CONTROL DATA
% o

350 Fore

i

CONTROL DATA®
6000 COMPUTER SYSTEMS
JOVIAL COMPILER

REFERENCE MANUAL

REVISION RECORD

REVISION DESCRIPTION
01 Initial printing.
(6-30-71)
02 Updated to incorporate VIM-requested corrections and additions into the original manual. Revision
{(9-3-71) bars omitted. The following pages have been revised: iii, vii, ix, x, 1-1, 1-3, 2-1 thru 2-13, 2-15
thru 2-17, 2-19 thru 2-28, 3-1 thru 3-7, 3-9 thru 3-11, 4-1 thru 4-5, 4-7, 4-9, 4-11, 4-13, 4-15
thru 4-27, 5-1, 5-2, 5-4 thru 5-9, 5-12 thru 5-14, 5-16 thru 5-19, 5-21 thru 5-25, 5-27 thru 5-36,
5-39 thru 5-44, 6-1 thru 6-4, 6-6 thru 6-19, 7-1 thru 7-9,7-11, 7-13 thru 7-19, 8-2, 8-4, 8-5, 10-1
thru 10-3, 10-5, A-1, A-14, B-1, C-1, G-4, G-5, G-9, K-1, K-2, N-1, and Index-1 thru Index-6.
A Final release. Updated portions of the technical descriptions and/or corrected errors in the text;
(2-15-72)

inclusion of Appendices M and N which were previously unavailable. The following pages are

affected: vii, viii, ix, x, 1-2, 6-2, 6-2.1, 6-2.2, 6-5, 6-6, 6-7, 6-19, 7-13, 10-1, 10-2, 10-3,

A-17, B-1, B-2, C-1, C-2, E-1, F-2, G-5, G-8, H-2, H-6, H-20 through H-34, I-5, M-1 through

M-11, N-1, N-2, Index-3, Index-4, Index-5, Index-6. Changes are marked with solid revision bars

in the margin of the page. All other pages converted to revision A in the event of reprinting.

Publication No.
17302500

Additional copies of this manual may
be obtained from the nearest Control

Data Corporation sales office Address comments concerning this
° manual to:

JOVIAL Compiler CONTROL DATA CORPORATION

Reference Manual Systems Publications

© 1971, 1972

215 Moffett Park Drive
Sunnyvale, California 94086

by Control Data Corporation

or use Comment Sheet in the back of

Printed in the United States of America this manual.

ii

17302500 Rev. A

PREFACE

This publication describes and illustrates the use of the JOVIAL (J3) compiler language
(Version 1. 0) for the CONTROL DATA® 6000 series computers., The JOVIAL compiler
operates under the control of the SCOPE 3. 3 operating system.

The language is versatile in application and permits unusual flexibility in the structuring of
data. A JOVIAL program is composed of declarations, which describe the structure of data
and the organization of the program, and statements, which specify processing operations to

be performed.

This manual is organized to show the JOVIAL characters and elements first, then the more
complex formulas and the syntax of statements, and finally the syntax of declarations. The
input/output statements and declarations are combined in a separate section., The permis-
sible combinations of statements and declarations into complete programs follow, and the

communications pool facility is described. The final sections describe the compilation and

execution of a JOVIAL program.

It is assumed that the reader is an experienced programmer and has some basic knowledge
of Control Data 6000 series computers. An understanding of data and processing declarations
is assumed in the discussion of statements; an understanding of statements and declarations

is assumed in the discussion of formulas.
The following publications may be consulted for further information.

Title Publication Number

Control Data 6000 Series Computers 60305200
SCOPE 3. 3 Operating System
Reference Manual

Control Data 6000 Series Computers 60176600
FORTRAN Extended
Reference Manual

Control Data 6000 Series Computer 60190900

COMPASS
Reference Manual

17302500 Rev. 02 iii

CONTENTS

17302500 Rev. 01

INTRODUCTION 1-1 3 FORMULAS
Language 1-1 Numeric Formulas
Program Description 1-1 Sequence of Operation
Program Structure 1-1 Mode of Results
Notation 1-3 Literal Formulas
BASIC ELEMENTS 2-1 Boolean Formulas
Relational Boolean
Characters 2-1 Formulas
Symbols 2-1 Numeric Relationals
JOVIAL-Defined Symbols 2-2 Literal Relationals
Arithmetic Operators -2 Entry Relationals
Relational Operators - Status Relationals
Logical Operators 2-3 Logical Boolean Formulas
Sequential Operators - Shorthand Notation
File Operators -
Assignment Operator -4 Sequence of Evaluation
Functional Modifiers 2-4 Functions
Separators 2-5 Comments
Brackets 2-5))
Declarators 2.6 DEFINE Directives
Directives 2- 4 STATEMENTS
Descriptors 2-
Statement Forms
User-Defined Symbols 2-17
Statement Labels
Data Type Properties 2-1
Constants 2-9 Statement Label List
Names 2-14 Assignment Statements
Variables 2-16 .
Numeric
Scope of Symbol
Definition 2=-27 Literal

Status 4-8 5 DATA DECLARATIONS 5-1

Boolean 4-9 Item Declarations 5-1
Entry 4-9 Integer 5-1
Exchange Statements 4-9 Fixed-Point 5-2
Numeric 4-10 Floating-Point 5-4
Literal 4-10 Literal 5-5
Status 4-11 Status 5-6
Boolean 4-11 Boolean 5-7
Entry 4-12 Implicit Item Declarations 5-7
Control Statements 4-12 Mode Declarations 5-8
GOTO 4-12 Arrays 5-10
Conditional (IF) 4-13 Array Declaration 5-11
IFEITH and ORIF 4-14 Constant List 5-12
Loop Statements 4-16 Referencing Arrays 5-16
FOR Clause 4-16 Tables 5-17
FOR Statement 4-17 Types of Tables 5-18
One-Component FOR Table Structure 5-18
Statement 4-18)
Two-Component FOR Table Size 5-19
Statement 4-19 Table Packing 5-21
Three-Component FOR
Statement 4-20 No Packing 5-21
Dense Packing 522

Parallel FOR Statements 4-21
Programmer Packing 5-24

Nested FOR Statements 4-22
Overlay Utilization 5-25
FOR ALL Clause 4-23
Table Declaration 5-25
Test Statement 4-24
Abbreviated Table
Program Control Statement 4-25 Declarations 5-26
Table Header
STOP 4-25 Declaration 5-26
DIRECT-JOVIAL Statements 4-26 Ordinary Table
Declarations 5-217
D - - .
I;gf&fmiQVIAL Pseudo 4-27 Defined Table
Declaration 5-30
ASSIGN Pseudo-Instruction 4-27 Like Table Declaration 5-34

17302500 Rev. 01

Constant List
Referencing Tables
Table Modifiers

ENTRY or ENT
NENT
NWDSEN

Data Allocation

Overlay Declaration

6 INPUT/OUTPUT

General

JOVIAL Files
Carriage Control
File Input/Output

File Declaration
SCOPE File Name
Buffer Size
File Status

File Positioning
File-Positioning Statement

Organization of Data For
Transfer

Data Forms

Simple Items
Arrays

Table Items
Parallel Items
Variable Items
Table Entries
Tables

Input/Output Statements
Opening Files

OPEN INPUT Statement

17302500 Rev. A

5-35
5-39
5-40

5-40
5-40
5-40

5-41
5-41

7

8

OPEN OUTPUT
Statement

Transferring Data

INPUT Statement
OUTPUT Statement

Closing Files

SHUT INPUT Statement

SHUT OUTPUT
Statement

Short Forms
Examples of I/O Data Forms

Object-Time Execution I/O
Execution Control Card
FORTRAN-Formatted Output

Formatted Output
Examples

PROCESSING DECLARATIONS
Switches
Index Switch Declaration
Index Switch Call
Item Switch Declaration
Item Switch Call
Closed Forms
CLOSE Routine
Procedures

Procedure Declaration
Parameter Passing
Procedure Call

Functions
Function Call

Exit from Closed Forms

COMPOOL

7-117

vii

9

COMPOOL Specification
Data Declaration

Common Declaration

Subprogram Declaration

COMPOOL Creation
COMPOOL Reference

Data Reference

Subprogram Reference

COMPOOL Examples
Program Structure
Main Program

Subprogram

DEBUGGING AIDS

Monitor Statement
(MONITOR)

Run-Time Error Monitor
Routine

APPENDICES

A

o)

viii

COMPILER ERROR MESSAGES

Source Diagnostic Messages

Termination Messages

SAMPLE DECKS

COMPILER LIMITATION AND

RESTRICTIONS

HINTS ON COMPILER USE

A-1
A-1

A-13

CALLING SEQUENCES AND ERROR

TRACING

CHARACTER SET

10 JOVIAL CONTROL CARD

G

Card Format
Parameters
Source Input
Binary Output
COMPOOL
List
Optimization
Monitor
Optional Prime
COMPOOL Assembly
Terminate Compilation

Single Statement
Scheduling

Program Name

10-1
10-1

10-1

10-3
10-3
10-4
10-4
10-4

10-5

10-5

Overlay Transfer Address 10-5

LIBRARY SUBPROGRAMS

FORTRAN Library Functions

G-1

.G-1

FORTRAN Library Subroutines G-4

JOVIAL Library Procedures
DECODE
ENCODE
HOLSTC
OVRLOD
REMQUO
SEGLOD

STCHOL

G-5
G-5
G-6
G-6
G-17
G-8
G-9

G-9

17302500 Rev. A

JOVIAL Library Function
REM

H SAMPLE LISTINGS

I SAMPLE PROGRAMS
Program 1
Data Input
Data Output to Printer
Program 2
Data Input

Data Output to Printer
and Punch

Program 3
Data Input

Program Output to Punch

J FIXED-POINT SCALING
Addition and Subtraction
Multiplication
Division

Exponentiation

K NUMERIC BIT PATTERNS
CHAR Examples
MANT Examples

Numeric Exchange Statement
Example

Floating-Point and Integer
Item Exchange

Fixed-Point Simple Item
Exchange

Packed Table Fixed-Point
Item Exchange

17302500 Rev. A

G-10
G-10

H-1

I-1
1-2

1-3

I-5
1-6

I-6
I-7
1-8

I-8

L DIRECT CODE ASSEMBLY
LANGUAGE

Counters
Origin
Location
Position
Source Statements
Comment
Instruction
Symbols
Registers
Address Expressions
Forcing Upper
Pseudo Instructions
Storage Instruction
BSS
BSSZ
JOVIAL Directives
DIRECT
JOVIAL
ASSIGN

Central Processor Operation
Codes

M PROGRAM OVERLAYS AND

SEGMENTS
Overlays
Creating JOVIAL Overlays
Loading Overlays
Program Overlay Examples

Segments

L-1
L-1
L-1
L-1
L-2
L-2
L-3
L-3
L-3
L-4
L-4
L-4
L-5
L-5
L-5
L-5
L-5
L-5
L-6

M-1
M-1
M-2
M-3
M-3

M-9

ix

Creating JOVIAL Segments M-10 N JOVIAL/INTERCOM

INTERFACE N-1
Loading Segments M-11
FIGURES
1-1 Elements of the JOVIAL B-1 Compile and Execute With
Language 1-2 INPUT File B-1
5-1 Parallel Table Structure - 5-20 B-2 Syntax Check Program
Library Corrections B-2
5-2 Serial Table Structure 5-20
B-3 Compile With Binary on
9-1 No MONITOR Specification 9-5 SVE B-2
9-2 MONITOR to OUTPUT 9-6 B-4 Compilation to Produce
Binary Deck B-3
9-3 MONITOR to Separate File 9-7
TABLES
2-1 Size Limits 2-8 A-2 Source Diagnostic Messages A-2
2-2 JOVIAL Primitives 2-15 A-3 Termination Messages A-14
2-3 Hollerith Data Movement 2-24 D-1 Extracting a Source Field D-1
3-1 Operand Types and Results 3-4 F-1 Character Set F-1
5«1 Item Description 5-9 F-2 Cross Reference
Representations -2
6-1 Operand Forms for Input
Statements 6-13 G-1 FORTRAN Library Functions G-2
6-2 Operand Forms for Output G-2 FORTRAN Library .
Statements 6-15 Subroutines G-4
6-3 Formatted Output Routines 6-20 L-1 Central Processor Operation
Codes L-7

A-1 Diagnostic Message Classes A-1

x 17302500 Rev. A

INTRODUCTION 1

This manual describes the JOVIAL (J3) language for CONTROL DATA® 6000 series com-

puters. It assumes a general knowledge of programming.

LANGUAGE

JOVIAL is a procedure-oriented language designed to make program writing easier. It uses
self-explanatory English words and the familiar notations of algebra and logic. There are no
card column restrictions on the format. Commands can be freely intermixed with the sym-

bols of a program.

The JOVIAL language provides a consistent notation to designate and manipulate numeric
values in both fixed- and floating-point representation, character values, status values,
Boolean values, table values, and multidimensional values. Therefore, it is a language
that can represent scientific and engineering problems involving numeric computations,
business problems involving large data files, and logically complex problems involving
symbolic data. Because the JOVIAL language allows the user to control storage allocation,
it is particularly suitable for problems requiring an optimum balance between storage space
and execution time. The organization of the JOVIAL language elements is shown in Fig-

ure 1-1.

PROGRAM DESCRIPTION

A JOVIAL program is composed of a set of declarations describing the data to be processed,
and a set of statements describing the processing rules. These two sets of descriptions are
independent to a large extent; changes in one set of descriptions do not necessarily entail
changes in the other. Data descriptions may follow the statements which use them, How-
ever, a warning diagnostic is given at the place of declaration. The declarations and state-
ments are formed from the elements of the language: names, constants, variables, and for-
mulas. These elements are formed from the JOVIAL character set according to the rules of

the language.

PROGRAM STRUCTURE

Two types of JOVIAL program compilations are possible: a main program or a subprogram.

The main program consists of an executable program called by the operating system and

17302500 Rev. A 1-1

afen8ueT TYIAOr 9y} JO sjudwdlH ‘-1 oandi g

SYILOVIVHD TVIAOT

v

S10EWAS
A311ddNS-YIWWVYIO0Ud

SITAVIIVA [SINVISNOD|SIWVN

17302500 Rev. A

STOGWAS DISve

SIAILOTYIA | SYOLVIVIDIA | SYOLdI¥DSIA | SLINDOVYE | SYOLVIVAIS | SYIIJIAOW | SO LVYIdO

v

SYINWROA
]
4 J
SINIW3ILVIS SNOIVIVIO3aQ

v

SWYYIOOUINS
ANV SWVYO0ud
TVIAOT

optional procedures. A subprogram is a procedure which is compiled alone and can only be
called by a main program. Subprograms would be used for large systems, or where a single
program contains many procedures that make it unwieldy. Program maintenance can be
simplified by placing the procedures as subprograms. To use subprograms, a COMmuni-
cations POOL (COMPOOL) must be used. The COMPOOL describes the subprogram pro-
cedures, their input and output parameters, and any data used by the subprograms and the
main program. The COMPOOL is used by the compiler to obtain information on data and
procedures not described in the program or subprogram being compiled. Thus, if a partic-
ular procedure must be changed and the data base and procedure parameters remain the
same, only that subprogram containing the procedure needing to be modified has to be
recompiled.

Every program or subprogram is composed of declarations and statements. Declarations
describe the structure of data and organization of the program, and statements specify the
processing operations to be performed.

NOTATION

In the discussion of the language that follows, a standard notation is used to describe the
JOVIAL language forms. This notation is not part of the language; it indicates the order in
which the elements appear and the options permitted the user.

o Upper-case words — JOVIAL words with a predefined meaning for the compiler
are written in upper-case letters. These words must be included in the form in
which they appear and must be spelled correctly.

° Lower-case words — Generic terms for classes of language elements are written
with lower-case letters. The user supplies the specific elements according to the
description of the generic term supplied in the accompanying text. A dash is used
to separate a series of words.

° Brackets [] — Any word or phrase that can be included in or omitted from a
JOVIAL form at the user's option is enclosed in brackets.

e Braces { } — Optional words or phrases are stacked one above the other and

enclosed in braces when one of the stacked items must be chosen.

° Punctuation — Any punctuation included in the forms is part of the structure of
the form, and must be included unless specifically noted otherwise.

[} Spaces — Wherever one space is shown, the user can supply more than one

space. Generally, spaces separate symbols but are not included in symbols.

17302500 Rev. 02 1-3

BASIC ELEMENTS 2

Every JOVIAL program is composed of characters and symbols. There are two types of
symbols: JOVIAL-defined and user-defined.

CHARACTERS

The JOVIAL character set is composed of :
o The 26 letters of the English alphabet
e Ten numerals, 0 through 9

® Twelve marks:)+*. $'(-/, = blank

NOTE

On the 6000 series hardware, the prime (')
is represented by the not-equal sign (7).

SYMBOLS

Symbols are the words and punctuation marks of JOVIAL. They are composed of one or more
characters which are usually set off by one or more blanks before and after each symbol. In

some cases, blanks are not necessary, but they may always be used in order to see the sym-
bols more easily. There are two types of symbols in statements and declarations: JOVIAL-

defined (or basic) symbols having unchangeable meaning, and user-defined symbols where

the user determines the meaning.

Basic symbols are operators, separators, brackets, functional modifiers, declarators,
descriptors, and directives. Symbols are separated from one another by spaces; there are
exceptions to this which will be indicated later, but spaces are never incorrect between

symbols.

All separators and certain operators and brackets are ideograms composed of a set of
JOVIAL marks. Other basic symbols are composed of two or more letters of the alphabet
to form names. These names are called primitives and cannot be used as user-defined
names. In addition, there is a set of descriptors composed of single-letter codes which are
JOVIAL-defined and reserved for their own exclusive meaning.

17302500 Rev. 02 2-1

JOVIAL-DEFINED SYMBOLS
JOVIAL-~defined symbols may be grouped as follows:

e Arithmetic Operators
. Relational Cperators
. Logical Operators

[Sequential Operators
° File Operators

® Assignment Operator
e Separators

e Brackets

e Functional Modifiers
e Declarators

e Directives

e Descriptors

ARITHMETIC OPERATORS

Arithmetic operators denote the five arithmetic operations. The symbols and their meanings
are listed below.

+ Addition

- Subtraction

Ak Multiplication
/ Division

*k opr (% *) Exponentiation

RELATIONAL OPERATORS

Relational operators denote comparative relationships between quantities and produce

Boolean results. Relational operators are denoted by the following mnemonics.

2-2 17302500 Rev. 02

EQ Is equal to

GR Is greater than

GQ Is greater than or equal to
LQ Is less than or equal to

LS Is less than

NQ Is not equal to

LOGICAL OPERATORS

Logical operators denote the three basic operations of Boolean algebra, The Boolean

operators and their functions are:

AND Conjunction
OR Union
NOT Negation

SEQUENTIAL OPERATORS

The sequential operators are listed below and explained immediately thereafter.

IF If

IFEITH If either

ORIF Or if (elge)

GOTO Go to

FOR Establish iteration loop

TEST Test loop iteration counter

RETURN Return from function or procedure

STOP Stop execution, return to operating system

FILE OPERATORS

File operators manipulate data files. A description of the particular manipulation performed

by each of these operators is given, as well as the mnemonics.

17302500 Rev. 02 2-3

OPEN
SHUT
INPUT
OUTPUT

ASSIGNMENT OPERATOR

Open a file
Shut a file
Input data
Output data

The assignment operator is ASSIGN. It manipulates data elements by assigning a value in

the midst of direct code.

FUNCTIONAL MODIFIERS

Functional modifiers express certain characteristics of program elements. The functional

modifiers and their meanings are listed below.

ALL

POS

ENTRY or ENT
NENT

NWDSEN

BIT

BYTE

ODD
LOC
ABS
CHAR
MANT

All entries of a table

File position

A single occurrence of all the items of a table

Number of entries within a table

Number of words per entry of a table

Designates a particular bit or a group of contiguous bits

Designates a single character or a group of contiguous

characters

Low-order bit test

Location in address units

Absolute value

Signed exponent of a floating variable

Signed mantissa of a floating variable

17302500 Rev. 02

SEPARATORS

Separators form the punctuation of JOVIAL. The various separator symbols and functions

performed by each are listed below.

n

(blank)

BRACKETS

Separates a statement from its name; used as a decimal
point in numeric constants; also used to distinguish use of

names in certain contexts.

Separates elements of lists, such as switch lists and

parameter lists.
Assigns a value.
Exchanges values.

Used as a character within a programmer=-supplied name

to effect readability.

Separates a pair of constants used to specify a range; also

successive entries of a table in an I/O statement.

Terminates a statement.

Brackets are used to delimit groups of symbols. Listed below are the symbols and
mnemonics that may be used as brackets. A brief description of each is also given.

(G

un

($3)

(* %)

I

BEGIN END
START TERM
DIRECT JOVIAL
IFEITH END

17302500 Rev. 02

Parenthesis
Absolute value
Subscript

Exponent

Comment

Compound statement
Program

Direct code

Alternative statement

DECLARATORS

Declarators describe the characteristics of program elements such as tables, subroutines,

and files. The declarators and the characteristics they describe are listed below.

ITEM Declare a single data item
OVERLAY Arrange data in storage to share the same beginning
location
TABLE Declare a group of items in tabular structure
STRING Declare a string data item
ARRAY Declare a data array
SWITCH Declare a computed logical branch
FILE Declare a file for 1/O operations
PROC Declare a procedure or function
CLOSE Declare a CLOSE routine
DIRECTIVES

Directives are instructions to the compiler to perform certain functions. The MODE direc-
tive changes the default data declaration mode, and the DEFINE directive substitutes one set

of symbols for another.

DESCRIPTORS

Descriptors are letters that denote certain characteristics in declarative contexts. Some
descriptors are used in more than one context; for example, P is used in table declarations
to indicate parallel structure, while in item declarations it denotes values to which data will
be initialized. The descriptors and their uses are listed below.
Preset Use

A Fixed-point; operational register

B Boolean; binary
D Dense packing
¥

Floating-point

2-6 17302500 Rev, 02

Preset Use

H Hollerith code

—

Integer

Like table

Dense packing

No packing

Parallel; preset
Rigid; rounded
Serial; status; signed
Transmission code

Unsigned

< o H v m Yy Pz 2 O

Variable

USER-DEFINED SYMBOLS

User-defined symbols are those constructed by the programmer., These symbols fall into
the general categories of constants, names, and variables, and are used to identify data.
The data types have distinct properties which are described briefly before the rules for
forming symbols are defined. Table 2-1 shows the maximum sizes allowed for items used
to define symbols.

DATA TYPE PROPERTIES

Data type properties can be defined as the mathematical and the machine representation for
the following data types:
e Numeric Data

Integer
Fixed-Point
Floating-Point

[Literal Data
° Status Data

° Boolean Data

17302500 Rev. 02 2-7

TABLE 2-1. SIZE LIMITS

Item Type Maximum Size

Numeric item 60 bits

Floating-point item used in
multiplication, division, and

exponentiation 47 bits

Mantissa (part of floating=-

point) 48 bits

Characteristic (part of

floating=point) 11 bits

Literal item 1500 bits
250 bytes

25 words

NUMERIC DATA

Numeric data can be represented as integer, fixed-point, or floating-point data.

INTEGER

Integer data is always an exact integral value (represented in one's complement) that is
positive, negative, or zero. Integers may have a precision not greater than 59 bits; signed
integers may be composed of 60 bits including the sign bit.

Integer values may range from -(2*%48-1) through +(2**48-1); addition and subtraction both
accept operands which give results ranging from -(2**59-1) through +(2*%*59-1). However,
loop variables, the results of arithmetic formulas used to compute loop variables in FOR
statements, and address computations (or subscripts) are limited to the range -(2%*17-1)
through +(2%*17-1),

FIXED-POINT

Fixed-point data always assumes the exact value times a power of 2 and is limited to a preci-
sion of 48 bits. In positive numbers, a scaling factor will indicate the number of fractional
bits. In the case of negative numbers, the scaling factor will indicate the number of bits to

be truncated.

2-8 17302500 Rev. 02

FLOATING-POINT

Floating-point data is an approximation of a real number; this approximation may be a posi-
tive, negative, or zero number. The internal representation is a sign bit followed by an
11-bit exponent biased by 20008 and a 48-bit integer. Nonzero real values may range from
(10%*%322) to (10**(-293)), and have a precision of approximately 15 decimal digits.

LITERAL DATA

Literal data is a string of bytes. Each byte is a graphic character with the machine repre-
sentation of a binary bit pattern or code. The maximum length of a literal is 250 characters.
Two types of character encoding are available:

e H for Hollerith code, which may be composed of any combination of display code
characters.

T

e T for transmission code (STC), which may be composed of any combination of the
alphabetic, numeric, or JOVIAL marks.

STATUS DATA

Status data has the same qualities as unsigned integer data; it is used to specify the conditions
that a status item can assume.

BOOLEAN DATA

Boolean data may be only 1 or 0 indicating a true or false, on or off, yes or no condition.

CONSTANTS
Constants are values that do not change during program execution. They include:

° Numeric Constants
— Integer constants

Decimal
Octal
Functional modifiers

TThe STC character set is a required feature for J3 JOVIAL compilers. The purpose is to
enable easier transfer of programs from one computer to another. STC characters have
the same bit representation on all computers. Note, that due to the use of 0g by the SCOPE
operating system, STC blank is defined as 05g on the 6000 computer.

17302500 Rev. 02 2-9

NENT (Rigid Table)
NWDSEN
LOC

— Floating-point constant
— Fixed-point constant

° Literal Constant

[Status Constant

° Boolean Constant

NUMERIC CONSTANTS

INTEGER CONSTANTS

An integer number can be a positive, negative, or zero number and is always represented in
binary in the machine. There are three forms of integers: decimal, octal, and functional

modifiers.

Decimal Constants

Decimal constants represent numbers in the base 10 number system. The general form is an

optional sign, a number, and an optional power of 10. The format is:
[+]nurnber1 [E numberz]
where

number1

[numberz] = any combination of digits 0 through 9

The decimal constants are evaluated as 1"1umber1 multiplied by 10 raised to the power of
numberz, and have a maximum of 48 bits of precision.

Example:

2E3 = 20E2 = 2000

Octal Constants

Octal constants represent integers in the base 8 system. The format is:

O(number)

When octal constants are used in literal formulas, the number of numerals may not exceed
500.

2-10 17302500 Rev. 02

Example:

0(20202) ©(110011) ©O(12345670)

NENT Constant Functional Modifier

NENT is an integer constant functional modifier only when it is used with a rigid table; with
variable tables, it is an integer variable., NENT denotes the number of entries in a rigid
table. The size of the table is determined at compilation time, and is not dynamically vari-
able during execution time. The size of the table is based on the value specified in the table
declaration. As a part of the table, an integer item is automatically defined and assigned to
the storage location immediately preceding the first data word of the table. The value of
NENT is obtained as follows:

NENT (name)
where
name = table name or name of a variable in the table

NWDSEN Constant Functional Modifier

NWDSEN is a constant indicating the number of words in a table entry. The form is:

NWDSEN (name)
where
name = a table or item within a table

1.OC Constant Functional Modifier

The LOC functional modifier is an integer constant that is the starting address within the
user's field length in central memory for the named operand.

LOC is dependent upon the position of the name within the JOVIAL object program and the
position of the program within the routines loaded. It will be a constant only for a given load
and execution. Recompiling the JOVIAL source program to produce a new object program,
or reloading the existing object program may result in a different value for the constant.
The format is:

Statement-name.

Table-name

LOC Table-item name

Array-name
File-name

e A statement-name is always followed by a period.

e Table or array-name may not be subscripted because LLOC always specifies the

first data word in a table.

17302500 Rev. 02 2-11

o Table-item name gives the location of the first word of the first occurrence of an
item in a table.
o File-name gives the first word of the file environment table (FET), by which the

executing program communicates with SCOPE I/O.

LOC is demonstrated below in a parallel form; i.e., each example gives the corresponding
octal location in the compiler-generated storage map. Also listed are actual octal execution
locations (as shown by the monitor output), which shows code location 0 of the program loaded
in the user's field length at location 100, etc. These values are normally listed separately,

but are combined here to show the actual values generated without going into detail.

Examples:

® START $ '' DEMONSTRATION OF LOC OPERATOR '' *STORAGE MAP LOCATION*
ITEM FIX A 20 S 10 § 0444

ARRAY ARY 10 10 I 18 S § 0445
TABLE TAB V 50 $ 0612
BEGIN
ITEM TOP F $ 0612
ITEM BOTTOM F $ 0674
END
FILE F1 H O R 128 V(OK) JWF § 0000
ITEM LOK I 18 S $ MONITOR LOK $ 0756
LAB1. 0774
GOTO LAB3 § 0777
LAB2. 0775
FIX = LOK § 0444
LAB3. 0777

The monitor output of the actual locations are:

e LOK = LOC (FIX) $ 0544
LOK = 1LOC (ARY) $ 0545
LOK = LOC (TAB) $ 0712
LOK = LOoC (TOP) $ 0712
LOK = LOC (BOTTOM) $ 0774
LOK = LoC (LOK) § 1056
LOK = LOC (LAB1l.) $ 1074
LOK = LOC (LAB2.) § 1075
LOK = LOC (LAB3.) $ 1077
LOK = LOC (F1) § 0100
STOP $
TERM $

FLOATING-POINT CONSTANT

A floating-point constant can represent a wide range of real numbers, and consists of an
integer and a characteristic. The floating constant is a decimal number optionally followed

by the letter E and a number:

[+] decimal-number [E [+] number]

2-12 17302500 Rev. 02

IJ
The decimal number is a combination of one or more numerals ranging from 0 through 9.
The floating constant is evaluated as a decimal number which is multiplied by 10 raised to
the power of the number after E, where an E is used.

Example:

3.14159 = 314159E-5 = . 314159E1

FIXED-POINT CONSTANT

A fixed-point constant is a real number whose representation includes the letter A followed
by a plus or minus, and a number indicating the bits to follow the decimal point. If the sign
is a negative, the number following the sign indicates the least significant bits that will be

truncated. Fixed-point constants are converted to a maximum of 48 bits of precision. The

format is:

floating-constant A[#] number

where
number = any combination of the numerals 0 through 9
Examples:
Fixed-point constants Binary
o 2.A4=2.24 AO =10
e 4.0A-2=.6E1A-2 =100

LITERAL CONSTANTS

A literal constant can represent alphabetic, numeric, special characters, or any combina-
tions of them. Each byte of the constant string is represented in the machine by the corres-

ponding binary configuration. Two types of character coding are available:
e Display code

° Transmission code

They are specified by H for display code and T for transmission code. The format is:

number (%) (string)

where
number = humber of bytes in the string; must be greater than 0 and equal to or less
than 250.
string = the list of characters to be encoded; it may be all blanks.

17302500 Rev. 02 2-13

Examples:
e 5H(ERROR)
e 20T(COPY TAPE TO PRINTER)

Hollerith constants may contain the full display code character set. Transmission code

constants contain only the JOVIAL character set (see Appendix F).

STATUS CONSTANTS

A status constant is any one of a set of values that can be assumed by a status variable.
Status constants are always defined in sets and associated with a particular status item. The
format is:

V (name)

where
letter or name = any name or loop variable name used in the same program, but not

a duplicate of a letter or name in the same status constant set.

The computer represents a status constant as a binary integer. The compiler increments
the value of the status constant in a set beginning with zero.

Examples: In the status constant set, V(X) V(Y) V(Z),

0

o V(X
° v({Y) = 1

e V(Z) = 2

BOOLEAN CONSTANTS

A Boolean constant represents one of two values of Boolean algebra, 1 or 0,
where
1 = true, yes, on, positive

0 = false, no, off, negative

NAMES

Names are user-supplied identifiers of elements in a program such as tables, switches, and

statements, and have no inherent meaning. Names must have the following qualities:

2-14 17302500 Rev. 01

° Consist of two or more letters, numerals, or primes
e Begin with a letter

e Not end with a prime

e Not contain two consecutive primes

® Not be identical to any basic symbol

PRIMITIVES

Certain names which fulfill the requirements for symbols are reserved for use by the JOVIAL
compiler. They may not be used as programmer-defined names. These are called primi-

tives and are shown in Table 2-2,

TABLE 2-2. JOVIAL PRIMITIVES
ABS ENTRY LQ OUTPUT
ALL EQ LS OVERLAY .
AND FILE MANT POS
ARRAY FOR MODE PROC
ASSIGN GOTO MONITOR RETURN
BEGIN GQ NENT SHUT
BIT GR NOT START
BYTE IF NQ STOP
CHAR IFEITH NWDSEN STRING
CLOSE INPUT OoDD SWITCH
DEFINE ITEM OPEN TABLE
DIRECT JOVIAL OR TERM
END LOC ORIF TEST
ENT

PRIME-PREFIXED PRIMITIVES

To provide a means of expanding the JOVIAL(J3) language to include new primitives without
requiring changes to programs written under earlier versions of the compiler, all new primi-
tives added to JOVIAL compilers must be prefixed by a prime. The 6000 series JOVIAL

17302500 Rev. 02

compiler will accept all primitives with a prime; for example, 'ABS has the same effect as
ABS. The P option on the JOVIAL control card will modify this so as not to accept the prim-
itives LOC and MONITOR unless they are prefixed by a prime. Thus, if programs written
for compilers not containing these two extensions as primitives use LLOC and MONITOR as
JOVIAL names, the programs can be compiled on the 6000 series computers by using the P
option on the JOVIAL control card.

LOOP VARIABLE NAMES
Loop variable names are a special case of name symbols. A loop variable is the iteration
counter of a FOR loop. A loop variable name is:

letter

Any letter can be used as a loop variable name. Even letters that are used in certain con-
texts as descriptors can be used. In JOVIAL, single letter symbols are recognized by con-

text, not form.

VARIABLES

The basic element of data is the item, which can occur singly or as a member of a string,
table, or array. A variable is an item that can change in value during program execution.
Variables are classified in two groups:

e Named variables

° Functional modifier variables

Variables are also categorized according to type:
e Numeric
] Literal
e Boolean
° Status
° Entry

Definitions of the named and functional modifier variables are given first, followed by the

descriptions of each variable category.

2-16 17302500 Rev. 02

DEFINITIONS
NAMED VARIABLES

Named variables can occur singly, as multidimensional vectors known as arrays, or as mem-
bers of a group in a single-dimensional structure known as a table.

Variables that occur singly are called simple variables and are identified by a name. The
format of a simple variable is:

name

A loop variable is the iteration counter of a FOR loop. A loop variable is identified by a loop
variable name consisting of a single letter succeeded by a FOR statement. Loop variables
are integer-type variables defined only within a loop. The format is:

letter

Any letter can be used including letters that are also used in certain contexts as descriptors.
Single letter symbols are recognized by context, not by form.

Variables that are members of a group are called indexed variables, and are identified by a
name followed by an index. An index is a list of numeric formulas (one for each dimension)
separated by commas, which specifies a particular occurrence of the variable. Each com-
ponent of the index is called a subscript; hence, an indexed variable is also called a sub-

scripted variable. The format of an indexed variable is:

name ($index$)

Example;
Simple Variables Loop Variables Indexed Variables
. XX FOR X = 1$ XX($1,38)
. ITEMA FOR C = 10,-2,0% ITEMA($BS)

The following list summarizes the types of named variables in an outline form.

1. Numeric

Integer: simple, loop, indexed
Fixed: simple, indexed
Floating: simple, indexed

17302500 Rev. 02 2-17

2. Literal

Simple
Indexed

3. Boolean
Simple
Indexed

4. Status

Simple
Indexed

FUNCTIONAL MODIFIER VARIABLES

A functional modifier variable is a JOVIAL primitive that is used to obtain special kinds of
information about JOVIAL data structures, or to change the bit pattern of a portion of a data
structure. The functional modifiers themselves can be variables, depending on the type of
data to which they are applied. Variable functional modifiers may be numeric, Boolean, or
entry. A functional modifier variable can be used any place where a named variable of the

same type may be used.

The following list summarizes the types of functional modifier variables permitted in the
JOVIAL program.
1. Numeric

POS
BIT
NENT
CHAR
MANT

2. Literal
BYTE
3. Boolean
ODD
4. Entry

ENTRY or ENT

2-18 17302500 Rev. 01

USAGE
NUMERIC VARIABLES

A numeric variable is a variable which is represented in the same way as an integer constant,
a floating-point constant, or a fixed-point constant. Loop variables are always numeric in-
teger variables. Numeric variables can be named variables or functional modifier variables.

The functional modifiers that introduce numeric variables are always integer variables.
They are POS, BIT, NENT, CHAR, MANT. These are detailed below.

POS Functional Modifier

The functional modifier POS is used to reference the logical record position of the specified

file. The format is:

POS (file-name)

When POS is used to the right side of an expression, e.g.,

HOLD = POS(FILEA)$

the current logical record position of the file is placed in the variable HOLD. When POS is
used to the left of an equal sign, it acts as an operator and the file is positioned to the loca-
tion computed from the right of the equal sign.

A value of zero specifies that the file is to be rewound and positioned at the first record.
That is, if the POS of a file were zero and the file were open for input, the first record would
be available to be read; if the file were open for output, the first logical record on that file

would be available for write operations.

Examples:
[} HOLD = POS(FILEA)S The current logical record position is saved in
the variable HOLD.
e IF POS (FILEA) EQ 50$% Transfers control to EQJ after 50 logical
GOTO EOJ$ records are on file.
e POS (FILEA) = 0 $ Rewinds the file.
e POS (FILEA) = 308 Positions the file to logical record 30.

17302500 Rev. 02 2-19

BIT Functional Modifier

The machine representation of a variable is a string of bits. BIT indicates a substring of a
literal integer or fixed variable that is a contiguous set of bits. A BIT functional modifier
ig itself an unsigned integer variable, and is governed by the same rules as integers in

assignment statements. The format of BIT is:

BIT ($index$) (named-variable)
where
index — indicates one or two numeric formulas, separated by commas.
The first numeric formula in the index designates the first (or
only) bit position of the named variable. The second, if present,
indicates the number of bits in a substring that begins with the
first bit position.

named-variable — can be defined as a fixed, integer, Boolean, status, or literal
variable.

BIT is not valid for floating-point variables. Bits are numbered from zero starting at the
left-most bit of the item. If the value of the second numeric formula in the index is zero,
the value of the BIT functional modifier is zero.

No check is made during compilation or execution to determine if the numeric formula in the
indexes specify bits within the named variable. If they are outside the range of the named
variable, the BIT modification will be performed giving undefined results. Particular care
should be taken when using variables to compute the indexes; if the formulas yield values
which are outside of the field length, an out-of-range error (error mode = 1) will result
during execution. If that occurs, the job will be terminated.

Examples:

Given a gigned integer variable ALPHA defined as I 60 S:

° BIT($0,10$)(ALPHA) Specifies the first 10 bits including the sign.
e BIT($ 10$)(ALPHA) Specifies the eleventh bit.
° BIT($AA, 198)(ALPHA) Starting with the bit specified by numeric

variable AA, the next 19 bits of ALPHA are
specified. If AA is not an integer, it will be
truncated to an integer. If AA has a value less
than zero or greater than 40, the results will

be undefined.

2-20 17302500 Rev. 02

Given a fixed-point variable defined as A 37 S 10:
e BIT($1, 268)(FIX) Specifies the integer bits excluding the sign bit.
e BIT($26,10$)(FIX) Specifies the fractional bits of FIX,

Given a Hollerith variable defined as H 4:

e BIT($6,18%)(HOL) Specifies bits 6 through 24, which are the same
portion as bytes 1 through 3.
NOTE
BYTE may not be used with numeric

values.

NENT Functional Modifier

NENT is an integer variable when used with variable tables, and has its value set during
execution of the program., This furnishes a standard way of maintaining a counter for the

number of active entries in the table.
The value of NENT is obtained as follows:
NENT (name)
where
name = table~name or the name of a variable in the table

The user must specify a maximum number of active entries for each variable table in a
table declaration in his program. The actual number of active entries is variable during
program execution. Since the value of NENT is undefined (for variable tables) before it is
set during program execution, the user must insure that it has been set before referencing

it., The value should be a positive integer no greater than the maximum number of entries.

With the exception of I/O, setting the NENT of a variable table and its use are completely up
to the user. For table output, the NENT of a variable table must be set prior to the output
operation as entries 0 to NENT-1 will be output. On input, the NENT of a variable table will
be set to the number of entries read in. (Input/output of tables are described in detail in Sec-
tion 5.) In all other instances it is the user's responsibility to maintain the NENT at the
value desired if he intends to make use of it for table operations, such as the FOR ALL

operation.

Values which are not between 0 and NENT-1 are accepted by ENTRY operations but give un-
defined results. An attempt will be made to use the NENT of a variable table which is set to

17302500 Rev. 02 2-21

a value that is out-of-range. If the formulas yield values which are outside of the field
length, an out-of-range error will result during execution. If the above occurs, the job

will be terminated.
Examples:

* NENT(TABLEA) = NENT An entry has been added to the table and NENT

(TABLEA) +1% has been incremented.
e NENT(TABLEA) = NENT An entry has been removed from the table and
(TABLEA) -1$ NENT has been decremented.

. NENT(TABLEA) = 0% NENT is set to zero to initialize the counter.

CHAR Functional Modifier|

The CHAR functional modifier operates on a floating-point variable to produce a signed

integer value, which is the characteristic of the floating variable. The format is:
CHAR (floating-point-variable-name)

If the floating-point item is in a table or an array, the item must be subscripted.

Examples:

e INT = CHAR(FLOAT)$ The integer item INT is set to the value repre-
senting the power of 2 by which the fractional
part of FLOAT is multiplied.

e CHAR(FLOATI1)=CHAR(FLOAT1) The characteristic of FLOATI! is increased by

+1$ 1, which raises it by a power of 2. Thus, the

value represented by the variable is doubled.

MANT Functional Modifier!

The MANT functional modifier operates on a floating-point variable to produce a fixed-point
variable, which is the mantissa or fractional part of the floating value. The MANT results

have the characteristics of a 48-bit signed integer and may be so treated. The format is:
MANT (floating-variable-name)

If the floating-point item is in a table or array, it must be subscripted appropriately.

CHAR and MANT are defined in such a way that the following is a true statement:

AA EQ MANT (AA) *2%*% CHAR(AA)

TSee Appendix K for examples of numeric bit patterns.

2-22 17302500 Rev. 02

Examples:

e INT = MANT(FLOAT)$ The integer item INT is set to the value of the
fractional part of the floating item FLOAT.
° MANT(FLOAT) = 1234567 The fractional part of FLOAT is set to the
890123 $

value of 12345678901231085.

LITERAL VARIABLE

A literal variable is a variable whose representation is the same as a literal constant. The
value is a binary bit pattern coded in either display code or transmission code to represent
JOVIAL characters. (See Appendix F for display and transmission codes.) A literal vari-
able is either a named variable or the functional modifier BYTE.

BYTE Functional Modifier

BYTE, operating on a literal variable, specifies a portion of this variable as another literal
variable. It operates in a manner analogous to the BIT modifier. The representation of a
one-character literal item is a string of six bits representing the single character. The
bytes of an n-byte literal are numbered from left to right starting with zero and ending with
n-1., BYTE obeys the move rules governing literal variables in assignment statements de-

scribed on page 4-6. The format is:
BYTE($index$)(named-literal-variable)
where

index — is one or two numeric formulas separated by a comma.
The first formula indicates the position of the first or only
byte. The second formula, if present, indicates the num-
ber of bytes in a substring that begins with the first speci-
fied byte. If the second formula is 0, BYTE has the value
of a blank of the type of the named-literal-variable. The
specified byte position should be less than or equal to the
number of bytes in the named item. The number of bytes
specified should not exceed the number of bytes between

the specified first byte position and the end of the item.

named-literal-variable — is the variable name.

Any byte modification for byte position outside the range of the literal variable will be per-

formed, but large values can give undefined results and may cause termination of execution.

17302500 Rev, 02 2-23

Examples:

e BYTE($0,2$)(AA) == BYTE The value of the first two bytes of AA is ex-
($6,28)(BB)3 changed with the value of bytes 7 and 8 of BB.

° BYTE(9)(ITEMA(3AS$)) = The tenth byte of ITEMA subscripted by A is
1H(Z)$

set to a Hollerith Z. If ITEMA has less than
10 bytes, the result of this assignment is not
predictable.

If the receiving field is shorter than the sending field, the bytes are right-justified and left-
truncated in the receiving field. If the receiving field is longer than the sending field, the
bytes remaining to the left are filled with the same type of blanks that are used in the sending

field. BYTE moves within the same variable or within variables which are overlaid
will be correctly moved.

Examples:
e BYTE ($5, 7$)(HOL) = BYTE The nine bytes starting at byte 7 of HOL2 are
(87, 9$)(HOL2)$ moved to the seven bytes starting at byte 5 of
HOL., Because the field receiving the byte
modification is shorter, the nine bytes being
moved are right-justified, truncating the left-
most 2 bytes (see Table 2-3).
TABLE 2-3. HOLLERITH DATA MOVEMENT
Bytes 01 2 3 4 5 6 7 8 910 111213 14 1516 17
HOL2 (Before) | A A A A A A A1 2 3 4 5 6 7 8 9 A A
HOL DDDDDODTODTDTDTDTUDTUDTDTDD
HOL 2 A AAAAAATI1 2 3 456 7 8 9 AA
HOL (After) D DDDD3 4 5 6 7 8 9 DDD
® START $
ITEM HOL H 11 P 11H(DATA) $
MONITOR HOL $
FOR A = 10,-1,1 §
BEGIN
IF BYTE(0)(HOL) NQ 1H() $
GOTO XXX §
BYTE ($0,A$) (HOL) = BYTE($1,A$) (HOL) $
BYTE(AS) (HOL) = 1H() $
END
XXX.
TERM $

2-24 17302500 Rev. 02

The monitored Hollerith data for the above example is output in the form shown below. This
occurs when the contents of the literal variable, HOL, is left-justified by a loop. When
field one is moved to the left, byte A will remain the same. The next instruction sets byte
A to blank. When the first byte is found to be non-blank or when the loop has iterated
through all 11 bytes, the loop is terminated.

HOL - DATAA
Hor A = 10 _ DATA
HOL , _ g = DATAA
HOL - DATA
HOL , _ g = DATAA
HOL - DATA
HOL , _ , = DATAA
HOL - DATA
HOL , _ . = DATAA
HOL - DATA
HOL , _ 5 = DATAA
HOL - DATA

HOL , _ , = DATAA

HOL - DATA

BOOLEAN VARIABLE

A Boolean variable is a variable with a value having the same representation as a Boolean
constant, either a 1 or 0. It is either a named variable or the functional modifier variable
ODD.

ODD Functional Modifier Variable

The ODD modifier operates on a named numeric variable or a loop variable to produce a
Boolean variable with the value 1 (true) if the named variable has odd value, or 0 (false) if

the named variable is even.

For fixed-point variables, the ODD modifier is the least significant fractional bit, not the
integer bit. The format of ODD is:

loop variable
ODD named integer variable
named fixed-point variable

The ODD modifier can be included in any Boolean formula according to the rules governing
such formulas (see Section 3). The ODD functional modifier can be set by the user to 1 or 0,

thus modifying the value of the variable.

17302500 Rev. 02 2-25

Example:

e IF ODD (NUM) OR NOT ODD (COUNT) $
where
ODD and NUM = integers.

This statement is true if NUM is odd or if COUNT is even.

ODD(NUM) = 0%

The ODD of NUM and the least significant bit of NUM are both set to 0.

STATUS VARIABLE

A status variable is a named variable with the same configuration as a status constant. The
value is expressed by a binary integer. Each possible integer value of the status variable

must be one of the list of constants associated with the variable.

ENTRY VARIABLE

A table consists of one or more entries with each containing one or more items. The items
can be mixtures of the various types. An ENTRY variable is a string of bits that are the
representation of an entire entry in a table. The format is:

ENTRY table-name

($index$)
ENT item-name

where
ENTRY and ENT are interchangeable

index = a single numeric formula

The table to which ENTRY refers is identified by the table name or the name of any item in
the table. The particular entry is designated by the index.

The value of the functional modifier depends on the structure of the table and the current

value of the items in the specified entry. It cannot be classified as a particular data type
such as integer or literal. Because one entry can contain several types of data items, it
can have no properties of its own other than zero or nonzero; all bits are zero, or one or

more bits are set.

ENTRY permits the manipulation of an entire entry in a table. Entries can be moved from
one table to another regardless of structure. For instance, an entry can be moved from a
serial table to a parallel table. The types of items in a table and their packing is not con-
sidered by the compiler; only the total entry size is considered. Two entries can be com-

pared using the operators EQ or NQ only.

2-26 17302500 Rev. 02

Examples:

e ENTRY(DATA(S$ 5%)) = 08 The sixth entry of table DATA is set to 0.
L] ENT(TAB($A)) == ENT The entry in table TAB indicated by the sub-
(TAB($A+1$))$ script A is exchanged with the subsequent

entry in the table.

L] IF ENT(LIST (3$08)) EQ 0 $ If the first entry in table LIST equals 0, the
statement is true.

™ IF ENT(TAB(0)) EQ The statement is true if all bits in the first
ENT(TAB(1))$ two entries in TAB are equal to each other.

Table structure and entry structure are discussed in Section 5.

SCOPE OF SYMBOL DEFINITION

User-defined symbols have two levels of scope of definition. They are:

° Local scope
o Global scope
A symbol has global scope when declared explicitly in a COMPOOL declarative statement

during program compilation or implicitly by mode definition outside a procedure or function.

Global scope symbols and their properties can be used anywhere in the program.

A symbol declared within a procedure or function is defined as having local scope provided

the symbol is valid only within the specific procedure or function in which it is declared.

The areas or contexts in which user-defined symbols may be used are divided into four
categories as shown below:
e Statements, switches, CLOSEs, programs, and subprograms
° Items, arrays, tables, files, procedures, and functions
e Status constants (these cannot be duplicated in the same status constant list)
. Device names used in file declarations

Each symbol must be unique within each category, however, any symbol in one category

may be duplicated in any or all of the other three categories., The following conditions are

applicable:

° The declaration of a local scope symbol within a procedure or function takes

precedence over a declaration of the same type in global scope. However, if a

17302500 Rev. 02 2-27

Examples:

symbol is not declared within a procedure and is declared in a global definition,
the global definition is used. A procedure or function can use any locally defined
definition or any global definition that has not been over-ridden by a local defi-

nition of the same symbol.

A CLOSE does not involve a change in scope of definition; therefore, symbols
declared inside a CLOSE have the same scope of definition as the CLOSE.

A loop variable is a special class of symbols and may be duplicated provided
that two symbols of the same initial letter are not active within the scope of
definition at the same time. That is, the loop variable cannot be activated while
it is still active within a main program or procedure. However, it can be active
in a main program and in a procedure or function called from within the region

of activity of the main program loop variable.

The same symbol can be declared in a main program or subprogram and in a
COMPOOL used in compiling the program or subprogram. In the event of
multiple definitions, the compiler recognizes the definitions in the following
order:
1. Declaration in the main program, but if there are conflicts between
main program declarations and procedure or function declarations,

those of the latter group have precedence.

2. COMPOOL specified during compilation of main program or subpro-
grams.
3. Mode declarations.
Variables which are used before being declared will use the variable declaration,
not that of the mode which was active at the time the variable was first used. A
warning diagnostic will be issued following the data declaration. Mode resolution
is performed after all statements have been examined for variable declarations

(page 5-9).

The following example demonstrates the use of items, arrays, tables, file procedures, and

functions using local and global scope of definition.

START $ ' 'SCOPE OF DEFINITION'' .
FILE OUT HO V 128 V(OK) HOL $ OUT is declared with HOL as a device name.

ITEM HOL H 40 $ Itemm HOL has global scope.
PROC IN (VALA, VALB) $ The function IN is declared within the main
BEGIN f th lobal
ITEMIN F $ scope o e program (global scope). It may
[} be called from anywhere within the program,
]
END

17302500 Rev, 02

PROC PROCA (VBL = VBL) $

BEGIN

ARRAY HOL 2010 F §
[
L]

HOL ($5, 7$) = 40.37 $
END

PROC PROCB (VBL, VBL = VBL) $

BEGIN

HOL = 3H(END) $
[
[

°
END

PROC PROCC (=VBL, VBL) $

BEGIN

ITEM HOLD F $
.
[

[]
HOLD = IN (50,100) $
[]
L
L]
END
PROC PROCD (IN) $
BEGIN
ITEMINI18S $
ITEM PROD I118S $
PROD = IN * 37 §
IF PROD LS 1000 $
RETURN

PROD = 1000 $
END

PROC PROCE (HOL) $
BEGIN
ITEM HOL H120 $
L
L]

°
OUTPUT OUT HOL §
END
TERM $

17302500 Rev. 01

The declaration of HOL as a floating-point
array has local scope and is known only
within procedure PROCA. Since it is de-
clared within the procedure, the main pro-
gram is never searched to determine if HOL

is defined there.

HOL is not declared within PROCB, there-
fore, the global definition is used. Any
references to HOL within PROCB will refer
to the 40-byte Hollerith variable declared in

the main program.

No declaration for IN exists within the local
scope of procedure PROCC, therefore, a
floating-point function which exists in the

global scope is used.

The local definition of IN as an integer item
takes precedence over the global definition

of IN as a floating-point function.

The local definition of HOL as a 120-byte
literal takes precedence over the global
definition of HOL as a 40-byte literal. File
OUT is written on the SCOPE file HOL.

FORMULAS 3

A formula is a combination of variables, constants, operators, and brackets producing a
single value on evaluation. Variables and constants are formulas and can be combined with
operators and brackets to make other formulas.

The types of formulas are the same types as those of constants and variables: numeric,

literal, Boolean, status, and entry.

NUMERIC FORMULAS

Numeric formulas are composed of numeric constants, numeric functional modifiers, and
numeric variables combined with arithmetic operators to form a numeric relationship that
expresses a single value. The constants and variables within a numeric formula are called
operands. Parentheses are used to group symbols and to control the sequence of operations.

Arithmetic operators are:

+ addition
- subtraction
* multiplication
/ division
*k

exponentiation
(% *)
ABS ()

absolute value
an

The bracketed exponentiation (* *) is interchangeable with the operator **, so the formulas
below are equivalent:

AA**BB or AA(*BB%*)
In this example, AA is raised to the power BB.

Similarly, the functional modifier ABS() or the brackets (/ /) both specify absolute value for

the enclosed numeric formula:

ABS(A - B) or (/A - B/)

17302500 Rev. 02 3-1

In each example, the result of A-B is absolute.

SEQUENCE OF OPERATION
Numeric formulas are evaluated in the following order:

° Parentheses, from the innermost pair to the outermost
e Negation

° Exponentiation

[Multiplication and division, from left to right

* Addition and subtraction, from left to right

Negation is differentiated from subtraction in this manner: if a term is provided from which
the term following the minus sign can be subtracted, the minus sign indicates subtraction.

In all other cases, the minus sign indicates negation,

Examples:

° Negation: 2%*-5, 15/-10, -AA

° Subtraction: 2%%4-5, 15/5-10, BB-AA

Contrary to the usual rules of algebra, negation is performed before exponentiation. Under
usual algebra rules the expression -3%%2-5 would be evaluated as -(3%*2)-5 yielding -9 -5
which reduces to -14. JOVIAL treats a leading minus sign as a negation of the expression
which follows immediately, causing the expression to be evaluated as (-3**2)-5 which yields

9 -5 reducing to 4.

Likewise, the expression -2%*%2+5 will be evaluated as follows. Usual algebra rules will
evaluate it as (-2%%2) +5 yielding 4 + 5 or 9. JOVIAL will evaluate it as ~(2%%2) +5
yielding -4 +5 or 1. If there is any doubt as to the order of evaluation the parentheses

should be used, as shown above, since they are always acceptable.
The following examples illustrate the high priority of negation and low priority of subtraction:
Examples:

® 24-2%%2 = B

e -2x241 = 5

3-2 17302500 Rev. 02

Parentheses () and (/ /) have the highest priority. The following example shows how group-
ing by parentheses affects the sequence of operations:

(AA+2) / ((/XTERM/) + (PI ** (2%* CHI)))- 3.25

The order of evaluation is:

2 *x CHI = a (Lower-case letters indicate temporary results.)
Pl **a=>b

(/XTERM/) = ¢

c+b =d

AA +2 = e

el/d =f

f-3.25 = final result

Some further examples will help clarify the use of parentheses and the priority of operations:

2+3%62=11 2+ (3%x2)=11
- (2+3)*x2 =25 -2 +3%x2=7
2/2/2=.5 2/(2/2) = 2

MODE OF RESULTS

Three types of JOVIAL computations are possible: integer, fixed-point, and floating-point.
Numeric formulas may contain each of these types of values.

Arithmetic computations are performed to yield integer, fixed-point, or floating-point
results. The mode of the results depends on the type of the operands that are combined.
The possible combinations and their results are detailed in Table 3-1.

Code to perform conversions between operand types is automatically provided by the com-
piler. Execution time is conserved when the operand types are the same, e.g., integer and
integer. Although this is probably not feasible for the entire program, it is advisable to
attempt it in the areas of heaviest computation. In terms of the hardware, use of all floating-
point variables is the most efficient. The rules for integer and fixed-point results are given

in Appendix J.

17302500 Rev. 02 3-3

TABLE 3-1. OPERAND TYPES AND RESULTS

Operand Types Mode of Results
Integer and Integer Integer
Integer and Fixed-Point Fixed-point (integers can be

treated as if they were fixed-
point variables with zero
fractional bits carried to
infinite precision)

Fixed-Point and Fixed-Point Fixed=Point

Floating=Point and Integer Floating=Point
Floating=Point and Fixed=Point Floating=Point
Floating-Point and Floating-Point Floating~Point

LITERAL FORMULAS

A literal formula is an octal constant, literal constant, literal variable, or a BYTE func-
tional modifier. Literal constants or variables are either display code or transmission code

(see Appendix F).

Example:

0(0506) 13H(TOTAL EXPENSE) 11T(VALUE OF 22)

BOOLEAN FORMULAS

A Boolean formula can always be reduced to the value 1 or zero. The simplest Boolean
formula is a Boolean variable. Boolean formulas can always be formed by combining non-
Boolean constants, variables, formulas, and file names, with relational operators. This is
called a relational Boolean formula. Logical operators can be combined with one or more
Boolean formulas to form a complex formula called a logical Boolean formula. The ODD

functional modifier is a Boolean formula.

RELATIONAL BOOLEAN FORMULAS

Relational formulas provide facility for comparing quantities and taking a different action

based on the comparison. The general form is:
formula1 relational operator formu1a2

The result of a relational formula is always true or false.

3-4 17302500 Rev. 02

The relational operators are:

EQ Is equal to

NQ Is not equal to

GR Is greater than

GQ Is greater than or equal to
LS Is less than

LQ Is less than or equal to

The formulas on either side of a relational operation must be compatible and non-Boolean.
Compatible means that both formulas are of the same type; i. e., numeric, literal, entry,

or status.

NUMERIC RELATIONALS

Integer relational comnparisons are done in integer compare mode.

Relational comparisons with fixed-point operands, or fixed-point and integer operands are
done in fixed-point mode. That is, the binary points are aligned and the comparison made
to the precision of the least precise operand, except when an integer is compared to a fixed-
point operand with negative scaling factor. In this case, the comparison ig carried out to
the binary point. In either case, the integer operand is treated as a fixed-point operand with
zero fractional bits to infinite precison. If either or both operands are floating-point, the
comparison is done in floating-point mode. Comparing a floating-point formula for equality
is extremely risky because of the floating-point hardware algorithms. Instead, the better
method would be to subtract and take the absolute value of the difference and compare it
against a small constant., Note also that the binary point alignment required for comparison
of a fixed-point operand with an integer operand may cause the loss of the high-order bits

during the comparison.

Examples:
° IF INT EQ 4 $ Tests whether the value of the integer vari-
able INT = 4,
. IF FIX (3) LS FIX(6) S Tests whether the fixed-point value of
FIX($3%$) is less than that of FIX(6).
° IF ABS(FLOAT1 - FLOAT2) Two floating-point variables are compared

LS 0.0000000001 $ by taking the absolute value of the difference
and comparing against the desired degree of
' accuracy.

17302500 Rev. 02 3-5

LITERAL RELATIONALS

When comparisons involve literal formulas of different length, the shorter formula is pref-
aced with blanks of the type of the formula. Comparison is made only to the length of the
longest operand. Hollerith formulas may be compared only for equality or inequality.

Transmission code formulas may use all comparisons including greater than or less than.

Examples:

e IF HOL EQ 10H(NUMBER)$ Compares the value of HOL with a 10-byte
literal.

e IF BYTE(58)STC) LQ Checks to see if byte 5 of the transmission

oBN% code item (STC) is less than or equal to

octal 37; that is, to determine if it is an alpha-
betic character.

® IF HOL EQ HOL2$ Compares two Hollerith variables.

ENTRY RELATIONALS

Entries may be compared only for equality, inequality, or zero. If a comparison involves
entries of different lengths, the shorter is prefaced with octal zeros.

Examples:
° IF ENTRY($58)(TABA) EQ 0 $ Determines if all bits of entry 5 of table
TABA are set to zero.
° IF ENT (XX)(TABA) NQ Determines if the entry specified by variable
ENTRY (7)(TABB)$ XX of table TABA is not equal to entry 7 of
table TABB.

STATUS RELATIONALS

Status relational formulas have a restricted order. The format is:

gtatus-variable status-constant
relational-operator status-variable

file-name status~function

17302500 Rev. 02

Examples:

FILEA

CHRR

e IF FILEA EQ V(EOF)§

[IF CHRR LS V(D) §

Already declared with status values V(READY),
V(EOF), and V(ERROR).

Status item CHRR already declared with status
constant values V(A), V(B), V(C), V(D), V(E),
V(F), V(G).

