60495500

T

' (GD) CONTROL DATA

8-BIT SUBROUTINES
| VERSION1
REFERENCE MANUAL

___——"—-—l-—-————-_———————————-————-—-_—- z g
CDC® OPERATING SYSTEMS:
NOS 1
~ _NOS 2
NOS/BE 1

i mon

S

i S L

Gy

(R

e

RS

Ry

i

o

60495500

(G2 CONTROL DATA

8-BIT SUBROUTINES
VERSION 1
REFERENCE MANUAL

CcDC® OPERATING SYSTEMS:
NOS 1 '
NOS 2
NOS/BE 1

REVISION RECORD

g R TR S TR

Revision Description

A (11/01/75) Original printing.

B (05/31/78) Revised to incorporate standard diagnostic message format; inclusion of appendix H,
Glossary.

C (07/17/81) Revised to incorporate the 8-bit subroutines handling of variable length records and
various technical changes. This revision reflects PSR level 528. This is a complete
reprint.

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

©COPYRIGHT CONTROL DATA CORPORATION P. 0. Box 3492

1975, 1978, 1981 SUNNYVALE, CALIFORNIA 94088-3492

All Rights Reserved

Printed in the United States of America or use Comment Sheet in the back of this manual

ii 60495500 C

LIST OF EFFECTIVE PAGES

B
]
i

New features, as well as changes, deletions, and additions to informatiom in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed. :

Page Revision
tage Jeyvision

Front Cover
Title Sheet

ii C Pi
iii/iv C
v C
vi thru viii c
ix c
1-1 c
1-2 C
2-1 thru 2-10 c
3~1 thru 3-11 C
4~1 thru 4-11 c
5-1 thru 5-4 C
6-1 thru 6-3 C
7-1 thru 7-6 C
8-1 thru 8-3 c
A~1 thru A-16 c
B-1 thru B-6 c
C-1 thru C-4 C
D-1 thru D~3 C
E-1 thru E-5 [
F-1 thru F-3 C
G~1 thru G~5 C
H-1 C
I-1 C
Index-~1 thru -3 C
Comment Sheet/Mailer [

Back Cover

60495500 C iii/iv

PREFACE

The 8-bit subroutines are designed for use with the
following operating systems:

e NOS 1 for the CONTROL DATA® CYBER 180 Series;
CYBER 170 Series; CYBER 70 Models 71, 72, 73,
74; and 6000 Series Computer Systems

e NOS/BE 1 for the CDC® CYBER 180 Series; CYBER
170 Series; CYBER 70 Models 71, 72, 73, 74; and
6000 Series Computer Systems

You can use the 8~bit subroutines to convert, move,
compare, pack, and unpack IBM sequential 8-bit
files and CDC internal files. A utility COPY8P
exists to copy IBM format print files to CDC
extended print files, maintaining uppercase and
lowercase characters.

Except for the COPY8P utility, all input/output
operations performed by the 8-bit subroutines are
under control of CYBER Record Manager.

A familiarity with COBOL or FORTRAN is assumed. A
knowledge of hexadecimal notation is also assumed.
A general knowledge of character sets, IBM files

(record types and blocking formats), and CDC files
is essential.

RELATED PUBLICATIONS

You are expected to have some familiarity with the
listed publications. The publications are listed
alphabetically within groupings that indicate
relative importance.

The NOS manual abstracts and the NOS/BE manual
abstracts are instant-sized manuals containing
brief descriptions of the contents and intended
audience of all NOS and NOS product set manuals,
and NOS/BE and NOS/BE product set manuals,
respectively. The abstracts manuals can be useful
in determining which manuals are of greatest
interest to a particular user.

The Software Publications Release History serves as
a guide in determining which revision level of
software documentation corresponds to the Pro-
gramming Systems Report (PSR) level of installed
site software.

The following manuals are of primary interest to users of the 8-bit subroutines:

Publication

COBOL Version 5 Reference Manual
COMPASS Version 3 Refarence Manual
CYBER Loader Version 1 Reference Manual

CYBER Record Manager Basic Access Methods

Version 1.5 Reference Manual

FORM Version 1 Reference Manual

FORTRAN Extended Version 4 Reference Manual
NOS Version 1 Reference Manual, Volume 1 of 2
NOS Version 1 Reference Manual, Volume 2 of 2

NOS/BE Version 1 Reference Manual

Publication
Number

60497100
60492600
60429800

60495700

60496200
60497800
60435400
60445300

60493800

The following manuals are of secondary interest to users of the 8~bit subroutines:

Publication

NOS Version 1 Manual Abstracts

NOS/BE Version ! Manual Abstracts

Software Publications History

60495500 C

Publication
Number

84000420
84000470

60481000

vi

CDC manuals can be ordered from

Literature and Distribution
St. Paul, Minnesota 55103.

Services,

Control Data Corporatiom,

308 North Dale

This product is intended for wuse only as

described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features or

parameters.

Street,

60495500 C

CONTENTS

T e NN R TR)

L
NOTATIONS ix 4., UTILITY SUBROUTINES 4-1
XCOMP Subroutine 4-1
1. INTRODUCTION 1-1 FORTRAN Extended 4 XCOMP Calling Sequence 4-1
COBOL XCOMP Calling Sequence 4~2
Description of the 8-bit Subroutines 1-1 COMPASS XCOMP Calling Sequence b=b
Overview of the Input/Output Subroutines 1-1 XMOVE Subroutine 4=5
Overview of the Utility Subroutines 1-1 FORTRAN Extended 4 XMOVE Calling Sequence 4-5
Overview of the COPYBP Utility 1-1 COBOL XMOVE Calling Sequence 4-5
Conversion Methods 1-1 COMPASS XMOVE Calling Sequence 4-7
Maintaining 8-Bit Significance 1-2 XPACK Subroutine 4-8
FORTRAN Extended 4 XPACK Calling Sequence 4-8
COBOL XPACK Calling Sequence 4~8
2. DATA CONVERSION STRINGS 2-1 COMPASS XPACK Calling Sequence 49
XPAND Subroutine 4-9
Overview of Conversion Methods 2-1 FORTRAN Extended 4 XPAND Calling Sequence 4-9
String Position 2-2 COBOL XPAND Calling Sequence 4~10
Field Alignment 2-2 COMPASS XPAND Calling Sequence 4~10
Conversion Items 2-2
Repeat Count 2-2
Simple Item Conversion 2-2 5. COPY8P UTILITY 5-1
Conversion Specifications 2-2
Selector Expressions 24 COPY8P Control Statement 5-1
Item Locators 2-5 Output of COPY8P Files 5-2
Value Fields 2-6 Character Set Restrictions 5-2
Comparison Modes for Selector Expressions 2-6 COPYSP Example 5-4
Conversion Strings 2-7
Conversion String Punctuation 2-7
Nested Conversion Strings 2-7 6. INTERFACE OPERATION 6-1
Conversion Termination 2-8
Special Conversion Rules 2~-8 Operating System Interface 6~1
Bit to Strimg 2-8 Tape Files 6-1
Bit to Numeric 2-9 Card Files 6~-1
String to Numeric 2-9 Print Files 6—-1
Character Skipping and Blank/Zero Fill 2-9 CYBER Record Manager Interface 6-2
Floating Point to Integer 2-9 Tape Files 6-2
Binary Data 2-9 Card Files 6-2
Print Files 6-2
Loader Interface 6-3
3. INPUT/OUTPUT SUBROUTINES 3-1 Omitting Unneeded 8-Bit Modules 6-3
Loader Considerations 6-3
XFILE Subroutine 3-1
FORTRAN Extended 4 XFILE Calling Sequence 3-1
File Usage 3-1 7. COBOL USAGE 7-1
FORTRAN Extended 4 XFILE Example 3-1
COBOL XFILE Calling Sequence 3-3 IBM COBOL Data Formats 7-1
File Usage 3-3 CDC COBOL Data Formats 7-1
COBOL XFILE Example 3-3 COBOL Sample Program 7-3
COMPASS XFILE Calling Sequence 3-4
XWRITE Subroutine 3-4
XWRITE Handling of Variable Length Records 3-5 8. FORTRAN EXTENDED 4 USAGE 8~-1
Forcing Termination of File Output 3-5
FORTRAN Extended 4 XWRITE Calling Sequence 3-5 IBM FORTRAN Data Formats 8-1
COBOL XWRITE Calling Sequence 3-6 CDC FORTRAN Data Formats 8-1
COMPASS XWRITE Calling Sequence 3-7 Sample Program 8~2
XRFAD/XREREAD Subroutines 3-7
XREAD/XREREAD Handling of Variable Length
Records 3-8 APPENDIXES
Skipping Records 3-8
Error Handling 3-8 A Character Data Input, Output, and Central A-1
FORTRAN Extended 4 XREAD/XREREAD Calling Memory Representation
Sequence 3-9 B Diagnostic Messages B-1
COBOL XREAD/XREREAD Calling Sequence 3-9 C Glossary Cc-1
COMPASS XREAD/XREREAD Calling Sequence 3-10 D IBM Tape File Record and Block Formats D~1

60495500 C ; vii

CDC and IBM Data Formats E~1 4-20 COBOL XPACK Example 4~-9

E
F Print Format-CDC 596-6 Print Train F-1 4-21 COMPASS XPACK Calling Sequence 4-9
G Conversion Rules G-1 4-22 COMPASS XPACK Example 4-10
H 8-Bit Subroutines/FORM Comparison H-1 4-23 FORTRAN Extended 4 XPAND Calling
I Future System Migration Guidelines I-1 Sequence 4-10
4-24 TFORTRAN Extended 4 XPAND Example 4-10
4-25 COBOL XPAND Calling Sequence 4-11
INDEX 4-26 COBOL XPAND Example 4-11
4-27 COMPASS XPAND Calling Sequence 4-11
4-28 COMPASS XPAND Example 4-11
FIGURES 5-1 NOS CCL Procedure File Used With COPY8P
Utility 5-4
2-1 Conversion Formats 2-1 5-2 Sample Output From COPY8P Utility 5-4
2-2 Elements of a Conversion Specification 2-5 6-1 Deck Setup for Binary Input 6-1
2-3 Selector Expression Format 2-5 6-2 Formats of the ROUTE Control Statement
2~-4 Numeric Field Format 2-6 Used With the 8-Bit Subroutines 6-2
2-5 Elements of a Conversion String 2-8 7-1 COBOL 5/8-Bit Subroutines Interactive Job 7-5
3-1 FORTRAN Extended 4 XFILE Calling 8-1 FORTRAN Extended 4 Program Using the
Sequence 3-1 8-Bit Subroutines 8-3
3-2 File String Keywords and Parameters 3-2 8-2 Control Statements Used to Run FORTRAN
3-3 Determination of Workspace Size 3-3 Extended 4 Program 8-3
3-4 FORTRAN Extended 4 XFILE Example 3-3 8-3 Sample Output From FORTRAN Extended 4
3-5 COBOL XFILE Calling Sequence 3-3 Program 8-3
3-6 COBOL XFILE Example 3-4
3-7 COMPASS XFILE Calling Sequence 3-4
3-8 COMPASS XFILE Example 3-5
3-9 XWRITE Calling Sequences to Force TABLES
Termination of File OQutput 3-5
3-10 FORTRAN Extended 4 XWRITE Calling 2-1 Valid T and m Values 2-3
Sequence 3-6 2-2 Default Conversions If Tmp Is Not
3-11 FORTRAN Extended 4 XWRITE Example 3-6 Specified 2-4
3-12 COBOL XWRITE Calling Sequence 3-7 2-3 Examples of Simple Item Conversions 2-4
3-13 COBOL XWRITE Example 3-7 2-4 Conversion Specification Examples 2-5
3-14 COMPASS XWRITE Calling Sequence 3-8 2-5 Examples of Item Locators 2-6
3-15 COMPASS XWRITE Example 3-8 2-6 Character Strings and Literals 2-6
3-16 XREAD Calling Sequence for Skipping 2-7 Numeric Field Examples 2-7
Records 3-8 2-8 IBM Format Comparison Modes for Selector
3-17 FORTRAN Extended 4 XREAD/XREREAD Calling Expressions 2-7
Sequences 3-9 2-9 CDC Format Comparison Modes for Selector
3-18 FORTRAN Extended 4 XREAD Example 3-9 Expressions 2-7
3-19 COBOL XREAD/XREREAD Calling Sequences 3-9 2-10 Selector Expression Examples 2-7
3-20 COBOL XREAD Example 3-10 2-11 Conversion String Examples 2-9
3-21 COMPASS XREAD/XREREAD Calling Sequence 3-11 3-1 Status Values Returned For XWRITE Call 3-6
3-22 COMPASS XREAD Example 3-11 3-2 Status Values Returned For XREAD/XREAD
4-1 S1DISPC and S2ASCII 4-1 Call) 3-9
4-2 FORTRAN Extended 4 XCOMP Calling 4-1 Characters Used in xy Parameter for
Sequence 4-2 XCOMP And XMOVE 4-1
4-3 Meaning of Status Values Returned From 4=2 Collating Sequences Used by XCOMP 4-1
XCOoMP 4=2 4-3 Three-Character xy Parameter Used in
4-4 FORTRAN Extended 4 XCOMP Example 4-2 XMOVE 4~5
4-5 Example of XCOMP Used as a FORTRAN 5-1 Format Control Characters When A is
Extended 4 Function 4-2 Specified On FMT 5-2
4-6 COBOL XCOMP Calling Sequence 4-3 5-2 Characters Recognized When M Is
4-7 COBOL XCOMP Example 4~-3 Specified On FMT 5-2
4-8 COMPASS XCOMP Calling Sequence b4=4 5-3 COPY8P Print Conversion Table 5-3
4-9 COMPASS XCOMP Example 4=4 6-1 Entry Name and 8-Bit Module Function 6-3
4-10 FORTRAN Extended 4 XMOVE Calling 7-1 IBM COBOL-Tm Values 7-2
Sequence 4-5 7-2 Relationship Between IBM COBOL
4-11 FORTRAN Extended 4 XMOVE Example 46 Elementary Data Description Entries
4-12 COBOL XMOVE Calling Sequence 4—6 and Corresponding 8-Bit Tm Values 7-3
4-13 COBOL XMOVE Example 4~ 7-3 CDC COBOL 5-Tm Values 74
4-14 COMPASS XMOVE Calling Sequence 4-7 7-4 Relationship Between CDC COBOL
4~15 COMPASS XMOVE Example 4-7 Elementary Data Description Entries
4~16 Packed Word Format 4-8 and Corresponding Tm Values 7-6
4-17 FORTRAN Extended 4 XPACK Calling 8~1 IBM FORTRAN-Constant and Variable Sizes 8-1
Sequence 4-8 8-2 IBM FORTRAN-Tm Values 8~2
4~18 FORTRAN Extended 4 XPACK Example 4-8 8-3 CDC FORTRAN-Constant and Variable Sizes 8-2
4-19 COBOL XPACK Calling Sequence 4~9 8~4 CDC FORTRAN Tm Values 8-2

viii 60495500 C

NOTATIONS

The notations used in the reference formats in this
manual are described as follows:

UPPERCASE

lowercase

[1

60495500 C

Reserved words are shown in
uppercase. These words must be
spelled correctly and cannot be
used in a source program except as
specified in the calling sequences.

Generic terms that represent the
words or symbols you supply are
shown in lowercase. When generic
terms are repeated in a calling
sequence, a number or Jletter is
appended to the term for identi-
fication.

Brackets enclose optional portions
of a calling sequence. All en-
tries in brackets can be omitted
or included at your option.

{1} Braces enclose two or more
vertically stacked items in a
calling sequence, when you can use
only one of the enclosed items.

see Ellipses that immediately follow a
pair of brackets or braces indi-
cate that the enclosed material
can be repeated at your option.

1= The colon immediately followed by
an equals sign represents the
phrase "as defined as".

Punctuation symbols shown in the calling sequences
are required unless otherwise noted. Unless other-
wise specified, all references to numbers are to
decimal values.

Terms that are unique to the 8-bit subroutines, or

terms that have special connotations when used with
the 8-bit subroutines are defined in appendix C.

ix

INTRODUCTION

You can use the 8-bit subroutines with COMPASS,
COBOL, or FORTRAN to perform any of the following
functions:

® Convert IBM sequential 8-bit format files to
Control Data (CDC) intermal format files,
maintaining 8-bit significance where necessary.

@ Perform data moves, comparisions, packing, and
expanding of converted data in which 8-bit
significance has been maintained.

@ Convert CDC internal files to IBM format files.

@ Copy IBM format print files to CDC extended
print files, maintaining uppercase and lower-
case characters.

CDC offers guidelines for the use of the software
described in this manual. These guidelines appear
in appendix I. Before using the software described
in this manual, you are strongly urged to review
the content of this appendix. The guidelines
recommend use of this software in a manner that
reduces the effort required to migrate application
programs to future hardware or software systems.

DESCRIPTION OF 8-BIT
SUBROUTINES

The 8-bit subroutines fall into two distinct groups:

e Input/output subroutines that operate on a
record-by-record basis, providing translation
capabilities between internal (Cbc) and
external (IBM) data types and character sets

@ Utility subroutines that manipulate, compress,
or expand character strings in display code,
ASCII, or EBCDIC forms

COPY8P, a stand—-alone program, provides the
capability to copy an IBM format print file into a
CDC-compatible print file without loss of 8-bit
(uppercase and lowercase) significance.

OVERVIEW OF INPUT/OUTPUT SUBROUTINES

The input/output subroutines are as follows:
e XFILE

Defines a file for subsequent use by the 8-bit
input/output subroutines. XFILE performs no
input/output operations by itself. A call to
XFILE must precede a call to any of the other
8-bit input/output subroutines.

e XREAD or XREREAD
Reads or rereads one record from an input file
and places the data into the user record area.

Optional data conversion can be performed
during reading or rereading.

60495500 C

s S T

e XWRITE

Writes one record at a time to an output file.
Optional data conversion can be performed as
specified. .

OVERVIEW OF UTILITY SUBROUTINES

The utility subroutines include the following:
e XPACK

Packs 12-bit data into 8-bit form (seven
characters per 60-bit word) for file storage.

e XPAND

Unpacks 8-bit data (previously packed into
60-bit words for file storage by the XPACK
subroutine) into 12-bit form (five characters
per 60-bit word) for subsequent internal
processing.

e XMOVE

Moves character strings internally, and,
optionally converts ASCII, EBCDIC, and display
code during the move.

e XCOMP

Compares two strings of 1like or differing
character sets. The 8-bit subroutines return
status information which indicates the result
of the comparison.

OVERVIEW OF COPY8P UTILITY

COPY8P is unrelated to the subroutines previously
described. Callable by a control statement, COPY8P
copies (without loss of 8-bit significance) an IBM
file to a CDC file formatted for printing on a CDC
596~6 extended print train.

CONVERSION METHODS

The 8-bit subroutines translate data via data
conversion strings discussed in sectiom 2. These
conversion strings are optional parameters of the

XWRITE, XREAD, and XREREAD subroutines. The user
can specify data conversion between IBM data

formats and CDC data formats. The IBM and CDC
internal data formats that can be processed by the
8-bit subroutines are described in appendix E.

The most basic form of a conversion string is a
simple item conversion. Data is converted only at
this level. Other parts of the conversion striang
provide control information used to determine which
conversions are performed.

MAINTAINING 8-BIT SIGNIFICANCE

Maintaining B8-bit significance in data converted
from IBM format files is necessary when such files
contain character codes not included in the CDC
graphic 63— or 64-character set. Lowercase char-
acters and several special characters such as @ ? !
and # are included in the IBM EBCDIC and ASCII
character sets but not in the CDC graphic 63— or
64-character set.

Some control characters included in the IBM EBCDIC
and ASCII character sets are not members of the
95-graphic ASCII character set (see appendix A)
used by the CDPC 596-6 print train. These char~
acters can be processed by the 8-bit subroutines
but cannot be printed om CDC equipment. You must
decide the necessity of maintaining special
character codes. In the following cases, 8~bit
significance need not be maintained:

Files containing only characters that appear in
the CDC graphic 63~ or 64-character set can be
converted to CDC 6-bit display code.

Files containing packed decimal data, in which
each digit occupies 4 bits, can be converted to
CDC 6-bit numeric display fields.

Files containing binary arithmetic data can be
converted to CDC binary arithmeéic or display
numeric data according to your specification.

Files containing IBM arithmetic data that does
not exceed CDC double-precision format need not
maintain 8-bit significance to retain accuracy.

Files containing IBM arithmetic data that does
exceed CDC double~precision format can maintain
8-bit significance by using bit image con-
version; however, you must provide routines to
process such data.

60495500 C

DATA CONVERSION STRINGS 2

You can use data conversion strings as input
parameters to the XREAD, XREREAD, and XWRITE
subroutines. Conversion strings specify how data
items in a record are to be translated. Through
the use of data conversion strings you can specify:

® Conversion between IBM data formats and CDC
data formats

® Conversion between CDC data formats and IBM
data formats

® Selection of data to be converted dependent
upon a relational test

A conversion string consists of 6~bit display code
characters. With the exception of literal string
parameters, blanks are ignored and can be used
freely to improve readability.

OVERVIEW OF CONVERSION
METHODS

A conversion item is the most basic element of a
conversion string. The simplest form of a
conversion item is one that specifies only one
conversion; this form is called a simple item
conversion. A simple item conversion causes data

translation. A conversion item can also consist of
a repeat count followed by a simple item conversion
or a repeat count followed by a simple item con-
version enclosed in parentheses. A conversion item
can comprise part or all of a conversion specifica-
tion, or part or all of a conversion string.

A conversion specification is composed of an
optional selector expression followed by one or
more conversion items. If a conversion
specification contains a selector expression, a
relational test 1is performed on the selector
expression. If the result of this relational test
is true, the conversion items associated with the
selector expression are executed.

A conversion string can consist of one or more
conversion specifications enclosed in parentheses.
Since a conversion item can also be a comversion
specification, a conversion string can also consist
of a conversion item enclosed in parentheses. Up
to seven levels of conversion strings can be
nested. Each nested conversion string must be
enclosed in parentheses.

Figure 2-1 shows the conversion formats. Examples
are given to orient you to the conversion formats.
Conversion formats are explained in greater detail
later in this section.

Conversion item:=
Simple item conversion
Conversion string
Repeat count simple item conversion

Repeat count (conversion string)

Conversion specification:=
Conversion item=-1

Conversion item=1[,conversion item-2],...

Conversion string:=
(Simple item conversion)

(ERepgat countl(conversion string))

[Selector expression:lconversion item=1L,conversion item-21,...

(Conversion specification-1L;conversion specification-2]...)

X20
(xX20)
5X20
5020

X80X80
5X20,X10X5

X1 EQ A: 5X20,X10X5

(X20)
(5(x20))

(X1 EQ $A3:5x20,X10X5;X1X1)

Figure 2-1.

60495500 C

Conversion Formats

STRING POSITION

Each record in a file is considered to be a string
of variable length bytes with the length determined
by the storage device wused. Bytes within IBM
format files contain 8 bits; bits are numbered 1
through 8, from left to right. CDC format files
contain 6-bit bytes; bits are numbered 0 through 5,
from right to left.

FIELD ALIGNMENT

When data conversion is initiated, internal
pointers are established for the source and
destination record areas, each pointer initially
pointing to the first bit of the first byte of the
record string. These bits are the initial next
field positions. The word next has special meaning
in this context.

When a next source item is converted to a next
destination item, the pointers are modified as
follows:

e Prior to conversion, if the bit pointer for a
byte does not equal 1, the pointer is set to 1
and character position is incremented by 1
(rounded wuwp to the next byte). If the
destination pointer is so affected, skipped bit
positions are filled with binary zeros.

Exception: no rounding takes place for type B
(bit) source or destination items.

® When conversion is complete, the pointers are
updated to point to the bit succeeding the last
bit read or written - the next field position.
When conversion terminates in the middle of a
word, the remainder of the word is not
converted.

Alignment is never forced to a boundary more
significant than a byte position. If word boundary
or other alignment is needed, you must supply the
proper fill items explicitly. Data alignment
requirements are given in sections 7 and 8.

CONVERSION ITEMS

Conversion items are elements of a conversion
string that provide directions for translating data
items from a source record to a destination

record. Conversion items have the following
formats:

[[repeat count] simple item conversion

[[repeat count] conversion string

REPEAT COUNT

A decimal integer is used as the optional repeat
count to indicate the number of times a conversion
item is to be repeated. Using a repeat count is
equivalent to writing the conversion n times,
separated by commas. No repetition occurs if the
repeat count is one or omitted.

SIMPLE ITEM CONVERSION

A simple item conversion specifies how the next
source record field is to be tramslated to the next
destination record field. Only a simple item
conversion specification causes data to be
converted. Other parts of the conversion string
provide control information and determine the kinds
of conversions to be performed.

The format of a simple item conversion is as
follows:

Tm; {Tmy]

T A one-character mnemonic code indicating
the data type of the data field.

m A decimal integer specifying the length in
bytes (bits if a type B item) of the data
item; m must be omitted for H, W, G, F, L,
E, I, U, and D data types. A default of 1
is assumed if m is omitted for data types
B, X, P, S, N, and Z.

Valid values for T and m are shown in table 2-1.
Data type X can be any member of the character set
in use. S, N, Z, and P data types are subsets of X
and can contain numeric characters. These data
types, along with type B, describe variable length
data fields; m indicates the length of the field.
All other data types describe fixed length fields;
m cannot be used with these data types.

If the TmjTmyp format is used, Tm; must be a
valid item descriptor type for the source medium,
which can be a tape file, internal file, or a card
file; Tmy must be a valid item descriptor type
for the destination medium, which can be a tape
file, internal file, print file, or card file. If
the Tm; format is specified with Tmp omitted, a
default value is selected for Tmg as specified in
table 2-2. A simple item conversion causes data to
be moved from the source field to the destination
field and translated to the destination field
format. Translation rules for all possible simple
item conversions appear in appendix G.

Some examples of simple item conversions are shown
in table 2-3.

CONVERSION SPECIFICATIONS

A conversion specification consists of an optional
selector expression followed by a 1list of
conversion items. The selector expression is a
conditional expression; the relational test of the
selector expression must be true for the associated
conversion items to be executed. If the selector
expression is omitted, the conversion specification
is treated as though it was preceded by a selector
expression with a relational test that is always
true. Conversion items in a conversion specifi-
cation are executed in sequence, from left to
right. The format of a conversion specification is
as follows:

[selector expression:]conversion itemj
[,conversion itemj]

60495500 C

TABLE 2~1. VALID T AND m VALUES

Description

-

IBM Format:iT

Size of field in bits

suppressed (display code)

B Bits

X 8-bit characters Size of field in 8-bit characters

H - Half-word (16-bit) integer -

W Whole-word (32-bit) integer —

G Double-word (64-bit) integer -

F Floating=-point (32-bit) —

L Long floating-point (64~bit) -

E Extended-precision floating- -
point (128~bit)

P Packed decimal (IBM COMP-3 Size of field in 8~-bit bytes
COBOL items)

S Decimal signed numeric Size of field in 8-bit bytes

CDC Format:

B Bits Size of field in bits

X 6=bit characters (display Size of field in 6~bit characters
code)

A 12-bit characters (ASCII) Size of field in 12-bit characters

C 12-bit characters (EBCDIC) Size of field in 12-bit characters

I Integer (60-bit) e

u Unnormalized floating— -
point (60-bit)

D Double~precision floating- -
point (120-bit)

S Numeric, signed overpunch Size of field in 6~bit characters
(display code)

N Numeric, unsigned (display Size of field in 6-bit characters
code)

4 Numeric, leading zeros Size of field in 6-bit characters

TTIBM format ASCII and EBCDIC 8~bit sequential tapes

TA double dash (~--) indicates m must be omitted.

can include all these data items.

60495500 ¢C

TABLE 2-2. DEFAULT CONVERSIONS
IF Tmy IS NOT SPECIFIED

Tmy Default Tmg
Tape: Internal: °
Bm Bm
Xm Xm
H 1
W I
G I
F E
L E
E D
Pm Sn (n=2m)
Sm Sm
CardT: Internal:
Bm Bm
Xm Xm
Internal: Tape: Card /Print:
Bm Bm Bm
Xm Xm Xm
Am Xm Xm
Cm Xm X
1 W X20
U F X20
E F X20
D L X20
Sm Sm Xm
Nm Sm Xm
Zm Xm Xm

TThe term card refers to 80-column binary
cards (literal input or absolute binary for
NOS; free-form binary for NOS/BE)

Figure 2-2 shows the elements of a conversion
specification. Examples of conversion specifi-
cations are shown in table 2-4.

SELECTOR EXPRESSIONS

A selector expression appears in a conversion
specification to indicate that a relational test is
to be made. One attribute of one data field is
tested. If the result of the test is true, all
conversion items associated with the selector
expression are executed. If the result is false,
the associated conversion items are not executed.

A selector expression is composed of a relational
operator that is preceded by an item locator. The
relational operator is followed by either another
item locator or by a value field. A selector
expression is separated from its associlated con-
version items by a colon. The scope of a selector
expression is a single conversion specification
which is terminated by a semicolon. The format for
selector ditems and the associated relational
operators are shown in figure 2-3.

2-4

TABLE 2-3., EXAMPLES OF SIMPLE ITEM CONVERSIONS

Example

Explanation

X5X5

T3Z~'§;2

ol
N

120X150

g

1 Tm

[

i

2
g

“\

g

2
5601
Tml Tm2

60B6B10

repeat count \Eﬁl Tm2

4X10P6

repeat count Tml Tm2

6EE.

repeat count Tml Tm2

B60
S e’

- g

g

gt

40P5

repeat count Tml

Translates five 8-bit
characters to five 6-bit
internal display code
characters.

Translate a 120 char-
acter field to a 150-
character field with
blanks as £ill om the
right.

Translates four display
code characters to an
IBM half-word integer.

Translates one IBM 64-
bit integer to a 60-bit
word containing a CDC
unnormalized floating-
point number.

Translates a 60-bit
stream on tape to an in-
ternal 60-bit integer
field.

Moves 60 consecutive
internal 6-bit fields
to consecutive 10~bit
fields on tape. Each
10-bit destination
field will contain 4
bits of binary zero
£fi1l on the right.

Translates four consec—
utive 10-character dis-—
play code fields to 4
consecutive 6-byte
packed decimal fields.

Translates six CDC
floating-point numbers
to six IBM floating-
point numbers

Moves a 60-bit field to
a 60-bit field.

Translates a 60-bit in-
ternal CDC unnormalized
floating-point number to
an IBM 32-bit floating—
point field.

Translates five char-
acters to five char~-
acters.

Tranlates 40 consecu-
tive IBM packed decimal
fields to internal CDC
10-digit signed over-
punch numeric 6-bit
display code fields.

60495500

X80X80

R

conversion=item-1

conversion-specification

S —

PS5 EQ =456 : PS589
oot v’

selector expression conversion—item=-1

P3 6T O
———_ — N e e e

selector expression conversion-item—-2

conversion-specification

X5X10, X10X5
e

conversion—item—1 conversion—-item—-2
B e ey
conversion-specification

: 6P3Z10 60B8B6

conversion~item-1

conversion—specification

Format:

item—-locator-1 relational operator value field

item-locator-1 relational operator item-locator-2

Relational operators:

Figure 2-2. Elements of a
Conversion Specification

TABLE 2-4. CONVERSION SPECIFICATION EXAMPLES

Example

Explanation

X5X6

X5

X1l EQ $AS: X5X6

3X1 EQ C: X5X6

Moves five characters
from a source file to a
six-character field. The
rightmost character is a
blank.

Converts five 8-bit EBCDIC
characters to five 6-bit dis-
play code characters.

Moves five characters

from a source file to a
six~character field if the
first character on the tape
is an A.

Moves five characters from a
source file to a six-
character field if the third
character in the source
record is a C.

Item Locators

Item locators specify which data fields
current source record are used in the relational
test. Item locators describe data fields in terms
of starting position within the field,

and data size.

60495500 C

in the

data type,

LE Lless than or equal to

LT Less than

EQ equal to

NE not equal to

GT greater than

GE greater than or equal to

Figure 2-3. Selector Expression Format

The item locator formats are:

Tm iTm i/wTm

i

i/w

A byte index denoting the initial byte
position of the data field; i can be
interpreted as an absolute index, or as a
relative index.

As an absolute index, 1 denotes a byte
position relative to the beginning of the
field and must be written as an unsigned
decimal integer.

As a relative index, i denotes a byte
position relative to the current byte and
must be written as a signed decimal
integer. The sign indicates the
direction of the move (+ forward, -
backward). The initial current byte is
the current next byte position. If i is
omitted, the index 1is assumed to be
positive zero, designating the current
byte.

A byte and bit index separated by a
slash. The i dis a byte 1index as
described previously and the w is an
absolute bit position within the byte
(the leftmost bit in the byte is numbered
1). The value given £for w must not
exceed the size of the byte in the source
medium. The maximum value for w is 6 for
CDC data stored internally, 8 for IBM
format data, and 12 for binary data on
cards.

A one-character mnemonic code indicating
the item data type specification. T can

be any value representing a legal data
type for the record media.

2-5

m A decimal integer specifying the size in
bytes (12-bit, 8-bit, 6-bit, or 1-bit if
a type B item) of a variable length data
item whose size is not determined
uniquely by type. If the data item
cannot be variable in length, the m
specification must be omitted. A default
of 1 is assumed if m is omitted for a
variable length data item.

Tables 2-1 and 2-2 contain allowable and default

values for T and m. Table 2-5 shows examples of
item locators.

