B 1000 PASCAL .LANGUAGE MANUAL

Announcement Letter

?77?? 7?7, 1985

B1000 SYSTEMS
PASCAL LANGUAGE MANUAL

With this letter, we are announcing the availabitity of the

B 1000 Systems Pascal Language Manual, form 1152048, dated
27979727297 e

This manual includes Burroughs extensions to the ANSI Pascal
programming lanpguage.

All technical communication relative to this document should he
directed to:

Burroughs Corporation

Manager, B1000 Software Documentation
6300 Hollister Avenue

Goleta, California 93117 USA

Copies of this publication may be ordered from the Publications
Center, Dearborn, Michigan U.S.A.

Raymond J. Renzullo, Manager
Documentation - West

e ————— T

Form 1152048 : 1 File DOCUMENT/PASCAL

b L A% e

Bairroughs

B 1000- PASCAL i tANGUAGE -MANUAL

LR R AR EEEREEREREEEERESEEEREEEEMEEEEELEEEEEEEEE L EEEEEELEEREEEEEEEREEEEREE]

ERIR
4 3
o
8 3
*
LR
LR)
* %N
LRI
ER R
ER
FIRIR
8
L
*n
* %
%
L
ERR]
#
W
L
F S
2k 2

1 %

» TITLE: B1000 SYSTEM SOFTWARE RELEASE MARK 12.0 [DOCUMENT)

1

® FILE ID: DOCUMENT/PASCAL TAPE ID: PASCALSRC
i

& 4t 4e 2 2 AR 3 2E 4R e 47 1 4b 3R 3F e 2R 38 98 36 2R 30 3R 3 2b 0 2B 30 23 38 30 3 4F 0 3h 3b 4F 20 30 26 4R 30 4 AF 38 3R A 36 40 4F 4 2 2 30 45 30 20 30 B 3 3E 3 4 U3 3 3
@ LLIR O)

waw PROPRIETARY PROGRAM:MATERIAL

e B un S Y ;

© wse THIS MATERIAL 1S PROPRIETARY TO BURROUGHS CORPORATION AND
© wus 15 NOT TO BE REPRODUCED, USED DR DISCLOSED EXCEPT IN
w wuw ACCORDANCE WITH PROGRAM LICENSE OR. UPON WRITTEN
wow AUTHORIZATION OF THE PATENT DIVISION .OF BURROUGHS
» wu# CORPORATION, DETROIT, MICHIGAN 48232, USA.

U . P

o snn COPYRIGHT (C) 1985

o ww BURROUGHS CORPORATION

L) g .

© wes THE INFORMATION WITHIN IS NOT INTENDED'TO BE NOR SHOULD BE .
wen CONSTRUED AS AN AFFIRMATION OF FACT, REPRESENTATION OR
© wes WARRANTY, BY BURROUGHS CORPORATION, OF ANY TYPE, KIND, OR
® wuw CHARACTER. ANY PRODUCT AND RELATED MATERIALS DISCLOSED
wen HEREIN IS ONLY FURNISHED PURSUANT “AND SUBJECT TO THE TERMS
wws AND CONDITIONS OF A DULY EXECUTED :LICENSE AGREEMENT.

» wwu THE ONLY WARRANTIES MADE BY BURROUGHS WITH RESPECT TO THE
» wow PRODUCTS DESCRIBED IN THIS MATERIAL ARE SET FORTH IN THE
war ABOVE MENTIONED AGREEMENT.

i# LRt i

wus THE CUSTOMER SHOULD EXERCISE CARE TO ASSURE THAT USE OF
© wes THE SOFTWARE WILL BE IN FULL COMPLIANCE WITH LAWS, RULES
##» AND REGULATIONS OF THE JURISDICTIONS WITH RESPECT TO
3 REIE R)

% 9 3 i

LR R R R R R R R R RN R R R EEIE R EEE SR EEEEEEEE RS EEEEEE KRR X R REE R R R EE]

Form 1152048 2

WHICH IT IS USED.

RELATIVE TO THE MARK 12.0.000 RELEASE

i3

4 2

File DOCUMENT/PASCAL

Ld
&
¥
i
#
*
*
#

R o

e e DR . L e e s oa—_g

———
pEtT ey

o A 1+ e

ks i

B 1000 PASCAL LANGUAGE MANUAL

Burroughs cannot accept any financial or other responsihilities
that may be the result of your use of this information or
software material, including direct, indirect, special or
consequential damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
saftware material and/or information complies with the laws,
rules, and regulations af the jurisdictions with respect to which
it is used.

The information contained herein is subject to change without
notice. Revisions may be issued to advise of such changes and/or
additions.

Comments or suggestions regarding this document should be
submitted to PA&S Santa Barbara at the following address:

Burroughs Corporatian
PAES/Santa Barbara

6300 Hollister Ave.
Santa Barbara, CA 93117

Form 1152048 3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL: LANGUAGE MANUAL: -

TABLE OF CONTENTS

SECTION 1
INTRODUCTION .
IMPLEMENTATIDN HESTRICTIUNS
ERRORS DURING EXECUTION
STRUCTURE OF MANUAL
RELATED DOCUMENTS
SECTION 2
PROGRAM STRUCTURE
PROGRAM UNIT
PROGRAM PARAMETERS
PROGRAM BLOCKS
Scape o
Scope: Blocks
Scope: Record Definitions
Scope: WITH Statements
Scope: Record Variables
Activation Records
SECTION 3 . .
DECLARATIONS AND DEFINITIDNS
LABEL DECLARATIONS
CONSTANT DEFINITIONS
TYPE DEFINITIONS . o
Simple, Structurad and Pointer Types
Simple Types o
Structured Types
Pointer Type
Ordinal Types
Type Identifiers
Same Types... .
Compatihle Types L.
Assignmant Cumpat1b1l1ty
Type Descriptions
Array Types
Boolean Types
Character Types
Enumerated Types
File Types
Integer Types
Pointer Types -
Real Types
Record Types
Set Types
Subrange Types
Textfile Types
VARIABLE DECLARATIONS
PROCEDURE AND FUNCTION DECLARATIONS
Procedure Declaration
Function Declaratiaon

Farm 1152048 TC-1

| S TR TR A Y A N TR N A (O S B I SN
WS OONNOOUE&ELANUNDOONAOODUNHAN 200 OQOOUNUTE 2D WNN = -

[N T U T T R T A R R |

P 00O WWWWWWWWRNNAMNMLNMBONORM = -2
|

LI T O O T T |

WWWWWWWWWWWWwWwW
TIMI M) = e e b b ek b =d ook = |

ww
[
nnn
N A

3-29

Fite DOCUMENT/PASCAL

Poaetaie atoa - wes o o

Burroughs

U000 PASCAL LANGUAGE. MANUAL

Furmal Parameter Lists
ACTUAL PARAMETER LISTS AND PARAMETER MATCHING
SECTION 4
STATEMENTS .
ASSIGNMENT STATEMENTS
CASE STATEMENTS
COMPOUND STATEMENTS
FOR STATEMENTS
GOTO STATEMENTS
IF STATEMENTS
STRING RELATION N T R
PROCEDURE INVOCATION-STATEMENTS
REPEAT STATEMENTS
WHILE STATEMENTS
WITH STATEMENTS
SECTION 5 .
EXPRESSIONS
ORDINAL EXPRESSIONS . .
PRECEDENCE DOF OPERATORS
FUNCTION DESIGNATORS
EXPRESSIONS BY TYPE
Boolean and Relational Expressions
Boaolean Expressions ’
Relational Expressions
CHAR Expressions
Enumerated Expressions
Integer Expressions
Pointer Expressions .
Real Expressions LR
Set Expressions
String Expressions
SECTION 6
- PREDEFINED PHDCEDURES AND FUNCTIDNS
INPUT/OUTRUT AND FILE- HANDLING 'CONCEPTS
Terminology
Standard Files and Textfiles
Inspection Mode and Generation Mnde
Buffer Variables e
File Attributes
Logical and Physical sFiles .o
N Permanent and Tempurary Files EIRRE
Standard Files - . R
Reset Operation AR
Get Operation O AL L
Read Operation RRtE
Seek Operation 00
Rewrite Operation i
Put Operation e A
Write Operatian :
Close Operation . . L
Textfiles [Includ1n| Predeflned Textfllas]
Textfiles in General . .
Predefined Textfiles [Input Output]
Reset Operation

P ek
oo oidran | |
H I - JPGL W SL N B |

oo g
|
| e |

[splesepiapiepMosiiorRepRoriiererNeriarieslesiorNeslerNer Nas e rNer ooy
!

3-31

w
|

(&)

n

Voo

I

I AN
| 1

I

It

b

| N T T T O T A

WWOWOOOOONNNDDOOOPRAPRARWWWWLWN L2, 2NN =2 NQUORAONN=2—_2NRN_20000BPW0OMN - —

| T N R I S S N A |

!

Form 1152048 ; TC-2 File DOCUMENT/PASCAL

BlurrougHs

B.1000: PASCAL | LANGUAGE s MANUAL

Get Operation F IR S R PR R S R 6-10
Read Operation: .. oo . g.a8 . 0L aloagy 6-10
Readln QOperation 6-11
Rewrite QOperation Ldival. 6-11
Put Operation : N TR L O 6-11
Write Operation B O S AR B 6-11
Writeln Operation e T 6~11
Close Operation T S I S N 6-12
Lazy I/D o P 6-12
Use of File Attributes I 6-12
PROCEDURE AND FUNCTION DESCRIPTIONS VoL T 6-13
File-Handling Procedures:and Funcdions . wi . @ i 6~13
Close Procedure L 613
EQF Function e 614
EQLN Function RS 6~15
Get Procedure 6~-15
Page Procedure 6-16
Put Procedure e ER 6-16
Read Procedure g i 6-17
Read Textfile Procedure AR ' E~17
Type = <char variable> Sord 6-18
Type = <integer variable»=za..o.2 B-18
Type = <real variable> SR I 6--19
Readln Procedure . . . of;2gidyr .y §-~-20
Reset Procedure RN : 6~20
Rewrite Procedure P A 6-21
Seek Procedure Sl B ’ 5-22
Write Procedure gnvooalUf vus 6-22
Write Textfile Procedure FI 6-22
<Boolean expression» e 6-23
<char expression> TR I 6-24
cinteger expressian» P 6-24
<real expressionyi o owus Uibe B0 Gl 6-25
Floating-Point Faormabii vt 1000 i, oo 6-25
Fixed-Point Format 6-25
Writeln Procedure IR N AT TN A 6-26
Type Transfer Functions .au. .o ! 6-27
CHR Function L. "y 6-27
ORD Function : 6-28
Dynamic Allocation Procedufeson:yns i .o, 6-28
Mark Procedure P R R PR W S 6-30
New Procedure e Y O S 6-31
Release Procedure S Puen 6-31
Arithmetic Functions S S I 6-31
ABS Function . 1 6-32
ARCTAN Function P LR ¢ 6-32
COS Functian I v 6-32
EXP Function e 6-33
LN Functigon T Pt A 6-33
ROUND Function B £ T T 6-33
SIN Functian BRI T Y AL ST ' 6-34
SGR Function P R I A TS S 6-34
SQRT Function:, [T Dot 6-34
TAN Functian T ST 6-34
Form 1152048 TG-3 File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE -MANUAL

TRUNC Functian
General Procedures and Fun:t1uns
Abort Procedure
Accept Procedure
Date Pracedure
Display Procedure
Odd Function
PRED Function
Runtime Function
SUCC Function
Time Procedure
SECTION 7 .
VARIABLES
VARIABLES BY ACCESS
Entire Variables
Indexed Variables
Field Designators
Dynamic Variables
Bufffer Variables
VARIABLES BY TYPE
Array Variable
Boolean Variable
Char Variahble
Enumerated Variable
File Variable
Integer Variable
Pointer Variable
Real Variable
Recard Variable
Set Variable
String Variable
Textfile Variable
UNDEFINED VARIABLES
SECTION 8 . . .o
BASIC CDMPONENTS
CHARACTERS AND CHARACTER STRINGS
IDENTIFIERS
NUMBERS . .

FILE ATTRIBUTES AND MNEMUNIC VALUES
SECTION 9 . .
INTERPRETATIDN OF PRDGRAM TEXT

PROGRAM TEXT .
TOKEN
RESERVED WORD .
PREDEFINED IDENTIFIER
TOKEN SEPARATOR =~ .
BLANK
COMMENT .
RECORD BDUNDARY
APPENDIX A

COMPILING, EXECUTING. AND ANALYZING A PASCAL PROGRAM

COMPILER OPTIONS
CCI Syntax Diagrams
Boolean Options

6-35
6-35
6-36
6-36
6-36
6-37
6-37
6-38
6-38
6-39
6-39

[R A A A

[
AU L, 2P OWLWMLDNNNN L, _,_,hAON,—_,—_,00000000000O0ODCUUOANIUIEWRND = = 2=

i

| R T T N A I R A O e

>rrr-rPPO0OOOOUOWOEOOOOOC00 0NN NNNSNNNNNNNNSNNNNNSNNNN
[

Form 1152048 TC-4 File DOCUMENT/PASCAL

Bﬁr‘mﬁghs

B 108D PASCALL LANGUAGE: MANUAL

Value Options

Immediate Options

COMPILING AND EXECUTING A PASCAL PHDGBAM

Compile-Time Errors

Run-Time Errors

USING THE PASCAL/ANALYZER PROGRAM-:
USING THE SYSTEM/IDA PROGRAM

APPENDIX B . .
RAILROAD DIAGRAMS
REQUIRED ITEMS
OPTIONAL ITEMS
LOOPS
BRIDGES
APPENDIX C

EBCDIC AND ASCII CHARACTER SETS

Farm 1152048

TC-5

i

1
2,2, WO =2=2aONNNOOU

SOMWMDWmWw |
i

File DOCUMENT/PASCAL

L s Pt 5 8 A b D s i
A I e —————

s

Buproughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 1
INTRODUCTION

Pascal is a high-level programming language developed by Niklaus
Wirth, based on the block-structured nature of ALGOL-60 and the
data structuring innovations of C. A. R. Hoare. Because Pascal
is an easy-to-learn, general-purpose language, its popularity has
increased dramatically in the last several years, particularly in
the university and personal computer markets. '

The American National Standards Institute. (ANSI) has adopted the
International Standards Organization (IS0) standard 7185 Level O
as their standard definition af Pascal. The purpose of the ANSI
standard is to increase the portability of Pascal programs from
one system to another. The Burroughs B- 1900 Pascal Compiler
complies with this standard with the restrictions described later
in this section. Throughout the remainder of this manual, the
Burroughs B 1900 Pascal Compiler is referred to as Burroughs
Pascal and the Pascal described by the ANSI Standard is referred
to as ANSI Pascal.

This manual is intended as a reference manual for Burroughs
Pascal. As such, its purpose is to be a complete description of
the syntax and semantics of Burroughs Pascal within a framework
that is designed for quick access of:iinformation. The reader is
assumed to be familiar with programming language concepts and
with the Burroughs B 1900 family of.systems. Some advance
knowledge of the Pascal language is helpful.

The notatiaoen used in this manual to.represent the syntax of
Pascal is the "railreoad" syntax diagram. A complete description
of railroad syntax is provided in appendix B, Railroad Diagrams.

The remainder of this introduction describes the compiler’s
campliance with the ANSI standard for Pascal, the structure of
this manual, and the documents that relate to this description of
Burroughs Pascal.

IMPLEMENTATION RESTRICTIONS
The following items are restrictions in the initial Pascal
implementation. Many will be removed ar changed in future
releases.
DISPOSE Procedure

Not implemented. ODOynamic memory {is managed by using the
MARK and RELEASE procedures.

Form 1152048 1-1 Fite DOCUMENT/PASCAL

Buproughs

B 1000 PASCAL LANGUAGE MANUAL

Variant Record Declarations

Do not reguire all labels to be present.

Procedural Parameters

Not implemented.

Non-local GOTOs

Not implemented.

PACK, UNPACK

Not implemented.

NEW

The

Tag constants not permitted is parameter list.

following is a list of limits imposed by the B 1000

implementation.

lbu

lbu

lbu

lbu

by

tbu

Labels in CASE statements must be in the range 0O to 255
inclusive.

Labels in variant parts of records must be in the range O to
23 inclusive.

REAL numbers have a precision of approximately eight decimal
digits. ‘The exponents can be within the range -47 to +68.
The routines that print REAL numbers print a maximum of

seven significant digits. This is done sp that the last
digit can be guaranteed to be accurate.

Maxint is B388607.

Routines with local file variables cannot be used
recursively.

A file must not be a component of any structured type.

The maximum nesting of lexic levels is eight.

ERRORS DURING EXECUTION

The

following errors can be detected during the execution of a

program.

Integer overflow

Real overflow

Stack limit exceeded

Heap Limit exceeded

Text file buffer overflow

Division by zero

Vatuve of end of file wrong for file operation
Operation on improperly defined file

Nil pointer dereference

Form 1152048 1-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Undefined pointer dereference

Released pointer dereference

Array index out of range

No label corresponding to case selector
Record variant accessed with incorrect tag
Value out of subrange

Some operations may cause values to go out of range with no errar
reported. Complete checking is not guaranteed, but data will not
he altered or lost as a result of incomplete checking. The
following errors are not checked:

Changing variables in the list of a WITH statement

GOTOs from outside to inside a structured statement

Side effects, especially those thwarting run-time checks
Dangling pointers as a result of a RELEASE operation
Operations on an uninitialized variable

Record variabhle accessed with incorrect tag type

STRUCTURE OF MANUAL

The structure of this manual is top-down; that is, larger ar
higher-level syntactic components such as programs, declarations,
and statements, are described first and smaller or lower-level
components such as variables and identifiers are described last.
A brief description of each section and appendix follows.

Section 1, Introduction, introduces the language and the manual.

Section 2, Program Structure, describes Pascal programs, pragram
parameters, and blocks. This section also describes the concept
of scope as it applies to identifiers and activations.

Section 3, Declarations and Definitions, contains a description
of the decltaration part of a block, including type definitions
and variable declarations. Concepts relating to data types in
Pascal are covered under Type Definitions.

Section 4, Statements, describes the statement constructs
available in Pascal.

Section 5, Expressions, describhes all expression types and
includes a discussiaon of the precedence of operators within
gxpressions.

Section 6, Predefined Procedures and Functions, explains the
ready-made procedures and functions that are availahle. These
procedures and functions provide facilities for file handling,
type transfer, dynamic variable allocation, arithmetic functions,
and other general features. A detailed description of Pascal
input/output caoncepts and how they relate to the Burroughs B 1800
system is included under File Handling Procedures.

Form 1152048 1-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Section 7, Variables, describes variables of various types and
how they are referenced within the program.

Section 8, Basic Components, defines some of the small,
frequently used components of the syntax of Pascal, such as
identifiers and numbers.

Section 8, Interpretation of Program Text, describes how the
Burroughs Pascal compiler interprets the program informatiaon it
reads from its input files. This section includes lists of
reserved waords, predefined identifiers, and context-sensitive
identifiers. A description of the use of comments within the
program text is also included.

APPENDIX A, Compiling, Executing and Analyzing a8 Pascal Program,
defines the syntax and semantics of the eptions that can he used
to direct certain aspects of the compilation and execution of
Pascal programs.

Appendix B, Railroad Diagrams, contains a description aof the
notation used throughout this manual to represent the syntax of
the Pascal language.

Appendix C, EBCDIC and ASCII Character Sets, provides two tables,
the first in EBCDIC sequence and the second in ASCII sequence, of
the B 1000 codes. Each table includes the hexadecimal and
ordinal numbers for the EBCDIC and ASCII codes as well as the
assigned graphics and their meanings.

RELATED DOCUMENTS
The following documents contain information of interest to the
users of this manual:
American National Standards Institute {[ANSI)
Programming Language Pascal (X3J9/81-093) -- Proposed

Pascal User Manual and Report by K Jensen and N. Wirth
Springer-Verlag, New York, 1978

B 1000 Systems System Software Operation Guide, Volume 1
Form No. 1151882

B 1000 Systems System Software Operatian Guide, Volume 2
Form Nao. 1152097

Burroughs CSG Standard for Coempiler Control Images
Burroughs No. 1855 2958

Form 1152048 : 1-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 2
PROGRAM STRUCTURE

Syntax diagrams for all the Pascal program elements discussed in
this section are presented in figure 2-1.

PROGRAM UNIT

A <program unit> is the most global Pascal construct,
encaompassing all data definitions and algorithm descriptions that
are to be compiled as a unit. The form of the <program unit> is
very similar ta the forms of the procedures and functions that
can be defined within it.

The <program heading> includes a program <identifier>, which is
not used for any subseguent purpose, and the optional
<praogram paramenters>.

The other major component of the <program> is the <block>. This
contains the data definitions and algorithm descriptions of the
program. Details of the syntax and semantics of the program
hlock begin later in this section and continue through the
remainder of this manual.

Farm 1152048 2-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Program Unit syntax:

mm—m PP AM) —m e e -

<program> syntax:

—-—~—-— «program heading> ---- ; —---- <hlock> -———- | ————————————— -

<program heading> syntax:

————- PROGRAM -- «¢program identifier) ——-+--—————————— + -

«<program identifier> syntax:

———— <¢identifigry =

<program parameters> syntax:

<external file specification> syntax:

--—— <external file identifier> —————emmmmm e

+———— . —— FILE <« ——4—— cattrihute phrase> ——4—— > ——;

<external file identifier> syntax:

———— ¢<identifiery ———-—m——m e

Figure 2-1. Syntax Diagrams: Pascal Program Elements

Form 1152048 2-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<attribute phrase> syntax:

[t}
1

|
+
—
el
c
m
|

1

|

1

|

|

I

|

1

I

!

|

|

|

|

|

|

i

|

|
+

|

——+ <Boolean-value file attribute>

1
! I FALSE ——————— o +
! !
+ <integer-value file attribute> = ——4-——+—— <unsigned integer> +
! ! ! !
! + + + !
! ! { {
! + -+ !
| 1
+ <mnemonic-valued file attribute> = <mnemonic valuey —————-——wuw- +
! t
+ <string-vatued file attribute> = <character string» —--——-———w-~— +
! !
+ <real-valued file attribute> = (NUMBErY ————— e - +

<hlock> syntax:

e e ———————— +—-——— «¢statement part) —————m———————

! |
+-——-— <declaration part> ———-+
Figure 2-1 Continued.
Form 1152048 2-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

An exampte of a program follows.
Example:
program EXAMPLE[INPUT, OUT_FILE : file «maxrecsize= 132>);

var OUT FILE : text,

answer : integer,
val . integer;

function FACT {n : integer)} : integer;
begin

if n > 1 then
FACT := n ® FACT[n - 1)
else
FACT = 1;
end ;

begin
rewrite{(0OUT_FILE);
read(INPUT ,val];

answer .= FACT{val]);
writeln{OUT FILE, “The factaorial of “,val,” eguals “,answer];
end. -

This program, named EXAMPLE, program computes the factorial of a
number entered through a file named INPUT. The factorial is
computed by recursively calling the procedure FACT. The answer
is written to file OUT FILE, which may be label-equated tao a
printer file. -

NOTE

The names EXAMPLE, INPUT, OUT FILE, and FACT
are spelled in upper case here for ease of
identification. Pascal does not distinguish
between upper-case and lower-case spelling
gxcept in literals.

PROGRAM PARAMETERS

The <program parameters> specify permanent files that the praogram
is to read or write. Optionally, various file attributes of the
named files can be assigned values.

An <external file identifier> specified in the program parameters
must later appear in the <variable dectarations> part of the
program <block>, where it must be assigned a «<file type> or a
ctextfile type>. The predefined files named INPUT and GUTPUT are
exceptions to this rule; their appearance in the

<program parameters> is equivalent to declaring them in the outer

Form 1152048 2-4 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

block of the program, they must not appear in the
c<variable declarations> of the program.

When a file is named in the list of <program parameters>, the
PROTECTION file attribute for that file is automatically set to
SAVE . Thus, a file created by the program becomes a permanent
file. '

For further information on files, textfiles, and file attributes,
please refer to I/0 Concepts in section 6.

The FILE < «<attribute phrase> > construct {that is, the ability
to specify file attributes for program parameters) is a Burroughs
extension to ANSI Pascal.

PROGRAM BLOCKS

A <block> is a set of related declarations and statements. The
declarations describe data and the statements describe actions.
The <dectaration part> and the <statement part> of blocks are
described in sections 3 and 4.

Pascal is a block-structured language derived from the ALGOL
family of languages. The Pascal «<program> is bhasically a block
that may itself contain nested hlocks in the form of procedures
and functions. Two related properties of hlocks, scope and
activation, are fundamental to the structure of a Pascal program.
scape and activation.

Scope

Scope is a8 property possessed by all identifiers and labels in a
Pascal program. The scope of an entity refers to the region of
the program text within which that entity has a specified
meaning. The text of 8 program is divided into these regions -by
the occurrences of blocks, record definitions, WITH statements,
and record variable gualifications.

Scope: Blocks

A <block> defines a8 scope for all identifiers and labels declared
in the <declaration part> or <formal parameter list> of that
block. I1f an identifier is declared in hlock x, that identifier
can be referenced with the defined meaning in all of block x and
in all procedures, functions, and record definitiong within block
X, with the following exception:

If the same identifier is redefined in the region of a
nested procedure, a nested function or a nested record
definitiaon, the former definition is unavailable in that
region and the new definition applies.

