L l1filenamew File name left justified with zero fill

fit Array containing the file information table when i/o is specified as 0
(zero)

action Character expression indicating the action to be taken for the file upon Sort/Merge
completion:

'REWIND'

'UNLOAD'

'NONET (default)

EXAMPLE

The file TAPE1 is an input file for a sort. The file is to be rewound upon Sort/Merge completion.

CALL SM FILE ('SORT,'FORM ATTEDt ,l,lREWEND')

SMKEY
This call describes the sort key to be used. One SMKEY is required for each key. The first call for each
file indicates the major key; subsequent calls indicate addtional or minor keys in the order encountered.
Sort keys are discussed more fully in sec tion 2.

OPERATING SYSTEM INCOMPATIBILITIES

The separate sign feature for signed numeric data and the sign overpunch in the leading character position
are supported under Sort/Merge Version 4; therefore, the LEADING, TRAILING, and SEPARATE options
are applicable to Sort/Merge Version 4 only.

FORMAT

CALL SMKEY (charpos,bitpos,nchar,nbits,type,colseq,order)

charpa Integer specifying the relation of the first character of the sol4 key to the first character
of the record. The first character of the record is in position 1.

bitpos Integer specifying the position of the first bit of the sort key of the character (or 6-bit
byte) specified by charpos. The first bit of the record is considered bit number 1.

nchar Integer specifying the number of characters or complete 6-bit bytes in the sort key.

nbits Integer specifying the number of bits in the sort key in excess of those indicated by nchar.

The remaining three parameters are optional:

t YPe Specifies the type of code used to interpret keys. Type is a character expression having
the following values:

'DISPLAY1 Internal display code.

'FLO ATt Floating point data

1NTEGERf Signed integer data

'LOGICAL1 Unsigned integer data (default)

The identifiers %I@#$, % ~ P ~ & A ? ~ ~ ; ' T ~ M ~ G I * and BBAD~&G~ must be preceded by t ype
'DISPLAY1; the identifiers must be separated by commas, as indicated:

colseq Name of user-supplied collating sequence defined by SMSEQ call, or one of the following
collating sequences:

6-bit ASCII collating sequence (default for installations using
ASCII collating character set).

'COBOLG' 6-bit COBOL collating sequence (default for installations using
CDC character set).

lDISPLAY1 Internal display collating sequence.

'INTBCD1 Internal BCD collating sequence.

segname Name of a user supplied collating sequence specified in a call to
SMSEQ.

A colseq parameter cannot be used unless the type parameter specifies 'DISPLAY1. When a
type parameter other than 'DISPLAY' is used, the colseq parameter must be omitted. N o
indication of the missing parameter is necessary.

order Character expression specifying the order of sort processing. It can be either of the
following :

'A1 Ascending (default)

lD1 Descending

EXAMPLE

In the following SMKEY example, the first two parameters describe a sort key beginning in position 1, bit 1:

CALL SMKEY(1,1,20,0,'DISPLAY',1At)

Other parameters specify the number of characters in the sort key (exactly 201, the sort key type (display),
and the order of processing (ascending). The colseq parameter is omitted; therefore, the sort key is
collated according to installation default. The order parameter directly follows the sort key parameter
when colseq is omitted.

The following SMKEY example is invalid:

CALL SMKEY (l3,6,10,0 , l ~ ~ ~ ~ ~ ~ ~ ' , ~ , r A ')

The second 0 will be intepreted as the name of a collating sequence because it is not a key type o r 'A'
or lDt. Inclusion of a collating sequence parameter with a non-character key type is invalid. The correct
calling sequence for the example is:

CALL SMKEY (13,6,10,0,'INTEGER',1A1)

This call specifies and names a user-supplied collating sequence.

FORMAT

CALL SMSEQ (segname ,segspec)

segname Names the user-supplied collating sequence being defined. The collating sequence cannot
be 'ASCIIG', 1COBOL6t, 'DISPLAY' or INTBCD1.

segspec Names the integer array containing characters in the order they are to be collated. Each
character should be in nRT1s" format (right justified with zero fill) or Otto'' format (octal).
Unspecified characters collate high and equal. The collating sequence is terminated by a
negative number.

EXAMPLE

A new collating sequence is specified:

INTEGER COL(8)
DATA COL/R"A",R"1",R'tP,0t'57",R"$",0'1511',-l/

.
CALL SMSEQ('MINE1 ,COL)

This call specifies that two or more characters already specified in a user's collating sequence are equal for
comparison.

FORMAT

CALL SMEQ U(co1seg ,equspec)

colseg Specifies the user collating sequence determined by a previous call t o SMKEY or SMSEQ.
The collating sequence cannot be lASCIIG1, lCOBOLG1, lDISPLAY1, or 'INTBCD'.

equspec Defines the name of an integer array that specifies the characters t o be equated. Each
character should be in nRnsn format (right justified with zero fill) or O"oU format (octal).
The end of the list of characters to be equated is indicated by a negative number.

EXAMPLE

The characters A, B, and 1 in the collating sequence 'MINE' are equated:

INTEGER EQ(4)
DATA EQ/E!!A!f,R"BW Rftllf -I/

SMOPT

This call specifies special record handling options or operations for Sort/Merge processing.

OPERATING SYSTEM INCOMPATIBILITIES

Tk checkpbim dump features of Sart/Merge are supp6~ted' only by &rt/Merge Verkioir3; therefore t h e
VOLDUMPt, 'DUMPT, and 'NODUMP' options are applicable only for the option parameter of the SMOPT
call under Sort/Merge Version 4.

The 'ORDER',WODAY1, 'COMPARE, and 'EXTRACT options ate also applicable only under Sort/Merge
Version 4.

I? SMOW is called tnrrfep-&rt/~erge V emion 1, the call must be made immediately after the call to
SMSORT -or SMMERGE. '

F O R M A T

CALL s M O ~ ~ (o p t ,opt . . .)
opt Any of the following nonordered options can be specified:

lVERIFY' Output file is checked for correct sequencing. If the records are not in
correct order, the job terminates and the output file is lost. This option
verifies that records from the merge input file or inserted through
owncode exits 3, 4, and 5 are in order. Verify1 need never be specified
for a sort with no owncodes.

'RETAIN1 Records with identical sort keys that are read from sort input files are
written in the order in which they are read. All the records from each
file are grouped together. Records from merge files are sequenced
arbitrarily. When this parameter is omitted, records with identical sort
keys are sequenced at- bitrarily.

EXAMPLE

This example requests the 'VERIFY1 option and a checkpoint dump after each 10,000 records are r e a d from
the input file or written to the output file.

CALL SMOPT('VER1FY1, 'DUMP',l0000)

If SMOPT is called more than once, only the last call is processed.

SMEND

This call initiates Sort/Merge processing. It must be the last call for any one sort or merge. The format
for the call SMEND subroutine is as follows:

CALL SMEND

This call has no parameters.

SMOWN

The call to SMOWN allows owncode routines to be set up. This call provides the capability to insert,
substitute, modify, or delete input and output records.

If the owncode routine is a FORTRAN 5 subroutine, a call to SMRTN is used to return from the owncode
subroutine and resume Sort/Merge processing. Specific processing action can be requested from
Sort/Merge by altering the return address with a parameter on the SMRTN call.

An owncode routine must be supplied for each owncode exit specified in the call to SMOWN. Exits that can
be specified and the use of COMPASS owncodes are discussed in section 3.

FORMAT

CALL SMOWN(exitnuml,subnamel,exitnum,,subname, . . .)
exitnum Number of the owncode exit.

subname Name of the user-supplied owncode exit routine.

Each subnarne specified in a call to SMOWN must appear in an EXTERNAL statement in the calling
program. For each subroutine specified, the user must specify a subroutine that exits through a call to
system subroutine SMRTN, in accordance with the owncode exit number and return address as follows:

Exitnu m Entry

1 or 3 SUBROUTINE subname (a,rl)

2 or 4 SUBROUTINE subname

5 SUBROUTINE subname(al,rll,a2,r12)

Exit -
CALL SMRTN (retaddr), for retaddr=l or 3

CALL SMRTN (retaddr,b,rl), for retaddr=O
or 2

CALL SMRTN (retaddr), for retaddr=O

CALL SMRTN(retaddr, b,rl), for retaddr=l

CALL SMRTN(bl,rll,b2,rlZ), for
retaddr=l

a Integer array of length (rl+9)/10 in which Sort/Merge stores a record when
subname is called. Storing into array a causes indeterminate results.

b Integer array of length (rl+9)/10 in which the user stores a record when subname
is called. Array b should not be the same as array a.

rl Record length in characters.

retaddr Alters the normal return address used to resume Sort/Merge processing as follows:

retaddr Return address:

0 Normal return address
1 Normal return address +I
2 Normal return address +2
3 Normal return address +3

The retaddr parameter of the SMRTN call determines the processing action requested. Actions t h a t can be
requested are discussed in section 3. These actions are summarized as follows:

Processing Action Exit 1 - - - - Exit 3 Exit 2 Exit 4 - Exit 5 -
Substitute a retaddr
record

retaddr retaddr

Insert a record retaddr+2 retaddr+l retaddr+2 retaddr+l

Delete a record retaddr+l retaddr+l retaddr+l

Terminate a file retaddr+3 retaddr+3

Normal processing retaddr retaddr retaddr retaddr re t addr

When the processing action requested is file termination, the current record in array a is not
included in Sort/Merge processing.

Special factors to consider when using Exit 5 owncode routines are:

If SMRTN is called from an Exit 5 owncode routine, the number of parameters on the
SMRTN call determines the processing action requested.

If an Exit 5 owncode routine is used for record substitution, the record contained in both
area a and array b can be substituted with both new address and new fieM length
specifications.

If an Exit 5 owncode routine is used to delete a record, the record contained in array b is
deleted.

EXAMPLE

CALL SMOWN(3,SUB3) . .
SUBR~UTINE SUB3(L,N)
DIMENSION L(20),M(20) .
CALL HMRTN(~,M,N)

This call terminates a sequence of SortlMerge interface c a b without initiating execution of Sort/Merge.
The state of the interface is the same as if no calls had been made.

The format for the SMABT subroutine is as follows:

CALL SM ABT

This call has no parameters.

SAMPLE PROGRAM
The following program merges STDFILE, a master file containing student records, and NEWFILE, a file
containing new student records.

New records are added to NEWGRAD, a file containing student grades for this semester.

The program computes new grade point averages, and the total units and grade points to date for each
student.

A new master file is created, MFILE. Records of students on probation are deleted from MFILE and placed
on REPORT.

A main program and three subprograms are used. Two of the subprograms are owncode routines.

PROGRAM WA
IMPLICIT INTEGEWA-Z)
DIMENSION STUDNAM(2)
COMMON/OWN/RECQL~NRECRL~REPRTRL
EXTERNAL UPOATE
EXTERNAL L I S T
REAL G P ~ , U N I T S L , G P A ~ , U N I T S ~ ~ G P A ~ ~ T ~ T (~ P ~ T O T U N I T ~ G P

a99

**9

* * OPEN THE FOLLOWING F I L E S TO BE USED 1N PROGRAM GPA-
**a
e INBUT CONTAINS THE SlLJDFNT NUMBER, GRADE POINT AVERAGE AND TOTAL
904 U N I T S OF NEW STUDENTS.
+*u
a** REPORT CONTAINS THE FINAL OUTPUT FILE FOR THOSE S ~ U D E T N S ON PROBATIOIUI.
**u
*** S T D ~ fLE CONT4INS STlJOENT HECOdUS O F THOSE ENROLLED AT THE SCHOOL PRlOS
* * TO THE PRESEYT SEMESTER.
++u
e@* NEWFILE CONT4IYS TeE STrJUENT RECORDS OF NEU STUDENTS.

