
60499500

CONTRpL DATA

/g^N

NETWORK PRODUCTS

NETWORK ACCESS METHOD
VERSION 1
HOST APPLICATION PROGRAMMING
REFERENCE MANUAL

CDC® OPERATING SYSTEM:
NOS 2

REVISION RECORD

Revision

A (12/01/76)
B (04/01/77)
C (07/01/77)
D (04/28/78)

E (08/15/78)
F (12/18/78)
G (01/15/79)
H (08/10/79)

J (12/11/79)

K (04/18/80)

L (10/31/80)

M (05/29/81)

N (02/26/82)

P (01/14/83)

R (09/30/83)

S (09/19/84)

T (09/30/85)

U (12/16/85)

V (07/31/86)

W (04/23/87)

Descr ip t ion

Original Release. PSR level 439.
Revised to PSR level 446 for technical corrections.
Revised to PSR level 452 for technical corrections.
Completely revised for NAM Version 1.1 release at PSR level 472 to include support of

remote and foreign NPUs, asynchronous and HASP TIPs, virtual terminals, IAF, and TVF.
Revised at PSR level 477 for technical corrections.
Revised at PSR level 485 for technical corrections.
Revised at PSR level 485 for additional technical corrections.
Revised to reflect release of NAM Version 1.2. Included are descriptions of the binary

debug log file and postprocessor, special editing support, and QTRM.
Revised to reflect addit ion of connection duplexing, upl ine block truncation, block

header break markers, QTRM connection switching, and various technical corrections.
Revised at PSR level 517 to reflect the addition of 714 printer support, and various

techn ica l cor rec t ions.
Revised at PSR level 528 to reflect the addition of QTRM support of application-to-

appl icat ion connect ions, the user- interrupt capabi l i ty, and var ious technical
cor rec t ions .

Revised for NAM Version 1.3 release at PSR level 541 to include 2780/3780 terminal
support, changes to supervisory messages, PRU interface, and various technical
co r rec t i ons .

Revised at PSR level 559 to reflect release of NAM Version 1.4, which supports NOS
Version 2.0 and includes the disable flag parameter on the LST/HDX/R supervisory
message and miscellaneous technical corrections.

Revised at PSR level 580 to reflect release of NAM Version 1.5 and CCP Version 3.5, which
run only under the NOS Version 2 operating system. This manual, which was previously
known as the NAM Reference Manual, is no longer applicable to products operating under
NOS 1. It has been reorganized to document information needed by a general networks
user, who must consider NAM as well as CCP when writing a network application. This is
a complete reprint.

Revised at PSR level 596 to reflect release of NAM Version 1.6 and CCP Version 3.6,
support ing mult iple-host networks. This is a complete reprint.

Revised at PSR level 617 to reflect release of NAM Version 1.7 and CCP Version 3.7 to
document support of a 3270 bisynchronous terminal class and miscellaneous technical
co r rec t i ons .

Revised at PSR level 642 to reflect release of NAM Version 1.8 and CCP Version 3.8. This
manual was previously known as the NAM Version 1/CCP Version 3 Host Application
Programming Reference Manual. Miscellaneous technical changes are included.

Revised at PSR level 647 to reflect release of NAM Version 1.8, CCP Version 3.8, and
CDCNET Version 1.0. Miscellaneous technical corrections are included.

Revised at PSR level 664 to reflect release of NAM Version 1.8, CCP Version 3.8, and
CDCNET Version 1.1. Miscellaneous technical, corrections are included.

Revised at PSR level 678 to reflect release of NAM Version 1.8, CCP Version 3.8, and
CDCNET Version 1.2. Miscellaenous technical corrections are included.

REVISION LETTERS I, 0, Q, AND X ARE NOT USED

©COPYRIGHT CONTROL DATA CORPORATION
1976, 1977, 1978, 1979, 1980, 1981,
1982, 1983, 1984, 1985, 1986, 1987
All Rights Reserved
Printed in the United States of America

Address comments concerning this manual to:

CONTROL DATA CORPORATION
Technology and Publications Division
P. 0. BOX 3492
SUNNYVALE, CALIFORNIA 94088-3492

or use Comment Sheet in the back of this manual
/-*a^.

i i 60499500 W

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page

Front Cover
Tit le Page
i i
i i i / i v
v
v i
v i i / v i i i
i x t h r u x i i
x i i i / x i v
X V
1-1
1-2 thru 1-6
1-7
1-8
1-8.1
1-8 .2
1-9 thru 1-14
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2^9
2-10
2-11
2-12 thru 2-14
2-15 thru 2-18
2-19
2-20
2-21
2-22 thru 2-25
2-26
2-27
2-28
2-29
2-30 thru 2-33
2-34
2-35
2-36 thru 2-39
3-1
3-2 thru 3-6
3-7 thru 3-10
3-11
3-12
3-12.1/3-12.2
3-13 thru 3-16
3-17
3-18 thru 3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28

Revision Page
- 3-29- 3-30
W 3-30.1
W 3-30.2
V 3-31u 3-32 thru 3-44
V 3-45
V 3-46
V 3-47 thru 3-50
T 3-51 thru 3-53
R 3-54 thru 3-57
U 3-58
V 3-59
V 3-60
U 3-61
U 3-62 thru 3-68
T 3-68.1 thru 3-68.6
U 3-69 thru 3-79
R 3-80
R 3-81
T 4-1
R 4-2
T 4-3
R 4-4
T 4-4 .1 /4-4 .2
R 4-5 thru 4-10
U 4-10.1
T 4-10.2
S 4-11 thru 4-15
U 4-16
V 4-17 thru 4-19
U 5-1
S 5-2
T 5-3
W 5-4
T 5-5
W 5-6
T 5-7 thru 5-11
W 5-12
V 5-13
U 5-14
T 5-15
U 5-16
V 5-17
U 6-1
V 6-2
V 6-3
U 6 - 4
T 6-5
V 6-6
T 6-7
V 6-8
W 6-9
W 6-10
T 6-11
V 6-12
W 6-13 thru 6-15
W 6-16

Revision Page

V 6-17
V 7-1 thru 7-15
V 7-16
V 7-17 thru 7-24
V 7-25
T 7-26 thru 7-38
V 8-1
V 8-2 thru 8-12
T 8-13
V 8-14 thru 8-34
T 8-34.1
V 8-34.2
V 8-34.3 /8-34.4
U 8-35 thru 8-66
W A-l thru A-3
V A-4
V A-5 thru A-19
U A-20 thru A-23
V A-24 thru A-32
U A-33 thru A-36
R A-3 7
R A-3 8
W A-3 9
W A-40 thru A-46
W A-47
V A-48
V B - l
V B-2
T B-2.1/B-2. 2
V B-3
T B-4
R B-5
V B-6
W B-7 thru B-9
R C-l thru C-l3
R D- l
T D-2
R Index-1 thru -6
T Comment Sheet/Mail
R Back Cover
T
T
R
T
T
V
T
T
S
S
R
R
T
W
R
V
R
V

Revision

R
R
T
R
T
R
R
V
w
V
V
V
V
T
R
S
R
S
T
R
T
T
S
R
S
R
W
H
W
T
T
V
V
T
U
V
V
V
W

60499500 W
i i i / i v

r j

i^k

r>

^

0*\

PREFACE

/fP̂ >N-

This manual suppl ies reference information to both
Network Access Method (NAM) Version 1.7 and Commu
nications Control Program (CCP) Version 3.7 users,
t yp ica l l y e i the r p rogrammers o r ana lys ts who a re
wri t ing a network appl icat ion or who would l ike to
learn more about how the var ious port ions of the
network fi t together.

Th i s manua l desc r i bes how app l i ca t i on p rog rams
interface to the computer network. The NAM 1/CCP 3
Terminal Inter face reference manual descr ibes how
the te rmina l user ga ins access to these app l i ca
t i o n s . A l s o , t h i s m a n u a l f a m i l i a r i z e s t h e r e a d e r
w i t h t h e n e t w o r k p r o c e s s i n g u n i t (N P U) a n d t h e
Communications Control Program (CCP). Knowledge of
the NPU and CCP, however, is not necessary to write
an application program.

NAM and CCP operate under control of the NOS 2
operating system for the CONTROL DATA® CYBER 180
Computer Systems; CYBER 170 Computer Systems; CDC ®
CYBER 70 Computer System models 71, 72, 73, and 74;
and 6000 Computer Systems.

NAM is the subset of the host computer sof tware
that provides communication between an application
program in the hos t computer and o ther app l i ca
t ion programs or dev ices access ing the network 's
resources.

The Communications Control Program is software that
res ides in a 255x ser ies ne twork process ing un i t
that a l lows a device to access the host computer
over communications lines.

WHO SHOULD READ THIS
MANUAL
This manual is directed at a programmer or analyst
w h o i s f a m i l i a r w i t h s u b s y s t e m a p p l i c a t i o n s
programming, compi ler and assembler programming
conventions, terminal communication protocols, other
ne two rk so f twa re p roduc t s , and t he p rog ramming
requirements of supported devices.

HOW THIS MANUAL IS
ORGANIZED
Sect ion 1 in t roduces the NAM and CCP sof tware.
Sect ion 2 descr ibes the protocols governing infor
mation exchanged for communication between NAM and
each appl icat ion program, and between appl icat ion
programs and their connections. Section 3 describes
the synchronous and asynchronous supervisory mes
s a g e s u s e d b y a p p l i c a t i o n p r o g r a m s . S e c t i o n 4
d e s c r i b e s t h e l a n g u a g e a n d i n t e r n a l i n t e r f a c e s
required by an appl icat ion program. Sect ion 5 dis
cusses the application interface program statements
used by NAM to access the network and to send and
receive messages. Section 6 discusses the structure
and execut ion of an appl icat ion program job as a
b a t c h o r s y s t e m o r i g i n t y p e fi l e . S e c t i o n 7
contains a FORTRAN program using AIP; section 8
d e s c r i b e s Q T R M . S e c t i o n 9 d e s c r i b e s n e t w o r k
fai lure and techniques of recovery.

Addit ional reference information for the Communica
tions Control Program can be found in other network
p r o d u c t a n d o p e r a t i n g s y s t e m p u b l i c a t i o n s . U s e
table 0-1 to locate th is in format ion.

TABLE 0-1. LOCATION OF CCP REFERENCE INFORMATION

Informat ion

Manual That Contains Information

NOS
Version 2
Adminis
t r a t i o n
Handbook

NAM 1/CCP 3
Terminal
In ter faces
Reference
Manual

NOS
Version 2
System
Analysis
Handbook

Communicat ions
Control Pro
gram Version 3
Diagnost ic
Handbook

NOS
Version 2
Opera
t i o n s
Handbook

Communications
Control Program
I n t e r n a l
Maintenance
Specif icat lont

CCP overview, concepts,
and functions

Character sets

CCP glossary

Mnemonics

S t a t i s t i c s

Halt Codes

60499500 S

TABLE 0-1. LOCATION OF CCP REFERENCE INFORMATION (Contd)

In format ion

Manual That Contains Information

NOS
Version 2
Adminis
t r a t i o n
Handbook

NAM 1/CCP 3
Terminal
In ter faces
Reference
Manual

NOS
Version 2
System
Analysis
Handbook

Communications
Control Pro
gram Version 3
Diagnost ic
Handbook

NOS '
Version 2
Opera
t ions
Handbook

Communications
Control Program
I n t e r n a l
Maintenance
S p e c i fi c a t l o n t

Diagnost ics

Customer Engineering
error messages

Dump information

NPU operating
i n s t r u c t i o n s

Memory map

Naming conventions

NPU dumping, loading,
a n d i n i t i a l i z i n g
d e t a i l s

tAvailable from Software Manufacturing Distribution (SMD), 4201 Lexington Ave. North, Arden Hills,
Minnesota 55112

RELATED PUBLICATIONS
Rela ted mate r ia l i s con ta ined in the pub l i ca t ions
listed below. Other manuals may be needed, such as
the hardware, firmware, or emulator software refer
ence manual for the dev ices serv iced by a g iven
program. Also, communication standards and device
operat ing l i terature can be useful .

The Software Publications Release History gives the
t i t l e s a n d r e v i s i o n l e v e l s o f s o f t w a r e m a n u a l s
available for the Programming System Report (PSR)
level of NOS 2 and its product set installed at your
s i t e .

The following manuals are of primary interests

Pub l i ca t ion
Pub l i ca t i on
Number

Network Products
Network Access Method Version
Network Definition Language
Reference Manual 60480000

Network Products
Network Access Method Version 1/
Communications Control Program Version 3
Terminal Interfaces Reference Manual 60480600

NOS Version 2 Reference Set, Volume 1
Introduct ion to Interact ive Usage 60459660

NOS Version 2 Reference Set, Volume 3
System Commands 60459680

NOS Version 2 Reference Set, Volume 4
Program Interface 60459690

v i 60499500 S

The following manuals are of secondary interest:

/ ^ ^
Pub l i ca t i on

Communications Control Program Version 3
Diagnostic Handbook

COMPASS Version 3
Reference Manual

COBOL Version 5
Reference Manual

CYBER Cross System Version 1
Build Uti l i t ies Reference Manual

CYBER Cross System Version 1
Macro Assembler Reference Manual

CYBER Cross System Version 1
Micro Assembler Reference Manual

CYBER Cross System Version 1
PASCAL Reference Manual

FORTRAN Version 5
Reference Manual

Hardware Performance Analyzer (HPA)
User Reference Manual

Message Control System Version 1
Reference Manual

NOS Version 2
Diagnostic Index

NOS Version 2
Instal lat ion Handbook

NOS Version 2
Manual Abstracts

NOS Version 2
Administration Handbook

NOS Version 2
Operations Handbook

NOS Version 2
Analysis Handbook

Network Products
Remote Batch Facility Version 1
Reference Manual

Software Publications Release History

TAF Version 1
Reference Manual

2551-1, 2551-2, 2552-2 Network Processor
Unit Hardware Reference Manual

2560 Series Synchronous Communications
Line Adapter Hardware Maintenance Manual

Pub l i ca t i on
Number

60471500

60492600

60497100

60471200

96836500

96836400

96836100

60481300

60459460

60480300

60459390

60459320

60485500

60459840

60459310

60459300

60499600

60481000

60459500

60472800

74700700

60499500 S v i i

Pub l i ca t i on
P u b l i c a t i o n N u m b e r

2561 Series Asynchronous Communications
L i n e A d a p t e r H a r d w a r e M a i n t e n a n c e M a n u a l 7 4 7 0 0 9 0 0

2563 Series SDLC Line Adapter
H a r d w a r e M a i n t e n a n c e M a n u a l 7 4 8 7 3 2 9 0

C D C m a n u a l s c a n b e o r d e r e d f r o m C o n t r o l D a t a C o r p o r a t i o n ,
L i t e r a t u r e a n d D i s t r i b u t i o n S e r v i c e s , 3 0 8 N o r t h D a l e S t r e e t ,
St. Paul, Minnesota 55103.

T h i s p r o d u c t i s i n t e n d e d f o r u s e o n l y a s
descr ibed in this document. Control Data can
not be respons ib le fo r the proper func t ion ing
of undescribed features or parameters.

v i i i 6 0 4 9 9 5 0 0 R

CONTENTS

N O T A T I O N S x i i i

1 . N E T W O R K P R O D U C T S : A N O V E R V I E W 1 - 1

C o m p u t e r N e t w o r k 1 - 1
C o m m u n i c a t i o n s N e t w o r k 1 - 2
S e r v i c e s N e t w o r k 1 - 2
S o f t w a r e C o m p o n e n t s o f t h e N e t w o r k 1 - 2

N e t w o r k A c c e s s M e t h o d 1 - 2
P e r i p h e r a l I n t e r f a c e P r o g r a m 1 - 4
N e t w o r k I n t e r f a c e P r o g r a m 1 - 4
A p p l i c a t i o n I n t e r f a c e P r o g r a m 1 - 4
Q u e u e d Te r m i n a l R e c o r d M a n a g e r 1 - 4

N e t w o r k D e fi n i t i o n L a n g u a g e P r o c e s s o r 1 - 4
N e t w o r k S u p e r v i s o r 1 - 5
C o m m u n i c a t i o n S u p e r v i s o r 1 - 5
N e t w o r k V a l i d a t i o n F a c i l i t y 1 - 5
N e t w o r k U t i l i t i e s 1 - 5

N e t w o r k D u m p A n a l y z e r 1 - 5
L o a d F i l e G e n e r a t o r 1 - 5
D e b u g L o g F i l e P r o c e s s o r 1 - 6
H a r d w a r e P e r f o r m a n c e A n a l y z e r 1 - 6

N A M A p p l i c a t i o n P r o g r a m s 1 - 6
C D C C Y B E R C r o s s S y s t e m S o f t w a r e 1 - 6

Network Processing Unit and Communications
C o n t r o l P r o g r a m 1 - 6

N e t w o r k P r o c e s s i n g U n i t 1 - 6
| C o m m u n i c a t i o n s C o n t r o l P r o g r a m 1 - 7

B a s e S y s t e m S o f t w a r e 1 - 7
| S y s t e m A u t o s t a r t M o d u l e 1 - 7

S e r v i c e M o d u l e 1 - 8
H o s t I n t e r f a c e P r o g r a m 1 - 8
T e r m i n a l I n t e r f a c e P r o g r a m 1 - 8
L i n k I n t e r f a c e P r o g r a m 1 - 8
B l o c k I n t e r f a c e P r o g r a m 1 - 8
I n - L i n e a n d O n - L i n e D i a g n o s t i c s 1 - 8
N P U C o n s o l e D e b u g g i n g A i d s 1 - 8
Per fo rmance and S ta t i s t i cs Programs 1 -8

| T h e P a c k e t S w i t c h i n g N e t w o r k (P S N) 1 - 8
N A M C o n c e p t s 1 - 8

V i r t u a l T e r m i n a l s 1 - 9
L o g i c a l C o n n e c t i o n s 1 - 9
O w n i n g C o n s o l e s 1 - 1 0

N e t w o r k A c c e s s M e t h o d O p e r a t i o n 1 - 1 0
A p p l i c a t i o n P r o g r a m C o n c e p t s 1 - 1 2
C o n n e c t i o n P r o c e s s i n g F l o w 1 - 1 2

S u p p o r t e d T e r m i n a l s 1 - 1 2

2 . I N F O R M A T I O N P R O T O C O L S 2 - 1

I n f o r m a t i o n F l o w 2 - 1
S t r u c t u r e P r o t o c o l s 2 - 1

P h y s i c a l P r o t o c o l s a n d N e t w o r k B l o c k s 2 - 1
L o g i c a l P r o t o c o l a n d P h y s i c a l B l o c k s 2 - 1

N e t w o r k D a t a B l o c k s 2 - 2
T r a n s m i s s i o n B l o c k s 2 - 4

I n t e r a c t i v e Te r m i n a l I n p u t C o n c e p t s 2 - 4
L i n e M o d e O p e r a t i o n 2 - 4
B l o c k M o d e O p e r a t i o n 2 - 4
P h y s i c a l a n d L o g i c a l L i n e s 2 - 5
E n d - o f - L i n e I n d i c a t o r s 2 - 5
Multiple Logical Lines in One Message 2-5
E n d - o f - B l o c k I n d i c a t o r s 2 - 6

I n t e r a c t i v e Te r m i n a l O u t p u t C o n c e p t s 2 - 7
B a t c h D e v i c e D a t a 2 - 7

60499500 S

Appl ica t ion- to-Appl ica t ion Input and
O u t p u t C o n c e p t s 2 - 7

I n f o r m a t i o n I d e n t i fi c a t i o n P r o t o c o l s 2 - 7
A p p l i c a t i o n P r o g r a m M e s s a g e Ty p e s 2 - 7
A p p l i c a t i o n B l o c k T y p e s 2 - 7
B l o c k B u f f e r A r e a s 2 - 8

B l o c k H e a d e r A r e a 2 - 8
B l o c k T e x t A r e a 2 - 8

C o n n e c t i o n I d e n t i fi e r s 2 - 9
A p p l i c a t i o n C o n n e c t i o n N u m b e r 2 - 9
A p p l i c a t i o n L i s t N u m b e r 2 - 9

Data Message Content and Sequence Protocols 2-10
I n t e r a c t i v e V i r t u a l Te r m i n a l D a t a 2 - 1 0

L i n e T u r n a r o u n d C o n v e n t i o n 2 - 1 1
Interact ive Virtual Terminal Exchange

M o d e s 2 - 1 1
N o r m a l i z e d M o d e O p e r a t i o n 2 - 1 1
Upline Character Sets and Editing

M o d e s 2 - 1 2
D o w n l i n e C h a r a c t e r S e t s 2 - 1 4
P a g e W i d t h a n d P a g e L e n g t h 2 - 1 4
F o r m a t E f f e c t o r s 2 - 1 4
T r a n s p a r e n t M o d e O p e r a t i o n 2 - 1 9

App l i ca t i on - t o -App l i ca t i on
C o n n e c t i o n D a t a 2 - 2 2 . 1

A p p l i c a t i o n C h a r a c t e r T y p e s 2 - 2 3
C h a r a c t e r B y t e C o n t e n t 2 - 2 4
B l o c k H e a d e r C o n t e n t 2 - 2 4

Supervisory Message Content and Sequence
P r o t o c o l s 2 - 3 1

A s y n c h r o n o u s M e s s a g e s 2 - 3 5
S y n c h r o n o u s M e s s a g e s 2 - 3 6
B l o c k H e a d e r C o n t e n t 2 - 3 6

3 . S U P E R V I S O R Y M E S S A G E S 3 - 1

M e s s a g e M n e m o n i c s 3 - 1
M e s s a g e S e q u e n c e s 3 - 1

C o n n e c t i n g D e v i c e s t o A p p l i c a t i o n s 3 - 1
Connect ing App l ica t ions to App l ica t ions 3-14
M o n i t o r i n g C o n n e c t i o n s 3 - 2 4 . 1
T e r m i n a t i n g C o n n e c t i o n s 3 - 2 4 . 2

M a n a g i n g C o n n e c t i o n L i s t s 3 - 2 5
C o n t r o l l i n g L i s t P o l l i n g 3 - 2 5
C o n t r o l l i n g L i s t D u p l e x i n g 3 - 2 6

C o n t r o l l i n g D a t a F l o w 3 - 2 9
M o n i t o r i n g D o w n l i n e D a t a 3 - 2 9
Controlling or Bypassing Upline and

D o w n l i n e D a t a 3 - 3 5
Discarding Upline and Downline Data

on App l i ca t lon - to -App l i ca t ion
C o n n e c t i o n s 3 - 3 5

Discarding Downline Data on
Dev ice- to -App l i ca t ion Connec t ions 3 -35

Bypassing Downline Data on an
A p p l i c a t i o n - t o - A p p l i c a t i o n
C o n n e c t i o n 3 - 3 5

Terminal Use of User Interrupts for
P r i o r i t y D a t a 3 - 3 8

C o n t r o l l i n g U p l i n e B l o c k C o n t e n t 3 - 3 9
C o n v e r t i n g a n d R e p a c k i n g D a t a 3 - 3 9
Repacking Synchronous Supervisory

M e s s a g e B l o c k s 3 - 4 1
Exchanging Transparent Data With Devices 3-42
T r u n c a t i n g U p l i n e B l o c k s 3 - 4 2

M a n a g i n g D e v i c e C h a r a c t e r i s t i c s 3 - 4 3

i x

Changing Device Characteristics
Requesting Device Characteristics

Host Operator Commands
Host Shutdown
Error Reporting

4. USER PROGRAM INTERFACE DESCRIPTIONS

Language Interfaces
Parameter List and Calling Sequence

Requirements
Predefined Symbolic Names
Predefied Symbolic Values
COMPASS Assembler Language

Application Interface Program
Macro Call Formats

F ie ld Access Ut i l i t ies
Compiler-Level Languages

Application Interface Program
Subroutine Call Formats

F ie ld Access U t i l i t i es
Queued Terminal Record Manager

U t i l i t i e s
In te rna l In te r faces

Application Interface Program and
Network Interface Program Communication

Worklist Processing
Parallel Mode Operation

Other Software Communication

5. APPLICATION INTERFACE PROGRAM
CALL STATEMENTS

Syntax
Network Access Statements

Connecting to Network (NETON)
Disconnecting From Network (NETOFF)

Network Block Input/Output Statements
Specific Connections

Inputing to Single Buffer (NETGET)
Inputing to Fragmented Buffer

Array (NETGETF)
Outputing From Single Buffer (NETPUT)
Outputing From Fragmented Buffer

Array (NETPUTF)
Connections on Lists

Inputing to Single Buffer (NETGETL)
Inputing to Fragmented Buffer

Array (NETGTFL)
Processing Control Statements

Suspending Processing (NETWAIT)
Controlling Parallel Mode (NETSETP)
Checking Completion of Worklist

Processing (NETCHEK)

3-45 Debugging Application Programs 6-6
3-54 Fata l Errors 6-6
3-56 Debugging Methods 6-6
3-60 Debug Log File and Associated
3-60 U t i l i t i e s

Stat ist ical Fi le and Associated
6-16

U t i l i t i e s 6-15
4-1 Dependencies for Program Use 6-16

4-1
Memory Requirements 6-17

4-1
4-1
4-2

7. SAMPLE FORTRAN PROGRAM 7-1

Configuration Requirements 7-1
4-2 Job Command Portion 7-1

Program Portion 7-1
4-2 Program Output 7-1
4-10
4-11

8. QUEUED TERMINAL RECORD MANAGER 8-1
4-12
4-12 Network Information Table 8-1

Subroutines 8-11
4-13 Initiating Network Access (QTOPEN) 8-11
4-15 Sending Data (QTPUT)

Obtaining Data or Connection
8-12

4-15 Status (QTGET) 8-13
4-15 Sending a Synchronous Supervisory
4-16 Message (QTTIP) 8-14
4-16 Linking an Application to Another

5-1

5-1
5-1
5-1
5-4
5-4
5-4
5-4

5-6
5-7o
5-8
5-10
5-10

5-12
5-14
5-14
5-15

5-16

6. CHARACTERISTICS OF AN APPLICATION PROGRAM 6-1

N O S S y s t e m C o n t r o l P o i n t F a c i l i t y 6 - 1
B a t c h J o b S t r u c t u r e 6 - 1

C o m m a n d s 6 - 2
J o b I d e n t i fi c a t i o n 6 - 3

P r o g r a m C o n t e n t 6 - 3
P r o g r a m E x e c u t i o n T h r o u g h I A F 6 - 3

| T y p e s o f A p p l i c a t i o n P r o g r a m s 6 - 4
D i s a b l e d 6 - 5
U n i q u e I d e n t i fi e r 6 - 5
P r i v i l e g e d 6 - 5

I R e q u e s t S t a r t a b l e 6 - 6Have More Than One Copy (on any One Host) 6-6
R e s t r i c t e d o r G e n e r a l A c c e s s 6 - 6
M a n d a t o r y o r P r i m a r y 6 - 6

Application (QTLINK)
Ending a Single Connection (QTENDT)
Ending Communication With the

Network (QTCLOSE)
Output Formatting and Editing

Format Effectors
Display-Code Output Editing

Output Queuing Using QTRM
Sample Program

9. NETWORK FAILURE AND RECOVERY

Application Programs
Host
Network Processing Unit
Logical Link
Trunk
Line
Terminal

APPENDIXES

Character Data Input, Output, and
Central Memory Representation

Diagnostic Messages
Glossary

8-14
8-14

8-15
8-15
8-16
8-16
8-16
8-18

9-1

9-1
9-1
9-1
9-1
9-1
9-1
9-1

A - l
B - l
C- l

D Application Program Call Statement Summary D-l

INDEX

FIGURES

1 - 1 O v e r v i e w o f a C D C N e t w o r k 1 - 1
1-2 The Interfaces Between the Network

P r o d u c t E l e m e n t s 1 - 3
1-3 The Relationship Between the Parts of

the Communica t ions Cont ro l Program 1-7
1 - 4 T y p i c a l C o n n e c t i o n s i n t h e N e t w o r k 1 - 1 0

60499500 S

1-5 Network Access Method Components
1-6 Typ ica l App l ica t ion Program

Processing Flow
2-1 Phys ica l and Logica l In format ion

Structures
2-2 Block Reassembly Points
2 -3 App l i ca t i on - to -App l i ca t i on Connec t i on

Data Exchanges
2-4 Appl icat ion Block Header Content for

Upline Network Data Blocks
2-5 Appl icat ion Block Header Content for

Downline Network Data Blocks
2-6 Supervisory Message General Content,

Asynchronous Messages and Synchronous
Messages of Application Character
Type 2

2-7 Supervisory Message General Content,
Synchronous Messages of Application
Character Type 3

2-8 Appl icat ion Block Header Content for
Upline Supervisory Messages

2-9 Appl icat ion Block Header Content for
Downline Supervisory Messages

3-1 Supervisory Message Mnemonic Structure
3-2 Dev ice- to -App l i ca t lon Connec t ion

Supervisory Message Sequences
3-3 Connection-Request (CON/REQ/R)

Supervisory Message Format,
Device-to-Application Connections

3-4 Connection-Accepted (CON/REQ/N)
Supervisory Message Format,
All Connection Types

3-5 Connection-Rejected (CON/REQ/A)
Supervisory Message Format,
All Connection Types

3 -6 I n i t i a l ! zed -Connec t i on (FC / IN IT /R)
Supervisory Message Format

3 -7 Connec t i on - I n i t i a l i zed (FC / IN IT /N)
Supervisory Message Format

3-8 Connection-Broken (CON/CB/R)
Supervisory Message Format

3-9 End-Connection (CON/END/R)
Supervisory Message Format

3-10 Connection-Ended (CON/END/N)
Supervisory Message Format

3-11 Appl ica t ion- to-Appl ica t ion Connect ion
Supervisory Message Sequences

3-12 Request-Appl icat ion-Connect ion
(CON/ACRQ/R) Supervisory Message
Format

3-13 Application-Connection-Rej ect
(CON/ACRQ/A) Supervisory Message
Format

3-14 Connection-Request (CON/REQ/R) Super
visory Message Format, Application-
to-Application Connections

3-15 Connection Monitoring Message Sequences
3-16 Inactive-Connection (FC/INACT/R)

Supervisory Message Format
3-17 Connection Termination Message

Sequences
3-18 Connect ion List Pol l ing Control

Message Sequences
3-19 Connection List Duplexing Message

Sequences
3-20 Turn-List-Processing-Off (LST/OFF/R)

Supervisory Message Format
3-21 Turn-Llst-Processing-On (LST/ON/R)

Supervisory Message Format
3-22 Change-Connection-List (LST/SWH/R)

Supervisory Message Format
3-23 Turn-On-Hal f -Duplex-L ist -Processing

(LST/HDX/R) Supervisory Message
Format

1-11 3-24

1-13
3-25

2-2
2-3 3-26

2-23 3-27

2-25 3-28

2-29 3-29

3-30
3-31

2-32
3-32

2-34 3-33

2-36
3-34

2-38
3-1 3-35

3-5 3-36

3-6 3-37

3-38
3-12

3-39

3-13
3-40

3-14
3-41

3-14
3-42

3-15
3-43

3-16
3-44

3-16
3-45

3-17
3-46

3-18

3-20

3-23
3-24.1

3-24.1

3-24.2

3-26

3-26

3-27

3-27

3-27

3-28

3-47

3-48

3-49

3-50

3-51

3-52

3-53

3-54

Turn-On-Ful l -Duplex-L is t -Processing
(LST/FDX/R) Supervisory Message
F o r m a t 3 - 2 9

Block-Delivered (FC/ACK/R) Supervisory
M e s s a g e F o r m a t 3 - 3 0

Block-Not-Delivered (FC/NAK/R)
S u p e r v i s o r y M e s s a g e F o r m a t 3 - 3 0

Appl ica t ion- to-App l ica t ion Connect ion
Break and Reset Message Sequence 3-31

Break (FC/BRK/R) Supervisory Message
F o r m a t 3 - 3 2

Reset (FC/RST/R) Supervisory Message
F o r m a t 3 - 3 2

Termina l User -Caused Break Sequence 3-33
User-Interrupt (INTR/USR/R) Supervisory

M e s s a g e F o r m a t 3 - 3 3
Break-Indication-Marker (BI/MARK/R)

S u p e r v i s o r y M e s s a g e F o r m a t 3 - 3 4
Appl icat ion- In ter rupt -Response

(INTR/RSP/R) Supervisory Message
F o r m a t 3 - 3 4

Resume-Output-Marker (RO/MARK/R)
S u p e r v i s o r y M e s s a g e F o r m a t 3 - 3 4

Appl icat ion-Interrupt (INTR/APP/R)
S u p e r v i s o r y M e s s a g e F o r m a t 3 - 3 6

Appl icat ion- In ter rupt -Response
(INTR/RSP/R) Supervisory Message
F o r m a t 3 - 3 6

Terminate-Output-Marker (TO/MARK/R)
S u p e r v i s o r y M e s s a g e F o r m a t 3 - 3 7

Downline Data Flow Control Supervisory
M e s s a g e S e q u e n c e s 3 - 3 7

User-Interrupt-Request (INTR/USR/R)
Supervisory Message Format for
P r i o r i t y D a t a 3 - 3 8

User In ter rupt fo r Pr io r i ty Data
S u p e r v i s o r y M e s s a g e S e q u e n c e 3 - 3 8

Change-Input-Character-Type
S u p e r v i s o r y M e s s a g e S e q u e n c e 3 - 3 9

Change-Input-Character-Type (DC/CICT/R)
S u p e r v i s o r y M e s s a g e F o r m a t 3 - 4 0

Block Truncation Supervisory Message
S e q u e n c e 3 - 4 2

Block Truncation (DC/TRU/R) Supervisory
M e s s a g e F o r m a t 3 - 4 3

Termina l Charac ter is t i cs Redefin i t ion
S u p e r v i s o r y M e s s a g e S e q u e n c e s 3 - 4 5

Termina l -Character is t ics-Redefined
(TCH/TCHAR/R) Supervisory Message
F o r m a t 3 - 4 6

Define-Termina l -Charac te r i s t i cs
(CTRL/DEF/R) Supervisory Message
F o r m a t 3 - 4 8

Define-Mu l t i p le -Term ina l -Charac te r i s t i cs
(CTRL/CHAR/R) Supervisory Message
F o r m a t 3 - 4 9

Define-Mu l t i p le -Term ina l -Charac te r i s t i cs
Abnormal Response (CTRL/CHAR/A)
S u p e r v i s o r y M e s s a g e F o r m a t 3 - 5 0

Mu l t i p l e -Te rm ina l -Cha rac te r l s t i c s -
Defined (CTRL/CHAR/N) Supervisory
M e s s a g e F o r m a t 3 - 5 0

Request-Terminal -Character is t ics
(CTRL/RTC/R) Supervisory Message
F o r m a t 3 - 5 5

Request -Termina l -Character is t ics
Abnormal Response (CTRL/RTC/A)
S u p e r v i s o r y M e s s a g e F o r m a t 3 - 5 5

D e v i c e - C h a r a c t e r i s t i c s - D e fi n i t i o n
(CTRL/TCD/R) Supervisory Message
F o r m a t 3 - 5 6

Host Operator Command Supervisory
M e s s a g e S e q u e n c e s 3 - 5 7

60499500 S x i

3-55 Host Operator Request-to-Activate-
Debug-Code (HOP/DB/R) Supervisory
M e s s a g e F o r m a t 3 - 5 7

3-56 Host Operator Request-to-Turn-Off-
Debug-Code (HOP/DE/R) Supervisory
M e s s a g e F o r m a t 3 - 5 8

3-57 Host Operator Request-to-Dump-Field-
Length (HOP/DU/R) Supervisory
M e s s a g e F o r m a t 3 - 5 8

3-58 Host Operator Request-to-Turn-AIP-
Traffic-Logging-On (HOP/TRACE/R)
S u p e r v i s o r y M e s s a g e F o r m a t 3 - 5 8

3-59 Host Operator Request-to-Turn-AIP-
Traffic-Logging-Off (HOP/NOTR/R)
S u p e r v i s o r y M e s s a g e F o r m a t 3 - 5 9

3-60 Host Operator Request-to-Release-
Debug-Log-File (HOP/REL/R)
S u p e r v i s o r y M e s s a g e F o r m a t 3 - 5 9

3-61 Host Operator Request-to-Restart-
Statistics-Gathering (HOP/RS/R)
S u p e r v i s o r y M e s s a g e F o r m a t 3 - 5 9

3-62 Host Shutdown Supervisory Message
Sequences

3-63 Host-Shutdown (SHUT/INSD/R) Supervisory
Message Format

3-64 Logical-Error Supervisory Message
Sequence

3-65 Logical-Error (ERR/LGL/R) Supervisory
Message Format

4-1 NFETCH Macro Call Format
4-2 NSTORE Macro Call Format
4-3 NFETCH Integer Function FORTRAN

Call Format
4-4 NSTORE Subroutine FORTRAN Call Format
4-5 QTRM Interface Level Analogy
5-1 NETON Statement FORTRAN Call Format
5-2 Supervisory Status Word Format
5-3 NETON Statement FORTRAN Example
5-4 NETOFF Statement FORTRAN Call Format
5-5 NETGET Statement FORTRAN Call Format
5-6 NETGET Statement FORTRAN 5 Examples
5-7 NETGETF Statement FORTRAN Call Format
5-8 NETGETF Statement Text Area Address

Array
5-9 NETGETF Statement FORTRAN 5 Examples
5-10 NETPUT Statement FORTRAN Call Format
5-11 NETPUT Statement FORTRAN 5 Example
5-12 NETPUTF Statement FORTRAN Call Format
5-13 NETPUTF Statement Text Area Address

Ar ray
5-14 NETPUTF Statement FORTRAN 5 Example
5-15 NETGETL Statement FORTRAN Call Format
5-16 NETGETL Statement FORTRAN 5 Example
5-17 NETGTFL Statement FORTRAN Call Format
5-18 NETGTFL Statement Text Area Address

Array
5-19 NETGTFL Statement FORTRAN 5 Example
5-20 NETWAIT Statement FORTRAN Call Format
5-21 NETWAIT Statement FORTRAN 5 Examples
5-22 NETWAIT Statement FORTRAN Call Format
5-23 NETSETP and NETCHEK Statement

FORTRAN 5 Examples
5-24 NETCHEK Statement FORTRAN Call Format
6-1 Typical Job Structure for System Input
6-2 Interactive Program Execution Procedure

E x a m p l e 6 - 3

6-3

6-4

6-5

6-6

6-7

6-8
6-9
6-10
6-11
6-12
6-13

6-14

6-15

7-1
3-60 7-2

7-3
3-61

7-4
3-61

7-5
3-62
4-10 8-1
4-11 8-2

8-3
4-12 8-4
4-13 8-5
4-14 8-6
5-2 8-7
5-3 8-8
5-3
5-4 8-9
5-4
5-5 8-10
5-6 8-11

8-12
5-7 8-13
5-7
5-8
5-8
5-9 TABI
5-9 l - l
5-10 1-2
5-11 2-1
5-12
5-12 2-2

5-13 2-3
5-14
5-14 2-4
5-15
5-15 2-5

3-1
5-16 3-2
5-17 4-1
6-2 4-2

4-3

NETDBG Utility FORTRAN Call Statement
F o r m a t 6 - 7

NETREL Utility FORTRAN Call Statement
F o r m a t 6 - 8

NETSETF Utility FORTRAN Call Statement
F o r m a t 6 - 8

NETLOG Utility FORTRAN Call Statement
F o r m a t 6 - 9

NETDMB Utility FORTRAN Call Statement
F o r m a t 6 - 9

D L F P C o m m a n d G e n e r a l F o r m a t 6 - 1 0
D L F P C o m m a n d E x a m p l e s 6 - 1 0
D L F P D i r e c t i v e K e y w o r d F o r m a t 6 - 1 1
D L F P D i r e c t i v e E x a m p l e s 6 - 1 2
G e n e r a l F o r m a t o f D L F P O u t p u t 6 - 1 3
NETSTC Utility FORTRAN Call Statement

F o r m a t 6 - 1 5
NETLGS Utility FORTRAN Call Statement

F o r m a t 6 - 1 5
General Format of One Period Listing

i n S t a t i s t i c a l F i l e 6 - 1 6
C o m m a n d P o r t i o n o f R M V 3 J o b 7 - 1
P r o g r a m P o r t i o n o f R M V 3 7 - 2
Possible Dialogs Supported by Sample

F O R T R A N P r o g r a m 7 - 2 5
Debug Log File Listing for Sample

F O R T R A N P r o g r a m 7 - 2 6
Stat is t ica l F i le L is t ing for Sample

F O R T R A N P r o g r a m 7 - 3 8
N e t w o r k I n f o r m a t i o n Ta b l e F o r m a t 8 - 2
QTOPEN Statement COBOL Cal l Format 8-11
QTPUT Sta tement COBOL Ca l l Fo rmat 8 -12
QTGET Sta tement COBOL Ca l l Format 8 -13
QTLINK Statement COBOL Cal l Format 8-14
QTENDT Statement COBOL Cal l Format 8-14
QTCLOSE Statement COBOL Call Format 8-15
Algorithm for Output Buffering

U s i n g Q T R M 8 - 1 7
Sample Program ECH0-RMV2 Source

L i s t i n g 8 - 1 9
E C H 0 - R M V 2 J o b C o m m a n d s 8 - 2 5
Debug Log Fi le L ist ing for ECH0-RMV2 8-26
Sta t i s t i cs F i le L is t ing fo r ECH0-RMV-2 8 -36
E C H 0 - R M V 2 S a m p l e D i a l o g 8 - 3 7

D e v i c e T y p e s 1 - 9
S u p p o r t e d T e r m i n a l C l a s s e s 1 - 1 4
Default Message Delimiter and

T r a n s m i s s i o n K e y s 2 - 6
Format Effector Operations for

A s y n c h r o n o u s a n d X . 2 5 C o n s o l e s 2 - 1 5
Format Effector Operations for

S y n c h r o n o u s C o n s o l e s 2 - 2 0
Embedded Format Control Operations

f o r C o n s o l e s 2 - 2 1
Character Exchanges Wi th Connect ions 2-25
L e g a l S u p e r v i s o r y M e s s a g e s 3 - 2
Va l i d F ie ld Numbers and F ie ld Va lues 3 -51
R e s e r v e d S y m b o l s 4 - 3
A I P I n t e r n a l P r o c e d u r e s 4 - 1 7
A I P I n t e r n a l T a b l e s a n d B l o c k s 4 - 1 8

,<^^\

/ *^ \

| x i i 60499500 S

NOTATIONS

Throughout th is manual , the fo l lowing convent ions
are used in the presentation of statement formats,
operator type-ins, and diagnostic messages:

<ct>

UPPERCASE

lowercase

[]

{ }

input parameter

Uppe rcase l e t t e r s i nd i ca te
ac ronyms , wo rds , o r mne
m o n i c s e i t h e r r e q u i r e d b y
t h e n e t w o r k s o f t w a r e a s
input , or produced as out
p u t .

L o w e r c a s e l e t t e r s i d e n t i f y
va r i ab les f o r wh i ch va lues
are supplied by the NAM or
t e r m i n a l u s e r , o r b y t h e
network software as output.

E l l i p s i s i n d i c a t e s t h a t
omi t ted en t i t i es repea t the
f o r m a n d f u n c t i o n o f t h e
en t i t y l as t g i ven .

S q u a r e b r a c k e t s e n c l o s e
e n t i t i e s t h a t a r e o p t i o n a l ;
i f o m i s s i o n o f a n y e n t i t y
causes the use of a default
e n t i t y , t h e d e f a u l t i s
under l ined.

Braces enclose entities from
which one must be chosen.

This term Ident ifies an AIP
call statement parameter for
w h i c h v a l u e s a r e s u p p l i e d
to AIP by the programmer.

LF

©

HD

The <ct> symbol represents
t h e n e t w o r k c o n t r o l c h a r
a c t e r d e fi n e d f o r t h e t e r
mina l . Th is charac ter must
b e t h e fi r s t c h a r a c t e r o f
the command entered.

The LF symbol represents a
o n e - l i n e v e r t i c a l r e p o s i
t i o n i n g o f t h e c u r s o r o r
output mechanism. LF a lso
d e s i g n a t e s a c h a r a c t e r o r
c h a r a c t e r c o d e a s s o c i a t e d
w i t h s u c h a l i n e f e e d
opera t ion .

A circle around a character
represents a character key
t h a t i s p r e s s e d i n c o n
j u n c t i o n w i t h a c o n t r o l
key (CTL, CNTRL, CONTRL,
CONTROL, or equivalent).

The boxed cr symbol repre
sents the terminal key that
causes message transmission;
usua l l y, th i s key causes a
c a r r i a g e r e t u r n o p e r a t i o n .
T r a n s m i s s i o n k e y s a r e
descr ibed in more detai l in
section 2.

return parameter This term ident ifies an AIP
c a l l s t a t e m e n t p a r a m e t e r
f o r w h i c h v a r i a b l e s a r e
supplied to AIP by the pro
grammer and in which values
are placed by AIP.

Unless otherwise specified, a l l re ferences to num
bers are to decimal values, al l references to bytes
are to 8-bit bytes, and all references to characters
a r e t o 7 - b i t A S C I I - c o d e d c h a r a c t e r s . F i e l d s
defined as unused should not be assumed to contain
zeros.

60499500 R x i i i

0*%

0 ^ t

0̂ %

NETWORK PRODUCTS: AN OVERVIEW

This section introduces the Control Data Corporation
CYBER 170 network products, their relationships to
each other, and their significance to the data com
municat ions user. Network products is a group of
programs and hardware that provides communications
services to geographically dispersed users.

As shown in figure 1-1, a CDC network consists of a
computer network, a communications network, and a
services network.

COMPUTER NETWORK
The computer network includes host computer systems
packe t -sw i t ch ing ne tworks (PSNs) , te rm ina ls , and
the host software associated with network communi
cations .

Each component of the computer network provides
input , output , contro l , or s torage resources to the
serv ices and communicat ions network. The pr imary
host communicat ion software is cal led the Network
Access Method (NAM).

/0™B\

Services
Network

Computer
Network

Communications
Network

Figure 1-1. Overview of a CDC Network

60499500 R l - l

COMMUNICATIONS NETWORK
The communications network includes network proc
essing units (NPUs) and the connecting communication
l ines needed to t ranspor t b locks o f data between
hos t compu te rs and te rm ina l s . The p r imary CDC
software in an NPU is cal led the Communicat ions
Control Program (CCP).

The size and complexity of a communications network
varies from a simple network with one local (front-
end) NPU, or a network with one local NPU and one
or more remote NPUs, to a more complex network with
m u l t i p l e l o c a l N P U s a n d m u l t i p l e r e m o t e N P U s .
Attached to these NPUs are terminal devices, such
as ent ry /d isp lay s ta t ions.

Because the communications network minimizes termi
nal type dependency and removes many of the terminal
sw i tch ing opera t ions f rom the hos t , the hos t can
process data more efficient ly.

SERVICES NETWORK
The services network consists of the network appli
cation programs in each host computer and the users
of those programs. Each appl icat ion program gives
the terminal user or another appl icat ion a specific
data processing capabi l i ty.

SOFTWARE COMPONENTS OF
THE NETWORK
Figure 1-2 shows the interfaces between the elements
of the network . The le f t par t o f the figure shows
the network host software elements, which are the
software elements located in the CDC CYBER 170 host
computer. The middle section shows the Communi
cations Control Program (CCP), which is the software
element located in the network processing unit. As
s h o w n i n t h e r i g h t p o r t i o n o f fi g u r e 1 - 2 , C C P
communicates with the terminals whi le the Network
Access Method (NAM) communicates with application
p r o g r a m s . R e f e r t o fi g u r e 1 - 2 w h i l e r e a d i n g t h e
r e m a i n d e r o f t h i s o v e r v i e w s e c t i o n o n n e t w o r k
products.

T h e n e t w o r k h o s t s o f t w a r e i s c o l l e c t i v e l y c a l l e d
the Network Access Method or NAM. NAM is used in
several contexts throughout this manual and in the
other network products documentation. NAM can refer
to the interface between appl icat ion programs and
the communicat ions network; to the programs that
implement that interface, including the Appl icat ions
I n t e r f a c e P r o g r a m (A I P) , t h e N e t w o r k I n t e r f a c e
Program (NIP), and the Peripheral Interface Program
(PIP); or to the product NAM, which also includes
the Network Superv isor (NS), the Communicat ions
Supervisor (CS), and the Network Validation Facil ity
(NVF).

In figure 1-2, NAM refers to the set o f programs
that implement the interface between the application
programs and communications network.

Network hos t so f tware , shown in the le f t pa r t o f
figure 1-2, inc ludes:

Network Access Method

Network Definition Language Processor

1-2

Network Supervisor

Communications Supervisor

Network Val idat ion Faci l i ty

Ne twork u t i l i t i es

Network Access Method application programs

CYBER Cross System

NETWORK ACCESS METHOD

The Network Access Method is the primary network
host software. NAM interfaces between applications
in the same host or between appl icat ions and the
Communications Control Program in an NPU.

Because the connections among NPUs can become
extremely complex, the Network Access Method acts
as an interface between host computer software at
one end o f the network and the termina ls a t the
other end.

A s imple f ront -end NPU configurat ion appears the
same through the Network Access Method as a more
complex linkage system; message routing by the host
computer is performed in the same manner for both
configu ra t i ons . The phys i ca l and l og i ca l configu
rat ion of the elements involved in Network Access
Method operation Is described in the Network Defi
n i t i o n L a n g u a g e r e f e r e n c e m a n u a l (l i s t e d i n t h e
pre face) .

The hos t compute r execu tes CDC-wr i t ten o r s i te -
written service programs called application programs
that are connected to the network via the Network
Access Method (NAM). An appl icat ion program can
c o m m u n i c a t e w i t h o t h e r a p p l i c a t i o n p r o g r a m s o r
s e r v i c e t e r m i n a l s c o n n e c t e d t o t h e n e t w o r k . A l l
connec t ions to the ne twork a re es tab l i shed by a
port ion of the network software cal led the Network
Val idat ion Faci l i ty, and the flow of data and proc
essing along them is controlled through NAM.

NAM incorporates the following features:

• I t i s e q u a l l y s u i t a b l e f o r a p p l i c a t i o n p r o g r a m s
written in COMPASS or high-level languages, such
as FORTRAN.

e I t imposes no data structures on an appl icat ion
program.

• I t p r o v i d e s a w a y t o h a n d l e u n p r e d i c t a b l e
events, such as terminal operator interrupts.

• I t p rov ides comp le te i so la t i on o f ne twork com
munications from the operating system.

• I t s u p p o r t s d i s t i n c t c l a s s e s o f t e r m i n a l s b y
n o r m a l i z i n g d a t a f o r m a t s a n d o p t i o n a l l y p e r
forming code conversion. Seventeen classes are
defined by CDC; addit ional classes can be de
fined by sites that provide their own supporting
software.

• I t p e r m i t s a n a p p l i c a t i o n p r o g r a m t o s u p p o r t
c l u s t e r s o f r e a l t e r m i n a l d e v i c e s a s i f t h e
d e v i c e s w e r e s e p a r a t e l y a d d r e s s a b l e l o g i c a l
e n t i t i e s c a l l e d v i r t u a l t e r m i n a l s . V i r t u a l
t e r m i n a l s a r e d e s c r i b e d a t t h e e n d o f t h i s
sect ion.

60499500 R

"S

\
3 o o» I -i- Vt 01o -» I +J o —'

CO -r- -r-

60499500 S 1-3

Basic services provided by NAM include: Network Interface Program
NAM estab l ishes message paths (log ica l con
nect ions) between an appl icat ion program and
terminals or between two applications (provided
both par t ies have the cor rec t ne twork access
secur i ty permissions).

NAM breaks logical connections when asked to by
the application program or the terminal, or when
network condi t ions make i t necessary (for ex
ample, when a network shutdown occurs).

After logical connections have been established,
NAM passes incoming messages to the application,
and accepts and forwards outgoing messages from
the appl icat ion.

NAM queues incoming messages until the appli
cat ion program requests them. This al lows the
a p p l i c a t i o n t o s e r v i c e i t s c o n n e c t i o n s w i t h
terminals and other applications in any desired
order.

NAM provides the appl icat ion program with i ts
own set of protocols, making knowledge of de
tailed network protocols unnecessary.

For incoming traffic, NAM allows the application
program to group terminals wi th s imi lar or re
lated processing needs.

NAM queues outgoing messages to regulate data
flow through the network.

NAM detects inact iv i ty on any interact ive data
p a t h a n d r e p o r t s t h e c o n d i t i o n t o t h e a p p l i
cation program.

NAM resolves resource contention among appli
cation programs.

An insta l la t ion opt ion is avai lab le to log message
traffic for application program debugging. A second
i n s t a l l a t i o n o p t i o n p e r m i t s t h e l o g g i n g o f a p p l i
cation program and message traffic statist ics.

NAM consists of four major modules:

Peripheral Interface Program

Network Interface Program

Application Interface Program

Queued Terminal Record Manager

Peripheral Interface Program
The Peripheral Interface Program (PIP) is a periph
e r a l p r o c e s s o r u n i t p r o g r a m t h a t i n t e r f a c e s t h e
central processor executed routines of NAM to the
channel-connected local NPUs.

PIP moves blocks of data between the central memory
buffers of NAM and the NPU and reads and writes disk

| fi l e s u s e d b y b a t c h d e v i c e s o r f o r fi l e t r a n s f e r.
PIP also can detect when a local NPU needs initial
i z i n g . I f t h e N P U c a n n o t s t a r t i t s o w n l o a d i n g ,
P IP reques ts the ne twork superv i so r to l oad the
bootstrap program into the NPU.

1-4

The Network Interface Program (NIP) executes as a
sys tem con t ro l po in t . N IP coord ina tes the use o f
the communications network by al l application pro
grams, buffers data between the application programs
and the network, and manages the logical connec
tions .

Each application program can have several connec
tions; each connection is associated with a terminal
dev i ce o r w i t h ano the r app l i ca t i on p rog ram. N IP
translates between network addresses and the more
c o n v e n i e n t l o g i c a l a d d r e s s e s t h a t r e p r e s e n t t h e
connect ion to the appl icat ion. NIP also establ ishes
new connections as they are requested and terminates
connections that are no longer needed or that have
f a i l e d .

An application can request NAM to convert the data
on a log ica l connect ion f rom the network format .
Such conversions determine the format and encoding
of characters seen by the application.

Application Interface Program
The Application Interface Program (AIP) is a set of
subprograms and buffers that resides in the appl i
c a t i o n p r o g r a m ' s fi e l d l e n g t h a n d p r o v i d e s a n
inter face to NIP and the network. This manual is
primarily concerned with the use of AIP.

AIP statements are provided so that the application
program can connect to and disconnect from the net
w o r k . A I P s t a t e m e n t s a l s o c o n t r o l i n f o r m a t i o n
exchange between the application program and NAM
b u f f e r s . T h i s i n f o r m a t i o n c a n b e d a t a , o r i t c a n
be supervisory messages that coordinate the appli
cat ion 's execut ion wi th events that have occurred
in the network. NAM might pass a supervisory mes
sage to inform the application of a new connection
tha t i s r eques t i ng se rv i ce , o r t ha t a f a i l u re has
occurred. In the same way, the application program
uses supervisory messages to communicate with NAM
and the network elements.

Queued Terminal Record Manager
The Queued Terminal Record Manager (QTRM) is a set
of subprograms that resides in the application pro
gram's field length and provides a high level pro
c e d u r a l i n t e r f a c e t o t h e n e t w o r k . T h i s p a c k a g e
permits indi rect use of a subset of AIP's features
by programs w i th unsoph is t i ca ted communica t ions
r e q u i r e m e n t s . T h i s u t i l i t y p e r m i t s p r o g r a m s t o
have a communications interface functionally similar
to their mass storage interface. QTRM is discussed
in section 8 of this book.

NETWORK DEFINITION LANGUAGE
PROCESSOR
Before the network software can route data through
the network and in ter face to operators for super
v i s i o n , t h e d e fi n i t i o n o f t h e n e t w o r k c o n fi g u a t i o n
mus t fi rs t be commun ica ted to the so f tware . The
Network Definit ion Language (NDL) is used to de
s c r i b e t h i s c o n fi g u r a t i o n . T h e N e t w o r k D e fi n i t i o n
Language processor (NDLP), a batch ut i l i ty, t rans
l a t e s t h i s c o n fi g u r a t i o n a n d p r e p a r e s a n e t w o r k
configura t i on fi le (NCF) and a l oca l configura t i on
fi l e (L C F) .

60499500 S

The NCF contains configuration information required
by the network.

The LCF contains host information required by the
Network Validation Facil i ty, such as automatic login
pa ramete rs and app l i ca t i on i n fo rma t ion . The LCF
a l l ows t he ne two rk va l i da t i on f ac i l i t y t o va l i da te
a n d c o n n e c t t e r m i n a l s t o a p p l i c a t i o n s o r a p p l i
cat ions to appl icat ions.

T h e N D L i s d e s c r i b e d i n t h e N e t w o r k D e fi n i t i o n
Language reference manual listed in the preface.

NETWORK SUPERVISOR

The Network Superv isor (NS) executes as a NAM
app l i ca t i on . I t i n t e r f aces be tween t he NPUs and
CCP program files in the host. NS loads an NPU on
request with the appropriate copy of the Communi
ca t i ons Con t ro l P rog ram f rom the hos t ' s ne twork
load file (NLF). NS also saves NPU dumps in the
host's network dump file (NDF). The load and dump
files are shown in figure 1-2.

The host operator can obtain status information for
NPU load ing or dumping opera t ions invo lv ing the
copy of NS in the operator 's host. More than one
host can run a copy of NS; so that NS can load NPUs
which are not accessible from a specific host.

COMMUNICATION SUPERVISOR

The Communication Supervisor (CS) program executes
as a NAM application. It can communicate with the
n e t w o r k o p e r a t o r s (N O P) . C S a l l o w s a n e t w o r k
operator at a terminal (an NPU operator or a diag
nostic operator [DOP]) or at a host console (a host
operator [HOP]) to obtain and change the status of
network elements under its supervision, to communi
cate wi th users at terminals, and to run d iagnos
t i c s . C S a l s o r e s p o n d s t o r e q u e s t s f o r n e t w o r k
configuration data from an NPU.

CS can run in one or more hosts. I t a lso assists
| the NPUs by providing them with terminal configura

t i o n i n f o r m a t i o n f r o m t h e n e t w o r k c o n fi g u r a t i o n
fi l e .

NETWORK VALIDATION FACILITY

The Network Validation Facil ity (NVF) also executes
a s a N A M a p p l i c a t i o n . I t v a l i d a t e s t h e t e r m i n a l
user 's access to the host and an appl icat ion pro
gram's access to the computer network. NVF also
m a i n t a i n s a n d r e p o r t s a p p l i c a t i o n s t a t u s t o t h e
host operator (HOP). As figure 1-2 shows, the NOS
v a l i d a t i o n fi l e a n d t h e l o c a l c o n fi g u r a t i o n fi l e
(LCF) supply validation information to NVF.

N V F v e r i fi e s s u c h t e r m i n a l u s e r i n f o r m a t i o n a s
fami ly name, user name, and password. Before a
terminal user can access an appl icat ion program,

| s u c c e s s f u l l o g i n m u s t o c c u r . W h e n l o g i n i s
s u c c e s s f u l l y c o m p l e t e d , t h e N e t w o r k Va l i d a t i o n
F a c i l i t y c a u s e s N A M t o n o t i f y t h e a p p l i c a t i o n
p r o g r a m i d e n t i fi e d i n t h e l o g i n s e q u e n c e t h a t a
terminal requests connection.

T h e N e t w o r k Va l i d a t i o n F a c i l i t y a l s o p e r f o r m s
switching between application programs. NVF causes
terminal disconnection processing when disconnection
is appropr ia te .

The Network Val idat ion Faci l i ty controls appl icat ion
p rog ram and t e rm ina l access t o t he ne two rk , as
f o l l o w s :

• An app l ica t ion program wish ing to communica te
with terminals requests access to the network.
This request is passed by NAM to the NVF for
v a l i d a t i o n . (N V F a l s o p e r f o r m s s i m i l a r v a l i
da t i on o f t e rm ina l reques ts fo r hos t access .)
Once NVF has determined tha t an app l ica t ion
program or terminal is allowed to use the host's
resources , i t makes ca l l s to NAM tha t c rea te
the logical connect ion for the t ransfer of data
between the application program and the network.
NVF also requests NAM to modify or delete these
connections when terminal users request to com
m u n i c a t e w i t h o t h e r a p p l i c a t i o n p r o g r a m s o r
leave the network.

• When an app l ica t ion program no longer des i res
to use the network, i t cal ls another NAM pro
cedure . Th is reques t a l so i s passed to NVF,
which causes NAM to delete all connections used
fo r the app l i ca t ion p rog ram - j us t as i t does
fo r a te rm ina l o r t e rm ina l dev i ce l eav ing the
network.

NETWORK UTILITIES

Four u t i l i t y p rog rams e i t he r a re i nc luded w i t h o r
used by network host products:

The Network Dump Analyzer (NDA)

The Load File Generator (LFG)

The Debug Log File Processor (DLFP)

The Hardware Performance Analyzer (HPA)

Network Dump Analyzer
The network dump analyzer (NDA) produces a formatted
printout from NPU dump files created by the Network
Supervisor. The si te analyst can use these dumps
to help analyze CCP software or NPU hardware fail
ures. The network dump analyzer uses the network
dump file (NDF), which is shown in figure 1-2, as
i n p u t .

You can find more information about the NPU dump
analyzer in the NOS Vers ion 2 Analys is Handbook |
l i s ted in the pre face.

Load File Generator
The load file generator (LFG) reformats CCP program
files produced by the CDC CYBER Cross System's link
and edit programs into a single random access file
used by the Network Supervisor to load NPUs. This
fi l e i s t h e n e t w o r k l o a d fi l e (N L F) , w h i c h i s o n e
of the NPU files shown in figure 1-2.

You can find more in format ion about the load fi le
generator in the NOS Insta l la t ion Handbook l is ted
in the preface.

60499500 S 1-5

Debug Log File Processor
The debug log fi le processor (DLFP) conver ts the
debug log fi le generated by the Appl icat ion Inter
face Program into a printable report. The program
mer can select ively l ist logged information through
DLFP directives.

You can find more information about the debug log
file processor in section 6 of this manual.

Hardware Performance Analyzer
A fourth ut i l i ty program, the hardware performance
analyzer (HPA), is part of the NOS operating system.
Th is u t i l i t y p rog ram p roduces repo r t s f rom in fo r
m a t i o n o n t h e a c c o u n t a n d e r r o r l o g d a y fi l e s .
Network products sof tware makes stat ist ical , error,
and alarm message entries into these dayfiles.

You can find more information about the hardware
performance analyzer in the HPA reference manual
l is ted in the preface.

NAM APPLICATION PROGRAMS
The hos t computer executes CDC-wr i t ten or s i te -
written service programs called application programs
that are connected to the network through NAM. An
a p p l i c a t i o n p r o g r a m c a n c o m m u n i c a t e w i t h o t h e r
appl icat ion programs or terminals connected to the
network.

The CDC-provided NAM application programs are:

In teract ive Fac i l i ty (IAF) , which a l lows you to
create files and to create or execute programs
from a device without using card readers or line
pr inters. IAF is descr ibed in Volumes 1 and 3
of the NOS 2 Reference Set.

CDC CYBER CROSS SYSTEM SOFTWARE
The CDC CYBER Cross System software allows you to
insta l l , modi fy, and mainta in the CCP sof tware. I t
is composed of these programs:

PASCAL, wh ich i s a comp i l e r pa t te rned a f te r
ALGOL-60. By using PASCAL, you can define tasks
in statements that are processed by the compiler
to y ie ld a var iab le number o f ac tua l p rogram
ins t r uc t i ons .

Formatter, which reformats PASCAL output into
an object code format compatible with the com
munications processor macro assembler output

Macro Assembler, which assembles communications
processor macro memory source programs and
produces relocatable binary output. The source
p rog rams a re w r i t t en w i t h symbo l i c mach ine ,
pseudo, and macro instructions.

Micro Assembler, which prov ides the language
needed to write a micro memory program. This
assembler t rans la tes symbol ic source program
instruct ions in to object machine inst ruct ions.

Link Editor, which accepts object program mod
ules and generates a memory image, suitable for
executing in the 255x NPU.

A u t o l i n k u t i l i t y , w h i c h s i m p l i fi e s p r o g r a m
assignment and maximizes the amount of space
assigned to handling buffers.

Expand ut i l i ty, which includes several hardware
and software variables used to define a CCP load
file for a given NPU configuration.

S e e t h e p r e f a c e f o r m a n u a l s t h a t c o n t a i n m o r e
information on the CDC CYBER Cross System.

Remote Batch Facility (RBF), which permits you
to enter a job fi le f rom a remote card reader
and to rece i ve j ob ou tpu t a t a remo te ba tch
device. RBF is described in the Remote Batch
Faci l i ty reference manual.

Transac t ion Fac i l i t y (TAF) , wh ich permi ts you
t o i m p l e m e n t o n - l i n e t r a n s a c t i o n p r o c e s s i n g
under NOS by writ ing programs to be used by
t e r m i n a l s . T A F i s d e s c r i b e d i n t h e T A F
reference manual.

Te r m i n a l Ve r i fi c a t i o n F a c i l i t y (T V F) , w h i c h
p rov ides tes ts you can use to ve r i f y t ha t an
i n t e r a c t i v e c o n s o l e i s s e n d i n g a n d r e c e i v i n g
d a t a c o r r e c t l y. T V F i s d i s c u s s e d i n t h e Te r
minal Interfaces reference manual.

Message Control System (MCS), which allows you
to queue, route, and journal messages between
COBOL programs and terminals. MCS is described
in the Message Control System reference manual.

T h e q u e u e fi l e t r a n s f e r f a c i l i t y (Q T F) , w h i c h
a l l o w s y o u t o t r a n s f e r q u e u e fi l e s b e t w e e n
hosts. The use of th is feature is descr ibed in
the NOS Version 1 Reference Set, Volume 3.

Permanent F i le Transfer Fac i l i t y (PTF) , wh ich
al lows you to transfer permanent fi les between
wai ts . The use o f th is fea tu re i s documented
in the NOS Version 2 Reference Set, Volume 3.

NETWORK PROCESSING UNIT
AND COMMUNICATIONS
CONTROL PROGRAM
T h i s s u b s e c t i o n d i s c u s s e s t h e f o l l o w i n g n e t w o r k
p r o d u c t s , w h i c h a r e p a r t o f t h e c o m m u n i c a t i o n s
ne twork and a l low a te rm ina l to access the hos t
computer over communication lines:

The 255x series network processing unit (NPU),
which connects a host to a terminal

The Communications Control Program (CCP), which
is the software in the NPU

The middle portion of figure 1-2 shows the communi
cations network.

NETWORK PROCESSING UNIT
An NPU handles front-end or remote data communica
tions for the CDC CYBER 170 host. The Communica
tions Control Program resides within the NPU.

To understand CCP, you must have a basic under
standing of the hardware on which CCP runs. Refer
to the hardware manuals listed in the preface for a
description of the hardware components of the NPU.

1-6 60499500 S

COMMUNICATIONS CONTROL PROGRAM
The Communications Control Program, which is the
software that executes in the 255x NPUs, consists
o f :

Base system software

System autostart module program (SAM-P)

Service module (SVM)

Host Interface Program (HIP)

Terminal Interface Programs (TIPs)

Link Interface Program (LIP)

Block Interface Program (BIP)

In- l ine and on-l ine diagnost ics

NPU console debugging aids

Performance and statistics programs

Figure 1-3 shows how the major parts of CCP relate
to each other.

Base System Software
The base system software executes programs, allo
c a t e s b u f f e r s , h a n d l e s i n t e r r u p t s , a n d s u p p o r t s
t iming and data s t ructures. I t inc ludes:

A system monitor, which controls the al location
of resources for the communications processor

Timing serv ices , wh ich run those programs or
func t ions tha t a re execu ted e i ther per iod ica l l y
o r f o l l o w i n g a s p e c i fi c t i m e l a p s e f o r t h e
processor

A mu l t i p l e x su b sys te m, w h i ch i n t e r f a ce s w i t h
the 255x mu l t i p lex ing hardware and per fo rms
character-by-character processing of tasks

I n t e r r u p t h a n d l e r, w h i c h c o n t r o l s t h e t r a n s i
t ion of the communicat ions processor between
di f ferent program in ter rupt leve ls

In i t i a l i za t i on , wh ich p repa res the ne twork fo r
on- l ine opera t ion

S t r u c t u r e s e r v i c e s , w h i c h b u i l d a n d m a i n t a i n
internal tables used for rout ing data

Buffer maintenance, which dynamically al locates
m e m o r y i n m u l t i p l e b u f f e r s i z e s f o r e f fi c i e n t
memory use

Workl is t services, which provide logic for 255x
interprogram communication through the use of
w o r k l i s t s

S t a n d a r d s u b r o u t i n e s , w h i c h p r o v i d e s u p p o r t
rout ines to handle ar i thmetic conversion, main
tain page registers, and do miscellaneous tasks

System Autostart Module
The system autostart module is an opt ional set of
hardware and sof tware tha t beg ins the load ing o f
other CCP software from a host.

NPU
Console^

(HostV

SVM Debug
g i n g -
Aids

\ HIP BIP) 1 i x r

TIP

<Tfe SAM-P LIP

Cassette
Unit

r a

Terminals

NPU

Figure 1-3. The Relationship Between the Parts of the
Communications Control Program

60499500 S 1-7 |

Service Module
The service module (SVM) includes network control
f u n c t i o n s a n d i n t e r f a c e p r o g r a m s t h a t p r o v i d e a
common link to other elements of the communications
network. These programs:

Process commands from the host, called service
messages

Control l ine and terminal configurat ion

Report and respond to regulation and supervision
changes

Host Interface Program
The Host Interface Program (HIP) provides the soft
ware that l inks the host and a loca l NPU over a
channel. The HIP dr ives the CDC CYBER channel
c o u p l e r , t r a n s f e r s d a t a , c h e c k s f o r e r r o r s , a n d
monitors for host fai lure and recovery.

Th is l i s t inc ludes on ly e lements suppor ted by re
leased versions of standard CDC network software.

S i tes can add s i te-wr i t ten Termina l In ter face Pro
grams to extend CDC support to additional transmis
s ion pro toco ls and te rmina l c lasses . Th is manua l
is concerned on ly wi th the t ransmiss ion protoco ls
and terminal classes supported by CDC. Information
in th is manual is va l id for s i tes us ing extensions
to CCP only to the extent that those modifications
emulate the CDC-supported release version of CCP.

Link Interface Program
The L ink In te r face Program (L IP) t rans fers in fo r
mation over a trunk between NPUs.

Block Interface Program
The Block Interface Program (BIP) routes blocks of
data, processes service messages, and processes the
network block protocol.

Terminal Interface Program
The Terminal Interface Program (TIP) is a modular
program that provides protocol support and the con
trol needed to interchange data between a terminal
and other elements of CCP.

The TIP transforms application program data between
i ts v i r tual terminal format and the format required
by the t ransmission protocol and physical charac
ter is t ics of the real terminals. CDC provides TIPs
for these transmission protocols:

• Asynchronous communication l ines

• S y n c h r o n o u s c o m m u n i c a t i o n l i n e s f o r m o d e 4
terminals

• Bisynchronous communicat ion l ines for terminals
emulating the IBM HASP protocol

• X . 2 5 p a c k e t a n d l i n k l e v e l i n t e r f a c e s t o a
packet -sw i tch ing ne twork (PSN) v ia h igh- leve l
data link control (HDLC) synchronous lines

• Bisynchronous communications l ines for terminals
emulating the IBM 2780/3780 protocol

• 3270 Bisynchronous communicat ions (BSC) oper
at ing as mult ipoint data l inks

E i g h t e e n c l a s s e s o f r e a l t e r m i n a l s u s i n g t h e s e
pro toco ls a re suppor ted . Each te rmina l c lass has
c e r t a i n p h y s i c a l c h a r a c t e r i s t i c s a s s o c i a t e d w i t h
i t . These associated character ist ics are determined
by a terminal chosen as the archetype for the class,
but can be changed by either the application pro
gram or the terminal operator. The terminal c lass
in i t i a l l y used fo r a g i ven rea l t e rm ina l i s de te r
mined by the way the terminal is configured in the
ne twork configu ra t i on fi le ; t he ne twork configu ra
tion file can also be used to change the character
i s t i c s i n i t i a l l y a s s o c i a t e d w i t h t h e t e r m i n a l f r o m
those o f the a rche type te rm ina l . The assoc ia t i on
o f c h a r a c t e r i s t i c s w i t h a t e r m i n a l i s r e f e r r e d t o
in networks documentation as terminal definit ion or
TERMDEF.

The te rmina l c lasses and a rche type te rmina ls fo r
each class are listed at the end of this section.

In-Line and On-Line Diagnostics
In-l ine and on-l ine diagnostics, which are produced
for the NPU, enable a NOP to isolate communications
l i n e p r o b l e m s . A l a r m , C E e r r o r , a n d s t a t i s t i c s
s e r v i c e m e s s a g e s a r e t h e t y p e s o f i n - l i n e d i a g
n o s t i c s . I n - l i n e d i a g n o s t i c s a r e g e n e r a t e d a u t o
mat i ca l l y. On- l i ne d iagnos t i cs mus t be reques ted
from the NOP console.

NPU Console Debugging Aids

Debug aids provide test util ities for debugging
programs, taking memory snapshots, and dumping the
NPU during CCP program development or system |
fa i lures.

Performance and Statistics Programs
These programs gather statist ics on NPU and indi
v idua l l ine per fo rmance, and per iod ica l ly d ispatch
theses statistics to the Communications Supervisor.

THE PACKET SWITCHING
NETWORK (PSN)
The packet switching network (PSN) is a value added
network you may subscribe to either from a CDC or a
foreign vendor who supports the X.25 CCITT recom
menda t i on (1980) . Such ne two rks a re a l t e rna te l y
referred to as public data networks (PDNs).

NAM CONCEPTS
NAM is used by both application programs and por
tions of the network software. The features of NAM
p e r m i t p r o g r a m s t o b e w r i t t e n f o r t h e f o l l o w i n g
types of communication applications:

• Ti m e - s h a r i n g c o m m u n i c a t i o n s e r v i c e s . A s i n g l e
program provides this service when i t interacts
wi th each terminal dur ing a given t ime per iod. |
T h e C D C - w r i t t e n I n t e r a c t i v e F a c i l i t y i s a n
example of this type of application program.

z*^^\

1-8 60499500 S

0 ^ \

• Tr a n s a c t i o n c o m m u n i c a t i o n s e r v i c e s . A s i n g l e
program provides this service when it creates a
m u l t i - t h r e a d i n g i n t e r f a c e f o r m a n y t e r m i n a l s
us ing many task rou t ines . Each te rm ina l can
in teract w i th many tasks or programs through
queues maintained by the program providing the
t r a n s a c t i o n s e r v i c e . T h e C D C - w r i t t e n Tr a n s
ac t i on Fac i l i t y i s an examp le o f t h i s t ype o f
appl ication program.

• Te l e p r o c e s s i n g c o m m u n i c a t i o n s e r v i c e s . A
s ing le p rog ram p rov ides th i s se rv i ce when i t
i n t e r a c t s w i t h m a n y t e r m i n a l s t o p e r f o r m a
s ing le t e l ep rocess ing t ask f o r each . No task
queues are required. The CDC-wri t ten Terminal
V e r i fi c a t i o n F a c i l i t y i s a n e x a m p l e o f t h i s
type of application program.

The i n te rac t i ve v i r t ua l t e rm ina l concep t makes i t
unnecessary for an application programmer to provide
separate procedures to support d i ffer ing implemen
ta t i ons o f one f unc t i on on a va r i e t y o f r ea l t e r
mina ls .

Any console or site-defined device (any device with
a dev ice type of 0 or 12) can be serv iced as an
i n t e r a c t i v e v i r t u a l t e r m i n a l . A n i n t e r a c t i v e
v i r t u a l t e r m i n a l h a s a n i n p u t a n d o u t p u t d e v i c e
w h i c h s e n d s a n d r e c e i v e s l o g i c a l l i n e s o f A S C I I
c h a r a c t e r s . T h e s e l o g i c a l l i n e s a r e t r a n s f o r m e d
i n t o o r f r o m p h y s i c a l l i n e s o f c h a r a c t e r s o f t h e
c o d e s e t a p p r o p r i a t e f o r t h e r e a l t e r m i n a l . T h i s
t r a n s f o r m a t i o n i s p e r f o r m e d f o r t h e a p p l i c a t i o n
program by the Communications Control Program of
t h e n e t w o r k p r o c e s s i n g u n i t s e r v i c i n g t h e r e a l
te rm ina l .

VIRTUAL TERMINALS
The v i r tua l te rmina l concept s imp l i fies the p roce
dure an application program must perform to service
a terminal .

Device types are used in a request for connection
f rom a te rm ina l t o an app l i ca t i on (see sec t ion 3
for a discussion of connect ion processing). Device
types current ly defined are l isted in table 1-1.

TABLE 1-1. DEVICE TYPES

Device Type Terminal Device Defined

0 Console (interact ive device)

i t Card reader (passive device)

2t L ine p r in te r, impac t p r in te r
or nonimpact printer (passive
device)

3^ Card punch (passive device)

4t Plot ter (passive device)

5 Another application program in
the same host

6 Another application program in
a d i f fe rent hos t

7 thru 11 Reserved for CDC use

12 Si te-defined dev ice

'Reserved for RBF use.

E v e r y t e r m i n a l d e v i c e i s e i t h e r a n i n t e r a c t i v e
d e v i c e (c a p a b l e o f b o t h i n p u t a n d o u t p u t) o r a
ba tch dev ice (capab le o f e i the r i npu t o r ou tpu t) .
B e c a u s e t h i s i s t r u e o f a l l p h y s i c a l t e r m i n a l s ,
certain funct ions of each terminal device type can
be abstracted and treated In a simi lar manner for
a l l t e r m i n a l s w i t h d e v i c e s o f t h a t t y p e . T h e s e
c o m m o n f u n c t i o n s c o n s t i t u t e a v i r t u a l t e r m i n a l .
A l l re fe rences to te rmina ls in th is manua l a re to
v i r tua l te rmina ls , un less o therwise spec ified.

R e a l t e r m i n a l s c a n p e r f o r m a w i d e v a r i e t y o f
f u n c t i o n s , b u t n o t a l l t e r m i n a l s c a n p e r f o r m t h e
s a m e f u n c t i o n s . T h e f u n c t i o n s p e r f o r m e d b y a n
i n t e r a c t i v e v i r t u a l t e r m i n a l a r e r e s t r i c t e d t o t h e
subset of terminal funct ions that is common to al l
r e a l i n t e r a c t i v e t e r m i n a l s . T h i s r e s t r i c t i o n
e n s u r e s e f fi c i e n t v i r t u a l t e r m i n a l o p e r a t i o n w h e n
t h e c o r r e s p o n d i n g r e a l t e r m i n a l h a s t h e f e w e s t
c a p a b i l i t i e s .

When the application program must support functions
fo r a rea l te rmina l tha t a re no t ava i lab le th rough
t h e i n t e r a c t i v e v i r t u a l t e r m i n a l i n t e r f a c e , t h e
application program can:

• Embed con t ro l cha rac te rs i n t he ou tpu t t ex t o r
scan fo r con t ro l charac te rs in the inpu t tex t .
The appl icat ion program must a l low for contro l
characters s ignificant to or t ransformed by the
network software in this instance.

• T r a n s f e r d a t a t o a n d f r o m t h e t e r m i n a l i n
t r a n s p a r e n t m o d e . I n t r a n s p a r e n t m o d e , a l l
t r a n s f o r m a t i o n s a r e i n h i b i t e d a n d t h e a p p l i
ca t i on p rog ram has d i r ec t access t o and r e
s p o n s i b i l i t y f o r s u p p o r t o f a l l r e a l t e r m i n a l
f unc t i ons . Transpa ren t mode can be se l ec ted
s e p a r a t e l y f o r i n p u t a n d o u t p u t t o t h e s a m e
v i r t u a l t e r m i n a l .

Control characters and transparent mode are discus
sed in detai l in sect ion 2.

Log ica l l i nes tha t exceed the phys ica l l i ne leng th
o f t he rea l t e rm ina l a re fo lded i n to two o r more
p h y s i c a l l i n e s o n o u t p u t t o t h e t e r m i n a l . T h e
spacing of output l ines can also be control led with
op t iona l f o rma t e f fec to rs , desc r ibed in sec t ion 2 .
O p t i o n a l p a g i n g o f o u t p u t i s p o s s i b l e , t o a v o i d
overwr i t ing prev ious output unt i l the prev ious out
put is acknowledged by the terminal operator.

LOGICAL CONNECTIONS
J u s t a s t h e v i r t u a l t e r m i n a l c o n c e p t s i m p l i fi e s
te rm ina l se rv i c ing , the log ica l connec t ion concep t
s i m p l i fi e s t e r m i n a l a d d r e s s i n g . I n t h e n e t w o r k ,
when data passes between a virtual terminal and an
application program, a message path or logical con
nect ion ex is ts between the two. Conceptua l ly, th is
is equ iva lent to the connect ion between two te le
phones used in a conversat ion. After a real termi
nal has gained network access, NAM logical ly con
n e c t s e a c h v i r t u a l t e r m i n a l p o r t i o n o f i t t o o n e ,

60499500 R 1-9

and on ly one, app l i ca t ion p rogram a t a t ime, a l
though the v i r tua l te rmina l can be swi tched f rom
application to application as needed.

An application program, however, can be connected
s i m u l t a n e o u s l y t o m a n y v i r t u a l t e r m i n a l s . I t i s
connected to each one by a separate and dist inct
logical connect ion. The appl icat ion program ident
i fi e s a p a r t i c u l a r t e r m i n a l b y s p e c i f y i n g t h e
logical connect ion between i tsel f and the terminal.
This is possib le because a one-to-one associat ion
ex i s t s be tween the connec t i on and the te rm ina l .
From the application programmer's point of view, it
i s c o n v e n i e n t t o t a l k o f c o n n e c t i o n x (l i t e r a l l y,
message path x) when it would be more precise to
say the v i r tua l terminal a t the other end of con
nection x.

A n a p p l i c a t i o n p r o g r a m c a n a l s o f o r m a l o g i c a l
connection with one or more other applications and,
in fact, can have several connections with another
appl icat ion program simul taneously, using separate
a n d d i s t i n c t l o g i c a l c o n n e c t i o n s . A l o g i c a l c o n
nec t ion can , the re fo re , re fe r to e i the r a te rm ina l
o r t o ano the r app l i ca t i on . Th i s manua l uses t he
t e r m c o n n e c t i o n t o c o v e r b o t h p o s s i b i l i t i e s .
Typical logical connections in the network are shown
in figure 1-4.

OWNING CONSOLES
Pass ive dev ices are serv iced on separa te log ica l
c o n n e c t i o n s f r o m t h e i r c o r r e s p o n d i n g i n t e r a c t i v e

consoles. Because of this, a mechanism is needed
to associate a passive device with the console that
en te rs con t ro l l i ng i n fo rma t i on f o r i t . The mecha
nism used is the owning console concept.

When a pass ive dev ice i s defined in the ne twork
c o n fi g u r a t i o n fi l e , a n i n t e r a c t i v e c o n s o l e i s
i d e n t i fi e d a s t h e o w n i n g c o n s o l e o f t h e p a s s i v e
device. The method used ident ifies the console by
i t s t e rm ina l name , as defined fo r t he conso le i n
t h e n e t w o r k c o n fi g u r a t i o n fi l e . A n a p p l i c a t i o n
program receives the name of the owning console as
a p a r a m e t e r i n t h e p a s s i v e d e v i c e ' s c o n n e c t i o n
request, along with the terminal name of the pas
sive device. The appl icat ion program also receives
the te rm ina l name o f the conso le as pa r t o f the
c o n s o l e ' s c o n n e c t i o n r e q u e s t , a n d c a n t h e r e f o r e
associate the two devices.

NETWORK ACCESS METHOD
OPERATION
Figure 1-5 shows the components of NAM as i t is
discussed in this manual. Al l of the area enclosed
by the dot ted l ines comprises the Network Access
Method.

As NAM receives data from the network terminals or
application programs, the data is buffered in NAM's
b u f f e r s . (S e e s e c t i o n 4 .) A p p l i c a t i o n p r o g r a m s
use calls to AIP procedures to request and transmit
th is data.

Host Computer 1

Appl icat ion
Program

A

connection
1

Appl icat ion
Program

B

connection
3

connection
2

Device
a

connection
1

connection
2

Network Access Method

Host Computer 2

App l i ca t ion
Program

C

connection
1

connection
2

Network
Access
Method

Data Communications
Network

Device
b

Terminal Terminal

Figure 1-4. Typical Connections in the Network

1-10 60499500 R

Network
Superv isor !

Communications
Superv i so r t

I n t e r a c t i v e
F a c i l i t y t

Operat ing
System Queue

and Permanent
Files

Remote
Batch

F a c i l i t y t

Transact ion
F a c i l i t y t

NOS VALIDUs
and Local

C o n fi g u r a t i o n
F i l es

Terminal
Ve r i fi c a t i o n

F a c i l i t y

COBOL 5
Program
Message
Queues

Message
Control
Systemt

A p p l i c a t i o n
In te r f ace
Program

A p p l i c a t i o n
I n t e r f a c e
Program

A p p l i c a t i o n
In te r f ace
Prog ram

A p p l i c a t i o n
In te r f ace
Program

A p p l i c a t i o n
I n t e r f a c e
Program

A p p l i c a t i o n
In te r f ace
Program

A p p l i c a t i o n
I n t e r f a c e

Program

Network
In te r f ace
Program

P e r i p h e r a l
I n t e r f a c e

Program

Network
Access
Method

NPU■»•
Network
and
Terminals

'Pr iv i leged appl icat ion programs; see Sect ion 6

Figure 1-5. Network Access Method Components

60499500 S 1-11

I nbound da ta f rom an in te rac t i ve v i r tua l te rm ina l
o r a n o t h e r a p p l i c a t i o n i s p l a c e d , u n m o d i fi e d , i n
NIP's central memory buffers by PIP. These buffers
fo rm an i npu t queue assoc ia ted w i th t he l og i ca l
c o n n e c t i o n t h a t o r i g i n a t e d t h e d a t a . D a t a i s
removed from this input queue when application pro
gram AIP statements request input from the logical
connect ion . The data can be t rans la ted and con
ver ted by N IP f rom ASCI I to d i sp lay code i f the
application program has requested such conversion;
t r a n s p a r e n t d a t a , a s d e s c r i b e d i n s e c t i o n 2 , i s
n e i t h e r e d i t e d n o r t r a n s l a t e d . N I P p l a c e s t h e
t r a n s l a t e d o r t r a n s p a r e n t d a t a i n a d a t a b u f f e r
w i t h i n t h e a p p l i c a t i o n p r o g r a m ' s fi e l d l e n g t h .
This data buffer is establ ished and mainta ined by
the application program.

O u t p u t f o r a n i n t e r a c t i v e v i r t u a l t e r m i n a l o r
a n o t h e r a p p l i c a t i o n i s h a n d l e d i n t h e r e v e r s e
manner. The application program cal ls an AIP pro
cedure to send data on a logical connect ion. The
data is t ransferred from the program's field length
to an output queue within NIP's field length. From
there, i t is placed in one of PIP's output buffers,
according to its priority as a supervisory message,
l o w p r i o r i t y d a t a , o r h i g h p r i o r i t y d a t a , a n d t o
i t s des t ina t i on . Code convers ion and t rans la t i on ,
if necessary, is done by PIP.

The fi l es shown i n figu re 1 -5 a re ma in ta i ned by
code independent of NAM. Named files in the figure
a r e d i s c u s s e d b r i e fl y i n v a r i o u s p o r t i o n s o f t h i s
manual.

APPLICATION PROGRAM CONCEPTS
NAM requires an application program to reside at a
s e p a r a t e o p e r a t i n g s y s t e m c o n t r o l p o i n t . T h i s
program conta ins ca l l s to the A IP rou t ines l i s ted
in appendix D and described in sections 5 and 7.
These cal ls can be direct , or indirect through the
Queued Terminal Record Manager.

An application program begins accessing the network
by ca l l i ng NETON. I t t r ansmi t s da ta th rough the
network by calling NETPUT or NETPUTF. It receives
data through the network by calling NETGET, NETGETL,
NETGETF, or NETGTFL.

An app l i ca t i on p rog ram mus t con ta i n bu f f e r s f o r
transmitted or received data. These buffers can be
either unified or fragmented central memory areas.
One buffer can be used for all logical connections,
o r many un ified bu f fe rs o r f ragments o f a bu f fe r
can be used for each logical connection.

An app l i ca t ion p rogram sends ins t ruc t ions to the
ne twork so f twa re and rece i ves ope ra t i ona l i n fo r
mation from the network software through supervisory
m e s s a g e s , a s d e s c r i b e d i n s e c t i o n 3 . I t m u s t
conta in procedures to fo rmula te or process these
messages.

An application program can contain procedures that
optimize its use of central memory and the control
processor. AIP routines can make the program avail

able for ro l lout when the program has no data to
process (NETWAIT), or allow the program to perform
non network processing while waiting for completion
of a network processing task (NETSETP and NETCHEK).

An application program can compile statist ics about
its functioning (NETSTC) that can be examined for I
appl icat ion tuning. I t can a lso cause t race dumps |
o f i t s n e t w o r k t r a f fi c (N E T D B G) . T h e t r a c e fi l e
generated can be dynamically disposed for storage,
p rocess ing (NETREL) , and app l i ca t ion debugg ing . |

An application program must contain a call to NETOFF
to terminate i ts access to the network. Appl icat ion
p r o g r a m s u s i n g t h e o p t i o n a l c o d e c o n t r o l l e d b y
NETDBG or NETSTC must also dispose of the local
files created by this code. (See sect ion 6.)

CONNECTION PROCESSING FLOW

The functions performed by NAM and other software
desc r i bed p rev ious l y i n t h i s sec t i on can bes t be
summarized by tracing the job processing involved
f o r a s i n g l e t e r m i n a l a n d a s i n g l e s i t e - w r i t t e n
app l i ca t i on p rog ram. F igu re 1 -6 i s a genera l i zed
v e r s i o n o f t h i s p r o c e s s i n g fl o w. Ti m e e l a p s e s i n
the figure from top to bottom. Program processing
beg ins f rom the le f t , te rmina l ac t ions beg in f rom
t h e r i g h t . D o t t e d l i n e s s e p a r a t e f u n c t i o n s f o r
each en t i t y. When the boxes fo rmed by so l i d o r
d o t t e d l i n e s a r e a l i g n e d , t h e f u n c t i o n s o f t h e
ent i t ies invo lved are re la ted . Ac t ions fo r a ba tch
device (a passive device) di ffer f rom those shown
for an in te rac t ive te rmina l ; the fi rs t two and las t
three terminal act ions are per formed in ternal ly by
the Ne twork Va l ida t ion Fac i l i t y fo r ba tch dev ices
b a s e d u p o n l o g i n i n f o r m a t i o n s u p p l i e d f o r t h e
device's owning console.

SUPPORTED TERMINALS
The network software, and therefore an appl icat ion
program, can serv ice any real terminal compat ib le
w i t h o n e o f t h e t e r m i n a l c l a s s e s l i s t e d i n t a b l e
1 - 2 . E a c h t e r m i n a l c l a s s i s i d e n t i fi e d b y i t s
terminal class number, described in section 3 under
Managing Logical Connect ions. Al l terminal c lasses
a r e s u p p o r t e d b y t h e i n t e r a c t i v e v i r t u a l t e r m i n a l
interface. When a mnemonic appears in table 1-2,
i t i nd i ca tes t he a rche type te rm ina l suppo r ted fo r
the given terminal class and device type.

The archetype mnemonics are not used by the appli
c a t i o n p r o g r a m i n a n y f o r m ; t h e a r c h e t y p e s a r e
descr ibed in more deta i l in the Network Defini t ion
Language reference manual, where they are identified
by the same mnemonics. (See the preface.)

Si te-modified versions of the network sof tware can
s e r v i c e t e r m i n a l s i n t e r m i n a l c l a s s e s o t h e r t h a n
those l i s ted . Th is manua l app l ies on ly to suppor t
of the terminal classes defined by CDC. Content of
th is manua l can be va l id fo r s i te -defined te rmina l
classes; CDC is not responsible for deviations from
th is manual a t t r ibu tab le to suppor t o f s i te -defined
terminal classes.

1-12 60499500 S

4->
4-» C O EOT O C D
0) • r - I .
3 —» o>
O- a oa> a t .

O f co a.

I £

IT I

ai 91> > ■M' O
+j 4-» 1 * 4-»1 c C D E

CD 4-> ■ c»- 4-» t - 3 • r - L .
0) 3 a i a f= — ' O)
4 - > C L ■ cl S OT a o

t _ a «-
H H O • f - cd a

o I • « -
• I - t t -
4 -> OT I O<0 G I I

£ U 1 0 | Q l
O ' l - t - I O•*-'—' o) ! -j• • - a o I
3 a c - I i _CO CD O. ■ O

o •-•
• M « J

91 t O
— ' U C <
CO CO CO
C H - l _ • r - e■1- l_ O) O T O
E 9 1 « - « - 3
t - f L . a> m- o.
« C a. > z

1 - I H C T J
o c c

O (0 - r -

3 cj* e
a > 9i
C - r - | =

a> C C Dc c O — ' C OT U + > 1 O t- oa. T J C Z •r- —> 4-> •«- 4 J O T 0 3 C O
I H O T C > r -a. I S V L n l > 3 4 - O C O T J

3 H - 4 - > 9 1 O 3 I H
— ' O > " 0 *
ft O C TJ

W D . O T > " O Q H
4 - > £ J f - O
U 3 O f

C 4 - < C J
O H - 3 W a i. a> o< O V w

j0X$£t*\

n ~ i

I
■M CO CO E
u c o c o91 ••- -r- l_
C E - » O l
c « - a o
O O i o Q (-u 4-> 4-> co a

O U I••- co ■ „,
« S ' m
o cS , ™

C O Q . I ^ 3

CD I_
O CT._. •■- O

CO —' «_f c a a
O T O .
4-> E «0 C
• i - t o
3 0> O -r-

</J 4-> 4J 4->

a> 6
+s OT

E

co -••- C - -
OT -i- H- -r- TJt - _ . £ _
a* a. v «h i_ -r- t_
> 3 3 ih i- —» ct.c a « _ > w a o
o h - c t n u a lo o f « t t j c o a

O 4-01—» | i- OT3 10 OT 4-> O
f a > c f - o j c
o 3 «i- tj ai
4 - > O - E C E
• i - (. C C O
3 (- 0 > O O L .
l/> O 4-> H- O •»-

f_ 4-> <- I
91 C 91 I
V T V Ic o c ■

••- e 4->
4-> CD
C D t _ 4 - > . *
U CT> U i -

• i - o 9 1 O
—> C_ C 3
a o_ C 4 -a O 0)

co xc ••- «-
o > o1 - 1 0 O T

OT *■> *J 'i- 01
OT O OT > Ol
CU 01 91 t- CO
U C 3 O l O To c ct a OT
i_ O 91 3 a>a. u t- ca e

CT)

a>_j
c COc c
O ' l -O EOT U

•i- a>a , I4-> ■

4-> O
O •(-
0) 4-<
C CD E
C O CO
O f - i -
O —' O)
O T Q O•i- a. c
e» co a

ai —i ot
C CO oc c .c
O • ! -
O E E
W C o

T 0 1 LCt 4-> H-

LTTI
4-> OU 30) *->

I *
co c 4 - > E OT —>
i_ •!- co o> 4-> ••-
O. E t_ 4-> c * -
O I - - 0 01 OT • i - X
l _ o> C a x U C O
a. 4- co O " 1 Q T J

60499500 S 1-13

TABLE 1-2. SUPPORTED TERMINAL CLASSES

Line Protocol Terminal
Class

Device and Archetype Terminal Mnemonic!

Console Card Reader Line Pr inter Card Punch P l o t t e r

Asynchronous
or X.25 PADtt

4t t t
5

6

7

8

M33

713

721

2741

M40

H2000

X3.64§

T4014

HASP
Bisynchronous!!

14

HASP
(p o s t - p r i n t)

HASP
(p r e - p r i n t)

HASP
(p o s t - p r i n t)

HASP
(p r e - p r i n t)

HASP
(p o s t - p r i n t)

HASP
(p r e - p r i n t)

HASP
(p o s t - p r i n t)

HASP
(p r e - p r i n t)

HASP
(p o s t - p r i n t)

HASP
(p r e - p r i n t)

Mode 4
Synchronous

10

11

12

13

15

200UT

714X

711

714

734

200UT

200UT

200UT

714X

714

200UT

2780/3780
BisynchronousTt

16

17

2780

3780

2780

3780

2780

3780

2780

3780

3270
Bisynchronous

18 3270 3270

!A blank indicates the device type is not supported for the terminal class,

t tpo in t - to-po in t configurat ions on ly. Mul t id rop configurat ions are not suppor ted.

1 MX.25 PAD does not support terminal class 4.

^Terminal such as VT100 that follows ANSI standard X3.64.

1-14 60499500 S

/gP^V INFORMATION PROTOCOLS

T h i s s e c t i o n d e s c r i b e s t h e p r o t o c o l s g o v e r n i n g
information exchanged for communication between the
Network Access Method (NAM) and each application
program, and between application programs and their
c o n n e c t i o n s . T h e fi r s t p o r t i o n o f t h i s s e c t i o n
defines the terms and concepts needed to understand
t h e d e s c r i p t i o n o f i n f o r m a t i o n c o n t e n t i n t h e
remainder of this section.

You should remember that parts of the network soft
ware are wri t ten as appl icat ion programs and also
u s e t h e s e p r o t o c o l s . S o m e o f t h e f e a t u r e s a n d
options discussed in this and subsequent sections,
therefore, do not necessar i ly app ly to s i te-wr i t ten
appl icat ion programs; such information is indicated
where it is described.

INFORMATION FLOW
Information flow in the network is defined from the
viewpoint of the host computer. Information coming
to the hos t i s sa id to be t rave l ing up l ine ; In fo r
mat ion mov ing away f rom the hos t i s sa id to be
travel ing downl ine.

Informat ion flow with in a host computer is defined
from the viewpoint of a network application program.
Information coming to the application is said to be
travel ing upl ine; information moving away from the
application is said to be travel ing downline.

STRUCTURE PROTOCOLS
The network so f tware uses s t ruc tu re p ro toco ls o f
two types:

A log ica l pro toco l based on the concept o f a
message

A physical protocol based on various definitions
of a block of data

The conditions that create a logical message and the
conventions governing the subdivision of messages
are influenced by the phys ica l s t ructure protocols
the network uses. The events involved in actual ly
c r e a t i n g a m e s s a g e a r e d e s c r i b e d l a t e r i n t h i s
s e c t i o n u n d e r t h e h e a d i n g s I n t e r a c t i v e Te r m i n a l
I n p u t C o n c e p t s a n d I n t e r a c t i v e Te r m i n a l O u t p u t
Concepts.

PHYSICAL PROTOCOLS AND NETWORK
BLOCKS
Information exchanged with the network is either:

Data of no significance to the network software

Contro l in format ion of s ign ificance only to the
network software

Exchanges of control information and data between
appl icat ion programs, the network sof tware, and a
terminal user occur in logical messages comprising
o n e o r mo re p h ys i ca l n e tw o rk b l o cks . A n e tw o rk
block is a physical subdiv is ion of a logical ent i ty.

A network b lock is a grouping of in format ion wi th
known and controllable boundary conditions, such as
length, completeness of the unit of communication,
and so fo r th . Other ne twork documenta t ion re fers
to network blocks as network data blocks; this man
ual uses the term data block only when referring to
ne twork b locks tha t do no t con ta in con t ro l i n fo r
mat ion.

Informat ion exchanges between network processing
un i t s and hos t compu te rs o r be tween app l i ca t i on
p r o g r a m s u s e t h i s p h y s i c a l s t r u c t u r e p r o t o c o l .
Such exchanges occur in single network blocks.

Informat ion exchanges between network processing
un i t s use a d i f f e ren t phys i ca l s t ruc tu re p ro toco l .
Such exchanges occur in sets of character and con
t r o l b y t e s c a l l e d f r a m e s . T h e r e l a t i o n s h i p o f a
f rame to a network b lock is no t s ign ificant to an
application programmer; frames are not discussed in
th i s sec t ion .

Informat ion exchanges between network processing
u n i t s a n d t e r m i n a l d e v i c e s u s e a t h i r d p h y s i c a l
s t ruc tu re p ro toco l . Such exchanges occur i n se ts
of character and contro l bytes ca l led t ransmiss ion
blocks.

Information exchanged between a network processing
unit and a public data network use packets as the
phys i ca l s t ruc tu re p ro toco l . When the app l i ca t i on
communica tes w i th a te rmina l o r o ther CDC hos t
a p p l i c a t i o n s , t h e r e l a t i o n s h i p o f a p a c k e t t o a
ne twork b lock i s no t s i gn i fican t t o an app l i ca t i on
p r o g r a m m e r. T h e r e f o r e , t h i s r e l a t i o n s h i p i s n o t
discussed in th is sect ion.

However, the relat ionship of a packet to a network
block may be significant i f the appl icat ion is com
mun ica t i ng w i th a fo re ign hos t ' s app l i ca t i on . The
mapping of network blocks into the X.25 protocol is
d iscussed in the Communicat ions Cont ro l Program
Internal Maintenance Specificat ions.

LOGICAL PROTOCOL AND PHYSICAL
BLOCKS

Upline and downline information within the host and
NPUs is always grouped into physical network blocks.
Network data blocks are grouped into logical mes
sages. Messages exchanged between an NPU and a
d e v i c e c a n a l s o b e g r o u p e d i n t o p h y s i c a l t r a n s
miss ion b locks o f one o r more log ica l messages .
Figure 2-1 shows these concepts.

60499500 S 2-1

Physical Network Blocks

Network
Block

Network
Block

Network
Block

Network
Block

-•-100 characters -•-68 characters-*- -•-100 characters —9 characters-**

Logical Messages

Network
Block

Network
Block

Network
Block

Network
Block

-4-100 characters—»> -•-68 characters-*- -•-100 characters—%*■ ••9 characters-*-

Terminal Transmission Block (Block Mode Operation Input)

— T r a n s m i s s i o n B l o c k

- * M e s s a g e -» Message 2 *■ ■+— Message 3—**■

Network
Block

Network
Block

Network
Block

Network
Block

-•-100 characters—*- «*o8 characters-*- -•-100 characters—*■ -*-9 characters-*-

Figure 2-1. Physical and Logical Information Structures

Network blocks are restructured into other types of
blocks at points of entrance and exit from the net
w o r k p r o c e s s i n g u n i t s . F i g u r e 2 - 2 s h o w s t h e s e
points as c i rc les.

Network Data Blocks
A network data b lock is a co l lec t ion o f character
by tes , ana logous to a c lause i n Eng l i sh . I t i s a
part ia l ly independent uni t of information and might
need to be used with other blocks to form a message.

A network data block can contain al l or part of a
message. Whether a message must be divided into
severa l network data b locks is determined by the
size of a network data block.

Upline and Downline Block Sizes

CDC-defined interact ive devices have network data
b l o c k s i z e s t h a t a r e m u l t i p l e s o f 1 0 0 c h a r a c t e r
b y t e s f o r u p l i n e d a t a a n d o f v a r y i n g s i z e s f o r
downline data. The last block of an upline message
need not contain a multiple of 100 characters.

App l i ca t ion- to -app l i ca t ion connec t ions have up l ine
and downl ine b locks o f vary ing s izes . The up l ine
block size seen by one application is the downline
block size used by the other application.

CDC-defined batch devices have network data block
s i z e 8 t h a t a r e m u l t i p l e s o f 6 4 c e n t r a l m e m o r y
words. Each such block is one mass storage physi
cal record unit (PRU) of a file.

The ne twork admin is t ra to r es tab l i shes the appro
p r i a t e s i z e o f u p l i n e a n d d o w n l i n e n e t w o r k d a t a
b locks fo r each te rmina l dev ice or app l i ca t ion- to -
appl icat ion connect ion when the network configura
t i on fi l e i s c rea ted . S i zes a re usua l l y chosen to
fi t a s i n g l e m e s s a g e i n t o a s i n g l e n e t w o r k d a t a
b l o c k , o r t o o p t i m i z e u s e o f a v a i l a b l e n e t w o r k
s t o r a g e , o r t o s a t i s f y s o m e o t h e r a d m i n i s t r a t i v e
c r i t e r i o n . T h e a d m i n i s t r a t o r a l s o e s t a b l i s h e s t h e
co r rec t s i ze fo r a t e rm ina l t r ansmiss ion b lock i n
the network configura t ion fi le .

The ini t ial size of an upl ine network data block is
e s t a b l i s h e d b y t h e s i t e a d m i n i s t r a t o r (u s i n g t h e
UBZ parameter of an NDL statement) when he or she
defines the dev ice o r app l i ca t i on connec t ion tha t

2-2 60499500 R
^ = ^ J V

0̂ *̂

HOST

NETWORK BLOCKS

FRONT-END
NPU

NETWORK BLOCKS

© -
TRUNK-

REMOTE
NPU

■ e

FRAMES

NETWORK BLOCKS

8:
COMMUNICATION

L I N E ▶

TERMINAL
DEVICE

J-
TERMINAL

TRANSMISSION
BLOCKS

OR

X.25 PROTOCOL
PACKETS

Figure 2-2. Block Reassembly Points

produces the block. Once a size is established for
a connection, that size determines the maximum num
ber of characters an application program can receive
as a 8 ing le ne twork da ta b lock . When an up l i ne
message i s t oo l ong t o fi t i n t o a s i ng le ne two rk
data block, the NPU divides it into as many network
da ta b l ocks as necessa ry be fo re de l i ve r y t o t he
application program.

A p p l i c a t i o n - t o - a p p l i c a t i o n d a t a i s n o t s p l i t i n t o
sma l l e r b locks be fo re up l i ne de l i ve ry i f t he da ta
crosses a trunk l ine between two host nodes or i f
it is passed between two programs in the same host.
Such data does not pass through the NPU software
that prepares al l other upline blocks.

The in i t ia l s ize o f a downl ine network data b lock
is establ ished by the s i te administ rator (us ing the
DBZ parameter of an NDL statement) when he or she
defines the dev ice o r app l i ca t i on connec t ion tha t
r e c e i v e s t h e b l o c k . T h e e s t a b l i s h e d s i z e i s a
recommended maximum for the number of characters an

application program should send in a single network
block. The actual maximum size of a downline net
wo rk b l ock i s chosen by t he app l i ca t i on p rog ram
sending the block. NAM imposes an absolute maximum
size, however; th is absolute maximum is descr ibed
later in this section under the heading Block Buffer
Areas.

The maximum length used for each network data block
to or from a device can be independent of the ter
m i n a l ' s t r a n s m i s s i o n b l o c k s i z e . F o r e x a m p l e , a
mode 4 console cannot accept a transmission block
conta in ing more than a spec ified number o f char
acters. An appl icat ion program could divide a mul
t i p l e l i n e d i s p l a y t r a n s m i t t e d t o t h e c o n s o l e o f
such a te rm ina l i n to ne twork b locks sma l le r than
the buffer space of the specific terminal. However,
the application program does not need to divide its
network b locks. The network sof tware reconst ructs
any o f t he p rog ram 's ne two rk da ta b locks l onge r
than the te rmina l ' s bu f fe r space in to severa l te r
minal transmission blocks of the correct size.

An application program is advised of the upline and
d o w n l i n e n e t w o r k d a t a b l o c k s i z e s a n d t e r m i n a l
t ransmiss ion b lock s ize defined when log ica l con
nec t ion to a dev ice occurs . Your app l i ca t ion p ro
gram can change the establ ished upl ine block size
u s i n g c o n t r o l i n f o r m a t i o n c a l l e d a fi e l d n u m b e r /
fie ld va lue pai r ; th is process is descr ibed in sec
tion 3. Your application program cannot change the
establ ished downl ine b lock s ize but can ignore i t .
Ignoring a recommended value can cause resource
prob lems fo r the ne twork so f tware , pa r t i cu la r l y in
the NPUs.

The up l ine b lock s ize is en forced by the ne twork
s o f t w a r e , w h i c h s u b d i v i d e s t e r m i n a l t r a n s m i s s i o n
blocks input from a device into network data blocks
o f t h a t s i z e o r s m a l l e r . T h e u p l i n e b l o c k s i z e
defines the la rgest b lock that NAM wi l l de l iver to
the application program from a device.

T h e d o w n l i n e b l o c k s i z e s d e fi n e d a r e a d v i s o r y
values. That is, an appl icat ion program can accept
t he s i ze spec i fied f o r a g i ven l og i ca l connec t i on
when the connection is made, or ignore that speci
fication and choose its own value for maximum block
s i z e . I f a n a p p l i c a t i o n p r o g r a m t r a n s m i t s b l o c k s
la rge r t han the down l i ne b lock s i ze , t he ne twork
so f tware does no t subd iv ide them unt i l i t c rea tes
transmission blocks for the terminal .

The down l i ne t e rm ina l t r ansm iss ion b l ock s i ze i s
also enforced by the network software. Your appl i
ca t ion program can change the es tab l ished t rans
mission block s ize using a field number/field value
pair, as described in section 3.

Application programs should use the downline block
sizes defined whenever possib le. I f the s ize of an
upline or downline network data block is not appro
priate for the type of data being exchanged with a
connection, device, you should discuss the situation
wi th the ne twork admin is t ra to r who configures the
d e v i c e s b e i n g s e r v i c e d . T h e N e t w o r k D e fi n i t i o n
Language re fe rence manua l l i s t ed i n t he p re face
contains guidelines for choosing upline and downline
network data block sizes and for selecting terminal
transmission block sizes.

60499500 R 2-3

Block Limits

Temporary network b lock storage (queuing) occurs
fo r up l i ne and down l i ne t r a f fic a t seve ra l po in t s
In the network. The network adminstrator contro ls
the storage space required by control l ing the net
work data block size and the number of blocks queued
in each direct ion.

The number of blocks queued depends on several
Network Definition Language (NDL) statement param
eters. One of those parameters, the ABL parameter,
e s t a b l i s h e s t h e a p p l i c a t i o n b l o c k l i m i t . A n o t h e r
NDL statement parameter, the UBL parameter, estab
l i s h e s t h e u p l i n e b l o c k l i m i t . T h e u p l i n e b l o c k
l imit determines the number of upl ine blocks NAM
queues fo r your p rogram be fo re re jec t ing fu r ther
i npu t .

The upline block limit can be changed by the appli
cat ion program, using contro l in format ion cal led a
fi e l d n u m b e r / fi e l d v a l u e p a i r . T h i s p r o c e s s i s
described in section 3.

The app l i ca t i on b l ock l im i t i s ano the r dev i ce o r
a p p l i c a t i o n c o n n e c t i o n c o n fi g u r a t i o n p a r a m e t e r
r e c e i v e d b y a n a p p l i c a t i o n p r o g r a m (a s t h e a b l
fie ld va lue) when log ica l connect ion occurs . Your
app l i ca t i on p rog ram canno t send more than tha t
number of downl ine b locks for queuing wi th in the
network. The use of the appl icat ion b lock l imi t is
d e s c r i b e d i n s e c t i o n 3 a s p a r t o f t h e d a t a fl o w
cont ro l descr ip t ion .

Transmission Blocks
Terminals send or receive data in physical groupings
o f c h a r a c t e r b y t e s ; t h e s e g r o u p i n g s a r e c a l l e d
transmission blocks. The size of a downline trans
mission b lock for a specific device is a lso estab
lished by the network administrator (using the XBZ
parameter o f an NDL s ta tement) . The va lue used
might be dictated by hardware requirements.

Transmission blocks exchanged with X.25 devices are
called packets and have different size and protocol
c o n t e n t r e q u i r e m e n t s t h a n t r a n s m i s s i o n b l o c k s
exchanged d i r ec t l y w i t h a t e rm ina l . The ne two rk
admin is t ra to r can con t ro l some o f the charac te r
ist ics of packets.

During upline transmissions from a device, the NPU
reassembles the terminal 's t ransmission block into
ne two rk b l ocks . Each t r ansm iss i on b l ock f r om a
CDC-defined ba t ch dev i ce can con ta i n pa r t o f a
single message, all of a single message, or several
messages . Each t ransmiss ion b lock f rom a CDC-
defined console device can contain al l of a single
message, or several messages.

During downline transmissions, the NPU resassembles
network b locks in to te rmina l t ransmiss ion b locks .
T h i s c o n v e r s i o n i s d o n e s o t h a t t h e a p p l i c a t i o n
p r o g r a m n e e d n o t b e c o n c e r n e d t h a t o u t p u t i s
d e l i v e r e d i n a p p r o p r i a t e l y s i z e d t r a n s m i s s i o n
b locks when the t e rm ina l canno t p rocess b locks
l a r g e r t h a n a m a x i m u m s i z e . E a c h t r a n s m i s s i o n
block can contain part of a single message or al l
of a single message; downline transmission blocks
do not contain more than one message.

INTERACTIVE TERMINAL INPUT
CONCEPTS
An interact ive device can send or receive data in
two modes:

Normalized mode

Transparent mode

The significance of these data modes is described
l a t e r i n t h i s s e c t i o n u n d e r I n t e r a c t i v e V i r t u a l
Termina l Data . The fo l lowing d iscuss ion does not
apply to transparent mode data.

In normalized mode, an interactive device transmits
log ica l l i nes o f da ta . Each log ica l l i ne i s ana lo
gous to an English sentence. It is a complete unit
of informat ion.

The device can transmit these lines one at a time,
or in se ts . I t there fore can use one o f two pos
sible transmission modes.

I f the dev ice can t ransmi t on ly one charac te r o r
one log ica l l i ne in each t ransmiss ion b lock , i t i s
operat ing in l ine mode. I f the device can transmit
more than one logical l ine in a transmission block,
it is operating in block mode.

X.25 devices (terminal c lasses 1 through 3 and 5
through 8), HASP and 2780/3780 devices (terminal
c lasses 9, 14, 16, 17, and 18) a lways operate in
l i ne mode . Mode 4 dev i ces (t e rm ina l c l asses 10
through 13 and 15) always operate in block mode.
O n l y d e v i c e s i n t e r m i n a l c l a s s e s 1 , 2 , a n d 5
through 8 can operate in both modes.

Line Mode Operation
F r o m a t e r m i n a l u s e r ' s v i e w p o i n t , t r a n s m i t t i n g a
s i n g l e l o g i c a l l i n e a t a t i m e i s a b u f f e r e d l i n e
mode form of input. Buffered l ine mode al lows the
u s e r t o s e l e c t e i t h e r c h a r a c t e r - b y - c h a r a c t e r o r
l i n e - b y - l i n e t r a n s m i s s i o n (s o m e d e v i c e s h a v e
sw i t ches to se lec t e i t he r op t i on) w i thou t d i s t i nc
t i on . Each l og i ca l l i ne i s t e rm ina ted by an end -
o f - l i ne i nd i ca to r ; t h i s i nd i ca to r m igh t a l so t rans
m i t t h e l i n e f r o m t h e t e r m i n a l , i f t h e t e r m i n a l
bu f fe rs l i nes o f inpu t . Each log ica l l i ne becomes
a separate network message when the NPU receives it.

When the NPU is told that an interactive device is
operating in line mode, the NPU performs line turn
around fo r i t . When a message is sent up l ine in
this mode, the NPU begins to send any downline data
a v a i l a b l e f o r t h e d e v i c e . T h a t i s , o u t p u t i s
a l l o w e d a f t e r e a c h l o g i c a l l i n e o f i n p u t . (R e f e r
to the KB option for the IN command, described in
sect ion 3.)

Block Mode Operat ion

Some devices can transmit many logical l ines in a
s i n g l e t r a n s m i s s i o n b l o c k . (T h e t e r m i n a l u s e r
sometimes can select or override this condition with
a BLOCK or BATCH mode switch on the device.) Such
dev ices are ca l led b lock mode termina ls . Mode 4
devices, for example, are a lways t reated as b lock
mode devices.

/-*^%.

2-4 60499500 S

B l o c k m o d e t e r m i n a l s g r o u p l o g i c a l l i n e s i n t h e
t e r m i n a l u n t i l t h e t r a n s m i s s i o n k e y i s p r e s s e d ;
these groups reach the network software as a single
transmission block. The network sof tware forwards
each message to the application program as a sepa
rate t ransmiss ion; the effect resembles typeahead
entries from line mode terminals.

E a c h l o g i c a l l i n e w i t h i n t h e i n p u t t r a n s m i s s i o n
b l o c k e n d s w i t h a n e n d - o f - l i n e i n d i c a t o r . E a c h
transmission block is terminated by an end-of-block
i n d i c a t o r.

Whether each log ica l l ine in a t ransmiss ion b lock
becomes a separate message or each transmission
block becomes a single message is ini t ial ly deter
m i n e d b y t h e n e t w o r k a d m i n i s t r a t o r t h r o u g h t h e
d e v i c e d e fi n i t i o n i n t h e n e t w o r k c o n fi g u r a t i o n
fi l e . Yo u r a p p l i c a t i o n p r o g r a m o r t h e t e r m i n a l
user can change that mode (refer to the EL and EB
options of the EB command, described in section 3).

When the NPU is told an interactive device is oper
ating in block mode, the NPU does not perform line
t u r n a r o u n d f o r i t u n t i l a l l o f i t s c u r r e n t t r a n s
m iss i on b l ock i s r ece i ved . When t he t e rm ina l i s
serviced in this mode, the NPU holds al l downline
da ta ava i lab le fo r the dev ice un t i l i t de tec ts the
end-o f -b lock ind ica to r. Tha t i s , ou tpu t i s a l l owed
af ter each log ica l l ine o f input on ly i f each log i
c a l l i n e o f i n p u t i s t r a n s m i t t e d i n a s e p a r a t e
block. (Refer to the BK and PT options for the IN
command, described in section 3.)

A terminal might have a block transmission key that
does not generate the end-of-block indicator. When
the block transmission key generates the end-of-line
ind ica tor, the te rmina l i s opera t ing in l ine mode,
and logical l ines are transmit ted from the terminal
as separate messages.

When the transmission key does not generate either
the cu r ren t l y defined end -o f - l i ne i nd i ca to r o r t he
c u r r e n t l y d e fi n e d e n d - o f - b l o c k i n d i c a t o r, t h e t e r
m i n a l u s e r m u s t b e a w a r e o f t h e d i s t i n c t i o n . I f
possib le, the user should change the end-of-b lock
ind icator to the code actual ly sent by the key. I f
not possible, if the code sent by the key cannot be
determined, or if the key does not generate a code,
then the user must enter an indicator as the last
d a t a c h a r a c t e r b e f o r e p r e s s i n g t h e t r a n s m i s s i o n
key. These possib le condi t ions ex is t :

I f the transmission key is pressed immediately
af ter pressing the key that generates an end-
of- l ine indicator, a message is generated. This
result Is the same as if the device was opera
t ing i n l i ne mode and the key genera t ing an
end-o f - l ine ind ica tor had been pressed, o r as
i f the key generat ing an end-of-b lock indicator
had been pressed.

I f the t ransmission key is pressed immediately
af ter pressing the key that generates an end-
o f - b l o c k i n d i c a t o r, a m e s s a g e i s g e n e r a t e d .
Th is resu l t i s the same as i f the dev ice was
operat ing in l ine mode and the key generat ing
an end-o f - l ine ind ica tor had been pressed, or
as i f t he t ransmiss ion key had gene ra ted an
end-o f -b lock ind ica tor.

I f t h e t r a n s m i s s i o n k e y i s p r e s s e d w i t h o u t
pressing an end-of- l ine key or end-of-block key
as the las t p r io r ac t i v i t y, an incomple te mes
s a g e e x i s t s . T h e Te r m i n a l I n t e r f a c e P r o g r a m
(TIP) generates an upline network data block if
enough information was received. I f a downline
b l o c k i s a v a i l a b l e f o r t h e d e v i c e , t h e d a t a
remains queued while the TIP waits for comple
t i o n o f t h e i n p u t t r a n s m i s s i o n b l o c k . T h i s
s i tua t ion ex is ts un t i l t he te rm ina l user en te rs
more data, ending with either an end-of- l ine or
an end-of -b lock ind icator.

Physical and Logical Lines
A l o g i c a l l i n e o f i n p u t c a n c o n t a i n o n e o r m o r e
phys ica l l ines ; a phys ica l l ine ends when ver t i ca l
repos i t i on ing o f the cu rsor o r ca r r iage occurs . I f
the device recognizes a l inefeed operat ion dist inct
f rom a ca r r i age re tu rn opera t i on , a phys i ca l l i ne
ends when a l inefeed is entered. I f no d is t inct ion
ex is ts be tween ver t i ca l and hor i zon ta l repos i t ion
ing , a phys ica l l ine is ident ica l to a log ica l l ine .

A physical l ine of input is relevant to the network
software only when a backspace character is proc
e s s e d . Te r m i n a l u s e r s c a n n o t b a c k s p a c e a c r o s s
p h y s i c a l l i n e b o u n d a r i e s t o d e l e t e c h a r a c t e r s i n
physical l ines other than the current one.

A logical l ine of input always ends when an inter
ac t i ve dev i ce t r ansm i t s an end -o f - l i ne o r end -o f -
b l o c k i n d i c a t o r . A n u p l i n e m e s s a g e i s n o r m a l l y
t ransmi t ted to the hos t as soon as a log ica l l ine
ends.

End-of-Line Indicators
T h e e n d - o f - l i n e i n d i c a t o r i s i n i t i a l l y e s t a b l i s h e d
by the network administrator when he or she defines
t h e d e v i c e i n t h e n e t w o r k c o n fi g u r a t i o n fi l e . T h e
i n d i c a t o r i s e i t h e r a s p e c i fi c c o d e , a c o d e
sequence , o r a spec ific cond i t i on assoc ia ted w i th
use of a certain key or set of keys by the terminal
operator. The defau l t keys for generat ing an end-
of- l ine indicator are shown in table 2-1.

Your appl icat ion program or the terminal user can
c h a n g e t h i s i n d i c a t o r (r e f e r t o t h e E L c o m m a n d
options, described in section 3). The NPU normally
d i sca rds any end -o f - l i ne i nd i ca to r cha rac te r code
when it detects the end of a logical l ine.

Multiple Logical Lines in One Message
F o r u p l i n e d a t a f r o m a n i n t e r a c t i v e d e v i c e , t h e
network admin is t ra tor can configure the dev ice so
tha t the NPU ignores the charac te r o r even t tha t
normally causes it to transmit a message as soon as
a log ica l l ine ends. Ins tead, he or she can make
the NPU use a different character or event to tr ig
g e r t r a n s m i s s i o n t o t h e h o s t . Yo u r a p p l i c a t i o n
program o r the te rm ina l use r can a lso make th i s
change (refer to the EB option of the EL command,
described in sect ion 3).

r „

60499500 R 2-5

TABLE 2-1. DEFAULT MESSAGE DELIMITER AND TRANSMISSION KEYS

Terminal
Class

Archetype
Terminal

End-of-Line Key
Character or
Line Mode

Transmission Key

Block Mode
Transmission Key

1

2

3

4

5

6

7

8

Teletype Model 30
ser ies

CDC 713, 751, 752,
756

CDC 721

IBM 2741

Teletype Model 40-2

Hazeltine 2000

VT 100

Tektronix 4014

RETURN

RETURN or
CARRIAGE RETURN

NEXT

RETURN

RETURN

CR

CARRIAGE
RETURN

RETURN

RETURN

RETURN or
CARRIAGE RETURN

NEXT

RETURN

RETURN

CR

CARRIAGE
RETURN

RETURN

CTRL and D

SEND or
CONTROL and D

NEXT

None

SEND

SHIFT and XMIT
or CTRL and D

CTRL and D

CTRL and D

1 thru 3
5 thru 8

X.25 packet assembly/
disassembly (PAD)
console device

Same as above Packet
t ransmission
key

Packet
t ransmission
key

9

10

11

12

13

14

15

16

17

18

19 thru
28

HASP (postprint)

CDC 200 User Terminal

CDC 714-30

CDC 711

CDC 714-10/20

HASP (preprint)

CDC 734

IBM 2780

IBM 3780

IBM 3270

Reserved for CDC use

Var iab le

RETURN

NEW LINE

NEW LINE

NEW LINE

Var iab le

NEW LINE

End of card

End of card

ENTER

Var iab le

None

None

None

None

Var iab le

None

End of card

End of card

None

None

SEND

ETX

ETX

ETX

None

SEND

None

None

None

29 thru
31

S i te -defined Unknown Unknown Unknown

This option al lows the terminal user to pack many
■ log ica l l ines in to one up l ine network b lock. Each

l i ne i nc ludes the end-o f - l i ne i nd i ca to r as a da ta
c h a r a c t e r t h a t t e r m i n a t e s i t . T h i s i s a f o r m o f
l i n e m o d e , b e c a u s e t h e h o s t r e c e i v e s o n l y o n e
message. From the terminal user 's v iewpoint , one
message is many logical lines.

End-of-Block Indicators
The end-o f -b lock ind ica to r i s in i t i a l l y es tab l i shed
for the device by the network administrator when he

or she defines the device in the network configura
t i on fi le . The ind i ca to r i s e i t he r a spec ific code ,
a code sequence, or a specific condition associated
w i th use o f a ce r ta in key o r se t o f keys by t he
terminal operator.

T h e d e f a u l t k e y s f o r g e n e r a t i n g a n e n d - o f - b l o c k
ind icator are shown in tab le 2-1. In X.25 packet -
switching networks, the packet t ransmission condi
t ion Is always the end-of-block indicator.

When the device is not operating in block mode, the
end-o f -b lock ind ica to r has the same e f fec t as an
end -o f - l i ne i nd i ca to r.

2-6 60499500 S

0H&*\

Your appl icat ion program or the terminal user can
change the end-of-block indicator (refer to the EB
command, descr ibed in sec t ion 3) . Th is ind ica to r
normally is discarded when the last message from the
device is sent upline.

INTERACTIVE TERMINAL OUTPUT
CONCEPTS

A downline message can contain no logical lines (an
empty block or a transparent mode block) or many
l o g i c a l l i n e s o f o u t p u t . E a c h l o g i c a l l i n e c a n
contain many physical lines of output.

A logical l ine of output ends when the appl icat ion
program embeds a code or se t o f by tes fo r tha t
purpose in the message, or when the block containing
the l ine ends. A downl ine message ends when an
appl icat ion program indicates that condit ion.

Because downline messages can always contain more
t h a n o n e l o g i c a l l i n e , a n i n t e r a c t i v e d e v i c e c a n
always receive the output equivalent of a mult iple-
message block mode input transmission. The appli
cation program can group logical lines as necessary
to achieve that effect .

I f a m e s s a g e fi t s i n t o a d o w n l i n e n e t w o r k d a t a
block, the block becomes a single-block message.
If one downline message cannot be fit into a single
ne twork da ta b lock , t he app l i ca t i on p rog ram can
s p l i t i t i n t o a s m a n y b l o c k s a s n e c e s s a r y. A n
a p p l i c a t i o n p r o g r a m g e n e r a l l y s e n d s a s i n g l e
message (cons is t i ng o f as many log i ca l l i nes as
necessary) as the response to one input message
from an interactive device.

BATCH DEVICE DATA
Batch devices can be serviced as site-defined device
t y p e s t h r o u g h t h e i n t e r a c t i v e v i r t u a l t e r m i n a l
i n te r f ace desc r i bed l a te r I n t h i s sec t i on . A sep
a r a t e s e t o f i n t e r f a c e p r o t o c o l s a l s o e x i s t s f o r
b a t c h d e v i c e s s e r v i c e d b y C D C - w r i t t e n Te r m i n a l
Interface Programs and application programs.

These programs require large amounts of data to be
exchanged between a host computer's mass storage
devices and CDC-defined batch devices. Such batch
data is therefore assembled into messages of one or
more network data blocks. Each network data block
contains one or more mass storage physical record
units (PRUs). Because only the CDC-written Remote
B a t c h F a c i l i t y c a n u s e t h e s p e c i a l i n t e r f a c e f o r
CDC-defined batch dev ices , the remainder o f th is
m a n u a l d o e s n o t d i s c u s s t h e r e q u i r e m e n t s t h i s
in te r face imposes on ba tch da ta o r ba tch dev ice
support.

App l i ca t i on p rog rams i n d i f f e ren t hos ts exchange
d a t a b y t r a n s f e r r i n g t h e c o n t e n t s o f 8 - b i t b y t e s
through the network, as if the data were sent to or
received f rom an in teract ive v i r tua l terminal .

A p p l i c a t i o n p r o g r a m s c a n e x c h a n g e d a t a o n l y i n
transparent mode. Upline and downline messages are
not subdiv ided into logical l ines. Embedded codes
a re no t used t o t e rm ina te l i nes o r ne two rk da ta
blocks within the messages.

INFORMATION IDENTIFICATION
PROTOCOLS
CDC network host software uses four general con
v e n t i o n s f o r i d e n t i f y i n g n e t w o r k b l o c k s . T h e s e
c o n v e n t i o n s i n d i c a t e t h e f o l l o w i n g t h i n g s t o t h e
application program sending or receiving the block:

The k ind of message of which the b lock is a
part; this is called the message type.

The k ind o f in format ion wi th in the b lock ; th is
is cal led the appl icat ion block type.

The areas of host central memory containing the
block and containing information describing the
block; these are called the block buffer areas.

The source or dest inat ion of the b lock; these
connec t i on i den t i fie rs a re ca l l ed t he app l i ca
tion connection number and the application l ist
number.

The fo l lowing subsect ions descr ibe these conven
t i o n s .

APPLICATION PROGRAM MESSAGE TYPES
An application program message is a complete logical
unit of information, comprising one or more physical
network blocks. A message can be a line of data to
o r f r o m a t e l e t y p e w r i t e r, a m a s s s t o r a g e fi l e , a
service request to NAM, or a screen of information
for a cathode ray tube.

There are two kinds of appl icat ion messages, data
and supervisory. Data messages convey information
of significance only to a device user or to another
application program. Data messages can consist of
more than one network data block.

Supervisory messages convey information of signifi
cance on l y t o t he ne two rk so f twa re . Supe rv i so r y
messages consist of only one network block.

Superv isory messages are used by an appl icat ion
program to control data messages between itself and
logica l connect ions.

r

APPLICATION-TO-APPLICATION INPUT
AND OUTPUT CONCEPTS

Application programs within the same host exchange
data by t ransferr ing the contents of 60-b i t centra l
memory words between control points. A program can
create a connection to itself and exchange data on
that connection.

APPLICATION BLOCK TYPES
The network b lock is the basic uni t of in format ion
exchange fo r t he app l i ca t i on p rog ram. The re a re
several types of network blocks that an appl icat ion
program can exchange. Each type has an identifying
appl icat ion b lock type number ass igned to i t . The
fo l low ing types ex is t :

60499500 R 2-7

Null blocks, which are dummy input blocks indi
cat ing the absence of any data or supervisory
in format ion. These b locks have an appl icat ion
block type number of 0.

Blocks containing portions of data messages, but
not terminat ing those messages. These blocks
have an application block type number of 1; such
blocks are cal led BLK blocks in other network
documentation.

B locks t ha t t e rm ina te da ta messages . These
blocks can include physically empty blocks when
such blocks convey logical informat ion. Blocks
that terminate data messages have an application
block type number of 2; such blocks are called
MSG blocks in other network documentation.

Blocks constituting supervisory messages. These
blocks have an application block type number of
3; such blocks include the information in blocks
called CMD, BACK, BRK, ICMD, ICMDR, and other
acronyms in some network documentation.

B l o c k s c o n t a i n i n g p o r t i o n s o f q u a l i fi e d d a t a
messages, but not terminating those messages.
These b locks have an app l i ca t i on b lock t ype
number of 6; such blocks are called QBLK blocks
in other network documentation.

Blocks that terminate qual ified data messages.
T h e s e b l o c k s c a n i n c l u d e p h y s i c a l l y e m p t y
b l o c k s w h e n s u c h b l o c k s c o n v e y l o g i c a l
i n f o r m a t i o n . B l o c k s t h a t t e r m i n a t e q u a l i fi e d
data messages have an appl icat ion block type
number of 7; such blocks are called QMSG blocks
in other network documentation.

Qual ified data can be used only on appl icat ion-to-
appl icat ion connect ions. Such data has no specia l
s ign ificance to the CYBER 170 network so f tware .
Qual ified data is intended for appl icat ion programs
in order for such programs to communicate control
in format ion among themselves that is outs ide the
data stream but synchronous with i t . For example,
u s e r i d e n t i fi c a t i o n i n f o r m a t i o n (q u a l i fi e d d a t a)
placed before data in t ransferr ing fi les.

B locks w i th an app l i ca t i on b lock t ype o f 6 o r 7
c a n n o t b e s e n t o r r e c e i v e d o n t h e l o g i c a l
connection between blocks with an application block
type of 1 or 2. Qualified data can only be sent or
r e c e i v e d a f t e r a n u n q u a l i fi e d m e s s a g e e n d s o r
before an unqualified message begins.

Block Header Area
B l o c k h e a d e r a r e a s e a c h c o n t a i n a 6 0 - b i t w o r d
d e s c r i b i n g t h e c o n t e n t s o f a c o r r e s p o n d i n g t e x t
area. This block header word accompanies the block
i n t h e c o r r e s p o n d i n g b l o c k t e x t a r e a d u r i n g t h e
exchange between the application program and NAM.

For downline blocks, the application program creates
the block header and NAM interprets it. For upline
blocks, NAM creates the block header and the appli
cat ion program interprets i t .

Because the contents of the header word depend on
the contents of the text area, the header word for
mats a re descr ibed in th is manua l a f te r the tex t
area content pro toco ls are descr ibed. To s impl i fy
the header area descriptions, they are presented in
four separate formats:

For upline network data blocks

For downline network data blocks

For upline supervisory message blocks

For downline supervisory message blocks

Block Text Area
A block text area is separately addressed from its
header area and need not be contiguous to it. The
t e x t a r e a c o n t a i n s t h e s i n g l e n e t w o r k b l o c k
described by the header word in the header area.