Form 1152048 2-5 File DOCUMENT/PASCAL

Burroughs

Figure 2-2 illustr
viewing the figure
tabel is always to

Form 1152048

B 1000 PASCAL LANGUAGE MANUAL

ates the concept of scope for blocks. In
, hote that a reference to an identifier or
its closest (most local) definition.

2-8 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

program p;

var a, {declaration of a and b} <——--1 <«—=1
bh : reatl; ! | scope of
! I b of p
procedure q; | <«—-
var b : real; <—- !
hegin ! !
. | scope of !
{statements of g} I b of g ! scope of
. ! ! a, g of p
end; <«—=1 !
begin ! ==
. ! | scope of
{statements of p} ! ! b of p
1 1
end . (=== <«—-1
Figure 2-2. Illustrations of the Scope of Blocks
program p;
[p——
type r = record !
f1 . real; «<——! scope of !
f2 . (red, green, blue]; ! f1, f2 ! scope of
end; «—=! ! r, red,
begin ! green, hlue
|
{statements of p} |
|
end. <———=1

Figure 2-3. Scope of Record Definitions

Form 1152048 e-7 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Scope: Record Definitions

The region of a <record type> definition defines a scope for all
field identifiers defined in that record. The same nesting rules
apply to records as apply to blocks: field identifiers may he
redefined in embedded records.

In general, if the occurrence of the definition of an identifier
or label is in region x, that definition does not apply to a
region enclosing x. However, there is one exceptian: the
appearance of an <enumerated constant> in an <enumerated type>
definition defines that constant identifier for the closest hlock
containing the definition. Thus, if such a definition occurs
within a record, the enumerated constant identifiers can bhe
referenced outside of the record.

In figure 2-3, the <enumerated constant>s red, green, and blue
can be referenced within the block in which type r is defined.

Every Pascal program has an implied enclosing region in which atll
predefined identifiers are automatically declared. Because this
region encloses the program, these identifiers can be redefined
at any point.

The following rules must be ohserved when defining identifiers
and labels:

tbu Any identifier or label that is referenced either must be
explicitty defined or must be one of the set of predefined
identifiers.

lbu With one exception, any reference to an identifier or label
must textually follow its definition. The exception is an
identifier used to denote the <domain type> of a

<pointer type>. In this case, the identifier need only be
defined before the end of the <type definitiaons> in which it
appears.

'bu An identifier or label cannot be defined more than once in
the same procedure, function, or record.

The definition of an identifier or label applies from the
beginning to the end of the region, and not from the point of its
definition to the end. Thus, a use of an identifier in a region
before it is defined is an invalid forward reference even if the
same identifier is defined in an enclosing scope.

Form 1152048 2-8 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Scope: WITH Statements

A WITH statement or record variablte qgualification defines a new
scope for the field identifiers of a referenced record variable.

In a WITH statement, the occurrence of a <record variable>
defines a scope for each <field identifier> within that record.
The scope extends from the occurrence of the record variable to
the end of the WITH statement. WITH statements have the same
nesting properties as blocks and records. That is, if a WITH
statement causes a field identifier to be defined that has the
same spelling as an identifier in an enclosing region, the local
(that is, the record) definition applies within the WITH
statement.

Scope: Record Variables

Record variables may be "gualified" using the syntax

<record variable>. <field designator>. In effect, this syntax
establishes a scope for altl the field identifiers of the record;
the scope extends from the period (.)] to the end of the

«field designator>.

Activation Records

When a <hlock> is entered, the appropriate local variables must
be altocated. These include variahles that appear in the
<variable declarations> for that <hblock>, <value parameter>s from
the «<formal parameter list>, and the function result (if the
¢<hlock> is a function). These local variables are allocated in
an area of storage referred to as an "activation record.” Each
invocation of a procedure or function has its own activation
record, as does the program hlock.

Storage for an activation record is allocated on entry to the
block and deallocated when the block is exited. Thus, on entry,
all variables declared within a block are undefined for that
invocation. (Pascal Llocal variables differ from FORTRAN local
variahles and from ALGOL OWN variables; those retain their
previous values when the block is re-entered.)

When a procedure or function is called, the activation recard for
the current block is saved before the new one is allocated. The
processes of allocating and deallocating activation records can
be viewed as operations on a stack. Thus, if procedure p with
local variables a and b calls procedure g with local variables c
and d, the storage allocation can be viewed as shown in figure
2-4.

Farm 1152048 2-9 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

A procedure or function can call itself, either directly or
indirectly. If, in the previous example, procedure g calls
procedure p, the stack will contain the activation records shown
in figure 2-5.

Logicaltly, this process could continue indefinitely; however,
the system would eventually run out of storage space.

References to variables in a8 block refer to the most recently
allocated activation record for that block in the stack.

Note that these rules apply to variables. Most are explicitly
declared in a block. Variables can also be allocated dynamicatly
through the use of the procedure NEW. For a discussion of the
dynamic allocation of variabtes, refer to Dynamic Allocation
Procedures in section 6.

Form 1152048 2-10 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

] d !
! C !
___________ [JE
1 b |] b ! [h [
1 a ! ! a ! ! a !
Before While in After
procedure g procedure procedure
is called q g is exited
Figure 2-4. Procedure p Calls Procedure q.

' b ' second activation record of p
I a !
' d ! activation record of g
!
= !
' b ! first activation record of p
I a |

Figure 2-5. Procedure g Calls Procedure p.

Form 1152048 2-11 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 3
DECLARATIONS AND DEFINITIONS

Following is the s&ntax diagram for the <declaration part> of a
<hloeck>.

Syntax:

b e o — >
| |
+~—--— <label declarations> —-—-———=-—=-cmemm————— +

) e e e e e e e e e e e e — e >
! !
+-—-—— <constant definitionsy —-—————————————————o +

P e Fmmm e >
| |
+———— <type definitions> -———-—————— e +

) b e e e e e e e tm———————————— >
| |
+-——— «variable declarationsy ——----rmeemmcem——- +

3 T !
! !
+~—-—~ <procedure and function declarations> —---+

The declarations and definitions are all optional, but when two
or more are used, they must appear in the sequence shown in the
diagram.

The <constant definitions>, <type definitions>, and

<variable declarations> primarily are used to describe the data
on which the program is to act. The «<label declarations> and
<procedure and function declarations> are tools used in
describing the program algorithm. These components are described
in the following sections, in the order in which the components
appear in the <declaration part>y.

LABEL DECLARATIONS

<label declarations> identify <label>s for use within the
<block>. The <«ilabel>»s are used to indicate statement locatians
to which program control can be transferred using the <goto
statement>. Any <label> used within a <block> must be declared
in the «<declaration part> of that <block>.

Form 1152048 3-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

A <label> may have up to four significant digits. (Leading zeros
are naot significant digits.) Therefore, <label> range is O
through 9999.

<label declarations> syntax:

m——— LABEL ——4-— Cl&HEL> —mdmm ;| =m——mmm— oo e
<label> syntax

<=/ 4 \————y
! !

R S o LSS S SR

CONSTANT DEFINITIONS

The <constant definitions> associate <identifier>s with constant
values, allowing those value$ to he referenced by namas rather -)
than by specifying the actupl values. thruughaut the program.- The
type of each constant being . decfarad is determined by the type of
the constant on the rlght sade.af the egual sign, which may be a
Literal value of .a predef1ned type or’ a: prev1uusly declared
cunstant 1dent1fler . :

P

MAXINT is. a predeflned '?jdentifier> that has}:he
value~:8, 3&&4607 (2 raigse i “gower minus 1). TRUE and
FALSE are pﬁedef1ned values of - the <Boolean "type>. cidentifiery,
<character Literal>, <unsigned integers>, -cunsigned realy, and
<character string> are defined in sectjnn-8$,Basjc Components .

Examplés:
1..always =~ = TRUE;
2. a <= ‘a’;
3. maxhits = 48
4. minvalue = -4 .5;
5. greeting = “Hello”
6. intro = greet1ng,
7 warn1ng =

In example 1 always 15?5 <Bnolean,éunstant idemt ¥ fier> with the
value TRUE; thus, always may be used wherever a

<Boolean &nnstant) is valtdd.

In example 2, the letter a is a <char constant jdentifier> with a
as its value. :)

In example 3, maxbits is an <integer constant identifier> with
the value 48. : . S

Fuorm 1152048 3-2 . File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

In example 4, minvalue is a8 <real constant identifier> with the
value -4.5.

In example 5, greeting is 8 <string constant identifier> with the
value “Hello”.

In example 6, intro is a <string constant identifier> with the
same value as greeting (example 5).

In example 7, warning is a8 <string constant identifier> with the
value “Don”t do it

<constant definitions> syntax:

———~~ CONST ==
+l—mm = e +
[!
>—+——T <Boolean constant identifier> = «<Boolean constant> T—— T bt
T <char constant identifier> = ¢char constant> 4
|
% <integer constant identifier> = <integer constant> f
T «<real caonstant identifier> = «<real constant> f
+ <string constant identifier> = «<string constant> %
<Boolean constant> syntax
_—__T—_ TRUE ———emree e T —————————————————————————————
J;r—— FALSE ——mmmmmm e e e +
|
%—— <Boolean canstant identifier> ——%
<char constant> syntax:
———~T—— <character literal>-——--=---- e e
i
%—— <char constant identifier> ——%
<integer constant> syntax:
————t———— +——=+-- MAXINT —————mmmmmmm oo e
! ! ! |
: + : T~— <unsigned integer>-—————-———————-— T
% -+ ;—— <integer constant identifier> ——;
Faorm 1152048 3-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<real constant> syntax:

+ +—~——+—— <unsigned realy —————mmmm—————a— o
! ! ! !

o+ +~-— <real constant identifier> —-———- +
! !
+ +

<string constant> syntax:

————+—— <cCharacter string>-———=====-w-- e
! [
+—-— <string constant identifier> ——+

TYRPE DEFINITIONS

Every variable, constant, and function has an associated type
which defines its range of valid values, its internal and
external representation, and the operations that may be performed
on it. The <type definitions> allow user-defined types to he
named and their characteristics to he specified.

Discussions of some general concepts that apply to types are

presented next, followed by descriptions df all the types,
presented in alphabetical order.

Form 1152048 3-4 File DOCUMENT/PASCAL

Burroughs

’

B 1000 PASCAL LANGUAGE MANUAL

<type definitions> syntax:

—— TYPE — = >
o e e e e e e +
! !
>~+—T carray type identifier> = <array type> —m———e——— T—— e St
f <Bootean type identifier> = <«Boolean type> —-————- %
% <char type identifier> = <char type> —-———————- f
% <gnumerated type identifier> = <enumerated type> —~~f
f <file type identifier> = «file typey) ————————- f
% <integer type identifier> = <integer typey —-————— f
& <pointer type 1dentifier> = «pointer type> —-————-- %
f <real type identifier> = <real type> ———————-- f
T <record type identifier> = «record type> —--——-——-— f
f <set type identifier> = (SEL LYPe> ——w-mmm——m f
f <subrange type identifier> = <Ksubrange type> —---——- f
% <ctextfile type identifier> = «<textfile type> —-—-——- ;

Simple, Structured, and Pointer Types

Types may be classified into three categories that reflect their
structure.

<type> syntax:

————+4-— <simple typey --—-—-—- e e —————————————
! |
+-— <structured type> —--+
| {
+—-— <pointer type> ----—-— +

Simple Types

Variables of simple types have only one component. The
predefined types Boolean, char, integer, and real are simple
types. User-defined derivatives of these predefined types, as
well as enumerated types and subrange types, are also simple
types.

Form 1152048 3-5 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<simple type> syntax:

————T~— <Boolean typer————-—- e e e
f—~ <char typed>————c—m——u %
f—— <gnumerated type> ——-f
f—— <integer type> -——-—~— f
f—— <real type> —————u——— f
- <subrange type> —-—--—- +

Structured Types

Variables of structured types are composed of muttiple
camponents, which may be of one or more simple types or may be
structured themselves.

<structured type> syntax:

————— T_— carray type> ———————T——-—————————4~~——;——————————-——~~~——-————
T—— <set type> ———————wm f
f—— c<record type> —--—-——- f
%—— <file typey> ~——--——- f'
%—— <textfile type> ————%

Pointer Type

Variables of pointer types contain values that are references to
variahles of simple or structured types.

<cpointer type> syntax:

CPOINtEr LYPE)Y —mm e e e e

Ordinal Types

Most

simple types are also ordinal types. In an ordinal type,

the values have a welti-defined seguential relationship to each
other. Each value is assigned an ordinal number that uniquely
identifies its position in the seguence. Thus, a value aof an
ordinal type can have a successor and a predecessor in the
sequence. Values can altso be compared to each other (for
example, greater than, less than) based on their aordinal numbers.

Form 1152048 3-6 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The only simple type that is not an ordinal type is the <real
type>.

<ordinal

-
!
[ERp—
!
[Sp—
!
+_—
!
e

typey syntax:

<Boolean typey————— T ___
<char typey> —————we-- f
<enumerated type> —-%
<integer typey-—————— f
<subrange type> ——t

Type Identifiers

In ¢<type definitions> and «variable declarations>, a8 type can
usually be defined in one of two ways:

(n

(2]

as a new type (that 1s, by using the <new array type>,
<new enumerated type>, <new file type>, <nev paointer type>,
«<new record type»>, <«new Set type>, <new subrange type>, or

as a8 derived type, where an <identifier> that has already
heen defined or was predefined as a type identifier is
specified.

In other contexts requiring a type specification, new types are
not allowed; previously defined <type identifier>s must be used.

Form 1152048 3-7 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<type identifier> syntax:

~———+—-— BOOLEAN--—————— e~ o e
L-- CHAR — o oo :
%—— INTEGER ———— o %
T-- REAL — oo o mmmmm e +
R Y l
i—— carray type identifier> —————-- i
%-— <Boolean type identifier» ———-—- l
T-— <char type identifier) ———————- %
f-- <enumerated type identifier> ——f
T—— «<file type identifier) —-————=-- %
f—— <integer type identifier —-—--—-— i
f—— <pointer type identifiery —----- ;
4-— <real type identifier> —————--- i
%—— <record type identifiery —-———-- l
#—— <set type identifier) ———————-- i
i~— <subrange type identifier> ————i
i—— «<textfile type identifier> —--—i

Same Types

Because types can be defined in different ways, it is not always
clear when two types are actually the same type. The concept of
"same type"” is used when describing how <variable parameter>s are
matched in procedure and function invocations. More important,
the definition of "same type" is used to define compatible types
and to assignment compatibility. See Compatihle Types, later in
this section.

The <type identifier>s T1 and T2 are the same type if aone of the
fallawing rules is true:

Form 1152048 3-8 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Rute 1 One type is defined to be equal to the other.
Rule 2 Both types are of the same type as a third type.

In the simplest case of same type, T1 is defined to be equal to
T2, as shown in the following example:

TYPE T1 = T2; {Rule 1}
Rute 2 describes the situation in which T1 and T2 have a common
ancestar. The simplest case is the following:
TYPE T3 = INTEGER;
71 = T3; {Rule 1}
T2 = T3; {Rule 1}

T1 is the same type as T2 by rule 2. In the following example,
T1 and T2 are also of the same type:

TYPE T5 = INTEGER;
T4 = T5;
T3 = INTEGER,
T2 = T4;
T1 = T8;

In this example, T2 equals T4, T4 eguals 75, and T5 equals
INTEGER. T1 equalts T3, and T3 equals INTEGER. Therefore, T1 and
T2 are the same type, namely INTEGER.

In order to apply the same-type rules, all types must have
associated «type identifier>s. For example, even though types T6
and T7, defined below, have exactly the same characteristics and
structure, they are NOT the same type:

TYPE T6 = ARRAY [1..5] OF INTEGER,;
T7 = ARRAY [1..5] OF INTEGER;

However, 76 and T7 would be the same type if declared as follows:

TYPE T8
T7

ARRAY [1..5] OF INTEGER,;
T6;

Caoampatible Types

In some cases, it is not necessary for types to be the same type,
but they must be compstible types for a particular construct to
be valid. In particular, the operands in most relational
expressions must be of compatible types. Also, the

Form 1152048 3-9 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<case canstant>s in the <variant> part of a <record type> must he
type-compatihle with the type of the <variant selector>.

Two types, T1 and T2, are compatible if any of the following
rules are true:

Rule 1 T1 and T2 are the same type.

Rule 2 One type is a subrange of the other, or both types are
subranges of the same type.

Rule 3 T1 and T2 are <set type>s with compatible <hase type>s
and both T1 and T2 are packed or both T1 and T2 are not
packed.

Rule 4 71 and T2 are «<string type>s with identical character
counts.

Examples:

type t1 = real;
t2 = t1;
{t1 and t2 are compatible by rule 1.}
t3 = 1..10;
t4 = 5..7;
t5 = 20..30;

{t3, t4, and t5 are compatible by rutle 2.}
t6 set of char;

t7 set of “a”".."2";

{tB6 and t7 are compatible by rule 3.}

t8 = packed array [1..10] of char;
t9 = packed array [1..7] ©of char,
{t8 and t9 are compatibhle by rule 4.}

Assignment Compatibility

Assignment compatibility refers to the validity of assigning a
particular value to a variahle of a certain type. The rules nof
assignment compatibility are applied under the following
circumstances:

In an assignment statement, the value of the <cexpression»
must be assignment compatible with the type of the variahle
or function result being assigned.

An expression used as an array index must be assignment
compatible with the index type in the array declaration.

The initial value and final value in a8 «<for statement> must
be assignment compatible with the type of the control

Form 1152048 3-10 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

variable.

An actual parameter must be assignment compatible with the
type of the formal value parameter it is to match.

The values returned by the read, time, runtime, and date
procedures must he assignment compatible with the parameters
passed to those procedures.

In the definition of assignment compatihility that follows, VI
and V2 represent two variables, and T1 and T2 are the types of V1
and V2, respectively. As an illustration, consider the
assignment statement V2 = V1. V1 1is assignment compatible with
V2 (or any variable of type T2) if any of the following
statements is true:

1. T1 and T2 are the same type and that type is not a
<file type> or <textfile type>.

2. V1 and V2 were declared in the same
<variable identifier tist> in a variable declaration. (This
rule alloaws two variables of the same unnamed type to be
assignment-compatible).

3. T2 is the <real type> and T1 is the <cinteger type>.

4. T1 and T2 are compatible ordinal types and the value of V1
is valid for type T2.

5. T1 and T2 are compatible set types and all memhers of the
set of V1 are valid for type T2.

6. T1 and T2 are compatible <string type>s.

Form 1152048 3-11 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:

type t1 = real;
teg = t1;
(ALl values of types t1 and t2 are assignment-compatible
with all variables of types t1 and t2, by rule 1.)

var v1,
ve : array [1..10] of Boolean;
(ALl values of v1 are assignment-compatible with v2, and vice
versa, by rule 2.)

v3 @ real; -

vd : integer;

(ALl values of v4 are assignment~compatible with v3 by rule
3. V3 is not assignment“compatible with the type of v4.

That is, v3 := v4 is allowed, but v4 = v3 is not allowed.)
v : 7..10;
ve . 1..20;

(ALl values of v5 are assignment—-compatible with vB by rule
4, but only some values of vB are assignment-compatibtle

with v5.)
v7 : set of “a”.."2";
vB8 : set of char;

(ALl values of v7 are assignment-compatible with vB8 by rule
5, but only some values of v8 are assignment-compatible
with v7, namely those set values that contain only characte

. ——

between “a” and “z’, inclusive.)

v9 : packed array [

vi0: packed array [10] of char;

(ALl vatues of v8 are assignment-compatible with v10, and
vice versa, by rule 6.)

1..101 of char;
1.
r

Type Descriptions

Array Types

An array is a structured type containing identical components of
a specified <element type>. The array is indexed by the values
of a given <index type>. The number of components in the array
is determined by the numher of values in the <index type>. The
<index type> cannot be the <integer type>, but it can be a
<subrange typey> whose host type is the <integer type>.

If multiple <index type>s are specified, the array is
multidimensional, each dimension being indexed by ane

<index type>. An array with N dimensions is synonymous with an
array of arrays with N-1 dimensions.

Form 1152048 3-12 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

An <array type> that includes the designation PACKED will he
stored in as economical an amount of space as is practical,
possibly at the expense of speed in accessing the companents.
When a multidimensional array is declared using a list of

<index type>s: and the array is designated PACKED, all component
arrays of that array will also be PACKED (that is, all dimensions
of the array are considered PACKED).

Examples:

type t1 array [Boolean] of array [1..10] aof array [size] of real

t2 = array [Boolean] of array [1..10, size] of reatl;
t3 = array [Boolean, 1..10, size] of real;
t4 = array [Boolean, 1..10)] of array [size] of real;

Types t1, t2,:t3, and t4 are equivalent ways of expressing a
three-dimensional array with a <component type»> of type real and
with Boolean as its first dimension, the subrange 1..10 as its
second dimension, and the <ordinal type identifier> size as its
third dimension.

type p1 = packed array [1..10, 1..8) of Boolean,;
p2 = packed array [1..10] of packed array [1..8] of Bpolean;

Types p1 and p2 are eguivalent ways of declaring a packed array
with "packed array [1..8) of Boolean" as its component type.

Strings are a special class of arhays that can be used in ways
that arrays normally cannot be used. Far example, a variable of
<string type> can be assigned a <character string> value of the
same length; individual characters in the <character string> are
assigned to successive components of the array.
Example:

type str = packed array (1..10] of char;

Type str is & <string type> that contains ten characters.

<array type> syntax:

————4—— <Nevw array typey -—————————— o ——————
| !
+-— <array type identifier> —--+

Form 1152048 3-13 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<new array type> syntax:

———— +— ARRAY [——% <index type> %——] OF -- <element type>
! !
+ PACKED +

<index type> syntax:

———— <ordinal typE> ———m—m

<element type> definitiaon:

An <element type> is any <type> that is not a <file type>, a

<textfile type>, or a <structured type> containing a <file type>

or a <textfile type> as a component.

<string type> definition:

A <string type> is an array that is defined as PACKED ARRAY

f1..n] OF CHAR, where n is greater than or eqgual to 1.

Boolean Types

Bonolean is a predefined ordinal type that comprises the values

TRUE (value = ordinal 1) and FALSE (value = ordinal 0]. All

<Boolean type>s are of the same type.

Example:

type b = Boolean;

Type h is a <Boolean type identifier>.

<Boolean type> syntax:

————— +—— BOOLEAN ——— e e e -
! !

+-— <Boolean type identifier> —-+

Character Types

The character type (<char type>) is a predefined ordinal type
that comprises the standard character set (EBCDIC unless changed
to ASCII using the STRINGS campiler control option. The mapping
of characters to ordinal numbers is defined in appendix C, EBCDIC
and ASCII Character Sets.

Farm 1152048 3-14 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

All «<char type>s are the same type.
Examples:

type ch
C

char;
ch;

Types ch and ¢ are hoth <char type identifier>s.

<char type> syntax:

+—-— «<char type identifier> —---+

Enumerated Types

An <enumerated type> is a simple, ordinal type that comprises the
values specified in the associated list of

<enumerated constant>s. The order in which the

<enumerated constant>s appear determines their ordinal numhers:
the first <enumerated constant> is assigned the ordinal number O,
and each subsequent <enumerated constant> is assigned an ordinal
number that is one higher than its predecessaor.

The appearance of an <identifier> as an <enumerated constant> in
an <enumerated type> definition defines that <identifier> for the
block. Because the <identifier> cannot be redefined in the same
btock, the same <identifier> cannot bhe used in two

<enumerated type> definitions in the same block.

Examples:
type color = (red, yellow, blue, green, tartan);
card_suit = (club, diamond, heart, spade);
tool = (rake, haoe, spade); { errar }

Type color is an <enumerated type identifier>. The

<enumerated constant> red has the ordinal number 0, yellow the
number 1, blue the number 2, preen the number 3, and tartan the
number 4.

Type card suit is an <enumerated type identifier>. The
<enumerateéd cpnstant> club has the ordinal number of O, diamond
the number 1, heart the anumber 2, and spade the numbher 3.

Type tool is in error because the identifier spade has already
been declared (@s a value of type card_suit) in this block.

Form 1152048 3-15 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<enumerated type> syntax:

————+4-— <new enumerated typer-—————————- e
! !
+—-— <enumerated type identifier> —--+

<new enumerated type> syntax:

=== [4-- <enumerated constant> —-—+] ———mmmmm e

<gnumerated constant> syntax:

———— «identifiery ————--emm e
Fite Types

A <file type> is a structured type of identical components. It

differs from an array in that it is not indexed and has no

specified upper bhound. Instead, components are accessed through

predefined procedures. For additional information on files,
please refer to I/0 Concepts in section 6.

The designation PACKED has no effect for file types.

Example:
type employee = recaord
name, firstname : packed array [1..20] of char;
department_code : 0..99;
employee no . 0..8999;
end;
employee file = file of employee;
Employee file is a «file type identifiersy; each component of the

file is an employee record containing the folltowing fields:
name, firstname, department code, emplnyee_nu.

<file type> syntax:

----- +-— ¢<new file typepy——————cm e
i—— <file type identifier> ——i

<new file type> syntax:

————— +—————=———t———= FILE —-- OF —— <component type) ———eeomemme— e

+ PACKED +

Form 1152048 3-16 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<component type> definition:
Any <type> that is not a «<file type>, a <textfile type>, or a

<structured type> containing a <file type> or a <textfile type>
as a component.