TABLE 2-5. EXAMPLES OF ITEM LOCATORS

Locator s
Format Example Description
Tm X10 A 10-byte character field
B4 A 4-bit string
s4 A b4-character signed numeric
field
iTm X4 A 4-byte character field,
starting at byte 3
2N4 A 4-character numeric (lead-
ing zeros changed to blanks)
field, starting at byte 2
424 A 4—character numeric (lead-
ing zeros changed to blanks)
field, starting at byte 4
i/wTm 16/4B2 A 2-bit binary field, starting
at the fourth bit position of
byte 16
Value Fields

The value field describes a literal character
string or a numeric value to be wused in the
comparison. Selector expressions allow you to test
the relationship between the contents of an item
locator field and the contents of a value field or
another item locator field.

Literal Strings

A literal character string is written in the value
field as a literal enclosed in identical delimiter
characters. You can use the characters $ and ¥
interchangeably as delimiters. These characters
are not considered part of the string. Blanks are
valid within literal character strings. If a
literal contains one of the delimiting characters,
you should use the other delimiting character as
the delimiter. If the delimiting character must be
part of the strimng, you must double each enclosed
occurence of the delimiter in the literal. Assume
the character string ABC*DEF. The character string
literal can be represented by SABC*DEFS or by
*ABC**DEF#*,

2-6

A literal must not exceed 80 characters, excluding
delimiters, and can be composed of any character in
the display code character set. Table 2-6 shows
examples of character strings and their
corresponding literals.

TABLE 2-6. CHARACTER STRINGS AND LITERALS

Character Literal String
String Literal Count

BYE *BYE* 3

$10.20 $$$10.208% 6

* Fkkk 1

HI*$HO SHI*S$SHOS 6

Numeric Values

Numeric values are written in the value field in a
form that closely follows the numeric notation used
in FORTRAN. The general format of such a numeric
field is shown in figure 2-4.

* d
* d E + exp
where:
*d Is in the form of a floating-point
or integer constant:
d
d.d
.d
exp Is an unsigned integer exponent

Figure 2-4. Numeric Field Format

Numeric values can be expressed in any of the
following forms:

+n +m.n +.n +n.Ets tn.nE+s +.nE+s

The numeric value is represented by n, and the
value of the exponent is represented by s. If E is
present, the decimal point must also appear. The
omission of a positive or negative sign implies a
positive value or exponent. Examples of numeric
values are shown in table 2-7.

COMPARISON MODES FOR SELECTOR
EXPRESSIONS

Before you can perform a comparison between the
elements in the selector expression, both elements
must be reduced to a common mode: either a
character string or a numeric value. Perform the
comparison according to the procedures outlined in
tables 2-8 and 2-9.

60495500 C

TABLE 2-7. NUMERIC FIELD EXAMPLES

TABLE 2-10. SELECTOR EXPRESSION EXAMPLES

Numeric Field Represents Expression Explanation
0 0 X6 EQ S$ABCDEF$ A string of six 8-bit characters
on a tape file are compared with
2.5 2.5 the literal ABCDEF.
-10 -10 L LT ~4.67E4+02 | The long floating-point field
beginning at the current byte of
425.E6 425000000 the record is compared with the
numeric value -467.0.
-818.62E3 -818620.0
6X1 EQ 10Xl One 8-bit character in byte 6 of
+»57E-10 . 000000000057 the record is compared to one
character in byte 10 of the
record.
TABLE 2-8. IBM FORMAT COMPARISON MODES +4W EQ -8G A full-word integer starting 4

FOR SELECTOR EXPRESSIONS

Item—locator—-2 Data Type

Item—locator-1
Data Type String | Numeric B.X H,W,G,F,
Literal { Literal ’ L,E,P,S

BX string numeric | string | numeric
mode mode mode mode

H,W,G,F, nuneric | numeric | numeric | numeric

L,E,P,S mode mode mode mode

TABLE 2-9. CDC FORMAT COMPARISON MODES
FOR SELECTOR EXPRESSIONS

Item-locator-2 Data Type
Item locator-2
Data Type String | Numeric B.X 1,E,U,D,
Literal | Literal ’ S,N,2Z
B,X string numeric | string numeric
mode mode mode mode
1,E,U,D, numeric | numeric | numeric | numeric
S,N,Z mode mode mode mode

Numeric quantities are kept to am accuracy of at
least 96 bits. Character strings of data types A
and C are folded to 6-bit form for comparison
against data type X character strings (6-bit).
Folding is the process of mapping more than one
source character to a single destination charac~
ter. Uppercase and lowercase alphabetic characters
are folded to a single uppercase character set.
Appendix A provides the translations for display
code, EBCDIC, and ASCII characters that occur
during folding. Shorter strings are treated as if
they were extended on the right with blanks so that
both strings are the same length., (Exception: a
string deriving from a bit string is extended with
Zeros.)

Examples of selector expressions are shown in
table 2-10.

60495500 C

bytes beyond the current byte
position is compared with the
double-word integer starting 8
bytes before the current byte.
6/4B2 EQ $10% A 2-bit field starting with bit 4
of byte 6 is compared with the
literal value 10j;.

CONVERSION STRINGS

A conversion string is enclosed in parentheses and
consists of one or more alternative conversion
specifications. If a conversion string containing
a selector expression is encountered during
execution, a relational test is performed on the
selector expression. The selector expression of
each conversion specification is evaluated in
sequence from left to right, until the value of the
relationship of a selector expression is determined
to be true. This conversion specification is
executed. None of the following conversion
specifications contained in the conversion string
are executed.

Figure 2-5 shows elements of a conversion string.
Conversion string examples are shown in table 2-11.

CONVERSION STRING PUNCTUATION

A colon separates a selector expression from its
associated conversion items in a conversion
specification; multiple conversion items are
separated by commas. The scope of a selector
expression is a single conversion specification
terminated by a semicolon. This feature is of
special significance when items are mnested in
parentheses in a conversion string.

NESTED CONVERSION STRINGS

You can use a conversion string wherever a simple
item conversion is allowed in a conversion item.
You can nest conversion strings within conversion
items to a maximum depth of seven levels.

2~7

(XB0)

o

conversion~string

(4B6B8 , X0X102
N g’

conversion=string
(X1 EQ A H X1X0 ’ SOH1 H X1X0 ’ TOHT)
N, —— Nt St N—— S
selector conversion— conversion- conversion~ conversion-
expression item=1 item-2 item-3 item-4

conversion-specification~1

specification-1

specification-2

e —

conversion-specification=-2

conversion=string
(X1 EQ 1 : 10W1 ; X1 EQ 2 : 20W1 ; SOW1)
N, g’ —
conversion- conversion- conversion—

specification-3

X10X0 ; X100

I ——
conversion-string used as
conversion-item=-2
conversion-specification-2

conversion-string
(X20 H X4 EQ *MASH*
——
conversion-item-1
conversion-
specification-1

conversion~string

Figure 2-5.

Nesting conversion strings allows you to specify
alternate conversions at various positions within a
record. Nested conversion strings are useful when
converting a file with records containing fixed

initial data followed by a variable format
segment. Conversion string nesting is also useful
when a conversion string alternative can itself
have other conversion string alternatives. Assume

the following conversion string
(X3C3,(X1 EQ D :X1C1;X3C3),X5C5)

The first three characters of the source record are
moved. If the fourth character is D, the mnext
character of the source record is moved to the
destination record. The rest of the conversion
specification up to the matching right parenthesis
is skipped. Conversion for that entry to the
conversion string is completed when the next five
characters are moved to the destination record. If
the fourth character in the source record is not D,
the conversion item associated with the selector
expression is skipped and the next three characters
are moved to the destination record. Conversion
for that entry to the conversion string is
completed when the next three characters are moved
to the destination record. Selection of the
alternative conversion specification to be executed
occurs separately for each entry to the conversion
string.

Elements of a Conversion String

CONVERSION TERMINATION

The Q (Quit) specification is an optional control
code. Execution of a Q specification terminates
all conversion for a record. You can insert this
specification wherever a conversion item is valid.
Conversion continues up to the point where the Q
specification is encountered. No further con-
version takes place after the Q specification.

SPECIAL CONVERSION RULES

Rules pertaining to all possible conversions appear
in appendix G. Some .general ©principles are
described in the following paragraphs.

BIT TO STRING

When a bit field is converted to a character
string, the result is a string equal in length
(measured in characters) to the bit field (measured
in bits). Conversion is from left to right. Each
zero bit is translated to the character 0 and each
one bit to the character 1.

60495500 C

TABLE 2-11. CONVERSION STRING EXAMPLES

ExampleT

Explanation

(X30X30)
(30X1X1)
(30X1)
(X30)

(X545)

(X1 EQ *A#*:X5C5)

(X1 EQ $15:X5C5;X1 EQ *A%:C3)

(3X1 EQ *C*:X5C5)

(X3C3, (-3X1 EQ A:X23C23)

Thirty EBCDIC 8-bit
characters are con-
verted to 30 charac-
ters of 6~bit dis-
play code.

Five 8-bit EBCDIC
characters are con-—
verted to five 12-
bit ASCII charac-
ters.

Five characters are
moved from the 8-bit
EBCDIC tape record
to a 12-bit EBCDIC
internal format re-
cord if the first
character on the
tape is A.

One character on the
tape record is com—
pared with the 1it-
eral 1. Since the
value of the compar-
ison is false, the
X5C5 conversion item
is ignored. The
value of the second
selector expression
is true; therefore,
the characters ABC
are moved.

Five characters are
moved from tape to
an internal EBCDIC
format field if the
third character in
the source record
is C.

Three characters on
the tape record are
moved before the
first character on
the record is test-—
ed. Since the first
character is A, the
selector expression
is true and the re-
maining 23 charac-
ters in the alpha-
betic sequence are
moved.

TThe examples assume a 9-track tape containing
only 8-bit EBCDIC characters as the input source
to be converted to internal CDC format. The tape
contains multiple repetitions of the alphabet in

uppercase only.

60495500 C

BIT TO NUMERIC

When a bit field is converted to a numeric value,
the bit field is considered to be a positive binary
integer. The binary point is assumed to follow the
rightmost bit of the field.

STRING TO NUMERIC

A literal string of an X, C, or A item compared to
a numeric item must conform to the rules for a
numeric value described in this section. An error
results 1if the string is not in this format.
Spaces in the string are ignored.

CHARACTER SKIPPING AND
BLANK/ZERO FILL

To specify bit or character skipping, the source
field size must be specified as greater than the
destination field size in the conversion items.
The conversion item B1l0B0 causes 10 bits to be
skipped; X5X0 causes five characters to be
skipped. The conversion item X10X5 causes five
characters to be transferred and the next five to
be skipped.

To 1insert blanks or =zeros in the destination
record, destination field size must be greater than
the source field size in the conversion item. The
conversion item XO0C5 causes five EBCDIC spaces to
be placed in the destination field. X10X100 causes
10 characters to be transferred to the destination
field with 90 blanks on the right.

FLOATING POINT TO INTEGER

Conversions are possible between the valid formats
listed in table 2-1 within the restrictions for
each conversion noted in appendix G, such as
conversions between IBM floating-point formats of
32, 64, and 128 bits and the CDC floating-point and
double-precision floating-point formats of 60 and
120 bits. Conversions to single-precision floating-
point are rounded to 48-bit precision; conversions
to double-precision are rounded to 96~bit precision.

Conversion from the internal record to an external
IBM floating-point format yields a npinimum
precision of 21 bits for floating-point, 53 bits
for long floating-point, and 109 bits for extended-
precision floating-point.

BINARY DATA

Any data can be considered binary and manipulated
on a bit-by~bit basis. You can copy bits in
strings, or you can copy bits selectively, by
skipping bits or replacing groups in a string with
Zeros.

You can convert bit strings to any other valid
format within the limitations shown in appendix G.

Item locators in selector expressions can address
any bit in a character or bit string. The item
locator 2/5B1 references the fifth bit of the
second byte in the source record. The conversion
string (2/5B1 EQ 1: X1X0,X1Cl) translates the
first character to the internal record only if the
fifth bit of the second byte is 1.

When the internal record is referenced using data
type B, all references must be based on 6-bit
bytes, although the 12-bit internal format is used
for EBCDIC or ASCII characters. To refer to the
fifth bit of the fifth character of an EBCDIC
12-bit internal record, the item locator must be
written 9/5B1 because all references by the item
locator to the internal format are limited to 6-bit
bytes; this reduces the number of problems that
would otherwise be encountered in other comparisons.

60495500 C

INPUT/OUTPUT SUBROUTINES

You can use the subroutines XFILE, XREAD, XREREAD,
and XWRITE described in this section for the
following:

@ Reading or writing 9-track IBM sequential tape
files

® Reading or punching 80-column binary cards

All input and output is through CYBER Record
Manager (CRM), but records are neither converted
nor blocked/deblocked at this level. Accordingly,
special conventions are necessary for CRM when
using the input/output subroutines. The special
CRM conventions are discussed in section 6.

XFILE SUBROUTINE

You must use the XFILE subroutine to define a file
to be processed by the input/output subroutines.
XFILE performs no operations on the file; however,
XFILE defines workspace and other specific
information for the file. A calling sequence to
the XFILE subroutine must precede the first
reference to the file by any of the other
input/output subroutines.

The workspace defined by XFILE cannot be used
simultaneously for any other purpose. The
workspace can be freed at the your discretion, but
no other references to the file can be made until
the file is redefined by another XFILE calling
sequence.

FORTRAN EXTENDED 4 XFILE CALLING
SEQUENCE

The FORTRAN Extended 4 XFILE calling sequence is
used to define a file to be processed by the
input/output subroutines. The FORTRAN Extended 4
XFILE calling sequence is shown in figure 3-1.

CALL XFILE(file,workspace,file-string,size)

Figure 3-1. FORTRAN Extended 4 XFILE
Calling Sequence

The FORTRAN XFILE parameters are as follows:
e file

Specifies the file (file name) to be associated
with the workspace area. You can write the
file parameter as a tape number or as the
logical file name left-justified with zero fill.

60495500 C

@ Wworkspace

Specifies the working storage area to be used
by the input/output subroutines. You must
write the workspace parameter as an array name
that 1is dimensioned or equivalenced to satisfy
workspace size requirements as determined by
the size parameter.

® file-string

Specifies required file information in keyword
form. The file-string parameter must be
enclosed in parentheses and contain the file
string keywords and parameters shown in
figure 3-2. For FORTRAN Extended 4 the
file-string parameter must be written as a
variable, an array name, or a left-justified
Hollerith constant.

For tape and print files, three keywords with
parameters are required as follows:

(FT=ft,USE=use,RECFM=form,opt1,...,optn)

For 80-column binary card files, two keywords
with parameters are required as follows:

(FT=ft,USE=use,opt],...,0pty)
o size

Specifies the size of the workspace area to be
used. You can write the size parameter as an
integer constant, variable, or expression. The
size of the workspace area in central memory
words is determined by the file type parameter
of the file string. Figure 3-3 shows the
method of determining the workspace area size.

File Usage

Files written or read by the 8-bit subroutines
cannot be processed subsequently by normal read or
write functions in the same FORTRAN Extended 4
program. The 8-bit subroutines alter the CYBER
Record Manager file information table (FIT), and
the original information contained in the FIT for
the file is not viable for normal FORTRAN input or
output.

FORTRAN Extended 4 XFILE Example

An example of a FORTRAN Extended 4 XFILE call is
shown in figure 3~4. Ten 8-bit EBCDIC characters
are to be moved from a tape file. Before any
reference to the XREAD or XWRITE subroutines, a
call to the XFILE subroutine must appear in the
program.

(FT=ft,USE=use,RECFM=form,BLKSIZE=nnnn,LRECL=nnnn,CODE=set,FMT=f)

The FT, USE, and RECFM keywords and parameters are required for tape and print files. Only the FT and
USE keywords and parameters are required for card files.

FT=ft File type keyword; ft can have the values:
T IBM format tape file
P Print file with extended character set print train
c Card file (read or punch)
USE=use File usage keyword; use can have the values:
R Read (input) file
W Write (output) file

For FT=P file usage is USE=W only.

The following keyword is required for tape and print files. The parameter defines the IBM record/block
format used.

RECFM=form Record format keyword (omitted for card files); form can have the values:
F Fixed format
FB Fixed blocked format
FS Fixed spanned format
1] Unspecified format
us Unspecified blocked format
us Unspecified spanned format
usB Unspecified spanned blocked format
v Variable format
VB Variable blocked format
Vs Variable spanned format

VSB Variable spanned blocked format
Appendix D contains more information about IBM record/block formats.
The following keywords and parameters are required for tape files:
BLKSIZE=nnnn Block size measured in 8-bit bytes. The value of BLKSIZE can range from 1 to 32767.
LRECL=nnnn Record size of the longest logical record, measured in 8-bit bytes. Required for
blocked tape files (FB, UB, UBS) and variable formats (VS, VB, VSB). The value for
LRECL can range from 1 to 32760.

The following parameters are optional:

CODE=set External code set definition keyword; set can have the value:
A ASCII
[+ EBCDIC (default)
FMT=f Print format keyword; f can have the values:
1 Single space
2 Pouble space
3 Triple space
A Record character 1 is used as a carriage control (default)

RECFM, BLKSIZE, and LRECL have the same meaning as their IBM job control counterparts, and generally
these parameters should be copied from the associated IBM data definition statement. Appendix E includes

a description of IBM data formats.

Figure 3-2. File String Keywords and Parameters

3-2 60495500

Workspace area, specified in units of central
memory, number of words is determined by the
file type parameter in the file string. The
following sizes are possible:

FT=C size=20 (required)

FT=P size=32 (required)

FT=T Workspace area is determined by the
record format in the file string, as

shown:

RECFM=F, FB, FS, U, US, V, and
reading of UB, USB and VB

size=6 +[?LKSIZE] words
7.5

RECFM=VS, VSB, and writing of UB,
use, va

size=6 +[LRECL + BLKSIZé]words
7.5 7.5

Figure 3-3. Determination of Workspace Size

CALL XFILE(1,Ws1,"FT=T,USE=W, RECFM=VSB,
+ BLKSIZE=100,LRECL=150,CODE=C)" ,40)

CALL XWRITE(WST1,NEWRAY,"(C10,X10)",STAT)

Figure 3-4. FORTRAN Extended 4 XFILE Example

COBOL XFILE CALLING SEQUENCE

The COBOL XFILE calling sequence is used to define
a file to ©be ©processed by the 1input/output
subroutines. The COBOL XFILE calling sequence is
shown in figure 3-5.

ENTER COMPASS XFILE USING file,workspace,
file-string,size.

Figure 3-5., COBOL XFILE Calling Sequence

60495500 C

The COBOL XFILE parameters are as follows:
® file

Specifies the file (file name) to be associated
with the workspace area.

e workspace

Specifies the data working area to be used by
input/output procedures. You must write the
workspace parameter as a data item name which
begins on a word boundary (synchronized or Ol
level item).

@ file-string

Specifies file information in keyword form.
The file-string parameter must be enclosed in
parentheses and contain the file string
keywords and parameters shown in figure 3-2.
You can write the file-string parameter as a
data name or as a COBOL alphanumeric literal
constant.

For tape and print files, three keywords with
parameters are required, as follows:

(FT=ft,USE=use,RECFM=f0rm,opt1,...,optn)

For 80-column card files, two keywords with
parameters are required as follows:

(FT=ft,USE=use,0pty,...,opty)
Figure 3-2 lists the file string parameters.
e size

Specifies the size of the workspace area to be
used. You must write the optional size
parameter as a COMPUTATIONAL-1 item consisting
of no more than 14 digits. The COBOL default
value for size is the length of the workspace
data item in central memory words. The size of
the workspace area in words is determined by
the file type parameter of the file string.
Figure 3-3 shows the method of determining the
workspace area size.

File Usage

Files written or read by the 8-bit subroutines
cannot be processed subsequently by normal read or
write functions in the same COBOL program. The
8-bit subroutines alter the CYBER Record Manager
file information table (FIT), and the original
information contained in the FIT for the files is
not viable for normal input or output.

COBOL XFILE Example

A file TT9, containing only 30-character EBCDIC
coded records (no binary data), is to be read with
a COBOL program. Before the file TTY9 can be
processed, the file must be opened and the XFILE
routine called. This operation appears in the
Procedure Division as shown in figure 3-6.

3-3

DATA DIVISION.

WORKING-STORAGE SECTION.
01 FILEX-PARAMETERS.
02 sz PIC 999 USAGE IS COMP-1 VALUE 46.
02 FSTRING PIC X(60) VALUE "“(FT=T, USE=R,
- "RECFM=FB, BLKSIZE=150, LRECL=30, CODE=C)".

02 Ws1 PIC X(460) VALUE SPACES.

PROCEDURE DIVISION.

OPEN INPUT TT9.
ENTER COMPASS XFILE USING TT9, WS1, FSTRING,
SZ.

Figure 3-6. COBOL XFILE Example

The file type must be specified in the XFILE
file-string parameter 1list, along with usage,
record format, and block size. These parameters
should be copied from the data definition statement
in the IBM Job Control Language, if this statement
is available. Data Division entries in the COBOL
program appear as shown in figure 3-6.

COMPASS XFILE CALLING SEQUENCE

The COMPASS XFILE calling sequence is wused to
define a file to be processed by the input/output
subroutines. The COMPASS XFILE calling sequence is
shown in figure 3-7.

SA1 plist
RJ XFILE

plist VFD 42/0,18/file
VFD 42/0,18/workspace
VFD 42/0,18/file-string
VFD 42/0,18/size
BSSZ 1

Figure 3-7. COMPASS XFILE Calling Sequence

The COMPASS XFILE parameters are as follows:
® plist

Specifies the symbolic location of the
parameter list; plist must be terminated by a
word of binary zeros.

3-4

Y file

Specifies the file (file name) to be associated
with the workspace area. The file parameter
must be the symbolic location of the word
containing the identification of the file to be
associated with the workspace area. You can
write the file parameter either as a constant
(in the format nLstring or nZstring) or as the
address of a word containing the file name in
display code, left-justified and zero-filled.

e workspace

Specifies the working storage area to be used
by the input/output subroutines. You must
write the workspace parameter as the symbolic
location of the workspace area. The size of
the area (determined by the size parameter)
must be sufficient to meet the requirements of
the character strings to be processed.

e file-string

Specifies the required file information in
keyword form. The file-string parameter must
be enclosed in parentheses and contain the file
string keywords and parameters shown in
figure 3-2. You can write the file-string
parameter as the symbolic location of a
left-justified character data string in the
format nLstring, nHstring, or nZstring.

For tape and print files, three keywords with
parameters are required as follows:

(FT=£ft,USE=use,RECFM=form,opt},...,0pty)

For 80-column binary card files, two keywords
with parameters are required as follows:

(FT=£t,USE=use,optj,...,0pty)
e size

Specifies the size of the workspace area to be
used. The parameter size must specify the
workspace area size in number of central memory
words. You can write the size parameter either
as an integer constant or as the address of a
word containing an integer value. Figure 3-3
shows the method of determining the workspace
area size.

An example of a COMPASS XFILE calling sequence is
shown in figure 3-8.

XWRITE SUBROUTINE

The XWRITE subroutine takes data from a record area
in memory, converts it (if specified in the calling
sequence), and writes it in the file workspace
area. The workspace area for the file must have
been previously defined by a call to XFILE. When
enough data is collected in the workspace area to
form a record, XWRITE sends the record to CYBER
Record Manager, which outputs the record to a
physical device.

60495500 C

SA1T TILIST
RJ XFILE

WSA1 BSS 40

FNAME1 VED 60/5LFILE1
SIZE VFD 60/40

TILIST VFD 42/0,18/FNAME1,42/0,18/WSA1,42/0,18/FSTR1,42/0,18/SIZE1,60/0

FSTR1T DATA 51L(FT=T,USE=R,RECFM=VSB,BLKSIZE=100,LRECL=150,CODE=C)

Figure 3-8. COMPASS

If the file is not opened when XWRITE is ready to
send a record to CRM, XWRITE opens the file. A
file can be opened by an OPEN request in COMPASS,
or by a previous XWRITE calling sequence., XWRITE
specifies open for input/output with no file
positioning.

XWRITE HANDLING OF VARIABLE LENGTH
RECORDS

When handling variable length records, XWRITE keeps
track of the size of the output record (after
conversion). If the IBM record type is V, VB, VS,
or VSB, the source record length is used as the
destination record length when the record is
written.

For COBOL source items with a fixed length,
conversion from internal format is terminated when
the end of the item is encountered. No source
field can extend beyond the end of item
(destination record length), with the following
exception:

X, A, C, or B fields can extend beyond the item
length if the fields are being converted to X
or B items. The source item m value is reduced
to the remaining record size. The destination
m value is unchanged.

FORCING TERMINATION OF OUTPUT

You can wuse the XWRITE subroutines to force
termination of output to a file, and to cause the
writing of any partially filled workspace. When
blocked tape formats (FB, VB, VSB, UB, or USB) are
used, a final termination call to XWRITE should be
issued after all other XWRITE calls to ensure that
all data is output. This final call does not close
the file.

The FORTRAN Extended 4, COBOL, and COMPASS calling

sequences used to force termination of file output
are shown in figure 3-9.

60495500 C

XFILE Example

CALL XWRITE(workspace)

COoBOL.:

ENTER COMPASS XWRITE USING workspace

COMPASS:
SA1 plist
RJ XWRITE
plist VFD 42/0,18/vworkspace
BSSZ 1

Figure 3-9, XWRITE Calling Sequence
To Force Termination Of File Output

FORTRAN EXTENDED 4 XWRITE CALLING
SEQUENCE

The FORTRAN Extended 4 XWRITE calling sequence is
used to write data to the file workspace area
defined by the XFILE calling sequence. The FORTRAN
Extended 4 XWRITE calling sequence is shown in
figure 3-10.

The FORTRAN XWRITE parameters are as follows:

® workspace
Specifies the working storage area for a file,
as defined for the file name given in the XFILE

calling sequence. The XWRITE call is linked
with a specific file only by the workspace name.

3-5

ECALL]XHRITE(yorkspace,source [}

,conversion string }
,conversion string,status

Figure 3-10. FORTRAN Extended 4 XWRITE Calling Sequence

[source

Specifies the data to be written by the XWRITE
operation. You must write the source parameter
as the name of the array containing the source
data.

[conversion-string

Specifies the conversion string to be wused.
The conversion-string parameter must be
enclosed in parentheses as described in
section 2. For FORTRAN Extended 4, you can
write the conversion-string parameter as a
variable, as an array name, or as a
left—justified Hollerith constant. If this
parameter is omitted, the record size is not
converted before the record is written to the
workspace area. Record size default values are
as follows:
card files 80 characters
print files 137 characters (136 charac-
ters if a format is specified)

tape files LRECL
® status
Specifies the result of the XWRITE operation.
You must write the optional status parameter as
a real variable name to which a status value is

returned. The status values returned after the
write operation are shown in table 3-1.

TABLE 3-1. STATUS VALUES RETURNED FOR XWRITE CALL

Status Value Definition
0.0 No error, no abnormal condition
1.0 Error during conversion
2.0 Nonrecoverable error in the out-
put file

If the XWRITE subroutine is called as a FORTRAN
Extended 4 function, the status wvalue is
returned as the value of the function. For
example, consider the following:

ISTAT=XWRITE(A,B," (X10XK10)")

In this case, the conversion is performed and
the status parameter is returned as a real
value for the value of the function. The real
value is then converted to an integer to
replace the value of ISTAT.

If the conversion string parameter is omitted
from the calling sequence, the status parameter -
must be omitted also.

Figure 3-11 shows an example of a FORTRAN
Extended 4 XWRITE calling sequence. Internal data
is to be writtem to TT9, an EBCDiC-coded tape
file. The record format of the output file is
specified in the XFILE calling sequence. Before
the first write can take place, the file must be
opened and the XFILE subroutine called.

INTEGER FSTRING(5),IRAY(30),WSA(46)
DATA FSTRING/"(FT=T,USE=W,RECFM=FB,
+ BLKSIZE=150,LRECL=30,CODE=C)"/

STAT=0.0
CALL XFILE(1,WSA, FSTRING,46)
CALL XWRITE(WSA,IRAY,"(X30C30)",STAT)
IF(STAT .NE., 0.0)PRINT 30
30 FORMAT("FAILED IN WRITE")

Figure 3-11. FORTRAN Extended & XWRITE Example

COBOL XWRITE CALLING SEQUENCE

The COBOL XWRITE calling sequence is used to write
data to the file workspace area defined by the
XFILE calling sequence. The COBOL XWRITE calling
sequence is shown in figure 3-12.

The COBOL XWRITE parameters are as follows:

e Wworkspace
Specifies the working storage area for a file,
as defined for the file name given in the XFILE

calling sequence. The XWRITE call is linked
with a specific file only by the workspace name.

® source
Specifies the data to be written by the XWRITE

operation. You must write the source parameter
as the data item containing the source data.

60495500 C

ENTER COMPASS XWRITE USING workspace,source {{

,conversion-string }
,conversion=string,status N

Figure 3-12. COBOL XWRITE Calling Sequence

°® conversion-string

Specifies the conversion string to be wused.
The conversion~string parameter must be
enclosed in parentheses as described in
section 2. You can write the conversion-string
parameter either as a data name or as a COBOL
alphanumeric literal string enclosed in
quotation marks. If this parameter is omitted,
the record is mnot converted before being
written into the workspace area. Item size is
passed in the parameter list. Record length is
determined by either item size or record size,
whichever is shorter.

° status

Specifies the result of the XWRITE operatiom.
You must write the optional status parameter as
a COMPUTATIONAL-2 (real) item to which a status
value is returned. The status values returned
after the write operation are shown in
table 3-1.

If the conversion string parameter 1s omitted
from the calling sequence, the status parameter
must be omitted also.

The Procedure Division of a COBOL XWRITE program is
shown in figure 3-13. As in the preceding FORTRAN
XWRITE example, internal data is to be written to
TT9, an EBCDIC~coded tape file. The record format
of the output file is specified in the XFILE
calling sequence. Before the first write can take
place, the file must be opened and the XFILE
routine called.

PROCEDURE DIVISION.
OPEN OUTPUT TT9.
ENTER COMPASS XFILE USING TT9, WS1, FSTRING,
sZ.
ENTER COMPASS XWRITE USING WS1, CS1,
"(C30X30>", STAT.
IF STAT NOT EQUAL 0.0 DISPLAY "FAIL W1".

Figure 3-13. (COBOL XWRITE Example

COMPASS XWRITE CALLING SEQUENCE

The COMPASS XWRITE calling sequence is wused to
write data to the file workspace area defined by
the XFILE calling sequence. The COMPASS XWRITE
calling sequence is shown in figure 3-14.

The COMPASS XWRITE parameters are as follows:
@ plist
Specifies the symbolic location of the

parameter list; plist must be terminated by a
word of binary zeros.

60495500 C

o workspace

Specifies the working storage area for a file
as defined in the XFILE calling sequence. You
can write the workspace parameter as the
symbolic location of the workspace area for a
file. The XWRITE call is linked with a
specific file only by the workspace name.

@ source

Specifies the data to be written by the XWRITE
operation. You must write the source parameter
as the location of the area containing the
source data.

@ conversion-string

Specifies the conversion string to be used.
You must write the conversion-string parameter
as the symbolic location of a left-justified
character data string with the form nLstring,
nHstring, or nZstring. The conversion-string
parameter must be enclosed in parentheses as
described in section 2. If this parameter is
omitted, the record is not converted before
being written to the workspace area.

) status

Specifies the result of the XWRITE operation.
You must write the optional status parameter as
the symbolic location of a word to which the
real (floating=-point) status value is
returned. Status is an optional parameter.
The status values returned after the write
operation are shown in table 3-1.

If the conversion string parameter is omitted
from the calling sequence, the status parameter
must be omitted also.

Figure 3-15 shows an example of a COMPASS XWRITE
calling sequence. Ten EBCDIC characters are
written from the area IRAY to working storage area
WS81; from WSl the characters are writtem to tape.
The XFILE subroutine must be called before the
first write can take place.

XREAD/XREREAD SUBRCUTINES

You can use the XREAD subroutine to read a next
record from the file workspace area, to convert the
record (if specified in the calling sequence), and
to place the record in a destination area in
memory. You can also use XREAD for skipping
records. A call to XFILE must precede a call to
XREAD/XREREAD for each file processed. The call to
XFILE identifies the workspace area for a file.

You can use the XREREAD subroutine to reread the
current record, with either the same or a different
conversion specification.

SA1 plist
RJ XWRITE

VFD 60/0

plist VFD 42/0,18/workspace
VFD _ 42/0,18/source
VED [{42/0,18/conversion-string }]
42/0,18/conversion-string,42/0,18/status

Figure 3-14. COMPASS XWRITE Calling Sequence

SA1T A1LIST
RJ XFILE
SAT WRLIST
RJ XWRITE

CSTR1 DATA 8L(C10X10)
ws1 BSS 52

STAT BSS 1

FNAME1 VFD 60/5LFILEY
SIZE1 VFD 60/52
IRAY1 VFD 60/4LIRAY

ATLIST GFD 42/0,18/FNAME1 ,42/0,18/WS1,42/0,18/FSTR1,42/0,18/S12E1,60/0
WRLIST VFD 42/0,18/ws1,42/0,18/1IRAY1,42/0,18/CSTR1,42/0,18/STAT,60/0
FSTR1 DATA S1L(FT=T,USE=W,RECFM=VSB,BLKSIZE=100,LRECL=150,C0DE=C)

Figure 3-15.

If the file is mnot open when XREAD is ready to
process a record, XREAD opens the file, specifying
open for input/output with no rewind. A file
cannot be opened by the XREREAD subroutine.