Tests whether an end-of-file was encountered
on the last operation on FILEA,

Tests whether the status variable CHRR is set
to a value less than that of status constant
V(D), that is, whether CHRR is set to V(A),
V(B), V(C).

Note that the value of a status constant for a particular status variable depends on the order

in which it was declared on the status constant list.

LOGICAL BOOLEAN FORMULAS

Logical Boolean formulas are formed by combining Boolean formulas with logical operators
to produce a complex Boolean formula, or to reverse the value of a Boolean formula.

Logical Operators

AND

OR

NOT

Examples:

e FORMI1 AND FORM2

e FORMI1 OR FORM2

17302500 Rev. 02

Description

Combines two Boolean formulas to produce a
formula which is evaluated as true if both

formulas joined by AND are true.

Combines two Boolean formulas to produée a
formula which is true if either formula joined
by OR is true.

Precedes a Boolean formula to produce a for-
mula which reverses the value of the formula
following NOT.

If both FORM1 and FORM2 are true, the result

is true.

If either FORMI1 or FORM2 or both FORMI1 and
FORM 2 are true, the result is true.

° IFF NOT FORM1 If FORM1 is true, the formula is false. If
FORMI1 is false, the formula is true.

SHORTHAND NOTATION

A shorthand notation may be used for numeric and literal relationals to represent the con-
junction of two relational formulas whose right and left operands are identical. This nota-
tion consists of omitting the AND operator and one occurrence of the duplicate operand. The
AND operator and the duplicate operand are implied though not explicitly stated.

Explicit Implicit
IF 21 LQ AGE AND AGE LQ 30 IF 21 LQ AGE LQ 30
IFAALSI+2 ANDI+2 LQ BB (1) IF AALSI+2LQ BB (1)

SEQUENCE OF EVALUATION

Parentheses can be used to determine the hierarchy of evaluation of a Boolean formula;

otherwise, evaluation is in the following sequence:

1. NOT
2. AND
3. OR

Evaluation of components at the same hierarchy level takes place from left to right. Evalu-
ation is complete as soon as evaluation of any part of the formula has determined the result.
For instance, in a set of formulas connected by ANDs, the value of the entire set is false as
soon as any component is found to be false. Similarly, a set of formulas connected by ORs

is true as soon as one formula is found to be true.

Example:

° (FORM1 OR FORM2) AND If FORM1 and FORM3 are both true, no other
(FORM3 OR FORM4) OR FORM5 formula need be tested to determine if the
entire formula is true.

If FORM1 and FORMZ2 are both false, FORM3
and FORM4 need not be tested to prove the
AND relation false; but FORM5 must be evalu-
ated to determine whether the entire formula

is true or false.

3-8 17302500 Rev. 01

NOT complements all relational and logical operators in the formula immediately following

it:

NOT AFORM EQ 50 Is equivalent to AFORM NQ 50
Parentheses can be used to group formulas:

NOT(AFORM EQ 50 AND BOOL) Is equivalent to AFORM NQ 50 AND NOT BOOL
If parentheses are omitted, only the formula immediately following NOT is complemented:

NOT AFORM EQ 50 AND BOOL Is equivalent to AFORM NQ 50 AND BOOL

FUNCTIONS

A funection is not a true formula, but is a special form of a procedure that is similar to a

formula in that it represents a single value and can appear as a component of a formula. A
function is a call to a procedure that returns a single value which can be numeric, Boolean,
literal, or status. For full details of functions, see Section 6. The format of a function is:

function-name ([parameter list])

The name is a JOVIAL name which identifies the function; if there are no parameters, the
name must be followed by a pair of empty parentheses to identify it as a function. The func-
tion is automatically invoked to compute the function value each time the name appears ina
formula. The function type and its properties are specified in the declaration. A function

of a particular type may be used any place where a variable of that type can be used.

Examples:

e COS (ANGLE) The library function that computes the cosine
of a floating-point number is invoked yielding

a floating-point result.

e SEARCH() The SEARCH function is invoked if it has been
declared in the program being compiled, or
in a COMPOOL used when the program was
compiled., This function has no input param-
eters. It uses variables common to the func-
tion and to the main program.

° RANGE(LATITUDE, LONGI- The RANGE function, which has two input

TUDE) parameters, computes a single output value.

17302500 Rev, 02 3-9

COMMENTS

Comments can be interspersed between or within JOVIAL statements and declarations. Com-

ments are enclosed within a pair of double primes. The string of characters may not contain:

° Two primes in succession
° A terminal prime

° A $ except in the context of index brackets: (§ §)

The compiler permits comments in source program listings, but otherwise considers them
as spaces. Comments are legal anywhere a space is legal, except:

. Within literal constants
. Within the name field of a DEFINE statement

° Within another comment

Examples:
® A comment can be used to name the program and to give the date and subject of
a program:

START $ ' ' JOHN DOE 1/4/71 PROGRAM TO COMPUTE PROBABILITY
OF SURVIVAL!''

[} Comments can be used to describe:

ITEM ACTYPE H100 $ ' '"AIRCRAFT TYPE''
ITEM ACNUM H4 06 $' 'AIRCRAFT NUMBER!' '

. Comments can be embedded within a statement:
IF ' '"CURRENT' ' RANGE GR' 'EATER THAN MAXIMUM!' ' LIMIT$
In this case, the compiled statement is:

IF RANGE GR LIMIT$

DEFINE DIRECTIVES

The DEFINE directive allows the user to assign a name to a string of characters which
can thereafter be referenced by this name. With this feature, the user can abbreviate

lengthy expressions, make simple additions to the language and create symbolic param-
eters. The form is:

DEFINE name ' 'character string' ' §

17302500 Rev. 02

The name is any user-defined name. The character string can include any JOVIAL char-
acters except the double prime. The pair of double primes is required to enclose the
character string. Whenever the defined name appears following its definition, it is replaced
by the string of characters. The definition remains in effect until the end of the program or
until the name is redefined in a subsequent define directive. A defined name may be re-

defined, but cannot be shut off by using its own name as the definition:
DEFINE ITEMA ' 'ITEMA' ' §$ Is a circular definition and must be avoided.
The following type of circular definition should also be avoided:

DEFINE AA ' 'BB'!
DEFINE BB' 'AA'!

The defined name can be used in any context except within a status or literal constant, a
comment, or in direct code other than assignment statements. No defined name can expand

to more than 320 characters.

Examples:

e DEFINE TOTAL ' 'FORM1 A subsequent reference such as IFF TOTAL GR
+ ITEMA *HOURS ' '$ 1000$ is equivalent to IF FORMI + ITEMA
* HOURS GR 1000$.

° DEFINE INTEGER ''I 60 U''$ Any subsequent reference to INTEGER, such
as ITEM AA INTEGER $, is equivalent to
ITEM AAI160 U $.

e DEFINE FIELDA ' 'BYTE IF FIELDA EQ 5H(START)$ is equivalent to
($16, 58)(HOL)' '$
IF BYTE ($16, 5$)(HOL) EQ 5H(START)$
e DEFINE SUM' 'TOTAL = This example has the effect of inserting the

VARA + VARB + VARD+

FUNC(VARE)$' '$ line of code to set TOTAL to the sum of vari-

able VARA, VARB, VARD, and function FUNC
operating on variable VARE, This statement
will be compiled in line each time the word

SUM occurs in the source.

17302500 Rev. 02 3-11

STATEMENTS 4

JOVIAL programs consist of declarations that define data and program structures, and of

statements that indicate the operations to be performed upon the data.

Data structures to be used by program statements may be explicitly described in a data
declaration within the program, or within a COMPOOL used when the program is compiled.
Data declarations are used to define items, arrays, tables, and files. The use of an undefined
name within the program or the COMPOOL will cause it to be MODE-defined at that point
implicitly within the current MODE directive description. Arrays and tables must be defined

explicitly. Items, arrays, and tables are described in Section 5; files, in Section 6.

Program structures are the closed sections of code which may be invoked from elsewhere
within the program to perform a specified task. Program structures must be declared
within the program, or described in a COMPOOL used in compiling the program which calls
them., Program structures consist of subprograms and closed forms (closed routines, pro-
cedures, and functions). Closed forms are described in Section 7; subprograms, in

Section 8.

STATEMENT FORMS

The types of statement forms are simple, named, compound, and complex, Simple and
compound statements are called independent statements.

e A simple statement is a single statement, such as an assignment or a GOTO
statement.

e A named statement is a statement preceded by a statement label or label list to

permit control to be transferred to the named statement.

e A compound statement is two or more statements grouped within BEGIN-END

brackets; this is treated as a single statement.

° A complex statement is a statement composed of a statement clause, i.e., IF,
FOR, IFEITH, ORIF followed by a simple or compound statement. Complex
statements provide the conditional flow and looping facilities of JOVIAL.

e Every statement is terminated by a §$.

The rules governing the usage of JOVIAL data forms, functions, and functional modifiers are

very broad and flexible. Thus it is possible to code powerful and complex statements. The

17302500 Rev. 02 4-1

complexity of a single statement may vary depending upon the types of operations used. But

in all instances, the compiler will accept a statement of 100 symbols maximum.

STATEMENT LABELS

A statement can be identified by a programmer-supplied name followed by a period. Spaces
preceding the period are allowed. This identifier is called a statement label. Its format is:

name.
where
name = programmer-supplied identifier for the statement

STATEMENT LABEL LIST

A named statement can have more than one label in the form of a statement label list:

name, . [(na.me2 mname..)]
where
name,., name,., name . = programmer-supplied identifiers, each of which is
followed by a period
Examples:

° PROG'END. STOPS

e BRANCH. JUMP. TRANSFER. ETC.

e AA. AA=10S$
Whenever [name.] or statement-label-list is used in this section, one or more statement
names may be used. A statement may be referenced by any of the names in the statement-

label-list preceding that statement. The statement following the name or statement-label-

list is referred to as a named statement.

ASSIGNMENT STATEMENTS

The assignment statement is used to assign a variable. The format is:
[name.] variable = formula$

The formula is evaluated and the resulting value is assigned to the variable. If the variable
appears within the formula; then the old value of the variable is used in computing the

formula.

4-2 17302500 Rev. 02

Assignment statements may be numeric, literal, status, Boolean, or entry. The variable
and the formula must agree in type; that is, a numeric formula should be specified when the

variable is numeric.

NUMERIC

A numeric assignment statement assigns the value of a numeric formula to a numeric vari-
able. The formatis:

[name.] numeric-variable = numeric-formula$

When the receiving variable and the final value of the formula are both integer or both fixed-
point but of differing precision, the precision of the final value of the formula will be adjusted
to that of the receiving variables.

When the receiving variable and the final value of the formula being assigned are of differing
arithmetic modes, the final value of the formula is converted to conform to the arithmetic
mode of the receiving variable. For example, if the final value of a formula is an integer
value but the mode of the receiving variable is floating-point, the integer value will be con-
verted to a floating-point value prior to being stored in the floating-point variable. These
processes may result in the loss of precision due to truncation. Care should be taken in
specifying mixed-precision or mixed-mode assignment operations to insure that the results

are predictable. The assignment process is accomplished as follows:
° The binary points of the receiving variable and the formula value are aligned.

® The bits representing the value of the formula to the right side of the binary
point are truncated to fit within the defined boundary of the receiving variable,
if necessary. If truncation occurs in this case, least significant bits of the
formula value will be lost. -

° The bits representing the value of the formula to the left side of the decimal
point are treated in the same manner. In a simple item, array, or table item
with no packing, the integer bits will be truncated only if the bits extend beyond
the boundary of the word containing the item. This occurs when more integer
bits are set in the word containing the item than specified in the declaration. Any
further computations involving this variable would risk having to use the stored
number with undefined results. In dense-packed and defined entry tables, the
integer portion will be truncated at the boundary of the item. In either situation
the sign bit will be used for storage if required. In this situation, the most
significant bits will be lost.

17302500 Rev. 02 4-3

Both integer and fractional bit truncation can occur in a single assignment statement. For

example, consider a formula whose final value (in binary notation) is:
10111001-1011011

The value is being assigned to a variable defined as having only three bits of precision on
both sides of the binary point; that is, its picture is:

000- 000

The result of the assignment is:

10111001.1011011 formula value
000.000 variable size
001.101 value stored

10111 1011 truncated bits

The above example refers primarily to the assignment of formula values to fixed-point and

integer variables.

When nonmatching values are being assigned to floating-point variables, conversion is made
and truncation can occur. Since the internal representation of a floating-point value cannot
be programmer-defined, the results of assignment into a floating-point variable are

more predictable. The programmer need only be aware of the fact that the conversion to
floating-point notation may result in only an approximation of the original fixed-point or
integer value. That is, some fixed-point and integer values may assume precision character-
istics that cannot be precisely expressed in floating-point notation. As long as the values
involved do not exceed hardware limitations, truncations that occur as a result of assigning
the fixed-point of integer values to floating-point variables will always result in the loss of
least significant bits.

Examples:

o Floating-point assignment statements:

FLOAT = INTEGER $ The value of the integer item, INTEGER, will
be assigned to the floating-point item FLOAT.

FLOAT = FIXD § The value of the fixed-point item, FIXD, will
be assigned to the floating-point item FLOAT.

FLOAT

1]

0(124) s The decimal equivalent of the octal constant,
0(124), will be assigned to the floating-point
item FLOAT. The decimal equivalent is 84.

4-4 17302500 Rev. 02

The results of the floating-point assignments may not be exact due to the nature

of floating-point representation.

Fixed-point assignment statements:

ITEM FLTF P 13.137 §

ITEMFIX A1l S 4 $

ITEMLFIXA10US5 P
15.40265 $

ITEM BFIXA7TU3P11.125 $

ARRAY AFIX 10A7U 4 §

TABLE V51§
BEGIN

ITEM FIL1I17S 0 08§
ITEMDFIXA7U4017 8§
ITEM FIL2118S 024§
END

FIX = FLT $

FIX = O(27)

AFIX (0)= BFIX $

17302500 Rev. 02

These data descriptions apply to the follow-

ing examples.

The value of the floating-point variable

(FLT = 13.137) will be assigned to the fixed-
point variable FIX. Due to the nature of
floating-point representation, FIX will be set
to 13.125 because of the inability to represent
the decimal number ., 137 in the four fractional

bits.

FIX is set to the decimal equivalent of the
octal constant. Octals always set the integer
portion; fractional bits cannot be set by an
octal constant. The decimal equivalent is 23.

The value of the simple fixed-point item,
BFIX = 11.125, with four integer bits and
three fractional bits will be assigned to an
array item (AFIX) which has three integer
bits and four fractional bits. Since AFIX has
more fractional bits than BFIX, there is no
problem, and since AFIX has fewer integer
bits than BFIX, the additional bits will be set.
That is, more bits will be set than specified
in the ARRAY declaration. The extra bit will
be used for any further computations involving
AFIX($03).

Item Decimal Octal Bit Pattern

0001011-001
0001011-0010

BFIX 11.125 131
AFIX($0%) 11.125 262

DFIX (0) = LFIX § The value of the simple fixed-point item,
LFIX = 15, 40265, with 10 integer bits and five
fractional bits will be assigned to a dense-
packed table fixed-point item, DFIX, which
has only seven integer and four fractional bits.
In this case, both left and right truncation will

occur, as detailed below:

Item Decimal Octal Bit Pattern
Before {Entryo 00000 00000 00000 00755

LFIX 15. 40265 755 001111.01101
After {DFIX ($08) 7.375 166 00111.0110

Entry, 00000 00077 75400 00000

o Integer assignment statements:

ITEM INT I 7 S § These data descriptions apply to the examples

ITEM FLOT F P 123.456 § below.

INT = O(30) $ INT is set to the decimal equivalent of the
octal constant. The decimal value is 24.

NINT (0) = INT $ The value of the integer item, INT = 127, with
eight integer bits will be assigned to a non-
packed table item NINT, which has seven
integer bits specified.

TINT (0) = FLOT $ The value of the floating-point item, FLOT =

123. 456, will be assigned to a defined table
item TINT, which has seven integer bits. In
this case, right truncation of the fractiénal
bits, left truncation of the integer bits, and the
setting of the sign bit causing it to become
negative will occur. The word containing the
item TINT (0) will be set to -4.

LITERAL
A literal assignment statement assigns the value of a literal formula to a literal variable.
The format is:

[name.] literal-variable = literal-formula$

No conversion is performed if the variable and the formula are of different codes, i.e., if

one is in transmission code and the other in Hollerith code. If the sizes differ and the

4-6 17302500 Rev. 01

formula is longer than the variable, the formula is truncated on the left; if the formula is too

short, it is prefaced on the left with blanks of the type of the formula, H or T.

Examples:

The variable DISP is defined as display code (H) with a size of four bytes.
= 4H(ABCD) $

DISP

DISP

DISP

DISP

DISP

[}

5H(ABCDE) $

3H(ABC) $

0(01020304) $

4T(WXYZ) $

DISP is set to an octal value of 01020304, the
equivalent of Hollerith characters ABCD.

DISP is set to an octal value of 02030405, the
equivalent of Hollerith characters BCDE. Left

truncation will occur.

DISP is set to an octal value of 55010203, the
equivalent of Hollerith characters AABC. Left
padding will occur.

DISP is set to an octal value of 01020304, the
equivalent of 4H(ABCD).

DISP will be set to an octal value of 34353637,
the equivalent of STC characters WXYZ.

The variable TRANS is transmission code (T) with a size of four bytes.

TRANS

TRANS

TRANS

TRANS

1]

3T(XYZ) ¢

5T(VWXYZ) $

0(34353637) $

3H(ONE) $

TRANS is set to an octal value of 05353637, the
equivalent of STC characters AXYZ. Left
padding will occur.

TRANS is set to an octal value of 34353637, the
equivalent of STC characters WXYZ. Left

truncation will occur.

TRANS is set to an octal value of 34353637, the
equivalent of 4T (WXYZ).

TRANS is set to an octal value of 55171605, the
equivalent of Hollerith characters AONE. Note
that since the formula was shorter than the
receiving literal, it was right-justified in the
literal and padded on the left with a Hollerith
blank. Hollerith values are used even though
TRANS was defined as STC.

The variable HOLV is defined as Hollerith with a size of 17 bytes, and the vari-
able HOLD is defined as Hollerith with a size of 13 bytes.

17302500 Rev. 02

HOLV $ Since the formula HOLV is longer than the
variable in the assignment HOLD, it is right-
justiﬁed and left-truncated. That is, this move
has the "same result as moving BYTE ($4, 138)
of HOLV to HOLD.

HOLD

HOLD $ Since the formula HOLD is shorter than the
variable HOLV, it is right-justified and the
remaining four bytes on the left are padded
with Hollerith blanks.

HOLV

]

e The variable TTT is defined as a transmission code with a size of seven bytes,
and the variable HHH is defined as Hollerith with a size of 12 bytes.

HHH = TTT $ Since TTT is shorter than HHH, it will be
right-justified in HHH and the five remaining
bytes on the left will be padded with transmis-
sion code blanks. The rule for padding
specifies that blanks of the type of the formulas
will be used, regardless of the type of the
assignment variable.

STATUS

A status assignment statement assigns the value of a status formula to a status variable.
The format is:

[name.] status-variable = status-formula$
If the status formula is a status constant, it must appear in the declaration of the variable.

If the formula is a status variable, it should have a value from zero to 1 less than the

number of constants in the status list of the status variable.

Examples:
ASTATUS is declared as ITEM ASTATUS S V(4) V(B} V(C) $§
BSTATUS is declared as ITEM BSTATUS S V(X) V(Y) V(Z) PV(Y) $
e ASTATUS = V(B) $ The item is set to the status constant V(B).
The integer value would equal 1.
e ASTATUS = BSTATUS $ ASTATUS is set to V(B) since BSTATUS is

preset to the second constant in its status
constant list. - The integer value would equal 1.

4-8 17302500 Rev. 01

BOOLEAN
A Boolean statement assigns the value of a Boolean formula to a Boolean variable. The
format:

[name.] Boolean-variable = Boolean-formula$
The Boolean formula can be one of the Boolean constants, 1 or zero; 1 signifying if the
formula is true, zero if the formula is false.
Examples:

° BOOL = 18

° BOOL1 = 0$

° BOOL

AA GQ 18 AND AA IQ 26 AND BB EQ V(TRUE) §
‘e BOOL = BOOL1$
e BOOL

L}

ODD(INT)S$ — where INT is an integer item.

ENTRY

An entfy assignment statement assigns the value of an entry formula to an entry variable.

The format is:
[name.] entry-variable = entry-formula$
The entry formula can be only another entry variable or zero. If the formula is zero, every
bit in the variable is set to zero. When the sizes differ, the formula is either right-justified
and left-truncated, or zero-filled on the left to the entry variable size.
Examples:
e ENT(TABL($0%))
e ENT(TABL(S1))

0s The first entry of TABL is set to zero.

ENT(TABA The second entry of TABL is set to the value
(s1%))$ of the second entry of the TABA.

EXCHANGE STATEMENTS

An exchange statement is a shorthand method of exchanging the value of two variables of the
same type. The variable types may be numeric, literal, status, Boolean, or entry. The

format is:

[name.] variab1e1 == variable2 $

No spaces are allowed between the equal signs. The compiler generates a temporary storage

area for the move.

17302500 Rev. 02 4-9

The exchange statement VAR1==VAR2$ has the same effect as:

TEMP = VARI1 $
VARl = VAR2 $
VAR2 = TEMP $

In most instances, the left and right sides of the exchange statements are interchangeable,
that is, AA == BB $ produces the same result as BB == AA $. The exception to this is where
the specification of one variable is dependent upon the variable on the other side of the ex-

change statement. The possible conditions are:
e If the two variables overlay each other.

e If the value of one variable is used in computing the positioning of the other. For
example, in the statement AA == BB(AAS), the value of one variable is used to
compute the subscript of the second variable; or in the statement (BIT ($BB, 20$)
(AA) == BB $, one variable is used to specify the bit positions used in a second
variable.

In these instances it would be advisable to use the expanded form, and specify the moves and
the exact method of evaluation desired.

NUMERIC

A numeric exchange statement exchanges the values of two numeric variables. The format
is:

[name.] numeric-variable1==numeric—var-iab1e2 $

When the variables are both integer or both fixed-point but of differing precision, the preci-
sion of the sending variable will be adjusted to that of the receiving variable. When the vari-
ables are of differing arithmetic modes, the sending variable will be converted to the mode
of the receiving variable. This may result in a loss of precision to both integer or fractional
bits on both variables. If one of the variables is floating-point and the other is integer or
fixed-point, the results of exchange may not be exact, due to the nature of floating-point
representation. Rules for mode or precision matching are listed under Assignment State-

ments. Examples of numeric exchange statements are listed in Appendix K.

LITERAL

A literal exchange statement exchanges the values of two literal variables. It has the same
effect as two simultaneous assignment statements. The format is:

[{name.] litera.l—variable1 == literal—variab1e2 $

4-10 17302500 Rev. 01

No conversion of codes takes place when Hollerith or STC literals are exchanged. As with
literal assignments, if the lengths of the variables are not the same, the sending variable

will be right-justified in the receiving variable.

Example:
VARI1 = transmission code
VAR2 = Hollerith code
[] VAR1 == VAR2 § VAR1 is set to Hollerith code value. VAR2 is
set to transmission code value.
STATUS

A status exchange statement exchanges the values of two status variables. The format is:
[name.] status-variablel == status-variab1e2 $

If the value of the status variable on either side of the exchange statement exceeds the range
of the status constant list for the other status variable, the results of the exchange are

unpredictable.
Examples:

° ITEM ASTATUS S V(A0) V(A1) Since ASTATUS was preset to V(A3), the fourth
V(A2) V(A3) V(A4) V(A5) V(A6)

P V(A3) § in the list, it griginally had the integer value 3.

Likewise, since V(B0) was the first status
i/lzg% sfggﬁTV[{% 45) ‘(,((]]33%)) \xf/'((%ls)) value in the list for BSTATUS, it will be preset
P V(BO) $ to integer value zero. The exchange \staﬁement
ASTATUS == BSTATUS $ will exchange the values. ASTATUS will be

set to integer value zero indicating status value

V(AO), and BSTATUS will be set to integer 3,

the value for V(B3).

BOOLEAN

A Boolean exchange statement exchanges the values of two Boolean variables. The format is:

[name.] Boolean-variable, == Boolean-variable, $

17302500 Rev, 02 4-11

Example:

e BOOL1 == BOOL2 $ The current value of BOOL1 is exchanged with
the current value of BOOL2. Both values are

either 1 or zero.

ENTRY

An entry exchange statement switches the values of two entry variables. The format is:
[name.] en’cry-variable1 == entry-variable2 $

Examples:

° ENTRY(AA($33)) == The bit patterns in entries four and seven of
ENTRY(AA($68)) $ table AA, or the table containing item AA, are
exchanged. This exchange is in the same
table; therefore, the entries are the same
length and no padding or truncation will be

required.
e ENTRY(TABLB(7)) == In this example the eighth entry of table TABLB
ENTRY(TABLA($43)) $ (five words per entry) will be exchanged with

the fifth entry of table TABLA (four words per
entry). Truncation and padding will occur be-
cause the two tables have different length
entries: the five words of TABLB will be right-
justified and the left word truncated in the
four-word entry; the four words of TABLA will
be right-justified and zero-filled on the left in

the five-word entry.

CONTROL STATEMENTS

The control statements GOTO, IF, IFEITH, and ORIF enable the user to branch out of the

normal serial sequence of execution. Each of these is detailed in the following pages.

GOTO

The GOTO statement transfers control to a statement designated by a sequential formula. A
sequential formula is either a statement label, a switch name, or the name of a CLOSE

routine., The format is:

[name.] GOTO sequential-formula $

4-12 17302500 Rev. 01

When the sequential formula is a statement-label, the program branches to the statement

designated by the label.

When the formula is a CLOSE routine name, the CLOSE routine is executed. Control then
returns automatically to the statement following the GOTO, unless a GOTO statement within
the CLOSE routine transfers control to another point in the program.

When the sequential formula is a switch name, it is either a simple name or a name followed
by an index. If it is a simple name, it refers to a switch declaration containing a list of
statement labels or another switch name, or CLOSE name to which control is transferred.

If the switch name is indexed, the index is an integer value whicn refers to one of the names
specified in the switch declaration. If there is no meaningful value associated with this index,

the next statement in the regular sequence is executed.
Examples:

[GOTO AA 3 If AA is a statement label, the statement named
by AA is executed and the program continues

from that point.

If AA is a CLOSE name, the CLOSE routine
AA is executed and then control returns to the
statement following GOTO AA, unless a differ-
ent transfer is specified in the CLOSE,

If AA is a switch name, it must be an item
switch which has been set, prior to the switch
call, with a simple item whose value deter-

mines where control will transfer.

° GOTO SW(1) $ An indexed sequential formula always desig-
nates a switch name. The index either speci-
fies the second formula in an index switch, the
second occurrence of an item in a table, or a
one-dimensional array specified in an item

switch,

o GOTO WHICH(A, B, C)$ WHICH names an item switch specifying a
three-dimensional array. The value of the
particular item in the array determines the

sequential formula to which control transfers.

CONDITIONAL

A conditional statement is an IF clause followed by an independent statement which may be
either simple or compound. In the event that the IF clause is true, the independent statement

17302500 Rev, 02 4-13

is executed; when the IF clause is false, the following independent statement is skipped and

the next sequential independent statement is executed. Conditional statements may not be

immediately followed by another conditional statement. Thus, the following sequence isillegal;

IF AAGR10 $
IF BBLS 15 $

The following form may be used to accomplish the stated testing:

IF AAGR 10 3

BEGIN

IF BBLS 15§

END

Placing BEGIN-END brackets around the conditional statements makes it a compound state-
ment, The number of nested IF clauses is limited to 50. The format is:

[name.] IF Boolean-formula $ [name.] simple or compound-statement $

Examples:

IF DIST LQ 500 $
GOTO RUN $
DIST = DIST -1 §

IF 10 - AA(K) EQ O $
AA(BKS$)=AA(BKS) +1 $

IF WIN $ GOTO PROFIT $
GOTO LOSS $

IF GRADES LS 75 $

BEGIN
WARNING = V(ON) $
CLASS = V(FAIL) $
GOTO OUT $

END

GOTO TEST $

IFEITH AND ORIF

If the Boolean formula DIST LQ 500 is true,
control transfers to the statement or CLOSE
named RUN; otherwise, the variable DIST is
decremented by 1.

If the item AA(K) is equal to 10, it is incre-
mented by 1.

WIN must have been declared as a Boolean
variable. Its current value determines whether
PROFIT or LOSS is executed.

If GRADES is less than 75, the compound state=-
ment within the BEGIN-END brackets is exe-
cuted; it includes a transfer to avoid TEST.
Otherwise, transfer to TEST.

The IFEITH and ORIF statements are variants of a simple IF clause, providing a means of

selecting one of a series of possible statements. The choice depends on the evaluation of

Boolean formulas. The formats are:

4-14

17302500 Rev. 01

[name.] IFEITH Boolean-formula, $
[name.] statement,
[name.] ORIF Boolean-formula, $

[name.] statement,

[name.] ORIF Boolean-formula $
[name.] statement

END
where
statement 1,...,n may be either simple or compound, but not complex.

An IFEITH statement acts as an implied BEGIN, Therefore, since each BEGIN must have a
matching END, the last ORIF statement must be followed by an END to match with the IFEITH
statement. An IFEITH must be followed by at least one ORIF. Each Boolean formula is
evaluated in turn until a true one is found, which then causes execution of its statement. If
the statement being executed does not contain a GOTO, control is given to the first statement
after the matching END statement. If none of the Boolean formulas is true, none of the
statements is executed and control drops through to the first statement after the matching
END statement. If control is passed to a labeled ORIF statement, a search begins for alter-

natives at that point, as if all of the preceding alternatives had been false.

IFEITH and ORIF statements can also be compound statements. An ORIF 1 $ statement
specified before the matching END statement will cause its statement to be executed if no
previous statement was true, This is a convenient way of terminating the IFEITH and ORIF
statements. The maximum nesting level for IFEITH statements is 50. :

Examples:

° IFEITH MM EQ V(SEP) OR The use of the Boolean constant 1 in the last
MM EQ V(APR) OR MM EQ
V(JUN) OR MM EQ V(NOV)$

DD =30$
ORIF NN EQ V(FEB) $
BEGIN
IFEITH LPTR
DD =29 $
ORIF 1 $
DD =28%
END "FEB"
END

ORIF clause assures that all possible alterna-

tives are considered.

17302500 Rev. 02 4-15

ORIF 1 $

DD =318
END' 'MONTH' '
GOTO DATE'SET $

) IFEITH AA LS BB $§ Entry at the beginning tests all the alternatives.
AA - BB $ Entry at T1 tests the second and third alter-
T1. ORIF AA+BBGR 10 § natives only. If the second alternative is true,
BEGIN all four following statements are executed and
CG = (AA+BB)/2 $ control transfers to REMAIN. Entry T2 does
T2, AA=CG+1$ not test any alternative; AA and BB are set and
BB=AA+13$§ control leaves the IFEITH-ORIF statement.
GOTO REMAIN § The comment following END is used here to
END identify the END as the terminator of the
ORIF 1 § IFEITH clause.

GOTO LEAVE $
END ' 'IFEITH''

LOOP STATEMENTS

The loop statement provides for the repeated execution of an independent statement and the
activation of a loop variable for use by the independent statement. It may also provide for
incrementing or decrementing the loop variable, testing it, and branching according to the
results. The FOR clause activates the loop variable and begins the iterative process; the
TEST statement can be used within a FOR clause to transfer control to the implicit modify~
test-branch section of a FOR clause.

FOR CLAUSE

The complete FOR clause defines a loop variable, establishes its initial value, specifies in-
crement or decrement value, and declares the terminal value. The loop variable is only
active for the independent statement following the FOR clause. It is an integer variable and
may be used by the independent statement. The values in the FOR clause may be specified
explicitly as integer constants, or may be numeric formulas. The number of times the
statement is to be iterated is specified by the formulas in the FOR clause, unless altered by

the independent statement. The format is:

name. FOR-letter = formula, L formula2 R formulas]]$
where

FOR-letter = a single letter which is set to for'mula1

forrnula1 = gpecifies the initial value

4-16 17302500 Rev. 02

formu1a2 = gpecifies the increment or decrement

formu1a3 = gpecifies the terminal value

FOR STATEMENT

A FOR statement is a complex statement defined as a FOR clause, followed by a simple or

compound statement.

The loop variable is the only instance in which a single letter variable may be used. The

formats are:
,

[name.] FOR loop-variable = formula,; [, formula, [.formu1a3]]$

[name.] FOR loop-variable = ALL(name)$

where
loop variable = a single letter which is set to formulal.
formula, = the initial value.
formula.2 = an increment or decrement.
for‘mula_,3 = the terminal value of the loop variable.

name is table or table item name. This is equivalent to specifying
NENT (name)-1 for formulal, -1 for formulaz, and O for formulaS.

ALIL(name)

It is a special shorthand form for processing active entries, based
on the value of a table NENT.

The formulas may be any numeric formulas yielding a positive or negative value between
-217 -1 and +217 -1. If the result of the formula is not integral, it is truncated to obtain an
integer. The FOR statement must be immediately followed by the loop statement; data

declarations are not permissable between the FOR statement and its loop statement,

When a FOR statement is executed, the sequence of steps is as follows:

1, Initialize Assign the initial value to the loop variable.
2, Execute Execute the loop statement.
3. Modify Increment or decrement the value of the loop variable by increment

or decrement value.

4., Test Compare the value of the loop variable by the value of the terminal

value.

17302500 Rev. 02 4-17

5. Iterate If increment or decrement value is greater than or equal to zero,
and if the loop variable is equal to or less than the terminal value,
return to step 2 above. Similarly, if the increment or decrement
value is negative, and the loop variable is greater than or equal to

the terminal value, there is an automatic return to step 2.

6. Exit When the increment or decrement value is greater than or equal to
zero, and the loop variable is greater than the terminal value, con-
trol passes to the next statement after the FOR clause. Similarly,
when the increment or decrement value is less than zero, and the
loop variable becomes less than the terminal value, control passes

to the next statement.

The loop variable is defined as soon as the initial value is assigned to it. It remains defined
within the FOR loop until control is transferred to a point outside of the loop. The loop
variable is undefined when the program ig executing outside of the loop. It can be used in
the increment or decrement value and in the terminal value of the FOR clause, and can also

be included in other FOR clauses within the original FOR loop.

Other FOR clauses, procedures, functions, and subprograms can be called from within a
FOR loop without affecting the active status of the loop variable., Direct reference to the
loop variable is not allowed within the procedure, function, or subprogram called, but it can

be used as an actual parameter (input or output) in the calling statement.
ONE~-COMPONENT FOR STATEMENT

This FOR statement does not control the program, it merely defines a loop variable for a
specified period. No modification, testing, or iteration is performed. The format is:

FOR loop-variable = formula $
Example:

° FORZ=0§

BEGIN
AA.IF ITEMZ(Z) GR AVERAGE $
GOTO EXEC $
Z=2+1%
IF ZLQ 999 §
GOTO AA §

END ''Z"!

4-18 17302500 Rev. 02

The BEGIN-END brackets define the limits of the variable Z, The FOR statement could have
been written by using the three-component FOR statement:

FOR Z =0,1,999 $
BEGIN IF ITEMZ($Z2$) GR AVERAGE $ GOTO EXEC $ END

The IF statement following a one-component FOR statement is allowed; but if the FOR state-
ment had more than one component and thus implied iteration, the IF statement would have
to be enclosed in BEGIN-END brackets.

A one-component FOR statement may be used where it is convenient to define a loop variable
to represent the integer value of an expression in several independent statements. This may
be accomplished by enclosing the independent statement in BEGIN-END brackets to form a
compound statement following the one factor FOR clause, which defines the loop variable.
While thig may save coding effort, it will not necessarily result in more efficient code. The
computation of expressions and their storage in the index registers is decided by the sched-
uling algorithm in the local optimizer.

Example:
e TFORA = XX + YY(5) $ The use of a loop variable eliminates the need
BEGIN ' 'A' ! to write out the formula each time it is used.
ZZ=A+5%$
.
.
.
INT = ARRY(A) $
.
.
.
SUB=A$
END ' 'A' !

TWO-COMPONENT FOR STATEMENT

A FOR statement with two components defines the initial value of the loop variable and its

increment or decrement. The format is:
FOR loop-variable = formulal, formu].a2 $

This sets up an endless loop because the formula to provide a terminal value with the implicit
test to end this loop is omitted. Therefore, it is necessary to provide an exit from the loop

after a specific number of increments. Consider the example given below:

17302500 Rev. 02 4-19

FORA=0, 2%
BEGIN

TABLA (3A$) =0 $
END

After the statement within BEGIN-END is executed, the loop variable A is incremented by 2
and the statement is executed again, A statement to test A and exit must be inserted in

order to avoid an infinite loop. Thus:

FORA=0,23%
BEGIN

TABLA (3A8) =0 §

IF A GR 100 $ GO TOFIN $
END

THREE-COMPONENT FOR STATEMENT

This is the complete FOR statement; an initial value is set, an increment or decrement is

specified, and a terminating value is set to the loop variable. The format is:
FOR loop-variable = formulal, formulaz, formula3 $
After each execution of the loop statement, the following occurs:
[The loop variable is incremented or decremented by the increment or decrement
value (formulaz).

e The loop variable is compared with the terminal value (formulas).

[If the increment or decrement value is positive, the direction is assumed to be
from low to high, so the loop variable is tested to see if it is greater thaﬁ the
value of the terminal formula. If the test is successful, the iteration is complete,
the loop variable is deactivated and the next independent statement is executed.

If the test fails, the independent statement is iterated again.

° If for-mula2 is negative, the direction is assumed to be from higher to lower, and
the variable is tested to see if it is less than the value of formulas. This test is

identical to the test described when formula2 is positive.
Examples:

e Given a table, MANPOWR, find the age of the oldest male employee with a salary
less than 201. 35, (Assume the existence of a valued table with the characteristics
defined below.)

4-20 17302500 Rev. 02

TABLE MANPOWR V 10000 P 2 $
BEGIN
ITEM NUMBER H 800 $
ITEM SALRYA 40U 710 $
ITEM SEX S 1 V(MALE) V(FEMALE) 1 40 $
ITEMAGEI 7U141$
END
ITEM OLDSTI60S P 0 §
FORA=0,1, 9999 ¢
BEGIN ' ‘A" !

IF AGE ($A8) GR OLDST AND SEX EQ V(MALE) AND SALRY LS
201.35 $

OLDST = AGE(AS) $
END ' 'A' !

® The FOR statement can be expressed as an IF statement by setting the value of
an index item and testing it as shown below.

ITEMAAIGOUP O S

Al. IF AGE (AA) GR OLDST AND SEX EQ V(MALE) AND SALRY LS
201.35 3

OLDST = AGE (AA) $
AA =AA+1 §

IF AA 1.Q 999 $

GOTO A1 $

e The loop variable activated by a FOR statement does not need to be used in the
loop statement. Rather, it may be used to determine the number of times the
loop statement is iterated. Given a file QUT assigned to OUTPUT on which 10
lines of space are desired before printing the next output:

FORZ=0,1, 9%
OUTPUT OUT 1H() $

These statements will cause OUTPUT OUT 1H() $ to be iterated 10 times, print-
ing one blank line each time.

PARALLEL FOR STATEMENTS

A parallel FOR statement consists of a string of FOR statements preceding and governing
the execution of a single loop statement. The iteration is controlled by the first three-

17302500 Rev, 02 4-21

component FOR statement, and the controlling statement must not be preceded by a two-
component FOR statement. Tne three- and two-component FOR statements are modified
from the last loop variable to the first.

Example:

e FORA-=18%
FORB=0,1,9%
FOR C=10, -2 §

BEGIN

Ll. XX(B) =C*4 $ Thig statement will be executed 10 times.
IFCILSA$TESTBS$

L2. YY=B$ This statement will be executed 5 times.

END

NESTED FOR STATEMENTS

FOR statements can be nested, forming loops within loops, by enclosing FOR statements
within BEGIN-END so that each FOR statement is separated from the next by a BEGIN. The
limit for nested FOR statements is the maximum character set, 26.

Example:

e FORA-=18$

BEGIN ' 'A'"!
FORB=0,1,9$
BEGIN ' 'B' !
FOR C =10, -2 $
BEGIN ' 'C' !
Ll. XX (3B$)=C *4 $ This statement will be executed 60 times.
IFCLSA$TESTB $
L2. YY=B$ This statement will be executed 50 times.
END ' 'C'!
END''B''
END ' 'A'!

A common use for nested loops is iteration through the elements of an array.
Example:

e Given array MATRX, set each element to zero where the current value is greater
than 50 (the array elements are all integers).

4-22 17302500 Rev. 02

ARRAY MATRX 343148U $

FORA=2, -1, 038 This statement loops through columns
BEGIN ' 'A' ! in the array.
FORB=3, -1, 0% This statement loops through rows in
BEGIN ' 'B' ' the array.
FORC=2, -1, 0% This statement loops through planes
BEGIN ' 'C' ! in the array.

IF MATRX (A, B, C) GR 50 $
MATRX (A,B,C) = 0 $
END ! IC! 1
END ' 'B' !
END 1 IAI 1

FOR ALL CLAUSE

The FOR ALL clause is a shorthand method of setting up a FOR clause based on the value of
a table NENT. The format of the FOR ALL clause is:

table-name £)$

FOR loop-variable = ALL (table-item-name

While this clause is normally used to process all active entries in a table, it may also be

used for other purposes. It has the same effect as the following:

table-name f)_l’ 1,08

e FOR loop variable = NENT (table-item-name

[For rigid tables, the NENT is a constant, and the FOR ALL clause will iterate
through all entries,

° For variable tables, the NENT is a variable and should be set to the number of
active entries prior to a FOR ALL clause. For variable tables, a FOR ALL
clause will iterate from one less than the number of active entries indicated by
the NENT down through zero.

Example:

e Given the table MANPOWR defined on page 4-20, count the number of male
employees and place the count in the item MEN.

MEN = 0 3
FOR A = ALL(MANPOWR) $
BEGIN
IF SEX EQ V(MALE) $§ MEN = MEN +1 §
END

17302500 Rev. 02 4-23

TEST STATEMENT

In a FOR statement, the compiler automatically supplies the steps that modify and test the
loop variable and branches accordingly. The TEST statement provides a means to branch
directly to the modify-test-branch process of a FOR statement. The TEST statement must

appear within the loop statement following the FOR clause. The format is:
[name.] TEST [1etter] $
where

letter (when used) = a particular loop variable specified in the FOR clause preceding

the loop statement in which TEST appears

° If the letter is specified, control transfers to the modify~-test-branch for that

particular loop variable. All inner loops will be reinitialized because of this.

[If there is no letter specified, control is given to the modify-test-branch process

of the innermost loop variable.

The TEST statement is applicable to parallel FOR statements as well as nested FOR state-

ments.
Examples:

e FORA=0,1, NUM-1$%
FORB=0,18
BEGIN
IF ACCT ($A8$) NQ ACC'T If the two items are unequal, test the outer
($B3) $
TESTA $ statement after END if A is greater than NUM
-1, returning to BEGIN if A is less than or
equal to NUM -1.

loop variable by setting A = A+l going t6 the

SHRT = SHRT + PAYMT Otherwise, increment SHRT and then test A by
(3A%) $ setting B=B+1, A = A +1 and returning to
BEGIN if A is less than or equal to NUM -1, or
END exiting if A is greater than NUM -1,

4-24 17302500 Rev. 02

) This example shows the programmer-supplied JOVIAL code and the implicit
code generated by the JOVIAL compiler.

JOVIAL Code Implicit Code
FOR A =0,2,100 $ A=08%
FOR B = 50,1% B=50%
FORC=10$% cC=108%
BEGIN ' 'ABC' ! ABC.
FORE = 100, -2,0$ E =100 $
FORF=5 1% F=58%
BEGIN ' 'EF' ! EF.
L L
[] o
[[]
TEST A $ GOTO ATEST $
[] [
® [}
[] [
TEST B $ GOTO BTEST $
TEST E $ GOTO ETEST $
TEST F § GOTO FTEST $
TEST $ GOTO FTEST $
END ' 'EF' ! FTEST. F = F+1 $

ETEST. E = E-2 §

IF E GQ 0 $ GOTO EF §
BTEST. B = B+1 §
ATEST. A = A+2 $

IF A LQ 100 $ GOTO ABC §

PROGRAM CONTROL STATEMENT

The JOVIAL statement STOP provides a means of halting program execution and returning
control to the operating system, or of pausing temporarily, then continuing execution of the

program,

STOP

The STOP statement halts program execution and transfers control to the operating system.

The format is:

[name.] STOP [statement-label] $

17302500 Rev. 02 4-25

If no STOP statement is included in the program, execution will be terminated and control

returned to the operating system when control flows out at the end of the program,

If no statement label has been specified, the program will be halted at the STOP card. Con-
trol will be returned to the operating system. If a statement label has been specified, execu-
tion of the program will be suspended and the control point at which the job is executing will
display PAUSE. This will continue until the control point is given a GO by the operator; the
program will continue at the statement label specified in the STOP statement. The statement
label is not displayed; thus, if more than one STOP statement and/or STOP statement label
is included, it may not be possible to determine which caused the PAUSE or where execution
will commence after a restart. Because this involves operator intervention, it should only be

used for hands-on debugging.

Examples:
° AAl, STOP $ Terminates the program execution.
e STOP LABX $§ The program is suspended; the control point

at which the job is executing will display
PAUSE. After a restart, the program will
continue at LABX.

DIRECT-JOVIAL STATEMENTS

Symbolic machine-language code can be inserted within a JOVIAL program if the code is
placed within the DIRECT-JOVIAL brackets. The form is:

DIRECT
)
.
°
(assembler language code)
.
.
.
JOVIAL

The assembler language code is a proper subset of the COMPASS assembly language. The
allowable forms are given in Appendix L. The DIRECT-JOVIAL brackets provide a language
facility for coding machine operations that cannot be expressed directly in JOVIAL. The
facility is not intended to provide an unlimited escape into machine language, but rather to

provide computational eificiency. Consequently, communication is restricted between a direct

4-26 17302500 Rev. 02

code block and other parts of a JOVIAL program. In particular, no branches into or out of
a direct code block are permitted; entrance and exit to the block are only at the top and

bottom, respectively.

Three additional COMPASS pseudo-instructions are available with the assembly-type state-
ments. These are the DIRECT, JOVIAL, and ASSIGN pseudo-instructions. The first two
direct the transition from JOVIAL to assembly code and back again. ASSIGN allows direct
code to communicate with JOVIAL variables.

DIRECT-JOVIAL PSEUDO-INSTRUCTIONS

The DIRECT pseudo-instruction informs the JOVIAL compiler that all lines up to and in-
cluding the JOVIAL pseudo=-instruction line consist of direct code. The JOVIAL pseudo-
instruction informs the direct-code processor of the compiler that this is the end of the

direct-code sequence.

JOVIAL code resumes in column 1 of the next line, thus the remainder of a card containing
the pseudo-instruction should be blank. The contents will not be used by the compiler, but
printed in the listing as comments. The p. ~udo-instructions DIRECT and JOVIAL must ap-
pear in the operation field; that is, they must begin in a card column between 3 and 35.

JOVIAL statements cannot appear on the same line as COMPASS statements, therefore, the

following form is illegal:
SB4 X3 JOVIAL

The JOVIAL statement must appear on the line following the last COMPASS statement.

ASSIGN PSEUDO-INSTRUCTION

The only reference to a JOVIAL variable from inside the block of direct code is through the
ASSIGN pseudo-instruction. ASSIGN allows loading from or storing into a simple nonindexed
JOVIAL variable. The forms of ASSIGN are:

. _ X register])
ASSIGN variable = A ([integer-constant $

or

X register
ASSIGN A ([integer-constant]) $

The variable must be simple and not subscripted. If the X register or the integer constant
are omitted, the assignment is to or from a floating-point register., Even if empty, the
. pair of parentheses following A must be specified. The use of ASSIGN is further described

in Appendix L.

17302500 Rev. 02

DATA DECLARATIONS

Various types of data, in the form of numbers, characters, or simply a string of contiguous
bits, can be described and manipulated in the JOVIAL language. The data can be organized

into tables of items, multidimensional arrays, or simple items. The size as well as the
type of data forms may vary. This section presents a detailed description of these data

forms.

ITEM DECLARATIONS
An item is declared using the general form:
ITEM item~-name item-description $

The item-name is supplied by the user and must conform to the general rules governing
names. The item-description depends on the type of item. It can be one of six types:

e Integer

° Fixed-point

e Floating=-point

° Literal (Hollerith or transmission code)

) Status

[} Boolean

INTEGER

The form of the integer item declaration is:

I nl {gf[R][nz... n3] [Pn4]$

where
I = an integer of arbitrary precision
nl = the number of bits required to contain the item including the sign bit if
signed
U = unsigned

17302500 Rev, 02

S = sgigned

[R] = rounding specified
[n2 ves n3] = range of integer value magnitudes the item contains from minimum
(n2) to maximum (n3); n2 and n3 must be integer numbers.

[P n4] = the item is preset to a numeric value of n4 (numeric constant).
Examples:

e ITEMINTIG60S$ Full word signed integer.

) ITEM UNSI159U $ Largest unsigned integer which can be declared.

) ITEM SUM 1 36 S P 400 $ 36-bit signed integer (sign bit and 35 data

bits). The variable is preset to 400.

e ITEMFINI18S P 40.32 8% An 18-bit signed item. The preset value is
converted to integer; since the fractional part
is truncated in the conversion to integer, the
preset will be the same as if FIN had been

preset to 40.

e ITEMROUNDI48SR$ A 48-bit signed integer item, If the variable
is set to a fixed-point or floating formula, it
is rounded to an integer value instead of

truncated.

e ITEM ROUNDI118S ROUND is an 18-bit signed item, The range
100 ...100000 $ description indicates that a value less than 100
will not be held. This may enable the compiler
to generate more efficient code for statéments
using the item.

e ITEMOCTIZ28 Item OCT has a sign bit and 27 integer bits.
S P O(5134) § The octal preset has a decimal value of 2652.

FIXED-POINT

The form of a fixed-point item declaration is:

A nl }g} n2 [R] [n3...n4] [P n5]$

where

A = a fixed-point value of the precision specified in n2.

5-2 17302500 Rev. 02

nl

n2

[x]
[nS s n4]

[]

the number of bits required to contain the item including the sign bit

if signed.

unsigned

signed

the number indicating the position of the binary point from the right
boundary of the item. If n2 is positive, it is the number of fractional
bits; if negative, it is the number of missing bits, If n2 is omitted,
the compiler treats the variable as an integer.

rounding specified

range of value magnitudes the item contains from minimum (n3) to

maximum (n4).

the item is preset to a numeric value of n5 (numeric constant).

Examples:
° ITEM FIX A 36 S18 $ FIX has one sign bit, 17 integer bits, and 18
fractional bits.
e ITEM FRACT A A 48-bit signed item with a sign bit, 10
48510 P 11.37 § fractional bits, and 37 integer bits. FRACT
is preset to the value 11, 37.
e ITEM WORKA24US9S$ WORK is a 24-bit item with 15 integer bits and

nine fractional bits. It ig specified as unsigned;

therefore, it has no sign bit.

[ITEM ALTITUDE A 10 U -6 $ Item ALTITUDE has 10 integer bits. The

negative fractional bit specification indicates
that six bits are missing; that is, the decimal
point is actually six bits to the right of the 10
bits. The least bit has a value of 64 (25), the
second 128 (27), etc. Thus, the values which
take 16 bits when fully represented can be
represented in only 10 bits; however, the pre-
cision is now to the nearest multiple of 64

instead of the nearest multiple of one.

e ITEM RANGE A8 U -2 $ The item RANGE has eight integer bits. The

17302500 Rev. 01

-2 fractional bit indicates that two bits are
missing. Thus, data values up to 1023 may be

. ITEM FIX'INT A 24350 §

e ITEMFIXRA48S3RP
234.5665 3

e ITEM FRONT A 37S 8P
0(1234) §

e ITEM LIMIT A 24 S 10
-8000 ...-0.001 $

FLOATING-POINT

represented in eight bits as the nearest
multiple of 4; that is, the least bit of the vari-

able has the value 4, the second 8, etc.

This 24-Dbit fixed-point item has no fractional
bits specified; therefore, the resulting vari-
able is the same as if integer 24 bits signed

had been specified.

The item FIXR has a sign bit, 44 integer bits,
and 3 fractional bits. The R indicates round-
ing. If a fixed-point formula of greater pre-
cision than three fractional bits is assigned, the
formula is rounded instead of truncated. In
this example, the preset will result in FIXR
having an initial setting of 352 58 or 234. 62 510.
The third fractional bit, which accounts for
the difference, has a value of 0. 12510. If
rounding had not been specified, the preset
would have been truncated to a value of 35248
or 234. 51 0

Item FRONT has 37 bits, a sign bit, 28 integer
bits, and eight fractional bits. The octal pre-

set will be to the integer bits giving a value of

668, to the variable.

The variable will have a sign bit, 13 integer

bits, and 10 fractional bits. The information
of the range, that the variable will not be set
to 0 or a positive value, may enable more ef-

ficient code to be generated.

The item description of a floating-point item has the form:

(1) o]

where

F = a floating-point item

5-4

17302500 Rev. 02

[R] = rounding specified

[P nl] = item is preset to initial value nl, a numeric constant
Examples:
. ITEM AMNT F R P 6. 025% The floating-point item AMNT is rounded and

preset to the floating value 6. 025,

e ITEM XX F$ The floating-point item XX is not rounded and

has no preset value.

LITERAL

The form of a literal item description is:

{?; nl [P n2]$
where

= item containing display code characters
= item containing transmission code characters
nl = number of bytes allocated to item (six bits to a byte)
[P n2] = Item is preset to value n2, an octal, display, or transmission code

constant

If a preset is not specified, literal items are preset to blanks of the item type, i.e., Hollerith
or STC blanks.

Examples:

° ITEM HOL H15 $§ A 15-byte Hollerith item. Since no preset is
specified, it will be set to Hollerith blanks.

e ITEMSTCT3$ A three-byte transmission code item. Since no
preset is specified, it will be preset to trans-
mission code blanks.

e ITEM HEADER H 10 P The 10-byte Hollerith item HEADER is preset

10H(DATA TABLE) $ to DATA TABLE.

e ITEM NUMBER The 10-byte Hollerith variable is preset to the

H10 P O(171605) $ Hollerith characters ONE. The result is

right-justified with blank filled.

17302500 Rev. 02 5-5

STATUS

[ITEM LABEL The five-byte variable is preset to the trans-

T 5 P 5T(OPEN) $

mission code value for OPEN.

e ITEM MIXED H 3 P 3T(EFG) $ MIXED is a three-byte Hollerith item. The trans-

mission code preset is accepted but not con-
verted to Hollerith; thus, the code generated
is the same as if MIXED had been preset to
3H(JKL).

A status item defines symbolic values, which are essentially mnemonic labels that the item

can assume,.

where

The format is:

S [nl] status-list [P nz] $

S

[

status-list

o 2]

Examples:

5-6

the item is a status item.

size indication (optional). If omitted, the size is determined by the
number of values in the status list. The size is the number of bits

required to contain the largest value the item may assume.

the list of status constants whose value the status item can take; the
value is composed of any JOVIAL letter or name. Status constants are
separated by blanks. Status constant have the form V(status-constant).

preset value. This value must be one of the status constants declared

in the status list of the item.

v

° ITEM GRADE S 6 V(PASS) GRADE lists the possible states of the item.

V(FAIL) V(HONORS)$

The size of the item is six bits; if the size
specification is omitted, only two bits are
required to contain the largest value, the

number two.

e ITEM JUMP'CODE S This status item (JUMP'CODE) defines 12
agi%; XE%‘%) 325?&; states. The compiler assigns four bits to the
V(MJN) V(NJM) V(PJN) item. The value assigned to V(AJM) is 0; to

V(RIJM) V(UJN) V(ZIN)$

V(EJM), 1; and so forth incrementing by one
through V(ZJN), which has the value of 11.

17302500 Rev. 02

° ITEM VOWEL S V(A) This status item defines five states. The
V(E) V(D V(O) V(U) P V(A) compiler will assign three bits to the item.

Since V(A) is the first status constant in the

status-list, the initial value will be 0.

. ITEM DELIM S V(BEGIN) V(END) In this example, the compiler assigns three bits

V(START) V(TERM) V(DIRECT)

V(JOVIAL) V(IFEITH)$ to the item; it can then be used to represent the

JOVIAL reserved words for delimiters.

BOOLEAN

A Boolean item is used to express two alternatives. It is always a one-bit item whose value
is either 0 or 1. When the value is equal to 0, it is false; when equal to 1, true.

The form of a Boolean item description is:

B [P nl]

where
B = identifies the item as a one-bit Boolean item
[P nl] = preset value (optional); n1 can be either 0 or 1.
Examples:
° ITEM PASS B$ The item PASS is either true (1) or false (0).
e ITEM FORMULAB B P 0 $ This item is preset to the value 0 (false). The

value can change during execution.

IMPLICIT ITEM DECLARATIONS

All of the preceding items (except Boolean and status) can be declared implicitly by substitu-
ting a constant of the item type for the item description. The size and precision of the item
type will be determined by the constant. Integer and fixed-point items have only the minimum
number of bits required to contain the preset constant. A sign bit is allocated only if the
constant is signed. Implicit definition may not be used during execution of the program;
integer or fixed-point items will be set to formulas requiring greater precision than the

preset.
The form of an implicitly defined item is:

ITEM name constant $

17302500 Rev. 02 5-7

Examples:

e ITEM TITLE 14H(MANPOWER TITLE is a Hollerith literal constant requiring

TABLE)$ 14 six-bit bytes.

) ITEM NUMBER 10$ NUMBER is an integer item whose size is the
number of bits required to contain the unsigned
integer number 10 (four bits).

[} ITEM AAA 2,5A25% The size of the fixed-point item AAA is deter-
mined by the value and must include 25 frac-
tional bits.

° ITEM AMNT 6.025% The floating value defines item AMNT as a

floating=-point item.

MODE DECLARATIONS

Simple unsubscripted items that are not defined by an item declaration are automatically de-

fined by a default mode of definition as signed integers occupying a full word, (I 60 S).

The user can change this default mode by the mode declaration. The mode declaration
causes the compiler to assume a new default mode in accordance with the item description

in the declaration. The format is:
MODE item-description [P constant] $

The item description can be any of the forms shown in Table 5-1. If P and a constant are

specified, all subsequent mode-defined items are preset to the constant value.

The mode declaration may occur anywhere among the statements or declarations of a program,

within the main program, or in a procedure or function declaration.

A mode declaration takes effect when encountered and remains in effect until the next mode

declaration or the end of the program.

The compiler does not resolve undefined items until all source cards have been read. Thus,
if an item-declaration does not occur in the program until after it is used in a statement, it
receives the description specified in the item-description, not the current mode value at the

time it is first used.

Mode definition may not take place in an overlay statement, The variables used must either
be declared in the program or mode-defined previously. Mode definition may not be used for
the formal parameters in procedures.

5-8 17302500 Rev, 02

TABLE 5-1.

ITEM DESCRIPTIONS

ltem DescripfionT Preset Descriptor
Item T
T Type . . Fractional Specific Preset .
ype C);%e Size |Signed Bits Rounded salues Rangeﬁ \F/Zsl ves Terminator
Integer { | : # bits?ﬂ U; - [r] - [integer [P $
A integer S constant | Numeric
= 60 s constan
integer
constcnf]
Fixed-Point A | # bits)iH| U{ [+Jinteger [R] - [numeric [p $
(arithmetic) integer S " <59 constant | Numeric
< 60 tce, cons’ranﬂﬁﬁ
numeric
constant]
Floating, F - - - (R] - - |[r $
single Numeric
precision constant]
Literal fH # chars, - - - - - [P literat $
(display or | I T} | integer constant]
transmission <250
code)
Status s [[# bits, - - - one or - [P status $
integer more constant
< 59] status
constants
Boolean B - - - - - - [P Boolean $
constant]

TA dash indicates that the entry is not applicable,

T he range states the estimated minimum through maximum (absolute value) that is likely to be assigned to
the variable, The constants must be positive or zero, and the smaller must come first. The compiler uses
the range estimation for scaling computations in numeric formulas.

M The specification of a preset value gives the item an initial value.

T The number of magnitude bits, excluding sign, must be at least 1 and not more than 59. A signed item
size must be at least 2; an unsigned item size must be less than 60.

Example:

17302500 Rev.

STARTS

.
AA=25 %
CC=AA +15 %
°
.

02

Start of program.

Items declared in normal manner.

Since CC is not declared in the program and
no COMPOOL has been used, it is mode
defined as I 60 S.

ARRAYS

MODE F §
L]

[]
SUM=FF - CC $
[}
®
[}
TIME=2*SUM $§
[]

°

MODE 114 S P -308%
[
[}

]
AA = CC/CONST $

.

.

)
MODE H 15 §
[]
L]
ITEM TIME 160 S $
[]
[]
TITLE=14H

(JOVIAL PROGRAM)$

.
TERM §

Effective with this line of code, the mode defi-
nition is now floating-point.

Since SUM is not defined in the program, it is
given the mode definition of a floating-point
variable.

SUM has been previously mode defined as
floating-point. Although TIME has not been
defined previously in the program, a declara-
tion occurs further on in the program. Thus
the integer definition, not the current mode,
will be used in this statement.

Effective with this statement, the mode defi-
nition changes to a 14-bit signed integer with
a preset value of -30.

Since CONST has not been defined in the pro-
gram, the mode value of a 14-bit signed
integer with value -30 is used.

Effective with this statement, the mode defi-
nition changes to 15 Hollerith.

Normal item-declaration which occurs after
it is used in the program.

Since TITLE has not been declared in the pro-
gram, it is mode defined as 15 Hollerith bytes.
This statement justifies the 14-byte header in

it.