Integer Types
Integer is a predefined ordinal type that comprises the integer
values from -MAXINT to MAXINT, inclusive. The ordinal number of
a value of type integer is the value itself
Example:
type int = integer;
Type int is an <integer type identifier>.
<integer type> syntax:
~—~—-—+—-— INTEGER - --———————— e
! !
+-— <integer type identifier> —--+
Pointer Types
A <pointer type> is a special type that is used to reference
dynamically allocated variables. A variable of a <pointer type>
may reference a variable of its declared <domain type> or may be
NIL, that 1i1s, may not be currently referencing a variable.
Please refer to Dynamic Allocation Procedures in section 6 for
details on dynamic variables.

Example:

type ptr to client = @client;

ctient = record
name : packed array [1..20] of char;
son, daughter : ptr to client;
end; -~

The type ptr_to_client is a pointer to a record of type client.
<pointer type> syntax:
————+-— <KNEW pOinter type>—-———————— e il LT PP

i !
+—— <pointer type identifier> --—+

Form 1152048 3-17 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<new pointer type> syntax:
——== @ —-—- <domain tYypE> ———m e e
<domain type> definition:

Any <type identifier> except a «file type identifier>,6 a
<textfite type identifier>, or a <type identifier> of a
<structured type> containing a <file type> or <textfile type> as
a component.

Real Types

Real is a predefined simple type that comprises the range of
floating-point approximations. Real numbers in B 1000 Pascal
have a precision of approximately seven decimal digits. The
routines that print real numbers print a maximum of seven
gignificant digits in order to guarantee the accuracy of the last
digit. The exponent range is from E-47 to E+68.

Example:
type r = real,;
Type r is a «<real type identifier>.

<real type> syntax:

+—— «<real type identifier> ——-+

Record Types

A <record type> is a structured type that can contain components
pf different types. These components, called "fields," are
referenced hy name, not by index (as with arrays) or by current
position (as with files]).

A record may include a <fixed part> or a <variant part> or both
or neither. A record that includes neither a fixed nor a variant
part contains no companents and is said to be empty.

The «fixed part> of a record consists of a group of fields that
apply to all variables of the <record type>. Each field has a
<field identifiar> by which it is referenced and an associated
<field type>.

Form 1152048 3-18 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The <variant part> of a record is a collection of field
definitions, called "variants." The <variant part> allows
different variables of the same record type to have different (or
partty different) formats, depending on the run-time value of the
<variant selector>. Because the format is chosen at run time,
there must be one (and only one) variant defined for every
possible vatue of the type specified hy the

<ordinal type identifier»> in the <variant selector>.

The interpretation of the variants at run time depends on whether
or not the <variant selector> includes the optional

«<field identifier>. This «field identifier> is called the "“tag
fietd" and is allocated as a field within the record. If a tag
field is defined and a variable of that record type is allocated,
anly fields in the <«<fixed part> and in the <variant> that
includes the value of the tag field as a <case constant> are
valid; any attempt to reference a field in another variant is an
error. When the value of the tag field for a particular variable
is changed, the old variant becomes inactive and all fields in
that variant become inaccessible. The new variant becomes active
and all fields within the newly active variant are undefined,
regardless of any prior state.

If the «field identifier> is omitted (that is, there is no tag
field) and a variable of that record type is allocated, the
active variant is selected by assigning a valid value to a field
within that variant. At that point, all other variants
theoretically become inactive, similar to the state described
above for 1inactive tagged variants. However, in this
implementation, the restrictions on accessing fields in inactive
non-tagged variants are not enforced. All fields within the
<fixed part> and all fields within all variants may he
referenced, but only one storage area is allocated. Thus, the
variants effectively “remap" the storage area.

A <record type> that includes the designation PACKED is stored in
as economical an amount of space as practical, possibly at the
expense of speed in accessing the components.

Example: .
type str = packed array [1..20] of char;
rec = record

name, firstname : str;

age : 0..99;

case married : Boolean of
true : (spousesname @ str);
false : (),

end;

Type rec is a <record type identifier> that defines a

<new record type>. The first component of rec is name, which is
of type str. The next component is firstname, also of type str.
The component age is & subrange fram O to 99, inclusive.

Form 1152048 3-19 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The word case introduces a set of two <variant»s, where married

is a Boolean tag field that is the <variant selector>. If
married is true, the next component is spousesname,TRUE, type
str. If married is FALSE, there are no more components.

<recard type> syntax:

~———4+—- <new record typed>-—————————m e
i—— <record type identifier> ——i

<new recard type> syntax:

———— e ———— +-— RECORD -- «<field listy —— END ———— e
+ PACKED +

«field list> syntax:

+-— «fixed part) ——4—————mmmm + + 5+
! ! !

| + ; «<variant part> —-—+
! !
+—— <variant part> —————————m————————— +

<fixed part> syntax:

|
l

!] 1
————t————+—— <«fietld identifier> —-—-+-- : ——«<field type> ——4——--—mve—mw--
<fietd identifier> syntax:
———— cidentifiery) —————m e
<field type> definition:
Any <type> that is not a <file type>, a <textfile type>, or a
<structured type> containing a «<file type> or a <textfile type>

as a component.

<variant part> syntax:

ER T ;o om————— +
! ! !
—-—-~- CASE -- «¢variant selector> —- OF —-—4—-- <¢variant) —-—4-——-m———emew-
Form 1152048 3-20 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<variant selector> syntax:

e e e +-—- <ordinal type identifier> —-—-———-
! !

+-- «field identifier> -- .| —-—-+

<ordinal type identifier» syntax:

____T__ <Boolean typey-—————--—-—-———————— T —————————————————————————————
f—— <char typey—————me————— f
f—— <enumerated type identifier> ———f
f-- <Cinteger type> —-—————m———————— f
;—— <subrange type identifier> ----- %

c<variant> syntax:

~———+—— KCase constant> —-—+-- : —= [«<field list>]}

«<case constant> syntax:

—-——--+-— «Boolean constant>———-———— e
] |
+-—- <char copstanty>-—-————-————- +
1 !
+-- <enumerated constant> —---+
1]
+—— <integer constant> —--————- +
Set Types
A <set type> is a structured type for which the range of values
is all possible subsets of the specified <base type>. In
mathematical terms, a <set type> defines the "powerset" of its
<hase type>. A variahle of a <set type> can contain any subset

of the set, including the null set and the entire set.

The range of ordinal numbers associated with the <base type> is
0..255.

The designation PACKED has no effect for set types.

Examples:
type set1 = packed set of char;
set?2 = set of (club, diamond, heart, spade);
Form 1152048 3-21 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Type set?1 is a «<set-type~identifier> defining a range of values
consisting of all possible subsets of the set of type char.

Type set?2 is a «<set type identifier> defining a range of values
consisting of all possible subsets of the set that includes the
elements club, diamond, heart, and spade. The following are the
possible values a variable declared of type set2 could assume:

L]
[club]
[diamond]

[heart]

[spade]

[club,diamond]
[ctub,heart]

[ctub, spade]

[diamond, heart)
[diamond,spade]
[heart,spade]
[ctub,diamand,heart]
[club,diamond,spade]
[club,heart, spade]
[diamond, heart,spade]
[club,diamond,heart, spade]

<set type> syntax:

-———T—~ <nev set typE>———m—————o T —————————————————————————————————————
- <set type identifier> —

<new set type> syntax:

————— 4-———m———4—— SET —- OF —- <hbase typey ————mmmm e
+ PACKED +

<hase type> syntax:

———— <ordinal type> —————mm

Subrange Types

A <subrange type> is a simple, ordinal type that defines a range
of values that is (usuatly) smaller than the type from which it
is derived, called its "host type." The value range includes all
values of the host type hetween the first constant specified and
the second constant specified, inclusive. The specified
constants must be of the same type, and the second constant must
he greater than or equal to the first constant.

Form 1152048 3-22 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The ordinal numbers associated with the values of a
<subrange type> are the same as the ordinal numbers associated
with those values in the host type.

Examples:

type letters AT 727

cotor = (red, yellow, blue, green, tartan);
primary = red. . hlue;

mixed = green..tartan;

index = 1..10;

Type letters is a <subrange type identifier> that selects the
subrange of char values consisting of the characters from “A”° to
‘27, inclusive.

Type color is an <enumerated type identifier> whose values are
red, yellow, blue, green. and tartan.

Type primary is a <subrange type identifier> that selects the
subrange of color values from red through blue (that is, the
values red, yellow, and bilue).

Type mixed is a8 <subrange type identifier> that selects the
subrange of color values from green through tartan; the ordinal
numbers associated with the values of type mixed are 3 (green)
and 4 (tartan}.

Type index is a8 <subrange type identifier> that selects the
integer values from 1 to 10, inclusive.

<subrange type> syntax:

————~+4-- (NEv¥ Subrange type>—--—————--— e e e e
! |
+-— «subrage type identifer> -—-+

<nevw subrange type> syntax:

____T__ <Boolean caonstant> .. <Boolean constant> —--—————- T ——————————— !
f—— <char constant> .. <char constant) ——-———————ee——— %
%—- <enumerated constant> .. <enumerated constant> ——%
4—— <integer constant> .. <integer constant> ————-——= %

Textfile Types

A <textfile type> is @ structured type for which the components
are characters grouped into Lines. Textfiles are similar to
files of characters, but they have a different set of defined
operations As with files, characters are accessed through

Form 1152048 3-23 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

predefined procedures.
Example:
type streamfile = text;
A variable declared to be of type streamfile will be a textfile.

<textfile type> syntax:

+—-— <textfile type identifier> ——+

VARIABLE DECLARATIONS

The <variable declarations> define the variahles that are to he
used throughout the <block>. Each variable has an associated
identifier, by which it is referenced, and an associated <type>,
which defines the range of values and the operations applicable
to the variahle.

The <type> specified can be a predefined type identifier, a type
identifier defined in the <type definitions>, or a new type
specified in the <variable declarations>. Variables that appear
in the same <variahle identifier list> are defined to be of the
same type. Please refer to the Type Definitions in this section
for additional information on types.

wWhen a hlock is entered at run time, all variables declared
within that block are allocated with undefined values.

Form 1152048 3-24 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:
type color = (red, yellow, blue, green, tartan]);
var , 2, max . real,;

X

i integer;

p , r . Boolean;
k : 0..9;
]

a

m

f

O

perator . (plus, minus, times),;
array [0..63)] of reat;

, m1, me : array [1..10, 1..10] of real;
file of char;

c : color;
huel, hue2 : set of colaor;
date : record
month : 1..12;
year . integer;
end;

days : array [1..12] of 28. .31,

Variables x, y, 2z, and max are of type real, variables i and j
are of type integer, and variables p, g, and r are of type
Boolean.

Variable K is of the «<subrange type> 0..8, for which the host
type is integer.

The variable operator is of an <enumerated type>, it can have
the value plus, minus, or times.

The variable a is a one-dimensional array of type real that may
he indexed by an integer from O to 63, inclusive. Variables m,
m1, and m2 are two-dimensional arrays of type real. Each
dimension may be indexed by an integer between 1 and 10,
incltusive.

The variable f is a file whose component type is char. (Each
component is a single character.)

The variable ¢ is a variable of the <enumerated type identifier>
color and may contain a value of red, yellow, hlue, green, or
tartan. Variables hue1 and hue2 are hoth of type "set of color.”
They may contain any suhbhset of the <enumerated type identifier>
color.

The variable date is a <new record type>. The field month may
contain an integer value from 1 to 12, inclusive. The field year
may contain any value of type integer. The variable days is a
one-dimensional array that may contain an integer value from 28
to 31, inclusive; it may be indexed hy an integer value between
1 and 12, inclusive.

Form 1152048 3-25 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<variable declarations> syntax:

———— VAR --+-- <variable identifier List> —- : —- <type> —-- |, ——4—————

¢variable identifier list> syntax:

————+4-—— ¢variable identifier> ——4-——-cm—mmmm e
<variable identifier> syntax:

-——— ¢identifiEry ————-— e ——————_—————— e

PROCEDURE AND FUNCTION DECLARATIONS

Procedures and functions are subunits of programs and include
their own declarations and statements. The major difference
hetween a procedure and a function is that a function returns a
value associated with its function identifier; thus, a functian
is used to generate a value in an expression, whereas a procedure
is used as a statement.

<procedure and functions declarations> syntax:

————4——+—— ¢procedure declarationd ———4-——t—- | mcmmmm e e
! ! |

+-— <function declarationy ————+

The declarations used to define procedures and functions are
described under the headings Procedure Declaration and Function
Declaration in the pages that follow.

A procedure or function can have an associated list of
parameters. This allows the the values and variables on which
the procedure or function is to operate to be specified at run
time. The parameter list occurring in the declaration is called
the formal parameter list because the parameter names do not
refer to actual variables, they stand in for variables
throughout the procedure or function declaration. When the
procedure or function is invoked, an actual parameter list is
supplied, and the actuat values and variables take the place of
the formal parameters.

The syntax and semantics of formal parameter lists are provided
under the heading Formal Parameter Lists, later in this section.
Formal parameter lists are identical fer both procedures and
functions. functions.

Form 1152048 3-286 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The syntax and semantics of actual parameter lists and
information on the matching of actual parameters with faormal
parameters when a procedure or function is invoked are provided
under Actual Parameter Lists and Parameter Matching.

Procedure Declaration

The «<procedure declaration> defines a procedure identifier and
its parameters. The procedure can then be invoked by a
<procedure invocation statement>.

<procedure declaration> syntax:

—~———~ PROCEDURE «procedure identifiery ——4-————————— o +—-
I |

+ <formal parameter List> +

+-—- <directive> --+
«<procedure identifier> syntax:
~——— cidentifiery ——————m -
<directive> syntax:
e KO PWEIO)Y —— e e e e -

Before a procedure is invoked by a

<procedure invocation statement>, the <procedure identifier> and
the formal parameters of the procedure must be defined. Such a
definition can he provided either in a forward declaration or in
an actual declaration for the procedure. A forward declaration
is a «<procedure declaration> that includes the forward
<directive>. When a procedure is forward-declared, an actual
procedure declaration must appear before the end of the list of
<procedure and function declarations> that contains the forward
declaration. When a forward declaration is used, the

<formal parameter list>, if any, must appear in the forward
dectaration,; it must not appear in the actual declaration.

In some situations, a forward declaration is required. For

example, if two procedures each invoke the other, at least ane of
the procedures must be declared forward.

Form 1152048 3-27 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:

program procedure decs;
type arraytype = array [0..10] of integer;
var X, y . arraytype;
m, n : integer;
procedure proct;
hegin
display (“in proct1”)
end;
procedure proce2 (i : integer,; var j : integer);
var k : integer; { local to proc2 }
begin
display (“in proc2’)
i o= o+ i, { Actual parameter for j is changed. }
end,;

procedure proc4 (var a : arraytype]l,
forward,
procedure proch;
hegin
display (“in proch”)
x[2] = 5,
proc4 (x];
end;
procedure procéd; { The formal parameter list was specified in the
forward dectaration for procéd. }
begin
display (~
if a[2] =
procS;
end;

in
10

bhegin

m = 5;

n = 1000;
proct,
proc2(m,n);
prochH;

end.

Procedure proc1 has no parameters.

Procedure proc2 has two parameters of type integer. The first
parameter is a <value parameter> and the second is a
<variable parameter>.

Procedure proc4 has a <variable parameter> of type arraytype.
Because procedure proc4 contains a call on procedure proc5 (and
proc5 has a call aon proc4), procedure proc4 was first declared as
forward. The <formal parameter list> for procd4 is declared only
with the forward declaration.

Form 1152048 3-28 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Procedure proc5 has no parameters. Proc5 contains a call on
procéd.

Function Declaratian

The <function declaration> defines a function identifier, its
type, its parameters, and its action. The function can then be

invoked by a «<function designator> in an expression.

<function declaration> syntax:

——~— FUNCTION —- «function identifiery -————-—-———mmmmm
> + : <result type> ;| ——4-———m—mm——— +-
! ! ! |
+—- «<formal parameter list> —+ +- <directive> —+

<funetion identifier> syntax:
———= <igentifigr) ————————
<resutt type> syntax:

———-+—— ¢simple LypeEr——m—mdmm o -
! !

+~—- <pointer type> ——+
<directive> syntax:
~——- «<forwardy) --————————

The <result type> specifies the type associated with the
<function identifier>, which is the type of the value returned to
the expression invoking the function. The <result type> must be
8 «<simple type> or a <pointer type>. {Refer to Type Concepts.)
The function result is undefined until and unless the

<function identifier> appears as the left-hand side of an
<assignment statement> in the function <block>. If a value is
never assigned to the <function identifier>, an error occurs.

Before a function is invoked by a <function designataor>, the
<function identifier>, the formal parameters, and the

<result type> of the function must be defined. This definition
can be provided either in a forward declaration or in an actual
declaration for the function. A forward declaration is a
«<function declaration> that includes the forward <directive>.
When function is declared forward, an actual function declaration
(that is, a <function declaration> must appear before the end of
the List of «<procedure and function declarations> that contains
the forward declaration. When a forward declaration is used, the
<formal parameter list> [(if any) and «<result type> must appear in
the forward declaration and cannot appear in the actual
declaration.

Form 1152048 3-29 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

In some situations, a forward declaration is required. Far
example, if two functions each invoke the other, at least one of
the functions must be declared forward.

Examples:

program function decs;
type sub1 =1.710;
letter = "A°. .27,
var b: Boolean;
c: tetter;
inx : integer,;
offset : sub1;

function func1 : Boolean;
hegin
funct = true;
end;

function func2 (i : integer) : sub?,
var k : integer; { tocal to func2 }
bhegin
funce := 1 - 5;
end,;

function funcd4 {var a : letter) : Boolean;
forward;

function func5 : char;
begin
c = “F7;
b := funcd4 (c);
funcH = c;
end;

function func4; { The formal parameter list was specified in the
forward declaration for func4. }

hegin
if a < "D’ then
a = funch,
func4 = false;
end;
begin
h := func1;
offset = func2(10};
c .= funch;

end.

Funct1 is a function of type Bpolean with no parameters.

Furm 1152048 3-30 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Function funce is of type subl and has one <value parameter> of
type integer.

The function func4 is of type Bootean and has ane

<variable parameter> of type letter. Because function func4
contains a call on function funcS (and funcb cantains a call on
funcd4), function func4 was first declared as forward. The
<formal parameter list> and <result type> far function funcd4 are
declared only with the forward declaration.

Function funcS is of type char and has no parameters.

Formal Parameter Lists

The <formal parameter List> appearing in a

<procedure declaration> or <function declaration> defines the
externally supplied values and variables on which the procedure
or function is to operate. The actual values and variables are
provided in the <actual parameter list> when the procedure or
function is invoked.

<formal parameter list> syntax:

—-—=== [=-=+—-—+--- «¢value parameter> ---- e e B et
! |
+-— <variable parameter> --+

<value parameter> syntax

———-+-- ¢variable identifier»> -—-+-- . —-- <value parameter type> —-———-
<value parameter type> definition:

Any <type identifier> that is not a <file type>, a

<textfile type>, or a <structured type> containing a «fite type>

or a <textfile type> as a camponent.

<variable parameter> syntax:
~—-- VAR --+-- «variable identifier»> ——+ : <variable parameter type> -

<variable parameter type> syntax:

--—- <type identifier> ————-————— -

Form 1152048 3-31 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Parameters are declared by their appearance in a parameter list.
They have associated identifiers, which are valid anly within the
procedure or fupction being declared, and associated types, which
determine how the parameters can be used within the procedure aor
function and what type of actual parameters can he matched with
the formal parameters. The two kinds of parameters, value and
variahle, also determine the usage of the parameter.

A <value parameter> provides a value te the procedure or
function, but an assignment to the formal parameter will not
change the value of the actual parameter.

A <variable parameter> provides the procedure or function with a
reference to a variahle. An assignment to the formal parameter
will change the value of the actual parameter.

ACTUAL PARAMETER LISTS AND PARAMETER MATCHING

If a procedure or function is declared with a

<formal parameter Llist>, an <actual parameter list> must he
supplied whenever that procedure or function is invoked. Because
the actual parameters will be substituted for the formal
parameters in all contexts in which they appear in the <blocky aof
the procedure or function, it is important that the actual and
formal parameters have similar characteristics. This similarity
is ensured by a mechanism called parameter matching.

cactual parameter list> syntax:

———= [—=#——+-—— <BEXPressiony ——4-——+-— }] —mmmm e
1 !

+—-—— <variable> ---+

Formal and actual parameters are matched according to their
positions in their respective parameter lists. The first formal
parameter is matched with the first actual parameter, and so on.
There must be the same number of parameters in the

<actual parameter list> as were declared in the

<formal parameter Llist>.

A formal <value parameter> must be matched by an <expression> or
a <variable> in the <actual parameter Llist>. The <expressign» or
<variable> must be assignment compatihle with the type of the -
formal parameter.

y /‘Emm\

A formal <variable parameter> must be matched by a <variable> in
the <actual parameter list>. The actual <variable> must be of

the same type as the formal parameter. The actual parameter is
accessed before the procedure or function is activated, and this
access establishes a reference to the <variable> for the entire
activation of the procedure or function. The existence of this

Form 1152048 3-32 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

reference implies that, even if the procedure or function changes
a variable {such as an array index) that was used to specify the
actual parameter, the actual parameter will not change. For
example, if a[i)] were passed as an actual variable parameter and
i had the value 5 at the time the procedure was invoked, the
actual parameter would always be a[5], even if i were changed to
7 within the procedure.

A component of a8 variable of a8 PACKED structured type cannot be
passed as an actual variable parameter, nor can the tag field of
the <variant part> of a record variable io.parameter list
congruity

Two <formal psrameter list>s are congruent if altl of the
following conditions are true:

1. The <formal parameter list>s contain the same number of
parameters.

2. Caorresponding parameters are of the same kind (value and
variable).

3. corresponding parameters are of the same type. \

Form 1152048 3-33 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 4

STATEMENTS
Every «<block> contains a <statement party>, which is simply a list
of statements bracketed by the keywords BEGIN and END.
Statements are the executable, or active, components of programs.
Simple statements perform a8 single operation once. Structured
statements contain statements as Subcomponents. Depending on the
form of the structured statement, the subcomponent statements may
be executed sequentially, repetitively, or conditionally.
<statement part> syntax:
~——— BEGIN -- «<statement listy ——= END ——————mmmm e -

<statement Llist> syntax:

—mmmbm— CSEAEEMENEDY — e e e e

<statement> syntax:

e e +—t————_—————————— ——m————
! (I !
+—-- <labely -- : —--% T__ <assignment statement> —————m————ee T

f-— <case statement) —wem—mmm e T
%—— <compound statementy> ———me—————mmm ;
f-— <for statement> ———————————————— %
Jlr—- <QOto StAtemeNtd ————mmmm—mmmmmmm T
f—— <if statement> ———-———mmmmm— f
f—— <procedure invocation statement> ——f
f—— <repeat statement) —————mm——————— f
f—— <while statement) ——————cmm——— f
T <with statement> —————-cmmmm—w +

The <assignment statement>, the <goto statement>, and the
«<procedure invocation statement> are simple statements. The
<compound statement> and the <with statement> are sequential
statements. The <for statement>, the <repeat statement>, and the
<while statement> are repetitive statements. The <if statement>
and the «<case statement> are conditional statements.

Faorm 1152048 4-1 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The null path through the «<statement> syntax diagram represents
the "empty statement." The empty statement can he used in
situations where a null opperation is required. For example, it
might be desirable to associate an empty statement with a
particular <case constant> in a <case statement)>.

A statement may have an associated <label> that identifies its

location for later reference in a <goto statement>. Restrictions
on the declaration and placement of labels are described under
Label Decltarations in section 3. Restrictions on references to

labels in <goto statement>s are described under GOTO Statements
in this section.
ASSIGNMENT STATEMENTS

The <assignment statement> assigns the value of the <expression»

pr function identifier to the specified <variabhle>. The value of

the function identifier or the <expression> must be assignment

compatible with the type of the <variable> that is being

assigned.

<assignment statement> syntax:

———— variabley -———-cmv- = ——+—— (BXPressinny —--—————————- tm————
! !
+-— <function identifier> --+

Examples:

X =y + 2;
The variable x is assigned the sum of y and z.

p = (1 <= 1) and (i <= 100);
The variable p is assigned the Boolean value true if i is between
the vatues of 1 and 100, inclusive; otherwise, p is assigned the
Boolean value false.

huel := [blue, succ(c)];

The set variable "huel1" is assigned the set consisting of the
value "blue" and the successor to the value of the variable c.

p1@.mother := true,;

The Boolean mother, which is a field identifier in @ dynamically
allocated variable pointed to by p1, is assigned the value true.

var s : packed array [1..3] of char;

Form 1152048 4-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

begin
s = “abc”;
end;

This assignment assigns the value “abc” to the string variable s.

CASE STATEMENTS °
The <case statement> allows the selection of one of a group of
statements, depending on the value of the specified <case index>.
The <case index> is evaluated, and the <statement> associated
with the <case constant> of that value is executed.
If no <case constant> has the value of the <case index», the
<statement tist> following the reserved word OTHERWISE is
gexecuted,; if OTHERWISE does not appear, a run-time error ocours.

The values of the <case constant>s must be unique and must bg gf
the same ordinal type as the <case index>.

The OTHERWISE construct is a Burroughs extension to ANSI Pascal.
Examples:

case aoperator of

plus: X = X + V,

minus: X 1= X -V,

times: x = x * y.
end,

The value of the enumerated variable operator determines the case
constant whose statement will be executed.

case date.month of

4,6,9,11: days [date.month] := 30,
2: days [date.month] = 28;
otherwise days [date.month] := 31;

end;

T

If date.month is a value other than 2, 4, 6, 9, or 11, the
statement associated with "otherwise" will be executed.