Text areas can be of varying length, as necessary
to accommodate various block lengths. The text area
has a maximum length expressed as a whole number of
central memory words. Text areas can be up to 410
central memory words long.

The length of the text area used by the application
program is described to the network by the applica
tion program. The text area length must be calcu
lated from the maximum length of the blocks it will
conta in.

B l o c k l e n g t h i s d i s t i n c t f r o m t e x t a r e a l e n g t h .
The length of a block depends on the type and use
of the block.

Null blocks have zero length and do not require any
cen t ra l memory wo rds f o r t he i r t ex t a rea . O the r
block types have lengths expressed in character byte
units, although the bytes need not actually contain
characters.

^ ^ S k

BLOCK BUFFER AREAS
All network blocks are exchanged between the appli
cation program and the network software using two
kinds of buffers:

The block header area

The block text area

Blocks are always a whole number of character units
long but do not have to be a whole number of central
memory words long. Not all words in the text area
u s e d f o r a g i v e n b l o c k n e e d t o b e fi l l e d w i t h
meaningful information.

Supervisory message blocks are 1 through 410 words
long. Data b locks have lengths of zero up to the
maximum number of characters that can fit in the
maximum text area of 410 words, or 2043 characters,
whichever occurs first .

2-8 60499500 S

Downline messages containing more characters than
the text area can hold must be divided into several
network data blocks. Each such block must fit into
the tex t a rea . Each o f t hese b locks shou ld a l so
meet the network block size requirement and must be
transmit ted separately.

Upline data blocks can be truncated to fit into the
e x i s t i n g t e x t a r e a . A l t e r n a t i v e l y, t h e a p p l i c a t i o n
program can use a large text area for large blocks
and a small text area for small blocks.

CONNECTION IDENTIFIERS
Two parameters identi fy and control the routing of
messages:

The application connection number

The application list number

Both parameters are used in AIP ca l l s tha t fe tch
incoming network data blocks. The application con
nection number is used in the block header words of
outgoing blocks.

Application Connection Number
The application connection number is a 12-bit inte
ger used to address a particular logical connection.
The connection number can be used as an index into
a contro l s t ructure (for example, the number of a
connection could be the ordinal of a corresponding
d e v i c e t a b l e) o r u s e d i n a n y o t h e r m a n n e r t h e
application chooses.

These connection numbers are assigned serial ly by
NAM fo r each app l i ca t ion p rogram. Numbers tha t
become ava i l ab le because o f d i sconnec t i ons a re
reassigned to subsequent connections.

A connect ion number of zero indicates the contro l
connection on which asynchronous supervisory mes
sages are sent and received. (See Supervisory Mes
sage Content and Sequence Protocols, later in this
sec t i on .)

Application List Number
NAM permits an application program to group connec
t i o n s w i t h s i m i l a r p r o c e s s i n g r e q u i r e m e n t s i n t o
n u m b e r e d l i s t s . T h i s i s a n e f fi c i e n c y f e a t u r e ,
r e l i e v i n g t h e a p p l i c a t i o n o f t h e n e e d t o s p e c i f y
individual connections each t ime upline block proc
e s s i n g i s r e q u i r e d . I n s t e a d , w h e n a r e q u e s t i s
made for a block from a connection on a l ist, any
device or application program connections with empty
input queues are automatically skipped and a block
from the first nonempty queue is returned. A single
null block is returned when none of the connections
on the list have any input queued.

T h i s f e a t u r e c a n b e u s e d i n m a n y k i n d s o f l i s t
s t ructures. For example:

An application program must process input from
devices with large network block sizes (such as
i n t e r a c t i v e g r a p h i c s t e r m i n a l s i n a s p e c i fi c

t e r m i n a l c l a s s) d i f f e r e n t l y t h a n i n p u t f r o m
devices with small block sizes. This processing
o c c u r s i n d i f f e r e n t p o r t i o n s o f t h e p r o g r a m
code; therefore, the application program assigns
the dev i ces us i ng l a rge b l ocks t o l i s t 1 and
the devices using small blocks to list 2.

An app l i ca t ion p rogram t rea ts a l l dev ices the
same and must process blocks from them on an
equa l bas i s . Acco rd i ng l y, i t a ss i gns t hem a l l
to the same list.

An app l i ca t i on p rog ram se rv i ces t e rm ina l s i n
four geographical areas; each must be treated
s e p a r a t e l y b e c a u s e o f v a r y i n g s t a t e l a w s .
A c c o r d i n g l y , t h e y a r e a s s i g n e d t o l i s t s 1
through 4.

An app l i ca t ion p rog ram serv i ces dev ices tha t
should be t reated the same, but wi th the fo l
lowing compl icat ion: when the appl icat ion has
received a block f rom a part icular terminal , i t
must perform some time-consuming function that
prevents it from immediately processing another
block from the same terminal. Accordingly, the
application places all connections on list 1 and
issues an input request on list 1. When a block
f o r c o n n e c t i o n x i s r e t u r n e d , I t t e m p o r a r i l y
inhibits receipt of data on connection x before
i t issues the next input request . When i t can
a c c e p t a n o t h e r d a t a b l o c k f r o m t h e t e r m i n a l
u s i n g l o g i c a l c o n n e c t i o n x , t h e a p p l i c a t i o n
program sends a supervisory message to reverse
the effect of the temporary inhib i t ion.

The parameter used for th is k ind of processing is
ca l led the appl icat ion l is t number. The appl icat ion
list number is an integer from 0 through 63 speci
fied by the appl icat ion program when i t accepts a
connection. NAM links message input (upline) queues
of all connections that have been assigned the same
l i s t numbe r. An app l i ca t i on p rog ram can r eques t
blocks f rom these l inked queues in rotat ion (wi th
out spec i fy ing ind iv idua l connect ions) by inc lud ing
the assigned application l ist number in a NETGETL
or NETGTFL statement (described in section 5).

Each l i s t number ident ifies one connect ion l i s t . A
connection list can be viewed as a table of connec
tion numbers. These connection numbers are entered
in the tab le in the order in which the app l ica t ion
program assigns the connect ions to the l is t . When
t h e l i s t i s s c a n n e d f o r i n p u t f r o m a c o n n e c t i o n ,
the connections are examined in the order in which
they are entered in the table.

The app l ica t ion program exp l ic i t l y ass igns the l i s t
number to each logical connection when the connec
t i o n i s e s t a b l i s h e d . T h e l o g i c a l c o n n e c t i o n c o r
respond ing to app l ica t ion connect ion number zero
already exists when the application is connected to
the ne twork . For th is reason, app l i ca t ion connec
t i o n n u m b e r z e r o i s a u t o m a t i c a l l y a s s i g n e d t o
appl icat ion l is t number zero wi thout program inter
ven t ion .

The appl icat ion program does not have to maintain
any tables associat ing connect ion numbers and l ist
numbers. The application program need not use l ist
process ing a t a l l .

60499500 R 2-9

DATA MESSAGE CONTENT
AND SEQUENCE PROTOCOLS
Data blocks consist of 1 through 410 60-bit words
o r 1 t h r o u g h 2 0 4 3 8 - b i t o r 1 2 - b i t b y t e s . T h e
fields within these blocks convey information to or
f r o m t h e t e r m i n a l u s e r . D a t a b l o c k s h a v e
associated block header words. These header words
c o n v e y i n f o r m a t i o n t o t h e n e t w o r k s o f t w a r e
concerning the contents of the corresponding text
area buffer.

D a t a b l o c k s a r e s e n t a n d r e c e i v e d t h r o u g h t h e
Application Interface Program routines described in
sec t i on 5 . The app l i ca t i on p rog ram fe t ches da ta
messages one block at a time. When the connection
queue i s empty, a nu l l b lock w i th an app l i ca t ion
block type of zero is returned.

The network software provides a mechanism for the
application program to determine when data blocks
are queued. When a call to an AIP routine is com
p l e t e d , a s u p e r v i s o r y s t a t u s w o r d a t a l o c a t i o n
defined by the app l i ca t ion p rogram is updated to
ind icate whether any data b locks are queued. As
long as the application program continues to make
ca l l s to A IP rou t ines , i t can tes t the superv isory
s ta tus word per iod ica l ly (ins tead o f a t tempt ing to
fe t ch nu l l b l ocks f r om a l l app l i ca t i on connec t i on
numbers). The supervisory status word and the use
of NETWAIT are described in section 5.

The protocols for data message text and the use of
the text area buffer depend on whether the logical
connect ion Is with another appl icat ion program, an
i n t e r a c t i v e v i r t u a l t e r m i n a l d e v i c e , o r a p a s s i v e
batch device. Blocks exchanged with other applica
t ion p rograms in the same hos t have the fewest
requ i remen ts and mos t flex ib l e s t r uc tu re . B locks
exchanged with CDC-defined batch devices using the
s p e c i a l b a t c h d e v i c e p r o t o c o l h a v e t h e m o s t
requirements and the least flexible structure.

Requirements for blocks exchanged with other appli
cation programs in the same host are covered in the
fi g u r e s l a t e r i n t h i s s e c t i o n , a n d i n s e c t i o n 3 .
Blocks exchanged between application programs are
g roups o f b ina ry cha rac te r by tes w i th no pa r i t y,
equiva lent to t ransparent mode data. Such b locks
can use the eighth bit of an 8-bit byte as data and
need not have the transparent mode bit set in their
b lock header ; see the dec r i p t i ons o f t r anspa ren t
mode and block header word content later in th is
sect ion.

The requirements for exchanging blocks with inter
active virtual terminal devices are described below.
Requirements for blocks exchanged with batch devices
through the special batch device Interface are not
descr ibed because that in ter face is avai lab le only
to RBF.

INTERACTIVE VIRTUAL TERMINAL DATA
A n i n t e r a c t i v e v i r t u a l t e r m i n a l c a n b e e i t h e r a
CDC-defined console device or a site-defined device.
An interactive virtual terminal can send and receive
data in two modes: normalized mode and transparent
mode. The format and content of data in these modes
is descr ibed la ter in th is subsect ion. The charac
ter is t i cs o f an in te rac t ive v i r tua l te rmina l depend
on which data exchange mode is currently used.

I n n o r m a l i z e d m o d e , t h e c h a r a c t e r i s t i c s o f a n
in terac t ive v i r tua l te rmina l a re as fo l lows:

Input and output can occur simultaneously.

A p a g e o f o u t p u t h a s i n fi n i t e (n o p h y s i c a l)
w id th ; l og i ca l l i nes a re d i v i ded au toma t i ca l l y
as needed to fi t the phys ica l l ine res t r ic t ions
of the device.

A p a g e o f o u t p u t h a s i n fi n i t e (n o p h y s i c a l)
length; sets o f log ica l l ines are d iv ided auto
m a t i c a l l y a s n e e d e d t o fi t t h e p h y s i c a l
restrictions of the device page.

A logical l ine of output cannot be longer than
a single network block; a s ingle message can
contain an infini te number of logical l ines.

Characters are e i ther 7-b i t ASCII codes using
z e r o p a r i t y (b i t 7 , t h e e i g h t h b i t , i s a l w a y s
ze ro i n up l i ne da ta and i gno red i n down l i ne
data), or 6-bit display codes with no parity.

L o g i c a l l i n e s o f i n p u t a r e t e r m i n a t e d b y a
c h a n g e a b l e c h a r a c t e r o r c o n d i t i o n ; t h i s t e r
m i n a t o r i s t h e e n d - o f - l i n e o r e n d - o f - b l o c k
i n d i c a t o r d e s c r i b e d e a r l i e r i n t h i s s e c t i o n .
The i npu t t e rm ina to r i s no t pa r t o f t he da ta
s e e n b y a n a p p l i c a t i o n p r o g r a m u n l e s s t h e
f u l l - A S C I I f e a t u r e i s u s e d (t h i s i s e x p l a i n e d
later in this subsection and in section 3 where
the FA command is described).

Log ica l l i nes o f ou tpu t a re te rm ina ted by an
ASCII unit separator character code (US, repre
sented by the hexadecimal value IF) or the end
of a zero-byte terminated record. The appl ica
tion program places this terminator in the data.

No cursor pos i t ion ing ac t ions a re requ i red to
a c k n o w l e d g e r e c e i p t o f i n p u t , a n d n o t i m i n g
adjustments need to be made at the end of phys
ica l ou tpu t l i nes .

Logical l ines can be divided into physical l ines
by embedding optional format control characters
in downline blocks.

I n t r a n s p a r e n t m o d e , t h e c h a r a c t e r i s t i c s o f a n
interact ive v i r tua l terminal are as fo l lows:

Input and output can occur simultaneously.

A p a g e o f o u t p u t h a s i n fi n i t e (n o p h y s i c a l)
w id th .

A p a g e o f o u t p u t h a s i n fi n i t e (n o p h y s i c a l)
leng th .

Charac te rs a re e i the r 7 -b i t codes us ing ze ro
p a r i t y (b i t 7 , t h e e i g h t h b i t , i s a l w a y s z e r o
in up l ine data and ignored in downl ine data) ,
or codes of a terminal-dependent code set with
terminal-dependent par i ty.

Messages of input are terminated by a change
ab le charac ter or cond i t ion ; th is te rminator is
one of the message or mode delimiters described
l a t e r i n t h i s s e c t i o n . T h e m o d e d e l i m i t e r i s
n o t p a r t o f t h e d a t a s e e n b y a n a p p l i c a t i o n
program.

/0^^ \

f ^ ^ K

2-10 60499500 R

ymS^N

Messages of output are terminated by a condition
or event chosen by an application program (each
n e t w o r k b l o c k i s s e p a r a t e l y d e s i g n a t e d a s
transparent or normalized when sent).

Cursor pos i t ion ing ac t ions might be requ i red,
and timing adjustments might need to be made at
the end of physical output lines.

Line Turnaround Convention
The i n te rac t i ve v i r t ua l t e rm ina l concep t imposes
some conventions on the content and sequencing of
b locks exchanged wi th an in teract ive dev ice. The
primary convention of block sequencing involves the
direction and time of block transmission.

The application program can service an interactive
dev i ce on a connec t i on as i f t he dev i ce a lways
operates in a ful l -duplex mode. That is, input and
output can occur independent ly ; the terminal user
can enter several logical l ines at once (an opera
t i o n c a l l e d t y p e a h e a d) , w i t h o u t w a i t i n g f o r a
response to each line.

A p p l i c a t i o n p r o g r a m i n p u t a n d o u t p u t n e e d n o t
a l ternate . However, some dev ices cannot ac tua l ly
operate that way. To prevent a loss of synchroni
zation between input and output at such devices, a
l ine turnaround convent ion ex is ts . This convent ion
consists of the fol lowing events.

After a block of type 2 (the end of a message) is
sent to a device, no more b locks should be sent
downline unti l at least one block is input from the
s a m e d e v i c e . A n a p p l i c a t i o n p r o g r a m t h e r e f o r e
should never send the last block of a message down
l ine unt i l i t i s ready to wa i t fo r input .

A network data block of type 2 has special signifi
cance to the network software during output to an
interact ive device. When such a b lock is the last
block of the output stream, the network software:

Unlocks the keyboard of an in teract ive device
b e i n g s e r v i c e d a s t e r m i n a l c l a s s 4 (a n I B M
2741).

Sends an X-ON code to start an automatic paper
tape input mechanism, if one has been defined
as the input mechanism for the device. Paper
tape opera t ion i s exp la ined in more de ta i l i n
section 3 where the IN and OP commands are
descr ibed.

S ta r t s po l l i ng dev i ces i n t e rm ina l c l asses 10
t h r o u g h 1 3 a n d 1 5 (m o d e 4 c o n s o l e s) , a n d
terminal class 18 (3270 consoles).

I d e n t i fi e s a n a u t o m a t i c i n p u t p r o m p t t o b e
re turned, i f the app l ica t ion program uses th is
feature. When this feature is used, the network
sof tware de l ivers the b lock to the dev ice and
r e t a i n s t h e fi r s t 2 0 c h a r a c t e r s i n t h e N P U ' s
input buffer. Subsequent input f rom the device
i s a t tached to the end o f t he re ta ined da ta .
(I f more than one logical l ine is received from
t h e d e v i c e , t h e fi r s t i s a p p e n d e d t o t h e
r e t a i n e d d a t a .) A l l l o g i c a l l i n e s a r e
t ransmi t ted to the hos t as rece i ved f rom the
device.

I f the terminal is a hal f -duplex device, such as a
2741 or a paper tape reader/punch, i t must enter
i n p u t b e f o r e t h e n e t w o r k s o f t w a r e w i l l d e l i v e r
addi t ional output messages. Other devices are not
sub jec t t o t h i s r es t r i c t i on .

The requirement for an input block after a block of
type 2 is output can be sat isfied in several ways
by terminal operators. An empty input l ine can be
entered and will reach the application program as a
b l o c k o f t y p e 2 b u t c o n t a i n i n g n o t h i n g . A l i n e
containing data can be entered and wi l l reach the
appl icat ion program as one or more network data
blocks.

D e v i c e s c a n i n t e r r u p t o u t p u t b y e n t e r i n g i n p u t .
When th is occurs, the network sof tware stops the
output unt i l the terminal user completes the input
(us i ng an end -o f - l i ne o r end -o f - b l ock i nd i ca to r) .
Output then resumes at the next character of the
current physical and logical l ine.

INTERACTIVE VIRTUAL TERMINAL
EXCHANGE MODES
The conventions of block content depend on the mode
in wh ich the b lock i s exchanged . There a re two
possible exchange modes, normalized mode and trans
p a r e n t m o d e . T h e l a t t e r i s r e f e r r e d t o i n o t h e r
documentat ion as b inary mode. This manual uses
transparent mode to indicate exchange of a block
that is not in normalized mode.

Normalized Mode Operation
The interact ive vir tual terminal interface assembles
message character streams into upline network data
b locks f rom te rm ina l t ransmiss ion b locks . I t d i s
assembles character streams from downline network
data blocks, reassembling them into terminal trans
mission blocks.

The assembly operation is control led by the termi
nat ion of log ica l l ines. The d isassembly operat ion
can be control led by the termination of messages.
The disassembly operation can also be modified by
format control characters embedded in each block,
and by the page width defined for the device (refer
to the PW command in section 3).

End of Logical Lines in Input

Logical l ines reach an appl icat ion program as one
or more network data blocks. Logical l ines usual ly
end when a message ends and do not contain the
character or code sequence defined as the end-of-
l ine or end-of-block key.

However, two special cases exist . Logical l ines do
contain the end-of- l ine or end-of-block codes when
the device is operat ing in fu l l -ASCII ed i t ing mode
(d e s c r i b e d l a t e r i n t h i s s e c t i o n) . L o g i c a l l i n e s
also contain the end-of- l ine code when the end-of-
l ine key is changed to be the defaul t end-of-block
key fo r the dev ice (see the EB op t ion o f the EL
c o m m a n d d e s c r i b e d i n s e c t i o n 3) . I n t h e l a t t e r
case, the transmission block becomes a message, and
the log ica l l ines w i th in i t have no e f fec t on con
struction or type of network data blocks.

60499500 S 2-11

Logical and Physical Lines in Output

The application program does not need to equate a
logical l ine of output to a complete message nor
does it need to create a separate network block for
each physical l ine of output. A s ingle logical l ine
can contain many complete physical l ines. A single
block can contain many complete logical l ines, and
a message can be one or many such blocks. A phys
ical or logical l ine cannot , however, be cont inued
from one block to another.

Upline Character Sets and Editing Modes
The network protocol permits entry from a device of
codes less than or equal to 8 bi ts per character;
however, a normalized mode character always reaches
an app l i ca t ion p rogram as one o f the 128 ASCI I
cha rac te rs defined i n append ix A . Rece ip t o f an
entered character by the application program depends
o n t h e e d i t i n g f u n c t i o n s p e r f o r m e d b y t h e T I P.
Three editing modes exist for the TIP when it proc
esses normalized data:

Logical l ines within downl ine blocks are ended by
a n e n d - o f - l i n e i n d i c a t o r . U n l i k e t h e e n d - o f - l i n e
ind icators used in up l ine b locks, downl ine b locks
always contain codes for the end-of- l ine funct ion;
the codes used downline are always the same and
u s u a l l y d i f f e r f r o m t h e c o d e s u s e d u p l i n e . T h e
downl ine end-of - l ine ind icator var ies accord ing to
the appl icat ion character type of the block; appl i
cat ion character types are descr ibed la ter in th is
sec t i on . By tes used to s to re i nd i ca to rs mus t be
included when determining the number of characters
comprising a downline block.

The end-of- l ine indicator in 60-bi t character bytes
(application character type 1) is determined by the
programs exchanging the block. No predefined end-
o f - l i ne i nd i ca to r ex i s t s fo r t ha t app l i ca t i on cha r
acter type.

T h e e n d - o f - l i n e i n d i c a t o r i n b l o c k s u s i n g 8 - b i t
c h a r a c t e r s i n 8 - b i t o r 1 2 - b i t b y t e s (a p p l i c a t i o n
character types 2 or 3) is determined by whether the
b lock i s sen t in norma l i zed mode or t ransparen t
mode (desc r i bed l a te r i n t h i s sec t i on) . I n t r ans
p a r e n t m o d e , n o e n d - o f - l i n e i n d i c a t o r e x i s t s . I n
norma l i zed mode, the end-o f - l i ne ind ica to r i s the
ASCII unit separator character US.

T h e e n d - o f - l i n e i n d i c a t o r i n b l o c k s u s i n g 6 - b i t
cha rac te r by tes (app l i ca t ion charac te r t ype 4) i s
1 2 t o 6 6 b i t s o f z e r o ; t h e s e b i t s a r e r i g h t -
j u s t i fi e d t o fi l l t h e l a s t c e n t r a l m e m o r y w o r d
involved. This convent ion makes each logical l ine
the equ i va l en t o f a ze ro -by te t e rm ina ted l og i ca l
record.

T h e 6 - b i t o p t i o n r e q u i r e s a r i g h t - j u s t i fi e d 1 2 - b i t
byte in at least one central memory word. On com
p u t e r s u s i n g t h e 6 4 - c h a r a c t e r s e t , t h e c o l o n i s
represented in 6-bit display code by six zero bits.
On such systems, i f the application needs to send
c o l o n s t o t h e t e r m i n a l c o n s o l e i n 6 - b i t d i s p l a y
code, care must be taken to make sure that a string
o f c o l o n s i s n o t i n t e r p r e t e d a s a n e n d - o f - l i n e
ind ica to r. A co lon p reced ing the end-o f - l i ne ind i
cator is considered as part of the indicator and not
as a colon when it occupies one of the two right
most character posi t ions in the next- to- last central
memory word of the block or any of the eight left
most positions in the last word of the block.

A l l p r e d e fi n e d e n d - o f - l i n e i n d i c a t o r s e m b e d d e d
within a block are discarded by the network sof t
ware and produce no characters on the console output
device. The network software can perform carriage
or cursor reposit ioning when an end-of- l ine indica
t o r i s e n c o u n t e r e d ; t h i s o p e r a t i o n i s d e s c r i b e d
later in this section under Format Effectors.

C o m p l e t e i n t e r a c t i v e v i r t u a l t e r m i n a l e d i t i n g
mode

Special editing mode

Full-ASCII mode

Devices always begin a connection with the network
in normalized mode. The initial upline editing mode
is establ ished for each device when the device is
c o n n e c t e d t o t h e h o s t . T h i s m o d e i s c o m p l e t e
ed i t i ng . The app l i ca t i on p rog ram o r the te rm ina l
use r can change tha t mode us ing the SE o r FA
commands, described in section 3.

Complete Editing

Dur ing comple te ed i t ing opera t ions , the fo l low ing
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL)

OA (the ASCII character LF)

7F (the ASCII character DEL)

The backspace character code currently defined
for the device (see the BS command in section 3)

The end-of- l ine character current ly defined for
the device (see the EL command in section 3)

T h e e n d - o f - b l o c k c h a r a c t e r c u r r e n t l y d e fi n e d
for the device (see the EB command in section 3)

The following hexadecimal character codes cannot be
received, if entered at certain points in a message:

02 (the ASCII character STX), if entered as the I
fi r s t c h a r a c t e r o f a m e s s a g e |

11 (the ASCII character DC1) i f i t fo l lows an
end-o f - l i ne o r end-o f -b lock charac te r and the
TIP is support ing output control for the device
(see the Y option of the OC command in section
3)

13 (the ASCII character DC3) i f i t fo l lows an
end-o f - l i ne o r end -o f -b lock cha rac te r and the
TIP is support ing output control for the device
(see the Y option of the OC command in section
3) .

/ " ^ \

2-12 60499500 S

13 (the ASCII character DC3) i f i t fo l lows an
end-o f - l i ne o r end-o f -b lock charac te r and the
input mechanism is known to be a paper tape
reader (see the PT option of the IN command in
section 3)

The use r -b reak -1 and use r -b reak -2 cha rac te r
c o d e s c u r r e n t l y d e fi n e d f o r t h e t e r m i n a l , i f
entered as the only character in a message (see
the Bl and B2 commands in section 3)

The abort-output-block character code current ly
d e fi n e d f o r t h e t e r m i n a l , i f e n t e r e d a s t h e
only character in a message (see the AB command
in section 3)

The network control character current ly defined
for the terminal when i t fo l lows an end-of- l ine
o r end-o f -b lock charac te r o r when i t i s used
for such purposes as page turning (see the CT
command and the Y option of the PG command in
section 3)

T h e c u r r e n t l y d e fi n e d c a n c e l i n p u t c h a r a c t e r i s
a lways rece ived a t the end o f the log ica l l i ne i t
cancels. This character is not data.

Special Edi t ing

S p e c i a l e d i t i n g t a k e s p r e c e d e n c e o v e r c o m p l e t e
e d i t i n g . S p e c i a l e d i t i n g c a n n o t o c c u r i f t h e t e r
minal operates in block mode.

When special editing occurs, linefeed codes and the
current ly defined backspace code are forwarded to
the application program as data. The network soft
ware sends appropriate responses to the device when
it receives these codes.

D u r i n g s p e c i a l e d i t i n g o p e r a t i o n s , t h e f o l l o w i n g
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL)

7F (the ASCII character DEL)

The end-of - l ine character cur rent ly defined for
the device (see the EL command in section 3)

T h e e n d - o f - b l o c k c h a r a c t e r c u r r e n t l y d e fi n e d
for the device (see the EB command in section 3)

The following hexadecimal character codes cannot be
received, if entered at certain points in a message:

11 (the ASCI I charac ter DC1) i f i t fo l lows an
end-o f - l i ne o r end -o f -b lock cha rac te r and the
TIP is support ing output control for the device
(see the Y option of the OC command in section
3)

13 (the ASCII character DC3) i f i t fo l lows an
end-o f - l i ne o r end -o f -b lock cha rac te r and the
TIP is support ing output control for the device
(see the Y option of the OC command in section
3) .

13 (the ASCII character DC3) i f i t fo l lows an
end-o f - l i ne o r end -o f -b lock cha rac te r and the
input mechanism is known to be a paper tape
reader (see the PT option of the IN command in
section 3)

02 (the ASCII character STX), if entered as the
first character of a message

The use r -b reak -1 and use r -b reak -2 cha rac te r
c o d e s c u r r e n t l y d e fi n e d f o r t h e t e r m i n a l , i f
entered as the only character in a message (see
the Bl and B2 commands in section 3)

The abort-output-block character code current ly
defined for the terminal, i f entered as the only
character in a message (see the AB command in
section 3)

The network control character current ly defined
for the terminal when i t fo l lows an end-of- l ine
o r end-o f -b lock charac te r o r when i t i s used
for such purposes as page turning (see the CT
command and the Y option of the PG command in
section 3)

T h e c u r r e n t l y d e fi n e d c a n c e l i n p u t c h a r a c t e r i s
a lways rece ived a t the end o f the log ica l l i ne i t
cancels. This character is not data.

Fu l l -ASCI I Edi t ing

Fu l l -ASCI I ed i t i ng takes p recedence ove r spec ia l
ed i t ing or complete ed i t ing. When fu l l -ASCI I ed i t
ing occurs, a lmost a l l codes are forwarded to the
appl icat ion program as data. The network software
does not per form act ions a t the termina l when i t
r e c e i v e s t h e c o d e s f o r b a c k s p a c e , a b o r t - o u t p u t -
block, cancel input message, user-break-1, or user-
break-2. These codes and the end-of-l ine and end-
of-block indicator codes are sent upline as data.

Dur ing fu l l -ASCI I ed i t ing opera t ions , the fo l lowing
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL) i f i t occurs after
the end-of - l ine or end-of -b lock ind icator

0A (the ASCII character LF) i f i t occurs a f ter
the end-of - l ine or end-of -b lock ind icator

7F (the ASCII character DEL) i f i t occurs after
the end-of - l ine or end-of -b lock ind icator

The network control character current ly defined
fo r the te rm ina l i f i t occurs a f te r the end-o f -
l i n e o r e n d - o f - b l o c k i n d i c a t o r o r w h e n i t i s
used for such purposes as page turning (see the
CT command and the Y option of the PG command
in sect ion 3)

The following hexadecimal character codes cannot be
received if entered at certain points in a message:

11 (the ASCI I charac te r DC1) i f i t fo l lows an
e n d - o f - l i n e o r e n d - o f - b l o c k i n d i c a t o r a n d t h e
TIP is support ing output contro l for the device
(see the Y option of the 0C command in section
3)

13 (the ASCI I charac ter DC3) i f i t fo l lows an |
e n d - o f - l i n e o r e n d - o f - b l o c k i n d i c a t o r a n d t h e
TIP is support ing output contro l for the device
(see the Y option of the OC command in section I3 > I

60499500 S 2-13

13 (the ASCII character DC3) i f i t fo l lows an
e n d - o f - l i n e o r e n d - o f - b l o c k i n d i c a t o r a n d i s
expl ic i t ly support ing paper tape input f rom the
device (see the PT option of the IN command in
sect ion 3) .

T h e c u r r e n t l y d e fi n e d c a n c e l i n p u t c h a r a c t e r i s
always received as the last character of the logical
l ine i t ended. This character is data.

Downline Character Sets
The network protocol permi ts t ransmiss ion f rom a
network appl icat ion program of any character code
l e s s t h a n o r e q u a l t o 8 b i t s . I f t h e a p p l i c a t i o n
program uses one of the application character types
that permits transmitt ing an 8-bi t code (appl icat ion
character types 2 and 3), i t cannot use the upper
(e i g h th) b i t f o r d a ta u n l e ss i t i s t r a n sm i t t i n g i n
transparent mode.

In normalized mode, the application program can only
use the 128 ASCII characters defined in appendix
A . I f t h e a p p l i c a t i o n p r o g r a m t r a n s m i t s a 7 - b i t
ASCI I code, i t cannot use the upper (e igh th) b i t
f o r pa r i t y ; t he ne two rk i gno res t he e i gh th b i t i n
downline normalized mode data.

Rece ip t o f a t ransmi t ted charac ter by the dev ice
d e p e n d s o n t h e e d i t i n g f u n c t i o n s a n d c h a r a c t e r
t ransformat ions per formed by the TIP. In add i t ion
to charac te r codes a l te red dur ing the t rans la t ion
and subst i tut ion operat ions descr ibed elsewhere in
th i s sec t ion and in append ix A , the hexadec ima l
character code IF (the ASCII character US used as a
d o w n l i n e b l o c k e n d - o f - l i n e i n d i c a t o r) c a n n o t b e
received by a device when the application program
transmits a block in normalized mode.

Page Width and Page Length
The appl icat ion program receives an ind icat ion of
t h e p a g e w i d t h a n d p a g e l e n g t h i n e f f e c t f o r a
device when connection with the device first occurs.
The appl icat ion program or the terminal user can
change the page width and page length in effect for
a device.

The Terminal Interface Program uses the page length
d e fi n e d f o r t h e d e v i c e t o f o r m a t p h y s i c a l l i n e s
into physical pages or screens of output. The Ter
minal Interface Program uses the page width value
t o t r a n s f o r m l o g i c a l l i n e s o f d o w n l i n e d a t a i n t o
physical l ines of output.

For console devices defined as having hardcopy out
put mechanisms (see the PR option of the OP command
in section 3), a logical l ine of downline data con
taining more characters than the page width value
p e r m i t s i s d i v i d e d i n t o s i n g l y s p a c e d p h y s i c a l
l ines. These physical l ines are equal to or shorter
than the page w id th i n e f fec t and a re d i sp layed
successive ly.

For all console devices, the page width is used as
p a r t o f t h e l i n e - c o u n t i n g a l g o r i t h m t o d e t e r m i n e
the page length. Each logical l ine is examined to
determine how many multiples of the page width (how
many physical l ines) i t contains. Each complete or
par t ia l mu l t ip le counts as one l ine when the T IP
determines the page length.

Line counting begins at the beginning of each down
l i ne message . The l i ne coun te r i s r ese t t o ze ro
e a c h t i m e t h e p a g e l e n g t h o f t h e t e r m i n a l i s
reached, each time any input occurs, or when page
turning occurs during page wait ing operation. Refer
to the PG, PW, and PL commands in section 3.

T h e p h y s i c a l l i n e w i d t h o f t h e d e v i c e m i g h t b e
smaller than the page width defined for the device.
When this happens, the effect of sending a logical
l ine o f downl ine da ta conta in ing more charac ters
than the physical line width permits depends on the
terminal hardware.

Format Effectors
An application program can control the presentation
of the characters within a data block by indicating
t h a t t h e b l o c k c o n t a i n s f o r m a t e f f e c t o r s . I f t h e
app l i ca t ion p rogram chooses to do th is , the fi rs t
c h a r a c t e r o f e a c h l o g i c a l l i n e w i t h i n t h e b l o c k
becomes a format effector. Format effector charac
ters cause predefined fo rmat t ing opera t ions when
the block is del ivered to the device. The network
sof tware d iscards these characters a f ter in terpre
ta t ion; there fore , these characters do not appear
on the interactive terminal output device.

You must inc lude format effector characters when
determining the number of characters comprising the
block. Format effector characters are excluded from
page width calculations.

Tables 2-2 and 2-3 describe the predefined opera
tions produced by each format effector character of
each terminal class. The Terminal Interface Program
per fo rms the p redefined fo rmat e f fec to r opera t ion
by insert ing the codes for the characters indicated
i n t h e t a b l e s i n p l a c e o f t h e d i s c a r d e d f o r m a t
e f f e c t o r c h a r a c t e r c o d e . T h e I n s e r t e d t e r m i n a l
c o d e s a r e t h o s e o f c h a r a c t e r s i n t h e A S C I I s e t
described in appendix A, with the exception that NL
i n d i c a t e s t h e t e r m i n a l - d e fi n e d n e w - l i n e c o d e
sequence.

Numbers preceding codes indicate the number of times
the codes are repeated in the inser ted sequence.
Each line output to a console in terminal classes 9
t h r o u g h 1 8 l e a v e s t h e c u r s o r p o s i t i o n e d a t t h e I
beginning of the next physical l ine. Processing of
the next l ine takes this into account.

The format effector characters for clear screen and
home cursor operat ions (* and 1) rece ive spec ia l
treatment by the Terminal Interface Program when it
is performing a page wait function for the terminal.
(See the PG command in section 3.) If these char
acters are encountered when the TIP has output only
part of a page, the TIP pauses for terminal operator
acknowledgment of the partial page. When acknowl
edgment occurs , the format e ffector funct ions are
performed and output cont inues automatical ly. This
pause occurs without application program action or
knowledge.

I f t he app l i ca t i on p rog ram does no t i nd i ca te the
ex i s t ence o f f o rma t e f f ec to r s , t he fi r s t cha rac te r
o f e a c h l o g i c a l l i n e d o e s n o t a c t a s a f o r m a t
effector. These characters are output normal ly but
are preceded by the character codes necessary to
space one l ine before output . These defau l t l ine-
spacing codes are the ones substituted when a blank
is used as a format effector.

2-14 60499500 S

> ^ \

TABLE 2-2. FORMAT.EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES

/$l̂ ™ \̂

Terminal
Class

Format
E f f e c t o r General Physical Operation

b lank Space 1 l i ne be fo re ou tpu t .

Space 2 lines before output.

Space 3 lines before output.

Posi t ion to star t of current
l ine before output.

Position to top of form or
home cursor before output.

Position to top of form or
home cursor and clear screen
before output.

Do not change position before
ou tpu t .

Space 1 line after output.

/ P o s i t i o n t o s t a r t o f c u r r e n t
l i ne a f te r ou tpu t .

Is Infin i te Page
Length Declared?

Any other
ASCII
charac ter

b lank

Space 1 line before output.

Space 1 line before output.

Space 2 lines before output.

Space 3 lines before output.

Pos i t ion to s tar t o f cur rent
l ine before output.

Position to top of form or
home cursor before output.

Position to top of form or
home cursor and clear screen
before output; delay 100
mi l l iseconds before fur ther
output .

Do not change position before
output .

Does not matter

Does not matter

Does not matter

Does not matter

Yes

No

Yes

No

Does not matter

Does not matter

Does not matter

Does not matter

Does Output
Follow Previous

Inpu t

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Yes
No

Yes
No

Yes
No

Yes or No

Yes
No

Yes or No

Yes
No

Yes or No

Yes or No

Yes or No

Yes or No

Yes
No

Yes
No

Yes
No

Yes
No

Yes or No

Yes or No

Yes or No

Yes or No

Code Substituted on
Output Mechanismt

Display or
P r i n t e r

CR
CR, LF

CR, LF
CR, 2LF

CR, 2LF
CR, 3LF

CR

CR, 5LF
CR, 6LF

Paper Tape

CR
CR, LF

CR, LF
CR, 2LF

CR, 2LF
CR, 3LF

CR

CR, 5LF
CR, 6LF

Calculated by TIP

CR, LF
CR, 6LF

CR, 5LF
CR, 6LF

Calculated by TIP

N o n e N o n e

CR.LF

CR

CR
CR, LF

CR
CR, LF

CR, LF
CR, 2LF

CR, 2LF
CR, 3LF

CR

EM

EM, CAN

None

CR.LF,
DC3,
3NUL

CR,
DC3,
3NUL

CR
CR, LF

CR
CR, LF

CR, LF
CR, 2LF

CR, 2LF
CR, 3LF

CR

EM

EM, CAN

None

60499500 R 2-15

TABLE 2-2. FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)

Terminal
Class

Format
E f f e c t o r General Physical Operation Is Infini te Page

Length Declared?

Does Output
Follow Previous

Inpu t

Code Substituted on
Output Mechanism!

Display or
P r i n t e r Paper Tape

• Space 1 line after output. Does not matter Yes or No CR, LF CR, LF
DC3,
3NUL

/ Posi t ion to star t of current
l i ne a f te r ou tpu t .

Does not matter Yes or No CR CR,
DC3,
3NUL

Any other
ASCII
character

Space 1 line before output. Does not matter Yes
No

CR
CR, LF

CR
CR, LF

3 b lank Space 1 line before output. Does not matter Yes
No

CR
CR, LF

CR
CR, LF

0 Space 2 lines before output. Does not matter Yes
No

CR, LF
CR, 2LF

CR, LF
CR, 2LF

- Space 3 lines before output. Does not matter Yes
No

CR, 2LF
CR, 3LF

CR, 2LF
CR, 3LF

+ Posi t ion to s tar t o f cur rent
l ine before output.

Does not matter Yes or No CR CR

* Position to top of form or
home cursor before output.

Does not matter Yes or No EM EM

1 Position to top of form or
home cursor and clear screen
before output .

Does not matter Yes or No EM, FF EM, FF

» Do not change position before
ou tpu t .

Does not matter Yes or No None None

• Space 1 line after output. Does not matter Yes or No CR, LF CR, LF
DC3,
3NUL

/ Posi t ion to s tar t o f cur rent
l i ne a f te r ou tpu t .

Does not matter Yes or No CR CR,
DC3,
3NUL

Any other
ASCII
charac ter

Space 1 line before output. Does not matter Yes
No

CR
CR, LF

CR
CR, LF

4tt b lank Space 1 line before output. Does not matter Yes
No

None
NL

N/A

0 Space 2 lines before output. Does not matter Yes
No

NL
2NL

N/A

- Space 3 lines before output. Does not matter Yes
No

2NL
3NL

N/A

+ Posi t ion to star t of current
l ine before output.

Does not matter Yes or No nBS
n is calc
TIP from
p o s i t i o n

N/A
ulated by
cur ren t

2-16 60499500 R

TABLE 2-2. FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)

Terminal
Class

Format
E f f e c t o r General Physical Operation

Position to top of form or
home cursor before output.

I s Infin i te Page
Length Declared?

Position to top of form or
home cursor and clear screen
before output.

Any other
ASCII
character

blank

Do not change position before
ou tpu t .

Space 1 line after output.

Pos i t ion to s tar t o f cur rent
l i ne a f te r ou tpu t .

Space 1 line before output.

Any other
ASCII
character

Space 1 line before output.

Space 2 lines before output.

Space 3 lines before output.

Pos i t ion to s tar t o f cur rent
l ine before output.

Position to top of form or
home cursor before output.

Position to top of form or
home cursor and clear screen
before output.

Do not change position before
ou tpu t .

Space 1 line after output.

Pos i t ion to s tar t o f cur rent
l i ne a f te r ou tpu t .

Yes

No

Yes

No

Does not matter

Does not matter

Does not matter

Does not matter

Does Output
Follow Previous

Input

Space 1 l ine before output. Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Yes
No

Yes or No

Yes
No

Ye8 or No

Yes or No

Yes or No

Yes or No

Yes
No

Yes
No

Yes
No

Yes
No

Yes or No

Yes or No

Yes or No

Yes or No

Yes or No

Yes or No

Yes
No

Code Substituted on
Output Mechanism!

Display or
P r i n t e r

5NL
6NL

Paper Tape

N/A

n N L N / A
n is calculated by
TIP from current
pos i t i on

5NL
6NL

N/A

n N L N / A
n is calculated by
TIP from current
pos i t i on

None

NL

nBS

None

NL

nBS
n is calculated by
TIP from current
pos i t i on

None
NL

None
LF

LF
2LF

2LF
3LF

ESC, G

ESC, H

ESC, R

None

LF

ESC, G

None
LF

None
NL

None
LF

LF
2LF

2LF
3LF

ESC, G

ESC, H

ESC, R

None

LF,
DC3,
3NUL

ESC, G,
DC3,
3NUL

None
LF

60499500 R 2-17

TABLE 2-2. FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)

Terminal
Class

Format
E f f e c t o r

b lank

0

Any other
ASCII
charac ter

b lank

Any other
ASCII
character

General Physical Operation

Space 1 line before output.

Space 2 lines before output.

Space 3 lines before output.

Posi t ion to star t of current
l ine before output.

Position to top of form or
home cursor before output.

Position to top of form or
home cursor and clear screen
before output.

Do not change position before
ou tpu t .

Space 1 line after output.

Posi t ion to star t of current
l ine a f te r ou tpu t .

Space 1 line before output.

Space 1 line before output.

Space 2 lines before output.

Space 3 lines before output.

Pos i t ion to s tar t o f cur rent
l ine before output .

Position to top of form or
home cursor before output.

Position to top of form or
home cursor and clear screen
before output.

Do not change position before
ou tpu t .

Space 1 line after output.

Pos i t ion to s tar t o f cur rent
l i ne a f te r ou tpu t .

Space 1 line before output.

Is Infini te Page
Length Declared?

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Doe8 not matter

Does not matter

Does not matter

Does Output
Follow Previous

Input

Yes or No

Yes
No

Yes
No

Yes or No

Yes or No

Yes or No

Yes or No

Yes or No

Yes or No

Yes or No

Yes
No

Yes
No

Yes
No

Yes or No

Yes or No

Yes or No

Yes or No

Yes or No

Yes or No

Yes
No

Code Substituted on
Output Mechanism!

Display or
P r i n t e r

CR

CR
2CR

2CR
3CR

None

DC2

FS

None

CR

None

CR

CR

ESC,[,H

ESC,[,H,
ESC,[,J

None

CR, LF

CR

CR
CR, LF

Paper Tape

CR

CR
2CR

2CR
3CR

None

DC2

FS

None

CR,
DC3,
3NUL

DC3,
3NUL

CR

CR CR
CR.LF CR, LF

CR, LF CR, LF
CR, 2LF CR, 2LF

CR, 2LF CR, 2LF
CR, 3LF CR, 3LF

CR

ESC,l,H

ESC,[,H,
ESC,I,J

None

CR, LF
DC3,
3NUL

CR,
DC3,
3NUL

CR
CR, LF

2-18 60499500 R
/*!^\

J 0 ^ \ TABLE 2-2. FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)

/sspfev.

Terminal
Class

Format
E f f e c t o r

blank

0

Any other
ASCII
character

General Physical Operation

Space 1 line before output.

Space 2 lines before output.

Space 3 lines before output.

Pos i t ion to s tar t o f cur rent
l ine before output.

Position to top of form or
home cursor before output.

Position to top of form or
home cursor and clear screen
before output; delay 1 second
before fur ther output .

Do not change position before
ou tpu t .

Space 1 l ine after output.

Pos i t ion to s tar t o f cur rent
l i ne a f te r ou tpu t .

Space 1 line before output.

I s Infin i te Page
Length Declared?

Does Output
Follow Previous

Inpu t

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

Does not matter

TPaper tape column does not apply to X.25 devices.

TTx.25 devices cannot belong to terminal class 4.

Yes
No

Yes
No

Yes
No

Yes or No

Yes or No

Yes or No

Yes or No

Yes or No

Yes or No

Yes
No

Code Substituted on
Output Mechanismt

Display or
P r i n t e r

CR
CR, LF

CR, LF
CR, 2LF

CR, 2LF
CR, 3LF

CR

ESC, FF

ESC, FF

None

CR, LF

CR

CR
CR, LF

Paper Tape

CR
CR, LF

CR, LF
CR, 2LF

CR, 2LF
CR, 3LF

CR

ESC, FF

ESC, FF

None

CR, LF,
DC3,
3NUL

CR,
DC3,
3NUL

CR
CR, LF

The application program sets a field in the downline
block 's header word to indicate whether the b lock
c o n t a i n s f o r m a t e f f e c t o r s . T h i s i n d i c a t i o n , h o w
ever, has no e f fec t on the use o f fo rmat cont ro l
charac ters w i th in log ica l l ines o f the b lock . Tab le
2 - 4 l i s t s t h e c o d e s u b s t i t u t i o n s p e r f o r m e d f o r
e m b e d d e d c o n t r o l c h a r a c t e r s d u r i n g o u t p u t t o a
device in each terminal c lass. This table uses the
same character representat ion convention as tables
2 - 2 a n d 2 - 3 , w i t h t h e f o l l o w i n g e x c e p t i o n s : t h e
hexadecimal terminal codes are shown for mult ip le
ASCII character sequences or for non-ASCII character
sequences.

Transparent Mode Operation
Blocks exchanged between an application program and
a console device in transparent mode do not use most
o f the fea tu res o f the in te rac t i ve v i r tua l te rm ina l
in te r face :

No input edit ing occurs.

No code conversion occurs.

No format effector transformations are performed
for downline blocks.

No page width operations are performed to pre
serve physical l ine boundaries.

Page waiting occurs only at the end of a down
line message.

Transparent mode operat ion is separate ly se lected
for input and output . E i ther the te rmina l opera tor
o r t h e a p p l i c a t i o n p r o g r a m c a n s t a r t t r a n s p a r e n t
mode input, using the IN command described in sec
t i o n 3 . O n l y t h e a p p l i c a t i o n p r o g r a m c a n s t a r t
transparent mode output.

60499500 R 2-19

TABLE 2-3. FORMAT EFFECTOR OPERATIONS FOR SYNCHRONOUS CONSOLES

Terminal Class Format Effector
General Physical Operationt

Before Output After Output

9 and 14

Any other ASCII character

Space 1 line.

Space 2 lines.

None.

Space 1 line.

Space 1 line.

Space 1 line.

10 thru 13, 15,
and 18

b lank

0

*

1

Any other ASCII character

None.

Space 1 line.

Space 2 lines.

Position to top of form
or home cursor.

Position to top of form
or home cursor and clear
screen.

None.

Space 1 line.

Space 1 line.

Space 1 line.

Space 1 line.

Space 1 line.

Space 1 line.

16 and 17 Any ASCII character Before the firs t l ine o f
the message, generate
the p refix tex t

***C0NS0LE MESSAGE

Before the subsequent
lines of the message,
do nothing.

Space 1 line.

Space 1 line.

TNo direct correspondence to code substituted on output device can be made. Code used for
implementation depends on placement of message blocks within a transmission.

Data blocks input in transparent mode have a field
set in their associated header word to indicate this
condi t ion. Output b locks require the same field to
be set.

| Transparent mode data can occupy up to 8 bits of an
8 -b i t by te , rep resen t i ng up to 256 d i s t i nc t cha r
ac te r codes o f dev ice ins t ruc t ions . Codes longer
than 8 bi ts cannot be exchanged; data packed in
12-bit bytes by an application program or a termi
na l dev ice i s t runca ted to 8 b i t s by the ne twork
sof tware.

HASP te rm ina ls (te rm ina l c lasses 9 and 14) and
bisynchronous terminals (terminal classes 16 and 17)
cannot t ransmi t o r rece ive such b locks . A l l o ther
terminals can, although mode 4 terminals and 3270
terminals (terminal c lasses 10 through 13 and 15)
require the special treatment described below.

Mode 4

During transparent mode operat ion, the appl icat ion
program is responsible for a l l data formatt ing and
terminal control. For mode 4 terminals, this means
that the Terminal Interface Program does not blank-
fill the current l ine and unlock the keyboard before
input can be performed but does add or remove the
l ine t ransmiss ion por t ion of the protocol envelope
to or from all message text exchanged with the ter
mina l .

Two mutual ly exclusive forms of t ransparent mode
input can be se lec ted . The ne twork admin is t ra to r
can make this selection when the device is defined
in t he ne two rk configu ra t i on fi l e , o r t he app l i ca
t ion program or the terminal operator can make i t
while the device is active. The two forms are:

Single message

Mul t ip le message
operat ion)

(a n a l o g o u s t o b l o c k m o d e

2-20 60499500 S

TABLE 2-4. EMBEDDED FORMAT CONTROL OPERATIONS FOR CONSOLES

/ | P * y

Terminal Class

1 thru 3
7 and 8

9, 14,
and 18

10 thru
13 and
15

16

17

Format Control
Character

LF

CR

LF

CR

LF

CR

LF

CR

LF

CR

LF

CR

LF

CR

LF

CR

General Physical Operation

Space 1 line before next char
acter output.

Posi t ion to star t of current
l ine before next character
output .

Code Substituted on Output Mechanism

Space 1 line before next char
acter output.

Posi t ion to star t of next l ine
before next character output.

Space 1 line before next char
acter output.

Posi t ion to star t of current
l ine before next character
output .

LF

CR

LF

NL

ESC, B

ESC, G

Space 1 line before next char
acter output.

Posi t ion to star t of current
l ine before next character
output .

Space 1 line before next char
acter output.

Posi t ion to s tar t o f next l ine
before next character output.

Space I line before next char
acter output.

Posi t ion to star t of next l ine
l ine before next character
ou tpu t .

Space 1 line before next char
acter output .

Posi t ion to s tar t o f next l ine
before next character output.

Space 1 line before next char
acter output.

Posi t ion to s tar t o f next l ine
before next character output.

None

CR

None

None

None

IB, 41 (ASCII); 31, 41 (External BCD)

None

10, IF

None

10, IE

60499500 S 2-21

Downline

T h e a p p l i c a t i o n c o n s t r u c t s a s c r e e n - f u l l o f
p ro tec ted /unp ro tec ted fie l ds and supp l i es a l l t he
d e s i r e d a t t r i b u t e c h a r a c t e r s a n d s c r e e n - b u f f e r -
add resses fo r t he fie lds . The T IP i s respons ib le
f o r p r e c e d i n g t h e b l o c k o f o u t p u t b y S Y N C -
c h a r a c t e r s , s t a r t - o f - t e x t , a n d e s c a p e - c h a r , a n d
at taches ETX,CRC,PAD at the end. The TIP a lso
translates al l downl ine data ASCII to EBCDIC and
performs SYNC-fil l .

A typical start of a field would be:

S B A s e t - b u f f e r - a d d r e s s x ' l l ' a l l i n A S C I I
B A 1 b u f f e r - a d d r e s s - 1
B A 2 b u f f e r - a d d r e 8 s - 2
A T T a t t r i b u t e - c h a r

where the at t r ibute-character determines the char
a c t e r i s t i c s o f t h e fi e l d :

- protected
- unprotected
- i n t e n s i fi e d
- numeric shi f t

T h e a p p l i c a t i o n i s a l s o e x p e c t e d t o i n s e r t t h e
cursor at a desired location.

O n c e t r a n s p a r e n t o u t p u t i s d e l i v e r e d t o a 3 2 7 0
terminal, the TIP assumes transparent input unti l a
non-transparent downl ine block is del ivered to the
termina l .

To p ro tec t t he i n teg r i t y o f t he p ro toco l , t he T IP
replaces certain downline characters by NULLs. The
characters replaced are:

SOH, STX, ETX, EOT, ENQ, ACK,NAK, SYNC

Upline

Once transparent output is delivered, the TIP sends
t o t h e h o s t a l l m o d i fi e d , u n p r o t e c t e d fi e l d s
received f rom the terminal inc luding the SBA and
b u f f e r - a d d r e s s - c h a r 8 (2) o f e a c h fi e l d . T h e
t e r m i n a l d o e s n o t s e n d t h e a t t r i b u t e c h a r a c t e r s
back to the TIP.

I f t h e i n c o m i n g t e x t i s l a r g e r t h a n o n e t r a n s
mission block (256 characters), the TIP will send

BLK/BLK/.../MSG

so that the application can reproduce a full screen.

Single-Message Input

For single-message input, one or more transparent
mode input de l imi ters are spec ified, us ing the DL
c o m m a n d o p t i o n s d e s c r i b e d i n s e c t i o n 3 . F o r
single-message input, when a message ends, trans
parent mode input ends. Transparent mode messages
need not be equivalent to normalized mode logical
l i n e s .

Single-message transparent mode input ends when the
Terminal In ter face Program encounters one of the
m o d e d e l i m i t e r c o n d i t i o n s . T h e d e l i m i t e r c o n d i
t ions are:

2-22

Occurrence of a specific character code in the
input

Occur rence o f a spec ific number o f charac ter
bytes in the input

Occurrence of a 200- to 400-millisecond timeout
in the input

Multiple-Message Input

For multiple-message input, the application program
o r t h e t e r m i n a l u s e r d e fi n e s o n e o r t w o i n p u t
message-forwarding signals (equivalent to a normal
i zed mode end-o f - l i ne i nd i ca to r) and one o r two
t ransparent mode input de l imi te rs . Each message
ends at a mess age-forwarding signal; the last mes
sage ends when transparent input mode ends. The
message-forwarding signal and mode delimiters may
be modified as descr ibed under Chang ing Dev ice
Character ist ics in sect ion 3.

The possible message-forwarding signals are:

Occurrence of a specific character code in the
input

Occurrence o f a spec ific number o f character
bytes in the input

The transparent mode delimiters are:

Two consecutive occurrences of a specific char
acter code (the message-forwarding signal)

A sequence of two character codes (a message-
forwarding code followed by a transparent mode
del imiter code)

Occurrence of a 200- to 400-millisecond timeout
in the input

Upline Message Blocks

A transparent mode input block is assembled each
time the network block size is reached or the Ter
m i n a l I n t e r f a c e P r o g r a m e n c o u n t e r s a m e s s a g e -
f o r w a r d i n g s i g n a l . T h e l a s t b l o c k i n t h e l a s t
message is assembled when the delimiter condit ion
is encoun te red . I f t he message- fo rward ing s igna l
is a specific character code, the TIP removes that
code f rom the character st ream before assembl ing
the last b lock.

In transparent mode, the concept of a logical l ine
is not meaningful to the network software. Both the
e n d - o f - l i n e a n d e n d - o f - b l o c k i n d i c a t o r s a r e d a t a
w i t h i n a t r a n s p a r e n t m e s s a g e . T h e s e i n d i c a t o r s
have no significance to the network software.

Transparent Mode Output

T r a n s p a r e n t m o d e o u t p u t d a t a c a n b e d i v i d e d
arb i t rar i ly in to b locks and messages, prov ided the
r e s t r i c t i o n s o n n e t w o r k b l o c k s i z e a r e m e t . A
transparent mode downline block ends when the last
character i t conta ins is t ransferred to the network
(d e fi n e d b y t h e t i c fi e l d i n t h e b l o c k h e a d e r ,
descr ibed la ter in th is sect ion) .

60499500 S

I f the T IP is per fo rming page-wa i t opera t ions fo r
t h e t e r m i n a l d u r i n g t r a n s p a r e n t m o d e o p e r a t i o n ,
output stops to wait for terminal operator acknowl
edgment at the end of each message. The automatic
input feature can be used with the last block of a
transparent mode output message.

Parity Processing

Actua l te rmina l codes are r igh t - jus t ified w i th zero
fi l l w i t h i n t h e 8 - b i t c h a r a c t e r p o r t i o n o f t h e
input or output by te . The codes conta ined in the
input or output bytes depend on the par i ty opt ion
declared for the terminal.

I The actual terminal code parity bit can be used for
meaningfu l code only i f no par i ty or ignore par i ty
I s dec la red . O the rw i se , t he pa r i t y b i t i s ze ro i n
i n p u t b l o c k s a n d s e t b y t h e Te r m i n a l I n t e r f a c e
Program on output.

For example:

If the terminal uses a 7-bit code such as ASCII,
w i t h t h e e i g h t h b i t a s a p a r i t y b i t , t h e s e t
t i n g o f t h e e i g h t h b i t i s d e t e r m i n e d b y t h e
p a r i t y o p t i o n s e l e c t e d f o r t h e t e r m i n a l . I f
z e r o p a r i t y i s d e c l a r e d , t h e e i g h t h b i t i s
always zero on input and output. If odd or even
p a r i t y i s d e c l a r e d , t h e e i g h t h b i t v a r i e s o n
input and output to satisfy the character pari ty

| r e q u i r e m e n t . I f n o p a r i t y o r i g n o r e p a r i t y i s
dec la red , the e igh th b i t i s t rea ted as par t o f

the character data and is not changed dur ing
input or output .

I f t h e t e r m i n a l u s e s a 6 - b i t c o d e , w i t h t h e
seventh b i t as a par i ty b i t , the set t ing of the
seventh b i t is determined by the par i ty opt ion
s e l e c t e d f o r t h e t e r m i n a l . I f z e r o p a r i t y i s
d e c l a r e d , t h e s e v e n t h b i t i s a l w a y s z e r o o n
i n p u t a n d o u t p u t . I f o d d o r e v e n p a r i t y i s
dec lared, the seventh b i t var ies on input and
o u t p u t t o s a t i s f y t h e c h a r a c t e r p a r i t y r e
q u i r e m e n t . I f n o p a r i t y o r i g n o r e p a r i t y i s |
declared, the seventh bi t is t reated as part of
the character data and is not changed dur ing
input or output.

APPLICATION-TO-APPLICATION
CONNECTION DATA
Because app l ica t ion- to-app l ica t ion connect ion data
is always exchanged in transparent mode, programs
can exchange character data in bytes of any size.
The program at both ends of the connect ion must
interpret the data using the same byte size.

Programs within the same host can exchange 7-bit or
8-bit character data in one of three ways:

Exchange pairs of 60-bit bytes, each containing
fi f teen 8 -b i t da ta by tes

Exchange 8-bit data bytes packed as 8-bit bytes

60499500 S 2-22.1/2-22.2

Exchange 8-bit data bytes packed within 12-bit
bytes

Each of these options corresponds to an application
character type, as described in the next subsection.
Programs in different hosts need not use the same
appl icat ion character type.

Programs can exchange 6-bit character data in one
of two ways:

If both programs are in the same host, they can
exchange 60 -b i t by tes , each con ta i n i ng 6 -b i t
(or 6/12-bi t) data bytes.

They can exchange sets of fif teen 8-bi t bytes,
corresponding to two central memory words per
set (twenty 6-b i t characters) .

F i g u r e 2 - 3 i l l u s t r a t e s t h e s e p o s s i b i l i t i e s . T h e
p a r i t y b i t (b i t 7 o f a n 8 -b i t b y t e) i s n o t a l t e re d
dur ing t ransmiss ion th rough the ne twork and can
always be used as data.

APPLICATION CHARACTER TYPES
Blocks always contain character bytes. These char
acter bytes can be of several lengths and can be
packed within bytes of several sizes. Each permit
ted combination of character byte length and packing
byte s ize is ca l led an app l ica t ion character type.
There are several appl icat ion character types sup
ported by the released version of the software:

One 60-bit character byte per 60-bit word

One 8-bit character byte per 8-bit byte

/gP^N

7-Bit or 8-Bit Data

Word 1

60-b i t by tes

Byte 1

8 -b i t by tes

Word 2

Byte 2

1 2 - b i t b y t e s ^ | , ^ | I | g ~ ~ j ^ ^ r ^ ~m m m w, m ng % » m m m ,
6-Bit or 6/12-Bit Data

Word 1 Word 2

60-b i t by tes

Byte 1 Byte 2

8 -b i t by tes

LEGEND: Character byte boundary

| Network data byte boundary

Unused space

Figure 2-3. Application-to-Application Connection Data Exchanges

n ■

60499500 R 2-23

One 8-bit character byte per 12-bit byte

One 6-bit display code character byte per 6-bit
by te

B locks t ransmi t ted th rough a ne twork p rocess ing
u n i t a l w a y s c o n s i s t o f 8 - b i t c h a r a c t e r s i n 8 - b i t
by tes . An app l i ca t ion p rogram can use b locks o f
this application character type, or have NAM convert
b locks to o r f rom i t so tha t the app l i ca t ion p ro
gram can use one of the remaining valid application
character types. Block conversion consists of byte
mapping and character code conversion.

For a downline network data block, NAM:

Performs no mapping or character code conversion
on 60-bit character bytes.

Performs no mapping or character code conversion
on 8 -b i t cha rac te rs i n 8 -b i t by tes ; t he pa r i t y
setting of the receiving device might cause the
upper o r e igh th b i t (b i t 7) o f the by te to be
se t .

Because conversion and mapping between 6-bit and 8-
bi t characters involves a t ime-consuming character-
by-character rep lacement o f the b lock 's data, use
of a 6-bit display coded appl icat ion character type
i s n o t r e c o m m e n d e d a n d i s r e s t r i c t e d t o b l o c k s
exchanged wi th interact ive devices. For effic iency,
8-bi t byte characters are recommended for b locks
exchanged with devices or other application programs
through the in teract ive v i r tua l termina l in ter face.

The application character type of an input block is
determined by the character type assoc ia ted wi th
t h e l o g i c a l c o n n e c t i o n . T h i s a s s o c i a t i o n fi r s t
occurs when the connection is established. You can
change the association as necessary while the con
nec t ion ex is ts . The app l i ca t ion charac te r t ype o f
a s p e c i fi c i n p u t b l o c k i s a l w a y s i n d i c a t e d b y a
field in its associated block header word.

The appl icat ion character type of an output b lock
is de te rmined so le ly by a fie ld in i t s assoc ia ted
block header area. Input and output blocks trans
mitted over the same logical connection can there
fore have different appl icat ion character types.

Performs no character code conversion on 12-bit
bytes but maps the 8-bit character to an 8-bit
b y t e b y d i s c a r d i n g t h e l e f t m o s t f o u r b i t s o f
t h e 1 2 ; t h e p a r i t y s e t t i n g o f t h e r e c e i v i n g
device might cause the upper or eighth bit (bit
7) of the byte to be set.

M a p s 6 - b i t c h a r a c t e r s t o 8 - b i t c h a r a c t e r s b y
t r a n s l a t i n g t h e f o r m e r a s 6 - b i t d i s p l a y c o d e
and subst i tut ing the corresponding hexadecimal
code from the 128-character ASCII set.

For an upline network data block, NAM:

Performs no mapping or character code conversion
on 60-bit character bytes.

Performs no mapping or character conversion on
8 - b i t c h a r a c t e r s i n 8 - b i t b y t e s ; t h e p a r i t y
sett ing of the sending device might cause the
upper o r e igh th b i t (b i t 7) o f the by te to be
set if the data is sent in transparent mode.

Performs character mapping but no code conver
s i o n b y r i g h t - j u s t i f y i n g 8 - b i t c h a r a c t e r s i n
1 2 -b i t b y te s w i t h ze ro fi l l ; t h e p a r i t y se t t i n g
of the sending device might cause the upper or
e ighth b i t (b i t 7) of the byte to be set i f the
data is sent in transparent mode.

M a p s a n d c o n v e r t s 8 - b i t c h a r a c t e r s t o 6 - b i t
c h a r a c t e r s b y t r a n s l a t i n g a l l A S C I I c o n t r o l
characters to display coded blanks, and trans
la t i ng a l l hexadec ima l ASCI I cha rac te r codes
between 60 and 7F to the display code equiva
lents of the hexadecimal ASCII character codes
4 0 t o 5 F. A l l o t h e r 7 - b i t A S C I I c o d e s a r e
t rans la ted to the d isp lay codes equ iva len t to
the CDC 63-character or 64-character subset of
the ASCII character set (refer to appendix A).

CHARACTER BYTE CONTENT
Blocks containing 8-bit characters can be exchanged
with an interactive device in normalized mode or in
transparent mode. Blocks exchanged in normal ized
mode always contain 7-bit character codes from the
A S C I I c h a r a c t e r s e t , w i t h t h e e i g h t h b i t s e t t o
zero . B locks exchanged in t ransparent mode can
contain 256 character codes from any character set
used by a terminal, wi th the sett ing of the eighth
b i t de te rm ined by the par i t y p rocess ing se lec ted
for the device. Normalized mode exchanges are the
initial mode. Blocks exchanged in transparent mode
are ident ified by a fie ld in the i r assoc ia ted b lock
header word.

Blocks exchanged with another appl icat ion program
are always exchanged in transparent mode. Trans
parent mode is the initial and only exchange mode
for such connect ions. Such b locks need not have
transparent mode use ident ified by a field in their
associated block header word.

The legal combinat ions of character types, modes,
and uses are summarized in table 2-5. The mecha
nisms for declar ing character types and exchange
modes are descr ibed in the Block Header Content
portion of this section and in section 3.

BLOCK HEADER CONTENT
The content o f the b lock header word assoc ia ted
with a data block depends on whether the application
p r o g r a m i s s e n d i n g o r r e c e i v i n g t h e b l o c k . T h e
requi rements for a l l header words associated wi th
u p l i n e d a t a b l o c k s a r e d e s c r i b e d i n fi g u r e 2 - 4 .
The requi rements for a l l header words assoc ia ted
w i t h d o w n l i n e d a t a b l o c k s a r e d e s c r i b e d i n fi g
ure 2-5.

■^ ^ \

2-24 60499500 R

Performs character mapping but no code conver
s i o n b y r i g h t - j u s t i f y i n g 8 - b i t c h a r a c t e r s i n
1 2 -b i t b y te s w i t h ze ro fi l l ; t h e p a r i t y se t t i n g
of the sending device might cause the upper or
e ighth b i t (b i t 7) of the byte to be set i f the
data is sent in transparent mode.

M a p s a n d c o n v e r t s 8 - b i t c h a r a c t e r s t o 6 - b i t
c h a r a c t e r s b y t r a n s l a t i n g a l l A S C I I c o n t r o l
characters to display coded blanks, and trans
la t i ng a l l hexadec ima l ASCI I cha rac te r codes
between 60 and 7F to the display code equiva
lents of the hexadecimal ASCII character codes
4 0 t o 5 F. A l l o t h e r 7 - b i t A S C I I c o d e s a r e
t rans la ted to the d isp lay codes equ iva len t to
the CDC 63-character or 64-character subset of
the ASCII character set (refer to appendix A).

Because conversion and mapping between 6-bit and 8-
bit characters involves a t ime-consuming character-
by-character rep lacement o f the b lock 's data , use
of a 6-bit display coded appl icat ion character type
i s n o t r e c o m m e n d e d a n d i s r e s t r i c t e d t o b l o c k s
exchanged wi th in teract ive devices. For effic iency,
8-b i t by te characters are recommended for b locks
exchanged with devices or other application programs
through the in terac t ive v i r tua l te rmina l in ter face.

The application character type of an input block is
determined by the charac ter type assoc ia ted w i th
t h e l o g i c a l c o n n e c t i o n . T h i s a s s o c i a t i o n fi r s t
occurs when the connection is established. You can
change the association as necessary while the con
nec t ion ex i s t s . The app l i ca t i on charac te r t ype o f
a s p e c i fi c i n p u t b l o c k i s a l w a y s i n d i c a t e d b y a
field in its associated block header word.

The appl icat ion character type of an output b lock
i s de te rm ined so le l y by a fie ld i n i t s assoc ia ted
block header area. Input and output blocks trans
mitted over the same logical connection can there
fore have di fferent appl icat ion character types.

CHARACTER BYTE CONTENT
Blocks containing 8-bit characters can be exchanged
with an interactive device in normalized mode or in
transparent mode. Blocks exchanged in normal ized
mode always contain 7-bit character codes from the
A S C I I c h a r a c t e r s e t , w i t h t h e e i g h t h b i t s e t t o
ze ro . B locks exchanged in t ransparen t mode can
contain 256 character codes from any character set
used by a terminal , wi th the sett ing of the eighth
b i t de te rm ined by the pa r i t y p rocess ing se lec ted
for the device. Normalized mode exchanges are the
init ial mode. Blocks exchanged in transparent mode
are ident ified by a fie ld in the i r assoc ia ted b lock
header word.

Blocks exchanged with another appl icat ion program
are always exchanged in transparent mode. Trans
parent mode is the init ial and only exchange mode
for such connect ions. Such b locks need not have
transparent mode use ident ified by a field in their
associated block header word.

The legal combinat ions of character types, modes,
and uses are summarized in table 2-5. The mecha
nisms for declar ing character types and exchange
modes are descr ibed in the Block Header Content
portion of this section and in section 3.

60499500 T

BLOCK HEADER CONTENT

The content o f the b lock header word assoc ia ted
with a data block depends on whether the application
p r o g r a m i s s e n d i n g o r r e c e i v i n g t h e b l o c k . T h e
requi rements for a l l header words associated wi th
u p l i n e d a t a b l o c k s a r e d e s c r i b e d i n fi g u r e 2 - 4 .
The requ i rements fo r a l l header words assoc ia ted
w i t h d o w n l i n e d a t a b l o c k s a r e d e s c r i b e d i n
figu re 2 -5 .

SUPERVISORY MESSAGE CONTENT
AND SEQUENCE PROTOCOLS
Supervisory message blocks consist of 1 to 410 60-
b i t w o r d s o r 1 t o 2 0 4 3 1 2 - b i t b y t e s . T h e fi e l d s
within these blocks convey information and instruc
t ions to the network software, in a manner simi lar
to the charac te r by tes o f a da ta message b lock .
Supervisory messages are sent and received through
the same application program routines as are used
for data b locks. (See sect ions 4 and 5.) Superv i
sory messages have associated block header words,
just as data blocks do. These header words convey
informat ion to the network software concerning the
contents of the corresponding text area buffer.

Supervisory messages have the general formats shown
in figures 2-6 and 2-7. A specific message contains
a fixed combinat ion of four fie lds and can inc lude
a d d i t i o n a l p a r a m e t e r s . T h e i n d i v i d u a l m e s s a g e s
supported by the network software are described in
sec t i on 3 . The fie lds a re desc r ibed be low in the
o r d e r o f t h e i r u s e , r a t h e r t h a n i n t h e o r d e r o f
their occurrence within a supervisory message.

The first of the four fields common to al l supervi
sory messages is the pr imary func t ion code. The
primary function code is used to group supervisory
messages into related functions and determine their
routing within the network software.

Funct ions routed between NAM and the appl icat ion
program are represented in figures 2-6 and 2-7 by
mnemonics. These mnemonics are defined in paren
t h e s e s a f t e r t h e c o r r e s p o n d i n g f u n c t i o n i n t h e
f o l l o w i n g l i s t :

Connection data flow control (FC)

Error reporting (ERR)

Device control (CTRL)

Connection list management (LST)

Connect ion character is t ic defini t ion (DC)

Interrupt request (INTR)

Connection control (CON)

Termina l character is t ic defin i t ion (TCH)

Network shutdown (SHUT)

Host operator commands (HOP)

Terminate output (TO)

Break indicat ion (Bl)

Resume output (RO)

2-25

TABLE 2-5. CHARACTER EXCHANGES WITH CONNECTIONS

App l i ca t ion
Character Type

ACT Field
Value

Exchange Mode
Used

Connection
Type

Code Set
(Character Set)

60-bi t characters
in 60-bit bytes

Transparent App l i ca t ion - to -app l i ca t ion
within the same host

Binary (None)

8-bi t characters
in 8-b i t byte

Normalized Appl icat ion- to-dev ice
(consoles)

7-bit ASCII (128 ASCII)

8-bi t characters
in 8-b i t bytes

Transparent Appl icat ion- to-dev ice
(consoles)

Any 6-, 7-, or 8-bit
(Unknown)

8-bi t characters
in 8-b i t bytes

Transparent App l i ca t ion - to -app l i ca t ion Binary (None)

8-b i t characters
in 12-bit bytes

Normalized Appl ica t ion- to-dev ice
(consoles)

7-bit ASCII (128 ASCII)

8-b i t characters
in 12-bit bytes

Transparent App l ica t ion- to-dev ice
(consoles)

Any 6-, 7-, or 8-bi t
(Unknown)

8-b i t characters
in 12-bit bytes

Transparent App l i ca t i on - to -app l i ca t i on Binary (None)

6-b i t characters
in 6-bi t bytes

Normalized Appl ica t ion- to-dev ice
(consoles)

6-bi t display code to/from
7-bit ASCII (64-character
subset of ASCII)

<*^^\

ha

abt

ha

59 53 41 23 19 16 11

i r t r X c Pabt a en res act t i c

Symbolic header area address, specified as the location to receive the application block
header in a call to NETGET, NETGETL, NETGETF, or NETGTFL (see section 5).

Application block type of the associated network data block. This field can have the
values:

=0 ind icates a nu l l b lock. (No b lock is queued or none can be de l ivered f rom
the logical connect ion pol led.)

=1 ind ica tes tha t the assoc ia ted b lock is one o f severa l b locks compr is ing a
single message, but is not the last such block.

=2 i n d i ca te s t h a t t h e a sso c i a t e d b l o ck i s e i t h e r t h e l a s t o r o n l y o n e
comprising the message.

=6 ind ica tes tha t the assoc ia ted b lock is one o f severa l b locks compr is ing a
single qualified data message, but is not the last such block.

=7 i n d i ca te s t h a t t h e a sso c i a t e d b l o ck i s e i t h e r t h e l a s t o r o n l y o n e
comprising a qualified data message.

Values of 3 through 5 and 8 through 63 are not valid for data blocks on input. You can
access this field with the reserved symbol ABHABT (see section 4).

Application connection number of the logical connection from which the associated block
was sent. This field can have the values 1 £ minacn < acn £ maxacn < 4095, where the
values minacn and maxacn are parameters in the NETON statement (see section 5). You can
access this field with the reserved symbol ABHADR (see section 4).

Figure 2-4. Application Block Header Content for Upline Network Data Blocks (Sheet 1 of 4)

2-26 60499500 W

act Application character type used to encode the accompanying block,
the values:

=1

This field can contain

60-bit transparent characters, packed one per central memory word; this
character type can be used only for application-to-application connections
within the same host.

8-bit characters, packed 7.5 per central memory word; this character type
is recommended for transparent mode or normalized mode data on device-to-
appl icat ion connect ions and for appl icat ion- to-appl icat ion connect ions
between hosts.

8 -b i t charac te rs , r i gh t - jus t i fied in 12-b i t by tes w i th ze ro fi l l , packed 5
per central memory word; this character type can be used for transparent
mode or normalized mode data on device-to-application connections and for
app l i ca t ion- to -app l i ca t ion connec t ions .

6-bit display code characters (see table A-1 in appendix A), packed 10 per
central memory word. This value can be used only for device-to-application
connections in normalized mode when the block is exchanged with a site-
defined device or a CDC-defined console device.

=5 thru Reserved for CDC use; not currently recognized.
11

=2

=3

=4

=12
thru 15

Reserved for installation use; usage and content are unrestricted and
undefined (the released version of the software does not recognize these
va lues) .

ibu

The value contained in the act field is the value assigned to the connection by the
application program for input, either in the connection-accepted supervisory message (ictTieicu or in the most recent change-input-character-type supervisory message (see section
3). You can access this field with the reserved symbol ABHACT (see section 4).

Input-block-undel iverable bi t . When ibu has a value of 1, the block associated with
this block header has not been delivered to the application program; ibu is 1 when the
b lock :

• Is larger than the maximum text length (Umax parameter) declared by the appl icat ion
program in its NETGET, NETGETL, NETGETF, or NETGTFL call and the program has not
requested that input data be truncated (see the truncate-input asynchronous
supervisory message described in section 3). The block header contains the actual
length o f the queued b lock in i ts t ic fie ld , g iven in character un i ts spec ified by
the act field. The block remains queued unti l the appl icat ion program takes one
of the fo l lowing act ions:

Uses the change-input-character-type asynchronous supervisory message
described in section 3 to compress the characters into fewer central memory
words by using a different application character type to pack them more
densely.

Uses the input-truncation asynchronous supervisory message described in
section 3 to delete enough characters so that the remainder fit into the
ex is t ing tex t a rea .

Uses a longer text area.

The application program then must use another NETGET, NETGETL, NETGETF, or NETGTFL
cal l to obtain the block.

Figure 2-4. Application Block Header Content for Upline Network Data Blocks (Sheet 2 of 4)

/$^>\
60499500 T 2-27

• Contains t ransparent mode data f rom a connect ion using an act value of 4. The
block header contains the actual length of the queued block in i ts t ic field
(given in 8-bi t bytes) and has an xpt value of 1 (see xpt field descr ipt ion) .
The application program can:

Change the input character type for the connection to a value of 2 or 3,
using the change-input-character-type asynchronous supervisory message
described in section 3, then use a NETGET, NETGETL, NETGETF, or NETGTFL
call to obtain the block.

Use the change-input-character-type asynchronous supervisory message with a
set nxp bit as described in section 3; this discards the queued block and
all subsequent blocks of transparent data from the connection.

• Is queued on a connection between application programs within the same host and the
act value specified by your application does not match the act value specified by
the other application in its NETPUT call for the block. The application program can:

Change the input character type for the connection using the change-input-
character-type asynchronous supervisory message described in section 3,
then use a NETGET, NETGETL, NETGETF, or NETGTFL call to obtain the block.

You can access this field with the reserved symbol ABHIBU (see section 4).

r e s R e s e r v e d f o r C D C u s e .

t r u Tr u n c a t e d d a t a b i t . W h e n t r u i s 1 , t h e b l o c k a s s o c i a t e d w i t h t h i s b l o c k h e a d e r h a s b e e n
truncated to fit into the text area used. When tru is 0, the block has not been
truncated. The tru bit cannot be 1 unless the application program has issued the data
truncation control asynchronous supervisory message described in section 3 and that
message affects t ransmissions on th is connect ion. When truncat ion occurs, the t ic field
contains the maximum number of complete transferred character bytes of the block. You can
access the tru field with the reserved symbol ABHTRU (see section 4).

xpt Transparent mode b i t , ind icat ing whether the accompanying b lock conta ins t ransparent mode
data. If your program chooses not to receive transparent mode input when it accepts a
connection or changes the input character type of the connection (nxp field, described in
section 3), an xpt value of 1 is received in a block with an abt of 0 (an empty block)
and indicates that one or more transparent mode blocks were discarded by the network
sof tware.

If your program can receive transparent mode input, the interpretation of the value this
field contains depends on the act value used, as fol lows:

act=1, xpt should be ignored.

act=2, if the data is from a site-defined device or a CDC-defined console device:

xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations were performed; 7-bit characters are from the
128-character ASCII set (see appendix A).

xpt=1 indicates transparent mode data for which no transformations were
performed; all eight bit positions might be used to form 256
characters, but the application program must correctly interpret the
format of such data.

act=2, i f the data is from an appl icat ion program:

xpt=0 indicates that the sending application program did not use an xpt
value of 1 in its block header for the accompanying block.

xpt=1 indicates that the sending application program used an xpt value of
1 in its block header for the accompanying block.

Figure 2-4. Application Block Header Content for Upline Network Data Blocks (Sheet 3 of 4)

2 - 2 8 6 0 4 9 9 5 0 0 W

pef

t i c

act=3, if the data is from a site-defined device or a CDC-defined console device:

xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations were performed; 7-bit characters are from the
128-character ASCII set (see appendix A).

xpt=1 indicates transparent mode data for which no transformations were
performed; al l e ight bi t posi t ions in the character port ion of the
character byte might be used to form 256 characters, but the
application program, must correctly interpret the format of such data.

act=3, i f the data is f rom an appl icat ion program:

xpt=0 indicates that the sending application programt did not use an xpt
value of 1 in its block header for the accompanying block.

xpt=1 indicates that the sending application programt used an xpt value of
1 in its block header for the accompanying block.

act=4, if the data is from a site-defined device or a CDC-defined console device:

xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations were performed; 6-bit characters are from the 6-bit
display code set (see table A-1 in appendix A).

xpt=1 indicates that the ibu bi t is also set; the t ic field contains the
actual b lock length in 8-bi t characters (not in 6-bi t characters) .
Transparent mode is not supported for act=4; a change-input-
character-type supervisory message must be issued before the block
can be received (see section 3).

You can access this field with the reserved symbol ABHXPT (see section 4).

Cancel- input bi t . When can is 1, the terminal operator used the cancel- input key
defined for the device or the break condition key (see BR command in section 3) to end the
text in the associated block. The associated block always has an abt of 2, and the data
is always from a console device. The cancel-input request also applies to any blocks with
an abt value of 1 that preceded this block; all blocks in the same message should be
discarded. You can access this field with the reserved symbol ABHCAN (see section 4).

Par i ty er ror flag b i t . When pef is 1 , the assoc ia ted b lock conta ins a par i ty er ror in
one or more of its characters. You can access this field with the reserved symbol ABHBIT
(see section 4).

Text length o f the assoc ia ted b lock , in character un i ts spec ified by the ac t fie ld . The
equivalent length in central memory words can be computed as follows:

act=1, tic is the number of central memory words the block requires.

act=2, the number of central memory words the block requires is t ic divided by
7.5, rounded upward to an integer.

act=3,

act=4,

act=5
t h r u
15

the number of central memory words the block requires is tic divided by
5, rounded upward to an integer.

the number of central memory words the block requires is tic divided by
10, rounded upward to an integer.

t i c i s undefined.

You can access this field with the reserved symbol ABHTLC (see section 4).

tThe xpt value will always be set to 0 in the upline network block if the data passes through a
packet switching network. Therefore, to get consistent results, i t is strongly suggested that xpt=0
be used on al l appl icat ion-to-appl icat ion connect ions.

Figure 2-4. Application Block Header Content for Upline Network Data Blocks (Sheet 4 of 4)

60499500 T 2-29

ha

abt

abn

act

ha

59 53 41 2 3 '19 1514131211

n n x n r
abt acn abn act t i c

Symbolic header area address, specified as the application block header's location in a
call to NETPUT or NETPUTF (see section 5).

Application block type of the accompanying network data block. This field can contain the
values:

=1, indicates that the accompanying block is one of several b locks compris ing a
single message, but is not the last such block.

=2, ind ica tes tha t the accompany ing b lock is e i ther the las t o r on ly one
comprising a message.

=6 ind ica tes tha t the assoc ia ted b lock is one o f severa l b locks compr is ing a
single qualified data message, but is not the last such block.

=7 i n d i ca te s t h a t t h e a sso c i a t e d b l o ck i s e i t h e r t h e l a s t o r o n l y o n e
comprising a qualified data message.

Values of 0, 3 through 5, and 8 through 63 are not valid for data blocks on output. You
can access this field with the reserved symbol ABHABT (see section 4).

Application connection number of the logical connection to which the accompanying block
should be sent. This field can contain the values 1 £ minacn £ acn £ maxacn £ 4095, where
the values minacn and maxacn are parameters in the NETON statement (see section 5.) You
can access this field with the reserved symbol ABHADR (see section 4).

Application block number assigned to the block being sent. This field is an 18-bit
integer that identifies the block when the network software's processing of the block
returns certain supervisory messages (see section 3). You define the block number; it can
be:

A sequencing number

The block's central memory address

The block's mass storage address (physical record unit)

An index value for a block control array or table

An external label

You can access this field with the reserved symbol ABHABN (see section 4).

Application character type used to encode the accompanying block. This field can contain
the values:

=1, 60-b i t t ransparent characters , packed one per centra l memory word; th is
character type can be used only for application-to-application connections
within the same host.

=2, 8-b i t characters , packed 7.5 per centra l memory word; th is character type
is recommended for transparent mode data or normalized mode data on
device- to appl icat ion connect ions or for appl icat ion- to appl icat ion
connections between hosts.

= 3 , 8 - b i t c h a r a c t e r s , r i g h t - j u s t i fi e d i n 1 2 - b i t b y t e s , p a c k e d 5 p e r c e n t r a l
memory word; this character type can be used for transparent mode or
normalized mode data on device-to-application connections, or for
app l ica t ion- to -app l ica t ion connect ions .

Figure 2-5. Application Block Header Content for Downline Network Data Blocks (Sheet 1 of 3)

2-30 60499500 W

/0£\,

ncp

nfe

xpt

=4, 6-bit display code characters (see table A-1 in appendix A), packed 10 per
central memory word. This value can be used only for normalized mode data
on application-to-terminal connections when the block is exchanged with a
site-defined device or a CDC-defined console device.

=5 thru Reserved for CDC use; not currently recognized.
11

=l2 ,c Re"^ved for insta l lat ion use; usage and content are unrestr ic ted andthru 15 undefined (the released version of the software does not recognize these
va lues) .

You can access this field with the reserved symbol ABHACT (see section 4).

No-cursor-posi t ioning bi t , indicat ing whether cursor posi t ioning is to be disabled for the
input operat ion that immediate ly fo l lows th is output b lock. I f ncp is 1 , no cursor
posi t ioning is to be performed for the next input operat ion; i f ncp is 0, cursor
posit ioning can be performed for the next operation. This bit is ignored for blocks sent
on application-to-application connections and for blocks with an abt of 1 on

«HMrrJ0"aPPl1^ti0^C°nneCti0nS* Y°U Can access th1s fieLd with the reserved symbolABHNCP (see section 4).

No-format-effector bit, indicating whether the accompanying block contains format

h e n f ' c t o ; s ; . I f " f e J s J ' t h e r e a r e n o f o r m a t e f f e c t o r s i n t h e b l o c k ; i f n f e i s 0 , t h eb lock con ta ins fo rmat e f fec to rs requ i r ing remova l and in te rp re ta t ion . The n fe fie ld
applies only to normalized mode data exchanged with a site-defined device or a CDC-defined
console device. You can access this field with the reserved symbol ABHNFE (see section 4).

Transparent mode bit, indicating whether the accompanying block contains transparent mode
data. The value used in this field depends on the act value used, as fol lows:

act=1, xpt value does not determine data translation and can be 1 or 0. A value
of 0 is recommended.

act=2, i f the data is for a si te-defined device or a CDC-defined console device:

xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations should be performed; 7-bit characters are from the
128-character ASCII set (see appendix A).

xpt=1 indicates transparent mode data for which no transformations are to
be performed; all eight bit positions can be used to form 256
characters (if parity of none is used), but such data must be
correct ly formatted for terminal output .

ac t=2, i f the da ta is fo r an app l ica t ion program, xp t does not a f fec t da ta
translation and can be 1 or 0. For data passing through a public data
network, the receiv ing appl icat ion wi l l a lways see xpt=0. Therefore, i t
is strongly recommended that a value of xpt=0 be used by the sender.

act=3, i f the data is for a si te-defined device or a CDC-defined console device:

xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations should be performed; 7-bit characters are from the
128-character ASCII set (see appendix A).

xpt=1 indicates transparent mode data for which no transformations are
performed; al l e ight b i t posi t ions in the character port ion of the
character byte can be used to form 256 characters (if parity of none
is used), but such data must be correctly formatted for terminal
output .

ac t=3 , i f the da ta i s fo r an app l i ca t ion p rogram, xp t does no t a f fec t da ta
translation and can be 1 or 0. For data passing through a public data
network, the receiv ing appl icat ion wi l l a lways see xpt=0. Therefore, i t
is strongly recommended that a value of xpt=0 be used by the sender.

act=4, xpt value does not determine data translation and can be 1 or 0. A value
of 0 is recommended.

Figure 2-5. Application Block Header Content for Downline Network Data Blocks (Sh eet 2 of 3)

60499500 W 2-31

act=
other

xpt is not defined.

You can access this field with the reserved symbol ABHXPT (see section 4).

nep No -echop lex i ng b i t , i nd i ca t i ng whe the r t he nex t l og i ca l l i ne o f non t ranspa ren t i npu t da ta
should not be echoplexed. If nep is 1 and the NPU is echoing characters back to the
terminal (Y value of EP command, described in NAM Version 1/CCP Version 3 Terminal
Interfaces reference manual), the NPU does not echo the next logical line from the
console. If nep is 0 and the NPU is echoing characters (Y value of EP command), the NPU
does echo the next logical l ine of input. This bit is ignored for blocks sent on
application-to-application connections and for blocks with an abt of 1 on
device-to-application connections. You can access this field with the reserved symbol
ABHNEP (see section 4).

r e s R e s e r v e d f o r C D C u s e . R e s e r v e d fi e l d s c o n t a i n z e r o .

t i c Te x t L e n g t h o f t h e a s s o c i a t e d b l o c k , i n c h a r a c t e r u n i t s s p e c i fi e d b y t h e a c t v a l u e . T h e
value to use in the tic field can be computed as follows:

act=1, tic is the number of central memory words occupied by the block.

act=2, tic is the number of complete central memory words occupied by the block
times 7.5, plus the number of complete character bytes used in any
remaining central memory word, rounded upward to an integer.

act=3, tic is the number of complete central memory words occupied by the block
times 5, plus the number of 12-bit character bytes used in any remaining
central memory word.

act=4, tic is the number of complete central memory words occupied by the block
times 10.

a c t = 5 t i c i s n o t d e fi n e d .
thru 15

The character count used as the text length must include any format effectors and
end-of- l ine indicator bytes contained in the block. You can access this field with the
reserved symbol ABHTLC (see section 4).

Figure 2-5. Application Block Header Content for Downline Network Data Blocks (Sheet 3 of 3)

The precise function of a message within a primary
f u n c t i o n g r o u p i n g i s i n d i c a t e d b y i t s s e c o n d a r y
function code, forming the fourth common field. The
mnemonic symbols used to identify these secondary
function codes are related to the use of the mes
sages. Mnemonics for these codes also appear in
figures 2-6 and 2-7 and in parentheses a f ter the
secondary funct ions in the fol lowing l ist :

Request for logical connection (REQ)

End of connection (END)

Connection broken (CB)

A p p l i c a t i o n - t o - a p p l i c a t i o n c o n n e c t i o n r e q u e s t
(ACRQ)

Internal shutdown (INSD)

Inactive connection (INACT)

No acknowledgment (NAK)

Acknowledgment (ACK)

Reset (RST)

Break (BRK)

Logical problem (LGL)

I n i t i a l i z a t i o n (I N I T)

Mark point in data (MARK)

Switch connection between lists (SWH)

Turn connection list processing off (OFF)

Turn connection list processing on (ON)

Turn half-duplex operation on for connection on
a list (HDX)

Turn ful l-duplex operation on for connection on
a list (FDX)

Begin truncating input on a connection (TRU)

Appl icat ion interrupt request (APP)

User Interrupt request (USR)
<*^Sv

2-32 60499500 W

Interrupt response (RSP)

Change input character type (CICT)

R e p o r t o f c h a n g e d t e r m i n a l c h a r a c t e r i s t i c s
(TCHAR)

Request terminal characteristics (RTC)

Define single terminal character ist ic (DEF)

Define mult ip le terminal character ist ics (TCD)

Downl ine CCP termina l mul t ip le character is t ics
definit ion (CHAR)

Define CDCNET terminal characteristics (CTD)

ta word
1

ta word
n

ta

pfc

eb

rb

sfc

59 51 49 43

pfc sfc Parameters

•

/g^?N,

Parameters

Symbolic text area address, specified in a NETGET, NETGETF, NETGETL, or NETGTFL call as
the location to receive an upline supervisory message or specified in a NETPUT or NETPUTF
call as the location from which to send a downline supervisory message (see section 5).

Primary function code. Field mnemonics are used throughout this manual in specific
message formats. Reserved symbols corresponding to the field mnemonics can be used to
access message fields (see section 4). Reserved symbols for the primary function code are
used throughout this manual within mnemonics identifying specific messages. The mnemonics
and their unpacked (r ight- just ified) numerical equivalents are:

Reserved
Field Mnemonic Symbolic Mmemonic Octal Hexadecimal Decimal

bit Bl 312 CA 202
con CON 143 63 099
c t r l t CTRL 301 C1 193
dc DC 302 C2 194
err ERR 204 84 132
fc FC 203 83 131
hop HOP 320 DO 208
i n t r INTR 200 80 128
1st LST 300 CO 192
rot RO 313 CB 203
shut SHUT 102 42 066
tch TCH 144 64 100
tot TO 304 C4 196

Primary function codes 00 through E0 hexadecimal are reserved for CDC use. Hexadecimal
codes E1 through EF are for installation use and have no predefined meanings or reserved
symbols. You can access the pfc field with the reserved symbol PFC (see section 4).

Error bit. When set to 1, eb indicates the occurrence of an error (an abnormal response
to a previous supervisory message); when set to 0, eb indicates a normal response. The
eb field always contains 0 when a supervisory message is not a response to a prior
message. You can access this field with the reserved symbol EB (see section 4).

Response bit. When set to 1, rb indicates a normal response to a previous supervisory
message; rb is always 0 in a supervisory message that is not a response to a previous
message. You can access this field with the reserved symbol RB (see section 4).

Secondary function code. Field mnemonics are used throughout this manual in specific
message formats. Reserved symbols corresponding to the field mnemonics can be used to
access message fields (see section 4). Reserved symbols for the secondary function code
are used throughout this manual within mnemonics identifying specific messages. The sfc
mmemonics and their unpacked (right-justified) numerical equivalents are:

Figure 2-6. Supervisory Message General Content, Asynchronous Messages
and Synchronous Messages of Application Character Type 2 (Sheet 1 of 2)

60499500 W 2-33 |

Related Reserved
Field Mnemonic Symbolic pfc Symbolic Mnemonic Octal Hexadecimal Decimal

req CON REQ 00 00 00
acrq CON ACRQ 02 02 02
cb CON CB 05 05 05
end CON END 06 06 06
ccd t CTRL CCD 14 OC 12
c t d t CTRL CTD 02 02 02
d e f t CTRL DEF 04 04 04
char t CTRL CHAR 10 08 08
r c c t CTRL RCC 13 OB 11
r t c t CTRL RTC 11 09 09
t c d t CTRL TCD 12 OA 10
c i c t DC CICT 00 00 00
stmr DC STMR 02 02 02
t ru DC TRU 01 01 01
i g i ERR LGL 01 01 01
brk FC BRK 00 00 00
rst FC RST 01 01 01
ack FC ACK 02 02 02
nak FC NAK 03 03 03
inac t FC INACT 04 04 04
i n i t FC INIT 07 07 07
brk HOP BRK 00 00 00
cmd HOP CMD 01 01 01
trace HOP TRACE 02 02 02
du HOP DU 03 03 03
ig HOP IG 04 04 04
s t a r t HOP START 05 05 05
endd HOP ENDD 06 06 06
n o t r HOP NOTR 07 07 07
rs HOP RS 10 08 08
dis HOP DIS 11 09 09
ig HOP LG 12 OA 10
a l t HOP ALT 13 OB 11
page HOP PAGE 14 OC 12
re I HOP REL 15 OD 13
db HOP DB 16 OE 14
de HOP DE 17 OF 15
day HOP DAY 20 10 16
usr INTR USR 00 00 00
rsp INTR RSP 01 01 01
app INTR APP 02 02 02
off LST OFF 00 00 00
on LST ON 01 01 01
swh LST SWH 02 02 02
fdx LST FDX 03 03 03
hdx LST HDX 04 04 04
insd SHUT INSD 06 06 06
tchar TCH TCHAR 00 00 00
markt TO or

Bl or
RO

MARK 00 00 00

You can access the sfc field wi th the reserved symbol SFC (see section 4) .

parameters These parameters can extend into words 2 through n; n < 410. Parameters are defined in
the descr ipt ions of the spec ific messages in section 3.

tsynchronous supervisory message fields.

Figure 2-6. Supervisory Message General Content, Asynchronous Messages
and Synchronous Messages of Application Character Type 2 (Sheet 2 of 2)

2-34

/^Sfey

60499500 V

/ 0 ^ \

jP f c \

Funct ions routed between NAM and the appl icat ion
program are represented in figures 2-6 and 2-7 by
mnemonics. These mnemonics are defined in paren
t h e s e s a f t e r t h e c o r r e s p o n d i n g f u n c t i o n i n t h e
f o l l o w i n g l i s t :

Connection data flow control (FC)

Error reporting (ERR)

Device control (CTRL)

Connection list management (LST)

Connect ion character ist ic defini t ion (DC)

Interrupt request (INTR)

Connection control (CON)

Terminal character is t ic defini t ion (TCH)

Network shutdown (SHUT)

Host operator commands (HOP)

Terminate output (TO)

Break indicat ion (Bl)

Resume output (RO)

The precise function of a message within a primary
f u n c t i o n g r o u p i n g i s i n d i c a t e d b y i t s s e c o n d a r y
function code, forming the fourth common field. The
mnemonic symbols used to identify these secondary
function codes are related to the use of the mes
sages. Mnemonics for these codes a lso appear in
figures 2-6 and 2-7 and in parentheses a f ter the
secondary funct ions in the fo l lowing l is t :

Request for logical connection (REQ)

End of connection (END)

Connection broken (CB)

A p p l i c a t i o n - t o - a p p l i c a t i o n c o n n e c t i o n r e q u e s t
(ACRQ)

Internal shutdown (INSD)

Inactive connection (INACT)

No acknowledgment (NAK)

Acknowledgment (ACK)

Reset (RST)

Break (BRK)

Logical problem (LGL)

I n i t i a l i z a t i o n (I N I T)

Mark point in data (MARK)

Switch connection between lists (SWH)

Turn connection list processing off (OFF)

Turn connection list processing on (ON)

Turn half-duplex operation on for connection on
a list (HDX)

Turn ful l-duplex operation on for connection on
a list (FDX)

Begin truncating input on a connection (TRU)

Appl icat ion interrupt request (APP)

User interrupt request (USR)

Interrupt response (RSP)

Change input character type (CICT)

R e p o r t o f c h a n g e d t e r m i n a l c h a r a c t e r i s t i c s
(TCHAR)

Request terminal characteristics (RTC)

Define single terminal character ist ic (DEF)

U p l i n e t e r m i n a l m u l t i p l e c h a r a c t e r i s t i c s d e fi
nition (TCD)

Downl ine terminal mul t ip le character is t ics def
inition (CHAR)

The second and th i rd common fie lds are used to
indicate whether the function was performed or not.
B y c o n v e n t i o n , t h e s e fi e l d s a r e c a l l e d t h e e r r o r
and response bi ts. The error b i t is usual ly set to
indicate the message recipient 's refusal to perform
the func t i on ; t he response b i t i s se t t o i nd i ca te
the recipient's normal completion of the function.

Together, the four common fields define one super
visory message. Supervisory messages can be grouped
into two classes of sequencing protocol:

Asynchronous (the largest class)

Synchronous

ASYNCHRONOUS MESSAGES
A s y n c h r o n o u s s u p e r v i s o r y m e s s a g e s a r e s e n t o r
received separately from the stream of data message
blocks between an application program and a logical
connection. Their receipt or the need to send them
c a n n o t b e p r e d i c t e d f r o m t h e g e n e r a l i z e d l o g i c
required for data block processing. Such messages
a r e s a i d t o b e a s y n c h r o n o u s t o t h e d a t a b l o c k
stream.

All asynchronous messages are sent or received on a
s p e c i a l l o g i c a l c o n n e c t i o n w i t h t h e p r e a s s i g n e d
application connection number of zero. The network
s o f t w a r e p r e a s s i g n s t h i s a p p l i c a t i o n c o n n e c t i o n
number to connection l ist zero.

All asynchronous supervisory messages are actually
sent to or rece ived f rom sof tware res ident in the
host computer, although they may be reformatted by
this sof tware for communicat ion wi th sof tware out
s ide of the host . These messages conform to the
requ i remen ts o f app l i ca t i on - to -app l i ca t i on connec
tions. Asynchronous supervisory messages therefore
u s e a n a p p l i c a t i o n c h a r a c t e r t y p e o f o n e . A l l
s u p e r v i s o r y m e s s a g e s a r e a s s i g n e d t h e n o n z e r o
appl icat ion block type of three.

60499500 R 2-35

Asynchronous supervisory messages are processed
with the same AIP routines used by an application
program to process data message blocks on logical
connections other than application connection number
zero. Asynchronous supervisory messages are queued
on t he i r spec ia l connec t i on un t i l f e t ched by t he
application program.

The application program fetches supervisory messages
one message at a time. When the connection queue
i s emp ty, a nu l l b l ock w i t h an app l i ca t i on b l ock
type of zero is returned.

The network software provides a mechanism for the
application program to determine when asynchronous
supervisory messages are queued on application con
nection number zero. When a call to an AIP routine
is completed, a supervisory status word at a loca
tion defined by the application program is updated
to ind icate whether any asynchronous superv isory
messages are queued. As long as the appl icat ion
program continues to make calls to AIP routines, it
can tes t the superv iso ry s ta tus word per iod ica l l y
(i n s t e a d o f a t t e m p t i n g t o f e t c h n u l l b l o c k s f r o m
appl icat ion connect ion number zero) . The superv i
s o r y s t a t u s w o r d a n d t h e u s e o f N E T WA I T a r e
described in section 5.

SYNCHRONOUS MESSAGES

S y n c h r o n o u s s u p e r v i s o r y m e s s a g e s a r e s e n t o r
received embedded in the stream of data message
blocks between an application program and a logical
connection. Their receipt or the need to send them
is determined by the general ized logic required for
data block processing. Such messages are said to
be synchronous with the data block stream.

All synchronous messages are sent or received on
the l og i ca l connec t i on to wh i ch they app l y. Th i s
logical connection cannot be application connection
number zero.

Al l synchronous supervisory messages are actual ly
sent to or received f rom network sof tware outs ide
of the host computer. Because the application pro
gram processes these messages as network blocks
sent to or received f rom terminals , the messages

c o n f o r m t o t h e r e q u i r e m e n t s o f a p p l i c a t i o n - t o -
terminal connections. Synchronous supervisory mes
sages use an appl icat ion character type of two or
three; your program specifies which is used when it
accepts the connection to the terminal.

Synchronous supervisory messages are processed with
the same AIP routines used by an application pro
gram to process other blocks on logical connections.
Synchronous supervisory messages are queued on
the i r connec t ions un t i l fe tched by the app l i ca t ion
program. Because the application program must dis
tinguish between data or null blocks and synchronous
supervisory message blocks, supervisory messages
are assigned the application block type of three.

The network software provides a mechanism for the
application program to determine when synchronous
supervisory messages or data blocks are queued on a
logical connection. When a call to the AIP routine
NETWAIT is completed, a supervisory status word at
a l oca t i on defined by the app l i ca t i on p rog ram i s
updated to indicate whether any synchronous super
v i so ry message o r da ta b locks a re queued . The
application program can test the supervisory status
wo rd pe r i od i ca l l y, i n s tead o f a t t emp t i ng t o f e t ch
nu l l b l ocks f rom a l l app l i ca t i on connec t i on num
bers. The supervisory status word and the use of
NETWAIT are described in section 5.

Synchronous supervisory messages are subject to the
same application block l imit as data messages and
a r e s i m i l a r l y a c k n o w l e d g e d . T h i s p r o c e s s i s
described in section 3.

BLOCK HEADER CONTENT
The content o f the b lock header word assoc ia ted
with a supervisory message depends on whether the
message is asynchronous or synchronous, and on
whether i t Is being sent or received. The require
ments for asynchronous and synchronous messages are
d e s c r i b e d i n t h e p r e c e d i n g s u b s e c t i o n . T h e
requi rements for a l l header words associated wi th
i ncoming supe rv i so ry messages a re desc r i bed i n
figure 2-8. The requi rements for a l l header words
associated with outgoing supervisory messages are
described in figure 2-9.

ha

ha

abt

59 53 41 23 19 16 11

abt adr Reserved for
use by CDC act b3 tic

Symbolic header area address, specified as the location to receive the application block
header in a call to NETGET, NETGETF, NETGETL, or NETGTFL (see section 5).

Application block type of the associated message block. This field can contain the values:

=0, indicates a nul l block. (No message is queued or can be del ivered from the
logical connect ion pol led.)

=3, indicates that the accompanying block is a supervisory message block.

Values of 1, 2, and 4 through 63 are not valid for supervisory messages on input. You can
access this field with the reserved symbol ABHABT (see section 4).

Figure 2-8. Application Block Header Content for Upline Supervisory Messages (Sheet 1 of 2)

2-36 60499500 R

J ^ > \

adr

act

ibu

tru

re

t i c

Application connection number of the logical connection from which the message block
comes. This field can have the values:

=0, for asynchronous supervisory messages from the host portion of the network
software.

=acn, for synchronous supervisory messages from the Terminal Interface Program
servicing the logical connection with the indicated nonzero application
connection number.

You can access this field with the reserved symbol ABHADR (see section 4).

Application character type used to encode the accompanying message block. The value
appearing in this field depends on the type of supervisory message involved and on the
act value you chose (the set field described in section 3) for synchronous supervisory
messages on this connection; this field can contain the values:

=1, an asynchronous supervisory message packed in 60-bit words. Must be used
for supervisory messages with an adr value of 0.

=2, a synchronous supervisory message packed in 8-bit characters, 7.5
characters per central memory word (the recommended value).

=3, a synchronous supervisory message packed in 8-bit characters, 5 characters
per central memory word.

Because the fields within supervisory messages are groups of bits within central memory
words (rather than characters in a character string), the act field of a supervisory
message does not indicate that character mapping occurred. You can access this field with
the reserved symbol ABHACT (see section 4).

Input-block-undeliverable bit. When ibu is 1, the block associated with this block
header has not been delivered to the application program. The block is larger than the
maximum text length (tlmax parameter) declared by the application program in its NETGET,
NETGETF, NETGETL, or NETGTFL call and remains queued until:

A NETGET, NETGETL, NETGETF, or NETGTFL call occurs for the connection and specifies
an adequate text length (see section 5).

A truncate-input asynchronous supervisory message (see section 3) is issued for the
connection and a NETGET, NETGETL, NETGETF, or NETGTFL call occurs for the connection
(see section 5). This action resolves the problem only for synchronous supervisory
messages.

A block header with an ibu value of 1 contains the actual length of the queued block in
its tic field, given in character units specified by the act field. You can access
this field with the reserved symbol ABHIBU (see section 4).

Truncated data bit. When tru is 1, the synchronous supervisory message block associated
with this block header has been truncated to fit into the text area used. Asynchronous
supervisory messages are never truncated. This bit contains a meaningful value only after
the application program has issued the data truncation control asynchronous supervisory
message described in section 3 and only if that message affects transmissions on this
connection. When truncation occurs, the block header for the truncated block contains the
maximum number of complete transferred character bytes in its tic field. You can access
this field with the reserved symbol ABHTRU (see section 4).

Reserved for CDC use.

Text length of the associated block, in character units specified by the act field, as
follows:

act=1, tic is the number of central memory words occupied by the block.

act=2, tic is the number of 8-bit bytes containing meaningful message fields.

act=3, tic is the number of 12-bit bytes containing meaningful message fields.
You can access this field with the reserved symbol ABHTLC (see section 4).

0^ \ Figure 2-8. Application Block Header Content for Upline Supervisory Messages (Sheet 2 of 2)

60499500 R 2-37

ha

ha

abt

adr

abn

act

t ic

59 53 41 23 19 11

abt adr abn act tic

Symbolic header area address, specified as the application block header's location in a
call to NETPUT or NETPUTF (see section 5).

Application block type; abt is 3 for all supervisory messages. You can access this field
with the reserved symbol ABHABT (see section 4).

Application connection number of the logical connection to which the message block should
be sent. This field can contain the values:

=0, for asynchronous supervisory messages addressed to the host portion of the
network software.

=acn, for synchronous supervisory messages addressed to the Terminal Interface
Program servicing the logical connection with the indicated nonzero
application connection number.

You can access this field with the reserved symbol ABHADR (see section 4).

Application block number assigned to the message block being sent. This field is an
18-bit integer that identifies a synchronous supervisory message block when the network
software's processing of the block returns a block-delivered or block-not-delivered
supervisory message. This field is generally ignored for asynchronous supervisory
messages. If the message is a request for connection with another application program,
that application program will receive this integer as part of the request; see the
CON/ACRQ/R supervisory message description in section 3. You define the block number; it
can be:

A sequencing number

The block's central memory address

The block's mass storage address (physical record unit)

An index value for a block control array or table

An external label

You can access this field with the reserved symbol ABHABN (see section 4).

Application character type used to encode the accompanying message block. The value
declared for this field depends on the type of supervisory message involved; this field
can have the values:

=1, an asynchronous supervisory message packed in 60-bit transparent character
bytes, one character per central memory word.

=2, a synchronous supervisory message packed in 8-bit character bytes, 7.5
bytes per central memory word; the recommended value.

=3, a synchronous supervisory message packed in 8-bit characters within 12-bit
bytes, 5 bytes per central memory word.

You can access this field with the reserved symbol ABHACT (see section 4).

Text length of the accompanying block, in character units specified by the act field, as
follows:

act=1, tic is the number of central memory words occupied by the block.

act=2, tic is the number of 8-bit bytes containing meaningful message fields.

act=3, tic is the number of 12-bit bytes containing meaningful message fields.
You can access this field with the reserved symbol ABHTLC (see section 4).

Figure 2-9. Application Block Header Content for Downline Supervisory Messages

2-38 60499500 R

SUPERVISORY MESSAGES 3 |

This sect ion descr ibes a l l synchronous and asyn
chronous superv isory messages that are lega l fo r
a p p l i c a t i o n p r o g r a m c o m m u n i c a t i o n w i t h n e t w o r k
software. These messages are described in the con
text of their use.

MESSAGE MNEMONICS
Figure 2-6 in section 2 shows the general format of
a superv isory message. Note that th is in format ion
is in the tex t a rea o f the message and must be
a c c o m p a n i e d b y a n a p p l i c a t i o n b l o c k h e a d e r a s
descr ibed in sect ion 2 . A superv isory message is
i den t i fied by the con ten ts o f i t s p r imary func t i on
code fie ld , e r ror b i t , response b i t , and secondary
f u n c t i o n c o d e fi e l d . T h i s a l l o w s a s u p e r v i s o r y
message to be described by a mnemonic of the form
shown in figure 3-1. Although many combinations of
va l id fie ld va lues a re poss ib le , on ly cer ta in com
b i n a t i o n s a r e p e r m i t t e d . Ta b l e 3 - 1 l i s t s t h e s e
legal messages alphabetically by mnemonic.

p fc /s fc /sm

pfc

sfc

sm

The reserved symbolic mnemonic for the
contents of the primary function code
field; this mnemonic can be any of those
l is ted in figure 2-6 in sect ion 2.

The reserved symbolic mnemonic of the
contents of the secondary function code
field; this mnemonic can be any of those
l is ted in figure 2-6 in sect ion 2,
provided the secondary function code is
legal for the primary function code used.

A letter indicat ing the combined sett ings
of the error and response bits; this
letter can be:

R Ind i ca t i ng an i n i t i a l r eques t
supervisory message (bit setting 00)

N Indicating a normal response
supervisory message (bit setting 01)

A Indicating an abnormal response
supervisory message (bit setting 10)

Figure 3-1. Supervisory Message
Mnemonic Structure

MESSAGE SEQUENCES
Supervisory messages are always used in stereotyped
sequences of one or more messages. Related messages
(messages distinguished by the use of the error or
response bits) are always part of mult iple-message
sequences. The messages described in the following

subsect ions are d iscussed in the contex t o f the i r
normal sequences. Each sequence Is illustrated with
a figure that shows the sender and recipient of the
messages i n t he sequence , and t he d i r ec t i on o f
transmission of each message (arrows).

Message sequences include the following:

Managing logical connections

Managing connection lists

Cont ro l l ing data flow

Converting blocks

Truncating blocks

Managing terminal character ist ics

Host operator communication

Host shutdown

Er ro r repo r t i ng

MANAGING LOGICAL
CONNECTIONS
Five messages are used in connection management.
These are the CON/ACRQ, CON/REQ, CON/CB, CON/END,
and FC/INIT. These messages as well as examples of
how they are used in connecting devices to applica
t i o n s , a p p l i c a t i o n s t o a p p l i c a t i o n s , a n d l a t e r
terminating these connections are discussed in this
subsect ion.

CONNECTING DEVICES TO APPLICATIONS
After an application program has completed a NETON
cal l , connect ion- request superv isory messages are
sen t to the app l i ca t ion on beha l f o f each dev ice
seeking connection. Request by request, the appl i
cation must decide whether to accept or reject the
reques ted connec t i on . Re jec t i on m igh t be neces
s a r y, f o r e x a m p l e , w h e n t h e a p p l i c a t i o n p r o g r a m
receives a connection request for a card reader and
it does not support batch devices. To respond to a
connec t ion - reques t -message , the app l i ca t i on mus t
return one of two similar messages, indicating that
the appl icat ion is e i ther re ject ing or accept ing the
connect ion request . F igure 3-2 shows the common
message sequences in the connection establishment
process.

I n t h i s fi g u r e , a r r o w s i n d i c a t e t h e d i r e c t i o n o f
t ransmiss ion o f each message . The genera l t e rm
Network Access Method (NAM) indicates the network
hos t so f twa re send ing o r rece i v i ng the message ,
regardless o*f the software module actually involved.

60499500 R 3-1

TABLE 3-1. LEGAL SUPERVISORY MESSAGES

Message
Mnemonic Message Meaning Type

Block Header
F ie lds

Figure Number
Defin ing
Message

BI/MARK/R Break-indication-marker request Upline synchronous acn r* 0
act = 2,3
tic = 2

3-32

CON/ACRQ/A Rejec t ion o f app l i ca t ion- to -
appl icat ion connection request

Upline asynchronous acn = 0
act = 1
tic = 2

3-13

CON/ACRQ/R App l i ca t i on - to -app l i ca t i on
connection request

Downline asynchronous acn = 0
act = 1
tic = 2

3-12

CON/CB/R Connection broken Upline asynchronous acn = 0
act = 1
t ic - 1

3-8

CON/END/N All connection processing
completed

Upline asynchronous acn = 0
act = 1
tic = 1

3-10

CON/END/R End all connection processing Downline asynchronous acn = 0
act = 1
tic >^ 2

3-9

CON/REQ/A Connection rejected Downline asynchronous acn = 0
act = 1
tic = 1

3-5

CON/REQ/N Connection accepted Downline asynchronous acn ■* 0
act = 1
tic = 1

3-4

CON/REQ/R Connection requested Upline asynchronous acn = 0
act = 1
tic >_ 6

3-3, 3-14

CTRL/CHAR/A No terminal character ist ics
changed

Upline synchronous acn £ 0
act = 2, 3
tic = 4

3-49

CTRL/CHAR/N Mul t i p le te rm ina l charac te r i s t i cs
defined

Upline synchronous acn f 0
act = 2, 3
tic >= 2

3-50

CTRL/CHAR/R Define mul t ip le terminal
c h a r a c t e r i s t i c s

Downline synchronous acn £ 0
act = 2, 3
tic > 2

3-48

CTRL/DEF/R Redefine terminal character is t ic Downline synchronous acn ^ 0
act = 2, 3
tic >. 2

3-47

CTRL/RTC/A Bad value in request terminal
charac te r is t i cs superv isory
message

Upline synchronous acn ^ 0
act =■ 2, 3
tic = 4

3-52

CTRL/RTC/R Request current value of terminal
c h a r a c t e r i s t i c s

Downline synchronous acn ^ 0
act = 2, 3
tic > 2

3-51

CTRL/TCD/R Termina l charac ter is t i cs
d e fi n i t i o n s

Upline synchronous acn f 0
act = 2, 3
tic > 2

3-53

3-2 60499500 R

TABLE 3-1. LEGAL SUPERVISORY MESSAGES (Contd)

/ ^ f f ^ * \

Message
Mnemonic

DC/CICT/R

DC/TRU/R

ERR/LGL/R

FC/ACK/R

FC/BRK/R

FC/INACT/R

FC/INIT/N

FC/INIT/R

FC/NAK/R

FC/RST/R

HOP/DB/R

HOP/DE/R

HOP/DU/R

HOP/NOTR/R

HOP/REL/R

HOP/RS/R

Message Meaning

Change application character type
of connection input

Truncate upline block

Type

Logica l er ror

Output block delivered

Connection processing interrupted
by break

Connection inactive

Application ready for connection
process ing (connect ion in i t ia l
ized)

NAM ready for connection process
ing (connec t ion i n i t i a l i zed)

Output block not delivered

Reset connection

Activate debug code

Turn off debug code

Dump field length

Turn off AIP tracing

Release debug log file

Res ta r t s ta t i s t i cs ga ther ing

Downline asynchronous

Downline asynchronous

Upline asynchronous

Upline asynchronous

Upline asynchronous

Upline asynchronous

Downline asynchronous

Upline asynchronous

Upline asynchronous

Downline asynchronous

Upline asynchronous

Upline asynchronous

Upline asynchronous

Upline asynchronous

Upline asynchronous

Upline asynchronous

Block Header
F i e l d s

Figure Number
Defin ing
Message

acn = 0
act =
t i c =

acn =
act =
t i c =

acn =
act «=
t i c >

acn =
act =
t i c =

acn =
act =
t i c =

acn =
act =
t i c =

acn =
act =
t i c =

acn =
act =
t i c =

acn =
act =
t i c =

acn =
act =
t ic =

acn =
act =
t i c =

acn =
ac t -
t i c =

acn «=
act =
t i c =

acn =
act =
t i c =

acn =
act =
t i c =

acn =
act =
t i c =

3-42

3-44

3-65

3-25

3-28

3-16

3-7

3-6

3-26

3-29

3-55

3-56

3-57

3-59

3-60

3-61

60499500 R 3-3

TABLE 3-1. LEGAL SUPERVISORY MESSAGES (Contd) /*^st&V

Message
Mnemonic Message Meaning Type

Block Header
F i e l d s

Figure Number
Defin ing
Message

HOP/TRACE/R Turn on AIP tracing Upline asynchronous acn = 0
act = 1
t ic - 1

3-58

INTR/APP/R Appl icat ion in ter rupt request Downline asynchronous acn » 0
act = 1
t ic - 1

3-35

INTR/RSP/R Interrupt response Downline or upline
asynchronous

acn = 0
act = 1
tic = 1

3-33, 3-36

INTR/USR/R User interrupt or user interrupt
request

Upline asynchronous acn = 0
act = 1
tic = 1

3-31, 3-39

LST/FDX/R Turn on full duplex operation for
connect ions in l i s t

Downline asynchronous acn = 0
act = 1
tic «■ 1

3-24

LST/HDX/R Turn on half duplex operation for
connec t ions in l i s t

Downline asynchronous acn = 0
act ■ 1
tic = 1

3-23

LST/OFF/R Turn l is t processing for
connect ion off

Downline asynchronous acn = 0
act = 1
tic = 1

3-20

LST/ON/R Turn l is t processing for
connection on

Downline asynchronous acn <= 0
act = 1
tic = 1

3-21

LST/SWH/R Switch application l ist number of
connection

Downline asynchronous acn = 0
act = 1
t ic - 1

3-22

RO/MARK/R Resume output marker Downline synchronous acn f 0,
act = 2,3
tic » 2

3-34

SHUT/INSD/R Network shut-down in progress Upline asynchronous acn = 0
act = 1
tic » 1

3-63

TCH/TCHAR/R Terminal character is t ics rede
fi n e d

Upline asynchronous acn = 0
act « 1
t ic - 1

3-46

TO/MARK/R Terminate output marker Downline synchronous acn f 0
act = 2, 3
tic = 2

3-37

3-4 60499500 R
* ^ % H \

0jS^\
Application

- <

NAM Message

CON/REQ/R

CON/REQ/N

FC/INIT/R

FC/INIT/N
The application program can now send and receive messages over the logical connectii

App l i ca t ion NAM Message

CON/REQ/R

CON/REQ/A
The application program has rejected the logical connection.

Application NAM Message

CON/REQ/R

CON/REQ/N

CON/CB/R

-<
CON/END/R

CON/END/N
Although the application program was wil l ing to accept it, the logical connection
could not be completed.

Figure 3-2. Device-to-Application Connection Supervisory Message Sequences

An application program cannot ini t iate a connection
to a termina l . The connect ion- request superv isory
message shown in figure 3-3 can only be an incoming
asynchronous message. The app l ica t ion program's
fi r s t a c t i o n i n p r o c e s s i n g a d e v i c e - t o - a p p l i c a t i o n
connect ion sequence is to issue the asynchronous
connect ion-accepted supervisory message shown in
figure 3-4, or the connection-rejected message shown
in figure 3-5 .

I f the app l ica t ion program accepts the connect ion
(assuming that no change has occurred in the status
o f the reques t ing te rmina l) , the ne twork so f tware
informs the application program that the connection

i s r e a d y f o r d a t a t r a n s m i s s i o n . T h i s i s d o n e b y
s e n d i n g t h e a s y n c h r o n o u s i n i t i a l i z e d - c o n n e c t i o n
message shown in figure 3-6 upline to the applica
t ion program. I f condi t ions have not changed and
the appl icat ion program can s t i l l serv ice the con
n e c t i o n , i t r e s p o n d s b y i s s u i n g t h e c o n n e c t i o n -
i n i t i a l i z e d m e s s a g e s h o w n i n fi g u r e 3 - 7 . D a t a
t r a n s m i s s i o n o n t h e l o g i c a l c o n n e c t i o n c a n t h e n
b e g i n . A f t e r t h e n e t w o r k s o f t w a r e r e c e i v e s t h e
c o n n e c t i o n - i n i t i a l i z e d m e s s a g e , t h e a p p l i c a t i o n
program can send output to console devices or wait
for input from them. An application program cannot
send or receive any supervisory messages or data
b l o c k s o n a c o n n e c t i o n u n t i l c o n n e c t i o n i n i t i a l
ization processing has been completed.

60499500 R 3-5

ta

ahmt

ahds

aawc

atwd

ta

req

res

acn

abl

5958 54 5251 49 47 45 43 41 39 35 31 29 25 23 2120 1716 12 7 5

con req res acn abl sdt dt t c res ord

tname pw Pi

ownert s i dbz

res ubz xbz res

logfam famord

logname usr ind

a a a
h h h r

res ahpt a h t l ahsl ahem ahec ahlp ahep

a a a a
h h h h
d f c i ahsc res ahdt ahdf ahec ahms
s c s s

res See NOS Administration Handbook

a a a a
t t t t
P r P a t t t at is res accd a cmd
a o X c
r

Symbolic address of the application program's text area receiving this asynchronous super
visory message.

Primary function code 63-|0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of reserved symbol CON.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol REQ.

Reserved by CDC. Reserved fields contain zero.

Application connection number assigned to this logical connection, if the connection is estab
lished; 1 £ minacn < acn < maxacn < 4095, where minacn and maxacn are minimum and maximum
values established by the application program in its NETON call. (See section 5.) You can
access this field with the reserved symbol CONACN, as described in section 4.

Application block limit, specifying the maximum number of data or synchronous supervisory
message blocks the program can have outstanding (unacknowledged as delivered by the network
software) on this connection at any time. This value is established for the device involved
in the logical connection when the device is described in the network configuration file.
This field has the range 1 < abl £ 7. You can access this field with the reserved symbol
CONABL, as described in section 4.

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format,
Device-to-Application Connections (Sheet 1 of 6)

3-6 60499500 S

sdt

dt

Subdevice type.

If dt=1 or 12 through 15 (card reader or a site-defined device), this field can have the
values:

0

1

2
thru
11

12
thru
15

029 punch patterns are the default for each job deck

026 punch patterns are the default for each job deck

Reserved for CDC use

Reserved for installation use

If dt=2 or 12 through 15 (line printer or a site-defined device), this field can have the
values:

0

1

2

3
thru
11

12
thru
15

64-character ASCII print train

64-character BCD (CDC scientific) print train

95-character ASCII print train

Reserved for CDC use

Reserved for installation use

If dt=4 or 12 through 15 (plotter or a site-defined device), this field can have the values:

0 Instructions must be packed in 6-bit bytes

1 Instructions must be packed in 8-bit bytes

Reserved for CDC use2
thru
11

12
thru
15

Reserved for installation use

Device type of the terminal device. This field can have the values:

0 Conso le (i n t e rac t i ve t e rm ina l)

Card reader; your program should reject connections with this device type

Line printer; your program should reject connections with this device type

Card punch; your program should reject connections with this device type

Plotter; your program should reject connections with this device type

Reserved for CDC use5
thru
11

12
thru
15

Reserved for installation use

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format,
Device-to-Application Connections (Sheet 2 of 6)

60499500 S 3-7

tc

Devices with a device type of zero can be serviced as interactive virtual terminals. Devices
with device types of 1 through 4 must be serviced as batch devices. You can access this
field with the reserved symbol CONDT, as described in section 4. Applications other than RBF
are only allowed to do input/output on batch devices if the devices are of types 0 or 12
through 15.

Terminal class assigned to the terminal either in the network configuration file or by the
terminal operator. The terminal class determines the parameters and ranges valid for redefi
nition of the device. The device is serviced by the TIP according to the attributes asso
ciated with the terminal class. These attributes are discussed in the Terminal Interfaces
reference manual. The terminal class field can have the values:

10

11

12

13

14

15

16

17

18

19
thru
27

28
thru
31

Reserved for CDC use.

Archetype terminal for the class i

Archetype terminal for the class i

Archetype terminal for the class i

Archetype terminal for the class i

Archetype terminal for the class i

Archetype terminal for the class i
typewriter.

Archetype terminal for the class i

s a Teletype Corporation Model 30 Series.

s a CDC 713-10, 751-1, 752, or 756.

s a CDC 721.

s an IBM 2741.

s a Teletype Corporation Model 40-2.

s a Hazeltine 2000, operating as a tele-

s a VT100 (ANSI X3.64 standard).

Archetype terminal for the class is a Tektronix 4000 Series, operating as a tele
typewriter.

Archetype terminal for the class is a HASP (post-print) protocol multileaving
workstation.

Archetype terminal for the class i

Archetype terminal for the class i

Archetype terminal for the class i

Archetype terminal for the class i

s a CDC 200 User Terminal,

s a CDC 714-30.

s a CDC 711-10.

s a CDC 714-10/20.

Archetype terminal for the class is a HASP (pre-print) protocol multileaving work
station.

Archetype terminal for the class is a CDC 734.

Archetype terminal for the class is an IBM 2780.

Archetype terminal for the class is an IBM 3780.

Archetype terminal for the class is an IBM 3270.
Reserved for CDC use.

Reserved for installation use.

You can access this field with the reserved symbol C0NT, as described in section 4.

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format,
Device-to-Application Connections (Sheet 3 of 6)

3-8 60499500 S

n c

ord

rf&F&'Xti

tname

pw

Pi

ownert

si

dbz

hw

Restricted interactive capability (for consoles only). This field can have the values:

0 Terminal has unrestr ic ted interact ive capabi l i ty.

1 Terminal has rest r ic ted in teract ive capabi l i ty.

Applications should limit the amount of interactive dialog with a terminal that has
restricted interactive capability. Such terminals (for example a 2780 or 3780) in which the
console is emulated by a card reader and line printer are not truly interactive. You can
access this field with the reserved symbol CONR, as described in section 4.

Device ordinal, indicating a unique device when more than one device with the same device
type is part of the same terminal. This field can have the value:

1
thru
7

All interactive consoles

Batch devices

The device ordinal is assigned to the device when the device is defined in the network con
figuration file. You can access this field with the reserved symbol C0N0RD, as described in
section 4.

Terminal device name, assigned to the device in the network configuration file. This name is
one to seven 6-bit display code letters and digits, left-justified with blank fill; the first
character is always alphabetic. The terminal device name is the element name used by the net
work operator to identify the device. You can access this field with the reserved symbol
CONTNM, as described in section 4.

If the device is a console, this field specifies the maximum number of characters in a
physical line of input or output, 0 or 20 £ pw £ 255. If the device is a batch card reader
or card punch, this field specifies the maximum number of characters in an input or output
record. If the device is a batch line printer, this field specifies the maximum number of
characters in a line of output, 50 £ pw £ 255. If the device is a plotter, this field
specifies the maximum number of character bytes of plotter information in a record of
output. Page width of consoles is discussed in the Terminal Interfaces reference manual.
You can access this field with the reserved symbol CONPU, as described in section 4. The pw
value can be assigned in the network configuration file or the user can set console pw from
the terminal. Default value depends on terminal class.

Page length of a device, specifying the number of physical lines that constitute a page. The
page length is assigned to the terminal either in the network configuration file or by the
terminal operator; page length is one of the attributes associated with the terminal class by
the TIP, and is discussed in the Terminal Interfaces reference manual. This field can have
the values 0 or 8 £ pi £255 for interactive consoles, but is always 60 for batch devices.
You can access this field with the reserved symbol CONPL, as described in section 4.

Terminal device name of the owning console (for batch devices only). For batch devices, this
field contains one to seven 6-bit display code characters, left-justified with blank fill;
for console devices, this field is zero. You can access this field with the reserved symbol
C0N0WNR, as described in section 4.

Access level of the communications line in use. Access to information or resources requiring
a security level higher than this value should be prohibited. This value is the AL parameter
from the NDL statement defining the communication line used by the terminal. This field can
have the values 0 £ si £ 15. You can access this field with the reserved symbol C0NSL, as
described in section 4.

Block size in characters for any downline block from the application to NAM. The downline
block size is assigned to the device in the network configuration file and is a function of
line speed, device type, and terminal class as described in the Network Definition language
reference manual. This field can have the values 1 £ dbz £ 2043. The values are advisory
only. You can access this field with the reserved symbol C0NDBZ, as described in section 4.
The hardwired line indicator. A 0 (zero) indicates that the device is not hardwired; a 1
indicates that the device is hardwired.

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format,
Device-to-AppIication Connections (Sheet 4 of 6)

60499500 S 3-9

ubz Upline block size (in multiples of 100 characters) for a console device. Upline block size
(in PRUs) of a batch device. Console connections with an upline block size of 0 send blocks
of 100 characters or blocks created when a linefeed is entered from the console. You can
access this field with the reserved symbol CONUBZ, as described in section 4.

xbz Transmission block size (in characters) of the device. This is the number of characters in
an output transmission block that CCP sends to the terminal. You can access this field with
the reserved symbol CONXBZ, as described in section 4.

logfam The NOS family name supplied by the terminal operator during login or by the local configu
ration file as an automatic login parameter. This family name is one to seven 6-bit display
code letters and digits, left-justified with blank fill. You can access this field with the
reserved symbol CONFAM, as described in section 4.

famord The NOS family ordinal corresponding to the logfam field contents. You can access this field
with the reserved symbol C0NF0, as described in section 4.

logname The NOS user name supplied by the terminal operator during login or by the local configu
ration file as an automatic login parameter. This user name is one to seven 6-bit display
code letters, digits, or asterisks, left-justified with blank fill. You can access this
field with the reserved symbol CONUSE, as described in section 4.

usrind The NOS user index corresponding to the logname field contents. You can access this field
with the reserved symbol CONUI, as described in section 4.

ahmt User validation control word defined in the NOS validation file. You can access this word
with the reserved symbol CONAHMT, as described in section 4. The NOS Administration Handbook
section on the MODVAL command explains the use of the fields in this word.

ahpt Index value of allowed units plotted per file for the connection's user name. See NOS MODVAL
PT parameter.

ahmti Index value of allowed magnetic tapes for the connection's user name. See NOS MODVAL MT
parameter.

ahrp Index value of allowed removable packs for the connection's user name. See NOS MODVAL RP
parameter.

ahdb Index value of allowed deferred batch jobs for the connection's user name. See NOS MODVAL DB
parameter.

ahtl Index value of central processor time limit per job step for the connection's user name. See
NOS MODVAL TL parameter.

ahsl Index value of system resource unit limit for the connection's user name. See NOS MODVAL JL
parameter.

ahem Index value of allowed central memory field Length for the connection's user name. See NOS
MODVAL CM parameter.

ahec Index value of allowed extended central storage field length for the connection's user name.
See NOS MODVAL EC parameter.

ahlp Index value of allowed lines printed per file for the connection's user name. See NOS MODVAL
LP parameter.

ahep Index value of allowed cards punched per file for the connection's user name. See NOS MODVAL
CP parameter.

ahds User validation control word defined in the NOS validation file. You can access this word
with the reserved symbol CONAHDS, as described in section 4. The NOS Administration Handbook
section on the MODVAL command explains the use of the fields in this word.

ahdsi Index value of allowed direct access file size for the connection's user name. See NOS
MODVAL DS parameter.

ahfc Index value of allowed maximum number of permanent files in catalog for the connection's user
name. See NOS MODVAL FC parameter.

ahes Index value of allowed maximum total indirect access file storage space for the connection's
user name. See NOS MODVAL CS parameter.

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format,
Device-to-Application Connections (Sheet 5 of 6)

3-10 60499500 S

>£s$fr-\

/ ^ ^ \

ahis

ahsc

ahdt

ahdf

ahec

ahms

aawc

atwd(atpa)

a tpar

a t r o

atpx

a t t t

a t t c

a t i s

accd

acmd

awsi

Index value of allowed indirect access file size for the connection's user name. See NOS
MODVAL IS parameter.

Allowed security count for the connection's user name. See NOS MODVAL SC parameter.

Allowed number of detached jobs for the connection's user name. See NOS MODVAL DT parameter.

Allowed number of calls per job to the COMPASS MS6 macro for dayfile entries under the
connection's user name. See NOS MODVAL DF parameter.