XREAD/XREREAD HANDLING OF VARIABLE
LENGTH RECORDS

If you use XREAD/XREREAD to handle variable length
records with IBM record types V, VB, VS5 or VSB, the
input record length can be any size up to the value
specified for LRECL. Conversions are terminated
when the end of the input record is reached. No
source field can extend beyond the end-of-record,
with the following exception:

X or B fields can extend beyond the
end-of-record if the source data is being
converted to X, A, C, or B data types. The
source data m value is reduced to the remaining
record size. The destination m value is
unchanged.

SKIPPING RECORDS

If you want to skip a record, the XREAD calling
sequence can be used to read the next record from
the workspace area without either converting the
record or moving it to the destination area. The
subsequent record is then available as the current
record and can be processed by XREREAD. The XREAD
calling sequences used by FORTRAN Extended 4,
COBOL, and COMPASS for skipping records are shown
in figure 3-16.

3-8

COMPASS XWRITE Example

FORTRAN Extended 4:

CALL XREAD(workspace)

CoBOL :

ENTER COMPASS XREAD USING workspace.

COMPASS:
SA1 plist
RJ XREAD
plist VFD 42/0,18/workspace
BSSZ 1
plist Specifies the symbolic Llocation

of the parameter Llist.

workspace Specifies the working storage
area of the file containing the
record to be skipped.

Figure 3-16. XREAD Calling Sequences
for Skipping Records

ERROR HANDLING

When errors are detected in processing input or
output calling sequences, an error message
(appendix B) is written to the job‘s OUTPUT file

60495500 C

and dayfile. Error status codes are returned in
the status location given in the XREAD/XREREAD
parameter list. For a FORTRAN Extended 4 or COBOL
program, an attempt is made to provide traceback
information.

No error is fatal to execution; however, all data
conversion errors terminate tramslation at the
point of detection. For example, when a conversion
error is found by XREAD, the remainder of the
record is not converted. XREREAD can then be used
as an alternmative procedure to reprocess the record
with a different conversion string. Input/output
errors cause unpredictable results.

FORTRAN EXTENDED 4 XREAD/XREREAD
CALLING SEQUENCE

You can use the FORTRAN Extended 4 XREAD calling
sequence to read the next record. You can use the
FORTRAN Extended 4 XREREAD calling sequence to
reread the current record. Both calling sequences
are shown in figure 3-17.

The -FORTRAN XREAD/XREREAD parameters are as follows:
e workspace

Specifies the working storage area for a file,
as defined in the XFILE calling sequence. The
XREAD/XREREAD call is linked to a specific file
only by the workspace name.

® destination

Specifies the area where the processed record
is placed after the XREAD/XREREAD operation.
You must write the destination parameter as an
array name dimensioned to contain the number of
words in the record.

@ conversion-string

Specifies the conversion string to be used.
The conversion-string parameter must be
enclosed in parentheses as described in
section 2. For FORTRAN Extended 4, you can
write the conversion-string parameter as a
variable, an array name, or a left-justified
Hollerith constant. If the conversion-string
parameter is omitted, the record is not con-
verted as it is transferred to the destination
area.

@ status

Specifies the result of the XREAD/XREREAD
operation. You must write the optional status
parameter as a real variable to which a status
value is returned. The status values returned
after the read operation are shown in table 3-2.

TABLE 3-2. STATUS VALUES RETURNED FOR
XREAD/XREREAD CALL

Status Value Definition
-4.,0 No data (XREREAD preceded any
XREAD)
-3.0 End-of-information encountered
-2.0 End-of-partition encountered
-1.0 End-of-section encountered
0.0 No error or abnormal condition
1.0 Error during conversion
2.0 Nonrecoverable error in input
file

If either XREAD or XREREAD is used as a
function, the status value is returned as the
value of the function.

Figure 3-18 shows an example of a FORTRAN
Extended 4 XREAD calling sequence. A tape con-
taining only 30-character EBCDIC-coded records (no
binary data) is to be read by a FORTRAN program.
The characters are converted to CDC format. The

conversion to be performed is specified by the
conversion-string parameter in the XREAD calling

sequence .

FORTRAN Extended 4 Example:

INTEGER SZ,CSTRING,FSTRING(S5),IRAY(30) ,WSA(46)
DATA STAT/0.0/,CSTRING/"(X30C30)"/,SZ/46/
DATA FSTRING/" (FT=T,USE=W,RECFM=FB,

+ BLKSIZE=150,LRECL=30,CODE=C)"/

CALL XFILE(1,WSA,FSTRING,SZ)
CALL XREAD(WSA,IRAY,CSTRING,STAT)

Figure 3-18. FORTRAN Extended 4 XREAD Examples

COBOL XREAD/XREREAD CALLING
SEQUENCE

You can use the COBOL XREAD calling sequence to
read the current record. You can use the COBOL
XREREAD calling sequence to read the current
record. Both «calling sequences are shown in
figure 3-19.

. . ,conversion-string }]
ECALL]XREAD<Forkspace,dest1nat1on [{,conversion—string,status
. : ,conversion=string
ECALL]XREREAD(9orkspace,dest1nat1on[{ ,conversion—string,status}})

Figure 3-17. FORTRAN Extended 4 XREAD/XREREAD Calling Sequences

60495500 C

ENTER COMPASS XREAD USING workspace, destination [{

ENTER COMPASS XREREAD USING workspace, destination[{

,sconversion-string
,conversion-string,status

,conversion-string
,conversion-string,status

Figure 3-19.

The COBOL XREAD/XREREAD parameters are as follows:
e workspace

Specifies the working storage area for a file
as defined in the XFILE calling sequence. The
XREAD/XREREAD call is linked to a specific file
only through the workspace name.

e destination

Specifies the area where the processed record
is placed after the XREAD/XREREAD operation.
You must write the destination parameter as the
data name of the destination area which is to
contain a processed record.

° conversion-string

Specifies the conversion string to be used.
This parameter must be enclosed in parentheses
as described in section 2. You can write the
conversion-string parameter as a data name or
as a COBOL alphanumeric literal string enclosed
in quotation marks. If the conversion-string
parameter is omitted, the record is transferred
to the destination area without conversion.

e status

Specifies the result of the XREAD/XREREAD
operation. You must write the optional param-
eter status as a COMPUTATIONAL-2 data name to
which a status value is returned. The status
values returned after the read operation are
shown in table 3-2.

A COBOL XREAD example is shown in figure 3-20. As
in the FORTRAN XREAD example, TT9, a tape con-
taining 30-character EBCDIC-coded records (no
binary data), is to be read with a COBOL program.
The characters must be converted to internal CDC
format. The conversion to be performed is
specified by the conversion-string parameter in the
XREAD calling sequence.

H2 COMPASS XREAD CALLING SEQUENCE

You can use the COMPASS XREAD calling sequence to
read the next record. You can use the COMPASS
XREREAD calling sequence to read the current
record. Both calling sequences are shown in
figure 3-21.

The COMPASS XREAD/XREREAD parameters are as follows:
e plist
Specifies the symbolic location of the

parameter list; plist must be terminated with a
word of binary zeros.

COBOL XREAD/XREREAD Calling Sequences

DATA DIVISION.

WORKING~STORAGE SECTION.

77 sz PIC 999 USAGE COMP-1 VALUE 46.
77 STAT USAGE COMP-1 VALUE 0.
01 CSTRING PIC X(60) VALUE "(X90C30)".
01 FSTRING PIC X (600 VALUE " (FT=T,

- "USE=R, RECFM=FB, BLKSIZE=150, LRECL=30,

- "CODE=C)".

01 T™P PIC X(30).

01 ws1 PIC X(460) VALUE SPACES.

PROCEDURE DIVISION.

OPEN INPUT TT9.

ENTER COMPASS XFILE USING TT9, WS1, FSTRING, SZ.

ENTER COMPASS XREAD USING WS1, TMP1, CSTRING,
STAT.

IF STAT NOT EQUAL O DISPLAY "FAIL IN READ".

Figure 3-20. COBOL XREAD Example

workspace

Specifies the working storage area of a file,
as defined in the XFILE calling sequence. The
read calls are linked to a specific file only
by the workspace name.

destination

Specifies the area which contains a record
after the XREAD/XREREAD operation. You must
write the destination parameter as the symbolic
location of the area where the processed record
is to be placed.

conversion-string

Specifies the conversion string to be wused.
The conversion~string parameter must be
enclosed in parentheses as described in
section 2. You must write the conversion-
string parameter as the symbolic location of a
left-justified character data string in the
format nLstring, nHstring, or nZstring. If the
conversion-string parameter 1is omitted, the
record is not converted as it is transferred to
the destination area.

status

Specifies the result of the XREAD/XREREAD
operation. You must write the optional status

60495500 C

parameter as the symbolic location of a word to
which a real (floating-point) value indicating
the status of the read is returned. The status
values returned after the read operation are
shown in table 3-2.

Figure 3-22 shows an example of a COMPASS XREAD
calling sequence. The program reads ten 8-bit
EBCDIC characters from tape file working storage
area WSl, converts the characters to internal
EBCDIC, and places the characters in area IRAY.

SA1 plist
RJ XREAD

plist QFD 42/0,18/vWorkspace ,42/0,18/destination

VFD 42/0,18/conversion-string
42/0,18/conversion-string,42/0,18/status

VFD 60/0

SA1 plist
RJ XREREAD

plist VFD 42/0,18/workspace,42/0,18/destination
VFD { 42/0,18/conversion-string
42/0,18/conversion-string,42/0,18/status

VFD 60/0

Figure 3-21. COMPASS XREAD/XREREAD Calling Sequences

SA1 TILIST
RJ XFILE

SA1T RDLST

RJ XREAD

VFD 42/0,18/STAT,60/0

CSTR1 DATA 8L(X10C10)
WS1 BSS 40

IRAY BSS 60
STAT BSS 1
FNAME1 VFD 60/5LFILE?

SIZE1 VFD 60/40

TILIST VFD 42/0,18/FNAMEZ2,42/0,18/Ws1,42/0,18/FSTRT
VFD 42/0,18/SIZE1,60/0
RDLST VFD 42/0,18/Ws1,42/0,18/IRAY,42/0,18/CSTR1

FSTR1 DATA S1L(FT=T,USE=R,RECFM=VSB,BLKSIZE=100,LRECL=150,C0DE=C)

Figure 3-22.

60495500 C

COMPASS XREAD Example

UTILITY SUBROUTINES

You can use the utility subroutines XCOMP, XMOVE,
XPACK, and XPAND to:

® Compare data strings

calling sequence is shown in figure 4-2.

XCOMP can

be called as a subroutine or as a function.

TABLE 4-1. CHARACTERS USED IN XY PARAMETER FOR
® Move data strings XCOMP AND XMOVE
® Compress data strings Character Definition
@ Expand data strings
The subroutines operate on data in any of the A Indicat?s a character'sFring méde up
following internal formats: of 12-bit bytes containing 7-bit
ASCII codes
e 12-bit bytes containing 7-bit ASCII codes
C Indicates a character string made up
® 12-bit bytes containing 8-bit EBCDIC codes of 12-bit bytes containing 8-bit
EBCDIC codes
@ 6-bit bytes containing 6-bit display codes
X Indicates a character string made up
The examples for each utility routine in this of 6-bit bytes containing 6-bit
section wuse strings from the character groups display codes
S1DISPC and S2ASCII, shown in figure 4-1. Each
string d1is stored in central memory. SIDISPC is
stored in display code in 6~bit bytes; S2ASCII is
stored in ASCII code in 12-bit bytes. TABLE 4-2. COLLATING SEQUENCES USED BY XCOMP
XCOMP SUBROUT'NE XY Parameter Collating Sequence
You can use the XCOMP subroutine to compare two
character strings. The character strings need not AC Specifies the ASCII collating
consist of the same character codes. The character sequence (numbers collate low)
sets of each string are determined by the xy
parameter of the XCOMP calling sequence. The CA Specifies the EBCDIC collating
characters that make up the xy parameter and their sequence (numbers collate high)
associated character sets are shown in table 4-1.
The collating sequence used in the XCOMP subroutine XA or XC Specifies that the string is to
is also determined by the xy parameter as shown in be case-folded logically (see
table 4-2. appendix A) so that uppercase
and lowercase letters are equal
FORTRAN EXTENDED 4 XCOMP CALLING AX or CX Specifies that uppercase and
SEQUENCE lowercase letters are to retain
their identity and collate
The FORTRAN XCOMP calling sequence is used to separately
compare two character strings. The FORTRAN XCOMP
S1DISPC:
Word 1 Word 2
AB12467CDE | FGH23 .XYZ2
S2ASCII:
Word 1 Word 2 Word 3 Word 4 Word 5
ZYXAB {12467 |FGH23 - XYZ2Z|[34567

Figure 4-1. S1DISPC and S2ASCII

60495500 ¢C

!ICALLJXCOMP(xy,sourc:e-1,sour‘ce--Z,status,Length[{’pc's.'t"on-1 }])

,position-1,.position=2

Figure 4-2. FORTRAN Extended 4 XCOMP Calling Sequence

The FORTRAN XCOMP parameters are as follows:
e Xy

Specifies the character sets of each string to
be compared, where:

x Describes the source-l1 character string
code

y Describes the source-2 character string
code

The xy parameter can consist of any combination
of the characters shown in table 4-1. When xy
is present in the call as a literal, you can
write xy as a left-justified Hollerith
constant. When a variable name is used in the
call, the wvariable must have been defined
previously as containing the characters for xy
left~justified.

The type of source-l string in the xy parameter
determines the collating sequence used, as
shown in table 4~2. In the 8~bit ASCII and
EBCDIC collating sequences, ascending binary
code values correspond to ascending collating
values. A variation can be provided to 6-bit
display codes by dinstallation option. The
collating sequences are shown in appendix A.

® source

Specifies the character strings to be
compared. You can write one source parameter
as an actual Hollerith string in the calling
sequence.

® status

Specifies the result of the XCOMP operation.
You must write the status parameter as a real
variable to which the result of the comparison
is returned. The meaning of the status value
returned is shown in figure 4-3.

When XCOMP is used as a function, the status
value returned is the value of the function.

Status value: Meaning:
-1.0 Source~1 < Source-2
0.0 Source~1 = Source-2
+1.0 Source~1 > Source-2

Figure 4-3. Meaning of Status Values
Returned From XCOMP

4=2

e length

Specifies the number of characters to be
compared. You can write the required length
parameter as an integer constant or as a
previously defined integer variable or
expression.

e position-1/position-2

Specifies the position, within the field, of
the first character of the string to be
compared. You can write the optional parameter
position-i as an integer constant or as a
previously defined integer variable or
expression. Position-1 indicates the location
of the first character to be compared in
string—-1; position-2 indicates the location of
the first character to be compared in
string=-2. If position-i is omitted, the
default is 1, denoting the leftmost (first)
character in the string.

In figure 4-~4 XCOMP is used as a function. The IF
statement is wused to direct the execution to
appropriate parts of the program depending on the
results of the comparison.

INTEGER S2ASCII(5),S1DISPC(2)

CALL XCOMP ("XA",S1DISPC,S2ASCII,XSTAT,20,1,4)

Figure 4~4. FORTRAN Extended & XCOMP Example

Figure 4~5 shows an example of a FORTRAN
comparison. Twenty characters, starting from
character position 1 of SIDISPC, are compared with
twenty characters, starting from position & of
S2ASCII. The status information is returned in the
variable XSTAT.

XSTAT=XCOMP("XA",S1DISPC,S2ASC1I,20,1,4)
IF (XSTAT)10,20,30

Figure 4-5. Example of XCOMP Used as a
FORTRAN Extended 4 Function

COBOL XCOMP CALLING SEQUENCE

The COBOL XCOMP calling sequence is used to compare
two character strings. The COBOL XCOMP calling
sequence is shown in figure 4-6.

60495500 C

The COBOL XCOMP parameters are as follows:

e xy

Specifies the character set of each string to
be compared. You can write the xy parameter as
a COBOL alphanumeric literal or as a DISPLAY
data item which you describe 1in the Data
Division as alphabetic or alphanumeric, size
2. VALUE must be set to the desired two-
character string, where:

x Describes the source-l character string
code

y Describes the source-2 character string
code

The xy parameter can consist of any combination
of the characters shown in table 4-1.

The type of source-l string in the xy parameter
determines the collating sequence used, as
shown . in table 4~2. In the 8-bit ASCII and
EBCDIC collating sequences, ascending binary
code values correspond to ascending collating
values. A variation can be provided to 6-~bit
display codes by installation option. Appen-
dix A gives the 6~bit display code collating
sequences.

® source
Specifies the character string to be compared.

You must write the source parameter as the data
item containing the first character of each

[] status

Specifies the result of the XCOMP operation.
You must write the status parameter as a
COMPUTATIONAL-2 item to which a value is
returned as the result of the comparison. The
meaning of the status value returned is shown
in figure 4-3.

® length

Specifies the number of characters to be
compared. You must write the optional length
parameter as a COMPUTATIONAL-1 item. If the
length parameter is omitted, the character size
of the longer source character field is used.
When strings of wunequal length are compared,
the shorter field is treated as blank-filled on
the right to equal the longer field size. When
the length parameter is given, the length
parameter overrides the actual string length.

® position-1/position-2

Specifies the initial character position to be
used for comparison in the string. You must
write the optional position-i parameter as a
COMPUTATIONAL-1 item of no more than 14
digits. ©Position-1 indicates the location of
the first character to be compared in string-l;
position-2 indicates the location of the first
character to be compared in string-2. When the
position-i parameter is omitted, the default
value is 1, denoting the first character in the
string. If position-i is designated, length
must also be specified.

Figure 4-7 shows an example of a COBOL comparison.
Twenty characters from SIDISPC, starting at
character position 1, are compared to twenty
characters from S2ASCII, starting at character
position 4. The status information is returned in

string. item XSTAT.
,Llength l
ENTER COMPASS XCOMP USING xy,source-1,source-2,status |¢,length,position=1 B
,Length,position—1,position-25

Figure 4-6. COBOL XCOMP Calling Sequence

DATA DIVISION.

01 EXWHY
01 S1DISPC
01 S2ASCII

PROCEDURE DIVISION.

LENGTH, POSONE, POSTWO.

PICTURE (XXX}
PICTURE X(20).
PICTURE X(50).
01 XSTAT USAGE IS COMPUTATIONAL-2.
01 LENGTH USAGE IS COMPUTATIONAL-1
01 POSONE USAGE IS COMPUTATIONAL-1
01 POSTWO USAGE IS COMPUTATIONAL-1

ENTER COMPASS XCOMP USING EXWHY, S1DISPC, S2ASCII, XSTAT,

VALUE "XA".

VALUE IS 20 PIC 99.
VALUE IS 1 PIC 99.
VALUE IS 4 PIC 99.

Figure 4-7.

60495500 C

COBOL XCOMP Example

COMPASS XCOMP CALLING SEQUENCE

The COMPASS XCOMP calling sequence is used to
compare two character strings. The COMPASS XCOMP
calling sequence is shown in figure 4-8.

SA1 plist
RJ xcomp

plist VFD 42/0,18/xy,42/0,18/source=1
VFD 42/0,18/source-2,42/0,18/status

VFD 142/0,18/position-1 H
\42/0,18/position-1,42/0,18/position-2
VFD 60/0

Figure 4-8. COMPASS XCOMP Calling Sequence

The COMPASS parameters are as follows:
° plist

Specifies the symbolic location of the
parameter list; plist must end with a word of
binary zeros.

® Xy

Specifies the character set of each string to
be compared. The xy parameter must be the
symbolic location of a word that contains the
code set of each character string. You can
write the xy parameter either as a constant or
as a literal written in the format nLstring,
nHstring or nZstring, where:

x Describes the source-l character string
code

y Describes the source-2 character string
code

The xy parameter can consist of any combination
of the characters shown in table 4-1.

The type of source-~l string in the xy parameter
determines the collating sequence used, as
shown in table 4-2. In the 8-bit ASCII and

EBCDIC collating sequences, ascending binary
code values correspond to ascending collating
values. A variation can be provided to 6-bit
display codes by installation option. The
collating sequences are shown in appendix A.

[2 source

Specifies the character strings to be
compared. You must write the source parameter
as the symbolic location of a word containing
the first character in a string.

@ status

Specifies the result of the XCOMP operation.
You must write the status parameter as the
symbolic location of a word to which a
floating-point value 1s returned. The meaning
of the status value returned is shown in
figure 4-3.

e length

Specifies the number of characters to be
compared. You must write the length parameter
as the symbolic location of a word containing
an integer value representing the number of
sequential characters to be compared.

® position-1/position~-2

Specifies the position, within the field, of
the first character to be compared in the
string. You must write the optional position
parameter as the symbolic location of an
integer value. Position~1 indicates the
location of the first character to be compared
in string-l; position-2 indicates the location
of the first character to be compared in
string-2. When comparison begins with the
first character in the source string, the
position is 1. If the parameter is omitted,
the default is 1, denoting the leftmost (first)
character in the string.

Figure 4~9 shows an example of a COMPASS
comparison. Twenty characters starting at position
1 of S1DISPC are compared to twenty characters
starting at position 4 of S2ASCII. The status
information is returned in item XSTAT.

SA1 PLIST
RJ XCOMP

XY VFD 18/2LXA,42/0
S1DISPC BSS 2

S2ASCII BSS 5

XSTAT BSSZ 1

LGTPOS DATA 20

P1 DATA 1

P2 DATA 4

PLIST VFD 42/0,18/XY,42/0,18/S1DISPC,42/0,18/S2ASCII,42/0,18/XSTAT
VFD 42/0,1B/LGTPOS,42/0,18/P1,42/0,18/P2,60/0

Figure 4~9. COMPASS XCOMP Example

4=4

60495500 €

XMOVE SUBROUTINE

You can use the ZXMOVE subroutine to move a
designated character string from a source location
to a destination location. The character string
can be translated from one character code to
another during the move. The xy parameter of the
XMOVE subroutine determines character conversion.
Uppercase characters can be converted to lowercase
characters when the three-character xy parameter
shown in table 4-~3 is used.

TABLE 4-3. THREE-CHARACTER XY PARAMETER
USED IN XMOVE

Characters Definition
XAL Converts 6-bit display codes to
7-bit ASCII codes stored in 12-bit
bytes, with case reversed.
XCL Converts 6-bit display codes to
8-bit EBCDIC codes stored in 12-bit
bytes, with case reversed.

When no character conversion is involved, ZXMOVE
transfers character strings in 60-bit word groups.
If character conversion is specified, the move is
done character by character. The XMOVE subroutine
operates on character strings in a left-to-right
sequence. Characters might not move as expected
when the source and destination fields overlap.

FORTRAN EXTENDED 4 XMOVE CALLING
SEQUENCE

The FORTRAN XMOVE calling sequence is used to move
character strings. The FORTRAN XMOVE calling
sequence is shown in figure 4-10.

The FORTRAN parameters are as follows:

L] Xy

Specifies the source and destination string
character sets. You can write the source
parameter either as a left-justified Hollerith
constant or as a variable that you have defined
to contain the appropriate characters.

x Describes the source character set
y Describes the destination character set

The xy parameter can consist of two or three
characters. The two-character parameter can be
any combination of the characters shown in
table 4-1. When the three-character Xy
parameter is used, characters appear in the

destination string as lowercase characters
rather than as uppercase characters. Special
symbolic characters are also case-reversed; as
a result, printable characters might become
unprintable. The three-character xy parameter
begins with X as shown in table 4-3.

] source

Specifies the character string to be moved.
You can write the source parameter as a
variable name, an array name, a subscripted
array name, or optionally, a Hollerith constant
when the source string code is X.

e destination

Specifies the location in the destination field
to which the source character string is to be
moved. You can write the destination parameter
as a variable name, an array name, or a
subscripted array name.

® length

Specifies the number of <characters to be
moved. You can write the length parameter as
an integer or as an integer variable.

@ position-s

Specifies the first character in the source
string that is to be moved. You can write the
optional position-s parameter either as an
integer or as an integer variable. If the
position-s parameter is omitted, the default
value is 1, denoting that the leftmost
character is the first character to be moved in
the string.

@ position-d

Specifies the first receiving character in the
destination field. You can write the optional
postion-d parameter either as an integer or as
an integer variable. If the position—d param-
eter is omitted, the default value 1is 1,
denoting that the 1leftmost character in the
destination field is the first character to
receive data.

Figure 4-11 shows an example of a FORTRAN move.
Using the S2ASCII character string, a 20-character
ASCII code string starting at character position 4
is converted to EBCDIC and placed in array WSl
starting at character position l. Omission of a
value for the parameter position-d implies char-
acter position 1 by default.

COBOL XMOVE CALLING SEQUENCE

The COBOL XMOVE calling sequence is used to move
character strings. The COBOL XMOVE calling
sequence is shown in figure 4-12.

CALL XMOVE<%y,source,destination,Length [{,pos1t1on—s }] >

,position-s,position—d

Figure 4-10. FORTRAN Extended 4 XMOVE Calling Sequence

60495500 C

INTEGER S2ASCII(5) ,WS1(5)

CALL.XMOVE(ZHAC,SZASCII,WS1,20,4)

The

Figure 4-11. FORTRAN Extended 4 XMOVE Example
COBOL parameters are as follows:

Xy

Specifies the source string and destination
string character sets. You can write the
parameter Xy either as a data item or as an
alphabetic literal descriptor which. you
describe in the Data Division as alphabetic or
(COBOL) alphanumeric, size 2 or size 3. VALUE
must be set to the desired two- or three-
character string.

X Describes the source character set
y Describes the destination character set

The Xy parameter can consist of two or three
characters. The two-character parameter can be
any combination of the characters shown in
table 4-1.

When the three-character xy parameter is used,
characters appear in the destination string as
lowercase characters rather than as uppercase
characters. Special symbolic characters are
also case-reversed; as a result, printable
characters might become unprintable. The
three~character xy parameter begins with X as
shown in table 4-3.

source

Specifies the starting location of the
character string to be moved. You can write
the source parameter as a data name, a literal
subscripted data name, or a COBOL alphanumeric
literal.

® destination

Specifies the area to which the source
character string is moved. You can write the
destination parameter as a data-name, a literal
subscripted data-name, or a COBOL alphanumeric
literal.

° length

Specifies the number of characters to be
moved. You must write the optional Jlength
parameter as a COMPUTATIONAL-l item of no more
than 14 digits. If omitted, the default value
is the length of the destination field in
number of characters. If the default value is
used and the source string and destination
field are of unequal lengths, the source string
is either truncated or blank-filled. When the
length specification is given, the actual
character length of the destination field is
overridden.

[] position-s

Specifies the first character in the source
string to be moved. You must write the option-
al position-s parameter as a COMPUTATIONAL-1
data name. If the position-s parameter is
omitted, the default is 1, indicating that the
leftmost character in the source string is the
first character to be moved.

e position-d

Specifies the position of the first receiving
character in the destination field. You must
write the optional position-d parameter as a
COMPUTATIONAL-1 data name. If the position-d
parameter 1s omitted, the default is 1,
indicating that the leftmost character in the
destination field is the first character to
receive data.

Figure 4-13 shows an example of a COBOL move. This
example moves a 20-character 12-bit byte ASCII code
string from ASCII to WS1l. The code string starting
with character 4 of the group stored in S2ASCII is
converted to 12-bit EBCDIC and placed in the first
character position of WSl.

length
r
ENTER COMPASS XMOVE USING xy,source,destination [I,Length,position-s }].

,Llength,position-s,position—-d

Figure 4-12. COBOL XMOVE Calling Sequence

01 XYy PIC XXX VALUE "AC".

01 S2ASCII PIC X(50).

01 ws1 PIC X(50).

01 LENGTH USAGE IS COMPUTATIONAL-1 VALUE IS 20 PIC 99.
01 POSIT USAGE IS COMPUTATIONAL-1 VALUE is & PIC 99.
01 ws2 PIC X(603.

ENTER COMPASS XMOVE USING XY, SZASCII, WS1, LENGTH, POSIT.

46

Figure 4-13. COBOL XMOVE Example

60495500 C

Assume the COBOL XMOVE calling sequence

ENTER COMPASS XMOVE USING "AC",S2ASCII,WS2

In this sequence, a 25-character, 12-bit byte ASCII
code string from S2ASCII is converted to 12-bit
EBCDIC.

COMPASS XMOVE CALLING SEQUENCE

The COMPASS XMOVE calling sequence is used to move
character strings. The COMPASS XMOVE calling
sequence is shown in figure 4-14,

SA1 plist
RJ XMOVE

plist VFD 42/0,18/source
VFD 42/0,18/destination
VFD 42/0,18/length

VED {42/0,18/position-s }
42/0,18 ,position-s,42/0,18/position-d
VFD 60/0

Figure 4-14. COMPASS XMOVE Calling Sequence

The COMPASS parameters are as follows:
e plist

Specifies the symbolic location of a parameter
list; plist must end with a word of binary
zZeros.

® xy

Specifies the source and destination string
character codes. The xy parameter must be the
symbolic location of a word containing the
source and destination string character codes.
You can write the xy parameter either as a
constant or as a literal in the form nLstring
or nHstring, where:

X Describes the source character set

y Describes the destination character set

The xy parameter can consist of two or three
characters. The two-character parameter can be
any combination of the characters shown in
table 4-1.

When the three-character xy parameter is used,
characters appear in the destination string as
lowercase characters rather than as uppercase
characters. Special symbolic characters are
also case-reversed; as a result printable
characters might become unprintable. The three
character xy parameter is preceded by an X as
shown in table 4-2. When case reversal is
used, the parameter xy should be defined as
either 3Hxy or 3Lxy.

60495500 C

[} source

Specifies the string to be moved. You must
write the source parameter as the symbolic
location of the area containing the character
string to be moved.

° destination

Specifies the area to which the source
character string is moved. You must write the
destination parameter as the symbolic location
of the destination area that is to receive the
character string.

@ length

Specifies the number of characters to be
moved. You must write the length parameter as
the symbolic location of a word containing an
integer value, denoting the length of the
string.

® position-s

Specifies the first character that is to be
moved in the source string. You must write the
optional position-s parameter as the symbolic
location of an integer value. If position-s is
omitted, the default value is 1, indicating the
leftmost character in the string is the first
character to be moved.

@ position-d

Specifies the first receiving character in the
destination field. You must write the optional
parameter position-d as the symbolic location
of an integer value. If position-d is omitted,
the default value is 1, indicating the first
character moved is placed in the leftmost
(first) character position of the destination
field.

Figure 4-~15 shows a COMPASS XMOVE example. A
20-character ASCII code string from S2ASCII is to
be moved to WSl. Starting from character position
4 of S2ASCII, the 20-code ASCII string is converted
to EBCDIC and placed in WSl, starting in character
position 1.

SA1 PLIST
RJ XMOVE

PLIST VFD 42/0,18/XY
VFD 42/0,18/S2ASCII
VFD 42/0,18/Ws1
VFD 42/0,18/LEN
VFD 42/0,18/LEN+1

BSSZ 1
XY VFD 18/2LAC,42/0
S2ASCII BSS 5
Ws1 BSS S
LEN DATA 20,4

Figure 4-15. COMPASS XMOVE Example

4-7

XPACK SUBROUTINE

You can use the XPACK subroutine to compress 8-bit
character data from a 5-character per word (12-bit
byte) internal format containing ASCII or EBCDIC
characters. When packing is performed, seven 8-bit
character codes are right-justified in a word; the
leftmost 4 bits, as well as any unused character
positions, are zero-filled. The packed word format
is shown in figure 4-16.

No conversion of character data takes place during
string compression.

During string compression, several characters are
moved at once. If the source and destination
fields overlap, the characters might not be moved
as expected.

FORTRAN EXTENDED 4 XPACK CALLING
SEQUENCE

The FORTRAN XPACK calling sequence is wused to
unpack character data. The FORTRAN XPACK calling
sequence is shown in figure 4-17.

The FORTRAN parameters are as follows:
® string-u

Specifies the 12-bit byte (unpacked) character
source string. You must write the parameter
string-u as the name of the array containing
the unpacked string.

® string-p

Specifies the B8-bit byte (packed) character
destination string. - You must write the param-
eter string-p as the name of the array which
receives the packed string.

° length

Specifies the number of characters to be moved
and packed. You can write the length parameter
as either an integer constant or an integer
variable.

[position
Specifies the position of the first character
in the string to be packed. You can write the
optional ©position parameter as an integer

constant or as an integer variable.

A FORTRAN XPACK example is shown in figure 4-18. A

CALL XPACK(string-u,string-p,lengthl,positionl)

Figure 4-17. FORTRAN Extended &
XPACK Calling Sequence

INTEGER WS1(3),S2ASCII(5)

CALL XPACK(S2ASCII,WS1,20,4)

Figure 4-18. FORTRAN Extended 4 XPACK Example

The first two words of the destination array WSl
are filled with seven characters each. The third
word contains six characters and an 8-bit byte that
is binary zero-filled.

COBOL XPACK CALLING SEQUENCE

The COBOL XPACK calling sequence is used to unpack
character data. The COBOL XPACK calling sequence
is shown in figure 4~19.

The COBOL parameters are as follows:

® string-u

Specifies the 12-bit byte (unpacked) character
source string.

[] string-p

Specifies the 8-bit byte (packed) character

destination string. You must write the
parameter string-p as a data item that begins
on a word boundary. Every 01 1level or

synchronized left item in COBOL begins on a
word boundary.

® length

Specifies the number of characters to be moved
and packed. You must write the optional length
parameter as a COMPUTATIONAL-1 item of no more
than 14 digits. If the length parameter is
omitted, the default is the length in number of
characters in the shorter string. The

20-character string starting from character receiving field is then binary =zero-filled as
position 4 of S2ASCII is packed into WS1. needed.
59 57 56 49 48 41 40 33 32 25 24 17 16 87 0
CM o Character Character Character Character Character Character Character
Word 1 2 3 4 5 6 7
Figure 4-16. Packed Word Format
48 60495500 C

® ©position

Specifies the first character in string-u to be
packed in string-p. You must write the op-
tional position parameter as a COMPUTATIONAL-1
item. If the position parameter is omitted,
the default is 1.

