CONTROL DATA

CONTROL DATA®
CYBER 70 SERIES COMPUTER SYSTEMS

6000 COMPUTER SYSTEMS
7600 COMPUTER SYSTEM

COMPASS REFERENCE MANUAL
CYBER 70 SERIES VERSION 3
6000 SERIES VERSION 3

7600 SERIES VERSION 3

CPU AND PPU INSTRUCTION INDEX

CPU INSTRUCTIONS

Mnemonic Operation Section
Code Code (octal) Number
AXi ak 2145k 8.4.25
AXi Bf, Xk 28k ik 8.4.27
BXi Xj 10i4) 8.4.16
BX{ Xj*Xk 114jk 8.4.17
BXi Xj+Xk 124k 8.4.18
BXt Xj-Xk 131k 8.4.19
BXi -Xk 14ikk 8.4.20
BXi -Xk*X) 1515k 8.4.21
BX{ -Xk+Xj 16itk 8.4.22
BXI -Xk-Xj 17ijk 8.4.23
CXi Xk 471ikk 8.4.44
DF X, K 036i§K 8.4.14
DXi Xj+Xk 3213k 8.4.33
DXi Xj-Xk 3315k 8.4.33
DXf Xj*Xk 42i5k 8.4.38
EQ Bi, Bj, K 041K 8.4.15
" ES K 00000 8.4.2
FXi XJ+Xk 30isk 8.4.32
FXI X§-Xk 311k 8.4.32
FXi XI*Xk 4013k 8.4,36
FXi XJ/Xk 44ijk 8.4.41
GE Bi, B}, K 081jK 8.4.15
GE Bi,K 0810K 8.4.15
GT Bj, Bi,K 07ijK 8.4.15
GT Bj,K 070jK 8.4.15
1B§ Bk 0165k 8.4.12
ID X, K 037jK 8.4.14
IR X3, K 0343k 8.4.14
DX Xj+Xk 36ijk 8.4.35
IXi Xj-Xk 37ijk 8.4.35
IXi X§*Xk | 42ijk 8.4.39
. JP Bj:zK 02i0K 8.4.13
: LE B}, Bi, K 084jK 8.4.15
LT Bi, B}, K 0THK 8.4.15
LXi #jk 20ijk 8.4.24
LXi B}, Xk 221k 8.4.28
Ml X}, K 033K 8.4.14
MI Bi,K 070K 8.4.15
MJ 01300 8.4.7
MJ BizK 013§K 8.4.7
MXi xfk 43ijk 8.4.40
NE Bi, B}, K 051jK 8.4.15
NG B, K 07i0K 8.4.15
NG X}, K 033jK 8.4.14
N@ n 46n 8.4.43
NXi Bj, Xk 241k 8.4.28
NZ Bi, K 05{0K 8.4.15
NZ Xj, K 031jK 8.4.14
OB} Bk 0173k 8.4.12
OR X§, K 035jK 8.4.14
PL XL K 032§K 8.4.12
PL Bi, K 060K 8.4.15
PS K 0000K 8.4.1
PXi Bj, Xk 274j 8.4.31
" RE Bj+K 011jK 8.4.4
RI Bk 0160k 8.4.9
RJ K 0100K 8.4.3
RL Bj+K 0113K 8.4.5
RO Bk 0170k 8.4.11
RXi Xj+Xk 34ijk 8.4.34
RXi Xj-Xk 35ijk 8.4.34

CPU INSTRUCTIONS (cont'd)

Mnemontc Operation Section
Code Code (ootal) Number
RXi Xj*Xk 41ijk 8,4.37
RXi Xj/Xk 451k 8.4.42
RXj Xk 014jk 8.4.8
SAI AjzK 501K 8.4.45
SAi BfzK 51K 8.4,45
SAi XjzK 521§K 8.4.45
SAi Xj+Bk 53ijk 8.4.45
SAI Aj+Bk 54ifk 8.4.45
SAf Aj-Bk 551tk 8,.4.45
SAl Bj+Bk 56ijk 8.4.45
SAf Bj-Bk 57ifk 8.4.45
SBi AjzK 601K 8.4.46
SBi Bj+K 61ijK 8.4.46
SBi XjzK 62iJK 8.4.46
SBi Xj+Bk 631jk 8.4.46
SBi Aj+Bk 6415k 8.4.486
SBi Aj-Bk 65ijk 8.4.46
SBi Bj+Bk 661jk 8. 4. 46
SBi Bj-Bk 6Tijk 50 4. 46
8Xi AjzK 70§jK 8.4.47
SXi Bj+K 71ijK 8.4.47
SXi XjxK T21jK 8.4.47
SXi Xj+Bk 73ijk 8.4, 47
SXi AjBk 74ijk 8.4.47
SXi Aj-Bk 751jk 8.4, 47
SXi Bj+Bk 76ijk 8.4.47
SxXi Bj-Bk 77ijk 8.4.47
TBj 01630 8.4,10
UXI B}, Xk 26ijk 8.4. 30
WE Bj+K 012jK 8.4.4
WL Bj+K 012JK 8.4.5
WX} Xk | o015ik 8.4.8
XJ Bj+K 013jK 8.4.6
ZR Xj, K 030jK 8.4.14
ZR Bi,K 0410K 8.4.15
ZXi Bj, Xk 2545k 8.4.29
CMU INSTRUCTIONS
cC l,k c a’ 8.5.4
cy 1, ka o’ 11:: % 8,5.5
DM 1,k ,c kg 8.5.3
M Bj+ (496431() 8.5.1
MD 1,ks,c ’kd’cd 8.5.2 ;
PPU INSTRUCTIONS I
Operation Section
Name Code (octal) Number
ACN d 744 9.2.18
ADC ¢ 21dm 9.2.4
ADD d 31d 9.2,9
ADI d 41d 9.2.10
ADM m,d 51dm 9.2.11
ADN d 164 9.2.3
AJM m,d 64dm 9.2.13
AOD d 36d, 9.2.9
AOI d 46d 9,2.10
AOM m,d 56dm 9.2.11
CRD d 60d 9.2.12
CRM m,d 61d 9.2.12
CcWD d 62d 9.2,12
CWM m,d 63dm 9.2,12
DCN d 75d 9.2.18

PPU INSTRUCTIONS (cont'd)

Operation Section
Name Code (octal) Number
EIM m,d 6ldm 9,2.14
E/JM m,d 67dm 9.2.13
EOM m,d 65dm 9.2.14
ERN d 270d 9.2.8
ESN d 7700 9.2.19
ETN d 260d 9.2.8
EXN 4 260d 9.2.6
FAN 4 76d 9,2.18
FIM m,d 60dm 9.2.14
FIM m,d 66dm 9,2.13
FNC m,d 77dm 9,2.18
FOM m,d 64dm 9.2.14
IAM m,d 71dm 9.2.16
IAN d 70d 9.2.15
IIM m,d 65dm 9.2.13
IRM m,d 62dm 9.2.14
LCN d 15d 9.2.3
LDC ¢ 20dm 9.2.4
LDD d 30d 9.2.9
LDl d 40d 9.2.10
LDM m,d 50dm 9.2.11
LDN d 14d 9.2.3
LJM m,d 0ldm 9.2.1
LMC ¢ 23dm 9.2.4
LMD d 33d 9.2.9
LMl d 43d 9.2.10
LMM m,d 53dm 9.2.11
LMN d 11d 9.2.3
LPC ¢ 22dm 9.2.4
LPN d 12d 9.2.3
MAN d 262d 9.2.6
MIN r 07d 9.2.1
MXN d 261d 9.2.6
NIM m,d 63dm 9,2,14
NN r 05d 9.2.1
NOM m,d 67dm 9,2.14
OAM m,d 73dm 9.2.16
OAN 4 724 9,2.15
ORM m,d 66dm 9.2.14
PIN r 06d 9.2.1
PSN 2400 9.2.5
RAD d 35d 9,2.9
RAI d 45d 9,2.10
RAM m,d 55dm 9.2.11
RFN d 74d 9,2.17
RIM m,d 02dm 9.2.1
RPN d 270d 9.2.7
SBD d 32d 9.2.9
SBI d 42d 9.2.10
SBM m,d 52dm 9,2.11
SBN 4 17d 9.2.3
SCN d 13d 9.2.3
SHN r 10d 9.2.2 .
sop d 37d 9.2.9
sor d 47d 9.2.10
SsOM m,d 57dm 9.2.11
STD d 344 9.2.9
sTI d 444 9.2.10
STM m,d 54dm 9,2.11
UIN r 03d 9.2.1
ZIN T 04d 9.2.1

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

REVISION RECORD

REVISION DESCRIPTION
—
A Original Printing
8-71)
B Correct technical and typographical errors on pages vi, bvii, ix; 2-1, 2-6 thru 2.9 2.15, 2-18, 2-27.
(7-72) 3-3, 3-5, 3-6; 4-2, 4-15, 4-19, 4-22 thru 4-28, 4-31, 4-35, 442, 4-51, 4-52, 4-62. 4-64. 4-66 thru 4-73
4-15, 4-71, 4-78, 4-80, 4-82; 5-7, 5-8, 549, 5-16, 5-19; 64, 69, 6-10; 7-1, 7-2, 7-3; 8-9, 8.14, 8-33. 8-34
842, 8-43, 8-51, 8-54; 9-17, 9-20, 9-21, 9-22; 10-3 thru 10-6, 10-10; 11-1, 11-2, 11-9 thru 11-14;
B-1 thru B-6; C-1; D-1, D-2, D-3; Index-1 thru 19; Comment Sheet; Back Cover; add pages 8-14.1,
8-34.1; 10-11.
C Updates manual for KRONOS 2.1 and corrects typographic errors, expands a few descriptions, and adds
(6-8-73) descriptions of CHAR and hexadecimal constants. Affected pages: Cover, inside cover, iii thru vi, xi;
1-1, 1-3, 14; 2-11, 2-15, 2-23 thru 2-28; 3-5, 3-6, 3-7, 3-13; 4-1, 4-2, 4-16, 4-25, 4-26, 4-27, 4-30,
4-31, 4-35, 449, 457, 4-61, 4-81, 482, 4-83, 4-85; 7-2 thru 7-5; 8-6, 8-23, 8-32, 8-33, 8-43, 848,
8-51; 9-15, 9-22; 10-1, 10-2, 10-3, 10-5, 10-6, 10-7; A-1 thru A4; B-1 thru B-6; D-1; Index 1 thru 8,
11 thru 14, 19, 20; Comment Sheet, inside back cover. |
D Technical corrections. Affected pages: 1-4;2.15;3-5 thru 3-7, 3-13; 4-19, 4-26, 449, 4-57, 461, 4-84;
(7-20-73) 7-3 thru 7-5; 8-23, 8-33, 8-34; 10-1 thru 10-6; B-1 thru B-6.
Publication No.
60360900

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

€
71971 1972, 1973

Control Data Corporation

PREFACE

”

This manual is directed at programmers using the CONTROL DATA®COMPASS Assembler Version 3.
This manual describes the principles, features, methods, rules and techniques of producing a
COMPASS language program.

The User is assumed to be familiar with the CONTROL DATA®CYBER 70 Series Computer Systems,
the CONTROL DATA® 6000-Series Computer Systems or the CONTROL DATA® 7600 Computer System
and is assumed to be familiar with assemblers in general.

Readers with no previous experience with 6000 COMPASS or 7600 COMPASS assemblers are en~
couraged to direct their initial attentions to the following sections of this manual,

Chapter 1 Introduction

Chapter 2 Language Structure

Chapter 3 Program Structure, sections 3.1 through 3.3
Chapter 4 Pseudo Instructions, sections 4.1 and 4.2

Chapter 8 or 9 CPU or PPU Symbolic Machine Instructions, the chapter depending upon the
machine language the user requires.

Chapter 10 Program Execution

This publication is not intended as a replacement for the related computer system reference manuals,
which contain detailed information on machine instructions. Information in the related computer system
reference manuals takes precedence over information in this publication should discrepencies arise
between the publications.

In this manual, numbers occurring in text are decimal unless otherwise noted. Lower case letters in
formats depict variables, The examples assume that assembler numeric mode is decimal and that
character mode is display code unless otherwise noted. In examples, statements generated by the
assembler as a result of a call or a substitution are shown in shaded print.

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of
undescribed features or undefined parameters.

60360900C 111

Other documents of interest:

iv

Model 72, 73, 74, and 6000 Series manuals

SCOPE 3.4 Reference Manual

KRONOS 2.1 Reference Manual

LOADER Reference Manual

Record Manager Reference Manual

Record Manager File Organization User's Guide

CDC CYBER 70/Model 72 Systems Description and
Programming Information (vol. 1) (RM)

CDC CYBER 70/Model 73 Systems Description and
Programming Information (vol. 1) (RM)

CDC CYBER 70/Model 74 Systems Description and
Programming Information (vol. 1) (RM)

CDC CYBER 70/Models 72, 73, and 74 Instruction
Descriptions (vol. 2) (RM)

CDC CYBER 70 Computer Systems-7030 Extended
Core Storage (RM)

CDC CYBER 70/Models 72, 73, and 74 and 6000

Series Computer Systems 1/0 Specifications (RM)

Model 76 and 7600 computer manuals

SCOPE 2 Reference Manual
CYBER 70/Model 76 Reference Manual

60307200
60407000
60344200
60307300

60359600

60347000

60347200

60347400

60347300

60347100

60352500

60342600
60367200

60360900 C

CONTENTS

CHAPTER 1

CHAPTER 2

60360900C

INTRODUCTION

1.1 Operating System Interface

1.2 Configuration

1.3 Assembler Execution

1.4 Relocatable Object Program Execution

LANGUAGE STRUCTURE
2.1 Statement Format

2.1.1 First Column

2,1.2 Location Field

2.1.3 Operation Field

2.1.4 Variable Field

2.1.5 Comments Field

2.1.6 Comments Statement
2.1.7 Statement Continuation
2.1.8 Coding Conventions

2.2 Statement Editing

2,2.1 Concatenation
2,2.2 Micro Substitution
Names

NN

.1 Linkage Symbols
2 Default Symbols
3 Previously Defined Symbols
.4 Undefined Symbols
5 Qualified Symbols
CPU Registers
Special Elements
Data Notation
2.7.1 Data Items
2,7.2 Constants
2 3 Literals
2.7.4 Character Data Notation
2.7.5
2.7.6

© 1
B e I |

Numeric Data Notation
Hexadecimal Data Notation
2.8 Expressions

1 Types of Expressions
.8.2 Evaluation of Expressions

e e
| S T} L}
Eandil o O W W Y e

Ut

NNI\‘)!@[P(\JN&.‘}(O

N o
[L)

NNNll\'Jl@N

v 6o 0o 0
T SRR RN B . N I N O S SR

(i
[}

NNNNN[}DNNNN

CHAPTER 3 PROGRAM STRUCTURE 3-1
3.1 Subprogram Blocks 3-1

3.1.1 Absolute Block 3-2

3.1.2 Zero Block 3~-2

3.1.3 Literals Block 3-2

3.1.4 User-Established Local Blocks 3-2

3.1.5 Labeled Common Blocks 3-3

3.1.6 Blank Common Blocks 3-3

3.1.7 Redundant Block Names 3-4

3.2 Block Control Counters 3-4

]
S

3.2,1 Origin Counter
3.2.2 = Location Counter
3.2.3 Position Counter
3.2.4 Forcing Upper

wcaoowc::wwww
Ll i IRz B2) |

3.3 Relocatable Program Structure
3.4 Absolute Program Structure -
3.4.1 Absolute Overlays -10
3.4.2 Multiple Entry Point Overlays -15
3.4.3 Partial Binary -15
CHAPTER 4 PSEUDO INSTRUCTIONS 4-1
4.1 Introduction to Pseudo Instructions 4-1
4.1.1 Types of Pseudo Instructions 4-1
4.1.2 Required Pseudo Instructions 4-2
4.1.3 First Statement Group 4-2
4.1.4 Permissible Anywhere Instructions 4-2
4,2 Subprogram Identification 4-2
4.2.1 IDENT-Subprogram Identification 4-2
4.2,2 END-End of Subprogram 4-5
4.3 Binary Control ' 4-6
4.3.1 ABS - Absolute CPU Program 4-6
4,3.2 MACHINE - Declare Object Processor Type 4-7
4.3.3 PPU ~ CYBER 70/Model 76 or 7600 PPU Program 4-9
4.3.4 PERIPH - CYBER 70/Models 72, 73, 74 or 6000
Series PPU Program 4-10
4.3.5 IDENT - Identify and Generate Overlay 4-11
4.3.6 SEGMENT - Generate Binary Segment 4-16
4.3.7 SEG - Write Partial Binary 4-17
4.3.8 STEXT - Generate System Text Record 4-19
4.3.9 COMMENT - Prefix Table Comment 4-21
4.3.10 NOLABEL - Delete Header Table 4-22
4.3.11 LCC - Loader Directive 4-23
4.4 Mode Control ‘ 4-23
4.4.1 BASE - Declare Numeric Data Mode 4-23
4.4.2 CHAR - Define Other Character Data Code 4-25
4.4.3 CODE - Declare Character Data Code 4-26
4.4.4 QUAL -~ Qualify Symbols 4-27
4.4.5 Bl=1 and B7=1 - Declare that B Register
Contains One 4-30
4.4.6 COL - Set Comments Column 4-31

vi 60360900C

4.5

4.6

4,7

4.8

4.9

4.10

4,11

60360900B

Block Counter Control
USE - Establish and Use Block
USELCM - Establish and Use ECS/LCM Block
ORG and ORGC - Set Origin Counter
BSS - Block Storage Reservation
LOC - Set Location Counter
POS - Set Position Counter
bol Definition
EQU or = - Equate Symbol Value
SET - Set or Reset Symbol Value
MAX - Set Symbol to Maximum Value
MIN - Set Symbol to Minimum Value
. 6. MICCNT - Set Symbol to Micro Size
4,6.6 SST - System Symbol Table
Subprogram Linkage
4.7.1 ENTRY and ENTRYC - Declare Entry Symbols
4,7.2 EXT - Declare External Symbols
Data Generation
4.8.1 BSSZ and Blank Operation Field - Reserve
Zeroed Storage
2 DATA - Generate Data Words
3 DIS - Generate Words of Character Data
4 LIT - Declare Literal Values
5 VFD -~ Variable Field Definition
6
7
8

S
o
o

oo P
o @O oo

.
(2B VU]

nd

DN
OF AW ob

B
(2R =r B« Wi« s B e

CON - Generate Constants
R= - Conditional Increment Instruction
REP, REPC, and REPI - Generate Loader
Replication Table
Conditional Assembly
4.9.1 ENDIF - End of IF Range
9.2 ELSE - Reverse Effects of IF
9.3 IFtype - Test Object Processor Type
.9.4 IFop - Compare Expression Values
9.5 IFPL and IFMI - Test Sign of Expression
9.6 IF - Test Symbol or Expression Attribute
9.7 IFC - Compare Character Strings
4.9.8 SKIP - Unconditionally Skip Code
Error Control
4.10.1 ERR - Unconditionally Set Error Flag
4.10.2 ERRxx - Conditionally Set Error Flag
Listing Control
4.11.1 LIST - Select List Options
4,11, EJECT - Eject Page and Begin New Sub-Subtitle
4.11. SPACE - Skip Lines and Begin New Sub-Subtitle
4.11. TITLE - Assembly Listing Title
4.11. TTL - New Assembly Listing Title
4,11, NOREF - Omit Symbol References
4,11. CTEXT and ENDX - Disable/Enable Listing of
Common Deck Text
4.11.8 XREF - Reference Symbolic Address

“3 O W

o
01
w W W
B NN

!
LW
Nelgdi}

]
S
>

2

[\

w

(O N

[
mmhhﬁﬁg&%ﬁhﬁ

W

e &

§

Am%ﬁ&%h#?%#ﬁ#ﬁ#*#

-

vii

CHAPTER 5

CHAPTER 6

CHAPTER 7

viti

DEFINITION OPERATIONS
5.1 External Text (XTEXT)
5.2 Remote Assembly
5.2.1 RMT - Save Remote Code
5.2,2 HERE - Assemble Remote Code
5.3 Code Duplication
1 DUP - Simple Duplication
2 ECHO - Echoed Duplication
.3 STOPDUP - Stop Duplication
] 4 ENDD - End Duplication Sequence
5.4 Macros and Opdefs

5.3.
5. 3.
5.3
5. 3.

5.4,1 ENDM - End Macro Definition

5.4.2 MACRO - Macro Heading

5.4.3 Macro Calls

5.4.4 MACROE - Equivalenced Macro Header

5.4.5 Equivalenced Macro Call

5.4.6 OPDEF - Define CPU Operation

5.4.7 Opdef Call

5.4.8 LOCAL - Local Symbols

5.4.9 . IRP - Indefinitely Repeated Parameter
5.5 System Macro and Opdef Definitions

OPERATION CODE TABLE MANAGEMENT
6.1 Mnemonically Identified Instructions

6.1.1 PPOP - PPU Operation Code
6.1.2 OPSYN - Synonymous Mnemonic Operation
6.1.3 NIL - Do Nothing Pseudo Instruction
6.1.4 PURGMAC - Purge Macros
6.2 Syntactically Identified Instructions
6.2.1 CPOP - CPU Operation Code -
6.2.2 CPSYN - Synonymous CPU Instruction
6.2.3 PURGDEF - Purge CPU Operation Code
MICROS
7.1 Micro Substitution
7.2 Micro Definition
7.2.1 MICRO - Define Micro
7.2.2 DECMIC - Decimal Micro
7.2.3 OCTMIC - Octal Micro
7.3 Predefined Micro Names
7.3.1 DATE
7.3.2 JDATE
7.3.3 TIME
7.3.4 BASE
7.3.5 CODE
7.3.6 QUAL
7.3.7 SEQUENCE
7.3.8 MODLEVEL
7.3.9 PCOMMENT

[}
1 i

1 |
DWW N =

wcnclnf.ncncincncncncncn
b et ek O =3

SO,
oot L
W W

PP > D>
= = 0 o -3 -3
gy an

] i
—

Illlqu\]q\]\]q
| S T N T
YOO U R DN

1
00 =31 =2 -3 -3

3 -3 3 ~3 -3 -3 =3 -1
t

60360900A

CHAPTER 8

603609001

CPU SYMBOLIC MACHINE INSTRUCTIONS

8.1 Machine Instruction Formats
8.2 Instruction Execution
8.2.1 6600/6700 and CYBER 70/Model 74 Execution

8.2.2 6200/6400/6500 and CYBER 70/Model 72 and
73 Execution

8.2.3 17600 and CYBER 70/Model 76 Execution

8.3 Operating Registers

8.3.1 X Registers

8.3.2 A Registers

8.3.3 B Registers

8.4 Symbolic Notation

8.4.1 Program Stop Instruction (CYBER 70/Models
72, 73, 74 or 6000-Series)

8.4.2 Error Exit Instruction (CYBER 70/Model 76
or 7600)

8.4.3 Return Jump Instruction

8.4.4 ECS Instructions (CYBER 70/Models 72, 73, 74
or 6000-Series)

8.4.5 LCM Block Copy Instructions (CYBER 70/Model
76 or 7600)

8.4.6 Exchange Jump Instruction (CYBER 70/Models
72, 73, 74 or 6000-Series)

8.4.7 Exchange Exit Instruction (CYBER 70/Model 76
or 7600)

8.4.8 Direct LCM Transfer Instructions (CYBER 70/
Model 76 or 7600)

8.4.9 Reset Input Channel Buffer Instruction (CYBER
70/Model 76 or 7600)

8.4.10 Set Real-Time Clock Instruction (CYBER 70/
Model 76 or 7600)

8.4.11 Reset Qutput Channel Buffer Instruction (CYBER
70/Model 76 or 7600)

8.4.12 Read Channel Status Instructions (CYBER 70/
Model 76 or 7600}

8.4.13 Unconditional Jump Instruction

8.4.14 X-Register Conditional Branch Instructions

8.4.15 B-Register Conditional Branch Instructions

8.4.16 Transmit Instruction

8.4.17 Logical Product Instruction

8.4.18 Logical Sum Instruction

8.4.19 Logical Difference Instruction

8.4.20 Complement Instruction

8.4.21 Logical Product and Complement Instruction

8.4.22 Complement and Logical Sum Instruction

8-19

8-20

8-21

8-22
8-23
8-23
8-26
8-28
8-28
8-29
8-29
8-30
8-30
8-31

CHAPTER 9

w

N

-1 o

.
.

.
NN NN N
[9)!

@

.

vb»hrb»hrhrh»ho&

N
o

-

<

-

»

WL W ww
L N

W

o]
%]

o2

.
-3

[o2]
-
e 2]

= O WO

.&»A.&A.&-gws»&wwww

B

o

® ™
i

o0
o

-
(=}

0 o

-3

8.5

O

0 00 0o 0w
U'ICH'U‘IUIU!
(51 I ~ VU

Complement and Logical Difference Instruction
Logical Left Shift jk Places Instruction.
Arithmetic Right Shift jk Places Instruction
Logical Left Shift (Bj) Places Instruction
Arithmetic Right Shift (Bj) Places Instruction
Normalize Instruction

Round and Normalize Instruction

Unpack Instruction

Pack Instruction

Unrounded SP Floating Point Add Instructions
DP Floating Point Add Iustructions

Rounded SP Floating Point Add Instructions
Long Add (Fixed Point) Instructions

Unrounded SP Floating Point Multiply Instruction
Rounded SP Floating Point Multiply Instruction
DP Floating Point Multiply Instruction

Integer Multiply Instruction

Mask Instruction

Unrounded SP Floating Point Divide Instruction
Rounded SP Floating Point Divide Instruction
Pass Instruction

Population Count Instruction

Set A Register Instructions

Set B Register mstructions

Set X Register Instructions

MU Symbolic Machine Instructions

IM - Indirect Move

MD - Move Descriptor Word
DM - Direct Move

CC - Compare Collated

CU - Compare Uncollated

PPU SYMBOLIC MACHINE INSTRUCTIONS

9.1 Machine Instruction Formats
9.2 Symbolic Notation

9.2,1 ° Branch Instructions

9.2.2 Shift Instructions

9.2.3 No Address Mode Instructions

9.2.4 Constand Mode Instructions

9.2.5 No Operation Instruction

9.2.6 Exchange Jump Instructions (CYBER 70/
Models 72, 73, 74 and 6000-Series)

9.2.7 Read Program Address Instruction (CYBER
70/Models 72, 73, 74 and 6000-Series)

9.2.8 6416 PPU Instructions

9.2.9 Direct Address Mode Instructions

9.2.10 Indirect Address Mode Instructions

9.2.11 Indexed Direct Address Mode Instructions

9.2.12 Central Read/Write Instructions (CYBER 70/
Models 72, 73, 74 and 6000-Series)

9.2.13 I/0O Branch Instructions (CYBER 70/Models
72, 73, 74 and 6000-Series)

9.2.14 I/O Branch Instructions (CYBER 70/Model 76

and 7600)

=

i
w W w
[SVI oV

[

1

ooooc}ooooooo

[S1 I
-

=2}

i

=3

i
[=J] o o]

oooooooo(}ooooooooo

[T

1
»»&pgp»wgwwwwwwww

0 C’b ® o
i
o W

I
L e
(22 |

|
@® N

©

W

=

P ® ™ ®PE®P®®O
I G I S
DO R =

1] 1
D

]

W W =T U DN

P
=
L]

9-11
9-12
9-13
9-14
9-15

603609008

CHAPTER 10

CHAPTER 11

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

60360900C

9.2.15

9.2.16
9.2.17

9.2.18

9.2.19

A Register Input/Output Instructions
Block Input/Output Instructions

Set Output Record Flag Instruction (CYBER

70/Model 76 and 7600)

Channel Function Instructions (CYBER 70/Models

72, 73, 74 and 6000-Series) .
Error Stop Instruction (CYBER 70/Mcdel
76 and 7600)

PROGRAM EXECUTION
Control Statements

10.1

10.2

10.1.1
10.1.
10.
10.
10.
10.
10.

o e ek ek ped
. e . e
U1 W

.7

Job Statement

COMPASS Call Statement
LGO Control Statement
Program Call Statement
7/8/9 Card

6/7/8/9 Card

KRONOS Account card

Sample Decks

LISTING FORMAT
Page Heading
Header Information

11.1
11.2

11.
11.
11.
11.
11.
11.

W =~ ;O W

11.2.1
11.2.2
11.2.3
11, 2.4

Binary Control Card Summary
Block Usage Summary

Entry Point List

External Symbol List

Octal and Source Statement Listing

Literals

Default Symbols
Assembler Statistics
Error Directory
Symbolic Reference Table

CHARACTER SETS

USE OF RECORD MANAGER FOR ASSEMBLY 1/0

BINARY CARD

HINTS ON USING COMPASS

DAYFILE MESSAGES

10-1
10-1
10-1
10-2
10-6
10-6
10-7
16-7
10-7
10-8

11-1
11-1
11-1
11-1
11-3
11-4
11-5
11-5
11-8
11-9
11-9
11-9

11-13

xi

FIGURES

2-1 COMPASS Coding Form 2-3
3-1 Relocatable Program Structure 3-7
3-2 Absolute Program Structure 3-9
3-3 IDENT-Type Overlay Structure 3-12
3-4 SEGMENT-Type Overlay Structure 3-14
3-5 SEG-Type Partial Binary 3-16
3-6 IDENT-Type Paritial Binary 3-17
8-1 CPU 15-Bit Instruction Format 8-1
8-2 CPU 30-Bit Instruction Format 8-1
8-3 Arrangements of Instructions in a 60-Bit CPU Word 8-2
9-1 PPU 12-Bit Instruction Format 9-1
9-2 PPU 24-Bit Instruction Format 9-2
11-1 Format of Octal and Source Statement Listing 11-6
11-2 Format of Symbolic Reference Table 11-13
TABLES

8-1 CYBER 70/Model 74 and 6600/6700 Functional Units 8-4
8-2 CYBER 70/Model 76 and 7600 Functional Units 8-7
9-1 PPU Instruction Designators 9-3
11-1 Fatal Errors 11-10
11-2 Informative Errors 11-12

xii 60360900A

INTRODUCTION 1

The CONTROL DATA COMPASS Version 3 Assembler provides the user with a versatile, extensive
language for generation of object code to be loaded and executed on the central processor unit (CPU) or
a peripheral processor unit (PPU)., The assembler executes on the following computer systems and
operating systems:

CONTROL DATA® CYBER 70 Series Models 72, 73, and 74 Computer Systems f under control of
SCOPE 3.4 or KRONOS 2.1.

CONTROL DATA® CYBER 70 Series Model 76 Computer System under control of SCOPE 2

CONTROL DATA® 6000 Series Computer Systems under control of SCOPE 3.4 or KRONOS 2.1

CONTROL DATA® 7600 Computer System under control of SCOPE 2.

From CPU source language subprograms, the COMPASS assembler generates binary point acceptable
for loading and execution. Subprograms can be compiled independently for subsequent loading and exe-
cution as a single program,

From PPU source language programs, the COMPASS assembler generates absolute code to be loaded
and executed on a peripheral processor unit.

Source statements consist of CPU or PPU symbolic machine instructions and pseudo instructions. The
symbolic machine instructions (chapters 8 and 9) are counterparts of the binary machine instructions;
they provide a means of expressing symbolically all functions of the Computer System.

The pseudo instructions are oriented towards control of the assembler itself; they control the assembler

much the same as machine language instructions control the computer. The ability to control assembly
places COMPASS at a level of sophistication much higher than that of the conventional assembler,

Features inherent to COMPASS include:

e Free-field source Size of source statement fields is largely controlled by user,
statement format

+ References to CYBER 70/Models 72, 73, and 74, with the exception of references to CMU instruc-
tions, apply also to the 6000 Series Computer Systems. References to CYBER 70 Model 76 apply

also to the 7600 Computer System.

60360900 C 1-1

e Control of local
and common blocks

e Preloaded data

o Data notati on

e Address arithmetic

e Symbol equation and
redefinition

e Symbol qualification

e Binary control

e Selective assembly of
code sequences

e Mode control

e Listing control

e Micro coding

Programmer and system designate up to 255 areas to facilitate
interprogram communication. In CPU programs, common areas
can be defined in small core memory (CM or SCM) or extended or
large core memory (ECS or LCM),

Data areas may be specified and loaded in core memory with the
source program. '

Data can be designated in integer, floating-point, and character
string notation. It can be introduced into the program as a data
item, a constant, or a literal.

Addresses can be specified making extensive use of constants,
symbolic addresses, and arithmetic expressions.

Equation and redefinition of symbols allow extensive parameteriza-
tion of assembly and linkage of subprograms and subroutines.

Ability to associate a symbol qualifier with a symbol defined within
a qualified sequence to render the symbol unique to the sequence.
An unqualified symbol is global and can be referred to from within
any sequence without qualification, '

The programmer can specify whether binary output is to be absolute
or relocatable. Absolute code can be generated for any PPU or
CPU. Relocatable code can be generated for any CPU. Binary can
be written as overlays or as partial records.

Assembly~time tests allow the user to select or alter code
sequences.

Ability to specify the base to be used for numeric notation not
explicitly defined as octal or decimal, and to specify the code con-
version to be applied to character data as either display code,
ASCII, internal BCD, or external BCD.

Assembly~time control of list content.
Substitution of sequences of characters defined in the program

whenever the micro name is referenced. Several micros are
predefined by the system for user convenience.

603609004

e Macro coding Assembly of sequences of instructions defined in the program or on
the system library whenever the macro name is referenced. Macro
definitions can be redefined or purged from the operation code table.

e Operation code table The programmer can specify or respecify the syntax of a CPU or
PPU instruction. The assembler generates an entry in the operation
code table for the instruction. No macro or opdef definition is
associated with the entry,

e Operation code Assembly of sequences of instructions defined in the program or on
definition the system library whenever an operation code of the specified
syntax is referenced.

e Code repetition Sequences of code can be repeated during assembly or at load time.

e Remote assembly Defers assembly of defined coding sequence until later in the
assembly.

e Library routine calls Routines can be called from the system library.

e Diagnostics Diagnostics for source program errors are included on output
listing.

1.1 OPERATING SYSTEM INTERFACE

COM PASS executes on a CYBER 70/Model 76 or 7600 CPU under control of the SCOPE 2 Operating
System or on a CYBER 70/Model 72, 73, 74 or 6000-series computer system CPU under control of
the SCOPE 3.4 or KRONOS 2.1 Time-8haring Systems.

1.2 CONFIGURATION

The hardware requirements for executing COMPASS on a CPU are the minimum required for the
operating system.

60360900 C 1-3

ey

1.3 ASSEMBLER EXECUTION

COMPASS is called from the system library by a COMPASS control card (chapter 10) or CDC FORTRAN
compilers upon encountering a COMPASS IDENT statement in the source input file, Parameters
on the card specify files used during the assembler run such as the file containing source statements
and the files to receive listable output and load-and-go output. The COMPASS assembler executes as

a CPU program,

The operating system allocates the input/output resources as needed and performs all input/output
required during the assembly.

COMPASS assembles each subprogram on the source file, in turn, in two passes. During the first
pass, it reads each source language instruction, expands and edits called sequences as needed, inter-
prets the operation code, and assigns storage.

The function of the second pass is to assign block origins, locate literals, fill in all valid symbol
values and produce the assembly listing and binary output. Finally, it prepares the symbolic refer-
ence table and reinitializes itself preparatory to assembling the next subprogram.

Core requirements for tables used by the assembler are dynamically changed as requirements change
during assembly. If insufficient core is available for the program, the intermediate file and cross-
references are transferred to the system mass storage device and assembly continues. If any ECS/
LCM space is assigned to the job, COMPASS may use it for table storage.

All nested processing of macros and similar definitions is handled in a single recursive push-down
stack. COMPASS has a maximum recursion level of 400; that is, COMPASS allows nesting to a
depth of 400,

1.4 RELOCATABLE OBJECT PROGRAM EXECUTION

When the assembler has completely processed the source deck, a control card (for example, LGO)
can be used to call for loading and execution of a CPU object program from the load-and-go file.
The loader links the newly assembled subprogram to any previously assembled subprograms and sub-
routines referred to by the new program and to programs on any other files specified by the pro-
grammer. After all subprograms are loaded and linked, the operating system begins program exe-
cution at a location specified by one of the subprograms. Data for the object program may be on some
programmer-specified file. Normally, this loading and execution does not take place if the COMPASS
assembler detects fatal errors.

1-4 60360900 O

LANGUAGE STRUCTURE 2

—— e

2.1 STATEMENT FORMAT

A COMPASS language source program consists of a sequence of symbolic machine instructions, pseudo
instructions, and comment lines. With the exception of the comment lines, each statement consists of
a location field, an operation field, a variable field, and a comments field. Each field is terminated by
one or more blank characters., However, a blank embedded in a character data item, parenthesized
macro parameter, or comments field does not terminate a field. The size of the variable field is re-
stricted by the maximum statement size only. Statement format is essentially free field.

Statements are 80-to-90 column lines. When punched on cards, each card is considered a line. 4 single
statement may be composed of as many as ten lines. Information beyond column 72 is not interpreted

by COMPASS but does appear on the assembly listing. Thus, columns 73-80 can be used for additional
comments or sequencing. Column 81-90 are used for sequencing by library maintenance programs; they
are normally not used by the programmer. A line that contains two or more consecutive colons may be
read and printed as two lines because of operating system conventions for delimiting line fmages.

2.1.1 FIRST COLUMN
The contents of column one designate the type of line, as follows:

, (comma) Designates the line as a continuation of the previous line.

*(asterisk) Designates the line as a comments line.

other Indicates the beginning of a new statement.

2.1.2 LOCATION FIELD

The location field entry begins in column one or two of a new statement line and is terminated by a blank.
If columns one and two are blank, the location field has no entry. A location field entry is usually
optional. It may contain a symbol or name according to the requirements of the operation field, or a

plus sign (+) or a minus sign (-) (section 3, 2. 4).

2.1.3 OPERATION FIELD

If the location field is blank, the operation field can begin in column three. If the location field is
nonblank, the operation field begins with the first nonblank character following the location field and is
terminated by one or more blanks. The operation field is blank if there are no nonblank characters
between the location field and column 30. The following are legal field entries:

Central processor unit mnemonic operation code and, optionally, the variable subfields with each
variable subfield preceded by a comma.

Peripheral processor unit mnemonic operation code

60360900B

Pseudo instruction mnemonic operation code

Macro name

Blank

2.1.4 VARIABLE FIELD

‘The contents of the operation field determine if any entry is required in the variable field which consists
of one or more subfields separated by commas. The variable field begins with the first nonblank
character following the operation field and is terminated by one or more blanks. It is blank if there are
no nonblank characters between the operation field and column 30,

A variable subfield contains one of the following:

Data item

Expression

Register designator

Name

Special element

Entry uniquely defined for the instruction

2.1.5 COMMENTS FIELD

Comments are optional and begin with the first nonblank character following the variable field or, if the
variable field is missing, begin no earlier than column 30. The beginning comments column can be
changed through the COL pseudo instruction (Section 4, 4. 5),

2.1.6 COMMENTS STATEMENT

A comments statement is designated either by an asterisk in column 1 or by blanks in columns 1-29.
Comments statements are listed in assembler output but have no other effect on assembly. A statement
beginning with * is not counted in line counts for IF-skipping (Section 4. 9) and definition operations
(chapter 5) and is not included in definitions. A statement having columns 1-29 blank is counted.

2.1.7 STATEMENT CONTINUATION

Normally, column 72 terminates a source statement that has not vet terminated. However, a statement
that cannot be contained in the first 72 characters can be continued on the next line by placing a comma
in column one and continuing the field in column two. A maximum of nine continuation lines is permitted
for a statement. The break between lines need not coincide with a field or subfield separator; even a
symbol can be split between two lines. Continuation lines beyond the ninth, and continuation lines
following a terminated statement are considered comment lines.

a-a , 603609004

2.1.8 CODING CONVENTIONS

60360900A

e
Figure 2-1 illustrates a COMPASS coding form that establishes a coding convention as follows:
Column Contents
1 Blank, asterisk,or comma
2-9 Location field entry or plus, or minus left justified
10 Blank
11-16 Operation field entry left justified
17 Blank
18-29 Variable field entry left justified
30 Beginning of comments
All examples in this manual abide by this convention.
COMPASS CODING FORM
PROGRAM NAME
ROUTINE DATE | PacE o
LOCATION kﬁRAHON VARIABLE COMMENTS IDENT
toiefefefviolo i Torlonlvaivslg[orling mIo]s oimnlocan m orin slvels oaimoito [or om ow o sr) oaioa,otyuslarcop o0 o9 30 (Misa i hslgpime, ot mom, o6 ajor) s wr o o w ot M * 2l winw » v n
. . R R .
— T B . S S S
3 ST P S . . L _ AU S
L. RS WY I i D B USRI SRR
VT IV . , N o _
H i U -
[EEUWIETE ST P S . .
| SR S
s N ; TS N 1. - L L -
| . . .
| - R
! et A ke et ke aa] .
B RANINTIGRON KRR SORMEEETIDEN DRI rIrr T P W AT I AT t
Gl PN R OE WA DO %a“ 60
Figure 2-1. COMPASS Coding Form
S

2-3

2.2 STATEMENT EDITING

COMPASS reads statements in sequence from the source file. It immediately edits and interprets each
statement unless (1) it is a comments statement of the type indicated by an asterisk in column one, or
(2) it is part of a definition, that is, it is a statement between a macro or OPDEF header and an ENDM,
between 1 DUP or ECHO and an ENDD, or between an RMT pair. Statements within definitions are
saved for editing and interpretation when the definition is referenced or expanded. Statements within
the range of a conditional (IF type) pseudo instruction are edited even when they are skipped. COMPASS

performs two types of editing: concatenation, and micro substitution.

Se—

2.2.1 CONCATENATION

COMPASS examines the statement for the concatenation character — and removes it from any field of
the statement so that the two adjoining columns are linked. The most common use of the concatenation
character is as a delimiter for a substitutable parameter name in a macro definition when there is no
other type of delimiter already there to set off the parameter name. After the substitution takes
place, the i is superfluous and is removed by editing before the definition is interpreted.

t:ach removal of — shifts the remaining columns in the statement left one character. This could
become significant when comments follow a blank variable field because the comments would be
shifted left and interpreted as a variable field entry rather than comments.

2.2.2 MICRO SUBSTITUTION

CONIPASR examines the statement for pairs of micro marks (#) that delimit references to micro

definitions (chapter 7) and replaces each reference (including the micro marks) with the micro character

string referenced. The string that replaces the reference in the statement can be a different number of
characters than the reference so that after the substitution, remaining characters in the statement are

shifted left or right, accordingly. If, as a result of micro substitution, column 72 of the last card read

is exceeded, the assembler creates up to a maximum of nine continuation cards, beyond which it —
discards excess without notification on the listing., No replacement takes place if the micro name is

unknown or if one of the micro marks has been omitted. The micro marks and name remain in the line.

In the first case, the assembler flags a non-fatal assembly error. However, a single micro mark is not

illegal and does not produce an error flag.

If the micro name is null (i.e., the two micro marks are adjacent) both micro marks are deleted and no

ervror flag is set.

The columnar displacement caused by a micro replacement could also affect the relationship of fields
to the heginning comments column. For example, it could shift the operation or variable field right
bheyond column 30, or could shift comments left into a blank field.

A line that contains two v~ more consecutive colons after editing may be printed as two lines because
of operating system conventions for delimiting print lines.

60360900A

2.3 WNAMES

A name is a sequence of characters that identifies one of the following:
Subprogram or overlay
Block
Macro definition
Remote definition
Duplicated sequence (DUP or ECHO)
IF sequence
Micro
A comma or a blank terminates a name. Concatenation marks and pairs of micro marks are removed

before the name is scanned (see section 2, 2 Statement Editing).

A CPU subprogram name or overlay name is used for linkage with other subprograms. It must begin
with a letter (A-Z) and is limited to seven characters maximum. Conventions imposed on names by
the operating system could restrict the use of certain characters in names. There is no restriction on
the first character for a PPU subprogram or overlay name. For a CYBER 70/Model 76 or 7600 PPU
assembly, the name can be seven characters but for CYBER 70/Model 72, 73, 74 or a 6000 Series PPU
assembly it is limited to three characters maximum. I all cases, the last character of a subprogram

or overlay name cannot be a colon.

Any other type of name can consist of one to eight characters. A name does not have a value or
attributes and cannot be used in an expression.

The different types of names do not conflict with each other. For example, a micro can have the same
name as a macro, or a subprogram can have the same name as a block, ete.

603609004 9-5

2.4 SYMBOLS

A symbol is a set of characters that identifies a value and its associated attributes, For an ordinary
symbol, the first character cannot be a $ or = or a number; & symbol can be a maximum of eight
characters. A symbol cannot include the following characters.

+-*/blank [T or A

Other special characters must be used with care, especially in ECHO and macro definitions (chapter 5).
Conventions imposed on symbols by the operating system could restrict the use of certain characters
in symbols.

An external or entry point symbol is used for linkage with other subprograms and has additional
restrictions (section2,4.1 Linkage Symbols).

Concatenation marks or pairs of micro marks are removed before a symbol is examined (section 2.2
Statement Editing)., In CPU assemblies, to avoid conflict with register designators, a symbol cannot
normally be An, Bn, Xn, where n is a single digit from zero to seven nor can a symbol be A.x, B.x,
or X.x, because x is assumed to be a data item by the assembler, However, symbols resembling
register designators can be used if each use of the symbol is prefixed by =S or =X (section 2. 4, 2).
Register designators are described further in Section 2. 5.

The process of associating a symbol with a value and attributes is known as symbol definition. This
can occur in five major ways.

1. A symbol used in the location field of a symbolic machine instruction or certain pseudo
instructions is defined as an address having the current value of the location counter {section
3. 2. 2) and having an attribute defined as follows: '
a. Absolute for the absolute block
b. Common for labeled or blank common blocks (relocatable assemblies only)

¢. Relocatable for local blocks other than absolute during pass one

d. Absolute for local blocks during pass two of an absolute assembly

o

A symbol used in the location field of definition pseudo instructions (section 4. 6) is defined as
having the value and attributes derived from an expression in the variable subfield of the
instruction. Certain of these pseudo instructions assign an attribute of redefinability to a
symbol. Unless a symbol is redefinable, a second attempt to define it with a different value
produces a duplicate definition fatal error flag.

3. An external symbol is defined outside the bounds of the current subprogram and is declared as
external in the current subprogram or is defined in relation to a symbol declared as external.
In cither case it has the attribute of external. Unlike a systems symbol, the true value
definition is not known to the current subprogram.

4. Definitions of systems symbols that take place outside of the current program can be
carried over to the current program through the SST pseudo instruction. COMPASS uses
the true definitions but assigns the additional attribute of systems symbol.

2-6 _ 60360900 B

5. COMPASS defines a symbol by default if a reference to a symbol is preceded by =S and the
symbol is not otherwise defined in the subprogram. This feature is further described

in section 2. 4. 2 Default Symbols.,

There is no restriction on the number of times that the symbol can be referred to in the subprogram.

Examples:
Legal Symbols Illegal Symbols
P 5A First character numeric
R3 ABCDEFGHI Exceeds eight characters
PROGRAM ABE+15 Contains plus sign
=11 First character equal sign

2.4 LINKAGE SYMBOLS

A relocatable subprogram can be linked to other subprograms through linkage symbols. The two types
of linkage symbols are external symbols and entry point symbols. An external or entry point symbol
can be a maximum of seven characters, the first character must be a letter (A-Z), and the last

character must not be a colon.

Any symbol declared as an entry point in a subprogram compiled or assembled independently of the
current subprogram can be declared as an external symbol in the current subprogram. Any symbol
declared as an entry point in the current subprogram can be declared as an external symbol in some
other subprogram. The symbol has a zero value and an attribute of external, An external symbol can
be declared either through the EXT pseudo instruction or through default (a reference to the symbol is

preceded by =X, see section 2. 4. 2 Default Symbols),

External symbols can be defined in the subprogram relative to any external symbol declared in an EXT
pseudo instruction. This is possible through use of symbol definition instructions that assign the value
and attributes of an expression to a symbol. If the value of the expression reduces to an external
symbol * an integer, the location field symbol is defined as having an integer value and external
attribute. Entry point symbols and external symbols are not qualified (section 2.4.5).

2.4.2 DEFAULT SYMBOLS

When a symbol reference is preceded by =S or =X and the symbol is not defined in the subprogram,
COMPASS defines the symbol or declares it as an external symbol, respectively, at the end of
assembly. The =X form is defined by default in relocatable assemblies only.

=Ssymbol If symbol is not defined, COMPASS assigns an address at the end of the zero
block. All subsequent references to the symbol, whether preceded by =S or not,
are to the location of the word. A default symbol cannot be used where a
previously defined symbol is required.
If the symbol is defined by a conventional method, COMPASS does not define it
again but uses the programmer definition.

=Xsymbol This option permits a programmer to define his symbols in a subroutine or link

to them in another subprogram. If the programmer defines the symbol, the
assembler uses the programmed definition. If the programmer does not define
the symbol, the assembler assumes that the symbol is external as though declared
in an EXT pseudo instruction. A symbol prefixed by =X must conform to the

requirements for external symbols. :

603609008

The system does not define a default symbol and issues an error flag if a symbol is prefixed by both

=S and =X, or is prefixed by =X and is not defined conventionally in an absolute assembly, Default
symbols are qualified by the qualifier in effect at the time of the =S reference.

2.4.3 PREVIOUSLY DEFINED SYMBOLS

Certain pseudo instructions require that a symbol in an expression be previously defined. This simply
means that the symbol, before its use as an expression element, must be defined in a prior instruction,

2.4.4 UNDEFINED SYMBOLS

A reference to a symbol that is never defined (not even by default) causes a U error flag to be placed to
the left of the instruction containing the erroneous reference.

2.4.5 QUALIFIED SYMBOLS

A symbol defined when a symbol qualifier is in effect during assembly (section 4.4.3) can be referred
to outside of the qualifier sequerce in which it was defined through:

/qualifier/symbol

The feature permits the same symbol to be defined in different subroutines without conflict. An
unqualified symbol is global and does not require a qualifier when it is referenced, unless a qualifier

is in effect, and a symbol qualified by the same qualifier has been defined. In this case, the unqualified
symbol can be referenced as // symbol.

The combination of qualifier and symbol permits a value to be identified by a unique 16~character
identifier. Linkage symbols are not qualified.

2.5 CPU REGISTERS

Register designators symbolically represent the 24 CPU operating registers. These registers are
described more fully in chapter 8. The designators are inherent to COMPASS and cannot be changed
during assembly.

In a CPU assembly, symbols of the same form as register designators may be used if each occurrence
of such a symbol is prefixed by =S or =X (see section 2,4, 2). However, a warning message is issued
when such symbols are defined. The prefix cannot be used in the location field of machine instructions
and symbol defining, data generating, BSS pseudo instructions, in the variable field of ENTRY, EXT,
and SST pseudo instructions.

Register Type Designator
Address Anor A.n
Index Bn or B.n
Operand Xnor X.n

¥For the forms An, Bn, or Xn, n is a single digit from 0 to 7. Any other value for n, for example 8, causes
An, Bn, or Xn to be interpreted as a symbol rather than a register designator.

9-8 603609008

For the forms A.n, B.n, X.n, n can be a symbol or an integer. If the value of n or the value of the
symbol exceeds 7, the assembler truncates it to the least significant 3 bits and issues a warning flag.

COMPASS does not recognize registers in PPU assemblies; there, the designators are acceptable as
ordinary symbols.

Examples:
Al Designates address register 1
Al0 Interpreted as a symbol, not a register
Al Designates address register 1
A.NUM If the value of NUM is 6, it designates address register 6
A.10 Designates address register 2; however, it produces a warning flag because the

two was derived from the truncation of 12, the octal value for 10,

The following produce equivalent results, A SET pseudo instruction (section 4. 6. 2) defines SUM and
SUB as absolute values 3 and 2, respectively. A reference to a SET-defined symbol produces the same
result as if the value had been used directly. In this example, the address of ALPHA is 001000,

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 T30
6032001000 <B3 A2+ALPHA |
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 {10
3 SUM SET 3 |
2 sun SEY 2 |
6032001000 | SB.SUM|A.SUB+ALPHA |

2.6 SPECIAL ELEMENTS

The following designators are reserved for use as references to special elements and cannot be used as
symbols. The use of a special element in an expression causes the assembler to replace it with a
value specified by the element in the expression. The control counters are discussed further in

section 3. 2,

Designator Significance
* or *L The assembler uses the value of the location counter for the block in use.

The element is relocatable unless the counter in use is for the absolute block.

*0 The assembler uses the value of the origin counter for the block in use. The
element is relocatable unless the counter in use is for the absolute block.

$ The assembler uses one less than the absolute value of the position counter
for the block in use.

603609008 2-9

Designator

*P

*F

Significance

The assembler uses the absolute value of the
position counter for the block in use.

The assembler uses an absolute value obtained

as follows:
0 COMPASS was called by a COMPASS control
card

1 COMPASS was called by the FORTRAN RUN
compiler (earlier than Version 3.0)

2 COM PASS was called by the FORTRAN FTN
compiler or the FORTRAN RUN compiler
(Version 3.0 and later)

These designators are inherent to COMPASS and cannot be altered by the programmer during an

assembly.
Examples:
LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 [30

Jo *+1+87 l
’ |
. |
ZR X3 *L=1 [
*
. |
LoC ¥*0-RES+PPR |
¢]
. I
VFD *p/ |
VFD $/7091/71 |
: |
IFEQ ¥F,2 !

2.7 DATA NOTATION

Data notation provides a means of entering values for calculation, increment counts, operand values,
line counts, control counter values, text for printing out messages, characters for forming symbols,

etc.

The two types of data notation are character and numeric. The assembler allows the user to introduce

data in the program in three basic ways.

As a data item
As a constant in an expression
As a literal

60360900A

2.7.1 DATA ITEMS

Character and numeric data items can be used in subfields of the DATA (section 4. 8. 2) and LIT
(section 4, 8. 4) pseudo Instructions or as specifications of field lengths on VFD pseudo instructions.

2.7.2 CONSTANTS

A data constant is an expression element consisting of a value represented in-octal, decimal,
hexadecimal, or character notation. It resembles a data item but is restricted by its use as an

expression element in two ways:

1. The first character must be numeric, prohibiting the delimited type of character string
(section 2.7.4) and the preradix for numeric values.

2. The field size is determined by the destination field for an expression and can be a maximum
of 60 bits thus prohibiting double precision floating point numbers.,

2.7.3 LITERALS

A literal is a read-only constant. It is specified as a data item in a subfield of a LIT pseudo imstruction
or as an element in an expression.

The method of specifying a literal in an address expression is nearly identical to that for specifying a
data item in a DATA (section 4. 8.2) or a LIT (section 4. 8.4) pseudo instruction. The primary difference
is that the literal is prefixed with an equal sign, which indicates that a literal follows.

When a literal is used as an element in an expression, the expression is evaluated using the address of
the literal in the literals block rather than the value of the data item. Thus, the literal is considered
relocatable. (For a discussion of the literals block, see section 3,1,3).

60360900C 2-11

Conventionally, if a literal is used, it is the only element in an expression.

The first use of a literal causes the assembler to assemble the data specified by the literal, and store
the data in the literals block using as many words as are required to hold the data. If the binary pattern
of the prefixed type of literal or of all the literals in a LIT declared sequence matches the binary
pattern of words previously entered in the literals block, an entry is not generated for the

data. This process eliminates duplication of read-only data.

The LIT pseudo instruction permits symbols to be associated with literals block entries. Such entries
can be referenced symbolically or through use of a prefixed literal. However, to preserve the integrity
of the literals block, they should be used as read only locations.

The assembly listing includes a list of the literals block when the D list option is selected (section 4.11, 1),

Example:

In the following example, using CPU instructions, the first statement creates a word in the literals
block having the value 00000000000000000001. The address of that entry (for the purpose of the
example) is 5555 and is used in the address field of the two statements at address 100 and the state-
ment at the lower part of 101,

The literal in the second statement specifies a right justified character, A, which has a display code
value of 1. The SB4 creates a one-word literal block entry having the value 00000000000000000002.
The address of that entry is in the address field of statements at the upper half of addresses 101

and 102. In this example, the LIT sequence duplicates a sequence of entries in the literals block
and does not cause new entries to be assembled. :

Location Code Generated LOCATION OPERATION { VARIABLE COMMENTS
i n 18 I30

100 6120005555 + sB2 =1 l
6130005555 + s83 =1RA

101 6140005556 + SsSB4 =1RB |

: 5555 L LIT 1,2 |

6120005555 + sB2 L

102 6130005556 + , SB3 L+l |

CONTENT OF LITERALS PLOCK.

005555 0000000MP0D0N00NN00NDY A
005555 000000BNCONONDONND002 8

2-12 60360900A

—

Continuing the previous example, a LIT sequence as illustrated below, does not duplicate a sequence in
the literals block and causes entries to be generated in the literals block:

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) Y 18 T30
5557 LIT 1,2,1R0,2 |

{

CONTENT CF LITERALS ELCCK,

005555 0000000000000000000% A
pes556 N00N000NN000000N00CO2 B
005557 0007000N000000000001 A
005567 00000000000000000003 C
005561 00000000000000000004 D
805562 00000000000000000002 8

However, if the literals sequence in the first part of the example had been followed by a LIT that

duplicates, in part, the most recent entries in the literals block, only the unduplicated part is added
to the block. Thus, if the following LIT sequence had been used in place of the LIT 1,8,1RD, 2, the
first two words of the sequence would match the last two words of the literals block so that only two

additional words would be required to complete the sequence.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 [30
5555 LIV 1,2+3,% |
CONTENT OF LITERALS BLOCK.
005555 00000000000000000001 A
005556 0000000n000000000002 8
005567 000N0Q00000N00NN0003 C
005560 0000000000000000000% n

60360900A 2-13

2.7.4 CHARACTER DATA NOTATION

Character data strings are converted to the code in use at the time the string is evaluated (section 4.4. 2,
CODE pseudo instruction), and placed in a field indicated by the data type (data item, constant, or
literal). When no CODE instruction has been issued, conversion is to display code representation,

Format: Example
Data Item [signlnl type, sfring] -3RABC
or

Lsign | type [dlstring rd] -R*ABC*
Constant ¥ Ln [type[string I 3RABC
Literal T L: lsi'gnl n[type I string] =-3RABC

or
I = lsign[typel d]stringl d~l =-R*ABC*

= Applies to literals used as expression elements only; signifies that a literal follows.

sign Optional for data item or literal. A sign with a constant is interpreted as an element
operator.
+ or omitted The value is positive

- The complemented (negative) value is formed

n Signifies how the string is determined:
omitted The string is delimited by d. n cannot be om‘itted for a constant,
0 For data item or literal, the string consists of all characters following
type to:
blank or

’

For a constant, string consists of all characters following type to:
+-%*/blank , or A

n For a data item or literal, n is an integer count of the number of
characters in the string not counting guaranteed zeros. It is limited
only by statement size.

For a constant, n is an integer count of the number of characters in the
string, It cannot exceed 1/6 of the number of bits in the field that will
contain the expression, A truncation error is flagged for a right
Jjustified constant if the most significant bit exceeds the field. Truncated
zeros do not cause an error in this case. A truncation error is flagged
for a left justified constant if the least significant bit positions are
truncated, even if they are zero.

The string consists of the n characters following type.

Regardless of base, COMPASS assumes that n is decimal.

¥ Expression element

2-14 60360900A

type

d

string
~—

60360900 D

Chara::ter string justification, The characters formed by the data item
or constant are right or left justified into the destination field as follows:

Type Significance
C Left justified with zero fill, For data item or

literal, 12 zero bits are guaranteed at the end of
the string even if another word must be allocated.
For a constant, the zero bits are not guaranteed;
C is the same as L.

Left justified with blank fill
Right justified with blank fill
Right justified with zero fill
Left justified with zero fill

Left justified with zero fill. For data item or
literal, six zero bits are guaranteed at the end of
the string even if another word must be allocated.

For a constant, the bits are not guaranteed; Z is
the same as L.

N " o> m

A delimiting character used only when n is omitted. The characters
between the first occurrence of d and the second occurrence ofd
comprise the string. d can be any character other than —or #

Characters from one of the COMPASS character sets (appendix D),
except for those characters that act as delimiters (see n and d), the
concatenation character (), and pairs of micro marks #).

Concatenaﬁon marks and pairs of micro marks are removed by
editing before a string is examined. A single micro mark can be
used in a string.

An empty or omitted character string is defined under one of the
following conditions.

1. nis 0 and type is immediately followed by a delimiter, for
example, OL.

2. n is omitted and the two delimiting characters are adiacent,
for example, H++
Omission of a string in a DATA pseudo instruction is legal and does
not cause generation of a data word.

For a constant, an omission of the string is valid and has a zero value.

An omitted string in a LIT pseudo instruction is legal and does not cause
generation of a literal for that item; however, the LIT must contafn at
least one non-empty data item.

An omitted string for a literal in an expression is not legal and produces
an error.

It is not possible to generate empty strings using types C, Z, Ror A.

2-15

Examples of character data:

In these examples, characters are converted to display code representation; all lines of code
generated by DATA are printed only if the D or G list option is selected. .

Data Items
Location Code Generated lO.CATION OPERATION | VARIABLE COMMENTS
_] n 18 |30
144 05222217225511165520 “|DATA |L*ERROR IN PDQ *sL.+,L0A
145 04215500000000000000
146 5555655565555555566565
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 l30
PPU I'
: !
1100 1725 DATA oLOUTPUT :
1101 220
1102 2524
Constants
Location Code Generated LOCATION OPERATION| VARIABLE COMMENTS
) n 18 |30
4722 7130000047 SX3 1R* f —
4723 7140000060 ' TAG SXb 1Re .+ |
5110031117 SAL 3RCIO |
k724 6260530000 LY X0+1L 8]
1117240155 VFU 30/4HIOIA,6/71RA,264/70AX+1
4725 0155555531 |
1725242025 VFD 42/0L0UTPUT, 1871
4726 2400000001 |
0700000000 VFD 15/0LG,15/0Li

Note that the character constant in the expression in the second line consists of a decimal point

(57 in display code) fo which 01 is added before the value is stored. ~ Similarly, in the third field
of the first VFD, 1 is added to the display code representation of X right justified with blank fill
(55555530) so that 55555531 is generated. '

2-16 ' ' 60360900A

Qe

Literals

Location Code Generated
100003765
100003770
2652 5110003772 +

5120003774 +

LOCATION OPERATION | VARIABLE COMMENTS
n i {30
TAGl LIT RA*“/(A,GL)‘z' ’.’OCU’DL
LIV 2O0HLIVERALS
Sa1 =NCTENCHARCYTS
SA?2 —H+LEFYT JUSTIFY WITH BLANKS+
<A =0L0

CONTENT CF LITERALS BLOCK,

2653 5130003767 +

003765 00000000004546475051
003766 ©52535455565700000000
003767 33000000000000000000
003770 16112405220114235555
00377} ©55555555555555555555
003772 24051603100122032423
003773 00000000000000000000
003774 14050624551225232411
003775 06315527112410550214
003776 01161323555555555555

+-%/(
) ¢= e
0
LIVERALS

TENCHARCTS
LEFT JusSTI

Fy WITH BL
ANKS

The first LIT pseudo instruction generates three words in the literals block; the OL item is an empty
string and does not produce an entry. The second LIT pseudo instruction generates one two-word
entry. The expressions in the variable fields of the SA1, SA2, and SA3 instructions each consist of a
literal element. The character strings in the SA1 and SA2 literals do not duplicate former literals
block entries so COMPASS generates new entries. However, since SA3 references an existing entry,
COMPASS places the address of the entry in the address field of the instruction.

60360900A

2-17

+ 2.7.5 NUMERIC DATA NOTATION

Numeric data can be specified in octal or decimal notation. The value is converted to an integer or a
floating point value in single or double precision.

Formats:
Data Item signlpreradix l value,modifiersﬁl
Constant value] modifiers]
Literal l=[sign| preradixl value [modifiers I
= Applies to literals only; signifies that a literal follows.
sign Optional for data item or literal; a sign with a constant is interpreted as an element
operator.
+ or omitted The value is positive
- The complemented (negative) value is formed
preradix Optional for data items and literals; cannot be used for constants. The preradix
indicates the notation used for the value.
omitted Notation can be specified by a postradix modifier or can be
assumed from the assembly base. See BASE pseudo instruction.
BorO Octal notation
D Decimal notation
value A series of octal or decimal digits optionally consisting of an integer, a decimal (or

octal) point, and a fraction. An integer value (fixed point) does not contain a point,
A floating point value (legal in CPU assemblies only) is noted by the occurrence of
the point. '

An octal value can be a maximum of 20 significant digits (fixed point) or 32 significant
digits (floating point). An octal value cannot include 8 or 9. A decimal value cannot
exceed 1.15 x 1018 (fixed point) or 7.9 x 1028 {floating point, ignoring the decimal
point). Extra significant digits cause erroneous results.

If value is omitted, it is assumed to be zero.

2-18 603609008

"y

modifiers Associated with the value are the following optional modifiers specified in any sequence.
A specific type of modifier can be specified only once. A duplicate produces an error

flag.

postradix

decimal exponent

binary scale

binary point
position

60360900A

Indicates the notation used for the value. See preradix for legal values.
An error is flagged if notation contains both a preradix and a postradix.

Defines a power of 10 scale factor

Etnor Enor E Single precision

EE+n or EEn or EE Double precision

When the sign is plus or is omitted, the exponent (n) is positive.

When n is omitted, it is assumed to be 0. The value of n cannot exceed
32767 and is always assumed to be a decimal integer.

A fixed point value can be single precision (one word) only but a CPU
floating point value can be generated in double precision (two words).

If EE is used with a fixed point value, the assembler produces a fixed point
number in single precision.

The effect of the exponent is to multiply the value by 10 decimal raised

to the n power.

Defines a power of two scale factor and is specified as follows:

S+n or Sn or S

When the sign is plus or is omitted, the scale factor (n) is positive. When
n is omitted, it is assumed to be 0. The value of n cannot exceed 32767
and is always assumed to be a decimal integer.

The effect of the binary scale is to multiply the value by 2 raised to the
n power,

Applies to floating point values only and is specified as follows:

P+n or Pn or P

When the sign is + or omitted, n indicates the number of bit positions
the point is to be shifted to the left of bit 0. When the signis -, 1
indicates the number of bits the point is to be shifted to the right.

The effect of P is to align the value so that the binary point occurs to the
right of the nth bit,

The exponent is adjusted to a value of - (4n)
For example, a value with P-6 will have a biased exponent of 20068; a

value with P10 will have an exponent of 1765g.

If P is not specified for a floating point number or if n is omitted, the
assembler generates a normalized floating point value. The P modifier
permits generation of an unnormalized value.

If, as a result of P, the most significant bit of the value is shifted out of
the coefficient part of the single or double precision number, the assembler
generates an overflow or underflow error.

2-19

Although scale factors can exceed valid ranges, the ranges for numbers are restricted

by the hardware.

Example:

The number 1. 0E40008-1200 yields a number that is approximately 5.8 x 10

38

and is in range of the floating point representation.

All calculations are performed in 144-bit precision. The values are rounded to 96
bits for double precision and to 48 bits for single precision floating point numbers and

to 60 bits for integers.

