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Preface

The Burroughs B1700 family of computers exhibits a new style of
architecture. These computers are known as interpretive definable-field
machines. Their normal mode of execution is the interpretation of other
computers, virtual or real. A system designed to interpret other com-
puter systems should have a flexible storage-accessing mechanism so
that bit strings of arbitrary length may be fetched and processed under
control of the programmer. The definable-field feature of the B1700
family supports efficient interpretation of instructions and promotes
effective use of storage. Overviews of these features were presented by
W. T. Wilner in a series of papers in 1972 [‘‘Design of the B1700’’, pp.
489497, and ‘‘B1700 Memory Utilization’’, pp. 579-586, in AFIPS
Conference Proceedings, Vol. 41, Part 1, and ‘‘Microprogramming
Environment of the Burroughs B1700° in IEEE Computer Society
COMPCON?72, pp. 103-106.]

Innovative systems such as the B1700 and its successors are attractive
laboratory facilities for education and research in computer science,
especially for software engineering studies, including the design and
evaluation of new or special-purpose computer and data-base systems,
and for studies in software portability.

This book describes the architecture of the Burroughs B1700 family,
with primary attention given to the B1726 computer system, its internal
structure, and how it may be programmed for the emulation of other
computer systems. The book may have only limited appeal to computer-
system specialists who are looking for reasons to select one computer
organization over another. We do not address the comparative strengths
and weaknesses of the B1700. We do not address such interesting
questions as why interpretation is important and when it is to be
preferred over the more conventional compiler-based general-purpose
systems popular today. We do not dwell on the history of interpretation
nor on its potential for the future. (We only hint at the promise for
multilevel interpreters.) Finally, we do not suggest other applications of
the B1700 architecture, say for database computing. Rather, our objec-
tive is to help the person who is already motivated to learn the ‘‘insides”’
of the B1700 and who wants the knowhow to implement an interpreter at
the microcode level.

The book grew out of a set of notes written for upper-level undergrad-

ix
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uate computer-science students who have some prior knowledge of
conventional computer-system organization and low-level language pro-
gramming. Students at the University of Utah have used these notes in a
software laboratory course in which the major objective is to produce a
microcoded emulator for a fairly simple computer, e.g., a PDP-11. For
more advanced students who expect to use the B1700 for research, the
same notes have been useful for self-study as a supplement to or
replacement for available reference manual literature.

The programming language introduced and used in this text, McMIL,
is an enhanced version of MIL (Micro Instruction Language, an assem-
bler for which is supplied by Burroughs). The McMIL superset of MIL
contains statement types which can be used by the programmer to
simplify the generation of MIL instruction sequences that correctly
interface a MIL interpreter program with the system environment (e.g.,
for achieving interrupt handling, i/0 management, file system services,
and process switching).

The text consists of seven chapters and several appendices. The first
three chapters focus on the architecture of the B1700 family as interpret-
ing machines, on the internal structure of the B1700 processor, and on
its (symbolic) micro-level machine language. The next three chapters
show ways to write micro-level programs. A major case study vehicle
that is used is a simulator for the hypothetical computer SAMOS
outlined in Appendix F. It is in Chapters 4, 5, and 6 that the assembly
language MIL and its McMIL enhancements are thoroughly illustrated.
Methodologies of higher-level language programming including stepwise
decomposition, clean structure, and good documentation are applied in
translating from problem statements expressed in relatively abstract
terms to concrete McMIL programs. Appendices A, B, and C are
intended as reference manuals for MIL, for the actual computer sys-
tem’s register and instruction semantics, and for the McMIL extensions,
respectively. (Appendix D provides additional reference materials used
for setting up test runs of an interpreter, and Appendix E offers listings
of the toy SAMOS interpreter and a sample test run. The toy interpreter
may be used in a set of exercises as a study vehicle and point of
departure for some interesting modifications and enhancements.) Chap-
ter 7 examines the fine points in the control structure of the B1726 as a
microprogram processor.

These seven chapters intentionally focus on the existing hardware of
the B1700 family for use in design and implementation of interpreters
and are to a great extent independent of the supporting software
supplied by Burroughs. It is expected that another book would be useful
for focusing on the structure and functions of the Burroughs software,
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including the operating system (MCP) and the critically important
central module (known as GISMO) which serves as an i/o-device driver,
process switcher, i/o buffer server, and interface with the MCP. Such a
book would provide the reader with a serious look at the (system-
controlled) environment which supports the execution of programs one
has learned to write and test.

The authors acknowledge with deep appreciation the support of our
colleagues, students, and secretarial friends at Utah who have helped us
assemble this text. We are also most fortunate for the support received
from the Burroughs Corporation. Many persons within Burroughs
helped make the project at Utah and this book, one of the byproducts, a
reality and, we hope, a success. We are grateful to all of these
individuals. In particular, the project could not have become a reality
without the help and confidence of R. R. Johnson, R. D. Merrell, and R.
S. Barton, members of the Burroughs engineering organization who
were early advocates of the B1700 as a system worthy of serious
attention and use in computer-science and engineering studies. This
book is published with the permission of the Burroughs Corporation.

E. I. Organick
Salt Lake City, Utah

J. A. Hinds
Goleta, California






Chapter 1
Universal host computers

An important characteristic of conventional (von Neumann) computer
systems is the control mechanism, or processor, which is designed to
decode and execute a sequence of instructions fetched from storage
(Figure 1.1). The processor generally has at least two groups of
registers: one for control, and one for ‘‘processing information’’. The
first set of registers is mainly used for controlling the sequence of
instructions in the program and for decoding each instruction so that it
can be properly executed. The second set of registers, nearly but not
totally unrelated to the first set, is used in carrying out the execution of
decoded instructions. Generally speaking, execution involves fetching
(or storing) data from (or to) storage, or examination and manipulation
of data fetched from storage or produced by the execution of preceding
instructions.

The picture of the computing machine given in Figure 1.1 is clearly
incomplete, since it lacks a connection to the storage in the outside
world. The input/output (i/0) controls and devices provide channels for
information to flow from or to the computing machine and the ‘‘outside”’
storage which may consist of various media (tapes, disks, displays,
printed paper, etc.) For the present discussion we shall ignore i/o
transfers to outside storage.

The tasks of actually decoding and executing each instruction of the
computing machine are primitive. The programmer normally cannot
influence the manner in which these tasks are carried out. In all early
computers these primitives were achieved by hardware circuitry. In
many recent computer designs they are implemented as sequences of
microsteps or microprograms which are themselves interpreted by
bardware circuitry. By one means or another these microprograms are
often made inacessible to the programmer, so that interpretation of the
instructions that a user programmer might compose remains primitive;
i.e., he has no influence over the interpretation mechanism.

Although the programmer of a computer of this class may not vary the
primitive behavior of such a computer, he may as an expedient compose
a simulator (or emulator) program whose function is to interpret
programs for other machines. The logic of the programmed interpreter is

1
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other
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Figure 1.1. A view of a typical computer architecture.

completely under the control of the user. Not only can he vary the steps
of the decoding mechanism, but he also can select whatever execution
logic he chooses.

The user has a wide spectrum of redesign opportunities available. It
may be that he wishes to simulate a machine that offers only a slightly
different set of responses from that of the basic machine, e.g., augment
its instruction set with a few more instructions, or alter the interpreta-
tion of the existing instructions. On the other end of the spectrum, he
may have in mind the simulation of a machine having an entirely
different set of instructions, with formats quite different from that of the
“‘host’” machine and having quite different semantics. For example, he
may have in mind to emulate on a PDP-9 a PDP-15, a SAMOS machine,?!
or a FORTRAN machine. The first one (PDP-15) is just an extension of
the PDP-9 itself (i.e., has only a few new instructions.) The second
(SAMOS), though quite different in its semantics (having decimal
arithmetic rather than binary) is roughly similar in the syntax and
semantic power of its instructions to that of the PDP-9. Thus the formats
of both SAMOS and PDP-9 instructions are fixed in length and have a
small number of fixed subfields, both use index registers, etc. On the
other hand, the instructions of FORTRAN have variable formats, a
variable number of subfields, and a much greater range of semantic
complexity than those of the PDP-9.

Figure 1.2 is a first view of a two-level host/guest system, consisting
of a host, or H-machine, which functions as an interpreter of another
computer system—G, for guest. Recursion in computer organization is

A hypothetical computer used for instructional purposes in certain introductory
computer science courses. (See Appendix F.)
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Figure 1.2. Structure of a two-level host/guest system.

clearly implied in this view.? Here we examine it from the inside out.
The H or host processor consists of control logic and some storage (the
registers). The H-machine consists of the H-processor and storage for its
instructions (H-storage). But the H-machine in turn functions as a
processor for another machine G, so the H-machine is in effect a G-
processor. Adding ‘‘outside’’ storage for the H-machine forms a new
machine (the G-machine). The outside storage for the G-machine is not
actually shown in Figure 1.2, but its existence is implied (as was the
outside storage for the machine depicted in Figure 1.1). In principle this
recursion can be extended, since the G-machine might be designed to
behave as a processor for some other machine G-G (guest of guest) and
be coupled to storage containing programs for the G-G machine, etc.

There have always been practical trade-offs in building interpretive
systems of this type. If the instruction set of the host machine and its
registers is sufficiently different from that of its guest, the H-language
subroutines which interpret G-language instructions may become long
(and occupy a lot of H-machine storage). Also the time required to
interpret a G-language instruction sequence on the H-machine may far
exceed the time required to execute a ‘‘comparable’” H-language in-
struction sequence executed on the same H-machine. Ratios of 10 to 100
for G-time/H-time are not uncommon. Even so, interpreters built to run
on conventional computer systems are valued widely.

Since any machine may in principle be coded to behave as a host for
any guest machine, it is also feasible that the same host may behave at

2 The concept that a processor may be viewed as having a recursive structure was first
brought to the authors’ attention by Robert S. Barton.
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different times like the processor for any of a number of different guests.
The backing store for an H-machine may contain interpreters for
different guests. These interpreter programs may be swapped in and out
of H-storage by some scheduling discipline, so that during discrete time
slices the H-machine in fact acts like first one G-processor and then
another. The duration of the time slices may be days, minutes, or
seconds (or less), depending on the ‘‘swapping’’ technology that is used.
Whatever the size of the time slice during which one of the interpreters
is active, it should now be easy to accept the fact that any host may
behave as a universal host, i.e., a host for a variety of guests.

Even so, few actual computer systems have been designed for
applications in which they behave typically as hosts, much less as
universal hosts for other machines. The B1700 class of computers,
however, is one system which was indeed intended to behave mainly as
a universal host. As we study it we shall hope to see in what ways its
special features support such behavior.

The B1700 family of computer models, produced by the Burroughs
Corporation, has been recently augmented with upgraded versions called
B1800. In this book we will use the term ‘‘B1700”’ to refer to all
members of this augmented class of computer systems except when we
explicitly mention one member. For these systems the machine language
of the host processor (H-language) is defined by the same base set of 16-
bit microinstructions. Moreover, these systems have essentially the
same internal logical structure, differing only in the mechanisms for
accessing microinstructions. The B1700 has also been called an ‘‘in-
. terpretive definable field machine’’ because the programs and data
. executed by its interpreters are accessed from a storage that is viewed as
an ordered set of fields (bit strings), each of definable length.

1.1 STRUCTURE OF STORAGE
IN THE B1700 FAMILY
OF COMPUTERS

To satisfy requirements of a universal host machine, the H-machine
processor must have access to microprograms of many interpreters, one
for each guest machine. One way to translate this requirement into an
implementation is to imagine that the H-processor actually has access to
several H-stores, each holding an interpreter for a different guest
machine. Naturally, the processor must then be capable of switching
from one H-store to another so that the system can multiprogram among
several active interpreters. Storage technology and storage management
techniques that have been developed over the past 15 years suggest
several cost-effective ways by which such a system can be implemented.
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Three related approaches have been taken in the B1700 family, one for
each of three models within this family. These models are the B1710,
B1720 and B1800.

The first approach (simplest, least expensive in hardware and slowest)
is found in the B1710 model. Here (Figure 1.3) main storage is allocated
into separate sections, some representing H-store and some representing
G-store. The section representing H-store holds the microprograms that
comprise the interpreter for a G-machine. The figure shows only one G-
store and one H-store section represented, but in principle and in
practice the main store is large enough to hold several of each.

Each H-store holds the microprograms that constitute the interpreter
for a G-machine. The B1700 processor can be initialized to begin
fetching and executing microinstructions from any H-store section of
main storage using a G-store section as its workspace. At any given
moment the B1700 processor knows about (has access to) only one H-
store and one G-store representation in main storage. Switching inter-
preters implies resetting registers of the B1700 processor so it has access
to a different H-store/G-store pair.

The B1800 model uses a similar principle for the representation of H-
and G-stores in main storage, but is able to fetch microinstructions more
rapidly through the use of a ‘‘cache memory”’ (Figure 1.4). The cache
holds copies of blocks of microinstructions transferred from the main
store as needed. The access to a microinstruction, when it is found in
the cache (the usual case), is roughly an order of magnitude faster than
the access to a microinstruction that must first be brought to the cache

"""" -

H-store
Processor Lw

control unit N,

-

A G-store
-
Main store conceptual
~——
actual

Figure 1.3. B1710 Processor access to H-store code.
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b ]
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- -
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Actual store

Figure 1.4. B1800 Processor access to H-store code.

from main store. The size of the cache is large enough to contain an
entire interpreter, or at least that portion of it that is most frequently
executed.

The B1720 model uses a less elegant but quite effective method for
speeding up the fetching of microinstructions. A second storage unit,
here called fast control store, is added to the system (Figure 1.5). This
unit is large enough to hold the most frequently used portions of one or

A e ——
Processor I
control unit / H-store
Fast b AL _____]
control IR
store
G-store
N \W_/
Main store Conceptual

Actual
Figure 1.5. B1720 Processor access to H-store code.
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more interpreters, space permitting. H-store is represented in part in the
fast control store and in part in main store, depending on the size of the
available fast control store. Extra base registers are provided in the
B1720 processor for use in determining the access path needed to fetch
the next microinstruction, a path leading either to the fast control store
(path A) or to the main store (path B). Other things being equal, the
B1720 and the B1800 degrade gracefully to B1710-like performance as
the size of fast control store or the size of the cache, respectively, is
reduced to zero. Chapter 7 of this book deals with these details.

Other differences exist between the B1710, B1720 and B1800 models
than those just mentioned, but they are unimportant for the purposes of
this book. Nevertheless, to avoid fuzziness, we shall always be as
specific as possible about which model we are discussing. Because the
authors’ experience at the University of Utah has been primarily with
the B1720 model, in particular the variant known as the B1726, this book
will describe the B1726; but in so doing it also describes the related
models to a very large extent. When we have occasion to discuss one of
the other models, we will be careful to identify it.

1.2 THE B1726 MODEL OF STORAGE

We can now gain additional initial perspective by focusing on how
storage in the B1726 achieves the effect of a universal host machine. A
typical mainstore, which Burroughs refers to as S-memory (S for string),
normally has a size of at least 64K bytes (2'° bits). The fast control store,
which Burroughs refers to as M-memory (M for microinstruction)
usually has a size in the range 4K to 8K bytes, enough to hold at least
2048 H-language, 16-bit microinstructions.

Let us first assume that the B1726 is busy executing programs for only
one G-machine. [Later we will consider the more general case of two or
more different G-machines as simultaneous guests on the host B1726.]
And further, let us assume that the one G-machine interpreter needed
consists of about 4096 microinstructions, or twice that of the available
H-store. Then we expect that at some point in time the main-store S-
memory will hold half of the G-machine interpreter. If there are more G-
machine language programs active (i.e., being executed in multiprogram-
ming mode), then storage will be needed for procedures of each program
and for the data sets of each program. [If two or more programs shared
certain procedures, duplicate copies of those (reentrant) procedures will
not be needed. So the remainder of S-memory will be occupied by
various procedures and data structures of the active programs of the
guest machine.]
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Any time the host machine needs to execute a microinstruction from
H-store that is not in the M-memory, one of three approaches can be
taken:

1. A block of microinstructions, including the ones currently needed,
can be swapped in from S-memory, replacing a selected block of
microcode now present.

2. So long as the microcode has the attributes of a pure procedure
(read only), a simple overlaying strategy will also work, making
swapping unnecessary. This also assumes that a backup copy of the
entire interpreter is kept in S-memory.

3. Since the B1726 processor is so designed that individual microin-
structions can also be fetched into the instruction register directly
from S-memory (not just directly from M-memory), only the fre-
quently needed microinstructions need be fetched from M-memory.

When blocks of microinstructions are needed in control store, ap-
proach 2 is used. (Approach 1 is never needed or used, since microcode
is treated as pure procedure.) The B1726 executive system known as
“MCP’’ (Master Control Program) also uses approach 3, since H-store
microinstructions may be fetched directly from either M-memory or
from S-memory.

To summarize, our conceptual G-store maps onto the physical storage
called S-memory, and our conceptual H-store maps, to a first approxi-
mation, onto the physical storage called M-memory; but in actuality,
since M-memory is a relatively scarce resource, H-store maps onto S-
memory as well. It will be convenient and simpler to adopt the more
ideal view, that of a one-to-one correspondence, which is H-store onto
M-memory and G-store onto S-memory. We will take this simpler view
in the next five chapters without loss of rigor. In the last chapter
(Chapter 7), however, we will need to examine the details of the actual
mapping between conceptual and actual host stores in the B1726 system.

To appreciate the motivation for the ‘‘two-level control store’ of the
B1726, it is important to observe the following.

1. Because the M-memory is regarded as a relatively scarce resource,
the different interpreters being multiprogrammed can if necessary
reside on and be executed entirely from S-memory. The operating
system has responsibility for keeping track of which physical storage
resources currently hold the interpreters, and is able to redistribute
all or part of each interpreter among the two levels of storage as
deemed appropriate.
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2.

If the operating system allocates the most frequently used portions
of one or more interpreters to M-memory, there need be little need
for frequent reallocation. This is because in general much more is
known about the control structure and frequency of use of an
interpreter and its parts than is known about the higher-level
language programs that will be interpreted; hence it is possible to
dedicate a portion of the M-memory resource to particular interpret-
ers for relatively long periods of time with better effect than would
be possible in a conventional system whose fastest storage is used
for currently executing user or system code that is derived from
compilers.



Chapter2
The B1700 as an interpreting machine

The computer known as the B1700, or more precisely (in our laboratory)
the B1726, is a system designed to make easy and as efficient as possible
the interpreting of a wide variety of instruction sets. The machine
language of the B1700 host is very low-level, resembling the microcode
of other systems whose programmable machine language is at a higher
level. A very low-level machine language is advantageous for programs
that interpret instructions which are at the semantic level of conven-
tional machine language or even higher-level languages. Although we
shall refer to the machine language of the B1700 as microcode, we
should take care to avoid the heretofore common connotation of
microcode as something fixed (e.g., read only) and inaccessible to the
computer user. In our case ‘‘microcode’ is merely the manufacturer’s
name for the machine language of the B1700.

The B1726 is a general-purpose computer. Like all such machines it
may be programmed (in this case in microcode) to interpret another
machine. There is, however, one major practical difference. Most
general-purpose computers have instruction sets designed to go with a
storage organization that is word- or byte-oriented. Bit strings fetched
from storage are always taken in fixed chunks (words or bytes) aligned
on chunk boundaries. Moreover, the length of the machine’s instruction
is always made strictly compatible with the chunk sizes fetched from
storage. Usually the length of an instruction is one chunk or a multiple
thereof. We take it for granted, for example, that for the 18-bit word-
organized storage of the PDP-9 there is a companion instruction set,
every member of which is an 18-bit chunk. Instructions of the PDP-9 are
fetched or stored in units of 18 bits on aligned 18-bit boundaries (i.e., =0
modulo 18.) Now the PDP-9 may not be a perfect computer, but without
knowing more about its internal organization, we may assume that what
it does best is done on chunks of 18 bits. Thus, if we were to use the
PDP-9 to interpret instructions for a 17, 19, or 20 bit computer, we
would expect to see a waste of storage as well as a distinct loss of
efficiency in both the decoding and execution functions of the inter-
preter. What we have just said about the PDP-9 applies equally well to
all such conventional word- or byte-organized systems.

10



The B1700 as an Interpreting Machine 1

Is the B1726 any different in this respect? Very definitely, yes, but the
difference is somewhat subtle. On the one hand, its own machine
language involves a set of microinstructions of fixed length (16 bits).
However, within this repertoire are instructions which control the width
and position of bit-string fetches (and stores) between storage and the
processor. Thus, to fetch a string of 17 bits from bit addresses 19367
through 19383 takes no more and no fewer B1726 machine instructions
than, say, fetching a string of 21 bits from bit addresses 8001 through
8021.

These controls for fetches and stores actually only regulate the flow of
bit strings of from 1 to 24 bits in length. For transmission of chunks
greater than 24 bits, the B1726 provides simple but powerful iteration
controls in its machine-language repertoire. So although it takes more
instructions (and more time) to fetch a 25-bit chunk than a 24-bit chunk,
all chunks in the range 25 through 48 are in the same get/put class
(instructions and time for a fetch or store), as are chunks in the range 49
through 72, 73 through 96, etc.

Apart from the crucial capability for defining fields of bits (chunks)
and transmitting them from or to storage, the B1726 organization
resembles in essence the familiar von Neumann architecture of a modern
(e.g., 4th generation) sequential stored program digital computer. Be-
cause of its special orientation (and objective) as an interpreting ma-
chine, however, the structure of the processor, at first glance, appears to
be more complicated than a conventional processor. Even so, it is easy
to gain a simplifying view of this structure if one realizes that the
processor performs only four types of activities; one can gain an
integrated understanding by studying these activities one by one. There
are interconnecting data and control paths between the registers used to
implement each activity so a complete understanding of the processor
can come only after all these interconnections and interrelationships are
recognized. The four activities are

1. Data fetch and addressing

2. Data examination and manipulation

3. Decoding of higher-level language instructions
4. Control

We will look briefly at each of these.

1. There is a group of registers associated with the control and
transmission of chunks to and from data storage. These include, for
example, registers to hold the starting address of a bit field in
storage, field length, etc., as well as registers to serve as receivers
(from storage) or sources (to storage). Other registers, in a block
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known as the scratchpad, are useful for holding bit addresses and
lengths for frequently referenced fields in storage.

2. There is a group of registers associated with the arithmetic and
logical functions of the computer, so that the B1726 can be micro-
coded to perform the conventional types of arithmetic and logic
needed in everyday (simpler) computer and systems applications.

3. A few registers are available for use as local storage. Some of these
are endowed with special properties, very useful in the decoding
phase of the interpreting process (e.g. shift and rotate, and in
addition, extraction and testing of subfields).

4. The machine has what amounts to an instruction or program line
counter and an instruction register for controlling the sequence of
microinstructions and for holding the microinstruction that is being
decoded and executed by the hardware. In addition, there is a small
stack whose main use is for holding return addresses for micropro-
cedure calls (a control stack.) Address modification and other
dynamic altering of B1726 microinstructions is made easy by utiliz-
ing a feature that ORs the operand of the preceding instruction with
the next instruction. In many conventional machines this feature is
achieved using index or base registers.

There are a number of explicit and implicit ‘‘connections’’ between
the registers involved in the four classes of functions of the processor.
Learning all these connections will take some time; the best way is by
first studying some examples (case studies) of short microcode se-
quences. By tracing these one can incrementally accumulate an under-
standing of the whole process and be able to start writing B1700
microcode and/or ‘‘critiquing’’ microcode written by someone else.

The explicit connections referred to in the preceding paragraph are
those spelled out in each microinstruction. For example, each MOVE
microinstruction explicitly names the source and sink registers involved
in the move operation. In essence, it is possible to move bit strings from
any register to any other register. Of course, there are certain excep-
tions—for example, the microinstruction that causes a fetch from
storage names the sink register explicitly, but does not name the
registers holding the bit address or length of the source field in storage.
These registers are always implied, as is (for example) the accumulator
in the conventional SUB instruction of SAMOS.

2.1 INSTRUCTION DECODING

In the introduction we hinted that the B1726 instruction set and
machine organization were designed especially to facilitate interpreting
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of guest-language instructions. That’s a broad statement. There are
potentially an infinite number of guest languages with an infinite variety
of instruction formats. It is surely not the case that the B1726 decodes
with equal facility the instructions of every possible guest or G-machine.
First note, however, that for most actual machines (potential G-ma-
chines) the instructions formats are regular. That is, they have such
characteristics as fixed length and fixed fields, or a very small number of
lengths and a small number of different fields and field lengths, accord-
ing to the subclass within the repertoire. Based on this set of characteris-
tics, SAMOS, for example, has a regular instruction format. So does the
PDP-9 or even the IBM System 370. Regularity is popular in actual
machines for minimizing the complexity of the interpreting hardware
and/or micrologic so as to gain maximum speed or economy.

But it is certainly possible to imagine other G-machine languages
where the instruction formats are, may, or should be highly irregular or
exotic. If the G-machine has a phrase-structured language such as
ALGOL (or any of the so-called higher-level languages), chances are the
instruction format will be regarded as exotic in comparison with those of
most everyday conventional computers.

In a well-designed interpreting machine the work of decoding should
be roughly proportional to the complexity of the instruction format—and
this appears to be true for the B1726 design. Whether regular or exotic,
decoding is easiest on the B1726 if the operation code field is at or near
the left end of the instruction. But fortunately, this is the case in nearly
every machine design we have seen. Why is this so? Well, op-code fields
are typically positioned at the left end of an instruction, with operand
fields following, to conform with the customary functional notation of
mathematics, e.g., f(a,b) for a two-operand operator f. To fetch and
decode such an instruction, two steps are necessary.

1. First we position the storage pointer to the storage address of the
first bit in the instruction, and then read into a B1726 register as
many bits as are needed to examine the entire op-code field. For a
G-machine with 256 or fewer distinct binary op-codes (that covers
most G-languages), the op-code field might then be no more than 8
bits in length.?

2. Inthe B1726 there is a 24-bit special decoding register, known as the
transform register T, which has been endowed with special logic. In

' Of course there are various ways of designing operation codes, which for the sake of
efficiency, might lead to op-codes of various lengths, some less than 8 bits and some more,
in this case. [But, for pure binary computers it is certainly unlikely that an op-code field
greater than 24 bits would ever be required.]
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particular, there are B1726 machine-language instructions which test
bits of T and bit subfields of T, extract them, and move them to
other registers. The B1726 possesses other features which enable a
rapid jump (much like a FORTRAN computed GO TO) to the
appropriate subroutine, where further analysis of the instruction or
its execution can commence. For such jumps, the op-code extracted
from the special decoding register T serves as index value for the
jump (i.e., jump to here plus index.)

If the G-language is regular, and if the instructions are 24 bits or less
in length, then the entire instruction can be analyzed directly from one
loading of the T-register described above. If they are of regular format,
but greater than 24 bits, then two or more successive loadings of T from
storage may be required. After each loading of T, subfields can be
extracted from T, analyzed, and held as necessary in other B1726
registers that serve as local or temporary storage.

For each new loading of T the storage pointer must be reset to the bit
address of the next field in storage. There is a special field address
register in the B1726 called FA which is used for the purpose of holding
the storage address of the next 24-bit (or smaller) chunk. To go with the
FA-register, there is an adder dedicated for the purpose of incrementing
or decrementing FA. One can specify activation of this adder, for adding
or subtracting a small constant (0 through 24), as part of the microin-
struction that uses FA. For example,

READ 8 BITS TO T INC FA

specifies that T is to be loaded with an 8-bit field from G-store beginning
at the address given by FA. Following the fetch from G-store, FA is to be
incremented by 8. (The incrementation of FA overlaps the fetch of the
next micro instruction from H-store.)

Another register called the field length register, FL, is provided in the
B1726, and is also outfitted with a dedicated adder. The content of the
FL-register is often used as an iteration counter for loop control during
the transfer of long fields (>24 bits) to or from storage. If an instruction
subfield is of variable length, the value in the FL-register can be preset
to the (current) field length and then decremented and tested (against
Zero).

The specification for activating the FL’s adder, like that for the FA’s,
is made part of the transfer microinstruction (READ or WRITE), e.g.,
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WRITE 12 BITS TO T INC FA AND DEC FL, so there is no extra cost in
B1726 machine time to carry out the address and counter arithmetic
during each transit of the transfer loop. In this way, a series of variable-
size subfields can be read from G-storage, the size being dependent on
the analysis of preceding fields within the same G-language instruction.



Chapter 3

Organization
of the B1726
microprocessor

In the preceding section we identified four kinds of activities performed
by the B1726 microprocessor.! We now look at these one by one in more
detail.

3.1 DATA FETCH AND ADDRESSING

Before an interpreter can decode a higher-level instruction, it must be
fetched from the store that holds it. We have called that store the guest
store, or G-store (although the Burroughs literature calls it ‘‘S-mem-
ory”’). We assume that before interpretation begins, the G-language
program has been loaded into one portion of G-store and a workspace
has been allocated for data storage for the same program.

The left side of Figure 3.1 shows the G-store on a long ‘‘stick’ to
represent a bit string. A subfield to be used as the workspace is marked
off by values in a pair of bounds registers called BR (base register) and
LR (limit register). (The workspace is used for variables, constants,
temporary storage, saved copies of registers during temporary interrup-
tion of the interpretation process, etc.). The bounds registers are used
mainly to protect against accidentally writing into sections of G-store
lying outside the workspace. The sections outside the workspace nor-
mally hold G-language instructions, i.e., code, system-manipulated in-
put/output buffers, and workspaces for other computations that are
being multiprogrammed with this one. We assume that the interpreter is
provided with the size and location of the workspace and that the base
and limit registers are set prior to interpreting the first G-language
instruction.

The hardware logic of the microprocessor checks each G-store data

! We use the term microprocessor to mean a processor of microinstructions (i.e., as a
shorthand for microinstruction processor. We do not intend to imply that the B1726
computer system is a tiny computer consisting of a few large-scale integrated (LSI) chips.
A principal reference describing the processor is: Burroughs, ‘‘B1700 Systems Reference
Manual’’, Burroughs Corporation, Detroit, 1972, Form 1057165.

16
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address before using it against values of the LR and BR register. If the LR
and BR registers are preset properly, and if they are not improperly reset
during execution of the G-language program, the programmer can be
assured that the process of interpretation will not damage system tables.
But caution must be exercised, since there are no constraints in the
machine language against assigning values to LR and BR. Having said all
this about the protection role of LR and BR, we will for the most part
now ignore these two registers, taking for granted that the microcoder
who develops an interpreter will use these key registers properly.

We are now ready to see how inputs from G-store (reads) and outputs
to G-store (writes) are executed. The read (or write) action is a hardware
procedure that has three parameters.

Bit address of the field in G-store

Length of that field

Register in the microprocessor that is to serve as sink (for a read) or
source (for a write)

An argument value for the first parameter is (must be) always
provided by presetting the FA register with the bit address of the
beginning of the G-store field. [In Figure 3.1 we see that the F-register is
a double-length register, the left half being the 24-bit FA register. G-
stores of up to 22* bits are possible in the B1726, so an absolute address
is 24 bits long.] The second argument may be specified explicitly in the
read (write) microinstruction, or by a default rule. The third argument is
always specified explicitly. The registers X and T shown in Figure 3.1
are two of four registers that can be named as the sink (source) registers
in a read (write) microinstruction.

Example Suppose we are trying to read an 18-bit field located at bit
address 16218 into the X-register of the microprocessor. The steps we
want to execute are

| 1

FA < 16218

—

Read 18 bits to X

What could be simpler? This sequence would cause the transfer of 18
bits at address FA to register X. The X-register is one of four 24-bit

Equivalent
A';bolic microcode

MOVE 16218 TO FA .
in ““MIL”’ syntax

READ 18 BITS TO X
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registers (others are Y, T, and L) which may serve as a sink (or source)
for reads (or writes) from (or to) G-store.

One READ (or WRITE) instruction is sufficient to transfer from 1 to 24
bits. [Fields of fewer than 24 bits are regarded as right-justified in the
sink (or source). Zeros pad the left end of the sink register when the
input field is less than 24 bits long.] How are fields of length greater than
24 bits to be transferred? Clearly, a microinstruction loop is needed such
that upon each transit of the loop, up to 24 bits are shipped. Of course,
FA must be properly incremented for use in succeeding reads or writes.
A special arithmetic unit is provided in the B1726, shown in Figure 3.1.
Using this facility we can make the READ (or WRITE) instructions
specify incrementation (or, if we like, decrementation) of FA immedi-
ately following the transfer of bits from/to G-store. In particular,

l 2a

Read 18 bits to X

l > READ 18 BITS TO X INC FA
2b

FA «— FA+18 7 &\()nly one microinstruction

l is required.

Combining the incrementing of FA with the READ (or WRITE) in this way
will cut down the number of instructions needed for loops involving
repeated transfers. For example, the loop in Figure 3.2 shows how one
might control the transfer of a sequence of ten 18-bit fields (or one 180-
bit field taken as ten 18-bit chunks) into the microprocessor, where the
starting address in G-store is 1600.

We already know how easy it is to map boxes | and 3 into B1726
symbolic microcode (or MIL,? for micro implementation /anguage). It is
not however, straightforward to map box 2 above into microcode,
simply because on the B1726 there is no circuitry to perform a logical
comparison on the value in FA. As mentioned at the end of Chapter 2,
the B1726 designers have solved this problem in another, relatively
convenient, way. They provided another register, FL, in the lower 16
bits of the right half of F to serve several purposes, including that of a
loop counter. The address arithmetic unit will increment (or decrement)
FL as well as FA, if such action is specified in a READ or WRITE
microinstruction. Moreover, contents of FL can be compared with zero.
A skip or GO TO based on this comparison can then be taken based on

% Appendix A of this book is an abridged reference manual for the MIL language.
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i 1

FA <« 1600 MOVE 1600 TO FA

Read 18 bits to X
and then increment READ 18 BITS TO X INC FA
FA (by 18)

Process the value
in X in some fashion

Figure 3.2. Controlling a loop for reading a sequence of ten 18-bit fields.

| |

BOX1
::ﬁ : 1(1528 > MOVE 1600 TO FA
l MOVE 180 TO FL

2
FL 0 )———T—Oé% BOX2
|
N

IF FL=0 GO TO NEXT
F

3

Read 18 bits to X

and then increment FA > READ 18 BITS TO X INC FA AND DEC FL
and also decrement FL

Process the value in

BOX4
X in some fashion :

GO TO BOX2
NEXT

Figure 3.3.

Input loop and equivalent MIL code.
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this test. Figure 3.3 shows a modified flowchart for the above input loop
showing the use of the FL register as a loop control counter, counting by
18.

The approach taken in Figure 3.3 is all well and good when the width
of the field moved from (or to) G-store is a multiple of the chunk size
transferred during one READ or WRITE. What about other cases? For
example, suppose we wish to transfer a field of 2001 bits, up to 24 bits at
a time—i.e., as a sequence of 83 chunks of 24 bits; followed by one 9-bit
chunk—starting at bit address 22759. It will be most convenient if all
READs can be performed by one instruction which is part of the loop,
including the one that transfers the residue of 9 bits. Figure 3.4 shows a
flowchart representation of this type of read loop. Here again the FL
register serves as a loop-control counter, but it also has one other
important role.

These two illustrations (Figures 3.3 and 3.4) show how the FL register
gets its name, i.e., the field-length register. This register may be initially
assigned the actual length of the long G-store field to be transferred.

l ! l !

Initialize the : FA « 22759 3 MOVE 22759 TO FA
read loop FL < 2001 MOVE 2001 TO FL
: J
F
FL #0 Equivalent
MIL
3
Read min(24, FL)
bits to X;
then increment FA
and decrement FL : gé:i ?; ; INC FA AND DEC FL
by min(24, FL)

Process the
value in X
in some fashion

Figure 3.4. Read loop to transfer a field of length FL, CPL bits at a time,
into the X-register.
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Fields up to 2'¢ bits long may be accommodated in the B1726. [That’s
why FL is 16 bits wide.] We want to set the size of the chunk transferred
by the READ instruction to the minimum of 24 and the current value of
FL, which is to be decremented by 24 following each READ. When there
is a residue chunk of 1 to 23 bits remaining to be transferred, it will be
transferred on the last transit to the loop, the size of the residue being
min(24,FL).

To see how this residue control is achieved in the equivalent B1726
operations, we must note two more facts about the semantics of the
B1726 READ (and WRITE) microinstructions.

1. If the chunk size is not explicitly specified in the READ (or WRITE)
instruction (or if it is explicitly specified as zero), a default value is
chosen as the current value in the special length control or CPL
register (not shown in Figure 3.1 but shown in Fig. 3.8 below).

2. The READ (or WRITE) instruction may be preconditioned by execu-
tion of a so-called BIAS instruction, which sets the default chunk
size by assigning to CPL the minimum of 24 and the value specified
in that BIAS instruction. For example, executing the microinstruc-
tion

BIAS BY F

prior to executing a READ with an unspecified chunk size amounts to
CPL < min(24,FL),

which is precisely what is wanted for handling the residue in our
field-transfer algorithm of Figure 3.4. In that instance FL had the
value 9 and CPL the value 24 when the BIAS instruction was about
to be executed for the last time. Executing the BIAS instruction at
that point gives CPL the new value 9, so the chunk size used in the
succeeding READ is 9.

Here are two final notes regarding field transfers:

1. In the example of Figure 3.4 we imagined that we wanted to
minimize the number of READs by transferring 24-bit subfields (the
largest chunk that can be transferred at one time). We are, of
course, free to specify chunks of less than 24 bits. For example, had
we chosen to transfer subfields of 7 bits each, only two coding
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changes are required. In box 1, we need to insert the instruction

[ cpL<7 |= move 7 TO CP

A

In addition, the BIAS instruction of box 3 must be written as
BIAS BY F AND CP

The semantics of this variant of the BIAS instruction is
CPL <« min(24,FL, CP)

Executing this instruction before each READ (or WRITE) guarantees
that CPL will be set to the minimum of 7 (the value first assigned to
CPL) and any lower value that may be eventually assigned to FL.
Each READ will now transfer a chunk of 7 bits, except possibly the
last transfer, which may be less than 7 bits. Incrementing of FA and
decrementing of FL. will now be done by 7 instead of 24.

2. READ and WRITE microinstructions may proceed not only forward,
(i.e., from low to high G-store bit addresses, which is the usual way)
but also in reverse (i.e., from high to low G-store bit addresses). The
READ REVERSE or WRITE REVERSE option is provided by the B1726
designers so the programmer can gain increased efficiency in certain
types of transfer operations. For example, with FA set at a bit
address as shown below,

Sink & Source
Field | | Field 2 ]

@ =L

one can READ TO X (forward) from field 2 of G-store, and later
WRITE REVERSE FROM X into field 1 without having to use a
different value of FA. Suppose, for example, that fields 1 and 2 are
each 16 bits long, with the address of the leftmost bit of field 2
currently in FA. If field 2 contains the character string ‘‘BC”’,
then upon executing the sequence

READ 16 BITS TO X
WRITE 16 BITS REVERSE FROM X

the value stored in field 1 is also ‘“BC’’. A REVERSE transfer does

G-store
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not reverse the order of the information in the transferred copy. It
only changes the significance of FA from the field beginning at
address FA to the field ending at FA — 1.

We have now explained the functions of most of the registers shown
in Figure 3.1 except the ‘‘scratchpads’’. These are a set of 16 double-
length registers which may be used as local storage for any purpose, but
are especially convenient for the temporary storage of G-storage field
descriptors, i.e. (address, length) pairs.

One obvious use of the scratchpads occurs to us if we consider the
simple problem of copying a bit string from one part of G-store to
another. For example, we shall consider the problem of copying a field
of 2001 bits from a starting address of 22759 to a new field, starting at
(say) 26721.

We saw in Figure 3.4 how to flowchart the task of moving this bit
string from G-store into the microprocessor via register X. Now we want
to take the chunks originally brought into X one by one, and write them
out to G-store. Thus

J, 4a
Process the value Set FA to
in X in some fashion @ the right value

! ab

Write out the value of X
into G-store at some
address implicitly
specified by FA

!

But to achieve this objective, we need temporary storage to save and
restore alternately the current values of FA for the source and sink fields
on each transit of the loop. We can use scratchpad registers for this
purpose, as suggested in Figure 3.5. S1A is used for temporary storage
of the sink address, and SOA as temporary storage for the source
address. The FL register is used as a loop control counter.

Another way to achieve the alternation of source and sink addresses,
which saves two MIL instructions, takes advantage of the XCH microin-
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I |
Initialize the FL < 2001 MOVE 2001 TO FL
read/write loop FA « 22759 MOVE 22759 TO FA
S1A < 26721 MOVE 26721 TO S1A
: !
FL #0 )——Fv

3

CPL « min(24,FL) > BIAS BY F

4

Read CPL bits to X;
then increment FA READ TO X INC FA AND DEC FL

and decrement FL

Save FA for the source

and MOVE FA TO SOA
restore FA for the sink MOVE S1A TO FA

Write CPL bits from X;

5 WRITE FROM X INC FA
then increment FA

Save FA for the sink

and MOVE FA TO S1A
restore FA for the source MOVE SOA TO FA

Figure 3.5. G-store-to-G-store copy loop for a 2001-bit field, using sepa-
rate scratchpad registers for saving source and sink addresses.

struction to interchange the contents of any scratchpad register (all 48
bits) with F. [The general form of the XCH is

XCH (scratchl) F (scratch2),
which ‘‘simultaneously’’ moves a copy of F into scratch2 and a copy of

scratchl into F. In our special use of XCH in Figure 3.6, scratchl and
scratch2 are the same registers. We assume that the XCH operation uses
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L |

Initialize FL < 2001 MOVE 2001 TO FL
read/write FA « 22759 MOVE 22759 TO FA
loop S1A « 26721 MOVE 26721 TO S1A

2 J
T
3
CPL « min(24,FL) > BIAS BY F

4

Read CPL bits to X;
then increment FA
and decrement FL

READ TO X INC FA AND DEC FL % BY CPL

% indicates that the remainder
of the line is a comment

Write CPL bits from X;
then increment FA WRITE FROM X INC FA % BY CPL

Figure 3.6. Same copy program as in Figure 3.5 except for coding of
boxes 5 and 7, which uses the XCH instruction and scratchpads S1A and
S1B. (This program uses S1B but not S0A.)
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a hidden register to simulate the simultaneity inherent in the exchange

J scratchl

Step 2

scratch2

F J Step 3

hidden register

Step 1

where step 1 must precede steps 2 and 3.]

As the operations on the data flowing from G-store and back again
become more elaborate, it will be increasingly convenient to hold at one
time a variety of descriptors in the scratchpad registers. That is why 16
double registers hardly seems too many. [There are, however, some
good arguments for not making the scratchpad too big. We shall discuss
this issue in connection with the job of saving and restoring the state of a
computation following an interrupt.]