*** NEWGRAD CONT4INS THE STlJDENT NUMBER, GRAUE POINT AVERAGE AND U N I T S TA<EN
*** T H I S SEMESTLY FOR STUOENTS HITH HECORDS I N STDFILE.
*9%

*** TEMP1 IS A F I L E THAT COrJTAINS SORTED RECORDS FROM BOTH S T D f I L E AND
a** NEUFILE .
**a

*** TEMP2 I S 4 S3PfED F I L E cO;~POSED O F THE F ILES INPUT AND NEWGRAD,
I)

**# TEMP3 I S A f lLE C m I U I N I N G THE RE'COHIIS O f THOSE STUDENTS PLACED ON
PROBATION T H I S SEMESTER.
OOU

a** MFILE C O N T A I Y S THE OUTPIIT F I L E FOR THOSE: STUOENTS W I T H NORMAL STANDIVG.

CALL S M (~ I L E (+ O U T P U T ~ ~ + C O O E O + , I O , ~ R € W I N D +)
CALL S M K E Y (7 1 r l r 6 r O q + L O G I c A L +)
CALL SMEND

C **
C **
C SORT NEWGRAD ACCOQOING TO STUDENT N U M ~ E R . PLACE I N TEMP2.
c **
C **

CALL SMSORT (RECRL)
CALL s M F I L E (+ S O R T + ~ + C O D E O + , ~ ~ ~ R E W I % D +)
C A L L s M F I L E (* O U T P U T + ~ + C O D E ~) * ~ ~ ~ , + R E W I N D +)
CALL SMKEY(l*lr6,0q+LOGICAL*)
C A L L SMOMN (ZqUoDATE)
C A L L SMEND

C **
C **
C COMPUTE TOTGP(TOT4L GRADE POINTS) ,TOTUNIT (TOTAL U N I T S TAKEN Tb DATE)
C AND GP (NEW GRADE P O I N 1 AVERAGE)
C WRITE NEW RECORDS ON TEMP3.
C a*
C *"

DO 1 0 0 I=l,CSIZE
R E A O (~ O ~ ~ ~ E ~ ~ D = ~ ~ O) S T C I O ~ ~ A ~ (~) *STUDNAM(2) * S T l J D N O l q G P A l ~ U N I T S l
R E A D (~ ~ ~ ~ ~ E Y O = ~ ~ O) S T U D N O ~ ~ G P A ~ ~ L) N I T S ~
I f (S T U D N O 1 .NED STUDNO%)THEN

CALL ERWI)R (1 , STUDNO] r STUDNO?
ELSE

GP l = I I N I T F l * G P A l
G?2=UNITCZ*GPA2
TUTGP=GP t *GPZ
TOTUNIT=tJNITSl +lJNITSZ
GP=TOTbP/TOTUNIT

EN0 I F
W R I T ~ (~ Z ~ ~ O) S J I J U N A ~ . ~ (~) ,STUUNAM(L) , S T I I U ~ ~ O Z ~ G P ~ T ~ T U N I T ~ T O T G P

100 CONTINUE
1 5 0 3EWINO 12

C **
C *"
C hfHITE HEADERS FOR REPORT(TAPE6) AND Yh- ILE(TAPEl4)e
C 49

C **
J R I T E (6 9 1 1)
NRITE (1 4 9 1 2)
d R I T E (6 9 1 3)

THE REcOI;(b 70 RE?i?HT, AND DELETES THE WtiCORD 'THE F I N A L OUTPUT FILEI
MFILE.
FIF?sT SORT KEY FOQ MFILE-G~?~IJE POINT AVERAGE (GP) I N DESCENDING ORDER .
SECOND SORT K E Y F O R MF I LE-STbjUENT NAYC (STtjUNAM I N ALPHAdET I C A L ORDER.
THI?[) SORT K E Y FOJ MFILE-STllOFNT NuMREH (STUUNO)
0 0

92)

CALL S M S O R T V ? E W T R L I
CALL S M F I L E (+ S ? ~ T + ~ * C O ~ E I , + ~ ~ ; L ~ + H E W I N D *)

SUBROUTINE E R R O R (I T E R A T E ~ N O ~ ~ N O ~)
CALL R f i M A R K (+ S T l J D E N f NUMBERS 00 NOT MATCH+)
CALL D I S P L A (W 1 R S T STUDENT NUMBER I S ~ ~ N O ~)
CALL DISPtA(+SCCOND STUDENT NUMBER I S t r N 0 2)
CALL REMAPK(+J9B TERMINATEU+)
CALL D I S P L A (+ A T ITERATION* , ITE I?AIE)
CALL E X I T
END

The following files were used as input to the program:

D A W IS
ZABROSK I
CASSET
BORCHARD
ANDERSON
DE LA CRUZ
D A M ~ E N
MICHAELS
MONTE
ROBB I N S
M A R T I N
PHILLIP
STEVENS
MASTER
YPFFEE
FILICE
Pl-iILPs
w 1 LSON

INPUT

9 SUSAN
r GERR I
,PETER
r JOAN
r GEORGE
,LILY
,SCOTT
,TERESA
,MARK
r STEVE
r JUDY
,RALPH
* M A R Y
r RON
,JOSEPH
OON

9 SUE
JOHN

NEWFILE

,NANCY 423911 0.0 000.0
9 SAM 373249 0.0 0 0 0 1 0

GERT 14397h 0.0 000.0
r AL ?39410 0.0 900.0
*MANUAL 157932 0.0 000.0

The program was run using the following control statements:

LGO.

M FILE

STUDENTS W I T H NORMAL STANDING:

NAME STUDENT NO GRADE P O I N T AVERAGE

YHELDON
Z ABROSK I
MICHAELS
F I L I C F
YAFFEE
TORRES
STEVENS
DE L A CRUZ
DAMIEN
B I A N C I
WILSON
CASSET
P H I L P S
ANDERSON
BORCHARD
MARTIN
P H I L L I P
ROBBINS
MONTE
MASTER

TOTAL U N I T S TOTAL GRADE POINTS

REPORT

STUDENTS ON PROBATION:

MANE STUDENT NO GRADE P O I N T AVERAGE TOTAL U N I T S TOTAL GRADE POINTS

D A V I S ,SUSAN 103392
ROBBINS ,STEVE 2251 21
NEUMAW , & L 239410

CHARACTER SETS

CONTROL DATA operating systems offer the following variations of a basic character set:

CDC 64-character set

CDC 63-character set

ASCII 64-character set

ASCl I 63-character set

The set in use at a particular installation was specified when the operating system was installed.

Depending on another installation option, the system assumes an input deck has been punched either in 026
or in 029 mode (regardless of the character set in use). Under NOS/BE 1, the alternate mode can b e specified
by a 26 or 29 punched in columns 79 and 80 of the job statement or any 71819 card. The specified mode
remains in effect through the end of the job unless it is reset by specification of the alternate mode o n a sub-
sequent 71819 card.

Under NOS 1, the alternate mode can be specified by a 26 or 29 punched in columns 79 and 80 of any
61719 card, as described above for a 71819 card. In addition, 026 mode can be specified by a card w i t h 51719
multipunched in column 1, and 029 mode can be specified by a card with 51719 multipunched in column 1
and a 9 punched in column 2.

Graphic character representation appearing at a terminal or printer depends on the installation character set and
the terminal type. Characters shown in the CDC Graphic colun~n of the standard character set table (table A-1) I
are applicable to BCD terminals; ASCII graphic characters are applicable to ASCII-CRT and ASCII-TTY terminals.

STANDARD COLLATlNG SEQUENCES

If the installation character set is the CDC character set, the collating sequence default is COBOL6. If the
installatioli character set is ASCII, the collating sequence default is ASCII6 (as shown in table A-2). I

COLLATION OF ARBITRARY CHARACTERS

Several graphics are not common for all codes. Where these differences in graphics occur, arbitrary assignment
of collation positions and of translations between codes must be made. For example, display code d a t a that is
collated in the ASCII6 collating sequence requires assignment of specific graphics. One of these graphics is the
identity character (60) in display code that is interpreted as the number character (#) in ASCII6. T h e iden-
-tity is collated in position 03, according to the ASCII6 collation column in table A-2. 1

TABLE A-I. STANDARD CHARACTER SETS

Display
Code
(octal)

Graphic

: (colon)tt
A
B
C
D

. E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
v
W
X
Y
z
0
1
2
3
4
5
6
7
8
9
f

*

1
$

blank
, (comma)
. (period) - - -

I
1

% +t

r-
v
A

t
4
<
>
I
2
1

; (semicolon)

CDC

Hollerith
Punch
(026)

8-2
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
0-2
0-3
0-4
0-5
0-6
0-7
0 8
0-9
0
1
2
3
4
5
6
7
8
9
12
11

1 1-8-4
0- 1

0-8-4
12-8-4
11 -8-3
8 -3

no punch
0-8-3
12-8-3
0-8-6
8-7

0-8-2
8 -6
8 -4

0-8-5
11-0
0-8-7
1 1-8-5
1 1 -8-6
12-0
11 -8-7
8-5

12-8-5
12-8-6
12-8-7

External
BCD
Code

Graphic
Subset

-

: (colon) +
A
0
C
0
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
v
W
X
Y
z
0
1
2
3
4
5
6
7
8
9
+
*

- -

blank
, (comma)
. (period)

C
3
% ++

" (quote)

- (underline)
!
84

' (apostrophe)
?
<
>
@
\

- (circumflex)
; (semicolonl

ASCl l

Punch
(029)

8-2
12-1
12-2
12-3
12-4
'12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
0
1
2
3
4
5
6
7
8
9

12-8-6
11

1 1-8-4
0- 1

12-8-5
1 1-8-5
11 -8-3
8-6

no punch
0-8-3
12-8-3
8-3

12-8-2
1 1-8-2
0-8-4
8 -7

0-8-5
12-8-7

12
8-5

0-8-7
12-8-4

0-8-6
8-4

0-8-2
1 1-8-7
1 1-8-6

Code
(octal)

+~welve zero bits at the end of a 60-bit word in a zero byte record are an end-of-record mark rather than
two colons.

"In installations using a 63-graphic set, display code 00 has no associated graphic or card code; display
code 63 is the colon (8-2 punch). The % graphic and related card codes do not exist and translations
yield a blank (55*).