Allowed number of NOS commands per job for the connection's user name. See NOS MODVAL CC
parameter.

SU0^ D«I!!!!!.r °f n,aSS stora9e Physical record units per job for the connection's user name.See NOS MODVAL MS parameter.

User validation control word defined in the NOS validation file. You can access this field

sec t i on^ne th rSnnv i ; r b0L T l " desc "bed i n sec t i on 4 . The NOS Admin i s t r a t i on Handbooksection on the MODVAL command (AW parameter) explains the use of the fields in this word.
This word contains permission bits for the connection's user name. A set bit indicates that
the user name is allowed that permission.

User validation control word defined in the NOS validation file. You can access this word

Hl^lr? relZ™ZL?Z?b°l C0NATUD'as described in section 4. The NOS Administration Handbooksection on the MODVAL command explains the use of the fields in this word.

Terminal parity associated with the connection's user name (0 means that PA command is
assumed to require value of E; 1 means that PA command is assumed to require value of 0).
See NOS MODVAL PA parameter.

Number of idle characters associated with the connection's user name. See NOS MODVAL RO
parameter.

Transmission mode (0 means that EP command is assumed to require value of N; 1 means that EP
command is assumed to require value of Y). See NOS MODVAL PX parameter.

Terminal type associated with the connection's user name. See NOS MODVAL TT parameter. One
of the fo l low ing:

B i t Type

5 2 Te l e t y p e w r i t e r c o m p a t i b l e t e r m i n a l , u s i n g A S C I I c o d e s
5 1 B l o c k m o d e t e r m i n a l , u s i n g A S C I I c o d e s
5 0 C D C - 7 1 3 - c o m p a t i b l e t e r m i n a l
49 and 48 Reserved for CDC use

Character set associated with the connection's user name (0 means the NOS NORMAL mode 6-bit
display code set is assumed to be used in permanent files accessed through the Interactive
Facility; 1 means the NOS ASCII mode 6/12-bit display code set is assumed to be used in
permanent files accessed through the Interactive Facility). See NOS MODVAL TC parameter.

Init ial Interactive Facil i ty subsystem associated with the connection's user name. See NOS
MODVAL IS parameter. One of the following:

Bit Subsystem

46 BASIC
45 BATCH
44 EXECUTE
43 FORTRAN
42 FTNTS

If no bit is set, the NULL subsystem is used; if all bits are set, the ACCESS subsystem is
used.

Date user name was created, in the format yymmdd.

Date user name permissions were last changed, in the format yymmdd.

The user val idat ion control word. I t is defined in the NOS val idat ion fi le.

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format,
Device-to-Application Connections (Sheet 6 of 6)

60499500 S 3-11 •

ta

con

req

nxp

set

ta

59 51 49 43 55 23 11 9 5

n s
con req unused acn unused act aln

Symbolic address of the application program's text area from which this asynchronous super-
supervisory message is sent.

Primary function code 63^Q. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CON.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol REQ.

Application connection number assigned by the network software to this end of the logical con
nection being established. The value placed in this field must be the value used in the
CON/REQ/R message to which this message is a response. You can access this field with the
reserved symbol CONACN, as described in section 4.

No transparent input allowed flag. This field can have the values:

0 Deliver network data blocks when the xpt field in the accompanying block header
word is 1

1 Discard network data blocks when the xpt field in the accompanying block header
word is 1

The change-input-character-type supervisory message, described later in this section, permits
an application to change to or from allowing transparent mode terminal device input. If
transparent input is not allowed any transparent input from a terminal device destined for
the application will be discarded. You can access this field with the reserved symbol DCNXP,
as described in section 4.

Synchronous supervisory message input character type. This field can have the values:

0 Application character type 2 should be used

1 Application character type 3 should be used

Indicates the input character type required by the application program for synchronous super
visory messages. The change-input-character-type supervisory message, described later in
this section, allows an application to change the input character type of synchronous super
visory messages. You can access this field with the reserved symbol DCSCT, as described in
section 4.

/*S5k

Figure 3-4. Connection-Accepted (CON/REQ/N) Supervisory Message Format,
All Connection Types (Sheet 1 of 2)

| 3-12 60499500 S
^ ^ K

act

aln

Application input character type, specifying the form of character byte packing that the
appl icat ion program requires for input data blocks from the logical connect ion. This field
can have the values:

Reserved for CDC use.

60-bit words. Can be used for appl icat ion-to-appl icat ion connections within a
host. Cannot be used for terminal-to-appl icat ion connect ions.

8-bit characters in 8-bit bytes, packed 7.5 bytes per central memory word; if the
input is not transparent mode, the ASCII character set described in table A-2 is
used.

8-bit characters in 12-bit bytes, packed 5 bytes per central memory word, right-
just ified wi th zero fi l l wi th in each byte; i f the input is not t ransparent mode,
the ASCII character set described in table A-2 is used.

6-bit display coded characters in 6-bit bytes, packed 10 characters per central
memory word; the characters used are the ASCII set of CDC characters described in
table A-1. Cannot be used for application-to-application connections or connec
tions with batch devices.

Reserved for CDC use.

Reserved for site-defined use.

5
th ru
11

12
th ru
255

The act value declared applies only to input on the connection and can be changed by a
DC/CICT/R supervisory message at any time during the existence of this logical connection.
You can access this field with the reserved symbol CONACT, as described in section 4.

Application l ist number assigned by the application program to this logical connection;
0£ aln £ 63. You can access this field with the reserved symbol CONALN, as described in
sect ion 4.

Figure 3-4. Connection-Accepted (CON/REQ/N) Supervisory Message Format,
All Connection Types (Sheet 2 of 2)

r
t a

t a

req

/0̂ **

59 5 1 4 9 43 35 23

con req unused

Symbolic address of the application program's text area from which this asynchronous super
visory message is sent.

Primary function code 63-j0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CON.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol REQ.

Reason code, specifying the reason the application program is refusing to complete the connec
tion. This field is ignored. You can access this field with the reserved symbol RC, as
described in section 4.

Application connection number assigned by the network software to this end of the Logical con
nection being rejected. The value placed in this field must be the value used in the
CON/REQ/R message to which this message is a response. Upon receipt of this message, the net
work software can reuse this application connection number for a different logical connection
with the same program. You can access this field with the reserved symbol CONACN, as
described in section 4.

Figure 3-5. Connection-Rejected (CON/REQ/A) Supervisory Message Format, All Connection Types

60499500 R 3-13

ta

t a

f c

i n i t

acn

t a

ta

fc

i n i t

59 51 49 43 35 23

fc i n i t unused acn unused

Symbolic address of the application program's text area receiving this asynchronous super
visory message.

Primary function code 83-|0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 7. You can access this field with the reserved symbol SFC, as
defined in section 4. Its value is defined as the value of the reserved symbol INIT.

Application connection number assigned by the network software to the program end of the logi
cal connection that has been initialized. This value is the same as that used in previous
CON/REQ/R and CON/REQ/N messages. You can access this field with the reserved symbol FCACN,
as described in section 4.

Figure 3-6. Initialized-Connection (FC/INIT/R) Supervisory Message Format

59 51 49 43 35 23
fc i n i t unused acn unused

Symbolic address of the application program's text area from which this asynchronous super
visory message is sent.

Primary function code 83<|6. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 7. You can access this field with the reserved symbol SFC, as
defined in section 4. Its value is defined as the value of the reserved symbol INIT.

Application connection number assigned by the network software to the program end of the logi
cal connection that has been init ial ized. This value placed in this field roust be the value
used in the FC/INIT/R message to which this message is a response. You can access this field
with the reserved symbol FCACN, as described in section 4.

/ A ^ k

Figure 3-7. Connection-Initialized (FC/INIT/N) Supervisory Message Format

I f the appl icat ion program re jects the connect ion,
no fu r the r ac t i on by the p rog ram o r the ne twork
software occurs. If the application program accepts
the connection but the network software cannot ini
tialize the connection, the asynchronous connection-
broken supervisory message shown in figure 3-8 is
sent to the app l ica t ion program. Th is connect ion-
broken message requires the application program to
respond by issuing an end-connection asynchronous
message, as shown in figure 3-9. The network soft
ware finishes this sequence by responding with the
connection-ended asynchronous supervisory message
shown in figure 3-10.

I f t he app l i ca t ion p rog ram does no t fo l l ow these
message sequences , a log ica l -e r ro r asynchronous
supervisory message is issued to the program. This
message is discussed at the end of this section.

CONNECTING APPLICATIONS TO
APPLICATIONS

When one application program needs to be connected
to ano ther, the fi rs t app l i ca t ion p rogram sends a
supervisory message request to the network software,
ask ing fo r es tab l i shment o f a log ica l connec t ion .
Un l i ke dev ice- to -app l i ca t ion connec t ions , the ne t
work software permits more than one logical connec
t i o n t o e x i s t b e t w e e n t w o a p p l i c a t i o n p r o g r a m s .
The only requirements for such connections are that
both programs be running, have completed NETON calls
(as desc r ibed in sec t ion 5) , and a re no t a l ready
connected to the maximum number of application pro
grams permitted.

3-14 60499500 R

ta

cb

r

ta
59 5 1 4 9 43 35 23

con cb acn unused

Symbolic address of the application program's text area receiving this asynchronous super
visory message.

Primary function code 6316. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CON.

Secondary function code 5. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol CB.

Reason code, specifying the cause of the broken connection. This field can have the values:

0 Reserved for CDC use.

1

3
thru
255

Communication has been lost with the element at the other end of the logical
connection. If the element is an application program, it failed, was shutdown, or
ended the connection; if the element is a device, the line has disconnected or the
device failed.

The network software broke the connection. This can occur if this message is a
response to a CON/REQ/N message containing an invalid parameter the connection
cannot be initialized, or if the NOP disabled the communication line used by the
connection.

Reserved for CDC use.

You can access this field with the reserved symbol RC, as described in section 4.

Application connection number assigned by the network software to the program end of the
logical connection being broken. This number is always one for which the application program
has previously received a CON/REQ/R message. You can access this field with the reserved
symbol CONACN, as described in section 4.

Figure 3-8. Connection-Broken (CON/CB/R) Supervisory Message Format

/0^\
60499500 R 3-15

ta

ta

con

end

acn

aname

59 51 49 43 35 23 17

con end acn unused

aname unused

Symbolic address of the application program's text area from which this asynchronous super
visory message is sent.

Primary function code 63<j0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CON.

Secondary function code 6. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ENDD.

Application connection number assigned by the network software to this end of the logical con
nection being terminated. The value placed in this field must be the value used in the
CON/REQ/R message beginning this message sequence. Upon receipt of this message, the network
software issues a response message and can reuse this application connection number for a
different logical connection with the same program. You can access this field with the
reserved symbol CONACN, as described in section 4.

Name of next application, one to seven 6-bit display coded characters consisting of letters
or digits only with a leading alphabetic character, left-justified and blank filled within
the field. This field is 0 for application-to-application connections. For device-to-
application connections, this field can contain the following:
0 The network software alone determines the next application program that the device

is connected to, or disconnects the device if that is an appropriate action.

NVF
command

NVF reinitiates the login sequence appropriate for the device or disconnects the
device from the host. The following commands are valid:

BYE or
LOGOUT

HELLO
or
LOGIN

Causes the device to be disconnected from the host.

Reinitiates login for the device. If dialog is possible and
required, the login prompting sequence begins.

Valid
appli
cation
name

The device at the other end of the logical connection is switched (without NVF
prompting dialog) to connection with the indicated application, if possible. The
name placed in the field must be the element name used to define the referenced
application program in the validation file (VALIDUs).

/(^Sk

Figure 3-9. End-Connection (CON/END/R) Supervisory Message Format

ta

ta

end

59 51 49 43 35 23
con end unused acn unused

Symbolic address of the application program's text area receiving this asynchronous super
visory message.

Primary function code 63<j0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CON.

Secondary function code 6. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ENDD.

Application connection number assigned by the network software to the program end of the logi
cal connection that has been terminated by the CON/END/R message to which this message is a
response. After issuing this message, the network software can reassign this application con
nection number to another logical connection with the same program. You can access this
field with the reserved symbol CONACN, as described in section 4.

3-16

Figure 3-10. Connection-Ended (CON/END/N) Supervisory Message Format

60499500 R
« ^ ^ | L

Figure 3-11 shows the most common message sequences
in the process of establishing a connection between
two applications.

In this figure, arrows indicate the direction of
transmission of each message. The general term
Network Access Method (NAM) indicates the network
host software sending or receiving the message,
regardless of the software module actually involved.
All three sequences begin when the first application
program issues the asynchronous supervisory message
shown in figure 3-12. This request-application-
connection message causes the network software

ei ther to issue the asynchronous appl icat ion-
connection-reject message shown in figure 3-13, or
to use a message sequence similar to that used for
device-to-appl icat ion connect ions. I f the lat ter
occurs, both application programs receive the form
of the asynchronous connection-request supervisory
message with the form shown in figure 3-14. Both
programs may accept the connection by issuing the
connect ion-accepted asynchronous supervisory
message shown in figure 3-4. If so, then both must
exchange the initialized-connection and connection-
initialized messages of figures 3-6 and 3-7 with the
network software before any data can be transmitted
on the logical connection.

Application 1 NAM Application 2 Message

▶ C O N / A C R Q / R
' ▶ C O N / R E Q / R

" ^ C O N / R E Q / R

- < C O N / R E Q / N
" ▶ C O N / R E Q / N

*>- FC/INIT/R
" ^ F C / I N I T / R

- < F C / I N I T / N

—▶ F C / I N I T / N

The requested logical connection is established and enabled for input and output.

Application 1 NAM Application 2 Message

▶ C O N / A C R Q / R

~ < C O N / A C R Q / A

Application program 2 is not available. The logical connection is not established.

Application 1 NAM Application 2 Message

▶ C O N / A C R Q / R

▶ CON/REQ/R

* ^ C O N / R E Q / R

- < - C O N / R E Q / A

▶ C O N / R E Q / N

" < C O N / C B / R

▶ C O N / E N D / R
" ^ C O N / E N D / N

Application program 2 rejects the Logical connection.

Figure 3-11. AppLication-to-Application Connection Supervisory Message Sequences

60499500 R 3-17

ta

ta

acrq

l id

namel

5958 55 52 49 47 43 59 35 "51 27 23 17 15

con acrq l i d

namel naroe2

A1 dbl dbz abl ubl ubz res

res res ws dpls facn cud I res

res

res

facl fac

. .

facl fac

prid

udata (0-124 octets)

Symbolic address of the application program's text area from which this asynchronous super
visory message is sent.

Primary function code 63^Q. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of reserved symbol CON.

Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ACRQ.

Logical Identifier. It is optional but at least one of the parameters LID/NAME2, must be
specified for interhost connections.

If a logical identifier is specified, then that LID should have been previously specified in
the LIDCMid file. (See NOS IHB.) If a LID is specified and NAME2 is not specified, then a
physical identifier (PID) that is linked to NAM at the time of issuing the CON/ACRQ message
is used as NAME2 in the OUTCALL search.

If both LID and a NAME2 parameters are specified, then NAME2 is assumed to be a PID, and must
have been previously specified as a legal PID for the LID in the LIDCMid file, and the PID
must be linked to NAM at the time of issuing a CON/ACRQ message.

Note: For NAM to be able to detect that a PID is Linked to NAM, the PID must have been
previously used as a PID=xxx parameter in an OUTCALL statement in the LCF previously created
by NDL.
Outcall Identifier, 1-7 alphanumeric characters with a leading alpha, left justified and
blank-filled. This parameter is used to uniquely identify the appropriate OUTCALL definition
that establishes a connection to another application.

Figure 3-12. Request-Application-Connection (CON/ACRQ/R) Supervisory Message Format (Sheet 1 of 3)

• 3-18 60499500 S

name2

A1

dbl

dbz

abl

ubl

ubz

0$ -̂

dpls

facn

cudl
facl

fac

prid

Outcall Identifier, 1-3 alphanumeric characters, left justified and blank-filled. This
parameter is optional (see LID parameter); when explicitly specified in the CON/ACRQ message,
HpfftEi^i X the LID, together with NAME1, it is used to seLect the appropriate OUTCALLdefinition from the collection of outcall definitions as previously specified by the Network
all? t2 La"Suage ?VTCAITL statement during the creation of the Local Configuration File
and NAM J nr In nnr^, ,°f NAME1 and NAME2 (imPLi"t °r explicit) must appear as NAME1
PID mTy be zero! " statement. For intra-host connections, both the LID and the
If the application supplies its own outcall block, then the explicit or implicit PID must
have appeared on a PID parameter in the OUTCALL statement of a previously created LCF?

IneaPDMcat^n ilr foL,L°W "1 throu9h udata> are application supplied OUTCALL parameters,
an «J= entrv oointSUor^ ^ "" °S^L Parameters if " <• * privileged application (has
appear in tZ St?!,'.- A™""!*?0 S?ID)* ln th1s case' these Parameters do not need toappear in the OUTCALL statement in the LCF.
Flag indicating priority.0 = No

1 = Yes

^Un2ASJ°-l!rflISt'*hD0,inline*bl??k* th8t C3n bG outstandi"9 ^tween the host computerll'nl't\, l a"d the °*her end of this logical connection. The value chosen determines how
vl?J o\F the JT the.f V^U^ fT the t0taL number of outstanding blocks SS parameter
dbl < 7° specified by the dbz. This parameter is optional and has a range of 1 £

Wo!J2l|!?e bLocl< size- The recommended maximum number of 8-bit character bytes in any network
?n2?catri00^^rblocksC!nneCtiOn' ™S ""^ "" *"" "^ ° ~ dbZ * 2°' Hhere °' 1 b°th
Application block limit. Specifies the maximum number of data or synchronous supervisory
message blocks the program can have outstanding (unacknowledged as delivered by the network
software) on this connection at any time. This field has the range 1 < abl < 7. You can
access this field with the reserved symbol CONABL, as described in section 47

Upline block limit. This parameter specifies the maximum number (1 < upblim < 31) of blocksthat the NPU can have outstanding (unacknowledged) to the calling holt. This~parameter is
meaningful only for X.25 connections.
Upline block size. This parameter specifies the maximum number (1 £ upsize < 2000) of bytes
that the NPU can send to the calling host in a block. This parameter is only used for X.25
links.
Send window size. (Applicable on Public Data Network A-A connections only. Ignored on other
A-A connections.)

Send data packet length. (Applicable on Public Data Network A-A connections only. Ignored
on other A-A connections.)
Number of facility groups. (Applicable to Public Data Network A-A connections only.)

Length of call user data (in octets).

Facility codes length, within the CM word. (Applicable to Public Data Network A-A
connections only.)

Facility codes. (Applicable to Public Data Network A-A connections only.)
Protocol ID. (Applicable to Public Data Network A-A connections only.) 1-8 hexadecimal
digits, left justified, zero filled. If CUDL t 0, then only the first 6 hexadecimal digitswill be passed on to the PDN, the last two hexadecimal digits will be zeroed.

Figure 3-12. Request-Application-Connection (CON/ACRQ/R) Supervisory Message Format (Sheet 2 of 3)

60499500 S 3-19*

udata Call user data. If the destination host is a NOS system running network products, the first
12t octets must be of the form SSS DD AAAAAAA, where:

SSS

DD

AAAAAAA

is the 3 ASCII character equivalent of the SNODE (sendng node number) value,
right justified, zero-character filled.

is the 2 ASCII character string equivalent of the DHOST (destination host
number) value, right justified, zero-character filled.

is the 7 ASCII character string equivalent of the called applica- tion's
application name, left justified, blank-character filled.

The remainder of the UDATA filled (0-112 octets) will be passed to the called application as
user data.

At any rate, the called host/application if accessed through a public data network must be
able to support the Fast Select Facility, if more than 12 octets of information are specified.

Note: For applications accessing foreign hosts through a public data network the 4 octets of
the PRID field and the (up to) 124 octets of the UDATA field are combined into the (up to)
128 octets of used data as defined by the CCITT recommendation for X.25 networks.

TAn octet is 8 bits of information.

Figure 3-12. Request-Application-Connection (CON/ACRQ/R) Supervisory Message Format (Sheet 3 of 3)

ta

acrq

ta
59 51 49 43 35 17

con acrq re abn reserved

namel name2

Symbolic address of the application program's text area receiving this asynchronous super
visory message.

Primary function code 63^0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of reserved symbol CON.

Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ACRQ.

Reason code, specifying the cause for rejecting the connection request. The field is
actually made up of two 4 bit subfields, rc1 and rc2. The rc1 field comprises bits 40-43 and
the rc2 field comprises bits 36-39.

The rc2 field is used so that the application can determine what action to take when it
receives a CON/ACRQ/A message and it provides some general information about the source of
the trouble. This field can have the following values:

1 = Critical error in call request detected by source host (only LID/PID/NDL
configuration changes or application code changes would solve the problem).

2 = Critical error in call request detected by destination host.

3 = Source host temporarily cannot make the connection (resources are currently not
available, but they might become available without operator intervention).

4 = Destination host temporarily cannot make the connection.

Figure 3-13. Application-Connection-Reject (CON/ACRQ/A) Supervisory Message Format (Sheet 1 of 4)

• 3-20 60499500 S

40^ \

5 = Source host cannot make the connection for an indefinite period of time (resources
can be made available by operator intervention such as enabling a LID/PID, network
element, or bringing up a system or subsystem).

6 = Destination host cannot make the connection for an indefinite period of time.

Thus if rc2 = 1 or 2, the application would not try establishing the connection again, it
would notify the user and/or operator that the connection is not possible.

If rc2 =3 or 4 then the application can retry the CON/ACRQ message after a shorter period of
time, and if rc2 = 5 or 6 then it will retry the CON/ACRQ after a somewhat longer period of
time.

The rd field is used in combination with the rc2 field to uniquely identify the exact source
of the trouble, so that the user/operator can take the appropriate action to fix the
problem. The full 8 bit reason code field can therefore have the following values:

2 = Network error detected by destination host. Contact system analyst at destination
nost.

4 = Connection number conflict between source and destination host. Retry connection
request.

17 = Illegal LID/PID combination was specified. Correct LID/PID in OUTCALL block.

18 = Called application is not defined in system record (CONTNAP) at destination host.
Contact system analyst.

19 = Network Validation Facility (NVF) temporarily cannot process connection request.
Retry later.

20 = Called application cannot accept any more connections and another copy of the
application cannot be started up. Retry later.

22 = Called application is not running and cannot be started automatically. Contact
system analyst to start up called application.

33 = Calling application is not privileged, i.e., it is not allowed to issue OUTCALLS.
Contact system analyst to make the application a privileged application in the LCF.

34 = OUTCALL block has facility parameters greater than 4 octets in length. Correct the
OUTCALL block.

35 = NAM temporarily cannot complete the connection request because the (logical) link
to the destination host is not available. Retry Later.

37 = Specified PID is valid but is currently not available. Retry later.

38 = Called application is disabled. Contact system analyst to enable the application.

49 = Application specified its own OUTCALL parameters but there was no corresponding
OUTCALL entry in the LCF for the same PID. Correct the OUTCALL parameters in the
CON/ACRQ/A.

50 = OUTCALL block had user parameters greater than 124 octets in length. Correct the
OUTCALL block.

53 = Source host is not allowing any new connections because it is in idle or disabled
state. Retry Later.

54 = Destination host is not allowing any new connections because it is in idle or
disabled state. Retry later.

65 = Application specified its own OUTCALL parameters but there was no matching OUTCALL
entry in the LCF. Correct the OUTCALL parameters in the CON/ACRQ/R.

66 = Destination host could not find a matching INCALL block in its LCF. Correct the
OUTCALL block.

81 = Calling application has already reached its maximum number of allowed connections.
Retry later.

Figure 3-13. Application-Connection-Reject (CON/ACRQ/A) Supervisory Message Format (Sheet 2 of 4)

6 0 4 9 9 5 0 0 S 3 _ 2 1 #

82 = Name of application specified in CON/ACRQ is invalid. Correct the application.

97 = Retry limit has been reached for calling application. No more application to
application connection requests (CON/ACRQ/R) should be issued. The reason codes
for the previous CON/ACRQ/A should be analyzed.

98 = Destination host could not find a matching INCALL block in the LCF with a matching
facility code. Correct the facility code in the OUTCALL block.

100 = Network Validation Facility (NVF) in the destination host has not netted on yet.
Retry Later.

114 = Application requested Fast select but matching INCALL block in LCF at the
destination host does not have Fast select specified. Correct the OUTCALL block to
not select Fast select.

129 = No X25 TIP in NPU at source host. Contact system analyst to rebuild CCP with X25
TIP.

130 = Error in incoming call packet header. Contact system analyst about possible PSN
problem.

132 = Unknown packet from remote, i.e., the packet received is not a call accepted or
call connected. This is assumed to be caused by a call collision. Retry later.

133 = No available logical channel at source host, i.e., active number of SVCs are
greater than enabled SVCs. Contact the system analyst about enabling additional
SVCs.

134 = No available logical channel at destination host, i.e., active number of SVCs are
greater than enabled SVCs. Contact the system analyst at the destination host to
enable some more SVCs.

145 = X25 subtip not available in NPU at source host. Contact system analyst for
rebuilding CCP.

146 = X25 subtip not available in NPU at destination host. Contact system analyst at
destination site for rebuilding CCP.

147 = NPU at source host temporarily has no buffer space to support the connection.
Retry later.

148 = NPU at destination host temporarily has no buffer space to support the connection.
Retry later.

161 = Problem detected by X25 network at local host. PSN CCC=13. Local procedure
error. Clear problem with PSN administration.

162 = Remote host not known. Correct DD field in UDATA in OUTCALL entry in the LCF or in
the CON/ACRQ/R message.

163 = No connection available, i.e., all SVCs (outside lines) have been used. Retry
l a t e r.

164 = Problem detected by X25 network at destination host. PSN CCC=1. Number at
destination host is busy. Retry later.

165 = X25 line is down at source host. Retry later.

166 = X25 line is down at destination host. Retry later.

178 = Unknown subtip connection; i.e., the PRID field is not CO (PAD) or C1 (A-A). Fix
the PRID field in the OUTCALL entry in the LCF or in the CON/ACRQ/R message.

180 = Problem detected by X25 network. PSN CCC=5. PSN congestion. Retry later.

182 = CCP cannot complete the connection because the (logical) link at the destination
host is not up (enabled). The system analyst should be contacted to enable the
logical l ink.

Figure 3-13. Application-Connection-Reject (CON/ACRQ/A) Supervisory Message Format (Sheet 3 of 4)

• 3-22 60499500 S

dpls

fa en

cudl

f a c l

fac

p r i d

j0^\.

udata

Send data packet length, specifying the maximum number of data octets (8-bit bytes) an X 25
packet can contain. This parameter appl ies only to X.25 network appl icat ion-to-application
connections and is ignored on other appl icat ion-to-appl icat ion connections. The dpls
£a,£aT?.ter 1s an aPP!:ication supplied OUTCALL parameter. An application can supply its ownOUTCALL parameters if it is a privileged application (SSJ= entry point, or a non-zero SSID)
This parameter does not need to appear in the OUTCALL statement in the LCF. You can access"
this field with the reserved symbol CONDPLS, as described in section 4.

Number of facility groups. This parameter applies only to X.25 network

aPP^ t^ - to -app l i ca t ion connec t i °ns . The facn paramete r i s an app l i ca t ion supp l iedOUTCALL parameter. An application can supply its own OUTCALL parameters if it is a
privi leged application (SSJ= entry point, or a non-zero SSID). In this case, the facn
parameter does not need to appear in the OUTCALL statement in the LCF. You can access this
field with the reserved symbol CONFACN, as described in section 4.

Length of user data (in octets). The cudl parameter is an application supplied OUTCALL
parameter. An application can supply its own OUTCALL parameters if it is a privileged
•PP uCa!nS!!,MSSJ= entry P<?int' or a non-2ero SSID>- This parameter does not need to appear
lS,0UTCAL statement in the LCF. You can access this field wi th the reserved symbolCONAUDL, as described in section 4.

Faci l i ty code length, speci fy ing the length of a faci l i ty field wi th in the central memory
word. This parameter applies only to X.25 network application-to-application connections.
The facl parameter is an application supplied OUTCALL parameter. An application can supply

sc™?™ ^TCALL P^^ters i f i t i s a pr iv i leged appl icat ion (SSJ= ent ry po in t , or a non-zeroSSID). This parameter does not need to appear in the OUTCALL statement in the LCF.

Fac i l i t y code , spec i f y ing the fac i l i t y code fo r a fac i l i t y fie ld . Th is paramete r app l ies
only to X.25 network application-to-application connections. The fac parameter is an
application supplied OUTCALL parameter. An application can supply its own OUTCALL parameters
if i t is a privi leged application (SSJ= entry point, or a non-zero SSID). This parameter
does not need to appear in the OUTCALL statement in the LCF.

The protocol identification. This parameter tells the PSN or remote node of a direct X.25
link how call user data is to be used. This parameter applies only to X.25 network
appl icat ion- to-appl icat ion connect ions and must be 1 to 8 hexadecimal d ig i ts , le f t - just ified,
and zero-filled. If CUDL r 0, only the first 6 hexadecimal digits are passed to the X.25
network, and the last two hexadecimal digits are zeroed. The prid parameter is an
application supplied OUTCALL parameter. An application can supply its own OUTCALL parameters
if i t is a privi leged application (SSJ= entry point, or a non-zero SSID). This parameter
does not need to appear in the OUTCALL statement in the LCF.

Call user data. If the destination host is a NOS system running network products, the first
12T octets must be of the form sss dd aaaaaaa, where:

sss is the 3 character ASCII equivalent of the SNODE (sendng node number) value,
r i g h t - j u s t i fi e d , z e r o fi l l e d .

dd is the 2 character ASCII equivalent of the DHOST (destination host number)
v a l u e , r i g h t - j u s t i fi e d , z e r o fi l l e d .

aaaaaaa is the 7 character ASCII equiva lent o f the ca l led appl icat ion 's appl icat ion
n a m e , l e f t - j u s t i fi e d , b l a n k fi l l e d .

The remainder of the udata field (0-112 octets) is passed to the called application as user
da ta .

The called host/application (if accessed through an X.25 network) must be able to support the
Fast Select Faci l i ty, i f more than 12 octets of information are specified.

Note: For applications accessing foreign hosts through an X.25 network, the 4 octets of the
PRID field and the (up to) 124 octets of the UDATA field are combined into the (up to) 128
octets of used data as defined by the CCITT recommendation for X.25 networks.

You cannot access this field with NFETCH.

tAn octet is 8 bits of informati<

Figure 3-12. Request-Application-Connection (CON/ACRQ/R) Supervisory Message Format (Sheet 3 of 3)

60499500 W 3-23

59 5 1 4 9 43 35 17
t a acrq abn reserved

namel name2

t a

acrq

Symbolic address of the application program's text area receiving this asynchronous super
visory message.

Primary function code 63<j0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of reserved symbol CON.

Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ACRQ.

Reason code, specifying the cause for rejecting the connection request. The field is
actually made up of two 4 bit subfields, rd and rc2. The rc1 field comprises bits 40
through 43 and the rc2 field comprises bits 36 through 39.

The rc2 field is used so that the application can determine what action to take when it
receives a CON/ACRQ/A message and it provides some general information about the source of
the trouble. This field can have the fol lowing values:

1 = Critical error in call request detected by source host (only LID/PID/NDL
configuration changes or application code changes can solve the problem).

2 = Crit ical error in cal l request detected by destination host.

3 = Source host temporarily cannot make the connection (resources are currently not
available, but they might become available without operator intervention).

4 = Destination host temporarily cannot make the connection.

5 = Source host cannot make the connection for an indefinite period of time (resources
can be made available by operator intervention such as enabling a LID/PID, network
element, or bringing up a system or subsystem).

6 = Destination host cannot make the connection for an indefinite period of time.

Thus if rc2 = 1 or 2, the application should not try establishing the connection again; it
should notify the user and/or host operator that the connection is not possible.

If rc2 = 3 or 4, then the application can retry the CON/ACRQ message after a short time, and
if rc2 = 5 or 6, then it can retry the CON/ACRQ after a longer time.

The rd field is used in combination with the rc2 field to uniquely identify the exact source
of the trouble, so that the user/operator can take the appropriate action to fix the
problem. The ful l 8-bit reason code field can therefore have the fol lowing values:

2 = Network error detected by destination host. Contact system analyst at destination
host .

4 = Connection number conflict between source and destination host. Retry connection
request.

17 = Invalid LID/PID combination was specified. Correct LID/PID in OUTCALL block.

18 = Called application is not defined in system record (CONTNAP) at destination host.
Contact system analyst.

19 = Network Validation Facility (NVF) temporarily cannot process connection request.
Re t r y l a t e r.

20 = Called application cannot accept any more connections and another copy of the
appl icat ion cannot be started up. Retry later.

/ " ^ H

Figure 3-13. Application-Connection-Reject (CON/ACRQ/A) Supervisory Message Format (Sheet 1 of 4)

3-24 60499500 W

ypfey

Neither application program can send or receive any
supervisory messages or data blocks on a connection
unt i l connect ion in i t ia l iza t ion process ing has been
completed.

I f e i the r p rogram cannot comple te o r se rv ice the
l o g i c a l c o n n e c t i o n , I t c a n r e j e c t t h e c o n n e c t i o n
reques t by i ssu ing the asynch ronous connec t i on -
r e j e c t e d m e s s a g e d e s c r i b e d i n fi g u r e 3 - 5 . W h e n
t h i s o c c u r s , t h e o t h e r a p p l i c a t i o n p r o g r a m m u s t
exchange the connection-broken, end-connection, and
connection-ended asynchronous supervisory messages
w i t h t h e n e t w o r k s o f t w a r e . N o f u r t h e r a c t i o n i s
required by the rejecting application program.

I f e i ther app l i ca t ion p rogram does no t fo l low the
message sequences shown in figure 3-15, a logical-
error asynchronous supervisory message is issued.
T h i s m e s s a g e i s d i s c u s s e d a t t h e e n d o f t h i s
sec t i on .

A logical connection established between two appli
cation programs does not necessarily have the same
application connection number for both applications.
The network software assigns the appl icat ion con
nection number to each end of the logical connection
independent ly. The app l i ca t ion connec t ion number
is unique within all connections of each application
program; for example, the same logical connect ion
can have an acn pa rame te r o f 2 f o r app l i ca t i on
program A (which accepted one previous connection)
but an acn parameter of 4 for application program B
(which accepted three previous connections).

Privileged applications can specify OUTCALL param
eters in opt iona l words 2-10 o f the CON/ACRQ/R
sequence. This allows the aplications to have more
cont ro l over an outgo ing ca l l request . The app l i
cation specifies a complete OUTCALL block' except
for the SNODE, DNODE, PORT, and DTE address param
eters. NAM obtains these parameter values from the
first OUTCALL statement defined in the LCF that has
a matching NAME2 (PID).

App l i ca t ion NAM Message

FC/INACT/R

The timer for the logical connection is reset to
ze ro .

A p p l i c a t i o n 1 N A M A p p l i c a t i o n 2 M e s s a g e
~ ▶ F C / I N A C T / R

The timer for the logical connection is reset to
zero.

Figure 3-15. Connection Monitoring
Message Sequences

MONITORING CONNECTIONS
As soon as a logical connection is completely ini
t ial ized by the network software and an application
program, the network software begins incrementing
an inactivity t imer. Each time a network data block
or synchronous supervisory message is t ransmit ted
on the log ica l connec t ion , th i s inac t i v i t y t imer i s
reset to zero. Any t ime 10 minutes elapse without
any transmission on a logical connect ion, the net
work software uses one of the supervisory message
sequences shown in figure 3-15 to inform the appli
cation program of the condition.

The connection monitoring sequence consists of the
asynchronous inactive-connection message shown in
fi g u r e 3 - 1 6 . T h i s m e s s a g e i s a d v i s o r y o n l y ; n o
response is required from the appl icat ion program.
The network sof tware automat ica l ly resets the in
act iv i ty t imer to zero as soon as the message is
issued.

ta

ta

fc

inact

acn

59 51 49 43 35 23
fc inact unused acn unused

Symbolic address of the application program's text area receiving this asynchronous super
visory message.

Primary function code 831o. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 4. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol INACT.

Application connection number assigned by the network software to the program end of the
logical connection reported as inactive. The value in this field is always nonzero and is
the value used in an FC/INIT/N message processed by the application program. You can access
this field with the reserved symbol FCACN, as described in section 4.

Figure 3-16. Inactive-Connection (FC/INACT/R) Supervisory Message Format

60499500 S 3-24.1

TERMINATING CONNECTIONS
A log ica l connec t ion can be te rm ina ted any t ime
a f te r es tab l i shment o f i t beg ins . Th is d i sconnec
t ion can be ini t iated by an appl icat ion program or
by the ne twork so f twa re . These two poss ib i l i t i es
have separate cor responding superv isory message
sequences, as shown in figure 3-17.

Log ica l connect ion te rminat ion is in i t ia ted by the
network whenever such conditions as hardware fail
u r e , a d i a l u p l i n e b e i n g d i s c o n n e c t e d w i t h o u t a
fo rma l logou t by a te rmina l opera to r, and fa i lu re
of another (connected) appl icat ion program occur.
The general case of th is is shown by the second
message sequence in the figure, a sequence already
encountered as part of the connection establishment
sequences discussed earlier in this section.

The sequence begins when the network software sends
the connection-broken message of figure 3-8 to the
application program. The network software discards
any network data blocks or synchronous supervisory
messages sent by the appl icat ion program on the
c o n n e c t i o n b e t w e e n t h e t i m e t h i s a s y n c h r o n o u s
supervisory message is queued and the t ime i t is
p rocessed by the app l i ca t ion p rog ram. When the
appl icat ion program receives th is message, i t can
sti l l fetch any upl ine blocks queued on the logical
c o n n e c t i o n . A s s o o n a s i t h a s f e t c h e d a l l o u t
standing blocks, the application program must issue
an end-connect ion message of the form shown in
figure 3-9. The network software responds with the
asynchronous connection-ended message described in
figure 3-10. The appl icat ion connect ion number o f
t h e t e r m i n a t e d l o g i c a l c o n n e c t i o n t h e n b e c o m e s
available for use with another logical connection.

App l i ca t ion NAM

—▶

Message

CON/END/R

CON/END/N

The logical connection is terminated by the
application program. The application connection
number can be reassigned to another logical con
nection by the network software.

Appl icat ion NAM Message

CON/CB/R

The logical connection is terminated by the net
work. The application program can salvage data
in transit by fetching any blocks queued.

CON/END/R

CON/END/N

The application connection number can be
reassigned to another logical connection by the
network software.

Figure 3-17. Connection Termination
Message Sequences

ydt tS t ^ .

| 3-24.2 60499500 S

/ S f * ^

App l i ca t ion - in i t i a ted te rm ina t ion o f a log ica l con
nec t ion occurs whenever the app l i ca t ion p rogram
processes a terminal operator's request to end con
nection, or in any other si tuation where the appl i
cation program has finished exchanging blocks over
the logical connection. The message sequence is the
fi r s t o n e s h o w n i n fi g u r e 3 - 1 7 . T h i s s e q u e n c e
begins when the application program issues an asyn
chronous end-connection supervisory message.

T h e f o r m a t o f t h e e n d - c o n n e c t i o n m e s s a g e i s
descr ibed in figure 3-9. This message permits the
application program to influence connection switch
ing or d isconnect ion processing per formed for the
dev ice a f te r i t i s d i sconnec ted f rom the app l i ca
t i on p rog ram. The e f fec ts o f t h i s end -connec t i on
message vary according to the aname field contents
and whether the dev ice i s a ba tch o r in te rac t i ve
console device.

When a zero aname parameter Is used, a console
device is prompted for the name of the next program
the device should be connected to, unless the user
is allowed access only to the disconnected applica
t i on p rog ram. I n t h i s i ns tance , t he dev i ce ' s l og
ical connection is processed by NVF as if an aname
value of BYE or LOGOUT was specified.

When a valid application name is used in the aname
field , a conso le connect ion is d isposed o f in one
o f two ways . I f the spec ified app l i ca t ion p rogram
is available and the login user name of the console
is al lowed access to i t , the console connect ion is
swi tched d i rec t ly to the new appl ica t ion program.
This switch is performed without dialog between NVF
and a console operator. The network software per
forms the swi tch by sending a connect ion- request
supervisory message for the console to the specified
application program.

I f the spec ified app l i ca t ion p rogram i s no t ava i l
ab le or the log in user name does not permi t the
terminal to access that program, the console con
nec t i on i s no t sw i t ched . I n t h i s case , a conso le
i s i n f o r m e d o f t h e c o n d i t i o n w i t h t h e m e s s a g e
APPLICATION NOT PRESENT or USER ACCESS NOT POSSIBLE
- CONTACT NETWORK ADMIN. The terminal operator is
then prompted for another application program name,
unless the console was configured for a fu l l auto
mat ic log in p rocedure and the user name in tha t
procedure val idates for access only to the discon
n e c t e d a p p l i c a t i o n p r o g r a m . I n t h i s I n s t a n c e , a l l
o f t h e t e r m i n a l ' s e n d e d l o g i c a l c o n n e c t i o n s a r e
processed by NVF as if an aname value of BYE or
LOGOUT was specified.

When an NVF command is used in the aname field,
disconnect ion processing depends on the command
used and whether the device is a batch or in ter
active one. The HELLO or LOGIN command causes NVF
t o i n i t i a t e a m a n u a l l o g i n d i a l o g w i t h a n i n t e r
active device. The BYE or LOGOUT command causes
NVF to disconnect a console device from the host.

When your program ends a connection with a passive
dev ice (a batch dev ice o f dev ice types 1 through
4) , any aname va lue you supp ly i s ignored. NVF
disposes o f the pass ive dev ice connect ion in the
same manner as it does the device's owning console
connec t ion . Tha t i s :

If your program already disconnected the owning
console for the device, NVF attempts to connect
the device to the same program as the owning
console; i f the owning console is disconnected
f r o m t h e h o s t , N V F d i s c o n n e c t s t h e p a s s i v e
device as well.

I f your program has not a l ready d isconnected
the owning console for the device, NVF attempts
t o r e c o n n e c t t h e d e v i c e t o y o u r p r o g r a m . I f
y o u r p r o g r a m r e j e c t s t h e r e c o n n e c t i o n , N V F
keeps the device connected to i tsel f unt i l your
program disconnects the owning console for the
device.

On d ia lup l i nes , conso les w i thou t connec t ions to
hosts are assigned to a disconnection queue. When
all consoles on the dialup l ine are assigned to the
d i s c o n n e c t i o n q u e u e , a t i m e r f o r t h e l i n e i s
s ta r ted . When the t imer fo r the l ine exp i res , the
d i a l u p l i n e i s p h y s i c a l l y d i s c o n n e c t e d . T h i s d i s
c o n n e c t i o n c a u s e s p h y s i c a l d i s c o n n e c t i o n o f a l l
devices on the l ine, including any passive devices
s t i l l c o n n e c t e d t o a n a p p l i c a t i o n p r o g r a m (t h e
c o n n e c t i o n i s b r o k e n f r o m t h e a p p l i c a t i o n p r o
gram's v iewpoint) . The network software effect ively
hangs up the te lephone , bu t the dev ices can be
reconnected after a new dial-in procedure.

On hardwired l ines, no disconnect ion occurs when
al l in teract ive dev ices on the l ine are t imed out .
B e c a u s e t h e l i n e i s n o t d i s c o n n e c t e d i n t h i s
instance, passive devices st i l l connected to appl i
cation programs remain connected to those programs.

Whi le a console is queued for d isconnect ion, any
te rmina l opera to r keyboard en t ry removes a l l the
d e v i c e s o f t h a t t e r m i n a l f r o m t h e d i s c o n n e c t i o n
queue and reconnects them to NVF for a new manual
login procedure. The data entered is discarded by
the network software and therefore can be anything
the operator wishes.

MANAGING CONNECTION LISTS
There are five asynchronous superv isory message
sequences used for connection list management. Each
sequence consists of one message, issued by the
appl icat ion program.

Three of these sequences, as shown in figure 3-18,
c o n t r o l l i s t p o l l i n g a n d l i s t a s s i g n m e n t . T h e
other sequences, shown in figure 3-19, control the
duplexing mode used during list processing.

CONTROLLING LIST POLLING
Connect ion l is t pol l ing contro l consists of enabl ing
o r d i s a b l i n g t h e f e t c h i n g o f i n p u t b l o c k s f r o m a
s i n g l e l o g i c a l c o n n e c t i o n w h e n t h e l i s t t h a t t h e
c o n n e c t i o n i s a s s i g n e d t o i s p o l l e d . A l l c o n n e c
t i o n s a r e i n i t i a l l y e n a b l e d f o r l i s t p r o c e s s i n g
wi thout app l ica t ion program act ion . Each t ime the
a p p l i c a t i o n p r o g r a m p o l l s t h e l i s t n u m b e r t h a t i t
has assoc ia ted w i th a spec ific connec t ion , b locks
queued from that connection can be returned to the
program.

60499500 R 3-25

Application NAM Message
w LST/OFF/R

d with the affect-
polled by the
will be returned

When the list number
ed logical connection
application program,
from the connection.

associate
is next

no blocks

Application NAM Message
-̂ LST/ON/R

d with the affect-
polled by the
ght be returned

When the list number associate
ed logical connection is next
application program, blocks mi
from the connection.

AppIi c at i on NAM Message

When the new list number associated with the
affected logical connection is next polled by
the application program, blocks might be
returned from the connection.

Figure 3-18. Connection List Pol l ing Control
Message Sequences

App l i ca t ion NAM

— ▶

Message

LST/FDX/R

When the list number associated with the
affected logical connection is next polled by
the application program, blocks can be returned
from the affected Logical connection regardless
of the previous types of blocks output on the
connection.

App l i ca t ion NAM Message

LST/HDX/R

When the list number associated with the
affected logical connection is next polled by
the application program, blocks of application
block type 1 or a single block of block type 2
are returned from the affected connection only
if a block of block type 2 or a LST/ON/R
message has been sent downline on the
connection since the last upline block of block
type 2 was delivered to the program. In
effect, message input to the program is
disabled until message output is complete..

Figure 3-19. Connection List Duplexing
Message Sequences

I f t h e p r o g r a m r e q u i r e s t h e l i s t t o b e p o l l e d
w i t h o u t r e t u r n i n g a n y b l o c k s q u e u e d f r o m t h e
connect ion, the asynchronous supervisory message
shown in figure 3-20 causes the next po l l o f the
l i s t t o e x c l u d e t h e c o n n e c t i o n . T h i s t u r n - l i s t -
p r o c e s s i n g - o f f m e s s a g e e f f e c t i v e l y d i s a b l e s l i s t
processing for the connection. This message is not
acknowledged by the network software and remains in
effect unt i l canceled by the asynchronous turn-l ist-
process ing-on message shown in figure 3-21.

The tu rn - l i s t -p rocess ing-on message i s i ssued by
the app l ica t ion program to enab le l i s t p rocess ing
and input for a specific connect ion. This message
causes the next poll of the l ist number associated
wi th the ind icated connect ion to inc lude the con
nect ion 's data b lock queue. The network sof tware
does not acknowledge this message. If the message
is i ssued when l i s t p rocess ing a l ready has been
enab led fo r the connect ion , no er ror occurs . The
message remains in effect until canceled by a turn-
l ist-processing-off supervisory message.

Enab l i ng l i s t p rocess ing fo r a l og i ca l connec t i on
does not cause a queued block to be returned from
that connect ion the next t ime the connect ion's l ist
is polled. Connections on a l ist are searched in a
l o o p s t a r t i n g w i t h t h e c o n n e c t i o n f o l l o w i n g t h e
c o n n e c t i o n f r o m w h i c h d a t a w a s l a s t o b t a i n e d .
Disabled connections are skipped during the poll ing
process ; enab led connec t ions and connec t ions in
half-duplex mode for which no output has been sent
are included in the polling process.

The l ist number associated with a specific connec
tion is determined by the application program when
i t accep ts the l og i ca l connec t ion . Th is l i s t num
ber can be changed while the connection exists by
issuing the change-connection-l ist supervisory mes
sage shown in figure 3-22. The network sof tware
does not acknowledge this asynchronous message, but
t h e c h a n g e i s e f f e c t i v e a t t h e t i m e o f t h e n e x t
p o l l o f t h e n e w l i s t n u m b e r. A f t e r t h e c h a n g e -
connection-list message is issued by the application
program, polls of the old l ist number cannot return
blocks queued from the affected connection.

P o l l i n g o f c o n n e c t i o n l i s t s i s p e r f o r m e d t h r o u g h
application cal ls to the AIP routines NETGETL and
NETGTFL. These routines are described in section 5.

CONTROLLING LIST DUPLEXING

Upl ine and downl ine t ransmissions on logical con
nec t i ons usua l l y occu r i n a f u l l - dup lex mode . I n
full duplex mode, the number and occurrence of com
plete upl ine message blocks is not related in any
way to the number or occurrence of downline message
b l o c k s . M e s s a g e i n p u t a n d o u t p u t i s l o g i c a l l y
independent and can become unsynchronized.

The list processing feature of NAM can be used in
conjunction with a set of asynchronous supervisory
messages to avoid loss of input and output synchro
nizat ion on a log ica l connect ion. These messages
can be used to switch the connection to and from a
half duplex mode of input and output.

3-26 60499500 R

/#SS\.

abn

reserved

namel

name2

230 = Problem detected by X.25 network. X.25 network CCC=9. Destination host out of
order. Wait unt i l dest inat ion comes back up; then retry.

242 = Problem detected by X.25 network. X.25 network CCC=29. Fast select not subscribed
to. Change OUTCALL portion of CON/ACRQ/R to not use fast select.

You can access this field with the reserved symbol RC, as described in section 4.

Application block number. This field contains the abn of the previous CON/ACRQ/R message if
there was one; otherwise, this field contains a zero. You can access this field with the
reserved symbol CONAABN, as described in section 4.

Reserved by CDC.

Outca l l ident ifier, 1 to 7 6-b i t d isp lay code le t te rs o r d ig i ts (the fi rs t must be a le t te r) ,
le f t - jus t ified and b lank-fi l led . Th is parameter i s used to un ique ly ident i fy the appropr ia te
OUTCALL definition that establishes a connection to another application. You can access this
field with the reserved symbol CONANM, as described in section 4.

Ou tca l l i den t i fie r, 1 t o 3 d i sp l ay code l e t t e r s o r d i g i t s , l e f t - j u s t i fied and b l ank - fi l l ed .
This parameter is optional (see the LID parameter). When explicit ly specified in the
CON/ACRQ message, or when implied by the LID together with NAME1; it is used to select the
appropriate OUTCALL definit ion from the col lect ion of outcal l defini t ions previously
specified by the Network Definition Language OUTCALL statement during the creation of the
local configuration file (LCF). The combination of NAME1 and NAME2 (implicit or explicit)
must appear as NAME1 and NAME2 or PID on an OUTCALL statement. For intra-host connections,
both the LID and the PID can be zero.

I f the appl icat ion suppl ies i ts own outcal l block, then the expl ic i t or impl ic i t PID must
have appeared on a PID parameter in the OUTCALL statement of a previously created LCF.

You can access this field with the reserved symbol C0NANM2, as described in section 4.

Figure 3-13. Application-Connection-Reject (CON/ACRQ/A) Supervisory Message Format (Sheet 4 of 4)

ta

59 51 49 43 35 31 23 20 1716 12
con req res acn abl res dt res

app shost

res abn res dbz

res ubz res cudl

udata (0-112 octets)

ta

req

Symbolic address of the application program's text area receiving this asynchronous super
visory message.

Primary function code 63-|0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of reserved symbol CON.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol REQ.

Reserved by CDC. Reserved fields contain zero.

Figure 3-14. Connection-Request (CON/REQ/R) Supervisory Message Format,
Application-to-Application Connections (Sheet 1 of 2)

/0^>,
60499500 W 3-27

abl

d t

app

shost

abn

dbz

ubz

cudl

Ap?iication con?ection number assigned to this logical connection; 1 < minacn < acn < maxacn
£ 4095, where minacn and maxacn are minimum and maximum values establTshed by The application
program in its NETON call. (See section 5.) You can access this field with the reserved
symbol CONACN, as described in section 4.

Application block limit, specifying the maximum number of data or synchronous supervisory
message blocks the program can have outstanding (unacknowledged as delivered by the network
software) on this connection at any time. This value is established when the connection is
descr ibed in the loca l configurat ion fi le . I f your app l ica t ion program in i t ia ted the
connection request, this value comes from the ABL parameter of the NDL OUTCALL statement used
by your program; i f another application program init iated the connection request, the init ial
value comes from the ABL parameter of the NDL INCALL statement used by that program. This
value is also supplied from the abl in the CON/ACRQ if the application supplies its own
OUTCALL parameters. This field has the range 1 £ abl £7. You can access this field with
the reserved symbol CONABL, as described in section 4.

Device type of the connection. This field can have the values:

5 App l i ca t i on - t o -app l i ca t i on connec t i on w i t h i n t he same hos t

6 App l i ca t i on - t o -app l i ca t i on connec t i on be tween two hos t s

You can access this field with the reserved symbol CONDT, as described in section 4.

Application name. This field contains the application name of the other application program
for in t rahost app l ica t ion- to-app l ica t ion connect ions; o therwise, th is fie ld conta ins zero .

Source host identifier. This field contains the node number of the host in which the other
application program runs if this CON/REQ/R is received by the called application. The value
i s i n 6 -b i t d i sp lay code cha rac te rs , l e f t - j us t i fied w i th b lank fi l l . The ca l l i ng app l i ca t i on
receives a CON/REQ/R with the name2 field of the previous CON/ACRQ/R message or the name2
value of the corresponding OUTCALL parameter block.

Application block number. This field contains the abn value assigned by your application
program to the CON/ACRQ/R supervisory message if your program initiated the connection
request; otherwise, this field contains a zero. You can access this field with the reserved
symbol CONABN, as described in section 4.

Downline block size. The recommended maximum number of 8-bit character bytes in any network
data block sent on the connection. If your application program init iated the connection
request, this value comes from the DBZ parameter of the NDL OUTCALL statement used by your
program; i f another appl icat ion program ini t iated the connect ion request, the ini t ia l value
comes from the DBZ parameter of the NDL INCALL statement used by that program. This field
can have the values 1 £ dbz £ 2043. You can access this field with the reserved symbol
CONDBZ, as described in section 4.

Upline block size. The number of 8-bit bytes (in multiples of 100) the network wil l deliver
in each upline network data block on the connection. If your application program init iated
the connection request, this value comes from the UBZ parameter of the NDL OUTCALL statement
used by your program. If another application program initiated the connection request, the
initial value comes from the UBZ parameter of the NDL INCALL statement used by that program.
This field can have the values 0 £ ubz £ 20, where 0 and 1 both indicate 100-byte blocks. If
ubl is not specified, the default value of 2 is used. You can access this field with the
reserved symbol C0NUBZ, as described in section 4.

The call for the user's data length expressed in the number of octets,
zero if there is no call user data.

/ < * * V

^rsE^x

,^SrJ \

Th i s fie l d i s se t t o

udata

You can access this field with the reserved symbol C0NUDL, as described in section 4.

?ut i^ f ,L^ iLUSer da*a* Th1s 1s the caLl user data specified by the ca l l ing appl icat ion inthe CON/ACRQ/R supervisory message from a NOS host; or, it is the 13th through 128th octets
of call user data an X.25 network. Allows applications to send a small amount of data to
each other without actually establishing a connection via the fast select facil i ty on an X.25
network.

You cannot access this field with NFETCH.

Figure 3-14. Connection-Request (CON/REQ/R) Supervisory Message Format,
Application-to-Application Connections (Sheet 2 of 2)

3-28 60499500 W

^f^S^V

59 51 49 43 35 23

0^ \
ta 1st fdx unused acn unused

t a

1st

fdx

Application program text area from which this asynchronous supervisory message is sent.

Hal!^KJU"Ct1On^ode/C01v- You can access this field with the reserved symbol PFC, asdescribed in section 4. ?ts value is defined as the value of the reserved symbol LST.

S!!:0nda!2 tunction code 3. You can access this field with the reserved symbol SFC, asdescribed m section 4. Its value is defined as the value of the reserved symbol FDX.

Application connection number assigned by the network software to the program end of the loqi-
cal connection for which ful l-duplex l ist processing is being enabled. The value Ssedin
this field can be either zero or the value used in a CON/REQ/R message processed by the

a«fi-*at2°n pr°9r?m- .If acn is zero, all connections are enabled; if acn is nonzero, the
as desrHhfr^c10?18 ?nabLed- You can access this field with the reserved symbol LSTACN,as described in section 4.

Figure 3-24. Turn-On-Full-Duplex-List-Processing (LST/FDX/R) Supervisory Message Format

I f e i ther of the l is t duplexing control messages is
i ssued fo r a connec t ion a l ready opera t i ng i n the
reques ted dup lex ing mode , the ex t ra message i s
i g n o r e d . I f t h e a c n fi e l d s p e c i fi e d w i t h i n e i t h e r
m e s s a g e i d e n t i fi e s a n o n e x i s t e n t l o g i c a l c o n n e c
t ion , a log ica l -e r ro r superv iso ry message i s sen t
to the application program and the requested change
in duplexing operation does not occur.

I f e i ther of the l is t duplexing control messages is
issued with an acn field value of zero, the duplex
ing mode o f app l i ca t ion connec t ion ze ro rema ins
unchanged. The asynchronous supervisory message
connection is always enabled for ful l-duplex opera
t ion on app l ica t ion l i s t zero .

CONTROLLING DATA FLOW
Data to and from console connect ions has i ts flow
c o n t r o l l e d a t b o t h e n d s o f t h o s e c o n n e c t i o n s .
Whenever poss ib le , th is contro l is imposed volun
tar i ly by the appl icat ion program. Condi t ions out
side the network, however, can interfere with data
flow. Flow control is therefore also imposed by the
network software in reaction to external condit ions.
W h e n t h e l a t t e r o c c u r s , t h e a p p l i c a t i o n p r o g r a m
must compensate for the effect on data flow.

B e c a u s e t h e a p p l i c a t i o n p r o g r a m i s n o t d i r e c t l y
involved in the data exchange on batch device con
n e c t i o n s , t h e r e m a i n i n g p a r a g r a p h s i n t h i s s u b
sect ion do not apply to appl icat ion-to-batch device
connections.

Down l i ne flow con t ro l i s l og i ca l l y sepa ra ted f rom
u p l i n e fl o w c o n t r o l . T h i s s e p a r a t e s fl o w c o n t r o l
into an input function and an output function.

Downline flow control Is implemented through block
del ivery monitor ing mechanisms. These mechanisms
involve exchanges of asynchronous supervisory mes
sages, and the appl icat ion program's adherence to
data block transmission conventions.

Upline flow is controlled by synchronous supervisory
messages and by the application program's adherence
to data block transmission conventions.

MONITORING DOWNLINE DATA
An appl icat ion program can send downl ine b locks
along a particular connection much faster than they
can be output at a device or del ivered to another
appl icat ion. Since NAM and CCP must save these
extra blocks unti l they are processed by the other
end of the connection, the extra blocks can cause
NAM and CCP to have storage problems. On the other
hand, the same application program might be sending
blocks along another connection at such a slow rate
t h a t t h e o t h e r e n d o f t h e c o n n e c t i o n i s u n d e r -
occupied. Network software provides a set of con
vent ions tha t a l low the app l i ca t ion to con t ro l the
flow of data between i tself and i ts connections for
increased efficiency in such cases.

A b lock l im i t i s es tab l i shed fo r each log ica l con
nect ion; th is parameter indicates how many blocks
o f da ta o r synchronous superv iso ry messages an
app l i ca t i on p rog ram can have ou ts tand ing on the
log ica l connect ion a t any ins tant . Th is b lock l im i t
i s t he ab l fie ld va lue i nc l uded i n t he connec t i on
request superv isory message. As b locks queue for I
d e l i v e r y t o t h e d e v i c e o r a p p l i c a t i o n , a b l o c k - |
del ivered asynchronous supervisory message (figure
3 - 2 5) i s r e t u r n e d t o t h e a p p l i c a t i o n . I f t h e
appl icat ion program's output exceeds the va lue of
t h e b l o c k l i m i t , a l o g i c a l - e r r o r a s y n c h r o n o u s
supervisory message is returned to the application,
t o g e t h e r w i t h t h e r e a s o n f o r t h e e r r o r, a n d t h e
last block is discarded by NAM.

The block-delivered supervisory message is used to
manage flow con t ro l ; however, rece ip t o f a b lock - |
delivered supervisory message does not in all cases
guarantee that the data block has reached its des
t i na t i on . I f t he commun i ca t i on l i ne , f o r examp le ,
f a i l s b e f o r e a b l o c k i s c o m p l e t e l y o u t p u t o n a
t e r m i n a l d e v i c e , t h e a p p l i c a t i o n p r o g r a m m i g h t
st i l l receive a block-del ivered message.

If the application program's output does not exceed
t h e b l o c k l i m i t , b u t f o r s o m e r e a s o n a b l o c k i s
l o s t o r u n a c c o u n t e d f o r , a b l o c k - n o t - d e l i v e r e d
asynchronous superv isory message (figure 3-26) is
r e t u r n e d t o t h e a p p l i c a t i o n . N e i t h e r t h e b l o c k -
del ivered message nor the block-not-del ivered mes
sage requ i res the app l i ca t ion p rogram to i ssue a
response or acknowledgment message to NAM.

60499500 S 3-29

ta

fc

ack

abn

ta

59 51 49 43 35 23 5 0

fc ack unused acn abn unused

Symbolic address of the application program's text area receiving this asynchronous super
visory message.

Primary function code 83<ja. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ACK.

Application connection number assigned by the network software to the program end of the logi
cal connection on which the block was delivered. This value is always nonzero and is the acn
value used by the program in the application block header sent with the delivered block. You
can access this field with the reserved symbol FCACN, as described in section 4.

Application block number assigned by the application program to the delivered block. This
value is the abn value used by the program in the application block header sent with the
delivered block. You can access this field with the reserved symbol FCABN, as described in
section 4.

Figure 3-25. Block-Delivered (FC/ACK/R) Supervisory Message Format

ta

fc

nak

re

acn

abn

ta
59 51 49 43 35 23 5 0

fc nak re acn abn unused

Symbolic address of the application program's text area receiving this asynchronous super
visory message.

Primary function code 83-|6. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 3. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol NAK.

Reason code explaining why the block was not delivered. This field can have the values:

2
thru
255

Reserved for CDC use.

Network software error caused loss of the block in transit; the block can be
retransmitted but might be delivered out of sequence with subsequently
transmitted blocks.

Reserved for CDC use.

You can access this field with the reserved symbol RC, as described in section 4.

Application connection number assigned by the network software to the program end of the logi
cal connection on which the block was lost. This value is always nonzero and is the acn
value used by the program in the application block header sent with the lost block. You can
access this field with the reserved symbol FCACN, as described in section 4.

Application block number assigned by the application program to the lost block. This value
is the abn value used by the program in the application block header sent with the lost
block. You can access this field with the reserved symbol FCABN, as described in section 4.

Figure 3-26. Block-Not-Delivered (FC/NAK/R) Supervisory Message Format

3-30 60499500 R

0H^\

T h i s p r o t o c o l a l l o w s t h e a p p l i c a t i o n t o c o n t r o l
downline data flow, as follows:

Define two arrays, K and M.

When a connection i is accepted, set K(i)=0 and
M(i)=b lock l im i t .

Whenever a block-delivered message is received
for app l ica t ion connect ion number i , se t K(i)=
K(i)—1.

When a break supervisory message is received
f o r a n a p p l i c a t i o n - t o - a p p l i c a t i o n c o n n e c t i o n ,
set K(i)=0.

When a user-break caused user-interrupt super
v i s o r y m e s s a g e i s r e c e i v e d f o r a d e v i c e - t o -
a p p l i c a t i o n c o n n e c t i o n , d o n o t s e t K (i) = 0 ;
block-delivered messages make this unnecessary.

A s l o n g a s K (i) i s l e s s t h a n M (i) , s e t K (i) =
K(i)+1 and output one block on connection i.

T h e b r e a k a n d u s e r - b r e a k c a u s e d u s e r - i n t e r r u p t
s u p e r v i s o r y m e s s a g e s i n c l u d e d i n t h i s s t r a t e g y
a f f e c t d o w n l i n e t r a f fi c o n a l o g i c a l c o n n e c t i o n .
(T h e b r e a k m e s s a g e a l s o a f f e c t s u p l i n e t r a f fi c .)
Such messages are sent to the application program
w h e n e v e r a n e t w o r k c o n d i t i o n r e q u i r e s d o w n l i n e
transmission on the connection to be interrupted.

The NPU relies on the application program to decide
w h e n t r a f fi c c a n b e r e s u m e d . Tw o s e q u e n c e s o f
events are possible when such interrupt ions occur.
The sequence that occurs depends on whether the
c o n n e c t i o n i n v o l v e d i s w i t h a n o t h e r a p p l i c a t i o n
program or with a terminal device.

F o r a p p l i c a t i o n - t o - a p p l i c a t i o n c o n n e c t i o n s ,
following happens (see figure 3-27):

the

1. B locks sent downl ine by your app l ica t ion pro
gram but not yet del ivered to the other appl i
cation are discarded.

2. Blocks sent upl ine to your appl icat ion program
but not yet delivered from the other application
program are discarded.

3 . A n a s y n c h r o n o u s b r e a k s u p e r v i s o r y m e s s a g e
(fi g u r e 3 - 2 8) I s s e n t t o y o u r a p p l i c a t i o n
program. I f the connect ion uses an X.25 com
munica t ion l ine , the s ide o f the X.25 ne twork
or ig inat ing the break is indicated by a reason
code in the message.

4. Your appl icat ion program resets i ts flow control
algor i thm, as descr ibed previously in th is sub
sect ion.

5. Your application program issues an asynchronous
reset supervisory message, as shown in figure
3-29, as a response to the break message. Until
the reset message is sent, no upline or downline
data can be exchanged on the connection. NAM
sends no response to your reset message.

6 . N o r m a l d o w n l i n e (a n d u p l i n e) t r a f fi c c a n n o w
r e s u m e . T h e fi r s t b l o c k s e n t o r r e c e i v e d o n
the connect ion that is not a nu l l b lock marks
the point in t raffic where data flow was inter
rupted.

App l i ca t ion

- <

NAM Message

FC/BRK/R

The network software discards all unacknowl
edged blocks queued for delivery to the other
a p p l i c a t i o n .

FC/RST/R

The application program can now resume communi
cat ion wi th the other appl icat ion.

F igu re 3 -27 . App l i ca t ion - to -App l i ca t ion
Connection Break and Reset

Message Sequence

For device-to-appl icat ion connect ions, the fol lowing
happens (see figure 3-30):

1. Blocks sent downline by your application program
bu t no t ye t de l i ve red to t he dev i ce a re d i s
carded. Discarded blocks are acknowledged as
delivered by NAM.

2. NAM sends an asynchronous user-interrupt super
visory message with a reason code indicating a
user-caused break (figure 3-31) to your appl i
cation program.

3. NAM queues a synchronous break-indication-marker
supervisory message (figure 3-32) after any data
b l o c k s n o t y e t d e l i v e r e d t o y o u r a p p l i c a t i o n
program.

4. Your application program issues an asynchronous
I n t e r r u p t - r e s p o n s e s u p e r v i s o r y m e s s a g e , a s
s h o w n i n fi g u r e 3 - 3 3 , a s a r e s p o n s e t o t h e
u s e r - i n t e r r u p t m e s s a g e . U n t i l t h i s r e s p o n s e
m e s s a g e i s s e n t , a d d i t i o n a l u s e r - i n t e r r u p t
c o n d i t i o n s i n v o l v i n g t h e d e v i c e a r e i g n o r e d .
NAM sends no response to your user-interrupt-
response message.

5. Your appl icat ion program processes al l pending
input on that connection by issuing NETGET or
N E T G E T F c a l l s (s e c t i o n 5) u n t i l t h e b r e a k -
i n d i c a t i o n - m a r k e r m e s s a g e i s r e c e i v e d . T h e
d i s p o s i t i o n o f r e c e i v e d d a t a b l o c k s i s u p t o
your application program.

6. Your appl icat ion program issues a synchronous
resume-output-marker supervisory message (figure
3 -34) , as a response to the b reak - ind i ca t i on -
marke r message . Un t i l t h i s message i s sen t ,
down l ine da ta sen t on the connec t ion i s d i s
carded by the network. NAM sends no response
to your resume-output-marker message. Normal
downline traffic can now resume.

I f your appl icat ion program does not complete one
of these sequences proper ly, i t rece ives an asyn
c h r o n o u s l o g i c a l - e r r o r s u p e r v i s o r y m e s s a g e . T h e
log i ca l -e r ro r message i s desc r i bed a t t he end o f
section 3.

The user - in te r rup t message reflec ts suspens ion o f
d o w n l i n e t r a f fi c o n l y . U p l i n e t r a f fi c (i n p u t) o n
the connection is not affected.

60499500 R 3-31

ta

fc

brk

re

ta

reserved

59 51 49 43 35 23

fc brk re acn reserved

Symbolic address of the application program's text area receiving this asynchronous super
visory message.

Primary function code 83i0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol BRK.

Reason code, explaining the cause of the break condition. This field is nonzero in upline
messages for X.25 connections only. This field can contain the values:

1
thru
4

5

6

8
thru
191

192
thru
255

Reserved for CDC use.

A data communications equipment (DCE) break indicator (reset indication packet)
occurred for the X.25 communication line used by the connection.

A data terminal equipment (DTE) break indicator (reset indication packet)
occurred for the X.25 communication line used by the connection.

Reserved for CDC use.

Reserved for site-defined use.

You can access this field with the reserved symbol FCRBR, as described in section 4.

Application connection number assigned by the network software to the program end of the logi
cal connection on which the break occurred. This field always contains a nonzero value
previously used by the application program in an FC/INIT/N message and must be used by the
application program in a subsequent FC/RST/R message before data transmission on the
connection is again possible. You can access this field with the reserved symbol FCACN, as
described in section 4.

Reserved for CDC. Reserved fields must be equal to zero.

Figure 3-28. Break (FC/BRK/R) Supervisory Message Format

ta

fc

rst

ta
59 51 49 4 3 3 5 23

fc rst reserved acn reserved

Symbolic address of the application program's text area from which this asynchronous super
visory message is sent.

Primary function code 83-|0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 1. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol RST.

Application connection number assigned by the network software to the program end of the logi
cal connection to be reset. This value is always nonzero and must be the acn value received
by the application program in a previous FC/BRK/R message. You can access this field with
the reserved symbol FCACN, as described in section 4.

Figure 3-29. Reset (FC/RST/R) Supervisory Message Format

3-32 60499500 R

igP^N

Application
-<■

NAM Message

INTR/USR/R
Connection
Zero

dp^r!tW°vl! Softwf:e ^knowledges and discards all blocks queued for delivery to the
another" imtiiS*'-SIS• T" "" reqVeSt queued input frora NAM but cannot receiveanotner INTR/USR/R affecting this connection.
The program requests all queued input from NAM. The network software continues to
d i s c a r d a n d a c k n o w l e d g e d o w n l i n e b l o c k s . c o n t i n u e s t o

BI/NARK/R
INTR/RSP/R
RO/MARK/R

Nonzero
Zero
Nonzero

downlinfbloc'ks? Pr09rSa "" "°W ^^ °UtPUt t0 the device* NA" st°Ps d^carding

Figure 3-30. Terminal User-Caused Break Sequence

z f̂e\

ta

intr

usr

ta
59 51 49 43 35 23

intr usr unused

Symbolic address of the application program's text area receiving this asynchronous super
visory message or from which this message is sent.

Primary function code 8016. You can access this field with the reserved symbol PFC, asdescribed in section 4. The value of this field is defined as the value of reserved symbol
INTR.
Secondary function code 00. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol USR.
Reason code, explaining the cause of the interrupt condition. This field can contain the
values:

0
thru
2

5
thru
255

Valid on application-to-application connections only; no predefined meaning.

On device-to-application connections, the terminal operator used the key or
entered the character defined for the device as generating a user-break-1
condition; discard all blocks received until a BI/MARK/R synchronous supervisory
message is received. On application-to-application connections, no predefined
meaning.
On device-to-application connections, the terminal operator entered the character
defined for the device as generating a user-break-2 condition; discard all blocks
received until a BI/MARK/R synchronous supervisory message is received. On
application-to-application connections, no predefined meaning.
On device-to-application connections, refer to figure 3-39. On
application-to-application connections, no predefined meaning.

Application connection number assigned by the network software for the connection sending the
user-interrupt request. You can access this field with the reserved symbol INTRACN, as
described in section 4.

Figure 3-31. User-Interrupt (INTR/USR/R) Supervisory Message Format

60499500 R 3-33

t a

b i

mark

t a

t a

5 9 5 1 4 9 4 3 0

b i mark unused act=2

5 9 5 5 4 7 4 3 4 1 3 5 0

0 bi mark unused act =3

Symbolic address of the application program's text area receiving this synchronous super
visory message.

Primary function code CA<|0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol BI.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol MARK.

Figure 3-32. Break-Indication-Marker (BI/MARK/R) Supervisory Message Format

ta

in t r

rsp

ta
59 51 49 43 35 23

i n t r rsp acn unused

Symbolic address of the application program's text area from which this asynchronous super
visory message is sent.

Primary function code 80<jo. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol INTR.

Secondary function code 01. You can access this field with the reserved symbol SFC, as
defined in section 4. Its value is defined as the value of the reserved symbol RSP.

Application connection number assigned by the network software for the connection on which the
user-interrupt-response supervisory message was sent. The value placed in this field must be
the device connection value used in the INTR/USR/R message to which this message is a response.
You can access this field with the reserved symbol INTRACN, as described in section 4.

Figure 3-33. Application-Interrupt-Response (INTR/RSP/R) Supervisory Message Format

ta

mark

ta

ta

59 51 49 43

ro mark unused

5 9 5 5 4 7 4 3 4 1 3 5

0 ro mark unused

act=2

act=3

Symbolic address of the application program's text area from which this synchronous super
visory message is sent.

Primary function code CB<|0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol RO.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol MARK.

Figure 3-34. Resume-Output-Marker (RO/MARK/R) Supervisory Message Format

3-34 60499500 R

/fP^N.

CONTROLLING OR BYPASSING
UPLINE AND DOWNLINE DATA
Several asynchronous supervisory messages allow your
application program to:

Control the flow of upline and downline data to
both ends of an appl icat ion-to-appl icat ion con
nect ion.

Control the flow of downline data on a device-
to-appl icat ion connect ion.

Bypass data blocks or synchronous supervisory
messages on an appl icat ion-to-appl icat ion con
nec t i on ; t h i s a l l ows you r app l i ca t i on p rog ram
t o c o n t r o l t h e fl o w o f d o w n l i n e d a t a o n a n
a p p l i c a t i o n - t o - a p p l i c a t i o n c o n n e c t i o n i f b o t h
programs recognize a method of doing so.

The sequences and forms of the messages used depend
on whether the connection is with another applica
tion program or with a terminal device.

Discarding Upline and Downline Data on
Application-to-Application Connections
Your program can discard a l l upl ine and downl ine
data queued between i tself and another appl icat ion
program by sending the asynchronous break super
visory message shown in figure 3-28. NAM does not
send a response for this message to your program.

The res t o f t he s teps shown in figu re 3 -27 then
occur:

Discarding Downline Data on
Device-to-Application Connections
Your program can discard all downline data queued
between itself and a terminal device by sending the
asynchronous appl icat ion- interrupt supervisory mes
sage shown in figure 3-35, using a parm field value
of 2.

The fi r s t se t o f s teps shown i n figu re 3 -36 then
occurs:

1. The network begins d iscard ing downl ine b locks
q u e u e d f o r d e l i v e r y t o t h e d e v i c e . U p l i n e
blocks queued for de l ivery to your appl icat ion
program are not affected.

2.

3.

Your appl icat ion program sends a synchronous
terminate-output-marker supervisory message, as
desc r i bed i n figu re 3 -37 . Th i s message i nd i
cates to the network software the place in the
down l ine da ta flow where i t shou ld s top d i s
carding blocks.

The network sends your application program an
a s y n c h r o n o u s i n t e r r u p t - r e s p o n s e s u p e r v i s o r y
m e s s a g e (fi g u r e 3 - 3 3) . U n t i l t h i s m e s s a g e i s
r e c e i v e d , y o u r p r o g r a m c a n n o t s e n d a n o t h e r
a p p l i c a t i o n - i n t e r r u p t m e s s a g e a f f e c t i n g t h e
same connection.

4. Normal downline data traffic can now resume.

I f y o u r a p p l i c a t i o n p r o g r a m i s s u e s a n o t h e r
app l i ca t ion - in te r rup t message be fo re rece iv ing an
in te r rup t - response message , i t rece ives an asyn
c h r o n o u s l o g i c a l - e r r o r s u p e r v i s o r y m e s s a g e . T h e
log ica l -e r ro r message i s desc r ibed a t the end o f
section 3.

1. Blocks sent downline by each application program
but no t ye t de l i vered to the o ther app l ica t ion
are discarded.

2. Blocks sent upl ine to each appl icat ion program
but not yet delivered from the other application
program are discarded.

3 . A n a s y n c h r o n o u s b r e a k s u p e r v i s o r y m e s s a g e
(figu re 3 -28) i s sen t t o t he o the r app l i ca t i on
program.

4 . Each app l i ca t i on p rog ram rese ts i t s flow con
t ro l a l go r i t hm, as desc r i bed p rev ious l y unde r
Monitoring Downline Data.

5.

6.

The other (receiving) application program issues
an asynchronous reset supervisory message, as
shown in figure 3-29. Unt i l the reset message
i s s e n t , n o u p l i n e o r d o w n l i n e d a t a c a n b e
exchanged on the connec t ion . NAM sends no
response to either reset message.

N o r m a l d o w n l i n e a n d u p l i n e t r a f fi c c a n n o w
r e s u m e . T h e fi r s t b l o c k s e n t o r r e c e i v e d o n
the connect ion that is not a nu l l b lock marks
the point in t raffic where data flow was in ter
rupted .

Bypassing Downline Data on an
Application-to-Application Connection
Your program can bypass all downline data queued
between i tse l f and another app l ica t ion by send ing
the asynchronous app l i ca t ion- in te r rup t superv isory
message shown in figure 3-37, using any parm field
v a l u e . N A M d o e s n o t s e n d a r e s p o n s e f o r t h i s
message to your program.

The second set of steps shown in figure 3-38 then
occurs:

1. The network does not discard any blocks queued
fo r de l i ve ry to the o ther app l i ca t ion p rogram.
Upline blocks from the other program queued for
d e l i v e r y t o y o u r a p p l i c a t i o n p r o g r a m a r e n o t
a f f e c t e d . N e i t h e r p r o g r a m ' s fl o w c o n t r o l
a lgor i thm is a f fec ted .

2. The network sends the other application program
a n a s y n c h r o n o u s u s e r - i n t e r r u p t s u p e r v i s o r y
message (figure 3-31), containing a reason code
equal to the parm value your program sent in
i ts app l ica t ion- in ter rupt message.

3. The other application program sends the network
an asynchronous in terrupt- response superv isory
m e s s a g e (fi g u r e 3 - 3 3) . I f t h e o t h e r p r o g r a m
recogn izes the reason code as ind ica t ing the
need to d iscard your p rogram's down l ine (the
o t h e r p r o g r a m ' s u p l i n e) d a t a b l o c k s , i t w i l l
begin to do so.

60499500 R 3-35

ta

i n t r

app

parm

acn

ta
59 51 49 43 55 2 3 0

in t r app parm acn

Symbolic address of the application program's text area from which this asynchronous super
visory message is sent.

Primary function code 80<jo. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol INTR.

Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol APP.

AppIication-interrupt 8-bit value. Can be one of the following:

Valid on application-to-application connections only; no predefined meaning.0
and
1

3
thru
255

On device-to-application connections, discard all blocks received until a
TO/MARK/R synchronous supervisory message is received. On
application-to-application connections, no predefined meaning.
Valid on application-to-application connections only; no predefined meaning.

You can access this field with the reserved symbol INTRCHR, as described in section 4.

Application connection number assigned by the network software for the connection on which
the application interrupt is requested. You can access this field with the reserved symbol
INTRACN, as described in section 4.

Figure 3-35. Application-Interrupt (INTR/APP/R) Supervisory Message Format

ta

in t r

rsp

ta
59 5 1 4 9 43 35 23

in t r rsp acn unused

Symbolic address of the application program's text area from which this asynchronous super
visory message is sent or into which it is received.

Primary function code 80-)$. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol INTR.

Secondary function code 01. You can access this field with the reserved symbol SFC, as
defined in section 4. Its value is defined as the value of the reserved symbol RSP.

Application connection number assigned by the network software for the connection on which
the user—interrupt-response supervisory message was sent. The value placed in this field
must be the device connection value used in the INTR/USR/R message to which this message is a
response. You can access this field with the reserved symbol INTRACN, as described in
section 4.

Figure 3-36. Application-Interrupt-Response (INTR/RSP/R) Supervisory Message Format

3-36 60499500 R

59 5 1 4 9 43

t a t o mark unused act=2

t a

t o

mark

t a

5 9 5 5 4 7

t o

43 41 35

mark unused act=3

Symbolic address of the application program's text area from which this synchronous super
visory message is sent.

d^rHhJU?nt l^-°de/C41?: Yo^ can a5c!ss th is f ieLd with the reserved symbol PFC, asdescribed in section 4. Tts value is defined as the value of the reserved symbol TO.

Si.^JU !uncti0? code °- You can access this f ield with the reserved symbol SFC, asdescribed in section 4. Its value is defined as the value of the reserved symbol MARK.

Figure 3-37. Terminate-Output-Marker (TO/MARK/R) Supervisory Message Format

jtfff&K,

A p p l i c a t i o n N A M M e s s a g e C o n n e c t i o n

▶ I N T R / A P P / R Z e r o
The network acknowledges and discards all blocks queued for delivery to the device.
r««/f»«^Ca!l0n pro9ram can request queued input from NAM but cannot send anotherINTR/APP/R affecting this connection.

TO/MARK/R Nonzero

INTR/RSP/R Zero
Your application program can now resume output to the device. NAM stops discarding
downline blocks.

A p p l i c a t i o n 1 N A M A p p l i c a t i o n 2 M e s s a g e Connection

INTR/APP/R Zero

INTR/USR/R Zero
The other application program discards all blocks delivered to it, if that is an
appropriate action for an interrupt.

marker Nonzero
Your application program can now resume normal output. The other program stops
discarding your downline blocks.

INTR/RSP/R Zero

INTR/RSP/R Zero

Figure 3-38. Downline Data Flow Control Supervisory Message Sequences

f 6 0 4 9 9 5 0 0 R 3-37

I f y o u r p r o g r a m d o e s n o t u s e t h e a p p l i c a t i o n -
interrupt message as a method of discarding data,
the following step does not apply:

4. Both programs now must recognize some marker in
your p rogram'8 down l ine da ta to ind ica te the
point in the process where the other program
should stop discarding blocks. The synchronous
terminate-output-marker supervisory message, as
d e s c r i b e d i n fi g u r e 3 - 3 6 , c a n b e u s e d . N A M
sends no response to this message and does not
i n t e r p r e t i t .

5 . T h e o t h e r a p p l i c a t i o n p r o g r a m i s s u e s a n
i n t e r r u p t - r e s p o n s e a s y n c h r o n o u s s u p e r v i s o r y
message (figure 3-33).

6. The network sends your appl icat ion program an
a s y n c h r o n o u s i n t e r r u p t - r e s p o n s e s u p e r v i s o r y
message (figu re 3 -33) . Un t i l t h i s message i s
r e c e i v e d , y o u r p r o g r a m c a n n o t s e n d a n o t h e r
a p p l i c a t i o n - i n t e r r u p t m e s s a g e a f f e c t i n g t h e
same connection.

7. Your program can now resume normal downl ine
t r a f fi c .

TERMINAL USE OF USER INTERRUPTS
FOR PRIORITY DATA
The terminal operator can send a message to the
app l i ca t i on t ha t bypasses regu la r up l i ne da ta by
en te r i ng a use r - i n t e r rup t p r i o r i t y da ta sequence .
The operator enters the sequence by enter ing the
TIP command control character (defined by the CT
command) and an alphabetic character. NAM generates
t h e u s e r - i n t e r r u p t - r e q u e s t s u p e r v i s o r y m e s s a g e ,
INTR/USR/R (i l lus t ra ted in figure 3-39) and sends
i t to the app l i ca t ion .

T h e a p p l i c a t i o n p r o g r a m r e s p o n d s w i t h t h e
appl ica t ion- in ter rupt - response superv isory message
(i l l u s t r a t e d i n fi g u r e 3 - 3 6) a f t e r r e c e i v i n g t h e
INTR/USR/R message if the application supports user
i n t e r r u p t s . I f t h e a p p l i c a t i o n d o e s n o t s u p p o r t
p r i o r i t y d a t a u s e r i n t e r r u p t s , i t c a n i g n o r e t h e
INTR/USR/R message and issues no response. Figure
3 - 4 0 i l l u s t r a t e s t h e fl o w o f m e s s a g e s . U n t i l t h e
response i s sen t , t he user canno t en te r ano the r
interrupt sequence.

Appl icat ion

-<
NAM Message

INTR/USR/R

NAM delivers the user-interrupt ASCII char
acter to the application in an asynchronous
supervisory message on acn=0.

Supervisory programs and applications that do
not support the user-interrupt-request message
need take no further action.

INTR/RSP/R

The application that supports user interrupt
requests must respond with an interrupt-
response supervisory message on acn=0.

F igure 3-40. User In te r rup t fo r Pr io r i t y
Data Supervisory Message Sequence

I f t he app l i ca t i on p rog ram suppor t s p r i o r i t y da ta
user interrupts, predefined meanings can be given
t o t h e A S C I I c h a r a c t e r s a v a i l a b l e a s i n t e r r u p t
characters. Only the characters A through Z and a
through z can be used.

/**fi&\

ta

ta

i n t r

char

acn

59 51 49 43 35 2 3 0

in t r usr char acn unused

Symbolic address of the application program's text area receiving this asynchronous super
visory message.

Primary function code 80-jo. You can access this field with the reserved symbol PFC, as
described in section 4. The value of this field is defined as the value of reserved symbol
INTR.

Secondary function code 00. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol USR.

User- interrupt character. This 8-bi t field contains one of the 7-bi t ASCII codes for let ters
shown in table A-2. You can access this field with the reserved symbol INTRCHR, as described
in section 4.

Application connection number assigned by the network software for the connection sending the
user-interrupt request. You can access this field with the reserved symbol INTRACN, as
described in section 4.

Figure 3-39. User-Interrupt-Request (INTR/USR/R) Supervisory Message Format for Priority Data

3-38 60499500 R

/ I p ^

CONTROLLING UPLINE BLOCK
CONTENT

Several asynchronous supervisory messages allow you
to contro l the content o f up l ine b locks. (Downl ine
block content is controlled directly by your program
and indirectly by the values your program places in
the accompanying appl icat ion block header.) Using
supervisory messages, your program can:

Conver t charac te r codes in unrece ived up l ine
ne twork da ta b locks to 6 -b i t d i sp lay code o r
cancel such conversion

Change charac te r by te pack ing in unrece ived
upline network data blocks

Change byte packing in unreceived synchronous
supervisory message blocks

Discard unreceived transparent mode data from a
device or cancel that discarding operation

Truncate unreceived upline blocks

The following subsections describe these supervisory
messages.

When the appl icat ion program needs to change the
conve rs ion pe r fo rmed fo r up l i ne da ta on a g i ven
c o n n e c t i o n , i t c h a n g e s t h e a c t fi e l d v a l u e
assoc ia ted w i th the log ica l connec t ion by i ssu ing
the asynchronous change-input-character-type super
visory message. This message can be issued at any
t i m e t h e l o g i c a l c o n n e c t i o n e x i s t s , a f t e r t h e
application program has issued the FC/INIT/N mes
sage for the connect ion. As shown in figure 3-41,
t h e r e i s n o r e s p o n s e t o t h e c h a n g e - i n p u t -
c h a r a c t e r - t y p e m e s s a g e , b u t t h e m e s s a g e t a k e s
effec t immedia te ly.

App l i ca t ion NAM Message

DC/CICT/R

The next input request for this logical con
nection returns blocks in bytes of the new
character type.

Figure 3-41. Change-Input-Character-
Type Supervisory Message Sequence

CONVERTING AND REPACKING DATA
D a t a e x c h a n g e d o n a n i n t e r a c t i v e d e v i c e - t o -
a p p l i c a t i o n c o n n e c t i o n i s c o n v e r t e d t o a n d f r o m
d i s p l a y c o d e o r A S C I I c h a r a c t e r c o d e s a t t h e
d i s c r e t i o n o f t h e a p p l i c a t i o n p r o g r a m . T h i s
conversion also includes packing and unpacking of
data character codes from bytes of different sizes.
NAM converts data in a given block according to the
a p p l i c a t i o n c h a r a c t e r t y p e a s s o c i a t e d w i t h t h e
b lock .

Data sent downl ine by an appl icat ion program for
o u t p u t a t a n i n t e r a c t i v e d e v i c e o r t o a n o t h e r
a p p l i c a t i o n h a s a n a p p l i c a t i o n c h a r a c t e r t y p e
associated with i t on a block-by-block basis. When
the application program needs to change the conver
sion performed for downl ine data on a given con
nection, i t s imply changes the act field value used
in the block header of each data block. The effects
of a given act field value declaration are described
in deta i l in sect ion 2.

Upline data from a console device or another appli
cation has an application character type associated
with the logical connection on which the data blocks
a r e r e c e i v e d . T h e a p p l i c a t i o n c h a r a c t e r t y p e
associated wi th the connect ion is assigned by the
appl icat ion program when the logical connect ion is
fi r s t es tab l i shed . Th i s ass i gnmen t i s pa r t o f t he
connection-accepted supervisory message.

The change- input -charac ter - type message has the
format shown in figure 3-42. The act fie ld va lues
d e s c r i b e d i n t h e fi g u r e a r e e x p l a i n e d i n m o r e
d e t a i l i n s e c t i o n 2 . N o t e t h a t t r a n s p a r e n t m o d e
upl ine data cannot be correct ly received when an
a p p l i c a t i o n c h a r a c t e r t y p e o t h e r t h a n 2 o r 3 i s
associated with the logical connection.

The conversion change requested by the change-input-
c h a r a c t e r - t y p e m e s s a g e a f f e c t s t h e n e x t b l o c k
fe tched by the app l ica t ion program. For example ,
the appl icat ion program might have been receiv ing
b locks o f 7 -b i t ASCI I code charac te rs , packed in
12 -b i t by tes (an ac t va lue o f 3) ; t he app l i ca t i on
program now needs to receive blocks of 6-bit display
code characters, packed in 6-bit bytes (an act value
of 4). The program sends a change-input-character-
t ype message , spec i f y i ng an ac t va lue o f 4 ; t he
next block received from that logical connect ion is
6 - b i t d i s p l a y c o d e c h a r a c t e r s , p a c k e d i n 6 - b i t
by tes .

I f the requested app l ica t ion character type is not
va l i d fo r t he connec t ion spec ified , a l og i ca l -e r ro r
supervisory message is sent to the application pro
gram, and the application character type associated
w i t h t he l og i ca l connec t i on i s unchanged . O the r
w i s e , r e c e i p t o f t h e c h a n g e - i n p u t - c h a r a c t e r - t y p e
message is not acknowledged.

0 0 ^
60499500 R 3-39

ta

dc

cict

nxp

set

ta

59 5 1 4 9 43 35 23 7 5

n s
dc cict unused acn unused act

Symbolic address of the application program's text area from which this asynchronous super
visory message is sent.

Primary function code C2<|0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol DC.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol CICT.

Application connection number assigned by the network software to this end of the logical con
nection when it was established. The value placed in this field must be the value associated
with an existing connection and used in the FC/INIT/N supervisory message that completed
initialization of the connection. You can access this field with the reserved symbol DCACN,
as described in section 4.

No-transparent-input flag. This field can have the values:
0 Deliver network data blocks with the xpt bit set in the associated block header

1 Do not deliver network data blocks with the xpt bit set in the associated block
header

You can access this field with the reserved symbol DCNXP, as described in section 4.

Application character type in which the application program expects to receive synchronous
supervisory messages. This field can have the values:

0 Deliver supervisory messages in application character type 2

1 Deliver supervisory messages in application character type 3

You can access this field with the reserved symbol DCSCT, as described in section 4.

z * 2 ^ .

Figure 3-42. Change-Input-Character-Type (DC/CICT/R) Supervisory Message Format (Sheet 1 of 2)

3-40 60499500 R
/^*Z®\

act Application character type, specifying the form of character byte packing that the
application program requires for al l future input data blocks from the logical connection.
The value declared replaces the value previously declared by the application program for this
connection in a CON/REQ/N or DC/CICT/R message. This field can have the values:

0
or
1

5
t h r u
11

12
th ru
15

Reserved for CDC use.

8-bit characters in 8-bit bytes, packed 7.5 characters per central memory word;
if the input is not transparent mode, the ASCII chc
A * ? i c i i t > A / lA-2 is used.

:haracter set described in table

8-bit characters in 12-bit bytes, packed 5 characters per central memory word,
r igh t - jus t ified w i th zero fi l l w i th in each by te ; i f the input i s no t t ransparent
mode, the ASCII character set described in table A-2 is used.

6-bit display code characters in 6-bit bytes, packed 10 characters per central
memory word; the characters used are the ASCII set of CDC characters described in
table A-1. This appl ies to terminal - to-appl icat ion connect ions only.

Reserved for CDC use.

Reserved for instal lat ion use.

The act value declared applies only to input on the connection and can be changed by another
DC/CICT/R message at any time during the existence of this logical connection. You can
access this field with the reserved symbol CONACT, as described in section 4.

Figure 3-42. Change-Input-Character-Type (DC/CICT/R) Supervisory Message Format (Sheet 2 of 2)

REPACKING SYNCHRONOUS SUPERVISORY
MESSAGE BLOCKS

Synchronous superv isory message b lock fie lds are
p a c k e d i n e i t h e r 8 - b i t o r 1 2 - b i t b y t e s , a t t h e
d iscre t ion o f the app l ica t ion program. NAM packs
or unpacks fields in a given synchronous supervisory
message block according to the application character
type assoc ia ted wi th the b lock (downl ine) or w i th
the connection (upl ine).

Synchronous supervisory messages sent downline by
an application program have an application character
type associated with them on a block-by-block basis.
When the application program needs to change the
packing performed for blocks on a given connection,
i t s imply changes the act fie ld va lue used in the
block header of each synchronous supervisory mes
s a g e . T h e e f f e c t s o f a g i v e n a c t fi e l d v a l u e
declarat ion are described in detai l in section 2.

An upline synchronous supervisory message block has
an app l ica t ion charac ter type assoc ia ted w i th the
c o n n e c t i o n o n w h i c h t h e b l o c k i s r e c e i v e d . T h e
a p p l i c a t i o n c h a r a c t e r t y p e a s s o c i a t e d w i t h t h e
connect ion is ass igned by the appl icat ion program
as the set field value when the connect ion is first
e s t a b l i s h e d . T h i s a s s i g n m e n t i s p a r t o f t h e
connec t i on -accep ted supe rv i so r y message and i s
separate from the assignment made for data blocks
received on the connection.

When the application program needs to change the
packing performed for upline synchronous supervisory
messages on a given connection, it changes the set
fi e l d v a l u e a s s o c i a t e d w i t h t h e c o n n e c t i o n b y
issuing the asynchronous change-input-character-type
supervisory message. This message can be issued at
any t ime the l og i ca l connec t i on ex i s t s , a f t e r t he
application program has issued the FC/INIT/N message
for the connect ion. As shown in figure 3-41, there
is no response to the change- input -character - type
supervisory message, but the message takes effect
immediately.

The change- inpu t -charac te r - type message has the
f o r m a t s h o w n i n fi g u r e 3 - 4 2 . T h e a p p l i c a t i o n
charac ter types se lec ted w i th the se t fie ld va lues
are described in more detail in section 2.

The repacking change requested by the change-input-
c h a r a c t e r - t y p e m e s s a g e a f f e c t s t h e n e x t b l o c k
fe tched by the app l ica t ion program. For example ,
the appl icat ion program might have been receiv ing
synchronous supervisory messages with fields packed
i n 1 2 - b i t b y t e s (u s i n g a n a p p l i c a t i o n c h a r a c t e r
type o f 3) ; the app l ica t ion program now needs to
receive synchronous supervisory message blocks with
fie lds s to red i n 8 -b i t by tes (us i ng an app l i ca t i on
character type of 2). The program sends a change-
i n p u t - c h a r a c t e r - t y p e m e s s a g e , s p e c i f y i n g a n s e t
field value of 0; the next synchronous superv isory
message b lock received on that log ica l connect ion
is packed in 8-bit bytes.

60499500 R 3-41

EXCHANGING TRANSPARENT DATA WITH
DEVICES

Transparent data is exchanged with a terminal device
at the d iscret ion of the appl icat ion program. NAM
transfers t ransparent data blocks according to the
transparent data flag associated with the block.

The se t t i ng o f t he no - t ransparen t - i npu t flag does
not cause data b locks on appl icat ion- to-appl icat ion
connec t i ons to be d i sca rded , un less the send ing
appl icat ion program sets the xpt field value of the
associated block header to 1.

*£^$.

Network data blocks sent downline by an application
program have a t ransparen t da ta flag assoc ia ted
w i t h t h e m o n a b l o c k - b y - b l o c k b a s i s . W h e n t h e
app l i ca t i on p rog ram needs to change f rom o r t o
transparent mode output on a given connect ion, i t
s i m p l y c h a n g e s t h e x p t fi e l d v a l u e u s e d i n t h e
a p p l i c a t i o n b l o c k h e a d e r o f e a c h d o w n l i n e d a t a
b lock . The e f fec ts o f a g iven xp t fie ld va lue a re
described in detai l in section 2.

Upline network data blocks also have a transparent
data flag associated with them on a block-by-block
bas is . Each connect ion has a no- t ransparent -data
fl a g a s s o c i a t e d w i t h t h a t c o n n e c t i o n . T h i s fl a g
indicates whether the appl icat ion wants to receive
transparent data or wants NAM to discard such data.
T h e n o t r a n s p a r e n t - d a t a fl a g s e t t i n g a s s o c i a t e d
with the connect ion is assigned by the appl icat ion
program as the nxp field value when the connection
i s fi r s t e s t a b l i s h e d . T h i s a s s i g n m e n t i s p a r t o f
the connection-accepted supervisory message.

When the application program needs to change the
va lue o f the no - t ransparen t -da ta flag fo r a g i ven
connec t i on , i t i s sues the change- inpu t - cha rac te r -
type synchronous supervisory message. This message
can be issued a t any t ime the log ica l connect ion
ex i s t s , a f t e r t he app l i ca t i on p rog ram has i s sued
the FC/INIT/N message for the connection. As shown
in figure 3-41, there is no response to the change-
input-character-type message, but the message takes
effect immediate ly.

The change- input -charac ter - type message has the
f o r m a t s h o w n i n fi g u r e 3 - 4 2 . T h e e f f e c t s o f t h e
nxp field values used in the message are described
in sec t ion 2 , where the app l i ca t ion b lock header
fields are descr ibed.

The transparent data exchange change requested by
the change-input-character-type message affects the
next upline block and all subsequent blocks queued
f o r t h e a p p l i c a t i o n p r o g r a m . F o r e x a m p l e , t h e
a p p l i c a t i o n p r o g r a m m i g h t h a v e b e e n r e c e i v i n g
transparent blocks for an interact ive console when
t h e p r o g r a m c o n t a i n s n o c o d e t o p r o c e s s t h o s e
b locks ; i t needs t o p reven t r ece ip t o f any mo re
t r a n s p a r e n t b l o c k s w h i l e t h a t c o n n e c t i o n e x i s t s .
The program sends a change- input -charac ter - type
message , spec i f y ing an nxp fie ld va lue o f 1 ; the
next (and any subsequent) block from that terminal
dev ice i s d i sca rded i f i t i s i n t ransparen t mode ,
even if that block completes the current message.

TRUNCATING UPLINE BLOCKS

Blocks rece ived up l ine by an appl icat ion program
from a terminal or from another application can be
t runca ted to fi t t he tex t a rea bu f fe r p rov ided by
y o u r a p p l i c a t i o n . T h i s t r u n c a t i o n a l l o w s t h e
a p p l i c a t i o n t o o b t a i n a t l e a s t p a r t o f a b l o c k
longer than the text area instead of receiv ing an
input -b lock-undel iverab le rep ly (ibu b i t se t in the
block header). An asynchronous supervisory message
can be used to i n fo rm NAM tha t t he app l i ca t i on
wants to have a b lock t runca ted on a pa r t i cu la r
c o n n e c t i o n o r t o h a v e b l o c k s t r u n c a t e d o n a l l
e x i s t i n g a n d f u t u r e c o n n e c t i o n s . A s i n d i c a t e d i n
figure 3-43, the effect of this supervisory message
cannot be reversed, and there is no response.

App l i ca t ion NAM Message

DC/TRU/R

t h i sThe next upline block de l ivered for
logical connection or al l connections
(depending on whether a nonzero acn is
specified in the DC/TRU/R) will be truncated
if necessary.

Figure 3-43. Block Truncation
Supervisory Message Sequence

W h e n a b l o c k i s t r u n c a t e d , t h e t r u b i t i n t h e
app l i ca t ion b lock header i s se t , and the t i c fie ld
i n t h e b l o c k h e a d e r i s s e t t o t h e s i z e o f t h e
port ion of the block received (instead of being set
to the ful l s ize of the block).

Th is b lock t runcat ion superv isory message (figure
3-44) can be issued at any time after completion of
a NETON call. This message affects all messages on
the connect ion, inc lud ing synchronous superv isory
m e s s a g e s . I f a c n = 0 i s s p e c i fi e d , t h e a p p l i c a t i o n
has to call NETOFF and NETON again to not receive
truncated data blocks.

I f t h e a c n fi e l d s p e c i fi e d w i t h i n t h e m e s s a g e
i d e n t i fi e s a n o n e x i s t e n t l o g i c a l c o n n e c t i o n , a
l o g i ca l - e r r o r su p e rv i so r y me ssa g e i s se n t t o t h e
appl icat ion and data t runcat ion does not occur. I f
more than one data truncation message affecting a
c o n n e c t i o n i s i s s u e d , t h e e x t r a m e s s a g e s a r e
ignored.

.t f r iWft

3-42 60499500 R

t a

dc

t r u

ta

59 51 49 43 35 23
dc t ru unused acn unused

Application program text area from which this asynchronous supervisory message is sent.

Primary function code C2-J*. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol DC.

Secondary function code 0116. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol TRU.

Application connection number. If zero, all existing and future connections other than con
nect ion zero wi l l have truncat ion control on. I f acn is not zero, t runcat ion control wi l l be
on for that connection only. You can access this field with the reserved symbol DCACN, as
described in section 4.

Figure 3-44. Block Truncation (DC/TRU/R) Supervisory Message Format

/ p ^ S MANAGING DEVICE
CHARACTERISTICS
Dev i ces se r v i ced as i n t e rac t i ve v i r t ua l t e rm ina l s
have many character ist ics that can affect the way
in wh i ch they send o r ou tpu t da ta . The ne two rk
software can use varying numbers of these charac
te r i s t i cs , depend ing on the te rm ina l c lass o f the
device and sometimes on the protocol used by the
device.

The following characteristics can be known and used
th rough t he ne two rk so f twa re when se rv i c i ng an
asynchronous device in terminal c lasses 1 through
8, or any device in terminal classes 28 through 31:

Character used to discard a block of output

Whether the break key should be interpreted as
a cancel input and user break 1 command (does
not apply to terminal class 4)

Backspace character used to edit a line of data

Characters used as user break 1 and user break
2 commands

Number of id le characters needed after a car
riage return or a l ine feed

Character used to cancel an input line

C u r s o r p o s i t i o n i n g n e e d e d a t t h e e n d o f a
p h y s c i a l l i n e o r b l o c k (d o e s n o t a p p l y t o
terminal class 4)

Network control character used

Del imi ters o f s ing le-message t ransparent input
(does not apply to terminal class 4)

Delimiters of mult iple-message transparent input
(does not apply to terminal class 4)

Charac te r used a t the end o f a log ica l inpu t
l i ne o r o f an i npu t b lock (does no t app ly to
terminal class 4)

Echoplex mode (does not apply to terminal class
4)

Whether fu l l -ASCI I o r spec ia l ed i t ing mode is
in use

Whethe r the hos t ava i l ab i l i t y d i sp lay appears
i n f u l l f o r m

Whether the device supports input or output flow
contro l characters (does not apply to terminal
class 4)

Whether the device is using paper tape, a key
board, block mode, or transparent mode during
input (does not apply to terminal class 4)

W h e t h e r t h e d e v i c e i s u s i n g a d i s p l a y , a
p r i n t e r , o r p a p e r t a p e d u r i n g o u t p u t (p a p e r
tape does not apply to terminal class 4)

The parity processing required during input and
output (does not apply to terminal class 4)

What the page width and page length are

Whether page waiting occurs

Whether unsol ici ted messages from the network
operator can be delivered

What the terminal class is

Whether the communicat ion l ine is serv iced in
f u l l - dup lex mode (does no t app l y t o t e rm ina l
c lass 4)

What the upline blocking factor is

What the transmission block size is

60499500 R 3-43

The following characteristics can be known and used
through the network software when servicing an X.25
device in terminal classes 1 through 3 or 5 through
8:

Whether the break key should be interpreted as
a user break 1 command

Backspace character used to edit a line of data

Characters used as user break 1 and user break
2 commands

Number of idle characters needed after a car
riage return or a l ine feed

Character used to cancel an input line

C u r s o r p o s i t i o n i n g n e e d e d a t t h e e n d o f a
physical l ine or block

Network control character used

Delimiters of single-message transparent input

Delimiters of multiple-message transparent input

Charac te r used a t the end o f a log ica l inpu t
line or of an input block

Whether full-ASCII mode is in use

Whethe r the hos t ava i l ab i l i t y d i sp lay appears
i n f u l l f o r m

W h e t h e r t h e d e v i c e i s u s i n g a d i s p l a y , a
printer, or paper tape during output

The parity processing required during output

What the page width and page length are

Whether page waiting occurs

Whether unsolicited messages from the network
operator can be delivered

What the terminal class is

Whether the communicat ion l ine is serv iced in
fu l l - dup lex mode (does no t app l y to te rm ina l
class 4)

What the upline blocking factor is

What the transmission block size is

The following characteristics can be known and used
through the network software when servicing a CDC
mode 4 device in terminal classes 10 through 13 or
15:

Characters used as user break 1 and user break
2 commands

Character used to cancel an input line

Network control character used

Delimiters of single-message transparent input

Delimiters of multiple-message transparent input

Charac te r used a t the end o f a log ica l i npu t
line or of an input block

Whether full-ASCII editing mode is in use

Whethe r the hos t ava i l ab i l i t y d i sp lay appears
in fu l l f o rm

W h e t h e r t h e d e v i c e i s u s i n g b l o c k m o d e o r
transparent mode during input

What the page width and page length are

Whether page waiting occurs

Whether unsolicited messages from the network
operator can be delivered

What the terminal class is

What the upline blocking factor is

What the terminal transmission block size is

The following characteristics can be known and used
through the network software when servicing a HASP
device in terminal classes 9 or 14:

Characters used as user break 1 and user break
2 commands

Character used to cancel an input line

Network control character used

Charac ter used a t the end o f a log ica l input
l i n e

Whether the hos t ava i lab i l i t y d i sp lay appears
in fu l l f o rm

What the page width and page length are

Whether page waiting occurs

Whether unsolicited messages from the network
operator can be delivered

What the terminal class is

What the upline blocking factor is

What the terminal transmission block size is

The following characteristics can be known and used
by the network software when servicing a 2780 or
3780 device in terminal classes 16 or 17:

Network control character used

What the page width and page length are

Whether page waiting occurs

Whether unsolicited messages from the network
operator can be delivered

What the terminal class is

What the upline blocking factor is

What the terminal transmission block size is

3-44 60499500 R

X^^Sy

The following characteristics can be known and used
through the network software when servicing a 3270
device in terminal class 18:

Characters used as user break 1 and user break
2 commands

Character used to cancel an input line

Network control character used

Charac te r used a t the end o f a log ica l inpu t
l i n e

Whe the r t he hos t ava i l ab i l i t y d i sp lay appea rs
i n f u l l f o r m

What the page width and page length are

Whether page waiting occurs

Whether unsol ici ted messages from the network
operator can be delivered

What the terminal class is

What the upline blocking factor is

What the terminal transmission block size is

j0$>\

60499500 S 3-44.1/3-44.2* <

/ * %

Yo u r a p p l i c a t i o n p r o g r a m c a n d e t e r m i n e t h e s e
characteristics or change them by using the super
visory messages described in the next subsections.
I n f o r m a t i o n o n t h e u s e o f t h e s e c h a r a c t e r i s t i c s
appears in the NAM 1 /CCP 3 Termina l In te r faces
reference manual listed in the preface.

CHANGING DEVICE
CHARACTERISTICS
The process o f configur ing a termina l cons is ts o f
d e fi n i n g a n u m b e r o f d e v i c e c h a r a c t e r i s t i c s t h a t
the network sof tware should use in communicat ion
w i th a t e rm ina l . Some dev i ce cha rac te r i s t i cs can
b e g i v e n d e f a u l t v a l u e s b y t h e C o m m u n i c a t i o n s
Control Program (CCP), while others can be provided
by the Network Definit ion Language (NDL) and the
s i te admin i s t ra to r.

O n c e a d e v i c e i s c o n fi g u r e d (o r d e fi n e d) , s u b
sequen t changes to t he dev i ce defin i t i on can be
m a d e v i a t e r m i n a l d e fi n i t i o n c o m m a n d s f r o m t h e
terminal operator, or via supervisory messages from
t h e a p p l i c a t i o n p r o g r a m t o w h i c h t h e d e v i c e i s
connected.

This subsection describes the supervisory messages
that the application can use to change the settings
of device character ist ics. The supervisory message
u s e d t o fi n d o u t t h e c u r r e n t v a l u e s o f d e v i c e
charac te r i s t i cs i s desc r ibed in the fo l l ow ing sub

s e c t i o n , R e q u e s t i n g D e v i c e C h a r a c t e r i s t i c s . Te r
minal definition commands are described in the NAM
1/CCP 3 Terminal Interfaces reference manual l isted
in the preface.

F i g u r e 3 - 4 5 s h o w s t h e m o s t p r o b a b l e m e s s a g e
sequences involved in changing terminal character
i s t i c s .

The appl icat ion program is advised of the terminal
defin i t ion command en t ry exp l i c i t l y on ly when the
command changes one of three device characteristics:

Te rm ina l c lass (va lue desc r ib ing the phys i ca l
at t r ibutes of a group of s imi lar terminals)

P a g e w i d t h (v a l u e d e s c r i b i n g t h e n u m b e r o f
characters in each physical l ine of output)

Page leng th (va lue desc r ib ing the number o f
physical l ines output per page)

T h e u p l i n e t e r m i n a l - c h a r a c t e r i s t i c s - r e d e fi n e d
supervisory message is an asynchronous one, with
the format shown in figure 3-46. This message is
sent to the appl icat ion by NAM whenever NAM is
n o t i fi e d t h a t o n e o f t h e t h r e e d e v i c e c h a r a c t e r
ist ics has been redefined by a terminal user or by
t h e a p p l i c a t i o n p r o g r a m . T h e e f f e c t o f t h e t e r
mina l defini t ion command caus ing th is message is
immedia te , and no response is requ i red f rom the
appl icat ion program.

/̂ P^V.

A p p l i c a t i o n N A M Message

The terminal operator enters the TC, PW, or PL commands to the Terminal Interface
Progran.

TCH/TCHAR/R

The next block sent to the device or from the device is affected by any constraints
imposed under the new device page width, page Length, or terminal class.

App l i ca t ion N A M T I P M e s s a g e

The application program changes a device characteristic other than page width, page
length, or terminal c lass.

CTRL/DEF/R

The next block sent to the device or sent from the device is affected by any constraints
imposed under the new device characteristic.

A p p l i c a t i o n N A M T I P M e s s a g e

The application program changes page width, page length, or terminal class.

▶ C T R L / D E F / R

TCH/TCHAR/R

The next block sent to the device or sent from the device is affected by any constraints
imposed under the new page width, page length, or terminal class.

Figure 3-45. Terminal Characteristics Redefinition Supervisory Message Sequences (Sheet 1 of 2)

60499500 R 3-45

Application NAM Message

The application sends a define-multiple-terminal-characteristics message to NAM in order
to redefine several of the terminal characteristics with a single message. The message
is properly formatted and the new characteristics take effect immediately. NAM replies
with a define-terminal-characteristics normal response.

Application NAM

CTRL/CHAR/R

CTRL/CHAR/N

Message
The application sends a define-terminal-characteristics message to NAM, but one of the
FN/FV pairs is bad. The changes do not take effect, and a define-terminal-
characteristics abnormal response is sent to the application.

CTRL/CHAR/R

CTRL/CHAR/A

Figure 3-45. Terminal Characteristics Redefinition Supervisory Message Sequences (Sheet 2 of 2)

ta

ta

tch

tchar

tclass

59 51 49 43 35 23 15
tch tchar unused acn tclass pw Pi

Symbolic address of the application program's text area receiving this asynchronous super
visory message.

Primary function code 64-|0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol TCH.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol TCHAR.

Application connection number assigned by the network software to this end of the logical con
nection for which the change occurred. This field always contains a value previously used by
the application program in an FC/INIT/N message. You can access this field with the reserved
symbol CONACN, as described in section 4.

The terminal class currently associated with the real device by the TIP servicing it. The
terminal class determines the parameters and ranges valid for redefinition of the device. The
device is serviced by the TIP according to the attributes associated with the terminal class
(see text). The tclass field can contain the values:

0 Reserved for CDC use.

1 Archetype terminal for the class is a Teletype Corporation Model 30 Series.

2 Archetype terminal for the class is a CDC 713-10, 751-1, 752, 756.

3 Archetype terminal for the class is a CDC 721.

4 Archetype terminal for the class is an IBM 2741.

5 Archetype terminal for the class is a Teletype Corporation Model 40-2.

6 Archetype terminal for the class is a Hazeltine 2000, operating as a
teletypewriter.

7 Archetype terminal for the class is a VT100 (ANSI X3.64).

Figure 3-46. Terminal-Characteristics-Redefined (TCH/TCHAR/R) Supervisory
Message Format (Sheet 1 of 2)

3-46 60499500 R

Archetype terminal for the
teletypewriter.

class is a Tektronix 4000 Series, operating as a

9 Archetype terminal for the
workstation.

class is a HASP (post-print) protocol multileaving

10 Archetype terminal for the class is a CDC 200 User Terminal.

11 Archetype terminal for the class is a CDC 714-30.
12 Archetype terminal for the class is a CDC 711-10.
13 Archetype terminal for the class is a CDC 714-10/20.
14 Archetype terminal for the

station.
class is a HASP (pre-print) protocol multileaving work-

/ ^ ^ \

pw

p i

15

16

17

18

19
t h r u
27

28
th ru
31

Archetype terminal for the class is a CDC 734.

Archetype terminal for the class is an IBM 2780.

Archetype terminal for the class is an IBM 3780.

Archetype terminal for the class is an IBM 3270.

Reserved for CDC use.

S i te-defined termina l c lass.

If the terminal class value received has not changed from that previously associated with the
device, then the value in either the pw or pi fields (or both) has usually changed. If the
terminal class value received has changed from that previously associated with the device,
then all attributes associated with the device have been changed to the default attributes for
the new terminal class; the values in the pw and pi fields might have changed from those
previously associated with the real device. You can access this field with the reserved
symbol TCHTCL, as described in section 4.

The most recently declared page width of the console device, specifying the number of
characters in a physical line of output. This field can contain the values 0 or 20 £ pw £
255. You can access this field with the reserved symbol TCHPW, as described in section 4.

The most recently declared page length of the console device, specifying the number of
physical lines that constitute a page. This field can contain the values 0 or 8 < pi < 255.
You can access this field with the reserved symbol TCHPL, as described in section 4.

Figure 3-46. Terminal-Characteristics-Redefined (TCH/TCHAR/R) Supervisory
Message Format (Sheet 2 of 2)

T h e r e a r e t w o d i f f e r e n t f o r m a t s f o r c h a n g i n g
termina l charac ter is t i cs . Regard less o f the fo rmat
used, terminal class should only be changed before
other changes are made. A change in terminal class
resets many other characterist ics.

T h e d e fi n e - t e r m i n a l - c h a r a c t e r i s t i c s s u p e r v i s o r y
m e s s a g e (fi g u r e 3 - 4 7) s p e c i fi e s t e r m i n a l c h a r a c
terist ic commands as a str ing of ASCII characters.
I f there is an error in one of the commands, the
TIP stops processing the message, no indication is
sent to the application, and any commands prior to
the error are processed. There is no response to
this message.

The define-mul t ip le- terminal-character is t ic8 message
is described in figure 3-48. This message specifies
a s t r i n g o f p a i r s o f 8 - b i t n u m b e r s s t a r t i n g a f t e r
the secondary function code field and extending for
as many 8-bi t bytes as necessary. The appl icat ion
stores an 8-bi t field number (FN) in the first of a
pair of bytes and a field value (FV) in the second
byte o f the pa i r. Each FN represents a par t icu lar
dev i ce cha rac te r i s t i c co r respond ing t o a t e rm ina l
definit ion command or command parameter, and the
corresponding FV represents the value the appl ica
t i on p rog ram w ishes to ass ign to tha t cha rac te r
i s t i c . T h e a p p l i c a t i o n p r o g r a m n e e d s t o s p e c i f y
only the FN/FV pairs for the characterist ic i t wants

60499500 S 3-47

5 9 5 1 4 9 4 3 3 5 2 7 1 9 1 1 3 0

t a

ta + 7

C t r l def chari char2 char3 char4 char5 char6 act=2

s s

char111 char112 unused

5 9 5 5 4 7 4 3 4 1 3 5 3 1 2 3 1 9 1 1 7 0

t a

ta + 21

c t r l 0 0 def char i char2 char3 act=3

s s

0 chari 09 char110 char111 char112 unused

ta Symbo l i c add ress o f t he app l i ca t i on p rog ram 's t ex t a rea f r om wh i ch t h i s synch ronous
supervisory message is sent.

c t r l - Pr imary funct ion code C1<|0. You can access th is field wi th the reserved symbol PFC, as
described in section 4. Its value is defined as the reserved symbol CTRL.

de f Secondary func t ion code 4 . You can access th is fie ld w i th the reserved symbo l SFC, as
described in section 4. Its value is defined as the value of the reserved symbol DEFF.

chari Up to 112 7-bit ASCII characters of one or more commands consist ing of the network control
character, character ist ic mnemonic, and i ts desired sett ing. The character ist ic and i ts
value are separated by an equals sign. Multiple characteristics can be changed by separating
the commands with the network control character. See the Terminal Interfaces reference
manual for the possible commands that can be sent.

/ * ^ | l

Figure 3-47. Define-Terminal-Characteristies (CTRL/DEF/R) Supervisory Message Format

to change. I f one of the FN/FV pairs contains an
incorrect value, no characterist ics are changed and
t h e a p p l i c a t i o n p r o g r a m r e c e i v e s t h e a b n o r m a l
response message shown in figure 3-49. Figure 3-50
shows the normal response to the define-mul t ip le-
terminal-characterist ics supervisory message.

Va l id combina t ions o f FN/FV pa i rs a re defined in
table 3-2. Field numbers are l isted in hexadecimal,

with octal equivalents in parentheses,
are listed only in hexadecimal.

Field values

T h e d e fi n e - t e r m i n a l - c h a r a c t e r i s t i c s a n d d e fi n e -
mu l t i p le - te rm ina l cha rac te r i s t i cs superv i so ry mes
sages sent downline by the application program are
removed from the output stream by the TIP and acted
on d i rec t l y. The te rm ina l opera to r i s no t adv ised
of their occurrence in the output stream.

3-48 60499500 R

/|P?N
t a

ta + 7

t a

ta + 21

ta

c t r l

char

f v .

59 5 1 4 9 43 35 27 19 11

c t r l char fn-| fVl fn2 fvg fv3 fv4 act=2

f n56 f v56 unused

5 9 5 5 4 7 4 3 4 1 3 5 3 1

C t r l

2 3 1 9 11 7

char fn-| fV1 fng act=3

*55 fv55 fn56 ^ 5 6 unused

Symbolic address of the application program text area from which this synchronous supervisory
message is sent.

Primary function code C1<|0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.

Secondary function code 8. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol CHAR.

The 8-bit field number of the parameter to be changed.

The 8-bit field value for the parameter.

Up to 56 field number and field value pairs can be specified in a single message. Valid
field numbers and values are defined in table 3-2.

Figure 3-48. Define-Multiple-Terminal-Characteristics (CTRL/CHAR/R) Supervisory Message Format

60499500 R 3-49

ta

c t r l

char

fn

ta

ta

59 51 49 43 35 27
c t r l char fn re unused

59 55 47 43 41 35 31 2 3 1 9 11
0 c t r l char fn re unused

act=3

act=3

Symbolic address of the application program text area receiving this synchronous supervisory
message.

Primary function code C1-j0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.

Secondary function code 8. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol CHAR.

Field number causing the abnormal response.

Reason code for error. This field can have the values:

0 Reserved for CDC use.

1 Out of range value for command or parameter

2 D u p l i c a t e c h a r a c t e r d e fi n i t i o n

3 Invalid command or parameter value for terminal class to which device belongs

4 I l l ega l te rm ina l c lass change

5 Illegal command or parameter for terminal class to which device belongs

6 thru Reserved for CDC use
255

Figure 3-49. Define-Multiple-Terminal-Characteristies Abnormal Response
(CTRL/CHAR/A) Supervisory Message Format

ta

c t r l

char

ta

ta

59 51 49 43
c t r l char unused

59 55 4 7 4 3 4 1 3 5 0

0 Ctrl char unused

act=2

act=3

Symbolic address of the application program's text area receiving this synchronous
supervisory message.

Primary function code C1<|0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.

Secondary function code 8. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol CHAR.

Figure 3-50. Multiple-Terminal-Characteristics-Defined (CTRL/CHAR/N) Supervisory Message Format

3-50 60499500 R

TABLE 3-2. VALID FIELD NUMBERS AND FIELD VALUES

Command (Mnemonic)

Abort block (AB)

Blocking factor (BF)

Break as user break 1
(BR)

Backspace character
(BS)

User break 1 character
(B l)

User-break-2 character
(B2)

Carr iage return id le
count (CI)

F i e l d
Number
(Oc ta l)

Cancel character (CN)

Cursor posi t ioning
(CP)

Network control
character (CT)

Single message (4)
transparent input
del imiters (DL)

Message and mode
d e l i m i t e r

Message and mode
d e l i m i t e r

Message and mode
d e l i m i t e r

29 (51)

31 (61)

33 (63)

27 (47)

2A (52)

2B (53)

2C (54)

2E (56)

26 (46)

47 (107)

28 (50)

38 (70)

39 (71)

3A (72)

3B (73)

Usable for
Terminal
Classes (T)

1 t h r u 8 , @
28 thru 31
(9 thru 18)

1 thru 8, 10 thru
13, 15, 18 (!)
(9, 14, 16,
17)

1 thru 3,
5 thru 8,
28 thru 31
(4, 9 thru 18)

1 thru 8,
28 thru 31
(9 thru 18)

1 thru 15, 18,
28 thru 31
(16, 17)

1 thru 15, 18,
28 thru 31
(16, 17)

1 thru 8,
28 thru 31
(9 thru 18)

1 thru 8,
28 thru 31
(9 thru 18)

1 thru 15, 18,
28 thru 31
(16, 17)

1 thru 3,
5 thru 8,
28 thru 31
(4, 9 thru 18)

1 thru 18,
28 thru 31

1 thru 8,
28 thru 31
(9 thru 18)

1 thru 3,
5 thru 8,
28 thru 31
(9 thru 18)

1 thru 3,
5 thru 8,
28 thru 31
(9 thru 18)

1 thru 8, 10
thru 13, 15, 18,
28 thru 31
(9, 14, 16, 17)

F i e l d
Value

0 thru 7E (|)

0 thru 20

0 or 1

0 thru 7E (5)

0 thru 7E (3)

0 thru 7E @

0 thru 63

0 thru 7E (3)

0 or 1

0 thru 7E (J)

0 or 1

0 thru OF

0 thru FF

0 thru FF (|)

Field Value Content Meaning

Numerical value for character

Multiple of 100 characters
that const i tute an upl ine
block

Yes (1), no (0)

Numerical value for character

Numerical value for character

Numerical value for character

Number to insert

TIP should calculate number

Numerical value for character

Yes (1), no (0)

Numerical value for character

Character specified (1) , not
spec i fied (0)

Character count (upper byte)

Character count (lower byte)

Numerical value for character

60499500 S 3-51

TABLE 3-2. VALID FIELD NUMBERS AND FIELD VALUES (Contd)

Command (Mnemonic)
F ie ld
Number
(Octal)

Usable for
Terminal
C l a s s e s (l)

F i e l d
Value
Range

Field Value Content Meaning

Message and mode
d e l i m i t e r

3C (74) 1 thru 3, 5 thru
8, 28 thru 31
(9 thru 18)

0 or 1 Timeout (1), no timeout (0)

Mode type 46 (106) 1 thru 8, 10
thru 13, 15, 18,
28 thru 31

Single message (0)

End-of-block character
(EB)

40 (100) 1 thru 3, 5 thru
8, 10 thru 13,
15, 18, 28 thru
31

0 thru FF ® Numerical value for character

Use default
terminator

41 (101) 1 thru 3, 5 thru
8, 10 thru 13,
15, 18, 28 thru
31

1 or 2 © End-of - l ine (1) , end-of -b lock
(2)

End-of-block cursor
posit ioning response

42 (102) 1 thru 3, 5 thru
8, 10 thru 13,
15, 18, 28 thru
31 (9, 14, 16,
17, 18)

0 thru 3 © No (0), CR (1), LF (2), CR
and LF (3)

End-of- l ine character
(EL)

3D (75) 1 thru 3, 5 thru
8, 10 thru 13,
15, 18, 28 thru 31

0 thru 7F © Numerical value for character

Use default
terminator

3E (76) 1 thru 3, 5 thru
8, 10 thru 13,
15, 18, 28 thru
31

1 or 2 End-of - l ine (1) , end-of -b lock
(2)

End-of - l ine cursor
posit ioning response

3F (77) 1 thru 3, 5 thru
8, 10 thru 13
15, 28 thru 31
(9, 14, 16, 17,
18)

0 thru 3 © No (0), CR (1), LF (2), CR
and LF (3)

Echoplex mode (EP) 31 (61) 1 thru 3,
5 thru 8,
2 8 t h r u 3 1 ®
(4, 9 thru 18)

0 or 1 Yes (1), no (0)

Full ASCII input (FA) 37 (67) 1 thru 8, 10
thru 13, 15,
16, 17, 18,
28 thru 31

0 or 1 Yes (1), no (0)

See host ava i lab i l i ty
display (HD)

21 (41) 1 thru 18,
28 thru 31

0 or 1 Yes (1), no (0)

Input cont ro l (IC) 43 (103) 1 thru 3,
5 thru 8,
2 8 t h r u 3 1 ©
(4, 9 thru 18)

0 or 1 Yes (1), no (0)

Input device (IN) 34 (64) 1 thru 8, 10
thru 13, 15,
28 thru 31

0 or 1 Transparent input (1), not
transparent (0)

35 (65) 1 thru 8,
28 thru 31 ©

0 th ru 2 © Keyboard (0), paper tape (1),
block mode (2)

• 3-52 60499500 S

TABLE 3-2. VALID FIELD NUMBERS AND FIELD VALUES (Contd)

Command (Mnemonic)

Line feed idle count
(L I)

Lockout unsol ic i ted
messages (LK)

Output control (OC)

Output device (OP)

Parity processing (PA)

Page waiting (PG)

Page length (PL)

Page width (PW)

Site-defined use

Special editing mode
(SE)

Terminal class (TC)

Mul t ip le-message ©
transparent
de l imi ters (XL)

Message delimiter

Message delimiter

Message delimiter

F i e l d
Number
(Octal)

2D (55)

2F (57)

20 (40)

44 (104)

36 (66)

32 (62)

25 (45)

24 (44)

23 (43)

90 thru 99
(220 thru
231)

30 (60)

22 (42)

38 (70)

39 (71)

3A (72)

3B (73)

Usable for
Terminal
Classes (T)

1 thru 8,
28 thru 31
(9 thru 18)

1 thru 8,
28 thru 31
(9 thru 18)

1 thru 15, 18,
28 thru 31
(16)

1 thru 3,
5 thru 8,
2 8 t h r u 3 1 ©
(4, 9 thru 18)

1 thru 8,
28 thru 31
(9 thru 18)

1 thru 3, 5 thru
8, 28 thru 31

1 thru 8, 10
thru 13, 15, 18,
28 thru 31
(9, 14, 16, 17)

1 thru 18,
28 thru 31

1 thru 18,
28 thru 31

1 thru 18,
28 thru 31

1 t h r u 8 , ©
28 thru 31
(9 thru 18)

1 thru 10,
28 thru 31

1 thru 8,
28 thru 31
(9 thru 18)

1 thru 3, 5 thru
8, 28 thru 31
(9 thru 18)

1 thru 3, 5 thru
8, 28 thru 31
(9 thru 18)

1 thru 8, 10
thru 13, 15, 18,
28 thru 31
(9, 14, 16)

F i e l d
Value
Range

0 thru 63

0 or 1

0 or 1

0 t h r u 2 ©

0 thru 4

0 or 1

0, 8 thru FF ©

0, 20 thru FF

0 thru FF ®

0 or 1

01 thru OF ©

0 or 1

0 thru F

0 thru FF

0 th ru FF ©

Field Value Content Meaning

Number to insert

TIP should calculate number

Yes (1), no (0)

Yes (1), no (0)

D isp lay (0) , p r in te r (1) ,
paper tape (2)

Zero (0), odd (1), even (2),
none (3), ignore (4)

Yes (1), no (0)

Number of physical lines

Number of characters

S i t e - d e fi n e d

Yes (1), no (0)

Number of new class

Character specified (1) , not
spec i fied (0)

Character count (upper byte)

Character count (lower byte)

Numerical value for character

60499500 S 3-53

TABLE 3-2. VALID FIELD NUMBERS AND FIELD VALUES (Contd)

Command (Mnemonic)
F i e l d
Number
(Octal)

Usable for
Terminal
C l a s s e s ©

F i e l d
Value
Range

Field Value Content Meaning

Mode delimiter 3C (74) 1 thru 3, 5 thru
8, 28 thru 31
(9 thru 18)

0 or 1 Timeout (1), no timeout (0)

Mode delimiter 45 (105) 1 thru 8,
28 thru 31
(9 thru 18)

0 thru FF ® Numerical value for character

Mode type 46 (106) 1 thru 8, 10, 13,
15, 28 thru 31

Multiple-message (1)

Full duplex (none) 57 (127) 1 thru 3,
5 thru 8,
28 thru 31
(4, 9 thru 18)

0 or 1 Yes (1), no (0)

Terminal transmission
block size (none)

IE (36) 1 t h ru 18 , ©
28 thru 31

0 thru 7 Number of characters (upper
by te)

IF (37) 1 t h ru 18 , ©
28 thru 31

0 thru FF Number of characters (lower
by te)

Upl ine b lock l im i t
(none)

18 (30) 1 thru 18,
28 thru 31

0 t h r u I F ® Number of blocks NPU should
queue

Notes:

Q) N o e r r o r o c c u r s if an FN/FV pair is issued for a terminal class shown in parentheses.

© I g n o r e d f o r C D C --defined X.25 packet assembly/disassembly (PAD) terminals.

(T) Any hexadecimal value except 00 thru 02, 20, 30 thru 39, 3D, 41 thru 5A, 61 thru 7A, or 7F.

© I f t h e v a l u e o f
for this commanc

one of the fields for this command is changed, the values of all other fields
1 must also be specified.

© No t a l l va lues a re l ega l f o r a l l t e rm ina l c l asses .

© N o t a l l o w e d f o r CDC-defined X.25 packet assembly/disassembly (PAD) terminals.

REQUESTING DEVICE CHARACTERISTICS
T h e r e q u e s t - t e r m i n a l - c h a r a c t e r i s t i c s s u p e r v i s o r y
message (figure 3-51) is issued by an appl icat ion
program on console or si te-defined device connec
t i o n s t o l e a r n t h e c u r r e n t v a l u e o f t h e d e v i c e
charac te r i s t i cs . The app l i ca t ion p rogram spec ifies
a s t r i ng o f pa i r s o f 8 -b i t numbe rs s ta r t i ng a f t e r
the secondary function code field and extending for
as many 8-bi t bytes as necessary. The appl icat ion
s t o r e s a fi e l d n u m b e r (F N) i n t h e fi r s t h a l f (8
b i t s) o f t h e 8 - b i t p a i r a n d r e s e r v e s t h e s e c o n d
h a l f (8 b i t s) f o r a fi e l d v a l u e (F V) . E a c h F N
represents a par t icu lar character is t ic . The network
r e t u r n s t h e v a l u e o f t h e c h a r a c t e r i s t i c i n t h e
corresponding FV byte. Any value placed in the FV
byte by the application Is ignored and overwrit ten.
The appl icat ion program needs to specify only the
F N s f o r t h e c h a r a c t e r i s t i c s i t i s i n t e r e s t e d i n .
I f the s t r ing conta ins an incor rec t FN, no dev ice

c h a r a c t e r i s t i c s a r e r e t u r n e d a n d t h e a p p l i c a t i o n
receives the abnormal response message shown in
figure 3-52. For a l i s t o f lega l FNs and the cor
responding range of possible FVs, see table 3-2.