At this point we have discussed all the registers shown in Figure 3.1
except the 16-bit register SFL (in the lower-order portion of SOB, the
right half of SO) and several 4-bit registers, namely FU, FT, and SFU.
The SFL register may be used as a limit value against which FL. may be
compared. That is, the hardware senses the relative magnitudes of FL
and SFL (<,=,>) and sets a bit in one of several control registers to be
discussed later. Testing that bit can be used as a basis for branching,
i.e., skipping the next microinstruction.

The SFL field may also be hardware-sensed in a variant of the BIAS
instruction. For example, BIAS BY F AND S means CPL <«
min(24,FL,SFL). It might be used, for instance, when SO and F contain
descriptors for two fields and the size of the next read or write chunk is
to be based on the smaller of the length fields FL. and SFL of the
respective descriptors, thus avoiding destruction of G-store information
when the source field is longer than the destination field.

The four-bit registers FU, FT, and SFU have no important hardware
function for data transmission to and from G-store. [Actually, the
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contents of FU may be sensed in a rarely used variant of the BIAS
instruction, BIAS BY UNIT, in which UNIT is the key word that refers to
FU. The contents of FU characterize the type of data (i.e., bit string, 4-
bit decimal, 8-bit decimal). The meaning of BIAS BY UNIT is

CPL « FU
if FU = 4, then 1

l

This has the effect of setting the chunk size to that of FU. The
significance of the CPU and the value assigned to it is secondary. We will
discuss the significance of the special CPU register later when we discuss
the so-called ‘‘24-bit function box’’.] Data stored in FU and FT may be
regarded as ‘‘addenda’’ to the address and length of a descriptor. In
particular, when it is necessary to carry a type description for a field,
such information may be held in FU and/or FT.

CPU «

else 0

3.2 DATA EXAMINATION AND MANIPULATION

Once data have arrived from G-store into the H-processor, there are a
wide variety of facilities for examining and processing them. As men-
tioned earlier, there are actually four registers, X, Y, L, and T, that may
serve as receivers. Each is 24 bits long, and each has a set of distinct
functional properties such that, depending on what one wants to do with
the data arriving from G-store, one particular receiver register (X, Y, L,
or T) may be more suitable than another. Of course, data can be moved
(copied) from the receiver register to another one using the MOVE
microinstruction. For example, if data has been read to T, it can then be
moved (copied) to X:

READ 15 BITS TO T
MOVE T TO X

The L and T registers are further subdivided into individually address-
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able 4-bit subregisters, known as LA, LB, L.C, LD, LE, and LF:

0123 20 2122 23

be = = o -
R e
b e o o e cnend

r
e - -

LA LB LC LD LE LF

and TA, TB, TC, TD, TE, and TF:

0123 . 20212223

e = - -
T

~

TA TB TC TD TE TF

That is, each of these subregisters may be mentioned by name in a
microinstruction. For example, MOVE LC TO TD would cause the four
bits in L.C to be copied to the TD field of T. The individual bits of a four-
bit register are addressable from left to right with subscripts 0, 1, 2, or 3
respectively. Thus LC(3) is the same as L.(11).

The T-register has rather special (and powerful) transformational
properties. Its contents may also be tested as a basis for conditional
branching. Perhaps even more interesting is the fact that any subfield of
T may be copied and moved to any receiver register (X, Y, L, or T),
using the so-called EXTRACT microinstruction. For example, a copy of
the seven-bit field in positions T, through T,, can be assigned to the
lower-order seven bits of Y (and Y padded with leading zeros), e.g.,

012... 16 22 23
L\ I [EIIICICICIRII
A —
012... 17 23
S I I

The (MIL) microinstruction to achieve this type of copy is
EXTRACT 7 BITS FROM T(16) TO Y.
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Extraction in the direct sense just described cannot be performed on
the other receiver registers. However, two of the registers, X and Y, may
be shifted or rotated left or right to isolate a desired subfield.

Any bit within L or T, or pair of bits that are within any one four-bit
subregister of L. or T, may be tested (compared for equality against
particular values) for use in selection steps. Some example selection
steps, mapped into MIL code, are given in Figure 3.7. The illustrations

IF LC(3) TRUE THEN
BEGIN
3 i Steps of box 3

END ELSE

> BEGIN
i Steps of box 2
END

LC; = true

AN IF TC = 14 THEN CALL PROC

PROC —ﬁ)

T
TB, or TB; IFBEg}:‘) OR TB(3) THEN

F 2 v 3 i Steps of box 3

IF X = Y THEN
BEGIN
Steps of box 6
END ELSE
BEGIN

X =Y T i Steps of box §
END

F | 6 END ELSE
5 BEGIN
Steps of box 2
END

~

Figure 3.7. Examples of selection steps based on contents of bits or
pairs of bits within a subregister of L. or T, or based on a comparison of X
and Y.
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given in this figure are intended only to provide an idea how easy it is to
express tests based on the contents of the receiver registers or on one or
two bits within one subregister. The syntax of the MIL IF statement is
detailed in Appendix A.

3.2.1 The arithmetic capability or “function box”

The two registers X and Y are inputs to a 24-bit function box whose
combinational logic provides a variety of arithmetic and logical results as
output. These results are available in a block of nine 24-bit ‘‘result”
registers, one machine cycle (167 nanoseconds) after a new value is
assigned to either X or Y. The registers, whose meaning is given below,
are shown in Figure 3.8.

MSKX Masked copy of X
Res.ults CMPX Complement of X
registers
SUM Sum of X + Y + value of CYF, the carry flipflop
&’ DIFF Difference of X and (Y + value of CYF, the carry flipflop)
XANY Bitwise and of X and Y
XORY Bitwise inclusive or of X and Y
XEOY Bitwise exclusive or of X and Y
CMPY Complement of Y
MSKY Masked copy of Y

The length of each result is controlled by the value assigned to our old
friend, the CPL register. A value of m = 24 in CPL allows m-bit results to
appear in each result register. For example, if CPL = 7, then only the
low-order 7 bits of the results appear in the result registers. [The high-
order portion of the result register is padded with zeros.] Thus if X
contains the binary number 100010, and Y contains the binary number
1000101,, and if CPL = 4, then MSKX (masked copy of X) contains the
binary number 10, and MSKY contains 101,. At the same time, SUM
contains 111,, XORY contains 111,, etc. All bits to the left of the fourth
bit are then zero in each result register. So by controlling the value in
CPL, the microprogrammer can generate results of any length up to 24
bits.

Carries for sums and borrows for differences are indicated in separate,
one-bit result registers, CYL and CYD respectively. These carry-out
registers may be tested as a basis of an (IF) selection step. Carry values
may also be copied into the carry-in flipflop register CYF for input to the
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Figure 3.8. Additional registers for data examination and manipulation.

function box on a next sum or difference of X and Y, as might be
required, say, in simulating a multiple-precision add or subtract.

3.2.2 Arithmetic tidbits

To do a multiply or a divide, one is forced to use a microcoded
subroutine built on repeated adds or repeated subtracts. There is, of
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course, no floating-point arithmetic primitive in the B1726, so this too
must be microprogrammed.

Adds and subtracts can be performed in binary or in 4-bit decimal. In
4-bit decimal arithmetic, each 4-bit subfield of the operands X and Y and
of the results in the SUM and DIFF registers is binary-coded 0 through 9.

What determines whether X- and Y-registers will be regarded by the
hardware as binary or as 4-bit decimal? There is a special 2-bit register
called CPU, whose value controls this arithmetic interpretation of X and
Y. The CPU is a companion or ‘‘cellmate’’ of the CPL register, both being
housed, along with the carry-in flipflop CYF, in the 8-bit CP (control
parallel) register.

Y CPL

CYF

The microprogrammer can, of course, also set or test the value in CPU
and hence can cause the controls to switch back and forth from decimal
to binary arithmetic for the results he wants.

Taking stock, the CP register plays an important role in control of
arithmetic and (to a lesser extent) of logical operations resulting from the
inputs X, Y, and CYF. The subregister CPL controls the length of each
result, and the subregister CPU controls the unit (binary or 4-bit decimal)
on which arithmetic will be performed. For an overview of the data
examination and manipulation capabilities based on the receiver regis-
ters X, Y, L, and T, we have now said enough.

3.3 INSTRUCTION DECODING

At the risk of oversimplification, we can say that a machine instruc-
tion consists of an op-code followed by several operands (none, one, or
more). If this is true for the machine that is to be interpreted by the
B1726 host, then instruction decoding can be thought of as consisting of
these steps:

1. Determine, by examination of the op-code field, which microcoded
subroutine must be called to carry out the intent of that instruction.
(We will call it the ‘‘operator subroutine’’.)
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2. Evaluate each operand on the basis of the information in each
operand field.
3. Call the operator subroutine determined in step 1.

If step 2 has been executed before step 3, then the operator subroutine
is in effect supplied arguments which are the results produced in step 2.
However, if steps 2 and 3 are interchanged, then the operator subroutine
must be ‘‘smart” enough to know how each operand is to be found and
evaluated so as to execute the intended semantics of the operator.

In simple (i.e., regular) machines, not only is there a fixed (or at least
small) number of operands for each instruction, but each operand has a
simple interpretation. For example, in SAMOS each operand may be
regarded as atomic (no substructure) and is a number representing a
location in the SAMOS store. For such simple machines it is probably of
small consequence (except for limited efficiency tradeoffs) whether or
not step 2 precedes step 3.

When operands differ in description according to the statement types
in which they appear, as in the case of higher-level (more exotic)
machine like FORTRAN, there is greater justification for the inter-
preter designer to delegate to each operator subroutine the job of
deciding how its associated operands are to be fetched or stored. Thus,
each operand in a FORTRAN-like machine would probably have several
components, such as its zype, in what table (work space) the cell for this
operand may be found, the offset within this table, and the length of the
operand. For the remainder of this discussion we wish to keep things
simple, so we’ll assume we are dealing with a regular machine in which
it is quite feasible to execute step 2 before step 3.

With this case in mind, and without loss of too much generality, we
can further narrow the discussion to the case of a one-address machine
like SAMOS. For such a machine there are typically, at most, three
fields following the op-code field, e.g., operand, index register indicator,
and possibly an indirect address indicator. The order is immaterial.
Since each field is in a fixed position within the instruction, it is a
relatively easy matter to write microinstructions which fetch the ‘‘next”
instruction from G-store and extract each of its fields. The T-register is
ideally suited for this. If the instruction is greater than 24 bits in width,
several fetches will be needed, and more of the ‘‘local registers’’ such as
L or even X and Y might be used. As each operand is isolated it can be
evaluated and its value saved in an agreed-upon scratchpad register.

What do we mean by evaluation of an operand? Take the case where
we are simulating a machine M whose storage consists of r cells, each s
bits wide. We assume that the storage for M (r X s bits) will have been
allocated in G-store beginning at some absolute address, represented
(say) by the symbol B. Then evaluating an operand whose value is (say)
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v amounts to a mapping from v to an absolute address in G-store. In this
case it is

map(v) =B +s X v

where 0 =v =r. Of course, the word width s is a constant for machine
M. Moreover, B is fixed for a particular interpretation of a program for
M. B is based on the contents of the B1726 base register BR.? [It may be
useful to let the value of r be a parameter of the interpreter so that the
storage size of M can be specified anew on each simulation.]

The sequence of microinstructions which performs this mapping must
therefore know where to find B, probably s, and r. Very likely B will be
found in an agreed-upon scratchpad register.

Must address arithmetic of the type required in computing map(v) be
performed entirely by the function box? If so, there could be some
congestion-induced overhead in the use of registers X and Y. If one or
both of these registers hold data values which are to be written out to G-
store at an address which is about to be computed in the function box,
then data values in X and Y will have to be moved and may have to be
given a ‘‘round-trip ride’”’ to and from some available scratchpad while
the function box is put to use computing the target address—e.g., as
shown in Figure 3.9.

To avoid a lot of this overhead the designers of the B1700 attached a
full 24-bit adder to the FA register, making it possible to do the most
frequently needed address arithmetic (computing offsets by addition and/
or subtraction) outside the function box. One can add to or subtract
from FA the value of any of the 16 left half scratchpads’ registers (SiA, i
=0, 1, ..., 15). Thus in the instruction sequences

MOVE BR TO FA % MOVE BASE FROM BR TO FA
ADD S7A TO FA
MOVE FA TO S9A

or

MOVE S10A TO FA % MOVE BASE FROM S10A TO FA
SUBTRACT S11A FROM FA
MOVE FA TO S15A

the FA register plays the role of a conventional accumulator (with
addend or subtrahend addressed from the left half of the scratchpad and
with augend or minuend from any register). We see that if address
computation only requires computing an offset from some base, then the

3We assume that BR is fixed in value during the interpretation process, but in a
multiprogramming environment it may be that a program’s data space may be relocated
before its execution is completed, so in fact BR is not strictly a constant.
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Figure 3.9.

wasteful sequence of 5 steps in Figure 3.9 reduces to

l Replaces 1-4

Compute address in G-store
and save it, if needed, in
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Write out from X and/or
Y to G-store

!
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We now suppose that, having computed map(v), this value is stored in
another agreed-upon register. The values of other subfields that define
the operand, such as the index register indicator, can also be stored in
agreed slots. The operator subroutine may then be called and it will
know, by convention, where to find the values of its arguments, for
instance in scratchpad registers S3, S4, and S5. The mechanics of
calling the appropriate operator subroutine and returning from it will be
discussed in the next section.

3.4 CONTROL

We are now ready to examine more closely the actual control
structure of the B1726 microprocessor. Code executed by the B1726
consists of sequences of 16-bit microinstructions. [The machine language
of the B1726 is itself a somewhat regular one.] Microcode is regarded as
invariant, i.e., it shouldn’t be altered as a result of being used (inter-
preted).

To the extent possible, microcode is kept in a separate program store
(H-store), whose mode of access is primarily read-only, and where
microinstructions are relatively well protected against being accidentally
clobbered. Of course the program store has to be loaded periodically
with new batches of microcode, so the program store (usually referred to
in the literature as control store) must also be (and is) writeable. [In fact,
there are several ways to write into control store. Use of the special
OVERLAY instruction causes code to be shipped from G-store to H-store,
and it is also possible to load microcode into H-store from a console
cassette tape or from the console switches.] The control store on the
University of Utah B1726 has, for example, a capacity of 2048 microin-
structions (4096 bytes).

The ordinary cycle for interpreting a microinstruction begins with a
fetch from H-store from the location pointed to by the A-register (Figure
3.10), which is the program counter for the hardware. The fetched
microinstruction goes to the M-register, whence it is decoded by the
hardware for execution.

How does the OR box attached to M help us? The actual operation of
the hardware in the execution of a B1700 instruction is

1. The microinstruction at location (A) is ORed into M.

2. A is incremented by 16.

3. Instruction in the M-register is decoded, and gates are set appropri-
ately for execution.

4. Mis cleared (preparatory for next instruction).

5. The instruction is executed.
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Figure 3.10. Additional registers for control, i.e., interpretation of mi-
croinstructions.

Of course, before the very first instruction of a program is executed, the
M register must be cleared. This always happens during the initial startup
procedure. Suppose that some instruction caused data to be moved to
the M register—for example, MOVE 3 TO M. During step 5 the value
specified (3 in this case) would be moved to M and would then
“‘participate’” in step 1 of the next instruction cycle. Hence the value
moved to M can control (modify) the effect of the next instruction. Note
several things about this modification.

1. Logical ORing of all 16 bits allows modification of any field of a
B1700 operation.
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2. The effect lasts only for one instruction execution.
3. The actual H-store is not changed in any way.

Example Suppose scratchpad registers S12A, S13A, S14A, and S15A
contain a list of 4 possible offsets to a base address of a list in G-store.
Further, assume we know that TA has a value in the range 0 through 3
inclusive, corresponding to one of the offsets found in S12, S13, S14, or
S15. We would like to use the scratchpad ADD instruction to add the
offset from the desired scratchpad into FA. The following sequence of
microinstructions accomplishes this objective.

MOVE TA TO M
ADD S12A TO FA

The scratchpad ADD instruction names S12A as the source, but the
address field designating S12A will be ORed with a copy of TA previ-
ously moved to M, producing an ‘‘effective address’’ that designates the
desired scratchpad register: S12A for TA=0, S13A for TA=1, S14A for
TA=2, or S15A for TA=3.

[Warning: We must be careful in the use of the ORing feature, or we
may get unexpected results. For example, what is the effect of MOVE TA
TO M in the following sequence when TA is again assumed to have a
value in the range 0 through 3?

MOVE TA TO M
ADD S11A TO FA

[Answer: No effect. Why?]

Another important application of the ORing property of M is in
achieving a multiway branch, using a “‘jump table’’. For example,
suppose we wish to decode a 3-bit op-code to achieve an 8-way branch
to one of 8 operator subroutines. Assume that 3-bit op-code is located in
bit positions 5 through 7 of the T-register. Then the following instruction
sequence would do the trick.

EXTRACT 3 BITS FROM T (5) TO L
MOVE L TO M

JUMP FORWARD

GO TO ROUTINE1

GO TO ROUTINEZ

GO TO ROUTINEY
GO TO ROUTINES

Explanation First we take advantage of the EXTRACT instruction to
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pull out of T a copy of the 3-bit field and move it to another receiver
register L. The value moved to L will be padded with high-order zeros.
This value is then moved to M.

The JUMP is an unconditional branch whose operand is a signed
displacement, e.g., JUMP to ‘‘here’’+5 or JUMP to ‘‘here’’—10, where
“‘here’’ is the current contents of the A-register, now pointing at the next
instruction. The special JUMP FORWARD option means JUMP to
“‘here’’+0. But we have ORed into this instruction an unsigned integer in
the range 0 through 7, so we will have an effective JUMP to one of the
eight succeeding instructions, each being a GO TO to a different operator
subroutine.

Note that in no case where we take advantage of the ORing feature of
the M-register, do we in any way alter the instruction residing in H-store.
This ORing feature permits, in a limited way, the instruction modification
capabilities made possible in more conventional machines using index
registers.

Besides indexed JUMPs, of course, we can have arbitrary jumps
limited only to displacements (+ or —) of no greater than 4096. In the
MIL symbolic language the usual form of such an instruction is

GO TO label

which is converted by the MIL assembler into a jump instruction with an
appropriate displacement.

Conditional branching is achieved by having an IF statement mapped
into an appropriate SKIP or TEST microinstruction.* It should not be
necessary to become familiar with the detailed syntax of either the SKIP
or TEST microinstructions, as the proper ones are generated by the MIL
assembler from the higher-level IF statement. Direct use of SKIP and
TEST instructions should be avoided. Section 2 of Appendix B lists the
registers (and bits within them) that may be tested in an IF statement.

Labels are declared implicitly by their occurrence in the label position
of a MIL statement, i.e., the first item on a card (beginning somewhere
in columns 1 through 5.) Labels may be global in scope, in which case
they must of course be unique, or they may be local in scope, in which
case two or more occurrences of the same local label are permitted. A
local label is declared with its first character immediately preceded by a
period (.) character. Hence local labels are often spoken of as point
labels. To transfer control to a point or local label using a GO TO

* The SKIP conditionally skips the next microinstruction according to the truth or falsity
of a bit field in some specified 4-bit register, possibly interpreted under control of a
specified mask. The TEST conditionally jumps up to + 16 microinstructions, depending on
the condition of a specified bit in a designated 4-bit register.
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statement, one must indicate the jump direction (+ for forward or — for
backward) in the GO TO statement, e.g., GO TO +LABEL or GO TO
—LABEL. The jump is then made forward or backward to the first
occurrence of the possibly non-unique LABEL identifier.

There are other microinstructions whose execution exercises control
over the flow path of the computation. Of course, there is a HALT
instruction and a no-op (NOP) instruction, with the usual meanings.
However, perhaps the two most important control instructions beyond
the jump and (conditional) skip instructions are the CALL and EXIT
instructions used for microsubroutine procedure calls and returns. These
instructions operate with the help of a special stack, onto which return
addresses are pushed on each CALL and from which return addresses are
popped on each EXIT.

Executing a CALL instruction pushes the contents of the A-register,
(i.e., the program counter) onto the stack. At the time of this push, the
program counter already has as its value the address of the next
instruction, which is the wanted return address. Thus, executing a
matching EXIT microinstruction pops the top entry of the stack and
places it in the A-register. After an EXIT is executed, the next instruc-
tion executed will be the one whose address is now in A, which is the
return address of the subroutine.

The stack is a special set of registers (32 in all) which can only be dealt
with as a pure pushdown device, that is, only its top entry can be
addressed. This entry has the name TAS (fop of A stack). Because each
entry in the control stack is a 24-bit register, one can, with care, push
any 24-bit datum onto the stack.

Example MOVE X TO TAS pushes a copy of the value of X onto the
stack, and MOVE TAS TO FA pops the top element off the stack and
assigns it to FA.

Since there will ordinarily be some excess capacity in the stack, there
may be occasions when the stack can be used for storing data that are
local to the current procedure activation, provided of course they are
“‘used up”’, i.e., all popped off prior to executing the return (EXIT) step.
In other words, care must therefore be taken to maintain a balance of
executed pushes and pops during each procedure activation.

The foregoing discussion has been a brief sketch of the control aspects
and features of the B1726 microprocessor. Later chapters will include a
series of case studies (code vignettes), some of which will show how
these control features may be exploited. Section 1 of Appendix B gives a
summary of the B1726 registers and their properties and uses.



Chapter 4
The B1700 computation environment

The designers of the B1700 software system supposed that the MCP
(operating system) would serve a queue of jobs, each remarkably similar
in computation structure. We need to become familiar with this compu-
tation structure, since any interpreter we build must fit into that
structure or else the valuable services of the MCP will not be easily
accessible.

Every computation served by the MCP is assumed to consist of two
parts, a MIL-coded program part, assumed to be an interpreter, and a
data part, which usually consists of several components. One compo-
nent, always present, serves as an interface with the MCP. That
interface, known as the run-structure nucleus, has a standard format,
and must be generated and loaded into G-store before the computation
can start.

Whether the program part is actually an interpreter is really immater-
ial to the MCP as long as appropriate formatting conventions for the
computation structure are adhered to, as in the construction and use of
the run-structure nucleus. The program part is the MIL object code
produced by the MIL assembler. It is easiest, and quite practical, to
assume that the entire program part resides in the program store of the
B1700, i.e., H-store. However, in reality the MIL object program may
be segmented, some segments being loaded into H-store and the rest
into G-store. The MCP will take care of loading the interpreter in this
fashion.

When microcode is split between H- and G-store, certain hardware
control registers, not yet described, are pre-loaded by the MCP to
condition the microinstruction-fetching mechanism so that each instruc-
tion is fetched from the appropriate store in which it resides. No extra
program steps are needed to fetch a G-store-resident instruction.! Only
the hardware speed of the fetch is different (1 microsecond for G-store
versus 167 nanoseconds for H-store). Via MIL statements, a program-
mer may advise the MCP which segments should be loaded, space
permitting, into the preferred H-store.

! The hardware organization details by which this ‘‘neat trick’’ is accomplished are
discussed in Chapter 7.

42
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During the computation, messages are transmitted to/from the pro-
gram and the MCP via ‘‘mailboxes’’ in the run-structure nucleus. Also
placed in this interface, usually preset at load time, are key parameters
of the computation, for instance, i/o device and file identification and
attributes of files, the size and makeup of the remainder of the data part,
and the name (file identification) of the associated interpreter. This
information is used by the MCP in determining, for instance, what i/o
service to offer the computation when coded messages requesting
service are sent to the MCP, and where to find the interpreter whenever
the MCP is ready to give control back to the computation. [We are
implying here that, in the interplay between a computation and the
MCP, each computation plays the role of a coroutine with respect to the
MCP.] There is a lot to know about the run-structure nucleus if one
expects to construct an interpreter that fully exploits the MCP’s service
functions. Fortunately, we will be able to get started knowing a bare
minimum about this nucleus. (We will see why this is so later.)

The data part of a computation has other important components (at
least one) besides the system-oriented run-structure nucleus. There
needs to be a read/writeable workspace area which the program (inter-
preter) can use for local storage. Of primary interest to us as beginners is
the section of the read/write workspace called the STATIC region.

The workspace required for one program may be so large that
overlaying strategies will be needed to conserve G-store. For this reason
an overlayable or DYNAMIC region of the read/write workspace, contig-
uous with the STATIC region, may also be specified (Figure 4.1). It is
the responsibility of the programmer (i.e., the author of the interpreter)
to overlay (or swap) from the disk portions of the workspace into the
DYNAMIC region, if such space is needed.

For many interpreters the G-language code being interpreted is
invariant (i.e., the process of the interpretation causes no alteration of
the G-language code). Such code may therefore be regarded as read-
only. Only the read/writeable section of the workspace need be placed
within the region bracketed by the BR and LR registers.? For this reason
invariant, code to be interpreted (higher-level language code) is usually
loaded into G-store on an as-needed basis as code segments, outside the
BR-LR region. Code segments belong to an address space that is logically
and physically separate from the read/writeable workspace.

We now begin to perceive an important distinction between an
interpreter for a higher-level programming language like FORTRAN or
COBOL, whose code is invariant under interpretation, and an inter-

2 These registers are sensed by the hardware so as to prevent attempts to write outside
the bracketed region.
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Figure 4.1. Accessing environment for a B1700 computation. Note that
the run-structure nucleus is always allocated immediately “above” the
BR-LR workspace.

preter (or simulator) for an actual machine, whose storage must be
regarded as read/writeable. For example, an interpreter for the SAMOS
machine must simulate its storage. SAMOS code to be interpreted must
be loaded (written) into the simulated storage. Moreover, the very
process of executing a SAMOS read (RWD) instruction results in writing
into the simulated storage. We see that as long as our main interest is the
construction of interpreters for actual machines whose storage is read/
writeable as in SAMOS, the workspace for the interpreter will need no
read-only code segments.

If the storage space of an interpreted machine is small enough, as it
may be for a first-attempted simulation, it should be possible to ignore
the DYNAMIC region. We shall assume that the STATIC region can be
allocated large enough for adequately representing the storage and the
various registers of the emulated machine with room to spare for the
local storage needed by a MIL-coded interpreter. [For example, to
simulate a 100-word SAMOS machine (88 bits per 11-character word),
no more than 10,000 bits of STATIC storage are needed to represent the
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store and the various registers. The implementation of a SAMOS
simulator is considered as a case study in Chapters 5 and 6. Appendixes
E and F provide further details.]

4.1 THE BURROUGHS CONCEPT OF “CODEFILE”

In Burroughs B1700 terminology, the entire data part of a computa-
tion, (all its components as discussed above) is specified by a codefile.
Each codefile is typically generated by a Burroughs-provided compiler.
For example, consider what happens when a COBOL program is
processed by a Burroughs-supplied COBOL compiler, which is compati-
ble with the MCP and produces code for the Burroughs-supplied
COBOL interpreter. The COBOL compiler, taking the user’'s COBOL
program as input, not only generates code segments to be interpreted by
the COBOL interpreter, but also generates and formats the run-structure
nucleus and various constants that are to be preset in the STATIC and
DYNAMIC regions. The generated nucleus also contains a system pointer
to the particular (COBOL) interpreter which will ‘‘execute’’ the code-
file. [The interpreter may be regarded as the MCP’s coroutine and the
codefile as the accessible environment for the coroutine.]

Once the codefile has been prepared, it is kept ‘‘on ice’” as an
ordinary disk-resident file and read by the MCP whenever the user
issues a command to execute it. When that happens, the MCP loads the
data part of the codefile into G-store and then invokes it by sending
control to the start point of the indicated interpreter.

To summarize, note the following points.

1. In the context of the B1700 MCP, the data part of a computation
structure is generated as part of the process of compilation and
saved as a codefile named by the user.

2. The program part is a file of MIL object code whose name is
specified to the MCP at the time the codefile is created (by a
COMPILE command).

3. Once the codefile is completed as a file in the system storage, it
can be executed (EXECUTE command).

4. When the MCP responds to an EXECUTE command naming that
codefile, the MCP will, in effect, load the codefile and its
associated interpreter® and, when ready to do so, pass control to
the start point of the interpreter. Loading the codefile implies

31f a copy of the interpreter is already loaded, perhaps executing some other codefile at
this time, this step is skipped. The interpreter is reentrant, so only one copy ever needs to
be resident in addressable storage.
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allocating storage and loading a copy of the run-structure nucleus,
the read/write STATIC region, and the initial DYNAMIC region if
any.

4.2 CONSTRUCTING A COMPUTATION ENVIRONMENT

We have described the nature of a B1700 computation environment
and we have explained how such environments come into existence
under control of the MCP during ‘‘normal”’ use of the system, as
conceived by the system’s designers. If we are to implement arbitrary
MIL programs on the B1700, also under MCP control, we will need
some convenient system for constructing (compiling) computation envi-
ronments tailored to the needs of our individual MIL programs (inter-
preters). No such general-purpose environment constructor is currently
available as a Burroughs software product, since the machine is not
marketed for use by customers who are MIL coders. (Ordinary cus-
tomers are expected to code in one of the several higher-level languages
for which MIL-coded interpreters are already provided.)

One general-purpose constructor program of the type needed was
developed by Hinds.* This program is on file in the University of Utah
system and is regarded by the MCP as a compiler (since its purpose is to
construct codefiles). Hinds named his compiler the LOADER, but it is
really a codefile maker. To use the LOADER, one has to learn its
language. We will see later that this language is relatively simple to
learn. [A LOADER program is a sequence of statements which is
compiled into a codefile description appropriate for the MIL program
one would like to execute. The syntax of such a program will be
described briefly in the next section; for those needing it, a reference
document is given as Appendix D.]

Taking stock to this point, we see that to implement and then execute
a MIL-coded computation on the B1700 under the MCP, we need to
successfully complete a 3-step process:

1. Request the MCP to assemble a MIL object file using the MIL
assembler, given a symbolic MIL program. The name given to this
assembled object file will later be regarded by the MCP, in step 3,
as the name or identifier of an interpreter.

2. Request the MCP to use the LOADER to compile a LOADER
program into a codefile. The request includes a name to be
associated with the codefile to be generated.

*J. A. Hinds, ‘“SMACK, a System for Operating System Interface for the Burroughs

B1700”’, M.S. Dissertation, Department of Computer Science, State University of New
York at Buffalo, 1975.
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3. If, in step 1, the given name of the MIL object is MY .MIL, and if
in step 2 the name specified for the codefile is MY . CODEFYL, then
this step requests the MCP to execute MY.CODEFYL using the
MY .MIL interpreter.

4.3 IMPLEMENTING A COMPLETE MIL PROGRAM

We could continue providing additional details on the use of the MIL
assembler and the LOADER in more or less top-down fashion, until you
had enough information to begin constructing a MIL program—perhaps
even a complete simulator program. But at this point it seems more
fruitful to make a new beginning and proceed from the bottom up by
building up a complete (though trivial) program and identifying by a
discovery process the concepts, constructs, and tools we still need to
learn to complete our understanding.

In the spirit of learning in small steps, we want first to imagine that
our MIL program represents a very simple everyday algorithm. For the
moment, let’s assume we have succeeded in getting our loaded program
to begin executing. You may rightly ask, ‘“What algorithms are we now
able to code in MIL?”’ The MIL we have seen so far allows us to
perform only processing steps that are internal to the machine. We saw
no way to actuate and use a card reader, start up a line printer, open or
close a file, rewind a tape, etc. How far can we really get without such i/
o instructions? What about declarations? How do we name the variables
of our program, i.e., associate names with storage cells, so we can easily
map from a flowchart language variable to specific fields in storage or to
registers of the processor? Are we stuck with all those funny names for
the registers of the H-processor, or can we rename them, using
““‘decent’” mnemonics that are especially applicable to the problem at
hand?

All or at least most of these missing pieces become evident when we
tackle even the simplest of problems. For example, suppose the problem
is to write and test a MIL program that inputs a line of 80 characters
from a data card, echoes that line on the line printer, and outputs the
inverted line on the printer, repeating this process until the card deck
(input file) is exhausted, and then prints a sign-off message such as THE
END.

Figure 4.2 is a flowchart and legend of what we want. Study it for a
moment. Our present knowledge of MIL coding will allow us to map the
heart of the algorithm (boxes 5 through 8), but not boxes 1 through 4 or 9
through 12, which involve declarations and i/o operations. So let’s start
by coding what we know how to code, and then learn how to do the rest
via a series of digressions into some new topics.
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|

Declare and open files:
PRINTER =0
CARD.READER = 1

I

Define space for buffers:
DISPLAY.MESSAGE (8 chars)
INAREA (80 chars)

PRINT. AREA (80 chars)

10 1

—’IPD_Iw.MESSAGE
12
l Close files I

STOP

48
| ﬁ
Issue required
declarations
2
Not end of F -
CARD. READER Eject
ﬁle paper
INAREA
Jj <80
j=1 F
—{ ]
T 7
PRINT.AREA, < INAREA;
8 9
ke—k+1 l PRINT.AREA

Figure 4.2. Flowchart algorithm for displaying inverted card images.
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We assume that suitable declarations (box 1.2) will make the symbols
for the buffers INAREA and PRINT . AREA stand for bit offsets from the
base of the data storage region. Let us further assume that we can
declare these 80-character buffers as contiguous fields.

TN

INAREA PRINT.AREA

Inverting a card image amounts to moving INAREA,, to PRINT. AREA,,
then INAREA 5 to PRINT. AREA,, etc.

We seem to need two starting addresses for the loop of boxes 6, 7, and
8, namely that of INAREA,, and PRINT . AREA,. Here, however, we can
make use of the little trick: If we read INAREA,, into a receiver register
using the REVERSE option, then PRINT.AREA, is the proper starting
address for the READ REVERSE of INAREA,,. It is of course also the
proper starting address for PRINT . AREA,. This means that to code box
7 for the first transit of the inversion loop, we will need to compute only
one absolute G-storage address, that of PRINT. AREA,. This address is
the sum of BR (which holds the absolute address of the base of the
program’s workspace) and the declared offset value for PRINT . AREA.
The sum can be formed in register FA if we remember to use the adder
associated with FA. This technique assumes that one operand is in FA
and the other is in a scratchpad register. The procedure is

MOVE BR TO SOA % SOA SELECTED TO HOLD VALUE
9 OF BR

MOVE PRINT.AREA TO FA ¢ "PRINT.AREA" IS A SYMBOL
9 WHICH, BY DECLARATION, HAS
9 BEEN EQUATED TO SOME
9 INTEGER

ADD SOA TO FA

MOVE FA TO S2A % SAVE COPY OF COMPUTED
9 ADDRESS IN S2A

We can represent the loop counter j (range 80 to 1) as FL if we set FL
to 80 x 8, step it down by 8, and then test for FL. = 0.
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BOX6
MOVE 80*8 TO FL % THE SET PART OF BOX6
.LP IF FL = 0 GO TO BOX9 % ESCAPE FROM INNER LOOP
% BOX7. USE Y AS THE CHARACTER RECEIVER
READ 8 BITS REVERSE TO Y DEC FA AND DEC FL
% DECREMENTS THE COUNTER
% AND ALSO ACCOMPLISHES
% THE PURPOSE OF BOX8
XCH S2 F S2 % GET POINTER TO SINK
% AND SAVE POINTER TO SOURCE
WRITE 8 BITS FROM Y INC FA
XCH S2 F S2 % RESTORE POINTER TO SOURCE
GO TO -LP % "-LP" MEANS THE PRECEDING
% LABEL, ".LP"

The READ REVERSE instruction decrements FL and FA, thus accom-
plishing the counter and indexing arithmetic for INAREA. The WRITE
instruction increments FA, thus accomplishing the indexing on
PRINT. AREA, as it is not necessary to keep a second counter, corre-
sponding to k. Hence box 5 needs no counterpart in the MIL code.

A moment’s reflection explains why we saved in S2A a second copy
of the computed absolute address for PRINT . AREA. We need one copy
to be successively decremented and another copy to be successively
incremented. The XCH instructions are used to interchange these values.
FL is saved along with FA on the first XCH and is restored on the second
XCH.

Having found a way to code the inner loop of Figure 4.2, we are now
ready to consider how declarations are coded. Then we will be ready to
consider the i/o steps.

4.4 DECLARATIONS IN MIL

Three types of declaration statements are available in MIL: MACROs,
DEFINEs, and DECLARES.

MACROs allow us to define templates for instruction sequences that are
to be generated upon request to the assembler.® This is a powerful
language feature about which we will have more to say later.

% A macro definition, by analogy with a procedure definition, can be invoked via a macro
call anywhere in the body of a MIL progrom. The MIL assembler responds to a macro call
by substituting for it a copy of the template, after making string substitutions as indicated
by the arguments supplied by the macro call.
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A DEFINE statement permits the MIL coder to use an arbitrary
symbol as a surrogate (or substitute) for a standard symbol, literal, or
previously DEFINEd symbol. For example,

DEFINE LEN.OF.INAREA = 640#

would allow us to recode the first line of BOX6 in the more meaningful
way

BOX6
MOVE LEN.OF.INAREA TO FL % SET PART OF BOX6

Mnemonic-valued symbols are nearly always preferable to numeric
constants for two reasons.

1. The documentation has greater clearity.

2. If the substituted symbol is used several times in the program, then
a later decision to change the constant—e.g., from 640 to 768 (in
going from 80- to 96-column cards)—requires only a change in the
DEFINE statement, in this case to DEFINE LEN.OF.INAREA =
768#. Reassembly of the program will then substitute, for every
occurrence of LEN.OF . INAREA, the new value 768.

DEFINEs can also be used to advantage for ‘‘christening’’ scratchpad
registers with new names that characterize their storage function in the
given program. For example, we chose SOA as the register to hold a
copy of the BR value. Why not rename SOA as BR.VALUE?

DEFINE BR.VALUE = SOA#

While we are at it, we might rename S2A as IMAGE . ADDRESS and S2 as
IMAGE.DESCRIPTOR. With these definitions, our code for the inner
loop is now as shown in Figure 4.3.

The scope of a DEFINE, unless otherwise constrained, is the entire
MIL program. We can narrow or localize the scope very easily. Scopes
may be nested as in ALGOL. declarations. The syntactic device for
blocking the DEFINEs is a pair of BEGIN, END statements where the
BEGIN statement is followed by the phrase LOCAL.DEFINES, as sug-
gested in Figure 4.4.

A study of the purely fictitious example in Figure 4.4 reveals the
following: The symbol LEN.OF.INBUFFER means S5B everywhere in
the program. The symbol ADDR.INBUFFER means S5A everywhere in
level 0 and level | of the program. In block C (level 2) the same symbol
means S6A. In Block A and in Block C the symbol
ADDR.CARD.COUNTER is associated with S5A. Within block B the
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% COMPUTE CARD IMAGE.ADDRESS AND SAVE COPY

MOVE BR TO BR.VALUE

MOVE PRINT.AREA TO FA

ADD BR.VALUE TO FA

MOVE FA TO IMAGE.ADDRESS
BOX6

MOVE LEN.OF.INAREA TO FL % THE SET PART OF BOX6
.LP IF FL = 0 GO TO BOXS % ESCAPE FROM INNER LOOP
% BOX7. USE Y AS THE CHARACTER RECEIVER

READ 8 BITS REVERSE TO Y DEC FA AND DEC FL

% DECREMENTS COUNTER

XCH IMAGE.DESCRIPTOR F IMAGE.DESCRIPTOR

WRITE 8 BITS FROM Y INC FA ¢ INC PART IS BOX8

XCH IMAGE.DESCRIPTOR F IMAGE.DESCRIPTOR

GO TO -LP

Figure 4.3. Code for the inner loop.

symbol ADDR.INDEX.REG is also associated with S5A. (In block C,
therefore, S5A has three different aliases.)

A DECLARE statement® (almost identical with the UPL? DECLARE)
permits the MIL coder to define data structures and associate with each
a G-store, base-relative address. The MIL assembler maintains a ‘‘loca-
tion counter’” which is started at zero at the beginning of each assembly.
That counter is incremented as MIL processes each DECLARE, the
amount of the increment being the size of the declared data structure.
Use of the DECLARE allows the programmer to associate a program
variable with a specific field in G-store. This can best be illustrated for
our card-image inversion problem. Box 1.2 of Figure 4.2 can be coded
using a DECLARE as follows.

DECLARE
DISPLAY .MESSAGE CHARACTER(8),
. INAREA CHARACTER (80),
PRINT.AREA CHARACTER(80) ;

The effect of processing this declaration will be to associate DIS—

8 The DECLARE statement was not described in the original MIL reference manual
printed by Burroughs. An alternate method for naming and sizing data spaces was
available to students using James A. Hinds’s SMACK system. The alternate approach
used the =BSS macro call in McMIL.

7¢“B1700 Systems User Programming Language (UPL) Reference Manual’’, Burroughs
Corporation, Detroit, December 1973, Form No. 1067170.
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Line No.
1 [% LEVEL O
2 DEFINE LEN.OF.INBUFFER = S5B #
3 DEFINE ADDR.INBUFFER = SBA #
10 BEGIN % BLOCK A (LEVEL1)
11 LOCAL . DEFINES
12 DEFINE ADDR.CARD.COUNTER = S5A #
20 | END % BLOCK A
30 [BEGIN % BLOCK B (LEVEL1)
31 LOCAL .DEFINES
32 DEFINE ADDR.INDEX.REG = SBA #
40 [ BEGIN % BLOCK C (LEVEL2)
41 LOCAL . DEFINES
42 DEFINE ADDR.CARD.COUNTER = S5A #
43 DEFINE ADDR.INBUFFER = S6A #
50 | END % BLOCK C
60 | END % BLOCK B
70 | % END OF PROGRAM

Figure 4.4. Use of the LOCAL .DEFINES feature for localizing the scope of
DEFINE statements.

PLAY.MESSAGE with bit address 0, INAREA with bit address 64, and
PRINT.AREA with bit address 704 (=64 + 640). More elaborate DE—
CLAREs involving structured data types, as in UPL, are also permitted—
for example,

DECLARE 01 STRUC,
02 C,
03 D BIT(20),
03 E BIT(30),
02 G CHARACTER(3);

It is not necessary to specify type and length for STRUC and C, which
are group items. Clearly STRUC is a 20 + 30 + 3x8 or 74-bit record, and
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Cis a 20 + 30 or 50-bit subrecord. Using this definition, the absolute G-
store address of STRUC, or for any subfield of STRUC, can be computed
as we have done in the past. For example, to move the first character of
G to the T register,

MOVE BR TO SOA % MOVE LEFTMOST CHARACTER
MOVE G TO FA % 0F GTO T

ADD SOA TOD FA

READ 8 BITS TO T

The declared attribute of a variable, a structure, or any part of a
structure may include the word REVERSE so that the MIL assembler will
associate with that identifier an address that is appropriate for READ
REVERSE and WRITE REVERSE microinstructions. For example, if the
characters of the component G of STRUC are to be brought into T in
REVERSE mode (i.e., one at a time, last character first), then we might
declare STRUC as

DECLARE 01 STRUC
02 C,
03 D BIT(30),
03 E BIT(20),
02 G CHARACTER(3) REVERSE;

Now the address associated with G is the ending address of G, plus 1,
i.e.,

A
Q
X
«
v

D E

— STRUC £T
I Address of G

A

Address of E

Address of STRUC

So, to bring into the T-register the last character of G, we might use code
such as

MOVE BR TO SOA
MOVE G TO FA
ADD SOA TO FA
READ 8 BITS REVERSE TO T
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Space for arrays may also be declared. Thus,
DECLARE FF(5) BIT(10);

defines a space for a 5-element array named FF, each element 10 bits
long. Any item or group item within a structure may also be an array,
but arrays may not be nested.