TABLE A-2. 6-BIT CHARACTER CODE COLLATING SEQUENCES

Xsplay
Code Graphics

: t
A

B

C
D

E
F

G

H

I

J
K

L

M

N

0

P

Q
R

S

T

u
v
MI

X

Y
z
0

1

2

3

4

Display
Code
=
00t

01

02

03

04

05

06

07

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

INTBCD

Graphics
CDC

[NTBCI

00

01

02

03

04

05

06

07

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

3 1
32

33

34

35

36

37

TABLE A-2. 6-BIT CHARACTER CODE COLLATING SEQUENCES (Contd)

Display
Code

DISPLAY t

Display
Code

INTBCD

-
J

K

L

M

N

0

P

Q
R

v
$
*

-. .T

4

>
blank

1
S

T
U

v
MT

X

Y

z

1
a

(
+

- - -

A

CDC
rnTBCD
Code

Sequence

?Under the CDC 63-character set, there is no percent graphic; the colon is display code 63. Display

Code 00 is not used.

?+Under the ASCII 63-character set, there is no percent graphic; the colon collates in position 05, not
position 32.

SORT/MERGE DIAGNOSTICS

DIRECTIVE DIAGNOSTICS

During directive processing, SortlMerge returns the diagnostic messages listed in table B-1. The dayfile message
for SortlMerge directive errors will be one of the following:

n NON-FATAL DIRECTIVE ERROR(S) or n FATAL DIRECTIVE ERROR(S)

A diagnostic message is written to the output file for each error. The messages appear in three formats:

This format is used for error conditions detected during a syntax check.

typeCARD NBR num message AT param subparam

tY Pe F Fatal error causing abnormal termination of job

N Nonfatal error; job processing continues

num Number of directive or statement in error

message One of the diagnostics listed

pararn Parameter that contains error

subparam Specific character causing the error

Because SortlMerge continues syntax checking after an error is detected and a diagnostic is returned to the
user, subsequent diagnostics for a given directive may not correctly apply to the intended syntax. Subsequent
syntax (which may or may not be correct) could have been made illegal by a preceding error.

This diagnostic format is listed after. the END directive is printed. It indicates errors encountered d u r i n g
cross checks made by SortlMerge on internal tables generated from directive specifications.

tY Pe F Fatal error causing an abnormal termination of job

N Nonfatal error resulting in continued processing of the job

statement Directive in error

message One of the diagnostic messages listed

This format is used for all diagnostics returned to the dayfile:

SORTMRG message

TABLE B-l . DIRECTIVE DIAGNOSTICS

Message

BAD CALL TO SORTL

BOUNDARY OVERLAP

BYTE AND BIT MISSING

BYTESJZE MISSING

CARD AFTER END CARD

CODE SIZE CONFLICT

DATA OVERFLOW

DEFAULT REPLACES

DUPLICATE BYTES2 CARD

DUPLICATE COLLATION

EMPTY ME RGE FILE... file-name

B-2

Significance

System or user error; SORTL is no
longer supported.

Character in sort key overlaps a
word boundary.

Byte and bit specifications have
been omitted from FIELD
directive.

Byte parameter was specified on
BYTESIZE directive, but no bit
specification followed the period.

Card other than a blank card or a
comment card detected after END
directive.

Sort key length for INTBCD or
DISPLAY type key is not an
integer multiple of character code
size.

Too many characters specified in
user's collating sequence.

Default value defined by installa-
tion has been used for LCMSB
parameter in SORT directive.

More than one BYTESIZE
directive has been specified in a
single run.

One character appears more than
once in user's collating sequence.
This might occur when the
SEQUENCE directive is continued
on a second card and trailing
blanks have been specified on the
flrst card.

No records contained in merge
file. File-name is name of merge
file specified in FILE directive.

Action

Notify a systems analyst.

Use LOGICAL type key, or refor-
mat records and FIELD directive
to align characters on character
boundaries.

Respecify FIELD directive with
byte and bit parameters included.

Delete the period.

Delete illegal card.

Specify length of sort key as
integral multiple of 6 bits.

Reduce number of characters to
64 or less.

Specify LCMSB parameter on
SORT directive.

Remove duplicate BYTESIZE
directive.

Delete duplicate occurrence of
character in user collating
sequence.

None.

TABLE B-1 . DIRECTIVE DIAGNOSTICS (Cont?d)

Message

EOF, NO LEGAL CARD

EXIT NUMBER GT 6

EX1, EX2 OWN ILLEGAL

EX-1 OWNCODE ILLEGAL

EXTRA SEPARATOR

FATAL ERRORS LOADING I SORT

FIELD SIZE # 60 BITS

I ILLEGAL ATTRIBUTE

I ILLEGAL BIT = 0

ILLEGAL BYTE = 0

ILLEGAL CARD TYPE

I lLLEGAL CONTINUATION

ILLEGAL DELIMITER

I ILLEGAL EQUALS

ILLEGAL FILE TYPE

Significance

No SORT or MERGE directive
has been specified.

Improper exit number specified on
OWNCODE directive.

Improper exit number specified on
OWNCODE directive.

Exit 1 or exit 2 owncode specified
for a merge-only run.

Exit 1 owncode specified for a
merge-only run.

Too many separators specified in
directive.

SortIMerge system was installed
incorrectly.

Length of integer or floating
point sort key is not 60 bits.

Parameter specification is illegal or
partially missing.

Bit parameter illegally specified as
0 in FIELD directive.

Byte parameter illegally specified
as 0 in FIELD directive.

Unrecognizable card was
submitted.

Card following an incomplete
directive did not have a comma in
column 1.

Separator other than the ones
legally designated has been used.

Equals sign specified in wrong
position.

Illegal file type specified on FILE
directive.

Action
-- -

Include SORT or MERGE directive
in sort or merge run.

Specify exit number as a value
from 1 to 6.

Specify exit number as a value
from 1 to 6.

Change to sort run.

Change to sort run.

Delete illegal separators.

Notify a systems analyst.

Respecify FIELD directive with
length of sort key equal to 60 b i t s .

Respecify parameter correctly.

Change bit parameter to value
other than zero.

Change byte parameter to value
other than zero.

Correct directive format.

Either complete the directive o n
the previous line or use a contin-
uation line with a comma in
column 1.

Replace illegal separator with legal
one.

Correct directive format.

Correct type parameter
specificat ion.

TABLE B-l . DIRECTIVE DIAGNOSTICS (Cont'd)

Message

ILLEGAL KEYWORD

ILLEGAL MERGE ORDER

ILLEGAL NBYTE = NBIT = 0

ILLEGAL OPTION

ILLEGAL PERIOD

ILLEGAL PROG NAME

ILLEGAL RIGHT PAREN

ILLEGAL TERMINATION

INPUT MRL NOT GlVEN

INSUFFICIENT CM FOR
SPECIFIED MERGE ORDER
xxxxx M O R E REQUIRED

INSUFFICIENT SCM

Significance

Entry parameter specified with
illegal exit number on OWNCODE
directive; or MRL, VAR, or
LCMSB specification omitted or
illegal.

Merge order specified was not an
integer between 2 and 64 inclusive.

Zero cannot be specified for both
nbyte and nbit parameters in the
FIELD directive.

Illegal option specified.

Period cannot be used to separate
start and length parameters in the
FIELD directive.

First character specified in entry
point name was numeric, or name
exceeded 7 characters.

Right parenthesis specified
incorrectly; sort key definition
incomplete.

Incomplete specification of
required parameter.

Maximum record length not
specified as input to SortIMerge.

Insufficient core was provided for
SortIMerge to merge intermediate
strings at the order specified.
xxxxx is the number of extra
words (in octal) required,

Not enough small core memory
was allocated.

Action
- -- --

Specify legal exit number for entry
parameter; or specify M R L , VAR,
or LCMSB parameter correctly.

Specify merge order value as an
integer between 2 and 64 on the
SORTMRG control statement or
through the ORDER option of the
OPTIONS directive.

Specify value other than zero for
nbyte and/or nbit.

Correct option specification.

Respecify FIELD directive with
other legal separator between
start and length parameters.

Correct entry point name in
OWNCODE directive.

Correct directive format.

Correct parameter specification.

Specify MRL or FL parameter on
FILE control statement, or M R L
parameter on OWNCODE
directive.

Increase field length for control
statement sorts.

Increase field length for control
statement sorts.

TABLE B-1 . DIRECTIVE DIAGNOSTICS (Cont'd)

Message

INVALID DIRECTIVE

INVALID SEQUENCE

LFN = filename, BFS = 0, FWB
NZ, FWB IGNORED

MEMORY NEEDS EXCEED
MAXIMUM. PROBABLY
CAUSED BY USING OWN-
CODE WITH RESTRICTED
FIELD LENGTH

MERGE, MERGE ASSUMED

MERGE ORDER xx USED

MINIMUM WPLACES

MISSING ATTRIBUTES

MISSING EQUAL SIGN

MISSING FILE NAME

MISSING FILE TYPE

MISSING KEY NAME

Significance
--

SORT, SORTB, SORTP, or
MERGE must be the first directive
encountered in a SORTMRG call
in 6C format.

Collating sequence cannot be
specified for a sort key not
character coded.

The FIT for the file named was
provided with a value for FWB,
but no buffer size was given. The
FWB is ignored.

Extra lOOOOB words needed for
OWNCODE binaries not included
in maximum field length (CM
parameter or machine capacity).

A merge with INPUT= was
specified on the FILE directive.
MERGE= is assumed for the
merge.

Insufficient core was provided to
attain the maximum merge order
specified; order xx was used
instead.

Value specified in LCMSB param-
eter was less than installation
defined minimum; installation
default value was used instead.

Keyword specified with no
.following parameters.

The equals sign, required after the
file type specification in the FILE
directive, was omitted.

File name was omitted from FILE
directive.

File type was omitted from FILE
directive.

Sort key name was omitted from
FIELD or KEY directive or did
not follow required separator.

Action

Insert SORT, SORTB, SORTP, or
MERGE directive in correct
position.

Delete colseq parameter f r o m KEY
directive or define field as
DISPLAY.

Either clear FWB to zero or set
BFS t o size of allocated space.

Remove CM from job card or
reduce the RFL by lOOOOB
before using SortlMerge.

Change INPUT= to MERGE=.
Or if merge was assumed d u e to
the omission of the SORT card,
supply the SORT directive.

Increase field length for control
statement sorts.

Increase value specified for
LCMSB parameter.

Correct directive format.

Insert equals sign.

Include file name on the FILE
directive.

Include fde type on the FILE
directive.

Specify key name correctly on
FIELD or KEY directive.

TABLE B-1 . DIRECTIVE DIAGNOSTICS (Cont'd)

Message

MISSING LEFT PAREN

MISSING OPTION

MISSING RIGHT PAREN

MISSING SORT CARD

MORE THAN 1 OUT-FILE

MRL UNDEFINED

MULTIPLE SORT CARD

MULTIPLY DEFINED

NBYTE AND NBIT MISSING

NEED MRL FOR ... filename

NO LEGAL CARD

NON-NUMERIC

ONLY 1 MERGE FILE

OVER 100 KEYS

Significance

Left parenthesis was omitted from
a. directive.

No option specified on OPTIONS
directive.

Right parenthesis was omitted
from a directive.

The first directive is not a
SORT or MERGE directive.
MERGE is assumed.

More than one output file was
specified on the FILE directive.

MRL parameter for an exit 1 was
omitted from the OWNCODE
directive.

More than one SORT directive
was specified in a single run.

If fatal error, a parameter was
specified in different ways within
one run. If nonfatal error, a
parameter was specified in the
same way more than once within
one run.