An array is an arrangement of item-like elements in one or more dimensions. A particular

element of an array is designated by an index having as many components as there are

dimensions in the array. An array can have a maximum of seven dimensions.

A simple type of array is the two-dimension array or matrix in which each element is

located by row and column.

Column
Row 0 1 2 3
0 1 3 -7 0
1 -4 6 36 19
2 12 5 10 n

17302500 Rev. 01

In this array the value 36 is in Row 1, Column 2. The number of dimensions of the array

is two, and the dimensions are three by four.

Each element of an array is referenced by the array name followed by an index which has
as many components as there are dimensions in the array. For instance, the two dimen-
sional array described above has a two-component index. The number 36 in the array is
designated by the index 1, 2. The total size of an array is limited to 217—1 words.

ARRAY DECLARATION

The format of an ARRAY declaration is:

ARRAY array-name dimension-list item-description §
[constant-list]

where:

array-name = User-supplied name. The name by itself is used to refer to the
entire array. To specify a particular element off the array, the
array-name must be followed by indexes. The number of indexes
must be equal to the number of constants in the dimension list.

dimension-list = One or more unsigned integer constants which specify the number
of dimensions and the size of each dimension. The list can be up
to seven integers: the first is the number of rows; the second the
number of columns; the third the number of planes; the fourth is

the number of volumes, and so forth.

item-description = The array type, which may be any of the legal descriptions of a
single item shown in Table 5-1. Each element of the array has
the properties of the array type; the declaration may not contain

a preset,

[constant—list] = An optional constant list following the array declaration is used
to preset all or part of the array with initial values. The con-
stant list has the same number of dimensions as the array to
which the list applies. The constants in the list must agree in
type with the item description of the array. The valid presets

are the same as for simple items (see Table 5-1).

17302500 Rev. 01 5-11

Examples:

e ARRAYONE 60 F $

e ARRAY MATRIX 341605 $

e ARRAY NOTE
444 A60S15R$

e ARRAY BOOL 100 100 B$

e ARRAY LONG'LIT
20 20 H 25%

e ARRAY SEVEN
222345211885 %

CONSTANT LIST

This array has one dimension. Each element

is a floating-point item.

This array has two dimensions of three rows
and four columns. Each element is a 60 bit
signed integer.

Array NOTE has three dimensions with four
rows, four columns, and four planes. Each
element is a 60-bit fixed-point signed item with
15 fractional bits. The values in the array will

be rounded.

This Boolean array has two dimensions of
100 rows and 100 columns. Each element will
be one bit; the array is packed by bit, not by

word.

This literal array has two dimensions of 20
rows and 20 columns. Each element will be
three consecutive words; thus, the array will
take up 20 x 20 x 3 or 1200, 4 (22608) words of

storage.

This integer array has the maximum number of

. dimensions, seven. Each element is an integer

18-bit signed item.

The constant list is used to preset all or part of the array with initial values. The constant

list for each dimension is enclosed in separate levels of BEGIN-END brackets. The number

of BEGIN-END brackets must equal the number of dimensions specified in the dimension

list. The following rules apply to the use of brackets in the constant list:

° If fewer constants are specified, then only the first elements in the dimension
are set. Null presets are not defined; therefore, all elements in the level being

preset up to the one desired, must be presets.

. The innermost BEGIN-END brackets enclose rows.

e The second level of BEGIN-END brackets encompass columns of a plane. The
third and subsequent levels of BEGIN-END brackets include planes of a volume.

17302500 Rev. 02

. No more than the first 5800 words of an array can be preset.

(] There may be no more than 25 preset arrays in one program,

The order of the two innermost BEGIN-END brackets is a reversal of the allocation by

column, row, plane. It is a compromise that allows the declaration of constant lists to re-

flect the visual order of an array. The items in an array are indexed in allocation order.,

Examples:
° BEGIN
BEGIN BEGIN 1 END END
END
3 BEGIN
BEGIN BEGIN 1 END END
BEGIN

BEGIN 2 END
BEGIN 3 5 END
END
END

17302500 Rev. 02

The constant list is preset to a value of 1. The
first element of the first column in the three by
three by three dimensional array with preset

values is shown below.

To specify the middle element as five, it is
necessary to specify other elements as shown
in this example.

LT

5-13

° ARRAY XX 2 4 3 1 15 U$

BEGIN
BEGIN
BEGIN 000 010 020 030 END
BEGIN 100 110 120 130 END
END
BEGIN
BEGIN 001 011 021 031 END
BEGIN 101 111 121 131 END
END
BEGIN
BEGIN 002 012 022 032 END
BEGIN 102 112 122 132 END
END
END

e ARRAY FLOAT10F $
BEGIN 2, -5 3.254-..15 END

The preset in this example sets each element
to a value composed of its concatenated index
components., Only the innermost two dimen-

sions are inverted (see below).

;| 002 | 012 | 022 | 032

/ 102 | 112 | 122 | 132

/| 001 | 011 | 021 | 031 /

/ 101 | 111 | 121 | 131

000 | 010 | 020 | 030

100 | 110 120 | 130 |/

A one-dimensional floating-point array has the
first four elements set to the constants in the
constant list; the remaining six elements are
not preset (see below).

2,0
-5.0
3.254
-.15
P 7 ~
J —

17302500 Rev. 02

ARRAY COMPASS 33 H2 $

BEGIN

BEGIN 2H(NW) 2H(N) 2H(NE) END
BEGIN 2H(W) 2H() 2H(E) END
BEGIN 2H(SW) 2H(S) 2H(SE) END

END

ARRAYONE 48211 U $

BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
END
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
END
END

——O =
OO
coro
oo
O
e =

N =]
—_—0 o
oo+
oo
o=0oO0
oo

ARRAY TWO57B#$

BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN

END

17302500 Rev. 01

OO

OO

ococo-

O

END
END
END
END

END
END
END
END

| END

END
END
END
END

This two-dimensional array, COMPASS,
is set to display code values. Each value
consists of two characters (see below).

2H(NW) | 2H(N)| 2H(NE)

2HW)| 2H()| 2H(E)

2H(SW) | 2H(S) | 2H(SE)

This array has a three dimensional con-
stant list which sets each element to

either one or zero.

This array is preset to represent the
character 2, The preset specificatioh is
not in allocation order; the inverted pic-
ture of the numeral two is obtained when
the ones are connected in the declaration.

The indexes in allocation order are:

TWO($ 0, 08$)=0
TWO($ 1, 08)=1 TWO($ 2, 28)=0
TWO($ 2, 08$)=1 TWO($ 3, 28)=0
TWO($ 3, 08)=1 TWO($ 4, 28)=1
TWO($ 4, 08$)=0 TWO($ 0, 38$)=0
TWO($ 0, 1$)=1 TWO($1, 3$)=1
TWO($ 1, 18) =0 TWO($ 2, 3$)=1
TWO$ 2, 1$)=0 TWO($ 3, 3$)=1
TWO($ 3, 18$)=0 TWO($ 4, 3$)=0
TWO($ 4, 18)=1 TWO($ 0, 48)=1
TWO($ 0, 2$)=0 TWO($ 1, 48$)=0
TWO($ 1, 2 $) =0 TWO($ 2,v4 $)=0
5-15

-

TWO($ 3, 14 $) = 0

TWO($ 4, 48)=0 TWO($ 0, 6$) =1
TWO($ 0, 58)=1 TWO($ 1, 68$)=1
TWO($ 1, 58)=0 TWO($ 2, 68)=1
TWO($2, 58)=0 TWO($ 3, 68)=1
TWO($ 3, 58)=0 TWO($ 4, 68§) =1
TWO($ 4, 5$)=0

e ARRAYSEVEN3524543118S$ The constant list presets the first row of

BEGIN the first plane of the seven dimensional
BEng‘\}N array. This array example takes up 7200
BEGJN words of storage; the last 1400 words cannot
BEE(I%\%N be preset since the 5800 word limit applies.
BEGIN 3 4 50 80 -4500 END
END
END
END
END
END
END

REFERENCING ARRAYS
An array may be referenced in two ways:

] By the array name only. The name only is used to reference an array that is
used as a parameter to a procedure or function or used in an INPUT or OUTPUT

statement to transfer an entire array from or to a binary file.

. By the array name followed by an index. One component for each dimension of

the array is used in the index when an element of the array is specified.

The components which may be used as indexes are:

e Any numeric formula. If the formula does not yield an integer value, the formula
is truncated to integer. The numeric formula may be a subscripted value or

several subscripted values. The maximum subscript nesting level is 20.

o A formula that begins with 0 and runs to a maximum of n-1 for a dimension
with n elements. If the formula yields a result which does not lie between 0

and n-1, it will be performed with unspecified results.

Examples:

e INPUT FILE'A MATRIX $ Reads a record from binary file FILE'A into
array MATRIX.

5-16 17302500 Rev, 02

e MAT'MULT (ARRY'A, ARRY'B

= ARRY'C) $

e FLOAT($2%)

e XX($0,1,28)

e XX($VBL, FLOAT($4%),
FUNCT(30) $)

e FLOAT($ XX($1,1$)
+ 3%ZZ2Z - 20 $)

TABLES

Two arrays are passed to procedure
MAT'MULT and ARRY'C is an output param-
eter. The procedure MAT'MULT requires two
arrays as input parameters and one array as
an output parameter. The actual array param-
eters in this statement must agree with the

type defined as formal parameters.
Refers to the third element of array FLOAT.

Refers to the element in the first row, second

column, and third plane of array XX.

In this reference to array XX, the element

has the value of the numeric variable VBL for
its first index, the value of the fifth element of
array FLOAT for its second index, and the
result of the numeric function FUNCT acting

on 30 as its third index. As with the evaluation
of FLOAT ($43) for the second index, the for-
mula will be truncated to integer if an integer

value is not given.

The element referenced by this formula is
determined by the results of the evaluation of
the expression given as the index. The formula
includes another array item and the numeric
variable ZZZ.

Data which is logically related but not identical in structure can be grouped in tables. Tables

also allow packing of data for maximum utilization of storage. A table might contain the

following fields:

° Twelve bytes for the employee name

e Nine bytes for his social security number

17302500 Rev. 02

e Twelve integer bits, unsigned, for salary

° Fifteen integer bits, unsigned, for earnings to date

e Thirteen integer bits, unsigned, for income tax to date
° Thirteen bits in fixed-point for social security to date

) One-bit, Boolean, for marital status

Although the items contained in the fields listed above differ in size and structure, they can
be logically grouped into one table entry. The table will contain one entry per employee,
each entry having an identical structure. If the table is loosely-packed, eight words per
entry (the same as if each item were a one-dimensional array) are required; by selected
packing, each entry could be reduced to three words. The significant saving in storage may
more than justify the slight increase in access time caused by the packing of the data. The
ENTRY functional modifier moves the logically related data items in a table entry by a single

statement,
TYPES OF TABLES

Tables can be either fixed-length (with a set number of active entries) or variable-length

(with only the maximum number of entries specified).
The three main types of tables and table declarations are:

° Ordinary — Table whose allocation is set by the compiler
o Defined — Table with allocation specified by the user

e Like — Table which is a copy of a similarly structured table

A table declaration can be rigid or variable in the number of active entries and serial or
parallel in structure.

TABLE STRUCTURE

Tables are similar in structure to one-dimensional arrays; however, tables may contain
entries composed of several different data items whereas arrays can contain only elements
of like type. In all tables, the word prior to the first data word is reserved by the compiler
to contain the number of active entries in the table (LOC(TAB)-1). This control word is
known as the NENT of the table.

5-18 17302500 Rev. 02

A table entry may contain one or more items with identical substructures. Both entries
and items can be referenced. An entry is referenced by applying the ENTRY modifier to
the table name with an entry index; the items are referenced by indexing the item-name with
an entry index. Because a table is a one-dimensional arrangement of entries, the entry

and the table item indexes have only one component.

In a serial table, storage is allocated one entry at a time so that each item in an entry is
allocated consecutive storage. In a parallel table, storage is allocated with the first word
of each entry forming the first block of storage, the second word of each forming the second
block of storage, etc.

The programmer can specify that the arrangement of a table be either parallel (P) or serial
(S). If neither P nor S are specified, P is the default structure.

Example:
. TABLE AAOR4 PD $ In this TABLE declaration, parallel structure
B?,I%g\q/l Al B $ is specified. See Figure 5-1 for the parallel
ITEMBII 10 U $§ data structure created in the example. If the
%E‘g% gi ﬁ ‘218 2 10 $ declaration had specified serial structure the
ITEMELF $§ structure shown in Figure 5-2 would have been
END

created.

If a table is to be read or written in blocks or is referenced by entry, a serial table is
recommended because the entire entry is adjacent in storage. Otherwise, a parallel table
is preferred because any single item can be referenced by a single index; thus, the compiler
need not calculate relative subscripts for each item referenced. For tables in which there
is only one word per entry, either type of table can be used with equal effect.

TABLE SIZE

The space allocated for a table is fixed at compilation time according to the number of
entries specified in the user's table declaration. In an ordinary table, the compiler deter-
mines the size of entries for a table; in a defined table, the user must specify the size. The
total storage required for a given table equals the number of words required by an entry
multiplied by the number of entries plus one word for the NENT., Two methods of keeping
track of the space are provided: R for rigid-length tables and V for variable-length tables.

° For rigid tables, all entries are assumed to be active and the NENT f{ield is an

integer constant which is generated at compilation time.

17302500 Rev. 02 5-19

Entry 1

Entry 3

5-20

NENT

A1(50%) B1(0%) C1(30%) Entry 0
A1(315) B1($1%) C1(31%)
A1($2%) B1($2%) C1($2%)
A1(53%) B1($3%) C1($3$)

D1 ($0%) (1st half)

D1 ($1%) (st half)

D1 ($2§) (Ist half)

D1 ($3%) (1st half)

D1 (0) (2nd half)

D1 (1) (2nd half)

D1 ($2%) (2nd half) Entry 2

D1 (3) (2nd half)

E1 ($0%)

$1%)

El (
E1 (52%)
E1 (83%)

Figure 5-1, Parallel Table Structure

NENT

Al (308) |

B1_(508) | C1_($05)

DI (0) (Ist half)

Entry O
D1 (0) (2nd half)

El_($0%)

Al (515) |

Bl_(515) | Cl_($19)

D1 _($1%) (st half) Entry 1

D1 _(1) (2nd half)

El ($1%)

Al (525) |

B1 (525) | Cl_(525)

DI (2) (Ist half) Entry 2
DI (2) (2nd half)

El ($2%)

Al (535) |

Bl ($38) | cl ($3%)

DI (3) (st half) Entry 3

D1_($3%) (2nd half)

E1 ($3%)

Figure

5-2. Serial Table Structure

17302500 Rev. 01

[For a variable table, the number of active entries is assumed to vary from 0
to the maximum specified in the table declaration. The NENT of a variable
table is an integer variable and is an undefined value until set by the user during
execution of the program; the range of NENT is from entry 0 to the maximum
number of active entries specified in the table declaration.

TABLE PACKING

Table packing is the allocation of data items within an entry. Two of the three methods
available for packing are performed automatically by the compiler and are influenced by
the use of subordinate overlay statements. The third method requires the programmer to
specify the placement of each item within the entry. The methods are:

e No packing — This is the default option in an ordinary table or may be specified
by using N for the packing descriptor.

e Dense packing — This is specified by use of the mf or D packing descriptor
in the table declaration,

. Programmer packing — The programmer must specify the number of words per
entry in the table declaration for use in a defined table.

No packing provides faster access to table items, but requires more storage than dense
packing. Storage for table entries with less than full word items can be greatly reduced
by use of dense-packing or programmer packing methods in a defined table, but only at the
expense of access time,

NO PACKING

No packing means that the compiler will allocate space the same as would be allocated for a
simple item. That is, each item takes up the least number of full words required to contain
it. The amount of data in a table with no packing is the same as the storage required when

each table item is declared as a one-dimensional array.
Example:

e The table described on page 5-17 specified with no packing, will have eight words
per entry or a total of 800 words for the entire table. The allocation has at least
one item per word. Items less than one word in length are right-justified, and
literals larger than one word are left-justified.

TMedium packing (M) has not been implemented in the 6000 computer. If M is specified, it
will default to dense packing.

17302500 Rev. 02 5-21

START $
TABLE PERSON R 100 S $
BEGIN
ITEM NAME H12 §
ITEM SSNO H 9 8
ITEM SALRY 112U §
ITEMEARNI15U $
ITEM TAX 113U §
ITEM SOC'SECA13U7$
ITEM MARRIED B $
END
TERM $§

The storage map generated by the compiler allocates the following entry:

Item Word Bit Length

NAME 0 0 12 bytes

SSNO 2 6 9 bytes
SALRY 3 48 12 bits
EARN 4 45 15 bits
TAX 5 47 13 bits
SOC'SEC 6 47 13 bits

MARRIED 7 59 1 bit

This allocation uses eight words (480 bits) to contain a total of 180 bits of data, leaving
62, 5% of each entry unused. The data structure appears as follows:

g mi BN W
/ A A

Item NAME SSNO SALRY EARN TAX SOC'SEC MARRIED

DENSE PACKING

In dense packing, the compiler will attempt to allocate the entry in the minimum number of
words. However, only a literal item longer than 10 bytes may cross a word boundary and,

if it does, it must start on the byte boundary.

5-22 17302500 Rev. 02

Example:

The table entry described on page 5-17 specified with dense packing will have four words per
entry or a total of 400 words for the table. This requires only half the space used in no pack-
ing. Dense packing places several items in the same word and requires additional shifting to
access the items.

START $
TABLE PERSON R 100 SD $
BEGIN
ITEM NAME H 12 §
ITEM SSNO H 9 $
ITEM SALRY 112 U $
ITEM EARN 115U $
ITEM TAX 113U $
ITEM SOC'SECA13UT7$
ITEM MARRIED B $
END
TERM $

The storage map generated by the compiler allocates the following entry:

Item Word]ili Length
NAME 0 0 12 bytes
EARN 1 12 15 bits

TAX 1 27 13 bits
SOC'SEC 1 40 13 bits
MARRIED 1 53 1 bit
SSNO 2 0 9 bytes
SALRY 3 0 12 bits

This allocation uses four words (240 bits) to contain a total of 180 bits of data, leaving 6n1y
25% of the entry unused. The data structure appears as follows:

- .:. J

17302500 Rev. 02 5-23

PROGRAMMER PACKING

A table with programmer packing (also known as defined packing) will have the number of
words per entry specified by the programmer. Each item declaration within the table must
specify the word and bit position at which the entry will begin. Only literal items may cross
word boundaries; if they do, they must start at a byte boundary. There is no restriction on
the minimum length of literals. In other words, an option to cross word boundaries with
literals of less than one word is available, However, the use of partial word literals is very

expensive; two words must be fetched, shifted, and combined to form the desired variable.
Example:

The table described on page 5-17 specified with defined packing will have three words per
entry or a total of 300 words for the entire table. As a result, the items given in the example
can be packed in three-eights the space of a no-packed table and three-fourths the space of

a dense-packed table.

STARTS$
TABLE PERSON R 100 S 3 $
BEGIN
ITEM SSNO H 9 1 54
ITEM NAME H12 000
ITEM SALRY 112 U 2 48
ITEM EARNI115U 112
ITEM TAXI113U 127
ITEM SOC'SEC A 13U
ITEM MARRIED B 1
END
TERM $

7
53

40 $

L ewnmne

The storage map generated by the compiler allocates the following entry:

Item Word ﬂ Length
NAME 0 0 12 bytes
EARN 1 12 15 bits
TAX 1 27 13 bits
SOC'SEC 1 40 13 bits
MARRIED 1 53 1 bit
SSNO 1 54 9 bytes
SALRY 2 48 12 bits

5-24 17302500 Rev. 02

In this example, the data structure is identical to the one for dense packing except for the
allocation of items SSNO and SALRY. The entire entry is used for data storage. The data

structure appears as follows:

Words 0

J i i
tems { NAME EARN - MARRIED L_ ssNO SALRY

40 53 48

SOC'SEC

OVERLAY UTILIZATION

In addition to packing, the user can overlay items within the same table. An overlay within
a table declaration is called a subordinate overlay. The following restrictions apply to sub-
ordinate overlays:

[Only items declared in the table prior to the overlay statement can be referenced.

° Subject to the previous restriction, overlay declarations may be placed anywhere
an item declaration can be placed.

. The overlay can be used to allocate different items to the same storage space or
to specify the order of placement within an entry for the items in the overlay
statement,

e For tables with no packing, the items are overlayed on a full word basis.

L) For dense-packed tables, the overlay specifies the order of dense packing and
the overlay is based on the actual bit length of the specified items.)

e The subordinate overlay cannot be used with defined tables because they specify
all item positions explicitly.

Except for these restrictions, subordinate overlays are the same as detailed in the general
OVERLAY Declaration described on page 5-41.

TABLE DECLARATIONS

Tables are declared in two parts:

1. A declaration of the table as a whole in a table header declaration
2. A set of item descriptions enclosed in BEGIN-END brackets forming a table entry

declaration.

17302500 Rev. 02 5-25

ABBREVIATED TABLE DECLARATIONS

The format for an abbreviated TABLE declaration is:

TABLE [name] ;5} number $

BEGIN item-descriptions END

where:
name = programmer-supplied name
R = rigid table length
\% = variable table length, the number of active entries is a variable
number = maximum number of entries, an integer constant
item-descriptions = descriptions for the items comprising an entry

The abbreviated table declaration described above is a minimal declaration in that all

optional fields except for the table name has been omitted.
The three types of table declarations are:

e Ordinary table declarations in which the arrangement of data is left to the

compiler.

e Defined table declaration in which the programmer specifies how the data of an

entry is to be arranged.

e Like table declaration which is a shorthand method of declaring a table to have

an entry structure similar to another ordinary or defined table.

For ordinary and defined tables, naming is optional; like tables must be named. Packing
may be specified only for ordinary and like tables. Following the table declarations are the
item declarations for the items within a table entry. The types of table item declarations

correspond to the table declarations. Every table must have at least one item.

TABLE HEADER DECLARATIONS

Headers for the three types of TABLE declarations are:

. Ordinary table header:

A\ P N
TABLE [name] g { number; [] [M] $
R S D

5-26 17302500 Rev. 01

o Defined table header:

P

A\
TABLE [name] } } numberl [J 1.'1umber2 $
R

S

° Like table header, that is, like table declaration:

A\ P||N
TABLE name ; number1 M| L $
R SJLD

ORDINARY TABLE DECLARATIONS

In an ordinary table, the compiler allocates the table items one to a word for items of one
word or less; literal items longer than 10 bytes are allocated to the next full word. The bit
starting position within a word is also allocated by the compiler. The user must provide a
size specification of the maximum number of entries; naming and packing are optional. The
user must specify whether the table structure is variable or rigid. The format of an ordi-

nary table declaration is:

sl s []

BEGIN

(one or more) ITEM item-name item-description § [one-dimensional-
constant-list] [OVERLAY declaration(s}]

END

where:

name = table identifier, optional except when used as the pattern table

for a like declaration.
VorR = variable or rigid

number1 = an unsigned integer specifying either the maximum number of
entries in a variable-length table or the exact number in a rigid-
length table. For a rigid-length table, the NENT is preset by
the compiler to the specified number of entries. For a variable-
length table, the programmer sets NENT to the number of en-

tries currently active in the table.

PorsS = parallel or serial structure. If both letters are omitted,

parallel structure is assumed.

17302500 Rev. 02 5-27

Examples:

Nor MorD

item-name

no packing, medium, or dense packing. If an option is not
selected, the default is no packing. The compiler assigns each
item to one or more words so that no two items share the same
word. The compiler keeps track of the location of the items

and the number of words per entry.

item identifier, as with a simple item

item-description

one-dimensional- =
constant-list

OVERLAY =
declarations

characteristics of item, as with a simple item except that no

preset may be present.

constant list, as in a one-dimensional array.

table items may be set to initial values with a one-dimensional

The first con-

stant in the list presets the item in the first entry, the second

constant presets the item in the second entry, and so forth.

The presets must agree in type and size. There is no provision

for skipping items in the middle of a preset list.

TABLE AAOR4PD $
BEGIN
ITEMA1110U $
ITEM Bl B $
ITEM C1 A49S10 8
ITEM D1 H20 §
END

TABLE AAOR4SD3$

(Item declarations are the same
as in the previous example.)

TABLE AAOR4PD3$
BEGIN
ITEM Al 110 U $ BEGIN 100 200
300 400 END
ITEM Bl B$ BEGIN1111END
ITEM C1 A 49 S 10 $ BEGIN
1000.00 2000.00
3000.00 4000.00
END
ITEM D1 H 20 $
END

the rules governing the use of overlay statements in tables are
described on page 5-25

The table structure shown in the illustration
(page 5-20) of parallel structure is defined.
Note that the packing is dense, the length is
rigid consisting of four entries, and P is
specified though it could be omitted and the
structure would still be parallel.

The table shown in the illustration (page
5-20) of serial structure has the same set of
item descriptions, but S must be specified

in the table declaration.

The table in this example is preset to initial
values (by a constant list) except for the dis-

play code item.

17302500 Rev. 02

e TABLE DIRECTORY V1000 M $§ The following table contains phone directory

BEGIN data. The table is parallel by default with
:Iggﬁ gﬁgg g:% $ dense packing specified. It is variable-length
ITEM ROOM H 5 $ with a maximum of 1000 entries, each entry

Ei]’I;)EM NUMBER 1 60 § containing four items. The data structure

created is shown below.
NENT
ENTRY O (4 items per entry) NAME(0) (first half)
NAME(1) (first half)
NAME($2%$) (first half)
= =
NAME($999%) (first half)
NAME($0%$) (second half)
NAME(1) (second half)
NAME($2%) (second half)
= =~
NAME($999%) (second half)
BLDG(0) ROOM(0)
BLDG(1) ROOM(1)
BLDG(2) ROOM(2)
~ =~
BLDG($999%) ROOM($999%)
NUMBER(0)
NUMBER($1%)
NUMBER(2)
= =
ENTRY 999 (4 items per entry) NUMBER($9995)
e TABLEDATAR3S$ An ordinary table with no packing and including

B?:.I%I?/[AAA20S 58 a subordinate overlay declaration. Since no
ITEM HH H 6 $ packing was specified, the overlay will be done
g\/}'EEl\l/[{I{,IAIYngﬁ -1, AA § on a full word basis. The word containing II

END will overlay the word containing HH, which will

be followed by the word containing AA. This

example has the following data structure.

17302500 Rev. 02 5-29

NENT (3) Word Entry
HH($0%) 0
11(308) } 6
AA(0) 1
HH(1) 2
11(1) }]
AA(1) 3
HH(23) 4
11($25) })
AA(2) 5
TABLE PACKV 30SD3$ An example of the use of a subordinate
BEGIN
ITEM LITO H 60 $ overlay in conjunction with dense pack-
ITEM LIT1 H42 $ ing. This combination will cause the
ggi\\a/[Eigg g ﬁ § table to result in an allocation structure
ITEM LIT4 H13 $ identical to that of the defined table as
ITEMLIT5 H 9§
ITEM PCK1 H 7§ shown on page 5-32.
ITEMPCKZH 738
ITEM PCK3 H 78§
ITEM PCK4 H 26 $

OVERLAY LITO = PCK1, LIT1 $
OVERLAY LITO = PCK2, LIT2 $
OVERLAY LITO = PCK3, LIT4,
PCK4, LIT3 $
OVERLAY LIT3 = LIT5 $

END

H

DEFINED TABLE DECLARATIONS

In a defined table, the user directly controls the allocation of his table. He specifies the

number of words per entry and assigns the table items to a particular word and bit position

in the entry. The following rules apply to defined table declarations:

The programmer must completely describe the positions of items within entries
of defined table declarations. Packing specifications are not allowed in the
defined table header.

Size is determined by multiplying number1 by nurnber2 + 1 for the NENT.

Variable-length entries may be defined by specifying items to exist in a word of
entry greater than numberz. While this is a useful table structure, the table
must be serial if variable-length entries are utilized. Otherwise, referencing
those items beyond the words per entry specified would set or use information
beyond the table allocation. (The location of an entry is found by multiplying the
subscript by number,).

17302500 Rev. 02

) Only literal items may cross word boundaries; if they do, the literal must start

on a byte boundary. (There are six bits between byte boundaries.)

The complete definition of a defined table requires a TABLE declaration followed by a
defined entry declaration consisting of one or more ITEM declarations and/or one or more
STRING declarations. OVERLAY declarations cannot be included in a defined entry descrip-
tion. Any overlaying of items can be explicitly defined in the declaration. The format is:

TABLE [table-name] {g} number, [SP] number,, $

BEGIN
[one or more defined item descriptions (see page 5-32)]
[one or more string item descriptions (see page 5-33)]

END

where

identifies the name of the table

table-name

v = variable table
R = rigid table
number1 = the maximum number of active entries for a variable-length table or

the exact number of entries for a rigid-length table.
P = parallel table

= gerial table

number‘2 = number of words in an entry.
Examples:
® TABLE FLIGHT V 1000S 3 § Each entry in the table has the following
BEGIN .
ITEM IDENT H 50 0% defined structure.
ITEM ALTITUDE 130U 030§ Word
ITEM LONGITUDE 130 U1 0 $ Entry Structure Word
ITEM LATITUDE 130S130$% 0 30 59
EM EE 2
AN M SPEED - F 0% IDENT ALTITUDE 0
LONGITUDE LATITUDE 1
SPEED 2

17302500 Rev. 02 5-31

e TABLE PARTSV 500S1$

Each entry in this table consists of one word.

BEGIN
ITEM TYPE T 20 08§ Entry Structure Word
ITEM CLASS T 4012 % _— _—
ITEM NUMBER T 4036$ 0 12 36 59
ITEM IDENTIFICATION T 100 0 $ TYPE | CLASS |NUMBER 0
END
IDENTIFICATION 0 (overlaid)
0 59
° TABLE TST V30S6$ The items overlay each other and permit the
BEGIN same data to be accessed as a part of several
ITEM LITOH600 0$. . s
ITEM LIT1 H42 0 42 $ different Hollerith items. Item LITO utilizes
ITEM LIT2 H11 0 42 § the entire entry. Items LIT1, LITZ2 and LIT4
ITEM LIT3 H11 4 36 §
ITEM LIT4 H130 42 $ all start at the seventh byte of the entry and
E%\I’I]‘:)EM LITSH 94368$ extend for 42, 11, and 13 bytes, respectively.
Items LIT3 and LIT5 both start at byte 46 of
the entry and extend for 11 and 9 bytes,
respectively, as shown in the data structure
below:
Words 0 1 2 3 4 5
Bytes 0 110 120 130 140 _ 150 60
LITO = 60 bytes
LIT1 = 42 bytes
LIT2 = 11 bytes |
LIT4 = 13 bytes
LIT3 = 11 bytes |
LIT5=_9 bytes
Bytes 0 To T20 T30 T40 150 60
Words [1 2 3 4 5

DEFINED ITEM DECLARATION

The defined item declaration allows the programmer to specify the values of one or more

items in a table. The format is:

N
[one or more ITEM item-name item-description numberg number4 [M] $

[one-dimensional constant-li stj
where

item identifier

item-name

item-description =

D

defines the characteristics of the item

17302500 Rev, 02

number3 = declares which word in the entry contains the item or in which
word the item begins for long literal items. Words are num-

bered from 0 to numberz-l.

number, = the bit within the word in which the item begins. Bits are
numbered from the left beginning with 0.

N, M,D = packing specification; this does not direct the packing, but
describes the packing that results from numberg, number,,
item-declaration, and the conditions of adjacent items in the
entry. The one-dimensional constant list performs the same

function as in an ordinary entry description.

STRING ITEM DECLARATION

The STRING item declaration allows the programmer to place more than one value for an
item in each entry of a table. Each occurrence of a string item within an entry is called a
bead., Since STRING item declarations require bit positioning to be specified by the pro-
grammer, they may be used only in defined tables. The format is:

N
one or more STRING string-name item-description number3 number4 [:M:l
D
number5 number‘s $ [two-dimensional constant-list]
where
string-name = identifies the string item
item-description = defines the characteristics of the string item
number3 = word within the entry where the item starts; can be from zero
to number2-1.)
number4 = bit position within the designated word where the item starts; can
be from 0-59. A literal item that crosses word boundary must
start on a byte boundary.
number5 = frequency of occurrence of string items in the words of the entry.
Beads of the string are in every number, word of the entry.
numbers = the number of beads in each word of the entry, since it must be

an integer, the beads cannot be declared longer than one word.

N, M, or D = no packing or dense packing. If no packing is selected, there
must not be more than one bead per word. If dense packing is
specified, number6 may be as large as the number of beads

which will fit in a word.

17302500 Rev. 02 5-33

Examples:

e TABLE ALPHA R 100S3 $
BEGIN
STRINGAAH200D158$
END

] TABLE V100S 4 §
BEGIN
STRING PARTS 115010
ITEM NAME1I H 10
ITEM CODE B
ITEM NAME2 H 38
END

e TABLETAV3P6S$
BEGIN

The structure of this table consists exclu-
sively of the display coded two-byte beads
AA. The first bead starts in word 0, bit 0;
each word of the entry contains the beads
defined in the string declaration with five
beads per word. If dense packing is omitted,
the packing would be the same as being speci-

fied.

Entry Structure Word Entry
012 24 36 48 59
AA | AA | AA | AA | AA 0
AA | AA| AA | AA | AA 1 0
AA | AA| AA | AA[AA 2

This example shows a mixture of items and
string declarations. It has the following

data structure.

Entry Structure Word
0 8 15 30 455 59
NAMEI 0
PARTS | PARTS | PARTS | PARTS 1
- cobE NAME2
PARTS | PARTS | PARTS | PARTS

Each entry of TABLE TA contains two string
declarations. The strings are specified such

STRING TAAI130S00D22§
STRING TABI60S10D21 $ that each occupies alternate words of the entry.
END Thus, TAA is in words 0, 2, and 4. TAB is in
words 1, 3, and 5 as shown below.
Words 0 1 2 3 4 5
Entry TAA [TAA TAB TAA | TAA TAB TAA |TAA TAB

LIKE TABLE DECLARATION

A like table declaration is used to describe a new table which is similar in construction to a

pattern table previously declared with a name.

The like table must be named and the name

17302500 Rev, 02

must be formed by suffixing a letter or numeral to the name of the pattern table. The

following rules apply:

e The entry of a like table need not be described because the order and structure
of the table is automatically generated following the order and structure of the

pattern table.

® The items are named by suffixing the same letter or numeral used in the table

name to the pattern table items.
e A like table declaration is identified by the letter L at the end of the declaration.

° The optional fields may be included; if they are, they will over ride the param-
eters of the pattern table. For example, the structure may be changed from

serial to parallel or from dense to no packing.

e If no change is desired, this information can be obtained from the declaration

of the pattern table.

e The packing specification must not be included if the pattern table is a defined
table.

The format is:

\% P N
TABLE name [number of entries] M| L $
R S

D
Examples:
° TABLE DIRECTORY2 L $ Similar to the ordinary table DIRECTORY on
page 5-29, the items are named: NAME2,
BLDG2, ROOM2, and NUMBER2,
. TABLE FLIGHTX P L $ Describes a table that is like the pattern table

FLIGHT, except this table is specified as

parallel in structure.

CONSTANT LIST

The table item-declaration may be followed by a one-dimensional constant list which is like
the constant list that sets values in a one-dimensional array. Each constant presets the
value of the item in the successive entries. The first constant presets the value of the
entry 0, the second presets entry 1, and so forth. No more than the first 5800 words of a

table can be preset. ,

17302500 Rev. 02 5-35

The string declaration may be followed by a two-dimensional constant list. This list

declares values for some of the beads of the string. The two-dimensional list is composed

of a set of one-dimensional constant lists between BEGIN-END brackets. The first one-

dimensional constant list provides values for the beads in entry 0, the second for beads in

entry 1, and so forth. Within each list is the set of values for each bead in an entry with

the first constant setting the value of bead 0, the second of bead 1, and so forth.

Examples:

e TABLE PARTS V500S1 $
BEGIN
ITEM TYPE T 200 $
BEGIN
2T(AA) 2T(BB) 2T(CC) 2T(DD)
2T(DD) 2T(EE) 2T(FF)
END
ITEM CLASS T 4012 $
BEGIN
4T(0101) 4T(0001) 4T(0111)
4T(0110) 4T(0102) 4T(0100)
END
ITEM NUMBER T 4 0 36 $
BEGIN
4T(0001) 4T(0002) 4T(0003)
4T(0004) 4T(0005) 4T (0006)
END
ITEM IDENTIFICATION T1000 $
END

e TABLE ALPHARG6S3$
BEGIN STRING AAH200
D15 $ END
BEGIN
BEGIN 2H(00) 2H(01) 2H(02) 2H(03)
2H(04) 2H(05) 2H(06) 2H(07)
2H(08) 2H(09) END
BEGIN 2H(10) 2H(11) 2H(12) 2H(13)
2H(14) 2H(15) 2H(16) 2H(17)
2H(18) 2H(19) 2H(1A) END
BEGIN 2H(20) 2H(21) 2H(22) 2H(23)
2H(24) 2H(25) END
BEGIN 2H(30) 2H(31) 2H(32) 2H(33)
2H(34) 2H(35) 2H(36) 2H(37)
END
BEGIN 2H(40) 2H(41) 2H(42) 2H(43)
2H(44) 2H(45) 2H(46) 2H(47)
2H(48) 2H(49) 2H(4A) 2H(4B)
2H(4C) 2H(4D) 2H(4E) END
BEGIN 2H(50) 2H(51) 2H(52) 2H(53)
2H(54) 2H(55) 2H(56) END
END

The PARTS table described on page 5-32
could be preset in this way. The stor-
age allocation and presets are shown
below. The compiler will not set NENT

because this table is variable.

0 12 3 59

NENT
2T(AA) J4T(0101) | 4T(0001) | ENTRY(0)
2T(BB) |4T(0001) [4T(0002) | ENTRY($1%)
2T(CC) [4T(0111) [4T(0003) | ENTRY(2)
2T(DD) 4T(0110) [4T(0004) | ENTRY(3)
2T(EE) |4T(0102) [4T(0005) | ENTRY(4)
2T(FF) [41(0100) [4T(0006) | ENTRY(5)
TYPE | CLASS | NUMBER

IDENTIFICATION

This table presets certain beads in the
table to initial values. The table has
the structure shown below. There is no
preassignment of data in the shaded
areas of the diagram; these areas con-
tain whatever was in memory when the

program was loaded.

17302500 Rev. 02

TABLE TAV3P6S$
BEGIN
STRING TAAI30U00D22§
BEGIN BEGIN 1 2 3 4 5
6 END
BEGIN 7 8 91011
12 END
BEGIN 13 14 1516 17
18 END
END
STRING TABI60UOOD22$
BEGIN BEGIN 18 1 16 END
BEGIN 314 5 END
BEGIN 12 7 10 END
END
END

17202500 Rev. 01

0 12 24 36 48

2H(00) |2H(01) [2H(02) | 2H(03) |2H(04)

2H(05) |2H(06) | 2H(07) | 2H(08) |2H(09)

2H(10) [2H(1Y |2H(12

~

2H(13) |2H(14)

0)
2H(15)

(1

(15) |2H(16) [2H(17) [2H(18) [2H(19)
H(IA

(

(

N
<

2H(20) |2H(21)
H(25

2H(22) | 2H(23) |2H(24)

N
~

2H(30) |2H(31) | 2H(32) [2H(33) | 2H(34)

2H(35) |2H(36) | 2H(37)

2H(40) | 2H(41) | 2H(42) | 2H(43) [2H(44)

2H(45) | 2H(46) | 2H(47) | 2H(48) [2H (49)

2H(4A) | 2H(4B) | 2H(4C) | 2H(4D)| 2H (4E)

2H(50) | 2H(51) | 2H(52) | 2H(53) | 2H(54)

2H(55) | 2H(56) 7//
// Wi

Word Entr
g Word Entry

o

N — O N = O N = ON —~ O N~ 0O N — O

- J——Je_J-_Ji__J
w

TA is declared as parallel and preset with

a constant list.

preset values are shown below.

The storage allocation and
The com-

piler will not set NENT as this table is

variable.

NENT

TAA($0,0%) | TAA($1,0%)

TAA($0,19) | TAA(S1,1$)

TAA($0,2%) | TAA($1,2$)

TAB($0,0$)

TAB($0,1%)

TAB($0,2$)

TAA($2,0$) | TAA($3,09$)

TAA($2,1%) | TAA($3,1%)

TAA($2,2$) | TAA($3,2$)

TAB($1,09)

TAB($1,1$)

TAB($1,2$)

TAA($4,0%) | TAA($5,09)

TAA($4,1%) | TAA(S5,1$%)

TAA($4,2%) | TAA($5,28)

TAB($2,09%)

TAB($2,1%)

TAB($2,29$)

1
7
13
18
3
12
3
9
15
1
14
7

5
1

17
16

5
10

10
16

12
18

Entry

0
1 }Wordo
2
0
1 }Wordl
2
0
1 }Word 2
2
0
1 }Word 3
2
0
1 }Word 4
2
0
1 }Word 5
2

If the table is declared serial, the data alloc-

ation and preset values will be those shown

below.

NENT

TAA($0,0$) | TAA($1,08)

TAB($0,0$)

TAA($2,08) | TAA($3,09)

TAB($1,09%)

TAA($4,08) | TAA($5,08)

TAB($2,0$)

TAA(30,19) | TAAG1,18)

TAB($0,1%)

TAA($2,18) | TAA($3,18)

TAB($1,19)

TAA(34,1$) | TAA($5,18

TAB($2,1%)

TAA(S0,25) | TAA($1,28)

TAB($0, 2%)

TAA($2,25) | TAA($3,25

TAB($1,2$)

TAA(S4,28) | TAA($5,2$)

TAB($2,2$)

— — — -
— ROV WNO O —~W®-~

ON NONMWL

Word
0
1
2
3 / Entry O
4
5
0
1
2
3 Entry 1
4
5
0
1
2
3 Entry 2
4
5

17302500 Rev. 01

REFERENCING TABLES

To make full use of the power and variety of declarations possible for table structures,

several means of referencing tables and data in tables are available:

° The table name itself refers to the entire table structure, including both data
items and the NENT. This is used to pass the table as an actual procedure input
or output parameter, or in an INPUT or OUTPUT statement fo transfer the table

to or from a binary file.

e A table name followed by a two-component index is used to separate the input or

output entries from the first component through second component.

e Table items are referenced by the item-name followed by a one-component

index.

e String items are referenced by the string item name following by a two-component
index. The first component is for the position in the entry, the second is for the
entry in the table.

° The functional modifiers ENTRY or ENT, NENT, and NWDSEN.

Any numeric formula may be used as a subscript; if the formula does not yield an integer
value, the formula is truncated to integer. The numeric formula may be a subscripted value

or several subscripted values. The maximum subscript nesting level is 20.

A formula that begins with 0 and runs to a maximum of n-1 for a dimension with n ele-
ments. If the formula yields a result which does not lie between 0 and n-1, it will be per-

formed with unspecified results.

Examples:

° OUTPUT FILEA TA $ Transfers the entire table TA to FILEA, The
NENT of the table will be transferred also.
This should only be used with a binary file.

e SEARCH (PARTS = NBR) $ Table PARTS is passed as an input parameter
to procedure SEARCH, which examines the
table and returns a value to the simple vari-
able NBR.

e OUTPUT FILEA FLIGHT Starting with entry 15 and continuing through

($15...25%) $

entry 25, this example transfers the 11 con-
secutive entries of table FLIGHT to FILEA.

TYPE(3) Refers to the fourth element of table item
TYPE.

17302500 Rev. 02 5-39

° TAA($4,13) Refers to the fifth bead in the second entry
of table TA. This was preset to the value 11

in the preset examples.

TABLE MODIFIERS

ENTRY OR ENT TABLE REFERENCE

Entire entries can be referenced using the functional modifiers ENTRY or ENT. The format

is:

ENTRY table-name

{ENT }<{item—name} ($index$)> $
If the table has no name, the name of an item in the table can be used. The index indicates
the particular entry referenced. An entry variable can be tested for equality only with the
value 0 or with another entry variable. (An entry equals 0 if every bit in the entry is equal
to 0 and equal to another entry if corresponding bits are the same.) Furthermore, an
entry may be agsigned only to another entry or to 0. If one entry variable is assigned to
another, every bit in the entry is set equal to the corresponding bit in the other; if the value
0 is assigned to an entry, every bit is set to 0.

NENT TABLE REFERENCE

The NENT functional modifier can be used to refer to the number of entries in a table. It

is a variable if the table has a variable number of active entries and a constant if rigid was
specified. NENT can be used in formulas wherever an integer variable or a constant is used.
NENT is the first word prior to the first data word of any table; it is either the current
number of active entries for a variable-length table (if the programmer has set NENT) or

the maximum number for a rigid-length table. The format is:

table-name
NENT ({item-name }) $

NWDSEN TABLE REFERENCE

The number of words in a table entry can be referenced by the NWDSEN modifier. It is a con-

stant for any table and can be used anywhere that an integer constant is legal. The format is:

NWDSEN ({table-name}) $

item-name

5-40 17302500 Rev. 02

The number of table entries is limited to 217-1. The number of words for an entry may not

exceed 31; the number of beads per word in a string may not be more than 31.

DATA ALLOCATION

The allocation of storage is completely controlled by the compiler except when the user
specifies a particular order with the overlay declaration or specifies the packing within a
table by selecting dense packing, defined table declaration, or the subordinate overlay
declaration. For simple items, arrays, and tables with no packing, items are allocated
one to a word; literals longer than one word are assigned to the least number of full words
necessary to contain the required bytes. Items of less than one word in length are right-

justified. Literals longer than one word are left-justified.

OVERLAY DECLARATION

The OVERLAY declaration is used to position in storage previously declared or previously
mode defined data items, tables, and arrays. By this declaration, the user can assign the
same starting address and determine the order of allocation for tables, arrays, and simple
items. He can also access the same data in two or more ways by overlaying items with the
desired types. OVERLAY furnishes the user with equivalence of locations, but not the values

stored in the locations. The format is:

OVERLAY name, [{:} namez] [.. {:} namen] $

The following rules apply to OVERLAY declarations:
e The names must be previously declared or previously mode defined items, arrays,
or tables. '

e If only one name is specified, it merely provides early allocation of the named
data.

e Names separated by commas are assigned sequential locations in storage.

e Names separated by equal signs are overlaid; that is, the data structures identi-
fied by the names following the equal signs are allocated to the same starting
location.

° Commas and equal signs can be intermixed in one OVERLAY declaration.

e The NENT word is used in computing the allocation of overlaid tables, not the
first data word.

e A COMPOOL-defined name may be used only if it immediately follows the word
OVERLAY.

17302500 Rev. 02 5-41

e The amount of storage allocated to overlaid data is that required by the longest
piece of data in the OVERLAY declaration.

e Only the relative location of data structures may be controlled; allocation to a
fixed address within the program is not permitted.

[An item name may appear only once in any single OVERLAY declaration; a name
may be specified in more than one OVERLAY only if the name immediately
follows the word OVERLAY in the second or succeeding declarations.

Items within a table can be overlaid specifically by the subordinate OVERLAY declaration
(see page 5-25) following the item declarations in an ordinary table, or by assigning the same

location in a defined table.

The number of names that can appear in OVERLAY statements in one source program is 2000
minus the number of OVERLAY statements in the program.

Examples:

e OVERLAY AA, BB = DD, EE $ This is a legal example of specifying a name
OVERLAY DD = FF, GG $ in more than one overlay declaration.
OVERLAY GG = HH $

° OVERLAY OO, KK = LL, MM $ Illegal example; LL and KK do not follow the

OVERLAY NN = LL $ word OVERLAY in the second and succeeding
OVERLAY LL, KK=XX § declaration of the same name.
° OVERLAY TABLA, TABLB, Previously defined tables, TABLA, TABLB,
TABLC $

and TABLC, are put in consecutive locations.
The storage space is allocated according to the
length of a rigid table or the maximum length
of a variable table.

° OVERLAY TABLA = TABLB = The three tables are assigned storage with

TABLC $ the same origin as shown below:

NENT(TABLA) | TABLA TABLA
NENT(TABLB) | TABLB TABLB
NENT(TABLC) | TABLC TABLC
Location 0 1 2

5-42 17302500 Rev. 02

] OVERLAY TAB1, TAB2 = TAB3,

TAB4$

e OVERLAY TABI, TAB2 =
ITEM1, ARRAY1$

e ITEM
ITEM
TABLE

BEGIN
ITEMTABI I 60 S §

HOL H 30 $
KK 3 $
TAB R 4 $

END
ARRAY ARR 51 60S$

e OVERLAY TAB = KK, HOL $

e OVERLAY HOL = KK, TAB $

17302500 Rev. 02

TAB2 will be stored immediately following
TAB1, and TAB4 immediately after TABS.
TABI and TAB3 will have a common origin.

NENT(TABT) TABI NENT(TAB2) [TAB2

NENT(TAB3) [TAB3[NENT(TAB4)| TAB4

If a simple item is given a common origin
with a table, it will share the location of the
NENT word of the table. Thus, TAB2 is
placed immediately following TAB1; ITEMI1
overlays the NENT word of TABI1 and is
followed by ARRAY1.

NENT(TABI) TABI |NENT(TABZ) TAB2

ITEMI ARRAY1

This example defines two items, one integer,
and one literal.

This OVERLAY statement has the relative
storage assignments shown.

KK HOL

NENT(TAB) TAB

This OVERLAY statement has the relative

storage assignments shown

HOL

KK [NENT(TAB) | TAB

5-44

OVERLAY ARR = TAB $§

ITEM INT 118
ITEM HOL H 3
ITEM HOLD H 40
ITEM LIT H 30
ARRAY HHH 3 H 10

BLPRPLN

OVERLAY HOLD
OVERLAY HOL
OVERLAY LIT

HOL, LIT §
INT $
HHH $

wounon

This OVERLAY statement has the relative

storage assignments shown

NENT(TAB) | TAB

ARR

Data declarations

Overlay declarations which produce the data

structure shown below:

INT HHH(0) | HHH(1) | HHH(2)

HOL LT

HOLD

The result of this structure is that location 0
may be used to contain either a 3-byte Holerith
item or an 18-bit signed integer. Locations

1, 2,and 3 may be accessed as a 30-byte item,
or separately as 10-byte array items. The
entire structure may be moved within core by
moving the 40-byte item HOLD, or may be
output as a binary record.

17302500 Rev. 02

INPUT/OUTPUT 6

GENERAL

Data is input from or output to files residing on some external storage device, such as tape,
cards, printer, or typewriter. The structure of data in external storage is defined by a file
declaration. Input/output statements are used to open or close files when a read, write, or
transfer operation is to be performed. The routines for FORTRAN-formatted output are
also discussed in this section.

JOVIAL FILES

JOVIAL files are a sequence of logical records followed by an end-of-file indicator. A file
is a sequential string of bits residing on an external storage device. A file is divided into

one or more logical records which may be in either binary or BCD mode.

Binary records are written and read as SCOPE binary records. Each SCOPE logical record
corresponds exactly to one JOVIAL logical record. Binary files are terminated by an end-

of-file indicator.

BCD records are written and read as SCOPE coded records. Each BCD record is terminated
by the display code end-of-line mark (12-bit binary zero byte). SCOPE logical end-of-record
marks are ignored when reading coded files unless the file was declared with device name
INPUT. For a file with device name INPUT, a SCOPE logical end-of-record mark acts as
an end-of-file. The SCOPE logical end-of-record mark is not entered on a JOVIAL BCD

file that is being written; when records are written on a BCD file, the records are separated

by SCOPE end-of-line marks.

Data structures which could possibly contain a 12-bit binary zero byte end-of-line mark
should be output only to binary files. If they were output to BCD files, the data between each
end-of-line mark would be input as if it were a separate record. Thus, it could not be read
back, nor would it be desirable to use it on a device which used the first character of each
line for carriage control. When table entries, entire tables, or entire arrays contain unused

space or data in binary format, i.e., nonliteral items, they fall into this category.

17302500 Rev, A 6-1

CARRIAGE CONTROL

BCD files which are to be used on display or printing devices must satisfy the requirements
of the particular device in regard to carriage control and maximum record length. Since
these are features of a particular installation or device and not of the JOVIAL language,
documentation for the particular system and device should be consulted to determine these

parameters.

The line printer uses the first character of a BCD record for carriage control. This char-
acter is not printed. The second character in the line appears in the first position; therefore,
a maximum number of 137 characters can be specified for a print line, but 136 is the maxi-
mum number of characters that can be printed. The carriage control characters available

for both the 501 and 512 Line Printers (except as noted) under SCOPE 3. 3 are:

Character Action Before Printing Action After Printing
A Space 1 Eject to top of next paLgeT
B Space 1 Skip to last line of pagt;r
C Space 1 Skip to channel 6
D Space 1 Skip to channel 5
E Space 1 Skip to channel 4
F Space 1 Skip to channel 3
G Space 1 Skip to channel 2
H Space 1 Skip to channel 1 (501)

Skip to channel 11 (512)
1 Space 1 Skip to channel 7 (512)
J Space 1 Skip to channel 8 (512)
K Space 1 Skip to channel 9 (512)
L Space 1 Skip to channel 10 (512)
1 Eject to top of next page No spaceT
2 Skip to last line on page No spaceT
3 Skip to channel 6 No space
4 Skip to channel 5 No space
5 Skip to channel 4 No space
6 Skip to channel 3 No space
7 Skip to channel 2 - No space

T'I‘he top of a page is indicated by a punch in channel 8 of the carriage control tape for the
501 printer and channel 1 for the 512 printer. The bottom of a page is channel 7 in the 501
and 12 in the 512.

6-2 17302500 Rev. A

Character Action Before Printing Action After Printing

8 Skip to channel 1 (501) No space
Skip to channel 11 (512) No space

9 Skip to channel 7 (512) No space

X Skip to channel 8 (512) No space

Y Skip to channel 9 (512) No space

zZ Skip to channel 10 (512) No space

+ No space No space

0 (zero) Space 2 No space
- (minus) Space 3 No space
blank Space 1 No space

When the following characters are used for carriage control, no printing takes place. The

remainder of the line will not be printed.

Q Clear auto page eject

R Select auto page eject

S Clear 8 vertical lines per inch (512)

T Select 8 vertical lines per inch (512)

PM Output remainder of line (up to 30 characters) on the B display and

(columns 1 and 2) the dayfile and wait for the JANUS typein /OKuu. For files
assigned to a printer, n.GO. must be typed to allow the operator

to change forms or carriage control tapes.

any other Acts as a blank
Any preprint skip operation of 1, 2, or 3 lines that follows a post skip operation is reduced
to 0, 1, or 2 lines.

The functions S and T should be given at the top of a page. In other positions, S and T can
cause spacing to be different from the stated spacing. Q and R need not be given at the top

of a page as each causes a page eject before performing its function.

FILE INPUT/OUTPUT

The user does not normally have direct access to files on physical devices other than the
system device, The SCOPE file handling concept should be thoroughly understood prior to
manipulating files in JOVIAL, (Refer to the SCOPE Operating System Reference Manual.)

17302500 Rev. A 6-2.1

Both binary and BCD JOVIAL files use FORTRAN Extended input/output routines. The
interface between these routines and an executing JOVIAL program is accomplished by the
routine JOVIO which transforms JOVIAL data structures to a form acceptable to the
FORTRAN Extended I/O routines.

FILE DECLARATION

Every JOVIAL file must be declared in a file declaration, The logical records contained in
a file may not be manipulated directly by a JOVIAL program, but may be read into a JOVIAL-

defined data structure in central memory. The format is:
B A% . .
FILE name H number1 R number2 status-list device-name $

where:

name = A JOVIAL name in the program supplied by the user by which the file
is known to the JOVIAL program.

I 6-2,2 17302500 Rev. A

Bor H = Specifies the mode in which data is recorded in the file. Numeric,
Boolean, and status constants or variables may be used as operands
in binary file statements. Only literal constants and variables may

be specified in operations involving Hollerith file statements.
B = Binary
H = Hollerith (BCD)

number'1 = Indicates the number of logical records in the file. This number
has no meaning in a 6000 JOVIAL program. It may be any positive

number, including zero.

'

VorR = Indicates the type of records to be used in the file., This has no
meaning in a 6000 JOVIAL program.

V = variable length records
R = rigid length records

number2 = This integer determines the size of the buffer for the file (see
discussion under Buffer Size).

status list = At least one valid status constant must be declared, but the first
four constants declared will correspond to the four format status
constant values discussed under File Status. If more than four
status constants are declared, only the first four are accepted; the
rest are ignored unless an attempt is made to reference them in
the program in which case a fatal compiler diagnostic error message

will result.

device name = The device name is the name by which the file is known to SCOPE
(see discussion under SCOPE File Name). ’

SCOPE FILE NAME

A file declaration contains both a file name and a device name. The file name is used to
reference the file within the JOVIAL program. The device name is used to logically asso-
ciate JOVIAL files with SCOPE files. The device name is the name by which the file is
known to SCOPE and may be used only in the file declaration or SCOPE control cards. The
device name in the file declaration may refer to an existing SCOPE file or may be used to

create a new one.

17302500 Rev. 02 6-3

A file name can be used in three contexts:

° As a file identifier in an INPUT, OUTPUT, SHUT, or OPEN statement;

e As functionally modified by POS to obtain the current logical record position,
or to alter the logical record position;
e In Boolean formulas where the file name is related to a status constant in the

status list of file states.

The device name must conform to JOVIAL name rules, with the exception that the primitives
INPUT and OUTPUT can be used according to the standard SCOPE file meaning of INPUT
and OUTPUT: INPUT refers to the file where input from the card reader may be read;
OUTPUT refers to the file where coded output to be printed may be written.

The device names TAPE1 through TAPE99 correspond to the FORTRAN tape units 1-99; the
names PUNCH and PUNCHB correspond to the standard SCOPE card punch files.

e A file name may not be used in more than one file declaration in any compilation,
whether it is the main program or a subprogram.

° The device name consists of up to seven characters. The first six must be
unique because entry points are used within programs to refer to the FET file.
If the name is greater than six characters, the symbol = is added to the end as
the seventh character.

e A file used only for monitored output in a program or subprogram need not be
explicitly declared. If the declaration for a MONITOR file is omitted, the com-
puter will create one using as the device name the name following the M option
on the JOVIAL control card.

BUFFER SIZE

The size of the buffer for a particular JOVIAL file must be specified in the file declaration;
in the file declaration format, the buffer size is given in number, as an integer. The com-
piler adds one to this integer to create the buffer. The integer should be at least equal to
the size of the physical record unit (PRU) of the device to which the file is assigned. (Refer
to the SCOPE Reference Manual listed in the Preface.) The PRU size for the standard
SCOPE devices are:

[Disk - 64 words
) Coded tape - 128 words

. Binary tape - 512 words

6-4 17302500 Rev. 02

I/0 is utilized more efficiently by declaring a buffer size greater than the PRU size of the

device, No check is made by the compiler to verify that the number is sufficient for the type

of device because the device can be changed from disk to tape at run time via a SCOPE
REQUEST card, If,at run time, the I/O routines determine that the buffer is less than one

PRU of the device on which a file is residing, an I1/O error abort will result. In some com-

pilers, this number is used to denote the number of bits or bytes in an output record.

FILE STATUS

A JOVIAL file may have a series of status constants to enable the program to check if the

file is open, and ready for use, if an end-of-file was encountered on the last read, if a length

error occurred on the last read, or if a parity error occurred on the last read (tape file only).

These refer to logical records. The four format status constant values are: V(OPEN),
V(EOF), V(LENGTH'ERR), V(PARITY). The user must specify at least one or up to four
status constants. Any valid status constant may be used. Each will have the value of its

respective status constant in the formal list, i.e., the first is V(OPEN), the second is
V(EOF), the third is V(LENGTH'ERROR), and the fourth is V(PARITY). If only one constant
of the four is to be used, the status constants that precede it in the list must also be declared,

even though they will not be used. For example, if the third constant in the list is desired,
constant values for V(OPEN) and V(EOF) must also be declared.

The condition under which the four formal constant values are set are:

V(OPEN)
V(EOF)

V(LENGTH'ERR)

V(PARITY)

17302500 Rev. A

is set if the file is currently open and ready for use.

is set if an end-of-file or in the case of a coded file assigned to
INPUT, an end-of-record was detected during the last read.

is set if more words are requested in binary mode input than
were available on the read, or if a record being read into a
variable-length table did not contain an even multiple of the num-
ber of words per entry (NWDSEN). The NENT of table is set to
the number to indicate the entry that was partially read. Any
I/O operation, OPEN, SHUT, INPUT, OUTPUT, or POS clears
V(LENGTH'ERR), enabling further reads on the file.

is set if a parity error occurred on the last read. A disk parity
error will cause SCOPE to abort the job. If V(PARITY) is tested,
it is cleared and further reads may be performed on the tape.
This enables the user to discard bad records or to perform
special processing on the records. If V(PARITY) is not tested,
the job is aborted on the next read.

6-5

Examples:

. FILE HOL HO R 128 V(OK)
V(EN'INPUT) INPUT $

° FILE BIN B 200 R 2048 V(OK)
TAPES0 $

° FILE AA H 1000 R 64 V(OPEN)
PUNCH $

e FILE BCD HO0 V128 V(O) V(E)
V(L) BCD $

] FILE WORK B R 6040 V(READY)
SCRATCH §

File HOL, recorded in Hollerith mode, has
variable length records specified in the file
with a 128 word buffer size creating a 129-
word circular buffer holding two disk PRUs,
which enables processing to overlap the
reading. The status constant, V(OK) deter-
mines if the file is open, The status constant
V(EN'INPUT) is checked for end-of-file input.

INPUT is the SCOPE file name.