<case statement> syntax:

—-—-—— CASE <case index> OF ——% <case list Elemént> 4——+———+ ———————————

Form 1152048 4-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<case index> syntax:
———— ¢ordinal EXPressiond ———————m e

<case list element> syntax:

———=—+—- (CASE CONStant> —-—+-— | —— (SLALEMENL> ~————————m—m—mm

COMPOUND STATEMENTS

The <compound statement> allows a <statement list> to be treated
as a single <statement>. A <compound statement> is fregquently
used as a <statement> within a8 structured statement (such as an
<if statement> or <while statement>)

<compound statement> syntax:
———~ BEGIN —-- «¢statement List> —— END ——-m—mmm e e -
Example:

if 3 > k then
begin
z =
X
y
end,;

o
N X

If the value of j is greater than the value of k, z will he
assigned the value of x, x will be assigned the value of y, and y
will be assigned the value of 2z.

FOR STATEMENTS

The «for statement> causes the <statement> to be executed
repeatedly, each repetition being performed with the
<contraol variable> assigned to a different value within the
specified range of values. The <statement> within the

«<for statement> is referred to as the "controilled statement.
<for statement> syntax:

—-—-—- FOR -- «<control variable> -- = —-- <¢initial value> -—+-—- T0 ———+%

>-—— «final value> -- DO -- <statement) —-———————m—mmmmmmm

Form 1152048 4-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<control variable> definition:

A <Boolean variable>, <char variable»>, <enumerated variable>, or
cinteger variable> that is also an <entire variable>.

¢initial value> syntax:

———— <¢cordinal EXPressSion) ———————mmmmm e ————————
<final value> syntax:

-=== <ordinal exXpressignd ———e—mee— e e —————

The range of values is defined by <initial value> and «final
vatue>. If TO is specified, the <control variable> is
incremented from <initial value> to <final value>, inclusive. If
DOWNTO is specified, the <control variable» is decremented from
cinitial value> to <final vatue>, inclusive. The <initial value>
and the <final value> are evaluated only once; thus, if one or
both are variables, subsequent changes to their values have no
effect on the execution of the <for statement>.

Once the <control variable> has been assigned the <final values
and the controlled statement has been executed for the finat
time, the value aof the <control variable> hecomes undefined and
program control is passed to the statement following the <for
statement>. If a <goto statement> within the controlled
statement transfers control to a statement outside the controlled
statement, the value of the <control variable> remains defined.

The <control variable> must be a locally declared variable of an
ordinal type. The «<initial value> and <final value> must be
assignment compatible with the <controlt variable>. The value of
the <control variable> may hbe accessed at any time during the
pxecution of the cantrolled statement, hut its value cannot be
changed or "threatened." A “"threatening” statement is one of the
following types of statements occurring in the controlled
statement or in any procedure or function declared in the most
local block containing the <for statement>:

1. An assignment statement in which the <control variahle>
appears on the left-hand side.

2. A statement that invokes a procedure or functian in which
the <control variable> appears as an actual variable
parameter in the parameter Llist.

3. A statement in which either the read or the readln procedure

is invoked with the <control variahle> appearing in the
parameter Llist.

Form 1152048 4-5 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

4. Another «<for statement> in which the <control variable> is
also used as the <control variable> for that
«<for statement>.

Examples:
max := af[1];
for i = 2 to 63 do
if a{i] > max then
max = &8[i],;
For each value of i between 2 and 63, inclusive, a[i] will be
campared to max. If the value of af[i] is greater than max, max

will be assigned the value of af[i]

for i := 1 to 10 do
for j :=1 to i - 1 do
m{i}[j] := 0.0,

For each value of i between 1 and 10, inclusive, j is assigned a
value of 1 to i - 1, inclusive. When i is 1, j is assigned
values from 1 to O. Because there are no values between 0 and 1,
the controlled statement of the innermost for statement is not
executed when i1 is 1. When i is 2, j is assigned values from 1

to 1, inclusive, so m[2][1] is assigned the value 0.0. This
process continues for all values af 1 up to, and including, 10.

for ¢ .= blue downto red do
alc);
Far each value of c between blue and red, inclusive, the
procedure g is called with c as a parameter. (c is assigned
blue, pred(c), ..., until pred(c) is the value red.]

GOTO STATEMENTS

The <goto statement> transfers program control to the <statement>
associated with the specified <label>.

<goto statement> syntax:
———— BOTO -- «<label> ——————— e —————_————————————

There are several restrictions on the use of the <goto statement>
that depend on the location of the <label> it specifies. In
peneral, the restrictions prohibit branching intoc a structured
statement from outside that statement. Specifically, 1t is valid
for a <goto statement> to reference a <label> only if at least
one of the following conditions is true:

Form 1152048 4-6 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

1. The <statement> associated with the <label> is in the same
<statement list> as the <goto statement> or it is in the
same <statement Llist> as any structured statement containing
the <goto statement> .

2. The «<statement> associated with the <label> is a <statement>
within the <statement part> of any <hlock> containing the
<goto statement>. That is, the <statement> associated with

the <label> is a statement at the outermost level of any
<block> containing the <goto statement> and is not contained
within a structured statement.

Example 1:
program valid _goto_examples;

label 10, 20, 8999,
var counter : integer,

procedure pt;
lahel 100;
var local loop : integer;
begin -
local loop:=1;
100: -
if local loop > 2 then
goto 9999,
local loop := local loop + 1,
goto T00; -
end;

begin
counter:=0;
10:
if counter < 10 then
begin
counter := counter + 1;
goto 10;
end;
if counter < 20 then
begin
20:
cogunter := counter + 1;
if counter < 25 then
begin
display(“looping”);
goto 20;
end,;
p1;
end;

9889:

display{ done”}
end.

Form 1152048 4-7 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

In example 1, the branches to labels 10, 20, and 100 are valid by

rule 1.

Example

Th
2:

e branch to label 9999 is valid by rule 2.

program invalid_goto_examples,

lab
var

et 2000, 9000;

inx

integer;

procedure p1,;

100

beg
inx
if

els

200

if
900

els

labe
begi

I 100;
n

Qutu S000; {1}

end;

in
inx
begi
inx

3;
= 3 then
n

= 4,

gotoc 2000; {2}

end
e
hegi
0:

n

display (“illegal branch?’);

end;

inx
begi
0:

= 4 then
n

display (“illegal branch’};

end
e

begin
gato 100; {3}

end,;

end.

In example

associa
not at

The bra
with la

ted
the

nch
bel

2, the branch at {1} is invalid because the statement
with label 89000 is in a containing procedure but is
outermost level of the block.

at {2} is invalid because the statement associated
2000 is neither in the «<statement list> that contains

the <goto statement> nor in any structured statement that
contains the <goto statement>.

Form 1152048 4-8 File DOCUMENT/PAGSCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The branch at {38} is invalid because label 100 is not in the
scope of the <goto statement>.

IF STATEMENTS

The <if statement> allows the selection of one of two
<statement>s, depending upan the value of the <Boolean
gxpression>. If the value of the <Bopolean expressiony is true,
the «<statementy following the reserved word THEN is executed. If
the value of the <Boolean expression> is false, the <statement>
following the reserved word ELSE is executed; if ELSE does not
appear, program execution continues with the statement
immediately following the <if statement>.

<if statement> syntax:

—-—--— IF -~ <Boolean expression> —— THEN —-- «<statementd———cemmee——me——o
> e e —————————
! !
+-- ELSE -- «<statement> --+

In nested <if statement>s, each ELSE is paired with the nearest
preceding unpaired THEN.

Examples:

if x < 1.5 then

2 = X + ¥
else
2 = 1.5;
If x is less than 1.5, z will be assigned the sum of x and vy. If

x is greater than or equal to 1.5, z is assigned the value 1.5.

if p1 <> nil then
p1 = p1@. father;

If the pointer p1 is referencing a variable, p1 is updated to the
value of the pointer contained in the field named father in the
dynamically allocated record pointed to by pft.

if §j = 0 then
if i = 0 then
writeln(”indefinite”)
else
writeln(“infinite’)
else
writeln(i / jJ;

Form 1152048 4-9 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The following table shows what would be written for various
values of i and j

i = 0 and i = 0 indefinite
j = 0 and i <> 0 infinite

j <> 0 and i = O i/

j <> 0 and i <> 0 i/l

STRING RELATION

A «string relation> performs a seguential comparison of the
ordinal numbers of corresponding characters in the two

«<string expression>s. The «<string expression»>s must be of the
same length.

<string relation> syntax:
—-—-—— «<string expression> —-- <rel op> —-- <string EXPressiony —-————————-

Two <string expression>s are equal if every character in both
strings is identical. A <string expression> is less than another
<string expression> if, in the first character position that
differs between the two <string expression>s, the first

<string expression> contains a character of a lower ordinal
number than the corresponding character in the second string.

Example:
var b : Boolean;
sl, s2 : packed array [1..10] of char;
begin
s1 := “abcdefghij”;
s2 := “abcdefghiz’;
b = 81 ¢« s2;
end;

The string s1 is compared, character by character, to string s2.
The variable b is assigned the value true hecause, at the first
character position at which the strings differ (j and 2z at
character 9}, the ordinal number of j is less than the ordinal
number of 2.

PROCEDURE INVOCATION STATEMENTS

The <procedure invocation statement> activates the specified
<declared procedure> or <predefined procedure>. When the
procedure activated by the <procedure invocation statement>
terminates, the program continues at the point immediately
following the «<procedure invocation statement>.

Form 1152048 4-10 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<procedure invocation statement> syntax:

————+—— «declared procedurgy ————dmmmm e
! . !
+—— <predefined procedure> —-+

<declared procedure> syntax:

———— «¢procedure identifier) ——4-——-mmmmm Fom———————
! !

+-— <actual parameter list> —--+

The «<procedure identifier>s and parameter lists for

<declared procedure>s are specified by the praogrammer in
<procedure declaration>s. Procedure identifiers and parameter
lists for <predefined procedure>s are described in section 6.

If the <procedure identifier> was declared with a
<formal parameter list>, any <procedure invocation statement>
invoking that procedure must include an <actual parameter lList>.
Please refer to the Actual Parameter Lists and Parameter Matching
in section 3 for additienal information.
Examples:

printheading;
The declared procedure printheading, which has no parameters, is
invoked.

writetn(f, i, j);
The predefined procedure writeln is called to write the vatues of
i and j to the textfile f.

hisect(fct, -1.0, +1.0, x);

The declared procedure bisect is called with the actual
parameters fct, -1.0, +1.0, and x.

REPEAT STATEMENTS

The <repeat statement> causes the <statement list> to he
repeatedly executed until the value of the specified

<Boolean expression> is true. The <statement list> is always
executed at least once because the <Boolean expression> is
evaluated after sach execution of the <statement list>.

Form 1152048 4-11 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<repeat statement> syntax:

~—~ REPEAT —-—-«<statement list>-- UNTIL --<Boolean expression>--|

Example:
repeat
k = 1 mod j;
=g
i o=k
until § = 0;

The variable k is assigned the value of i mod j. The variable i
is assigned the value of j. The variable j is assigned the value
of k. If j is not equal to O, the three assignment statements
are executed again. When j is egual to O, the statement
following the repeat statement is executed.

WHILE STATEMENTS

The «<while statement> causes the «<statement> to be repeatedly
executed until the value of the specified <Boolean expression> is
false. The <Boolean expression> is evaluated before each
execution of the <statement>, so the <statement> will not be
executed if the <«Boolean expression> is initially false.

<while statement> Eyntax:

~——— WHILE -- «<Boolean expression> -- DO -- «<statement) —-—-———————————-
Example:

white 1 > 0 do
begin
if odd{i) then
2 = 2 " ox;
i div 2;
sqr(x};

i
X
end

The compound statement in the WHILE statement is executed if i is
greater than 0. After each execution of the compound statement,
i is compared to O. If i is greater than 0, the compound
statement 1s executed again.

WITH STATEMENTS
The <with statement> establishes a scope within which all
<field identifier>s 1in the <statement> are assumed to be prefixed

by the specified <record variable>. Thus, when a
«<field identifier> is used, the field referenced is actually

Form 1152048 4-12 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<record variahble>.<field-identifier>. The «with statement>
context permits a shorthand notation that is useful when many
references are heing made to fields within a particular record.

<wWwith statement> syntax:
———— WITH —- «<record variabhle» -- DO -- <«statement) - —————-—ooeoou

wWhen multiple <record variable>s are specified, the effect is as

if the <record variable>s were specified in nested

<with statement>s. The leftmost <record variable> is assigned -
the most global scope and the rightmost the most laocal scope.

Thus, when two or more records have identically named fields and

that field name appears as a <field identifier> in the

<statement>, the field is assumed to he the one in the

<record variable> associated with the most local <with statement>
scope.

Similarly, when a <«field identifier> conflicts with an
<identifier> whose scope is global to the <with statement>, the
<with statement> scope overrides and the field of the record is
referenced.

Examples:
var date : record
month @ 1..12;
year : 1950.. 2050;
end;
begin

with date do
if month = 12 then

begin
month = 1;
year := year + 1;
end
else
month = month + 1;

end;
If date.month equals the value 12, date.month is assigned the

value 1 and date.year is incremented by 1. If date.month is not
equal ta 12, date.month is incremented by 1.

Form 1152048 4-13 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 5
EXPRESSIONS

An <expression> generates a value of a particular type by
performing specified operations on specified operands. The
operands and operations vary according to type. For example, a
<Boolean expression> generates a Boolean value from the
application of <Boolean operator>s to <Boolean primary»s
(operands]).

<expression> syntax:

————T—— <array variable> —-——————— T ——————————————————————————————————————
;—— <Boolean expression> ————;
! i
;—— <char expressiony —------- f
!

f—— <enumerated expression> —f
4-— <integer expression» ————f
1
;—— <pointer expression> -—-_f
1
;—— <real expressiony -——-———--— f
]
;-— <record expressiony —-———-— f
]
%—— <SEt BXPression> ———=—=—=- f
+— <string expressiony> —--——--— +

For most <array type>s and all <record type>s, there arr no
gperations or constants defined; an <expression> of such a type
is simply a variable of that type. Arrays of <string type> can
be assigned <string expression>s, which are defined in this
section. Files and textfiles do not directly generate values,
and there are no expressions defined for these types.

ARITHMETIC EXPRESSIONS

In some contexts, it is useful to consider <integer expression>s
and <real expression>s as <arithmetic expression>s. For example,
many arithmetic functions accept <arithmetic expression>s as
parameters.

<arithmetic expression> syntax:
————+—— (integer BXPressiond ——+4-———————— e

]
+-— «real expressiagn> -----— +

Form 1152048 5-1 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

ORDINAL EXPRESSIONS

Boolean, char, enumerated, and integer expressions are grouped as
<ordinal expression»s, which are expressions that generate
ordinal values. «Ordinal expressionss are frequently used as
<case constant>s, array indices, and set components.

<ordinal expression> syntax:

~~——+-—- <Boolean expressiony ————-— T ———————————————————————————————————
1
4-— <char expression> ———=————- %
1]
%-— <enumerated expression> ——f
!
4—— <cinteger expressiony ————- ;

PRECEDENCE OF OPERATORS

An operator generates a value by perfarming a defined operation
on either one or two data items. The data items on which
aperators operate are called operands.

A unary operator applies to only one operand. For example, the
Boolean NOT operator produces a value that is the logical
camplement of the Boolean operand to which it is applied.

A binary operator applies to two operands, generating a single
value by combining or comparing the vatues of the tweo items in
some way. For example, the arithmetic subtract operator (-]
produces a value by subtracting the value of the second operand
from the value of the first operand.

An expression is a combination of operands and operators that
generates a value by applying the operators to the operands
according to defined rules. The simplest expression is just an
operand, with no operators or other operands specified. A more
camplicrated expression may inciude many operands and operators.

Theoretically, when there are multiple operators in an
expression, there could be multiple interpretations of the
gxpression. For example, A + B * C could be interpreted in two
ways:

(1) First add A and B, then multiply the sum by C, or

(2) first multiply B and C, then add the product to A.

Form 1152048 5-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

If A is 3, B is 5, and C is 7, then the value of the expression
is 56 if computed by method 1 and 38 if computed by method 2.

Rules that define the “precedence of operators" describe the
order in which operations are performed within an expression.
Higher precedence operators are applied bhefore lower precedence
operators. The precedence of operators is defined in the
following table:

[highest] a) NOT
b) #, /, DIV, MOD, AND, CAND
) +, -, OR, COR

[lowest] d) =, <, <=, »=, <, <, IN

The highest precedence operator is the Boolean NOT operator.

The multiplication operators have the second highest precedence.
These operators are integer and real multiply and set
intersection (%), real division (/), integer division [DIV],
integer remainder division (MOD), Boolean AND, and Boolean
conditional AND (CAND]).

The addition operators, the next group in precedence, are integer
or real unary plus (+), i1nteger or real addition (+), set union
{+), integer or real unary minus [-), integer or real subtraction
{~}, set difference (~-), Boolean OR, and Boolean conditional OR
(COR) .

The lowest precedence operatars are the relational operators.
These operators, which apply to several data types, are described
under Relational Expressions in this section.

Other languages, such as FORTRAN and ALGOL, define a higher
precedence for the relational operators. For examptle, if A, B,
C, and D are integer operands, the expression shown below is a
valid Boolean expression in FORTRAN and ALGOL (ignoring the minaor
differences in syntax), but it is not a valid expression in
Pascat:

A = B AND C = D
(A = B} AND (C = D) {FORTRAN/ALGOL interpretation}
A = (B AND C) = D {Pascal interpretation--INVALID}

When an expression contains two or more operators of equal
precedence, the operators are applied from left to right. For
example, in the expression X * Y / 2, first X and Y are
multiptied, then the product is divided by Z.

The defined precedence of operators can be overridden by
enclosing subcomponents of the expression in parentheses. For
example, in the expression A + B #* C mentioned earlier, the
precedence rutes specify that the multiply operator {(*) is to be
applied before the addition operator (+). Thus, the result of

Form 1152048 5-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

evaluating this expression is 38 if A is 3, B is §, and C is 7.
The other interpretation can be imposed by enclosing the first
part of the expression in parentheses:

* C {Add A and B, then multiply by C yields 5B}

(A
A * C) {Identical to default interpretation yields 38}

0 s

+ B
+

FUNCTION DESIGNATORS

The appearance of a <function designataor> in an expression
activates the specified «declared function> or

<predefined function>. When the function activated by the
<function designator> terminates, a value is returned and
evaluation of the expression continues.

<function designator> syntax:

————+-—— <declared function) ————f4-mmmmm
! !
+-—- «<predefined function> —-—+

<declared function> syntax:
——-—~ «¢function identifier> ——4-c—mmmmmm e B it
+-— <actual parameter listy ——+

The <function identifier»ys and <formal parameter list>s for
<declared function>s are specified by the programmer in
«funection declaration>s. Function identifiers and parameter
lists for <predefined function>s are described in section 6,
Predefined Procedures and Functions.

If the <function identifier> was declared with a

«<formal parameter List>, any «<function designator> invoking that
function must include an <actual parameter list>. Please refer
to Actual Parameter Lists and Parameter Matching in section 3 for
additional information.

Faorm 1152048 5-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:

program function_example;

var 1 : integer;
b : Boolean,;
function f1 : integer;
begin
f1 := 10;
end;
function f2 () : integer) : Boolean;
begin
f2 = 3 > 20;
end,;
begin
i = f1;
b = f2 (i);
end.

The variable i is assigned the value of the function designator
f1. The variabte b is assigned the value of the function
designator f2, where i is passed as the actual parameter.

EXPRESSIONS BY TYPE

Expression types, in alphabetical sequence, are described in the
paragraphs that follow.

Boolean and Relatiaonal Expressions
A <«Boolean expression> rgenerates a8 value of the <Boolean type>.

A relational expression generates a Bootean value by comparing
two operatands of the same type or of similar types.

Boolean Expressions

Following are syntax diagrams for Boolean expressions.

<Bpoolean expression> syntax:

Flmm <Boolean operatory —---—-- +

————m e +—— «<Boolean Primaryd ——+——-—mmm e e

Form 1152048 5-5 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<Boolean operator> syntax:

<Bpolean primary> syntax:

————T—— [<Boolean expressiond] ——t————mmmm e !
f—— <Boolean constant>—-———————- +
1
f—— <Boolean variable>—————aeen f
f-— <function designator>-————~ +
!
#—— <relational expression> ———%

The <«Boolean operator>s AND and OR perform the logical AND and
logical OR operations, respectively. CAND and COR are
canditional operators that perform the same operations as AND and
OR, with the following exceptien: the left-hand

<Boolean primary> is always evaluated first and, if the value of
the <Boolean expression> can be determined from the value of the
left-hand <Boolean primary> altone, the right-hand

<Boolean primary> is not evatuated.

<Boolean constant> is defined in Constant Definitions in section
3, <«Boolean variable> is defined in section 7, Variables, and
<function designator> and <relational operator> are defined in
this section.

For a <function designator> to return a value of <Boolean type>,
it must be declared with <Boolean type> as its «<result types.

The CAND and COR operators are Burroughs extensions to ANSI
Pascal .

Form 1152048 5-6 File DOCUMENT/PASCAL

- Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:
var b1, b2, b3 : Bootean;

{The folleowing two expressions are equivalent.}

b1 := b1 or b2 and b3,
b1 := b1 or (B2 and b3);
end;

program cand example (output)

var i : integer;
a : array {1..10] of integer;
function f1 (inx : integer) : Boolean;
hegin
f1 = inx <= 10;
end;
begin
i o= 1,
while f1(1) cand (a[i]l = 0) do {See note below.}
=i o+ 1,
end .

NOTE

The operator CAND is used in this

<Boolean expression> to prevent the
evaluation of af[i] when i has a value that is
gutside the declared bounds of the array.

Relational Expressions

A <relational expression> generates a Boolean value by comparing
twvo operands of the same, or similar, types. For relations using
the <rel op>s (relational operators), the symbols have the
following meanings:

Symbaol Meaning
= Equals
<> Not eqguals
< . Less than
> Greater than
<= Less than or equal to

Form 1152048 5-7 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<relational expression> syntax:
————t—-— <arithmetic relation>——4-————m e
| !
+-— <ordinal relation> —-—---+
[!
+-— <set relation>-————————- +
| |
+—— <string relation>—————- +
<rel op> syntax:
———— - = o o e e i e o T o o2 O 1 U o it i
! !
= (> ——+
| !
+—= < ——+
! !
= > ——
1 |
+—— = ——+
! [
+—= >= ——+%
carithmetic relationy syntax:
———— <¢arithmetic expression> —-- <rel op> -- <arithmetic expression> —-

An <arithmetic relation> performs an algebraic comparison of the
values of the specified <arithmetic expression>s.

Example:

var b Boolean;
i integer;
r real;

begin

i = 45;

r = 9.0e2,;

b =1 * 2 >=r;

end;

The value of
compared to

r, the varia
assigned the

Form 1152048

the variahle i is multiplied by 2 and that result is
the value of r. If i*¥2 is greater than or egual to
hle b is assigned the value true; otherwise, h is

value false.

File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<ordinal relation> syntax:

——— = <Boolean expression> <rel op> <Boolean expression> —-—---— T—_
|
tomm———— char expression> <rel op> <char expression> —-——————- +
i |
;—— <enumerated expression> <rel op> <enumerated EXpression> -—f
1
% ————— <integer expression> <rel op> <integer expression> ----- }

An <ordinal relation> compares the ordinal numbers of the two
specified ordinal expressions. The expressions being compared
must be of compatible types.

Examples:
var ¢ : char;
cotor : (red, yellow, blue, green, tartan);
i . integer;
b : Boolean;
begin

1 L=

colar := tartan,

c = "27;
if i > 5 then
color := blue,;
b := color < green;
b := (e = "27},
end;
In the above, i » 5, color < green, and c = “Z° are iltustrations

of <ordina relationys.
<pointer relation> syntax:

——-——+4—-— cpointer BXPression>» —--+ = +—-— <pointer expression> ——-—————-
|]

+ <O+

A «<pointer relation> compares two <pointer expression>s for
equality or inequality. The <«pointer expression>s are equal if
they refer to the same dynamic variahle or are both NIL. When
<pointer expression>s are compared, they must be of the same

type.

Form 1152048 5-9 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Example:

program pointer reltation;

type ptr = @rec’
rec = record

name : packed array [0..20] of char;
age . 0..100;
gnd,

var myptr, yourptr . ptr;

begin

new{myptr)

yourptr = nil;

if {(myptr = yourptr) or (yourptr <> nil) then
display [“Error’]); :
end.

This example tests two pointers for equality and then tests a
pointer for ineguality to NIL.

¢<set relation> syntax:

————+4-—— «¢set expression> —-—+-— = ———4-— (SBL EXPreEsSsion> —-———d——————w-
! ! ! !
! +-— <> —-—+ !
! ! ! !
! == (= —-=4 !
! !
+-— <ordinal expression> —— IN —- «<set expressiony —--———-— +
There are two kinds of <set relation>s. The first compares two
«<set expression>s for equatity (=), ineqguality (<>), subset
relationship [<=), or superset relationship [>=). The second

determines whether or not the value of the specified <ordinal
expression> is a memher aof (that is, is IN) the set specified hy
the <set expression>. When «<set expression>s are compared, they
must be of compatible types.