Nbyte and nbit specifications were
omitted from the FIELD
directive.

MRL parameter was not specified
on FILE control statement. File
name is name specified on FILE
directive.

End-of-file condition was
detected before a legal control
statement was processed.

Alphabetic character was specified
in numeric field.

Merge-only processing requires
more than one presorted input
file.

More than 100 sort keys were
specified.

Action

Respecify directive with left
parenthesis included.

Delete OPTIONS directive or
specify an option on it.

Respecify directive with right
parenthesis included.

Supply a SORT or MERGE
directive.

Delete all but one output file.

Respecify OWNCODE directive
with MRL parameter included.

Delete all but one SORT directive.

Delete all but one occurrence of
parameter.

Respecify FIELD directive with
nbyte and/or nbit included.

Specify MRL parameter on FILE
control statement.

Insert legal control st at ement.

Delete alphabetic character from
field or redefine field.

Replace the sort operation with a
copy operation.

Reduce number of sort keys to
100 or less.

TABLE B-l . DIRECTIVE DIAGNOSTICS (Cont 'd)

Message

OVER 100 SEQUENCES

OWNCODE NOT FOUND, entry

RESERVED COL-SEQ

SORTIMERGE ABORT

UNDEFINED FIELD

UNDEFINED IN-FILE

UNDEFINED 110 FILE

UNDEFINED KEY(S)

UNDEFINED OUT-FILE

UNDEFINED SEQUENCE

VALUE OF P5 GT 6

ZERO FIELD

Significance

More than 100 collating sequences
were specified.

Entry name specified in
OWNCODE directive was not
found in the input file. Entry is
the entry point name of an exit
owncode.

Standard collating sequence name
was specified as a user's collating
sequence.

SortIMerge program aborted
because of preceding fatal error.

Sort key name was not specified
on FIELD directive.

An input f3e was not specified
either on a FILE directive or with
exit 1 on an OWNCODE directive.

No files or owncode exits were
specified for input or output.

No sort key was specified.

An output file was not specified
on a FILE directive and no exit 3
was specified on an OWNCODE
directive.

Collating sequence name was
nonstandard, but was not followed
by a user's unique collating
sequence.

Value of 6C RECORD directive
parameter P5 is restricted to
f < p5 < 6 . P5 is set to 6 and
p4 to p4 + p5 - 6.

Bytesize specified in BYTESIZE
directive or M R L value specified
in OWNCODE directive cannot
be zero.

Action

Reduce number of collating
sequences to 100 or less.

Correct entry name or include
owncode routine in input file.

Redefine user collating sequence
name.

Fix preceding fatal error.

Respecify FIELD directive with
key name included.

Specify input file on FILE or
OWNCODE directive.

Specify input or output file on
FILE or OWNCODE directive.

Specify sort key on FIELD
directive.

Specify output file on FILE or
OWNCODE directive.

If standard collating sequence is
desired, change sequence name
accordingly. If user collating
sequence is desired, specify
sequence after nonstandard name.

See SortlMerge Version 3
Reference Manual.

Specify bytesize or MRL field as
value other than zero.

MACRO AND FORTRAN EXTENDED DIAGNOSTICS

The dayfile message for SortIMerge macro or FORTRAN Extended call error will be one of the following:

n NON-FATAL SORT MACRO ERROR(S) or n FATAL SORT MACRO ERROR(S)

A diagnostic message is written to the output file for each error. The messages appear in three formats:

This format is returned in the user's assembly listing for errors detected during syntax checking.

P ERR message

message One of the diagnostic messages listed.

This format is returned to the dayfile; it involves errors encountered during cross checks made by
SortlMerge on internal tables generated from.macro specification or FORTRAN Extended calls.

SORTMRG **typex*macro,message

type F Fatal error causing an abnormal termination of job

N Nonfatal error; job processing continued

macro Macro call in error

message One of the diagnostic messages listed

This format returns informative messages to the dayfrle regarding

SORTMRC message

message One of the messages listed

SortIMerge processing.

The diagnostic messages for SortlMerge macro or FORTRAN Extended call errors are listed in table B-2.

TABLE B-2. MACRO AND FORTRAN EXTENDED DIAGNOSTICS

Message
-.

A LEGAL TYPE DOES NOT
PRECEDE SEQ NAME, name

AT LEAST THREE SCRATCH
TAPES ARE REQUIRED

BOTH BYTE AND BIT MAY NOT
BE NULL

BOTH NBYTE AND NBIT MAY
NOT BE ZERO

BOUNDARY OVERLAP

CODE SIZE CONFLICT

DUPLICATE COLLATION

DUPLICATE PARAMETER,
param

EMPTY MERGE FILE

FIELD SIZE # 60 BITS

FORMAT: NAME, (SEQUENCE),
END

ILLEGAL FILE TYPE, filetype

ILLEGAL NULL PARAMETER

Significance

Sequence name indicated appeared
before type parameter specification
in KEY macro call.

Less than three scratch tapes were
specified in TAPE macro call.

Byte and bit parameter specifica-
tions were omitted from KEY
macro call.

Zero cannot be specified for both
nbyte and nbit in KEY macro
call.

Character in character-coded sort
key overlapped a word boundary.

Sort key length for INTBCD or
DISPLAY type key is not an
integer multiple of character code
size.

One character appears more than
once in user's collating sequence.

The parameter indicated by param
was specified more than once.

No records contained in merge
file.

Length of integer or floating point
sort key is not 60 bits.

Format error detected in initial
SEQUENCE macro call.

Type parameter in FILES macro
call had illegal file type or was
omitted.

First parameter of EQUATE
macro call was specified as null
but END did not follow it.

Action

Rearrange order of parameters.

Specify a minimum of four tapes
for a balanced merge, three tapes
for a polyphase merge.

Respecify KEY macro call with
byte and bit parameters included.

Specify value other than zero for
nbyte and/or nbit.

Specify starting position o f sort
key on character boundary,

Specify length of sort key as
integral multiple of 6 bits.

Delete duplicate occurrence of
character in user's collating
sequence.

Delete all but one occurrence of
parameter.

None.

Respecify KEY macro call wi th
length of sort key equal t o 60
bits, or use LOGICAL type key.

Correct macro call format.

Correct type parameter
specification.

Correct macro call format.

TABLE B-2. MACRO AND FORTRAN EXTENDED DIAGNOSTICS (Cont'd)

Message

ILLEGAL OWNCODE EXIT

ILLEGAL OWNCODE PARAM

ILLEGAL PARAMETER, param

IMPROPER OCTAL
PARAMETER, param

INSUFFICIENT FIELD LENGTH
FOR MERGE BUFFERS

INSUFFICIENT SCM

INVALID SEQUENCE

KEY NOT WITHIN RECRD

MERGE ONLY BUFFERS
EXCEED MEMORY LIMITS

MISSING END PARAM

MISSING FILE PARAMETER

MISSING OWNCODE
PARAMETER

MISSING PARAMETER

Significance

Value other than 1 through 6 was
specified for exit number of OWN-
CODE macro call.

Illegal parameter was specified in
OWNCODE macro call.

An illegal parameter was specified.

Param is illegal octal parameter.

SortIMerge attempted to sort a
file too large for it to handle with
the memory allocated.

Small core memory allocated is
insufficient for SortlMerge
processing.

Collating sequence cannot be
specified for a sort key not
character coded.

A sort key is not completely
within the record size.

Small core memory allocated is
insufficient for SortIMerge
processing.

END parameter was omitted from
SEQUENCE or EQUATE macro
call.

Type and name parameters were
omitted from FILES macro call.

MRL parameter was omitted from
OWNCODE macro call.

Option parameters were omitted
from OPTIONS macro call.

Action

Specify exit number as one of the
digits 1 through 6 .

Correct macro call parameter
specification.

Correct parameter specification.

Correct parameter specification.

[ncrease field length of macro
called sort with MAXCM
parameter of SORT macro call; o r
increase field length of FORTRAN
called sort with ba parameter of
SMSORT call.

Same as above.

Delete colseq parameter.

Specify MRL or F L for all input
files. The second parameter within
a field specification must be the
Length of the key; the second
parameter is not the ending byte
position.

[ncrease field length of macro
called sorts with MAXCM param-
eter of SORT macro call; or
increase field length of FORTRAN
called sorts with ba parameter of
SMSORT call.

Respecify macro call with END
parameter included.

Respecify FILES macro call with
type and name parameters
included.

Respecify OWNCODE macro call
with MRL parameter included.

Delete OPTIONS macro call or
respecify it with options included.

TABLE B-2. MACRO AND FORTRAN EXTENDED DIAGNOSTICS (Cont'd)

I Message

MORE THAN ONE OUT-FILE

MULTIPLE AID
PARAMETER, A

MULTIPLE AID
PARAMETER, D

MULTIPLE DUMP
PARAMETER, DUMP, nn

MULTIPLE TYPE OR
SEQUENCE, name

MULTIPLY DEFINED

MULTIPLY DEFINED AT. I O w C D EXIT num

NEED MRL FOR FILE ...
filename

NO BYTESIZE PARAMETER

NO EQUATE STRING

NO LEGAL PARAMETER

Significance

More than one output file was
specified on the FILES macro call.

More than one A specification was
included for order parameter in
KEY macro call.

More than one D specification was
included for order parameter in
KEY macro call.

DUMP parameter was specified
more than once on OPTIONS
macro call.nn is number of records
specified in the DUMP parameter.

Type or colseq parameter indicated
by name was specified more than
once in KEY macro call.

Parameter was specified in
different ways within one run.

Same exit number was assigned
to more than one entry point
name. nirm is the exit number
specified in the OWNCODE macro
call.

MRL parameter was not specified
on system FILE macro for file
indicated by filename.

Bytesize parameter was omitted
from BYTESIZE macro call.

Listing of all characters to be
equated was omitted from
EQUATE macro call.

No legal parameter specification
was detected.

Initial EQUATE macro call was
submitted without name param-
eter and equated characters.

Action

Delete all but one output file.

Delete extra occurrences of A.

Delete extra occurrences of D.

Delete extra occurrences of DUMP
parameter.

Delete extra occurrences of type
or colseq parameter.

Delete all but one occurrence o f
parameter.

Assign each exit number to only
one entry point name.

Specify MRL parameter on system
FILE macro.

Respecify BYTESIZE macro call
with bytesize parameter included.

Respecify EQUATE macro call
with characters listed correctly.

Correct parameter specification.

Respecify EQUATE macro call
with name parameter and equated
characters included.

TABLE B-2. MACRO AND FORTRAN EXTENDED DIAGNOSTICS (Cont'd)

Message

NO NAME AND NO SEQUENCE

NO OWNCODE EXIT PARAMS

NO SEQUENCE

NON-STANDARD NAME WITH
NO SEQUENCE

NULL PARAMETER IN CHAR
STRING

ONE MRL (MAX RCD LENGTH)
PARAM IS REQUIRED

ONE-ORIGIN BIT MAY NOT
BE ZERO

ONE-ORIGIN BYTE MAY NOT
BE ZERO

ONLY END OR NULL AFTER
SEQUENCE

ONLY 1 MERGE FILE

OPTION OUT-OF-PLACE

OVER 100 SEQUENCES

OWNCODE '/ 6 PARAMS

-

Significance

Initial SEQUENCE macro call was
submitted without sequence name
parameter and sequence.