The order in which the assembler acts on the modifiers, regardless of the sequence
in which they are specified is:

1. Decimal exponent (single or double)

2. Binary scaling

3. Binary point position (CPU assemblies only)

CPU Numeric Data Items

Location Code Generated

5000 T77T7777777ITITTIIVIG?
5001 1723500000000000N000
5002 164300000000000000040
5003 20000000000000000012
5004 17760000000000000002
5005 17154651767635544264
5006 17200314631463146314
5007 TTTTTIIVRITINIITIIINY
5010 00000000000000000000

CPU Numeric Constants

Location Code Generated
5001
555
5012
5112 20360
43760
7150400000
2-20

LOCATION OPERATION | VARIASBLE COMMENTS
n 18]30
POOL DATA -29 ;
NUM DATA | 1,0€EF1 |
DATA |[1.0F+1PQ |
DATA | 3.2P1S-5E1
DATA | 0.0151E+01 |
1
LOCATION OPERATION | VARIABLE COMMENTS
" 18 [30
ALPHA EqQu POOL +1 ;
VAL FQu 5560
ASS? 100m. |
LX3 ~14R |
MX7 48
SX5 1517 '

60360900A

CPU Numeric Literals

Location

5113

095151
005152
005153
005154
805155
005156
005157
005160
005161

Code Generated

5150005151 +

5130005152 +
5153
5155
5156
5157

LOCATION

OPERATION

VARIABLE COMMENTS

18 T30

ARLE

SAS
SA3
LIT
LIT
LIY
LIT

CONTENTY CF LITERBLS ELOCK,

20046755000234000004
17204314631463146315
17235300000000000000
16430000000000000000
17200314631663146314
TITTTTTTITTTTTITITITITSN
17154651767635544264
TTTYTTTTIITITTIITIIINI?
000900000000000808000

PDa 81 D
oP®LILILM
os/
N8
oPCLtLeL L

I EEEE NN P

39333533533
OM-(""2=7
90 08O O *
33333355

o)| -

oo W |

Examples of numeric data (assume default radix is decimal):

PPU Data

Location

300
301
302
303
304

60360900A

Items

Code Generated

0005
7766
0013
0030
oge2

=20066755000234000004R
2101 !

1.0EE1 |

0.1P47

-019 l
0.0151€+01 ,-E,DEES

LOCATION

OPERATION

VARIABLE COMMENTS

18 T30

I
¢
|
!

5,-90,*813,1#851,2#BE°1

2-21

PPU Constants

Location Code Generated
305 0000
306 0011
307 4443
31
101
310 7777

PPU Literals

Location Code Generated
311 2000 1103
313 2100 1104
315 2000 1105

LOCATION OPERATION | VARIABLE COMMENTS
I 18 130
CON 0,411 Il
CON |-333% |
ARC = 250
N UM SEY | 0101, |
cCoN | 7777 |
LOCATION OPERATION | VARIABLE COMMENTS

i 18

l30

Loc
ADC
Loc

CCNTENT OF LITERALS PLCCK.

1103 0012
1104 7776
1105 7777

2-22

=100
=-1

=r777

60360900A

——

2.7.6 HEXADECIMAL DATA NOTATION

Numeric data can be specified in hexadecimal notation., The value is converted to an integer in
single precision.

Formats:
Data Item sign|0|preradix|value |modifiers
Constant 0|preradix|value| modifiers
Literal =| sign{0]|preradix|value]| modifiers
= Applies to literals only; signifies that a literal follows,
sign Optional for data item or literal; a sign with a constant is interpreted as an
element operator.
+ or omitted Value is positive,
- Complemented (negative) value is formed.
0 The zero is optional for data items and literals but must be present for constants,

so the preradix will not be taken as the first character of a symbol.

preradix Must be present to indicate that a hexadecimal value follows, The preradix char-
acter is = or # depending on the printer used.

value A series of hexadecimal digits. Each hexadecimal digit represents 4 bits and is
either a decimal digit 0-9 or a letter A-F. The digits 0-9 represent values 0-9
and the letters A-F represent the decimal values 10-15.

The value may contain up to 26 significant hexadecimal digits, No radix point is
permitted. If value is omitted, it is assumed to be zero,

modifiers The binary scale (S) modifier is optional and has the same form and meaning as
for octal and decimal data (see section 2.7.0).

The binary point position (P) modifier is permiited but ignored, since it does not
apply to integer values,

60360900C 2-23

2.8 EXPRESSIONS

Entries in subfields of most source statements are interpreted as expressions consisting of a
combination of one or more terms. Each term consists of one or more elements joined by operators.
A comma or a blank terminates the expression.

An expression element can be a:

Symbol

Numeric or character constant
Special element

Register designator (CPU only)
Literal

Examples of elements:

ALPHA A7 3HABC
$ X3 =10HOUTPUT
P 77BS3

A term can be a single element or two or more elements joined by the following element operators:

* Multiplication
/ Division

An expression can be a single term or two or more terms joined by the following term operators:

+ Addition
- Subtraction
A Logical minus (exclusive or)

1. If the last element of a term is omitted, COMPASS provides an element of zero. For example,
if ABLE is a symbol, ABLE*+3 is interpreted as the value of ABLE times 0 plus 3.

2. Two successive elements are illegal. Note, however, that ** is legal because the first
asterisk is interpreted as an element, the second asterisk is interpreted as an operator, and
the blank is interpreted as a null element.

3. A term can contain one relocatable or external element only. Thus, **ABLE, where ABLE is
a relocatable address, is illegal because ABLE and * are both relocatable.

4. The element to the left of a divisor must be absolute.
5. Division by zero results in zero with no error.

6. Two or more additive operators (+ or - or A) in sequence are interpreted as having a term of
zero value between them,

7. If an expression begins with an additive opersztor {+ or ~ or A), COMPASS provides a term with
zero value preceding the operator.

2-24 60360900C

The operator that immediately precedes a register designator is the register operator, regardless
- of the placement of the designator in the expression. The register operator can be:

+ - * or /
Examples of expressions:

ABLF Single term
$-29 Two terme; $ and 29

1+4=3,14159FE+6 Two terms; a constant and the address of a literal. COMPASS places the
literal in the literal block and uses its address in the expression.

3 Two terms; value of the location counter and numeric constant 3.

ABLE*L-72/NUM Two terms, each consisting of two elements; the value of ABLE times 4,
and 72 divided by the value of NUM.

108 Single term consisting of a numeric constant.
3¢ AR-NUM The components of the expression are register A6 and 3-NUM.
1R=AtR/"’ The character constants (= and /) are logically differenced.

2.8.1 TYPES OF EXPRESSIONS

Evaluation during assembly reduces an expression to:

An absolute value (absolute address or an integer value)

= An external symbol + a 21-bit integer
+ relocatable value -+ a 21-bit integer
Register designators and one of the above
CPU ass nly
Register designators U assembly only
Absolute Expressions
An expression is absolute if its value is unaffected by program relocation. An expression can be
absolute, even though it contains relocatable terms, under these two conditions:
1. The expression contains an even number of relocatable elements
2. The relocatable elements must cancel each other. That is, each relocatable element (or
multiple thereof) in a block must be canceled by another element (or muttiple thereof) in the
same block. In other words, pairs of elements in the same block must have signs that oppose
each other. The elements that form a pair need not be contiguous in the expression.
Examples of absolute expressions:
In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute.
The control counters are for the block that contains EASY and FOX.

60360900C 2-25

EASY-FOX+#MIKE EASY and FOX cancel each other.
FOX-* FOX and the location counter cancel each other,
MIKE+16 The expression contains no relocatable elements.

EASY-FOX*2+* EASY and the location counter cancel 2 times FOX.

Relocatable Expressions '

An expression is relocatable if its value is affected by program relocation. A relocatable expression
consists of a single relocatable term or, under these two conditions, a combination of relocatable and
absolute terms:

1. The expression does not contain an even number of relocatable elements

2. All the relocatable elements but one must be organized in pairs that cancel each other. That
is, for all but one block, each relocatable element (or multiple thereof) in a block must be
canceled by another element (or multiple thereof) in the same block., The elements that form
a pair need not be contiguous in the expression.

3. The uncanceled relocatable element can have three kinds of relocation:

a. Positive program
b. Negative program
c. Positive common (Negative common reiocation is not permitted by the loader).

Examples of relocatable expressions:

In the following examples, EASY and FOX are relocatable in the same block, MIKE is absolute.
LIMA is relocatable in a different block. The control counters are for the block that contains
EASY and FOX.

LIMA+MIKE=-16
FOX-EASY+FOX
3*FOX-2%EASY
EASY=-*+FOX
FOX-100B/MIKE
-MIKE®2+LIMA

=10HMESSAGE 33

-%(Q

The pairing of relocatable terms cancels the effect of reiocation because both terms would be relocated
by the same amount. The comparative value of the two terms remains the same regardless of program
relocation.

2-26 60360900C

External Expressions

An expression is external if its value depends upon the value of a symbol defined outside of the current
subprogram. Either an external expression consists of a single positive external term or under the
following conditions an external expression may consist of an external term, relocatable terms, and
absolute terms.

1. The expression contains an even number of relocatable terms.

2. The relocatable elements must cancel each other. That is, each relocatable element (or
multiple thereof) in a block must be canceled by another element (or multiple thereof) in the
same block. In other words, pairs of elements in the same block must have signs that oppose
each other. The elements that form a pair need not be contiguous in the expression,

Examples of external expressions:

In the following examples, XYZ and ABC are external symbols. EASY and FOX are in the same
block. The control counters are for the block that contains LIMA. MIKE is absolute.

XYZ-*+FOX-EASY+LIMA The pairs * and LIMA, and FOX and EASY cancel each other,
FOX-3®EASY+2%FOX+XY2Z The relocatable elements all cancel.

ABC+1008

XYZ+ABC Iilegal; both are external)

~ARC+*~L IMA Nlegal; ABC is negative

XYZ+*0 Illegal; *O is an unpaired relocatable element

Register Expressions

An expression is a register expression if, in a CPU assembly, it reduces to one or more register
designators and an operand. The attributes of the operand can be that of an absolute, external, or
relocatable expression. Use of register expressions is generally restricted to symbolic CPU machine
instructions (Sections 8.4 and 8.5). If the register designator is the first element in the expression,

the operator can be omitted and is assumed to be +,

Examples of register expressions:

In the following examples, XYZ is an external symbol and LIMA is a relocatable symbol.

X3+LIMA-10B

LIMA+X3=-108 Produce identical results
~10B+LIMA+X3

B1+XYZ

*3A.NUM

2-27
60360900C

Evaluatable Expressions
An evaluatable expression is an expression that does not contain any symbols as yet undefined, Certain
pseudo instructions require that the expressions be evaluatable.

2.8.2 EVALUATION OF EXPRESSIONS

When evaluating an expression, COMPASS replaces each element with a 60-bit value. A character
constant is first right or left adjusted in a field the size of the destination field and then extended to
60 bits. Signs are extended for 21-bit quantities, that is, for counters, addresses, and symbols. In
division, the integral portion of the quotient is retained; any remainder is discarded. Thus, 5/2*2
results in 4.

COMPASS forms a term value by interpreting each element and operator from left to right until it
reaches a + or - or A operator. It then notes whether or not the newly formed term contains a
relocatable or external symbol or register designators, The value of the symbol is added, subtracted,
or differenced from the cumulative sum of the absolute elements, relocatable elements, or external
values. The assembler continues evaluating the expression until it is reduced to a symbol and/or a
value. An error is flagged if the expression cannot be reduced. The expression value is truncated, if
necessary, and placed in the destination field. If it is too large for the field, the system issues an
error flag., The maximum field size for an expression is 60 bits.

The value of an external symbol is zero if the external symbol is defined outside of the subprogram.
It is the value relative to the external used in defining the symbol if the external symbol was defined
within the subprogram.

A zero value is used in place of a register designator.

For pass one evaluation, the system uses the value of a relocatable symbol relative to the block in
which the symbol was defined. For pass two evaluatien, the system uses a value relative to program
or common block origin.

The field size for an expression depends upon the instruction and is determined as follows:

1. For a symbol definition pseudo instruction, the expression value (including character
constants) is justified in a 21-bit field,

2. In a VFD pseudo instruction, the expression is placed in a field of the size specified.

3. For a CON pseudo instruction, the field size is one word (12 bits for PPU assemblies,
60 bits for CPU assemblies).

4, In a symbolic machine instruction, values of expressions are placed in address fields (18 or
6 bits for CPU assemblies; 18, 12, or 6 bits for PPU assemblies).

Some relocatable program loaders may give unexpected res:lts if relocatable or external address values
are assembled into the same field of the same woiid wors han unce, as a result of ORGing backward
over the word, or by having more than one subprograin preset a common block, The ORGC pseudo
instruction (see section 4.5.3) can be used to avoid such probiems.

2-28 60360900C

PROGRAM STRUCTURE 3

This chapter describes the general structure of a program. In some cases, it repeats information
described elsewhere and correlates it so that the programmer will obtain a better understanding of how
the program is assembled, loaded, and executed. Some mention is made of the SCOPE loader, but,

for a complete description of the loader, refer to the reference manual for the operating system in
use.

The first topic considered in this chapter is the subprogram block and how the assembler and the
programmer organize the object code into blocks. Following this is a brief description of the counters
that control the blocks.

Finally, there is a summary of the differences in the structure of absolute and relocatable programs
and the effect of these differences on block usage.

3.1 SUBPROGRAM BLOCKS

A subprogram, whether assembled as absolute or relocatable, can be divided into subprogram areas
called blocks. As assembly of a subprogram proceeds, the assembler or the user designates that
object code be generated or that storage be reserved in specific blocks. By properly assigning code
sequences, data, or reserved storage areas to blocks through use of ORG or ORGC, USE or USELCM,
a programmer can intersperse instructions for the different blocks. The assembler assigns locations
in a block consecutively as it encounters instructions destined for the block. A symbol defined within
a block is not local to the block. That is, it is global and can be referred to from any other block in
the subprogram. To render a symbol local to a sequence of code requires use of the QUAL pseudo
instruction (Section 4, 4. 3).

Blocks established between two IDENT instructions, or between an IDENT and END, form a group of
blocks. COMPASS recognizes a maximum of 255 blocks in a single block group, 252 of which can be
user-established. When COMPASS interprets an IDENT or END pseudo instruction, it begins pass two
processing of the completed block group.

All symbols are assigned absolute values, the table of block names is cleared, the list of USE,
USELCM, ORG, and ORGC instructions is cleared, and block structuring restarts. For END, the
symbol table is cleared before the next subprogram is assembled. If the group does not contain a
USE instruction or if object code is generated (or storage reserved) before the first USE instruction,
COMPASS places the code in the nominal block (identified as PROGRAM™ on the listing). For an
absolute program, the nominal block is the absolute block. For a relocatable program, the nominal
block is the zero block. The user controls use of the nominal block and any user-established blocks
through USE, USELCM, ORG, and ORGC pseudo instructions (Section 4.5). Each occurrence ofa
non-redundant literal constant causes an entry in the literals block; otherwise, the user has no control
of this block.

60360900A 3.1

3.1.1 ABSOLUTE BLOCK

The absolute block is the nominal block for an absolute assembly. It is identified by the name
PROGRAM* on the listing. All code generated in the block is absolute. Each address symbol is
defined during pass one as an absolute value relative to zero which is block origin. The code generated
must be loaded and executed at the origin specified as the absolute block origin.

Normally, a relocatable assembly does not contain an absolute block. It may have one established,
however, if the programmer issues an ORG (or ORGC) request using an absolute value. The assembler
generates text tables specifying absolute block relocation. The loader loads the absolute text when it
encounters the text table, without manipulating any addresses. For a relocatable assembly, an ab-
solute block is identified on the assembly listing by the name ABSOLUTE*, There is no ECS/LCM

absolute block.

3.1.2 ZERO BLOCK

The zero block has the block name 0 and is the nominal CM/SCM block for a relocatable assembly, It
is a local block; that is, it is not accessible to other subprograms. Upon completion of assembly, the
assembler assigns any undefined default symbols at the end of the zero block. The zero block is
identified by the name PROGRAM* on the assembler listing,

An absolute program has a zero block only if the program contains default symbols. In an absolute
assembly, the zero block immediately follows the absolute PROGRAM* block.,

There is no ECS/LCM zero block.

3.1.3 LITERALS BLOCK

COMPASS generates literal data entries in the literals block. It is local to a subprogram. The literals
block is identified by the name LITERALS* on the assembly listing, COMPASS always assigns storage
to the literals block immediately following the zero block. There is no ECS/LCM literals block.

3.1.4 USER-ESTABLISHED LOCAL BLOCKS

By using USE and USELCM statements, a programmer can establish local blocks in addition to those
previously described for an absolute or relocatable subprogram, At the end of assembly, COMPASS
assigns an origin relative to the nominal block to each user-established local block, in the sequence in
which they are established.

3-2 60360900A

—

All of the CM/SCM local blocks are concatenated to form a single block, which is treated by the loader
as a CM/SCM block whose name is unique to the subprogram. Similarly, all of the ECS/LCM? local
blocks are concatenated to form a single block which is treated by the loader as an ECS/LCM block
whose name is unique to the subprogram,

The length of each ECS/LCM block, including the combined local block, is rounded up, if necessary,
to an integral multiple of eight 60-bit words. The maximum size of an ECS/LCM block is

1,048,568 words.

3.1.5 LABELED COMMON BLOCKS

A labeled common block is a storage area that can be preset with data accessible to one or more
relocatable subprograms. These blocks are designated during assembly as being in CM/SCM or
ECS/LCM through the USE and USELCM pseudo instructions respectively, where the name of the block
is the name enclosed by slant bars; that is, /name/. The tables are designed so that the loader can
allocate space in memory for the first subprogram that is loaded that declares the block. Thus, the
first subprogram that names a block sets the maximum size of the block. Each subprogram, as it is
loaded, can link to allocated blocks or can cause new blocks to be allocated. The contents of a labeled

common block can be generated by any of the subprograms having access to it.

If an absolute subprogram attempts to establish a labeled common block by using a USE /name/ or
USELCM /name/ instructions COMPASS treats the block as a local block having the slant~bar

enclosed name,

3.1.6 BLANK COMMON BLOCKS

A blank common block is a storage area that cannot be preset with data, That is, the loader does not
load information into the area before the program is executed.

For a relocatable program, the CM/SCM and ECS/LCM blank common blocks are allocated space
by the SCOPE loader after all subprograms are loaded, according to the largest block area declared
by any of the subprograms. A CM/SCM blank common block is established through use of the USE
pseudo instruction (section 4.5.1). An ECS/LCM blank common block is established through use of
the USELCM pseudo instruction (section 4.5.2). A blank common block has no name. A USE //
indicates blank common in CM/SCM; A USELCM // indicates blank common in ECS/LCM.

* SCOPE 2 does not currently allow LCM local blocks.

60360900B 3-3

If no relocatable program declares a blank common block, there is none. If an absolute program
contains a USE // or USELCM // instruction, COMPASS treats the block as a local block named //
and data can be stored in this block, —_

Only CPU programs can use the USELCM pseudo instruction.

3.1.7 REDUNDANT BLOCK NAMES

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two blocks with
the same name and the same block type if they have different memory types (CM/SCM or ECS/LCM).
Thus, altogether, there may be up to four different blocks with the same name.

3.2 BLOCK CONTROL COUNTERS

For each block used in a subprogram, COMPASS maintains three counters, an origin counter, a loca-
tion counter, and a position counter., When a block is first established or its use is resumed,
COMPASS uses the counters for that block, During pass one, the origin and location counters are
initially zero, During pass two, as the assembler constructs the program, it assigns an initial value
to each local block origin counter and location counter. Thus, expressions containing relocatable
symbols are not necessarily evaluated the same in pass one and pass two.

3.2.1 ORIGIN COUNTER

The origin counter controls the relative location of the next word to be assembled or reserved in the

block. It is possible to reserve blank storage areas simply by using either the ORG, ORGC, or

BSS pseudo instructions to advance the origin counter; ORG and ORGC also permit the programmer —
to reset the counter to some lower location in the block or to change blocks. BSS allows the pro-

grammer to decrement the counter but not to change blocks, The origin counter is incremented by

one for each word assembled or skipped forward and decremented by one for each word skipped in

the reverse direction. ‘

When the special element *O is used in an expression, the assembler replaces it by the current value
of the origin counter for the block in use.

3.4 603609004

3.2.2 LOCATION COUNTER

The location counter is normally the same value as the origin counter and is used by the assembler for
defining symbolic addresses within the block. The counter is incremented whenever the origin counter
is incremented. It is possible through the LOC pseudo instruction to adjust the location counter so that
it differs from the origin counter. This may be desirable when the code being assembled is to be
loaded at one location and subsequently moved and executed at another location. In this case, the
programmer resets the location counter to reflect the actual location at which execution is to occur.

As another example of its use, the programmer assembling a large table may reset the location counter
to zero so that on the listing, the addresses alongside each word of the table reflect the word's position
in the table rather than in the block. Note that use of this technique does not alter the placement of code
in the block. (For an example of these applications, see the LOC pseudo instruction, section 4.5.5.)
When either of the special elements * or *L is used in an expression, the assembler replaces it by the
current value of the location counter for the block in use.

3.2.3 POSITION COUNTER

Assume that bits are numbered 59-00, from left to right within a 60-bit CPU word and numbered 11-00
within a 12-bit PPU word. Then, the position counter is initially 60 and 12, respectively, and indicates
the number of bits remaining in the word. The position counter, which is decremented by one for each
completed bit of an assembled word, becomes 00 when the word is completed, and is reset to 60 or 12

when a new operation is started.

For a CPU assembly, the 15-bit and 30-bit CPU instructions cause the position counter to normally
have values of 60, 45, 30,and 15 reflecting the placement in the word for the next instruction or
data word to be generated. For a PPU agsembly, the normal value is 12,

The normal pattern of advancement for the position counter can be altered through use of the VFD and
POS pseudo instructions,

When the special element *P is used in an expression, the assembler replaces it with the current
value of the position counter.

When the special element $ is used in an expression, the assembler replaces it with the current value
minus one of the position counter for the block in use; that is, it returns the next available bit position.

3.2.4 FORCING UPPER

In a CPU assembly, if any of the following conditions is true, the assembler packs parcels remaining
in a partially completed word with no-operation instructions (section 8. 1), sets the position counter to
60, and increments the origin and location counters before it assembles code for the next instruction:

Insufficient room remains in a partially filled word for the next instruction or data to be generated.

The current statement is a machine instruction, or a VFD pseudo instruction, with a location symbol
or + in the location field.

60360900 D 3-5

The current statement is a CYBER 70/Model 72, 73, 74, or 6000 Series RE, WE, PS, XJ, CC, CU,
DM, or IM instruction. (The programmer can negate thm force upper by placmg a minus sign in the
location ficld of the instruction.)

The current statement is an END, BSS, BSSZ, DATA, DIS, CON, SEGMENT, SEG, IDENT, ORGC,
LOC, ORG, or MD pseudo instruction.

The assembler forces upper after it assembles code for one of the following:

JP
RJ

Unconditional EQ
Unconditional ZR

ES (CYBER 70/Model 76 or 7600)

MJ (CYBER 70/Model 76 or 7600)

PS (CYBER 70/Model 72, 73, 74 or 6000 Series)
XJ (CYBER 70/Model 72, 73, 74 or 6000 Series)
IM (CYBER 70/Model 72 and 73)

This post force upper does not occur immediately, but is deferred until the assembler encounters
the next machine instruction or data generating, storage allocating, or binary control pseudo in-
struction in the same USE block. The programmer can negate the force upper following the instruc-
tion by placing a minus sign in the location field of the next instruction. Thus, pseudo instructions
following one of the above machine instructions and referencing the origin, location, or position
counter will use the value before the force upper.

In a PPU assembly, no forcing upper occurs; the assembler ignores a + in the location field on any
instruction other than a VFD, A plus or minus in the location field of a VFD in PPU assemblies forces
the VFD data to begin at the next full word,

3.3 RELOCATABLE PROGRAM STRUCTURE

A CPU relocatable program consists of one or more subprograms that can be assembled separately,
either in the same computer run or in independent runs, The subprogram can all be written in
COMPASS source language, or can be written in any other source language available in the product set
of the operating system as long as the compiler or assembler produces relocatable binary output in a
form acceptable to the loader. A COMPASS language subprogram is composed of instructions
heginning with an IDENT pseudo instruction and ending with an END pseudo instruction.

The COMPASS assembler repertoire includes pseudo instructions that facilitate relocatable subprogram
linkage. Through these linkages, subprograms loaded together can transfer control to each other and
can access common storage locations.

Upon completion of assembly of a relocatable subprogram, COMPASS assigns each local block

an origin relative to the zero block (Figure 3-1). Qutput is in the form of tables for the Relocatable
Loader. Each local block thus becomes an extension of the zero block, The length of the
subprogram given on the assembly listing is the sum of the final values of the origin counters for the
local blocks, including the zero block and literals block, bhut not the absolute block. Any absolute text
is simply inserted at the absolute location relative to RA (S).

COMPASS binary output for a relocatable subprogram consists of one section for each LCC pseudo

instruction (if any) in the source program, followed by one section containing the subprogram loader
tables.

3-6 60360900 D

High Core

Low Core
Address

Blank Comraon

Subprogram n

L— e T
e T — T T N

Subprogram 3

Subprogram 2

Subprogram 1

Core Map of
Loaded Program

60360900 D

Figure 3-1.

}Size determined by
largest block declared
by any subprogram

Subprogram length

Sizes and locations
determined by first
subprogram declaring
them

N

Blank Common Block

S N M P W P
FJ—\,V\/W\/

Local Block m

Local Block 1

Literals Block

Zero Block

Labeled Common
Blocks

Organization of
Subprogram 1

Relocatable Program Structure

3.4 ABSOLUTE PROGRAM STRUCTURE

An absolute program consists of code that is not relocatable and must be loaded at specific core
locations. Because the absolute loader performs no address manipulation, absolute code can be
loaded more rapidly than relocatable code.

The programmer has the option of constructing his absolute program as a single unit, or of dividing
it into overlays. Each overlay consists of data, information, or instructions that are needed at
different times,. Dividing a program into overlays allows several routines to occupy the same core
storage consecutively so that total storage requirements for a program are reduced.

During assembly of an absolute program or overlay, COMPASS creates a core image of the absolute
code. During pass two, it assigns each block an origin relative to the absolute block. Any relocatable
symbol is reassigned an absolute address; each block effectively becomes an extension of the absolute
block. Figure 3-2 illustrates the structure of an absolute program that is not divided into overlays.

The binary output for the program consists of a section for each overlay. Note that the section for an
absolute program that is not divided into overlays has the same format as the main overlay of a
program divided into overlays. The user has the option of writing part of a binary section at a time

by using either a SEG pseudo instruction or an IDENT (other than the first IDENT) with a blank variable

field.
An absolute section has three parts:

1. 778 prefix table (PRFX)

2. SOq or 518 overlay table, or a 60600 or 7800 PPU header table

3. Core image of the program

The table formats are described more fully in the Loader Reference Manual.

The amount of binary written as a result of the hinary cuptre! instruction (IDENT, SEGMENT, SEG, or
END) is subject to whether or not an entire block group is written.

If a complete block group is being written {cvervihing between an IDENT and an END or between
two IDENT instructions), the core image of the program or overlay ends with the maximum origin
counter value for the last block established, that is, with the last word address.

If only a portion of the binary for the block group is being written, it consists of the core image of
the program or overlay ending with the value of ihe current origin counter.

END, SEGMENT, and a nonblank IDENT complete on overlay and write an end of section, SEGMENT
and IDENT write header information for the overiay to foliow.

60360900A

IDENT name —

END

Low Core Addresses

v

High Core Addresses

60360900A

Origin— :

Absolute Absolute
Block Block
PROGRAM * PROGRAM *

N
Default Symbols Default Symbols
Literals Literals

»Optional
Local Local
Blocks Blocks

/
Program Binary Overlay

Block Structure

Origin _, “Control Table or Header:]

Absolute

Default Symbols
Literals

Local Blocks

Core Map of
Loaded Program

Figure 3-2. Absolute Program Structure

Loader Control

«~ End-of-section

Identification and

3.4.1 ABSOLUTE OVERLAYS

When an absoclute program contains more than the one IDENT { pseudo instruction or contains SEGMENT
pseudo instructions, COMPASS does not prepare just one section of a core image of the program as it
is assembled, but, instead, generates a section for each overlay.

Dividing the program into overlays permits core to be sequentially overlayed by different subroutines
and data during program execution, reducing the maximum core requirements for the program.

For a CPU assembly, the overlay generated is either primary or secondary as determined by the
IDENT or SEGMENT pseudo instruction. The portion of the program following the first IDENT is
normally the main overlay and is identified by the level numbers 0,0, Secondary overlays can be
generated subsequent to the main overlay. A secondary overlay is identified by the level numbers

X,y¥, where x is nonzero.

Conventionally, the main overlay is the first one loaded and contains calls to the operating system
loader to load one or more overlays as they are required during object time execution. Any overlay
can call the loader to load another overlay. Control transfers to an entry in the overlay or returns
to the calling overlay according to the format of the call. (For detailed information concerning CPU
loader calls, refer to the Loader Reference Manual.) ’

Because overlays are not all in core concurrently during program execution and because the sequence
in which overlays are loaded and executed is beyond the scope of the assembler, it is the user's
responsibility to assure that an overlay does not refer to symbols, instructions, or data that is not
concurrently in core.

Although PPU overlays are not identified by level numbers, they resemble CPU overlays in all other
respects. '

Overlays generated by using IDENT pseudo instructions differ in certain respects from overlays
generated by using SEGMENT instructions, as described below.

Binary formats for overlays are described in the Loader Reference Manual,

IDENT-Type Overlays

The portions of the program from IDENT to IDENT, and IDENT to END comprise the overlays. IDENT
provides the programmer with the option of specifying the overlay level numbers with each overlay,
including the overlay generated by the first IDENT.

If no level number is provided for a CPU assembly, the first overlay is numbered 0,0 and any overlay
after that is numbered 1,0. IDENT allows each overlay to be assigned unique numbers. Thus, the
loader has a means of locating a specified overlay when several overlays are written on the same file.

t IDENT instructions described in this section are assumed to have nonblank parameters. The special
case of the blank IDENT is described in Section 3.4. 3.

3-10 60360900A

The first IDENT causes COMPASS to generate the program or overlay identification information that
precedes the absolute section. Upon encountering a second IDENT instruction before an END instruc-
tion, COM PASS generates output consisting of a core image of the overlay starting with the overlay
origin specified on the previous IDENT and normally ending with the maximum origin counter value of
the last block declared in the overlay, that is, it normally ends with the last word address. An IDENT
subsequent to a SEG or SEGMENT, however, generates binary that ends at the location specified by
the current origin counter, Following the core image, COMPASS writes an end of section and the
overlay identification information specified by the new IDENT for the overlay to follow.

For an IDENT-type overlay, COMPASS completes all blocks, including the literals block. Block
structuring starts fresh with each overlay. This means that each overlay can use the same block names
used by other overlays, and each overlay can contain a literals block. The USE table and control
counters are all reinitialized. The origin specified for an IDENT-type of overlay can be any place ina
previously generated overlay. This is possible because IDENT causes the assembler to assign an
absolute address to each symbol in the symbol table. It can do this because the sizes of all the blocks

are known.

Figure 3-3 illustrates a CPU program consisting of a main overlay and a secondary overlay. The main
overlay uses the absolute block and block A. Default symbols and literals cause the assembler to
generate a zero block and the literals block. Following the second nonblank IDENT instruction, the
program overlay origin is set back into the block A. The overlay generates a new literals block

and new blocks A, C, and D.

60360900A 3-11

IDENT, MAIN, X,Y

ABSOLUTE

BETA —

A

ABSOLUTE

A

IDENT, OV1

ABSOLUTE

—

ORG BETA

A'

C

ABSOLUTE'

D

ABSOLUTE'

D

C

Al

END

D

Low Core Address

v

High Core Address »

3-12

Block Structure

MAIN origin —*|

BETA —

OV1 origin

ABSOLUTE

0 (Default)

LITERALS

A

Section One

—

ABSOLUTE'

LITERALS'

Al

Identification and
loader control
word

MAIN Overlay
0,0

End-of- section

> Identification
and loader
control information

Overlay OV1

C

D

Section Two

% Control Tabl

ABSOLUTE

0,0) 0

LITERALS

1,0J

:Control Table:

ABSOLUTE'

LITERALS'

\

Core Maps of Loaded
Overlays

Figure 3-3.

IDENT-Type Overlay Structure

| —

End-of-section

Overlayed portion of 0,0

60360900A

SEGMENT-Type Overlays

The portions of the program from the IDENT that identifies the program to SEGMENT, from SEGMENT
to SEGMENT, and from SEGMENT to END comprise the overlays. SEGMENT provides the programmer
with the option of specifying the overlay level number with each overlay.

If no level number is provided for a CPU overlay, the first overlay is numbered 0,0 and any overlay
after that is numbered 1,0. SEGMENT allows each overlay to be assigned a unique number. Thus,
the loader has a means of locating a specified overlay when several overlays are written on the same

file.

Upon encountering a SEGMENT instruction, COMPASS generates output consisting of a core image of
the overlay starting with the overlay origin specified on the previous SEGMENT (or IDENT, for the
first overlay), and ending with the current origin counter value of the block in use at the time the
SEGMENT was encountered. Following this, COMPASS writes an end-of-section and overlay identi-

fication information for the overlay to follow.

For SEGMENT, the last block used in the overlay is incomplete. The literals block is in the overlay that
contains the end of the absolute block. It is the responsibility of the user to assure that all blocks other
than the one in use are complete. The origin of the new overlay can be defined using symbols in the
block in use only. SEGMENT does not clear the symbol table or reinitialize the USE table.

Each new SEGMENT-created overlay must use unique block names because blocks established in
previous overlays cannot be resumed and because the block names remain in the USE table due to the

incompleteness of the block group.

Figure 3-4 illustrates a program consisting of a main overlay and a secondary overlay. The main
overlay uses the absolute block, the literals block, and block A. Default symbols cause the generation
of a zero block., Following the SEGMENT, an ORG instruction sets the overlay origin back into block A,
the block in use when the SEGMENT was encountered. The 1,0 overlay establishes new blocks C

and D.

60360900 D

IDENT MAIN

e

MAIN
Origin

ABSOLUTE

0 (Default Block)

Literals

TAG —=

Block A

Section One

ovi

Origin

Block D

Section Two

‘MAIN Control Tabl

Origin— "

ABSOLUTE

0

Literals

Block A

0v1

V1 Control Table

..............

Overlay

1,0

Block C

Block D

Core Maps of Loaded Overlays

Figure 3-4. SEGMENT-Type Overlay Structure

ABSOLUTE
TAG Block A
ABSOLUTE
Block A
SEGMENTOV1 __ (. __ __ _ ________|
ORG TAG
Block C
Block D
END
Block Structure
Origin — [
(ABSOLUTE
0
Main Lit 1
Overlay < era’s
0,0 Block A
High Core
Addresses
3-14

Identification
and Loader
Control
Information

MAIN overlay
0,0

End-of-section

Identification
and Loader
Control
Information

OV1 Overlay
1,0

End-of-section

} Overlayed

Portion of 0,0

60360900A

~——

3.4.2 MULTIPLE ENTRY POINT OVERLAYS

When a CPU program or overlay that calls an overlay is assembled independently of the overlay called,
it may be desirable for the called overlay to identify more than one entry point. Thus, ENTRY pseudo
instructions are permitted within an absolute assembly and cause the generation of a 51g overlay

table. This table consists of a control word and a list of overlay entry points. The calling program can
examine the list and link to any of the entry points. The 51g table occupies the area below the overlay
origin and uses one more word than the number of entries in the table. For the format of the 518 table,

refer to the Loader Reference Manual.

3.4.3 PARTIAL BINARY

When a CPU absolute program or an overlay contains SEG pseudo instructions or IDENT pseudo
instructions for which the parameters are omitted (blank), COMPASS writes a partial binary section
consisting of the binary generated since the previous IDENT, SEGMENT, or SEG instruction. How-
ever, it does not write an end of section or a new 778 table. A SEGMENT, nonblank IDENT, or END
instruction completes the binary section,

SEG-Type Partial Binary

By writing partial binary using SEG, the programmer can reduce the assembler storage requirements.’
A fatal error is issued if the user attempts to store data into a block previously written out or into a
block that will be written out later.

When the SEG is encountered, COMPASS writes binary beginning with the first block established in
that portion of binary and ending with the final count specified by the origin count for the current block.

SEG does not write a complete block group. The portion of the binary that contains the end of the
absolute block contains the literals block, if there is one. The symbol table and USE table are not
reinitialized.

Figure 3-5 illustrates how the binary for an absolute program can be written in three separate binary
writes to reduce the amount of core required to assemble the program. The resulting absolute section
is loaded and executed as a single program or overlay.

60360900A 3-15

—
IDENT

SEG —»
(writes partial
binary)

SEG __,

(writes partial
binary)

END

ABSOLUTE

ABSOLUTE

LITERALS

Block Structure

Figure 3-5,

IDENT-Type Partial Binary

Largest partial assembly
determines assembler
core requirements

ABSOLUTE

LITERALS

A

Binary Overlay

SEG-Type Partial Binary

Program
Identification
and Loader
Control

Absolute

(Image

End-of-section

An IDENT with a blank variable field causes all binary accumulated since the previous IDENT, SEG,
or SEGMENT to be written out without an end of section or a new 77 prefix table., The USE table

and the block counters are reinitialized. Each symbol in the symbol table is assigned an absolute
address. The blocks in each partial binary section generated in this manner are allocated ag if the
partial binary section were a new subprogram with its own absolute block, literals block, and local
blocks. This allows portions of a program to be self-contained units even though they are not overlays

but are loaded as a single unit.

address plus one of the last block of the previous portion.

The core image written by a blank IDENT starts with the ori

with the maximum origin counter value of the last block declared in

ends with the last word address.
SEGMENT, however,

block.

The origin of an absolute block for a new portion is the last word

gin of the absolute block and normally ends
the block group, that is, it normally
If part of the block group has already been written by a SEG or

the end of the binary is specified by the value of the origin counter for the current

60360900A

COMPASS completes all blocks. The literals block is terminated, Block structuring starts fresh
Each new partial binary section created by a blank IDENT can use the same block
names as are used by the other blank IDENT-created partial binary sections and non-blank IDENT-
created overlays and each IDENT can contain a literals block but the blocks with the same names are
independent of each other.

with each IDENT,

An attempt to write into or fo reset the origin counter to a location in a partial binary section written
separately causes a range error.

Figure 3-6 illustrates how the binary for an overlay can be written in three discrete partial binary
sections to reduce the amount of core required to assemble the program and divide the program into

self-contained units.

IDENT PGM...

IDENT

ABSOLUTE

LITERALS

Local
Blocks

IDENT

ABSOLUTE!

LITERALS'

Local
Blocks

IDENT OVLY...

60360900A

ABSOLUTE"

LITERALS"

Local
Blocks

Figure 3-6.

ABSOLUTE

LITERALS

Local
Blocks

ABSOLUTE!

LITERALS'

Local
Blocks

ABSOLUTE"

LITERALS"

Local
Blocks

IDENT-Type Partial Binary

The resulting absolute section is loaded and executed as a single overlay.

1 Program

Identification
and Loader
Control

End-of-section

3-17

|

PSEUDO INSTRUCTIONS 4

4.1 INTRODUCTION TO PSEUDO INSTRUCTIONS

This chapter and chapters 5, 6, and 7 describe the pseudo instructions available in the COMPASS
language. It is impossible to write a program in the COMPASS language without using some of the
more basic pseudo instructions. The programmer who is new to the language should give special

attention to these instructions.

Pseudo Instruction Section CPU Relocatable CPU Absolute PPU Absolute

" IDENT 4.2.1 X X X
ABS 4.3.1 - X -
PPU or PERIPH 4.3.3 or 4.3.4 - - X
ORG 4.5.3 - X X
ENTRY 4.7.1 X - -
BSS 4.5.4 X X X
CON 4.8.6 X X X
END 4.2.2 X X X

4.1.1 TYPES OF PSEUDO INSTRUCTIONS
Pseudo instructions discussed in this chapter are classed according to application as follows:

Subprogram identification (IDENT and END)

Binary control (ABS, MACHINE, PERIPH, PPU, IDENT, SEGMENT, SEG, LCC, STEXT,
COMMENT, and NOLABEL)

Mode control (BASE, CHAR, CODE, COL, Bil=1, B7=1, and QUAL)
Block counter control (USE, USELCM, ORG, ORGC, BSS, LOC, and POS)
Symbol definition (EQU and=, SET, MAX, MIN, MICCNT, and SST)

Subprogram linkage (ENTRY, ENTRYC, and EXT)

Data generation (BSSZ and blank operation code, DATA, DIS, LIT, VFD, CON, R=, REP, REPC,
and REPI)

Assembly control (ELSE, ENDIF, IFtype, IFop, IF, IFC, IFPL, IFMI, and SKIP)

Error control (ERR and ERRxx)
Listing control (LIST, EJECT, SPACE, TITLE, TTL, NOREF, CTEXT, ENDX, and XREF)

Later chapters describe pseudo instructions that involve definition operations, alterations to the opera-
tion code table, and micros. In general, pseudo instructions can be summarized according to where

they can be placed in a subprogram.

60360900C 4-1

4.1.2 REQUIRED PSEUDO INSTRUCTIONS

Two pseudo instructions, IDENT and END, are required for any assembly. IDENT must be the first
source statement; END signals the termination of source statements for a subprogram.

4.1.3 FIRST STATEMENT GROUP

Certain pseudo instructions establish basic characteristics of the assembly and provide the assembler
with required information. These instructions comprise the first statement group which must precede
any symbol definition, storage allocation, or object code generation. The following instructions, if used,
must be in the first statement group.

ABS
MACHINE
PERIPH
PPU
STEXT

4.1.4 PERMISSIBLE ANYWHERE INSTRUCTIONS

The following pseudo instructions are permissible anywhere, including in the first statement group.

BASE CPSYN ENDM MICCNT OPSYN SPACE
Bl-1 DECMIC HERE . MICRO PPOP SST
B7=1 EJECT IFC NIL PURGDEF TITLE
CHAR ELSE IRP NOLABEL PURGMAC TTL
CODE END LIST NOREF QUAL XREF
COMMENT ENDD MACRO OCTMIC RMT

CPOP ENDIF MACROE OPDEF SKIP

Comments lines and references to macro definitions are also permitted anywhere.

CPU or PPU symbolic machine instructions and all other pseudo instructions cannot be placed in the
first statement group. The first use of one of these instructions terminates the first statement group.

4.2 SUBPROGRAM IDENTIFICATION

Subprogram identification pseudo instructions designate subprogram beginning and end. When two or
more subprograms are assembled in a single COMPASS run called through COMPASS control state-
ment, the end of the source decks is indicated by a 7/8/9 card.

4.2.1 IDENT — SUBPROGRAM IDENTIFICATION

An IDENT pseudo instruction of the following form is the first statement of a subprogram recognized

by the assembler. Usually, any lines preceding the first IDENT or between an END and IDENT are
assumed to be comments., However, when COMPASS has been called by some other language processor
such as FORTRAN, the assembler returns control to the processor when the statement following END
is not IDENT. For a relocatable subprogram, COMPASS flags any subsequent use of IDENT before
END as an error. For an absolute subprogram, a second form of IDENT described under BINARY
CONTROL is available for overlay generation.

4-2 60360900C

The format of IDENT varies according to the type of assembly.

CPU Relocatable Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

IDENT name

CPU Absolute Format:

LOCATION

OPERATION YARIABLE SUBFIELDS

IDENT name, origin, entry, ‘1 o 2

7600 PPU Absolute Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

IDENT name, origin, entry, ppu

6000 Series PPU Absolute Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

origin

60360900A

IDENT name,origin

Name of the subprogram or overlay. The parameter is required. For a CPU
relocatable or absolute assembly, name can be 1-7 characters, of
which the first must be alphabetic (A=Z) and the last must not be a colon.

For a CYBER 70/Model 76 or 7600 PPU assembly, name can be 1-7 characters.
For a CYBER 70/Model 72, 73, 74 or 6000-Series PPU assembly, name can be
1~-3 characters. In either case, there is no restriction on the first character,
but the last character must not be a colon.

An expression specifying the first word address of the absolute program or
overlay. The overlay loader table and all code assembled starting at this
address and ending with the next SEGMENT, nonblank IDENT, or END instruc-
tion comprises the overlay. For a single entry point CPU program the load
address for the overlay is origin-1. The word at origin ~1 is overlayed by the
50 loader control table. For a multiple entry point CPU program, the load
adgress for the absolute overlay is origin-wc-1, where wc is the number of
entry points in the 51 8 loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader table.

Data can be generated in locations starting with origin and above, but not below
origin. The origin subfield does not serve the same function as ORG nor does

it replace ORG for setting the origin counter.

4-3

entry

21’12

ppu

If the origin field is null for an absolute subprogram, the assembler uses
address 000000 RA(S) as the origin for a CPU program and 0000 as the origin
for a PPU program.

For a relocatable subprogram, the subfield is ignored. The loader auto~
matically relocates the first subprogram to be loaded starting at RA(S)+100 _,
the second subprogram starting at the first available location following 8
the first subprogram, etc.

For a CYBER 70/Model 76 or 7600 PPU assembly or for an absolute CPU
assembly, this subfield contains an expression specifying the subprogram
entry address, which can be symbolic.

Absolute expressions specifying the level numbers of the overlay. £, is the
primary level (0-63) and 12 is the secondary level (0-63). When the first IDENT
identifies the main overlay, ¢ and £, can be omitted, If %1 is omitted, it is set

to 00. If 1s is omitted, it is set to 00.

Because the first IDENT precedes any use of the BASE pseudo instruction, the
level numbers on this IDENT are evaluated as decimal unless specifically
designated as octal by a post radix.

Absolute expression specifying the number of the PPU on which this program is
to be loaded. On the first IDENT, this number is evaluated as decimal unless
specifically designated as octal.

A location field symbol, if present, is ignored.

If the COMPASS assembler is called from within a FORTRAN compilation rather than by a COMPASS
control card, IDENT must be in columns 11-15,

When the subprogram does not include a TITLE instruction, COMPASS uses the IDENT variable field
entry as the main subprogram title on the assembly listing.

Example:

LOCATION OPERATION | VARIABLE COMMENTS

i noo 18 T30
IDENY |CT,CONTROL,CONTROL
ARS IARSOLUTE CPU PROGRAM
0RG 1108 | :

CONTROL [8SS 0 IDEFINFS SYM30L CONTROL
END

Absolute CPU program CT will be loaded at origin address 001108.

4-4

60360900A

4.2.2 END — END OF SUBPROGRAM

An END pseudo instruction must be the last instruction of each subprogram.

It causes the assembler to

terminate all counters, conditional assembly, macro generation, or code duplication. Before terminating

assembly, COMPASS assembles any waiting remote text (see RMT).

For a relocatable subprogram, the assembler combines all local blocks into a relocatable subprogram

block, generates the relocatable binary tables and produces the listing.

For an absolute assembly, the assembler assigns each block an origin relative to absolute zero,
combines all blocks into an absolute subprogram or overlay, generates the absolute binary section and

produces the listing.

END can also be used to signal the end of source statements from an external source (see XTEXT). In
this case, it does not terminate the subprogram.

Format:
LOCATION QOPERATION VARIABLE SUBFIELDS
sym END trasym
sym Optional last word address symbol; if present, COMPASS defines it as the
total subprogram length, including the literals block and all local blocks.
The value is the last word address plus one.
trasym A symbol specifying the entry point to which control transfers for a reloca-
table subprogram. This symbolmust be declared as an entry point in a
subprogram -- not necessarily the subprogram being assembled, At least
one subprogram must specify a transfer address or the loader signals an
error. If more than one subprogram indicates a transfer address, the loader
uses the last one encountered,
For an absolute assembly, trasym is ignored.
Examplé:
LOCATION OPERATION | VARIABLE COMMENTS
) N 18 T30
IDENT |PROG1 |
ENTRY [BEGIN l
RFGIN SRt 1 [
END REGIN I

603609004

4-5

4.3 BINARY CONTROL

Pseudo instructions that allow the user extensive control of binary output produced by the assembler
are summarized below and described fully in this section. _ —

ABS
MACHINE
PPU
PERIPH
IDENT
SEGMENT
SEG
STEXT
COMMENT
NOLABEL
LCC

Specifies CPU absolute binary output

Specifies processor type

Specifies CYBER 70/Model 76 or 7600 PPU binary output

Specifies‘ CYBER 70/Model 72, 73, 74 or 6000 Series PPU binary output
Begins absolute overlay or writes partial binary section

Begins absolute overlay

Writes partial binary section

Generates system text overlay

Inserts comments into the 77 8 prefix table

Suppresses header information on binary output

Passes loader control information to the relocatable loader

4.3.1 ABS — ABSOLUTE CPU PROGRAM

An ABS instruction declares a CPU program to be absolute. If used, it must be in the first statement

group.

The following instructions are illegal in an absolute program:

EXT
LCC
REP
REPC
REPI

A symbol can be prefixed by =X if it is also defined conventionally; in this case, the =X has no signifi-
cance because a conventional definition takes precedence (Section 2. 4. 2).

Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

ABS

Symbols in the location and variable fields, if present, are ignored. If a program contains both ABS
and PERIPH (or PPU), the PERIPH (or PPU) instruction takes precedence.

60360900A

Example:

LOCATION OPERATION { VARIABLE COMMENTS

) N 18 {30
TOENT |GV, ONTROL , CONTROL
8BS ABSOLUTE CPU PROGRAM
NRG 110m |

CONTROL |RSS 0 beFINES SYMBOL CONTROL
. R I
END I

4.3.2 MACHINE - DECLARE OBJECT PROCESSOR TYPE

The MACHINE pseudo instruction specifies the type of computer system on which the object program
can be executed successfully and optionally specifies hardware features needed by the object program.
If used, MACHINE must be in the first statement group.

Format:

LOCATION

OPERATION

VARIABLE SUBFIELDS

MACHINE

type, hf, , b, hi, .. . hE

A location field symbol, if present, is ignored.

type

60360900A

Character string designating object processor type. The subfield can be any length
and may contain any characters other than blank or comma. The first character
identifies processor type, as follows:

6 The object program is restricted to a CYBER 70/Model 72, 73, or 74 Computer
System or to 6000 Series Computer System. All machine instructions unique to
the CYBER 70/Model 76 or 7600 Computer Systems are undefined.

7 The object program is restricted to a CYBER 70/Model 76 Computer System
or to a 7600 Computer System. With the exception of the PS instruction (which
is often used for subroutine entry points in CPU assemblies), all instructions
unique to the CYBER 70/Models 72, 73, and 74 Computer Systems or to the
6000 Series Computer Systems are undefined.

In a CPU assembly, if the MACHINE pseudo instruction is omitted, or the type
subfield is blank, or its first character is not 6 or 7, then all CPU instructions
are defined, and the target and valid fields of the PRFX table in the object pro-
gram are blanks, If the type subfield is present and its first character is 6 or 7,
the valid field contains 6X or 7X. If the type subfield is at least two characters,
the first character is 6 or 7, and the second character is a digit (0-9), the target
field contains those two characters,

In a PPU assembly, if the MACHINE pseudo instruction is omitted, or the type
subfield is blank, or its first character is not 6, or 7, then: if the PERIPH
pseudo instruction is present, MACHINE 6 is assumed; if the PPU pseudo in~-
struction is present, MACHINE 7 is assumed. The target field of the PRFX
table contains blanks, and the valid field contains 6P or 7P,

hf Optional subfield, a character string designating an optional hardware feature re-
quired for successful execution of the object program. The subfield may be any
length and may contain any characters other than blank or comma. It has no effect on
assembly of the program. The first character of the subfield is placed in the hard-
ware-instruction-dependencies field in the PRFX table in the object program.

Recommended mnemonic letters are:

Compare/Move Unit
Distributive Data Path
Integer Multiply Instruction
ECS/LCM

Interlock Register

- o R = B o]

Central and Monitor Exchange Jumps

Up to nine hf subfields are processed; any additional subfields are ignored. If the
hf subfields ‘are omitted, the comma following type can also be omitted.

60360900A

R

Example:

LOCATION OPERATION | VARIASLE COMMENTS

t " 18 |30

1

MACHINE 6,CMU,LCM,X]
1
t

4.3.3 PPU - CYBER 70/MODEL 76 OR 7600 PPU PROGRAM
A PPU instruction declares a program to be a CYBER 70/Model 76 or 7600 absolute PPU program
rather than a CPU program. If used, PPU must be in the first statement group. For a description

of binary format generated as a result of this instruction, refer to the Loader Reference Manual.

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY SEGMENT
ENTRYC USELCM
EXT R=

LcC Bl=1

REP B7=1
REPC

REPI

SEG

If the program contains both a PPU and a PERIPH pseudo instruction, the PPU takes precedence.

PPU programs permit symbols of the form used for CPU register designators; they are normal symbols

having no special significance. The following instructions are legal but are not applicable in a PPU
assembly:

OPDEF
CPOP
CPSYN
PURGDEF
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PPU J
J A character string beginning with J supplied in the variable field alters the way

that COMPASS assembles the variable expression on UJN, ZJN, NJN, MJN, or
PJN instructions.,

60360900A 4-9

If J is not specified, COMPASS first tests the range of the expression against
the short jump limit (+31). If the value is in range, COMPASS assembles the
jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the
location counter value. If the value is now in range, COMPASS assembles the
instruction using the expression value minus the location counter value.

However, if it is out of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the

location counter from the value of the expression.

As a result, COMPASS is able to differentiate between an expression value
that is an absolute address in the short jump range from an expression value

that is a true relative address.

A symbol in the location field, if present, is ignored.

Example:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] n 18 f30
PPUY l
. |
760 TAG BSS 208 l
760 0357 UJIN TAG-* |EXPRESSION < 278
‘ _
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) T 18 [0
PPy JUMP ;
: n
740 TAG RSS 208 l
760 0357 UIN TAG |[EXPRESSION-* < 378

4.3.4 PERIPH - CYBER 70/MODELS 72, 73, 74 OR 6000-SERIES PPU PROGRAM

A PERIPH instruction declares a program to be a CYBER 70/Model 72, 73, 74 or 6000 Series
absolute PPU program rather than a CPU program. If used, PERIPH must be in the first statement
group. For a description of binary output produced as a result of this instruction, refer to the Loader

Reference Manual.

Floatihg point constants and the following instructions are illegal in a PPU assembly:

ENTRY REP USELCM
ENTRYC REPC R=

EXT REPI Bi1=1
LCC SEG B7=1

A symbol can be prefixed by =X if it is also defined conventionally.

4-10

60360900A

PPU programs permit symbols of the form used for CPU register designators; they are normal
symbols having no special significance. The following instructions are legal but are not applicable

to PPU assemblies:

OPDEF
CPOP
CPSYN
PURGDEF
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PERIPH J
J A character string beginning with J supplied in the variable field alters the

way that COMPASS assembles the variable field expression on UJN, ZJN,
MJN, or PJN instructions.

If J is not specified, COMPASS first tests the range of the expression value

against the short jump limit (+31). " If the value is in range, COMPASS assembles
the jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the location
counter value., If the value is now in range, COMPASS assembles the instruction
using the expression value minus the location counter value. However, if it is out
of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

For an example illustrating how to use J, see the PPU pseudo instruction.

A symbol in the location field, if present, is ignored.

4.3.5 IDENT - IDENTIFY AND GENERATE OVERLAY

Two or more IDENT pseudo instructions are permitted in CPU absolute or PPU assemblies. Second
and subsequent IDENT instructions having nonblank variable fields cause generation of overlays. IDENT
differs from SEGMENT in the way it generates overlays. First, it allows the specification of overlay
numbers. Second, the USE table and all block counters are reinitialized. The symbol table is not
cleared; all symbols are reassigned absolute addresses relative to absolute zero. Thus, an ORG to a
previously defined symbol restarts the absolute block at the symbolic address. The third difference is
that normally the end of the overlay is determined by the last word address, the maximum origin
counter value of the last block established in the overlay. A preceding SEG or SEGMENT can alter

this, however (Section 3. 4).

60360900A

For a CPU assembly, an IDENT with a blank variable field causes a partial binary write. The
output is not terminated by an end of section or a new 77g table. However, the USE table and the
block counters are reinitialized and each symbol in the symbol table is assigned an absolute address.

Following an IDENT, COMPASS assumes that all blocks, including the literals block are complete.
Block structuring starts fresh with the new overlay or portion of binary. Thus, each new overlay or
partial can use the same block names as are used by other overlays or partial and each can have a

literals block.

For a blank IDENT, an attempt to write into or reset the origin counter to a location in a partial section
wrilten separately causes a range error. Following the IDENT, the origin of the new absolute block
is the next word after the binary written out, that is, it is lwa+1.

The format of the IDENT varies according to the type of assembly as follows:

CPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS
IDENT name, origin, entry, 21 ol 2
or
{OCATION OPERATION VARIABLE SUBFIELDS
IDENT

7600 PPU Absolute Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

IDENT name, origin, entry, ppu

6000 Series PPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS
IDENT name,origin
name Name of the overlay. For a CPU program, 1-7 characters, the first of which

4-12

must be alphabetic (A-Z); for a CYBER 70/Model 72, 73, or 74 or a 6000 Series
PPU program, 1-3 characters; for a CYBER 70/Model 76 or 7600 PPU program,
1-7 characters., In all cases, the last character must not be a colon. A name

is a loader linkage symbol required for overlays.

60360900A

origin

entry

AN

ppu

An expression specifying the first word address of the overlay. The overlay
control word and all code assembled starting with this address and ending with
the next SEGMENT, nonblank IDENT, or END instruction comprises the overlay.
For a single entry point CPU program, the load address for the overlay is
origin-1. The word at origin-1 is overlayed by the 50_ loader table. For a
multiple entry point CPU program, the load address for the overlay is origin-
wc-1, where we is the number of entry points listed in the 51g loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader control table. Data can be generated in
locations starting with origin and above, but not below origin. The origin
subfield does not serve the same function as ORG nor does it replace ORG for
setting the origin counter. The origin of an overlay can be below the origin
specified on any other IDENT or SEGMENT.

An expression specifying the overlay entry address. When the overlay is
called, control optionally transfers to this address.

Absolute expressions specifying the level numbers of the overlay for CPU
programs only. f is the primary level (00-775), £, is the secondary level
(00-77;). If base is M, £; and £, are assumed to be octal. If ¢y and ¢, are not
specified, ¢, is set to 01 and ¢, is set to 00.

An absolute expression specifying the number of the PPU in which the overlay
is to be loaded. If base is M, ppu is assumed to be octal.

~— A location field symbol, if present, is ignored.

The binary is written on the file specified by the B parameter on the COMPASS control card. END
dumps the last overlay or completes a partially written section.

60360900A

4-13

Examples:

The following program uses IDENT for overlay creation. Symbols T.OVL, O.DMP1, etc. are
defined on a system text overlay.

DM

4-14

LOCATION OQPERATION | VARIABLE COMMENTS
" 18 [30
IDENT |DMP.1,T.OVL,0.DMP1
ABS l
BASE |M |
COMMENT 10/07/7U.CPNTROL CARD CALL.DMP.
LIST |6
SST | OVERLAY
ORG T.0VL DMP1
QUAL |DMP1 |
DMP SX0 B1 |
QUAL |DMP2 |
IDENT onpz,r.OVL,ornMPz
ORG T.0VL OVERLAYS DMP2
UBW?2 SX0 B86+1 | THROUGH DMP8
. L] l
QUAL |DMP9 | =
IDENT |OMP.9,T.OVL,0.0MP9 OVERLAY
ORG T.OVL } DMP9Y
SX0 0.0MP2+F «MDE
. . |
] [)
END FND OVERLAY DMP9 |

60360900A

The following program uses IDENT instructions having blank variable fields.

1617

2455

7116

Origin—

1617

3455

7116

lwa

60360900B

—>

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 l30

TOENT | VVV,110B,ENT 1
ARS |
0ORG 1108 |

ENT X9 1 |
L] o l
. . | First
LIT 1,2:1 | Partial Binary
TOENT |

l n
LIr | 2,3 | Second
. . | Partial Binary
. . |
IDENT l
[IT ;. 2 '
! t Third

. . ‘ Partial Binary
FND ! |
ABSOLUTE -l
LITERALS First

Partial Binary

—

Local Blocks

ABSOLUTE! L
Second
LITERALS' PartialJBinary
|

ABSOLUTE!" 'I

LITERALS" Third
Partial Binary

Local Blocks J

Core Map

4-15

4.3.6 SEGMENT - GENERATE BINARY SEGMENT

The SEGMENT pseudo instruction produces overlays at assembly time. It has many of the features of
IDENT and is included primarily to provide another way of handling literals. Use of SEGMENT is
intended for 6000 Series CPU absolute or PPU assemblies. For a relocatable subprogram, a SEG-
MENT pseudo instruction causes BSSZ code and the FILL, REPL, and LINK relocatable tables to be
written on the binary output file.

The first SEGMENT causes all binary accumulated since the IDENT to be dumped as the main (0, 0)
overlay. Each subsequent SEGMENT generates a new overlay with the specified level numbers. END
dumps the last overlay. When COMPASS encounters a SEGMENT pseudo instruction, it does not clear the
symbol table or block declarations. All blocks other than the block in use must be complete. For a

CPU assembly, the literals block must be in one overlay only but that overlay can be any overlay.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
name SEGMENT origin,entry,1

1’12

name Name of overlay. For a CPU program, 1-7 characters, first of which must be
alphabetic (A-Z2); for a PPU subprogram, 1-3 characters, In all cases, the last
character must not be a colon. It is a required loader linkage symbol.

origin A relocatable expression specifying the first word address of the overlay.
It can only be an address in the block in use. The overlay loader table and all
code assembled starting at this address and ending with the next SEGMENT,
nonblank IDENT, or END instruction comprises the overlay.

For a CPU program the load address for the record is origin-1. The word at
origin-1 is overlayed by the 50g loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit 1oader table. Data can be generated in locations
starting with origin and above, but not below origin. The origin subfield does
not serve the same function as ORG nor does it replace ORG for setting the
origin counter. The origin of an overlay can be below the origin specified on
any other IDENT or SEGMENT.

entry An expression specifying the overlay entry address. It is used for CPU
assemblies only. When the overlay is called, control optionally transfers to
this address.

Absolute expressions specifying the level numbers of the overlay for CPU
programs only. 11 is the primary level (00-778), 12 is the secondary level

(00-778). If base is M, 11 and 12 are assumed to be octal., If 11 and 12
are not specified, 11 is set to 01 and 12 is set to 00.

4-16 60360900C

Exampl:::

LOCATION OPERATION | VARIABLE COMMENTS
i n 18 130
TOENY | SAM,ENTR !
| ARS
0RG 110R b
ENTA ass b} lENTRv POINT
3
Y . : |
ovLoc BSS n |OVERLAY LOAD POINT
- ® |
Cieegs SEGHENT STRY,EHTH
ORG ovLot f
RSS 1 LOADER TAPLE
STRY rSS] IFIRSY WORD OF OVERLAY
i
; . . i
. . |
; ENTR RSS 0 EXECUTION BEGINS HERE
i
| S
l END {END OF OVERLAY
v

SEGI is loaded as an overlay upon a call for the loader from the program. The first word of the overlay
is loaded at OVLOC +1, following the loader table. The entry point to the overlay and the first executable
instruction is 2t ENTE. The overlay, when executed occupies the area of the main program begiraing

at OVLOC. .

4.3.7 SEG - WRITE PARTIAL BINARY

The SEG pseudo instruction pexmits the generation of = CPU absolute subprogrars or overlay inless oors
than would otherwise be required for assembly. It is illegal in PPU and relocatzble assemblies,

SEG causes COMPASS to write on the binary output file all binary information accumulated since the
rrevicus IDENT, SEGMENT, or SEG pseudo inatruetion. [t does not write an epd nf gactinn or begin
a new PRFX table. A SEGMENT, IDENT, or END instruction completes the binary section.

SEG does not affect the location and origin counters. The user cannot resume use of a block established
prior to the SEG, except for the block in use when the SEG was encountered. An attempt to reset the
origin counter so as to resume a block already written out causes an R error. Also, since the block
group is incomplete and the names of the blocks already written out are still in the USE table, no new
blocks can be established using the same block names as were used prior to the SEG.

The literals block is written in the portion that contains the end of the absolute block.

603609004 4-17

Format:

Symbols in the location field and variable field, if present, are ignored.

LOCATION

OPERATION

VARIABLE SUBFIELDS

SEG

Example:
LOCATION OPERATION { VARIABLE COMMENTS
i n 18 '30

IDENT | NAME,ORIGIN, ENTRY
ABS
USE A '
L] L] '
SEG |
USE |® |
. . '
. . |
SEG ' |
END :

4-18

60360900A

4.3.8 STEXT - GENERATE SYSTEM TEXT RECORD

As a result of an STEXT pseudo instruction, binary output for the subprogram consists of all symbols,
micros, and opcodes (macros, opdefs, and machine and pseudo instructions), written in overlay
format at the end of pass one. The STEXT instruction must be in the first statement group.

The system text overlay becomes available in other assemblies through use of the G or S option or: the
COMPASS control card (chapter 10), Through this feature, information in the system text overlay need
be processed only once for all COMPASS programs using the same system text. System text overiays
cannot be generated and used in the same assembly batch; system text overlays generated by one
COMPASS control card call can be used only by assemblies performed by later COMPASS control card
calls,

The symbols included in the system text overlay written are all symbols defined in the assembly
except those for which at least one of the following is true:

The symbol value is relocatable or external.

The symbol is qualified.

The symbol is redefinable (i.e., defined by SET, MAX, MIN, or MICCNT).

The symbol is defined by statements read by XTEXT or occurring between. CTEXT and ENDX.

The symbol is defined by SST (i.e.; is a system symbol input to the present system text assemb’!y),i

The symbol is 8 characters beginning with ! {.
All defined micros are included in the system text overlay.

All program-defined opcodes are also included. Machine and pseudo instructions automatically
defined by COMPASS, and opcodes defined by system text input (if any) to the assembly, are not
included.

When a system text overlay is used as input to an assembly through the G or 5 option on &« COMPASS
control card, all of the micros and opcodes in the system text are automatically defined at the start of
each assembly; however, the symnbols in the system iext are defined only for those assernblies that
contain the SST pseudo instruction.

60360900 D 4-19

A system text overlay on the library is an absolute overlay that has the following control table:
59 48 42 36 00
| 5000 [o | or] 000000000000 B

Format of Text:

System Symbol
Table
2 words per entry
L
2
W Micro Definitivons
I3
\\m Macro/opdef Definitions
Iy
V\ > Operation Table
Entries (2 words per entry)
S
ﬁi= Number of words in each part of overlay
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
rname STEXT
rname Name assigned to overlay; 1-7 alphanumeric characters, of which the first must be a

letter (A-Z) and the last must not be a colon. It is placed in the prefix table that
precedes the overlay.

If rname is blank, COMPASS uses the name from the IDENT instruction and generate
the system text only. Otherwise, the system text is generated in addition to the re-
locatable or absolute binary and precedes the binary output on the binary file.

An entry in the variable field, if present, is ignored.