File BIN is a binary tape when TAPES0 is
requested on a SCOPE REQUEST card prior
The file has 200
logical records recorded in binary mode.
The buffer size (2048) creates a 2049 word
buffer, which permits the use of a tape file
with I/O processing overlapping. TAPES0
corresponds to FORTRAN unit 50 to be used
by a FORTRAN subroutine called by the
JOVIAL program.

to program execution.

File AA is used to punch 1000 Hollerith mode
cards. The buffer size (64) creates a circu-
lar buffer of 65 words, which is the minimum
allowed for a disk file.
V(OPEN), will be set when the file is open
PUNCH corresponds to

the standard card punch file.

The status constant,

and ready for use.

The JOVIAL file BCD has been assigned to
a SCOPE file of the same name.

File WORK has a buffer size of 6041 words
which would be adequate for a program having
several I/O operations followed by processing
with little I/O.

17302500 Rev. A

FILE POSITIONING

The POS functional modifier can be used to obtain the current logical record position of a

file or to position the file to a particular record position. The POS modifier may assume

any value from zero through the number of logical records that the file can hold. A POS

value of zero indicates that a file is rewound and positioned to read or write the first record

of the file.

POS can be

tion.

There is no fixed relation between a JOVIAL logical record and physical records.
The size of the physical record is determined by the type of storage device. One
physical record may contain several logical records of the same or different
lengths or several physical records may be used to hold one logical record. The
programmer has no control over physical record positioning and need not con-

cern himself with it.

used to position any file to a logical record or to obtain its logical record posi-

If POS is used for a file assigned to device name INPUT, OUTPUT, PUNCH, or
PUNCHB, the file is positioned within the current SCOPE logical record.

When an OPEN or SHUT is executed, the file is positioned to logical record
location zero (that is, it is rewound), unless the file is for device name INPUT,
OUTPUT, PUNCH, or PUNCHB. This decision is made at run time by the I/O
interface routine (i. e., if file replacement is performed at run time the rewind
or no rewind on OPEN or SHUT is based upon the actual file device in use and

not that of the file declared in the file declaration).

NOTE

It is the user's responsibility to consider
this when doing run time file replacement.

If POS is used on the right side of an assignment statement the current logical
record position will be obtained, that is, the next record which would be read

or written.

FILE POSITIONING STATEMENT

The file-positioning statements are:

POS (file-name) = numeric-formula $

numeric-variable = POS (file-name) $

17302500 Rev. A 6-17

where

file~-name = File identifier corresponding to the file name used in the FILE
declaration.

numeric-formula = Any value from zero to the maximum logical records of the file.

numeric-variable = User-defined variable.

The first statement above positions the file to the logical record specified by the numeric
formula. The second statement records the current logical record position of the file by

assigning the file position integer to the specified.numeric variable.
The following statements have a particular meaning:
POS (file-name) = 0§

This statement rewinds the file, or, if the file has a device name INPUT, OUTPUT, PUNCH,
or PUNCHB, positions the file to the beginning of the current SCOPE logical record.

POS (file-name) = POS (file-name) + numeric-formula $

This statement positions the file forward (+) or backward (-) the number of logical records

corresponding to the value of the numeric formula.

Each time a record is read or written, the file position is advanced one record, so an INPUT
or OUTPUT statement has an implied POS (file-name) = POS (file-name)+1 $.

ORGANIZATION OF DATA FOR TRANSFER

The names and structure of data in central memory is declared with a TABLE, ITEM, or
ARRAY declaration; data on external storage devices must be organized in sequential files.
The transfer of data is done in terms of full word or full word multiples. The transfer of
data is exact; that is, no transformation of data takes place. If conversions are required,

they must be accomplished by the program prior to output or after input.

. Records are input and output as full words or multiples of full words.

e If a bit or byte output is less than a full word, it is right-justified within a full
word on output. If more than 10 bytes are output, they are left-justified within

the maximum number of words required to contain the specific number of bytes.

e If an operand being output is less than a full word or multiple of a full word, the
record is filled with blanks if it is a BCD record or zeros if it is a binary record.

6-8 17302500 Rev. A

. For BCD files, if the data record input is not long enough to fill the operand, the
record is left-justified in the operand and blank-filled on the right.

e If the operand of a BCD file is not long enough for the record input, the record
is left-justified and right-truncated.

e For binary files, if the logical record input is longer than the operand, the
record is left-justified in the operand and right-truncated.

o For binary files, if the record input is shorter than the operand, it is left-
justified within the record and the remainder of the operand is unchanged with
V(LENGTH'ERR) set for the file status.

e Data is transferred exactly as it is on the file or in core; any conversion needed
such as binary to Hollerith or from transmission code (STC) to Hollerith, would
have to be effected by the program prior to transference of the data or after the
transference. No conversion of data is performed during transmittal of data.
The user must, therefore, perform any necessary conversion himself prior to

reading or writing data.

e Numeric functional modifiers are right~justified in full words on output and the

appropriate number of high order bits are stripped off and used on input.

All data forms generate compatible logical records on output and use the same method on
input. Any legal assignment may be accomplished by outputting the formula and reading it
back into the desired variable, for example:

data-form-b = data-form-a $
This could also be accomplished by:

OPEN OUTPUT SCRCH $
OUTPUT SCRCH data-form-a $
SHUT OUTPUT SCRCH $
OPEN INPUT SCRCH $

INPUT SCRCH data-form-b §

DATA FORMS

The effects of using the various forms of data organization when data is transferred are

described below.

17302500 Rev. 02 6-9

SIMPLE ITEMS

In the case of simple items, the entire word or words containing the item in core are output.
Partial word items are right-justified within the word; literals longer than a word are left-
justified within the minimum number of words necessary to contain the literal. Anything

occupying the remainder of the word is output also.

For input to a simple item, the logical record input is read into the full word of the simple
item.

ARRAYS

An entire array is input or output as a single record.

Single array items are input and output the same as simple items, except for the required
subscript.

TABLE ITEMS

Packed table items are moved to a temporary storage area where they are arranged in a

format as if they had been declared as simple items. The minimum number of full words
needed to contain the item are then written out. Conversely input is done to a temporary
storage area which is then moved to the proper position within the table, stripping off any
portion of the full word multiple that is not required for storage. The maximum size of a
literal which can be output or input from a packed table is 150 words.

Unpacked table items are input and output the same as a single array item.

PARALLEL TABLES

All table or entry output is done in terms of serial table entries. If a parallel table or table
entry is output, it is converted to serial entry format in a temporary storage area before
being output. Conversely, when entries are input to a parallel table, they are moved to a
temporary storage area and then converted to parallel format. A parallel table is limited to
150 words per entry. Thus, a parallel table can be written out and read back into a compat-

ible serial table or a serial table can be output and read back into a compatible parallel table.

VARIABLE TABLES

Only the number of entries specified by the NENT are output for variable tables so it is
necessary that the NENT be set to the proper value before an output.

° On output entries, Zero to NENT -1 are output.

6-10 17302500 Rev. 02

o Parallel to serial conversion is done on the output if required.

e On input, the NENT of a variable table is set to the number of entries read in.
If the record read in does not contain a number of words which is a multiple of
the number of words per entry, the NENT of a variable table is set to the entry
which was only partially read in. As with output, the serial to parallel conver-

sion is effected if necessary.

TABLE ENTRIES

Table entries are output as one record for each entry and may be output as one entry or
several, depending upon the number of entries or range of NENT in the table., The range

of NENT-1 is from entry 0 to the maximum number of entries specified in the declaration.

TABLES

Tables output the record NENT first, followed by the number of entries specified in NENT
for rigid-length tables or 0 through NENT -1 for variable-length tables.

On input of rigid-length tables, the NENT of the table is read followed by the number of
specified entries. For variable-length tables, NENT and the entries that follow are read
into entries 0 through NENT-1.

The status constant, V(LENGTH'ERR) (see File Declaration), will be set if a record being
read into a variable-length table did not contain an even multiple number of words per entry.
The NENT of the table is set to the number of the entries only partially read.

INPUT/OUTPUT STATEMENTS

Transmission of data between central memory and external files is accomplished by the
JOVIAL input and output statements. A file must be opened before read or write operations
can be performed; it can be opened for input or output, but not for both simultaneously. If
a file is opened, it must be closed before it may be used in the opposite way. The transfer
of logical records is accomplished by the INPUT or OUTPUT statements. It is advisable to

shut all files before terminating execution of the program.

The statements that control input data are OPEN INPUT to open the file for input; INPUT

to transfer data to central memory from the operand files, and SHUT INPUT to close the
file when all the data is transferred. External files are named by the FILE declaration, and
all I/ O statements must include the file name. The statements that control output data are
OPEN OUTPUT to open the file to receive output; OUTPUT to write the data from main
storage onto an operand output file, and SHUT OUTPUT to close the output file when output

is complete.

17302500 Rev. 02 6-11

OPENING FILES

Prior to transfer of data, JOVIAL files must be opened by an OPEN INPUT or an OPEN
OUTPUT statement.

OPEN INPUT STATEMENT

This statement activates the file for input and positions the file to logical record zero. The

form is:

OPEN INPUT file-name $

where:

file-name = Name designated for the file by the user in the file declaration.

OPEN OUTPUT STATEMENT

This statement activates the file for output and positions the file to logical record zero.
OPEN OUTPUT file-name §

where

file-name = File identifier name designated by the user.

TRANSFERRING DATA

The opening of a file for input or output does not in itself transfer data; after the file has

been opened, an INPUT or OUTPUT statement must be issued in order to transfer data.

INPUT STATEMENT
This statement transfers data to the central memory. The form is:
INPUT file-name operand $
where
file-name = Name designated for the file by the user in the file declaration.

operand = Defines the data structure in central memory (see Table 6-1).

The INPUT statement reads into the specified operand the logical record at which the file
is positioned. After the record is read, the file is positioned at the start of the next logical

record and the POS operator is incremented by one.

17302500 Rev, 02

TABLE 6-1.

OPERAND FORMS FOR INPUT STATEMENTS

Operand Type T

Meaning

Single item name

Table item name ($ index $)
Array name ($ index $)
Array name

Table name

Table name ($ index $)
Table name

(§ index; ... index, $)
BIT ($ index $) (variable)
BYTE ($ index $) (variable)
POS (file=name)

NENT

variable-length=table~name
variable-length-item=-name

(ENTRY
[ENT
(fi2lezeme] s e)
(CHAR
(MANT= (variable)
oDD

Transfer data to a single simple item

Transfer data to a single table item (including packed)
Transfer data to a single element of an array

Transfer data to all elements of an array

Transfer data to all entries of a table. The data is
assumed in serial table order so it is shuffled by the
compiler-generated code for parallel tables with
NWDSEN>1, After input, NENT is set to number of
words transferred/NWDSEN-1,

Transfer data to a single entry of the table

Transfer data to consecutive entries of the table; the
first entry being defined by index;, the last by indexj,
inclusive.

Transfer fullword integer value to substring

Transfer necessary number of bytes TTto substring

Transfer fullword integer to reset the value of the file
position.

Trgnsfer fullword integer to reset NENT of specified
table,

Transfer number of words that is NWDSEN for this
table into a single entry of the table

Transfer value into variable functional modifier

TOnly literal variables are legal operands for Hollerith file operations.

TNumber of bytes determined by second index component; for example, INPUT XX

BYTE($1, J$)(XYZ) § transfers J bytes.

17302500 Rev. 02

QUTPUT STATEMENT

This statement transfers data from central memory to the file specified by this statement.
OUTPUT file-name operand $
where:

file-name = File identifier designated by the user

operand = Valid forms of operands are the same as for INPUT with the addition
of constant and NENT of a rigid length table (see Table 6-2).

OUTPUT writes the contents of the operand as a logical record in the named file. The rec-
ord is written at the position where the file is at the time OUTPUT is specified; the POS of
the file is incremented by one after the output.

CLOSING FILES

At the conclusion of the file usage, the file must be closed by a SHUT INPUT or SHUT OUT-
PUT statement. SHUT statements are also used to reverse the usage of a file. That is, a
file that is opened for input must be closed before it can be used for output; the sequence
would be: OPEN INPUT, INPUT, SHUT INPUT, OPEN OUTPUT, OUTPUT, SHUT OUTPUT.

A file that is opened for output must be closed before it can be used for input; the sequence
would be: OPEN OUTPUT, OUTPUT, SHUT OUTPUT, OPEN INPUT, INPUT, SHUT INPUT.

The only legal references to a file that has been shut are OPEN INPUT, OPEN OUTPUT or
the test, IF FILE EQ V(OPEN).

SHUT INPUT STATEMENT

This statement closes the file; any subsequent references to it, except another OPEN state-

ment or test case V(OPEN), is illegal. The form is:
SHUT INPUT f{file-name $
where:

file-name = Name of an active file designated by the user.

6-14 17302500 Rev. 02

TABLE 6-2. OPERAND FORMS FOR OUTPUT STATEMENTS

Operand Type T

Meaning

Single item name

Table item name ($ index $)

Array name ($ index $)
Array name

Table name

Table name ($ index $)

Table name ($ index; .. . index, $)

BIT ($ index $) (variable)
BYTE ($ index $) (variable)

POS (file-name)

ftable-name
NENT | table-item-name }

}ENTRY
ENT

table-name
item-name

($ index 5))

table-item-name

NWDSEN (%rable-name :)

constant (excepting status)

(CHAR
lMANT% (variable)T
oDD

Transfer data from a single simple item

Transfer data from a single table (including packed)
item

Transfer data from a single element of an array

Transfer data from all elements of an array

Transfer data from all entries of the table using NENT.

The data is output in serial table order.

Transfer data from a single entry of the table
Transfer data from consecutive entries of the table;
the first entry being defined by index, the last
by indexy, inclusive

Transfer fullword integer value from a substring T

Transfer necessary number of bytes T from a sub-
string

Transfer fullword integer from the value of the file
position

Transfer fullword integer from NENT of specified
table

Transfer number of words (NWDSEN) for this table
from a single entry of the table

Transfer constant to file

Transfer fullword value

TOnly literal variables and constants are legal operands for Hollerith file operations.

H1f the number of bits or bytes is equal to zero, write zero-length record.

TNumber of bytes determined by second index component; for example, OUTPUT XX

BYTE($1, J$)(XYZ)$ transfers J bytes.

17302500 Rev. 02

SHUT OUTPUT STATEMENT

This statement writes an end-of-file on the output file.
SHUT OUTPUT file-name $
where:

file-name = Programmer-supplied file identifier
SHORT FORMS

There are short forms for two of the INPUT statements and two of the OUTPUT statements.
They are:

° To open a file and transfer the first record, the form is:

OPEN INPUT file-name operand $

° To read the last record and close the file, the form is:

SHUT INPUT file-name operand $

° To open a file and write the first record, the form is:

OPEN OUTPUT file-name operand $

° To write the last record and close the file, the form is:

SHUT OUTPUT file-name operand $

EXAMPLES OF INPUT/OUTPUT DATA FORMS

The following program is intended to give examples of the various JOVIAL input/output
operands, it is not an actual working program. The JOVIAL compiler provides compati-
bility of items of the same type, regardless if they are simple items, table or array items,
or functional modifiers. JOVIAL also provides compatibility between tables and table
entries for serial and parallel tables.

LR
FILE SCRATCH B O R 65 V(OK) JWF $
Tt Tt

' '\DECLARE SIMPLE ITEMS''

ITEM SIMP'LIT H 4 $

ITEM SIMP'INT I 18 S $

ITEM SIMP'FIX A 18 S 7 §

ITEM SIMP'FIT F $

ITEM SIMP'BOOL B $

ITEM SIMP'STAT S V(AA) V(BB) V(CC) V(DD) V(EE) V(FF) V(GG) $

6-16 17302500 Rev. 02

ITEM SIMP'LNG'LIT H 17 §
e [

' '"DECLARE ARRAY ITEMS''
ARRAY ARY'LIT 10 H 4 $
ARRAY ARY'INT 10 I 18 S §
ARRAY ARY'FIX 10 A 18 S 7 ¢
ARRAY ARY'FLT 10 F §
ARRAY ARY'BOOL 10 B §
ARRAY ARY'STAT 10 S V(XA) V(XB) V(XC) V(XD) V(XE) V(XF) V(XG) ¢
ARRAY ARY'LGN'LIT 10 H 17
ARRAY ARY'LIT'IWO 10 H 4 $
Tt
"DECLARE TABLE ITEMS!''
TABLE TAB V 75 S 4 §
BEGIN
ITEM TAB'LIT H 4 00 0 §
ITEM TAB'INT I 18 S 0 24 §
ITEM TAB'FIX A 18 s 7042 8
ITEM TAB'FLT F 2 0 §
ITEM TAB'STAT S V(A) V(B) v(C) V(D) V(E) V(F) V(G) 3 0 $
ITEM TAB'BOOL B 3 13 §
ITEM TAB'ING'LIT H 17 3 18 §
END
TABLE TABP P L §
Tt T

' t*ONE WORD LITERAL I/O OPERANDS!''

LABEL.

OPEN OUTPUT SCRATCH $

OUTPUT SCRATCH TAB'LIT(5) $

OUTPUT SCRATCH 3H(OUT)

OUTPUT SCRATCH ARY'LIT ($7%) $

OUTPUT SCRATCH BYTE(12.5)(SIMP'LNG'LIT) $
OUTPUT SCRATCH SIMP'LIT $

SHUT OUTPUT SCRATCH $

OPEN INPUT SCRATCH $

INPUT SCRATCH ARY'LIT(2) ¢

INPUT SCRATCH BYTE(11.3)(TAB'ING'LIT($48)) $
INPUT SCRATCH SIMP'LIT $

SHUT INPUT SCRATCH $

te T

" *INTEGER I/0 OPERANDS!''
OPEN OUTPUT SCRATCH $

OUTPUT SCRATCH SIMP'INT $

OUTPUT SCRATCH TAB'INT($3S$) $

OUTPUT SCRATCH 50 $

OUTPUT SCRATCH BIT($5.15$8)(TAB'LNG'LIT($3%)) $
OUTPUT SCRATCH NWDSEN(TAB) $

SHUT OUTPUT SCRATCH $

OPEN INPUT SCRATCH $

INPUT SCRATCH ARY'INT(5) $

INPUT SCRATCH SIMP'INT $

INPUT SCRATCH POS(SCRATCH)

INPUT SCRATCH CHAR(SIMP!'FLT) $

SHUT INPUT SCRATCH $

Tt tt

''FIXED POINT I/0O OPERANDS'!
OPEN OUTPUT SCRATCH $

OUTPUT SCRATCH MANT(SIMP!'FLT) §$
OUTPUT SCRATCH SIMP'FIX $
OUTPUT SCRATCH ARY'FIX(9) $

17302500 Rev, 02

SHUT OUTPUT SCRATCH $

OPEN INPUT SCRATCH $

INPUT SCRATCH ARY'FIX($38) $
INPUT SCRATCH TAB'FIX(8) $
INPUT SCRATCH TAB'FIXP($88) $
SHUT INPUT SCRATCH $

Tt 1t

' 1'FLOATING POINT I/0O OPERANDS'!
OPEN OUTPUT SCRATCH $

OUTPUT SCRATCH 32.30 $

OUTPUT SCRATCH SIMP'FLT §
OUTPUT SCRATCH TAB'FLT(S7) $
SHUT OUTPUT SCRATCH $

OPEN INPUT SCRATCH $

INPUT SCRATCH ARY'FLT(1) $
SHUT INPUT SCRATCH $

1t Tt

' 'BOOLEAN I/0 OPERANDS!'?'
OPEN OUTPUT SCRATCH $
OUTPUT SCRATCH TAB'BOOL($7
OUTPUT SCRATCH ARY'BOOL(S$5
SHUT OUTPUT SCRATCH $
OPEN INPUT SCRATCH $

INPUT SCRATCH SIMP'BOOL §$
INPUT SCRATCH ODD(SIMP'INT) $
SHUT INPUT SCRATCH $

Tt A\

$) $
$) $

1 'STATUS I/O OPERANDS!'!

OPEN OUTPUT SCRATCH $

OUTPUT SCRATCH ARY'STAT(5) $
OUTPUT SCRATCH SIMP'STAT $

SHUT OUTPUT SCRATCH $

OPEN INPUT SCRATCH $

INPUT SCRATCH TAB'STAT(8) $
SHUT INPUT SCRATCH $

1y Tt

" 1LONGER THAN ONE WORD LITERAL I/0O OPERANDS''
OPEN OUTPUT SCRATCH $

OUTPUT SCRATCH SIMP'LNG'LIT $
OUTPUT SCRATCH TAB'ING'LIT(0) $
SHUT OUTPUT SCRATCH $

OPEN INPUT SCRATCH $

INPUT SCRATCH TAB'ING'LIT(0) $
SHUT INPUT SCRATCH $

T Tt

' "TTABLE AND ARRAY OPERANDS''
OPEN OUTPUT SCRATCH $

OUTPUT SCRATCH TAB $

OUTPUT SCRATCH ENT(TABP(3)) $
OUTPUT SCRATCH ARY'LIT $

OUTPUT SCRATCH TAB($3...7$) §
SHUT OUTPUT SCRATCH $

OPEN INPUT SCRATCH $

INPUT SCRATCH TABP $

INPUT SCRATCH ENTRY(TAB(4)) $
INPUT SCRATCH ARY'LIT'TWO ?
INPUT SCRATCH TABP($1...5%) §
SHUT INPUT SCRATCH $

TERM $

17302500 Rev. 02

OBJECT-TIME EXECUTION WITH I/0

The user can change the main program file-device names at object-time by specifying the new
names as parameters on the execution control card, The new names may be any SCOPE file

of up to seven characters. Since the compiler uses only the first six characters of a device-

name, file replacement is the only way in which a seven character file name may be used by

a JOVIAL program.

[Comma separators should be used to logically space the parameter list on the
execution control card.

e Device-name not to be replaced must be indicated by a null parameter

e The rules for file usage previously declared apply to the file actually used. Any
special treatment of files, such as INPUT, is determined at run time. It is the
user's responsibility to see that replacing a file at run time does not cause a

conflict with the way in which the file is used by the program.

P

The effect of file replacement is the same regardless of the file from which the program is
loaded.

EXECUTION CONTROL CARD
The loader call
LGO (,, TAPEl, MASTER2)

causes the relocatable object program on file LGO to be link-edited. The first two files will
remain the same as specified at compile time. The name in the file environment table (FET)
of the third file will be replaced with TAPE1 and the fourth file will be replaced with
MASTERZ2. Execution will begin with the last transfer address specified in LGO.

FORTRAN-FORMATTED OUTPUT

The JOVIAL user can output FORTRAN formatted data by means of four FORTRAN library
routines. The data may be output to any SCOPE file specified as a device name (not a file
name) in a JOVIAL file declaration or the system file OUTPUT. The routines are PRINT,
PRINTF, LIST, and ENDL (see the test program examples at the end of this section). The

following rules apply to the use of these routines:

e At least two of these routines must be called to perform output with formatted

conversion.

17302500 Rev. A 6-19

e The first call may be PRINT (which passes the format to be used) or PRINTF
(which passes the format to be used and the FET of the file to be written on).

[Constants or variables to be converted are then passed by calling the routine

LIST once for each variable or constant to be converted.

e If the output is entirely Hollerith, the output can be specified in the format
passed to PRINT or PRINTF so LIST need not be called.

e The output process is terminated by a call to ENDL.

The four routines are described in Table 6-3.

The library routine PRINT does not automatically create a local file which will be assigned
to the system file OUTPUT at the termination of the job. It is the responsibility of the
programmer to insure that a file is available on which PRINT will write. This can be done
by a file declaration statement indicating the name OUTPUT for a device name or by the M,
MONITOR, option on the JOVIAL control card. Execution of a call to PRINT without pro-
viding a file will result in an abort.

If the conversion format is specified in a literal variable, the same format may be used for
several PRINT or PRINTF calls, saving coding effort. The use of a variable to hold the
format also permits it to be changed at run time. This may be done by an assignment state-
ment or by reading in a new format from an external file.

TABLE 6-3. FORMATTED OUTPUT ROUTINES

Routine Definition Parameters

PRINT Initialize the output by supplying the Hollerith constant or the name of a’

PRINTF

LIST

ENDL

format to the FORTRAN library output
routine for writing on the system file
OUTPUT.

The same as PRINT except the output
file is the one specified in the second
parameter.,

Conveys data value to FORTRAN out-
put routines.

Terminate output.

Hollerith variable containing the legal
FORTRAN format.

The first parameter is the same as for
PRINT. The second is LOC(FILE) or
variable containing the LOC of the
file to be used. The name must be a
file name specified in a JOVIAL
file declaration statement.

Any legal constant or variable con-
tained in one word and suitable for
FORTRAN conversion.

No parameters.

17302500 Rev.

Since the LOC of the file is passed as a parameter in the call to PRINTF, it may be changed

at run time by using a variable and changing the value of the variable to the LOC of the

desired file prior to calling PRINTF.

Output of FORTRAN formatted data is subject to the following restrictions:

Variables to be output must be subject to FORTRAN conversion routines and

must be contained in one word.

Integer items can be any size and signed or unsigned.
Fixed-point items can not be output.

Floating-point items are acceptable.

Hollerith variables must be ten characters or less.

JOVIAL stores partial word literals right-justified; FORTRAN partial words are
stored left-justified, so the R format should be used to output Hollerith items of
less than 10 characters.

To output literals longer than 10 characters, overlay the literal with an array
of one dimension and 10 characters. Call LIST once for each word to be output.

Table items and BIT or BYTE modifications will be properly removed to a
temporary storage space and output, provided they meet the length restrictions

given for simple items.

The maximum length possible for FORTRAN output is 150 characters.

Refer to the FORTRAN Extended Reference Manual for details on legal formats.

FORMATTED OUTPUT EXAMPLES

The following is a listing of several test examples of the four FORTRAN output routines.
The following SCOPE control cards were used to generate these examples:

JOVIAL(F,M)
LGO

REWIND(F1,F2) SCOPE Control Cards
COPYSBF (F1,0UTPUT)
COPYSBF(F2,0UTPUT)

START $!'DEMONSTRATE PRINT PRINTF LIST ENDL''

t'USE OF FORMAT IN A LITERAL VARIABLE''
ITEM FORM 7H((3X,I3)) $

PRINT (FORM) $

LIST (50) §

ENDL $

Program Reference Numbers

17302500 Rev, 02 6-21

1! T?
' 1PRINT 5 CHARACTER LIT VAR THROUGH A10 FORMAT''
ITEM LIT H 5 §
ITEM HLL H 10 $
OVERLAY LIT = HLL $
LIT = 5H(56789) $
BYTE($0,2$)(HLL) = 2H(HI) $
PRINT (7H((X,A10))) $
LIST (LIT) §
ENDLS
T Tt
1110 CHARACTER LITERAL THROUGH 5 CHARACTER FORMAT''
ITEM HOLL 10H(0123456789) $
PRINT (6H((X,A5))) §
LIST (HOLL) $
ENDLS
(] A\

t tPRINT 5 CHARACTER LITERAL THROUGH R10 FORMAT''
PRINT (6H((X,R5))) $
LIST (HOL) $
ENDL $
Tt Tt
' 1LESS THAN FULL WORD INTEGER!''
ITEM FMT 8H((3X,I10)) §
ITEM INT1 I 18 S $
ITEM INT2 I 37 S §
ITEM INT3 I 37 U $
ITEMDDD I 59 S PO §
OVERLAY DDD = INT3 $
INT1 100 $
INT2 500 $
PRINT(FMT) §
LIST (INT1) $
LIST (INT2) $
ENDL $

T Tt
t "UNSIGNED INTEGER'!
ITEM USI I 5U $
USI = 31 ¢ 't SET ALL FIVE BITS'!'
PRINT(FMT) $
LIST (USI) §
ENDL $
tt tt
t1PRINT OUT 5 WORD LITERAL USING ARRAY OVERLAY''
ARRAY DUM 5 H 10 $§
ITEM FIVE 45H (45 CHARACTER LITERAL OUTPUT BY USING ARRAY) $
OVERLAY FIVE = DUM $
PRINT (6H((5A10))) $
FOR Z = 0,1,4 $
LIST (DUM($z8)) $
ENDL $
Tt Tt
t 1PRINT FROM INTEGER ARRAY''
ARRAY INTEGER 10 I 60 S §
BEGIN 0 -100 200 -300 400 -500 600 -700 800 -900 END
PRINT(7H((10110))) $
FOR C = 0,1,9 §

Program Reference Numbers

17302500 Rev. 02

LIST (INTEGER($CS)) $
ENDL $
L Tt
9 '1PACKED TABLE ITEMS'!
TABLE TAB V 10 S 2 §
BEGIN
ITEM HH H 13 0 00 $ BEGIN 13H(ABCDEFGHIJKIM) 13H(NOPQRSTUVWXYZ)
13H(0123456789012) END
ITEM HL H 10 0 00

$
ITEMH2H 3 100 S
ITEM II I 18 U 1 18 $ BEGIN 000 100 200 300 400 500 600 END
ITEM IS I 12 S 1 36 $ BEGIN -023 +123 -323 +423 -523 END
ITEM IU I 12 U 1 48 $ BEGIN 056 156 256 356 END
END
PRINT (20H((3X,110,A10,R3,2I10))) ¢
LIST(II(1)) $
LIST g H1§§1§§ 5 %
LIST (H2($1
LIST (IS(31
LIST (IU(S$1
ENDL $
1t 11
10 ''PACKED TABLE ITEMS USING A FOR LOOP'!
FOR A = 0,1,2 ¢
BEGIN
PRINT (20H((3X,110,A10,R3,2I10))) $
LIST(II($AS)) ¢
LIST(H1($AS)) §
LIST(H2($AS)) _$
LIST (IS($AS)) $
LIST (IU($AS)) §
ENDL §
END
e 1t
11 t1BIT MODIFIER ON A ONE WORD ITEM!!
ITEM BT H 10 §$
BIT($0,59$)(BT) = 0(00000000000000000000) $
BIT($15,8$)(BT) = 100 $
PRINT(FMT) $
LIST (BIT($15,8$)(BT)) $
ENDL $

T Tt
12 t tBYTE MODIFIER ON A ONE WORD ITEM''
ITEM HWD 10H(ABCDEFGHIJ) $
PRINT (7H((X,A10))) $
LIST (BYTE($5,28)(HWD)) §
ENDL $
tt te

13 ' 'BYTE MODIFIER ON ONE WORD ITEM USING R FORMAT!'!
PRINT (6H((X,R2))) §
LIST (BYTE($5,2$)(HWD)) $
ENDL $
rt Tt

14 *1TUSE PRINTF WITH LOC(FILE'NAME)'!
FILE FILE1 H O R 80 V(OK) F1 §
ITEM MES1 30H(THIS WAS PRINTED ON FILE1) $

ARRAY ARY1 5 H 10 $

Program Reference Numbers

17302500 Rev. 02 6-23

15

OVERLAY MES1 = ARY1
PRINTF (6H((3A10)) , LOC(FILE1)) $

FOR A = 0,1,
LIST ARY1($ A9)S
ENDL $

Tt 1t

11USE PRINTF WITH A VARIABLE SET TO THE LOC (FILE'NAME)'!
FILE FILE2 H O R 80 V(OK) F2 §
ITEM MES2 30H(THIS WAS PRINTED ON FILE2) §
ARRAY ARY2 5 H 10 $
OVERLAY MES2 = ARY2 §
ITEM FET I 18 S §
FET = LOC(FILE2) §
PRINTF (6H((3A10)) , FET) §

FOR B = 0,1,2 §
LIST (ARY2($ B §)) §
ENDL $
TERM $
NUMBER LINE MESSAGE
JOv502 (CMPL) COMPOOL~-DEFINED SYMBOLS
%% NONE **
JOV503 (CMPL) MODE-DEFINED SYMBOLS

%% NONE **
*% NO DIAGNOSTIC MESSAGES**

50
HI 56789
01234
56789
100
500
31

45 CHARACTER LITERAL OUTPUT BY USING ARRAY
0 =100 200 =300 400 -500 600 -700 800

100NOPQRSTUVWXYZ 123 156
OABCDEFGHIJKIM -23 56
100NOPQRSTUVWXYZ 123 156
2000123456789012 -323 256
100
FG

FG
THIS WAS PRINTED ON FILE1l
THIS WAS PRINTED ON FILE2

03/05/71 **SCOPE**3.3 PSR247 8/15/70
17.50.05.PRNTO3T
17.50.05.PRNT,CM70000,T77,P77.
17.50.05.JOVIAL(F,M)
17.50.14 .MAP(OFF)

Program Reference Numbers

-900

17302500 Rev. 02

17.50.14.1GO.

17.50.18 .END MAINPG
17.50.18 .REWIND(F1,F2)
17.50.18.COPYBF(F1,0UTPUT)
17.50.19.COPYBF(F2,0UTPUT)
17.50.19.CP 002.457 SEC.
17.50.19.PP 005.587 SEC.
17.50.19.10 001.633 SEC.

17302500 Rev. 02

PROCESSING DECLARATIONS 7

A processing declaration causes the compiler to generate a closed set of code which can be
invoked from elsewhere within the program. Processing declarations define switches and

closed forms (CLOSE routines, procedures, and functions).

The legality of a processing declaration depends on the type of declaration and the area from
which it is invoked. The following restrictions apply:

° A processing declaration can not be invoked by itself.

e Unless it causes a change in sequence of control, it will turn over control to the

statement following the one from which it was invoked.
e Processing declarations can generally be declared anywhere in the program.

e The compiler collects code produced by closed forms, places it ahead of that
from the remainder of the program, and provides jumps around the code produced

by switch declarations.

SWITCHES

A switch is a single JOVIAL statement providing a series of decision points to which control
can be transferred. It can appear anywhere in the program; it is invoked by a GOTO followed
by a switch name.

There are two types of switches: the index switch activated according to the value of an

index and the item switch which bases decisions on the value of an item.
INDEX SWITCH DECI ARATION
The format of the index switch declaration is:
SWITCH switch-name = (index-list) $
where:

switch-name = programmer-supplied name identifying the switch.

17302500 Rev. 02 7-1

index-list = list of names separated by commas; each name is either a statement
name, a CLOSE name, or another switch name followed by an index.
The same name can appear more than once in a list. The names are
sequence designators to which control passes depending on the position
of the name in the list and the index value of the switch call. Null
switch points can be specified by adjacent commas (,,) with no named

switch point between them.

Examples:
° SWITCH CHOICE = (J1, J2, CHOICE is the name of the switch; J1, J2, and
SW(1), LAST) $ LAST are statement names or CLOSE names;
SW must be a switch name.
e SWITCH EITHER = (ONE, In switch EITHER only the switch points ONE

ONE,, TWO, TWO, ONE,

TWO,, TWO) $ or TWO can be selected. The third and eighth

positions are null switch points.

INDEX SWITCH CALL

The format of an index switch call is:
GOTO switch-name ($index$)$
where:

switch-name = programmer-supplied name identifying the switch.

index = any numeric formula
The following rules apply to an index switch call:

. If the formula does not yield an integer result, it is truncated to an integer value.

[The value of the index determines which switch point is selected. A value of 0
selects the first switch point; a value of n-1 selects the last switch point.

° If the value of the index is negative, equal to or greater than the number of switch
points, or if a null switch point is selected, control is transferred to the state-

ment following the switch call,

o If a switch cannot be executed (for instance, there is a subsequent undefined switch

call), control transfers to the statement following the call.

e A switch point containing a close name could cause execution to return to the
statement following the switch call after the close routine is executed, which

would be the same as if the point of control had fallen through.

72 17302500 Rev. 02

Examples:

e GOTO CHOICE (KK)$ The switch is defined in the first index switch
example shown above, If the value of KK is 0,
control transfers to J1; if the value is 1, to
J2; and if the value is 3, to LAST. If the value
is 2, control is transferred via switch SW

according to the value of index (I).

° GOTO EITHER ($BB-AA*%2$)$ The switch is defined in the second index
switch shown above. The value 0, 1, and 5
will transfer control to ONE; values 3, 4, 6
and 8 will transfer control to TWO. Other
values will not transfer control, hence, the

next statement would be executed.

ITEM SWITCH DECLARATION

In an item switch, the current value of the item specified in the switch declaration is com-
pared with a list of constants until an equality is found or the list is exhausted. Control

passes to the switch point corresponding to the first constant equal to the specified item,

The format is:
SWITCH switch-name (switch-item) = item-switch-list) $
where:

switch-name = programmer-supplied identifier

switch-item = gimple or table item name, array name, file name

[}

item-switch-list string of pairs of names and constants linked by an equal sign

in the format: constant = name. The pairs are separated by

commas; there may not be two commas in succession.

The following rules apply to item switch declarations:
) The constants can be numeric literal, Boolean, or status. If the switch item is
a file name, the constant must be a status constant.
e The switch item and the constants in the item switch list must be of the same type.

e The names are statement names, CLOSE names, or switch names; they are the

switch points to which transfer can be made.

17302500 Rev. 02 7-3

Examples:

e SWITCH EITHER (TOSS) = In switch EITHER, switch item TOSS is an
(0=ONE, 1-ONE, 5=ONE,

3=TWO, 4=TWO, 6=TWO) $ integer item. If its value is 0, 1, or 5 when

EITHER is activated, control is transferred
to ONE; if the value of TOSS is 3, 4, or 6,
control is transferred to TWO; otherwise,
control transfers to the statement following
the switch call.

e SWITCH TYPE (DATA) = A call is made to the switch TYPE to test

(LH(I) = NUMERIC,

1H(A) = NUMERIC, the contents of a simple one-character dis-

1H(F) = NUMERIC, play code item. If DATA is I, A, orF,
T TITERAr control is transterred to NUMERIC; if T
1H(B) = BOOLEAN, or H, control is transferred to LITERAL,
1H(S) = STATUS) $

and so forth. If no equivalence is found for

the value of DATA, control is transferred to

the statement following the switch call.

e SWITCH SW1000 (PIN1) = Item PIN1 must have been declared as a
(V(AA) = PIN2, V(BB) = PINZ,

V(CC) = PIN2, V(DD) = PIN3,
V(EE) = PIN2, V(FF) = PIN2) § stants used in the switch. If its value is

AA, BB, CC, EE, or FF control is trans-
ferred to PIN2; if the value of PIN1 is DD,
control is transferred to PIN3; otherwise,

status item along with the six status con-

control is transferred to the statement fol-

lowing the switch call.

. SWITCH SWCH (ARY) = Item ARY must have been declared as a
(4H(ZERO) = ZERO, . L . .
3H(ONE) = ONE, Hollerith array, When this item switch is

3H(TWO) = TWO, called a subscript must be specified to
SH(THREE) = THREE) § indicate which item in the array is to be

used for the compare with the switch values.

ITEM SWITCH CALL

The call to an item switch is GOTO followed by the switch name. The switch name is

indexed only if the switch item is a table or array item. The format is:

GOTO switch-name [($index$)] $

-4 17302500 Rev. 02

where:
switch-name = programmer-defined identifier
The following rules apply to item switch calls:

° When the switch name is indexed, the index must have the appropriate number
of occurrences to select the particular table or array item to be compared with

the list of constants.

e If the switch point is a CLOSE or a switch name, control can eventually transfer
back to the statement following the switch call, depending on the declaration of
the CLOSE or switch, which would be the same as if the point of control had
fallen through.

Examples:

° GOTO EITHER $ This call invokes the switch EITHER
previously declared. It is not indexed
because TOSS is a simple item.

) GOTO TYPE $ This call invokes the switch, TYPE, pre-
GOTO ERROR § viously declared. If the value of DATA is
found not to be equivalent, control is trans-
ferred to the next statement following the
switch call.

e GOTO SW1000 $ This call invokes the switch, SW1000, pre-
viously declared. If the status variable is
set to V(AA), V(BB), V(CC), V(EE), or
V(FF) control will transfer to PIN2, If it
is set to V(DD) transfer is made to PIN3.
If the status variable is set to any other

value, the next statement will be executed.

e GOTO SWCH ($3%) $ This call invokes the switch, SWCH, pre-
viously declared. The index (3) indicates
that the switch points are to be compared
with ARY($33).

17302500 Rev. 02 7-5

A switch is more straight forward than an IFEITH ORIF statement. For example, the
sequence of control shown in the second example of item switch calls could be accomplished
by the following IFEITH ORIF alternative:
IFEITH DATA EQ 1H(I) OR DATA EQ 1H(A) OR DATA EQ IH(F) $

GOTO NUMERIC $

ORIF DATA EQ 1H(H) OR DATA EQ 1H(T)$

GOTO LITERAL $

ORIF DATA EQ 1H(B)$

GOTO BOOLEAN $

ORIF DATA EQ 1H(S)$

GOTO STATUS $

ORIF 1 §

GOTO ERROR $
END

CLOSED FORMS

Closed forms are one or more JOVIAL statements and related declarations which need only
be specified once, but may be used at various points within the program. Invoking a closed
form usually entails transfer of control to the form, execution of the closed form, and a re-
turn to the statement following the one which caused the transfer of control. However, the
execution of a closed form can cause a transfer of control to statements other than the next

statement. There are three types of closed forms: CLOSE routines, procedures, andfunctions.

[Procedures and functions can have input and output parameters and involve a
change in the scope of definition. They are invoked by the use of the procedure

or function name with the actual parameters to be used during its execution,

. CLOSE routines cannot have any input or output parameters and do not change
the scope of definition. They are invoked by a GOTO with the name of a CLOSE.

The compiler isolates the code produced by closed forms and places it ahead of any code

produced by statements outside of closed forms.

A closed form may call other closed forms, but may not call itself or a closed form which
would invoke it. Closed forms involving a change of scope can not be nested; a JOVIAL pro-
gram can have only one level of change of scope. A CLOSE can be declared inside of a pro-
cedure or function,or a procedure or function can be declared inside of a CLOSE because a
CLOSE does not cause a change in the scope of definition. A CLOSE can have other CLOSEs

nested in it to any level.

CLOSE ROUTINE

A CLOSE routine has no parameters, so the data manipulated is contained in variables whose

names are common to the CLOSE routine and the main routine or procedures from which a

7-6 17302500 Rev. 02

CLOSE is called. Data can be declared within a CLOSE, but it is usually declared in the
main routine or procedure in which the CLOSE is contained. CLOSE routines are invoked
directly by a GOTO statement or indirectly by a switch call. A CLOSE has the same scope
as the section of the program where it is declared.

The form of the CLOSE declaration is:

CLOSE close-name $
BEGIN
declarations and statements
END

A CLOSE is called directly by a GOTO statement followed by the CLOSE name or indirectly
by using the CLOSE name in a switch declaration which is called by a GOTO statement. But,
it is permissible to transfer from within the CLOSE routine to an entirely independent point
in the main routine or procedure from which the CLOSE call was declared within,

Examples:

e TABLE NAMESR50S1 § A table is declared containing display code
BEGIN
ITEMNNHI1000 $
END
.
.

entries of one word per entry.

°
CLOSE CLEAR $ A CLOSE routine is declared which sets

Bg(o}g\]A - 49, -1,08$ this table item to Hollerith blanks.

NN(A) = 1H() $

END

°
°
°

GOTO CLEAR $ The CLOSE routine is called.
°
°
°

GOTO CLEAR $ It is called again, and may be called anytime
: during execution of the program when the

° table NAMES is to be reset to blanks.
GOTO CLEAR §

17302500 Rev, 02 7-7

° ITEM DISTF $ Two floating items are declared.
ITEM SHOT F $

°

.

°
CLOSE RANGE $ The CLOSE routine increments and tests
BEGIN item DIST. Note that there are two exits

DIST = DIST + SHOT $
IF DIST LS.01 $ GOTO UNDER $ from the CLOSE that are not the standard

IF DIST GR 1056. $ GOTO OVER $

END return.
o
°
°
GOTO RANGE $ A call to the CLOSE RANGE.
PROCEDURES

A procedure is a closed form that can have both input and output parameters; formal data
declarations must be made corresponding to formal input/output parameters in the procedure
declaration. During execution of the procedure, the data transferred from the calling routine
is referenced by the formal data declarations defined in the procedure. The outside data is
specified in the actual parameters of the procedure call statement corresponding to the for-
mal parameters of the procedure declaration. Thus, the procedure operates independently
of the main routine or other procedures. The following restrictions apply to the use of

procedures:
e A procedure declaration is independent of outside loop statements because loop
variables are not recognized or affected within the procedure body.

e Loop variables defined within a procedure are not recognized or affected by

operation of the routines outside the procedure.

e A loop variable can be specified as an actual parameter whenever a procedure

is invoked from within a loop with that variable.

e A procedure declaration can appear anywhere within the program where a state-

ment is permissible, except within another procedure or a function.
® A procedure may use or set any variable defined in the main program.

e It is not advisable to declare files within a procedure. Procedures may use files

declared in the main program for input and output.

PROCEDURE DECLARATION

The procedure declaration defines the procedure name and the formal input and/or output

parameters; these are dummy names introduced in the procedure declaration that are

17302500 Rev., 02

replaced by corresponding parameters introduced by the procedure call statement. The
procedure declaration is followed optionally by a list of declarations defining the data used
by the procedure, then by the statements defining the operation of the procedure enclosed
in BEGIN-END brackets. The format is:

PROC name [([formal-input-parameters] [:formal-output—parameters])] $

[declaration-list]

BEGIN
statements and declarations
END
where:

name = user-supplied identifier of the procedure
formal-input-parameters = names of items, arrays, tables, or CLOSE routines
formal-output-parameters = names of items, arrays, or statements
declaration-list = declarations of data structures local to the procedure

The following rules apply:

17302500 Rev, 02

CLOSE routines can be used only as input parameters. Statement names can be

used only as output parameters.
Both input and output parameters are separated by commas.
In a formal parameter list, statement and CLOSE names are followed by periods.

Every item, array, or table name in the formal parameter list as well as every

data name introduced by the procedure must be declared in the procedure. .

The declarations can be placed immediately following the PROC declaration in
the declaration list or they can be placed among the statements of the procedure
body, or both.

No procedure declaration can be included in the procedure. Other procedures
can be called from the procedure, provided that they do not call the calling

procedure either directly or indirectly.

CLOSE names and statement names in the formal parameter list are not declared

in the procedure.

A formal input parameter cannot be a formal output parameter. To use an actual
input parameter as an output parameter, the two separate formal parameters are

declared with identical descriptions, then overlaid.

Examples:

e PROC SIMPL $
BEGIN
.
.
°
END

. PROC COMP (LONG, LOG.) $
BEGIN
ITEM LONG F §
L
[
L]
END

] PROC POSIT(LIT, NUMB=RSLT)
BEGIN
ITEMLITH5 $
ITEM NUMBI1605 $
ITEM RSLT1185 $

IF LIT EQ 5H(START) $
BEGIN
RSLT=0§
RETURN $
END
RSLT = NUMB $
END

° PROC FIND(LOG., ALT, TAN, =
EX., AMT) $
BEGIN
ITEM ALT A
ITEM AMT I
L
.

60S $
60 U $

.
END

L] PROC XX (SUM1 = SUM2) $
ITEM SUML F $
ITEM SUM2 F §
OVERLAY SUM1 = SUM2
BEGIN
[
[

°
END

This procedure declaration has no formal

parameters.

This procedure has only input parameters;
LOG is
identified as a CLOSE routine because it is

one of which is a CLOSE routine.

followed by a period and is an input param-
eter. The parameter LONG must be defined

in the procedure.

If the actual literal value passed to LIT is
5H(START), RSLT will be set to zero; if not,
RSLT will be set to NUMB.

Procedure FIND has three input and two out-
LOG and TAN are CLOSE
names because they are followed by a period

put parameters.
and are in the input list. EX is a statement
name providing an alternate exit from the
procedure. It is identified as a statement
name because it is followed by a period and
ALT and AMT must be

declared in the procedure.

is in the output list.

The OVERLAY statement causes the input
parameter SUMI to be used as the output

parameter SUM2. When the procedure is

called in effect both the input and output param-

eters are set to the actual input parameter.
This would be done when it was desired to
manipulate the value of SUM1 and produce a

17302500 Rev. 01

PROC CHECK (TABIN =
ARRAYOUT) $
BEGIN''1'"!
TABLE TABIN V30D $
BEGIN
ITEM INTGRI60S $
ITEM FLOT F $
END
ARRAY ARRAYOUT 30 B §

FORZ=0,1, 29§
BEGIN!''2"
IF ENTRY (3 Z $) EQ 0 $
BEGIN''3"!
ARRAYOUT ($ Z $)=0$
TEST Z $
END'' 3"
ARRAYOUT ($ 2z $) =18
END''2"
END'"'1'!

new value which would be returned to SUMI1,
by calling the procedure with both actual

parameters being the same variable,

Procedure CHECK has a table as an input
parameter and array as an output parameter.
TABIN and ARRAYOUT must be declared in
the procedure although only one word of stor-
age will be allocated for each to hold the
pointer to the actual array and table used in

execution,

The input table is checked for empty entries
which have both FLOT and INTGR set to
zero. The corresponding item in array
ARRAYOUT is set to zero or one depending
on the result of the test.

The following example is intended to demonstrate the situations where nesting PROC and
CLOSE declarations is permissible:

START § '' SCOPE OF CLOSE AND PROC ''
ITEM AA I 18 U $
ITEM BB I 18 U
ITEM CC I 18 U
ITEM DD I 18 U
ITEM EE I 18 S
MONITOR AA BB CC DD EE CLS, PRC CLUZ. $
MONITOR CLZ1. CLZ2. CLZ3. CLZ4. CLZ5. CLZ6. $
AA =5 8
GOTO CLS $
AA = 10 $
PRC(AA = DD) §
DD = DD §
GOTO CLUZ $
GOTO CLz1
GOTO CLZ2
GOTO CLZ3
GOTO CLZ4
GOTO CLZ5
GOTO CLZ6
STOP $
CLOSE CLS $
1111 1BEGIN
BB = S5%AA $
PRC(BB = CC) §
CC = CC §

DL

'' CALL OUTER CLOSE '!
't CALL PROC '!

't CALL CLOSE DECIARED INSIDE CLOSE'!

LD

"' OUTER CLOSE '!

't CALL PROC '!

17302500 Rev. 02 7-11

PROC

PRC(IN = OUT) $

t 121 'BEGIN

MONITOR OUT CLOZ. $

ITEM IN I 18 U $
ITEM OUT I 18 U &

CLOSE

OUT = IN * IN
GOTO CLOZ $
GOTO CLZ1 §
RETURN $
CLOZ $

1131 1BEGIN

$

OUT = OUT * 2 §

1131 tEND

1121 1END

CLOSE

CLUZ $§

' 141 'BEGIN

DD = DD/2 $

1141 'END
1111 tEND

CLOSE

CLZ1 §$

' 15" 'BEGIN

CLOSE

EE = 1 ¢
cLz2 §

'16' 'BEGIN

CLOSE

CLOSE

CLOSE

CLOSE

EE = 2 §
cLz3 $
1171 1BEGIN
EE = 3 §
CLZ4 $
1181 1BEGIN
EE = 4 §
cLZ5 $
1191 1BEGIN
EE = 5
CLZ6 $
11101 'BEGIN
EE =
YVlO'VEND
VVQIVEND
'YSVIEND
"7T1END

1161 tEND
115t tEND

TERMS

$

6 8

'* DECLARED INSIDE OF CLOSE '!

'" CALL GLOBAL CLOSE IN A PROC '!

** INSIDE PROC INSIDE CLOSE '!

'' INSIDE OF ANOTHER CLOSE '!

The results of the above PROC and CLOSE declarations are given in the following monitored

output example:

7-12

%%% MONITORED
*%% MONITORED
%% MONITORED
%%% MONITORED
*%% MONITORED
*%% MONITORED
%%7% MONITORED

INTEGER DATA AA
CLOSE CLS
INTEGER DATA BB
PROCEDURE PRC
INTEGER DATA OUT
CLOSE CLOZ
INTEGER DATA OUT

25
625
1250

0(00000000000000000005)
0(00000000000000000031)
0(00000000000000001161)
0(00000000000000002342)

17302500 Rev. 01

*%% MONITORED CLOSE CLz1

%%% MONITORED INTEGER DATA EE = 1 = 0(00000000000000000001

I:* MONITORED INTEGER DATA CC = 1250 = 0(000000000000000023423
* MONITORED INTEGER DATA AA = 10 = 0(00000000000000000012)

I** MONITORED PROCEDURE PRC

*% MONITORED INTEGER DATA OUT = 100 = 0(00000000

*%% MONITORED CLOSE CLOZ ¢ - 000000000144

%¥%% MONITORED INTEGER DATA OUT = 200 = 0(0000

*%% MONITORED CLOSE CLz1 ¢ 0000000000000310)

#*%% MONITORED INTEGER DATA EE 1 = 0(00000000000000000001)

%%% MONITORED INTEGER DATA DD 200 = 0(00000

*%% MONITORED CLOSE CLUZ ¢ 000000000000310)
*%% MONITORED INTEGER DATA DD = 100 = 0 0

ru MONITORED INTHG Ia D (00000000000000000144)
#%% MONITORED INTEGER DATA EE = 1 = 0(00

iew MONITORED INTEG Ia B (00000000000000000001)
%%% MONITORED INTEGER DATA EE = 2 = 0(00000

#%% MONITORED CLOSE CLZ3 ¢ 000000000000002)
%% MONITORED INTEGER DATA EE = 3 = 0(000000

#%% MONITORED CLOSE CLZ4 ¢ 0000000000003)
#%% MONITORED INTEGER DATA EE = 4 = 0(0000000000

%%% MONITORED CLOSE CLZ5 (0000000004)
%% MONITORED INTEGER DATA EE = 5 = 0(00000000000000000005)
%% MONITORED CLOSE Clz6

*%% MONITORED INTEGER DATA EE = 6 = 0(00000000000000000006)

PARAMETER PASS| NGT

There are two types of parameter passing: by name and by value. If the user references a
main program variable from within a procedure that was called with the variable as an actual
input or output parameter, the effect will depend on whether the parameter was passed by

name or by value.

Parameter passing by name is used for tables, arrays, CLOSE routines (input only), and
statement labels (output only). The actual address of the parameter is passed; refer-
ences to the corresponding formal parameter use the actual address. Referencing param-

eters passed by name have the same effect as if a formal parameter had been referenced.

Parameter passing by value is used for constants, variables, and formulas. Their value

is computed and assigned to the formal parameter. Variables used as output parameters are
passed by value at exit; the value of the parameter variable is assigned to the actual param-
eter on return from the procedure. Numeric parameters (input and output) that disagree in
type are converted when the value is assigned. Referencing parameters passed by value
yields the original value, regardless of any changes to the formal parameter. Conversely,
if the procedure changes the value of the actual input parameter, the formal parameter will
remain unchanged. The actual output parameter will reflect its original value until control

is returned to the main program, or unless changed in an assignment statement using the

name of the main program variable.

TSee Appendix E for additional information on parameter passing for JOVIAL procedures
compiled with the program, COMPOOLrdefined JOVIAL subprograms, and COMPOOL or

library non-JOVIAL programs.

17302500 Rev. A

There is no distinction between an array or table passed as an input parameter and one passed
as an output parameter, The structure of a table or array need not be identical to that of the
formal parameter except that arrays must be of the same type of variable (literal, integer,

etc.). However, any deviation from an identical form is the programmers responsibility.

PROCEDURE CALL
The procedure call statement is used to call a procedure. The format is:
name [([actual-input-parameter] [=actual-output-parameter])] $

where:

name = procedure identifier; this must be the same as the name

in the procedure declaration.

actual-input-parameters = the number, class, and order of the formal input param-
eters specified in the procedure declaration.

actual-output-parameters = the number, class, and order of the formal output param-

eters specified in the procedure declaration.

The actual parameters use the corresponding formal parameters as aliases for the purpose

of passing values and names to and from the procedure body.

The functional modifiers BIT, BYTE, CHAR, LOC, POS, MANT, NENT, and NWDSEN can
be used as actual input parameters or in formulas which are actual input parameters. The
functional modifiers BIT, BYTE, CHAR, MANT, NENT, and POS can be used as actual

output parameters. The following rules apply to the parameters of a procedure call:

. Actual input parameters are evaluated and the values are assigned to corres-
ponding formal input parameters in the order (from left to right) that they appear

in the procedure declaration.

[} The value is computed and assigned when the procedure is called. The values
of the formal output parameters are assigned to the corresponding actual param-

eters following execution of the procedure body at the time a normal exit is made.

. When a CLOSE routine named as a formal input parameter is executed; it must

have been declared in the main routine.

e Statement names used as actual output parameters name the statement to which
control transfers when the corresponding formal statement name is referenced

in the procedure body.

7-14 17302500 Rev. A

. Control normally returns to the statement following the procedure call after

execution of the procedure is complete, except when an exit is made to a state-

ment named as an output parameter or an execution of a return statement. Exits

from closed forms are discussed later in this section

Examples:

e COMP(AA + BB/180, LNG.)$

e FIND(LL., 3000, TT., =
OUT., HH)$

e POSIT(BYTE($ZZ, 5$)(CARD),
BIT($38, 58)(CARD) =
POS(FILEB)$

° POSIT(HOL, POS(FILEC) =
NENT(TABD))$

e POSIT(HOL, COMPUT
(BIT($45, 3$)(INT)) =
BIT($0, 15$)(FIX))$

17302500 Rev. 02

This is a procedure call for the PROC

COMP example declared under procedure
declaration. The formula AA + BB/180 is
evaluated when the call is executed and
becomes the value of item LONG in the pro-
cedure body. When the CLOSE LOG in the
procedure is called, CLOSE LNG is executed.
(LNG had been declared in the calling pro-

gram,)

This calls procedure FIND declared
previously. LL and TT are CLOSE names,
3000 is an integer constant which will be an
initial value for item ALT, OUT is a

statement name, and HH is a numeric item.

This example (and the following two) demon-
strate the use of functional modifiers and
formulas for input parameters and functional
modifiers as output parameters. CARD is

a literal variable, ZZ is an integer variable,
and FILEB is a file declared in the program
that called POSIT.

HOL is an Hollerith variable, FILEC is a
file declared in the main program, and
TABD is a variable table declared in the
main program or a procedure from which
the procedure POSIT was called.

HOL is a literal variable, COMPUT is an
integer function, INT is an integer variable,
and FIX is a fixed point variable declared

previously.

FUNCTIONS

A function is a special form of a procedure. Only input items may be specified in a function
call, An item declared within the procedure which has the same name as the procedure
serves as the output parameter. Since a function results in a single value being output, it
can, therefore, be treated as a variable. The type of the variable with the same name as
the function will be the type of the function, Hollerith, integer, fixed, etc. It is the respon-
sibility of the user to insure that this variable is set with the desired value at the time the
function is exited. Whatever the value of the variable is at that time is the value the function
will return. Several function calls may be included in one statement. The function declara-

tion is introduced by the same word as a procedure (PROC). The format is:

PROC name [(formal—input—parameters)] $
ITEM item-name item-description §

[de claration-list]

BEGIN
statements and declarations
END
where:
name = function identifier and is the function's formal output parameter.
The formal input parameters are the same as those used for a
procedure declaration.
item-name = must be the function name

item-description= describes the form the function will take
declaration-list = declaration of data structures local to the procedure.
FUNCTION CALL
The function is called by its name followed by any actual parameters. The format is:
name ([actual-input—parameters])
where:

name = function name; this is the same as the item name declared

in the function.

actual-input-parameters = same as described in procedure calls. If there are no
actual input parameters, the pair of parentheses must be
specified after the function name to identify the name as

a function call.

17302500 Rev. 02

When a function is called, the statements in the function declaration are executed and then
control returns to the function call. The value resulting from the execution is assigned to

the name in the function call.

Examples:
° PROC VALUE(AA, BB) $ Function VALUE has two input parameters;
B%E:TGEIIIQI/I VALUE F $ it will return a floating-point result. Execu-
. tion of VALUE will determine a value for
. VALUE dependent on the values input for AA
° and BB as actual input parameters. AA and
° BB must be declared in the declaration list.
END
COMP = VALUE(XX, YY) $ This assignment statement calls the function
VALUE using as input the current values of
the items XX and YY. After execution the
value determined for VALUE is returned and
assigned to item COMP.
° PROC TAN $§ This function has no parameters. When called
,‘;a;N‘e(d)bg : it must be identified by the name TAN followed
by an empty pair of parentheses.
e IF TAN()GR 1.50 $ The procedure call may be used in an IF state-

ment, The value of TAN is determined and
subsequent action depends on its value com-

pared to the constant 1. 50.
EXIT FROM CLOSED FORMS

Normally, exit from a closed form occurs automatically and control is returned to the calling
point when the sequence given in the closed form has been executed. Control is returned to
the calling point before the entire sequence has been executed if the RETURN statement is

used.
The format of the RETURN statement is:
RETURN $

The use of a GOTO statement allows exit to another point in the main program. When an
exit is made from a function to a global statement label or switch by a GOTO statement, con-
trol is immediately returned to the main program at the point specified by the GOTO and the
value of the function is not returned. In an exit from a procedure, the simple or sub-
scripted items in the actual output parameter list are assigned the current value of the
corresponding formal parameters only if the GOTO specifies a statement label which is
named as one of the formal output parameters. If the GOTO leads directly to a statement

17302500 Rev. 02 7-17

label or switch in the main program, names of the item parameters are assigned to values

calculated by the procedure. Array and table actual parameters always reflect the change

made during the execution of the procedure regardless of the means of exit from the pro-

cedure.

Examples:

7-18

XX(ITA, ITB, CLOSEl. = ITD,
ATAB, LABX.)$
°
[

.
PROC XX(AA, BB, CL1l. = DD,
TABLA, STATX.)$
ITEM AA (item-description)$
ITEM BB (item-description)$
ITEM DD (item-description)$
TABLE TABLA (table-description)$
BEGIN
ITEM TAAI118S $
ITEM TBB118S $
END
BEGIN''XX!'!
.
.

°
DD = AA$
GOTO STATX$

.

.

.