No legal exit was specified on
OWNCODE macro call.

Initial SEQUENCE macro call was
submitted without sequence.

Nonstandard sequence name was
specified without an associated
user collating sequence.

No character position in character
list of SEQUENCE or EQUATE
macro call can be null.

MRL parameter was specified
more than once or not at all.

Bit parameter was illegally
specified as zero.

Byte parameter was illegally
specified as zero.

Sequence in SEQUENCE or
EQUATE macro call was followed
by a parameter other than END or
null.

+-Merge-only processing requires
more than one presorted input file.

OPTIONS macro call must
immediately follow the SORT or
MERGE macro call.

More than 100 collating sequences
were specified.

More than six parameters were
specified on OWNCODE macro
call.

Action

Respecify SEQUENCE macro call
with sequence name parameter and
sequence included.

Specify legal exit on OWNCODE
macro call.

Respecify SEQUENCE macro call
with sequence included.

If standard collating sequence is
desired, change sequence name
accordingly. If user collating
sequence is desired, specify
sequence after nonstandard name.

Insert character into null position
or delete null position.

Correct parameter specification.

Change bit parameter to value
other than zero.

Change byte parameter to value
other than zero.

Respecify SEQUENCE or
EQUATE macro call in correct
format.

Include another merge file.

Insert OPTIONS macro call
directly after SORT or MERGE
macro call.

Reduce number of collating
sequences to 100 or less.

Delete all but six parameters.

TABLE B-2. MACRO AND FORTRAN EXTENDED DIAGNOSTICS (Cont'd)

Message

PARAM AFTER END

SORT CANNOT USE
SPECIFIED/DEFAULT CM -
SORT USING xxxxx CM
WORDS INSTEAD

STANDARD NAME AFTER
SEQUENCE

UNDEFINED IN-FILE

UNDEFINED 110 FILE

UNDEFINED KEY(S)

UNDEFINED OUT-FILE

UNDEFINED SEQUENCE

Significance

Parameter was specified after END
in SEQUENCE or EQUATE macro
call.

Value of MAXCM parameter on
SORT or MERGE macro call or
ba parameter on SMSORT or
SMMERGE was too small.

Standard collating sequence name
was specified with user collating
sequence.

An input file was not specified
either on a FILES macro call or
with exit 1 on an OWNCODE
macro call.

No files or owncode exits were
specified for input or output.

No sort key was specified.

An output file was not specified
either on a FILES macro call or
with exit 3 on an OWNCODE
macro call.

Collating sequence was
nonstandard, but was not followed
by a user's unique collating
sequence.

Delete parameter after END or
insert it before END.

Specify a larger value.

Change collating sequence name
to nonstandard name.

Specify input file on FILES or
OWNCODE macro call.

Specify input or output file on
FILES or OWNCODE macro call.

Specify sort key on KEY macro
call.

Specify output file on FILES o r
OWNCODE macro call.

If standard collating sequence is
desired, change sequence name
accordingly. If user collating
sequence is desired, specify
sequence after nonstandard name.

INCOMPATIBILITIES C

\

4. The maximum number of input fdes has increased from 32 to 100.

5. If p2 of the RECORD directive is V and decimal character count (RT=D) records are being described,
the number of &bit bytes in the character count field (p5) cannot exceed 6. Version 4 SortIMerge
adjusts the values of p4 and p5 accordingly and issues a nonfatal error. I f the source program exceeds
this Limit, the program must be revised.

SORT/MERGE A N D RECORD MANAGER D

This appendix describes the use of Record Manager by SortlMerge Versions 1 and 4, with the primary emphasis
on Version 4. It also describes, for the SortIMerge user, aspects of Record Manager that he must know t o use
SortlMerge, as well as some features that will be helpful in using SortlMerge efficiently.

Sort/Merge performs all input and output through Record Manager, and it requires that all input and output
files conform to Record Manager record and block structures. Files created through COBOL, ALGOL 4, or
FORTRAN Extended are compatible with Record Manager file structures. To determine if files created through
other producrs are compatible with Record Manager, and to determine record and block structure, consult the
individual product reference manual. Files structured differently can perhaps be reformatted through the FORM
utility.

The Sort/Merge user must provide file structure descriptions for each input or output file:

optional parameters may be included, subject to the restrictions outlined below. Sort/Merge will construct
the ectual table and set some of the fields. The FILE statement is the only part of Record Manager avail-
able to the user whb restricts his processing to directives.

The SortIMerge macro user must ensure each input or output file has a valid file information table at the
time the macros are executed. In most cases, the Record Manager FILE macro is used for this purpose; the
FILE statement also may be used to alter file information table fields when the file is opened. Since the
full range of Record Manager processing is available to the macro user, the user should be aware of h o w
SortIMerge uses Record Manager, so that he or she does not interfere with normal SortlMerge processing.

The FORTRAN Extended call user normally need not be concerned with Record Manager. FORTRAN
Extended provides a file information table for all files specified in the PROGRAM statement. If the
FORTRAN Extended Record Manager interface routines are used with the Sort/Merge calls, the user
must ensure each input or output file has a valid file information table at the time the calls are executed.
The user also should be aware of how SortIMerge uses Record Manager, so that he does not interfere with
normal SortlMerge processing.

Fl LE CONTROL STATEMENT

Format

lfn Logical file name; 1 to 7 letters or digits, beginning with a letter.

field File information table field mnemonic, 2 or 3 characters.

value Value to be placed in corresponding field; integer (assumed to be decimal unless a B suffix
indicates octal) or symbolic (character string).

The FILE control statement specifies values for file information table fields to be set when the SETFIT macro
is executed or the file is opened during execution. The FILE statement does not establish the file information
table; rather, it causes the system to save the values specified. Subsequently, when a call is made t o open the
file, the saved values are placed in the file information table, overriding any previous contents.

e

Not all fields can be set by the FILE statement; in particular, fields whose values are relative storage locations
cannot be so set (such as WSA, EX, DX, etc.). The descriptions of specific FIT fields given below indicate
whether each can be set by the FILE statement.

Under SortIMerge Version 4, somi fields (such as C1 and SB) are set only by the PILE statement. In most
cases, Sort/Merge does not change file information table values provided by the user on a FILE statement; but
SortlMerge will reset a field if it requires a specific value that differs from the value provided by the user. The

RELEVANT FILE INFORMATION TABLE FIELDS

File information table fields applicable to sequential files that can be set by the user are listed below. For
each field, indication is made whether it can be set by the FILE control statement, whether and under what
circumstances Sort/Merge will alter a user-provided value, and what default value is provided if the user does
not set the field. For a complete description of each field and possible values, consult the appropriate Record
Manager reference manual.

Character set bits for terminal processing. Can be set by FILE statement; SortIMerge does not
alter user setting. Default is 64-character display code.

Buffer allocated below highest high address, Can be set by FILE statement; Sort/Merge does
not alter user setting. Default is NO.

Buffer size in words. Can be set by FILE statement.

If BFS for any file is set by the user to a value other than 0, SortlMerge does not change
user setting. If BFS f 0 and FWB # 0, SortfMerge uses the specified buffer; if BFS # 0
and FWB = 0, Sort/Merge sets FWB and allocates a buffer whose length is given by BFS.
For all files whose BFS is 0, Sortliaerge calculates a reasonable buffer size for each such file
and then sets BFS of all these files to the largest value calculated. The algorithm used t o
calculate buffer size is described under the title "Buffer Size Calculation" below.

BT Block type. Can be set by FILE statement. Sort/Merge does not alter user setting; block type
chosen may require setting of additional file information table fields.

Default for SortlMerge Version 4 is BT=I.

Default for SortlMerge Version 1 is unblocked.

CF File disposal code. For directive sorts or merges, user setting of CF has no effect, because
Sort/Merge disposes file in accordance with file disposition code specified on FILE directive.
For macro sorts, SortlMerge takes no frle disposal action; files are not closed before control
is returned to the user.

Under SortlMerge Version 1, a ~ L E controt statement must be provided for the special
system files INPUT, OUTPUT, md PUNCH in order to specify CF=N and OF=N.

CL Length in characters of count field for T type records. Can be set by FILE statement; Sort /
Merge does not alter user setting. No default when RT=T.

CM Conversion mode for tapes. Can be set by FILE statement. Sort does not alter user setting;
used in calculation of BFS. Default is NO.

CNF " ' ~ofi&ctwT'he flag. Can beset by. f l L E ~ ~ a t e r d i n t ; S&/Merge4hes. nd &er user setting.
Default is NO. '

CP Starting location of count field for T type record. Can be set by FILE statement. Sort/
Merge does not alter user setting. Default is 0.

C1 Count field of D b r T type n?cbrd is C O M P ~ A T ~ O ~ I A L - 1 . Can be set by FILE statement.
SortlMerge does not alier user setting. Default is NO.

DFC Dayfrle error message control. Can be set by FILE statement; ~ o r t / ~ & ~ e dwsqnot alter user
. setting. Default isO,

Data exit for end-o f-section, end-of-partition, end-of-information. SortlMerge sets this field
unconditionally; user setting is ignored.

~ r r o r . fie, :mks&~e, control. Can &t .by F ~ E ! ' statement; &8{Alerge does nbt dter uxr
setting. Default is 0.

Error option for parity errors. Not applicable for NOS 1. Can be set by FILE statement.
SortlMerge does not alter user setting. Default is T (terminate file under NOS/BE 1; termi-
nate job under SCOPE 2.1).

Error exit routine. Can be set by FILE macro but not by FILE statement. SortIMerge does
not alter user setting. Default is no exit routine.

Fixed length of F and Z type records; same field as MRL. Can be set by FILE statement;
SortlMerge does not alter user setting. FL is required for files with RT=F or Z; either MRL
or FL is required for all files processed by SortlMerge.

1

FO File organization. Can be set by FILE statement. SortIMerge requires FO=SQ, sequential
files, which is default.

PWB Address of 110 buffer. Cannot 5e set by PILE datement. Soft/Merge does not alter user
setting. If not set by user, Sort/Merge allocates a buffer of BFS words and sets FWB to its
address. FwB*, BFS=O is a nonfatal error; SortlMerge overrides user setting of FWB in this
case. *-

HL Header length in characters for T type records. Can be set by FILE statement; SortIMerge
does not alter user setting. No default when RT=T.

LL Length in characters of count field for D type records. Can be set by FILE statement;
SortIMerge does not alter user setting. No default when RT=D.

LP Starting position of count field for D type records. Can be set by FILE statement; Sort/
Merge does not alter user setting. Default is 0 (first character of record).

MBL Maximum block length. Can be set by FILE statement; SortIMerge does not alter user setting.
For defaults, see the appropriate Record Manager reference manual.

MNB Minimum bloclc>length for K ahd E blocks. Can be set by FILE statement; SortlMerge does
not alter user setting. No default.

MNR Minimum record length in characters. Can be set by FILE statement; SortIMerge does not
alter user setting. Default is 0.

MRL Maximum record length in characters. Can be set by FILE statement. Sort/Merge does not
alter user setting. Either MRL or FL is required for every file processed by Sort/Merge; MRL
is required on the OWNCODE directive or macro if no input file is specified.