A COBOL XPACK example is shown in figure 4~20. A
20~character string starting with character 4 of
S2ASCII is packed into WS1.

COMPASS XPACK CALLING SEQUENCE

The COMPASS XPACK calling sequence 1is used to
unpack character data. The COMPASS XPACK calling
sequence 1s shown in figure 4-21.

The COMPASS parameters are as follows:

® plist

Specifies the symbolic location of the
parameter list; plist must end with a word of
binary zeros.

® string-u

Specifies the 12-bit byte (unpacked) character
source string. You must write the parameter
string-u as the symbolic location of a word
containing the unpacked string.

] string-p

Specifies the 8-bit byte (packed) character
destination string. You must write the
parameter string-u as the symbolic location of
the area that receives the packed string.

@ length

Specifies the number of characters to be
packed. You must write the length parameter as
the symbolic location of a word containing an
integer value.

SA1 plist
RJ XPACK

plist VFD 42/0,18/string-u
VFD 42/0,18/string-p
VFD 42/0,18/Llength
VFD 42/0,18/position
VFD 60/0

Figure 4-21. COMPASS XPACK Calling Sequence

® position

Specifies the position of the first character
to be packed in the source string. You must
write the optional position parameter as the
symbolic location of an integer value
indicating character position within the field
of the first character of the string to be
packed. If the position parameter is omitted,
the default is 1.

A COMPASS XPACK example is shown in figure 4-22. A
20-character string starting at character 4 of
S2ASCII is packed into storage area WSI.

XPAND SUBROUTINE

After character strings are packed and written to
file storage, the file information density is
increased and storage is used more economically.
If the character strings are required for use in
central memory again, the strings must be unpacked
into 12-bit bytes for proper handling. You can use
the XPAND subroutine to reverse the process
performed by the XPACK subroutine and to unpack the
8-bit compressed string into words containing five
12-bit character bytes.

FORTRAN EXTENDED 4 XPAND CALLING
SEQUENCE
The FORTRAN XPAND calling sequence is used to

unpack character data. The FORTRAN XPAND calling
sequence is shown in figure 4-23.

ENTER COMPASS XPACK USING string-u,string-p [{'tzﬂgiﬂ position }] ;
rd rd

Figure 4-19. (CO0BOL XPACK Calling Sequence

01 Ss2AsCII PICTURE X(50).
01 Ws1 PICTURE X(30).
01 LENGTH USAGE IS COMPUTATIONAL-1
01 POSIT USAGE IS COMPUTATIONAL-1

ENTER COMPASS XPACK USING S2ASCII, WS1, LENGTH, POSIT.

VALUE IS 20 PIC 99.
VALUE IS 4 PIC 99.

60495500 C

Figure 4-20. COBOL XPACK Example

SA1 PLIST
RJ XPACK

S2ASCII BSS 5
Ws1 BSS 3
LENGTH DATA 20,4

PLIST VFD 42/0,18/S2ASCII, 42/0,18/WS1,42/0,18/LENGTH
VFD 42/0,18/LENGTH1,60/0

Figure 4-22. COMPASS XPACK Example

CALL XPAND(string-u,string=-p,lengthl,positionl)

Figure 4-23. FORTRAN Extended 4
XPAND Calling Sequence

The FORTRAN parameters are as follows:
e string-u

Specifies the 12~bit byte (unpacked) desti-
nation area. You must write the parameter
string-u as the name of the array which
receives the unpacked data.

[] string-p

Specifies the 8~bit byte character source
string. You must write the parameter string-p
as the name of the array containing the packed
string.

e length

Specifies the number of characters to be
unpacked. You can write the length parameter
as either an integer constant or as an integer
variable.

) position

Specifies the first character of the string to
be unpacked. You can write the optional posi-
tion parameter as either an integer constant or
as an integer variable.

Figure 4-24 shows a FORTRAN example of the XPAND
subroutine. A 20-character string that has been
read from a file into central memory storage area
WS1 is expanded. The expanded string is restored
to S52ASCII, starting at character position 4.

INTEGER WS1(3),S2ASCII(5)

CALL XPAND(S2ASCII,WS1,20,4)

Figure 4~24. FORTRAN Extended & XPAND Example

COBOL XPAND CALLING SEQUENCE

The COBOL XPAND calling sequence is used to unpack
character data. The COBOL XPAND calling sequence
is shown in figure 25.

The COBOL parameters are as follows:
® string-u

Specifies the destination area of the unpacked
12~bit byte string. You must write the
parameter string-u as a data item which
receives the unpacked data.

® string-p

Specifies the 8-bit ©byte (packed) source
string. The packed character string must begin
on a word boundary. You must write the
string-p parameter as an 0l or synchronized
left item.

® length

Specifies the number of characters to be
unpacked. You must write the optional
parameter length as a COMPUTATIONAL-1 item of
not more than 14 digits. If the length
parameter is omitted, the default is the
character length of the shorter string; binary
zero f£ill completes the destination area.

[} position

Specifies the position of the first character
in the string-u (destination) area to receive
the unpacked data. You must write the optional
position parameter as a COMPUTATIONAL-1 item.
If the ©position parameter is omitted, the
default value is 1, designating the leftmost
character in the destination area.

The calling sequence shown in figure 4-26 expands a
20-character string that has been read from a file
into WS1l, a memory storage area. The expanded
string is then restored to S2ASCII starting at
character position 4.

COMPASS XPAND CALLING SEQUENCE
The COMPASS XPAND calling sequence is used to

unpack character data. The COMPASS XPAND calling
sequence is shown in figure 4-27.

60495500 C

ENTER COMPASS XPAND USING string-u,string=p [{,Length,position(

,length l]

Figure 4-25. COBOL XPAND Calling Sequence

ENTER COMPASS XPAND USING S2ASCII, Ws1,
LENGTH, POS.

Figure 4-26. COBOL XPAND Example

SA1 plist
RJ XPAND
plist VFD 42/0,18/string~u,42/0,18/string-p
VFD [{42/0,18/Length E
42/0,18/Llength,42/0,18/position
VFD 60/0

Figure 4-27. COMPASS XPAND Calling Sequence

The COMPASS parameters are as follows:

® plist

Specifies the symbolic location of the
parameter list; plist must be terminated by a
word of binary zero.

® string=-u

Specifies the destination area of the 12-bit
byte (unpacked) character string. You must
write the string-u parameter as the symbolic
location of the destination area for the
unpacked character string.

[string-p
Specifies the 8-bit byte (packed) source

string. The parameter string~-p must be the
storage location of the packed character string.

60495500 C

@ length

Specifies the number of characters to be moved
and unpacked. You must write the length
parameter as the symbolic location of an
integer value denoting the number of characters
to be unpacked in the string.

] position

Specifies the position of the first character
in the string-u (destination) area to receive
unpacked data. You must write the optional
position parameter as the symbolic location of
an integer value indicating the position of the
first character in the string-u (destination)
area to receive data. If the ©position
parameter is omitted, the default value is 1,
designating the leftmost character in the
destination area.

Figure 4~-28 shows a COMPASS XPAND example. A
20-character string that has been read from a file
into memory storage area WSl is expanded. The
expanded string is stored into area S2ASCII,
starting in character position 4.

SA1 PLIST
RJ XPAND

PLIST VFD 42/0,18/S2ASCII
VFD 42/0,18/Ws1
VFD 42/0,18/LENPOS
VFD 42/0,18/LENPOS+1
BSSZ 1

Ws1 BSS 3

S2ASCII BSS 5

LENPOS DATA 20,4

Figure 4-28. COMPASS XPAND Example

COPY8P UTILITY

You can use COPY8P as a separate utility to copy
IBM print files to CDC compatible print files.
Since loss of 8-bit significance 1is avoided,
uppercase and lowercase character capability is
maintained. IBM options with respect to record
type, block type, and print format selection are
available. COPY8P does not wuse CYBER Record
Manager when copying print files; therefore, you do
not need to supply any FILE control statements in
conjunction with this utility.

COPY8P CONTROL STATEMENT

You can call COPYSP by a control statement in the
job stream. The COPY8P control statement is as
follows:

COPY8P,1fn;p,1fngye,0Pt1,0PtD, 0. ,0Pty.

The following parameters are required with the
COPY8P control statement.

L] lfnin

Specifies the logical file name of the input
file containing 8-bit ASCII or EBCDIC character
data in IBM format.

If the input file is on magnetic tape, use a
LABEL control statement to make the file
available to the job.

Files copied from tape to disk by a utility
routine are acceptable as input as long as the
same 8-bit characters and control information
are available. A copy of a file from tape to
disk should provide one system-logical-record
per block.

o lfng,¢

Specifies the logical file name of the output
tape or disk file chosen to contain the data in
a format suitable for the printer.

If full uppercase and lowercase information is
to be printed, the output file must be directed
to a printer with an extended character set
print train by wuse of the ROUTE control
statement discussed later in this section.

The following parameters can be specified as
desired on the COPY8P control statement. If a
parameter is not specified, the indicated default
value 1is used. Parameters must be separated by
CcOmmAas .

60495500 C

° ,RECFM=rf

Describes the record format of the input file.
Values for rf are as follows:

F 4 Fixed

V Variable

U Unidentified length

FB Fixed blocked

VB Variable blocked

The values have the same meaning as the

equivalent IBM Job Control Language (JCL)
specification. The default is U.

@ ,BLKSIZE=nnnn

Defines the maximum block length in 8-bit byte
characters. The parameter nnnn is a decimal
count. BLKSIZE has the same meaning as the
equivalent IBM JCL specification. The default
is 137.

® , LRECL=nnnn

Defines the maximum logical record size in
8~bit byte characters. The parameter nnnn is a
decimal count. LRECL has the same meaning as
the equivalent IBM JCL specification. If
omitted, the value of LRECL is assumed to be
the same as the value of BLKSIZE.

e ,CODE (A/C)

Defines the character set code present on the
input file as follows:

A ASCII
C EBCDIC
If the input file is on magnetic tape, the CODE

parameter must match the code parameter used on
the input file LABEL control statement.

Y ,FOLD

Causes output to be folded to a b4-character
set (6-~bit display code representation) for
printing. Special characters that do not have
64-character set representation are not

printed. If the parameter is omitted, upper—
case and lowercase information is preserved for
printing.

5-1

When a print file is folded, a system
restriction prohibits the character pair
from occuring at certain points in a print line
corresponding to the lower 12-bits of central
memory words. COPY8P examines the data to
determine whether the character pair :: is
present. If COPY8P finds the character pair

in a position that would result in inadvertent
line termination, COPY8P replaces the second
with a space.

e ,FMT=f

Defines the print spacing convention to be
used. The parameter f is defined as follows:

1 Single space
2 Double space
3 Triple space

A Indicates the first character of each
line image 1is assumed to contain a
format control character. The carriage
control characters recognized when A is
specified are shown in table 5-1.

M Indicates the first character byte of
each line image 1is one of the IBM
printer Thardware control codes or
commands. Table 5-2 shows the IBM
character byte codes recognized if M is
specified.

TABLE 5-1. FORMAT CONTROL CHARACTERS WHEN A
IS SPECIFIED ON FMT.

Character Intended Action

+ No space before printing
blank Single space before printing
0 Double space before printing
- Triple space before printing
1 Eject page before printing
any other Single space before printing

OUTPUT OF COPY8P FILES

If an output file produced by COPY8P is to be
printed with full uppercase and lowercase char-
acters, you must direct the file to an extended
character set printer by the use of the following
ROUTE control statement:

ROUTE, 1 fn,DC=PR, IC=ASCII,EC=A9.

TABLE 5-2. CHARACTERS RECOGNIZED WHEN M IS
SPECIFIED ON FMT

Hexadecimal Code Intended Action

Control Codes:

01 No space after printing

09 Single space after printing
11 Double space after printing
19 Triple space after printing
89 Eject page after printing
any other Single space after printing

Control Commands :T

0B Single space
13 Double space
1B Triple space
8B Eject page

T’I‘he remainder of the line is not printed if
control commands are used.

If the FOLD option of the COPY8P control statement
is used, the output file contains only uppercase
characters. The file can either be copied directly

to the job OUTPUT f£file, or can be sent to the
printer by using the following ROUTE control
statement:

ROUTE,1fn,DC=PR.

The preceding formats of the ROUTE control
statement are explained in section 6.

CHARACTER SET RESTRICTIONS

The 95-graphic ASCII character subset 1is the
extended printer character set available on the CDC
596-6 model print train (refer to appendix F).
Certain EBCDIC characters input to COPY8P might be
converted to other graphics as shown in table 5-3.
If an ASCII or EBCDIC character is input that does
not correspond to an available character, a blank
is printed. The print conversion for the COPY8P
utility 1is not identical to that given in
appendix A for other routines.

60495500 C

TABLE 5-3, COPY8P PRINT CONVERSION TABLE
Full Full FoldedT FoldedT
(95-character) (95-character) (64~character) (64~character)
EBCDIC Set ASCII Set CDC Set ASCII Subset
prints as —» folds to —» or
SP e ' SP e ' SP < sp @
! A a ! . A a \% A ! A
" B b " B b # B " B
c c # c c = C i c
$ D d $ D a 3 D $ D
y4 E e % E e % E % E
& F £ & F £ - F & F
’ G 4 : G 4 t G ’ G
(H h (H h (H (H
) I i) I i) I) I
* J j * J j * J * J
+ X k + K k + K + K
s L 1 R L 1 R L s L
- M m - M m - M - M
N N n . N n - N . N
/ 0 o / 0 o / 0 / 0
0 P P 0 P P 0 P 0 P
1 Q q 1 Q q 1 Q 1 Q
2 R r 2 R T 2 R 2 R
3 S s 3 S s 3 S 3 S
4 T t 4 T t 4 T 4 T
5 U u 5) u 5 g 5 u
6 v v 6 v v 6 v 6 v
7 W w 7 W W 7 W 7 W
8 X X 8 X b4 8 X 8 X
9 Y y 9 Y y 9 Y 9 Y
Z z Z z Z Z
; ¢ { H [{ ; { H [
< \ < \ : < 2> < \
= ! } =] } = 1 =]
> - ~ > - ~ > = > -~
? _ ? _ \ (s ? _
other other space space

TIn folded representations, column 2 stands

for both columns 2 and 3 of the full table.

60495500 C

5-3

COPY8P EXAMPLE

Figure 5-1 shows a CYBER Control Language (CCL)
procedure file that uses the COPY8P utility to copy
an IBM format file, EBl, to a CDC compatible file.
The file is folded to a 64-character set, 6-bit
display code representation for printing. The
ROUTE control statement is used to route the file
to the printer. Figure 5-2 shows the resulting
output.

$358244038ADAMS
$570327591BURCHELL
$463445549CLEVELAND
$207243050DAVIES
S571649674ELLIS
$562460661FERRERA
$REVERT.CCL

BARBARA
DONALD
WILLIAM
DAVID
ALAN
ROBERT

220070900141400
220070670152200
220070200170500
220070510219000
220070680081500
220070060137100

Figure 5-2. Sample Output From COPY8P Utility

.PROC,C1.
LIBRARY (BIT8LIB)
GET,EB1.

ROUTE (EBNEW,DC=PR)
REVERT,C1.

COPY8P,EB1,EBNEW,RECFM=F ,BLKSIZE=80,LRECL=80,CODE=C,FMT=1,FOLD.

Figure 5-1. NOS CCL Procedure File Used With COPY8P Utility

5-4

60495500 C

INTERFACE OPERATION

When you wuse the 8-bit subroutines to process
extended character set (ASCII and EBCDIC) files, a
variety of system interfaces occur among the 8-bit
subroutines, the operating system, CYBER Record
Manager (CRM), and the CYBER Loader.

OPERATING SYSTEM INTERFACE

Character set and code set support varies by
operating system. Appendix A contains information
about the character sets and code sets supported by
both the NOS and NOS/BE operating systems.

All information in the following subsections refers
to both the NOS and NOS/BE operating systems unless
otherwise stated.

TAPE FILES

Either 8-bit ASCII or 8-bit EBCDIC files on 9-track
IBM sequential tapes can be processed by the 8-bit
subroutines. NOS requires a RESOURC control
statement for any job that uses more than ome tape
concurrently.

You should make any 9-track tapes that are to be
processed by the 8-bit subroutines or the COPY8P
utility available to the job by the LABEL control
statement. A complete description of the 9-track
parameters of the LABEL control statement can be
found in the appropriate operating system reference
manual.

Provided that the data format is identical to that
of IBM tapes read by CRM, input tape files can be
copied to disk or other devices that can be
substituted for tapes.

CARD FILES

All cards files input to the 8-bit subroutines must
be binary cards that do not contain sequence
numbers or checksums.

To create an input file in binary form (literal
input) under NOS, the deck must be preceded and
followed by flag cards with a 5/7/9 punch in column
1 and a 4/5/6/7/8/9 punch in column 2. The deck
must be in a system record by itself (preceded and
followed by a 7/8/9 card).

To create an input file in binary form (free-form
binary format) under NOS/BE, the binary deck must
be preceded and followed by flag cards with punches
in all 12 rows of both column 1 and column 2 (or

60495500 C

any other column as long as the cards are
identical). The deck must be in a system-logical
record by itself (preceded by and followed by a
7/8/9 card).

Each binary card can contain 80 columns of 12-bit
data. Internally the operating system receives the
card column bit pattern from row 12 through row 9,
reading from left to right. The deck setup of a
literal input data deck and a free-form binary data
deck is shown in figure 6-1.

Job Statement
USER Statement
CHARGE Statement
ACCOUNT Statement

-

NOS only
NOS onty
NOS/BE only

7/8/9 End-of-record
Flag card

Binary Deck

Flag card
End-of-file; signals end-
6/7/9 {of—input to the loader
(NOS only)
7/8/9 Two end-of-record cards;
7/8/9 {signaLs end-of-input to
the loader (NOS/BE only)

Rest of the Job

6171819 End-of-information

Figure 6-1. Deck Setup for Binary Input

If a run is to produce card output files punched in
absolute bipary format, you must specify the
disposition code on the ROUTE control statement as
shown in figure 6-2.

PRINT FILES

When an extended character set output file produced
by either COPY8P or the 8~bit subroutines is to be
printed with full uppercase and lowercase
characters, the file must be directed to the CDC
595-6 printer through the ROUTE control statement
shown in figure 6-2.

The format of the ROUTET control statement to be
used when routing a file to the punch queue is
as follows:
NOS:
ROUTE, Lfn,DC=P8.
NOS/BE:
ROUTE, L¥n,DC=P80C
The format of the ROUTET control statement to be
used when routing an extended character set out-
put fite to the print queue js as follows:

NOS and NOS/BE:

ROUTE, L fn,DC=PR,IC=ASCII, EC=A9.

Lfn Names the file to be routed
DC=P8 Indicates the disposition code
DC=P80C is 80=-column punch

DC=PR Indicates the file can be

printed on any printer.

IC=ASCII befines the internal charac-
teristics of a file.
EC=A9 Defines the external charac-

teristics of the print file.
A9 indicates the ASCII
95~character set. If a
characteristic is specified
that is invalid at the site,
the file cannot be output.

TRefer to the appropriate operating system
reference manual for more information about the
ROUTE control statement.

Figure 6-2. Formats of the ROUTE Control
Statement Used With the 8-Bit Subroutines

CYBER RECORD MANAGER
INTERFACE

Since CYBER Record Manager cannot block or deblock
records in IBM format, the user must provide a FILE
control statement for each sequential IBM file of
8-bit bytes processed by the 8-bit subroutines.
The COPY8P utility does not require a FILE control
statement. The control statement is written as
follows:

FILE(1fn, keyword=optionp,...)
e 1fn

Names the file to be processed
® keyword=option

Symbolic name of the FIT field and the option
selected

Parameters in the FILE control statement provide
record and block information that is used to update
the file information table when a given file is
opened for the first time in the job. Refer to the
CYBER Record Manager reference manual for complete
information about the FILE control statement.

TAPE FILES

The parameters required in the FILE control
statement for tape files are:

® RT=S
Record type; S indicates system record type.
¢ MBL=nnnn

Maximum Block Size; nnnn indicates block size
in terms of 6~bit character bytes. The param-~
eter nnnn is used instead of BLKSIZE since
BLKSIZE refers to 8-bit character bytes and CRM
expects sizes in terms of 6-bit character bytes.

nnnn=(BLKSIZE times 4)/3; a fraction must
be rounded up to the next higher integer.

® MRL=nnnn

Maximum Record Length; nnnn indicates record
size in terms of 6-bit character bytes. The
parameter nnnn is used instead of BLKSIZE
because BLKSIZE refers to 8-bit character bytes
and CRM expects sizes in terms of 6-bit
character bytes.

nnnn=(BLKSIZE times 4)/3; a fraction must
be rounded up to the next higher integer.

® CM=NO

Conversion mode; NO indicates CRM does not
convert sequential tape files from external to
internal code.

For 9-track tape, files two additional FILE control
statement parameters are necessary for noise
skipping:

® MNR=24

Minimum Record Length; the 24 indicates the
system only recognizes records over 24
character bytes long.

® MNB=24

Minimum Block Length; the 24 indicates the
system only recognizes blocks over 24 character
bytes long.

Any block smaller than MNR or MNB is considered
noise and is discarded by the system.

For a COBOL calling program, the clause BLOCK
CONTAINS nnn CHARACTERS should be included with
each description of an 8-bit byte file; otherwise,
CRM might diagnose an inadequate buffer size (BFS)
specification.

60495500 C

CARD FILES

You must specify the following information to CRM
as FILE control statement parameters to permit
reading of literal input (NOS) or free-form
(NOS/BE) binary card image files. This information
must also be specified to permit writing of card
image files that are to be routed to punch in
absolute (NOS) or free-form (NOS/BE) binary format:

® BT=C
Block type; C indicates character count
[] RT=F

Record type; F indicates fixed length

e MRL=160
Maximum record length of 160 6-bit character
bytes

PRINT FILES

For CRM handling of files formatted for the
printer, you must specify the following FILE
control statement parameters:
® BT=C

Block type; C indicates character count
e RI=U

Record type; U indicates undefined length
® MRL=280

Maximum record length of 280 6-bit character

bytes

LOADER INTERFACE

The 8-bit subroutines modules are in the library
BIT8LIB. The loader must be told to use this
library. The 8-bit modules can be accessed by
prefacing the load sequence with the LDSET loader
option as follows:

LDSET(LIB=BIT8LIB)
Usage of the 8-bit subroutines requires an
additional 14K (octal) words if all modules are
referenced.

OMITTING UNNEEDED 8-BIT MODULES

The loader directive LDSET is used to control the
load process under a variety of conditions. If not

60495500 C

all features of the 8-bit subroutines are needed,
some 8-bit modules can be omitted from the library
being loaded to conserve space in the field
length. The OMIT option of the LDSET statement is
as follows:

LDSET(OMIT=name/name...)

The names given are entry points of the modules to
be omitted from the load. The entry point names
and the corresponding module functions are shown in
table 6~1. Because the entry point names contain
the special character . (period), you must surround
the names by $§ (dollar sign) characters in the name
list as follows:

LDSET(OMIT=3$T.8TSTCS$/4$T8.TSTTS)

TABLE 6-1. ENTRY NAME AND 8-BIT MODULE FUNCTION

Entry Point Name Module Function

T8.TST6 Selector expressions on
internal data

T8.TSTT Selector expressions on tape
data

T8.TSTC Selector expressions on card
data

T8.CN6T Conversion, internal to tape

T8.CN6C Conversion, internal to card

T8.CN6P Conversion, intermal to print

T8.CNT6 Conversion, tape to internal

T8 .CNC6 Conversion, card to internal

LOADER CONSIDERATIONS

The XWRITE and XREAD subroutines do not reference
any module entry point names, rather the sub-
routines depend on XFILE to place an appropriate
address in the working storage area. The entry
names shown in table 6-1 are referenced only by
XFILE.

When using overlays or segments, you should place
XFILE in the main overlay or root segment. You can
place XREAD/XREREAD or XWRITE in the main, primary
or secondary overlay. You must ensure that the
working code is placed in a module common to all,
as XREAD, XWRITE, and XFILE share subroutines and
some COmmon areas.

COBOL USAGE 7

An IBM file created by an IBM COBOL source program
can differ in data type from a CDC file created by
a CDC COBOL program. This section clarifies the
differences in data type declarations, storage
allocations, and corresponding Tm values, that you
can encounter when converting to or from an IBM
compatible file using a COBOL program.

IBM COBOL DATA FORMATS

An IBM COBOL file can contain any combination of
the following data types:

8-bit characters x)
Half-word integers, 16 bits (H)
Whole-word integers, 32 bits W)
Double-word integers, 64 bits (G)
32-bit floating-point (F)
64-bit floating-point (L)
Packed decimal (internal decimal) (P)
Decimal signed numeric (s)

An IBM COBOL program cannot create 128-bit
extended-precision floating-point data. Any of the
IBM data types can also be considered bit string
data (B).

The letters enclosed in parentheses are the
corresponding T values as described in table 2-1 of
section 2. To select the appropriate m value for
each of the data types, refer to table 2-1 of
section 2. A complete description of IBM data type
formats is given in appendix E.

If IBM computational items are mixed with other
elementary items in the data record description,
slack bytes might be present on the IBM file to
assure the proper alignment for each COMPUTATIONAL,
COMPUTATIONAL~-1, and COMPUTATIONAL-2 item. The
byte address of the first byte of a half-word
binary item must be divisible by 2; the byte
address of a full-word or double-word binary item
must be divisible by 4; the byte address of a
COMPUTATIONAL~] item must be divisible by 4; the
byte address of a COMPUTATIONAL-2 item must be
divisible by 8.

The relationship among IBM COBOL wusage clauses,
picture clauses, IBM byte storage allocation, and
the corresponding 8-bit Tm values to be used in
converting data types are shown in table 7-1.

The examples shown in table 7-2 show the
relationship between some IBM COBOL elementary data
description entries and the corresponding 8-bit Tm
values. Table 7-1 was wused to compute the Tm
value. If no usage clause is specified, usage is
assumed to be DISPLAY.

60495500 C

For each example, m is the size of the data item in
8~-bit bytes. The m specification must be omitted
for COMP, COMP-1, and COMP-2 data items.

Calculation of m for COMP-3 data 1is more
complicated than for other data types because
COMP-3 data is packed two digits per 8-bit byte.
The sign and the low order digit appear together in
the rightmost byte. The following algorithm was
used to compute m (the number of 8-bit bytes
occupied by packed decimal data) for examples 12
and 13 in table 7-2.

@ D was set to the number of digits specified in
the PICTURE clause. (For EGl2, D=11; for EGI3,
D=8.)

® L was obtained by adding 1 to D to allow for
the sign half-byte that always appears in the
right half of the rightmost byte along with the
low order digit. (For EGLl2, E=12; for EGI13,
E=9.)

@ If E was even, F was set to E. (For EG12,
F=12.)

@ If E was odd, F was set to E+l. (For EGI3,
F=13.)

F was divided by 2 to obtain the proper value
for m. (For EGl2, m=6; for EGLl3, m=5.)

CDC COBOL DATA FORMATS

An internal data record created by a CDC COBOL
program in conjunction with the 8~bit subroutines
can contain any combination of the following data

types:

6-bit characters x)
12-bit byte containing 7-bit ASCII (4)
characters
12-bit byte containing 8-bit EBCDIC <)
characters
Unnormalized floating-point (60-bit))
Single-precision floating~point (60-bit) (E)
Double-precision floating~point (120-bit) (D)
Numeric display sign overpunch (S)
Numeric display, unsigned (N)
Numeric display, leading zeros suppressed (Z)
7-1

TABLE 7-1. 1IBM COBOL - Tm VALUES
IBM .
- Used
IgM gOBOL Picture Format Boundary T 1M 8 Blt(igtes se
USAGE Category Alignment
DISPLAY Alphabetic None X 1 per character or digit (except
for V in external floating-point),
limit 18
DISPLAY Alphanumeric None X 1 per character or digit (except
for V in external floating-point),
limit 18
DISPLAY Report format None X 1 per character or digit (except
for V in external floating-point),
limit 18
DISPLAY External None X 1 per character or digit (except
floating-point for V in external floating-point),
form limit 18
DISPLAY Numeric None or X 1 per digit, limit 18
unsigned
DISPLAY Numeric signed None S 1 per digit, limit 18
COMP (binary) 1 to 4 digits Half~ﬁord H 2
COMP (binary) 5 to 9 digits Full-word W 4
COMP (binary) 10 to 18 Full-word G 8
digits
COMP~1 (internal Not applicable Full-word F 4 (short-precision)
floating-point)
COMP-2 (internal Not applicable Double~word L 8 (long-precision)
floating-point)
COMP-3 (packed Numeric None P 1 byte per 2 digits plus
decimal) unsigned or 1 byte for low-order digit and sign
signed
7-2 60495500 C

TABLE 7-2. RELATIONSHIP BETWEEN IBM COBOL ELEMENTARY DATA DESCRIPTION ENTRIES
AND CORRESPONDING 8-BIT Tm VALUES.

Example Elementary Data Entry USAGE Category Tm

1 01 EG1 PIC A(20). DISPLAY (alphabetic) X20

2 01 EG2 PIC X(53). DISPLAY (alphanumeric) X53

3 01 EG3 PIC $999,999.99- DISPLAY (report form) X12

4 0l EG4 PIC +.9(8)E+99. DISPLAY (external Xl4
floating—-point form)

5 01 EG5 PIC 9(8)V99. DISPLAY (numeric N10 or X10
unsigned)

6 01_ EG6 PIC S9(8)V99. DISPLAY (numeric signed) Sld

7 01 EG7 PIC S9(3)v9 COMPUTATIONAL. COMP, 1 thru 4 digits H

8 01 EG8 PIC 9(6)COMPUTATIONAL. COMP, 5 thru 9 digits W

9 01 EG9 PIC 9(8)V9(9) COMPUTATIONAL. COMP, 10 thru 18 digits G

10 01 EGLO COMPUTATIONAL-1. COMP-1 F

11 01 EGI1 COMPUTATIONAL~2. COMP-2 L

12 01 EG12 PIC 59(5)V9(6) COoMP-3. COMP-3 P6

13 01 EGI3 PIC 9(4)V9(4) COMP-3. COMP-3 PS5

The letters in parentheses are the corresponding T
values as described in table 2-1 of section 2. The
A and C values for T are unique to 8-bit subroutine
processing. A CDC COBOL program can neither create
nor process 60-bit integer data. Any of the CDC
data types can be considered as bit string data
(B). The description of CDC internal format types
appears in appendix E.

Table 7-3 shows the relationship among CDC COBOL
USAGE clauses, PICTURE clauses, cbcC storage
allocation, and the corresponding 8-bit Tm values
used in processing such data types.

The examples in table 7-4 show the relationship
between some CDC COBOL elementary data description
entries and the corresponding 8-bit Tm values
derived by wusing table 7-3. USAGE is DISPLAY
unless otherwise specified.

60495500 C

Except for examples 6 and 7, m is the size of the
data item in 6-bit bytes. For 7-bit ASCII or 8-bit
EBCDIC stored in 12-bit internal CDC data items, m
is the size of the data item in 12-bit bytes. The
m must be omitted for COMP-1 and COMP-~2 data items.

COBOL SAMPLE PROGRAM

Figure 7-1 shows Tape-Con, a COBOL program used to
convert 27 logical records on an IBM EBCDIC file
(EB1). EBl has been copied from tape to disk.
Each record is 80 characters long. Each block
contains one record. The file «contains both
uppercase and lowercase data. Each record is
converted to display code with the lowercase data
folded to the uppercase equivalent.

The control statements wused to run the job

interactively and some sample records are also
shown in figure 7-1.

7-3

TABLE 7-3. CDC COBOL 5 - Tm VALUES
X B d CDC 6-Bit Bytes Used in
CDC COBOL Picture oundary T Storage Allocation
Usage Format Alignment (@)
DISPLAY Alphabetic None X 1 per character or
digit (except for V)
DISPLAY Alphanumeric None X 1 per character or
digit (except for V)
DISPLAY Edited report None X 1 per character or
form, leading digit (except for V)
zeros suppressed
COMPUTATIONAL Numeric unsigned None N 1 per digit, limit 18
or DISPLAY X
COMPUTATIONAL Numeric signed None S 1 per digit, limit 18
or DISPLAY
DISPLAY Edit, leading None Z 1 per digit or space,
zeros suppressed limit 18
coMP-1 1 to 14 digits Word I 10
CoMP-2 1 to 14 digits Word E 10
COMP-4 1 to 14 digits, Byte B Number of bits required
numeric unsigned to store the maximum
decimal value that can
be represented by the
specified number of
digits in the PICTURE
clause, divided by 6
and rounded up
COMP~-4 1 to 14 digits, Byte B Number of bits required
numeric signed by unsigned items plus
1, divided by 6 and
rounded up

7-4

60495500 C

Control Statements:

GET,CBLFIL.

GET,EB1.
FILE,EB1,RT=S,MRL=107,MBL=107,CM=NO.
COBOLS5(I=CBLFIL)

LDSET(LIB=BIT8LIB)

LGO.

COBOL 5 Source Program on File CBLFIL:

IDENTIFICATION DIVISION.
PROGRAM-ID. TAPE-CON.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-QUTPUT SECTION.
FILE-CONTROL.

SELECT FILEZ ASSIGN TO "EB1".
DATA DIVISION.
FILE SECTION.
FD FILEZ2

LABEL RECORDS ARE OMITTED

BLOCK CONTAINS 80 CHARACTERS.
WORKING-STORAGE SECTION.