4-20 ’ 60360900A

Examp e:

I LOCATION OPERATION IJARIABLE COMMENTS
1 i 18 30
; TDERY | SYSTEXT
‘ STEXY
BASE | MIXED -

|

!

I

{MPRS £EQu 100 |

| lsystem consTanTs, svmsoLs,
|AND COMMUNICATIONS AREAS

|

f

|

‘TRYS €Qu 7777 -
| iIwrex OPDEF | X404k
[;m)
. o ? SYSTE#-TF INED HACKGE
P . . ‘aAND OPDEFS
5 ENOM I
(SYSGOM MECRO | W !“
. . !
' b “]
‘ lenpu | =
‘DEvE TMICRY 14 10,8, ,,% |
. . |
. . . [SYSTEM-DEFINED MICROS
i END '

wetion ingerts the character string specified in the variable fleid ints

dnn A v g of the PREY table in the chiect program,. Tha prefix table, and
GiuS fhe comunent, 18 ignored oy wie ioader but identilies the section. I o subprogram conlains mod:
than one COMMENT instruction, the new comments are appended to the table for the most recent
birary control card., If the subprogram contains a NOLABEL instruction, the COMMENT instruction
is meaningless. COMMENT instructions following SEG and blank IDENT pseudo instructions are
ignored without notification,

fpas

e

e

e e seyn

LoCATION imm«now | VAUABLE SUBFIELDS

! COMMENT | string

enqenanny 4-21

string

COMPASS searches the columns following the blank that terminates the operation
field. If it does not find a nonblank character before the default comments column
(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one. Otherwise, the character string begins with the first
nonblank character following the operation field. In either case, the last character
of the string is the last nonblank character of the statement. 1 to 10 blanks are
appended on the right so that the string is followed by at least one blank and the
length of the string is a multiple of 10 characters. If the variable and comment fields
are all blanks, the string consists of 10 blanks. If the string length is more than 70
characters, all characters beyond the 70th are lost.

A location field symbol, if present, is ignored. Refer to section 4. 3.5 for an example,

4.3.10 NOLABEL — DELETE HEADER TABLE

The NOLABEL instruction modifies the format of the binary output produced by COMPASS for an
absolute assembly by optionally suppressing header information. It is particularly convenient for
generating deadstart programs which must be loaded at location zero or for writing Chippewa format

CPU programs,.

Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

NOLABEL (I

—

Optional; if the variable field contains a character string beginning with an I,
COMPASS suppresses all prefix (77g) tables, but retains the other program header
tables.

If the I option is omlitted, COMPASS suppresses all of the following:

 Prefix tables (77g)

Overlay control tables (508)
Multiple entry point tables (51y)
PPU header control tables

A location field symbol, if present, is ignored. NOLABEL is illegal in a relocatable CPU assembly.

4-22

60360900B —

4.3.11 LCC — LOADER DIRECTIVE

The LCC pseudo instruction provides a means of including loader directives with the tables for a
relocatable program.

Formast:
LOCATION OPERATION VARIABLE SUBFIELDS
LCC directive
directive First nonblank character following LCC to the first blank. For directive
formats, refar to the Loader Reference Manual.
&t ron Pl avintol) 1 prasent, i ignored.

COMPASS writes a directive as a section in packed display code for subsequent interpretation by the
losder TOMPASS doeg not edit the direstive; the loader recognizes illegal forms at load time.

4.4 AGDE CONTROL

Mode control pseudo instructions influence the basic operating characteristics of the assembler.
Spacificaily, the tnstructiona allew the programmer to zlter the way in which the assembiler:

Interprets binary data BASE pseudo instruction
Generates character data CODE pseudo instruction
Interprets the beginning of comments on statements COL pseudo instruction
Qualifies symbols or does not qualify them QUAL pseudo instruction
internreis the R= instraetion B1=1 or R7=1 pseudo instruction
v opra, the cceabier has o defaplt mode whicl it uses if one of these instructions is never uvasd.

4.4.7 BASE — DECLARE NUMERIC DATA MODE

The BASF pseudo instruction declares the mode of interpretation for numeric data for which a base
radix 1s rot explicitly defined. TUse of the BASE pseudo is optional; if BASE is not used in a subpro-
gram, COMPASS evaluates unspecified numeric data as decimal.

An sleernate application of BASE is to define the previous base as a micro.

Forrasli

LGCATION OPERATION ¥ARIABLE SUBFIELDS
mname BASE mode
I
rmnpame Optional 1-8 character micro name by which the previous BASE mode can be referenced

in subsequent BASE instructions. 1f mname is present, the value of the miero named
mname is (re)defined to be a single letter D, M, or O, corresponding to the BASE mode
in effect prior to this BASE instruction.

60360900 F 4-23

mode Blank, in which case the base remains unchanged, or 1-8 characters, the
first of which designates the new base as follows:

O

other

4-24

Octal assembly base; any subsequent use of a data item not
specifically identified by an O, D, or B prefix or suffix is
evaluated as octal. For example, the constants 15 and 15B
are evaluated as 15g; constant 15D is evaluated as 17g. Any
item containing an 8 or 9 without a D radix is flagged as
erroneous. Exceptions are scale factors, character counts,
shift counts (S modifier), and binary point positions, which
are always considered decimal.

Decimal assembly base; any subsequent use of a data item
not specifically identified by an O, D, or B prefix or suffix
is evaluated as decimal.

Mixed assembly base; any subsequent use of a data item not
specifically identified by an O, D, or B is evaluated as decimal
if it is one of the following. Otherwise, it is evaluated as
octal.

VFD bit count

IF, ELSE, or SKIP line count

MICRO, OCTMIC, or DECMIC character count

B, C, or I subfield in REP or REPI

DUP or ECHO line count

Character count

Shift counts (S modifier)

Scale factors

Binary point position

COL column number

DIS word count

SPACE line count
Use base in effect prior to current base. The assembler records
occurrences of BASE pseudo instructions and maintains a table
of the most recent 50 occurrences. Each BASE * resumes use
of the most recent entry and removes it from the list. When the

subprogram contains more BASE * instructions than there are
entries in the stack, COMPASS uses a decimal base.

If the variable field is not blank and does not contain one of the
above, COMPASS sets an error flag.

60360900A

Exampl:zs:

This example illustrate : the affect of BASE on a VFD instruction that defines a 48-bit field
containing 10 g

Code Generated LOCATION OPERATION | VARIABLE COMMENTS o
R s
0e0 BASE |0 ;
pgoL0QONOOTO00C VFD 60710 i
L L]
o . i
DeD BASE D |
00¢a VFD 4878 '
000L0GC000X0D i
[] * I
Twid i BASE] !
Fran it - VED (aBsLT
00010010 || i

E,.,iff‘“imN QFPERATION | VARIABLE COMMENTS
L) N i:so
sow | savea BLSE | M [SAVE BASE tH USE
. . . :cooe USING BASE M
) BASE ;SAVEBt IRESTORE SAVED BASE

HeD:

BASE #a RESTORE SAVED, D49

H
- ! » .]

i e L3

44.2 CHAR-DEFINE OTHER CHARACTER DATA CODE

The CHAR pseudo instruction defines character data codes to be used when the CODE O {for Other}

{for
wiodl is ln eiiect.

Format:
r -
LOREEATION YARIABLE SLgFieLDs
char expl.,exp2
&l Evaluatable absolute expression whose value is 00 to 77g. The value of exp]

is the display code value of the character to be redefined.

exp2 Evaluatable absolute expression whose value is 00 to 778. The value of exp2
is the new code other value of the character designated by expl.

60360900C

A location field symbol, if present, is ignored.

Initially, all code other values are the same as display code. CHAR need be used only for those
characters whose code other values are different from .display code. Characters may be redefined
as many times as desired by subsequent CHAR pseudo instructions.

Example:
LOCATION OPERATION VARIABLE SUBFIELDS
00m63 © | CHAR 09638 INTERCHANGE COLON AND
63400 CHAR 63840 PERCENT FOR CODE OTHER

4.4.3 CODE — DECLARE CHARACTER DATA CODE

The CODE pseudo instruction declares that until the next CODE pseudo instruction is encountered all
constants, character strings, and character data items are to be generated in the specified code.
Character data can be generated in ASCII f, display, external BCD, or internal BCD, codes., If no
CODE instruction is used, COMPASS generates display code. Codes are given in appendix D.

An alternative application of CODE is to define the previous code as a micro,

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
mname CODE char
mname Optional 1-8 character micro name by which the previous CODE mode can be referenced
in subsequent CODE instructions. If mname is present, the value of the micro named
mname is (re)defined to be a single letter A, D, E, or I, corresponding to the CODE
mode in effect prior to this CODE instruction.
char The first character of a string indicates the code conversion:

A ASCT six-bit subset
D Display

E External BCD

I Internal BCD

(0] Other code, defined by CHAR pseudo instructions,

* Use code in effect prior to current code. The assembler records occurrences of
CODE pseudo instructions and maintains a table of the most recent 50 occurrences.
Each CODE * resumes use of the most recent entry and removes it from the list.
When the subprogram contains more CODE * instructions than there are entries in
the stack, COMPASS generates display code.

TAmerican Standard Cc‘»de for Information Interchange.

4-26 60360900D

Exampl: :

Code Generated LOCATION OPERATION | vAmIABLE COMMENTS
1 " 18 T30
172524252524050004000 DATA aLouTPUY |
Deh CODE ASCII)
5756564606564 000udd0C DATA oLOUTPUT [
ApE CODE EXTERNAL B8CD
LW624234720230000d000 DATA gLOouUTPUY]
Erl CODE INTERNAL 8CD
Le56H6367646333000000 DATA oLOUTPUT l
IeD CODE DISPLAY
172826202524046000000 DATA oLouUTPUT l
Del CoONE » |
LESBBILTELEIJTURYGUG DATA gLOUTPUTY |

444 QUAL — QUALIFY SYMBOLS

The QUAL pseudo instruction signals the beginning of a sequence of code in which ali symbols defined
in it are either qualified or are unqualified (global), If no QUAL is in a subprogram, all symbols are
daiined us glodai.

An alternztive application of QUAL is to define the previous qualifier as a micro,

Withir 2 QUAL sequence in which a symbol is defined, a symbol reference need not be qualified.
Used outside the sequence, the symbol must be referenced as/qualifier/symbol. Thus, a symbol and
a qualifier become a unique identifier local to the sequence in which the symbol was defined. The
same symbol used with a different qualifier is local to a different QUAL sequence. If a symbol is
defined with no qualifier as well as being defined as qualified, a reference to the symbol within the
QUAT seouence is assumed to be a reference to the qualified symbol rather than to the giobal symbol.
In this ease, z reference to the global symbel must be preceded by a blank QUAL znd foliowed by 2
QUAL =,

Default symbois and linkage symbols are not qualified.

LOCATION QPERATION WARIABLE SUBFIELDS
WS QUAL qualifier
MBLTS Optional -8 character micro name by which the previous guuiifier can be

referenced in subseguent QUAL instructions or symbcl referesnces. If mname
is present, the value of the micro named mname is (re)defined to be the 0-8
characters comprising the qualifier in effect prior to this QUAL instruction.

60360900C 4-27

qualifier A symbol qualifier or * or blank, as follows:

qualifier

blank

1-8 character name, the first character of which cannot be $ or =
or numeric, The qualifier cannot contain the characters

+ - */ ,Jor A

A blank terminates the qualifier.

Any symbol defined subsequent to this QUAL up to the next
QUAL must be referenced from outside the QUAL sequence as

/qualifier/symbol

The current qualifier appears as the third sub-subtitle on the
assembly listing (section 11.1).

The assembler resumes using the qualifier in use prior to the
current qualifier. The assembler records occurrences of QUAL
pseudo instructions and maintains a table of the most recent 50
occurrences, Each QUAL * resumes use of the most recent entry
and removes if from the list, When the subprogram contains more
QUAL * instructions than there are entries in the stack,

COMPASS uses the null (global) qualifier,

A blank variable field causes any symbols defined up to the next
QUAL to be global. A global symbol does not require a qualifier.

NOTE

The first attempt to redefine a global symbol from
within a QUAL sequence results in A and U errors.
The symbol is defined local to the QUAL sequence
with a zero value. To avoid fatal errors, precede
any redefinition instruction (SET, MAX, MIN, or
MICCNT) within a QUAL sequence with a blank QUAL
and follow it with a QUAL *,

4-28

603609008

Exampl:s:

60360900A

LtOCATION OPERATION | VARIABLE COMMENTS
1 " 18 Ta0
AUAL | PaSeq i
i X6 F IBCDE QUALIFIFD BY PASSY
. . I
Fn Loc1 '
QuUAL | PASS? |
1COE EGU Loc? IBCDE QUALIFIEN BY PASS2
QuUAL [SYMROLS 5LORAL FROM NOW ON
. . |
. . !
26,00 ;93’§ f iEvLO‘% IS ~L084L
| . . |
RJ /PASS1/BCDF |JUMP YO PASS1 ROUTINE
. . !
i RJ /PASSP/RCOE | JUMP TO PASS2 ROUTINE
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS -
) " 18 T30
ToR WACRO |RLOCK,KWAL |
~ usFE AL OCK I
QUAL | xwAL |
TAGY RSS 108
TrG2 VFN 607-1 g
USE = ,
jouaL | * :
[TNIM ;
. |
. I
TAR ONE , ONF |
Uyse ONE |
N M8t | ONF
fames, Y261 8ss |18 |
1WRSH TTTIVITVRRTIIIITITIVG TAG? VFD - [687~-1 |
. USE .
GUAL | ® |
P ENEWN \ |
Tan THOy THO [
- , i
19953 e ’ TAGY |
10965 PYPYIIVITIRTYVVRIING 1186 |
* N § |
by |

4-2¢

LOCATION OPERATION { VARIABLE COMMENTS
) N 18 Ta0 —
Quat z J
21 8sS o {z1 QUALIFIED BY 2
OUAL |B EQUATE SYMBOLS SO THAT
21 = 12771 Z1 IN Z CAN BE REFERRED

|TO AS Z1 IN B

4.4.5 Bl =1 AND B7 = 1 — DECLARE THAT B REGISTER CONTAINS ONE

The B1=1 and B7=1 pseudo instructions declare that in this CPU subprogram, the contents of the Bl
register or the B7 register, respectively, are one. These instructions do not produce code; they alter
the way in which code is generated by the R= instruction (Section 4. 8.7) and define the symbol Bl=1

or B7=1. If more than one instruction is used, the assembler uses the last one encountered.

Formats:
LOCATION OPERATION VARIABLE SUBFIELDS
Bl=1
B7=1

A symbol in the location or variable field is ignored.
Note that loading the respective B register with one is the user's responsibility.

For an example of use, refer to R= (Section 4.8.7).

4-30 60360900C —

. | 4.4.6 CDL— SET COMMENTS COLUMN

The COL pseudo instruction sets the column number at which the comments field can begin when the
variable field is blank, If no COL instruction is used in the subprogram, COMPASS uses 30.

T
WO LATION OPERATICON ; VARIZBLE SUBFIELDS

T ﬁ.-.,_,__MCOI_‘_.___..._,.-WR_
n An szbsolute evzluatable expression designating the column number; n> 12.

When base is M, n is assumed to be decimal. If n is less than 12,
COMPBASS gty the onlnmn % 19, X n i3 zero or blank, COMPASS seis
the column to 39, the defauit column.

A 1ncation field symbeol, if present, is ignored.

Example:
LOCATION | OPIRATION | VARIABLE COMMENTS
] it 18 32
4% £oL 36 o
USE :RETURN YO BLOCK O
i

in this example, subsequent statements for which the variable field is blank cannot have comments
nveginning before column 36.

5ude08u0C 4-31

4.5 BLOCK COUNTER CONTROL

Counter control pseudo instructions establish local blocks, labeled common blocks, and blank common
blocks in addition to the absolute, zero, and literal blocks established by the assembler; they control
use of all program blocks, and provide the user with a means of changing origin, location, and position
counters,

4.5.1 USE — ESTABLISH AND USE BLOCK

USE establishes a new block or resumes use of an already established block. The block in use is the
block into which code is subsequently assembled. A user may establish up to 252 blocks.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
USE block
block Identifiés block to be used, as follows:

0 or blank Nominal block (absolute or 0)

// Blank common block; for a relocatable subprogram, this block
cannot contain data. The only storage allocation instructions
that can follow are BSS and ORG. The BSSZ instruction is
illegal because it presets the block to zeros.

/name/ Labeled common block. A name can be a maximum of 7 characters
and cannot include blank or comma. The first and last characters
must not be colons., Conventions imposed by the loader or other
assemblers or compilers could further restrict the use of names.

name Local block. A name can be 1-8 characters, excluding blank or
comma. Use of this name enclosed by brackets does not cause
the block to become a labeled common block. For example,
USE A and USE /A/ are different blocks.

* Block in use prior to current USE, USELCM, ORG, or ORGC,.
See discussion following.

A location field symbol, if present, is ignored.

The nominal program block contains the entire program if no USE or USELCM is encountered.

Redundancy between block names is permitted as follows:

A labeled common block designated by /0/ can coexist with the program block designated by 0.
Blank common designated by // can coexist with a labeled common block designated as ////.

4-32 : 60360900A

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two blocks
with the same name and the same block type if they have different memory types (CM/SCM or
ECS/LCH). Thus, altogether, there may be up to four different blocks with the same name.

Sien o ai0Ck 19 fivs! establisted, 1.0 origin and location counters are zero and 15 positlug counte. 1o
pither € (CPU subprogram) or 12 (PPU subprogram). When a different block than that in use is
indicate 1, COMPASS saves the values of the current origin and position counters.along with an
indicatoc as to whether the next instruction is to be forced upper. If the most recently assembled
instruction under the block is one that forces the next instruction upper, the first instruction
assembled upon resumption of the block is foreced upper. When the designated block has been
praviously chlished, COMPASS resumes assembly in the hlock using the last known values for

the origin and position counters. The value of the location counter is not saved. Upon resumption of
she pleex, 3 is ant to the value of the oripgin connter. I a L.OC had been used previously, resettiry
aF me lepatice ~romter bo pyoaduos the desired results ie the responsibility of the programmer.

The assembler records occurrences of USE, USELCM, ORG, and ORGC pseudo instructions (except
TISE * and USELCM *) and maintains » USE table of the most recent 50 occurrences. Each USE * and
FAT] TR % ceaumas vge of the most eagent entry and removes it from the table. When the subprogranm:
contains more USE * or USELCM * instructions than there are entries in the stack, COMPASS uses

sha pom inal hlock.

Furamploe:

Location Code Generated | LocATiON OPERATION | VARIABLE COMMENTS
’ - —r= T — S

USE |
i* 3100380000 GAMMA RS ALPHA IBLOCK 0 IN USE

USF DATA1 iaLONK DAYAL IN USF
35 17200000N00N000G0N0000 SAR NATA 1.0 |

USFE * |RESUME USF CF BLOJCK 7
th GS130C0A000 i SA3Z | SAM !

Note that the SA3 is forced upper because the RJ causes a force upper of the nexi instruction in the

block. T

Location Code Generated LOCATION | DpEraTION | vARIABLE COMMENTS
Lucation = ‘ B
use TaBLE USE TABLE LUCAL BLULw
2615 00 VEC 670 ,
| usz ¥ 'RESUMF PREVIOUS BLOCK
I { * - . @
§ USE TABLE 'RESUME USING TABLE
30002600 + g VED | 6/1RX518/5
i use 1 * |RESUME PREVIOUS BLOCK

Note how separate blocks can be used to facilitate packing of partial-word bytes into a table residing in
2 black other than the one primarily being used.

60360900A 4-33

4.5.2 USELCM - ESTABLISH AND USE ECS/LCM BLOCK

The USELCM pscudo instruction establishes or resumes use of a block assigned to extended core
storage (ECS) or large core memory (LCM). For all ECS/LCM blocks in an absolute CPU assembly,
and for the ECS/T.CM blank common block in a relocatable assembly, data generating instructions
(including BSSZ) and symbolic machine instructions are illegal; only storage reservation pseudo
instructions (BSS, ORG and ORGC) are allowed. The USELCM pseudo instruction is illegal in PPU

assemblies.
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
USELCM block
block: Identifies block to be used, as follows:

0 or blank

//

/name/

name

Ilegal.

Blank common block. A subprogram can have two blank common
blocks if one of them is in ECS/LCM.

Labeled common block, The name can be a maximum of 7
characters and cannot include blank or comma. The first and last
characters must not be colons. The loader or other assemblers or
compilers could further restrict the use of names.

Local block. T The name can be 1-8 characters, excluding blank or
comma. Use of this name enclosed by brackets does not cause the
block to become a labeled common block, For example, A and /A/
are different blocks. All of the local ECS/LCM blocks are con-
catenated to form a single block, which is treated by the loader as

an ECS/LCM common block whose name is unique to the subprogram.

Block in use prior to current USE, USELCM, ORG, or ORGC.

A location ficld entry, if present, is ignored.

The length of each ECS/LCM block, including the combined local block, is rounded up, if necessary,
to an integral multiple of eight 60-bit words, The maximum size of an ECS/LCM block is 1,048,568

words.

Further rules for USELCM are the same as for USE.

t SCOPE 2 does not currently allow local blocks in LCM.

4-34

60360900A

Exampl¢:s:

LOCATION OPERATION | VARIABLE COMMENTS

n 18 Tso

BASE |0 H

i

USELCMILCM 'ESY'ABLISH ANDO USE LUM BLOLK
LCMC BSS 0 JUEFINE SYMBOL LCMC
BLOCH BSS 100 |[RESERVE 100 WORDS
BLOC?2 BSS 200 |RESERVE 200 WORDS

USE * IRESUME PREVIOQUS BLOUK

. . '

ORG 8LOC1+10008 !
B1LOC3 BSS 20 IRESERVE 20 MORE WORDS
| | USE * IRESUME PREVIOUS BLOLK

4.5.3 ORG AND ORGC - SET ORIGIN COUNTER

DG wdirectly indleates the block to be used for assembly of subsequent code and specifies the value
to whichk the origin ard location crunfers are to be set, COMPASS makes an entry in the USE table and
saves the current origin and position counter values.

ORGC 1 tndirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location counters are to be set. COMPASS makes an entry in the USE table and
saves the current origin and position counter values. In a PPU or absolute assembly, ORGC is the
same as ORG. In a relocatable CPU assembly, ORGC is the same as ORG if the USE block specified
by the address expression is not a common block; otherwise, code following an ORGC is ignored by

“he linking loader if that common block wags first declared by a previously loaded subprogram.

T Not supported by SCOPE 2 Loader.

£0360900 C 4-35

Formats:

LOCATION OPERATION YARIABLE SUBFIELDS
ORG exp
ORGC exp
exp Expression specifying the address to which the origin and location counters are to be

set. Following ORG or ORGC, the assembly resumes at the upper position of the
location specified. COMPASS determines the block as follows:

1, If the expression contains a symbolic address, COMPASS uses the block in
which the symbol was defined.

2. COMPASS uses the current block if the value of the expression is *, *L, or
*O, If the origin and location counters are the same value, and no code has
been assembled in the current location, the only effect of *, *L, or *O is to
force the next instruction upper. If a word is partially assembled, however,
the code already assembled into the location is lost.

If the counter values differ, * or *L sets the origin counter to agree with the
location counter value; *O sets the location counter to the origin counter value.

3. An absolute expression causes use of the absolute block. In a relocatable
assembly, this is the only way to establish the absolute block. All symbols
defined in the absolute block are absolute.

Any symbols in the expression must be already defined in the assembly and must not result in a
negative relocatable value, It is not possible to ORG or ORGC into the literals block.

A location field symbol, if present, is ignored.
Once an ORGC pseudo instruction has established the conditional loading indication for a given common

block, it is in effect whenever assembly in that block is resumed by subsequent USE or USELCM
pseudo instructions, and can be cleared only by an ORG pseudo instruction specifying that block.

4-36 60360900A

~—

LOCATION QOPERATION | VARIABLE COMMENTS
) N 18 J30
USE ALPHA |
. - | e
! ! - ! * l »
f . | ® 1 ®
ABC OATA | 20,100,1000 [LOCATED IN ALPHA
; !
‘ |
; L] -* § -«
’ ; L] ¥ o5
. USE BETA |
L ixvz 83S) LOCATED IN BEVA
Vo L] i) .
f .) .
] ORG ABC ISETS ALPHA COUNTERS TO ABC
! . . |AND RESUMES USE OF ALPHA
‘ i
i ! 3 : - i *
B 8SS | 1000 i
[i Py | ® -
3 © ! e
. wms L E [SETS ABSCLUTE BLOCK COUNTER
. . B [TC 50 &ND BEGINS IVS USE
a ORT ! ¥¥Te1nr ISETT BETA COUNTERS T0 X¥Z+4180
i ! - ® ‘.
l : » £ 'l
[L] - L]
{, USE . IRESUMES ABSOLUTE 3LOCK
; ! . . fo
i S K
P buse > lREqUMFS RLOCK ALPHA
: ! | b
: f: ; £
° . I °
USE * |RESUMES BLOCK BETA
‘ . - R
! » 'S ;.
; i
2: . - I L]
? USE . [RESUMES 8LOCK ALPHA
. . . R
| USE . IRESUMES NOMINAL BLOCK
s . . !

60360900A

4-37

4-38

LOCATION OPERATION | VARIABLE COMMENTS
" 18]30
g
use /IATA/ |
DATA 839 0 I
0RGC | naTa
DATA 1,2,3 ILONDITTONALLY ©26SST DATA
|
use anysLogk |
SON 3RXYZ 'UNCONNITIONAL DATA
IJS¥F » '
FOUR DATA | & [RETURN T0 /naTa/ STILL
nATA | 5,5 SONDITIONALLY SKIPPING
|
025 FOUR v
Z? X1,5R02 |UNCONNITIONALLY L0ADFN
R L

IINST?UCTIONS

603609004

4.5.4 B3S—BLOCK STORAGE RESERVATION

The BSS instruction reserves core in the block in use by adjusting the origin and location counters. It
does not generate data to be stored in the reserved area. A primary application is for reserving blank
~ommon storage. It can also be used to reserve an area to receive replicated code (see REP, REPC,
«nd REPI, section 4, 8. 8).

rormat:
LOCATION, QOFERATION VARIABLE SUBFIELDS
sym ~ |BSS aexp
sym If present, sym is defined as the value of the location counter after the force
upper occirs. it is the beginning symbol for the storage area.
aexp Absolute expression specifying the number of storage words to be reserved.
All symbols must be previously defined; aexp connot contain external symbols.
“he value of the expression can bie negative, zero, or positive and the value
is added to both the origin counter and the location counter. A BSS 0 or an
eIt Lneons Arp cession causes a force upper and symbol definition but no sterage
is reservel,
Lxample:
l.CiATtO‘N OPERATION | VARIABLE COMMENTS
1 N 18 130
I
Use 77 !
i TOMMON ’ssS 10008 IRESERVE 512 WORDS OF BLANK COMMON
; USE » ;
; L] - HEE 2
!
;; - - i 5
i SA6 COHMON&SDOP’
i Ll - l .
» -)
TAG B8SS 0 IDEFINE SYMBOL 1AG
o . i

60360900A 4-39

4.5.5 LOC — SET LOCATION COUNTER

A LOC pseudo instruction sets the value of the current location counter to the value in the variable
field expression. The location counter is used for assigning address values to location symbols.
Changing the location counter permits code to be generated so that it can be loaded at the location
controlled by the origin counter and moved and executed at the location controlled by the location
counter, Thus, any addresses defined while the location counter is different from the origin counter
will be correctly relocated only after the code is moved.

Format:
LOCATION OPERATION | VARIABLE SUBFIELDS
L.OC exp
exp Relocatable expression specifying the address to which the location counter

is to be set. Any symbols in the expression must be already defined in the
assembly and must not result in negative relocation.

A location field symbol, if present, is ignored.

Following a T.OC, if the value of the location counter differs from the origin counter, the location field
is flagged with an 1. on the listing until 2 LOC *O, USE, ORG, ORGC, or USELCM instruction resets the
location counter to the value of the origin counter.

A LOC instruction does not cause the assembler to switch from the current block to another. LOC
causes the next instruction in the block to be forced upper. The only effect of LOC * or LOC *L is to
force upper. Because COMPASS does not save the value of the location counter when it switches
blocks, a USE, ORG, ORGC, or USELCM for a different block effectively resets the location counter to
the origin counter value, When use of the block is resumed, it is the responsibility of the user to reset
the location counter to produce the desired results.

4-40 60360900A

Exampl ::

In the following example, the ‘irst LOC is used to generate PPU code that is to. be loaded into one

PPU and transmitted to a different PPU for execution.

the address field contains the table ordinal rather than a load address.
instruction changes the location counter to resume counting under the first LOC. At the end of the

The second LOC is used so that on the listing

srogran., LOC *G peturns the location counter to the value of the origin counter,

Location

7109
¥303
w0
AT AR
101
102
L 103

-~

Al sl ol S
W E N e D

2i5
eLs
2L
7240

-~

60360900A

Code Generated

2a0n
2400
2400

5300 0100

0100
0114
g121
0132
0136
0167
0240
1000

-

At the end of the table, a L.OC

LOCATION QPERATION | VARIABLE COMMENTS
) n 18 T30
T1 EQu 1 !
CH EQU 0 !

ORG 7100 |
RES RSS 0
Loe 100 |
P PR PSN 0 ;
PSN 0 l
PSN 0
£IM PPR,CH |
L] L] [] |
) L] L] I
PPRA ASS 0 i
Loc 0 1
CON PPR
CON STM l
. ON DPM |
CON EXR
CON CHS |
CON DMP |
CON END
CON 1000 |
L] ; L] : }
Loc *0-RES+PPR |
BSS 240-%
END BSS |
Loc *Q I

4-41

4.5.6 POS — SET POSITION COUNTER

'The POS pseudo instruction sets the value of the position counter for the block in use to the value
specified by the expression in the variable field.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
POS aexp
aexp An absolute evaluatable expression having a positive value less than or

equal to the assembly word size (60 for CPU, 12 for PPU). A negative value, or
a value greater than 60 (or 12), causes an error. The value indicates the bit
position within the current word at which the assembler is to assemble the next
code generated. Use caution, because if the new position counter value is greater
than the old position counter value, part of the word is reassembled. (New code
is ORed with previously assembled data.) If the new position counter value is less
than the old position counter value, the assembler generates zero bits to the
specified bit position. If the value of aexp is zero, COMPASS assembles the next
code in the following word.

A location field symbol, if present, is ignored.

CAUTION

If the POS instruction is used on a word containing re-
locatable or external addresses, undefined results may
occur with no diagnostics.

The POS instruction does not alter the origin and location counters. The position counter is never 0
at the beginning of an instruction. At the beginning of a new operation, if a data value has been
stored into bit 0 (the rightmost bit) of a word, COMPASS increments the origin counter and the
location counter and resets the position counter to 60 (or 12),

A POS *P has no effect whereas a POS $ subtracts one from the counter.

4.6 SYMBOL DEFINITION

The pseudo instructions EQU, =, SET, MAX, MIN, and MICCNT permit direct assignment of 21-bit
values to symbols. The values can be absolute, relocatable, or external. Register designators are
not valid in the expressions. Subsequent use of the symbol in an expression produces the same result
as if the value had been used as a constant, In the listing of the symbolic reference table, a refer-
ence to an EQU, -, SET, MAX, MIN, or MICCNT instruction is flagged with a D. Symbols defined
using EQU and = cannot be redefined; symbols defined using any of the other symbol definition
instructions can be redefined.

4-42 60360900B

4.6.1 QU OR = -EQUATE SYMBOL VALUE

S—
An EQU or = pseudo instruction permanently defines the symbol in the location field as having the value
and attributes indicated by the expression in the variable field.
Formaty:
fr_I;’;AYION OPERATION VARIABLE SUBFIELDS
sym JEQU exp
or
sym = exp
8y A leeaiion syimbol is required. See section 2.4 for symbol requirements.
ex o An evaiuaiavie expression. Any symbols in the expression must be previcusiy
defined or declared as external. The expression cannot contain symbols
prefized by =S or =X unless the symbols have also been defined conventionally.
If the expression 1s erroneous, COMPASS does not define the location synibol
but flags an error.
Exampies:
LOCATION OPERATION | VARIABLE COMMENTS
—)] 18 [30
20437 oPS = 204378 \
74 LINP = 748 ,
3 CH EQu 3 |
74 PRGFSIZ = L INP)
71 llieops egs [*-0es ;
HE i

60360900A

4.6.2 SET — SET OR RESET SYMBOL VALUE

A SET pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the expression in the variable field. A subsequent SET using the same symbol redefines
the symbol to the new value and attributes. SET can be used to redefine symbols defined by SET, MAX,
MIN, or MICCNT, only.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym SET exp
sym A location symbol is required. See section 2.4 for symbol requirements.
exp An evaluatable expression. The expression cannot include symbols as yet

undefined and cannot contain symbols prefixed by =S or =X unless the symbols
are also defined conventionally.

If the expression is erroneous, COMPASS does not define the symbol but
issues a warning flag.

The symbol in the location field cannot be referred to prior to its first definition.

Examples:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
—I
17 A €QuU 15 | A HAS VALUE OF 15
|
74 8 SET *p /B HAS VALUE OF POSITION COUNTER
22 c SET Ae3 ic HAS VALUE A+3 OR 18
76) = B+2 | ILLEGAL, B IS DOUBLY DEFINED
|
24 ¢ SET C+2 /LEGAL, C CHANGES FROM 18 TO 20
D SET | Fea :ILLEGAL, F AS YET UNDEFINED
BSS AR | ILLEGAL, REFERENCE PRECEDES
| FIRST DEFINITION
20 AR SET 16 |

4-44 60360900A

4.6.3 MAX — SET SYMBOL TO MAXIMUM VALUE

The MAX pseudo instruction d:fines the symbol in the location field as having the value and attributes
indicated by the largest (most positive) value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value.
Tomyeresiy, MAY gan be used to redefine symholr defined by these instructions.

Format:
;[_EZ"IAY“N QPERATION VARIABLE SUSFIELDS
L
8s¥im MAX €XP; s eXP,y; .« - s €XP
i
!
| |
Yy A jocation 1ieid symbol is required. See section 2. 4 for symbol requirements.
BRD, An evaluatabie expression. Any symbols in the expression must be previously
' definea. The expression cannot contain symbols prefixed by =S or =X unless
the symbols are also defined conventionally.
lire expressions should have sim:ia- sttributes. No test is made for attributes, The test for maximum

vaiue is made in passone., in testing for the maximum value in pass one, COMPASS uses values for
relocaia ite synibels relative to block origins.

NOTE

During pass two, the expression selected in pass one is
used, The relocatable symbols have been reassigned
values relative to program origin and these values are
used for the final value of the expression selected in the
first pass.

it any of the expressions are erroneous, COMPASS does not define the symbcl but issues a warning fiag.
fhe symbol in the location field cannot be referred to prior to its first definition.

cooapty

[‘ﬂ‘ L‘SEVAIION OPERATI;N VARIABLE COMMENTS
r n 8 [30
A —] S

5 i RT2 £ 3

) R IS 1 £ou 6 |

2 % PT32 EQu 2 !
. '

6 | 5YM MAX PT3,PT31,PT32
P

45
2paannanA 4-45

4.6.4 MIN — SET SYMBOL TO MINIMUM VALUE

A MIN pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the minimum or least positive value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value.
Conversely, MIN can be used to redefine symbols defined by these instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MIN €XP{5€XPgs .+« »€XPp
sym A location symbol is required (section 2.4).
exp An evaluatable expression. Any symbols in the expression must be previously

defined. The expression cannot contain symbols prefixed by =S or =X unless
the symbols are also defined conventionally.

The expressions should have similar attributes; no test is made for attributes.

The test for minimum value is made in pass one. In testing for the minimum value in pass one.
COMPASS uses values for relocatable symbols relative to block origins.

NOTE

During pass two, the expression selected in pass one is
used. The relocatable symbols have been reassigned
values relative to program origin and it is these values
that are used for the final value of the expression which
was selected in the first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning

flag.

The symbol in the location field cannot be referred to prior to its first definition.

4-46

60360900A

4.6.5 IAICCNT — SET SYMBOL TO MICRO SIZE

The MICCNT pseudo instruct on defines the symbol in the location field as having a value equal to the
number of characters in the value of the micro named in the variable field, A subsequent SET, MAX,
MIN,.or MICCNT using the same symbol redefines the symbol to the new value. Conversely, MICCNT
can be used to redefine symbols défined by these instryctions.

Yormat:
I-IJ)CAHON OPERATION VARIABLE SUBFIELDS
8ym MICCNT mname
|
5 A tocation gymibol is required (Bection 2. 4).
muaame Name of a previously defined micro; it may be a system micro or may have
been defined through MICRO, OCTMIC, DECMIC, or BASE. If mname has
not been previously defined, the location symbol is not defined (or redefined)
and a warniag flag is issued.
Exampies:
' ! {OCATION GPETATIOM | YARIABLE COMMENTS
) i 1 T30
MSG MICRO |1, ,*STRING* IDEFINE 6~-CHARACTER MICRO
e . lo
[] * 'C
* . L] L]
6 'MSIZE MICCNT I NSG lMSTZE EQUALS 6
i ® * -
i . o fo
 lMICRO [1,,®ALPHANUNERIC #MSGZ® 19 CHAR. MICRO
e m') 1”) o ml 5y I\‘txi I ‘“l‘\\‘\.f‘ o
23 WICCNT (MS6 Ins1zE EquaLs 19

60360900A 4-47

4.6.6 SST — SYSTEM SYMBOL TABLE

An SST pseudo instruction defines system symbols, with the exception of the symbols noted, as if the
symbols had been defined in the subprogram.

The symbols are in a system text overlay accessed from a library or file through the S or G list
options on the COMPASS control statement (Section 10.1.2).

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
SST Symy, 8yMy, ..., sym
sym; One or more symbols on the file that are not to be defined.

A location field symbol, if present, is ignored.

Refer to section 4. 3.4 for an example of use.

4.7 SUBPROGRAM LINKAGE

Pseudo instructions ENTRY, ENTRYC, and EXT do not define symbols but either declare symbols
defined within the subprogram as being available outside the subprogram or declare symbols referred
to in the subprogram as being defined outside the subprogram,

4-48 60360900A

4.7.1 ENTRY AND ENTRYC - DECLARE ENTRY SYMBOLS

The ENTRY pseudo instruction specifies which of the symbolic addresses defined in the subprogram
can be referred to by subprograms compiled or assembled independently; ENTRY lists entry points te
the current subprogram. ENTRY is illegal in PPU assemblies.

The ENTRYC T pseudo inetriction « snditionally specifies which of the symbolic addresses define. Ix
the suborogram can be referred to by subprograms compiled or assembled independently; ENTRYC
lists cenditional entry points to the current subprogram. ENTRYC is illegal in PPU assemblies ind
;s synenvmous with ENTRY in absolute CPU assemblies. In a relocatable assembly, an entry pcint
symbol deciared by ENTRYC is ignored by the linking loader if the value of the symbol is relative to a
commoa hlock and that common block was first declared by a previously loaded subprogram.

Foriats:

e e -
O iOP“A“i"ON VAKIABLL SUBFUELDS

ENTRY sym1 »SYMpyeees sym,
ENTRYC a:yml, symz, ceey symn

|

|
|

idnkage symbol; 1-7 characters of which the first must be alphabetic (A-Z) and tae
last must not be a colon. The symbol cannot include the following characters:

+ = */blank , or A

Each symbol must be defined in the subprogram as nonexternal (cannot begin with
~X or be listed on an EXT pseudo instruction). Entry point symbols must be un-
qualified (Section 2.4, 5).

A locstion synboi, if present, is ignored.

o iier nf all entry points daclared s the subprogram precedes the assembly listing. An asterisk

appears to the right of each conditional entry point.

TNot sup;&?ed by SCOPE 2 Loader.

30360900D 4-49

Example:

Location

110
110
111

111

5120000100

5110000002

Code Generated

7x72n0

4.7.2 EXT — DECLARE EXTERNAL SYMBOLS

The EXT pseudo instruction is illegal in an absolute subprogram.

LOCATION OPERATION | VARIABLE COMMENTS _/
) 0 18 [30

IDENT |CY,CONTROL ,CIONTQOL
Ass |
FNTRY [MODFE |
ENTRY [ONSW
ENTRY |OFFSHW |
FNTRY |ROLLOUY |
ENTRY (SETPR
ENTRY [SETTL |
ENTRY [SWITCH |
ORG 1100

[ONTROL |RSS 0 I

MODE SA2 ACTR | '
SX7 X2
SA1 2 |
° - I
. - '
. - |

t
The EXT pseudo instruction lists symbols that are defined as entry points in independently compiled
or assembled subprograms for which references can appear in the subprogram being assembled.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
EXT sym_,Sym_,...,Sym
y 1’ y 9° » Sy n
sym

Linkage symbol, 1-7 characters of which the first must be alphabetic (A-Z) and the

last must not be a colon.

+ - * / blank , or A

The symbol cannot include the following characters;

These symbols must not be defined within the subprogram. External symbols
are unqualified.

A location field symbol, if present, is ignored.

An external reference is flagged with an X in the address field in the listing of code generated. All
external symbols are listed in the header information for the assembly listing.

60360900A

S~

4.8 DATA GENERATION

The instructions described in this section are the only pseudo instructions that generate data. All
other program data is generatad through symbolic machine instructions. An instruction that
senerstes data cannot be used in a blank common block. The pseudo instrucfions that generate data

are:
Bi:SZ Generates zeroed words
blank operation field Generates one zeroed word
DATA Generates one or more words of data
s Generates one or more words of data
T Generates literals block entries
ED Places expression vzlues in user-defined fieids
oo Plases expression values in full words
R= For use in macros; R= assumes that either (B1)=1 or (B7)=1 and

generates increment instructions accordingly

RI'P, REPC, or REPI Does not actually generate object code at assembly time but
causes the relocatable loader to repeatedly load a sequence of
code intc a reserved blank storage area.

420 I38I 5D BLANK OFERATIOM FIELD—RESERVE ZEROED STORAGE

ke BETE iustruction reserves zerced core in the block in use. The origin and location counters are
acjusict by the requested number of words and the assembler generates data words of zero to be
loaded into the reserved area. An instruction that contains a symbol in the location field but has a
blank sneraiion field has the same effect as a BSSZ of one word.

Fovmnis
e it = g e g et e e e
Lesl R THON OPERATIOHN i VARIABLE SUSHELDS
-
sym BSSZ aexp
| |
i
1
!
Gy If present, sym is defined as the vaive of the localion cowater after the force
upper occurs. The symbol identifies the beginning of the reserved storage area.
3exp Absolute evaluatable expression specifying the number of zeroed words of

storage to be reserved. The expression cannot contain external symbols or
result in a relocatable or negative value,

A BSS7 0 or an erroneous expression causes a force upper and symbol definition but no storage is
reserved.

60360900R 4-51

A BSS7Z or group of BSSZ instructions of six or more words produces an REPL table in object code to

reduce

the physical size of the object program (appendix B).

Only the first word appears on the listing.

4.8.2

DATA — GENERATE DATA WORDS

The DATA pseudo instruction generates one or more complete 60-bit or 12-bit data words inthe

current block for each item listed in the variable field.
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym DATA item1 , itemz, ey itgmn
sym If present, sym is assigned the value of the current location counter after
the force upper occurs. It becomes the symbolic address of the first item
listed.
item i Character, octal numeric, or decimal numeric data item, according to
specifications described in section 2,7, Floating point notation is illegal in
PPU assemblies. Items are separated by commas and terminated by a blank.
A literal cannot be used as an ifem.
A DATA pseudo instruction always forces upper. A blank item does not cause generation of a data word.
Unless the D list option is selected, only item1 appears on the listing,
Examples:
Tocation Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 130
—F
552 14N717000000000000080 oPYB DATA ILLGO !
553 %0000000000000000000 oPTY DATA 18559]
554 031715201116405000000 orPTT DATA ILCOMPILE !
555 172526420252400000000 oPYD DATA OLOUTPUT,0 |
556 00000000000000000000
567 172051463146314L463146 oPTY DATA 1.3EE |
560 1640314L6314631463146

4-52

60360900A

~——

Locatior Code Generated LOCATION OPERATION | VARIABLE COMMENTS
\ " 18 130
PERIPH i
DeO BASE D
I
NP X l
1260 7070 AT DAYA [F070,-7,0,1R{
1251 7770]
1252 0000 |
1253 00346 |
i254 5501 DATA RC A,OLEF
1255 0000 |
1256 0506 |
1257 0123 DATA pi23,-&4 '
1260 7773
1261 D401 DATA H®DATA®* |
LTE2 26401

4.8.3 DIS—GENERATE WORDS OF CHARACTER DATA
The DIS nseudo instruction generates words containing character data. The instruction can be used

convenieatly when a character data string is to be used repeatedly. Unless the D list option is selected
only the first word of character data appears on the listing. The instruction has two formats:

Format one:

LOTATION OPERATION VARIABLE SUlFIElD§

sym DIS n, string

sym If present, sym is assigned the location counter value after the force upper
occurs. It is the symbolic address of the first word containing the character
string.

n An absolute evaluatable expression specifying an integer number of words to be

generated. When base is M, COMPASS assumes that n is decimal.

string Character string

For a CPU program, COMPASS takes 10 times n characters from the string and packs them as they occur
1% characters per word into n words. For a PPU program, COMPASS takes two times n characters from
ihe string and packs them as they occur two characters per word into n words. If the statement ends
before 10 x n (or 2 x n) characters, the remainder of the requested words are filled with blanks,

Ifnis 0, COMPASS assumes the instruction is in format two.

60360900A 4-53

Format two:

LOCATION OPERATION VARIABiE SUBFIELDS

sym DIS , dstringd

sym If present, sym is assigned the location counter value after the force upper
occurs, It is the symbolic address of the first word containing the character
string. ’

d Delimiting character

string Character string; any character other than delimiting character

In this form, the string must be bounded by delimiters.

The comma is required. The characters between

the two delimiting characters are packed into as many CPU or PPU words as are needed to contain them,
Twelve zero bits are guaranteed at the end of the character string even if COMPASS must generate an

additional word for them.

delimiting character, it produces a fatal error.

Examples:
Location Code Generated

561 07051605220124055535
562 55032025552717220423
563 07051605220124055535
564 55032025552717220823
565 00000000000000000000

4-54

If COMPASS detects the end of the statement before it detects a second

LOCATION OPERATION | VARIABLE COMMENTS

I 18 l30
ONE DIS 2,GENERATE 2 CPU WORDS
T™HO DIS y*GENERATE 2 CPU WORDS®

[
1

60360900A

Locatim

1&nz
1502
TR
1405
i40b6
iki?
k10
1511
iki2
Lhis

T

1417
LL2n
147

i%c¢c
143
L
r ”a

R

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) n 18 T30
t
PPU '
t
!

UrM BASE M

L5 . RN 105EHERATL 14 P AQRUY

I
|
!
5534 |
{
)

1722 i

N
5
i -
: [I TR !

LIS 2 PGENERATE 10 PP wOKDS*
!
!
i

4.8 4 UT - DECLARE LITERAL VALUES

e
FRENES S
= prefix

. RS I
PEAAG T

Bty

";temi

60360900A

v o e

§f‘:P,‘TRA?‘::?~.

Y LT porewdo instruction generates data words in the literals block. This instruction and the
to a data item provide the only means of generating data in the literals block. The LIT
fasteaciion assures sequential entries for a table of values.

T o ABLE ZUETELLS

LIT

g
!
!
{
i

glteml sitem,, ..., 1temn
!
i
|
|

i presert, svm is assigned the value of the literals block location counter

At least one ard not more than 100 words of character, octal numeric, or
decimal numeric data items. Section 2,7.3 contains specifications. Items
are separated by commas and terminated by a blank., Floating point data
items are illegal in PPU assemblies.

4-55

COMPASS enters data items into the literals block in the order specified.

If the converted binary values for all the data items listed with a single LIT match an existing literal

block sequence, they are not duplicated., If, however, any item in the list does not match an entry in

the block, the entire sequence is generated. A literal item subsequently referred to through an
= prefix is not duplicated. A null item (e.g. H** or 0L) does not cause a word to be generated.

Examples:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] n 18 [30 _
611 POOL LIT 3.1,1.59265,2.7182182,57-29577955E1
CONTENT CF LITERALS BLCCK,
000611 17216146314631463146 0Qf{~Y=-Y=-vV=-
000612 17206275576441776271 OP12,.263%1+
000613 17215337351136014426 oQ¥2?2I3AQY
00061% 17314363651440663121 OYAtelL5vYQ
000615 16513333033540576566 N(ODC25 ,pv
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) 0 18 [30
7447 N2 LIT 1R1,7070,7,0
7453 LIT 2C A,0LEF |
7456 LIT H¥ LITERALS® |
CONTENT CF LITERALS BLOCK. '
7647 0034 1
7450 7070 *e
7451 0007 G
7452 0000
7453 5601 A
7454 oono
7455 0506 EF
7456 1411 LI
7457 2405 TE
7460 2201 RA
7461 1423 LS

4-56

" 603609004 —

4.8.5 VD — VARIABLE FIELD DEFINITION

The VFD instruction generate:; data in the current block by placing the value of an expression into a
field of the specified size,

“ormat
!“; 4 ;Th. IN QPERATION ' YARIABLE SUBFIELDS
gss m VFD item, /exp, ,itemy/expy, ..., itemy /exp,
|
sym For 2 OPY 2esembly, the location field cai: contain sym, plus, minus, or
plank, 2 foliowss
sym If a symbol is provided in the location field, a force upper cccurs
and the value of the iccation counter following the force upper iz
assigned to the symbol. The symbol identifies the first word of
data generated by the VFD.

+ Causes a force upper. Data generation begins in a new word.,

- COMPASS generates zero bits to the next quarter word bouadary,
at which point the first field begins.

blank COMPASS begins the first field at the current value of the position
counter.

For a PPU assembly, if the location field contains a plus, minus, or a symbol,

data generation begins in a new word, If the location field is blank, the first

field begine i the current value of the position counter.

Hem, An muslgned constant or previously defined symbol having a value speciiying a
posi e ner pember of blks for the field to be gererated; maximum fleld
size é; et . for both CPU and PPU assemblies {0 being the maximum
number of significant bits for an expression value). When base is M, ltieml
is aseumed to be decimal notation.

expy An absolute. relocatable. or external expression, the value of which will be

inserted into the field specified by item;. The expression is evaluated using
the specitied field size. Character constants are right or left adjusted in the
field according to the type of justification indicated. In a relocatable CPU
assembiy, no field that contains & relocatable or exivinal address expression
can cross a 60-bit word bhoundary, and no 60-bit word can have more than
four fields that contain relocatable or external address expressions.

Fach ileid is generated as it occurs. For a CPU assembly, if the next instruction that generates code
in the biock is not a VFD with a blank location field, and the last VFD field in the current VFD ends to
the left of a quarter word boundary, COMPASS inserts zero bits up to the next quarter word boundary.
These zerc bits do not show on the assembly listing. Remaining parcels are then filled with no-

operation instructions.

60360900 T

4-57

L R

AN R B 15

When a VIFD instruction that does not have a location field entry immediately follows another VF¥D in
the same block, no padding with zeros or forcing upper occurs; fields are generated sequentially as
they are specified. '

Following a VFD, the position counter contains the number of bits remaining to be assembled in the
last word in which data was generated by the VFD.

Examples:

Location Code Generated

31
566 24010200000023000551
567 00000005665555555565
570 777777774
000000000000
571 111724015501555556531
572 000N0015052323010705
573 031117000000033
Location Code Generated
OrM
1310 333s
1311 3536
1312 3740
1313 L1u2
1314 L3414
1315 0040
1316 0011
1317 7765
1320 0707

4.8.6 CON — GENERATE CONSTANTS

LOCATION OPERATION | VARIABLE COMMENTS
T 18 [30
ALPHA SET 25 i
TABLE VFD 36/73CTAB,6/19,18/TABLOC
VFD 30/ %-1,30/5H sALPHAZ -0
|
VFD ¥py |
VFD J0/0HIOTA,6/1RA,24L/0AX+1
VFD 60/0RMESSAGE,30/3LCI0,15/70R0
{ .
LOCATION OPERATION | VARIABLE COMMENTS
" 18 {10
PPU '
BASE |M |
N4 VFD 60/10R0123456789
!
|
) |
ALl VFD 12/710412711,127-12,12/7-7070

The CON pseudo instruction generates one or more full words of binary data in the block in use. It
differs from DATA in that it generates expression values rather than data items and differs from VFD
in that the field size is fixed. ’

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym CON expl,expz, vee s €XP
sym If present, sym is assigned the value of the location counter after the force
upper occurs.
exp, An absolute, relocatable, or external expression the value of which will be
! inserted info a field having a size of one word. For PPU assembly, floating
point is not allowed; for CPU assembly, double precision is not allowed.
4-58

60360900A

Examples:

Location COde Gene rated LOCATION OPERATION | VARIABLE COMMENYS
! " 18 {30
latn 0000 MSG1 CAN 0 I
1461 none AN A |
140 non3 cAN 3 l
1463 2204 1 CAN Farp
1663 0024 con 20 1
1464 nono MSG2 cAN 0
1445 000k . cAN [[
1467 0093 cAN 3
1475 2172 con PASS |
147} nn24 CAn 20 |
Lﬂ("“ ’ifOY“ Code Genez‘ated LOCATION OPERATION | VARIABLE COMMENTS
T T 1 i 18]30 R
n7 YRR ASS 0] f
L n Lot] |
L n 00000000000000000055 COoN 1R {00
L $ 000AN00000000000NN62 CON 1R} |n1
L ¢ DCOCU00OONDOONGHD0RY rOoN 1R? 02
L 3 00000000000000000060 CON 1R= [03
. - | L]
. - I .
. L] ‘ L]
L 75 00000000000000000066 CON 1Rv ¥4
' 76 0NOODNONCOONNONA00TH CON 1R~ | 76
77 00000000060000000055 CON 1P |77
67% Lo L) ‘

4.8.7 K = — CONDITIONAL INCREMENT INSTRUCTION

The K= pseudo instruction generates a CPU increment unit instruction depending on the contents of the
resiabte subfieids and on whether ov not the subprogram earlier contained a B1=1 or B7-1 pseudo
snstruction (Section 4. 4. 4).

Cuw of T oongiments macro definitions and increases optimization of object code. Itis illegal ina
PI'U program.

The A list option controls listing cf substituted instructions.

Format:
?;m,(’JM”AY-‘:‘}.N QPERATION VARIABLE SUBFIELDS
i Sy R= reg,exp
!
|
sym Optional, if present, sym is assigned the value of the location counter after

the force upper occurs. This force upper occurs whether the R= generates an
instruction or not.

60360900A 4-59

reg. A register designator (A, X, or B) and a digit (0-7) which COMPASS

concartenates with S to form the instruction operation code.

exp Operand register or value expression. If the second subfield is the same two
characters as reg, no instruction is generated.

If the expression value is 0, the variable field is BO.

If the B1=1 instruction has been assembled prior to this instruction and the
expression value is 1, 2, or -1. the variable field of the instruction is Bl1,

B1+B1, or -Bl, respectively.

If the B7=1 instruction has been assembled prior to this instruction and the
expression value is 1, 2, or -1, the varigble field for the instruction is B7,

B7+B7, or -B7, respectively.

In all other cases, the variable field is the register or value indicated by the

expression,

Examples:

4-60

1. R= used with Bl=1

Code Generated

2. R=used with B1#1

Code Generated

LOCATION

OPERATION

VARIABLE COMMENTS

n

18 _ 30 -

_

B81=}

 LOCATION

OPERATION

VARIABLE COMMENTS

18 [30
1

’Ths

‘s"'t :

60360900A

N

3. Expression is same as register designator:

LOCATION OPERATION | VARIABLE COMMENTS
1 W 18 {30
RFG ‘MICRO |1,,%RS5* T
Rz 45, #REGE |

No instruction is generated; SB5 B5 would be a no operation instruction.

4.8.8 REP, REPC, AND REPI - GENERATE LOADER REPLICATION TABLE

and REPI instructions cause the assembler to generate an REPL loader table so

Lo ol wirngrim belog assemblec is loaded, the loader will load one or more copies of a
e Sequence. For ibe REPI instruction, the loader generates the copies immediately upon encourn-
tering the table; for REP, the replication takes place at the end of loading. For REPC*the loader
irroves e HEPL rable f the destination data address is in 2 common block that was first declared
oy 4 previously loaded subprogram; otherwise, the loader generates the copies immediately upon

encountering the tables.

Lo RED E

tepircaciva of ogblect code is valid in relocatable assemblies only. It is particularly useful for setting
sue or more blocks of storage to a given series of values or for generating tables.

Dats to by replicated must not contain any external references or common block relocatable addresses.
¥or REPC and REPI, data must be inpreviously assembled text.

Format:
§W*"“:’;:‘!;N* T QPERATION MARIARE SUBFIELDS
- S -
| REP 5/saddr, D/daddr, C/rep, B/bsz,I/inc
3 REDC + ! [] . s 1/1
! REPI ;
|
i

& Inpatior fizld symbol, if present, is ignored.
The variable field subfields can be in any order.

& gaddr Relosatable expression specifying first word address of code to be copied.
The 3/9addy subfield must be provided., f it is zero, or cinitted, the assembler
flags the instruction as erroneous and does not generate an REPL loader table.

D/daddr Relocatable expression specifying the destination of the first word of the first
copy. If D/daddr is omitted, the assembler sets daddr to zero, and, when
daddr is zero, the loader uses saddr plus bsz for the destination address.

Note that room for the repeated data must be reserved in the destination block.

* Not supported by SCOPE 2 Loader.

60360900 D 4-61

C/rep Absolute expression specifying the number of times code is to be copied. When
base is M, COMPASS assumes that rep is a decimal value. If C/rep is
omitted, the assembler sets rep to zero. When rep is zero or one, the loader
makes one copy.

B/bsz Absolute expression specifying the number of words to be copied (block size).
When base is M, COMPASS assumes that bsz is decimal.

If B/bsz is omitted, the assembler sets bsz to zero. When bsz is zero or one,
the loader copies one word.

I/inc Absolute expression specifying the increment size in words. When base is M,

COMPASS assumes that inc is in decimal.

The increment size is the number of words between the first word of each copy.
When inc is zero or omitted, the loader uses bsz as the increment size. The
loader writes the first copy starting at daddr, the second starting at daddr+inc,
the third at daddr + 2 x inc, etc. until the rep count is exhausted.

The origin and location counters for the block containing the daddr are not advanced by a value of
Storage reservation for replicated code is the responsibility of the user.

inc X rep.

Rules for replication:

1.

]

4.

D.

The S subficld cannot hbe omitted

Room must be reserved for the copies in the destination block (for example, through

ORG, ORGC, or BSS)

RI:P, REPC, and REPI can be used in relocatable assemblies only

Data to be replicated must not contain any cxternal references or common block relocatable

addresses

For REPC and REPI, data must be in previously loaded text

Example:
LOCATION OPERATION | VARIABLE COMMENTS
Location Code Generated
- T 1 n 18 l30
B U B TS = 10 1
USE NEWR !
5017 00000000000000000015 BA DATA 15,20,7070By145,3.14
5020 00000000000000000029 |
5021 00000000000080007070
5022 00000000000000000001 ,
5023 0000000000000D000085 I
5024 17216300000000000000 |
13 I EQU *-BA+5
USE DBLOCK |
5251 DA RSS RC*T
USE * |
REPI S/BA,O/DA,B/I~-5,C/RC,I/I
4-62 60360900B

4.9 CONDITIONAL ASSEMBLY

The following pseudo instructi»ns permit optional assembly or skipping of source code. A special form,
SKIP, causes unconditional sk:pping. COMPASS provides IF test instructions that:

Tn"t for 2ssembly environment (IFtype)

Conpere values of two evpressions (IFop)

(‘0 npqre values of two character strings (IFC)

Test the attribute of a single symbol or an expression (IF)
Text the sign of an expression (IFPL and IFMI)

ramediztely following the test instruction are instructions that are assembled when the tested condition
¢ true end skipped when the condition is false. Skipping is terminated either by a source statement
count on the IF instruction, or bv an ENDIF, an ELSE, or an END.

ERE oot vhern used, i decremented for insiruction lines only; comment lines /fidentified by
inC).. mu onej are not counted. Determining the [T range with a statement count produces slightly

faster assemblv than using the ENDIF,

he resuits of an IF est are determined by the values of expressions in pass one; the value of a
reiveatasle symbol is relative to the USE block in which it was defined. The value of an external symbol
su it ok guyneol was declared as external. If the symbol was defined relative to a declared external,

AR ey

e vaae: o8 the relative value,

5.$.1 EMDIF - END OF IF RANGE

An ENIIF causes skipping to terminate and assembly to resume. When the sequence containing the
ENDI¥ is being assembled, or is controlled by a statement count, the ENDIF has no effect other than

to be included in the count.

#ioped instructions such as macro references are not expanded. Thus, any ENDIF that would have

reraiiag from sn expansion is not detected.

G,

i
RS et
i

Il DAY oxz !OFEMI;’DN T\umAuF SUBFIELDS
hfmrm iEND!F
l

i
i

Name of an I¥, SKIP, or ELSE sequence; or blank

Skipping of 2 sequence initiated by an IF, SKIP, or ELSE that is assigned a name can be terminated
by an ENDIF specifying the sequence by name, or by any unnamed ENDIF. Any ENDIF terminates
skinping of an unnamed sequence that is not controlled by a source line count. A named ENDIF
terminates the named IF, SKIP, or ELSE and any unnamed IF, SKIP, or ELSE sequences in effect

that are not under line count control.

60360900A 4-63

4.9.2 ELSE — REVERSE EFFECTS OF IF

Through the ELSE instruction, COMPASS provides the facility to reverse the effects of an IF test
within the IF range. An ELSE detected during skipping causes assembly to resume at the instruction
following the ELSE. An ELSE detected while a sequence is being assembled initiates skipping of source
code following the ELSE. Skipping continues until:

1. A statement count specified on the ELSE is exhausted

2. A second ELSE is detected for the sequence

3. An ENDIF is detected for the sequence

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname ELSE Mmct
ifname Name of an IF, SKIP, or ELSE sequence, or blank.
fnct Optional absolute evaluatable expression specifying integer number of source

lines to be skipped. It has no effect if the ELSE resumes assembly. When the
base is M, COMPASS assumes that gnct is decimal.

An ELSE specifying the sequence by name or any unnamed ELSE terminates skipping of a sequence

initiated by an IF, SKIP, or an ELSE that has an assigned name. Skipped instructions such as macro
references are not expanded; any ELSE that would have resulted from the expansion is not detected.

4.9.3 IFTYPE - TEST OBJECT PROCESSOR TYPE

IFtype pseudo instructions test for the type of processor that will execute the object program, as
declared by MACHINE, and PERIPH or PPU pseudo instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname IFtype ct

4-64 603609008

ifna ne

type

60360900A

Optional 1-8 character name.

Mnemor ic specifying type of object processor.

Type
cP
CP6

cP7

EP

PP6

PP7

Condition Causing Assemply

Any central processor unit

Neither PERIPH nor PPU nor MACHINE 7 has been
specified. That is, CPU code is assembled for a CYBER
70/Model 72, 73, or 74 or 6000-Series Computer System.

Neither PERIPH nor PPU nor MACHINE 6 has been
specified. That is, CPU code is assembled for a CYBER
70/Model 76 or a 7600 Computer System.

Any peripheral processor unit

One of the following is true:

1. PERIPH has been specified but MACHINE 7
has not been specified.
2. PPU and MACHINE 6 have both been specified.

That is, PPU code is assembled for a CYBER
70/Model 72, 73, or 74 or a 6000 Series Computer

System.

One of the following is true:

1. PPU has been specified but MACHINE 6 has not
been specified.

2. PERIPH and MACHINE 7 have both been specified.
That is, PPU code is assembled for a CYBER
70 /Mcdel 7€ or a 7600 Computer System,

4-65

{nct

The ifname and gnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an' ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first,

Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is M, COMPASS assumes
that gnct is decimal.

R

2. If neither a count nor a name is supplied, the IF range is terminated by the first ENDIF or
ELSE encountered, whether named or unnamed.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that

does not match has no effect.

Example:

Code Generated

¢

173 013000000¢

4-66

LOCATION OPERATION | VARIABLE COMMENTS
n 18 |30
I
IVENT |XY7Z J
MACHINE 6 |
: [
1SS 123
IFSPe |2 |
XJ 2 |
FLSF |1
M G 1
|

60360900B —

4.5.4 IFOP— COMPARE EXPRESSION VALUES

An IFop pseudo instruction con pares the values of two expressions according to the relational
mnemonic specified and assembles instructions in the IF range when the comparison is satisfied.

Frormak:
LCCAYION OPERATION VARIABLE SUBFIELDS
ifname IFop exp1 »€XPgs fnct
»fnan:e Ontional! 1-8 character name
P Specifies comparative test:

£0360900B

op
EQ

NE

GT

GE

LT

LE

Condition causing assembly

Lquality, the expressions are equal in all respects. That is,they
not only have the same numeric value but have the same attributes
as well, For example, both are names that are common
rzlocatable, or absolute or external, etc.

Inequality, the expressions are not equal in all respects. They
differ in value or in some attribute,

The first expression is greater in value than the second expression.
No other attributes are tested.

The first expression is greater than or equal in value to the second
expression. No other attributes are tested.

‘T'he first expression is less in value than the second expression.
No other atiributes are tested.

The firsi expression is less than or equal in value to the
second expression. No other attributes are tested.

For these tests, positive zero and negative zero are equal.

4-67

exp

nct

An expression. When the value of exp is tested, exp can include only previously
defined symbols and the result can be absolute, relocatable, or external. If an
undefined symbol is used, the expression value is set to zero, the IF instruction
is flagged as erroneous, and assembly continues with the next instruction.

Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is M, COMPASS assumes
that gnct is decimal. When gnct is blank, the comma can be omitted.

The ifname and gnct parameters are related as follows:

1,

If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first,

If neither a count nor a name is supplied, the IF range is terminated by the first ENDIF or
ELSE encountered, whether named or unnamed.

I a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

Example:

A demonstration of one use of IF statements in a PPU program:

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 T30
IF DEF4LOOP
IFLT *-L00P,40B
ZJN LOOP
ELSE 2
NJN 43
LJM LooP

This code assembles a zero jump to the symbol LOOP if LOOP has been defined within 374 words (the
range of a short jump) prior to the occurrence of this code. Otherwise, the NJN and LJM are assembled.

4-68

60360900B

4.9.5 1[PL AND IFMI —-TEST SIGN OF EXPRESSION

The IFPL and IFMI pseudo instructions test the sign of an expression and assemble instructions in
the IF range according to whether the sign of the value is plus (PL) or minus MI). The pseudo
instructions allow positive zero to be distinguished from negative zero,

Format:

{OCATION QOPERATION VAR!IABLE SUBFIELDS

ifname IFPL exp, fnct

ifname IFMI exp, fnct

ifname Optional 1-8 character name

ep An expression. It can include only previously defined symbols and the resuit
can be absolute, relocatable, or external. If an undefined symbol is used, the
instruction is flagged as erroneous and assembly continues with the next
instruction.

fact Optional absolute expression specifying an integer count of the number of

statements to be skipped. When base is M, COMPASS assumes that gnct is

decimal.