DECLARE 01 Q(5) BIT(48),
02 B CHARACTER(3),
02 C FIXED;

defines an array structure Q having five 48-bit elements, each being a
pair of components B and C, as shown below.

Qo Q Q2 Qs Q4
Bo Co B, Cy B, C, Bj Cs By Cy

The addresses associated with identifiers Q, B, and C are those corre-
sponding to the first elements, Q,, B,, and C,, respectively. Of course,
we have no subscript expressions in MIL, so to reference a particular
element of an array, other than the first element, requires execution of
an appropriate microinstruction sequence provided by the programmer.
MIL provides several useful special features as companion pieces to
the DECLARE statement. These can be studied in Appendix A. One
feature is mentioned here. The MIL assembler treats the expression

DATA . LENGTH({declared identifier))

as a function call and returns the bit length of the (declared identifier),
(or, if an array, the length of one array element for that identifier) as
though that length had appeared in an explicit DEFINE declaration.
Thus,

MOVE DATA.LENGTH(Q) TO S3A

would assign 48 to S3A in the context of the preceding array declaration
for Q. Subsequently, one could advance from one element of B or of C to
another by incrementing, with the offset DATA . LENGTH(Q) held in S3A

MOVE S4A TO FA % ADDR OF C(I)

ADD S3A TO FA % COMPUTE ADDR OF C(I+1)
READ 24 BITS TO L % L GETS C(I+1)

MOVE FA TO S4A % ADDR OF NEW C(I)

A more comprehensive example could be useful here to summarize
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what we have learned so far about MIL declarations. Instead, let us
expand the concept of MIL macros.

A MIL macro definition consists of a head and a body. The head
contains the name of the macro and an optional formal parameter list.
The body, terminated by the # mark, is the instruction template,
consisting of a sequence of one or more MIL statements

¢~ omiond
/ A \

MSCRO <(name) ({parameter list)) = }head

statement |

statement 2 m-statement

body or template followed

statement m # by an end-marker

Subsequent to encountering such a definition, the MIL assembler will
respond to any recurrence of (name) by first substituting for it the
corresponding body. Each recurrence of {name) is regarded as a macro
call. If the macro definition includes a formal parameter list, then each
corresponding macro call must include a matching argument list. In
substituting the statements of the body for (name), each instance of a
formal parameter will be replaced (by string substitution) with its

MACRO GET.NEXT.ELEMENT (CURRENT.ELEM, LENGTH, RECEIVER) =
MOVE CURRENT.ELEM TO FA
READ LENGTH BITS TO RECEIVER INC FA
MOVE FA TO CURRENT.ELEM #
(a)

DECLARE Q(50) FIXED;
DEFINE CURRENT.Q = S12A #

MOVE Q(O) TO CURRENT.Q % SET UP CURRENT.Q
MOVE BR TO FA % WITH ABS. ADDRESS
ADD CURRENT.Q TO FA % OF

MOVE FA TO CURRENT.Q % FIRST ELEM OF Q

GET.NEXT.ELEMENT (CURRENT.Q, DATA.LENGTH(Q), X)
IF X = 0 GO TO ZERO.CASE

(b)
Figure 4.5.
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matching argument. [Warning: In the current MIL implementation, a
parameter may not represent a statement label.]

Example Imagine that a frequently needed step of an algorithm is to
scan the next item of an array, given the address of the last item
scanned, and the length of an item (assumed to be =24 bits.) The next
item is to be brought to one of the four possible receiver registers for
examination. We shall assume that all available addresses are relative to
the base register. A possible MIL macro definition is given in Figure
4.5(a).

We might want to use this macro to test if the next element of an array
is zero. After having DECLAREd the array Q, defined the register
CURRENT . Q, and initialized the latter with the absolute address of Q,,
we can later issue a macro call [underscored statement in Figure 4.5(b)]
to place the value of Q; in the receiver register X and then adjust the
pointer, CURRENT . Q, to point to Q;,,. This macro call will expand to
(i.e., be replaced by)

MOVE CURRENT.Q TO FA
READ DATA.LENGTH(Q) BITS TO X INC FA
MOVE FA TO CURRENT.Q

We see that the body of GET . NEXT . ELEMENT will be inserted into the
MIL code in place of the call, but with the argument strings substituted
for the corresponding parameter. When the MIL assembler reads the
new lines of code, it will assemble microinstructions for which
DATA .LENGTH(Q) will be evaluated as 24 and CURRENT . Q evaluated as
S12A, by virtue of declarations previously encountered.

4.5 LITERALS

We have been illustrating the use of literals in a number of MIL
statements and declarations. It is time we explained the rules by which
one writes a MIL literal and the rules that the MIL assembler uses to
interpret them.

Literals come in three ‘‘flavors’’; they are character strings, digit
strings, and decimal integers.

1. Character strings are enclosed by quotation marks, e.g., "CAT",
99" "[JO0O", etc. Such a string may have up to 3 characters.
Thus, the statement MOVE "CAT" TO X would be mapped to an
instruction to assign to X a string of 24 bits representing the
EBCDIC encoding of "CAT".

2. Digit strings may be specified in base 2, 4, 8, or 16. Each digit
string is enclosed by ‘‘at’’ signs (@). The digit string is preceded
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by a base indicator enclosed in parentheses. The indicator (bits
per digit) is 1 for base two, 2 for base four, 3 for base eight, and 4
for base sixteen [The indicator is optional for a base-16 digit
string.] For example,

Base Digit string ‘ Meaning
2 @(1)101@ Binary number 101,
4 @(2)3211@ Base-4 number 3211,
8 @(3)62715@ Octal number 627154
16 @(4)AF0Co@ Hexadecimal number AF0C9,,
16 @AF0CO@ Hexadecimal number AF0C9,,

Thus all of the following MIL instructions are equivalent

MOVE @(4)3218@ TO L

MOVE @3218@ TO L

MOVE @(3)30450@ TO L

MOVE @(1)0011000100101000@ TO L

The effect of each of these instructions will be to assign the
specified digit string, converted to a bit string, to L, right-justified,
with left zero fill.

3. Decimal integers. Unsigned or positive decimal integers are
converted to unsigned binary integers. Negative decimal integers
are converted to 2s-complement form.

Examples

. MOVE 24 TO CPisequivalenttoMOVE@(1)00111000@ TO CP.
2. DEFINE LENGTH = 65# is equivalent to

DEFINE LENGTH = @(1)1000001@ #.
3. MOVE -3 TO X is equivalent to

MOVE @FFFFFD@ TO X % 2'S COMPLEMENT OF 3
% EXPRESSED IN HEX

Note that if we want a different representation for —3 moved to
X, such as a signed magnitude representation, we must specify the
negative integer as a digit string, e.g.,

MOVE @800003@ TO X

Leftmost bit is | to represent minus sign
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4.6 INPUT/OUTPUT IN THE McMIL LANGUAGE

The language MIL has been extended by James A. Hinds in a system
called SMACK (system macro). SMACK includes a package of about 20
powerful macro definitions. A number of these macros define instruction
sequences for communicating input/output requests to the MCP. As
mentioned earlier, the MCP has responsibility for executing i/o functions
and file-system primitives. Getting the MCP to carry out these steps
amounts to sending it an appropriate message called a ‘‘communicate’’.
Because sending these messages involves use of the run-structure
nucleus, and because we would prefer insofar as possible to regard such
activity as off limits (at least while we maintain amateur status as MIL
coders), the SMACK macro definitions will answer our need admirably.
We shall be able to code our interactions with the MCP as macro calls
and thus avoid the risk of generating code that the MCP cannot
understand or digest. [Using this approach, we in effect delegate to
SMACK the role of (MCP) interface specialist.] We have only to
become familiar with the available SMACK macros and how to use
them. The language MIL is really extended when we permit calls to the
predefined macros of SMACK. Macro calls are known as ‘‘E-state-
ments’’ (E is for extension). Together with regular MIL statements, they
form the superset known as McMIL. An E-statement is distinguished
from ordinary MIL statement by beginning with an equal sign (=) in
column 1.

A McMIL program (i.e., a MIL program that has been enriched with
E-statements) is processed in two stages. In the first phase, each E-
statement (macro call) is expanded into a sequence of MIL statements.
Upon completion of the first or preprocessing phase, the program is
ready to be assembled by the MIL assembler. The second phase
completes the process of producing the microcode and places the object
code on file for use as an interpreter.®

We introduce a few of the important McMIL statements here. A
complete reference manual (user’s guide) for McMIL and SMACK is
included in Appendix C and should be consulted when more information
is needed.

8 R. A. Belgard, while with Burroughs, and later at the University of Utah, developed a
set of macro definitions (coded in MIL) known as BIOPSI. These definitions are
comparable to those of SMACK. The BIOPSI macros may, however, be invoked using
ordinary MIL macro call statements, provided that the definitions are included in the same
source program. The inclusion of these definitions is achieved easily, using control
commands of the form & LIBRARY (file name), where (file name) designates the file
holding the BIOPSI definitions. Advanced MIL programmers at the University of Utah
now prefer the use of BIOPSI over SMACK because symbolic assembly is faster using
BIOPSI since only one processing phase is needed.
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Consider the problem of coding box 3 of Figure 4.2,

INAREA

Here we wish to fill the buffer INAREA from the CARD.READER file.
The McMIL equivalent of box 3 is:

= BUFFER READ USING INAREA FILE CARD.READER
The underscored parts of this statement are the arguments of this

particular SMACK macro. [Note that the format of a SMACK macro
call is quite different from the functional form used in MIL, which is:

(macrocall) ::= (macroname) | {macroname )({argument list)).]
The same macro is used for coding box 4,

4

but on printer output we specify line spacing. One writes
= BUFFER WRITE USING INAREA FILE PRINTER OPT SINGLE

Likewise box 11,

Lo

DISPLAY.MESSAGE

may be coded as
=BUFFER WRITE USING DISPLAY.MESSAGE FILE PRINTER OPT SINGLE

The OPT SINGLE means ‘‘space the printer carriage one line after
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printing’’. The possible spacing options are

OPT SINGLE spaces one line after printing

OPT DOUBLE spaces two lines after printing

OPT EJECT skips to next page after printing

OPT ADVANCE spaces no lines after printing (allows overprinting)

If no spacing option is specified in a WRITE statement the default is no
advance.

We may also wish to send the same message, such as ‘“THE END”’, to
the console printer. If so, the key word needed is DISPLAY rather than
WRITE, e.g., =BUFFER DISPLAY USING DISPLAY.MESSAGE. No file
need be specified, since the console printer cannot be attached to a
user’s computation, as a file can by opening it. No spacing option is
required either.

The BUFFER READ macro call may also specify a branch on end of
file. For our problem we can state

BOX2AND3
=BUFFER READ USING INAREA FILE CARD.READER

because this McMIL statement is really the equivalent of flowchart
boxes 2 and 3 combined,
| >

Not end of CARD.READER F
file

J 3

INAREA

Box 10 may be coded by appending the EJECT option to a (dummy)
print step which prints no characters:

BOX10
=0UTPUT O BYTES CORE PRINT.AREA FILE
PRINTER OPT EJECT
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?EXECUTE MCMIL
?CONVERT
?DATA CARDS

DEFINE PRINTER =0 #
DEFINE CARD.READER 1 #
DEFINE BASE.QOF. INTERPRETER = S1A # % SEE TEXT FOR EXPLANATION
DECLARE
DISPLAY .MESSAGE CHARACTER(8),
INAREA CHARACTER(80),
PRINT . AREA CHARACTER(80);
=INITIALIZE

% EXECUTABLE PORTION OF MIL PROGRAM BEGINS HERE
=SECTION CARD.INVRT

BOX2AND3
=BUFFER READ USING INAREA FILE CARD.READER ON EOF GO TO BOX10
% BOX4
=BUFFER WRITE USING INAREA FILE PRINTER OPT SINGLE
%
BEGIN ¢ INNER LOOP,
LOCAL .DEFINES
DEFINE LEN.OF.INAREA 640 # % IN BITS
DEFINE BR.VALUE SOA #
DEFINE IMAGE.ADDRESS = S2A #
DEFINE IMAGE.DESCRIPTOR = S2 #
% COMPUTE CARD IMAGE.ADDRESS AND SAVE A COPY

c9
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26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

MOVE BR TO BR.VALUE

MOVE PRINT.AREA TO FA

ADD BR.VALUE TO FA

MOVE FA TO IMAGE.ADDRESS
BOX6

MOVE LEN.OF.INAREA TO FL % SET PART OF BOX6
.LP IF FL=0 GO TO BOXS % ESCAPE FROM INNER LOOP
% BOX7.USE Y AS THE CHARACTER RECEIVER

READ 8 BITS REVERSE TO Y DEC FA AND DEC FL % DEC PART OF BOX6
XCH IMAGE.DESCRIPTOR F IMAGE.DESCRIPTOR
WRITE 8 BITS FROM Y INC FA % INC PART OF BOX8
XCH IMAGE.DESCRIPTOR F IMAGE.DESCRIPTOR
GO TO -LP
END % INNER LOOP
BOX9S
=BUFFER WRITE USING PRINT.AREA FILE PRINTER OPT DOUBLE
GO TO BOX2AND3
BOX10
=0UTPUT O BYTES CORE PRINT.AREA FILE PRINTER OPT EJECT
% BOX11
=BUFFER WRITE USING DISPLAY.MESSAGE FILE PRINTER OPT DOUBLE
% BOX12
=STOP
=TERMINATE CARD.INVRT
?END

Figure 4.6. Source deck for card inversion program coded in MIL and
McMIL.

abenbue7 n1now ayi uy indino/indu
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4.6.1 Declaring files

Notice that CARD.READER and PRINTER are declared in flowchart
box 1 as the file names we intend to associate with the card reader and
printer devices. We need to declare these devices as files and open
them. But actually, the information specified in FILE declarations
belongs in the codefile, rather than in the MIL program, so these
declarations will be placed in the program that the LOADER will
process.

Both the codefile and the MIL program must know about the input
and output devices and files used in the program by some correlated
numbering scheme. As indicated in box 1.1 of Figure 4.2, the output
device is to be known as file 0 and the input device as file 1 of the
program. (Of course, within the MIL program we use the mnemonics
PRINTER and CARD.READER in place of their numeric (internal) names
0 and 1.

Each file is automatically opened on the first attempt to read from it
(or write to it). Files are also automatically closed upon termination of
the computation. The implicit open and close operations are achieved
via the SMACK subroutines called by MIL code generated from the =
BUFFER READ and =BUFFER WRITE McMIL statements. McMIL state-
ments for explicit open and close look like this:

—OPEN INVENTORY.FILE WITH INPUT
—OPEN CHECKS WITH OUTPUT

and ~CLOSE INVENTORY.FILE
—CLOSE CHECKS

Before we look at the LOADER details and what is needed for this
problem, we had better tie up all the loose strands developed so far.
Figure 4.6 shows a McMIL program listing which, when assembled, will
comprise the MIL object code equivalent to Figure 4.2. New code, not
yet motivated, appears underscored (in Figure 4.6) and is explained in
the next paragraphs.

Explanation of the underscored statements in Figure 4.6 MCP control
cards. Line 1 invokes the McMIL preprocessor. Line 2 asks the MCP to
translate our deck from BCD (026) to EBCDIC (029) codes, before it is
processed by the SMACK subsystem; the data to be converted to
EBCDIC are in the file named CARDS, as indicated on line 3. Line 50,
?7END, marks the end of the data deck.

Line 6 (DEFINE BASE.OF.INTERPRETER = S1A) is a SMACK
requirement. SMACK needs to have one scratchpad register, which it
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knows by the name BASE.OF.INTERPRETER, set aside for its own
housekeeping chores. By reserving it using the DEFINE statement, we
satisfy this SMACK requirement. Any 24-bit scratchpad register may be
selected except SOA. We chose S1A.

The next SMACK requirement appears on line 11, ahead of the first
executable statement of the program (= INITIALIZE). This macro call
causes SMACK to insert at the very beginning of the MIL program a
section of code which includes a set of subroutines needed for MCP
communication.

These instructions compute and place at a strategic place within the
run structure nucleus the resume point of our MIL program (regarded,
you will recall, as a coroutine to the MCP). Other instructions in this
section save and restore the scratchpad registers just before and just
after control is shifted to and from the MCP, respectively.

The first statement following =INITIALIZE should be an =SECTION
card such as the one on line 13 (=SECTION CARD.INVRT), which names
the section that follows CARD.INVRT. The principal purpose of an =
SECTION statement is to indicate that you want SMACK to generate
comment cards for each succeeding McMIL statement so the source
code to the MIL assembler will be readable (well documented) when you
get the assembly listing from the MIL assembler (see Figure 4.7).
SMACK will also reproduce the name you give on the =SECTION card
on each line of the assembly listing that follows (until another =
SECTION card is encountered, if any, after which the name for that
section would be reproduced). Each =SECTION card generates an END
for the preceding section and a BEGIN for the current section. (The final
END—i.e., the one just before FINI in Figure 4.7—is generated by the =
TERMINATE statement discussed below.) Study Figure 4.7 to see the
effect of the =SECTION on line 13 of Figure 4.6.

Line 48 (=STOP) generates code such that execution of our micropro-
gram will be terminated, storage released, all files not otherwise closed
explicitly closed, and control returned to the MCP.

Line 49 contains the terminate macro call (=TERMINATE
CARD.INVRT). This macro call is used to terminate the SMACK
processing of our program (phase 1) and shift control to the MIL
assembler to process our ‘‘expanded’” MIL program. By placing an
identifier of our choice on this =TERMINATE card (in this case
CARD.INVRT), we name the file of microcode that the MIL assembler
will produce and place it on disk storage. We can retrieve our MIL
object code or apply it later as an interpreter by referring to it as
CARD. INVRT.

We have just cited the essential SMACK requirements that must be
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BURROUGHS B1700 MIL COMPILER» MARK V.0(01/24/76 18:25)

CARD. INVRT

BLOCK CODE HEMORY
NAME ADDRESS

£ 0000001
€0002801
0005001

CARD. INVRY 2680 AT [00BBC]
CARD. INVRT 9800 AT [00BCO1I

MONDAY, MAY 02, 1977,

SOURCE IMAGE

H

DEF INE PRINTER =0 ¢
DEF INE CARD.REACER =1 #
DEF INE BASE.OF. INTERPRETER = S1A # 1 SEE TEXT FOR EXPLANATION

DECLARE
DISPL AY .MES SAGE CHARACTER (80)»
INAREA CHARAC TER (80)»
PRINT.ARE A CHARACTER (8035

BEGIN CARD.INVRT

MY SECTION CARC.INVRY
BOX2AND3
N BUFFER READ USING INAREA FILE CARD.READER ON EOF GO TO 80X10
X BOXe
IMX BUFFER WRITE USING INAREA FILE PRINTER OPT SINGLE
) 4

BEGIN Z INNER LOOP.

LOCAL.DEF INES

DEFINE LEN.OF.INAREA 640 & % IN BITS

DEFINE BR.VALUE . = SOA ¢
DEF INE IMAGE.ADDRESS = S2A #
DEF INE IMAGE. CESCRIPTOR =52 ¢

z COMPUTE CARD IMAGE.ADDRESS AND SAVE A COPY
NOVE BR TO BR.VALUE
MOVE PRINT.AREA TO FA

06228 PM.
SE QUENCE

10000011
€000002)
€000003)
(0000043
€0000051
€000006]
£0000071

€0001861
10001871
€0001881
€00012891
€0001993
£0002001
(0002081
(0002091
(000210}
€000 2111
€0002121
(000213]
(0002141
€0002151
€000216]
€000217)

OO N0

OO OONOOO MO N0

SEGMENT
NAME

08J DECK
A DORESS

008801
[008C0}
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CARD. INVRT 05C0
CARD. INVRT 08 CO
CARD. INVRT 2882

CARD. INVRT 9ACO
CARD. INVRT 0280
CARD.INVRT 4785

CARD.INVRT 7768
CARD. INVRT 0722
CARD. INVRT 7948
CARD. INVRT 0722
CARD. INVRT DOO6

CARD. INVRT DO2C

AT
AT
AT

AT
AT
AT

AT
AT
AT
AT
AT

AT

£00800)
(00BEO]
(00BF O}

€00CQ01
tooc1icl
£00C201

[00C30]
£00C403
£00C5¢C)
[00C601
€oocrol

[oon101

NUMBER OF ERRORS DETECTED
NUMBER OF WARNING MESSAGES
MICRO INSTRUCTION COUNT =

CAUTION:

= 000
= 00
00236

ADD BR.VALUE TO FA
MOVE FA TO IMAGE.ADDRESS
BOX6
MOVE LEN.OF.INAREA TO FL X SET PARTY OF BOX€

<LP IF FL = 0 GO T0 80X9 X ESCAPE FROM INNER LOOP
Z BOX? USE Y AS THE CHARACTER RECEIVER

(000218}
(0002191
(0002201
€0002211]

€000222)
(000223]

READ & BITS REVERSE TO Y DEC FA AND DEC FL Y DEC PART OF BOX6([000224]

XCH IMAGE.DESCRIPTOR F IMAGE.DESCRIPTOR
WRITE 8 BITS FROM Y INC FA
XCH IMAGE.DESCRIPTOR F IMAGE.DE SC RIPTOR

GO 10O ~-LP
END X INNER LOOP
B8O X9
INX BUFFER WRITE USING PRINT.AREA FILE PRINTER OPY DOUBLE
GO 7O BOX2AND3
BOX10
IMX OUTPUT O BYTES CORE PRINT.AREA FILE PRINTER OPT EJECT
X B30x11
IMX BUFFER WRITE USING DISPLAY.MESSAGE FILE PRINTER OPT DOUBLE
X BOX12
INX stop
END
FINI
0

$ SUBSET WAS NOT SPECIFIED? TVTHEREFORE, THIS
PROGRAM SHOULD NOT BE USED ON A B1712/B1714%.

Figure 4.7.

10002251

X INC PART OF BOX8(000226)

£000227)
€000228]
10002291
€0002301
(0002311
(000239}
€000240]
£0002411
10002501
10002511
10002591
1000260]
€000266]
€000267]

OO0 NODNO0OOO0O0OO0O0N

(00BDO]
(00BEOQ]
(008FO1

(0oc00)
£00C 101
(00c201

fooc 301
[00C 403
€00C 501
{00C60]1
fooczol

000103
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present in every MIL program processed by SMACK

A BASE.OF.INTERPRETER definition
An =INITIATE

An =SECTION

An =STOP

An =TERMINATE

NEAEWD =

A number of other SMACK macros will be found useful even for MIL
beginners.

In calling SMACK macros the user must understand one important
constraint that is imposed in the version described in this text: All
SMACK macro calls involving input and output generate code that
assumes there is nothing of interest to the user in the hardware stack.
For example, if the MIL programmer leaves anything in the stack before
issuing an =BUFFER READ . . ., that information will have been de-
stroyed when control reaches the user’s next MIL statement. This
means that one may only issue such E-statements in the top level of a
MIL program. E-statement i/o cannot therefore be executed from within
a user-coded MIL subroutine called in the usual way from the top level,
because the return pointer to the caller will be lost.

Usually the programmer can get around this limitation in one of
several ways. He may for example, set a global switch which is tested
upon return to the top level, to determine if the i/o step should be
executed. Alternatively, routines that must issue i/o calls can be treated
as coroutines to the top-level program (i.e., routines reached by GO TOs
rather than by CALLs and returned from by GO TOs rather than by
EXITs).

At this point, the reader is advised to study (once, quickly) the McMil
and SMACK User’s Guide (Appendix C) for an overview of the
available macros and the the services they perform and also for a review
of what has been said so far about this important support system.

4.7 THE LOADER (DETAILS)

In our overview discussion of the LOADER we said that a LOADER
program is a sequence of statements which is compiled into a codefile
description. For each MIL program we wish to make operational, we
must provide an appropriate LOADER program. Let us do this, by way
of example, for CARD. INVRT, the MIL program of Figure 4.5. [Full
details on the LOADER can be found in Appendix D.]
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The information we are expected to supply falls into three categories
(and should be supplied in that order).

1. program parameter specifications
2. scratchpad settings
3. FILE and DATA declarations

Under program parameter specifications we may supply a number of
attributes of the associated MIL program, including the overall dimen-
sions and makeup of the workspace. For example, INTERP =
CARD.INVRT gives the name of the associated MIL program, and
STATIC = 5500 is an example of a workspace parameter. In fact, for
the simple MIL programs we will be writing these two specifications,
name of MIL program and size of STATIC, are really all we need to
make.

If we want specific initial scratchpad settings other than all zeros, we
could next specify their values. We are not likely to want to specify
nonzero initial values for our codefiles, so the scratchpad-settings
component of our LOADER program may be left empty.

We will always want to give some file descriptions, even in the case
where our MIL program uses the card-reader and line-printer devices as
the only files. Each FILE statement associates an internal name with a
physical input/output device and supplies, implicitly or explicitly, a list
of attributes for that device. File numbers (internal names) are assigned
from O in the order of appearance of the FILE statements in the
LOADER program. For example, if the first FILE statement is

FILE NAME = PRINTER PRINTER
—— Y
Local Hardware

name type

then the file named PRINTER will be understood by the MCP as file 0 of
this codefile. The file 0 is of hardware type PRINTER (as opposed to
TAPE, etc.). Default attributes of the declared hardware type (e.g., 80-
byte records) will be generated by the LOADER for eventual placement
in the file information block?® for file 0. (Note that our MIL program
defines PRINTER as 0 on line 4 of Figure 4.6, so the names used for file
0 in the MIL program and in the codefile are actually correlated via the
number 0 and not by use of the identical local names on both programs.
Different local names could have been used with the same net effect.)

9 The run-structure nucleus has a few noncontiguous appendages. Among these is a file
dictionary with pointers to a set of file information blocks, one for each declared file.
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If the next FILE statement is

FILE NAME = CARD.READR READER;
Local Hardware
name type
then the LOADER will be given sufficient information to permit the
generation of a file information block for file 1, the CARD . READR file, by
specifying READER as the hardware type. [Most of the options and file
attributes (e.g., number of buffers, locks, record size, blocking factors,
etc.) recognized by the operating system and which can be specified in
FILE declarations in higher-level languages such as UPL, can be
expressed in FILE statements of the LOADER language, but we won’t
need to use these refinements for our beginning work.]
The final item in the LOADER program is the DATA statement for
specifying initial values for the STATIC section of the workspace. For
example

DATA "THE END";

specifies that the first 8 character positions of the workspace (beginning
at base-relative 0) are to be initialized with the string "THE END'". For
our MIL program the variable whose address begins at base-relative 0 is
DISPLAY.MESSAGE. No value is input for this variable, yet in box 10
we print out its contents (line 46). The above DATA statement guarantees
that when equivalent of line 46 is executed, the message THE END will be
printed.

The last statement of a LOADER program is FINI. Figure 4.8 shows

?COMPILE CARD/INVERTER WITH LOADER LIBRARY

?CONVERT

?DATA CARDS

INTERP=CARD.INVRT STATIC=5500; } Program parameter specs

} Scratchpad settings (empty)

FILE NAME=PRINTER PRINTER;

FILE NAME=CARD.READR READER; FILE and DATA declarations
DATA "THE END";

FINI;

?END

Figure 4.8. The LOADER program named for use with the CARD. INVERT
interpreter.
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?EXECUTE CARD/INVERTER
?DATA CARD.READR
NOW IS THE TIME FOR ALL...
ABLE WAS I ERE I SAW ELBA
MADAM IM ADAM

.EVE. ..
?END

Figure 4.9. The job deck for testing CARD/INVERTER.

the LOADER program ready for the card reader, complete with MCP
control cards. We ask to compile the program, arbitrarily named
CARD/INVERTER, using LOADER as our compiler, and we ask to place

the compiled codefile in the library.

Once we have both the MIL object program and the codefile in the
LIBRARY, we can execute the codefile using a job deck like the one
shown in Figure 4.9. The output will appear as in Figure 4.10.

Since our MIL program fails to trim off trailing blanks from each data
card that is processed, each output line appears right-justified, in
contrast with the echoed data card images, which appear left-justified at
least for those data cards with nonblanks in column 1).

Exercise. Modify CARD.INVRT so that blanks are stripped off the right
end of each data card before the inversion is made into PRINT. AREA,
thus producing inverted card images that are left justified as shown in
Figure 4.11. Data cards that are entirely blank should be echoed, but
their inverses should not be printed.

NOW IS THE TIME FOR ALL..
...LLA ROF EMIT EHT SI WON

ABLE WAS I ERE I SAW ELBA
ABLE WAS I ERE I SAW ELBA

MADAM IM ADAM
MADA MI MADAM

0O 0 0 0 0O 0O 0 0 O

o o

THE END

“IIIIIHIEI"
/—\—’/}

Figure 4.10. Output of program executing CARD/INVERTER.

Yo 0o 00000000 o0o0
IS
<<
&
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o[ NOW IS THE TIME FOR ALL... °
o| ...LLA ROF EMIT EHT SI WON o
] o

ABLE WAS I ERE I SAW ELBA o
°| ABLE WAS I ERE I SAW ELBA
o [o]
o| MADAM IM ADAM o
o| MADA MI MADAM o
° ...EVE... °
o .EVE o
o o
o -~~~ "~~~ " ~""T"°" """ TTTTT TS T T T o
°! THE END °
° B
}/—\//

Figure 4.11. Desired output achieved by trimming off trailing blanks
before inverting each card image.

Sa Sa.l
Strip off .
trailing —:‘J> J <80
blanks
sb 5a.2
All blank __J INAREA, = “[]"
F and
Sc ji#0
[0 ]

j=i F Jeiml

Jje—j—1 __j

— .

PRINT.AREA, < INAREA;

8
k—k+1 l

Figure 4.12. Modified logic of inner loop for CARD. INVERT to left justify
the output.
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The overall structure of CARD. INVRT can remain the same. The loop
structure of boxes 5 through 8 can be replaced as shown in Figure 4.12
to suggest the logic now required. To solve this problem requires more
practice in MIL coding. No new McMIL statements are needed,
however. Will any change be needed to the CARD/INVERTER, i.e., to
the LOADER program?



Chapter 5
The structure of an interpreter

An interpreter algorithm, as we discuss it in this chapter, is one that
imitates the fetch-execute cycle of a particular von Neumann-style
computer. Figure 5.1 suggests the characteristic structure of such an
interpreter. Its main feature is a loop, each transit of which corresponds
to the fetch and execute of one instruction in the program of the target
machine. To be sure, not every interpreter need be structured precisely
this way, but this skeleton is sufficiently representative to be instructive.
As we discuss this structure we will expand it both top down, by
providing more of its details, and also bottom up, by suggesting
environment structure in which the interpreter is nested.

5.1 DETECTION AND RESPONSE TO FAULTS AND INTERRUPTS

An interpreter algorithm should be capable of detecting when things
go wrong with the program being interpreted (faults). The interpreter can
signal the nature of the fault encountered in two ways.

1. By printing explicit messages and shifting control to code in its
environment, i.e., to its host;

2. By reflecting to its caller (here we regard the interpreter as a
subroutine) the nature of the fault and returning control to its
caller, leaving to the caller the responsibility for reacting properly.

The second approach is attractive, and we shall mainly pursue it in
subsequent discussions. This approach allows us to keep the size of the
interpreter procedure small and at the same time purchase adequate
flexibility through modularity.

Normally the designer of an interpreter cannot be expected to
recognize in advance all possible faults. Usually he can think of the most
obvious ones such as those listed in Table 5.1.

Switches set within the loop’s body (details of boxes 3 through 6 of
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Interpret program

initialize
IC,
etc.

! 2

OK to
continue

T

Fetch next
instruction
from cell
at IC

" Incre;nent IC "

5

Op-code
n-way select

NN o1i

Evaluate
operands

ith operator
subroutine

hd

F

n+1

*
—

Figure 5.1.

Skeletal structure of an interpreter. IC refers to the instruc-

tion counter of the target machine. The point marked * is discussed later

in the text.
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TABLE 5.1 Partial List of Faults to Be Sensed by an Interpreter

FAULT TYPE OR OTHER
SpECIAL CONDITION MECHANISM FOR SENSING RESPONSE?

Runaway computation Number of interpreted Abort the program
instructions (a work
counter value) exceeds
some given or declared

limit
Invalid opcode Failure of a table lookup Abort the program
or other search
Invalid operand address Comparison against Abort the program
storage address limits
Invalid IC value Comparison against Abort the program
storage address limits
End of file sensed on System-sensed using the Possibly terminate the
attempt to execute an ON EOF option in = run
input step BUFFER READ

“The easiest response to each fault is to cause the interpretation process to be
terminated (abort the program) and possibly give a dump (display storage registers.) More
sophisticated responses, such as restarts using a new data set or some given IC value, may
be possible. [In this book we shall not emphasize responses.]

Figure 5.1) will be tested in the ‘‘interior’’ of box 2,

Lo
. F
OK to continue @

1T
to cause return to the interpreter’s host or caller. We shall examine
some of these details momentarily. _

In addition to faults encountered that are intrinsic to the program
being interpreted, there may be other reasons for discontinuing interpre-
tation, at least temporarily. Our interpreter must be responsive to the
needs of its host environment. System interrupt signals may arrive while
the interpreter is executing its loop body. Some of these signals imply
that the host system should respond ‘‘immediately’’; others are less
urgent. The interpreter must periodically pass control back to some
system routine which specializes in analyzing and responding to these
interrupt conditions. [On the B1700, that specialist routine is called
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GISMO; it interfaces with various routines of the MCP when a compre-
hensive response to an interrupt is called for.]

A courteous interpreter must not execute too long ‘‘at one stretch”
without checking to see if such system interrupts have arrived, or else it
may be too late for the host system to give proper response. In our
perhaps naive first design, we shall assume that such a check need be
made only once in each transit of the interpretation loop, as suggested in
the details of box 2, given in Figure 5.2.

We should bear in mind that an actual computer usually executes a
hardware check for interrupts at the completion of each fetch/execute
(instruction) cycle, so by letting our interpreter make a (software) check
for interrupts at the corresponding point in its cyclic process, we cause it
to mimic an actual machine. If, for certain exit paths from box 5 of the
interpreter (Figure 5.1), the total time for executing one transit of the
interpretation loop will actually be ‘‘discourteous’’ to the system that
hosts this interpreter, then it is the responsibility of the interpreter
designer to insert additional checks for interrupts along such ‘‘long
paths’’.

Fortunately it is very easy for a MIL coder to insert a check for
interrupts. The McMIL macro call =CHECK INTERRUPTS generates
MIL code that calls a SMACK subroutine that checks the state of all
physical devices and determines if any system service is required at this
time. If so, the scratchpads are saved, and control is passed (in the
coroutine sense) to the MCP (via GISMO). Upon resumption of control,
scratchpads are restored; but note that register values for X, Y, T, L, CA,
CB, FA, FB, and TAS will have been lost. The statement immediately
following =CHECK INTERRUPTS is then executed. We see, therefore,
that the logic of boxes 2.1 and 2.2 of Figure 5.2 is accomplished for us
by this single McMIL statement.

The other test in box 2, namely

| .

termination.code F
= "notyetset"

7

suggests that we may use one multivalued switch, here named termina-
tion.code which can be preset in box 1 of the interpreter to a value
equivalent to ‘‘notyetset’. Interpretation continues as long as the
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OK to F ||

Any system

|
To system }
I

interrupts? (GISMO)

lT $ I I Ctermination.code \

= “notyetset’” _J
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Figure 5.2. Details of box 2. The symbol <| | means resumption after control is passed back from the system
procedures after some delay while servicing interrupts. It is assumed that the variable termination.code is
initialized in box 1 of Figure 5.1 to the value “notyetset”, and may be altered in the body of the loop controlled by
box 2.
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switch remains in this condition. It is assumed that recognition of any
fault such as those in Table 5.1 results in setting termination.code
to a specific value properly understood by the interpreter’s caller.
Likewise, any normal termination of the interpreted program, such as
results from executing a halt instruction or from attempting to read past
an end-of-file condition, is also assumed to set termination.code to
a value meaningful to the interpreter’s caller.
From the above discussion, we see that

1. Box 1 of the interpreter should now include the detail
Initialize:

L
IC,

work.counter,
termination.code

!

The variable work.counter is to be used as a counter to keep
track of the number of instructions that have been interpreted.

2. The point marked by * in Figure 5.1 [prior to return (looping back)
to box 2] should now be represented by the additional steps

L

Increment
work.counter

8

F
Qork .counter > work. limiD————

T

9

termination.code <« "overworked"

A
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3. Various places within the interior of boxes 3, 4, 5, and 6 may
(should) include tests for fault or termination conditions that,
when encountered, result in the setting of termination.code
to an appropriate value.

5.2 THE HOST ENVIRONMENT

Before looking further into details of the interpreter’s loop body, one
should consider the choices available for possible environments in which
to embed the interpreter structure. Basically, there are two choices.

1. Embed the interpreter directly in the MCP (the MCP treats the
interpreter as a coroutine and spawns it directly).

2. Embed the interpreter within an outer shell, which in turn is
embedded directly in the MCP (the MCP treats the shell as a
coroutine and the shell communicates with the interpreter in some
appropriate manner—e.g., as a coroutine or as a subordinate
procedure).

We shall consider the ramifications of each choice.

If we opt for choice 1, we will be using the interpreter much as the
B1700 designers intended. Namely, each time the MCP passes control to
an interpreter, there already exists in the compiled run structure some
code that is ready to be interpreted. For interpreters like UPL, FOR-
TRAN, COBOL, etc., that code is a compiled user program, originating
from UPL, COBOL, or FORTRAN source text in the respective
language. A new codefile is needed for each such user program that is to
be interpreted. However, for interpreters which are machine simulators,
the code that is initially resident in the run structure at the start of
interpretation may be either a user program or a system program. Let us
consider each case in turn using the PDP-9 simulator for illustration.

If we want the simulator to interpret only one PDP-9 program (e.g., a
PDP-9 user program), then it is sufficient to compile into the run
structure a copy of that user code, and this code will be interpreted by
the simulator. When interpretation is complete, control will return to the
MCP. To interpret another PDP-9 user program would then require a
new codefile be created.

More than likely, however, we will want our 31mulator to be capable
of interpreting a series of PDP-9 user programs. For this purpose code
initially compiled into the run structure should be one or more PDP-9
system programs. The emulator begins execution of these programs,
which in turn cause the loading of still other PDP-9 programs, e.g., user
programs. In fact, all we would need to preload into the run structure is
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a small PDP-9-coded self-loader. Of course, the run structure must be
large enough to represent the storage space for the full PDP-9 simulated
storage, so that PDP-9 programs much larger than the self-loader will
also fit in.

Most of the early general-purpose digital computers, especially those
built before modern read-only memories were available, were designed
for use with self-loader programs in mind. The self-loader was itself
loaded by a simple hardware circuit. When activated, this circuit would
read one data record containing the self-loader code into a preset (fixed)
base address of storage, set the instruction counter to this base address,
and commence execution.

Here is a further ramification of choice 1 to embed the interpreter
directly in the MCP. The MCP will not know anything about our
interpreter (e.g., the PDP-9 simulator). Therefore, to handle PDP-9
program faults, it will be the interpreter’s responsibility to supply
specific calls on the MCP (i/o requests coded as McMIL E-statements)
which spell out precisely what and how error messages, dumps, etc. are
to be displayed. Such i/o requests will have to be completed before the
interpreter can pass control back to the MCP for the purpose of
terminating the execution.

If we opt for choice 2, an interpreter within an outer shell, we have
somewhat greater flexibility (at least for simulators) at somewhat added
cost. The shell, also coded in MIL, can provide the structure of an
environment tailored for the machine we want to simulate. With the
advent of integrated-circuit technology, many operating-system features,
(e.g., self-loaders and editors) are being built into the hardware and/or
read-only firmware. For example, in the case of the SAMOS machine
the loader function (described in Appendix F) is regarded as built into
the hardware. Any number of such built-in features can be simulated by
coding them into the shell. In the next section we elaborate further on
implementation using a shell. To make the discussion more concrete we
shall assume, with little loss of generality, that the shell being designed
is for the SAMOS computer.

5.3 THE SHELL CONCEPT

Figure 5.3 suggests the structure of a simple shell which has some
very useful properties. This shell calls on the interpreter (box 7 of Figure
5.3) only when it has successfully copied a complete (SAMOS) program
from the input card file into the simulated (SAMOS) storage located
within the workspace of the run structure. Whenever the interpreter
returns control to the shell, the latter is able to respond intelligently to
the termination.code reflected back to it by the interpreter, and
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Figure 5.3. First view of a possible shell for an interpreter. This shell
behaves like a simple batch operating system that processes jobs from a
single input file and halts when this file is exhausted.
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following this response, process another (and another) SAMOS ‘‘job”’
from the input file in a similar way. (No new codefile need be prepared
for the new job.)

The particular shell of Figure 5.3 behaves like a simple batch
operating system for the SAMOS computer. The shell is programmed
under the assumption that the input file is a sequence of jobs, each
headed by a control card (identified by * in column 1, for example).

When the end-of-file indicator on the input file is sensed, the master-
switch that controls the outermost loop is set to force a return to the
shell’s environment (in this case to the MCP). Any of the subprocedures
called by the shell (box 3, 5, or 7) can sense the end-of-file (eof)
condition. In case interpret.program senses the eof condition, the
code in box 8 can set the masterswitch.

We are persuaded here to add further detail for the shell. For
example, Figures 5.4 and 5.5 define possible structures for the
find.a.job.card and load.a.program procedures.

The find.a. job.card procedure is basically a search loop, looking
for a card image corresponding to a control card (* card). If, during the
search, an end-of-file condition is reached, the masterswitch is set (box
4). When a * card is found, the foundswitch is set to 1 to force exit
from the loop at box 1. This switch may be reset upon return to the shell
proper, which must decide (box 4 of Figure 5.3) which condition caused
control to return from find.a.job.card. The details of box 4 are
shown in Figure 5.6. The very first time find.a.job.card is called,
we must guarantee that the foundswitch is in the reset position. This
requirement is satisfied simply by initializing the foundswitch in box 1
of the shell, i.e., by revising it to

| |

masterswitch « O
foundswitch « 0

!