01 REC-1 PIC X(80).

01 ws1 PIC X(170) VALUE SPACES.
01t sz PIC 99 USAGE COMP-1 VALUE 17.

01 STAT USAGE CoMP-2 VALUE ZERO.
01 FILE-CNT PIC 99 USAGE COMP-1 VALUE ZERO.
01 FSTRING PIC X(50) VALUE

"(FT=T,USE=R, RECFM=F ,BLKSIZE=80,LRECL=80)".
PROCEDURE DIVISION.
OPENING.
OPEN INPUT FILEZ2.
ENTER COMPASS XFILE USING FILEZ2, WS1, FSTRING, SZ.
PERFORM RLOOP UNTIL FILE-CNT IS EQUAL TO 26.
PERFORM PROCESS-EOF.
RLOOP.
ENTER COMPASS XREAD USING WS1, REC-1, "(X80)", STAT.
ADD 1 TO FILE-CNT.
DISPLAY REC-1.
IF STAT EQUALS 1 DISPLAY "BAD INPUT DATA:".
IF STAT EQUALS 2 DISPLAY '"READ ERROR".
PROCESS-EOF.
DISPLAY "EOF ENCOUNTERED".
CLOSE FILEZ.
STOP RUN.

Samp le Output:

$358244038ADAMS BARBARA 220070900141400
$570327591BURCHELL. DONALD 220070670152200
$463445549CLEVELAND WILLIAM 220070200170500
5207243050DAVIES DAVID - 220070510219000
S571649674ELLIS ALAN 220070680081500
8562460661 FERRERA ROBERT 220070060137100

Figure 7-1. COBOL 5/8-Bit Subroutines Interactive Job

60495500 C

TABLE 7-4.

RELATIONSHIP BETWEEN CDC COBOL ELEMENTARY DATA DESCRIPTION ENTRIES

AND CORRESPONDING Tm VALUES.

Example Elementary Data Entry USAGE Category Tm

1 01 AGl PIC A 20. DISPLAY (alphabetic) X20

2 01 AG2 PIC X 53. DISPLAY (alphanumeric) X53

3 01 AG3 PIC $999,999,99-. DISPLAY (report form) X12

4 01 AG4 PIC 9(8)V99. DISPLAY (numeric unsigned) N10 or X10
5 01 AG5 PIC S9(9)V99. DISPLAY (numeric signed) s10

6 01 AG6 PIC X(100). DISPLAY (12-bit ASCII) AS50

7 ‘01 AG7 PIC X(100). DISPLAY (12~bit EBCDIC) C50

8 01 AG8 PIC 2(9). DISPLAY (leading zeros Z9

suppressed)

9 01 AG9 PIC S9(10) USAGE COMP;I. COMP-1, 1 thru 14 digits U

10 01 AGl10 PIC S9(16) USAGE COMP-1. COMP-1, 15 thru 18 digits D

11 01 AGll USAGE COMPUTATIONAL-2. COMP-2 E

7-6 60495500 C

FORTRAN EXTENDED 4 USAGE

An IBM file created by an IBM FORTRAN source
program can differ in data type from a CDC file
created by FORTRAN Extended 4. This section clari-
fies the differences in data type declarations,
storage allocatioms, and corresponding Tm values,
that you can encounter when converting to or from
an IBM compatible file using a FORTRAN program.

IBM FORTRAN DATA FORMATS

IBM FORTRAN programs can use six types of constant
data and four types of variable data. The constant
type determines the number of 8-bit byte storage
locations needed to represent the data. The length
specification for each wvariable determines the
number of bytes reserved for each variable type.
Table 8~1 gives the associated length specification
for constants and variables.

TABLE 8-1. IBM FORTRAN ~ CONSTANT
AND VARIABLE SIZES

Type 8-Bit Bytes Allocated
Constant:
Integer 2, 4, or 8
Real 4 (single-precision)

8 (double-precision)
16 (long~precision)

Complex 8 (two single-precision)
16 (two double-precision)

Logical 1 or 4
Literal 1Xn (n is string length)

Packed Decimal 1 byte for each 2 digits

Variable:

Integer 4 (default)

2 or 8 (optional)
Real 4 (default)

8 or 16 (optional)
Complex 8 (default)

16 (optional)
Logical 4 (default)

1 (optional)

60495500 C

A tape file created by an IBM FORTRAN program can
contain combinations of the following data types:

8-bit byte ASCII or EBCDIC characters X)

Half-word integers, 16 bits (H)
Full-word integers, 32 bits (W)
32-bit floating point (F)
64~bit floating point (L)

The letters enclosed in parentheses are the
corresponding T values as described in table 2-1 of
section 2. An IBM FORTRAN program cannot create
64-bit double word integers or 128-bit extended-
precision floating point data. All of the IBM data
types can be processed as bit string data (B).

Table 2-1 in section 2 should also be consulted to
determine the appropriate m value for each T
selected. A more complete description of IBM data
format types appears in appendix E.

Table 8~2 shows the relationship between IBM
FORTRAN data type declarations, byte storage
allocation, and the corresponding Tm values for
conversion use.

Table 8-2 contains examples of only explicit type
declarations. COMPLEX declarations do not appear
because the complex variable is composed of two
real data items and follows the conventions for
REAL data types. You must determine the conversion
of LOGICAL data types.

CDC FORTRAN DATA FORMATS

The number of central memory words muneeded to
represent a constant or variable in a CDC FORTRAN
program is determined by the constant or variable
type. Table 8-3 shows the constant and variable
types and the corresponding 6~bit byte length
allocations.

Internal records created by a CDC FORTRAN
Extended 4 program can contain combinations of the
following data types. The letter in parentheses is
the corresponding T value as determined from
table 2-1 of section 2.

6-bit display code characters (X)
Full-word integer, 60 bits (1)
Single-word floating point, 60-bits (E)
Double-precision floating point, 120 bits (D)

8~1

TABLE 8-2.- IBM FORTRAN - Tm VALUES

IBM FORTRAN IBM 8-Bit
T
Type Bo?ndary Bytes UsedT
Declaration | Alignment
Integer*2 Half- H 2
word
Integer Full- W 4
Integer*4 word
Integer*8 Double- G 8
word
Real Full- F 4
Real%*4 word (Single-
precision)
Real*8 Double- L 8
Double~- word (Double-
precision precision)
Real*16 Double- E 16
word
Logical Full-~ Usage 4
word defined
Logical*l None Usage 1
defined
tThe value used for m is determined by the
number of bytes used.

All CDC data types can be processed as type B bit
string data. Table 2-1 in section 2 should be
consulted to determine the appropriate m value.
While a full-word integer is a data type, integers
used in multiplication and division operations are
truncated to 48 bits. More information on this
subject appears in appendix E and in the FORTRAN
Extended 4 reference manual.

Table 8-4 shows the relationship between CDC
FORTRAN data type declaratioms, storage allocation,
and corresponding Tm values for conversion use.

COMPLEX type declarations do not appear in the
table because the complex variable is composed of

TABLE 8~3. CDC FORTRAN - CONSTANT
AND VARIABLE SIZES

FORTRAN Extended 4

Type 6-Bit Bytes Allocated
Constant:
COMPLEX 20

. DOUBLE PRECISION 20 (two real constants)

HOLLERITH i<{n (n is string length)
INTEGER 10
LOGICAL 10
REAL 10
Variable:
COMPLEX 20

DOUBLE PRECISION 20

INTEGER 10
LOGICAL 10
REAL 10

two real data items and follows the conventions for
REAL data types. You must determine the manner in
which LOGICAL data items are converted.

SAMPLE PROGRAM

Figure 8-1 shows CONVERT, a FORTRAN Extended 4
program used to convert EBl, an IBM EBCDIC file.
EBl1 has been copied from tape to disk. The {file
contains 27 logical records; each record is 80
characters long. Each block contains one record.
The file contains both uppercase and lowercase
data. Each record is converted to display code
with lowercase data folded to the uppercase
equivalent. Control statements used to run the
program interactively are shown in figure 8-2.
Some sample output is shown in figure 8-3.

TABLE 8-4, CDC FORTRAN - Tm VALUES

Type Declaration CDC Boundary T FORTRAN Extended 4
Alignment 6-Bit Bytes Used

INTEGER Full=-word I 10

REAL Full-word X 10

DOUBLE PRECISION Double~word D 20

LOGICAL Full-word Usage Defined 20

TThe value used for m is determined by the number of bytes used.

60495500 C

PROGRAM CONVERT (INPUT,OUTPUT,EB1,TAPE6=EB1)
INTEGER REC1(8) ,WKSP(17) ,CNT
STAT=0.0
CNT=0
CALL XFILE(6,WKSP,"(FT=T,USE=R,RECFM=F,BLKSIZE=80,LRECL=80)",17)
1 CNT=CNT+1
IF(CNT .GT. 26)CALL EXIT
CALL XREAD (WKSP,REC1,"(X80)",STAT)
PRINT 30,REC1
IF(STAT .NE. 0.0)PRINT 40,STAT
GO TO 1
30 FORMAT (8A10)
40 FORMAT(F4.1)
STOP
END

Figure 8-1. FORTRAN Extended 4 Program Using The 8-Bit Subroutines

$358244038ADAMS BARBARA 220070900141400

S§570327591BURCHELL DONALD 220070670152200

FORTRAN Extended & Control Statements: $463445549CLEVELAND WILLIAM 220070200170500
S$207243050DAVIES DAVID 220070510219000

GET,CONVERT. S571649674ELLIS ALAN F220070680081500
GET,EB1. $562460661FERRERA ROBERT 220070060137100
FILE,EB1,RT=5,MRL=107 ,MBL=107,CM=NO. S$148169725GRAME CARL 220070800105000
FTN4,I=CONVERT. S566208909HARVEY LAURENCE E220070450383500
LDSET,LIB=BIT8LIB. S132246243IMMITT SALVATOREJ220070690204300
L.Go. §572548172JENSEN HOWARD M220070070091250

Figure 8-2. Control Statements Used to Run Figure 8-3. Sample Output From FORTRAN
FORTRAN Extended 4 Program Extended 4 Program

60495500 C 8-3

CHARACTER DATA INPUT, OUTPUT, A
AND CENTRAL MEMORY REPRESENTATICN

This appendix describes the code and character sets
used by host computer operating system local batch
device drivers, magnetic tape drivers, and terminal
communication products. Some software products
assume that certain graphic or control characters
are assoclated with specific binary code values for
collating or syntax processing purposes.

All references within this manual to the ASCII
character set or the ASCII code set refer to the
character set and code set defined in the American
National Standard Code for Information Interchange
(ASCII, ANSI Standard X3.4-1977). References in
this manual to the ASCII character set do not
necessarily apply to the ASCII code set.

CHARACTER SETS AND
CODE SETS

A character set differs from a code set. A
character set is a set of graphic and/or control
character symbols. A code set 1is a numbering
system used to represent each character within a
character set. Characters exist outside the
computer system and communication network; codes
are received, stored, retrieved, and transmitted
within the computer system and network.

GRAPHIC AND CONTROL
CHARACTERS

A graphic character can be displayed at a terminal
or printed by a line printer. Examples of graphic
characters are the characters A through Z, a blank,
and the digits O through 9. A control character
initiates, modifies, or stops a control operation.
An example of a control character is the backspace
character, which moves the terminal carriage or
cursor back one space. Although a control char-
acter is not a graphic character, some terminals
can produce a graphic representation when they
receive a control character.

CODED AND BINARY
CHARACTER DATA

Character codes can be interpreted as coded
character data or as binary character data. Coded
character data is converted from one code set
representation to another as it enters or leaves
the computer system; for example, data received
from a terminal or sent to a magnetic tape unit is
converted. Binary character data is not converted
as it enters or leaves the system. Character codes
are not converted when moved within the system; for
example, data transferred to or from mass storage
is not converted.

60495500 C

The distinction between coded character data and
binary character data is important when reading or
punching cards and when reading or writing magnetic
tape. Only coded character data can be properly
reproduced as characters on a line printer. Only
binary character data can ©properly represent
characters on a punched card when the data cannot
be stored as display code.

The distinction between binary character data and
characters represented by binary data (such as
peripheral equipment instruction codes) is also
important. Only binary noncharacter data can
properly reproduce characters on a plotter.

FORMATTED AND UNFORMATTED
CHARACTER DATA

Products can interpret character codes as formatted
character data or as unformatted character data. A
product can store or retrieve formatted data in the
form of the codes described for coded character
data in the remainder of this appendix, or the
product can alter that formatted data to another
form during storage or retrieval; for example, a 1
can be stored as a character code or as an integer
value. A product can treat unformatted data either
as coded character data or as binary character data.

NETWORK OPERATING SYSTEMS

NOS and NOS/BE support the following character sets:
@ CDC graphic 64-character set

@ CDC graphic 63-character set

@ ASCII graphic 64-character set

e ASCII graphic 63-character set

® ASCII graphic 95-character set

In addition, NOS supports the ASCII 128-character
graphic and control set. '

Each installation must select either a 64-character
set or a 63~character set. The differences between
the codes of a 63-character set and the codes of a
64-character set are described under Character Set
Anomalies. Any reference in this appendix to a 64—
character set implies either a 63~ or b64-character
set unless otherwise stated.

NOS supports the following code sets to represent
its six listed character sets in central memory:

@ 6-bit display code
] 12-bit ASCII code

@ 6/12-bit display code

NOS/BE supports the following code sets to
represent its five listed character sets in central

memory:
e 6-bit display code
e 12-bit ASCII code

Under both NOS and NOS/BE, the 6-bit display code
is a set of 6-bit codes from 003 to 77g,
inclusive.

Under both NOS and NOS/BE, the 12-bit ASCII code is
the ASCII 7-bit code (as defined by ANSI Standard
X3.4-1977) right-justified in a 12-bit byte.
Assuming that the bits are numbered from the right
starting with 0, bits O through 6 contain the ASCII
code, bits 7 through 10 contain zeros, and bit 11
distinguishes the 12-bit ASCII 0000g code from
the 12-bit 0000g end-of-line byte. The 12-bit
codes are 0001g through 0177g and 4000g.

Under NOS, the 6/12-bit display code is a
combination of 6~bit codes and 12-bit codes. The
6-bit codes are 00g through 77g, excluding
74g and 76g. (The interpretation of the 00g
and 63g codes is described under Character Set
Anomalies later in this appendix.) The 12-bit
codes begin with either 743 or 76g and are
followed by a 6-bit code. Thus, 74g and 76g
are considered escape codes and are never used as
6-bit codes within the 6/12-bit display code set.
The 12-bit codes are 740lg, 7402g, 7404g,
7407g, and 760l1g through 7677g. All other
12-bit codes (74xxg and 7600g) are undefined.

CHARACTER SET ANOMALIES

The operating system input/output software and some
products interpret two codes differently when the
installation selects a 63-character set rather than
a 64-character set. If an installation wuses a
63-character set, the colon graphic character is
always represented by a 63g display code, display
code 00g is wundefined (it has no associated
graphic or punched card code), and the % graphic
does not exist.

However, under NOS, if the installation uses a
64-character set, output of a 7404g 6/12-bit
display code or a 00g display code produces a
colon. A colon can be input only as a 7404g
6/12-bit display code. The use of undefined
6/12-bit display codes in output files produces
unpredictable results and should be avoided.

Under NOS/BE, if the installation uses a
64-character set, output of a 00g display code
produces a coleon. Display code 63g is the colon
when a 63-character set is used. The % graphic and
related card codes do not exist and translations
yield a blank (55g).

Under both NOS and NOS/BE, two consecutive 00g
codes can be confused with the 12-bit 0000g
end-of-line byte and should be avoided.

CHARACTER SET TABLES

The character set tables A-1 and A-2 are designed
so that you can find the character represented by a
code (such as in a dump) or find the code that

represents a character. To find the character
represented by a code, you look up the code in the
column listing the appropriate code set and then
find the character on that line in the column
listing the appropriate character set. To find the
code that represents a character, you look up the
character and then find the code on the same line
in the appropriate column.

Conversational Terminal Users

Table A-1 shows the character sets and code sets
available to an Interactive Facility (IAF) or
INTERCOM user at an ASCII code terminal using an
ASCII character set. The octal and hexadecimal
7-bit ASCII code for each ASCII character can be
used to convert codes from octal to hexadecimal.
These octal and hexadecimal values are shown later
in this appendix. (Under NOS using network product
software, certain Terminal Interface Program
commands require specification of an ASCII code.)

IAF Usage

When in normal time-sharing mode (specified by the
IAF NORMAL command), IAF assumes the ASCII graphic
64-character set is used and translates all input
and output to or from display code. When in ASCII
time-sharing mode (specified by the IAF ASCII
command), IAF assumes the ASCII 128-character set
is used and tramslates all input and output to or
from 6/12-bit display code.

The IAF user can convert a 6/12-bit code file to a
12-bit ASCII code file using the NOS FCOPY control
statement. The resulting 12-bit ASCII file can be
routed to a line printer but the file cannot be
output through IAF.

IAF supports both character mode and ‘transparent
mode transmissions through the network. These
transmission modes are described under Terminal
Transmission Code Sets in this appendix. IAF
treats character mode transmissions as coded
character data; IAF converts these transmissions to
or from either 6~bit or 6/12-bit display code. IAF
treats transparent mode transmissions as Dbinary
character data; transparent mode communication
between IAF and ASCII terminals using any parity
setting occurs in the 12-bit ASCII code shown in
table A-l.

INTERCOM Usage

By default, INTERCOM displays the ASCII graphic
64-character set and interprets all input and
output as display code. Refer to the INTERCOM
Reference Manual,

COMPASS and FORTRAN users can elect to use 12-bit
ASCII code if the terminal in use supports the code
set selected. BASIC users can elect to send and
receive lowercase and uppercase character codes
using the 12-bit ASCII code if the terminal in use
supports the code set selected; BASIC represents
coded character data in central memory using
6/12-bit display code in both the NOS and NOS/BE
systems.

60495500 C

TABLE A-1. CONVERSATIONAL TERMINAL CHARACTER SETS

ASCII ASCII Octal Octal Octal ASCII ASCII Octal Octal Octal

Graphic Character 6-Bit 6/12-Bit | 12-Bit Graphic Character 6-Bit 6/12~Bit | 12-Bit
(64—Char~ (128-Char~ | Display | Display | ASCII (64-Char- (128~Char- Display | Display | ASCII
acter Set) acter Set) Code Code Code acter Set) acter Set) Code Code Code
: colonTT oot ~ circumflex 7402 0136
A A 01 01 0101 : colon 740411 | 0072
B B 02 02 0102 * grave accent 7407 0140
c c 03 03 0103 a 7601 0141
D D 04 04 0104 b 7602 0142
E E 05 05 0105 c 7603 0143
F F 06 06 0106 d 7604 0144
G G 07 07 0107 e 7605 0145
H H 10 10 0110 £ 7606 0146
I I 11 11 0111 g 7607 1047
J J 12 12 o112 h 7610 0150
X K 13 13 0113 i 7611 0151
L L 14 14 0114 i 7612 0152
M M 15 15 0115 k 7613 0153
N N 16 16 0l16 1 7614 0154
[¢] o] 17 17 0117 m 7615 0155
P P 20 20 0120 n 7616 0156
qQ Q 21 21 0121 o 7617 0157
R R 22 22 0122 P 7620 0160
S S 23 23 0123 q 7621 0l61
T T 24 24 0124 r 7622 0162
U U 25 25 0125 s 7623 0163
v A 26 26 0126 t 7624 0164
w W 27 27 0127 u 7625 0165
X X 30 30 0130 v 7626 0166
Y Y 31 31 0131 w 7627 0167
Z z 32 32 0132 b3 7630 0170
0 0 33 33 0060 y 7631 0171
1 1 34 34 0061 z 7632 0172
2 2 35 35 0062 { left brace 7633 0173
3 3 36 36 0063 | vert. line 7634 0174
4 4 37 37 0064 } right brace 7635 0175
5 5 40 40 0065 ~ tilde 7636 0176
6 6 41 41 0066 NUL 7640 4000
7 7 42 42 0067 SOH 7641 0001
8 8 43 43 0070 STX 7642 0002
9 9 44 44 0071 ETX 7643 0003
+ plus + plus 45 45 0053 EOT 7644 0004
- minus ~ minus 46 46 0055 ENQ 7645 0005
* asterisk * asterisk 47 47 0052 ACK 7646 0006
/ slash / slash 50 50 0057 BEL 7647 0007
(1. paren. (1. paren. 51 51 0050 BS 7650 0010
) r. paren.) r. paren. 52 52 0051 HT 7651 0011
$ dollar $ dollar 53 53 0044 LF 7652 0012
= equal to = equal to 54 54 0075 vt 7653 0013
space space 55 55 0040 FF 7654 0014
, couma , comma 56 56 0054 CR 7655 0015
. period . period 57 57 0056 50 7656 0016
number # number 60 60 0043 SI 7657 0017
[1. bracket | [1. bracket 61 61 0133 DEL 7637 0177
] r. bracket |] r. bracket | 62 62 0135 DLE 7660 0020
4 percentTT Z percent 63tt 6aft 0045 DC1 7661 0021
" quote " quote 64 64 0042 DC2 7662 0022
_ underline | underline 65 65 0137 DC3 7663 0023
! exclam. ! exclam. 66 66 0041 DC4 7664 0024
& ampersand | & ampersand 67 67 0046 NAK 7665 0025
’ apostrophe | ° apostrophe 70 70 0047 SYN 7666 0026
? question ? question 71 71 0077 ETB 7667 0027
< less than | < less than 72 72 0074 CAN 7670 0030
> grtr. than | > grtr. than 73 73 0076 EM 7671 0031
@ coml. at 74 SUB 7672 0032
\ rev. slant | \ rev. slant | 75 75 0134 ESC 7673 0033
~ circumflex 76 FS 7674 0034
; semicolon ; semicolon 77 77 0073 GS 7675 0035
@ coml. at 7401 0100 RS 7676 0036
us 7677 0037

TGenetally available only on NOS, or through BASIC on NOS/BE.

TTThe interpretation of this character or code depends on its context. Refer to Character Set

the text,

Anomalies in

60495500 ¢C

TABLE A-2. LOCAL BATCH DEVICE CHARACTER SETS
cbC ASCII ASCII Octal Octal Octal
Graphic Graphic Graphic 6-Bit 6/12-Bit | 12-Bit Card Keypunch Code
(64~Character (64~Character (95-Character Display Display ASCII 026 029
Set) Set) Set) Code Codet Code
: colont? : colonTT oot 8-2 8-2
A A A 01 01 0101 12-1 12-1
B B B 02 02 0102 12~2 12-2
C [c 03 03 0103 12-3 12-3
D D D 04 04 0104 12-4 12-4
E E E 05 05 0105 12-5 12-5
F F F 06 06 0106 12~6 12-6
G G G 07 07 0107 12-7 12-7
H H H 10 10 0110 12-8 12-8
I I I 11 11 0111 12-9 12-9
J J J 12 12 0112 11-1 11-1
K K K 13 13 0113 11-2 11-2
L L L 14 14 0114 11-3 11-3
M M M 15 15 0115 11-4 11-4
N N N 16 16 0116 11-5 11-5
0 0 0 17 17 0117 11-6 11-6
P P P 20 20 0120 11-7 11-7
Q Q Q 21 21 0121 11-8 11-8
R R R 22 22 0122 11-9 11-9
S S S 23 23 0123 0-2 0~2
T T T 24 24 0124 0-3 0-3
u U i} 25 25 0125 0-4 0-4
v v v 26 26 0126 0-5 0-5
W W W 27 27 0127 0-6 0-6
X X X 30 30 0130 0-7 0-7
Y Y Y 31 31 0131 0-8 0-8
A Z Z 32 32 0132 0-9 0-9
0 0 0 33 33 0060 0 0
1 1 1 34 34 0061 1 1
2 2 2 35 35 0062 2 2
3 3 3 36 36 0063 3 3
4 4 4 37 37 0064 4 4
5 5 5 40 40 0065 5 5
6 6 6 41 41 0066 6 6
7 7 7 42 42 0067 7 7
8 8 8 43 43 0070 8 8
9 9 9 44 44 0071 9 9
+ plus + plus + plus 45 45 0053 12 12-8-6
- minus - minus ~ minus 46 46 0055 11 11
* asterisk * asterisk * asterisk 47 47 0052 11-8-4 11-8-4
/ slash / slash / slash 50 50 0057 0-1 0-1
(left paren. (left paren. (left paren. 51 51 0050 0-8-4 12-8-5
) right paren.) right paren.) right paren. 52 52 0051 12-8-4 11-8-5
$ dollar $ dollar $ dollar 53 53 0044 11-8-3 11-8-3
= equal to = equal to = equal to 54 54 0075 8-3 8-6
space space space 55 55 0040 no punch | no punch
, comma , comma , comma 56 56 0054 0-8-3 0-8-3
. period . period . period 57 57 0056 12-8-3 12-8-3
equivalence # number # number 60 60 0043 0-8-6 8-3
[left bracket [left bracket [1. bracket 61 61 0133 8-7 12-8-2
or
12-01+7
] right bracket] right bracket] r. bracket 62 62 0135 0-8-2 11-8-2
or
11-011t
% percentTT % percentﬂ' A percentTT 63 63 0045 8-6 0-8-4
A-4 60495500 C

TABLE A-2. LOCAL BATCH DEVICE CHARACTER SETS (Contd)
CDC ASCII ASCII Octal Octal Octal
Graphic Graphic Graphic 6-Bit 6/12-Bit | 12-Bit Card Keypunch Code
(64-Character (64-Character (95~Character Display Display ASCII 026 029
Set) Set) Set) Code Codet Code
not equal "' quote " quote 64 64 0042 8-4 8-7
reconcat. underline _ underline 65 65 0137 0-8-5 0-8-5
v logical OR T exclamation ! exclamation 66 66 0041 11-0 12-8-7
. or or
11-8-28 | 11-08
A logical AND & ampersand & ampersand 67 67 0046 0-8-7 12
superscript ’ apostrophe ’ apostrophe 70 70 0047 11-8-5 8-5
{ subscript ? question ? question 71 71 0077 11-8-6 0-8-7
< less than < less than < less than 72 72 0074 12-0 12-8-4
or or
12-8-28 | 12-08
> greater than > greater than > greater than 73 73 0076 11-8~7 0~8~6
< less/equal @ commercial at 74 8-5 8-4
E:greater/equal \ reverse slant \ rev. slant 75 75 0134 12-8~5 0-8-2
— logical NOT ~ circumflex 76 12-8-6 11-8~7
; semicolon ; semicolon ; semicolon 77 77 0073 12~-8-7 11-8-6
@ coml. at 7401 0100
" circumflex 7402 0136
: colon 746041 0072
' grave accent 7407 0140
a 7601 0141
b 7602 0142
c 7603 0143
d 7604 0144
e 7605 0145
£ 7606 0146
g 7607 0147
h 7610 0150
i 7611 0151
j 7612 0152
k 7613 0153
1 7614 0154
m 7615 0155
n 7616 0156
o 7617 0157
P 7620 0160
q 7621 0161
T 7622 0162
s 7623 0163
t 7624 0164
u 7625 0165
v 7626 0166
W 7627 0167
X 7630 0170
y 7631 0171
z 7632 0172
{ left brace 7633 0173
| vert. line 7634 0174
} right brace 7635 0175
~ tilde 7636 0176

TGenerally available only on NOS, or through BASIC on NOS/BE.

TTThe interpretation of this character or code depends on its context. Refer to Character Set Anomalies

in the text.

TifAvailable for input only, on NOS.

§Available for input only, on NOS/BE or SCOPE 2.

60495500 C

Local Batch Users

Table A-2 1lists the CDC graphic 64-character set,
the ASCII graphic 64-character set, and the ASCII
graphic 95-character set. This table also lists
the code sets and card keypunch codes (026 and 029)
that represent the characters.

The 6A4-character sets use display code as their
code set; the 95-character set uses 12-bit ASCII
code. The 95-character set is composed of all the
characters in the ASCII 128-character set that can
be printed at a line printer (refer to Line Printer
Output). Only 12-bit ASCII code files can be
printed using the ASCII graphic 95-character set.
To print a 6/12-bit display code file (usually
created in IAF ASCII mode), you must convert the
file to 12-bit ASCII code. To do this, the NOS
FCOPY control statement must be issued. The
95-character set is represented by the 12-bit ASCII
codes 0040g through 0176g.

Line Printer Output

The batch character set printed depends on the
print train used on the line printer to which the
file is sent. The following are the print trains
corresponding to each of the batch character sets:

Print
Character Set Train
CDC graphic 64-character set 596~1

ASCII graphic 64-character set 596-5
ASCII graphic 95-character set 596-6

The characters of the default 596-1 print train are
listed in the table A-2 column labeled CDC Graphic
(64~Character); the 596-5 print train characters
are listed in the table A-2 column labeled ASCII
Graphic (64-Character); and the 596-6 print train
characters are listed in the table A-2 column
labeled ASCII Graphic (95-Character).

If a transmission error occurs during the printing
of a line, NOS prints the line again. The CDC
graphic print train prints a concatenation
symbol (r*) in the first printable column of a
line containing errors. The ASCII print trains
print an underline instead of the concatenation
symbol.

If an unprintable character exists in a line (that
is, a 12-bit ASCII code outside of the range
0040g through 0176g), the number sign (#)
appears in the first printable colummn of a print
line and a space replaces the unprintable character.

Punched Card Input and Output

A character represented by multiple punches in a
single column has its punch pattern identified by
numbers and hyphens. For example, the punches
representing an exclamation point are identified as
11-0; this notation means both rows 11 and 0 are
punched in the same column. A multiple punch
pattern that represents something other than a
character is identified by numbers and slashes.
For example, the punches representing the end of an
input file are identified as 6/7/8/9; this notation

means rows 6 through 9 are punched in the same
column.

Under NOS, coded character data is exchanged with
local batch card readers or card punches according
to the translations shown in table A-2. As
indicated in the table, additional card keypunch
codes are available for input of the ASCII and CDC
characters [and]. The 95-character set cannot
be read or punched as coded character data.

Depending on an installation or deadstart option,
NOS assumes an input deck has been punched either
in 026 or 029 keypunch code (regardless of the
character set in use). The alternate keypunch
codes can be specified by a 26 or 29 punched in
columns 79 and 80 of any job card, 6/7/9 card, or
7/8/9 card. The specified code translation remains
in effect throughout the job unless the translation
is reset by specification of the alternate code
translation on a subsequent 6/7/9 card or
7/8/9 card.

NOS keypunch code translation can also be changed
before or after a 7/8/9 card by a card containing a
5/7/9 punch in column 1. A space (no punch) in
column 2 indicates 026 conversion mode; a 9 punch
in column 2 indicates 029 conversion mode. The
conversion change remains in effect wuntil another
change card is encountered or the job ends.

The 5/7/9 card also allows 1literal input when
4/5/6/7/8/9 is punched in column 2. Literal input
can be used to read 80-column binary character data
within a punched card deck of coded character data.

Literal cards are stored with each column in a
12-bit byte (a row 12 punch is represented by a 1
in bit 11, row 11 by bit 10, row O by bit 9, and
rows 1 through 9 by bits 8 through 0 of the byte),
16 central memory words per card. Literal input
cards are read until a card identical to the
previous 5/7/9 card (4/5/6/7/8/9 in column 2) is
read. The next card can specify a new conversion
mode.

Under NOS/BE, coded character data is exchanged
with local batch card readers or card punches
according to the translations shown in table A-2.
As indicated in the table, additiomal card keypunch
codes are available for input of the CDC characters
v and < or their ASCII equivalents ! and <.
The 95-character set cannot be read or punched ag
coded character data.

Depending on an installation option, NOS/BE assumes
an input deck has been punched either in-026 or in
029 keypunch code (regardless of the character set
in use). The alternate keypunch codes can be
specified by a 26 or 29 punched in columns 79 and
80 of the job statement or in columns 79 and 80 of
any 7/8/9 card. The specified code translation
remains in effect throughout the job unless it is
reset by specification of the alternate code
translation on a subsequent 7/8/9 card.

Under NOS/BE, a card with all 12 rows of column 1
punched and all of one other column punched can be
followed by 80-column cards of free~form binary
data. These binary data cards are read or punched
as described for NOS Lliteral data until another
card with 12 punches in column 1 and in one other
column occurs, or until the job ends. The next
card is interpreted as coded data.

60495500 C

Remote Batch Users

When card decks are read from remote batch devices,
the ability to select alternate keypunch code
translations depends wupon the remote terminal
equipment.

NOS Usage

Remote batch terminal line printer, punched card,
and plotter character set support is described in
the Remote Batch Facility (RBF) reference manual.
RBF support of console input and output is re-
stricted to character mode transmission. Character
mode is described under Terminal Transmission Code
Sets in this appendix.

NOS/BE Usage

Remote batch terminal line printer, punched card,
and plotter character set support is described in
the INTERCOM reference manual.

Magnetic Tape Users

Coded character data to be copied from mass storage
to magnetic tape is assumed to be represented in
display code. NOS converts the data to external
BCD code when writing a coded 7-track tape and to
ASCII or EBCDIC code (as specified on the tape
assignment statement) when writing a coded 9-track
tape.

Because only 63 characters can be represented in
7-track even parity, one of the 64 display codes is
lost in conversion to and from external BCD code.
Figure A-1 shows the differences in conversion that
depend on which character set (63 or 64) the system
uses. The ASCII character for the specified
character code is shown in parentheses. The output
arrow shows how the display code changes when it is
written on tape in extermal BCD. The input arrow
shows how the external BCD code changes when the
tape is read and converted to display code.