The response to a request - termina l -character is t ics
superv iso ry message i s a te rm ina l -charac te r i s t i cs
definit ion message (figure 3-53). This message can
be received only on console or si te-defined device
connect ions. The NPU generates a st r ing of pai rs
of 8-bit numbers start ing after the secondary func
t i o n c o d e fi e l d a n d e x t e n d i n g f o r a s m a n y 8 - b i t
by tes as necessary. The firs t 8 -b i ts o f the 16-b i t
pa i r i s one o f the fie ld numbers spec ified in the
reques t - t e rm ina l - cha rac te r i s t i c s supe rv i so r y mes
sage. The second 8-b i ts o f the 16-b i t pa i r is the
cu r ren t va lue o f t he pa r t i cu la r cha rac te r i s t i c t he
F N r e p r e s e n t s . F o r a l i s t o f v a l i d F N s a n d t h e
associated valid range of FVs, see table 3-2.

3-54 60499500 S

ta

c t r l

r tc

frM
fv<

ta

Ctrl

rtc

fn

59 5 1 4 9 43 35 27 19 11
ta c t r l rtc fn-j fVl fn2 fv2 • • •

Symbolic address of the application program's text area from which this synchronous super
visory message is sent.

Primary function code C1lo. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.

Secondary function code 9. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol RTC.

The hexadecimal field number of the desired parameter. Valid values are defined in table 3-2.

Space for the hexadecimal field value of the desired parameter; can be 0.

Figure 3-51. Request-Terminal-Characteristics (CTRL/RTC/R) Supervisory Message Format

ta
59 51 49 43 35 27

Ctr l rtc fn re unused

Symbolic address of the application program's text area receiving this synchronous
supervisory message.

Primary function code C116. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.

Secondary function code 9. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol RTC.

First field number in the string found to be erroneous by the network software. In case of
several bad field numbers, only the first bad one will be diagnosed.

Reason code for error. This field can have the value:

0 Reserved for CDC use
thru

6
th ru
255

Illegal field number value

Reserved for CDC use

Figure 3-52. Request-Terminal-Characteristics Abnormal Response (CTRL/RTC/A) Supervisory Message Format

60499500 R 3-55

ta

t a

c t r l

ted

f n i

f v i

59 51 49 43 35 27 19 1 1 0

c t r l ted fni fVl fng fvg . . .

Symbolic address of the application program's text area receiving this synchronous supervisory
message.

Primary function code C1-j0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.

Secondary function code 0A<|o. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol TCD.

The hexadecimal field number of the characteristic parameter. Valid values are defined in
table 3-2.
The hexadecimal field value of the characteristic parameter. Valid values are defined in table
3-2.

Figure 3-53. Device-Characteristics-Definition (CTRL/TCD/R) Supervisory Message Format

HOST OPERATOR COMMANDS
The host operator can send commands to an applica
tion program through the system console K display.
There are seven commands an application program
might rece ive. Each command is de l ivered to the
app l i ca t i on p rog ram as a sepa ra te asynch ronous
supervisory message, as shown in figure 3-54.

The hos t ope ra to r reques t - to -ac t i va te -debug-code
supervisory message (figure 3-55) is sent from NAM
to the application program when the operator enters
the K-display command:

K.DB=appname

T h e a p p l i c a t i o n s h o u l d b e g i n u s i n g a n y i n - l i n e
debug code you have inc luded . Ac t i va t ing in - l i ne
debug code can change the appl icat ion program's
abor t cond i t i ons o r e r ro r case hand l i ng o r bo th .
The re i s no response t o t he reques t - t o -ac t i va te -
debug-code message.

The hos t ope ra to r r eques t - t o - t u rn -o f f - debug -code
superv isory message shown in figure 3-56 is sent
f r o m N A M t o t h e a p p l i c a t i o n p r o g r a m w h e n t h e
operator enters the K-display command:

K.DE^appname

The appl icat ion should turn o ff any in- l ine debug
code you have inc luded. There is no response to
the request-to-turn-off-debug-code message.

T h e h o s t o p e r a t o r r e q u e s t - t o - d u m p - fi e l d - l e n g t h
supervisory message (figure 3-57) is sent from NAM
to the application program when the operator enters
the K-display command:

K.DU=appname

The appl icat ion should dump i ts fie ld length. The
application can call NETDMB to dump its field length
onto the AIP dump file ZZZZDMB (see sect ion 6).
There is no response to the request- to-dump-field-
length message.

T h e h o s t o p e r a t o r r e q u e s t - t o - t u r n - A I P - t r a f fi c -
l o g g i n g - o n s u p e r v i s o r y m e s s a g e (fi g u r e 3 - 5 8) i s
sent from NAM to the application program when the
operator enters the K-display command:

K.LB=appname

The application program should call NETDBG to turn
AIP logging on and begin logging of network traffic
on the debug log fi le . (See sect ion 6.) Note that |
the application program must be loaded with NETIOD
for the AIP logging to occur. There is no response
t o t h e r e q u e s t - t o - t u r n - A I P - t r a f fi c - l o g g i n g - o n
message.

T h e h o s t o p e r a t o r r e q u e s t - t o - t u r n - A I P - t r a f fi c -
l o g g i n g - o f f s u p e r v i s o r y m e s s a g e (fi g u r e 3 - 5 9) i s
sent from NAM to the application program when the
operator enters the K-display command:

K.LE=appname

The application program should call NETDBG to turn
AIP logging off and stop logging network traffic in
i t s d e b u g l o g fi l e . (S e e s e c t i o n 6 .) T h e r e i s n o |
response to the request - to - turn-AIP- t ra ffic- logg ing-
off supervisory message.

The host operator request - to- re lease-debug- log-fi le
supervisory message (figure 3-60) is sent from NAM
to the application program when the operator enters
the K-display command:

K.LR=appname

3-56 60499500 S
y ^ ^ K

■ĝ N

t a

hop

db

t a

Appl icat ion NAM Message

HOP/DB/R

The program should begin using any debug code it contains.

Application

- *

NAM

The program can stop using any debug code it contains.

A p p l i c a t i o n N A M

Message
HOP/DE/R

Message
KOP/DU/R

The program should dump its field length and any extended central storage.

Application NAM

The program should begin using its debug log file.

App l i ca t ion

*<
NAN

The program can stop using its debug log file.

App l i ca t i on

- ^

NAM

Message
HOP/TRACE/R

Message

HOP/NOTR/R

Message

KOP/REL/R
This program should release its debug log file for postprocessing.

Application

-<
NAN Message

HOP/RS/R

The program should re in i t ia l ize and restar t logging of a l l o f i ts s tat is t ics.

Figure 3-54. Host Operator Command Supervisory Message Sequences

59 5 1 4 9 43

hop db unused

Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

Primary function code D016. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

Secondary function code 0E<|6. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol DB.

Figure 3-55. Host Operator Request-to-Activate-Debug-Code (HOP/DB/R) Supervisory Message Format

60499500 R 3-57

5 9 5 1 4 9 4 3 DI

ta hop de unused

ta

hop

de

Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

Primary function code DO^. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

Secondary function 0F<|o. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol DE.

Figure 3-56. Host Operator Request-to-Turn-Off-Debug-Code (HOP/DE/R) Supervisory Message Format

t a

hop

du

t a

59 5 1 4 9 43

hop du unused

Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

Primary function code D0<|o. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

Secondary function code 3. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol DU.

Figure 3-57. Host Operator Request-to-Dump-Field-Length (HOP/DU/R) Supervisory Message Format

t a

hop

trace

t a

59 5 1 4 9 43

hop trace unused

Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

Primary function code DO|0. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol TRACE.

Figure 3-58. Host Operator Request-to-Turn-AIP-Traffic-Logging-On
(HOP/TRACE/R) Supervisory Message Format

/ * ^ % v

3-58 60499500 R

ta

hop

notr

ta

59 51 49 43

hop notr unused

Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

Primary function code DO|6. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

Secondary function code 7. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol NOTR.

Figure 3-59. Host Operator Request-to-Turn-AIP-Traffic-Logging-Off
(HOP/NOTR/R) Supervisory Message Format

t a

hop

re I

t a

59 5 1 4 9 43

hop re I unused

Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

Primary function code D0i6. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

Secondary function code 0Dl6. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the.reserved symbol REL.

Figure 3-60. Host Operator Request-to-Release-Debug-Log-File (HOP/REL/R) Supervisory Message Format

T h e a p p l i c a t i o n p r o g r a m s h o u l d c a l l N E T R E L t o
r e l e a s e t h e d e b u g l o g fi l e . To e n s u r e p r o p e r
p rocess ing o f t he debug l og fi l e , t he app l i ca t i on
program must have issued a prior NETREL cal l as
desc r i bed i n sec t i on 6 . The re i s no response to
t h e r e q u e s t - t o - r e l e a s e - d e b u g - l o g - fi l e s u p e r v i s o r y
message.

T h e h o s t o p e r a t o r r e q u e s t - t o - r e s t a r t - s t a t i s t i c s -
gathering supervisory message (figure 3-61) is sent
from NAM to the application program when the opera
tor enters the K-display command:

K.RS=appname

The appl icat ion program should flush i ts s ta t is t ics
counters, reset them to zero, and restart stat ist ics
g a t h e r i n g . F o r t h i s s u p e r v i s o r y m e s s a g e t o b e
usefu l the appl icat ion program should do a t least
one of the fol lowing:

R e s t a r t A I P s t a t i s t i c s g a t h e r i n g b y c a l l i n g
NETSTC (desc r ibed in sec t ion 6) to tu rn A IP
stat ist ics gather ing off or back on.

R e s t a r t a n y o t h e r s t a t i s t i c a l i n f o r m a t i o n
internal to the appl icat ion program that can be
u s e d t o t u n e t h e p a r t i c u l a r a p p l i c a t i o n . T h e
app l i ca t ion p rog ram can wr i te such s ta t i s t i ca l

X i^^V

ta

hop

ta

60499500 R

59 5 1 4 9 43

hop rs unused

Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

Primary function code D0|o. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

Secondary function code 8. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol RS.

Figure 3-61. Host Operator Request- to-Restar t -Stat is t ies-Gather ing
(HOP/RS/R) Supervisory Message Format

3-59

i n f o r m a t i o n o n t o t h e A I P s t a t i s t i c a l fi l e
ZZZZZSN by calling NETLGS (see section 6).

T h e r e i s n o r e s p o n s e t o t h e r e q u e s t - t o - r e s t a r t -
stat ist ics-gathering message.

HOST SHUTDOWN
Condit ions somet imes require the host operator to
terminate network operations or to abort the appli
cat ion program. The host operator can shut down
the entire data communications network or port ions
o f t h e n e t w o r k , e l e m e n t b y e l e m e n t , i n c l u d i n g
executing application programs.

The operator has two shutdown opt ions avai lable.
The operator can se lect an id le-down opt ion that
permi ts gradual te rminat ion o f operat ions, usua l ly
as a normal part of network service. The operator
c a n a l s o s e l e c t a d i s a b l e o p t i o n ; t h i s o p t i o n
requests immediate terminat ion of appl icat ion pro
gram operat ions and can ei ther fol low select ion of
the Idle-down option or be independently selected.

The type of shutdown determines the shutdown proc
essing that should be performed by the application
p rog ram. F i gu re 3 -62 i l l u s t r a tes t he t h ree asyn
chronous supervisory message sequences that can
o c c u r d u r i n g s h u t d o w n o p e r a t i o n s . T h e fi r s t
sequence begins when an idle-down option is selec
ted; the appl icat ion program receives an adv isory
s h u t - d o w n m e s s a g e , s h u t s d o w n i t s c o n n e c t i o n s
g race fu l l y, and t e rm ina tes ne two rk access w i t hou t
a d d i t i o n a l n e t w o r k o r h o s t o p e r a t o r a c t i o n . T h e
second sequence begins when a disable opt ion is
selected; the appl icat ion program receives a man
datory shut-down message and should not attempt to
t e r m i n a t e c o n n e c t i o n s g r a c e f u l l y . T h e t h i r d
sequence i s a hyb r i d o f t he fi r s t two ; i f i nsu f fi
c ien t t ime e lapses be tween se lec t ion o f an id le -
down option and selection of a disable option, the
application program can terminate some of its con
nections graceful ly, but not al l of them.

The Network Access Method does not attempt to force
t h e t e r m i n a t i o n o f a p p l i c a t i o n s t h a t d o n o t c a l l
NETOFF i n r esponse t o an i d l e -down o r d i sab le
request. Normal terminat ion of network operat ions,
however, depends on correct appl icat ion behavior.
App l i ca t i ons t ha t do no t even tua l l y ca l l NETOFF
after receiving an idle or disable request must be
d ropped by the hos t ope ra to r. Th i s then pe rm i t s
normal termination of the network software.

Figure 3-63 shows the two forms of the host-shutdown
supervisory message. The application program does
not issue a response to this supervisory message.

ERROR REPORTING
The primary mechanism used by the network software
to ind icate log ic er rors to an appl icat ion program
is an asynch ronous supe rv i so r y message . I n a l l
cases, the message sequence for this mechanism con
sists of a single message (figure 3-64). The mes
s a g e u s e d i n t h i s s e q u e n c e i s t h e l o g i c a l - e r r o r
supe rv i so ry message , shown i n figu re 3 -65 . The
appl icat ion program does not send a response to
this supervisory message.

A p p l i c a t i o n N A M M e s s a g e

- < S H U T / I N S D / R
(idle-down)

▶ C O N / E N D / R

- < C O N / E N D / N

The application program fetches all queued
upline blocks from all terminals or other appli
cation programs, then ends all connections prior
to a shutdown of the network.

The application program can then disconnect from
the network with a call to the AIP routine
NETOFF. (See section 5.)

App l i ca t ion NAM Message

SHUT/INSD/R
(disable)

The application program must perform an imme
diate call to NETOFF to avoid being aborted by
system console operator commands during the
network shutdown in progress.

Appl icat ion NAM Message

SHUT/INSD/R
(id le-down)

CON/END/R

CON/END/N

SHUT/INSD/R
(disable)

The application program fetches as many queued
upline blocks as possible and ends as many
connections as possible prior to shutdown of the
network, then issues its NETOFF call immediately
after receipt of the second shutdown message.

Figure 3-62. Host Shutdown Supervisory
Message Sequences

As indicated by the reason codes inc luded in the
m e s s a g e , m a n y c o n d i t i o n s a r e c o n s i d e r e d t o b e
l o g i c a l e r r o r s b y t h e n e t w o r k s o f t w a r e . T h e
s i m p l e r c o n d i t i o n s a r e c o m p l e t e l y d e fi n e d w i t h i n
the figure; more details are described here.

The re field value of 1 is received when:

O n a n a p p l i c a t i o n - t o - a p p l i c a t i o n c o n n e c t i o n ,
t h e a p p l i c a t i o n c o n n e c t i o n s p e c i fi e d a n
app l i ca t i on cha rac te r t ype o f 4 e i t he r i n t he
appl icat ion b lock header or in a change- input-
character-type supervisory message.

F o r a s u p e r v i s o r y m e s s a g e t h e a p p l i c a t i o n
spec i fied an app l i ca t i on cha rac te r t ype o the r
than 1, 2, or 3 in the application block header.

O n a n a p p l i c a t i o n - t o - t e r m i n a l c o n n e c t i o n , a n
appl ica t ion character type o ther than 2 , 3 , or
4 was used in a downline block header or in a
change-input-character-type supervisory message.

3-60 60499500 R

TABLE 3-2. VALID CCP FIELD NUMBERS AND FIELD VALUES (Contd)

Command (Mnemonic)

Line feed idle count
(L I)

Lockout unsol ici ted
messages (LK)

Output control (OC)

Output device (OP)

Parity processing (PA)

Page waiting (PG)

Page length (PL)

Page width (PW)

Site-defined use

Special editing mode
(SE)

Terminal class (TC)

Mul t ip le-message ©
transparent
del imi ters (XL)

Message delimiter

Message delimiter

Message delimiter

F i e l d
Numbe r
(Oc ta l)

2D (55)

2F (57)

20 (40)

44 (104)

36 (66)

32 (62)

25 (45)

24 (44)

23 (43)

5A thru 63
(132 thru
143)

30 (60)

22 (42)

38 (70)

39 (71)

3A (72)

3B (73)

Usable for
Terminal
C l a s s e s ®

1 thru 8,
28 thru 31
(9 thru 18)

1 thru 8,
28 thru 31
(9 thru 18)

1 thru 15, 18,
28 thru 31
(16)

1 thru 3,
5 thru 8,
28 thru 31
(4, 9 thru 18)

1 thru 8,
28 thru 31
(9 thru 18)

1 thru 3, 5 thru
8, 28 thru 31

1 thru 8, 10
thru 13, 15, 18,
28 thru 31
(9, 14, 16, 17)

1 thru 18,
28 thru 31

1 thru 18,
28 thru 31

1 thru 18,
28 thru 31

1 thru 8,
28 thru 31
(9 thru 18)

1 t h ru 10 , ©
28 thru 31

1 thru 8,
28 thru 31
(9 thru 18)

1 thru 3, 5 thru
8, 28 thru 31
(9 thru 18)

I thru 3, 5 thru
8, 28 thru 31
(9 thru 18)

1 thru 8, 10
thru 13, 15, 18,
28 thru 31
(9, 14, 16)

F ie ld
Value
Range

0 thru 7F

0 or 1

0 or 1

0 thru 2 ©

0 thru 4

0 or 1

0, 8 thru FF ©

0, 20 thru FF

0 thru FF ©

0 or 1

01 thru OF ©

0 or 1

0 thru F

0 thru FF

0 thru FF ©

Field Value Content Meaning

Number to insert

TIP should calculate number

Yes (1), no (0)

Yes (1), no (0)

P r i n te r (0) , d i sp lay (1) ,
paper tape (2)

Zero (0), odd (1), even (2),
none (3), ignore (4)

Yes (1), no (0)

Number of physical lines

Number of characters

S i te -defined

Yes (1), no (0)

Number of new class

Character specified (1), not
spec i fied (0)

Character count (upper byte)

Character count (lower byte)

Numerical value for character

60499500 W 3-61

TABLE 3-2. VALID CCP FIELD NUMBERS AND FIELD VALUES (Contd)

Command (Mnemonic)

Mode delimiter

Message de
l i m i t e r

Mode delimiter

Mode type

Full duplex (none)

Terminal transmission
block size (none)

Set terminal
i n s o l i c i t e d
input mode

Carriage
re tu rn id le
delay

Linefeed idle
delay

Notes:

®
©
®
©

©
©

Field
Number
(Oc ta l)

3C (74)

92 (222)

45 (105)

46 (106)

57 (127)

IE (36)

IF (37)

70 (160)

93 (223)

94 (224)

Usable for
Terminal
Classes (T)

1 thru 3, 5 thru
8, 28 thru 31
(9 thru 18)

1 thru 3,
5 thru 8,
28 thru 31,
(9 thru 18)

1 thru 8,
28 thru 31
(9 thru 18)

1 thru 8, 10, 13,
15, 28 thru 31

1 thru 3,
5 thru 8,
28 thru 31
(4, 9 thru 18)

1 t h ru 18 , ©
28 thru 31

1 t h ru 18 , ©
28 thru 31

1 thru 8,
10 thru 13,
15, 18, 28
thru 31

1 thru 8,
28 thru 31,
(9 thru 18)

1 thru 8,
28 thru 31,
(9 thru 18)

F ie ld
Value
Range

0 or 1

0 or 1

0 thru FF ©

0 or 1

0 thru 7

0 thru FF

0 or 1

0 thru FA

0 thru FA

Field Value Content Meaning

Timeout (1), no timeout (0)

Forward on timeout (1),
do not forward on
timeout (0)

Numerical value for character

Multiple-message (1)

Yes (1), no (0)

Number of characters (upper
byte)

Number of characters (lower
byte)

Yes (1), no (0)

Idle delay in increments
of 4 mil l iseconds

Idle delay in increments
of 4 mill iseconds

No error occurs if an FN/FV pair is issued for a terminal class shown in parentheses.

Ignored for CDC-defined X.25 packet assembly/disassembly (PAD) terminals.

Any hexadecimal value except 00 thru 02, 20, 30 thru 39, 3D, 41 thru 5A, 61 thru 7A, or 7F.

If the value of one of the fields for this command is changed, you need to ensure that the others
are set to known values if they could affect your application. All of the fields need not be
specified. However, any fields not specified contain their previously recorded sett ing which
could produce undesirable results.

Not al l values are legal for al l terminal classes.

Not allowed for CDC-defined X.25 packet assembly/disassembly (PAD) terminals. For terminal class
(TC) changes, refer to Effects of Changing Terminal Class on CDCNET, in this section.

3-62
60499500 V

16 Reserved for the NAM subsystem.
thru
256

You can access this field with the reserved symbol RC, as described in section 4.

abherr Application block header word associated with the supervisory message that caused the ERR/L6L/R
message. This field contains a non-zero word unless the re value is 7. You can access this
field with the reserved symbol ERRABH, as described in section 4.

firstwrd The first 60 bits of the supervisory message causing the ERR/L6L/R message are placed in this
field if the network software can supply the information. This field contains a non-zero word
unless the re value is 7. You can access this field with the reserved symbol ERRMSG, as
described in section 4.

Figure 3-65. Logical-Error (ERR/LGL/R) Supervisory Message Format (Sheet 2 of 2)

6 0 4 9 9 5 0 0 S 3 - 6 3 •

USER PROGRAM INTERFACE DESCRIPTIONS 4 |

/0^.

T h i s s e c t i o n d e s c r i b e s t h e l a n g u a g e i n t e r f a c e
requirements of an appl icat ion program, the inter
fac ing u t i l i t ies ava i lab le to a program, and those
a s p e c t s o f n e t w o r k s o f t w a r e i n t e r n a l i n t e r f a c i n g
that affect program use of certain Network Access
Method (NAM) features. However, this manual does
not attempt to describe al l network software inter
faces. Por t ions of the network sof tware that exe
cute as application programs use supervisory mes
sages that are either not discussed in this manual
or else that are modified from the format presented
i n t h i s m a n u a l . T h i s s e c t i o n t r e a t s o n l y t h o s e
a reas o f i n t e r f ace t ha t a re p rope r l y used by an
ins ta l la t ion-wr i t ten app l i ca t ion p rogram.

LANGUAGE INTERFACES
Application program use of the Application Interface
P r o g r a m (A I P) i s e s s e n t i a l l y i n d e p e n d e n t o f t h e
l anguage used t o code t he app l i ca t i on p rog ram.
Parameter l i s t and ca l l ing sequence requ i rements
are the same for COMPASS assembler language and
compiler- level languages. The residence of the AIP
rou t ines , the fo rm o f the ca l l i ng sequences , and
the u t i l i t i e s ava i l ab l e t o t he app l i ca t i on p rog ram
differ for COMPASS and compiler-level languages.

PARAMETER LIST AND CALLING
SEQUENCE REQUIREMENTS
T h e A I P s t a t e m e n t s a n d i n t e r f a c i n g u t i l i t i e s u s e
FORTRAN-style calling sequences and parameter lists;
that is , a parameter l is t contains one 60-bi t word
per parameter. The address of th is parameter l is t
is passed to the appropriate routine in register Al.
L inkage w i th the s ta tement w i th in the app l i ca t ion
program is per formed by execut ing a re turn jump
i n s t r u c t i o n (R J) t o t h e e n t r y p o i n t . To p r o v i d e
compact object code, t raceback in format ion is not
generated, and the parameter l ist need not be fol
lowed by a word of zeros.

Because the s ta tement parameters are passed by
address (called by reference), the NAM programmer
shou ld be care fu l abou t subs t i tu t ing va lues when
defining the parameters . Those parameters ident i
fied as re turn parameters shou ld not be spec ified
as constants or expressions In the cal l statement.
Such specifications can produce unpredictable errors
i n p r o g r a m c o d e . T h i s r e s t r i c t i o n i s c o m p a t i b l e
with normal FORTRAN programming practices.

Return parameters are normally defined by variable
names, array names, array element names, or similar
symbolic addresses. Since the terminology for such
ent i t ies var ies accord ing to the programming lan
guage used , th i s manua l uses the te rm symbo l i c
a d d r e s s f o r a l l s u c h p o s s i b i l i t i e s . U n l e s s o t h e r
wise stated, numeric absolute or relative addresses
are not used in call statements.

Those parameters identified as input parameters can
be defined by constants , express ions tha t can be
e v a l u a t e d t o p r o d u c e c o n s t a n t s , o r s y m b o l i c
addresses (as defined above). Input parameters are
usua l l y defined by cons tan ts o r express ions ; th is
manual uses the term value for a l l such possib i l
i t i e s .

All AIP statement parameters used by a COBOL program
must be described in the Data Division as level 01
data entr ies, or data entr ies at o ther levels when
the en t r i es a re l e f t - j us t i fied t o wo rd bounda r i es .
COBOL 5 programs that access fields within param
e t e r s m u s t a l s o d e s c r i b e t h e fi e l d s i n t h e D a t a
Division as COMP-4 numeric data entries to manipu
l a t e v a l u e s w i t h i n t h e fi e l d s a s 6 - b i t e n t i t i e s .
D i rec t fie ld access and A IP use i s d i f ficu l t us ing
COBOL; COMPASS macros or FORTRAN subroutines are
sometimes necessary to set up parameters before AIP
calls or to unpack them after AIP calls.

All direct calls from a COBOL program to AIP must
be coded as calls to FORTRAN-X subroutines. Refer
to section 5. Indirect use of AIP by a COBOL pro
gram is also possible; refer to the Queued Terminal
Record Manager description later in this section.

The AIP statement calling sequence does not permit
recu rs i ve ca l l s .

PREDEFINED SYMBOLIC NAMES
The fields in NAM supervisory messages of appl i
cation character types 1 and 2 have been assigned
symbol ic names so tha t they can be ident ified to
t h e u t i l i t i e s d e s c r i b e d l a t e r i n t h i s s e c t i o n .
These names are display-coded Holleri th characters
a n d a r e l i s t e d a n d d e fi n e d i n t a b l e 4 - 1 . T h e
capital ized symbol appears as it should be used in
calls to NFETCH or NSTORE. The symbols are arranged
a lphabet ica l l y w i th in the tab le .

Each symbol consists of the characters ident i fy ing
its field within a message, combined with characters
ident i fy ing the specific message or group of mes
sages. For example:

All primary function code fields can be accessed
through the symbol PFC.

A l l fie lds i n messages w i th the p r imary func
t ion code mnemonic CON begin with CON; the
appl icat ion l is t number fie ld in such messages
is therefore CONALN.

Al l fie lds in the appl icat ion b lock header word
can be accessed through symbols beginning with
ABH.

r 60499500 R 4-1

Some symbols are restricted to use in certain con
texts. For example, the FORTRAN 5 call:

IVAL=NFETCH(0,L"C0NEND")

returns the pr imary and secondary code value for
the corresponding fields in a CON/END/R message;
however, the FORTRAN 5 call:

CALL NSTORE(SMTA,L"CONEND",IVAL)

causes an error message indicating that the symbol
CONEND is unrecognized. The symbol is unrecognized
b e c a u s e i t s c o n t e x t i s i n c o r r e c t . T h e c o r r e c t
FORTRAN call to store the information is:

CALL NSTORE(SMTA,L,,PFCSFC",IVAL)

o r the ca l l :

CALL NSTORE(SMTA,L,,PFCSFC",L"CONEND")

There are no predefined names for the AIP statement
parameters described in section 5.

PREDEFINED SYMBOLIC VALUES
Some of the supervisory message fields wi th pre
defined symbolic names have predefined values that
c a n b e o b t a i n e d t h r o u g h t h e u t i l i t i e s d e s c r i b e d
la te r i n th i s sec t ion . Va lues fo r such names a re
g i v e n i n t a b l e 4 - 1 , w h e r e t h e n a m e s a r e l i s t e d
a l p h a b e t i c a l l y.

You can obtain the value assigned to a given sym
bol ic name in the released version of the network
software by using a form of the NFETCH ut i l i t ies.
The NFETCH utilities comprise a macro that can be
called by a COMPASS program; and a similar subrou
t ine that can be cal led by a program wri t ten in a
high-level language.

Be careful in using names with predefined values;
in some instances, a name and corresponding value
have been assigned to a group of fields. Choosing
a wrong name in a ut i l i ty cal l can fil l more fields
than the programmer intends. The NAM programmer
should become fami l iar w i th a l l o f the predefined
symbol ic names before us ing the in ter fac ing ut i l i
t i e s .

COMPASS ASSEMBLER LANGUAGE

Appl icat ion programs coded in COMPASS use AIP
statements that make macro calls. These AIP macros
reside in the system text library NETTEXT.

Packing and unpacking supervisory message blocks in
a COMPASS program is easily accomplished using the
in te r fac ing u t i l i t i es NFETCH and NSTORE. These
fi e l d a c c e s s u t i l i t i e s a l s o r e s i d e i n t h e s y s t e m
text l ibrary NETTEXT. An application program using
e i the r u t i l i t y mus t fi rs t con ta in ca l l s t o SST and
NETMAC.

Application Interface Program Macro
Call Formats
For those AIP statement calls with parameters, three
forms of the COMPASS macro call are possible:

[label] macro-name parameters

T h i s i s t h e f o r m a t o f t h e s t a n d a r d c a l l ,
which produces the full calling sequence.

[l a b e l l] m a c r o - n a m e / L I S T = l a b e l 2 \
lLIST=register name I

When this format is used, macro expansion
assumes that the proper cal l ing parameter
b lock i s l oca ted a t t he add ress spec i fied
by the LIST value, loads this address into
reg i s te r A l , and pe r fo rms the ca l l t o t he
AIP procedure.

Iabel2 macro-name parameters, LIST

When this format is used, macro expansion
p roduces a pa ramete r b lock i n p lace bu t
does not generate the call to the AIP pro
cedure; the address of the statement using
this form is the address used in the second
form.

Use the firs t form when making a s t ra ight forward
ca l l to the AIP procedures . Use the second form
once the parameter list has been created elsewhere
w i th the th i rd fo rm. The second and th i rd fo rms
save space when procedures are used several times.

Example 1:

NETPUT IHA.ITA

T h i s s t a t e m e n t i s a d i r e c t c a l l t o e x e c u t e t h e
NETPUT macro with the two symbolic address param
eters shown.

Example 2:

PUT1 NETPUT IHA,ITA,LIST

This statement expands the NETPUT macro and creates
the i nd i ca ted pa ramete r l i s t a t symbo l i c add ress
PUT1 but does not execute NETPUT.

Example 3:

NETPUT LIST=PUT1

This statement actually executes the NETPUT macro
with the parameters in the list expanded at location
PUT1.

If a macro call is issued with an error, the COMPASS
assembler flags the error and provides an explana
t i o n d u r i n g a s s e m b l y o f t h e m a c r o . A c o m p l e t e
l is t ing o f the assembly er ror messages f rom AIP-
related macros is provided in appendix B.

A summary of al l the macro cal l formats avai lable
appears in appendix D.

4-2 60499500 R

TABLE 4-1. RESERVED SYMBOLS

Symbol

ABHABN

ABHABT

ABHACT

ABHADR

ABHBIT

ABHCAN

ABHIBU

ABHNCP

ABHNEP

ABHNFE

ABHTLC

ABHTRU

ABHWORD

ABHXPT

ACCON

ACCTRL

ACDBG

ACDC

ACERR

ACFC

ACHOP

ACIFC

60499500 W

Entity Defined by Symbol

Appl icat ion block number field in appl icat ion block header for al l upl ine or
downline blocks

Appl icat ion b lock type field in appl icat ion b lock header for a l l upl ine or
downline blocks

Appl icat ion character type field in appl icat ion b lock header for a l l upl ine
or downline blocks

Process number address field in application block header for supervisor pro
gram upline or downline blocks (system use only). Application connection
number field in application block header for al l application program upline
or downline blocks.

Par i ty error flag b i t in appl icat ion b lock header for upl ine (input) b locks.
Auto-input mode flag bit in application block header for downline (output)
b locks.

Cancel previous blocks bit in application block header for upl ine (input)
blocks. Punch banner (lace) card bit in application block header for down
l ine (output) b locks.

Input block undel iverable bi t in appl icat ion block header for upl ine (input)
blocks

No cursor posit ioning flag bit in appl icat ion block header for downline
(output) b locks.

No echoplex flag bit in application block header for downline (output)
b locks.

No format effectors flag bit in application block header for downline (out
put) blocks

Tex t - leng th - in -charac te r -un i ts fie ld in app l i ca t ion b lock header fo r a l l
upline or downline blocks

Truncation occurred bit in the appl icat ion block header for upl ine (input)
data or supervisory message blocks

Application block header word for all upline or downline blocks

Transparent mode transmission bit in application block header for all upline
or downline blocks

Application character type of CON supervisory messages, for use in applica
tion block header

Application character type of CTRL supervisory messages, for use in applica
tion block header

Application character type of DBG supervisory messages, for use in applica
tion block header

Application character type of DC supervisory messages, for use in applica
tion block header

Application character type of ERR supervisory messages, for use in applica
tion block header

Application character type of FC supervisory messages, for use in applica
tion block header

Application character type of HOP supervisory messages, for use in applica
tion block header

Application character type of IFC supervisory messages, for use in applica
tion block header

Predefined
Integer Value

None

None

None

None

None

None

None

None

None

None

None

None

None

None

1

4-3

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol

ACINTR

ACK

ACLST

ACRQ

ACSET

ACSHUT

ACTCH

ALT

APP

BI

BTMARK

BRK

CB

CCD

CHAR

CICT

CMD

CON

CONAABL

CONABN

CONAABN

CONAAWC

CONABL

CONABN

CONABZ

CONACN

CONACR

CONACRA

Entity Defined by Symbol

Application character type of INTR supervisory messages, for use in applica
tion block header

Secondary function code field for FC/ACK/R

Application character type of LST supervisory messages, for use in applica
tion block header

Secondary function code field for CON/ACRQ messages

Application character type of SET supervisory messages, for use in applica
tion block header

Application character type of SHUT supervisory messages, for use in applica
tion block header

Application character type of TCH supervisory messages, for use in applica
tion block header

Secondary function code field in HOP/ALT/R

Secondary function code field for INTR/APP/R

Primary function code field for BI/MARK/R

Primary and secondary function code fields for BI/MARK/R, including EB and
RB fields as zero

Secondary function code field for FC/BRK/R and HOP/BRK/R

Secondary function code field for CON/CB/R

Secondary function code field for CON/CCD/R

Secondary function code field for CTRL/CHAR/R

Secondary function code field for DC/CICT/R

Secondary function code field in HOP/CMD/R

Primary function code field for connection management (CON) supervisory messages

Application block limit field in CON/ACRQ/R

Application block number field of CON/REQ/R

Application block number field of CON/ACRQ/R

User validation control word in CON/REQ/R

Application block limit field in CON/REQ/R

Application block number field of CON/ACRQ/R

Block size in connection management (CON) supervisory messages

Application connection number field in connection management (CON)
supervisory messages

Primary and secondary function code fields for CON/ACRQ/R, including EB and RB
fields as zero

Primary and secondary function code fields in CON/ACRQ/A including EB field
set to 1

Predefined
Integer Value

B

2

CA16

CAOO

0

5

0C16

816

0

1

6316

None

None

None

None

None

None

None

None

16

6302

6382

16

16

4-4
60499500 W

TABLE 4-1. RESERVED SYMBOLS (Contd)

j0m^s

Symbol

CONACT

CONADBL

CONADBZ

CONAHDS

Entity Defined by Symbol

Application input character type field in CON/REQ/N

Downline block limit field in CON/ACRQ/R

Downline block size field in CON/ACRQ/R

User validation control word in CON/REQ/R

Predefined
Integer Value

None

None

None

None

60499500 W 4 - 4 . 1 / 4 - 4 . 2 |

/ / ! ^ * ^ v

0^%L

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol

CONCB

CONDBZ

CONDT

CONEND

CONENDN

CONFAM

CONFO

CONHID

CONICT

CONNXP

CONORD

CONOWNR

CONPAR

CONPL

CONPW

CONR

CONRAC

CONRCB

CONREQ

CONREQA

CONREQN

CONSCT

CONSDT

CONSL

CONT

CONTNM

CONUBZ

CONUI

CONUSE

CONXBZ

CTRCHAR

Entity Defined by Symbol

Primary and secondary function code fields for CON/CB/R, including EB and RB
fields as zero

Downline block size in CON/REQ/R

Device type field in CON/REQ/R

Primary and secondary function code fields in CON/END/R, including EB and RB
fields as zero

Primary and secondary code fields in CON/END/N including RB field set to 1

Login family name field in CON/REQ/R

Login family ordinal field in CON/REQ/R

Host node field in CON/REQ/R

Application input character type field in CON/REQ/N

No transparent data field in CON/REQ/N

Device ordinal field in CON/REQ/R

Terminal name field in CON/REQ/R

First word of parameters in CON/REQ/R

Page length field in CON/REQ/R

Page width field in CON/REQ/R

Restr icted interact ive capabi l i ty field in CON/REQ/R

Reason code field in CON/REQ/N and CON/REQ/A

Reason code field in CON/CB/R

Primary and secondary function code fields in CON/REQ/R, including EB and RB
fields as zero

Primary and secondary function code fields in CON/ACRQ/A including EB field
set to 1

Primary and secondary function code fields in CON/REQ/N including RB field
set to 1

Synchronous message type field in CON/REQ/R

Subdevice type field in CON/REQ/R

Security limit field in CON/REQ/R

Terminal class field in CON/REQ/R

Terminal name field in CON/REQ/R

Upline block size in CON/REQ/R

User index field in CON/REQ/R

User name field in CON/REQ/R

Transmission block size field in CON/REQ/R

Primary and secondary code fields in CTRL/CHAR/R, including EB and RB fields as
zero

Predefined
Integer Value

6305

None

None

6306

6346

None

None

None

None

None

None

None

None

None

None

None

None

None

6300

16

16

16

6380

6340

None

None

None

None

None

None

None

None

None

C108

16

16

16

16

60499500 R 4-5

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol
Predefined

Integer Value

CTRDEF Primary and secondary function code fields in CTRL/DEF/R, including EB and RB
fields as zero

C10416

CTRL Primary function code field in terminal control (CTRL) supervisory messages C116

CTRRTC Primary and secondary function code fields for CTRL/RTC/R, including EB and RB
fields as zero C10916

CTRTCD Primary and secondary code fields in CTRL/CHAR/R, including EB and RB fields as
zero C10A16

DB Secondary function code field in HOP/DB/R E16
DC Primary function code field in DC/CICT/R C216
DCACN Application connection number field in DC/CICT/R None

DCACT Application character type field in DC/CICT/R None

DCCICT Primary and secondary function code fields in DC/CICT/R, including EB and RB
fields as zero

C200,,10

DCNXP No transparent data field in DC/CICT/R None

DCSCT Synchronous message character type field in DC/CICT/R None

DCTRU Primary and secondary function code fields in DC/TRU/R, including EB and RB
fields as zero C20116

DE Secondary function code field in HOP/DE/R F16
DEFF Secondary function code field in CTRL/DEF/R

DU Secondary function code field in HOP/DU/R

EB Error bit in all supervisory messages None

ENDD Secondary function code field in CON/END/R

ERR Primary function code field in ERR/LGL/R 8A16
ERRABH Application block header word in ERR/LGL/R None

ERRLG Reason code field in ERR/LGL/R None

ERRLGL Primary and secondary function code fields in ERR/LGL/R, including EB and RB
fields as zero

840116

ERRMSG First message text word in ERR/LGL/R None

FC Primary function code field in flow control (FC) supervisory messages 8316
FCACK Primary and secondary function code fields in FC/ACK/R, including EB and RB

fields as zero
830216

FCACN Application connection number field in flow control (FC) supervisory messages None

FCBRK Primary and secondary function code fields in FC/BRK/R, including EB and RB
fields as zero

8300.,10

FCINA Primary and secondary function code fields in FC/INACT/R, including EB and RB
fields as zero

830416

FCINIT Primary and secondary function code fields in FC/INIT/R, including EB and RB
fields as zero 830716

FCINITN Primary and secondary code fields in FC/INIT/N including RB field set to 1 834716

4-6 60499500 R

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol

FCNAK

FCRBR

FCRST

FDX

HDX

HOP

HOPDB

HOPDE

HOPDU

HOPNOTR

HOPREL

HOPRS

HOPTRCE

INACT

INIT

INSD

INTR

INTRACN

INTRAPP

INTRCHR

INTRRSP

INTRUSR

LCONAC

LCONACA

LCONCB

LCONEN

Entity Defined by Symbol

Primary and secondary function code fields in FC/NAK/R, including EB and RB
fields as zero

Reason code field in FC/BRK/R

Primary and secondary function code fields in FC/RST/R, including EB and RB
fields as zero

Secondary function code field in LST/FDX/R

Secondary function code field in LST/HDX/R

Primary function code field in host operator (HOP) supervisory messages

Primary and secondary code fields in HOP/DB/R, including EB and RB fields as
zero

Primary and secondary code fields in HOP/DE/R, including EB and RB fields as
zero

Primary and secondary code fields in HOP/DU/R, including EB and RB fields as
zero

Primary and secondary code fields in HOP/NOTR/R, including EB and RB fields as
zero

Primary and secondary code fields in HOP/REL/R, including EB and RB fields as
zero

Primary and secondary code fields in HOP/RS/R, including EB and RB fields as
zero

Primary and secondary code fields in HOP/TRACE/R, including EB and RB fields as
zero

Secondary function code field in FC/INACT/R

Secondary function code field in FC/INIT/R

Secondary function code field in SHUT/INSD/R

Primary function code field in user-interrupt (INTR) supervisory messages

Appl icat ion connection number field in user- interrupt (INTR) supervisory
messages

Primary and secondary function code fields in INTR/APP/R, including EB and RB
fields as zero

Field containing ASCII alphabetic character A through Z in typeahead priority
data user-interrupt supervisory messages.

Primary and secondary function code fields in INTR/RSP/R, including EB and
RB fields as zero

Primary and secondary function code fields in INTR/USR/R, including EB and
RB fields as zero

Length in 60-bit words of CON/ACRQ supervisory messages

Length in 60 bit words of CON/ACRQ/A

Length In 60-bit words of CON/CB/R

Length in 60-bit words of CON/END/R

Predefined
Integer Value

8303

None

8301

3

4

D016

D00E

D00F

D003

D007

D00D

D008

D002

4

7

6

8016

None

16

16

16

16

16

16

16

16

16

8002

None

8001

8000

2

2

1

2

16

16

16

60499500 R 4-7

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol
Predefined

Integer Value

LCONENN Length in 60 bit words of CON/END/N

LCONREQ Length in 60-bit words of CON/REQ/R message 10 (A16)

LCORQR Length in 60-bit words of CON/REQ/N and CON/REQ/A

LCTRL Length in 60-bit words of terminal control (CTRL) supervisory messages

LDC Length in 60-bit words of DC/CICT/R

LERR Length in 60-bit words of ERR/LGL/R

LFC Length in 60-bit words of flow control (FC) supervisory messages (except FC/BRK)

LFCACK Length in 60-bit words of FC/ACR/R

LFCBRK Length in 60-bit words of FC/BRK/R

LFCINCT Length in 60-bit words of FC/INACT/R

LFCINIT Length in 60-bit words of FC/INIT/R

LFCINITN Length in 60-bit words of FC/INIT/N

LFCNAK Length in 60-bit words of FC/NAK/R

LFCRST Length in 60-bit words of FC/RST/R

LG Secondary function code field in HOP/LG/R A16

LGL Secondary function code field in ERR/LGL/R

LHOPDB Length in 60-bit words of HOP/DB/R

LHOPDE Length in 60-bit words of HOP/DE/R

LHOPDU Length in 60-bit words of HOP/DU/R

LHOPNTR Length in 60-bit words of HOP/NOTR/R

LHOPREL Length in 60-bit words of HOP/REL/R

LHOPRS Length in 60-bit words of HOP/RS/R

LHOPTRA Length in 60-bit words of HOP/TRACE/R

LINTR Length in 60-bit words of INTR/USR/R and INTR/RSP/R

LLST Length in 60-bit words of list management (LST) supervisory messages

LSHUT Length in 60-bit words of SHUT/INSD/R

LST Primary function code field in list management (LST) supervisory messages C016
LSTACN Application connection number field in list management (LST) supervisory messages None

LSTALN Application list number field in list management (LST) supervisory messages None

LSTDIS Ini t ia l hal f duplex field in LST/HDX/R None

LSTFDX Primary and secondary function code fields in LST/FDX/R, including EB and RB
fields as zero C00316

LSTHDX Primary and secondary function code fields in LST/HDX/R, including EB and RB
fields as zero C00416

4-8 60499500 R

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol

LSTOFF

LSTON

LSTSWH

LTCH

MARK

NAK

NOTR

OFF

ONN

PFC

PFCSFC

RB

RC

REL

REQ

RO

ROMARK

RS

RSP

RST

RTC

SFC

SHUINS

SHUT

SHUTF

SFMSGO
th ru
SPMSG9

SWH

TCD

Entity Defined by Symbol

Primary and secondary function code fields in LST/OFF/R, including EB and RB
fields as zero

Primary and secondary function code fields in LST/ON/R, including EB and RB
fields as zero

Primary and secondary function code fields in LST/SWH/R, including EB and RB
fields as zero

Length in 60-bit words of TCH/TCHAR/R

Secondary function code field in TO/MARK/R, BI/MARK/R, and RO/MARK/R

Secondary function code field in FC/NAK/R

Secondary function code field in HOP/NOTR/R

Secondary function code field in LST/OFF/R

Secondary function code field in LST/ON/R and PRU/ON supervisory messages

Primary function code field in all supervisory messages

Primary and secondary function code fields in all supervisory messages, including
EB and RB fields

Response bit in all supervisory messages

Reason code field in all supervisory messages

Secondary function code field in HOP/REL/R

Secondary function code field in CON/REQ messages

Primary function code field in RO/MARK/R

Primary and secondary function code fields in RO/MARK/R, including EB and RB
fields as zero

Secondary function code field in HOP/RS/R

Secondary function code field in INTR/RSP/R

Secondary function code field in FC/RST/R

Secondary function code in field in CTRL/RTC/R

Secondary function code field in all supervisory messages

Primary and secondary function code fields in SHUT/INSD/R, including EB and RB
fields as zero

Primary function code field in SHUT/INSD/R

Shutdown type field in SHUT/INSD/R

The corresponding word zero through nine of any supervisory message

Secondary function code field in LST/SWH/R

Secondary function code field in CTRL/TCD

Predefined
Integer Value

C000

C001

C002

1

0

3

7

1

0

None

None

None

None

DJ
0

CB.

16

16

16

16

16
CBOO

816
1

1

916
None

4206

4216
None

None

2

A16

16

16

60499500 R 4-9

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol
Predefined

Integer Value

TCH

TCHACN

TCHAR

TCHPL

TCHPW

TCHTCH

TCHTCL

TO

TOMARK

TRACE

USR

Primary function code field in TCH/TCHAR/R

Application connection number field in TCH/TCHAR/R

Secondary function code field in TCH/TCHAR/R

Page length field in TCH/TCHAR/R

Page width field in TCH/TCHAR/R

Primary and secondary function code fields in TCH/TCHAR/R, including EB and RB
fields as zero

Terminal class field in TCH/TCHAR/R

Primary function code field in TO/MARK/R

Primary and secondary function code fields in TO/MARK/R, including EB and RB
fields as zero

Secondary function code field in HOP/TRACE/R

Secondary function code field in INTR/USR/R

M16
None

0

None

None

640016

None

C416

C40016

2

0

Field Access Utilities
Two addit ional macros, NFETCH and NSTORE, are
provided to make message field definition and access
eas ier. App l ica t ion programmers are urged to use
these mac ros as desc r i bed be low. Use o f t hese
macros and their related predefined symbolic names
wi l l s impl i fy app l ica t ion program convers ion under
future versions of the network software.

NFETCH Macro

A call to the NFETCH macro returns the contents of
a s p e c i fi c fi e l d w i t h i n a n a r r a y o f o n e o r m o r e
words tha t compr i se a l l o r pa r t o f a superv i so ry
message block. The octal integer value returned by
t h e c a l l i s r i g h t - j u s t i fi e d w i t h i n t h e X o r B
reg is te r spec ified in the ca l l .

The format of the NFETCH macro cal l is given in
figure 4-1 .

Execution of NFETCH destroys the contents of regis
ters A5, X5, X6, and the X or B register specified
to receive the returned value. Execution of NFETCH
requ i res the app l i ca t ion p rogram to con ta in ca l l s
to SST and NETMAC. Placing NETTEXT in the COMPASS
control statement defines the NFETCH macro and the
symbolic names used as the NFETCH field parameters.

LOCATION OPERATION VARIABLE
[l a b e l] | N F E T C H I a r r a y , fi e l d , X j o r B j
label Optional address label of the macro call.

array The address of the first word of the array from
which the field value should be obtained. This
parameter can be:

An address label
The name of a register address
Zero

If zero is declared, any predefined value for the
indicated symbolic name is returned.

field The predefined symbolic name of the field for
which a value should be fetched from the array.
The possible contents of field are listed
alphabetically in table 4-1.

j The number of the X or B register which
should receive the value fetched, from the
array. The value is right-justified in Xj or
Bj on return from the call. When a B
register is used, the field to be fetched must
be < 18 bits long.

S ^ K

Figure 4-1. NFETCH Macro Call Format

4-10 60499500 R

•^^Sv

^ ^ s As examples of NFETCH use, consider the following
operat ions.

Example 1:

NFETCH MYARRAY,PFC,X1

T h i s s t a t e m e n t p l a c e s t h e v a l u e o f t h e p r i m a r y
function code field within MYARRAY into register XI.
T h e p r i m a r y f u n c t i o n c o d e fi e l d i s i d e n t i fi e d b y
the symbolic name PFC.

Example 2:
SX2 BUFFER
NFETCH X2,SFC,X3

These statements place the value of the secondary
function code field within BUFFER into register X3.
The secondary funct ion code fie ld is ident ified by
the symbolic name SFC, and the address label BUFFER
is supplied through register X2.

Example 3:

NFETCH
NZ

ARRAY,EB,X3
X3,ERROR

These statements p lace the value of the error b i t
(EB) w i th in ARRAY in to reg is te r X3 . I f the va lue
in X3 is nonzero (if EB has a value of 1), a jump
to ERROR occurs.

L O C AT I O N | O P E R AT I O N | VA R I A B L E
[label] 1 N S T O R E I a r r a y , fi e l d = v a l u e

label Optional address label of the macro call.

array The address of the first word of the array into
which the field value should be placed. This
parameter can be declared as an address label
or the name of an address register.

field The predefined symbolic name of the field for
which a value should be stored in the array. The
possible contents of field are listed alphabetically
in table 4-1.

value The value to be stored in the identified field
within the array. This parameter can be:

A right-justified integer
A right-justified, zero-filled character string
A symbolic name with a predefined value

(see table 4-1)

Bj or Xj, where j is the number of an X
or B register containing one of the first
two possibilities for value above.

Figure 4-2. NSTORE Macro Call Format

Example 4:

NFETCH 0,CON,XI

This statement returns the predefined value 63 ^g
in reg is te r X I . The va lue re tu rned i s tha t o f the
p r i m a r y f u n c t i o n c o d e fi e l d o f a l l c o n n e c t i o n -
request supervisory messages, as ident ified by the
predefined symbolic name CON.

If an NFETCH macro cal l is issued with an error,
the COMPASS assembler flags the error and provides
an exp lana t i on du r i ng assemb ly o f t he mac ro . A
comp le te l i s t i ng o f the assemb ly e r ro r messages
from NFETCH is included in appendix B.

NSTORE Macro

A call to the NSTORE macro sets the contents of a
specific field within an array of one or more words
that comprise all or part of a supervisory message
block. The format of the NSTORE macro call is given
in figure 4-2.

E x e c u t i o n o f N S TO R E d e s t r o y s t h e c o n t e n t s o f
registers A5, A6, X5, X6, X7, and any X or B regis
t e r s p e c i fi e d i n t h e c a l l . E x e c u t i o n o f N S T O R E
requ i res the app l i ca t i on p rog ram to con ta in ca l l s
to SST and NETMAC. Placing NETTEXT in the COMPASS
control statement defines the NSTORE macro and the
symbolic names used as the NSTORE field parameters.

As examples of NSTORE use, consider the following
operat ions.

Example 1:

SX2
NSTORE

These statements store the value predefined for CTRL
in the primary function code field of MYARRAY. The
p r i m a r y f u n c t i o n c o d e fi e l d i s i d e n t i fi e d b y t h e
symbolic name PFC, and the address label MYARRAY is
obtained through register X2.

Example 2:

NSTORE MYARRAY, PFC=CTRL

This statement performs the same operation shown in
example 1.

Example 3:

NSTORE MYARRAY, CONOWT=7RTERMABC

MYARRAY
X2, PFC=CTRL

This statement stores the terminal name TERMABC in
the owning console terminal name field of MYARRAY.
The owning console terminal name field is identified
by the predefined symbolic name CONOWT.

If an NSTORE macro call is issued with an error, the
COMPASS assembler flags the error and provides an
explanation during assembly of the macro. Appendix
B contains a complete l isting of the assembly error
messages from NSTORE.

COMPILER-LEVEL LANGUAGES

A p p l i c a t i o n p r o g r a m s c o d e d i n c o m p i l e r - l e v e l
languages such as FORTRAN use AIP statements that
make relocatable subrout ine cal ls. Such statements
need no t be dec la red as ex te rna l rou t ines . En t ry
point references are satisfied by the CYBER loader;
the AIP rout ines are loaded f rom the loca l l ibrary
NETIO or NETIOD, which must be declared in an LDSET
or LIBRARY control statement.

60499500 R 4-11

READ, WRITE, and CONNEC are not employed when NAM
is used by a FORTRAN program for input and output
between the program and terminals. Terminals serv
iced by an application program do not have logical
unit numbers.

ACCEPT and DISPLAY are not used when NAM is used by
a COBOL program for input and output between the
program and terminals. You can use these verbs in
COBOL programs that use other network application
p r o g r a m s , s u c h a s t h e C D C - w r i t t e n Tr a n s a c t i o n
Facil i ty (TAF), for network access.

Packing and unpacking supervisory message blocks in
a c o m p i l e r - l e v e l p r o g r a m i s e a s i l y a c c o m p l i s h e d
using the interfacing utilities NFETCH and NSTORE.
These fie ld access u t i l i t ies res ide in loca l l ib rary
NETIO or NETIOD.

Programs written using compiler-level languages can
a l so use t he A IP rou t i nes i nd i r ec t l y t h rough t he
ut i l i ty package cal led the Queued Terminal Record
Manager (QTRM). QTRM is described at the end of
this subsection and the use of QTRM is completely
defined in sec t ion 8 . The subrou t ines compr is ing
QTRM reside in local library NETIO or NETIOD.

Application Interface Program Subroutine
Call Formats
Only one form of the AIP subroutine call is possible
in compiler-level language programs. This form is:

subroutine-name (parameters)

The syntax of this form is discussed in section 5.
A su mma ry o f a l l t h e ca l l s a va i l a b l e a p p e a rs i n
appendix D. The FORTRAN form of the subroutine
c a l l f o r m a t i s t h e f o r m a t u s e d t h r o u g h o u t t h i s
manual when discussing the AIP routines.

Field Access Utilities
Two additional relocatable subroutines, NFETCH and
NSTORE, are provided to make message field defini
t ion and access easier. Use of these routines and
t h e i r r e l a t e d p r e d e fi n e d s y m b o l i c n a m e s w i l l
simplify application program conversion under future
versions of the network software. Because each call
to one of these routines causes a table scan, use
of the rout ines increases program execut ion t ime.
This increase can be min imized by set t ing up a l l
constants processed by calls to the routines with a
single set of calls at the beginning of. the program.

NFETCH Function

A call to the NFETCH function subprogram returns an
in teger va lue fo r the con ten ts o f a spec ific fie ld
within an array of one or more words that comprise
all or part of a supervisory message block. NFETCH
can be used anywhere in a program expression that
a n o p e r a n d c a n b e u s e d ; fi g u r e 4 - 3 d e fi n e s t h e
format for NFETCH as it is used in an assignment
statement.

The size of the field involved in the NFETCH cal l
determines the format of the content value returned.
The field is read as an octal value and the value
re tu rned i s r i gh t - j us t i fied as e i the r an in teger o r
a display code character string.

[ivalue=] NFETCH(array,field)

ivalue= A return parameter; as input to the call, an
optional integer variable to receive the value
returned for the function.

array An input parameter, specifying the symbolic
address of the first word of the array from
which the field value can be obtained. This
parameter can be:

The array name

Zero

If zero is declared, any predefined value for the
indicated symbolic name is returned.

field An input parameter, specifying the predefined
symbolic name of the field for which a value
should be fetched from the array. The possible
contents of field are listed in table 4-1. This
parameter must be left-justified with zero fill.

Figure 4-3. NFETCH Integer Function
FORTRAN Call Format

I f e i t h e r t h e fi e l d o r a r r a y p a r a m e t e r i s o m i t t e d
from the function statement, the application program
is aborted and a dayfile message is issued. (See
appendix B.)

As examples of NFETCH uses, consider the following
operat ions.

Example 1:

The FORTRAN 5 statement:

M=NFETCH(ARRAY,L"EB")

makes M equivalent to the value of the error b i t .
The er ror b i t i s ident ified by the predefined sym
bo l i c name EB , l e f t - j u s t i fied w i t h ze ro fi l l i n t he
c a l l .

Example 2:

The FORTRAN 5 statement:

M=NFETCH(0,L"CON")

makes M the integer value 143g, equivalent to the
predefined value for the primary function code field
in all connection-request supervisory messages. The
p r i m a r y f u n c t i o n c o d e fi e l d i s i d e n t i fi e d b y t h e
predefined symbo l i c name CON, le f t - j us t i fied w i th
z e r o fi l l i n t h e c a l l .

Example 3:

The FORTRAN 5 statement:

IF(NFETCH(ARRAY,L"EB").EQ.l) CALL ERROR

causes a jump to ERROR if the value of the error
bit (EB) within ARRAY is 1.

4-12 60499500 R

NSTORE Subroutine

A call to the NSTORE subroutine sets the contents
of a specific field wi th in an array of one or more
words tha t compr i se a l l o r pa r t o f a superv i so ry
message block. Figure 4-4 gives the FORTRAN format
of the NSTORE call statement.

0^*s

CALL NSTORE(array,field,value)

array A return parameter; as input to the call, the
symbolic address of the first word of the array
into which the field value should be placed.
This parameter is normally the array name.

field An input parameter, specifying the predefined
symbolic name of the field for which a value
should be stored in the array. The possible
contents of field are listed alphabetically in
table 4-1. This parameter must be left-
justified with zero fill.

value An input parameter, specifying the value to be
stored in the identified field within the array.
This parameter can be:

A right-justified integer value

A right-justified, zero-filled Hollerith
character string

A left-justified, zero-filled symbolic name
with a predefined value (see table 4-1).

r

Figure 4-4. NSTORE Subroutine
FORTRAN Call Format

Integer values stored by the NSTORE call are stored
as in tegers . Charac te r s t r i ngs a re s to red in d i s
play code form and symbolic names are converted to
oc ta l equ iva len ts o f the i r p redefined va lues when
s t o r e d . O n l y o n e fi e l d c a n b e s p e c i fi e d i n e a c h
c a l l . A v a l u e c a n b e s t o r e d i n a fi e l d a n y t i m e
after the array is declared.

I f e i ther the array, fie ld , or va lue parameters are
n o t d e c l a r e d o r a r e n o n e x i s t e n t , t h e a p p l i c a t i o n
program is aborted and a dayfile message is issued.
(See appendix B.)

As examples of NSTORE use, consider the following
operat ions.

Example 1:

The FORTRAN 5 statement:

CALL NSTORE(ARRAY,L,,PFC,,tL,,CON")

stores the predefined value for the primary function
code of all connection-request supervisory messages
in the pr imary funct ion code fie ld o f ARRAY. The
p r i m a r y f u n c t i o n c o d e v a l u e i s i d e n t i fi e d b y t h e
predefined symbolic name CON and the primary func
tion code field by the predefined symbolic name PFC;
bo th names a re l e f t - j us t i fied w i th ze ro fi l l i n t he
c a l l .

Example 2:

The FORTRAN 5 statement:

CALL NSTORE(ARRAY,L"C0N0WT",R"TERMABC")

stores the display coded terminal name TERMABC in
the owning console terminal name field of ARRAY.
The owning console terminal name field is identified
b y t h e p r e d e fi n e d s y m b o l i c n a m e C O N O W T, l e f t -
j u s t i fi e d w i t h z e r o fi l l i n t h e c a l l .

Example 3:

The FORTRAN 5 statement:

CALL NSTORE(ARRAY,L"RB",1)

s e t s t h e r e s p o n s e b i t fi e l d i n A R R AY t o 1 . T h e
response b i t fie l d i s i den t i fied by t he p redefined
s y m b o l i c n a m e R B , l e f t - j u s t i fi e d w i t h z e r o fi l l i n
t h e c a l l .

Queued Termina l Record Manager U t i l i t i es

You can set up a te leprocessing serv ice by inter
f a c i n g a n a p p l i c a t i o n p r o g r a m d i r e c t l y w i t h A I P
th rough the subrou t ine ca l l s desc r ibed in sec t ion
5 . T h i s i n t e r f a c e r e q u i r e s m a n i p u l a t i o n o f m a n y
bi t -or iented fie lds, as descr ibed in sect ion 2 , and
mu l t i p l e ope ra t i ons t o pe r f o rm a s i ng l e f unc t i on ,
as descr ibed in sect ion 3. These protocol require
ments can be quite complex, dwarfing the portion of
a program's code that actually performs a teleproc
e s s i n g s e r v i c e w h e n t h e s e r v i c e i t s e l f i s v e r y
simple.

A FORTRAN programmer can use AIP directly with only
minor inconvenience when shift ing and masking are
required. The NFETCH and NSTORE routines permit a
COBOL programmer to bypass most of the shifting and
masking problems of direct AIP use, but some remain.
S h i f t i n g a n d m a s k i n g i s e x t r e m e l y d i f fi c u l t f o r a
COBOL programmer when NFETCH and NSTORE cannot be
used because COBOL constrains field access to fields
t h a t a r e m u l t i p l e s o f 6 b i t s . N F E T C H , w h i c h i s
coded as a function and not as a subroutine, is not
directly callable from a COBOL program because COBOL
does not support functions. To use NFETCH, a COBOL
p r o g r a m m e r m u s t w r i t e a s u b r o u t i n e i n a n o t h e r
appl icat ions language.

The Queued Terminal Record Manager (QTRM) utility
package al lows compi ler language users to remain
unaware o f AIP protoco l requ i rements . QTRM also
al lows users of COBOL 5.2 (and later versions) to
c rea te t e l ep rocess i ng se r v i ce p rog rams us i ng an
i n t e r f a c e t h a t i s o r i e n t e d t o fi e l d s d e fi n e d i n
mul t ip les o f 6 b i ts .

QTRM is an ind i rec t in te r face to the ne twork ; i t s
u s e i s f u n c t i o n a l l y a n a l o g o u s t o d i r e c t l y c a l l i n g
CYBER Record Manager. Using QTRM, an application
programmer can send messages to and receive messages
f rom a network o f termina ls as i f the programmer
were read ing and wr i t ing records or fi les in mass
storage. This para l le l ism is shown in figure 4-5.

QTRM is used through cal ls to the fol lowing seven
subrout ines:

Q T O P E N , w h i c h i s c a l l e d o n c e t o e s t a b l i s h
communicat ion between the appl icat ion program
and the network. A call to QTOPEN is analogous
to opening a mass storage file.

Q T L I N K , w h i c h i s c a l l e d t o i n i t i a t e a n
app l i ca t ion - to -app l i ca t ion connec t ion .

60499500 R 4-13

Compiler Language
User Program

CYBER Record Manager Queued Terminal Record Manager

j i

CIO AIP

j i

1

Device
Driver NIP

i

1

i
i i

RMS
Controllers

Network
Processing

Units

Figure 4-5. QTRM Interface Level Analogy

QTGET, which is called each time part or all of
a message is required from the network. A call
to QTGET is analogous to a single read operation
on a mass storage file.

QTPUT, which is called each time part or all of
a message is intended for the network. A cal l
to QTPUT is analogous to a single write oper
ation on a mass storage file.

QTENDT, which is called to disconnect a single
terminal from communicating with the application
program.

QTCLOSE, which is called once to end communi
cation between the application program and the
ne twork . A ca l l to QTCLOSE is ana logous to
closing a mass storage file.

QTTIP, which is called to deliver a synchronous
supervisory message to a specified connection.

Ope ra t i on o f t hese p rocedu res i s mon i t o red and
c o n t r o l l e d t h r o u g h a n e t w o r k i n f o r m a t i o n t a b l e ,
analogous to a fi le informat ion table. The network
information table contains 10 central memory words
o f i n fo rma t ion abou t each dev i ce the app l i ca t i on
program can potent ia l ly serv ice, and 10 words of
g l o b a l i n f o r m a t i o n a b o u t t h e s t a t e o f t h e a p p l i
cation program's communication with the network.

Application programs using QTRM can use only those
features of AIP that are provided through the QTRM
procedure cal ls . Such appl icat ion programs should
not a lso conta in ca l l s to A IP rou t ines o ther than

NFETCH and NSTORE. QTRM performs the following
func t ions :

A s s i g n s a l l a c t i v e d e v i c e c o n n e c t i o n s t o a
s i n g l e c o n n e c t i o n l i s t a n d p o l l s t h a t l i s t f o r
input on behalf of the application program

Performs al l asynchronous supervisory message
exchanges requi red dur ing appl icat ion program
execution

Provides the final log ical l ine zero byte term
i n a t o r i n d o w n l i n e b l o c k s c o n t a i n i n g d i s p l a y
code characters

QTRM is a simplified alternative to AIP and there
f o r e d o e s n o t s u p p o r t a l l o f t h e A I P f e a t u r e s .
Features current ly not supported by QTRM include
the fo l lowing:

P a r a l l e l m o d e c o d e e x e c u t i o n , a s p r o v i d e d
through NETSETP and NETCHEK calls

Fragmented buffer input and output, as provided
through NETGETF, NETPUTF, and NETGTFL calls

App l i ca t i on p rog ram connec t ions w i th pass ive
(batch) devices

Half-duplex mode

Runtime selection of debug log file and stat is
t ical fi le entr ies, as provided through NETDBG
and NETSTC calls; both files can be generated
or have generation suppressed through selection
o f t h e a p p r o p r i a t e l i b r a r y d u r i n g l o a d i n g o f
the QTRM routines

4-14 60499500 S

j 0 ^ \

M a n i p u l a t i o n o f a p p l i c a t i o n c o n n e c t i o n l i s t s ,
o r d i r e c t p o l l i n g o f a n y l i s t a s p r o v i d e d
through NETGETL and NETGTFL calls

U s e o f d i f f e r e n t a p p l i c a t i o n c h a r a c t e r t y p e s
for input on the same connection, or on differ
en t connect ions , o r change o f the app l ica t ion
character type used for input dur ing the t ime
the program is connected to the network

Not ificat ion of inact ive connect ions

S e l e c t i v e p o l l i n g o f i n p u t f r o m a s p e c i fi c
connect ion , as prov ided through NETGET and
NETGETF calls

Transparent mode input

Disposition of the debug log file during program
execution, as provided through the NETREL and
NETSETF ca l l s ; pos tp rocess ing d ispos i t i on o f
the fi le i s requ i red

Transmission of messages to the debug log file,
as provided through NETLOG calls

Exchange package and central memory field length
dumps, as provided through NETDMB calls

Transmission of messages to the statist ical log
file, as provided through NETLGS calls

App l i ca t ion supp l ied OUTCALL parameters fo r
app l i ca t i on - to -app l i ca t i on connec t ions send ing
or receiving user data during the establishment
o f app l ica t ion- to-app l ica t ion connect ions

Sending a break (FC/BRK) or INTR/APP message

Qualified data as described in section 2

L o g i c a l i d e n t i fi e r s (L I O ' s) i n t h e e s t a b l i s h
ment of appl icat ion-to-appl icat ion connect ions

Sect ion 8 conta ins a comple te descr ip t ion o f the
QTRM procedure calls and a sample program il lus
trating QTRM use by a COBOL programmer. QTRM
procedures are not discussed elsewhere because QTRM
use precludes direct use of the AIP routines docu
mented by the remainder of this manual.

INTERNAL INTERFACES
The information in the remainder of this section is
not needed to create a Network Access Method appli
c a t i o n p r o g r a m . T h i s i n f o r m a t i o n i s p r o v i d e d a s
background for appl icat ion programmers us ing the
parallel mode processing feature of NAM, programmers
with a need for understanding communication among
the components of the network software, and pro
grammers needing to interpret a load map.

APPLICATION INTERFACE PROGRAM
AND NETWORK INTERFACE PROGRAM
COMMUNICATION
One copy of the Network Interface Program resides
at a control point and communicates with separate
copies of the Application Interface Program at each
con t ro l po i n t con ta i n i ng an app l i ca t i on p rog ram.
Communication between NIP and each copy of AIP
occurs through system contro l point ca l ls in i t ia ted

by AIP. The mechanism for this communication is a
fi x e d - l e n g t h b u f f e r o f s t a t u s b i t s , p o i n t e r s , a n d
data that is ca l led a work l is t .

Worklist Processing
When an app l ica t ion program requests connect ion
w i t h t h e n e t w o r k , i t s c o p y o f A I P e s t a b l i s h e s a
long-term connect ion wi th NIP. The long-term con
nec t ion ex is ts un t i l the p rogram reques ts d iscon
nect ion from the network, or unt i l NIP is informed
o f t h e p r o g r a m ' s f a i l u r e o r t e r m i n a t i o n b y t h e
opera t ing sys tem. Whi le the long- te rm connec t ion
ex is ts , an addi t iona l shor t - term connect ion occurs
whenever AIP in i t ia tes a t rans fer o f work l i s ts be
t w e e n i t s e l f a n d N I P. T h e s h o r t - t e r m c o n n e c t i o n
exists unt i l NIP issues a system control point cal l
to end i t .

The requests made by an application program to AIP
a r e e i t h e r s a t i s fi e d b y A I P d i r e c t l y o r c o l l e c t e d
in to the work l i s t conta ined w i th in the AIP por t ion
o f t h e a p p l i c a t i o n p r o g r a m ' s fi e l d l e n g t h . A I P
p l a c e s e n t r i e s i n t h i s w o r k l i s t u n t i l o n e o f t h e
f o l l o w i n g o c c u r s , t h e n i n i t i a t e s t h e s h o r t - t e r m
connection:

NETON or NETOFF is called by the application
program. (See section 5.)

The work l i s t i s f u l l .

Another entry cannot be made without causing
the work l is t to overflow.

The application program calls a routine (NETGET,
NETGETL, NETGETF, or NETGTFL) that obtains in
pu t f rom the ne twork ' s da ta s t ruc tu res , o the r
than AIP queues. (See section 5.)

NETCHEK is called.

T h e a p p l i c a t i o n p r o g r a m i s s u e s a n o n f o r c e d
NETWAIT cal l to make i tsel f avai lable for rol l
out or any input, and no supervisory messages
or data are queued for i t . (See section 5.)

The application program issues a forced NETWAIT
c a l l .

The application program calls NETPUTF, unless
the to ta l message tex t invo lved in the ca l l i s
smal l enough to fit in the workl is t .

This worklist is used to queue outgoing supervisory
or data messages, and to request a supervisory or
incoming (up l i ne) da ta message . A second bu f fe r
acts as a queue for incoming supervisory messages.
W h e n A I P i n i t i a t e s t h e s h o r t - t e r m c o n n e c t i o n , i t
checks to see whether its supervisory message buffer
is fu l l ; i f not , AIP appends a request for superv i
sory message input to the end of the workl ist and
p a s s e s t h e w o r k l i s t t o N I P. T h e p e r i o d d u r i n g
workl is t processing is the only t ime when NIP can
r e a d f r o m o r w r i t e i n t o t h e fi e l d l e n g t h o f A I P,
and then only when AIP initiates the action.

NIP processes the t ransfer red work l is t unt i l a l l o f
the entr ies are sat isfied, then ends the short - term
connection. Worklist processing is suspended when:

The operat ing system ro l ls out the appl icat ion
program.

60499500 S 4-15

NIP causes the application program to be rolled
out in response to the request of the program.
(See NETWAIT call, section 5.)

A work l i s t en t ry cannot be p rocessed w i thou t
ob ta in ing add i t iona l cen t ra l memory, wh ich i s
not avai lab le.

Even i f there are downl ine messages queued, no
workl ist transfer occurs in these instances:

The application program calls a routine (NETGET,
NETGETF, NETGETL, or NETGTFL) to obtain asyn
chronous supervisory messages and AIP transfers
any queued messages to the application.

The application program issues a NETWAIT call
with a flag value of 0 and there are supervisory
messages or data available for the application.

Generally, an application program does not depend
on the s ta tus o f work l i s t p rocess ing be tween i t s
corresponding AIP copy and NIP. Most programs can
adequately funct ion when concerned only with text
area buffers and ca l ls to AIP. However, the Net
work Access Method does provide a mechanism that
a l lows an app l ica t ion program to moni tor work l is t
processing and execute code dependent on that proc
e s s i n g . T h i s m e c h a n i s m i s c a l l e d p a r a l l e l m o d e
opera t ion .

Parallel Mode Operation
When an appl icat ion program issues the ca l l that
i n i t i a tes t he l ong - te rm connec t i on , i t i den t i fies a
supervisory status word that is used by AIP as a
b u f f e r f o r s e v e r a l fl a g s . A m o n g t h e s u p e r v i s o r y
status word flags are worklist processing bits used
during parallel mode operations.

When an appl icat ion program is not processing in
para l le l mode (the norma l , de fau l t cond i t ion) , i t s
c o p y o f A I P i n i t i a t e s t h e s h o r t - t e r m c o n n e c t i o n
w i t h a s y s t e m c o n t r o l p o i n t c a l l s p e c i f y i n g t h a t
r e c a l l i s i n e f f e c t . I n t h i s c a s e , t h e p r o g r a m ' s
copy of AIP does not regain control of the central
p rocessor un t i l a l l work l i s t en t r ies a re p rocessed
by N IP and the sho r t - t e rm connec t i on i s ended .
Because the application program cannot regain the
central processor until its copy of AIP has regained
the central processor, the program cannot perform
any processing in the interim.

Para l le l mode operat ion is usua l ly benefic ia l on ly
when used on a dual CPU system, because NIP ordi
na r i l y has a h ighe r p r i o r i t y t han any app l i ca t i on
program and gains control of the central processor
a f t e r a c a l l i s m a d e t o i t . N I P r e t a i n s c o n t r o l
u n t i l i t c o m p l e t e s p r o c e s s i n g o f t h e w o r k l i s t
request.

Processing in parallel mode is analagous to making
| operat ing system ca l ls wi thout reca l l . An appl ica

tion program enters parallel mode by issuing a call
to the AIP routine NETSETP. While in parallel mode,
anyt ime AIP in i t ia tes the short - term connect ion, i t
does so wi thout spec i fy ing reca l l . The appl icat ion
program's copy of AIP reacquires control of a cen
t ra l processor as soon as the operat ing system's
scheduling algorithm permits, and AIP returns con
trol to the cal l ing point of the application program
p r o p e r . A s l o n g a s t h e s h o r t - t e r m c o n n e c t i o n
exists, the appl icat ion program can cont inue proc
e s s i n g w i t h t h e s o l e r e s t r i c t i o n t h a t i t c a n n o t

issue calls to any AIP routines other than NETCHEK
or NETOFF.

Calls to NETCHEK cause AIP to indicate the current
s t a t u s o f w o r k l i s t p r o c e s s i n g u s i n g a b i t i n t h e
supervisory status word. After each NETCHEK call,
the application program must check the supervisory
s ta tus wo rd . As soon as the b i t i nd i ca t i ng com
plet ion of work l is t process ing is set , the program
is free to issue any AIP cal l . Paral lel mode proc
essing is ended by a second call to the AIP routine
NETSETP.

T h e w o r k l i s t p r o c e s s i n g c o m p l e t i o n b i t s e r v e s
several purposes in paral lel mode operat ion. Cal ls
to NETCHEK cause this bit to be set when processing
of the previous request to AIP has been completed,
even when tha t request d id no t cause a work l i s t
entry or transfer. When a call to NETCHEK results
i n t h e c o m p l e t i o n b i t b e i n g s e t , t h e a p p l i c a t i o n
program can:

Safely reuse any header area and text area used
in i t s l as t A IP ca l l

Assume tha t any work l i s t t rans fer invo lved in
the prev ious AIP func t ion reques t resu l ted in
the upda t i ng o f t he o the r b i t s i n t he supe r
visory status word

When a ca l l to NETCHEK does no t resu l t in the
comple t ion b i t be ing se t , the app l ica t ion program
should issue additional NETCHEK calls before exe
cuting any code dependent on either condition.

Calls to NETOFF end parallel mode operation by end
ing both the long-term and short- term connect ions
simultaneously. NIP processes a workl ist containing
a NETOFF cal l as i f the workl ist were transferred
while the application program was not processing in
parallel mode. Calls to NETCHEK are not necessary
to test completion of a NETOFF call.

OTHER SOFTWARE COMMUNICATION
A comp le te comp i l e r o r assemb le r l i s t i ng f o r an
a p p l i c a t i o n p r o g r a m c o n t a i n s s y m b o l s a n d e n t r y
points not discussed in this manual. These symbols
and entry points are used internal ly for interfacing
between NIP, AIP, and the operating system. Table
4-2 lists the names of internal procedure calls with
an ou t l i ne o f the func t ion o f each rou t ine ; these
calls should not be used directly by the application
program. In general, procedure names beginning with
the three characters NP$ are reserved for use by AIP
and should not be used by app l ica t ion programs.
Table 4-3 l is ts the tables and common blocks in
volved in the processing of an application program's
AIP statements.

The Communications Supervisor, Network Supervisor,
and Network Val idat ion Faci l i ty interface with NAM
via the AIP procedure calls described in section 5.
These interfaces use special supervisory messages
not descr ibed in sec t ion 3 . These spec ia l super
v isory messages cannot be used in another NAM
application program.

NAM in te r faces w i th t he ne twork p rocess ing un i t
software through the Peripheral Interface Program,
which uses an internal block protocol not described
in sect ion 2. These b locks are compi led or in ter
preted by NIP.

y^lSy

",£3%

4-16 60499500 S

TABLE 4-2. AIP INTERNAL PROCEDURES

Name Funct ion

NP$CLK

NP$DATE

NP$DBG

NP$DMB

NP$ERR

NP$GET

NP$GSM

NP$MSG

NP$ON

NP$OSIF

NP$PUT

NP$PUTF

NP$RCL

NP$READ

NP$RESP

NP$ROUT

NP$RTIM

NP$RWD

NP$SEND

NP$SLOF

NP$SN

NP$SPRT

NP$SYM

NP$TIM

NP$UCV

NP$USI

NP$WRTO

NP$WRTR

NT$WRTW

NP$XCDD

NP$XFER

Used only when AIP is run with either the debugging or statistics option on; gets system clock
t ime.

Used only when AIP is run with either the debugging or statistics option on; gets current date.

Used only when AIP is run with the debugging option on; makes entries in the debug log file
(application program local file ZZZZZDN). These entries show results of calls to other AIP
routines by the program. (See section 6.)

Dumps field length to the application program local file ZZZZDMB.

Issues error messages to the application program's dayfile.

Creates NETGET, NETGETL, NETGETF, or NETGTFL worklist entry to send to NIP.

Refil ls AIP's supervisory message buffer. (See Workl ist Processing.)

Issues dayfile message to NIP's dayfile.

Processes NETON call response from NIP.

Issues system control point (SSC) RA+1 call.

Creates NETPUT worklist entry to send to NIP.

Creates NETPUTF worklist entry to send to NIP.

Allows AIP to go into recall.

Used only when AIP is run with the debugging option on; reads job record for NETREL call.

Processes worklist responses from NIP.

Used only when AIP is run with the debugging option on; routes job to input queue for NETREL call.

Used only when AIP is run with the debugging option on; gets real time since deadstart.

Used only when AIP is run with the debugging option on; rewinds a file.

Called when a worklist must be transferred to NIP.

Used only when AIP is run with the debugging option on; executes SETLOF macro for NETSETF call.
(See section 6.)

Used only when AIP is run with the statistics option on; accumulates statistical data.

Used only when AIP is run with the statistics option on; makes entries in the debug log file
(application program local file ZZZZZSN). (See section 6.)

Allows COMPASS users access to common symbol definitions.

Used only when AIP is run with the statistics option on; gets CPU time.

Used to update AIP control variables.

Used to update the S and I bits in the supervisory status word. (See section 5.)

Used only when AIP is run with the debugging option on; writes one word in the debug log
file (appl icat ion program local fi le ZZZZZDN). (See sect ion 6.)

Used only when AIP is run with either the debugging or statistics option on; writes end-of-record
to the debug log fi le o r s ta t i s t i cs fi le . (See sec t ion 6 .)

Used only when AIP is run with either the debugging or statistics option on; writes entry to the
debug l og fi l e o r s t a t i s t i c s fi l e . (See sec t i on 6 .)

Used only when AIP is run with the statistics option on; converts numbers to decimal form in
display code.

Transfers a workl ist to NIP.

60499500 R 4-17

TABLE 4-3. AIP INTERNAL TABLES AND BLOCKS

Name

NP$DB

NP$GETS

NP$LOF

NP$MODE

NP$NWL

NP$NWNC

NP$ONAM

NP$PUTS

NP$SMB

NP$STAT

NP$TAA

NP$ZHDR

Function

Used only when AIP is run with the debugging option on; contains calling parameters for
debugging routine NP$DBG.

Controls variables used to process NETGET, NETGETL, NETGETF, and NETGTFL calls.

Used only when AIP Is run with the debugging option on; parameter block for SETLOF
macro. (See sect ion 6.)

Used to keep track of the state the application is in.

Workl ist for the application program.

Used only when AIP is run with the debugging option on; aids in character conversion.

NETON entry for the debug log file.

Controls variables used to process PUT calls.

AIP supervisory message buffer for the application program. This block is included in
the last 1008 words of NPSNWL.

Used only when AIP is run with the debugging option on; contains statistics gathered by
NIP. (See sect ion 6 .)

Used to reference the text area array (TAA) in fragmented NETGETF and NETPUTF or NETGTFL
c a l l s .

Header entry for the debug log file (application program local file ZZZZZDN).

4-18 60499500 R

APPLICATION INTERFACE PROGRAM CALL STATEMENTS

J0^\

T h i s s e c t i o n d e s c r i b e s t h e A p p l i c a t i o n I n t e r f a c e
Program (AIP) statements used by a network appli
c a t i o n p r o g r a m t o a c c e s s t h e n e t w o r k , c o n t r o l
network process ing, and t ransmi t and rece ive the
messages described in sections 2 and 3.

SYNTAX
Appl icat ion Inter face Program statements are used
in COMPASS programs, or in programs wr i t ten in
h igh - leve l l anguages such as FORTRAN. In mos t
h i g h - l e v e l l a n g u a g e s , o n l y p o s i t i o n a l p a r a m e t e r s
can be used; AIP statements conform to this syntac
t ical requirement and, therefore, do not permit the
use of keywords. The in terpretat ion at tached to a
given parameter is determined solely by its location
within the string of* parameters of each AIP state
ment. Al l input parameters must be suppl ied; there
are no defaults.

The FORTRAN positional form is used throughout this
s e c t i o n t o p r e s e n t A I P s t a t e m e n t s . C o d i n g t h e
statements when they are used in other languages
r e q u i r e s f e w m o d i fi c a t i o n s . F o r e x a m p l e , i n t h e
form of a COMPASS macro call, a sample NETGETL
statement has the form:

[label] NETGETL aln, ha, ta, tlmax

This conver ts to the FORTRAN subrout ine syntax,
which is:

CALL NETGETL (aln, ha, ta, tlmax)

Use of LIST and label are discussed in sect ion 4
where COMPASS interface requirements are given.

The FORTRAN subroutine syntax, in turn, converts to
the following COBOL syntax for the same statement:

ENTER FORTRAN-X NETGETL
USING aln, ha, ta, tlmax

The mnemonic variables ident i fy ing each parameter
a r e d e fi n e d i n t h e s t a t e m e n t d e s c r i p t i o n s , a l o n g
with any coding constraints imposed on them. Commas
d e l i m i t p a r a m e t e r s i n a l l l a n g u a g e s ; t h e s i g n i fi
cance o f b lanks depends on the l anguage used .
Unless otherwise specified, a l l va lues suppl ied for
parameters should be decimal integers.

General definit ions of terms appearing in parameter
d e s c r i p t i o n s a r e g i v e n i n t h e g l o s s a r y . M o r e
deta i led defini t ions and parameter const ra in ts that
depend on the programming language used are given
in section 4 under the heading of Language Inter
f a c e s . P r o g r a m s t r u c t u r a l c o n s i d e r a t i o n s t h a t
depend on command use are described in section 6
under the headings of Commands and Dependencies.

NETWORK ACCESS STATEMENTS
An application program uses two AIP statements to
begin and end access to the network 's resources.
The NETON statement must be used before the program
can use any other AIP statement except NETREL,
NSTORE, NFETCH, NETSETF, NETCHEK, NETSETP, or
NETOFF. The NETOFF statement must be used after
a l l A IP funct ions are completed to cause the AIP
port ion of the appl icat ion program to perform vi ta l
housekeeping tasks; these tasks are associated with
d e b u g l o g fi l e , s t a t i s t i c a l fi l e , a n d l o g i n p r o c
essing by the network software.

CONNECTING TO NETWORK (NETON)
The NETON statement
fo l low ing func t ions :

(fi g u r e 5 - 1) p e r f o r m s t h e

Iden t i fies the app l i ca t ion p rogram to the ne t
w o r k s o t h a t t h e N e t w o r k Va l i d a t i o n F a c i l i t y
(NVF) can val idate the r ight of the program to
access the network's resources

Causes AIP to establish communication with NIP

Identifies a word to be used for communication
from AIP to the program, outside of the super
visory message mechanism (figure 5-2)

Informs the network sof tware of l imi ta t ions on
the number of logical connect ions the program
can handle

Causes AIP to begin debug log file and statis
t i c a l fi l e c o m p i l a t i o n , i f A I P c o n t a i n s c o d e
permi t t i ng th i s (See sec t ion 6 .)

An application program must successfully complete a
NETON ca l l be fo re i t can use any A IP s ta tement
other than NETOFF, NETCHEK, NETREL, NETSETF, or
NETSETP. If another AIP statement is used before a
NETON ca l l i s successfu l ly comple ted, AIP abor ts
the job and issues a message to the job's dayfile.
The incorrectly placed cal l has no other effect.

An application program's NETON statement is success
fu l l y va l i da ted by t he Ne two rk Va l i da t i on Fac i l i t y
when the program name contained in the NETON call
appears in the system common deck COMTNAP. If the
p rog ram i s defined as a p r i v i l eged app l i ca t i on i n
t h e l o c a l c o n fi g u r a t i o n fi l e , i t m u s t m e e t t h e
requirements for such to be successful ly val idated.
(See section 6.)

I f v a l i d a t i o n i s n o t s u c c e s s f u l , t h e a p p l i c a t i o n
p r o g r a m i s a b o r t e d . I f v a l i d a t i o n i s s u c c e s s f u l ,
the program has access to the network as long as a
NETOFF statement is not issued and communication
with NIP continues.

60499500 R 5-1

CALL NETON (aname,nsup,status,minacn,maxacn)
/^^^K

aname An input parameter, specifying in 6-bit display code the name of the application program, as it
is identified for log in and for CONTNAP. This can be one to seven alphabetic and numeric
characters, but the first must be alphabetic. This parameter must be left-justified, with
blank fill. It is advisable to avoid names beginning with the letters NET to make loader map
interpretation easier. The following application program names are reserved for internal
networks use:

ALL LOGIN NUL PTFS TCFBYE LOGOUT NVF QTFI TVFCS NCS PFU QTFS
HELLO NAM PNI RBFIAF NIP PSU RMFITF NS PTFI TAF

nsup

status

Use of some of these names causes the program job to be aborted; use of the remainder can cause
unpredictable errors.

A return parameter; as input to the call, nsup is the symbolic address of the supervisory
status word for communication from AIP to the application program. This word has the format
shown in figure 5-2. The upper bit of this word is relevant during parallel mode processing
only; this bit reports the status of worklist processing and is updated after each AIP call
except NETSETP. Bits 56 and 55 are set when indicated in the figure to report the status of
the data message and supervisory message queuing performed by AIP. These bits are valid after
any AIP call except NETDBG, NETLOG, NETREL, NETSETF, NETSETP, or NETSTC. This word need not
contain zeros at the time of the NETON call and should not be changed at any time by the
application program.
A return parameter; as input to the call, status is the symbolic address of the NETON call
status word. On return from the call (or when worklist processing is complete if the call was
made in parallel mode), the content of this word indicates the network software's disposition
of the application program's NETON attempt. The values of status can be:

0 NETON was successful.

1 NETON was unsuccessful because NIP was not at a control point or did not have enough
resources to service this application program (too many application programs running
at the same time).

2 NETON was rejected because the maximum number of allowed applications has already
netted on.

3 NETON was rejected because the application program has a status of disabled in the
Communications Supervisor's tables. The program must be rerun after its entry in the
local configuration file has been changed or after the host operator has enabled it.

An input parameter, specifying the smallest application connection number the application
program can process; 0 < minacn < maxacn < 4095. The network software assigns acn values to
connections, beginning with the number specified for minacn. (See section 2.)

maxacn An input parameter, specifying the largest applicaton connection number the application program
can process; 0 < minacn £ maxacn < 4095. The network software does not attempt to complete any
more connections to the program after all connections from minacn through maxacn (inclusive)
are in use.

minacn

Figure 5-1. NETON Statement FORTRAN Call Format

5-2 60499500 S

59 57 5554 53 29

c a n i s d res mcnsup

c A IP reques t and work l i s t p rocess ing comp le t ion b i t . Th is b i t i s re levan t on ly in pa ra l le l mode .
When any AIP routine other than NETSETP is entered and the AIP function is not completed, the bit
is set to zero. I f the AIP funct ion is completed, the bi t is set to one, i f a workl ist t ransfer
was required. If the bit is zero, the program cannot call any AIP routines except NETCHEK or
NETOFF nor can it use the header area and text area of the last AIP call until the bit is set to
one. The bit is set to one by NETCHEK when the last AIP function is completed.

a R e s e r v e d f o r C D C u s e .

n NAM available bit. This bit is set to one upon return from a NETON call i f NAM is avai lable, and
zero if NAM is not available. The bit is also set to zero by AIP when AIP is informed by the
operating system that NAM is no longer available.

i Input - in-queue b i t . Th is b i t is set to one i f NIP has e i ther data messages or synchronous
supervisory messages queued for the application. The bit is valid after any AIP call except a
call to NETDBG, NETLOG, NETDMB, NETLGS, NETREL, NETSETF, NETSETP, or NETSTC. This bit is set to
zero when no data messages or synchronous supervisory messages remain queued for the program.

s Supervisory message in queue bit . This bi t is set to one i f asynchronous supervisory messages
are queued on application connection number 0 for this program. This bit is valid after any AIP
call except a call to NETDBG, NETDMB, NETLGS, NETLOG, NETREL, NETSETF, NETSETP, or NETSTC. The s
bit is set to zero when no asynchronous supervisory messages remain queued for the program.

d Data-de l iverab le b i t . Th is b i t i s se t to one i f da ta messages are de l iverab le on a t leas t one o f
the connection lists of the application program and the application program issues a NETGETL or a
NETGTFL call.

res Reserved for CDC. Reserved fields conta in zero.

mc A count of the number of supervisory messages and network data blocks on the debug log file when
library NETIOD is used. A NETON call (or a NETREL call with a nonzero lfn parameter value)
resets the count to zero (described in section 6).

Figure 5-2. Supervisory Status Word Format

If the program failed because NAM failed, it should
i s s u e a N E TO F F c a l l a n d s u c c e s s f u l l y c o m p l e t e
another NETON call before issuing any further calls
to the AIP routines. The NETOFF call, used in this
case, causes AIP to perform internal housekeeping
f u n c t i o n s a n d fi n i s h i n f o r m a t i o n t r a n s f e r t o t h e
debug log and stat is t ical fi les; the second NETON
c a u s e s A I P t o r e i n i t i a l i z e i n t e r n a l t a b l e s a n d
reestabl ish communication with NIP. I f a new copy
of NIP becomes available prior to the NETOFF call,
the second NETON call causes the NETOFF statement
to be ignored and program processing can be resumed
after new logical connections have been established.
Alternating NETON and NETOFF statement sequences in
parallel mode have unpredictable results.

The network software tracks an application program
and issues dayfile messages concerning the program
on the basis of the aname parameter used in the
program's NETON call . The operating system, how
ever, i s unaware o f th is name and issues dayfi le
messages on the basis of the job name assigned to
the program according to the contents of the job's
c o m m a n d p o r t i o n . S o t h a t a l l d a y fi l e m e s s a g e s
concerning the same program can be identified, you
should take the steps described in section 6.

Figure 5-3 contains a portion of a FORTRAN program
that correctly performs a NETON call. The program,

called RMV2, is identified by that name in COMTNAP
a n d i n t h e l o c a l c o n fi g u r a t i o n fi l e a s a n o n -
p r i v i l e g e d a p p l i c a t i o n . R M V 2 c a n p r o c e s s u p t o
three logical connect ions but requi res connect ions
to be numbered beginning wi th 2. RMV2 uses the
integer word NSUP as a supervisory status word for
commun ica t ion f rom A IP and tes ts fo r success fu l
complet ion of the NETON cal l through the in teger
word NSTATUS.

COMMON NSUP,HA(2),TA(200,2)

•
NAME=4HRMV2
NSTATUS=0
MINACN=2
MAXACN=4
CALL NETON(NAME,NSUP,NSTATUS,MINACN,MAXACN)
IF (NSTATUS.NE.O) GO TO 999

999 PRINT 998, NSTATUS
998 FORMAT('NSTATUS IS',112)

STOP
o
o

Figure 5-3. NETON Statement FORTRAN Example

60499500 W 5-3

DISCONNECTING FROM NETWORK (NETOFF)
The NETOFF s ta tement (figure 5 -4) per fo rms the
fo l lowing func t ions :

Breaks AIP communication with NIP

Causes AIP to finish formatting and transferring
in fo rmat ion fo r the debug log fi le and s ta t i s
t i ca l fi le , i f these fi les a re be ing compi led

Clears AIP internal tables so that the program
can issue another NETON call, if necessary

NETWORK BLOCK INPUT/OUTPUT
STATEMENTS
I n p u t a n d o u t p u t o n l o g i c a l c o n n e c t i o n s c a n b e
h a n d l e d t h r o u g h u n i fi e d o r f r a g m e n t e d b u f f e r s .
Input can be obtained from a connection either by
i t s i nd iv idua l connec t ion number, o r accord ing to
i t s m e m b e r s h i p i n a l i s t o f c o n n e c t i o n s . A I P
s t a t e m e n t s p e r m i t a n a p p l i c a t i o n p r o g r a m f o u r
o p t i o n s f o r i n p u t o r o u t p u t f r o m a s p e c i fi c c o n
nection and two options for input from a connection
on a l i s t .

CALL NETOFF
SPECIFIC CONNECTIONS

Figure 5-4. NETOFF Statement FORTRAN
Call Format

The NETOFF statement is used after all processing
o f l o g i c a l c o n n e c t i o n a c t i v i t i e s i s fi n i s h e d a n d
the program is prepared to end connection with the
network . A f te r the NETOFF ca l l i s comple ted , no
AIP statement other than NETON, NETREL, NSTORE
NFETCH, NETDMB, and NETSETF can be used. The NETOFF
c a l l b r e a k s a n y l o g i c a l c o n n e c t i o n s t i l l e x i s t i n g
between the appl icat ion program and a dev ice or
another appl icat ion and prevents the network soft
ware from attempting to establish any new connec
tion. After the NETOFF statement is processed, the
a p p l i c a t i o n p r o g r a m c o n t i n u e s t o e x e c u t e u n d e r
control of the operating system.

An application program should always issue a NETOFF
c a l l b e f o r e t e r m i n a t i n g . O t h e r w i s e , t h e n e t w o r k
s o f t w a r e i n f o r m s c o n s o l e s o r o t h e r a p p l i c a t i o n
p r o g r a m s w i t h w h i c h c o n n e c t i o n s e x i s t t h a t t h e
program has fai led; passive device connections are
d i s p o s e d o f b y t h e n e t w o r k s o f t w a r e a s i f t h e
program had failed. Unless a NETOFF call is com
p l e t e d o r N E T R E L i s c a l l e d , t h e d e b u g l o g fi l e
compi led dur ing job execut ion cannot be correct ly
d isposed of . Unless a NETOFF cal l is completed,
t he s ta t i s t i ca l fi l e comp i l ed du r i ng j ob execu t i on
w i l l n o t e x i s t .

The NETOFF statement can also be used in a reprieval
s i tuat ion. This use is descr ibed under Connect ing
to Network (NETON).

The four opt ions for specific connect ion input and
output are as follows:

Fetch input to a single, unified buffer (NETGET
statement)

Fetch input to an ar ray o f bu f fe rs (NETGETF
statement)

S e n d o u t p u t f r o m a s i n g l e , u n i fi e d b u f f e r
(NETPUT statement)

Send output from an array of buffers (NETPUTF
statement)

Inputing to Single Buffer (NETGET)
You can use NETGET to obtain an asynchronous super
visory message from appl icat ion connection number
0. You can also use NETGET to fetch synchronous
supervisory messages and network data blocks from
a p p l i c a t i o n c o n n e c t i o n n u m b e r s o t h e r t h a n 0 .
Synchronous supervisory messages and network data
blocks are never queued on logical connection 0.

Each NETGET call transfers one data or supervisory
message block from the NIP queue for the connection
specified in the cal l . The NETGET cal l p laces the
b l o c k h e a d e r i n t h e a p p l i c a t i o n p r o g r a m ' s b l o c k
header area and the network block in the application
program's text area. The NETGET statement has the
format shown in figure 5-5.

CALL NETGET(acn,ha,ta,tlmax)

ha

Sur^T.rj^^r^fi'pSr'r„ wr.:E£of the i^ — *-
Transfer one asynchronous supervisory message.

Figure 5-5. NETGET Statement FORTRAN Call Format (Sheet 1 of 2)

5-4
60499500 R

ta A re turn parameter ; as input to the ca l l , the symbol ic address o f the firs t word o f the buffer
•array constitut ing the text area for the application program. On return from the cal l , the
text area contains the requested block if a block was delivered to the application. The text
area identified by ta should be at least tlmax words long.

tlmax An input parameter, specifying the maximum length in central memory words of a block the
application program can accept. The value declared for tlmax should be less than or equal to
the length of the text area identified in the same call; i f t lmax is greater than the length of
the text area, the block transfer resulting from the NETGET call might overwrite a portion of
the program. The maximum value needed for tlmax is a function of the block size used by the
connection for input to the program and of the application character type the program has
specified for input from the connection. The fol lowing ranges are valid:

act=1 1 _< tlmax <_ 410 for 60-bit (one per word) transparent characters

act=2 1 < tlmax £ 273 for 8-bit (7.5 per word) ASCII characters

act=3 1 < tlmax <_ 410 for 8-bit (5 per word) ASCII characters

act=4 1 <_ tlmax _< 205 for 6-bit (10 per word) display code characters

A tlmax value of 0 can be legally declared but results in an input-block-undeliverable
condition; that is, an application block header is returned with a set ibu field, even when an
empty block of application block type 2 is queued (a block with a tic value of 0).

Figure 5-5. NETGET Statement FORTRAN Call Format (Sheet 2 of 2)

If no network block is available from the indicated
connect ion, AIP re turns a nu l l b lock; that is , AIP
places a header word with an application block type
o f ze ro i n the header a rea , and leaves the tex t
area unchanged f rom what i t conta ined a f te r any
prev ious t ransfer.

The app l ica t ion program ind ica tes the s ize o f i t s
b u f f e r i n e a c h N E T G E T c a l l . I f a n e t w o r k b l o c k
larger than th is s ize is queued f rom the specified
connection, the network block remains queued. AIP
copies the header word of the block into the appli
ca t ion program'8 b lock header area, se ts the ibu
bit of the header to one to indicate the condit ion,
and places the actual length of the queued block in
t he t i c fie l d o f t he heade r. The app l i ca t i on p ro
gram's text area is unchanged from what it contained
a f t e r a n y p r e v i o u s t r a n s f e r. To o b t a i n t h e s t i l l -
queued network block, the program must issue another
NETGET ca l l ind ica t ing a buffe r s ize su ffic ient to
accommodate the queued block, or issue a DC/TRU/R
asynchronous supervisory message to have the data
t r u n c a t e d . (S e e s e c t i o n 3 .) I f b l o c k t r u n c a t i o n
is in effect at the t ime of the NETGET cal l , then
the b lock is de l ivered wi th the t ru b i t se t in the
header.

I f t h e a p p l i c a t i o n p r o g r a m ' s t e x t a r e a i s l a r g e r
than the block transferred by the NETGET call, the
por t ion o f the tex t a rea a f te r the las t word used
for the block remains unchanged from what it con
t a i n e d a f t e r a n y p r e v i o u s t r a n s f e r. I f t h e t r a n s
ferred block does not completely fi l l the last word
u s e d f o r i t , a l l c h a r a c t e r p o s i t i o n s i n t h e l a s t
wo rd used a re a l t e red by t he t r ans fe r. On l y t he
l e f t m o s t c h a r a c t e r p o s i t i o n s o f t h e l a s t w o r d
inc luded in the b lock header word t i c fie ld va lue
contain meaningful data.

Figure 5-6 contains two examples of NETGET use.
The fi r s t occu r rence i s i n f e t ch i ng asynch ronous
connect ion-request superv isory messages. Fetching

INTEGER TA(26),HA,TLMAX,0VTLMAX
DATA HA/0/,TA/20*0/,TLMAX/10/

•

1
•

NACN=0
CALL NETGET(NACN,HA,TA,TLMAX)
IF((NSUP.AND.O"02000000000000000000").EQ.O)

1G0 TO 2
•

2
0

GO TO 1
CONTINUE

•

3

6

•
NACN=TERM(IACN)
CALL NETGET(NACN,HA,TA,TLMAX)
IF(NFETCH(HA,L"ABHABT").EQ.0) GO
IF(NFETCH(HA,L"ABHIBU").EQ.1) GO
CONTINUE

•

TO 4
TO 5

5

4

•
GO TO 3
0VTLMAX=NFETCH(HA,L"ABHTLC")/7.5
ATEMP=NFETCH(HA,L"ABHTLCM)/7.5
IF(ATEMP.NE.0VTLMAX)0VTLMAX=0VTLMAX + 1
IF(0VTLMAX.GT.26) GO TO 9
CALL NETGET(NACN,HA,TA,OVTLMAX)
GO TO 6
CONTINUE

•

9
•

STOP

Figure 5-6. NETGET Statement FORTRAN 5
Examples

60499500 R 5-5

c o n t i n u e s u n t i l n o a s y n c h r o n o u s m e s s a g e s a r e
repor ted v ia the superv isory s ta tus word (tes t o f
NSUP contents). The second appearance of NETGET is
in a loop po l l ing fo r any messages queued on a
device connect ion; the pol l ing loop cont inues unt i l
a N E T G E T c a l l r e t u r n s a n u l l b l o c k . T h e b l o c k
header word HA is tested after each call to detect
the null block, which has an application block type
(ABHABT) of zero.

The va lue chosen fo r TLMAX in th i s examp le I s
adequate for both a connection-request supervisory
message o f t h i r t een 60 -b i t cha rac te r s and f o r a
l o g i c a l l i n e o f 7 2 t e l e t y p e w r i t e r c h a r a c t e r s , o r
for a minimum-sized network block of 100 characters
f r o m a l o n g e r l o g i c a l l i n e , w i t h a n a p p l i c a t i o n
character type of 2 used for input . The text area
array TA has a dimension of twice TLMAX words, in
case the test of ABHIBU fa i ls and a b lock larger
than anticipated must be transferred (third NETGET
c a l l) .

Inputing to Fragmented Buffer Array (NETGETF)
You can use NETGETF to obtain an asynchronous
superv i so ry message f rom app l i ca t i on connec t i on
numbe r 0 . You can a l so use NETGETF to f e t ch
synchronous supervisory messages and network data
b locks f rom app l ica t ion connect ion numbers o ther
t h a n 0 . S y n c h r o n o u s s u p e r v i s o r y m e s s a g e s a n d
network data b locks are never queued on log ica l
connection 0.

Each NETGETF call transfers one data or supervisory
message block from the NIP queue for the connection
specified in the cal l . The NETGET cal l p laces the
b l o c k h e a d e r i n t h e a p p l i c a t i o n p r o g r a m ' s b l o c k
header a rea . I t d i v i des the b lock i n to f ragmen ts
o f who le cen t ra l memory words and p laces each
f r a g m e n t i n a s e p a r a t e l y a d d r e s s e d a p p l i c a t i o n
program text area. The NETGETF statement has the
format shown in figure 5-7.

The text areas used are defined for AIP by the text
area address array identified in the NETGETF call.
This text area address array has the format given
in figure 5-8 .

The application program indicates the total size of
its text area buffers in each NETGETF call through
fie lds i n t he t ex t a rea add ress a r ray. I f a b l ock
l a r g e r t h a n t h i s t o t a l s i z e i s q u e u e d f r o m t h e
spec i fied connec t i on , t he b l ock rema ins queued .
AIP copies the header word of the block into the
application program's header area, sets the ibu bit
of the header to one to indicate the condition, and
places the actual length of the queued block in the
t ic fie ld o f the header. The app l ica t ion program's
text areas are unchanged from what they contained
a f t e r a n y p r e v i o u s t r a n s f e r. To o b t a i n t h e s t i l l -
queued message block, the program must issue another
N E T G E T F c a l l , i n d i c a t i n g a t o t a l t e x t a r e a s i z e
sufficient to accommodate the queued block, or i t
must issue a DC/TRU/R supervisory message (see
section 3).

I f the tota l s ize of the appl icat ion program's text
areas is la rger than the b lock t ransfer red by the
NETGETF call, the port ions of the text areas after
the last word used for the block remain unchanged
from what they contained after any previous trans
fe r. I f t he t rans fe r red b lock does no t comp le te l y
fi l l t h e l a s t w o r d u s e d f o r i t , a l l c h a r a c t e r
posit ions in the last word used are altered by the
t rans fe r. On ly the le f tmost charac te r pos i t ions o f
the last word included in the block header word tic
field value contain meaningful data.

If no message block is available from the indicated
log ica l connec t ion , A IP re tu rns a nu l l b lock ; tha t
is, a header word with an application block type of
ze ro i s p laced i n t he header a rea , and the tex t
area8 remain unchanged from what they contained
after any previous t ransfer.

CALL NETGETF(acn,ha,na,taa)

acn An input parameter, specify ing the appl icat ion connect ion number of the logical connect ion
from which a block is requested. This parameter can have the values:

0 T r a n s f e r o n e a s y n c h r o n o u s s u p e r v i s o r y m e s s a g e .

minacn £ Transfer one network data block or synchronous supervisory message from the
acn _< maxacn logical connection with the indicated acn.

ha

taa

A return parameter; as input to the call, ha is the symbolic address of the application
program's header area. The header area always contains an updated application block header
af ter re turn f rom the ca l l .

An input parameter, specifying the number of fragments the block should be divided into. The
number used should be the same as the number of central memory word entries in the text- area
address array identified by the taa parameter; if na is greater than the length of the text
area address array, the block transfer resulting from the NETGETF call might overwrite a
portion of the program. Parameter na can have values 1 < na < 40.

An input parameter, specifying the symbolic address of the first word of the one-dimensional
array defining the application program's text areas. The array identified by taa has the
format shown in figure 5-8.

s * 3 ^

Figure 5-7. NETGETF Statement FORTRAN Call Format

5-6 60499500 R

0 ^ \

taa^

size^

address.;

taa-i

59 39 30 18

unused size-| unused address-j

•

taar unused unused address,na

The symbolic address of the beginning of the array used in the NETGETF call.

The length in central memory words of block fragment i. This field can contain the values
1 < size^ < 63. The sum of all na values for sizei defines the size in central memory
words of the largest block the call can transfer; this sum is the equivalent of the tlmax
parameter in the NETGET statement. The sum of all na values for size can be 0, but this
results in an input-block-undel iverable condit ion; that is, an appl icat ion block header is
returned with a set ibu field, even when an empty block of application block type 2 is
queued (a block with a tic value of 0).

The relative numeric address of the first word of the application program text area to
receive block fragment i. The text area addresses given in this field need not be for
contiguous central memory areas.

Figure 5-8. NETGETF Statement Text Area Address Array

Figure 5-9 contains examples of NETGETF use. The
p r o g r a m u s e s t h e fi r s t N E TGE TF c a l l t o f e t c h a
b lock con ta in ing an en t i re sc reen o f da ta , wh ich
AIP f ragments i n to 12 tex t a reas con ta in ing one
6 0 - c h a r a c t e r p h y s i c a l l i n e e a c h . T h e a p p l i c a t i o n
cha rac te r t ype chosen f o r i npu t f r om the l og i ca l
connec t i on i s 4 . The p rog ram con t i nues to f e t ch
f u l l s c r e e n b u f f e r s o f d a t a u n t i l a n u l l b l o c k i s
encountered by the test of ABHABT. The text areas
used a re 12 separa te l y addressed 6 -word a r rays
(L I N E 1 t h r o u g h L I N E 1 2) , w h i c h i n i t i a l l y c o n t a i n
b lanks (DATA s ta tements) . The tex t a rea address
array (TAA), contains 12 corresponding words; each
word contains the relat ive address of a text area,
o b t a i n e d w i t h t h e L O C F f u n c t i o n . A l t h o u g h t h e
array TAA has a dimension of 24, only the first 12
entries are expected to be used; therefore, a value
o f 12 i s ass i gned t o NA i n i t s DATA s ta temen t .
O n l y t h e fi r s t a s s i g n m e n t s t a t e m e n t c o n s t r u c t i n g
TAA is shown; because each text area wil l contain
six words of ten 6-bit characters each, a size of 6
is declared in each TAA entry.

The second NETGETF ca l l r ecove rs a b l ock no t
delivered by the original call because the block was
la rge r t han expec ted . Th i s cond i t i on i s de tec ted
b y t h e t e s t o f A B H I B U , a s r e t u r n e d b y t h e fi r s t
NETGETF call. The second call is issued with more
o f the tex t a rea address a r ray spec ified , so tha t
all 24 text areas potentially can be used.

DIMENSION LINE 1(6),...,LINE24(6)
INTEGER HA,TAA(24),0VRFLNA,TERM(20)
DATA NA/12/,HA/0/,LINE1/6*L",7,... ,LINE24/6*L,,,7

TAA(1)=SHIFT(6,30).OR.LOCF (LINED

NACN=TERM(IACN)
1 CALL NETGETF(NACN,HA,NA,TAA)

IF (NFETCH (HA,L,,ABHABT").EQ.0) GO TO 2
IF(NFETCH(HA,L"ABHIBU").EQ.1) GO TO 5

6 CONTINUE

•
GO TO 1
0VRFLNA=NFETCH(HA,L"ABHTLC")/60.0
ATEMP=NFETCH(HA,L"ABHTLC")/60.0
IF(ATEMP.NE.OVRFLNA)OVRFLNA=OVRFLNA
IF(0VRFLNA.GT.24) GO TO 9
CALL NETGETF(NACN,HA,OVRFLNA,TAA)
GO TO 6
CONTINUE

9 STOP

+ 1

yfP?*s

Outputing From Single Buffer (NETPUT)
You can use NETPUT to send asynchronous supervisory
messages to appl icat ion connect ion number 0. You
can also use NETPUT to send synchronous supervisory
messages and ne twork da ta b locks to app l i ca t ion
c o n n e c t i o n n u m b e r s o t h e r t h a n 0 . S y n c h r o n o u s
supervisory messages and network data blocks are
never sent on logical connection 0.

60499500 R

Figure 5-9. NETGETF Statement
FORTRAN 5 Examples

Each NETPUT call requests AIP to form a block from
the information located in the application program's
b l o c k h e a d e r a n d t e x t a r e a s . T h e c a l l i n g a p p l i
c a t i o n p r o g r a m m u s t c o n s t r u c t a c o m p l e t e b l o c k
header, as described in section 2. The text port ion
of the block can be either a network data block, as

5-7

descr ibed in sect ion 2, or a superv isory message
block, as described in section 3. The block formed
by AIP is sent to the logical connect ion specified
in the block header. The NETPUT statement has the
format shown in figure 5-10.

CALL NETPUT(ha,ta)

ha

ta

An input parameter, specifying the
symbolic address of the application
program's block header area. The block
header area must contain a valid block
header word.

An input parameter, specifying the
symbolic address of the application
program's text area. The text area must
contain a valid network data or super
visory message block, correctly described
by the contents of the block header area.

Figure 5-10. NETPUT Statement
FORTRAN Call Format

Figure 5-11 contains an example of NETPUT use. The
program has fe tched an asynchronous superv isory
message and determined that the message is a con
nect ion request f rom a conso le . The header area
c o n t a i n s t h e c o n n e c t i o n - r e q u e s t b l o c k h e a d e r .
Because asynchronous supervisory messages use an
appl icat ion character type of one, the connect ion-
accep ted message be ing c rea ted i n t he examp le
requires the first NSTORE call to place a 1 in the
t i c fi e l d . T h e r e s p o n s e m e s s a g e i s o n l y o n e
central memory word, viewed as a single character.
The next four l ines of code modi fy the first word
o f t he connec t i on - reques t message , con ta ined i n
t e x t a r e a TA . F i r s t , t h e N S T O R E c a l l s e t s t h e
response bit (RB). Next, the NSTORE call places a
l i s t number in the connec t ion-accep ted message,
f o l l o w e d b y a n a p p l i c a t i o n c h a r a c t e r t y p e o f 4 .
Six-bit display code characters are to be used for
input from this connect ion, an opt ion that is legal
f o r c o n s o l e s b e c a u s e t h e y u s e t h e i n t e r a c t i v e
v i r t u a l t e r m i n a l i n t e r f a c e . F i n a l l y, t h e N E T P U T
cal l sends the completed message on app l ica t ion
connect ion number 0 . The incoming b lock header
already contained this number, so the program did
not need to supp ly i t wh i le const ruc t ing the out
going block header.

To reduce data transfer overhead, downline data is
somet imes bu f fe red by A IP w i th in the app l i ca t ion
p rog ram 's fie ld l eng th . Comp le t i on o f a NETPUT
cal l therefore does not necessar i ly mean that the
downline data has been transferred to the network.

When an app l i ca t ion p rogram i s no t opera t ing in
parallel mode, return from a NETPUT call is equiv
alent to completion of the call , and the application
program can reuse the header area and text area
spec ified in the ca l l immedia te ly. When an app l i
c a t i o n p r o g r a m i s o p e r a t i n g i n p a r a l l e l m o d e ,
return from the call is not equivalent to completion
of the cal l . Complet ion of the cal l must be deter
mined through the supervisory status word bi ts. I f
c o m p l e t i o n i s n o t d e t e c t e d w h e n t h e s e b i t s a r e
checked, completion must be forced through calls to
NETCHEK. The header area and text area cannot be
reused sa fe ly un t i l comple t ion occurs . Otherw ise ,
AIP might transfer information on the wrong connec
t i o n o r d a t a o t h e r t h a n w h a t t h e a p p l i c a t i o n
intended to transfer as part of the block.

Ac tua l t rans fe r o f down l ine da ta occurs any t ime
t h e a p p l i c a t i o n p r o g r a m m a k e s a n A I P c a l l t h a t
r e q u i r e s a c c e s s t o t h e n e t w o r k s o f t w a r e ' s d a t a
st ructures. Any NETGET or NETGETF cal l causes
downl ine t rans fers when the ca l l i s no t made on
connection number 0. Any NETWAIT call with a flag
value of one causes downline transfers. A NETGETL
or NETGTFL call causes downline transfers when the
call is not made on list number 0. Other AIP calls
do not necessarily cause Immediate downline trans
fers, and downline data buffered by AIP may remain
untransferred if the application program is swapped
out by the opera t ing sys tem. Downl ine da ta bu f
fered by AIP might also remain untransferred if the
a p p l i c a t i o n p r o g r a m s c h e d u l e s i t s o w n c e n t r a l
processor usage with the COMPASS macro RECALL,
ins tead o f us ing ca l l s to NETWAIT. To fo rce the
t r a n s f e r o f d o w n l i n e d a t a b u f f e r e d i n A I P, c a l l
NETCHEK. (See Worklist Processing in section 4.)

CALL NSTORE(HA,L"ABHTLC",1)
CALL NSTORE(TA(1),2LRB,1)
CALL NSTORE(TA(1),L"C0NALN",TERM(1,8))
CALL NSTORE(TA(1),LMC0NACT",4)
CALL NETPUT(HA,TA)

Figure 5-11. NETPUT Statement
FORTRAN 5 Example

Outputing From Fragmented Buffer
Array (NETPUTF)
You can use NETPUTF to send asynchronous supervisory
messages to appl icat ion connect ion number 0. You
can also use NETPUTF to send synchronous supervisory
messages and ne twork da ta b locks to app l i ca t ion
c o n n e c t i o n n u m b e r s o t h e r t h a n 0 . S y n c h r o n o u s
supervisory messages and network data blocks are
never sent on logical connection 0.

Each NETPUTF call requests AIP to form a message
b l o ck f r o m t h e i n f o rma t i o n l o ca te d I n t h e a p p l i
ca t ion program's b lock header and scat te red tex t
a reas . The ca l l ing app l i ca t ion p rogram must con
s t r uc t a comp le te b l ock heade r, as desc r i bed i n
s e c t i o n 2 . T h e t e x t p o r t i o n o f t h e b l o c k c a n b e
either a network data block, as described in section
2, or a supervisory message block, as described in
section 3. The block formed by AIP is sent to the
log ica l connec t ion spec ified in the b lock header.
The NETPUTF statement has the format shown in figure
5-12.

y l i ^ V

5-8 60499500 R

CALL NETPUTF(ha,na,taa)

h a A n i n p u t p a r a m e t e r, s p e c i f y i n g t h e
symbolic address of the application
program's block header area. The block
header area must contain a valid block
header word.

na An input parameter, spec i fy ing the number
of fragments the block is divided into.
The number used should be the same as the
number of central memory word entries in
the text area address array identified by
the taa parameter; if na is greater than
the length of the text area address array,
the block transferred by the NETPUTF call
might contain meaningless information
appended to the last meaningful fragment.
Parameter na can have the values 1 < na <
4 0 . ~ ~

taa An i npu t pa ramete r, spec i f y i ng the
symbolic address of the first word of the
one-dimensional array defining the
appl icat ion program's text areas. The
array identified by taa has the format
shown in figure 5-13.

j P s

Figure 5-12. NETPUTF Statement
FORTRAN Call Format

NAM assembles the text portion of the block trans
fer red by the ca l l f rom separate ly addressed tex t
areas scat tered through the app l ica t ion program's
fi e l d l e n g t h . T h e a d d r e s s e s a n d s i z e s o f t h e s e
text areas are supplied to AIP through a text area
address array specified in the NETPUTF cal l . (The
text area address array is shown in figure 5-13.)
The t o ta l s i ze o f a l l o f t he t ex t a reas i den t i fied
in the tex t a rea ar ray shou ld be grea ter than or

equal to the central memory word equivalent of the
number of characters specified in the block header.
I f the b lock header dec lares the b lock to conta in
fewer central memory words than all the text areas
conta in , the por t ion o f the tex t a reas beyond the
s i z e d e c l a r e d i n t h e b l o c k h e a d e r w i l l n o t b e
included in the transferred block.

To reduce data transfer overhead, downline data is
somet imes bu f fe red by A IP w i th in the app l i ca t i on
program's fie ld leng th . Comple t ion o f a NETPUTF
cal l therefore does not necessar i ly mean that the
downline data has been transferred to the network.

When an app l i ca t ion p rogram i s no t opera t ing in
p a r a l l e l m o d e , r e t u r n f r o m a N E T P U T F c a l l i s
e q u i v a l e n t t o c o m p l e t i o n o f t h e c a l l , a n d t h e
application program can reuse the header area and
text areas specified in the cal l immediate ly. When
a n a p p l i c a t i o n p r o g r a m i s o p e r a t i n g i n p a r a l l e l
m o d e , r e t u r n f r o m t h e c a l l i s n o t e q u i v a l e n t t o
c o m p l e t i o n o f t h e c a l l . C o m p l e t i o n o f t h e c a l l
must be determined through the supervisory status
w o r d b i t s . I f c o m p l e t i o n i s n o t d e t e c t e d w h e n
these bits are checked, complet ion must be forced
through calls to NETCHEK. The header area and text
a r e a s c a n n o t b e r e u s e d s a f e l y u n t i l c o m p l e t i o n
occurs . O therw ise , A IP m igh t t rans fe r i n fo rmat ion
on the wrong connection or data other than what the
a p p l i c a t i o n i n t e n d e d t o t r a n s f e r a s p a r t o f t h e
b lock .

Ac tua l t rans fe r o f down l ine da ta occurs any t ime
t h e a p p l i c a t i o n p r o g r a m m a k e s a n A I P c a l l t h a t
r e q u i r e s a c c e s s t o t h e n e t w o r k s o f t w a r e ' s d a t a
st ruc tures. Any NETGET or NETGETF ca l l causes
down l ine t rans fe rs when the ca l l i s no t made on
connection number 0. Any NETWAIT call with a flag
value of one causes downline transfers. A NETGETL
or NETGTFL call causes downline transfers when the
call is not made on l ist number 0. Other AIP calls
do not necessarily cause immediate downline trans
f e r s , a n d d o w n l i n e d a t a b u f f e r e d b y A I P m i g h t
remain unt ransfer red i f the app l ica t ion program is

taa<|

size.j

address.;

5 9 3 9 3 0 1 8 0

taa^

t ^na

unused size1 unused address-]

•

unused sizena unused addressna

The symbt

The lengl
1 _< size
words of
words.

The numer
con ta i n i r
cont iguoi

>lic address of the beginning of the array used in the NETPUTF call.

:h in central memory words of block fragment i. This field can contain
i < 63. The sum of all na values for size; defines the size in central
tTTe block to transfer; this sum must be less than or equal to 410 centr

*ic relative address of the first word of the application program text a
ig block fragment i. The text area addresses given in this field need n
js central memory areas.

the values
memory
aI memory

rea
ot be for

Figure 5-13. NETPUTF Statement Text Area Address Array

60499500 R 5-9

swapped out by the operating system. Downline data
buffered by AIP might also remain untransferred i f
the appl icat ion program schedules i ts own centra l
processor usage with the COMPASS macro RECALL,
ins tead o f us ing ca l l s to NETWAIT. To fo rce the
t r a n s f e r o f d o w n l i n e d a t a b u f f e r e d i n A I P, c a l l
NETCHEK. (See Worklist Processing in section 4.)

Figure 5-14 contains an example of NETPUTF use.
The p rog ram sends a b lock con ta in ing an en t i re
s c r e e n o f d a t a t o a n i n t e r a c t i v e c o n s o l e . A I P
assembles the block from text areas containing one
log i ca l (and phys i ca l) l i ne each . The app l i ca t i on
charac ter type used for the b lock is 4 . The pro
gram uses 12 text areas of separate ly addressed
7-word arrays (0LINE1 through 0LINE12), containing
6-bit display code characters and 12-bit zero byte
t e r m i n a t o r s (D ATA s t a t e m e n t s) . T h e t e x t a r e a
add ress a r ray, OTAA, con ta i ns 12 co r respond ing
words; each word contains the relative address of a
text area, obtained with the LOCF function. Because
the array OTAA has a dimension of 12, a value of 12
Is assigned to ONA in its DATA statement. Only the
fi r s t a s s i g n m e n t s t a t e m e n t c o n s t r u c t i n g O TA A i s
shown. Because each text area contains seven words
o f t e n 6 - b i t c h a r a c t e r s e a c h , a s i z e o f 7 I s
declared in each OTAA entry.

Inputing to Single Buffer (NETGETL)
You can use NETGETL to obtain an asynchronous
supe rv i so ry message f rom app l i ca t i on connec t i on
n u m b e r 0 . A p p l i c a t i o n c o n n e c t i o n n u m b e r 0 i s
a lways par t o f appl icat ion l is t number 0 . When a
N E T G E T L c a l l s p e c i f y i n g i n p u t f r o m l i s t 0 i s
i s sued , any asynch ronous supe rv i so r y messages
queued fo r t he p rog ram a re re tu rned be fo re l i s t
scanning continues to other connection numbers on
list 0. Synchronous supervisory messages and net
work data blocks on connection numbers other than
zero can a lso be obta ined when the i r connect ion
numbers have been assigned to list 0.

Each NETGETL ca l l causes NAM to se lec t (on a
rotating basis) one of the logical connections from
a spec i fied l i s t . NAM on ly chooses a connec t i on
that has network data blocks queued and that has
not been tu rned o f f by a LST/OFF/R superv isory
message . One ne two rk da ta b l ock i s t r ans fe r red
from the NIP queue of the selected connection for
each call to NETGETL. The NETGETL call places the
b lock header in the app l ica t ion program's header
area and the b lock body in the app l ica t ion 's tex t
area. Figure 5-15 shows the format of the NETGETL
statement.

CONNECTIONS ON LISTS
The two options for input from connections on lists
are as follows:

Fetch input to a single, unified buffer (NETGETL
statement)

Fetch input to an ar ray o f bu f fe rs (NETGTFL
statement).

Each NETGETL statement causes the connection list
to be scanned only once. Scanning begins with the
c o n n e c t i o n i m m e d i a t e l y f o l l o w i n g t h e c o n n e c t i o n
from which a block was previously transferred. The
firs t connect ion on the l i s t i s examined a f te r the
last one on the l is t . Scanning ends when a con
nect ion wi th a queued input b lock is found. I f no
connection has a queued input block, scanning ends
w i t h t h e c o n n e c t i o n p r e c e d i n g t h e o n e a t w h i c h
scanning started.

•
•

DIMENSION 0LINE1(7),...,0LINE12(7)
INTEGER HA,0TAA(12),0NA,TERM(20)
DATA 0NA/12/,HA/0/,0LINE1/"ABCDEFGHIJ",...,L"12345678",0/,...,

1DATA 0LINE12/"ABCDEFGHIJ",...,L,,12345678",0/
•
•

0TAA(1)=SHIFT(6,30).0R.L0CF(0LINE1)•
•

CALL NSTORE(HA,L"ABHABT",2)
CALL NSTORE(HA,L"ABHADR",TERM(IACN)
CALL NSTORE(HA,L"ABHABN",1)
CALL NSTORE(HA,L"ABHACT",4)
CALL NSTORE(HA,L"ABHNFE",1)
CALL NSTORE(HA,L"ABHTLC",840)
CALL NETPUTF(HA,0NA,0TAA)

•
•

Figure 5-14. NETPUTF Statement FORTRAN 5 Example

5-10 60499500 R

CALL NETGETL(aln,ha,ta,tlmax)

aln

ha

t a

tlmax

An input parameter, specifying the number of the connection list to be scanned for a queued
block. This parameter can have the values:

0 O b t a i n a l l a s y n c h r o n o u s s u p e r v i s o r y m e s s a g e s q u e u e d o n a p p l i c a t i o n c o n n e c t i o n
number 0 first, then any data or synchronous supervisory message blocks queued
on other connections on list zero.

1 £ aln £ 63 Obtain one data or synchronous supervisory message block from one connection
on the ind ica ted l i s t .

A return parameter; as input to the call, the symbolic address of the application program's
block header area. The header area always contains an updated application block header word
af ter return f rom the cal l .

A return parameter; as input to the call, the symbolic address of the first word of the buffer
array consti tut ing the text area for the appl icat ion program. On return from the cal l , the text
area contains the requested block if a block was available and the text area was large enough.
The text area identified by ta should be at least tlmax words long.

An input parameter, specifying the maximum length in central memory words of a block the
application program can accept. The value declared for tlmax should be less than or equal to
the length of the text area identified in the same call; i f t lmax is greater than the length of
the text area, the block transfer resulting from the NETGETL call might overwrite a portion of
the program. The maximum value needed for tlmax is a function of the block size used by the
connection for input to the program and of the application character type the program has
specified for input from the connection. The fol lowing ranges are val id:

act=1 1 <^ tlmax _< 410 for 60-bit (one per word) transparent characters

act=2 1 _< tlmax j< 273 for 8-bit (7.5 per word) ASCII characters

act=3 1 _< tlmax £410 for 8-bit (5 per word) ASCII characters

act=4 1 _< tlmax £ 205 for 6-bit (10 per word) display code characters

A tlmax value of 0 can be legally declared but results in an input-block-undeliverable
condition; that is, an application block header is returned with an ibu value of 1, even when an
empty block of application block type 2 is queued (a block with a tic value of 0).

Figure 5-15. NETGETL Statement FORTRAN Call Format

I f d a t a o r s u p e r v i s o r y m e s s a g e b l o c k s a r e n o t
ava i lab le f rom any connec t ion on the l i s t , a nu l l
b l ock i s r e tu rned . A heade r wo rd w i t h an app l i
cat ion block type of zero is p laced in the header
a r e a , a n d t h e t e x t a r e a i s u n c h a n g e d f r o m i t s
c o n t e n t a f t e r t h e l a s t b l o c k w a s o b t a i n e d . N u l l
blocks are not returned from each connection.

The app l ica t ion program ind ica tes the s ize o f i t s
b u f f e r i n e a c h N E T G E T L c a l l . I f a b l o c k l a r g e r
than th is s ize is ava i lab le fo r t rans fer, the b lock
remains queued, un less data t runcat ion has been
requested. AIP copies the header word of the block
in to the appl icat ion program's b lock header area,
sets the ibu b i t o f the header to one to ind icate
the condit ion, and places the actual length of the
queued b lock i n the t i c fie ld o f t he header. The
appl icat ion program's text area is unchanged f rom
what i t con ta ined a f te r any p rev ious t rans fe r. To
o b t a i n t h e s t i l l - q u e u e d b l o c k , t h e p r o g r a m m u s t
issue a separate NETGET cal l , indicat ing a buffer
size sufficient to accommodate the queued block, or
it may request a truncated block using the DC/TRU/R
asynchronous supervisory message (see section 3).

T h e c o n n e c t i o n p o i n t e r w i t h i n t h e l i s t i s i n c r e
mented regardless of whether a transfer occurs, so
the same connect ion is no t invo lved in a second
NETGETL call.

I f t h e a p p l i c a t i o n p r o g r a m ' s t e x t a r e a i s l a r g e r
than the block transferred by the NETGETL call, the
por t ion o f the tex t a rea a f te r the las t word used
for the block remains unchanged from what i t con
t a i n e d a f t e r a n y p r e v i o u s t r a n s f e r. I f t h e t r a n s
ferred block does not completely fi l l the last word
u s e d f o r i t , a l l c h a r a c t e r p o s i t i o n s i n t h e l a s t
w o r d u s e d a r e a l t e r e d b y t h e t r a n s f e r. O n l y t h e
l e f t m o s t c h a r a c t e r p o s i t i o n s o f t h e l a s t w o r d
inc luded in the b lock header word t i c fie ld va lue
contain meaningful data.

Figure 5-16 contains an example of NETGETL statement
use. The program has assigned al l interact ive con
soles to list 0 when accepting connection with them
(c o d e n o t s h o w n) . A N E T G E T L c a l l i s u s e d t o
p e r i o d i c a l l y p o l l l i s t 0 f o r a s y n c h r o n o u s s u p e r
v isory messages affect ing new or exist ing connec
t i o n s , a n d f o r i n t e r a c t i v e i n p u t a f f e c t i n g p a s s i v e

60499500 R 5-11

INTEGER TA(26),HA,TLMAX,OVTLMAX
DATA HA/0/,TA/26*0/,TLMAX/13/

•
NALN=0

1 CALL NETGETL(NALN,HA,TA,TLMAX)
IF(NFETCH(HA,L"ABHABT").EQ.O) GO TO 5
IF(NFETCH(HA,L"ABHABT").NE.3) GO TO 4
CALL SMP(HA,TA,TLMAX)
GO TO 1

4 IF(NFETCH(HA,L"ABHIBU").EQ.D GO TO 3
2 CONTINUE

GO TO 1
3 OVTLHAX=NFETCH(HA,L"ABHTLCM)/7.5

ATEMP=NFETCH(HA,LMABHTLC")/7.5
IF(ATEMP.NE.OVTLMAX)OVTLMAX=OVTLMAX + 1
IF(OVTLHAX.GT.26) GO TO 9
NACN=NFETCH(HA,L"ABHADR")
CALL NETGET(NACN,HA,TA,OVTLMAX)

•
•

GO TO 1
5 CONTINUE

•

9 STOP

Figure 5-16. NETGETL Statement
FORTRAN 5 Example

b a t c h c o n n e c t i o n s . T h e T L M A X v a l u e o f 1 3 i s
adequate for both superv isory messages of appl i
ca t i on cha rac te r t ype 1 and 72 -cha rac te r l og i ca l
l i n e s o r a m i n i m u m - s i z e d n e t w o r k b l o c k o f 1 0 0
characters in ASCII (appl icat ion character type 2)
f rom the in teract ive consoles. Each t ime l is t 0 is
polled by the NETGETL call, the block header area

H A i s t e s t e d t o d e t e r m i n e t h e b l o c k t y p e . I f a
null block (ABHABT of 0) is found, pol l ing ceases.
I f a b lock t ype o f 1 o r 2 i s found , the b lock I s
processed (code not shown) and pol l ing cont inues.
If a supervisory message (block type of 3) is found,
a subroutine cal led SMP is entered to process the
supervisory message and polling of list 0 continues.

The NETGET call recovers a block not delivered by
the original call because the block was larger than
expec ted . Th i s cond i t i on i s de tec ted by t he tes t
of ABHIBU, as returned by the NETGETL call. The
NETGET cal l is issued with more of the text area
buffer available; OVTLMAX can be up to twice TLMAX
before the text area is completely fi l led.