Examples:
var b1, b2 : Boolean;
t : set af char;
begin
c = [a".."27]
bt = ["b”,"f","A"] <= €,
b2 := “c” in c;
end;

The Boolean variable b1 is assigned the value true if the set
cantaining “bh”, “f”, and “A° is a subset of the set ¢;

ptherwise, b1 is assigned the value false. The Boolean variable
b2 is assigned the value true if the character ‘¢’ i3 a member of
the set c; ptherwise, b2 is assigned a value of false.

Form 1152048 5-10 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

CHAR Expressions

A <«char expression> penerates a value of the <char type>.

<char constanty is defined in the Constant Definitions sectiaon,
<char variable> in the Variables introduction, and

<function designator> later in that introduction.

<char expression> syntax:

————+-- <char constant>-—-—-————- e
! !
+—-— «<char variable> -—-—-————- +
! !
+~- «function designator> --+

For 8 <function designator> to return a value of <char type>, it
must be declared with the <char type>, or a <suhrange type> whose
host type is the <char type>, as its <result type>.

Examples:
const ch = “¢”;
var char1, char2 : char;
function char function : char,
begin -
char function = "?7;
end;
begin
cthar1 := ch;
char1 := char function,
char2 := charT;
end;
The «<char variable> char1 is assigned the value of the
<char constant> ch (the character “c”). Char1 is then assigned
the value of the <function designator> char function (the
character “7?°). The <char variable> char2 7s assigned the value

of chart (the character “?7)

Enumerated Expressions

An <enumerated expression> generates a value of an
<enumerated type>.

<enumerated expression> syntax:

————t—= CENUMEBFrAtEd CONSLANL) ——d——m o -
! !

+—— <enumerated variable> ——+
| |

+-— <function designator> -—-+

Form 1152048 5-11 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The <enumerated constant> is defined under Enumerated Types in
section 3, <enumerated variable> under Variables, section 7, and
<function designator> in this section.

For a <function designator> to return a value of an

<enumerated type>, it must be declared with that

cenpumerated type>, or a <subrange type> whose host type is that
<enumerated type>, as its <result type>.

Examples:

type colortype = (red, yellow, blue, green, tartan);

var color,
hue : colortype;

function colorwhee!l : colortype;
begin
colorwheel := succ(color);
end,;

hegin

color = yetlaw;

hue := colaorwvheel;

color = hue;

end;

The <enumerated variable> color is assigned the

<enumerated constant> yellow. The <enumerated variable> hug is
assigned the value of the <function designator> colorwvheel ([in
this case, the <enumerated constant> blue). Color is then
assigned the value of hue (the <enumerated constant> blue].

Integer Expressions

An <integer expression> generates a value of the <integer type>.
If the expression generates a value (or an intermediate result)
greater than maxint or less than -maxint, an error occurs.

The <integer operator>s are the familiar arithmetic operators for
addition (+), subtraction (-), multiplication (*), integer
division (DIV), and integer remainder division (MOD).

cinteger expression> syntax:

+<-— <integer operator> ——+
! !
———— e ——— +——4——= inNteger primaryd ———temmmmm— e e
! !
+—— + ==+
! |
+-— - ——+
Form 1152048 5-12 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

cinteger operator> syntax:

————t—— + e e e e e e e e e e e e
! !
+—— - ——t
! !
- -——

]]

4o~ DIV ==+
i)

+-— MOD --+

<integer primary> syntax:

__—_T__ { <integer expressigon> }] ————————- T———————; ———————————————————
f—— MAXINT ——m—mmmmmmmmmmmmmm e f
f—— cunsigned integer)———————————————— f
f—~ <integer constant identifier> ————%
f—— <integer variabley -———————c————u—- f
;—~ «<function designator> —-——-———=—————- 4

The <insigned integer> is defined in section 8, Basic Components,
<integer constant identifier> under Constant Definitions in
section 3, <integer variable> in section 7, and

«<function designator> in this section.

For a <function designator> to return a value of <integer type>,
it must be declared with the <integer type>, or a <suhbrange type>
whose host type is the <integer type>, as its «<result type>.
Examples:

var i, j . integer;

hegin

j = 79;

i = maxint - (j mod 48},

end,;
Pointer Expressions

A <pointer expression> generates a value of a <pointer type>.

Form 1152048 5-13 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<pointer expressiony syntax:

————4—= NIL —— e o e ——
! !
+—— <pointer variahley> —--——- +
! !
+-— <function designatory> —--+

The constant NIL denotes a null reference {a pointer that is not
currently referencing a variahle). The «<pointer variabliey is
defined in section 7 and <function designator> is defined in this
section.

Far a <function designator> to return a value of a
<pointer type>, it must be declared with that <pointer types> as
its <result type>.

Examples:

program pointer exp;
type ptr = @rec,
rec = record
name : packed array [1..20] of char;
age : 0..100;
end;
var myptr, yourptr : ptr;
function allocate : ptr;
var tempptr : ptr;
begin
new{tempptr);
allocate := tempptr,
end;

begin

new(myptr)

yourptr = myptr;
myptr = nil;
myptr := allocate;
end.

These assignment statements illustrate the three kinds of
<pointer expression>s.

Real Expressions

A <real expression> generates a value of the <real type>. At
teast one operand in the expression must he of type real for the
expression to be of type real. If the expression generates a
value outside the defined range for real values, an error occurs.

Form 1152048 5-14 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<real expression> syntax:

+<¢-——— c¢arithmetic operatar> --+
! I
————t—————t——t——4-—— ¢real primary> ----—- Fom
| ! ! !
+= + -+ +-— <integer primary> --+

! !
+—- - -+

<arithmetic operator> syntax:

_.___+_... + ——+_—_—_—’_ __
!]
+-- - --+
! !
+-= * ——y

! |
+-—— DIV ——+
! !
+-- MOD --+

<real primary> syntax:

—-——T—— (<arithmetic expression>--) ——T —————————————————————————————
f—— cunsigned reatl) ———=-m——m—m——— e f
f—— <real constant identifier> —--—--—- %
+-— <real variabley ———m——mm—mm—mmem +
] |
;—— <function designatory —-———————- }

The <arithmetic operator>s are the familiar arithmetic operators
for addition (+), subtraction (=), multiplication (®), division
(/7), integer division [DIV), and integer remainder division
(MOD). The DIV and MOD operators can be applied only to
<integer primary»s.

<unsigned real> is defined in section 8, Basic Components,

<real constant identifier> under Constant Definitions in section
3, <real variable> in section 7, and <function designatory in
this section.

For a <function designator> to return a value of the <real type>,
it must be declared with the <real type> as its «<result type>.

Farm 1152048 5-15 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:

const pi = 3.14159;
var a, r real;
hegin

r = '

a .= pi * sqr(r);
end;

Set Expressions

A <set expression> generates a value of a <set type>.

The

<set operator>s perform the set operations of union {+),

difference (-}, and intersection (*).

<set expression> syntax:
+<—— <set nperatur> ——+

[|
<set primary>

————— -

<set operataor> syntax:

_____ +—_— + o et e = o e o e e
! !
+-= = ——%
! !
+-— et

<set primary> syntax:

e e e —————

—m——t== [<S58t EXPrESSiONY] ——dmm e e e
! !
+-- <¢set variahle> ——————ue-- +
! !
+-~- <¢set constructory —-—-——- +
«<set constructor> syntax:
———— [e e fmm] -
t 1
I R it T , m——mmm +
! ! 1
+——+—— <memher designator> —-—+
«memher designator> syntax:
——-—— <ordinal expressiond ——4-————m—mm e ——— Fmm e ———
! i
- —-— <ordinal expression> —--+
Form 1152048 5-186 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The operators may be applied to declared <set variable>s or to
sets that are defined within the expression by use of the

<set constructaor> syntax The «<set primary>s within a

<set expression> must be of compatible types.

A «set constructor> defines a8 value of an implied <set type>.
The members aof the set are specified hy the list of

<member designator>s, which must all be of the same type or of
<subrange type>s of the same host type. <member designator>s
caonsisting of a8 single <ordinal expression> denote that
cordinal expression> as a member of the set. If the

<ordinal expression> .. <ordinal expression> syntax is used, the
memhers denoted are those values from the first

<ordinal expression> through the second <ordinal expressiony,
inclusive. If the second <ordinal expression> is less than the
first <ordinal expression>, the set i1s empty.

The <base type> of the <set type> implied hy the

<set constructor> is the type (or host type) af the

<memher designator>s. An empty <«<set constructor>, that is, [],
has no specific type and may be used in any <set expression>.

The <set variable> is defined in section 7.

Examples:
type color = (red, yellow, hlue, green, tartan);
var setl1, set2 : set of colaor;
begin
setl1 .= [red] + [blue],;
set2 := sett * [yellow, blue, green];
setl = set! - set2;
end ;

Set1 is assigned the union of the set consisting of the element
red and the set consisting of the element blue. Set?2 is assigned
the set whose memher is the value blue (the intersection of the
set setl1 and the set containing the elements yellow, blue, and
preen). Set1 is assigned the set difference of set1 and set2 or
the set whose member is the value red.

String Expressions

A «string expression> generates a value of a8 <string type>.

<string expression> syntax:

————+—= (Char EXPressiON) ——d——mmm oo e

+-- «<string constant> -—-+
! !

+-— <string variable> --+

Form 1152048 5-17 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The «<string constant> is defined under Constant Definitions in
section 3, and «<string variahle> is defined in section 7.

Examples:
const str1 = “abcde’;
var str2, str3 . packed array [1..5] of char;
bhegin
str2 = str1;
str3 .= strg;
str2 = “12345";
Bnc

The string variable str2 is assigned the value of the string
constant str1. The string variable str3 is assigned the value of
the string variabte str2. The string variable str2 is assigned
the character string “12345°.

Form 1152048 5-18 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 6
PREDEFINED PROCEDURES AND FUNCTIONS

Following this introduction, this sectioen has two major parts:
INPUT/OUTPUT AND FILE-HANDLING CONCEPTS and PROCEDURE AND
FUNCTION DESCRIPTIONS.

The first part presents input/output (I/0) concepts pertaining to
Pascal. Some basic terminology is covered and information is
presented on files (standard files and textfiles) and related I/0
operations, and file attributes. Many of the Burroughs
extensions to ANSI Pascal pertain to I/0 to enable Pascal
programs to access the system-defined I/0 subsystem. Programmers
who are interested in writing portable programs are advised tao
become familiar with this material.

The second part is a8 glossary of all the procedures and
functions, grouped according to program application and, within
that grouping, in alphabetic order.

Many Pascal features, including I/0 facilities and dynamic
variables, are made available through predefined procedures and
functions. Althouph procedures and functions are syntactically
different constructs, that difference is not emphasized in this
section.

«<predefined procedure> syntax:

————+-— «file handling procedure>-————-—-—- B e e
! !
+—— <dynamic allocatian procedure> —--+
! !
+-- «<general proceduregy-—-——-———————-——- +

<predefined function> syntax:

-———T-— «<file handling function) ———-——---- T ————————————————————————————
f—— <type transfer function> —-—-——--—- %
%—— <arithmetic function> —-—————————- f
;—— <general function> --———--——-——- ;

INPUT/OUTPUT AND FILE-HANDLING CONCEPTS

The file handling procedures and functions are the basic
mechanisms for performing input and output operations in Pascal.
Some file handling procedures and functions operate on files,
some on textfiles, and some on both.

Form 1152048 6-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Each procedure and function is defined in the second part of this
section, under the heading File Handling Procedures and
Functions. The pgeneral syntax is presented here.

«<file handling procedure> syntax:

-_——T__ <close procedured —————————- e
1
+-— <get procedures —————m—————o +
!]
%" <page procedure) ————————=——— ;
! 1
;—— <put procedurg> ———————————o f
!
T—- <read procedure» ——————————- f
T—— <read textfile procedure> -—f
%—— <readln procedure> ——————-=— f
- <reset procedure> ——-———————= f
1
+-— <rewrite procedurey ————e——— +
! !
T—— ¢<seek proceduregy ————-———m——- T
4o— <urite procedurey —-————————-— f
]
4—- <write textfile procedure> —f
[
+—— <uriteln procedurey——————==- +

<file handling function> syntax:

————— +—— «<eof function)————4-———rm
! !

+—— <eoln function> ——+

Terminology

The following paragraphs describe some of the basic terms used in
defining the kinds of files and input/gutput operations availabtle
in Pascal. In some cases, more detailed information appears in
the Standard Files, Textfiles, and Use of File Attributes
discussions in this sectiaon.

Form 1152048 B-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Standard Files and Textfiles

In Pascal, there are two types of files: standard files (files
of any <component type>), and textfiles (special files of
characters). A standard file is declared with a8 <file type>, and

a textfile is declared with a <textfile type>. Note that a
variable declared as “file of char" is a standard file, not a
textfile.

Standard files are used to transfer data in machine-readable form
between a program and a physical file. This faorm of I/0 is
generally faster and more storage-efficient than textfite I/0,
but it is not as convenient for use with terminals, line
printers, and other character-oriented devices. Textfiles
provide translation between the internal representation of data
and an external character format. Thus, textfiles are generally
better than standard files for representing data in
human-readable form.

The operations defined for these two types of files are qguite
different from each other and are treated separately throughout
this section.

Inspection Mode and Generation Mode

In ANSI Pascal, there are two modes of file operation:

inspection mode, in which the file is being read and not written,
and generation mode, in which the file is being written and not
read. In Burroughs Pascal, a third mode, inspection/generatiaon,
is provided for standard files and textfiles, allowing the files
ta be both read and written. The B 1800 implementation uses the
inspection/generation mode only.

Buffer Variables

Associated with each file variable is an implicitly declared
buffer variable. The type of the buffer variable is the same as
the <component type> of the file (char for textfiles]). The
buffer variable may be used in expressions, assignment
statements, and other constructs in just the same fashion as any
other variable of the same type. For several predefined
operations, data is transferred from the buffer variable to the
file, or vice versa. If the identifier associated with the file
is f, the buffer variable is indicated by f@.

File Attributes
File attributes are system-defined variables that describe
aspects of a file or textfile from the point aof view of the I/0

subsystem. The compiler assigns appropriate values for the
various file attributes when files are declared. In many cases,

Form 1152048 6-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

no further specifications need be made by the programmer. Syntax
is provided in the list of <program parameters> and in the
<setattribute procedure> to allow praogrammatic assignment of file
attribute values.

Logical and Physical Files

As viewed hy a program, a file is a logical entity that is read
ar written somewhat independently of the characteristics of the
device involved. In terms of the device used to create it or the
medium upon which it is stored, however, a file is referred to as
a physical file. Before data can be transferred between a Pascal
program and a physical file, a physical file must be assigned to
the relevant file or textfile variable. This assignment is made
when the file is opened, through a call on either the reset
procedure or the rewrite procedure.

The desired physical file may be a new file or an existing file.
If a file is opened using the <reset procedure> an existing file
is assumed. If the <rewrite procedure> is used, a new file is
created.

The decision as to which physical file will be assigned is
controlled by the values of several file attributes for the file
and by the particular operation used to open the file.

The default value of the KIND attribute in Pascal is DISK. The
default value of the TITLE attribute is, as in ALGOL or COBOL,
the first 10 characters [translated to upper case) of the
<variable identifier> of the file or textfile.

Permanent and Temporary Files

Files may be further classified as permanent files or temporary
files. A file created by a Pascal program is a temporary file
unless otherwise specified. A temporary file exists anly while
the program that created it is running. It is discarded as the
result of a close operation that does not specify the save or -
crunch option. A temporary file cannot be accessed by any other
program.

A permanent file, on the other hand, may exist beyond the
Lifetime of the program and can bhe accessed by a logical file
other than the one used to create it. A permanent file can be
created by a Pascal program in one of two ways:

(1) If the file name appears in the <program heading>, the file
will become a permanent file when it is closed.

Form 1152048 6-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

(2) The file can be closed by a close operation that specifies
either save or crunch.

In both cases, an existing permanent file replaced by a saved
file with the same name, but it is not replaced until the close
opperation is executed.

A permanent file can be explicitly removed by executing a close
pperation with the purge option.

Examples:

program p(f},;
type employee record = record
- name : packed array [1..25] of char;
department : 1..9000;

end;
var f : file of employee_record;
g @ file of employee record;

hegin

{ The following statement creates a8 new permanent file. The file
is permanent because the file f appears in the program parameter
list. }

rewrite(f),;

{ The following statement opens a new file. At this point, the
file is temporary. }
rewrite(g);

{ The following statement causes file g to become a permanent

fite. }
close(g,save);
end.

Standard Files

A standard file is a variable of a <file type>. It consists of a
{theoretically) unbounded sequence of components of its
<component type>. In practice, of course, a file is limited by
the size of the device with which it is associated and other
system resource lLimitations.

No special formatting of data is performed for standard files.

Operations on standard files are described next.

Form 1152048 -5 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Reset Operation

The reset operatian assumes that a file already exists. The file
may be open or closed. If the file is open, it is repositioned
at the beginning of the file. If the file is closed, it is
opened. The first component of the file is assigned to the
huffer variable. Immediately following a reset operation, the
position of the file can be viewed as follows:

X0 X1 X2 X3 ... Xn eof

current value of the buffer variable
+ next component to be accessed

Xn last component of the file

eof special component marking end of file

Get Operatiaon

Get, the fundamental input operation, causes the file component
indicated by + to be transferred to the buffer variable; it then
positions the file to the next component. After performing a get
operatian, the file is positioned as follows:

X0 X1 X2 X3 ... Xn eof
* +

The file can be accessed sequentially by successive get
operations until the file is positioned at the eof component:

X0 X1 X2 X3 ... Xn eof
1% +

At this point, another application of get causes the huffer
variable to become undefined. In addition, the <eof function>
returns the value true if called. (Until now, the <eof function>
returned false.) If get is called when the file is at
end-of-file, an error occurs.

Read Operatian

The read operation (read {f,x)) is defined to be equivalent to
the following two statements:

x = f@;
get{f);

Form 1152048 6-6 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Any errors defined for these two statements are defined for read.
For example, f@ must be assignment-compatible with the type of x.

Seek Operatian

The seek operation is an additional function defined as a
Burroughs extension; it allows a file to be accessed randomly.
The command seek(f,i) positions the file such that the next get
pperatiocn will assign the (i+1)th component af the file to the
buffer variable.

X0 L .. Xi eof
+

A seek operation may specify a position that is beyond the eof
component. The effect in this case is as if each position beyond
the last component were occupied by an eof component.

Xi Xn eof eof eof eof

A get operation at this point causes the <eof functiaon> to return
true, leaving the buffer variable undefined. A second get
operatian results in an errar.

Rewrite Operation

A rewrite ocperation may be called while the file is open or
closed. If the file is open, the attached physical fite is
released and a new empty file is created. The file is positioned
such that an item written will occupy the first position.

Put Operation

The put operation causes the contents of the buffer variable to
be transferred to the file at the pasition indicated by + and
then moves the file to the next position. It is an error if the
value of the bhuffer variable is undefined when put is called.
Following a put operation, the buffer variable hecomes undefined.
A file fotlowing a rewrite and put would look tike this:

X0
+

The seek operation allows a file to be positioned such that a
subsequent put operation wilt transfer the contents of the buffer
variable to the specified position in the file; that is,
seek(f,i) positions the file at the [1+1)th position. The buffer
variable is undefined after a seek operation, once it has been

Form 1152048 6-7 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

assigned a value, a subseguent put operation would result in the
following file structure:

<—-undefined--»>
X0 Xi
+

Write Operation

A write operation (write(f,x)) is equivalent to the following two
statements:

f@ = x;

put(f];
Any errors defined for these two statements are defined for the
write operation. For example, x must bhe assignment-compatible

with the type of f@).

when a file is closed, as the result of either a reset or close
gperation, and the physical file is retained, a logical
end-of-file component is placed folloswing the last position in
the file that was assigned a value. At this point, the file
might took like this:

X0 Xt 0 ... Xi Xi+1 0O Xn eof

0 marks positions that were never written (because of seek
operations) and are therefore undefined.

Close Operation
The close operation terminates the processing of the file and
disconnects the logical fite from the physical file.
Textfiles (Including Predefined Textfiles])
Textfiles are intended for "human-readable" input and output.
The feature provides for formatting and translation of values
between internal system representation and an external character
form.

Textfiles in General
A textfile has some properties in common with a "file of char™,
but they are not eqgquivalent. A textfile can be viewed as a

sequence of characters, but special components and operations
exist that allow characters to be grouped into lines. Maore

Form 1152048 6-8 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

specifically, a textfile is a sequence of components called
lines, which are separated by logical components called
end-of-line markers. Each line consists of a sequence of
characters.

A textfile is denoted by use of the predefined <type identifier>

text. A textfile variabte has an associated buffer variahle that
is defined to be of type char.

Predefined Textfiles (Input, Output)

There are two predefined textfiles with the names "input" and

“putput.” In order to use these files, their names must appear in
the list of «<program parameters>. When they appear, they bhecome
implicitly declared; thus, they must not he declared again in

the <variable declaratiocns> of the program. If the names input
and output do not appear in the list of <program parameters>, the
predefined files are not declared and therefore are not available
for use. Any subsequent declaration of either input or output
declares a variable other than the predefined ane.

In some file handling procedures such as readln and writeln, the
file parameter may be omitted, in these cases, the appropriate
predefined textfile (either input or output) is inferred, as
specified for each procedure.

Operations on textfiles are described next.

Reset Operation

As with a standard file, the reset operation assumes an Bxisting

textfile. Following @ reset operation, the fitle can be viewed as
follows:
Co €1 A L R Cn eoln
+
CO ... Cm eoln
ca Cz &eoln eaof
f currently defined vatue of the buffer variable
+ next component to be accessed.
ealn end-of-line marker
geof end-of-file marker
Eoln exists as a functional definition only; such a character is

not actually present in the file, but is implied by position.

Form 1162048 6-9 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Get Operation

A textfile can only he accessed seguentially. The basic input
gperation is get. Get operates on a textfile in a manner very
similar to a get on a file of char. Each get operation accesses
the next component of the file. When the file is in the
foltowing position, another get operation will put the file in
end-of-line state:

co €1 L. . L Cn eoln
* +

In end-of-line state, the <eoin function>, if called, returns the
value true and the value of the buffer variable is -~ ° {(blank]).
A second get operation results in the following file position:

co C1 L L ... Cn eoln
CO ... Cm eoln

i +

co ... L Cz eoln eof

When the file is positioned as follows, a get operation again
puts the file into end-of-line state, and a second get operatian
puts the file into end-of-file state:

CoO C1 L S ... Cn &eoln
Co ... Cm =eoln
co . . . S Cz eoln eof

i +

After the second get operation, the <eof function>, if called,
returns true and the value of the buffer variable is undefined.
When the file is in the end-of-file state, an error occurs if
get, read, readln, or eoln is called.

Read Operation

The read operation has special semantics for textfiles. The
definition of a read operation depends on the type of the
variables in the parameter list. The action of the read
pperation an a textfitle is described under Read Teaxfile
Procedure.

Form 1152048 . 6-10 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Readln Operation

The readln operation causes the remaining characters in a lLine ta
be skipped and positions the file at the beginning of the next
line. Readln is equivalent to the following statements:

while not eoln(f) do
get(f);
get(f);

A multiple-value readln operation such as readln(f,X1,...,Xn)} is
equivalent to the following statements:

read(f,X1,...,Xn);
readln;

Rewrite Operation

As with a standard file, the rewrite operation creates a new
empty textfile.

Put Operation

The basic output operation is put. Put is defined as for a “"file
of char." At any point, there is a current line that is either
empty or partially generated. An error occurs if an attempt is
made, through the use of put, write, or writeln, to put more
characters in a line than the defined maximum.

Write Operation
The write operation has special semantics for textfiles. The
definition of write depends on the type of the variables in the
parameter List. The action of write on a textfile is described
under Write Textfile Procedure.

Writeln Operation
The current line is terminated by the writeln operation. A

multiple-value writeln operation such as writeln(f,X1,...,Xn) is
equivalent to the following statements:

Form 1152048 6-11 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL
write(f, X1},

write(f Xn);
writeln;

If a reset operation is performed or the file is closed without
heing released and the current Lline is not empty, an implicit
writeln is performed and an end-of-file is written.

Close Operation

The close operation terminates the processing of the file and
disconnects the logical file from the physical file.

Lazy 1/0

Textfile input operations require special processing to ensure
that the operations are performed in the order that the
programmer expects. In particular, a problem arises when reading
from a textfile assigned to a remote file. A typical interactive
program prompts a user far input and then reads the user’s
response. Because reset, read, and readln operations implicitly
read one character ahead (that is, the buffer variable is
assigned a value that will subseguently be stored into a variable
in a read or readln parameter tist}, most interactive programsg
woutd thus have to wait for the user to respond to 3 prompt that
has not yet been displayed.

To avoid these potentially frustrating interactions, Burroughs
Pascal uses an input technigue known as "lazy I/0." With lazy
I1/0, data is not transferred to the buffer variable until it is
required by the program. Thus, if a get, read, or readln
gperatiaon is performed and the value of the buffer variable
following the operation is defined to be the first character of a
new tine, that Line is not read and the value is not actually
assigned until another get, read, or readln operation is
performed.

Other implementations may use other I/0 techniques under these
circumstances, and programs may behave differently.