63-Character Set

Display Code External BCD Display Code

00 16 (%) 00
33 Output 12 (D Input 33
63 (1) TR 2 () T 33 ()

64-Character Set

Display Code External BCD Display Code

00 (2 12 (D 33
33 (D Output 12 (D Input 33 ()
63 (% > 16 (%) = 83 (%)

Figure A-1. Magnetic Tape Code Conversions

60495500 C

Tables A-3 and A-4 show the character set
conversions for 9-track tapes. Table A-3 lists the
conversions to and from 7-bit ASCII character code
and 6-bit display code. Table A-4 1lists the
conversions between 8-bit EBCDIC character code and
6-bit display code. Table A-5 shows the character
set conversions between 6-bit external BCD and
6-bit display code for 7-track tapes.

If a lowercase ASCII or EBCDIC code is read from a
9~-track coded tape, it is converted to its
uppercase 6-bit display code equivalent. To read
and write lowercase ASCII or EBCDIC characters, the
user must assign the tape in binary mode and then
convert the binary character data.

During binary character data transfers to or from
9-track magnetic tape, the 7-bit ASCII codes shown
in table A-6 are read or written unchanged; the
8-bit hexadecimal EBCDIC codes shown in table A-7
also can be read or written unchanged. ASCII and
EBCDIC codes cannot be read or writtem to 7-track
magnetic tape as binary character data.

Two CDC wutility products, FORM and the 8-Bit
Subroutines, can be used to convert to and from
EBCDIC data. Table A-7 contains the octal values
of each EBCDIC code right-justified in a 12~-bit
byte with zero fill. This 12-bit EBCDIC code can
also be produced wusing FORM and the 8-Bit
Subroutines.

TERMINAL TRANSMISSION CODE SETS

There are two modes in which coded character data
can be exchanged with a network terminal console.
These two modes, character mode and transparent
mode, correspond to the type of character code
editing and translation performed by the network
software during input and output operations.

Under NOS, the terminal operator can select the
network software input transmission mode by using a
Terminal Interface Program command (sometimes
referred to as a terminal definition command). The
network software output transmission mode can be
selected by the application program providing the
terminal facility service.

Character Mode Transmissions

Character mode is the initial and default mode used
for both input and output transmissions. When the
network software services the terminal in character
mode, it translates input characters from the
transmission code used by the terminal into the
ASCII code shown in table A-6. The translation of
a specific transmission code to a specifiec ASCII
code depends on the terminal class that the network
software associates with the terminal. In
character mode input, the parity of the terminal
transmission code is not preserved in the
corresponding ASCII code; the ASCII code received
by the terminal-servicing facility program always
has its eighth bit set to zero.

A-T

TABLE A-3. ASCII 9-TRACK CODED TAPE CONVERSION
ASCII ASCII
Display Display
Code Character and CodettT Code Character and Codettt
Conversion Code ConversionT Conversiont Code ConversionfT
Code Code ASCII Code Code Code ASCII Code
(Hex) Char (Hex) Char Char (Octal) (Hex) Char (Hex) Char Char (Octal)
20 space 00 NUL space 55 40 @ 60 b @ 74
21 ! 7D } ! 66 41 A 61 a A 01
22 " 02 STX " 64 42 B 62 b B 02
23 # 03 ETX # 60 43 C 63 c C 03
24 [04 EOT S 53 44 D 64 d D 04
25 % 05 ENQ % 63 45 E 65 e E 05
25 % 05 ENQ space 55 46 F 66 f F 06
26 & 06 ACK & 67 47 G 67 g G 07
27 ‘ 07 BEL ’ 70 48 H 68 h H 10
28 (08 BS (51 49 I 69 i I 11
29) 09 HT) 52 4A J 6A 3j J 12
24 * 0A LF * 47 48 K 6B k K 13
2B + 0B vT + 45 4C L 6C 1 L 14
2c oc FF , 56 4D M 6D o M 15
2D - oD CR - 46 4E N 6E n N 16
2E . 0E S0 . 57 4F 0 6F o 0 17
2F / OF S1 / 50 50 P 70 P P 20
30 0 10 DLE 0 33 51 Q 71 q Q 21
31 1 11 DCl 1 34 52 R 72 T R 22
32 2 12 Dc2 2 35 53 S 73 s S 23
33 3 13 DC3 3 36 54 T 74 t T 24
34 4 14 DC4 4 37 55 U 75 u U 25
35 5 15 NAK 5 40 56 v 76 v v 26
36 6 16 SYN 6 41 57 W 77 w W 27
37 7 17 ETB 7 42 58 X 78 X X 30
38 8 18 CAN 8 43 59 Y 79 y Y 31
39 9 19 EM 9 44 5A Z 7A z Z 32
3A H 1A SUB H 00 5B [HY FS [61
Display code 00 is undefined at sites using the 5C \ 7C | \ 75
63-character set. 5D [01 SOH] 62
3A : 1A SUB : 63 5E - 78 -~ - 76
3B H 1B ESC 4 77 5F 7F DEL _ 65
3c < 7B { < 72 -
3D = 1D GS = 54
3E > 1E RS > 73
3F ? iF us 7 71

tWhen these characters are copied from or to a tape, the characters remain the same and the code changes
from/to ASCII to/from display code.

Tt These characters do not exist in display code. When the characters are copied from a tape, each ASCII
character is changed to an alternate display code character.

Example:

Ttia display code space always translates to an ASCII space.

The corresponding codes are also changed.

When the system copies a lowercase a, 61]g, from tape, it writes an uppercase A, Olg.

60495500 C

TABLE A-4. EBCDIC 9-TRACK CODED TAPE CONVERSION
EBCDIC EBCDIC
Display Display
Code Character and CodeTTT Code Character and CodefTT
Conversionf Code Conversion Conversion Code ConversionfT
Code Code ASCII Code Code Code ASCII Code
(Hex) Char (Hex) Char Char (Octal) (Hex) Char (Hex) Char Char (Octal)
40 space 00 NUL space 55 cé F 86 £ F 06
LA ¢ 1C IFS [61 c7 G 87 g G 07
4B . OE S0 . 57 c8 H 88 h H 10
4C < co { < 72 c9 I 89 i 1 11
4D (16 BS (51 Dl J 91 3 J 12
4E + 0B vT + 45 D2 K 92 k K 13
4F | Do } ! 66 D3 L 93 1 L 14
50 & 2E ACK & 67 D4 M 94 m M 15
5A ! 01 SOH 1 62 D5 N 95 n N 16
5B $ 37 EOT § 53 D6 0 96 o 0 17
5C * 25 LF * 47 D7 P 97 P P 20
5D) 05 HT) 52 D8 Q 98 q Q 21
5E H 27 ESC H 77 D9 R 99 r R 22
5F - Al -~ / 76 EO \ 6A | \ 75
60 - 0D CR - 46 E2 S A2 s S 23
61 ’ OF ST ‘ 50 E3 T A3 t T 24
6B s 0cC FF , 56 E4 U Ad u U 25
6C % 2D ENQ % 63 E5 v A5 v v 26
6C A 2D ENQ space 55 E6 W A6 w W 27
6D _ 07 DEL _ 65 E7 X A7 X X 30
6E > 1E IRS > 73 E8 Y A8 y Y 31
6F ? 1F 1us ? 71 E9 Z A9 z Z 32
7A : 3F SUB : 00 FO 0 10 DLE 0 33
Display code 00 is undefined at sites using the Fl 1 11 DC1 1 34
63~-character set. F2 2 12 DC2 2 35
7A : 3F SUB 63 F3 3 13 ™ 3 36
78 # 03 ETX # 60 F4 4 3C DC4 4 37
7C @ 79 \ @ 74 F5 5 3D NAK 5 40
7D ’ 2F BEL ’ 70 F6 6 32 SYN 6 41
7E = 1D IGS = 54 F7 7 26 ETB 7 42
¥ " 02 STX " 64 F8 8 18 CAN 8 43
cl A 81 a A 0l F9 9 19 EM 9 44
c2 B 82 b B 02
c3 C 83 c [03
C4 D 84 d D 04
c5 E 85 e E 05

tA11 ERCDIC codes not listed translate to display code 558 (space). A display code space

translates to an EBCDIC space.

T These characters do not exist in display code.

character is changed to an alternate display code character.
When the system copies a lowercase a, 8l;4, from tape, it writes an uppercase A, Olg.

Example:

always

When the characters are copied from a tape, each EBCDIC
The corresponding codes are also changed.’

TitWhen these characters are copied from or to a tape, the characters remain the same (except EBCDIC codes
4Aq, 4F1g, SAjg, and 5F1g) and the code changes from/to EBCDIC to/from display code.

60495500 C

TABLE A-5. 7-TRACK CODED TAPE CONVERSIONS

External ASCII Octal Display External ASCII Octal Display
BCD Character Code BCD Character Code
01 1 34 40 - 46
02 2 35 41 J 12
03 3 36 42 K 13
04 4 37 43 L 14
05 5 40 44 M 15
06 6 41 45 N 16
07 7 42 46 o] 17
10 8 43 47 P 20
11 9 44 50 Q 21
121 0 33 51 R 22
13 = 54 52 ! 66
14 " 64 53 $ 53
15 @ 74 54 * 47
16 A 63 55 ! 70
17 [61 56 . ? 71
20 space 55 57 > 73
21 / 50 60 + 45
22 S 23 61 A 01
23 T 24 62 B 02
24 U 25 63 c 03
25 v 26 64 D 04
26 W 27 65 E 05
27 X 30 66 F 06
30 Y 31 67 G 07
31 Z 32 70 H 10
32] 62 71 I 11
33 , 56 72 < 72
34 (51 73 . 57
35 65 74) 52
36 Fl 60 75 \ 75
37 & 67 76 - 76

77 H 77

Tas explained in the text of this appendix, conversion of these codes depends on whether the tape is

being read or written.

Character mode output is translated in a similar
manner. The network software provides the parity
bit setting appropriate for the terminal being
serviced, even though translating from ASCII
characters with zero parity bit settings.

The general case for code translations of character
mode data is summarized in the following
paragraphs. This generalized description permits
use of only table A-6 to explain all specific
cases. The reader can logically extend this
generalized description to allow use of tables A-1
through A-5 as descriptions of character set
mapping for various functions initiated from a
terminal. Tables A-1 through A~5 are provided for
the reader’s use while coding an application
program to run under the operating system. They do
not describe character transmissions between an
application program and the network.

Table A-6 contains the ASCII 128-character set
supported by the Network Access Method. A
96-character subset consists of the rightmost six
columns and includes the 95-character graphic
subset referenced previously in this appendix; the
deletion character (DEL) is mnot a graphic

A-10

character. A 64-character subset consists of the
middle four columns. Note that 6-~bit display code
equivalents exist for the characters in this
64-character subset only.

Although the mnetwork supports the 128-character
set, some terminals restrict output to a smaller
subset. This restriction is supported by replacing
the control characters in columns O and 1 of
table A-6 with blanks to produce the 96-character
subset, and, additionally, replacing the characters
in columns 6 and 7 with the corresponding charac—
ters from columns 4 and 5, respectively, to produce
the 64~character subset.

Similarly, input from a device may be limited to a
smaller subset by the device itself because the
device cannot produce the full 128-character set.
A character input from a device using a character
set other than ASCII is converted to an equivalent
ASCII character; characters without ASCII character
equivalents are replaced by the ASCII space.

An application can also cause character replacement
(as described previously for output) as well as
character conversion, by requesting display-coded
input from the network.

60495500 C

TABLE A-6. FULL ASCII CHARACTER SET

- 128~Character Set

~&—— 64~Character Subset——s

96~Character Subset———— 3

60495500 C

b7 == | 0 0 0 1 1 1 1
b6 0 0 1 1 0 0 1 1
b e 0 1 0 1 1
5
. Column
Bits 5% Py by Py ey —=] o0 1 2 3 4 5 6 7
P ¥ ¥ i
0 0 0 0 0 NUL DLE SP 0 @ P * P
000 020 040 060 100 120 140 160
0 0 0 1 1 SOH DC1 ! 1 A Q a q
001 021 041 061 101 121 141 161
0 0 1 0 2 STX DC2 " 2 B R b T
002 022 042 062 102 122 142 162
0 0 1 1 3 ETX DC3 i# 3 c S c s
003 023 043 063 103 123 143 163
0 1 0 0 4 EOT DC4 $ 4 D T d t
004 024 044 064 104 124 144 164
0 1 0 1 5 ENQ NAK % 5 E U e u
005 025 045 065 105 125 145 165
0 1 1 0 6 ACK SYN & 6 F A £ v
006 026 046 066 106 126 146 166
0 1 1 1 7 BEL ETB ‘ 7 G W g w
007 027 047 067 107 127 147 167
1 0 0 0 8 BS CAN (8 H X h X
010 030 050 070 110 130 150 170
1 0 0 1 9 HT EM) 9 I Y i y
011 031 051 071 111 131 151 171
1 0 1 0 A LF SUB * : J Z j z
012 032 052 072 112 132 152 172
1 0 1 1 B VT ESC + ; K [k {
013 033 053 073 113 133 153 173
1 1 0 0 ¢ FF FS . < L \ 1
014 034 054 074 114 134 154 174
i 1 0 1 D CR GS - = M 1 m }
015 035 055 075 115 135 155 175
1 1 1 0 E S0 RS . > N ~ n ~
016 036 056 076 116 136 156 176
1 1 1 1 F SI us / ? o] [¢] DEL
017 037 057 077 117 137 157 177
LEGEND:
Numbers under characters are the octal values for the 7-bit character codes used within the network.
A-11

TABLE A-7. FULL EBCDIC CHARACTER SET
Hexa- Octal EBCDIC EBCDIC Hexa~ Octal EBCDIC EBCDIC
decimal 12-Bit X decimal 12-Bit N
EBCDIC EBCDIC Graphic Control EBCDIC EBCDIC Graphic Control
Character Character Character Character
Code Code Code Code
00 0000 NUL 41 0i01 undefined undefined
01 0001 SOH thru thru
02 0002 STX 49 0111
03 0003 ETX 4A 0112 ¢
04 0004 PF 4B 0113 .
05 0005 HT 4C 0114 <
06 0006 LC 4D 0115 (
07 0007 DEL 4E 0l16 +
08 0010 undefined undefined 4F 0117 |
09 0011 undefined undefined 50 0120 &
DA 0012 SMM 51 0l21 undefined undefined
0B 0013 vT thru thru
ocC 0014 FF 59 0131
0D 0015 - CR 5A 0132 !
(03 0016 S0 5B 0133 S
oF 0017 SI 5C 0134 *
10 0020 DLE 5D 0135)
11 0021 DC1 5E 0136 H
12 0022 DC2 5F 0137 -
13 0023 ™ 60 0140 -
14 0024 RES 61 0141 /
15 0025 NL 62 0142 undefined undefined
16 0026 BS thru thru
17 0027 IL 69 0151
18 0030 CAN 6A 0152 ;
19 0031 EM 6B 0153 ,
1A 0032 CC 6C 0154 %
1B 0033 CUl 6D 0155
e 0034 1IFS 6E 0156 >
1D 0035 1GS 6F 0157 ?
1E 0036 IRS 70 0160 undefined undefined
1F 0037 1us thru thru
20 0040 DS 78 0170
21 0041 S0S 79 0171 *
22 0042 FS 7A 0172 :
23 0043 undefined undefined 7B 0173 #
24 0044 BYP 7C 0174 @
25 0045 LF 7D 0175 !
26 0046 ETB or EOB 7E 0176 =
27 0047 ESC or PRE 7F 0177 "
28 0050 undefined undefined 80 0200 undefined undefined
29 0051 undefined undefined 81 0201 a
2A 0052 SM 82 0202 b
2B 0053 cu2 83 0203 c
2C 0054 undefined undefined 84 0204 d
2D 0055 ENQ 85 0205 e
2E 0056 ACK 86 0206 £
2F 0057 BEL 87 0207 g
30 0060 undefined undefined 88 0210 h
31 0061 undefined undefined 89 0211 i
32 0062 SYN 8A 0212 undefined undefined
33 0063 undefined undefined thru thru
34 0064 PN 90 0220
35 0065 RS 91 0221 3
36 0066 uc 92 0222 k
37 0067 EOT 93 0223 1
38 0070 undefined undefined 94 0224 m
39 0071 undefined undefined 95 0225 n
3A 0072 undefined undefined 96 0226 o
3B 0073 cu3 97 0227 P
3C 0074 DC4 98 0230 q
3D 0075 NAK 99 0231 T
3E 0076 undefined undefined 9A 0232 undefined undefined
3F 0077 SUB thru thru
40 0100 space AQ 0240
A-12 60495500 C

TABLE A-7. FULL EBCDIC CHARACTER SET (Contd)

Hexa- Octal EBCDIC EBCDIC Hexa-~ Octal EBCDIC EBCDIC
decimal 12-Bit Graphic Control decimal 12-Bit Graphic Control
EBCDIC EBCDIC EBCDIC EBCDIC

Character Character CharacterT Character

Code Code Code Code

Al 0241 - D7 0327 P

A2 0242 s D8 0330 Q

A3 0243 t D9 0331 R

A4 0244 u DA 0332 undefined undefined
AS 0245 v thru thru
A6 0246 w DF 0337 .

A7 0247 x EO 0340 \

A8 0250 y El 0341 undefined undefined
A9 0251 z E2 0342 S

AA 0252 undefined undefined E3 0343 T

thru thru E4 0344 U

BF 0277 E5 0345 v

co 0300 { E6 0346 W

Cl 0301 A E7 0347 X

c2 0302 B E8 0350 Y

c3 0303 C E9 0351 Z

Cc4 0304 D EA 0352 undefined undefined

c5 0305 E EB 0353 undefined undefined

cé 0306 F EC 0354

c7 0307 G ED 0355 undefined undefined

c8 0310 H thru thru

c9 0311 I EF 0357

cA 0312 undefined undefined FO 0360 0

CB 0313 undefined undefined Fl 0361 1

cC 0314 I F2 0362 2

CcDh 0315 undefined undefined F3 0363 3

CE 0316 Y F4 0364 4

CF 0317 undefined undefined F5 0365 5

hle] 0320 } Fé6 0366 6

D1 0321 J ¥7 0367 7

D2 0322 K F8 0370 8

D3 0323 L F9 0371 9

D4 0324 M FA 0372 |

D5 0325 N FB 0373 undefined undefined

D6 0326 0 thru thru

FF 0377

TGraphic characters shown are those used on the IBM System/370 standard (PN) print train. Other devices
support subsets or variations of this character graphic set.

The 7-bit hexadecimal code value for each character
consists of the character’s column number in the

table, followed by its row number. For example, N-

is in row E of column 4, so its value is 4Ejq.

Transparent Mode Transmissions

Transparent mode is selected separately for input
and output transmissions. During transparent mode
input, the parity bit is stripped from each
terminal transmission code (unless the N parity
option has been selected by a Terminal Interface
Program command), and the transmission code is
placed in an 8-bit byte without tramnslation to
7-bit ASCII code. Line transmission protocol
characters are deleted from a mode 4C terminal
input stream.

60495500 C

When the 8-bit bytes arrive in the host computer, a
terminal servicing facility program such as the
Interactive Facility can right—-justify the bytes
within a 12-bit byte. Upon transmission of 12-bit
bytes from the host computer, the leftmost & bits
(bits 11 through 8) are discarded.

During transparent mode output, processing similar
to that performed for input occurs. The code in
each 8-bit byte received by the network software
from the terminal servicing facility program is not
translated. The parity bit appropriate for the
terminal class being used is altered as indicated
by the parity option in effect for the terminal.
The codes are then output in transmission bytes
appropriate for the codes associated with the
terminal class Dbeing used. Line transmission
protocol characters are inserted into a mode 4C
terminal output stream.

A-13

PRODUCT-DEPENDENT Correspond “ra. asceniing collaving valucs. Nembors
CHARACTER USAGE collate low wusing the ASCII character subset
sequence. Numbers collate high using the EBCDIC
The character set collating sequences (tables A-8, character subset collating sequence. The CDC
A-9, and A-10) are utilized by the XCOMP subroutine collating sequence varies through installation
for data comparison. In the ASCII and EBCDIC option.
TABLE A-8. CDC CHARACTER SET COLLATING SEQUENCE
Cgi:izggi ggfcg:iz:i:r fctal o7ir Cgiéizgzg CcbC Display External
Set Display External Graphic Code BCD
Decimal Octal Code BCD Decimal Octal
00 00 blank 55 20 32 40 H 10 70
01 01 < 74 15 33 41 I 11 71
02 02 % 63l 167 34 42 v 66 52
03 ' 03 { 61 17 35 43 J 12 41
04 04 - 65 35 36 44 K 13 42
05 05 = 60 36 37 45 L 14 43
06 06 A 67 37 38 46 M 15 44
07 07 t 70 55 39 47 N 16 45
08 10 + 71 56 40 50 0 17 46
09 11 > 73 57 41 51 P 20 47
10 12 P 75 75 42 52 Q 21 50
11 13 - 76 76 43 53 R 22 51
12 14 . 57 73 44 54 1 62 32
13 15) 52 74 45 55 S 23 22
14 16 H 77 77 46 56 T 24 23
15 17 + 45 60 47 57 8] 25 24
16 20 $ 53 53 48 60 v 26 25
17 21 * 47 54 49 61 W 27 26
18 22 - 46 40 50 62 X 30 27
19 23 / 50 21 51 63 Y 31 30
20 24 s 56 33 52 64 Z 32 31
21 25 (51 34 53 65 oof nonef
22 26 = 54 13 54 66 0 33 12
23 27 # 64 14 55 67 1 34 01
24 30 < 72 72 56 70 2 35 02
25 31 A 01 61 57 71 3 36 03
26 32 B 02 62 58 72 4 37 04
27 33 c 03 63 59 73 5 40 05
28 34 D 04 64 60 74 6 41 06
29 35 E 05 65 61 75 7 42 07
30 36 F 06 66 62 76 8 43 10
31 37 G 07 67 63 77 9 44 11
TIn installations using the 63-graphic set, the % graphic does not exist. The : graphic is display code 63,
external BCD code 16.

A-14

60495500 C

TABLE A-9. ASCII CHARACTER SUBSET COLLATING SEQUENCE
oencs | 4507 Sraebie | S0 | henan | Seatenne | $SOIE O | pispiay | o
Set) Code ecimal - Set) Code decimal
Decimal Octal Code Decimal Octal Code
00 00 blank 55 20 32 40 @ 74 40
01 01 ! 66 21 33 41 A 01 41
02 02 " 64 22 34 42 B 02 42
03 03 # 60 23 35 43 C 03 43
04 04 $ 53 24 36 44 D 04 44
05 05 % 63t 25 37 45 E 05 45
06 06 & 67 26 38 46 F 06 46
07 07 ’ 70 27 39 47 G 07 47
08 10 (51 28 40 50 H 10 48
09 11) 52 29 41 51 I 11 49
10 12 * 47 2A 42 52 J 12 4A
11 13 + 45 2B 43 53 K 13 4B
12 14 s 56 2C 44 54 L 14 4C
13 15 46 2D 45 55 M 15 4D
14 16 . 57 2E 46 56 N 16 4E
15 17 / 50 2F 47 57 0 17 4F
16 20 0 33 30 48 60 P 20 50
17 21 1 34 31 49 61 qQ 21 51
18 22 2 35 32 50 62 R 22 52
19 23 3 36 33 51 63 S 23 53
20 24 4 37 34 52 64 T 24 54
21 25 5 40 35 53 65 U 25 55
22 26 6 41 36 54 66 v 26 56
23 27 7 42 37 55 67 W 27 57
24 30 8 43 38 56 70 X 30 58
25 31 9 44 39 57 71 Y 31 59
26 32 00 3A 58 72 Z 32 5A
27 33 H 77 3B 59 73 [61 5B
28 34 < 72 3C 60 74 \ 75 5C
29 35 = 54 3D 61 75 1 62 5D
30 36 >. 73 3E 62 76 - 76 S5E
31 37 ? 71 3F 63 77 _ 65 5F

1‘In installations using a 63-graphic set, the

% graphic does mot exist.

The : graphic is display code 63.

60495500 C

A-15

TABLE A-10. EBCDIC 64-CHARACTER SUBSET COLLATING SEQUENCE
comserns | mome | e ||| st | g | g | BONC
(64~character | Display decimal (64~character | Display decimal
Decimal | Octal Subset) Code Code Decimal | Octal Subset) Code Code
00 00 blank 55 40 32 40 G 07 c7
01 01 . 57 4B 33 41)= 10 c8
02 02 < 72 4C 34 42 I 11 c9
03 03 (51 4D 35 43 ! 62 5A
04 04 + 45 4E 36 4h J 12 D1
05 05 | 66 4F 37 45 K 13 D2
06 06 & 67 50 38 46 L 14 D3
07 07 $ 53 5B 39 47 M 15 D4
08 10 * 47 5C 40 50 N 16 D5
09 11) 52 5D 41 51 0] 17 D6
10 12 H 77 5E 42 52 P 20 D7
11 13 -1 76 5F 43 53 Q 21 D8
12 14 - 46 60 b4 54 R 22 D9
13 15 / 50 61 45 55 none 75 EO
14 16 , 56 6B 46 56 S 23 E2
15 17 % 63 6C 47 57 T 24 E3
16 20 _ 65 6D 48 60 i) 25 E4
17 21 > 73 6E 49 61 \ 26 E5
18 22 ? 71 6F 50 62 W 27 E6
19 23 00 7A 51 63 X 30 E7
20 24 it 60 7B 52 64 Y 31 E8
21 25 @ 74 7C 53 65 A 32 E9
22 26 ‘ 70 7D 54 66 0 33 FO
23 27 = 54 7E 55 67 1 34 F1l
24 30 " 64 7F 56 70 2 35 F2
25 31 ¢ 61 4A 57 71 3 36 F3
26 32 A 01 Cl 58 72 4 37 F4
27 33 B 02 C2 59 73 5 40 F5
28 34 c 03 c3 60 74 6 41 F6
29 35 D 04 Ch 61 75 7 42 F7
30 36 E 05 c5 62 76 8 43 F8
31 37 F 06 Cé 63 77 9 44 F9
A-16 60495500 C

DIAGNOSTIC MESSAGES B

Every diagnostic message generated by the 8-bit significance and appropriate user action are also

subroutines is printed in the dayfile and, where shown.

possible, in the job output file as well. When the

call occurs in a FORTRAN Extended 4 or COBOL

program, appropriate traceback information is ERROR DETECTED BY xname - cause - message

attempted. The general format of a diagnostic

message is shown in figure B-1. xname Name of the 8-bit subroutine that
’ detected the error

A typical set of error messages occuring in a

FORTRAN Extended 4 program, including appropriate cause Probable cause of the error

traceback information giving the calling routine

name and the source program line number, is shown message Diagnostic message as listed in this

in figure B-2. appendix

Dayfile diagnostic messages generated by the B8-bit

subroutines are given in table B-1l. Message Figure B-1. Diagnostic Message Format

PARAMETER-FILE NOT DECLARED
AT LINE 7

ERROR DETECTED BY XFILE -
CALLED FROM BJC8SB

ERROR DETECTED BY XWRITE
CALLED FROM BJC8SB

ERROR DETECTED BY XMOVE
CALLED FROM BJ(C8SB

ERROR DETECTED BY XWRITE
CALLED FROM BJCBSB

PARAMETER-FILE NOT SPECIFIED AS WRITE MODE
AT LINE 12

PARAMETER-UNRECOGNIZED MOVE-COMPARE TYPE
AT LINE 38

I-0 - UNRECOVERABLE ERROR ON WRITE FILE
AT LINE 33 ’

Figure B-2.

Sample Error Messages Occurring in a FORTRAN Extended 4 Program

TABLE B-1. DAYFILE DIAGNOSTIC MESSAGES
Messages Significance Action Issued By
BAD OFFSET IN PARAMETER An illegal bit or byte position Specify the correct bit or XREAD,
DESCRIPTOR was specified. byte position. XWRITE
BAD SYNTAX IN Z, S, N, The data being converted is in Correct data format and XREAD,
OR P FIELD illegal format. and rerun. XWRITE
BIT SPECIFICATION The w in i/w item locator format in a Change position specifi- XREAD,
ILLEGAL FOR NON-BIT selector expression can be specified cation to i form to XWRITE
FIELD only if the T field is B. indicate character
position.

BLKSIZE EXCEEDS 32760 The BLKSIZE parameter in the XFILE Reduce the value of XREAD,
BYTES call is too big. BLKSIZE. XWRITE
BLKSIZE NOT SPECIFIED The BLKSIZE parameter in the XFILE Specify BLKSIZE parameter. XFILE

call has been omitted.
BLOCK SHORTER THAN The input IBM record is in the wrong Check for tape error or XREAD
V-HEADER format. Block descriptor word con- incorrect RECFM specifi=-

tents or record descriptor word con- cation.

tents do not agree with actual block/

record size.

60495500 C B-1

TABLE B~1. DAYFILE DIAGNOSTIC MESSAGES (Contd)

Messages Significance Action Issued By
CONVERSION STRINGS Conversion strings can be nested only Reduce the number of XREAD,
NESTED TOO DEEPLY to a depth of seven levels. levels. XWRITE
DOUBLY SPECIFIED A duplicate parameter was specified Delete or correct the XFILE
PARAMETER IN FILE in the file string parameter of the parameter.

STRING XFILE call.
EMPTY BLOCK IN No data is present in the input block. Rewrite the file. XREAD
VS~RECORD
FILE NOT DECLARED The wrong file number was specified Specify the correct file. XFILE

in the XFILE call or the file decla-

ration is missing on a FORTRAN program

statement.
FILE NOT SPECIFIED The USE parameter in the XFILE call Specify USE=R in the XFILE XREAD
AS READ MODE has not been specified as R. call.
FILE NOT SPECIFIED AS The USE parameter in the XFILE call Specify USE=W in the XFILE XWRITE
WRITE MODE has not been specified as W. call.
FILE PARAMETER IS NOT The file name is misspelled in an Check the file name. XFILE
A FILE NAME XFILE call or does not appear in

the COBOL SELECT clause.
FILE STRING DOES NOT The file string parameter in the XFILE Insert a left parenthesis. XFILE
BEGIN WITH -(- call must always begin with a left

parenthesis.
FILE STRING DOES NOT The file string parameter in the XFILE Insert a right parenthesis. XFILE
TERMINATE WITH ~)- call must always terminate with a

right parenthesis.
FILE TYPE NOT The FT specification in the file Specify file type. XFILE
SPECIFIED string parameter in an XFILE call has

been omitted.
FILE USAGE NOT The USE specification in the file Specify file usage. XFILE
SPECIFIED string parameter in an XFILE call has

been omitted.
FIRST CHARACTER OF Conversion strings must always begin Insert left parenthesis. XREAD,
CONVERSION STRING IS with a left parenthesis. XWRITE
NOT ~(-
FIRST ITEM IN The iTm field in the selector express-— Correct the iTm field. XREAD,
SELECTOR -~ EXPRESSION ion is specified incorrectly. Eliminate the m specifi- XWRITE
NOT RECOGNIZED cation if the data type

cannot be variable in
length.
ILLEGAL FIRST ITEM The T in the Tml field is specified Correct the type specifi- XREAD,
TYPE incorrectly. cation. XWRITE
ILLEGAL LENGTH Length parameters in COBOL must be Correct the length param— XCOMP,
PARAMETER DESCRIPTION declared as COMPUTATIONAL-1. eter. XMOVE,
XFILE

ILLEGAL SECOND ITEM The T in the Tm2 field is specified - Correct the type specifi- XREAD,
TYPE incorrectly. cation. XWRITE
INCOMPLETE VS-RECORD Data is missing from the input file. Rewrite the file. XREAD
AT END-OF-DATA The length specified in the header

information of the last record does

not agree with actual record length.

B-2 60495500 C

60495500 C

TABLE B-1. DAYFILE DIAGNOSTIC MESSAGES (Contd)

Messages Significance Action Issued By
INCONSISTENT PARAMETERS The file string parameters are incon- Correct the file string XFILE
IN FILE STRING sistent in XFILE call. parameters.