When gnct is blank, the comma can be omitted.

The ifname and gnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effcct of an ENDIF in a count controlled sequence is to be included in the count, Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by the first ENDIF or
ELSE encountered, whether named or unnamed.

]
«

If = name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a

matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does

not match has no effect.

The condition tested for by IFPL is satisfied if the value of exp is greater than or equal to plus zero;
the condition for IFMI is satisfied if the value of exp is less than or equal to minus zero.

603609008

4-69

Example:

The following opdef defines the CPU instruction MXi jk so that the address value is 60 if the expression
value is negative zero or a positive non-zero multiple of 60, otherwise it is the address expression
value modulo 60,

LOCATION OPERATION | VARIABLE - COMMENTS
j n 18 Tao
MXQ OPDEF | REG, VAL l
LOCAL | A l
A SET | VAL
A SET A-A/600%60D

IFEQ Ay0y3

l
I
IFPL | A,3 |
IFLE | VAL,0,1 :

SKIp 1
A SET A+60D |
VFO 6/438, 3/REG,6/A
ENDM !
|
!
Example of call:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
i] 18 |30
MX6 ~-52 !
7777713 4000001 SFT =52 |
7777713 4000001 STT ++000501-++000001/600'6DD
TFEoL +4000001,3 |
TFFN ++000001,0,3
T FLF ‘q2 y 0 [} 1 l
SKTP 1
10 re 000001 SFT ++000001+60D
L3n10 VFn A/43B,3/6,A/++000001
ENNM |
I

4.9.6 IF - TEST SYMBOL OR EXPRESSION ATTRIBUTE

The IF pseudo instruction tests a symbol or an expression for a specific attribute and assembles
instructions in the IF range if the test is satisfied.

4-70 603609008

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ifnarae IF att, exp, mct

ifnarae Optional 1-8 character name

att Specifies attribute test. A minus prefix to the attribute causes assembly on

$0360900B

the false rather than the true condition.

att

-SET

ABS

-REG

COM

-COM

EXT

~EXT

LCM
-I.CM
LOC
-LOC

Condition causing assembly

The symbo!l given in the second subfie!d was defined by a SE /,
MAX, MIN, or MICCNT

The symbol given in the second subfield was defined other th:n
by a SET, MAX, MIN, or MICCNT

The expression in the second subfield reduces to a value that is
not relocatable or external

The expression in the second subfield reduces to either a
relocatable or an external address

‘The expression in the second subfield reduces to a local or
common relocatable address :

The expression in the second subfield does not reduce to a local
or common relocatable address

The expression in the second subfield contains one or more
register names

The exrression in the second subfield does not contain a register
name

The expression in the second subfield reduces to a common re-
locatable address {any blank or labeled common block)

The expression in the second subfield is not a common relocatable
address (any blank or labeled common block)

The expracsion in the second subfield contzins one or more
external svrrbols

The expression in the second subfield does not contain an
external symbol

The expression reduces to an LCM address
The expressicn does not reduce to an LCM address
The expression reduces to a program relocatable address

The expression does not reduce to a program relocatable address

4-71

DEF All the symbols in the expression in the second subfield are
defined

-DEF One or more of the symbols in the expression in the second
subfield is undefined

MIC The name in the second subfield is a micro .
~MIC The second subfield does not contain a micro name
SST The second subfield does not contain a system symbol
-SST The second subfield contains a system symbol
exp For SET, SST, -SET, and -SST, exp must be a single defined symbol. For

MIC and -MIC, exp must be a name. For any other test, it is an expression.
The expression can include symbols as yet undefined if att is DEF, -DEF, REG,
-REG, EXT, or -EXT only. If an undefined symbol is used with any other
attribute, the expression value is set to zero, the instruction is flagged as
erroneous, and assembly continues with the next instruction.

nct Optional absolute evaluatable expression specifying an integer count of the

number of statements to be skipped. When base is M, COMPASS assumes
that gnct is decimal. When gnct is blank, the comma can be omitted,

The ifname and gnct parameters are related as follows:

1.

If a count is supplied, it takes precedence over any ENDIF but not over an ELSE, The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is en-
countered, whichever occurs first,

If neither a count nor a name is supplied, the IF range is terminated by the first ENDIF or
ELSE encountered, whether named or unnamed.

If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does —

not match has no effect. '

Examples

LOCATION OPERATION | VARIABLE COMMENTS

n 18

ABLE BSS 20

TESTY IF REL,ABLE+15

ova ASsS 1

4-72

IF COM,DTA,?2 ERRPONEOUS, DTA AS YET UNDEFINED

. o |

. . |

. . |

USE /77 |
|
|

603609008

4.92.7 1*C - COMPARE CHARACTER STRINGS

The IFC pseudo instruction cc mpares two character strings according to the operator specified
and assembles instructions in the IF range if the comparison is satisfied.

Format:

r’:\; -"A;;J OPERATION VARIABLE SUBFIELDS

I

]ifna:- ne IFC op, dstring; dstringyd, mct

|

|

ifname Optional 1-8 character name

S Delimiling character. Characiers hetween the first and second occurrencs of <
character constitute the first character string; characters between the second aud
third occurrence constitute the second character string.

op Specifies comparative test:
op Condition causing assembly
EQ or -NE string1 has the same value as string2
NE or -EQ stringl does not equal string,
GT or -LE string1 is greater than string2
GE or -LT string; is greater than or equal to string,
LTor -Gk string, is less than stringy
LE or -CT stringy i less than or equal to string,

stringi Character string, When IFC is within a macro definition, each character string
can be a formal parameter.

mot Optional absolute evaluatable expression specifying an integer count of the numh~-

of statements to be skipped. When base is M, COMPASS assumes that ¢nct is
decimal. When ¢nct is blank, the comma can be omitted.

o ihane and not parameters are related as foliows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
enccuntered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by the first ENDIF or
ELSE encountered, whether named or unnamed.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does

g o aifect

pot mateh b

1360900 B 4-73

Each character in si:ring1 is compared with the corresponding character in stringys progressing from
left to right until an inequality is found or both strings are exhausted. When one string is shorter than
the other, it is padded with a character that has a value less than any other character in the string.

The truth condition is based on the relative magnitudes of the characters in the strings,

Examples:
LOCATION OPERATION | VARIABLE COMMENTS
! 1 18 {30
TEST1 IFC |EQ,$ABCSABCS, ABC EQUALS ABC
TEST2 IFC [LT,*AB*ABC* | AB IS LFSS THAN ABC
TEST3 IFC |GT,XAXX | A IS GREATER THAN NULL
IFC |-GE,*2%8%,3 | Z IS LESS THAN 8

The IFC in the following example checks for an empty parameter string.

LOCATION OPERATION | VARIABLE COMMENTS

) N 18 T30

X X MACRO |P1,P2 T
IFC |Fa,**P2x,1 |

P FRR : FLAG EPROR
’ |
. |
|
ENDM I

The following example illustrates an invalidly terminated character string. The asterisk was omitted’
following P1 causing an error flag when the comma is interpreted.

LOCATION OPERATION | VARIABLE COMMENTS
! " 8 f30
} 1
IFe EQ,*0N*P1,28P2

4-74 60360900A

4.92.8 S<IP — UNCONDITIONALLY SKiP CODE

The SKIP instruction causes ('OMPASS to unconditionally skip the instructions in the SKIP range.
It resembles an IF for which there is no true condition.

Format
LCORTION OPERATION VARIABLE SUBFIELDS
ifnz me SKIP met
itname Optional 1-8 character name
fou Optional abactute evaluatable expression specifying an integer count of the nuin

of statements Lo be skipped. When base is M, COMPASS assumes that {nc? i

decimal.

The ifnsme 2nu fnct parameters are related as follows:

1. If 1 count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
offect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
tevminates when the count is exhausted or wher an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by the first ENDIF or

EL3E encountered, whether named or unnamed.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
maitching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does

0G: mutch has no effect.

3.0 ERROE CONTRCL

The ERR and ERRxx pseudo instructions described in this section either conditionally or unconditionally

set an error flag.

4.70.1 ERR — UNCONDITIONALLY SET ERROR FLAG

4., EPA nsoudo instruction produces an assembly error but does not affect other code. Usually, it is

e

parameters,

603609008

gsad in conjunctica with a conditional assembly pseude insiruction to force an ervor into the assembly
hased on an assembly time test. One application is to use a test and ERR to detect illegal macro

4-75

Format:

LOCATION OPERATION VARIABLE SUBFIELDS -
flag ERR
flag A single alphanumeric character denoting the error type. The flag is placed
in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control -
card. If no flag is specified, or the character is not one of those given in
section 11.7, COMPASS uses P.
A variable field entry, if present, is ignored.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 130
T
NNN MACRO | P1,P2,P3,P4|
IFEQ P1,0 |
A ERR I
ENDM :
NNN | 0,A,B,C | —
4.10.2 ERRxx — CONDITIONALLY SET ERROR FLAG
An ERRxx pseudo instruction produces an assembly error when a condition detected during the second
pass of the assembler is true.
Format:
| LOCATION OPERATION VARIABLE SUBFIELDS
flag ERRxx aexp
flag A single alphanumeric character denoting the error type. The flag is placed
in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control card.
If no flag is specified, or the character is not one of those given in section 11.7,
COMPASS uses P.
—
4-76

60360900A

Defines condition under which aexp value is erroneous.

XX
XX Error Condition
NG or MI Value of expression is negative
NZ Value of expression is nonzero
PI Value of expression is positive
ZR Value of expression is zero
aeXo Absolute expression. It cannot contain external symbols or references to blank

common. The test is made in pass two of the assembler. Relocatable addresses
are assigned values relative to program origin rather than to the block in which

they are defined.
NOTE
ERRxx is ke only conditional instraction for which the
test is made in pass two. Therefore, this is the only
pseude instruetion that ean be used to determine PPU

overflow if the PPU program has literals and USE
blocks.

foample:

Test for memory overflow in PPU assembly

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
~— 1 N 18 l30 i

PERIPH ;
. |
Thnw? | ILASTTAG i®SS 0 ‘
7777447 R [ERRPL |LASTTAG-7777|
752 t feun ! .
i i

411 LISTING CONTROL

i instruciions described in this section permit extensive centrol of the assembly listing format.

4117 LIST - SELECT LIST OPTICGNS

Je LIST preudo instruction controls the content and format of the assembler listing. LIST instruction:
1o disabled under either of the following conditions:

When the list parameter (L) on the COMPASS control card (section 10.1.2) is zero, or

When the list option parametei (LO)is used on the COMPASS control card.

60360900 B 4-71

Uise of the LIST pscudo instruction is optional. If it is not used in the subprogram, COMPASS list
output is according to the L and LO parameters on the COMPASS control card. If the LO parameter
is omitted or LO=0, the list options are as if L, B, N, and R only are selected and the listing contains
heading information, assembly text, assembler statistics, an error directory (upon occurrence of an
error only}, and a symbolic reference table. Formats of this output are described in detail in
chapter 11 and brief summaries are given below.

Heading information

Assembly text

Assembler statistics

Error dirvectory

Symbolic reference table

Program length, origin, and length of each block, entry points
and external symbols.

Line, and assembly results of each line assembled (not skipped)
from the input device (excludes code generated by RMT, DUP,
ECHO, XTEXT, or a macro or opdef expansion). For data
generating pseudo instructions DATA, DIS, BSSZ that produce
more than one word of object code, only the first word is listed.
For VFD and CON all words of object code are listed. For R=,
only the pseudo instruction is listed.

Each occurrence of the LIST instruction is listed.

Amount of storage used, counts of assembled statements,
defined symbols, invented symbols, and references to symbols.

Lists fatal and nonfatal errors and summarizes the causes of each.
List of all symbols defined in the program according to symbol

qualifier, if any, followed by an index to every reference to the
symbol in the listed statements.

Formats:
tOCATION QOPERATION VARIABLE SUBFIELDS
LIST opl,opz, ey opn
or
LIST *

A location field symbol, if present, is ignored.

op;

4-78

A list option represented by a single letter or a letter prefixed
by a minus sign. The unprefixed letter selects the option; the
prefixed letter cancels the option. Options are separated by
commas and terminated by a blank.

A List statements actually assembled

When A is not selected, a line containing concatenation

and micro substitution marks is listed with the marks in it
exactly as presented to the assembler. When the A option

is selected, however, the assembler lists the line before and
after the editing takes place. Selecting A also causes the
listing of lines of code resulting from the R= pseudo instruction,

603609008

B List binary control statements
Wien B is selected, the listing includes SEG, SEGMENT, IDENT, and
EUD pseudo instructions.
C List listing control statements
When C is selected, the listing iaciudes EJECT, SPACE, TTL, and
TiTLE pseudo instructions. A listing instruction that causes an EJECT
is listed as the first line of the new page after the EJECT takes place
D Include details
Selection of the D option causes listing of the following items not normally
listed:
Second and subsequent lines of DATA and DIS
Code assembled remotely when HERE or END causes its assembl:

Literals block
Default symbols

E Include echoed lines
Seiection of E causes listing of all iterations of code duplicated as a resull
of DUP and ECHO.

F List iF-skipped lines

When T is selected, the listing includes all lines skipped by IF, [Fop,
IFC, 1FPP, IFCP, SKIP, and EL.SE. In addition, the Symbolic Reference
Table contains references to symbols in IF statements.

G List generated code

Selection of this option causes listing of all code generating lines regardless
of list controls other than L. Instructions listed include symbolic machine
instructions and BSS, BSSZ, CON, DATA, DIS, R=, and VFD.

L Master list control

This opiion is normally s=lectad, When L is canceled. the long list contain:
error flagged lines, an errcr directory, and LIST pseudo instructions only,
regardless of selection of any other options on LIST.

M List macros and opdefs

Selection of M causes all lines generated by calls to macros and opdefs other
than those defined by the system to be listed.

~-79
50960900A 4

N List nonrcferenced symbols
This option is normally selected. Cancellation of this option causes
any non-system symbol for which no reference has been accumulated
{(e.g., all occurrences are in IF statements with the F option deselected,
or are between CTEXT or ENDX with the X option deselected) to be
omitted from the symbolic reference table.

R Accumulate and List references
This option is normally selected. When R is canceled, COMPASS does
not accumulate references. R should not be canceled if a complete
symbolic reference table is desired. If R is canceled at the end of
assembly, no symbolic reference table is produced.

S List systems macros and opdefs
Selection of S causes all lines generated by calls to systems-defined
macros and opdefs to be listed,

T List nonreferenced system symbols
Selection of this option causes a symbol defined through SST to be
included in the symbolic reference table even if there are no accumulated

references.
X List XTEXT lines

Selection of the X option causes listing of all statements assembled as a
result of an XTEXT pseudo instruction. CTEXT and ENDX provide a
means of alternately turning this external designator off and on.

$ A dollar sign in the variable field selects all options.

An asterisk in the variable field causes selection of the options in effect prior
to the current selection. The assembler records occurrences of LIST pseudo
instructions and maintains a table of the most recent 50 occurrences. Each
LIST * resumes use of the most recent entry and removes it from the list.
When the subprogram contains more LIST * instructions than there are entries
in the stack, COMPASS selects the default list options (B, L, N, and R).

For list options A, C, D, E, F, M, S, and X, all applicable options must be selected for a specific
line to be listed. For example, listing of an expansion resulting from a DUP within a macro requires
selection of both M and E. Similarly, an expansion causes by an XTEXT within a system macro call

is listed only when both X and S are selected, To obtain a listing showing ~and # marks removed from
external text inside a DUP range requires that A, X, and E all be selected.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
I " 18]30
LIST |A '
DATA | 1.30EE '
0 17205146314631463146 DATA | 1,3EE !
LIST D |
UATA | 1,3eEE '
2 17205166314631463146 DATA | 1.3EE |
3 16403146314631463146 |
LIST [=A,=D |
4 17205146314631463146 UATA | 1.30EE |
ILIST |+ |
|DATA | 1.3mEEZE |
6 17205146314631463146 'DATA | 1.3€EE [

7 16403146314631463146

4-80 603609008

—

4.11.2 EJECT—EJECT PAGE AND BEGIN NEW SUB.-TITLE

The EJECT pseudo instruct on advances printer paper to a new page before printing., Then, page
headings are printed and lieting continues. EJECT has no effect, other than setting the sub-subtitle,

if it is generated by DUP, ECHO, RMT, XTEXT, or a macro or opdef expansion, and the cor-
responding LIST options are not all selected.

rormal:
.:-;",AHON CPERATION VARIABLE SUBFIELDS
name EJECT
rarne New program sub-subtitie for the page will be printed in character positicns

76-79 of the second line of the page. A blank name ciears the sub-subtitie.

An entry in the variable field, if present, is ignored.

4.11.3 SPACE — SKIP LINES AND BEGIN NEW SUB-TITLE

“he SPACE pseudn instruction spaces the assembler listing. When a page is full, an eject occurs
and listing resumes on the next page. A SPACE immediately following an EJECT is ignored. SPAl i
has no effect, other than setting the sub-subtitle, if it is generated by a DUP, ECHO, RMT,
XTEYT, or a macro or opdef expansion, and the corresponding LIST options are not 21l selected.

s d oy

LOCATION OPERATION VARIABLE SUBFIELDS
name SPACE scnt, rent
43ImE New subprogram sub-subtitle will be printed in characters 70-79 on the secona

line of the next page heading. A blank name clears the sub-subtitle.

sent An absolute expression specifying a positive integer number of spaces between
the most recent line and the next line of printout. If baseis M, scnt is assumed
to be decimal. If sent is omitted or zero, no line is skipped.

An absolute expression specifying a positive integer number of lines that must

renl
be reriaining on the page foliowing spacing. If base is }, rent is assumed to

be decimal.

If sent + rent exceeds the number of lines on the page before spacing occurs, the SPACE acts like an
EJECT. Note that either the eject occurs or the number of spaces are skipped but not both.

Biank cards can also be used to space the listing.

60360900C 4-81

4.11.4 TITLE — ASSEMBLY LISTING TITLE

The-first TITLE pseudo instruction establishes the title that will be printed on each page of the listing,

A subsequent TITLE instruction generates a subtitle and causes a page eject. If the subprogram does not
include a TITLE instruction, COMPASS prints the variable field of the first IDENT pseudo instruction

as the title. A TITLE instruction without a character string produces an untitled listing. A name in

the location field introduces a new subprogram sub-subtitle.

A TITLE instruction has no effect when LIST option X is deselected and the TITLE instruction is
in text read by XTEXT or is between CTEXT and ENDX instructions. All other TITLE instructions
(except the first which sets the main title) cause a page eject, even when generated by a macro
expansion, unless LIST option L is deselected.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

name TITLE string

name New subprogram sub-gubtitle to be printed in character positions 70-79
' on the second line of the page. A blank name clears the sub-subtitle.

string COMPASS searches the columns following the blank that terminates the
operation field. If it does not find a nonblank character before the default
comments column (see COL pseudo instruction), it takes the characters
starting with the default comments column minus one up to the end of the
statement. Otherwise, the title or subtitle begins with the first nonblank
character following TITLE and continues to the end of the statement or to
62 characters. Any characters beyond the 62nd are lost. A blank string
produces an untitled listing.

Example:

LOCATION OPERATION | VARIABLE COMMENTS

1 " 18 {30

IUENT |MTD
LIST c
TITLE |MT ORIVER

1
1
|
I
|
1
¢ l
TITLE |I/0 ROUTINES)
]
|

4-82 60360900C

Fir it page: MT DRIVER

Subsequent pages: MT DRIVER
170 ROUTINES

4.11.5 TTL — NEW ASSEMBLY LISTING TITLE

‘“he T'TL pseudo instruction introduces a new main title to be printed on each page of the listing, xnd
ciears the subtitle.

Formal:
E?(‘,AY!ON OPERATION VARIABLE SUBFIELDS
ume TTL string
string COMPASS sgearches the columns following the blank that terminates the operating

fleld. If it does not find a nonblank character before the default comments colus::
(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one up to the statement end. Otherwise, the title begins
with the first nonblank character following TTL and continues to the end of the
statement or to the 62nd character, Any characters beyond the 62nd are loet.
A blank string produces an untitled listing.

nanie New sub-subtitle to be printed in character positions 70-79 on the second

line of the pages. A blank name clears the sub-subtitle.

TTL does not cause a page eject.

4.11.6 NOREF — OMIT SYMBOL REFERENCES

Tha MOREY pesudo instruction cauzes the symbois named in the variable field to be suppressed from
the symbolic reference table.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
NOREF sym,, 8ym,, ... ,8ym
sym, One or more symbols defined in the subprogram. If a symbol qualifier is in
effect when the NOREF is encountered, the symbols are assumed to be qualified

by the qualifier in use. Alternatively, sym_can be a non-blank qualifier symbol
enclosed by slant bars, /qualifier/, in whidh case all symbols qualified by the
specified qualifier are suppressed from the sumbolic reference table.

A location {ield symbol, if present, is ignored.

508606900C 4-83

4.11.7 CTEXT AND ENDX — DISABLE/ENABLE LISTING OF COMMON DECK TEXT

The CTEXT pseudo instruction sets the XTEXT flag for list control.

NOTE

When the flag is set, external text is listed only if
the X list option is selected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name CTEXT string
name If X list option is selected, name (optional) is treated as a sub subtitle;
otherwise it is ignored. .
string If the variable field is nonblank and the X list option is selected, the CTEXT

is treated as a subtitle. The CTEXT instruction generates a subtitle and
causes a page eject, If X is not selected, the CTEXT does not affect titling.

The subtitle begins with the first nonblank character following CTEXT
or in the default comments column (see COL pseudo instruction) minus
one, whichever comes first, and continues to the end of the statement
or to 62 characters. Any characters beyond the 62nd are lost.

The ENDX pseudo instruction clears the XTEXT flag for list control and causes listing to resume,
starting with the instruction after ENDX, when the X list option has not been selected.

Format:

T
LOCATION

OPERATION

VARIABLE SUBFIELDS

ENDX

Entries in the location field or variable field, if present, are ignored.

4-84

60360900 D

e

4.11.8 XREF—REFERENCE SYMBOLIC ADDRESS

66360900C

The XREF pseudo instruction provides the options of having the symbolic reference table contain
references to symbols accord:ng to (1) location counter address, (2) page and line number, or (3) both.
For the format of the symbolic reference table, refer to section 11.8.
Farmai
[m« ATION OPERATION VARIABLE SUBFIELDS
| XREF string
|
|
string An optional character string, the first character of which indicates how symbols
are to be referenced.
A The symbolic reference table lists addresses only. Flags are not inciudes.
B The symbolic reference table lists references to symbols according tc
page number, line, and address. Flags are included.
P The symbolic reference table lists references to symbols according to
page and line numbers. Flags are included.
A location field symbol, if present, is ignored.
If the striny is omitted or if no XREF is issued, the symbolic reference table contains references
according to page and line numbers and includes flags. The last XREF encountered in a subprogram
- determines the form of the listing for the entire subprogram.
—

4-85

RN

DEFINITION OPERATIONS | 5

This chapter describes pseudo instructions that involve definition operations. These pseudo
instructions cause sequences of instructions to be saved for these reasons:

They can be assembled from an external source (XTEXT).

Assembly can be delayed until later in the subprogram (RMT).

They can be assembled repeatedly (DUP and ECHO).

They can be referred to for assembly (MACRO, MACROE or OPDEF).

fovoimgrcueiions sther than EXND, Lacluding otner definitions or calls, cap be in the body <f a definition.

Each request for assembly of one of the saved sequences of code, such as a reference to a macro,
causes zn eatry in the assembler recursion stack. The most recent entry in the stack points to the
source of statements (the definition) to be assembled. When the definition contains an inner, nested,
reference to a saved definition, the stack pointer is changed so that the source of statements is the
innermost definition. The stack ailows nesting of definitions to a maximum level of 400, When the
£:d of a definition is reached, the assembler switches to the preceding entry in the stack. When the
stack is empty, the assembler resumes assembly of the next statement in the input source deck.

A nested definition must he wholly contained by its next outer definition.

Definitions are saved compressed but otherwise unedited (with micro and concatenation marks). Editing
oceurs each time the definition is processed. Compression removes blanks and replaces them with

coded bytes as follows:

A single space is represented by 558; it is not compressed. Two or more embedded spaces are
replaced in the image as follows:

2 zpaces replaced by 55355
3 spaces replaced by 0002
4 spaces replaced by 0003

64 spaces replaced by 00774
65 spaces replaced by 0077558

86 space: replaced by Qf)7’755558
67 spaces replaced by 007700028, ete.

Trajling spaces are considered as embedded and are included in the image. The 00 character
{(colon) is represented by the 12-bit code 0001, A 12-bit zerobyte marks the end of the statement.

The listing identifies the source of statements and the recursion level for all definition operations.

60360900A 5-1

For XTEXT, DUP, and ECHO, assembly occurs as soon as a definition is saved. Unless the definition

contains a USE, USELCM, or ORG instruction, code is assembled into the block in use when the

XTEXT, DUP, or ECHO is encountered. For RMT, macros, and opdefs, however, definition and

assembly take place in two steps. The block in use at definition time does not determine where code | —
in the definition will be asgsembled. That is, code is assembled into the block in use when the definition

is assembled if the definifion does not itself contain a USE, USELCM, or ORG.

Similarly, for XTEXT, DUP, and ECHO, any qualifier in effect when the pseudo instruction is
cncountered applies to symbols defined in the sequence (assuming the sequence does not contain a
QUAL). For RMT, macros, and opdefs, however, because definition and assembly take place in two
steps, the qualifier in use at definition time does not affect symbols in the definition. The qualifier,
if any, in effect when the definition is assembled is applied to the symbols defined in the sequence.

A qualifier applies to symbols only. It does not apply to block names or to the names of DUP, ECHO,
RMT, or macro definitions, nor to any substitutable parameter names.

In definitions having substitutable parameters, it is possible to use a different block name, different
qualifier, or different symbols with each expansion simply by declaring either the qualifier symbol,
block name, or symbols to be qualified as substitutable parameters. (For an example, refer to
example 7 under Macro Call.)

5.1 EXTERNAL TEXT (XTEXT)

The XTEXT pseudo instruction provides a means of obtaining source statements from a file other than
that being used for input. COMPASS transfers the text from the external source and assembles it

before taking the next statement from the interrupted source of statements. The file may be a sequential
file, an indexed file with named records, or an UPDATE or MODIFY random-access program library
file.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
file XTEXT rname
5-2 60360900A

——

fle Name of a file containing source statements, If file is omitted, COMPASS
assuries the file named in the X parameter on the COMPASS control card
(Sectron 10,1,2). If no X parameter was specified, COMPASS assumes OLDPL,

rname If rname is blank, COMPASS assumes that the file is sequential; it rewinds the
file and reads the first section. If rname is not blank, it is the name of the
section to be read. The file must be a SCOPE 3 indexed file with named
records,7 a record indexed file with named records, a random-access prograrti
library file in UPDATE format, or a random-access program library file in
MODIFY fformat,

Text records may be in any of the following formats,
1. Normal text. If the first line contains rname starting in column 1, it is skipped.

2. A common deck in an UPDATE or MODIFY t random-access program library file. If the file
is in UPDATE format, the first line (*COMDECK rname) is always skipped.

4. au UFDATE or MUDIFY ¥ compressed compile {ile section.

COMPASS reads source statements 0 an end-of-section mark or an END pseudo instruction.

5.2 REMOTE ASSEMBLY

Definition and assembly of remote code takes place in two steps. A pair of RMT pseudo instructions
delimit code that is to be saved for later assembly. Later, a HERE pseudo instruction directs
COMPASS to assemble a specific sequence of remote code or to assemble all unlabeled remote code.
An END instruction causes any unlabeled remote code to be assembled.

5.2.1 RMT — SAVE REMOTE CODE

A RMT pseudo instruction signals the beginning or the end of a sequence of code to be assembled
remotely.

Format:
LOCATION QOPERATION VARIABLE SUBFIELDS
rmtname RMT
rméname Optional 1-8 character name identifying the remote sequence. It is

significant on the beginning RMT only, The field is ignored for a terminating
RMT. If supplied, rmtname can be used on a subsequent labeled HERE.
If the sequence is unlabeled, an unlabeled HERE or END causes its assembly.

A variable field entry, if present, is ignored.

T MODIFY is not supported by SCOPE 2,

603609004 5-3

Any instruction legal when the remote lines are called for assembly is legal between the RMT pair.
If expansion of an RMT reveals a second RMT pair implicit to the saved definition, assembly of the
first pair must occur through a HERE instruction so that the inner pair will be expanded by an END,
Similarly, if the assembly of the second pair reveals yet a third RMT pair, the second pair must be
assembled through a HERE rather than the END, etc.

Any labeled remote code present when END is processed is discarded without notice.

5.2.2 HERE — ASSEMBLE REMOTE CODE

A HERE pseudo instruction causes the labeled remote sequence to be assembled or unlabeled saved
remote sequences to be assembled. In the absence of a USE, USELCM, IDENT, or an ORG within
the saved sequence, the remote code is assembled under the block in use at the time the HERE is
encountered. In the absence of a QUAL within the saved sequence, symbols are qualified under the
qualifier in use at the time the HERE is encountered. RMT code is assembled only once. After it
is assembled, it is no longer saved. A HERE encountered when there is no remote text saved has no

effect on assembly.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
rmtname HERE
rmtname Optional; the name of a previously saved RMT sequence. Only the named

sequence will be assembled at this time.

A variable field entry, if present, is ignored.

If unlabeled remote sequences still remain to be assembled when the END card signaling the end of
assembly is encountered, COMPASS assembles them before it terminates assembly. However, any
RMT pairs that might have resulted from the assembly are lost. Also, any remaining labeled remote
code is lost.

Examples:

The following example illustrates use of RMT within a macro definition. Following the last call to
the macro, a HERE causes all saved unlabeled RMT sequences to be assembled.

5-4 60360900A

$40360900A

Locatior Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18]30
MACRO | TABLE, TNAM,EQIV
IFC EQ,**cQIve* !
TNAM EQu *=0RIGINS |
O.TNAM | CON BUCKET |
ELSE 2 !
TNAM EQJ EQIV |
O.TNAM | EQU 0.EQIV !
!
RMT !
L.TNAM | EQU TNAM+SIZES
RMT |
* !
X !
ENOM f
. i
. !
. !
e g ,JANTER JABLE | L.
Ak : 1FC EQ,o0r !
£ 1331 INTKR EQu *~0RIGINS |
%ﬁQI 3060033&!80(0883230& C+INTER CoN | BUCKETY f
ELSE |2 !
RNT !
L+INTER EQU INTEReSIZES
/NT !
i ENOM. | P
4730 LASTAB | TABLE |
\ Lo LIFC EQeoee.
1332 LASTAB | EQU | *-ORIGINS|
4730 llﬂﬂttltllﬂi‘&l!23nb O.LASTAB| COwM BUCKEY |
ELSE : |
knt t
L LASTAS £Qu LASTABSSIZES L
RMY R R
ENDN .;
“731 NRTAB TABLE | LASTAB \ - \
1FC ec."usnv G Ly
JeLsE |2 o TANE
1332 NRTAB EQU | LASTAR | | TAMK |
4738 | [0.NRTA® | EQU | O.LASTAB | ToRE
KT ! 11
LoNRTAB €U NRY&!OS!XES LR
L S ;
1 €Enon e
. |
|
. IHERe !
a872 ||L.twtER | EQU INTERSI2ES
L§73 L«LASTAB EQu LASTASeSIZ
4673 | iL.NRTAR | EQU NRTABOSIZES

5-5

In the following example, assembly of the RMT sequence is caused by the END statement.

LOCATION OPERATION | VARIABLE COMMENTS
| N 18 T30
RMT |
FLD DECMIC| BUF+BUFL-WSA4ENDS
PRS LIT C*¥2FLD2 DECIMAL REQUIRED.*
RMT |
1

5.3 CODE DUPLICATION

This section describes two pseudo instructions (DUP and ECHO) that cause a sequence of code to be
assembled repeatedly. For a DUP sequence, each assembly is identical with the first, and the
number of repetitions is specified or is indefinite. For an ECHO sequence, each assembly resembles
a macro reference, Actual parameters supplied in a list are substituted for formal parameters on
each repetition of the code sequence. The number of repetitions is determined by the number of
actual parameters provided on the ECHO instruction.

Every inner DUP or ECHO sequence must lie totally within the range of the next outer DUP or ECHO,
or a fatal E error is flagged.

5.3.1 DUP — SIMPLE DUPLICATION

The DUP pseudo instruction specifies repeated assembly of the statements immediately following.

The range of the DUP is specified either by a source statement count on the DUP instruction or by an
ENDD.

5-6 - 603609004

rormat:

LOCATION OPERATION VARIABLE SUBFIELDS
dupname DUP rep, mct
dupname Optional name of the DUP sequence; 1-8 characters. When supplied, it can be

used in an ENDD. When no name is supplied, the range of the DUP is determined
by a statement count or by any ENDD.

rep Absolute evaluatable expression specifying the integer number of times state-
ments in the DUP range are to be assembled. If rep is null or zero, the instruc-
tions in the range are not assembled; that is, code is skipped. When base is M,
COMPASS 2ssurnes that rep is decimal,

NOTE

A very large (unobtainable) repeat count in conjunction with a
STOPDUP instruction can be used for indefinite duplication
of code.

fnct An evaluatable expression specifying an integer count of the number of
statements to be assembled repeatedly. When base mode is M, COMPASS
assumes that gnct is decimal. The count is decremented for statements only;
comment lines (identified by * in column one) are not counted. On each
iteration, the assembler copies the source statements and then assembles
them. Thus, any recursive statements within the sequence are counted
before they are expanded. :

““he dupname and fnct parameters are related.

1. I « count is supplied, it takes precedence over any ENDD. The only effect of an ENDD is to
be included in the count. Under count control, a name is irrelevant,

2. I neither a count nor a name is supplied, the DUP range is terminated only by an unnamed
ENDD.

3. If a name but no count is supplied, the DUP range is terminated by an ENDD with a matching
name or by an unnamed ENDD. An ENDD with a name that does not match does not effect the

range.

5.3.2 ECHO — ECHOED DUPLICATION

The ECHO instruction specifies repeated assembly of the instructions immediately following. On each
itevation, the nssembler copies the source statements substituting an actual parameter in the list for
each formal parameter until the shortest list is exhausted, and then assembles the statements. ECHO
offers many of the features of macros but does not require separate definition and reference. The
range of the ECHO instruction is specified either by a source statement count specified on the ECHO
instruction, or by an ENDD. The statement count, when used, is decremented for instructions only;

(%]
1
=3

403609008

comment lines, identified by * in column one, are not part of the definition and are not counted.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
dupname ECHO Jznct,p1=(1ist1),p2:(list2), <o By =ﬂistn)
dupname Optional name of the ECHO sequence; 1-8 characters. When supplied,
it can be used in an ENDD. When no name is supplied, the range of the
ECHO is determined by a statement count or by any ENDD.
fnct Optional absolute evaluatable expression specifying an integer count of the number

5-8

of source statements to be assembled repeatedly. If base mode is M, the
count is assumed to be decimal. If gnct is zero or omitted, the comma must
be present and the ECHO range is defined by an ENDD.

Any recursive statements, such as macro references, are counted before
they are expanded.

If the count exceeds the range of an outer DUP or ECHO sequence, a fatal
E error is flagged.

The dupname and fnct parameters are related.

1. If a count is supplied, it takes precedence over any ENDD, The only effect of an ENDD in a
count-controlled sequence is for it to be included in the count. Under count control a name
is irrelevant.

2, If neither a count nor a name is supplied, the ECHO range is terminated only by an unnamed

ENDD.

3. If a name but no count is supplied, the ECHO range is terminated by an ENDD with a matching
name or by an unnamed ENDD. An ENDD with a name that does not match does not terminate
the sequence.

Names of not more than 63 formal substitutable parameters. Each name is 1-8
characters, the first of which must be alphabetic. A name cannot be END,
LOCAL, ENDD, IRP, or ENDM. A second or later occurrence of a parameter
name is ignored. A name that begins with a number is ignored.

The separator between p; and (list;) is conventionally an = but can be any of the
following:

+-*/ () $=,o0r.

COMPASS recognizes a substitutable parameter name within a definition when it
is between any two of the following:

+ - */ () $=",lank , . # or o~

The substitutable parameter name can occur in any field within a definition.

60360900E

Before the ECHO definition is stored, COMPASS replaces each use of a
substitutable name. Otherwise, it saves the definition unedited, i.e., with
micro ind concatenation marks. Use of the semicolon is restricted in the
definition because the assembler, when it expands the definition, interprets it
as a substitutable parameter flag (778).

The character ~ flags the occurrence of a name not bounded by any other
special character and, thus, not otherwise recognized. When it expands the
definition, COMPASS substitutes an actual parameter value from the list for
the substitutable parameter and removes the = so that the adjacent items are
concatenated.

Because the assembler replaces the first substitutable parameter with 7701,
the seccond with 7702, etc. the programmer can use the display characters

;A, ;B, ete. directly in place of his substitutable parameter names in the
definition and achieve the same results as if the assembler had replaced the
name with the {lag. (Example 8, Section 5.4. 3 illustrates a similar application
of this technique.)

(list)) . Actual parameter list in the form Ay 589y 058y where a; is substituted for b;
on the first assembly of the ECHO sequence, g is substituted on the second
assembly, ete. until the shortest list is exhausted. Two consecutive commas
are interpreted as a null parameter. An explicit zero, if desired, must be
entered. An actual parameter can contain a set of embedded parameters
enclosed by parentheses. However, the embedded parentheses must be
properly paired. The assembler removes the outer pair of parentheses before
substituting the embedded set in a line. A parenthetical item can contain blanks
or commas.

If there are no parameters or any of the lists are null, COMPASS assembles the
ECHO sequence zero times, effectively skipping it.

5.2.3 STOPDUP — STOP DUPLICATION

The STOPDUP instruction allows premature termination of a DUP duplication before the repeat count

is reached or of an ECHO duplication before the shortest list is exhausted. Assembly is completed to the
end of the range for the current iteration and then continues with the next source statement. Only the
immermost duplication is affected.

A STOPDUP outside of a DUP or ECHO range has no effect on assembly. If a DUP or ECHO is nested,
STOPDUP terminates only the innermost DUP or ECHO,

Foomass

]ri.OCAT!C-N OPERATION VARIABLE SUBFIELDS

STOPDUP

An entrv in the location or variable field is ignored.

603609008

5.3.4 ENDD — END DUPLICATION SEQUENCE

'The ENDD pseudo instruction terminates a DUP or ECHO sequence when the statement count is

unspecified on the DUP or ECHO.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
dupname ENDD
dupname Name of a DUP or ECHO sequence, or blank. A named DUP or ECHO
sequence can be terminated by an ENDD specifying the sequence by name,
or by any unnamed ENDD. An unnamed DUP or ECHO sequence that is not
controlled by statement count is terminated only by an unnamed ENDD.
An ENDD does not terminate a sequence controlied by a statement count.
The ENDD is included in the count but has no other effect.
An ENDD outside the range of a DUP or ECHO has no effect on assembly.
Examples:

In the following examples, the statements that result from expansion are shown faded. They are
listed only when the E list option is selected. Source statements are shown in bold characters.

1. This example illustrates use of a simple DUP instruction.

Location

Code Generated

B i

SISA - TISUNLE
‘SIS swEny

n:;a-m

LOCATION OPERATION | VARIABLE COMMENTS

) N 18 T30

009005 oup Sye1 1

60360900A

R

2. This example illustrates a nested DUP instruction with one of the DUP duplications terminated
yy & STOPDUP,

LtOCATION OPERATION | VARIABLE COMMENTS
N I 18 T30
R{cH MaCRO
TAG MICRO NOs) o /#ALPHABET#/
IFC EQe/2TAG#/E/,] ASSEMBLE STOPDUP WHEN TAGSE
STOPDUP
NO SET NO+1y NO IS 6 IN LAST ITERATION
60 ENDM
| ALPHABET MICRO 199 /ABCDEFGHIJUK/
| INO SFYT 1
DuP -l UNOBTAINABLE ITERATION COUNT
GO
: ENDD N
L 53 (R he spUPs-
Tae 1CRO ﬁaslylnALrnantrct e ; - . 8
TAS 1CRO NOs19/ABCOEPQHIUK/ : 8¢
' EQs/#TABS/E/) Asstnauc 3709009 WHEN tAOO! 80
, EQy/A/E/) “ASSEMBLE STOPOUP WHEN TAGSE ‘a0
NO NO+{ NO 18 6 IN LAST ITERATION 0
f ; 80
') I o - W
| lyae - mq./uumwnu ‘ Ko 0
; rat . NOeY o /ABCDEFONIUK/ ‘ = o 8o
i EQeseTAGH/E/,) ASSEMBLE STOPOUP WHEN TAGeE: o0
! - EQe/B/E/0) ASSEMBLE STOPOUP WHEN TASeE ' :g
' vo NDej NO 1S 6 iN LAST ITERATION 90
i \ . S
; L Y -
1 Cete -~ f ,,‘, . e ot i
NI [?
| [TAG Etcng i 33”’?“%32‘25}3&;
Y 1CR ‘NO»1+/ABCDEF
? rFc EQs/8TAGH/E/s) ASSEMBLE 3?e¥009 EN
| 1FC d EQy/E/R/ 4] ASSEMBLE STOPDUP WHEN TAGSE
i ToPDURA - .
| N0 Egr NO+i NO 18 6 IN LAST x?m*m
; ENDM .
b £.00 s
C i
‘ |
| |
| |

50360900A

5-11

3. This example illustrates nested ECHO instructions. A statement count terminates the second
level ECHO. The ENDD terminates the first level. Notice how COMPASS assembles each
copy before it begins the next iteration.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
e e e
30

1]} 18

5,54158
M,0,E
,CH=(X.Y,Z) i
2'P1=(A'B,C)I
cH ,
P1 |

,C); " vEoHO*

|
]
|
. !
|
[
'

T ———

5413 0036
St
1436 5615 0837
ANSE 1eS0
A88L. SM3S asad

OXOXBNE

1
!
|
1
}
|
- |
$PL (A, 0,001 ;
Han | sgcHo®
t o
I
1
|
:
I
|
1

LYY

4068 5015 0836
3666 1460 "

- 3687’ . 415 0837
N1 - S060

IM72 . S615 BEND

ZaP1n(A,8,0)

pos

TaNTe 1670 | »
3678 5815 9936 ||
CANYT aR78 L
‘1500 S618 0037 Lo
1582 . a7 : k e

1883 | se1s ooae ||

1505 5415 1524

EPRNANNNNE SRR RONRNN AN E NN

TONBNBNDMRN B<B<»=<

|

i

1

1«

i

} *ECNO*
STH TAG ;

5-12 603609004

5.4 MACROS AND OPDEFS

A macro or opdef definition is 1 sequence of source statements that are saved and then assembled
whenever needed through a macro or opdef call. A macro call consists of the occurrence of the
macro name in the operation field of a statement. It usually includes parameters to be substituted

fuor formal parameters in the macro code sequence s0 that code generated can vary with each assembly

of the deiinition,

Au opdes cali differs from a macro call in that the assembler interprets the call by examining the
format or syntax of the instruction rather than the contents of the operation field alone. The instruction
comprising the opdef call usually includes parameters to be substituted for parameters in the code
sequence. There are some differences in the way parameters are substituted, however, as is further
described under Opdef Call.

Use of 2 macro or an opdef requires two steps, definition of the macro or opdef sequence, and calling

cine definitico.

A definition consists of three parts: heading, body, and terminator,

Heading

Body

80360900A

A macro definition is headed by a MACRO or MACROE pseudo instruction
stating the name of the macro and identifying substitutable parameters in
the body of the macro.

An opdef definition is headed by an OPDEF pseudo instruction stating the syntax
of the calling instruction and identifying substitutable parameters in the body of
the macro.

The heading optionally includes one or more LOCAL instructions identifying
symbols local to the definition.

The body begins with the first statement in a definition that is not a LOCAL
statement or a comment line. A comment line can be either identified by *
in column one or can have columns 1-29 blank. (Following the first statement
of the macro body, only comments identified by * in column 1 are ignored.}

Use of the semicolon is restricted because when a definition is expanded a
semicolon is interpreted as a substitutable parameter mark or a local symbol
flag.

The body consists of a series of symbolic instructions. All instructions other
than END, including other macro and opdef definitions and calls are legal within
a definition. However, a definition within a definition is not defined until the
outer definition is called. Therefore, an inner definition cannot be called before
the outer definition is called.

A name of a substitutable parameter listed in the heading can occur in any field
within the body. A reference to a substitutable parameter is recognized when it
is between two of the following characters in an expression or field:

+ - * /() $=blank , . # or

The character— flags the occurrence of a name not bounded by any other special

Terminator

Definition
Processing

character, and, thus, not otherwise recognized. On a call, the assembler
substitutes an actual parameter value for the substitutable parameter and
removes the — so that the adjacent items are concatenated.

NOTE

The programmer can legally use the characters . ():

$ and = in symbols but when he does, he must be careful
that these characters are not interpreted as delimiters in
macro definitions (example 4 under macro calls).

The macro body optionally contains IRP pseudo instructions that allow iterative
assembly of a sequence within the body such that each iteration uses a different

parameter value.

An ENDM pseudo instruction terminates a macro or opdef definition.

A macro or opdef can be defined anywhere in a subprogram bhefore it is called.
When COMPASS encounters a definition, it places the name of the macro or the
syntax of the opdef along with the number of substitutable parameters and local
symbols in the assembler operation code table. Before the definition is saved,
COMPASS replaces each occurrence of a parameter name or local symbol with
a 77xx (where xx is a number assigned to the substitutable parameter or local
symbol).

On the call, each use of a substitutable parameter (each 77xx) is replaced by
its actual parameter; each use of a local symbol is replaced by a unique symbol
generated by the assembler. Usually, symbols replaced in this way have no
meaning outside the definition, However, if the macro includes an RMT
sequence which contains local symbols, the local symbols will have meaning
where the remote code is assembled outside of the definition.

5.4.1 ENDM — END MACRO DEFINITION

An ENDM terminates a macro or opdef definition.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
mname ENDM
mname Name of a macro sequence, syntax of an OPDEF sequence, or blank.

60360900A

An ENL M specifying a macro by name terminates the named macro definition and any unterminated
i macro or opdef definitions within it. An unnamed ENDM terminates all unterminated definitions.

An ENDM outside the range o’ any macro sequence has no effect other than to be included in statement

counts.

Example:

|
F LOCATION OPERATION | VARIABLE COMMENTS

1 18 30

Ay MACRO | P1,P2,P3

— e o

[.

| . |

KAY MACROE| PK2,PK2,PK3,PKL

. I

. I
!
1

JPX/XQ | OPDEF | OP1,0P2,0P3
|

|

KAY ENDM ' TERMINATES KAY AND
THE OPDEF DEFINITION

[
|
ENDM : TERMINATES JAY

5.4.2 MACRO — MACRO HEADING

A MACRO pseudo instruction notifies the assembler to place the instructions forming the body of the

macro in a table of macro definitions for assembly upon call and place the macro name in the opera
eode table.

The MACRO pseudo instruction has two forms:

Format one:

{OCATION OPERATION VARIABLE SUBFIELDS

mname MACRO parameters

60360900A

tion

5-15

Format two:

LOCATION

OPERATION VARIABLE SUBFIELDS

MACRO mname, parameters

The blank location field identifies the second format.

mname

parameters

A legal name other than END, ENDD, IRP, LOCAL, or ENDM. 1-8 characters.

A name that is identical to a PPU symbolic machine instruction, pseudo
instruction, or macro already in the operation code table redefines the
instruction. The most recent definition applies for the macro call. A
redefinition causes an informative flag to be issued but the new definition
holds.

Names of substitutable parameters. The order in which names are listed
determines the order in which parameters must occur in the macro call. Each
name is 1-8 characters, the first of which must be alphabetic. A name cannot
be END, IRP, LOCAL, ENDD or ENDM. Aname that begins with a number, or
a second or later occurrence of a parameter name in the list is ignored.

Any of the following special characters separate parameters in the list:

+ - */ () $=, or.

These characters have no meaning other than as separators. A blank
terminates the list of parameters. Also, any of these characters can be used
to separate the mname from parameters in format two.

The total number of unique parameter names and local symbols must not
exceed 63 for any one macro definition.

Format one does not require parameters.

Format two requires at least one substitutable parameter. This parameter is
termed the location argument because the location field entry in the macro call
is its substituted value. Omission of the location argument from a MACRO
instruction in format two causes the assembler to issue a fatal error and
ignore the definition.

The assembler ignores a blank parameter produced by two concurrent
separators or by a separator at the end of the list.

For an example of definition and calls, refer to Macro Calls.

603609008

Example:; of macro instructions:

1. Legal MACRO instruc.ions:

L1OCATION CPERATION | VARIABLE COMMENTS
i " 18 l30
AvC MACRO [P1,P2,P3 !
MACRO |DEF*LOC*ONE*TWO*TEN
MiSSAGE | MACRO |A !

2. MACRO instructions having identical parameter lists.

LtOCATION OPERATION | VARIABLE COMMENTS
D 16 T30
StM MACRO | X=Y+Z+¢X ;secouo X PARAMETER IS IGNORED
SUM MACRO | X(Y+2Z) l
SUM MACRO | X=Y+Z
SUM. MACRO |X,Y,(Z¢X) NULL PARAMETER AND SECONO
_HO wacRo | x :x ARE IGNORED
RO MACRO | X=X+1 {SECOND X AND NUMERIC
IPARAMETER ARE IGNORED
- 3. Illegal use of format two:
—PL#OCATION OPERATION | VARIABLE COMMENTS
) " 18 I30
MACRO |ABC | NO SUBSTITUTABLE PARAMETER
MACRO [ABC,,Fp ., NULL PARAMETER FIELD
MACRO IABCy»16+FP | NUMERIC PARAMETER FIELD

603609004

5.4.3 MACRO CALLS

A macro headed by a MACRO pseudo instruction can be called by an instruction in the following format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym mname P12Pgse .05 Py

sym Optional; depends on definition (see discussion following)

pj Parameter list composed of alphanumeric strings. Parameters are separated

by commas and terminated by a blank. Two consecutive commas constitute
a null parameter. An explicit zero, if desired, must be entered.

Each parameter must be in its correct relative position depending on the sequence
in which its formal substitutable name is given in the MA CRO pseudo instruction.

When the definition MACRO is in format one, the first parameter in the call is substituted wherever the
first substitutable parameter occurs in the definition, the second parameter in the call is substituted
wherever the second substitutable parameter occurs in the definition, etc. When the definition MACRO
is in format two, the location field entry in the call is substituted wherever the first substitutable
parameter occurs in the definition, the first parameter in the variable field of the call is substituted
wherever the second substitutable parameter occurs in the definition, etc.

If null parameters are interspersed with legal parameters, the correct positions must be established
with commas. When the list terminates before the last possible parameter, all remaining parameters

are considered null.

When the first character of a parameter is a left parenthesis, the assembler considers all the
characters between it and the matching right parenthesis as an embedded parameter or as an iterative
parameter. It is an iterative parameter when the substitutable parameter has been named in an IRP
pseudo instruction (Section 5.4.9). Otherwise, it is an embedded parameter.

The assembler removes the outer pair of parentheses hefore substituting the enclosed character string
in a line, Embedded parenthetical items must be properly paired. A parenthetical item can contain

bianks and commas.

Example:

{OCATION OPERATION | VARIABLE COMMENTS

) 1 18 [30

MESSAGF| (=C*PROGRAM| ABORT.*)
. t

After substitution, spacing between fields is the same as it was before substitution. One effect is that
a null actual parameter replacing a formal parameter in a variable field effectively moves the comments
field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as

a variable subfield.

o-18 60360900A

Processing of a location symbc1 and forcing upper of the first macro instruction depend on the MACRO
form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a locaticn
zymbel ¢n the macro call line forces the first word of generated code upper. The location field sy:abol
is assigned the current value of the location counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address. If the location field of the macro call
does not contain a symbol, the location and position counters are not affected by the call.

When the macro is defined using format two, that is, the macro name is in the variable field and the
first parameter is a location argument, the location symbol of the call is substituted for the first
parameter or location argument. The fact that this argument came from the location field rather than
the varizble field has no special significance in the macro expansion. In the macro call, the locat:on
field argument cannot be more than 8 characters. Parentheses are not given the special meaning used
ioocne o rinbie feld of 4 macro call line.

Example:

1. An illustration of concatenation

Location Code LOCATION OPERATION | VARIABLE COMMENTS
Generated

" 8

MACK ®WACRO (PL,P2
SeP1 P1+1ReP?2

MATK |A2,A

, 1 SeA2 [AZFIReR : .
7P6Y 5022000001 | | SA2 APHIRA . - T
ENUM

6036040018 5-iv

2. An illustration of nested definitions and calls

lOC;TION QPERATION | YARIABLE . COMMENTS
) n 18 [30
NAME 1 MACRO |
L] * l
® L] ‘
NAME 2 MACRO :
*]
. I
. i
NAME?2 ENUM |
.]
. ! .
. IAT THIS 1IME, THIS LINE
NAME?2 'IS PART OF A DEFINITION
. IRATHER THAN BEING A CALL.
* |
. l
. !
NAME1 ENDM I
. !
. 1
. 1
NAMEL INAMEL IS CALLEU ANL EXPANUED,
]
. 1
: |
[
* |
NAME2 :CALL TO NAME2 IS VALID
i

3. The following example illustrates two calls to a definition headed by a MACRO in format two
using the location argument. The macro is named TABLE; its substitutable arguments are
TABNAM, VALUE1L, and VALUE2, where TABNAM is the location argument,

LOCATION OPERATION | VARIABLE COMMENTS

Location Code Generated

1 " 18 |ET)

MACRO |TABLEsTABNAMsVALUE1, VALVE2
FIBNAH VFD 60/VALUEL1,60/VALUE2
ENDM {

\TABLE |1.0,2.0 ~ CALL ON
4 »Mw!

c

ALL TWO

5-20 60369900A

- 1TZONRSESSGASUSRONED |
S7%% $0008008000000000000

S

4. An illustration of embedded parameters:

Definition:
LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 [0
% AM MAGRO | A, R |
LNM A {
LJM n |
ENOM |
Call:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 8 |30
1
i XAM {SUM,108) , (SAM,INDZ)
Expansion:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS

5. The tollowing example illustrates use of R= in macros:

130
) g
T
|
]
\

RIERTHRIHUAY

LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 T30

ONSH MACRO [N ;
R= X1 ,N ,
sx2 | 11B |
RJ =XCPM= i
ENDM |

OFFSW MACRO | N |
R= X1 4N !
SX2 128 |
RJ =XCPM= |
ENDM |

6. The following example illustrates a character in a s
delimiter for a parameter.
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 30
‘AwC MAGRO (Z,VYAL,PS

SET VAL
SA7 Z.ALPHA

I
t
|
|
!
[
I
!
i

ILLEGAL SYMBOL. YOO LONG

ymbol erroneously being interpreted as a

nging of control blocks and symbol qualifiers through

7. The following example illustrates cha
substitutable parameters in a macro. (The same call could be used by using micros to
change actual parameters,)

LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 [30
—+ t
TAB MACRO | BLOCK,KWAL |
| USE 8LoCK I
QUAL KWAL |
TAG1 8SS 108 :
TAG2 VFD 60/~-1 |
USE . |
QUAL . |
ENDM |
|
 TAB | ONE,ONE | .
USE fome . W‘%
TAGY! eSS 408 | ;
ThG2 VFD $0/-1 | .
JUSE . e f
£ auart (e o [e
ENo®. o g
TAB | THO,TWO '“}L““""
;o juse fmwo g
— . JUAE TRWO O e
|¥aes [ess [1em |
TAGE VFD 1 e0ser 1
SRR 0 ; WL i

5-22

603609004

—

8. The foilowing example illustraies a technique that an experienced programmer may wish to
1se to save time in processing of definitions. Remember that the assembler replaces the
first substitutable par imeter with 7701, the second with 7702, etc. Note that 7701 is ;A in
display characters, 7:02 is ;B, etc. This means that the programmer can use the display
sharacters directly in plsce of his substitutable parameter names in the body of the definition
snd acvieve the same results as if the assembier had made the substitution when it saved t:e
wfiqiton, AL the e the defipition is agsewmbled, the assembler replaces each 77xx witk thwe
actual parameter whether the code was inserted by the assembler when it saved the definition
2y by the programmer when he coded the definition,

LOCATION OPERATION | VARIABLE COMMENTS T
) n 18 T30
) CHAR HACRO |ASCTYI, INTERNAL ,EXTERNAL,BTE
| tow |spiciBEA
| gEae

la®,11,11,%1 9
i : ‘
[%5,60,20,13
TIPSR
46,40,40,15
| 1onovene

87 ,5%,54,12
1o5amea?’

5B, 21,610,177

5036U9GUA 5-23

5.4.4 MACROE — EQUIVALENCED MACRO HEADER

A MACROE pseudo instruction can be used instead of a MACRO instruction to notify the assembler to
place the instructions forming the body of the macro in a table of macro definitions for assembly upon
call, to place the macro name in the operation code table, and to save the list of parameter names so
that actual parameters supplied in the macro call can be listed by name in any sequence in the macro

call.,

The MACROE pseudo instruction has two forms:

Format one:

LOCATION OPERATION VARIABLE SUBFIELDS
mname MACROE parameters
Format two:
LOCATION QPERATION VARIABLE SUBFIELDS
MACROE mname, parameters

The blank location field identifies the second format.

60360900A

mna mne

psremeters

A legal name other than END, ENDD, IRP, LOCAL, or ENDM. It canbe

1-8 characters. A name that is identical to a PPU symbolic machine instruction
name, pseudo instruction, or macro instruction already in the operation code
table redefines the instruction. The most recent definition is the one that applies
for the macro call, A redefinition causes an informative flag to be issued but the
new definiticn holds.

Names of substitutable parameters. Unlike MACRO, the order in which names
are listed does not determine the order in which parameters can occur in the
macro call. Each name is 1-8 characters, the first of which must be alphuabetic.
A name cannot be END, ENDD, LOCAL, IRP, or ENDM. A name that begias
with a number, or a second or later occurrence of a parameter name in the list
is ignored. Any of the following special characters separate parameters in the

list:

+—¥»'I{)$:sor
Thece shorvpoters have oo messisy ciber than as zeparstors. A blank term iz
the list of parameters. The total number of unique parameter names and leeal
aymbols wocl rot exceed 83 for any one macro definition. Also, any of these
can be uscd {v separate the mname from parameters in format two.

Format one ducs not reguire parsmetiers,

Format two reguires at least one substitutable parameter. This parameter is
termed the lccation argument because the location field entry in the macro call
is its substituted value. ©Omissicn of the location argument from a MACRO
instruction in format two causes the assembler to issue a warning flag and
ignore the definition.

The assembler ignores = blank parameter produced by two concurrent separali’ iy
or by a senarzior at the end of the list,

For an example of definition and calls, refer to Equivalenced Macro Call.

5.4.5 EQUIVALENCED MACRO CALL

A macro definition headed by a MACROE pseudo instruction can be called by an instruction of the

“otroweng formets

LOCATION OPERATION VAKIABLE SUBFIELDS
sVIY p,=a = PR ¢]

vm mname Py 1,p2 20 By Ay
maame Name of MACROE definition

603609004

5-25

sym Optional symbol. A symbol in the location field causes the location counter
to be forced upper. The symbol is then assigned the value of the location
counter. A location field symbol on the first line in the definition that generates
code is assigned the same address. If the location field of the macro call does
not contain a symbol, the manner of the force upper is a function of the first-
code-generating line in the macro expansion.

pi:a An equivalenced parameter. Each p is the name of a substitutable parameter,
The a4; is an actual parameter to be substituted for p;- The parameters need not
be listed in the same order as they are listed on the MACROE instruction.
Equivalenced parameters in the list are separated by commas and terminated
by a blank.

A null value is substituted for any parameter omitted from the list.

When the first character of an actyal parameter is a left parenthesis, the
assembler considers all the characters between it and the matching parenthesis
as an embedded parameter or as an iterative parameter. It is an iterative
parameter when the substitutable parameter has been named in an IRP pseudo
instruction (section 5. 4.9, IRP). Otherwise, it is an embedded parameter. The
assembler removes the outer pair of parentheses before substituting the enclosed
character string in a line. Embedded parenthetical items must be properly
paired. A parenthetical item can contain blanks and commas,

After substitution, spacing between fields is the same as it was before substitution. One effect is that

a null actual parameter replacing a formal parameter in a variable field effectively moves the comments
field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as

a variable subfield.

Processing of a location symbol and forcing upper of the first macro instruction depend on the MACROE
form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first word of generated code upper. The location field symbol
is assigned the current value of the location counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address. If the location field of the macro call
does not contain a symbol, the location and position counters are not affected by the call,

When the macro is defined using format two, that is, the macro name is in the variable field and the
first parameter is a location argument, the location symbol of the call is substituted for the first

parameter or location argument, The fact that this argument came from the location field rather than
the variable field has no special significance in the macro expansion.

CAUTION

After substitution, spacing between fields is the same
as it was before substitution.

5-26 60360900A

Example :

—
Location Code Generate LOCATION OPERATION | VARIABLE COMMENTS
) 1 1 f30
SAM MACROF | AyB,C ;
LM (A :
CoM B i
CON c ,
ENOM |
¢ {
* |
5647 i
4457 HOBOETRULOENEIONINY ok
5840 ugpnaae0UO0000T0UIRE | s
BB (0028900008000000085 e
5.4.6 OPDEF -- DEFINE CPU OPFRATION
An OPDEF nsevde ipsiruction natifios vhe asgembler o nlace instructions in the body of the definiting
in & table of delinitions for assembir upon call and place the instruction syntax in the operation code
table. Thaere is no way of removing the definition from the table. It can, however, be bypassed
Frough redeiinition, or disabled fhrough CPSYMN. If the syntax duplicates a CPU instruction alvsadiv
n tine witle, the OPLEF delinmition trke s precedence,
Sermats
[locaion OPERATION YARIABLE CUBFIELDS
~— ot e e
| SYTiaX OPDEF paramete ©s
|
|
syutax The syntax consists of a mnemonic operator and variable field descriptors.
The muemonic cperator consizie of twe letters. The firs! can be sav Jetier
The second letter can be a register designator: A, B, or X in which case tte
operation field of the opdef call is recognized as cAn, c¢Xn, or ¢Bn (cis a
unique charzcter; n is 0-7); or the second letier can be any other letter, in
which ecase the operation field of the opdef call is recognized simply by a .
two-letter musmonic, such as EQ.
The varishie field dacoriptore dofine the order of aprearance of al) rugisters,
expressiony, aud subfield sopacstors that comprise the variable field of the
opdef call. It consists of none, one, two, or three of the following 22 subtietd
descriptors. Q represents an expressicn. An r represents a register letter
(A, B, or X). A comma separates two descriptors; a blank terminates the
syntax,
-—

#0360900A 5~-27

parameters

5-28

void Q

r rQ

-7 -rQ
r1+r2 ry +r2Q
-ry +r2 -Ty +r2Q
ry *r2. r, *er
-r; *rz -r, *r2Q
Ty /Ty r1/19Q
-rl/r2 —rl/er
ry-T, r 1-r2Q
—r1 —r2 —r1 -r2Q

For example, -r;*r 5 would be written as -X*B to describe -X3*Bl whereas rQ
would be written as BQ to describe B2+ALPHA.

The first descriptor immediately follows the mnemonic operator.

A substitutable parameter for each register designator (r) and expression
designator (Q) in the syntax in the order in which they occur in the syntax
(and, consequently, in the calling instruction). Parameters can be separated
by any of the characters:

+ - / () $ = 4, Or .
A blank terminates the list.
The assembler ignores a blank parameter produced by two concurrent separators

or by a separator at the end of the list. A second or later occurrence of a
parameter name in the list is ignored.

60360900A

Caamples:

L

¥ Legal COMPASS CPU instructions
K represents an expression.

26360900A

i iisted below are some instructions that couid be defined through OPDEF and the syntax entries
that would describe them:

Cailing instructicn :! Ondef
Operation Variable Subfields Syntax
Jpt i JPQ
Jpt Bn+K JPBQ
JP But Ba+K JPB+BQ
JP Bn, K JPB,Q
4P X/ Xnt+X | IPX/XE

R
MR

Bn-Bn, An-Xn, K
X *Xix

Xn+DBn

Bn, Xn

Bj+K

&5, Bk, K

~ Xk *Xj

Xi+Bk

Bj+Xk

KENL, & 0
1.JB-B,A-X,Q
BX-X¥X
SBX+B

LXRB, X

JPBQ
“EE,B.Q
BX-X*X
SBX+B

SBB+X

2. The following complete definition redefines single-address long jump JP as the EQ jump, which
is faster than JP on the 6600 Computer System.

LOCATION OPERATION | VARIABLE COMMENTS
') 18 [30
JPQ OPDEF | P1 |
EQ 1 |
ENOM !

Each subsequent JP instruction that matches the syntax JPQ is assembled as an EQ. AJP
instruction having a different syntax, such as the following, is not affected.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS

! n 18 30

l
;
10002 0230007755 + JP A3 +ALPHA |

3. The following definition traps all floating point double-precision subtraction instructions

(DXi Xj-Xk) and jumps to an error-check routine for debugging., I, J, and K are substitutable
parameters used within the definition.

LOCATION OPERATION | VARIABLE COMMENTS
! " 18 [30
OXX=X OPNEF | T,J.K :
: |
R |
RJ cKNuT '
ENDM |

4. The following sequence causes RXi K to be defined as AXi K. It does not affect the standard
RXi instructions involving registers.

LOCATION OPERATION | VARIABLE COMMENTS
) " 18 T30
RXQ OPDEF |P1,P2 '
AX.P1 |P2 I
ENDM :

5.4.7 OPDEF CALL

An opdef call resembles a CPU mnemonic machin~ instruction. The mnemonic code, quantity and
sequence of registers, arithmetic operators, and expressions (excluding operators within the expressions)
must match the syntax described in the OPDEF for the definition to be called.

60360900A

NOTE

If th2 Q in a descriptor is combined with register letters,
a plus or minus must precede an expression in the call.

OPDEF Syntax calt

JPQ JP K Not combined
JPBQ JP BntK Combined
JPB,Q JP Bn, K Not combined
JPX/XQ JP Xn/XntK Combined

An OPDEF call can occur any place after the definition is saved. In substituting parameters, the
zssamiler uses only the register values given in the call. Ut does not substitute the register designators

A jocaticn symuol on the opdef cail line forces the first word of generated code upper. The locaticn fietw
symbol is assigned the current value of the current location counter after the force upper. A location
fieid on the line in the definition that generates code is assigned the same value, If the location field of
the opdef call does not contain a symbol, the manner of the force upper is a function of the first code-
generating instruction in the expansion. If the call location field and the code-generating instruction
fietd both contain symbols they are assigned the same value,

“)niy a line having the correct syntax calls the definition.
Lxamples:

‘the follewing opdef defines an instruction having the syntax IXX/X. On the call, the assembler
substitutes 3, 4, and DIV (not X3, X4, and X. B1V) for P1, P2, and P3, respectively.

Lecation Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 u N Tae
IXXFX OPQEF | P1,P2,P3
PX.P2 | X P2
PX.P3 | X.P3

1

]

|

NX.P2 | X.P2,8% |
NX.P3 | X,P3,B%

FX.PL | X .P2/X.P3 !