[]
IF TAA(1) LS 0 OR TBB (1)
150§
RETURNS$
[]
[]

[]
IF TAA(1) GR 0

AND TBB(1) GR 0 $
GOTO LC1.

[]

[]

[
IF TAA(1) EQ 0

AND TBB(1) EQ 0 $
GOTO ERRXX $

[]

L]

[}

Call to procedure XX,

Declaration of XX with two simple input
items, one simple output item, an input
CLOSE routine, an output table, and a

statement label as an alternate.

The exit is made here to statement
LABX in the main routine; ITD takes
the current value of DD.

RETURN exits to statement after call
to XX; ATAB and ITD contain current
values of TABLA and DD.

Since LC1 is local to XX, transfer to

L.C1 does not cause an exit,

Exit to ERRXX (statement name in
main routine but not an actual param-
eter) does not set any values for actual

output parameters.

17302500 Rev. 02

LCl1. (continuation of procedure)
.
.

.
END

X1 = FCC(FF, MON.)$
[}
[]
[]

PROC FCC(F1, MNT.)$
ITEM FCCF §
ITEMFLF $

BEGIN
F1=0.%

GOTO MNT §.
[]

[]
IF F1 GR 25.12 $

FCC=F1 §
RETURN $
[J
[
[]
[]

IF F1 LS -1.215 §
GOTO ERRFC $

)

.

.

[
FCC=F18§
END

17302500 Rev. 02

END signals the normal exit from the
procedure; all output parameters are
set to current values, control transfers
to statement after call to XX, If con-
trol flows out the bottom, it will auto-

matically return.

Call to function FCC.

Declaration of FCC

Call to CLOSE MNT executes close
MON declared in main routine. Con-
trol returns to statement after call
to MNT in function FCC,.

RETURN exits to statement calling
FCC. Item F1 is assigned current
value of FCC.

Exit to ERRFC transfers control to
main routine; statement calling FCC

is not executed.

Normal exit from function returns con-
trol to statement calling FCC; F1 is set
to current value of FCC.

COMPOOL 8

A communication pool (COMPOOL) is a dictionary of definitions referenced by the compiler
during a source program compilation. The use of a COMPOOL enables the user to separate
the definition of the system data base from the program in the system, thereby relieving the
user from maintaining the definitions and minimizing the effect on his programs when the
system data base structure changes., To produce a COMPOOL, the compiler interprets
specifications prepared by the user. These specifications (written in JOVIAL syntax) define
two major elements of a JOVIAL programming system. They are:

e A system data base comprised of definitions of data common to more than one
program.

e A program library containing names and parameter descriptions of external

subprograms that can be called by JOVIAL programs and subprograms.

Once a COMPOOL has been created, any program in the system may be compiled using the
definitions contained in the COMPOOL.

COMPOOL SPECIFICATION

A COMPOOL specification uses JOVIAL syntax and is enclosed in START-TERM brackets.
It is similar to a JOVIAL program except that the COMPOOL specification contains only
declarations. The format is:

STARTS$
COMPOOL declarations
TERMS$
where:
COMPOOL declarations = Any number of declarations of common data and/or sub-

program declarations. These can be in any order.

DATA DECLARATION

Data declarations in the COMPOOL specification are organized into one or more common

blocks. All the data declarations can be in one common block or there can be as many

17302500 Rev. 01 8-1

blocks as there are data declarations. The following restrictions apply to data declarations

in a COMPOOL specification:

e Data declarations are specified like any JOVIAL data declarations.

e Anoverlay statement may be used to specify the allocation of previously declared
data within one common block, but data can not be overlaid from one common

block to another.

e Presets may be included with the data declarations. The preset information is,
however, not placed on the same file as the COMPOOL file output (see the sec-
tion on COMPOOL compilation output).

COMMON DECLARATION

If a common block of data has no name, it is called blank common. All unnamed blocks of
common are treated as one block composed of the data in all such blocks. If a block is
named, it must have a JOVIAL name; all blocks having the same name are treated as a

single block.
The format of a common declaration is:

COMMON (block name)$
BEGIN
data declaration(s)
END

SUBPROGRAM DECLARATION

The description within the COMPOOL must define the subprogram name and describe the

parameters.

Since JOVIAL has more than one method of passing parameters, the compiler will perform
type conversion for numeric actual parameters in JOVIAL procedures, and may call non-
JOVIAL procedures. The descriptor of the routine and its parameters must be known at
compile time. If either a JOVIAL procedure which is not compiled in the program that called
it or a non-JOVIAL routine which is not listed in the library table within the compiler is to be

called, the procedure must be described in a COMPOOL used when compiling the calling

program.

8-2 17302500 Rev. 02

The format is:

PROC subprogram name [(formal-parameters)]$

[BEGIN
formal-parameter data-declarations
END]

The following rules apply to subprogram declarations:

The formal parameters for JOVIAL subprograms follow the same rules as in
JOVIAL subprogram compilations.

CLOSE names and statement names in a parameter list are followed by a period.
Array, item, and table names used as formal parameters must be defined in
data declarations within the BEGIN-END brackets following the subprogram
heading.

Function type subprograms are distinguished by an item declaration within the
BEGIN-END brackets with the same name as the subprogram.

Subprograms without parameters need only declare the name of the subprograms.
The parenthesized formal parameter list and the data declarations are not

required.

Subprograms may be non-JOVIAL. The compiler recognizes a non-JOVIAL sub-
program by the absence of data declarations for parameters that were specified
with a subprogram. The compiler generates a calling sequence for non-JOVIAL
subprograms that is different from a JOVIAL subprogram calling sequence.
Parameter passing and calling sequences are described in Section 7 and

Appendix E.

COMPOOL CREATION

Once the data structure, common blocks, and the subprogram specifications have been
coded, they may be submitted for a COMPOOL compilation. The COMPOOL compilation
parameter, A=1fn, on the JOVIAL control card indicates to the compiler that it is to per-
form a COMPOOL compilation. When the A parameter is specified, the C, ¥, M, E, and W
options are meaningless. The outputs of a COMPOOL compilation are:

The binary file containing the COMPOOL. This is the name specified by the
COMPOOL parameter, A=1lfn. It may be any legal seven character SCOPE file
name. It will contain the control information for the data items in the common
blocks and the names of the external subprograms defined in the COMPOOL input.

17302500 Rev. 01 8-3

e The Hollerith file containing listing output. This is the same specified by
L = Ifn. If no name is specified, the default is OUTPUT. The source listings,
diagnostics, storage map, and cross reference appear here if they were re-
quested on the JOVIAL card.

e The binary file containing the presets. This is an optional file. It will not be
created if no presets were specified in the data declarations in the COMPOOL
compilation input. If it is created, it is placed on the file specified by B = lin
on the JOVIAL control card. If no name is specified, the default preset file is
LGO. The entry point name may be specified by N=name, where name is any
six character JOVIAL name. If no entry point name is specified, the default
name is MAINPG. It is the user's responsibility to see that the preset file output

is included with the binary object programs with which it is to be used.

The COMPOOL file and preset file, if produced, should normally be saved so that they may
be used when compiling the programs in the system under development. Placing them as
permanent files will enable several users to access them at once if the multiple read param-
eter is used on the permanent file attach card. Refer to the SCOPE Reference Manual for

instructions on cataloging and attaching a permanent file.

Once a COMPOOL is created, the dictionary of definitions contained in it may be referenced
by the compiler during source program compilation by using the C = COMPOOL f{ile option
on the JOVIAL control card.

COMPOOL REFERENCE

A COMPOOL is required for compiling a source program only if the program references
data or external subprograms which are described in the COMPOOL. The COMPOOL may
be created at the start of the job, or more efficiently, by loading an existing COMPOOL
from tape or attaching a permanent file containing the COMPOOL. Once the job has access
to the COMPOOL, JOVIAL programs using the definitions in COMPOOL may be compiled
by specifying C = COMPOOL--file on the JOVIAL'control card.

During the compilation of a program, the compiler first searches the program for definitions
of names; if they are not defined in the program, the definitions are sought in a COMPOOL
if one is present. If a name still remains undefined, the list of library functions and pro-
cedures within the compiler is checked; if the definition is found in the list, a definition is
created for the name which will reference the corresponding library procedure or function.

Finally, if a name still remains undefined, it is flagged as an undefined element.

8-4 17302500 Rev. 02

If a name is defined both within the program being compiled and within a COMPOOL used
for the compilation, the definition within the program will be used. (Any COMPOOL defi-
nition may be overriden by defining the same name within the program.)

When a name is used within a program but defined within a COMPOOL used during compil-
ation, the compiler will locate the definition within the COMPOOQOL, retrieve it, and then
process it just as if the name had been declared within the program. The only exception to

this is that COMPOOL defined items will be noted in the listing output.

DATA REFERENCE

A reference in a JOVIAL source program to any COMPOOL defined item, array, or table is

processed exactly as if the data element were declared in the program.

SUBPROGRAM REFERENCE

Once an external subprogram, a closed program compiled independently of the calling pro-
gram, or a subprogram is described in a COMPOOL, it may be called by any JOVIAL pro-
gram or subprogram which is compiled using the COMPOOL containing the description of
the external subprogram. The external subprogram may be JOVIAL or any other language,
provided that the subprogram will accept the non-JOVIAL calling sequence described in

Appendix E.

Calls to JOVIAL subprograms for a JOVIAL program are identical in form to procedure
and function calls declared within the main program. But unlike procedures and functions
within the main program, an external subprogram can not reference names in the calling
program. The only communication between a calling program and a subprogram is through

the parameter list and, optionally, data items declared in a COMPOOL.

Calls to non-JOVIAL subprograms are similar to calls to JOVIAL procedures or functions
except that no distinction is made between input and output parameters; the subprograms can

modify the actual parameters passed to it.
The formats for procedure and function calls are:

Procedure call:

procedure name [(actual parameters)] $
Function call:

function name ([actual parameters])

17302500 Rev. 02 8-5

The rules that apply to procedure and function calls are:

° In both cases, the actual parameters can be omitted if there are no formal

parameters in the COMPOOL subprogram declaration.

o The pair of parentheses must follow the function name in the function call even
if there are no actual parameters.

® When actual parameters are specified, they should agree in order, number, and

type with the formal parameter list in the subprogram declaration.
e The list of actual parameters can include one or more of the following:

Simple item, table, or array name; subscripted item name; arithmetic
formula; and a statement or CLOSE name followed by a period. See

Appendix E for calling sequences and linkage conventions.

COMPOOL EXAMPLES

Appendix H contains a sample listing with a COMPOOL containing two common blocks and
two JOVIAL subprograms. Appendix I contains a sample program with a COMPOOL which
has both JOVIAL and non-JOVIAL subprograms.

PROGRAM STRUCTURE

A program is a self-contained unit that can be compiled independently of any other program.
A main program is called at execution time by the operating system. A subprogram is

called by a main program or by another subprogram; when subprograms are called, param-
eters can be passed between main programs and subprograms and between subprograms and

other subprograms.

For a subprogram to be called, the calling routine must be compiled using a COMPOOL in
which the subprogram to be called is described. The resulting object program is combined

with the called subprogram into one segment for execution.

MAIN PROGRAM

A main program consists of all the statements and declarations that make up a program.
It is enclosed by START-TERM brackets. The format is:

STARTS$
declarations and statements
TERM [statement-name] $

8-6 17302500 Rev, 01

If the statement name is included, execution of the program starts with the named state-

ment; if omitted, execution starts with the first executable statement.

SUBPROGRAM

A subprogram, like a main program, consists of declarations and statements enclosed by
START-TERM brackets. The START must be followed immediately by a subprogram
declaration. The format is:

START subprogram-declaration $
declarations and statements
TERM $

A TERM statement label is not legal for subprograms; execution begins with the first execu-

table statement.

The format of a subprogram declaration is identical to that of a procedure declaration.

The format is:

PROC name [([formal-input-parameters] [= formal-output parameters])] $
where:

name = user supplied identifier

are identical to those described under procedure and

formal-input-parameters
function declarations.

formal-output-parameters
Subprograms are compiled separately. Once compiled, a subprogram is called in the same

way a procedure or function is called. A subprogram can contain CLOSE routines, pro-

cedures, and functions just as a main program does.

Examples:
e START 'PROGRAM FOLLOWUP' This is a main program. Tables,
ﬁgci-)l%r%téon list) arrays, and items are declared at the

[beginning of FOLLOWUP. Undeclared
: items will be Boolean.

INT. (data initialization) Data is set to initial values.
.
.
.

IN. (input from external files) Files are read

FIND(AAA, TAB1 = ITT) $ Call to procedure FIND

.

17302500 Rev. 01 8-17

.
[]
EXEC(CCl., ARR1, FF = IT, OUT.)$
[]
.

°

OUT. (output to external files)
.
.

[

FFAL = TIM(A2, B2) $
[]
°

[]

PROC FIND(A1, TT1 = TOTAL) $
L]
.

.
PROC TIM(AA2, BB2) $

.

.

[]
TERM IN $

START $
PROC EXEC(LCO., RAY,
IFT = TT, CONT.) $
BEGIN
(declaration list)

AA. (first statement executed)
°
.

.
GOTO CONT $
.
.
.
END
TERM $

Call to subprogram EXEC.

Output files are written

Statement calls function TIM

Declaration of procedure FIND

Declaration of function TIM.

End of FOLLOWUP; first statement
to be executed is at location IN,

Subprogram EXEC is called from the
main program in Example 1. EXEC can
be compiled at a different time than the
main program, but the description of
EXEC must be in a COMPOOL used to

compile the main program.

Exit to main routine location OUT.

Normal return here.
TERM indicates end of subprogram

17302500 Rev. 01

DEBUGGING AIDS 9

JOVIAL debugging aids provide the user a means of checking for errors in program design.

These aids are:

e The MONITOR statement enables the user to obtain data values during execution
or to perform a program trace.

e The Run-Time Error Monitor terminates program execution where the source
errors were such that the compiler could not make corrections to produce valid

code.

MONITOR STATEMENT

The MONITOR statement can be used to obtain a trace of the program flow or to print the
values of designated variables during execution, It is very effective in checking errors in
program design. It also may be used to provide formatted output for obtaining quick answers

to computational problems.

For MONITOR statements to execute, the M option must be indicated on the JOVIAL control
card. If the M option is not on the JOVIAL control card, all monitor statements are treated
as comments. Thus, the MONITOR cards do not need to be removed from the source deck

to compile and execute the program without monitor output. The format is:

[name.] MONITOR [(Boolean-formula)] name; [{?; namen[.]] $

where:
Boolean-formula = Refer to page 3-4 for a description of a Boolean formula
name . . .
1 _ Ssimple or table items, arrays, statements, switches, CLOSE
namen routines, functions, or procedures,

Monitor statements must conform with the following:

L) A name associated with a statement label, switch, or CLOSE must be followed
by a period.
o At least one name must be specified in the list of names.

e Names to be monitored must be separated by a blank or comma.

17302500 Rev. 01 9-1

A MONITOR declaration of a name is effective from the point of declaration
until the end of the program. It may follow or procede the declaration of the
name. References to a monitored name prior to the MONITOR declaration will

not be monitored.

If a Boolean formula is present in a MONITOR declaration, it will be evaluated
each time the name is monitored. If the formula is false, the MONITOR output

will be suppressed.

A name may appear in more than one MONITOR declaration. If Boolean formulas
are present, the one from the last MONITOR declaration containing the name will

be the one used.

Monitoring will take place when:

Simple items, table items or array items are on the left side of an assignment

statement or on either side of an exchange statement.
Statement labels have program control pass through the statement location.
Switches are called.

Functions, procedures and CLOSE routines begin execution.

MONITOR uses system I/O for output. The form of output is:

Integer items are converted to integer numbers and the octal value is printed.

Fixed-point items are converted to exponential notation, the number of fractional
bits and the octal value of the variable are printed.

Floating-point items are converted to exponential notation and the octal value is

printed.
Hollerith literals are printed as literals.

Transmission code (STC) literals are converted to Hollerith equivalents. If the
literal contains bytes which have no STC value, they will be represented by a

down=-arrow (%), octal 71.
Boolean items print the octal value; FALSE if it is 0 and TRUE if it is 1.

Status items print the integer value of the status constant and the octal equivalent.
That is, if the status constant had 12 status constants and the eleventh constant
was set, it would have a decimal value of ten. The integer value is always one

less than the position of the status constant in the status list.

17302500 Rev. 01

° Table and array items will have their subscript value printed as well as the value

of the item.

[Statement labels, switches, procedures, functions, and CLOSE routines will
have their names printed.

If the monitored output is specified for the same file that the user has assigned as a device
name in a file declaration, the MONITOR output will be interspersed with that of the pro-
gram. This happens when the M option is used by itself and the program has a file assigned
to OUTPUT, or if the M option has the same name as a device name in a file declaration.
If monitored data is to be output separately from the program data, the output can be placed
on a separate file by specifying M = file-name on the JOVIAL control card, where file-name
is the name of a desired SCOPE file and is not a device name in a file declaration. Program-

mer action will be required to print the file,

The use of the M option for monitoring will cause a file environment table (FET) and a
buffer to be produced; OUTPUT is assumed if no file is specified, or is the name specified.
The buffer size will be 129 words unless the program contains a file declaration with the
file name as a device name. In that case, the buffer size specified in the file declaration

will be used.

Care should be taken in using MONITOR because large program traces or looping programs

can result in extensive outputs.

Following is a source program using the MONITOR feature, The program was compiled
using the M option on the JOVIAL control card. The output from MONITOR follows the
program.

17302500 Rev. 01 9-3

1Nd1NO
YOLINOW

WVIOOUd
1DANOS

SYIAWNN 3INIT IDYINOS IHL OL SANOLSINOD

ON30 ON3 = 9SHN ViIVA HII¥ITIOH GIUOLINOW aea 621

N 21 136V G3HOLINOW #ea 621

(E9%T£99T£94TL£994£227)0 = 20430000000000D25T° = (g ‘3) AV YiVO TV3Y OQ3VOLINOR aaa 821
(HTEIHTLINTLGHTENE2LT)0 = TO+3000D000000000€° = (%) 38YL VivO TV3¥ O3¥0LINOW #2s 871
(2500000000000000000000 { € V T0+300000000005485° = -XI4 viv0 INIOd G3XId QJYOLINOW wew 071
$19 3S0T0 Q3YO0LINOR asw Lz1

(£99TEI4TEIHNTLEO9LE2LTI0 = 20+430000000000025T° = (") 38VL ViV0 TV3Y 0340LINOK #xa 921
(20000000000000000000)0 { 2 = ANI VAIVO ¥Y3IOILNI QINOLINOR »a» €71

11 136V O3¥0LINOW aww €21

MS HOLIMS G3IYOLINOW #ws L11

(9TEIHTEONTEIHTEHLSLTIO = T0+300000000000088° = (g ‘r) Ad¥Y ViVO TW3¥ CG3Y0LINOKW ses 911
OW3Q 1¥ViS = 9SH ViIVO HAI¥3TTI0H OG3YOLINOH #ese S11

*+2S3IVSS3IH OJILSONIVIO ON we

$ Ky3dL *1£00

$ (S719927¢17) = MS HOLIMS *0£00

$ (OW3Q GN3IHOT = 9SH °27 *6200

$ ($48)48VL == ($£°T3IAYY *9200

#¢ 17v0 350710 #2 $ S0 0109 *2200
$ L°ST = (3n3)d8Vi *9200

$ Shi°ET = 10 *5200

1073 ¥O4 VINKYOS NV3TI008 39NVHO #2 "$ 1074 (0T D9 INI) NOLINOW *$200
$ L= 1IN °T1 *£200

$ % = INI *2200

ON3 *1200

$ 548°6 = XId *0200

NI938 *6T00

. $ S10 35010 *8100

#2 1V0 HOLIMS 2% $ (308)MS 0409 *4100
$ 4°G + T°2 = (3£°T3)A4V *9100

$ (OW3Q LWVIS)HOT = 9SKW *ST00

#2 AVIVNOILIONOONN YOLINOW #2 $ *27 °MS vaVLl 48VL A¥V 9SW NOLINOW *0100
3NYUL 1008 41 ATINO MOLINOW #2 § XId INI 1074 °*S70 °T1 (1008) HOLINOW *£700
ON3 *2100

$ £ S 8T V vEVL W3LI *1100

$ 3 d8vl W3ll *0700

NI938 *6000

$ S 0T ¥ vl 376VL *8000

$ J £ 5 ANV AvVHAY *41000

$ 3 1013 W3LI *9000

$£S 8T v XIdW3LI *5000

$ S 8T I UNI W3LI *%000

#2 SYOLINOKW TV NO Nani ## $ T d 6 1008 W3LI *£000
$ 0T H 9SW WiLI *2000

3T1dHVX3 YOLINOKW #2 $ idvis *1000

17302500 Rev. 01

9-4

Figure 9-1 shows a sample deck of a program being compiled containing MONITOR state~

ments. The JOVIAL control card used to specify the compilation does not specify the M

option. The MONITOR statements are treated as comments, no debug code is generated,

and no output is produced at execution time.

6789

TERM $ I

1
1
1

LABL. VBL=58$]
~ MONITOR VBL LABL,$

/)
1
ITEM VBLI I8 S]
START $
-~ 789

Leo.

L~ JOVIAL(F, XR)

EX1,CM65000,T77.

Figure 9-1. No MONITOR Specification

17302500 Rev, 01

Figure 9-2 shows a sample deck of a program being compiled that has the M option speci-
fied on the JOVIAL control card. If no file was declared with OUTPUT as a device name,

a FET and 129 word buffer is created for use by MONITOR. This FET and buffer may be
used by PRINT, LIST, and ENDL for output. If they are used, their output will be inter-
spersed with that from MONITOR. If a file declaration did use OUTPUT as a device name,
the buffer size is as specified in the declaration. The MONITOR output is interspersed with

the output from the program to the file using OUTPUT as a device name.

6789

/TERM $

= .
-

L

LABL. VBL=5$ l
MONITOR VBL LABL. $

7~ 789]
L6O.

L~ JOVIAL (F,XR,M)

~ EX2,CM65000,T77.

Figure 9-2. MONITOR to OUTPUT

9-6 17302500 Rev. 01

Figure 9-3 shows a sample deck of a program being compiled using the M = file-name
option specified on the JOVIAL control card. If no file was declared with TEMP as a device
name, a FET and 129 word buffer is created. This may only be used for MONITOR output.
To obtain the output, programmer action is required. It must be rewound and copied to the
output file. If a file was declared with TEMP as a device name, the buffer size is the size
specified in the declaration. The output to the file is interspersed with the MONITOR and
program output.

6789
TERM § l
)
1
i
LABL.VBL=5$ 1
~MONITOR VBL LABL. $
1
]
1
ITEM VBL I I8 § |
START §
7789
(COPBF (TEMP,0UTPUT)

REWIND (TEMP)

ﬂGO.

¢ JOVIAL(FXR,M = TEMP)
EX3, CM 65000,T77.

Figure 9-3. MONITOR to Separate File

17302500 Rev. 01 9-7

RUN-TIME ERROR MONITOR ROUTINE

The Run-Time Error Monitor will be called to terminate program execution if an attempt is
made to execute a section of the program where source errors were of such severity that

the compiler could not generate valid code.

Whenever possible, source errors will not prevent the completion of compilation and an
attempt to execute the program. If the compiler encounters a source error for which it

can take corrective action and produce valid code it will do so. A type W diagnostic message
is issued if this action occurs., If the error encountered is such that corrective action cannot
be taken but the compiler is able to continue compilation, a call to Run-Time Error Monitor
with the parameters for the line and diagnostic numbers is inserted into the code at that

point. A type E diagnostic message is issued if the action occurs.
NOTE

Type E diagnostic message numbers and
their interpretation may be found in
Appendix A.

If during that execution, control of the program does not pass through the bad code, execu-
tion will proceed as if it were not there, If an attempt is made to execute the code which
would have been produced, the Error Monitor routine is called. The number assigned to the
JOVIAL source line by the compiler and the number of the diagnostic message are printed,

and execution is terminated with control returning to the operating system.

Note that an output file must be available, either by declaring a file with device OUTPUT in
the program or using the M option on the control card. If no output device is available when

an Error Monitor is called, an abort will occur.

The dayfile message EXIT will be printed if the Error Monitor is called when an output

device is unavailable.

The capability of compiling programs and executing them even though some statements may
contain errors makes it possible to execute programs up to the point of the error. In the
case of a program which is being tested and expanded, a test on the existing portions of the
program and a diagnostic edit of the portions being added may be done in one compile by

not executing the sections being added.

9-8 17302500 Rev. 01

Example:

Given the statement containing a Hollerith variable, HOL, and an integer variable, INT, on

line 203 of the program, the following action would occur:

e HOL = INT $

***¥ERROR MONITOR CALL
LINE 203 HAD ERROR 109
EXECUTION TERMINATED

17302500 Rev. 01

This statement is not a legal JOVIAL state-
ment and is such that the compiler cannot
correct it or generate valid code. The code

is replaced by a call to the Error Monitor.

If an attempt is made to execute the above
The

error message number and line number are

statement, the error monitor is called.

printed and the program is terminated. The
error number is only printed in this case.
Normal compilation errors result in the

printing of both the number and the message.

JOVIAL CONTROL CARD 10

JOVIAL compilation of a source program is requested by the JOVIAL control card preceding

the source deck.

CARD FORMAT

The control card that calls for the compilation of a JOVIAL source program consists of the
characters JOVIAL optionally followed by a parameter list enclosed in parenthesis. The
card columns following the right parenthesis may be used for comments and are transcribed
to the DAYFILE. If a parameter list is not given, a period must be used to separate the
characters JOVIAL from any comments that appear on the card. Three formats of the
JOVIAL control card are given below:

(JOVIAL(PI, PZ’ vy PIO) Comments

Comments

(JOVIAL, P, Py «o. Py

(]OVIAL. Comments.

PARAMETERS

There are 12 optional parameters that can be specified on the JOVIAL control card, The
parameter list has a free format; the parameters can be specified in any order or even
omitted entirely. The file name, fn, and the deck name which may be used in some of the
parameters, must begin with a letter and must be no longer than seven alphanumeric

characters,

SOURCE INPUT

If the source input parameter is omitted, the JOVIAL source input is assumed to be on
INPUT. Parameters of the form I = COMPILE or I are equivalent and refer to the default
output from UPDATE. If the source is on any other file, a source input parameter of the

following form must be provided:
I=1n
where:

fn = the name of the file containing the input.

17302500 Rev., A 10-1

BINARY OUTPUT

If the binary output parameter is omitted, a relocatable binary file is written on a file named
LGO. Binary output parameters of the form B=LGO or B are equivalent to omitting the
parameter. If B=0 is specified, all binary output is suppressed. For any other output file,

a binary output parameter of the following format must be used:
B =1fn
where:
fn = the file name on which the binary output is to be written.

COMPOOL

If the COMPOOL parameter is omitted, a standard COMPOOL is assumed. Parameters of
the form C=COMPOOL or C are equivalent to omitting the parameter. If the COMPOOL

is on any other file, the format is:
C=1n
where:

fn = the name of the file containing the COMPOOL input.

LIST

If the list parameter is omitted, a normal listing is provided on OUTPUT; this includes the
source language and major diagnostics. Other list options are given below. The format is:

2

fn
where:

£ = one or more of the following:
L = Normal listing, diagnostics follow the source.

D = Interlinear listing, phase 1 diagnostics interlinear with source. Phase 1
will continue until all source has been scanned and diagnostics issued.
(If interlinear diagnostic had not been specified, compilation would be
terminated when 200 phase 1 diagnostic message are issued.)

= Storage map
} Common blocks listing

= Assembler cross-reference table.

10-2 17302500 Rev, A

Q = If neither X nor R is specified, the common blocks listing is not listed.
To override this, use the Q option. The common blocks listing contains
the name, number, and length of each common block (including blank
common, denoted by (BLANK) in the name column).
O = Listing of generated object code. ’
fn = The file name on which the output list is to be written; if fn is omitted, the

listing will be on QUTPUT; if fn = 0 is specified all output except for

diagnostics will be suppressed.

Any combination of the above options can be utilized. Commas are not required to separate

the options although they may be used if desired. To select all the options, use LXRO or

LXRO=fn.

OPTIMIZATION

If the optimization parameter is omitted, global optimization is not performed. An F on the

control card directs that optimization will take place. If it is requested, the optimizer phase

of the compiler is called (before code generation) to:

e Eliminate redundant computation by recognizing common subexpressions.

e Redistribute code by moving invariant computations occuring within loops to

potentially lower frequency regions.

e Substitute values for locally constant variables to increase common subexpres-

sion recognition.

° Reduce the strength of operations where the frequency of execution warrants the

necessary setup cost. This is useful, for example, in the repeated computation

of subscripts involving the induction variable of FOR loops.

e Collect frequency information in order to improve register assignment, and

identify those quantities which have no further logical purpose in the program.

Because of its sophistication, the optimizer is extremely sensitive to both syntax and logical

errors, such as jumps into loops. The optimizer should only be used on programs which

have been thoroughly checked out and are completely free of errors. That is, the optimizer

should be used only when a program is ready to be put on the system for use, and even then

it should be used with caution.

MONITOR

If the monitor parameter is missing, all monitor statements in the program are treated as

comments. The monitor parameter format is:

M= fn

17302500 Rev. A

10-3

where:

fn = the file name on which the monitor output is placed. The monitor forms
M = OUTPUT and M are the same.

The monitor parameter causes a file to be created for monitor output. The file name is fn,
and unless fn is the same as a device name in a file declaration, a 129 word buffer is
specified, It may only be used for monitor output, except that PRINT, LIST, and ENDL
may be used if fn is OUTPUT. If fn is the same as a device name, the buffer size speci-
fied in the declaration is used and program output may be interspersed with the monitor
output. If fn is other than OUTPUT, user action will be required to print the file.

OPTIONAL PRIME

If the optional prime parameter is omitted, MONITOR and LOC are recognized as primitives
with or without a preceding prime. When the prime parameter is specified, they are recog-
nized as primitives only if a preceding prime is present. This option permits the compil-
ation of programs written for compilers that do not have LLOC and MONITOR as primitives,

which permits them to be user-defined names. The format is:

P

COMPOOL ASSEMBLY

When this parameter is used, a COMPOOL assembly is performed rather than a normal
compilation. The file name COMPOOL should not be used. When this parameter is used,

the C,F,M and W options are meaningless. The format is:
A=1fn
where:

fn = the file name on which the COMPOOL assembly will be placed.

TERMINATE COMPILATION

The terminate compilation parameter terminates compilation following the output of all
analysis error messages. No object code, object code listing, cross reference, or storage
map may be produced. With the terminate parameter, the B,X,R,F, W and M options are
meaningless. This option may be used to provide a very fast compilation to check for source

errors. The format is:

T

10-4 17302500 Rev. A

SINGLE STATEMENT SCHEDULING

When this is specified, the object code will be scheduled for maximum system efficiency
only on a statement-by-statement basis rather than over as large a section of program as
possible. Depending on the characteristics of the program, use of this option can degrade
the generated object code. It usually requires more calls to the scheduler, thus increasing

compilation time. The format is:

w

PROGRAM NAME

Absence of this parameter is equivalent to N = MAINPG. The program name parameter is
meaningless in subprogram compilations because the deck name used is the name of the sub-
program entry point. This option provides a deck name for main programs and COMPOOL
agsemblies; when a COMPOOL assembly object deck and a main program deck are being
loaded together, the N option must be used on at least one of them in order to prevent a

duplicate program name. The format is:

N = deck-name

OVERLAY TRANSFER ADDRESS

The overlay transfer address parameter is used to compile programs with a transfer address

for overlays other than (0, 0). The format is:
E

Main programs that provide transfer addresses for overlays other than overlay (0, 0) must
be compiled with this parameter. Subprogram compilations are not affected by the E

parameter.

This parameter must not be used when compiling programs in overlay (0, 0) or JOVIAL main

programs in a nonoverlay environment.

17302500 Rev. 02 10-5

APPENDICES

COMPILER ERROR MESSAGES A

This appendix contains two types of JOVIAL compiler error messages: source diagnostic
messages and termination messages. Source diagnostic messages, which are described
first are issued if errors occur during compilation of the source program. Termination

messages are issued when compilation is terminated prematurely.

SOURCE DIAGNOSTIC MESSAGES

There are three classes of source diagnostic message; each is distinguished by a code letter,
as listed in Table A-1.

TABLE A-1. DIAGNOSTIC MESSAGE CLASSES

Severity Message Error Compiler
Code Class Description Action
w Warning Actual or possible source errors The compiler has attempted correc-
tive action,
E Error Errors which probably cause The compiler replaces statement
generation of unexecutable code. in error by call to run-time error

monitor routine. Partial check-
out of programs is possible.

F Fatal Severe errors that prohibit cre- Processing is terminated after the
ation of object code message is printed on the device
OuTPUT.

When an E type error is encountered in the source, the code for the statement in error
will be removed and replaced with a call to the run-time error monitor routine. The error-
monitor routine prints on device OUTPUT a message indicating that it was called, the source
line number that contained the diagnostic, and the diagnostic number. Execution is then

terminated. The user must insure that a file with device name OUTPUT is available.

The source diagnostic messages are listed in numerical order in Table A-2. Whenever

an underline appears in the message, it will be replaced by a source program name,

No more than 200 error messages will be produced for a single compilation.

17302500 Rev. 02 A-1

TABLE A-2. SOURCE DIAGNOSTIC MESSAGES

Number Severity Message
1 F EXCESSIVE ERRORS IN SOURCE PROGRAM, DIAGNOSTICS
TERMINATED
2 w _IS PRECEDED BY A PRIME. PRIME IGNORED
3 w ILLEGAL LETTER IN FLOATING CONSTANT, *E* ASSUMED
4 w _Is A DUPLICATE IDENTIFIER
5 E AN JLLEGAL LETTER PRECEDES (
6 w LEFT PARENTHESIS MISSING AT START OF LITERAL CONSTANT
7 w [?g%LARATION ACCEPTED THOUGH PRIOR REFERENCES EXIST
8 w FLOATING CONSTANT ENDING IN E IS ILLEGAL
9 W ILLEGAL LETTER IN INTEGER CONSTANT, *E* ASSUMED
10 w FIXED POINT CONSTANT ENDING IN A IS ILLEGAL
1 w INTEGER CONSTANT ENDING INE IS ILLEGAL
12 w PRIME IS USED OUT OF ALLOWABLE CONTEXTS
13 w MAGNITUDE OF EXPONENT EXCEED FLOATING POINT
LIMITS
14 w ILLEGAL CHARACTER FOUND IN OCTAL CONSTANT
15 w IMPROPERLY FORMED LITERAL CONSTANT TRUNCATED AT
SIZE SPECIFIED
16 W ILLEGAL STATUS CONSTANT NAME
17 w ILLEGAL JOVIAL SOURCE CHARACTER IS IGNORED
18 F NESTED PROC DECLARATIONS ARE NOT ALLOWED
19 A PROGRAM HAS EXTRA *END*
20 W _IS MISSING A FILE TYPE AND/OR SIZE SPECIFICATION
21 w _IS MISSING RECORD DESCRIPTION INFORMATION
22 w _HAS AN ILLEGAL STATUS LIST DECLARATION
23 w ARRAY/TABLE SPECIFIES MORE ENTRIES THAN COMPILER

LIMIT ALLOWS
(Continued)

17302500 Rev. 01

17302500 Rev. 01

TABLE A-2. SOURCE DIAGNOSTIC MESSAGES (Cont'd)
Number Severity Message

24 w ILLEGAL TABLE DECLARATION HEADER

25 w BEGIN IS EXPECTED FOLLOWING TABLE DECLARATION
HEADER

26 w TOO MANY DIMENSIONS SPECIFIED FOR ARRAY

27 w DIMENSION LIST MISSING OR INCORRECTLY SPECIFIED FOR
ARRAY

28 E _ILLEGAL OCCURRENCE OF LABEL

29 w _DECLARES MORE STATUS CONSTANTS THAN SIZE SPECIFI-
CATION ALLOWS

30 w _CANNOT BE DECLARED IMPLICITLY WITH A STATUS CON-
STANT

31 w PROC DECLARATION LACKS NAME

32 w ITEM DECLARATION LACKS NAME

33 w ARRAY DECLARATION LACKS NAME

34 w FILE DECLARATION LACKS NAME

35 w SWITCH DECLARATION LACKS NAME

3% w CLOSE DECLARATION LACKS NAME

37 w PROGRAM DECLARATION LACKS NAME

38 w DEFINE DIRECTIVE LACKS NAME

39 A TABLE DECLARATION TERMINATED ABNORMALLY

40 w STATEMENT HAS MISSING DOLLAR SIGN

41 F PROGRAM HAS MISSING ENDS

42 F PROGRAM WAS NOT COMPLETED ON A MAIN SCOPE

43 w _EXCEEDS MAXIMUM BIT SIZE ALLOWED FOR UNSIGNED
VARIABLE

44 w ILLEGAL LETTER IN FIXED CONSTANT. *A* ASSUMED

45 E __MUST HAVE SUBSCRIPTS ATTACHED WHEN REFERENCED

46 E _IS A SIMPLE ITEM AND SHOULD NOT BE SUBSCRIPTED

(Continued)

TABLE A-2. SOURCE DIAGNOSTIC MESSAGES (Cont'd)

Number Severity Message

47 E TOO MANY RIGHT PARENTHESES IN A BOOLEAN FORMULA

48 E PARENTHESES DO NOT MATCH IN BOOLEAN FORMULA

49 w ONLY EQ OR NQ ARE LEGAL IN A HOLLERITH RELATION
FORMULA

50 E _HAS AN INCORRECT NUMBER OF SUBSCRIPTS ATTACHED

51 w NAME STRING IS LONGER THAN COMPILER LIMIT

52 w LITERAL CONSTANT LONGER THAN SPECIFIED LIMIT

53 w EXCEEDS MAXIMUM BYTE SIZE ALLOWED FOR LITERAL VARI-
ABLE

54 w _EXCEEDS MAXIMUM BIT SIZE ALLOWED FOR SIGNED VARI-
ABLE

55 A _EXCEEDS MAXIMUM SCALING FACTOR ALLOWED FOR FIXED
VARIABLES

56 E _ISAN INCORRECT USAGE OF NAME IN GOTO STATEMENT

57 E _Is UNDEFINED OR INACCESSIBLE FROM POINT OF GOTO

58 E _SHOULD NOT BE SUBSCRIPTED WHEN CALLED OR REFERENCED

59 E _ISACALL ON AN UNDEFINED SWITCH

60 E EXTRANEOUS DATA FOLLOWS A LEGAL DECLARATION

61 E _SHOWLD BE SUBSCRIPTED WHEN CALLED OR REFERENCED

62 w _ISAN UNDEFINED OR INACCESSIBLE SWITCH POINT

63 w _TREATED AS IDENTIFIER AND NOT AS A RESERVED WORD

64 w CONSTANT IS NOT COMPATIBLE WITH TYPE OF ITEM SWITCH

65 E _IS AN ILLEGALLY REFERENCED STATUS CONSTANT

66 w _COMMA ASSUMED FOLLOWING SUBSCRIPT COMPONENT

67 W) OR $) MISSING

68 E ERROR IN *ENTRY* FUNCTIONAL MODIFIER

69 w _Is ALREADY ACTIVE AS A LOOP VARIABLE

(Continued)

17302500 Rev. 01

TABLE A-2, SOURCE DIAGNOSTIC MESSAGES (Cont'd)

Number Severity Message

70 E NO OPERAND SPECIFIED IN /O STATEMENT

71 E STATUS CONSTANT ILLEGAL AS OPERAND IN I/ O STATEMENT

72 E CONSTANTS ARE NOT LEGAL IN INPUT /O STATEMENTS

73 W _IS MISSING A FILE STATUS LIST

74 w _IS MISSING A DEVICE NAME SPECIFICATION

75 w OCTAL CONSTANT TERMINATED BY A DOLLAR SIGN

76 w ILLEGAL CHARACTER PRESENT IN LITERAL CONSTANT

77 w) ACCEPTED FOR $) OR (FOR ($

78 w MISSING) OR (ASSUMED TO BE PRESENT

79 w _IS NOT AN ITEM IN A TABLE

80 w _IS AN ILLEGAL NAME IN AN OVERLAY STATEMENT

81 w _PREVIOUS INDIRECT USE OF NAME AS A PATTERN TABLE NOT
ACCEPTED

82 w _IS IMPROPERLY REFERENCED WITHIN A SWITCH LIST

83 w _CAUSES A LOGICAL INCONSISTENCY TO EXIST IN OVER-
TAY STATEMENT

84 w IS REFERENCED ILLEGALLY IN SUBORDINATE OVERLAY
STATEMENT

85 w COMMENT WAS TERMINATED BY A DOLLAR SIGN

86 w PROGRAM IS MISSING A TERM STATEMENT

87 w INTERNAL OVERLAY TABLE OVERFLOW. OVERLAYS NO
LONGER PROCESSED

88 w TOO MANY OCTAL DIGITS IN OCTAL CONSTANT

89 w I-TYPE SPECIFIED SHOULD BE A-TYPE FOR ITEM_

90 w __ UNDEFINED OR NON-GLOBAL LABEL ON TERM STATEMENT
TG NORED

91 w E IOR'SJ VALUE SHOULD BE SMALLEST IN RANGE INFORMATION

(Continued)

17302500 Rev. 01 A-5

TABLE A-2, SOURCE DIAGNOSTIC MESSAGES (Cont'd)
Number Severity Message
92 A COMPLEX STATEMENT MAY NOT FOLLOW AN IF CLAUSE
93 w COMPLEX STATEMENT MAY NOT FOLLOW AN [FEITH
CLAUSE
94 w ‘COMPLEX STATEMENT MAY NOT FOLLOW AN ORIF CLAUSE
95 w STATUS CONSTANT IS NOT TERMINATED BY)
96 w V OR R SPECIFIER IS MISSING FROM TABLE DECLARATION
97 w NUMBER OF ENTRIES IS MISSING FROM TABLE DECLARATION
98 w _IS LACKING A SIZE SPECIFICATION
99 \ _IS MISSING AN S OR U SPECIFICATION
100 E NON-STATUS CONSTANT USED IN STATUS ASSIGNMENT
STATEMENT
101 w SPECIFIES A WORD/ENTRY LARGER THAN ENTRY SIZE OF
TABLE
102 A _SPECIFIES AN IMPOSSIBLE FIRST BIT
103 \ _IS MISSING A FIRST BIT SPECIFICATION
104 A _IS MISSING BEAD AND FREQ UENCY INFORMATION
105 i _SPECIFIES A WORD/ENTRY GREATER THAN COMPILER
MAXIMUM LIMIT
106 W TABLE SPECIFIES MORE WORDS/ENTRY THAN COMPILER
LIMIT ALLOWS i
107 w _CANNOT BE EXPANDED. CURRENT DEFINE SOURCE WOULD
BE LARGER THAN SPACE AVAILABLE
108 w DECLARATION IS MISSING A TYPE SPECIFICATION
109 E ILLEGAL STATEMENT
110 w PROGRAM IS MISSING A START STATEMENT
m w ILLEGAL SOURCE IGNORED WITHIN TABLE DECLARATION
112 w IMPROPER FOR CLAUSE
113 E LOOP VARIABLE NOT FOUND FOLLOWING PRIMITIVE *FOR*
114 A COMPLEX STATEMENT MAY NOT FOLLOW A FOR CLAUSE
(Continued)
A-6 17302500 Rev. 01

TABLE A-2. SOURCE DIAGNOSTIC MESSAGES (Cont'd)

Number Severity Message

115 w BEGIN NOT FOUND FOLLOWING PROC DECLARATION

116 E IS A NON-ACTIVE LOOP VARIABLE AND IS REFERENCED
ILLEGALLY

17 \ _DEFINE NAME NOT EXPANDED. MISSING DEFINE STRING

118 E STOP STATEMENT REFERENCES UNDEFINED OR INACCESSIBLE
LABEL_

19 W A NON-MONITORABLE NAME

120 W SPECIAL COMPOUND MAY NOT BE USED WITH A 1-FACTOR
FOR CLAUSE

121 E TEST STATEMENT EXISTS OUTSIDE OF A LOOP STATEMENT

122 E TEST STATEMENT REFERENCES NON-ACTIVE LOOP VARIABLE

123 A NAME IS MISSING OR TOO SHORT FOR LIKE TABLE

124 E _MUST HAVE ACTUAL PARAMETERS ATTACHED WHEN BEING
CALLED

125 E ORIF CLAUSE NOT PRECEDED BY AN I[FEITH CLAUSE

126 w _ACCEPTED AS FUNCTION REFERENCE THOUGH PARENTHESES
ARE MISSING

127 Not Used

128 E _WAS NOT DECLARED AS HAVING PARAMETERS

129 E ILLEGAL OCCURRENCE OF START STATEMENT IGNORED

130 E _CALLED WITH WRONG NUMBER OF INPUT OR OUTPUT

: PARAMETERS

131 E _HAS ACTUAL PARAMETER NOT COMPATIBLE WITH FORMAL
PARAMETER

132 W SOURCE FOLLOWING A TERM STATEMENT IS IGNORED

133 W ILLEGAL OCCURRENCE OF *RETURN* TREATED AS A *STOP*

134 w DECLARATION MISSING DOLLAR SIGN, PRESETS IGNORED

135 w REFERENCE TO NULL STATUS CONSTANT NAME DELETED

136 E ILLEGAL CONSTANT IN LITERAL RELATIONAL EXPRESSION

(Continued)

17302500 Rev. 01 A-7

TABLE A-2. SOURCE DIAGNOSTIC MESSAGES (Cont'd)
Number Severity Message

137 E _OCCURRENCE OF UNDEFINED NAME DELETED

138 E _STATUS CONSTANT IS NOT LEGAL AS AN ACTUAL
PARAMETER

139 E FUNCTIONAL MODIFIER CONSTANT ILLEGAL AS OUTPUT
PARAMETER

140 E ENTRY FUNCTIONAL MODIFIER ILLEGAL AS AN ACTUAL
PARAMETER

141 w A SEPARATOR IS MISSING FROM FORMAL PARAMETER LIST

142 w ILLEGAL FORMAL PARAMETER LIST IS SPECIFIED

143 w AN ERROR EXISTS IN THE MONITOR STATEMENT

144 E CONSTANT USED AS LEFT SIDE VARIABLE IN EXCHANGE
STATEMENT

145 E EXCHANGE STATEMENT HAS INCOMPATIBLE LEFT AND RIGHT
SIDES

146 E EXCHANGE STATEMENT HAS AN ILLEGAL RIGHT SIDE

147 E INTEGER FORMULA MAY NOT BE COMPARED WITH A LITERAL
FORMULA

148 E _HAS AN UNDECLARED F ORMAL PARAMETER ILLEGAL CALL

149 Not Used

150 w DEFINE STRING TOO LONG--NOT ACCEPTED

151 w RESULT FRACTION SIZE EXCEEDS 48 BITS FOR DIVISION/
MULTIPLICATION

152 w MUST BE EXPLICITLY DECLARED BEFORE ITS USE AS A FORMAL
PARAMETER

153 w START $ REQUIRED FOLLOWING STAND ALONE CLOSE
COMPILATION

154 W LABEL FOLLOWING TERM LEGAL ONLY IN MAIN PROGRAMS

155 w _HAS AN IMPROPERLY FORMED PRESET CONSTANT LIST:
PRESETS IGNORED

156 W TOO MANY PRESET VALUES STATED FOR A ROW OF ARRAY _

{Continued)

17302500 Rev. 01

TABLE A-2. SOURCE DIAGNOSTIC MESSAGES (Cont'd)

Number Severity Message

157 w MORE PRESETS THAN POSSIBLE STATED FOR ITEM _

158 w PRESET VALUE MISSING OR NON-RECOGNIZABLE FOR
ITEM

159 w UNDECLARED STATUS CONSTANT USED AS PRESET VALUE
FOR

160 w PRESET VALUE IS INCOMPATIBLE WITH TYPE OF ITEM _

161 w OCTAL CONSTANT BIGGER THAN WORD NOT A LEGAL PRE-
SET FOR_

162 W PRESET PROCESSING TERMINATED, {LLEGAL INPUT FOR
ITEM_

163 E LITERAL CONSTANTS OF LENGTH ZERO ARE ILLEGAL

164 E AN OCTAL CONSTANT OF ZERO LENGTH IS ILLEGAL

165 W _PRESET IGNORED. ARRAY, TABLE ITEM FORMAL PARAM-
ETERS NOT PRESET

166 \ _ACCEPTED AS AN INDEX SWITCH ALTHOUGH DECLARATION
ERRORS EXISTS

167 W ACCEPTED AS AN ITEM SWITCH ALTHOUGH DECLARATION
ERROR EXISTS

168 E _CANNOT BE USED WITH THE NWDSEN FUNCTIONAL
MODIFIER

169 E _MUST BE A FILE NAME IF USED WITH THE POS FUNCTIONAL
MODIFIER

170 E _CANNOT BE USED WITH THE NENT FUNCTIONAL MODIFIER

171 E CHAR AND MANT MAY ONLY BE APPLIED TO FLOATING
VARIABLES

172 E THE ODD MODIFIER MAY NOT BE APPLIED TO FLOATING
VARIABLES

173 E FUNCTIONAL MODIFIER APPLIED TO AN ILLEGAL TYPE
VARIABLE

174 E FUNCTIONAL MODIFIER ON LEFT SIDE IS NOT A VARIABLE

175 E ILLEGAL OCCURRENCE OF BIT/BYTE DELETED

(Continued)

17302500 Rev. 01 A-9

TABLE A-2, SOURCE DIAGNOSTIC MESSAGES (Cont'd)

Number Severity Message

176 E _ILLEGAL OCCURRENCE OF RESERVED WORD DELETED

177 E ILLEGAL OCCURRENCE OF ENTRY VARIABLE

178 w _IS NOT DECLARED WITHIN THE SCOPE OF THE MONITOR
STATEMENT

179 Not Used

180 w _IS MISSING AN ASSOCIATED STATUS CONSTANT LIST

181 w _IS MISSING BOTH A SIZE AND A SIGN DECLARATION

182 E CONSTANT TYPE IS ILLEGAL FOR ASSIGNMENT TO LITERAL
VARIABLE

183 w PARENTHESES WERE FOUND TO BE NON-MATCHING IN
STATEMENT

184 w BRACKETS WERE FOUND TO BE NON-MATCHING IN STATE-
MENT

185 w CONSTANT BEING ASSIGNED TO ENTRY VARIABLE IS NOT
ZERO

186 w CONSTANT BEING ASSIGNED TO BOOLEAN VARIABLE IS
NOT ZERO OR ONE

187 E _IS AN UNDEFINED OR INACCESSIBLE LABEL OR PROGRAM
NAME

188 w TWO FACTOR FOR CLAUSE NOT LEGAL PRECEDING A COM-
PLETE CLAUSE

189 w ONLY ONE COMPLETE FOR CLAUSE IS LEGAL IN A COM-
PLETE LOOP STATEMENT

190 w EXTRANEOUS SOURCE NOT PROCEEDED FOLLOWING LEGAL
STATEMENT

191 w _DOES NOT HAVE A TYPE SPECIFICATION

192 w BEGIN MUST IMMEDIATELY FOLLOW DECLARATION FOR THE
CLOSE_

193 w STRING DECLARATION IS NOT WITHIN A DEFINED ENTRY
TABLE DECLARATION

194 E GOTO IS NOT FOLLOWED BY A LEGAL IDENTIFIER

(Continued)

A-10 17302500 Rev. 01

TABLE A-2. SOURCE DIAGNOSTIC MESSAGES (Cont'd)
Number Severity Message

195 Not Used

196 W RESERVED WORD OVERLAY IS NOT FOLLOWED BY A LEGAL
NAME

197 W AN ERROR EXISTS IN THE OVERLAY STATEMENT

198 w AN ERROR EXISTS IN THE INDEX SWITCH LIST OF _

199 w AN ERROR EXISTS IN THE ITEM SWITCH LIST OF _

200 w CONSTANT BEING ASSIGNED TO ENTRY VARIABLE IS NOT A
ZERO

201 w ONLY EQ OR NQ ARE LEGAL N AN ENTRY RELATIONAL
FORMULA

202 w CONSTANT USED AS A BOOLEAN FORMULA IS ILLEGAL

203 E _UNDEFINED LABEL OR CLOSE NAME IN ACTUAL PARAMETER
LIST

204 w ILLEGAL SINGLE LETTER WITHIN DECLARATION IGNORED

205 E UNRECOGNIZABLE SOURCE OR PARTIAL STATEMENT

206 W _IS DECLARED WITH AN ORDINARY ITEM DECLARATION IN A
DEFINED ENT

207 w ALL OF THE REQUIRED STRING SPECIFIERS ARE MISSING FOR_

208 w _HAS A FREQUENCY VALUE THAT EXCEEDS COMPILER LIMIT

209 \ _HAS A BEADS/WORD VALUE THAT EXCEEDS COMPILER LIMIT

210 w _ALREADY APPEARS AS A FORMAL PARAMETER TO THIS PRO-
CEDURE/FUNCTION

211 _CANNOT BE CONTAINED IN A SINGLE WORD AS DECLARED

212 w _IS DECLARED WITH AN IMPOSSIBLE BEAD/WORD SPECIFI-
CATION

213 W _MUST BE DECLARED WITH A FIRST BIT FALLING ON A BYTE
BOUNDARY

214 Not Used

215 E _IS AN IMPROPER USE OF A TABLE NAME

17302500 Rev, 01

(Continued)

TABLE A-2. SOURCE DIAGNOSTIC MESSAGES (Cont'd)
Number Severity Message

216 E _IS AN IMPROPER USE OF A FILE NAME

217 Not Used

218 Not Used

219 Not Used

220 E TOO MANY INDICES FOR BIT/BYTE MODIFIER

221 w PACKING SPECIFICATION IGNORED FOR DEFINED ENTRY
TABLE

222 w ILLEGAL SCALING SPECIFIED FOR FIXED POINT CONSTANT

223 Not Used

224 Not Used

225 w _LOOP VARIABLE REFERENCE IN COMPOOL DELETED

226 w _LABEL DEFINITION IN COMPOOL DELETED

227 w _IDENTIFIER REFERENCE IN COMPOOL DELETED

228 w ILLEGAL SYMBOL IN COMPOOL DELETED

229 w ILLEGAL SOURCE IN COMPOOL DELETED

230 E ILLEGAL STATEMENT

231 w DECLARATIVE STATEMENT NOT LEGAL OUTSIDE OF COMMON
BLOCK

232 w 1B‘lEgll\lN* EXPECTED FOLLOWING A COMMON BLOCK DECLARA-

233 w _CONFLICTS WITH PREVIOUS DECLARATION FOR THIS NAME

234 w _COMMON BLOCK TERMINATED TO PREVENT NESTING OF
COMMON BLOCKS

235 w LABEL TOO LONG

236 \i LABEL NOT TERMINATED BY BLANK

237 w DUPLICATE LABEL _

238 w OPERATION CODE ERROR

(Continued)

17302500 Rev. 01

TABLE A-2, SOURCE DIAGNOSTIC MESSAGES (Cont'd)

Number Severity Message
239 w ERROR***CARD IGNORED
240 w VARIABLE FIELD ERROR
241 w MISSING $
242 w ASSIGN STATEMENT SYNTAX ERROR

TERMINATION MESSAGES

A termination message is issued when certain source conditions will cause compilation to be
terminated prematurely. This termination will be indicated by a message of the form:

COMPILATION TERMINATION NO. number: message

The number consists of three or four digits, The first two digits indicates the phase during
which compilation occurred. The last two digits are assigned uniquely within each phase.
The first or first two digits are assigned as follows:
0 Cradle and initialization
1 JOVIAL analyzer, pass 1, and COMPOOL assembler
2 Allocator, COMPOOL resolver, and editor
3 JOVIAL analyzer, pass 2
4 Diagnostic processor
5 Global optimizer, pass 1
6 Global optimizer, pass 2
7 Code generator
8 Scheduler
9 Editor
10 Map
11 Cross-reference
Except for the messages indicating that a user correction can be made, all compiler abort

messages should be reported to CDC as they indicate a compiler malfunction. Table A-3

lists the termination messages in numerical order.

17302500 Rev. 01 A-13

TABLE A-3. TERMINATION

MESSAGES

Number

Message

Explanation

5
6
100
101
102

110
120
150

290

298

299

300

302

303

310
330

340
341
342
343

344

FIND LOOP
SYMBOL TABLE OVERFLOW
MALFORMED SY NTAX TABLES

LEFT END OF C.S. REACHED ILLEGALLY

CONSTRUCT STRING OVERFLOW

PTPSET TABLE OVERFLOW
F.A.T. OVERFLOW FOR PRESETS

NUMBER OF PROCS/FUNCS EXCEEDS
COMPILER LIMIT

TOO MANY NAMES IN COMPOOL —
COMPILATION ABORTED

REQUESTED BLOCK IS GREATER THAN
MAXIMUM BLOCK NUMBER IN THE
COMPOOL FILE

COMPOOL RESOLVER REQUEST FOR
BLOCK FROM COMPOOL FILE OUT
OF SEQUENCE

MALFORMED SYNTAX TABLES
CONSTRUCT STRING OVERFLOW
UNEXPECTED EOF ON CONSTRUCT
STRING

IL F,A.T. OVERFLOW

PROC/FUNC/CLOSE NESTING LIMIT
EXCEEDED

SAVE CONTROL TABLE OVERFLOW
WDT TABLE OVERFLOW
SPURIOUS ENDSAV REQUESTED

RESTR, OSAV FOR NON-EXISTENT SAVE

BUFFER
RESTR OF A CURRENT SAVE LIST

(Continued)

Resubmit with larger field length.

Symbols in statement probably exceeds
compiler limit

Too many preset arrays.

Probable malformed COMPOOL file.

Probable malformed COMPOOL file.

Symbols in statement probably exceed
compiler limit.

Probable system |/O ERROR; resubmit,
if recurs continually, notify CDC.

17302500 Rev.

02

TABLE A-3. TERMINATION MESSAGES (Cont'd)

Number

Message

Explanation

350

351
352
355
356
400
501
502

503

504

505
506

507

608
609
610
611

612

700
701
702

703

ALTERNATIVE STATEMENTS NESTED
TOO DEEPLY

IF/ORIF FALSE LABEL STACK OVERFLOW
SUBSCRIPTS TOO DEEPLY NESTED

FUNC CALLS NESTED TOO DEEPLY }
GENERATED LABEL STACK OVERFLOW
TOO MANY SOURCE DIAGNOSTICS
OPT1 - OPERAND STACK OVERFLOW

OPT1 - OPERAND STACK UNDERFLOW -
COMPILER ERROR

OPT1 - ILLEGAL IL OPERATOR ~ COM-
PILER ERROR

OPT1 - RESIDUE LOOPS AT PROCEDURE
TERMINATION

OPTI1 - LOOP STACK OVERFLOW

OPT! - LOOP ENTRY NOT PQSTED -
UNABLE TO CLOSE LOOP

OPT1 - LOOP STACK UNDERFLOW -
COMPILER ERROR

OPT2 - NAME STACK OVERFLOW
OPT2 - PROC CALL STACK OVERFLOW
OPT2 - LIST STACK OVERFLOW

OPT2 - INDUCTION VARIABLE STACK
OVERFLOW

OPT2 - WINDOW OVERFLOW =~ ALL IL
SPILLED OPTIMIZATION DISCONTINUED

FILTRD ROUTINE FALL-THRU
STACK UNDERFLOW
UNEXPECTED END-OF-FILE
ILLEGAL IL SEEN

(Continued)

17302500 Rev. 01

Reduce Nesting

Reduce nesting by use of temporary vari-
able to hold intermediate result.

Correct and resubmit,

Statement in program is too complex.

Statement in program too complex.

TABLE A-3, TERMINATION MESSAGES (Cont'd)

Number Message Explanation
704 STACK OVERFLOW
705 TRIAD TABLE OVERFLOW
706 STACK NON-EMPTY AT BREAKPOINT
707 BAD SWITCH STATE iINDEX
708 ZERO-DIVIDE ATTEMPT
709 NON-=-EXISTENT VALU DELETION
ATTEMPT
710 NON-EXISTENT VALU RETRIEVAL
ATTEMPT
71 LOOP STACK OVERFLOW
712 LOOP STACK UNDERFLOW
713 ILLEGAL ERROR MESSAGE NUMBER
714 ILLEGAL LEFT SIDE
715 VALB OF LOCALLY SAVED VALUE
716 STACK HISTORY OVERFLOW
717 INFINITE OPERAND
718 ZERO STACK PTR
719 INDEFINITE OPERAND
720 FILE STATUS VALUE OUT OF RANGE The file status value is greater than
three, recompile with correct status
value.
721 CONSTANT VALUE FILE RELATIONAL
722 PARM STACK NON-EMPTY
723 PARM STACK OVERFLOW
724 PARM STACK UNDERFLOW
802 ILLEGAL ICF OPCODE
803 ILLEGAL SEQUENCE TERMINATING
OPCODE

(Continued)

A-16 17302500 Rev. 01

TABLE A-3. TERMINATION MESSAGES (Cont'd)

Number Message Explanation
804 REPL OR LOAD HAS ICF POINTER FOR Which does not point to SUBS or OFFS.
OPNI1
805 TEMP CANNOT BE FOUND FOR ICF
VALUE
806 NO PTRM IN ICF
850 ICFT FULL The Scheduler has attempted to schedule
too large a block of code. Use the
single statement scheduling parameter
(W) or reduce the size of block, and
place a dummy label in the block with
a GOTO dfter the STOP.
851 LOST COMPUTATION
852 EMPTY READY SET
900 NUMBER OF COMMON BLOCKS

EXCEEDS SYSTEM LIMIT OF 61

17302500 Rev. A

SAMPLE DECK SETUPS B

This appendix contains sample deck setups for ordinary compilations. Sample programs for

COMPOOL compilations are shown in Appendixes H and L.

are shown in Section 9. Appendix M gives examples of overlays.