The logic of 1oad.a.program is clear from inspecting the top-level
description on the left of Figure 5.5. The details for box 2 and box 3 of
this description will depend on the particular machine being simulated.
Even so, the details given in Figure 5.5 are as independent of the
particular target machine as we know how to make them. We have in
mind that after clearing the registers and storage of the target machine
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foundswitch = 0 F
> and
masterswitch = 0

| CARD

3 4
T
End of file masterswitch « | |
F
5
F
Com—
T
6 - | Print echo of * card
Action for a ete.
* card

foundswitch « 1

Figure 5.4. A possible structure for find.a. job.card.

(or after initializing these cells to some value representing ‘‘undefined
value’’), the procedure would read a sequence of cards (actually
program cards), each containing one (or more) target-machine instruc-
tions, which are to be moved into consecutive cells of the simulated
storage. The addresses of these cells are governed in this case by the
location.counter, set initially to zero. [Actually, any other starting
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value for the location.counter would do if the starting value were
specified as an input parameter of the procedure.]

The end of the program-card sequence is sensed by recognizing some
kind of sentinel card, e.g., a blank card, as in the case of SAMOS. When
all program cards have been processed, loading is completed, and this
fact is reflected back to the shell by recording an "OK'" value for the
indicator variable, code. If, prior to sensing the sentinel card, a control

| 31

I code « "undefined"

]

3.2
—|| code = "undefir@L

load.a.program

location.
counter « -1

o

code « "EOF"
masterswitchel
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3.9

codee "*"

Clear simulated Increment
registers and location.
storage counter
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cards until a

terminal condition M
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proper code.
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@ ] 314
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Figure 5.5. A possible structure for 1oad.a.program.
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Figure 5.6.

card such as the * card is sensed, the program deck is deemed
incomplete; the loading process is regarded as a failure, and this fact is
reflected back to the shell by assigning the ‘“*° value to code.
Likewise, if the end-of-file condition is sensed before the expected
sentinel is reached, that condition must be reflected back to the shell
also.

Another condition which should be sensed to denote failure of the
loading process is an attempt to load a program which cannot fit into
storage of the simulated (target) machine. This condition is easily
detected (box 3.11 of Figure 5.5), and the value "TOOBIG" is reflected
back. We have now motivated all the details of boxes 6 and 9 of the shell
that are suggested in Figure 5.7.

Now that we have considered one possible control structure for the
shell of an interpreter, you can probably improve on it or embellish it to
achieve one of a series of other objectives to make the interpreter’s
human interface more effective for your purposes. But before you begin
making improvements, it is a good idea to see how well you can code
this shell in MIL. You’ll have to make some additional design choices,
depending on the particular computer you decide to simulate.

When coding the shell in MIL you should recall the admonition in
Section 4.5 that MIL subroutines cannot execute i/o steps directly (i.e.,
cannot execute SMACK macro calls for i/0). Therefore, routines like
find.a.job.card, load.a.program, and interpret.program
must either be reached by GO TOs or be coded such that only the shell
issues these macro calls. Rather than pursue this approach here (MIL-
coding the shell), we will instead return to further consideration of the
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Figure 5.7. Details for boxes 6 and 9 of the shell.

interpret.program procedure, assuming it is called by a shell like
the one in Figure 5.3.

5.4 MOVING TOP DOWN ON THE INTERPRETER STRUCTURE

To flesh out with further details the interpreter skeleton described in
Section 5.1, we will now have to make some specific design choices. In
particular, we will need to notice more and more of the properties of the
target machine as we descend to levels of greater detail. In the context
of the typical simulation project, the target machine and its full definition
is known at the outset. We will therefore assume this context and select
the SAMOS machine as our target from here on, although we will try to
keep our discussion as general as possible. By way of review, we gather
up some loose ends and present in Figure 5.8 an updated version of
Figure 5.1 based on the discussions in Section 5.1.
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Figure 5.8. Updated interpreter skeleton.

5.4.1 Storage representation for the target machine

To focus on the details of boxes 3, 5, and 6 we must decide how to
represent the SAMOS registers and storage in G-store. Recall that each
SAMOS word consists of a sign position followed by 10 character
positions. The SAMOS machine can be emulated from its original
description which specified 61-bit words (1 bit for sign and 6 bits for
each character.) We would therefore prefer to emulate each SAMOS
word as a 61-bit field in G-store; but if we do this, we will miss the
opportunity to exploit certain hardware features of the B1700’s micro
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processor which explicitly support the processing of 8-bit EBCDIC
character codes and do not support the processing of (say) 6-bit BCD
codes or 7-bit ASCII codes, etc. (Despite advertisements to the con-
trary, 8-bit EBCDIC characters are favored over other character coding
on the ‘‘protean’’ B1700.) We are then faced with this tradeoff (di-
lemma): If we want to take advantage of the character processing
potential of our B1700 microprocessor, we will have to waste G-store by
representing each SAMOS word as 11 EBCDIC characters (8x11=88
bits, rather than 61 bits as originally specified). Either way we go will be
instructive here. It isn’t critical that we make a choice between these
two options at this point in our top-down approach, because only the
details of certain declarations and utility subroutines are affected.
Nevertheless it will be convenient for this exercise if we assume we are
going to opt for the second approach (8-bit EBCDIC character codes),
so we can eventually illustrate some of the character-processing features
of the B1700.

The first implication for the above choice is that the SAMOS store of
SIZE words may be declared as

DEFINE SIZE = <{a value chosen by the designer, e.g. 100) #
DECLARE 01 SAMOS.STORE(SIZE),
02 WORD BIT(88),

03 SIGN CHARACTER(1),

03 OPCODE CHARACTER(3),

03 INDEXES CHARACTER(3), % SEE

% FOOTNOTE
03 ADDRESS CHARACTER(4);

To refer to each of the individual index-register subfields by a unique
name, we may redeclare SAMOS . STORE using the REMAPS feature, e.g.,

DECLARE 01 DUMMY REMAPS SAMOS.STORE, BIT(88),
02 FILLER BIT(88),

03 FILLER CHARACTER(

03 INDEX1 CHARACTER(

03 INDEX2 CHARACTER(

03 INDEX3 CHARACTER(

s’
’

»

4
1
1
1

~— — ~— ~—

s

How should the registers of the SAMOS processor be represented in
G-store? As separately named fields? Perhaps, but an attractive alterna-
tive is to treat each register the same as an ordinary word of SAMOS
storage, letting these registers constitute an extension to the SAMOS
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store with registers having negative addresses, e.g.,

— 1 for the accumulator, ACC

— 2 for the instruction counter, IC

— 3 for the index registers, IX1,

-4 IX2,

-5 IX3,

etc. (any pseudo registers we need can go here)

Presently, we will see how this alternative way of addressing these
registers can prove useful. Storage allocation for these registers can be
made contiguous with the base of SAMOS.STORE by having the DE—
CLAREs for these registers immediately precede the DECLARE for
SAMOS . STORE, e.g.,

DECLARE (IX3, IX2, IX1, IC, ACC) BIT(88);
DECLARE 01 SAMOS.STORE(SIZE),
etc. as before.

Letting all SAMOS registers and storage words have the same G-
storage structure means that all arithmetic operations on them can be
performed by the same set of decimal arithmetic operations. Binary
arithmetic will be used mainly to convert SAMOS locations (decimal
numbers) to the absolute binary G-store addresses needed to access
SAMOS registers and storage words.

In short, we may use (B1700 4-bit) decimal arithmetic for simulating
SAMOS address calculations that involve the instruction counter, ad-
dress fields, and index registers. [We can of course also use B1700
decimal arithmetic for simulating the decimal arithmetic used by SA-
MOS for calculations involving the accumulator.]

One mapping rule suffices to compute the absolute G-store address of
a SAMOS storage word or register. That rule is

map(s) = s X 88 + SAMOS.ZERO

Here s is the SAMOS location and SAMOS . ZERO is the absolute G-store
address of SAMOS location zero (0000). The value of s will be a small
negative integer if it represents a SAMOS register (or pseudo register)
and will be a nonnegative integer less than SIZE if it represents a
SAMOS storage location. Note the following points.

1. SAMOS.ZERO may be computed as the sum of SAMOS . STORE and
BR, i.e.,

map(s) = s X 88 + (SAMOS.STORE + BR)
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Since the value of BR can change whenever control is handed over
to the MCP via GISMO (as during an interrupt check), it is
necessary to recompute the sum SAMOS . STORE + BR during each
transit of the main loop of interpret program (Figure 5.8).
But this sum can then be kept in a scratchpad for the duration of
that transit.

2. Since map(s) is an absolute G-store address, which is a binary
number, it makes sense to compute it using binary arithmetic.
Hence s in the above formula should be the binary equivalent of
the (decimal) SAMOS storage location.

SAMOS register locations, unlike SAMOS storage locations, are
represented only implicitly in the SAMOS instruction, so it is never
necessary to represent the location s of a SAMOS register as a decimal
character string. This means, for example, that when we want to access
the accumulator, we need only use the declared binary literal (—1)
equivalent of the accumulator. There is no need to convert a decimal
character number to binary integer before computing map(s) by the
above formula. We can declare these literals by using DEFINEs such as

DEFINE ACC.ADDR
DEFINE IC.ADDR
DEFINE IX1.ADDR

—1# % AS 2'S COMPLEMENT
—2# % AS 2'S COMPLEMENT
—3# % AS 2'S COMPLEMENT

etc.
or
DEFINE ACC.ADDR = @800001@#
%—1 AS SIGNED MAGNITUDE
DEFINE IC.ADDR = @800002@#
%—-2 AS SIGNED MAGNITUDE
DEFINE IX1.ADDR = @800003@#

%—-3 AS SIGNED MAGNITUDE

But let us take a closer look at the problem we encounter when we
need to access a SAMOS storage word whose location is determined
from its explicit representation in an instruction, for example, such as
STO 000 0051. Here the address 0051 is represented as a string of
decimal characters whose G-store representation is

1111 0000 : 1111 0000 : 1111 0101 : 1111 0001 <« Bit string
F 0: F 0: F 5 : F 1 <« Hexcharstring

We need to convert this value to the binary integer, s = 110011, so we’ll



TABLE 5.2 Possible Utility Routines Useful in the SAMOS Interpreter

NAME AND FUNCTION

SPECIFICATIONS

VALIDATE.DECIMAL

checks a SAMOS storage
location for +, —, and decimal
characters.

ADDRESS.TO.BINARY

converts a 4-character decimal
address field to binary and
checks that the result is a
valid SAMOS storage
location, i.e., that 0 =< result
< SIZE.

BINARY.TO.FA

converts the binary value, s,
representing a SAMOS
storage location to the
absolute G-store address of
that storage location.

EFFECTIVE.ADDR

computes the effective address
as a decimal character string
of a SAMOS operand or
instruction.

ADD
adds two decimal character
values.

SUB
subtracts two decimal character
values.

COPY.WORD
copies a word from one SAMOS
location to another.

Parameter: Binary absolute G-store address,
s, of SAMOS location containing word to
be tested is in FA.

Return: Flag telling if input parameter points
to a valid 11-character decimal number.
The first character should be ““+’” or
‘=", Each of the remaining 10 characters
should be a decimal digit.

Parameter: Binary address, s, of SAMOS
location for a storage word or register
containing a decimal character address.

Returns: a. Thé binary value, s, equivalent
to decimal value pointed to by the
parameter. The value s is left in an agreed
upon register.

b. Flag telling if the location specified by
the parameter is a valid SAMOS storage
address in the range 0 to SIZE.

Parameter: Binary address, s, of a SAMOS
location.

Returns: The corresponding absolute G-
store address of that location in FA.

Parameter: FA points to the index register
subfield, INDEX, of the SAMOS
instruction being interpreted.

Returns: The effective address as a decimal
value is left in the pseudo SAMOS register
(e.g., EA) equivalent to location —6.

Parameters: Two binary addresses, s1 and
52, of SAMOS locations holding the
operands.

Returns: The sum (as a decimal character
value) stored in the location indicated by
second parameter.

Parameters: Same as for ADD

Returns: The difference (as a decimal
character value) stored in the location
indicated by the second parameter.

Parameters: Two binary addresses, source
and sink, of SAMOS locations.
Returns: Nothing.

92
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certainly need a subroutine to convert decimal character strings to
integers.

Of course, each SAMOS operand fetch or store is more complex than
this. In general what is wanted is an effective address for the operand.
Thus in the instruction

Indicates second
index register

+ STO 010 0051

we want the sum of 0051 and the contents of IX2. So before converting
the character string 0051 to binary, it might be worth while to compute
the required sum using a decimal-arithmetic addition routine. We
anticipate the need for a subroutine (we might name it EFFEC—
TIVE.ADDR) which would draw on several more primitive utility rou-
tines to deliver the required binary value s. Table 5.2 offers a possible
set of these utility routines and their functional descriptions. Take a few
minutes to study these specifications. You may wish to modify or
improve them before seriously beginning to develop flowcharts and MIL
code for them.

We can now begin detailing boxes 3, 5, and 6 of Figure 5.8. Consider
box 3 first and the suggested expansion of its detail as seen in Figure 5.9.

We note from the plan in Figure 5.8 that there has as yet been no
check made that the IC, incremented in box 4 while executing in the
preceding loop transit, is within bounds. So this should be the first step
in the interior of box 3; if the answer is no, we assign "out of bounds
IC" as the new value for termination.code, to force a return to the
shell. These details are given in boxes 3.1 and 3.2 of Figure 5.9. Next,
the absolute G-store address of the instruction pointed to by LC must be
computed as an FA pointer for fetching parts of the next instruction from
G-store. To mimic SAMOS as it ignores the sign position of an
instruction word, we simply ‘‘advance’’ FA by one character (bump FA
by 8 bits). This respositions FA at the low-order address of the 3-
character op-code field, which is then moved to a receiver register (X)
within the microprocessor.

By taking advantage of the utility routines suggested in Table 5.2, it is
easy to see how we could write the MIL code corresponding to boxes
3.1 through 3.4 of Figure 5.8. We give such code in Figure 5.10. This



v6

l

Fetch next
instruction
from cell at IC

J

IC within

bounds

Yes

33

N

3.2

y.

termination.code « "out of bounds IC"

FA < G-store

0 . Back -
address of instruction to box 2

located at IC

y

3.4

Advance FA to

beginning of op . code

field

A

3.5

X <« op.code

!

Figure 5.9. First level of detail for instruction fetch.
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FETCH.NEXT . INSTRUCTION

MOVE IC.ADDR TO T % WHERE ARGUMENT FOR
CALL ADDRESS.TO.BINARY % THIS ROUTINE IS EXPECTED
IF FLAG = 0 THEN
BEGIN
MOVE OUT.OF.BOUNDS TO TERMINATION.CODE
GD TO -BOX2
END
BOX3.3
CALL BINARY.TO.FA % CONVERTS VALUE POINTED AT

% BY IC.ADDR TO AN ABSOLUTE
% BIT ADDRESS IN G-STORE.
COUNT FA UP BY 8 % BUMP FA WHICH NOW POINTS
% TO BEGINNING OF OPCODE
%
READ 24 BITS TO X INC FA % GETS OPCODE

Figure 5.10. Possible MIL code for box-3 details of Figure 5.9

code is assumed to be within the scope of declarations such as

DEFINE IC.ADDR = @800002@ # AS MENTIONED
EARLIER
ANY REGISTER OR
BIT THAT CAN BE
% TESTED FOR ZERO
DEFINE OUT.OF.BOUNDS = 5 # % THIS VALUE IS
% ARBITRARY
DEFINE TERMINATION.CODE = S10B % ANY SCRATCHPAD
‘ % WILL DO

Note how useful the proposed ADDRESS.TO.BINARY subroutine
turns out to be for us. Nearly every time we need a binary equivalent of
a decimal address field at some SAMOS location, we also want a bounds
check made. The routine ADDRESS.TO.BINARY does both, leaving a
zero value in some flag register which can be checked for zero using a
simple IF test. (Zero means out of bounds.) To check that the IC is in
bounds, we simply call ADDRESS.TO.BINARY, giving as an argument
the binary SAMOS location of the IC, in this case the literal IC. ADDR.
The subroutine then converts the address field of the IC from a decimal
string to the binary equivalent, checks that this binary value is in
bounds, and sets the flag.

Now we can begin to see the advantage of representing the IC as a full
SAMOS (1l1-character field). Had we chosen to represent IC as a 4-
character field, we would have needed a separate routine to check the
IC for a bounds error.

DEFINE FLAG = Y #

3939 3931
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5.1

op.code = "LDA"

MOVE "LDA'' TO Y
IF X=Y THEN GO TO LDA..

MOVE "STO" TO Y
IF X=Y THEN GO TO STO..

:i:> MOVE "ADD" TO Y

IF X=Y THEN GO TO ADD..

op.code = "ADD"

MOVE "SUB" TO Y
IF X=Y THEN GO TO SUB..

MOVE "SHL" TO Y
IF X=Y THEN GOTO SHL..

op.code = "SHL"
l 6.n+1

termination.code MOVE BADOPCODE TO TERMINATION.CODE
< "badopcode"

!

Figure 5.11. Multiway branch to n different opcode routines.
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Box 5 of interpret.program is an n-way select, where n is the
number of distinct SAMOS opcodes. This multiway selection must be
coded the ‘‘hard way’’, i.e., as a sequence of n 2-way tests, as suggested
in Figure S.11. (Unfortunately, we can think of no simpler method for
achieving a quick jump to the required operator routine. The indexed
jump discussed in Section 3.4 is unfortunately not applicable here,
because SAMOS op-codes are not small binary numbers but 3-charac-
ter—i.e., 24-bit—fields.)

Each op-code routine requires that an explicit operand be ‘‘evalu-
ated”’. In SAMOS instructions, only one operand is given explicitly; the
other, if present, is implicitly designated by the op-code. An index
register indicator can be thought of as an explicit operand, but we prefer
to regard it as a modifier for the one explicit operand. For example, in
the instruction LDA 010 0051, the explicit operand is 0051. Its modifier
is IX2, and the implicit operand is the accumulator.

For some op-codes only one operand (the explicit operand) need be
checked for validity after it is ‘‘evaluated’’. For others both operands
must be checked before the operations indicated by the op-code can be
performed. In interpreting LDA 010 0051, for example, first the
effective address must be found to be valid. Then the value of the
operand at the effective address must be checked to be sure it is a
decimal character string. Likewise, the accumulator (implicit operand)
must be checked to be sure that it too contains a decimal character
string. On the other hand, in interpreting BRU 001 0016, only the
effective address (explicit operand) need be checked for validity (within
bounds). The implicit operand, which is the instruction counter, requires
no check for validity, since we use it here as a destination rather than a
source.

Because of the wide variations in logic required in coding each
operator routine, it is difficult to arrive at a prototypical one. The best
we can do is offer Figure 5.12, which is intended as a guide (rather than
a template) and is intended to be helpful in constructing each of the
specific operator-routine flowcharts.

With Figure 5.12 as a guide, we next show in Figure 5.13 how the
flowchart would look for an ADD instruction. Figure 5.14 shows an
equivalent MIL coding for this flowchart.

5.4.2 Discussion of MIL code for ADD routine (Figure 5.13)

This figure merits study. Observe that the code is remarkably com-
pact—hardly more than one line of MIL code per flowchart box. Why is
this so? Largely because of our choice of the ‘‘utility’’ routines, which
do most of the work (and which perhaps do too much work.)

Even more compact code might be obtained using macros. We could
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Line No.
1 ADD. . % ADD ROUTINE BEGINS HERE
2 CALL EFFECTIVE.ADDR % ARGUMENT POINTED TO BY FA.
3 % RESULT IS LEFT IN PSEUDO-
4 % REGISTER EA
5 MOVE EA.ADDR TO T
6 %
7 CALL ADDRESS.TO.BINARY % GETS (LOGICAL) POINTER ARGUMENT
8 % FROM T. SEE TEXT DISCUSSION
9 IF FLAG = O THEN
10 BEGIN
11 MOVE INVALID.ADDRESS TO TERMINATION.CODE % BOX 6.3.3
12 GO TO -BOX2
13 | END
14 CALL BINARY.TO.FA % PICKS UP ARGUMENT FROM REGISTER
15 % WHERE ADDRESS.TO.BINARY
16 % LEAVES ITS RESULT.
17 CALL VALIDATE.DECIMAL % ARGUMENT POINTED TO FROM FA
18 IF FLAG = O THEN
19 BEGIN v
20 MOVE NONNUMERIC.OPERAND TO TERMINATION.CODE % BOX 6.3.6
21 GO TD -BOX2
22 | END
23 MOVE FA TO SOA % SAVE ADDRESS OF 1ST OPERAND
24 MOVE ACC.ADDR TO T % GET SECOND OPERAND AND VERIFY.
% ACC.ADDR IS A BINARY NUMBER
25 [ CALL BINARY.TO.FA
26 CALL VALIDATE.DECIMAL % ARGUMENT POINTED TO FROM FA
27 IF FLAG = O THEN
28 BEGIN
29 MOVE NONNUMERIC.ACC TO TERMINATION.CODE % BOX 6.3.9
30 GO TO -BOX2
31 L END
32 CALL ADD % ARGUMENTS ARE THE POINTERS
33 % CURRENTLY IN SOA AND FA;
34 % RESULT LEFT IN SAMOS CELL
35 % POINTED TO BY FA.
36 GO TO INC.WORK.COUNTER % GO TO BOX 7

Figure 5.14. Possible MIL code for the ADD operator routine flowcharted

in Figure 5.13.

replace some of the repeating patterns by macro calls if the macro
facility in the current MIL assembler were improved. Notice the
similarity in form between the code in each of the three bracketed
sequences (lines 7-13, 17-22, and 26-31). We could define the macro:

MACRO VALIDATE (UTILITY.NAME, ERROR.CODE, INDICATOR)=

CALL UTILITY.NAME
IF FLAG = 0 THEN
BEGIN

MOVE ERROR.CODE TO INDICATOR

GOTO —BOX2
END #
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provided label arguments and parameters like UTILITY.NAME were
allowed. Were this the case, we could then replace each bracketed code
sequence in Figure 5.14 as follows:

VALIDATE (ADDRESS.TO.BINARY, INVALID.ADDRESS,
TERMINATION.CODE)

in place of lines 7 through 13,

VALIDATE (VALIDATE.DECIMAL, NONNUMERIC.OPERAND,
TERMINATION. CODE)

in place of lines 17 through 22, and

VALIDATE (VALIDATE.DECIMAL, NONNUMERIC.ACC,
TERMINATION CODE)

in place of lines 26 through 31.

In the next chapter we will examine the details of these utilities.
Undoubtedly there is some tradeoff between compactness of code
(related to choice of utilities) and efficiency as measured in execution
time. For example, the utility EFFECTIVE. ADDRESS must itself call on
VALIDATE.DECIMAL and then on ADD, or else accomplish the equiva-
lent operations in a more specialized manner. Recall that to compute an
effective address, one forms the sum of the contents of the instruction’s
address field and the contents of the indicated index register. It is not
necessary to check that the index register has a valid decimal number
(because that value will have been previously validated), but it is
necessary to decimal-validate the address field.

Notice also that the arguments of ADD are pointers to the actual
operands in G-store and not to registers of the H-processor. These same
arguments, however, had to be brought to the processor by VALI-
DATE .DECIMAL. They could have been left there, say in the scratch-
pads, but the code in Figure 5.14 implies that ADD doesn’t know this.

In short, the coding plan suggested in Figure 5.14 is attractively
compact, but its efficiency is apt to be relatively poor. It may be
possible to establish more effective (but more implicit) communication
among the utility routines to increase efficiency, though this may lead to
code that is harder to understand or modify. These issues will be
considered in the next chapter. The point to be made here is that if we
decide efficiency is not important, then we can now proceed to code all
the other operator routines (e.g., STO. ., LDA. ., SUB. .), postponing
until later the coding of the utility routines. However, if we suspect we
will want to redesign the utilities and their interfaces, then we had better
look into this matter before continuing to code the operator routines.
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This is because redesign of the utility interfaces will directly affect the
coding of almost every operator routine.
A few more remarks are in order before concluding this chapter.

1. The overall design of our interpreter and a shell surrounding it is
now substantially complete. True, we have not yet flowcharted
the individual operator routines (except for ADD), but this task is a
relatively simple one though tedious.

2. We have not yet developed the details of the routines used by the
operator routines, nor the utility routines needed by the shell
(e.g., dumps and other displays). Details for the operator-routine
utilities depend heavily on the representation of SAMOS registers
and storage and on the degree of mutual interaction we wish these
utilities to have for the sake of efficiency.

3. Although at the outset we said we would opt for the 8-bit
EBCDIC representation of SAMOS characters in preference to
other forms, such as the originally specified 6-bit BCD characters,
very little of our design so far has really depended on this choice.
We can still go either way without much undoing. This flexibility
is now at an end. To detail the operator-routine utilities we must
now bind this choice into our design.

4. Thus far we have been tacitly assuming that MIL coding should
be accomplished only as a direct mapping from a higher-level
language, such as our flowchart language. Moreover we have been
careful to assure that each of our suggested flowcharts is well
structured (in the Dijkstra sense). Since a primary justification for
coding programs at as low a level as MIL is to take advantage of a
particular microprocessor’s architecture (that of the B1726), we
can expect that to gain maximum efficiency in speed and/or space
it will often be desirable to use MIL statement sequences that do
not exhibit the same clean structure as the flowcharts do. Depar-
ture from clean structure for the sake of efficiency may, for
example, occur in coding escapes from loops, or in treating
exception conditions.

Many programmers whose aim is to achieve optimal coding become
impatient with the apparent discrepencies between the flowchart struc-
ture and that of their optimal code. They tend to abandon the flowchart
rather than update it to reflect at a higher level the compromises or
changes they make at the lower level. Instead, they rely on comments
inserted in the MIL code to provide adequate documentation. Indeed,
some programmers don’t even start at the flowchart level, but code
directly in MIL.
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These notes are not intended to be a style manual, but we are
attempting to stress the importance of first looking at what we are trying
to achieve at each stage before considering how to code the MIL
equivalent. Occasionally the way we express an objective at the higher
level will tend to restrict our imagination to suboptimal ways of
implementing higher-level ideas. This often occurs when we have
decomposed a process into too much detail (and consequently with the
wrong machine model in mind) before beginning the MIL-coding proc-
ess. We cannot always succeed in achieving the best balance. In the
next chapter we will show a number of coding examples, and in a few
cases show, for those interested in efficiency issues, how different ways
of implementing the intent of certain utility subroutines can significantly
influence the efficiency of the entire interpreter.



Chapter 6 |
MIL coding for data manipulation

Most of the MIL coding seen so far has been related to the control
structure and decoding logic of an interpreter. We are now ready to
become familiar with the coding techniques associated with data manip-
ulation needed, for example, in utility routines such as those suggested
in Table 5.2.

Several of the utility routines involve addition, subtraction, and
multiplication for address computation and for conversion of decimal to
binary values. Moreover, a basic decimal addition routine is needed to
implement the SAMOS operators ADD, SUB, MPY, and DIV. Successful
design of these utility routines will therefore depend on gaining a more
complete understanding of the B1726 24-bit function box for addition
and subtraction, and especially of the base-10 (decimal) feature. Section
6.1 explains the structure of the addition and subtraction mechanisms,
and each subsequent section then develops the design of one of the
needed utilities.

6.1 ARITHMETIC OF THE 24-BIT FUNCTION BOX

Recall that addition and subtraction are achieved under control of the
CP register, as suggested in Figure 6.1. The inputs to the function box
are X, Y, and CYF, where CYF is the one-bit carry-in register. The
arithmetic outputs are SUM, DIFF, CYL, and CYD. The last two one-bit
“‘registers’’ are explained later.

The results, SUM and DIFF, are governed by CPU and CPL. When CPU
= 01,, values in X and Y are regarded as unsigned decimal integers up to
6 digits in length, where each digit is in 4-bit binary code. We shall refer
to such coding as ‘‘packed decimal’’. Therefore, when CPU = 01,, the
results in SUM and DIFF are the packed decimal sum and difference of
the packed decimal inputs X and Y augmented by CYF.

When a one-bit carry-out results for SUM, that value goes to CYL.
Likewise, a one-bit borrow into DIFF sets CYD. [For other values of
CPU, namely when CPU = 10, or 11,, the values of SUM, DIFF, CYD,
CYL are undefined; when CPU = 00,, addition and subtraction are
binary, but carries out and borrows in are registered in CYL and CYD in a
similar fashion.]

104
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CYF CPU CPL

CYL

x| b ,
24-bit

function box
v | N \ X = (Y + CYF) DIFF
CYD

Figure 6.1. Control flow (——--») and data flow (—>) in the function box
for addition and subtraction.

X+ Y+ CYF SUM

ﬁ%

The value in CPL controls the length of SUM and DIFF. Thus the
carry-out bit for a sum value that would exceed CPL bits is registered in
CYL. We therefore say that the values in SUM, DIFF, and CYL are
conditioned by CPL. For some (unknown) reason, the B1726 designers
did not also condition CYD by CPL. Hence CYD is set to 1 only when a
borrow into the 24th bit of DIFF has occurred.

Examples. Suppose CP = 00110000, (i.e., CYF = 0,, CPU = 01,, CPL
= 10000,), which specifies no carry in, 4-bit decimal mode, and results
16 bits (4 decimal digits) wide. Let X = @123456@, Y = @654321@ (i.e.,
decimal numbers 123456 and 654321). The results in SUM and DIFF are
SUM = @007777@, DIFF = @009135@ (decimal quantities 7777 and
9135); CYL = 0, and CYD = 1,.

Now suppose that CP = 00110100, (i.e., CYF = 0,, CPU = 01,, CPL =
10100,), which specifies no carry in, 4-bit decimal mode, and 20-bit (5
decimal digits) width. The same quantities in X and Y will produce SUM
= @077777@, DIFF = @069135@, CYL = 0,, and CYD = 1,.

Here are two points to remember when CPU = 01,;

1. The 4-bit quantities corresponding to hex digits A, B, C, D, E,
and F cannot be evaluated by the 24-bit function box.

2. The only valid width settings (valud values of CPL) are 0, 4, 8, 12,
16, 20, and 24; other settings of CPL yield undefined results.

When the arithmetic fields to be added or subtracted exceed 24 bits in
width, two or more separate loadings of X and Y must be made. The SUM
and DIFF values for each loading of X and Y (and CYF) must be moved
to some other registers (and if necessary to G-store) before reloading X
and Y to obtain the higher-order portions of the results. Of course, the
carry-out or borrow-in indicator must be recycled into CYF for the next
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respective cycle of addition or subtraction. Recycling is accomplished

by executing the MIL statements CARRY SUM and CARRY DIFFERENCE.
The MIL statement

l

CARRY SUM means CYF <« CYL

!

and the MIL statement

|

CARRY DIFFERENCE means CYF « CYD

T

Understanding how the function box works for decimal arithmetic
now allows us to decide between two alternative strategies for imple-
menting SAMOS arithmetic with 10-decimal operands A and B. The first
strategy might have us perform addition by extracting the digits from the
decimal characters A and B and adding pairwise right to left in G-store,
until all ten digit pairs are summed or differenced, with suitably recycled
carries. Of course it is essential, prior to addition or subtraction, to
check that the characters of A and B represent valid decimal digits.

The alternative strategy might have us input from G-store all ten
characters of each SAMOS operand, check each character for valid
decimal, pack the characters into 4-bit decimal form, and then add (or
subtract) the two 10-digit operands in no more than two successive
loadings of X and Y—say 4 digits in the first load, and the remaining 6
digits in the second load. Further examination of this issue in the next
section leads us to select this second strategy as the more efficient one.

6.2 VALIDATE.DECIMAL: CASE STUDY FOR A UTILITY ROUTINE

Figure 6.2 shows a top-level view of the details for VALI-
DATE.DECIMAL. The parameter PTR is a pointer to the sign position of
an ll-character SAMOS word held in G-store. The procedure sets the
variable Flag to "Nogood" when the sign character is not a valid one
(“‘“+“ or ““=‘*) or when one of the subsequent characters is not a
decimal digit.

Since VALIDATE.DECIMAL is usually called prior to using its vali-
dated result as an arithmetic operand, we will reconsider later the



VALIDATE.DECIMAL
(PTR)

Flag « "OK"

|

Use PTR to get first byte
of SAMOS word

|

; " No
CIS it **+ or **—=""7?

Yes
i 2

i=11 \F

Flag <« "Nogood"

and
Flag = "DK"J

LT

Use PTR to get the next
byte of SAMOS Word

RETURN

( Is it a decimal ~ \ No

digit from 0 to 9? /
Yes

|i(—i+ll

l

Flag < "Nogood"

Figure 6.2. First overview of VALIDATE.DECIMAL.
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Flag <« "OK"

y

Get first
2 bytes of
SAMOS word from
G-store

k

Is the first byte a *“+"’
ora ‘=" and is the
second byte a decimal
digit?

Yes
4

[=5]

i =1l \F

No

10

Flag < "Nogood"

and
Flag = "CIK"/

T 6

Get next 3
bytes of SAMOS
word from G-store

1 7

Is each of these

bytes a decimal
digit?

|

Flag <« "Nogood"

Figure 6.3. Second overview of VALIDATE . DECIMAL.
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possibility of extending the objectives of this procedure so it not only
validates a SAMOS word (fetched from G-store) as numeric, but also
constructs and caches a 4-bit packed decimal representation of the
SAMOS word in a more accessible scratchpad, such as S5

S5A S5B

S I 2 34 56 7 8 910

NN [ [ [ ] LT T T T T7]
y .

Ten 4-bit decimal digits
Sign bit

For the moment, however, we shall concentrate only on the functions
implied by Figure 6.2.

If we bear in mind that READs from G-store take up to six times as
long as most other microinstructions in the B1726, it seems worthwhile
to minimize the number of READs. Since the maximum number of bytes
per READ is 3, and since 11 bytes must be transferred, no fewer than 4
READs are needed. One way to transfer 11 bytes in 4 READs is to use
chunks of 2, 3, 3, and 3 bytes. This is the plan used in Figure 6.3.

The structure shown in Figure 6.4 is even more B1726-specific. The
parameter PTR is now represented as the register FA. The scanning
control is achieved by letting the register FL serve as the counter. FL is
decremented by 24 after each fetch of 3 bytes.

Assuming we are happy with the control structure exhibited in Figure
6.4, we can now consider ideas for implementing the details, especially
those of boxes 3 and 7:

1. Let us assume that bytes from G-store are transferred to the T-

register.

2. The sign byte can then be moved to the X-register and compared
for equality against the literals ‘“+’’ and ‘="’ moved to Y.

3. The remaining bytes may be tested as follows: We observe that
the EBCDIC decimal characters ““0’°, <1, “2*°, ..., “9”’ are

represented as the ordered (and dense) set of 8-bit binary integers,

@(1)11110000@, @(1)11110001@, @(1)11110010@,

.., @(1)11111001@, or, if you like, @F0O@, @Fl1@, . . .,

@F9@. Hence, any 8-bit integer less than @FO@ or greater than

@F9@ is not a valid decimal character. Therefore, the byte to be

tested can be placed in X and compared with bounds values ‘0"’
and ‘9"’ placed successively in Y.

4. The Flag variable takes only two values, so any available 1-bit



VALIDATE.DECIMAL
(FA)
Py A———

Note: FA initially
points to the first
byte of the SAMOS word.

- Flag <« "OK"

Y

Read 2 bytes from
G-store; inc FA

L 4

Is the first byte 10
‘a 4 ora‘“—""and No Flag « "NOgOOd"
is the second byte
a decimal digit?

Yes
| 4
FL < 72 Bit length
of 9 bytes
I
FL # 0 F
and L
Flag = "UKj »
RETURN
T
6

Read 3 bytes .
from G-store;
inc FA and dec FL

| 7

Is each byte a No
decimal digit? 9

Yes I Flag <« "Nogood" ]

Figure 6.4. Third overview of VALIDATE . DECIMAL.
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L

Flag < "Nogood"

2

Read 2 bytes from
G-store; inc FA

| 3

Is the first byte a g \
ora ‘=", and is the No

second byte a decimal
digit?

Yes
4

FL « 72

8

»| FL # 0 Flag < "OK" —+)

T

Read 3 bytes
from G-store;
inc FA and
dec FL

Y.

Is each byte a \ No

decimal digit? J

Yes

Figure 6.5. Fourth overview of VALIDATE. DECIMAL.
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subregister, e.g. CB(0), can serve as the flag (1 for "OK" and 0 for
"Nogood".)

One final observation is in order in anticipation of mapping a control
structure like Figure 6.4 into MIL code. A number of low-level tests
must be made on the characters of the SAMOS word. (Boxes 3 and 7
each decompose into several low-level tests.) We want to avoid coding
the resetting of Flag to "Nogood" each time one of these tests fails.
More compact code will be obtained if Flag is initially set to
"Nogood". In this way Flag need only be reset once (to "OK'") when
and if the success exit is reached. The control structure in Figure 6.5
reflects this observation and is the one we will use for conversion to the
MIL code we now show in Figure 6.6. Note that the flowchart in Figure
6.5 no longer exhibits the good structure we would like were efficiency
not an important consideration.

Taking stock, we have now developed a method for validating a
decimal SAMOS word so it can then be used as an operand in a SAMOS
ADD, SUB, MPY, or DIV instruction. Unfortunately, the method does not
also save a copy of the validated word where it would be highly
accessible for the subsequent arithmetic operation.

What changes are needed so VALIDATE.DECIMAL caches in the
processor registers a packed decimal representation of the validated
word? A possible form for the packed decimal representation (sign and
ten 4-bit decimal digits), reflecting the SAMOS signed-magnitude repre-
sentation in G-store, is suggested in Figure 6.7, using a double scratch-
pad, in this case S5, as the cache.

Clearly, boxes 3, 6, and 7 of Figure 6.5 will require modification to
include steps for saving the sign and decimal digits in the cache. But
how will we decide whether to leave the result in T CAT L or in a
scratchpad, and if the latter, which one? One approach would be to pick
the same cache each time, e.g., S5. Or, we could ‘‘gild the lily’’ by
specifying one more parameter, a 4-bit integer, and let the matching
arguments serve as an index for a wanted scratchpad. If we choose the
second approach, then each reference to the scratchpad will have to be
modified by ORing into M the integer argument. A 4-bit register like CA or
CB may be used to transmit the argument. Let us take the ‘‘easier’’, first
approach. Later we can consider the more general alternate approach.

One possible strategy for the revised box-3 details is shown in Figure
6.8. First we clear L, and then, if the signis ‘““—"", we set L(0) to 1 (box
3.5). Later, when we determine that the second byte of the SAMOS
word is a valid decimal character, we copy TF, which holds the decimal
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VALIDATE.DECIMAL % VALIDATES A SAMOS WORD POINTED TO

% BY THE CONTENTS OF FA AS A DECIMAL

% INTEGER. IF NOT,CB(0) IS SET TO 1, ELSE
% IT IS SET TO O. THIS ROUTINE USES FL,

% X, Y, AND T. CPL ASSUMED TO BE = 8.
BEGIN

LOCAL.DEFINES

DEFINE FLAG = CB(0) #

SET FLAG % SET FLAG TO NOGOOD

READ 16 BITS TO T INC FA % OBTAIN SIGN AND FIRST DIGIT
EXTRACT 8 BITS FROM T(8) TO X % SIGN BYTE TO X

MOVE "+" TO Y

IF X NEQ Y THEN

BEGIN % TRY "-"
MOVE "-" TO Y
IF X NEQ Y THEN EXIT % EXIT WITH FLAG SET TO "NOGOOD"
MOVE @(1)1000@ TO LA
END
BYTE.TEST (16) 9 TEST SECOND BYTE
MOVE 72 TO FL 4 SET LOOP COUNTER

.LOOP IF FL EQL O GO TO +O0K.EXIT
READ 24 BITS TO T INC FA AND DEC FL
% GET NEXT 3 BYTES

BYTE.TEST (0) % TEST FIRST BYTE OF GROUP
BYTE.TEST (8) % TEST SECOND BYTE OF GROUP
BYTE.TEST (16) % TEST THIRD BYTE OF GROUP
GO TO -LOOP

.OK.EXIT
RESET FLAG % SET FLAG TO OK
EXIT
END

Figure 6.6. MIL code for the Figure 6.5 flowchart. Note the use of a
locally defined MACRO called BYTE. TEST which tests a byte found in the T-
register and EXITs if the byte is not a decimal character.

T or S5A L or S5B
S 1 2 3 4 5 6 7.8 9 10
NNl C T 1T 10 [ 1

< 24
Figure 6.7

v

A
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v L
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Is the first byte a **+"" or a
**="" and is the second byte a
decimal digit?

It

1Yes

w

Move 2nd byte of T
to X

Is 3rd byte
of T a decimal
digit?

Figure 6.8. Shaded boxes show the changes to the details of box 3
necessary for caching a 4-bit decimal representation of a validated
decimal SAMOS word into a scratchpad word.

code, into LC. At this point L contains the first 2 codes (sign and one
digit) of the 11 required.

C D E F
Lo TloToT0o]
S 1 2 3 4

The shaded portions are now properly filled. Positions LD, LE, and LF in
L will be filled with appropriate decimal code after the next 3 bytes of
the SAMOS word are brought to T, and the remainder of L will be
ignored.
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In Figure 6.9 we see the details for extracting and caching digits for
positions 2 through 10 of the SAMOS word in S5.

Exercise. Based on the flowchart details given in Figures 6.5, 6.8, and
6.9, recode the VALIDATE.DECIMAL routine in MIL so it saves a
packed decimal representation of the validated SAMOS word in scratch-
pad S5.

We may wish to generalize these changes so the packed decimal
representation is saved in a specified scratchpad rather than always in
S5. It is very easy to do this, because, as we can see from Figure 6.9,
only two flowchart steps refer to the scratchpads. These are boxes 7.5

and 7.7.
l 7.5

S5A « L > MOVE L TO S5A

| 77
S5B « L —— > MOVE L T0 S5B

Only these two steps require modification.

We suppose that register CA holds the integer argument (0 through 15)
specifying the scratchpad. Then Figure 6.10 shows the needed changes
to the two instructions.

If speed is of paramount importance, additional improvements can be
made to reduce execution time of VALIDATE . DECIMAL.

1. We might remove the loop by straight-line coding, thus eliminat-
ing the loop-control steps, but at the cost of inserting more lines of
code in the routine. For example, the two control steps in Figure
6.6,

.LOOP IF FL EQL O GO TO +0K.EXIT
and
GO TO -LOOP

are executed on each of the three loop transits. Hence, the time to
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l 7.2
LD « TB
Is each byte LE « TD
in this group a LF « TF
decimal digit?