UX.P1 | XoP1,B% 1

LX.P1 | X PL,84& ;

| ENDM 5

|

5-31

803609004

The following OPDET selectively traps the SXi Xj+Bk instructions.

Definition:
{OCATION OPERATION | VARIABLE COMMENTS
1 T 18 [30
SXX+8 OPDEF [I,JyK |
. |
. |
. |
ENOM |
Statements that call the definition:
LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 |30
SX3 X1+B82 |
. |
. j
. |
SYM SX.NN | X6+B. XXX |

Statements that do not call the definition:

LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 [ED
1
SXS X4 INO R DESIGNATOR OR +.
|
SX6 B3+X4 IREGISTERS INTERCHANGED
I
SX.Y (a3 INO X DESTGNATOR OR OPFRAND
SY X4+R4 IMNEMONIC CODE NOT SX.

5.48 LOCAL—LOCAL SYMBOLS

One or more LOCAL instructions that list symbols local to the definition optionally follows the MACRO,

MACROE, or OPDEF pseudo instruction.
from LOCAL are comment lines.

The only lines that can separate the first header statement

Formal:
LOCATION OPERATION VARIABLE SUBFIELDS
LOCAL symbols
symbols List of local symbols. Each symbol must begin with an alphabetic character.
Symbols must be separated by and must not include the following characters:
+ - %/ () $ =, or .
5-32

60360900A

A blank terminates the list. The maximum number of local symbols and
substitutable parameters is 63, COMPASS ignores the use of a substitutable
parameter name in the local symbol list.

A location field symbol, if present, is ignored.

A symbo! in the list is considered local to the macro; that is, it is known only within the macro
definitior.. On each expansion of the macro, COMPASS creates a new symbol for each local symbol
and substitutes it for each occurrence of the local symbol in the definition (other than in comment lines
identifiec by * in column 1). Thus, invented symbols replace LOCAL-named symbols wherever they
appear in a macro difinition in a manner similar to the way substitutable parameters are replaced.

A user passes a local symbol to inner macro definitions or inner macro calls when he does not deciare
the symbol local in any of the inner definitions saved or called. That is, a symbol declared local in a
macro can be referred to in any inner macro that does not also declare it as local (see example 2).

» wwmhbol not defined as local is accessible from outside the macro definition. An invented symbol is
gualified if defined while in a QUAL block., It is not listed in the symbolic reference table. Blanks
are preserved in a line containing a substituted symbol; COMPASS makes no attempt to change the
structure of the line.

On the listing, each invented symbol is shown as tsym, where sym is unique for each local symbol in
the subprogram. For example, if the symbol A is declared local to the macro, the subprogram can

define a different symbol A elsewhere.

Examples:

1. In the following example, C is local to macro ABC and is passed to inner macro definitions.
In the definition, each occurrence of formal parameter A is replaced by the parameter mark
7701; each occurrence of B by the parameter mark 7702, and each occurrence of C by the
parameter mark 7703. Then, when ABC is called, COMPASS assigns invented symbol
+£000001 to C and replaces each occurrence of 7703 in definitions ABC and XYZ.

LOCATION OPERATION | VARIABLE COMMENTS

) " In [0
ABC MACRO | A, B i
LOCAL |C |
c BSS 108 |
. . : | DEFINITION
. . | OF ABC
X Y2 MACRO | D ,
SAL c {DEFINITION
. IOF XYZ J
- !
ENDM s
| ABC .g§;\\N\1,! : .
‘eaBpONNL 83§
* L G EXPANSION
171 jaCRO 1O OF ABC
C . | SRS | ee000081 }{oerrntrzouf
S STV S PO A OF XYZ
L LERE 4 § |
T ENDN !

60360900A

2. In the following example, C is local to each level.

preceding one.

On the call to

LOCATION OPERATION | VARIABLE COMMENTS.
1 n 18 !30
BCO MACRO | A,R ;)
LocaL | ¢ |
c 8ss 108 l
» L] I
. . ; DEFINITION
. . (OF BCD
Y24 MACRO !
LOCAL | C :
sa1 C | DEFINITION
. JOF YZA
. !
c BSSZ |1 I
ENDM J

Note how this example differs from the

BCD, the assembler replaces each occurrence of C with the invented symbol,
000002 including the use of the symbol in the LOCAL instruction for macro XYZ.

LOCATION OPERATION | VARIABLE COMMENTS

Finally, on a call to YZA, 1000002 is defined as local and the assembler replaces each
000002 with another invented symbol. Thus, each reference to C in the source code SAl
instruction does not result in a reference to the BSS in the outer macro,

LOCATION OPERATION | VARIABLE COMMENTS

n 18 |30

5.4.9 IRP — INDEFINITELY REPEATED PARAMETER

An IRP pseudo instruction in a macro definition signals the beginning or end of a sequence of code to be
assembled repeatedly with one parameter varied with each repetition.

It has two formats:

VARIABLE SUBFIELDS

5-34

LOCATION OPERATION
IRP parameter
IRP

60360900A

The firs: form introduces the sequence and names the substitutable parameter; the second form

terminaies the repeated sequence.

In either form, a location field symbol, if present, is ignored.

The parameter name must be iisted as a substitutable parameter on the MACRO or MACROE pseudo

instruction for the definition.

On the macro call, the indefinitely repeated parameter consists of one or more subparameters enclosed

by parentheses and separated by commas.

The assembler assembles the sequence for each subparameter;

the number of copies of the sequence depends on the number of subparameters (none at all when the

actual parameter is null).
the next line in the definition.

When the list of subparameters is exhausted, the assembler continues with
If the named substitutable parameter does not occur between the two

IRP instructions, the assembler repeats the code unchanged for each subparameter provided in the call.
An IRP outside of the range of a macro has no effect on assembly other than to be included in statement

counts.

Examples:

1. Repeat sequence within macro

60360900A

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 T30

ZA8 MACRO | ARG,B |
IRP ARG l
SAL ARG ' DEFINITION
Sx6 X1+R REPEATED OF ZAR
SA6 ARG SEQUENCE
IRP
ENDM '

5-35

2. Assign symbol at every 1005 words of zeroed storage:

LOCATION OPERATION | VARIABLE COMMENTS

! n 18

USE STORAGE

8UF MACRO | P1
IRP P1
Pl 8ss2 1008
IRP
ENDM

|30

|

|

|

|

|

|

(P;Q,R,S,T) |
i 'iﬂf}l,ﬁg?‘ } ki

F '

|

I

{

i

: »'.M i i “‘ﬁl'
5.5 SYSTEM MACRO AND OPDEF DEFINITIONS

Definitions of such general usefulness that they should be available to any program without each
program defining them can be placed on the system text file as system macros or can be placed on
a file accessible through an XTEXT pseudo instruction.

System macros provide for such system functions as reading and writing files and specifying parameters
for file environment tables, etc. Systems macro definitions are available to COMPASS for each
assembly. The programmer can use a macro call for a system macro at any time in his programs
Descriptions of system macros are given in the operating system reference manual.

Systems definitions can include any legal macro or opdef definition. An expansion of a call for a

system definition is not normally included on the assembler listing. Use of the S option of the LIST
pseudo instruction(Section 4.11. 1) enables listing of expansions of system definitions. .

5-36 60360900A

—

OPERATION CODE TABLE MANAGEMENT 6

The CON PASS operation code table contains the information that COMPASS requires for interpreting
iegal operation field entries for COMPASS instructions.

~

when assembly begins, the operation code table contains these entries.

Pseudo instructions (except LOCAL)
CPU symbdlic instructions (Section 8. 4)
CMI symbelic instructions (Section 8.5)
PPU symholic instructions (Chapter 9%
syatem masro and opdef definitions

The MACRO, MACROE, and OPDEF pseudo instructions (Chapter 5) cause entries to be made in this
table. In addition, the programmer has the capability of creating entries through the following
instructicns discussed later in this chapter:

CPC™ CPU operation

PPOP PPU operation

OPSYN Synonyirous PPU or pseudo operation or macro
CPSYN Synonymous CPU operation or opdef

If a new entry redefines an instruction already in the table, the obsolete entry is not physically removed
from the table. Instead, it is saved so that the table canbe reconstructed between assemblies,
COMPASS reconstructs the operation code table nsing all the original system macros, opdefs, pseudo
mstructions, and symbolic machine instructions. No programmer-created entry iz preserved from
assembly to assembly. The number of entries in the table is limited to 4123.

i'he only pseudo instruction that logically removes entries from the operation code table are PURGMAC
and PURGDEF.

Entries in the operation code table are in two distinct formats permitting a logical division of the
table. Ome type of entry permits identification of an instruction by finding 2 match for the contents of
the nperation field, thus, it provides mnemonic recognition. The other type of entry is looked at only
if the search for a mnemonic operator fails tc yield a match during a CPU assembly.

‘This type of entry provides for recognition of an iustruction according to its syntax. COMIPASS

analyzes the statement to be interpreted, determines the syntax of the operation and variable subfields,
and again searches the table.

60360900A 61

Instructions recognized in the mnemonic search and the information provided to the assembler for
each instruction are as follows:

Pseudo instructions The entry contains addresses to routines that perform
pass one and pass two operations

PPU symbolic instructions The entry describes the format of the instructions to
be assembled

Instructions described through PPOP The entry describes the format of the instruction to
be assembled

Macro instructions The entry directs the assembler to the location of the
saved definition

Instructions described through OPSYN The entry is a copy of the synonymous entry

For a PPU assembly, a failure to find an entry for a mnemonic operator causes an operation code error.
For a CPU assembly, however, if the search for the mnemonic operator does not yield a match,
COMPASS searches the operation code table again for an entry with a matching syntax. Instructions
recognized in the syntactical search and the information provided to the assembler for each instruction
are as follows:

CPU symbolic instructions The entry describes the format of the CPU instruction
to be assembled

Instructions described through CPOP The entry describes the format of the CPU instruction
to be assembled

Instructions defined through OPDEF The entry directs the assembler to the location of the
definition

Instructions described through CPSYN The entry is a copy of the synonymous instruction

The action taken depends on the synonymous entry

If, following the second search of the operation code table, the statement still has not been identified,
the assembler takes the following action:

For a PPU assembly, it generates a 24-bit instruction of which the first 12 bits are zero.

For a CPU assembly, it generates a 30-bit zero instruction,

Although OPSYN and CPSYN pseudo instructions provide a means of rendering more than one
instruction synonymous, only instructions of the same type can become synonymous. The logical
division of the table between the two types of entries prevents mnemonically identified instructions from
being made synonymous with syntactically identified instructions.

When a MACRO, MACROE, PPOP, or OPSYN creates an entry for a mnemonic name that is already

in the table for a different instruction, the new entry takes precedence over the old entry. Similarly,
when a OPDEF, CPOP, or CPSYN redescribes a syntax already in the table for a different instruction,
the new entry takes precedence over the old entry. As a result, the order of precedence for operation
field recognition is, from highest to lowest:

1. Programmer-created entries for mnemonically identified instructions

6-2 60360900A

2. System macros, pseudo instructions, PPU symbolic machine instructions,;;a‘gd CMU
instructions other than the IM instruction.

3. .Programmer-created entries for syntactically identified instructions
4. "CPU symbolic instructions and the CMU IM instruction

Example:

The following example illustrates a special case in which a macro name takes preeedence aver one
form of a‘machine instruction, i.e., the form using SB4 as an operation code. ‘

i
\g

LOCATION QPERATION | VARIABLE COMMENTS
) . n . 18 , T30
SBY MACRO | P1,P2 |DEFINE MACRO NAMED SB&4
: Ve | ’
. [
. 1
ENOM ;
y |
®- V ' .
|SA4 " | A1+ABLE fanL TO MACRO. .NOT CPU INSTRUCTION
. . ’ |
. “ |
. |
sB3 A1+ARLE :HACHINE INSTRUCTION
R T |
S84 [OPSYN | NIL :DISABLES MACRO BUT DOES NOT
e | RESTORE NORMAL USE OF SB&4
. {AS AN OPERATION CODE. EVEN IF
. ' IT WERE REDEFINED WITH OPDEF
. ,IT WOULD NOT BE RECOGNIZED.
g ‘THE MACRO FORM ALWAYS TAKES
. | PRECEDENCE. :
puacnuc} SRy ;RESTORES NORMAL USE OF S84

6.1 MNEMONICALLY IDENTIFIED INSTRUCTIONS

Mnemonically identified instructions include all pseudo instructions, macro instructions, and PPU
symbolic instructions whether system or programmer defined. PPOP, OPSYN, NIL, and PURGMAC
provide the programmer with a means of creating or removing operation code table entries that are in

the mnemonically identified format,

6.1.1 PPOP — PPU OPERATION CODE

The PPOP pseudo instruction defines the operation and variable fields of a PPU symbolic machine
instruction and creates an operation code table entry for the instruction, COMPASS generates an
octal machine instruction of the defined format whenever the PPU instruction described by the PPOP
instruction is used. If the operation code table already contains an entry for the name, the new
definition takes precedence over the old during assembly of the subprogram or until it is redefined.
No error is flagged. Any illegal parameter in PPOP causes COMPASS to ignore the PPOP and issue

a 7-type error flag.”

60360900A

Format:

LOCATION OPERATION VARIABLE SUBFIELDS —
name PPOP ctl, val, type
name Mnemonic name, 1-8 characters
ctl Control of instruction assembly
ctl Significance
0 Illegal; if used, COMPASS ignores the PPOP
1 24-bit instruction with 12-bit address and no indexing
2 12-bit instruction with signed relative address or absolute address
(e.g., UJN)
3 24-bit instruction with 18-bit address (e. g. , LDC)
4 12-bit instruction with 6-bit address (e.g. , LDN)
5 24-bit instruction with 12-bit address and optional indexing
(e.g., LDM)
6 12-bit instruction with signed rclative address (e.g., SHN)
7 24-bit instruction with 12-bit address and required second
field (e.g., IAM)
val An evaluatable expression specifying the 4-octal digit operation code value;
usually, only the two leftmost digits are significant. If the assembly base is M,
the field is assumed to be octal.
type An evaluatable expression specifying an integer value that COMPASS interprets

6-4

as follows:

6 Restrict the instruction being defined to the CYBER 70/Models 72,
73, and 74; COMPASS sets an error flag if the instruction being
defined is used in a CYBER 70/Model 76 PPU assembly.

7 Restrict the instruction being defined to the CYBER 70/Model 76;
COMPASS sets an error flag if the instruction being defined is
used in a CYBER 70/Model 72, 73, or 74 PPU assembly.

other or The instruction is not restricted to either machine type.
omitted If the base is M, type is assumed to be octal. If type is omitted,
the comma preceding it can be omitted also.

60360900B

e

Example -

7311

Code Generated

S415 0040

LOCATION ‘ OPERATION | VARIABLE COMMENTS
1 n 8 |3°
PFRIDH ;
De0 RASE |0 |
: |
. |
15 LA Fou 15 !
40 c FoU 60 !
ST™ PPOP |5,54004LA |
¢ |
. !
STM r :

6.1.2 OPSYN — SYNONYMOUS MNEMONIC OPERATION

The OPSYN psaeudo instruction makes a name in the location field of the OPSYN synonymous with the
macro, sseudo instruction or PPU mnemonic name specified in the variable field. The size of the
operation code table is the only limit to the number of instructions that can be made synonymous.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
nameq OPSYN names

The name in the variable subfield must be previously defined as a standard instruction code.
OPSYN, either name produces equivalent results.
macro or operation code, the new definition takes precedence over the old without notification.

After an

If the location field specifies a previously defined

Thus,

a macro defined by a name that is subsequently used in an OPSYN location field is not called when

the macro name is used in the operation field.
named in the variable subfield of the OPSYN.,
and can be restored by purging the new definition with PURGMAC.

60360900A

The instruction actually called is the instruction

On the other hand, the old macro definition is not lost

6-5

Example:

1. An operation named CALL is synonymous with RIM.

LOCATION QPERATION | VARIABLE COMMENTS
1 n 18 |30

CALL OPSYN |RUM |
- |
. a
.]
CALL | =XSuUBR= |PRODUCES SAME RESULTS

IAS IF IT WERE AN RUM

2. In the following example, a programmer wishes to use a macro named LJM for part of the
program and use the real LJM for the remainder of the program.

LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 IJO

LJM. OPSYN |LJM 'SAVE ORIGINAL DEFINITION AS LJM.
PURGMAG LJM %URGE ORIGINAL DEFINITION
¢ |
¢ I

L JM MACRO |XX :
i |
. |

LJM ENDM I
. l
. CODE USING LJM MACRO
. | .

LJIM OPSYN |[LJM. RESTORES ORIGINAL LJM
- i .
. CODE USING ORIGINAL LJM

6-6 60360900A

6.1.3 NL— DO NOTHING PSEUDO INSTRUCTION

The NIL pseudo instruction re iembles a no-op; it produces no code and conveys no information to the
assembler. It is primarily designed for disabling a macro; it cannot be used with CPSYN. The
following instructions could be used in place of NIL as nil instructions:

ENDM
ENDD
ENIIF
IRP

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

NIL

A location field symbol if present is ignored.

Example:
LC:CATION OPERATION | VARIABLE COMMENTS
1 n 18 !30

MACK OPSYN |NIL |

¢ {

|

¢ [

. i

YAG "ACK A,B,6’73 1

. I

i

The assembler interprets each call to MACK as a NIL instruction. TAG is not defined because it
becomes the location field symbol for NIL when the statement is assembled.

6.1.4 PURGMAC—PURGE MACROS

The PURGMAC pseudo instruction provides a means of disabling operation code entries for the named
instructions for the duration of the current assembly.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PURGMAC name, ,namey,...,name,
name, Names of mnemonic operation codes for macro definitions, pseudo instructions,
i

or PPU instructions.

A location field symbol if present is ignored.

60360900A 6-7

6.2 SYNTACTICALLY IDENTIFIED INSTRUCTIONS

Syntactically identified instructions apply to CPU assemblies only. The CPOP and CPSYN pseudo
instructions create operation code table entries for instructions that are to be identified through
recognition of their syntax, rather than through the contents of the operation field only.

6.2.1 CPOP — CPU OPERATION CODE

The CPOP pseudo instruction describes the syntax of a new CPU symbolic machine instruction and
creates an operation code table entry for the instruction. An instruction of the defined format is
generated whenever the CPU instruction described by the CPOP instruction is used. If the operation
code table already contuins an entry for the instruction, the new definition takes precedence over the
old during nssembly of the subprogram. Any illegal parameter in CPOP causes COMPASS to ignore
the CPPOP and issue an crror flag.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sytx CPOP ctl, val, reg, type

syix The syntax cornsists of a mnemonic operator and variable field descriptors.
The mnemonic operator consists of two letters, The first can be any letter.
The second letter can be a register designator: A, B, or X, in which case,
the operation field of the instruction is recognized as cAn, cXn, or ¢Bn,
(c is a unique character; n is 0-7); or the second letter can be any other letter,
in which case the operation field of the instruction is recognized simply by a
two-letter mnemonic, such as EQ.

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
instruction being described. It consists of none, one, two, or three of the
following 22 subfield descriptors. Q represents an expression, An r represents
a register letter (A, B, or X). A comma separates two descriptors; a blank
terminates the syntax.

void Q

- "rQ

r,+r r +r2Q

172 TR
T, *r T *er
-r *r —rl*er

ry /r2 ry /er

6-8 60360900A

pa——

-rl/r2

'rl/er
rl-er

T TR

For example, to describe -X3*Bl1, the descriptor, -ry *rz, would be written as -X*B whereas, to
describe 32+ALPHA, the descriptor rQ would be written as BQ.

ctl

val

reg

603809008

Control of instruction assembly.

ctl

0

G o W N

Significance

15-bit instruction

30-bit instruction

15-bit instruction, force upper before assembly
30-bit instruction, force upper before assembly
15 bit instruction, force upper after assembly

30-bit instruction, force upper after assembly
15-bit instruction, force upper before and after
assembly

30-bit instruction, force upper before and after
assembly

An evaluatable expression specifying a 9-bit operation code; if the base is M,

val is assumed to be octal.

Three octal digits specifying the order from left to right into which register
numbers are to be inserted into the i, j, k portions of a 15-bit instruction, or
into the i and j portions of a 30-bit instruction, If the assembly base is M,

reg is assumed to be octal.

1
2

Register number obtained from operation field

Number of second register or only register in
variable field

Number of first of two registers in variable field

Set field to 0

6-9

type

other
or
omitted

If base is M, type is assumed to be octal.

An evaluatable expression specifying an inte
as follows:

ger value that COMPASS interprets

Restrict the instruction being defined to the 6000 Series and
CYBER 70/Models 72, 73, and 74; COMPASS sets an error
flag if the instruction being defined is used when MACHINE 7

has been specified,

Restrict the instruction being defined to 7600 or the CYBER
70/Model 76; COMPASS sets an error flag if the instruction
being defined is used when MACHINE 6 has been specified.

The instruction is not restricted to a machine type.

preceding it can be omitted also.

Example:

Code Generated

53731

722 7231000003

6-10

If type is omitted, the comma

LOCATION OPERATION | VARIABLE COMMENTS

n 18 [30
SAX+B Crpop 0,5308,1328 :DEFINES SATI XJ+BK
SXXQ CPOP 1,7208,1208 DEFINES SXI XJ+K

. |

|

* 1

¢ i

Sa7 X3+81 :
TAG Sx3 X1+3 ;

60360900B

6.2.2 CPSYN — SYNONYMOUS CPU INSTRUCTION

The CPSYN pseudo instructior. renders an instruction with the syntax given in the location field
synonymous with the instruction having the syntax specified in the variable field, The only limit to
the number of CPU instructions that can be made synonymous is the size of the operation code table

{4123 entries).

Format
l:CATION OPERATION VARIABLE SUBFIELDS
syt;x1 CPSYN sytx2
syt Syntax of a CPU instruction (see CPOP for legal forms). If this syntax is

1
already in the operation code table, the table entry for sytx, takes precedence
over the old table entry for sytx:l without notification.

9 Syntax of a CPU instruction for which there must be an entry in the operation
code table. Following the CPSYN, an instruction in either syt‘x1 or sytxo
produces an octal instruction of the format described by the entry for sytx?.

6.2.3 PURGDEF—PURGE CPU OPERATION CODE

The PURGDEF pseude instruction provides a means of disabling syntactically-identified operation code
entries for the duration of the current assembly.

i“ormat:
LOCATION OPERATION VARIABLE SUBFIELDS
PURGDEF |sytx
sytx Syntax of a CPU instruction (see CPOP for legal forms).

A location field symbol, if present, is ignored.

60360900A 6-1

MICROS 7

M

The COMPASS micro capability enables the programmer to symbolically refer to a defined character
string. Vhen used in conjunction with IFC, DUP, STOPDUP, and SET pseudo instructions, micro
strings provide for varied manipulation of character strings -- testing for a particular character,
counting characters, concatenation of strings, etc.

Use of a micro definition requires two steps: definition of the character string, and substitution. In
this discussion, substitution rather than definition is discussed first so that the reader has a better
understanding of how a definition is used when it is described.

7.1 MiCRO SUBSTITUTION

Wherever a micro name between micro marks (#) occurs in a statement other than a comment
line (* in column 1), the assembler substitutes the micro before it interprets the statement, If
column 72 of the last card read is exceeded as a result of micro substitution, the assembler
creates up to a maximum of 9 continuation cards, beyond which it discards excess characters
without aotification on the listing. No replacement takes place if the micro name is unknown or if
one of the micro marks has been omitted, If the micro name is unknown, the assembler flags a
nonfatal assembly error, If the micro name is null, (that is, the two micro marks are adjacent),
then

1. Both micro marks are deleted, and

2. No error flag is set

Example:

A micro identified as NAM is defined as the 7 characters:
ADDRESS

A reference to NAM is in the variable field of a line:

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 Ta0
Loc SAL |ZNAMZ+u

However, before the line is interpreted, COMPASS substitutes the definition for NAM producing the
following line:

LtOCATION OPERATION | VARIABLE COMMENTS

1 n 18 30

LocC SA1L ADDRESS+4

|
)
NOTE

Unless the A option of the LIST pseudo instruction is
enabled, the listing depicts the instruction as it was
before the substitution took place.

603609008 7-1

7.2 MICRO DEFINITION

Pseudo instructions specifically designed for the purpose of defining micros are: MICRO, OCTMIC and
DECMIC. In addition, the following pseudo instructions optionally define micros: BASE, CODE, and

QUAL. Also, system or built-in micros are automatically defined by COMPASS at the start of each
subprogram assembly.

7.2,1 MICRO — DEFINE MICRO

The MICRO pseudo instruction defines a character string and assigns a name to that string.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

micname MICRO n;,n,, dstringd

micname Name by which definition is called; 1-8 characters

ny Absolute evaluatable expression specifying starting character in string; when the
base is M, COMPASS assumes that n1 is decimal.

n, Absolute evaluatable expression specifying number of characters; when the base
is M, COMPASS assumes that n2 is decimal,

dstringd Delimited character string. The delimiter d is a character not used in the

string.

Counting the first character after d as character 1, the assembler forms the string by extracting n,
characters starting with character n,. If the second delimiting character occurs before count n, is
exhausted, the defined string terminates at that point. If ny is greater than zero and hy is omitted, zero,
or negative, the defined string includes all the characters from ny to the closing delimiter (see second
example).

If n; is omitted, zero, or negative, the defined string is empty; no substitution takes place when the micro
name is referred to. That is, n, and the character string are ignored,

A previously defined micro can be a part of a micro definition; one micro can be defined as a substring
of another (see third example).

A micro can combine previously defined micros or can be a subset of another. Also, a micro defined

originally as one character string can be redefined subsequently with a different character string. After
the redefinition, the original character string is inaccessible.

If n; or ng is negative, the assembler generates a 7-type error.
Examples:

1. The following MICRO defines NAME as the 19 characters beginning with A and ending with G.

[location OPERATION | VARIABLE COMMENTS
) N 18 [0
N AME MICRO | 1,19,*ALPHANUMFRIC STRING* .

7-2 60360900C

60360900 D

— 2. This example illustrates a blank character count. The defined string begins with A and is
terminated by the closing delimiter.
LOCATION QOPERATION | VARIABLE COMMENTS
| " 18 Tao
l MICKY ! MICRO | 14 ,*ALPHANUMERIC STRING*
3. One micro can be defined as a substring of another.
LOCATION OPERATION | VARIABLE COMMENTS
) 0 18 T30
NAML MINRO 1.25,*NAJOQ{ALDHANUMERIC STRING®
L] L] .]
Y L] . l
- ! L] * ‘
NAM? | MICRO | 7,,*#NAM1Z2* [SAMF STRING AS IN EXAMPLES 1 AND 2
4. One micro can combine others.
LOCATION OPERATION | VARIABLE COMMENTS
) N 8 Tao
T Tnamy MICRO |1,12,8ALPHANUMERICS
NAM2 MICRO | 1,74%X STRINGX
MAMT MICRO |1, ,+2ZNAM1IZZNAMZZs CCBINES NAML AND NAM?
5. A micro name can be redefined.
LOCATION OPERATION | VARIABLE COMMENTS
) 0 N T30
MSG MICRO [1,6,*STRING¥
o L] * |
. . . |CONE USING FIRST DEFINITION
L] L] L] ‘
MSG MICRO [1,19,*ALPHANUMERLC 2zMSGz*
. |
. . . !CODE USING SEFOND DEFINITICN.
. . . WWIRST DEFINTTION TS INAGCESSIALE.
|
G, Micro substitution takes place before a line is assembled or examined for syntax. Thus,
the following is possible. ~
LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [0
NAM MICRO [14254% LOC SAL ADDRESS+*
L
tINAMEL
. CC SAa1 ADDPESS+1
7-3

7.2.2 DECMIC — DECIMAL MICRO

Using a decimal conversion, the DECMIC pseudo instruction converts the expression into a character
string to be saved under the name specified.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

micname DECMIC aexp,n

micname Name by which definition is called; 1-8 characters

aexp Absolute evaluatable expression

n Optional absolute evaluatable expression specifying number of characters
in the defined string. The defined string is a maximum of 10 characters
regardless of the magnitude of n. When base is M, COMPASS assumes that
n is decimal
If n is omitted or has a zero value, the micro contains the number of characters
indicated by the conversion to a maximum of 10 characters. If the converted
expression has more than n (or 10) digits, the most significant digits are
truncated. If the value has fewer than n digits, the string is right justified and
filled with leading zeros. All numbers are treated as positive.

Example:
LOCATION QPERATION | VARIABLE COMMENTS
) I 18]30
v DECMIC|8,6 }
|
SYMBL MICRO |1,,%2V2 STORAGE NFEDED*
SYMBL MICRO }1,,%001024 STORAGE NEEDEOD*

7.2.3 OCTMIC — OCTAL MICRO

Using an octal conversion, the OCTMIC pseudo instruction converts the value of the expressmn into a
uhamcter string to be saved under the name specified.

~3
i
IS

60360900 D

S

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
micname OCTMIC aexp, i
micrame Name by which definition is called; 1-8 characters
aexp Absolute evaluatable expression
n Optional absolute evaluatable expression specifying number of characters

in the string. The defined string is a maximum of 10 characters regardless
of the magnitude of n. When base is M, COMPASS assumes n a8 a decimal.
If n is omitted or has a zero value, the micro contains the number of
characters indicated by the conversion to a maximum of 10 characters.

If the converted expression has more than n (or 10) digits, the most significant digits are truncated.
If the value has fewer than n digits, the string is right justified and filled with leading zeros. All
rnumbers are treated as positive.

Example:
’_‘F"_
LOCATION OPERATION | VARIABLE COMMENTS
) 1 N T30

V1 OCTMIC (8,6 i

i

|

|

[}

!

i

%

MICRO |1,,%2V1% ADDITIONAL STORAGE NEEDED*
MICRO |1,,%002000 ADDITIONAL STORAGE NEEDED®

7.3 PREDEFINED MICRO NAMES

Several standard micros are predefined by the COMPASS assembler. They are avallable for every

assembly. The programmer simply writes the micro reference as desired.

These micros are automatically defined at the beginning of each assembly, and have the default values
specified below until they are redefined by the programmer; thereafter, the programmer's definition
holds until the start of the next assembly.

£0360900 D

7.3.1 DATE

The DATE micro contains the current date in 10 characters in the following form as obtained from the
operating system:

Ayr/mo/dy.

The micro reference is #DATE#.

7.3.2 JDATE

The automatic value of the JDATE micro is five digits yyddd, where yy is the year and ddd is the day
of year at the time of assembly. Thus, JDATE is the Jullan date form of DATE.

The micro reference is #JDATE#.

7.3.3 TIME

The TIME micro contains the current time of day in 10 characters in the following form as obtained
from the operating system:

A hr,min, sec.

The micro reference is #TIME#,

Example:
LOCATION OPERATION | VARIABLE COMMENTS
i N 18 T30
TITLE |PROGRAM ASSEMBLED ON #DATE® AT2TIME:
7.3.4 BASE

The automatic value of the BASE micro is a single letter D, M, or O, corresponding to the number
base currently in effect(specified by the most recent BASE pseudo instruction); it is initially D.

The micro reference is #BASE#.

7-6 60360900A —

7.3.5 CODE

The automatic value of the CODE micro is a single letter A, D, E, orl, corresponding to the
character code currently in effect (specified by the most recent CODE pseudo instruction); it is

initially D.

The micro reference is #CODE#.

7.3.6 QUAL

The automatic value of the QUAL micro is 0 to 8 characters comprising the qualifier symbol
currently in effect (specified by the most recent QUAL pseudo instruction); it is null initially and
whenever the blank qualifier is in effect.

The micro reference is #QUAL#,

7.3.7 SEQUENCE

The avtomatic value of the SEQUENCE micro is 18 characters comprising the sequence field (card
columns 73-90) of the first line of the COMPASS source statement most recently read from the main
source input file. Thus, if the current statement was read from the main source input file, SEQUENCE
is the sequence field of the first line of the statement. However, if the current statement is generated
(i.e., part of a macro call expansion, DUP expansion, etc.) or is read from a different file via the
XTEX' pseudo instruction, then SEQUENCE is the sequence field of the first line of the statement most

recently read from the main source input file.

The micro reference is #SEQUENCE#.

7.3.8 MODLEVEL

The automatic value of the MODLEVEL micro is the value (up to 9 characters) specified by the ML
parameter on the COMPASS control card. If no ML parameter is present, the automatic value of the
MODLEVEL micro is equal to that of the JDATE micro. When COMPASS is called by a compiler to
process embedded COMPASS subprograms, the automatic value of the MODLEVEL micro is supplied
by the calling compiler. The MODLEVEL micro is intended to be used when assembling a compiler
(or COMPASS itself), to provide the compiler modification level to be placed in word 6 of each PRFX

table in the binary output written by the compiler.

The micro reference is #MODLEVEL#,

60360900A

7.3.9 PCOMMENT

The automatic value of the PCOMMENT micro is the value specified by the PC parameter on the
COMPASS control card, with characters truncated from the right or blanks appended to the right, as
necessary, so that the micro's length is exactly 30 characters. If no PC parameter is present, the
automatic value of the PCOMMENT micro is 30 blanks. When COMPASS is called by a compiler to
process embedded COMPASS subprograms, the automatic value of the PCOMMENT micro is supplied
by the calling compiler, The PCOMMENT micro is intended to be used in a COMMENT pseudo in~
struction to specify words 8 - 10 of the PRFX table in the binary output. It may also be used, in
conjunction with the *F special symbol, to determine compiler options (debug mode, rounded arithme-
tic, etc.) in effect at the time of assembly.

The micro reference is #PCOMMENT#,

7-8 60360900A

CPU SYMBOLIC MACHINE INSTRUCTIONS 8

COMPASS recognizes symbolic notation for all CYBER 70 Series Central Processor Unit Instructions,
all 7600 Central Processor Unit instructions and all 6000-Series Computer Systems Central Processor

Unit instiuctions.

The assembler identifies each symbolic instruction according to its syntax and generates a one parcel
15-bit instruction or a two parcel 30-bit instruction. The object code for an instruction is generated

in the block in use when the instruction is encountered.

8.1 MACHINE INSTRUCTION FORMATS

Figures &-1 and 8-2 illustrate the formats for CPU 15-bit and 30-bit instructions generated by the

assembler.

gh i |k |
14 08 05 02 00

Figure 8-1, CPU 15-Bit Instruction Format

gh [L] Kk
29 23 20 17 14 00

Figure 8-2, CPU 30-Bit Instruction Format

oh 6-bit instruction code

ghi 9-bit instruction code

i 3-bit code specifying one of eight designated registers (e. g. , Ai)
3-bit code specifying one of eight designated registers (e. g. , Bj)

k 3-bit code specifying one of eight designated registers (e. g., Bk)

K 18-bit integer value used as an operand, address of an operand, or branch destination
address.

jk 6-hit integer value specifying a shift count or mask count

Figure 8-3 illustrates possible arrangements of one and two parcel instructions in a 60-bit CPU
instruction word. Generally, the assembler does not allow a two-parcel instruction to begin in the
fourth parcel of a word. However, the assembler may generate a 30-bit instruction in a fourth
parcel when all of the following are true:

1. The assember is at the fourth parcel (position counter is 15)

603609004 8-1

2. The instruction does not include K. Note that if K is included in the syntax and reduces to zero,
it requires 30 bits because the evaluation of K takes place in the second pass whereas the space
for the instruction is reserved in the first pass.

—

3. The instruction does not have a location field symbol or is not otherwise forced upper.

When a two parcel instruction begins in the last parcel of a word, the CYBER 70/Model 76 or 7600
executes it as if there were a fifth parcel in the instruction word and that parcel contained all zeros,
On the 6400 or CYBER 70/Model 73, this condition causes an error exit. On the 6600 or CYBER _
70/Model 74, the CPU takes the first parcel of the current instruction.

Before it assembles an instruction that must begin in the first parcel (forced upper) and after it
assembles an instruction that requires the instruction following it to be forced upper, the assembler
completes a word as follows:

Lower 15 bits remain They are packed with a one parcel NO (pass) instruction
Lower 30 bits remain They are packed with a two parcel SB0 B0+K instruction
Lower 45 bits remain They are packed with a NO instruction and an SB0 B0+K instruction
First Second Third Fourth
Parcel Parcel Parcel Parcel
15 15 15 15
59 44 29 14 00
30 15 15
59 29 14 00 —_
15 30 15
09 44 14 00
15 15 30
59 44 29 00
| 30 30 j
59 29 -00

Figure 8-3. Arrangements of Instructions in a 60-bit CPU Word

8-2 60360900A —

8.2 IMSTRUCTION EXECUTION
8.2.1 6600/6700AND CYBER 70/MODEL 74 EXECUTION

After an exchange jump start by a PPU and CPU program, CPU instructions issue automatically iu the
oripina:; sequence, to an 8-word instruction stack. The stack can hold a program loop counsisting of up i
26 15-bi: instructions and one 30-bit instruction.

Instructi »ne are read from the stack one at a time and issued to the functional units (table 8-1) for
executior, A scoreboard reservation system in CPU control keeps a current log of which units and

operating registers are reserved for computation results from functional units.

Each funstional unit executes several instructions, but only one at a time. Some branch instructions

reguire two units, the second unit receives direction from the branch unit.

The rate ~f iwssing instructions varies from the maximum of one instruction every 190 nanoseconds
{one minor cycle). Sustained issuing at this rate may not be possible because of functional unit ana Ui
conflict ¢r because of serial rather than simultaneous operation of units. Program run time can be
decreased by efficient use of the units. Instructions that are not dependent on previous steps may be
arranged or nested in program areas where they may be executed concurrently with other operations to
eliminate dead spots in the program and increase the instruction issue rate.

The following steps summarize instruciion issuing and execution:

@ An instruction is issued te a function unit when:
Specified functional unit is not reserved
Specified result register is not reserved for a previous result

Instructions are issued to functional units at minor cycle intervals when no reservation conflicts

°
are present.

® Insiruction execution starts in a functional unit when both operands are available. Execution is
detaved when an operand is a result of a previous step which is not complete.

¢ No delay occurs between the end of a first unit and the start of a second unit which is waiting for
the results of the first.

® After a hranch instruction no further instructions are issued until instruction has been executed.

In the execution of a branch instruction, the branch unit uses:

Increment unit to form the instructions that branch to K + Bi and branch to K if Bi ...
Long add unit to perform the instructions that branch to K ifXj...
Timne spent in the long add or increment units is part of total branch time.

is computed from the end of increment unit time to the time an

Read central memory access time
Minimum time is 500 nanoseconds assuming no central

operand is available in X operand register.
memory pank conflict.

t The 6700 also includes a 6400-type central processor unit

80360900A

TABLE 8-1, CYBER 70/Model 74 and 6600/6700 FUNCTIONAL UNITS
UNIT GENERAL FUNCTION
Branch Handles all jumps or branches from the program.
Boolean Handles the basic logical operations of transfer, logical product,
’ logical sum, and logical difference.
Shift Executes operations basic to shifting. This includes left (circular)

Floating Add

Long Add
Floating Multiply

Floating Divide

Increment

and right (end-off sign extension) shifting, and normalize, pack, and
unpack floating point operations. The unit also includes a mask
generator.

Performs single or double precision floating point addition and
subtraction on floating point operands.

Performs addition and subtraction of two 60-bit fixed point operands

Performs single or double precision floating point multiplication on
floating point operands

Performs single precision floating point division of floating point
operands; also counts the number of 1 bits in a 60-bit word.

Performs one's complement addition and subtraction of 18-bit operands

8-4

60360900A

8.2.2 >200/6400/6500 AND CYBER 70/MODEL 72, 73 EXECUTION

The 6200, 6400, 6500 and C BER 70/Mode! 73 systems CPU has a unified arithmetic unit, rather
than separate functional units as in the 6600 system. Instructions in the CPU are executed sequentially.

For eficient coding in the central processor unit:
Always attempt to place jump instructions in the upper portion of the instruction word to avoid both
the additional time for RNI (2 minor cycles) and the possibility of a memory bank conflict with
(P-1).
Where possible, place load/store instructions in the lower two portions to avoid lengthening
execution times.
Reading the next instruction words of a program from central memory, RNI, is partially concurrent
with ins ruction execution. RNI is initiated between execution of the first and second instructions of the

word be.ng processed. Initiating RNY operation requires two minor cycles; the remainder of the HENI
is paraliel in time with execution of the remaining instructions in the word:

P 1 2 3

N
Initiate \\ m

Execution of

RNI
‘ *ﬂ’\‘——“—— instructions —+>

2 and 3

200 .RNI
| SSEC 4—\1\——-———minlmum of I\—-—->
i 890 NSEC
Total RNI time -

Y

In calculating execution times, two minor cycles are added to each instruction word in a program to
cover the RNI initiation time. Exceptions are the return jump and the jump instructions (in which the
jump condition is met) when they occupy the upper position of the instruction word. Since the times for
these instructions already include the time required to read the new instruction word at the jump

address, no additional time is consumed (Appendix A).

60360900A

Example:

P [Jump to K (met) Pass Pass
K |Add1 Add 2 Load | Load
Instruction Minor Cycles Required
Jump 13
Add 1 5
RNI Initiation 2
Add 2 5
Load 12
Store 10
Total Time 47 Minor Cycles

After RNI is initiated (between the first and second instructions of the word), a minimum of eight
minor cycles elapses before the next instruction word is available for execution. Even if the lower
order positions of the word should require less than eight minor cycles, a minimum of eight minor
cycles is allowed.

Example:

Jump to K

P P
(not met) ass ass

P+1

8.2.3 7600 AND CYBER 70/MODEL 76 EXECUTION

Execution of an arithmetic or logical machine instruction takes place in one of nine functional units in
the computation section of the CYBER 70/Model 76 or 7600 CPU. Each is a specialized unit with
algorithms for a portion of the CPU instruction execution. Table 8-2 lists the general function of each
unit. A number of functional units may be in operation at the same time.

8-6 60360900C

TABLE 8-2. CYBER 70/Model 76 and 7600 FUNCTIONAL UNITS

UNIT GENERAL FUNCTION
Boolean Handles the basic logical operations of transfer, logical product, logical
sum, and logical difference. It also performs the pack and unpack
floating point operations.
Shift Executes operations basic to shifting. This includes left (circular)
and right (end-off sign extension) shifting, and mask generation,
Norraalize Performs the normalize operations.
Floating Add Performs single or double precision floating point addition or subtraction
on floating point operands.
! Long Add Performs integer addition or subtraction of two 60-bit fixed point ;
| operands. ’
Fioating Multiply Performs single or double precision floating point multiplication on
floating point operands.
Floa:ing Divide Performs single precision floating point division of floating point
operands.
Pepvlation Count Counts the number of 1 bits in a 60-bit word.
; Incy:ment Performs one's complement addition and subtraction of 18-bit operands.

A functional unit receives one or two operands from operating registers at the beginning of instruction
execution and delivers the result to the operating registers after performing the function. The functional
units do not retain any information for reference in subsequent instructions. The units operate in three-
address mode with source and destination addressing limited to the operating registers.

Except for the floating multiply and divide units, all functional units have one clock period segmentation.
This means that the information arriving at the unit, or moving within the unit, is captured and held

in a new set of registers at the end of every ciock period. It is therefore possible to start a new set

of operands for unrelated computation into a functional unit each clock period even though the unit may
require more than one clock period to complete the caleulation. This process may be compared to a
delay line in which data moves through the unit in segments to arrive at the destination in the proper
order but at a later time. All functional units perform their algorithms in a fixed amount of time. No
delays are possible once the operands have been delivered to the front of the unit.

The floating multiply unit has a two clock period segmentation. Operands may enter the multiply unit
in any ciock period providing there was no multiply operation initiated in the preceding clock period.

The floating divide unit is the only functional unit in which an iterative algorithm is executed. There is
little segmentation possible in this unit. However, to increase execution speed, the beginning of a new
divide operation can follow a previous divide operation by 18 clock periods for a gain of 2 clock periods.

mstructions involving storage references for operands or program branching are difficult to time.
Program branching within the instruction stack causes no storage references and small program loops

can therefore be precisely timed.

60360900A

8.3 OPERATING REGISTERS

Twenty-four registers minimize memory references for arithmetic operands and results:

Function Identity Length Number
Operand Registers X0 - X7 60 Bits 8
Address Registers A0 - A7 18 Bits 8
Index Registers B0 - B7 18 Bits 7 8

A register is reserved if it is the destination of an instruction that has been initiated but has not been
completed. A register is free in the clock period (or minor cycle) following the store into it.

8.3.1 X REGISTERS

Eight 60-bit X registers in the computation section of the CPU designated X0, X1,...,X7 are the
principal data handling registers for computation. Data flows from these registers to the SCM (CM)
and the LCM (not ECS). Data also flows from SCM (CM) and L.CM (not ECS) into these registers,
All 60-bit operands involved in computation must originate and terminate in these registers.

Operands and results transfer between SCM (CM) and these registers as a result of placing SCM (CM)
into corresponding address registers,

On the CYBER 70/Model 76 and 7600, the X registers also serve as address registers for referencing
single words from LCM. X0 is used as the LCM relative starting address in a block copy operation.

8.3.2 A REGISTERS

Eight 18-bit A registers in the computation section of the CPU, designated as A0, Al,... , A7, are
essentially SCM (CM) operand address registers. With the exception of A0 and X0, A registers are
associated one-for-one with the X registers. Placing a quantity into an address register Al - A5
causes an immediate SCM (CM) read reference to that relative address and sends the SCM (CM) word
to the corresponding operand register X1 - X5. Similarly, placing a value into address register A6
or A7 causes the word in the corresponding X6 or X7 operand register to be written into that relative
address of SCM (CM).

The A0 and X0 registers operate independently of each other and have no connection with SCM (CM).
A0 is used as the relative SCM (CM) starting address in a block copy operation and for scratch pad or
intermediate results,

8.3.3 B REGISTERS

Eight 18-bit B registers in the computation section of the CPU designated as BO, B1,...,B7 are
primarily indexing registers for controlling program execution. Program loop counts can be incremented
and decremented in these registers.

8-8 60360900A

Prograr: addresses may be modified on the way to an A register by adding or subtracting B register
quantiti¢ s, The B register also holds shift counts for pack and normalize operations and the channel
number for channel status reqgiests.

BO alwavs contains positive zero; that is, BO is held clear. Often as a programming convention, Bl
or B7 contains positive 1. See the Bl=1, the B7=1, and the R= pseudo instructions.

8.4 SYMBOLIC NOTATION

This section describes notation used for coding symbolic CPU machine instructions. Instructions are
listed according to octal sequence. Instructions unique to a computer system are identified as such.
These inrstructions can be assembled on any machine but will execute properly on the noted machine only.
For details and special conditions arising during instruction execution, refer to the relevant hardware
system reference manual.

The locztion field of a symbolic machine instruction optionally contains a location symbol. When the
symbol s present, it is assigned the value of the location counter after the force upper (if any) occurs.

The operation field of a symbolic CPU machine instruction contains a mnemonic operator, the last two
characte re of which are often a register designator.

The var able field contains one, two, or three subfields. For 15-bit instruction, subfields take the
forms:

r
-r } r is a register designator
r,r
repr . .
ter tor + -~ *
ropr } op is a register operato /
+k jk is an absolute expression specifying a shift count or mask bit count. If

the expression value is in the range ~60 to -0, inclusive, COMPASS adds 60 to it.
If it is less than -60 or greater than 63, COMPASS sets a warning flag and uses
the low-order 6 bits of the expression value.

For a 30-bit instruction, subfields take the torms:

K The single subfield contains an absolute, relocatable, or external expression
that does not include a register.

ropK The single subfield contains an absolute, relocatable, or external expression
that includes a register designator; op is an expression operator:

+ - * /

r,K One subfield contains a register designator, the other subfield contains an
absolute, relocatable, or external expression that does not include a register
designator.

r,v,K Two subfields contain register designators; a third contains an absolute,

relocatable, or external expression that does not include a register.

6036090083 5.

2]

In the formats and examples, K reduces to an 18-bit value that represents one of the following in pass
two

An absolute address or a word count

An external symbol + an integer value

An address that is relocatable relative to the program origin or common block origin.
An address of a literal

If K is negative, the assembler inserts the one's complement of the integer value in the K portion of the
instruction.

In the descriptions of the formats, +K designates that the evaluation of all non-register elements can
result in a positive or negative value for the expression (see section 2. 8. 2 Evaluation of Expressions).
Use of +K to represent the integer portion of the expression does not imply that the first term oper-
ator in the expression is an expression operator. If you consider that a and b are terms in expression
K, then +K indicates that the sum of the values of a and b is positive and -K indicates that the sum of
the values is negative, Thus, ~-K does not mean that a~-b would become -a+b.

In the following example, the symbol XRAY has the value 407 . The first term operator (-) forms the
value 7773708. Subtracting 1 from this results in 7773678 or a -K (—4108).

I
‘ -y 3 LOCATION OPERATION | VARIABLE COMMENTS
Code Generated

1 1 8 30

13 7212777367 ' Sx1 X2-XRAY=-1 .

—_ =y —

Unless otherwise noted, subfields can be in any order. COMPASS also allows an added degree of
flexibility by allowing the variable subfields of an instruction to be wrltten in the operation field with
each subfield preceded by a comma. For example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 1 18 30

T
T

UXx1 N2 4X72 |

can be written

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 30
I
26173 (IX1,82 |x3 i

The instructions are identical to the assembler.

’

8-10 ‘ 60360900A

Similarl s, the following instructions are regarded as identical. Use of this feature is optional.

LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 130
04233 .0661 £2 82,33,K l
06230 .6661 £3,82 |83,k :
062300661 £2,82,83 K |
0423010661 Ea,ez,és,K :

8.4.1 PROGRAM STOP OR EXCHANGE JUMP INSTRUCTION
(CYBER 70/MODEL 72, 73, 74 OR 6000 SERIES)

The CEJ,'MEJ Panel Switch determines whether this instruction causes the central processor unit to
halt or tc execute an exchange jump. The DISABLE position disables the central exchange jump or
the monitor exchange jump. In this case, PS halts the central processor unit at the current step in
the program. An exchange jump is necessary to restart the central processor unit. The ENABLE
position enables the jump capabilities. In this case, PS causes an exchange jump to monitor address
(MA) in tie exchange package.

The contents of the location field become a sub-subtitle on the assembler listing, The assembler
forces upper before and after assembling a PS instruction.

Formats: CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch
i
| Operation Variable | Description Size Octal Code
! Ps Program stop or exchange jump to (MA) 30 bits 00000 00000
E P35 K Program stop or exchange jump to (MA) 30 bits 0000K
i
Example:
Qode Generated LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 T30
T
8000000000 PS ;

£0360900A

8.4.2 ERROR EXIT INSTRUCTION (CYBER 70/MODEL 76 OR 7600)

IS execution is treated as an error condition and the machine sets the program range condition flag

in the PSD register. The condition flag then generates an error exit request which causes an exchange -
jump to address (EEA). All instructions issued prior to this instruction are run to completion. Any

instruction following this instruction in the current instruction word is not executed. When all operands

have arrived at the operating registers as a result of previously issued instructions, an exchange

jump occurs to the exchange package designated by (EEA).

The i, j, and k designators, which are ignored by the computation section, are set to zero by the

The program address stored in the exchange package on the terminating exchange jump is

assembler.
This is true regardless

advanced one count from the address of the current instruction word (P=P+1).
of which parcel of the current instruction word contains the error exit instruction.

The error exit instruction is not intended for use in user program code. The program range condition
flag is set in the PSD register to indicate that the program has jumped to an area of the SCM field which
may be in range but is not valid program code. This should occur when an incorrectly coded program
jumps into an unused area of the SCM field or into a data field. The program range condition flag is
These conditions can be determined on the basis

also set on the condition of a jump to address zero.
of the register contents in the exchange package. The existence of an error exit condition resulting
from execution of this instruction can thus be deduced.

The location field of an ES instruction becomes a sub-subtitle on the assembler listing.

Format: Functional Unit: None

S—

Operation Variable Description Size Octal Code
ES Error exit to EEA 15 bits 00000
ES K Error exit to EEA 15 bits 00000 ~
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) n 18 [30
00000 ES :
60360900A

8-12

8.4.3 ETURN JUMP INSTRUCTION

When this instruction is execu'ed, an unconditional jump to the current address plus one [(P)+1)] is
stored in the upper half of rel:tive address K in SCM and control then transfers to K+1 for the next
instruction. The lower half of the stored word is all zeros. The instruction always branches out of
the instriction stack and voids all instruections currently in the instruction stack.

After the instruction is executed the octal word at K is:

Addressk |o4o0o0 | P+1 | 0000000000
59 < 29 00
Bi=B j

This instruction is intended for transferring control to a subroutine between execution of the current
instruction word and the following instruction word. Instructions appearing after the return jump
instruction in the current instruction are not executed. The called subroutine must exit at address K
in CM (SCM). A jump to address K of the branch routine returns the program to the original sequance.
The asscmbler sets the unused j designator to zero.

A force apper occurs after the instruction is assembled.

CYBER 70/Moadel 74 or 6600/6700 Functional Unit: Branch

Format: CYBER 70/Model 76 or 7600 Functional Unit: None
Operaticn Variable Description Size Octal Codgl
RJ K Return jump to K 30 bits 0100K I
Example:

Code Generated {OCATION OPERATION | VARIABLE COMMENTS

h) N 18 T30
J— F
N1G90I"250 + RJ HFLP I

60360900A K-13

8.4.4 ECS INSTRUCTIONS (CYBER 70/MODELS 72, 73, 74 OR 6000-SERIES)

These instructions initiate either a read or write operation to transfer (Bj) + K 60-bit words between —
extended core storage (ECS) and central memory (CM). The initial ECS address is (X0) + RApcgs
the initial CM address is (A0) + RACM‘

The assembler forces upper before assembling an RE or WE instruction.

Three error conditions cause an error exit to the lower-order 30 bits of the instruction word
containing the RE or WE instructions. These 30 bits should always hold a jump to an error
routine. The conditions are:

1. Parity error(s) when reading ECS. If a parity error is detected, the entire block of data
is transferred before the exit is taken.

2. The ECS bank from/to which data is to be transferred is not available because the bank
is in maintenance mode, or the bank has lost power. If either of these conditions exists
on an attempted read or write, an immediate error exit is taken.

3. An attempt to reference a nonexistent address. On an attempted write operation, no data
transfer occurs and an immediate error exit is taken. If the attempted operation is a
read, and addresses are in range, zeros are transferred to central memory. This is a
convenient high-speed method of clearing blocks of central memory.

For additional information about these instructions, refer to the CONTROL DATA® CYBER 70
Computer System 7030 Extended Core Storage Reference Manual, Publication No. 60347100,

Formats: Functional Unit: None
Operation Variable Description Size Octal Code
RE Bj Read extended core storage 30 bits 011j0 00000
RE K Read extended core storage 30 bits 0110K

RE Bj+K Read extended core storage 30 bits 011jK

‘WE Bj Write extended core storage 30 bits 012j0 00000
WE K Write extended core storage 30 bits 0120K

WE Bj+K Write extended core storage 30 bits 012jK

8-14 60360900B —

~ Examples:
LOCATION OPERATION | VARIABLE COMMENTS
Code Generated
1 n 18 T30
1
gii1noo2ran RF 2onng ;
|
g114n001€00 PE P7+1000P |
212€901c30 WE 1300B+RS i

8.4.5 LCM BLOCK COPY INSTRUCTIONS (CYBER 70/MODEL 76 OR 7600)

Block copy instructions move quantities of data between LCM and SCM as quickly as possible. All
activity in the CPU other than 1/0 word requests is stopped during a block copy operation, All
instructicas issued prior to a block copy instruction are executed to completion and no further
wstructions issue until the block copy is nearly completed. As a result of these restrictions the

data flow between LCM and SCM can proceed at the rate of one 60-bit word each clock period.

When an /0 multiplexer word request for SCM occurs during this transfer, the data flow is

interrupicd for one clock period. The I/O word address is inserted in the stream of addresses to

the SAS, ind the addresses for the block copy are resumed with a minimum of a one clock period delay.
An additional delay will occur if the I/O reference causes a bank conflict in SCM.

603609008 8-14.1

The lengih of the block is determined by adding the quantity K to the contents of register Bj. FEither
quantity iaay be used as an increment or decrement. The result is an 18-bit integer which is truncated
to a 10-bhit quantity. Thus, a r.aximum block size is 17778. (For example, if the result of the add is
0030008, the instruction transfers 10008 words.) No error indications are given when this occurs unless
the field iength is exceeded causing a block range error. If the block length is zero, the instruction
becomes a do-nothing instruction; the condition is not error flagged.

Relative source or destination addresses begin at (A0) in the SCM and at the relative LCM address
determin:d from the lowest order 19 bits of (X0). If (X0) is negative, the 19 bits are treated as a
positive integer. If the sum of (X018-00> and the block count exceeds the (FLL), the copy is not
executed and the LCM block range condition flag is set in the PSD register. Similarly, if the sum of
(A0) and the block exceeds (FLS), the copy is not executed and the SCM block range condition flag ix
set in the PSD register.

Any error condition occurring during execution of a block copy instruction causes a flag to be set in the
PSD regi :ter but does not interrupt the block copy instruction. No further instructions are issued during
siock transfer of data. Instructions already issued are completed; all other activity, with the exception
of 1/0 word requests, stops.

Formats: Functional Unit: None
Operation Variable Description Size Octal Code
|RL Bj Block copy (Bj) words from LCM to SCM 30 bits 011j0 000GO
RL K Block copy (K) words from LCM to SCM 30 bits 0110K
RL Bj+K Block copy (Bj) + K words from LCM to
sSCM 30 bits 011jK
WL K Block copy (K) words from SCM to LCM 30 bits 0120K
WL Bj Block copy (Bj) words from SCM to LCM 30 bits 012j0 00000
WL Bj+K Block copy (Bj) + K words from SCM to
LCM 30 bits 012jK
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30
01150010C0 PL 1000P+RS |
!
nN110002000 RL 200MR |
|
N124L4777€77 WL 34-1008 |

60360900A 8-15

8.4.6 EXCHANGE JUMP INSTRUCTION (CYBER 70/MODELS 72, 73, 74 OR 6000-SERIES

This instruction unconditionally exchange jumps the central processor, regardless of the state of the
monitor flag bit. Instruction action differs, however, depending on whether the monitor flag bit is

set or clear.

Operation is as follows:

1. Monitor flag bit clear: The starting address for the exchange is taken from the 18-bit Monitor

Address register.
monitor flag bit is set.

2. Monitor flag bit set: The starting address for the exchange is the 18-bit result formed by adding

K to the contents of register Bj. This starting address is an absolute address.

This starting address is an absolute address.

exchange, the monitor flag bit is cleared.

During the exchange, the

During the

For additional information, refer to the Standard Option 10104-A/B/C/D Central and Monitor Exchange
Jumps for 6600 Reference Manual, Pub. No., 60203200.

The assembler forces upper before and after assembling an XJ instruction.

Functional Unit: Branch

Formats:
Operation Variable Description Size Octal Code
XJ Exchange jump to MA if in program mode 30 bits 01300 00000
XJ Bj Exchange jump to (Bj); flag set 30 bits 0130 00000
XJ K Exchange jump to K; flag set . 30 bits 0130K
XJ Bj+K Exchange jump to (Bj) + K; flag set 30 bits 013jK
Examples:
QQdLQQQ_S__I‘&tEd LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
01IN00000N XJ ;
11317001000 X J 16008 '
[
N1357006401 XJ BS5+60UR |
60360900A

8-16

8.4.7 EXCHANGE EXIT INSTRUCTION (CYBER 70/MODEL 76 OR 7600)

The normal termination for in exchange package execution interval is through execution of an exchange
instruction (MJ). The exit niode flag in the PSD register determines the source of the exchange package.

This instruction has priority over all other types of exchange jump requests. If an I/0 interrupt request
or an crror exit request occurred prior to execution of this instruction, it is denied and the exch.nge
jump specified by the MJ is executed. The rejected interrupt request is not lost, however. The
condit’ons that caused it are reinstated when the exchange package enters its next execution interval.

The MT instruction voids the instruction word stack. Any instructions remaining in the stack are not
executed, '

The system makes no protective tests on the exchange jump address.

Exit Mode Flag Set: When the exit mode flag is set, the MJ instruction causes the current program
sequence to terminate with an exchange jump to a relative address in the SCM fieid for the current
program. The exchange package is located at relative address (Bj) + K. An overflow of the lowest
order 16 bits of this result causes an error condition that is not sensed in the hardware. Should a
program erroneously execute an exchange exit instruction with an overflow condition, the exchange
jump sequence begins at the absolute SCM address corresponding to the lowest order 16 bits of this
sum. This 30-bit form of MJ is privileged to a monitor program.

Exit Mode Flag Not Set: When the exit mode flag is not set, the object program terminates the execution
interv:l with a 15-bit form of the MJ instruction. The normal exit address (NEA) is the absolute address
of the sxchange package. This is an absolute address in SCM and is generally not in the SCM field for

the current program. - This form of the MJ instruction has a blank variable field; the assembler sets the

j and k designators to zero.
This instruction is used for calling a system monitor program for input/output, monitor calls, etc.

All operating register values, program addresses, and mode selections are preserved in the exchange
package for the object program so that the object program can be continued at a later time. The program
address in the object program exchange package is advanced one count from the address of the

instruction word containing the exchange exit instruction. 'The monitor program normally resumes the
object program at this address.

The assignment of (NEA) is a responsibility of the system monitor program. If (NEA) has more than

16 bits of significance, the upper bits are discarded and the lower 16 bits are used as the absolute
address in SCM for the exchange jump. A force upperoccurs after the instruction is assembled.

60360900A 8-17

Formats: Functional Unit: None
Operation Variable Description Size Octal Code
MdJ Exchange exit to NEA if exit flag clear 15 bits 01300
MJ Bj Exchange exit to (Bj) if exit flag set 30 bits 013j0 00000
MJ Bj+K Exchange exit to (Bj) + K if exit flag set 30 bits 013jK
MJ K Exchange exit to K if exit flag set 30 bits 0130K

Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 I30

01200 J ,

|
0134000010 M Ra+500R i

|
013Fr7776477 MJ ~300B+R6 |

I
£12000060N MJ 6N0R |

8.4.8 DIRECT LCM TRANSFER INSTRUCTIONS (CYBER 70/MODEL 76 OR 7600}

A single word transfer either reads one 60-bit word from LCM and enters this word into an X register
or writes one 60-bit word directly into LCM from an X register.

The execution time for transferring a word from LCM to an X register depends on whether the

requested word already resides in one of the bank operand registers.

A read LCM instruction for a

word not currently residing in a bank operand register will require 17 clock periods for delivering a
field of eight 60-bit words to the designated X register. A read LCM instruction for a word already
residing in a LCM bank operand register as a result of a previous instruction will require three clock

periods to deliver the requested word to the designated X register.

Thus, although the first 60-bit

word will require 17 clock periods, the second through eighth words in the same L.CM word require
three clock perods each, This means that consecutive L.CM operands are available, on an average,
every five clock periods as opposed to SCM operands at eight clock periods.

The LCM address is determined from (Xkjg-00).
a positive integer.
place and the LCM direct range condition flag is set in the PSD register.

destination register.

Even if (Xk) is negative, the 19 bits are treated as
If the address exceeds the field length (FLL), the word transfer does not take

Xj is either the source or

instructions are buffered to the extent that each issues in one minor cycle unless a previous LCM

reference is in process.

until the requested word is delivered.

When an RX instruction issues, the LCM busy flag is set and remains set

For a write (WX) instruction, if the word cannot be entered immediately in the proper bank operand
register, it is held in the LCM write register until the bank operand register is free.

60360900A

Formats: Functional Unit: None
Operation Variable Description Size Octal Code
RXj Xk Read LCM at (Xk) and set Xj 15 bits 014jk
WXj Xk Write (Xj) into LCM at (Xk) 15 bits 015jk

Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 l30
014AS PX6 XS ;
|
|

1179 WX7 X0

§.4.9 RESET INPUT CHANNEL BUFFER INSTRUCTION (CYBER 70/MODEL 76 OR 7600)

This instruction is exclusively a 7600 instruction. It initiates a new record transmission from a PPU
to SCM. This instruction prepares the input channel (Bk) buffer for a new record transmission from 2
PPU to SCM. The instruction clears the input channel buffer address and resets the input channel

assembly counter to the first 12-bit position in the SCM word.

This instruction is intended to be privileged to an input routine, that is, one that terminates a record
of incoming data and prepares for the next record.

The input routine removes the data in the input channel buffer and then executes this instruction to
prepare the buffer for the next incoming record. This instruction is effective only if the monitor mode
flag is set in the program status register. If the monitor mode flag is cleared, this instruction
becomes a pass instruction. When this instruction issues, it will execute the required channel functions
without regard to the current status or activity at the input channel buffer,

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If
higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the
channel number. If (Bk) is zero, this instruction becomes a pass instruction.

60360900A 8-19

Two or more consecutive RI instructions referring to different channels will issue in consecutive
clock periods with no interference resulting in the multiplexer.
the same channel, they repeatedly perform the same function but do not cause interference in the

If two consecutive instructions refer to

multiplexer.
Format: Functional Unit: None
Operation Variable Description Size Octal Code
RI Bk Reset input channel (Bk) buffer 15 bits 0160k
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1] 18 30
1607 PI R7 i

8.4.10 SET REAL-TIME CLOCK INSTRUCTION (CYBER 70/MODEL 76 OR 7600)

This instruction reads the contents of the CPU clock period counter (real-time clock) and places them in

The 18-bit clock counter advances one count in two's complement mode for each clock period. The
The CPU is interrupted when the overflow bit is set.
It permits measurement of CPU execution.

Bj.
21'7 bit is the overflow bit.
is handled, the bit is cleared.

When the interrupt

Format: Functional Unit: None
Operation Variable Description Size Octal Code
TBj Set Bj to current clock time 15 bits 016j0
TBj K Set Bj to current clock time; K is ignored. 15 bits 016j0

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1} n 18 30
011670 TR7 !
60360900A

§8-20

8.4.11 HESET OUTPUT CHANNEL BUFFER INSTRUCTION (CYBER 70/MODEL 76 OR 7600)

This instruction initiates a new record transmission from SCM to PPU. It clears the output channel
(Bk) buffer address and disassembly counter, transmits a record pulse over the output channel 'data
path to the PPU, and initiates an SCM reference for the first word to be transmitted.

This inrtruction is intended for execution in an output routine to initiate a new record transmission
over an output channel data path. The output channel buffer is normally inactive when this instruction
is exect ted. The output channel buffer is loaded with the data for the next record, and this instruction
is executed to initiate the transmission. The record pulse is transmitted along with the word pulse as
soon as the first word of data from the SCM is entered in the output channel disassembly register.

This instruction is effective only if the monitor mode flag is set in the program status register. If the
monitor mode flag is cleared, this instruction becomes a pass instruction. When this instruction issues,
it will execute the required channel functions without regard to the current status or activity at the
output channel.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If
higher crder bits are set in (Bk), the lowest order four bits are masked out and used to determine the
channel number. If (Bk) is zero, this instruction becomes a pass instruction.