Monitor compilation examples

This example (Figure B-1) is compiled with the source, object code, cross reference, and

storage map listings, and binary output is placed on the default file LGO; program execution

is accomplished with data from file INPUT. Optimization has not been specified.

ﬁas (EOF)

DATA
CARDS

1
1
1
789 (EOR) 1
]
// -
1
789 (EOR) |
JOVIAL
souace{ ZLso.
RDS JOVIAL (XOR)
@PL 1,CM65000;T 777.

Figure B-1.

17302500 Rev. A

Compile And Execute With INPUT File

This example (Figure B-2) is compiled with a syntax check from a program maintained on
an UPDATE program library. Correction cards are input to UPDATE to produce the desired
COMPILE file, which is then used as the input to the JOVIAL compiler.

6789 (EOF) I

—
—1

789 (EOR) |
UPDA
CORRTEET,ON{ _/JOVIALLT=COMPILE, T)
CARDS UPDATE (Q)

~//REQUEST (OLDPL)
SAMPL 2, CME5000;T77, TPI.

Figure B-2. Syntax Check Program Library Corrections

This example (Figure B-3) is compiled with source, storage map, and cross reference
listings, and binary output is placed in file SVE, with entry point SUM. Optimization has not

(6789 (EOF)

been specified.

1
1
789 (EOR) |
-]
" DATA |
CARDS i
789 (EOR)
JOVIAL
souncs—i SVE.
CARDS JOVIALIXR,B=SVE,N=SUM)
SAMPL 3,CM65000,T 77,

Figure B-3. Compile With Binary on SVE

B-2 17302500 Rev. A

This example (Figure B-4) is compiled with optimization specified. The object code,
storage map, and cross reference listing is output, but no execution occurs, A binary check
is produced to be saved for later use.

6789 (EOF) |

789 (EOR)

JOVIAL{ _/GOVIAL(XOR,B=PUNCHB)
SOURCE SAMPL4,CM65000,T77.

Figure B-4. Compilation to Produce Binary Deck

17302500 Rev. 01 B-3

COMPILER LIMITATION AND RESTRICTIONS C

This appendix provides a summary of the limitations and restrictions placed upon the pro-
grammer by implementation of the JOVIAL(J3) language. Some of these limitations reflect
system hardware features; others represent restrictions generated by compiler design; still

others were deemed practical and unburdensome limits.

° Constants - The number of characters in a Hollerith or Transmission code
constant is limited to 250; the maximum number of digits in an octal constant
is 500.

L) Data - Fixed point data and constant scale factors can be between -59 and +59.

e Names - There can be 30 signs in any name; the first five characters of
external procedure names must be unique; the first six characters of file device

names must be unique; a defined name can not expand to more than 320 characters.

e Statements - There can be at least 100 symbols in any one statement, the
exact number depends on the complexity of the statement,

. Tables - The number of table entries is limited to 217—1; there can be no

more than 2047 words per table entry and 31 beads per word of a string item.
The first 5800 words of a table can be preset.

e Arrays - Anarray can be 217-1 words. In one source program 25 arrays can

be preset; the first 5800 words of an array can be preset.
° Strings - No defined string may contain more than 250 characters.

e Overlays - The maximum number of names allowed in overlay statements is
2000, minus the number of overlay statements.

e Subscripts - The number of subscripts that may be applied to an array is
limited to seven.

e Nesting - There can be 25 nested BEGIN-END brackets; 50 nested IF state-
ments; 20 nested IFEITH statements; 20 nested function calls; 20 nested sub-

scripts.

17302500 Rev. A C-1

Diagnostics - There can be 200 diagnostic messages produced in any compil=
ation and a total of 200 for the pass two summary. If the D option is specified
on the JOVIAL control card, Phase 1 will continue until all source has been

scanned and diagnostics issued.

The number of local PROCs, CLOSEs, and blocks of direct code per compilation
is limited to 2200.

Symbol table capacity is determined by the user's field length. The larger the
field length, the larger the symbol table.

The storage map table will hold 6000 names. Storage maps and cross reference
listings may not be produced for programs with more than 6000 names.
Common blocks — The maximum number of common blocks for which a cross-
reference or storage map can be generated (X, R, or Q control card options)

is 61.

17302500 Rev. A

HINTS ON COMPILER USE

Listed below are suggestions by which the writer of a source program can utilize the compiler

to produce more efficient code.

. In a defined table, the numeric item declarations are more or less efficient

according to the definitions shown in Table D-1.

efficient code, priority 6 the least.

Priority 1 produces the most

TABLE D-1. EXTRACTING A SOURCE FIELD

Priority Source Type First Bit Number of Bits Instructions Req.
1 S 42 18 Oorl
2 S 0 <60 1
3 s <42 18 2:different unitsT
4 u 60=number of bits <60 2:different units
5 S <60 <60 2:same units
6 u <60 <60 3

 on 6400 computers, the 2 instructions are processed sequentially.

. BIT rather than BYTE should be used where possible; this eliminates the blank

padding.

. EOR loop increments and termination expressions should be invariant throughout

a loop. Where loop direction is unimportant, decrementing down to 0 is more

efficient than incrementing up from 0,

[} The program flow should be essentially straight-line and forward for optimum

processing. Single reference code bodies should be coded in-line rather than

as procedures.

e OVERLAYs hamper scheduling and global optimization.

Global references are more efficient than parameters.

o AND and OR combined relationals are sometimes less efficient than successive

IF statements.

17302500 Rev, 01

Successive negations are not combined.

Where possible, numeric types should match to minimize conversions. Since
multiplications and divisions must be done in floating-point, floating type vari-

ables are probably more efficient in expressions.

Expressions which result in a Boolean value as the right side of an assignment
statement are more efficiently coded as conditionally executed assignment state-

ments.
Better optimization is performed when procedures are compiled with the caller,
Use of functions in long expressions and parameters should be minimized.

Valid switch points should be grouped in the center of the switch; null points on

either end are optimized.

Item sizes should be kept as small as possible; sizes 18 bits or less make better

use of the instruction repertoire and machine capability.

Better code is generated for a conditionally executed block of code than for a

conditional GOTO around a block of code.

Calls to PROCEDURESs and CLOSEs hamper register memory and may, therefore,
cause less efficient code to be generated. Programs with many such calls may
be more efficient if the global optimizer is not used. Besides calls written by

the user the compiler generates calls to JOVIAL library routines for I/O state-
ments, monitoring variables, and for literal moves and compares when at least

one of the literal variables involved crosses a word boundary.

Comparisons between Hollerith and transmission code literals should not be
performed because the variables are padded, as required, with their own types

of blanks before comparison is made.

Multiplication and division containing fixed-point data should be carefully
analyzed as only the rightmost 48 bits of precision are available on any inter-

mediate results.

17302500 Rev. 01

CALLING SEQUENCES AND ERROR TRACING E

The calling sequence used by the JOVIAL compiler for calling procedures and functions not
compiled with the calling programs depends on whether or not the procedure or function is
defined as JOVIAL, All procedures and functions called by a JOVIAL program are assumed
to be JOVIAL routines except in the following cases:

e The routine is a library subprogram (as defined in Appendix G)

° The routine was defined in COMPOOL and contained no parameter declarations.

The calling sequences generated by the JOVIAL compiler for non-JOVIAL routines are com- I
patible with FORTRAN Extended and allow the FORTRAN Extended library traceback to be
used. The parameter list consists of a list of the addresses of the parameters (one address
for each parameter), terminated by a word of zeros. The subprogram is entered via an RJ
instruction. Upon entry, the address of the parameter list is contained in register Al and

the first word in the parameter list is in register X1. Function results will be found in regi-
ster X6. For character functions longer than 10 characters, the address of the result will

be in register X6.

The distinction between input and output parameters is meaningless for non-JOVIAL routines.
The equal sign, used to separate input and output parameters for JOVIAL procedure calls,
should not be used in calls to non-JOVIAL routines. All parameters are passed by name for
non-JOVIAL routine calls. Simple items, array and table names may be used as both input
and output parameters. For single occurrences of array and table items, table entries, and
functional modifiers, the compiler moves the data to a temporary storage location which is
used in the call, and thus, may be used as input parameters only. To use them as output
parameters, the programmer must move them to a simple item, or if possible, to an over-
layed simple item. Overlayed items may be used only in the case of array items, serial

table items which are not packed, or serial table entries. If a move to a simple item is used,

the data must be moved back after the routine call.

If the routine being called is of type JOVIAL, only arrays, tables, and CLOSEs will be passed
in a parameter list. Value parameters are passed by assignment statements before (for
input) and after (for output) the call. These assignment statements will reference the formal
parameters directly. To facilitate this technique, formal value parameters to independent

procedures and functions are given a unique name, based on the procedure name, and defined

17302500 Rev. A E-1

externally. The naming convention consists of the first five characters of the procedure
(function) name followed by a $ and a letter (A-Z) or a number (0-9) depending on the value
parameter position; i.e., name$A for the first formal value parameters, name$B for the
second, etc. The name is extended on the right with $s if it is less than five characters,

For external procedures with label parameters, a data item is created with a name similar
to the above except the 7th character is a §. This item is also externally defined. A return
code is assigned to this item to indicate which return was invoked; 0 for a normal return, 1

for the first label parameter, 2 for the second, etc.

When a JOVIAL procedure or function is called, it is assumed that it is called by a JOVIAL
routine. Therefore, the calling program must conform to the JOVIAL calling conventions
just described. It is possible to call a JOVIAL routine from a FORTRAN Extended program
if all parameters in the JOVIAL formal parameter list are defined as name parameters.

This is accomplished by converting all parameters to arrays and tables. Single value param-
eters passed by FORTRAN Extended should be declared as one-dimensional JOVIAL arrays
of length 1.

In addition to the above conventions, JOVIAL programs protect the contents of A0 across
calls in order to maintain FORTRAN Extended compatibility,

Other differences the programmer calling FORTRAN must be aware of are:
e True and false are represented differently in the two languages; 1 and 0,
respectively, in JOVIAL, -1 and 0 in FORTRAN,

e JOVIAL does not have double precision or complex types.

[} JOVIAL actual parameters are converted to agree with the formal parameters;
parameters to non-JOVIAL routines are not converted since no attributes are
declared for them in COMPOOL,

e JOVIAL subscripts are 0 based; FORTRAN subscripts and the computed GOTO
is 1 based.

e The unary minus has a higher precedence than exponentiation in JOVIAL; the
opposite is true in FORTRAN,

e JOVIAL has no equivalent to the assigned GOTO.

® The rules for DO loops and FOR loops are somewhat different. Refer to the
respective language manuals for the exact differences.

E-2 17302500 Rev. A

CHARACTER SET F
Table F-1 shows the octal and decimal representations of Hollerith (display code) and STC
(transmission code) in cross reference format.
TABLE F-1, CHARACTER SET
Octal Hollerith Trar(a:s:éi:sion Decimal Octal Hollerith Trurg:ci’:sion Decimal
0 40 5) 32
1 A 1 41 6 - 33
2 B 2 42 7 + 34
3 C 3 43 8 35
4 D 4 44 9 = 36
5 E BLK 5 45 + 37
é F A] 46 - 38
7 G B 7 47 * $ 39
10 H C 8 50 / * 40
] 1 D 9 51 ((41
12 J E 10 52) 42
13 K F n 53 $ 43
14 L G 12 54 = 44
15 M H 13 55 BLK 45
16 N ! 14 56 ’ ’ 46
17 (e} J 15 57 . 47
20 P K 16 60 = 0 48
21 Q L 17 61 [1 49
22 R M 18 62] 2 50
23 S N 19 63 : 3 51
24 T o 20 64 # 4 52
25 u P 21 65 — 5 53
26 v Q 22 66 v) 54
27 w R 23 67 A 7 55
30 X S 24 70 } 8 56
31 Y T 25 71 l 9 57
32 z u 2 72 < # 58
33 0 \' 27 73 > 59
34 1 W 28 74 < / 60
35 2 X 29 75 > . 61
36 3 Y 30 76 - 62
37 4 Z 31 77 63
17302500 Rev. A F-1

] Table F-2 shows a cross-reference of Hollerith, octal, card punch (26 and 29), and external

BCD representations.

TABLE F-2. CROSS-REFERENCE REPRESENTATIONS

Card Card | ¢ I Card Card Ext i
Hollerith | Octal | Punch | Punch XBE;BQ Hollerith | Octal | Punch Punch XBZrBG
(26) (29) (26) (29)
A 0l 12-1 12-1 61 7 42 7 7 07
B 02 12-2 | 12-2 62 8 43 8 8 10
C 03 12-3 | 12-3 63 9 44 9 9 11
D 04 12-4 | 12-4 64 + 45 |12 12-8-6 | 60
E 05 12=5 | 12=5 65 - 46 |11 11 40
F 06 12-6 | 12-6 66 * 47 [11-8-4| 11-8-4| 54
G 07 12-7 | 12-7 67 / 50 0-1 0~1 21
H 10 12-8 | 12-8 70 (51 0-8-4| 12-8-5| 34
] 11 12-9 | 12-9 71) 52 | 12-8-4| 11-8-5| 74
J 12 11-1 11=1 41 $ 53 |[11-8-3} 11-8-3| 53
K 13 11-2 | 11-2 42 = 54 8-3 8-6 13
L 14 11-3 | 11-3 43 Blank 55 Space Space | 20
M 15 11-4 | 11-4 44 ’ 56 0-8-3 0-8-3| 33
N 16 11=5 [11=5 45 . 57 |12-8-3| 12-8-3| 73
o 17 11-6 | 11=6 46 = 60 0-8-6 8-3 36
P 20 11-7 | 11-7 47 [61 8-7 8-5 17
Q 21 11-8 | 11-8 50 1 62 0-8-2| 12-8-7| 32
R 22 | 19 | 11=9 51 : 63 | 8-2 8-2 007
3 23 0-2 | 0-2 22 # 64 | 8-4 8-7 141t
T 24 0-3 0-3 23 - 65 0-8-5 0-8-5| 35
u 25 0-4 0-4 24 v 66 | 11-0 11-0 521ft
\ 26 0-5 0-5 25 A 67 0-8-7{ 12 37
w 27 0-6 0-6 26 t 70 | 11-8-5 8-4 55
X 30 0-7 0-7 27 | 71 11=8-6 0-8-7 | 56
Y 3l 0-8 | 0-8 30 < 72 | 12-0 12-0 72t
4 32 0-9 0-9 31 > 73 | 11-8-7 0-8-6 | 57
0 33 0 0 12 < 74 8-5 12-8-4 | 15
1 34 1 1 01 > 75 | 12-8=5 0-8-2| 75
2 35 2 2 02 - 76 | 12-8-6| 11-8-7| 76
3 36 3 3 03 ; 77 | 12-8-7| 11-8-6| 77
4 37 4 4 04 EOL 0000 1632
5 40 5 5 05
6 41 6 6 06 Blank 55 | 6-8 0-8-4 | 16
Display code 00g is not associated with any card punch and cannot be represented on magnetic tape.
Instead, it is converted to BCD 12. On input it is translated to display code 33.
TWritten as 12 on magnetic tape
Tin JOVIAL, the single prime (') is represented by #
111-0 and 11-8-2 are equivalent
11112-0 and 12-8-2 are equivalent
1A 6-8 and 0-8-4 punch is converted to a display code 55 with no diagnostic given.

F-2 17302500 Rev. A

LIBRARY SUBPROGRAMS G

The JOVIAL library consists of pre-compiled FORTRAN and JOVIAL functions and pro-
cedures existing in the system library in relocatable binary format. The portion of the
FORTRAN Extended Library which is available to JOVIAL provides a full set of computational
and exponential routines and object time compatibility between JOVIAL object routines and
FORTRAN Extended. Library subprograms may be shared by JOVIAL object programs, ob-
ject programs from other compilers, or may be peculiar to JOVIAL object programs. This
minimizes the size of the system library. The size of object program loads can be mini-
mized by loading only one set of library routines or when object modules from more than one

compiler are intermixed,

Only those programs described within the library table in the COMPOOL resolver may be
called from JOVIAL. All other subprograms must either be compiled with the program
calling it, or described in a COMPOOL. All library programs (JOVIAL or non-JOVIAL)
use the non-JOVIAL calling sequence described in Section 8 and Appendix E.

The user may override the subprogram names in the library table by declaring a subprogram
with the same name in the program being compiled or in a COMPOOL used by a program

being compiled.

If a source library is required, the subprograms and programs may be placed on an UPDATE
program library. The source library routines are common decks which are inserted in the
program being compiled by means of the *CALL Card. This procedure is described in
detail in the UPDATE Section of the SCOPE Reference Manual. '

The user should be aware that FORTRAN literal
parameters are left-justified within a word and
JOVIAL partial word literals are right justified.
Literal parameters input to FORTRAN routines
should use the format, 10H(), to force left
justification (refer to Appendix E).

FORTRAN LIBRARY FUNCTIONS

Table G-1 lists the FORTRAN library functions which may be called by JOVIAL programs.

17302500 Rev. 01 G-1

TABLE G-1. FORTRAN LIBRARY FUNCTIONS
Function and Number e Symbolic Type of
of Arguments Deflnition Example Name Argument Functior
Absolute value (1) la] YY=ABS(X) ABS Floating Floating
JJ=1ABS(1) IABS Integer Integer
Truncation (1) n:nc (0}2 =[a}ifa=0-[-q] ifg <[0] YY=AINT(X) AINT Floating Floating
where the function represented by | a "
is defined to be the integer i that IFINT(X) INT Floating Integer
satisfies i < a<i+1
Modulo MOD or AMOD (qa,,4a,) is defined to BB=AMOD(A1, A2) AMOD Floating Floating
be a, -trunc(a,,a ')*02
1 17527 72 JE=MOD(IT, 12) MOD Integer Integer
Choosing largest value (22) Max (°I fGoree .) XX=AMAXO0(I, J,K) AMAX0 Integer Floating
AA=AMAXI(X,Y,Z) AMAXI Floating Floating
LL=MAXO0(i, J, K, N) MAX0 Integer Integer
IEMAXI1(A, B) MAXT Floating Integer
Choosing smallest value (22) | Min (a, Gpree .) YY=AMINO(I, J) AMINO Integer Floating
ZZ=AMINI(X,Y) AMIN1 Floating Floating
LL=MINO(I, J,K) MINO Integer Integer
JEMINI(X,Y) MINI Floating Integer
Float (1) Conversion from integer to floating XEFLOAT(I) FLOAT Integer Floating
Fix (1) Conversion from floating to integer IY=IFIX(Y) IFIX Floating Integer
Transfer of sign (2) Sign of a, times laq | ZZ=SIGN(X,Y) SIGN Floating Floating
J=ISIGN(I, 12) ISIGN Integer Integer
Positive difference (2) o - Min(a],az) ZZ=DIM(X,Y) DIM Floating Floating
JE=IDIM(IN, 12) IDIM Integer Integer
Shift (2) Shift a; by a, bit positions: left BB=SHIFT(A, I) SHIFT a;: Single word Octal
circular if a., is positive; right with an: Integer
sign extension if a, is negative 2
Logical product (2) ayp A a, CC=AND(AIl, A2) AND Single word Octal
Logical sum (2) ayvay DD=OR(A1,A2) OR Single word Octal
Complement (1) a BB=COMPL(A) COMPL Single word Octal
Exponential (1) e? ZZ=EXP(Y) EXP Floating Floating
Natural logarithm (1) Ioge(a) ZZ=ALOG(Y) ALOG Floating Floating
Common logarithm (1) Iog.‘o(u) BB=ALOG10(A) ALOG10 Floating Floating
{Continued)

17302500 Rev. 01

TABLE G-1. FORTRAN LIBRARY FUNCTIONS (Cont'd)
Functions and Number . Symbolic Type of
of Arguments Definition Example Name Argument Function
Trigonometric sine (1) sin (a) =S IN(X) SIN Floating Floating
Trigonometric cosine (1) cos (a) XX=COS(Y) Ccos Floating Floating
Hyperbolic tangent (1) tanh (a) BB=TANH(A) TANH Floating Floating
Square root (1) (u)v2 YY=SQRT(X) SQRT Floating Floating
Arctangent (1) arctan (a) YY=ATAN(X) ATAN Floating Floating
Arctangent (2) arctan (01/02) BB=ATAN2(A1,A2) ATAN2 Floating Floating
Arccosine (1) arccos {(a) XX=ACOS(Y) ACOS Floating Floating
Arcsine (1) arcsin (a) XX=ASIN(Y) ASIN Floating Floating
Trigonometric tangent (1) tan (a) YY=TAN(X) TAN Floating Floating
Random number generator (1) | ranf (a) returns values uniformly dis~ XX=RANF(DUM) RANF Dummy Floating
tributed over the range [0, 1)
Address of argument a (1) loc (a) PP=LOCF(X) LOCF Symbolic Integer
(l/O status on buffer unit = -1 unit ready; no error IO=UNIT(6) UNIT Integer Floating
n = 0 EOF on last operation
= +1 parity error
[V{e] Efc;fus on non=buffer = 0 no EOF in previous read IFL=EOF(4) EOF Integer Floating
unit (1
Length (1) Number of central memory words read LL=LENGTH(J) LENGTH Integer heger
on the previous I/ O request for a
particular file
Variable characteristic (1) -1 = indefinite LEN=LEGVAR(V) LEGVAR Floating Integer
+1 = out of range
0 = normal
Purir{ 30am on non-buffer 0 = no parity error on previous read IP=IOCHEC(5) IOCHEC Integer Integer
unit (1
I()ofa as returned by SCOPE date(a) WHEN=DATE(D) DATE Value Returned Hollarifh
1)
Current reading of system time(a) CLTIM=TIME(A) TIME Variable Hollerith
clock as returned by SCOPE
Mm
Time in seconds (1) second (a) (accumulated CP time) CLTM=SECOND(A) SECOND Floating Floating
17302500 Rev. 01 G-3

FORTRAN LIBRARY SUBROUTINES

Table G-2 lists the FORTRAN library subroutines which may be called by JOVIAL programs.

in input data before fatal
termination. Error count
kept in a.

TABLE G-2. FORTRAN LIBRARY SUBROUTINES
Subroutine and N Symbolic Type of
Number of Arguments Definition Example Name Argument
Set Sense Light (1) 1 < i < 6 turn sense light is SLITE(I) SLITE Integer
on, i=0 turn off all sense
lights.
Test Sense Light (2) If sense light i isonj=1. SLITET(!, J) SLITET Integer
If off j = 2 always turn sense
light i off.
Test Sense Switch (2) If sense switch i is down SSWTCH(I, J) SSWTCH Integer
i=1. If sense switch i is
wpi=2.
Terminate (0) Terminate program execution | EXIT EXIT
and return control to the
monitor
Console Comment (1) Place a message of up to 80 REMARK(2HHI) REMARK Hollerith
characters on dayfilef
Console Value (2) Display up to a 10 character DISPLA(2HX=,20.2) | DISPLA a]=Ho||erifh
message and value in the a=floating
dayfilet o integer
Obtain current gener- | ranget (a) RANGET(X) RANGET | Symbolic
ative value of RANF
between 0 and 1 (1)
Initialize generative ranset (a), the generic value | RANSET(X) RANSET Floating
value of RANF (1) is set to the nearest odd
number = a
Dump memory (3-60) dump(a,b,f) DUMP(A, B, 1) DUMP Logical
dump A to B according to f PDUMP(X,Y,0) PDUMP Integer
Floating
Input Checking (2) ERRSET (a,b), set maximum ERRSET(A, B) ERRSET Symbolic
number of errors, b, allowed Integer

T Characters with a display code value above 57 are not allowed. The message must be terminated with
binary zeros if less than 80 characters.

17302500 Rev, 02

JOVIAL LIBRARY PROCEDURES

The JOVIAL library procedures consist of the following routines:

[DECODE

e ENCODE
° HOLSTC
e OVRLOD
° PAUSE (see STOP in Section 4)

e REMQUO

e SEGLOD
e STCHOL
DECODE

DECODE is a procedure designed to decode a Hollerith variable into subfields, while at the

same time perform format conversion.1L The format is:

DECODE(NO, FMT, VBL, FLD,,FLD,,.. .,FLDn) $
where
NO = number of bytes to be converted as specified in FMT
FMT = specifies the conversion format
VBL = defines the variable to be decoded
FLD1
= identifies the fields for storing the decoded output
FLD
n
Example:

[ITEM GAMMA 40H(HEADER 121HEAD, In this example DECODE is called to

0131HEADER 122HEAD 0231) $ decode 18 bytes as specified in the
ITEM FMT2 8H((A10, A8)) $ FMT2 format, and continues decoding
ITEM RRH 10 $ until the entire field list has been pro-
ITEMSS H10$ cessed. After execution, the fields
ITEM TTH10 $ are set to the following values:

ITEM UU H10 §

DECODE(18, FMT2, GAMMA, RR, SS, oz ggﬁDEoﬁ‘ 121
TT, UU) $: D
, TT = HEADER 122
UU = HEAD 02

TI)ECOL)E calls the FORTRAN conversion routine.

17302500 Rev. A G-5

ENCODE

ENCODE is a procedure designed to encode variables into a Hollerith variable, while at the

same time perform format conversion. T The format is:

ENCODE(NO, FMT, VBL, FLD,, FLD2, .. .,FLDn) $

where
NO = number of bytes to be converted as specified in FMT.
FMT = sgpecifies the conversion format
VBL = defines the Hollerith variable to be encoded into
FLDl
= identifies the variables to be encoded into one Hollerith variable.
FLD
n
Example:
° ITEM FMT 15H((A10, A5/A10, A6)) $ In this example ENCODE is called to
ITEM ALPHA H 40 $ encode the specified fields of arrays
ARRAY AA2H10$ AA and BB into literal ALPHA,
BEGIN 10H(ABCDEFGHIJ) Twenty bytes are converted at a time
10H(KLMNO) END as specified in the FMT format. The
ARRAY BB2 H10 $ contents of the arrays will remain
BEGIN 10H(PQRSTUVWXY) unchanged.

10H(Z12345) END
ENCODE (20, FMT, ALPHA, AA($0%),
AA(1), BB(0), BB(1)) $

After execution, the contents of ALPHA is set to the following value:

ALPHA = ABCDEFGHIJKLMNOA A AAAPQRSTUVWXYZ12345AAAA

HOLSTC

The HOLSTC routine converts literal characters from Hollerith to transmission code. The

format is:

HOLSTC(LIT, WDS)$

TENCODE calls the FORTRAN conversion routines.

G-6 17302500 Rev. A

where

LIT = literal name of characters to be converted from Hollerith code to trans-

mission code.

WDS = an integer number that specifies the number of words to be converted.

Full word conversion is performed starting at the location of LIT. Hollerith characters
that are not represented in the transmission code character set are converted to trans-
mission code blanks.

Packed table items and parallel table items cannot be converted successfully.

Example:
e ITEM HOL H 80 $ Eighty byte Hollerith and transmission code
ITEM STC T 80 $ literals which overlay each other
OVERLAY HOL = STC $
FORA=0,1, 638 Sets literals to all possible byte patterns;
BIT ($A%*6, 6$) (HOL) = A3 byte zero, decimal value zero; byte one,
decimal value one;...byte 63, decimal
value 63.

MONITOR HOL $ Monitor as Hollerith variable

HOL = HOL $§

HOLSTC(HOL, 8) $ Calls HOLSTC to convert to transmission
code.

STC = STC $ Monitor as transmission code variable

After execution HOL and STC will have the following monitored output values:

HOL = ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+-%/()$=,.= []:+
VAt i< >s2
STC = ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+-%/()$=,. AAAA¢}
AAAAAAAAAA
NOTE
Hollerith characters with no transmission
code representation are converted to blanks.
OVRLOD

The OVRLOD routines serves as a JOVIAL entry point to the standard OVERLAY routine
in the FORTRAN library. OVERLAY translates the call into a call to the loader. The

format is:

OVRLOD(fn, I, J, p, 1)

17302500 Rev, A G-17

where
fn = variable name of a location which contains the name of the file (left-justified
display code) that contains the overlay
I = primary level of overlay
J = secondary level of overlay

p = recall parameter. If p equals BHRECALL, the overlay is not reloaded if it

is already in memory

1 = load parameter. Used to determine which value of the fn will be used. 1 may
be any value. If 1 is present and non-zero, the overlay designated by fn will
be loaded from the system library; otherwise, it will be loaded from the file

designated by fn.

Numbers used in the OVERLAY card are octal; thus, to call OVERLAY(GARY, 1, 11) the
statement OVRLOD (0(07012231000000000000), 1, 9) $ must be used.

Prior to execution of this call which causes loading and execution of the overlay, the overlay
must have been made absolute and written on file fn. When an END statement in the main
program of an overlay is encountered, control returns to the statement following the call to
OVRLOD which initialized execution of the overlay in question. (See Appendix M for an over-

lay example.)

REMQUO

The REMQUO procedure yields the quotient and the remainder in a division of two integers.

The format is:
REMQUO(NUM, DEN=QUO, REM) $
where

NUM = numerator
DEN = denominator

all input parameters are full word signed integers.
QUO = quotient

REM = remainder
This form is equivalent to the JOVIAL statements below:

QUO = NUM/DEN $
REM = NUM-QUO * DEN $

G-8 17302500 Rev. A

Example:

° REMQUO(IN1, IN2 = OUT1,0UT2) $ With integers IN1 set to 35 and IN2 set
to 15, integers OUTI is set to 2 and
OUT2 set to 5 after execution.

SEGLOD

The SEGLOD routine serves as a JOVIAL entry point to the standard SEGMENT routine in
the FORTRAN library to load the specified segments. The format is:

SEGLOD({{n, e, a, lib, m)
where
fn = variable name of location which contains the file name (left-justified display
code) from which the segment load takes place.

e = level of the segment load.

a = variable name of array containing a list of SEGMENTS, SECTIONS and/or
SUBPROGRAMS to be loaded with this call, In this list, the name must be in
left-justified display code, and the list must be terminated by a zero entry.

An initial list entry of zero signals a segment load of all subprograms remain-
ing on the file fn.

lib = if zero or blank, unsatisfied externals are to be satisfied, if possible, from
the system library.

m = if zero or blank, a map of the segment load is not produced. lib and m need
not be specified,

Once the named subprograms are loaded control returns to the statement following the call
to SEGMENT. The programmer is free to call on the loaded subprograms as desired.

STCHOL

The STCHOL routine converts literal characters from transmission code to Hollerith, The

format is:

STCHOL(LIT, WDS) $

where
LIT = literal name of characters to be converted from transmission code to
Hollerith,
WDS = an integer number that specifies the number of words to be converted.

17302500 Rev, 02 G-9

Full word conversion is performed starting at the location of LIT. Packed table items and

parallel table items cannot be converted successfully.

Example:

e ITEM HOL H 80 § Eighty byte Hollerith and transmission code
ITEM STC T 80 $ literals which overlay each other.
OVERLAY HOL = STC $
FOR A=0, 1, 63 § Sets literals to all possible byte patterns;
BIT ($3A%6, 6$) (STC) = A § byte zero, decimal value zero; byte one,

decimal value one;...byte 63, decimal
value 63.
MONITOR STC $ Monitor as transmission code variable
STC = STC $
STCHOL (STC, 8) $ Calls STCHOL to convert to Hollerith code
HOL = HOL § Monitor as Hollerith variable.

After execution, STC and HOL will have the following monitored output values:

t + 4+ 4 ABCDEFGHIJKLMNOPQRSTUVWXYZ-+# =4+ $*(+ + ¢ ¢+,
0123456789¢ + /.

STC

HOL = AAAAAABCDEFGHIJKLMNOPQRSTUVWXYZ-+A=AA$XAAAA,
0123456789#A /.

NOTE

The bytes containing bit patterns with no
transmission code representation (indi-
cated by the down arrows) are converted
to Hollerith blanks.

JOVIAL LIBRARY FUNCTION

The function REM is a predefined function in the JOVIAL library.

REM

REM is a function that yields only the remainder in a division of two integers. The format

is:

REM(NUM, DEN) §

G-10 17302500 Rev. 01

where,

NUM = numerator
DEN = denominator

REM = remainder
This form is equivalent to the JOVIAL statements below:

REM = NUM/DEN $
REM = NUM - REM * DEN §

17302500 Rev. 01

SAMPLE LISTINGS H

This appendix contains two sample listings that consist of a COMPOOL creation run, a main
program, and two stand-alone PROCs. The listings were too large to show all portions for

each listing. The cross-reference, storage map, partial load map, and part of the program
output are shown for the first listing. The object code, a full load map, and the program

output are shown for the second listing.

The first program listing computes the sine and cosine values for each degree from -360 to
+360. The dayfile printout for this listing occurred in the following sequence:

Dayfile Sequence Description
DEMO, CM70000, T77. Identifies job.
JOVIAL(XR, A=CMPL, N=-CMPL, B=TRIG) Performs the COMPOOL compilation.
JOVIAL(XR, C=CMPL, B=TRIG, N=TRIG) Compiles the main program and the

two stand-alone PROCs. The multiple
compilation feature was used.

MAP(PART) Maps only the routines, not the entry
points.

TRIG. Executes the program.

END TRIG Notification of program termination.

This is not produced by a control card,
but is generated by code placed in the
object program by the compiler.

The second program listing tests a binary-to-decimal conversion procedure subprogram, and
a decimal-to-binary conversion function subprogram. The code and full load map are shown
to demonstrate the way in which JOVIAL subprogram parameters are passed (see Appendix E).

The dayfile is shown later in this appendix.

17302500 Rev., A H-1

aunnoJIgng }o0[g uUoWWo)

wes8oad utely }o0Igd uowwo)

sl
paoerd
aae sjosead ay} YOTYM uo 211 8y} HIYUIL =9
sy19saad ayj jo aweu a3yl TINDI=N
] TTdIND 311y 03 uoyy
-e11dwod TOOdINOD & surrojrad TJND=V
80U3J9}aJd §S0aD g
dew afexols X
ERE1IN

(DIY.L=9 "IdIND=N “"IdND=V UX)IVIAOCL

‘paed 1013U00 Sumolio]
oY) Suisn una ses uonerrdwod TOOJdWOD STYL

*10000 39vo Vi/z790/20 3490 *2T1°9c¢*eT 3wla

—— ~— e —

uoneridwo)) jo ajed pue awi]

*Sunsy ajdwexa ayj JO 3z1s dY} 2ONPaX 03 J8pJo ul pajuLid jou sem apod 30alqo syl

UNs
o¥ 003415 S 3Z1ISUM v 0T4& LETEY
8 083215 S 34ISUM v od waal
v 0034I5 S aZISuM v 84 nall
$8 U03eIs § 3¢lsUM v 44 W3ll
»8 003Z1s S 3ZISuK v 9i nidl
& 003CIS & 3ZISuM v SL Wall
$& 003ZIS S 3ZISGUM v 4l warl
¥ 003415 S 441SuM Vv wd w3l
& 083L1S S 3ZISUM v 2i Wall
du 003415 > 34I5uM v TL Wall
3 ¢ V VAL wall
3003218 S JZ2ISUM V dRWal wWisl
Y3y
4 38N> NOWWOU
UN2
20T o N % v N3x Wall
2204418 & 3Z1ISUM v 1d waal
60315 & 3ZIsSum v usEd Wikl
U03Z15 S 3LISUM ¥V a10Vo3 Wasl
@S 3FLISUM ¥ S3LINI wWadl
»02% 1 ASIT Wasl
*/ #68495%£¢T0 ¢ a3 = 4= (ZAXMANLSEVGUNG INPIHIIZuay
d "9 i 3VHIL Wall
ETT
® N1V NUWWOU
ON3 3T032Is & 3ZISGM VvV S00 ka
suotnpouny jutod-paxig $6UILIS S ScISUM WV Y3Uu WaE
wesfoadqng TVIAOL 3 493Gy S0
UN3 $TU32IS S 32ISuUM ¥ NIS W3
ﬂ $60321s S 2.1ISUM v 530 w3
$(Y3UINI
» ¥#iNlydbzz 948 3N1430
b #2729 #3# 3415HY aN1434
p#F#NEFE wl3LIS
s#¥Tuxz c03c1S
B2s2H¥7 TOaLIS
stz n#E wl3cl>
3FZUNEE 3.1SUM

L N 2R 2R R R N R I B N K

« ONILS1T 3J0N0US« T/T0 G°T NUlSEIA 23T1ak00 WIACGEL SaId3s

*
»*
* NOIAVoG3N3Y SOJ/NIS eud TW0dhUU
*
*

— o~ —

uoisaap Jaridwo)

x * & ¥ * & & k & R 2 * kx & £ & x &

LR 2R 2N 2

¥

P CER

| S]

il
il 93w
v Uld¥a
il
il 9ad
S VU6

3nld3u
LD EET
anldsu
3Nladu
aN14306

»LaVIS

A

*94900
Y1)
*anul
‘g0l
*2h00
*Tw00
*0%0u
‘ot 00
*sall
*4aul
*9: 00
*9g00
9500
2200
el
*1£00
*0z00
‘o2l
*uciB
*dcli
*9cil
*52400
*%w200
A1)
‘el
*1c08
*0clo
‘6100
‘%100
*e108
‘SIue
*5700
‘%100
‘eTul
AL
‘Tiou
*0l08
*6000
‘wltu
*¢000
*90080
*q000
*%000
*£000
*2uoe
*1000

17302500 Rev.

6669 202

[
1
—
=]

‘20800 39vd

TL/68/80 34V0 *23°62°47 3MlL

smreN weaSoxg

——
NI

+0S39YSSIH DILSONOVIG ON «s

39¥SS3N 3NIT ¥30uNN
o SIILSONSVIG = T/F0 &°T NOISH3A ¥311de03 TVIAOL SIT¥3S 6889 30D

01

17302500 Rev.

8y ¢t
ey 21
s 2%
8y 2t
¢ 2t
ey 2%
sa 2%
8y 2T
8y 21
WON L1184

°£0000 39vd

14/68/80 31v0

%32%0000
43400800
434900000
43200080
42800060

880000
£32920008
£0%200090
£3620000

301

LS & X & & & & &

viva
vYiva
viva
vivd
viva
INNS
viva
vivag
viva

3dAL

*6T°g2°2T 3INiL

*}001q UOWIWIOD 3y} JOF JaqUunu UOT3eI0[aX J3pBO] 3y} £q pamol(o) }oo1q
uowWuIod ® S® g1 9]qelIeA 2y} Sunyedpur ‘D ' Aq pamol[0f FOOIq UOWWIOD Y3 03 3ATe[dd
§89JpPe 1ENjJOR 3Y} ST UMOYS SS3JIPPE dY} ‘UOWWOD UT SWa}T BIEP [[B JOJ ‘ISAIMOH -dwmy
uoTNOaxa J' JI9peO] aY) £q pajedolad aq [T L3y} se 10exs jou aJe siajewesed J18y) pue
sauanpacoxd x0j sassaappy ‘paudisse sassaappe 3y pue TOOJINQD Ul PaIE[d9p SWajl 9Y)
Jo 11 8187 3 ‘AlqueassesIp TOOJINOD U3 s& s3oe dew ejep ayy ‘A1quasse TOOJNOD ® Ul

sua)] ejed J10j PO

wa)] JO aureN

wa)] Jo adLJ,

JI9TJTIUSP] YOOI UCWIWIC)) PUE YOOI UCWIWO)) UTUITM UOT}ed0T]

g 1sa1g

(1e1al7] paywads ssaun ‘s3ig) s9314g J0 sng jo pmnﬁsd

64 8n 2% %JT10000 V viva
94 8% CT 42900000 V ¥iva
£1 9% 21 40£00000 V¥ viva
1 7% et 0 £3480000 A viva
dilal % 8 £3008000 4 viva
NIS 8% 2T X000880 Vv viva
Id NOKWKOJ
vl ey 2% Xe008000 V¥ vivo
930 8y ct goggeD v ANAS
INYN WNN 1184 307 K 3dAd
TdhI

a dUk & T/T0 0°T NOISU3IA ¥371dW0J TIAOF S3I¥3S 8009 20D

S02

3WVN

8% 2T 42010000
8% 2T 43500080
84 27 %J8T0800
4 95 §£J4c0ake
e %S 43760888
8% 2% £3:c0080
s 2t x006008
¢y 21 xeoo00e0
WON LiGd 201

|

o <

o & -

viveo
vivag
vivu
viva
NOMKWOO
Yivu
vivg
viva
¥iva

3dAi

r)
4l
(278
N3A
yans
avoo
931N1
93aa
S0J

3NYN

17302500 Rev. 01

~H
]

jas

‘pasn axe Loy} 9J3UM pUE SjudwWIale}s ANIAFA LU0 moys T11m
POUBIDIAI SSOID Y} ‘SHUSWAIE}S I[QEINIIXS UTRJUoD jou Kew TOOJINOD © 92UIS

aweN pauyad

adA],
pauyad Yorym uo aurg
waj] 3o adoog
auns(d jo 88N
.'w:
*Eh alh *TH *0% =68 a8y »df »%z *GE
*EE ¥ «Ll 92 *S¢ 261 +8T 297 1S Tand) ELIEE 3L1S0M
L33 wde -87 »57T Tohy 113 3NIdau [YEVR SN
*6e Adhy at anldau ¢03Z1s
=61 «97 RELH 6 3NIdau 10aZ1s
ahy =£h
alh 1% aln =b§ abs *dE *9¢ *SE 292 Wdnd U] aNIdal 003ZIS
»ei sTc =87 +51 Jond 2l 3N1400 934
C « AB Q31VIIONI U3SN)} UaSNAL3S 3a0Us 430 L) 3aAl anUN

*%000u s9vd T4490/80 31vG *6T7°62°LT 3AWlL Takd *«3INIU3A3Y SSUal« T/T0 0°T NUISe3A 2allak03 WIAOF Silaa$ G009 003

17302500 Rev. A

BANTEL=LS1T
$ ASITL LSLT LNolN0 3 (ET4ASTUIWHULS
3914064 40Va3€944NI)A0LY
$14930-) 503=a9vad $(93L=18S0I=934N1
3 (UUcd3}La=¢LSIMI (P 919 $)dlAb

$50000°0 ¥9 (AU T-a0VUIxAIVU3#U THINISAANISAUT/) ST

514740842 0vaa493aNI)ULLE

$493GIS0U=AIVYS 2 ($30)509=934N1
3(ST4124200vVad9alNI)unit
$(9IU-INIS=L0VES 2 (Iau-)NIS=UY34NI
$(STTTCL0VEI yaANICLIE

» AJVEa=AINIS

$(YauINIS=40Vad 3(93UINIS=93aN]

UL *TY4LUVEIC93ENTJGULL

$93G=-=L0V¥3 $930U~=93iNI

4L *T fUUVBS94ANINIGULE

$930=4iJvVoa 2930=93anl

$I1=y3u

$U9E4TC0=1 wusd

$ANTuh ASIT aNashio

PANTWL=LASIU

$ ISINL ISIT INJAN0 $(STASID) WHULS

$ ((533493UIINISUBILET=(LSITL)($ST°063)3iA8
$ ((S334930)3NIS0) L6T=(LSI14) €351 ¢0ip) Huhu
$€(S3309a0) SNIS) LxT= (kST LI (SET ELp) HiAg
$((S33¥930)INIS)IAaT=(1SIa) ($£T¥ETII 31
$(S333930114=UU5ILI (8L “TYp)31hE
$(S330930)2L=UUSIWI €34 *T 3)31Ab

$ANTIBH LSIT indinu

$ANTuH 4517 LNGihi0

SANTEL=4S1TA

$ AS1T4 ESIT UNgdNU % (cT*LSILITOHILS
3(9T05¢40Vad4y3INT)UuLE

»1d=i3vd4d $I1d=93iNl

$(=1ad LE=(ASIIL) ($ELH3) 3iAl

269¢bSTNT *x=Id

$ANIEL=AS1IW

24517 MNGAN0 N39O

*YUbo

$060341S S 3ZISGM v AN1IS kW3LI

sweu weafoad DHIYIL=N » LNdiN0 (Auv3adA 08T A bbb H 1817 3713
$#2N19Yauzz 93¢ aN1dal
8po2 303(qo 8y} Jo uowED0] A1y DIYL=E ¥l dalzxr ANTIGL 3NI143A
TdIND 211 ut TOOdINOD 2u3 $## 0 JHI22 XNIEH aNIs30
Burisn uonerrdwon ayy swaojrad TIND=D P #F#9¥ 3Z1ISHY GNId3u
20UBIBIS SSOID $2¥ha¥z b03ZIS 3NIL3U
331 88 d s¥#Th# ¢03Z1S 3IN1d3u
dew a8eu0)s X »##2H#E: TLIZIS anldad
a5 $FFENIFT LU3C1S INIA3u
um 27FUNEE oL1SUM 3N13Bu
(OIYL=N DIYL=9 "IdNI=D ‘UX)TVIAOL z N E R R E R R
- *
‘paed Joajuod Juy » NOLLV&3N39 SOU/NIS a03 ¥aAled »
-mo110j ay) Juisn una sem swes3oxdqns pue N .
wreadoad urew ayj jo uoryejidwiod yojeq ay[, A R A A A S R oAe s A koA FF
? A¥V4S

*10000 suvd T4/50/50 34VU *22°9E°LT anla

® INLILSIT H3afi0S+ $/T70 0°T NOI>¥=A 0311dh0U IWLIAOL Saldas

*9all
*a500
*9s500
*x400
*e¢alo
‘1500
*as6o
*o%00
‘8400
*ih00
‘9400
*sq0U
‘9408
€400
*2%ie
*In00
‘0900
‘6200
*s£00
*e20u
‘9200
9200
*HElG
‘00
*2elU
*1£00
*ualt
*6c¢00
*¥culd
*2200
*ge¢ut
*s20e
*9¢00
*2200
*ccul
‘100
*0c¢co
‘ol00
*wTLl
*4100
*3100
*s100
*q7u0
*gTld
*ciul
*1100
‘otoR
‘0000
*¥000
*L000
*5000
*5000
7000
‘£ao00
*eula
‘160U

17302500 Rev. A

©
1

G00s 903 Jos

*20800 39vd

$ (81L)($S ‘0$)L1d
IST jUBUIaE)}S J0IIIO0D YL
«xe11dwod 3y} Aq pawaojrad §21I19A003a
J0JJI3 pue §OT3SOUSeIp JOII2 3y MOYs O}
Jaypow {ruonjOUN} LI 2y jo 133lqo
ay) woay SuissIwl axe §3aNOvIq SYL

T4/50/780 34NQ °22°52°4F 3NWIi

aN3 $CAVHIL) ($89+9213334A8=LAST LD (31S)30AE

$0= £1 (35°03)118 SN3i«£i=E1 IN3Lef£1=21 938

,uu«nr\ SLINIVCTSToANIOd=] W04

anNa

aureN weJdoad

r—r—

913l

$8=(£4) (354031110

$N3N13Y SLINIT ¥9 F$+iNI0d 41
$C°)AT=(ASITAD (3ANIO0AS) 34AE
$NANLIY SLINIY ¥ ANIOD 41

$ (UVHIL) (3894 (NIL+22) ~Ti3DIAAE=CASI VL) (318) 3148
$N3Lis2i=2) $cl=T1

$27 0109 $T-iNIOG ON I OGNV 0 03 21 31
$34484°T-¢T-ANIOd=] ¥04
$T+LINIT=ANIOd $T+iINIT ¥9 ANIOd 31
$T-3LABN+3ILAGI=LTKID

ON3 $T0 0109 35T B9 T4 41

$771 0409 $1I 01 2L 4I

$T+TL=T1 $T+INIOd=INIOd
$66666666666666°64621°6=1 W04

$38=T1 $T+34A84=INI0d

$dN3A1=(ASIVL) ($34A648)31A8

OUN3 310V¥d-=81 $(-)iT=dWill

$8 S AJvHd 4l

ON3 $93INI-=21 $(-)iT=dWiil

$8 S1 93UNI 4I
$0=4iQvdd $6 D3 1JVy4

$10VE=€L $9IUINI=2L $(IAT=dW3LL
ENUNA3Y $0 03 3LAGN dI

$0 ST ¥ LAINIT W3AI

$N ST v ANIQd N3LI

ST 4 db3l) WIRI

$083ZIS S 3ZISaM V £1 W3lI
$S 3ZISON v 24 W34I

$S 3ZISOM vV Ta R3LI

$0 ST ¥ 31ABN W3LI

SN ST V 34A83 W3kI

$083ZIS S 3ZISGM V AJVdI WILI
$S 3ZISOM v 93iNI W3kl

3 WY3L

21

938

‘1

238

938

938

il

GN3

938

$(3LABN3LAG3*A0VEI“93ANING0LE D0Ud

$d01S $iSIT ANAANO LOWS

SANIWL=ASI W

$ ISIT ISIT LNdINC $ (ST*USITL)TOHIULS
$(ae3N0Cead L8=CASINA) (3841333146 36T148%0=1 ¥04
$3N1BH ASITV INdLINO
SANTEH LSIT ANALINO
$ANTBH LSIT ANdiNO

» 9NILSIT 2J3N0Se T/7T0 0°T NOISA3IA ¥3TVIAW0D TVIAOSL SIATVIS

°£018
°2010
°T0%0
°este
‘6608
°8608
*1668
*9600
*s608
*4608
*s608
*2600
“i680
°8600
*6888
‘agee
*4808
*9800
*s608
*4800
kill)
*2800
°1808
*esoe
*6408
*8400
4208
*9400
*6400
%400
°£480
*edue
°T408
‘odas
*6980
°8908
*4988
°9908
°5908
*4980
*£908
*2988
*1908
*89080
°64500
‘ss0e
*4508

0889 3020

H-7

01

17302500 Rev.

1
{
(
(
(
(
(
(
(

17302500 Rev. 01

‘palIasu] sem J03JUON +eS39USSIN JILSONIVIQ 208as
<1041 WL uny ayj 03 [1ed ou pue sBuyjurem
A1uo axe gafessawr aY) SOUIY ‘JUSWIIYS *OINISSIN ($ ¥0 (NC°00T0) Z98A0F
TIVIAOL 1931100 ® PapIS1A YoMA jusuiaje}s *AN3S3¥d 38 OA QIMNSSY) ¥O ¢ INISSIN H(°00TO) S28A0F
904N0S 3y} 0} SUOTIDIIIOD INBW O} Jqe Sem as 3NON ae
xapidwod 3y, *a3ed snowaxd ayy uo 001 3un SI08MAS Q3NI430-300M ¢ 7dW3) go0sAor
18 juawWaje)ls ay) ul J01J2 Y} Jo 8sNed3q
vwosvo.na axe salessow uﬂmgwﬁ._v 8vaAY,L, 1S14
N3L
¥YHOL
NIS
1d
934NI
10vy3
930
S03
ST08MAS G3NI43G-100dM03D (1dW3) 20SA0F
39¥YSS3N NI ¥3GMON

©
*£0008 39vd T4/50/80 3AVQ *42°S52°4T 3MiL 91¥L o SOIASONIVIG » T/T8 G°T NOISuU3A J3IVIAW0I WIACF SITV3S 0009 G mu

e 21 cEc000
%9 0 £2004000
¢y 2% 422000
St &% 9£2000
900000
000080
522008
000000
HON 1184 201
*%0000 39vd 14/50/80 1ivQ

viva
viva
vive
viva
NOKMOJ
3114
X J0dd
I dVA¥04
X J0¥d

-

L 3dAl

*9£°52°2T 34HIL

way] JO dSweN
wrey] jo adAL
surs)] e}e(F J0j 9pOIN
Noold uowrwio) Jo werdold UIyimm uoned0r]
g ysarg
(1ea931] payyroads ssajun ‘s1ig) £934d J0 s11g JO ..wnEEﬂ

i T 4s S£2860 A viva di3ll 4 95 £9420000 I viva N3L
RVHIL 0006080 X J0¥d $70HILS & 21 X000a68 Vv viva Y$SINIS
ANIS 84 2t Xx000600 V¥ WNJ NIS 080080 Xx J0¥d *AUINGD
ANIOd 8% 2% £J920008 v viva 1d ST a% 1£2600 I vivg 31A6N
NIVMW ££5000 13av el £05000 38y 13
1Sl ST a% 4£2000 1 viva AIWID 000800 Xx J0dd $HSAOr
*CIADC 8y 2% 922000 I viva 931N1 8% 2T £0f£20880 1 viva 93INI
1 8652000 I ¥VAN04 1 ST &% 852080 1 viva 3iaed
*ON3 ¢4 2% £Js20008 v viva 930 8% 2t X800800 v ¥ive V333S0d
INVYN WON 1184 307 W 3dAl 3WVYN WON L1684 0T W 3dAl YN
9lud + dVW & T/T0 0°T NOISu3A 83VIdW03 WIACF Sals3s 8089 303

H-9

01

17302500 Rev.

‘uway} ajeutwWId

0} 98N 3y} 91qEUd 0} UMOYS 3J8 PISN JO }3F JOU JNQ PAULIIP a8
yoTym swall pead ‘pajsy ode weaSoad a2y} UTYIM PSUPIP SWIAT (1B
pue weadoad 3y} UTYITM PISN JO }a8 SWA)T Paulap TOOJWOD IV

3pOI
*D0Yud 9w Butupgap aur ayy ‘aejowesed
DOHd [BULIO) B JO ISED 9Y) Ul ‘PAUTISP 913U XOO0]q UOWWIOD 10 U]
uoreWwIOfu] pas(l /19 wayf Jo oaouﬂ
«cd 173 +04 »49 «99 47 SId4 'S
+%6 «88 «98 £6 98 8 golis 73 1
»£8 28 ['1] e goig £ i
«007F «00% a6 *86 Q0id £3 1
»707 %6 aos8 £3 i
*29 «55 L1119 *52 »67 9I¥L %%
*19 »hs ahg a%e 91ad X
91yl 13
9144 1R 4
9I¥L 6
*ed «49 *47 9Iul]
«0s «08 L1} 9Iuk ra} ¥
9% «9% agY «£% 9I¥4 X v
«b6 «46
+96 «56 «26 +16 »06 «98 [19 98 48 goisg "l I
Y13 *é2 0e 91l €9 v
aoLg 49 1
»b8 94 Qoi8 69 1
*26 auis 56
«88 »l8 aol8 68
£9 19 (31
9s 45 L1 9 L 14 42 9 2 '] 4 JI¥4 97
*b6 *46 »56 =06 «06 68 G046 173 I
aoiu %9 I
+08 a6l *ld gols 99 1
8S »b% *dN aS% a2h
«0% «£2 2s &% 98 £a i3] 14 22 9IuL £3 I
«09 Iy 1 09 48 9I¥L I
«107 -6 *26 «48 1] 66 6 s8 ([F¥"] I
*6S «8S «dS «9¢ ryr] *92 9Idd £7
aoig »9 I
«T6 «b68 %8 *£8 ao0ie L9 1
*28 *2S =8% 28%
*9% a9 LY »£% 18 =14 «b& *68 8L 9I¥: £3 v
9144 2t
«007 «2b *98 1Y) «0¢ «59 *88 91yl sl
(& A8 Q3AVIIONI Q3SN) G3ISN/A3S 3d00S 330 L]

$0000 39vd T4/758/5£0 34V0 °%£°S2°4T 3MWIL 9131 »3IN3Y333Y SS08T« T/T0 B°T NOISU3A B3NIdNOJ TVIAOF S3I¥3S 8069 302

waj] Jo dWeN

adL1,

3AN1330
viva
vivg
vivao
wiva
3NI430
J0ud
3INI3G
3NI430
3NI430
3NI&30
vivg
INNS

viva
viva
dvdyod
viva
a3ev1
RE) A

ERIE]
viva
UVAA0d
viva

vive
AVAN0 S
UVABOS
3N1430
UV4B04
Viva

vAVO
3NId30
3NI430

ELTVE

321ISam
12N
dhdll
N3L
¥VYHOL
ANIEL
$I0HULS
00371S
03218
103Z1s
003Z1S
INIS
NIS

ANIOd
Id
31A8BN
31A8N
el
11

1817
LIMI
93iN1
93LNI

93ANI
1
1
ANGH
31484
31484

230
3ZISHI
938

3MVN

17302500 Rev. 01

[=}

—
]

jas]

*10000 33vd

T4/590/£0 34VQ °9£°62°4% AWIL

. IN1IS-=NIS
$2 ST QVND GNY 0 ST 930 ¥0 ¢ 09 GVND GNV 0 09 930 51
$0TL=61491-44430-GL+0l-El421-T1=NIS
$(°CHE/0T0)«61=0T4
$°2L2/0TL)x8Aa=64
$L°0T2/0T4)alli=01
$(°99T/0T4)+91=L44
$(°0TT/0TA) e50=94
$4°24/0%4) an1=al
$L°2H/0T4)«8i=0)
$(°02/8T4)22i=£4
2(°9/0TLI+TL=CL

$2«aTL1=0TL
$4°88T/anIL)ald=T4
$97 0409 S0TA-0U+8L-Lh+S1-5i4Hl-84+21~T=NIS
$4°90x70T10)a01=0Ts
$(°0%2/@Ta)#vli=61
3L°CRT/UTADRLL=NL
$(°2ET/0TA)#90=41
$(°06/0T2) »88=9)
$(°99/0TL) whi=0l
$C°0L/6TL)akd=0)
$(°CT/0TLyeci=kd
$2/0T1i=24

3CxaTl=0T1
$(°0RT/dM3Ldald=T4
$dN3L-06=dK3l $%1 0409 $9% 01 dw3i sl
$(AVND) ($c€03$)118=0GVAD $T+QVND=0VND
$dn3L-08T=dN3l $£7 0409 $06 DI dw31 4l
$171 0409 $(GVND) ($2°03)LI8=GUvND $2+AVAD=AVND
$08T-dhil=dNil $27 0L09 $06T O dWsi SI
$0=UVND $930-=dWIi $0 ST 930 41 $93C=dW34
$603ZIs S 3ZIS0GM V 930 WALl
$TO3ZIS S J21IS0M V NIS Wail

% #3NISdez7 938 3INI33G

Shaza

GN3
*s1
*41
€
*ea
‘11
93e

FFFNEFE 603LI> 3NI43G
$2#Thzz 203ZIS aNI&3Q
$2#ch¥r TO3ZIS 3NI43Q
a¥#£Y¥3 003ZIs5 3INIL3C
$##9%w#3 371S0M 3NIL3Q

L IR 2R I IR T 2 T O R S S S SR
- *
- NOIiLVH3INI9 SOI/NIS d04 NUILINNG 3INIS =«
- *
LR I 2 2R R 2 T T S N W S S S R S

¥

3 {930INIS J0¥a

* 9NILS1T 3JuN0Se T/70 0°T NOIS¥3IA 03VIcW0I WIAOF S3TAAS

13ViS

*0s80
*6480
*8%00
4960
*9%00
*s400
*4%08
*£4900
A1)
*ihoo
0408
*65£08
*$£00
*4£08
*9£00
*Sg00
*HE00
*££00
*2£00
*ig00
*6g00
*6280
*6200
L2080
*gzee
*5208
*4200
*g200
*eaoe
*1c00
*geoe
‘o108
*eige
*it180
*9100
°sT00
4708
*s£188
*eroe
*T1100
*gtT08
‘6000
‘%000
*4008
*go6o
*s000
“a000
*£800
*eaoe
*1000

0089 G2

H-11

17302500 Rev. 01

*20000 39vd

TL/S0/780 34VA “Lx°S2°LF WIS

NIS

17302500 Rev. 01

+«SI9VSSIN JILSONIVIG ON "ee

*s INON 2s
STWERAS G3NIJ30-300M (WdKI2 £0SAOC

(78
[7%
3%
94
Sk
\]S
£4
ch
(33
178
[LETY
awnd
1d
ST0EKAS G3N1343G-7004W0 (WKI) 20sA0T

3IYSS3IN 3NIT u3annN N

-
1

+ SOILSONOVIQ » T/F0 0°T NOISB3IA ¥3ITIGMOD WIAQS S31¥3S 0069 03 et

*20600 39vd

8s 23
8 21
84 2t
ey 23
KON 1184

T4/7904£0 34¥Q *99°G2°4T 3MIL

%21T0800
43900008
43000000

000000

940000
301

3dAl

waj] Jo sweN
wa)] jo adLL
apol
HOOId UOWWO) 10 WetFold UIYIIM UOT}ed0|
ng isatg
(1819311 payyroads ssa(un ‘s)1d) s914d J0 S11€ JO I3qunN

“: ¢V s3210088

v viva 6l

[3% 89 21 «38T0008 ¥ viva rys 8% 21 %3400000 v vivo 91
sl 8% 2T HJAL£T0000 ¥ viva [1978 8% 21 43280008 v viva i
dn3l NOWWO03J dans 8% 21 250000 v INNS NIS
NIS e 8S %3100008 I viva avnd 8% 21 £J3920008 v viva 1d
NIVW 142080 Ja8v 81 eiteao 136V L3
£ 490000 13avl 2l esgaoe q3av 11
ANYN WOAN L1843 307 W 3dAl 3NYN WON L1684 307 W 3dAl 3MVYN

NIS » dVH « T/T8 0°T NOISY3A ¥31IaW03 WIAOCF S3I¥3S 0009 30D

H-13

17302500 Rev. 01

«68
«82

«6%

=082

*40600 39ve

«8E
«de

«6¥

«82

L7313
+92

(Y14

87

5%
]
*5%
(14
*8%
1]
«98&
*52
«Sh

43

«87

TL4/90/80 3LV0 *2%°52°2T 3NIL

uoyBULIONU] PIs(1 /188

e —

*00¥d oy Buruyep Uyl oYY ‘IS
-8xed DOYJ 1eWIO0] € JO 38ed oy Ul
‘pOUIIIP SIaYM YOOIq UOWIWOD IO dUY]

wa)] Jo adod!