Use of File Attributes

Burroughs Pascal, together with the B 1000 I/0 subsystem,
provides several methods for assigning and interrogating the

values of file attributes. File attributes can be assigned in
the following ways:

Form 1152048 6-12 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

1. Through file equation as the program is executed.

2. By specification of the fite attributes in the
<program parameters>.

3. Dynamicaltly, through the <setattribute procedure>.

When settings from these methods conflict, precedence is
determined by the following sequence (highest to lowest): (1}
<setattribute procedure>, [2) run-time file eguation, (3)
settings in the <program parameters>.

PROCEDURE AND FUNCTION DESCRIPTIONS

Described next, in alphabetic order within groups, are all the
procedures and functions available in B 1000 Pascal. The groups
are

File-Handling Procedures and Functions
Type Transfer Functions

Dynamic Allocation Procedures
Arithmetic Functions

General Procedures and Functions

File-Handling Procedures and Functions

Following are descriptions of all the file-handling procedures

and functions.

Close Procedure

The <close procedure> terminates processing of the file denoted

by «textfile variable> or «file variable>. An error occurs if

the file is not open when the <close procedure> is invoked.

<close procedure> syntax:

———— CLOSE -- [-+~ <textfile variable> —4—4——--———-ommm +-) -
! Lo !
+- «file variable> ----—- + +—- , <close option> -+

<close option> syntax:

mmmmtm= CRAUNCH mm oo oo oo oo oo
1 [}

+-— PURGE ~——+
! !
+-— SAVE --——+
Form 1152048 6-13 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

After a close operation, the value of the buffer variable
associated with the file becomes undefined. A subseguent attempt
to perform any read, write, or seek operation after a close
operation, without first calling the open, reset, or rewrite
procedure, is an error.

A <«close option> may he used to further specify the disposition
of the file being closed. If a «<close option> is not specified,
permanent files remain permanent and are repositioned to the
beginning of the file if the device permits this. Temporary
files are released. The connection between the logical file and
the physical file is always severed.

The meaning af a particular <close option> depends on the KIND of
the file being closed. The valid <close option>s are defined as
follows:

crunch The crunch option causes the file to be made a
permanent file. In addition, the value of the file
attribute CRUNCHED is set to true, which has the effect
of returning unused storage areas to the system. The
connection between the logical file and physical file
is severed. The crunch option is valid for disk files
only.

purge The purge option causes the file to be discarded. A
tape file is rewound, and, if a write ring is present,
a scratch label is written. A disk file is removed
from the directory. The connection between the logical
fite and the physical file is severed. The purge
option is valid for tape and disk files only.

save The save option repositions the file to the beginning
and makes it a permanent file. The connection hetween
the logical file and the physical file is severed. The
save option is valid for tape and disk files only.

If a <close option> that is invalid for the KIND of the file is
specified, a simple close appropriate to the device is performed.

The <close procedure> is a Burroughs extension to ANSI Pascal.

EQOF Functian

The <eof function> returns, as a Boatean value, an indication of
whether or not an operation attempted to access beyond the last
component of a specified file. The function returns true if the
last operation on the file was a get, read, or reset beyond the
last component.

Farm 1152048 6-14 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<eaf function» syntax:

———— EOF —— - -
[1
+-— [-- «<file variable> --] —-—-+
| |
+—-——— <textfile variable> -——-——- +

The file to which the function applies may be specified by
including a <file variabte> or <textfile variable> in the

function call. If no file is specified, the function applies to
the textfile named input If the file is not open, the function
returns false. If the specified file is not open when the <eof

function> is called, an error occurs.

EOLN Function

The <eoln function> returns, as a Boolean value, an indication of
whether or not a particular textfile is positioned at an
end-of-line marker. If the file is positiaoned at an end-of-line
marker, the function returns true,; otherwise, the function
returns false.

<ealn function> syntax:
———— EOLN —— - e
+-— [—-— «textfile variable> --) ——%

The file to which the function applies may he specified by
including a <textfile variable> in the function call. If no file
is specified, the function applies to the textfile named input.

If the specified file is not open when the <eoln function> is
called, an error occurs.

Get Procedure

The «<get procedure> assigns to the buffer variable of the file
denoted by <textfile variable> or <file variable> the value of
the component corresponding to the current position of the file.
If the file is positioned beyond the last component when the

<get procedure> is invoked, the <eof function»> becomes true and
the value of the buffer variable associated with the file bhecomes
undefined.

<get procedure> syntax:

—-——- GET —— (--+—— <textfile variabley ——-+--) -~
! !
+—— «file variabley-————-—- +

Form 1152048 6-16 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

If a <textfile variable> is specified and the end-of-line marker
is reached, the value assigned to the buffer variable is = °
(btank); at this point, the <eoln function> would return true.
The next call on the <get procedure> will access the first
compaonent of the next line or, if there are no more lines, will
put the file in end-of-file state.

An error occurs if the file is not open. If, immediately
preceding the invocation of the get procedure, the <eof function>
yields the value true, an error occurs if the <¢eof function>
still yields true following the invocation.

Page Procedure
The <page procedure> causes a <writeln procedure> without
carriage control, followed by a skip-to-top-of-page action. If
the «<textfile variable> is pmitted, the action applies to the

textfile output.

<page procedure> syntax:

—=== PAGE ——4-—— e e e o —————— e

! !
+-— [~— <textfile variable> ——-] --+

If the <page procedure> is invoked for a file that is not
associated with a printer, the effect is equivalent to invoking
the <writeln procedure>. An error occurs if the file is not open
prior to the execution of the <page procedure>.

Put Procedure
The <put procedure> writes to the file denoted by
<textfile variable> or <file variabley the value of the huffer
variable associated with that file. The value of the huffer

variahle then becomes undefined.

<put procedure> syntax:

-——— PUT == [—-—+-- <textfile variable>) ——4-——-) ——=memmm o ——

! !
+-— «<file variable>-—————=—- +

An error occurs if the file is not open prior to execution of the
<put procedure>. An error also occurs if a <textfile varigble>
is specified and the <put procedure> causes the line to exceed
the length determined by the value of the MAXRECSIZE file
attribute.

Form 1152048 6-16 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Read Procedure

The <read procedure> causes the specified <variable>s to be
assigned sequential values from the file denoted by

«file variable>. The action of read(f,x) is equivalent to the
following statements:

; { x is assigned the value of the buffer variable }
3. { f@ is assigned the next value in the file }

fa
(f

X =
get

Thus, the value of the buffer variable (f@) must be assignment
compatible with the <variable> being read (x).

<read procedure> syntax:

-——-- READ -- ([-- «file variablte> -- , —-- <variabte> --] —————c—oee——

Read Textfile Procedure

The <read textfile procedure> is similar to the <read procedure>,
except that it applies to textfiles instead of standard files.
wWhen the <textfile variable> is not specified, the read is
performed on the predefined textfile named input

<read textfile procedure> syntax:

~——— READ == [—4==me e e e 4=+- <read parameter> S] -
! !

+ <textfile variable> , +

<read parametery syntax:

—-———+-- <char variabley—-——-~~ e e
! !
+—-— <integer variable> --+
: !
+-- «<real variable> -—-—-- +

The list of <read parameter>s specifies the variables into which
the information in the textfile is to be read. As is true of the
<read procedure>, reading a list of <read parameter>s 1is
equivalent to reading the variables in successive read
statements.

An error pccurs if the textfile is not apen, or if the

<eaf function> would return true prior to the executiaon of the
<read textfile procedure> or any inferred subcomponent of it.

Form 1152048 6-17 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The action of the <read textfile procedure> depends on the type
of the specified <read parameter>, as explained next.

Type = «<char variahle>

The action of the <read textfile procedure> with a

<char variahle> parameter is eguivalent to the following two
statements, where ¢ is the specified <char variable> and f is the
file to be read:

c = f@,
get(f)
Example:

var c1, c2 : char;
f . text,;

begin

read(f,c?,c2);

end;

If the textfile contains the characters

"dEfgh"
L

and the buffer variable is at the location indicated by the
asterisk, the read procedure assigns the vatue d to variable cf
and the value e to the variable c2.

Type = <integer variable>

Beginning with the character at the current buffer variable
tocation, characters are scanned, across several lines if
necessary, until a nonblank character is encountered. Starting
with the first nonblank character, the sequence of nonblank
characters is then interpreted as an integer value, which may
include a sign. The format of the number must be consistent with
the format defined for an <integer constant> appearing in a
Pascal program, and the value must be assignment compatibte with
the type of the parameter.

Following the <read textfile procedure>, the buffer variable is

assigned the value of the next character or, if there are no mare
characters in the line, it is put into eol state.

Form 1152048 6-18 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Exampie:
var i . integer,
f . text;
begin
read(f,i)
end;

If the textfile contains the character seqguence

~-123degrees”
#*

#

and the buffer variable is positioned at the location indicated
by the first asterisk, the read procedure assigns the value -123
to the variable i and leaves the buffer variable positioned at
the location indicated by the second asterisk. (d is not a valid
character in an integer.])

Type = «<real variable>

Beginning with the character at the current buffer variable
location, characters are scanned, across several lines if
necessary, until a nonblank character is encountered. Starting
with the first nanblank character, the seguence of nonblank
characters is then interpreted as a real value, which may include
a sign and an exponent. The format of the number must be
consistent with the format defined for a <real constant>
appearing in a Pascal program.

Following the <read textfile procedure>, the buffer variable is
assigned the value of the next character or, if there are no more
characters in the line, it is put into eol state.

Example:
var f : text,;
r ;. real;
begin
read(f,r),;
end;

If the textfile contains the character sequence

" 98 6degrees”
$# 3

and the buffer variable 1is positioned at the location indicated
by the first asterisk, the read procedure assigns the value 98 8
to the variable r and leaves the buffer variahble positioned at
the location indicated by the second asterisk. (d is not a valid
character in a real value.)

Form 1152048 6-19 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

If the textfile contains the character seguence

" -1234e-27Mev"
*

*

and the buffer variable is positioned at the location indicated
by the first asterisk, the read procedure assigns the value -1234
times 10 to the power of -27 to the variable r and leaves the
buffer variable positioned at the location indicated by the
second asterisk.

Readln Procedure

The «<readln procedure> performs the same action as the

cread textfile procedure> and then moves the file to the start of
the next line. If there is no next tine, the file is positioned
at end-of-file. :

<readln procedure> syntax:

e BEADLN oo e >
> e ————————————— e
! 1
! Flmm————— , ———m————— + !
! ! ! !
+ (4 +-+- <read parameter> —+-+) -+
! ! !
+- <textfile variabhle> , -+ !
! !
+- <textfile variable) ———emmm +

If no <textfile variable> is specified, the <readln procedure>
applies to the textfile named input.

An errar occurs if the file is not open, or if the <eof function>
would return true prior to the execution of the
<readln procedure> or any subcomponent of it.

Reset Procedure

The «<reset procedure> positions the file to the beginning. If
the file is already open, it is repositioned to the heginning.

If the file is closed, it is opened. If the «<reset procedure> is
applied to a textfile that is currently in generation mode and
there is a partially generated tine, an automatic

<writeln procedure> is performed before the textfile is
repositioned.

Form 1152048 6~20 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<reset procedure> syntax:

———- RESET ---= (—-=+-- «<file variabley —-—-——-—- o] e e e

! |
+-—— <textfile variable> --+

If the file is not open, the <reset procedure> invokes the I/0
subsystem search logic to find a matching physical file with
which to associate the internal Pascal <file variable>. Unless
otherwise specified, an attempt is made to locate an existing
disk file whose title is given by the first 10 characters
(transltated to upper case) of the «<file variable> or

<textfile variable> identifier. If the identifier is the
predefined file identifier "input,"” a8 search is made for a remote
fite. This search can be modified by changing certain file
attributes, such as TITLE, or through file equation.

When the «reset procedure> is called, an existing file is always
assumed. If a matching file cannot be found, the program is
suspended in a system NO FILE condition, awaiting an operator
response.

Following a <reset procedure>, the file is in end-of-file state

if the file is empty. Otherwise, the buffer variable is defined
to have the value of the first component of the file.

Rewrite Procedure

The <rewrite procedure> creates a new, empty file. If the file
is already open, it is discarded, and a new, empty file is
created. If the file 1s closed, a new, empty file is created.

Unless otherwise specified, a disk file with a title given by the
first 10 characters (translated to upper case) of the

«<file variable> or <textfile variable> identifier is created.

(If the identifier is the predefined file identifier "output," a
remote fite is created.])

<rewrite procedure> syntax:

———— REWRITE -- [--+-- <file variabhle> -—----- e B

[!
+—— <textfile variable> —-—-+

Immediately following the invocation of the <rewrite procedure>,
the value of the buffer variable is undefined and the

<eof function> will return true. The <eof function> returns true
as long as the file is in generation made.

Form 1152048) 6-21 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Seek Procedure

The <seek procedure> positions the file denoted by

«<file variable> at a specified point in the file. The file 1is
positioned such that the next <get procedure» or <put procedure>
is performed on the component specified by the

cinteger expression>. Components are numbered beginning at O
(that is, zero relative). If the value of the specified
cinteger expression> is less than 0O, an error occurs.

<seek procedure> syntax:
———-- SEEK == [-- «file variable» -- , -- «<integer expressiony ——] —--

The <seek procedure> is a Burroughs extension to ANSI Pascal.

Write Procedure

The <write procedure> causes the specified <expression>s to he
written sequentially to the file denoted by «file variable>.

<write procedure> syntax:
~—=— WRITE -- (-- «file variable> -- , -- <expressiony --] —————eum_
An error occurs if the values of the <expression>s specified in
the <write procedure> are not assignment compatible with the file
type of the specified «<file variahle>. An error also occurs if
the file is not open.

Write Textfile Procedure
The <write textfile procedure> is similar to the
<write procedure>, except that it applies to textfiles instead of
standard files. When the <textfile variable> is not specified,
the write is performed to the textfile named output.

<write textfile procedure> syntax:

B e ittt +
! !
—-———— write [44—~ - +~+4 <write parameter> —-+--)} -
! !
+ «<textfile variable> , +
Form 1152048 6-22 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<write parametery syntax:

—~——-+-- <Boolean expression> ——+—T ———————————————————————————————— T———
! !
%-— <char expressiony ——--—- i ; o<field widthy————— e f
f—— <integer expression> ——; é
+-— <real EXPrESSiONY ——d———mm e e e f
[
+ 0 <field widthy —m4om—mmmmm—mmmmmem +

<field width> syntax:
—=== CINtEQEr EBXAMESSIONY ——— e e e e e e e e e e
«frac digits> syntax:
———— <CINLEQEr EBXPrESSIONY ——— e e e e e e e e e e

An erraor occurs if the textfile is not open. Also, an erraor
occurs if the operation causes the length of the current line tao
exceed the maximum length, which is determined by the value of
the MAXRECSIZE file attribute.

The list of <write parameter>s specifies the variables whose
values are to be written to the textfile. The <fietd width> and
«frac digits> specifications allow the programmer toc contral
aspects aof the formatting aof the values written. I[If these
specifications are omitted (where they are allowed), an
appropriate representation of the value is chosen by the
compiler. If specified, «field width> and <«frac digits> must bhe
greater than or equal to one.

The action of the «<write textfile procedure> for each type of
<write parameter> is described in the following paragraphs.

<Boolean expressiaon>

For the values of true and false, the characters strings " TRUE"
and "FALSE", respegtively, are written. The default

«<field width> for a <Boolean expression> is five characters. If
a <field width> is specified that is smaller than the length of
the string to be written, the first «<field width> characters are
written. If the specified «<field width> is larger, leading
blanks are written.

Form 1152048 6-23 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:
Procedure Result
write(f,b) " TRUE" if b is true
"FALSE" if b is false
write(f,true:2) "TR"
write(f, true:10) " TRUE"

Quotation marks show spacing.

<char expression>

For a value of the <char type>, the character is simply moved to
the buffer variable and "put" into the file. The default

¢field width> far a <char expression> is 1 character. If a
<field width> greater than 1 is specified, leading blanks are
written.

Examples: (c is a <char variable> that contains the value $)

Procedure Result
write[f, c)
write(f c:3) g

Quotation marks show spacing.

<integer expression>

Values of the <integer type> are formatted with a sign {minus ¢{f
the number is negative, bhlank if the number is positive],
folltowed by the decimal representation of the integer value. The
default <«field width> for an <integer expression> is ten
characters. If a <field widthy> is specified that is smaller than
the length of the number to be written, the <«field width>
specification is ignored, and the entire number is written. If
the specified <field width> is larger, leading blanks are
written.

Examples: (1 is an integer with value -12345})

Procedure Result
write(f, 6 i) " -12345"
write(f,i:3) "-12345"
write(f,i:12) " -12345"

Quotation marks show spacing.

Form 1152048 6-24 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<real expression>

Values of the «<real type> are written in floating-point or
fixed-point format, depending on whether the <frac digits>
specification is provided. If it is provided, the number is
written in fixed-point format; if it is not, the number is
written in fleating-point faormat. The default <field width> for
a «real expression> is 15 characters.

Floating-Point Format

In floating-paint format, the numbher contains the following
components:

1. A sjgn; minus if the number 1is negative, blank if it is
positive.

2. The first significant digit, or 2era, if the number is zero.

3. A decimal point (.)

4. The fractional part (at least one digit)

5. The exponent symbol [E)

6. The sign of the exponent (+ or -).

7. Two digits of expanent.

If the «<field width> specified is smaller than the minimum number
of characters necessary to represent the number, the

«<field width> specification is ignored, and the number is written
with only one fractional digit. If the specified «field width>
is ltarger, the number is expanded by adding trailing zeros to the
fractional part.

Fixed-Point Format

In fixed-point format, the number contains the faollowing
Components:

1. A minus sign (-] if the number is negative.

2. The integral part of the number -- trunc(<real expression>].
3. A decimal point (.)

4. «<frac digits> of the fractiaonal part of the number.

Form 1152048 6-25 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

If a <field widthy> is specified that is smaller than. the minimum
number of characters necessary to represent the number in
fixed-point format, the <field width> specification is ignored
and the entire number is written, including <frac digits> of the
fractional part. If the specified <field width> is larger, the
numher is written with leading btanks. If the number of
significant digits requested is fewer than the number of
significant digits in the system representation of the number,
the number is rounded at the last digit written.

Examples:
Procedure Result
write(f, 1.2345:6:4) "1.2345"
write(f,1.2345:20) " 1.2344999313354E+00"
write(f,-27.1828E-3:14) "-2.7182801E~-02"
write(f,0.31:3) " 3.1E-01"
write(f,-96E12:7) "-9.B6E+13"
write(f,0.317269:3) " 3.2E-01"
write{f,6-965E12:7) "-9.6E+14"
write(f, 0.31726E7:7:3) "3172600.031"
write(f,-965E12:1:7) "-964999961853027.3437500"
write(f,0.31726E7:13:3) " 3172800.031"
write(f, 6 -89B5E-2:12:7) " -9.6499996"
write(f,3.1776E-1:13:3} " 0.318"
write(f,-962 5E-2:12:2) " -9.625"

Quotation marks show spacing.

Writeln Procedure

The <writeln procedure> performs the same action as the

<write textfile procedure> and then starts a new line. If no
<textfile variable> is specified, the <writeln procedure> applies
to the textfile named output. If no <write parameterss are
specified, a single blank line is written to the textfile named
putput. Following the execution of the <writeln procedure>, the
vatue of the buffer variable hecomes undefined.

An error occurs if the file is not open.

Farm 1152048 6-26 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<writeln procedure> syntax:

———— WRITELN ————m e e e e e e e >
D e e e e e e e e e e e e e e e e Fm—————
| }
! +l—mm , mm————— + !
! ! ! !
+ [e +-+- <write parameter> +-+)} —+
! ! !
+- <textfile variable> , -+ !
! !
+- «<textfile variable) ———=——mm e +

Type Transfer Functions

One af the major reasons for data typing is to allow the compiler
to enforce type compatibility restrictions. These restrictions
help the programmer ensure that data is handled in a controlled
and consistent fashion throughout the program. For example, the
compiler will not allow two values of an enumerated type such as
“color” to be arithmetically subtracted.

Type transfer functions are provided to allow values of a few
data types to be converted to values of certain other data types.

<type transfer function> syntax:

~———+-—— <thr function> —--4-—-———— -
! !
+-- <ord function> —--—+

CHR Function

The «<chr functiaon> returns the character whose ordinal number is

designated hy <integer expression>. If the <integer expression>
is not a valid ardinal number for the standard character set, an
Error occurs. Valid ordinal numbers for the EBCDIC character set

are in the range 0..255.
<chr function»> syntax:

-——— CHR —-— [-- <integer expressiony --)] ——-m——mmm e

Form 1152048 6-27 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:

var c1, c2 : char,

begin

1l := chr(129),;
c2 := chr(240);
end;

The character a is assigned to c1 and the character 0O is assigned
to c2
ORD Function

The <ord function> returns, as an integer value, the ordinal
number of the specified <ordinal expression>.

<ord function> syntax

-=—==- ORD -- [-- <ordinal expression> —-—-)} -
Examples:

var i1, i2 : integer;

begin

i1 = ord{"8"],;

i2 = ord(true);

end;

In the standard EBCDIC character set, i1 is assigned the integer
value 128 and 12 is assigned the integer vatue 1.

Dynamic Allocation Procedures

The dynamic allocation procedures, used in conjunction with
<ppinter «<pointer variahles>, allow variables to be allocated and
deallocated dynamically. that is, independently of the
activation of a specific <block>. A variable that is allocated
in this way is calied a dynamic variable.

<dynamic allpcation procedure> syntax:

————+4-- «<mark procedure————-—-— A e e e e e e !
! !
+—— <new procedure> -—-—-—-— +
l |
+-— <release procedure> ——+

Dynamic variables are allocated in a storage area called the
"heap." Creation of dynamic variables and manipulation of the
heap is performed through the use of the three predefined
procedures new, mark, and release.

Form 1152048 6-28 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The new procedure is used to allocate a dynamic variable. It
accepts a8 <pointer variahle> as a parameter, to which it assigns
a reference value that can be used to refer to the newly assigned
variable. The new procedure is the only way to allocate a
dynamic variable, and it is used for both the cotlection and the
stack methods of heap management.

The mark and release procedures are used to manage the heap as a

stack. A stack can be viewed as a8 time-crdered sequence of
variables, where the most recently allocated variables are "on
top of" variables allocated earlier. Stack management is

particularly useful wheén the lifetime of a group of variables is
identical .

The mark procedure stores a reference to the dypamic variable
that is the top-of-stack variable at the time the procedure is
called. A "mark value" 1s assigned to the <pointer variable>
that is passed as a parameter. This value cannot be used to
access the top-of-stack variable; instead, it is used to
indicate a position in the stack for later use by the release
procedure. Once the mark procedure has been called, the new
procedure allocates all new variables such that they are
logically above the mark in the stack.

The release procedure deallocates all variables that were
allocated above the mark specified by the <pointer expression>
passed as its parameter. The pointer must contain a mark value,
that is, a value sssigned by the mark procedure. The variahle
that was the top-of-stack variable at the time the mark procedure
was called again becomes the top-of-stack variable.

To maintain the heap as a stack, one typically calls the mark
procedure, then the new procedure one or more times, then the
release procedure. The mark procedure may he called several
times before the release procedure is finally called. When
release is called, i1t deallocates variables down to the mark it
is passed as a parameter, regardless of whether or not there
exist marks above that one in the stack.

Farm 1152048 6-28 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Example:
program mark_release;

type ptr to node = @node;

node = record
name . packed array [1..20) of char;
next node : ptr to node;
end ;" - T
var marker : ptr to node;
persant, - -
persaong,

person3 @ ptr_to node;

begin
mark(marker]);
new({persanl)
new({person2],;
new(person3d],;
release(marker);
end .

The call on the <mark procedure> marks the heap at the point of
the call. After new items have been created in the heap, the
call on the <release procedure> causes all three dynamic
variables to be deatlocated. The three pointers personl,
person2, and person3d are undefined after the execution of the
<release procedure>.)

Dynamic variables can he very useful for certain applications.
They can also cause confusion when used incorrectly. In
particular, care should be exercised to ensure that the
correspondence between pointers and variables is properly
maintained. If a variable is deallocated while a pointer tog the
variahle still exists, the pointer becomes a "dangling reference”
(a reference to a nonexistent variable). If a variable exists
but atl references to it have been lost (for example, because a
new value was assigned to the only pointer that referenced the
variahle), the variable is inaccessible and its space is wasted.
In ANSI Pascal, the use of a dangling reference in an attempt to
access a nonexistent dynamic variable is defined to be invalid,
but in this implementation, as in most others, these errors are
not always detected.

Mark Procedure

The <mark procedure> assigns to the <pointer variable> a mark
value, a value that corresponds to the location of the most
recently altlocated dynamic variable, that is, the current
top-of-stack variable. Subsequent calls to the «<new procedures
allocate dynamic variables "above" this mark; such variables are

Form 1152048 6-30 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

referred to as marked variables.

<mark procedure> syntax:

~—-- MARK -- { -- «<pointer variable) -- }] - - ———————-———
The <pointer variable> can later be used in a call on the

<release procedure>, which simultaneously deallocates all

variables above the mark. Because the mark value identifies a

set of variables rather than a single variable, an error occurs

if a variable that contains a mark value is used in any other

context, for example, as a reference to a variahle.

The «<mark procedure> is a Burrpughs extension to ANSI Pascal.

New Procedure
The <new procedure> aitlocates space for a new dynamic variahle of
the type with which the «<pointer variable> is associated. The
<pointer variable> then becomes a reference to the location of
the new variable.