Normally, the output channel buffer is inactive when this instruction is executed, the program having
checked for completion of the previous record before issuing an RO, The program can detect the end
of record in two ways. First, it can compare the output channel buffer address with a known record
length. The alternative is to obtain a response from the peripheral unit over the corresponding input
channel data path. If data is moving over the output channel data path when an RO is issued, the RO
instruction takes priority, with a resulting loss of data in the previous record. Two or more

o consecutive RO instructions referring to different channels will issue in consecutive clock periods with

no interference resulting in the multiplexer. If two consecutive instructions refer to the same channel,
they transmit a record pulse over the output path and restart the buffer repeatedly. A data word may
or may not be transmitted depending on the timing of the instructions and conflicts that occur.

Format: Functional Unit: None
Operation Variable Description Size Octal Codle
RO Bk Reset output channel (Bk) buffer 15 bits 0170k
Example:

LOCATION OPERATION | VARIABLE COMMENTS

Code Generated

) " 18 J0

b
1

01715 RA a5 \

60360900A 8-21

8.4.12 READ CHANNEL STATUS INSTRUCTIONS (CYBER 70/MODEL 76 OR 7600)

These instructions copy the contents of the input or output channel buffer address register indicated by
masking (Bkgg_go) and enter the value in Bj. The instructions are used for monitoring the progress of
an input channel buffer or an output channel buffer,

A channel buffer area is divided into fields by the threshold testing mechanism. The first half of the
buffer area constitutes one field and the last half of the buffer area the other field. An I/O multiplexer
interrupt request is generated by the threshold testing mechanism whenever the channel buffer address
is advanced across a field boundary. This occurs at the center of the buffer area and at the end of the
buffer area.

The IBj instruction is the only vehicle for a program to determine whether an 1/0 multiplexer interrupt
request was generated by a buffer threshold test or by a record flag. The program must retain the
input channel buffer address from one interrupt period to the next. If the buffer address is in the same
field as for the previous interrupt, the interrupt request was from a record flag, If the buffer address
is in the opposite field from the previous interrupt, the interrupt request was from a threshold test.

The lowest order four bits of (Bk) are used in these instructions. The higher order bits are ignored.
If higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the
channel number, If (Bk) = 0, the IBj instruction reads the contents of the CPU clock period counter.
However, the OBj instruction places all zeros into Bj.

Two or more IBj instructions or OBj instructions may occur in consecutive program instruction locations
referencing the same or different channels. These instructions may issue in consecutive clock periods
providing the Bj register reservations do not cause a delay. No interference will result in the multi-
plexer in these situations,

If correct results are to be obtained, an IBj instruction must not immediately follow an RI instruction
nor may an OBj instruction immediately follow an RO instruction. A delay of one clock period is
sufficient.

Formats: Functional Unit: None
Operation Variable Description Size Octal Code
IBj Bk Bj =——Read input channel (Bk) status 15 bits 016jk
OBj Bk Bj «—Read output channel (Bk) status 15 bits 017jk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 '30
1L
n166L R6G ny i
{
01756 nB5 6 }

8-22 60360900A

8.4.13 UNCONDITIONAL JUMP INSTRUCTION

This instruction adds the cont2nts of index register Bi to K and branches to the relative CM (SCM)
address specified by the sum. The remaining instructions, if any, in the current instruction word are
not executed. The branch address is K when i is zero.

Addition is performed in an 18-bit one's complement mode. On a CYBER 70/Model 72, 73, or 74 cr 60C0-
-Series riystem this instruction voids the stack. On a CYBER 70/Model 76 or 7600, the instruction word
stack is not altered by execution of this instruction. The instruction is intended to allow computed branch
point de stinations. It is the only CPU instruction in which a computed parameter can specify a program
branch destination address. All other jump instructions have preassigned destination addresses at

execution time.

The assembler sets the unused j designator to 0. A force upper occurs after the instruction is assembled.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch
CYBER 70/Model 76 or 7600 Functional Unit: None

Format:
Operation . Variable Description Size Octal Code
JP Bi+K Jump to (Bi)+K 30 bits 02iiK
JP Bi Jump to (Bi) 30 bits 02ii0 00000
JP K Jump to K 30 bits 0200K
Exampl::

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 1 [30
0255005247 + Jp R54+GOTO |
|
0277angnon Jp n? i

8.4.14 X-REGISTER CONDITIONAL BRANCH INSTRUCTIONS

These instructions cause the program sequence to branch to K or to continue with the current program
sequence depending on the contents of operand register Xj. The decision is not made until the Xj
register is free. These instructions do not void the stack.

The following rules apply to tests made in this instruction group:

1. The ZR and NZ operations test the full 60-bit word in Xj. The words 00.....00 and 77.....77
are treated as zero. All other words are non-zero. Thus, these instructions are not a valid
test for floating point zero coefficlents. However, they can be used to test for underflow of

floating point quantities.

2, The PL and NG operations examine only the sign bit (259) of Xj, If the sign bit is zero, the
word is positive; if the sign bit is one, the word is negative. Thus, the sign test is valid for
fixed point words or for coefficients in floating point words.

60360900 D 8-23

3. The IR and OR operations examine the upper-order 12 bits of Xj.
On the 7600, the following quantities are detected as being out of range:

3777X. . .« « X (positive overflow)
4000x.....x (negative overflow)
1777%4 0 o » o X (positive indefinite)
6000x,....x (negative indefinite)

All other words are in range. An underflow quantity is considered in range. The value of the
coefficient is ignored in making this test.

On a 6000~-Series computer system, 3777x...x and 4000x...x are out of range; all other words
are in range.,

4. The DF and ID operations examine the upper-order 12 bits of Xj. Both positive and
negative indefinite forms are detected:

1777Xe 0 u s x and 6000x.x are indefinite
All other words are definite. The value of the coefficient is ignored in making this test.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch

Formats: CYBER 70/Model 76 or 7600 Functional Unit: None
Operation | Variable Description Size Octal Code

ZR Xj,K Branch to K if (Xj) = 0 30 bits 030jK

NZ Xj, K Branch to K if (Xj) # 0 30 bits 031jK

PL Xj,K Branch to K if (Xj) positive 30 bits 032jK .
NG Xj, K Branch to K if (Xj) negative 30 bits 033jK

M1 Xj, K Branch to K if (Xj) negative 30 bits 033jK

IR Xj,K Branch to K if (Xj) in range 30 bits 034jK

OR Xj, K Branch to K if (Xj) out of range 30 bits 035jK

DF Xj, K Branch to K if (Xj) definite 30 bits 036jK

D Xj, K Branch to K if (Xj) indefinite 30 bits 037jK

8-24 60360900A

—

s Examp es:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 {30
0305002363 + ZR X5, ZERO E
03513002364 + NZ X3,NONZERO |
0324002365 + PL Xt ,PLUS E
0331002366 + NG X1,NEG }
0331002366 + MI X1+NEG :
0360002367 + IR X0, INRANGE i
3755802370 ¢ OR X1,0UTRNGE '
0365002371 + UF XSsUEFINT :
677002372 + Iv X7 INUEFNT

60360900A 8-25

8.4.15 B-REGISTER CONDITIONAL BRANCH INSTRUCTIONS

These instructions test an 18-bit word from register Bi against an 18-bit word from register Bj for the
condition specified. They branch to address K on a successful test. Otherwise, the program sequence
continues at the next instruction. The decision is not made until both B registers are free. For the
tests against zero (all zeros), the assembler sets either the i or the j designator to 0 indicating BO,

The following rules apply in the tests made by these instructions:

1. Positive 7ero is recognized as unequal to negative zero, and

2. Positive zero is recognized as greater than negative zero, and

3. A positive number is recognized as greater than a negative number.
The 06 and 07 instructions are intended for branching on an index threshold test. The tests are made in
a 19-bit one's complement mode. The (Bi) and the (Bj) are sign extended one bit to prevent erroneous

results caused by exceeding the modulus of the comparison device. The (Bj) is then subtracted from the
(Bi). ‘The branch decision is based on the sign bit in the 19-bit result.

For these instructions, Bi and Bj must be specified in the order indicated below.

These instructions do not void the stack.
CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch

Formats: CYBER 70/Model 76 or 7600 Functional Unit; None
Operation Variable Description Size Octal Code
ZR* K Branch to K 30 bits 0400K

ZR Bi,K Branch to K if (Bi) =0 30 bits 04i0K
EQ* K Branch to K 30 bits 0400K

EQ Bi,K Branch to K if (Bi) = 0 30 bits 04i0K

EQ Bi, Bj,K Branch to K if (Bi) = (Bj) 30 bits 04ijK

NE Bi, K Branch to K if (Bi) # 0 30 bits 05i0K

NE Bi, Bj,K Branch to K if (Bi) # (Bj) 30 bits 05ijK

NZ Bi,K Branch to K if (Bi) # 0 30 bits 05i0K

PL Bi,K Branch to K if (Bi) > 0 30 bits 06i0K

GE Bi,K Branch to K if (Bi) > 0 30 bits 06i0K

GE Bi, Bj, K Branch to K if (Bi) > (Bj) 30 bits 06ijK

LE Bj, Bi, K Branch to K if (Bj) < (Bi) 30 bits 06ijK

LE Bj,K Branch to K if (Bj) < 0 4 30 bits 060jK

NG Bi,K Branch to K if (Bi)< 0 30 bits 07i0K
ML Bi,K Branch to K if (Bi)< 0 30 bits 07i0K

t The assembler forces the position counter upper after assembling the instructions.

8-26 60360900A

< Forma's (cont'd):

Operation Variable Description Size Octal Code
(GT Bj, Bi, K Branch to K if (Bj) > (Bi) 30 bits 07ijK
GT Bj,K Branch to K if (Bj) >0 30 bits 070jK
E LT Bi,K Branch to K if (Bi) <0 30 bits 07i0K
LT Bi, Bj,K Branch to K if (Bi) < (Bj) 30 bits 07ijK

Examples:

Cod: Generated LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 {30
G- 000%r2L 72 PE,RZERQ T
04015005222 + £n) ,"5,FOUAL :
06530052772 + 0 G, N, JUM: {
$4%1000522% + Fn JUME !
NG 6305224 + NE 1,06 ,N0TFA ;
GEN00%225 M7 DELPNOT7R :

— 1620015226 + ot B2 4,00 1S |
0AL5035227 + e NG o, GEN ;
065N0005220 + GF a5, 60 :
UéTGEGSZBi + LE NH,P7,LTHAN
f77°00052322 + N A7,0NEG }
073r0105233 + MT A3, 2LTG :
0767005234 + 6T B7,06,376T |
0705005235 + 6T 5 ,N5GT) :
071200523¢ + LT P1,0P2,ALTR |

8-27

60360900A

8.4.16 TRANSMIT INSTRUCTION

This instruction transfers the 60-bit word in operand register Xj to register Xi. It is essentially a
copy instruction intended for moving data from X register to X register as quickly as possible. No
logical function occurs. The assembler sets the k designator to the value specified for j.

Format: CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 70/Model 76 or 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi Xj Transmit (Xj) to Xi 15 bits 10ijj
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 T 18 [30
10622 RX & x? i

8.4.17 LOGICAL PRODUCT INSTRUCTION

‘This instruction forms the logical product (AND function) of 60-bit words from operand registers Xj and
Xk and places the product in operand register Xi. Bits of register Xi are set to 1 when the corresponding
bits of the Xj and Xk registers are 1 as in the following example:

(Xj) - 0101
(Xi) ~ 1100
(Xi) - 0100

This instruction is intended for extracting portions of a 60-bit word during data processing. If the j and
k designators have the same value, the instruction becomes a transmit instruction.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

Format: CYBER 70/Model 76 or 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi Xj*Xk Logical product of (Xj) and (Xk) to Xi 15 bits 11ijk
Example: .

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 T30

115672 PXs X5*X3

8-28 60360900A

8.4.13 LOGICAL SUM INSTRUCTION

This instruction forms the 'ogical sum (inclusive OR) of 60-bit words from operand registers Xj and
Xk and places the sum in operand register Xi. A bit of register Xi is set to 1 if the corresponding bit
of the Xj or Xk register is a 1 as in the following example:

(<j) - 0101
(£k) = 1100
(<i) = 1101

This instruction is intended for merging portions of a 60-bit word into a composite word during data
If the j and k designators have the same value, the instruction degenerates into a transmit

processing.
instruction,
CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

Format: CYBER 70/M0de]. 76 or 7600 Functional Unit: Boolean
Tpersiivn Variable Description Size Octal Code E
BXi Xj+Xk Logical sum of (Xj) and (Xk) to Xi 15 bits 12ijk |
Examole:

C)de Generated LOCATION OPERATION | VARIABLE COMMENTS

H il 18]30

12787 PX7 [X64¥7 i -

8.4.1¢9 LOGICAL DIFFERENCE INSTRUCTION

This instruction forms the logical difference (exclusive OR) of 60-bit words from operand registers
Xj and Xk and places the difference in operand register Xi, A bit in register Xi is set to 1 if the
corresponding bits in the Xj and Xk registers are unlike as in the following example:

(271} = 0101
{Xk) = 1100
(5i) = 1001

This instruction is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and k designators have the same value the result will be a word of all zeros written
into register Xi.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

Format: CYBER 70/Model 76 or 7600 Functional Unit: Boolean
1

Cperation Variable Description Size Octal Code
BXi Xj-Xk Logical difference of (Xj) and (Xk) to Xi 15 bits 13ijk
Example:

Code Generated LOCAYION OPERATION | VARIABLE COMMENTS

1 n 18 T30
=
13A01 PX6 X0-Xx1 1
8-29

60360900A

8.4.20 COMPLEMENT INSTRUCTION

This instruction extracts the 60-bit word from operand register Xk, complements it, and transmits this
complemented quantity to operand register Xi. It is intended for changing the sign of a fixed point or
floating point quantity as quickly as possible.

‘The assembler sets the unused j designator of the instruction to k. :
CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

Format: CYBER 70/Model 76 or 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi -Xk Transmit complement of (Xk) to Xi 15 bits 14ikk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
164311 AX3 -x1 K

8.4.21 LOGICAL PRODUCT AND COMPLEMENT INSTRUCTION

This instruction forms the logical product (AND function) of the 60-bit quantity from operand register

Xj and the complement of the 60-bit quantity from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 when the corresponding bits of the Xj register and the comple-
ment of the Xk register are 1 as in the following example: '

(Xj) = 0101
Complemented (Xk) = 0011
(Xi) = 0001

This instruction is intended for extracting portions of a 60-bit word during data processing. If the j and
k designators have the same value, a logical product is formed between two complementary quantities.
The result will be a word of all zeros.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

Format: CYBER 70/Model 76 or 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi -Xk *Xj Logical product of (Xj) and complement
of (Xk) to Xi 15 bits 15ijk

Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 " 8 I30

15432 oXG -X2%*X2 i

8-30 60360900A

8.4.2° COMPLEMENT AND LOGICAL SUM INSTRUCTION

This instruction forms the lcgical sum (inclusive OR) of the 60-bit quantity from operand register

Xj and the complement of the 60-bit word from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 if the corresponding bit of the Xj register is one or the
corresnonding bits of the Xk register is a 0 as in the following example:

Xi) = 0101
(X:) = 1100 -~ &4 v
(X:) = 0111

This instruction is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value the result is a word of all ones.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

Format; CYBER 70/Model 76 or 7600 Functional Unit: Boclean
Operation Variable Description Size Octal Cude
BXi -Xk+Xj Logical sum of (Xj) and complement of
(Xk) to Xi 15 bits 16ijk

Examp:iz2:

Cele Generated LOCATION OPERATION | VARIABLE COMMENTS

1 N 18 l30
16654 AX6 X4+ X5 i

8.4.23 COMPLEMENT AND LOGICAL DIFFERENCE INSTRUCTION

This instruction forms the logical difference (exclusive OR) of the quantity from operand register Xj
and the complement of the 60-bit word from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 if the corresponding bits of Xj and register Xk are alike as
in the following example:

(Xj) = 0101
(Xk) = 1100~ °
(Xi) = 0110

This instruction is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and k designators have the same value, a logical difference is formed between two

complementary quantities. The result is a word of all ones.
CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

Format: CYBER 70/Model 76 or 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi -Xk-~Xj Logical difference of (Xj) and complement
of (Xk) to Xi 15 bits 17ijk
8-31

60360900A

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 T30
17731 BX7 -X1-%3 H

8.4.24 LOGICAL LEFT SHIFT jk PLACES INSTRUCTION

This instruction shifts the 60-bit word in operand register Xi left circular jk places if expression jk is
positive or left circular 60+jk places if jk is negative. Bits shifted off the left end of operand regisier
Xi replace those shifted from the right end.

The 6-bit shift count jk allows a complete circular shift of Xi).

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS places the lower §
bits on the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result
in the jk fields. Thus, a negative value effectively designates a logical right shift. A positive value
designates a left shift.

If the negative shift count is less than -60, the assembler generates a 7-type error.
CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift

Format: CYBER 70/Model 76 or 7600 Functional Unit: Shift
Operation Variable Description Size Octal Code
LXi jk Logical shift (Xi) by + jk places 15 bits 20ijk
Example:
LOCATION OPERATION | VARIABLE COMMENTS
Code Generated 1 n 18 T30
20225 Lx3 25R |
]
20322 Lx -12R |
|

8.4.25 ARITHMETIC RIGHT SHIFT jk PLACES INSTRUCTION

This instruction shifts the 60-bit word in operand register Xi right jk places if expression jk is positive

and right 60+jk places if expression jk is negative.

hit is extended.

The rightmost bits of Xi are discarded and the sign

If the shift count is equal to the 60-bit register length, the result contains 60 copies of the sign bit. If
the operand is positive, a positive zero results. If the operand is negative, a negative zero results.

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS places the lower %
bits of the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result

in the jk fields. Thus, a negative value effectively designates the number of high order bits of

the operand that are to be retained. If the negative shift count is less than -60, a 7-type error is

generated.

8-32

6036809000

~— Format:

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 70/Model 76 or 7600 Functional Unit: Shift

Operation Variable Description Size Octal Code
AXi jk Arithmetic shift (Xi) by + jk places 15 bits 21ijk
;‘VL;(a.mple:

Code Generated LOCATION OPERATION | vARIABLE COMMENTS

215127

1 N 18

[10

T

AXS 7R

£.4.26 LOGICAL LEFT SHIFT (Bj) PLACES INSTRUCTION

.

This insiruction shifts the 60-bit quantity from operand register Xk the number of places specified by
the quantity in index register Bj and places the result in operand register Xi.

1. I (Bj) is positive, (that is, bit 17 of Bj = 0), the quantity from Xk is shifted left circular,
low order 6 bits of (Bj) specify the shift count.

The

The higher order bits are ignored,

2. If (Bj) is negative, (that is, bit 17 of Bj = 1), the quantity from Xk is shifted right (end off with
sign extension),

The higher order bits are ignored.

stored in the Xi register consists of 60 copies of the operand sign bit.

The one's complement of the low order 12 bits of (Bj) specify shift count.
If the shift count is greater than 60 (decimal) the resuit

If ~ Bj is specified, the assembler converts the instruction to an arithmetic right shift. The (Bj) might
be the result of an unpack instruction, in which case it is the unbiased exponent and (Xi) is the coefficient,
This instruction is used for shifting a coefficient from a floating point number to the integer position

witer an unpack operation.

CYBER 70/Model 74 or 6600/6700 Functional Unit: &hift
CYBER 70/Model 76 or 7600 Functional Unit: Shift

Format:
Operation Variable Description Size Octal Code
LXi Xk, Bj Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk
1.X1 Bj, Xk Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk
LXi Xk Transmit (Xk) to Xi 15 bits 2210k
X4 Bj Logically shift (Xij by (Bj) places to Xi 15 bits 22iji
LXi -Bj, Xk Arithmetic right shift (Xk) by (Bj)
places to Xi 15 bits 23ijk
LXi Xk,=Bj Arithmetic right shift (Xk) by (Bj)
places to Xi 15 bits 23ijk
LXi -Bj Arithmetic right shift (Xi) by (Bj)
places to Xi 15 bits 23iji
63360900 D 8-33

Example:

Code Generated

LOCATION

OPERATION

VARIABLE

COMMENTS

13

{30
22675 LX6 XS5 ,R7 |

|
22574 LX5 AT, X4 |
22302 Lx3 |x2 !

8.4.27 ARITHMETIC RIGHT SHIFT (Bj) PLACES INSTRUCTION

This instruction shifts the 60-bit quantity from operand register Xk the number of places specified
by the quantity in index register Bj and places the result in operand register Xi,

1. If (Bj) is positive (that is, bit 17 of Bj = 0), the quantity from register Xk is shifted right (end
off with sign extension). The lower 12 bits of (Bj) specify the shift count. The higher order
bits are ignored. For the CYBER 70/Model 72, 73, 74 and 6000-Series Computer Systems,
if the shift count is 64 (decimal) or more, the Xi register is zeroed. For the CYBER 70/Model
76 or 7600 Computer Systems, if the shift count is 64 (decimal) or more the Xi register con~
tains 60 copies of the sign of the operand,

2, If (Bj) is negative (that is, bit 17 of Bj = 1), the quantity from register Xk is shifted left
circular. The complement of the lower order 6 bits of Bj specify the shift count. The higher
order bits are ignored.

If -B is specified, the assembler converts the instruction to a logical left shift. This instruction is in-
tended for use in data processing where the amount of shift is derived in the computation. This in-
struction is also useful for adjusting the coefficient of a floating point number while it is in its unpacked
form,

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shif

Format: CYBER 70/Model 76 or 7600 Functional Unit: Shift
Operation Variable Description Size Octaiéc;de o
AX1 Xk, Bj Arithmetic shift of (Xk) by (Bj) places | | |
to Xi ’ 15 bits 23ijk
AXi Bj, Xk Arithmetic shift of (Xk) by (Bj) places
to Xi 15 bits 23ijk
AXi Xk Transmit (Xk) to Xi 15 bits 23i0k
AXi Bj Arithmetic shift of (Xi) by (Bj) places
to Xi 15 bits 231ji
AXi -Bj, Xk Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk
AXi Xk, - Bj Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk
AXi -Bj Logically shift (Xi) by (Bj) places to Xi 15 bits 2215
8-34 80360 Jon ¢

Examp’ 2:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 !30
23754 AX7 x4 ,86 '
23?211 AX?2 B1,X1 :
23502 axs X2 :
23424 ' AL 82 |

8.4.28 NORMALIZE INSTRUCTION

This instruction normalizes the floating point quantity from operand register Xk and places it in
operan: register Xi. Normalizing consists of shifting the coefficient the minimum number of positions
required to make bit 47 different from bit 59. This places the most significant bit of the coefficient

i the bighest order position of the coefficient portion of the word. The exponent portion of the wurd
is then decreased by the number of bit positions shifted. The number of shifts required to normalize
the quaitity is entered in index register Bj.

603609008 8-34.1

Fo mat: CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift

\J CYBER 70/Model 76 or 7600 Functional Unit: Shift
Operation Variable Description Size Octal Code
N Xk Normazlize (Xk) to Xi 15 bits 2410k
N¥ Bj, Xk Normalize (Xk) to Xi; shift count to Bj 15 bits 24ijk
NX Xk, Bj Normalize (Xk) to Xi; shift count to Bj 15 bits 24ijk
NX Normalize (Xi) to Xi 15 bits 24i0i
NX: Bj Normalize (Xi) to Xi; shift count to Bj 15 bits 24iji

Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
T 1 1 18]'30 e
FuBTS NXS X5, a7 T} -
Z4505 NX5 '
1
IG5 MX&4R5 (X2 !

8.4.2°° ROUND AND NORMALIZE INSTRUCTION

This » wstiuction performs the same operation as the NXi instruction with the exception that the quantity
from cperand register Xk is rounded before it is normalized. Rounding is accomplished by placing a

— 1 round bit immediately to the right of the least significant coefficient bit. The resulting coefficient is
increzsed by one-half the value of the least significant bit. Normalizing a zero coefficient places the
round bit in bit 47 and reduces the exponent by 48. Note that the same rules apply for underflow, overflow,

infinite, and indefinite results.

If (Xk} is an infinite quantity (3777x...x or 4600x...x) or an indefinite quantity {1777X...x or 6000x... x},
no shi‘t takes place. The contents of ¥k are copied into Xi, and Bj is set to zero.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift

Formats: CYBER 70/Model 76 or 7600 Functional Unit: Shift
Operation Variable Description Size Octal Code j
ZXi Kk Round and normalize (Xk) to Xi i5 bits 2510k
S Bj, Xk Round and normalize (Xk) to Xi; shifu

count to Bj 15 wils 25ijk
ZXi Xk, Bj Round and normalize (Xk) to Xi; shift

count to Bj 15 bits 25ijk
Zxi Bj Round and normalize (Xi) to Xi; shift

count to Bj 15 bits 25iji
ZXi Round and normalize (Xi) to Xi 15 bits 25i01

8-35

60360900A

Example:

Code Generated LOCATION ommg&] VARIABLE COMMENTS
¥ n IIB B - '30 B
T B T
2ELTY 7XU [Xu,yP7 ,'
254004 XY :
l
P5h1 IX3,R6 |x1 |

8.4.30 UNPACK INSTRUCTION

This instruction unpacks the floating point quantity from operand register Xk and sends the 48-bit
coefficient to operand register Xi and the 11-bit exponent to index register Bj. The exponent packing
is removed during unpack so that the quantity in Bj is the true one's complement representation of the
exponent. The contents of Xk need not be normalized.

The exponent and coefficient are sent to the low-order bits of the respective registers as shown below:

SIGN PACKED EXPONENT COEFFICIENT
PACKED QUANTITY [|] | mj X
5958 48 00
\
UNPACKED
EXPONENT
EXPONENT SIGN COEFFICIENT
EXTENDED \ SIGN EXTENDED
UNPACKED Bj |7 | P74 Xi
17 10 9 0 59 4847 .

Special operand formats are treated in the same manner as normal operands.

CYBER 70/Model 74 or 6600/6706 Functional Unit: Shift

FFormats: CYBER 70/Model 76 or 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code |
HUXi Xk Unpack (Xk) to Xi 15 bits 26i0k ?
UK Bj, Xk Unpack (Xk) to Xi and Bj 15 bits 26ijk
TUXi Xk, Bj Unpack (Xk) to Xi and Bj 15 bits 26ijk
UXi Unpack (Xi) to Xi 15 bits 26101
UXi Bj Unpack (Xi) to Xi and Bj 15 bits 26iji
Example:
Code Generated LOCATION OPERATION | VARIARIE T Commnts N
] 1] ia ‘[30 -
26777 ux? X7,87 i
26342 UX3,X2 Bl '
|
26707 uxz? I ,
26777 ’ uxr B? |

=36 6036000204

8.4.31 PACK INSTRUCTION

This instruction packs a flo: ting point number in operand register Xi. The coefficient of the number is
obtained from operand register Xk and the exponent is obtained from index register Bj. The exponent is
packed by toggling bit 210 during the pack operation. The instruction does not normalize the co=fficient.

Expoc2nt and coefficient are obtained from the proper low-order bits of the respective registers and
packe.! in reverse order as shown in the illustration for the unpack instruction. Thus, bits 58-48 of

Xk ani bits 17-11 of Bj are ignored. There is no test for overflow or underflow. No flags are set in the
PSD 1 2gister by this instruction.

Note that if (Xk) is positive, the packed exponent occupying Xigg_4g is obtained from Bjjo-00 by
complementing bit 10; if (Xk) is negative, bit 10 is not complemented but bits 09-00 are complerented.

The ; designator may be set to zero in this instruction to pack a fixed point integer into floating soint
forms ¢ withcut using one of the active B registers (exponent = 0).

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shiit
CYBER 70/Model 76 or 7600 Functional Unit- Boolean

Format:
Operstion Variable Description Size Octal Cude
PXi Xk Pack (Xk) to Xi 15 bits 27i0k
PXi Xk, Bj Pack (Xk) and (Bj) to Xi 15 bits 27ijk
PXi Bj, Xk Pack (Xk) and (Bj) to Xi 15 bits 27ijk
A Pack (i) to Xi 15 bits 27101
PXi Bj Pack (Xi) and (Bj) to Xi 15 bits 27iji
Example:
{ode Generated LOCATION OPERATION | VARIABLE COMMENTS
i n 18 T30
27565 PX5 X5,36 |
|
278714 : PX6,R7 |X1 }
27505 PX5 |
£7585 PS5 3% |
1

8.4.32 UNROUNDED SP FLOATING POINT ADD INSTRUCTIONS

These ustructions form the unrounded sum ov difference of the fica'ing point guantities from operand
registers Xj and Xk and pack the result in operand register Xi. The packed result is the upper half of
a double precision sum or difference.

At the start both arguments are unpacked, and the coefficient of the argument with the smaller axponent
‘a nutoved into the upper half of the accumulator. The coefficient is shifted right by the difference

of the exponents. The other coefficient is then added to or subtracted from the upper half of the
accumulator. If overflow occurs, the result is right-shifted one place and the exponent of the result
increased by one. The upper half of the accumulator holds the coefficient of the result, whick is not
necessarily in normalized form. The exponent and upper coefficient are then repacked in operand
register Xi.

60360900A 8-37

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Add

Formats:
CYBER 70/Model 76 or 7600 Functional Unit: Floating Add
Operation Variable Description Size Octal Code
FXi Xj+Xk Floating point sum of (Xj) and (Xk) to Xi 15 bits 30ijk
FXi Xj-Xk Floating point difference of (Xj) minus
(Xk) to Xi 15 bits 31ijk

Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

- 1 " 18 f30

30345 FX3 X4+X5 I

31213 FX2 X1-x72 :

8.4.33 DP FLOATING POINT ADD INSTRUCTIONS

These instructions form the sum or difference of two floating point numbers as in the single precision
instructions, but pack the lower half of the double precision result with an exponent 48 less than the
upper sum. The result is not necessarily normalized.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Add

Formats: CYBER 70/Model 76 or 7600 Functional Unit: Floating Add
Operation Variable Description Size Octal Code
DXi Xj+Xk Floating DP sum of (Xj) and (Xk) to Xi 15 bits 32ijk
DXi Xj~Xk Floating DP difference of (Xj) and (Xk)
to Xi 15 bits 33ijk
Fxamples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 [30 T
1
312323 nx? X2+X3 ;
I
33414 nxXy X1-Yb :
3-38 803609004

8.4.34 ROUNDED SP FLOATING POINT ADD INSTRUCTIONS

These instructions form the -~ounded sum or difference of the floating point quantities from operand
registers Xj and Xk and pack the upper portion of the double precision result in operand register Xi.
These instructions are intended for use in floating point calculations involving single precision

accuracy.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating A«d

Formats: CYBER 70/Model 76 or 7600 Functional Unit: Floating Add
bperation Variable Description Size Octal Code
RXi Xj+Xk Rounded floating sum of (Xj) and Xk)
to Xi 15 bits 34ijk
RX1 Xj-Xk Rounded floating difference of (Xj) minus
(Xk) to Xi 15 bits 35ijk
. A - o e
Examplas:
Code_enerated LOCATION OPERATION | VARIABLE COMMENTS
i n 8 I30
f
345731 XS X3+ Xh i
|
35663 RXG X5=-%32 i

8.4.35 LONG ADD (FIXED POINT] INSTRUCTIONS

These instructions form the 60-bit ones complement integer sum or integer difference of quantities from
uperand registers Xj and Xk and store the result in operand register Xi. An overflow condition is

ignored,

The iastr:ctions are intended for addition or subiraction of integers tou iarge for handling in the
increment unit. They are also useful for merging and comparing data fields during data processing.

For an addition, if both operands are zero, the result is zero. If either zero operand is positive zero
(all 0's), the result is a positive zero quantity. If both operands are minus zero (all 1's), the result

is a negative zero quantity.

60360900A 8-39

CYBER 70/Model 74 or 6600/6700 Functional Unit: Loug Add

Format: CYBER 70/Model 76 or 7600 Functional Unit: Long Add
Operation Variable Description Size Octal Code
IXi Xj+Xk Integer sum of (Xj) and (Xk) to Xi 15 bhits 36ijk
IXi Xj-Xk Integer difference of (Xj) minus (Xk)
' to Xi 15 bits 37ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 0 18 Ta0 o
16545 X5 X4+¥S |
I .
37631 IX6e X3I=-X1 i

8.4.36 UNROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies two floating point quantities obtained from operand registers Xj {multiplier)
and Xk (multiplicand) and packs the upper product result in operand regisier Xi.

In this operation, the exponents of the two operands are unpacked from the floating point format and are
The coefficients are raultiplied

added with a correction factor of 48 to form the exponent for the result.
as signed integers to form a 96-bit integer product.
to form the coefficient of the result.

normalized when either or both operands are not normalized.

CYBER 70/Model 74 or 6600/6700 Functional Unit:

The upper half of this product is then extracted
The result is a normalized quantity only when both operands are

normalized; the exponent in this case is the sum of the exponents plus 47 (or 48). The result is not

Floating Multiply

Formats: CYBER 70/Model 76 or 7600 Functional Unit: Floating Multiply
Operation Variable Description Size Octal Code ‘i
FXi Xj*Xk Floating point product of (Xj) and f
(Xk) to Xi 15 bits 40ijk ,
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS T
1] 8 I30

40011 FX0 X1%x1 {

}
8-40 60360800 4

8.4.37 ROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies the floating point number from operand register Xk (multiplicand), by the
floating point number from operand register Xj. The upper product result is packed in operand
register Xi. (No lower product is available.) The multiply operation is identical to that of the single
precisicn instruction except that a roundiag bit is added in bit pesition 46 of the 96-bit product. 7T.e
upper h.1f of the product is then extracted to form the coefficient for the result. An alternate output
path is yirovided with a left shift of one-bit position to normalize the result coefficient if the original
operand s were normalized and the double precision product has only 95 bits of significance. The
exponent for the result is decremented by one count in this case.

Format: CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Muitiply
CYBER 70/Model 76 or 7600 Functional Unit: Floating Multiply
!Operati@n Variable Description Size Octal Covie
[— .
IRXi Xj*Zk Rounded floating point product of (Xj)
and (Xk) to Xi 15 bits 41ijk

Examplie:

Coce Generated LOCATION QPERATION | VARIABLE COMMENTS
i i 2 {30
3.
EH
42732 RX?2 X3*¥x2 |
i

8.4.22 DP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies two floating point quantities obtained from operand registers Xj and Xk

and packs the lower product in operand register Xi. The two 48-bit coefficients ave multiplied together
o ferm a2 96-big produci. The lower-order 48 bits of this product (bits 47-00) are then packed together
with the reesulting exponent. The result is not necessarily nosmalized. The exponeni of this resuil is
48 less than the exponent resulting from an uarcunded single precisica instruction using the same

oparands

This instruction is intended for use in multiple precision floating point calculations. It may also be

used to form the product of two integers providing the resulting product does not exceed 48 bits of
significance, The operands must be packed in floating point format before executing this instruction.

The results must be unpacked to obtain the integer product.

CYBER 70/Model 74 or 6600/6700 Functicnal Unit: Floating Multiply

Format: CYBER 70/Model 76 or 7600 Functional Unit: Floating Multiply
Operarion Variable Description Size Octal Code
DXi Xj*Xk Floating point DP product of (Xj) and
(Xk) to Xi 15 bits 42ijk
8-41

Example:

w LOCATION OPERATION | VARIABLE COMMENTS
: I 18 [30
42 345 DX3 X4 xxs !
!

8.4.39 INTEGER MULTIPLY INSTRUCTION

The CPU integer multiply instruction is, to COMPASS, synonymous with the double precision floating
point multiply instruction. Regardless of how it is written in COMPASS, the 42ijk instruction is
executed as follows: If each operand register has all zeros or all ones in its leftmost 12 bits, the
47-bit integer product is formed in Xi with sign extension in its leftmost 12 bits. (Exception: if each
operand has bit 247 different from its sign bit, the result is shifted left one bit position.) Otherwise,

a double precision floating point multiplication is performed. Thus, there is no need to pack exponents
into the operands, and unpack the result, for an integer multiply. COMPASS provides the alternate
symbolic representations IXi Xj*Xk and DXi Xj*Xk for the 42ijk instruction as an aid to program read-
ability, so the programmer can indicate whether the instruction is being used for integer multiplication.

Format: CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Multiply
CYBER 70/Model 76 or 7600 Functional Unit: Floating Multiply

Operation Variable Description Size Octal Cod ;
;
IXi Xj*Xk Integer product of (Xj) and (Xk) to Xi 15 bits | 42ijk 2?
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) " 18 [0 -
I -
L2234 IX2 X3*Xh |
1

8-42 603600300 4

—

8.4.4C MASK INSTRUCTION

This instruction clears regis er Xi and forms a mask in it. A positive value for expression jk defines

the number of 1's in the masi as counted from the highest order bit in Xi., A negative value for

exprescion jk defines the number of 0 bits (unmasked) counted from the low order bit in Xi. The
complesed masking word consists of 1's in the high order bit pogitions of the word and 0's in the

ramali er of the word,

The coi tents of operand register i are zero when jk is zero. The contents of operand register i are

ail one: when jk is 69,

This iastruction is intended for generated variable width masks for logical operations., Used with the
shift inctruciion, this instruction creates an arbitrary field mask faster than by reading a pre-ger.:rated

mask from storage.

'ﬁ COM PASS notation, if the value of ahaolule expressicn jk is positive, the assembler inseris it

oty $ho gh 900 of e srsombled lostrueilon. W the wilue of sheolute exprsssioe jk 18 ne

the assambler adds &0 to the expression value and places the sum in the jk fieid of the assembxe&

instruction,
A negat ve jk vaiue 1ess than -60 results in a 7~type assembly error.

A wAd G s the faotest instruction for cleaving an X register.

Formasi 6600 Functional Unit: Shift

7600 Functional Unit: Shift
Operation Variable Description Size Octal Code
MXi jk Form mask in Xi, + jk bits 15 bits 43ijk

FRaingie,
d LOCATION OPERATION ? VARIABLE COMMENTS
Cods Generate T . : e
= 1 1 8 [E1)

I L .
430472 MX0 428 |
|
43320 MX3 -148 |

603609GCC

8-43

8.4.41 UNROUNDED SP FLOATING POINT DIVIDE INSTRUCT!CN

This instruction divides twd“hgrmalized ﬂoating point quantities obtained from operand registers Xj
(dividend) and Xk (divisor) and packs the quotient in operand register Xi.

CYBER 70/Model 74 or 6600/6700 Functional Unit:

Format: Floating Divide
: CYBER 70/Model 76 or 7600 Functional Unit: Floating Divide
Operation Variable Description Size Octal Code
FXi Xj/Xk Floating point divide of (Xj) by (Xk)
to Xi 15 bits 44ijk
Example:
Code Generated LOCATION _OPERATION | VARIABLE COMMENTS

LL621

i i 18

l30

i

FXx6 X3/X1

8.4.42 ROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruction divides the floating quantity from operand register Xj (dividend) by the floating point
quantity from operand register Xk (divisor) and packs the rounded quotient in operand register Xi.

Format: CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Divide
CYBER 70/Model 76 or 6700 Functional Unit: Floating Divide

Operation Variable Description Size Octal Code
RXi Xi/ Xk Rounded floating point division of (Xj) i
by (Xk) to Xi 15 bits 45ijk i
- o

Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS i T

45724

8-44

| n 8

[30

I

RX7 X2/X4

T
[

6036034504

8.4.4% PASS INSTRUCTION

The no-operation (pass) inst:uction is not associated with a functional unit.
nothing instruction used typically to pad the program between steps.

field (optional) is inserted into

the lower 9 bits of the instruction.

This instruction is a do-

An integer value in the variable
The assembler automatically pads

the remainder of a word whenever a force upper occurs; in this case, the programmer is not reguired

to inse: 't the NO.

CYBER 70/Model 74 or 6600/6700 Functional Unit: None

Format: CYBER 70/Model 76 or 7600 Functional Unit: None
Operation Variable Description Size Octal Code
NO Pass 15 bits 46000
NO n Pass 15 bits 46n |
R LA.;JAR‘.: EN —
Code Generated LOCAYION OPERATION | VARIABLE COMMENTS
T 1 I 18 D) h
G¥ 300 NO :

8.4.44 POPULATION COUNT INSTRUCTION

This instruction counts the number of 1 bits in operand register Xk and stores the count in the lower
order 6 bits of operand register Xi, -Bits 59-06 are cleared.

If Xk is a word of all ones, a count of 60 (decimal) is delivered to the Xi register.
zeroes, a zero word is delivered to the Xi register.

The ansambier sets the unused

j designaior to k.

If Xk is a word of ail

CYBER 70/Modei 74 or 6600/6700 Functional Unit: Floating [¥vide

Formats:. ey e .

° Cy¥BER 76/Model 76 or 7600 Functional Unit: Population Count
Operation Variable Description Size Octal Code
e - ‘

CXi Xk Count of number of 1's in {Xk} to Xi 15 bits 47ikk
Example:

Cude Generaied

L770N

60360900A

N

LOCATION GPERATION | VARIABE

COMMEN LS

i H] 18

ki

Cx7 X0

— ded

8-45

8.4.45 SET A REGISTER INSTRUCTIONS

These instructions are intended for fetching operands from storage for computation and for delivering
results back into storage. The instructions have two destination registers: the Ai register which
receives the address formed from the operands and either the Xi register or a CM (SCM) storage location,

If the i designator is nonzero, a storage reference is made using the lower 15, 16, or 17 bits of the
resulting sum or difference as the relative storage address depending on machine size, The upper
bits are ignored. The type of storage reference is a function of the i designator value.

i:= 0; no storage reference _,
i=1, 2, 3, 4, or 5; contents of CM (SCM) relative address (Ai) to register Xi

i =6 or 7; contents of register Xi stored at CM (SCM) relative address (Ai)

CYBER 70/Model 74 or 6600/6700 Functional Unit: Increment

Formats: CYBER 70/Model 76 or 7600 Functional Unit: Increment
Operation Variable Description Size Octal Code
SAi Aj+K Set Ai to (Aj) + K 30 bits 50ijK

SAi K Set Ai to K 30 bits 51i0K

SAi Bj+K Set Ai to (Bj) + K 30 bits 511jK

SAi Xj+K Set Ai to (Xj) + K 30 bits 52ijK

SAi Xj Set Ai to (Xj) 15 bits 53ij0

SAi Xj+Bk Set Ai to (Xj) + (Bk) 15 bits 53ijk

BAi Bk+Xj Set Ai to (Xj) + (Bk) 15 bits 53ijk ~—
SAi Aj Set Ai to (Aj) 15 bits 54ij0

SAi Aj+Bk Set Ai to (Aj)+ (BKk) 15 bits 54ijk

8ai Bk +Aj Set Ai to (Aj) + (Bk) 15 bits 54ijk

SAi Aj-Bk Bet Ai to (Aj) - (Bk) 15 bits 55ijk

SAi ~-Bk1Aj Set Ai to (Aj) - (Bk) 15 bits « | 55ijk

SAi Bj Set Ai to (Bj) 15 bits 56ij0

SAi Bj+Bk Set Ai to (Bj) + (Bk) 15 bits 561jk

SAi -Bk Set Ai to (B0) - (Bk) 15 bits 5710k

SAj Bj-Bk Set Ai to (Bj) - (Bk) : 15 hits 57ijk

SAi - Bk+ Bj Set Ai to (Bj) - (Bk) 15 bits 571jk

8-46 ‘ 603605064 -

Examp’ 2s:

Code Generated

5019000001
120777774
5121000003
5231777771
53614
56641

-

B4

v’
&
o

60360900A

LOCATION OPERATION | VARIABLE COMMENTS
n 18 l30
<At AU +1 '
<AD -2 :
<A2 2+ ;
SAZ X1-6 :
SAL X1+81 |
SAS AL+R1 :
<AH Bh+Dg S
SAS AL :
SAb -81+A4L :
<A7 GERY-E I
A7 BZ2~-P1 Ii

§-47

8.446 GSET B REGISTER INSTRUCTIONS

These instructions perform one's complement addition and subtraction of 18-bit operands and store an
18-bit result in index register Bi.

Operands are obtained from address (A), index (B), and operand (X) registers as well as from the
instruction itself (K = 18-bit operand). Operands obtained from an Xj operand register are the
truncated lower 18 bits of the 60-bit word. The highest order bits are ignored; an overflow condition
is also ignored.

If the i designator is a zero, the instruction is a do-nothing instruction,
CYBER 70/Model 74 or 6600/6700 Functional Unit: Increment

Formats: CYBER 70/Model 76 or 7600 Functional Unit: Increment
Operation Variable Description Size Octal Code

SBi Aj+K Set Bi to (Aj) + K 30 bits 60ijK

SBi K Set Bi to K 30 bits 61i0K

SBi Bj+K Set Bi to (Bj) + K 30 bits 61ijK

SBi Xj+K Set Bi to (Xj) + K 30 bits 62ijK

SBi Xj Set Bi to (Xj) 15 bits 63ij0

SBi Xj+ Bk . Set Bi to (Xj) + (Bk) 15 bits 63ijk

SBi B+ Xj Set Bi to (Xj) + (Bk) 15 bits 63ijk

ISBi Aj Set Bi to (Aj) : 15 bits 64ij0

SBi Aj+Bk Set Bi to (Aj) + (Bk) 15 bits 64ijk

SBi Bkt Aj Set Bi to (Aj) + (Bk) 15 bits | 64ijk —
SBi Aj-Bk Set Bi to (Aj) - (Bk) 15 bits 65ijk

SBi ~BlctAj Set Bi to (Aj) - (Bk) _ 15 bits 65ijk

SBi Bj Set Bi to (Bj) 15 bits 66ij0

SBi Bj+Bk Set Bi to (Bj) + (Bk) 15 bits 66ijk

SBi - Bk Set Bi to (B0) ~ (Bk) 15 biis 6710k

SBi Bj- Bk Set Bi to (Bj) - (Bk) 15 bits 671k

SBi - Bk-+ Bj Set Bi to (Bj) - (Bk) 15 bits 67ijk

8-48 60360900 C

Exampi 2s:

me Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30
!
811777772 <ri AL-5 [
GIY0777772 R -5 i
121000611 <gz J+R1+6 :
221000100 <B7 X1i+10n0n ;
(S N 4 <L X2+R7 [
RG34 <A5 AL +01 I
G TLD cng AL |
S 2N § <6 -R1+hY I
BRI <k AL-RT :
6ET 11 SR7 BL+P1 ’

8.4 47 SET X REGISTER iNSTRUCTIONS

The SX: insiructions perform one's complement addition and subtraction of 18-bit operands and siore

an 1&8-uit result into the lower 18 bits of operand register Xi.
upper 42 bits of operand register Xi. An overflow condition is ignored.

Jpersi

iizell

4
G0-bit word. The highest order biie sve ignorad

603608004

The sign of the result is extended to the

is are obtained from address {A), index (B}, and operand (X} registers as well as the instruetior
© 13-bit sperand), Operands obvamed from an Xj veglster are the truncated lower 18 bits of the

8-49

CYBER 70/Model 74 or 6600/6700 Functional Unit: Incremsnt

Formats: CYBER 70/Model 76 or 7600 Functional Unit: Increment
Operation Variable Description Size Octal Code
S Xi Aj+K Set Xi to (Aj) + K 30 bits 70ijK
SXi1 K Set Xi to K 30 bits 71i0K
SXi Bj+K Set Xi to (Bj) + K 30 bits 71ijK
SXi Xj+K Set Xi to (Xj) + K 30 bits 72ijK
SXi Xj Set Xi to (Xj) 15 bits 731j0
SXi Xj+Bk Set Xi to (Xj) + (Bk) 15 bits 73ijk
SXi Bk+Xj Set Xi to (Xj) + (Bk) 15 bits 73ijk
SXi Aj Set Xi to (Aj) 15 bits 74ij0
SXi Aj+Bk Set Xi to (Aj) + (Bk) 15 bits 74ijk
SXi Bk+Aj Set Xi to (Aj) + (Bk) 15 bits 74ijk
SXi Aj-Bk Set Xi to (Aj) - (Bk) 15 bits 75ijk
SXi -Bk+Aj Set Xi to (Aj) - (Bk) 15 bits 75ijk
SXi Bj Set Xi to (Bj) 15 bits 76ij0
SXi B;+Bk Set Xi to (Bj) + (Bk) 15 bits 76ijk
SXi -Bk Set Xi to (B0) - (Bk) 15 bits 7710k
SXi Bj- Bk Set Xi to (Bj) - (Bk) 15 bits 77ijk
SXi -Bk+Bj Set Xi to (Bj) - (Bk) 15 bits 77ijk
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 B
-+
7000005233 + SXN RNEG+AJ+ 1 |
\71107757% X1 -2022R ;
7121000005 Sx2 n145 |
7232T77740n Sx3 X3-~-33R :
T3n42 <xy X44n2 :
74553 SX5 AR403 I
|
74540 SX5 AL |
75641 SX6 ~A1+A4 ;
75604 Sx6 Ag -9y !
76776 SX7 B7+06 :
77751 x7 AG-n1 |

HO3BUBGLS

8.5 CMU SYMBOLIC MACHINE INSTRUCTIONS

The Compare/Move Unit (CM{) is a standard CPU hardware component of the CYBER 70 Series Model
72 and Model 73, and optional on the Model 76 Computer Systems. It provides CPU instructions for
moving and comparing data fields that consist of strings of 6-bit characters. Data fields can span word
Lound les and can begin and end at any character positicn within a word, A data field is specified by
its leny th in characters and tie location of its leftmost character {according to word address and
character position). Data flelds cannot be in the operating registers nor in ECS,

Each 6i~bit word of a data field contains 10 character positions numbered 0 to 9 from left to right
(high =-der to low order).

COMPLSS provides symbolic forms of the four CMU instructions plus a pseudo instruction used to
generzta a descriptor word to be referenced by the indirect move instruction. Of the four instructions,
the indirect move (IM) instruction is the only one that syntactically resembles other CPU instructious.
The otthev thrae instructlons have formats dissimilar to CPU instructions and are generated through
COMPLSS pseude instructicns. All of these instructions must begin at the top of a 66-bit word;
COMPASS automatically forces upper before each of them unless the location fleld contains a minus
sign. .ill but ™M are 60 bits in length. ™ is 30 bits, but the hardware requires that the instruction be

in the opner nalf of ite word. The lowor bulf of the word is not executed. COMPASS automaticaily
forces apper folicwing IM, unless the next instruction has a minus sign in its location fleld.

8.5.1 & . INDIRECT MOVE

The Li¥rest move instruction moves the contents of a date field to apother location. It is a 30-bit
instruction that specifies the address of a descriptor word which, ia turn, contains the length and
address of the data fields,

The descriptor word is fetched from storage iocation (Bj)+ K. If the data field length is zero, the
instri.:tion s executed as a pass but the execution time is longer. Otherwise, the content of the source
s moved to the destination field. If the two fields overiap, the results are undefined. The X0

i s Eny interrsedate stornee durizg oocoutiop of the tnatruction, and is cleared upon

Sl 5 [EE S

compietioa of the iasvruction,

fiaid

Opersaiion Variable reseription Octal CocGe
M K Yove Jdata according to word at X 4640K
{vi BjriK Move dats acoordiog to word st B+ K 464jK
iM B} Move data according o werd at (Bj) 464§ 000000

60360900¢ 8-51

8.5.2 MD - INDIRECT MOVE DESCRIPTOR WORD

‘The MD pseudo instruction generates a descriptor word for use by the indirect move (IM) instruction.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MD !Z,ks,cs,kd,cd
sym If present, sym is assigned the value of the location counter after the force upper occurs, It

becomes the symbolic address of the descriptor word.

[Absolute address expression specifying the field length in characters (0-8191), The upper 9

bits () are placed in bits 56-48 of the descriptor word; the lower 4 bits (8) areplacedinbits 2924,
kq An expression specifying the first word address of the source field in CM/SCM.
c An absolute expression (0-9) specifying the starting character position of the source field

within the word at location ks' Characters are numbered from left to right,
k An expression specifying the first word address of the destination field in CM/SCM,

An absolute expression (0-9) specifying the starting character position of the destination field
within the word at location kd'

Indirect Move Descriptor Word format:

59 48 30 26 22 18 00
0 ’ source ,src des destination
12-4 address 13-(}ch ch address

Example:

Code Generated

LOCATION OPERATION | VARIABLE COMMENTS

I h 18 EN
o |

0u760050uGL4L05u07050 DWORD MD 10u~3,BUFFA,0,BUFFB,5

. |
. |
Lo40010665 I+ DWORD I
|

BUFFA is at address 2000; BUFFB is at address 3000

603605008

8.5.3 DM - DIRECT MOVE

The direct move (DM) pseudc instruction generates a CMU instruction that moves the contents of a

data field to another data fielc,

between words.,

The machine instruction occupies one full word and cannot be split

The instruction includes its own data field descriptor.

If the d:io tield lensth is zerc, the instruction is executed as a pass, but the execution time is longer.
Otherw:se, the contents of the source field are moved to the destination field. If the two fields overlap,
the resuits are undefined. The X0 register is used for intermediate storage during execution of the
instruciion and is cleared upon completion of the instruction.

Format:
LGCATION QPERATION VARIABLE SUBFIELDS
sym DM 2, ks’ C kd’ 4
i i
sym If present, sym is assigned the value of the location counter after the force upper occurs.
It becomes the symbolic address of the instruction word.
4 Absolute address expression specifving the field length in characters (0-127).
ks An mxpression specifying the firsi word address of the source field in CM/SCM.
c A abootule sxpressica (0-9) specifying the starting character pusition of the source fleld
s cois .
within the word at location ks.
kd An expression specifying the first word address of the destination field in CM/SCM.
¢y A absolute expression (0~9) specifying the starting character position of the destination field

Geial format of instruction:

within the word at focation k a Characters are pumbered from left to right,

59 51 48 36 26 22 18 00
I]
. ;1 source , sre des degtination
465 |*g-4 address Q‘B-f";ch ch address
i i

60360900A

8-563

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) T 18 |30 T
—_ I
4657035500 7635007000 o 127,"!UFFA,D,:RUFFQ,‘5

8.5.4 CC - COMPARE COLLATED

The compare collated (CC) pseudo instruction generates a CMU instruction that compares the contents
of two data fields, one character at a time, from left to right, until a pair of corresponding characters
is found to have unequal collating values or until the data fields are exhausted. It is a 60-bit instruc-
tion that occupies one full word. It cannot be split between two words. The instruction includes its

own data field descriptor. Register A0 contains the first word address of a table in storage that con-
tains the collating values to be used in comparing characters. The result of the comparison is placed

in register X0.

The first word address of the collating table is obtained from register A0. The contents of the data
fields are compared from left to right, one character at a time from each field, until two unequal
characters are found. The collating value of each character is obtained from the collating table. If
these values are equal, the compare continues until another character pair is unequal or until all
characters have been compared, If the collating values are unequal, the two data fields are unequal
and the field wich a larger collating value is the greater of the two fields. The collating values are
treated as 6-bit unsigned integers. Note that two unequal characters could have the same collating

value and would compare equal.

Upon instruction completion, register X0 contains a 60-bit signed integer as follows:

(Field A)>(Field B) (XO)=g-n>0
(Field A)= (Field B) X0=0
(Field A)<(Field B) XO)=n~-g <0

n is the number of pairs of characters that compared equal. If ¢ =0, then (X0) is 0,

The forraat of the collating table for six-bit characters is:

59 53 7 41 35 29 23 27
(A0) 60 01 02 03 04 05 06
{A0)+i id 11 ig i3 14 15 16
: SR SR s { { { {
{AO0)+7 70 71 72 73 T4 75 76
Format:
: lo(_n.o,:m !‘JPEKAH(;N VARIABLE SUBFIELDS
g sym cC]z,ka, ca,kb, cb
sym If present, sym is assigned the value of the location counter after the force upper occurs

it becomes the symbolic address of the instruction.

I Absolute address expression specifying the field length in characters (0 - 127)

ka An expression specifying the first word address of the first data field in CM.

<, An absolute expression specifying the starting character position of the first data field within
the woxd at Jocation ka. Characters are numbered from left to right.

kb Ar expression specifying the first word aldress of the second data field in CM.

<, An absolute expression {0-9) specifying the starting character position of the second data field

within the word at location kb.

Octal format ot instraction:

5% 51 48 30 26 22 18 00
e 2 | first string | tsl] s5| second stving l
A58 o= mudresg 3.0 ot | on| addzess ;
1 J
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 i 18 T30
©£130003120 SAf TARLF i
4667005000 7405ud7G6d0 ce 127,8UFFA,04RUFFRB,y5
!

60360900A 8-55

8.5.5 CU - COMPARE UNCOLLATED

The compare uncollated (CU) pseudo instruction generates a CMU instruction that compares the contents
of two data fields, one character at a time, from left to right, until a pair of corresponding characters
are found to have viequal values or until the data fields are exhausted. The machine instruction is 2
60-bit instruction that occupies one full word and cannot be split between two words. It includes its

own data field descriptor., The result of the comparison is placed in register X0,

Execution resembles the CC instruction except that A0 and the collating table are not used. Instead,
the characters are compared directly with each character regarded as a 6-bit unsigned binary integer.
Register X0 is set in the same manner as by the CC instruction.

Format:
LOCATION QOPERATION VARIABLE SUBFIELDS
Cu k ,c C
sym £, a’ a:kb’ b
sym If present, sym is assigned the value of the location counter after the force upper occurs,

It becomes the symbolic address of the instruction. Absolute address expression (0-127)
speciiying the field length in characters.

k An expression specifying the first word address of the first data field in CM.

c An absolute expression (0-9) specifying the starting character position of the first data field
within the word at location ka° Characters are numbered from left to right.

kb An expression specifying the first word address of the second data field in CM.

c An absolute expression (0~9) specifying the starting character position of the second data
field within the word at location kb

Octal format of Instruction:

56 51 48 30 26 22 18 00
first string fs| ss| second string
0,
467 6‘14 address 23'01 ch | ch| address
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS o
) n 18 T30 T
r R
bo773050007640500L70602 cu 127,.‘3UFFA,U,:RUFF‘8,5
!
|

8-56 BO3A L A

PPU SYMBOLIC MACHINE INSTRUCTIONS 9

H

The COMPASS assembler recognizes symbolic notation for peripheral processor unit (PPU)
instruct’ons. When a PPU or PERIPH pseudo instruction is in the first statement group, the assembler
identifies each symbolic instruction by name and generates a one word (12 bit) or two word (24 bit)
object cude machine instruction under control of the current origin, location, and position counters.

All PPUI code iz ahsolute. Numeric data must be in integer notation. Floating point notation is illegal.

9.1 MACHINE INSTRUCTION FORMATS

AR assen bled instruciion hag a 12-bit or 24-bit format. The 12-bit format has a 6-bit operation cede
and a 6-bit operand d. A PPU accomplishes program indexing and manipulates operands in several
modes. The 12-hit and 24-bit instruction formats provide for 6-bit, 12-bit, or 18-bit operands and
6-bit or I 2-hit addresses. Figures 9-1 and 9-2 illustrate the 12-bit instruction format and the 24-bit

instruction format, respectively.
Dirsct Maode:

d = memory address of operand

vperation Indirect Mode:
~code

(P) f d
-

06 0% o0 No Address Mode:

d = memory address of the address
of the operand

4 - 6-bit operand, shift count, or
relative address

Other:
d = special value; e, g., channel designator

Figure 9-1, PPU 12-bit Instruction Format

60360900A 9-1

The 24-bit format uses the 12-bit quantity m, which is the contents of the next program address (P + 1),
with d or the contents of d to form an 18-bit operand or a 12-bit operand address.

Indexed Mode:

d = address of the index for

operation
csde modifying the address of
the operand
r A A}
(P) f d m = base address of the operand
11 06 05 00 (d) + m = address of operand
(P+1) m Constant Mode:
11 00

dm = 18-bit operand
Other:

dm = special values; e.g., d = channel
designator and m = 12-bit address
of word count on TAM and OAM
instructions '

Figure 9-2. PPU 24-bit Instruction Format

9.2 SYMBOLIC NOTATION

This section describes notation used for coding symbolic PPU machine instructions. Instructions are
described in octal operation code sequence which generally reflects the mode of addressing,
Instructions unique to a computer system are identified as such.

The location field of a symbolic PPU machine instruction optionally contains a location symbol, Wiheoo
the symbol is present, it is assigned the value of the location counter.

The operation field of 4 symbolic PPU machine instruction contains a three-character name.

The variable field contains one or two subfields. Each subfield contains an absclute or relocatable
expression that reduces to a 6-bit, 12-bit, or 18-bit value.

Designators used in this section are listed in Table 9-1.

Generally, the third character of the instruction mnemonic N, D, M, C, or I} indicates the mode of
addressing:

No operand address reference

Direct operand address: d contains operand
Memory address m or m + (d) contains operand
18-bit constant

Indirect; operand address is (d)

~agoz

9-2 G030

T

TABLE 9-1. PERIPHERAL PROCESSOR INSTRUCTION DESIGNATORS

—-

i Designator Use

E A 18-bit A register

1‘ C An expression that reduces to an 18-bit operand value.

0 A 6-hit operand or operand address expression.

; r.i A 12-bit expression value used with d or (d) to form an 18-bit operand or 12-bit
operand address.

‘ ¥ 12-hit Program Address register

]1 G 12-bit @ register
An expression that reduces to a 6-bit value (—3?85; r< 37g)
specifying relative address or shift count

() Contents of a register or location
(» Refers to indirect addressing

Some of the instruections provide similar functions using different modes of addressing. They can be
grouped according to function as shown below:

Function

Dzta transmission

603609004

Description

The following instructions either load data into the A register or store
data from it. A load instruction loads a 6-bit, 12-bit, or 18-bit value
as indicated by the instruction; any remaining upper bits of A are zeroed,
except for the LCN instruction for which remaining bits are set to one.

A store instruction stores the lower 12 bits of the A register contents into
a memory lacation indicated by the instruction.

The contens of A are not altered,

Instruction Octal Code Section
LLDN 14 5.2.3
LCN 15 9.2.3
LDC 20 9.2.4
LD 30 9.2, 9
STD 3a Y209
LDI 40 9.2, 18
ETI 44 3.2.10
LDM 50 9.2,11
STM 54 9. 2,11

9-3

Function (cont'd)

Arithmetic

Logical

9-4

Description (cont'd)

A PPU arithmetic instruction adds or subtracts a 6-bit, 12-bit, or
18-bit quantity from the contents of the A register and enters the result
in A,

Instruction Octal Code Section
ADN 16 9.2.3
SBN 17 9.2.3
ADC 21 9.2.4
ADD 31 9.2.6
SBD 32 9.2.6
ADI 41 9.2.7
SBI 42 9.2.7
ADM 51 9.2.8
SBM 52 9.2.8

A logical instruction forms a logical value in A using the contents of A
as one of the operands and a 6-bit, 12-bit, or 18-bit value indicated by
the instruction as the second operand. When the second operand is
fewer than 18 bits, the remaining upper bits of A are unaltered, except
for the LPN instruction for which the upper 12 bits are zeroed.

Formation of a logical difference is equivalent to setting each bit in A
that is unlike the corresponding bit in the second operand. For exampie,

Initial (A) =0101
Operand =1100
Final (A) =1001

Formation of a logical product is equivalent to setting a bit in A when
the original setting of the bit in A and the corresponding bit in the second
operand are both one's,

For example,

Initial (A) =0101
Operand =1100
Final (A) =0100

A selective clear sets a bit zero in the A register wherever a bit is ¢t
in the second operand. For example,

Initial (A) =0101
Operand =1100
Final (A) =0001

SOAGLHNG

S

Function (cont'd) Description (cont'd)

Logical (cont'd) Logical instructions include the following:
Instruction Octal Code Section

LMN 11 9,2.3
LPN 12 9.2.3
SCN 13 9.2.3
LPC 22 9,.2.4
LMC 23 9.2.4
LMD 33 9.2.9
LMI 43 9,2.10
L.LMM 53 9.2.11

Replace A replace instruction performs an arithmetic operation and returns the

results o the A register and the memory location from which one operand
was obtained. The lower 12 bits of the result replaces the operand
obtained from a memory location.

Instruction Octal Code Section
RAD 35 9.2,9
ACD 36 G.2.9
SCD 7 5.2.9
RAI 45 9.2.10
AOI 46 9.2.10
S0I 47 9.2.10
RAM 55 9.2.11
AOM 56 9.2.11
SOM 57 9.2.11

9.2.1 BRANCH INSTRUCTIONS

For branch instructions, the r subfield is a numeric value that indicates the number of locations to be
jumped (maximum 31). When r is positive (01—378), the jump is forward r locations. When r is
negative (768-408), the jump is backward 77g-1 locations. In the following tests, negative zero

(777777) is nonzero. For conditional instructions, when the test condition is true, the jump takes place.
When the condition is not met, execution continues with the next instruction.

~ A TTOOTONRY
€ :"»L . [E@3!

The jump count must not be 00 or 77. If it is, execution
loops on the jump instruction.

The J option of the PPU instruction (Section 4. 3. 3) and the PERIPH instruction (Section 4,3.4) cause
the value of the location counter to be subtracted from the value of the symbolic address (tag) before it
is placed in the d field of the object code instruction.

60360900A 9-5

Formats:

Operation Variable Description Size Octal Code
LIM m,d Long jump to m+(d); if d = 0, m is not
modified 24 bits 01dm
RJM m,d Return jump to m+(d); Store P+2 at m-+(d)
and jump to m+(d)+1. ' 24 bits 02dm
UJN rt Unconditional jump to P+r locations 12 bits 03d
UJN tag Unconditional jump to tag 12 bits 03d
ZJN rt Zero jump; jump to P+r locations if
A) =0 12 bits 04d
ZJN tag Zero jump to tag 12 hits 04d
NJN rt Nonzero jump; jump to P+r locations if
(A) #0 12 bits 05d
NJN tag Nonzero jump to tag 12 bits 05d :
PJN rt Positive jump; jump to P+r locations if
(A)>0 12 bits 06d
PJN tag Positive jump to tag 12 bits 06d
MJN rt Minus jump; jump to P+r locations if
(A)<0 12 bits 07d |
MJIN tag Minus jump to tag 12 bits 07d »

tif PPU J or PERIPH J option has been selected, r is not valid, The contents of the variable field musi
be a symbolic address (tag).

Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS]
i N 18 [30 T
1100 1362 LJM START :r)
0271 0000 P UM 0,070 :
0271 UJN TAGL=-* |
DNy 7JN +4 ;
1525 NN [TAG3 |
N&e7 PUN TAGD =% :
n77e MIN TAGL |

In the above examples, the LJM instruction is at address 0014g. TAGI1 is address 0012, TAG?2 has s

value of 13g, TAG3 has a value of 25g, and TAG4 has a value of 268. 8

—

——

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

0 " 18 T30
T
PPY J :
|
03%7 UJN LTAGH
oLt 7JIN TAG? In this example, the UJN is at

i
|
I
!
, | address 0040. TAGI is address
05%6 NJM TAR2+10D | 0010, TAG2 is 0011, TAG3 is
| address 0045, and TAG4 is
I
|
|

o602 PUN -1+TAGYL address 0046,

p7Lz MJUN TAG)

©.2.2 SHIFT INSTRUCTION

The SHN instruction shifts the contents of the A register right or left r places. If r is positive (+1 to
+31), the shift is left circular r piaces; if r is negative (-31 to -1), the shift is end off r places to the
right with no sign extension. No shift takes place when r is + 0. The assembler places the value of
the r expression in the d field. If -31 »r >31, the assembler generates an address error.