INDEFINITE SOURCE VALUE A floating-point source item has in- Check the source record XWRITE
NOT REPRESENTABLE definite value. for bad data.
INDEFINITE VALUE FOR An item to be stored in integer desti- Check the source record XWRITE
INTEGER DESTINATION nation field has indefinite value. for bad data.
FIELD
INFINITE SOURCE VALUE A floating-point source item has Check the source record XWRITE
NOT REPRESENTABLE infinite value. for bad data.
INFINITE VALUE FOR An item to be stored in integer desti- Check the source record XWRITE
INTEGER DESTINATION nation field has infinite value. for bad data.
FIELD
INTEGER VALUE TOO The receiving field does not contain Increase the length speci- XREAD,
LARGE FOR FIELD enough characters to represent all fication of the receiving XWRITE
digits in the source field. field descriptor.
INVALID DATA TYPE Legal data types are A for ASCII, C Change T to the proper XREAD,
for EBCDIC, and X for display code. data type. XWRITE
INVALID PARAMETER The parameter value in the file string Correct the parameter XFILE
VALUE IN FILE STRING of an XFILE call is incorrect. value in the file string.
Check the punctuation.
KEYWORD NOT FOLLOWED An equals sign (=) must follow KEYWORD Insert an = sign before XFILE
BY = IN FILE STRING in file-string. the keyword in the file :
string.
LITERAL STRING IS TOO Literal strings in a selector express- Correct the literal XREAD,
LONG ion are limited to 80 characters. string. XWRITE
LRECL NOT SPECIFIED The necessary LRECL specification in a Specify the LRECL XFILE
file-string parameter of an XFILE call parameter.
was omitted.
LRECL TOO SMALL FOR The actual record length does not Rewrite the file. XREAD
V-RECORD HEADER agree with length specified in record
descriptor word (RDW).
LRECL TOO LARGE FOR If the blocking type is not spanned, Correct the BILKSIZE or XFILE
BLKSIZE LRECL must be less than BLKSIZE. the LRECL parameter.
M SPECIFICATION ILLEGAL The m in Tml or Tm2 is incorrectly Eliminate the m specifi- XREAD,
FOR DATA TYPE specified. If the data cannot be cation. XWRITE
variable in length, m must be omitted.
MISSING LENGTH The length parameter is missing from Specify the length param=- XPACK,
PARAMETER a FORTRAN or COMPASS call to XPACK, eter. XPAND,
XPAND, XMOVE, OR XCOMP. XMOVE,
XCOMP
MISSING PARAMETER LIST The subroutine called requires a Specify the parameter Any
parameter list. list. 8-bit
sub-
routine
MISSING RELATIONAL A relationship must be stated between Specify the correct XREAD,
OPERATOR IN SELECTOR- two items in a selector-expression. format for a selector XWRITE
EXPRESSION expression.
B-3

TABLE B-1. DAYFILE DIAGNOSTIC MESSAGES (Contd)

Messages Significance Action Issued By
MISSING RIGHT A string parameter must always end Insert right parenthesis. XFILE,
PARENTHESIS with a right parenthesis. XREAD,

XWRITE
MISSING RIGHT Punctuation is missing in a conversion Insert the necessary XREAD,
PARENTHESIS OR string. punctuation. XWRITE
SEMICOLON
MISSING RIGHT STRING The literal string terminator * or § Insert the required string XREAD,
DELIMITER is missing. delimiter. XWRITE
MISSING SEPARATOR A conversion item must be followed by Insert the necessary XREAD,
AFTER CONVERSION ITEM a comma, semicolon, or right paren- separator. XWRITE
thesis, depending upon circumstances.
MISSING SOURCE-1 The calling sequence parameter list is Correct the parameter XCOMP,
PARAMETER incomplete. list. IMOVE
MISSING SOURCE-2 The parameter list in calling sequence Correct the parameter XCOMP,
OR DESTINATION is incomplete. list. IMOVE
MISSING LEFT STRING A literal string is missing the * or § Insert the required XREAD,
DELIMITER delimiter. string delimiter. XWRITE
MORE DATA AFTER RECORD The actual record length in input file Correct the record length. XREAD
IN V-UNBLOCKED FILE exceeds that specified in record
descriptor word (RDW).
MORE DATA AFTER VS~ An actual segment record length in the A bad file copy might XREAD
RECORD SEGMENT input file exceeds that specified in have occurred. Recopy
the segment descriptor word (SDW). the file.
NO FILE STRING GIVEN The file-string parameter is missing Specify the file-string XFILE
in an XFILE call. parameter.
NO PARAMETERS The necessary parameters were not Specify the required Any
specified. parameters. 8-bit
sub-
routine
NO PARAMETERS SUPPLIED The called subroutine requires param- Specify the parameters. Any
TO SUBROUTINE eters. 8-bit
sub-
routine
NO STATUS PARAMETER The status parameter is required. Specify the status param— XCOMP
eter.
NO WORKING STORAGE A workspace parameter in XFILE calling Specify the working storage | XFILE
AREA PROVIDED sequence is required. area.
NUMERIC LITERAL The exponent value cannot exceed 511. Decrease the exponent value XREAD,
EXPONENT .GE. 512 and rerun. XWRITE
NUMERIC LITERAL OUT The numeric literal has infinite Correct the literal. XWRITE
OF RANGE (INFINITE) value.
PARAMETER IS NOT A DATA A literal was supplied for a data- Replace the literal with Any
ITEM jitem in COBOL. a variable or array name. 8-bit
sub-
routine
RECFM NOT SPECIFIED The RECFM parameter was omitted from Specify the RECFM XFILE
the file-string of an XFILE calling parameter.
sequence.
B-4 60495500 C

TABLE B-l. DAYFILE DIAGNOSTIC MESSAGES (Contd)

Messages

Significance

Action

Issued By

RELATIONAL OPERATOR
NOT RECOGNIZED

SECOND SELECTOR-
EXPRESSION ITEM NOT
RECOGNIZED

SELECTOR-EXPRESSION
NOT TERMINATED BY
COLON

SIZE PARAMETER NOT
NUMERIC TYPE

SOURCE CHARACTER NOT
0 OR 1, TO BIT STIRING

SOURCE EXPONENT
TOO LARGE, NOT
REPRESENTABLE

STATUS RETURN NOT
COMP-2

STRING NOT IN NUMERIC
SYNTACTIC FORM

SYNTAX...NO DIGIT
AFTER -E- IN
NUMERIC LITERAL

TEST FIELD EXTENDS
PAST END OF RECORD

TEST FIELD NOT IN
RECORD, ON LEFT

TEST FIELD NOT IN
RECORD, ON RIGHT

TOO MANY DIGITS IN
Z, S, N, OR P FIELD
- OVERFLOW

TOO MANY PARAMETERS

UNRECOGNIZED CODE SET
SPECIFIED

60495500 C

An illegal relationship mnemonic has

been specified in a selector express-—
ion. Legal mnemonics are LE, LT, EQ,
NE, GT, and GE.

The second iTm field in a selector
expression is in illegal format.

The selector-expression must be
terminated by a colon.

In a COBOL calling sequence to XFILE,
the size parameter must be described
as numeric.

In a character-to-bit conversion item,
the source character can be only 0 or
1.

The exponent of the floating point
number in the source field is too
large, and the conversion cannot be
performed.

In a COBOL calling sequence, the
status parameter must be declared
as a COMPUTATIONAL-2 item.

The character string is not in the
correct numeric literal format.

Numeric literals in value fields of
selector expressions must fit the
numeric literal definition.

The locator field specified in a
selector expression begins within
the record but extends beyond its
logical length.

The locator field specified in a
selector expression references a
character preceding the first

character in the logical record.

The locator field specified in a
selector expression references a
character beyond the last one in
the logical record.

The magnitude of the number to be
stored in the field exceeds the
number of digits specified.

Extraneous parameters appear in the
calling sequence.

The legal code sets are ASCII (A),
EBCDIC (C), or display code (X).

Specify a legal relational

mnemonic.

Correct the format of iTm.

Insert the required colon.

Correct the size parameter.

Specify a source character

of 0 or 1.

Reduce the exponent value.

Correct the status param-

eter.

Correct the format.

Correct the format of
the numeric literal.

Reduce length specifi-
cation of locator field
descriptor.

Decrease magnitude of
1 in -iTM.

Reduce the value of
1 in iTm.

Increase the length
specification of the
destination field
descriptor.

Remove the unncessary
parameters.

Specify the correct
code set.

XREAD,
XWRITE

XREAD,
XWRITE

XREAD,
XWRITE

XFILE

XREAD,
XWRITE

XREAD,
XWRITE

Any
8~bit
sub-
routine

XREAD,
XWRITE

XREAD,
XWRITE

XREAD,
XWRITE

XREAD,
XWRITE

XREAD,
XWRITE

XREAD,
XWRITE

Any
8-bit
sub~
routine

XMOVE,
XCOMP

B-5

TABLE B-1. DAYFILE DIAGNOSTIC MESSAGES (Contd)

Messages Significance Action Issued By
UNRECOGNIZED KEYWORD A file string parameter in an XFILE Correct the file string XFILE
IN FILE STRING call is misspelled. parameter.

UNRECOGNIZED MOVE- The xy parameter is incorrectly Correct the xy parameter. IMOVE,
COMPARE TYPE specified. XCOMP
UNRECOVERABLE ERROR ON A parity error has occurred. Follow site-defined XWRITE
WRITE FILE procedure for reporting
software failure or
operational problems.
V-BLOCK HAS SHORT The actual record size is less than Rewrite the file, a file XREAD
RECORD FRAGMENT that specified in the record des- error has occurred.
criptor word (RDW).
V-BLOCK LENGTH EXCEEDS The actual record size exceeds the Specify larger block size. XREAD
BLOCK SIZE specified block size.
V-RECORD LENGTH LESS Variable records must contain 4 bytes Rewrite the tape. XREAD
THAN 4 BYTES for the record descriptor word (RDW).
VALUE TOO LARGE FOR A numeric value contains too many Increase the length XREAD,
FIELD WIDTH digits and/or symbols for the receiv- specification of the re- XWRITE
ing field. ceiving field descriptor.
VS-RECORD FINAL SEGMENT The final segment of a variable spanned Rewrite the tape. XREAD
MISSING logical record is missing from the in-
put file.
VS-RECORD FOUND IN TYPE A segment descriptor word (SDW) was Rewrite the tape. XREAD
V FILE found in a file that was not spanned.
VS-RECORD INITIAL The first segment of a spanned logical Rewrite the tape. XREAD
SEGMENT MISSING record is missing from. the input file.
WORKING STORAGE AREA The size of the workspace buffer Correct the workspace XFILE
TOO SMALL specified in the XFILE call is too buffer size.
small.
WSA NOT ALIGNED ON The workspace parameter in a COBOL Declare the working XFILE
WORD BOUNDARY calling sequence to XFILE must have a storage area as level
beginning character position of O. of the item or use the
SYNCHRONIZE clause for
proper alignment.
B-6 60495500 C

GLOSSARY

ASCII -
The American Standard Code for Information
Interchange, used under NOS as the ASCII
128-character set with either 6- or 12-bit
characters and under NOS and NOS/BE as the
ASCITI 95-character set with 8-bit character
codes contained in 12-bit bytes.

ASCII Graphic 63-Character Set -
A subset of the ASCII 128-character graphic and
control set. The % character and related card
code do not exist.

ASCII Graphie 64-Character Set -
A subset of the ASCII 128-character graphic and
control set.

ASCII Graphic 95-Character Set -
Consists of all the characters in the ASCII
128-character set that can be printed at a CDC
line printer. Only 12-bit code ASCII files can
be printed using the ASCII graphic 95-character
set. The 95-character set is represented by
the 12-bit codes 0040g through 0176g.

ASCII Graphic 128-Character Set -
Consists of all letters (uppercase and
lowercase), digits, special symbols, and device
control characters.

ASCII 8-Bit Code -
Eight bits stored in an 8-bit byte. IBM data
is ASCII 8/8.

ASCII 12-Bit Code -

The ASCII 7-bit code (as defined by ANSI
Standard X3.4-1977) right-justified in a 12-bit
byte. Assuming that the bits are numbered from
the right, bits 0 through 6 contain the ASCII
code, bits 7 through 10 contain zeros, and bit
11 distinguishes the 12-bit ASCII 0000g code
from the end-of-line byte. The 12-bit codes
are 0001g through 0177g and 4000g.

Basic Access Methods (BAM) -
A file manager that processes sequential and
word addressable file organizations. (See
CYBER Record Manager.)

Beginning-of-Information (BOI) -
The start of the first user information in a
file.

Block -
The term block has several meanings depending
on context. On tape, a block is information
between interrecord gaps on tape. CYBER Record
Manager defines blocks depending on organiza-
tion. Valid block types are I, C, K, and E.

60495500 C

Boundary -

A file boundary is a physical indication that
marks a logical division within a sequential
file. The start of the first user record and
individual user records is always recognized;
other boundaries are affected by the record and
blocking type and the file storage device. A
word boundary is the first character position
in a central memory word.

Byte -
A group of Dbits. When used for encoding
character data, a byte represents a single
character.

Character -
A letter, digit, punctuation mark, or
mathematical symbol forming part of ome or more
of the standard character sets.

Character Set -
A set of graphic and/or control characters that
is specified at the time the operating system
is installed. (See Code Set.)

Checksum -
A value used to verify that the content of a
record (excluding prefix tables) was copied
correctly.

Code Set -
A set of codes used to represent each character
within a character set. (See Character Set.)

Collating Sequence -
The sequence in which the character codes that
are acceptable to a computer is ordered for
purposes of sorting, merging, and comparing.

Conversion Item -
A conversion string component that causes a
data item in a CDC or IBM input record to be
converted to an IBM or CDC format and
transmitted to an output record. Also refers
to a nested conversion string.

Conversion Specification -
A conversion string component consisting of an
optional selector expression and a list of
associated conversion items.

Conversion String -
A string of one or more conversion

specifications; used as dinput parameters for
the XREAD, XREREAD, and XWRITE subroutines.

COPY8P Utility -
A utility program used to convert IBM print
files to CDC compatible print files.

CYBER Record Manager (CRM) -

A generic term relating to the common products
BAM and AAM that run under NOS and NOS/BE
operating systems and that allow a variety of
record types, blocking types, and file
organizations to be created and accessed. (See
Basic Access Methods.) The COPY8P utility does
not make use of the CYBER Record Manager.

Default -
A value assumed in the absence of a

user—-specified value declaration for the
parameter involved. Values for many defaults
are defined by the installation.

Display Code -
A 6-bit code representing a 63-character or
64-character computer character set.

EBCDIC -
The Extended Binary Coded Decimal Information
Code representing a set of 256 characters as
8-bit codes.

End-of-Information (EOI) -
CRM defines end-of-information in terms of the
file organization and file residence, as shown
in table C-1.

TABLE C-1. END-OF-INFORMATION BOUNDARIES

File File Physical
Organization Residence Position
Sequential Mass storage After the last

user record

After the last
user record and
before any file
trailer labels

Labeled tape
in 8I, I, S,
or L format

Unlabeled
tape in SI
or I format

After the last
user record and
before any file
trailer labels

Unlabeled
tape in 8 or
L format

Undefined

Entry Point -
A location within a program to which control
can be transferred from another program. Each
entry point has a unique name.

Field -
A portion of a word or record; a subdivision of
information with a record; also a generic entry
in a file information table identified by a
mnemonic.

Field Length -
The area in central memory allocated to a
particular job; the only part of central memory
that a job can directly access. Contrasts with
mass storage space or tapes allocated for a job
and on which user’s files reside.

File -
A logically related set of information; the
largest collection of information that can be
addressed by a file name. A file starts at
beginning-of-information and ends at end-of-
information. Every file in use by a job must
have a logical file name.

FILE Control Statement -
A control statement that supplies file
information table values. Basic file
characteristics such as organization, record
type, and description can be specified in the
FILE control statement.

File Information Table (FIT) -
A table through which a user program
communicates with BAM. For direct processing
through BAM, you must initiate establishment of
this table. All file processing executes on
the basis of information in this table.

File Organizer and Record Manager (FORM) -
A file organization and record management
utility callable by control statements.

Folding -
The process of mapping more than one source
character to a single destination character.

Item Locator -
A conversion string component that specifies
which data fields in the current source record
are to be used in a relational test. (See
Selector Expression.)

Keyword -
A word that has special meaning to the 8-bit
subroutines when used in a specific context.

Literal -
A character string, the wvalue of which is
implied by the ordered set of characters that
make up the string.

Logical File Name (1fn) -
The name given to a file being used by a job.
The name must be unique for the job and must
consist of one to seven letters or digits.

Mass Storage -
A disk pack that can be accessed randomly.
Extended memory is not considered mass storage.

Module -
A specific function of the 8-bit subroutines
package. Unneeded modules can be eliminated in
order to conserve space in the field length.

Next Bit -
The bit succeeding the last bit read or written.

Next Record -
The record succeeding the last record read or
written.

Noise -
The number of characters the tape drivers
discard as being extraneous noise rather than a
valid record.

60495500 C

Partition -
CRM defines a partition as a division within a
file with sequential organization. Generally,
a partition contains several Trecords or
sections. Implementation of a partition
boundary is affected by file structure and
residence, as shown in table C-2.

Physical Record -
On magnetic tape, information between inter-
record gaps. A physical record need not
contain a fixed amount of data.

Record -

The 1largest collection of information passed
between CYBER Record Manager and a user program
in a single read or write operation. You
define the structure and characteristics of
records within a file by declaring a record
format. The beginning and ending points of a
record are implicit in each format.

Record Type -
CYBER Record Manager defines eight record types
established by the RT field in the file
information table.

Section -

CRM defines a section as a division within a
file with sequential organization. Generally,
a section contains more than one record and is
a division within a partition of a file. A
section terminates with a physical repre-
sentation of a section boundary, as shown in
table C-3.

The NOS/BE operating system equates a section
with a system—-logical-record of level 0 through
16g.

Selector Expression -
A conversion specification component that
indicates a relational test is to be made. If
the result of the test is true, all conversion
items assoclated with the selector expression
are executed. If the result is false, all
associated conversion items are ignored.

Sequential File -
A file with records stored in the physical
order in which they were written. No logical
order exists other than the relative physical
record position.

Simple Item Conversion -
A conversion string component that performs
data conversions to or from IBM format. (See
Conversion Item.)

Working Storage Area (WSA) -
An area within the user’s field length intended
for receipt of data from a file or transmission
of data to a file.

XCoMP -
A utility subroutine that compares two
character strings not necessarily of the same
character set,

XFILE -
An input/output subroutine that defines the
input/output file. No operation is performed
on the file by XFILE; however, workspace and
other specific information is defined.

60495500 C

PARTITION BOUNDARIES

Device

Physical Boundary

PRU
device

A short PRU of
level 0 containing
a one-word deleted
record pointing
back to the last I
block boundary,
followed by a con-
trol word with a
flag indicating a
partition boundary

A short PRU of
level O containing
a control word
with a flag indi-
cating a partition
boundary

A short PRU of
level 0 followed by
a zero—-length PRU
of level 17g

A zero-~length PRU
of level number 17g

Sor L
format
tape

A separate tape
block containing as
many deleted rec-—
ords of record
length 0 as re-
quired to exceed
noise record size,
followed by a de-
leted one-word
record pointing
back to the last I
block boundary,
followed by a con-
trol word with a
flag indicating a
partition boundary

A separate tape
block containing as
many deleted rec-
ords of record
length 0 as re-
quired to exceed
noise record size,
followed by a con-
trol word with a
flag indicating a
partition boundary

A tapemark

A tapemark

Any
other
tape
format

Undefined

TABLE C-3.

SECTION BOUNDARIES

Device

Record
Type
(RT)

Block
Type
(BT)

Physical
Representation

PRU
device

A deleted one-word
record pointing
back to the last I
block boundary
followed by a con-
trol word with
flags indicating a
section boundary
At least the con-
trol word is in

a short PRU of
level 0

A control word with
flags indicating a
section boundary.
The control word

is in a short PRU
of level O

A short PRU with a
level less than
17g

Undefined

SorL
format
tape

A separate tape
block containing
as many deleted
records of record
length 0 as re-
quired to exceed
noise record size,
followed by a de~
leted one-word
record pointing
back to the last I
block boundary,
followed by a con-
trol word with
flags indicating a
section boundary

A separate tape
block containing
as many deleted
records of record
length 0 as re-
quired to exceed
noise record size,
followed by a con-
trol word with
flags indicating a
section boundary

Undefined

Undefined

Any
other
tape
format

Undefined

XMOVE -

A utility subroutine that moves a designated
character string from a source location to a
destination location, translating from one
character code to another during the move.

XPACK -

A utility subroutine that compresses 8-bit byte
character data from a 5-character, 12-bit byte
per word internal format containing 8-bit ASCII
or EBCDIC characters. When the data is packed,
seven: 8-bit character codes are placed
right-justified in a word; and the leftmost 4
bits, as well as any unused character positions
are set to zero.

XPAND -

A utility subroutine that reverses the process
performed by XPACK and unpacks the 8-bit byte
compressed string into words coantaining 12-bit
character bytes.

XREAD -

An input/output subroutine used to read a next
record from the file workspace area, convert
the record (if specified in the calling
sequence), and place the record in a
destination area in memory.

XREREAD ~

An input/output subroutine used to reread the
current record, possibly with a different
conversion specification.

XWRITE -

An input/output subroutine that takes data from
a record area in memory, converts the data (if
so specified), and writes the data in the file
workspace area.

60495500 C

IBM TAPE FILE RECORD AND BLOCK FORMATS

M

You can use the XREAD/XREREAD and XWRITE
subroutines to read and write files in IBM
compatible format. Parameters are required for the
XFILE routine to describe the record and blocking
format to be used. .These parameters correspond to
the data control block subparameters RECFM, BLKSIZE
and LRECL on a data definition statement in IBM Job
Control Language.

BLKSIZE PARAMETER

The BLKSIZE parameter specifies length, in number
of 8-bit bytes, of the longest block expected,
regardless of format. For variable format records,
the specification must include space for a 4-byte
block header. The maximum value for BLKSIZE is
32760.

LRECL PARAMETER

The LRECL parameter specifies length, in number of
8-bit bytes, of the longest logical record
expected. For wvariable format records, the
specification must include space for a 4-byte
record header. The maximum value for LRECL is
32756 for variable format records and 32760 for
fixed and unspecified format records. LRECL must
not exceed BLKSIZE for all formats except variable
spanned and variable blocked spanned.

RECFM PARAMETER

The RECFM parameter describes the physical arrange-
ment of records in blocks and in files. The record/
block formats are fixed, variable, and unspecified.

FIXED RECORD/BLOCK FORMAT

The fixed record/block formats include fixed (F),
and fixed blocked (FB) formats.

Fixed Format

With F format, every record is exactly LRECL 8-bit
bytes long. Each block contains exactly one
record. The F format is shown in figure D-1.

Fixed Blocked Format

With FB format every record is exactly LRECL bytes
long. Each block contains an integral number of
records. The total block length must not exceed
BLKSIZE. Figure D-2 shows the FB format.

VARIABLE RECORD/BLOCK FORMAT
The variable record/block formats include variable

(V), variable blocked (VB), variable spanned (VS),
and variable spanned blocked (VSB) formats.

60495500 C

} Block {
Record

b LRECL {

pe——————BLKSIZE———]

Figure D=1. Fixed Record/Block Format

! Block |
Logical Logical [_ _ __ Logical
Record Record Record

f— LRECL——se— LRECL—=] f—LRECL—»|
fe————— Block Length < BLKSIZE —

Figure D-2. Fixed Blocked Format

Variable Format

With V record and block format, the maximum record
length is LRECL-4 bytes (32756), because variable
length records are prefixed by a 4-byte record
descriptor word (RDW) as shown in figure D-3. Each
block contains exactly one record, prefixed by a
block descriptor word (BDW) as shown in figure D-4.

I‘——_ Record Length < LRECL — o]

} RDW -l

1
Record a0

Length Record

T---2 Bytes of Binary Zero

Binary Length of This Record

Figure D-3. Variable Record Format

| Block |

je————— Block Length < BLKSIZE =]

} BDW |

T
00 RDW+Record

Block
Lquth

t—z Bytes of Binary Zero

Binary Length of This Block

}=e—————Record Length < RECL—————|

b SbwW =]

Record Record
Length ¢ 00 Segment

t—1 Byte of Binary Zero
Segment Code (1 Byte)

Binary Length of This Segment

Figure D-4. Variable Block Format

Variable Blocked Format

The record format for VB type records is the same
as the record format for V type records. The
maximum record length is LRECL-4 bytes (32756),
because the record is prefixed by a 4-byte RDW as
shown in figure D-3.

Each VB block can contain several records. The
total block length cannot exceed BLKSIZE.
Figure D-5 shows the VB record and block format.

Variable Spanned Format

The variable spanned format makes the best use of
blocks for wvariable 1length records and allows
writing of logical records exceeding BLKSIZE. The
record length cannot exceed LRECL.

The maximum value for LRECL for VS format is 32752,
because both a block descriptor word and a segment
descriptor word (SDW) are required. A record
larger than the remaining block size (less than
BLKSIZE-8) can be split into two or more blocks.
SDW prefixes each record segment as shown in
figure D-6.

Figure D-6. Variable Spanned Format

Included in SDW is a l-byte segment code with the
following values:

0 Complete 1logical record; for code 0, the
SDW is exactly one RDW

1 First segment of a multiple-segment record

2 Last segment of a multiple-segment logical
record

3 Middle segment of a multiple-segment
logical record

Each VS block contains exactly one record segment.

Variable Spanned Blocked Format

The VSB record and block format allows writing of
logical records exceeding BLKSIZE. The record
length must not exceed LRECL. LRECL for VSB format
is 32752, because a record in VSB format must be
prefixed by both a block size descriptor word and a
segment descriptor word.

Several record segments can occupy a block. An
attempt is made to fill the block to BLKSIZE; the
attempt fails if the remaining space is less than
or equal to 4 bytes, because at least one data byte
must be written. If the attempt fails, the current
block is ended and a new block is started. The VSB
format is shown in figure D-7.

— Block-——— ~— -
Block Record Record
Length 00 Lengthy 00 Recordq ———— Lengthy, 00 Recordy,
~" ~~ ~
BDW RDW RDW

~g-n——Record Lengthq < LRECL——=

—~——Record Lengthp < LRECL~iim

et Block Length < BLKSIZE

Figure D-5. VB Record and Block Format

60495500 C

- BLOCK

]———Segment Code

’— Segment Code

Block Record Record Record Record
00 Cq 0 | MY e = ¢, 8]
Length Lengthq Segmentq Lengthp Segment,
~ N N— -~ -
BDW SDW SDW

~#———————Record Lengthy ——————— ==

—~———————Record Length, ————m

— Block Length < BLKSIZE

Figure D-7. Variable Spanned Blocked Format

UNSPECIFIED FORMAT

The unspecified format includes undefined length
records (U), and undefined length blocked records
(UB).

U format records can be any nonzero length up to
LRECL. Each record occupies one block as shown in
figure D-8.

f Block |

Record

f < LRECL |

} < BLKSIZE |

Figure D-8. Unspecified Format Records

60495500 C

UB records are not an IBM record format but are
included to allow nonstandard record handling.
Records can be any nonzero length up to LRECL, and
LRECL can be smaller than BLKSIZE. Blocking and
deblocking is handled as follows:

® VWriting

The length of a converted record is examined
for fit in the current block. If space for the
record exists, the record is appended to the
data already in the block. If space does not
exist, the block is written out and the record
is used to start the next block.

@ Reading

If at least LRECL characters remain in the
current block, LRECL characters are delivered
to you. If more than zero but fewer than LRECL
characters remain, the remaining characters are
delivered to you.

Reading and writing are not parallel. In general,
successive reads on a UB format file might not
return the same records that were written.

CDC AND iIBM DATA FORMATS E

This appendix discusses the CDC and 1IBM data
formats that can be processed by the 8-bit
subroutines.

IBM DATA FORMATS

The data formats found in IBM format files include
character data and numeric data.

CHARACTER DATA

EBCDIC character codes are stored in IBM systems in
8-bit bytes. Each bit position within a byte is
assigned a bit number. Numbers are assigned low to
high, left to right. IBM EBCDIC bit numbers are EQ
through E7 as shown in figure E-1.

EBCDIC:

E0 E1 E2 E3 E4 E5 E6 E7

ASCII:

A8 A7 A6 A5 A4 A3 A2 A1

Figure E-1. IBM Storage of 8-bit
EBCDIC and ASCII Codes

\
ASCII character codes are stored in IBM systems in
8-bit bytes. Bit numbers are assigned within a
byte low to high, left to right. IBM ASCII bit
numbers are Al through A8 as shown in figure E-1.

NUMERIC DATA

Eight-bit bytes are grouped in IBM systems to
represent numeric data. A double byte (16 bits) is
referred to as a half-word; four bytes comprise a
whole-word (full-word); eight bytes are a
double~word.

IBM systems wuse four forms of numeric data:
fixed-point Dbinary, floating-point hexadecimal,

packed decimal, and decimal signed numeriec. The
numeric data formats are shown in figure E-2.

Fixed-Point Binary

Fixed-point values can be written in half-word,
full-word, or double-word format consisting of a

60495500 C

single sign bit followed by the binary field. This
format can also be referred to as signed integer
format. Negative values are represented in two’s
complement form.

Floating-Point Hexadecimal

Floating-point data occupies short, long, and
extended-precision formats. Each form uses the
first bit as the sign of the fractionm, the next
seven bits to represent a characteristic, and the
remaining bits to represent the fraction expressed
in hexadecimal digits. The value expressed is the
product of the fraction and the number 16 raised to
the power of the expomnent.

The greatest precision is achieved when a
floating-point number is normalized. The fraction
part of the floating-point number has a nonzero,
high-order, hexadecimal digit produced by shifting
the fraction left until the high~order, hexadecimal
digit is nonzero and reducing the characteristic by
the number of hexadecimal digits shifted. A zero
fraction cannot be normalized.

Normalization applies to hexadecimal digits; thus
the three high-order bits of a normalized number
can be zero.

Packed Decimal

Because decimal numbers can be expressed by four
bits, two l-digit decimal values can be packed into
one 8-bit byte. Variable length fields are used to
contain packed decimal values; the vrightmost four
bits of the low-order byte of the field contains
the value.

The EBCDIC sign code generated is 1101 for minus
and 1100 for plus.

Packed decimal data is unot the same as 8-bit
character data and cannot be treated as such.

Decimal Signed Numeric

Also known as Zoned Decimal format, this
representation 1is required for character set
sensitive input/output devices. A zoned format
number carries the sign in the leftmost four bits
of the low order byte. The zoned format is not
used in decimal arithmetic operatiouns.

CDC DATA FORMATS

CDC data can be formatted in internal 6-bit byte
display code, internal 12-bit byte code, and
arithmetic data codes.

Fixed=Print
Binary S
01 15
Half~word Binary - 2 Bytes (16 Bits)
S
01 31
Full-word Binary — &4 Bytes (32 Bits)
S
01 63
bouble-word Binary — 8 Bytes (64 Bits)
Floating-Point
Hexadecimal S Chafact Fraction (24 Bits)
teristic
01 7 3
Floating=point Number - 4 Bytes (32 Bits)
s | Charac- Fraction (56 Bits)
teristic
01 7 - 63
Long floating-point - 8 Bytes (64 Bits)
s | Charac= 56 Bits
teristic
01 7 High Order Part 63
56 Bits
0 Unused 7 Low Order Part 63
Extended-precision (or double) Floating-point — 16 Bytes (128 Bits)
Packed Decimal High-Order Byte Low-Order Byte
~*\ N*\
Digit Digit Digit \\\\ Digit Digit Digit Sign
Decimal Signed Byte Byte
Numeric
Zone Digit Zone K\ K\ Digit Zone Digit Sign Digit
Figure E~2. IBM Numeric Data Formats
E-2 60495500

INTERNAL STORAGE OF 6-BIT
DISPLAY CODE

Six-bit coded
central memory unit of the CDC
bytes, ten bytes to a 60-bit word. Information is
stored within a byte as shown in figure E-3.
Within a word 6~bit bytes are stored as shown in

figure E-4.

information 1s represented in the
system in 6-bit

Figure E-3. CDC Display Code Bit Numbers

INTERNAL STORAGE OF 8-BIT BYTE
CODES

IBM 8-bit data that has been copied from tape to
disk is stored internally in CDC systems as binary
data. The 8-bit subroutines can process this data
as 8-bit data since the data format is idemtical to
that of IBM tapes read by CYBER Record Manager.

INTERNAL STORAGE OF 12-BIT BYTE
CODES

Under both NOS and NOS/BE, the CDC 12-bit ASCII
code 1is the ASCII 7-bit code right-justified and
stored internally in a 12-bit byte. Assuming that
the bits are numbered from the right starting with
0, bits O through 6 contain the ASCII code, bits 7
through 10 contain zeros, and bit 11 (the flag bit)
distinguishes the 12-bit ASCIT 0000g code from
the end-of-line byte. The leftmost bits are set to
zero when the byte is stored in a word and are
ignored when the character code is used. (See
figure E-5.)

codes are created by the 8-bit
subroutines, the octal value of each EBCDIC code is
stored right-justified in a 12-bit byte. The four
remaining bits are zero-filled. (See figure E-5.)

If EBCDIC

Character data composed of either 12-bit ASCII
codes or 12-bit EBCDIC codes must be aligned on the

ARITHMETIC DATA

arithmetic data types are integer and
floating point. The arithmetic data formats are
shown in figure E-7. Display code signed overpunch
numeric is CDC COBOL defined.

The CDC

Integer

Integer data is stored in a 60-bit central memory
word. The binary representation of the integer is
right-justified in the word. The sign is im bit

59; the binary point is at the right of bit 0.
Negative numbers are represented in one’s
complement notation.

Floating-Point

Floating-point data is stored in either
single-precision or double-precision format. The

binary point is considered to be to the right of

the integer coefficient, therefore the 48-bit
integer coefficient is equivalent to a 14 digit
value. The sign of the coefficient is in bit 59.

Negative numbers are carried 1in one’s complement
notation. The ll-bit exponent carries a bias of
210 (2000g). As the coefficient is stored in
unnormalized form, the bias is removed when the
word 1s normalized for computation and restored
when the word is returned to floating-~point format.