»57 1 NIS
«4y +££ «2f £4 e NIS
*£4 «££ (339 rA] [18 NIS
Y «£€ «0€ 15 62 NIS
«18 «2f .Y [1] Y NIS
«0% *£E «82 68 42 NIS
ath %3} Y4 «Th 0%
(313 w28 a8 =08 =02
% 9 [T 2L £2 NIS
«98 13 «f£2 L 13 22 NIS
«%< ad sl (14
1 67 Pas 9% 9t NIS
«S7 NIS
NIS
523 NIS
NI1S
NIS
73] PA] (1] £ NIS
«9% *94%
ge Q2 (3] ST 11 NIS
%8 »22 NIS
+££ NIS
+12 NIS
«61 NIS
(73 4 NIS
«87 NIS
(« A8 Q34VIIGNI G3Sn) Q3sn/ias 3d03S
NIS

«3ONIY343Y SSO0¥I~ /T8 8°T NOISUIA UIVI4N0D TWIAOF S3Tu3S 8889 QY

apoIN

s
LI
A b
%3
%3
%0

o a6 A] e

%90
%3

o ot

9 v
133
(21
6
8
3
»1

A

£3
94
L3
e
6T
43

- L& 4

330]

waj] Jo dwreN

adAL

3NI430
viva
viva
viva
viva
vivea

viva
viva

viva
3N1430
3N1430
3N1430
3NIs30
INAS
vive

viva

¥ivG
q38v1
J3ev1
38v1
138vl
38y

3dAl

[} 73
L2y

dhildi
603218
c03Z1IS
¥0321S
88371s
NIS
NIS

avno
ld
81
.1
£1
21
11

3WYN

17302500 Rev, 01

<+
o
i

*T0000 39vd

¥4750/80 34v@ *6%9°52°2%

3NIL

. $S03-=8S00

$C 03 Qvnd 30U ¥ D3 QYN0 41
$0TL-64481-20+484-5Le01-£L+24-T=509
$(°90£/08T1)+61=0T1
$4°0927071) et izbl
$(°COT/0TL)a2i=81
$(°28T/aT4)94=44
$(°0670T4)25159)
$0°95/0TL) w0 i=64
S(°0E/0TL) ek izl
$4°2T20T40421=£1
$°C/0T4=21

$2+aT1=0T4

$N¥3L

$(°08T/diiL)+Id=T4 *%1

397 0109 $0TL-6L401-20491-SL+9l-£1420~-T4=500
B(°CHE/DTL)2060=0TL
$(°2LC/0T1)a01=61
$(°0T2/0T1)»ll=6)
$4°9GT/8T4)e91=41
$(°0TT/0T1) 25142914
$L°24/70T4)a%0=564
BU°Ch/0TL)aLi=%)
$L°02/6TL)220=Ed
$(°9/8T1)eTi=ci

$Cx2T1=0T2
$(°R8T/dW3L) 21d=T)
$dR3L-06=cl3L %7 0109 $5% B GW3i 31
3(0VN0) ($2°0$)118=0VNU $T+QVAD=GVND
$dW31-08T=dM3l $£1 0409 386 U dN3L sl
317 0409 $LGVND) (32°0$)118=UVNO 32+QVNB=GVND
$00T-dN3A=dH3L $27 0409 $04T 01 dW3L 41
$0=4V¥N0 3$930-=dW3i 30°'S1 930 31 3930=dk3d
$68321IS S 3ZIsam v 930 W3ll
$T03ZIS S 3ZISGM Vv SOD CETSS

§ #¥NI938%2 938 3INI43d

an3
*81
°£1
*e1
‘1
938

$zzwgzz 6G3ZIS 3NId3Q
$#FThed 283ZIS 3NIL3Q
$##2w#¢ 103ZIS 3NI4L3Q
$#2E%¥2 083215 3NIJ3G
$#2#8hz2x aZISAM 3NI430

R R R R R R R R R R R T YN

- *
» NOILVYINIY SOJ/NIS ¥04 NOILINNI 3INISOY «
* =
LA AL L N S R R S S YN N Y G GO

E 2]

$4330)503 J0¥d

+« 9NILSIT 338N0Se T/10 0°T NOISHIA ¥31Ian03 WWIAOF SITVIS

A¥ViS

0508
3111
*en00
*1%00
*9%80
*s408
%00
*gage
*2%08
*Tea0
*an0e
*6£00
2508
*2£00
*3gee
5208
*ng00
*££00
~2£08
*1g00
*8ge0
*6200
*2200
2200
H
*s208
*h2es
*£208
*2208
*T208
0208
*6700
*8300
*2708
*3140
*5T00
‘5100
*£100
*2300
*TT08
*s100
*6000
*e000
4000
‘9068
5000
*n00@
*£000
*2e0s
‘1008

0009 J4d

H-15

01

17302500 Rev,

01

17302500 Rev.

#+S39VSS3N JILSONOVIOQ ON wa

as 3NON aw
ST08WAS G3NII30-300M ¢ Taknd) £8sAOF

61
['Ye
41
91
si
L 78
£
¢l
9t
178
dhil
awnd
ld
ST0UMAS G3N1330-T100dW02 (1dW3) 28sAor

AVSS3IN 3NIT B38MON

-16

*20000 39vd T4/50/80 31VQ *08°92°LT 3MIL S0 o SOIASONOVWIQ « 3/70 0°T NOISH3IA u3WIdW0Q WIAOL $3Iu3S 0009 30 o]

*£0000 39vd

8% 2T %0070000 v viva
€% 2T %H2E£T0000 VW viva
NOKWNOJ

NOKWMWOJ

940800 13av1

KON L1164 Y07 MW 3dAl

T4/50/80 3.LVU °89°S52°27

3WIL

il
01
BaNs
NIVN
£1

3WVN
S02

s 2
gn 2%
8y 21
e 8s

NNN Llud

403270000
43400000
43200000
43140800
£22800
Ti0800

307

waj] jo swe
waj] jo adL]y,
3poN

joo1g uowwo) 10 wex8oxd UTY)IM UOTIEDOT]
g 3sa1d
(1eda3r] payjroads ssatun ‘s)1g) sa1dg 10 sjg jo JaqunN

el -

vivd
Viva
viva
viva
138v1
1aav

3dAL

* dUA » T/T0 0°T NOISu3IA ¥31IdN0J WIAOL S31u3S 0009 2303

[-7%
91
123
avnd
81
21

3N

!

¢h 2%
8y 21
% <2t
8% ¢t
WNON L1684

%0770008 V vive

%J960000 v vivdu
73000008 v ViV ok

£3920000 ¥ viwu

947000 qa8v7

<sooeo 138vy
AT W 3dAl 3N

81
Sk
3
1d
"
1}

H-17

17302500 Rev. 01

«bi
«82

+6T

«8e

*40000 39vd

1Y 13
wdd

*67

«02

uoTBUIIOU] PIB[) /138

*00ud oyt Butugep aur] Y ‘Iejow
-eaed DOYJ [8W.IO] € JO 3SED aYyj uT
‘PaUTIOP SJ9YM YDOIq UOTUWOD JIO Ul

wa)] Jo adodog

«ST 13213 w%o
«5Y 154] »££ »2g £4 139 S02
5% +£8 +£€ 313 24 os S0Y
*5% alh *£8 «0€ Th 62 S03
aSh 194] +£8 *62 1] 'Y S03
S =8 «£8 ae 6 2 S0Y
«SY 84 &Y alh ol «0%
»if »9¢ «£8 «2t «T£ =08 262
*92 w82 *42 " E13 28 £2 S02
«58 *£8 -2 «£2 LY 22 S02
*hE *2¢ sl «12
=¥ [7AR e 6% PA S 93 97 SGd
*GT R]
SQ%
51 S02
S02
«9% +94
*8% «87 0e 0e 2 T 9% S0
ahe s22 S03
*£E SC3
=32 $0J
*6T SO0d
L3 SGI
=87 S0Q
(» A8 G31VJIONI Q3SN) @3sn/i3s 3d03S

T4/58/80 34VQ °65°$2°4T 3mlL

S03

«3INIVA4AY SSO¥T+ T/T0 0°T NOISA3A ¥IANIGKOD WIAOS S3IT¥IS 808S 0

SPOIN

*J
43
"
kb
3

~.
o o o L e

2
9

o =<

%0

£2
94
%L
e
6¥
41

o -

4306 "

waj)] Jo aweN

adL]J,

3NI430
vive
vive
vive
vive
vive

viva
viva

viva
3N1430
3NI43d
3AN14daG
3ANI430

viva

viva
138v1
3evl
138V
138y
1367

3dAl

3ZISCH
61
el
L2y
91
sl

(398
11

dh3l
68371S
203zZ1s
183218
083Z1s

3NVN

17302500 Rev. 01

©
0
jos]

rUrwYHuL9Y2IY " U €IMTILUDLITITID U= Uuu - ZULeTIIVEIDLED U CIEIEUVE TAIT W
%6u9b6Um08H8 0 169£92616629°0~ 600*ce~ %o%9008n0uh8 *0 T098%cbTbbcs U
020T0x49%4494°0 0eE%4002007G° U= 000 tTE- Ue010rL91499Y °0 Ousehilualinlate
£80%0%520998°0 To%6bbbbbbbh 0~ 600 Uz- aduhUNe2i998 U lutbbobobobh U
6T4920L407%428°0 0%.619608064°0~ 00d°be- bThildoTONLE U 0%46T9608h8h U
1212652462880 262295129690 (- guo*ec~ YA CEYA YA A" cb2c9sTitp9h 0
2841c¢5900TbY° 0 6526649066880 °0~ 00022~ 24259001660 bacobbhlbbsSh U
9259404%64868°0 22r9hTTLLBeN 0~ suut9e- EYATL IS (PRI ¢cr9hitLaNenti
4924842029060 w821926T9¢2u 0~ g0d°s2- 482d8L408900°0 s¥2192819é¢n*0
drulshanagie® o 6292499849040~ 000°he~- Li4eonaneL16%0 8rGceh9GeL90h 0
1£92 49494709026 °0 29U82TITEL068°0~ god*ge~ Te9x9uh05026°0 4908cTTeL00a0
Teehwe8e87426°0 600£659090LE° 0~ ao0*ec- Tiivevr8Tico bLlLbu309%sn
L%9921085££6° 0 ©STOH629E85E° U~ 00o°ie2- 4%992%0849886°0 %5TohbL98892 °0
¢2b0¢926965£6°0 066271020cHE 0~ 00g*0e~ <20029269656°0 Gs6eh1020che 0
22249L9¥19546°0 ¥6045T99552£°0~ ao0o*el- c2L9458T495%0 0L ¥b0HoTuYaucy *U
al4919950756°0 ££0%9669T0b0E£°0~ 000°9T~ 50%9799507%6 °¢ ££0%66910008 "L
29U894%08956°0 ¥6EH04T22262°0~ 'R I'RPALS Cc9UYa4n0r950°0 Boxh02Tet20c’y
920969192196°0 0796522595220~ 000°97- 92096919271%6 0 0T9u0848954¢°0
99£9c¥526996°0 £Ignn0618852°0~ 00G*al~- 99:5285264%0 * U £Tuhh06T8ESc U
£9$922462046°0 g2Eu68126T0e 0~ 003° %1~ £9£924562046°0 ¥2: 5681261920
EH84900454%46°0 To0hs0TG6hee i e0@°*at-~ theh900Lehio U LR TR 35108 PR
£82U0940T8L6°0 £85069T7640c°0~ uggei- £846G094hT6i0 %0 £84U09T16402°0
6uUHE8TL29T66°0 191566806061 °0~ g00°* Vi~ buhi¥1i29T86 0 19796688 0ET*U
9n0£622084986°0 0492218492210~ 000°0T- 9Nls G4 206%56 °0 ULniiTen98lT U
£29049£899L86°0 2949 9huENSST 0~ 0000°%0~ £290%u¥894086°C AT LTS CEHEYRT]
£9269069c066°0 T08087TE£LT02T°0~ auos g~ £94490¥92066°0 TeE0GTELTERE TG
954751909206 & 992£%£698721° 0~ gga0°s~ %5915T995266°0 EEFAR FUTT S SR S
088968T259%66°0 ¥h1E9n829n0T°0~ 0000 S~ 06gSodTeshob * 0 uTEYNecanlT 0
06T869%67966°0 $Hh9249266T.80°0~ geo0 s~ U0Tw69%61%b6b°0 $892h2957260°0
§9204904995266°0 7998449954690 0~ 0000 h- 4920504949266 °0 %99344992090°0
45249£5629866°0 £8799b5882490°0~ 0000k~ 194925029860 U £87946958290°¢L
020428065666°0 299964668150 °0~ goao‘¢c~- @2042¥0680666°0 29%9bhbbihsl*i
951909.48066° 1 LTH90%¢shLT10%0~ goago 1~ 9519694498666 °0 PAS CIL Y8 PRSI R
goubco000000°T 000000G00000°0 nnnneo goeocoooocoo0°Y guoooocoocLOe
(5434930)3NISO0Y (S33¥930) 3NIS S333930 (533593W) INI SO (533¥936) anls
jndinQ weadorg 2o0b6N9265TH1 E =la
S3UNaY¥I43E —ee==51ygNYILXa OG314SILVUSN(I~===
££2900 uaNaNl
999400 $LIS
494400 PULSTIOH
290400 yulAaor
429200 anSAOP
Uzs800 NING
418800 SuledNl
244200 oAUV E
400200 dW3ASAS
gs4%00 Veia9
ogi000 duns
007000 NIVW 490700 SUY
027000 adns
gsovouo NIVA 491700 N1S
*saurynoa Axeaqr pue gotooe NIVA 491000 SIdi
‘syo01q uowwod ‘sweafoadqns ‘weafoud urew oy 0:T000 LTS
‘sjasaad }oo1q uowwod ay} smoys dew peoy sTYL UoTO000 N1Um w7000 (ahy
==NOAWOU~==U3T13uV¥ 1=~ =SSsullv-==~HV39Y0au=
£c4190 53Tuvie M3 TL4£90 dg3uVUT WMa
~=HLINII==NHOS ANTG=-UV0 T VM 1--uV0] UMd-===—cmcmeeac(Y J=tt===d3S(j=sm-mmmoccmecucygAl=====21-~T 1>~ 3Lln OVUTI===dhis=-~-
go00000 080000 1149400 0gt000 : FUELNOD TumaGh *206°9c 4T

goo°ee
000°*1g
000°0g
00g°62
000°9e
$o0° ¢
000°9e
000°s¢
uoo°se
000°¢e
00u*ce
000°1e
goucoe
G00°ot
ugg*wl
ooo° 41
Gou0*97
000°s1
000°%T
0o0°gT
poo*et
06011
goo*ot
06oce
coud*e
0000°2Z
6000°9
g000°s
g00g°n
goo0°g
gao00*e
6aoo°y
0000°e

S 338930

aVin 2800

H-19

17302500 Rev. A

mdino JOOdINOD IO swreun TJWD=N

TdIND 2143 0}
uonye(rdwod "TOOdINOD € swaorred TdND=V

aasym

(TdIND=N “TdIND=V)TVIAOL
:paed 103ju0d SuImoloy
a2y} Sursn una sem uonjefrdurod TOOJINOD SM.L

002100d90
00730049
000700d2
00600043
0608000dd
00200043
00900040
00500040
00400043
00£000dD
60200040
00700042
00000043

*10000 39vd 24740770 31vQd °*6S°T0°2T 3KWIIL

— ——

uoryeridwo)) jo ajye(pue dwr]L

ON3Izz222
$ S 09 I 8010 W3LI
$ 0T H 117 W31I
NI9382z2##
$ (117) 80lc
ON3#T22
$ 0T H 4008 W3l
2 S 09 I BWAN W3LI
$ T H I0H W31l
NI9362#T##
$ (3008 = BKNN ¢ T0H) 9308

wreadoadqng uoroung

ureafoxdqng aanpasoad

* 9NILSIT 323N0S #06ASd 0°T NCISH3IA ¥3WIdW0J TVIAGF S3Ix3S

e
uorsaap Jayrdwo)

$ Wa3l

J0dd

203¥d
$1YVLS

17302500 Rev. A

*£100
*2100
*T100
*oto0
*6000
*go000
*4000
*9000
*5000
*%000
*g£000
*2000
*1000

o
6009 203 S
ot

8p0o 103(qo 8y} Jo UOTIEDO] A1 OWHAAD =€
sweu weadoad OWHAD=N

TdIND 214 Ut TOOdINOD
ayj 8ursn uoppejrdwod ayy waoyaad 1dIND=D

apod j03lqo fo)

aJaym

‘OWHAAD =9 ‘ONAAD=N “IdIND=€ ‘O“IVIAOL

ipaeo

1ox3u0d Juimorioy ayy Sursn una sem sweadoadqns
pue wexdoad urew ayj jo uoryeiidwos yojyeq ayl,

*10000 39vd

24720730 31va

0062200AQ $ WI3L

00T200AD ¥ IN0 1NndinNG LNHS

000c00AD ON3zz2#2

006T00AD § (S 03 YHET INO 1Nndino

008TLO0AD $ (/V/) UN IN1 J1

002300A2 $ (31S)8010 = INI

009T00AD $ (01S=V*¢(1)HT) D308

00ST00AD NI9382#c##

00%T00A0#7 NOISA3ANOT J1S 1S3L #2 $ 02¢T¢T- = v u04

00£T00AD ON3z#T#2

002T00AD $ (H ¥0¥Y3I)HOT 1IN0 LNdINO

00TT00AQ $ (/¥/) UN INI 41

COCTOOAD $ (I0H)E040 = INI

06000A2 $ 0K INO 1Ndino

008000A2 $ (I0H=V ¢ (H)HT) 2308

004000AD NIS382#T2#

009000A32¢ NOIS¥3ANOD HLII¥ITTOH 1S31 2% $ 02¢TT- = v o4

00S000A0 $ LN0 INdLlNO N3dO

00%000A0 $ INdINO (XO)A 82T ¥ 0 W LIA0 3114

00£000AQ $ S 81 I INI W3LI

0020C0AD $ 0T 1 J1S KW3II

00TO000AD $ DT H JCH W31I

00CBOBAZ ## S3UNC300¥d NOISEIANCD 40 1S31 #¥ $ L¥VIS
°60°20°2T7 3WIL * INILSIT 30MN0S +06u¥Sd 0°T NCISHIA ¥INIdWOD TVIAOC S3Ie3S

*g200
*2200
*1200
*02o0
‘6700
“8700
*4T00
*9700
*5100
*H100
*€T00
*2100
1100
*07100
‘6000
*go0cC
©4000
*9o0o0
*spoe
*4%000
*£000
*2008
*7000

000S 303

H-21

17302500 Rev. A

2xfos 9x1 20922 142000

IX X8 TT.0T 122000
H HOT= 2¥S + 1220000278 pzeooc
v 1vs 0220009 + 6220000378 0c200C
ON 0009% 29200¢C
v 9vs + 622000091s 43200¢C

65 9XW ' £49¢% l9200¢C *.0000
1-0W303/8T°0/2T G4A + £920000000 992006C
*oIAOr ry X 000C0000T) 99208C
ON coosH 592000
ON 000SY 592000
0920009 1TvS + 0420000775 592000
* AULNED ry X 00000000TO 492000
9£20009 TS OW3G) + 9£2000077T9 %9200C
0/81¢ OW300I2/2% (QdA 006000055554 T5T1504%080 €9200C
100709 Q4A + 00000000000000000000 292000
L££064828TT51=/08 G43A + 4£200000000000000000 ¥9c000
8=/09 Q4A + 1£200000000000000000 O09cOOC
8=/09 Q4A + 1£200000000000000000 292000
S YOUYI HOT=/09 QdA + %£2000000000000000080 952000
1n0/709 Q3A + 000000000000000000030 552000
19522T41£2T4%=/09 CQdA + 0£200000000000000000 %S20CC
0=/09 Q4A + 1£20000000000000C000 £92000
0=/09 G4A + 1£200000000000000000 292000
H JOY¥I HOT=/08 GdA + 2£200000000000000000 TS2000
100/09 G43A + 000000000006000000000 052000
19622TL1£2T4=/09 (0O4A + 0£200000000000000008 Z%2000
0=/709% Q4dA + Tg200000000000000000 9%2000
0=/09 Q4A + T£200000000000000000 992000
T0H/709 Q3A + 222000C0000000000000 %2000
1n0/s09 Q4A + 00000000000000000000 £%2000
195221L3€2T49=/09 O4A + 0£200000000000000000 2%200C
100709 G43A + 000000000006000000030 T%200G
£TTIHTSEIHSL6=/09 QdA + 92200000000000000300 (0O%2COC
0709 Q4A 0000000C000000000000 ££2000
4N0/8T¢ INdiN0ILs2h GdA + 00000000%252024925247 9£200C
LEE0S5L828TTST ViIVO T0000070000092000000 S£2000
S ¥OUN3I HOT viva §569£25592247222250595 %g20C¢C
1 Vot viva ©265665549555565955554999 ££2000
H ¥0¥A43 HOV viva 66560715592247222260485 2£2000
6 vivo 000000000006G00000000 F£2000
19522141£2Th vivd T0000070000090000000 0£2000
H V0T viva 07595565555565555955595 222006
€TINTSEGHS6 VIV 1000002T9€H%T91000000 922000
S06050505050505050508 Yivo 1S 606050504506050505040 £22000
V0T vivag T0H £665655956599555555495 222000
627 Ss8 Teooce
2V 2ss8 00000000000000000000 S000GE
62T44T421NdIN0/09 GJA + 22200000000000000000 %»000G60
4T+421NdIN0/709 Q4N + 12000000000000000000 £00000
4T+21NdIN0/03 Q4A + 12000000000000000090 20000¢C
LT4340d1IN0/8T80/92°T/9T Q4N + 12000007000G00%00000 TOODGO
1 Zss8 Z10dLN0 ocooooo0000000000000 0QOOOOC

SONVY3d0 do0 q38v1 vid0 NOILVI0 ANIT

*£0000 39vd : 24720770 31VQ °*H1°20°2T 3ANIL OW30D + 3003 133r80 2063Sd 0°T NOISY3IA Y3T1ILWOI WIAOr S3IIx3S 0009 3ad

—J
swreN urexSoad

A

17302500 Rev.

H-22

*40000 39vd

UTY}T4 PaJBIOSp UOIIOUNY ® S® ABM aUres ayj
UT PauInjad jInsad ayj} yjim uorjouny e sy 1
‘1ojoweded ndino ou sey gOd weadoadqng

24720770 31va

X

33%33G¢
T-0W302/81¢4T/2T
3308

v$33308
8330308

2x‘o8

X

1 HOT=
v

v

(3
0420009°TX
9X-0X

W

T+1X

Ge

v
1-0W300/81¢2T/21
*oIAOr

4920009
90£0009%0x

2X=8x

0X=-TX

INI

69

X

‘wreadoad urew oyy

v
1-0W303/781¢11/21
d01d weafoadgns 9noaxy w———————— g0 1Q

qg0Ld weadoadqns
103 aajowreaed jndur 810}g ~——————y$$8010

13

T0H
1-0W300/8T¢07/721
*0IAQF

2920009

T0H

oaag weadoadqns X
wody 1s1owreard ndino yo1eg =————— 3333308

T-0W3Q3/8142/20
23ad 3mMOeXy =————————— 330§

oHqag weadoadqns

e — % M E o]
103 saajawreaed jndur 81038 8$82308
SANVY¥Id0

©S67%20%2T 3WIL 0k3GY + 30600

9x8

ivs

PET) +
ry

ON

ON

9vs

Vs X
8x1

LX8

evs +
s ¢T£0609
CN

ON

9vsS

ON

9XKW

1d

™I

9¥s

9xs

0xs

Tvs 90£0009
Gd4A +
-]

Tvs +

0XI

Z2xg

9vs

oxv

0X&

1v¥s

GdA +
ry
ON
ON
EAA
ON

9xX&
Tvs
ada
ry
Tvs +
9vs
ON

9X&

Tvs

a3A +
rd

ON
ON

gys

2¥S X

+*

d0 136V

103rd0 «06¥Sd 0°1

11307
X 0000000TTS
£520009700
X 0060000070
0009%
ceoon
X 0000000470
0000000475
2esee
11207
££20000275
+ 4220000¢87Ts

+ 62200003718
G009%
£49¢%
+ 02200072¢€0
9078
079%g
7000007922
%200000072
+ 6220000179
£92000%700
X pooo0oGOTO
420000175
+ 90£0000020
2s0Lg
012¢T
+ %22000091s
£4012
11007
+ 52200087719
£92000¢£100
X ¢ocoooooTo
00094
0009%
X 000000097Ts
0009
T1307
+ 2220000715
gg9ccoceree
X ctgéopooeato
ch2r00011s
+ 22200009715
0009%
11907
X 00600J0TTS
£520004000
X 0coQoosato
00094
0009%
X 00000009Ts
06000000275

vido

NCIS¥3A d311dW0J TVIAOQ S3ITI¥ZS 0009 202

9T£00C
9tgo0c
s1edec
ST£00C
w1£000
h1e000
higoocC
£1£000
£7£000
£1£060
21e00C
2Te00C
T1¢000
1712000
112000
01£000
01£000
07€006
208006
40:0060
408000
90g000
90£000
s0g0oe
a0€£000
h0£000
hGe000
£0g00¢0
g0gooc
£0£000
¢0g0u0
208000
cagooo
T0£000
Togoc0
oogooc
00g00¢
gogooce
42200¢C
442000
422000
922000
9.2000
542000
szzo¢00
%4200C
hi200¢C
hizo00
£22000
£42000
242000
242000
242600
142000

NOI L¥3GT

*h1000

*21000

‘T1000

covo00

ANIT

H-23

A

17302500 Rev.

°50000 39vd

24720730 31vQ

*s1°20°2t

#sxx2x 37IdHW03 01 SONOJ3S S26°

OW302
1-0K303/81¢82/2T
*GN3
T-0W3093/8T¢12/27
*oIAOr

1920009
21£0009°1X

9X=-0x

Tv

T+IX

02

v
T-0W300/8T%6T/27
*0IAOP

4520009
$2£0009°0X

2X=-9X

OX-TX

iNI

1]

X

v
T-0W302/8T°8T/21
8010

v$$6010

J1s

SANVY3&0

3WIL Oow3a3d « 3003

aN3

ada +
(-]

G4dA +

Tvs +
d

12,9

avs

9xs

0XSs

Tvs 52£0009

Q4A +
ry

Ivs +
L-¥4

0XI

[2.48:}

SvsS

oxv

ox8

Tvs

adn +
ry

9vsS X
9vsS

ON

do a3sva

133rg0 «063Sd 6°F

«»SOYOM 82€2030 SI HLIINIT WVIO0¥da»

£92000£4200
X 0gogoo0gpOoT0
£920005209
X 0000000070
192000011S
+ 2T£00072¢€0
90148
019%5
7000037922
%200000072
+ 6220000715
£92600£200
X 0000000070
%62000011s
+ 5c£00000E€D

+ 5220000778
£920002200

X 0800030070
0c0000091S

+ £220000971s
0009%

w130

NOISY3IA u3TIdW0I 1VIAOr S3I¥3S 0009 203

TE££0060
1££0G6C
ogg000
0E£000
428000
428000
92£000
92£000
92£000
s2g00¢c
622000
heg000
%2€000
g2g00e
£2£000
2zgo00
22£000
22£000
Tee00¢
12£000
12¢00¢C
02£000
82£000
47¢000
412000
97£00¢C

NOIL1V301

3¥0J 40 SO¥OM 8053090 UIJYINDIY NOILVIIDWOD SIHL swawae

*£2000

*12000

‘61000

*8T000

INIT

17302500 Rev, A

<+
N
1

s

*J9joureded jndjno
3uo pue saajowreded jndur oMy yrm
wreadoadqus aanpasoad ® st HIAT

*T0000 39vd 22/720/10 31v0

006%0008 3 Wa3l
00840008 ON322T#2

00.2%0008 GN3z#lizz

00940008 ON3z28%2

80s%00Q8 $ N3NL3Y

0oHH0008 $ ¥371114 = (4008) ($v403)1I8

poghooCe $ NuNL3y

002%00G8 $ 0 03 v 41

gsotT%0008 NISz82#0#2

000%0008%% SS3AddNS 0YIZ ## $ 0 D3 GWNN 41

ogegooa0s $ 0NB = 8WNN

008g000€ $ 0T » OND - BWNN + 3SVE = (4008) ($9°VvE)1lE

002£0008 $ D1/8WNN = 0OND

ooogooas NI9Z8#z2i%#
00SE£0008%2d0071 NOISB3IANOGOEZ $ D¢9-%45 = v ¥04

00%€0008 ON3z22##

00ge0008 ON3 252
002£00082#0¥3Z J1S#2 $ 8% = 3sve

coteo008 ON3z2#92¢

gooe0008 $ NIYNLIY

ecoe20008 $ (918 001)L0T = 4Go8

00620008 NI938#%9##

0oz20008 $ 6666666666 ¥9 BHNN 41

009200082 SHNVIE J1S%2 $ (506050505050506050)0 = ¥31114

opscoo08 NI9382#5¢##
00%20008#2NOISYIANOD J4S 3IWNSSV = (HIHT LONz# $ 1 4I¥0

60g20008 ON3#2E#2
00220008##SHNVIE HLII¥3TI0H##$ (5655559566665655655)0 = ¥3NTI4

0072000820832 HLI¥3ITNI0HzZ $ 22 = 3svs

gooecoogs ON3z#hz

00670008 $ NINLY

oostooas $ (918 o0L JHOT = 3J0J8

00270008 NI938zhez

00970008 $ 6666666666 ¥I GWNN 41

00s10008 NIO38#2£#%#
00%T0008#2NOISY3ANCD HIIN3ITI0HZE $ (HIHT D3 10K HLI3JI 2#2##
00£T0008£23NTVA 31N10S8V#2 $ (/8WNAN/) = BHAN

002700084 2W304 ¥393INI NI ¥371MI322 $ S 09 1 43114 W3LI
00710008##04¥3Z 3SVE NOIS¥3IANOIZZ $ S 81T I 3Sv8 W3LI
00070008#2IN3TIOND YOI AUVUOJIWILZZ $§ S 09 vV OND W3LI
00600008#£031¥3ANOD 38 OL ¥393INIZ# $ S 09 I GWAN W31I
00800008##031S3ND3Y NOISHYIANOD 40 3dAizz $ T H T0H W3ll
00200008227V33LIN INdLNO%Z $ 0T H 4038 W3LI

009000082% G3L1S3ND3Y¥ NOISYIANOD 40 3dAl 3IHL ##
00s00008%¢# 30 SXNVI8 J0 114 1437 HAIM GITSIASNC LHOIY 38 1TIM ¥3IBWAN 3IHL 22
00%00008#203N3NLI3Y 38 1IN 2918 001 2 SLIOI0 N31 NVH1 ¥31v329 SI ¥38WAN JI #2
00£0000822 N3XVL 38 17IM 3NTVA 3INTOSBY 3AILVSIN SI ¥3IBWNN JI #2
00200008%2 G31S3ND3¥ SV IVE3ILIT O4S U0 HAT¥3TIOH OL ¥IEWNN V3I9IUINI 1UIANOD 22
00700008 NI936z21#2

goooco0s $ (4008 = BWAN ¢ T0H) 0308 J0¥d 1yvis

*9T°20°2F 3WIi

+ ONILSIT 3J¥N0S 206uSd 0°T NCISU3IA ¥IATILWOI IVIAOCL S3I¥3S

*0s00
‘6400
*g4h00
*Llh00
*gho0
*Sh00
*H400
“E£E4%00
*2hoo
*I%00
AT
*6£00
“eg00
*le00
*9g00
*5£00
*Heoo
‘€200
*2e00
*T£00
‘oco0
*6200
*g200
*2208
*g9200
*5200
%200
‘geee
*2eo0o0
*1200
*0zo0
*6700
*8T00
*L100
*9T00
*S100
%100
*£T00
*2100
*TT00
*0T00
°6000
*8000
*4000
*9000
*sg00
*H000
*£000
*caop
‘1000

0009 302

H-25

17302500 Rev. A

*£0000 39ve

24/40/70 31v0

*hege2o2ey

IWIL

3368

s8

Ix-£X

2x‘o8

6666666666=
606060505050505058=
$%00009°0x

T

S%00009

<8
X
he
i2
6665856565555555568=

3308

28

ax¢08

918 00L HOT=
££00009°¢0X
9X=hX
6666666666=
9£00009¢€X

£8

0X-1TX

65

SE6HL42X

J0H

X

£8

onb

¥3INIS

3sva

BHAN

3008

2027 24070707/09
J306/83¢ 330872724
H8£9.7090%26682542
B919T20509292T£505050
S05050505050505048
558659596565565555558
9I8 001 HOT
00po0000007
6666666666

802487~

H Vol

Vel

Vot

SONV33d0

+ 3003

i¥S
o0XI
X7
£VS
cvs

L-¥4
0Xs

ON

ON

D3

ON
NS
LX8
VA 1S
LXS
Iv¥s

ON

ON

o3
Vs
4x1
SVS

ON

T
O0XI
hvs

N

ON
9vs
9xg
134
£XS
2vs
oxg
Ivs
98s
s8Ss
Hys
£8S
288
adA
GdA
viva
viva
viva
viva
vivao
vivo
vive
vivo
vivg
vive
vive

d0

103180 #063Sd 0°T NCISY¥3IA ¥3NIgW03 TWIAOFM S3I3S 0009 200

S£00609

££00009

3308

0H
1038

138v1

+ 1700000€7%s
+ 570000027S
+ 6%006000€0
1C000000TL
6009%
0o09Y
+ 9%000000%0

0%43s
££00000472
+ H10000077S
00034
0009%
+ 12000000%0
0el9s
s0s22
+ £310000057S
0009
+ £gg000CeEo
34048
+ 1100000475
+ 9¢0000£T80

TL0T2

2922z222¢2¢
+ 7000000278

Ti007T

0£194
+ £000000979

+ 50000004719
+ %000000%T9

+ 2000000£79
+ 0000000279
GEFESEHMEGGQECNEENEEE
+ 12000055559949£0504020
oopoocoooooO0000SE22T
+©1914050%2421£4905040
50505050505050505000
§466656555559595956500
20TT20894T4T42655545
000292206%211T00000000
442192204%21TT00000000
49222222422242222228
0766565595566555555349
§6665556555659595559
§4655955555555555555

wWid0

040000
0%0000
0%0000
480000
4£0000
9g0000
9£0000
S£0000
S£0000
S£0000
2£0000
2€0000
4£0000
%£0000
££0000
££0000
2e0000
2£0000
2£0000
1£0000
1£0000
T£0000
ggoooo
pgoeoo
0g£0000
220000
2200080
92000¢C
92oonoc
920000
920000
s2000¢0
se000¢C
420000
%20000
%coooe
£2000¢0
g£2000¢0
2c0000
220000
Teoooc
020000
4170006
910000
S10000
10000
£T00C0
210000
110000
0T0000
L00000
Too000
00000¢C

NOI1lvU0T

*£2000

*22000

*0c000

‘61000

‘%1000

NI

17302500 Rev. A

©o
N
1

faot

*90000 39vd

24/20/%0 3ivo

*s2°20°2y

INIL

J3a8

SXalX
TX*L8
HXaTX=
09-+18
ox¢.8
65-+18

s8

1

J308
250000918

£900009°¢4X
28
oX+4X
TXa2X
£X¢ 48
ax=TXx
£X+4X
€

£8

X
IX+LX
9+£X
99
sxé.9
wx¢.8
48
EXaZX~
ox¢l8
28
axX+2Xx
TX/EX
09-+18
sx408
p1:]

9
©8£927090%26b82642=
£8

%S

sHh0C009

“8

Y

J308

28

X
HT9TL050%2492125050508=
£4900009°0X

SOINVa23d0

+ 3000

X8
248
o0xe
488
X1
488
4vs
OXKW
b3
N
ON
N
Svs
9xe
©X8
XV
£XI
SX1I
L3 8]
PA R
hXg
£XI
89S
PA R
X7
sxn
£XS
oxe
exy
£VS
TX1
HXd
488
£Xd
2vs
OXk
Tvs
svs
ON
ON
18S

ON
ON
Lk]
ON
PA
LXS
v3
9vs
9x8
hvs
Id
ON

d0

103r60 +06¥Sd 0°T NOISY3A ¥3INIdWOJ TVIAOL S3Iy3S 0009 203

4500009
+

9900009

§%00009
$%00009

£400009

138v1

92111
Tiege
TH097
£04222T419
82122
YCLLLLTLTS
05498
T00¢Eh
12000000%0
+ /500000790
0009%
+ £9000027€0
02995

0£296
12007
L2898
9000008429
09235
sii22
%1692
02592
2g0sT
0l2se
02895
s219¢
Tenhy
£0422:1219
s6gL2
09295
9005
+ 2700000714
08594
00094
00094
9900000779

0900000272
1co00000%0
0299s
45307
9T00000%TS
+ £40000C2¢20
0g0sh

Wwi30

190000
190000
090000
0s000¢C
090000
450008
450000
450000
950000
350000
650000
$50000
550000
450000
4S00CC
50000
©50000
£500¢00C
£50000
£50000
£50000
250000
2apoece
250000
Ta000¢C
ts0000
190006
1s0000
050000
0s000¢C
gaoooe
g0s000C
440000
4490000
Z%0000
940000
940000
9%00C0
S%0000
Sh0000
4%0000
a%0000
%% 0000
990000
990060
£4%0000
£4%000¢0
£€90000
2wp00cC
2ho0ce
24900060
TH0000
TH0000
090000

NOILv307

*H%000

*6£000

*0h000

*8£000

*££000

1000
*ogooo

*42000

3NIT

H-27

A

17302500 Rev.

°50000 39vd

24720710 3iv0

*sete0°et

s*asax 37IdW0J 01 SONOJ3S 250°T

-=-=- 3¥0J 40 SQ¥O0M 8255090 O3AIND3Y NOILVIIAWOD SIHL sassns

aN3

ON

ON

b3

940000918 39

9-418 18S

ON

03

VS

EX+IX X8

0x428 £xv

SONV¥3d0 dO
INIL 03G8 + 30090

*2SQYOM 6590000 SI HIONIT WYYOIOUdws

6009%
00094
+ 12000000%0
+ 9H000006790

£900009 TL222271719
00094
+ 12000000%0
02295
£1227
gi££2
q38v1 wid0

90006
%9000¢C
%©39000C
£90000
£90006C
290000
290000
290060
190000
t9o000C

NOIivI01

433re0 »063Sd 0°F NOIS¥3IA ¥3IVIdNOJD TVIAOQ S3IIN3S

‘gq00C

*s%000

3NIT

8009 202

17302500 Rev. A

©
N
J

s

H-29

00eH001a $ W33L *ehio

00T%0010 ON3z21322 *Th00

00040010 ON3zz2#2 *0n00

0060010 $ 0T » VA = WA *6£00

00820010C $ WA « GIH + 8010 = g0lQ *dW0d 8200

00280010 $ 1S31 *lg00

009g£0040 $ 01 » WA = VA *9g00

g0sg004iQ ON3##92¢ *5£00

00%g£0010 $ dWOJ 0409 *Heoo0

00g£0010 $ 8% - QW = GIH *££00

002g0040 NI938#2922 *2e00

00T£0010221¥3ANOD - UIBWNN JL1S#2 $ 89 ST 07K 41 *1g00

go00£0040 ON3z2Sz22 *0g00

00620010 $ 1S31 ‘6200

00820040 $ 0T « WA = WA *9200

00420010 NI93822s#2 *4200

009200102¢dINS - JINIWNN LONZ2Z $ 8% ST QW 31 *9200

00s20040 ON3zEh#2 *5200

00420040 $ dW0J 0109 *H200

00g20010 $ 42 - 0H = QM *g200

060220010 NI93gzzhaz *c2o0

00T200L0%#1¥3AN0OD - ¥IGWNN HLIINITIOHZ# $ 48 ST GIH 41 *1200

0002c040 ON3#2£22 *g2o0

goet0010 $ 1S31 ‘6100

60810010 $ 0T » VA = WA *8100

08270010 NI938zze#¢ *LT00

009T001022dI%S - JIYIWNN LONzg $ 42 ST 07H 41 9100

00sT0010 $ (LI ($9°v$)118 = OIH *st08

00470040Q NI9s8z#2## *%100

00£T0010#2#S31LA8 HINOHL d0CI## $ 0°9- w5 = y 04 *£T00

002700102 ¥OLOVS NOILVOINGILINN 3I2IWILILNT 22 $ T = WA *2T00

00TT001G##LNdLIN0 IZITVILINI®Z $ 0 = 8c10 *T100

00070010##03183ANOD INI3Z8 31A8 ¥0J AVVUOJHILZZ $ N8BT I 0H W3LI *0t100

00600010#2 ¥0LOVI NOILVOINGILINW ¥O4 AYVHOGWIL 22 $ S 09 I VA W3LI *6000

008000102 ¥YILIWVAVA LNJLNO NOILONNS ## $ S 09 I 8010 W3LI *g000

0020001G#% IVY3LIT INdNI 22 $ 0T H 1I7 W31l *i000

00900010%2 H1I¥37170H v IAVH LON 00 HOIHM ONNO3 3¥V SU3LIVAVHI ANV 41 k24 *9000

‘wreadoad Surjjes 00s000102# 39VSS3IW ON HLIM 03ddINS 38 1IN A3HL 3NTVA OINIWNN 31S ¥0 2 *S000
Y} 0} SUIN}AT JOJIUOD UIYM 006%0001Q232 1VHA0S AYUNIG OL LVHWAOS 2 *4000
d0.Ld 21qerrea aa89jut Jo onjea 00£00010%2 J0LS ¥0 HLII¥3TIIOH NI SUYIGWNN L1U¥3ANOT 0L NOILIONNI V SI 8010 ## *‘£000
oy} ST Jnsad ay], ‘urexdoadqns 00260010 NI193822T#2 *2000
uorjouny Je98ajur ue 1 GOLA gotvooola $ (1I7) 80.1C J0¥ud 1¥V1S *T000

*310000 39vd CL/L0/%0 34V0 *£2°20°2T 3WIL * ONILSIT 33UN0S +06¥Sd 0°T NOISN3A ¥IVNIMWOD IVIAOC S3Iu3S 0009 202

17302500 Rev. A

*£0000 39vd

24/40/7%0 31va

*sg°20*2T

TH00009

28

IX+8X

£

SX+5X

28
0£00009¢1X
OX+4X

gn-

£8

dH0J

€8

exX+dX
4200009°¢7TX

OX+4X
L8~

14900009
28
0X+£X

£

£X+EX
28
¥200009°0X
X+ iX
£8

9

£Xx0X
Ixé18
42~

S8

9

A}

he

28

0

1

9-

117

801a

G

VA

2021 24070707709
801G/91¢ 80LGL72H
voT

SONVY3d40

ELDHY 8014

v3
ON
9vs
SX1I
sx1
X1
svs
d
TXI
axs
hvsS
ON
ON
o3
PA N
X1
Id
ON
1291
0xs
ON
ON
b3
9vs
9xI
£Xx7
exI
£vS
d
0XI
PA 2
XA
iX8
£x1
2xs
s
OXk
ON
ON
ON
AN
188
9vs
X
9xs
s8as
11N
%8s
£6S
28s
QdA
a3A
vive

d0

%200009

1200009

%T00009

801Q
117

a3sv1

+

+

+ 3000 123r80 «063¥Sd 0°1

+ T4000000%0
00094
02999
1599¢
£050¢

+ 0goo000T2El
0479g
LT22410072
0gN"9s
0009%
0009%
+ S£000000%0
0£49%
24498
+ $2000072¢0
00094
04198
2822220072
0009%
ooosH
+ T%00000040
0299¢
0£99¢
£0£02
££09¢
0eg9s
+ 12000002¢€0
2209¢

w%l22402T2
08195
90a¢eYy
00094
gogsH
000Y%
09495
S900000TTS
0299s
80sch
1000000972
V2224240919
0000000579
+ 1000000919
£000000£79
+ 2000000219
SEEEGENESSGE2NECHREE
900000556555204TH2%0
§56669555996555595555

wid0

NCIS¥3A ¥3INIW0OD TVIAOCr S3Ix3S 0009 202

420000
9206000
92000¢C
9206000
920000
§20000
520000
©20000
+%20000
%20000
®20000
£20000
£20000
£20000
220000
220000
220000
teooo00
120000
120000
gzoooe
020000
gcooos
410000
470000
470000
410000
970000
910000
970000
ST0000
ST00060
S10000
sTo0o0
h10000
h10000
h10000
£70000
£10000
£70000
£70000
2roooo
2treooc
210000
110000
Tie000
070000
0T 0000
400000
200000
EL
spo00C
000000

NOILv307

*82000

*%2000

*£2000

*6T000

‘87000

*stooe

*11000

*2ro00

NI

17302500 Rev. A

(=4
«
1

Jas

*%0000 39vd

22/L0/%0 31va

*sgc20°2t

sesnes 3TI4W0T OL SONODJ3S Gu8°

8010

123
8010

410000918
98+18

400009
28
0X+1X

£
TX+TX
]

dH03

£8

OX+4X
££00009¢2x

TX+9X
86~-

SONV¥3d0

3NIL €010 » 3002

N3

ON
LE]

9x8
Tvs
ON
39
188
ON
ON
qvs
A N
9XI
oxn
X1
sx7
2xa
9Xd
axg
hvs
TXI
0Xxd
£vs
avs
ON
B3
SvsS
9xI
X3
0XI
Ivs
ON
ON
03
PA
X1
ad
ON
2xI
TXS
ON
ON

d0

133r80 2063Sd 0°T NCISAIA ¥31Id4W0J IVIAOC S3IIxu3S 0009 202

00009

dW0J

££00009

0go0009

138y

0009%

00094

[e

3¥0J 40 SOYOM 8905090 O3¥INDIY NOILVIIAHWOD SIHL awansn

#2SOYOM GHH0000 SI HIIN3IT WVAOOUdwa

£40000
£50000
£90000
¢%0000
290000
2n0000
THo00C
Th0000
TH0000
0%0000
040000
0%0000
050000
280000
4g0000
Zg0000
4£0000
9£0000
9£0000
9¢0000
920000
sgoo0¢c
s£0000
$£0000
G£0000
%£000C
hgo0000
4%£0000
ggoaoe
££000C
£€0000
£€06000
220000
2£0000
2£00080
1£0000
180000
Teo0000
ggoooc
0£0000
0£0000
z2000¢C
220000

+ 1000000775

+ H1060000790
97199

goo9%
0%99%
02298

*8£000
*6£000

*2£000

*ego000
02995

*%£000

*££000

‘62000

wido NOIivd07 3NIT

@
i

17302500 Rev. A

‘Tenuewr STy}
Jo aoejaad ayj ur peyst] (uonoag dejy Japeo]) [ENUER IDUIIIIY
waysdg SuryersadO HJODS @Y} 0} J2J2J ‘UOIIBWIOFUT [BUOTIIPPE IO

*gOLa weafoadgns uorouny 03 Jojaureded ndur ayy Surssed a0y jurod Aajuy

*I19pJo X1Jyns Jajouwreded pue J9pJO SSoIppe AU} UL

20UaJFIIP oY} 20UdY ‘HINAN PUe "TOH ‘AIqDH™ s1 weadoadqns ayj uryrm
SUOTIRJ®|DOID BIBP JO JOPIO YL "D XIS 4ADd Pue g X1jyns gWNN
*y x13gns sey TOH ‘snul ‘AdD9 pue GNAN “IOH ST sIajowrered

JO aapao ayy ‘DHECH J07 uonete(osp urexdoadgns ey ur ‘ejdwrexe a04
‘ureafoadqns ayj Jo £poq 9y) UTY}IM JnOO0 sJdjoweded JBWIO} oY) I0]
SUOT}BIRIOSP BIBP dU) UYOTYM UT J2pJao ayj uodn juapuadap st weadoad
-qns 9y} UIY)IM SSIJIPPE dATR[ad 9y], -uorjese(doep wreadoadqns ayy
ur pey1oads saajoweded [BWJIOJ 9y} 40§ 1y31a 03 3o} woay paudrsse
aae D a0 ‘g ‘y soxins ayJ, ‘suwrexdoad 3urjieo ayj pue DHEAL
urexfoadqns usomiaq sasjouresed Jurssed aoy sjurod Axjuyg

S3IN3¥343¥

155400
214200
20%200
4319100

255400
02%200
£0%200
029700

TeH000
+©9£000

£29%00
22££00
£14200
51200
©19700

LTH9000
00%000

o2naoe
T0%000
9Th000
%2€£000

£TH000
T4£000

HIH000
2.lg008

STH000
£2£000

-=-NOWKOJ---037138V1-~

. Nme A

$81NdNI
SHNIM3Y
$81idino
$dSHIVE

$81NdNI
SHNIM3Y
$81d1N0
$d4SX3V8E

0W302
0W309J

$81NANI

$01S
$WNIM3Y
$61d1N0
$dSX3vE

0W300
OW303

0W3Q2
OW3a9d
CW302
OW3Q9

OKW309
OW302

OW309
OW30a2

OW303
0W302

Thecal

Cman b

994000 IW3LSAS
GgL000 *H3L1SAS
h2L800 $WILSAS
60s000 3KWIALSAS
£99000 *H3ONBY
259000 *d0l1s
%%9000 $11x3
229000 *GN3
9093000 *AUINGD
95000 V64139
435000 v$s801a
525000 8010
415000 *goia
284000 0880308
hehooo 9$30308
££4%000 vsdi0e
£6%000 Js08
cE%a00 *J308
getvooo zindino
49£000 OW300
cgrooe *0W303
-SS3¥J0V=-=-=~--AY¥IN3~~-
29%h00 $81NdNI
Lh0EQD $01S
4549200 $0IAOr
%G4200 SHNIMIY
2£1200 $8Ld1N0
s09700 $d45X%0v8
209000 $W3LSAS
£95000 V€139
215000 6010
2£4%000 9308
007000 OR303
~$S3UAAY -~~-HVII0xd~

964450 ¥3IAVOT VM4

AOAL MY N eceIUT v

17302500 Rev. A

-32

h%0200 9£4700 £22100
941100 112700

249200 995200 296200
1521700 9¢2100 ®12100
148200

020200

522200
oveioen

£29000

295200

h02t00

09g£200

301200
s00200

495400
984200
£22200
902700

Ieneoe
091200
S%9700
£94000

459200
veezno

002700

920200

96£200

940200
992100

%554900
924200
402200
197100

429200
0£0200
ST£Y00
045200
222200

£69700
700700

455200
§02c00
8.LT00
£99%00
0%9100
TTLi900
159200

£££200
gcte00

0E%000

429200

£34200

490200
054700

429400
929200
00ge00

Thh200
949700
CELTOO

914400
§99200
157200
097700

hESh 00
0499200
%©24200
297200
S£9700
400700

L4200
4971200
459300
LTE£T00

£65200
102200

SE0700

049%00
hhh200
429100
SEETO00

159400
Lh%200

092200
TH0200

24000
§04000
9.£000
99¢000
g0szoe
£02200
993200

£g£9200

$4SNIVE

$O1NANT
$o1aor
$681d1N00

SWNIMIY
$dSHIvE
$h3LSAS

$81NdNI

$oIAOr
$61d1N0
$H3LSAS

$81NdNI

$o1a0r
SHNIM3Y
$81d1N0
$dSHIVE
$HW3LSAS

SHNIMIY
$81d1N0
$dSN0vVE
$NILSAS

$o01A0r
$81d1n0

$HILSAS

$8LNdNI
SWNIMIY
$d4S40VE
$W3L1SAS

$81iNaNI
SWNIMIY

$61d1N0
$dSHOVE

OW303
OW3090
0W3032
OW302
$0IAOC
soIAOP
$0IAOE

$0IAOr

T£ehn0

95TH00

2T1T%00

02g200

02££00

442800

150200

051400

LETH00
919200

fw64200
2149200
032200
251200
£19702
414700

ShE100
248100

*N¥c0y

UN3°01IS

*01S

*ILINI

10018

*iva

10y

*T0ID
N1TS0d

*oIAOr
CHNIMIY
*8iaiNO
*181ind0

*dSMIve
*134960
MOREEE]
1101
12SAS

<
.
>
Q
[
=
(=]
Ire
N
(=]
<)
~
—

572200

S3IONIY343Y

s0l200

100£00

*U3S £99°400 Ol°*bg*20°*21
*33S sY6*ha20 dd*eg*20*et
*03S L12°%00 dJd*6g°20°2T
OKW300 ON3*6£°20°21
*0W309°sg*20°2T
atuydeq *OW303=840W300=N*1dwI=0¢0¢ WIAOr*£0°20°27T
(IdWI=N¢1dW3=V) IWIAOr*25°T0°27
*2.1°000T9HO0W3CGT°L5°T02T
SE0KW30I°LS°T0°2T
24/40/10 H62ySd £°C«23d00Sas 24/40/10

mdinO weadoad

"HOHRMUM I BONOOD

=~--==STYNYILX3 CGITISILVSNN-=--=-

459200 £499200 $0IAOC 455900 *8LNdNI
649200 T%9200 $0IAOC bes%io *181ndI
1458200 125200 $aIaor h1s800 CHINNIT
954200 429208 $oInOr £34900 *Aor
thhn00 *HAISAS

0£2%00 $8LNINI
0922080 $61di00 2EMM00 *SOMAR
§22260 $81dino cegH00 *I4s0d

9¢%200 SHNIN3Y

icn2an taCuNwa

17302500 Rev. A

H-34

SAMPLE PROGRAMS |

This appendix contains three sample programs which combined with the sample listings in
Appendix H, demonstrate the usage of several types of JOVIAL code.

Sample program one demonstrates the object time compatibility between JOVIAL and
FORTRAN Extended routines. A JOVIAL program calls a FORTRAN subroutine which then
calls a JOVIAL subprogram. Both JOVIAL and the FORTRAN routines write on the file,
declared in the JOVIAL program.

Sample program two is a utility program used to punch a sequence numbered deck. Appen-
dix M demonstrates how this routine may be placed on the system.

Sample program three is a utility program used to punch UPDATE correction cards. The
program scans the compiled file for a specified bit pattern. If a match is found, the field
is replaced by the desired bit pattern., A *DELETE card with the required IDENT and
sequence number is punched along with the corrected card. While thig may produce some
cards which have no purpose, it is more efficient to sort them out than to scan a large pro-
gram by hand to find specific cards. The output shown is partial output from a change to
the compiler to eliminate an entry point conflict between the JOVIAL library and the
FORTRAN Extended 3. 0 library.

17302500 Rev. 01 I-1

PROGRAM 1

JVFTN.CM?70000.T7?7.

JOVIALL{A=CMPY4N=CMPY4.XR}

JOVIALL{M.C=CMPY+XRY}

FTN.

MAP{OFF2} Control card file

LGO.

REWIND{TABEQ}

COPYBF{TAPES.QUTPUTZ

789

START #

' 'COMPOOL FOR JOVIAL FORTRAN COMMUNICATION SERIES''
DEFINE WS '"'bO'' ¢

" edke dedede e e e T e o e e et e e e ek ook e e Aok e e ke sk e e e de e e e ek ek se ok ek ek ek keokek

**COMPOOL FOR JovCoMm''
B R R Rk kR Rk R e R R g S e e e S TR S R L R e S T T T e e
PROC FORCOM {INTGR.INCR.UL.ARAY} $
PROC JOVPRC {FINTGR.FINCR-ARAY} #
BEGIN
ITEM FINTGR I WS S #
ITEM FINCR F

ARRAY ARAY 10 I Ws AN $
ITEM Ful F P 10 %
ITEN MARAY I Ws S $
END
TERM #
789
START

" 'JOVIAL FORTRAN COMMUNICATION SERIES''
"'JOVIAL EXTERNAL PROCEDURE CALLED BY FORTRAN SUBPROGRAM'®
PROC JOVPRC {FINT.FINC-ARAY} %
DEFINE WS''kO"''$
ARRAY FINT L I WS S s ARRAY FINC 1 I WS S %
DEFINE FINTGR' 'FINT{%0%}''$s DEFINE FINCR''FINC{%0%}''s

ARRAY ARAY 10 I ws S $ ''ARAY FR JOV MAIN PROG''
ITEM FUL I WS S P 10 %
ITEM MARAY I ws S $
ITEM MSG H b P bH{ s
MONITOR MSG %
BEGIN

MSG = LH{JOVPRC} $%
FOR I=0.1.FUWL-1 %

BEGIN
IF ARAY{$I%s} NQ FINTGR+2+I % ‘' CHECK FORTRAN SUBROUTINE ‘'
BEGIN ' 'COMPUTATION'"'

MSG = bH{ERR 01} =
MONITOR MARAY
MARAY = ARAY{$I%$} %
END
ARAY{$Is} = ARAY{$I%$} - 1 % ' 'DECREMENT ARRAY ELEMENTS''
END
MSG = LH{EQJPRC} =
RETURN $
END
TERM $
START #
''JOVIAL-FORTRAN COMMUNICATION SERIES''

I-2 17302500 Rev. 01

'"JOVIAL CALLING FORTRAN SUBROUTINE AND RETURN''
DEFINE WS ''LO'' %

ITEM MSG H b P bH{ } s

ITEM INTGR I ws s P 0 $

ITEM INCR F P 1 s

ITEM WL I ws S P 10 s

ARRAY ARAY 10 I us S s

ITEM MARAY I ws S P 0 $

FILE BAD H 20 V 200 V{OPN} VL{EOF} V{LER} TAPE9 %

JFCTST.

MONITOR MSG %
MSG = BH{JOVCOM} ¢
FORCOM {INTGR.INCR-WL.ARAY} &
FOR I=0.1.WL-1 %
BEGIN
IF ARAY{sI} NQ I+l %
BEGIN
MSG = LH{ERR 03} %
MONITOR MARAY &
MARAY = ARAY{I} =
END
END
MSG=EH{EQJJOVIS
TERM JFCTST %

789
C JOVIAL FORTRAN COMMUNICATION SERIES
C FORTRAN CALLING JOVIAL SUBPROGRAM AND RETURN
SUBROUTINE FORCOM {INTGR-INCR.WL2ARRAY}
C FORTRAN SUBROUTINE CALLED BY JOVIAL MAIN PROGRAM
C DYNAMICALLY PRESET AN ARRAY WITH A CONSECUTIVE SET OF INTEGERS
INTEGER FINTGR
REAL FINCR
INTEGER WL
INTEGER INTGR
REAL INCR
INTEGER ARRAY{WLY

Do 5 I=1,WLA1
5 ARRAY{I}=INTGR+INCR+I
FINTGR = INTGR
FINCR = INCR
CALL JOVPRC {FINTGR.-FINCR.ARRAY}
DO 7 I=la.WLA1
IF {ARRAY{I}.EQ.{FINTGR+I}} GO TO 7
b WRITE{9.4}ARRAY{I}
7 CONTINUE
4 FORMAT {22HFPROC ERR D10 ARRAY{I}.IA}
WRITE{L9.10%
10 FORMATL{90H FORTRAN SUBR FORCOM WRITING ON UNIT 9. DEFINED IN JOVIA
*L CALLING PROGRAM JOVCOM AS TAPE9.}
RETURN
END
L7819

DATA INPUT

No input.

17302500 Rev. 01

I-3

DATA OUTPUT TO PRINTER

**% MONITORED HOLLERITH DATA MSG = JOVCOM
:I* MONITORED HOLLERITH DATA MSG = JOVPRC
* MONITORED HOLLERITH DATA MSG = EQJPRC

**% MONITORED HOLLERITH DATA MSG E0JJOV
FORTRAN SUBR FORCOM WRITING ON UNIT 9. DEFINED IN JOVIAL CALLING PROGRAM
JOVCOM AS TAPES.

I-4 17302500 Rev. 01

PROGRAM 2

SEQD.CM?D000.T2OO.

JOVIAL{F N=SEQD}

LG<\),. w Control Cards

769

START & '' READ A DECK. PUNCH A NEW DECK WITH COLUMNS ?3 AND 7?4 OF THE

FIRST CARD GANGPUNCHED IN THE NEW DECK AND COLUMNS 75-80
SEQUENCE NUMBERED BY 100 '
ITEM BASE I 18 S P 100 $
ITEM FIX A 60 S P 100 %
ITEM GP H 2 %
ITEM CARD H &0 %
ITEM DUMMY H 90 %
ITEM BLANK H 10 &
OVERLAY DUMMY = BLANK . CARD %
FILE IN H 32000 R 129 V{0OK} V{EOF} INPUT
FILE PRT H O R 129 VL{0K} QUTPUT s)
FILE OUT H 32000 R 129 VL{OK} PUNCH %
OPEN INPUT IN %
OPEN OUTPUT OUT s
OPEN OUTPUT PRT %
OUTPUT PRT LOH{1 } s
INPUT IN CARD %
IF IN EQ VLEOF} s

GOTO QUIT %
GP = BYTE{$72.2%}{CARD} %
NEW. BYTE{$72.2%}{CARD} = GP %

BYTE{%$?4.b $}{CARDY} = BDEC{FIX} %
OUTPUT OUT CARD %
QUTPUT PRT DUMMY %
FIX = FIX + BASE s
INPUT IN CARD %
IF IN N@ V{EOF}s%
GOTO NEW %
QUIT. SHUT INPUT IN %
SHUT OUTPUT OUTS
SHUT OUTPUT PRT s
STOP s
PROC BDEC{NUMB} s
‘'L 'BEGIN
ITEM BDEC H 10 %
ITEM NUMB A LD S
ITEM REM A kO S %
ITEM QUO A LD S %
FOR A = 9, =1+ 0 %
‘2 ' 'BEGIN
QU0 = NUMB/LD %
BIT{$b*A.b%$}{BDECY = 27 + NUMB - QUO * 10 &
NUMB = QUO %
llEIIEND
lllllEND
TERM &
789

17302500 Rev. 01

DATA INPUT
START % '' TEST OF INTEGER TRUNCATION FOR INDEX SWITCH'' IS

MODE F &
MONITOR ZERO. .1 ONE. TWO. %
FLT = 0.1 % Column 73

GOTO NUMB{# FLT + L.l %} s
ZERO.