Input ing to Fragmented Buffer
Array (NETGTFL)

You can use NETGTFL to obtain an asynchronous
superv i so ry message f rom app l i ca t i on connec t i on
number 0. Application connection number 0 is always
part of application list number 0. When a NETGTFL
c a l l s p e c i f y i n g i n p u t f r o m l i s t 0 i s i s s u e d , a n y
asynchronous supervisory messages queued for the
program are returned before list scanning continues
to other connection numbers on list 0. Synchronous
supervisory messages and network data blocks on
connection numbers other than zero can be obtained
when their connection numbers have been assigned to
l i s t 0 .

Each NETGTFL ca l l causes NAM to se lec t (on a
rotat ing basis) one of the logical connections from
a spec i fied l i s t . NAM on ly chooses a connec t i on
that has blocks queued and has not been turned off
by a supervisory message. One block is transferred
from the NIP queue of the selected connection for
each call to NETGTFL; the block header is placed in
the application program's header area and the body
i s p l aced i n t he app l i ca t i on ' s t ex t a reas . F i gu re
5-17 shows the format of the NETGTFL statement.

CALL NETGTFL(aln,ha,na,taa)

aln An input parameter, specifying the number of the connection list to be scanned for a queued
block. This parameter can have the values:

0 O b t a i n a l l a s y n c h r o n o u s s u p e r v i s o r y m e s s a g e s q u e u e d o n a p p l i c a t i o n c o n n e c t i o n
number 0 first, then any data or synchronous supervisory message blocks queued
on other connections on list zero.

1 <, aln <_ 63 Obtain one data or synchronous supervisory message block from one connection
on the ind ica ted l i s t .

ha A return parameter; as input to the cal l , the symbol ic address of the appl icat ion program's
block header area. The header area always contains an updated application block header after
return from the cal l .

na An input parameter, specifying the number of fragments the block should be divided into. The
number used should be the same as the number of central memory word entries in the text area
address array identified by the taa parameter; if na is greater than the* length of the text
area address array, the block transfer resulting from the NETGTFL call might overwrite a
portion of the program. Parameter na can have the values 1 £ na < 40.

taa An input parameter, specifying the symbolic address of the first word of the one-dimensional
array defining the application program's text areas. The array identified by taa has the
format shown in figure 5-18.

Figure 5-17. NETGTFL Statement FORTRAN Call Format

5-12 60499500 R

Each NETGTFL statement causes the connection list
to be scanned only once. Scanning begins with the
c o n n e c t i o n i m m e d i a t e l y f o l l o w i n g t h e c o n n e c t i o n
from which a block was previously transferred. The
firs t connect ion on the l i s t i s examined a f ter the
last one on the l is t . Scanning ends when a con
nect ion wi th a queued input b lock is found. I f no
connection has a queued input block, scanning ends
w i t h t h e c o n n e c t i o n p r e c e d i n g t h e o n e a t w h i c h
scanning started.

The text areas used are defined for AIP by the text
area address array identified in the NETGTFL call .
This text area address array has the format shown
in figure 5-18.

The application program indicates the total size of
its text area buffers in each NETGTFL call through
fie lds i n t he t ex t a rea add ress a r ray. I f a b l ock
l a r g e r t h a n t h i s t o t a l s i z e i s q u e u e d f r o m t h e
spec i fied connec t i on , t he b lock rema ins queued ,
u n l e s s t r u n c a t i o n i s i n e f f e c t . (S e e s e c t i o n 3 .)
AIP copies the header word of the b lock into the
application program's header area, sets the ibu bit
of the header to one to indicate the condition, and
places the actual length of the queued block in the
t ic fie ld o f the header. The app l ica t ion program's
text areas are unchanged from what they contained
a f t e r a n y p r e v i o u s t r a n s f e r. To o b t a i n t h e s t i l l -
queued block, the program must issue a separate
NETGETF ca l l , i nd i ca t i ng a bu f fe r s i ze su ffic ien t
to accommodate the queued block. The program also
can reques t da ta t runca t ion us ing the DC/TRU/R
asynchronous superv i so ry message . (See sec t i on
3 .) T h e c o n n e c t i o n p o i n t e r w i t h i n t h e l i s t i s
incremented regardless of whether a transfer occurs,
so the same connection is not involved in a second
NETGTFL call.

I f the to ta l s ize o f the app l ica t ion program's tex t
areas is la rger than the b lock t rans fer red by the
NETGTFL cal l , the port ions of the text areas after
the last word used for the block remain unchanged
from what they contained after any previous trans
fe r. I f t he t rans fe r red b lock does no t comp le te l y
fi l l t h e l a s t w o r d u s e d f o r i t , a l l c h a r a c t e r
p o s i t i o n s i n t h e l a s t w o r d a r e a l t e r e d b y t h e
t rans fe r. On ly the le f tmos t charac te r pos i t i ons o f
the last word indicated by the b lock header word
t ic field value contain meaningful data.

I f d a t a o r s u p e r v i s o r y m e s s a g e b l o c k s a r e n o t
ava i lab le f rom any connec t ion on the l i s t , a nu l l
b l ock i s r e tu rned . A heade r wo rd w i t h an app l i
cat ion block type of zero is p laced in the header
area, and the text areas are unchanged from their
con ten t s a f t e r t he l as t b l ock was ob ta i ned . Nu l l
(empty) blocks are not returned from each connec
t i o n .

Figure 5-19 contains an example of NETGTFL use.
T h e p r o g r a m p r e v i o u s l y a s s i g n e d a l l i n t e r a c t i v e
consoles to l is t 0 when accept ing connect ion wi th
them (code not shown). A NETGTFL call is used to
p e r i o d i c a l l y p o l l l i s t 0 f o r a s y n c h r o n o u s s u p e r
visory messages affect ing new or exist ing connec
t i ons , and fo r i n te rac t i ve i npu t a f f ec t i ng conso le
c o n n e c t i o n s . I f t h e p o l l i s s u c c e s s f u l (d o e s n o t
re turn a nu l l b lock) and re turns an asynchronous
supervisory message block, subroutine SMP is called
t o p r o c e s s t h e m e s s a g e . I f t h e p o l l r e t u r n s a
ne twork da ta b lock header bu t no b lock (tes t o f
ABHIBU fa i l s) , a NETGETF ca l l i s i ssued w i th a
t o t a l t e x t a r e a b u f f e r s i z e l a r g e r t h a n i n t h e
original call; this NETGETF call should successfully
retrieve the queued block.

taa1

s ize;

address.;

59 39

taa-i unused

30 18

unused address^

b
taar unused unused address.

The symbolic address of the beginning of the array used in the NETGTFL call.

The length in central memory words of block fragment i. This field can contain the values
1 £ size.; < 63. The sum of all na values for size^ defines the size in central memory
words of fne largest block the call can transfer; this sum is the equivalent of the tlmax
parameter in the NETGETL statement. The sum of all na values for size can be 0, but this
resul ts in an input-block-undel iverable condi t ion; that is , an appl icat ion block header is
returned with the ibu field set, even when an empty block of application block type 2 is
queued (a block with a tic value of 0).

The numeric relative address of the first word of the application program text area to
receive block fragment i. The text area addresses given in this field need not be for
contiguous central memory areas.

Figure 5-18. NETGTFL Statement Text Area Address Array

60499500 R 5-13

DIMENSION LINE1(6),...,LINE24(6)
INTEGER HA,TAA(24),OVRFLNA
DATA NA/12/,HA/0/,LINE1/6*L'"7,...,LINE24/6*L,,,7

•
•

TAA(1)=SHIFT(6,30).0R.L0CF(LINE1)
•
•

NALN=0
1 CALL NETGTFL(NALN,HA,NA,TAA)

IF(NFETCH(HA,LMABHABT").EQ.O) GO TO 5
IF(NFETCH(HA,L"ABHABT").NE.3) GO TO 4
CALL SMP(HA,NA,TAA)
GO TO 1

4 IF (NFETCH (HA,L"ABHIBU").EQ.D GO TO 3
2 CONTINUE

•
•

GO TO 1
3 OVRFLNA=NFETCH(HA,L"ABHTLC")/60.0

ATEMP=NFETCH(HA,L"ABHTLC")/60.0
IF(ATEMP.NE.OVRFLNA)OVRFLNA=OVRFLNA + 1
IF(0VRFLNA.GT.24) GO TO 9
NACN=NFETC H(HA,L"ABHADR")
CALL NETGETF(NACN,HA,OVRFLNA,TAA)
GO TO 2

5 CONTINUE
•
•

9 STOP

Figure 5-19. NETGTFL Statement
FORTRAN 5 Example

NAM fragments the block transferred by the NETGTFL
or NETGETF call into 12 (NA) or more (OVRFLNA) text
a r e a s (L I N E 1 t h r o u g h L I N E 2 4) , i d e n t i fi e d i n t h e
24-entry text area address array (TAA). Each text
area is in tended to hold one 60-character d isp lay
coded physical l ine from a full page of input. NAM
p l a c e s e a c h l i n e i n t o s i x c o n s e c u t i v e c e n t r a l
memory words. The calculation of OVRFLNA assumes

that an application character type of 4 is used for
i n p u t , b u t t h e s i z e o f t h e L I N E 1 t e x t a r e a i s
a d e q u a t e f o r b o t h a p p l i c a t i o n c h a r a c t e r t y p e 4
l ines and the app l i ca t ion charac te r t ype 1 words
used for asynchronous superv isory messages. The
FORTRAN function LOCF stores the address of each of
the text area arrays in TAA, and the TAA entry has
a c o r r e s p o n d i n g l e n g t h o f 6 ; o n l y t h e fi r s t TA A
assignment statement is shown.

PROCESSING CONTROL STATEMENTS
The three processing control statements NETWAIT,
NETSETP, and NETCHEK cause or reduce processing
d e l a y s t o a l t e r t h e a p p l i c a t i o n p r o g r a m ' s e f fi
c i e n c y . T h e s e t h r e e s t a t e m e n t s a r e u s e d i n
c o n j u n c t i o n w i t h t h e s u p e r v i s o r y s t a t u s w o r d
established by the application program in its NETON
statement. NETWAIT and NETCHEK can be used by any
application program; NETSETP is used only by pro
g r a m s p e r f o r m i n g p a r a l l e l m o d e p r o c e s s i n g , a s
described in section 4.

SUSPENDING PROCESSING (NETWAIT)
The NETWAIT statement (figure 5-20) performs the
fo l lowing func t ions :

Al lows an appl icat ion program to make i tself a
cand ida te fo r ro l lou t by the opera t ing sys tem
or otherwise suspend its processing

A l l o w s t h e a p p l i c a t i o n p r o g r a m t o d e c l a r e a
maximum time for processing suspension

Allows the application program to delay resump
t ion o f p rocess ing un t i l i npu t i s ava i lab le fo r
i t o n a n y o f i t s l o g i c a l c o n n e c t i o n s , o r o n
connection zero

Causes the supervisory status word (NETON nsup
parameter) fo r the program to be updated on
return from the NETWAIT call

CALL NETWAIT(time,flag)

time

fl a g

An input parameter, 1 £ time £4095, specifying the number of seconds for which the application
program should be suspended. If a value of zero is declared, a default value of one is used;
if a value greater than 4095 is declared, a default value of 4095 is used.

An input parameter, specifying the conditions under which processing should be resumed,
parameter can have the values:

This

Return from NETWAIT call (resume processing) when input is available from any connec
tion, or when the period declared by the time parameter has elapsed. A minimum time
of 1 second is used if input is not available immediately. When a flag value of zero
is declared and input is available immediately, the value declared for the time
parameter is ignored.

Return from NETWAIT call (resume processing) when the period declared by the time
parameter has elapsed, regardless of whether input is available from any connection.
Also forces buffer output to be transmitted.

Figure 5-20. NETWAIT Statement FORTRAN Call Format

5-14 60499500 R - ^

/$s**y

Cal ls to NETWAIT with nonzero flag values always
suspend process ing when suspension is poss ib le .
Ca l l s to NETWAIT w i th ze ro flag va lues suspend
processing only when no input is available.

NETWAIT calls with a flag value of zero should only
be made after al l outstanding asynchronous super
visory messages have been fetched by the program.
A NETWAIT call with a flag value of zero made while
any asynchronous supervisory message remains queued
always results in immediate return to the program,
regardless of whether any other input is available.
Such ca l ls represent unnecessary addi t ional proc
essing by AIP and the program and do not cause
transfer of work l is ts that are not complete ly fi l led
(effect ively delaying output resul t ing from previous
calls to NETPUT or NETPUTF).

If NETWAIT is called while the program is operating
i n p a r a l l e l m o d e , p a r a l l e l m o d e o p e r a t i o n i s
i gno red , and the p rog ram i s suspended . Pa ra l l e l
mode operat ion is reinstated when return from the
NETWAIT cal l occurs. You should not issue a cal l
to NETWAIT when i t would interrupt paral le l mode
operat ion, un less a ca l l to NETCHEK firs t re turns
a n i n d i c a t i o n t h a t a l l w o r k l i s t p r o c e s s i n g i s
completed.

You should include NETWAIT calls in an application
program that repeatedly pol ls the network for input
(via NETGET, NETGETL, NETGETF, or NETGTFL calls).
I f s u c h p r o g r a m s o m i t f r e q u e n t N E T WA I T c a l l s ,
severe per formance degradat ion can resul t ; i f you
p e r f o r m o n - l i n e d e b u g g i n g o f s u c h a p p l i c a t i o n
programs, you should use small t ime l imits for the
job while it is in the debugging phase.

You should use NETWAIT calls as part of the appli
ca t ion p rogram's mechan isms to con t ro l queu ing .
For example, the application program must be sure
before each NETPUT or NETPUTF call that the call
w i l l not cause the log ica l connect ion 's appl icat ion
b l o c k l i m i t t o b e e x c e e d e d . W h e n t h e l i m i t h a s
been reached, the appl icat ion program should not
output another block unt i l i t has received a block-
del ivered supervisory message for a b lock al ready
s e n t . B e c a u s e r e p e a t e d p o l l i n g f o r s u p e r v i s o r y
message input to obtain these acknowledgments can
degrade program performance, a NETWAIT call should
follow any NETPUT or NETPUTF call that might cause
the l im i t to be reached. The t ime va lue dec lared
in the NETWAIT call should be large enough to allow
a block-delivered supervisory message to be received
before another NETPUT or NETPUTF call occurs.

S i m i l a r l y, a n a p p l i c a t i o n p r o g r a m s h o u l d n e v e r
enter parallel mode after a NETPUT call unless the
program first issues a NETWAIT cal l . Because AIP
d o e s n o t t r a n s f e r w o r k l i s t s p a r t i a l l y fi l l e d b y
NETPUT ca l ls , the NETWAIT ca l l i s necessary to
f o r c e t r a n s f e r o f t h e w o r k l i s t . (S e e W o r k l i s t
Processing in section 4.) If NETWAIT is not called,
the t ime between the NETSETP cal l and the first
NETCHEK call is not used for network processing.

Figure 5-21 contains examples of NETWAIT statement
use. The program sends a series of data message
blocks with NETPUT cal ls, issues a NETWAIT that
t r a n s f e r s t h e w o r k l i s t a n d b e g i n s b l o c k t r a n s
m iss ion , and t hen checks t he supe rv i so ry s ta tus
word (NSUP). If no asynchronous supervisory mes
sages are queued on return from the first NETWAIT

MSK1=0"02000000000000000000"

CALL NETPUT(HA,TA,TLMAX)
ITIME=1
IFLAG=1
CALL NETWAIT(ITIME,IFLAG)
IF(NSUP.AND.MSK1.EQ.MSK1) GO TO 1
ITIME=10
IFLAG=0
CALL NETWAIT(ITIME,IFLAG)

1 IACN=0
CALL NETGET(IACN,HA,TA,TLMAX)
CALL SMP(HA,TA,TLMAX)

•

Figure 5-21. NETWAIT Statement
FORTRAN 5 Examples

ca l l , no b l ock -de l i ve red message can have been
r e c e i v e d a n d t h e N S U P t e s t f a i l s . T h e p r o g r a m
issues a second NETWAIT call specifying delay until
input on any connection (including the asynchronous
supervisory message connection 0) is queued.

CONTROLLING PARALLEL MODE (NETSETP)
The NETSETP statement (figure 5-22) begins or ends
an app l i ca t ion p rogram's para l le l mode opera t ion .
Para l le l mode operat ion involves work l is t process
ing and is discussed in detail under both headings
i n s e c t i o n 5 . W h i l e i n p a r a l l e l m o d e , a n a p p l i
cation program cannot use any AIP statements other
than NETOFF or NETCHEK until AIP processing com
pletion has been indicated in the supervisory status
word.

CALL NETSETP(opt ion)

opt i on An input parameter, specifying whether
parallel mode operation begins or ends
after the NETSETP call. This parameter
can have the values:

=0

* 0

Begin parallel mode operation.

End parallel mode operation.
(This is the default value for
application program operation.)

Figure 5-22. NETSETP Statement
FORTRAN Call Format

The superv i so ry s ta tus word used du r ing pa ra l l e l
mode operation is defined by the nsup parameter in
the application program's NETON statement. The bit
o f t h e s u p e r v i s o r y s t a t u s w o r d c o n c e r n e d w i t h
paral le l mode processing is updated only whi le an
application program is operating in parallel mode.

When an application program is operating in parallel
mode, i t should not a l ter the contents of the text
area used for a NETPUT or NETPUTF call immediately
a f t e r t h a t c a l l . T h e p r o g r a m c a n n o r m a l l y r e u s e

60499500 R 5-15

the area as soon as a call to NETWAIT, NETCET,
NETGETF, NETGETL, or NETGTFL is completed. The
text area used in a NETPUT or NETPUTF call should
n o t b e a l t e r e d u n t i l a f t e r w o r k l i s t p r o c e s s i n g i s
reported complete; nor should the NETON call status
word be tested until then.

A cal l to NETSETP ending paral lel mode operation
should not be issued until a call to NETCHEK returns
an ind ica t ion tha t a l l work l is t p rocess ing is com
pleted. AIP ignores cal ls to NETSETP that attempt
to end para l le l mode opera t ion i f the app l ica t ion
program is not operating in parallel mode.

Figure 5-23 contains examples of NETSETP and NETCHEK
use. The program attempts to reduce the number of
worklist transfers between AIP and NIP to increase
i t s e f fi c i e n c y . I t d o e s t h i s w h i l e s e r v i c i n g a
batch device on application connection number 2 and
transmitt ing to a console on application connection
number 3.

The program flow shown minimizes worklist transfers
b y c o n c e n t r a t i n g t h e c o n s o l e o u t p u t , i n s t e a d o f
i n te r l eav ing each ou tpu t l i ne w i t h NETGET ca l l s
t h a t m i g h t c a u s e w o r k l i s t t r a n s f e r s b y A I P f o r
w o r k l i s t s n o t c o m p l e t e l y fi l l e d . P a r a l l e l m o d e
does not expedite th is efficiency, but requirements
for i t s use are i l lus t ra ted in severa l par ts o f the
code.

W h e n t h e p r o g r a m h a s s e n t d o w n l i n e a l l o f t h e
b locks i t i n tends to send to the 'conso le , i t tes ts
for upl ine data or asynchronous superv isory mes
s a g e s . I f n e i t h e r i s f o u n d , N E T W A I T r o l l s t h e
program out for 7 seconds and suspends para l le l
mode processing temporarily.

When asynchronous supervisory messages are found,
the program leaves parallel mode processing with a
nonzero IOPT parameter in another NETSETP cal l .
The program can then fetch the messages without
needing to test NSUP for completion of the NETGET
c a l l .

•
•

ITLMAX=410
IIACN=3
IBACN=2
I0PT=0
CALL NETSETP(IOPT)

10 DO 99, I = 1, 5, 1
CALL NSTORE(IIHA(I),L"ABHADR",IIACN)
CALL NSTORE(IIHA(I),L"ABHABN",I)
CALL NETPUT(IIHA(I), ITEXT(20*(I-1)))

88 ITEMP=NSUP.AND.SHIFT(1, 59)
IF(ITEMP.EQ.SHIFT(1, 59)) GO TO 99
CALL NETCHEK
GO TO 88

99 CONTINUE
98 ITEMP=NSUP.AND.SHIFT(1, 55)

IF(ITEMP.EQ.SHIFT(1, 55)) GO TO 3
ITEMP=NSUP.AND.SHIFT(1, 56)
IF(ITEMP.EQ.SHIFT(1, 56)) GO TO 4
ITIME=7
IFLAG=1
CALL NETWAIT(ITIME,IFLAG)
GO TO 98

3 IACN=0
I0PT=1
CALL NETSETP(IOPT)
CALL NETGET(IACN, IHA, ITA, ITLMAX)

•

4
•

I0PT=0
CALL NETSETP(IOPT)
CALL NETGEKIIACN, IIHAd), ITEXTd), ITLMAX)

5 CALL NETCHEK
ITEMP=NSUP.AND.SHIFT(1, 59)
IF(ITEMP.NE.SHIFT(1, 59)) GO TO 5

•

6
•

CALL NETCHEK
ITEMP=NSUP.AND.SHIFT(1, 59)
IFdTEMP.NE.SHIFTd, 59)) GO TO 6

•
•

GO TO 10

Figure 5-23. NETSETP and NETCHEK Statement
FORTRAN 5 Examples

When upline data is found, the program makes sure
it is in paral lel mode with a zero IOPT parameter
i n a NETSETP ca l l . Th i s ca l l i s i gno red i f i t i s
reached by a path that had already caused parallel
mode processing to begin. While in paral lel mode,
the program fetches any queued input from the con
sole. NETCHEK is called and tested for completion
af ter the NETGET cal l . Af ter the at tempt to fe tch
data from the console is completed (the input dis
posed of by code is not shown), a similar attempt
(not shown) is made to fetch data from the batch
device. When any batch data has been disposed of,
t h e p r o g r a m r e t u r n s t o i t s o u t p u t l o o p f o r t h e
conso le (hav i ng p resumab l y p repa red t he ou tpu t
b u f f e r s fi r s t) .

I f a s y s t e m c o n t r o l p o i n t j o b i s o p e r a t i n g i n
parallel mode when it loses communication with NIP,
a l l fu r ther network input and ouput AIP ca l ls are
i g n o r e d , b u t t h e p r o g r a m i s n o t a b o r t e d . T h e
program should check the n bit in the supervisory
s ta tu s w o rd (se e fig u re 5 -2) a f t e r co mp l e t i o n o f
a l l n e t w o r k i n p u t a n d o u t p u t c a l l s t o d e t e r m i n e
whether or not it is sti l l communicating with NIP.

I f a sys tem con t ro l po in t job i s no t opera t ing in
parallel mode when it loses communication with NIP,
i t is aborted when i t makes the next AIP request.
The operat ing system aborts al l nonsystem control
point jobs when NIP aborts, regardless of operating
mode.

CHECKING COMPLETION OF WORKLIST
PROCESSING (NETCHEK)

The application program uses the NETCHEK statement
(fi g u r e 5 - 2 4) t o p e r f o r m s e v e r a l f u n c t i o n s . E a c h
call to NETCHEK:

Updates b i t 59 of the superv isory status word
(ident ified by the nsup parameter used in the
NETON statement) on return from the call, when
the program is in parallel mode

Forces A IP to a t t emp t t r ans fe r o f i t s cu r ren t
w o r k l i s t t o N I P i f t h e t r a n s f e r h a s n o t y e t
occu r red , i f t he p rog ram i s r unn ing i n e i t he r
parallel or nonparallel mode

5-16 60499500 R

CALL NETCHEK

Figure 5-24. NETCHEK Statement
FORTRAN Call Format

w o r k l i s t p r o c e s s i n g o p e r a t i o n i s p e n d i n g . A c a l l
to NETSETP ending paral lel mode operation should
not be issued unt i l a cal l to NETCHEK returns an
i n d i c a t i o n t h a t a l l w o r k l i s t p r o c e s s i n g h a s b e e n
completed.

y t f ^ » \

It is not necessary to call NETCHEK to cause work-
l i s t t r a n s f e r s . Wo r k l i s t t r a n s f e r s o c c u r n o r m a l l y
a f te r a l l the requ i rements descr ibed in sec t ion 4
under Worklist Processing have been met. A NETCHEK
c a l l c a u s e s a n a t t e m p t t o t r a n s f e r a w o r k l i s t i n
s i t u a t i o n s t h a t d o n o t m e e t t h e s e c r i t e r i a . T h i s
operat ion is equivalent to a NETWAIT except that
processing is not suspended.

By checking the supervisory status word after each
NETCHEK call, the application program can determine
the most recen t s ta te o f work l i s t p rocess ing and
determine whether addi t ional AIP rout ine cal ls can
be issued. NETCHEK, NETOFF, and NETWAIT are the
on ly A IP s ta tements tha t can be used wh i le any

If NETON is cal led during paral lel mode operation,
NETCHEK shou ld no t be ca l l ed un t i l a l l wo rk l i s t
process ing is repor ted comple te . The NETON ca l l
status word does not contain meaningfuL information
u n t i l p r o c e s s i n g f o r t h e w o r k l i s t c o n t a i n i n g t h e
NETON cal l is complete. NETCHEK should not be
ca l l ed a f t e r a NETOFF ca l l i s i s sued i n pa ra l l e l
mode. A NETOFF call ends parallel mode operation
by mak ing wo rk l i s t p rocess ing comp le t i on s ta tus
impossible.

Workl is t processing is descr ibed in sect ion 4. The
s u p e r v i s o r y s t a t u s w o r d i s d e s c r i b e d u n d e r t h e
heading Connecting to Network at the beginning of
t h i s s e c t i o n . F i g u r e 5 - 2 3 c o n t a i n s e x a m p l e s o f
NETCHEK use.

60499500 R 5-17

0̂%.

0*%

CHARACTERISTICS OF AN APPLICATION PROGRAM

/0^\

This sect ion descr ibes the structure and execut ion
of a Network Access Method (NAM) application pro
gram.

NOTE

You cannot execute application pro
grams as Transaction Facil i ty tasks.

NOS SYSTEM CONTROL POINT
FACILITY
The NOS system contro l po int fac i l i ty permi ts the
exchange of data between programs running at dif
ferent control points. These programs are cal led:

System control point jobs when they are formally
defined as subsystems of the operating system

User control point jobs when they exchange data
with a system control point job

System cont ro l po in t jobs (subsystems) can make
p r i v i l e g e d r e q u e s t s t o t h e o p e r a t i n g s y s t e m a n d
execute wi th a very h igh pr ior i ty. Network system
con t ro l po in t j obs such as the Ne twork In te r face
Program (NIP) usually reside in the operating system
l i b r a r y .

Application programs accessing the network execute
as system contro l point jobs or user contro l point
jobs us ing the system contro l po in t fac i l i ty. S ince
the code that implements this faci l i ty is embedded
i n t h e A p p l i c a t i o n I n t e r f a c e P r o g r a m (A I P) , i t
r e m a i n s t r a n s p a r e n t t o t h e a p p l i c a t i o n p r o g r a m .
Cer ta in aspec ts o f sys tem cont ro l po in t jobs and
user cont ro l po in t jobs , however, do a f fec t app l i
cation program operation.

An appl icat ion program cannot execute successful ly
u n l e s s t h e C U C P b i t i s s e t i n t h e a c c e s s w o r d
assoc ia ted w i t h t he use r name o f i t s j ob . I f t he
program attempts to access the network and the CUCP
b i t i s n o t s e t , t h e p r o g r a m i s a b o r t e d w i t h t h e
dayfile messages ILLEGAL USER ACCESS and SYSTEM
ABORT, and no error exit processing occurs. Access
word b i ts are se t th rough the MODVAL u t i l i t y, as
described in the NOS System Maintenance reference
manual.

Whi le connect ion to the network ex is ts , a network
appl icat ion program always has a minimum system
ac t i v i t y coun t o f one . I f t he app l i ca t i on p rog ram
uses the contro l point manager system macro cal l
(GETACT), the minimum system activity count appears
i n t h e S C A fi e l d o f t h e c a l l . W h e n a n e t w o r k
app l i ca t i on p rog ram ends i t s connec t i on w i th t he
network by a NETOFF call, the system activity count
drops to zero. The GETACT macro is descr ibed in
volume 4 of the NOS reference set.

BATCH JOB STRUCTURE
A batch appl icat ion program job using the Network
Access Method i s s t ruc tu red l i ke any o the r ba tch
job .

A job is a sequence of commands, optionally followed
b y s o u r c e p r o g r a m s , o b j e c t p r o g r a m s , d a t a , o r
directives. A batch job begins with the job command
and ends with an end-of- information indicator. Jobs
can consist of either physical card decks or images
of card decks.

Application program jobs can enter the system in one
of two ways:

Batch jobs on cards are read in through card
r e a d e r s a t t h e c e n t r a l s i t e . B a t c h j o b s o f
card images are read from a load tape under the
direct ion of the system console operator or the
di rect ion of another job.

Remote batch jobs on cards are read in through
card readers a t remote s i te termina ls . Remote
batch job card images are transmitted to form a
fi l e a t t h e h o s t c o m p u t e r . A l l r e m o t e b a t c h
jobs reach the host computer fac i l i t ies through
the Remote Batch Facility (RBF).

Batch jobs have the same structure no matter what
thei r or ig in . Remote batch jobs d i f fer f rom centra l
s i t e b a t c h j o b s i n t h a t o u t p u t r e t u r n s t o t h e
te rm ina l and tha t remote jobs a re sub jec t to the
l imitat ions of the physical equipment at the remote
s i t e . T h e f o l l o w i n g i n f o r m a t i o n a b o u t j o b d e c k s
applies to both card decks and card deck images.

T h e fi r s t c a r d o f t h e b a t c h j o b d e c k i s t h e j o b
command; the last card has a 6/7/8/9 multiple punch
in co lumn 1. Cards wi th a 7 /8 /9 or 6 /7 /9 mul t ip le
punch in column 1 divide the deck into a command
port ion, program port ion, and opt ional data port ion.
When a job deck is created as card images from a
t ime-shar ing terminal , the cEOR and cEOF ent r ies
resul t in the logical equivalent of 7/8/9 and 6/7/9,
respec t i ve l y. I f t he j ob deck i s submi t t ed f rom a
HASP or bisynchronous stat ion through the Remote
Batch Faci l i ty, the /*EORnn and /*EOI cards resul t
i n t h e l o g i c a l e q u i v a l e n t o f 7 / 8 / 9 a n d 6 / 7 / 8 / 9 ,
respec t i ve l y. HASP o r b i synch ronous s ta t i on ca rd
readers and card punches support 7/8/9 cards but
not 6/7/8/9 cards; 200 User Terminal card readers
d o n o t r e c o g n i z e e i t h e r / * E 0 R n n c a r d s o r / * E 0 I
cards.

Jobs in the system wai t ing to begin execut ion are
c o l l e c t i v e l y k n o w n a s t h e i n p u t q u e u e . E a c h j o b
enters the system with the user job name specified
by the first command in the job deck. The operating
system changes this name, based on the job command
p r e s e n t , t o d i s t i n g u i s h i t f r o m a l l o t h e r s i n t h e
system.

60499500 R 6-1

Once a job enters central memory and begins execu
tion, the image of the job deck is known as a file
by the name of INPUT. During job execution, a file
with the name of OUTPUT is generated. When the job
completes execution, file OUTPUT becomes part of
the output queue. The output queue is the col lec
t ive name for output fi les remaining in the system
when the jobs that generated them have completed
execut ion. As pr inters, punches, or remote devices
become ready, the operating system or remote batch
software causes files from the output queue to be
p h y s i c a l l y o u t p u t . S u c h fi l e s n o r m a l l y r e t u r n t o
the user with the system-generated name of the job
that created them.

COMMANDS
Commands are instructions to the operating system
o r i t s l o a d e r. T h e y a r e g r o u p e d t o g e t h e r a t t h e
beg inn ing o f a deck . Co l l ec t i ve l y, t he commands
form a job stream.

Commands execute in the order in which they appear
in the job stream, unless that order is modified by
t h e o p e r a t i n g s y s t e m c o n t r o l l a n g u a g e . C o n s e
quently, the order of the commands governs the order
of other sections in the deck.

T h e u s e r i s r e s p o n s i b l e f o r s t r u c t u r i n g t h e j o b
decks so that each command read from file INPUT

corresponds cor rect ly w i th the sect ions o f the job
deck. The operating system handles each section of
t he j ob deck on l y once , un less t he j ob spec i fies
contrary handl ing.

The job command portion of an application program
job deck normally contains a USER command as its
s e c o n d c a r d . (S e e fi g u r e 6 - 1 .) T h e u s e r n a m e
specified in this command must have bit 11 (CUCP)
of i ts corresponding access word set , so that the
appl icat ion program can successful ly complete cal ls
to system control points. The NOS System Mainte
nance reference manual describes the mechanism for
s e t t i n g a c c e s s w o r d b i t s . S o m e i n s t a l l a t i o n s
require a CHARGE command following the user command.

Until the program is successfully compiled, the only
other required command is a compiler or assembler
execu t i on command i n t he f o rm desc r i bed i n t he
appropriate reference manual for the product being
used . F igu re 6 -1 i l l u s t ra tes t he use o f t he com
piler execution command for FORTRAN 5. If the job
uses a compiler, a LIBRARY or LDSET command is
n e e d e d t o s a t i s f y e x t e r n a l s f r o m l o c a l l i b r a r i e s
NETIO or NETIOD. I f the job uses COMPASS, the
COMPASS command must declare NETTEXT to satisfy AIP
externals and to define the symbolic names used for
the field access macro utilities NFETCH and NSTORE.
(See section 4.)

End-of-lnformation Card

Separator Card

Data Statements

Separator Card

Program Statements,
Including AIP Calls

Separator Card

Commands,
Including a Compiler
or Assembler Call

Job Command

hi
IL

n
JL

/ lgo .
—/ ldset(lib=netiodT
//FTN5(L0=S/-A)

/CHARGE(0059,2934657)
/USER(APPL1,PASS,FAM17"

RMV3.

Figure 6-1. Typical Job Structure for System Input

6-2 60499500 R

JOB IDENTIFICATION PROGRAM CONTENT

r T h e n e t w o r k s o f t w a r e i d e n t i fi e s a n a p p l i c a t i o n
program and issues dayfile messages concerning the
program on the basis of the aname parameter used in
the program's NETON cal l . The operat ing system,
however, is unaware of this name and issues dayfile
messages on the basis of the job name assigned to
the program according to the contents of the job's
command por t ion. To ensure that a l l dayfi le mes
sages concern ing the appl icat ion program can be
identified, you should take the following steps when
the program is run as a batch job:

Determine the method NOS will use to assign a
job name to the application program.

If the job contains commands to reprieve itself from
an abort (RERUN or RESTART), the program portion of
the job must issue a NETOFF and a new NETON call in
order to continue accessing the network through NAM.

When an appl icat ion program is s t ructured to use
overlays, the common blocks used by all AIP routines
must res ide in the ma in (zero- leve l) over lay. The
opera t ing sys tem loader p laces the b locks in the
main overlay only if the application program makes
a t l e a s t o n e c a l l t o a n A I P r o u t i n e o t h e r t h a n
NETCHEK in the main over lay. At a minimum, the
NETON cal l must therefore be placed in the main
overlay of the program.

D e t e r m i n e t h e fi r s t f o u r c h a r a c t e r s o f t h a t
name.

Inform the host operator of the first characters
of the job name corresponding to the application

Do not thereaf ter a l ter the por t ion o f the job
commands that determines the job name.

A l te rna t i ve ly, you can use the NOS con t ro l po in t
manager macro GETJN to determine the job name
assigned to the application program job during each
e x e c u t i o n . F o r t h e h o s t o p e r a t o r ' s i n f o r m a t i o n ,
this name can then be entered in the system dayfile
wi th a message ind icat ing i ts app l ica t ion program
name equivalent. This operat ion can be performed
with the NOS system macro MESSAGE. GETJN and
MESSAGE are described in volume 4 of the NOS 2
reference set.

PROGRAM EXECUTION THROUGH IAF
Your application program can be executed from the
I n t e r a c t i v e F a c i l i t y i n s e v e r a l w a y s : |

- As a SUBMIT command file batch job

- As a ROUTE command file batch job

- As an interactive job

- As a detached interactive job (so your
terminal can log in to i t)

The use of SUBMIT and ROUTE is described in volume
3 of the NOS reference set . SUBMIT and ROUTE
command file jobs have the same command content
requirements as other batch jobs.

F i g u r e 6 - 2 s h o w s t h e p r o c e d u r e f o r i n t e r a c t i v e
execution of the sample program RMV2 (chapter 8).
Detached in teract ive job programs have the same
program content requirements as batch job programs.

Your entries are underlined:

/ a t t a c h , r m v " *
/ftn5,i=rmv,lo=0,b=zap -«

0.479 CP SECONDS COMPILATION TIME.
/ ldset (l ib=net iod —
LDR>? zap «
ESCe-

JSN: AAYS SYSTEM: BATCH SRU:
STATUS: NAM VER 1.5- 2D

ESCd—

4.889

JOB DETACHED, JSN=AAYS
JSN: AAZB, NAMIAF

RECOVERABLE JOB(S)

J S N U J N S T A T U S

AAYS AANY EXECUTING

TIMEOUT

Attach direct access source file
Compile it

Load it
Execute it
Bypass the IAF input queue to find out if the job step
was successful

Detach the running (rolled out) application program

Figure 6-2. Interactive Program Execution Procedure Example (Sheet 1 of 2)

60499500 S 6-3

ENTER GO TO CONTINUE CURRENT JOB,
RELIST TO LIST RECOVERABLE JOBS,
OR DESIRED JSN: go, ,.

/bye,rmv2 —-

UN=XXXXXXX LOG OFF 12.07.08.
J S N = A A Z B S R U - S 2 . 0 0 3
IAF CONNECT TIME 00.04.01.

RMV2 VER 3
INPUT PLSSHUTD —

RMV2 CONNECT TIME 00.00.08.

JSN: AAZC, NAMIAF-.

RECOVERABLE JOB(S)

J S N U J N S T A T U S T I M E O U T

AAYS AANY SCP ROLLED

ENTER GO TO CONTINUE CURRENT JOB,
RELIST TO LIST RECOVERABLE JOBS,
OR DESIRED JSN: aay_s —

SRU:JSN: AAYS SYSTEM: BATCH
STATUS:
CHARACTER SET: NORMAL MODES: PROMPT ON
JOB IN SYSTEM. ENTER 60 TO CONTINUE.

go -*
ACSR, 1.000UNTS.
/enquire,f —

0.034

LOCAL FILE INFORMATION.

FILENAME LENGTH/PRUS TYPE STATUS

INPUT*
INPUT
OUTPUT
ZZZZZDN
SUBFILE
RMV
ZAP
ZZZZZSN

TOTAL = 8

FS
1 IN.* BOI

LO.
LO.

3 LO. EOR WRITE
1 LO. BOI

34 PH.* EOR
32 LO. EOF
2 LO. EOR WRITE

Startup a new job so you can switch applications

Use an IAF application switch command

Respond to RMV2 prompt with command that shuts it down

Connection switch back to IAF is automatic

•Recover the detached application program (has called
NETOFF, so this rollout is controlled by IAF)

Roll it back in

Here are all the files NETIOD should create

^19$.

Figure 6-2. Interactive Program Execution Procedure Example (Sheet 2 of 2)

TYPES OF APPLICATION
PROGRAMS
All application programs should be specified in
COMTNAP. When an application is defined also in
the local configuration file it can be declared as
having one of the following attributes:

Disabled
Unique identifier
Privileged
Request startable
Have more than one copy on any one host

Access to an application program can also be con
trolled. A program can be:

A restricted access or general access appli
cation program

A mandatory or primary application program

These access types are separately established for
each connection with the program. The first type
is controlled through the user name associated with
the connection. The second type is controlled
through the terminal device name associated with
the connection.

6-4 60499500 S

DISABLED
A disabled appl icat ion is configured in the network
but is not al lowed to access the network unti l the
host operator enters an enable command to allow it
to be connected.

UNIQUE IDENTIFIER
A u n i q u e i d e n t i fi e r a p p l i c a t i o n p r o g r a m r e q u i r e s
t h a t i n t e r a c t i v e c o n s o l e u s e r a c c e s s t o i t b e
r e s t r i c t e d o n t h e b a s i s o f t h e l o g i n p a r a m e t e r s
used . On l y one i n t e rac t i ve conso le w i t h a g i ven
combination of family name and user name index can
be connected wi th a un ique ident ifier app l ica t ion .
NVF re jects a termina l user 's request to be con
nec ted w i t h a un ique i den t i fie r app l i ca t i on i f t he
user logs in with a family name and user name index
combination used by a console that is already con
nected with the appl icat ion. NVF tel ls the terminal
user to t ry again later.

As an example , the Remote Batch Fac i l i t y (RBF)
routes i t s ou tpu t fi les on the bas is o f the fami ly
and user names used when the terminal console logs
in . So tha t ou tpu t w i l l no t be mis rou ted , RBF is
no rma l l y configu red as a un i que i den t i fie r app l i
cation program. Thus the family name and user name
index combina t ions o f a l l conso les access ing the
program are guaranteed to be unique.

PRIVILEGED

Privi leged application programs must have an SSJ=
e n t r y p o i n t t o a c c e s s t h e n e t w o r k s u c c e s s f u l l y.
They also often have the CSOJ bit set in the access
wo rd assoc i a ted w i t h t he use r name f o r t he j ob
executing the program code.

The CSOJ b i t p rov ides t he p rog ram w i t h sys tem
o r i g i n t y p e p e r m i s s i o n . J o b s w i t h s y s t e m o r i g i n
type permission can be executed by host operator
t y p e - i n . S u c h j o b s u s u a l l y r e s i d e u n d e r t h e
operating system user name in the operating system
p e r m a n e n t fi l e c a t a l o g o r a r e i n s t a l l e d i n t h e
operat ing system l ibrary.

Having system origin type permission does not mean
that these programs must have a system origin type
w h e n e x e c u t e d ; r a t h e r , a p r i v i l e g e d a p p l i c a t i o n
program is capable of such execution.

Nonpr i v i l eged app l i ca t ion p rograms can have any
origin type permission but do not contain an SSJ=
e n t r y p o i n t . O r i g i n t y p e p e r m i s s i o n f o r s u c h
programs does not affect access to the network.

T h e p r i m a r y r e a s o n f o r d e fi n i n g a n a p p l i c a t i o n
p rog ram as p r i v i l eged i s t o he lp ensu re ne two rk
secur i ty. Nonpr iv i leged appl icat ion progams cannot
run wi th the appl icat ion program name used for a
p r i v i l e g e d a p p l i c a t i o n , e v e n i f t h e p r i v i l e g e d
application program is not currently running.

Application programs usually become privileged when
t h e y a r e i n s t a l l e d i n t h e s y s t e m . A n i n s t a l l e d
a p p l i c a t i o n p r o g r a m i s o n e t h a t r e s i d e s i n t h e
opera t ing sys tem l ib ra ry. The p rocedure fi le used
to execu te an ins ta l led app l i ca t ion p rogram must
have the CASF bit set in the access word associated
wi th the user name in the fi le . Jobs that a t tempt

to access instal led appl icat ion programs must also
have the CASF bit set in the access words associated
w i t h t h e i r u s e r n a m e s . T h i s b i t m u s t b e s e t f o r
access to the system library.

I f a pr iv i leged appl icat ion program wi th the CSOJ
b i t s e t h a s n o t b e e n i n s t a l l e d i n t h e s y s t e m
l i b r a r y, i t c a n b e e x e c u t e d b y a h o s t o p e r a t o r
type- in tha t invokes i t s p rocedure fi le . The type-
in used has the form:

X. BEGIN(,anamep)

where the anamep parameter i s the name o f the
p r o c e d u r e fi l e . T h e p r o c e d u r e fi l e m u s t b e a
permanent fi le in the operat ing sys tem permanent
file catalog (stored under the system user name and
user index). For the anamep value, you can use a
var iant o f e i ther the program entry point name or
the program network application name (NETON state
men t aname pa rame te r) , and a l l t h ree i den t i fie rs
s h o u l d b e c o o r d i n a t e d . C D C - w r i t t e n a p p l i c a t i o n
p rog rams a re i nvoked th rough p rocedure fi les fo r
which certain naming conventions have been adopted.
These convent ions appear in the NOS Ins ta l la t ion
H a n d b o o k , d e s c r i b e d i n t h e p r e f a c e . S i m i l a r
c o n v e n t i o n s c o u l d b e a d o p t e d f o r s i t e - w r i t t e n
applicat ion programs.

A n i n s t a l l e d p r i v i l e g e d a p p l i c a t i o n p r o g r a m w i t h
the CSOJ bit set can be executed by a host operator
type-in of the form:

X.anament.

where the anament parameter is the name of the
p r o g r a m (fi r s t e n t r y p o i n t) i n s t a l l e d i n t h e
l i b r a r y. F o r t h e a n a m e n t v a l u e , y o u c a n u s e a
va r ian t o f t he p rog ram ne twork app l i ca t i on name
(NETON statement aname parameter).

A pr iv i leged appl icat ion program with the CSOJ bit
s e t t h a t i s n o t i n s t a l l e d c a n b e e x e c u t e d b y a
sys tem conso le ope ra to r t ype - i n t ha t i nvokes an
i n s t a l l e d p r o c e d u r e fi l e . T h i s t y p e - i n h a s t h e
form:

X.anamep.

where the anamep paramete r i s the name o f the
p r o c e d u r e fi l e i n s t a l l e d i n t h e s y s t e m l i b r a r y .
Fo r t h e a n a me p va l u e yo u ca n u se a va r i a n t o f
e i t h e r t h e p r o g r a m e n t r y p o i n t o r t h e p r o g r a m
network application name (NETON statement aname
p a r a m e t e r) , a n d a l l t h r e e i d e n t i fi e r s s h o u l d b e
coord ina ted . As desc r ibed p rev ious l y, t he naming
conventions used by CDC for CDC-written application
programs should be used as a guide for procedure
fi les invok ing s i te -wr i t ten app l i ca t ion p rograms.

Pr iv i leged appl icat ion programs wi th the CSOJ b i t
se t can be au tomat ica l l y s ta r ted when the hos t ' s
n e t w o r k s o f t w a r e i s s t a r t e d . T h i s p r o c e s s i s
d e s c r i b e d i n t h e N O S A d m i n i s t r a t i o n r e f e r e n c e |
manual.

You shou ld no t define an app l i ca t i on p rog ram as
p r i v i l e g e d o r i n s t a l l i t i n t h e s y s t e m l i b r a r y
un t i l the p rogram has been thorough ly debugged.
Programs should be run with batch, remote batch, or
d e t a c h e d i n t e r a c t i v e j o b o r i g i n d u r i n g t h e
debugging process.

60499500 S 6-5

REQUEST STARTABLE
Whenever the application is requested by a terminal
u s e r (t h r o u g h t h e a p p l i c a t i o n n a m e i n t h e l o g i n
process), or by another application (by a CON/ACRQ
message), NVF attempts to start the application.

The file name equivalent to the name of the appli
cation should be made available to NVF through the
N V F s t a r t u p r e c o r d . (S e e t h e N O S I n s t a l l a t i o n
Handbook.)

HAVE MORE THAN ONE COPY
(ON ANY ONE HOST)
More than one copy of an appl icat ion program is
allowed to be simultaneously connected to the net
w o r k , i f s o s p e c i fi e d i n t h e l o c a l c o n fi g u r a t i o n
fi l e . I f s u c h a n a p p l i c a t i o n i s a l s o r e q u e s t
startable, then NVF will start up a new copy of an
appl icat ion whenever a connect ion request for the
app l i ca t ion comes in to the hos t , and a l l ex is t ing
c o p i e s a l r e a d y h a v e t h e i r m a x i m u m n u m b e r o f
connections.

RESTRICTED OR GENERAL ACCESS
Each user name in the hos t can be va l ida ted to
connect to one or any appl icat ion in the network.
This val idat ion is done through MODVAL, which is

I d e s c r i b e d i n t h e N O S A d m i n i s t r a t i o n r e f e r e n c e
manual.

MANDATORY OR PRIMARY
I n t h e l o c a l c o n fi g u r a t i o n fi l e , e a c h t e r m i n a l
console can be designated to have a mandatory or a
p r i m a r y a p p l i c a t i o n a s s i g n e d t o i t . I f t h e a p p l i
cation is mandatory, the terminal cannot be logged
in to any o ther app l i ca t ion regard less o f the user
n a m e e n t e r e d . I f t h e a p p l i c a t i o n i s p r i m a r y, t h e
t e r m i n a l w i l l a u t o m a t i c a l l y b e c o n n e c t e d t o t h e
appl icat ion on the in i t ia l login unless an a l ternate
app l ica t ion name is entered dur ing the log in . For
subsequent connections, the network wil l prompt for
an application and, if a carriage return is entered,
the network will connect the terminal to the primary
a p p l i c a t i o n .

DEBUGGING APPLICATION
PROGRAMS
Appl ica t ion program job content par t ia l l y depends
on the purpose o f the job 's execut ion. I f the job
is executed for debugging purposes, the debugging
method chosen for the program can affect the param
e t e r s s p e c i fi e d i n t h e j o b ' s L D S E T o r L I B R A RY
command and thereby affect the AIP code executed at
the program's control point. This aspect of execu
tion is discussed in the next subsection.

S u c c e s s f u l e x e c u t i o n o f a n a p p l i c a t i o n p r o g r a m
depends on several conditions beyond the scope of
t h e p r o g r a m ' s c o d e . T h e l e s s o b v i o u s o f t h e s e

dependenc ies are d iscussed la ter in th is sect ion;
these dependencies are pr imar i ly requi rements for
p roper configura t ion o f the p rogram and the te r
minals i t serv ices.

FATAL ERRORS

P o r t i o n s o f t h e N e t w o r k A c c e s s M e t h o d i s s u e
d i a g n o s t i c m e s s a g e s f o r a l l f a t a l e r r o r s . T h e s e
messages are described in appendix B.

The form used for AIP and QTRM diagnostics depends
on the library used to load the routines used during
execution. When NETIO is used in the LIBRARY or
LDSET command, a single diagnostic message with a
reason code is written to the program dayfile before
t h e p r o g r a m i s a b o r t e d b y a f a t a l e r r o r . W h e n
NETIOD is used, the same diagnostic is issued, but
supplementary diagnostics can also be issued before
the program aborts.

DEBUGGING METHODS

Two methods are avai lable for debugging the con
nection servicing logic of an application program:

Superv isory and/or data message flow through
the program can be traced by optional AIP code;
this code creates a log file of such messages.

S t a t i s t i c a l i n f o r m a t i o n o n p r o g r a m e x e c u t i o n
can be gathered for performance adjustment by
opt ional AIP code; th is code creates a stat is
tics file of the program's network use.

Debug Log File and Associated Utilities
T h e o p t i o n a l A I P c o d e t h a t c r e a t e s t h e l o g fi l e
gives an application program a means of recording
all exchanges between the program and the network.
The AIP utility routine NETDBG gives the program a
m e t h o d o f s e l e c t i n g e x c h a n g e s t h a t s h o u l d b e
recorded. A running count of the number of mes
sages copied to the debug log fi le is kept in the
superv isory s tatus word (NETON nsup parameter) .
This count enables the appl icat ion to decide when
to call the AIP uti l i ty routine NETREL, which gives
an appl icat ion program a way of releasing, saving,
or processing the current information in the debug
log file. The AIP ut i l i ty rout ine NETSETF gives an
application program a way of requesting the opera
ting system to flush the input/output buffer for the
d e b u g l o g fi l e a u t o m a t i c a l l y , i f t h e a p p l i c a t i o n
t e r m i n a t e s a b n o r m a l l y . T h e A I P u t i l i t y r o u t i n e
NETLOG allows the application to enter messages into
the debug log file.

Whether or not the log file is created depends on
the sys tem l ib rary used to sa t is fy the app l ica t ion
program's externals. AIP code for the program can
be loaded from either NETIO or (i f the instal lat ion
elects to install i t) from NETIOD. When NETIOD is
u s e d , a l l c o d e n e e d e d t o c r e a t e t h e l o g fi l e i s
l oaded ; t he op t i ons f o r l ogg ing bo th supe rv i so ry
messages and network data blocks are automatically

6-6 60499500 S

t u r n e d o n i n i t i a l l y . B e c a u s e t h i s c o d e c a u s e s
addit ional processing overhead and central memory
requi rements for the appl icat ion program's cont ro l
point, you might want to remove the code after the
program is completely debugged. You can remove the
code f rom the job wi thout a l ter ing the appl icat ion
program's s t ruc ture by load ing the AIP code f rom
NETIO instead of NETIOD. When NETIO is used, the
o n l y p a r t s o f t h e l o g fi l e c o d e l o a d e d a r e
do-nothing versions of NETDBG, NETLOG, NETREL, and
NETSETF.

NETDBG Utility

When NETIOD is used, the log file is automatically
created without appl icat ion program cal ls. You can
use calls to NETDBG to switch either or both options
for message logging off and back on throughout the
program.

N E T D B G c a l l s u s e t h e s a m e s y n t a x a n d c a l l i n g
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-3 shows the NETDBG uti l i ty FORTRAN
cal l statement format. NETDBG can only be cal led
after NETON is called and before NETOFF is called.

Calls to NETDBG can occur in programs using either
NETIO or NETIOD. For example, when a NETDBG call
turns either or both supervisory message and net
work data block logging on and a status is returned
indicat ing logging is not possible, no error occurs
a n d t h e o p t i o n s e l e c t i o n i s i g n o r e d . W h e n t h e
program contains a NETDBG call before NETON to turn
both logg ing opt ions o f f and a s ta tus is re turned
i n d i c a t i n g l o g g i n g i s p o s s i b l e , a l o g fi l e i s s t i l l
created to contain a record of the program's NETON,
NETDBG, and NETOFF calls.

NETREL Utility

L o g fi l e c r e a t i o n b e g i n s w h e n t h e a p p l i c a t i o n
program successfully completes its NETON call and
ends when NETOFF is issued. If the application has
no t ca l l ed NETSETF p rev ious l y and t he p rog ram
f a i l s , t h e o u t p u t b u f f e r u s e d f o r t h e l o g fi l e i s
n o t c o m p l e t e l y e m p t i e d i n t o t h e fi l e . I n s u c h a
c a s e , t h e a p p l i c a t i o n s h o u l d r e p r i e v e i t s e l f a n d
issue a NETOFF call, or a NETREL call, to flush the
inpu t /ou tpu t bu f fe r.

N E T R E L c a l l s u s e t h e s a m e s y n t a x a n d c a l l i n g
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-4 shows the NETREL uti l i ty FORTRAN
cal l s ta tement format . To use the NETREL ut i l i ty,
an app l ica t ion must i ssue an in i t ia l i za t ion ca l l to
NETREL wi th a nonzero fi rs t parameter. Th is ca l l
must be issued before NETON and any NETSETF call in
order to set up the ZZZZZDN file correctly.

The first parameter on the NETREL call is the name
of a fi le conta in ing a job command record. I f the
fi le name supp l ied does no t con form to the NOS
operating system file name format, NOS aborts the
job when AIP a t tempts to do inpu t /ou tpu t on the
file. NETREL reads up to 192 central memory words
of the named fi le , or unt i l a log ica l end-of - record
is encountered.

The second parameter on the NETREL call gives the
maximum number of words in each message to be saved
in the ZZZZZDN file.

CALL NETDBG(dbugsup, dbugdat, avail)

dbugsup

dbugdat

a v a i l

An input parameter that turns the
logging of supervisory messages on or
off. This parameter can have the
va lues :

=0

*0

Turn supervisory message
logging on.

Turn supervisory message
logg ing o f f .

When supervisory message Logging is
turned on, all supervisory messages
(except block-delivered messages)
exchanged on connection 0 between the
application program and NAM are log
ged. Logging occurs whenever a call
to NETGET, NETGETL, NETGETF, NETGTFL,
NETPUT, or NETPUTF causes a message
t rans fe r. Th is l ogg ing con t inues
until a call with a nonzero debugsup
parameter is issued.

An input parameter that turns the
logging of data messages on or off.
This parameter can have the values:

=0 Turn ne twork da ta b lock
logging on.

* 0 Tu r n n e t w o r k d a t a b l o c k
Logging off.

When network data block logging is
turned on, all network data blocks
exchanged on any connection between
the application program and NAM are
logged; block-del ivered supervisory
messages (FC/ACK/R) are also logged,
regard less of the value specified
for the dbugsup parameter. Logging
occurs whenever a call to NETGET,
NETGETL, NETGETF, NETGTFL, NETPUT,
or NETPUTF causes a block transfer.
This logging cont inues unt i l a cal l
with a nonzero dbugdat parameter is
issued.

A return parameter that indicates
whether the Logging code portion of
AIP was loaded when the program was
loaded. On return from the cal l ,
this parameter can have the values:

=0 Loading occurred from NETIOD
and logging is possible.

=1 Loading occurred from NETIO
and logging is not possible.

When a value of 1 is returned, speci
ficat ion of 0 for ei ther dbugsup or
dbugdat has had no effect but does
not cause an error.

Figure 6-3. NETDBG Utility FORTRAN Call
Statement Format

60499500 R 6-7

CALL NETREL(lfn,msglth,nrewind)

l f n

msglth

nrewind

An input parameter that names the
file containing the job record to be
copied to the ZZZZZDN file. This
parameter can have the values:

=0 The app l ica t ion program job
provides i ts own disposit ion
of the file ZZZZZDN. Only
the msglth parameter is proc
essed by AIP.

*0 The named fi le conta ins a job
record to dispose of the file
ZZZZZDN. The value declared
f o r l f n m u s t b e l e f t - j u s t i fi e d
with zero fill, and can be one
to seven alphabetic or numeric
characters in any combination
permitted by the NOS operat
ing system file name format.

An input parameter that gives the
maximum number of words of each mes
sage to be saved on the ZZZZZDN file;
0<msglth<410. The value is ignored
iT msglth" is 0.

An input parameter that controls
whether AIP rewinds the job command
record file before the NETREL oper
ation begins. This parameter can
have the values:

=0

to

File lfn is rewound before
any operation is performed.

File lfn is not rewound be
fore any operation is per
formed.

I f the value declared for l fn is zero,
a value of zero for the rewind para
meter is ignored.

Figure 6-4. NETREL Utility FORTRAN Call
Statement Format

I f N E T R E L i s n o t c a l l e d a n d t h e a p p l i c a t i o n i s
loaded with NETIOD, the debug log file exists as a
l o c a l fi l e a s s i g n e d t o t h e a p p l i c a t i o n j o b . T h e
debug log file does not begin with a job command
record ; there fo re , a t job te rmina t ion i t shou ld be
treated (disposed of) as a normal local file.

NETSETF Utility

NETSETF ca l l s use the same syn tax and ca l l i ng
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-5 shows the NETSETF utility FORTRAN
cal l s ta tement format . NETSETF a l lows the input /
output buffer for the debug log file ZZZZZDN to be
flushed automat ica l ly, i f the appl icat ion terminates
abnormal ly. I f the er ror flag code is g reater than
23 octal (the COMPASS EREXIT mnemonic SPET), then
the debug log file is not flushed. See volume 4 of
the NOS reference set for a l ist of the values for
t h e e r r o r fl a g c o d e . F l u s h i n g s e t s t h e fl u s h b i t
in the fi le env i ronment tab le (FET) for the debug
log file and calls the NOS macro SETLOF.

CALL NETSETF(flush,fetadr)

fl u s h A n i n p u t p a r a m e t e r t h a t fl u s h e s t h e
debug log file automatically upon
abnormal terminat ion. The flush
parameter can have the following
values:

= 0 t h e fl u s h b i t i s s e t i n t h e
FET and the FET address of
the debug log file is re
turned in fe tadr.

* 0 t h e fl u s h b i t i s s e t i n t h e
FET and the SETLOF macro is
called. The FET address is
not returned.

fe tad r A re tu rn pa ramete r tha t i s t he FET
address of the debug log file re
turned by NAM. If zero, either the
flush parameter was nonzero or NETIO
was loaded (in which case the flush
parameter makes no difference).

The third parameter in the NETREL call determines
the pos i t ion a t which NETREL begins read ing the
n a m e d fi l e . T h e fi l e c a n b e r e w o u n d t o t h e
beg inn ing-o f - in fo rmat ion before read ing beg ins , o r
it can be read from its current position.

Af te r copy ing the job command record fi le to the
debug log file, AIP wri tes an end-of-record level 0
to the debug log file before beginning to log mes
sages. Each call to NETREL zeros the MC field in
the supervisory status word (NETON nsup parameter).
Subsequent calls to NETREL route ZZZZZDN to the
i n p u t q u e u e , r e i n i t i a l i z e t h e fi l e e n v i r o n m e n t
table and MC field in the supervisory status word,
and copy ano the r j ob command reco rd to a new
ZZZZZDN file.

Figure 6-5. NETSETF Utility FORTRAN Call
Statement Format

The SETLOF macro provides NOS with a list of files
and FET addresses to be flushed on abnormal ter
mination. The SETLOF macro can be called more than
once; each success ive ca l l overr ides the prev ious
ca l l w i th a new l i s t o f fi les .

Applications written in FORTRAN or COBOL should not
call NETSETF, because those compilers use CYBER
Record Manager, and CYBER Record Manager also calls
the NOS macro SETLOF. If you want the application
to call the SETLOF macro and include the debug log
file in the SETLOF macro l is t , the appl icat ion can
first cal l NETSETF to get the FET address of the

6-8 60499500 R

>^SS\ debug log fi le . I f NETSETF is not ca l led and you
want an appl icat ion to flush the debug log fi le on
a b n o r m a l t e r m i n a t i o n , t h e n t h e p r o g r a m m u s t
reprieve itself and call NETOFF or NETREL. NETSETF
needs to be called only once and should be called
before NETON is called. NETREL does not clear the
flush bit in the FET when it reinit ial izes the FET.

NETLOG Utility

N E T L O G c a l l s u s e t h e s a m e s y n t a x a n d c a l l i n g
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-6 shows the NETLOG uti l i ty FORTRAN
call statement format. NETLOG allows an application
to enter messages in to the debug log fi le . These
messages can be of any size, but large messages
degrade the performance of AIP. Messages are copied
to the debug log file unchanged. However, they are
truncated if the NETREL uti l i ty has previously been
called and if the message length exceeds the number
of central memory words specified as the maximum
message length in the NETREL call. The messages
can be either formatted or unformatted.

CALL NETLOG(address,size,format)

address An input parameter that g ives the
address of the message to be written
to the debug log file.

s i z e A n i n p u t p a r a m e t e r t h a t g i v e s t h e
size in central memory words of the
message to be written to the debug
l o g fi l e .

fo rmat An inpu t parameter tha t de te rmines
whether the message is formatted or
unformatted. This parameter can have
the values:

=0 The message is unformatted
and will be printed by DLFP
in octal , hexadecimal , 6-bi t
display code characters, and
ASCII characters.

=1 The message is formatted and
will be printed unchanged by
DLFP.

NETDMB Utility

N E T D M B c a l l s u s e t h e s a m e s y n t a x a n d c a l l i n g
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-7 shows the NETDMB uti l i ty FORTRAN
call statement format. NETDMB allows an application
to dump its exchange package and central memory
field length into the local dump file ZZZZDMB. The
data is in binary format. The file ZZZZDMB must be
postprocessed by a binary dump interpreter to allow
selection of address range and formatting for print.
The dump formatting is done through DSDT, which is
d e s c r i b e d i n t h e N O S 2 A n a l y s i s H a n d b o o k . A
l o g i c a l e n d - o f - r e c o r d i s w r i t t e n t o t h e fi l e
ZZZZDMB after each NETDMB call.

CALL NETDMB(dumpid,ecs)

dumpid An input parameter that is an octal
6-dig i t dump ident ifier number. The
dumpid parameter can have the values
0 <_ dumpid <_ 777777.

e c s A n i n p u t p a r a m e t e r t h a t d e t e r m i n e s
whether the associated extended
central storage is also dumped. This
parameter can have the values:

=0 Do not dump extended central
s torage

*0 Dump the associated extended
central storage

Figure 6-6. NETLOG Utility FORTRAN Call
Statement Format

Figure 6-7. NETDMB Utility FORTRAN Call
Statement Format

Debug Log File Postprocessor Util ity

The debug log fi le is a b inary compressed fi le ; i t
is written using NOS data transfer macros. You can
ob ta in a l i s t i ng o f th i s fi le by runn ing the debug
l o g fi l e p o s t p r o c e s s o r u t i l i t y w i t h t h e d e s i r e d
op t ions .

The debug log fi le postprocessor (DLFP) u t i l i t y is
a program that processes the debug log file genera
ted by AIP. The general format of the DLFP command
is shown in figure 6-8. Examples of DLFP commands
are shown in figure 6-9.

Formatted messages are stored as 6-bit display code
c h a r a c t e r s w i t h z e r o b y t e t e r m i n a t o r s . T h e fi r s t
cha rac te r o f t he message i s used as a ca r r i age
con t ro l charac te r fo r the l i ne and i s no t p r in ted .
F o r m a t t e d m e s s a g e s l o n g e r t h a n 1 3 6 c h a r a c t e r s
should be stored as separate zero-byte- terminated
l i n e s .

T h e d e b u g l o g fi l e p o s t p r o c e s s o r a u t o m a t i c a l l y
rew inds the debug l og fi le be fo re pos tp rocess ing
begins. The application programmer needs to rewind
the fi le on ly when DLFP is no t the fi rs t so f tware
t o a c c e s s t h e fi l e a f t e r p r o g r a m e x e c u t i o n c o m
p le tes .

DLFP pr ints formatted messages unchanged. DLFP
prints unformatted messages the same way it prints
network message text (in octal, hexadecimal, display
code, and ASCII characters).

NETLOG cannot be called before NETON.

The debug log file can be copied, made permanent,
or otherwise accessed before DLFP begins its post
p r o c e s s i n g . S u c h o p e r a t i o n s , h o w e v e r, m u s t n o t
a l t e r t h e f o r m o f t h e fi l e u s e d f o r D L F P i n p u t .
You cannot copy port ions of the fi le and success
fully run DLFP using the incomplete copy.

60499500 T 6-9

The job command format for DLFP is:

DLFP(p1,p2,p3,P4,p5)

P^ is any of the following parameters in any
order :

I=lfn<| Directives comprise the next
record on file Ifn-j.

1 = 0 N o d i r e c t i v e i n p u t .

I omitted Directives on file INPUT.

L=l fn2 L is t output on fi le l fn2.
L omitted List output on file OUTPUT.

B=lfn3 File lfn* contains the debug log
fi l e .

B omitted Debug log file is ZZZZZDN.

D D i s c o n t i n u e p r o c e s s i n g c u r r e n t
d i rect ive record i f there are
e r ro rs i n i t . Res ta r t w i th nex t
d i rec t i ve record i f any.

D omitted Do not ignore directive errors;
abort job.

N=lfn4 Create new debug log file lfn4
with records selected from lfn*
or ZZZZZDN according to direc
tives governing record selection
f o r t h e l i s t o u t p u t fi l e . I f
this option selected, no debug
log file data is wr i t ten on the
l i s t o u t p u t fi l e .

N omitted No new debug log file is
created.

File names must comply with the NOS product set
format.

Figure 6-8. DLFP Command General Format

The N option of the DLFP command provides a means
for creating a new debug log file that is a subset
of an exist ing debug log file. The new file can be
separately processed by a subsequent DLFP command
and separate DLFP directives.

An opt ional d i rect ive fi le can be submit ted to the
DLFP to select special supervisory messages or net
w o r k d a t a b l o c k s f o r o u t p u t . T h e d i r e c t i v e fi l e
can have zero or more directive records.

Each directive record is a Z type record, which can
contain one or more keywords starting in card image
c o l u m n 1 . K e y w o r d s a l l o w y o u t o s e l e c t w h i c h
superv isory messages or network data b locks are
w r i t t e n t o t h e o u t p u t fi l e . M l k e y w o r d s a r e
optional and can appear in any order. You can use
one or more blanks, or a comma followed by zero or
more blanks, to separate the keywords. You can use

DLFP(I=0,B=TAPE)

DLFP(D,L=SAVE)

DLFP(I=DIR,B)

DLFP reads the debug log
data from file TAPE. The
ent i re log fi le is processed
and wri t ten to output. The
output goes to the OUTPUT
fi l e .

DLFP reads the debug log
data from file ZZZZZDN.
DLFP reads the INPUT file
l o o k i n g f o r d i r e c t i v e s . I f
the directives are not
correct, DLFP ignores them.
The output goes to file
SAVE.

DLFP aborts with the fatal
error message PARAMETER
FORMAT ERROR because there
is no fi le associated wi th
the B parameter. If the B
parameter is specified
correct ly, DLFP reads fi le
DIR looking for d i rect ives.
I f the d i rect ives are not
correct, DLFP aborts.

Figure 6-9. DLFP Command Examples

leading blanks. Figure 6-10 shows the general for
mat o f DLFP d i rec t ive keywords wi th examples o f
them in figure 6-11.

E a c h d i r e c t i v e r e c o r d I n i t i a t e s a n i n d e p e n d e n t
search. An empty d i rec t ive fi le or empty d i rec t ive
record or 1=0 causes a l l debug log fi le b locks to
b e o u t p u t . D i r e c t i v e r e c o r d s a r e c o p i e d t o t h e
o u t p u t l i s t i n g fi l e .

DLFP issues dayfi le messages to in fo rm users o f
fa ta l e r rors or p rocess ing comple t ion . Append ix B
l is ts a l l dayfi le messages issued by DLFP. Er rors I
or informative messages can be writtento the output
file by DLFP. AM messages except NO MESSAGES
FOUND are fa ta l e r rors and cause the job to be
aborted unless the D opt ion was specified on the
DLFP command.

The genera l fo rma t o f a l og fi le l i s t i ng i s shown
i n fi g u r e 6 - 1 2 . (S e c t i o n 7 i n c l u d e s a s a m p l e
outpu t .) NETON and NETOFF ca l l s a re logged to
record the start and end of NAM interfacing; only
successful NETON cal ls are logged. Each AIP cal l
l ogged i s f o l l owed by t he oc ta l r e l a t i ve add ress
(in parentheses) from which the call was made. The
N E T O N c a l l l o g i n c l u d e s t h e p a r a m e t e r v a l u e s
dec lared on the s ta tement . The NETDBG ca l l log
l is ts the value declared for dbugsup as 0PT1 and
f o r d b u g d a t a s 0 P T 2 . C a l l s t h a t t r a n s f e r s u p e r
v i so ry messages o r b l ocks a re l ogged w i th t he i r
declared parameters, fo l lowed by the block header
contents and b lock text area contents . (A l l words
compris ing a supervisory message are l is ted.) The
contents o f each word are g iven in hexadec imal ,
o c t a l , 6 - b i t d i s p l a y c o d e f o r m , a n d A S C I I - c o d e d
form. Each b lock or message is numbered in the
order i t was transferred.

6-10 60499500 W

/^S?v

Keyword! Value Description

B Specifies that only upline blocks with the flow control break flag bit (bit brk)
set in the application block header are output.

BD= yymmdd Specifies that only messages or blocks that were logged on or after this date
are output. Messages or blocks before this date are not output, yy is the
rightmost two digits of the year, mm is the month, and dd is the day of the
month; 00<yy<99, 01<mm<12, 01<dd<31.

BT= hhmmss Specifies that only messages or blocks that were logged on or after this time
are output. Messages or blocks before this time are not output. If the debug
log file contains more than one day's traffic, messages or blocks beginning
after the first occurrence of this time will be output if BD is not specified,
hh is the hour, mm is the minute, and ss is the second; 00<hh<24, 00<mm<59,
0 0 < s s < 5 9 . ~ ~ ~ —

C Specifies that only network data blocks with the cancel flag set in the appli
cation block header are output.

CN= Specifies that only synchronous and asynchronous supervisory messages and net
work data blocks relating to connection number n are output; 1<n<255.

DN= Reserved for CDC use.

E Specifies that only supervisory messages with the error bit set are output.

ED= yymmdd Specifies that messages or blocks on or after this date are not to be output,
yy is the rightmost two digits of the year, mm is the month, and dd is the day
of the month; 00<yy<99, 01<mm<12, 01<dd<31.

ET= hhmmss Specifies that messages or blocks on or after this time are not to be output.
If the debug log file contains more than one day's traffic, searching terminates
after the first occurrence of this time if ED is not specified, hh is the hour,
mm is the minute, and ss is the second; 00<hh<24, 00<mm<59, 00<ss<59.

LE= Specifies maximum length in central memory words of each message or block to be
output; 1<n<410 (default=10).

F Specifies that only network data blocks with the no format effector bit set in
the application block header are output.

N Specifies that only supervisory messages or network data blocks are output.
Messages generated by applications for the debug log file are ignored.

NM= Specifies that only n messages or blocks are output; 0X1000000.

P= Specifies that only network data blocks with the parity-error bit or auto input
mode bit set in the application block header are output.

PF= hh Specifies that only supervisory messages with the primary function code (PFC)
equal to hh-|0 are output. No check is made to determine whether hh is a legal
PFC value; (XKhhlo<FF.

PS= hhxx Specifies that only supervisory messages with PFC/SFC equal to hhxx<|0 are output.
No check is made to determine whether hh is a legal PFC value and xx is a legal
SFC value. 0000<_hh1o<FFFF.

R Specifies that only supervisory messages with the response bit set are output.

SM= Specifies that no messages or blocks are output until the nth message, which
satisfies all the other keyword options, is found; 0<n<1000000.

SN= Reserved for CDC use.

T Specifies that only upline messages or blocks with the data truncation flag bit
set in the application block header are output.

Figure 6-10. DLFP Directive Keyword Format (Sheet 1 of 2)

60499500 R 6-11

K e y w o r d t V a l u e

U

Descr ip t ion

Specifies that only messages or blocks with the input block undeliverable bit
set in the application block header are output.

Specifies that only messages or blocks with the transparent data bit set in the
application block header are output.

tThe same keyword can appear more than once in a directive record. If there is a value associated with
this keyword, the value in the last occurrence of the keyword is the one used for the search. Blanks
can precede or follow the = sign. If both PF and PS are specified, the last one specified overrides the
first one specified. I f there are errors in the direct ive record, the job is aborted unless the D option
was specified on the DLFP command. If the D option was specified, the directive record in error is
ignored and processing restarts with the next direct ive record, i f any. I f there are mult iple errors in
a d i rec t i ve record , a l l e r ro rs a re iden t ified .

Figure 6-10. DLFP Directive Keyword Format (Sheet 2 of 2)

R,E

BD=780229,BT=2401,ED=780228

PF=ABC,SM=-1,LE=1F,NM=10000000

X,CN=15,SM=20

PS=8301,CN=5,PF=83

BC=781104,BT=2350,ED=781105,
ET=000000

LE=2,PF=67,NM=10

PS=8381

PS=6302,CN=1,E

,CN=300,UX,PF=FD,CN=30

DLFP processes and outputs all supervisory messages that have both
the response and error bit set. There are currently no supervisory
messages that have both bits set.

DLFP does not process this directive record because it contains
errors. The first error is that February 29, 1978 is an inval id date.
The second error is that 2401 is an invalid time. Note that it was
not an error to have the ED date earlier than the BD date although no
messages would ever be processed because of it.

DLFP does not process this directive record because it contains
errors. The first error is that ABC is not a two-character hexa
decimal number. The second error is that - is not a legal character
to have in the directive record. The third error is that 1F is not a
decimal number. The fourth error is that the character string
NM=10000000 is greater than 10 characters.

DLFP processes and outputs all network data blocks for connection
number 15 that have the transparent bit set, except for the first 19.

DLFP processes and outputs all supervisory messages relating to con
nection number 5 that have a PFC=83i6(FC mnemonic). Note that even
though PS is also specified, the directive is ignored because PF is
s p e c i fi e d a f t e r i t .

DLFP processes and outputs all messages and blocks that occurred from
11:50 PM on November 4, 1978 to midnight.

DLFP processes the first ten supervisory messages with PFC=67<|6(C0N
mnemonic). Only the first two words of each supervisory message are
ou tpu t .

DLFP outputs no messages. 81 is too large a value for SFC, so DLFP
does not find any matching supervisory message.

DLFP processes and outputs all CON/ACRQ/R supervisory messages re
lating to connection number 1 that have the error bit set.

DLFP does not process this directive record because it contains
errors. The first error is that the first keyword does not begin in
column 1. The second error is that 300 is too large a connection
number. The third error is that there should be a comma or blank
between the U and X. Even if the three errors were not present, DLFP
would not output any messages because currently FD is not a legitimate
PFC value. Also CN=30 does not fix the error in the first CN
d i r e c t i v e .

Figure 6-11. DLFP Directive Examples

6-12 60499500 R

aname LOG FILE OUTPUT
DATE RECORDED yy/mm/dd

current date yy/mm/dd
PAGE ddd

hh.mm.ss.mil NETON (oooooo) ANAME = ccccccc DATE = yy/mm/dd
NSUP ADDR = oooooo MINACN = dddd MAXACN = dddd

MSG NO. ddd

hh .mm.ss.mil NETDBG (oooooo) 0PT1 = b 0PT2 = b DATE = yy/mm/dd MSG NO. ddd
hh .mm.ss.mil

ABT = dd
NETGET (oooooo) ACN = dddd HA = oooooo TA
ADR = dddd ABN = oooooo ACT = dd STATUS =

= oooooo TLMAX = dddd
bbbbbbbb TLC = ddd

MSG NO. ddd

001
002

hhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh

00000000000000000000
oooooooooooooooooooo

cccccccccc aaaaaaaaa
cccccccccc aaaaaaaaa

mnemonic

nnn hhhhhhhhhhhhhhh oooooooooooooooooooo cccccccccc aaaaaaaaa

hh .mm.ss.mil NETLOG (oooooo) MSG NO. ddd
001
002
003

hhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh

oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo

cccccccccc aaaaaaaaa
cccccccccc aaaaaaaaa
cccccccccc aaaaaaaaa

mnemonic

hh .mm.ss.mi I
ABT = dd

NETGETL (oooooo) ALN = dddd HA = oooooo TA
ADR = dddd ABN = oooooo ACT = dd STATUS =

= oooooo TLMAX = dddd
bbbbbbbb TLC = ddd

MSG NO. ddd

001
002

hhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh

oooooooooooooooooooo
oooooooooooooooooooo

cccccccccc aaaaaaaaa
cccccccccc aaaaaaaaa

mnemonic

nnn hhhhhhhhhhhhhhh oooooooooooooooooooo cccccccccc aaaaaaaaa

hh. mm.ss.mil
ABT = dd

NETGETF (oooooo) ACN = dddd HA = oooooo NA
ADR = dddd ABN = oooooo ACT = dd STATUS =

= dd TAA = oooooo
bbbbbbbb TLC = ddd

MSG NO. ddd

FRAGMENT
001
002

FRAGMENT

1 S I Z E = d d d d
hhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh

2 S I Z E = d d d d

ADDRESS = oooooo
oooooooooooooooooooo
oooooooooooooooooooo
ADDRESS = oooooo

cccccccccc aaaaaaaaa
cccccccccc aaaaaaaaa

mnemonic

FRAGMENT
nnn

dd SIZE = dddd
hhhhhhhhhhhhhhh

ADDRESS = oooooo
oooooooooooooooooooo cccccccccc aaaaaaaaa

hh.mm.ss.mil
ABT = dd

NETGTFL (oooooo) ALN = dddd HA = oooooo NA
ADR = dddd ABN = oooooo ACT = dd STATUS =

= dd TAA = oooooo
bbbbbbbb TLC = ddd

MSG NO. ddd

FRAGMENT
001

1 S I Z E = d d d d
hhhhhhhhhhhhhhh

ADDRESS = oooooo
oooooooooooooooooooo cccccccccc aaaaaaaaa mnemonic

FRAGMENT
nnn

dd SIZE = dddd
hhhhhhhhhhhhhhh

ADDRESS = oooooo
oooooooooooooooooooo cccccccccc aaaaaaaaa

hh.mm.ss.mil
ABT = dd

NETPUT (oooooo) HA = oooooo TA = oooooo
ADR = dddd ABN = oooooo ACT = dd STATUS = bbbbbbbb TLC = ddd

MSG NO. ddd

001
002

hhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh

oooooooooooooooooooo
oooooooooooooooooooo

cccccccccc aaaaaaaaa
cccccccccc aaaaaaaaa

mnemonic

nnn hhhhhhhhhhhhhhh oooooooooooooooooooo cccccccccc aaaaaaaaa

Figure 6-12. General Format of DLFP Output (Sheet 1 of 2)

60499500 R 6-13

hh.mm.ss.mil NETPUTF (oooooo) HA = oooooo NA = dd TAA = oooooo
ABT = dd ADR = dddd ABN = oooooo ACT = dd STATUS = bbbbbbbb TLC = ddd

FRAGMENT 1 SIZE = dddd ADDRESS = oooooo
001 hhhhhhhhhhhhhhh oooooooooooooooooooo

nnn

FRAGMENT
nnn

hhhhhhhhhhhhhhh oooooooooooooooooooo

dd SIZE = dddd ADDRESS = oooooo
hhhhhhhhhhhhhhh oooooooooooooooooooo

cccccccccc aaaaaaaaa

cccccccccc aaaaaaaaa

cccccccccc aaaaaaaaa

MSG NO. ddd

mnemonic

hh.mm.ss.mil NETOFF (oooooo) DATE = yy/mm/dd. MSG NO. ddd

LEGEND:

aname

hh.mm.ss.mil

yy/mm/dd

mnemonic

a . . . a

b . . . b

c . . . c

d . . . d

h ... h

o . . . o

n . . . n

Application name.

System clock time of the AIP call in hours, minutes, seconds, and milliseconds.

System date expressed as year, month, and day.

For supervisory messages, the message mnemonic appears; for network data blocks, this
area is blank.

Indicates ASCII characters are l isted.

Ind ica tes b inary d ig i ts are l i s ted .

Indicates display code characters are l isted.

Indicates decimal d ig i ts are l is ted.

Indicates hexadecimal digi ts are l isted.

Ind ica tes oc ta l d ig i t s a re l i s ted .

Indicates last central memory word listed from block.

^2®$\

Figure 6-12. General Format of DLFP Output (Sheet 2 of 2)

T h e l i s t i n g p r o v i d e s t h e f o l l o w i n g l a b e l e d i n f o r
mation:

ACN gives the value used for the acn parameter
in the ind ica ted ca l l .

ALN gives the value used for the aln parameter
in the ind ica ted ca l l .

H A g i v e s t h e o c t a l r e l a t i v e a d d r e s s u s e d i n
place of the symbolic address specified for the
ha parameter in the indicated call.

TA gives the relat ive address used in place of
t h e s y m b o l i c a d d r e s s s p e c i fi e d f o r t h e t a
parameter in the indicated cal l .

NA gives the value used for the na parameter in
the ind ica ted ca l l .

TAA gives the relative address used in place of
t h e s y m b o l i c a d d r e s s s p e c i fi e d f o r t h e t a a
parameter in the indicated cal l .

T L M A X g i v e s t h e v a l u e u s e d f o r t h e t l m a x
parameter in the indicated cal l .

ABT gives the abt fie ld content for the appl i
cation block header used in the indicated call.

ADR gives the adr or acn field content for the
appl icat ion b lock header used in the indicated
c a l l .

ABN gives the abn field content for the appl i
cation block header used in the indicated call.

ACT g ives the act fie ld content for the appl i
cation block header used in the indicated call.

STATUS gives the settings of bits 19 through 12
fo r t he app l i ca t i on b l ock heade r used i n t he
i n d i c a t e d c a l l , a t t h e t i m e t h e c a l l i s c o m
pleted .

TLC g ives the t i c fie ld con ten t fo r the app l i
cation block header used in the indicated call.

FRAGMENT gives the number within the call taa
ar ray used to loca te the cor respond ing in fo r
mation transferred by the cal l .

SIZE gives the content of the size field within
the ca l l t aa a r ray used to de l im i t t he co r re
sponding information transferred by the cal l .

ADDRESS gives the address field content of the
t a a a r r a y u s e d t o l o c a t e t h e c o r r e s p o n d i n g
informat ion transferred by the cal l .

6-14 60499500 R

j j p t a S y

Statistical File and Associated Utilities
The opt iona l AIP code that c reates the s ta t is t ica l
fi l e a l l o w s y o u t o r e c o r d c u m u l a t i v e fi g u r e s o f
exchanges between the program and the network. The
A I P u t i l i t y r o u t i n e N E T S T C g i v e s t h e p r o g r a m a
method of select ing which port ions of the program
have figures accumulated. The AIP ut i l i ty NETLGS
a l l o w s y o u t o w r i t e m e s s a g e s i n t h e s t a t i s t i c a l
fi l e . A l l s t a t i s t i c a l o u t p u t i s w r i t t e n t o a l o c a l
file named ZZZZZSN.

W h e t h e r o r n o t t h e s t a t i s t i c a l fi l e i s c r e a t e d
depends on the system l ibrary used to sat isfy the
app l i ca t ion p rogram's ex te rna ls . A IP code fo r the
program can be loaded from either NETIO or (if the
i n s t a l l a t i o n e l e c t s t o i n s t a l l i t) f r o m N E T I O D .
When NETIOD is used, all code needed to create the
s t a t i s t i c a l fi l e i s l o a d e d ; a c c u m u l a t i o n o f fi g u r e s
i s au toma t i ca l l y t u rned on i n i t i a l l y. Because t h i s
code causes add i t i ona l p rocess ing ove rhead and
c e n t r a l m e m o r y r e q u i r e m e n t s f o r t h e a p p l i c a t i o n
program's contro l po int , you can remove the code
w h e n t h e s t a t i s t i c a l fi l e i s n o t n e e d e d . Yo u c a n
remove the code from the job without al ter ing the
appl icat ion program's s t ructure by loading the AIP
code from NETIO instead of NETIOD. When NETIO is
u s e d , t h e o n l y p a r t o f t h e s t a t i s t i c a l fi l e c o d e
loaded is a do-nothing version of NETSTC.

When NETIOD is used, the stat ist ical fi le is auto
matical ly created without appl icat ion program cal ls.
You can use calls to NETSTC to switch accumulation
off and back on throughout the program, and to dump
and res tar t s ta t is t i cs counters .

NETSTC Utility

N E T S T C c a l l s u s e t h e s a m e s y n t a x a n d c a l l i n g
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-13 shows the NETSTC utility FORTRAN
cal l statement.

Calls to NETSTC can occur in programs using either
NETIO or NETIOD. For example, when a NETSTC call
t u r n s a c c u m u l a t i o n o n a n d a s t a t u s i s r e t u r n e d
ind i ca t i ng accumu la t i on i s no t poss ib le , no e r ro r
occurs and the opt ion se lec t ion is ignored. When
the program conta ins a NETSTC ca l l immedia te ly
after NETON to turn accumulation off and a status
Is re tu rned ind ica t ing accumula t ion is poss ib le , a
s t a t i s t i c a l fi l e i s s t i l l c r e a t e d t o c o n t a i n a
record of the program's NETON, NETSTC, and NETOFF
calls. A call to NETSTC before NETON is legal.

S t a t i s t i c a l fi l e c r e a t i o n b e g i n s w h e n t h e a p p l i
ca t ion p rogram success fu l l y comple tes i t s NETON
cal l and ends when NETOFF is i ssued. A log ica l
e n d - o f - r e c o r d i s w r i t t e n t o fi l e Z Z Z Z Z S N w h e n
NETOFF is cal led. Because the output buffer used
f o r t h e fi l e i s n o t c o m p l e t e l y e m p t i e d i n t o t h e
s t a t i s t i c a l fi l e u n t i l t h e a p p l i c a t i o n p r o g r a m
issues a NETOFF call, i t is important to issue the
call even when the program loses communication with
the network; otherwise, the last few entr ies writ ten
t o t h e s t a t i s t i c a l fi l e f o r t h e j o b r u n c a n n o t b e
saved . A l l s t a t i s t i c s a re w r i t t en t o fi l e ZZZZZSN
and the counters reset to zero whenever a cal l to
NETSTC is made to turn statistics gathering off and
AIP was loaded f rom NETIOD. Indiv idual s tat is t ics
are written to ZZZZZSN and reset to zero whenever
the counter overflows.

CALL NETSTC(onoff,avail)

ono f f An i npu t pa ramete r t ha t t u rns the
accumulat ion of stat is t ics on or off .
This parameter can have the values:

=0 Turn accumulat ion on.

=1 Turn accumula t ion o f f .

When statistics accumulation is turned
on, each call to an AIP routine
increments a counter for that routine
and each block transferred between the
application program and the network
increments a counter for blocks of
that type. Increment ing cont inues
until a call with an onoff parameter
o f 1 is i ssued. Ca l ls w i th onoff
parameters of 0 cause the counters to
be reset to 0.

a v a i l A r e t u r n p a r a m e t e r t h a t i n d i c a t e s
whether the stat ist ics accumulat ion
portion of AIP was loaded when the
program was loaded. On return from
the call, this parameter can have the
va lues :

=0 Loading occurred from NETIOD
and accumulation is possible.

=1 Loading occurred from NETIO and
accumulation is not possible.

When a value of 1 is returned,
spec ificat ion o f 0 for the onoff
parameter has no effect but does not
cause an error.

Figure 6-13. NETSTC Utility FORTRAN
Call Statement Format

NETLGS Utility

N E T L G S c a l l s u s e t h e s a m e s y n t a x a n d c a l l i n g
sequences as other AIP cal ls. (See sections 4 and
5). Figure 6-14 shows the NETLGS util ity FORTRAN
call statement format. NETLGS allows an application
t o e n t e r m e s s a g e s i n t o t h e s t a t i s t i c a l l o g fi l e
ZZZZZSN.

CALL NETLGS(address,size)

address An input parameter tha t ind ica tes the
address of the message to be written
t o t h e s t a t i s t i c s l o g fi l e . T h e
message must contain 6-bit display
code information with a l ine termi
nator (12 to 66 bi ts of zero, r ight-
just ified in a central memory word).

s i z e A n i n p u t p a r a m e t e r t h a t i n d i c a t e s t h e
number of words in the message.

Figure 6-14. NETLGS Utility FORTRAN Call
Statement Format

60499500 R 6-15

W h e n a p p l i c a t i o n p r o g r a m e x e c u t i o n e n d s , t h e
s t a t i s t i c a l fi l e e x i s t s a s a l o c a l fi l e n a m e d
Z Z Z Z Z S N . T h e fi l e i s w r i t t e n u s i n g N O S d a t a
t r a n s f e r m a c r o s ; t h e c o n t e n t s a r e 6 - b i t d i s p l a y
code charac te rs , fo rmat ted fo r p r in te r ou tpu t . To
o b t a i n a l i s t i n g o f t h i s fi l e , t h e fi l e m u s t b e
rewound and copied to OUTPUT, or otherwise disposed
by using ROUTE.

Each per iod fo r wh ich s ta t i s t i cs a re accumula ted
d u r i n g p r o g r a m e x e c u t i o n i s l i s t e d s e p a r a t e l y i n
the s tat is t ica l fi le . F igure 6-15 shows the genera l
fo rma t o f t he pe r i od l i s t i ngs . The coun te rs used
a r e 6 0 - b i t s i g n e d i n t e g e r s , r e s e t t o z e r o a t t h e
beginning of each period. If a counter is not used
during a given period (its value remains zero), the
corresponding l ine for the counter is omit ted f rom
t h e l i s t i n g f o r t h a t p e r i o d . I f a c o u n t e r o v e r
flows during a given period, the corresponding l ine
in the listing is preceded by the message:

****COUNTER OVERFLOW****

and the coun te r i s rese t to ze ro . I f the p rogram
is running in paral le l mode dur ing the per iod, the
number of t ransfer at tempts unsuccessfu l because
NIP was busy are listed. The CPU utilization shown
is cumulative between the NETON and NETOFF calls.
The NAK-S l ine indicates the number of block-not-
delivered (FC/NAK/R) supervisory messages received.

DEPENDENCIES FOR PROGRAM USE

If an application program needs to use any of the
features described in Types of Application Programs
e a r l i e r i n t h i s s e c t i o n , t h e a p p l i c a t i o n p r o g r a m
should be ident ified in the network 's fi les as part
o f t h e l o c a l h o s t c o m p u t e r s y s t e m ' s r e s o u r c e s .
Th i s i s done by en te r i ng i t s app l i ca t i on p rog ram
n a m e i n t o t h e l o c a l c o n fi g u r a t i o n fi l e , u s i n g t h e
Network Defini t ion Language (NDL). This act ion is
not the appl icat ion programmer's responsibi l i ty and
is not descr ibed in th is manual . Use o f the Net
work Definition Language is described in the Network
Definit ion Language reference manual mentioned in
the preface.

Un t i l t he app l i ca t i on p rog ram i s i den t i fied i n t he
NOS system COMTNAP common deck, the program cannot
call NETON and execute with actual logical connec
tions made. Until configured as a network resource,
the program's connect ion-servic ing logic cannot be
debugged.

When the program is identified in COMTNAP, it can
successfully perform a NETON call if the network is
operational. As soon as a NETON call is completed,
terminals can request connection to the program.

NAM STATISTICS GATHERING STARTED

NET jg-Ll DATE yy/mm/dd. TIME hh.mm.ss.

NAM STATISTICS GATHERING TERMINATED

NET {cTrf DATE yy/mm/dd. TIME hh.mm.ss.

CPU TIME USED: dddddd SEC

NUMBER OF PROCEDURE CALLS

NETCHEK
NETGET
NETGETF
NETGETL
NETGTFL
NETPUT
NETPUTF
NETSETP
NETWAIT

dddddd
dddddd
dddddd
dddddd
dddddd
dddddd
dddddd
dddddd
dddddd

NUMBER OF WORKLIST TRANSFER ATTEMPTS

SUCCESSFUL
UNSUCCESSFUL

dddddd
dddddd

NUMBER OF INPUT/OUTPUT BLOCKS TRANSFERRED

INPUT
INPUT
INPUT
INPUT
OUTPUT
OUTPUT
OUTPUT

ABT=0
ABT=1
ABT=2
ABT=3
ABT=1
ABT=2
ABT =3

NUMBER OF ERRORS

LOGICAL ERROR
NAK-S

dddddd
dddddd
dddddd
dddddd
dddddd
dddddd
dddddd

dddddd
dddddd

Legend:

yy/mm/dd System date of the call begin
ning or ending the accumulation
period, expressed as year,
month, and day

hh.mm.ss System clock t ime of the cal l
beginning or ending the accumu
lat ion period, expressed in
hours, minutes, and seconds

d . . . d I n d i c a t e s d e c i m a l d i g i t s

Figure 6-15. General Format of One Period
L i s t i n g i n S t a t i s t i c a l F i l e

6-16 60499500 S

Before a terminal can complete a connection to the
program, the user name f rom i t s log in p rocedure
must have an access word bi t associated with the
a p p l i c a t i o n p r o g r a m ' s n a m e i n C O M T N A P. T h i s
association is established by using MODVAL and must
ex i s t f o r a l l l og in use r names . The p rocedure i s
not descr ibed fur ther in th is manual because i t is
not the appl icat ion programmer's responsibi l i ty.

I f the app l i ca t ion p rogram uses the ba tch dev ice
i n t e r f a c e , t h e o w n i n g c o n s o l e f o r t h e p a s s i v e
device it is intended to service must be configured
i n t h e l o c a l c o n fi g u r a t i o n fi l e w i t h t h e p r o g r a m
d e c l a r e d a s t h e p r i m a r y a p p l i c a t i o n f o r t h e t e r
m i n a l . U n l e s s t h i s i s d o n e , t h e p a s s i v e d e v i c e s
cannot access the appl icat ion program. The appl i
cation programs released by CDC with this version
of the network software only provide a mechanism

for the switching of console device connect ions to
o ther p rograms. A pass ive dev ice configured w i th
the Remote Batch Facility as its primary application
program cannot be used by any o ther app l ica t ion
program.

MEMORY REQUIREMENTS
Although the size of an appl icat ion program varies
w i th i t s complex i t y and func t ions , the A IP cod ing
added by the CYBER loader does not normally exceed
1100 words of central memory. The version of AIP
t h a t g e n e r a t e s t h e d e b u g l o g fi l e a n d s t a t i s t i c s
fi l e r e q u i r e s 11 0 0 m o r e w o r d s . U s i n g t h e Q T R M
util i ty package adds less than 700 additional words
t o t h e p r o g r a m ' s c e n t r a l m e m o r y fi e l d l e n g t h
requirements.

60499500 R 6-17

SAMPLE FORTRAN PROGRAM 7 |

T h i s s e c t i o n c o n t a i n s a n a n n o t a t e d l i s t i n g o f
sample FORTRAN program RMV3, the debug log file,
and s ta t i s t i cs fi le genera ted when the p rogram is
run, and the configuration information used so that
the program could be run. In this sample program,
RMV3 is used to refer to the name of the FORTRAN
program and the name of the batch job that ran it,
w h i l e R M V 2 i s u s e d t o r e f e r t o t h e a p p l i c a t i o n
name. This sample program does not attempt to use
all possible supervisory message sequences or other
features of the Network Access Method interface to
the network software.

Application program RMV2 echoes terminal keyboard
input back to the terminal and provides some addi
t iona l d ia log. Poss ib le d ia logs are descr ibed la ter
in th is sec t ion .

CONFIGURATION REQUIREMENTS
RMV2 is des igned only for the serv ic ing of in ter
ac t ive conso le dev ices. Th is program conta ins no
log ic to i n i t i a l i ze ba tch dev ice connec t ions o r to
s u p p o r t a p p l i c a t i o n - t o - a p p l i c a t i o n c o n n e c t i o n s .
RMV2 conta ins no log ic requ i r ing i t to be config
u r e d a s a u n i q u e i d e n t i fi e r a p p l i c a t i o n p r o g r a m .
RMV2 is not configured as a privi leged application;
it is submitted to the operating system and executed
as a batch origin job.

RMV2 is completely configured in the local config
u r a t i o n fi l e b y t h e N e t w o r k D e fi n i t i o n L a n g u a g e
statement:

RMV2:APPL.

and terminal operators must log in to i t using this
application program name.

Devices accessing RMV2 can be configured with RMV2
a s a n i n i t i a l a p p l i c a t i o n p r o g r a m i f t h e y h a v e a
device type of console.

JOB COMMAND PORTION

Program RMV3 was run using the job commands shown
in figure 7-1. The user name appearing on the NOS
USER command has the CUCP bit set in its associated
access word.

Although the command portion uses the version of AIP
that generates the debugging and s ta t is t ica l fi les ,
RMV3 i tsel f does not contain cal ls to the rout ines
c o n t r o l l i n g e n t r i e s i n t h o s e fi l e s . T h e fi l e s a r e
generated for the entire program by default.

PROGRAM PORTION
Figure 7-2 shows the program portion of the RMV3
batch job. The comments in the program explain most
o f t h e p r o g r a m ' s l o g i c . T h e t e r m i n a l o p e r a t o r
dialog supported by RMV2 includes the text exchanges
s h o w n i n fi g u r e 7 - 3 . T h i s fi g u r e d o e s n o t i l l u s
t rate log in d ia log or d ia log af ter RMV2 is d iscon
nected from the device. The former can be inferred
from the connect ion-request information entered for
the connection in the debugging log file created by
the AIP code after NETON of RMV2. Note that RMV2
responds to most er ror condi t ions or prob lems by
shutting down.

PROGRAM OUTPUT
The FORTRAN code in RMV3 produces several entries
i n fi l e OUTPUT. F igu re 7 -4 shows the debug l og
file l isting produced by the AIP code in RMV3. The
message traffic l is ted in th is fi le can be compared
with the program logic documented in figure 7-2 to
produce a processing flow diagram for the connection
i n v o l v e d . F i g u r e 7 - 5 s h o w s t h e s t a t i s t i c a l fi l e
listing produced by the AIP code in RMV3.

R M V 3 . < J o b n a m e c o m m a n d .
USER(APPL1,PASS,FAM1)
CHARGE(0059,2934657)
ATTACH(RMV)
FTN5(I=RMV,L0=S/-A)
L D S E T (L I B = N E T I 0 D) < U s e s d e b u g a n d s t a t i s t i c a l fi l e o p t i o n a l c o d e v e r s i o n o f A I P.

G E T (R E L J O B) < F i l e c o n t a i n i n g N O S c o m m a n d s f o r N E T R E L c a l l .

LGO.

REWIND(ZZZZZSN) \
1 D i s p o s e s o f l o c a l fi l e s c o n t a i n i n g s t a t i s t i c a l fi l e a n d d e b u g l o g fi l e

D L F P (I = 0) > b y c o p y i n g t h e fi r s t o n e t o O U T P U T a n d e x e c u t i n g t h e p o s t p r o c e s s o r t o
\ c o m p l e t e l y l i s t t h e c o n t e n t s o f t h e s e c o n d o n e .

COPY(ZZZZZSN) /

Figure 7-1. Command Portion of RMV3 Job

60499500 R 7-1

PROGRAM RMV3 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 1
DO=-LONG/-OT,ARG=-COMMON/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PMD/-ST,PL=5000
FTN5,I=RMV,L=0UTPUT,L0=S/-A.

1
2

PROGRAM RMV3

3
4 C NAM 1 REFERENCE MANUAL SAMPLE PROGRAM
5
6
7

C ECHOS INTERACTIVE CONSOLE OPERATOR INPUT

C NOTE THAT THE DEBUG LOG FILE AND STATISTICAL FILE LOCAL NAMES
8
9

10

ARE NOT REQUIRED ON THE PROGRAM STATEMENT GIVEN ABOVE.

11 IMPLICIT INTEGER(A-Z)
12 COMMON /RMC0M/K(20),LASTBLK,I,S,NSUP,SMHDR,DSHDR,DSHDR1,NACN(20)
13 COMMON /RMCOM/CONEND,ROMARK,ACN,ABN(20),SM(20),ABL(20),ABHIBU,US
14 COMMON /RMC0M/NB(20),HA,INSTAK(20),0UTSTAK(20),ENDCN,SHUTD,INTRRSP
15 COMMON /RMCOM/INTRCHR,CHANRST,CHANCLR
16
17 NOTE THAT THE TEXT AREAS ARE SEPARATE FOR DATA AND SUPERVISORY
18 MESSAGES. THEIR SIZES ARE CHOSEN FOR THE LARGEST EXPECTED SUPERVISORY
19 MESSAGE,ARBITRARILY SUPPORTING UP TO 314 CHARACTERS OF DEVICE20 INPUT DATA.
21
22
23 COMMON /RMCOM/TA(63),STAK(20),0VRFLHA(8,20),0VRFLTA(63,8,20),US1
24 COMMON /RMC0M/IABN(20),SMHA,SMTA(63),SSM(8),MC,LFN,ABT,ACT,TLC
25 EXTERNAL REPREV,CHKSUM
26
27
28
29
30
31
32
33
34

INITIALIZE AND SET CONSTANTS

C SET UP LOCAL FILE NAME FOR NETREL CALLS

DATA LFN/L"RELJ0B'7

C FILE RELJOB CONTAINS THE FOLLOWING COMMANDS:
35
36 RELJOB.
37 USER(APPL1,PASS,FAM1)
38 CHARGE(0059,2934657)39 DLFP(1=0)
40
41 THIS IS THE CIRCULAR OUTPUT STACK FOR EACH CONNECTION
42
43
44
45

DATA INSTAK, 0UTSTAK/20*0,20*0/

46 K IS THE APPLICATION BLOCK NUMBER COUNTER
47
48 DATA K/20*1/
49
50
51
52
53

THESE ARE NSUP WORD FIELD MASKS

DATA S/0"02000000000000000000'7
54 DATA I/0"04000000000000000000"/
55 DATA MC/0,,00000000007777777777'7

/ ^ S j ^

Figure 7-2. Program Portion of RMV3 (Sheet 1 of 24)

7-2 60499500 R

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112

PROGRAM RMV3 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 2

C THESE ARE BREAK-PROCESSING FLAGS

DATA INTRCHR,CHANRST,CHANCLR/0,0,0/

C THIS INITIALIZES THE FLOW CONTROL ALGORITHM FOR ALL
C POSSIBLE CONNECTIONS

DATA ABL,NB,NACN,ACN,ABHIBU,STAK/20*0,20*0,20*0,0,0,20*0/

C PACK MASK FOR CHARACTERS THAT COMPRISE OPERATOR END-CONNECTION
C COMMAND FOR NORMAL DISCONNECTION PROCESSING
C WHICH IS THE CAPITALIZED COMMAND ENDCN IN 12-BIT BYTES

DATA ENDCN/0"01050116010401030116"/

C PACK MASK FOR CHARACTERS THAT COMPRISE OPERATOR SHUTDOWN
C COMMAND FOR NORMAL PROGRAM TERMINATION PROCESSING,
C WHICH IS THE CAPITALIZED COMMAND SHUTD IN 12-BIT BYTES

DATA SHUTD/0"01230110012501240104 '7

C PACK A CONSTANT FOR SUPERVISORY MESSAGE HEADER WORDS

DATA SMHDR/0"03000000000004000001"/

C PACK A CONSTANT HEADER WORD FOR DISPLAY CODED OUTPUT
C OF BLOCK TYPE 2. NOTE THAT THE NO-FORMAT-EFFECTOR BIT IS NOT SET
C BECAUSE ALL OUTPUT TO THE DEVICE GENERATED BY THE PROGRAM CONTAINS
C A FORMAT EFFECTOR CHARACTER.

DATA DSHDR/0"0200000000Q020000024(7

C NOTE THAT ONLY 10 CHARACTERS OF OUTPUT ARE PERMITTED BY
C THE TLC DECLARED, PLUS A ZERO TERMINATOR WORD FOR THE LOGICAL LINE.

C PACK A CONSTANT HEADER WORD FOR DISPLAY CODED OUTPUT
C OF BLOCK TYPE 1. NOTE THAT THE NO-FORMAT-EFFECTOR BIT IS NOT SET
C BECAUSE ALL OUTPUT TO THE DEVICE GENERATED BY THE PROGRAM CONTAINS
C A FORMAT EFFECTOR CHARACTER.

DATA DSHDR1/0"01000000000020000024"/

C AGAIN, ONLY 10 CHARACTERS ARE PERMITTED, PLUS A TERMINATOR WORD.

C CREATE MASK FOR UNIT SEPARATOR INSERTION CODE

DATA US,US1/0"00370000000000000000",0,,70370000000000000000,7

Figure 7-2. Program Portion of RMV3 (Sheet 2 of 24)

60499500 R 7-3

PROGRAM RMV3 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 3

113
114 C SET UP REPRIEVAL CODE TO SALVAGE DEBUG AND STATISTICAL FILES
115
116 CALL RECOVR(REPREV,0"277",L0CF(CHKSUM))
117
118
119 C SET UP ALL OTHER VARIABLES AND CONSTANTS
120
121 CALL SETUP
122
123
124 C ESTABLISH ACCESS TO THE NETWORK AND BEGIN DEBUG LOG
125 C FILE CREATION
126
127 CALL NETON("RHV2",NSUP,NSTAT,1,20)
128
129
130 C TEST FOR ACCESS COMPLETION
131
132 IF (NSTAT.NE.O) THEN

1 133 PRINT 100, NSTAT
1 134 100 FORMAT (' NSTAT = ',020)
1 135 STOP 111
1 136 END IF
1 1 3 7
1 1 3 8
1 1 3 9 C UPDATE NSUP FLAGS, THEN PERFORM CONNECTION ESTABLISHMENT PROCESSING
1 140 C AND DISPOSE OF OTHER SUPERVISORY MESSAGES RECEIVED.
1 141

142 15 CALL NETWAIT(4095,0)
143 16 SHUTDWN=0
144 SYNC=0
145 CALL LOOKSM (SHUTDWN,L,SYNC)
146
147
148 C RETURN FROM FC/ACK/R
149
150 17 IF (L.EQ.1) THEN

1 151 GO TO 9
1 152
1 1 5 3
1 154 C RETURN FROM CON/REQ/R
1 155
1 156 ELSE IF (L.EQ.2) THEN
1 1 5 7 GO TO 15
1 1 5 8
1 1 5 9
1 160 C RETURN FROM FC/INIT/R
1 161
1 162 ELSE IF (L.EQ.3) THEN
1 1 6 3 GO TO 41
1 164
1 165
1 166 C RETURN FROM INTR/USR/R
1 167
1 168 ELSE IF (L.EQ.4) THEN
1 1 6 9 IF(INTRCHR.EQ.O) THEN

Figure 7-2. Program Portion of RMV3 (Sheet 3 of 24)

7-4 60499500 R

PROGRAM RMV3 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 4

2 170 GO TO 9
2 171 ELSE
2 172 GO TO 551
2 173 END IF2 174
2 175
2 176 C RETURN FROM FC/INA/R2 177

178 ELSE IF (L.EQ.5) THEN
179 GO TO 9
180
181
182 C RETURN FROM CON/CB/R
183
184 ELSE IF (L.EQ.6) THEN
185 GO TO 9
186
187
188 C RETURN FROM FC/NAK/R
189
190 ELSE IF (L.EQ.7) THEN
191 GO TO 9
192
193
194 C RETURN FROM ERR/LGL/R
195
196 ELSE IF (L.EQ.8) THEN
197 GO TO 9
198
199
200 C RETURN FROM HOP/XX/R
201
202 ELSE IF (L.EQ.9) THEN
203 GO TO 9
204
205
206 C RETURN FROM CON/END/R
207
208 ELSE IF (L.EQ.10) THEN
209 GO TO 9
210
211
212 C RETURN FROM SHU/INS/R
213
214 ELSE IF (L.EQ.11) THEN
215 GO TO 554
216
217
218 C RETURN FROM BI/MARK/R
219
220 ELSE IF (L.EQ.12) THEN
221 GO TO 551
222
223
224 C RETURN FROM BAD BLOCK
225
226 ELSE

Figure 7-2. Program Portion of RMV3 (Sheet 4 of 24)

/ $ f P ^ *

60499500 R 7-5

PROGRAM RMV3 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 5

227 GO TO 777
228 END IF
229
230
231 INITIALIZE CONNECTION BY SENDING OUTPUT
232
233 41 LASTBLK=1
234
235
236 SEND IDENTIFYING BANNER AS FIRST OUTPUT AFTER INITIAL CONNECTION
237
238 SEND=1
239 HA=DSHDR1
240 CALL NSTORE(HA,L"ABHADR",ACN)
241 TA(1)="1RMV2 VER3"
242 TA(2)=0
243 CALL OUTPT (SEND)
244
245
246 NOTE THAT ALL CONNECTIONS ARE SERVICED AS FULL-DUPLEX ON THE
247 APPLICATION PROGRAM'S END
248
249 40 CALL PROMPT (SEND)
250 LASTBLK=0
251 39 CALL OUTPT (SEND)
252 IF (SEND .EQ. 0) GO TO 38
253 IF (STAK(ACN) .EQ. 1) THEN
254 SEND=0
255 GO TO 39
256 ELSE IF (LASTBLK.EQ.1) THEN
257 GO TO 40
258 ELSE
259 GO TO 9
260 END IF
261
262
263 PAUSE TO ALLOW OUTPUT QUEUE TO CLEAR
264
265 38 CALL NETWAIT(2,1)
266 SHUTDWN=0
267 SYNC=0
268 CALL LOOKSM (SHUTDWN,L,SYNC)
269 IF (L.EQ.1) THEN

1 270 SEND=0
1 271 GO TO 39
1 272 ELSE IF (L.EQ.2) THEN
1 273 IF(INTRCHR.EQ.O) THEN
2 274 GO TO 9
2 275 ELSE
2 276 GO TO 551
2 277

278
279
280
281
282
283

END IF
ELSE IF (L.EQ.3) THEN

GO TO 41
ELSE IF (L.EQ.4) THEN

GO TO 38
ELSE IF (L.EQ.5) THEN

GO TO 9

i ^ ^ j V

Figure 7-2. Program Portion of RMV3 (Sheet 5 of 24)

7-6 60499500 R

PROGRAM RMV3 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11-3€1.17 PAGE 6

1 284 ELSE IF (L.EQ.6) THEN
1 285 GO TO 15
1 286 ELSE IF (L.EQ.7) THEN
1 287 GO TO 9
1 288 ELSE IF (L.EQ.8) THEN
1 289 GO TO 9
1 290 ELSE IF (L.EQ.9) THEN
1 291 GO TO 9
1 292 ELSE IF (L.EQ.10) THEN
1 293 GO TO 15
1 294 ELSE IF (L.EQ.11) THEN
1 295 GO TO 554
1 296 ELSE IF (L.EQ.12) THEN
1 297 GO TO 551
1 298 ELSE
1 299 GO TO 38
1 300 END IF
1 301
1 302
1 303 PAUSE FOR INPUT DATA OR A SUPERVISORY MESSAGE
1 304

305
306
307

9 CALL NETWAIT(4095,0)

308 TEST FOR QUEUED MESSAGES OR DATA BLOCKS
309
310 777 IF((NSUP.AND.S).NE.O) GO TO 16
311
312
313 FETCH QUEUED INPUT FROM A DEVICE
314
315 ALN=1
316 CALL NETGETL(ALN,HA,TA,10)
317
318
319 UNPACK THE BLOCK HEADER FOR THE DELIVERED INPUT BLOCK
320
321 778 ABT=NFETCH(HA,L"ABHABT")
322 ACT=NFETCH(HA,L"ABHACT")
323 ACN=NFETCH(HA,L"ABHADR")
324 ABHXPT=NFETCH(HA,L"ABHXPT")
325 ABHTRU=NFETCH(HA,L"ABHTRU")
326 ABHCAN=NFETCH(HA,L"ABHCAN")
327 ABHIBU=NFETCH(HA,L"ABHIBU")
328 TLC=NFETCH (HA,L,,ABHTLC")
329
330
331 BRANCH TO PROCESS DATA BLOCK OR SYNCHRONOUS SUPERVISORY MESSAGE
332
333 IF (ABT.EQ.3) THEN

1 334 SYNC=1
1 335 CALL LOOKSM (SHUTDWN,L,SYNC)
1 336 GO TO 17
1 337 END IF
1 338
1 339
1 340 MAKE ANOTHER ATTEMPT TO FETCH QUEUED BLOCK

Figure 7-2. Program Portion of RMV3 (Sheet 6 of 24)

60499500 R 7-7

PROGRAM RMV3 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 7

1 341
342 IF (ABT.EQ.0.AND.ABHIBU.EQ.1) CALL NETGET(ACN,HA,TA,63)
343 IF (ABT.EQ.0.AND.ABHIBU.EQ.1) GO TO 778
344 IF (ABT.EQ.0.AND.ABHIBU.NE.1) GO TO 9
345
346
347 TEST FOR THROW-AWAY INPUT
348
349 IF(ABHCAN.EQ.I) GO TO 40
350
351
352 TEST FOR TYPE-IN OF ENDCN COMMAND
353
354 IF(TAd).EQ.ENDCN) GO TO 444
355
356
357 TEST FOR TYPE-IN OF SHUTD COMMAND
358
359 IF(TAd).EQ.SHUTD) GO TO 666
360
361
362 PROCESS ECHOABLE TEXT
363
364 CALL PACK (SEND)
365 GO TO 39
366
367
368 PROCESS USER BREAKS
369
370 551 IF((CHANCLR.EQ.1).AND.(CHANRST.EQ.D) THEN
371
372
373 TELL THE DEVICE OPERATOR WHAT HAPPENED
374

1 375 IF (INTRCHR.EQ.3) TA(1)=" BREAK 1 "
1 3 7 6 IF (INTRCHR.EQ.4) TA(1)=" BREAK 2 "
1 377 HA=DSHDR1
1 3 7 8 TA(2)=0
1 3 7 9 CALL NSTORE(HA,L"ABHADR",ACN)
1 3 8 0 LASTBLK=1
1 381 SEND=1
1 3 8 2 CALL OUTPT(SEND)
1 383 CHANCLR=CHANRST=INTRCHR=0
1 3 8 4 GO TO 40
1 385 ELSE
1 3 8 6 GO TO 9
1 387 END IF
1 3 8 8
1 389
1 390 DISCONNECT THIS TERMINAL DEVICE
1 391

392 444 SMTA(1)=SMTA(2)=0
393 CALL NSTORE(SMTA,L"PFCSFC",CONEND)
394 CALL NSTORE(SMTA,L"RC",0)
395
396
397 PASS CONNECTION DIRECTLY TO IAF WITHOUT DIALOG

Figure 7-2. Program Portion of RMV3 (Sheet 7 of 24)

^S

7-8 60499500 R

P R O G R A M R M V 3 7 4 / 7 4 O P T = 0 , R O U N D = A / S / M / - D , - D S F T N 5 . 1 + 5 9 9 8 3 / 0 8 / 0 5 . 11 . 3 8 . 1 7 PA G E 8

398
3 9 9 C A L L N S T O R E (S M T A , L , , C O N A N M " , R " I A F ")
4 0 0 S M H A = S M H D R + 0 * * 1 "
4 0 1 C A L L N S T O R E (S M T A , L H C O N A C N " , A C N)
4 0 2 N A C N (A C N) = 0
4 0 3 C A L L N E T P U T (S M H A , S M T A)
4 0 4 6 0 T O 9
405
4 0 6 6 6 6 C A L L S H U T D N
407
408
4 0 9 5 5 4 S T O P
4 1 0 E N D

Figure 7-2. Program Portion of RMV3 (Sheet 8 of 24)

6 0 4 9 9 5 0 0 R 7 - 9

SUBROUTINE LOOKSM 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 1
DO=-LONG/-OT,,ARG=-COMMON/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PMD/-ST,PL=5000
FTN5,I=RMV,L=OUTPUT,LO=S/-A.

1
2

SUBROUTINE LOOKSM (SHUTDWN,L,SYNC)

3
4
5
6

C PROCESS INCOMING SUPERVISORY MESSAGES

IMPLICIT INTEGER (A-Z)
7 COMMON /RMCOM/K(20),LASTBLK,I,S,NSUP,SMHDR,DSHDR,DSHDR1,NACN(20)
8 COMMON /RMCOM/CONEND,ROMARK,ACN,ABN(20),SM(20),ABL(20),ABHIBU,US
9 COMMON /RMCOM/NB(20),HA,INSTAK(20),OUTSTAK(20),ENDCN,SHUTD,INTRRSP

10 COMMON /RMCOM/INTRCHR,CHANRST,CHANCLR
11 COMMON /RMC0M/TA(63),STAK(20),OVRFLHA(8,20),OVRFLTA(63,8,20),US112 COMMON /RMCOM/IABN(20),SMHA,SMTA(63),SSM(8),MC,LFN,ABT,ACT,TLC
13
14
15 PROCESS SYNCHRONOUS SUPERVISORY MESSAGES
16
17 IF (SYNC.EQ.1) THEN
18 SMHA=HA
19 DO 2 1=1,63
20 SMTA(I)=TA(I)
21 2 CONTINUE
22 GO TO 1
23
24 ELSE
25 GO TO 3
26
27 END IF
28
29
30 WAIT FOR AN ASYNCHRONOUS SUPERVISORY MESSAGE IF NECESSARY
31
32 3 IF ((NSUP.AND.S).EQ.O) THEN

1 33 IF(((NSUP.AND.I).EQ.O).AND.(SHUTDWN.EQ.O)) THEN
2 34 CALL NETWAIT(4095,0)
2 35
2 36 RETURN TO FETCH INPUT DATA
2 37
2 38 RETURN
2 39
2 40 ELSE
2 41 L=13
2 42 RETURN
2 43
2 44

45
46
47

END IF
END IF

48 FETCH AN ASYNCHRONOUS SUPERVISORY MESSAGE FROM ACN=0
49 ON LIST ZERO
50
51 ALN=0
52 CALL NETGETL(ALN,SMHA,SMTA,63)
53
54
55 UNPACK THE MESSAGE IDENTIFICATION AND BRANCH ON THE TYPE

Figure 7-2. Program Portion of RMV3 (Sheet 9 of 24)

7 - 1 0 6 0 4 9 9 5 0 0

i ^ ^ N

SUBROUTINE LOOKSM 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 2

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112

1 PFCSFC=NFETCH(SMTA,L"PFCSFC")
PFC=NFETCH(SMTA,L"PFC")

C NOTE THAT THIS CODE EXITS WITH THE L VALUE SET SO THAT IT CAN BE
C USED FOR BRANCHING IN THE MAIN PROGRAM ON RETURN FROM LOOKSM

IF (PFCSFC.EQ.SM(D) THEN
L=1
GO TO 10

ELSE IF (PFCSFC.EQ.SM(2)) THEN
L=2
GO TO 20

ELSE IF (PFCSFC.EQ.SM(3)) THEN
L=3
GO TO 30

ELSE IF (PFCSFC.EQ.SM(4)) THEN
L=4
GO TO 50

ELSE IF (PFCSFC.EQ.SM(5)) THEN
L=5
GO TO 60

ELSE IF (PFCSFC.EQ.SM(6)) THEN
L=6
GO TO 70

ELSE IF (PFCSFC.EQ.SM(7)) THEN
L=7
GO TO 80

ELSE IF (PFCSFC.EQ.SM(8)) THEN
L=8
GO TO 90

ELSE IF (PFCSFC.EQ.SM(9)) THEN
L=9
DO 9 M=1,7
IF(PFCSFC.EQ.SSM(M))G0T0(11,21,31,41,51,61,71),M9 CONTINUE

ELSE IF (PFCSFC.EQ.SMdO)) THEN
L=10
GO TO 110

ELSE IF (PFCSFC.EQ.SM(H)) THEN
L=11
GO TO 120

ELSE IF (PFCSFC.EQ.SM(12)) THEN
L=12
GO TO 130

C TEST FOR END OF MESSAGE BRANCHING TABLE

ELSE
L=13

END IF

C PROCESS UNRECOGNIZED SUPERVISORY MESSAGE CODE

Figure 7-2. Program Portion of RMV3 (Sheet 10 of 24)

60499500 R 7-11

SUBROUTINE LOOKSM 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 3

113 IF (SM(L).EQ.999) THEN
114
115 C ISSUE DIAGNOSTIC MESSAGE TO OUTPUT FILE
116

1 1 1 7 PRINT 1000, SMHA,SMTA
1 1 1 8 1000 FORMAT (' COULD NOT FIND SM IN TABLE OF SUPPORTED CODES1,
1 1 1 9
1 1 2 0

* / / ' HA = ' ,020, / ' TA = V63(1X,020/))

1 1 2 1 END IF
1 1 2 2
1 1 2 3
1 1 2 4 C TRY AGAIN
1 1 2 5

126 GO TO 3
127
128
129 C PROCESS FC/ACK/R SUPERVISORY MESSAGE
130
131 10 ACN=NFETCH(SMTA,L"FCACN")
132 IABN(ACN)=NFETCH(SMTA,L,,FCABN")
133
134 C UPDATE FLOW CONTROL ALGORITHM
135
136 NB(ACN)=NB(ACN) - 1
137 RETURN
138
139
140 C PROCESS CON/REQ/R SUPERVISORY MESSAGE
141
142 C UNPACK MESSAGE AND USE CONTENTS TO SET UP CONNECTION
143 C FLOW CONTROL ALGORITHM
144
145 20 ACN=NFETCH(SMTA,L"CONACN")
146 ABL(ACN)=NFETCH(SMTA,L"CONABL")
147 DT=NFETCH(SMTA,L"CONDT")
148 NB(ACN)=0
149
150 C PACK CON/REQ/N OR CON/REQ/A MESSAGE
151
152 SMTA(1)=0
153 CALL NSTORE (SMTA^'PFCSFC'^U'CONREQ")
154 CALL NSTORE(SMTA,LMCONACN",ACN)
155
156 C SET RESPONSE BIT TO ACCEPT OR REJECT CONNECTION
157
158 IF (DT.EQ.O) CALL NSTORE (SMTA,L"RB",1)
159 IF (DT.NE.O) CALL NSTORE (SMTA,L"EBM,1)
160
161 C INPUT MUST BE ASCII IN 12-BIT BYTES
162
163 CALL NSTORE(SMTA,L"CONACT",3)
164
165 C ASSIGN ALL INTERACTIVE CONSOLES TO LIST 1
166
167 CALL NSTORE(SMTA,L"C0NALN",1)
168 SMHA=SMHDR
169

/*^^5k

Figure 7-2. Program Portion of RMV3 (Sheet 11 of 24)

7-12 60499500 R

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

SUBROUTINE LOOKSM 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05.11.38.17 PAGE 4

C SEND THE CONNECTION-ACCEPTED OR CONNECTION-REJECTED SUPERVISORY MESSAGE

CALL NETPUT(SMHA,SMTA)

RETURN

C PROCESS FC/INIT/R SUPERVISORY MESSAGE

C SET THE RESPONSE BIT TO INDICATE READY FOR
C TRANSMISSION TO BEGIN

30 CALL NSTORE(SMTA,L"RB",1)

C DETERMINE LOGICAL CONNECTION INVOLVED AND UPDATE
C CONNECTION TABLE

ACN=NFETCH(SMTA,L"FCACN")
NACN(ACN)=1
SMHA=SMHDR
IABN(ACN)=ABN(ACN)=0

C SEND THE CONNECTION-INITIALIZED MESSAGE

CALL NETPUT(SMHA,SMTA)

RETURN

C PROCESS INTR/USR/R SUPERVISORY MESSAGE

50 ACN=NFETCH(SMTA,LnINTRACN")
INTRCHR=NFETCH(SMTA,LMINTRCHR")

C PACK RESPONSE MESSAGE AND CLEAR FLOW CONTROL PARAMETERS

SMTA(1)=0
SMHA=SMHDR
CALL NSTORE (SMTA,L"PFCSFC",INTRRSP)
CALL NSTORE (SMTA,L"INTRACN",ACN)
CALL NETPUT (SMHA,SMTA)

C IF THIS IS A USER BREAK, CLEAR THE OUTPUT QUEUE

IF (UNTRCHR.EQ.3).0R.(INTRCHR.EQ.4)) THEN
CHANRST=1
INSTAK(ACN)=OUTSTAK(ACN)=STAK(ACN)=0

END IF

C TELL THE DEVICE OPERATOR WHAT HAPPENED

IF ((INTRCHR.NE.3).AND.(INTRCHR.NE.4)) THEN
TA(1)=" BYPASSED "
HA=DSHDR1
TA(2)=0

Figure 7-2. Program Portion of RMV3 (Sheet 12 of 24)

60499500 R 7-13

S U B R O U T I N E L O O K S M 7 4 / 7 4 O P T = 0 , R O U N D = A / S / M / - D , - D S F T N 5 . 1 + 5 9 9 8 3 / 0 8 / 0 5 . 11 . 3 8 . 1 7 PA G E 5

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
2 6 9
270
271
272
273
274
275
276
277
278
279
280
281
2 8 2
283

CALL NSTORE(HA,L"ABHADR",ACN)
SEND=1
LASTBLK=1
CALL OUTPT (SEND)
CALL PROMPT(SEND)
LASTBLK=0
CALL OUTPT(SEND)
INTRCHR=0

RETURN

END IF
RETURN

C PROCESS FC/INACT/R SUPERVISORY MESSAGE

C UPDATE CONNECTION TABLE

60 ACN=NFETCH(SMTA,L"FCACN")
NACN(ACN) = 0
HA=DSHDR
CALL NSTORE(HA,L"ABHADR",ACN)

C OUTPUT DISCONNECTION INDICATOR TO POSSIBLE OPERATOR

TA(1>=" TIME OUT "
TA (2) = 0

C NOTE THAT RMV2 DOES NOT WAIT FOR AN FC/ACK/R CORRESPONDING TO
C THIS OUTPUT MESSAGE. AN ERR/LGL/R MESSAGE WILL EVENTUALLY
C BE CAUSED BY THE CONNECTION TERMINATION PROCESSING CODE,
C CAUSING RMV2 TO NETOFF WITHOUT DEVICE OPERATOR
C OR HOST OPERATOR ACTION BEING REQUIRED.

INSTAK(ACN)=OUTSTAK(ACN)=STAK(ACN)=0
SEND=1
LASTBLK=0
CALL OUTPT (SEND)

C PACK AND SEND CONNECTION-END REQUEST MESSAGE

SMTA(1)=0
CALL NSTORE(SMTA,L"PFCSFC",CONEND)
CALL NSTORE(SMTA,L"CONACN",ACN)
SMTA(2)=0
SMHA=SMHDR
CALL NETPUT (SMHA,SMTA)
RETURN

C PROCESS CON/CB/R SUPERVISORY MESSAGE

70 ACN=NFETCH(SMTA,LHCONACN")

Figure 7-2. Program Portion of RMV3 (Sheet 13 of 24)

7-14

^ t f ^ ^ V

60499500 R

SUBROUTINE LOOKSM 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 6

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

PRINT 75,ACN
75 FORMAT(' CONNECTION BROKEN, ACN = ',13)

C FETCH ALL OUTSTANDING INPUT BLOCKS UNTIL A NULL
C BLOCK IS RECEIVED

73 CALL NETGET(ACN,HA,TA,63)
IF (NFETCH(HA,L"ABHABT").EQ.O) GO TO 72

DETERMINE WHETHER THIS IS A NORMAL SHUTD SEQUENCE FETCHED OUT OF
SYNCHRONIZATION. IF SO, USE THE ERR/LGL/R LOGIC TO SHUT DOWN.

IF(TA(1).EQ.SHUTD) GO TO 76
GO TO 73

C CLEAN UP CONNECTION TABLE ENTRY AND AIP TABLES

72 CALL NSTORE(SMTA,L"CONACN",ACN)
CALL NSTORE(SMTA,L"RC",0)
CALL NSTORE(SMTA,L"PFCSFC",CONEND)
SMHA=SMHDR
NACN(ACN)=0
CALL NETPUT(SMHA,SMTA)

RETURN

C PROCESS FC/NAK/R SUPERVISORY MESSAGE

80 ACN=NFETCH(SMTA,L"FCACN")
ABN(ACN)=NFETCH(SMTA,L"FCABN")
PRINT 1015,ACN,ABN(ACN)

1015 FORMAT(' ACN = ',16,' ABN = ',110," NOT DELIVERED')

RETURN

C PROCESS CON/END/N SUPERVISORY MESSAGE
C PROCESSING TREATS THE MESSAGE AS ADVISORY IN ALL CASES.

110 MSGLTH=410
NREWIND=0
IF((NSUP.AND.MC).GT.255) CALL NETREL(LFN,MSGLTH,NREWIND)

RETURN

C PROCESS ERR/LGL/R SUPERVISORY MESSAGE,
C WRITE MESSAGE TO OUTPUT FILE FOR ANALYSIS, THEN SHUT
C DOWN OPERATIONS

90 PRINT 1001,SMHA,SMTA
1001 FORMAT (1X,"HA = ",020,/1X,"TA = ",/1X,020,1X,020/,1X,020)

Figure 7-2. Program Portion of RMV3 (Sheet 14 of 24)

z#^\

60499500 R 7-15

SUBROUTINE LOOKSM 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 7

341 76 SMTA(1)=SMTA(2)=0
342 CALL NSTORE(SMTA,L"PFCSFC",CONEND)
343 CALL NSTORE(SMTA,L"RC",0)
344 SMHA=SMHDR
345 DO 333 11=1,20,1
346 IF (NACN(II).EQ.D THEN

1 3 4 7 CALL NSTORE (SMTA,L"CONACN",II)
1 3 4 8 CALL NETPUT(SMHA,SMTA)
1 3 4 9
1 3 5 0
1 351 UPDATE CONNECTION TABLE
1 352 -
1 3 5 3 NACN(II)=01 3 5 4 END IF
1 355

356 333 CONTINUE357
358 CALL NETOFF
359 STOP 247360
361
362
363

PROCESS HOST OPERATOR TURN-DEBUGGING-ON COMMAND

364 11 CONTINUE
365 RETURN366
367
368
369

PROCESS HOST OPERATOR TURN-DEBUGGING-OFF COMMAND

370 21 CONTINUE
371 RETURN372
373
374 PROCESS HOST OPERATOR DUMP-FIELD-LENGTH COMMAND375
376 31 DUMPID=1
377 ECS=1
378 CALL NETDMB (DUMPID,ECS)
379
380 RETURN
381
382
383 PROCESS HOST OPERATOR STOP-LOGGING COMMAND384
385 41 DBUGSUP=1
386 DUBDAT=1
387 CALL NETDBG (DBUGSUP,DBUGDAT,AVAIL)
388
389 RETURN
390
391
392 PROCESS HOST OPERATOR START-LOGGING COMMAND
393
394 51 DBUGSUP=0
395 DBUGDAT=0396 CALL NETDBG (DBUGSUP,DBUGDAT,AVAIL)
397

Figure 7-2. Program Portion of RMV3 (Sheet 15 of 24)

7 - 1 6 6 0 4 9 9 5 0 0 R

/ ^ S

r

/|P^ \

SUBROUTINE LOOKSM 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 8

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

RETURN

C PROCESS HOST OPERATOR RELEASE-LOG-FILE COMMAND

61 MSGLTH=410
NREWIND=0
CALL NETREL (LFN,MSGLTH,NREWIND)

RETURN

C PROCESS HOST OPERATOR RESTART-STATISTICS COMMAND

71 0N0FF=O
CALL NETSTC (ONOFF,AVAIL)

RETURN

C PROCESS THE BIMARK SYNCHRONOUS SUPERVISORY MESSAGE

•130 HA=SMHDR
TA(1)=0
CALL NSTORE (HA,L"ABHADR",ACN)
CALL NSTORE(HA,L"ABHACT",2)
CALL NSTORE(HA,L"ABHTLCM,2)
CALL NSTORE(TA(1),L"PFCSFC",R0MARK)
CALL NETPUT (HA,TA(D)
CHANCLR=1

RETURN

C PROCESS SHUT/INSD/R SUPERVISORY MESSAGE, THEN
C SHUTDOWN OPERATIONS

C DETERMINE TYPE OF SHUTDOWN

120 IBIT=NFETCH(SMTA,L"SHUTF")

C IF THIS IS A FORCED SHUTDOWN, STOP NOW
IF (IB IT.EQ.1) THEN

CALL NETOFF
STOP 313

END IF

C SHUTDOWN GRACEFULLY IF TIME PERMITS BY
C DISCONNECTING ALL TERMINAL DEVICES

CALL SHUTDN
END

Figure 7-2. Program Portion of RMV3 (Sheet 16 of 24)

/$P^\

60499500 R 7-17

SUBROUTINE OUTPT 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 1
D0=- LONG/ -01 ,ARG=-COMMON/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PMD/-ST,PL=5000
FTN5 ,I=RMV,L=OUTPUT,LO=S/-A.