MUL Multiple of characters for pad&$ on'K or E type blocks. Can 'be set by FILE statement;
SortjMerge does not alter user setting. Default is MUL=2.

Open/close status. Not set by user; referenced internally by SortIMerge. For a macro sort
or merge, a fde may be either open (OPE), closed (CLO), or never opened (NOP) when con-
trol is transferred to SortlMerge; if the file is open (OPE), or closed (CLO), Sort/Merge
assumes its FIT is valid.

Open flags. SortIMerge rewinds every file whose logical file name is not OUTPUT; user

PC - , ': Padding charactei f o f ' ~ and E type b&ks. Specified in display code. It must not be the
same as the record mark character. Can be set by FlLE statement; Sort/Merge does not alter
user setting. Default is 76 (octal).

PD Processing direction. Can be set by FILE statement. SortIMerge requires that input files b e
open for input or for inputloutput, and that output files be open for output or for input/
output. If PD is set incorrectly, SortlMerge will reset it to INPUT for input fdes and to
OUTPUT for output files.

RB Number of records per block for K type blocks. Can be set by FILE statement; SortlMerge
does not alter user setting. Default is RB=l.

RL Record length in characters. Cannot be set by FILE statement. This field is used internally
by SortlMerge; the user is not involved with its handling. If the field is set when control is
transferred to SortIMerge, the user setting is overridden.

RMK Record mark character for R type records. Can be set by FILE statement; SortlMerge does
not alter user setting. Default is 62 (octal).

RT Record type. Can be set by FILE statement. SortIMerge does not alter user setting and - A

permits any record type except U. Default is RT=W. %!OPE'Z p b i t s RTW whe; BT<

2 "<:-+* .4$ " :,, < ,*< *

SPR Suppress read ahead # & & j W & p ' W ~ ~ Can be set by FILE statement; SortlMerge does not
alter user setting. Default is NO.

VF Volume disposition code. Can be set by FILE statement; SortIMerge does not alter user
setting. Default is VF=U.

WSA Address of current record. Cannot be set by FILE statement. Used internally by Sort/
Merge; user setting is overridden.

SAMPLE PROGRAMS

USER ERROR EXIT ROUTINE

This sample program demonstrates a macro sort with a user error exit subroutine. The main program begins
at the entry point SORT; during a sort, when an error is encountered, the routine with entry point ERREXIT
is called. This subroutine determines if error was type 142, excess data. The writer of this program evidently
decided excess data would not be a problem; if an input record longer than 20 characters is read, the excess
data is truncated. Any other error produces an abort. If excess data was encountered, + is put in column 19
of the record. Then SDS is set to NO, and ERL to 0 so needless error messages are displayed, and the pro-
gram is not aborted when Record Manager gets control. A count is kept of the type 142 errors encountered.

After SortIMerge processing is completed, control in the main program advances to the line containing
ERRCOUNT and a message indicating the number of errors is sent to the dayfile.

Source code for this COMPASS program:

LUENT SOQT
ENTRY SO?T

S ORT SOW
F I L E S t INPUT,SOQTIN) , I OUTPUT, SORTOUT)
KEY l I . 3 9 5 , ,D ISPLAY
KEY It , 1 0 9 ,LOGICAL
SAt ERqCOUNT CONVERT ERROR COUYf
Q J = X X N V € R T TO DISPLAY COO€
SA6 ERRMESS INSERT f NTO WESSASE
YESSAGE ERRMESS, ,R Of SPLAY 7 HE ERQOR COUNT
ENDRUN END THZS JOB STEP *

ERRCOUNT DATA 0 COUNT OF RH ERROR 1 4 2 4
ERRMESS QSS 1

DATA 29L LONG RECORDS WERE tRUNCAfED
SORTIN f I L E LFN=SORTIY BT = C , R f ~ Z 9 f t ~ 2 0 sEK=EriREXIT ,ERL=Z
SORTOUT FILE LFN=SORfOUt , BT=C,RT =FsFL=20

F

6 ERROR R O U T I N E - 81tir AO=Ff T
ERR€ XT T ENTRY/€ X I ? ' WORD

FETCM AOsfRStXi IF NOT d 142 ERROR
SKi XI -1428 THEN ABORT
NZ Xl,4dQOOQB++
FETCH AO,WSA,Xl GET FHA RECORO
SA2 Xl+01 INSERT A PLUS
MXO 6b-6 INTO C o t . 19
SX3 i R @
43x6 - X p X 2
1x6 X6+X3
SA6 A2
STORE AO,SOS=NO 00 NOT u m u y ERROR MESSAGES
STORE bO, ERLzO ALLOW I N F IN ITELY %NV f RIVE AC ERRORS
S A I ERRCOUNT IlOVANCE LOCAL ERR3R COUNT
PIX6 59 I X 6 = -1)
1x6 X I - X 6
SA6 A 1
€fa ERREKIT EXIT tO +GET+ *
EN0 SORT *

The following message appears when this program is executed:

* + + * + * + * 12 LONG RECORDS WERE TRUNCATED

w-a

TAPE SORT/MERGE PROCESSING OPTIONS E

60497500 A E-I

GLOSSARY

ADVANCED ACCESS METHODS (AAM) - A file man-
ager that processes indexed sequential, direct
access, and actual key frle organizations, and
supports the Multiple Index Processor. (See
CYBER Record Manager.)

BALANCED TAPE SORT - Sort that always keeps its
intermediate tapes divided into the same two
groups. Sorted strings are merged from one group
to another as long as possible, then the direction
is reversed.

BASIC ACCESS METHODS (BAM) - A file manager
that processes sequential and word addressable
file organizations. (See CYBER Record Manager.)

BLOCKS - The term block has several meanings
depending on context. On tape, a block is infor-
mation between interrecord gaps on tape.
Record Manager defines several blocks depending
on organization:

I Organization

Indexed sequential

Direct access

Actual key

Sequential

Blocks I
Data block; index block

Home block; overflow block

Data block

Block type I,C,K,E

BOI (Beginning-of-Information) - Record Manager
defines beginning-of-information as the start of the
first user record in a file. System-supplied
information, such as an index block or control
word, does not affect beginning-of-information.
Any label on a tape exists prior to beginning-
of-information.

BUFFER - An intermediate storage area used to com-
pensate for a difference in rates of data flow, or

times of event occurrence, when transmitting
data between central memory and a n external
device during input/output operations.

COLLATING SEQUENCE - Sequence t h a t determines
precedence given to character data f o r sorting,
merging, and comparing.

CONTROL WORD - A system-supplied word that
precedes each W type record in storage.

CYBER RECORD MANAGER - A generic term
relating to the common products AAM and BAM
that run under the NOS and NOS/BE operating
systems and that allow a variety of record types,
blocking types, and file organizations to be
created and accessed. The execution time input/
output of COBOL 4, COBOL 5, FORTRAN
Extended 4, SortlMerge 4, ALGOL 4, and the
DMS-170 products is implemented through
CYBER Record Manager. Neither the input/
output of the NOS and NOS/BE operating systems
themselves nor any of the system utilities such as
COPY or SKIPF is implemented through CYBER
Record Manager. All CYBER Record Manager
file processing requests ultimately pass through
the operating system input/output routines.

DIRECT ACCESS FILE - In the context of CYBER
Record Manager, a direct access file is one of
the five file organizations. It is characterized
by the system hashing of the unique key within
each file record to distribute records randomly in
blocks called home blocks of the file.

In the context of NOS permanent fi les, a
direct access file is a file that is accessed and
modified directly, as contrasted with an indirect
access permanent file.

DIRECTIVES - Instructions that supplement
processing defined by the SORTMRG control
statement for execution of SortlMerge record
processing.

EOI (End-of-Information) - Record Manager
defines end-of-information in terms of the file
organization and file residence.

File
Organization

Sequential

Word
Addressable

Indexed
Sequential,
Actual Key

Direct
Access

File
Residence

Mass storage

Labeled tape
in SIJ,
S,L format

Unlabeled
tape in SI,
I format

Unlabeled
tape in S
or L format

Mass storage

Mass storage

Mass storage

Physical
Posit ion

After last user record

After last user record
and before any file
trailer labels.

After last user record
and before any file
trailer labels.

Undefined.

After last word
allocated to file,
which might be
beyond the last user
record.

After record with
highest key value.

After last record in
most recently created
overflow block or
home block with the
highest relative
address.

FILE - A logically related set of information; the
largest collection of information that can be
addressed by a file name. Starts at beginning-
of-information and ends at end-of-information.

FILE CONTROL STATEMENT - A control statement
that contains parameters used to build the file
information table for processing. Must be pro-
vided for every input or output fde to be
processed by a directive sort or merge.

FIT (File Information Table) - A table through which
a user program communicates with Record
Manager. All file processing executes on the
basis of fields in the table. Some fields can
be set by the SortlMerge user in the FILE
control statement.

HOME BLOCK - Mass storage allocated for a file with
direct access organization at the time the file is
created.

KEY COMPARISON - Internal technique of compar-
ing sort keys that usually requires less elapsed
time and more central processing time than key
extraction.

KEY EXTRACTION - Internal technique of comparing
sort keys that usually requires less central
processing time and more elapsed time than
key comparison.

LEVEL - For system-logical-records, an octal number
0 through 17 in the system-supplied 48-bit
marker that terminates a short or zero-length
PRU.

LOGICAL RECORD - Under NOS, a data grouping
that consists of one or more PRUs terminated
by a short PRU or zero-length PRU. Equivalent
to a system-logical-record under NOS/BE.

MACRO - Sequence of source statements that are
saved and then assembled when needed through
a macro call. Used when SortIMerge functions
as a COMPASS subroutine for a COMPASS
program or as a relocatable program generated
for the COBOL SORT verb.

MERGE ORDER - Internal parameter zoverning the
number of buffers used by Sort/Merge
Version 4 in the intermediate merge phase.

NOISE RECORD - Number of characters the tape
drivers discard as being extraneous noise rather
than a valid record. Value depends on installa-
tion settings.

OVERFLOW BLOCK - Mass storage the system adds
to a file with direct access organization when
records cannot be accommodated in the home
block.

OWNCODE ROUTINE - Closed COMPASS subroutine
written by the user that provides the capability
to insert, substitute, modify, or delete input
and output records during Sort/Merge processing.

PARTITION - Record Manager defines a
partition as a division within a file with sequen-
tial organization. Generally, a partition contains
several records or sections. Implementation of
a partition boundary is affected by file struc-
ture and residence.

Device

PRU
device

S or L
format
tape

Physical Boundary

A short PRU of level 0
containing one-word
deleted record pointing
back to last I block
boundary, followed by
a control word with
flag indicating partition
boundary.

A short PRU of level 0
containing a control
word with a flag indi-
cating partition
boundary.

A short PRU of level 0
followed by a zero-
length PRU of level 17.

Separate tape block con
taining as many deleted
records of record length
0 as required to exceed
noise record size, fol-
lowed by a deleted one-
word record pointing
back to the last I block
boundary, followed by
a control word with a
flag indicating a parti-
tion boundary.

Physical Boundary

Separate tape block
containing as many
deleted records of
record length 0 as re-
quired to exceed noise
record size, followed by
a control word with a
flag indicating a parti-
tion boundary.