STOP %

ONE.

STOP %

TWO.

STOP $

SWITCH NUMB ={ZERO.ONE TWO} %
TERM %

bL789

DATA OUTPUT TO PRINTER AND PUNCH

START % '' TEST OF INTEGER TRUNCATION FOR INDEX SWITCH'' 1S000100
MODE F % 1so00200
MONITOR ZERO. + ONE. TWO. % 1s000300
FLT = 0.1 % Isoao4oo
GOTO NUMB{L{s FLT + 1.1 $} % 15000500
ZERO . 1S000L00
STOP = Iso0ov00
ONE. Isaooaan
STOP s Isoo0qa0
TWO . 1s00:000
STOP % IS00L100
SWITCH NUMB ={ZERQ ONE~TWO} % IsS001200
TERM s Is001300

Column 73-—~-—-———-J

1-6 17302500 Rev. 01

PROGRAM 3

INFL~CM70000.T7?7
ATTACH{OLDPLAPFY4.ID=JO0OV}
UPDATE{Q-L=0}
JOVIAL. Control Cards
LGOL{COMPILEPUNCH}
789
wCOMPILE SYMIO
789
START %
" THIS PROGRAM -
SCANS UPDATE COMPILE FILE FOR 'PRINT'
REPLACES WITH ' PRNT'
BUILDS '"*DELETE' CARD
OUTPUTS CHANGED CARD AND DELETE CARD
FILE IN H 0 R LO24 VL{O0K} V{EOF} CT ¢ '#*COMPILE FILE INPUTY

FILE OUT H O R 129 V{0K} CRD % ' 'CARD OUTPUT"
ITEM CPL H 90 % '"'COMPILE FILE 90 COLUMN IMAGE!
ITEM CARD H 40 s '"1'CARD IMAGE"!
OVERLAY CARD = CPL %

ITEM PA I &0 S P 0{2022LL1624Y & ''PRINT*!
ITEM DEL H &0 s "W DELETE CARD"'

BYTE{$0.?$}{DEL} = ?H{*DELETE} %
OPEN INPUT IN %
OPEN OUTPUT OUT %
LOOP. INPUT IN CPL &
IF IN EQ V{EOF} %
' 141 'BEGIN
SHUT INPUT IN %
SHUT OUTPUT OUT %
STOP &
P ILVIEND
FOR A = 0.L.420 % "'SCAN FOR 'PRINT! "
IV IBEGIN
IF BIT{$A.30%} {CPL} NQ PA &
TEST A &
BIT{%$A.30%} {(CPL} = 0{5520224kL24} % ''PRNT !
FOR Z = 73.1-79 3 ' 'SCAN FOR END OF IDENT''
' 13T 1BEGIN
IF BYTE{$Z%} {CPL} N@ LH{ } 3
TEST Z %
BYTE{$8.Z-73%} {DEL} = BYTE{%$73.2-73%} {CPL} &
BYTE{%$8+Z-73%} {DEL} = LH{.} %
FOR Y = Z.1.89 % ''SCAN FOR NUMBER'!
V14t BEGIN
IF BYTE {%Y%$} {CPL} EQ 1H{ 1} &
TEST Y &
BYTE{%9+Z-73.89-Y%} {DEL} = BYTE{%Y-89-Ys} {CPL} 3
OUTPUT OUT DEL %
OUTPUT OUR CARD %
BYTE{%$7.13%) {DEL} = LH{ > %

GOTO LOOP s
I""”END
I|3| IEND
‘Rl VEND
GOTO LOOPS
TERM s
57869

17302500 Rev. 01

I-7

DATA INPUT
Program SYMIO

PROGRAM OUTPUT TO PUNCH

*DELETE SYMIO.3
ENTRY PRNT
*DELETE SYMIO.b
ENTRY PRNTFL
*DELETE vB0825.99
ENTRY PRNT$
*DELETE vBO&25..L02
PRNTS BSS 1]
*DELETE SYMIO.?
PRNT BSSZ &
*DELETE SYMIO.AT

SAS PRNT GET RETURN ADDRESS
*DELETE SYMIO.LL
SA? PRNTFL IN PRINTFL ENTRY

*DELETE SYMIO.L3
PRNTFL BSSZ 1
*DELETE SYMIO.32

EQ PRNTFL
*DELETE SYMIO.3k

SYMIO
SYMIO
vBO&eSs
vBOac2S
SYMIo
SYMIO
SYMIO
SYMIO
SYMIO

TRACE . VFD bO/7L PRNT TRACE INFO ’d—‘—//’§YHIo
Column 74

17302500 Rev.

01

FIXED-POINT SCALING J

Integers used in computations with fixed-point items are treated as if the decimal point were

at the right of the low-order digit.

If the operands are integer and fixed-point, both operands and the result have three attributes

in common. These attributes (with a two-letter mnemonic) are:
I - the number of integer bits required to contain the value. Represented for
operands 1 and 2 and the result by Il' 12, IR respectively.

A — the precision or number of fractional bits. Represented by Al’ A2, AR

respectively.

M — the number of bits required to contain the absolute minimum magnitude of the
operand or result. Represented by Ml' M2, MR respectively.

Other subscripts which may be used in place of 1, 2, or R include:

N - numerator

D — denominator

A - fixed operand

I — integer operand

Examples:

e 3 % 5,25Al A1=0, Il=2, M1=2
A2=1. 12=3, M2=4

e ITEMAA17UZ25,., 100§ A=0,1=7 M=5

If the range had not been specified, M would
equal 1. The value assumed is 0, which re-

quires one bit for representation.

e ITEMBBAT7S20.5A2,,.14 % A=2, 1=4(7-2-1forsign), M-=2

The rules for computing these attributes for results are given in the following pages.

17302500 Rev. 01 J-1

ADDITION AND SUBTRACTION

If both operands are integer, the result is integer, i.e., AR = 0; otherwise the result is
fixed-point.
IR =1 + max (Il, 12)

if A1 = A2' then

If one operand is integer and AA > 0, then

AR = AA;
otherwise
AR =1 + min (Al‘ Az)

If the operation is addition and both operands are unsigned, positive constants or absolute
values, then

MR = AR+max (M1 - Al’ M2 - Az)

otherwise
MR =1
MULTIPLICATION

If both operands are integer, the result is integer; otherwise the result is fixed-point.

IR=II+12

If both operands are integer,

MR=M1+M2-1

If both operands are fixed-point,

AR = A1 +A2 +1 - max (Ml’ M2)

MR = min (Ml’ M2)

J-2 17302500 Rev. 01

otherwise

Ap=A, +1-M
Mp = M,
DIVISION

If both operands are integer,

I,=1,+1-M

R 'N D

AR = 48 - IR
otherwise

IR=LN+AD+1 -MD

If the numerator is fixed,

AR=ID+A

N
otherwise

A =2*ID+AD-M

R N

The result is always fixed-point.

M_ = max (1, MN-M

R D’

EXPONENTIATION

The result is floating-point unless the base (B) is not floating, the exponent (E) is an integer
constant, and (exponent * log, (base)) < 48.

The result scaling is:

For an integer base

for E> 0
IR = K *IB
AR = 0

17302500 Rev. 01 J-3

M =E*MB—E+1

R
for E =0
Ip =1
Ag =0
Mp = 1
for E< O
Ip = 1-[E]l*Mg-1)
Ap =47+[E]*(MB-1)
Mp = 1

For a fixed base

for E> 0
Ip = ExIg
AR =E*(AB-MB+1)+MB-1
Mg = Mg
for E=0
Ip =1
Ag =0
Mp =1
for E< O
= * -
In (E]*Ag-Mg+1)+1
Agp - [E]*(2*1B+AB-MB+1)+MB—2
Mg =1

17302500 Rev. 01

NUMERIC BIT PATTERNS K

This appendix shows examples of the CHAR and MANT functional modifiers discussed in
Section 2 and gives examples of numeric assignment and numeric exchange statements

discussed in Section 4.

CHAR EXAMPLES

ITEM FLOAT F P 123.456 $

ITEM INT 1 60 S $

MONITOR FLOAT INT $

FLOAT = FLOAT $

INT = CHAR(FLOAT) $
CHAR(FLOAT) = CHAR(FLOAT) +1 $
CHAR(FLOAT) = 15 $

CHAR(FLOAT) = -80 §$

Decimal Octal

MONITORED REAL DATA .12345600000000E+03 = O(17267556457065176763)

FLOAT

MONITORED INTEGER = -41 = O(TTTIITTITITIT77777286)
DATA INT

MONITORED REAL DATA = .24691200000000E+03 = O(17277556457065176763)
FLOAT

MONITORED REAL DATA
FLOAT

MONITORED REAL DATA
FLOAT

"

. 88959423295464E+19 = O(20177556457065176763)

i

n

.22456515580416E-09 = O(16577556457065176763)

In the above examples, item FLOAT is set to a floating point value of 123, 456 and item INT
is set to a integer value of 60. In line 4, the contents of the floating-point variable (123.456)
is assigned to the receiving variable FLOAT. In line 5, the integer item INT is set to the
value representing the power of two by which the fractional part of FLOAT is multiplied.
The biased value, which is 17268, is converted to —518 or -4110.

Line 6 increments FLOAT by one. It raises the exponent by a power of two and doubles the
value of the floating-point variable. In line 7, the CHAR of FLOAT is set to 15, (1 78).

17302500 Rev. 02 K-1

Thus, the exponent bits of FLOAT are set to 20008 plus 17B or a total of 201 78‘ Next, the
CHAR of FLOAT is set to -80,, (-1208). The exponent bits are set to 16578.

MANT EXAMPLES

FLOAT = 123,456 $

INT = MANT(FLOAT) $

MANT(FLOAT) = MANT(FLOAT) + 100000000000 $
MANT(FLOAT) = 0(7556457065176763) $
MANT(FLOAT) = -1234567890123 $

INT = MANT(FLOAT) $

Decimal Octal

MONITORED REAL DATA = .12345600000000E+03 = O(17267556457065176763)

FLOAT

MONITORED INTEGER = 271482615037427 = O(00007556457065176763)
DATA INT

MONITORED REAL DATA = ,12350147473509E+03 = O(17267560030122762763)
FLOAT

MONITORED REAL DATA = .12345600000000E+03 = O(17267556457065176763)
FLOAT

MONITORED REAL DATA = ,56141647752293E+00 = O(60517756021601175464)
FLOAT

MONITORED INTEGER = -1234567890123 = O(77777756021601175464)
DATA INT

In the above examples, FLOAT is assigned a preset to the floating-point value of 123. 456.
Next INT is set to the MANT of FLLOAT. The decimal point is located to the right of the 48
bits which represent the mantissa of the floating-point variable. The integer variable has
an identical bit pattern.

On line 3, the MANT of FLOAT is incremented. However, no change in the exponent bits
is made as the result of the integer addition of the original value of MANT and the constant
added to it is positive. Line 4 sets the MANT of FLOAT to the octal value it originally con-

tained., Thus, the variable is returned to its original value.

Next, the MANT of FLOAT is set to a negative number. It causes the sign bit to be set and
makes available the one's complement of the exponent. The mantissa bits are set to the
octal constant of -1234567890123. On line 6, the integer variable, INT, is set to the MANT
of FLOAT, and because it is negative, the value is sign extended.

K-2 17302500 Rev. 02

NUMERIC EXCHANGE STATEMENT EXAMPLES

FLOATING-POINT AND INTEGER ITEM EXCHANGE

ITEM FLOAT F P 14.8 $

ITEMINTI18SP5$

INT == FLOAT §
In this example, a floating-point item FLOAT, with a value of 14. 8, and an integer item
INT, with a signed value of 5, will be exchanged. FLOAT will be set to a floating-point
value of 5, and item INT will be set to a integer value of 14. The fractional portion of item

FLOAT was lost in the exchange.

FIXED-POINT SIMPLE ITEM EXCHANGE

ITEM BFIX A7 U 4 P 4.3125 $
ITEM FIXDA7U3 11.125 $
FIXD == BFIX §

In this examplé, two fixed-point items with differing integer and fractional bit precision are
exchanged causing precision adjustment to be required for both variables. The items may
be simple, array, or non-packed table items. Left-truncation will occur for simple items
only when the word boundary is exceeded. The word containing item BFIX is set to a value
which exceeds that specified in its specification. It was declared with only 3 integer bits
which can represent a maximum of 7 bits, but the word containing it is now set to 11. This
value would be used in any further computations. Listed below are the decimal values of

the items, and the octal and binary values of the words before and after the exchange.

Item Decimal Octal Bit Pattern
Before BFIX 4.3125 105 00100. 0101

FIXD 11.125 131 001011. 001
After {BFI_X 11.125 262 01011.0010

FIXD 4,25 42 000100. 010

PACKED TABLE FIXED-POINT ITEM EXCHANGE

TABLE TABV 51 §
BEGIN

ITEM FILL1 I 188 0 0§ BEGIN 0 END
ITEM TBFIX A 7U 4 0 18 $ BEGIN 4. 3125 END
ITEM FILL2 1 208 0 25 $ BEGIN 0 END
ITEM TFIXDA 70U 3 0 45 $ BEGIN 11.125 END
ITEM FILL31 78 0 52 $ BEGIN 0 END

END
TFIXD(0) == TBFIX($0%)

17302500 Rev. 01 K-3

In this example, two fixed-point items in a packed table (defined or dense) with differing

integer and fractional bit precision are exchanged causing precision adjustment to be re-

quired for both variables.

Left-truncation will occur when the word boundary of a item is

exceeded. Listed below are the entry values (in octal), the decimal values of the items, and

the octal and binary values of the words before and after the exchange.

Item
Entry0
TBFIX
Before TFIXD
TBFIX
After TFIXD
Entry0

Decimal

4.3125
11.125

3.125
4.25

Octal
00000 10500 00013 10000

105
131

62
42

00000 06200 00004 20000

Bit Pattern

100. 0101
1011.001

011.0010
0100.010

17302500 Rev. 01

DIRECT CODE ASSEMBLY LANGUAGE L

Direct code assembly language is the subset of the COMPASS assembly language which can
be introduced into the JOVIAL language with

DIRECT-JOVIAL brackets |
Certain assumptions are made by the compiler about direct code:

[Compiler-generated instructions remain unmodified
e No branches to regions coded in JOVIAL occur

e No registers or data are saved; as a result optimization is severely degraded

COUNTERS

Counters are maintained by direct code to define the location of code and the current position
within a word. There are three types of counters: origin, location, and position.,

ORIGIN

The origin counter is maintained by the JOVIAL compiler to indicate the location where
instructions will be placed by the loader. It is incremented by one for each completed word

of assembled data.

LOCATION

The location counter has a value identical to that of the origin counter. It provides definition

for location symbols.

POSITION

This counter maintains a position within a 60-bit assembly word. As each code-generating
instruction is encountered, the position counter is updated to reflect the next available bit

position.

N
TSee Section 4 for a description of the DIRECT-JOVIAL brackets.

\

17302500 Rev. 01 : L-1

SOURCE STATEMENTS

Direct code consists of a sequence of symbolic statements. Each statement contains a

maximum of four fields in the order listed below:

e Location Field — Must begin in column 1 or 2

e Operation Field — May begin in columns 3 to 35

e Variable Field — Must begin before column 36

° Comment Field — Begins after termination of variable field, or after column 35

if variable field is empty. Comment may continue through

column 80.

These fields are separated by one or more blanks. Blanks are always interpreted as field
separators unless embedded in the comment field. Columns 73-80 may contain a comment,

but generally are used for sequencing.

Each statement is either a comment or an instruction. Column 1 is used to distinguish a
comment statement from an instruction statement. If it contains an asterisk, the remainder
of the line is comment; any other character including the blank indicates the start of an

instruction,

Examples of a standard format for source lines:

1 2 9 10 11 1617 18 36 72 73 80
'8 7 v
Location Operation ___Sequence Numbers =t)
Field Field Yo,
Comment Field
Blank or Blank . v)
Asterisk Variable
Blank Field
COMMENT

A comment statement is introduced by an asterisk in column 1. The comment is printed in
the output listing but does not generate any code. A comment may consist of any combination

of characters extending from column 2 through 80.

L-2 17302500 Rev. 01

INSTRUCTION
The elements of an instruction correspond to the four fields of a statement which are:

. Location Field - Blank; or may contain one of the following:

+

symbol
e Operation Field — Required: may contain one of the following:

central processor operation code
pseudo instruction

. Variable Field — Depends on the operation code; for direct code machine
instructions, the variable field is 1, 2, or 3 subfields
separated by commas. Each subfield may contain register
names separated by the operators + - * /., These oper-
ators determine the octal value of the instruction and may
not be substituted.

e Comment Field — Optional; may contain any combination of characters including
the blank,

SYMBOLS

A symbol is a string of 1 to 8 alphanumeric characters representing a value. The first
character may be numeric. When a symbol is specified in the location field of a machine

or pseudo instruction, it is assigned the current value of the location counter. When a
relocatable symbol is specified, the value assigned is relative to the program's base address.
A symbol in an assembly may not be An, Bn, or Xn, where n is a single digit between 0
and 7; these represent the registers.

All symbols used in direct code statements, except in the ASSIGN pseudo instruction, must
be defined in that direct code block.

REGISTERS

Register names are symbolic representations of the 24 operating registers of the computer.
The names are predefined in direct code, and may not be redefined in the program. Regis-
ters are represented by An, Bn, or Xn, where n is a digit between 0 and 7. Any other

value for n will cause the name to be interpreted as a symbol rather than a register name.

17302500 Rev, 01 L-3

ADDRESS EXPRESSIONS

An address expression may appear as a subfield of the variable field of an instruction state-
ment. An address expression consists of one of the following:

e Symbol

° Symbol + integer-constant

[Integer-constant (optionally signed)

FORCING UPPER

Assembled data is packed sequentially into a 60-bit word in bytes of 15, 30, or 60 bits. If
there is not room in a partially filled 60-bit word for the instruction or data currently being
evaluated, the remainder of that word is filled with 15-bit no-operation instructions (460008),

and the current instruction is assigned the first position in the next word.
Upper is also forced when any of the following occurs:

e A symbol or + appears in the location field of the current statement

° Current instruction is RE, WE, or XJ, unless there is a minus sign in the

location field

° Current instruction is BSS or BSSZ

Forcing upper is automatic after JP, RJ, PS, and an EQ or ZR with a single address (the
unconditional EQ or ZR). The ECS instructions WE and RE must appear in the upper 30
bits of an instruction; and when executed successfully, execution continued at the beginning
of the next 60-bit word. The lower half of the WE or RE word presumable contains a jump
to an error routine to be taken if the WE or RE is rejected.

Automatic forcing upper after JP, RJ, PS, EQ, and ZR can be negated by using a minus sign
in the location field of the next instruction. When a minus sign appears, the current line

will be assembled into the next position large enough to contain it.

PSEUDO INSTRUCTIONS

Direct code provides two types of pseudo instructions: storage allocation instructions and
JOVIAL directives.

L-4 17302500 Rev. 01

STORAGE ALLOCATION

There are two storage allocation pseudo instructions: BSS and BSSZ. They both cause

adjustment of the location and origin counters, and both force upper.

BSS
This instruction reserves an area of storage. The form is:
Location Operation Variable

symbol or blank BSS constant

A symbol in the location field is defined as the current value of the location counter. The
location and origin counters are incremented by the value of the constant. The area between
the symbol and the constant is reserved and is zero-filled. BSS 0 does not allocate storage,
but it does force upper.

SZ

—_—

BSSZ also reserves an area of zero-filled storage. The specification of this instruction is

exactly like BSS and its effect is identical.

JOVIAL DIRECTIVES

There are three pseudo instructions that direct the JOVIAL compiler: DIRECT, JOVIAL,
and ASSIGN.

DIRECT

Instructs the compiler that all lines up to and including the JOVIAL pseudo instruction are
direct code. DIRECT causes full word alignment in the object code.
JoviaL

Instructs the direct code processor of the JOVIAL compiler that this is the last line of direct
code. JOVIAL code resumes in column 1 of the next line. The remainder of the card is not

examined.

17302500 Rev. 01 L-5

ASSIGN

Permits transfer of values between JOVIAL variables and direct code registers by loading

from or storing into a simple non-indexed JOVIAL variable.

The following forms of ASSIGN are permitted; in each case, var is a simple JOVIAL variable

and reg is a register specification. The $ terminator must not be placed in column 72,

ASSIGN A(reg) = var $ reg may be X1, X2, X3, X4, or X5

ASSIGN A() = var $ the register is assumed to be X5

ASSIGN A(reg, il) = var $ reg may be X1, X2, X3, X4, or X5, i1 is an
optionally signed integer constant

ASSIGN A(il) = var § register is assumed to be X5, il is an
optionally signed integer constant

ASSIGN var = A(reg) $ reg may be X6 or X7

ASSIGN var = A() $ the register is assumed to be X6

ASSIGN var = A(reg, 12) $ reg may be X8 or X1, i2 is an optionally

signed integer constant

ASSIGN var = A(i2) $ the register is assumed to be X6. i2 is an
optionally signed integer constant

The machine instructions generated by ASSIGN loads the A register which corresponds to
the specified or assumed X register with the variable address.

If il is specified and is not equal to zero, an algebraic left shift il places (right shift if

i1 is negative) follows the load of the A register. If 12 is specified and is not equal to
zero, the A register load is preceded by an algebraic right shift i, places (left shift is 12
is negative). Where ‘11 or i2 is not specified, the effect is as though the operation were

on a floating-point value.

CENTRAL PROCESSOR OPERATION CODES

The complete set of central processor operation codes for use with direct code are given
in Table L-1,

Each operation is defined by listing the mnemonic, each subfield of the variable field, the

octal representation, and the instruction length in bits.

L-6 17302500 Rev. 01

Instructions are listed in the order of their octal value; an entry is given for the octal value

of each permissable variable field format.

In the mnemonic (operation code) field and the variable field notations, the following

symbology is used:

Xi, Xj, Xk X register symbols (the number of the register is placed in
the i, j, or k portion).
Ai, Aj, Ak A register symbols
Bi, Bj, Bk B register symbols
K Address expression (18 bits)
n Integer-constant (96 bits)
TABLE L-1, CENTRAL PROCESSOR OPERATION CODES
Length Mnemonic Variable Field Octal
30 PS 0000 000000
30 RJ K 0100 K
30 RE Bj+K 011j K
30 WE Bj+K 012j K
60 XJ 0130 000000 46000 46000
30 JP K 0200 K
30 JP Bj+K 020 K
30 ZR Xj, K 030 K
30 NZ Xj.K 031j K
30 PL Xi,K 032j K
30 NG Xi.K 033} K
30 IR Xi,K 034j K
30 OR Xi.K 035j K
30 DF Xj,K 036j K
30 ID Xj, K 037j K
30 ZR K 0400 K
30 EQ K 0400 K
30 EQ Bi, K 04i0 K
30 ZR Bi, K 04i0 K
30 EQ Bi, Bj, K 04ij K
30 NZ Bi, K 05i0 K
30 NE Bi, K 05i0 K

17302500 Rev. 01

(Continued)

TABLE L-1. CENTRAL PROCESSOR OPERATION CODES (Cont'd)
Length Mnemonic Variable Field Octal
30 NE Bi, B, K 05ij K
30 PL Bi, K 06i0 K
30 GE Bi, K 06i0 K
30 GE Bi, Bj, K 06ij K
30 LE Bj,K 060j K
30 LE Bj, Bi, K 06ij K
30 NG Bi, K 07i0 K
30 LT Bi, K 07i0 K
30 LT Bi, B, K 071ij K
30 GT Bj,K 070j K
30 GT Bj, Bi, K 07ij K
15 BXi X 10ijj
15 BXi Xj*Xk 11ijk
15 BXi Xj+Xk 12ijk
15 BXi Xj-Xk 13ijk
15 BXi -Xk 14ikk
15 BXi =Xk *Xj 15ijk
15 BXi -Xk+X] 16ijk
15 BXi =Xk=Xj 17ijk
15 LXi n 20i n
15 AXi n 2lin
15 LXi Xk 22i0k
15 LXi Bj, Xk or Xk, Bj 2ijk
15 AXi Bj, Xk or Xk, Bj 23ijk
15 NXi Xk 24i0k
15 NXi B, Xk or Xk, Bj 24ijk
15 ZXi Xk 25i0k
15 ZXi Bj, Xk or Xk, Bj 25ijk
15 UXi Xk 26i0k
15 UXi Bj, Xk or Xk, Bj 2iik
15 PXi Bj, Xk or Xk, Bj 27ijk
15 FXi Xj+Xk 30ijk
15 FXi Xj=Xk 31ijk
15 DXi Xj+xk 32ijk
15 DXi Xj-Xk 33ijk

(Continued)

17302500 Rev. 01

TABLE L-1. CENTRAL PROCESSOR OPERATION CODES (Cont'd)

Length Mnemonic Variable Field Octal
15 RXi xj+Xk 34ijk
15 RXi Xj=Xk 35iik
15 IXi Xij+Xk 36ijk
15 IXi Xj-Xk 37ijk
15 FXi Xj*Xk 40ijk
15 RXi Xj*Xk ATijk
15 DXi Xj*Xk 42ijk
15 MXi n 43i n
15 FXi Xi/ Xk 44ijk
15 RXi Xj/Xk 45ijk
15 NO 46000
15 CXi Xk 47ikk
30 SAi Aj+K 50ij K
30 SAi K 51i0 K
30 SAi Bj+K 51ij K
30 SAi Xj+K 52ij K
15 SAi Xi 53ij0
15 SAi Xj+Bk or Bk+Xj 53ijk
15 SAi Aj 54ij0
15 SAI Aj+Bk or Bk+Aj 54ijk
15 SAi Aj-Bj or -Bj+Aj 55ijk
15 SAi Bj 56ij0
15 SAi Bj-+Bk 56ijk
15 SAi -Bk 57i0k
15 SAi Bj-Bk or -Bk+Bj 57ijk
30 SBi Aj+K 60ij K
30 SBi K 61i0 K
30 SBi Bj+K 61ij K
30 SBi Xj+K 62ij K
15 SBi Xi 63ij0
15 SBi Xj+Bk or Bk+Xj 63ijk
15 SBi Aj 64ij0
15 SBi Aj+Bk or Bk+A] 64ijk
15 SBi Aj-Bk or -Bk+Aj 65ijk

(Continued)

17302500 Rev. 01

L-10

TABLE L-1. CENTRAL PROCESSOR OPERATION CODES (Cont'd)
Length Mnemonic Variable Field Octal
15 SBi Bj 66ij0
15 SBi Bj-+Bk 66ijk
15 SBi =Bk 6710k
15 SBi Bj~Bk or ~Bk+Bj 67ijk
30 SXi Aj+K 70ij K
30 SXi K 71i0 K
30 SXi Bj+K 7N K
30 SXi Xj+K 72ij K
15 SXi Xi 73ij0
15 SXi Xj+Bk or Bk+Xj 73ijk
15 SXi Aj 74ij0
15 SXi Aj+Bk or Bk+Aj 74ijk
15 SXi Aj-Bk or -Bk+Aj 75ijk
15 SXi Bj 76ij0
15 SXi Bj+Bk 76ijk
15 SXi -Bk 76i0k
15 SXi Bj~Bk or —Bk+Bj 77ijk

17302500 Rev. 01

PROGRAM OVERLAYS AND SEGMENTS M

Programs that exceed available memory may be divided into independent parts which may be

called and executed as needed. Such programs can be divided into segments and overlays.

Segments are groups of subprograms that are loaded in relocatable form when requested,
giving the user the explicit control over established interprogram links. An overlay is a
program combined with its subprograms which is converted to absolute form and written on
mass storage prior to execution. During execution, overlays are called into memory and
executed as requested.

OVERLAYS

Overlay processing allows programs to be divided into independent parts which may be
called and executed as needed. Each part (overlay) must consist of a single main program

and any necessary subprograms.

Each overlay is numbered with an ordered pair of numbers (I, J), each in the range 0—778.

1 denotes the primary level, J, the secondary level. An overlay with a nonzero secondary
level is called a secondary overlay. It is associated with and subordinate to the overlay
which has the same primary level and a zero secondary level, called the primary overlay.
The initial or main overlay which always remains in memory has levels (0, 0). The signifi-

cance of this distinction appears in the order in which overlays are loaded.

Overlay level numbers (0,1), (0, 2), (0, 3) and so forth, are illegal. Primary overlays all
have their origin at the same point immediately following the main overlay (0, 0). The origin
of secondary overlays immediately follows the primary overlay. For any given program
execution, all overlay identifiers must be unique. The loading of any primary overlay de-
stroys any other primary overlay. For this reason, no primary overlay may load other
primary overlays. Secondary overlays may be loaded only by the associated primary over-
lay or main overlay; thus, two levels of overlays are available to the programmer. An
overlay may reference subprograms in its own overlay, in the main overlay, or in its asso-

ciated primary overlay.

17302500 Rev. A M-1

Example:

MAIN OVERLAY (0,0)

6,0) 7,0 ...
(2,0)
(1,0 (4,0)

@)
a, [“n (4,2>k4,3

Overlays (1, 1) and (1, 2) are secondary to over-
lay (1, 0)

Overlay (2, 1) is secondary to overlay (2, 0)

Overlay (2, 1) may not be called from (1, 0) or
(1,1) or (1, 2) but only from (2, 0) or (0, 0)

Overlays (1,0), (2,0), (4,0) etc., may be called

only from the main overlay (0, 0)

CREATING JOVIAL OVERLAYS

JOVIAL overlays are created by one or subsequent overlay control cards that are insérted
prior to the START card in the program. Each overlay control card must begin in column

one and be of the following form:

OVERLAY (1fn, 11, 12, Cnnnnnn)

where:
1fn = The file name on which overlay is to be written. The first overlay card
must have a named 1lfn. Subsequent cards may omit it, indicating that the
overlays are related and are to be written in the same 1fn. A different 1fn
on subsequent cards results in generation of overlays to the new 1fn.
11 = The primary level number in octal.

M-2 17302500 Rev. A

12 = The secondary level number in octal. 11, 12 for the first overlay card must
be 0, 0.

Cnnnnnn = An optional parameter consisting of the letter C and a six-digit octal num-
ber. If this parameter is present, the overlay is loaded nnnnnn words
from the start of blank common. This provides a method of changing the
size of blank common at execution time. Cnnnnnn cannot be included on
the overlay 0, 0 loader directive. If this parameter is ommitted, the

overlay is loaded in the normal manner.

When the compiler recognizes the card or cards they are transferred directly into the binary

output file. No error checking is performed during the transfer.

When overlays other than the main overlay (0, 0) are compiled, the overlay transfer param-
eter, E, must be specified on the JOVIAL control card, as described in Section 10. When
compiling only the main overlay (0, 0), any normal JOVIAL control card may be used.

LOADING OVERLAYS

The primary JOVIAL program overlay must be loaded by a SCOPE control card, as would
any JOVIAL program to be executed.

Secondary JOVIAL overlays (as specified on the overlay control cards) are loaded and ex-
ecuted by calling the library procedure OVRLOD. The calling sequence and execution are
described on page G-7.

PROGRAM OVERLAY EXAMPLES

This section of Appendix M contains two examples of program overlays. The complete list-
ings were too long to be shown here, therefore, only the source input and a portion of the

load map are printed for each example.

EXAMPLE 1

This example installs the utility program SEQD shown on page I-5, which is used to punch a
sequentially numbered deck of cards. Once SEQD is installed on the system, it may be used

by any user.

17302500 Rev. A M-3

SEQD.CM?70000+TL00.) Entry Point Name SEQD
JOVIAL{N=SE@D}
MAP{PARTZ
LOAD{LGO}
NOGO .
REWIND{SEQRD} > Control Cards
EDITLIB.
RETURNA{SEQD}

SEQD.

789 J
OVERLAY{SE@D 00} =— Overlay Control Card

(SEQD Program as on page I-5)

1
789
READY{SYSTEM}

RPADD{*.SEQD}
COMPLETE. EDITLIB Control Cards

789

START & ##TEST OF INTEGER TRUNCATION FOR INDEX SMITCH##‘
MODE F =

MONITOR ZERO. . ONE. .TWO. %
FLT = 0.1 %

GOTO NUMB{% FLT + 1.1 %} %
ZERO.

STOP %

ONE.

STOP %

TWo.

STOP %

> Input Data

SWITCH NUMB ={ZERO.ONE TWO} %

TERM % P

L789

17302500 Rev. A

*33S w0t°2le 0I°91°12°%1

*038 629°600 dd*91°Te°*nT

*03S 628°010 d3°91°12°41

uornopxa Jo puyg d01S°*ST1°12° 4T
wa31s4s uo VIS 9INVIXH ~———————— *+qn3S*GT° T2 HT
ADES 21T 18001 UINJOY -———(QUISINUNLIY ST T2 4T
*09°£1°Te N1

*3137dKH0D *£0°Te N1

(QL3S‘«)0avdd *10°12°01

(W31SAS)AQV3Id *10°T12° 4T
*8171103°659°02°4T

(QU3S)IONIM3¥*6S°02°4T

*090N"B5° 0243

(097)0v01°*ss° 02 HT

(lYVd)IdVR®58G°02° 4T

(QD3S=N)TVIAOr*g4w°02* 41
“00TL0000ZHO€QDAS 9N 02 HT

HN0OU3S*9%02° 4T
TL/08/17 wezsd £°5423d00Ses 14/22/21
a13lea
ndan 030av ab3s
A0 AI'LLIA @313130 00 3S

030V7d3d SKWYY90dd 40 ISIT

S3ON3Y3II3Y =====STUN¥3iX3 03T4SILVSNN=~~=
$%269500 vei3o
$0£500 $81NdNI
cl9800 $0IS
229£00 SWNINMIY
0S££00 $61d4N0
£20£00 $d4SH0va
0E9200 $0IAOC
502200 EWsAor
202100 $WILSAS
107000 Qo3s

==NOWWOJ---03738V -~ ~SS3JAAV--~~HNV¥9I0¥3~

0/£790 S37BV1 VYMd 952890 330V0T VM4
==HL19N3T-=NWOD X¥NI18--0V0CT VYMI--0V01 VMi- seemmmemm 1)t 4= -Y3SNe v em e mcmnemenaId Ll em===21==] 1== 300K QVOI~==3INILl=--

000000 oooo00 £79500 6o0To000 T0¥1NOD a0 o0 AVTH3IA0 *8S5°02°HT dVW 3300

de peoT 1enaed adAS

17302500 Rev. A

EXAMPLE 2

This example demonstrates the use of a main overlay with two second level overlays. The
second level overlays are loaded by a call to the library routine OVRLOD. The flow of con-

trol may be traced by the printouts from the overlays indicating execution.

OVLD-CM?0000.T7?7.

JOVIAL{N=0VER.B=HOLD M}

JOVIAL{N=0VER .B=HOLD M.EZ}

Egi;iaszg} Control Cards
NOGO «

OVER .

789

OVERLAY{OVER -0 -0} == Overlay Control Card
START & 3
ARRAY LIT 3 H 10 $
BEGIN 10H{ OVERLAY 0O} 1OH{-0 IS IN 0%
LOH{PERATION 3} END
PRINT{LH{{3A10}3}} &
FOR A = 0.1-2 %
LISTLLIT{$A%}} &
ENDL %
OVRLOD {10OH{OVER }.1.0} s Main Overlay; compiled by:
PRINT{LH{{3A10}}} &
FOR A = D.1.2 % JOVIAL(N=OVER, B=HOLD, M)
LISTLLIT{A}} 3
ENDL %
OVRLOD {10H{OVER }.2.0F 8 N=OVER — Entry point OVER
PRINT{LH{{3A10}}} s B=HOLD — Binary to file HOLD
FOR A = 0.1-2 % M — Monitor option specified
LISTLLIT{%A%}} &
ENDL %

TERM %
789 J
OVERLAY{OVER.1.0%}
START & A
ARRAY LIT 3 H 10 3
BEGIN 10H{ OVERLAY 1} 10H{.0 IS IN 0%}
LOH{PERATION 3} END
PRINT{LH{{3AL0}3}} &

FOR A = 0.1.2 % Secondary Overlays; compiled by:
LISTLLITL{%AS}} &
ENDL ¢ JOVIAL(N=OVER, B=HOLD, M, E)

TERM s -

OVERLAY{OVER.2.0%}

START ¢ f N=OVER — Entry point OVER
ARRAY LIT 3 H 10 % B=HOLD - Binary to file HOLD
BEGIN L.OH{ OVERLAY 2} 10H{.0 IS IN D} M — Monitor option specified

LOH{PERATION I} END}] E — Overlay transfer parameter
PRINT{LH{{3A10}}} = specified
FOR A = D.l.2 %
LIST{LIT{%$A%}} %
ENDL %
TERM $ J
L7689

NOILVH3d0 NI SI 060 AVI¥3A0
NOILVN¥3d0 NI SI 0°¢2 AVI¥3A0
LAdLNO NVYDOud NOILVH¥3d0 NI SI 0°C AVId3A0
NOILVY¥3d0 NI SI 0°F AVI¥3AO0
NOILVH¥3d0 NI SI 00 AVIN3A0

S30N3Y¥3I Y s=e==STYN¥ILX3 Q3I4SILVSNA~=--=

£20500 ¥3IN0

==NOWA0J~-=-03138VV-~ -S83¥0QV ~~=-=WY¥I0Y¥d ~

€ShT130 3378V1 VM4 2%.£90 ¥3CQVOT UMd

==HlIN3IT==NKOD XNTE-=0QV0T VA T==0V01 VMJe=mecccccccuaTly)ocmtteccyISiecconcccccacccaldhlem==a2e-TT-~ JUON O¥0l===INIl-=-
o00co000 000000 50500 220500 T0¥LNID og*2o AVI¥3A0 °92°04°ET d4VAW 3¥00

den peoT TenaEd (0 ‘g) 814240

S3IONIAI 43 =====5TYN¥ILIXI 03I3STLVSNA====

£20500 43N0

==NOW4QJ=--33738V1~-~ =583400V ===~HY YI0Nd~

£569790 S3BYL VYM3I 249890 ¥3IOV0 VMJ

==HLINIT==NWOD ANTB--0V¥0T YM1-=0V0] YMde--=c=crcccacTIYJocctt-=YISimeecenccncnecenigilomce=ZIe=Tl-~ JAOWN 0¢0T===3WIle=~
oooooo 00300 §50500 220800 I0AINDID 0o°30 AVTIH3AD °H2°04°ET dVW 3300

dey peOT Tenaed (0 ‘T) £€149A0

S3ION3H¥3IA3Y =====S7UN¥3IX3 03IJISILVSNA==e=
404£00 $u3IQ0X%

S9EE00 Y8139

254100 $01S

959100 $01din0

639100 J0T43A0

994700 $YRI3A0

9chi00 OINAS

£2%000 SH31SAS

107000 ¥3A0

==NOHA0J~-=~-33138V1~~ =SS3¥00¢ ~~~~-NVYI0Ud ~

00ST38 S3TWVL VM4 2HiR90 ¥3IQV0 YMd

=-H1IINIT==NKOD ANIB==0¥01 YN1-=J¥0T YNde-eocrecmccaclydemtt-==yISNmomum =3dAl-=~==27==-T17~~ 300K QV01---3WIl-~-

6o0oe00 ooooog 220500 ootooe TOUINDD 00°00 AVTN3IA0 *22°0%°£T dVW 3300

dey peor] 1ensaed (0 ‘0) £e112A0

17302500 Rev. A

92

tL/01/728%

*338 g£22°s00 31°62°0%°€T
*33s 1£9°820 dd*82°0%°£1
*33S £06°200 dd°62°0%°¢€T
Y3IA0 ON3*62°0%°LT
*d43A0*L2°0%°ET
*030N°*32°0%°£T
(QTOHIGVO T T 0h°ET
(LYVdI AV W h T 0% ET
(3*H T I0H=BU3IA0=N) IWVIAOF*IN"6E°ET
(HC310H=BY3A0=N) TWIAOF*0E*6E°ET
*0£°6L°ET
*441%0000ZW3°GTA0°0E"BEET
MT00TN0°0E°6E°ET

382¥5d £°C+23d03San TL/LT/21

s13keq

17302500 Rev. A

M-8

SEGMENTS

A segment is a group of subprograms (possibly only one) which are loaded together when
specified by the programmer. Segments are loaded at levels from 0 to 778. Level zero is
reserved for the initial or main segment. Level zero, which must contain a program, re-

mains in memory during execution.
The following definitions apply to segmentation:

° Entry Point — A named location within a subprogram that can be referenced by
another program; created by a program or subprogram. The entry point for a
program is the name specified by the N=NAME on the JOVIAL control card; if
none is specified, the default is MAINPG. The entry point for subprograms is
the same as the subprogram name (see page 8-6).

e External reference — A reference within a program or subprogram to the entry
point of some other subprogram; created by explicit call statements, function

references, I/O statements, implicit functions, etc.

° Link — The connection established between an external reference and an entry

point when the programs are loaded into memory.

° Unsatisfied external — An external reference for which no matching entry point

can be found, and therefore no link established.

When the segment is loaded, external references will be linked to entry points in previously
loaded segments (those at a lower level). Similarly, entry points in the segment are linked
to unsatisfied external references in previously loaded segments. Unsatisfied external
references in the segment remain unsatisfied; subsequent segment loading may include entry
points to satisfy the external references. Unsatisfied external references may be satisfied,

if possible, from the system library.

If a segment is to be loaded at a requested level which is less than or equal to the level of
the last loaded segment, all segments at levels down to and including the requested level are
removed or delinked. Delinking a segment at a given level requires that the linkage of ex-
ternal references in lower levels to entry points in the delinked segment be destroyed so that

the external references are again unsatisfied.

Once the delinking is complete, the segment is loaded. Only one occurrence of a given sub-
program or entry point is necessary since all levels may eventually link to the subprogram.
However, a user may force loading of a subprogram by explicitly naming it in another seg-

ment at a higher level. Thereafter, all external references in higher levels are linked to

17302500 Rev. A M-8

the new version. In this manner, a subprogram and/or entry point can effectively replace
an identical one already loaded at a lower level. However, once a linkage is established, it

is not destroyed unless the segment containing the entry point is removed.

Example:

The SINE routine is loaded in a segment at level 1. The user wishes to try an ex-
perimental version of SINE. He loads a segment containing the new SINE at level 2.
Segments loaded at level 3 or higher will now be linked to SINE at level 2 until a new

level 2 or a new SINE is loaded.

Common blocks may be loaded with any segment. Labeled common may not be cross-

referenced in segments. Maximum blank common length is established in the first segment

which makes use of blank common.

CREATING JOVIAL SEGMENTS

JOVIAL segments are created by segment control cards that are inserted prior to the START
card in the program. Each control card must begin in column one. The segment control
cards are SECTION, SEGZERO, and SEGMENT.

The SECTION control card defines a section within a segment. Segments are loaded by

user calls during execution or by MTR during initial load. This card has the form:

SECTION (sname, pny, phy, ..., pnn)
where:
sname = Name of section (seven-character maximum).
pn = Names of subprograms in the section. If more than one card is necessary

to define a section, additional cards with the same sname may follow

consecutively.

All subprograms within a section are loaded whenever the named section is loaded. All

section cards must appear prior to the SEGMENT cards which refer to the named sections.

M-10 17302500 Rev. A

A SEGZERO card is always required prior to the binary text for all programs requiring seg-

mentation loading. This card has the form:
SEGZERO (sn, PNy, Phg, ..., pnn)
where:

sn = Segment name.

pn; = Names of subprograms or section names which make up main or zero level
segments. Defining other segments in a similar manner reduces the list of
subprograms in the loader call.

To define an entire segment, the following control card is used:
SEGMENT (sn, PNys PRy, ..., pnn)

The parameters are defined as in SEGZERO. In a segment, all programs must reside on
the same file. A segment defined in the user's program need not be defined by a SEGMENT
card; however, a SEGZERO card is always required.

When the compiler recognizes the card or cards, they are transferred directly into the

binary output file. No error checking is performed during the transfer.

LOADING SEGMENTS

JOVIAL segments (specified on the control cards) are loaded by calling the library procedure
SEGLOD routine. The calling sequence and execution are described on page G-9. Once the
named segments or subprograms are loaded, control returns to the statement following the
call to SEGLOD. The programmer is free to call on the loaded subprogram as desired.

17302500 Rev. A M-11

JOVIAL/INTERCOM INTERFACE N

When a program is entered at an INTERCOM control point, INTERCOM associates INPUT
and OUTPUT files of the program with the user's remote terminal device, and all refer-
ences to these files are directed to the terminal. With calls to subprograms, the user may
specify other files to be associated with the terminal.

When a program is executed at an INTERCOM control point after being compiled in batch
mode, INPUT and OUTPUT files are not automatically associated with the user's terminal.

The user must associate the files with the terminal using the statement:
CONNEC (1fn) $
where:

1fn = Any full word item with the device name for the file. The word is left-

justified and the remainder of the word is zero-filled.

The CONNEC statement can also be used to associate any logical files in the user's program

with the terminal.

If a file is already connected, the request is ignored. If the file has been used already, but
not connected, this request will clear the file's buffer, write an end-of-file, and backspace

over it before the connection is performed.
A file is disconnected by:

DISCON (1fn) $§
where:

1fn = The same as CONNEC.

This request will be ignored if the file is not connected. After a disconnect, the file is re-

associated with its former device.

Any files defined within the program or in a COMPOOL used during compilation may be con-
nected or disconnected during program execution. An attempt to connect or disconnect an

undefined file will result in a fatal execution time error, and the job is terminated.

17302500 Rev. A N-1

CONNEC and DISCON calls are ignored when programs are not executed through an
INTERCOM control point.

Example:

ITEM LFNA H 10 P {0b1114050L0000000000} %

"OCTAL VALUE OF FILEA™

In this program example, item LFNA has a file name of FILEA (octal value) which is left-
justified, and the remainder of the word is zero-filled. FILEA may be associated with the

user's remote terminal by the statement:
CONNEC (LFNA) $
or disconnected by

DISCON (LFNA) $

N-2 17302500 Rev. A

INDEX

ABS: 2-4

Address Expressions: L-4

ALL: 2-4

AND: 3-7

Arithmetic Operators: 2-2

Arrays: 5-10, 6-10
Data Forms: 6-10
Declaration: 6-11
Constant List: 5-12
Referencing: 5-16

ASSIGN: 2-4, 4-27

Assignment Operator: 2-4

Binary Output
Control Card Parameter: 10-2

BIT: 2-4, 2-20

Bit Patterns, Numeric: K-1

CHAR: K-1
Exchange Statements: K-3
MANT: K-2

Brackets: 2-5

Boolean Constant: 2-14
Assignment Statement: 4-9
Data: 2-9
Declarations: 5-7
Exchange Statement: 4-11
Logical Formula: 3-7

Relational Formula: 3-4, 3-5, 3-6

Variable: 2-25

Buffer Size
File Declaration: 6-4

BYTE: 2-4, 2-23

17302500 Rev. 02

Calling Sequence: E-1

Carriage Control
JOVIAL Files: 6-2

CHAR: 2-4, 2-22
Examples: K-1

Characters: 2-1
Basic Elements: 2-1
Sets: F-1

Clause
FOR: 4-16
FOR ALL: 4-23
IF: 4-13

Closed Forms: 7-6
CLOSE: 7-6
Exit: 7-17
Functions: 7-16
Procedures: 7-8

Codes, CPU Operation: L-6

Comments
JOVIAL: 3-10
Direct Code: IL-2

Common Declaration: 8-2
COMMON: 8-2

COMPOOL: 8-1
Assembly Parameter: 10-4
Common Declaration: 8-2
Control Card Parameter: 10-2
Creation: 8-3
Data Declaration: 8-1
Examples: 8-6
Program Structure: 8-6
Reference: 8-4, 8-5
Specification: 8-1
Subprogram Declaration: 8-2
Subprogram Reference: 8-5

Constant List
Arrays: 5-12
Tables: 5-35

Index-1

Constants: 2-9
Boolean: 2-14
Literal: 2-13
Numeric: 2-10
Status: 2-14

Control Card: 6-19
Execution: 6-19
JOVIAL: 10-1
Parameters: 10-1

Counters: L-1
Location: L-1
Position: L-1
Origin: L-1

Data Allocation: 5-41
Overlays: 5-41

Data Forms: 6-9
Arrays: 6-10
Examples: 6-11
Parallel Items: 6-10
Simple Items: 6-10
Table Entries: 6-11
Table Items: 6-10
Tables: 6-11
Variable Items: 6-10

Data Type Properties: 2-7
Boolean: 2-9

Literal: 2-9
Numeric: 2-8
Status: 2-9

Debugging Aids: 9-1
Monitor Statement: 9-1
Run-Time Error Monitor: 9-8

Decks, Sample: B-1

Declarations, Data: 5-1, 8-1
Array: 5-10
Common: 8-2
COMPOOL: 8-1
Files: 6-2, 6-3, 6-4, 6-5
Implicit Items: 5-7
Index Switch: 7-1

Item: 5-1
Item Switch: 7-3
Mode: 5-8

Overlay: 5-41

Procedures: 7-8
Subprogram: 8-2
Tables: 5-17, 5-25

Declarators: 2-6

Index-2

DEFINE Directives: 3-10
Define Items: 5-32
Define Table: 5-18, 5-30
Define Item: 5-32
String Item: 5-33
Dense Packing: 5-22
Descriptors: 2-6
DIRECT: 2-5, 4-27
Directives: 2-6

DEFINE: 3-10
JOVIAL: L-5

Diagnostic Messages: A-1

Direct Code: L-1
Address Expression:
CPU Operation Codes:
Counters: L-1
Forcing Upper: L-4

L-4
L-6

JOVIAL Directives: L-5

Pseudo Instructions:
Registers: L-3

L-4

Source Statements: L-2

Symbols: L-3

Elements, Bagic: 1-2, 2-
Characters: 2-1
Symbols: 2-1

END: 2-4, 5-40

ENDL: 6-19

ENTRY: 2-4, 5-40

Entry
Assignment Statement:
Exchange Statement:
Relational Formula:

Variable: 2-26

Error Messages: A-1

1

4-9
4-12
3-6

Source Diagnostic: A-1

Terminate Messages:
Error Tracing: E-1

Exit From Closed Forms:

A-13

7-117

17302500 Rev. 02

Files
Declaration: 6-2.2
Input/Output: 6-2.1

1/O Statement: 6-11, 6-12, 6-14

JOVIAL: 6-1
Operators: 2-3
Organization: 6-8
Positioning: 6-
Status: 6-5

Fixed- Point
Constant: 2-13
Declaration: 5-2
Exchange Example: K-3
Numeric Data: 2-8
Scaling: J-1, J-2, J-3

Floating- Point
Constant: 2-12
Declaration: 5-4
Exchange Examples: K-3
Numeric Data: 2-8, 2-9

FOR: 2-3, 4-17
Forcing Upper: L-4

FOR Clause: 4-16
FOR ALL: 4-32

FORTRAN Formatted Output: 6-19
Examples: 6-21

FOR Statement: 4-16
Nested: 4-22
One-Component: 4-18
Parallel: 4-21
Three-Component: 4-20
Two-Component: 4-19

Formulas: 3-1
Boolean: 3-4
Comments: 3-10
DEFINE: 3-10
Functions: 3-9
Literal: 3-3
Logical: 3-7
Numeric: 3-1
Sequence of Evaluation: 3-8

Functional Modifiers: 2-4
BIT: 2-20
BYTE: 2-23
CHAR: 2-22
Constant: 2-11
LOC: 2-11
MANT: 2-22
NENT: 2-11, 2-21
NWDSEN: 2-11

17302500 Rev. A

ODD: 2-25
POS: 2-19
Variable: 2-18

Functions: 7-16
Call: 7-16
Formulas: 3-9

Global Scope: 2-27

GOTO: 2-3, 4-12, 7-2

Hints
Compiler Usage: D-1

IF: 2-3, 4-13
IFEITH: 2-3, 4-14

Index Declaration: 7-1
Switch Call: 7-2

INPUT: 6-12

Input/Output: 6-1
Execution: 6-19
File Declaration: 6-
File Positioning: 6-
FORTRAN Formatted Output: 6-19
JOVIAL Files: 6-1
Organization of Data: 6-8
Short Forms: 6-16
Statements: 6-11, 6-13, 6-15

2.2
7

Instruction
Codes: L-6
Source Statement: L-2, L-3

INTERCOM Interface: N-1

Integer: 2-8
Constants: 2-10
Decimal: 2-10
Declarations: 5-1
Exchange Example: K-3
Functional Modifier: 2-11
Numeric Data: 2-8
Octal: 2-10

Introduction: 1-1

Item Declarations: 5-1
Boolean: 5-7

Index-3

Descriptions: 5-9
Fixed-Point: 5-2
Floating-Point: 5-4
Integer: 5-1
Literal: 5-5

Status: 5-6
Switch: 7-3
JOVIAL: 2-5, 4-27

Card Parameters: 10-1
Control Card: 10-1
Defined Symbols: 2-2
Directives: L-5

Files: 6-7

Primitives: 2-15
Pseudo Instruction: 4-27

Language: 1-1
Like Table: 5-18, 5-34
Limitation: C-1

LIST: 6-19

List
Control Card Parameters: 10-2

Listings, Sample: H-1

Literal
Asgsignment Statement: 4-6
Constant: 2-13
Data: 2-9
Declarations: 5-5
Exchange Statement: 4-10
Formulas: 3-4
LOC: 2-4, 2-11
Variable: 2-23

Local Scope: 2-27

Logical Operators: 2-3

MANT: 2-4, 2-22
Examples: K-2

Messages: A-1
Mode Declaration: 5-8

Modifiers
Functional: 2-4

Index-4

MONITOR: 9-1
Examples: 9-5

Monitor

Control Card Parameter: 10-3

Named Variables: 2-1

Names: 2-14

7

Loop Variables: 2-16
Prime-Prefixed Primitives: 2-15

Primitives: 2-15
NENT:
No Packing: 5-21
NOT: 3-7

Notation: 1-3
Shorthand: 3-8

2-4, 2-11, 2-21, 5-40

Numeric Constants: 2-10

Data: 2-8
Variable: 2-19

Numeric Formulas: 3-1

Mode of Results:

3-3

Sequence of Operation: 3-2

Numeric Statements
Assignment: 4-3
Bit Patterns: K-1
Exchange: 4-9

NWDSEN: 2-4, 2-11,
ODD: 2-4, 2-25
OPEN INPUT:
OPEN OUTPUT: 2-4,
Operation Codes, CPU:
Operators
Arithmetic: 2-2
Assignment: 2-4
File: 2-3
Logical: 2-3
Relational: 2-2
2-3

Sequential:

Optimization

2-4, 6-

5-40

12
6-12

L-6

Control Card Parameter: 10-3

17302500 Rev. A

Optional Prime
Control Card Parameter: 10-4

OR: 3-7

Ordinary Table: 5-18, 5-27
ORIF: 2-3, 4-14
OUTPUT: 6-14

Overlay Transfer Address
Control Card Parameter: 10-5

Parallel
FOR Statements: 4-21
Items: 6-10
Table Structure: 5-19

Parameters, Control Card: 10-1
Binary Output: 10-2
COMPOOL: 10-2
COMPOOL Assembly: 10-4
List: 10-2
Monitor: 10-3
Optimization: 10-3
Optional Prime: 10-4

Overlay Transfer Address: 10-5

Program Name: 10-5

Single Statement Scheduling: 10-5

Source Input: 10-1
Terminate Compilation: 10-4

PAUSE (See STOP)
POS: 2-4, 2-19, 6-7
Presets: 2-6
Primitives: 2-15
Prime: 2-1
Prime-Defined: 2-15
PRINT: 6-19
PRINTF: 6-19
PROC: 7-9, 7-16, 8-3
Procedure: 7-8
Call: 7-14
Declaration: 7-8
Parameter Passing: 7-13
Processing Declaration: 7-1

Closed Forms: 17-6
Switches: T7-1

17302500 Rev. A

Program
Description: 1-1
Sample: I-1, I-2, I-5, I-7
Structure: 8-6, I-1
Programmer Packing: 5-24

Program Name
Control Card Parameter: 10-5

Pseudo Instructions
ASSIGN: 4-27, L-6
BSS: L-5
BSSZ: L-5
DIRECT-JOVIAL: 2-5, 4-27
Storage Instruction: L-5

Registers
Direct Code: L-1, L-3

Relational Operators: 2-2
Restriction: C-1
RETURN: 2-3, 7-17

Run-Time Error Monitor: 9-8

Scaling, Fixed-Point: J-1
Additional: J-2
Division: J-3
Exponentiation: -3
Multiplication: J-
Subtraction: J-2

SCOPE File Name: 6-3

Separators: 2-5

Sequential Operators: 2-3

Serial Table: 5-20

SHUT INPUT: 2-4, 6-14

SHUT OUTPUT: 2-4, 6-16

Simple Item: 6-10
Exchange Example: K-3

Single Statement Scheduling
Control Card Parameter: 10-5

Index-5

Source Input
Control Card Parameter: 10-1

Statements: 4-1
Assignment: 4-2
Complex: 4-1
Compound: 4-1
Control: 4-12
DIRECT-JOVIAL: 4-26
Exchange: 4-9, K-3
FOR: 4-17
Forms: 4-1, 6-16
Input/Output: 6-11, 6-13, 6-15
Labels: 4-2
Loop: 4-16
Messages: A-1
MONITOR: 9-1
Named: 4-1
PAUSE (See STOP)
Program Control: 4-25

Simple: 4-1

Source: L-2

STOP: 4-25
Status

Assignment Statements: 4-8
Constant: 2-14

Data: 2-9

Declarations: 5-6
Exchange Statements: 4-11
Relational Formula: 3-6
Variable: 2-26

STOP: 2-3, 4-25
String Item: 5-33

Structure, Program
Main: 8-6
Parallel Table: 5-20
Serial Table: 5-20
Subprogram: 8-7

Subprogram
Declaration: 8-2
Reference: 8-5
Structure: 8-7

Switches: 7-1
Index Switch: 7-1, 7-2
Item Switch: 7-3, 7-4

Symbols: 2-1, L-3
JOVIAL Defined: 2-2
User Defined: 2-7
Scope of Definition: 2-27

Index-6

Tables: 5-17, 6-11
Constant List: 5-35
Declaration: 5-25, 5
Defined: 5-18, 5-30
Dense Packing: 5-22
Entries: 6-11
Items: 6-10
Like: 5-18, 5-34
Modifiers: 5-40
No Packing: 5-21

-26

Ordinary: 5-18, 5-27

Overlay Utilization:
Packing: 5-21
Programmer Packing
Referencing: 5-39
Rigid-Length: 5-20
Size: 5-19

5-25

: 5-24

Structure: 5-18, 5-20

Types: 5-18
Variable-Length: 5-

Terminate Compilations

20

Control Card Parameter: 10-4

TEST: 2-3, 4-24

User-Defined Symbols: 2-7

Constants: 2-9

Data Type Properties
Names: 2-14

Scope of Definition:
Variables: 2-16

Variable
Boolean: 2-25
Definitions: 2-17
Entry: 2-26
Functional Modifier:
Indexed: 2-17
Items: 6-10
Literal: 2-23
Loop: 2-16, 2-17
Named: 2-17
Numeric: 2-19
Simple: 2-17
Status: 2-26
Usage: 2-19

o 2-7

2-27

2-18

17302500 Rev. A

READER SURVEY FORM

MANUAL TITLE_JOVIAL Compiler Reference Manual

PUBLICATION NO. _17302500 REVISION A
FROM: NAME:
BUSINESS
ADDRESS:
HOW DO YOU USE THIS PUBLICATION ? CDC EMPLOYEE ?
As a reference source Yes
Asaclassroomtext No

As a self-study text
As a user's guide

BASED ON YOUR OWN EXPERIENCE, RATE THIS PUBLICATION

As a reference source:

very good good fair poor very poor
As a text for learning:

very good good fair poor very poor
As a user's guide:

very good good fair poor very poor

WHAT IS YOUR OCCUPATION ?

DID THE MANUAL MEET YOUR NEEDS ? Yes No

WHAT SPECIFIC THINGS WOULD BE OF USE TO YOU AS A USER, TEACHER, OR
STUDENT ?

IS THE MANUAL EASY TO READ AND UNDERSTAND ? Yes No

IS IT WELL ORGANIZED ? Yes No

WE WOULD APPRECIATE YOUR SPECIFIC COMMENTS; PLEASE GIVE PAGE AND LINE
REFERENCES WHERE APPROPRIATE, IF YOU WISH A REPLY, BE SURE TO INCLUDE
YOUR NAME AND ADDRESS.

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

STAPLE

STAPLE

STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION
Systems Publications

215 Moffett Park Drive
Sunnyvale, California 94086

STAPLE

CUT ON THIS LINE

COMMENT SHEET

MANUAL TITLE _JOVIAL Compiler Reference Manual

PUBLICATION NO. _17302500 REVISION A
FROM: NAME:

BUSINESS

ADDRESS:
COMMENTS:

This form is not intended for use as an order blank. Your evaluation of this manual
is welcomed by Control Data Corporation. Any errors, suggested additions or de-
letions, or general comments may be noted below., Please include page number ref-
erences and fill in the publication revision level as shown by the last entry on the
Record of Revision page at the front of the manual. Customer Engineers are urged to

use the TAR.

CUT ALONG LINE

PRINTED IN USA

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

AA3419 REV, 11/69

STAPLE STAPLE l

FIRST CLASS I
PERMIT NO. 8241

MINNEAPOLIS, MINN.

———
BUSINESS REPLY MAIL E—
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. —
——
——

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION [r—
Systems Publications m—
215 Moffett Park Drive —
Sunnyvale, California 94086 —
(R
——
——
ovmem—

~fQ - - - T T T T T T T T 7 TFowp_

STAPLE STAPLE

CUT ON THIS LINE