Format:

Operaticn Variable Description Size Octal Code
SHN r Shift (A} by + (left) or - (right) r bits 12 bits 10d
Examples: |

1. Shift contents of A left circular 6 places

Code Generated LOCATION f OPERATION | VARIABLE COMMENTS
! T e [30
1 T
1006 [eHN 3 |
2. Shift contents of A right end off 6 places
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
} T 18 : T30
- 1
3 SONT T PR ’
1071 SHN [=SPNT !

60360900A 9-7

9.2.3 NO ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d field are interpreted as a 6=bit
positive operand. This mode eliminates the need for storing many constants in core,

Formats:
Operation Variable Description Si zé Octal Code
LMN d Logical difference (A)-d—~A 12 bits 11d
LPN d Logical product (A)*d —A 12 bits 12d
SCN d Selective clear (A) 12 bits 13d
LDN d Load d—A 12 bits 144
LCN d Load complement d—~A 12 bits 15d
ADN d Add (A)+d—~ A 12 bits 16d
SBN d Subtract (A)-d--A 12 bits 17d
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS h
1 n 18 {30 -
1112 LMN 128 ; B
1207 LPN 7 |
1324 SCN 21n :
16 LY SFT 158 |
1415 LN AA !
1514 LCN AA-1]
1601 ADN 1 '
1702 SBN 2 II

9.2.4 CONSTANT MODE INSTRUCTIONS

In this mode, during instructi n execution, the contents of the d and m fields are taken directly as an
operand. This mode also eliminates the need for storing many constants. The assembler reduces
absolute or relocatable expression ¢ to an 18-bit value and stores the upper six bits in d and the lower
12 bits in m.

Format
Operation Variable Description Size Octal Code
LDC c Load ¢ —A 24 bits 20dm
ADC c Add (A}+c —+A 24 bits 21dm
LPC c Logical product (Aj*c —A 24 bits - 22dm
LM ¢ Logiczl difference (A}-c —A 24 bits 23dm
|
Examples:
C(}dC Geuerated LOCATION OPERATION | VARIABLE COMMENTS
T 1 n 18 .]30
2970 7070 Lne 7070700 |
I
i) VAL = 0 }
2177 77?8 Anec VAL=-1 |
|
220F n70n7 i LPC grn7e7TnN i
1
—_ 70707 MAa K SFT 0707078 1
207 0707 ; LMC MA K {

9.2.5 NO OPERATION INSTRUCTION

The PSN instruction specifies that ro operation is t» he performed. It provides a means of padding.
a program,

Format:
Operation Variable Description Size Octal Code
PSN No operation (Pass) 12 bits 2400
Example:
CQdeﬁQgﬂn@:{vated (OCATON _Ork;l\-llG:f_\;AS—l; I “'\" OMMEN TS
) " 18 i3
¥
2unn PSN [

60360900A 9-9

Other octal operation codes (not generated by COMPASS) that act as pass instructions are:

CYBER 70/Models 72, 73, 74 and 6000 Series CYBER 70/Model 76 and 7600

00 25
25 26
27
75
76

9.2.6 EXCHANGE JUMP INSTRUCTIONS (CYBER 70/MODEL 72, 73, 74, AND 6000-SERIES)

The EXN instruction transmits an 18-bit (absolute) address of which only 17 bits are used from the A
register to the CPU with a signal notifying the CPU to execute an exchange jump. The address in A is
the starting location of the 16-word exchange package which contains information about the CPU pro-
gram to be executed. The 18-bit initial address must be entered in A before the EXN instruction is
executed, The CPU replaces the file with similar information from the interrupted CPU program.
The PPU is not interrupted,

The MXN instruction conditionally exchange jumps to the CPU and initiates CPU monitor activity., If
the monitor flag bit is clear, this instruction sets the flag and initiates the exchange. If the monitor
flag bit is set, this instruction acts as a pass instruction. The starting address for this exchange is
the 18-bit address in the PPU A register. This address must be entered in A before the MXN instruc-
tion is executed.

Execution of MAN resembles MXN. However, the exchange package address is taken from the 18-bit
Monitor Address (MA) register in CPU d, rather than from the PPU A register.

In 6500 or 6700 systems (or CYBER 70/Model 72-2Z, 73-2Z, or 74-2Z) with dual central processors,
d can be 0 or 1 and specifies which CPU the exchange jump will interrupt. In single processor systems,
this value is not interpreted.

Formats:

QOperation Variable Description Size Octal Code
EXN d Exchange jump to CPU d 12 bits 260d

MXN d Monitor exchange jump CPU d to (A) 12 bits 261d

MAN T d Monitor exchange jump CPU d to (MA) 12 bits 262d

T CYBER 70/Models 72, 73 and 74 only.

9-10

603609004

Examples:
Code Generated
2601

2€ .0

2623

LOCATION OPERATION | VARIABLE COMMENTS
! M 18 {30
EXN b |
!
MXN { ‘
MAN 3 ,
|
|

9.2.7 READ PROGRAM ADDRESS INSTRUCTION (CYBER 70/MODELS 72, 73, 74, AND 600C-SERIES)

This instruction transfers the contents of the CPU P register to the PPU A register; this allows the
PPU to determine whether the CPU is in execution,
order bit of the instruction fermat specifies which CPU P register is to be examined. In 6400 (or
CYBER 70/Model 74) and 6600 (or CYBER 70/Model 74) systems, this bit is not interpreted. The
largest value that (P) can be is 17 bits. An ECS transfer is in progress when bit 17 of this instruction

is set. However, bit 17 of P is not set,

In a dual central processor system, the lowest

Format:
Operation Variable Description Size |, Octal Code
RPN d Read program address CPUd - A 12 bits 270d
Example:
Code Generated LOCATION | OPERATION | VARIABLE COMMENTS
1 jg“ - e ‘30
2700 ! RPN !
9-11

60360900A

9.2.8 6416 PPU INSTRUCTIONS

COMPASS assembles the following instructions for execution on a 6416 computer system only. The
ETN instruction initintes memory transfer operations by transmitting an 18-bit address from the
PPU A register to the 6416 16K memory. This address points to a word having the following format:

ox] A0] X]
9 36 18 00
AN ~ - v v S
Starting Address Starting Address Word Count
in Extended Core Storage in 16 K Memory

Expression d of this instruction specifies the transfer to be performed:

If dis 0, K words are transferred from ECS to 16K memory.

If dis 1, K words are transferred from 16K memory to ECS.

Note that addresses contained in the word are absolute addresses. Operating systems may require
relocation (adding RA to an address) and field length testing, e. g., Is address + RA FL? The
lixchange Jump package contains RA and FL values for central memory and for extended core storage.
The 6416 has no hardware for automatic relocation and field length testing; it is therefore incumbent
upon the program to perform these functions whenever required by an operating system.

The ERN instruction examines the status of the data trunk between 16K memory and the extended core
coupler. If the data trunk is busy (a transfer is in progress), a 1 is placed in the most significant bit
position of the A register. If the trunk is free (not busy), the A register remains cleared. The d
portion of this instruction is ignored.

After execution of this instruction the program would typically test the A register for a sign before
executing an instruction that initiates an ECS operation.

Formats:
Operation Variable Description Size Octal Code
ETN d Extended core transfer 12 bits 260d
ERN d Read extended core coupler status 12 bits 270d
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) N 18 T30
2600 ETN ,'
|
27060 ERN i

9-12 6036090604

9.2.9 DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instructicn execution, the contents of the d field specify the address of the operand.
During assembly, the assembizr reduces absolute or relocatable expression d to a 6-bit value that
specifies one of the first 100g addresses in core memory (0000 - 00778), During instruction execution,
(d) is treated as a positive 12-bit quantity,

Format:
Operatica Variable Description Size Octal Code
LDD d Load (d) —~A 12 bits 30d
ADD d Add (A} + {d}—~A 12 bits 31d
SBD d Subtract (A) - (d) -A 12 bits 32d ;
|
LMD d Logical difference (A) and (d) —A 12 bits 33d
S1D o Store 14} =1 12 hits 344 |
RAD d Replace add (d) + (A)—d and A 12 bits 35d
AOD d Replace add (d) + 1—d and A 12 bits 36d
SOD d Replace subtract one (d) - 1—d and A 12 bits 37d
Examples:
i ode Generated [T iocanon OPERATION | VARIABLE COMMENTS
| N 18 T30
3012 Lno TAG1 }
|
317 £0n TART=10D |
|
2Lg ' AN RS |
3327 | LA Ta514158 Il
2401 $T0 1 f
|
21565 AN 550 i
! !
3612 800 !Y AG1 !
!
3713 can TaGo :
9-13

60360900A

9.2.10 INDIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, d specifies an address, the contents of which specify the
address of the desired operand. Thus, d specifies the operand address indirectly.

During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that

specifies one of the first 1008 addresses in core memory (0000 - 00778).

On the 7600 (or CYBER 70/Model 76),

buf one (0000 - 77768).

the address formed permits referencing of all memory locations

On a 6000 Series Computer System (or CYBER 70/Model 72, 73, or 74) PPU, the address formed in

indirect address mode permits referencing of all memory locations, including address 7777

g
Formats:
Opera“ti:)n Variable Description Size Octal Code
LDI d Load ((d))—A 12 bits 40d
ADI d Add (A) + (d)—A 12 bits 41d
SBI d Subtract (A) - ((d))—A 12 bits 424
LMI d Logical difference (A) -~ ((d))—A 12 bits 43d ‘
STI d Store (A)—(d) 12 bits 44d f
RAI d Replace add ((d)) + (A)—() and A 12 bits 45d
AQI d Replace add one ((d)) + 1—(d) and A’ 12 bits 46d i
SOt d Replace subtract one ((d)) - 1—(d)and A 12 bits 47d i
Examples:
Code Generuted LOCATION OPERATION | VARIABLE COMMENTS T
i it 18 130
41y L0I1 TAG1 ,’ o
4143 ADT TAG2-10 !
42 ne ser 4gm l'
4327 LMT TAG!+16P l
4 STI 1 :
45506 RAT 56R :
4612 AOT TAGH ;
713 SO01 YAG? Il
8-14 GORBOHO) A

9.2.11 INDEXED DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instructicn execution, the value formed by m+(d) is used as the address of the
operand. During assembly, tiie assembler reduces absolute or relocatable expression d to a 6-bit
value that specifies one of the first 100, addresses in core memory (0000 - 0077g). The value of
absolute or relocatable expression m is a 12-bit base address.

NGTE

The address formed in indexed addressing permits
referencing of all memory locations but one
(0000-7776g). Although m and/or (d) can have a
value of 7777, “he nomputer system does not
permit m+(d) to reference address 7777g.

When in indexed direct address mode, if d is nonzero the contents of address d are added to m to
produce a 12-bit operand address (indexed addressing). If d is zero, m is taken as the operand address.

Formats:
ey
Operation « %ariable Description Size Octal Code
LDM m,d Load m+{d))—A 24 bits 50dm
ADM m,d Add (m+(d))—~A 24 bits 51dm
SBM m,d Subtract (m+{d)}—A 24 bits 52dm
..MM m,d Logical difference (A) - (m+(d))—~A 24 bits 53dm
STM m™m,d Store (A}~ m+(d) 24 bits 54dm
RAM m,d Replace aud (m+{%; ~ @j—m~{dand 4 24 bits 55dm
AOM m,d Replace add wue fneidy + 3 —=m+(d) and A 24 bits 56dm
SOM m,d aRﬁaglA;we subtract one (1}1_+ d)) - 1—=m+(d) 1 24 bits 57dm
Exampies:
VOCATION GPERATION | YAKIAGLE COMMENTS
Code Generated T
——— ! i 18 |30
5077 0203 l AL THES, 770 ;
i !
5506 $206¢ OL VALY 6
5200 (202 SBM TAGS ;
5315 7000 LMM 70008¢.158 !
[
5419 0272 ST TAGS+708,TAGL1-2
!
5500 0342 RAM 1“03”“65’0!
5600 0173 AOM | -10B+TAGE |
i
5712 0203 SoM TAGs TAGL |

60360900C 9-15

9.212 CENTRAL READ/WRITE INSTRUCTIONS (CYBER 70/MODELS 72, 73, 74 AND 6000-SERIES)

The CRD instruction transfers a 60-bit word from central memory to five consecutive PPU locations.
The 18-bit address of the central memory location must be loaded into A prior to executing this
instruction. (Note that this is an absolute address.) The 60-bit word is disassembled into five 12-bit
words beginning at the left. Location d receives the first 12-bit word. The remaining 12-bit words
go to successive locations. The (A) are not altered.

The CRM instruction reads a block of 60-bit words from central memory. The content of location d
gives the block length. The 18-bit address of the first central word must be loaded into A prior to
executing this instruction. (Note that this is an absolute address.) During the execution of the instruc-
tion, (P) goes to processor address 0 and P holds m. Also, (d) goes to the Q register where it is
reduced by one as each central word is processed. The original content of P is restored at the end of
the instruction.

(A) is advanced hy one to provide the next central memory address after each 60-bit word is disassembled
and stored. The contents of the Q register are also reduced by one. The block transfer is complete
when (Q)=0. The block of central memory locations proceeds from address (A) to address (A) + (d) -1.
The block of processor memory locations proceeds from address m to m+5(d)-1.

Each central word is disassembled into five 12-bit words beginning with the high-order 12 bits. The

first word is stored at processor memory location m. The content of P (which is holding m) is advanced
by one to provide the next address in the processor memory as each 12-bit word is stored. If P overfiows,
operation continues as P is advanced from 7777 _ to 0000_.. These locations will be written into as if

. 8 8
they were consecutive.

The CWD instruction assembles five successive 12-bit words into a 60-bit word and stores the word
in central memory. The 18-bit address word designating the central memory location must be in A
prior to execution of the instruction. (Note that this is an absolute address.)

Location d holds the first word to be read out of the processor memory. This word appears as the
higher order 12 bits of the 60-bit word to be stored in central memory. The remaining words are taken
from successive addresses.

The CWM instruction assembles a block of 60-bit words and writes them in central memory. The content
of location d gives the number of 60-bit words., The content of the A register gives the beginning

central memory address. (Note that this is an absolute address.) During the execution of this instruction
(P} goes to processor address 0, and P holds m. Also, (d) goes to the Q register, where it is reduced

by one as cuch central word is assembled. The original content of P is restored at the end of the
instruction,

The content of P (the m portion of the instruction) gives the address of the first word to be read out of
the processor memory, This word appears as the higher order 12 bits of the first 60-bit word to be
stored in central memory.

The content of P is advanced by one to provide the next address in the processor memory as each
12-bit word is read. If P overflows, operation continues as P is advanced from 77778 to 00008.
These locations will be read from as if they were consecutive.

(A) is advanced by one to provide the next central memory address after each 60-bit word is assembled.
Also, Q is reduced by one. The block transfer is complete when (Q)=0.

9-16 6036090G0A

e,

i,

B

Form its:

Operation Variable Description Size Octal Code
CRD d Central read from (A) to d 12 bits 60d
CRM m,d¥ Central read from (d) CM words begin- i

Harg ki LR (A B an 4 bils 61din
CWD d Central write from 4 to (A) 12 bits 62d
CWM m,dt Ceutral wiite (d) words beginning at

PPU -+ CM (A, 24 bits 63dm

tExpression d is required,

Example: —

T {DCATION I QFERATION | VARIABLF COMMENTS

Cn(lf’ Generated o+ b e “0 -
£,04 0 i :T =

| |

6125 NN12 % !CDM TAG1,258 |

Ho 3P N Poer 3o0 :

P | |

6350 0012 L | O M TAG1,50R |

i H |

9.2.13 1/O BRANCH INSTRUCTI(HMS ICYBER 7C/MODELS 72, 73, 74 AND 6000- SERIES |
The following instructions are conditional long jump instructions, each of which tests for a condition
on channel d. When the condition is trugz, the lump to address m takes place. When the condition is
not met, execution continues with the uext instruction. These instructions are exclusiv:ly 6000-series
PPU instructions, The d expressjon is requirad

For the FIM instruaction, an input oban =) i £:00 wbor the froot squipreent hags sent a word {o the channs!
register and sels t‘:e full flag. The » i fuli uniil the PPU acceepts the word and clears the
flag., An cuipet channel remains fluf : Coends a word to the channel register and sets the

fuil flag. The chaanel is empty when iy cunet equipment accepts the word and notifies the PPU.

s [l

Formats:
e e g e e R
Operation Variable Descoripiicn Size Octal Code
ATM W, d Jumyp oo 1T o ans! 2 oaotive 24 bits 84dm
WM Loy CoJurng B af b el sl angou s [24 bits 65dm
FIM m,d Jump to m if channe! 4 full 24 hits 66dm
EJM m,d Jump to 1 if channel d empty 24 bits 67dm
60360 9-17

Fxam

ples:

Code Generated

6402 0012
6502 0013
6604 0025

6704 0026

LOCATION OPERATION | VARIABLE COMMENTS
n 18 [30
AJM TAGL,2 ;
|
IJM TAG2 yCHAN=2 |
i
FJM TAG3,4 i
|
EJM TAG4L yCHAN]
|

9.2.14 1/O BRANCH INSTRUCTIONS (CYBER 70/MODEL 76 AND 7600)

The following instructions are conditional long jump instructions each of which tests a condition on
channel d. When the condition is true, the jump to address m takes place.

met, execution continues with the next instruction.

When the condition is not
These instructions are exclusively 7600 PPU

instructions. The d expression is required.
Formats:
Operation Variable Description Size Octal Code
FIM m,d Jump to m on channel d input word flag 24 bits 60dm
EIM m,d Jump to m if no input word flag on channel d| 24 bits 61dm
IRM m,d Jump to m on channel d input record flag 24 bits 62dm
NIM m,d Jump to m if no input record flag on
channel d 24 bits 63dm
FOM m,d Jump to m on channel d output word flag 24 bits 64dm
EOM m,d Jump to m if no output word flag on
channel d 24 bits 65dm
ORM m,d Jump to m on channel d output record flag 24 bits 66dm
NOM m,d Jump to m if no output record flag on
channel d 24 bits 67dm
9-18 60360900A

Examples:

Code Generated LOCATION OPERATION | VARIABLE | COMMENTS
1 N 1 T30
AN05 1365 FIM TAGS,5 f
51012 17588 F Lo TAGS,2 ;
2N1 11HF IRM TAGE, 1 :
4 FHAN SeT 4 i
L3NG 1366 MM TAGK ,CHAN :
5415 7000 FOM 7ooon,isn |
Hean 4628 EOM LUNNeTRNR G0 i
5601 1256 0R’M -1ann+rase.<HAN-3
n705 1266 O TAGAR,CHAN+L !

60360900A : 9-19

9.2.15 A REGISTER INPUT/OUTPUT INSTRUCTIONS
The following instructions transfer a word to or from channel d and the lower 12 bits of the A register,

On the CYBER 70/Model 76 or 7600, the IAN instruction is not executed until the input channel d word
flag is set. If the flag is not set when the instruction is read, execution halts until an external signal
sets the flag. The input channel d record flag does not affect the IAN execution. The IAN instruction
clears the input channel d word flag and record flag and transmits a resume signal over the input cable
after the word is entered in the A register.

On the CYBER 70/Model 76 or 7600, the OAN instruction is not executed while the output channel d
word flag is set. If the flag is set, execution stops until an external resume signal clears the flag.
This instruction sets the output channel d word flag and transmits a work pulse over the output channel
cable,

On a CYBER 70/Model 72, 73, or 74 or 6000-series machine, executing either of these instructions
when the channel is inactive causes the peripheral processor unit to become inoperative until some

other peripheral processor activates the channel or the system is deadstarted.

Formats:
Operation Variable Description Size Octal Code .
IAN d Input: channel d to A 12 bits 70d
OAN d Output: (A) to channel d 12 bits 72d
Examples:
LOCATION OPERATION | VARIABLE COMMENTS

Code Generated | " " [%

7003 IAN 3 ;

7204 OAN CHAN ;

9.2.16 BLOCK INPUT/OQUTPUT INSTRUCTIONS

The following instructions transfer a block of 12-bit words on channel d to or from a starting PPU
memory location specified by m. The number of words transferred is specified by the contents of the
A register which is reduced by one as each word is transferred. The operation is completed when (A)
= 0 or the channel becomes inactive (CYBER 70/Model 72, 73, 74 or 6000 only).

On a CYBER 70/Model 72, 73, 74 or 6000-series machine, the input operation is complete when (A) = 0
or the data channel becomes inactive. If the operation is terminated by the channel becoming inactive,
the next location in the processor memory is set to all zeros. The word count is not affected by this
empty word. Therefore, the contents of the A register gives the block length minus the number of real
data words actually read in.

During execution of either of these instructions, address 0000 temporarily holds P, while the P register

holds m. The contents of P advances by one to give the address for the next word as each word is
transferred.

9-20 603609008

NOTE

If thic instruction is executed on a 6000-series machine
when ihe data channel is inactive, no operation is accom-
plished and the program continues at P + 2. However,
the location specified by m is set to ali zeros for the 1AM
instruction.

On a CYBER 70/Model 76 or 7600 the 1AM instruction is not executed until the input channel d word
flag is set. If the flag is not set when the instruction is read, execution halts until an external signal
sets the flag. The presence of an input channel d record flag is ignored for the first word of the block
but terminates the block input at any word afier the first. In this case, the next location in the PPU
block input storage area contains a uoise word; any remaining locations are unaltered, Wote thai the
storage location can be incremented through location 7776 to 0000 on a 7600 (or CYBER 70/Model 763,
or location 7777 through 0000 on 2 600{¢~series machire (5% a CYBER 70/Model 72, 73, or T4), which
could cestroy existing data o a program.

On a CYBER 70/Model 76 or 7600, the OAM instruction is not executed until the output channel d word

flag is cleared. If the flag is set when the instruction is read, execution halts until a resume pulse
clears the flag, An output channel « record flag does not affect OAM execution.

Formats:
Operation Variabie Desceriviliin Size Octal Code
IAM m,d T Input: {A) words to m from channei d 24 bits 71dm
OAM m,d T Output: {A) words to channel d from m 24 bits 73dm
TExpression d is required.
Examples: 7

Code Generatea T LOOaTIN ! m&fe,ﬂ‘m:! VAR ABLE COMMENTS

Lode (s£nerarea _'i,_-w,,, - WAL T B

7102 176H6 “; o o 7??4*—;?7 T

7704 1764 | TaG, L

603609001

9-21

9.2.17 SET OUTPUT RECORD FLAG INSTRUCTION (CYBER 70/MODEL 76 AND 7600)

The RFN instruction sets the output channel d record flag and transmits a record pulse over the cable.
The instruction ignores the previous status of the channel d flags; the instruction is executed even if the
output channel d record flag is set.

Format:
Operation Variable Description Size Octal Code
RFN d Set output record flag on channel d ' 12 bits 74d
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) I 8 {30
7406 RFN 6 ;

9.218 CHANNEL FUNCTION INSTRUCTIONS (CYBER 70/MODELS 72, 73, 74 AND 6000-SERIES)

The ACN instruction activates the channel specified by d. This instruction must precede the IAN,
IAM, OAM, or OAN instructions. Activating a channel alerts the input/output equipment for the
exchange of data. Activating an already active channel causes the PPU to become inoperative until
another PPU or an external equipment deactivates the channel, or the system is deadstarted.

The DCN instruction deactivates the channel specified by expression d. It stops the input/output
equipment and terminates the buffer. Deactivating an already inactive channel causes the PPU to
become inoperative until deadstart or until the channel is activated. Avoid disconnecting the
channel before first sensing for channel empty, deactivating a channel before stopping the associated
processor, or deactivating a channel before placing a useful program into the associated processor.
After deadstart, PPUs wait on an input channel. Deactivating a channel after deadstart causes an
exit to address 0001 and execution of the program.

The FAN instruction sends the external function code from the lower 12 bits of the A register on
channel d.

The FNC instruction sends the external function code specified by m on channel d. For this instruction,
expression d is required.

Execution of a FAN or FNC instruction when the channel is active causes the PPU to become inoperative
until another PPU or an external equipment deactivates the channel, or the system is deadstarted.

Formats:

Operation Variable Description Size Octal Code
ACN d Activate channel d 12 bits 74d

DCN d Disconnect channel d 12 bits 75d

FAN d Function (A) on channel d 12 bits | 76d

FNC c,d Function ¢ on channel d 24 bits T7dm

9-22 60360900C

Examples:

LOCATION OPERATION | VARIABLE COMMENTS
) W 18 T30
1
7405 ACN 5 :
7504 N CHAN
7605 FAN CHAN®1 ;
I
7705 0020 FNO l2ee,5 :

9.2.19 ERROR STOP INSTRUCTIOM [CYBER 70/MODEL 76 AND 7600)

Tre ESN instruction halts exccution of the peripherai processor program and indicates a program
error condition to the monitor controf unit.e The PP must be restarted by a deadstart sequence from
the MCU, only.

Format:
Operatior Variable Description Size Octal Code
ESN d Error Ston 12 bits 7700
Example:

Code Generated LOCATIOM | ostration] vakiaBLE COMMENTS

1 i 18 [0
— e e et o o st }
7700 FaN | i

603609004 9-23

PROGRAM EXECUTION 10

”

COMPASS can be called from the library and placed in execution through a COMPASS call card or
through an IDENT statement (Section 4.2.1) in a FORTRAN source deck. When COMPASS is called
through FORTRAN, parameters are ordinarily specified on the RUN or FTN card and are the same as

for the FORTRAN program.

10.1 CONTROL STATEMENTS

Novmnally, assembly of COMPASS source programs or the execution of CPU binary object decks

i done from a job fite. A file ie usuaily submitted in the form of card decks or card images. The
first section of the file must contain the control statements described in this section, Other
optional statements are described in the operating system reference manual. Following the control
statement section are one or more sectiong containing source statements and data. A control
statement kev word begins with the first non-blank character on the card. A comma or a left
parenthesis or hlank begins a parameter string, Parameters in the string are separated by com-
mus. A period or right parenthesis terminates a parameter string, Comments optionally follow the
terminator. Within the parameter strings, blanks are ignored. Ordinarily, a parameter can contain
only letters and digits. When a parameter is enclosed between dollar signs, all characters are
permitted and bianks are nct ignored. Within such a dollar-sign delimited parameter, two con-
secutive dollar signs represent a single dollar sign.

10.1.1 JOB STATEMENT
A job statement of the following farmat must he the first statement in the deck. The parameters
following name can be in any order or can o oaitted . For any omitted field a default value is supplied

which is an installation option.

Format:

(name ,Tt,CNscem, EClem.

name 1-7 letters or digits by which the job is identified.
The first character must be a letter.

G0360900 D 10-1

Tt CPU time limit in octal seconds (1-7777_), must be sufficient to process all control
cards for the job, including assembly and execution,

CMscm Estimate of maximum amount of SCM or CM required for execution (1 - 6 octal digits).
The estimate for COMPASS is a minimum of 40000.

EClcm Estimate of maximum amount of LCM or ECS in octal thousands, required for
assembly or execution (1 - 14008). The estimate for COMPASS is a minimum of
none,

COM PASS notes storage used in the job dayfile. For subsequent runs, the field lengths can be de-
creased accordingly.

Examples:

(JOBI, P2, T100,CM40000, EC30.

(TE STER.

10.1.2 COMPASS CALL STATEMENT

The following statement causes the COMPASS assembler to be loaded from the library and executed.
Parameters specify modes and files.

Format:

(COMPASS(pl,pZ, tes ,Pn)

The optional parameters, p, may be in any order within the parentheses. A parameter can be omitted
or can be in one of the following forms.

mode
mode = 0
mode =1fn

Mode is one or two characters as described below; 1fn is a 1 - 7 character name of a file or a
character string.

10-2 60360900 D

Mode

A - Abort mode
A

omitted

B - Binary output
omitted or B
B=0
B=l1fn

D - Debug mode
D

omitted

Significance

Abort job at end of run to EXIT(S) statement if any assembly errors occurred. I

Do not abort job fur assemhly orrors

Binary on the load~and-go file (LGO)
No binary output

Binary on the named file

Binary is genevated on the file indicated by B parameter in spite of assembly errovs
and regardless of the abort mode (A parameter)

D is ignored if B=0

Assembly errors inhibit binary output, In abort mode (A parameter present), nc
binary output is written at all for a subprogram containing assembly errors. Othiar-
wise (A parameter omitted), the message ERRORS IN ASSEMBLY is written to the
file indicated by the B parameter for each subprogram containing assembly errors.

F - FORTRAN mode; establishes value of special element *F

omitted or F
F=number

F=name

G - Get system text
Omitted or G=0

G=l1fn
G=lfn/ovl

60360900 D

*F is 0
*F is number (one decimal digit)

*F is a number corresponding to name as follows:

COMPASS = 0
RUN = 1
FTN = 2

Load no system text from a sequential binary file
Load the first system text overlay, if any, from file named SYSTEXT
Load the tirst system texi overiay, if any, in the specified sequential binary file

Search the specified sequential binary file for a system text overlay whose name
is ovl and load the first such overlay

10-3

Mode

Significance

I - Source of assembler input

omitted
I

=0
I=lfn

L - Full List
omitted or L

L=1fn

L=0

Source deck is on INPUT file
Source deck is on COMPILE file in either compressed or expanded format.
Illegal

Source deck is on named file

List output on OUTPUT file

List output on named file, When the full list is on a different file than the short
list, the listing for each subprogram is preceded by a one-word header consisting
of an asterisk and the first six characters of the subprogram name. This header
identifies the subprogram as a convenience for sorting and cataloging. Also see
O option,

No full list will be generated

LO-List options; selects or deselects a maximum of nine of the list options A, B C D,E, F, G, L,
M,N, R, 5§, T, or X

omittéd or LO=0
LO

L()=clc‘ veeC

2

LO=$$%$

Samé as selecting B, L, N, and R only
Selects list options C, F, G, and X, and deselects R

A list of up to nine characters., Inclusion of B, L, N, or R deselects the corres-
ponding option. Otherwise, inclusion of a character selects the option. For
options, refer to LIST pseudo instruction, section 4.11.1,

Selects all list options

ML-Initial Value of MODLEVEL Micro

omitted or ML

ML=string

MODLEVEL is defined equal to JDATE at the start of each assembly

MODLEVEL is defined as string (nine characters maximum) at the start of each
assembly

N - No eject; suppresses ejects caused by normal listing control. The only page ejects are at the be-
ginning of new subprograms.

N

omitted

10~-4

No eject

Normal ejects

60360900B

O - Short list; suppressed if full list is directed to the same file or if no assembly errors occur. How-
ever, if the full list and short list are on different files (for example, the full list is written on
OUTPUT and the short liz t is written on the named file), the short list will be augmented by the
addition of any error lines originating with a macro call.

omitted or O List output on QUTPUT file
O=lfn List output on named file

0=0 No short list will be generated

P - Continue page
P Page numbering continues from subprogram to subprogram.

omitted Page numbering begins with 1 at the start of each subprogram

PC- Initial Value of PCOMMENT Micro
omitted or PC PCOMMENT is defined as 30 blanks at the start of each assembly

PC=string PCOMMENT is defined as string at the start of each assembly. Characters are
truncated from the right or blanks are appended to the right, as necessary, so
that the length of the micro value is exactly 30 characters.

S - System Text Name

omitted If there are no G parameiers other than G=0, load the overlay named SYSTEXT
from the job's current global library set.

S=0 Load no system text from a library

S Load system text overlay named SYSTEXT from job's current global library set.
S=ovl Load the system text overlay named ovl from the job's current global library set
S=lib/ovl Load the system text overlay named ovl from the library named lib, which may be

a user library file or a system library

X - Source of external text (XTEXT) when location field of XTEXT pseudo instruction is blank.

omitted External text GLDPL file
X=1fn External text on named file
X=0 Illegal
X External text on OPL file,
Examples:
(COMPASS(B,D,S=OVI) Reads source from INPUT, writes the binary output to LGO,
and the listing to OUTPUT, Assemble in debug mode with

system text from overlay OVI in the global library set.

ﬂZOMPASS(LO=ASGXD) Disables LIST pseudo instruction and sets LIST options
A, S, G, X, and D,

[COMPASS, : Uses the standard default options.

60360900 D

MULTIPLE SYSTEM TEXT OVERLAYS

COMPASS 3 allows up to seven system text overlays to be used for an assembler run. They are
specified by G and S parameters on the COMPASS control card. Each G parameter (except G=0)
specifies loading of a system text overlay from a sequential binary file, and each S parameter (except

I 5=0) specifies loading of a system text overlay from a user library file or a system library, The G and
S parameters can be used in any combination and in any order, and can be intermixed freely with other
parameters, provided the total number of system text overlays specified does not exceed seven.
COMPASS loads the system text overlays in the order in which the G and S parameters occur on the
COMPASS card. If a system macro, micro, or symbol is defined by more than one system text, only
the last definition is used.

Examples:

(COMPASS(1, S, S=PFMTEXT, G=MYTEXT) Reads source from file COMPILE and gets system
: text from overlays SYSTEXT and PFMTEXT in the
global library set, and from the local file MYTEXT.

(COMPASS(G=FILE/SCPTEXT,S=MYLIB/TEXT) Get system text from overlay SCPTEXT on the file
FILE, and from overlay TEXT in library MYLIB.

10.1.3 LGO CONTROL STATEMENT

An LGO control statement calls for the loading and execution of CPU binary output produced by the
assembler when the B option on the COMPASS card is selected. When binary output is on some file
other than LGO, the card is replaced by a program call card for that file. The file is automatically
rewound before loading., The LGO file is temporary; it is released at job termination.

Formats:

(LGO(plgngpspio'lpn) Or LG'O.

10.1.4 PROGRAM CALL STATEMENT

The program call statement directs the operating system to search for a file or CPU program that has
the name specified on the card, load it into the user's small core memory, and execute it as a CPU
program.

10-6 60360900 D

Formats:

(name(plﬁpzs cee 9pn)

r name.

name Program name

by Parameters in a format acceptable to the program being called

When the operating system locates the file, it begins loading it from the current file position and, when
loading is complete, executes the program as a CPU program.

10.1.5 7/8/9 CARD

The card that separates sections in the job deck is characterized by having rows 7, 8, and 9 punched in
column one. The level is assumed zero unless columns 2 and 3 contain an octal level number punched
in Hollerith code. The remainder of the columns optionally contain comments.

As an example, a deck consisting of a control card section and a COMPASS source input section would
include two 7/8/9 cards. The first terminates the control cards and the second terminates COMPASS

input.

10.1.6 6/7/8/9 CARD

The card that signals the end of the job deck is characterized by having rows 6, 7, 8 and 9 punched in
column one. Columns 2~80 optionally contain comments.

10.1.7 KRONOS ACCOUNT CARD

The control card format is:

ACCOUNT, usernum, passwrd.

usernum User (account) number
passwrd User password
System processor: not applicable
Macro used: not applicable
Function processor: 1AJ

The ACCOUNT card in KRONOS follows the job card and specifies the user number and password. The
user number is used in system bookeeping and defines the user's file catalog area. The user
can specify a different permanent file cataleg during iob processing by issuing another ACCOUNT card.

The samples which follow do not have KRONOS ACCOUNT cards.

60360900 C 10-7

10.2 SAMPLE DECKS

The following job calis for assembly of the source
produced by the assembly. CO
OUTPUT, and writes a binary object deck on file LGO. Co
the binary object program,

Subprogram
TEST

Control
Section

10-8

MPASS reads source statements from fil

(END TEST

| -

— r ((IDENT TEST
7

Pe

8
5
(LGO.

/ COMPASS,

/SA MPLE, T1000, S40, 1100,

program and execution of the binary object program
e INPUT, writes the listing on

ntrol statement LGO calls for execution of
which obtains its data from file INPUT.

Data for
execution

60360300A

In the following job, the COMPASS assembler is called twice. During the first assembly, binary

object decks for subprograms TEST1 and TEST2 are written on file LGFILEL The source decks for
these subprograms are in the second section of the INPUT file. During the second assembly, COM-
PASS writes a binary object deck for subprogram CDA on file LGFILE2. Each assembler run produces
a full listing. Following the second assembly, both files containing binary output are repositioned to
the beginning of the file. Then, the COPYBR program is called to copy the contents of LGFILE2 to a
punch file (PUNCHB). The LGFILE1 statement then calls for the loading and execution of subprograms
TEST1 and TEST2 from LGFILEl. Following successful execution of the subprograms, the file is re-
wound and copied to the punch file, after which the job terminates.

(s l |
g s = ‘ } Data for execution
T |
9 (END CDA |
l;f ' } Subprogram CDA
(IDENT CDA

9 END TEST2 I -
Jr_'—’! | } Subprogram TEST2
IDENT TEST2] ”
END TEST1
= } Subprogram TEST1
IDENT TEST1]”"
(L .
E (COPYBR(LGFILEL, PUNCHB)
{ REWIND(LG FILE1)
(LGFILEL
(COPYBR(LG FILE2, PUNCHB) Control
(REWIND(LG FILE2) 4 0 section
(REWIND(LGFILED) —
(COMPASS(B-LG I ILE2) —
(COMPASS(B=LG FILEL)]
SAMPLE, T500, EC50, CM50000. — /
pu—
—

603609004 10-9

In the following example, COMPASS is called from within a FORTRAN program. The source program
follows the FORTRAN program in the same section.

No parameters on the RUN card cause:
1. Loading and execution of the RUN compiler
2. Object program CM/SCM and ECS/LCM fields to be set
3. Source decks on INPUT
4. Listings to be written on OUTPUT
5. Binary object programs to be written on LGO

6. No cross reference list to be produced

6
7
8
9
I Data \
(END
COMPASS Source Deck -
IDENT begins in IDENT

column 11 ~———

(7
8
9
{ RUN.
JOB, EC100, CM100000, P2,

FORTRAN Source Deck

10-10 60360900B

— The fotlowing sample job deck illustrates how to assemble and use a system text overlay.

TEXT, CM60000, T300.
COM PASS(S=0, B=TEXT)
COMPASS(G=TEXT)
7/8/9
IDENT TEXT
STEXT

. Contains definitions for
system macros, micros,
and symbols,

END
7/8/9

IDENT PROGRAM

SST

Defines symbols from TEXT
Programs using definitions in TEXT

END
6/7/8/9

60360900B 10-11

LISTING FORMAT n

This section describes assembly listing format. Control of the contents of the listing is described in
section 4,11 Listing Control, and in section 10,1.2 COMPASS Control Statement.

1.1 PAGE HEADING

Each page of the assembly listing contains a title line and a subtitle line in the following format:

title COMPASS Version date time PAGE x
N A - ,
subtitle sub-sub block symbol ///
title name qual
title Up to 62 characters taken from the first TITLE pseudo instruction or from a
TTL pseudo instruction or, in lieu of these, from the IDENT instruction
date Date of assembly
time Time of assembly in hours, minutes and seconds
PAGE x Page number of listing, Pagination begins with 1 for each END instruction

unless the P option is selected on the COMPASS control card

subtitle Up to 62 characters taken from second and subsequent TITLE pseudo
instructions or a CTEXT pseudo instruction

sub-subtitle Up to 10 characters taken from the most recent EJECT, SPACE, TITLE, or
TTL pseudo instruction or the location field of an ES or PS machine instruction.
If the instruction that introduces the new sub-subtitle also causes a page eject,
the instruction immediately follows the heading {assuming the C list option is
also selected).

block name Name of the block in use at beginning of page

symbol qual Qualifier in use (see QUAL pseudo instruction) at beginning of page

11.2 HEADER INFORMATION

The first page of the assembly listing for each subprogram contains a summary of binary control cards
(optional), a list of all the blocks established for the subprogram, and lists of entry points and
external symbols,

11.2.1 BINARY CONTROL CARD SUMMARY

A binary control card summary in the following format is generated for each IDENT instruction when the

603609008 11-1

COMPASS control card or the LIST instruction selects the B list option:

ADDRESS LENGTH BINARY CONTROL CARDS.
addry 9 binary cardy
addr, Lo binary card,
alddrn Ly binary cardn
binary card; The binary card that caused generation of the binary for the overlay, partial
binary, or subprogram. The list includes SEG, SEGMENT, and END instruc-
tions.
addri The origin address for the subprogram, overlay, or partial binary written out

as a result of the binary card

g The length of the subprogram, overlay or partial binary
Example:
ANDRFSS LENGTH RINARY CONTR0L NAFDS,
101 71 TNFNT NOMPASS,LOVER,CMP
72 2Ll SEG
5637 1242 SEG
7078 L1165 SFG
13242 5176 <EG
2n4u77 1352 .SEG
22011 FMD COMPASS

11-2 60360900 B

11.2.2 BLOCK USAGE SUMMARY

A block usage summary of the following format is generated in the assembly listing under
control of the B list option:

BLOCKS

n
amel

name2

namen

na.mei

type

baddr,
i

lengthi

60360900A

TYPE

ADDRESS LENGTH
baddrl bll
baddr2 by 2
baddr, bey,

Name of the block used in the subprogram, as follows:

PROGRAM*

ABSOLUTE*

LITERALS*

other

For a relocatable assembly, indicates the zero
bleck. For an absolute assembly, the first
PROGRAM* indicates the absolute block, the
second indicates the default symbols block.

Appears in a relocatable assembly only and
indicates the use of an absolute block.

Identifies the literals block.

Identifiers a local, labeled common, or blank
common block.

The type of the block as follows:

ABSOLUTE

+ LOCAL

+ COMMON

All addresses in the block are relative to absolute
zero. For an absolute assembly, all blocks are
ABSOLUTE.

Addresses in the block are relative to the origin
assigned to block zero. The + is present for an
ECS/LCM block.

Addresses in the block are relative to the origin of
the common block. The + is present for an ECS/
LCM block.

Beginning address of the block according to type.

Number of words in the block.

11-3

Examples:
ALOTKS

PROGRAM®
LITFRALS™®
TONTROL
PSFUDN
SURS
BUFFERS

7LOCKS

A3SOLUTE™
PROGRAM*
DATAL

LCM

TABLE
TABLE
TARLE
TABLE

44

TYPF

ANSOLUTE
ARSQOLUTE
ARSOLUTF
ARSNLUTF
ARSOLUTT
ARSOLUTF

TYPE

A3ISOLUTE
LOCAL
LOCAL
+LNGCAL
+LDCAL
+COMMON
LOCAL
COMMON
COMMON

11.2.3 ENTRY POINT LIST

ANPRE ST

n
541F
56722
707¢%

13242
20437

ADORESS

w

(Y}
[ewr i < 2o SR WIEN 3 [<P RN » B PR ol

LFNGTH

5416
215
1242
L1L5
€175
11140

LENGTH

62
35

If the subprogram declares entry points, a list of entry point symbols in the following format follows the
block usage summary.

ENTRY POINTS.

o %
sym, +addr1 +block1 symn+1
* +addr,_ +
sym2 a r2 block2 s;ymn+2
sym_* + addr_+block sym__*
n n n n

Where n is one-third the number of entry points.
is a conditional entry point (declared by ENTRYC).

* +add
a rn+1

* +add
a rn+2

+addr

2n

+block

n+l

+block

n+2

+block on

3
:-:‘ym2n+1 +addr2m1+block2n+1

* + k
sym on+2 +addr2n+ 9 bloc on+2

*
symg +addr3n +block 3n

The asterisk to the right of sym, is present if sym,
The + to the left of addr is present if block, is

an ECS/LCM block. The + to the right of addr, is present if addr is relocatable. Block is

blank or a common block name surrounded by - sllashes.

If the symbol is undefined, addri ig HkokkAckRk

11-4

60360900A

Exampla:

ENTRY POINTS,

SNAPL 1345+ CALL 72+ PEORDER 2375+

SNAP2 1352+ GoTo 156+ RPF 24614

SNAP3 1357+ TF 224+ ROH 2Lb 3+
JUMPVEC * 0+7JUMPVEC/ LASBEL 372+ LCH + L+

8EGIN U+ READ 435+ LOMA ¥+ 1 ge/7L MY
AYTESIZ 6 RECORU 2W+/DATAY/

11.2.4 EXTERNAL SYMBOL LIST

If external symbol references are declared in the subprogram, a list of the following format follows the
list of entry point symbols:

EXTERNAL SYMEOLS,

symy sym, ¢ SyMg..q SyMgy.q =+ .« « SYyMo, .
sym, symp .o

symg symy . o

sym, sym,

Where n is one-eighth the number of external symbols.
Example:

FXTYERNAL SYMROLS.

FRMSG CONEXTY xneroy CYHMRYL roanTn rpr

11.3 OCTAL AND SOURCE STATEMENT LISTING
The contents of the octal and source statement listing depends on the options selected.

The list is 130 characters wide with fields ascigred as shown in figure 11-1,

60360900A 11-5

Error Location
Flags Addresses

Error Flags

Location
Addresses

Octal Code

11-6

Title Line

Subtitle Line

Octal ' Source Lines Sequence
Code

Figure 11-1. Format of Octal and Source Statement Listing

FError flags indicating that errors of the type indicated have been detected on the
source line or in a subsequent statement that is not listed. These flags are
described more fully under Error Directory. Lines containing errors are always
listed.

The value of the location counter with leading zeros suppressed. If no code is
generated or no location symbol is defined by the statement, this field is blank.
If at the time the value is assigned, the value of the location counter differs from
the value of the origin counter, an L precedes the address.

The actual code generated by this statement. Depending on options selected, the
listing shows just the first word or all words generated for data generation
instructions. The field does not include NO instructions (460008) packed for a
force upper or zeros packed for a completed parcel on a VFD. A 24-bit PPU
instruction is shown two words of data per line.

60360900A

If the word contains an address, the octal code is flagged as follows:

- Negative relocatable address
+ Positive relocatable address

C Common relocatable address
X External address

For a statement that does not generate code, this field is normally blank.
Exceptions are as follows:

For a LIT instruction the field contains the address of the first word of

the liferals generated.

For a CUL insirastion, the field contains the new beginning-of-comments
column number.

For a symbol defined through SET, MAX, MIN, EQU, =, or MICCNT,

this field contains the octal value of the symbol right justified with leading
zeros suppressed.

For an insiruction resuiting in a change of base, the noiaticn b{*’bz is righs
justified in the fieid. by indicates the old base and by indicates the new basz.
For an instruction resulting in a change of code conversion, the notation
cyrcy is right justified in the field. ¢, indicates the old code and ¢y
indicates the new code.

T~ For a DUP instruction, the field contains the repeat count.
Source Code Source statement image (columns 1-72)
Sequence Columns 73-20 of the card image or an identifier for an expansion of a definition

operation as followe:

Macro macro name

Remote code *RMT*

Duplicated code *PUP*

Echced code *ECHC*

XTEXT file name

OPDEF Cperation field of opdef c=11, e.g.,SB1

The recursion level is indienied in the right half of the ficld,

60360900A 11-7

Example:

GOMPASS 3.71210 - CYBER 70/ COMPREHENSIVE ASSEHMBLER. COMPASS 3.71210 LB726/71 16.25.ub. PAGE 82
COMMON AND UTELITY SUBROUTINES. AtcC

hdd ALC - TABLE MANAGER ANO ALLOGATOR. CIMPASS 1695

. ALLOCATOR WILL HOVE TABLES TO ACQUIRE ROOM. ALSO MAY OQUHMP COMPASS 1696

he INTERMEDIATE OR CROSS-REFEQENCFS ONTO SCRATCH FILE. COM2ASS 1637

hd ENTRY (AQ) = TABLE INDEX. COMPASS 1638

. (X1) = CHANGE (¢ OR -} TO TABLE SI7E. COMPASS 1699

hd EXIT (X2) = ORIGIN OF TASBLE. COMPASS 1700

hd (X3) = NEW LENGTH OF TABLE. COMPASS 1701

COMPASS 17.2

COMPASS 173

5466 5020003662 ALCX saz ORTIGINS+AQ RECLATIM VALUES FOR EXIT REPLY COMPASS 17 b

5030003516 $43 STZES+AL COMOASS 17,5

COMPASS 17.6

5467 0020000000 ALT PS RETURN EXIT COMPASS 17,7

54706 61206000034 aALClL 532 NTABLES PRESET INDEX REGISTFRS COMEASS 17.8

5020003462 sz ORIGINS+AD CURPENT ORTIGT™ CIM>ASS (7.9

5471 54322 SA3 AZ+32 CURRENT LENGTH COMFASS 17) 0

Skl SAL A2+31 NEXT TAS3LE ORIGIN CO"7AS8S 1711

36613 x5 X1eX3 NEW STZF CoMPasT 1712

37042 X3 Xte~X2 TOST IF RNOM FOR EXPANSINON COMTASS 1713

572 37006 Ixa X0 ~X6 COMTATT 1714

0330005474 NG Xy ALC2 JUMP TO RE-ALLOCATE €£0RC COM ASS 1715

54630 SAnR A3 STORE HEH SIZE COMOASS 1716

5473 04y0005466 €1 ALCX FXIT COMPASS 1717

COMVAT™ 1718

* MIVE TABLES, coMtass 1719

CoMPASS 1727

5674 5120003172 ALC2 saz SI200RE SEE TF ENQUGH ROOM coMeass 174

104611 B Xt COMPASS 1722

67721 $37 82-131 COM7ASS 1773

5675 67771 ALC3 537 R7-31 CIMTAST 1724

5157003516 SAS SIZ5S+B7 LoMasy g /T

36445 IXh X4 +xX5 fuMTass 170K

5476 0570005475 NZ B’.AL’); LooP OOMORSS j 77

5130603245 543 PASS COM7AsSS 178

5477 63730 537 X3 COM2aSS 1729

37024 X3 X2-Xb COMFEASS 1735

11.4 LITERALS
When the D list option has been selected, the assembly listing includes a listing of the literals block
following the default symbols listing, Following each literal address is the octal contents of

the word and a display code conversion of the contents of the word.

Examples:

CONTENT OF LITERALS BLOCK,
017121 1745577376X090000000N 04+ >>X
Q1ni1e~ 16A50007°00000000000N Np
01712F 1508232201 0705552626 MESSAGE 23
017124 550405N02111650114L455272 PECIMAL R
017125 N5212511220604570000 FQUIRFN,
010126 56522052127265112215040" RFPUTIRFN
019127 0009000000000 N0G0D00CON
010131 202217n7220116550102 PROGRAM AR
g1n131 1722245700090N0000000 nrRY,
CONTENT OF LITERALS EBLOCK,.
7315 0nzy 1
7X1A 707n LY
7317 apn7y G
722N gnnn
7321 5601 A
7322 gnno
73272 05n6 FF
7I24 1611 LT
7326 2L05 TF
71226 22nt RPA
7327 14732 LS

11-8 60360900A

1.5 DEFAULT SYMBOLS

When the D list option is seleted, a list of default symbols immediately precedes the literals block.

Example:
DEFAULT SYMBOLS DEFINED 8Y COMPASS
00000 X MShG=
WMLTNCE | TAG1
00sSunH? TAG2
DOSLET ancC
ns46% QY M

11.6 ASSEMBLER STATISTICS

Assembler statistics ars printed at the end of the cetz! and sourece statement listing or, ¥ the 1 list
option is selected, following the default symbgls., Information includes the fellowing:

Amount of storage used (octal}

Number of source statements

Number of symbols defined

Number of invented symbols

Number of symbol references

Machine on which COMPASS executed and assembly fime
Number of errors encountered during assembly

Number of lost references, that is, references to symbols that have been omitted from the
symbolic reference table.

11.7 ERROR DIRECTORY

The assembly listing includes an error directory if any errors are detected during assembly. The
directory begins a new page identified with the subtitie ERROR DIRECTORY. Each type of error that
occurred is called out with a two-line message of the following format:

x TYPE ERROR description
OCCURRED ON PAGES Nys Iy Pys oo B,

Types and descriptions are given in Tables 11-1 and 11-2, Errors flagged with an alphabetic character
are fatal. A fatal error causes suppression of binary output. Nonfatal warning flags are numeric; they
are informative only.

603609001 11-9

Frror
Type

TABLE 11-1. FATAL ERRORS

Definition

A

ADDRESS FIELD BAD.

Indicates any of a number of possible errors in a variable subfield entry.

For example:

CODE character not A, D, E, I, or *

Symbol or name greater than 8 characters

Expression does not reduce to one external term, relocatable terms do

not cancel properly, instruction disallows register designators,
instruction requires absolute expression, etc.

Data error; 8 or 9 encountered in octal data, modifier not S, P, O, E, D,

or B
No data in variable field of LIT instruction
No symbol following an =S or =X prefix
Relative jump out of range (-31>r >31) on PPU instruction
BASE character not O, M, D, or *
Register illegal in CON instruction
Unable to locate synonymous instruction for OPSYN or CPSYN,
Micro count less than zero or greater than ten
NOLABEL character not 1
Negative relocation on ORG
POS value less than 0 or greater than word size.

Erroneous OPDET reference

DOUBLY DEFINED SYMBOL, THE FIRST DEFINITION HOLDS.

Symbol previously defined or declared external

ECHO, DUP, RMT, OR MACRO ILLEGALLY NESTED.

Definition not wholly within next outer definition

NUMBER OF ENTRIES EXCEEDS PERMISSIBLE AMOUNT.

LIT generates more than 100 words

Data missing or erroneous on XTEXT file

More than 63 formal parameters and local names in macro definition
More than 255 blocks

11-10

60360900B

TABLE 11-1. FATAL ERRORS (cont'd)

Error
Type Definition l
L TOCATION S{ELD BAD. ;
| Required location field entry is erroneous g
Format two macro definition has no substitutable parameters
N NEGATIVE RELOCATION ON ENTRY POINT.
—]
o OPERATION FIELD BAD.
Instruction unrecognizable, out of sequence (e.g., ABL or FPU not in
first statemont group of instruction is illegal for binary mode), or
relational moemoanic on IF statement is erroneous. Location symbol
begins beyond column two.
P CONSULT LISTING FOR REASON BEHIND P-ERROR L
i
snerated evror fizz (ERR or ERRxx Inmsiruction) ‘
R DATA ORIGIN OUTSIDE BLOCK OR IN BLANK COMMON.
Range error
1
U UNDEFINEID) SYMBCL. VALUE ASSUMED 0, :
Reference to a symbol that is not defined; for example, IF
statement line ~cunt, DIS word count, unrecognizable attribute
on I¥ statement, snd undefined qualtifier
A" BIT COUNT ZREOR CMVFD QMUST BE 05 COUNT < 60).
VFD field size erroneous
603609008 11-11

TABLE 11-2, INFORMATIVE ERRORS

Error
Type Description
1 LOCATION SYMBOL BAD. SYMBOIL NOT DEFINED,
Location field entry erroneous. The instruction does not require an entry.
2 ADDRESS ERROR ON SYMBOL DEFINITION
Erroneous variable field entry. The location field symbol is not defined.
3 DUPLICATE MACRO DEFINITION. NEW ONE OVERRIDES.
Macro, opdef, or synonymous operation redefines operation code
4 BAD FORMAL PARAMETER NAME IGNORED.
Macro or ECHO formal parameter name repeated or illegal
5 CPU OPERATION SYNTAX INCORRECTLY SPECIFIED.
OPDEF, CPOP, CPSYN, or PURGDET specifies illegal syntax
6 LOCATION FIELD MEANINGLESS.
Entry in location field is ignored
7 ADDRESS VALUE EXCEEDS FIELD SIZE, RESULT TRUNCATED.
Value of expression exceeds size of destination field
BSS address expression value is negative
MICRO starting character position or character count is negative
8 MISSING OR EXTRA ADDRESS SUBFIELD.
Variable subfield entry missing or superfluous
9 MICRO SUBSTITUTION ERROR. NO SUBSTITUTION
Micro reference unrecognized
11-12 603609008

11.8 SYMBOLIC REFERENCE TABLE

The assembler generates a sy nbolic reference table (figure 11-2) if the L list option is on at the end of
assembly. The table is not complete if the option was turned off at any time during the assembly. The
table lists symbols according to the qualifier, if any, under which they were defined. The global
symbols are listed first. A new heading of the following form introduces each new list of qualified

symbols.

The qualifiers are in the order declared in the subprogram.

SYMBOL QUALIFIER = qualifier

Symbols are listed alphabetically.

When symbol references are lost because table space has been exceeded, the subtitle line includes
notification in the form n LOST REFERENCES.

SYMBOLIC REFERENCE TABLE, \

! / / i
; ! ;
] f ! "
H
%
!
symbol | value | block | page/line page/line page/line) page/line
and/or and/or % |and/or b and/or
o« < o X
address | |address |& |address | & address | g
l L |)
i i E i |
N
. |
!] i | !
| l |
| i
n W
Figure 11-2. Termat of Symbolie Reference Table
symbol Alphabetical list of symbols defined under the qualifier
value Absolute value of the symbol or the address assigned to this symbol relative to
the block named
block If the symbol was defined by the SST pseudo instruction, block is the system

60360900B

text file or overlay name. Otherwise, this field is blank in an absolute assembly
or, in a relocatable assembly, it contains the name of the block containing the

symbol.

11-13

page/line

address

flag

From left to right and from top to bottom, a list of indices sequenced according
to page number, Each index points to a statement containing references to the
symbol or defining the symbol.

When the XREF pseudo (section 4.11. 8) has been used, the page line field contains
the location counter address of the instruction containing the reference. Page
and line numbers are optionally included with the address.

Identifies page/line index to a statement that defines the symbol or uses it in an
IF statement as follows:

oo oEH -

X

Definition statement; EQU, =, SET, MAX, MIN, or MICCNT
ENTRY or ENTRYC pseudo instruction

Symbol used in conditional test

Symbol used in location field of the statement

Symbol used for storage

EXT pseudo instruction

When XREF A is in effect, the table does not include the flags.

Example:
COMPASS 3.71210 - CYAER 70/ COMPREHENSIVE ASSEMALER. COMPASS 3.71213 _B/2uL/71 1b.25. 64, PAGK 951
SYMBOLIC REFERFNCY TABLE. DEBUG
SNTEMP 5115 72712 L 74751 S ELYAR 7677 5 76724
SNUNB 5421 735748 Turyd Tu712 747 Tusu? 75740 75753 787046 L
SHUMPL 5416 78/48 L TR/53 TR/56
SHHLIN Cu23 73728 7T/ 6y T/t Turo2 76723 79/08 L 7976
SHNHLINY 9429 79716 L 79715
SNNLINZ Su?7 79713 79747 L
SNK 536 72716 L T2/39 S 7u/10 777146 T3
72732 S 72742 S Tu/16 7735 77738
SYMAROL QUALIFIFR = DATA
AF 6675 116739 L 110746 121737 131752 32719 132732
GCS 7326 132744 1337403 133718 1353734 133744 14722 1236/748 1767 6
CCStL 7332 135/7%2 135794 L
“rnse 7323 1352728 L 13R/04
CsA 7254 1ir722 124721 12%/01 L
cse 7257 1177706 121717 133716 U
fSH 709y 117720 12t/ln 1327642 L
(1N 7261 117717 12171¢ 123747 L
(o423 7706 117711 121768 133757 L
€S2 7261 117708 121765 123729 L
necs 7222 1177198 117712 117714 117728 117727 117732 131737 L
RIS 7220 131742 L 121746
oL bo7u 119738 L 12F736 136ur2.
0o 6673 116/37 L 116746 5 115734 126735 134719
ov H6G T 115736 L 12.722% 3 122744 123756 12627 1327°.F
“F [0 115721 L 1227214 125711 1767733 127725 S
ERR 671G 116735 L 121735 122774 177335 1267.6 12777 13t/ 132718
11/763 121751 122707 125733 126711 178/19 1377.8
118797 12275t 122710 125730 126744 1PR740 R EFSBY
S 6667 116722 L
(v Ti4at 122722 128704 L
('] 66h 3 116223 L 1227412 123707 5 122742
Fe hbhd 115719 L 12.73% 9% 122749
W bb76 115748 L 135703 135717
GCS 7o 132749 137/39 133724 13372y 132707 136708 136719 L
CSE 7275 134736 L 134737
&LCSse 7277 13ur32 1364739 L
GC53 73du 13074t L 134/44
LGOSk 7303 134 /460 134745 1
S05% 7304 134748 L 134761
GCSH 7306 14706 134/53 L
GG37 7337 13/53 134755 L
GCsSa 7316 135702 136711 135716 ¢
INT 7135 12574L8 12h755 L
LRS 6740 117715 117724k 117730 11a/06 L
HES 7233 121706 121749 121/12 121715 121718 121/21% 132705 L
NCS1 7243 132722 130726 L
rs2 13272 32734
32 L

11-14

60360900B

1,

2.

3.

5.

7.

9.

10.

11.

12.

13.

60360900 C

CHARACTER SETS A

NOTES

The terms upper case and lower case apply only to the case conversions, and
do not necessarily reflect any true case,

When translating from display code to ASCII/EBCDIC the upper case equivalent
character is taken.

When translating from ASCII/EBCDIC to <isplay code, the upper case and lower
case characters fold together to a single display code equivalent character.

All ASCII and EBCDIC coces nat iisied are translated to displey oode 55 (spacel.
Where two display code graphics are shown for a single octal code, the leftmost
graphic corresponds to the CDC 64-character set (system zssembled with IP CSET
set to C64.1), and the rightmost graphic corresponds to the CDC 64-character
ASCII subset (system assembled with IP CSET set to C64.2).

In a 63-characier set asyciem, the display code for the : graphic is 83. The %
character does not exist, and translations from ASCII/EBCDIC % or ENQ yield
blank (558). The display code value 00 is undefined in 63-character set systems.

Twelve or more zero bits at the end of a 60-bit word are interpreted as an
end-of-line mark rather than two colons. An end-of-line mark is converted to
external BCD 1632 and internal BCD 1672 by operating systems when writing
7-track magnetic tape in even parity (coded) mode, and converted back to 0000
when reading.

This code is changed to i when writizn on a 7-track magnetic tape in even
parity (coded) mode,

11-0 and 11-8-2 are equivalent on input. The character wiii be punched as
11-0 on output.

12-0 and 12-8-2 are equivalent on input. The character will be punched as
12-0 on output.

12-8=7 and 11-0 are equivalent on input, The character will be punched as
12-8-7 on output.

12-8-4 and 12-0 ave souivalent on fnrut, The character will be punched as
12-8-4 on output.