7.1 LA « TB
First or third No LB < TD
group? LC « TF
Yes / /ﬂ l
7.2 7.3
Move group from Move group from
T to lower half T to upper half
of L of L

Key to moving groups of digits from
LtoT:

B ¢C D E F

First or third
group:

Second group: A B C D E F

L

Figure 6.9. How box 7 might be augmented to cache additional decimal
digits in L. and then save them in S5A or S5B.

BEFORE AFTER

MOVE L TO S5A MOVE CA TO M % OR THE INDEX INTO M
MOVE L. TO SOA % TO COMPUTE THE

% DESIGNATED PAD A
MOVE CA TO M

MOVE L TO S5B MOVE L TO SOB % OR THE INDEX INTO M
% TO COMPUTE THE
9 DESIGNATED PAD B

Figure 6.10. Code for generalizing the cache.
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execute six microinstructions can be saved with straight-line
coding. But notice how many more lines of code will be needed if
no other improvements are made. The loop body (Figure 6.6)
contains one READ instruction and three macro calls, each of
which expands to five microinstructions. So straight-line coding
would result in 16X 3 or 48 lines of code, a net increase of 28 lines.
If the increase were smaller, straight-line coding would be more
attractive.

2. We might take advantage of more special knowledge on how the
B1700 function box works. Only a B1700 specialist would nor-
mally know that the decimal adder of the 24-bit function box is
built so it is guaranteed to malfunction if nondecimal digits are
given as inputs in X or Y. Thus, if Y = 0 and if X contains at least
one invalid decimal digit, the decimal adder is guaranteed to form
a value in SUM that is not equal to X. For example, with CPU =
01,

0 + 0 + garbage # garbage

L1

Carry Value Value Value
in inY in X in SUM

when garbage contains at least one invalid decimal digit.

We can exploit this special feature of the B1700 by testing up to 6 of
the SAMOS digits at one time, but to do this will require a major
restructuring of the algorithm. Here is one idea for the new structure:

The sign byte is tested first, as before, but the next 10 characters are
not fully tested before packing into L. We will only test the high-order 4
bits of each decimal character before packing the lower half into L.
After the packing is completed, each 24-bit portion of the packed
representation is then used as an addend for the X-register in the test to
determine if X = X + O.

In particular, let us once again suppose that S5 contains the packed
decimal representation of the SAMOS word now possibly invalid. Then
only two tests are needed to validate all 10 decimal digits, as shown in
the logic of Figure 6.11. Notice that for the sake of this test, the sign bit
at the left end of S5A will be treated as part of a valid 4-bit decimal digit
(either_0000 or_1000).

Since the expensive part of checking the decimal digits can be delayed
until after packing, the new lines of code needed for straight-line coding
of the loop body (boxes 6 and 7 of Figure 6.5) can now be significantly
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l

Set CP for
24-bit width,
decimal add, and
no carry in

[
[

MOVE @(1)00411000@ TO CP
[
Il

X < S5A MOVE S5A TO X
' CLEAR Y
MOVE SUM TO Y

IF X NEQ Y THEN EXIT
F
X=X+Y @ MOVE S5B TO X
CLEAR Y

MOVE SUM TO Y
IF X NEQ Y THEN EXIT

Figure 6.11. Logic for checking validity of 10 decimal digits in only 8
microinstructions.

reduced. Figure 6.12 shows the new strategy combining the best ideas in
Figures 6.4, 6.8, 6.9, and 6.11. The MIL code for Figure 6.12 is shown in
Figure 6.13.

Now we can see the savings effected by the combination of straight-
line coding for the loop and use of our special knowledge of the B1700
circuitry for checking up to six decimal digits at one time. The Figure
6.13 code requires execution of 44 microinstructions for validating and
packing a valid SAMOS number, as compared with 70 microinstructions
for the Figure 6.6 code, where validity checking but no packing was
achieved. There are only 11 more lines of code in Figure 6.13 then in
Figure 6.6

Exercise

1. Can you see a way to ‘‘shave off’’ any more instructions from the
code in Figure 6.13? Explain.

2. Revise the flowchart in Figure 6.12 and the MIL code in Figure 6.13
so VALIDATE .DECIMAL leaves its packed decimal result in T CAT L
instead of S5. Choose a method that minimizes or eliminates the use of
scratchpad registers as temporary storage.



VALIDATE.DECIMAL

1
Clear L

2
Flag < "Nogood"

Read 2 bytes to T from
G-store; inc FA

First byte
isa‘+"

Check and pack second
byte into LC

1 8
Check and pack next
3 bytes into LD, LE,
and LF, and move L

to S5A
| 9

Check and pack next
6 bytes into L, and

move L to S5B

Flag « "OK"

8.1

H Read 3 bytes to T; inc F‘AJJ

l 8.4 | 9.1
SBA « L Read 3 bytes to T;
inc FA

L oo

Set CP for
24-bit width,
decimal add,
no carry

Figure 6.12. Fifth view of VALIDATE . DECIMAL.
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VALIDATE.DECIMAL % VALIDATE A SAMOS WORD POINTED TO BY THE

% CONTENTS OF FA AS A DECIMAL INTEGER AND
% PACKS A 4-BIT DECIMAL REPRESENTATION IN S5.
% IF NOT VALID, CB(0) IS SET TO 1, ELSE IT IS SET
9 TO 0. THIS ROUTINE USES X, Y, T, L, AND CP.

BEGIN

LOCAL . DEFINES

DEFINE FLAG = CB(0) #

MACRO CHECK.F(TK) =

IF TK NEQ @F@ THEN EXIT #

CLEAR L
SET FLAG % FLAG = NOGOOD
READ 16 BITS TO T INC FA % GET FIRST 2 BYTES 1IN TC THRU TF

EXTRACT 8 BITS FROM T(8) TO X 9 SIGN BYTE TO X
MOVE "+" TO Y
IF X NEQ Y THEN
BEGIN % TRY "-"
MOVE "-" TO Y
IF X NEQ Y THEN EXIT
MOVE @(1)1000@ TO LA
END -
CHECK.F(TE)
MOVE TF TO LC % BOX 7
READ 24 BITS TO T INC FA 9 BOX 8
CHECK.F(TA) 9 CHECK AND PACK INTO L
CHECK.F(TC)
CHECK.F(TE)
MOVE TB TO LD
MOVE TD TO LE
MOVE TF TO LF
MOVE L TO S54
READ 24 BITS TO T INC FA 9 BOX 9
CHECK.F(TA)
CHECK.F(TC) % CHECK AND PACK INTO L
CHECK.F(TE)
MOVE TB TO LA
MOVE TB TO LB
MOVE TF TO LC
READ 24 BITS TO T % CHECK AND PACK INTO L
CHECK.F(TA)
CHECK.F(TC)
CHECK.F(TE)
MOVE TB TO LD
MOVE TD TO LE
MOVE TF TO LF
MOVE L TO S5B

MOVE @(1)00111000@ TO CP % BOX 10
MOVE S5A TO X
CLEAR Y % BOX 10.3

MOVE SUM TO Y

IF X NEQ Y THEN EXIT

MOVE S5B TO X

CLEAR Y % BOX 10.5

MOVE SUM TO Y

IF X NEQ Y THEN EXIT

RESET FLAG % BOX 11 SET FLAG TO OK
EXIT

END

Figure 6.13. MIL code for Figure 6.12 flowchart.
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This concludes our discussion of VALIDATE.DECIMAL as a case
study of how one might descend through levels of abstraction from high-
level, machine-independent constructs to very low-level, B1726-depend-
ent constructs through a succession of binding decisions. We will now
examine much more briefly the code for the other important utility
routines.

6.3 BINARY.TO.FA

The BINARY.TO.FA utility routine is used to convert the binary
integer SAMOS address into an absolute address in G-store for the
desired SAMOS word. The input parameter S ranges from small
negative values (indicating SAMOS registers and pseudo registers as
explained in Section 5.4) to positive values, 0 through SIZE (indicating
ordinary SAMOS storage words). The procedure must produce and
leave in FA the value of map (S), defined in Section 5.4, as

map(S) = S X 88 + (SAMOS.STORE + BR)

The function box of the B1726 cannot perform multiplication directly;
it can only add or subtract positive integers. But the argument S may be
negative. How will S be represented? We have three choices.

1. Signed magnitude, e.g.,

Sign

i

23-bit integer
24-bit signed integer —3{

2. Twos complement (24 bits)
3. Ones complement (24 bits)

The flowchart logic in Figure 6.14 assumes signed-magnitude repre-
sentation for S. MIL actually caters to the programmer who favors 2s-
complement representation in the sense that negative literals are always
mapped to 2s-complement representation. For example, the MIL state-
ment MOVE -5 TO X is equivalent to

MOVE @FFFFFB@ TO X @ 2'S COMPLEMENT OF -5
@ IN 24-BIT BINARY TO X

One can, of course always specify a signed-magnitude representation by



ccl

BINARY.TO.FA

(S) Legend
IDENTIFIER TREATMENT DESCRIPTION
S Input parameter T-register
FA Output parameter Register
X, Y Local Registers
] ] 1 NEWS Local L-register
Save sign bit of S TEMP Local X-register
in Neg.sign, BR Global Register
and reset sign bit of S SAMOS . STORE Constant Global declaration
if negative
2
Set CP for 24-bit
binary arithmetic 1
3’

L NEWS < [S| X8 + IS| x16 + [S| x64 [

| NEWS;ISI x88 ]ﬁ l&
|

4
Y
l TEMP « SAMOS.STORE + BR I X « [S|x8
Y « [S|x16
5
C.L‘—\ F
Neg.sign = 1} XeX+Y
T
Y « [S|x64
6 7 <&l
FA « TEMP - NEWS FA « TEMP + NEWS NEWS « X + Y

; ’ -

Figure 6.14. Logic for the BINARY.TO.FA routine.
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giving the coding for the literal explicitly—for example,

MOVE @800005@ TO X % SIGNED MAGNITUDE REPRESENTATION
% OF -5 TO X

See Section 6.7 for further discussion of complement arithmetic on the
B1726. ’

To obtain the product Sx88 we would then first strip off the sign bit
from S and get |S |x88. The box-3 details of Figure 6.14 suggest a way to
perform this multiplication by summing products of |S and powers of 2.
Once the product |S|x88 is formed, it is either added to or subtracted
from the sum SAMOS.STORE + BR, depending on the saved sign of S.
The legend of the flowchart indicates the B1726 registers that may
(should) be used for local storage in the MIL implementation.

The MIL code shown in Figure 6.15 is straightforward. But those
interested in efficiency should note the following points.

1. Had it first occurred to us to express flowchart box 1 of Figure

6.14 as
| ]

Save sign bit of S
in Neg.sign and
replace S by [S|

l

the following more efficient and more compact code might have
occurred to us for box 1 (This code assumes that CB(1), CB(2)
and CB(3) can be destroyed.)

MOVE TA TO CB % SAVE SIGN OF S IN NEG.SIGN
RESET T(0) % REPLACE S BY |S|

2. In any case, the instruction to reset the sign bit, T(0), is really
not needed. We can take advantage of the fact that S is an even
number (88 in this case). Hence the powers of two multipliers, 2",
that sum to S are such that n = 1. Multiplication of S by these
powers of 2 is accomplished by left shift of the T-register (at least
one bit to the left). Only left-shifted copies of T are moved to X or
to Y. The sign bit is lost in the process. (Remember, too, that a
left shift of T to some other register leaves T unchanged.)
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BINARY.TO.FA % INPUT VALUE, S, IS IN T REGISTER
% OUTPUT RESULT IS IN FA
% X, Y, CB(0O), AND L ARE USED AS LOCAL STORAGE
BEGIN
LOCAL.DEFINES

DEFINE NEG.SIGN = CB(0) #
DEFINE NEWS =L #
%BOX1
IF T(0) THEN % SAVE SIGN OF S
BEGIN % AND REPLACE S
SET NEG.SIGN % BY |s|
RESET T(0) % NECESSARY INSTRUCTION ¢
END ELSE
BEGIN
RESET NEG.SIGN
END
MOVE 24 TO CP % SETUP FOR ARITHMETIC

SHIFT T LEFT BY 3 BITS TO X % 8xS TO X (SIGN BIT SHIFTED OFF)
SHIFT T LEFT BY 4 BITS TO Y % 16XS TO Y

MOVE SUM TO X 7 24xS IN X
SHIFT T LEFT BY 6 BITS TO Y % 64XS TO Y
MOVE SUM TO NEWS % 88xS IN NEWS (L)

MOVE BR TO X
MOVE SAMOS.STORE(O) TO Y
MOVE SUM TO X % BR + SAMOS.STORE IN X
MOVE NEWS TO Y
%BOX5
IF NEG.SIGN THEN
BEGIN
MOVE DIFF TO FA
END ELSE
BEGIN
MOVE SUM TO FA
END
EXIT
END

Figure 6.15.

3. By analogy with point 1 above, the code for box 5 may be coded
much more compactly as

MOVE SUM TO FA
IF NEG.SIGN THEN MOVE DIFF TO FA

6.4 ADDRESS.TO.BINARY

The ADDRESS.TO.BINARY routine is used in computing effective
addresses in SAMOS. Figure 6.16 shows the logic defining this utility
routine, which converts a 4-character SAMOS address field, known in
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ADDRESS . TO . BINARY T T T—7 T T T
s|-,op, - [¢—INDEX—|Fid,|Fid, |Fid, |Fid,

F——24—>‘F—24—+—I 6
Next

Next Last
\

FA points
here at first

4

4-character
SAMOS address
field, where ds, d,, d,, and d,
are decimal digits

BINARY.TO.FA(S)

Adjust FA COUNT UP FA BY 24
by 6 bytes: COUNT UP FA BY 24
get d, READ 16 BITS TO L INC FA % FA NOW POINTS AT
and assign MOVE LF TO T % SEVENTH BYTE
T % D3 IS NOW IN T

Get next 3 bytes
containing ds, d,. |::> READ 24 BITS TO L
andd,inL

1 L

4 T « 10XT + d,
[ T  ((d3X 10 + dy)X 10 + d,)X 10 + d, T — 10XT + d,
T « I0XT + d,

!

1<

T MOVE 24 TO CP % SET UP FOR 24-BIT
7 8 TEN.T.PLUS.D(LB) %  BINARY ARITH.
[FLag « 1]  [FLAG < 0 TEN.T.PLUS.D(LD)
TEN.T.PLUS.D(LF)
where
MACRO TEN.T.PLUS.D(K) =
SHIFT T LEFT BY 1 BIT TO X
SHIFT T LEFT BY 3 BITS TO Y
MOVE SUM TO X
Legend for ADDRESS . TO . BINARY MOVE K TO Y
IDENTIFIER TREATMENT DESCRIPTION MOVE SUM TO T #
S Input par  In T-register (binary value of SAMOS
register holding address field)
T Result Binary value of decimal address field
Flag Result In Y-register (0 if invalid. | if valid)
L. X, etc. Local

Figure 6.16.

advance to represent a valid decimal address, to a binary integer. The
input parameter, S, is a (binary) address of the SAMOS storage word
that contains the address field. The legend of the flowchart suggests that
the input parameter and output result are assumed to be taken from and
deposited in the T-register.

The first step (box 1) converts S to an absolute pointer into G-store
via a call to BINARY.TO.FA. The resulting value is left in FA (see
Section 6.3). The second step (box 2) adjusts this pointer within
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“‘striking distance’’ of digit d3, fetches the next 2 bytes to L, and then
transfers d; to T.

. Address field
- 4 bytes
N T T T T
; F ld, | Fld, | Fld |F1d
L 1 A - . 1
f— 16 bits ——
Adjusted
pointer

Here F is the hexadecimal digit @F@, and d;, d,, d,, and d, are the
binary-coded decimal digits of the address. It is only necessary to
extract these digits and evaluate the polynomial

d;x10% + dyx10% + d,xX10* + dyx10°
or, in the more efficient factored form,

(dsx10 + d))X10 + d,)+ 10Xd,,

as suggested in the details shown in boxes 3, 4, and 5 of the flowchart.
The computation can be performed in binary arithmetic using only
registers T, L, X, and Y. Multiplication by 10 is accomplished by shifting
multiples of T out of T to X and to Y and adding them (2XT + 8XT).
Examination of box 4’ shows repeated use of the same multiply-add

step,

T « 10XT + di k=2,1,and 0.

!

This suggests the use of a macro for the purpose, named
TEN.T.PLUS.D, whose definition and use is also illustrated in Figure
6.16. The final steps of the routine (boxes 5, 6, 7, and 8) check that the
polynomial evaluation results in a valid SAMOS storage address, i.e., a
non-negative integer that is less than SIZE.

Figure 6.17 shows the complete MIL code for ADDRESS . TO.BINARY.
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ADDRESS. TO.BINARY ROUTINE BEGINS HERE

INPUT VALUE, S, IS IN T REGISTER

OUTPUT RESULTS: BINARY ADDRESS IN T
FLAG IN Y (0 IF INVALID
1 IF VALID)

USES X, Y, L, FA, S1A AS LOCAL STORAGE

3939393939539

BEGIN

LOCAL.DEFINES

MACRO TEN.T.PLUS.D (LX) =
SHIFT T LEFT BY 1 BIT TO X
SHIFT T LEFT BY 3 BITS TO Y

MOVE SUM TO X % Tx10 IN X
MOVE LX TO Y
MOVE SUM TO T # % TX10 + D IN T
% BOX1
CALL BINARY.TO.FA % WITH VALUE IN T AS ARGUMENT
% BOX2
COUNT FA UP BY 24 % COUNT FA UP BY
COUNT FA UP BY 24 % 6 BYTES
READ 16 BITS TO L INC FA % D3 NOW IN LF
MOVE LF TO T
% BOX3
READ 24 BITS TO L % D2 IN LB, D1 IN LD, AND DO IN LF
% BOX4
MOVE 24 TO CP
TEN.T.PLUS.D (LB) % 10XT + D2 GOES TO T (SEE MACRO DEF.)
TEN.T.PLUS.D (LD) % 10XT + D1 GOES TO T (SEE MACRO DEF.)
TEN.T.PLUS.D (LF) % 10XT + DO GOES TO T (SEE MACRO DEF.)
% BOX5
MOVE T TO X
% BOX6
MOVE SIZE TO Y % SIZE IS A GLOBAL CONSTANT
IF X LSS Y THEN
BEGIN
MOVE 1 TO Y % VALID SAMOS ADDRESS
END ELSE
MOVE O TO Y % INVALID SAMOS ADDRESS
END

EXIT % END OF ADDRESS.TO.BINARY ROUTINE
END

Figure 6.17. MIL code for the ADDRESS.TO.BINARY routine flowcharted
in Figure 6.16.

The next section describes the use of this routine in computing an
effective address.

6.5 EFFECTIVE.ADDRESS

This section describes the rather powerful utility routine needed for
computing an effective address. Figure 6.18 gives the top-level logic.



EFFECTIVE.ADDR

(FA)
Legend for EFFECTIVE. ADDR
| IDENTIFIER TREATMENT DESCRIPTION
Get 3-byte FA Input parameter  Points to index field of SAMOS
index field instruction
inT EA Result Scratchpad register
FLAG Result FLF register
0=0K
| = too many index registers
Ty specified
th'ec: fo; \;?ihg“y 2 = address field not decimal
ol ",1 ex Tie y 4 = effective address too big
setting CTR and . CTR Local FLE register
INDICATOR. (CTR is INDICATOR Local soB "
count of registers TEMP Local SiB "
specified. INDICATOR T, L, X, Y, CP Locals Registers as needed
is pseudo address of
specified register.)

Put binary
value of indicated
index register in
TEMP

Get 4-byte address
field, check for
decimal value, and
pack into L

K

™\ No

Valid decimal?
Yes

address in L to
binary value in T

Convert packed decimal

10

X « T + TEMP

h

X < SIZE

TI2

RETURN

[FLAG « o] [FLAG « 4]

Save X in a scratchpad
register EA

Figure 6.18.
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l 2

Check for validity

of index field by
setting CTR and
INDICATOR

2.3
CTR < CTR + 1
INDICATOR < IX1.ADDR
( vaiid P |
24
(INDEX@L_
F 2.5
CTR < CTR + 1
INDICATOR < IX2.ADDR
S |
2.6
(INDEX@L
F 2.7
CTR « CIR + 1
INDICATOR « IX3.ADDR

MIL code:

%BOX 2, 3, AND 4
RESET CTR
MOVE "O" TO Y

EXTRACT 8 BITS FROM T(0) TO X % MOVE INDEX1 TO X
IF X # Y THEN
BEGIN
INC CTR BY 1
MOVE IX1.ADDR TO INDICATOR
END
EXTRACT 8 BITS FROM T(8) TO X % MOVE INDEX2 TO X
BEGIN
INC CTR BY 1
MOVE IX2.ADDR TO INDICATOR
END
EXTRACT 8 BITS FROM T(16) TO X % MOVE INDEX3 TO X
IF X # Y THEN
BEGIN
INC CTR BY 1
MOVE IX3.ADDR TO INDICATOR
END
IF CTR(2) THEN % IS CTR = 2
BEGIN
SET FLAG TO 1
END

Figure 6.19.
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The input parameter, assumed to be left in FA, is an absolute G-store
address pointer to the index field (Sth byte) of the SAMOS instruction
being interpreted.

The first steps (boxes 1, 2, and 3) fetch the index field and determine if
no more than one index register is marked. If more than one is, a flag is
set for an error return (box 4). Figure 6.19 shows one possible imple-
mentation for this validity check. If the index field is valid and indicates
an index register, then the value of that index register must be fetched
from the register in G-store. Recall that index registers are represented
as l1-character SAMOS storage words with negative addresses. It is
further assumed that an index register is found in the address-field
position of the storage word, i.e., in the rightmost four character
positions.

5.1

Put binary value

T
of index register, > 5.2

if any, in TEMP [ T« 1npICATOR |

! |

u ADDRESS . TO .BINARY(T) ”

MIL code:
% BOX5 DETAIL
IF CTR(3) THEN
BEGIN
MOVE INDICATOR TO T
CALL ADDRESS.TO.BINARY
MOVE T TO TEMP
END ELSE
BEGIN
MOVE NULL TO TEMP % MOVE O TO TEMP
END

Figure 6.20. Details for box 5. Note that there is a special NULL register on
the B1726 which always contains zero and which is always available.
Alternatively we could have coded box 5.5 as MOVE 0 TO TEMP. Those
interested in efficiency should observe, however, that if a literal is moved
to a scratchpad, as in this case (since TEMP is a scratchpad), two
instructions will be compiled by the MIL assembler, e.g., MOVE O TO TAS
and MOVE TAS TO TEMP.
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The negative address of the indicated index register is determined by
the logic of Figure 6.19 and left in a scratchpad called INDICATOR. This
value is then used as in the next step (box 5), whose detail is seen in
Figure 6.20. The indicator value, after being moved to T, becomes the
argument in a call on ADDRESS.TO.BINARY, which fetches the value
from the index register and converts the decimal value to a binary
integer. (See Section 6.4.)

We can now see why ADDRESS.TO.BINARY is coded assuming its
argument points to a valid decimal address. We can always ensure in our
interpreter that any value stored in the address field of an index register
storage word will consist of only valid decimal characters. If the value is
valid when it is stored, it will be valid when next retrieved so we need
no further check. In any case, the (index register) value returned by
ADDRESS . TO.BINARY is saved in a scratchpad named TEMP for use as
a summand when the address part of the same instruction is obtained
from G-store. That address part is obtained and ‘‘decimally validated”
in the logic of boxes 6 and 7, whose details are shown in Figure 6.21.
This logic is similar to that of the VALIDATE . DECIMAL routine, except
here we check only 4 bytes instead of 10. If invalid, the flag is set to an
appropriate value (box 8). If valid, the four decimal digits are extracted
and packed into L.

The next step (box 9) converts the packed decimal integer in L to a
binary value, leaving this value in T (see details of box 9 in Figure 6.22).
Here again, use may be made of the macro named TEN.T.PLUS.D first
described in Figure 6.16.

The last step is to form the sum of the (binary) index-register value
saved in TEMP and the (binary) address value just left in T. The sum
must be a nonnegative integer less than SIZE (the size of our SAMOS
store). The flag must be set to an appropriate value (0 or 4) to indicate a
valid or out-of-bounds effective address.

Whether valid or out of bounds, the computed effective address is
deposited in a scratchpad register representing the EA pseudo register.
The MIL coding for these last steps, boxes 10 through 14, is shown in
Figure 6.23. Note that we have now discarded the idea of using the
pseudo register EA, as first suggested in the specifications for EFFEC-
TIVE.ADDR in Table 5.2. [The use of a pseudo register requiring
conversion to and reconversion from character representation now
seems wasteful.]

Exercises
1. Put all the pieces together that were suggested in Figures 6.18
through 6.23 to make one complete MIL subroutine. The following is a



|
3 6

Get 4-byte address

field, check for
decimal value, and >

pack into L

Read first
byte to T

Read next 3
bytes to T

6.6
TA = @F@
and
TC = @F@
and
TE = @F@

L contains

a packed decimal

integer

l 6.8.1

[Set CP for decimal add ]

Figure 6.21.
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X «L
Y« O
Y « SUM




MIL code:
CLEAR L AND Y
READ 8 BITS TO T INC FA

IF TE = @F@ FALSE THEN GO TO +SET.FLAG.EXIT

MOVE TF TO LC
READ 24 BITS TO T

IF TA = @F@ FALSE THEN GO TO +SET.FLAG.EXIT
IF TC = @F@ FALSE THEN GO TO +SET.FLAG.EXIT
IF TE = @F@ FALSE THEN GO TO +SET.FLAG.EXIT

MOVE TB TO LD
MOVE TD TO LE
MOVE TF TO LF
MOVE @(1)00111000@T0 CP %

—=> :

MOVE L TO X
% CLEAR Y ALREADY ACCOMPLISHED
MOVE SUM TD Y
IF X # Y THEN %
BEGIN %
%
.SET.FLAG.EXIT SET FLAG TO 2
EXIT
END

133

SET CP FOR PACKED DECIMAL
ADD (24 BITS)

TESTS L + 0 = L
IF SO, L MUST HAVE BEEN A
VALID PACKED DECIMAL INTEGER
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L |

Convert packed decimal Set CP for
address in L. to a :> 24-bit binary
binary value in T add

T « LC

T « 10XT + LD
< 10XT + LE
<« 10XT + LF

MIL code: y
MOVE 24 TO CP l

MOVE LC TO T

TEN.T.PLUS.D(LD) 9 MACRO CALL
TEN.T.PLUS.D(LE) 7 MACRO CALL
TEN.T.PLUS.D(LF) 9 MACRO CALL
Figure 6.22.
0 MOVE T TO X
¥ MOVE TEMP TOQ Y
X <« T + TEMP MOVE SUM TO X
MOVE SIZE TO Y
I . IF X < Y THEN
X < SIZE BEGIN
RESET FLAG
T END ELSE
) 12 ¢y 13 :::i:> BEGIN
SET FLAG TO 4
FLAG <« O FLAG < 4 END
) | MOVE X TO EA
A 14 EXIT

Save X in scratch-
pad register EA

Figure 6.23.
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possible beginning:

135

EFFECTIVE.ADDR ¢ ROUTINE BEGINS HERE
¢ INPUT IS POINTER IN FA TO INDEX
¢ FIELD ‘
% OUTPUT

%
%
%
7%
%

0 =

1
2 =
4 =

IS FLAG (FLF REGISTER)

OK

TOO MANY INDEXES SPECIFIED
NON DECIMAL ADDRESS FIELD
EFFECTIVE ADDRESS OUT OF
BOUNDS

% ROUTINE USESX, Y, T, L, CP, FL, SOB

%
BEGIN

LOCAL .DEFINES
DEFINE FLAG
DEFINE CTR

AND

DEFINE INDICATOR

DEFINE TEMP

% MACRO TEN.T.PLUS.D

S1B AS LOCALS

FLF #
FLE #
SOB #
S1B #

GOES HERE?

2. Recode the logic of Figure 6.19 as a loop of the form shown in
Figure 6.24. How many fewer instructions, if any, are required? Com-
ment on the relative merits of the loop approach versus straight-line

coding in this case.

3. An exercise for those interested in efficient MIL coding. The
straightforward way to code a two-way selection step is to start with the
flowchart structure shown in Figure 6.25. However, in the special case
when step | and step 2 are such that executing the sequence

|

Step 2

Step 1
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Set up
i« 3 F
i=0
i—i—1
T
Computation
Figure 6.24.

has precisely the same net effect as executing just

l

Step |

J

alone, the selection step can be restructed in the form shown in Figure
6.26. Note that this special, but less obvious 2-way selection structure
leads to slightly more efficient and compact MIL code. (One GO TO

which you
code in

—

the form

IF TEST THEN

BEGIN
step |
END ELSE
BEGIN
step 2

END

and which the MIL
assembler transforms

E to

IF TEST FALSE THEN GO TO +F
step |
GO TO +NEXT
step 2

.NEXT

Figure 6.25.
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Step 2 step 2
IF TEST THEN and the MIL

BEGIN assembler
which you step | .transforms
code in END it to
the form step 2

IF TEST FALSE THEN GO TO +NEXT
step |
.NEXT
Figure 6.26.

instruction is saved.) Apply this principle to shave off one instruction
from the code shown in Figure 6.20.

6.6 THE ADD ROUTINE

Recall that our principal objective in this chapter is to show the
development of the utility routines useful for interpretation of SAMOS
op-codes such as ADD. Back in Figure 5.11 we showed the (tentative)
first-level details of that routine. At this point we seem to have
developed all the utility routines except those needed to perform the
actual decimal addition on two signed 10-decimal-digit SAMOS num-
bers. But in Chapter 5 we assumed that the operands of the addition
routine would be found in G-store, so the arguments for addition would
no doubt be pointers into G-store to these values. Since then, we have
learned to convert operands into packed decimal representation and
save them in double scratchpads. It will be much more efficient to
perform addition (or for that matter, subtraction, multiplication, etc.)
from validated packed decimal values. Thus, in coding step 6.3.10 of
Figure 5.13,

l 6.3.10
ACC « ACC + operand

!

we should assume that values of both ACC and operand are already
represented in packed decimal form. For this to be a realistic assump-
tion, we will also need one more utility routine. This one must unpack
the result of the arithmetic operation (addition, subtraction, etc.) and
move it to a designated 11-byte field of G-store. We will examine this
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new routine, named UNPACK . AND. WRITE, after we consider the details
for the routines needed to perform the actual addition.

Observe that the operand values stored in double scratch pads are of
signed magnitude form. The leading bit is a sign, and the low-order 40
bits constitutes the magnitude. (See Figure 6.7.) If we only had to add
(or subtract) the magnitudes, the addition (or subtraction) would be
comparatively simple, as suggested in Figures 6.27 and 6.28, which show
the utility routines, PLUS and MINUS, that form the sum OP1 + OP2 and
difference OP1 — OP2, and assign the results to OP1.

The logic of addition (or subtraction) is more complex when the
integer operands may be negative or positive. But the particular coding
depends on whether we continue to represent the operands in signed-
magnitude form and perform signed-magnitude arithmetic or convert
negative operands to complement form, perform the addition, and then
reconvert complement results to signed-magnitude results.

It turns out that 10s-complement arithmetic is quite convenient and
efficient on the B1726, and we shall have a look at this approach at the
end of this section. We examine first the signed-magnitude method,
since it seems natural to simulate the signed-magnitude arithmetic of
SAMOS via signed-magnitude logic on the B1726 (this reasoning does
not necessarily lead to the most efficient simulation, however).

With signed operands, we must perform subtraction if the operands
are of unlike sign, and moreover, the sign of that result depends on
which of the two operands has the greater magnitude. The following
table suggests the sign control logic we require, where the asterisk in the
table signifies the sign of whichever operand had the larger magnitude.

Sign of OP1 + + - -
Sign of OP2 + - + -
Sign of addition result + & * -

A further complication arises in the event we are adding equal
magnitudes of unlike sign. The result must be a positive zero, not a
negative one.

Figure 6.29 illustrates the logic that implements the above sign control
for signed-magnitude addition. Box 16 in this figure is a call on the utility
routine PLUS which was illustrated in Figure 6.27. PLUS is called when
the operands are found to be of like sign. The routine MINUS (Figure
6.28) is called (box 7) when the operands are of unlike sign but different
in magnitude. Note that since MINUS is called only when the first
operand exceeds the second one in magnitude, there is no possibility for
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overflow as there was in the PLUS routine. The Flag parameter of ADD
is reset in box 10 of the Figure 6.28 flowchart to reflect the fact that if
control reaches this point there can be no overflow.

Exercises

1. Code in MIL the ADD routine that is flowcharted in Figure 6.29.

2. The following table suggests the sign control logic for forming the
difference between two signed magnitude integers, OP1 and OP2.

Sign of OP1 + + - -
Sign of OP2 + — + -
Sign of result for [0P2| > [0P1| - 4+ -+
Sign of result for [0P1|> |0P2]| + o+ - =

Construct a flowchart for a procedure SUBTRACT which computes the
difference, OP1 — OP2, and assigns this result to OP1. One of two
approaches might be taken:

(i) Make the same assumptions used in the procedure ADD that was
flowcharted in Figure 6.29. SUBTRACT should call on the PLUS
and MINUS utility routines defined in Figures 6.27 and 6.28, and
should obey the logic of the above table for control over the sign
of the result. When OP1 and OP2 are of like sign and equal
magnitude, the result assigned to OP1 should be a positive zero.
Overflow indication is also needed in SUBTRACT.

(ii) Let SUBTRACT reverse the sign of either the first or the second
operand and then call ADD.

3. What are the relative merits of the two approaches for constructing
SUBTRACT, as discussed in the preceding exercise?

As many logic designers know, if we convert negative decimal
operands to a 10s-complement form, add (or subtract), and then recon-
vert complement results to signed-magnitude representation, the logic is
simpler. For one thing, we cannot generate a minus zero in 10s-
complement arithmetic, so that hazard (peculiar to signed-magnitude and
to 9s-complement arithmetic) is avoided. Figure 6.30 shows the new and
simpler logic for addition in the routine ADD. 10 .COMPL. The structure
for a routine to perform [0s-complement subtraction would be almost
identical. Only the name of the routine need be changed, and box 3



PLUS (0OP1, 0OP2,
Flag)

IDENTIFIER TREATMENT DESCRIPTION
OP1, OP2 Input parameters  Double scratchpads (10-decimal-digit
magnitude)
OP1 Output parameter  Same
Reset Flag Flag Output parameter  1-bit register to indicate overflow
X, Y Local
2 ®)
Setup for
24-bit-wide
decimal arithmetic
3
X « B-part of OP1
Y <« B-part of OP2
4

| B-part of OP1 « SUM l

5

I Recycle the carry I

X <« A-part of OP1
Y <« A-part of OP2

[ A-part of OP1 « SUM

(' Overflow carry?

No

(a)

Figure 6.27. Subroutine for decimal addition of two ten-digit unsigned
operands OP1 and OP2. The sum is assigned to OP1 and a flag is set in
case of overflow. (a) Flowchart; (b) legend for PLUS; (c) subroutine.
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PLUS % SUMS TWO UNSIGNED 10-DECIMAL INTEGERS

% IN DOUBLE SCRATCHPADS OP1 AND 0OP2
% AND LEAVES RESULT IN OP1. IF OVERFLOW, THE
% FLAG BIT IS SET ELSE RESET
% THIS ROUTINE USES S5, S6 AND CB(0) AS PARAMETERS
% AND T, X AND Y AS LOCAL STORAGE

BEGIN

LOCAL .DEFINES

DEFINE OP1A = S5A#

DEFINE OP1B = S5B#

DEFINE OP2A = S6A#
DEFINE OP2B = S6B#
DEFINE FLAG = CB(0)# % OVERFLOW

RESET FLAG
MOVE @(1)00111000@ TO CP % SETUP FOR 24-BIT DECIMAL
% ARITHMETIC WITH O CARRYIN

MOVE OP1B TO X
MOVE OP2B TO Y

MOVE SUM TO OP1B
CARRY SUM % RECYCLES CYL TO CYF

MOVE OP1A TO X
MOVE OP2A TO Y
MOVE SUM TO OP1A

% BOX 8
MOVE SUM TO T % OVERFLOW DIGIT IS IN TB
IF TB(3) THEN SET FLAG % OVERFLOW, THEN SET FLAG
EXIT
END
(©)
changed to

3[
[ oP1 —oP1 —OP2 |

A simplifying feature of the Figure 6.30 flowchart is the suggestion
that use of a procedure for complementing numbers can make the code
more compact. Boxes 8, 9, and 10 show references to a function COMP.
In boxes 8 and 9 the arguments to COMP are the magnitude parts of
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MINUS (OP1, 0OP2)

MINUS % FORMS DIFFERENCE OF TWO
% UNSIGNED 10-DECIMAL INTEGERS
% IN DOUBLE SCRATCHPADS, OP1

% AND OP2 AND LEAVES RESULTS IN
% OP1. THIS ROUTINE USES S5,
! % S6 AS PARAMETERS, AND X AND Y

Set up for 24-bit- % AS LOCAL STORAGE.
wide decimal
arithmetic BEGIN

LOCAL . DEFINES

DEFINE OP1A = S5A#
2 DEFINE OP1B = S5B#
DEFINE OP2A = S6A#
DEFINE OP2B = S6B#

X « B-part of OP1 -
Y « B-part of OP2

MOVE @(1)00111000@ TO CP
l 3 MOVE OP1B TO X

MOVE OP2B TO Y
Ii-part of OP1 « DIFFERENCE l MOVE DIFF TO OP1B
CARRY DIFFERENCE % CYF « CYD
4 MOVE OP1A TO X
MOVE OP2A TO'Y
e % MOVE DIFF TO OP1A
borrow
EXIT
5 END

X « A-part of OP1
Y « A-part of OP2

6
FA-pan of OP1 « DIFFERENCE —I

Figure 6.28. MINUS routine for subtracting two unsigned 10-decimal-digit
intergers. OP1 is assumed to be larger than OP2.

operands OP1 and OP2, respectively. If the result of the addition in box
3 is a number in complement form, then COMP is applied once again in
box 10, this time to the result (which is regarded as an unsigned integer).
A minus sign is then attached to the recomplemented result. Overflow, if
any, is then detected at box 5.

Example Suppose we were dealing with signed, 2-decimal-digit
integers. Table 6.1 shows traces of the Figure 6.30 algorithm for three
different sets of operand values.

In applying the algorithm in Figure 6.30 to the task of simulating the
SAMOS ADD operator, remember that OP1 would represent a copy of
the accumulator and OP2 a copy of the operand fetched from the
effective address location. So it does not matter that the value of OP2 is
altered upon exit from the ADD. 10 . COMPL procedure.



ADD
(OP1, OP2, Flag)

sign 1 « sign bit of OP1
sign 2 « sign bit of OP2

sign 1 = sign 2
l 16

PLUS(OP1,0P2,Flag

! 17

Attach sign 1
to OP1

|0P1A| = |OP2A|

F (Cor)) |[oP1B| = |OP2B|
N
T |5
( [oP1A| > [oP2] <o
F (<)
6

Interchange Interchange
OP1 and OP2; OP1 and OP2:
set interchangeswitch set interchangeswitch

7
[[MINUS (OP1, OP2, Flagj]

8
Is interchangeswitch Yes
set?
No
9 1
Attach sign 1 Attach sign 2
to OP1 to OP1

J

10

] Reset Flag

RETURN

Figure 6.29. Logic for sign control in addition of signed 10-decimal-digit
integers which may be of unlike sign. The integer operands OP1 and OP2
are assumed to be represented as packed decimal values in double
scratchpads.
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ADD. 10 . COMPL
(OP1, OP2, Flag)

8
o Yes
OP1 negative? OP1 <« COMP([DP1]|)
No
| 2 9
. Yes
OP2 negative? OP2 <« COMP([oP2|)
No
3
OP1 « 0OP1 + 0OP2
4 10
Yes
OP1 a complement? | OP1 « — COMP([0P1])
]
J No 5
Com overflow? ) Yes L7
Set Flag
Reset Flag
RETURN

Figure 6.30. Logic for 10s-complement addition. The function procedure
COMP returns the 10s compiement of its argument.
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ADD.10.COMP % ROUTINE BEGINS HERE. THE
% ARGUMENTS ARE OP1, IN S5, OP2 IN S6
% IN SIGNED MAGNITUDE FORM AS IN FIG. 6.7. RESULT IS
% LEFT IN OP1, ,IE., S5, AND OVERFLOW FLAG IN CB(O).
% THE STACK, X, Y, T, AND L ARE USED AS LOCAL STORAGE
% THE PROCEDURE COMPL.T.L. CONVERTS T CAT L TO 10'S COMPLEMENT

BEGIN

LOCAL .DEFINES

DEFINE OP1A = SBA #
DEFINE OP1B S5B #
DEFINE OP2A S6A #
DEFINE OP2B = S6B #
DEFINE FLAG CB(0) #

I

MOVE @(1)00111000@ TO CP 9 SETUP FOR 24-BIT DECIMAL ARITHMETIC
9BOX1

MOVE OP1A TO T

MOVE OP1B TO L

IF T(0) THEN 9 IF OP1 NEGATIVE
BEGIN 9 COMPLEMENT |OP1|.
RESET T(0)
CALL COMPL.T.L.
END
MOVE T TO TAS % SAVE OP1 ON STACK
MOVE L TO TAS 9 FOR LATER USE
9B0X2

MOVE OP2A TO T
MOVE OP2B TO L

IF T(0) THEN % IF 0P2 IS NEGATIVE,
BEGIN % COMPLEMENT |OP2].
RESET T(0)
CALL COMPL.T.L.
END
%BOX3
MOVE TAS TO X % LOW-ORDER PARTS OF OP1 AND
MOVE L TO Y % O0P2 IN X AND Y, RESPECTIVELY
MOVE SUM TO L % LOW PART OF OP1 + OP2 IN L
CARRY SUM % RECYCLE CARRY DIGIT
MOVE TAS TO X % HIGH-ORDER PARTS OF OP1 AND
MOVE T TO Y % OP2 IN X AND Y, RESPECTIVELY.
MOVE SUM TO T % HIGH PART OF OP1 + OP2 IN T
7BOX4
IF T(0) THEN % IF RESULT IS A COMPLEMENT
BEGIN % IF HIGH-ORDER DIGIT IS AN 8 OR A 9
CALL COMPL.T.L. % COMPLEMENT AND
SET T(0) % MARK MINUS
END
%BOX 5
IF TB NEQ O THEN % IF 11TH DIGIT OF SUM NON ZERO,
BEGIN % THEN WE HAVE OVERFLOW
SET FLAG
END ELSE
BEGIN
RESET FLAG
END
MOVE T TO OP1A % NEW RESULT LEFT IN OP1
MOVE L TO OP1B
EXIT
END

Figure 6.31. MIL code corresponding to flowchart in Figure 6.30. See
Figure 6.32 for COMPL. T.L procedure code.
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TABLE 6.1

Just CASE: | 2 3

BEFORE

EXECUTING 0P1 0oP2 OP1 0oP2 OP1 opP2

Box | 77 35 -77 35 -29 —82

Box 2 77 35 923 35 971 —-82

Box 3 77 35 923 35 971 918

Box 4 102 35 958 35 889 918
(not a complement) (complement) (complement)

Box 5 102 —42 —111 918

(overflow) (no overflow) (overflow)

Figures 6.31 and 6.32 show MIL coding for ADD.10.COMPL. The
code in Figure 6.31 illustrates for the first time in this text how we may
use the top of the hardware stack for fast-access temporary storage,
avoiding the need to use scratchpads, which on some occasions may be
in short supply.