In double-precision format, two adjacent memory
words (n and nt+l) are used. The sign of the
coefficient is carried in bit 59 of both words.
The 96-bit integer coefficient is split, and the
most significant 48 bits are stored in word n; the
least significant 48 bits are in word nt+l. The
binary point is at the right of bit 0 in word n.
Since the biased exponent of the least significant
half of the coefficient 1is 48 less than the
exponent of the most significant half, the two
exponents are used to locate the true position of
the binary point. If the exponent in word n
represented 56, the exponent in word n+l would be
+8, indicating that the true position of the binary
point is in the least significant half, eight bits
to the right of the biased exponent in word n+l.

byte boundary. (See figure E-6.) Conversely, if the exponent in word n represented
32, the exponent in word ntl would be -16,
The NOS operating system supports a code set indicating that the true position of the binary
composed of 6/12 display code. This code set can point 1s in the most significant half, 16 bits to
not be processed by the 8-bit subroutines. the left of bit 0 in word n.
59 53 47 41 35 29 23 17 " 5 0
Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte
1 2 3 4 5 6 7 8 9 10
Figure E-4. CDC Display Code Byte Numbers

E-3

60495500 C

Bit Position 11 0 9 8 7 6 5 4 3 2 1 0

r—TrTr 1 11t 1 1 1 T/

Unused Character
ASCII Bit Number AB A7 A6 A5 AL A3 A2 A
EBCDIC Bit Number E0O E1 E2 E3 E4 E5 E6 E7
CbC Bit Number b1 b2 b3 b& b5 b6 b7 b8

Figure E-5. CDC Format Used to Store 12-Bit Byte Codes

59 47 35 23 1 0

Byte 1 Byte 2 Byte 3 Byte &4 Byte 5

Figure E-6. CDC 5-Byte Word Format

58 0

Integer

|-—S'ign (Bit 59) 8inary Point

CDC Integer Format

58 47 0

Biased

E Integer Coefficient
xp

l-—Sign of Coefficient (Bit 59) Binary Point

CbC Single Precision Floating~Point Format

58 47 0
B;ased Integer Coefficient
xp
L |
Sign of Coefficient (Bit 59) Most Significant Half Binary Point
58 47 0
Biased c s
Exp-48 Integer Coefficient
I--~S1'gn of Coefficient (Bit 59) Least Significant Half

CDC Double-Precision Floating-Point Format

Figure E-7. CDC Numeric Data Formats

E-4 60495500

Display Code Numeric Signed Overpunch

A string of display code decimal digits form a
display code signed overpunch number. The sign of
the number is indicated by transforming the units
digit (low order) of the number as shown in
table E-1.

TABLE E-1. VALUE OF DISPLAY CODE NUMERIC SIGN

Insertion of the plus sign into the units digit is

not automatic;
and positive

format.

appear to have the

sign overpunch numeric,

therefore, all undefined, signed,
same
the

8-bit subroutines always insert the plus sign into
a positive value and transform the units digit.

Value Units Digit Transformed to: Corresponds to:
Positive 0 > 12~0 card punchT
: 1 through 9 A through I 12-1 through 12-9 punch
Negative 0 A 11-0 card punchf
1 through 9 J through R 11-1 through 11-9 punch
tThis character tramslation is not supported under NOS for 029 keypunch codes.

60495500 C

PRINT FORMAT-CDC 596-6 PRINT TRAIN

Any available printer can print information coded
in 6-bit display code; however, 8-bit data coded in
internal 12~bit format (leftmost four bits zero)
must be converted to the CDC 12-bit ASCII code
format and output to a CDC 580 Line Printer by
using a CDC 596-6 Print Train having the ASCII
graphic subset of 95 characters.

Only 12-bit ASCII code files can be printed by
using the ASCII graphic 95-character set. For
printing uppercase and lowercase data using the CDC
596-6 Print Train, the following conventions apply:

@ All characters must be 7-bit ASCII code stored
in 12-bit bytes.

@ The end of a print line must be indicated by a
zero byte in the lower twelve bits of the last
central memory word of the line, Any other
unused characters in the last word should be
zero filled.

@ Each line must start in the upper twelve bits
of a central memory word.

® Each prinﬁ line consists of up to 137 12-bit
character bytes of 7-bit ASCII code.

¢ A maximum of 137 characters can be specified
for a line, but no more than 136 are printed.

¢ The character in position 1 is interpreted as a

carriage control character and that character
is not printed.

60495500 C

e Legal hexadecimal values for print characters
range from 20 through 7E, space through 1}.
Values outside this range cause an error
condition.

° If an unprintable character exists in a line
(that is, a 12-bit byte containing ASCII code
outside of the range 0040g through 0176g),
the number sign (#) appears in the first
printable column of a print line and a space
replaces the unprintable character.

When the FMT parameter of the XFILE subroutine file
string equals 1, 2, or 3, XWRITE presets column 1
to blank, zero, or minus, respectively. The record
starts with column 2.

Table F-1 shows the carriage control characters
supported by the NOS operating system for a 580
line printer. The carriage control characters
supported by the NOS/BE operating system are shown
in table F-2.

The Q, R, S, T, and V format controls remain in
effect until changed; all other carriage control
characters must be supplied for each line
controlled.

Refer to the appropriate system reference manual
for information about carriage control tape or
programmable format control (PFC).

TABLE F-1. NOS CARRIAGE CONTROL CHARACTERS

Character Action

space Single space

1 Eject page before printing

0 Skip one line before print {double space}

- Slot two lines before print {triple space}

+ Suppress space before print

/ Suppress space after print

2 Skip to last line of form before print

QT Clear auto reject, remainder of line not printed

R Select auto page eject

S Select 6 lines per inch

T Select 8 lines per inch

v Eject page before print on a 580 printer; V loads a
user supplied PFC array {validated users only}

8 Skip to next punch in format channel 1 before print.

7 Skip to next punch in format channel 2 before print.

6 Skip to next punch in format channel 3 before print.

5 Skip to next punch in format channel 4 before print.

4 Skip to next punch in format channel 5 before print.

3 Skip to next punch in format channel 6 before print.

H i Skip to next punch in format channel 1 after print.

G Skip to next punch in format channel 2 after print.

F Skip to next punch in format channel 3 after print.

E Skip to next punch in format channel 4 after print.

D Skip to next puach in format channel 5 after print.

C Skip to nmext punch in format chamnnel 6 after print.

T The deselection of auto eject mode on a 580 line printer results in the deselection
of 8 lines per inch, if previously selected.

1 N space after print.

print.

For all other control characters a line feed is issued after

60495500 C

TABLE F-2. NOS/BE CARRIAGE CONTROL CHARACTERS

Character

Action

[
—F

Hmw,or'wun—cmommcnbu:»

=
—f

PM

+ N M OO N m W e

0(zero)
~(minus)
blank

Space 1, skip to top of next page after print
Space 1, skip to last line of page after print
Space 1l,skip to channel 6 after print

Space 1, skip to channel 5 after print

Space 1, skip to channel 4 after print
Space 1, skip to channel 3 after print
Space skip to channel 2 after print
skip to chamnnel 11 after print
Space

skip to channel 8 after print

1
1
1
Space 1
1
Space 1
1

»
s
, skip to channel 7 after print
»
Space 1, skip to channel 9 after print
Space 1, skip to channel 10 after print
Clear auto page eject (Janus default)
Select auto page eject
Clear eight vertical lines per inch
Select eight vertical lines per inch

Output remainder of line (up to 30Ocharacters) on the B display and the dayfile and wait for
the Janus entry /OKxx

Specifies a new carriage control array to be loaded for a 580 printer
Skip to the top of the next page, no space

Skip to the last line on page, no space

Skip to channel 6, no space after print

Skip to channel 5, no space after print

Skip to chamnel 4, no space after print

Skip to channel 3, no space after print

Skip to channel 2, no space after print

Skip to channel 7, no space after print

Skip to channel 8, no space after print

Skip to channel 9, no space after print

Skip to channel 10, no space after print
No space, no space after print

Space 2, no space after print

Space 3, no space after print

Space 1, no space after print

TThe top of a page is indicated by a punch in channel 1 of the carriage control tape. The bottom of the
page is indicated by a punch in channel 7.

TTNo printing takes place. The remainder of the line is ignored.

60495500 C

CONVERSION RULES G

R S
Rules pertaining to all possible conversions are converting from CDC format to IBM format are shown
described in this appendix. Table G-1 shows in table G-2. The numbers in the tables refer to
conversion rules to be used when converting from notes in the following subsections.

IBM format to CDC format. The conversion rules for

TABLE G-1. CONVERSION RULES: IBM TO CDC FORMATS

CDC Format
IBM Format
B X A C I u E D S N Z

B 1 2 2 2 3,4 3,5 3,6 3,7 3,8 3,9 3,10

X 11 12 12 12 13,4 13,5 13,6 13,7 13,8 13,9 13,10

H 14 15 15 15 4 5 6 7 8 9 10

1 i4 15 15 15 4 5 6 7 8 9 10

G 14 15 15 15 4 5 6 7 8 9 10

F 14 15 15 15 4 5 6 7 8 9 10

I 14 15 15 15 4 5 6 7 8 9 10

E 14 15 15 15 4 5 6 7 8 9 10

P 14,25 15,25 15,25 15,25 4,25 5,25 6,25 7,25 8,25 9,25 10,25

S 14,26 15,26 15,26 15,26 4,26 5,26 6,26 7,26 8,26 9,26 10,26

TABLE G-2. CONVERSION RULES: CDC TO IBM FORMATS
IBM Format
CDC Format
B X H 1) G F L E P S

B 1 2 3,16 3,17 3,18 3,19,20 3,19,21 3,19,22 3,23,25 3,24,26
X 11 12 13,16 13,17 13,18 13,19,20 13,19,21 13,19,22 13,23,25 13,24,26
A 11 12 13,16 13,17 13,18 13,19,20 13,19,21 13,19,22 13,23,25 13,24,26
C 11 12 13,16 13,17 13,18 13,19,20 13,19,21 13,19,22 13,23,25 13,24,26
I 14 15 16 17 18 19,20 19,21 19,22 23,25 24,26
U 14 15 16 17 18 19,20 19,21 19,22 23,25 24,26
E 14 15 16 17 18 19,20 19,21 19,22 23,25 24,26
D 14 15 16 17 18 19,20 19,21 19,22 23,25 24,26
S 14 15 16 17 18 19,20 19,21 19,22 23,25 24,26
N 14 15 16 17 18 19,20 19,21 19,22 23,25 24,26
Z 14 15 16 17 18 19,20 19,21 19,22 23,25 24,26

60495500 C G-1

NOTES FOR CONVERSION
RULES, TABLES G-1 AND G-2

1.

Applies Bm to Bn. The leftmost [min,(m,n)]
bits are copied from the source field to the
destination field. If mdn, the rightmost
(m-n) bits of the source field are ignored.
If m<n, the rightmost (m-n) bits of the
destination field are set to zero.

BmBO can be used to skip m bits of the source
record. BOBn can be used to zero an n-bit
field in the destination area.

Applies Bm to Xn, An, and Cn. The source
field is copied to the destination field ome
bit at a time from the left. Convert each
zero bit to the character 0, and each one bit
to the character 1. If mdn, the rightmost
(m-n) bits of the source field are ignored.
If m<n, the rightmost (n-m) characters of the
destination field are set to O.

B0Xn (or BOAn or BOCn) can be used to set an
n-character field in the destination area to
all zeros.

Applies Bm to numeric type. The source field
is treated as an m-bit positive binary integer.

A BO source field is treated as zero.

Applies when converting to I. The source
field is rounded (if necessary) to an integer,
and the low~order 59 bits are the value. If
the magnitude is >259 (that is, more than 59

bits are required), an error condition is
flagged.
Applies when converting to U. The source

field is rounded (if necessary) to an integer,
and the high-order 48 bits are the value. The
result is kept as a single-precision floating-

point number. However, this number 1is
denormalized (COBOL COMP-1 definition), if
necessary, to keep the biased exponent
22000g.

Applies when converting to E. The source

field is rounded to 48-bit precision and the
result is kept as a single-precision floating-
point number.

Applies when coanverting to D. The source
field is rounded to 96~bit precision and the
result is kept as a double-precision floating-
point number.

Applies when converting to Sn. The source
field dis rounded (if necessary) to an
integer. If the magnitude is >10%, high-
order truncation occurs. The wvalue is
converted to a display code string of decimal
digits, with leading zeros, if necessary. The
sign of the number is indicated by amending
the low-order (units) digit as shown in
figure G-1. The 11-0 and 12-0 card punch is
not supported on NOS in a manner that
translates as signed numeric overpunch.

0—< (corresponds to 12-0 card punch)

Positive:

1 =@ A~J (corresponds to 12-1—12-9 card

punch)

0V (corresponds to 11-0 card punch)

Negative:

1-9—=J-R (corresponds to 11-1-»11-9 card

punch)

10.

11,

12.

13.

Figure G-1. Amending of Low-Order Digits

Applies when converting to Nn. The source
field is rounded (if mnecessary) to an
integer. If the magnitude is >10", an error
is flagged. The value is converted to a
display code string of decimal digits with
leading zeros, if necessary. The sign of the
field is lost (magnitude only saved).

Applies when converting to Zn. The source
field 1is rounded, if necessary, to an
integer. If the magnitude is >10%, an error
is flagged. The wvalue is converted to a
display code string of decimal digits.
Leading zeros are suppressed and replaced by
blanks. If the number is negative, a -
replaces the rightmost blank. If the number
is negative and no blanks are in the field, an
error is flagged.

Applies Xm to Bn. The source field is copied
to the destination field one character at a
time from the left. Each 0O is converted to a
single zero bit, and each 1 is converted to a
single one bit. If any character besides 0 or
1 is encountered, an error is flagged. If
m>n, the rightmost (m-n) characters of the
source are ignored. If m<n, the rightmost
(n~-m) bits of the destination are set to zero.

Applies (string)m to string(m). The source
field is copied to the destination field from
the left. TIf the source field corresponds to
card (Hollerith) input, and if the card
punches from any character position are
invalid, the eight-ones character (hexadecimal
FF) is used for that position. If m>n, the
rightmost (m-n) characters of the source
string are ignored. If m<n, the rightmost
(n-m) characters of the destination are set to
blanks.

Using an n value of 0, m characters of the
source can be skipped. Using an m value of 0
allows setting a destination field to all
spaces.

Applies (string) to numeric type. A source
character string which is to be converted to
numeric type must have the general form shown
in figure G-2. The format closely follows
that used by FORTRAN where a decimal value is
optionally followed by a power of ten.

60495500 C

oE
(1] ee [1] oo

where:
d Is in the form of a floating-
point or integer constant
exp Is an unsigned integer exponent

14.

15.

Figure 6-2. Numeric Type Format

Numbers are kept to a precision of at least 96
bits. Spaces are ignored. Spaces can be
embedded anywhere within the field. If any
other character appears in the field or if the
syntactic form i1s incorrect, an error is
flagged. 1f the source field width is =zero,
the value 1is taken to be zero. If E is
present, a decimal point also must be present.

Applies numeric to Bn. If necessary, the
source field 1is converted to binary and
rounded to integer form. The rightmost n
bits, with sign extended, are moved to the
destination field. The binary representation
is in the form appropriate to the
destination: two’s complement for IBM format
and one’s complement for CDC format. If n
bits are insufficient to contain the result,
the rightmost n bits are placed in the
destination field. TIf the source field width
is zero or the wvalue is infinite or
indefinite, the value is taken to be -0 (+0 if
the destination is IBM format).

Applies numeric to (string)n. The conversion
of numeric fields to alphanumeric (string)
fields depends upon several factors, including
the size of the destination field, magnitude
and sign of the source field, and a maximum
precision of the source item. The receiving
field format can be determined by the
following subrules (headings refer to the
source field format).

All

A. If the destination field width is zero, no
conversion takes place.

B. If the source item is indefinite or

infinite (internal items only), the
destination field is filled as shown in
table G-3.

C. The maximum precision, p, of the source
item can be determined from table G-4.

D. The destination field width (d) is
calculated as follows:

Set d to n. If the source value is
negative, set d to n~-l.

60495500 C

E. If the source value is an integer, the
rules under Integer are followed;
otherwise, the rules under Floating-Point
are followed.

TABLE G-3, DESTINATION FIELD FOR INFINITE OR
INDEFINITE ITEMS

4 or More
Condition 1 2 3 (Right-Justified
in Field)
+ o F NF INF INF
- o F ~F -NF -INF
+? D ND IND IND
-? D -D -ND ~IND

TABLE G-4. MAXIMUM PRECISION OF SOURCE ITEMS

Number of
Source | Souree | (sigice) | cuaranseed
Decimal
Digits

IBM H 5 4

W 10 9

G 19 18

F 8 7

L 17 16

E 34 33

Pm 2m-1 2m-1

Sm m m
CDC I 18 17

U 15 14

E 15 14

D 29 28

Sm m m

Nm m m

Zm m m

G-3

Integer

A. If the magnitude of the value is 2}Od,
the rules under Type E are followed.

B. The value is converted to a decimal
integer and placed in the destination
field, right-justified. All leading zeros
are replaced (except in the units
position) by spaces.

C. If the value is negative and n>l, a =~ is

placed immediately to the left of the
leftmost digit. Otherwise (must be -0 in
a l-character field), the 0 is replaced by
a —.

Floating-Point

A. The minimum number of digit positions
required to use this representation, r, is
determined as follows:

If |value|>1, then r=K,

where 10K"1<jvalue|<10K

1f |value|<l, then r=K-l4min(p,d-5),
where 10-K¢|value|<10-K+1
B. If r<(d-l),

followed; otherwise,
E are followed.

the rules under step C are
the rules under Type

C. The value is converted according to one of
the following formats and the Tresult
string is placed, right-justified, in the
destination field. The wvalue is rounded,
if necessary, to the indicated number of
places.

(1) If (x>1) and [(r=d-1) or (r>p)l:

dld2....di i=r

(2) 1If (x>1) and (r<d-1) and (r<p):

dld2...di.di+l...dj i=r, j=min(p,d-1)

(3) If (x<1) and [(d=1)>(k-14p)]:

0.d1d2...dj J=K-1+p

(4) If (x<1) and [(d-1)<(k=1+p)]:

.d1d2...d] 4=d-1

D. If the value is negative, a - is placed
immediately to the left of the leftmost
nonblank character.

16.

17.

18.

19.

20.

21.

22.

Type E

A. If d<6 and |value |<.95x10-99, the
receiving field is not wide enough to
represent the value; the destination field

is filled with all asterisks. If the
value 1is negative, the leftmost * is
replaced by a -. If d>6 and

jvalue|<.95x10~99, the rule under step B

is followed.

B. The value is converted according to the
following format:

dl.d2...d jEeee j=min(p,d->)

where eee is -99 to -01, +00 to +99, or

100 to 305.

If a negative exponent of less than -99 is
required, the following format is used:

dl.d2...djE~-nnn j-min(p,d~6)
The value 1s rounded to the indicated
number of digits and placed, right-

justified, in the destinatiom field.

C. If the value is negative, a - is placed
immediately to the left of the leftmost
nonblank character.

Applies when converting to H. The source
value is rounded, if necessary, to a two’'s

complement integer, and the low-order 16 bits
are taken as the value. If significance is

lost, an error is flagged.

Applies when converting to W. The source
value is rounded, if necessary, to a two’'s
complement integer, and the low-order 32 bits
are taken as the value. If significance is
lost, an error is flagged.

Applies when converting to G. The source
value is rounded, if necessary, to a two’'s
complement integer, and the low-order 64-bits
are taken as the value. If significance is
lost, an error is flagged.

Applies when converting to F, L, and E. The
source value is converted to an IBM {format
floating-point number rounded to the indicated
number of bits. If the source magnitude is
too large (>~5x1073), the largest possible
number is supplied. If the source magnitude
is too small (<~5x10~75) but not zero, the
smallest nonzero number is supplied.

The resultant
24-bit

Applies when converting to F.
value is a 4-byte f£field of 21— to
precision (IBM short floating-point).

The resultant
56-bit

Applies when converting to L.
value is an 8-byte field of 53- to
precision (IBM long floating-point).

Applies when converting to E. The resultant
value is an l6-byte field of 110~ to 1ll2-bit
precision (IBM extended-precision floating-
point). The low-order 1l4- to 16-~bits might
not be accurate, since only 96-bit precision
is guaranteed.

60495500 C

23,

24,

25.

Applies when converting to Pm. The source
value is rounded, if necessary, to an integer
and converted to packed decimal form. If
|valuel>102m‘1, overflow has occurred and an
error is flagged.

Applies when counverting to Sm. The source
value is rounded, if necessary, to an integer
and converted to a decimal string. It
|value|>10®, overflow has occurred and an

error is flagged.

The sign of the field and low-order (units)
numeric place, for P fields, are contained in
the low-order (rightmost) byte as shown in
figure G-3.

Units

Digit Sign

Figure G-3. Low-order Byte Format for P Fields

26.

Valid sign codes used when a P field is read
are as follows:

Bit Pattern Sign

1010
1011
1100
1101
1110
1111

14+

The EBCDIC sign code generated is 1101 for a
negative sign and 1100 for a positive sign.

The sign of the field and low~order (units)
numeric places for S fields in EBCDIC data are
contained in the low-order (rightmost) byte as
shown in table G-5.

The sign of the field and low-order (units)
numeric digits for S fields in ASCII data are
contained in the low~order byte as shown in

table G-6.

60495500 C

TABLE G~5. SIGN POSITION FOR EBCDIC FIELDS
to-0rder Magaster Maced io

+ (8ign) -

0 { }

1 A J

2 B K

3 c L

4 D M

5 E N

6 F 0

7 G P

8 H Q

9 I R
TABLE G-6. SIGN POSITION FOR ASCII FIELDS

Low-Order Character Placed in

Digit That Position

+ (8ign) -

0 @ P

1 A Q

2 B R

3 C S

4 D T

5 E U

6 F v

7 G W

8 H X

9 I Y

G-5

8-BIT SUBROUTINES/FORM COMPARISON H

Because the 8-bit subroutines are utilized by FORM
to perform IBM/CDC conversions, FORM has most of
the capabilities of the 8-bit subroutines,
including the capability of maintaining 8-bit
significance in converted data. The 8-bit
subroutines handle the same character sets as
FORM. Differences include management of print
files, ease of usage, and minor functional
differences.

The 8-bit subroutines have the same conversion
capabilities as FORM, including identical
conversion string syntax. However, conversion
strings can be changed from record to record when
using the 8-bit subroutines, whereas FORM record
specifications are set once per output file and can
be varied from record to record only by comparing a
record field to a literal quantity. The 8-bit
subroutines only reformat data fields sequentially;
FORM has an automatic data reformatting capability
that allows you to reorder data fields and imsert
literals. When the 8-bit subroutines process a
file, all input records are included in the output
file; FORM has a record selectiom capability which
allows you to select certain records for inclusion
in the output file. The 8-bit subroutines are

60495500 C

primarily record oriented and their use is
restricted to sequential files; FORM is primarily
file oriented and can be used to process CDC random
access files.

The 8-bit subroutines handle print files
differently than FORM. Print files processed by
the 8-bit subroutines must be organized by you, but
any character in the 95-graphic ASCII character set
can be used. A utility program, COPY8P, is
provided in the 8-bit subroutines to automatically
print IBM print files by using the CDC 595-6 Print
Train. FORM allows automatic organization of print
file functions, such as paging, line spacing, and
titling. Also, FORM print files can contain only
CDC display code characters.

Other wminor functional differences between the
8-bit subroutines and FORM include the following:

e FORM provides automatic,k sequencing of records;
the 8-bit subroutines have no such provision.

@ The 8-bit subroutines process IBM card files as
free-form binary input and output; FORM does
not.

FUTURE SYSTEM MIGRATION GUIDELINES i

This appendix contains programming practices
recomended by CDC for users of the software
described in this manual. When possible,
application programs based on this software should
be designed and coded in conformance with these
recommendations.

GENERAL GUIDELINES

Programmers should observe the following practices
to avoid hardware dependency:

® Avoid programming with hardcoded constants.
Manipulation of data should never depend on the
occurance of a type of data in a fixed multiple
such as 6, 10, or 60.

@ Do not manipulate data based on the binary
representation of that data. Characters should
be manipulated as characters, rather than as
octal diplay-coded values or as 6-bit binary

60495500 C

digits. Numbers should be wmanipulated as
numeric data of a known type, rather than as
binary patterns within a central memory word.

Do not identify or classify information based
on the location of a specific value within a
specific set of central memory word bits.

Avoid wusing COMPASS in application programs.
COMPASS and other machine-dependent languages
can complicate migration to future hardware or
software systems. Migration is restricted by
continued use of COMPASS for stand-alone
programs, by COMPASS subroutines embedded in
programs using higher-level languages, and by
COMPASS owncode routines used with CDC standard
products. COMPASS should only be used to
create part or all of an application program
when the function cannct be performed in a
higher-level language or when execution
efficiency is more important than any other
consideration.

INDEX

O e S s 2 R
Alignment, field 2-2 COMPASS
Arithmetic data formats E-3 Examples
ASCII XCOMP 44
Character set A-l1, C-1 XFILE 3-5
Definition C-1 MOVE 4-7
XPACK 4-10
Binary data 2-9, E-l XPAND 4-11
Binary, 80-column 6-1 XREAD/XREREAD 3-11
Bit to numeric 2-9 XWRITE 3-8
Bit to string 2-8 Parameters
Bit 8 1lib 6-3 XCOMP 4-4
Blank/Zero fill 2-9 XFILE 3-4
Block format C-1 IMOVE 4-7
BLKSIZE parameter 3-2, 5-1, C-1 XPACK 4-9
XPAND 4-11
Card XREAD/XREREAD 3-10
Binary 6-1 XWRITE 3-7
Files 6-1 Compression, string 4-8
Carriage control characters F-2 Constants 8-1
CcDC Control
Character sets A-l Carriage F-2
COBOL data formats 7-1 Q conversion 2-8
COBOL Tm values 7-4 Conversion
Conversion — IBM to CDC files 7-6 Defaults 2-4
FORTRAN data formats 8-1 Examples 2-4, 2-9
FORTRAN Tm values 8-2 Items 2-2
Sample COBOL job 7-3, 7-5 Q specification 2-8
Sample FORTRAN job 8-2 Rules 2-8, G-l
Character Simple item 2-2
Carriage control F-2 Specifications 2-2
Folding 2-7, 5-1 Strings 2-7
Set restrictions 5-2 Conversion items 2-2, C-1
Sets A-1 Conversion specifications
Skipping 2-9 Definition 2-1, C-1
String comparison 4-1 Elements 2-5
COBOL Examples 2-5
Data formats 7-1 Format 2-2
Examples Conversion string 2-7
XCOMP 4-3 Definition C-1
XFILE 3-3 Examples 2~9
XMOVE 4-6 Format 2-7
XPACK 4-9 Nested 2-7
XPAND 4-11 . Punctuation 2-9
XREAD/XREREAD 3-10 Used as conversion item 2-7
XWRITE 3-7 Conversion terminator 2-8
Parameters COPY8P utility
XCOMP 4-3 Character set restrictions 5-2
XFILE 3-3 Control statement 5-1
XMOVE 4-6 Conversion table 5-3
XPACK 4~8 Definition C-1
XPAND 4-10 Example 5-4
XREAD/XREREAD 3-9 Output 5-2
XWRITE 3-6 Count, repeat 2-2
Tm values 7-2, 7-4 CYBER Record Manager interface 6-2, C-1
Usage 7-1
Code 3-2, 5~1
Collating sequence 4-4 Data
Comparison Binary 2-9, E~1
Character string 4-1 Floating point to integer 2-9
FORM and 8-bit H-1 Formats 7-1, 8-1, 8-3, D-1, E-1
Modes 2-6 Decimal
Relational operators 2-4 Packed E-1
String 4-1 Signed numeric E~1

60495500 C Index~1

Default conversions 2-4
Diagnostics B-1
Display code C-1, E-3

EBCDIC
Character set A-12, C-2
Definition C-1
Error
Handling 3-8
Messages B-1
Expansion string 4-9
Expression selector 2-4

Field
Alignment 2-2
Value 2-6
File

Definition 3-1
Statement 6-2

String parameter 3-2
Usage 3-1, 3-3

Files
Card 6-1
Print 6-1
Tape 6-1

Floating point E-1, E-3
Hexadecimal E-1
To integer 2-9
FMT parameter 3-2, 5-2
FOLD parameter 5-1
Folding
Character 5-1
Definition C-2
FORM
Definition C-2
8-bit comparision H-1
Format Control characters 5-2
FORTRAN
Data formats 8-1
Examples
XCOMP 4~2
XFILE 3-3
XMOVE 4-6
XPACK 4-8
XPAND 4-10
XREAD/XREREAD 3-9
XWRITE 3-6
Parameters
XCOMP &
XFILE 3-
XMOVE 4
XPACK 4

Sample program 8-2
Tm values 8-2
FT parameter 3-2

IRM
Conversion ~ IBM to CDC files 7-3
Data formats 7-1, 8-1, E-1
Tape file D-1
Tm values 7-2, 8~-2
Input/output
XFILE 3-1
XREAD/XREREAD 3-4
XWRITE 3-7
Integer to floating point 2-9
Interface
CYBER Record Manager 6-2
Loader 6-3
Operating system 6-1

Index~2

Item
Conversion 2-2
Locators 2-5, C-2
Simple 2-2

LDSET 6-3

Literal strings 2-6, C-2
Loader interface 6-3
LRECL parameter 3-2, 5-1

Maintaining 8-bit significance 1-2
Migration guidelines I-2

Modules 6-3, C-2

Move string 4-5

Nested conversion strings 2-7
Notations used i-x

Numeric to bit 2-6

Numeric to string 2-9

Omitting modules 6-3
Operating system interface 6-1
Overpunch E-5

Packed decimal E-1
Packed word format 4-8
Parameters
BLKSIZE 3-2, 5-1
File-string 3-2
FMT 3-2, 5-2, F-1
FOLD 5-1
FT 3-2
Input/output subroutines 3-1
LRECL 3-2, 5-1 .
RECFM 3-2, 5-1

USE 3-2
Utility subroutines 4-1
XCOMP
FORTRAN 4-2
COBOL 4-3
COMPASS 4-~4
XFILE
FORTRAN 3-1
COBOL 3-3
COMPASS 3-4
XMOVE
FORTRAN 4-5
COBOL 4-6
COMPASS 4~7
XPACK
FORTRAN 4~8
COBOL 4-8
COMPASS 4-9
XPAND
FORTRAN 4-9
COBOL 4-9
COMPASS 4-10
XREAD/XREREAD
FORTRAN 3-9
COBOL 3-9
COMPASS 3~-10
XWRITE
FORTRAN 3-5
COBOL 3-6
COMPASS- 3-7
Position, string 2-1
Print
COPY8P 5-2
Files 6-1

Format F-1
Punctuation 2-7

Q control specification 2-8

60495500 C

Record

Format D-1

Manager 6-2

Read 3-7

Skipping 3-8

Write 3-4
RECFM 3-2, 5-1
Relational Operator 2-4
Repeat count 2-2
ROUTE 5-2
Rules for conversions 2-8, G-l

Selector expressions 2-4, C-3
Sequence, collating 4-1
Simple item conversion
Definition 2~2, C-3
Format 2~2
Examples 2-4
Skipping
Characters 2-9
Records 3-8
Specifications, conversion 2-2
Statements

FILE 6-2
LABEL 6-1
LDSET 6-3

ROUTE 5-2, 6-1
Status values returned
XCOMP 4-2
XREAD/XREREAD 3-9
XWRITE 3-6
String
Comparison 4-1
Compression 4-8
Conversion 2-1
Expansion 4-9
Move 4-5
Parameter 3-2
Position 2-2
Punctuation 2-7
To bit 2-8
To numeric 2-9
Strings
Conversion 2-~7
Conversion items 2-2
Nested conversion 2-7
System Interfaces 6~1

Tape
Files 6-1

Record and Block Formats D-1

Termination of file output 3-5
Tm values

COBOL 7-2, 7-4

Conversion 2-3

60495500 C

Tm values (Contd)
Default G-l
FORTRAN 8-2

USE parameter 3-2

Utility subroutine parameters 4-1

Value field 2-6

Variables 8-1

Variable length records
XWRITE handling 3-5
XREAD/XREREAD handling 3-8

Workspace area 3-3, C-3
XcoMp

Collating sequence 4~1
Definition 4~1, C-3

FORTRAN calling sequence 4~1

COBOL calling sequence 4-2

COMPASS calling sequence &4-—4

XFILE
Definition 3-~1, C-3

FORTRAN calling sequence 3-1

COBOL calling sequence 3-3

COMPASS calling sequence 3-4

XMOVE
Definition 4-5, C-3

FORTRAN calling sequence 4-5

COBOL calling sequence 4~5

COMPASS calling sequence 4-7

XPACK
Definition 4-8, C-3

FORTRAN calling sequence 4-8

COBOL calling sequence 4-8

COMPASS calling sequence 4-9

XPAND
Definition 4-9, C-3

FORTRAN calling sequence 4-9

COBOL calling sequence 4~10

COMPASS calling sequence 4-11

XREAD/XREREAD
Definition 3-7, C-3

FORTRAN calling sequence 3-9

COBOL calling sequence 3-9

COMPASS calling sequence 3-10

XWRITE 3-5
Definition 3-4, C-3

FORTRAN calling sequence 3-5

COBOL calling sequence 3-6

COMPASS calling sequence 3-7

8-bit subroutines 1-1

8-bit subroutines/FORM comparision H-2

80-column binary 6-~1

Index-3

ANIT ONOTV LND

COMMENT SHEET

MANUAL TITLE: 8-Bit Subroutines Version 1 Reference Manual
PUBLICATION NO.: 60495500

REVISION: C

This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested
additions or deletions, or general comments on the back (please include page number
references).

Please reply No reply necessary

FOLD FOLI

BUSINESS REPLY MAIL

FIRST CLASS

IF MAILED
. IN THE
UNITED STATESH

PERMIT NO. 8241 MINNEAPOLIS, MN.

POSTAGE WILL BE PAID BY ADDRESSEE

(@5 CONTROL DATA

Publications and Graphics Division
Mail Stop: SVL104

P.O. Box 3492

Sunnyvale, California 94088-3492

NO POSTAGE STAMP NECESSARY [F MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

NAME :

COMPANY :
STREET ADDRESS:

CITY/STATE/ZIP:

TAPE TAPE

o —

CORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

@5 CONTROL DATA

LITHO IN US.A.

el B

e