Tapemark.

Zero-length P R U of
level number 0.

Undefined.

Notice that in a file with W type records, a
short PRU of level 0 terminates both a section
and a partition.

POLYPHASE TAPE SORT - Sort with only one interme-
diate output tape for each merge phase ; however, the
output tape is changed for each merge phase. A poly-
phase tape sort usually can sort more records than a
balanced tape sort in the same amount of time and
with the same number of intermediate tapes.

PRU - Under NOS a n d NOSIBE, the amount of
information transmitted by a single physical op-
eration of a specified device. The size of a PRU
depends on the device (see table below). A PRU
which is not full of user data is called a short
PRU; a PRU that has a level terminator but n o
user data is called a zero-length PRU.

1 Device

Mass storage

Tape in SI format
with coded data

Tape in SI format
with binary data

Tape in I format

Tape in other format

Size in Number
of 60-Bit Words

64

128

5 1 2

5 1 2

Undefined

PRU DEVICE - Under NOS and NOS/BE, a mass
storage device or a tape in SI or I format, so
called because records on these devices are written
in PRUs.

RANDOM FILE - In the context of Record
Manager, a file with word addressable, indexed
sequential, direct access, or actual key organi-
zation in which individual records can be accessed
by the values of their keys.

In the context of the NOS or NOSlBE
operating systems, a file with the random bit set
in the file information table in which individual
records are accessed by their relative PRU
numbers.

RECORD - Record Manager defines a record
as a group of related characters. A record or a
portion thereof is the smallest collection of
information passed between Record Manager
and a user program. Eight different record
types exist, as defined by the RT field of the
file information table.

Other parts of the operating systems and their
products might have additional or different
definition of records.

RECORD TYPE - The term record type can have one
of several meanings, depending on the context.
Record Manager defines eight record types
established by an RT field in the file infor-
mation table. Tables output by the loader are
classified as record types such as text, reloca-
table, or absolute, depending on the first few
words of the tables.

SECTION - Record Manager defines a section
as a division within a file with sequential
organization. Generally, a section contains more
than one record and is a division within a parti-
tion of a file. A section terminates with a physical
representation of a section boundary.

I Anv other t a ~ e format

Physical Representation

Deleted one-word
record pointing back t o
last I block boundary
followed by a control
word with flags indicating
a section boundary. At
least the control word
is in a short PRU of
level 0.

Control word with flags
indicating a section
boundary. The control
word is in a short PRU of
level 0.

Short PRU with level
less than 17 octal.

Undefined.

Undefined.

A separate tape block
containing as many
deleted records of
record length 0 as required
to exceed noise record
size followed by a deleted
one-word record pointing
back t o last I block bound
ary followed by a control
word with flags indicating
a section boundary.

A separate tape block
containing as many deleted
records of record length
0 as required to exceed
noise record size followed
by a control word with
flags indicating a section
boundary.

Undefined.

Undefined.

Undefined.

The NOS and NOS/BE operating systems equate
a section with a system-logical-record of leva1 0
through 16 octal.

SHORT PRU - A PRU that does not contain as much
user data as the PRU can hold and that is ter-
minated by a system terminator with a level
number.

Under NOS, a short PRU defines EOR.

Under NOSJBE, a short PRU defmes the end
of a system-logical-record. In the BAM con-
text, a short PRU can have several inter-
pretations depending on the record and
blocking types.

SIGNED NUMERlC DATA - Integer data stored
internally in display code. Sorts according
to the magnitude and the value of the integer
the display code represents.

SORT KEY - Field of information within each
record in a sort or merge input file used to
determine the order in which records are
written to the output file.

SORT ORDER - Order for sorting keys, either
ascending or descending.

SYSTEM-LOGICAL-RECORD - Under NOSIBE,
a data grouping that consists of one or more
PRUs terminated by a short PRU or zero-
length PRU. These records can be transferred
between devices without loss of structure.

Under SCOPE 2, a data grouping t h a t
consists of one or more blocks
terminated by a short block.

Equivalent to a logical record under NOS.

Equivalent to a Record Manager S type record.

TAPE SORT - Sort that has its intermediate scratch
files residing on tape rather than disk. Original
input file and/or final output frle can reside
on disk or tape.

W TYPE RECORD - One of the eight record types
supported by Record Manager. Such records
appear in storage preceded by a system supplied
control word. The existence of the control
word allows files with sequential organization
to have both partition and section boundaries.

ZERO-BYTE TERMINATOR - 12 bits of zero in
the low order position of a word t h a t marks the
end of the line to be displayed at a terminal or
printed on a line printer. The image of cards
input through the card reader or terminal also
has such a terminator.

ZERO-LENGTH PRU - A PRU that contains system
information, but no user data. Under BAM,
a zero-length PRU of level 17 is a partition
boundary. Under NOS, a zero-length PRU
defines EOF.

This appendix contains programming practices recommended by CDC for users of the software described in
this manual. When possible, application programs based on this software should be designed and coded in
conformance with these recommendations.

Two forms of guidelines are given. The general guidelines minimize application program dependence on the
specific characteristics of a hardware system. The feature use guidelines ensure the easiest migration of
an application program to future hardware or software systems.

GENERAL GUIDELINES

Programmers should observe the following practices to avoid hardware dependency:

Avoid programming with hardcoded constants. Manipulation of data should never depend on the
occurrence of a type of data in a fixed multiple such as 6, 10, or 60.

Do not manipulate data based on the binary representation of that data. Characters should b e
manipulated as characters, rather than as octal display-coded values or as 6-bit binary digits.
Numbers should be manipulated as numeric data of a known type, rather than as binary patterns within
a central memory word.

a Do not identify or classify information based on the location of a specific value within a specific set of
central memory word bits.

0 Avoid using COMPASS in application programs. COMPASS and other machine-dependent languages
can complicate migration to future hardware or software systems. Migration is restricted by
continued use of COMPASS for stand-alone programs, by COMPASS subroutines embedded in programs
using higher-level languages, and by COMPASS owncode routines used with CDC standard products.
COMPASS should only be used to create part or all of an application program when the function cannot
be performed in a higher-level language or when execution efficiency is more important than any other
consideration.

FEATURE USE GUIDELINES

The recommendations in the remainder of this appendix ensure the easiest migration of an application
program for use in future hardware or software systems. These recommendations are based on known or
anticipated changes in the hardware or software system, or comply with proposed new industry standards or
proposed changes to existing industry standards.

BASIC ACCESS METHODS
The Basic Access Methods (BAM) offer several features within which choices must be made. The following
paragraphs indicate preferred usage.

File Organizations

The recommended file organization is sequential (SQ). For files with word-addressable (WA) organization,
use an accessing technique that can easily be modified to character position or byte addresses.

Block Types

The recommended block type is C.

Record Types

The recommended record types are F for fixed length records and W for variable length records. For purely
coded files that are to be listed, Z type records can be used.

Block Size

For C type blocks, set the maximum block length (MBL) to 640 characters for mass storage files and 5120
characters for tape files.

Host Language Input/Output

Use of host language input/output statements (for example, a FORTRAN READ statement) to process BAM
files is always a safe procedure. Host language statements provide appropriate default values for record
type, block type, and block size. Do not use the CYBER Record Manager FORTRAN interface routines to
process sequential files.

SORT/MERGE 4 AND 1

Sort /Merge offers several features among which choices must be made. The following paragraphs indicate
preferred usage.

Key Alignment

Ensure that SORT keys are aligned on character or word boundaries. Do not place SORT keys in arbitrary
bit positions within words.

SORT and MERGE Statementq

Always perform logically separated SORT and MERGE operations with separate control statements.

Action on FILE directive 4-7
Address of record in OWNCODE routine 3-1
Advanced Access Methods GI
ALGOL types INTEGER and REAL 2-2
Alternate specification of key type 2-6
Ascending

Defined 2-4
KEY macro 5-6
SMKEY call 6-4, 7-4

ASCII FIT field D-2
ASCII6 collating sequence

Description 2-3
KEY directive 4-10
KEY macro 5-6
SMKEY ta l l 6-4, 7-4

Asterisk used in comment statement 4-4
A2 register 3-1
A3 register 3-1

%a
SMMERGE call 6-2, 7-2
SMSORT call 6-2, 7-2
SMSORTB call 6-2, 7-2
SMSORTP call 6-2, 7-2
SORT directive 4-5
SORT macro 5-2

BALANCED
B AL on SORT directive 4-6
Description E-1
SMTAPE call 6-8, 7-7
TAPE directive 4-17
TAPE macro 5-13
Tape sort G-1

Basic Access Methods (BAM) 1F6
BBH FIT field D-2
Beginning of information (BOI) G-1
BFS

Calculation D-11
Example D-14
Field of FIT IF2

Bitpos
KEY macro 5-6
SMKEY call 6-3, 7-3

Blank
Directive 4-4
SEQUENCE directive 4-13

Blocks G-1
Block types for Record Manager D-1
BT FIT field D-3
Buffer

Definition G-1
Size (BFS) calculation D-11

Bytepos
KEY macro 5-6
SMKEY call 6-3

BYTESIZE
Directive 4-7
Macro 5-4

C on FILE directive 4-8
C F on FILE control statement 4-1, D-3

Character
EQUATE directive 4-13
EQUATE macro 5-9
SEQUENCE directive 4-11
SEQUENCE macro 5-8
SMEQU call 6-6, 7-5
SMSEQ call 6-5, 7-5

Character coded key
Collating sequence 2-3
Position 2-1
Sort order 2-4

Character Set A-1
Compared t o collating sequence 2-3
DISPLAY as key type 2-2
DISPLAY on FIELD directive 4-9
DISPLAY on SMKEY cal l 6-4, 7-3
INTBCD as key type 2-2
INTBCD on FIELD directive 4-9
INTBCD on KEY macro 5-6

Charpos 7-3
Checkpointhestart

Description 1-2
OPTIONS directive 4-15
OPTIONS macro 5-11
SMOPT call 6-6, 7-6

CL FIT field D-3
CM

FIT field D-3
MERGE macro 5-3
SORT macro 5-2

CNF FIT field D-3
COBOL

COMPUTATIONAL-1 2-2
COMPUTATIONAL-2 2-2

COBOL6 collating sequence
Description 2-3
KEY directive 4-10
KEY macro 5-6
SMKEY call 6-4

Collating sequence
Character coded key 2-3
Compare to character s e t 2-3
Description 2-3, G-1
EQUATE directive 4-13
EQUATE macro 5-9
KEY directive 4-15
KEY macro 5-6
SEQUENCE directive 4-11
SEQUENCE macro 5-7
SMEQU call 6-6, 7-6
SMKEY call 6-4, 7-4
SMSEQ call 6-5, 7-5

Colseq
EQUATE directive 4-13
EQUATE macro 5-9
KEY directive 4-10
KEY macro 5-6
SEQUENCE directive 4-11
SEQUENCE macro 5-8
SMKEY call 6-4, 7-4

Column requirements for directives 4-4
Comment statement for directives 4-4
Common Memory Manager 5-1

FIT field D-3

COMPARE
OPTIONS directive 4-16
OPTIONS macro 5-12

) SMOPT call 6-7, 7-6
COMPASS

Future software migration guidelines H-1
Macro example Ilk12
Owncode routine example 3-6
Sort/Merge as COMPASS subroutine 5-1
User provided subroutines 3-1