The ‘‘double register’” T CAT L is used as the principal working-
register. After moving OP1 (from S5) into T CAT L, T(0) is tested for
the presence of a sign bit. If on, then COMPL . T . L (Figure 6.32) is called
to complement the contents of T CAT L. In any case, T CAT L is then
saved on the top of the stack, freeing T CAT L to receive a copy of OP2
(from S6). Later, when executing the addition step (box 3), the value of
OP1 (possibly complemented) is popped off from the stack and moved to
X as input to the 24-bit function box. The code in Figure 6.31 can be
shortened if OP1 is assumed already to be in T CAT L upon entry to the
subroutine and if the result can be left in T CAT L.

The subroutine COMPL.T.L is shown in Figure 6.32. A 10s comple-
ment is produced by subtracting that value from 0. The setup instruc-
tions initiate the 24-bit function-box controls and set X to 0. The last
instruction, CARRY 0, ‘‘tidies up’’ the function box for subsequent use in
24-bit decimal arithmetic by resetting CYF.

Exercises

1. Write MIL code for the routine SUB.10.COMPL (subtract using
10s-complement arithmetic, following the logic of Figure 6.30, but with
needed changes to reflect subtraction). Can we again make use of the
subroutine COMPL . T.L?

2. Is there a simpler way to code the routine SUB.10.COMPL,
described in the preceding exercise? Hint: How about coding
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COMP.T.L % PROCEDURE BEGINS HERE.
% THIS PROCEDURE COMPUTES THE 10'S COMPLEMENT OF
% T CAT L AND LEAVES THE RESULT IN T CAT L,
% USING X AND Y AS LOCAL STORAGE
MOVE @(1)00111000@ TO CP % TO BE SURE OF ARITH. SETUP

CLEAR X % MORE SET UP
MOVE L TO Y
MOVE DIFF TO L % LOW ORDER PART OF COMPL. IN L
CARRY DIFFERENCE % RECYCLE THE BORROW
MOVE T TO Y
MOVE DIFF TO T % COMPLEMENT IN T CAT L
CARRY 0 % LEAVE CARRY IN "CLEAN STATE"
EXIT
Figure 6.32

SUB.10.COMPL so it calls on ADD.10.COMPL after first reversing the
sign of OP2? What are the relative merits of these two approaches for
coding SUB.10.COMPL?

3. Compare the MIL coding needed for the signed magnitude ADD
routine (Figure 6.29) with the MIL coding developed for 10s-comple-
ment addition (Figure 6.30). Which code has more lines? How many
more? Which code executes in fewer instructions? How many fewer?

4. A student has studied the MIL code in Figures 6.31 and 6.32 and
claims that a net decrease of 2 lines of code can be achieved. She says
that the two instructions RESET T(0) in boxes 1 and 3 and the
instruction SET T(0) in box 10 could be eliminated if the instruction
RESET T(0) were inserted at the beginning of the code for
COMPL.T.L. Verify whether or not she is correct, and if correct,
explain why.

6.7 UNPACK.AND.WRITE

The last utility routine to be discussed in this chapter is one which will
take the packed decimal result of the 10-digit decimal addition, subtrac-
tion, etc., unpack it, and store it in a SAMOS word in G-store. Only
after this step is taken will the interpretation of a SAMOS ADD, SUB, MPY,
or DIV instruction be completed.

The procedure UNPACK . AND . WRITE, shown in Figure 6.33, takes the
signed decimal integer in S5 and stores it as an equivalent 11-byte
character field pointed to by the parameter value in FA. The logic of this
procedure is in essence the inverse of that used for packing in VALI-
DATE.DECIMAL.



UNPACK . AND . WRITE
(FA)

Convert sign and
first digit of S5A
into a 2-byte field
and write out to
G-store; inc. FA

Convert next 3 digits
of S5A into a 3-byte
field and write out
to G-store; inc FA

Convert first 3 digits
of S5B into a 3-byte

field and write out to
G-store; inc FA

Convert last 3 digits
of S5B into a 3-byte
field and write out
to G-store

[

TB « LD
TD « LE
TF « LF

! 42

Write 3 bytes
to G-store

!

1.1
[ ]
1.2

sign character
moved to T

first digit
moved to T now
a character.

1.5
TF « LC
1.6

Write 2 bytes
to G-store;
inc FA

l

TB « LD
TD « LE
TF « LF

2.3

Write 3 bytes
to G-store;
inc FA

l

3.2

Write 3 bytes
to G-store;
inc FA

!

Figure 6.33. Procedure for unpacking a signed 10-decimal-digit integer in
a double scratchpad (S5) and storing it as an 11-character field in G-store
at the address given by the value in FA.
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Exercise Produce the MIL-code equivalent of the flowchart given for
UNPACK . AND . WRITE in Figure 6.33.

6.8 CHAPTER SUMMARY

We began this chapter with the task of designing all the routines
needed for coding the details of the SAMOS ADD operator routine charted
in Figure 5.13. We thought those utility routines listed in Table 5.2 were
what we wanted. As often happens when one gets down to the details,
new ideas crept in, and we departed from our earlier implementation
concepts. It became clear in this chapter that we should input decimal
character fields from G-store, but convert them to packed decimal
representation for use as arithmetic operands and then upack the results
and send them to G-store as decimal character byte strings.

The utility routine specifications listed in Table 5.2 now need to be
updated to reflect these changes. We leave this task to the reader as a
useful stock-taking exercise. Note that we did not change the specifica-
tions on two of the most basic routines, BINARY.TO.FA and AD-
DRESS.TO.BINARY, so the plans suggested in Figures 5.9, 5.10, and
5.11 for decoding are still quite valid. But the logic suggested for the top
level of the ADD operator routine, as given in Figures 5.13 and 5.14, must
be altered (and augmented) to reflect the new specifications for VALI-
DATE.DECIMAL, EFFECTIVE.ADDRESS, PLUS, MINUS, ADD (or
ADD.10.COMPL, SUB.10.COMPL, COMPL, and COMPL.T.L), and UN-
PACK.AND.WRITE. We also leave to the reader the modification of
Figures 5.13 and 5.14 as useful summarizing exercises.

For those not wishing to indulge in exercises, Appendix E presents
solutions in the form of a tested McMIL version of the flowcharts in this
and the preceding chapter. This appendix gives an abridged version of
SAMOS (a basic set of eight instructions), an accompanying LOADER
program for defining the needed workspace, and a sample data deck and
execution.

As a final remark, we observe that our odyssey through the design
exercises of this chapter has exposed us to nearly all the power and
limitations of the B1726 microprocessor architecture and to many coding
techniques. We have used nearly all the instructions in one way or
another, and in doing so have begun to appreciate what is involved in
achieving optimal or near-optimal MIL code. The astute reader should
be able to apply many of these methods to the design of other
interpreters.



Chapter 7
The split-level control store

One of the most interesting aspects of the B1726 architecture, so far only
hinted at (end of Chapter 1), is the feature that allows microinstructions
to be processed directly out of G-store as well as out of H-store. Thus,
in addition to serving primarily as a store for guest-language code and
data, G-store is also used as an ‘‘extension’’ of H-store. This feature is
attractive because if an interpreter is too large to fit into the more
expensive and faster H-store, then the less frequently used parts of the
interpreter can be kept in the same physical storage medium as G-store
and executed directly from this store,* perhaps without seriously degrad-
ing the performance of the interpreter. If necessary, it is still possible to
use overlay methods and move a block of microinstructions from G-
store to H-store whenever such a block needs, for reasons of efficiency,
to be executed from H-store. In addition, in the extreme case where no
space in H-store is available, an interpreter would be executable entirely
from G-store.

We mentioned in Chapter 1 that the B1800 uses a cache store for
holding most-recently fetched microinstructions. This approach creates
the effect of having a large fast H-store without requiring the system

!In Chapter | we introduced H-store and G-store as conceptual stores (host and guest),
but subsequently we have discussed them as if they are also actual physical storage
devices. We could do this without blushing because, to a first approximation, H-store
maps onto what Burroughs calls M-memory, and G-store maps onto what Burroughs calls
S-memory, two physically different stores. The truth, however, is that microinstructions
can be fetched and processed from either physical storage, which means that H-store maps
in part onto M-memory and in part onto S-memory. There is a dilemma to be faced here
with regard to the notation we should use in this chapter. Shall we be technically correct
and refer to the physical stores by different names (M and S) to distinguish them from the
conceptual names (H and G)? If so, we will have four storage names to keep straight, and
this will become tedious. Or shall we risk confusion by continuing to apply to the physical
storage devices and the conceptual storage devices the same names (H and G)? We opt for
the latter, but hope the reader will realize that in the remainder of this chapter all
references to H- and G-store are to the physical stores (M and S respectively). They are
only coincidentally to be regarded as names for conceptual stores—and then, only if
applicable.
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programmer to manage it as a scarce resource. The B1800 approach is
clearly simpler (for the programmer) than the solution used in the B1726.
In fact, most of the programming problems discussed in this chapter are
precisely the ones which have been eliminated using the cache microin-
struction store of the B1800. By way of illustration, one of the technical
problems whose solution is discussed fully in the body of this chapter is
mentioned briefly here.

Often we have read-only tables and other long literals which are
convenient to embed directly in the program part of an interpreter.
However, H-store is organized to optimize the fetching of 16-bit
microinstructions, and G-store is organized to optimize the fetching of
data in chunks of up to 24 bits. Hence, different microinstructions must
be used to read data to the processor, depending on which store the data
reside in.? Given that the MCP has control over allocation of H-store to
various interpreters and given that such allocation may vary according
to the workload on the system, it is not practical for a MIL programmer
to read data embedded in code that resides in H-store, since he has no
assurance it will indeed reside in H-store when his interpreter is
executed. Therefore as a practical matter, when data are to be read from
the interpreter (apart from 8- or 24-bit literals transferred as part of a
MOVE instruction), they must be read from the G-store-resident part of
the interpreter. This can be done and is done, although the address
arithmetic needed to calculate the absolute G-store address of such data
is more awkward than we might wish (and more awkward than for
fetching data from G-store workspace, which is simply based on the
value of the base register, BR). As part of the solution to this problem,
the system designers provide a MIL programmer the option to specify a
part of an interpreter that must reside in G-store while the interpreter is
being executed, and the system obeys and respects this specification.
Use of this provision then offers the programmer the assurance of
knowing precisely how to transfer data embedded in such code.

In this chapter we will explain in detail how the B1726 processes
instructions from either store. Armed with this information, it will be
easy to explain the precise way that control is switched from one
interpreter to another, and thus to explain the nature of the interface
between user interpreters and system service modules (the MCP and the
central i/o-control, interrupt-handling, and process-switching module
known as GISMO).

20n the B1726 the READ MSML TO X and WRITE MSML FROM X microinstructions,
primarily used for diagnostic tests of H-store, allow the reading and writing of 16-bit fields
from/to H-store and the X-register. We have not described this instruction elsewhere in this
text, except to mention it in Appendices A and B.
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7.1 CONTROL OVER THE USE OF H-STORE

Since H-store is considered a scarce resource, interpreters that run
under control of the MCP are allocated space in H-store by the MCP.
The MCP manages H-store, in part by relying on software modules like
the MIL assembler to adhere to certain agreed-upon conventions. In this
section we will not look in detail at the MCP allocation strategies, but

Assembled
(logical image of an)
interpreter

2443

1932

207 = -~~~

39352
S
o3
3
3:

w
N~
jr gy
[y e
1/
o
5
=}
|
|
I
|
|
|
|
|
|
|
|

W
~

1023

_+_

W
~

51t

.

H-store

NN

G-store
section

(@)

Figure 7.1. (a) Interpretation of part of G-store as an addressable
extension of H-store. (b) Settings of MBR and TOPM for executing the SDL
Interpreter. (c) Settings of MBR and TOPM for executing the FORTRAN
Interpreter.



Control Over the Use of H-Store

9%

EXTIITI
X
RRRR
Sl

Part 1 of

Ry

TOPM

Part 1 of
SDL interpreter

7, 201
Part | of GISMO
~x

H-store

FORTRAN interpreter

J Part 2 of
J FORTRAN
nterpreter

(b)

TOPM

2
X5 l

Part | of

Part | of
SDL interpreter

4 201
art | of GISMO
N

H-store

.u‘ FORTRAN interpreter

Part 2 of
GISMO
L

q
oo
XX

%!

ZS

X

924

.‘.
X
&

3
>

..v,
505
%2

Part 2 of
FORTRAN
Interpreter

X
X%
SRK

......
2000t
XK

XK

Z
QSRR

2

%

..
R

’,
X

55

%

2048x 16
bits

Part 2 of
SDL Interpreter

G-store sections

(©)

153



154 The Split-Level Control Store

rather examine how the H-store might be managed, considering the
hardware features provided.

Figure 7.1(a) suggests how a portion of G-store may be viewed as an
addressable extension of H-store when executing an interpreter whose
total length is 2444 microinstructions, whose first 512 microinstructions
reside in a 512-word block of H-store, and whose remaining (1932)
microinstructions reside in G-store. In this figure it is assumed that the
H-store has a capacity for storing only 2048 microinstructions.

As pictured, microinstructions at logical addresses 0 through 511
should be fetched from H-store when the A-register has values 1536
through 2047 respectively. Instructions at higher logical addresses (512
through 2443) should be fetched from their locations in G-store when the
A-register has values of 2048 and above (in particular, up to and
including 3979, which is 1536 + 2444 — 1). The use of two Key registers,
named TOPM and MBR, enables the B1726 processor to accomplish this
feat. How it is done is explained in detail in the next sections.

What is important to note here is that the particular block of H-store
where the first part of the interpreter is stored and the particular section
of G-store where the remainder of the interpreter is kept can be chosen
with some degree of freedom. It is only necessary to preset in a
compatible way the values for TOPM and MBR. As we will see later, the
TOPM register sets the bound on values of A for instructions to be
fetched from H-store, and the MBR provides the base address such that
the value A + MBR becomes the effective G-store address for instruc-
tions in the G-store part of the interpreter.

With these concepts in mind we can now picture that the first parts of
two or more interpreters may be loaded into H-store and their respective
second parts placed in G-store wherever adequate and available space
can be found. Figure 7.1(b,c) shows a possible allocation of H-store
which is feasible when only one user program (e.g., a FORTRAN
program) is executing on the B1726. For comparison, part (b) of Figure
7.1 shows the MBR and TOPM settings when the SDL? interpreter is
executing, and part (c) shows the MBR and TOPM settings when the
FORTRAN interpreter is executing. (Again an H-store size of 2048 16-
bit words is assumed.) The second parts of each of these interpreters are
shown in G-store. (We assume GISMO can also be regarded as an
interpreter.) There is no particular relationship required between the

3The SDL or Systems Development Language is an ALGOL-like language in which the
MCP has been coded. See ““B1700 Systems System Software Development Language
(SDL) Reference Manual,”” Burroughs Corporation, Detroit, December 1973, Form
1072493.
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relative positions of the part-1 portions in H-store and the relative
positions of the part-2 portions in G-store.

7.2 MICROINSTRUCTION FETCH FROM H-STORE OR G-STORE

The address range of a single B1726 microprogram spans 2! (or 16K)
microinstructions, governed by the structure and function of the A-
register which serves as the processor’s instruction counter:

Bit position
where A is
incremented

A

14 bits ¢,

A

18 bits —>

Because the low-order 4 bits of the 18-bit register A are always zero, the
A-register can refer only to bit addresses at 16-bit ‘‘word boundaries’’.

A limit register, known as TOPM, is set under program control to mark
the upper-bound address in H-store. Instructions whose addresses are
higher than the mark set by TOPM, but less than 2, are fetched from G-
store at an offset from a G-store base address determined by the
contents of the MBR register, as suggested in Figure 7.2. In this figure the

o —)| 4 bits je— ™)

TOPM

SDL
—~— 1023 — interpreter

ﬂr— 1535 — —T—
9
512 words 2 Part | of
Part 2 of

SDL Interpreter

512 words
I S St —
512 words 201
0— 1536 16 bits
}-24 bits —
—F——m=

Figure 7.2.
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GA/iG] < TOPMXSlDF

T 3
2
fetch microinstruction
Fetch microinstruction from G, sr
from H,
4
OR the
fetched microinstruction
into M
5
A« A+ 16

Figure 7.3. Fetch and increment logic details.

presumption is made that the processor is executing the SDL interpreter
loaded in H- and G-store as first suggested in Figure 7.1(b,c).

Figure 7.3 shows the logic used in the hardware during each fetch
cycle for selecting addresses from either H- or G-store, as the case may
be. First the value of* [A/16] is compared with the product TOPM X 512.
If less than TOPM X 512, then the microinstruction is fetched from H-
store at the bit address whose value is A, or else the microinstruction is
fetched from G-store at the bit address whose value is A+MBR. In either
case the fetched 16-bit instruction is ORed into the M-register and the A-
register incremented by 16.

In the example given in Figure 7.2, TOPM would have the value 3;
hence any value of [A/16] that is greater than or equal to 3 X 512 (i.e., =
1536) refers to a microinstruction located at bit address A + MBR in G-
store (a base-register value plus a single offset). We can now see why

*The square brackets represent the so-called greatest integer function. Thus [A/16] is
the integer quotient of A divided by 16.
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the proper value for MBR is the G-store address at a distance of 1536 X
16 below the address of the first microinstruction in part 2 of the SDL
interpreter. In Figure 7.2 this ‘‘image’” of H-store from locations 0
through 1535 is shown as the black segment in G-store. Of course, the
information stored in the black section need have no relation whatsoever
to the SDL interpreter. The black section is shown in the diagram
merely to indicate how the value of MBR must be preset before the
fetching of SDL interpreter instructions from G-store can be done
properly.

Two additional observations regarding these described hardware fea-
tures are worth noting.

1. When TOPM is preset to zero before executing an interpreter, the
test in box 1 of Figure 7.3 will always be false; hence all
microinstructions will be fetched from G-store. This is the impor-
tant special case we alluded to earlier, where no H-store space is
avaiable that can be allotted to an interpreter.

2. The maximum value of TOPM is 15, since TOPM is a 4-bit register.
Hence, the largest size for H-store in a B1726 is 15 X 512 or 7680
microinstructions.

7.3 EMBEDDING TABULATED DATA IN MIL PROGRAMS

If tables of data are to be embedded in the interpreter, for reference
during execution of the interpreter, it is essential that such tables reside
in G-store. The programmer can ensure this eventuality by use of the
special MIL pseudoinstruction M.MEMORY . BOUNDARY MAXIMUM. Any
code or table that follows this instruction in a MIL program will be
earmarked by the assembler so that at load time this section of the
program will appear in G-store.

Before enlarging on this remark with an example, we digress here to
describe the TABLE declaration available in MIL which has not been
discussed earlier. A TABLE declaration has the format

TABLE label
BEGIN
first literal
second literal

last literal
END
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For example,

TABLE MESSAGES

BEGIN
"OVERFLOW"
"UNDERFLOW"
"INVALID CHARACTER"
"INFINITE LOOP"
@(1)1111@
@F2F3@

END

Such a declaration will cause the MIL assembler to generate and insert
in line a sequence of bit strings representing the declared literals in the
sequence given.

To read from the table into X, Y, T, or L it is necessary to compute the
absolute address of the table so that that address can be placed in FA.
The required computation can best be appreciated by a study of Figure
7.4.

In this figure we picture an interpreter which is partly resident in H-
store (part 1) and partly resident in G-store (part 2). To compute the
address of MESSAGES, it is necessary to add two offsets to MBR. The

r\/\N\.’w
MESSAGES
Interpreter
Part 2
TOPM ADDRESS (MESSAGES)
Interpreter PART 1
.HERE ——> part |
PART 1
MMM \
Othgr . — &
Interpreter microcode
displacement including MBR
GISMO Interpreter
0 NN displacement \
H-store k

G-store segment
containing microinstructions
for interpreter part 2

Figure 7.4.
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first offset, called interpreter displacement in the diagram, is the offset
from address 0 in H-store at which the first instruction of the interpreter
(part 1) has been loaded. (Note that if indeed the interpreter is entirely
resident in G-store, then interpreter displacement would be zero and
Part 1 of the interpreter would reside in the shaded region marked A in
G-store.) The second offset, ADDRESS (MESSAGES), is the location
value generated by the MIL assembler for the label MESSAGES.
(ADDRESS is a built-in MIL-language function which takes a label as an
argument and returns a location relative to the beginning of the assem-
bled microprogram.)

The code shown in Figure 7.5(a) suggests how a subroutine named
LOCATE. TABLE. ADDRESS may be defined which computes the abso-
lute G-store address of a named table. Figure 7.5(b) illustrates a call on
this subroutine to compute the G-store address of MESSAGES to read the
first 3 characters of this table to X.

The foregoing discussion, of course, assumes that the declared table
resides in G-store, which can be guaranteed only if the declaration
appears after the statement M.MEMORY . BOUNDARY MAXIMUM. A MIL
program TABLE declaration is illustrated in Figure 7.6. (This piece of
code appears in a Sequential Pascal interpreter developed by Mark

LOCATE . TABLE. ADDRESS ZROUTINE COMPUTES ABSOLUTE G-STORE
%ADDRESS OF A TABLE WHOSE
ZMIL—-ASSEMBLED RELATIVE ADDRESS IS
%IN L. THE RESULT IS PLACED IN FA.
%ROUTINE USES X AND Y.

%
MOVE 24 TO CP %COMPUTE THE FIRST OFFSET AS FOLLOWS:
MOVE ADDRESS(+HERE) TO Y ZRELATIVE ADDRESS OF .HERE IN Y
MOVE A TO X %ACTUAL ADDRESS OF .HERE IN X
.HERE
MOVE DIFF TO X %INTERPRETER DISPLACEMENT IN X
ZNOW AUGMENT BY SECOND OFFSET WHICH IS
MOVE L TO Y %THE ARGUMENT IN L.
MOVE SUM TO X %SUM OF TWO OFFSETS IN X
MOVE MBR TO Y ZNOW AUGMENT BT MBR
MOVE SUM TO FA %AND ASSIGN IT TO FA
EXIT

(@)
MOVE ADDRESS (MESSAGES) TO L
CALL LOCATE.TABLE.ADDRESS
READ 24 BITS TO X INC FA
(b)

Figure 7.5. (a) Subroutine for computing absolute G-store address of a
table, given its label value. (b) lllustrative use of subroutine in (a) to read
first 3 characters of the table labeled MESSAGES.
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Bé§§50§!fggyquRv MA XIMUM 8 §

AT CO7ET0] 3000 10 20 300000000000 00A0BO CO DO EOF 3 5
AT (07EFQ] 3101112000000000C181900181C1 D1 E1F3 g
AT (07F70) " q- 5
aFa % QUOTE 5

AT O7F80) "$3LL0 () w4,/ 012345678925 <=>2" } g
T 08070] *3AB CDEF GHIJKL MNOP QRSTUVNXYZ [\ I~ _* 25
AT [08170] anabcdefghij klmnopgrstuvuxyz{¢c)a™ 5
TABLE E.TO.A 3

A 8 8535' 0203000900FF0000 0CODOEOF2 g
A asl 3101112000000080€1819 1C2 91 E1 Fa H
A 837 200001 C0 0000 A001B000 00050 €073 5
A 83F 200001 60 0001 £000 4000 141 50 01 A3 H
A 847 32000000 0000 €000€000 E3C2 82 B7Ca 5
AT g;; 3 8 ooooos go 0 Aznzssgrza 5
A f oooos 000 €2 5SF3E3Fa 5
Al 85F 200000 00 €0 00 €0 60 €000 402730223 5
A 867 30061626 3646 5666 7686 000 00 00 03 5
AT 86F as 686 C6D6 E6F7 0717 000 00 0003 5
A 877 3 7 378757 67 17 €7 97 0 00 00 00 02 )25
A 87F 20 ooogooog 0000 ogooooooa 5
A 887 3004 14 24 36 44 S4 64 74 84 000 00 0003 5
i[5 I HEIH A b 2
A 89F Engx 5 323??43%5,15363 38033838: g
5

zscxx.ro.eacoxc x
3
z THIS ROUTINE CONVERTS ASCII TO EBCOIC
z INPUTS: THE ASCII CHARACTER IN T
: OUTPUTS: THE EBCDIC CHARACTER IN T
3 REGISTERS DESTROYED : X»Y»TsFA

SHIFT T LEFT BY 3 BITS TO X

MOVE MBR TO Y ! 0

MOVE SUN TO X

MOVE ADDRESS(A.TO.E) TO Y

MOVE SUM TO FA

ADD_BA SE .OF. INTERPRETER TO F A

Ap 8 8Irs 10 T
SET ROB. INTERRUPT

. exIr
gacolc.To.ASCII
: THIS RCUTINE CONVERTS EBCDIC VO ASCIT
: INPUTS: THE ESCDIC CHARACTER IN T
3 OUTPUTS: THE ASCII CHARACTER IN T
: REGISTERS DESTROYED: X»Y»T»FA

SHIFT T LEFT BY 2 BITS TO X

MOVE MBR TO Y

MOVE SUM TO X

MOVE ADDRESS(E.TC.A) TO Y

A aR o . 0P, TATERPRETER TO F A

READ 8 BITS T0

RESET ROBe INTERRUPT

EXIT

Figure 7.6.

Swanson and Richard Belgard at Utah.) The tables are used for
converting characters to and from ASCII and EBCDIC codes.

Figure 7.6(b) shows the code for two subroutines that use these tables.
The routines appear ahead of the M.MEMORY.BOUNDARY MAXIMUM
statement shown in Figure 7.6(a). Code in the two subroutines assumes

e
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that BASE.OF . INTERPRETER (a scratchpad register) holds the current
value for the interpreter displacement.

Another statement, M.MEMORY.BOUNDARY MINIMUM, may be in-
serted in a MIL program to indicate the minimum amount of the
interpreter one would like loaded in H-store during execution. Normally
one would insert such a statement immediately following the most
frequently used portion of an interpreter. The statement is treated as
advice to the system and not as a command. Hence there is no guarantee
that during every execution of the interpreter the minimum amount of H-
store requested by the programmer will actually be awarded. Award of
H-store for this purpose is a function of the current work load on the
system, the actual size of H-store, and the version of MCP being used.

7.4 TRANSFER OF MICROCODE FROM G-STORE TO H-STORE

Blocks of one or more microinstructions may be transferred from G-
store to H-store by executing the OVERLAY microinstruction. This single
microinstruction executes a hardware subroutine whose logic is given in
Figure 7.7. The hardware subroutine has three parameters whose
matching argument values are assumed to be present in the L, FL, and
FA registers. L should contain the starting address of the overlay area in
H-store. FL should contain the number of microinstructions to be
copied, and FA should point to the starting address in G-store of the
microinstructions to be copied.

As can be seen from the flowchart logic in Figure 7.7, at least one
microinstruction will be overlaid as a result of executing this instruction.
Each transit of the loop copies a 16-bit field from G-store directly into H-
store at the address specified by the A-register, which serves as an
auxiliary pointer into H-store during the overlay operation.

The value of A prior to the start of the OVERLAY instruction execution
is safe-stored on the stack (box 1) and later restored (box 6). This action
frees up A for use as an auxiliary register which is initialized to the value
of the argument L (box 2) prior to entering the loop.

The elapsed time for each transit of the transfer loop is quite short
(less than a microsecond on the B1726). Still, the cost in time for
overlaying a large block of microcode is not insignificant, so the
OVERLAY instruction is used sparingly. The OVERLAY instruction is used
principally by GISMO to ensure the presence in H-store of an inter-
preter as decided by the MCP. That is, if, prior to transferring control to
some interpreter, its H-store-resident portion as determined by MCP is
not in place, then GISMO will perform the required OVERLAY.

To illustrate the use of OVERLAY, the following is a hypothetical
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l Read 16 bits from G-store
to H,;
Overlay 0 inc FA by 16
l dec FL by |
4

T, FL # 0
and
[A/16] < TOPMXS512

6
Pop
A « TAS

Figure 7.7.

OVERLAY . AREA
H.STORE.MULTIPLY
ADJUST LOCATION TO LOCATION + 100

MAT .MULTIPLY
: See text.
M MEMORY . BOUNDARY MINIMUM
1:1 .MEMORY . BOUNDARY MAXIMUM
MULTIPI:Y
} 73 microinstructions

END
FINI

Figure 7.8.

Note: Initial Values
of L, FA, and
FL are assumed
to be as follows.

L = starting address of the
overlay area in H-store
FL = length of the overlay

in microinstructions
FA = address in G-store

of the code to be

copied to H-store

%AN ALIAS FOR OVERLAY.AREA
%INSERT 100 NO-OP
%INSTRUCTIONS HERE
%SEE APPENDIX A FOR FURTHER
ZEXPLANATION OF ADJUST
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application. Let there be a MIL subroutine called MAT .MULTIPLY.
Upon entry to this routine we would like to transfer into H-store an
otherwise infrequently used MULTIPLY routine which would appear in
our MIL program following the M. MEMORY . BOUNDARY MAXIMUM state-
ment. In this way we are assured that the MULTIPLY routine to be
copied from G-store is indeed in G-store when the OVERLAY instruction
is used. Assume that MULTIPLY is a routine known to comprise 73
microinstructions (by actual count). Further assume that we have coded
near the beginning of our program an overlay area of 100 microinstruc-
tions, large enough to hold the MULTIPLY routine. The overlay area is
labeled OVERLAY . AREA, and its initial contents is filled with no-op
instructions. This program structure is illustrated in Figure 7.8.

The code at the entry point of MAT.MULTIPLY to transfer the
MULTIPLY subroutine into H-store might be written as follows.

MAT .MULTIPLY
MOVE ADDRESS(OVERLAY.AREA) TO L

MOVE ADDRESS(+HERE) TO Y %COMPUTE
%4INTERPRETER
MOVE A TO X %DISPLACEMENT
.HERE
MOVE DIFF TO X %INTERP.

ZDISPLACEMENT IN X
MOVE MBR TO Y
MOVE SUM TO X
MOVE ADDRESS(MULTIPLY) TO Y %ABSOLUTE G-STORE

%ADDRESS
MOVE SUM TO FA gNOW MOVED TO FA
MOVE MULTIPLY.LENGTH TO FL YMULTIPLY . LENGTH
YDEFINED EQUAL
gTO 73*16

OVERLAY
ZNOW MULTIPLY IS IN H-STORE AND CAN BE CALLED
SWITHIN MAT-MULTIPLY BY A STATEMENT OF THE FORM:
%CALL H.STORE.MULTIPLY
%0R ALTERNATELY,
%CALL OVERLAY.AREA

Note that the region labeled OVERLAY . AREA may have as many alias
labels as the programmer may wish to give it. In our example, only one
other, H. STORE. MULTIPLY, is shown in Figure 7.8. Another point to
note is that the code illustrated above lacks adequate generality. It
works fine, but only when the overlay area is certain to be in H-store
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and only when the copied (‘‘overlay’’) version of MULTIPLY does not
call or jump to any other routine. Any jumps within the copied version
of MULTIPLY will be incorrect unless they are local jumps, i.e., jumps
within MULTIPLY itself. A more advanced description of the MIL
assembler would explain the special declarations needed to circumvent
this problem.

Misuse of the OVERLAY instruction can quickly destroy the integrity
of the operating system, since sensitive code (GISMO and the MCP’s
interpreter) usually occupy the lower half of H-store. For this reason use
of OVERLAY, as suggested in the above example, is proscribed (forbid-
den as harmful) in the MCP environment. Such use of OVERLAY may be
made only for programs executing as stand-alone code.

7.5 TRANSFERRING CONTROL TO ANOTHER INTERPRETER

To transfer from one interpreter to another requires, in general, more
than a simple jump or GO TO instruction. It is easy to see why this is so if
we again consult Figures 7.1 and 7.2 for a case in point. Let us assume it
is desired to transfer from some point in the SDL interpreter at say
address 220 to the first instruction of the FORTRAN interpreter, located
at address 1536 in H-store. Note that while executing in SDL, TOPM will
in this case have the value 3, indicating that the effective top of H-store
is currently one less than 3x512, or 1535. A simple transfer by a GO TO
will cause a jump to an instruction in the SDL interpreter of G-store and
not to location 1536 in H-store. This result is simply a consequence of
the logic shown in Figure 7.3.

A little thought should convince the reader that it is not possible to
jump out of the SDL interpreter into another interpreter without
changing values in TOPM and MBR simultaneously with the change in
the A-register that results from a GO TO. In this particular case we need
to change A from 220 to 1536, change TOPM from 3 to 4, and change MBR
from its present value to one that refers to a point that is 2048 16 bits
below the remainder of the FORTRAN interpreter held in G-store.
These three changes must be accomplished in one indivisible operation,
i.e., by one microinstruction, or else the job of transferring from one
interpreter to another simply cannot be accomplished.

In fact, such a microinstruction is part of the B1726 repertoire, but
because it is such a subtle and perhaps dangerous instruction for an
“‘amateur’’ MIL programmer to use, we elected not to mention it until
this point. Thus, the instruction takes the symbolic form
TRANSFER. CONTROL, which is mapped to the hex string @0004@. A
TRANSFER. CONTROL instruction expects its 3 argument values (for A,
TOPM, and MBR) to be present in the T- and L-registers as follows.
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T | 000000 | A |

l—— 18 bits ——)

L | BRI | Top |

|4—20bits—)| 4 e

Execution of TRANSFER . CONTROL then has the following semantics.

l

The notation R;,
used here means the

AT
TOPM 2‘}% 2 field in register R from
MBRgq.25 — 0 bit position / to bit

osition u inclusive.
MBR,15 < Lo,19 p

!

If interpreter I1 needs to transfer control to some other interpreter 12
(or to GISMO, which may in this context be regarded as another
interpreter), then I1 must know how to restore the MBR and TOPM
values of I2. Some system conventions must be established by which
one interpreter knows where to find saved copies of the MBR, TOPM
values of the other.

A user’s interpreter normally only needs to transfer control to
GISMO. The transfer to the MCP’s interpreter (SDL) is always handled
by GISMO. Accompanying a transfer to GISMO will be some message
which indicates the purpose of the transfer. This message is a simple
integer code left in the X-register. Thus, if the message indicates an
intent to activate the MCP, then GISMO will send control to the
appropriate point in the SDL interpreter with the limit register, LR, set
properly for the MCP.

Transfer of control to GISMO is made easy by an established system
convention that some fixed field in G-store will always hold the (MBR,
TOPM) value pair for GISMO. Moreover there is the further convention
established that the entry point into GISMO is always at A = 0. So a
typical sequence for transfer of control to GISMO could be something
like Figure 7.9.

Observe that such a sequence does not supply GISMO with any




166 The Split-Level Control Store

l |

Put message in % ASSIGN SOME INTEGER VALUE TO X
the X-register

Get MBR, TOPM MOVE GISMO.MBR.TOPM TO FA

pair from % VALUE MOVED TO FA IS PREDEFINED
standard location Q READ 24 BITS TO L

in G-store to L %MBR.TOPM READ TO L

SetTto 0 MOVE NULL TO T

% TO SET A TO ZERO

4
L Transfer control —| TRANSFER. CONTROL

:

Figure 7.9.

explicit ‘‘return values’’ for A, MBR, and TOPM. In general, GISMO is
called in the sense of a subroutine, and it is necessary to supply return
values as arguments in the transfer of control.

Actually, it is not very difficult to supply return values for A, MBR, and
TOPM. The coding scheme shown in Figure 7.10 illustrates how in
principle one interpreter can transfer control to another interpreter to
implement a ‘‘conversation’’ between two microprograms (i.e., back-
and-forth coroutining). This code is similar to the current conventions
for invoking GISMO.

After placing an integer message in the X-register for the other
interpreter (box 1), a general-purpose switching routine,
INVOKE.OTHER, is called. This routine is almost straightforward.

Box 1 composes and pushes as two stack words the present MBR,
TOPM, and A register values for this interpreter. (The other
interpreter will retrieve this information when it receives
control).

Box 2 is based on the assumption that this interpreter has previously
recorded the values of MBR, TOPM, and A for the other
interpreter (see Box 4 below). The action of box 2 then copies
those recorded values into MBR, TOPM, and A.

Box 3 The transfer of control is executed which will ‘‘pass the
baton’’ to the other interpreter. When the other interpreter is
thus activated, it can as its next step first examine X to decide
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l .

Send message
and transfer
control to

other interpreter

°>

Clrm >

(a)

MOVE MESSAGE.FOR.OTHER TO X
CALL INVOKE.OTHER
NEXT.STEP

JEXAMINE X TO DECIDE WHAT TO DO

INVOKE.OTHER
CALL +SAVE.MY.RETURN
RETURN.POINT.R
MOVE TAS TO OTHER.TOPM.MBR
MOVE TAS TO OTHER.A.VAL
EXIT
.SAVE.MY.RETURN
MOVE MBR TO L
MOVE TOPM TO LF
MOVE L TO TAS
MOVE OTHER.MBR.TOPM TO L
MOVE OTHER.A.VAL TO T
TRANSFER . CONTROL
(b)

Figure 7.10.
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INVOKE . OTHER,
l |
Place message
to other
interpreter in |
the X-register
g Push present
2 values for
this interpreter
I INVOKE . OTHER | lﬁ (MBR. TOPM. and A)
2
Set values of
MBR. TOPM. and A
for other interpreter
Transfer control
Return
from
other
interpreter
4

Pop and record return
values for

other interpreter
(MBR. TOPM, and A)

%THIS IS THE EFFECTIVE
%POINT OF RETURN

%PUSH RETURN.POINT.R, I.E., THE VALUE OF A
0

%POP AND RECORD RETURN

%INFO OF OTHER INTERPRETER.

%'"PACKAGE" MBR AND

%TOPM INTO ONE 24-BIT
%REGISTER AND PUSH IT.
%SET L AND T FROM
%PREVIOUSLY RECORDED VALUE

(a) Flowchart logic for orderly switch of control from one

interpreter to another. (b) MIL code for flowcharts in (a).
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why it was activated. Eventually the other interpreter will
execute a call on INVOKE . OTHER, and when it does, and box
3 is again executed, control can return to this interpreter at
the point marked with a circled R in the flowchart.

Box 4 The first action upon reactivation of this interpreter is taken
here, which is to pop the top two words of the stack
containing MBR, TOPM, and A values for the other interpreter
and to record these values somewhere (e.g. scratchpads) for
safekeeping.

A trivial extension to the switching code given in Figure 7.10 will
allow efficient implementation of coroutining between two microcode
modules. Complete symmetry is assumed, i.e., both modules would
have essentially identical switching code.

Any interprocess or interinterpreter communication scheme, such as
the one just discussed, requires a first and crucial step of initialization
before the conversation mechanism can function properly. In the above
illustration, if one module sends the first message, then it must by some
special, explicit, or ad hoc means be told how to locate the other one,
i.e., be told the other module’s (MBR, TOPM) and A values. Ordinarily,
some central data structure must be maintained which holds information
about the states of active processes (or interpreters), and more often
than not, some central agent (supervisory routine) is made responsible
for the management of such a central data base. In Burroughs software
the location of each interpreter is determined through an information
structure managed by the MCP. Details of this information structure and
the specific functions of the MCP and GISMO are not covered here.

7.6 SUMMARY

We have now reviewed all the hardware features of the B1726 related
to execution of microprograms from two levels of store and to switching’
back and forth between independent microprograms. There is much
more to know about the particular way the H-store is managed, and the
particular implementation schemes for intercommunication between
user-coded microprograms and the operating system. Such details how-
ever are strongly dependent on the system software architecture of the
MCP and GISMO. We have regarded such details as a separate topic
entirely, and for this reason have avoided bringing them to the reader’s
attention in this book. Other literature may be consulted for information
on the MCP and GISMO.
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Our justification in ‘‘suppressing’’ such information has been twofold:

1. To give beginning microprogrammers a chance to practice writing
microcode as quickly as possible (minimum overhead).

2. To give the sophisticated computer professional a feeling for the
architecture of the B1726 and its potential independent of the
specific software products the Burroughs Corporation elected to
implement on the B1726.
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1 NOTATION

Each description of a statement contains the following three suben-
tries

Syntax of the MIL statement

Semantics

Page reference, if any, to portions of the text that illustrate (use) the
statement, or discuss its syntax or semantics

Syntax notation

Terminals (or key words) are capitalized.

Nonterminals are given in lower case (without the angle brackets
customarily used in BNF notation).

Optional words or phrases are enclosed in square brackets, [ ].

Choose one from a set of alternatives. The set of choices is enclosed
in curly brackets, { }.

Example

READ literal BITS [REVERSE] TO

INC | JFA INC | JFL
{DEC} {F‘L}] |:AND {DEC} {F‘A }:l
Here the key word REVERSE is optional, as are the phrases

s Hz
oo {1} {2,

Within the latter two optional phrases, choices may be made such as
INC FL or AND DEC FA, but note that these choices must be consistent
with one another. The syntax notation is not so precise as we might like.
Thus, the semantics of READ would tell us that

>3

and

READ 8 BITS TO X INC FA AND DEC FA

Inconsistent choice of
optional phrases

incorporates a contradiction (or nonsense)
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Semantics notation

Flowchart language is used wherever possible
Bit fields for registers or for G-store are notated as follows:

(i) Single bits as simple subscripts or subscript expressions?, e.g.,
L; means L (3)
(i) Multibit fields as parenthesized subscript spans, €.g.,

T, i+5 means the subfield of T that spans from T; to Tyy;
(inclusive),

G-store g, ra+1) means the subfield of G-store that spans from
address FA to FA+k (inclusive).

2 EXECUTABLE MIL STATEMENTS

ADD

Syntax
| SOA
S1A

ADD : TO FA
S14A
S15A
Semantics

|

ADD S7A TO FA means | FA « FA + S7A

!

Page references: 35, 39, 54

AND

Syntax
AND register—1 WITH {llt.eral }
register-2

where register—1 and
register—2 are 4-bit registers and
literal is any integer O thru 15.

3 In MIL notations, bit positions of all registers are indexed left to right starting at zero.
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continued

Semantics

|

register—1 < bit-wise AND (register—l, {llteral })

register-2

Page references: None

BIAS

Syntax
BIAS BY {gNIT} [AND {gp}] [TEST]

Semantics

BIAS BY F means

l

CPL « min (24, FL)

Set CPU

BIAS BY F AND {%P

|

. CPL
CPL <« min (24, FL, {SFL})

} means

N

Set CPU

!
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BIAS BY UNIT means €

!