CODE pseudo selects 6-hit octal code as follows:

ASCII

Display Code (default)
External BCD
Internal BCD

Rl R

CODE E

CODE D (default) l CODE ICODE A
'
Display Hollerith BCD ASCII EBCDIC
Code Punch Upper Case Lower Case Upper Lower
026) 6-Bit
Octal | Char, Ext. | Int, | Octal | Hex. | Char., | Punch | Hex. | Char. Punch Hex. | Char, | Hex.| Char.
@ (029)
00 :® 8-2 00 12 32 3A : 8-2 1A SUB 9-8-7 TA : 3F | SUB
01 A 12-1 61 21 41 41 A 12-1 61 a 12-0-1 C1 A 81 a
02 B 12-2 62 22 42 42 B 12-2 62 b 12-0-2 Cc2 B 82 b
03 C 12~-3 63 23 43 43 C 12-3 63 ‘e 12-0-3 C3 [} 83 c
04 D 12-4 64 24 44 44 D 12-4 64 d 12-0-4 C4 D 84 d
05 E 12-5 65 25 45 45 E 12-5 65 e 12-0-5 C5 E 85 e
06 F 12-6 66 26 46 46 F 12-6 66 f 12-0-6 Cé F 86 f
07 G 12-7 67 27 47 47 G 12-7 67 g 12-0-7 C7 G 87 g
10 H 12-8 70 30 50 48 H 12-8 68 h 12-0-8 Cc8 | H 88 h
11 I 12-9 71 31 51 49 I 12-9 69 i 12-0-9 c9 1 89 i
12 J 11-1 41 41 52 4A J 11-1 6A j 12-11-1 D1 J 91 i
13 K 11-2 42 42 53 4B K 11-2 6B k 12-11-2 D2 K 92 k
14 L 11-3 43 43 54 4C L 11-3 6C 1 12-11-3 D3 L 93 1
15 M 11-4 44 44 55 4D M 11-4 6D m 12-11-4 D4 M 94 m
16 N 11-5 45 45 56 4E N 11-5 6E n 12-11-5 D5 N 95 n
17 (o] 11-6 46 46 57 4F o 11-6 6F o 12-11-6 Dé (o] 96 [
20 P 11-7 47 47 60 50 P 11-7 70 p 12-11-7 D7 P 97 p
21 Q 11-8 50 50 61 51 Q 11-8 71 q 12-11-8 D8 Q 98 q
22 R 11-9 51 51 62 52 R 11-9 72 r 12-11-9 D9 R 99 r
23 S 0-2 22 62 63 53 S 0-2 73 8 11-0-2 E2 S A2 s
24 T 0-3 23 63 64 54 T 0-3 74 t 11-0-3 E3 T A3 t
25 U 0-4 24 64 65 55 U 0-4 75 u 11-0-4 E4 U A4 u
26 \4 0-5 25 65 66 56 v 0-5 76 v 11~-0-5 ES5 v A5 v
27 w 0-6 26 66 67 57 w 0-6 M w 11-0-6 Eé6 w A6 w
30 X 0~7 27 67 70 58 X 0~7 '78‘ X 11-0-7 E7 X A7 X
31 Y 0-8 30 70 71 59 Y 0~8 79 y 11-0-8" E8 Y A8 y
32 z 0-9 31 71 72 S5A Z 0-9 7A z 11-0-9 E9 Z A9
33 0 0 12 00 20 30 0 0 10 DLE [12-11-9-8«1| F0 0 10 DLE
34 1 1 01 01 21 31 1 1 11 DC1 11-9-1 F1 1 11 DC1
35 2 2 02 02 22 32 2 2 12 DC2 11-9-2 F2 2 12 DC2
36 3 3 03 03 23 33 3 3 13 DC3 11-9-3 F3 3 13 ™
37 4 4 04 04 24 34 4 4 14 DC4 11-9-4 F4 4 3C | DC4

A-2) C ~ 60360900 C

CODE E

CODE D (default) CODE 1 obE A
i Display Hollerith BCD ASCII EBCDIC
| Code Punch Upper Case Lower Case Upper Lower
§ (026) 6-Bit [t
| Octal | Char. E@t} % Ogtel | Hex. | Char. | Punch |Hex. | Char.| Punch | Hex. | Coar. Hex.| Cha
~ | L
40 5 5 05 | 05! 25 | 35 | 5 | s 15 | NAK | 9-8-5 | F5 5 | 8D | NAX
41 6 6 06 | 06 | 26 | 36 6 6 16 | SYN 9-2 | F6 6 | 32 ; SYti
42 | 7 7 o7 | or | 21 | 37 7 7 17 |ETB| 0-9-6 | F7 7 |2 | ET™
L 43 8 8 10 | 10 | 30 | 38 8 8 18 | CAN | 11-9-8 | Fs 8 |18 ! CAN
44 9 9 11| 11| 81 | 39 9 9 19 EM | 11-9-8-1 | F9 9 | 19 ' EM
45 + 12 60 | 20 | 13 | 2B ¢ 12-8-6 | 0B | VT | 12-9-8-3 | 4E + |oB | VT
46 - 11 40 | 40 ' 15 f < oD | CR |123-8-5 60 | -) op | CR
a7 ¢ | 11-8-4 | B4 Be 13 aa 1 c L iiaa oa L¥ RN T BT I
50 / 0-1 21 | 61 | 17 % 2F / 0-1 |, OF |81 12-9-8-7 | 61 / | OF | sI
51 (0-8-4 34 | 74| 10 i 28 | ¢ 12-8-5 | 08 | BS 11-9-6 | 4D (16 | BS
52) 12-8-4 | 74 | 3¢ | 11 | 29 } 11-8-5 | 09 | HT 12-8-5 | 5D) |, 905 | HT
53 $ | 11-8-3 53 | 53 | 04 | 24 $ 11-8-3 | 04 | EOT 9-7 | 5B $ |3 | EOT
| 54 = 8-3 1Bi1alas fap 0 - 1 ae 11D lGS 111985 trg | = l1p | 1os
55 space space 20 80 ‘ o¢ 20 ; space space 00 NUL j12-0~9-8-1| 40 space | 00 NUL
56 , 0-8-3 38 | 73 |1 2o f , 0-8-3 | oc | FF | 12-9-8-4 | 6B , loc | FF
57 . 12-8-3 73 | 38 16 | zE Lo 12-8-8 | OE | SO | 12-9-8-6 | 4B . | 0E | so
. 60 |m4®| o036 | 36| 76! 03 | 23 | 4 8-3 | 08 ! ETX | 12-9-3 | 7B # |03 | ETX
61 { 8-7 1 17 s | sB Lo 12-8-2 | 1C | FS | 11-9-8-4 | 4A ¢ l1c | 1Fs
62] 0-8-2 82 | 72 75 i 5D 5] 11-8-2 | 01 SOH | 12-9-1 | 5A 1|01 SOH
63 | 4@ 8-6 16 | 16 | 05 L s ‘ % 0-8-4 | 05 | ENQ | 0-9-8-5 | 6C % (20 | ENQ |
L e | #n 8-4 1 1elo L2zt v s7 oz lstx | 1zez t7F | ¢ Loz | six
65 | o-eég B | s t 77 ' . / ' -s-;m; F ;DI;L o129 isn - f 07 DI;?I., ‘
66 |V ! | i1-0 sz iz, ol | P e aF P
67 |A& 0-8-7 37 | 77 | 06 | 26 e I 12 | 06 | ACK | 0-9-8-6 | 50 & | 2E | ACK
70 |1 | 11-8-5 55 | 85 | 07 ' 27 | * | 85 |07 |BEL, 0-9-8-7 | 7D © | 2F | BEL
1 |} ? | 11-8-6 56 | 56 | 37 | 3F | 7 | 0-8-7 | 1F |US | 11-9-8-7 | 6F ? | 1F | 1ws
72 <« |12-089 72 | 32 | 34 ; 3¢ | < |12-8-4 7B { 12-0 | 4c < | co {
73 > | 11-8-7 57 | 57 | 38 f 3E : > | 086 | IE |R® |11-9-8-6 | 6E | > |1E | IRS
4 |<@ 8-5 1Bt 46 [20 - ¢ . 8 60 0 s3 7c @ |1 |0
75 i» \ | 12-8-5 75 | 35 | 74 j 5C |\ 0-8-2 Lre | 12-11 [E6 | N | 6A ;
6 |\TVA |12-8-6 | 76 |36 | 76 | SE | A | 11-8-7 | TE | 0 11-0-1 |57 | T | A1 v
77 ; 12-8-7 77 |37 ! a3 | B | ‘ 11-8-6 | iB | ESC 0-9-7 | 5E i |21 | ESc
| |
’ A-3

60360900 C

HEXADECIMAL—OCTAL CONVERSION TABLE

First Hexadecimal Digit
0 1 2 3 4 5 6 7 8 9 A B [D E F
Second 000 | 020 } 040 | 060 | 100 | 120 | 140 | 160 | 200 | 220 | 240 | 260 | 300 | 320 | 340 | 360
Hexadecimal
Digit 001] 021 | 041 | 061 | 101 [121 } 141 | 161 { 201 | 221 | 241 | 261 | 301 | 321 | 341 | 361
002 | 022 | 042 § 062 | 102 | 122 {142 | 162 | 202 | 222 | 242 | 262 | 302 | 322 | 342 | 362
003 | 023 | 043 1 063 {103 | 123 | 143 | 163 | 203 | 223 | 243 | 263] 303 | 323 | 343 | 363
004 | 024 | 044 | 064 | 104 | 124 | 144 | 164 1204 | 224 | 244 | 264 | 304 | 324 | 344 | 364
005 | 025 | 045 1 065 | 105 | 125 | 145 | 165 | 205 | 225 | 245 | 265 | 305 | 326 | 345 | 365
006 | 026 } 046 | 066 | 106 | 126 | 146 | 166 | 206 | 226 | 246 | 266 | 306 | 326 | 346 | 366
007 {027 | 047 {067 | 107 | 127 | 147 | 167 | 207 | 227 | 247 | 267 | 307 | 327 | 347 | 367
010 | 030 | 050 | 070 {110 1130 | 150 | 170 | 210]| 230 | 250 | 270 { 310 | 330 | 350 | 370
011 10371 | 051 1071 [111 | 131 [151 f 171 [211] 231} 251 | 271 | 311 | 331 } 351 | 371
012 1032 | 052 {072 [112 [132 | 152} 172 [212| 232 | 262 | 272 | 312 | 332 | 352 | 372
G613 1033 1053 1073 113 {133 [153 | 173 | 213 | 233) 253 [273 313 | 333 | 353 | 373
014 | 034 { 054 074 1114 | 134 | 154 | 174 | 214 | 234 | 254 v274 314 | 334 | 354 | 374
015 1 035 | 055 | 075 | 115 | 135 {155 | 175 | 215 | 235] 255 | 275 | 315 | 335 | 355 | 375
016 1 036 | 056 1 076 | 116 [136 {156] 176 | 216 | 236 | 256 | 276 | 316 | 336 | 356 | 376
017 1037 | 057 | 077 {117 [137 | 157 | 177 | 217 | 237 | 257 | 277 | 317) 337 | 357 | 377
Octal 000 — 040G - 100 — 140 — 200 — 240 — 300 - 340 —
037 077 137 177 237 277 337 377
A-4 60360900 C

USE OF RECORD MANAGER FOR ASSEMBLY-TIME 1/0 B

—

COMPASS 3 under SCOPE 2 uses the Record Manager for all of its 1/0 operations. Under SCOPE 3.4/
KRONOS 2.1 use of Record Manager for assembly-time I/0 is an installation option,?t

Thus, COMPASS 3 can read and write files with a variety of external formats. For each of the files

used by COMPASS, the default format, and the combinations of file format description parameters that
may be specified in FILE control cards to override the defaults, are given below.,

Main Source Input File

The main source input file may be = normal source input file or a compressed compile file; COMPASS
determines which it is by inspecting the data in the file. A normal source input file is as follows:

System SCOPE 3,4/KRONOS 2.1 SCOPE 2.

File Organization (FO) sequentlal (SQ) sequential (SQ)
Block Type (BT) constant (C) unblocked
Maximum Block Length (MBL) 5120 chars. none

Record Type (RT) zero byte (Z) control word (W)
Maximum Record Length (MRL) 100 chars. 100 chars.
Conversion Mode (CM) YES NO

Label Type (LT; ANY unlabeled 11L}

tNot implemented in SCOPE 3.4/KRONOS 2.1

60360900 D B-1

The permitted formats are as follows (X=allowed, -=not allowed):

| Block Recofd Type '
Type B D F R S T U w Z
C - - X - - - - X X
E - - - - - - - - -
I - - - - - - - X -
K - - - - - - - - -

File Organization (FO) must be sequential (SQ).

Maximum Block Length (MBL) must not exceed 5120 characters.
Maximum Record Length (MRL) must not exceed 160 characters.
Label Type (LT) may be any value supported by the operating system.

Although the maximum record length may be as large as 160 characters, only the first 90 characters
of each record are reproduced in the listing output files.

If the file is a compressed compile file (written by UPDATE in X mode or MODIFY+t in A mode), COMPASS
sets the file format description parameters as follows:

SCOPE 3.4/KRONOS 2.1

Block Type (BT) = constant (C), Maximum Block Length MBL) = 5120 characters.
Record Type (RT) = undefined (U), Maximum Record Length MRL) = 180 characters.
Conversion Mode (CM) = NO.

SCOPE 2

Resembles normal input; however, MRL = 5120 characters.

| +MODIFY is not available under SCOPE 2

60360900 D

Listing Output Files

The default format depends o the type of system with which COMPASS is used, as follows:

M SCOPE 3.4/KRONOS 2,1 SCOPE 2

File Organization (FG) asguenzial (SQ) sequential (8Q:
Block Type (BT) constant (C) unblocked
Maximum Block Length (MBL) 5120 chars. none

Record Type (RT) zero byte (Z) control word (W)
Maximum Record Length (MRL) 137 chars. 137 chars,
Conversion Mode (CM) YES NO

Label Type (LT} ANY Uslabeled (UL}

The permitted formats are as follows (X=allowed, -=not allowed):

Block Record Type

Type B D ¥ ®BR § T U W Z
C - - X - - X X
E - - - - - - - - -
I - - - - - - - X -
K - - - - - - - - -

File Organization (FO) must be sequential {SQ).

Maximum Block Length (M BL) must sot excses 3120 characters,
Maximum Record Length (MRL) must not exceed 137 characters.
Label Type (LT) may be any value supported by the operating system,

60360900 C

Binary Output File

FILE control statements can be used to specify the format of binary output files for any of
the operating systems, such that a program can be assembled on one system and the object
program executed under a different system if so desired,

File Characteristics SCOPE 3.4/KRONOS 2.1 SCOPE 2

File Organization (FO) sequential (SQ) sequential (SQ)
Block Type (BT) constant (C) unblocked
Maximum Block Length (MBL) 5120 chars, none

Record Type (RT) short block (S) control word (W)
Maximum Record Length (MRL) none 1,310,710 chars.
Conversion Mode (CM) NO NO

Label Type (LT) ANY Unlabeled (UL)

Both formats are allowed under all systems; the values shown above are the defaults for
each system. No other formats are allowed, except that the label type (LT) may be any value
supported by the operating system used for assembly.

System Text Input Files

A user library file designated by an S parameter on the COMPASS control card must have the standard
library file format for the system on which COMPASS is being used. COMPASS uses the operating
system overlay loader to access these files,

For a sequential binary (non-library) file designated by a G parameter on the COMPASS control card,

the default and permitted formats are the same as those given above for the COMPASS binary output
file,

XTEXT Input Files

A file read by COMPASS when processing an XTEXT pseudo instruction may have any of several formats,
COMPASS determines the file format (a) by whether the XTEXT pseudo instruction variable field is
empty and (b) by inspecting the data in the file.

If the variable field is empty, the File Organization (FO) must be sequential (SQ). COMPASS rewinds
the file and reads until end of section or a COMPASS END statement is encountered, whichever comes
first. The default and permitted formats are the same as those given above for the main source input
file,

B-4 60360900 D

If the XTEXT variable field is non-empty, the file organization may be any of three non-standard types:

Record Indexed with : ame index
6000 SCOPE 3.3 style random file with name index
UPDATE or MODIFY+ random progeam library file l

In each case, COMPASS sets the f{ile format description parameters to the appropriate values; no FILE
control card is needed,

The record indexed file organization is actually the word addressable (WA) file organization with a set
of format conventions superimposed cn it. Such a file can be created by a FORTRAN program using the
library subroutines OPENMS, STINDX, WRITMS, and CLOSMS with a name index, or by a COBOL pro-
gram specifying ORGANIZATICN IS STANDARD, SYMBOLIC KEY IS data-name. When COMPASS de-
tects such a file, it sets the file formsat description parameters as follows:

File Organization (FO) = word addresaabie (%A,

Block Type (BT) = constant (C) for SCOPE 3.4/KRONOS 2.1 or unblocked for SCOPE 2; Maximum Block
Length (MBL) = 5120 chars.

Record Type (RT) = control word (W), Maximum Record Length (MRL) = 180 chars.

Conversion Mode (CM) = NO

COMPASS positions the file at the record pointed to hy the index entry containing the name given in the
XTEXT statement variable field, and then reads records sequentially until end of section or a COMPAST

END statement is encountered, whichever comes first,

The 6000 SCOPE 3. 3 style random file with name index is permitted for compatibility with previous
versions of COMPASS. When COMPASS detects such a file, it searches the file index and positions the
file at the beginning of the specified section. The default and permitted formats for the section are the
" same as those given above for the main source input file, except that File Organization (FO) = word
addressable (WA) and Block Type (BT} = constant {C). Such files cannot be used with SCOPE 2,

An UPDATE or MODIFY#% random rrogray “ryary fle is processed in the same wav as by COMPASS 2. §
The name in the variable field of the XTEXT statement must be the name of a common deck. When)

COMPASS detects such a file, it sets the file format description parameters as follows (no FILE control
card is needed):

File Organization (FO) = word addressable (WA).

+MODIFY is not available under SCOPE 2. l

60360900 D

SCOPE 3.4/KRONOS 2. 1:
Block Type (BT) = constant (C), Maximum Block Length (MBL) = 5120 characters
Record Type (RT) = undefined (U), Maximum Record Length (MRL) = 180 characters

Conversion Mode (CM) = NO.

SCOPE 2:
Block Type (BT) = unblocked
Record Type (RT) = control word (W), Maximum Record Length MRL) = 5120 characters

Conversion Mode (CM) = NO
COMPASS positions the file at the first record of the designated section (common deck). The first
active record (the *COMDECK card) is skipped. COMPASS then reads records sequentially, ignoring

inactive records, until end of section or a COMPASS END statement is encountered, whichever comes
first.

Scratch Files
COMPASS uses two scratch files named ZZZZZRL and ZZZZ7ZRM, when table storage space overflows.
Regardless of what may be specified by FILE control cards, COMPASS sets the file format description

parameters for these files as follows:

File Organization (FO) = sequential (SQ).
Conversion Mode (CM) = NO,

For file ZZZZZRL :

Block Type (BT) = constant (C) for SCOPE 3.4/KRONOS 2.1 or unblocked for SCOPE 2,
Maximum Block Length = 5120 characters.

Record Type (RT) = undefined (U) Maximum Record Length = 2550 chars,
For file ZZZZZRM:

Block Type (BT) = constant (C), Maximum Block Length = 5120 characters
Record Type (RT) = SCOPE logical (S), no Maximum Record Length

B-6 60360900 D’

MODIFY Input

Although the symbolic prograra library maintenance program MODIFY is not included in the operating
systems with which COMPASES 2 is released, provision for input from MODIFY is retained for COM-
PASS 2 compatibility. Thus, the source input file may be a compressed compile file written by MODIFY
in A mode, and (except with SCOPE 2 sn XTEXT rseudo instruction with a non-blank variable field can
refer to a common deck in o MODIFY randor pr :
tion parameters are forced by COMPASS and sre the same as for an UPDATE compressed compile file
and an UPDATE random program library.

1 library. In each case, the file format descrip-

60360900A

BINARY CARD FORMATS C

Column 1
7,8,9 End of section
6,7,9 End of partition
6,7,8,9 End of information
7,9 Binary card
7 and 9 not both in column 1 Coded card
1 2 3 4 5
124 | e
11] <
0 nl* -~~~ Column Binary laformation »> S
P - SRt Ay e 2
1 3 | | | =
N —_— e - ; ER
2 =) 2
ko]
3B ¢ ‘ << E
= — - ol 15
‘7 & o
3 = Q
5 7] ey =
A —) o
6 8 = o g’
S E 3
7 @]
8 i S BN
9 - L
: —— . i }]

A binary card can contain up to 15 60-bit CPU words starting at column 3. Column 1 also contains

a count of 60-bit words in rows 0, 1. 2, and Iplus a check indicator in row 4. If row 4 of column 1 is
zero, column 2 is used as a checksum for the card on input; if row 4 is one, no check is performed on
input.

Column 78 of a binary card is not used, znd cuiwrriss 79 and 80 contain a binary serial number. Ha
section is punched, each card han o vhe by boooobuan 2 and a serial number in columps 79 and 80,
which sequences it within the logical record.

Coded cards are translated on input from Hollerith to display code, and packed 10 columns per CPU
word. For SCOPE 3.4, Z format, a CPU word with a lowest byte of zero marks the end of a coded card
(it is a coded record), and the full length of the card s not stored if it has trailing blanks. A compact
form is thereby produced if coded cards are transferred to another device.

603609C0B C-1

HINTS ON USING COMPASS

0 A

-1

a.

Within a macro definition:

Use comment cards having * iz column cne., These are not saved whereas other types of
comments are saved.

Whenever possible minimize the number of lines of code.

IRP is faster than either ECHO or DUP.

Use the substitutable paramsater ilags 4. (B, ete., for macros to avoid a second line,
Within macros, use avmabales soop a1 08, o0, iostead of local symbols,

If possible, avoid recursive macro siruciure (o increase assembly speed.

If 2 macro call is the cause of an ervov, direct full list output to a file other than QUTPUT
(L=filename) io obtain a list of v erveceons macro call with the error listing,

in IF sequences:

a. Use line counts rather than EN{:EF io terminate sequences.
b, Use SKIP rather than IFPI to eFi; code,

Micros:

a. Micro replacement is time consuming.

b. Avoid using local symbols for micros.

-
e

Use # # for a null substituticon,

Minimize SYSTEXT size.
To reduce core requirements, use SEG cards in absolute programs.
Use NORETF for symbols for which lisung is aot regaired.

Use QUAL for all overlays.

60360900A

DAYFILE MESSAGES . E

The dayfile messages that can be issued by COMPASS are listed below, with an explanation ior each.

ASSEMBLING xXXXXXX

This message is displayed at the systen: operator's console only; it is not written to the dayfile.
COMPASS updates the display whenever it processes an IDENT statement w ith a non-blank variable field.

ASSEMBLY ABORTED - (% S b

This message can occur only when COMPASS iz used on a CYBER 70/model 72, 73, or 74, and only
when the job has an ECS field tengit: &y v v5e, COMPASS may store some «of its intereal fables

in ECS, and issues the above messuge iand aharts the job) when an L S error persists through four
attempts to read the data. For the CV2ER 70/ ‘maodel 76, LCM errors are handled by the operating -
system.

ASSEMBLY ABORTED - HOS @il 75 Iriinsil

This message can occur only when COMPASS is used ona CYBER 70/model 72, 73, or 74, and only whon
the job has an ECS field length. In this @ COMPASS may store some of its internal tables in KOS,
and issues the above message (and aboric the jobi when an error occurs in writing data to ECS; no retry
attempt is made. For the CYRVR 70/ macded 76, LOA errors are handled by the operating system.

oy

ASSEMBLY ABORTED - PASS r PART
OVERFLOW ASSEMBILING xxmyyx»y

An irrecoverable table overflow condition has cccurred in assembly pass o (1 or 2) while processing the
indicated program. COMPASE allociies memory apace dynamically to all of its internal tables, so that
when one overflows, all do. When the wbles dy g @ it in the available SCM space, COMPASS

stores some of them in the joh's ECS/LCM fivtd tength (if any) and some others go to mass storage
scratch files. COMPASS issues the ahove messase, nnd aborts the job, when insufficient SCM exists after

]

all such possibhilities have heen exiausies,

60360900A k-1

ASSEMBLY COMPLUETE. nnannnB SCM USED.
XXxX.xxx CPU SECONDS ASSEMBLY TIME.

COMPASS issues this message when it has completed processing of all source programs on the input file

and did not detect any fatal errors. nnnnnn is the octal number of SCM words needed; i.e., the minimum
field length needed to perform the assemblies successfully. It may be larger than the actual field length;
in this case, it is the minimum field length needed to avoid lost references. The second line, which can

be suppressed by an installation parameter, gives the total central processor time used by COMPASS, in
seconds to three decimal places.

ASSEMBLY ERRORS. nnnnnnB SCM USED.

xxxx. xxx CPU SECONDS ASSEMBLY TIME.

COMPASS issues this message when it has completed processing of all source programs on the input file
and detected at least one fatal error. If the A option was specified on the COMPASS control card,
COMPASS aborts the job after issuing this message. nnnnnn and the second line are as in the ASSEMBLY
COMPLETE message.

BAD CONTROL CARD ARGUMENT - xx

The COMPASS control card countains an unrecognized or invalid argument. The offending argument is
named in the message. See Chapter 10 for details.

CANT LOAD COMP23$

The operating system loader reported a fatal error when COMPASS attempted to load its primary overlay.
This message should be preceded by an explanatory message from the loader.

COMPASS NEEDS AT LEAST nannnB SCM.

The job's SCM field length is too small for COMPASS, nnnnnn is the octal number of words needed by
COMPASS before it can begin processing. This can vary depending on the version of COMPASS used and
the tisting and hinary output options specified on the control card. This is an absolute minimum, and
does nol include whatever space may be required for system text, local macro and micro definitions, etc.

nnnnnnnnn. KRRORS IN xxxxxxx

COMPARS issucs this message for each source program in which fatal errors are detected.

E-2 60360900A

IDENT CTARD MISSING.

COMPASS issnes this messag 2 for each source program in which an END statement is encountered
before an IDENT statement is found. This is a fatal error.

IMPROPER SYSTEM TEXT FORMAN
BAD SYSTEM TEXT - X=yyyyyyy/2iZzuo%

A system text overlay does not have the internai format required by this version of COMPASS, This way
be caused by a system error. COMPASS ignores the bad overlay but does not abort the job. The

second line identifies the offending overiay in liie same form in which it is specified in the COMPASS cua-
trol card; x=yyyyyyy/zzzzzzz may be aay of the following:

G=filenam
G=filenam/overlay
S=overlay
S=library/overlay

INPUT FILE EMPTY OR MISPOSI L REL,

iicd to read the first line from the source input file.
sn END card which in turn causes the IDENT CARD

COMPASS encountered end of data wien 11 aiisy
After issuing this message, COMPANL venerais
MISSING message and a fatal error.

INSUFFICIENT STORAGE FOR SYSTER
BAD SYSTEM TEXT - X=yyyyvyvy/ 22222%2

COMPASS issues this message, but does not abor® the job, when an irrecoverable table overflow occurs
during system text loading. befove the firet segentiv s begun, The second line identifies the system
text being loaded at the tizne, A svlesivnor: tvovense she job's SCM fietd length may be needed.

nnnnnnnnn LOST REFERENCES fo xasrxvx
s soures program whose symbolice cross-reference table does not

iure it is printed. Rather thau aborting the job,
Ine ASSEMBLY COMPLETE message gives the field

COMPASS issues this message for cos
fit in the job's SCM field leagil vy sox
COMPASS discards some of the refercaces.
length needed to avoid lost references.

60360900A E-3

MORE THAN 7 SYSTEM TEXTS SPECIFIED.,

COMPASS issues this message, and aborts the job, when the G and S parameters on the COMPASS
control card specify a total of more than seven system text overlays.

NO CONTROL CARD TERMINATOR.

COMPASS read continuation control cards and encountered end of section before finding a) or . not in
a $-delimited string. This is not a fatal error.

RECURSION DEPTH EXCEEDED 400,

COMPASS maintains a push-down stack for source input control, with one entry for each active DUP
ECHO, HERE, XTEXT, or macro call. The maximum depth of this stack is set by an installation
parameter; it is 400 in the released system. When this limit is exceeded, COMPASS sets a fatal error
and clears the stack (so that the next statement will be read from the source input file) but does not

abort the job, This is usually caused by a source program error in which a macro calls itself indefinitely.

SYSTEM TEXT NOT FOUND.

BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz
COMPASS issues this message, but does not abort the job, when it cannot load the system text overlay
identified in the second line. For an overlay loaded from a library (S parameter), this message should
be preceded by an explanatory message from the operating system loader. For an overlay loaded from
non-library file (G parameter), COMPASS could not find the overlay on the file,

nnnnnnnnn WARNING MESSAGES IN xxxxxxx

COMPASS issues this message for each source program in which non-fatal errors are detected.

E-4 60360900A

~—

S

A abort mode 10-3
A code option 4-26
A error 11-10
A list option 4-78
A reference table option 4-85
A register
description 8-8
designators 2-8
setting 8-46
ABS attribute 4-71
ABS pseudo
description 4-6
example 4-4,7,14,15,17,18,5¢
first statement group 4-2
Absolute block
absolute program 3-§
description 3-2
establishment 4-36
relocatable program 2~
using 4-32,36
Absolute program
declaration 4-6
structure 3-8
Absolute text 3-6
ACN instruction 9-22 ¢
ACCOUNT card, KRONOS 10-7
ADC instruction
arithmetic functicn 9-4
description 9-9
example 2-22,9-9
ADD instruction
arithmetic function 9-4
description 9-13
Add unit
floating point 8-4,7,37
long 8-3
Address modes, PPU 9-1
Address
absolute 4-4
direct 9-13
entry point 4-4,5,49
external 4-6,9,10,50
indexed 9-15
indirect 9-14

60360900C

INDEX

4DI instruction
arithmetic function 9-4
description 9-14
ADM instruction
arithmetic function 9-4
description 9-15
ADN instruction
arithmetic function 9-4
description 9-8
AJIM instruction 9-17
AOD instruction
description 9-13
replace function 9-5
A0I instruction
description 9-14
replace function u-3
AOM instruction
description 9-15
replace function 9-5
Arithmetic functions, PPU 9-4
Arithmetic shift 8-32,34
Arrow
parameter separator 5-8,13
special character 2-4
ASCTI code
character set A-1
option 4-26
sgsembler 1-1
core requirements 1-3; 16-2
statistics 4-78; 11-9
Assembly environment test 4-64
Aazembly listing
detailed description 11-1
general description 4-78
generation 1-4
Assembly, remote code 5-3
sa3sembly time 11-9
Asterisk
BASE instruction 4-24
element operator 2-24
first column 2-1,2
iocal symbol separator 5-32
iocation counter 2-9; 3-5

Index-1

parameter separator 5-8,13,16,25,28
special element 2-9,23; 3-5
USE instruction 4-32
USELCM instruction 4-34
Attribute, symbol 2-6
Attribute test 4-71
AXi instruction 8-32,34

B base 2-18,19; 4-23
B binary mode 10-3
B list option 4-79
B reference table option 4-85
Bl=1 or B7=1 pseudo instruction
description 4-30
effect on R= 4~59
example 4-60
illegal for PPU 4~9,10
B register
conditional jumps 8-26 n
contents of B1, B7 4-30
description 8-8
designators 2-~8
setting 8-48
Base, assembly 4-23
COL column count 4-31
DIS word count 4-53
DUP count 5-6
ECHO count 5-7
line count 4-64,66,67,68,69,72,73,75
micro count 7-2,4,5
numeric value 2-17
overlay level numbers 4-4
PPU number 4-4 !
REP counts 4-61
setting through BASE 4-23
SPACE line count 4-81
string count 2-13
VFD count 4-57
BASE micro 7-6
BASE pseudo
description 4-23
example 4-14,21,25,53,55
permissible anywhere 4-2
Binary control statements 4-79, 11-1

Index-2

Binary mode 10-3
Binary output generation 1-4; 3-8,11,13,15; 10-3
Binary write 3-8
Blank —
compressed 5-1
embedded 2-1
expression terminator 2-2
name terminator 2-5
operation field 2-1
parameter separator 5-8,13
statement terminator 2-1
string terminator 2-14
use in character data 2-14
variable field 2-2,4; 3-7
Blank card 4-81
Blank common
CM 4-32
description 3-3
ECS 4-34
establishment 4-32, 34
example 4-39
LCM 4-34
SCM 4-32
Blank fill 2-15
DIS 4-53
Blank operation field 4-51
Block copy instruction 8-14
Block group 3-1,11,13,15,17
Block group listing 11-3
Block .
absolute 3-2; 4-32, 36
blank common 3-3; 4-32,34
labeled common 3-2; 4-32
literals 2-11; 3-2,6,7,9,11,12,14,16
local 3-2; 4-32
maximum number 3-1; 4-32
origin assigned 1-3; 3-6,8
subprogram 3-1
used for definition operation 5-2
user established 3-2; 4-32, 34
zero 3-2, 4-32,34
Block name 4-32, 34
Block name listed 11-1
Block origin 1-3; 3-6
Block usage summary 11-3

60360900 B

Booleaa unit
description 8-4,7
instructions 8-28,29, 3¢, 31, 36, 37
Branch instructions
CPU 8-11,13,16,23.286
PPU 9-5
Branch unit
description 8-4
instructions 8-11,13,16, 23, 24, 26
BSS ps=udo
description 4-39
effect on origin counter 3-3
example 4-4,10,17,29,.30,25,37.39,41;
5-22,33
force upper 3-5
BSSZ pseudo
degcription 4-51
dumped by SEGMENT 416
example 2-20; 5-34, 36
force upper 3-5
BXI instruction 8-28,28, 36,31
Byte, guaranteed zero 2-15; 4-54

C hardware feature code 4-8
C list option 4-79
C on octal listing 11-7
Call
equivalenced macro 5-25
macro 5-18
opdef 5-30
CC instruction 8-54 \
Central processor unit
functional units 8-4,7
instructions 8-1
registers 8-8
Channel buffer instruction
read status 8-22
reset input 8-19
reset output 8-21
CHAR
define other character 4-25
Character codes A-1
Character data 2-14
code conversion 4-26
evaluation 2-27
examples 2-12,18

60360900C

CMU 8-51
Code
CPU operation 6-8; 8-1
duplication 5-6
Code other 4-25
PPU operation 6-3; 9-1
remote assembly 5-3
replication 4-61
CODE micro 7-7
CODE pseudo
description 4-26
effect on character data 2-14; 4-53
example 4-27
permissible anywhere 4-2
Coding form 2-3
COL pseudo
description 4-31
octal listing 11-7
Column one 2-1
COM gttribute 4-71
omma
character string 2-14
column one 2-1
continuation 2-1
expression terminator 2-24
local symbol separator 5-32
name terminator 2-5
parameter separator 5-8,13,16,25,28
string terminator 2-14
subfield delimiter 2-1
COMMENT pseudo
description 4-21
sxample 4-14
first statement group 4-2
“omraents column conirol 4-31
Comments figld 2-2, 35 4-21
Comments statement 2-2
heading of definition 5-13
micros not substituted 7-1
not counted 4-63; 5-7,8
permissible anywhere 4-2
Comments, prefix table 4-21
Compare character strings 4-73
Compare expresgion values 4~87
Compare/Move unit 8-51

Index-3

COMPASS call statement
description 10-2
effect on LIST 4-77

Compile file 10-4

Comp and log difference instruction 8-31

Comp and log sum instruction 8-31
Complement instruction 8-30
Compressed code 5-1
CON pseudo

description 4-58

example 2-22; 4-59; 5-6, 23, 27

force upper 3-5
Concatenation 2-4
Concatenation mark 2-4

example of use 5-19

in definition 5-1
Conditional assembly 4-63
Conditional jump

B register 8-26

PPU 9-7

X register 8-23
Configuration 1-3
Constant

character 2-14

description 2-10

expression element 2-22,27

field size 2-11

generated by pseudo 4-58

numeric 2-18

read only 2-12
Continuation, statement 2-2

generation of lines 2-4; 7-1
Control statements \

COMPASS 10-2

job card 10-1

SCOPE cards 10-1
Core requirements 1-3; 10-2
Counters, block control 3-4,11,13
Counter control

BSS 4-39

forcing upper 3-5

LOC 4-40

ORG 4-35

ORGC 4-35

POS 4-42

USE 4-32

USELCM 4-34

Index-4

CPOP pseudo 6-8
CPSYN pseudo
description 6-11
permissible anywhere 4-2
CPU instructions
block copy 8-14
Boolean 8-28,29,30,31
branching 8-23,26
channel buffer 8-19,21
channel status 8-22
complement 8-30
conditional 8-23,26
direct LCM transfer 8-18
divide 8-44
double precision 8-38,41
ECS 8-14
error exit 8-12
exchange exit 8-17
exchange jump, 6000 8-16
fixed point 8-38
floating point 8-38,39,40,41,44
increment 8-46,48,49
left shift 8-32,33
logical 8-28,29,30,31
long add 8-39
mask 8-42
multiply 8-40,41,42
no operation 8-45
normalize 8-34,35
pack 8-37
pass 8-45
population 8-45
program stop 8-11
real-time clock 8-20
return jump 8-13
right shift 8-32,34
set register 8-46,48,49
set time 8-20
shift 8-32, 33,34

single precision 8-37,39,40,41,44

transmit 8-28
unconditional jump 8-23
unpack 8-36
CPU program execution 1-3; 10-1
CPU register designators 2-8; 8-8
CRD instruction 9-17
Created symbol 5-33, 11-9

60360900C

CRM instruction 9-17
Cross reference table
(see symbolic reference tible)
CTEXT pseudo 4-84
CU instruction 8-55
CWD instruction 9-17
CWM instruction 9-17
CXi instruction 8-45

D base 2-18; 4-23

D code option 4-25

D debug mode 10-3

D definition flag 11-14

Derror 11-10

D hardware feature code 4-8

D list option 4-74

Data generation 4-51

Data item
character format 2-14
DATA pseudo 4-53
general description 2-11
LIT pseudo 4-55
numeric format 2-18
VFD pseudo 4-57

Data notation
character 2-14
constant 2-11,14,18
decimal 2-18
element 2-11,24
fixed point 2-18
floating point 2--18
hexadecimal 2-23
item 2-11,14,18
literal 2-11,14,18
numeric 2-18
octal 2-18

DATA psuedo
description 4-52

example 2-16,20,21; 4-27,33,37,52

force upper 3-5
Data transmission, PPU 9-3
DATA micro 7-6
Date of listing 11-1
DCN instruction 9-22
Debug mode 10-3

60360900 C

Decimal exponent 2-19
Decimal notation 2-18
DECMIC pseudo
description 7-4
example 5-6; 7-4
permissible anywhere 4-2
8 E attribute 4-72
eiault symbols
definition 2-7
listing 11-9
unqualified 4-27
zero block 3-2
Deferred symbols
(see default symbols)
Traafinition
eguivalenced macre 5-24
megero 5-18,15,24
micro 7-2
opdef 5-~13,27
processing 5~13
purging 6-9
reference 5-18,25,30
symbol 2-6; 4-42
system 5-36
Definition operation
duplicated code 5-6
equivalenced macro 5-13
external text 5-2
macre 5-13
cperation code 5-13
nrocessing 5-14
recursion level 5-1
remote text 5-3
Delimiter
actual parameter 5-18,26
data item 2-14,18
expression element 2-24
field 2-1,2

substitutable parameter 5-8,13,16

term 2-24

Descriptor, variable field 5-27; 6-7

Destination field 2-28
Tetailed listing 4-78; 11-1
¥ lastruction 8-24
itirect address 9-13

Index-5

Eject suppression 10-4
EJM instruction 9-17

Directives, loader 4-23
Directory, error 11-9

DIS pseudo Element

description 4-54
example 4-54,55
force upper 3-5
Display code option
character set A-1
default mode 2-14
option 4-26
Divide instructions 8-44
DM instruction 8-53
Dollar sign
local symbol separator 5-32
parameter separator 5-8,13,16,25,28
special element 2-6
Double precision instructions 8-38,41
DUP pseudo
description 5-6
example 5-10,11
listing of count 11-7
Duplicate symbol
definition 2-6
flag 11-14
Duplication
code 5-6
echoed 5-7

indefinite 5-7,9
DXi instructions

add 8-38
multiply 8-41

absolute 2-25

data 2-10, 11
expression 2-24,28
external 2-27
operator 2-24
register 2-27
relocatable 2-9,26
special 2-9

ELSE pseudo

description 4-63
example 5-5
permissible anywhere 4-2

END pseudo

assembly of remote code 5-3

binary generation 3-8

description 4-5

effect on blocks 3-1,8,11,15,16
example 4-4,5,7,14,15,17,18,21,77
external text use 5-3

force upper 3-5

illegal definitions 5-1

permissible anywhere 4-2

ENDD pseudo

acting as nil 6-6
description 5-10

example 5-11
permissible anywhere 4-2
used with DUP 5-7

used with ECHO 5-8
) ENDIF pseudo
acting as nil 6-6
description 4-63
permissible anywhere 4-2
ENDM pseudo
acting as nil 6-6
description 5-14
example 4-29; 5-11,15,19, 20, 21, 23, 23, 27,

E code option 4-26
E entry point flag 11-14
E error 11-10
E list option 4-79
E numeric data modifier 2-19
ECHO pseudo
description 5-7

example 5-12 30, 31, 32, 33, 35,36
ECS blocks 4-34 permissible anywhere 4-2
Editing 2-4 End-of-line mark 5-1

EE numeric data modifier 2-19 ENDX pseudo 4-84
EIM instruction 9-18 Entry address
EJECT pseudo 4-81 absolute 4-4
permissible anywhere 4-2 declaration 4-49
multiple 3-15
relocatable 4-5

Index~6 60360900C

ENTRY pseudo
description 4-49
example 4-5,49
ENTRYC pseudo 4-49
Entry point list 11-4
Environment test 4-64
EOM instruction 9-18
EQ instruction
description 8-26
example 8-27
force upper 3-5
EQ IF operator 4-67
IFC operator 4-73
EQU pseudo
description 4-43
example 2-19,21; 4-21,29,41,43,62; 5~-6
listing 11-7
Equal sign
default symbol prefix 2-7
instruction 4-43
literals prefix 2-11,14,18
local symbol separator 5-32
parameter separator 5-8,13,16,25,28
ERN instruction 9-12
ERR pseudo
description 4-75
Error, assembly
fatal 11-10
informative 11~-12
programmer controller 4-75,76
Error directory '
detailed description 11-9
general description 4-78
Error exit instruction 8-12
Error flags
conditionally set 4-75
fatal 11-10
informative 11-12
unconditionally set 4-76
where on listing 11-6
ERRxx pseudo 4-76
ES instruction 8-12
ESN instruction 9-23
ETN instruction 9-12
Evaluation of expression 2-27; 3-3
Exchange exit instruction 8-17
Exchange jump instruction 8-16
Execution, CPU program 1-4
EXN instruction 9-10

60360900C

Exponent 2-18
Expression

absolute 2-25

attribute 4-71
comparison 4-67

CON use 4-58
description 2-24
evaluation 2-24,28; 3-3
examples 2-25,26,27
external 2-27

maximum size 2-28
operators 2-24 i
pass one value 2-28; 3-3
pass two value 2-28; 3-3
register 2-27; 8-2,10

rules 2-24
size 2-28
types 2-25

value 2-25,28; 3-3; 8-6

VFD 4-57
EXT attribute 4-71
External BCD
character set A-1
option 4-26
External symbol
declaration 4-50
description 2-6

External symbol list 11-5

External text
assembly 5-2

file declaration 10-4

listing 4-84
EXT pseudo
description 4-50

iltegal in absolute code 4-6,9,10

F conditional flag 11-14
F error 11-11

F FORTRAN mode 10-3
F list option 4-79

FAN instruction 9-22
Fatal error flag 11-10

Features of COMPASS 1-2

Field

comments 2-2; 4-31

conventional 2-3
delimiter 2-1,2

destination 2-27; 4-57

Index-7

free 2-1
location 2-1
operation 2-1
size 2-1
subfield 2-2
terminator 2-1
variable 2-2
File
COMPILE 10-4
INPUT 10-4
LGO 10-3
list output 10-4
load and go 10-3
OLDPC 10-5
OPL 10-5
OUTPUT 10-4
source 10-4
SYSTEXT 4-19; 10-3,5,6
System text overlay 10-6
Fill, blank 2-15
Fill, zero 2-15
FIM instruction 9-18
First column 2-1
First statement group 4-2
Fixed point data notation 2-17
Fixed point instructions 8-39,42
FJM instruction 9-17
Flag, error
listing 11-6
setting 4-75
type 11-14,15
Floating point data notation 2-17
Floating point units 8-4,7
add 8-37,38,39 '
divide 8-44
multiply 8-40,41
FNC instruction 9-22
FOM instruction 9-18
Forcing upper 3-4
BSS 4-39
CPU instructions 8-2
LOC 4-40
macro call 5-19,26
opdef call 5-31
.ORG 4-35
ORGC 4-35
R= 4-59
USE 4-32
USELCM 4-34
VFD 4-57

Index~8

Form, COMPASS coding 2-3
Format
control statement 10-1
CPU instruction 8-1
line 2-1
listing 11-1
PPU instruction 9-1
FORTRAN 2-6; 4-4; 10-3
Full list 10-3
Functional units 8-4,7
Functions, PPU
arithmetic 9-4
data transmission 9-3
logical 9-4
replace 9-5
FXi instruction
add 8-37
divide 8-44
multiply 8-40

G assembly mode 10-3
G list option 4-79
GE instructions 8-26
GE IF operator 4-67
IFC operator 4-73
Generated code listing 4-79
Generation, data 4-51
Get text mode 10-3
GT instruction 8-27
GT IF operator 4-67
IFC operator 4-79
Guaranteed zero 2-15; 4-54

Hardware configuration 1-8
Hardware feature dependency 4-8
Heading

listing 4-78; 11-1

macro 5-13

opdef 5-13
HERE pseudo

description 5-4

permissible anywhere 4-2
Hexadecimal data 2-23

I code option 4-22

I hardware feature code 4-8
I input mode 10-4

I NOLABEL option - 4-22

60360900C

IAM instruction 9-21

IAN instruction 9-20

IBj instruction 8-22

ID instruction 8-24

IDENT pseudo
binary generation 3-8,10
blank variable field 3-16; 4-12
description 4-2,11
example 4-4,7,14,15,17,18,21,50
force upper 3-5
overlay generation 3-8,10
program identification 4-2

IF pseudo 4-70
IF skipped lines listed 4-79

IFCP pseudos 4-64
IFC pseudo
description 4-73
example 5-5,11
permissible anywhere 4-2
IFop pseudo 4-67
IFPP pseudo 4-64
1Ftype pseudo 4-64
IJM instruction 9-17
IM instruction 8-51
Increment unit 8-4,7,46,48,49
Indexed address, PPU 9-15
Index register 8-8
Indirect address, PPU 9-14
Input, assembler 10-2,24
Instructions '
coding of 2-1
CMU 8-51
CPU 8-1
mnemonically identified 6-3
nil 6-7
no-operation 8-45; 9-9
PPU 9-1
pseudo 4-1
redefinition 5-16,25
synonymous 6-5,11
syntactically identified 6-8
Integer add 8-39
Integer subtract 8-39
Integer multiply 8-42
Integer value 2-17

603609008

Internal BCD
character set D-1
option 4-26

Invented symbol 5-33; 11-9

IR instruction 8-24

IRM instruction 9-18

IRP pseudo
acting as nil 6-7
description 5-34
example 5-35,36
permissible anywhere 4-2

IXi instructions 8-39,42

J option 4-9,11; 9-5

JDATE micro 7-6

Job statement 10-1

Job priority 10-1

JP instruction
description 8-23
force upper 3-5

L control statement option
description 10-4
related to LIST 4-78

L error 11-10

L hardware feature code 4-8

L list option 4-79

L location flag 4-40,11-14

Labeled common
description 3-3
establishment 4-32, 34

LCC pseudo
description 4-23
illegal if absolute 4-6,9,11

LCM attribute 4-71

LCM blocks 3-3; 4-34

LCM transfer instructiocns 8-14.1, 18

LCN iustruction
data transmission 9-3
description 9-8

LDC instruction
data transmission 9-3
description 9-9
example 2-22

Index-9

LDD instruction
data transmission 9-3
description 9-13
LDI instruction
data transmission 9-3
description 9-14
L.DM instruction
data transmission 9-3
description 9-15
example 5-21
LDN instruction
data transmission 9-3
description 9-8
example 5-12; 9-8
Left shift instruction 8-32, 33
LE IF operator 4-67
IFC operator 4-73
LE instruction 8-26
Library maintenance programs 2-1
LGO control statement 10-4
Linkage symbols 2-7; 4-48
Listable output
assembied code 11-6
assembler statistics 11-9
binary control cards 11-1
block usage 11-3
control statement control 10-4
default symbols 11-9
entry point symbols 11-4
error directory 11-9
error flags 11-10,11
external symbols 11-5
header information 11-1
literals 11-8
source statements 11-6
statistics 11-9
subtitles 11-1
symbolic reference table 11-13
titles 11-1
user control 4-77; 10-3,4
List, full 10-3
Listing control
control card 10-3,4
pseudo 4-77

Index-10

List, parameter
ECHO 5-8
equivalenced macro 5-25
macro 5-18
LIST pseudo
description 4-77
example 4-14; 5-6,12
permissible anywhere 4-2
List, short 10-4
Literals
absolute program 3-10
description of block 3-1,2
IDENT 3-11,17
listing 11-8
location 1-3; 3-1,2
notation 2-11
PPU overlay 3-13
protection 4-33
SEGMENT overlay 3-13
SEG partial binary 3-15
symbol (default) 2-7
LIT pseudo
description 4-55

example 2-12,17,21; 4-15,56; 5-6

listing 11-7,8
LJM instruction
description 9-6
example 5-21
LMC instruction
description 9-9
logical function 9-5
LMD instruction
description 9-13
logical function 9-5
LMI instruction
description 9-14
logical function 9-5
LMM instruction
description 9-15
logical function 9-5
LMN instruction
description 9-8
logical function 9-5

LO control statement option 10-4

603609008

Load address 4-3
Load-and-go file 1-3; 10-3
Loader control card 4-23
LOC attribute 4-71
Local blocks 3-2
absolute program 3-7
description 3-2
establishment 4-32,34
relocatable program 3-5
LOCAL statement
description 5-32
example 5-33
heading 5-13
Local symbol
CPU instruction 8-5
macro body 5-13
subprogram 3-1; 4-27
Location counter
BSS 4-39
control 4-40
description 3-5
forced upper 3-5
ORG 4-35
ORGC 4-35
special element 2-9; 3-5
USE 4-32
USELCM 4-34
Location field
listing 11-6 \
statement 2-1
LO control card option
description 10-4
related to LIST 4-77
LOC pseudo
description 4-40
example 4-41,59
location counter changed 3-5
Logical difference instruction 8-29
Logical functions, PPU 9-4
Logical minus 2-24
Logical product instruction 8-28
Logical prod and comp instruc 8-30
Logical shift instruction 8-32,33
Logical sum instruction 8-29

60360900C

Long add unit
description 8-4,7
instructions 8-39

LPC instruction
description 9-9
logical function 9-5

LPHK instruction
description 9-8
logical function 9-5

LT IF operator 4-67
IFC operator 4-71

LT instruction 8-27

LXi instruction 8-32,33
example 2-20

M base option 4-24
M list option 4-79
Machine test 4-64
MACHINE pseudo 4-7
Macro
body 5-13
call 5-18,25
equivalenced 5-24
definition 5-13
header 5-14
list control 4-79
name 2-2; 5-15,18,25; 6-1
permissible anywhere 4-2
processing 5-1,14
system defined 4-80; 5-36
terminator 5-14
MA CROE pseudo
description 5-24
example 5-27
IRP related 5-35
operation code table entry 6-1
permissible anywhere 4-2
MA CRO pseudo
description 5-15
example 4-29,74; 5-5,19, 20, 21, 22, 33, 35, 36
IRP related 5-35
operation code table entry 6-1
permissible anywhere 4-2

Index-11

MAN instruction 9-10
Mask instruction 8-4
Mass storage, system 1-3
Master list control 4-77
MAX pseudo
description 4-45
listing 11-7
MD instruction 8-52
MI instruction 8-24, 26
MIC attribute 4-72
MICCNT pseudo
description 4-47
example 4-47
listing 11-7
permissible anywhere 4-2
MICRO
decimal 7-4
definition 4-23,25,27; 7-2
editing 2-4
mark 2-4; 5-1
octal 7-4
reference 7-1
size 4-47;7-2
system defined 4-19; 7-2,5
test for 4-72
MICRO pseudo
description 7-2
example 4-47; 5-11; 7-2,3
permissible anywhere 4-2
MI instructions 8-24, 26
MIN pseudo
description 4-46
listing 11-7
Minus as local symbol separator 5-32
Minus as parameter separator 5-8,13, 16,25, 28
Minus on listing 11-7
Minus operator 2-24,25; 8-5
Minus sign in location field
CPU instruction 3-4,5; 4-57
PPU instruction 3-5; 4-57
VFD instruction 4-57
MJ instruction 8-17 '
force upper 3-5
MJN instruction
description 9-6
effect of J 4-9,11

Index-12

ML control statement option 10-4
Mnemonic operation code
legal operation field entry 2-1
OPDEF defined 5-27
search for 6-1
Modifters, numeric data 2-19
MODIFY common decks 5-2
MODLEVEL micro 7-7
Multiple entry point table
suppression 4-22
used for overlays 3-15
MXi instruction
description 8-43
example 2-20; 8-43
MXN instruction
description 9-10

N eject mode 10-4
N error 11-11
N list option 4-80
Name .
block 4-32, 34
different types 2-5
duplicate code 5-7,8
general description 2-5
IF sequence 4-63
macro 5-16
micro 4-23,25,27; 7-2,4,5
mnemonic operation 6-1
overlay 4-12,16
parameter 5-~8
remote code 5-3
NE instruction 8-26
NE IF operator 4-87
IFC operator 4-73
Nesting, level of 1-3
NG instruction 8-24, 26
NIL pseudo 6-6
permissible anywhere 4-2
NIM instruction 9-18 '
NJIN instruction
description 9-6
effect of J 4-9,11
NO eject option 10-3
NO instruction 8-45

60360900C

NOLABEL pseudo
description 4-22
permissible anywhere 4-2
NOM instruction 9-18
NOREF pseudo 4-83
permissible anywhere 4-2
Normalize instruction 8-34.1,35
Normalize unit
description 8-7
instructions 8-34.1,35
Not equal sign
parameter separator 5-8,13
special character 2-4
Numeric data 2-18
NXi instruction 8-35
NZ instruction 8-24,26

O base 2-18; 4-24
O error 11-10
O mode 10-5
OAM instruction 9-21
OAN instruction 9-20
OBj instruction 8-22
Octal listing 11-6
Octal notation 2-18
OCTMIC pseudo 7-4
permissible anywhere 4-2
OLDPL file 10-3
Opdef
body 5-13
call 5-30
definition 5-13
heading 5-14
list control 4-79, 80
processing 5-14
system defined 4-19,36
OPDEF pseudo
description 5-27
example 5-29,30,31,32
operation code table entry 6-1
permissible anywhere 4-2
Operand register 8-8
Operation code table 6-1

60360900C

Operation code value
CPU 6-9; 8-1
PPU 6-4; 9-1
Operation, definition
compressed 5-1
duplicated text 5-6
external text 5-2
general description 5-1
macro definition 5-13
opdef definition 5-13
remote text 5-3
system 5-36
Operation field
blank 4-51
description 2-1
search 6-1
Operator
element 2-22
mnemonic 5-27; 6-3
register 2-23; 5-28; 6-8
term 2-24
Operator with constant 2-14,18
OPL file 5-2; 10-3
OPSYN pseudo
description 6-5
permissible anywhere 4-2
ORG pseudo
description 4-35
determine blocks 3-1
establish absolute blocks 3-2; 4-35
example 4-4,7,14,15,17,37,41,50
location counter changed 4-35
origin counter changed 3-3; 4-35
ORGC pseudo 4-35
Origin
multiply entry point 4-3
overlay 4-12,16
program 4-3
Origin counter
BSS 4-39
control 3-3; 4-35,39
description 3-4
final value, absolute 3-8
final value, relocatable 3-6

Index-13

forced upper 3-4,5
maximum value 3-8
ORG 4-35
ORGC 4-35
special element 2-9; 3-3
USE 4-32
OR instruction 8-24
ORM instruction 9-18
Overflow error 2-19
Overlay
absolute 3-8
entry point 4-12,16
general description 3-10

level numbers 3-19; 4-4,12,16

multiple entry point 3-15
name 4-12,16

origin 4-12,16

PPU 3-10

primary 3-10; 4-12,16
secondary 3-10; 4-12,16

Perror 11-11

P numeric data modifier 2-19
P pagination mode 10-5

Pack instruction 8-37

Padding of CPU word 3-5; 4-57; 8-2

Page heading 11-1

Page number 11-1

Pagination contrel 10-4

Parameter
actual 5-7,18,26
embedded 5-18,26
formal 5-8,13
indefinitely repeated 5-35
iterative 5-18,26,35

substitutable 5-8,13,16,25,28, 35

Parameter mark 5-9,13
Parameter, null 5-9,18, 26
Parameter separator
actual 5-18,26
formal 5-8,13,16
Parcel 8-1
Parentheses
local symbol separator 5-32
nested 5-9

parameter separator 5-8,13,16,25,28

Index-14

Partial binary
IDENT type 3-16
SEG type 3-15

~Pass instruction

CPU 8-45
PPU 9-9
Pass one
expression evaluation 2-25,28; 3-4
general description 1-3
maximum test 4-45
minimum test 4-46
symbol definition 2-6
Pass two
expression evaluation 2-25,28; 3-4; 8-2
general description 1-3
symbol definition 2-6
value for MAX 4-45
value for MIN 4-46
PC control statement option 10-5
PCOMMENT micro 7-8
PERIPH pseudo
description 4-10
effect on branch instructions 9-5
example 4-53; 6-5
first statement group 4-2
PJN instruction
description 9-6 ‘
effect of J 4-9,11
PL instruction 8-24,26
Plus in location field —
CPU instruction 3-4
PPU instruction 3-5
VFD instruction 4-57
Plus as parameter separator 5-8,13,16, 25,28
Plus as local name separator 5-32
Plus on listing 11-7
Plus operator 2-24,25; 8-5
Point
binary 2-18,19
decimal 2-18,19
octal 2-18,19
parameter separator 5-8,13,16, 25,28
register designator 2-8
Population unit 8-45
Position counter
control 4-42,57
description 3-4
special element 2-9; 3-4

60360900C

POS pseudo 4-42 Pseudo instructions

Post radix 2-18 binary control 4-6
PPOP pseudo block counter control 4-32
description 6-3 conditional agsembly 4-63
example 5-12; 6-5 data generation 4-51
permissible anywhere 4-2 definition operation 5-1
PPU instructions 9-1 error control 4-75
A-register I/O 9-20 first statement group 4-2
block I/0 9-20 introduction 4-1
branch I/0 9-17,18 listing control 4-77
branch 9-5 micro 7-1
central read/write 9-16 mode control 4-23
channel function 9-22 operation code table management 6-1
constant mode 9-9 operation field entry 2-2
designators 9-3 permissible anywhere 4-2
direct address 9-13 required 4-2
error stop 9-23 subprogram identification 4-2
exchange jump 9-10 subprogram linkage 4-48
format 9-1 symbol definition 4-42
functions 9-3 types 4-1
indexed direct address 9-15 PS instruction
indirect address 9-14 description 8-11
jump 9-7 force upper 3-5
no address 9-8 PSN instruction 9-9
no operation 9-9 PURGDETF pseudo
output record flag 9-22 description 6-11
shift 9-7 permissible anywhere 4-2
PPU pseudo PURGMA C pseudo
description 4-9 description 6-7
effect on branch 9-5 example 6-6
example 4-10,55 permissible anywhere 4-2
first statement group 4-2 Push down stack 1-3
Prefix table PXi instruction 8-37

comments 4-21
generation 3-8

suppression 4-22 Q to represent expression 5-27; 6-8
Preradix 2-18 Qualifier, symbol 4-28
Program, absolute 3-7; 4-6 used for definition operations 5-2
Program execution 10-5 QUAL micro 7-7
Program identification 4-3 QUAL pseudo
Program origin 4-3 description 4-27
Program, relocatable 3-5 example 4-14,29; 5-22
Program stop instruction 8-11 permissible anywhere 4-2

Program structure 3-1

60360900A Index-15

Rerror 11-10
R hardware feature code 4-8
R list option 4-80
R= pseudo

description 4-59

example 4-60; 5-21

illegal in PPU program 4-9,11
RAD instruction

description 9-13

replace function 9-5
Radix 2-18,19
RAI instruction

description 9-14

replace function 9-5
RAM instruction

description 9-15

replace function 9-5
Real-time clock set instruction 8-20
Record name, external text 5-3
Recursion level 1-4; 5-1
Recursion stack 1-4; 5-1
Reference

external

macro 5-18

macroe 5-25

nested 5-1

opdef 5-30
Reference table, symbolic 11-13
Registers, CPU 2-8; 8-8
Register designators

CPOP 6-8

description 2-8; 8-8

not symbols 2-6

OPDEF 5-27

OPSYN 6-11

PURGDEF 6-11
RE instruction

description 8-14

force upper 3-4
REL attribute 4-71
Relocatable program structure 3-5
Relocatable test 4-71
Remote assembly 5-3
Repeat count

DUP 5-7

replication 4-61

Index-16

REP pseudo 4-61
REPC pseudo 4-61
REPI pseudo
example 4-62
description 4-61
illegal if absolute 4-6,9,11
REPL table
result of BSSZ 4-52
result of REP, REPC, or REPI 4-61
written by SEGMENT 4-16
Replace functions, PPU 9-5
Replication of code 4-61
Return jump, CPU 8-13
RFN instruction 9-22
RI instruction 8-20
Right shift 8-32,34
RJ instruction
description 8-13
example 4-33; 5-21; 8-13
force upper 3-5
RJM instruction 9-¢
RL instruction 8-15
RMT pseudo
description 5-3
example 5-5,6
permissible anywhere 4-2
RO instruction 8-21
Round and normalize ingtruction 8-35
RPN instruction 9-11
RXi instructions
add 8-39
divide 8-44
multiply 8-41
RXj instruction 8-18

S list option 4-80
S numeric data modifier 2-18
S storage flag 11-14
S system text mode 10-5
SAi instructions
description 8-46
example 2-16,17, 20, 4-33, 39; 5-22, 35; 8-47
SBD instruction
arithmetic function 9-4
description 9-13

603609008

SBI ins*ruction
arithmetic function 9-4
description 9-14
SBi instructions
~description 8-48
example 2-11,15; 4-52; 8-49
SBM instruction
arithmetic function 9-4
description 9-15
SBN instruction
arithmetic function 9-4
description 9-8
Scale, binary 2-19
SCM blank common 3-3
SCM labeled common 3-2
SCN instruction
description 9-8
logical function 9-5
SEG pseudo
binary generation 3-15
description 4-17
example 4-18
force upper 3-5
illegal in PPU program 4-9,11
SEGMENT pseudo
binary generation 3-7
description 4-16
example 4-17
force upper 3-5
illegal in PPU program 4-9,11
overlay structure 3-13
Semicolon in definition 5-9,13
SEQUENCE micro 7-7
Sequencing
listing 11-7
statement 2-1
SET attribute 4-71
Set instructions 8-46,48,49
SET pseudo
description 4-44
example 2-9,22; 5-11,22
listing 11-7
Shift
description of unit 8-4,7

CPU instructions 8-32, 33, 34, 35, 36,37,43

PPU instructions 9-7
SHN instruction 9-7

603609008

Short jump limit 4-9,11
Short list 10-4
Single precision instructions
add rounded 8-39
add unrounded 8-37
divide rounded 8-44
divide unrounded 8-44
multiply rounded 8-41
multiply unrounded 8-40
SKIP pseudo
description 4-75
permissible anywhere 4-2
Slant bar
local symbol separator 5-32
operator 2-23,24; 8-5
parameter separator 5-8,13,16, 25,28
SOD instruction
description 9-13
replace function 9-5
SOI instruction
description 9-14
replace function 9-5
SOM instruction
description 9-15
replace function 9-5
Space, embedded (see blank)
SPACE pseudo
description 4-81
permissible anywhere 4-2
Special elements
FORTRAN call 2-9
general description 2-9
in variable field 2-2
location counter 3-5
origin counter 3-3
position counter 3-5
SST attribute 4-72
SST pseudo 4-48
example 4-14
permissible anywhere 4-2
Stack, recursion 1-4; 5-1
Statement
coding conventions 2-3
comments 2-2
compressed 5-1
continuation 2-2
external source 5-2

Index-17

first column 2-1

first group 4-1

format 2-1

listing 11-5

number assembled 11-9

size 2-1

source of 5-1; 10-3
Statistics, assembler 11-9
STD instruction

data transmission function 9-3

description 9-13
STEXT pseudo

description 4-19

example 4-21

first statement group 4-2
STI instruction

data transmission function 9-3

description 9-14
STM instruction

data transmission function 9-3

description 9-15
STOPDUP pseudo

description 5-9

example 5-11
Storage reservation 4-39,51
String, character

comparison 4-73

data generation 4-53

delimited 2-10,15

empty 2-15

micro 2-4

notation 2-14
Subprogram length 3-6
Substitution, micro 7-1
Subsubtitle

CTEXT 4-84

EJECT 4-81

listing of 11-1

QUAL 4-27

SPACE 4-81

TITLE 4-82

TTL 4-83
Subtitle

CTEXT 4-84

listing of 11-1

TITLE 4-82

Index-18

SXi instruction
description 8-49
example 2-16,20; 5-21, 35; 8-50
Symbol
attribute 2-6; 4-42,71
created 5-33
default 2-7
definition 2-6; 4-42
duplicate 2-6
entry point 2-6
external 2-7
invented 5-33; 11-9
literals 2-7
local to macro 5-13,33
loeal to QUAL 3-1
location field 2-6
lost 11-9,13
number defined 11-9
number referenced 11-9
previously defined 2-8
qualified 2-8; 4-27
redefinition 4-44
system-defined 2-7; 4-48
undefined 2-8
value 2-6; 4-42
Symbol qualifier listed 11-1
Symbol table
clearing 3-10,12
system text 4-19
Symbolic reference table.
address reference 4-~85
detailed description 11-13
general description 4-78
generation 1-3
list control 4-78,83,85; 10-3,4
ommit symbol 4-83
Synonymous operation
CPU 6-11
mnemonic 6-5
PPU 6-5
syntactic 6-8
Syntax definition 5-27; 6-8,11
Syntax search 6-1
System text 4-19
SYSTEXT option 10-4
related to G mode 10-3
related to STEXT 4-19

603609008

T list option 4-80
Table
operation code 6-1
symbolic reference 11-13
USE 4-32
TBj instruction 8-29
Term 2-24
Term operator 2-23
Terminator, macro 5-13
Test symbol attribute 4-71
Time limit 10-2
TIME micro 7-5
Time of assembly 11-1
Title
ES 8-12
IDENT 4-4
listing of 11-1
PS 8-11
TITLE 4-82
TITLE pseudo 4-82
permissible anywhere 4-2
Transfer symbol 4-5
Transmit instruction 8-28
Truncation, character data 2-13
expression value 2-27
TTL pseudo 4-83
permissible anywhere 4-2

U error 11-11

UJN instruction
effect of J 4-9,11
description 9-6

Unconditional jump
CPU 8-238
PPU 9-6

Underflow error 2-19

Unpack instruction 8-36

USE pseudo
change blocks 3-1; 4-32
description 4-32
establish common blocks 3-3,4; 4-32
establish local blocks 3-2; 4-32
example 4-18,29,31,33,35,37,39

60360900C

USE table

entry 4-32,33,35

reinitialization 3-10,12; 4-12
USELCM pseudo

description 4-34

establish common blocks 3-3

example 4-34

illegal in PPU program 4-9,11
UXi instruction 8-36

V error 11-11
Value, numeric 2-17
Variable field 2-2
Variable field definition 4-57
VFD pseudo
description 4-57
example 2-16; 4-25, 26,33,58; 5-22

WE instruction
description 8-14
force upper 3-5

WL instruction 8-15

WXj instruction 8-18

X external flag 4-50; 11-7
X external text mode 10-5
X file option
description 10-5
XTEXT default 5-3
X hardware feature code 4-8
X list option 4-80
X register
conditional instructions 8-24
description 8-4
designator 2-8
setting 8-49
XJ instruction
description 8-16
force upper 3-5
XREF pseudo
description 4-85
permissible anywhere 4-2

Index-19

XTEXT pseudo 5-1
related to CTEXT/ENDX 4-84
XTEXT source 10-5

Zero block
absolute program 3-2
description 3-2
relocatable program 3-6

Zeroed words 4-51

Zero fill 2-15; 4-57

Zero guaranteed
data item 2-15
DIS item 4-54

ZJN instruction
description 9-6
effect of J 4-9,11

ZR instruction
description 8-24, 26
force upper 3-5

ZXi instruction 8-35

Index~20 60360900A

' -

PSEUDO INSTRUCTION INDEX

Name

ABS
BASE
BSS
BSSZ
Bi=1
B7=1
CHAR
CODE
coL
COMMENT
CON
cpop
CPSYN
CTEXT
DATA
DECMIC
DIS
pup
ECHO
EJECT
ELSE?
END?
ENDD
ENDIF?
ENDM
ENDX
ENTRY
ENTRYC
EQU
ERR
ERRMI
ERRNG
ERRNZ
ERRPL
ERRZR
EXT
HERE
IDENT

IF
IFC
IFCP
IFCP8
IFCP?
IFGE
IFGT
IFLE
IFLT
IFMI
IFRE
IFPL
IFPP

IFPPT
IFEQ

IRP

LCC

LIST

LIT

LOC
LOCAL
MACHINE
MACRO

Placement

first group
anywhere
normal
normal
anywhere
anywhere
anywhere
anywhsve
sal
anywhere
normal
anywhere
anywhere
normal
normal
anywhere
normal
normal
normal
anywhere
anywhere
reguired last
anywhere
anywhere
anywhere
normal
normal
normal
normal
normsat
normat
normal
normal
normal
normal
normal
anywhere
required first

normal
anywhere
normal
normal
normal
normal
normal
normal
gormal
normal
normal
normal
normal
normal
normal
normal
anywhere
normal
anywhere
normal
normal
macro or opdef
first group
anywhere

* Looked for during IF skipping.

CP,PP
CP, PP

CP,PP
CP,PP
cp, PP
cP,PP
CP,PP
cP,PP
CP,PP
CP,PP
CP, PP
CP,PP
CP,PP
CP,PP
CP,PP
CP, PP
CP,PP
CP,PP
cP,PP
CPR

CP,PP
cp, PP
cp, PP
CP, PP
CP, PP
CP, PP

...
P O N NN N 3

e Rl s
O D W

&
L
N

6.2.2

Name

MACROE
MAX
MICCNT
MICRO

NOLABEL

SEG
SEGMENT
SET

SKIP
SPACE
8ST
STEXT
STOPDUP
TITLE
TTL

USE
USELCM
VFD
XREF
XTEXT
(blank)

Placemsnt
anywhere
normal
anywhere
anywhere
normal
anywhere
anywhere
anywhere
anywhere
anywhere
anywhere
normal
normal
first group

anywhere
first group
normal
anywhere
anywhere
normal
normal
normal
anywhere
normal
normal
normal

Absolute or relécatable CPU program

CP,PP
CP,PP
CP,PP
CP,PP
CP,PP
CP,PP

Absolute CPU program
Relocatable CPU program
Absolute PPU program

Section
Number

5.4.4
4.6.3
4.8.5
7.2,1
4.6.4
6.1.3
4.8.10

4.11.6

7.2.3
5.4,8
6.1.2
4.5.3
4.5.8
4.3.4
4.5.8
6.1.2
4.3.3
6.2.8
8.1.4
4.4.3
" 4.8.8
4.8.8
4.8,8
5.2.1
4.8.7
4.3.7
4.3.6
4.6.2
4.9.7
4.11.3
4.6.6
4.3.8
5.3.3
4.11.4
4.11.5
4.5.1
4.5.2
4.8.5
4.11.8
5.1
4.8,

1
4.6.1