1
2

SUBROUTINE OUTPT (SEND)

3
4
5
6

C OUTPUT ONE DATA BLOCK

IMPLICIT INTEGER (A-Z)
7 COMMON /RMC0M/K(20),LASTBLK,I,S,NSUP,SMHDR,DSHDR,DSHDR1,NACN(20)
8 COMMON /RMC0M/C0NEND,R0MARK,ACN,ABN(20),SM(20),ABL(20),ABHIBU,US9 COMMON /RMCOM/NB(20),HA,INSTAK(20),OUTSTAK(20),ENDCN,SHUTD,INTRRSP

10 COMMON /RMCOM/INTRCHR,CHANRST,CHANCLR
11 COMMON /RMCOM/TA(63),STAK(20),OVRFLHA(8,20),0VRFLTA(63,8,20),US1
12 COMMON /RMC0M/IABN(20),SMHA,SMTA(63),SSM(8),MC,LFN,ABT,ACT,TLC
13
14
15 IS THERE DATA IN THE MAIN OUTPUT BUFFER?
16
17 IF (SEND.EQ.1) THEN
18
19 IF SO, IS THERE SOMETHING ELSE TO SEND FIRST?
20

1 21 IF (STAK(ACN) .EQ. 1) THEN
1 22
1 23 IF SO, ADD NEW OUTPUT TO STACK
1 24
2 25 GO TO 1
2 26 ELSE
2 27
2 28 IF NOT, TEST IF NEW OUTPUT CAN BE SENT
2 29
2 30 GO TO 9
2 31

32
33
34

END IF
ELSE

35 IF NOT, TEST IF DATA NEEDS TO BE SENT FROM THE STACK36
37 GO TO 8
38 END IF
39
40 IS THERE DATA IN THE STACK?
41
42 IF (STAK(ACN) .EQ. 0) THEN
43
44 IF NOT, EXIT
45
46 RETURN
47 ELSE
48
49 IF SO, TEST IF IT CAN BE SENT
50
51 GO TO 3
52 END IF
53
54
55 CAN DATA BE SENT?

Figure 7-2. Program Portion of RMV3 (Sheet 17 of 24)

7 - 1 8 6 0 4 9 9 5 0 0 R

S U B R O U T I N E O U T P T 7 4 / 7 4 O P T = 0 , R O U N D = A / S / M / - D , - D S F T N 5 . 1 + 5 9 9 8 3 / 0 8 / 0 5 . 11 . 3 8 . 1 7 PA G E 2

56
57 9 IF (((NB(ACN).GE.ABL(ACN)).AND.(CHANCLR.EQ.O)).AND.
5 8 + (C H A N R S T . E Q . O)) T H E N
59
6 0 C I F N O T , S T A C K I T
61
6 2 S TA K (A C N) = 0 U T S TA K (A C N) = I N S TA K (A C N) = 1
6 3 O V R F L H A (I N S T A K (A C N) , A C N) = H A
6 4 D O 8 8 8 J J = 1 , 6 3 , 1
6 5 8 8 8 O V R F LTA (J J , I N S TA K (A C N) , A C N) = TA (J J)
6 6 R E T U R N
67
6 8 C I F S O , D O I T
69
7 0 E L S E
71
72 C UPDATE FLOW CONTROL ALGORITHM
73
7 4 A B N (A C N) = A C N * 6 4 + K (A C N)
7 5 K (A C N) = K (A C N) + 1
7 6 N B (A C N) = N B (A C N) + 1
7 7 C A L L N S T O R E (H A , L " A B H A B N ' , , A B N (A C N))
7 8 C A L L N E T P U T (H A , T A)
7 9 R E T U R N
8 0 E N D I F
81
82
83 C IS THERE ROOM FOR MORE DATA IN THE STACK?
84
8 5 C I F N O T , T H R O W A W A Y N E W O U T P U T
86
8 7 1 I F (I N S T A K (A C N) . G T . O U T S T A K (A C N)) T H E N

1 8 8 I F ((I N S T A K (A C N) - O U T S T A K (A C N)) . E Q . 7) T H E N
2 8 9 S E N D = 0
2 9 0 R E T U R N
2 9 1 E N D I F
1 9 2 E L S E
1 9 3 I F ((O U T S T A K (A C N) - I N S T A K (A C N)) . E Q . 1) T H E N
2 9 4 S E N D = 0
2 9 5 R E T U R N
2 9 6 E N D I F
1 9 7 E N D I F
1 9 8 C
1 9 9 C I F S O , S A V E T H E N E W D A T A
1 1 0 0 C

1 0 1 I N S T A K (A C N) = I N S T A K (A C N) + 1
1 0 2 I F (I N S T A K (A C N) . E Q . 9) I N S T A K (A C N) = 1
1 0 3 O V R F L H A (I N S T A K (A C N) , A C N) = H A
1 0 4 D O 9 9 9 1 1 = 1 , 6 3 , 1
1 0 5 9 9 9 O V R F L T A (I I , I N S T A K (A C N) , A C N) = T A (I I)
106
1 0 7
1 0 8 C P R O C E S S D A T A A L R E A D Y I N S T A C K
109
1 1 0 C C A N D A T A B E S E N T ?
111
1 1 2 3 I F (N B (A C N) . G E . A B L (A C N)) T H E N

Figure 7-2. Program Portion of RMV3 (Sheet 18 of 24)

6 0 4 9 9 5 0 0 R 7 _ 1 9

SUBROUTINE OUTPT 7 4 / 7 4 O P T = 0 , R O U N D = A / S / M / - D , - D S F T N 5 . 1 + 5 9 9 8 3 / 0 8 / 0 5 . 11 . 3 8 . 1 7 PA G E 3

113
114 IF NOT, EXIT
115
116 RETURN
117
118 IF SO, DO IT
119
120 ELSE
121
122
123

UPDATE FLOW CONTROL ALGORITHM

124 ABN(ACN)=ACN*64 + K(ACN)
125 K(ACN)=K(ACN) + 1
126 NB(ACN)=NB(ACN) + 1
127 CALL NSTORE(OVRFLHA(OUTSTAK(ACN),ACN),L"ABHABN",ABN(ACN))
128 CALL NETPUT(OVRFLHA(OUTSTAK(ACN),ACN),
129 OVRFLTAd ,OUTSTAK (ACN) , ACN))
130
131 TEST IF STACK HAS BEEN EMPTIED
132
133 IF (OUTSTAK(ACN).EQ.INSTAK(ACN)) THEN

2 134 STAK(ACN)=0
2 135
2 136 IF SO, REINITIALIZE POINTERS
2 137
2 138 OUTSTAK(ACN)=INSTAK(ACN)=0
2 139 ELSE
2 140
2 141 IF NOT, MOVE THE SEND BUFFER POINTER FOR NEXT PASS
2 142
2 143 OUTSTAK(ACN)=OUTSTAK(ACN) + 1
2 144 IF (OUTSTAK(ACN) .EQ. 9) 0UTSTAK(ACN)=1
2 145 RETURN
2 146 END IF
1 147 END IF
1 148

149 RETURN
150 END

/ - " ^ v

Figure 7-2. Program Portion of RMV3 (Sheet 19 of 24)

7-20 60499500 R

SUBROUTINE PROMPT 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 1
DO=-LONG/-OT,ARG=-COMMON/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PMD/-ST,PL=5000
FTN5,I=RMV,L=0UTPUT,L0=S/-A.

1 S U B R O U T I N E P R O M P T (S E N D)
2
3 I M P L I C I T I N T E G E R (A - Z)
4 COMMON /RMCOM/K(20),LASTBLK,I ,S,NSUP,SMHDR,DSHDR,DSHDR1,NACN(20)
5 COMMON /RMCOM/C0NEND,ROMARK,ACN,ABN(20),SM(20),ABL(20),ABHIBU,US
6 COMMON /RMC0M/NB(20) ,HA, INSTAK(20) ,OUTSTAK(20) ,ENDCN,SHUTD,INTRRSP
7 C O M M O N / R M C O M / I N T R C H R , C H A N R S T, C H A N C L R
8 C O M M O N / R M C 0 M / TA (6 3) , S TA K (2 0) , 0 V R F L H A (8 , 2 0) , 0 V R F LTA (6 3 , 8 , 2 0) , U S 1
9 COMMON /RMC0M/ IABN(20) ,SMHA,SMTA(63) ,SSM(8) ,MC,LFN,ABT,ACT,TLC

1 1 H A = D S H D R
1 2 C A L L N S T O R E (H A , L " A B H A D R " , A C N)
1 3 T A (1 > = " I N P U T P L S "
1 4 T A (2) = 0
1 5 S E N D = 1
1 6 R E T U R N
1 7 E N D

Figure 7-2. Program Portion of RMV3 (Sheet 20 of 24)

6 0 4 9 9 5 0 0 R 7 - 2 1

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

SUBROUTINE SETUP 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 1
DO=-LONG/-OT,ARG=-COMHON/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PMD/-ST,PL=5000
FTN5,I=RMV,L=0UTPUT,L0=S/-A.

SUBROUTINE SETUP

IMPLICIT INTEGER(A-Z)
COMMON /RMCOM/K(20),LASTBLK,I,S,NSUP,SMHDR,DSHDR,DSHDR1,NACN(20)
COMMON /RMCOM/CONEND,ROMARK,ACN,ABN(20),SM(20),ABL(20),ABHIBU,US
COMMON /RMCOM/NB(20),HA,INSTAK(20),OUTSTAK(20),ENDCN,SHUTD,INTRRSP
COMMON /RMCOM/INTRCHR,CHANRST,CHANCLR
COMMON /RMCOM/TA(63),STAK(20),OVRFLHA(8,20),OVRFLTA(63,8,20),US1
COMMON /RMC0M/IABN(20),SMHA,SMTA(63),SSM(8),MC,LFN,ABT,ACT,TLC

C SET OUTGOING SUPERVISORY MESSAGE CONSTANTS

CONEND=NFETCH(0,L"CONEND")
ROMARK=NFETCH(0,L"ROMARK")
INTRRSP=NFETCH(0,L"INTRRSP")

C BUILD A BRANCHING TABLE FOR INCOMING SUPERVISORY
C MESSAGES (NOTE THAT THIS TABLE IS USED IN A MANNER
C THAT PERMITS EXPANSION)

SMd)=NFETCH(0,L"FCACK")
SM(2)=NFETCH(0,L"C0NREQ")
SM(3)=NFETCH(0,L"FCINIT")
SM(4)=NFETCH(0,L"INTRUSR")
SM(5)=NFETCH(0,L"FCINA")
SM(6)=NFETCH(0,L"C0NCB")
SM(7)=NFETCH(0,L"FCNAK")
SM(8)=NFETCH(0,L"ERRLGL")
SM(9)=NFETCH(0,L"H0P")
SM(10)=NFETCH(0,L"CONEND")

SET RESPONSE BIT FOR THE CON/END/N MESSAGE

SM(10)=SM(10) .0R.0"100"
SM(11)=NFETCH(0,L"SHUINS")
SMd 2)=NFETCH (0,L"BIMARK")
SMd 3) =999

C BUILD A BRANCHING TABLE FOR HOST OPERATOR COMMANDS

SSMd)=NFETCH(0,L"HOPDB")
SSM(2)=NFETCH(0,L"HOPDE")
SSM(3)=NFETCH(0,L"H0PDU")
SSM(4)=NFETCH(0,L"HOPNOTR")
SSM(5)=NFETCH(0,L"H0PTRCE")
SSM(6)=NFETCH(0,L"HOPREL")
SSM(7)=NFETCH(0,L"H0PRS")

RETURN
END

Figure 7-2. Program Portion of RMV3 (Sheet 21 of 24)

/SSK

7-22 60499500 R

10
11
12
1 3
1 4
15
16
1 7
1 8
1 9
2 0
21
22
23
24
25
26
27
28
2 9
3 0
31
3 2
33
34
35
36
37
3 8
39
4 0
41
42
43
44
45
46
47
48
49
50
51
52

S U B R O U T I N E PA C K 7 4 / 7 4 O P T = 0 , R O U N D = A / S / M / - D , - D S F T N 5 . 1 + 5 9 9 8 3 / 0 8 / 0 5 . 11 . 3 8 . 1 7
D0=-LONG/-OT,ARG=-COMMON/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PMD/-ST,PL=5000
FTN5,I=RMV,L=OUTPUT,LO=S/-A.

SUBROUTINE PACK (SEND)

IMPLICIT INTEGER(A-Z)
COMMON /RMCOM/K(20),LASTBLK,I,S,NSUP,SMHDR,DSHDR,DSHDR1,NACN(20)
COMMON /RMC0M/C0NEND,R0MARK,ACN,ABN(20),SM(20),ABL(20),ABHIBU,US
COMMON /RMC0M/NB(20),HA,INSTAK(20),0UTSTAK(20),ENDCN,SHUTD,INTRRSP
COMMON /RMCOM/INTRCHR,CHANRST,CHANCLR
COMMON /RMCOM/TA(63),STAK(20),0VRFLHA(8,20),OVRFLTA(63,8,20)#US1
COMMON /RMC0M/IABN(20),SMHA,SMTA(63),SSM(8),MC,LFN,ABT,ACT,TLC

C CREATE HEADER WORD TO ECHO INPUT AS OUTPUT

HA =(HA .AND. 0"77777777777774007777") + 0"1"

C CHANGE APPLICATION BLOCK TYPE TO 1
IF (ABT.EQ.2) CALL NSTORE (HA,L"ABHABT",1)
IF (ABT.EQ.2) THEN

LASTBLK=1
ELSE

LASTBLK=0
END IF

PAGE 1

C INHIBIT FIRST CHARACTER AS A FORMAT EFFECTOR

CALL NSTORE(HA,L"ABHNFE",1)

C ECHO INPUT AS OUTPUT, AFTER ADDING A US TERMINATOR

FULWD=TLC/5
FWP1 =FULWD+1
XTRA=12*(TLC - 5*FULWD)
TLC=TLC + 1
CALL NSTORE(HA,L"ABHTLC",TLC)
IF (XTRA.EQ.O) THEN
TA(FWP1)=US

ELSE
XXX=SHIFT(US1,-XTRA)
YYY=SHIFT(US,-XTRA)

C ZERO OUT REMAINDER OF WORD AND ADD UNIT SEPARATOR CHARACTER TO END OF BLOCK

TA(FWP1)=TA(FWP1) .AND. XXX .OR. YYY
END IF

SEND=1
RETURN
END

F i g u r e 7 - 2 . P r o g r a m P o r t i o n o f R M V 3 (S h e e t 2 2 o f 2 4)

60499500 R 7 - 2 3

SUBROUTINE SHUTDN 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 1
DO=-•LONG/-OT,ARG=-COMMON/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PMD/-ST,PL=5000
FTN5,I=RMV,L=0UTPUT,L0=S/-A.

1
2
3

SUBROUTINE SHUTDN

IMPLICIT INTEGER(A-Z)
4 COMMON /RMC0M/K(20),LASTBLK,I,S,NSUP,SMHDR,DSHDR,DSHDR1,NACN(20)5 COMMON /RMC0M/CONEND,R0MARK,ACN,ABN(20),SM(20),ABL(20),ABHIBU,US6 COMMON /RMC0M/NB(20),HA,INSTAK(20),OUTSTAK(20),ENDCN,SHUTD,INTRRSP
7 COMMON /RMCOM/INTRCHR,CHANRST,CHANCLR
8 COMMON /RMCOM/TA(63),STAK(20),OVRFLHA(8,20),OVRFLTA(63,8,20),US19 COMMON /RMC0M/IABN(20),SMHA,SMTA(63),SSM(8),MC,LFN,ABT,ACT,TLC

10
11
12 CLEANUP ALL CONNECTIONS BEFORE ENDING NETWORK ACCESS
13
14 666 SMTA(1)=SMTA(2)=0
15 CALL NSTORE(SMTA,L"PFCSFC",CONEND)
16 CALL NSTORE(SMTA,L"RC",0)
17
18
19 PASS CONNECTION DIRECTLY TO IAF WITHOUT DIALOG
20
21 CALL NSTORE(SMTA,L"CONANM",R"IAF ")
22 SMHA=SMHDR + 0"1"
23 DO 555 J =1,20
24 IF (NACN(J).EQ.D THEN

1 2 5 CALL NSTORE (SMTA,L"CONACN",J)
1 2 6 NACN(J)=0
1 2 7 CALL NETPUT (SMHA,SMTA)
1 2 8 END IF

29 555 CONTINUE
30
31
32 FETCH ALL QUEUED SUPERVISORY MESSAGES TO AVOID AN APPLICATION
33 FAILED MESSAGE TO THE DEVICE OPERATOR AFTER DISCONNECTION
34
35 97 CALL NETWAIT(5,0)
36 SHUTDWN=1
37 SYNC=0
38 CALL LOOKSM (SHUTDWN,L,SYNC)39 IF (L.EQ.3) GO TO 666
40
41
42

IF (L.LE.12) GO TO 97

43 FINISH WRITING DEBUG LOG AND STATISTICAL FILES
44
45 CALL NETOFF
46
47 STOP 33348 END

Figure 7-2. Program Portion of RMV3 (Sheet 23 of 24)

<t*^\

7-24 60499500 R

10
11
12
13
14
15
16

SUBROUTINE REPREV 74/74 OPT=0,R0UND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 1
DO=-LONG/-OT,ARG=-COMMON/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PMD/-ST,PL=5000
FTN5,I=RMV,L=0UTPUT,L0=S/-A.

SUBROUTINE REPREV (IXCHNG,IFLAG,IFLDLN)

C THIS SUBROUTINE SALVAGES THE DEBUG AND STATISTICAL FILE ENTRIES BY
C CALLING THE AIP ROUTINE NETOFF TO FLUSH BUFFERS IN CASE THE
C APPLICATION PROGRAM IS ABORTED DURING EXECUTION

DIMENSION IXCHNG(17),IFLDLN(0"50000")'
IFLAG=1

CALL NETOFF
STOP 10

ENTRY CHKSUM
END

Figure 7-2. Program Portion of RMV3 (Sheet 24 of 24)

r

RMV2 VER3

INPUT PLS

User-break-1 or
user-break-2

BREAK n

INPUT PLS

BYPASSED

TIME OUT

INPUT PLS

ENDCN

Prompt to operator from RMV2 for first input,

Entered by terminal operator.

RMV2 response to break entries.

Prompt for next input.

RMV2 response to INTR/USR/R supervisory message.

RMV2 output documenting an inactive connection; this is followed by disconnection
from RMV2 for subsequent terminal operator dialog with NVF or disconnection from
the host.

I N P U T P L S R M V 2 p r o m p t f o r n e x t i n p u t .

SHUTD Termina l operator ent ry, causes normal connect ion terminat ion for th is termina l
and for all other connected terminals. Next terminal operator dialog is with IAF,
if that program is available.

RMV2 prompt for next input.

Terminal operator entry, causes normal connection termination for this terminal,
Next terminal operator dialog is with IAF, if that program is available.

INPUT PLS

Any characters
other than SHUTD or
ENDCN, up to 314

Any characters
other than SHUTD or
ENDCN, up to 314

INPUT PLS

RMV2 prompt for input.

Terminal operator entry.

RMV2 echoed output, single-spaced,

RMV2 prompt for next entry.

Figure 7-3. Possible Dialogs Supported by Sample FORTRAN Program

60499500 R 7-25

R M V 2 L O G F I L E O U T P U T 8 3 / 0 8 / 0 5
D A T E R E C O R D E D - 8 3 / 0 8 / 0 5 P A G E 0 0 0 0 1

11 . 3 8 . 2 6 . 0 0 0 N E T O N (0 2 4 6 7 7) A N A M E = R M V 2 D AT E = 8 3 / 0 8 / 0 5 M S G N O . 0 0 0 0 0 1
NSUP ADDR = 000140 MINACN =00001 MAXACN =00020

11.38.53.498 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063 MSG NO. 000002
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0010

001 630000001600200 30600000000130001000 CONREQ C
002 51C75F0ADB45018 24343537025555050030 T124B E X UP-4P
003 0000000000006EA 00000000000000003352 0) N
004 0000000002DD40B 00000000000013352013 K2PK -T
005 xxxxxxx6DB40011 xxxxxxxxxxx555000021 xxxxx Q M B CB
006 xxxxxxxEl880037 xxxxxxxxxxxxxx000067 xxxxxxx & 16A 7
007 000FF8FFFFFFFFF 00007770777777777777 ;,;;;;;; X
008 FFF3400001FFFFF 77771500000007777777 ;;M G;;; 4
009 OOOOOOOOOOOOF6F 00000000000000007557 . — v~
010 7C014034460D1C1 37000500150430150701 4 E MDXMGA WB DSQA

1 1 . 3 8 . 5 3 . 5 0 8 N E T P U T (0 3 1 6 5 5) H A = 0 2 4 5 4 4 T A = 0 2 4 5 4 5 M S G N O . 0 0 0 0 0 3
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 6340000010000C1 30640000000100000301 CONREQN CB

11.38.54.007 NETGETL (031354) ALN =0000 HA =624544 TA =024545 TLMAX =0063 MSG NO. 000004
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830700001000000 40603400000100000000 FCINIT

1 1 . 3 8 . 5 4 . 0 1 0 N E T P U T (0 3 1 6 5 5) H A = 0 2 4 5 4 4 T A = 0 2 4 5 4 5 M S G N O . 0 0 0 0 0 5
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 834700001000000 40643400000100000000 FCINITN G

1 1 . 3 8 . 5 4 . 0 1 1 N E T P U T (0 3 1 6 5 5) H A = 0 0 0 3 1 5 T A = 0 0 0 3 7 4 M S G N O . 0 0 0 0 0 6
ABT =01 ADR =0001 ABN =000065 ACT =04 STATUS = 00000000 TLC = 0020

001 71235676D58549E 34221526355526052236 1RMV2 VER3 Q#VVU I
002 000000000000000 OOOOOOOOOOOOOOOOOOOO S

1 1 . 3 8 . 5 4 . 0 1 1 N E T P U T (0 3 1 6 5 5) H A = 0 0 0 3 1 5 T A = 0 0 0 3 7 4 M S G N O . 0 0 0 0 0 7
ABT =02 ADR =0001 ABN =000066 ACT =04 STATUS = 00000000 TLC = 0020

001 B49390554B50313 55111620252455201423 INPUT PLS 4 UKP1
002 000000000000000 OOOOOOOOOOOOOOOOOOOO 0

11.38.54.505 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063 MSG NO. 000008
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 1 of 13)

7 - 2 6 6 0 4 9 9 5 0 0 R

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

83/08/05
PAGE 00002

001 830200001001040 40601000000100010100 FCACK

11.38.54.509 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001080 40601000000100010200 FCACK

11.39.10.797 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX =0010
ABT =02 ADR =0001 ABN =000000 ACT =03 STATUS = 00000000 TLC = 0047

MSG NO. 000009

MSG NO. 000010

001 05406806502006E
002 065078074020063
003 068061072061063
004 074065072020069
005 073020061020075
006 07306507202D062
007 07206506106B02D
008 031020063068061
009 072061063074065
010 07202E000000000

01240150014500400156
01450170016400400143
01500141016201410143
01640145016200400151
01630040014100400165
01630145016200550142
01620145014101530055
00610040014301500141
01620141014301640145
01620056000000000000

ATA/A+ 5A, THE N
A+A'A" 5A8 EXT C
A/A6A3A6A8 HARAC
A"A+AD 5A(TER I
AX 5A6 5A S A U
AXA+AD A7 SER-B
ADA+A6AS REAK-

L" 5A8A/A6 1 CHA
ADA6A8A"A+ RACTE
AD , R.

11 . 3 9 . 1 0 . 8 0 4 N E T P U T (0 3 1 6 5 5) H A = 0 0 0 3 1 5 TA = 0 0 0 3 7 4
ABT =01 ADR =0001 ABN =000067 ACT =03 STATUS = 00001000 TLC = 0048

MSG NO. 000011

001 05406806502006E
002 065078074020063
003 068061072061063
004 074065072020069
005 073020061020075
006 07306507202D062
007 07206506106B02D
008 031020063068061
009 072061063074065
010 07202E01FOOOOOO

01240150014500400156
01450170016400400143
01500141016201410143
01640145016200400151
01630040014100400165
01630145016200550142
01620145014101530055
00610040014301500141
01620141014301640145
01620056003700000000

ATA/A+ 5A, THE N
A+A'A" 5A8 EXT C
A/A6ADA6A8 HARAC
A"A+AD 5A(TER I
AX 5A6 5A S A U
AXA+AD A7 SER-B
ADA+A6AS REAK-

C 5A8A/A6 1 CHA
AJA6A8A"A+ RACTE
AD , 4 R.

11 . 3 9 . 1 0 . 8 0 5 N E T P U T (0 3 1 6 5 5) H A = 0 0 0 3 1 5 TA = 0 0 0 3 7 4
ABT =02 ADR =0001 ABN =000068 ACT =04 STATUS = 00000000 TLC = 0020

MSG NO. 000012

001 B49390554B50313 55111620252455201423
002 000000000000000 OOOOOOOOOOOOOOOOOOOO

INPUT PLS UKP1

11.39.11.844 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001OCO 40601000000100010300 FCACK

11.39.11.850 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063

MSG NO. 000013

MSG NO. 000014

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 2 of 13)

60499500 R 7-27

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001100 40601000000100010400 FCACK

1«?9"ll"955«, onno NETGET|; <031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800003001000000 40000003000100000000 INTRUSR

1hl9'Jtlm95? NETPUT <031655) HA =024544 TA =024545ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800100001000000 40000400000100000000 INTRRSP

1lo|9"lS"°IL NET6ETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX =0010ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CAOOOOOOOOOOOOO 62400000000000000000 BIMARK J

11.39.16.043 NETPUT (031655) HA =000315 TA =000374
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

83/08/05
PAGE 00003

001 CBOOOOOOOOOOOOO 62600000000000000000 ROMARK

11.39.16.043 NETPUT (031655) HA =000315 TA =000374
ABT =01 ADR =0001 ABN =000069 ACT =04 STATUS = 00000000 TLC = 0020

001 B4248504BB5CB6D 55022205011355345555 BREAK 1 4$; 6
002 000000000000000 OOOOOOOOOOOOOOOOOOOO P

11.39.16.043 NETPUT (031655) HA =000315 TA =000374
ABT =02 ADR =0001 ABN =000070 ACT =04 STATUS = 00000000 TLC = 0020

001 B49390554B50313 55111620252455201423 INPUT PLS 4 UKP1
002 000000000000000 OOOOOOOOOOOOOOOOOOOO 0

11.39.17.006 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000000 40601000000100000000 FCACK

11.39.17.010 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001140 40601000000100010500 FCACK

MSG NO. 000015

MSG NO. 000016

MSG NO. 000017

MSG NO. 000018

MSG NO. 000019

MSG NO. 000020

MSG NO. 000021

MSG NO. 000022

./*3S^v

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 3 of 13)

7-28 60499500 R

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

1M?^J"°liB ^nnn NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001180 40601000000100010600 FCACK

1l;?9*n1*49° NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX =0010ABT =02 ADR =0001 ABN =000000 ACT =03 STATUS = 00000000 TLC = 0047

83/08/05
PAGE 00004

MSG NO. 000023

MSG NO. 000024

001 05406806502006E
002 065078074020063
003 068061072061063
004 074065072020069
005 073020061020075
006 07306507202D062
007 07206506106B02D
008 032020063068061
009 072061063074065
010 072O2E0OO0O0OOO

01240150014500400156
01450170016400400143
01500141016201410143
01640145016200400151
01630040014100400165
01630145016200550142
01620145014101530055
00620040014301500141
01620141014301640145
01620056000000000000

ATA/A+ 5A, THE N
A+A'A" 5A8 EXT C
A/A6ADA6A8 HARAC
A"A+AD 5A(TER I
A% 5A6 5A S A U
A%A+AD A7 SER-B
ADA+A6AS REAK-
D 5A8A/A6 2 CHA

ADA6A8A"A+ RACTE
AD , R.

11 : 2 9 " « 2 " 5 0 2 N E T P U T < 0 3 1 6 5 5) H A = 0 0 0 3 1 5 TA = 0 0 0 3 7 4ABT =01 ADR =0001 ABN =000071 ACT =03 STATUS = 00001000 TLC = 0048 MSG NO. 000025

001 05406806502006E
002 065078074020063
003 068061072061063
004 074065072020069
005 073020061020075
006 07306507202D062
007 07206506106B02D
008 032020063068061
009 072061063074065
010 07202E01FOOOOOO

01240150014500400156
01450170016400400143
01500141016201410143
01640145016200400151
01630040014100400165
01630145016200550142
01620145014101530055
00620040014301500141
01620141014301640145
01620056003700000000

ATA/A+ 5A,
A+A'A" 5A8
A/A6ADA6A8
A"A+AD 5A(
AX 5A6 5A
A%A+AD A7
ADA+A6AS

D 5A8A/A6
ADA6A8A"A+
AD . 4

THE N
EXT C
HARAC
TER I
S A U
SER-B
REAK-
2 CHA
RACTE
R.

11 . 3 9 . 3 2 . 5 0 2 N E T P U T (0 3 1 6 5 5) H A = 0 0 0 3 1 5 TA = 0 0 0 3 7 4
ABT =02 ADR =0001 ABN =000072 ACT =04 STATUS = 00000000 TLC = 0020 MSG NO. 000026

001 B49390554B50313 55111620252455201423
002 000000000000000 OOOOOOOOOOOOOOOOOOOO

INPUT PLS UKP1

11.39.34.047 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 8302000010011 CO 40601000000100010700 FCACK

11.39.34.067 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

MSG NO. 000027

MSG NO. 000028

001 830200001001200 40601000000100011000 FCACK

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 4 of 13)

60499500 R 7-29

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

11.39.36.687 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800004001000000 40000004000100000000 INTRUSR

11 . 3 9 . 3 6 . 7 4 0 N E T P U T (0 3 1 6 5 5) H A = 0 2 4 5 4 4 TA = 0 2 4 5 4 5
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800100001000000 40000400000100000000 INTRRSP

11.39.36.811 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX =0010
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CA00000901DEOOO 62400000022007360000 BIMARK

11 . 3 9 . 3 6 . 8 2 2 N E T P U T (0 3 1 6 5 5) H A = 0 0 0 3 1 5 TA = 0 0 0 3 7 4
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CBOOOOOOOOOOOOO 62600000000000000000 ROMARK

11 . 3 9 . 3 6 . 8 2 2 N E T P U T (0 3 1 6 5 5) H A = 0 0 0 3 1 5 TA = 0 0 0 3 7 4
ABT =01 ADR =0001 ABN =000073 ACT =04 STATUS = 00000000 TLC = 0020

001 B4248504BB5DB6D 55022205011355355555 BREAK 2 4$;D6
002 000000000000000 OOOOOOOOOOOOOOOOOOOO P

11 . 3 9 . 3 6 . 8 2 3 N E T P U T (0 3 1 6 5 5) H A = 0 0 0 3 1 5 TA = 0 0 0 3 7 4
ABT =02 ADR =0001 ABN =000074 ACT =04 STATUS = 00000000 TLC = 0020

001 B49390554B50313 55111620252455201423 INPUT PLS 4 UKP1
002 000000000000000 OOOOOOOOOOOOOOOOOOOO 0

11.39.37.707 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000000 40601000000100000000 FCACK

11.39.37.711 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

0 0 1 8 3 0 2 0 0 0 0 1 0 0 1 2 4 0 4 0 6 0 1 0 0 0 0 0 0 1 0 0 0 111 0 0 F C A C K $

11.39.37.715 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

83/08/05
PAGE 00005

MSG NO. 000029

MSG NO. 000030

MSG NO. 000031

MSG NO. 000032

MSG NO. 000033

MSG NO. 000034

MSG NO. 000035

MSG NO. 000036

MSG NO. 000037

>**^\

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 5 of 13)

7-30 60499500 R

0^\
RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

83/08/05
PAGE 00006

001 830200001001280 40601000000100011200 FCACK

1«?:«!"219 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX =0010ABT -02 ADR =0001 ABN =000000 ACT =03 STATUS = 00000000 TLC = 0036 MSG NO. 000038

001 05406806502006E
002 065078074020065
003 06E074072079020
004 069073020061020
005 06207206506106B
006 02006306F06E064
007 06907406906F06E
008 O2EO0OO0OOO0O0O

01240150014500400156
01450170016400400145
01560164016201710040
01510163004001410040
01420162014501410153
00400143015701560144
01510164015101570156
00560000000000000000

ATA/A+ 5A,
A+A'A" 5A+
A,A"ADA? 5
A(A% 5A6 5
A7ADA+A6AS

5A8A.A,A9
A(A"A(A.A,

THE N
EXT E
NTRY
IS A
BREAK

COND
IT ION

11 » 3 9 " S ' 2 2 5 N E T P U T ^ 0 3 1 6 5 5) H A = 0 0 0 3 1 5 TA = 0 0 0 3 7 4ABT =01 ADR =0001 ABN =000075 ACT =03 STATUS = 00001000 TLC = 0037 MSG NO. 000039

001 05406806502006E
002 065078074020065
003 06E074072079020
004 069073020061020
005 06207206506106B
006 02006306F06E064
007 06907406906F06E
008 02E01FOOOOOOOOO

01240150014500400156
01450170016400400145
01560164016201710040
01510163004001410040
01420162014501410153
00400143015701560144
01510164015101570156
00560037000000000000

ATA/A+ 5A, THE N
A+A'A" 5A+ EXT E
A,A"ADA? 5 NTRY
A(AX 5A6 5 IS A
A7ADA+A6AS BREAK
5A8A.A,A9 COND

A(A"A(A.A,
* 4

ITION

11 . 3 9 . 5 1 . 2 2 5 N E T P U T (0 3 1 6 5 5) H A = 0 0 0 3 1 5 TA = 0 0 0 3 7 4
ABT =02 ADR =0001 ABN =000076 ACT =04 STATUS = 00000000 TLC = 0020 MSG NO. 000040

001 B49390554B50313 55111620252455201423
002 000000000000000 OOOOOOOOOOOOOOOOOOOO

INPUT PLS 4 UKP1
0

11.39.51.747 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 8302000010012C0 40601000000100011300 FCACK ,

11.39.51.751 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001300 40601000000100011400 FCACK 0

11.39.56.410 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800003001000000 40000003000100000000 INTRUSR

MSG NO. 000041

MSG NO. 000042

MSG NO. 000043

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 6 of 13)

60499500 R 7-31

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

83/08/05
PAGE 00007

11.39.56.414 NETPUT (031655) HA =024544 TA =024545
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

MSG NO. 000044

001 800100001000000 40000400000100000000 INTRRSP

11.39.56.464 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

=0010 MSG NO. 000045

001 CAOOOOOOOOOOOOO 62400000000000000000 BIMARK J

11.39.56.478 NETPUT (031655) HA =000315 TA =000374
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

MSG NO. 000046

001 CBOOOOOOOOOOOOO 62600000000000000000 ROMARK K

11.39.56.478 NETPUT (031655) HA =000315 TA =000374
ABT =01 ADR =0001 ABN =000077 ACT =04 STATUS = 00000000 TLC = 0020

MSG NO. 000047

001 B4248504BB5CB6D 55022205011355345555 BREAK 1 4$
002 000000000000000 OOOOOOOOOOOOOOOOOOOO P

; 6

11.39.56.478 NETPUT (031655) HA =000315 TA =000374
ABT =02 ADR =0001 ABN =000078 ACT =04 STATUS = 00000000 TLC = 0020

MSG NO. 000048

001 B49390554B50313 55111620252455201423 INPUT PLS 4
002 OOOOOOOOQOOOOOO OOOOOOOOOOOOOOOOOOOO 0

JKP1

11.39.56.960 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

=0063 MSG NO. 000049

001 830200001000000 40601000000100000000 FCACK

11.39.56.964 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

=0063 MSG NO. 000050

001 830200001001340 40601000000100011500 FCACK

11.39.56.992 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

=0063 MSG NO. 000051

001 830200001001380 40601000000100011600 FCACK

11.39.57.021 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX
ABT =02 ADR =0001 ABN =000000 ACT =03 STATUS = 00000000 TLC = OOOO

=0010 MSG NO. 000052

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 7 of 13)

7-32 60499500 R

0 ^ *

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

11.39.57.027 NETPUT (031655) HA =000315 TA =000374
ABT =01 ADR =0001 ABN =000079 ACT =03 STATUS = 00001000 TLC = 0001

001 01FOOOOOOOOOOOO 00370000000000000000 4

11.39.57.028 NETPUT (031655) HA =000315 TA =000374
ABT =02 ADR =0001 ABN =000080 ACT =04 STATUS = 00000000 TLC = 0020

001 B49390554B50313 55111620252455201423 INPUT PLS 4 UKP1
002 000000000000000 OOOOOOOOOOOOOOOOOOOO 0

1«?9"S"50L nnnn NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 8302000010013C0 40601000000100011700 FCACK

1«59:S"505 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC =0001

001 830200001001400 40601000000100012000 FCACK

11.40.12.998 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX =0010
ABT =02 ADR =0001 ABN =000000 ACT =03 STATUS = 00000000 TLC = 0005

001 04504E04404304E 01050116010401030116 AEANADACAN ENDCN

11 . 4 0 . 1 3 . 0 0 5 N E T P U T (0 3 1 6 5 5) H A = 0 2 4 5 4 4 TA = 0 2 4 5 4 5
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0002

001 630600001000000 30603000000100000000 CONEND
002 2411ADB6DB40000 11010655555555000000 IAF A L~M4

11.40.13.064 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 634600001000000 30643000000100000000 CONENDN CF

11.40.29.864 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0010

001 630000001600200 30600000000130001000 CONREQ C
002 51C75F0ADB45018 24343537025555050030 T124B EX UP-4P
003 0000000000006EA 00000000000000003352 0) N
004 0000000002DD40B 00000000000013352013 K2PK -T
005 xxxxxxx6DB40011 xxxxxxxxxx5555000021 xxxxx Q M B CB
006 xxxxxxxEl880037 xxxxxxxxxxxxxx000067 xxxxxxx & 16A 7

83/08/05
PAGE 00008

MSG NO. 000053

MSG NO. 000054

MSG NO. 000055

MSG NO. 000056

MSG NO. 000057

MSG NO. 000058

MSG NO. 000059

MSG NO. 000060

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 8 of 13)

60499500 R 7-33

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

83/08/05
PAGE 00009

007 000FF8FFFFFFFFF 00007770777777777777 ;';;;;;; X
008 FFF3400001FFFFF 77771500000007777777 ;;M G;;; 4
009 000000000000F6F 00000000000000007557 . V
010 7C014034460D1C1 37000500150430150701 4 E MDXMGA WS) DBQA

11.40.29.870 NETPUT (031655) HA =024544 TA =024545
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

MSG NO. 000061

001 6340000010000C1 30640000000100000301 CONREQN C3

11.40.30.922 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

=0063 MSG NO. 000062

001 830700001000000 40603400000100000000 FCINIT

11.40.30.925 NETPUT (031655) HA =024544 TA =024545
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

MSG NO. 000063

001 834700001000000 40643400000100000000 FCINITN G

11.40.30.925 NETPUT (031655) HA =000315 TA =000374
ABT =01 ADR =0001 ABN =000081 ACT =04 STATUS = 00000000 TLC = 0020

MSG NO. 000064

001 71235676D58549E 34221526355526052236 1RMV2 VER3 Q#VVU I
002 000000000000000 oooooooooooooooooooo a

11.40.30.925 NETPUT (031655) HA =000315 TA =000374
ABT =02 ADR =0001 ABN =000082 ACT =04 STATUS = 00000000 TLC = 0020

MSG NO. 000065

001 B49390554B50313 55111620252455201423 INPUT PLS 4 UKP1
002 000000000000000 OOOOOOOOOOOOOOOOOOOO 0

11.40.31.468 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

=0063 MSG NO. 000066

001 830200001001440 40601000000100012100 FCACK D

11.40.31.473 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

=0063 MSG NO. 000067

001 830200001001480 40601000000100012200 FCACK H

11.41.39.064 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX
ABT =00 ADR =0001 ABN =000000 ACT =02 STATUS = 10000000 TLC = 0100

=0010 MSG NO. 000068

/^Hjf-

^

^^Ifc

/*OSJJI.

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 9 of 13)

ysS^v

7-34 60499500 R

/ff*^
RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

11.41.39.077 NETGET (031340) ACN =0001 HA =000315 TA =000374 TLMAX =0063
ABT =01 ADR =0001 ABN =000000 ACT =03 STATUS = 00000000 TLC =0100

83/08/05
PAGE 00010

MSG NO. 000069

001 054068069073020
002 069073020061020
003 074065073074020
004 06F066020074068
005 065020071075065
006 07506906E067020
007 06306F064065020
008 06606F07202006D
009 065073073061067
010 06507302006F066
011 02006D06F072065
012 02007406806106E
013 02006F06E065020
014 06E06507407706F
015 07206B020064061
016 07406102006206C
017 06F06306B03B020
018 074068069073020
019 06906E070075074
020 02007306806F075

01240150015101630040
01510163004001410040
01640145016301640040
01570146004001640150
01450040016101650145
01650151015601470040
01430157014401450040
01460157016200400155
01450163016301410147
01450163004001570146
00400155015701620145
00400164015001410156
00400157015601450040
01560145016401670157
01620153004001440141
01640141004001420154
01570143015300730040
01640150015101630040
01510156016001650164
00400163015001570165

ATA/A(AX 5 THIS
A(AX 5A6 5 IS A
A"A+AXA" 5 TEST
A.A- 5A"A/ OF TH
A+ 5ACA A+ E QUE
A A(A,A* 5 UING
ABA.A9A+ 5 CODE
A-A.AD 5A FOR M
A+AXAXA6A* ESSAG
A+AX 5A.A- ES OF

5A A.ADA+ MORE
5A"A/A6A, THAN
5A.A,A+ 5 ONE

A,A+A"A&A. NETWO
ADAS 5A9A6 RK DA
A"A6 5A7A= TA BL
A.A8AS > 5 OCK;
A"A/A(AX 5 THIS
A(A,A#A A" INPUT

5AXA/A.A SHOU

11 . 4 1 . 3 9 . 0 8 3 N E T P U T (0 3 1 6 5 5) H A = 0 0 0 3 1 5 TA = 0 0 0 3 7 4
ABT =01 ADR =0001 ABN =000083 ACT =03 STATUS = 00001000 TLC = 0101

MSG NO. 000070

001 054068069073020
002 069073020061020
003 074065073074020
004 06F066020074068
005 065020071075065
006 07506906E067020
007 06306F064065020
008 06606F07202006D
009 065073073061067
010 06507302006F066
011 02006D06F072065
012 02007406806106E
013 02006F06E065020
014 06E06507407706F
015 07206B020064061
016 07406102006206C
017 06F06306B03B020
018 074068069073020
019 06906E070075074
020 02007306806F075
021 01FOOOOOOOOOOOO

01240150015101630040
01510163004001410040
01640145016301640040
01570146004001640150
01450040016101650145
01650151015601470040
01430157014401450040
01460157016200400155
01450163016301410147
01450163004001570146
00400155015701620145
00400164015001410156
00400157015601450040
01560145016401670157
01620153004001440141
01640141004001420154
01570143015300730040
01640150015101630040
01510156016001650164
00400163015001570165
00370000000000000000

ATA/A(AX 5 THIS
A(AX 5A6 5 IS A
A"A+AXA" 5 TEST
A.A- 5A"A/ OF TH
A+ 5ACA A+ E QUE
A A(A,A* 5 UING
A8A.A9A+ 5 CODE
A-A.AD 5A FOR M
A+AZAXA6A* ESSAG
A+AX 5A.A- ES OF
5A A.ADA+ MORE
5A"A/A6A, THAN
5A.A,A+ 5 ONE

A,A+A"A8A. NETWO
ADAS 5A9A6 RK DA
A"A6 5A7A= TA BL
A.A8AS > 5 OCK;
A"A/A(AX 5 THIS
A(A,A#A A" INPUT

5AXA/A.A SHOU
4 ~

11.41.42.759 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

MSG NO. 000071

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 10 of 13)

60499500 R 7-35

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

001 8302000010014C0 40601000000100012300 FCACK

11.41.42.791 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX =0010
ABT =00 ADR =0001 ABN =000000 ACT =02 STATUS = 10010000 TLC = 0070

11.41.42.823 NETGET (031340) ACN =0001 HA =000315 TA =000374 TLMAX =0063
ABT =02 ADR =0001 ABN =000000 ACT =03 STATUS = 00010000 TLC = 0070

83/08/05
PAGE 00011

MSG NO. 000072

MSG NO. 000073

001 06C064020067065
002 06E065072061074
003 065020073065076
004 06507206106C020
005 06206C06F06306B
006 07302006F066020
007 06906E070075074
008 02006106E064020
009 06F075074070075
010 07402006106E064
011 020062065020070
012 07206F070065072
013 06C079020065063
014 06806F06506402E

01540144004001470145
01560145016201410164
01450040016301450166
01450162014101540040
01420154015701430153
01630040015701460040
01510156016001650164
00400141015601440040
01570165016401600165
01640040014101560144
00400142014500400160
01620157016001450162
01540171004001450143
01500157014501440056

A=A9 5A*A+
A,A+ADA6A"
A+ 5AXA+A!
A+ADA6A= 5
A7A=A.A8A$
AX 5A.A- 5

A(A,A#A_A"
5A6A,A9 5

A.A_A"A#A_
A" 5A6A,A9

5A7A+ 5A#
ADA.A#A+AD
A=A? 5A+A8
A/A.A+A9 .

LD GE
NERAT
E SEV
ERAL
BLOCK
S OF
INPUT

AND
OUTPU
T AND

BE P
ROPER
LY EC
HOED.

11 . 4 1 . 4 2 . 8 4 3 N E T P U T (0 3 1 6 5 5) H A = 0 0 0 3 1 5 TA = 0 0 0 3 7 4
ABT =01 ADR =0001 ABN =000084 ACT =03 STATUS = 00001000 TLC = 0071 MSG NO. 000074

001 06C064020067065
002 06E065072061074
003 065020073065076
004 06507206106C020
005 06206C06F06306B
006 07302006F066020
007 06906E070075074
008 02006106E064020
009 06F075074070075
010 07402006106E064
011 020062065020070
012 07206F070065072
013 06C079020065063
014 06806F06506402E
015 01FOOOOOOOOOOOO

01540144004001470145
01560145016201410164
01450040016301450166
01450162014101540040
01420154015701430153
01630040015701460040
01510156016001650164
00400141015601440040
01570165016401600165
01640040014101560144
00400142014500400160
01620157016001450162
01540171004001450143
01500157014501440056
003 70000000000000000

A=A9 5A*A+
A,A+ADA6A"
A+ 5AXA+A!
A+ADA6A= 5
A7A=A.A8A$
AX 5A.A- 5
A(A,A#A A"
5A6A,A7 5

A.A_A"A#A_
A" 5A6A,A9
5A7A+ 5A#

ADA.A#A+AD
A=A? 5A+A8
A/A.A+A9 ,
4

LD GE
NERAT
E SEV
ERAL
BLOCK
S OF
INPUT
AND

OUTPU
T AND
BE P

ROPER
LY EC
HOED.

11.41.42.843 NETPUT (031655) HA =000315 TA =000374
ABT =02 ADR =0001 ABN =000085 ACT =04 STATUS = 00000000 TLC = 0020 MSG NO. 000075

001 B49390554B50313 55111620252455201423
002 000000000000000 OOOOOOOOOOOOOOOOOOOO

INPUT PLS 4 UKP1
0

11.41.43.280 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063 MSG NO. 000076

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 11 of 13)

7-36 60499500 R

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

0 0 1 8 3 0 2 0 0 0 0 1 0 0 1 5 0 0 4 0 6 0 1 0 0 0 0 0 0 1 0 0 0 1 2 4 0 0 F C A C K P

11.41.43.284 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

0 0 1 8 3 0 2 0 0 0 0 1 0 0 1 5 4 0 4 0 6 0 1 0 0 0 0 0 0 1 0 0 0 1 2 5 0 0 F C A C K T

1kT2lni '9!L nnn, ^IfFkJS?,!354* ALN =0001 HA =000315 TA =000374 TLMAX =0010ABT =02 ADR =0001 ABN =000000 ACT =03 STATUS = 00000010 TLC = 0037

83/08/05
PAGE 00012

MSG NO. 000077

MSG NO. 000078

001 04E06F077020074
002 06F020074065073
003 074020074068065
004 02006906E070075
005 07402006306106E
006 06306506C06906E
007 06702006306F064
008 065040000000000

01160157016700400164
01570040016401450163
01640040016401500145
00400151015601600165
01640040014301410156
01430145015401510156
01470040014301570144
01450100000000000000

ANA.AS 5A" NOW T
A. 5A"A+AX 0 TES
A" 5A"A/A+ T THE

5A(A,A#A INPU
A" 5A8A6A7 T CAN
A8A+A=A(A, CELIN
A* 5A8A.A9 G COD
A+A E3

11 . 4 2 . 1 3 . 0 0 3 N E T P U T (0 3 1 6 5 5) H A = 0 0 0 3 1 5 TA = 0 0 0 3 7 4
ABT =02 ADR =0001 ABN =000086 ACT =04 STATUS = 00000000 TLC = 0020 MSG NO. 000079

001 B49390554B50313 55111620252455201423
002 ooooooooooooooo OOOOOOOOOOOOOOOOOOOO

INPUT PLS UKP1

11.42.14.014 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

0 0 1 8 3 0 2 0 0 0 0 1 0 0 1 5 8 0 4 0 6 0 1 0 0 0 0 0 0 1 0 0 0 1 2 6 0 0 F C A C K X

11.42.18.844 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX =0010
ABT =02 ADR =0001 ABN =000000 ACT =03 STATUS = 00000000 TLC = 0006

001 053048055054044 01230110012501240104 ASAHAUATAD SHUTD
0 0 2 O 4 E 0 O 0 0 0 O 0 0 O 0 0 O 0 1 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A N N

1 1 . 4 2 . 1 8 . 8 6 0 N E T P U T (0 3 1 6 5 5) H A = 0 2 4 5 4 4 T A = 0 2 4 5 4 5
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0002

MSG NO. 000080

MSG NO. 000081

MSG NO. 000082

001 630600001000000 30603000000100000000 CONEND
002 2411ADB6DB40000 11010655555555000000 IAF A CM4

11.42.18.927 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

MSG NO. 000083

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 12 of 13)

60499500 R 7-37

R M V 2 L O G F I L E O U T P U T 8 3 / 0 8 / 0 5
D A T E R E C O R D E D - 8 3 / 0 8 / 0 5 P A G E 0 0 0 1 3

001 634600001000000 30643000000100000000 CONENDN CF

1 1 . 4 2 . 2 6 . 0 2 1 N E T O F F (0 3 0 0 7 7) D A T E = 8 3 / 0 8 / 0 5 M S G N O . 0 0 0 0 8 4

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 13 of 13)

NAM STATISTICS GATHERING STARTED
NETON DATE 83/08/05. TIME 11.38.26.

NAM STATISTICS GATHERING TERMINATED
NETOFF DATE 83/08/05. TIME 11.42.26.

CPU TIME USED: 0.244 SEC

NUMBER OF PROCEDURE CALLS
N E T G E T 2
N E T G E T L 4 6
N E T P U T 3 4
N E T W A I T 4 7

NUMBER OF WORKLIST TRANSFER ATTEMPTS
S U C C E S S F U L 6 4

NUMBER OF INPUT/OUTPUT BLOCKS TRANSFERRED
I N P U T A B T = 0 2
I N P U T A B T = 1 1
I N P U T A B T = 2 8
I N P U T A B T = 3 3 7
O U T P U T A B T = 1 1 1
O U T P U T A B T = 2 1 1
O U T P U T A B T = 3 1 2

NUMBER OF ERRORS

Figure 7-5. Statistical File Listing for Sample FORTRAN Program

7 - 3 8 6 0 4 9 9 5 0 0 R

/0$?\ QUEUED TERMINAL RECORD MANAGER

The Queued Terminal Record Manager (QTRM) utility
package allows an application program to use NAM to
perform input and output to and from a device or
application in a way similar to the use of the CYBER
Record Manager to perform input and output to and
f r o m m a s s s t o r a g e . T h i s s e c t i o n d e s c r i b e s t h e
interface between QTRM and an application program.

NAM allows an application program to communicate
wi th another appl icat ion program the same as the
program does with a device. The program then has a
connection with a terminal or an application. When
t h e t e r m c o n n e c t i o n i s u s e d i n t h i s s e c t i o n , i t
refers to the general case and includes both device-
t o - a p p l i c a t i o n c o n n e c t i o n s a n d a p p l i c a t i o n - t o -
appl icat ion connect ions.

An application program interface with QTRM has two
par ts :

A f o r m a l d a t a s t r u c t u r e , c a l l e d t h e n e t w o r k
informat ion table, is used as a communicat ion
area.

A set of subroutines is used by the application
program to perform network actions.

NETWORK INFORMATION TABLE
An application program uses the network information
table to communicate with QTRM and with the network
so f tware th rough QTRM. The app l i ca t ion p rogram
c r e a t e s t h e n e t w o r k i n f o r m a t i o n t a b l e w i t h i n i t s
o w n fi e l d l e n g t h . I f t h e p r o g r a m u s e s o v e r l a y s ,
the network information table must be created with
i n t h e m a i n (0 , 0 l e v e l) o v e r l a y. T h e l e n g t h o f
the network in format ion tab le var ies accord ing to
the number of connect ions the appl icat ion program
supports.

The network information table has the format shown
i n fi g u r e 8 - 1 . T h i s t a b l e i s d e fi n e d s o t h a t i t s
first word begins at a word boundary. In a FORTRAN
program, the table would be created as one or more
one-dimensional arrays. In a COBOL program, the
tab le wou ld be c rea ted as a Da ta D i v i s i on i t em
beginn ing wi th an 01 leve l descr ip t ion , pre ferab ly
in the Working Storage section.

The network information table has two consecut ive
par ts . The fi rs t por t ion i s a 10-word en t ry g loba l
to program use of the network. The second portion
cons i s t s o f 10 -word en t r i es un ique to each con
nection serviced by the application program.

The global port ion of the network information table
contains a few fields that only QTRM writes for the
appl icat ion program to read. Most of the fie lds in
this portion are read or written by either QTRM or
the application program.

The connect ion por t ion of the network in format ion
table contains fields wr i t ten by QTRM that should
be used by the app l ica t ion program as read-on ly
fi e l d s . E r r o r s c a n r e s u l t i f t h e a p p l i c a t i o n p r o
gram writes in any of these fields.

T h e fi r s t 9 w o r d s o f e a c h 1 0 - w o r d e n t r y i n t h e
second portion of the table are maintained by QTRM
for each connection. Both QTRM and the application
program access a g iven 10-word en t ry us ing the
application connection number assigned by the net
work to the connect ion. For example, i f a dev ice
or application is assigned to connection number 3,
QTRM writes al l information concerning that device
or app l ica t ion in to the th i rd 10-word ent ry in the
connection portion of the network information table.
I f the appl icat ion program needs some informat ion
concern ing the dev ice o r app l i ca t ion ass igned to
c o n n e c t i o n n u m b e r 5 , i t r e a d s t h e fi f t h 1 0 - w o r d
e n t r y i n t h e c o n n e c t i o n p o r t i o n o f t h e n e t w o r k
information table. The connect ion number assigned
to the device or appl icat ion is therefore an index
ing integer that can be used to access the correct
10-word ent ry in the tab le , or o ther tab les main
tained by the appl icat ion program to contain infor
m a t i o n r e l a t e d t o s e r v i c i n g t h e s a m e d e v i c e o r
a p p l i c a t i o n .

The tenth word of the global portion and the tenth
w o r d o f e a c h o f t h e c o n n e c t i o n e n t r i e s a r e n o t
accessed by QTRM. They are reserved for insta l
la t ion use.

I
The appl icat ion program determines the number of
10-word entr ies in the second por t ion of the net
w o r k i n f o r m a t i o n t a b l e . O n e 1 0 - w o r d e n t r y m u s t
exist for each device or application the program is
wr i t ten to se rv i ce s imu l taneous ly. The app l i ca t ion
program places the number of 10-word entries in the
fi r s t p o r t i o n o f t h e n e t w o r k i n f o r m a t i o n t a b l e s o
that QTRM knows how many entries exist.

The application program does not need to provide a
10-word entry for each device or appl icat ion serv
iced cumulatively during a single program execution.
The network reassigns a connection number when a
device or application disconnects from the program,
so that several devices or applications can sequen
t ial ly use the same connect ion number at di fferent
p e r i o d s d u r i n g a s i n g l e p r o g r a m e x e c u t i o n . F o r
example, if the program is intended to service eight
devices at the same time, it provides eight 10-word
e n t r i e s . D u r i n g a s i n g l e e x e c u t i o n , s i x d i f f e r e n t
devices might use each of those entries in succes
sion, but each device uses only the entry assigned
t o i t w h i l e i t c o m m u n i c a t e s w i t h t h e p r o g r a m .
Consequently, the program does not need 48 entries
to a l l ow fo r t he poss ib i l i t y.

/|Ste\

60499500 R 8-1

Global Entry
for QTRM

communication

net-info-table /Word

2

3

4

5

6

7

8

9

10
Word

2

3

4

5

6

7

8

59 53 47 35 29 17 11

Entry for
connection 1

Entry for
connection n
(n=num-conns)

10

'Word
1

2

3

4

5

6

7

8

9

10

tsec-return-code I (6)

application-name C(7) char-
set I (6)

num-conns
1(12)

NAM-supervisor-word

reserved for CDC

reserved for CDC
max-trans-size

1(12)
current-trans-

size l{12)

abl-1
K6)

abl-n

sleep
K6)

connection-
number 1(12) code 1(6) t

next-application-name C(7)

requested-application-name C(7)

reserved for CDC

sub-system
code

return-
Ah-A
int-msg

1(6)
xsleep 1(18)

destination-host C(3)

reserved for CDC

reserved for installation use

terminal-name-1/application-name-1 C(7)

family-name-1 C(7) dev-type
(6)

user-name-1 C(7)
current-abn-1

1(18)
acknowledged-abn-1

1(18)

tclass-1
I (6)

state-1
I (6)

page-width-1
1(12)

page-length-1
1(12)

max-block-
size-l(12)

current-
abl-l(6)

reserved for CDC

upline-abh-1

downline-abh-1

reserved for CDC

reserved for CDC

reserved for installation use

terminal-name-n/application-name-n

family-name-n dev-type
I (6)

user-name-n

current-abn-n acknowledged-abn-n

tclass-n

state-n

page-width-n

page-length-n
max-block-

size-n
current-

abl-n
reserved for CDC

upline-abh-n

downline-abh-n

reserved for CDC

reserved for CDC

reserved for installation use

Figure 8-1. Network Information Table Format (Sheet 1 of 10)

/*^^\

Read and
write portion,
occurs only

once

Read-only
portion,

repeated once
for each

connection

/•^s.

8-2 60499500 S

n e t - i n f o - t a b l e

application-name

char-set

num-conns

The symbolic address of the entire network information table, used to identify
the table in a QTOPEN call. In a COBOL program, this address is the Data Divi
sion descriptor for the level 01 data item containing level 02 or lower level
data items for all of the fields described in this figure. In a FORTRAN pro
gram, this address is the name of a one-dimensional array.

This 42-bit field contains the application name used to identify the program
to the network, and by other application programs or terminal users to access the
program. The name contained in this field can be one to seven letters or digits,
beginning wi th a le t ter, and must be le f t - just ified wi th in the fie ld
and blank-filled to the right; the name must be placed in the field before
calling QTOPEN. Changing the contents of this field after calling QTOPEN has
no effect. The name placed in this field is subject to the same restraints
as the aname parameter in a call to the AIP routine NETON, as described in
section 5.

This 6-bit field contains a binary integer to identify the character code set
and byte packing convention along with the mode of data used by the program
for all input and output through QTRM.

For input, specify any integer from the fol lowing l ist . Either place the code
value in the char-set field before calling QTOPEN, or allow QTOPEN to place
the default value of 4 in the char-set field if the application program does
not specify a code value.

1 A 60-b i t character is in 60-b i t word (a l lowed on ly for connect ions
to other applications in the same host).

2 8-bit ASCII codes are packed with 7.5 bytes per 60-bit word (every
two words contains 15 characters) and transmitted in normalized mode.

3 8-bit ASCII codes are packed with 5 bytes per 60-bit word (each char
ac ter code is r igh t - jus t ified w i th in a 12-b i t by te and zero-fi l led
to the left) and transmitted in normalized mode.

4 6-bi t d isplay codes are packed wi th 10 bytes per 60-bi t word (th is
is the default value used by QTRM when no other legal value is speci
fi e d) .

Note that the char-set value at QTOPEN applies to all input from all connec
tions. When a char-set value of 1 is used, only connections to other appli
cations should be made. Char-set values of 2 and 3 can be used for either
devices or appl icat ions.

After a call to QTOPEN is made, the char-set field is used to specify a value
that applies to output. The application program may change the contents any
time. The output is controlled by the char-set value outstanding when QTPUT
is called. No QTRM routine changes the contents after QTOPEN is completed.
In addition to the code values listed above for input, the following codes are
va l id fo r ou tput :

10

11

8-bit codes are packed with 7.5 bytes per 60-bit word and trans
mitted in transparent mode.

8-bit codes are packed with 5 bytes per 60-bit word and trans
mitted in transparent mode.

Use of the default value (display code) for output allows use of QTRM editing
features. Requirements on the length and contents of the transmitted data are
described in section 2.

This field contains a 12-bit integer, 1 £ num-conns < 4095, indicating how many
connections the application program can simultaneously support. Connections
are assigned numbers from 1 to num-conns; the value used for numconns should
not be greater than the number of 10-word entries provided in the network
information table. The network information table must be 10+(10 X num-conns)
central memory words in length, regardless of whether the program references
words at the end of the table. The value must be placed in this field before the
call to QTOPEN. After the call to QTOPEN, changing the contents of the field has
no e f fec t .

Figure 8-1. Network Information Table Format (Sheet 2 of 10)

60499500 S 8-3

NAM-supervi sor-word

sub return code

A-to-A

max-trans-size

Current-trans-size

This 60-bit field is used by QTRM and should be ignored by the application
program. The field contains the NETON call nsup parameter used by QTRM. (See
section 5.)

This 12-bit field contains the reason code returned in the CON/ACRQ/A supervisory
message. The field has meaning only when the return code field has the value 13.
The reason codes for the supervisory message are explained in section 3.

This 6-bit field contains an integer indicating whether the application pro
gram supports application-to-application connections. These application-to-
application connections may be initiated by this or another application. This
field can contain the following:

0 Does not support application-to-application connections.

1 Supports application-to-application connections.

The value must be placed in this field before the QTOPEN. After the call to
QTOPEN, changing the contents of the field has no effect.

This 12-bit field contains a binary integer that indicates the extent of the
application program storage area from which data for a connection is sent or
into which data is written. The value used is specified in units determined
by the code value that is the char-set value at QTOPEN for input and current
char-set value for output, as follows:

If char-set =1, one max-trans-size unit = 60 bits.

If char-set = 2 or 10, one max-trans-size unit = 8 bits.

If char-set = 3 or 11, one max-trans-size unit = 12 bits.

If char-set = 4, one max-trans-size unit = 6 bits.

The value used in this field is subject to the following restrictions:

Max-trans-size must be less than the number of units that would occupy 410
central memory words.

Max-trans-size must be less than 2043 units.

Max-trans-size must be at least 11 units longer that the value in the
current-trans-size field, if char-set = 4.

Max-trans-size must be less than or equal to the number of units that can
be contained in the text area (working-storage area) used by the program.

Max-trans-size must be set to a value that can be contained exactly in a
multiple of central memory words, otherwise QTRM restricts the size of the
text area without warning the application to make the last character posi
tion end on a word boundary.

The value must be placed in this field before any QTPUT or QTGET call, and can
be changed between calls as appropriate. This field performs a function com
parable to the tlmax parameter in direct AIP routine calls, as described in
section 5.

This 12-bit field contains a binary integer that indicates how much of the
application program text area contains data meaningful for a given QTGET or
QTPUT call. The value used is specified in units determined by the code value
that is the char-set value at QTOPEN for input and current char-set value for
output, as follows:

If char-set = 1, one current-trans-size unit = 60 bits.

If char-set = 2 or 10, one current-trans-size unit = 8 bits.

If char-set = 3 or 11, one current-trans-size unit = 12 bits.

If char-set = 4, one current-trans-size unit = 6 bits.

Figure 8-1. Network Information Table Format (Sheet 3 of 10)

8-4 60499500 S

sleep

connection-number

xsleep

On return from a QTGET call that delivers a data block to the program, QTRM
places a value in this field that indicates the size of the delivered block.
Before a QTPUT call, the application program must set a value in this field
that indicates to QTRM the size of the block to be transferred. For char-set
values other than 4, the application program must indicate how many units com
prise the block (including all ASCII unit separator character codes and any
format effector characters). For a char-set value of 4, the application pro
gram can use a value of 0, or the nonzero value indicating how many units com
prise the block (including all zero byte separators except the last and all
format effector characters). Special QTRM output editing functions are per
formed for data blocks with a char-set of 4, depending on the value in the
current-trans-size field; these functions are described in the text under the
heading Display-Code Output Editing. Current-trans-size must be less than or
equal to max-trans-size.

This 6-bit field contains a signed integer that tells QTRM what action to take
after the application program issues a QTGET call. (See also the XSLEEP
field.) This field can have the values:

-n Where 1 < n < 32; if no data block or return-code field value other
than 1 is available to return, the program is suspended by QTRM until
information becomes available. If information is available, control
returns to the program immediately. The value used for n is not
s ignificant .

0 Interrogate XSLEEP to determine what action to take after QTGET is
issued.

+n Where 1 < n < 32; the program will be suspended for a maximum of n
seconds. Control is returned to the program as soon as any infor
mation is available (the return-code field value is not 1) or when
the current-abl-i field value is increased for any connection (the
return-code field value is 1). If no information is available after
n seconds, control is returned to the program with a reason-code
field value of 1.

The application program must set or change the value in this field as neces
sary before each QTGET call. QTRM does not change the value in this field
after QTOPEN has been called. (QTOPEN sets the field to zero.)

This 12-bit field contains an integer that identifies the connection involved
in the current QTGET, QTPUT, or QTENDT call. On return from a QTGET call,
QTRM places the connection number in this field for the connection for which
information was returned by the call. Before a QTPUT or QTENDT call, the
application program must place the connection number in this field for the
connection involved in the call. This value can be used as a subscriptor or
index value to access the corresponding 10-word connection entry in the net
work information table.

This 18-bit field contains a signed integer that tells QTRM what action to
take after the application program issues a QTGET call. (See also the SLEEP
field.) This field can have the values:

-n Where 1 <_ n < 4096; if no data block or return-code field value other
than 1 is available to return, the program is suspended by QTRM until
information becomes available. If information is available, control
returns to the program immediately. The value used for n is not
s ign ificant .

0 The QTGET call is not associated with program suspension; if no data
block is available, control returns to the program immediately and a
return-code field value of 1 is used to indicate the condition to the
program. If a block is available, control also returns to the program
immediately.

+n Where 1 < n < 4096; the program will be suspended for a maximum of n
seconds. Control is returned to the program as soon as any infor
mation is available (the return-code field value is not 1) or when
the current-abl-i field value is increased for any connection (the
return-code field value is 1). If no information is available after
n seconds, control is returned to the program with a reason-code
field value of 1.

60499500 S

Figure 8-1. Network Information Table Format (Sheet 4 of 10)

8-5

return-code This 6-bit field is used by QTRM to indicate program or connection processing
status on return from a QTGET, QTPUT, or QTLINK call. The application program
should always test the contents of this field after a QTGET, QTPUT, or QTLINK
call. This field can contain the following values:

0 Information has been exchanged with the network. After a QTGET, this
value indicates that a block was received from a connection and is in
the application program text input area identified for that QTGET
call; the connection number of the connection generating the block is
in the connection-number field. After a QTPUT, this value indicates
that the block was given to NAM (however, the block might not have
been delivered to the connection yet).

After a QTLINK call has been made by the program, this value indi
cates that the request for connection to an application is being
forwarded to NAM and is outstanding.

1 No information has been exchanged with the network. This value only
occurs after a QTGET call that was made while the sleep or xsleep
field contained 0 or a positive value.

2 A new device or application connection has occurred. This value only
occurs after a QTGET call. The connection number of the new connec
tion is in the connection-number field, but no data block has been
returned by the QTGET call; the 10-word entry in the network infor
mation table has been updated by QTRM for the new connection.

3 An improperly formatted block has been detected. This value only
occurs as a result of a QTPUT call to a device, and usually indicates
a missing or misplaced unit separator or zero byte terminator within
the block. The block causing the problem and any other subsequent
blocks sent to the device were discarded by the network.

4 Reserved for CDC use.

5 The current-abl value for the connection identified in the connection-
number field has been exceeded. This return-code value only occurs
after a QTPUT call is attempted when the current-abl value for the
connection is zero. The block involved in the call is discarded by
QTRM and must be resent after QTRM resets the current-abl field for
the connection to a nonzero value.

6 The connection between NAM and the device or application identified
in the connection-number field has been broken by one of the following
conditions:

The terminal user hung up.

The communication line failed.

A block sent to the device or application program was lost by the
network.

A block to or from the device or application program was too long
to deliver.

The terminal sent transparent data to the program.

The other application program terminated or ended the connection.

No additional communication is possible between the application
program and that device or application, and QTENDT should not be
called. The information in the 10-word entry for the affected con
nection remains unchanged until a new connection is made that uses
the same entry.

Figure 8-1. Network Information Table Format (Sheet 5 of 10)

8-6 60499500 S

10

The user at the terminal identified in the connection-number field
has entered a user-break-1 character or caused a user-break-1
condition. This value only occurs after a QT6ET call. On return
from the call, QTRM has reset the current-abl field for the affected
device to the value in the device abl field; this change indicates
that any blocks previously sent by the program but not yet delivered
to the device were discarded. The action taken by the application
program is determined by what the terminal user expects to occur
after entry of the character.

The user at the terminal identified in the connection-number field
has entered a user-break-2 character. This value only occurs after
a QTGET call. On return from the call, QTRM has reset the current-abl
field for the affected device to the value in the device abl field;
this change indicates that any blocks previously sent by the program
but not yet delivered to the device were discarded. The action taken
by the application program is determined solely by what the terminal
user expects to occur after entry of the character.

The network is shutting down. All terminal users should be notified
and QTCLOSE should be called as soon as no data blocks are outstand
ing in either direction.
The network has ended all communication with the application pro
gram. This value only occurs after a QTGET call; normally, this
value means that the application program should close all files and
end its execution. No calls to QTRM routines can be made after re
ceipt of this reason-code value; a call to QTCLOSE is not necessary.

11 The application program has performed some operation that violates
NAM protocols. QTRM has received a logical error supervisory mes
sage from NAM, as described in section 3. QTRM aborts the program
but places the reason code from the supervisory message in the sec-
return-code field of the network information table.

12 Another application-to-application request from this program is out
standing. This value is returned by a QTLINK request. The QTLINK
request must be reissued after the outstanding request is completed
or rejected.

13 The connection was not established. This value is returned by a
QTGET call issued by the program following a QTLINK request. The
sec-return-code field contains one of the following:

The reason code from the abnormal response to the request-for-
connection supervisory message (CON/ACRQ/A) issued by QTRM

The reason code plus 32 from the connection-broken supervisory
message (CON/CB/R) if the connection was broken before the
connection-processing was completed

The reason codes for these supervisory messages are explained in
section 3.

14 The application-to-application connection is completed. This value
is returned by a QTGET call issued by the program following a QTLINK
request. The connection-number field contains the new connection
number. The 10-word entry in the network information table has been
updated with the new connection information.

15 Reserved for CDC use.
thru
62

63 An internal or uncoded error. If this happens, it means something
severe has taken place in QTRM. You should close your files, abort
your program, and do a dump.

Figure 8-1. Network Information Table Format (Sheet 6 of 10)

6 0 4 9 9 5 0 0 S 8 - 7

sec-return-code

i nt-msg

next-application-name

This 6-bit field contains one of the integer logical error supervisory message
reason codes described in section 3. This field is not written by the applica
tion program, but is provided for debugging.

When the value of the return-code field is set to 11 or 13, this 6-bit field
contains additional information for debugging based on reason codes returned
in the CON/ACRQ/A and CON/CB/R supervisory messages described in section 3.
If the supervisory message is a CON/ACRQ/A, this field contains the value of
subfield rc2 from the supervisory message.

This 6-bit field contains an integer that indicates to QTRM whether the block
involved in a QTPUT call is or is not the last or only block of a message. If
the application program supports terminals in terminal class 4, this field
must be written before any QTPUT call. Programs supporting application-to-
application connections can also use this field but it only has significance
to the destination application. This field can contain the following values:

0 The last or only block of the message. The application program will
not call QTPUT again for the current connection until a QTGET call
has returned an input block.

1 An intermediate block in a multiple block message. The application
program will call QTPUT again for the current connection before a
call to QTGET has returned an input block from that connection.

The connection involved in the current QTPUT call is identified in the
connection-number field. QTRM uses the int-msg field to change the abt field
of the application block header involved in the QTPUT call. If int-msg = 0,
abt = 2; if int-msg = 1, abt = 1.

This 42-bit character data field contains the network application program name
identifying the program to which a device should be switched during processing
of a QTENDT call. This field can contain the following:

0 The network software uses prompting dialog or automatic login
information to determine the next application program the device
communicates with, or disconnects the device from the host if
that is an appropriate action.

NVF
command

va l id
program
name

The Network Validation Facility reinitiates the login sequence
for the device or causes terminal disconnection from the host.

The device is switched to the indicated program without prompt
ing dialog, when the switch is possible.

If either the NVF command or valid program name option is used, the name
placed in the field must be one to seven display code letters or digits, left-
justified with blank fill within the field, and the first character must be
alphabetic. If the NVF command option is used, the following commands are valid:

BYE
LOGOUT

HELLO
LOGIN

Cause the device to be disconnected from the host.

Reinitiate login for the device; if dialog is possible and
required, the login prompting sequence begins.

If the valid program name option is used, the name placed in the field must be
the element name used to define the referenced application program in the sys
tem common deck COMTNAP.

For an application-to-application connection, this field must contain a 0.

The QTOPEN call sets this field to zero. The application program must set or
change this field as appropriate before each QTENDT call. Guidelines for the
use of this field can be found under Terminating Connections in section 3.

This field is not used with QTENDT calls for application-to-application
connections.

Figure 8-1. Network Information Table Format (Sheet 7 of 10)

8-8 60499500 S

/ ^ \

requested-appIication-
name

destination-host

te rmina l -name- i /
appli cation-name-i

t c l a s s - i

page-width-i

family-name-i

dev-type-i

This 42-bit character data field contains the network application program name
identifying the program to which the current application program is requesting
a connection with a QTLINK call. This is the first identifier for the
connection. This identifier can be one to seven letters or digits long and is
left-justified with blank fill within this field; the first character must be a
letter. For intra-host connections, this field contains the name of the
application program with which your program needs to establish a connection.
For inter-host connections, the name you use must match the value of the NAME1
parameter in the NDL OUTCALL statement used by your program.
This 18-bit character data field contains the second identifier for a connec
tion your program initiates with a QTLINK call. If the connection is between two
hosts, this identifier must be one to three letters or digits, left-justified
with blank fill within the field; the first character must be a letter. If the
connection is within a host, this identifier can be a binary 0. By convention,
any nonzero name is the name of the destination host in which the other
application program runs. The name you use must match the value of the NAME2
parameter in the NDL OUTCALL statement used by your program.
This 42-bit character data field contains the display code characters of the
name used to identify the device on connection i within the network. The name
is one to seven letters or digits long and is left-justified with blank fill
within this field. A terminal name used is obtained from the network
configuration file entry for the device.
For an application-to-application connection, this field contains blanks.

This 6-bit field contains the integer terminal class associated by the network
with the device on connection i. The integer used in the field is one of
those described for the tc field of the connection-request supervisory message
presented in section 3. The integer is changed during a QTGET call whenever
the terminal user has entered a TIP command to change the terminal class of
the device on connection i.

This field is not used for application-to-application connections.

This 12-bit field contains the integer page width value associated by the net
work with the device on connection i. The integer used in the field has the
significance explained in sections 2 and 3. The integer is changed during a
QTGET call whenever the terminal user has entered a TIP command to change the
page width or terminal class of the device on connection i.
This field is not used for application-to-application connections.

This 42-bit character data field contains the display code characters of the
permanent file family name associated by the network with device connection i.
The family name is one to seven letters or digits long and is left-justified with
blank fil l within this field.

This field is not used for application-to-application connections.

This 6-bit field contains an integer value to identify the type of connection for
connection i. The integer used in this field is one of those described for the
dt field of the connection-request supervisory messages presented in section 3.
Typical values are:

0 This connection is a device-to-application connection for a console.

5 This connection is an application-to-application connection within the
same host.

6 This connection is an application-to-application connection between
hosts.

12 This connection is a device-to-application connection for a device
thru with a site-defined device type.
15

Figure 8-1. Network Information Table Format (Sheet 8 of 10)

60499500 S 8-9

page-length-i

user-name-i

res
max-block-size-i

a b l - i

cur ren t -abn- i

acknowledged-abn-i

s t a t e - i

current-abl-i

This 12-bit field contains the integer page length value associated by the
network with the device on connection i. The integer used in the field has
the significance explained in sections 2 and 3. The integer is changed during
a QTGET call after the terminal user enters a TIP command to change the page
length or terminal class of the device on connection i.

This field is not used for application-to-application connections.

This 42-bit character data field contains the display code characters of the
NOS user name associated by the network with device connection i. The user
name is one to seven letters, digits, or asterisks long and is left-justified
with blank fill within the field.

This field is not used for application-to-application connections.

Reserved by CDC.

This 12-bit field contains the integer downline block size in character units for
the device on connection i. This block size is based on the network
configuration file information for the device or the local configuration file
information for an application-to-application connection. The block size is a
suggested value for adjusting the current-trans-size field based on efficiency
considerations for the site.

This 6-bit integer field contains the number of blocks permitted by the network
to be in transit to connection i at a given moment. This block limit is based on
the network configuration file information for the connection. The value used in
this field determines the number of QTPUT calls that can be made on connection i
before a QTGET call returns an indication that a block was delivered to the
connection. A typical value is 2 for a device-to-application connection and 7
for an application-to-application connection.

This 18-bit integer field contains the binary block number assigned by QTRM to
the block sent to connection i by the last QTPUT call involving that connec
tion. Every block sent by QTRM is assigned a number; the number assigned is
sequential within the blocks sent to a given connection, and the sequence is
restarted each time a new connection is assigned to the connection number.

This 18-bit integer field contains the binary block number assigned by QTRM to
the block last acknowledged on connection i. QTRM updates this field during
a QTGET call, when QTRM determines that a block-delivered message has been
received.

This 6-bit field contains the integer flag identifying the current processing
state of connection i. This field has the values:

0 This connection number is currently not in use.

1 This connection is currently in a transition state while a new con
nection is being established. No other information in the associated
10-word entry for this connection should be considered accurate.

2 This connection is in use and in a normal state for input or output
processing by the application program.

4 This connection is currently in a transition state while a new con
nection is being established. No other information in the associated
10-word entry for this connection should be considered accurate.
This value is used for application-to-application connections only.

This 6-bit integer field contains the number of sequential QTPUT calls that
currently can be made for connection i without waiting for acknowledgment of
delivery to the device or application. QTRM updates this field during QTGET
and QTPUT calls, and the application program should examine the field before
making a QTPUT call involving the connection. The values used in this field
range from 0 to the value contained in the abl-i field; a value of 0 indicates
that no blocks currently can be sent (the maximum number of blocks are in
transit to the connection).

Figure 8-1. Network Information Table Format (Sheet 9 of 10)

8-10 60499500 S

-^s^v

z i ^ v

upline-abh-i

downline-abh-i

This 60-bit field contains the binary application block header received by
QTRM with the last input data block delivered by a QTGET call for connection i.
This field has the format and contains the information described in section 2.

This 60-bit field contains the binary application block header created by QTRM
to send with the last output data block involved in a QTPUT call for connec
tion i. This field has the format and contains the information described in
section 2.

Figure 8-1. Network Information Table Format (Sheet 10 of 10)

60499500 S 8-10.1/8-10.2

/ * £ %

0 ^ \
I n fi g u r e 8 - 1 , t h e n u m b e r o f 1 0 - w o r d e n t r i e s i s
shown as n and is communicated to QTRM as the value
in the num-conns field. The connection number for
a spec i fic te rm ina l o r app l i ca t i on i s i den t i fied as
i i n the fie ld desc r ip t i ons .

For the convenience of programmers using COBOL 5.2
or subsequent versions that permit manipulat ion of
i n f o r m a t i o n i n 6 - b i t b y t e s , t h e fi e l d s w i t h i n t h e
network information table are defined in 6-bi t byte
m u l t i p l e s . T h e fi r s t o c c u r r e n c e o f e a c h fi e l d
w i t h i n fi g u r e 8 - 1 i n d i c a t e s t h e t y p e a n d s i z e o f
the COBOL da ta i t em needed to define the fie ld
proper ly. These ind ica t ions have the fo rm I (x) o r
C (y) , w h e r e I i n d i c a t e s b i n a r y i n t e g e r d a t a , C
indicates character data, x indicates the number of
b i t s c o m p r i s i n g t h e i n t e g e r, a n d y i n d i c a t e s t h e
number of 6-bi t d isplay-code characters compris ing
the character s t r ing.

SUBROUTINES
Cal ls to the subrout ines compr is ing QTRM do not
contain many parameters because most communication
between an appl icat ion program and QTRM occurs
through the fields in the network information table.
The format of the subroutine cal ls conforms to the
general guidel ines g iven for the compi ler- language
form of the AIP rout ines, as described in sect ions
4 and 5. The QTRM routines reside in the libraries
NETIO and NETIOD. These libraries are accessed as
described in sections 4 and 6.

QTOPEN is normal ly cal led only once per network
communication access but can be called again after
a QTCLOSE call. No QTRM call other than QTCLOSE
can be made before QTOPEN is called. The call to
QTOPEN performs the following functions:

Identifies to QTRM the address of the network
i n f o r m a t i o n t a b l e d e fi n e d b y t h e a p p l i c a t i o n
program

A l l ows QTRM to use t he i n f o rma t i on a l r eady
placed in the network information table by the
application program

Al lows QTRM to in i t ia l ize the connect ion entry
por t ions o f the ne twork in fo rmat ion tab le and
t o s t o r e i t s o w n i n f o r m a t i o n i n t h e g l o b a l
port ion of the table

Causes QTRM to identify the application program
to the network

Before QTOPEN is cal led, the appl icat ion program
mus t p l ace i n f o rma t i on i n t he f o l l ow ing fie l ds o f
the table:

Application-name

Char-set

Num-conns

A-to-A

The format of the subrout ine cal ls is given in the
following subsections. Because QTRM is designed to
be COBOL-oriented, the subroutine descriptions are
COBOL-oriented. As described in sect ion 4, QTRM
can be used by programs written in languages other
than COBOL.

D u r i n g p r o c e s s i n g o f t h e c a l l , Q T R M u s e s t h i s
i n f o r m a t i o n t o m a k e a p p r o p r i a t e A I P c a l l s . F o r
example, suppose the application program makes the
f o l l o w i n g c a l l :

ENTER FORTRAN-X QTOPEN USING NIT

INITIATING NETWORK ACCESS (QTOPEN)

J ^ N

The appl icat ion program begins
the network by calling QTOPEN.
format shown in figure 8-2.

communication with
Th i s ca l l has the

ENJER FORTRAN-X QTOPEN USING net-info-table

ne t - i n fo - tab le An inpu t pa ramete r, spec i f y ing
the symbolic address for word 1
in the global port ion of the
network information table that
should be used by QTRM during
access to the network. In a
COBOL call, this parameter is
the Data Division descriptor
for a level 01 data item con
taining level 02 or lower level
data items in the form de
scr ibed in figure 8 -1 . The
fields in the network informa
t ion tab le must be in i t ia l ized
before the call to QTOPEN is
issued.

Figure 8-2. QTOPEN Statement COBOL Call Format

where NIT is the network information table symbolic
address and contains the application-name RMV2, the
num-conns value of 5, and the char-set value of 4.
I n t h e D a t a D i v i s i o n o f t h e p r o g r a m c o d e , N I T
appears as:

WORKING-STORAGE SECTION.
0 1 N I T.
02 GLOBAL.
03 APPLICATION-NAME PIC X(7) VALUE IS

"RMV2".
03 CHAR-SET PIC 9 COMP-4 VALUE IS 4.
03 NUM-CONNS PIC 99 COMP-4 VALUE IS 5.
03 FILLER X(30).

QTRM then connects the program to the network. QTRM
iden t i fies the p rog ram as the ne twork app l i ca t i on
program cal led RMV2. RMV2 supports five devices
simultaneously on connections numbered 1 through 5,
u s e s 6 - b i t d i s p l a y c o d e f o r a l l i n p u t a n d o u t p u t
transmissions, and cannot process transparent mode
transmissions.

When the QTOPEN call is completed, the application
program e i ther per forms process ing not re la ted to
network communication or uses the QTGET call and
the s leep field of the network informat ion table to
suspend its processing unti l a device or application

60499500 R 8-11

requests access to i t . As soon as a dev ice con
nection is completed (as soon as the state field in
a connection entry of the network information table
changes to 2), the program must ident i fy i tsel f to
the device by sending a message to it using a call
to QTPUT.

SENDING DATA (QTPUT)
The application program sends data through the net
work by ca l l ing QTPUT. Th is ca l l has the fo rmat
shown in figure 8-3.

ENTER FORTRAN-X QTPUT USING ta-out-acni

ta-out -acn i An input parameter, spec i fy ing the
symbolic address of the output
text area for the device or appli
cat ion using connection acn^. In
a COBOL call, this parameter is
the Data Division descriptor for
a Level 01 data item with a length
defined by the max-trans-size
value in the network information
tab le . Data conta ined in ta -out -
acn^ is subject to the same con
straints as normalized mode data
in the text area used by any
NETPUT call to AIP. These
constraints are described in
section 2.

Figure 8-3. QTPUT Statement COBOL Call Format

B e f o r e m a k i n g a c a l l t o Q T P U T, t h e a p p l i c a t i o n
program must perform the following operations:

C h e c k t h e c o n n e c t i o n e n t r y i n t h e n e t w o r k
i n f o r m a t i o n t a b l e t o w h i c h t h e Q T P U T c a l l
a p p l i e s . T h e c u r r e n t - a b l a n d / o r s t a t e fi e l d
must contain values that permit the cal l to be
made.

Ensure that the connect ion number ident i fy ing
the connect ion to which the cal l appl ies is in
t h e c o n n e c t i o n - n u m b e r fi e l d o f t h e n e t w o r k
informat ion table.

P lace a 1 in the in t -msg fie ld o f the network
in fo rma t i on tab le i f t ha t ac t i on i s necessa ry.
This field must be used to service a device in
terminal class 4 correct ly when output queuing
is pe r fo rmed . Dev ices in tha t c lass , such as
the 2741, have lockable keyboards. When output
begins, the network sof tware locks the device
keyboard. The keyboard remains locked unt i l a
block is delivered that has an int-msg value of
0 a s s o c i a t e d w i t h i t . T h e n t h e k e y b o a r d i s
unlocked and no more output to the device is
permi t ted un t i l i npu t i s comple ted . I f a mes
sage compr is ing n ine b locks is be ing sent to
the dev ice , the fi rs t e igh t mus t have the in t -
msg field set to 1 to prevent the network soft
ware f rom in terpre t ing an in termedia te por t ion
o f a message (a s i ng le b l ock) as t he en t i r e
message and prohibiting output of the remainder
o f t h e b l o c k s . T h e l a s t b l o c k o f a m e s s a g e
m u s t a l w a y s h a v e t h e i n t - m s g fi e l d s e t t o 0
before i t i s sent .

8-12

P lace the da ta to be t ransmi t ted by the ca l l
in to the tex t area ident ified by the parameter
to be used in the call.

For dev ice- to-app l ica t ion connect ions, p lace a
unit separator code as a l ine terminator at the
end o f the da ta in the tex t a rea , i f char -se t
i s n o t 6 - b i t d i s p l a y c o d e . Q T R M w i l l s u p p l y
the final zero-byte terminator for 6-bi t d isplay
code data for device-to-appl icat ion connect ions
(this QTRM function .is described in more detail
under the heading QTRM Formatting of Display-
Coded Output).

P lace the s ize o f the cur rent t ransmiss ion in
t h e c u r r e n t - t r a n s - s i z e fi e l d o f t h e n e t w o r k
i n f o r m a t i o n t a b l e . A l l e m b e d d e d l i n e t e r m i
nators of e i ther type must be inc luded in the
character count compr is ing the cur rent t rans
m i s s i o n s i z e . I f a c h a r - s e t fi e l d v a l u e o t h e r
than 4 is used, any final uni t separator must
a lso be inc luded in the charac ter count ; i f a
char-set field value of 4 is used, the character
c o u n t s h o u l d n o t i n c l u d e t h e z e r o - b y t e l i n e
terminator that QTRM supplies automatically for
device-to-appl icat ion connect ions.

P lace the cor rec t va lue in the max- t rans-s ize
fie ld o f the network in format ion tab le , i f tha t
information was not stored there before a pre
vious QTRM call. The max-trans-size value can
be changed before any QTPUT call, because the
o u t p u t t e x t a r e a u s e d f o r t h e c a l l c a n b e
changed. QTRM uses the value in this field to
determine the s ta r t ing po in t o f any backward
scanning it is required to perform.

When the QTPUT call is completed, the data block
invo lved in the ca l l usua l l y i s i n t rans i t t h rough
the network but is not necessarily already delivered
to the connect ion. Del ivery of the b lock, and the
possibi l i ty of addi t ional QTPUT cal ls for the same
connection, can be tracked through QTGET calls and
the fie lds o f the connect ion ent ry In the network
in format ion tab le.

QTRM sometimes cannot transmit a block through the
network when a QTPUT cal l is made. After return
from the QTPUT call, the application program should
check the re tu rn -code fie ld o f the ne twork in fo r
mat ion tab le to de termine whether the b lock was
ac tua l l y t ransmi t ted . .

As an .example of QTPUT use, suppose an application
program wants to send the message WELCOME ABOARD to
the device on connection 1. The program sends the
prompting message with a call such as that shown in
the following statement set:

MOVE " WELCOME ABOARD " TO OUT-TEXT.
MOVE 1 TO CONNECTION-NUMBER.
MOVE 15 TO CURRENT-TRANS-SIZE.
ENTER FORTRAN-X QTPUT USING OUT-TEXT.
IF RETURN-CODE NOT = 0 GO TO PROBLEM.

Elsewhere in the program, the Data Div is ion con
tains :

01 OUT-TEXT PIC X(100).

The Procedure Division also contains statements to
test the entry for connection 1 to see whether the
call can be made. These tests are necessary even

60499500 R

p(^ i (v

,<S§\

^^35v

j 0 $ g \

0K&\

25 The appl icat ion program has received the reset response f rom the
network for the connection identified in the connection-number
field. This value occurs only after a QTGET call and only for a
connection that was in a break condition. The break condition
exists only after the application program has called QTSUP to send
a break condition to the other end of the connection. The applica
tion program can now call QTSUP to send another break condition for
this connect ion.

26 The app l i ca t ion p rogram has rece ived a p r io r i t y da ta message
(INTR/USR/R supervisory message with reason code other than user
break 1 or 2) on the connection identified in the connection-number
field. This value occurs only after a QTGET call and only if the
application program called QTCMD to request notification of user
interrupts. The network does not require any action or response
from the application program. QTRM sends the user acknowledgment
(INTR/RSP/N supervisory message) for the interrupt connection. The
sub-return-code field contains the reason code for the interrupt
cond i t ion .

27 The app l i ca t ion p rogram has rece ived the user in te r rup t response
(INTR/RSP/R supervisory message) on the connection identified in
the connection-number field. This value occurs only after a QTGET
call and only if the application program called QTSUP to send a
user interrupt to the other end of the connection. The network
does not require any action or response from the application pro
gram. The application program can now call QTSUP to send another
user in terrupt for th is connect ion.

28 The app l ica t ion program has rece ived the user break marker
(BI/MARK/R supervisory message) on the connection identified in
the connection-number field. This value occurs only after a QTGET
call and only if the application program previously called QTCMD to
indicate that it wanted to be informed about the user break marker.
The connection involved is always a device connection in a user
break condition (return code 7 or 8 response for this connection in
a previous QTGET call). The application program must call QTTIP to
send a RO/MARK/R synchronous supervisory message before any more
downl ine data wi l l be del ivered to the device. Af ter receiv ing th is
return code, the application program assumes that any new data it
receives on the connnection was entered after the user break.

29 The app l ica t ion program has rece ived a synchronous superv isory
message other than BI/MARK/R (user break mark) on the connection
ident ified in the connect ion-number field. This value occurs only
after a QTGET call. The connection involved is always a device
connection. The synchronous supervisory message is in the
application program text input area identified for the QTGET call;
the message originates from either CCP or CDCNET. The network does
not require any action or response from the application program.

3 0 R e s e r v e d f o r C D C u s e .

31 The host operator has ass igned the NAM K-d isp lay to th is appl ica
tion program. This value occurs only after a QTGET call when the
application program has previously called QTCMD to inform QTRM that
i t supports the NAM K-display. I f the text input area is at least
one word long, QTRM stores the length of the left and right screens
in the firs t word o f the tex t input area. Th is firs t word is
actually the first word of the HOP/START/R supervisory message.
The format of this message is described in section 3. If the text
input area is not large enough, the information on the size of the
lef t and r ight screens is lost .

Upon receipt of this return code, the application program should
generate a banner or other display data and call QTSUP to send the
display data to NAM.

Figure 8-1. Network Information Table Format (Sheet 12 of 24)

/ ^ * N
60499500 W 8-13

32

33

34

The host operator has entered a K-display typein. This value
occurs only after a QTGET call when the application program has
been assigned the NAM K-display (return code 31 was received after
a QTGET call). QTRM writes the operator typein to the application
program text input area identified for that QTGET cal l . I f the
text input area is not large enought to contain the operator typein,
QTRM truncates the typein and the last part of the typein is lost.
The current-trans-size field contains the number of characters (in
display code only) of the operator typein written to the text input
area. Until the application program sends display data back to NAM
with the input-allowed flag set (QTSUP call with parm-flagl set to
1), the host operator cannot enter any more NAM K-display typeins
for this application program.

The host operator has entered the break character. This value
occurs only after a QTGET call and the application program has been
assigned the NAM K-display (return code 31 was received after a
QTGET call). The operator is probably no Longer interested in data
from this application program and wants to enter another typein.
The application program should call QTSUP to send a HOP/DIS/R
supervisory message to NAM with the input-allowed flag set (parm-
flagl set to 1 for the QTSUP call). No K-display data is necessary
fo r t h i s ca l l (cu r ren t - t rans -s i ze fie ld i s se t t o ze ro) .

The host operator has entered a page character. This value occurs
only after a QTGET call when the application program has been
assigned the NAM K-display (return code 31 was received after a
QTGET call). Because the host console can display only a finite
number of lines of data, NAM scrolls the oldest data off the top of
the screen. The newest data always appears at the bottom of the
screen. If the application program sends more than one screen of
display data, only the Last part of the data remains on the screen.
This may or may not be desired by the operator. The page character
allows the operator to inform the application program whether it
should send all the display data at once or only one screen at a
t ime.

There are four page characters: the plus (+) character, the minus
(-) character, the lef t parenthesis (() character, and the r ight
parenthesis ()) character. The plus and minus characters control
paging of the left screen. The left and r ight parenthesis
characters control paging of the right screen.

If the page character is the plus character, the operator is
requesting the application program to page the left screen
display data one screen at a time.

If the page character is the minus character, the operator is
requesting the application program not to page the left screen
display data.

If the page character is the left parenthesis character, the
operator is requesting the next page of the right screen
display data.

If the page character is the right parenthesis character, the
operator is requesting the previous page of the right screen
display data.

For the left screen, the convention is that al l application programs
should assume that paging is off when the operator assigns the
K-display to them. The application program should never send more
than one screen full of display data to the left screen at one
time. If the application program has more than one screen to send,
it must wait for another plus page character before sending the next
screen (after a QTGET call, the application program must receive
another return code 34 with the page character set to the plus
character). This interaction between the operator and the
application program can be repeated until the application program
has no more data to display or the operator enters another command.

/ " s ^ \

Figure 8-1. Network Information Table Format (Sheet 13 of 24)

8-14
60499500 V

Send a disconnection indicator message to the
terminal or appl icat ion so that the operator or
application program does not attempt input.

Set the next -app l ica t ion-name fie ld to zero or
place an appropriate name or NVF command in it
if the connection is to a device.

C h e c k t h e c o n n e c t i o n e n t r y i n t h e n e t w o r k
i n f o r m a t i o n t a b l e t o d e t e r m i n e w h e t h e r t h e
c u r r e n t - a b l fi e l d c o n t a i n s t h e s a m e v a l u e a s
the ab l fie ld . Un less the va lues in these two
fields are the same, at least one block of data
remains undelivered to the connection and QTENDT
should not be called to end communication with
the connection.

A f t e r a c a l l t o Q T E N D T i s m a d e , n o a d d i t i o n a l
information can be sent to the connection involved.
Except for the state field, informat ion contained in
the connection entry portion of the network informa
t ion tab le remains unchanged unt i l the connect ion
number associated with that entry is reassigned by
the network software to another connection.

A call to QTENDT is not necessary to end a connec
tion that has already been broken by events in the
network. A call to QTENDT for a broken connection
performs no action. A forced shutdown condit ion (a
re tu rn -code fie ld va lue o f 10) i s equ i va len t t o a
QTCLOSE call because QTRM automatically ends all
c o n n e c t i o n s w i t h o u t a c t i o n b y t h e a p p l i c a t i o n
program.

As an example of QTENDT use, consider the following
situat ion. The appl icat ion program receives a com
mand on connec t i on number 4 tha t i nd i ca tes the
terminal user wants to end communication with the
program. The program checks the fields in the con
nect ion entry of the network informat ion table and
determines that no blocks remain undel ivered from
previous QTPUT calls. Because the terminal user has
requested that communication be ended, the program
d o e s n o t s e n d a b l o c k t o i n d i c a t e t h a t a c t i o n .
Instead, the following code is executed:

MOVE 4 TO CONNECTION-NUMBER.
ENTER FORTRAN-X QTENDT.

Upon return from the QTENDT call, connection number
4 becomes available for assignment by the network
software to a new connection serviced by the pro
g ram. The p rog ram the re fo re execu tes code tha t
cleans up any remaining information in other tables
or buffers concerning the old connection 4, so that
no confusion exists if another device or application
program is assigned to the same number.

The application program should cal l QTCLOSE only
once after a QTOPEN call and cannot call any other
QTRM routines except QTOPEN after calling QTCLOSE.
Multiple calls to QTCLOSE have no effect. The pro
gram should a lways ca l l QTCLOSE as par t o f i ts
process ing te rminat ion , un less a fo rced shutdown
occurs. When a forced shutdown occurs (indicated
by a return-code field value of 10), QTRM automati
cally ends all program access to the network.
A call to QTCLOSE performs the following operations:

B r e a k s a l l r e m a i n i n g c o n n e c t i o n s (d e v i c e s
receive an APPLICATION FAILED message from the
network software)

Ends program access to the network and makes
new connections impossible

C l o s e s t h e A I P d e b u g l o g fi l e a n d s t a t i s t i c s
fi le, i f those fiLes are being created

The QTCLOSE call is usually issued after one of the
fo l low ing s i tua t ions ar ises :

The program receives a shutdown or id ledown
indicat ion from the network software (indicated
by a return-code field value of 9).

The program detects a specific clock time.

The program receives a shutdown command from a
termina l user or a connected app l ica t ion pro
gram.

Before making a QTCLOSE call, the application pro
gram should perform the following operations:

Send a shutdown advisory message to all devices
and applications stil l connected to the program

Determine that all transmitted blocks have been
delivered to the connection

Issue QTENDT ca l l s fo r a l l r ema in ing dev i ce
connections so that APPLICATION FAILED messages
do not appear at those connections

A QTCLOSE example complying with these recommenda
tions would be too complex for the purposes of this
section. Examples of QTCLOSE calls appear in sev
eral contexts within the program at the end of this
sect ion.

OUTPUT FORMATTING AND
EDITING

ENDING COMMUNICATION WITH THE
NETWORK (QTCLOSE)
The application program can end communication with
al l connected devices or appl icat ions and with the
network software simultaneously by calling QTCLOSE.
This call has the format shown in figure 8-7.

ENTER FORTRAN-X QTCLOSE

Figure 8-7. QTCLOSE Statement COBOL Call Format

Output transmitted through QTRM to a device always
uses the format e f fec tor fea ture o f the AIP in ter
a c t i v e v i r t u a l t e r m i n a l i n t e r f a c e . T h i s f o r m a t
effec tor feature is complete ly descr ibed in sect ion
2, and summarized in the following subsection.

Output transmitted through QTRM to another applica
tion within the same host need not be restricted to
fo rmat t ing convent ions o f the A IP In te rac t i ve Vi r
tua l Termina l in ter face. Both app l ica t ion programs
must be prepared to handle data that passes between
them. The length of the output b lock is based on
the charac te r se t used , ind ica ted in the char -se t
fie ld , and i s t he va lue s to red i n t he fie ld named
c u r r e n t - t r a n s - s i z e .

60499500 R 8-15

I f d isp lay-coded output is t ransmi t ted to a dev ice
(a char-set field value of 4 is used), QTRM auto
matically performs editing functions on the contents
o f t h e t e x t a r e a u s e d . T h e s e f u n c t i o n s i n c l u d e
p lacemen t o f t he fina l l i ne t e rm ina to r (ze ro -by te
t e r m i n a t o r) a t t h e e n d o f t h e o u t p u t b l o c k , a n d
determinat ion o f the number o f charac ters in the
block.

T h e c u r r e n t - t r a n s - s i z e fi e l d f o r b l o c k s s e n t o n
a p p l i c a t i o n - t o - a p p l i c a t i o n c o n n e c t i o n s s h o u l d b e
set to a value equal to the number of central memory
words in the block using the character type speci
fied in the char-set field. The contents of a block
a r e n o t e d i t e d . I f t h e d a t a i s i n d i s p l a y - c o d e
(the char-set field is equal to 4) and the current-
t r a n s - s i z e fi e l d i s e q u a l t o z e r o , t h e e f f e c t i v e
cu r ren t - t r ans -s i ze i s de te rm ined by scann ing t he
output text area.

FORMAT EFFECTORS
The network sof tware assumes that the first char
a c t e r o f e a c h l i n e i n a b l o c k s e n t t o a d e v i c e
through QTRM begins with a format effector char
a c t e r . T h e f o r m a t e f f e c t o r c h a r a c t e r c o n t r o l s
placement of the line on the device output mechanism
in a manner simi lar to the way a carr iage control
character funct ions in output sent to a batch l ine
p r i n te r. Fo rma t e f f ec to r cha rac te rs a re d i sca rded
by the network software, so an application program
should always format its output to prevent the first
character of data from being interpreted erroneously
as a format effector character.

DISPLAY-CODE OUTPUT EDITING
Each block sent by a QTPUT call can contain one or
many lines of data. Each line of data must end with
a l ine terminator byte appropr ia te to the va lue in
the char-set field of the network information table.
The terminator must fol low the last character posi
t ion in the l ine.

When an appl icat ion program uses a char-set field
v a l u e o f 4 , i t m u s t a l l o w 1 2 t o 6 6 b i t s o f t e x t
a r e a b u f f e r s p a c e f o r t h e fi n a l 1 2 - b i t z e r o - b y t e
l ine terminator. For COBOL programs, th is means
the text area used for any QTPUT call must be at
least 11 characters longer than the longest b lock
of data to be sent.

Generat ing the zero-byte terminator a t the appro
p r i a t e l o c a t i o n i n t h e t e x t a r e a i s d i f fi c u l t i n a
COBOL program. QTRM therefore always generates the
l a s t s u c h b y t e r e q u i r e d b y t h e b l o c k d u r i n g i t s
processing of a QTPUT call (interim line terminators
must st i l l be generated by the appl icat ion program
before the cal l) .

If an output block contains only one line, QTRM can
be used as follows to perform all output formatting
required:

The p rog ram se ts t he cu r ren t - t rans -s i ze fie ld
of the network information table to 0.

The p rogram b lank-fi l l s the en t i re ou tpu t tex t
area to be used and then places the block to be
sent into the text area (the block must include
the format effector character) . The block must
c o n t a i n a t l e a s t o n e c h a r a c t e r o t h e r t h a n a
blank.

8-16

The program calls QTPUT. QTRM then determines
where the text area ends by examining the max-
t r a n s - s i z e fi e l d o f t h e n e t w o r k i n f o r m a t i o n
table. QTRM scans backward through the output
t e x t a r e a , s k i p p i n g o v e r b l a n k s u n t i l i t
encounters a nonblank character. QTRM inserts
the ze ro -by te te rm ina to r a f te r th i s charac te r,
then calculates the number of characters in the
block and transmits it through the network.

This opt ion e l iminates unnecessary t ra i l ing b lanks
from the last output line of any block and makes it
unnecessary for the application program to calculate
h o w m a n y c h a r a c t e r s a r e b e i n g t r a n s m i t t e d . A n
a l te rna te method permi ts t ransmiss ion o f t ra i l i ng
blanks, as follows:

The program places the output block containing
a t l e a s t o n e c h a r a c t e r (t h e f o r m a t e f f e c t o r
character) in the output text area.

The program places the number of characters
compr is ing the b lock in the cur rent - t rans-s ize
field of the network information table.

The program calls QTPUT. QTRM scans forward
the i nd i ca ted number o f cha rac te r pos i t i ons ,
w r i t e s t h e fi n a l z e r o - b y t e t e r m i n a t o r , i f
n e c e s s a r y, a f t e r t h e l a s t c h a r a c t e r c o u n t e d ,
a n d t r a n s m i t s t h e b l o c k . Q T R M a d j u s t s t h e
character count ind icat ing the b lock length to
compensate for the line terminator bytes it has
added.

Both options require that the last character in the
b l o c k n o t b e a c o l o n o r c o n s e c u t i v e c o l o n s , i n
character posit ions 9 and 10 of a central memory
word . Two consecut ive co lons migh t be mis in te r
preted as a zero-byte terminator on a system using
a 64-character set.

QTRM (QTPUT) always adds a terminator for 6-bit
display code data. If the program provides its own
fi n a l l i n e t e r m i n a t o r f o r d i s p l a y - c o d e d o u t p u t ,
QTRM does not function In the same manner as it
d o e s f o r o u t p u t t r a n s m i s s i o n s o c c u r r i n g w i t h a
c h a r - s e t fi e l d v a l u e o f 2 o r 3 . N o a u t o m a t i c
terminator p lacement occurs dur ing a QTPUT cal l
involving those char-set field values.

OUTPUT QUEUING USING QTRM
Application programs commonly need to transmit more
than one b lock in a message. I f a l l o f the con
nections serviced by the program have large values
assigned for the abl parameter, no special program
ming is required. Most networks, however, use small
values for the abl parameter. When a program using
QTRM executes in such a network, i t must use an
output queue to store blocks ready for output when
ever the network does not permit immediate output
of them.

An output queue processor using QTRM can be coded
a c c o r d i n g t o t h e a l g o r i t h m s h o w n i n fi g u r e 8 - 8 .
Th i s a lgo r i t hm uses the s l eep fie ld pa rame te r i n
the global port ion of the network information table
and depends on use of the current-abl parameter in
t h e c o n n e c t i o n e n t r y p o r t i o n o f t h e t a b l e . T h e
f o l l o w i n g p a r a g r a p h s e x p l a i n t h e l o g i c u s e d t o
design the algorithm.

60499500 R

QTOPEN

O
Initialize the

stack to empty

©
Issue QTGET

while sleep parameter
is set to -1

Issue QTGET
while sleep parameter

is set to 1

G> Yes

Yes

Main body of
user logic —

Process this
message

No

Scan from bottom of stack
looking for a transmission

that can now be sent

Send reply, or place transmission
that cannot be sent (due to logjam) on

top of stack, with its connection number
Yes

Send it and remove
it from the stack

Figure 8-8. Algorithm for Output Buffering Using QTRM

W h e n a n a p p l i c a t i o n p r o g r a m s e r v i c e s o n l y o n e
connection, the network can be made to cope with
situations where the program produces output faster
than a device can reproduce the output. The program
sets the sleep parameter to a posit ive integer, and
the network simply rolls the program out of central
memory until the device catches up with the program.

You cannot use the sleep parameter as a solut ion
when the application program services more than one
connec t ion because the p rogram is a lways ro l led
back in when input is available from any connection.
Thus, input from device B brings the program back
into central memory even though the output backlog
for device A has not disappeared. A program serv
icing several connections always requires an output
queuing algori thm that appl ies to each, when each
connect ion potent ia l ly can be sent more than one
block in a single message.

Programs can also be coded for the opposite (type-
ahead) environment, when the terminal user wants to
enter many input messages and receive only one out
p u t t r a n s m i s s i o n . I n p u t q u e u i n g a n d s u p p o r t o f
typeahead are not discussed in this manual. Type-
ahead can be supported without any interact ion of
an application program with the network protocol.

The pr imary control var iable of the output queuing
a l g o r i t h m i s t h e c o n n e c t i o n n u m b e r . B o t h t h e
accompanying flow chart and the sample progam code
depend on the use of the connection number field in
conjunct ion wi th the connect ion entry fields of the
network in format ion tab le dur ing the output queue
scanning process.

An appl icat ion program can contro l the flow of i ts
o u t p u t t o a s p e c i fi c c o n n e c t i o n b y c h e c k i n g t h e
c u r r e n t - a b l fi e l d o f t h e c o n n e c t i o n e n t r y i n t h e

60499500 R 8-17

network informat ion table before each QTPUT cal l
i nvo lv ing tha t connec t ion . I f t he fie ld con ta ins a
z e r o , t h e c a l l c a n n o t b e m a d e w i t h o u t v i o l a t i n g
ne twork p ro toco l ; i f t he fie ld does no t con ta in a
zero, the QTPUT call can be made.

The current-abl, acknowledged-abn, and other fields
in the network in format ion table are only updated
by QTRM during processing of a QTGET call. Tests
of these fields are not meaningful unless a QTGET
cal l is made before the tests. To proper ly contro l
o u t p u t fl o w, t h e a p p l i c a t i o n p r o g r a m m u s t m a k e
periodic calls to QTGET with a positive value in the
s l e e p fi e l d o f t h e n e t w o r k i n f o r m a t i o n t a b l e ,
regard less o f whe ther the p rogram expec ts inpu t
f rom a connect ion. The s ize of the posi t ive value
is a tuning consideration determined by such things
a s t h e a v e r a g e l e n g t h o f o u t p u t b l o c k s a n d t h e
speed of the device being serviced.

These QTGET ca l ls re turn cont ro l to the program
after the s leep per iod. The program can then test
the current-abl field and make any QTPUT calls that
have become f eas i b l e . A QTPUT ca l l i s f eas i b l e
whenever the cur rent -ab l va lue is nonzero . I f the
value is zero, another QTGET call must be made.

An application program can use two forms of output
fl o w c o n t r o l q u e u i n g . T h e p r o g r a m c a n a c t u a l l y
generate al l output required as a response to one
input, then queue the output in large internal buf
f e r s o r d i s k fi l e s . T h i s q u e u e d o u t p u t i s t h e n
spooled to the connection in QTPUT calls involving
one or more lines in blocks up to the max-block-size
v a l u e f o r t h e c o n n e c t i o n e n t r y i n t h e n e t w o r k
informat ion table. The a lgor i thm al ready descr ibed
is used to con t ro l t he occur rence o f the QTPUT
c a l l s .

A l t e rna t i ve l y, t he app l i ca t i on p rog ram can queue
its input requests. When the flow control algori thm
described previously shows that a QTPUT call can be
made, the program can generate only enough output
f o r o n e Q T P U T c a l l . A f t e r m a k i n g t h e c a l l , a n
uncompleted input request is returned to the queue
to awa i t add i t i ona l p rocess ing the nex t t ime the
flow contro l a lgor i thm permits another QTPUT cal l
for the connection. This approach requires a small
i n p u t q u e u e f o r e a c h c o n n e c t i o n , b u t d o e s n o t
require large internal buffers for output storage.

The second approach minimizes field length require
ments and mass storage access requirements for the
program. Also, the program can avoid wasted output
processing when the terminal user issues a user-
b reak to t e rm ina te ou tpu t a f t e r on l y one o r two
blocks of the output have been delivered. With the
first approach, processing for the remainder of the
output has a l ready occurred and is wasted. Wi th
the second approach, no processing for the addi
t ional output occurred and therefore the addit ional
processing can be bypassed.

SAMPLE PROGRAM
Figure 8-9 conta ins the source code l is t ing for a
COBOL program that demonstrates use of QTRM in the
simplest form possible. Program ECH0-RMV2 is simi
lar to the FORTRAN program RMV3 shown in section
7. Both programs return to the terminal user each
block entered from the device. Both programs queue
output blocks and permit a prompting message to be
output after each returned message. Both programs
acknowledge entry of a user-break character wi th
d ia log . Bo th p rograms shu t down opera t ion a f te r
receiving a terminal operator command.

/ * ^ ^ V

8-18 60499500 R

î Sss\

yS^N,

CDC COBOL 5.3 - LEVEL 588 SOURCE LISTING OF ECHO-RM AOPT= 66/CDC/CDCS2 83/06/16. 12.21.30.
PAGE 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
0

IDENTIFICATION DIVISION.
PROGRAM-ID. ECH0-RMV2.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.
01 NETWORK-INFORMATION-TABLE.

02 GLOBAL-PORTION.
03 APPLICATION-NAME PIC X(7).
03 CHARACTER-SET PIC 9 COMP-4.
03 NUMBER-CONNECTIONS PIC 999 COMP-4.
03 NAM-SUPERVISOR-WORD PIC X(10).
03 FILLER PIC X(19).

03 APPLICATION-TO-APPLICATION PIC 9 COMP-4.

•THE PICTURE SIZE USED FOR COMPUTATIONAL ITEMS SUCH AS
*MAX-TRANS-SIZE AND SLEEP IS CHOSEN TO PERMIT STORAGE OF
♦THE LARGEST POSSIBLE FIELD VALUE WITHOUT TRUNCATION OF
♦ T H E V A L U E D I G I T S . i * u « u . « n u n u r

03 MAX-TRANS-SIZE PIC 999 COMP-4.
03 MESSAGE-LENGTH PIC 999 COMP-4.
03 SLEEP PIC S9 COMP-4.
03 CONNECTION-NUMBER PIC 999 COMP-4.
03 RETURN-CODE PIC 9 COMP-4.
03 SECONDARY-RETURN-CODE PIC 9 COMP-4.
03 INTERMEDIATE-MESSAGE PIC 9 COMP-4.
03 NEXT-APPLICATION-NAME PIC X(7).
03 REQUESTED-APPLICATION-NAME PIC X(7).
03 DESTINATION-HOST PIC X(3).
03 FILLER PIC X(33).

02 TERMINAL-ENTRY OCCURS 5 TIMES.
03 TERMINAL-NAME PIC X(7).
03 TERMINAL-CLASS PIC 9 COMP-4.
03 PAGE-WIDTH PIC 999 COMP-4.

FAMILY-NAME PIC X(7).
DEVICE-TYPE PIC X.

03 PAGE-LENGTH PIC 999 COMP-4.
03 USER-NAME PIC X(7).
03 FILLER PIC X.
03 MAXIMUM-BLOCK-SIZE PIC 999 COMP-4.
03 ABL PIC 9 COMP-4.
03 CURRENT-ABN PIC 9(4) COMP-4.
03 ACKNOWLEDGED-ABN PIC 9(4) COMP-4.
03 STATE PIC 9 COMP-4.
03 FILLER PIC X.
03 CURRENT-ABL PIC 9 COMP-4.
03 FILLER PIC X(10).

UPLINE-ABH PIC X(10).

03
03

03
03 DOWNLINE-ABH PIC X(10).
03 FILLER PIC X(30).

C O L U M N 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 8-9. Sample Program ECH0-RMV2 Source Listing (Sheet 1 of 7)

/3$!<sS*v

60499500 S 8-19

CDC COBOL 5.3 - LEVEL 588 SOURCE LISTING OF ECHO-RM AOPT= 66/CDC/CDCS2 83/06/16. 12.21.30. PAGE 2

5 5 0 1 I N C O M I N G .
5 6 0 2 C O M M A N D P I C X (2 0) .
5 7 0 2 R E S T - O F - D A T A P I C X (8 0) .
5 8 0 1 O U T G O I N G .
5 9 0 2 P R I N T - C O N T R O L P I C X .
6 0 0 2 O U T - M E S S A G E P I C X (1 4 0) .
6 1 0 1 F O U N D - F L A G P I C 9 .
6 2 0 1 Q U E U E - S I Z E P I C 9 9 .
6 3 0 1 H O L D I N G - Q U E U E .
6 4 ♦
65 *THIS IS A PUSHDOWN QUEUE USED FOR STORAGE OF THOSE
66 ♦OUTPUT BLOCKS THE PROGRAM IS TEMPORARILY PREVENTED FROM SENDING
67 *10 THE TERMINAL BECAUSE OF BLOCK LIMIT OR OTHER EVENTS IN THE
6 8 ♦ N E T W O R K .
6 9 *
70 02 QUEUE-ENTRY OCCURS 1 TO 60 TIMES DEPENDING ON QUEUE-SIZE
7 1 I N D E X E D B Y I N X - 1 I N X - 2 .
7 2 0 3 S - C O N N E C T I O N - N U M B E R P I C 9 9 9 C O M P - 4 .
7 3 0 3 S - M E S S A G E P I C X (1 4 0) .
7 4 0 3 S - I N T E R M E D I AT E - M E S S A G E P I C 9 C O M P - 4 .
75
76
77
7 8 P R O C E D U R E D I V I S I O N .
79
80
8 1 I N I T I A L I Z A T I O N .
8 2 ♦
83 *HERE, THE NETWORK INFORMATION TABLE IS PRESET.
8 4 ♦
85 MOVE "RMV2" TO APPL ICAT ION-NAME.
8 6 M O V E 4 T O C H A R A C T E R - S E T.
8 7 M O V E 1 2 0 T O M A X - T R A N S - S I Z E .
8 8 ♦
89 ♦THE FORMAT EFFECTOR CHARACTER "." CAUSES THE CURSOR TO
90 ^RETURN TO THE LEFT EDGE OF THE SCREEN OR PAGE
91 ♦FOLLOWING THE CONTENTS OF OUT-MESSAGE. THIS ACTION
92 ♦LEAVES THE CURSOR POSITIONED SO THAT THE USER CAN ENTER
93 *A LINE EQUAL TO THE FULL PAGE WIDTH OF THE TERMINAL.
9 4 ♦
95
9 6 M O V E " . " T O P R I N T - C O N T R O L .
9 7 M O V E S PA C E S TO O U T- M E S S A G E .
9 8 M O V E S PA C E S T O I N C O M I N G .
99 MOVE 5 TO NUMBER-CONNECTIONS.
1 0 0 M O V E - 1 T O S L E E P .
101 MOVE 1 TO INTERMEDIATE-MESSAGE.
1 0 2 M O V E 0 T O Q U E U E - S I Z E .
103 MOVE 0 TO APPLICATION-TO-APPLICATION.
1 0 4 M O V E 0 T O F O U N D - F L A G .
105 ENTER FORTRAN-X QTOPEN USING NETWORK-INFORMATION-TABLE.
106
1 0 7 ♦
108 ♦ALL TERMINALS WILL BE SWITCHED AUTOMATICALLY TO IAF

C O L U M N 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 8-9. Sample Program ECH0-RMV2 Source Listing (Sheet 2 of 7)

8 - 2 0 6 0 4 9 9 5 0 0 R

CDC COBOL 5.3 - LEVEL 588 SOURCE LISTING OF ECHO-RM AOPT= 66/CDC/CDCS2 83/06/16. 12.21.30, PAGE 3

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

♦WHEN THEY ARE DISCONNECTED FROM THIS PROGRAM.
*

MOVE "IAF" TO NEXT-APPLICATION-NAME.

MAIN-LOOP.
PERFORM RECEIVER THRU RECEIVE-EXIT.

IF STATE (CONNECTION-NUMBER) = 1
GO TO MAIN-LOOP.

IF RETURN-CODE = 2
MOVE 0 TO INTERMEDIATE-MESSAGE
PERFORM DISPLAY-BANNER THRU BANNER-EXIT
GO TO MAIN-LOOP.

IF RETURN-CODE = 4
PERFORM PUSH-DOWN-QUEUE
GO TO MAIN-LOOP.

IF RETURN-CODE = 6
PERFORM CONNECTION-BROKEN-ROUTINE THRU CB-EXIT
GO TO MAIN-LOOP.

IF RETURN-CODE = 7 OR = 8
PERFORM FLUSH-QUEUE
MOVE 0 TO INTERMEDIATE-MESSAGE
MOVE "." TO PRINT-CONTROL
MOVE "NO ACTION TAKEN. NEXT ENTRY?" TO OUT-MESSAGE
PERFORM SENDER THRU SEND-EXIT
GO TO MAIN-LOOP.

IF RETURN-CODE = 9
GO TO WRAP-UP.

*
♦TO SIMPLIFY THE PROGRAM, ONLY EXPECTED CONDITIONS ARE PROCESSED
♦BY THE PRECEDING CODE. ALL OTHER CONDITIONS CAUSE THE PROGRAM
♦TO PLACE A DIAGNOSTIC MESSAGE IN THE FILE CALLED OUTPUT (WITH
♦THE DISPLAY STATEMENT) AND SHUT DOWN. NO DIAGNOSTIC APPEARS AT
♦THE TERMINAL.

RETURN-CODE
IF RETURN-CODE NOT = 0

DISPLAY "PROGRAM BUG OR OTHER ERROR'
SECONDARY-RETURN-CODE STOP RUN.

MOVE "." TO PRINT-CONTROL.

*
♦IF A TERMINAL USER ENTERS THE WORD END, THE USER IS
♦DISCONNECTED BUT THE PROGRAM CONTINUES TO SERVICE OTHER
♦TERMINALS.
*

IF COMMAND = "END"
PERFORM END-CONNECTION THRU EC-EXIT
GO TO MAIN-LOOP.

*
♦IF A TERMINAL USER ENTERS THE WORD
♦DISCONNECTED AND THE PROGRAM SHUTS
*

IF COMMAND = "SHUTDOWN"

SHUTDOWN, THE USER IS
DOWN.

C O L U M N 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 8-9. Sample Program ECH0-RMV2 Source Listing (Sheet 3 of 7)

/0^K

60499500 R 8-21

CDC COBOL 5.3 - LEVEL 588 SOURCE LISTING OF ECHO-RM AOPT= 66/CDC/CDCS2 83/06/16. 12.21.30. PAGE 4

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

MOVE 0 TO INTERMEDIATE-MESSAGE
MOVE "." TO PRINT-CONTROL
MOVE "BYE FOREVER!" TO OUT-MESSAGE
PERFORM SENDER THRU SEND-EXIT

GO TO WRAP-UP.

♦THE FOLLOWING CODE BEGINS THE INPUT-ECHOING PORTION
♦OF THIS PROGRAM.
*

MOVE INCOMING TO OUT-MESSAGE
MOVE 1 TO INTERMEDIATE-MESSAGE
MOVE "." TO PRINT-CONTROL
PERFORM SENDER THRU SEND-EXIT

*
♦SEND PROMPT FOR NEXT LINE, WHICH ALSO ENDS PRESENT OUTPUT
♦MESSAGE TO THIS TERMINAL.
*

MOVE 0 TO INTERMEDIATE-MESSAGE
MOVE "." TO PRINT-CONTROL
MOVE "NEXT ENTRY?" TO OUT-MESSAGE
PERFORM SENDER THRU SEND-EXIT
GO TO MAIN-LOOP.

*
♦THIS ENDS THE MAIN PROGRAM PORTION OF ECH0-RMV2. THE FOLLOWING
♦PARAGRAPHS COMPRISE THE SUBROUTINES USED BY THE MAIN PROGRAM.

RECEIVER.
IF QUEUE-SIZE = 0

MOVE -1 TO SLEEP
*
♦THE NEXT LINE PREVENTS LEFTOVER CHARACTERS FROM THE END OF THE
♦LAST INPUT LINE FROM BEING INCLUDED IN THE TRANSFER OF THE
♦CURRENT (AND PRESUMABLY SHORTER) LINE.
*

MOVE SPACES TO INCOMING
ENTER FORTRAN-X QTGET USING INCOMING
GO TO RECEIVE-EXIT.

MOVE 1 TO SLEEP
MOVE SPACES TO INCOMING
ENTER FORTRAN-X QTGET USING INCOMING.
IF RETURN-CODE NOT = 1

GO TO RECEIVE-EXIT
ELSE NEXT SENTENCE.

QUEUE-OUTPUT-CODE.
MOVE 0 TO FOUND-FLAG.
PERFORM QUEUE-SCAN VARYING INX-1 FROM 1 BY 1

UNTIL FOUND-FLAG = 1 OR INX-1 EXCEEDS QUEUE-SIZE.
IF FOUND-FLAG - 0

GO TO RECEIVER
ELSE NEXT SENTENCE.

SET INX-1 DOWN BY 1.

C O L U M N 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

/ * ^ ? \

Figure 8-9. Sample Program ECH0-RMV2 Source Listing (Sheet 4 of 7)

^<^\

8-22 60499500 R

/SS^K

CDC COBOL 5.3 - LEVEL 588 SOURCE LISTING OF ECHO-RM AOPT= 66/CDC/CDCS2 83/06/16. 12.21.30.
PAGE 5

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

♦THE REMAINING CODE ATTEMPTS TO REMOVE ALL

ISŜoSISTJI0"THE 0UTPUT QUEUE' 0NE ENTRY AT A♦TIME, REGARDLESS OF CONNECTION NUMBER. EACH SEND
♦OPERATION IS FOLLOWED BY A RETURN TO THE POINT IN
♦THE PROGRAM WHERE STATUS UPDATES ARE OBTAINED.

SS rj«Î !!EI>IATE"MESSAGE (INX"1) T0 INTERMEDIATE-MESSAGE.MOVE S-CONNECTION-NUMBER (INX-1) TO CONNECTION-NUMBER
Move™!: «ONNEC"ON-NUMBER) = 3 GO TO RECE Se-EXu! *MOVE "." TO PRINT-CONTROL.
MOVE S-MESSAGE (INX-1) TO OUT-MESSAGE
PERFORM QUEUE-COMPRESSION VARYING INX-2 FROM INX-1 BY 1

UNTIL INX-2 = QUEUE-SIZE.
SUBTRACT 1 FROM QUEUE-SIZE.
PERFORM SENDER THRU SEND-EXIT.
IF QUEUE-SIZE = 0

GO TO RECEIVER
ELSE GO TO QUEUE-OUTPUT-CODE.

RECEIVE-EXIT.
EXIT.

QUEUE-SCAN.
MOVE S-CONNECTION-NUMBER (INX-1) TO CONNECTION-NUMBER
IF CURRENT-ABL (CONNECTION-NUMBER) EXCEEDS 0

MOVE 1 TO FOUND-FLAG.

QUEUE-COMPRESSION.
MOVE QUEUE-ENTRY (INX-2 + 1) TO QUEUE-ENTRY (INX-2).

FLUSH-QUEUE.
SET INX-1 INX-2 TO 1.
PERFORM FLUSH-LOOP UNTIL INX-2 EXCEEDS QUEUE-SIZE.
SET INX-1 DOWN BY 1.
SET QUEUE-SIZE TO INX-1.

FLUSH-LOOP.
IF S-CONNECTION-NUMBER (INX-1) = CONNECTION-NUMBER

SET INX-2 UP BY 1
ELSE

PERFORM CONDITIONAL-QUEUE-MOVE
SET INX-1 INX-2 UP BY 1.

CONDITIONAL-QUEUE-MOVE.
IF INX-1 NOT = INX-2

MOVE QUEUE-ENTRY (INX-2) TO QUEUE-ENTRY (INX-1).

SENDER.
IF CURRENT-ABL (CONNECTION-NUMBER) = 0

PERFORM PUSH-DOWN-QUEUE GO TO SEND-EXIT.

♦THE PROGRAM HAS QTRM SCAN BACKWARDS THROUGH THE MESSAGE
♦AREA AND TRUNCATE THE MESSAGE AUTOMATICALLY. THIS PROCEDURE

C O L U M N 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 8-9. Sample Program ECH0-RMV2 Source Listing (Sheet 5 of 7)

60499500 R 8-23

CDC COBOL 5.3 - LEVEL 588 SOURCE LISTING OF ECHO-RM AOPT= 66/CDC/CDCS2 83/06/16.12.21.30. PAGE 6

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

♦IS COMPARABLE TO THE ONE USED BY CYBER RECORD MANAGER FOR
♦Z-TYPE RECORDS.
*

MOVE 0 TO MESSAGE-LENGTH.
ENTER FORTRAN-X QTPUT USING OUTGOING.

*
♦IF NAM HAS STOPPED OUTPUT ON THE CONNECTION TEMPORARILY, OR IF
♦THE BLOCK LIMIT HAS BEEN EXCEEDED (AN EVENT THAT SHOULD NOT
♦HAPPEN) FOR THE CONNECTION, THE MESSAGE IS RETURNED TO THE
♦QUEUE FOR A LATER TRY.
*

IF RETURN-CODE = 5 PERFORM PUSH-DOWN-QUEUE.
SEND-EXIT.

EXIT.

PUSH-DOWN-QUEUE.
ADD 1 TO QUEUE-SIZE.
IF QUEUE-SIZE EXCEEDS 60 DISPLAY "QUEUE OVERFLOW ABORT"

PERFORM DUMPER VARYING INX-1 FROM 1 BY 1
UNTIL INX-1 EXCEEDS 60
STOP RUN.

MOVE INTERMEDIATE-MESSAGE TO S-INTERMEDIATE-MESSAGE
(QUEUE-SIZE).

MOVE CONNECTION-NUMBER TO S-CONNECTION-NUMBER (QUEUE-SIZE),
MOVE OUT-MESSAGE TO S-MESSAGE (QUEUE-SIZE).

♦THE FOLLOWING PROMPT IS MANDATORY, BECAUSE QTRM DOES NOT
♦AUTOMATICALLY ISSUE A PROMPT TO A NEW
♦CONNECTION TO INITIALIZE THAT CONNECTION. THE FOLLOWING
♦PROMPT IS SENT BECAUSE GOOD PROGRAMMING PRACTICE
♦REQUIRES A NETWORK APPLICATION PROGRAM TO IDENTIFY ITSELF
♦TO A TERMINAL USER.
*
DISPLAY-BANNER.

MOVE "." TO PRINT-CONTROL.
MOVE "THIS IS RMV2 USING QTRM. ENTER SOMETHING." TO

OUT-MESSAGE.
PERFORM SENDER THRU SEND-EXIT.

BANNER-EXIT.
EXIT.

♦NO CALL TO QTENDT IS NECESSARY DURING THIS PROCESSING BRANCH,
♦BECAUSE QTRM AUTOMATICALLY CLEANS UP THE CONNECTION WHEN IT
♦RETURNS THE CONNECTION-BROKEN STATUS.
*
CONNECTION-BROKEN-ROUTINE.

DISPLAY "CONNECTION BROKEN - TERMINAL USER HUNG UP "
CONNECTION-NUMBER

DISPLAY " FAMILY " FAMILY-NAME (CONNECTION-NUMBER)

C O L U M N 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

/'*a%.

Figure 8-9. Sample Program ECH0-RMV2 Source Listing (Sheet 6 of 7)

yf̂ Siĵ Sy

8-24 60499500 R

CDC COBOL 5.3 - LEVEL 588 SOURCE LISTING OF ECHO-RM AOPT= 66/CDC/CDCS2 83/06/16. 12.21.30.
PAGE 7

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

ro rSJfLAY " USER " USER-NAME (CONNECTION-NUMBER).CB—EXIT.
EXIT.

♦THE WAIT-FOR-QUIET CALLS PROVIDE A DELAY LOOP FOR THE
t™I«!r ™ !;LEAN UP ALL OUTSTANDING SUPERVISORY MESSAGE♦TRAFFIC RELATED TO THE SHUTDOWN. WITHOUT THIS LOOP
♦SOME TERMINAL CONNECTIONS WOULD RECEIVE AN '
♦"APPLICATION FAILED" MESSAGE.
*
WRAP-UP.

PERFORM GRACEFUL-DISCONNECTS THRU GD-EXIT VARYING
CONNECTION-NUMBER
FROM 1 BY 1 UNTIL CONNECTION-NUMBER = 6.

ENTER FORTRAN-X QTCLOSE.
STOP RUN.

GRACEFUL-DISCONNECTS.
IF STATE (CONNECTION-NUMBER) = 2 PERFORM FLUSH-QUEUE

MOVE 0 TO INTERMEDIATE-MESSAGE
MOVE "." TO PRINT-CONTROL
MOVE "SHUTDOWN COMING" TO OUT-MESSAGE
PERFORM SENDER THRU SEND-EXIT
ENTER FORTRAN-X QTENDT.

GD-EXIT.
EXIT.

END-CONNECTION.
PERFORM FLUSH-QUEUE
MOVE 0 TO INTERMEDIATE-MESSAGE
MOVE "." TO PRINT-CONTROL
MOVE "GOODBYE FOR NOW.." TO OUT-MESSAGE.
PERFORM SENDER THRU SEND-EXIT.
ENTER FORTRAN-X QTENDT.

EC-EXIT.
EXIT.

DUMPER.

DISPLAY S-CONNECTION-NUMBER (INX-1)
S-MESSAGE (INX-1).

C O L U M N 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 8-9. Sample Program ECH0-RMV2 Source Listing (Sheet 7 of 7)

Figure 8-10 shows the commands used to execute
ECH0-RMV2. ECH0-RMV2 exists as a direct access
source code file named RMV2.

Figure 8-11 contains a complete debug log file
listing for a single execution of ECHO-RMV2. This
log file is very similar to the one shown in sec
tion 7 for program RMV3 because both programs use
essentially the same AIP routines for the same
functions and support the same kind of dialog.
Figure 8-12 contains a statistics file listing for
ECHO-RMV2.