<nev procedure> syntax:

~——= NEW -- (-- <pointer variable> —--) —=—————mmmmmm e

Release Procedure
The <release procedure> deallocates the marked variahles denoted
hy the <pointer-expression>. An error occurs if the
<pointer expression> does not contain a8 mark value. (Refer to
the Mark Procedure.)
<release procedure> syntax:
—~——— RELEASE ~- [—-- <pointer eXpressiony --—) ———mmemmm e
Following the execution of the <release procedure>, all pointer
variahles and functions that reference the variables that have
been deallocated becaome undefined.

The «release procedure> is a Burroughs extension to ANSI Pascal.
Arithmetic Functions

The <arithmetic function»>s provide functions for use in
c<arithmetic expression>s.

Form 1152048 6-31 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

carithmetic functions> syntax:

——=—+—-— <abs function) ——e—tommm
! |
+—— <arctan function> -+
! !
+——- <cos functiony ———-+
! !
+—— <exp function> ————+
| !
+—-— <ln functiony —-——-—- +
! !
+-— <round function> —-—-+
! !
+-— «¢sin functiony> —~——+
! !
+~— ¢<sgr function> ———-+
! !
+~-— <sqrt function> —--+
! !
+—-— <tan functiony —--—-—+
! !
+-— <trunc function> —-—+

ABS Function
The <ahs function> returns the absolute value of the specified
<arithmetic expression>. The result returned is of the same type
as the specified <arithmetic expression>.

cahs function> syntax:

~—-—— ABS —-- [—-- <arithmetic expressiony ——] —————mmm——mm e

ARCTAN Function
The ¢arctan function> returns, as a real value in radians, the
principal value of the arctangent function at the specified
<arithmetic expressiaon>.
p1.<arctan function> syntax:

———— ARCTAN -- [-- <arithmetic expression> —-- J ——————mmmmmem e

COS Function
The <cos function> returns, as a real value, the cosine of the

angle specified by the <arithmetic expression>, which is assumed
to be in radians.

Form 1152048 §-32 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<cos function> syntax:

-——~ (€08 -- [-- <arithmetic EXpression> —-- } ————e——mm— e ——— e

EXP Function

The <exp function> returns, as a real value, e (the base of the
natural logarithms) raised to the <arithmetic expression> power. '

<exp function> syntax:

—-——— EXP == [-- <arithmetic eXpressiond --] ——m—c—mmm o

LN Function

The <ln function> returns, as a real value, the natural logarithm
of the specified <arithmetic expression>.

<ln function> syntax:

—-——- LN -= [-- <arithmetic expression> -- J] ———————mmm——m e -

ROUND Function
The <round function> returns the nearest integer value to the
specified <real expression>. If the vatue of the
<real expression> is positive ar zero, the result of the
<round function> is equivalent to the value of trunc(<real
expression>+0.5). If the value of the <real expression> is
negative, the result of the <round function> is equivalent to the
value of trunc(<real expression>-0.5).

It is an error if the nearest integer to the <real expression> is
greater than maxint or less than -maxint.

<round function> syntax:
—==-~ ROUND —--= [—-- «<real eXpressiony --— }] ———-emmmmmm e~
Examples:

round{(3.5) yields the value 4

round{-3.5) vyields the value -4

Form 1152048 6-33 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SIN Function
The «<sin function>» returns, as a real value, the sine of the
angle specified by the <arithmetic expression>, which is assumed
to he in radians.
<sin function> syntax:

———— SIN == [—- <arithmetic expression> —- J ——-mmmmmm e

SQR Function
The «<sgr function> returns the square of the value of the
specified <arithmetic expressiony>. The result returned is of the
same type as the <arithmetic expression>.

If the result value is out of range for its type, an erraor
occurs.

<sgr function> syntax:

-———= SOR —-- ([-- <arithmetic expression> —-—-] ——-cmmmmmmmm———

SQART Function
The <sqrt function> returns, as a real value, the square root of
the value of the specified <arithmetic expression>. The
carithmetic expression> must be greater thanm or equal to O.
<sgrt function> syntax:

———- S80RT —-- ([-- <arithmetic expressiond —-- }] ——-m—mmmmm e

TAN Function
The <tan function> returns, as a real value, the tangent of the
angle specified by the <arithmetic expression>, which is assumed
to be in radians.
The <tan function> is a Burroughs extension to ANSI Pascal.

ctan function> syntax:

~=—— TAN —— (-- <arithmetic expressiony —-- J ———mmemmmmmmm

Form 1152048 6-34 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

TRUNC Function

The <trunc function> returns the integer value, computed by
truncation, of the specified <real expression>. If the result is
greater than maxint or less than -maxint, an error OCCUIS.

<trunc function> syntax:

-6658902 to 665800
~=—— TRUNC == [-- «<real expression> -— [—=——m—m e

Examples:
trunc(3.5) yields the value 3

trunc(-3.5) yields the value -3

General Procedures and Functions

Many general procedures and functions are extensions to ANSI
Pascal to allow the program to access system—-specific features,
such as file attributes, the program’s accumulated run time, I/0
time, and elapsed time, the interface to the Operator Display
Terminal (ODT), and the system’s time and date values. Other
general procedures and functions are part of ANSI Pascal and
provide features that are not described elsewhere in this manual.

<general procedure> syntax:

—___T__ <abort procedure> —-_——T ——————————————————————————————————————
%—— caccept procedure> ——-—5
;—— <date procedure> —------— E
1
;—— <display procedure> -——E
]
;—— <time procedurgd-—-————-—-— E
1
4—— <wait procedure> -----—- i

<general functiony syntax:

~——~t-~ ¢odd function>-—-————-- e -
! |
+-—- «<pred function> -—---- !
| 1
+-~ <runtime function> --1|

+—— <succ function> —---—-—- 1

Form 1152048 6-35 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Abort Procedure

The <abort procedure> forces an immediate, abnormal termination
of the program.

The <abort procedure> is a8 Burroughs extension to ANSI Pascal.
<abort procedure> syntax:

e ABORT m o e e

Accept Procedure

The <accept procedure> displays the contents of the

<string canstant> or <string variahle> on the Operator Display
Terminal (ODT), suspends the program until a response from the
operator is entered {through the AX ODT command), and then places
the operator’s response into the <string variable> with either
blank fill or truncation if the message size is not the same size
as the <string variable>. The maximum length of the

¢<string variable> is 255 hytes.

The <accept procedures is a Burrpughs extension to ANSI Pascal.
<accept procedure> syntax:
———-— ACCEPT -- (-+ <string constant> +- , —-— «string variable> —-) -~

! !
+ <string variable> +

Example:
var str : packed array [1..3] of char;
bhegin
accept{ Do you want to continue? (yes or no)} ,str},;
end ;

The string "Do you want to continue? (yes or no)" is displayed
on the ODT. The response is placed in str.

Date Procedure
The <date procedure> returns the current date in the parameters

<year>, <month>, and <day>. Values returned are all of the
<integer type> and are in the following ranges:

parameter range
cyear> 0..9999
<month> 1..12
<day> 1..31
Farm 1152048 6-38 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The «<date procedure> is a Burroughs extension to ANSI Pascal.

<date procedure> syntax:

—-——— DATE -- [-- <year» -- , —- ¢<month> -- , -- <day>» -- }J ——————————
<year> syntax:

———- <variabtey === ——— — ———————————————————————————————
«<month> syntax:

~——— <variabley) ——-—mmm e ———————————_——————— -

<day> syntax:

———— ¢variabley —————mrmr e
Example:
var year . integer;
month : integer;
day c1..31;
begin
date (year, month, day):;
end;

The year is placed in the variahle year, the month is placed in
the variable month, and the day of the month is placed in the
variable day. ’

Display Procedure

The «<display procedure> displays the centents of the string on
the ODT. The maximum length of the display string is 255 bytes.

The <display procedure> 1s a Burroughs extension to ANSI Pascal.
<display procedure> syntax:
———— DISPLAY -- [__T__ <string constant> ——T————)] mm e -
4-— <string variahble> —-4
Odd Functian
The <oadd function> returns, as a Boolean value, a result
indicating whether or not the value of the <integer expression>

is odd. The function returns true if the value is odd and false
if it is even.

Form 1152048 6-37 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<odd function> syntax:

-——— 0DD —- [—-- <integer expressiony ——-) ————mmmmm e
Example:

var b : Boolean;

begin

b := odd(79 mod 27),;

end;

PRED Function

The <pred function> returns the predecessor of the

<ordinal expression>; that is, a value whose ordinal number is
one less than that of the <ordinal expression>. If the
<ordinal expression> has no predecessor value, an error occurs.

The function returns a result of the same type as the
<ordinal expression>.

<pred function> syntax:

———— PRED -- [-- <ordinal expression) ——) ——————mmmmmm e
Examples:

type color = (red, yetlow, btue, green, tartan],

var swatch : color;

i : integer,;

begin

swatch = pred(blue);

i = pred(7);

end;

The first example assigns yellow to the variable swatch.

The second example assigns 6 to the variahle i

Runtime Function
The <runtime function> returns, as a real value (units:
secands), the processor time that has been charged to the
program. ’
The <runtime function» is a Burroughs extension to ANSI Pascal.

<runtime function> syntax:

et RUNTIME s o s e e e e e e e

Form 1152048 6-38 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SUCC Function

The <succ function> returns the value of the successor of the
cordinal expression>,; that is, the value whose ordinal numbher is
one greater than that of the <ordinal expression>. If the
<ordinal expression> does not have a successar value, an error
pCccurs.

The function returns a value of the same type as the
<ordinal expression>.

<succ function> syntax:

—-——— SUCC -- [=-ordinal expressiony> —-- J =———emmmmmmmm -
Examples:
type color = (red, yellow, blue, green, tartan),

var wool dye : color;
alpha : char;

begin

wool dye := succ(blue];
alpha = succ(’y);
end;

The first example assigns green to the variable wool dye.

The second example assigns “2° to the variable alpha.

Time Procedure
<time procedure> syntax:
—-——- TIME -- { -- <hours» -- , -- <minutes> -- , -- <seconds> -- } —-—-
<hours> syntax:
———— cvariabley ——————— e ——————_———— e ————————— e -
<minutes> syntax:
——=— (varigbley —————m e —————————————————————
<seconds> syntax:
—-——— ¢variabley) —-=-————— - e e —————————
The <time procedure> returns the current time of day (based an a
24-hour clock]} in the parameters <hours>, <minutes>, and

<seconds> . The values returned are of <integer type> and within
the following ranges:

Form 1152048 6-39 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

parameter range
<hours> 0..23
<minutes> 0..588
<seconds> 0..59

The «<time procedure>

Example:
var hours integer,;
minutes integer;
seconds 0..59;
hegin
time (hours, minutes, seconds]);
end;
The hour is placed in the variable hours,

past the hour
of seconds

Form 1152048

is placed
into the minute

is placed

is a Burroughs extension to ANSI Pascal.

the number of minutes
in the variable minutes,
in the variable seconds.

and the number

File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 7
VARIABLES

A <variable> is a declared item that, unlike a constant, can be
assigned a value during the execution of the program. Every
<variable> has an associated type that determines the values that
may be assigned. Another characteristic of a8 <variable> is its
“access."” This refers to the method by which it is identified
when its value is to he referenced or changed.

This section has three parts: VARIABLES BY ACCESS, VARIABLES BY
TYPE, and UNDEFINED VARIABLES. Variables of specific types, such
as <array variable>s and <Boolean variable>s, are described in
the Variables by Type portion of this section.

VARIABLES BY ACCESS

The access characteristic is basically independent of the type of
the variable. In general, the access characteristic depends on
whether or not the variable is a component of a structured
variabie and, if so, on the type of the structured variable of
which it is a component. For the variahbles described in the
following paragraphs (entire, indexed, dynamic, and buffer
variabltes, and field designators), the possible access
characteristics are defined.

<variable> syntax:

—-——T—— <entire variable> ———T ——
%—— <indexed variable> ——%
%—— <field designator> ——%
t—— <dynamic variahle> ——f
;—— <buffer variable> ———;

Entire Variables

An <entire variable> is @ <variable identifier> that was declared
in a «<variable identifier lList> in a group of

<variahle declarations> or was defined as a formal parameter. An
<entire variable> can bhe accessed simply by its name.

<entire variable> syntax:

—--—- <¢variable identifier> —=——-emmmmmm

Form 1152048 7-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Example:

var x :real;
str : packed array [1..5]) of char;

X and str are <entire variable»s; str[1], str[2], str[3],
str(4}, and str[5] are not <entire variable>s.

Indexed Variables

An <¢indexed variahle> denotes a variable that is a component of
an array. In order to access an <indexed array variable>, the
carray variable> of which it is a component must be identified
and the location of the variahle within that array must be
specified by providing an <index expression> for each dimension
of the array. The value of each <index expression> must be
assignment compatible with the <index type> of the array
dimension it specifies.

cindexed variable> syntax:
—-——- <indexed array variable> ———=-rmo o ———————

<indexed array variable> syntax:

Flmmmmmmm e | e +
! !

———— <¢array variable> —-- [—-—-+-- <¢index expression) —-—-+--] ——eew———ao
<index expression> syntax:

———— <ordinal expressiony - ————— e —
Examples:

var x : array {char] of char;
a : array [Boolean] of 1..10;

a[false], x["a"], and x[{"4”"] are
<indexed variable>s.

Field Designators

A «field designator> is a <variable> that denotes a

<fietd identifier> in a <record variabhle>. The «<record variable>
of which the field is a component must be specified unless the
<field identifier> appears in a <with statementy that designates
the appropriate <record variable>.

Form 1152048 7-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

«field designator> syntax:

e o +-- «<field identifier> —————-—c—meee--

! !
+—— <record variable» -- . —--+

It is an error to change the active <variant> of a record while a
«<field designator> within the currently active <variant> is being
referenced in any of the following ways:

(1) as the «record variahle> of a «<with statement>,

(2) as an actual variable parameter in an
<actual parameter list>, or

(3) as the left-hand side of an <assignment statement>.
For additional information, refer to Actual Parameter Lists and

Parameter Matching in section 3, and Assignment Statements and
With Statements in section 4.

Exampie:
var r1, r2 : recaord
i : integer;
b . Boolean;
end;

R1.4i, r1.b, r2.1, and r2.b are <field designataor>s.

Dynamic Variables

A <dynamic variable> is a «variable> accessed through a

<pointer variable> declared as a pointer to the type of the
<variable>. In order for a variable to be a <dynamic variable>,
it must have been allocated dynamically, through the

<new procedure>.

<dynamic variable> syntax:

—-——— <pointer variable) - - @ - —————-—-————————————————————————

An error occurs if the <pointer variable> is NIL, is undefined,
contains a mark value, or references a dynamic variable that has
been deallocated through the use of the «<release procedure>.

{See Mark Procedure and Release Procedure in sectian 6.) It is an
error to “release" a dynamic variable while it is being
referenced in any of the following ways:

Form 1152048 7-3 File NOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

(] as the «<record variable> of a <with statement>,

(2) as an actual variable parameter in an
<cactual parameter list>, ar

(3) as the left-hand side of an <assignment statement)>.
Refer to Actual Parameter Lists and Parameter Matching in sectiaon

3, Assignment Statements and With Statements in section 4, and
Dynamic Allocation Procedures in section 8.

Example:
type ptr = @node;
node = record
name : packed array [1..20) of char;
next : ptr;
end;
var pl, p2 : ptr;
perscn : node,
bhegin
nevw(pl);
p1@.name := “Robert Smith”;
pi@.next := nil;
person := pl1@,;
end;

P1 is a pointer to a dynamically allocated record of type node.
P1@ is a record of type node and is assignment compatible with
person.

Bufffer Variables

A <buffer variable> is automatically associated with each
declared <file variable> and <textfile variable>. The

<buffer variable> for a file or textfile is the means by which
the file component associated with the current file pasition can
be examined or modified. The type of the <buffer variable> is
the <component type> of the file. For textfiles, the

<buffer variable> is of type char.

<buffer variable> syntax:

————+-- file variabley —--————- e @l —m—

! !
+-— <textfile variahle> --+

It is an error to atter the position of a file while the buffer
variabhle is in use in one of the following ways:

Form 1152048 7-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

{1) As the «<record variable> of a <with statement>,

(2) as an actual variable parameter in an
i <actual parameter list>, or

{(3) as the left-hand side of an ¢assignment statement>.
Refer to Actual Parameter Lists and Parameter Matching in sectiaon
3, and Assignment Statements and With Statements in section 4 faor
additional information.
Example:
var myfile : file of integer;
inx . integer,
begin
rewrite{myfile],
myfile@ = 3;
put(myfile);
reset(myfile]);
inx = myfile@,;
end,
The type of <buffer variable> myfile@ is the same as the
component type of the file. Therefore, in this example, myfile@
may be used as a variable of type integer.
VARIABLES BY TYPE

Following are definitions of the variable types.

Array Variable

A <variahble> declared of an <array type>.

Boaolean Variable

A <variable> declared of the <Boolean type> or of a <subrange
type> whose host type is the <Boolean type>.

Char Variable

A <variable> declared of the <char type> or of a8 <subrange type>
whose host type is the <char type>.

Form 1152048 7-5 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Enumerated Variahle

A <variable> declared of an <enumerated type> or of a
<subrange type> whose host type is an <enumerated type>.

File Variable

An <entire variahle> declared of a <file type>.

Integer Variahle

A <variable> declared of the <integer type> or of a
<subrange type> whose host type is the <integer type>.

Pointer Variabhle

A <variable> declared of a <pointer type>.

Real Variable

A <variable> declared of the <real type>.

Record Variable

A ¢<variable> declared of a <record type>.

Set Variabte

A <«<variable> declared of a <set type>.

String Variahle

A <variable> declared of a <string type>.

Textfile Variable

An <¢entire variable> of the <textfile type>.

UNDEFINED VARIABLES

An undefined variable is a variable whose value is invalid for
some reasan and therefore must not be examined. For example,
when a block is entered at run time, all variables declared
within that block are allocated as undefined variables. The use
of any undefined variable in an expression is an erraor.

Form 1152048 7-6 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

An undefined variable becomes defined when it is assigned a valid
value, for example, when it appears as the teft-hand side of an
<assignment statement> or as an actual variable parameter to a
procedure or function that will assign it a value (such as the
read procedure).

Example:
var i : intepger,;
j : integer,;
begin
j o= iy { ERROR -~ the value of 1 is undefined. }
end;
Form 1152048 7-7 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 8
BASIC COMPONENTS

The basic components defined in this section are syntactic items
that appear in the syntax diagrams 1in previous sections of the
manual. These components are both simple and widely distributed
throught the text. For this reason, they are not explained in
place in the text but are explained ancein this section. The
components include characters, identifiers, and numbers.

Section 9, Interpretation of Program Text, describes a different
set of basic components -- those that relate to the
representation of the program and the compiler’s interpretation
of it. Those items include reserved words, comments,
context-sensitive identifiers, and special symhols (and their
notational synonyms, if any).

A special convention for the railroad syntax notatien is used in
this section. The basic components described here must not
contain emhedded blanks, comments, or record boundaries, even
though the standard interpretation of railroad diagrams permits
those token separators hetween any two distinct items in a
diagram. Of course, blanks are allowed as <character>s within a
<character string>, but they are significant in that context and
are not treated as token separators.

CHARACTERS AND CHARACTER STRINGS

A <character string> represents a constant of the <string type>,
and a <character literal> represents a constant of the

<char type>. A single apostrophe () character contained within
a <character string> ar <character literal> is represented by two
successive apostrophes. For example, "7°A°77 is a

<character string>» containing the three characters “A’
(apostrophe, A, apostrophe). A «<character string> that caontains
no values (“7) is a null string.

<character string> syntax:

F e ————t
! !
R et T L it Fo—tmm T e
! !
+-— <non-apostrophe character> ——+
]]
o T e - +
Form 1152048 8-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<character literal> syntax:

.

—-——— —-—+4+—— xnon-apastrophe character> ——-+-- ———mm e e

<non-apostrophe character> definition:
Any <character> except the apostrophe (7))
<character> definition:
Any one of the characters in the standard character set. The
standard character set is EBCDIC.
IDENTIFIERS

Identifiers may be of any length greater than O, subject to the
constraint that an identifier may not be split across source

records. All characters, including underscores, are significant
in distinguishing identifiers. An <identifier> must not have the
same spelling as a <reserved word>. (Refer to section 9,

Interpretation of Program Text.)

Allowing underscores in identifiers is a Burroughs extension to
ANSI Pascal.

<identifier> syntax:

e e +
1 |
———— <lettery ——4-——4-————m————————— o e e e
! !
+-— <digit> —--—+
! |
+-—- <letter> --+
]]
+o= e +

<letter> definition:

Any one of the tetters A through Z or a through z. The
lower-case characters (a through z) are synonymous with the
upper-case characters (A through 2).

<digit> definition:

Any one of the decimal numbers O through 9.

Form 1152048 8-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:
Index MESSAGE COUNT itemua { Three valid identifiers }
BEGIN { INVALTD -- reserved word }
17786 { INVALID -- doesn’t start with a letter }
we form { INVALID -- embedded blanks not allowed }
NUMBERS
A <number> is an integer or real value optionally preceded by a
sign. If no sign is specified, + is assumed. Numbers are
symmetrical around zero; that is, any magnitude that can be

represented as a positive value can also be represented as a
negative value, and vice versa.

The type of a <number> is determined by its format. A simple
string of one or more digits is an <unsigned integer>. The
largest <unsigned nteger> can be referred to by the predefined
<integer constant identifier> maxint.

A number that includes a fractional part or an <exponent party is
an <unsigned real> number. Up to seven significant digits of
precision are maintained.

In the <exponent part>, the letter E introduces a decimal
gxponent. {E has the meaning "times 10 to the power of".) The
exponent can range from -47 to +68. The routines that print raal
numbers print a maximum of six significant digits. This is dane
so that the last digit can be guaranteed to be accurate.

<numbher> syntax:

——— et +—— <unsigned NUMBEr> —————mm e e e e e
I 1
+-—- + ——+
1 1
+-= - ——%

cunsigned numbery syntax:

————4=~ <unsigned iNtBHErY> ——tmem e
! !
+-- <unsigned real> —-———- +

cunsigned integer> syntax:

Form 1152048 8-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<unsigned real> syntax:

e + (= +
! ! ! !
———=4-= digit> ——4——4—-= . ——F—— OiQIL> —mdom s Fo———
! ! !
! +—— <exponent part> -—+
| !
+—— <<BXponent party)——————————m +
<exponent part> syntax:
e +
! !
————t—= E =t +——t——==/3\==—= «digity ——4-——m———————— — ———— -
1 1 1 I
+—-— B ——=+ +== 4 ==
1 1
+-= - ——%
Examples:
123 -1000 +2 0 { integers }
0.0 -23.45 24567 .4e-20 9E15 { reals }

FILE ATTRIBUTES AND MNEMONIC VALUES

File attributes and values are system-defined identifiers
describing characteristics of files.

Certain file attributes either may require or atlow parameters in
order to further qualify the property of the file that is to be

modified or queried. In order to access such attributes, an
cattribute paramente list> may hbhe used in the
<setattribute procedure>. If an <attribute parameter List> is

used, it must immediately follow the name of the attribute to be
accessed.

Attributes:

<Boolean-valued file attribute>
<event-valued file attribute>
<integer-valued file attribute>
<mnemonic-valued file attribute>
<string-valued file attribute>
<real-valued file attribute>
<mnemonic value>

Form 1152048 8-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<attribute parameter list> syntax:

—-——— [<integer expressiony ——t-—mmmm e +-=} --
! !
+—— , —-— <integer expression> —-—+

Example:

type t = packed array [1..80] of char;
var f : file of t;
i : integer;
hegin
i =1,
setattribute(f, TITLE, "TAPE1"];
end.
Form 1152048 8-5 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 8
INTERPRETATION OF PROGRAM TEXT

The Pascal program to be compiled is presented to the compiler as
one or more files in a particular format. The merging of
multiplte files, and the files themselves, are described in
appendix A. This section describes haow the compiler interprets
its input during the compilation process.

For purposes of this discussion, the program input file can he
considered a8 sequence of records (from whatever source) that the
campiler reads during compilation. Each record includes the
following fields:

Columns Contents
1-72 «<program text> and <compiler control record>s
73-80 sequence number (optional)
81-90 mark information (optional)

Records containing a dollar sign ($) in column 1 are

<compiler control record>s, which are not part of the Pascal
program; they are described in appendix A. Records that do not
contain a dollar sign ($) in column 1 are assumed to contain
<program text>», that 1s, the Pascal program to be compiled.
Optionally, there can be sequence information in columns 73-80
{refer to the SEQUENCE compiler control option) and mark
information in columns 81-80. These fields are not discussed
further here.

PROGRAM TEXT
The Pascal <program text> can be considered a continuous stream
of <token>s, all of which may be, and some of which must be,

separated by <token separatorys.

<program text» syntax:

+<-- <token separator> -—----- +

| |

B e halai bt +

] |
———=t—= (LOKEN) —————m—m—m e e e e
Form 1152048) g-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

TOKEN

A token is a sequence of characters in the program text that the
compiler recognizes as a syntactic unit. Every pair of tokens
must be separated hy a <token separatur> unless one token in the
pair is a «<special token>.

ctoken> syntax:

————+4-— reserved worgy ————————————m———— e

] !
‘;”" <predefined identifiers ————mm——m T
T~— <context-sensitive identifier> ——f
$m— <idENtifiBr> —mmm oo mmmmmmme e %
I

T~— <number> ———————————-————-—-————Jf
f—— <character stringy —-———-————————- f
T—— <character literaly> —————mmmmaeeo %
%—— <special tokeny) —-—————rm———mm——u ;

RESERVED WORD
<Reserved word>s are language keywords that cannot be redefined
by the programmer. In general, these are words the compiler uses
to recognize declarations, statements, and operators.