CPL <« FU

A

Set CPU

l

BIAS BY... TEST means

Page references: 22, 23, 27, 28
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[CALL]

Syntax
CALL label
Semantics
push &« A hOldS
TAS « A address of
next microinstruction
¥ label is an address
A < label ¢ whose distance from

value in A prior to
this step is =4095
microinstructions

!

Page references: 41, 95, 100

CARRY
Syntax
0
CARRY { -
SUM
DIFFERENCE
Semantics

0
CARRY { 1} means
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CARRY SUM means
4
CYF « CYL

!

CARRY DIFFERENCE means

4

CYF « CYD

!

Page references: 106, 147
CLEAR
Syntax

CLEAR register—-1 [register-2 [register—3
...[register-n]...]]

)

register-1 « 0 same as MOVE 0 TO REGISTER-1
register-2 « 0 MOVE O TO REGISTER-2

!

Page references: 118, 120

Semantics

| COMPLEMENT|

Syntax

COMPLEMENT register (literal-1)
[AND register (literal-2)
[AND register (literal-3)
[AND register (literal-4)]]]

where register refers to a 4-bit register or a 4-bit subfield of FL, FB,
L,orT
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| COMPLEMENT | continued

Semantics

COMPLEMENT TA(2) means

LE(2) « 1 LE(2) « O

Page references: None

[count]

Syntax

coone {5} {2} [ (L} 08 ] [ {0

where 1iteral is any integer in the range 0 to 24
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Semantics
COUNT FA UP AND FL DOWN BY CPL means
Crromm e —
FA + CPL > 2%
lT
FA « FA + CPL - 2% FA « FA + CPL
Overflow | T —| L J ]
wraparound ¥

through 0

F
( FL-CPL<0>————¢

. I FL « FL - CPL |
FL il
underflow
stops at 0 FL <0

COUNT FA DOWN AND FL UP BY CPL means
C FA - CPL <0 )F———

T
FA liA(—F‘A—CPL+223+I| IF‘A(—FA—CPL]
underflow "
passes through zero
C FL + CPL>2'6>F—————T
T
Overflow I FL « FL + CPL — 2'¢ l l FL « FL + CPL}
wraparound [ ]
through 0 )

Page references: 95, 127

DEC
Syntax
. literal
DEC register—1 BY {register—Z} [TEST]
where

register—1 and register—2 are any 4-bit registers,
literal is any integer 0 through 15
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continued
Semantics

13
TC

C B — {]:11%} <0 )T (underflow)

F
] LB « 16 + (LB—{13})

TC
13
LB « LB - {TC}

A 4

DEC TC BY 3 TEST means

_ N\ T (underflow)
D ;

F TC — 16 + (TC — 3)

Y.

TC « TC —3

DEC LB BY { } means

Page references: None
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(exclusive OR)

Syntax

literal }

EOR register-1 WITH {register—z

where

register—1 and register-2 are any 4-bit registers,
literal is any integer 0 through 15

|

. . . . literal )
register—1 « bitwise exclusive OR (reglster—i, {register—2}

Page references: None

Semantics

Syntax
EXIT
Semantics

|

pop

A —— TAS (same as MOVE TAS TO A)

l

Page references: 41

EXTRACT

Syntax
EXTRACT literal-1 BITS FROM T (literal-2) [TO register]

where literal-1 is any integer 0 through 24,
literal-2 is any integer 0 through 23,
registerisT,L,X,orY
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EXTRACT | continued

Semantics
Given
P F 3 : Jj k 7 2:;
A
Tg.p0
where
0=j=<k=23
literal-2 + literal-1 - 1
Then

EXTRACT M BITS FROM T(j) means

!

T < Tg jem-1

!

Right-justified
with left zero
fill

EXTRACT m BITS FROM T(j)) TO register means

!

register « Ty jrm-1

!

Right-justified
with left zero
fill

Page references: 29
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GO TO
Syntax
global—-label
GO TO +point—-label
—point—label
Semantics

global-label is any label whose run-time address has a displace-
ment of less than 4096 microinstructions from the address of the GO TO.
+ point—1label refers to the first forward instance of .point—label
— point-label refers to the first backward instance of .point-—
label

Page reference: 39

[TF]

Syntax
relation TRUE ] .
IF{bit—expression}[{FALSE} THEN simple—-MIL-statement

relation [{TRUE }]
IF{bit—expression} FALSE THEN
BEGIN

END [ELSE
BEGIN

END ]

relation is any relational expression or bit designation listed under
Condition Syntax in Section 2 of Appendix B.

bit—expression designates one or more bits of the same 4-bit

register. Up to 2 bits may be designated on or off using AND, OR as
logical operators, e.g.,

TC(1)
TB(0) AND TB(2)
LA(O) OR LA(3)
CA(1) FALSE AND CA(3) FALSE
CB(1) FALSE OR CB(2) FALSE
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@ continued

To test more than 2 bits, the 4-bit register must be equated to a literal,
e.g.,

TC
LA

12
@(1)0101@

simple-MIL-statement is any executable MIL statement other
than another IF statement.

I

Semantics
IF TC(2) THEN EXIT means

Next
instructions

IF ANY.INTERRUPT THEN MOVE LA TO X means

XYST(I) =1

IF FL > SFL THEN
BEGIN
MOVE X TO Y
END ELSE
BEGIN
MOVE SUM TO Y
END
means
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FL > SFL

1T Y — SuM

Y <X

&
<«

v

Page references: 30, 31

Syntax

. literal
INC register—1 BY {register-—z} [TEST]
where

register-1 and register-2 are 4-bit registers,
literal is any integer 0 through 15.

Semantics

' 12
INC LA BY {TB} means

|
QLA R {«Ilé} s > T(overﬂow)

F

R

12 12
LA« LA+ {TB} LA < LA+ {TB} - 16

& I

v

185
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continued

INC CA BY CB TEST means
C CA + CB > 15 L (overflow)

F |

L

)
Page references: 129

{ JUMP
Syntax
FORWARD
JUMP {TD label}

Semantics

JUMP TO label means the same as GO TO label

JUMP FORWARD means JUMP to here + 0

This instruction is usually preceded by an instruction that ORs a
displacement value into the M-register, e.g.,

MOVE L TO M
JUMP FORWARD

Page references: 39
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Syntax
SO
S1
LOAD F FROM
S14
S15
Semantics

LOAD F FROM S5 means

|

FA < S5A
FB < S5B

!

Page references: None

Syntax
MONITOR 8-bit literal

Semantics

The 8-bit literal is sent out as a set of 8 signals on a set of 8
lines. External connections may be made to the ends of these lines for
sensing the value of the literal. A literal may be sensed whenever the
MONITOR instruction is executed. Such literals may be recorded and/or
displayed for purposes of performance measurement and evaluation.

Page references: None

MOVE

Syntax

MOVE source TO destination



188 Abridged MIL Reference Guide

MOVE I continued

where

source is either a literal, a 24-bit scratchpad, or a register that
can serve as a source,

destination is a 24-bit scratchpad, or a register that can serve as a
destination,
literal is any integer 0 through 2% expressed either as
a decimal number (0 to 16777215),
a binary number (@(1)0@ to @(1)1111. . .111@)
a hexadecimal number (@0@ to @FFFFFF@)

Semantics

MOVE s TO d means

|

disa24bit  \F

scratchpad J )
LT

s is a 24-bit scratch- F
pad or s is literal

T 2
push Assign Assign
TAS «———3 stod stod
d —=_TAS

/A

l

Bit length(d) vs Bit length(s)

d < Left.zero. fill(s) des d < Left.truncate(s)
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Examples

MOVE

MOVE

MOVE
MOVE

MOVE

MOVE

MOVE

162 TO S2A means

MOVE 162 TO TAS-:;;:7

MOVE TAS TO S2A

S15B TO S3A means

S15B TO TAS
TAS TO S3A

X TO S1B means

@(1)1111@ TO LA means

@(1)111@ TO LA means

189

|

push

TAS —— 162
S2A <22 TaAS

!

l

push

TAS ——_S15B
S3A 2 _TAS

!

S1B « X

i

LA « 111,

)

{

LA < 0111,

i

Right-justified with
left zero fill
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MOVE @(1)11110@ TO LA means

4

Right-justified with

LA « 1110,

truncation on the
left

MOVE X TO TE means

|

Low-order 4

TE < X(20,23)

bits of X
copied into TE

!

MOVE TE TO Y means

!

Y < TE

Left zero
fill of Y

!

Page references: 18, 28, 35

NORMALIZE

Syntax

Semantics

l

FL # 0
and
MSBX # |

T

~

Shift X to the
left 1 bit

1

FL «FL — |

.

Page references: None

NORMALIZE

i.e., shift X to the left until either
FL = 0 or the most significant
bit of X (MSBX), as conditioned
by CPL, is 1.
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Syntax

literal }

OR register—-1 WITH {register—z

where

register—1 and register-2 are any 4-bit registers,
and literal is any integer 0 through 15.

Semantics

l

l t 1
register-1 eblthseDR reglster 1, itera })
reglster -2

ED

Page references: None

OVERLAY

Syntax
OVERLAY

Semantics

After setting L to point at the overlay region in H-store,
FA to point to the region in G-store, and
FL to a count of the number of microinstructions to be copied,
OVERLAY causes FL microinstructions to be successively copied from G-
store beginning at FA to H-store beginning at L. The copying is
prematurely halted if the address in H-store of the next microinstruc-
tion overlay would exceed TOPMX512.

Page references: 161, 164
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Syntax

e | [Fa ][ {DEC}{F‘L}]
[{DEC}{F‘L} AND INC) (FA

where 1iteral is any integer 0 through 24

READ literal BITS [REVERSE] TO

o <3

Semantics

|

T « G-storeey pasi-1)

l

READ / BITS TO T means

(120

Right-justified
with left zero
fill into receiver
register

l

X — G-storeg,— pa-1

!

READ / BITS REVERSE TO X means

READ Q BITS TO L means ( CPL # 0 ) F

T

CPL
determines
field length

L < G-storeg, rascrL-n L<0

'S

READ 23 BITS TO Y INC FA AND DEC FL means
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| !

Y — G-storegy ras2

|

FA «<FA + 23
FL «<FL — 23

!

* Execution of box 2 overlaps execution of box 1.

Page references: 14, 18, 25

READ MSML

Syntax
READ MSML TO X

Semantics

|

X « H-store; | , s

}

Right-justified
with

left zero
fill of X

Page references: None

RESET

Syntax

RESET register(literal-1)[AND register(literal-2)
[AND. . .register(literal-4)]]]

where

register is any 4-bit register or 4-bit subregister of FL, L, or T, or bit
of FB, L, or T, that can serve as a destination,

literal—i is any integer, 0 through 3 for a 4-bit register, 0 through 15
for a subregister of FL, or 0 through 23 for a subregister of L or T.
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continued

Semantics

Abridged MIL Reference Guide

RESET TD(1) means

|

TD, < 0

!

RESET LB(0) AND LB(2) AND LB(3) means

|

LB, < 0
LB, <0
LB; « 0

!
|

TD, « 0

RESET T(14) means

Page references: 113, 120, 124

|ROTATE OR SHIFT T|

Syntax
SHIFT literal BITS .
{RDTATE} T LEFT BY {CPL } [TO register]

ROTATE T RIGHT BY literal BITS [TO register]

SHIFT T RIGHT BY literal BITS [TO

N e

where
literal is any integer 0 through 23,

register is any register that can serve as a destination, including T
itself.
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Semantics

ROTATE T LEFT BY /[ BITS TO register means

register « copy of T rotated
[ bits to the left

[

SHIFT T LEFT BY / BITS TO S1A means

S1A < copy of T shifted
[ bits to the left
(with right zero fill)

!

Note:
T is unchanged

SHIFT T LEFT BY CPL means

l

T « copy of T shifted
to the left CPL bits
with right zero fill

!

ROTATE T RIGHT BY / BITS TO register
means ROTATE T LEFT BY 24—/ BITS TO register

SHIFT T RIGHT BY / BITS [TO

(e IS

means EXTRACT 24-/ BITS FROM T(0) [TO

3

This extract instruction is generated by the MIL assembler, since the
B1700 cannot shift T right directly. See page 181.

Page references: 125, 127
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| ROTATE OR SHIFT X, Y, or XY |

Syntax

X
SHIFT LEFT .
{ROTATE} §Y {RIGHT} BY literal BITS

where XY means X concatenate Y and
literal is any integer 0 through 23, or, when XY is used, any
integer 0 through 47.

Semantics

LEFT.

RIGHT} BY 8 BITS means

|

X « copy of X shit{)ed

SHIFT X{

. left
8 bits to the right

with zero fill on {rlght}

left

Page references: None

SET

Syntax
SET reg TO literal

or

SET reg(literal—-1)[AND REG(literal-2)[AND...
[AND reg(literal-4)]1]11]

where

reg is any 4-bit register or any 4 bit subregister of FL, L., or T that can
serve as a destination,

literal-i is any integer, 0 through 3 for a 4-bit register, 0 through 15
for a subregister of FL, or 0 through 23 for a subregister of L or T.
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Semantics

SET TC TO 14 means

l

TC « @(1)1110@

T

SET LE(O) and LE(3) means

l

LEy) « 1
LE; « 1

l

Page references: 113, 120, 124, 129

Syntax
ALL [CLEAR]
SKIP WHEN register J}ANY mask [FALSE]
EQL

where register is any 4-bit register and mask is any integer 0 through
15 (represented as decimal, binary, or hexadecimal).

SKIP WHEN condition [FALSE]

where condition is any condition available from the condition regis-
ter, BICN, XYCN, XYST, FLCN, or INCN. (See Condition Syntax

in Section 2 of Appendix B.)
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continued

Semantics

SKIP WHEN FLD ANY mask means

|

There is a 1-bit in FLD

. T
that matches a corresponding 1
1-bit in mask

Next micro-

instruction

SKIP WHEN TC ALL CLEAR @(1)1101@ means

1 1
Every 1-bit of TC \ T
matches every 1-bit
in @(11101@ J

F

2

Clear all matched 1-bits of TC

Next micro-
instruction

Note: 3

Boxes 2 and 3
are inserted into

Clear all matched 1-bits of TC

the logic as a
result of the
CLEAR option

(ﬁr—- --
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SKIP WHEN TB EQL 12 FALSE means

—

TB # 12

Next
microinstruction

.
[V

v
SKIP WHEN ANY.INTERRUPT means

Next
microinstruction

Page references: 39

STORE F
Syntax
SO
S1
STORE F INTO :
S14

S15

199
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STORE F | continued

Semantics

STORE F INTO S5 means

|

S5A « FA
S5B « FB

!

Page references: None

[SUBTRACT
Syntax SOA
S1A
SUBTRACT : FROM FA
S14A
S15A
Semantics

SUBTRACT S3A FROM FA means

|

FA « FA — S3A

l

Page references: 35

SWAP

Syntax

SWAP 1literal BITS [REVERSE] WITH

<<

where 1iteral is any integer, 0 through 24.
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Semantics

SWAP [ BITS WITH T means 1

hidden register « G-storeg, rav-1
G-store gy rasi—1) < Ta-1,23

T «— hidden register

i)

l

Right-justified
with left zero
fill

SWAP [ BITS REVERSE WITH X meansl

hidden register « G-storegp,—; ra-i
G-storers i, ra-1) < X@a-1,23

X «— hidden register
Ly

!

Right-justified
with left zero
fill

SWAP 0 BITS WITH L means l

hidden register « G-storegy pa+cer-1

G-store ey rascrr—1 < Licpr-24.23)

S L «—hidden register

!

CPL
determines
field length

Page references: None
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| TRANSFER.CONTROL |

Syntax
TRANSFER.CONTROL

Semantics

See also the BIND instruction in Appendix B.
This instruction is to be issued after L. and T have been preset as

indicated
f— 18
T \\\Q A.image

< 20 o 4

TT1
1

\ TOPM.image

A

L [MBR/16].image

Execution of this instruction causes new values to be assigned to the A,
TOPM, and MBR registers as follows

A <« A.image from T
TOPM <« TOPM.image from L
MBR <« 16X[MBR/16].image from L

Page References: 164—169
WRITE
Syntax
WRITE literal BITS [REVERSE] FROM

[{ne] {ea [ {220} {2L]]

where 1iteral is any integer O through 24

O3
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Semantics
WRITE / BITS FROM T means l
G-store, pasi—1 < Tar 23,
1> 0 !
WRITE / BITS REVERSE FROM X means l

G-storews—; ra—1) < Xa—r.23

)

WRITE O BITS FROM L means
é F
CPL # 0
_/

~

G-store ey pari—1 < Liaar )

i
<

v

WRITE 18 BITS FROM Y INC FA AND DEC FL means

l 1

G-StOre (pp pas 17 < Y629

2*
FA < FA + 18
FL < FL — 18

)

* Execution of box 2 overlaps execution of box 1.

Page references: 15, 22-26



204 Abridged MIL Reference Guide

| WRITE MSML |

Syntax
WRITE MSML FROM X

|

H-store ;5 < Xg23

!

Semantics

Page reference: None

XCH |

Syntax
SO SO
S1 S1

XCH : F :

S14 S14
S15 S15

Semantics

XCH S3 F S5 means

F——

hidden register F
F S3
S5 hidden register

48-bit
transfers

XCH S4 F S4 means hidden register F
. F S4
S4 hidden register

1T T 111

Pure
interchange
of F and S4

Page reference: 25-27
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3 Nonexecutable MIL STATEMENTS

| ADJUST LOCATION |

Syntax

literal PLUS
ADJUST LOCATION TO location{ + }1itera1

where 1literal must be a number = 0 modulo 16

Example ADJUST LOCATION TO LOCATION + 1600
Semantics

The ADJUST declaration is a command to the MIL assembler to
change the value of its location counter. The assembler initializes a
location counter to zero at the beginning of its operation and increments
this counter by 16 after each microinstruction is assembled, so the
counter’s value corresponds to the address of the next microinstruction
to be assembled relative to an H-store base address of zero.

Examples

ADJUST LOCATION TO 160 forces the counter to be changed to 160.
ADJUST LOCATION TO LOCATION PLUS 256 forces the counter to be
incremented by 256 and is equivalent to inserting a sequence of 16 NOP
instructions (256 zero bits) into the generated code stream at this point.

Page references: 162

Syntax
DEFINE identifier = string #

Semantics

Any subsequent reference to identifier will be replaced by
string.

Examples

DEFINE BASE.OF.INTERPRETER =
DEFINE NUMBER.OF.TERMINALS
DEFINE I

DEFINE FLAG

|

n
o
>

I n

QW

b ]
FHhFHh KR

|
Q
[os)
o
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DEFINE | continued

Ordinarily, the scope of a DEFINE is the entire MIL program.
However DEFINE scopes may be nested, as are ALGOL declarations,
using a similar blocking device:

BEGIN
LOCAL DEFINES

END

A given identifier may be DEFINEd or reDEFINEd within such a block,
just as an ALGOL identifier may be declared or redeclared within a
begin, end block. (See especially Figure 4.4 on p. 53.)

Page references: 51-53

Syntax

DECLARE declare—element-1
[, declare—element-2[, ... ]...] ;

where the format of a declare element is either simple or structured.
A simple declare element has the syntax

{identifier—i[(array—size)] }
(identifier—and—array—size-list)

identifier—z}] FIXED

[REMAPS{ CHARACTER(length) { [REVERSE]
BASE.ZERO BIT(length)

where identifier—and-array—size—1list has the syntax

id-1[(array-size—1)][,id-2[ (array-size-2) ]
[, id-2[(array-size-3)]...]

Examples using simple declare elements are

DECLARE A CHARACTER(20) REVERSE;
DECLARE A FIXED,

B CHARACTER(3),

¢ BIT(20),

(D, E, F, (5)) BIT(4)

G(20) FIXED,

H(3) CHARACTER(6)

AA REMAPS A CHARACTER(3),

CC(4) REMAPS C BIT(5);
DECLARE P REMAPS BASE.ZERO BIT(200);
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A structured declare element has the syntax

identifier-1

level number JFILLER [(array—-size)]
DUMMY K—_\,)
[REMAPS identifier2]>
( FIXED

CHARACTER(length) { [REVERSE]
BIT(length)

Optional for
group elements
only

Example

DECLARE 01 MABEL REVERSE,
02 BAKER,
03 CHARLIE BIT(20);
03 DOG BIT(30);
02 ELLEN CHARACTER(5);

(Group elements, such as MABEL and BAKER, need not contain type-
length attributes.)

Semantics

The DECLAREs of a MIL program define (but do not allocate)
successive field addresses of G-store relative to BASE . ZERO, the value
of the BR resiter. Each declare element carries with it an explicit or
implicit length based on the given type-length attribute, so a G-store
address is associated with each DECLAREd identifier.

If an identifier is given the additional attribute REVERSE, then the G-
store address associated with that identifier is the address that would be
needed for a READ REVERSE or WRITE REVERSE of the corresponding
object from G-store, i.e., the bit address that is one higher than the
rightmost bit of the field corresponding to that identifier.

If a group item is declared REVERSE, then each of its subitems will be
treated as if it were declared REVERSE.

DECLAREd arrays may only be one-dimensional, so that if a group
item of a structure is an array, then an array specification may not
appear in any subordinate group item. Such subordinate group items are
regarded as descriptions of array elements.
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DECLARE | continued

Example
01 ABEL(5) BIT(48)
02 BAKER FIXED,
02 CHARLY FIXED;

declares that ABEL is an array of 5 elements, each 48 bits long. Each
element of ABEL is further described by declare items at level 02.

Any piece of G-store previously declared as either a simple or a
structured item may be renamed as a REMAPS item. For example,

DECLARE ABEL1 REMAPS ABLE BIT(240),
01 ABEL2 (10) REMAPS ABEL BIT(24),
02 BAGEL BIT(3)
02 CABEL BIT(20);

remaps the declared structure ABEL in the following two ways
1. ABEL1 is a single field of 240 bits that exactly covers ABEL
2. ABELZ2 is a 10-element array exactly covering ABEL, but each

element of ABEL2 consists of a 3-bit field, BAGEL, a 20-bit field
CABEL, and an implied 1-bit filler field.

If only the subfields of a REMAPS group item will ever be referred to,
then it is not necessary to give a unique identifier for that group item. A
DUMMY REMAPS item may be used, e.g.,

DECLARE 01 DUMMY(10) REMAPS ABEL BIT(24),
02 BAGEL BIT(3),
03 CABEL BIT(20);

Page references: 51-56

SYNTAX
MACRO macro—name[ (fp—1[,fp-2[,...[,fp-n]...]11)] =

statement-1
[statement-2]

[statement—n] #

where fp—i is the ith formal parameter.
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Semantics

A macro-name is declared with no, one, or more formal parameters,
which in turn may occur within the statement(s) of the macro’s body.
When the macro is referred to in a subsequent MIL statement, the text
of the macro body is inserted, with string replacements of each occur-
rence of a formal parameter by its corresponding actual parameter. A
formal parameter may not represent a label. All MACRO definitions must
appear ahead of any executable statement.

Example

MACRO WRITE.ITEM (ITEM1, ITEM2, ITEM3) =
XCH ITEM1 F ITEM1
WRITE 24 BITS FROM ITEM2 ITEM3 FA AND DEC FL
XCH ITEM1 F ITEM1 #

When later referenced as
WRITE.ITEM(S2, X, INC)
this reference will be replaced by the in-line MIL code

XCH S2 F 82
WRITE 24 BITS FROM X INC FA AND DEC FL
XCH S2 F 82

Page references: 56, 57, 100

Syntax

TABLE label
BEGIN
first literal
second literal

last literal
END

Allowed literals include character strings, binary, and hexadecimal
constants. Decimal constants are not allowed. The label following
TABLE is treated by the MIL assembler as an addressable label.
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TABLE | continued

Example (See also Section 7.3)

TABLE MIL.OPCODES
BEGIN
"MDVE"
" IFH
"GD TU"
HBIAS"
"SET"
"RESET"
END

Semantics

The MIL assembler presets a space in the microcode beginning at an
address corresponding to 1abel with a sequence of values corresponding
to the literals given between the BEGIN, END pair of the TABLE
declaration.

Page references: 157-160

4 SPECIAL MIL EXPRESSIONS
4.1 ADDRESS
An expression of the form
ADDRESS(label)

may appear in a MIL statement in place of a literal. The ADDRESS value
of a label is the value of the MIL assembler’s location counter that
corresponds to that label’s occurrence in the MIL program. An address
value of a label is necessarily congruent to zero modulo 16.

Examples

MOVE ADDRESS(MULTIPLY) TO S1A moves the address value of the
label MULTIPLY to S1A. This address value is relative to the beginning
of the assembled program.

MOVE ADDRESS(-HERE) TO X moves the address value of the point
label .HERE (the first one that precedes this statement) to X.
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4.2 DATA.LENGTH
An expression of the form
DATA . LENGTH(declared identifier)

may appear in a MIL statement in place of a literal. A declared identifier
is any simple or array identifier that appears in a DECLARE statement.
The DATA . LENGTH for that identifier is its length in bits.

Examples Given

DECLARE 01 MABEL(5) BIT(56),
02 BAKER FIXED,
02 CHARLY CHARACTER(4);

then

MOVE DATA.LENGTH(MABEL) TO X
would assign the value 5 X 56 or 280 to X,

MOVE DATA.LENGTH (CHARLY) TO FL
would assign 32 to FL, and

WRITE DATA.LENGTH(BAKER) BITS FROM Y

would write 24 bits from Y.



Appendix B
Abridged reference guide to the B1726

1 B1726 REGISTER SUMMARY

REGISTER
NAME

X, Y

Each is a 24-bit register which can be used as a receiver register
(source/sink) for G-store transfers.

Each is always one of the inputs to the 24-bit function box.

Neither is composed of 4-bit subregisters.

Inspection of the high and low bits of X is possible (MSBX, LSUX).

Inspection of only the low bit of Y (LSUY) is possible.

Each can be compared against zero or against the other (X=0, X#0,
X>Y,X =Y, etc., Y=0.

X and Y can each be shifted or rotated right or left.

The 48-bit field formed by concatenating X and Y may be shifted or
rotated left or right.

T

A 24 bit register which can be used as a receiver register (source/sink)
for G-store transfers.
T is composed of 4-bit subregisters in the following fashion:

| T

ITA‘TBITC|TD|TEITF|

This allows any bit of the T-register to be tested [bits are numbered
from left (0) to right (23)].

Bits of any subregister may be tested [bits of a subregister are
numbered from left (0) to right (3), e.g., TE(2) is the third bit from
the left of TE and can also be referred to as T(18)].

T does not act as an input to the 24-bit function box.

212



B1726 Register Summary 213

The T register may be shifted or rotated left and the result may be
transferred to any other register.

A group of contiguous bits may be extracted from anywhere within T
and the group transferred to X, Y, T, or L.

L

A 24-bit register which can be used as a receiver register (source/sink)
for G-store transfers.
L is composed of 4-bit subregisters in the following fashion:

L

ILAILBILCILDILEILFI

L may not be rotated or shifted.
L does not act as an input to the 24-bit function box.

CP

An 8-bit control register

I |
PRI |

CYF\/ CPU CPL

The subfields of CP are
CYF (1 bit), the ‘‘carry-in’’ for the 24-bit function box (for SUM,
DIFF)
CPU (2 bits), the arithmetic mode of the 24-bit function box:
00 binary
01 4-bit decimal
10 not defined
11 not defined
CPL (5 bits), the width of the 24-bit function box; any precision up
to and including 24 bits may be specified.
If CP = 0, the 24-bit function box is in essence turned off, since the
length (CPL) is zero.
CP cannot be used for general storage.

FA

A 24-bit register.

It is not composed of 4-bit registers.

The contents of FA specify the location of G-store to be accessed
during a G-store transfer (READ, WRITE, or SWAP).
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FA may not be shifted or rotated.

It is not possible to test a particular bit within FA or to compare the
contents of FA with any register or value.

A fast 24-bit adder is attached to FA. The adder can be used to add or
subtract a small constant (0-24) to FA or to add or subtract the 24-
bit contents of the left half of a scratchpad to FA (S1A, for
example).

FB

A 24-bit register composed of 4-bit registers in the following manner
FB

| rul Fr |FLC|FLDIFLE] FLF

e————FL ———>

This structure allows any bit of FB to be tested.
Some of the subfields of FB have special uses:

FU can alter the contents of CP when used with the BIAS BY UNIT
instruction.

FLC, FLD, FLE, FLF comprise a 16-bit register called FL. The FL
register has a fast adder attached which can increment or decre-
ment FL by a small constant (0-24).

The 16-bit value of FL. can be compared with zero or with the value
represented by the low-order 16 bits of SOB. This 16-bit field of SOB
is called SFL.

TAS (The stack)

A group of 32 registers (24 bits wide) of which only one (the top) is
available (i.e., addressable) at any time.

The LIFO discipline is observed.

Any data may be placed on the stack and retrieved later.

The hardware will automatically place a microcode return address on
the stack when entering a microsubroutine, facilitating the return
from a subroutine.

Overflow or underflow (i.e., pushing too many values or popping too
many values) is not detected, and care must be taken to prevent
incorrect operation of a microcode subroutine.

The scratchpads

This is an array of 32 régisters (each 24 bits wide) that is organized in
the following fashion.
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A (left half) B (right half)

SO
S1

S15

Access to any A or B half is allowed.

Access to a left, right pair (e.g., S3A, S3B) as a 48-bit register is also
allowed when transferring to/from or exchanging with the FA, FB
register pair (see instructions LOAD, STORE, XCH).

In addition, the A half of a scratchpad register may be added to or
subtracted from the FA register.

4-bit registers

Any bit of a 4-bit register can be examined.

Up to two bits of a single 4-bit register can be tested in a single
microinstruction.

Many of the four-bit registers have preassigned meanings and reflect
the status of X, Y, FL, etc.

Most other four-bit registers are subfields of 24-bit registers (T, L, FB).

There are only two four-bit registers that have no preassigned mean-
ings and are not part of a larger register. These are CA and CB.

A

A 16-bit register which serves as the microinstruction address register.

This is the program counter. (On many conventional machines this
register is not addressable.)

A jump can be achieved by moving a value to A.

A return address can be generated by moving from A, e.g., to the
stack (TAS).

While executing an instruction, the A-register reflects the address of
the instruction that follows the current instruction.

M

A 16-bit register that contains the current microinstruction.
This register is not useful as a source of data. However, the next
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S-pads
H-store M-register A B X

#0 S0 | 00F500 00F000
#1 S1
#2 MOVE 5 TO M S2
#3 | MOVE SOA TO X S3
; s4

S5 | 100600
A

0002 ’

Figure B.1. Snapshot just before instruction #2 is executed.

S-pads
H-store M A B X
#0 0000 SO 00F500 100600
S1
#1
S2
#2| MOVE 5 TO M S3
#3 |MOVE SOA TO X S4
S5 100600

Figure B.2. Snapshot just after instruction #3 is executed.
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instruction that the hardware executes can be modified by a value
moved to M; for example,

MOVE 5 TO M
MOVE SOA TO X

will actually perform as follows. We begin as shown in Figure B.1.

Instruction cycle for A = 0002 The hardware
1. ORs microinstruction #2 to M, which is assumed to have been
cleared to zero as a result of step 4 of the preceding instruction
cycle
Increments A to 0003
Decodes the MOVE 5 TO M instruction
Clears M
Executes MOVE 5 TO M, which results in

u [0 ]

Instruction cycle for A = 0003 . The hardware

ORs microinstruction #3 with M, forming MOVE S5A TO X in M
Increments A to 0004

Decodes the modified instruction

Clears M

Executes MOVE S5A TO X, yielding the snapshot in Figure B.2.

Rl A

oW

Note that the #3 microinstruction is not changed.
Also note that the M-register retains the <‘0005’’ (modification) for only
one instruction cycle.

2 TESTABLE BITS FOR IF STATEMENTS

The following testable conditions all reside in 4-bit registers. The bit
numbering is the software convention, starting with bit 0 on the extreme
left (high-order position).

REGISTER CONDITION SYNTAX
WHERE BIT Is
LocATED PRIMARY ALTERNATE NOTES
BICN Binary conditions—Read only
LSUY BICN(0) Low-order bit of Y*
CYF BICN(1) Carry input for ALU
CYD BICN(2) Borrow out from ALU®
CYL BICN(3) Carry out from ALU*
XYCN X-Y Conditions—Read only
MSBX XYCN(0) High-order bit of X°¢

X=Y XYCN (1) 24-bit comparison®
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REGISTER CONDITION SYNTAX
WHERE BIT 1s
LocATED PRIMARY ALTERNATE NoTEs
X<Y XYCN(2) 24-bit comparison®
X>Y XYCN(3) 24-bit comparison®
XYST X-Y states—Read only
LSUX XYST(0) Low-order bit of X*
ANY.INTERRUPT XYST(1) On if any interrupt bit is set
Y+#0 XYST(2)
X+#£0 XYST(3)
FLCN Field-length conditions—Read
only
FL=SFL FLCN(0O) 16 bit comparison
FL>SFL FLCN(1) 16-bit comparison
FL<SFL FLCN(2) 16-bit comparison
FL+#£0 FLCN(3)
cc External interrupts®—read and
write
CC(0) State light
CC(1) Set by hardware timer every #;
sec (no nmemonic)?
CC(R) Set by I/O controllers for service
request?
CC(3) Set by switch labeled ““INT’’ on
front panel?
CcD Abnormal main memory
conditions—read and write
CD(0) Set by parity error detected in
main memory?
CD(1) Set by program to allow writes
to all of storage (override)
CD(2) Set when a read out of bounds is
attempted
CD(3) Set when a write out of bounds
is attempted?
T TX(@) T() Any bit of T or L or of a
L Lx() L{)) subregister of T or L,
x::=A[B|CIDIEIF
in=0112|3
J=0[1[213|. . .[]21]22]23
CA CA@) Any bit of CA or CB
CB CB() i:=0[1[2|3
FB FU@) Any bit of FB or of a subregister
FT@) of FB

FLC(®) FL(k) i::=0[1|2]3
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FLD() FL(k) k::=0[1[213]...]14[15
FLE(®) FL(k)
FLF() FL(k)

¢ Conditioned by CPU.

® Not conditioned by CPL.

¢ Conditioned by CPL.

4 This interrupt also sets XYST(1).

3 MICROINSTRUCTIONS: SYNTAX AND SEMANTICS?
This section lists the B1726 microinstructions alphabetically by their

mnemonics. Summary charts are given at the end.

Notation

The syntax notation is self-explanatory. The semantics notation is the
same as that used in Appendix A except that we add one new
convention to express modular arithmetic as follows:

<0, then A {*}B+C,
(A{=}B)mod C means if A{x}B = {=C, then A {+}B—C,

else

|

FA <« (FA+AFA) mod 22*

RN

l

A{=}B.

<0
—( values of FA +AFA

\ 2224
/

other

FA «— FA +AFA

FA «— FA + AFA + 2%

FA — FA + AFA - 2%

l

]

0

v

2 Bit positions for microinstructions are indexed from right to left to conform with

hardware conventions.
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Syntax
Binary
Hex 15 14 13 12 1t 10 9 8 7 6 3 2 1 0
010]3 0 0 0 0 0 0 0 0 0 0 v TEST
A

@F)—F—
T

Variant value
0.....7

CPU « |

CPU «< 0

f

| CPL <« FU

CPL « min(24, FL)

CPL < min(24, SFL)

CPL « min(24, FL,SFL)

CPL « min(24, CPL,FL)

CPL « min(24, CPL, FL, SFL)
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F
A—A+16 @
v
Note: Variants V = 4 and V = 6 have no effect on CPL .
BIND |(Same as TRANSFER . CONTROL MIL statement)
Syntax
Binary
Hex IS 14 13 12 11 10 9 8 7 6 5 4 3 0
T T T T T L) T T T T T
0(0|0]|4 o 0 0 0jJ0 0 O O}JO O O O0]0O0 0
Semantics

l

A — Ty

TOPM < Lyj»3
MBR,p3 < 0

MBRy,19 < Lo, 19

l
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BIT TEST
RELATIVE BRANCH FALSE
Syntax
Binary
Hex 1514 13 12 11 10 9 8 7 6 S 4 3 2 1 0
alnlnln 01 0 0 Register | Reg ils ~Relanvc»:
row col 2 | displacement
Displacement sign
| = negative = backward
0 = positive = forward
Semantics
Select register, REG
from ROW and COL
T .
REG; = 0 | A — A + I6x(signed 4-bit source
relative registers
F displacement) ROW COL O 1
0 TA FU
1 TB FT
v 2 TC FLC
3 TD FLD
Branch 4 TE FLE
forward or 5 TF FLF
backward 6 cA BICN
up to 7 CB FLCN
15 micro- 8 LA TOPM
instructions 9 LB —
from next 10 LC —_
instruction 11 LD —
12 LE XYCN
13 LF XYST
14 cc INCN
1S CD CPU

* The hardware assumes that register bits are indexed from right to
left:

3 2 1 0 «—=—Bit index ‘‘understood”’
by the hardware

REG
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BIT TEST
RELATIVE BRANCH TRUE
Syntax
Binary
Hex 1514 13 12 11 109 8 7 65 4 3 2 1 0
stnlnlnllo 1 0 1 Register | Reg ils .Relative
row col 2 | displacement
Bit
index*
Displacement sign
| = negative = backward
Semantics 0 = positive = forward

” Select register, REG

from ROW and COL
T R 4-bit source
REG; = | | A — A + 16x(signed .
relative registers
F displacement) ROW COL 0 1
—7 0 [TA FU
| TB FT
v 2 TC FLC
3 TD FLD
Branch 4 TE FLE
forward or 5 TF FLF
backward 6 cA BICN
up to 7 CB FLCN
15 micro- 8 LA TOPM
instructions 9 LB —
from next 10 LC —
instruction 11 LD —
12 LE XYCN
13 LF XYST
14 cC INCN
15 CD CPU

* The hardware assumes that register bits are indexed from right to
left:

3 2 1 0 «—=—Bit index ‘‘understood”’
REG by the hardware
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BRANCH RELATIVE FORWARD

Syntax

Binary
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Cln|lnin 1 1 0 0 Relative displacement magnitude
Semantics

|

A «— A + 16X (Relative displacement magnitude)

|

Branch forward
up to 4095
microinstructions
from next
instruction

BRANCH RELATIVE BACKWARD

Syntax

Binary
Hex 15 14 13 12211 10 9 8 7 6 5 4 3 2 1 0

Din|n|n 1 1 0 1 Relative displacement magnitude
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Semantics

|

A — A — 16X (Relative displacement magnitude)

!

Branch backward
up to 4095
microinstructions
from next
instruction

CALL REL FORWARD |

Syntax
Binary
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Eln|n|n 1 1 1 0 Relative displacement magnitude
Semantics
push
TAS «—A

A — A + 16X(Relative displacement magnitude)

Branch forward
up to 4095
microinstructions
from next
instruction
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CALL REL BACKWARD

Syntax

Hex 15 14 13

12

Abridged Reference Guide to the B1726

Binary

11 10 9 8 7 6 5 4 3 2 10

Filnln|n|| 1 1 1

1

Relative displacement magnitude

Semantics

push

A

TAS

A — A — 16%X(Relative displacement magnitude)

CLEAR REGISTERS |

Branch backward
up to 4095
microinstructions
from next
instruction

Syntax
Binary
Hex 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
0{3|n|n 0O 0 0 0 0o 0 1 1 L|T|Y|X|FA|FL|FU|CP
- . J

Flags for 8 registers
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Semantics

227

L 2
COUNT FA AND FL
Sy ntax Binary
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3210
0|6[n|n 0 0 0 O o 1 1 0 v Literal

\

Range is 0 to 24

inclusive
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| COUNT FA AND FL | continued

Semantics

|

CPL furnishes the
increment or

T
Literal =0
F
decrement when LIT <« Literal
a zero value is
specified for 27
Literal AFA « 0

"AFL « 0

LIT « CPL

LIT is assumed to
be a 5-bit
hidden register

AFA and AFL are
assumed to be 5-bit
hidden registers

AFA « LIT
AFL « LIT

AFA «< LIT
AFA « —LIT

Computer increment/

decrement for :.;>
FA and FL

according to the
value of V

AFA «— —LIT
AFL < LIT

AFA « —LIT

AFL « —-LIT

AFA « —LIT
AFL « —LIT

' I Inc/dec FA >
j] r FA « (FA + AFA) mod 2 * J

=716

<0
—(  Value of FL + AFL

Inc/dec FL > Other

[FL(——O] LF‘L<—-F‘L+AF‘L ] lF‘L(—F‘L+AFL—2‘“]
L

Note: This instruction cannot count FA and FL up.
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| EXTRACT FROM T

Syntax
Binary
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
R (right edge |S .
Blnln|n|l1 0 1 1 index) (sink | " (glerlguwﬁd;‘)
1 through 24 | reg.) &
S MEANS
00 X
01 Y
10 T
11 L
Semantics

An EXTRACT microinstruction specifies as its arguments

R, the rightmost index plus 1 of the field to be extracted
S, the sink register (X, Y, T, or L) to receive the extracted field
W, the width of the field to be extracted

A MIL instruction of the form
EXTRACT w-BITS FROM T(j). ..

is mapped by the MIL assembler into an EXTRACT microinstruction by
computing microargument R from the MIL arguments j and w:

R

!
1516 ...21 22 23 MIL MICRO

j+tw = R

N «— .
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EXTRACT FROM T

continued

Let Tcopy and Mask be 24-bit hidden registers as shown.

left by R bits

Rotate Tcopy to the

!

Tcopy

Set to zero the 24—W
high-order bits of

\

S « Tcopy

g

Maskgy-y < 0
Masky, o3 < |

5.2

I Tcopy < AND(Mask, Tcopy) ]

!

Syntax

Binary
Hex 15 14 13 12 11 10 9 8 7 6 5§ 4 3 2 1 0
0/{0j{0|1f{0 0 0 0jO O O O[O O 0 OJO O O 1

Semantics
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Syntax
Binary
Hex 1S 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Source
0(0[S5|n OOOOOOOOOIO(Scratchpad)
Source MEANS
0 SO (48 bits)
1 S1
15 S15
Semantics

|

FA « left half of Source
FB « right half of Source

J
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| MANIPULATE 4-BIT

Binary
Hex 15 14 13 12 11 10 9 8 7 6 54 3210
3lnfnin 0 0 1 1 Register row l:f)lg \' Literal
q v
~
\\ Affected 4-bit
Register
ROW coL 0 |
0 TA FU
1 TB FT
2 TC FLC
3 TD FLD
4 TE FLE
5 TF FLF
6 CA —
7 CB FLCN
8 LA TOPM
9 LB —
10 LC —
11 LD —
12 LE
13 LF
14 cC
15 CD
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Semantics
Let

R = the specified register,
L = the specified literal.