Figure 8-13 is a console printer listing for two
sequential connections using ECHO-RMV2 during a
single execut ion of that program. The l is t ing
includes program-generated messages and a console
input message that is echoed back.

ATTACH,RMV2.
COBOL5,I=RMV2.
LDSET(LIB=NETIOD)
LGO.
REWIND,ZZZZZSN.
COPY,ZZZZZSN.
DLFP(1=0)
COPY,INPUT,QTRMEXP.
REWIND,QTRMEXP.
SAVE,QTRMEXP.

Figure 8-10. ECH0-RMV2 Job Commands

60499500 R 8-25

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/06/16

12.21.41.000 NETON (004750) ANAME = RMV2
NSUP ADDR = 001507 MINACN =00001 MAXACN =00005

DATE = 83/06/16

CONREQ
T1223 E X UW-4P

GB
H'PK

x x x x x Q M B ca
xxxxxxx & 16A 7

r t r t / 0 /

4 E MDXMFI WS D3Q

12.21.41.039 NETPUT (006634) HA =003451 TA =003501
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 C20100000000000 60400400000000000000 DCTRU B

12.22.16.257 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0011

001 630000001400200 30600000000120001000
002 51C75D7ADB45018 24343535365555050030
003 0000000000001C2 00000000000000000702
004 00000000023840B 00000000000010702013
005 xxxxxxx6DB40011 xxxxxxxxxx55550O0021
006 xxxxxxxEl880037 xxxxxxxxxxxx42Q00067
007 000FF8FFFFFFFFF 00007770777777777777
008 FFF3400001FFFFF 77771500000007777777
009 000000000000F6F 00000000000000007557
010 7C014034460D189 37000500150430150611

12.22.16.257 NETPUT (006634) HA =003451 TA =003501
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 634000001400101 30640000000120000401 CONREQN CB

12.22.16.352 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830700001000000 40603400000100000000 FCINIT

12.22.16.352 NETPUT (006634) HA =003451 TA =003501
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 834700001000000 40643400000100000000 FCINITN G

12.22.16.353 NETPUT (006634) HA =003451 TA =001614
ABT =02 ADR =0001 ABN =000001 ACT =04 STATUS = 00000000 TLC = 0050

001 BD42094ED253B52 57241011235511235522 .THIS IS R =B NRS5
002 35676D55324E1ED 15263555252311160755 MV2 USING #VVUS$AM
003 45448DBED14E505 21242215575505162405 QTRM. ENTE ED >QNP
004 4AD4CF34550824E 22552317150524101116 R SOMETHIN T-LSEP N
005 1EF000000000000 07570000000000000000 G. P

83/06/16
PAGE 00001

MSG NO. 000001

MSG NO. 000002

MSG NO. 000003

MSG NO. 000004

MSG NO. 000005

MSG NO. 000006

MSG NO. 000007

. X f fl ^ y

Figure 8-11. Debug Log File Listing for ECH0-RMV2 (Sheet 1 of 11)

8-26

^ & e $ \

60499500 R

1 R M V 2 L O G F I L E O U T P U T
DATE RECORDED - 83/06/16J

1AR?2:n$,7IL nnnn NETGET (006312> ACN =0000 HA =003451 TA =003501 TLMAX =0063ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = OOOOOOnn Tir-nr.ni
001 830200001000040 40601000000100000100 FCACK "

1«?'n?*4lL nnn. UBTGEJL (006326) ALN =0001 HA =003451 TA =001602 TLMAX =0012
nn, cIS? =00°1 ABN =00000° ACT =04 STATUS = 00000000 TLC = 0047001 50816D385614B43 24100555160530245503 THE NEXT CP M8V I
002 2014810D4152B49 10012201032405225511 HARACTM I
S™ t"°6D553152982 23550155252305224602 S A USER-B
nnt 4?504B99DB43201 22050113463555031001 REAK-2 CHA005 4810D4152BC0000 22010324052257000000 RACTER.

83/06/16
PAGE 00002

MSG NO. 000008

MSG NO. 000009

2 H T +1
NPMU1R
$ 9 42
H T +a

1?^3'1?'412 NETPUT (0°6634) HA =003451 TA =001614ABT =01 ADR =0001 ABN =000002 ACT =04 STATUS = 00000000 TLC = 0050 MSG NO. 000010
001 BD4205B4E15852D 57241005551605302455 .THE NEXT
002 0C80520435054AD 03100122010324052255 CHARACTER
003 253B41B554C54A6 11235501552523052246 IS A USER
S' 2!2;!412E676I)0C8 02220501134635550310 BREAK-2 CH005 0520435054AF000 01220103240522570000 ARACTER.

=B 4AXR
PH CPT-
X;A5TEJ
B FVPH

CPT/

12.23.18.413 NETPUT (006634) HA =003451 TA =001614
ABT =02 ADR =0001 ABN =000003 ACT =04 STATUS = 00000000 TLC = 0020

SrS fJSSSSISSl? 57160530245505162422 .NEXT ENTR <AXRQNQ002 679000000000000 31710000000000000000 Y? 8Y

12.23.18.934 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000080 40601000000100000200 FCACK

12.23.18.934 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001OOOOCO 40601000000100000300 FCACK

12.23.27.818 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800004001000000 40000004000100000000 INTRUSR

12.23.27.818 NETPUT (006634) HA =003451 TA =003501
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

MSG NO. 000011

MSG NO. 000012

MSG NO. 000013

MSG NO. 000014

MSG NO. 000015

Figure 8-11. Debug Log File Listing for ECH0-RMV2 (Sheet 2 of 11)

60499500 R 8-27

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/06/16

001 800100001000000 40000400000100000000 INTRRSP

12.23.27.818 NETPUT (006634) HA =003451 TA =003501
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CBOOOOOOOOOOOOO 62600000000000000000 ROMARK

12.23.27.818 NETPUT (006634) HA =003451 TA =001614
ABT =02 ADR =0001 ABN =000004 ACT =04 STATUS = 00000000 TLC = 0040

001 BCE3ED0435093CE 57161755010324111716 .NO ACTION <CM 5 <
002 B5404B14EBED385 55240113051657551605 TAKEN. NE KT 1N>S
003 614B45394499E40 30245505162422317100 XT ENTRY? AKE9D D
004 000000000000000 OOOOOOOOOOOOOOOOOOOO

12.23.27.827 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLMAX =0012
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CA0000353220202 62400000152310401002 BIMARK

12.23.28.833 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000000 40601000000100000000 FCACK

83/06/16
PAGE 00003

MSG NO. 000016

MSG NO. 000017

MSG NO. 000018

MSG NO. 000019

/■̂ ®̂y

12.23.28.833 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000100 40601000000100000400 FCACK

12.23.47.074 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLMAX =0012

MSG NO. 000020

MSG NO. 000021
ABT =02 ADR =0001 ABN -OOOOOO ACT =04 STATUS = 00000000 TLC = 0047

001 50816D385614B43 24100555160530245503 THE NEXT C P M8V 4
002 2014810D4152B49 10012201032405225511 HARACTER I 2HT+I
003 4ED06D553152982 23550155252305224602 S A USER-B NPMU1R
004 48504B99CB43201 22050113463455031001 REAK-1 CHA $ 9 42
005 4810D4152BC0000 22010324052257000000 RACTER. H T +a

12.23.47.075 NETPUT (006634) HA =003451 TA =001614
ABT =01 ADR =0001 ABN =000000 ACT =04 STATUS = 00000000 TLC = 0050

001 BD4205B4E15852D 57241005551605302455 .THE NEXT =8 4AXR
002 0C80520435054AD 03100122010324052255 CHARACTER PH CPT-
003 253B41B554C54A6 11235501552523052246 IS A USER- X;A5TEJ
004 0921412E672C0C8 02220501135634550310 BREAK-1 CH a FRPH

MSG NO. 000022

Figure 8-11. Debug Log File Listing for ECH0-RMV2 (Sheet 3 of 11)

8-28 60499500 R

RHV2 LOG FILE OUTPUT
DATE RECORDED - 83/06/16

005 0520435054AF000 01220103240522570000 ARACTER.
CPT/

n^?'̂ '°lL nnn« NETPUT C006634) HA =003451 TA =001614i :iS£ ISSrl"r"« ■ -

'"is Haas "s"-̂™ «■s ™™"' sss. 'vr.'Sk,'1™ -»001 830200001000180 40601000000100000600 FCACK

1^|-°^ =0000 ,SKIafigs,ST ^ 1?A°?US- SSSSSo "t^oo,™* ^3001 800003001000000 40000003000100000000 INTRUSR '

1?p?4'n̂ '°»L nnnn NETPUT <006634> HA =003451 TA =003501ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 ti r - nnni
001 800100001000000 40000400000100000000 INTRRSP " °1

1?:?4,!£-067 NETPUT ^006634) HA =003451 TA =003501ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002
001 CBOOO00O00OOO00 62600000000000000000 ROMARK

1?^4'K*0?7 NETPUT <006634) HA =003451 TA =001614ABT =02 ADR =0001 ABN =000007 ACT =04 STATUS = 00000000 TLC = 0040
001 BCE3ED0435O93CE 57161755010324111716 .NO ACTION <CM 5 <
002 B5404B14EBED385 55240113051657551605 TAKEN. NE KT 1N>S
003 614B45394499E40 30245505162422317100 XT ENTRY? AKE9D D
004 000000000000000 oooooooooooooooooooo

12.24.06.070 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLMAX =0012
ABT ™3 *ASJL«2P£L mH =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CAOOOOOOOOOOOOO 62400000000000000000 BIMARK

83/06/16
PAGE 00004

MSG NO. 000023

MSG NO. 000024

MSG NO. 000025

MSG NO. 000026

MSG NO. 000027

MSG NO. 000028

MSG NO. 000029

MSG NO. 000030

Figure 8-11. Debug Log File Listing for ECH0-RMV2 (Sheet 4 of 11)

j 0 ^ \
60499500 R 8-29

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/06/16

12.24.08.398 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000000 40601000000100000000 FCACK

12.24.08.421 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 8302000010001CO 40601000000100000700 FCACK

12.24.30.931 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLMAX =0012
ABT =02 ADR =0001 ABN =000000 ACT =04 STATUS = 00000000 TLC = 0036

001 50816D385614B45 24100555160530245505 THE NEXT E P M8V 4
002 394499B494ED06D 16242231551123550155 NTRY IS A SI INPM
003 0921412ED24E109 02220501135511160411 BREAK INDI !A.RN
004 0C15OF4AFO000O0 03012417225700000000 CATOR. APT/

12.24.30.931 NETPUT (006634) HA =003451 TA =001614
ABT =01 ADR =0001 ABN =000008 ACT =04 STATUS = 00000000 TLC = 0040

001 BD4205B4E15852D 57241005551605302455 .THE NEXT =B 4AXR
002 14E51266D253B41 05162422315511235501 ENTRY IS A QNQ&MX;A
Q03 B4248504BB49384 55022205011355111604 BREAK IND 4$;I8
004 2430543D2BC0000 11030124172257000000 ICATOR. BC CR<

83/06/16
PAGE 00005

MSG NO. 000031

MSG NO. 000032

MSG NO. 000033

MSG NO. 000034

12.24.30.932 NETPUT (006634) HA =003451 TA =001614
ABT =02 ADR =0001 ABN =000009 ACT =04 STATUS = 00000000 TLC = 0020

001 BCE15852D14E512 57160530245505162422 .NEXT ENTR <AXRQNQ
002 679000000000000 31710000000000000000 Y? &Y

12.24.31.984 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000200 40601000000100001000 FCACK

12.24.31.984 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000240 40601000000100001100 FCACK $

12.24.33.521 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800003001000000 40000003000100000000 INTRUSR

MSG NO. 000035

MSG NO. 000036

MSG NO. 000037

MSG NO. 000038

/ ^ ^ y

Figure 8-11. Debug Log File Listing for ECH0-RMV2 (Sheet 5 of 11)

8-30 60499500 R

/ iSS>\

/0®*\

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/06/16

IIIS 1 NETPUT (°06634) HA =003451 TA =003501ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = finm
001 800100001000000 40000400000100000000 INTRRSP

1?B?4:S'5!lo nnn, NETPUT (°06634) HA =003451 TA =003501
nn, T =00°1 ** =00000° ACT =02 STATUS = 00000000 TLC = 0002001 CBOO0OOO00O00OO 62600000000000000000 ROMARK

1ART4'S*5*L nnn. NETPUT <006634> HA =003451 TA =001614
nS? oA«c^2??InrtABN =0°0010 ACT =04 STATUS = 00000000 TLC = 0040001 BCE3ED0435093CE 57161755010324111716 .NO ACTION <CM 5 <
002 B5404B14EBED385 55240113051657551605 TAKEN. NE KT 1N>S
003 614B45394499E40 30245505162422317100 XT ENTRY' AKE9D D
004 000000000000000 OOOOOOOOOOOOOOOOOOOO

1«!4"S'5!? « NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLMAX =0012ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC =0002
001 CA0000657300202 62400000312714001002 BIMARK

^^'H'°iL nnnn NETGET (006312) AC" =0000 HA =003451 TA =003501 TLMAX =0063ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC =0001
001 830200001000000 40601000000100000000 FCACK

12.24.34.042 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000280 40601000000100001200 FCACK (

12.26.27.632 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLMAX =0012
ABT =02 ADR =0001 ABN =000000 ACT =04 STATUS = 00000000 TLC = 0003

001 14E100000000000 05160400000000000000 END A

12.26.27.632 NETPUT (006634) HA =003451 TA =001614
ABT =02 ADR =0001 ABN =000011 ACT =04 STATUS = 00000000 TLC = 0020

001 BC73CF102645B46 57071717040231055506 .GOODBYE F <S0 &E4
002 3D2B4E3D7BEF000 17225516172757570000 OR NOW.. CR4CW>P

83/06/16
PAGE 00006

MSG NO. 000039

MSG NO. 000040

MSG NO. 000041

MSG NO. 000042

MSG NO. 000043

MSG NO. 000044

MSG NO. 000045

MSG NO. 000046

Figure 8-11. Debug Log File Listing for ECH0-RMV2 (Sheet 6 of 11)

60499500 R 8-31

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/06/16

12.26.27.632 NETPUT (006634) HA =003451 TA =003501
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 C00000001OOOOOO 60000000000100000000 LSTOFF 3

12.26.27.632 NETPUT (006634) HA =003451 TA =003501
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0002

001 630600001000000 30603000000100000000 CONEND C
002 2411ADB6DB40000 11010655555555000000 IAF A CM4

12.26.27.727 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 634600001000000 30643000000100000000 CONENDN CF

12.26.41.158 NETGET (006312) ACN =0000
ABT =03 ADR =0000 ABN =000000 ACT =01 STAT

001 630000001400200 30600000000120001000
002 51C75D7ADB45018 24343535365555050030
003 0000000000001C2 00000000000000000702
004 00000000023840B 00000000000010702013
005 xxxxxxxxDB40011 xxxxxxxxxx5555000021
006 xxxxxxxxx880037 xxxxxxxxxxxxxx000067
007 000FF8FFFFFFFFF 00007770777777777777
008 FFF3400001FFFFF 77771500000007777777
009 000000000000F6F 00000000000000007557
010 7C014034460D189 37000500150430150611 4 E MDXMFI W3 DSQ

12.26.41.158 NETPUT (006634) HA =003451 TA =003501
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 634000001400101 30640000000120000401 CONREQN CS

12.26.41.656 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830700001000000 40603400000100000000 FCINIT

12.26.41.656 NETPUT (006634) HA =003451 TA =003501
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 834700001000000 40643400000100000000 FCINITN G

HA =003451 TA =003501 TLMAX =0063
US = 00000000 TLC = 0011
CONREQ
T1223 E X UW-4P

GB
H'PK

x x x x x Q m b ca
xxxxxxx 8 16A 7

/ / / / r r r
; ; M G ; ; ;

83/06/16
PAGE 00007

MSG NO. 000047

MSG NO. 000048

MSG NO. 000049

MSG NO. 000050

12.26.41.656 NETPUT (006634) HA =003451 TA =001614

MSG NO. 000051

MSG NO. 000052

MSG NO. 000053

MSG NO. 000054

Figure 8-11. Debug Log File Listing for ECH0-RMV2 (Sheet 7 of 11)

8-32 60499500 R

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/06/16 83/06/16

PAGE 00008

ABT =02 ADR =0001 ABN
001 BD42094ED253B52
002 35676D55324E1ED
003 45448DBED14E505
004 4AD4CF34550824E
005 1EF000000000000

=000001 ACT =04 STATUS = 00000000 TLC = 0050
57241011235511235522 .THIS IS R =B NRS5

MV2 USING WVUSSAM
QTRM. ENTE ED >QNP
R SOMETHIN T-LSEP N
G . P

15263555252311160755
21242215575505162405
22552317150524101116
07570000000000000000

1h?6'i!'2°7 NETGET <°06312) ACN =0000 HA =003451 TA =003501 TLMAX -nOA7
2? JSISSSSL ABN =00000° ACT =01 STATUS = 00000000 TLC = 0001001 830200001000040 40601000000100000100 FCACK

12.27.27.
ABT =01

001
002
003
004
005
006
007
008
009
010

NSSETnnn22S326> ALN =0001 HA =003451 TA =001602 TLMAX =0012ABN =000000 ACT =04 STATUS = 00010000 TLC = 0100
901
ADR =0001

c?S2SS494ED06D 24101123551123550155 THIS IS A P S4 M0048141120 24312005011005010455 TYPEAHEAD U 3PH -
5054D4BAD14E505 24052324565505162405 TEST, ENTE PTT QNP
489387B414ED355 22111607550123551525 RING AS MU T 8CANSU
0C8B5415852D053 03105524053024550123 CH TEXT AS T -
B503D34C908C16D 55201723231102140555 POSSIBLE -P=4I AM
50F8430554C5B4D 24175503012523055515 TO CAUSE M PCC TE4
54C50940C16D385 25142411201405551605 ULTIPLE NE ULP S
5173D22ED08C3C3 24271722135502141703 TWORK BLOC QSR.P <
2D3B5540C24E16D 13235525201411160555 KS UPLINE 2S5T SAM

MSG NO. 000055

MSG NO. 000056

12.27.27
ABT =01

001
002
003
004
005
006
007
008
009
010
011

901 NETPUT (006634) HA =003451 TA =001614
ADR =0001 ABN =000002 ACT =04 STATUS = 00000000 TLC =

BD42094ED253B41 57241011235511235501 .THIS IS A
B54650141205044 55243120050110050104 TYPEAHEAD
B5415352EB45394 55240523245655051624 TEST, ENT
15224E1ED053B4D 05221116075501235515 ERING AS M
54322D505614B41 25031055240530245501 UCH TEXT A
4ED40F4D3242305 23552017232311021405 S POSSIBLE
B543ED0C155316D 55241755030125230555 TO CAUSE
355314250305B4E 15251424112014055516 MULTIPLE N
1545CF48BB4230F 05242717221355021417 ETWORK BLO
0CB4ED550309385 03132355252014111605 CKS UPLINE
000000000000000 OOOOOOOOOOOOOOOOOOOO

=8 N.RS4
TE A PD

5ASRKE9
AR$AM ;M
T2-PV 4
M3TS$#

5CM S
SU1BP0CN
EOH;BO

PKNUPO

0110
MSG NO. 000057

12.27.27.902 NETPUT (006634) HA =003451 TA =001614
ABT =02 ADR =0001 ABN =000003 ACT =04 STATUS = 00000000 TLC = 0020

001 BCE15852D14E512 57160530245505162422 .NEXT ENTR <AXRQNQ
002 679000000000000 31710000000000000000 Y? 8Y

12.27.52.164 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063

MSG NO. 000058

MSG NO. 000059

Figure 8-11. Debug Log File Listing for ECH0-RMV2 (Sheet 8 of 11)

r
60499500 R 8-33

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/06/16

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001
001 830200001000080 40601000000100000200 FCACK

12.27.52.164 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001OOOOCO 40601000000100000300 FCACK

83/06/16
PAGE 00009

12.27.52.
ABT =01

001
002
003
004
005
006
007
008
009
010

12.27.52
ABT =01

001
002
003
004
005
006
007
008
009
010
011

NETGETL (006326) ALN =0001 HA =003451169
ADR =0001 ABN =000000 ACT =04 STATUS = 00000000 TLC =

50FB54205B4E154 24175524100555160524 TO THE NET PLT CN
27172213550120201411 WORK APPLI EOH;AA
03012411171655202217 CATION PRO <KPH
07220115575555241005 GRAM. THE QR CM5B
55111624051624551123 INTENT IS 4 E-%
55241755230505552710 TO SEE WH ;T>TE UH
01245524100555202217 AT THE PRO KT CPH
07220115702355212505 GRAM'S QUE QR " 5 E
25054610011604141116 UE-HANDLIN TY A $

G CODE WIL AM Q 5RL

TA =001602 TLMAX =0012
0100

MSG NO. 000060

MSG NO. 000061

5CF48BB41410309
0C15093CEB5048F
1D204DBEDB54205
B4939414E52D253
B543ED4C516D5C8
054B54205B5048F
1D204DE13B51545
54598804E10C24E
1ED0CF105B5724C 07550317040555271114

,200 NETPUT (006634) HA =003451 TA =001614
ADR =0001 ABN =000004 ACT =04 STATUS = 00000000 TLC =

BD43ED50816D385 57241755241005551605 .TO THE NE =CMP M8
24271722135501202014
11030124111716552022
17072201155755552410
05551116240516245511
23552417552305055527
10012455241005552022
17072201157023552125

155166201384309 05250546100116041411
387B433C416D5C9 16075503170405552711
300000000000000 14000000000000000000

MSG NO. 000062
0110

5173D22ED05040C
24305424F3AD412
3C748136FB6D508
16D24E505394B49
4ED50FB53145B57
20152D50816D412
3C74813784ED455

TWORK APPL U ="M
ICATION PR OTS-A
OGRAM. TH #GH 06U
E INTENT I RNPS 4
S TO SEE W MPCS CW
HAT THE PR -P MA
OGRAM'S QU #GH XNTU
EUE-HANDLI Q F 0
NG CODE WI 43D UI
L 0

r " * ^ ^ .

12.27.52.200 NETPUT (006634) HA =003451 TA =001614
ABT =02 ADR =0001 ABN =000005 ACT =04 STATUS = 00000000 TLC = 0020

001 BCE15852D14E512 57160530245505162422 .NEXT ENTR <AXRQNQ
002 679000000000000 31710000000000000000 Y? &Y

12.27.52.227 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLMAX =0012
ABT =02 ADR =0001 ABN =000000 ACT =04 STATUS = 00000000 TLC = 0022

001 32D10FB493AD508 14550417551116552410 L DO IN TH 2Q 4 -P
002 253B49393501383 11235511162324011603 IS INSTANC S4 P

MSG NO. 000063

MSG NO. 000064

Figure 8-11. Debug Log File Listing for ECH0-RMV2 (Sheet 9 of 11)

8-34 60499500 R

R M V 2 L O G F I L E O U T P U T 8 3 / 0 6 / 1 6
D A T E R E C O R D E D - 8 3 / 0 6 / 1 6 P A G E 0 0 0 1 0

003 16FO00000OOO0OO 05570000000000000000 E.

1AB?7-ra"6IL -nnnn "fJ^nnnn™312' ACN =000° HA =003451 TA =003501 TLMAX =0°63 MSG NO. 000065ABT -03 ADR =0000 ABN =000000 ACT =01 STATUS = OQOnnnnn ti r - nnni
001 830200001000100 40601000000100000400 FCACK "

1 2 . 2 7 . 5 2 . 6 7 4 N E T P U T (0 0 6 6 3 4) H A = 0 0 3 4 5 1 TA = 0 0 1 6 1 4 m s g n o n n n n A A
ABT =01 ADR =0001 ABN =000006 ACT =04 STATUS = 00000000 TLC = 0030

22} B"B443ED24EB54 57145504175511165524 .L DO IN T <KD>RN5002 2094ED24E4D404E 10112355111623240116 HIS INSTAN B NRNM3N
003 0C5BC0000000000 03055700000000000000 CE. C3

^I'Jf'll'^L nnnn ""^ (006312) ACN =000° »A =003451 TA =003501 TLMAX =0063 MSG NO. 000067ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001
001 830200001000140 40601000000100000500 FCACK

12oJ7'n!'7rL n NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063 MSG NO. 000068ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001
001 830200001000180 40601000000100000600 FCACK

1 2 . 2 7 . 5 3 . 7 7 8 N E T P U T (0 0 6 6 3 4) H A = 0 0 3 4 5 1 TA = 0 0 1 6 1 4 M S G N O 0 0 0 0 6 9
ABT =02 ADR =0001 ABN =000007 ACT =04 STATUS = 00000000 TLC = 0020

001 BCE15852D14E512 57160530245505162422 .NEXT ENTR <AXRQNQ
002 679000000000000 31710000000000000000 Y? 8Y

12.27.54.760 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063 MSG NO. 000070
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 8302000010001 CO 40601000000100000700 FCACK

12.28.07.750 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLMAX =0012 MSG NO. 000071
ABT =02 ADR =0001 ABN =000000 ACT =04 STATUS = 00000000 TLC = 0008

001 4C855410F5CE000 23102524041727160000 SHUTDOWN L T UN

1 2 . 2 8 . 0 7 . 7 5 1 N E T P U T (0 0 6 6 3 4) H A = 0 0 3 4 5 1 TA = 0 0 1 6 1 4 M S G N O . 0 0 0 0 7 2
ABT =02 ADR =0001 ABN =000008 ACT =04 STATUS = 00000000 TLC = 0020

001 BC2645B463D2156 57023105550617220526 .BYE FOREV <&E4CR
002 152D80000000000 05226600000000000000 ER! ARX

Figure 8-11. Debug Log File Listing for ECH0-RMV2 (Sheet 10 of 11)

6 0 4 9 9 5 0 0 R 8 - 3 5

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/06/16

83/06/16
PAGE 00011

12.28.07.751 NETPUT (006634) HA =003451 TA =001614
ABT =02 ADR =0001 ABN =000009 ACT =04 STATUS = 00000000 TLC

001 BD32155043D73AD 57231025240417271655 .SHUTDOWN =2 PCW
002 0CF349387000000 03171511160700000000 COMING P04

= 0020
MSG NO. 000073

12.28.07.751 NETPUT (006634) HA =003451 TA =003501
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC

001 C00000001OOOOOO 60000000000100000000 LSTOFF 3
= 0001

MSG NO. 000074

12.28.07.751 NETPUT (006634) HA =003451 TA =003501
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC

001 630600001000000 30603000000100000000 CONEND C
002 2411ADB6DB40000 11010655555555000000 IAF A CM4

= 0002
MSG NO. 000075

12.28 .08 .750 NETOFF (003500) DATE =83/06 /16 MSG NO. 000076

Figure 8-11. Debug Log File Listing for ECH0-RMV2 (Sheet 11 of 11)

NAM STATISTICS GATHERING STARTED
NETON DATE 83/06/16. TIME 12.21.41.

NAM STATISTICS GATHERING TERMINATED
NETOFF DATE 83/06/16. TIME 12.28.09.

CPU TIME USED: 0.030

NUMBER OF PROCEDURE CALLS
NETGET 67
NETGETL 39
NETPUT 35
NETWAIT 27

NUMBER OF WORKLIST TRANSFER ATTEMPTS
S U C C E S S F U L 7 3

NUMBER OF INPUT/OUTPUT BLOCKS TRANSFERRED
I N P U T A B T = 0 5 6
I N P U T A B T = 1 2
I N P U T A B T = 2 6
I N P U T A B T = 3 3 1
O U T P U T A B T = 1 6
O U T P U T A B T = 2 1 4
O U T P U T A B T = 3 1 5

NUMBER OF ERRORS

Figure 8-12. Statistics File Listing for ECHO-RMV-2

8 - 3 6 6 0 4 9 9 5 0 0 R

THIS IS RMV2 USING QTRM. ENTER SOMETHING.
The next character is a user-break-2 character.
THE NEXT CHARACTER IS A USER-BREAK-2 CHARACTER.
NEXT ENTRY?
)
NO ACTION TAKEN. NEXT ENTRY?
The next character is a user-break-1 character.
THE NEXT CHARACTER IS A USER-BREAK-1 CHARACTER.
NEXT ENTRY?
(
NO ACTION TAKEN. NEXT ENTRY?
The next entry is a break indicator.
THE NEXT ENTRY IS A BREAK INDICATOR.
NEXT ENTRY?

NO ACTION TAKEN. NEXT ENTRY?
end
GOODBYE FOR NOW..
RMV2 CONNECT TIME 00.04.11.
JSN: ABEF, NAMIAF
/bye,rmv2
UN=xxxxxxx LOG OFF 12.26.38.
J S N = A B E F S R U - S 2 . 0 0 7
IAF CONNECT TIME 00.00.10.
THIS IS RMV2 USING QTRM. ENTER SOMETHING.
I!!*S '? !,tyPeahef^ test' enteri"9 as much text as possible to cause multiple
u£?°rLbl0CkS U?Une to the netHOrk aPP^cation program. The intent is to see
rJt Ttehe.p:°9ram,s queue-handling code will do in this instance.
Network bVwkTwline"1' ENTERING AS MUC" TEXT AS P0SSIBLE t0 CAUSE multiple
NEXT ENTRY?

queue-hanKg codê Jl10" PR0GRAH* THE INTENT IS to see what the program,s
NEXT ENTRY?
L DO IN THIS INSTANCE.
NEXT ENTRY?
shutdown
BYE FOREVER!
SHUTDOWN COMING
RMV2 CONNECT TIME 00.01.27.
JSN: ABEH, NAMIAF

<^N

Figure 8-13. ECHO-RMV2 Sample Dialog

60499500 R 8-37

CHARACTER DATA INPUT, OUTPUT, AND
CENTRAL MEMORY REPRESENTATION

/ $ ^ * \

/ ^ N

This appendix describes the code and character sets
used by the opera t ing sys tem loca l ba tch dev ice
driver programs, magnetic tape driver programs, and
n e t w o r k t e r m i n a l c o m m u n i c a t i o n p r o d u c t s . T h i s
a p p e n d i x d o e s n o t d e s c r i b e h o w o t h e r p r o d u c t s
a s s o c i a t e c e r t a i n g r a p h i c o r c o n t r o l c h a r a c t e r s
w i t h s p e c i fi c b i n a r y c o d e v a l u e s f o r c o l l a t i n g o r
syntax processing purposes. The main text of th is
manual descr ibes such associat ions that are re le
vant to the reader.

CHARACTER SETS AND CODE
SETS
A charac te r se t d i f fe rs f rom a code se t . A char
acter set is a set of graphic and/or contro l char
acter symbols. A code set Is a number ing system
used to represent each character within a character
set . Characters exist outs ide the computer system
and commun ica t ion ne twork ; codes a re rece ived
s t o r e d , r e t r i e v e d , a n d t r a n s m i t t e d w i t h i n t h e
computer system and network.

When this manual refers to the ASCII 128-character
set or the 7-bi t ASCII code set , i t is referr ing to
t h e c h a r a c t e r s e t a n d c o d e s e t d e fi n e d a s t h e
Amer ican Na t iona l S tandard Code fo r In fo rmat ion
I n t e r c h a n g e (A S C I I , A N S I S t a n d a r d X 3 . 4 - 1 9 7 7) .
References in this manual to an ASCII character set
or an ASCII code set do not necessar i ly apply to
the 128-character, 7-bit ASCII code set.

GRAPHIC AND CONTROL
CHARACTERS
A graph ic charac te r can be d isp layed or p r in ted .
Examples of graphic characters are the characters A
through Z, a blank, and the digi ts 0 through 9. A
c o n t r o l c h a r a c t e r i s n o t a g r a p h i c c h a r a c t e r ; a
c o n t r o l c h a r a c t e r i n i t i a t e s , m o d i fi e s , o r s t o p s a
cont ro l opera t ion . An example o f a con t ro l char
acter is the backspace character, which moves the
te rm ina l ca r r i age o r cu rso r back one space . A l
though a contro l character is not a graphic char
acter, some terminals use a graphic representat ion
for contro l characters.

CODED AND BINARY
CHARACTER DATA
Character codes can be interpreted as coded char
a c t e r d a t a o r a s b i n a r y c h a r a c t e r d a t a . C o d e d
cha rac te r da ta i s conve r ted by de fau l t f r om one
code set representat ion to another as i t enters or
l e a v e s t h e c o m p u t e r s y s t e m ; f o r e x a m p l e , d a t a
received from a terminal or sent to a magnetic tape
u n i t i s c o n v e r t e d . B i n a r y c h a r a c t e r d a t a i s n o t
c o n v e r t e d a s i t e n t e r s o r l e a v e s t h e s y s t e m .
Character codes are not converted when moved within
t h e s y s t e m ; f o r e x a m p l e , d a t a t r a n s f e r r e d t o o r
from mass storage is not converted.

60499500 R

The dist inct ion between coded character data and
binary character data is important when reading or
punching cards and when reading or writing magnetic
tape. Only coded character data can be proper ly
reproduced as charac te rs on a l ine p r in te r. On ly
b i n a r y c h a r a c t e r d a t a c a n p r o p e r l y r e p r e s e n t
characters on a punched card when the data cannot
be stored as display code.

The dist inct ion between binary character data and
c h a r a c t e r s r e p r e s e n t e d b y b i n a r y d a t a (s u c h a s
p e r i p h e r a l e q u i p m e n t i n s t r u c t i o n c o d e s) i s a l s o
i m p o r t a n t . O n l y b i n a r y n o n c h a r a c t e r d a t a c a n
properly reproduce characters on a plotter.

CHARACTER SET TABLES
T h e c h a r a c t e r s e t t a b l e s i n t h i s a p p e n d i x a r e
des igned so tha t the user can find the charac ter
represented by a code (such as in a dump) or find
the code that represents a character. To find the
character represented by a code, the user looks up
the code in the column listing the appropriate code
se t and t hen finds t he cha rac te r on t ha t l i ne i n
the co lumn l i s t i ng the appropr ia te charac te r se t .
To find the code that represents a character, the
user looks up the character and then finds the code
on the same line in the appropriate column.

NETWORK OPERATING
SYSTEM
NOS supports the following character sets:

CDC graphic 64-character set

CDC graphic 63-character set

ASCII graphic 64-character set

ASCII graphic 63-character set

ASCII graphic 95-character set

ASCII 128-character set

Each insta l la t ion must se lect e i ther a 64-character
set or a 63-character set. The differences between
the codes of a 63-character set and the codes of a
64-character set are described under Character Set
A n o m a l i e s . A n y r e f e r e n c e i n t h i s a p p e n d i x t o a
6 4 - c h a r a c t e r s e t i m p l i e s e i t h e r a 6 3 - o r 6 4 -
character set unless otherwise stated.

NOS supports the fol lowing code sets to represent
its character sets in central memory:

6-bi t display code

12-bit ASCII code

6/12-bi t d isplay code

A- l

The 6-bit display code is a set of octal codes from
00 to 77, inclusive.

T h e 1 2 - b i t A S C I I c o d e i s t h e A S C I I 7 - b i t c o d e
r i g h t - j u s t i fi e d i n a 1 2 - b i t b y t e . T h e b i t s a r e
n u m b e r e d f r o m t h e r i g h t s t a r t i n g w i t h 0 ; b i t s 0
through 6 contain the ASCII code, bits 7 through 10
conta in zeros, and b i t 11 d is t inguishes the 12-b i t
ASCII 0000 code f rom the 12-bi t 0000 end-of- l ine
b y t e . T h e o c t a l v a l u e s f o r t h e 1 2 - b i t c o d e s a r e
0001 through 0177 and 4000.

The 6/12-bit display code is a combination of 6-bit
codes and 12-b i t codes. The octa l va lues for the
6-b i t codes are 00 th rough 77 , exc lud ing 74 and
76. (The Interpretat ion of the 00 and 63 codes is
desc r ibed under Charac te r Se t Anoma l ies i n t h i s
a p p e n d i x .) T h e o c t a l 1 2 - b i t c o d e s b e g i n w i t h
either 74 or 76 and are fol lowed by a 6-bit code.
Thus, 74 and 76 are escape codes and are never used
a s 6 - b i t c o d e s w i t h i n t h e 6 / 1 2 - b i t d i s p l a y c o d e
s e t . T h e o c t a l v a l u e s o f t h e 1 2 - b i t c o d e s a r e :
7401, 7402, 7404, 7407, and 7601 through 7677. The
other 12-bit codes, 74xx and 7600, are undefined.

CHARACTER SET ANOMALIES
The operating system input/output software and some
products in te rpre t two codes d i f fe ren t ly when the
insta l la t ion se lects a 63-character set ra ther than
a 64-charac ter se t . I f a s i te uses a 63-charac ter
s e t : t h e c o l o n (:) g r a p h i c c h a r a c t e r i s a l w a y s
represen ted by a 6 -b i t d i sp lay code va lue o f 63
o c t a l ; d i s p l a y c o d e 0 0 i s u n d e fi n e d (i t h a s n o
associated graphic or punched card code); the per
cent (%) graph ic does not ex is t , and t rans la t ions
produce a space (55 octal).

However, i f the si te uses a 64-character set, out
pu t o f an oc ta l 7404 6 /12 -b i t d i sp lay code o r a
6-b i t d isp lay code va lue of 00 produces a co lon.
In ASCII mode, a colon can be input only as a 7404
6 /12 -b i t d i sp l ay code . Undefined 6 /12 -b i t d i sp l ay
codes in output fi les produce unpredictable results
and should be avoided.

Two consecutive 6-bit display code values of 00 can
be confused wi th the 12-b i t 0000 end-of- l ine byte
and should be avoided.

T r a n s l a t i o n o f 7 - b i t o r 1 2 - b i t A S C I I t o 6 - b i t
d i s p l a y c o d e c a u s e s c h a r a c t e r f o l d i n g f r o m t h e
128-character ASCII set to the 63- or 64-character
ASCII subset , w i th the spec ia l character subst i tu
tions shown in figure A-l.

INTERACTIVE TERMINAL USERS

NOS supports display consoles and teletypewri ters
that use code sets other than 7-bit ASCII codes for
commun ica t ion o r use g raph ics o the r than those
defined in an ASCII character set. Data exchanged
w i t h s u c h t e r m i n a l s i s t r a n s l a t e d a s d e s c r i b e d
under Terminal Transmission Modes in this appen
d i x . T h e f o l l o w i n g d e s c r i p t i o n a p p l i e s o n l y t o
terminals that use 7-bit ASCII codes and the ASCII
character set.

ASCII Data Exchange Modes
Table A-l shows the character sets and code sets
a v a i l a b l e t o a n I n t e r a c t i v e F a c i l i t y (I A F) u s e r .
Table A-2 shows the octa l and hexadecimal 7-b i t
ASCII code for each ASCII character, and can be
used to convert codes from octal to hexadecimal.
(Certain Terminal Interface Program commands re
qu i re hexadec ima l spec i fica t i on o f a 7 -b i t ASCI I
code.)

IAF supports both normalized mode and transparent
mode t r ansm iss i ons t h rough t he ne two rk . These
transmiss ion modes are descr ibed under Terminal
Transmission Modes in this appendix. Refer to the
NOS Version 2 Reference Set, Volume 3 System Com
mands, for addit ional information.

IAF treats normalized mode transmissions as coded
character data; IAF converts these transmissions to
or from either 6-bit or 6/12-bit display code.

IAF treats transparent mode transmissions as binary
character data. Transparent mode input or output
uses 12-bit bytes, with bit 11 always set to 1; for
ASCII terminals, transparent mode input and output
occurs in the 12-bit ASCII code shown in table A-l,
but the leftmost digit is 4 instead of 0.

When the NORMAL command is in effect, IAF assumes
that the ASCII graphic 64-character set is used and
trans la tes a l l input and output to or f rom d isp lay
code. When the ASCI I command is in e ffec t , IAF
assumes that the ASCII 128-character set is used
a n d t r a n s l a t e s a l l i n p u t a n d o u t p u t t o o r f r o m
6/12-bit display code.

The IAF user can convert a 6/12-bi t d isplay code
fi l e t o a 1 2 - b i t A S C I I c o d e fi l e u s i n g t h e N O S
F C 0 P Y c o n t r o l s t a t e m e n t . T h e r e s u l t i n g 1 2 - b i t
ASCII fi le can be routed to a l ine pr inter but the
file cannot be output through IAF.

v ^ ^ \

^^S^K

63- or 64-Character Subset

12-Bit ASCII (Octal) 6-Bit Display Code (Octal) 12-Bit ASCII (Octal)

0140 (') 74 (a) 0100 (B)
0173 «> 61 (C) 0133 (C)
0174 (|) Input 75 (\) Output 0134 (\)
0175 (» 62 G) 0135 (3)
0176 (") 76 (^) 0136 (^)

Figure A-1. ASCII Character Folding
/Ka(«|K

A-2 60499500 R

Terminal Transmission Modes
Coded character data can be exchanged with a con
v e r s a t i o n a l t e r m i n a l i n t w o t r a n s m i s s i o n m o d e s .
These two modes, normalized mode and transparent
mode, cor respond to the types o f charac ter code
ed i t i ng and t rans la t i on pe r fo rmed by the ne twork
software during input and output operations.

The terminal operator can change the input trans
mission mode using a terminal defini t ion command
(s o m e t i m e s c a l l e d a Te r m i n a l I n t e r f a c e P r o g r a m
command) . The app l ica t ion program prov id ing the
te rm ina l fac i l i t y se rv i ce can change the Inpu t o r
output transmission mode.

Normalized Mode Transmissions

Norma l i zed mode i s t he i n i t i a l and de fau l t mode
used for both input and output t ransmissions. The
network software translates normalized mode data to
or from the transmission code used by the terminal
in to or f rom the 7-b i t ASCII code shown in tab le
A-2. (Tables A- l and A-3 through A-7 are provided
for use while coding an application program to run
under the operat ing system; they do not descr ibe
c h a r a c t e r t r a n s m i s s i o n s t h r o u g h t h e n e t w o r k .)
T r a n s l a t i o n o f a s p e c i fi c t e r m i n a l t r a n s m i s s i o n
code to or from a specific 7-bit ASCII code depends
on the terminal class in which the network software
places the terminal.

The following paragraphs summarize the general case
for normal ized mode data code t rans la t ions . Th is
generalized description uses table A-2.

The reader can extend this general ized descr ipt ion
by us ing the o ther tab les to de te rmine charac te r
set mapping for functions init iated from a terminal.
For example, the description under Terminal Output
Character Sets can be used to pred ic t whether a
lowercase ASCI I charac ter s to red in 6 /12-b i t d is
play code can appear on an EBCDIC or external BCD
terminal; i f an ASCII character passes through the
n e t w o r k r e p r e s e n t e d i n 7 - b i t A S C I I a s c h a r a c t e r
mode data, i t probably can be represented on an
EBCDIC terminal, but it is always transformed to an
uppercase character on a mode 4A ASCII terminal.

Ta b l e A - 2 c o n t a i n s t h e A S C I I 1 2 8 - c h a r a c t e r s e t
s u p p o r t e d b y t h e n e t w o r k s o f t w a r e . T h e A S C I I
96-charac te r subse t in the r igh tmos t s ix co lumns
minus the de le t ion character (DEL) compr ises the
g r a p h i c 9 5 - c h a r a c t e r s u b s e t ; t h e D E L i s n o t a
graphic character, al though some terminals graphi
c a l l y r e p r e s e n t i t . T h e g r a p h i c 6 4 - c h a r a c t e r
subset comprises the middle four columns. Only the
charac te rs in th i s 64 -charac te r subse t have 6 -b i t
display code equivalents.

Terminals that support an ASCII graphic 64-character
subset actual ly use a subset of up to 96 charac
ters, consist ing of the graphic 64-character subset
and t he con t ro l cha rac te r s o f co l umns 1 and 2 ;
of ten, the DEL character in column 7 is included.
Terminals that support an ASCII graphic 95-character
or 96-character subset ac tua l ly might use a l l 128
characters.

The hexadecimal value of the 7-bi t code for each
charac ter in tab le A-2 cons is ts o f the charac ter 's
co lumn number i n t he tab le , f o l l owed by i t s row
number. For example, N is in row E of column 4, so

i t s hexadec ima l va lue i s 4E . The oc ta l va lue fo r
t h e c o d e w h e n i t i s r i g h t - j u s t i fi e d i n a n 8 - b i t
b y t e a p p e a r s b e n e a t h t h e c h a r a c t e r g r a p h i c o r
mnemonic. The binary value of the code consists of
the bit values shown, placed in the order given by
the subscr ip ts for the le t ter b ; fo r example , N is
1001110.

Tables A-8 through A-19 show the normalized mode
t r a n s l a t i o n s p e r f o r m e d f o r e a c h t e r m i n a l c l a s s .
The parity shown in the terminal transmission codes
i s t h e p a r i t y u se d a s a d e fa u l t f o r t h e t e rm i n a l
c l a s s . T h e p a r i t y s e t t i n g a c t u a l l y u s e d b y a
terminal can be ident ified to the network sof tware
through a TIP command.

Tab les A-8 th rough A-19 con ta in the g raph ic and
control characters associated with the transmission
codes used by the terminal because of the terminal
c l a s s a n d c o d e s e t i n u s e . T h e n e t w o r k A S C I I
graphic and control characters shown are those of
the s tandard ASCI I charac ter se t assoc ia ted w i th
the ASCII transmission codes of table A-2.

Terminal Output Character Subsets — Although the
network supports the ASCII 128-character set, some
t e r m i n a l s r e s t r i c t o u t p u t t o a s m a l l e r c h a r a c t e r
s e t . T h i s r e s t r i c t i o n i s s u p p o r t e d b y r e p l a c i n g
the control characters in columns 0 and 1 of table
A - 2 w i t h b l a n k s t o p r o d u c e t h e A S C I I g r a p h i c
95-charac ter subset , and rep lac ing the charac ters
in co lumns 6 and 7 wi th the cor responding char
a c t e r s f r o m c o l u m n s 4 a n d 5 , r e s p e c t i v e l y , t o
produce the ASCII graphic 64-character subset.

Terminal Input Character Subsets and Supersets —
A l t h o u g h t h e n e t w o r k s u p p o r t s t h e A S C I I 1 2 8 -
cha rac te r se t , some te rm ina l s res t r i c t i npu t t o a
sma l le r charac te r se t o r pe rmi t i npu t o f a la rger
c h a r a c t e r s e t . A c h a r a c t e r i n p u t f r o m a d e v i c e
using a character set other than ASCII is converted
to an equ i va len t ASCI I cha rac te r ; t e rm ina l cha r
a c t e r s w i t h o u t A S C I I c h a r a c t e r e q u i v a l e n t s a r e
represented by the ASCII code for a space.

S i t e - w r i t t e n t e r m i n a l - s e r v i c i n g f a c i l i t y p r o g r a m s
can a lso cause input or output character replace
ment , convers ion , o r de le t ion by exchang ing da ta
with the network in 6-bit display code.

Input Restrictions — The network software automat
i c a l l y d e l e t e s c o d e s a s s o c i a t e d w i t h t e r m i n a l
communication protocols or terminal hardware func
t ions . These codes usua l l y rep resen t the cance l ,
backspace, l ine feed, car r iage re tu rn , and de le t ion
c h a r a c t e r s . I f p a p e r t a p e s u p p o r t i s r e q u e s t e d ,
the device control 3 code also is deleted. Some of
these code deletions can be suppressed by using the
f u l l - A S C I I a n d s p e c i a l e d i t i n g o p t i o n s (r e f e r t o
the FA and SE terminal definition parameters in the
NOS Vers ion 2 Refe rence Set , Vo lume 3 , Sys tem
Commands).

Output Restr ict ions — Al l codes sent by an appl i
c a t i o n p r o g r a m a r e t r a n s m i t t e d t o t h e t e r m i n a l .
However, the 12-b i t ASCI I code 0037 (oc ta l) , the
6 /12 -b i t d i sp lay code 7677 (oc ta l) , and the 7 -b i t
ASCII code IF (hexadecimal) should be avoided in
character mode output. The network software inter
p re ts the un i t separa to r charac te r represen ted by
t h e s e c o d e s a s a n e n d - o f - l i n e i n d i c a t o r . T h e
p r o c e s s i n g o f a p p l i c a t i o n p r o g r a m - s u p p l i e d u n i t
s e p a r a t o r s c a u s e s i n c o r r e c t f o r m a t t i n g o f o u t p u t
and can cause loss of other output characters.

60499500 R A-3

I npu t Pa r i t y P rocess ing — The ne twork so f twa re
does not preserve the parity of the terminal trans
mission code in the corresponding ASCII code. An
A S C I I c o d e r e c e i v e d b y t h e t e r m i n a l - s e r v i c i n g
faci l i ty program always contains zero as i ts eighth
b i t .

Output Par i ty Processing — The network sof tware
prov ides the par i ty b i t set t ing appropr ia te for the
terminal being serviced, even when the software is
t rans la t ing f rom ASCI I charac te r codes w i th ze ro
pa r i t y b i t se t t i ngs .

Transparent Mode Transmissions

Transparent mode is se lected separate ly for input
and output transmissions.

D u r i n g t r a n s p a r e n t m o d e i n p u t , t h e p a r i t y b i t i s
s t r i p p e d f r o m e a c h t e r m i n a l t r a n s m i s s i o n c o d e

| (unless the N or I parity option has been selected
b y a t e r m i n a l d e fi n i t i o n c o m m a n d) , a n d t h e
t r a n s m i s s i o n c o d e i s p l a c e d i n a n 8 - b i t b y t e
w i t h o u t t r a n s l a t i o n t o 7 - b i t A S C I I c o d e . L i n e
t ransmiss ion pro toco l charac ters a re de le ted f rom
mode 4 terminal input. When the 8-bit bytes arrive
in the host computer, a terminal serv ic ing fac i l i ty
program can r ight- just i fy the bytes wi th in a 12-bi t
by te .

During transparent mode output, processing simi lar
to that performed for input occurs. When the host
c o m p u t e r t r a n s m i t s 1 2 - b i t b y t e s , t h e l e f t m o s t 4
b i t s (b i t s 11 th rough 8) a re d iscarded . The code
in each 8-bit byte received by the network software
i s n o t t r a n s l a t e d . T h e p a r i t y b i t a p p r o p r i a t e f o r
the te rmina l c lass i s a l te red as ind ica ted by the
p a r i t y o p t i o n I n e f f e c t f o r t h e t e r m i n a l . T h e
codes are then transmitted to the terminal in bytes
o f a l e n g t h a p p r o p r i a t e f o r t h e t e r m i n a l c l a s s .
L ine t ransmiss ion protoco l characters are inser ted
into mode 4 terminal output.

Line Printer Output
The printer train used on the l ine printer to which
a file is sent determines which batch character set
i s p r i n ted . The fo l l ow ing CDC p r in t t ra ins ma tch
the batch character sets in table A-3:

Character Set

CDC graphic
64-character set

ASCII graphic
64-character set

ASCII graphic
95-character set

P r i n t
Tra in

596-1

596-5

596-6

Low Cost System
Print Band

530-1

530-2

The characters of the default 596-1 print train are
listed in the table A-3 column labeled CDC Graphic
(64-Charac te r Set) ; the 596-5 p r in t t ra in charac
t e r s a r e l i s t e d i n t h e t a b l e A - 3 c o l u m n l a b e l e d
ASCI I Graph ic (64-Charac ter Set) ; and the 596-6
pr in t t ra in charac te rs a re l i s ted in the tab le A-3
column labeled ASCII Graphic (95-Character Set).

I f an unpr in tab le character ex is ts in a l ine , NOS
marks the condition by printing the number sign (it)
in the firs t p r in tab le co lumn of the l ine . A space
replaces the unprintable character within the l ine.

When a transmission error occurs during the print
ing o f a l ine, NOS makes up to five a t tempts to
r e p r i n t t h e l i n e . T h e C D C g r a p h i c p r i n t t r a i n
p r i n t s a conca tena t i on symbo l (r *) i n t he fi r s t
co lumn of the repeated l ine fo l lowing a l ine con
t a i n i n g e r r o r s . T h e A S C I I p r i n t t r a i n s p r i n t a n
underline (_) instead of the concatenation symbol.

A f t e r t h e fi f t h a t t e m p t , t h e s e t t i n g o f s e n s e
swi tch one for the batch input and output contro l
p o i n t d e t e r m i n e s f u r t h e r p r o c e s s i n g . N O S e i t h e r
rewinds the file and returns i t to the pr int queue,
or ignores the transmission errors.

/̂ "*%\

LOCAL BATCH USERS
Table A-3 l is ts the CDC graphic 64-character set ,
the ASCII graphic 64-character set, and the ASCII
g raph ic 95-charac te r se t ava i lab le on loca l ba tch
dev i ces . Th i s t ab le a l so l i s t s t he code se t s and
card keypunch codes (026 and 029) that represent
the characters.

The 64 -cha rac te r se t s use 6 -b i t d i sp lay code as
the i r code se t ; t he 95 -cha rac te r se t uses 12 -b i t
ASCII code. The 95-character set is composed of
a l l the charac te rs in the ASCI I 128-charac te r se t
t h a t c a n b e p r i n t e d a t a l i n e p r i n t e r (r e f e r t o
L ine Pr in ter Output) . Only 12-b i t ASCI I code fi les
can be printed using the graphic ASCII 95-character
se t . The 95 -cha rac te r se t i s r ep resen ted by t he
oc ta l 12 -b i t ASCI I codes 0040 th rough 0176 . An
octal 12-bit ASCII code outside of the range 0040
through 0176 represents an unprintable character.

To p r i n t a 6 / 1 2 - b i t d i s p l a y c o d e fi l e , t h e u s e r
m u s t c o n v e r t t h e fi l e t o 1 2 - b i t A S C I I c o d e . T h e
NOS FCOPY control statement is used for this con
vers ion .

A-4

Punched Card Input and Output
A character represented by mul t ip le punches in a
s ing le co lumn has i t s punch pa t te rn iden t i fied by
numbers and hyphens . For example , the punches
represent ing an exclamation point are ident ified as
11-0; this notat ion means both rows 11 and 0 are
punched in the same column.

A mult iple punch pattern that represents something
other than a character is identified by numbers and
slashes. For example, the punches representing the
e n d o f a n i n p u t fi l e a r e i d e n t i fi e d a s 6 / 7 / 8 / 9 ;
this notation means rows 6 through 9 are punched in
the same column.

Coded character data is exchanged with card readers
or card punches according to the translations shown
i n t a b l e A - 3 . A s i n d i c a t e d i n t h e t a b l e , o t h e r
card keypunch codes are available for input of the
ASCII and CDC characters [and]. NOS cannot read
or punch the 95-character set as coded character
da ta .

Each site chooses either 026 or 029 as its default
keypunch code. NOS begins reading an input deck in
the de fau l t code (regard less o f the charac te r se t

60499500 S
• ^

NETWORK FAILURE AND RECOVERY

This sect ion describes the types of network fai lure
t h a t a r e p o s s i b l e . E a c h t y p e o f f a i l u r e h a s i t s
own recovery techniques.

APPLICATION PROGRAMS
The present release of the network software makes
no provision for data recovery if NIP or NVF failure
o c c u r s . T h e o p e r a t o r m u s t r e i n i t i a t e N A M . A l l
app l i ca t ion p rograms tha t a re no t sys tem con t ro l
point jobs are aborted. When the network process
ing un i t detects a network communicat ion fa i lure ,
i t indicates the condit ion by displaying a message
on all connected consoles.

I f t he Ne twork Access Me thod fa i l s (spec i fica l l y,
i f NIP communicat ion fa i ls) , the network sof tware
d u m p s N A M ' s fi e l d l e n g t h t o a s p e c i a l fi l e a n d
e n t e r s a m e s s a g e i n t h e s y s t e m d a y fi l e . A l l
app l i ca t i on p rog rams tha t a re no t sys tem con t ro l
point jobs are aborted, and a message is issued to
the dayfile of each job.

An NPU that has failed can be dumped before it is
r e l o a d e d . W h e n e v e r a n N P U f a i l s , i t i s a u t o
matically reloaded by the Network Supervisor (NS).
When the NPU is reloaded, i t requests supervision
from the Communications Supervisor (CS). CS then
informs the NPU operator and the host operator that
it is now supervising the NPU.

LOGICAL LINK
Host failure, one of the causes of l ink failure, was
p rev i ous l y desc r i bed . L i nk p ro toco l f a i l u re l eads
t o r e g u l a t i o n o f d a t a t r a f fi c u n t i l a l l m e s s a g e
tra ffic ceases on the l ink .

A logical l ink may recover spontaneously (regulation
leve l drops) , or may be re in i t ia l ized by the host .
In the case o f spontaneous recovery, the log ica l
l ink protocol al lows a restart without loss of data.
Otherwise, al l logical connections must be remade.
Trunks connect ing neighboring NPUs are a special
c lass of l inks. Trunk recovery protocol is handled
by the Link Interface Package (LIP).

An aborted appl icat ion program can repr ieve i tse l f
unde r ce r t a i n cond i t i ons w i t hou t be ing re l oaded .
These cond i t ions a re descr ibed In sec t ion 6 and
appendix B. A repr ieved appl icat ion program must
issue a NETOFF call before it can issue a new NETON
cal l . A new NETON cal l can be successful ly com
pleted as soon as a copy of the Network Access
M e t h o d i s r e s t a r t e d . I f t h e r e p r i e v e d p r o g r a m
issues the NETOFF after the Network Access Method
is restarted, the NETOFF is ignored.

TRUNK
A t r u n k f a i l u r e i s d e t e c t e d b y a f a i l u r e o f t h e
t r u n k p r o t o c o l . A l l d a t a q u e u e d f o r t r a n s m i s s i o n
on the t runk is d iscarded. The fa i lu re is repor ted
to the hos t . The t runk pro toco l de tec ts the t runk
recovery. The logical l ink protocol determines when
the trunk can again be used for data block trans
missions .

HOST
If a host fa i ls, the network processing uni t (NPU)
and i ts software must stop message processing to
tha t hos t . Host unava i lab i l i t y i s communica ted to
the other ends of a l l log ica l l inks. Also, the NPU
sends an in format ive serv ice message to a l l con
n e c t e d , c o n s o l e s (a n d t o s o m e o t h e r t y p e s o f
d e v i c e s) i n f o r m i n g t h e t e r m i n a l t h a t t h e h o s t i s
u n a v a i l a b l e . A f t e r r e c o v e r y, a l l l o g i c a l l i n k s a r e
reinitialized and new connections are made.

LINE
L i n e s a r e d i s c o n n e c t e d , a n d C C P t a b l e s c a l l e d
terminal contro l b locks (TCBs) associated wi th the |
l i n e s a r e d e l e t e d . A l i n e f a i l u r e i s d e t e c t e d b y
a b n o r m a l m o d e m s t a t u s o r b y t h e l i n e p r o t o c o l
fa i lu re . The change o f s ta tus is repor ted by CCP
to CS in the host.

The line is constantly monitered by CCP, and if the
correct modem signals are present, CCP reactivates
the line and requests TCB configuration from CS.

NETWORK PROCESSING UNIT
If an NPU fails, it must be reloaded from the host.
O f f - l i ne d iagnos t i c tes ts may be des i rab le dur ing
th is pe r iod to he lp iden t i f y the cause o f fa i l u re .
Failure is detected by means of a 20-second timeout
across the coupler. The NPU is forced to generate
a load request message.

TERMINAL
Terminal status is reported and messages are dis
c a r d e d . T C B s a r e n o t r e l e a s e d . O n c e t e r m i n a l
f a i l u r e h a s b e e n d e t e c t e d , p o s s i b l e t e r m i n a l
recovery is monitored by a periodic status check or
diagnostic poll made from the NPU to the terminal.
Terminal recovery status is reported to CS.

60499500 S 9-1

/ $ ^ \

j f ^ ^ \

i n use) . The user can spec i f y the a l te rna te key
punch code by punching a 26 or 29 in columns 79 and
80 of any job card, 6/7/9 card, or 7/8/9 card. The
spec ified t rans la t ion con t inues th roughout the job
un less the a l te rnate keypunch code t rans la t ion is
specified on a subsequent 6/7/9 or 7/8/9 card.

A 5 /7 /9 ca rd w i th a punch i n co lumn 1 changes
k e y p u n c h c o d e t r a n s l a t i o n i f t h e c a r d i s r e a d
immediate ly before or af ter a 7/8/9 card. A space
(no punch) in co lumn 2 ind ica tes 026 t rans la t ion
mode; a 9 punch in column 2 indicates 029 transla
t i o n m o d e . T h e s p e c i fi e d t r a n s l a t i o n r e m a i n s i n
e f f ec t un t i l a s im i l a r 5 /7 /9 ca rd o r a 7 /8 /9 ca rd
is encountered, or the job ends.

VZ/JiVJ* Trd alS° allows literal inPut w*en1/5 /6 /7 /8 /9 i s punched in co lumn 2 . L i te ra l i npu t
can be used to read 80-column binary character data
within a punched card deck of coded character data.

L i te ra l ca rds a re s to red w i th each co lumn repre
sented in a 12-bit byte (a row 12 punch is repre
sented by a 1 in bit 11, row 11 by a 1 in bit 10,
row 0 by a 1 in bit 9, and rows 1 through 9 by l's
in bi ts 8 through 0 of the byte), using 16 central
m e m o r y w o r d s p e r c a r d . L i t e r a l i n p u t c a r d s a r e
r e a d u n t i l a n o t h e r 5 / 7 / 9 c a r d w i t h 4 / 5 / 6 / 7 / 8 / 9
punched in co lumn 2 is read. The next card can
specify a new conversion mode.

I f t h e c a r d f o l l o w i n g t h e 5 / 7 / 9 , 6 / 7 / 9 , o r 7 / 8 / 9
card has a 7 and a 9 punched in column 1, the sec
t ion o f the job deck fo l low ing i t con ta ins sys tem
binary cards (as descr ibed in the NOS Vers ion 2
Reference Set, Volume 3, System Commands).

REMOTE BATCH USERS
Remote batch console input and output is restricted
to character mode transmission. Character mode is
described under Terminal Transmission Modes in this
appendix.

T h e a b i l i t i e s t o s e l e c t a l t e r n a t e k e y p u n c h c o d e
t r a n s l a t i o n s , t o r e a d b i n a r y c a r d s , t o o u t p u t
p l o t t e r fi l e s , a n d t o p r i n t l o w e r c a s e c h a r a c t e r s
depend upon the remote terminal equipment. Remote
batch terminal suppor t under NOS is descr ibed in
the Remote Batch Facility (RBF) reference manual.

MAGNETIC TAPE USERS
The character and code sets used for reading and
writing magnetic tapes depend on whether coded or
binary data is read or wr i t ten and on whether the
tape is 7-track or 9-track.

Coded Data Exchanges

Coded character data to be copied from mass storage
t o m a g n e t i c t a p e i s a s s u m e d t o b e s t o r e d i n a
63- or 64-character 6-b i t d isp lay code. The oper
ating system magnetic tape driver program converts
the data to 6-bit external BCD code when writing a
c o d e d 7 - t r a c k t a p e a n d t o 7 - b i t A S C I I o r 8 - b i t
EBCDIC code (as specified on the tape assignment
statement) when writing a coded 9-track tape.

Coded character data copied to mass storage from
magnet i c tape i s s to red in a 63- o r 64-charac te r
6-bi t d isplay code. The operat ing system magnet ic
tape d r i ve r p rogram conver ts the da ta f rom 6-b i t
external BCD code when reading a coded 7-track tape
a n d f r o m 7 - b i t A S C I I o r 8 - b i t E B C D I C c o d e (a s
specified on the tape assignment s tatement) when
reading a coded 9-track tape.

To read and wri te lowercase character 7-bi t ASCII
or 8-bit EBCDIC codes or to read and write control
codes, the user must ass ign a 7- t rack or 9- t rack
tape in binary mode.

Seven-Track Tape Input and Output

Table A-4 shows the code and character set conver
sions between 6-bit external BCD and 6-bit display
code for 7-track tapes. Because only 63 characters
can be represented in 7- t rack even par i ty, one of
the 64 display codes is lost in conversion to and
from external BCD code.

F igure A-2 shows the d i f fe rences in 7 - t rack tape
conversion that depend on whether the system uses
the 63 -cha rac te r o r 64 -cha rac te r se t . The ASCI I
character for the specified character code is shown
in parentheses. The output a r rows show how the
6-b i t d i sp lay code changes when i t i s wr i t ten on
tape in external BCD. The input arrows show how
the external BCD code changes when the tape is read
and converted to display code.

Display Code

63-Character Set

External BCD

00
33 (0)
63 (:)

Output
16 (X)
12 (0)
12 (0)

Input

Display Code

00
33 (0)
33 (0)

Display Code

64-Character Set

External BCD

00 (:)
33 (0)
63 (%)

Output
12 (0)
12 (0)
16 (%)

Inpu t

Display Code

33 (0)
33 (0)

- 6 3 (X)

Figure A-2. Magnetic Tape Code Conversions

Nine-Track Tape Input and Output

Tab le A-5 l i s ts the convers ions be tween the 7-b i t
ASCII code used on the tape and the 6-bit display
code used w i th in the sys tem. Tab le A -6 l i s t s the
conversions between the 8-bit EBCDIC code used on
the tape and the 6-bit display code used within the
system.

When an ASCII or EBCDIC code representing a lower
c a s e c h a r a c t e r i s r e a d f r o m a 9 - t r a c k m a g n e t i c
t a p e , i t i s c o n v e r t e d t o i t s u p p e r c a s e c h a r a c t e r

60499500 R A-5

6-bit display code equivalent. Any EBCDIC code not
listed in table A-6 is converted to display code 55
(octal) and becomes a space. Any code between 80
(hexadecimal) and FF (hexadecimal) read f rom an
ASCII tape is converted to display code 00.

Binary Character Data Exchanges
Binary charac ter da ta exchanged be tween cent ra l
memory files and magnetic tape is transferred as a
s t r i n g o f b y t e s w i t h o u t c o n v e r s i o n o f t h e b y t e
contents. The grouping of the bytes and the number
of bits in each byte depend on whether 7-track or
9-track tape is being used.

Seven-Track Tape Input and Output

Each binary data character code written to or read
from 7-track magnetic tape is assumed to be stored
in a 6-bit byte, such as the system uses for 63- or
64 -cha rac te r 6 -b i t d i sp lay code . Seven -b i t ASCI I
and 8-bit EBCDIC codes can only be read from or
wri t ten to 7-track magnet ic tape as binary charac
t e r d a t a i f e a c h c o d e i s s t o r e d w i t h i n a 1 2 - b i t
byte as if it were two character codes.

Nine-Track Tape Input and Output

Each binary data character code exchanged between
centra l memory fi les and 9- t rack magnet ic tape is
assumed to be s tored in an 8-b i t o r 12-b i t by te .

D u r i n g s u c h b i n a r y d a t a t r a n s f e r s , t h e 6 / 1 2 - b i t
display codes and 12-bit ASCII codes shown in table
A- l , the 7-bi t ASCII codes shown in table A-2, or
or the 8-bi t hexadecimal EBCDIC codes shown in
table A-7 can be read or wri t ten. The 7-bi t ASCII
codes and 8-bi t EBCDIC codes can be exchanged
e i t h e r i n a n u n f o r m a t t e d f o r m o r r i g h t - j u s t i fi e d
within a zero-fil led 12-bit byte of memory.

When 9-t rack tape is wr i t ten, every pair of 12-bi t
memory bytes becomes three 8-bi' •xpe bytes; when
9 - t r a c k t a p e i s r e a d , e v e r y t h i - b i t t a p e b y t e s
become a pair of 12-bit memory -oytes. Because of
the 12-bit byte pairs, codes not packed into 12-bit
bytes are exchanged in their unpacked form, while
c o d e s p a c k e d i n 1 2 - b i t b y t e s a r e e x c h a n g e d i n
packed form.

When an odd number of central memory words is read
o r w r i t t e n , t h e l o w e r f o u r b i t s o f t h e l a s t 8 - b i t
by te (b i ts 0 th rough 3 o f the las t word) a re no t
used. For example, three central memory words are
w r i t t e n o n t a p e a s 2 2 8 - b i t b y t e s (7 . 5 p a i r s o f
1 2 - b i t b y t e s) a n d t h e r e m a i n i n g f o u r b i t s a r e
ignored.

CODE CONVERSION AIDS
Table A-7 conta ins the octa l va lues of each 8-b i t
EBCDIC code r igh t - jus t i fied in a 12-b i t by te w i th
zero fill. This 12-bit EBCDIC code can be produced
o r r e a d u s i n g t h e F O R M a n d 8 - B i t S u b r o u t i n e s
u t i l i t i e s .

/ *8^K

A-6 60499500 R

TABLE A-l. INTERACTIVE TERMINAL CHARACTER SETS

Character Sets

ASCII Graphic
(64-Character Set)

: c o l o n t t
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
w
X
Y
Z
0
1
2
3
4
5
6
7
8
9
+ plus
- hyphen (minus)
* as ter isk
/ s lan t
(opening parenthesis
) closing parenthesis
$ dollar sign
= equals

space
, comma
. period
it number sign
[opening bracket
] closing bracket
% percent signtt
" quotation mark

_ underl ine
! exclamation point
& ampersand

apostrophe
? question mark

ASCII Character
(128-Character Set)

A
B
C
D
E
F
G
H
C
J
K
L
M
N
0
P
Q
R
S
T
U
V
W
X
Y
Z
0
1
2
3
4
5
6
7
8
9
+ plus

hyphen (minus)
a s t e r i s k
s lan t
opening parenthesis
closing parenthesis
do l la r s ign
equals
space
comma
period
number sign
opening bracket
closing bracket
percent s ign t t
quotation mark
under l ine
exclamation point
ampersand
apostrophe
question mark

Code Sets

Octal
6 - B i t

D isp lay
Code

00 tt
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61

Stt
64
65
66
67
70
71

Octal
6 /12 -B i t
Display
Codet

01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62 tt
63 tt
64
65
66
67
70
71

Octal
12-Bi t
ASCII
Code

0101
0102
0103
0104
0105
0106
0107
0110
0111
0112
0113
0114
0115
0116
0117
0120
0121
0122
0123
0124
0125
0126
0127
0130
0131
0132
0060
0061
0062
0063
0064
0065
0066
0067
0070
0071
0053
0055
0052
0057
0050
0051
0044
0075
0040
0054
0056
0043
0133
0135
0045
0042
0137
0041
0046
0047
0077

r 60499500 R A-7 |

TABLE A-l. INTERACTIVE TERMINAL CHARACTER SETS (Contd)

Character Sets Code Sets

Octal Octal Octal
ASCII Graphic ASCII Character 6 - B i t 6 /12-B l t 12-Bl t

(64-Character Set) (128-Character Set) Display Display ASCII
Code Codet Code

< less than < less than 72 72 0074
> greater than > greater than 73*+ 73*J. 0076
@ commmercial at @ commercial at 7 4 t t 7 4 0 l t t 0100
\ reverse slant \ reverse slant 75 75 0134
.a. circumflex 76
; semicolon ; semicolon 77 77 0073

/s circumflex 7 6 t t 7402 0136
: co lon t t 7 4 t t 7404t t 0072' grave accent 7407 0140
a 7601 0141
b 7602 0142
c 7603 0143
d 7604 0144
e 7605 0145
f 7606 0146
g 7607 0147
h 7610 0150
1 7611 0151
j 7612 0152
k 7613 0153
1 7614 0154
m 7615 0155
n 7616 0156
o 7617 0157
P 7620 0160
q 7621 0161
r 7622 0162
s 7623 0163
t 7624 0164
u 7625 0165
v 7626 0166
w 7627 0167
X 7630 0170
y 7631 0171
z 7632 0172
{ opening brace 6 l t t 7633 0173
| v e r t i c a l l i n e 75 tt 7634 0174
} closing brace 62 tt 7635 0175~ t i l d e 76 tt 7636 0176
NUL 7640 4000
SOH 7641 0001
STX 7642 0002
ETX 7643 0003
EOT 7644 0004
ENQ 7645 0005
ACK 7646 0006
BEL 7647 0007
BS 7650 0010
HT 7651 0011
LF 7652 0012
VT 7653 0013
FF 7654 0014
CR 7655 0015
SO 7656 0016
SI 7657 0017
DEL 7637 0177
DLE 7660 0020

A-8 60499500 R

/gS^N TABLE A-l. INTERACTIVE TERMINAL CHARACTER SETS (Contd)

Character Sets

ASCII Graphic
(64-Character Set)

ASCII Character
(128-Character Set)

DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

Code Sets

Octal
6 - B i t

Display
Code

Octal
6 /12 -B i t
D isp lay

Codet

7661
7662
7663
7664
7665
7666
7667
7670
7671
7672
7673
7674
7675
7676
7677

Octal
12-Bi t
ASCII
Code

0021
0022
0023
0024
0025
0026
0027
0030
0031
0032
0033
0034
0035
0036
0037

tAvailable only on NOS.

ttcharacter or code interpretation depends on context. Refer to Character Set Anomalies in the text.

60499500 R A-9

TABUS A-2. 7-BIT ASCII CODE AND CHARACTER SETS

h 128-Character Set

96-Character Subset

■•-Graphic 64-Character Subset—w

K 0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

' V

6 b , -5

b 3 b 2B i t s ^ * - ^ ^ Co lumn
R o w i * * * ^ ^ - *

0 0 0 NUL
000

DLE
020

SP
040 060 100 120 140 160

0 0 0 SOH
001

DC1
021 041 061 101 121 141 161

0 0 1 STX
002

DC2
022 042 062 102 122 142 162

0 0 1 ETX
003

DC3
023

if
043 063 103 123 143 163

0 1 0 EOT
004

DC4
024 044 064 104 124 144 164

0 1 0 ENQ
005

NAK
025 045 065 105 125 145 165

0 1 1 ACK
006

SYN
026 046 066 106 126 146 166

0 1 1 BEL
007

ETB
027 047 067 107 127 147 167

0 0 BS
010

CAN
030 050 070 110 130 150 170

0 0 HT
011

EM
031 051 071 U l 131 151 171

0 1 LF
012

SUB
032 052 072 112 132 152 172

0 1 VT
013

ESC
033 053 073 113 133 153 173

1 0 FF
014

FS
034 054 074 114 134 154 174

1 0 CR
015

GS
035 055 075 115 135 155 175

1 1

1 1

SO
016

SI
017

RS
036

US
037

056

/
057

076

1
077

116

O
117

136

737

156

o
157

176

DELt
177

tThe graphic 95- character subs et does not include DEL; refer to Termina1 Transra ission Modes in the texL.
LEGEND:

Numbers under characte rs at e the octal values for the 7-bit characte r codes used within the network

A-10 60499500 R

TABLE A-3. LOCAL BATCH DEVICE CHARACTER SETS

Character Sets

CDC
Graphic

(64-Character
Set)

c o l o n t t
A
B
C
D
E
F
G

H
I
J
K
L
M
N
0

P
Q
R
S
T
U
V
W

X
Y
Z
0
1
2
3

5
6
7
8
9
+ plus
- hyphen (minus)
* as te r i sk

/ s lan t
(open, paren.
) clos. paren.
$ dol lar sign
= equals

space
, comma
. period

= equivalence
[open, bracket

] clos. bracket

X percent signtt

ASCII
Graphic

(64-Character
Set)

: co lon t t
A
B
C
D
E
F
G

H
I
J
K
L
M
N
0

P
Q
R
S
T
U
V
W

X
Y
Z
0
1
2
3
4

5
6
7
6
9
+ plus
- hyphen (minus)
* as te r i sk

/ s l a n t
(open, paren.
) c los. paren.
$ dol lar sign
= equals

space
, comma
. period

it number sign
(open, bracket

] c los. bracket

% percent signtt

ASCII
Graphic

(95-Character
Set)

A
B
C
D
E
F
G

H
I
J
K
L
M
N
0

P
Q
R
S
T
U
V
W

X
Y
Z
0
1
2
3
4

5
6
7
8
9
+ plus
- hyphen (minus)
* as te r i sk

/ s lan t
(open, paren.
) clos. paren.
$ dol lar sign
= equals

space
, comma
. period

9 number sign
[open, bracket

] c los. bracket

X percent signtt

Code Sets

Octal
6 - B i t

D isp lay
Code

oott
01
02
03
04
05
06
07

10
11
12
13
14
15
16
17

20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37

40
41
42
43
44
45
46
47

50
51
52
53
54
55
56
57

60
61

62

63t t

Octal
6 /12 -B i t
D isp lay

Codet

01
02
03
04
05
06
07

10
11
12
13
14
15
16
17

20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37

40
41
42
43
44
45
46
47

50
51
52
53
54
55
56
57

60
61

62

63TT

Octal
12-Bi t
ASCII
Code

0101
0102
0103
0104
0105
0106
0107

0110
0111
0112
0113
0114
0115
0116
0117

0120
0121
0122
0123
0124
0125
0126
0127

0130
0131
0132
0060
0061
0062
0063
0064

0065
0066
0067
0070
0071
0053
0055
0052

0057
0050
0051
0044
0075
0040
0054
0056

0043
0133

0135

0045

Card Keypunch Code

026

8-2
12-1
12-2
12-3
12-4
12-5
12-6
12-7

12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6

11-7
11-8
11-9
0-2
0-3
0-4
0-5
0-6

0-7
0-8
0-9

0
1
2
3
4

5
6
7
8
9

12
11

11-8-4

0-1
0-8-4

12-8-4
11-8-3

8-3
no punch
0-8-3

12-8-3

0-8-6
8-7

0-8-2

029

8-6

8-2
12-1
12-2
12-3
12-4
12-5
12-6
12-7

12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6

11-7
11-8
11-9
0-2
0-3
0-4
0-5
0-6

0-7
0-8
0 - 9

0
1
2
3
4

5
6
7
8
9

12-8-6
11

11-8-4

0-1
12-8-5
11-8-5
11-8-3

8-6
no punch
0-8-3

12-8-3

8-3
12-8-2

°r i2-0tt t
11-8-2

" i i - o t t t
0-8-4

60499500 R A - l l

TABLE A-3. LOCAL BATCH DEVICE CHARACTER SETS (Contd)

Character Sets Code Sets
Card Keypunch Code

CDC
Graphic

ASCII
Graphic

ASCII
Graphic

Octal
6 - B i t

Octal
6 /12 -B i t

Octal
12 -B i t

(64-Character (64-Character (95-Character Display Display ASCII 026 029
Set) Set) Set) Code Codet Code

4 not equals " quotation mark " quotation mark 64 64 0042 8-4 8-7
(-♦ concatenation. _ underl ine _ underl ine 65 65 0137 0-8-5 0-8-5
V logical OR ! exclamation pt. ! exclamation pt. 66 66 0041 11-0

or
11-8-2§

12-8-7
o r 8

l l - 0 §
A logical AND & ampersand & ampersand 67 67 0046 0-8-7 12
t supe rsc r i p t ' apostrophe ' apostrophe 70 70 0047 11-8-5 8-5
x subscr ip t ? question mark ? question mark 71 71 0077 11-8-6 0-8-7
< less than < less than < less than 72 72 0074 12-0

° r 8
12-8-28

12-8-4
o r

12-0§
> greater than > greater than > greater than 73 7 3 ^ 0076 11-8-7 0-8-6
£ less/equal @ commercial at @ commercial at 7 4 t t 7 4 0 l t t 0100 8-5 8-4
> greater/equal \ reverse slant \ reverse slant 75 75 0134 12-8-5 0 -8 -2
—i logical NOT zs circumflex 76 12-8-6 11-8-7
; semicolon ; semicolon ; semicolon 77 77 0073 12-8-7 11-8-6

•s circumflex 7 6 t t 7402 0136
: c o l o n t t 7404t t 0072* grave accent 7 4 t t 7407 0140
a 7601 0141
b 7602 0142
c 7603 0143
d 7604 0144
e 7605 0145
f 7606 0146
g 7607 0147
h 7610 0150
i 7611 0151
j 7612 0152
k 7613 0153
1 7614 0154
m 7615 0155
n 7616 0156
o 7617 0157
P 7620 0160
q 7621 0161
r 7622 0162
s 7623 0163
t 7624 0164
u 7625 0165
v 7626 0166
w 7627 0167
X 7630 0170
y 7631 0171
z 7632 0172
{ open, brace 6 l t t 7633 0173
| ver t ica l lLne 7 5 t t 7634 0174
} clos. brace 6 2 t t

7 6 t t
7635 0175~ t i l d e 7636 0176

'Avai lable onl jr on NOS.

TTcharacter or ;ode in terpre ta t ion depends on context. Refer to CCharacter St;t Anomallles in the t:ex t .

t t t A v a i l a b l e f o r input only, on NOS.
& Available for input only, on NOS/ BE or SCOPE 2.

A-12 60499500 R

/#**•<■ TABLE A-4. 7-TRACK CODED TAPE CONVERSIONS

External
BCD

ASCII
Character

Octal
6 - B i t

Display
Code

External
BCD

ASCII
Character

Octal
6 - B i t

Display
Code

01
02
03
04
05
06
07
10

34 40 - hyphen (minus) 46
2
3
4
5
6
7
8

35
36
37
40
41
42
43

41
42
43
44
45
46
47

12
13
14
15
16
17
2011

12t
13 = equals

44
33
54

50
51
52 ! exclamation point

21
22
6614 " quotation mark 64 53 $ dol lar sign 53

15
16t

@ commercial at 74 54 * as te r i sk 47
% percent sign 63 55 apostrophe 70

17 [opening bracket 61 56 ? question mark 71
20 space 55 57 > greater than 73
21 / s l a n t 50 60 + plus 45
22 23 61 01
23 24 62 02
24 25 63 03
25 26 64 04
26 27 65 05
27 30 66 06
30 31 67 07
31 32 70 10
32] closing bracket 62 71 11
33 , comma 56 72 < less than 72
34 (opening parenthesis 51 73 . per iod 57
35 _ underl ine 65 74) closing parenthesis 52
36 it number sign 60 75 \ reverse s lant 75
37 & ampersand 67 76 " caret 76

" ; semicolon 77

+
'As the text: explains, conversion of t lese codes depeiids on whether t.he tape is read or written

60499500 R A-l 3

TABLE A-5. ASCII 9-TRACK CODED TAPE CONVERSION

ASCII

C o d e .
Conversion'

Character and
Code Conversiontt

Disp lay Codet t t

Code
(Hex) Character Code

(Hex) Character ASCII
Character

Code
(Octa l)

20 space 00 NUL space 55
21 ! exclamation point 7D } closing brace ! exclamation point 66
22 " quotation mark 02 STX " quotation mark 64
23 it number sign 03 ETX it number sign 60
24 $ dol lar sign 04 EOT $ dol lar sign 53
25 X percent sign§ 05 ENQ % percent sign§ 63§
26 & ampersand 06 ACK & ampersand 67
27 ' apostrophe 07 BEL ' apostrophe 70
28 (opening parenthesis 08 BS (opening parenthesis 51
29) closing parenthesis 09 HT) closing parenthesis 52
2A * as te r i sk 0A LF * as te r i sk 47
2B + plus 0B VT + plus 45
2C , comma OC FF , comma 56
2D - hyphen (minus) 0D CR - hyphen (minus) 46
2E . period 0E SO . period 57
2F / s l a n t OF SI / s lan t 50
30 10 DLE 33
31 11 DC1 34
32 12 DC2 35
33 13 DC3 36
34 14 DC4 37
35 15 NAK 40
36 16 SYN 41
37 17 ETB 42
38 18 CAN 43
39 19 EM 44
3A : colon* 1A SUB : colon^ 00§
3B ; semicolon IB ESC ; semicolon 77
3C < less than 7B { opening brace < less than 72
3D = equals ID GS = equals 54
3E > greater than IE RS > greater than 73
3F ? question mark IF US ? question mark 71
40 @ commercial at 60 grave accent @ commercial at 74
41 61 01
42 62 02
43 63 03
44 64 04
45 65 05
46 66 06

A-14 60499500 R

TABLE A-5. ASCII 9-TRACK CODED TAPE CONVERSION (Contd)

Code
(Hex)

47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

ASCII

Code
Conversiont

Characte i

G
H
I
J
K
L
M
N
0
P

Q
R
S
T
U
V
W
X
Y
Z
[opening bracket
\ reverse slant
] closing bracket
" caret

underl ine

Character and
Code Conversiontt

Code
(Hex)

67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
IC
7C

01
7E
7F

Character

w
X

y
z
FS
I v e r t i c a l l i n e
SOH
~ t i l de

DEL

6 - B i t
Display Codettt

ASCII
Character

G
H
I
J
K
L
M
N
0
P

Q
R
S
T
U
V
W
X
Y
Z
[opening bracket
\ reverse s lant

] c losing bracket
n caret

under l ine

Code
(Octa l)

07
10
11
12
13
14

15
16
17
20
21
22
23
24
25
26
27
30
31
32
61
75
62
76
65

'When these characters are copied from or to a tape, the characters remain the same and the code
changes from or to ASCII to or from display code.

t ti'These characters do not exist in display code. When the characters are copied from a tape, each
ASCII character is changed to an alternate display code character. The corresponding codes are also
changed. Example: When the system copies a lowercase a, 61 (hexadecimal), from tape, it writes an
uppercase A, 01 (octal).

t t tA display code space always translates to an ASCII space.

'Character or code interpretation depends on context. Refer to Character Set Anomalies in the text.

60499500 R A-l 5

TABLE A-6. EBCDIC 9-TRACK CODED TAPE CONVERSION

EBCDIC
6 - B i t

Display CodettCode Character and
Conversiont Code Conversiontt

Code
(Hex) Character Code

(Hex) Character ASCII
Character

Code
(Octal)

40 space 00 NUL space 55
4A i cent sign IC IFS [opening bracket 61
4B . period 0E SO . period 57
4C < less than CO { opening brace < less than 72
4D (opening parenthesis 16 BS (opening parenthesis 51
4E + plus 0B VT + plus 45
4F I v e r t i c a l l i n e DO } closing brace ! exclamation point 66
50 & ampersand 2E ACK & ampersand 67
5A ! exclamation point 01 SOH] closing bracket 62
5B $ dol lar sign 37 EOT $ dollar sign 53
5C * as ter isk 25 LF * as ter isk 47
5D) closing parenthesis 05 HT) closing parenthesis 52
5E ; semicolon 27 ESC ; semicolon 77
5F —i logical NOT Al " t i l d e caret 76
60 - hyphen (minus) 0D CR - hyphen (minus) 46
61 / s lan t OF SI / s lan t 50
6B , comma OC FF , comma 56
6C % percent sign§ 2D ENQ % percent sign§ 63§
6D _ underl ine 07 DEL _ underl ine 65
6E > greater than IE IRS > greater than 73
6F ? question mark IF IUS ? question mark 71
7A : colon§ 3F SUB : colon§ 00§
7B it number sign 03 ETX it number sign 60
7C @ commercial at 79 \ reverse slant @ commercial at 74
7D ' apostrophe 2F BEL apostrophe 70
7E = equals ID IGS = equals 54
7F " quotation mark 02 STX " quotation mark 64
Cl 81 01
C2 82 02
C3 83 03
C4 84 04
C5 85 05
C6 86 06
C7 87 07
C8 88 10
C9 89 11
DI 91 12
D2 92 13
D3 93 14

A-16 60499500 R

TABLE A-6. EBCDIC 9-TRACK CODED TAPE CONVERSION (Contd)

EBCDIC
D - B l t

Code
Conversiont

Character and Display Codettt
Code Conversiontt

Code
(Hex) Character Code

(Hex) Character ASCII Code
Character (Oc ta l)

D4 94 15
D5 95 16
D6 96 17
D7 97 20
D8 98 21
D9 99 22
EO \ reverse slant 6A 1 ver t ica l l ine \ reverse slant 75
E2 A2 23
E3 A3 24
E4 A4 25
E5 A5 26
E6 A6 27
E7 A7 30
E8 A8 31
E9 A9 32
FO 10 DLE 33
Fl 11 DC1 34
F2 12 DC2 35
F3 13 TM 36
F4 3C DC4 37
F5 3D NAK 40
F6 32 SYN 41
F7 26 ETB 42
F8 18 CAN 43
F9 19 EM 44

twhen these characters are copied from or to a tape, the characters remain the same (except EBCDIC
codes 4A (hexadecimal), 4F (hexadecimal), 5A (hexadecimal), and 5F (hexadecimal)) and the code changes
from or to EBCDIC to or from display code.

ttThese characters do not exist in display code. When the characters are copied from a tape, each
EBCDIC character is changed to an alternate display code character. The corresponding codes are also
changed. Example: When the system copies a lowercase a, 81 (hexadecimal), from tape, it writes an
uppercase A, 01 (octal).

tttA display code space always translates to an EBCDIC space.

'Character or code interpretation depends on context. Refer to Character Set Anomalies in the text.

60499500 R A-l 7

TABLE A-7. FULL EBCDIC CHARACTER SET

Hexa Octal EBCDIC Hexa Octal EBCDIC Hexa Octal EBCDIC
decimal 12-Bi t Graphic or decimal 12-Bi t Graphic or decimal 12 -B i t Graphic or
EBCDIC EBCDIC Contro l EBCDIC EBCDIC Contro l EBCDIC EBCDIC Contro l

CharactertCode Code Charactert Code Code Charactert Code Code

00 0000 NUL 4A 0112 i cent sign A7 0247
01 0001 SOH 4B 0113 . period A8 0250
02 0002 STX 4C 0114 < less than A9 0251
03 0003 ETX 4D 0115 (open, paren. AA 0252 undefined
04 0004 PF 4E 0116 + plus t h r u th ru
05 0005 HT 4F 0117 I logical OR BF 0277 undefined
06 0006 LC 50 0120 & ampersand CO 0300 { open, brace
07 0007 DEL 51 0121 undefined Cl 0301
08 0010 undefined th ru thru C2 0302
09 0011 undefined 59 0131 undefined C3 0303
OA 0012 SMM 5A 0132 ! exclam. point C4 0304
OB 0013 VT 5B 0133 $ dollar sign C5 0305
OC 0014 FF 5C 0134 * as ter isk C6 0306
OD 0015 CR 5D 0135) clos. paren. C7 0307
OE 0016 SO 5E 0136 ; semicolon C8 0310
OF 0017 SI 5F 0137 -i logical NOT C9 0311
10 0020 DLE 60 0140 - minus CA 0312 undefined
11 0021 DC1 61 0141 / s lan t CB 0313 undefined
12 0022 DC2 62 0142 undefined CC 0314
13 0023 TM th ru th ru CD 0315 undefined
14 0024 RES 69 0151 undefined CE 0316
15 0025 NL 6A 0152 [v e r t i c a l l i n e CF 0317 undefined
16 0026 BS 6B 0153 , comma DO 0320 } clos. brace
17 0027 I L 6C 0154 % percent sign DI 0321
18 0030 CAN 6D 0155 underl ine D2 0322
19 0031 EM 6E 0156 > greater than D3 0323
1A 0032 CC 6F 0157 ? question mark D4 0324
IB 0033 CU1 70 0160 undefined D5 0325
IC 0034 IFS th ru th ru D6 0326
ID 0035 IGS 78 0170 undefined D7 0327
IE 0036 IRS 79 0171 * grave accent D8 0330
IF 0037 IUS 7A 0172 : colon D9 033 r

20 0040 DS 7B 0173 it number sign DA 0332 undefined
21 0041 SOS 7C 0174 @ commercial at t h ru th ru

22 0042 FS 7D 0175 ' apostrophe DF 0337 undefined
23 0043 undefined 7E 0176 = equals E0 0340 \ reverse slant
24 0044 BYP 7F 0177 " quotation mark El 0341 undefined
25 0045 LF 80 0200 undefined E2 0342
26 0046 ETBB 81 0201 E3 0343
27 0047 ESCE 82 0202 E4 0344

A-18
'-=*^\

60499500 R

TABLE A-7. FULL EBCDIC CHARACTER SET (Contd)

Hexa
decimal
EBCDIC
Code

28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
th ru
49

Octal
12 -B i t
EBCDIC

Code

0050
0051
0052
0053
0054
0055
0056
0057
0060
0061
0062
0063
0064
0065
0066
0067
0070

0071
0072
0073
0074
0075
0076
0077
0100
0101
t h r u
0111

EBCDIC
Graphic or

Contro l
Character t

undefined
undefined
SM
CU2
undefined

ENQ
ACK
BEL
undefined
undefined
SYN

undefined
PN
RS
UC
EOT
undefined
undefined
undefined
CU3
DC4
NAK
undefined
SUB

space
undefined

undefined

Hexa
decimal
EBCDIC

Code

83
84
85
86
87
88
89
8A
th ru
90
91
92
93
94
95
96
97
98
99
9A
t h r u
A0
A l
A2
A3
A4
A5
A6

Octal
12 -B i t
EBCDIC
Code

EBCDIC
Graphic or
Contro l

Charactert

0203
0204
0205
0206
0207
0210
0211
0212 undefined
th ru
0220 undefined
0221
0222
0223
0224
0225
0226
0227
0230
0231
0232 undefined
thru
0240 undefined
0241 ~ t i l d e

0242
0243
0244
0245
0246

Hexa
decimal
EBCDIC

Code

Octal
12 -B i t
EBCDIC
Code

E5 0345
E6 0346
E7 0347
E8 0350
E9 0351
EA 0352
EB 0353
EC 0354
ED 0355
t h r u th ru
EF 0357
F0 0360
Fl 0361
F2 0362
F3 0363
F4 0364
F5 0365
F6 0366
F7 0367
F8 0370
F9 0372
FA 0372
FB 0373
t h r u th ru
FF 0377

EBCDIC
Graphic or

Control
Charactert

V
W
X
Y

Z
undefined
undefined
H
undefined

undefined
0
1
2
3
4
5
6
7
8
9
I v e r t i c a l l i n e
undefined

undefined

tGraphic characters shown are those used on the IBM System/370 standard (PN) print train. Other devic
support subsets or variations of this character graphic set.

J ^
60499500 R A-19

TABLE A-8. CHARACTER CODE TRANSLATIONS, CONSOLES AND LINE PRINTERS IN TERMINAL CLASSES 9, 14, 16, 17,
AND 18 (HASP, HPRE, 2780, 3270, AND 3780)

,r fS^|K

Terminal EBCDIC Network ASCII (Normalized Mode Use)

Hex.
Code

Octal
Code Graphic! Contro l Charapter ' t Hex.

Codettt
Octal
Codettt Graphic Control Charactert t

00 000 NUL 00 000 n u l l
01 001 SOH 01 001 start of header
02 002 STX 02 002 s ta r t o f t ex t
03 003 ETX 03 003 end of text
04 004 PF 20 040 space
05 005 HT 09 on hor izonta l tabu la te
06 006 LC 20 040 space
07 007 DEL 7F 177 delete
08 010 undefined 20 040 space
09 OU undefined 20 040 space
OA 012 SMM 20 040 space
OB 013 VT OB 013 ve r t i ca l t abu la te
OC 014 FF OC 014 form feed
OD 015 CR OD 015 carr iage return
OE 016 SO OE 016 sh i f t ou t
OF 017 SI OF 017 s h i f t i n
10 020 DLE 10 020 data link escape
11 021 DC1 11 021 device control 1
12 022 DC2 12 022 device control 2
13 023 TM 13 023 device control 3
14 024 RES 20 040 space
15 025 NL 20 040 space
16 026 BS 08 010 backspace
17 027 IL 20 040 space
18 030 CAN 18 030 cancel
19 031 EM 19 031 end of medium
1A 032 CC 20 040 space
IB 033 CU1 20 040 space
IC 034 IFS IC 034 fi l e s e p a r a t o r
ID 035 IGS ID 035 group separator
IE 036 IRS IE 036 record separator
IF 037 IUS IF 037 unit separator
20 040 DS 20 040 space
21 041 SOS 20 040 space
22 042 FS 20 040 space
23 043 undefined 20 040 space
24 044 BYP 20 040 space
25 045 LF OA 012. l i n e f e e d
26 046 ETB or EOB 17 027 end of transmission block
27 047 ESC or PRE IB 033 escape
28 050 undefined 20 040 space
29 051 undefined 20 040 space
2A 052 SM 20 040 space
2B 053 CU2 20 040 space
2C 054 undefined 20 040 space
2D 055 ENQ 05 005 enqu i ry
2E 056 ACK 06 006 positive acknowledgment
2F 057 BEL 07 007 b e l l
30 060 undefined 20 040 space
31 061 undefined 20 040 space
32 062 SYN 16 026 synchronous idle
33 063 undefined 20 040 space
34 064 PN 20 040 space
35 065 RS 20 040 space
36 066 UC 20 040 space
37 067 EOT 04 004 end of transmission
38 070 undefined 20 040 space
39 071 undefined 20 040 space
3A 072 undefined 20 040 space

A-20 60499500 S

TABLE A-8. CHARACTER CODE TRANSLATIONS, CONSOLES AND LINE PRINTERS IN TERMINAL CLASSES 9, 14, 16, 17,
AND 18 (HASP, HPRE, 2780, 3270, AND 3780) (Contd)

Terminal EBCDIC Network ASCII (Normalized Mode Use)
Hex.
Code

Octal
Code Graph!ct Control Charactert t Hex.

Codettt
Octal
Code t t t Graphic Control Charactert t

3B
3C
3D
3E
3F
40
41
th ru

073
074
075
076
077
100
101
th ru

space

CU3
DC4
NAK
undefined
SUB

undefined

20
14
15
20
1A
20
20

040
024
025
040
032
040
040

space

space

space
space

device control 4
negative acknowledgement

subs t i t u te

49 111
4A
4B

112
113

5B
2E

133
0564C 114 3C 0744D 115 28 0504E 116 2B 0534F 117 21 04150 120 26 04651

th ru
121
th ru

undefined 20 040 space
59 131
5A 132 50 135
5B 133 24 0445C 134 2A 052
5D 135 29 051
5E 136 3B 073
5F 137 - i 5E 136 S \
60 140 2D 055
61 141 2F 057
62 142 undefined 20 040 spaceth ru th ru
69 151
6A 152 7C 174
6B 153 2C 054
6C 154 25 045
6D 155 5F 137
6E 156 3E 076
6F 157 3F 077
70 160 undefined 20 040 spaceth ru th ru
78 170
79 171 60 140
7A 172 7A 172
7B 173 23 043
7C 174 40 100
7D 175 27 047
7E 176 3D 075
7F 177 22 042 ■I
80 200 undefined 20 040 space
81 201 61 141
82 202 62 142
83 203 63 143
84 204 64 144
85 205 65 145
86 206 66 146
87 207 67 147
88 210 68 150
89 211 69 151
8A 212 undefined 20 040 space
th ru th ru
90 220

60499500 S A-21

TABLE A-8. CHARACTER CODE TRANSLATIONS, CONSOLES AND LINE PRINTERS IN TERMINAL CLASSES 9, 14, 16, 17,
AND 18 (HASP, HPRE, 2780, 3270, AND 3780) (Contd)

Terminal EBCDIC Network ASCII (Normalized Mode Use)

Hex.
Code

Octal
Code Graphict Control Charactertt Hex.

Codettt
Octal
Codettt Graphic Control Charactert t

91 221 6A 152
92 222 6B 153
93 223 6C 154
94 224 6D 155
95 225 6E 156
96 226 6F 157
97 227 70 160
98 230 71 161
99 231 72 162
9A 232 undefined 20 040 space
th ru th ru
AO 240
Al 241 7E 176
A2 242 73 163
A3 243 74 164
A4 244 75 165
A5 245 76 166
A6 246 77 167
A7 247 78 170
A8 250 79 171
A9 251 7A 172
AA 252 undefined 20 040 space
th ru th ru
BF 277
CO 300 7B 173
Cl 301 41 101
C2 302 42 102
C3 303 43 103
C4 304 44 104
C5 305 45 105
C6 306 46 106
C7 307 47 107
C8 310 48 110
C9 311 49 111
CA 312 undefined 20 040 space
CB 313 undefined 20 040 space
CC 314 20 040 space
CD 315 undefined 20 040 space
CE 316 20 040 space
CF 317 undefined 20 040 space
DO 320 7E 175
DI 321 4A 112
D2 322 4B 113
D3 323 4C 114
D4 324 4D 115
D5 325 4E 116
D6 326 4F 117
D7 327 50 120
D8 330 51 121
D9 331 52 122
DA 332 undefined 20 040 space
th ru thru
DF 337
EO 340 5C 134
El 341 undefined 20 040 space
E2 342 53 123
E3 343 54 124
E4 344 55 125
E5 345 56 126

A-22 60499500 S
,^s^.

TABLE A-8. CHARACTER CODE TRANSLATIONS, CONSOLES AND LINE PRINTERS IN TERMINAL CLASSES 9, 14, 16, 17,
AND 18 (HASP, HPRE, 2780, 3270, AND 3780) (Contd)

Terminal EBCDIC Network ASCII (Normalized Mode Use)
Hex.
Code

Octal
Code Graphict Control Charactert t C o d e t t t

Octal
Code t t t Graphic Control Charactert t

E6
E7
E8
E9
EA
EB
EC
ED
th ru
EF
FO
F l
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
th ru
FF

346
347
350
351
352
353
354
355
th ru
357
360
361
362
363
364
365
366
367
370
371
372
373
th ru
377

undefined
undefined

undefined

undefined

57
58
59
5A
20
20
20
20

30
31
32
33
34
35
36
37
38
39
20
20

127
130
131
132
040
040
040
040

060
061
062
063
064
065
066
067
070
071
040
040

space
space
space
space

0
1
2
3
4
5
6
7
8
9
space
space

tGraphic characters shown are those used on the IBM System/370 standard (PN) print train. Other devices
support subsets or variations of this character graphic set.

WNot used for output to l ine printers. Translat ion to a space (100 octal) occurs.

•TTshown with zero parity (eighth or uppermost bit is always zero).

60499500 S A-2 3

TABLE A-9. CHARACTER CODE TRANSLATIONS, ASCII CHARACTER SET CONSOLES IN
TERMINAL CLASSES 1, 2, AND 5 THROUGH 8 (M33, 713, X3.64, H2000, T4014, M40)

Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex.
Codet

Octal
Codet

ASCII
Graphic

Control Charactert t Hex.
Codet t t

Octal
C o d e t t t

ASCII
Graphic

Control Character

00 000 NUL or © 00 000 n u l l
03 003 ETX or © 03 003 end of text
05 005 ENQ or WRU or (?) 05 005 enquiry06 006 ACK or RU or (|J 06 006 positive acknowledgement09 Oi l HT o r ® 09 011 hor izonta l tabu la te
OA 012 LF or NL or i or (j) 0A 012 l inefeed
OC 014 FF or FORM or (l) OC 014 formfeedOF 017 S I o r © OF 017 s h i f t i n
11 021 DC1 or X-ON or @ 11 021 device control 112 022 DC2 or TAPE or Up 12 022 device control 2
14 024 DC4 or TAPE or (T) 14 024 device control 4
17 027 ETB or (w) 17 027 end transmission block18 030 CAN or CLEAR or (x) 18 030 cancel
IB 033 ESC or ESCAPE or (J) IB 033 escapeID 035 GS or (T) ID 035 group separatorIE 036 RS or (A) IE 036 record separator
21 041 21 041
22 042 i i 22 042 it

24 044 24 044
27 047 27 047
28 050 28 050
2B 053 2B 053
2D 055 2D 055
2E 056 2E 056
30 060 30 060
33 063 33 063
35 065 35 065
36 066 36 066
39 071 39 071
3A 072 3A 072
3C 074 3C 074
3F 077 3F 077
41 101 41 101
42 102 42 102
44 104 44 104
47 107 47 107
48 110 48 110
4B 113 4B 113
4D 115 4D 115
4E 116 4E 116
50 120 50 120
53 123 53 123
55 125 55 125
56 126 56 126
59 131 59 131
5A 132 5A 132
5C 134 5C 134
5F 137 or «- 5F 137
60 140 60 140
63 143 63 143
65 145 65 145
66 146 66 146
69 151 69 151
6A 152 6A 152
6C 154 6C 154
6F 157 6F 157
71 161 71 161
72 162 72 162

/*^8||.

A-24 60499500 R

TABLE A-9. CHARACTER CODE TRANSLATIONS, ASCII CHARACTER SET CONSOLES IN
TERMINAL CLASSES 1, 2, AND 5 THROUGH 8 (M33, 713, X3.64, H2000, T4014, M40) (Contd)

Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex. Octal ASCII Control Charactert t Hex. Oc ta l ASCII
Codet Codet Graphic Codettt Code t t t Graphic

Control Character

74 164 74 164
77 167 77 16778 170 78 1707B 173 7B 1737C 174 i or f or | 7C 1747D 175 7D 1757E 176 ~ or —i 7E 17681 201 SOH or (A) 01 001 start of header82 202 STX or fS) 02 002 s t a r t o f t e x t84 204 EOT or Q}) 04 004 end of transmission87 207 BELL or (G) 07 007 b e l l88 210 BS or +- or (h) 08 010 backspace8B 213 VT or (K) 0B 013 ve r t i ca l t abu la te8D 215 CR or RETURN or (m) 0D 015 carr iage return8E 216 SO or (N) 0E 016 sh i f t ou t90 220 DLE or (P) 10 020 data link escape93 223 DC3 or X-OFF or (?) 13 023 device control 3
95 225 NAK or -♦ or (u)

SYN or LINE CLEAR or ®
15 025 negative acknowledgement96 226 16 026 synchronous idle99 231 EM or RESET or (y) 19 031 end of medium9A 232 SUB or t or (z) 1A 032 s u b s t i t u t e9C 234 FS or (T) IC 034 fi l e s e p a r a t o r

9F 237 US or Q IF 037 uni t separatorAO 240 SPACE
or
blank

20 040 space

A3 243 23 043
A5 245 25 045
A6 246 26 046
A9 251 29 051
AA 252 2A 052
AC 254 2C 054
AF 257 2F 057
Bl 261 31 061
B2 262 32 062
B4 264 34 064
B7 267 37 067
B8 270 38 070
BB 273 3B 073
BD 275 3D 075
BE 276 3E 076
CO 300 40 100
C3 303 43 103
C5 305 45 105
C6 306 46 106
C9 311 49 111
CA 312 4A 112
CC 314 4C 114
CF 317 4F 117
DI 321 51 121
D2 322 52 122
D4 324 54 124
D7 327 57 127
D8 330 58 130
DB 333 5B 133
DD 335 5D 135
DE 336 A or —i 5E 136
El 341 61 141

60499500 R A-25

TABLE A-9. CHARACTER CODE TRANSLATIONS, ASCII CHARACTER SET CONSOLES IN
TERMINAL CLASSES 1, 2, AND 5 THROUGH 8 (M33, 713, X3.64, H2000, T4014, M40) (Contd)

Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex.
Codet

Octal
Codet

ASCII
Graphic Control Charactert t Hex.

Codettt
Octal

Codet t t
ASCII

Graphic Control Character

E2
E4
E7
E8
EB
ED
EE
FO -
F3
F5
F6
F9
FA
FF

342
344
347
350
353
355
356
360
363
365
366
371
372
377 DEL or RUBOUT

62
64
67
68
6B
6D
6E
70
73
75
76
79
7A
7F

142
144
147
150
153
155
156
160
163
165
166
171
172
177 de le te

tShown with even parity, which is the default for these terminal classes (unless PA=N or PA=I, an appli
cation program receives the same code as in normalized mode).

MA circle around a character indicates that the character key is pressed in conjunction with a CTL, CTRL,
CNTRL, or CONTROL key to generate the code.

tttShown with zero parity (eighth or uppermost bit is always zero).

A-26
• * ^ \

60499500 S

TABLE A-10. CHARACTER CODE TRANSLATIONS, APL TYPEWRITER-PAIRING CONSOLES IN
TERMINAL. CLASSES 1, 2, AND 5 THROUGH 8 (M33, 713, X3.64, H2000, T4014, M40)

Termlna1 ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex
Codet

Octal
Codet

ASCII-APL
Graphic Control Charactert t Hex

Code t t t
Octal

Codet t t
ASCII-APL
Graphic Control Character

74 164 54 12477 167 57 12778 170 58 1307B 173 7B 1737C 174 6B 153 —\7D 175 7D 1757E 176 24 04481
82
84

201 SOH or @ 01 001 start of header202 STX or UJ) 02 002 s t a r t o f t e x t204 EOT or ©i 04 004 end of transmission87 207 BELL or QG) 07 007 b e l l88
8B

210
213

BS or *- or (H)
VT or ® 08

0B
010
013

backspace
v e r t i c a l t a b u l a t e8D 215 CR or RETURN or (5) 0D 015 carr iage return8E 216 SO or (n) 0E 016 <̂ s h i f t o u t90 220 DLE or J?) 10 020 data link escape

93
95
96

223 DC3 or X-OFF or ®
NAK or -c or ®
SYN or LINE CLEAR or ©

13 023 device control 3
225
226

15 025 negative acknowledgement16 026 synchronous idle99 231 EM or RESET or ® 19 031 end of medium9A 232 SUB or t or © 1A 032 subs t i t u te9C 234 FS o r © IC 034 fi l e s e p a r a t o r9F 237 US or © IF 037 unit separatorAO 240 SPACE
o r
b lank

20 040 space

A3 243 3C 074
A5 245 SI 3D 075
A6 246 3E 076
A9 251 26 046AA 252 »* 22 042
AC 254 2C 054
AF 257 2F 057
Bl 261 31 061
B2 262 32 062
B4 264 34 064
B7 267 37 067
B8 270 38 070
BB 273 5B 133
BD 275 66 146
BE 276 3A 072
CO 300 5E 136
C3 303 63 143
C5 305 65 145
C6 306 5F 137
C9 311 69 151
CA 312 6A 152
CC 314 6C 154
CF 317 6F 157
DI 321 3F 077
D2 322 72 162
D4 324 74 164
D7 327 CO 77 167 CO
D8 330 => 78 170
DB 333 *- 70 160 *-
DD 335 - + 71 161 - 1 *
DE 336 7C 174
El 341 41 101

60499500 R A-27

TABLE A-10. CHARACTER CODE TRANSLATIONS, APL TYPEWRITER-PAIRING CONSOLES IN
TERMINAL.CLASSES 1, 2, AND 5 THROUGH 8 (M33, 713, X3.64, H2000, T4014, M40) (Contd)

Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)
Hex

Codet
Octal
Codet

ASCII-APL
Graphic Control Charactertt Hex

Codettt
Octal

Codettt
ASCII-APL
Graphic Control Character

00 000 NUL or © 00 000 n u l l
03 003 ETX or © 03 003 end of text05 005 ENQ or WRU or (g) 05 005 enquiry06
09

006 ACK or RU or (?)
HT or ©

06 006 positive acknowledgementOil 09 011 horizontal tabulate0A 012 LF or NL or 1 or ® 0A 012 linefeedOC 014 FF or FORM or © OC 014 formfeedOF 017 SI or © OF 017 shift in11 021 DC1 or X-ON or © 11 021 device control 112 022 DC2 or TAPE or ® 12 022 device control 214 024 DC4 or TAPE or ® 14 024 device control 417 027 ETB or ® 17 027 end transmission block18 030 CAN or CLEAR or (x) 18 030 cancelIB 033 ESC or ESCAPE or (J) IB 033 escapeID 035 GS or © ID 035 group separatorIE 036 RS or© IE 036 record separator21 041 23 04322 042 29 05224 044 40 100
27 047 5D 135
28 050 21 041
2B 053 25 045
2D 055 2B 053
2E 056 2E 056
30 060 30 060
33 063 33 063
35 065 35 065
36 066 36 066
39 071 39 071
3A 072 28 050
3C 074 3B 073
3F 077 5C 134
41 101 ex 61 141 oc
42 102 62 142
44 104 64 144
47 107 67 147
48 110 68 150
4B 113 27 047
4D 115 6D 155
4E 116 6E 156
50 120 2A 052
53 123 73 163
55 125 75 165
56 126 76 166
59 131 79 171
5A 132 7A 172
5C 134 1— 7E 176 1—
5F 137 2D 055
60 140 60 140
63 143 43 103
65 145 E. 45 105
66 146 46 106
69 151 47 111
6A 152 4A 112
6C 154 4C 114
6F 157 4F 117
71 161 51 121
72 162 52 122

A-28 60499500 R

HexA
Codet

TABLE A-10. CHARACTER CODE TRANSLATIONS, APL TYPEWRITER-PAIRING CONSOLES IN
TERMINAL CLASSES 1, 2, AND 5 THROUGH 8 (M33, 713, X3.64, H2000, T4014, M40) (Contd)

Terminal ASCII (Transparent Mode Use)

Octa
Code;l

E2 342
E4 344
E7 347
E8 350
EB 353
ED 355
EE 356
FO 360
F3 363
F5 365
F6 366
F9 371
FA 372
FF 377

ASCII-APL
Graphic Control Charactert t

DEL or RUBOUT

Network ASCII (Normalized Mode Use)

Hex
Codet t t

42
44
47
48
4B
4D
4E
50
53
55
56
59
5A
7F

Octal
Codet t t

102
104
107
110
113
115
116
120
123
125
126
131
132
177

ASCII-APL
Graphic Control Character

de le te

tshown with even parity, which is the default for these terminal classes (unless PA=N, an application
program receives the same code as in normalized mode).

^tot1016 arZnn? ^haracter in°icate8 that the character key is pressed in conjunction with a CTL, CTRL,CNTRL, or CONTROL key to generate the code.

TTTshown with zero parity (eighth or uppermost bit is always zero).

/ ^ * * \

60499500 R A-29

TABLE A-ll. CHARACTER CODE TRANSLATIONS, APL BIT-PAIRING CONSOLES IN TERMINAL
CLASSES 1, 2, AND 5 THROUGH 8 (M33, 753, 751, H2000, T4014, AND M40)

Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex Octal ASCII-APL Control Charactert t Hex Octal ASCII-APL
Codet Codet Graphic Codettt Codet t t Graphic

Control Character

00 000 NUL or © 00 000 n u l l
03 003 ETX or © 03 003 end of text
05 005 ENQ or WRU or (i) 05 005 enquiry
06 006 ACK or RU or (?) 06 006 positive acknowledgement
09 on HT or © 09 011 hor izonta l tabu la te
OA 012 LF or NL or 1 or © 0A 012 l ine feed
OC 014 FF or FORM or © OC 014 formfeed
OF 017 S I o r © OF 017 s h i f t I n
11 021 DC1 or X-ON or ® 11 021 device control 1
12 022 DC2 or TAPE or © 12 022 device control 2
14 024 DC4 or TAPE or © 14 024 device control 4
17 027 ETB or © 17 027 end transmission block
18 030 CAN or CLEAR or QQ 18 030 cancel
IB 033 ESC or ESCAPE ot{£) IB 033 escapeID 035 GS or © ID 035 group separatorIE 036 RS or(A) IE 036 record separator
21 041 . . N - ^ 23 043 . .
22 042 5E 136
24 044 40 100
27 047 3E 076
28 050 1* 22 042
2B 053 28 050
2D 055 2B 053
2E 056 2E 056
30 060 30 060
33 063 33 063
35 065 35 065
36 066 36 066
39 071 39 071
3A 072 5D 135
3C 074 3B 073
3F 077 5C 134
41 101 oc 61 141 oc
42 102 62 142
44 104 64 144
47 107 67 147
48 110 68 150
4B 113 27 047
4D 115 6D 155
4E 116 6E 156
50 120 2A 052
53 123 73 163
55 125 75 165
56 126 76 166
59 131 79 171
5A 132 <= 7A 172
5C 134 60 140
5F 137 /N 26 046 / \
60 140 •* 71 161 -fr
63 143 43 103
65 145 45 105
66 146 46 106
69 151 49 U l
6A 152 4A 112
6C 154 4C 114
6F 157 4F 117
71 161 51 121
72 162 52 122

/<r!̂ %

A-30 60499500 R

TABLE A-ll. CHARACTER CODE TRANSLATIONS, APL BIT-PAIRING CONSOLES IN TERMINAL
CLASSES 1, 2, AND 5 THROUGH 8 (M33, 753, 751, H2000, T4014, AND M40) (Contd)

Termina1 ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex
Codet

Octal
Codet

ASCII-APL
Graphic Control Charactert t Hex

Codettt
Octal

Code t t t
ASCII-APL
Graphic Control Character

74 164 54 124
77 167 57 12778 170 58 1307B 173 —1 6B 153 —17C 174 24 0447D 175 7D 1607E 176 25 04581
82
84
87

201 SOH or © 01 001 start of header202
204

STX or © 02 002 s ta r t o f t ex tEOT or ©i 04 004 end of transmission207 BELL or (G) 07 007 b e l l88
8B
8D
8E

210
213

BS or +- or ©
VT or ®

08
0B

010
013

backspace
ve r t i ca l t abu la te215

216
CR or RETURN or ®
SO or ®)

0D
0E

015
016

carr iage return
s h i f t o u t90 220 DLE or 1® 10 020 data link escape93 223 DC3 or X-OFF or ® 13 023 device control 395

96
225
226

NAK or -*■ or ®
SYN or LINE CLEAR or ®

15 025 negative acknowledgement16 026 synchronous idle99 231 EM or RESET or © 19 031 end of medium9A 232 SUB or t or © 1A 032 subs t i t u te9C 234 FS or © IC 034 fi l e s e p a r a t o r9F 237 U S o r © IF 037 uni t separatorAO 240 SPACE
or
blank

20 040 space

A3 243 3C 074
A5 245 3D 075
A6 246 7C 174
A9 251 N/ 21 041 \sAA 252 29 051
AC 254 2C 054
AF 257 2F 057
Bl 261 31 061
B2 262 32 062
B4 264 34 064
B7 267 37 067
B8 270 38 070
BB 273 5B 133
BD 275 2D 055
BE 276 3A 072
CO 300 •*- 70 160 _̂
C3 303 63 143
C5 305 65 145
C6 306 5F 137
C9 311 69 151
CA 312 6A 152
CC 314 6C 154CF 317 6F 157
DI 321 3F 077
D2 322 72 162
D4 324 74 164
D7 327 CO 77 167 CO
D8 330 => 78 170 =>DB 333 j - 7E 176 1—
DD 335 7B 173
DE 336 66 146
El 341 41 101

y g ^ \
60499500 R A-31

TABLE A-ll. CHARACTER CODE TRANSLATIONS, APL BIT-PAIRING CONSOLES IN TERMINAL
CLASSES 1, 2, AND 5 THROUGH 8 (M33, 753, 751, H2000, T4014, AND M40) (Contd)

Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex
Codet

Octal
Codet

ASCII-APL
Graphic Control Charactert t Hex

Codet t t
Octal

Codet t t
ASCII-APL

Graphic
Control Character

E2
E4
E7
E8
EB
ED
EE
FO
F3
F5
F6
F9
FA
FF

342
344
347
350
353
355
356
360
363
365
366
371
372
377 DEL or RUBOUT

42
44
47
48
4B
4D
4E
50
53
55
56
59
5A
7F

102
104
107
110
113
115
116
120
123
125
126
131
132
177 de le te

tshown with even parity, which is the default for these terminal classes (unless PA=N or PA=I, an appli
cation program receives the same code as in normalized mode).

"A circle around a character indicates that the character key is pressed in conjunction with a CTL, CTRL,
CNTRL, or CONTROL key to generate the code.

TTTshown with zero parity (eighth or uppermost bit is always zero).

A-32 60499500 S

TABLE A-12. CHARACTER CODE TRANSLATIONS, ASCII CONSOLES AND LINE PRINTERS IN
TERMINAL CLASSES 10 AND 15 (200UT AND 734)

Terminal ASCIlt Network ASCII (Normalized Mode Use)

Hex.
Codett

Octal
Codett

Keyboard or
Printer Graphic Input oi Output Console Output Only

Graphic
ASCII CDC Hex.

Codettt
Octal

Codettt
Hex.

Codettt
Octal

Codettt

20 040 blank blank 20 040 space
23 043 23 043
25 045 25 045
26 046 26 046
29 051 29 051
2A 052 2A 052
2C 054 2C 054
2F 057 2F 057
31 061 31 061
32 062 32 062
34 064 34 064
37 067 37 067
38 070 38 070
3B 073 3B 073
3D 075 3D 075
3E 076 3E 076
40 100 40 100 60 140
43 103 43 103 63 143
45 105 45 105 65 145
46 106 46 106 66 146
49 111 49 111 69 151
4A 112 4A 112 6A 152
4C 114 4C 114 6C 154
4F 117 4F 117 6F 157
51 121 51 121 71 161
52 122 52 122 72 162
54 124 54 124 74 164
57 127 57 127 77 167
58 130 58 130 78 170
5B 133 5B 133 7B 173
5D .135 5D 135 7D 175
5E 136 / \ —l 5E 136 7E 176 /S

Al 241 21 041
A2 242 ■i i* 22 042 i i

A4 244 24 044
A7 247 27 047
A8 250 28 050

60499500 R A-33

TABLE A-l2. CHARACTER CODE TRANSLATIONS, ASCII CONSOLES AND LINE PRINTERS IN
TERMINAL CLASSES 10 AND 15 (200UT AND 734) (Contd)

Terminal ASCIlt Network ASCII (Normalized Mode Use)

Hex.
Codett

Octal
Codett

Keyboard or
Printer Graphic Input or Output Console Output Only

Graphic
ASCII CDC Hex.

Codettt
Octal

Codettt
Hex,

Codet t t
Octal

Codet t t

AB 253 2B 053
AD 255 2D 055
AE 256 2E 056
BO 260 30 060
B3 263 33 063
B5 265 35 065
B6 266 36 066
B9 271 39 071
BA 272 3A 072
BC 274 3C 074
BF 277 3F 077
Cl 301 41 101 61 141
C2 302 42 102 62 142
C4 304 44 104 64 144
C7 307 47 107 67 147
C8 310 48 110 68 150
CB 313 4B 113 6B 153
CD 315 4D 115 6D 155
CE 316 4E 116 6E 156
DO 320 50 120 70 160
D3 323 53 123 73 163
D5 325 55 125 75 165
D6 326 56 126 76 166
D9 331 59 131 79 171
DA 332 5A 132 7A 172
DC 334 5C 134 7C 174
DF 337 r * 5E 135 7F 177

■Escape codes are not listed.

Ttshown with odd parity, the only possible parity selection for these terminal classes. ASCII
codes 000 through 040g (without parity) are removed from input during complete editing; code
and 03g (SOH and ETX, without parity) are preserved as data in full-ASCII mode, as are escap

c o n t r o l
s 018
e code

sequences.

TTtshown with zero parity (eighth or uppermost bit Is always zero). During output, codes 000 through
010g are converted to code 040s (blank); codes 012s, 0158» and 037s (LF, CR, and US) are
removed. Codes for lowercase ASCII characters sent to the console are converted to the code s for
the equivalent uppercase characters supported by the terminal, as shown.

A-34 60499500 R

TABLE A-13. CHARACTER CODE TRANSLATIONS, EXTERNAL BINARY CODED (BCD) CONSOLES
AND LINE PRINTERS IN TERMINAL CLASSES 10 AND 15 (200UT and 734)

Terminal External BCDt Network ASCII (Normalized Mode Use)

Hex.
Codett

Octal
Codett

Keyboard or
Printer Graphic Input or Output Console Output Only

Graphic
ASCII CDC Hex.

Codet t t
Octal

Codet t t
Hex.

Code t t t
Octal

Code t t t

10 020 3A 072
20 040 2D 055
23 043 4C 114 6C 154
25 045 4E 116 6E 156
26 046 4F 117 6F 157
29 051 52 122 72 162
2A 052 21 041
2C 054 2A 052
2F 057 3E 076
31 061 41 101 61 141
32 062 42 102 62 142
34 064 44 104 64 144
37 067 47 107 67 147
38 070 48 110 68 150
3B 073 2E 056
3D 075 5C 134 7C 174
43 103 33 063
45 105 35 065
46 106 36 066
49 111 39 071
4A 112 30 060
4C 114 P" 22 042 t i

4F 117 5B 133 7B 173
51 121 2F 057
52 122 53 123 73 163
54 124 55 125 75 165
57 127 58 130 78 170
58 130 59 131 79 171
5B 133 2C 054
5D 135 r* 5F 137 7F 177
5E 136 23 043 it
Al 241 4A 112 6A 152
A2 242 4B 113 6B 153
A4 244 4D 115 6D 155
A7 247 50 120 70 160
A8 250 51 121 71 161
AB 253 24 044

60499500 R A-35

TABLE A-13. CHARACTER CODE TRANSLATIONS, EXTERNAL BINARY CODED (BCD) CONSOLES
AND LINE PRINTERS IN TERMINAL CLASSES 10 AND 15 (200UT and 734) (Contd)

Terminal External BCDt Network ASCII (Normalized Mode Use)

Hex.
Codett

Octal
Codett

Keyboard or
Printer Graphic Input or Output Console Output Only

Graphic
ASCII CDC Hex.

Codet t t
Octal

Codettt
Hex.

Codet t t
Octal

Codet t t

AD 255 27 047
AE 256 3F 077
B3 263 43 103 63 143
B5 265 45 105 65 145
B6 266 46 106 66 146
B9 271 49 111 69 151
BA 272 3C 074
BC 274 29 051
BF . 277 3B 073
Cl 301 31 061
C2 302 32 062
C4 304 34 064
C7 307 37 067
C8 310 38 070
CB 313 23 3D 075
CD 315 40 100 60 140
CE 316 25 045
DO 320 blank blank 20 040 space
D3 323 54 124 74 164
D5 325 56 126 76 166
D6 326 57 127 77 167
D9 331 5A 132 7A 172
DA 332 5D 135 7D 175
DC 334 28 050
DF 337 •s 26 046
DO 320 /n or

b lank
—i or
■ or
none

5E,
7E

136,
176

^§

TEscape codes and control codes are not listed.

TlShown with odd parity, the only possible parity selection for these terminal classes.

TttShown with zero parity (eighth or uppermost bit is always zero). During output, codes 000 through
037s are converted to code 320g (blank). Codes for lowercase ASCII characters sent to the console
are converted to the codes for the equivalent uppercase characters supported by the terminal, as
shown.

5Input and output of this symbol is not possible on some terminals. BCD transmission convent
support the rubout symbol ■ as an internal terminal memory parity error indicator instead. '
codes 1368 and 1768 are output as a blank.

ions
fhe ASCII

A-36
^ ^ ^ \

60499500 R

TABLE A-14. CHARACTER CODE TRANSLATIONS, CONSOLES AND LINE PRINTERS
IN TERMINAL CLASSES 11, 12, AND 13 (711, 714, AND 714X)

Hex.
Codet

73
75
76
79
7A
7C
7F
80
83
85
86
89
8A

8C
8F
91
92
94
97
98
9B
9D
9E
Al
A2
A4
A7
A8
AB
AD
AE
BO
B3
B5
B6
B9
BA
BC
BF
Cl
C2
C4
C7
C8
CB
CD
CE
DO
D3
D5
D6
D9
DA
DC
DF
EO
E3

Terminal ASCII (Transparent Mode Use)

Octal
Codet

163
165
166
171
172
174
177
200
203
205
206
211
212

214
217
221
222
224
227
230
233
235
236
241
242
244
247
250
253
255
256
260
263
265
266
271
272
274
277
301
302
304
307
310
313
315
316
320
323
325
326
331
332
334
337
340
343

ASCII
Graphic

or f or |

Control Charactert t

DEL or RUBOUT
NUL or ®
ETX or ©
ENQ or WRU or
ACK or RU or
H T o r ®
LF or NL or j

or NEW LINE
FF or FORM or
S I o r ©
DC1 or X-ON or
DC2 or TAPE or (R
DC4 or TAPE or C?
ETB or ®
CAN or CLEAR o
ESC or ESCAPE
GS or
RS or

.r ®>
orTD

Network ASCII (Normalized Mode Use)

Hex.
Codet t t

73
75
76
79
7A
7C
7F
20
03
20
20
09
0A

0C
OF
11
12
14
17
18
IB
ID
IE
21
22
24
27
28
2B
2D
2E
30
33
35
36
39
3A
3C
3F
41
42
44
47
48
4B
4D
4E
50
53
55
56
59
5A
5C
5F
60
63

Octal
Code t t t

163
165
166
171
172
174
177
040
003
040
040
011
012

014
017
021
022
024
027
030
033
035
036
041
042
044
047
050
053
055
056
060
063
065
066
071
072
074
077
101
102
104
107
110
113
115
116
120
123
125
126
131
132
134
137
140
143

ASCII
Graphic

space

space
space

Control Character§

delete

end of text*

hor izonta l tabu la te
l ine feed

formfeed
s h i f t i n
device control 1
device control 2
device control 4
end transmission block
cancel
escape
group separator
record separator

60499500 R A-37

TABLE A-14. CHARACTER CODE TRANSLATIONS, CONSOLES AND LINE PRINTERS
IN TERMINAL CLASSES 11, 12, AND 13 (711, 714, AND 714X) (Contd)

Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex.
Codet

Octal
Codet

ASCII
Graphic Control Charactert t Hex.

Codet t t
Octal

Codet t t
ASCII

Graphic Control Character^

01 001 SOH or ® 01 001 start of header§§
02 002 STX or pH 20 040 space04 004 EOT or ©_ 20 040 space07 007 BELL or (G) 20 040 space08 010 BS or «- or ®

V T o r ®
CR or RETURN or ®

20 040 spaceOB 013 0B 013 ve r t i ca l t abu la teOD 015
OE 016 SO or ©> 0E 016 sh i f t ou t10 020 DLE or (® 10 020 data link escape13 023 DC3 or X-OFF or ®

NAK or -*> or ©
SYN or LINE CLEAR or ©

13 023 device control 315 025 15 025 negative acknowledgment16 026 16 026 synchronous idle19 031 EM or RESET or ® 19 031 end of medium1A 032 SUB or t or ® 1A 032 subs t i t u teIC 034 FS o r © IC 034 fi l e s e p a r a t o rIF 037 US or © 20 040 space20 040 SPACE
or
blank

20 040 space

23 043 23 043
25 045 25 045
26 046 26 046
29 051 29 051
2A 052 2A 052
2C 054 2C 054
2F 057 2F 057
31 061 31 061
32 062 32 062
34 064 34 064
37 067 37 06738 070 38 070
3B 073 3B 073
3D 075 3D 075
3E 076 3E 076
40 100 40 100
43 103 43 103
45 105 45 105
46 106 46 106
49 111 49 111
4A 112 4A 112
4C 114 4C 114
4F 117 4F 117
51 121 51 121
52 122 52 122
54 124 54 124
57 127 57 127
58 130 58 130
5B 133 5B 133
5D 135 5D 135
5E 136 A o r i 5E 136 / \
61 141 61 141
62 142 62 142
64 144 64 144
67 147 67 147
68 150 68 150
6B 153 6B 153
6D 155 6D 155
6E 156 6E 156
70 160 70 160

A-38
■ ^

60499500 R

TABLE A-14. CHARACTER CODE TRANSLATIONS, CONSOLES AND LINE PRINTERS
IN TERMINAL CLASSES 11, 12, AND 13 (711, 714, AND 714X) (Contd)

Terminal ASCII (Transparent Mode Use)

Hex.
Codet

Octal
Codet

E5 345
E6 346
E9 351
EA 352
EC 354
EF 357
Fl 361
F2 362
F4 364
F7 367
F8 370
FB 373
FD 375
FE 376

ASCII
Graphic Control Charactert t

Network ASCII (Normalized Mode Use)

Hex.
Codet t t

65
66
69
6A
6C
6F
71
72
74
77
78
7B
7D
7E

Octal
Codet t t

145
146
151
152
154
157
161
162
164
167
170
173
175
176

ASCII
Graphic Control Character^

tShown with odd parity, the only possible parity selection for these terminal classes.

^NTiL^or^OTRO? ?3Tter lnd±Catr that the character key is pressed in conjunct ion wi th a CTL, CTRL,ONJ7KL, or CONTROL key to generate the code.

tttShown with zero parity (eighth or uppermost bit is always zero).

Converted to a space (0408) within a batch printer file.

§§Converted to a space (0408) during compiete editing.

60499500 S A-39

TABLE A-15. ASCII CHARACTER CODE TRANSLATIONS, EBCD CONSOLES IN TERMINAL CLASS 4 (2741) ^^^.