COMPILE file a s directive source 4-2
Continuation s ta tement

Directives 4-4
SEQUENCE directive 4-13

Control s ta tement
FILE 4-1, D-1
LIBRARY 5-1
Requirements 4-1
SORTMRG 4-1

1 Control word G-1
CP FIT field D-3
CR on FILE directive 4-8
CU on FILE directive 4-8

) CYBER Record Manager D-1, G-1
C l FIT field IF3

Dayfile tallies and messages 1-3
Deck setup examples 4-25
Default respecify SEQUENCE directive 4-11

SEQUENCE macro 5-7
(SMSEQ call 6-5, 7-5

Descending
Description 2-4
KEY macro 5-6

(SMKEY call 6-4, 7-4
DFC FIT field D-3
Diagnosticsfor Sort/Merge B-1
Directive

BYTESIZE 4-7
COMPILE file 4-2

I Definition G 1
END 4-17
EQUATE 4-13
FIELD 4-8
FILE 4-7
Format parameters 6C and 7 C 4-2
INPUT file 4-2
KEY 4-10
MERGE 4-6
OPTIONS 4-15
ONNCODE 4-16
Processing description 4-1
SEQUENCE 4-11
SORT 4-5
Syntax conventions 4-4
TAPE 4-17

DISK on SORT directive 4-6
DISPLAY

Collating sequence defined 2-3, A-1
FIELD directive 4-9
KEY directive 4-11
Key type defined 2-2

1 SMKEYcall 6-3,7-3
Display code

Character se t A-1
Description 2-2
KEY macro 5-6

I SMKEY call 6-3, 7-3
Disposition

Codes on FILE directive 4-8
Exit 2 3-3
Exit 4 3-4

Dump
OPTIONS directive 4-15
OPTIONS macro 5-11
Recovery 1-2
SMOPT call 6-6, 7-6

Duplicate key processing by Exit 5 3-4
DX FIT field D-3

EFC FIT field D-3
END

Directive 4-17
Location 4-5

End of information (EOI) G-2
Entry point

OWNCODE directive 4-16
OWNCODE macro 5-12
SMOWN call 6-8, 7-9

EO FIT field D-3
EQUATE

Directive 4-13
Macro 5-9

ERL FIT field D-3
Error

Messages B-1
User error exit routine example D-12

EX FIT field D-3
Example

Directive sort and merge 4-18
Error exit routine D-12
FORTRAN Extended program 6-10.1
FORTRAN 5 program 7-10
Job deck setup 4-25
Merge run specifying BFS D-14
Owncode routine 3-6
SORTMRG control statement 4-3

Exit
Exit 1 3-2
Exit 2 3-3
Exit 3 3-3
Exit 4 3-4
Exit 5 3-4
Exit 6 3-4
Error exit routine example D-12
OWNCODE directive 4-16
OWNCODE macro 5-12
Routine summary 3-5
SMOWN call 6-9, 7-8

EXTRACT
OPTIONS directive 4-16
OPTIONS macro 5-12
SMOPT call 6-6, 7-6

Field
FIELD directive 4-8
KEY macro 5-5
Setting FIT field D-2
SMKEY call 6-3, 7-3
Sort and merge 2-1

File
COMPILE file 4-2
Definition G 2
Disposition codes 4-8
FILE control statement 4-1, D-1, G-1
FILE directive 4-7
FILE macro 5-2
Initialization D-10
Input disposition 3-3
INPUT file 4-2
List fi le parameter 0 4-2
Output disposition 3-4
Source file parameter OWN 4-3
Source input file parameter I 4-2

FILES macro 5-4
File Information Table

I Definition G-2
Input file D-6
Location on FILES macro 5-5
Merge file B 8
Output file D-9
Setting D-2

FIT fields D 3 , B 4 , B 5
FL FIT field IF3
FLOAT

L Description 2-2
FIELD directive 4-9
KEY macro 5-6

(SMKEY call 6-3, 7-4
Floating point

Description 2-2
Keys sorted a s integer 2-6

FO FIT field D 4
FORM utility D-1
Formulas t o compute merge order F-2
FORTRAN Extended

Calling SortIMerge 6-1
Example program 6-10
Types INTEGER and REAL 2-2

I FORTRAN 5
Calling Sort/Merge 7-1
Example program 7-10

Future Software migration guidelines H-1
FWB FIT field B 4

HL FIT field D-4

I on SORTMRG control statement 4-2
Incompatibilities C-1
Indefinite floating point keys 2-2
Infinite floating point keys 2-2
Initialization of file D-10
INPUT file

Directive source 4-2
Disposition through Exit 2 3-3
FILE control s ta tement 4-1, IF2
FILE directive 4-7
FILE macro 5-2
FIT manipulation D-6
Owncode routines 4-3
Processing through Exit 6 3-4

Input record processing by Exit 1 3-2
Insertion

Input 3-2
Output 3-3

INTBCD
Collating sequence defined 2-3, A-1
FIELD directive 4-9
KEY directive 4-11
KEY macro 5-6
Key type defined 2-2

I SMKEYcall 6-4,7-4
INTEGER

ALGOL type as key 2-2
FIELD directive 4-9
FORTRAN type as key 2-2
KEY macro 5-6
Key type defined 2-2
Range 2-2

I SMKEYcall 6-3,7-4
Sorting integer 2-6

Intermediate
Merge phase E-1
TAPE directive 4-17
TAPE macro 5-12

Internal BCD
Description 2-2
KEY macro 5-6

Job deck setup 4-26

Key
Alternate specification 2-5
Collating sequence 2-3
Directive 4-10
Field description 2-1
FIELD directive description 4-8
KEY macro description 5-5
Multiple requirements 2-5
SMKEY call description 6-3, 7-3
Sort order 2-4

Keyname
FIELD directive 4-9
KEY directive 4-10

Key comparison
Definition G 2
OPTIONS directive 4-16
OPTIONS macro 5-12
SMOPT call 6-6, 7-6

Key extraction
Definition 0 2
OPTIONS directive 4-16
OPTIONS macro 5-12
SMOPT call 6-6, 7-6

Key length defined 2-1
Key position defined 2-1
Key type

Alternate specification 2-5
Description 2-2
DISPLAY 2-2
FLOAT 2-2
INTBCD 2-2
INTEGER 2-2
LOGICAL 2-2

LA FIT field D-4
Label processing by Exit 6 3-4
Large Core Memory

SMSORT call 6-2, 7-2
SORT macro 5-3

LBL FIT field D-4
LCM- see Large Core Memory
LCR FIT field D-4
Length

Description 2-1
FIELD directive 4-9
Record length 3-1
Sorting integer 2-6

Level G 2
LFN FIT field D-4
LGO under Owncode routines 4-3
LIBRARY control s ta tement 5-1
List

COMPASS LIST option 5-1
File parameter 0 4-2

Listing on LIST file 4-2
LL FIT field D-4
Location of END 4-5
LOGICAL

FIELD directive 4-9
KEY macro 5-6
Key type defined 2-2
SMKEY call 6-3, 7-4

Logical file name
FILE directive 4-7
FILES macro 5-5

Sort key
Alternate specification 2-5
Collating sequence 2-3

(Definition 0 5
Field description 4-8
KEY macro 5-5
Length and position 2-1
Multiple requirements 2-5
Sort order 2-4
Type defined 2-2

Sort/Merge
And Basic Access Methods D-6
And Record Manager D-1
Directive conventions 4-4
Directive processing 4-1
FORTRAN Extended 6-1

I FORTRAN 5 7-1
Incompatibilities C-1
Macro processing 5-1
Parameters 6C and 7C 4-2
Version 1 1-1
Version 4 1-1

Sort only
Processing defined 1-1
SORT directive 4-5

Sort order
I Description 2-4, G 5

KEY directive 4-10
KEY macro 5-6

) SMKEY call 6-3, 7-3
Sort phase in Sort/Mer e processing E-1
Source file parameter 8WN 4-3
Source input file parameter I 4-2
SPR FIT field D-5
Start parameter on FIELD directive 4-9
Statistics on dayfile 1-3
Subroutines

Sort/Merge as COMPASS 5-1
User provided in COMPASS 3-1

Syntax
Directive conventions 4-4
FILE control statement D-1
SORTMRG control statement 4-1

Tallies and messages in dayfile 1-3
TAPE

Balanced processing E-1
Directive 4-17
Macro 5-13
Polyphase processing E-6

I SMSORTB, SMSORTP 6-2, 7-2
SMTAPE call 6-8, 7-7
Sort 0 5
SORTB, SORTP 5-2

Terminator in directives 4-4

TL FIT field D-5
m e

Alternate specification 2-5
FIELD directive 4-9
FILE directive 4-7
FILES macro 5-5
KEY macro 5-6
Sort key 2-2
SMKEY call 6-3, 7-3

U on PILE directive 4-8 t r

ULP
FIT field D-5
Under Exit 6 3-4

User provided
A

Collating sequence by SEQUENCE macro 5-7
Error exit routine by COMPASS macro D-12
OWNCODE routine names by SMOWN call 6-9, 7-8 1
Routine names by OWNCODE directive 4-16
Routine names by OWNCODE macro 5-12
SEQUENCE directive 4-11
SMSEQ call 6-5,7-5
Subroutinesin COMPASS 3-1, 3-6

I

V AR on SORT directive 4-6
VERIFY

OPTIONS directive 4-15
OPTIONS macro 5-11
SMOPT call 6-7, 7-6

VF FIT field 0-5
VOLDUMP

OPTIONS directive 4-15
OPTIONS macro 5-11
SMOPT call 6-6, 7-6

WSA PIT field D-5

XTEXT pseudo-op 5-1
XO register 3-1
X4 register 3-1

3000 series in Internal BCD 2-2

6C on SORTMRG control statement 4-2

63-character se t A-2
64-character set A-2

7C on SORTMRG control statement 4-2

COMMENT SHEET

MANUAL TITLE: SortIMerge Versions 4 and 1 Reference Manual

PUBLlCAtlON NO.: 60497500 REVISION: F

COMPANY:

STREET ADDRESS:

CITY: STATE: ZIP CODE:

This form i s not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (phase
include page number references).

a Please reply a NO reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE

APE

NECESSARY
IF MAILED

IN THE
UNIT ED S f AT ES

.
BUSINESS REPLY MAIL

- -
I FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN, -
I

POSTAGE WILL BE PAID BY Y
CONTROL DATA C O R P O R A T I O N -
Publications and Graphics Division -
215 Moffett Park Drive -
Sunny vale, California 94086 -

	Front Cover
	Revision Record
	Preface
	Contents
	1-Introduction
	2-Sort Keys
	3-Owncode Routines
	4-Directive Sort/Merge Processing
	5-Macro Calls
	6-FORTRAN Extended Calls
	7-FORTRAN 5 Calls
	A-Character Sets
	B-Sort/Merge Diagnostics
	C-Incompatibilities
	D-Sort/Merge and Record Manager
	E-Tape Sort/Merge Processing Options
	F-Merge Order
	G-Glossary
	H-Future System Migration Guidelines
	Index
	Comment Sheet
	Mailer