=0 /—l——\ =7
Values of V
R+4L > 16

R « (R+L) mod 16

R < AND(R,L)

R < OR(R,L)

R « (R+L) mod 16

R — EOR(R,L)

l R « (R+L) mod 16

' R < (R-L) mod 16

I R « (R-L) mod 16 l

MONITOR

Syntax

Binary
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
09| n|n 0 0 0 0]1 0 0 1 Literal
Semantics

Literal is sent out on 8 monitor lines, one per bit of the literal, to be
sensed by any device designed for the purpose.
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MOVE 8-BIT LITERAL

Syntax
Binary
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 | 0

Register row

8l nln|n 1 0 0 0 (column 2 only) Literal

\ Registers

ROW (col. 2)
0 X
1 Y
2 T
3 L
4 A
5 M
6 BR
7 LR
8 FA
9 FB
10 FL
11 TAS
12 CP
13
14 -
15 -

Semantics

Let R be the specified register.

|

R « Literal

Right-
justified
with left
zero fill
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| MOVE 24-BIT LITERAL |

Syntax

Binary

Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

Register row
(col 2 only)

Literal (first 8 bits)

Binary
14 13 12 11 10 9 8 7 6 S 4 3 2 1 0

15

Literal (last 16 bits)

REGISTER
Row (CoL 2)

0 X

1 Y

2 T

3 L

4 A

5 J—

6 BR

7 LR

8 FA

9 FB
10 FL
11 TAS
12 CP
13 —_
14 _—
15 —
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| MOVE 24-BIT LITERAL | continued

Semantics

Let R be the specified register.

|

R « Literal
V.

!

Truncation
on the
left, as
required

NO OP
Syntax
Binary
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0/0(0{0{f0O O O 00 O O 0/O O O 0{0 O 0 O

Semantics

Operation is null.

| NORMALIZE X

Syntax

Binary
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0j0;03{|]0O 0 0 0|0 O O 0/O0 O O O[O0 O 1 1
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Semantics

FL #0 F
and
MSBX =0

T

Shift X left
1 bit with
right zero fill

v

FL « FL—1

L

Note: MSBX means most significant bit of X as referenced by CPL. If
CPL=0, the relation MSBX=0 is set to true.

OVERLAY
Syntax
Binary
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0/0{0]2|1J]0 O O Of(O0O O O 0[O O0 O O|O O I O
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OVERLAY | continued

Semantics

H-store, « G-storeg, s+ s

4
FA < FA+ 16
FL «<FL -1
J 5
T FL #0
and

[A/16] < TOPMXS512
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| READ/WRITE G-store |

Syntax
Binary
Hex 15 14 13 12 11 10 9 8 76 5 43210
R iy FOR
[ | or R Length
LR w | Count FA/FL ;g eyl e Qo249
A
0 = READ REG MEANS 0 = FORWARD
| = WRITE _— | = REVERSE
00 X
01 Y
10 T
1 L
Semantics

Let [ be a hidden register, and F/R = FOR/REV.

Length = 0

[ | — Length J | [ — CPL J
]
(read) T f_R/V-I -0 F (write)

F (reverse) F (reverse)

[ Rebg — G-storew, pasi-n —J L G-store ey pasi-n < R€Ea1-12y |

I R‘eg — G-storegs—.ra-1) l | G-storees_;.ra-n < REG@3-12n

/ ] N ]
Right- J
justified with
left zero fill

COUNT FA AND FL
(using V and /)
See p. 227

l
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READ/WRITE H-store |

Syntax
' Binary
Hex 1514 13 12 11 10 9 8 7 6 5 4 3 2 1
olof7{n| 0o 0o 0o ofloo0oo0oofo 11 1]o000]|R A4
0 = READ
| = WRITE
Semantics
X «— H-store,; ;s H-store, ;s < Xz
N

Right-justified
with left zero
fill
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REGISTER MOVE

Syntax
Binary
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
alnlallo o o 1 Source reg |Source | Dest Desggztlon
ROW COL |COL ROW
Registers
Row~._ COL 0 1 2 3¢
0 TA FU X SUM
1 TB FT Y CMPX
2 TC FLC T CMPY
3 TD FLD L XANY
4 TE FLE A XEOY
5 TF FLF M MSKX
6 CA BICN® BR MSKY
7 CB FLCN® LR XORY
8 LA TOPM FA DIFF
9 LB - FB MAXS
10 LC - FL MAXM
11 LD - TAS -
12 LE XYCN® CP MBR
13 LF XYST* MSMA DATA
14 cC INCN® - CMND
15 CD CPU® - NULL

¢ Source only.
® Destination only.
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| REGISTER MOVE | continued

Semantics

T L F
, Destination # M

N

Destination < Source

}Il «— OR(M*,Source)

Right-
justified
with left
zero fill
or truncation
on the left

where M* is a copy of the next microinstruction.
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SCRATCHPAD MOVE |
Syntax
Binary
Hex 1IS141312 11109 8 7 6 5 4 3210
Source/Dest | Source/Dest | TO A Scratchpad
2ynmgn 0010 ROW coL ¥R | /B | number
[
0 through 15
0=A = left half
1=B = right half
0=TO = move is fo the scratchpad
1=FR = move is from the scratchpad
Registers
ROW COL 0 1 2 3¢
0 TA FU X SUM
1 TB FT Y CMPX
2 TC FLC T CMPY
3 TD FLD L XANY
4 TE FLE A XEOY
5 TF FLF M MSKX
6 CA BICN® BR MSKY
7 CB FLCN® LR XORY
8 LA TOPM FA DIFF
9 LB — FB MAXS
10 LC — FL MAXM
11 LD —_ TAS —
12 LE XYCN® CP MBR
13 LF XYST® MSMA DATA
14 cc INCN® —_ CMND
15 cD CPU® — NULL

“ Source only.
® Destination only.
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SCRATCHPAD MOVE | continued

Semantics
T o F
- Destination # M
A
IBestination « Source }JI < DOR(M*,Source)

Right-

justified
with left
zero fill

or truncation
on the left

where M* is a copy of the next microinstruction.

| SCRATCHPAD RELATE FA |

Syntax
Binary

Hex 15 14 13 12 11 10 9 8 7 6 5 4 32 10
Scratchpad
08}n|n 0O 0 0 0|1 0 00O —numbern
= specifies
= SnA
where

n=01,....15
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|

FA «— FA = SnA

!

Semantics

Syntax

Binary
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0j0(6{nf{0 O O OJO0O O O0 O0jO 1 1 O \'
Semantics

Values of V

\Other

CYF <0 CYF « | CYF « CYL CYF « CYD| | CYF « undefined




246

Abridged Reference Guide to the B1726

| SHIFT/ROTATE T |
Syntax
Binary
Hex 15 14 13 12 11 10 9 8 7 6 S 43210
e SHT e
Destination reg | Dest reg Shift/rotate
Aln|ni{n I 0 1 0
ROW coL ROT Count
y - ]
1to24
0 = shift
= rotate
Registers
ROW COL 0 I 2
0 TA FU X
1 TB FT Y
2 TC FLC T
3 TD FLD L
4 TE FLE A
5 TF FLF M
6 CA — BR
7 CB — LR
8 LA TOPM FA
9 LB — FB
10 LC — FL
1 LD — TAS
12 LE — CP
13 LF — MSMA
14 cc — —
15 CcD CPU —
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Semantics

Let 1en and Tcopy be hidden registers.

Count # 0

T

len <« Count len « CPL

Tcopy « T

T F
SHT/ROT = 0 :
(Shift) (Rotate)

T

Shift Tcopy lli(f)ttzitzn copy
left 1en bits bits
with right
zero fill

I 9

)
Reg <« Tcopy

l

Right-justified
with truncation
on the left
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| SHIFT/ROTATE X OR Y

Syntax
Binary
Hex 1514 13 12 11109 8§ 7 6 S 432 1 0
SHT / |LFT .
0l4}n|n 000 0/]0 1t 0 O REG |  Shift/rotate
ROT| /RT Count (1 to 24)
" REG  Means
0 X
1 Y
Semantics

Let 1en be a hidden register.

l len « Count l

(Left) T F (Right)

LFT/RT = 0

SHT/ROT = 0

-
m

SHT/ROT = 0

(Shift) (Rotate) (Shift) (Rotate)
Shift REG Rotate REG Shift REG Rotate REG
left Len bits left 1en bits right len right 1en bits
with right bits with
zero fill left zero
fill

l
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SHIFT/ROTATE XY
Syntax
Binary
Hex 1514 1312 11 10 9 8 7 6 543210
SHT /" |LFT Shift/rotate
0}l5]|nin 00 0 0]JO0O 1 0 1 ol en | count (1 to 48)
Semantics

Register XY is X cat Y (48 bits). Let 1en be a hidden register.

T
len « Count

(Left) T

F  (Right)

LFT/RT = 0

-3

SHT/ROT = 0

]

SHT/ROT = 0

(Shift) (Rotate) (Shift) (Rotate)
Shift XY left Rotate XY ) ) Rotate XY
Len bits left 1en bits Shift XY right right 1en bits
with right len bits with
zero fill left zero fill

L [
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SKIP WHEN
Syntax
Binary
Hex 15 14 13 12 11 10 9 8 7 6 543210
Source key Reg 4-bit TEST
6fn)nin o 1 1o ROW co| VY Mask
[N 7
Y
Registers
The MIL assembler maps the ROW COL 0 1
ALL[CLEAR] 0 TA FU
ANY [FALSE] | TB FT
EQL 2 TC FLC
specification of the MIL SKIP 3 ™ FLD
instruction into a value of the 4 TE FLE
variant V of the SKIP WHEN 5 TF FLF
microinstruction as follows 6 cA BICN“
7 CB FLCN“
MIL Spec. \Y 8 LA TOPM“
ANY 0 I LB -
ALL 1 10 LC -
EQL 2 11 LD —
ALL CLEAR 3 12 LE XYCN“
ANY FALSE 4 13 LF XYST
ALL FALSE 5
N"
EQL FALSE 6 :‘: gg INC
ALL CLEAR FALSE 7 N

“May not be specified with V-values of 3
and 7.
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Semantics

Let bool be a hidden Boolean (1-bit) register.

=0or4
(ANY)

Values of V

=1,3,50r7
(ALL)

251

=2o0r6

(EQL)

bool « Mask # @(1)0000@

and there is a |-
bit in REG that
matches a cor-
responding 1-bit
of Mask

bool « Mask+@(1)0000@
and every |-bit
of Reg matches
every 1-bit of
Mask

(V=0 and bool = true)

or
(V=4 and bool = false)

V=3 orv=7

Clear all matched
1-bits in Reg

A—A+16

((V=1 or V=3) and bool = true
or
((V=5 or V=7) and bool = false)

STORE F INTO DOUBLE WORD

(V=2 and bool = true)

or
(V=6 and bool = false)

I bool « Reg = Mask I

A—A+ 16

Syntax
Binary

Hex IS 14 13 12 I 10 9 8 7 6 5 4 3210
0lo|4]n 0 00 0[0 00 0|01 oo | Destnaton
(scratchpad)
Destination MEANS
0 SO (48 bits)

| S1

15 S15
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| STORE F INTO DOUBLE WORD | continued

|

A-half of destination «— FA
B-half of destination «— FB

!

Semantics

SWAP MEMORY |

Syntax
Binary
Hex 15 14 13 12 11109 8 7 6 5 43210
FOR Field Length
0(2]|n|n 0000 0010 REG REv 010 24
\/\0=FUR
1 = REV
REG MEANS
00 X
01 Y
10 T
11 L
Semantics

Let copy be a hidden register the same length as that specified in
Field Length. Let!/ be a hidden register.

les)

Field Length # 0

T
L | < Field LengthJ l | < CPL I
I 1

F d T F (Reverse)
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l |

copy « G-storey rasi-n copy < G-Store s ra-1
G-storey pasi-1) < REGa-r.23 G-storees ;. ra-n < REGa4-.23
REG « copy / REG « copy

N\

Right-justified
with left zero fill

rXCH DOUBLEPAD WORD WITH F

Syntax
Binary
Hex 1S 14 13 12 1 9 8 7 6 5 4 3210
Destination Source
07 nin 0O 0 0 0 0 1 1 1 (double (double
scratchpad) scratchpad)
DESTINATION,
SOURCE MEANS
0 SO (48 bits)
| S1
15 S15
Semantics

Let /1 be a 48-bit hidden register.

|

h «<—FA,FB
FA,FB <« Source
Destination < &

!




TABLE 1 B1726 Microinstructions—an Abridged Summary

Binary
15141312 11 10 9 8 7 6 5 4 3 2 1 0
, Source reg Source Dest Destination
Register Move 1 0001 ROW COL coL reg ROW
Source/Dest Source/ |TO A Scratchpad
Scratchpad Move 2 0010 ROW Dest COL FR B number
. ) REG . .
Manipulate 4-bit 3 0011 REG ROW coL v Literal
. REG Bit Relative
Bit Test False 4 0100 REC ROW coL index S displacement
. REG Bit Relative
Bit Test True 5 01601 REG ROW coL Index S displacement
. Source reg REG » 4-bit Test
Skip When 6 0110 ROW CcoL v Mask
. R a FOR
Read/Write 7 0111 W v REG REV Length
Move 8-bit literal 8 1000 REG ROW Literal
) REG ROW . .
Move 24-bit literal 9 1oo1 (col 2 only) Literal (first 8 bits)
n Literal (last 16 bits)
. Dest. reg Dest reg | SHT Shift/rotate
Shift/Rotate T A 1010 ROW oL ROT count
R (right . .
Extract from T B 1011 edge index) S (sink) W (field width)
Branch Relative Forward C 1100 Relative displacement magnitude
Branch Relative Backward D 1101 Relative displacement magnitude
Call Relative Forward E 1110 Relative displacement magnitude
Call Relative Backward F 1111 Relative displacement magnitude

vse
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Swap memory ol2|n|nllo0000/0 0 1 o0 REG FDRREV Field Length
Clear registers o|l3|n|nlloooojo o 1 1| L | | ¥ xl FA|FLIFU[ CP
, SH LFT Shift/rotate

Shift/Rotate X or Y 0|{4tn|{n|{0000 0 1 0 O ol RT REG Count
Shift/Rotate XY o|s|nlnll0000/0 1 o 1|SHZLF Shift/rotate
0T RT] count
Count FA and FL ol6lnlnlloooolo 1 1 o ve 1 Literal
Destination Source

XCH (exchange) 0|7 |n|n 00000 1 1 1 (scratchpad) (scratchpad)
Scratchpad Relat 0|8 00001 0 0 0 * Scratchpad
cratchpa eiate n n —_ - ﬂumbern
Monitor 0/9{n|{n|l{l0OO0O0O0 1 0 0 1 Literal
Bias olol3]n|loooo0/o o o of o o 1 1 ve | TEST

Destination
Store F olo|4|n|lo0oo00l0 0o 0o ol o 1 0 0| (omichpad)

Source
Load F olo|s|nlloooolo o o o] o 1 0 | (scratehoad)
Set CYF olo|6|n|lo0oo00/0 0o 0o o o 1 1 0 e
Read/Write (H-store) olo[7{n{loooofo 0o 0o of 0 1 1 1]oo of®L
Halt olojol1l{oooofo o 0o of o0 o o o0 o0 o0 1
Overlay olojo/2|looo0oo/lo o o ol o0 o o o]0 o0 1 o
Normalize X ololol3][oooofo o o of o 0 0 o000 1 1
Bind ololo/4lloooofo o o o o 0o o o0|o010 o0
No-Op olololo|loooo/o o o o o 0 o o0/lo0o0o0 o0
¢ For explanation of variant field V, see Table 2.

SO/JUBWSS PUB XBIUAS :SUOCIIONIISUIOIOIN
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TABLE 2 Explanation of Microinstruction Variants V

MANIPULATE 4-BIT
(3nnn) Variants

Bits 64 CONDITIONS
000 SET
001 AND
010 OR
011 EOR
100 INC
101 INC/TEST
110 DEC
111 DEC/TEST

SKIP WHEN (6nnn) SKIP
Test Variants

Bits 64 CONDITIONS
000 ANY SKIP
001 ALL SKIP
010 EQU SKIP
011 ALL CLR SKIP
100 NOT ANY SKIP

101
110
111

NOT ALL SKIP
NOT EQU SKIP
NOT ALL CLR SKIP

EXTRACT
(8 nnn) Variants
BiTs 6-5 CONDITIONS
00 X REG
01 Y REG
10 T REG
11 L REG
COUNT FA AND FL
(06nn) Variants
Bits 7-5 CONDITIONS
000 NOP
001 FA 1
010 FL 1
011 FAT FL|
100 FA| FL%
101 FA |
110 FL|
111 FA|l FL|

9se
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READ/WRITE MEMORY
(7nnn) Variants

SWAP MEMORY
(02nn) Variants

Bits 7-6 CONDITIONS
00 X REG
01 Y REG
10 T REG
11 L REG

BIAS (003n) Variants

BiTs 7-6 CONDITIONS
00 X REG
01 Y REG
10 T REG
11 L REG
Bits 10-8 CONDITIONS
000 NOP
001 FA®
010 FL1
011 FAT FL|
100 FA| FL1
101 FA|
110 FL{
111 FA| FL|

BiTs 3-1 CONDITIONS
000 FU
001 24 OR FL
010 24 OR SFL
011 24 OR FL OR SFL
100 NOP
101 24 OR CPL OR FL
110 NOP
111 24 OR CPL OR FL OR SFL

SO)UBWAES puEB XBIUAS :SUOHONIISUIOIOIN
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Appendix C
A user’s guide to McMIL and SMACK

SMACK is a macro-based system designed to translate statements
written in a superset of MIL (the Micro Implementation Language for
the Burroughs B-1700) into standard MIL for subsequent processing by
the MIL assembler. The superset of MIL, hereafter referred to as
McMil, includes statements for the operating-system interface, debug-
ging, and documentation. Utility subroutines are included with and
activated by a user’s McMIL program to provide the interface and
debugging services. SMACK gives the casual user the impression of
translating a McMIL source program into a microprogram for the B1700.
The McMIL architecture is slightly different from that imposed by the
B1700 operating system (MCP). This architectural change involves
calculating a restart address so that logical flow of control in a
microcode routine is not disturbed by calls upon the operating system.
Also included are storage mapping statements to help keep track of data
areas within the data region (BR-LR, base to limit register) assigned by
the MCP.

The requirements of the SMACK system are few. One half scratchpad
(24 bits) must be assigned to the SMACK system by giving it the name
BASE.OF . INTERPRETER. This register is used to calculate return
addresses, and holds the absolute address of the first instruction of the
microcode routine. The SMACK utility subroutines must be placed
ahead of any user code (except DEFINEs and MACROs) for proper
address calculation of the restart address. In addition, the SMACK
routines use a data region for the MCP communication message that lies
in the BR-LR region. This area is reserved by the use of McMIL storage
allocation statements so that conflicts with other data areas can be
avoided.

The SMACK processor is easily activated with two control cards, and
upon terminating will automatically link to the MIL assembler with no
operator intervention. SMACK handles disk maintenance of relevant
files, purging old files and creating the new microcode (interpreter) file.

258
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1 McMIL STATEMENT SYNTAX

All McMIL statements begin with an equal sign (=) in column 1 and
are called E-statements. Each McMIL statement must fit on one card.
One or more blanks separate the items on a McMIL statement, and
commas can be freely used as an alternate for a blank. In any place
where an arithmetic expression is indicated (OPEN options, sizes) no
blanks are allowed within the expression.

2 McMIL STATEMENTS FOR THE OPERATION
OF THE SMACK PROCESSOR

One register (a 24-bit scratchpad) must be devoted to the housekeep-
ing chores that the SMACK subroutines perform. This register is given
the name BASE.OF . INTERPRETER. For example, to assign scratchpad
S13B for this purpose, the following line would be coded

DEFINE BASE.OF.INTERPRETER = S13B #
Alternatively the ‘‘=DF’’ McMIL statement could be used as follows
=DF BASE.OF.INTERPRETER=S13B

See Section 4, statement type 8, in this Appendix.

After the BASE.OF . INTERPRETER register is assigned, the SMACK
subroutines must be included. This is done with the following McMIL
statement.

1. =INITIALIZE

This statement initiates the standard section (see =SECTION) named
“SMACK’; it also allocates areas in the BR-LR data region for system
communication. These areas are used by SMACK, so user microcode
should not rely on the contents of these areas. If the ‘“‘=BSS’’ statement
is used to mark off storage, the user should have no problems.

To end the McMIL expansion phase and invoke the MIL assembler,
use the statement

2. =TERMINATE name

The name appearing on the TERMINATE statement will be the name of
the assembled microcode when stored on disk after successful assembly.
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3 McMIL STATEMENTS FOR DOCUMENTATION
3. =SECTION name

The appearance of a SECTION statement will separate the listing of
the code following from that which appeared prior to the SECTION
statement. Also, the name of the section is printed on the left side of the
listing.

The source code generated by the expansion of E-statements is
usually suppressed, but may be turned on for a complete section by the
appearance of the following statement

4. =MLIST namel name?2

The names of sections appearing on an MLIST statement will have all
generated statements (from the McMIL expansion) listed along with the
rest of the output. The ““‘=MLIST’’ statement must appear before any
section to which it refers.

S. =NOLIST namel name2

The NOLIST statement will cause suppression of the listing of any
section whose name appears on that statement. The NOLIST statement,
like the MLIST statement, must appear before any section named on the
statement.

The listing of the SMACK subroutines is usually suppressed. How-
ever, it may be reselected by inserting the section name ‘“SMACK’’ on
an MLIST statement. In this case an MLIST card must appear before the
INITIAL statement.

There can be any number of ‘‘=MLIST’’ or ‘‘=NOLIST’’ statements in
a McMIL program.

4 McMIL STATEMENTS USED TO FORMAT THE LISTING
6. =STARS or =STARS n

This statement produces lines of asterisks on the listing, helping to
visually separate lines of code from each other. The n indicates that
2n+1 lines of asterisks are placed on the listing.

7. ==any-text=more—text=

This statement, containing four equal signs, will cause a comment line
with the following format to appear:

%* *any—text *more—text *
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8. =DFsymbol=text

This line results in a MIL DEFINE with the following form:
DEFINE symbol =text #

giving a neater listing than DEFINE with arbitrary formats.
Similar in appearance is the following McMIL statement:

9. =DVsymbol=arithmetic—expression

All four operators (+ — * /) and parentheses can be used to evaluate
an integer expression. Operator precedence is as usual. The maximum
value of any operation is 2**15—1. There can be no spaces (blanks) in
any arithmetic expression. The effect of this statement is to issue a MIL
define to set the value of symbol to the proper numerical result.

Example

=DV TRACE.FILE=8%5+3*3
produces
DEFINE TRACE.FILE =49 #

5 McMIL STATEMENTS FOR STORAGE ALLOCATION
AND ADDRESSING

10. =data—name BSS size—in-bits

This statement defines the data—name as a displacement from BR and
assigns the length in bits (evaluated as an arithmetic expression) as the
length of the datum. The next BSS will assign the displacement from the
next available bit position. Note that this statement does not actually
reserve space but ‘‘marks off”’ the existing space between BR and LR.
This statement is completely equivalent to the MIL statement

DECLARE DATA.NAME BIT(SIZE.IN.BITS);
11. =ADD OF datum

This statement generates code to cause FA to point to the absolute
address (not base-relative) of the indicated datum. The semantics is

| FA < BR+datum |
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This statement does not change the value of any other register. The
datum should have been declared with the DECLARE or ‘‘=BSS”
statement.

6 McMIL STATEMENTS FOR DEBUGGING

It is possible to take a snapshot of any single register (except TAS) at
any time. The output will be directed to the line printer. The state of all
registers will be restored upon completion of the snap function, and
execution will continue as if there were no debugging statements in the
microprogram.

The debug option should not be used if relocation of the interpreter is
possible. This could happen in a multiprogramming environment. The
addresses in the stack corresponding to return addresses in the micro
code could be incorrect in such a case.

The debug option can be set for any section of code (see =SECTION)
with the following statement

12. =DEBUG namel name2

There may be any number of names on the DEBUG statement. Each
such section will have SNAP statements (see below) expanded; if the
DEBUG statement has not selected a section, then any SNAP statements
in that section are ignored.

24-bit literal OCTAL
13. =SNAP AS number } HEX CHARS
register EBCDIC

The literal or the value of the register will be placed in the trace
buffer. Control returns to the statement immediately following the SNAP
statement.

14. =PRINT SNAP

This statement causes the trace buffer to be dumped to the line
printer. The buffer will automatically print if more than 110 characters
are in it. The PRINT SNAP also returns control to the next statement and
restores all the registers.

If the debug feature is desired, then at least one DEBUG statement
must precede the =INITIALIZE statement to cause the inclusion of the
proper subroutines.
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6.1 Optional suppression of invoked DEBUG feature

When using the debug feature of SMACK, the leftmost console switch
will suppress the printing of the trace buffer if set to the up position. In
the down position, the trace buffer is printed normally.

7 McMIL STATEMENTS FOR MCP INTERFACE

ALL of the following statements restore the scratchpads, but destroy
all other registers.

15. =DUMPFILE

The execution of this statement will cause all of the data between BR
and LR to be placed on a disk file (DUMPFILE/number). Execution will
continue. The dumpfile can be analyzed and printed by using the console
command ‘‘PM number’’ (where the number is the same as was printed
on the console printer at the time of the dump).

16. =STOP

Generates code such that execution of the microprogram is termi-
nated, memory is released, all files are closed, and MCP regains control.

~17. =IF NO INTERRUPTS GO TO label

When this McMIL statement is executed the hardware checks the
state of all physical devices (card reader, disk, etc.) to determine if any
drastic change in the state of the machine is indicated; if not, control will
transfer to 1abel. If there is a real need to return to MCP (temporarily),
control will pass on to the next statement. Any housekeeping that the
programmer desires to do before control is released is performed (care is
necessary to preserve the system information in the ‘‘L’’ register). A
=SERVICE INTERRUPTS (see statement 18) is then executed.

18. =SERVICE INTERRUPTS

This McMIL statement releases control of the processor to MCP.
Upon return to the user, all scratchpads are restored. Control is then
passed to the next sequential statement.

19. =CHECK INTERRUPTS

This statement is a combination of the above two statements; no
further processing of interrupts is necessary.
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Examples of interrupt handling are

INSTRUCTION.FETCH

=CHECK INTERRUPTS
MOVE NEXT.INSTR.POINTER TO FA
READ 16 BITS TO T INC FA
MOVE FA TO NEXT.INSTR.POINTER
i % DECODE INSTRUCTION

and

INSTRUCTION.FETCH

=IF NO INTERRUPTS GO TO +0K
MOVE COUNT.OF.ESCAPES TO X
MOVE 1 TO Y
MOVE SUM TO COUNT.OF.ESCAPES

=SERVICE. INTERRUPTS

.0K MOVE NEXT.INSTR.POINTER TO FA
READ 16 BITS TO T INC FA
MOVE FA TO NEXT.INSTR.POINTER

% DECODE INSTRUCTION

8 McMIL STATEMENTS FOR MCP COMMUNICATION
20. =0PEN file—id WITH (option)

Possible open options are

NEWFILE or 512 Force new disk file
INPUT or 2048 Allow reading to occur
OUTPUT or 1024 Allow writes to file

OPEN options are specified either alone or with simple addition (e.g.,
INPUT+OQUTPUT). Parentheses are optional in this arithmetic expression,
but no spaces are allowed.

Examples of OPEN and CLOSE statements are

=0PEN PRINT.FILE WITH (INPUT+1024)
=0PEN PRINT.FILE WITH (INPUT+0OUTPUT)

These statements have
same effect

21. =CLOSE file-—id WITH (option)
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Possible CLOSE options are

REEL or 2048  Close a reel of multireel file
RELEASE or 1024  Return buffers to memory
PURGE or 512 Remove the file from disk directory

REMOVE or 256 Substitute this file for another in directory
CRUNCH or 128 Release unused disk space

NREWIND or 64 Do not rewind

CODE or 32 Set file type as executable
LOCK or 16 Enter file in disk directory
conditional 8 Do not abort if already closed

An example of a CLOSE statement is
=CLOSE DISK.OUT.FILE WITH (REMOVE)

A rewind request on a file is done by a CLOSE with no options
followed by an OPEN. Only one CLOSE option may be specified at a
time.

The ‘‘general MCP request’ statement is the most powerful state-
ment, because of the many forms and variants permitted. Items that
occur within square brackets are optional and, if included, modify the
effect of the request. Items within braces indicate that one and only one
is to be chosen.

BUFFER request USING buffer—name
22. =
BITS
BYTES

[FILE file—id [KEY register]]
’{UPT} {IN register } [{GD TU} H
L (ON option—expression GOTO label

The BUFFER option will use the size of a datum as defined with a
DECLARE or as a BSS pseudo-op; otherwise the size must be explicitly
specified with the BITS or BYTES option. The address specified after
CORE is a base-relative displacement (i.e., absolute address—BR). If a file
(/o unit) is implied by the operation, then the FILE option must be
specified, and file—id indicates (as a number) which file (logical i/o
device) is to be selected (see LOADER description in Appendix D). If
the file is a random-access disk file, the KEY variant must appear, and
the key or record number specified in a register. (Note that random-
access files start at. record number 1.) Some i/o operations imply certain

request size { } CORE address
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options (e.g., spacing the printer) which may be specified by the
appearance of the keyword OPT (or ON). If the option resides in a
register, select the IN variant. GO TO will transfer to the label only if the
proper variant has been requested (e.g., EOF).

The keyword OPT is equivalent to ON, and the keywords GO TO are
equivalent to GOTO.
Some examples of this general request statement are

=BUFFER INPUT USING CARD.AREA FILE CARD.READER

% WITHOUT END FILE CHECKING
=BUFFER OUTPUT USING PRINT.LINE FILE PRINT OPT DOUBLE
=READ 180 BYTES CORE DISK.IN.AREA FILE RANDOM.DISK KEY S2B
=BUFFER ZIP USING ZIP.CONSTANT
=SEEK 0 BYTES CORE O FILE RANDOM.DISK KEY S2B
=0UTPUT O BITS CORE PRINT.AREA FILE PRINTER OPT EJECT

A complete list of the possible requests follows.

INPUT or READ Transfer data from storage to file
OUTPUT or WRITE Transfer data to file from storage

SEEK (needs KEY) Position random-access file

DISPLAY (no file) Write message to console teletypewriter
ACCEPT (no file) Get message from operator

ZIP (no file) Send control card to operating system

Possible options are

SINGLE (printer only) or 14

DOUBLE (printer only) or 15

EJECT (printer only) or 1

EOF (detect end file) or 2048 Allows GO TO variant
PARITY (detect parity) or 1024  Allows GO TO variant
NO—-ADVANCE (overprint) or 0

Multiple options are specified by simple addition, for example,
EJECT+PARITY

No blanks are allowed.

Figure C.1 shows a sample deck structure and corresponding mapping
of base-limit memory area. To access (the first bit of) the area named
SECOND, set FA to BR+SECOND or use ‘‘=ADD OF SECOND’’. The SMACK
storage region will be quite large if the ‘‘=DEBUG’’ option is used. The
question mark indicates an MCP system control card which contains a
(1-2-3) overpunch in column 1.
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( ?END LR

not allocated
=TERMINATE DUMMY

( =SECOND BSS 100%*2

SECOND (200 bits)
( =INITIALIZE

f =FIRST BSS 100

SMACK storage
( ?DATA CARDS

L ?EX SMACK

FIRST (100 bits)

BR

Figure C.1.

Caution Incorrect code may be generated by the general request
statement 22 if any of the parameters are specified in the volatile
registers X,Y,T,L or any of the outputs from the ALU (SUM,DIFF,
. . .). If a situation occurs where the user really needs to specify one of
the parameters as one of these registers, it is up to the user to verify that
the resulting code sequence will not clobber one of the registers used as
a parameter.

The most general construct will always generate code as follows.

=request size BYTES CORE location FILE file-id
KEY key OPT IN option

generates
MOVE key TO TAS
MOVE location TO TAS
MOVE size TO T
SHIFT T LEFT BY 3 BITS TO TAS
MOVE request TO X
MOVE file TO Y

MOVE option TO L 7
MOVE 3 TO TAS number of parameters on TAS
CALL XXFN

call proper subroutine
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TABLE C.1 Summary of McMIL E-Statements

1 =INITIALIZE

2  =TERMINATE

3 =SECTION

4  =MLIST®

5 =NOLIST®

6 =STARS

7 ==any-text=text=
8 =DF

9 =DV

10 =data.name BSS

11 =ADD OF

12 =DEBUG®

13 =SNAP

14 =PRINT SNAP

15 =DUMPFILE®

16 =STOP®

17 =IF NO INTERRUPTS GO TO°
18 =SERVICE INTERRUPTS®
19 =CHECK INTERRUPTS’
20 =0PEN’

21 =CLOSE®

22 =(general i/o request)®

¢ Nonexecutable. Place before =INITIALIZE.
® Destroys contents of X, Y, T, L, FA, FB, CA, CB, CP, and the stack.



Appendix D
Loader primer

In most programming languages, the data and possibly input-output units
are specified along with the code that operates on the data and reads and
writes to the i/o devices. For example, in FORTRAN the DATA
statement will preset variables, the DIMENSION statement will reserve
storage, and the files (i/0 units) may be declared in the program header
statements. The COMPASS assembler for the CDC-6400 has many
statement types (pseudo-ops) for defining data, octal constants and file
tables. In one language, however, a clear distinction is made between
code and data and input-output units. This language is COBOL, where
data appear only in a DATA section, code only in a PROCEDURE section,
and input-output assignments only in the INPUT—-0UTPUT section.

In the B1700 operating environment this separation is carried to an
extreme in that the data definition and code (microcode) specification
are handled by completely different compilers. The code section is
handled by the SMACK-MIL system, and the specification of data and
input-output assignments by the LOADER. This total separation may be
cumbersome and sometimes difficult to utilize in a student environment.
The justification for this separation is the fact that microcode can be
shared by many different users. Each user would be represented by a
different data area.

All of this implies that to run a program on the B1700 one must

1. Specify the data area, the interpreter, and the input-output assign-
ments (with the LOADER)

2. Specify the proper operations on the data area (with SMACK-
MIL)

3. Request the MCP to execute the codefile-microcode package
using a suitable command sequence in a job-control language
JCL).

1 THE JCL COMMAND SEQUENCES

The above operations will be performed by the following skeleton JCL
stream. In the example given in Table D.1 the microcode will be named
SENATOR and the data (codefile) will be named SENATE/BILL245.

269
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TABLE D.1 Skeleton JCL Stream

JCL COMMENTS
?C0 SENATE/BILL245 WITH Call loader to analyze data
LOADER TO LIBRARY“ specifications contained on card deck.

?DATA CARDS

Interpreter, scratchpad settings, data,

and file assignments Loader card deck.

?END?
?EX MCMIL® Call SMACK to expand, then
?DATA CARDS* assemble the MIL cards that follow.
: McMIL program
=TERMINATE SENATOR Specify the name of microcode on disk
storage.
?END®
?EX SENATE/BILL245 Specify the microcode for proper
INTERPRETER=SENATOR®? execution.

% The first column of a control card marked, ““?°*, is a 1-2-3 multipunch.
® This command is given to the operating system after the loader and MIL assembly
have been successfully completed.

In this description the term microcode has been consistently used to
describe the operations on data. However, the operating system refers
to the microcode as the INTERPRETER, and refers to the data as a
program or codefile. Unfortunately, keywords like INTERPRETER are
not truly descriptive, but they are in agreement with Burroughs conven-
tions.

2 SYNTAX OF THE LOADER CARD DECK

(card deck for loader) ::=
(program parameter specifications);
(scratchpad settings);
(file descriptions)
DATA({data specifications);
FINI

Card boundaries are ignored, except that a decimal constant or data
name (such as an input-output unit name) may not be split by a card
boundary. A semicolon (;) separates the different sections (e.g., each
input-output specification is terminated by a semicolon).

(file descriptions) ::= (empty) | (file)(file descriptions)
(file) ::= FILE (input-output-attributes);
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2.1 Program parameter specifications

The following items are specified in the (program parameter specifica-
tions) part:

(program parameter specifications ) ::= (empty) | {ppb spec)
(at least one blank)
(program parameter specifications)

(ppb spez) ::=

INTERP.P = (name) | pack name where microcode resides
INTERP = (name) | (first) name of microcode
INTERP.S = (name) | second name of microcode (if any)

STATIC = {(decimal integer) size in bits of memory (this is where
the DATA segment, if any, is loaded)

The actual length of the BR-LR region, as determined by the
LOADER program, will be the maximum of the STATIC specification
and the length implied by the DATA segments (described in Section 2.4).

Example
INTERP=SENATOR STATIC=15000;

will select microcode SENATOR with a BR-LR region of at least 15,000
bits.

2.2 Scratchpad settings

The initial scratchpad settings for microcode execution may be
specified as binary, quartal, octal, hex, or decimal constants, or as
character strings.

The form of the data specification for scratchpad settings is precisely
as for ‘‘the DATA segments (see Section 2.4 of this appendix). The data
are assigned to the scratchpads as follows: the first 24-bit quantity goes
to SOA, the second to SOB, the next to S1A, etc. If the scratchpad
settings are empty (with only the semicolon specified) all scratch-
pads will be set to zero. Note that the scratchpad selected for
BASE.OF . INTERPRETER (see SMACK Discussion, Appendix C) must
be initially set to zero.

1024 @5050EE (3)01234567 @ See Section 2.4 of this Appendix
for further explanation.
Blanks ignored

Example
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will assign the bit pattern

0000 0000 0000 0100 0000 0000  to SOA
0101 0000 0101 0000 1110 1110  to SOB
0000 0101 0011 1001 0111 0111  to S1A
0 Y Oy 0 I B

o 1 2 3 4 5 6 17

and zero to all other scratchpad registers.

2.3 File descriptions

Each file is assigned a number according to its position relative to the
other FILE specifications. The first FILE is given the number 0, the
next 1, and so on. The microcode refers to the input-output units by this
number. The DATA segment is automatically brought into memory at the
location pointed to by the base register (BR).

The FILE specification supplies information about the actual data
path for program communication with input-output devices. Most of the
available options under the operating system can be set with the
LOADER. They are

(input-output attributes) ::= (empty) | (i-o-attribute){input-output attri-

butes)
(i-o-attribute) ::=
PACK=(name) | disk pack name for disk file
NAME=(name) | name for file (internal and exter-
nal)
SUBNAME=(name) | second name of file
HARDWARE=(decimal integer) | special hardware type
BUFFERS=(decimal integer) | number of buffers
LOCK | save this file after termination
of job
DEFAULT | use record length and blocking

factor of file as it appears in
disk directory

READER | hardware type is 80-column
card reader

DISK | hardware type is any available
disk

TAPE | hardware type is any magnetic
tape

PRINTER | hardware type is line printer

QUEUE | queue file for interprogram

communication
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NO.LABEL | suppress page eject on open and
close
REC=(decimal integer) | record size in bits (fixed length)

REC.P.BLK=(decimal integer) | number of records in block
(fixed length)

ADVERB=(decimal integer) | options for open when implied
by i/o on a closed file

RANDOM | v disk-file random-access flag (set
BUFFERS to 1)

AREAS=(decimal integer) | maximum number of disk areas
(default is 40)

BLK.P.AREA=(decimal integer) | sets size of one area to number
of blocks

REC.P.AREA=(decimal integer) | sets size of one area to
number of records (record size
and records per block already
set)

BINARY on 80-column card reader use
binary reads/writes

Note: specify only one hardware type (don’t ask for a DISK QUEUE
type file, etc.). Do not ask for zero buffers.

Example
FILE NAME=INF DISK REC=640 DEFAULT;
—a disk file with record size of 80 characters.
FILE NAME=CARDS READER BINARY ;
—-card reader allowing binary reads.
FILE NAME=PR PRINTER NO.LABEL REC=960 REC.P.BLK=1 ;

—printer file with 120 characters per line and no page ejects at open/
close time.

Note. The microcode would refer to the disk file as file 0, the card
reader as file 1 and the printer file as file 2. The operating system would
refer to these files as INF, CARDS, and PR respectively.

2.4 DATA segment

Information for the DATA segment is specified in any of the following
formats.

Bit string A string enclosed in ‘‘at’” signs (@) is hexadecimal. If
another base is desired, specify the desired bit grouping within
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parentheses [e.g., (1) for binary, (2) for quartal, (3) for octal, and (4)
for hexadecimal]. The base may be changed at any time within a bit
string. For example the following bit pattern 1010111010111 can be
specified in any of the following ways:

@AEB(1)1@ = @(2)223(3)5(4)7@ = @(3)53(1)10101(2)3@
@(1)1010111010111@

Bit strings may be of any length, blanks are ignored, and a bit string
may cross a card boundary.

Character string a string of characters enclosed in double quotes (")
will be treated as a sequence of EBCDIC (8-bit) characters. Two
consecutive double quotes will be taken as one occurrence of a
double quote. Blanks are not ignored, but card boundaries are.

Decimal data a decimal integer (not enclosed in double quotes or ‘‘at”
signs) will be converted to its 24-bit binary representation. The
suffix P (precision) followed by an integer describing the bit length
will set the data item to be 0 to 24 bits long. The above string
@AEB (1) 1@ could be specified as 10P4 14P4 11P4 1P1.

Note. The DATA segment may be of arbitrary length and the various

types of specifications may be mixed freely.

3 EXAMPLE
An input deck for the LOADER is as follows.

?7C0 FRAME/WORK WITH LOADER LIBRARY
?DATA CARDS

INTERP=EXAMPLE STATIC=5500; ;
FILE NAME=PRINTER PRINTER;

FILE NAME=CARDS READER;

DATA "THE END";

FINI

?END



Appendix E

McMIL listing for an abridged SAMO0S

interpreter

This appendix presents the rudimentary or skeleton version of the
SAMOS Interpreter discussed in Chapters 5 and 6, together with the
LOADER program, data deck, and sample output.

Part 1

Part 2
Part 3

Part 4
Part 5

Part 6

Part 7

Source listing of the SAMOS interpreter input to
the McMIL processor

MIL assembler listing of the SAMOS interpreter
Source listing of the LOADER program for gener-
ating the codefile for the SAMOS interpreter
Output listing of the LOADER program

Listing for a simple data deck (one SAMOS pro-
gram) to be executed by the SAMOS interpreter
Output produced by the SAMOS interpreter when
processing the data deck given in Part 5

Sequence of enhancements for the SAMOS inter-
preter

Page
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301
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302

1 SOURCE LISTING OF THE SAMOS INTERPRETER INPUT TO
THE McMIL PROCESSOR

Each card image is preceded by a card number followed by a colon.
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