Terminal EBCD Network ASCII (Norma11zed Mode Use)

Hex. Octal EBCD Hex. Octal ASCII
Codet Codet Graphict t

Control Character Codettt Codet t t Graphic
Control Character

01 001 or - 5F or 2D 137 or 055 o r -
02 002 7 or @ 21 or 40 140 or 100 % or @
04 004 * or 8 2A or 38 052 or 070 * or 8
07 007 H or h 48 or 68 110 or 150 H or h
08 010 : or 4 3A or 34 072 or 064 : or 4
OB 013 D or d 44 or 64 104 or 144 D or d
OD 015 RES or RESTORE 00 000 n u l l
OE 016 BY or BYPASS 00 000 n u l l10 020 < or 2 3C or 32 074 or 062 < or 2
13 023 B or b 42 or 62 102 or 142 B or b
15 025 undefined 00 000 n u l l
16 026 undefined 00 000 n u l l
19 031 0 or o 4F or 6F 117 or 157 0 or o1A 032 W or w 57 or 77 127 or 167 W or w
IC 034 UCS or UPPERCASE 0E 016 sh i f t ou t»
IF 037 LCS or LOWERCASE OF 017 s h i f t l n §20 040 = or 1 3D or 31 075 or 061 = or 1
23 043 A or a 41 or 61 101 or 141 A or a
25 045 R or r 52 or 72 122 or 162 R or r
26 046 Z or z 5A or 7A 132 or 172 Z or z
29 051 N or n 4E or 6E 116 or 156 N or n
2A 052 V or v 56 or 76 126 or 166 V or v
2C 054 RO or READER STOP 14 024 device control 4
2F 057 HT or TAB 09 011 hor izonta l tabu la te
31 061 L or 1 4C or 6C 114 or 154 L or 1
32 062 T or t 54 or 74 124 or 164 T or t
34 064 " or # 22 or 23 042 or 043 = or #
37 067 ~ior , 5E or 2E 136 or 056 /\ or .
38 070 > or 7 3E or 37 076 or 067 > or 7
3B 073 G or g 47 or 67 107 or 147 G or g
3D 075 IL or IDLE or NULL 00 000 n u l l3E 076 PRE or PREFIX 01 001 start of headers
40 100 space 20 040 space
43 103 + or & 2B or 26 053 or 046 + or &
45 105 Q or q 51 or 71 121 or 161 Q or q
46 106 Y or y 59 or 79 131 or 171 Y or y
49 111 M or m 4D or 6D 115 or 155 M or m
4A 112 U or u 55 or 75 125 or 165 U or u
4C 114 PN or PUNCH ON 11 021 device control 1 (tape on)
4F 117 PF or PUNCH OFF 13 023 device control 3 (tape off)
51 121 K or k 4B or 6B 113 or 153 K or k
52 122 S or s 53 or 73 123 or 163 S or s
54 124) or 0 29 or 30 051 or 060) or 0
57 127 undefined 00 000 n u l l
58 130 ' or 6 27 or 36 047 or 066 ' or 6
5B 133 F or f 46 or 66 106 or 146 F or f
5D 135 BS or BACKSPACE 08 010 backspace
5E 136 EOB 17 027 end transmission blocks
61 141 J or j 4A or 6A 112 or 152 J or j
62 142 ? or / 3F or 2F 077 or 057 ? or /
64 144 (or 9 28 or 39 050 or 071 (or 9
67 147 I o r i 49 or 69 111 or 151 I o r i
68 150 % or 5 25 or 35 045 or 065 X or 5
6B 153 E or e 45 or 65 105 or 145 E or e
6D 155 NL or CR or RETURN 0D 015 car r iage re tu rn6E 156 LF or LINE FEED 0A 012 l ine feed

. " ^ ^ V

S^^k

A-40 60499500 R

TABLE A-15. ASCII CHARACTER CODE TRANSLATIONS, EBCD CONSOLES IN TERMINAL CLASS 4 (2741) (Contd)

Terminal EBCD Network ASCII (Normalized Mode Use)

Hex. Octal EBCD Hex. Octal ASCII
Codet Codet Graph ic t t

Control Character Codettt Code t t t Graphic
Control Character

70 160 ; or 3 3B or 33 073 or 063 ; or 373 163 C or c 43 or 63 103 or 143 C or c75 165 ! or $ 21 or 24 041 or 044 ! or $
76 166 1 or , 7C or 2C 174 or 054 ! or ,79 171 P or p 50 or 70 120 or 160 P or p7A 172 X or x 58 or 78 130 or 170 X or x
7C 174 EOT 04 004 end of transmission^7F 177 DEL 7F 177 de le te00 000 space 5B thru 5D 133 thru

135
[or \
or]CO 000 space 60 140

00 000 space 7B 173
00 000 space

IL or IDLE or NULL§§
7D or 7E 175 or 176 } o r -3D 075 02 002 s ta r t o f t ex t3D 075 IL or IDLE or NULL§|

IL or IDLE or NULL*®
03 003 end of text3D 075 05 005 enquire3D 075 IL or IDLE or NULL§|

IL or IDLE or NULL§§
07 007 b e l l

3D 075 0B or 0C 013 or 014 ve r t i ca l t abu la te
or formfeed3D 075 IL or IDLE or NULL§§ 10 020 data link escape

3D 075 IL or IDLE or NULL§§ 12 022 device control 2
3D 075 IL or IDLE or NULL§§

IL or IDLE or NULL§§

14 thru 16 024 thru
026

device control 4,
negative acknowledge,
or synchronize

3D 075 18 thru IF 030 thru cancel, end of media,037 subst i tu te, escape,
fi l e s e p a r a t o r ,
group separator,
record separator,
or unit separator

tshown with odd par i ty; odd par i ty is the defaul t for th is terminal c lass.

tfEach input line is assumed to begin in lowercase. Input characters are translated to lowercase ASCII
characters unless prefixed by the UCS code. Once a case shift occurs, it remains in effect unti l another
case shift code is received, the page width is reached, or the line is transmitted to the host computer.
During outj>ut, case is preserved by insert!on of case shift codes where needed.

tttshown with zero parity (eighth or uppermost bi t is always zero).

§Not transmJ.tted to the host computer after t rans la t ion dur ing input .

"Output t ra ris la tion only.

60499500 R A-41

TABLE A-l6. APL CHARACTER CODE TRANSLATIONS, EBCD CONSOLES IN TERMINAL CLASS 4 (2741) /*rSS|\

Terminal EBCD-APL Network ASCII (Normalized Mode Use)

Hex. Octal EBCD-APL Hex. Octal A S fl T T- APT.
Codet Codet Graph!.ctt Control Character

Codet t t Codet t t Graphic
Control Character

01 001 _ o r 5F or 2D 137 or 053 or02 002 -c* or *- 71 or 70 161 or 160 - * o r ■«-04 004 i4 o r 22 or 38 042 or 070 r4 or07 007 A o r 68 or 48 150 or 110 A o r08 010 < o r 40 or 34 100 or 064 < o rOB 013 L o r 64 or 44 144 or 104 u o rOD 015 undefined 00 000 nuLlOE 016 undefined 00 000 n u l l10 020 - o r 2D or 32 055 or 062 - o r
13 023 1 o r 42 or 62 142 or 102 1 o r15 025 undefined 00 000 n u l l16 026 undefined 00 000 n u l l19 031 o o r 6F or 4F 157 or 117 <=> or1A 032 w o r 77 or 57 167 or 127 to orIC 034 UCS or UPPERCASE 0E 016 shi f t out§IF 037 LCS or LOWERCASE OF 017 s h i f t i n §20 040 " o r 22 or 31 042 or 061 " o r
23 043 oc or 61 or 41 141 or 101 oc or• 25 045 P o r 72 or 52 162 or 122 P o r R •26 046 <= or 7A or 5A 172 or 132 e= or
29 051 T o r 6E or 4E 156 or 116 T o r
2A 052 U o r 76 or 56 166 or 126 U o r2C 054 undefined 00 000 n u l l
2F 057 HT or TAB 06 006 hor izonta l tabu la te31 061 □ o r 6C or 4C 154 or 114 □ o r
32 062 ~ o r 74 or 54 164 or 124 ~ o r
34 064) o r 29 or 5D 051 or 135) o r37 067 : o r 3A or 2E 072 or 056 : o r
38 070 > o r 3E or 37 076 or 067 > o r
3B 073 V o r 67 or 47 147 or 107 V o r
3D 075 IL or IDLE or NULL 00 000 n u l l3E 076 PRE or PREFIX IB 033 escape40 100 space 20 040 space43 103 + o r 25 or 66 045 or 146 + o r
45 105 ? o r 3F or 51 077 or 121 ? o r
46 106 t o r 79 or 59 171 or 131 t o r
49 111 1 o r 6D or 4D 155 or 115 1 o r4A 112 1 o r 75 or 55 165 or 125 i o r
4C 114 undefined 00 000 n u l l
4F 117 undefined 00 000 n u l l
51 121 -H or 6B or 4B 153 or 113 —l or
52 122 r o r 73 or 53 163 or 123 r o r
54 124 / \ o r 26 or 30 046 or 060 / \ o r
57 127 undefined 00 000 n u l l
58 130 > o r 7C or 36 174 or 066 >_ or5B 133 """ or 5E or 46 136 or 106 — o r
5D 135 BS or BACKSPACE 08 010 backspace

end transmission block*'5E 136 EOB 17 027
61 141 o o r 6A or 4A 152 or 112 o o r
62 142 \ o r 5C or 2F 134 or 057 \ o r
64 144 .v o r 21 or 39 041 or 071 y o r
67 147 \ o r 69 or 49 151 or 111 I o r
68 150 = o r 3D or 35 075 or 065 » o r
6B 153 € o r 65 or 45 145 or 105 € o r
6D 155 NL or CR or RETURN 0D 015 carr iage return6E 156 LF or LINE FEED 0A 012 l ine feed
70 160 < o r 3C or 33 074 or 063 < o r
73 163 (1 or 63 or 43 143 or 103 0 o r
75 165 (o r 28 or 5B 050 or 133 (o r76 166 ; o r 3B or 2C 073 or 054 ; o r79 171 * o r 2A or 50 052 or 120 * o r
7A 172 =i or 78 or 58 170 or 130 z» or

A-42 60499500 R

TABLE A-16. APL CHARACTER CODE TRANSLATIONS, EBCD CONSOLES IN TERMINAL CLASS 4 (2741) (Contd)

Terminal EBCD-APL Network ASCII (Normalized Mode Use)

Hex.
Codet

Octal
Codet

EBCD-APL
Graph i c t t

Control Character Hex.
Codettt

Octal
Codet t t

ASCII-APL
Graphic

Control Character

7C
7F
00
00
00
00
3D
3D
3D
3D
3D

3D

3D

174
177
000
000
000
000
075
075
075
075
075

075

075

space§§
spacers
s p a c e "
spacers

EOT
DEL

IL or IDLE or NULL§§
IL or IDLE or NULL§§
IL or IDLE or NULL§|
IL or IDLE or NULl||
IL or IDLE or NULL8*

IL or IDLE or NULL§§

IL or IDLE or NULL§§

04
7F
27
60
7B
7D
02
03
05
07
0B or 0C

10 thru 16

18 thru IF

004
177
047
140
173
175
002
003
005
007
013 or 014

020 thru
026

030 thru
037

end of transmissions
delete

s ta r t o f t ex t
end of text
enquire
b e l l
ve r t i ca l t abu la te
or form feed
data link escape,
device control 1 thru
device control 4,
negative acknowledge,
or synchronize
cancel, end of media,
subst i tute, escape
fi l e s e p a r a t o r,
group separator,
record separator,
or unit separator

tshown with odd parity; odd parity is the default for this terminal class.

TlEach input line is assumed to begin in lowercase. Input characters are translated to lowercase ASCII
characters unless prefixed by the UCS code. Once a case shift occurs, it remains in effect until another
case shift code is received, the page width is reached, or the line is transmitted to the host computer.
During output, case is preserved by insertion of case shift codes where needed.

TTTshown with zero parity (eighth or uppermost bit is always zero).

"Not transmitted to the host computer after translation during input.

" 'Output t rans la t ion on ly.

60499500 R A-43

TABLE A-17. ASCII CHARACTER CODE TRANSLATIONS, CORRESPONDENCE
CODE CONSOLES IN TERMINAL CLASS 4 (2741)

Terminal Correspondence Code Network ASCII (Normalized Mode Use)

Hex.
Codet

Octal Correspondence Hex. Octal ASCII
Codet Code Graphictt Control Character

Codettt Codettt Graphic Control Character

01 001 1/4 or 1/2 5B or 5D 137 or 135 [or]02 002 T or t 54 or 74 124 or 164 T or t04 004 $ or 4 24 or 34 044 or 064 $ or 407 007 ? or / 3F or 2F 077 or 057 ? or /08 010 % or 5 25 or 35 045 or 065 % or 5OB 013 P or p 50 or 70 120 or 160 P or pOD 015 RES or RESTORE 00 000 n u l lOE 016 BY or BYPASS 00 000 n u l l10 020 @ or 2 40 or 32 100 or 062 @ or 213 023 + or = 2B or 3D 053 or 075 + or =15 025 undefined 00 000 n u l l16 026 undefined 00 000 n u l l19 031 I o r i 49 or 69 111 or 151 I or i1A 032 K or k AB or 6B 113 or 153 K or kIC 034 UCS or UPPERCASE 0E 016 shi f t out§IF 037 LCS or LOWERCASE OF 017 s h i f t l n §20 040 + or 1 7C or 31 174 or 061 I or 123 043 G or g 47 or 67 107 or 147 G or g25 045 S or s 53 or 73 123 or 163 S or s26 046 H or h 48 or 68 110 or 150 H or h29 051 R or r 52 or 72 122 or 162 R or r2A 052 D or d 44 or 64 104 or 144 D or d2C 054 RO or READER STOP 14 024 device control 42F 057 HT or TAB 09 011 hor izonta l tabu la te31 061 V or v 56 or 76 126 or 166 V or v32 062 U or u 55 or 75 125 or 165 U or u34 064 (or 9 28 or 39 050 or 071 (or 937 067 _ or - 5F or 2D 137 or 055 _ or -38 070 * or 8 2A or 38 052 or 070 * or 8
3B 073 2C 0543D 075 IL or IDLE or NULL 00 000 n u l l3E 076 PRE or PREFIX IB 033 escape40 100 space 20 040 space43 103 J or j 4A or 6A 112 or 152 J or j
45 105 0 or o 4F or 6F 117 or 157 0 or o
46 106 L or 1 4C or 6C 114 or 154 L or 149 111 " or ' 22 or 27 042 or 041 " or '
4A 112 E or e 45 or 65 105 or 145 E or e
4C 114 PN or PUNCH ON 11 021 device control 1

(tape on)4F 117 PF or PUNCH OFF 13 023 device control 3
(tape o f f)51 121 2E 056

52 122 N or n 4E or 6E 116 or 156 N or n
54 124 Z or z 5A or 7A 132 or 172 Z or z
57 127 undefined 00 000 n u l l
58 130 i or 6 21 or 36 041 or 066 ! or 6
5B 133 Q or q 51 or 71 121 or 161 Q or q5D 135 BS or BACKSPACE 08 010 backspace5E 136 EOB 17 027 end transmission block"
61 141 M or m 4D or 6D 115 or 155 M or m
62 142 X or x 58 or 78 130 or 170 X or x
64 144) or 0 29 or 30 051 or 060) or 067 147 Y or y 79 or 59 131 or 171 Y or y
68 150 & or 7 26 or 37 046 or 067 & or 7
6B 153 : or ; 3A or 3B 072 or 073 : or ;
6D 155 NL or CR or RETURN 0D 015 car r iage re tu rn6E 156 LF or LINE FEED 0A 012 line feed70 160 # or 3 23 or 33 043 or 063 0 or 3
73 163 F of f 46 or 66 106 or 146 F or f
75 165 W or w 57 or 77 127 or 167 W or w

<^^^\

A-44 60499500 R

Hex.
Codet

76
79
7A
7C
7F
00
00
00
00
00
00
3D
3D
3D
3D
3D
3D

3D
3D
3D

3D

TABLE A-l7. ASCII CHARACTER CODE TRANSLATIONS, CORRESPONDENCE
CODE CONSOLES IN TERMINAL CLASS 4 (2741) (Contd)

Terminal Correspondence Code

Octal
Codet

166
171
172
174
177
000
000
000
000
000
000
075
075
075
075
075
075

075
075
075

075

Correspondence
Code Graphictt

B or b
A or a
C or c

space8"
space§§
s p a c e "
space§§
space§§
space88

Control Character

EOT
DEL

IL or IDLE or NULL§§
IL or IDLE or NULL88
IL or IDLE or NULL§§
IL or IDLE or NULL§§
IL or IDLE or NULL§§
IL or IDLE or NULL§§

IL or IDLE or NULL§§
IL or IDLE or NULL§§
IL or IDLE or NULL8^

IL or IDLE or NULL8"8"

Network ASCII (Normalized Mode Use)

Hex.
Codet t t

42 or 62
41 or 61
43 or 63
04
18
27
5C
5E
60
7B
7D or 7E
01
02
03
05
07
0B or 0C

10
12
14 thru 16

18 thru IF

Octal
Code t t t

143

176

102 or 142
101 or 141
103 or
004
030
047
134
136
140
173
175 or
001
002
003
005
007
013 or 014

020
022
024 thru
026

030 thru
037

ASCII
Graphic

B or b
A or a
C or c

} or

Control Character

end of transmission8
cancel

start of header
s ta r t o f t ex t
end of text
enquire
b e l l
ve r t i ca l t abu la te
or form feed
data link escape
device control 2
device control 4,
negative acknowledge,
or synchronize
cancel, end of media,
s u b s t i t u t e ,
fi l e s e p a r a t o r,
group separator,
record separator,
or unit separator

tshown with odd parity; odd parity is the default for this terminal class,

t tEach input line is assumed to begin in lowercase. Input characters are translated to lowercase ASCII
characters unless prefixed by the UCS code. Once a case shift occurs, it remains in effect until another
case shift code is received, the page width is reached, or the line is transmitted to the host computer.
During output, case is preserved by insertion of case shift codes where needed.

r t tShown with zero parity (eighth or uppermost bit is always zero).

8Not transmitted to the host computer after translation during input.

8Output t ranslat ion only.

J ^ S

/sP^s

60499500 R A-45

TABLE A-l8. APL CHARACTER CODE TRANSLATIONS, CORRESPONDENCE
CODE CONSOLES IN TERMINAL CLASS 4 (2741)

Hex
Codet

01
02
04
07
08
OB
OD
OE
10
13
15
16
19
1A
IC
IF
20
23
25
26
29
2A
2C
2F
31
32
34
37
38
3B
3D
3E
40
43
45
46
49
4A
4C
4F
51
52
54
57
58
5B
5D
5E

61
62
64
67
68
6B
6D
6E
70
73
75

Terminal Correspondence Code

Octal
Codet

001
002
004
007
010
013
015
016
020
023
025
026
031
032
034
037
040
043
045
046
051
052
054
057
061
062
064
067
070
073
075
076
100
103
105
106
111
112
114
117
121
122
124
127
130
133
135
136

141
142
144
147
150
153
155
156
160
163
165

Correspondence
Code APL
Graphictt

or
or
or
or
or
or

or
+ o r

U

v

or
or
or
or
or
or

or
or
or
or
or
or

space° o r
o or
□ o r
) o r
e o r

or
or
or

or
or

or
or
or
or
or
or

\ o r I' o r K

< o r 3
_ o r F
co or W

Control Character

undefined
undefined

undefined
undefined

UCS or UPPERCASE
LCS or LOWERCASE

undefined
HT or TAB

IL or IDLE or NULL
PRE or PREFIX

undefined
undefined

undefined

BS.or BACKSPACE
EOB

NL or CR or RETURN
LF or LINE FEED

Network ASCII (Normalized Mode Use)

Hex
Codettt

71 or 70
74 or 54
40 or 34
5C or 2F
3D or 35
2A or 50
00
00
5E or 32
25 or 66
00
00
69 or 49
27 or 4B
0E
OF
23 or 31
67 or 47
73 or 53
68 or 48
72 or 52
64 or 44
00
09
76 or 56
75 or 55
21 or 39
2D or 2B
22 or
3B or
00
IB
20
6A or 4A
6F or 4F
6C or 4C
29 or 5D
65 or 45
00
13
3A or 2E
6E or 4E
7A or 5A
00
7C or 36
3F or 51
08
17

38
2C

6D or 4D
78 or 58
26 or 30
79 or 59
3E or 37
28 or 5B
0D
0A
3C or 33
5F or 46
77 or 57

Octal
Codettt

161 or 160
164 or 124
100 or 064
134 or 057
075 or 065
052 or 120
000
000
136 or 062
045 or 146
000
000
151 or 111
153 or 113
016
017
042 or 061
147 or 107
163 or 123
150 or 110
162 or
144 or
000
OU
166 or
165 or
041 or 071
055 or 053
042 or 070
073 or 054
000
033
040
156 or 112
157 or 117
154 or 114
051 or 035
145 or 105
000
023
072 or 056
156 or 116
172 or 132
000
174 or 066
077 or
010
027

122
104

126
125

121

155 or 115
170 or 130
045 or 060
171 or 131
076 or 067
050 or 133
015
012
074 or 063
137 or 106
167 or 127

ASCII-APL
Graphic

or
or
or
or
or
or

or
or

or
or
or
or
or
or

U or
+ o r
\s or
- o r
j4 or
; o r

space
o o r
<=> or
□ o r
) o r
e o r

or
or
or

or
or

or
or
or
or
or
or

or
or
or

\ o r I' o r K

Control Character

nu l l
n u l l

n u l l
n u l l

shift out5
shift in§

nul l
horizontal tabulate

n u l l
escape

nul l
n u l l

n u l l

backspace
end transmission
block8

carriage return
line feed

A-46 60499500 R

•^■^v

TABLE A-18. APL CHARACTER CODE TRANSLATIONS, CORRESPONDENCE
CODE CONSOLES IN TERMINAL CLASS 4 (2741) (Contd)

Terminal Correspondence Code Network ASCII (Normalized Mode Use)

Hex
Codet

Octal
Codet

Correspondence
Code APL
Graph ic t t

Control Character Hex
Codettt

Octal
Code t t t

ASCII-APL
Graphic

Control Character

76
79
7A
7C
7F
00
00
00
00
3D
3D
3D
3D
3D
3D

3D
3D
3D

3D

166
171
172
174
177
000
000
000
000
075
075
075
075
075
075

075
075
075

075

1 o r B
oc o r A
0 o r C

space§§
space§§
space§§
space§§

EOT
DEL

IL or IDLE or NULL8§
IL or IDLE or NULLff
IL or IDLE or NULL88
IL or IDLE or NULL8*8"
IL or IDLE or NULL§§
IL or IDLE or NULL§§

IL or IDLE or NULl||
IL or IDLE or NULL88
IL or IDLE or NULL§§

IL or IDLE or NULL8^

62 or 42
61 or 41
63 or 43
04 or 14
18
27
60
7B
7D or 7E
01
02
03
05
07
0B or 0C

10
12
14 thru 16

18 thru IF

142 or 102
141 or 101
143 or 103
004
030
047
140
173
175 or 176
001
002
003
005
007
013 or 014

020
022
024 thru
026

030 thru
037

1 o r B
oc o r A
0 o r C

O
{
} o r r -

end of transmission8
cancel

start of header
s t a r t o f t e x t
end of text
enquire
b e l l
ve r t i ca l t abu la te
or form feed
data link escape
device control 2
device control 4,
negative acknowledge,
or synchronize
cancel, end of media,
s u b s t i t u t e ,
fi l e s e p a r a t o r,
group separator,
record separator,
or unit separator

Tshown with odd parity; odd parity is the default for this terminal class. (Unless PA=N or PA=I, the
application program receives the same code as in normalized mode.)

"Each input line is assumed to begin in lowercase. Input characters are translated to lowercase ASCII
characters unless prefixed by the UCS code. Once a case shift occurs, it remains in effect until another
case shift code is received, the page width is reached, or the line is transmitted to the host computer.
During output, case is preserved by insertion of case shift codes where needed.

'TTshown with zero parity (eighth or uppermost bit is always zero).

"Not transmitted to the host computer after translation during input.

" "Output t ranslat ion only.

J0$^£\

60499500 S A-47

TABLE A-19. FULL ASCII NORMALIZED MODE APL CHARACTER SET

■128-Character Set

- < 9 6 - C h a r a c t e r S u b s e t •

• M 6 4 - C h a r a c t e r S u b s e t ▶

Bits
b4 b3 b2 bl

| | | |

O O O O

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

ROW

I
COLUMN

NUL
000

SOH
001

STX
002

ETX
003

EOT
004

ENQ
005

ACK
006

BEL
007

BS
010

HT
Oil

LF
012

VT
013

FF
104

CR
015

SO
016

SI
017

DLE
020

DC1
021

DC2
022

DC3
023

DC4
024

NAK
025

SYN
026

ETB
027

CAN
030

EM
031

SUB
032

ESC
033

FS
034

GS
035

RS
036

US
037

SP
040

041

042

043

$
044

045

046

047

(
050

)
051

052

+
053

054

055

056

/
057

060

1
061
2
062

3
063

4
064

5
065

6
066

7
067

8
070

9
071

072

073

<
074

075

>
076

077

100

A
101
B
102

C
103

D
104
E
105

F
106

G
107

H
110

I
111

J
112

K
113

L
114

M
115

N
116

0
117

120

Q
121

R
122

S
123

T
124

U
125

V
126

W
127

X
130

Y
131

Z
132

133

\
134

135

136

137

140
oc
141
1
142

0
143
L
144
e
145
X
146

7
147
A
150
\
151
o

152

-H
153

D
154

I
155

T
156

o
157

160

161
P
162

r
163

164
I
165

U
166

co
167

170
t
171
<=
172

{
173

>_
174

}
175

r -
176

DELt
177

■The graphic 95-character subset does not include DEL; refer to Terminal Transmission Modes in the text.

LEGEND:

Numbers under characters are the octal values for the 7-bit character codes used within the network.

A-48 60499500 R

DIAGNOSTIC MESSAGES

J0^\

T h i s a p p e n d i x l i s t s t h e f o l l o w i n g c a t e g o r i e s o f
messages concerning network software:

Application program execution errors

Application program macro assembly errors

Postprocessor errors and informative messages

EXECUTION ERROR MESSAGES
When the Network Access Method's execut ion t ime
c o d e d e t e c t s a n e r r o r, a d i a g n o s t i c m e s s a g e i s
w r i t t e n i n t h e a p p l i c a t i o n p r o g r a m ' s d a y fi l e . T h e
diagnostic messages issued by NIP are listed alpha
be t i ca l l y i n tab le B - l .

Al l fatal errors detected by NIP cause the applica
t i o n p r o g r a m t o a b o r t w i t h o u t t h e a b i l i t y t o
r e p r i e v e i t s e l f f r o m t h e a b o r t . A l l f a t a l e r r o r s
detected by AIP cause the appl icat ion program to
abor t and permi t the app l ica t ion to repr ieve i tse l f
from the abort, but no further AIP calls are allowed
after the abort occurs.

The form of diagnostic message used by AIP and/or
QTRM is partially determined by the library used to
prov ide the rou t ines fo r the execut ion run . I f the
rou t ines a re loaded f rom l i b ra ry NETIO, the on ly
fa ta l d iagnost ic issued is :

NETWORK APPLICATION ABORTED, RC=rc.

where re is a reason code from 01 through 99, with
t h e s i g n i fi c a n c e i n d i c a t e d i n t a b l e B - 2 . I f t h e
A I P a n d Q T R M r o u t i n e s a r e l o a d e d f r o m l i b r a r y
NETIOD, the same fatal diagnostic message is issued,
but a supplementary message explaining the reason
code is issued, as shown in the Message column of
table B-2. The supplementary message begins with
the name of the routine that detected the error.

The additional informative message:

NAM VER. x.y - level

i s a l w a y s i s s u e d a t A I P N E TO N c a l l p r o c e s s i n g
comple t ion . The numbers x , y, and leve l , respec
t i v e l y, i n d i c a t e t h e v e r s i o n n u m b e r, v a r i a n t , a n d
PSR level of the AIP code used.

ASSEMBLY ERROR MESSAGES
When an application program uses the COMPASS macro
vers ion o f the AIP ca l ls , the assembly l i s t ing can
c o n t a i n t h e f a t a l e r r o r m e s s a g e s l i s t e d i n t a b l e
B-3. These macros are described in section 4.

POSTPROCESSOR MESSAGES
The debug log file postprocessor (DLFP) is used to
process debug log fi les . Dur ing th is process ing i t
can issue the messages shown in tab le B-4 . The
debug log fi le pos tp rocessor i s descr ibed in sec
tion 6.

TABLE B-l. APPLICATION PROGRAM DAYFILE NIP DIAGNOSTIC MESSAGES

Message

ADDRESS OUT OF RANGE

APP WORK LIST ADDR=0

APPLICATION IS NOT
ALLOWED TO DO XFR

Sign ificance

The application program specified
an address of 0, 1, or a word outside
of its field length on a NETPUT or
NETGET type AIP call, or an AIP bug
e x i s t s .

AIP has indicated that NIP should
wri te i ts reply workl ist at address 0.
NIP cannot use this address. Either
an AIP bug exists, or the application
program has bypassed or destroyed its
copy of AIP.

The application attempted a call to
the AIP routine NETXFR but is not
val idated for such a cal l .

Ac t ion

Change the address and rerun
the job. I f an incorrect
address cannot be found, con
tact a system analyst; a bug
ex is ts i n A IP.

Fol low si te-defined procedure
to report and correct product
or system problems.

Remove the call to NETXFR.
Only PTF and QTF are allowed
to call NETXFR.

Issued
By

NIP

NIP

AIP

60499500 W B-l

TABLE B-l. APPLICATION PROGRAM DAYFILE NIP DIAGNOSTIC MESSAGES (Contd)

Message

BAD AIP OPCODE

BAD WORD/ENTRY COUNT

BKSP ERROR ON FILE
xxxxxxx - AT=yyB.

EXTRA WORKLIST

ILLOGICAL WORKLIST

INVALID APPLICATION
NAME ON NETON

INVALID MINACN/MAXACN
ON NETON

NONEXISTENT
APPLICATION ID

NOT YET NETTED ON

OVER 500 SUP MSGS
QUEUED FOR APP

Significance

AIP has passed an invalid operation
code in a worklist sent to NIP.
Either an AIP bug exists, or the
application program has bypassed
or destroyed its copy of AIP.

The number of words or entries in a
worklist passed from AIP to NIP
exceeded the maximum number permitted.
Either an AIP bug exists, or the
application program has bypassed or
destroyed its copy of AIP.

AIP encountered an I/O error while
backspacing the specified file one
record; yy is the abnormal termina
tion code returned by CIO (nonfatal).

AIP passed a new worklist to NIP while
NIP was still processing a previous
work l is t . E i ther an AIP bug ex is ts ,
or the application program has by
passed or destroyed its copy of AIP.

AIP has passed a worklist to NIP that
contai ns more than one NETWAIT or
NETGET request. Either an AIP bug
exists, or the application program
has bypassed or destroyed its copy
of AIP.

The program attempted to access the
network with an aname parameter that
does not appear in the system
validation file and/or COMTNAP.

One or both of the indicated
parameters was out of the range
permi t ted fo r the ins ta l la t ion .

NIP has no table entry corresponding
to the process number AIP has passed
to i t to iden t i f y the app l i ca t ion
program. Either an AIP or NAM bug
exists, or the application program
has bypassed or destroyed its copy
o f A IP.

The application program attempted to
use the network's resources before
issuing a NETON call. If this message
does not occur with the corresponding
AIP message, either a bug exists In
AIP, or the application program has
bypassed or destroyed its copy of AIP.

The application program is not fetch
ing the asynchronous supervisory
messages queued for it. When the
queue in NIP reaches 500 supervisory
messages, NIP aborts the application
program and this dayfile message
appears in the appl icat ion 's dayfile.

Action

Follow site-defined procedure
to report and correct product
or system problems.

Follow site-defined procedure
to report and correct product
or system problems.

Check the abnormal termination
code to determine what is
wrong with the file and then
correct the problem.

Follow site-defined procedure
to report and correct product
or system problems.

Follow site-defined procedure
to report and correct product
or system problems.

Correct the aname parameter
and rerun the job. Check that
the system validation file
and/or COMTNAP has been updated
to include the application's
name.

Change the parameters and
rerun the job.

Follow site-defined procedure
to report and correct product
or system problems.

Change the program and rerun
the job.

Correct the program and rerun
the job.

Issued
By

NIP

NIP

AIP

NIP

NIP

NIP

NIP

NIP

NIP

NIP

B-2 60499500 W

TABLE B-l. APPLICATION PROGRAM DAYFILE NIP DIAGNOSTIC MESSAGES (Contd)

/ffS^N Message

/$P^H

READ ERROR ON FILE
xxxxxxx - AT=yyB.

REWIND ERROR ON FILE
xxxxxxx - AT=yyB.

ROUTE ERROR ON FILE
ZZZZZDN - AT=yyB.

SECURITY VIOLATION

WRITE ERROR ON FILE
xxxxxxx - AT=yyB.

Sign ificance

AIP encountered an I/O error while
reading the spec ified fi le ; yy is
the abnormal termination code
returned by CIO (nonfatal).

AIP encountered an I/O error while
rewind ing the spec ified fi le ; yy
is the abnormal termination code
returned by CIO (nonfatal.).

AIP encountered an error when it
tried to route the ZZZZZDN file
to the input queue; yy Is the
abnormal termination code returned
by DSP (nonfatal).

The application program has attempted
to call NETON as a supervisory or
validation program (CS, NS, or NVF).

AIP encountered an I/O error while
w r i t i ng t o t he spec i fied fi l e ; y y
is the abnormal termination code
returned by CIO (nonfatal).

Action

Check the abnormal termination
code to determine what is wrong
with the file and then correct
the problem.

Check the abnormal termination
code to determine what is wrong
with the file and then correct
the problem.

Check the error code to deter
mine why the route failed and
then correct the problem.

Change the program's origin
type permission and rerun the
job.

None. The file is returned to
the system and a new one is
created.

Issued
By

AIP

AIP

AIP

NIP

AIP

60499500 W B-2.1/B-2.2 •

^ %

^

n

TABLE B-2. APPLICATION PROGRAM DAYFILE AIP AND QTRM DIAGNOSTIC MESSAGES

r

/0^\

Reason
Code Message Significance Act ion Issued

By

01
th ru
29

Reserved by CDC.

30 NETON: DUPLICATE NETON
REQUEST

The application program
has called NETON twice.

Change the program and rerun
the job.

AIP

31 NP$GET: REQUEST INVALID
BEFORE NETON

The application program
issued a GET-type call
before it issued a NETON
cal l , o r a f ter i t i ssued a
NETOFF call.

Change the program and rerun
the job.

AIP

32 NP$PUT: REQUEST INVALID
BEFORE NETON

The application program
issued a PUT-type call
before it issued a NETON
ca l l , o r a f te r i t i ssued a
NETOFF call.

Change the program and rerun
the job.

AIP

33 NETWAIT: REQUEST INVALID
BEFORE NETON

The application program
issued the indicated cal l
before it issued a NETON
cal l , o r a f ter i t i ssued a
NETOFF call.

Change the program and rerun
the job.

AIP

34 NETDBG: REQUEST INVALID
BEFORE NETON

The application program
issued the indicated cal l
before it issued a NETON
cal l , o r a f ter i t i ssued a
NETOFF call.

Change the program and rerun
the job.

AIP

35
th ru
39

Reserved by CDC.

40 NETON: PREVIOUS REQUEST
INCOMPLETE

An AIP call other than to
NETOFF or NETCHEK cannot
be made while the program
is in para l le l processing
mode and a previous AIP
call has not been com
pleted .

Relocate the improperly
placed NETON call and rerun
the job.

AIP

41 Reserved by CDC.

42 NP$GET: PREVIOUS REQUEST
INCOMPLETE

An AIP call other than to
NETOFF or NETCHEK cannot
be made while the program
is in para l le l processing
mode and a previous AIP
call has not been com
p l e t e d .

Relocate the improperly
placed GET-type call and
rerun the job.

AIP

43 NP$PUT: PREVIOUS REQUEST
INCOMPLETE

An AIP call other than to
NETOFF or NETCHEK cannot
be made while the program
is in para l le l p rocess ing
mode and a previous AIP
call has not been com
p l e t e d .

Relocate the improperly
placed PUT-type call and
rerun the job.

AIP

44 NETWAIT: PREVIOUS REQUEST
INCOMPLETE

An AIP call other than to
NETOFF or NETCHEK cannot
be made while the program
is in para l le l processing
mode and a previous AIP
call has not been com
pleted .

Relocate the improperly
placed NETWAIT call and
rerun the job.

AIP

60499500 S B-3 I

TABLE B-2. APPLICATION PROGRAM DAYFILE AIP AND QTRM DIAGNOSTIC MESSAGES (Contd)

Reason
Code Message Significance Act ion Issued

By

45 NETOFF: NETOFF DURING
FILE TRANSFER

Application NETOFF while
there' is a fi le t ransfer
s t i l l i n p rog ress .

Relocate the improperly
placed OFF-type call and
rerun the job.

AIP

46
th ru
48

Reserved by CDC.

49 NP$L0C: NO ENTRY WITH
MATCHING ACN

No entry in fi le t ransfer
ring table matching this
ACN.

Rerun the job. AIP

50 NP$ON: INVALID PROCESS
NUMBER

A bug exists in the oper
ating system or NAM. The
process number assigned to
the application program
during processing of i ts
NETON call was out of
range.

Fo l low s i te -defined
procedure to report and
correct product or system
problems.

AIP

51 NP$XFER: NWL HAS
OVERFLOWED

The debug option code in
AIP detected an error con
dition not caused by an
application program AIP
c a l l .

Fo l low s i te -defined
procedure to report and
correct product or system
problems.

AIP

52
th ru
66

Reserved by CDC.

67 NP$XFER: NIP NOT
AVAILABLE AT A SCP

The application program
rep r i eved i t se l f a f t e r
being aborted, but NIP has
also aborted. The only
AIP call that can be
i8sued after NIP aborts is
a NETOFF.

Change the application
program reprieve procedure
and rerun the job.

AIP

68 FETCH ILLEGAL FIELD
MNEMONIC

Either the field or value
parameter in the indicated
call was not found.

Correct the call and rerun
the job.

AIP

69 STORE ILLEGAL FIELD
MNEMONIC

Either the field or value
parameter in the indicated
call was not found.

Correct the call and rerun
the job.

AIP

70 QTENDT: REQUEST INVALID
BEFORE QTOPEN

A QTENDT call is Illegal
before a QTOPEN call or
after a QTCLOSE call.

Correct the statement
sequence and rerun the job.

QTRM

71 QTGET: REQUEST INVALID
BEFORE QTOPEN

A QTGET call is illegal
before a QTOPEN call or
after a QTCLOSE call.

Correct the statement
sequence and rerun the job.

QTRM

72 QTPUT: REQUEST INVALID
BEFORE QTOPEN

A QTPUT call is illegal
before a QTOPEN call or
after a QTCLOSE call.

Correct the statement
sequence and rerun the job.

QTRM

73 QTLINK: REQUEST INVALID
BEFORE QTOPEN

A QTLINK call is il legal
before a QTOPEN call or
after a QTCLOSE call.

Correct the statement
sequence and rerun the job.

QTRM

B-4 60499500 S

TABLE B-2. APPLICATION PROGRAM DAYFILE AIP AND QTRM DIAGNOSTIC MESSAGES (Contd)

Reason
Code Message Sign ificance A c t i o n Issued

By

74 QTTIP: REQUEST INVALID
BEFORE QTOPEN

A QTTIP cal l is i l legal
before a QTOPEN call or
after a QTCLOSE call.

Correct the statement
sequence and rerun the job.

QTRM

75
th ru
79

Reserved by CDC.

80 QTOPEN: DUPLICATE QTOPEN The application program
attempted to perform
QTOPEN a second time.

Remove the extra QTOPEN
statement and rerun the
j o b .

QTRM

81 QTOPEN: NIT NUM-CONNS
FIELD IS ZERO

The num-conns field in
the network information
table was zero when
QTOPEN was called.

Correct the table and rerun
the job.

QTRM

82 QTOPEN: NETON REJECTED The application program
was not allowed to access
the network . E i ther
another appl icat ion with
the same name has accessed
the network or the host
operator has disabled the
application from accessing
the network.

Rerun the job after
contacting the host
opera tor.

QTRM

83 QTOPEN: NETWORK NOT
AVAILABLE

The network is not running
or it temporarily does not
have enough resources to
a l low th is app l ica t ion to
access the network.

Rerun the job later. QTRM

84
t h r u
94

Reserved by CDC.

95 QTLINK: NO A-TO-A The application program
requested connection to
another appl icat ion pro
gram when the A-to-A
fi e l d i s n o t s e t .

Change the program to set
the A- to-A fie ld before
the call to QTOPEN and
rerun the job.

96
t h r u
98

Reserved by CDC.

99 QTGET: NETWORK LOGICAL
ERROR, TYPE n

NAM has sent a logical
error supervisory message
to the appl icat ion pro
gram; n is the reason code
from the logical error
supervisory message. The
logical error is due to
a QTPUT call with bad
parameters stored in the
network information table.

Correct the parameter fields
before issuing the QUPUT
c a l l .

QTRM

/S^N
60499500 R B-5

TABLE B-3. AIP MACRO ASSEMBLY LISTING DIAGNOSTIC MESSAGES

Message Significance Act ion Issued
By

ERR FIRST PARAMETER MISSING At least one parameter is
required in the AIP call that
caused the error.

Correct the call and reassemble
the job.

AIP

ERR MUST BE LIST= A parameter is required after
LIST= in the second calling
format by the AIP call that
caused the error.

Correct the call and reassemble
the job.

AIP

ERR NSUP ADDRESS MISSING Address of nsup word is not
prov ided in the firs t or th i rd
calling format by the NETON
AIP call that caused the error.

Correct the call and reassemble
the job.

AIP

ERR STATUS ADDRESS MISSING Address of status word is not
prov ided in the firs t or th i rd
calling format by the NETON
AIP call that caused the error.

Correct the call and reassemble
the job.

AIP

ERR MINACN ADDRESS MISSING Address of MINACN word is not
prov ided in the firs t or th i rd
calling format by the NETON
AIP call that caused the error.

Correct the call and reassemble
the job.

AIP

ERR MAXACN ADDRESS MISSING Address of MAXACN word is not
prov ided in the fi rs t o r th i rd
calling format by the NETON
AIP call that caused the error.

Correct the call and reassemble
the job.

AIP

ERR HEADER AREA ADDRESS
MISSING

Address of application block
header is not provided in first
or third call ing format by the
NETGET, NETGETF, NETGETL, or
NETGTFL AIP call that caused
the er ror.

Correct the call and reassemble
the job.

AIP

ERR TEXT AREA ADDRESS
MISSING

Address of text area is not
prov ided in the fi rs t o r th i rd
calling format by the NETGET,
NETGETF, NETGETL, or NETGTFL
AIP call that caused the error.

Correct the call and reassemble
the job.

AIP

ERR TEXT LIMIT IS MISSING Address of text l imit of block
acceptable is not provided in
t h e fi r s t o r t h i r d c a l l i n g f o r
mat by the NETGET, NETGETF,
NETGETL, or NETGTFL AIP call
that caused the error.

Correct the call and reassemble
the job.

AIP

ERR SECOND PARAMETER
MISSING

Second parameter is not pro
v ided in the fi rs t o r th i rd
calling format by the NETPUT,
NETREL, NETSETF, NETSTC,
NETWAIT, NETPUTF, or NETDBG AIP
call that caused the error.

Correct the call and reassemble
the job.

AIP

ERR THIRD PARAMETER MISSING Third parameter is not pro
v ided in the fi rs t o r th i rd
calling format by the NETPUTF
or NETDBG AIP call that caused
the e r ro r.

Correct the call and reassemble
the job.

AIP

B-6 60499500 R

TABLE B-3. AIP MACRO ASSEMBLY LISTING DIAGNOSTIC MESSAGES (Contd)

Message

ERR PARAMETER MISSING

ERR field ERROR IN 1ST
PARAMETER

ERR field ERROR IN FIELD
MNEMONICS

ERR field ILLEGAL REGISTER
NAME

ERR field ERROR IN BRD
PARAMETER

Sign ificance

The parameter is not provided
in the NETSETP AIP call that
caused the error.

The first parameter provided
in the NFETCH or NSTORE call
that caused the error is not
va l id . The fie ld parameter
indicates the field in which
the error occurs.

The second parameter provided
in the NFETCH or NSTORE call
that caused the error is not a
val id symbolic field name. The
field parameter indicates the
field in which the error
occurs.

The third parameter provided
in the NFETCH call that caused
the error is not a valid regis
te r. The fie ld paramete r
indicates the field in which
the error occurs.

The third parameter provided
in the NSTORE call that caused
the error is not a valid regis
te r. The fie ld paramete r
indicates the field in which
the error occurs.

Ac t ion

Correct the call and reassemble
the job.

Correct the call and reassemble
the job.

Correct the call and reassemble
the job.

Correct the call and reassemble
the job.

Correct the call and reassemble
the job.

Issued
By

AIP

AIP

AIP

AIP

AIP

TABLE B-4. DLFP DAYFILE, ERROR, AND INFORMATIVE MESSAGES

/PS^

Message

BAD DEBUG LOG FILE

BAD DIRECTIVE TABLE ENTRY

DLFP COMPLETE

DUPLICATE FILE NAME

EMPTY DEBUG LOG FILE

ERROR IN B DIRECTIVE

Sign ificance

DLFP did not process the debug log
file because the content of the
file was bad.

DLFP detected an error in its
i n te rna l t ab les .

DLFP completed processing the
debug log fi le , i f any.

The same file name was used on
more than one parameter on the
DLFP command.

The debug log file was empty.

B directive is not followed by
keyword operator.

Ac t ion

Correct and rerun.

Fol low s i te-defined pro
cedure to report and correct
product or system problems.

None.

Correct and rerun.

None.

Correct and rerun.

Issued
By

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

60499500 R B-7

TABLE B-4. DLFP DAYFILE, ERROR, AND INFORMATIVE MESSAGES (Contd)

Message

ERROR IN BD= DIRECTIVE

ERROR IN BT= DIRECTIVE

ERROR IN C DIRECTIVE

ERROR IN CN= DIRECTIVE

ERROR IN DN= DIRECTIVE

ERROR IN E DIRECTIVE

ERROR IN ED= DIRECTIVE

ERROR IN ET= DIRECTIVE

ERROR IN F DIRECTIVE

ERROR IN LE= DIRECTIVE

ERROR IN N DIRECTIVE

ERROR IN NM= DIRECTIVE

ERROR IN P DIRECTIVE

ERROR IN PF= DIRECTIVE

ERROR IN PS= DIRECTIVE

ERROR IN R DIRECTIVE

ERROR IN SM= DIRECTIVE

ERROR IN SN= DIRECTIVE

ERROR IN T DIRECTIVE

ERROR IN U DIRECTIVE

ERROR IN X DIRECTIVE

ILLEGAL CHARACTER

ILLEGAL FILE NAME

Significance

Date is invalid or missing.

Time is invalid or missing.

C directive is not followed by
keyword separator.

Connection number is invalid or
miss ing .

DN directive used incorrectly.

E directive is not followed by
keyword separator.

Date is invalid or missing.

Time is invalid or missing.

F directive is not followed by
keyword separator.

Length is an invalid value or
missing.

N directive is not followed by a
keyword separator.

Number is invalid or missing.

P directive is not followed by
keyword separator.

Hexadecimal number is invalid, not
t w o d i g i t s , o r m i s s i n g . '

Hexadecimal number is invalid, not
four d ig i ts , or miss ing.

R directive is not followed by
keyword separator.

Number is invalid or missing.

SN directive used incorrectly.

T directive is not followed by
keyword separator.

U directive is not followed by
keyword separator.

X directive is not followed by
keyword separator.

The directive record contains a
character that is not a le t ter,
a digit, an equal sign, a
comma, or a blank.

The file name contains characters
other than letters and digits or
it begins with a number.

Ac t ion

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Issued
By

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

B-8 60499500 R

/0^\
TABLE B-4. DLFP DAYFILE, ERROR, AND INFORMATIVE MESSAGES (Contd)

Message Sign ificance Act ion Issued
By

ILLEGAL PARAMETER DLFP does not recognize a
parameter in the command.

Correct and rerun. DLFP

LOG FILE NOT CLOSED Debug log file was not closed
correctly. Either NETOFF or
NETREL was not called before
the appl icat ion terminated.

Correct the application pro
gram for future executions,
i f p o s s i b l e .

DLFP

MULTIPLE COMMAS BETWEEN
DIRECTIVES

Two or more commas were used with
no directive between them.

Correct and rerun. DLFP

NO MESSAGES FOUND No messages were found with the
specified keywords.

None. DLFP

OVER 10 VALID CHARS BETWEEN
KEYWD SEP

The str ing of val id characters
between the keyword separators
was greater than 10 characters.
A va l id character is a le t ter,
a digit, or an equal sign.

Correct and rerun. DLFP

PARAMETER FORMAT ERROR A parameter on the DLFP command
is not format ted correct ly.

Correct and rerun. DLFP

PARAMETER SPECIFIED TWICE A parameter on the DLFP command
appears more than once.

Correct and rerun. DLFP

UNRECOGNIZABLE KEYWORD A nonexistent keyword was used, or
the first keyword did not begin
in column one.

Correct and rerun. DLFP

0!̂ **.
60499500 R B-9

(*%■

/ f c ™ ^

GLOSSARY

This appendix contains terms and mnemonics unique
t o t h e d e s c r i p t i o n o f t h e s o f t w a r e p r e s e n t e d i n
th i s manua l . I t a l so con ta ins t e rms whose i n te r
pretation within this manual is intended to be more
constrained or di fferent f rom that commonly made.
Some terms used in other manuals for the network
software are included for the reader 's convenience
when reconcil ing terminology.

Application Name (ANAME) -
U p t o s e v e n 6 - b i t l e t t e r s o r d i g i t s (t h e fi r s t
must be a le t ter) used to ident i fy an appl ica
t ion program. I t is used by another appl icat ion
program, by a terminal operator when connection
to the application is requested, and by the host
operator to give commands.

yfwSr'K

ŷ P̂ N

Acknowledgment, Block -
A message returned to the sender confirming the
del ivery of one b lock; referred to as BACK in
CCP documentation.

Address -
A location of data (as in the main or micro NPU
memory) or of a device (as a peripheral device
or te rmina l) .

APL -
A scientific programming language characterized
by powerful operators and special graphic sym
bols.

Application Block Header (ABH) -
A s ing le 60-b i t word descr ip t ion accompanying
every block passing between an application pro
gram and NAM.

Application Block Limit (ABL) -
The number of unacknowledged blocks a logical
c o n n e c t i o n i s a l l o w e d t o h a v e o u t s t a n d i n g
(queued by the network) at any one time.

Application Block Number (ABN) -
A fi e l d i n t h e a p p l i c a t i o n b l o c k h e a d e r . A n
appl icat ion-assigned number used to ident i fy a
part icular network data block.

Application Block Type (ABT) -
A field in the appl icat ion block header defining
the accompanying block as either data or super
v i so r y, nu l l o r no t nu l l , and i nd i ca t i ng wh i ch
block is the last block of a message.

Application Character Type (ACT) -
A field in the appl icat ion block header defining
the byte size and packing of text characters.

Application Connection Number (ACN) -
A number assigned by NAM to identify a particu
l a r l o g i c a l c o n n e c t i o n w i t h i n a n a p p l i c a t i o n
program.

Application Interface Program (AIP) -
A group of rout ines that reside in the appl ica
t i o n p r o g r a m ' 8 fi e l d l e n g t h . T h e s e r o u t i n e s
bu f fe r commun ica t ion be tween the app l i ca t ion
program and the network, using the system con
trol point feature of NOS.

Application List Number (ALN) -
An application-program-assigned number used to
iden t i f y a pa r t i cu la r g roup o f l og i ca l connec
tions belonging to the application program.

60499500 R

Application Program -
A program resident in a host computer that pro
v ides an in format ion s torage, re t r ieva l , and/or
processing service v ia the data communicat ion
network and the Network Access Method. Appli
cation programs always use the system control
point feature of NOS to communicate wi th the
Network Access Method. In the context of net
work software, an application program is not an
interact ive job, but rather a terminal serv ic ing
f a c i l i t y . A t e r m i n a l s e r v i c i n g f a c i l i t y p r o
vides terminal users with a specific processing
capabil i ty such as remote job entry from batch
t e r m i n a l s , t r a n s a c t i o n p r o c e s s i n g , e n t r y a n d
e x e c u t i o n o f i n t e r a c t i v e j o b s , a n d s o f o r t h .
F o r e x a m p l e , t h e s t a n d a r d C D C i n t e r a c t i v e
f a c i l i t y I A F m a k e s t e r m i n a l i n p u t a n d o u t p u t
appear the same to an executing program as file
input and output ; IAF is a network appl icat ion
program, but the executing program using IAF is
an in te rac t ive job .

Archetype Terminal -
The specific terminal equipment possessing a l l
o f t h e a t t r i b u t e s u s e d a s d e f a u l t s f o r t h e
defini t ion of one terminal c lass. Each terminal
class has a corresponding archetype terminal.

Asynchronous -
A transmission in which each information char
ac te r i s i nd i v i dua l l y synch ron i zed by the use
of s tar t and s top b i ts . The gap between each
character is not necessar i ly of fixed length.

Asynchronous Protocol -
T h e p r o t o c o l u s e d b y a s y n c h r o n o u s ,
t e l e t y p e w r i t e r - l i k e d e v i c e s . F o r C C P, t h e
p r o t o c o l i s a c t u a l l y t h e s e t o f p r o t o c o l s f o r
e i g h t t y p e s o f r e a l t e r m i n a l s . T h e N P U /
terminal interface Is handled by the ASYNC TIP.

Automatic Input -
An output mode that prefixes up to 20 characters
of the output message to the input reply.

Automatic Login -
The process whereby one or more of the Network
Va l i d a t i o n F a c i l i t y l o g i n d i a l o g p a r a m e t e r s i s
s u p p l i e d t o N V F f r o m t h e l o c a l c o n fi g u r a t i o n
fi l e . P a r a m e t e r s s u p p l i e d t h r o u g h a u t o m a t i c
l o g i n c o n fi g u r a t i o n o f a t e r m i n a l s u p p r e s s
prompt ing for the cor responding d ia log ent r ies
and override any entries made from the terminal.

C-l

Automatic Recognition -
T h e p r o c e s s w h e r e b y t h e Te r m i n a l I n t e r f a c e
Program ident ifies character is t ics of a terminal
when the terminal's communication line becomes
act ive . The Termina l In ter face Program deter
mines sub-TIP type and terminal class (and, for
m o d e 4 t e r m i n a l s , t h e c l u s t e r a n d t e r m i n a l
addresses) by various methods for l ines config
ured for automat ic recogni t ion . The Communi
cations Supervisor then matches these parameters
aga ins t t he desc r i p t i ons o f spec i fic t e rm ina l s
in the ne twork configura t ion fi le ; the te rmina l
w i t h t h e c l o s e s t m a t c h t o t h e e m p i r i c a l l y
determined parameters is automat ica l ly recog
nized as the terminal on the communication line.

Base System Software -
The relatively invariant set of programs in CCP
t h a t s u p p l i e s t h e m o n i t o r , t i m i n g , i n t e r r u p t
h a n d l i n g , a n d m u l t i p l e x i n g f u n c t i o n s f o r t h e
NPU. Base software also includes common areas,
d iagnost ics , and debugging ut i l i t ies .

Batch Device -
A dev i ce tha t i s capab le o f conduc t i ng i npu t
on ly or output on ly operat ions. Card readers ,
l i n e p r i n t e r s , a n d p l o t t e r s a r e e x a m p l e s o f
ba t ch dev i ces * Ba t ch dev i ces a re some t imes
referred to as passive devices.

Binary Synchronous Communications (BSC) -
A communications protocol supported by the BSC
TIP. This protocol connects IBM 2780 or 3780
terminals to the NPU using half-duplex synchro
nous t r ansm iss i ons i n a po in t - t o -po in t mode .
The t e rm ina l s have ba t ch dev i ces wh i ch use
EBCDIC code. Transparent data exchanges are
p e r m i t t e d . T h e t e r m i n a l s a r e c o n fi g u r e d t o
h a v e a v i r t u a l c o n s o l e (i n t e r a c t i v e d e v i c e) .
This is composed of a card reader for input and
a pr in ter for output .

Block -
I n t he con tex t o f ne two rk commun ica t i ons , a
p o r t i o n o r a l l o f v a m e s s a g e . A m e s s a g e i s
d i v i ded i n to b l ocks o f one o r more wo rds (2
bytes/word in the NPU) to fac i l i ta te buffer ing,
t ransmission, error detect ion and correct ion of
va r i ab l e l eng th da ta s t r eams . D i f f e r i ng b l ock
protocols apply to the host/NPU and the NPU/
termina l in ter faces.

Block Acknowledgment -
See Acknowledgment, Block.

Block Header -
See Application Block Header.

Block Limi t -
T h e n u m b e r o f m e s s a g e b l o c k s t h a t c a n b e
await ing del ivery at any one t ime in either the
host-to-NPU direct ion or the NPU-to-host direc
t ion for a single device.

Block Type -
See Application Block Type.

Break -
A method employed by a termina l operator to
interrupt output or input in progress.

Buffe r ing -
The process of collecting data together in buf
f e r s . O r d i n a r i l y , n o a c t i o n o n t h e d a t a i s
t a k e n u n t i l t h e b u f f e r i s fi l l e d . F i l l e d b u f
fers include the case where data is terminated
before the end of the buffer and the remaining
space is fi l led wi th i r re levant codes.

Byte -
A g r o u p o f c o n t i g u o u s b i t s . U n l e s s p r e fi x e d
(fo r examp le , a 6 -b i t by te) , the te rm imp l ies
8-bit groups. When used for encoding character
data, a byte represents a single character.

Cassette -
The magnetic tape device in an NPU used for
b o o t s t r a p l o a d i n g o f o f f - l i n e d i a g n o s t i c s a n d
(in remote NPUs) the bootstrap load/dump oper
a t i o n .

CE Error Message -
A message con ta in ing in fo rmat ion concern ing
hardware and/or software malfunctions.

Character -
A coded byte of data, such as a 6-bit display
code or 7-bit ASCII code. Terminals use a wide
range of codes. Network products are respon
s i b l e f o r t r a n s l a t i n g b e t w e e n t e r m i n a l c o d e s
a n d h o s t c o d e s . U n l e s s o t h e r w i s e s p e c i fi e d ,
references to characters in this manual are to
ASCII 7-bit byte characters.

Character Type -
See Application Character Type.

Cluster -
Mode 4 devices grouped by a common cluster
address. Synonymous with terminal.

Cluster Address -
The hardware address o f a c lus ter. Th is term
is used in several ways within mode 4 communi
cations documentation, as shown in table C-l.

TABLE C-l. MODE 4 NOMENCLATURE EQUIVALENCE

Networks
Nomenclature

Mode 4A
Nomenclature

Mode 4C
Nomenclature

Network processing
u n i t

Data source Contro l
s t a t i o n

Cluster address Site address Sta t ion
address

C lus te r con t ro l le r Equipment
c o n t r o l l e r

S ta t ion

Terminal address S t a t i o n
addres8

Device
address

Terminal Equipment
c o n t r o l l e r

S ta t ion

Device Equipment Device

C-2 60499500 R

0Ô >\

Communication Element -
A n y e n t i t y t h a t c o n s t i t u t e s a p o i n t o f i n p u t
to, or output from, the data communication net
work. This includes terminal devices, communi
cation l ines, and application programs.

Communication Line -
A c o m p l e t e c o m m u n i c a t i o n c i r c u i t b e t w e e n a
terminal and its network processing unit.

Communication Network -
The portion of the total network comprising the
l inked network processing units. The communi
cation network excludes the host computer and
termina ls .

Communications Control Program (CCP) -
A port ion of the network sof tware that resides
in a 255x Series network processing unit. This
set of modules performs the tasks delegated to
t h e N P U i n t h e n e t w o r k . T h i s s o f t w a r e c a n
include such routines as the Terminal Interface
Program.

Communications Supervisor (CS) -
A por t ion o f the ne twork so f tware , wr i t ten as
a n a p p l i c a t i o n p r o g r a m ; t h e C o m m u n i c a t i o n s
Superv isor configures and con t ro ls the s ta tus
of NPUs and al l their communication l ines and
termina ls .

Configurat ion -
See Network Configuration.

Connection -
See Logical Connection.

Connection Number (CN) -
A unique number assigned to each active device
on a log ica l l ink .

Constant Carrier -
A communication line with a transmission carrier
s ignal that remains on cont inuously ; fa i lure is
reported i f the carr ier s ignal received remains
off for a period of time that equals or exceeds
a f a i l u r e v e r i fi c a t i o n p e r i o d .

Contention -
The s ta te tha t ex is ts in a b id i rec t iona l t rans
mission l ine when both ends of the l ine try to
use the line for transmission at the same time.
A l l p r o t o c o l s c o n t a i n l o g i c t o r e s o l v e t h e
con ten t ion s i tua t ion .

Control Blocks -
(1) The types of b locks used to t ransmit con
t r o l (a s o p p o s e d t o d a t a) i n f o r m a t i o n ; (2)
B l o c k s a s s i g n e d f o r s p e c i a l c o n fi g u r a t i o n /
status purposes in the NPU. The major blocks
a r e l i n e c o n t r o l b l o c k s (L C B) , l o g i c a l l i n k
cont ro l b locks (LLCB) , log ica l channe l cont ro l
b locks (LCCB), te rmina l cont ro l b locks (TCB) ,
queue control blocks (QCB), buffer maintenance
con t ro l b locks (BCB) , mu l t i p lexe r l i ne con t ro l
b locks (MLCB) , tex t p rocess ing cont ro l b locks
(TPCB), and diagnostics control blocks (DCB).

Control led Carr ier -
A communication line with a transmission carrier
s i g n a l t h a t i s r a i s e d a n d l o w e r e d w i t h e a c h
b l o c k t r a n s m i t t e d ; f a i l u r e i s r e p o r t e d i f t h e
carr ier s ignal received does not fluctuate in a
s imi la r fash ion.

Control led Terminal -
A t e r m i n a l w h o s e i n p u t c a n b e s t a r t e d a n d
stopped by the network software. When a ter
minal places data on a communication line only
in response to a pol l , the maximum input rate
c a n b e c o n t r o l l e d b y c o n t r o l l i n g t h e p o l l i n g
rate. Mode 4 terminals are control led.

Coupler -
A hardware module resident in a front-end net
wo rk p rocess i ng un i t . Tha t coup le r l i n ks t he
ne two rk p rocess i ng un i t t o a hos t compu te r.
Tr a n s m i s s i o n s a c r o s s t h e c o u p l e r u s e b l o c k
p ro toco l .

Cross -
The so f tware suppor t sys tem fo r CCP. These
programs, which are run on the host , suppor t
source code programming in PASCAL, macroassem
bler, and microassembler languages. The com
piled or assembled output of the Cross programs
a r e i n o b j e c t c o d e f o r m a t o n h o s t c o m p u t e r
fi les . The ob jec t code fi les a re p rocessed by
other Cross programs and host installation pro
grams into a downline load file for an NPU.

Cyclic Redundancy Check (CRC) -
A check code transmitted with blocks/frames of
data. I t is used by several protocols.

Data -
Any portion of a message created by the source,
exclusive of any information used to accomplish
transmission of such a message.

Debugging -
The process of al ter ing a program to r id i t of
anomalies.

Dedicated Line -
A communicat ion l ine that is permanent ly con
nected between a terminal and a network proc
essing unit . Contrast with Switched Line.

DEFINE -
An NDL statement that provides the macro-l ike
c a p a b i l i t y o f s u b s t i t u t i n g a n i d e n t i fi e r i n
c o d i n g f o r a m o r e c o m p l e x e n t i t y. W h e n t h e
c o d i n g i s p r o c e s s e d , t h e i d e n t i fi e r i s i n t e r
preted as if it had been replaced by the complex
e n t i t y . A l s o , a N O S c o m m a n d t h a t c r e a t e s
permanent fi les.

Dest inat ion -
The device or application program designated to
receive the message.

Destination Node (DN) -
The NPU node tha t d i rec t l y i n te r faces to the
dest ina t ion o f a data b lock . For ins tance, the
DN of an upline block may be the host process
which passes the block to the appl icat ion pro
gram responsible for processing the block.

Device -
A s e p a r a t e l y a d d r e s s a b l e p o r t i o n o r a l l o f a
t e r m i n a l . T h i s t e r m i s u s e d i n v a r i o u s w a y s
within mode 4 communications documentation, as
shown in table C-l.

Diagnostics -
Software programs or combinations of programs
or tab les which a id the t roub leshooter in iso
lat ing problems.

60499500 R C-3

Direct Access File -
In the context of NOS permanent files, a direct
a c c e s s fi l e i s a fi l e t h a t i s a c c e s s e d a n d
m o d i fi e d d i r e c t l y.

Downline -
The d i rec t ion o f ou tpu t in fo rmat ion flow, f rom
a host computer application program.

Dump -
In the context of CCP, the process of transfer
r i n g t h e c o n t e n t s o f t h e N P U m a i n m e m o r y,
r e g i s t e r s , a n d fi l e 1 r e g i s t e r s t o t h e h o s t .
The dump can be processed by the Network Dump
Ana l yze r i n t he hos t t o p roduce a l i s t i ng o f
the dumped information.

Echo -
The process of displaying a keystroke on a con
sole. Echoing can be done from the TIP, from a
modem, or from the terminal itself.

Echoplex -
The process of returning received characters on
a f u l l - d u p l e x l i n e . N o t a l l t e r m i n a l s o n f u l l -
duplex communication lines are capable of echo
plex operat ion.

F i l e -
A u n i t o f b a t c h d a t a . F i l e s a r e t r a n s f e r r e d
between appl icat ion programs and terminals by
using PRUBs on the NPU's host side and trans
miss ion b locks on the NPU's te rmina l s ide . A
file contains one or more records. Example: a
c a r d r e a d e r j o b c o n s i s t s o f a fi l e c o n t a i n i n g
the card image records of al l the cards in the
job deck.

Format Effectors (FE) -
Characters in an output data stream that deter
mine the appearance of data at the console. A
f o r m a t e f f e c t o r u s u a l l y t a k e s t h e f o r m o f a
s i n g l e c h a r a c t e r i n t h e o u t p u t l i n e . F o r
p r i n t i n g d e v i c e s , t h e c h a r a c t e r i s t r a n s l a t e d
by the output side of the TIP into a combination
o f c a r r i a g e r e t u r n s , l i n e f e e d s , o r s p a c e s .
S imi la r ly, FEs fo r d isp lays can command new
l ines, screen c lear ing, or cursor posi t ion ing.

Frame -
A frame is a block of data sent across a high
speed l ink. I t is composed of control bytes, a
CRC sum, and (in some cases) data bytes in sub-
block sequence. A sub-block can be a network
data block or a part of a block. The frame is
the bas i c commun ica t i ons un i t used i n t r unk
(NPU to NPU) communications and provides high-
d a t a d e n s i t y i n b i t - s e r i a l f o r m a t o v e r d a t a -
grade lines, as well as data assurance.

Frames are transmitted as a sequence of bytes
through the mult ip lex subsystem which uses a
hardware-controlled frame on the input and out
put mult ip lex loops.

Free-Wheeling Terminal -
When a terminal can input at the discretion of
the te rmina l user and has an input ra te tha t
c a n n o t b e c o n t r o l l e d d i r e c t l y. A s y n c h r o n o u s
t e r m i n a l s a r e f r e e - w h e e l i n g . C o n t r a s t w i t h
Control led Terminal .

Front-End NPU -
A ne twork p rocess ing un i t t ha t d i rec t l y i n te r
faces to one or more hosts. Synonymous wi th
local NPU.

Full Duplex (FDX) -
Two-way simultaneous transmission on a communi
ca t ion l i ne .

Function Codes -
Codes used by the service module to designate
the type of function (command or status) being
t r a n s m i t t e d . Tw o c o d e s a r e d e fi n e d : p r i m a r y
function code (PFC) and secondary function code
(SFC). Function codes are also used between NAM
and the application programs in al l supervisory
messages.

Half Duplex (HDX) -
Two-way alternating transmission on a communi
c a t i o n l i n e . N o r m a l l y a s i n g l e s e t o f d a t a
l ines carry input, output, and part of the con
t ro l in fo rmat ion . Conten t ion fo r use i s poss i
ble in HDX mode and must be resolved by the
protocol governing l ine t ransfers.

Halt Codes -
Codes generated by the NPU when it is stopped
by i t s so f tware . These codes , wh ich ind i ca te
the cause of the stoppage, are contained in a
CCP dump.

HASP -
A protocol based on the BSC protocol; it is used
by HASP workstat ions. A workstat ion has both
i n t e r a c t i v e a n d b a t c h d e v i c e s . T h e s t a n d a r d
code of all HASP devices is EBCDIC; however,
transparent batch data exchanges with the host
a r e a l s o p e r m i t t e d . T h e H A S P T I P c o n v e r t s
interactive HASP data from EBCDIC transmission
b locks to ASCI I IVT b locks; i t conver ts batch
HASP data from EBCDIC transmission blocks to
display code PRU blocks.

Header -
T h e p o r t i o n o r p o r t i o n s o f a b l o c k h o l d i n g
information about the block source, destination,
and type. During network movement, a block can
acqu i re severa l headers . Fo r examp le , du r ing
movement of a block from a terminal to the host
over an X.25 network , the b lock acqu i res the
fol lowing headers: one at the terminal (a lso a
trai ler), one for the frame, one for the packet,
and another for the host appl icat ion program.
Headers are discarded by the appropriate stage
of processing, so that in this example, the host
sees only the application program block header.
Conversely, headers are generated and discarded
as needed downl ine, so that the terminal sees
only the terminal header (and trai ler) .

Header Area (HA) -
An a rea , usua l l y one 60 -b i t wo rd , w i t h i n t he
app l i ca t ion p rogram con ta in ing the app l i ca t ion
block header for a NETPUT or NETPUTF call, or
the area to receive the header for a NETGET,
NETGETL, NETGETF, or NETGTFL call.

High-Speed Synchronous Line -
A data transmission l ine operat ing at or above
19200 b /s . These l ines are normal ly used for
local LIP/remote LIP transfers and for X.25 and
HASP network transfers.

/&~"$®$>\

C-4 60499500 R

Host -
The computer that controls the network and con
t a i n s t h e a p p l i c a t i o n p r o g r a m s t h a t p r o c e s s
network blocks.

Host Interface Package (HIP) -
The CCP program that handles block t ransfers
across the hos t / loca l NPU in te r face . The HIP
t rans fe rs con t ro l b locks and da ta b locks (IVT
blocks or PRU blocks).

Host Node -
The node ID number of the NPU coupler that
direct ly interfaces with a host computer.

Host Operator (HOP) -
The operator who resides at the system console,
i n i t i a t e s N A M , c o n t r o l s N P U s a n d n e t w o r k -
related host elements. The HOP may do all NPU
opera to r func t ions as we l l as those func t ions
unique to the HOP despite the existance of NPU
opera to rs . There can be on ly one HOP. Con
trast with NPU operator.

I n i t i a l i z a t i o n -
The process of loading an NPU and opt ional ly
dumping the NPU contents. After downline load
ing f r om the hos t , t he NPU ne two rk -o r i en ted
tab les a re configured by the hos t so tha t a l l
network processors have the same IDs for a l l
network termina ls , l ines, t runks, e tc .

Input -
Information flowing upline from terminal to host
computer.

Input Parameter -
A parameter in an AIP cal l that provides Input
to the AIP rout ine. An input parameter can be
a constant, an expression, or a symbolic address
f o r s u c h v a l u e s . I n p u t p a r a m e t e r s a r e n o t
altered by the completion of AIP processing.

Interact ive Device -
Any device capable of conducting both input and
o u t p u t , m a k i n g i t c a p a b l e o f d i a l o g w i t h t h e
Ne two rk Va l i da t i on Fac i l i t y. A l so known as a
conso le dev ice. An in teract ive dev ice is serv
iced by an application program using the inter
a c t i v e v i r t u a l t e r m i n a l i n t e r f a c e . C o n t r a s t
with Passive Device.

In terac t ive Vi r tua l Termina l (IVT) -
A b l o c k p r o t o c o l f o r m a t f o r i n t e r a c t i v e c o n
so les . CCP TIPs conver t a l l up l ine in terac t ive
b l o c k s t o t h i s f o r m a t (e x c e p t i o n : n o t r a n s
formations are made to transparent data except
t o p u t t h e d a t a i n t o b l o c k f o r m a t) . B y t h i s
method, appl icat ion programs in the host need
only to be able to process in teract ive data in
I V T f o r m a t r a t h e r t h a n i n t h e m u l t i p l i c i t y o f
formats that real terminals use. Downline mes
sages from the host to interact ive devices are
c o n v e r t e d f r o m I V T t o r e a l t e r m i n a l f o r m a t .
IVT process ing is cont ro l led by the T IPs ; the
TIPs use some common IVT modules.

Level -
For logical records, an octal number 0 through
17 in the sys tem-supp l i ed 48 -b i t marke r tha t
terminates a short or zero-length PRU.

Line -
A connection between an NPU and a terminal, or
a group of terminals.

L ink -
A connection between two NPUs or an NPU and a
host .

Link Interface Package (LIP) -
The CCP program that handles frame transfers
across a t runk; that is , across the connect ion
between a local and a remote NPU. A LIP uses
CDCCP protocol and interfaces on the local NPU
side to the HIP. On the remote NPU side, the
L I P i n t e r f a c e s w i t h t h e a p p r o p r i a t e T I P. I n
both local and remote NPUs, the LIP interfaces
w i t h t h e m u l t i p l e x e r s u b s y s t e m f o r t r a n s f e r
across the trunk.

L i s t -
A group of log ica l connect ions wi th the same
a p p l i c a t i o n l i s t n u m b e r , w h i c h a r e l i n k e d
together by NAM and treated as a single entity
in NETGETL or NETGTFL calls.

List Number -
See Application List Number.

Load -
The process of moving programs downline from
the host and storing them in the NPU main and
micromemory. Loading of a remote NPU is accom
plished by the host through the use of the LIP
in the local NPU.

Local Configuration Fi le (LCF) -
A fi le in the host computer system, contain ing
in format ion on the log ica l re la t ionships among
the serv ice e lements in the ne twork . The fi le
c o n t a i n s a l i s t o f t h e a p p l i c a t i o n p r o g r a m s
ava i lab le fo r execu t ion in the hos t compute r,
and the users tha t requ i re au tomat ic log in to
them. This is a NOS di rect access permanent
fi l e .

Local NPU -
An NPU tha t i s connec ted t o t he hos t v i a a
coupler. A local NPU always contains a HIP for
process ing b lock protocol t ransfers across the
h o s t / l o c a l N P U i n t e r f a c e . S y n o n y m o u s w i t h
front-end NPU. Contrast with remote NPU.

Logical Connection -
A logical message path established between two
a p p l i c a t i o n p r o g r a m s o r b e t w e e n a n e t w o r k
t e r m i n a l a n d a n a p p l i c a t i o n p r o g r a m . U n t i l
terminated, the logical connect ion a l lows mes
sages to pass between the two entities.

Logical L ine -
The basic message
See Physical Line.

u n i t o f a c o n s o l e d e v i c e .

Logical Link (LL) -
The por t ion of a log ica l connect ion defined by
h o s t n o d e a n d t e r m i n a l n o d e I D n u m b e r s . A
l o g i c a l l i n k i s a n e r r o r - f r e e p a t h a c r o s s t h e
network over which many separate logical con
nect ions are mul t ip lexed. A log ica l l ink cannot
traverse more than two NPUs.

60499500 R C-5

Logical Record -
Under NOS, a data grouping that consists of one
or more PRUs terminated by a short PRU or zero-
l e n g t h P R U . E q u i v a l e n t t o a s y s t e m - l o g i c a l -
record under NOS/BE.

Loop Multiplexer (LM) -
The hardware that in ter faces the CLAs (which
c o n v e r t d a t a b e t w e e n b i t - s e r i a l d i g i t a l a n d
b i t - p a r a l l e l d i g i t a l c h a r a c t e r f o r m a t) a n d t h e
input and output loops.

Low/Medimum-Speed Voice-Grade Line -
A l ine that operates a t b i t t ransmiss ion ra tes
at or below 19200 b/s. These l ines character
i s t i c a l l y c o n n e c t i n d i v i d u a l t e r m i n a l s t o a n
NPU or to an X.25 PAD service.

Macromemory -
The port ion of 255x Series network processing
unit memory that contains code involved in data
communicat ion, such as the Terminal In ter face
P r o g r a m . I t i s p a r t l y d e d i c a t e d t o p r o g r a m s
and common areas; the remainder is buffer area
used for data and overlay programs. Word size
i s 16 da ta b i t s p lus th ree add i t i ona l b i t s f o r
parity and program protection. Memory is pack
aged in 16K and 32K word increments.

Message -
A log ica l un i t o f in format ion, as processed by
an appl icat ion program. When transmit ted over
a network, a message can consist of one or more
blocks.

Micromemory -
The micro portion of the NPU memory. This con
s i s t s o f 8 1 9 2 w o r d s o f 6 4 - b i t l e n g t h . 1 0 2 4
words are Read Only Memory (ROM); the remaining
words are Random Access Memory (RAM) and are
alterable. The ROM memory contains the emulator
microprogram that al lows use of assembly lan
guage.

Microprocessor -
The portion of the NPU that processes the pro
grams.

Mode 4 -
A communication l ine transmission protocol that
r e q u i r e s t h e p o l l i n g o f s o u r c e s f o r i n p u t t o
the data communicat ion network. Contro l Data
defines two types of mode 4 equipment, mode 4A
a n d m o d e 4 C . M o d e 4 A e q u i p m e n t i s p o l l e d
th rough the hardware address o f the conso le
device, regardless of how many devices interface
to the network . Mode 4C equipment is po l led
through separate hardware addresses, depending
on the point each device uses to interface with
the network.

Modem -
A hardware device for convert ing analog levels
to d ig i ta l s ignals and the converse. Telephone
lines interface to digital equipment via modems.
Modem is synonymous with data set.

Module -
See Program.

Monitor -
The por t ion of the CCP base system sof tware
responsible for t ime and space al location with
in the computer. The principal monitor program
is 0PSM0N, which executes OPS level programs by
scanning a table of programs that have pending
tasks.

Multiplex Loop Interface Adapter (MLIA) -
The hardware portion of the multiplex subsystem
that contro ls the mul t ip lexing loops (input and
outpu t) as we l l as the in te r face be tween the
NPU and the multiplexing subsystem.

Multiplex Subsystem -
The portion of the base NPU software that per
forms multiplexing tasks for upline and downline
data, and a lso demul t ip lexes upl ine data f rom
the CIB and p laces the da ta in l i ne -o r ien ted
input data buffers.

Neighbor NPUs -
Two NPUs connected to one another by means of a
t runk .

Network -
An i n te rconnec ted se t o f ne twork p rocess ing
units, hosts, and terminal devices.

Network Access Method (NAM) -
A software package that provides a generalized
method of us ing a communicat ion network for
swi tch ing, buffer ing, queuing, and t ransmi t t ing
data. NAM is a set of interface rout ines used
b y a t e r m i n a l s e r v i c i n g f a c i l i t y f o r s h a r e d
a c c e s s t o a n e t w o r k o f t e r m i n a l s a n d o t h e r
a p p l i c a t i o n p r o g r a m s , s o t h a t t h e f a c i l i t y
program does not need to support the physical
structures and protocols of a private communi
cation network.

Network Address -
The address used by block protocol to establish
rou t ing fo r the message . I t cons is ts o f th ree
p a r t s ; D N - t h e d e s t i n a t i o n n o d e , S N - t h e
source node, and CN - the connection number.

Network Configuration -
T h e p r o c e s s o f s e t t i n g t a b l e s a n d v a r i a b l e s
throughout the network to ass ign l ines, l inks,
t e r m i n a l s , e t c . , s o t h a t a l l e l e m e n t s o f t h e
network recognize a uniform addressing scheme.
A f t e r c o n fi g u r a t i o n , n e t w o r k e l e m e n t s a c c e p t
all data commands directed to/through themselves
and reject all other data and commands.

Network Configuration File (NCF) -
A network defini t ion fi le in the host computer,
containing information on the network elements
a n d p e r m i s s i b l e l i n k a g e s b e t w e e n t h e m . T h e
s t a t u s o f t h e e l e m e n t s d e s c r i b e d i n t h i s fi l e
i s m o d i fi e d b y t h e n e t w o r k o p e r a t o r i n t h e
cou rse o f manag ing t he ne two rk t h rough t he
Communications Supervisor. This is a NOS direct
access permanent file.

Network Defini t ion Fi le -
Either of the two types of NDL program output
fi l e s t h a t d e t e r m i n e t h e c o n fi g u r a t i o n o f t h e
ne twork . Th is can be a ne twork configura t ion
fi l e o r a l o c a l c o n fi g u r a t i o n fi l e .

C-6 60499500 R

J P N
Network Definition Language (NDL) -

The compiler- level language used to define the
n e t w o r k c o n fi g u r a t i o n fi l e a n d l o c a l c o n fi g u
ra t i o n fi l e co n te n t s .

Network Definition Language Processor (NDLP) -
The network software module that processes an
NDL program as an off-l ine batch job to create
the network definit ion files and other NDL pro
gram output.

Network Element -
Any configurable entity supervised or loaded by
the Network Supervisor. A network element con
s i s t s o f a n y e n t i t y i n t h e t o t a l n e t w o r k t h a t
i s no t a communica t ion e lement ; th is te rm is
usually applied to the data communication net
w o r k e n t i t i e s c o m p r i s i n g t h e N P U s a n d t h e i r
l inkages.

Network Logical Address -
See Network Address.

Network Processing Unit (NPU) -
The co l lec t ion o f ha rdware and so f tware tha t
swi tches , bu f fe rs , and t ransmi ts da ta be tween
terminals and host computers.

Network Supervisor (NS) -
A portion of the network software, written as a
NAM application program. The Network Supervisor
dumps and loads the NPUs in the communication
network.

Node -
A h a r d w a r e o r s o f t w a r e e n t i t y t h a t c r e a t e s ,
a b s o r b s , s w i t c h e s , a n d / o r b u f f e r s m e s s a g e
blocks. NPUs and host couplers are communi
cation nodes of the network.

NPU Operator -
The network operator who resides at a terminal
and contro ls network e lements such as NPUs,
t r u n k s , l o g i c a l l i n k s , l i n e s , a n d t e r m i n a l s .
Contrast wi th Host Operator. Also, an operator
using the offnet NPU console.

Off-Line Diagnostics -
Opt iona l d iagnos t i cs fo r the NPU tha t requ i re
the NPU to be disconnected from the network.

On-Line Diagnostics -
Opt iona l d iagnos t ics fo r the NPU tha t can be
executed whi le the NPU is connected to , and
operat ing as a par t o f the network . Ind iv idua l
l i nes be ing tes ted mus t , however, be d iscon
nected from the network. These diagnostics are
provided if the user purchases a network main
tenance contract.

OPS Monitor -
The NPU monitor. See Monitor.

Output -
Information flowing downline from the host.

Output Buffer -
Any buffer that is used to hold a downline mes
sage from the host.

Packet -
A g r o u p o f b i n a r y d i g i t s , i n c l u d i n g d a t a a n d
c a l l c o n t r o l s i g n a l s , w h i c h i s s w i t c h e d a s a
s i n g l e u n i t . T h e d a t a , c o n t r o l s i g n a l s , a n d
e r r o r - c o n t r o l i n f o r m a t i o n a r e a r r a n g e d i n a
spec i fic fo rma t .

Packet Assembly/Disassembly Service (PAD) -
A definit ion of the procedures for the operation
of an asynchronous terminal through a packet-
switching network (PSN).

Assembly: The accumulat ion of characters from
an asynch ronous dev i ce i n t o da ta b l ocks f o r
t r a n s m i s s i o n v i a a P S N . D i s a s s e m b l y : T h e
e n c o d i n g o f b l o c k s f o r t r a n s m i s s i o n t o a n
asynchronous terminal.

Packet-Switching Network (PSN) -
A n e t w o r k t h a t p r o v i d e s d a t a c o m m u n i c a t i o n
service between var ious terminal and computer
s y s t e m s o r n e t w o r k s . T h e P S N i s u s u a l l y
licensed as a common carrier.

Terminal inter face to a PSN is defined by the
packet assembly/disassembly (PAD) service. PSN
interface with a NOS network is defined by the
X.25 protocol.

PAD SubTIP -
A subTIP of the X.25 TIP that allows asynchro
nous ASCI I t e rm ina l s t o commun ica te ove r a
packet-switching network.

Paging (Screen) -
The process of fil l ing a CRT display with data
and holding additional data for subsequent dis
p lays. Changing the paged d isp lay is terminal
opera to r con t ro l led i f the page wa i t op t ion i s
se lected.

Par i t y -
A t ype o f da ta assu rance . The mos t common
p a r i t y i s c h a r a c t e r p a r i t y ; t h a t i s , t h e s u p
p ly ing o f one ex t ra b i t pe r cha rac te r so tha t
t h e s u m o f a l l t h e b i t s i n t h e c h a r a c t e r
(i n c l u d i n g t h e p a r i t y b i t) i s a l w a y s a n e v e n
(even parity) or odd (odd parity) number.

Pascal -
A high level programming language used for CCP
programs. Almost al l CCP programs are wri t ten
in the Pascal language.

Passive Device —
Any dev ice incapable o f conduct ing both input
and ou tpu t and t he re fo re i ncapab le o f d i a l og
w i t h t h e N e t w o r k Va l i d a t i o n F a c i l i t y . B a t c h
unit record per ipherals are typical examples of
pass ive dev ices . A lso known as a nonconso le
dev ice . Cont ras t w i th In te rac t ive Dev ice .

Password -
A p a r a m e t e r i n t h e t e r m i n a l o p e r a t o r ' s l o g i n
p rocedu re t ype - i n , used fo r add i t i ona l access
s e c u r i t y b y t h e N e t w o r k Va l i d a t i o n F a c i l i t y.
This parameter does not appear in any super
visory messages.

60499500 R C-7

Peripheral Processor Unit (PPU) -
The hardware unit within the host computer that
performs physical input and output through the
computer'8 data channels.

Physical Line -
A string of data that is determined by the ter
minal 's phys ica l character is t ics (page width or
l i n e f e e d) . C o n t r a s t w i t h l o g i c a l l i n e , w h i c h
i s d e t e r m i n e d b y a c a r r i a g e r e t u r n o r o t h e r
forwarding s ignal .

Physical Link -
A connection between two major network nodes
such as neighbor ing nodes. Messages can be
transmit ted over act ive physical l inks.

Physical Record Unit (PRU) -
Under NOS, the amount o f in fo rmat ion t rans
m i t t e d b y a s i n g l e p h y s i c a l o p e r a t i o n o f a
specified device. The size of a PRU depends on
the device, as shown in table C-2.

A PRU that is not full of user data is called a
short PRU; a PRU that has a level terminator
but no user data is called a zero-length PRU.

TABLE C-2. PRU SIZE

Device Size in Number
of 60-Bit Words

Mass storage

Tape in SI format
with binary data

Tape in I format

Tape in other format

64

512

512

Undefined

Po l l i ng -
The process of requesting input from hardware
or software that only provides input on request.
Pol l ing is a concept of several network proto
c o l s a n d i s u s e d t o a v o i d i n p u t c o n t e n t i o n .
Mode 4 te rmina ls a re po l led fo r inpu t by the
Terminal In ter face Program serv ic ing them; an
app l i ca t i on p rog ram po l l s a l l l og i ca l connec
tions for input, whether the logical connections
are wi th cont ro l led mode 4 termina ls or f ree
wheeling asynchronous terminals.

Por t -
The physical connection in the NPU through which
data is transferred to/from the NPU. Each port
is numbered and suppor ts a s ing le l ine . Sub-
ports are possible but not used In the current
version of CCP.

Primary Function Code (PFC) -
See Function Codes.

P r i o r i t y -
The condi t ion when traffic through the network
i s ma i n ta i n e d p re fe re n t i a l l y f o r o n e o r mo re
dev i ces ou t o f a l l dev i ces p roduc ing ne twork

t r a f fi c . Te r m i n a l s w i t h p r i o r i t y a r e t h e l a s t
devices for which network t raffic is suspended
when traffic must be temporarily stopped because
the network is opera t ing a t capac i ty. Dev ices
w i th p r i o r i t y rece i ve p re fe ren t i a l t r ea tmen t o f
thei r input or output .

Program Initiation Control Block (PICB) -
A p r o g r a m i n i t i a t i o n c o n t r o l b l o c k c o n s i s t i n g
of a sequence of commands that control NPU load
or dump operations for a specific NPU variant.
Several PICB's may exist on the network load
file, each as a separate record wi th a unique
NPU variant name as its record name.

Protocol -
A set of standardized conventions that must be
used to achieve complete communication between
elements in a network. A protocol can be a set
o f p redefined cod ing sequences , such as the
control byte envelopes added to or removed from
data exchanged with a terminal; a set of data
addressing and div is ion methods, such as the
block mechanism used between an appl icat ion
program and the Network Access Method; or a set
o f procedures used to cont ro l communicat ion,
such as the supervisory message sequences used
between an application program and the Network
Access Method.

PRU Block (PRUB) -
Physica l record uni t b lock. A b lock format for
batch devices that is compatible with the host's
P R U (b a t c h fi l e) h a n d l i n g c a p a b i l i t i e s . C C P
T I P s c o n v e r t a l l u p l i n e b a t c h d a t a t o t h i s
format (exception: no transformations are made
to transparent data except to put the messages
into PRUBs). By th is method, appl icat ion pro
g r a m s i n t h e h o s t n e e d o n l y t o b e a b l e t o
process batch data in PRU format rather than in
the mu l t ip l i c i t y o f fo rmats tha t rea l te rmina ls
use. Downl ine messages from the host to real
batch devices are converted from PRUB to real
terminal format. PRUB processing is control led
by the TIPs with the help of the BIP.

PRU Device -
Under NOS, a mass storage device or a tape in
SI or I fo rmat , so ca l led because records on
these devices are written in PRUs.

Public Data Network (PDN) -
A network that supports the interface described
in the CCITT protocol X.25.

Queues -
Sequences o f b l ocks , t ab l es , messages , e t c .
Most network queues are maintained by leaving
the queued elements in place and using tables
of po in ters to the next queued e lement . Most
q u e u e s o p e r a t e o n a fi r s t - i n - fi r s t - o u t b a s i s .
A s e r i e s o f w o r k l i s t e n t r i e s f o r a T I P i s a n
example of an NPU queue.

Random File -
In the context of the NOS operating system, a
fi le w i t h t he random b i t se t i n t he fi l e env i
ronment table; indiv idual records are accessed
by their relative PRU numbers.

' " ^ \

C-8 60499500 S

,>*^?\

zi^x

Record -
(1) A d a t a u n i t d e fi n e d f o r t h e h o s t r e c o r d
manager; (2) a data unit defined for HASP work
s t a t i o n s . I n e i t h e r c a s e , a r e c o r d c o n t a i n s
space for a t leas t one character o f data and
normally has a header associated with it. HASP
records can be composed of subrecords.

Regulat ion -
The process of making an NPU or a host progres
sively less avai lable to accept var ious c lasses
o f i n p u t d a t a . T h e h o s t h a s o n e r e g u l a t i o n
scheme; the host and mult iplex interfaces of a
local NPU have another scheme; and the multiplex
interface to a neighbor NPU has a third regula
t i o n s c h e m e . S o m e t y p e s o f t e r m i n a l s (f o r
instance, HASP workstations) may also regulate
da ta . Messages a re c l ass i fied as supe rv i so r y
o r se rv i ce (h ighes t p r i o r i t y) p r i o r i t y da ta and
n o n p r i o r i t y d a t a . P r i o r i t y o f d a t a i s e s t a b
l ished on a device-by-device basis through the
PRI classification in NDL.

Remote NPU -
A ne twork p rocess ing un i t l i nked ind i rec t l y to
a host computer through other network processing
units. Contrast with Local NPU.

Response Messages -
A subclass of supervisory or service messages
that is a response to a supervisory or service
message of the or ig inator. Response messages
norma l l y con ta in the reques ted in fo rmat ion o r
i n d i c a t e t h a t t h e r e q u e s t e d t a s k h a s b e e n
s t a r t e d o r p e r f o r m e d . E r r o r o r a b n o r m a l
responses are sent when the responder cannot
del iver the informat ion or start the task.

Return Parameter -
A pa rame te r i n an A IP ca l l t ha t p rov i des as
i n p u t t o t h e A I P r o u t i n e t h e i d e n t i fi c a t i o n o f
a locat ion to which AIP shou ld t ransfer in for
mat ion . Th is loca t ion is w i th in the app l ica t ion
program's fie ld leng th and ou ts ide o f the A IP
p o r t i o n o f t h a t fi e l d l e n g t h . A r e t u r n p a r a m
eter cannot be a constant or a value in i tself.
Return parameters are always symbolic addresses.
The t ime at which t ransfer of informat ion f rom
AIP occurs depends on whether the program is
operat ing in paral le l mode and whether use of
the parameter is g lobal to a l l AIP rout ines or
local to the cal l in which i t is used.

Routing -
The process of sending data/commands through
the network to i ts dest inat ion (for ins tance, a
t e r m i n a l) . T h e n e t w o r k l o g i c a l a d d r e s s (D N ,
SN, CN) i s t he p r imary c r i t e r i on f o r r ou t i ng .
In the NPU, directories are used to accomplish
the rout ing funct ion.

Sequential -
A fi le organizat ion in which records are stored
in the order in which they are generated.

Service Channel -
The network logical connection used for service
m e s s a g e t r a n s m i s s i o n . F o r t h i s c h a n n e l , t h e
connection number is 0. The channel is always
configured, even at load time.

Service Message (SM) -
The network method of transmitting most command
and status information to/from the NPU. Service
messages use CMD blocks in the block protocol.

Service Module (SVM) -
The set of NPU programs responsible for proc
essing service messages. SVM is a part of the
BIP.

Short PRU -
A PRU that does not contain as much user data
as the PRU can hold, and is terminated by a
system terminator w i th a leve l number. Under
NOS, a short PRU defines EOR.

Source -
T h e t e r m i n a l o r h o s t c o m p u t e r p r o g r a m t h a t
creates a message.

Source Node (SN) -
The node that interfaces direct ly to the source
of a network data block.

S t r i n g -
A unit of information transmission. One or more
strings compose a record. A string can be com
p o s e d o f d i f f e r e n t c h a r a c t e r s o r c o n t i g u o u s
iden t i ca l cha rac te rs .

Subfunction Code (SFC) -
See Function Codes.

Subport -
O n e o f s e v e r a l a d d r e s s e s i n a p o r t . I n t h i s
release of CCP, subport is always equal to 0.

Supervisory Message -
A m e s s a g e b l o c k i n t h e h o s t n o t d i r e c t l y
i n v o l v e d w i t h t h e t r a n s m i s s i o n o f d a t a , b u t
which provides informat ion for establ ishing and
maintaining an environment for the communication
of data , between the app l ica t ion program and
NAM, and through the network to a destination
or from a source. Supervisory messages may be
transmitted to an NPU in the format of a service
message.

Switched Line -
A communication line connected with one network
processing unit but able to be connected to any
one of several terminals via a switching mecha
nism, such as a dialed telephone line.

Switching -
The process of rout ing a message or b lock to
t h e s p e c i fi e d i n t e r n a l p r o g r a m o r e x t e r n a l
d e s t i n a t i o n .

Symbolic Address -
The abst ract ident ificat ion o f an ent i ty serv ing
as a locat ion f rom which or to which informa
t i o n c a n b e t r a n s f e r r e d . A s y m b o l i c a d d r e s s
can contain information, but does not constitute
in fo rma t i on . A symbo l i c add ress i s an i den t i
fi e r r e p r e s e n t e d i n c h a r a c t e r f o r m b y t h e
programmer and is equivalent to the concept of
a variable in the terminology of some program
ming languages. In FORTRAN or ALGOL programs,
typical symbolic addresses include array names,

60499500 R C-9

ar ray e lement names, and var iab le names. In
COMPASS, a symbolic address is equivalent to a
labe l in a source code loca t ion fie ld ; a re la
t i v e a d d r e s s c a n n o t b e u s e d a s a s y m b o l i c
a d d r e s s . I n C O B O L , a s y m b o l i c a d d r e s s i s
equivalent to a level 01 Data Description entry.
In SYMPL, a symbolic address is equivalent to
the name of an array or scalar item in a data
dec la ra t i on .

Synchronous -
A t r a n s m i s s i o n i n w h i c h c h a r a c t e r s y n c h r o
nization is achieved by recognit ion of a prede
fined sync character that precedes the block of
data.

Terminal -
An ent i ty, ex terna l to the data communicat ion
network but connected to it via a communication
l i n e , t h a t s u p p l i e s i n p u t t o , a n d / o r a c c e p t s
o u t p u t f r o m , a n a p p l i c a t i o n p r o g r a m . I n t h e
c o n t e x t o f t h i s m a n u a l , a t e r m i n a l i s e a c h
separate ly addressable group of dev ices com
pr is ing a physical terminal or s tat ion.

Terminal Address -
The hardware address of a mode 4 console, a
mode 4C p r in te r o r a 3780 ca rd punch . Th is
term is used in various ways within mode 4 com
municat ions documentat ion, as shown in tab le
C - l .

Terminal Class (TC) -
An NDL parameter and supervisory message field
va l u e d e sc r i b i n g t h e p h ys i ca l a t t r i b u te s o f a
g r o u p o f s i m i l a r t e r m i n a l s , i n t e r m s o f a n
archetype terminal for the group.

Terminal Control Block (TCB) -
A control b lock wi th in CCP contain ing configu
r a t i o n a n d s t a t u s i n f o r m a t i o n f o r a n a c t i v e
terminal. TCBs are dynamically assigned.

Terminal Definition Commands -
A group of commands that allow the operator at
the termina l or a host app l ica t ion program to
control some of the IVT transforms made by a
TIP.

Terminal Interface Program (TIP) -
A portion of the Communications Control Program
tha t p rov ides an i n te r face fo r t e rm ina l s con
nected to a 255x Series network processing unit.
The TIP per forms character convers ion to and
f rom 7 -b i t ASCI I , l im i ted ed i t i ng o f t he i npu t
a n d o u t p u t s t r e a m , p a r i t y c h e c k i n g , a n d s o
f o r t h .

Terminal Name (TNAME) -
A name of up to seven letters and digits known
to the network and used to identify a device to
the network operator.

Terminal Node -
The node number
interfaces with a

associated
te rm ina l .

w i th an NPU tha t

Terminal Operator -
The person operating the controls of a terminal.
Contrast with User.

Terminal Serv ic ing Faci l i ty -
See Application Program.

Test Utility Program (TUP) -
A d e b u g g i n g u t i l i t y t h a t s u p p o r t s b r e a k p o i n t
debugging of CCP as well as other uti l i ty type
operations such as loading and dumping.

Text Area (TA) -
The a rea w i th in the app l i ca t ion p rogram tha t
receives the message block text from a NETGET,
NETGETF, NETGTFL, or NETGETL call, or contains
the message block text for a NETPUT or NETPUTF
c a l l .

Text Length in Characters (TLC) -
A fie ld in the app l i ca t ion b lock header spec
ifying the number of character bytes of text in
the message block.

Text Length Maximum (TLMAX) -
Maximum length in host central memory words of
the supervisory message or network data block
t h a t t h e a p p l i c a t i o n p r o g r a m w i l l a c c e p t f o r
processing.

Timing Services -
The subset of base system programs within CCP
which provide timeout processing and clock times
f o r m e s s a g e s , s t a t u s , e t c . T i m i n g s e r v i c e s
provide the drivers for the real-t ime clock.

T r a i l e r - •
Contro l in format ion appended to the end of a
m e s s a g e u n i t . A t r a i l e r c o n t a i n s t h e e n d - o f -
data control signals. Trai lers can be generated
by the te rmina l o r by an in te rmed ia te dev ice
such as a frame generator. Not all headers are
matched w i th t ra i l e rs , a l though some dev ices
split their control information between a header
a n d a t r a i l e r. T h e t r a i l e r u s u a l l y c o n t a i n s a
da ta assurance fie ld such as a CRC-16 o r a
checksum. Like headers, trai lers are generated
and d iscarded at var ious stages a long a data
block 's path.

Transparent Mode -
A s o f t w a r e f e a t u r e p r o v i d e d b y t h e N e t w o r k
Access Method and the network processing unit
TIP. When transparent mode transmission occurs
between an application program and a terminal,
the Network Access Method does not convert data
to or from display code, and the TIP does not
edit the character stream or convert the char
ac te rs to o r f rom 7-b i t ASCI I code. When no
par i ty is in e f fec t for the termina l and t rans
parent mode transmission occurs, al l eight bi ts
of the character byte can be used to represent
c h a r a c t e r s i n 2 5 6 - c h a r a c t e r s e t s (s u c h a s
EBCDIC).

Trunk -
The dedicated communication line connecting two
network processing units.

Trunk Protocol -
The pro toco l used fo r communica t ing be tween
neighboring NPUs. It is modified CDCCP proto
col that uses the frame as the basic communica
tions element.

C-10 60499500 R

Typeahead (Terminal) -
The ab i l i t y o f a t e rm ina l t o en te r i npu t da ta
at all times. The ASYNC TIP supports typeahead;
the X.25 TIP suppor ts typeahead i f i t i s pro
vided by the PSN.

Upl ine -
The direct ion of input flow to a host computer
application program.

User -
Tha t pe rson o r g roup o f peop le who a re the
preparers and/or rec ip ients o f messages com
municated wi th an appl icat ion program v ia the
network. A user may interface with one or more
termina ls , o r w i th no te rmina ls . Cont ras t w i th
terminal operator.

User Name -
The NOS va l ida t ion fi le parameter en tered by
the terminal operator dur ing the Network Val i
da t ion Fac i l i t y log- in procedure .

Virtual Channel (X.25/PAD) -
A channe l defined fo r mov ing data be tween a
t e r m i n a l a n d a h o s t . V i r t u a l c h a n n e l s a r e
defined for the length of t ime that the terminal
is connected to the PSN.

Word -
The basic storage and processing element of a
c o m p u t e r. T h e N P U u s e s 1 6 - b i t w o r d s (m a i n
memory) and 32-bit word (internal to the micro
p r o c e s s o r o n l y) . A l l i n t e r f a c e s a r e 1 6 - b i t
wo rd (DMA) o r i n cha rac te r f o rma t (mu l t i p l ex
loop in ter face) . Characters are s tored in main
memory two per word. Hosts (CYBER series) use
60-bit words but a 12-bit byte interface to the
NPU.

Some terminals such as a HASP workstation can
use any word size but must communicate to the
NPU in character format. Therefore, workstation
word size is transparent to the NPU.

Worklist Processor -
Within CCP, the base system programs responsible
for creat ing and queuing workl ist entr ies.

Work l i s t s -
Wi th in CCP, packets o f in fo rmat ion con ta in ing
the parameters fo r a ' task to be per fo rmed.
Programs use worklists to request tasks of OPS
level programs. Workl is t entr ies are queued to
t h e c a l l e d p r o g r a m . E n t r i e s a r e o n e t o s i x
words long , and a g iven p rogram a lways has
entries of the same size.

X.25 Protocol -
A CCITT protocol used by the packet-switching
n e t w o r k . I t i s c h a r a c t e r i z e d b y h i g h - s p e e d ,
f r a m e d d a t a t r a n s f e r s o v e r l i n k s . A P S N
requires a PAD access for attaching asynchronous
termina ls .

X.25 TIP -
The CCP TIP that interfaces an NPU to a packet-
switching network.

Zero-Length PRU -
A PRU that contains system information but no
user data. Under NOS, a zero-length PRU defines
EOF.

MNEMONICS
F o l l o w i n g i s a l i s t o f m n e m o n i c s u s e d i n t h i s
manual.

ABH Application Block Header

ABL Appl icat ion Block Limit

ABN Application Block Number

ABT Application Block Type

ACN Application Connection Number

ACT Application Character Type

AIP Application Interface Program

ALN Application List Number

ANAME Application Name

APL A Programming Language

ASCII American Standard Code for Info
Interchange

ASYNC Asynchronous

BCD Binary Coded Decimal

BIP Block Interface Package

BLK Message Block

BRK Break Block

BSC Binary Synchronous Communication

BT Block Type

Bl, B2 User-defined breaks

CA Cluster Address

CCITT C o m i t e C o n s u l t i f I n t e r n a t i o n a l
phon ique e t Te leg raph ique (an i n te r
n a t i o n a l c o m m u n i c a t i o n s s t a n d a r d s
organ iza t ion)

C C P C o m m u n i c a t i o n s C o n t r o l P r o g r a m

CDCCP CDC Communicat ions Control Procedure

C D T C o n v e r s a t i o n a l D i s p l a y Te r m i n a l

C E C u s t o m e r E n g i n e e r

C I B C i r c u l a r I n p u t B u f f e r

C L A C o m m u n i c a t i o n s L i n e A d a p t e r

C M D C o m m a n d B l o c k

C R C a r r i a g e R e t u r n

C R C C y c l i c R e d u n d a n c y C h e c k

C R T C a t h o d e R a y T u b e

C S C o m m u n i c a t i o n s S u p e r v i s o r

/ggSsy

60499500 R C - l l

DBC Data Block Clarifier (for blocks/SVM) ICT
DBZ Downline Block Size INITN

DEL Delete character INITR

DLFP Debug Log File Postprocessor util ity ISO
DN Destination Node IVT
DSR Data Set Ready LCF
DT Device Type LF
EBCDIC Extended Binary Coded Decimal Inter

change Code
LFG

LIP
EC Error Code LP
EOF End of File MCS
EOI End of Information MLIA

EOJ End of Job MPLINK

EOM End of Message MSG
EOR End of Record MTI
EOT End of Transmission

ETB End of Transmission Block
NAK

ETX End of Text
NAM

FD

FDX

Forward Data (block protocol)

Full Duplex

NCB

NCF

FE Format Effector
NDA

FET File Environment Table
NDLP

FF Form Feed
NIP

FN Field Number
NLF

FS

FV

Forward Supervision (block protocol)

Field Value

NOP

NPU

HA Header Area
NS

HASP Hous ton Au toma t i c Spoo l i ng
Pro toco l

Program
NVF

ODD

HDLC High-level Data Link Control PA

HDX Half Duplex PAD
HIP Host Interface Package PDN
HO Host Ordinal PFC
HOP Host Operator PIP
IAF Interact ive Fac i l i ty program PL
I CMD Interrupt Command PPU

ICMDR Interrupt Command Response PRU

Input Character Type

Init ial izat ion Block Acknowledgment

In i t ia l izat ion Block Request

International Standards Organization

In te rac t ive Vi r tua l Termina l

Local Configurat ion Fi le

Line Feed

Load File Generator

Link Interface Package

L ine pr in ter

Message Control System

Multiplex Loop Interface Adapter

The Pascal l ink editor

End-of-message block

Message Type Indicators (Mode 4 pro
toco l)

Negative Acknowledgment Block

Network Access Method

Network Configuration Block

Network Configuration Fi le

Network Dump Analyzer

Network Definition Language Processor

Network Interface Program

Network Load File

Network Operator

Network Processing Unit

Network Supervisor program

Network Val idat ion Faci l i ty

Ou tpu t Da ta Demand (Mu l t i p l ex sub
system)

P a r i t y

Packet Assembly/Disassembly

Public Data Network

Primary Function Code

Peripheral Interface Program

Page Length (IVT)

Peripheral Processing Unit

Physical Record Unit

,<^!\

C-12 60499500 S

/ ^ ^

PRUB

PSN

PW

QDEBUG

QTRM

RAM

RBF

RC

RCB

ROM

RR

RS

RST

RTS

SAM-P

SARM

SCB

SFC

S-Frame

SRCB

STX

SVM

SYNC

TAA

TAF

Physical Record Unit Block

Packet Switching Network

Page Width

PASCAL Debugging package

Queued Terminal Record Manager

Random Access Memory

Remote Batch Facility program

Reason Code

Record Control Byte (HASP protocol)

Read Only Memory

Receive Ready (trunk or X.25 protocol)

Reverse Supervision (block protocol)

Reset Block

Request to Send

System Autostart Module Program

Set Asynchronous Mode (trunk or X.25
p r o t o c o l)

String Control Byte (HASP protocol)

Secondary Function Code

Supervisory Frame (trunk or X.25 pro
t o c o l)

Subrecord Control Byte (HASP protocol)

Star t of Text

Service Module (for processing service
messages)

Synchronizing Element

Text Area Array

Transac t i on Fac i l i t y

T C T e r m i n a l C l a s s

T C B T e r m i n a l C o n t r o l B l o c k

T I P T e r m i n a l I n t e r f a c e P r o g r a m

T L C T e x t L e n g t h i n C h a r a c t e r s

T L M A X Te x t L e n g t h M a x i m u m

T N A M E Te r m i n a l N a m e

T O T i m e o u t

T T Y T e l e t y p e w r i t e r

T U P T e s t U t i l i t y P r o g r a m

T V F T e r m i n a l V e r i fi c a t i o n F a c i l i t y

U A U n n u m b e r e d A c k n o w l e d g m e n t (t r u n k o r
X.25 protocol)

U B Z U p l i n e B l o c k S i z e

U-Frame Unnumbered Frame (see UA and UI)

U I U n n u m b e r e d I n f o r m a t i o n f r a m e (t r u n k o r
X.25 protocol)

U S U n i t S e p a r a t o r

X B Z T r a n s m i s s i o n B l o c k S i z e

X - O F F S t o p c h a r a c t e r (A S Y N C p r o t o c o l)

X - O N S t a r t c h a r a c t e r (A S Y N C p r o t o c o l)

X P T T r a n s p a r e n t

X . 3 C C I T T p r o t o c o l f o r a s y n c h r o n o u s t e r
m i n a l a c c e s s t o a p a c k e t - s w i t c h i n g
network

X . 2 5 C C I T T p r o t o c o l f o r p a c k e t - s w i t c h i n g
networks

X . 2 8 C C I T T p r o t o c o l f o r t e r m i n a l a c c e s s t o
PSN/PAD

X . 2 9 C C I T T p r o t o c o l f o r h o s t a c c e s s t o
PSN/PAD

yfH^'S

60499500 R C-13

APPLICATION PROGRAM CALL STATEMENT SUMMARY

This appendix summar izes the formats o f ca l ls to
AIP and QTRM routines. The general format of each
rou t ine i s l i s ted a lphabet ica l l y w i thou t descr ip t ion
opposite the page number where the routine is com
plete ly descr ibed.

COMPILER LEVEL (NETIO-RESIDENT
OR NETIOD-RESIDENT)

C a l l F o r m a t p a g e

C A L L N E T C H E K 5 _ 1 6

C A L L N E T D B G (d b u g s u p , d b u g d a t , a v a i l) 6 - 7

C A L L N E T D M B (d u m p i d , e c s) 6 - 9

C A L L N E T G E T (a c n , h a , t a . t l m a x) 5 - 4

C A L L N E T G E T F (a c n , h a , n a , t a a) 5 - 6

C A L L N E T G E T L (a l n , h a , t a , t l m a x) 5 - 1 0

C A L L N E T G T F L (a l n , h a , n a , t a a) 5 - 1 2

C A L L N E T L G S (a d d r e s s , s i z e) 6 - 1 5

C A L L N E T L O G (a d d r e s s , s i z e , f o r m a t) 6 - 9

C A L L N E T O F F 5 - 4

CALL NET0N(aname,nsup ,s ta tus ,m inacn , 5 -1
maxacn)

C A L L N E T P U T (h a . t a) 5 - 7

C A L L N E T P U T F (h a , n a , t a a) 5 - 8

C A L L N E T R E L (l f n , m s g l t h , n r e w i n d) 6 - 7

C A L L N E T S E T F (fl u s h , f e t a d r) 6 - 8

C A L L N E T S E T P (o p t i o n) 5 - 1 5

C A L L N E T S T C (o n o f f . a v a i l) 6 - 1 5

C A L L N E T W A I T (t i m e . fl a g) 5 - 1 4

C A L L N S T O R E (a r r a y , fi e I d , v a l u e) 4 - 1 1

[i v a l u e »] N F E T C H (a r r a y , f i e l d) 4 - 1 2

E N T E R F O R T R A N - X Q T C L O S E 8 - 1 5

E N T E R F O R T R A N - X Q T E N D T 8 - 1 4

E N T E R F O R T R A N - X Q T G E T U S I N G 8 - 1 3
t a - i n

E N T E R F O R T R A N - X Q T L I N K 8 - 1 4

Call Format

ENTER FORTRAN-X QTOPEN USING
n e t - i n f o - t a b l e

ENTER FORTRAN-X QTPUT USING
ta-out -acn^

ENTER FORTRAN-X QTTIP USING
ta-out -acn^

ASSEMBLY LANGUAGE LEVEL
(NETTEXT-RESIDENT)

Page

8-10

8-11

8-14 I

Call Format Page

[label] NETCHEK 5-16

[label] NETDBG dbugsup,dbugdat,
a v a i l

6-7

label2 NETDBG dbugsup,dbugdat,
ava i l , L IST

6-7

[label1] NETDBG (LIST=label2
\LIST-register name

6-7

[label] NETDMB dumpid,ecs 6-9

label2 NETDMB dumpid,ecs,LIST 6-9

[label1] NETDMB fLIST=label2
lLIST=regi8ter name

6-9

[label] NETGET acn,ha , ta , t lmax 5-4

label2 NETGET acn,ha , ta , t lmax ,
LIST

5-4

[label1] NETGET (LIST=label2
\LIST°regi8ter name

5-4

[label] NETGETF acn,ha,na,taa 5-6

label2 NETGETF acn,ha,na, taa,LISI 5-6

[label1] NETGETF /LIST=label2
\ LIST=register name

5-6

[label] NETGETL a ln ,ha , t a , t lmax 5-10

labe!2 NETGETL a ln ,ha , ta , t lmax ,L IST 5-10

[label1] NETGETL

[label] NETGTFL

label2 NETGTFL

J L I S T = » l a b e l 2 I 5 - 1 0(LIST=register name/

a l n , h a , n a , t a a 5 - 1 2

aln,ha,na,taa,LIST 5-12

60499500 S D-l

Call Format Page

[labell] NETGTFL (L I S T = l a b e l 2 \
lLIST=regIster name J

5-12

[label] NETLGS address,s ize 6-15

label2 NETLGS address,s ize,LIST 6-15

[labell] NETLGS | L I S T = l a b e l 2 \
\LIST=regi8ter name)

6-15

[label] NETLOG address,s ize, format 6-9
label2 NETLOG address,s ize, format ,

LIST
6-9

[labell] NETLOG (L I S T = l a b e l 2)
\LIST=regi8ter name)

6-9

[label] NETOFF 5-4

[label] NETON aname,nsup,s tatus, 5-1

label2 NETON

minacn,maxacn

aname,nsup,status,
minacn,maxacn,LIST

5-1

[labell] NETON (L I S T = l a b e l 2 \
tLIST=register name)

5-1

[label] NETPUT ha , ta 5-7

label2 NETPUT ha, ta ,L IST 5-7

[labell] NETPUT (L I S T = l a b e l 2 \
\LIST=register name)

5-7

[label] NETPUTF ha,na, taa 5-8

label2 NETPUTF ha,na,taa,LIST 5-8

[labell] NETPUTF / L I S T = I a b e l 2 { 5-8

[label] NETREL

\LIST=register name J

l f n , m s g l t h , n r e w i n d 6 - 7

Call Format Page

label2 NETREL l fn ,msg l th ,
nrewind,LIST

6-7

[labell] NETREL (L I S T = l a b e l 2 1
\LIST=register name/

6-7

[label] NETSETF fl u s h , f e t a d r 6-8

label2 NETSETF fl u s h , f e t a d r, L I S T 6-8

[labell] NETSETF < L I S T = l a b e l 2 1
\LIST=regi8ter name)

6-8

[label] NETSETP op t ion 5-15

label2 NETSETP opt ion,LIST 5-15

[labell] NETSETP (L I S T = l a b e l 2)
\LIST=register name)

5-15

[label] NETSTC o n o f f , a v a i l 6-15

label2 NETSTC ono f f , ava i l , L IST 6-15

[labell] NETSTC (L I S T = l a b e l 2 \
\LIST=register name/

6-15

[label] NETWAIT t i m e , fl a g 5-15

label2 NETWAIT t i m e , fl a g , L I S T 5-15

[l a b e l l] N E T W A I T | L I S T = l a b e l 2 \ 5 - 1 5
\LIST=register name)

[l a b e l] N F E T C H a r r a y , fi e l d , (X j \ 4 - 1 0
) B j /

[l a b e l] N S T O R E a r r a y , fi e l d = v a l u e 4 - 1 1 |

D-2 60499500 S

/ - ^ \

INDEX

0 ^ \

AB character 3-51
Abort-output-block (AB) character 3-51
Access word 6-1, 6-4
Accessing the network 5-1
App l i ca t ion

B l o c k l i m i t 2 - 4 , C - l
B lock type 2-7, C- l
Character types 2-23, C- l
Connection number 2-9, 4-8, C-l
Job s t ruc ture 6-1
List number 2-9, 3-13, 3-27, C-l
S i z e 2 - 3

Appl icat ion connect ion re ject ion 3-13
Application Interface Program (AIP)

Communication with NIP 4-15
Diagnostic messages B-l
Funct ion 1-4
Internal procedure ca l ls 4-17
Internal tables and blocks 4-18
Language interfaces 4-1
List number 2-9
Loading of 5-1, 6-1
Macro cal l formats 4-2
Residence 1-4
Statements 5-1, D- l
Subrout ine cal l formats 4-12

App l i ca t i on i n t e r rup t 3 -35
Application program

Connecting with terminal 3-1
Content 6-3
Dayfile messages B-l
Dependencies 6-14
Disab led 6-3
Execut ion 6-3
Failure and recovery 9-1
Job s t ruc tu re 6 -1
Mandatory 6-5
Message types 2-7
NAM application programs 1-6
Name 5-1, C-l
Pr imary 6-5
P r i v i l e g e d 6 - 5
Reserved names 5-2
R e s t r i c t e d 6 - 5
U n i q u e i d e n t i fi e r 6 - 5
Val idat ion (see Network Val idat ion Faci l i ty)

Archetype terminal C- l
ASCII terminals A-2
Assembly errors B-l
ASYNC TIP C-l
Asynchronous supervisory messages (see Supervisory

messages)
A u t o l i n k u t i l i t y 1 - 6
Automat ic input C- l
Automat ic log in C- l
Auto- recogn i t ion C-2

Backspace character (BS) 3-51
Base system software 1-5, C-2
Batch device C-2
BI/MARK/R 3-34

Block
Acknowledgment (see Block-delivered)
D e fi n i t i o n 2 - 1 , C - 2
Header area 2-8, 2-24
Length 2-1
L imi t 2-4 , 3-6 , 3-29, C-2
Nu l l 2 -8 , 5 -5 , 5 -11
S i z e 2 - 2
Text area 2-8
Type 5-10

B lock -de l i ve red 3 -29
Block Interface Program (BIP) 1-7, 1-8
Block mode operation 2-4
B lock -no t -de l i ve red 3 -29
BR command 3-51
Break 3-35, C-2
Break key as user break 1 (BR) 3-51
BS character 3-51
BSC TIP C-2
B u f f e r i n g C - 2
BYE 3-16
Bl character 3-51
B2 character 3-51

Call statement summary D-l
Cancel character (CN) 3-51
Carr iage-re turn id le count (CI) 3-51
CASF bit 6-5
Cassette dr ive 2-1, C-2
Change-connect ion- l i s t 3 -25
Change- input-character- type 3-39
Character

Convers ion A- l
D e fi n i t i o n C - 2
Set Anomalies A-2
S e t s A - l
Translation (See Character conversion)
Type 2-21, 3-39

CHARGE command 6-2
Checking completion of worklist processing

(NETCHEK) 5-16
CI command 3-51
C l u s t e r C - 2
CN command 3-51
Code conversion aids A-6
Code sets A- l
Commands, NOS batch job 6-2
Communication

Element C-3
I n t e r r u p t i o n s 3 - 3 2
L ine C-3
Network 1-2, C-3

Communication Control Program (CCP)
Hardware environment 2-1
In an NPU 2-1
Overview 1-6

Communications Supervisor (CS) 1-5, C-3
COMPASS

Assembly error messages B-l
I n t e r f a c e 4 - 2
Macro forms 4-2

yfSfi^^\

60499500 R Index-1

Computer network 1-1
COMTNAP 6-14
CON/ACRQ/A 3-19, 4-4
CON/ACRQ/R 3-17, 4-4
CON/CB/R 3-15, 4-4
CON/END/N 3-16, 4-5
CON/END/R 3-16, 4-5
CON/REQ/A 3-13, 4-5
CON/REQ/N 3-12, 4-4
CON/REQ/R 3-3, 4-4
Connecting to network (NETON) 5-1
Connection

A p p l i c a t i o n - t o - a p p l i c a t i o n 3 - 1 4
Dev ices - to -app l i ca t ions 3 -1
F a i l u r e s 3 - 1 6
I d e n t i fi e r s 2 - 9
L i s t s 3 -25 , 5 -10
Mon i to r ing 3 -18
Terminat ion 3-24

Connection-accepted 3-12
Connection-broken 3-14, 3-25
Connection-ended 3-14, 3-25
Connec t i on - i n i t i a l i zed 3 -14
Connect ion-re jected 3-13
Connect ion-request 4-4
Cont ro l charac te r A - l
Cont ro l l ing data flow 3-29
Con t ro l l i ng l i s t dup lex ing 3 -26
C o n t r o l l i n g l i s t p o l l i n g 3 - 2 5
Controlling parallel mode (NETSETP) 5-15
Convert ing data 3-39
CP command 3-51
f c r l x i l i
Cross System software 1-6, C-3
CSOJ bit 6-5
c t x i i i
CT command 3-51
CTRL/CHAR/A 3-50
CTRL/CHAR/N 3-50
CTRL/CHAR/R 3-49
CTRL/DEF/R 3-48, 4-6
CTRL/RTC/A 3-55
CTRL/RTC/R 3-55
CTRL/TCD/R 3-56
CUCP bit 6-1
Cursor posit ioning after input (CP)
CYBER channel coupler C-3

3-51

Data
Binary charac ter A- l
Coded character A-l
Conversion 3-39
Flow control 3-29
Message protocols 2-9
Truncat ion 3-39

Data block 2-1
Data message content and protocols 2-10
Dayfile messages B-l
DC/CICT/R 3-40
DC/TRU/R 3-43
Debug log file processor (DLFP)

Command 6-10
Direct ive keywords 6-11
Messages B-l

D e b u g l o g fi l e u t i l i t i e s 6 - 6
Debugging methods 6-6
Dedicated l ine C-3
Define-mu l t i p le - te rm ina l - cha rac te r i s t i cs
Define- te rm ina l - cha rac te r i8 t i c8 3 -48

Delimiters for single-message transparent input
(DL) 3 -51

Del imit ing and transmit t ing terminal input
Normalized mode 2-5
Transparent mode 2-20

Dest ina t ion C-3
Device C-2, C-3
Device types 1-9
Diagnostic messages B-l
Disconnecting from network (NETOFF) 5-4
Display code A-2
Display of Host Nodes (HD) 3-52
DL command 3-51
Downline 2-1, C-4
Downline block size 2-2
Downline monitoring 3-22

EB command 3-52
Echoplex mode (EP) 3-52, C-4
EL command 3-52
End-connection 3-16
End-of-block character (EB) 2-6
End-of -fi le (EOF) 6-1
End-of- informat ion (EOI) 6-1
End-of- l ine character (EL) 2-5
End-of-record (EOR) 6-1
EP command 3-52
ERR/LGL/R 3-62
Error repor t ing 3-61
Execut ion t ime errors B- l
Expand u t i l i t y 1 -6

FA command 3-52
Family name 3-10
Fa ta l e r ro rs 6 -6 , B - l
FC/ACK/R 3-30
FC/BRK/R 3-32
FC/INACT/R 3-24
FC/INIT/N 3-14
FC/INIT/R 3-14
FC/NAK/R 3-30
FC/RST/R 3-32
Field number (FN)
Field value (FV)

3-51, 3-52, 3-53
3-51, 3-52, 3-53

File environment table (FET) 6-8
Flow control for input devices (IC) 3-52
Flow control for output devices (0C) 3-53
Format effectors 2-14, C-4
Format ter 1-6
FORTRAN

I n t e r f a c e 4 - 11
Sample program 7-1

Frame 2-1, C-4
Full-ASCII input mode (FA) 3-52
Ful l duplex C-4

GETACT macro 6-1
GETJN macro 6-3
Glossary C- l
Graphic character A- l

3-49

Half duplex C-4
Hardware performance analyzer (HPA)
HASP TIP 2-4, C-4
HD command 3-52
Header area content 2-24
Header word (see Header area content)

1-6

Index-2 60499500 S

/iSPSSN

Terminate-output-marker 3-37
Terminating connections 3-24
Test Util ity Program (TUP) C-10
Tex t

Area 5-5, 5-8, 5-11, C-10
Length 5-5, 5-11, C-10

TO/MARK/R 3-37
Transac t ion Fac i l i t y (TAF) 1 -6
Transmission block 2-1, 2-4
Transparent

Delimiters for mult iple-message transparent
input mode (XL) 2-22

Delimiters for single-message transparent input
mode (DL) 2-22, 3-52

Mode transmission 2-10, 2-19, A-3
Truncat ing data 3-42
Trunk C-10
Trunk fai lure and recovery 9-1
Tu rn - l i s t - p roce88 ing -o f f 3 -27
Turn - l i s t -p roce8a ing -on 3 -27
Tu r n - o n - f u l l - d u p l e x - l i s t - p r o c e s s i n g 3 - 2 9
Turn -on -ha l f -dup lex - l i s t -p rocess ing 3 -28
Typeahead processing 4-15, C-l l

U p l i n e 2 - 1 , C - l l
Upl ine b lock s ize 2-2
USER command 6-2
U s e r - i n t e r r u p t 3 - 3 8
User name 3-10, 6-2, C-ll

Val id field numbers and field values 3-51
V i r t u a l c h a n n e l C - l l

Work l is t process ing 4-15
Work l i s ts , CCP C- l l

XL command 3-53
X.25 TIP PAD C-7

Zero-byte terminator 8-15
ZZZZZDN file 6-10
ZZZZZSN file 6-15

6 - b i t d a t a 2 - 2 3
2551 Series Communications Processor 1-6
3270 Bisynchronous 1-8, 1-14O xiii

n
60499500 S Index-5

/ ^

MANUAL TITLE:

/0^^.

COMMENT SHEET

Network Access Method Version 1
Host Application Programming Reference Manual

PUBLICATION NO.: 60499500

REVISION: W

This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluat ion of this manual. Please indicate any errors, suggested
additions or deletions, or general comments on the back (please include page number
references).

Please reply No reply necessary

FOLD FOLD

BUSINESS REPLY MAIL

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MN.

POSTAGE WILL BE PAID BY ADDRESSEE

(gg) CONTROL DATA
Technology and Publications Division
Mail Stop: SVL104
P.O. Box 3492
Sunnyvale, California 94088-3492

FOLD FOLD

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

NAME:

COMPANY:

STREET ADDRESS

CITY/STATE/ZIP

TAPE TAPE

/0^\,
HELLO 3-16
HOP/DB/R 3-57
HOP/DE/R 3-58
HOP/DU/R 3-58
HOP/NOTR/R 3-59
HOP/REL/R 3-59
HOP/RS/R 3-59
HOP/TRACE/R 3-58
Host

Ava i lab i l i ty D isp lay (HAD) 3-52
D e fi n i t i o n C - 5
Failure and recovery 9-1
Interface Program (HIP) 1-7, 1-8
Node C-5
Operator 1-5, C-5
Operator communication 3-56
Shutdown 3-60

IC command 3-52
IN command 3-52
In fo rma t i on i den t i fi ca t i on p ro toco l s 2 -7
I n i t i a l i z e d - c o n n e c t i o n 3 - 5
In - l i ne d iagnos t i cs 1 -7 , 1 -8
INPUT 6-2
Input device and transmission mode (IN) 3-52
Input parameter C-5
In te rac t i ve dev ice C-5
I n t e r a c t i v e F a c i l i t y (I A F) 1 - 4
Interact ive Vi r tua l Terminal (IVT) 2-10, 2-11, C-5
INTR/APP/R 3-36
INTR/RSP/R 3-36
INTR/USR/R 3-38

Job name 5-3, 6-3
Job s t ruc ture 6-1

LDSET 4-11, 6-2
L F x i i i
LI command 3-53
LIBRARY 4-11, 6-2
Line

D e fi n i t i o n C - 5
Failure and recovery 9-1
Feed idle count (LI) 3-53
Mode operation 2-4

L ink ed i to r 1 -6
Link Interface Program (LIP)
L i s t C - 5
List connect ions 5-10
LK command 3-53
Load file generator (LFG) 1-5
Local configurat ion fi le (LCF) 1-5, 6-5, C-5
Lockout of unsolicited messages (LK) 3-53
Logical connections 1-9, 1-12, C-5
Logical-error message 3-61
Log ica l l i ne C-5
Log ica l l i nk

D e fi n i t i o n C - 5
Failure and recovery 9-1

Log ica l p ro toco l 2 -1
LOGIN 3-25
LOGOUT 3-25
LST/FDX/R 3-29
LST/HDX/R 3-28
LST/OFF/R 3-27
LST/ON/R 3-27
LST/SWH/R 3-27

1-7, 1-8, C-5

3-25

Macro assembler 1-6
Macromemory C-6
Macros 4-2
Managing connection lists
Memory requirements 6-17
MESSAGE 6-3
Message

B locks 5 -4
D e fi n i t i o n 2 - 7 , C - 6
Pro toco ls 3 -1
Sequences 3-1
Transmission 5-4
Types 2-7

Message control system (MCS) 1-6
Micro assembler 1-6
Micromemory C-6
Mnemonics C-l4
MODE4 TIP C-6
Moni tor ing connect ions 3-18
Monitoring downline data 3-29
Multimessage transparent mode (XL) 3-53
Mult iplex loop interface adapter (MLIA) C-6
Multiplex subsystem C-6

NETCHEK
NETDBG
NETDMB
NETGET
NETGETF
NETGETL
NETGTFL
NETIO
NETIOD
NETLGS
NETLOG
NETOFF
NETON
NETPUT
NETPUTF
NETREL
NETSETF
NETSETP
NETSTC
NETTEXT
NETWAIT

6-7
5-16

1-12,
6-9
5-4

5-6
5-10
5-12

4-11, 6-2, 6-7
4-11, 6-2, 6-7
6-15
6-9
5-4

5-1
5-7

5-8
6-7
6-8
5-15

1-12, 6-15
4-2, 6-2
5-14

Network Access Method (NAM)
B lock 2 -1
Concepts 1-8, 2-1
Configura t ion fi le (NCF) 1-5 , C-6
Control character (CT) 3-51
D e fi n i t i o n C - 6
Definition Language (NDL) 1-4, 6-16, C-7
Dump Analyzer (NDA) 1-5
Dump fi le 1 -5
Element C-7
Fai lure and recovery 9-1
Funct ions 1-2, C-6
In fo rma t i on t ab le 8 -1
Operat ion 1-10

Network Interface Program (NIP)
Communication with AIP 4-15
Diagnostic messages B-l
Func t i on 1 -4

Network load fi le (NLF) 1-5
Network processing unit (NPU) 1-6, C-7

Communications Control Program 1-6
Console 1-7
Fai lure and recovery 9-1

Network Supervisor (NS) 1-5, C-7

60499500 S Index-3

Network Val idat ion Faci l i ty (NVF) 1-5
NFETCH 4-10, 4-12
Node (see Network processing unit)
Normalized mode transmissions 2-4, 2-10, 2-11, A-2
NPU operator C-7
NSTATUS 5-3
NSTORE 4-11, 4-13

OC command 3-53
On- l ine d iagnost ics 1-7
OP command ~3-53
OUTPUT 6-2
Output device selection (OP) 3-53
Over lays 6-3
Owning consoles 1-10

RECALL 5-8
Regulat ion C-9
Remote Batch Facil i ty 1-6, 6-3
Request-appl icat ion-connect ion 3-18
Request - te rmina l -charac ter is t i cs 3 -55
Request-to-act ivate-debug-code 3-57
Request - to-dump-field- length 3-58
Request - to - re lease-debug- log-fi le 3-59
Reques t - t o - res ta r t - s ta t i s t i cs -ga the r i ng
Reques t - to - tu rn -A IP- t rac ing-o f f 3 -59
Reque8t- to- turn-AIP- t rac ing-on 3-58
Request- to-turn-off-debug-code 3-58
Reserved symbols 4-1
Reserved words 5-2
Reset 3-32
Return parameter C-9
Ro l lou t 5 -8 , 5 -14
Routing C-8

/"^^S

3-59

PA command 3-53
Packet C-7
Packet Assembly/Disassembly Access (PAD)
Packet-Switching Network (PSN) 1-2, C-7
Page length (PL) 3-53
Page waiting (PG) C-7
Page width (PW) 3-53
Parallel mode operation 4-16, 5-15
Parameter l i s t 4 -1
Parity processing (PA) 3-53, C-7
Pascal 1-6, C-7
Passive device C-7
Peripheral Interface Program (PIP) 1-4
PG command 3-53
Phys ica l l ine C-8
Phys ica l p ro toco l 2 -1
Physical record unit (PRU)

Block C-8
D e fi n i t i o n C - 8
Device C-8
Short C-9
Z e r o - l e n g t h C - l l

PL command 3-53
Po l l i ng C-8
Por t C-8
Predefined symbolic names 4-1
Predefined symbolic values 4-2
Primary function code 2-32, 3-1
P r i o r i t y C - 8
Program execution processing 6-4
Protocols 2-1, 2-7, 2-10, C-8
Public data network (PDN) C-8
PW command 3-53

QTCLOSE statement 4-14, 8-15
QTENDT statement 4-14, 8-14
QTGET statement 4-14, 8-13
QTLINK statement 4-13, 8-14
QTOPEN statement 4-13, 8-11
QTPUT statement 4-14, 8-12
QTTIP statement 4-14, 8-14
Queued terminal record manager (QTRM)

Call statement summary D-l
Diagnostic messages B-l
Funct ion 1-4, 4-13
Network information table 8-1
Output

E d i t i n g 8 - 1 5
Formatt ing 8-15
Queuing 8-16

Sample program 8-18
Subrout ines 8-11
U t i l i t i e s 4 - 1 3

Queues C-8

C-7

SE command 3-53
Secondary function code 2-32, 3-1
Service channel C-9
Service module (SVM) 1-7, 1-8, C-9
SETLOF 6-8
SHUT/INSD/R 3-61
Shutdown 3-60
Source C-9
Special editing mode (SE) 3-53
S t a t i s t i c a l fi l e 6 - 1 5
Supervisory message

Asynchronous 2-35
Block header content 2-36
Content 2-31
D e fi n i t i o n C - 9
Format 3-1
Pro toco ls 3 -1
Queue 5-4, 5-6, 5-10, 5-12
Summarized 3-1
Synchronous 2-36

Switched l ine C-9
Symbolic address C-9
Synchronous C-10
Synchronous supervisory messages (see Supervisory

messages)
Syntax 5-1
System autostart module program (SAM-P) 1-7
System control point 6-1

TC command 3-53
TCH/TCHAR/R 3-46
Terminal access to the network 1-9
Terminal address C-10
Te r m i n a l - c h a r a c t e r i s t i c s - d e fi n i t i o n 3 - 5 6
Termina l character is t ics redefined 3-46
Terminal class 1-14, C-10
Terminal control block 9-1, C-10
Terminal definition commands

D e fi n i t i o n C - 1 0
Range of possible values 3-51

Terminal fai lure and recovery 9-1
Terminal Interface Programs (TIPs) 1-8, C-10
Terminal name C-10
Terminal transmission modes A-2
Termina l Ver i fica t ion Fac i l i t y (TVF) 1 -6
Terminals

Asynchronous 1-14
Batch 1-14, 2-7
Bisynchronous 1-14
D e fi n i t i o n C - 1 0
HASP 1-14
I n t e r a c t i v e 2 - 4
Mode 4 1-14, 2-20
V i r t u a l 1 - 9

/ < ^ k

Index-4 60499500 R