<reserved word> list:

AND DIV FUNCTION NIL PROGRAM UKNTIL
ARRAY DO GOTO NOT RECORD VAR
BEGIN DOWNTO IF OF REPEAT WHILE
CAND ELSE IN OR SET WITH
CASE END LABEL OTHERWISE THEN)
CONST FILE LIBRARY PACKED TO

COR FOR MOD PROCEDURE TYPE

PREDEFINED IDENTIFIER

<Predefined identifier>s are <identifier>s that have a predefined
meaning in Pascal. As with user-defined <identifier>s,
<predefined identifier>s may be redefined, but the former
definition becomes unavailable within the scope of the
redefinition.

Form 1152048 9-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL

<predefined identifier> list

abort exp
abs false
accept get
arctan input
Boolean integer
char length
chr Ln
close log
cos mark
date maxint
display new
eof odd
ealn ord

TOKEN SEPARATOR

LANGUAGE MANUAL

putput setattribute
page sin
pred sqr

put sOrt
read succ
readln tan
real text
release time
reset true
rewrite trunc
round write
runtime writeln
seek

<Token separator>s are required

as delimiters for alphanumeric

tokens, to separate tokens so that the compiler will interpret
them propertly. However, this function is incidental faor
<comment>s,; their purpose is to atlow the programmer to
interleave descriptive text with the program text.

<token separator> syntax:

————+4--= <blank> -———————m-- e e
! !
+—— <COMMENL)—————————— +
!]
+-— «<record boundry> —--—+

BLANK

Bianks can be used freely throughout the program text to improve
readability and to separate tokens that must be separated so that
the compiler will interpret them properly.

<blank> definition:

One or more blank characters.

COMMENT)
Comments are used to include documentation in a program. A
<comment> may appear anywhere that a <blank> can appear; a
<comment> may not appear in a <«character string> or in another
<comment>. Comments may contain any <character>s except the
delimiting characters } and *].

Form 1152048 9-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Compiler control records that appear between the record
cantaining the beginning of a comment and the record containing
the end of that comment are processed as normal compiler control
records; they are not treated as part of the comment.

<ccomment> syntax:

B e ettt et B +
! !
——==4== { ————+—-—+—— <charactery ——+-- } 4o
! ! ! !
== " -4 +—= *) ——4

Examples

{ This is a comment. }

(* This comment uses the two-character synonyms for braces. *)

RECORD BOUNDARY

The <record boundary> acts as an implicit token saparator. Thus,
a token cannot be split at the column 72 houndary of one record
and then be continued heginning in column 1 of the next record,
The compiler interprets a split item as two separate items.

<record boundary> definition:

A theoretical boundary hetween column 72 of one record and column
1 of the next record. .

Form 1152048 9-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

APPENDIX A
COMPILING, EXECUTING, AND ANALYZING A PASCAL PROGRAM

The input file to the B 1000 Pascal compiler is a standard data
file created by any of the various editors. Only the first 72
characters of each record are significant. Seguence numbers may
appear in positions 73 through 80. These are not used by the
compiler but are printed on the listing. Any patch information
that may be present in conlumns 81-80 also appears an the listing.

The Pascal code may be entered in free format, but the general
rules for formatting, as illustrated in any Pascal textbook,
should be followed to create readahle source programs.

COMPILER OPTIONS

Certain aspects of the compilation of a Pascal program may be
cantrolled by directives to the compiler in the form of compiler
control images (CCIs).

The CCI enables a user to control ocptions that are provided in
the Pascal compiler. Each option falls into one of the following
six categories: -

Source language inputs

Source ltanguage output
Optiaonal compilation mechanism
Printed outputs

Compiler diagnostic messages
Compiler debugging

A CCI contains compiler control statements comprised of options
or groups of options and any associated parameters. CCIs are
totally distinct from the Pascalt language, although they are
typically interspersed with program source lines. CCI syntax
differs from Pascal source syntax. Also, the following
conventiaons differ between Pascal source text and CCIl text.

1. CCIs may not contain comments.

2. Only upper-case letters may be used in CCIs, except within
character strings.

3. Character strings (for example, in file titles) are
delimited by double quotation marks (")}, not apostrophes
(7.

Form 1152048 A-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Because a CCI is not part of the Pascal language, a Pascal
comment cannot occlude a CCI. Any source image with a dollar
sign [($)} in column 1 is processed as a GCCI by the Pascal
caompiler, even if a Pascal comment begins before and ends after
the CCI.

CCI Syntax Diagrams

The syntax diagrams for CCIs are shown next. Options that are
altowed within a Pascal source are listed in the paragraphs that
follow under the headings Boolean Options, Value Options, and
Immediate Options. Except as noted, the syntax and semantics of
these options are as specified by the CCI Standard.

NOTE

The CCI Standard is a Burroughs document.
The full title is Burroughs Corporation CSG
Standard for Compiler Control Images.

CCI Syntax:
______ B e ———— e o e
] I ! !
R] | (oo e e e o e em I !
b ! !
e <Boolean-optiony ———e—— !
! [
l-— <value-optiony —————- !
! !
l—— <¢immediate—-agption> —--!
S e e e e e e e e e e e e e e et e
! !
! e - ! !
! ! ! !
! ! B et et ! ! !
! ! ! ! ! !
b — SET —————- <Boolean-option-settingy -——~———————- !
! ! ! !
! t—— ¢value-option) ————emeca-—- ! !
! ! ! !
! l—— ¢<immediate-optiony —————— ! !
| |
! R ettt LT ! !
! ! ! !
l—— RESET--!-- <Boolean-optiony ——=le———m—eemeea_ |
! !
l—— POP ——-1
Form 1152048 A-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<Boolean-optieon> syntax:

—————— <user-specified Boolean cption identifier> —-————————————--——
l-— <one of the predefined Boolean options described below> «—i

<value-optiony» syntax:

—————— <one of the value options described below) ——————-remmmmmmmea—

<immediate-option> syntax:

—————— <one of the immediate options described below) —————————

<Bootean-option—-setting> syntax:

———— «<Boolean+option) —————m e -

i——— = -- <Boolean-option-expression> —--—-1|
<Boolean-option—-expression> syntax:

—————— KOPLiON-—CBIM) == e e e e e e e e e e e e e e e

@——;- OR —-- <option—-term> ————i
coption-term> syntax:
—————— <OpLtioN~fBCLORY =—mme e e -
. | |
B g | |
oo o
l——~—- AND -- <optian-factor> ----1|
<coption-factor> syntax:
——————— (-- <Boolean-option-gxpressiony ——) ~eeemcemm e
! !
[NOT -- «<option-factor> ————————————- !
1 i
e <Boolean-option> —==—-——mmmmm—m !
] i
R TRUE - - - - !
| 1
e FALSE ———————mmmm !
Form 1152048 A-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

NOTE

$ must be in cotlumn 1 or %% in columns 1 and
2 of a CCI. The listing af a CCI with $$ is
controlled by LIST and LISTINCL, not by
LISTDOLLAR. User options are implicity
declared by their first use, which may not be
in a Boolean-option-expression. The usual
precedence of Boolean operators (NOT, AND,
OR) is used.

Boolean Options
The following Boolean options are defined in the CCI Standard

ANSI
Default = FALSE. The ANSI option tauses any extensions ta
the ANSI Pascal Reference Standard to be treated as erraors.
Enabling this aption currently has no effect.

CODE
Default = FALSE. The CODE gption causes the campiler to
produce a listing of the object code produced by the
campilation process.

LINEINFO
Default = FALSE. The LINEINFO optien causes the compiler to
gyenerate operators to determine the source line number in
case of abnormal termination. If the option is not enabled,
the line number of the beginning of the active procedure is
determined instead.

LIST
Default = TRUE. The LIST option causes the compiler to
include in the listing the source derived from the CARD
file.

LISTDOLLAR
Default = FALSE. The LISTDOLLAR option causes the compiler
to include in the listing all CCls (single $) encountered
during the compilation. LIST must alsao be TRUE.

LISTINCL
Default = FALSE. The LISTINCL option causes the compiler to
include in the listing that part of the source which was
accepted for compilation as a result of the enabling of the
INCLUDE pption. LIST must also be TRUE.

MAP
Default = FALSE. The function normally associated with this
option is to produce an output listing with information
cross referencing line numbers to obhject code addresses.
However, this function is not needed because the Pascatl

Form 1152048 A-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

compiler error message and the analyzer program output
reference source tLine numbhers rather than code addresses.
The MAP option in this compiler is actually equivalent to
the CODE option.

NOBOUNDS
Default = FALSE. The NOBOUNDS option causes the compiler to
forego generating operators to check for suvhrange variables
going out of range assignments.

NOTAGFIELD
Default = FALSE. VARIANT causes the compiler te forego
generating operators to check tag values aon accesses to
fields of tagged record variants.

OMIT
Default = FALSE. The OMIT option causes all saurce language
images to be ignored for the purpose of caompilation until it
is disabled. Any source language images encountered while
this option is enabled are processed in the normal manner.
A tower-case letter o is printed on the listing just before
the seguence number field for all records that are omitted.

XREF
Default = FALSE. The XREF option produces a listing of the
line number where each identifier is referenced. The XREF
option may be SET and RESET to cross reference various
portions of a program.

NOTE

The cross reference option currently uses a
memory sort. If a program with a large
number of identifiers is being cross
referenced, then the compile will require
more memory than when cross referencing is
not being done. The code file is closed
hefore the cross reference is started so that
the code file is saved even if the cross
reference routines run out of memory.

Value Options

The following value options are defined in the CCI Standard.

ERRORLIMIT
Default value = 100. Causes compiltation to terminate when
the number of errors detected by the compiler equals or
gxceeds the integer value specified.

Form 1152048 A-5 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

ERRORLIMIT Syntax:
~—=— ERRORLIMIT -----m = —mmmmem e 100 —————— e ———
i——— <integer>———i

STRINGS
Default = EBCDIC. Input to the compiler is assumed to be in
EBCDIC. If this option is set to ASCII, all character and
string literals generated to the code file are translated
from EBCDIC to ASCII. No translation occurs with the option
set to EBCDIC.

STRINGS Syntax:
———= STRINBS —=——————— = mmmmee o EBCOIT ————mmmmmmmm e
l——— ASCII —--|

Immediate Options
The following immediate options are defined in the CCI Standard.

CLEAR
This option causes the caompiler to disable (set false) the
following Boolean options: ANSI, CODE, LIST, LISTDOLLAR,
LISTINCL, OMIT, XREF.

PAGE
This option causes the compiler to eject a page aon the
gutput listing if the appropriate list options are set.

INCLUDE
This option causes the compiler to suspend reading input
from the CARD file and to begin reading input from the file
specified by the parameter. An INCLUDE CCI may not appear
in the included file. The file-title is specified using the
ON syntax; that is, Y/Z ON X means file X/Z on pack X. 'No
other option may foltow the INCLUDE on the same input image.
If file-title has a guotation mark ("} within it, it must be
represented by two guotation marks (""). A lower-case
letter i is printed on the listing just before the sequence
number field for all records that are included.

INCLUDE Syntax:

—~—=— INCLUDE ~—= " ——— <file-title> —== " —;mmm e = !

Form 1152048 A-6 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

COMPILING AND EXECUTING A PASCAL PROGRAM

The Pascal compiler, PASCAL, is itself a Pascal program. It has
three external files:

1. CARD, the program source text, modified to be DISK.
2. LINE, the program listing, modified to PRINTER BACKUP.
3. CODE, the B 1000 code file.

The compiler is run by using the MCP COMPILE command, usually
with file statements to name its external files and possibly a
static memory (MS) specification for a large compilatian.
Standard memory size is 500,000 bits. The LIBRARY and SYNTAX
options of the COMPILE command both have the same effect of
compiling to LIBRARY.

The compiler automatically segments the object code. A caode
segment is filled with at least 1500 bytes of code. At the end
of the procedure in which the code segment was filled to 1500
bytes, a8 segment is started for the next procedure. Procedures
are never broken across segments, hut several procedures may he
placed into one segment.

The file CODE is saved unless the program being compited has
syntax errors. The saved file is locked into the directory with
the name that was assigned in the COMPILE command

Example:

COMPILE PROG WITH PASCAL TO LIBRARY,
FILE CARD NAME = SOURCE/PROG;
FILE LINE NAME = LIST/PROG USER.BACKUP . NAME;

Compile-Time Errors

Each error detected at compile time is printed on the listing
following the line in error, with a special character that points
to the token that was being scanned when the error was detected.
In some instances, the symbol being pointed to follows the actual
error point, because the compiler parsed ahead before the error
was evident to it.

Run-Time Errors

Errors detected at run time are reported by means of the MCP DS
OR DP message. A standard run-time error message contains a
segment numher and displacement, usually of the program’s next
instruction pointer. In the case of Pascal, however, the segment
numher is always zero and the displtacement value is the source
line number at which the program failed.

Form 1152048 A-7 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Example:

TEST = 1631 —— VALUE OUT OF RANGE: S=0, D=13 (@000@,@0000D@); DS OR DP

In this example, TEST =1631 is the job name and number supplied
hy the MCP, and D=13 shows that the error occurred on Line 13 of
the source listing.

Same standard routines such as the routine to read and write real
numbers are contained in a library fite (PASCAL/LIBRARY)}. When a
program uses any af the routines, the library is bound with the
code of the program. If an error occurs in a library routine,
the lLine number of the error is in the library rather than in the
invoking program. The hest way to determine the program ling
from which the tibrary routine was called is to run the
PASCAL/ANALYZER program on a dump of the program. The dump
analysis shows the appropriate line. The PASCAL/ANALYZER program
is described later in this appendix.

A run-time error may occur incorrectly when a program is close to
running out of memory. If an error seems gquestionable, try
running the program again with more memory.

Following is a list of all the run-time errors with notes on
possihle causes.

INDEX 0OUT OF RANGE
The value of the expression used to index an array i
putside the bounds of the array.

VALUE OUT OF RANGE
The value of the expression is outside the range of the -
variahle to which the expression is being assigned.

INTEGER OVERFLOW
The value the expression is greater that maxint or less than
—-maxint.

REAL OVERFLOW
The exponent part of the real-valued expression is greater
than the maximum exponent for real numbers.

INV PTR REFERENCE
A pointer which was pointing above the current top of the
heap was dereferenced. The item that the pointer is
pointing to has already been released.

DIVIDE BY ZERO
A division or modulo by zero was attempted.

Faorm 1152048 A-8 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

STACK LIMIT
The program has run out of memory while trying to allocate
space for locat variables. Run the program again with more
memory using the MCP MS command.

HEAP LIMIT
The program has run out of memory while trying to allocate
space for a dynamic variable. Run the program again with
more memory using the MCP MS command.

SET OUT OF RANGE
A member of the set expression is outside the range of the
set to which it is being assigned.

INVALID OPCODE
The interpreter attempted to execute an invalid operator.

INV STD ROUTINE
The compiler generated faulty code which resulted in an
attempt to call an invalid standard routine.

VARIANT ERROR
A field of a variant record was accessed and the value of
the tag field does not correspond to the variant part
containing this field.

NIL POINTER ERROR
A pointer with the value of NIL was dereferenced.

INVALID CASE
A CASE statement was executed but the value of the case
selector does not correspond to any case label and the case
statement has no OTHERWISE clause.

FILE AT EOF
A file operation was attempted but the end of the file was
encountered.

PROGRAM ABORT
The program was terminated by calling the ABORT procedure.

TEXT BUF OVERFLOW
Too many WRITE operations without a WRITELN procedure to
this textfile have been done. Either insert a WRITELN
procedure or increase the size of the buffer associated with
this textfile using the file attribute specification in the
program heading.

FILE NOT OPEN
A file operation was attempted on an unopen file.

Form 1152048 A-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

UNDEFINED POINTER
A pointer which has not bheen assigned any value has been
dereferenced.

FILE NOT AT EOF
A file operation was attempted but the file was not at end
of file.

INVALID CHAR READ
An invalid character was encountered during an attempt to
read an integer from a textfile.

FILE NOT CLOSED
A file operation was attempted which required the file to be
closed, but it is apen.

USING THE PASCAL/ANALYZER PROGRAM

when a run-time error occurs, the user has the option of getting
a dump file of the current state of the program.

The standard analyzer program (SYSTEM/IDA) can be used tao analyzse
dumps of Pascal programs, but it is not based on the internal
structure of the Pascal virtual machine and, thus, produces a
very general analysis. It is invoked with the MCP PM command,
with switch 1 set to 1, and analyzes standard program components
such as the run structure nucleus and file information hlocks.
Values of variables and the nesting of procedures are not shown.

The PASCAL/ANALYZER program is written specifically to analyze
dumps of Pascal programs and is based on the Pascal run-time
system. It contains two external files:

{bu DUMPFILE, the input dump file created by the MCP.

tbu LINE, the output listing file.

The PASCAL/ANALYZER program gives a detailed analysis of the
state of the program at the point at which the error occurred.

The output is organized as follows:

The program name and date and the name of the run-time error
appear at the top of the printout.

The values of all of the scratchpad registers are next.

Information for each file that was declared in the program
is given next.

Form 1152048 A-10 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Analysis of the stack appears next. Each activation record,
beginning with the most recent one, is analyzed. The
analysis of each activation record includes the local
variable, stack temporaries, and parameters. The name and
current value of each variable is included.

At the end, the contents of the heap are printed in
hexadecimal .

The PASCAL/ANALYZER program is executed as follows:

EX PASCAL/ANALYZER,

FILE DUMPFILE NAME DUMPFILE/124;

FILE LINE NAME PROG/DUMP USER.BACKUP.NAME
USING THE SYSTEM/IDA PROGRAM

The SYSTEM/IDA program (the standard analyzer) is executed as
follows:

PM 124; SW 1 = 1
DUMPFILE/124 is removed when the analysis is done. To retain the
dump, fite invoke the SYSTEM/IDA program with the following

command :

PM 124 SAVE; SW 1 = 1

Form 1152048 A-11 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

APPENDIX B

RATILROAD DIAGRAMS

Railroad diagrams graphically represent the syntax of software
commands .

The railroad diagrams are traversed left to right or in the
direction of the arrowhead. Adherence to the limits illustrated
by bridges produces a syntactically valid statement. ’
Caoantinuation from one line of a diagram to another is represented
by a right arrow (!'ra) appearing at the end of the current line
and the beginning of the next line. The complete syntax diagram
is terminated by a vertical bar (lvr]

Items contained in broken brackets (<>] are syntactic variables
that are defined in the manual or are information that the user
is required to supply.

Upper-case items not enclosed in broken brackets must appear
literally. Minimum abbreviations of upper-case items are
under!lined.

Example:
Te—/ 3\ mmmmm e , mm————— !
! !
-— A RAILROAD DIAGRAM CONSISTS OF ————- <bridgess————memmmm e
! !
l—<loopg>———————~—— !

I !
l-<optional items>~!
! !
l-¢<required items>-1

>— AND IS TERMINATED BY A VERTICAL BAR., — - = !

The foliowing syntactically valid statements can be constructed
from the preceding diagram:

A RATLROAD DIAGRAM CONSISTS OF <bridges> AND IS
TERMINATED BY A VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional items> AND IS
TERMINATED BY A VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <bridges>, <loops> AND
IS TERMINATED BY A VERTICAL BAR.

Farm 1152048 B-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

A BAILROAD DIAGRAM CONSISTS OF «<optional items>,
<required items>, <optional items>, <bridges>, <loops>»
AND IS TERMINATED BY A VERTICAL BAR.

REQUIRED ITEMS

No alternate path through the railroad diagram exists for
required items or required punctuation.

Example:
-- REQUIRED ITEM —— -

OPTIDONAL ITEMS
Items shown as a vertical list indicate that the user must make a

choice of the items specified. An empty path through the list
aliows the optional item to be absent.

Example:

-- REQUIRED ITEM - - -—— - -
l—-¢<optional item-1>-!
| 1

i—(uptlunat 1tem—2>—i
The following valid statements can be generated from the
preceding diagram:
REQUIRED ITEM
REQUIRED ITEM <optional item—1>
REQUIRED ITEM <optional item-2>

LOOPS
A loop is a recurrent path through a railroad diagram and has the
following general format:

l¢-~ «¢hridges> <return character>-!
! !
—-———<object of the loopy————————— e -

Form 1152048 B-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

—————— <cgptional item-1)—m—me e
i—(uptiunal item—2>—i
The following statements can be constructed from the railroad
diagram in the preceding example.
<optional item-1>
<optiaonal item-2>
<optional item-1> <optional item-1>
<gptional item~1>,<optional item-2>
cgptiaonal item-2>,coptional item-1>
<optional item-2>,<optional item-2>
A lopp must be traversed in the direction of the arrowheads, and
the limits specified hy bridges cannot be exceeded.
BRIDGES

A bridge iltustrates the minimum or maximum number of times a
path can be traversed in a railroad diagram,

There are two forms of bridges:

/n\ n is an integer that specifies the maximum number of times th
path may be traversed.

/n*\ n is an integer that specifies the maximum number of times t
path may be traversed. The asterisk (") indicates that the pa
must he traversed at least once.

Example:

—-;———<uptiunal item-1>—-——————; ——————————————————————————————————————
i—/2“\—<uptional item—E)—i
The loop may be traversed a maximum of two times, and the path

for <optional item-2»> must be traversed at least once but no more
than twice.

Form 1152048 B-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The following statements can bhe constructed from the preceding
diagram:

<optional item-1>,<optional item-2>
<optional item-2>,<optional item-2»>,<optional item-1>

<optional item-2>

Form 1152048 B-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

APPENDIX C
EBCDIC AND ASCII CHARACTER SETS

Tables C-1 and C-2 show the hexadecimal representation and
ordinal number for each EBCDIC and ASCII character. Table C-1 is
sorted by EBCDIC ordinal number and represents the
EBCDIC-to~ASCII translation that is performed when necessary.
Table C-2 is sorted by ASCII ordinal number and represents the
ASCII-to-EBCDIC translation that is performed when necessary.

NOTES

The graphic representations for the EBCDIC
hex codes 15, 5F, BA, 79, and A1 are hardware
dependent. Therefore, no EBCDIC graphic is
shown in table C-1 for those codes.

Similarly, the graphic representations for
the ASCII hex codes 21, 5E, 8C, and 7C are
hardware dependent. Therefore, no ASCII
graphic is shown in table C-2 for those
codes .

Form 1152048 c-1 . File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Table C-1. B 1000 Codes in EBCDIC Sequence
EBCDTIC A SC1 1 [(EBCDIC Graphic])
Hex Decimal Hex Decimal Graphic Meaning
00 1} 00 0 NUL Null
01 1 01 1 SOH Start of Heading
02 2 o2 2 STX Start of Text
03 3 03 3 ETX End of Text
04 4 9C 1586
05 5 08 9 HT Horizontal Tabulation
06 6 86 134
a7 7 7F 127 DEL Delete
08 8 97 151
09 9 8D 141
oA 10 8E 142
0]} 1 0B 11 vT Vertical Tabulation
oc 12 oc 12 FF Form Feed
oD 13 0D 13 CR Carriage Return
OE 14 0E 14 S0 Shift Out
OF 15 OF 15 S1 Shift In
10 16 10 16 DLE Data Link Escape
11 17 11 17 DC1 Device Control 1
12 18 12 18 DCc2 Device Control 2
13 19 13 19 DC3 Device Control 3
14 20 9D 157
15 21 85 133
16 22 o8 8 BS Backspace
17 23 87 135
18 24 18 24 CAN Cancel
19 25 19 25 EM End of Medium
1A 26 g2 146
1B 27 8F 143
1C 28 1C 28 FS File Separator
1D 29 1D 29 GS Group Separator
1E 30 1E 30 RS Record Separator
1F 31 1F 31 us Unit Separataor
20 32 80 128
21 33 81 129
22 34 82 130
23 35 83 131
24 36 84 132
25 37 0A 10 LF Line Feed
26 38 17 23 ETB End of Transmission Bloc
27 39 1B 27 ESC Escape
28 40 88 136
29 41 89 187
2A 42 8A 138
28 43 88 139
2C 44 8C 140
2D 45 05 5 ENG Enquiry
2E 48 (0] 5] 6 ACK Acknowledge
2F 47 07 7 BEL Bell
Form 1152048 c-2 File DOCUMENT/PASCAL

Burroughs

EBCDIC

Hex Decimal
30 48
31 49
3e 50
33 51
34 52
35 53
36 54
37 55
38 56
33 57
3A 58
3B 59
3C 60
30 61
3E 62
3F 63
40 64
41 65
42 66
43 67
44 68
45 B9
4B 70
47 71
48 72
49 73
4A 74
4B 75
4C 76
4D 77
4E 78
4F 79
50 80
51 81
52 82
53 83
54 84
55 85
56 86
57 87
58 88
59 89
5A 90
58 91
5C 92
5D 93
SE 94
5F 95

Farm 1152048

B 1000 PASCAL LANGUAGE MANUAL

Tahle C-1. (cantinued)
A SC1I 1 (EBCDIC Graphic)
Hex Decimal Graphic Meaning
90 144
91 145
16 22 SYN Synchronous Idle
93 147
94 148
95 1489
98 150
04 4 EOT End of Transmission
98 152
99 153
9A 154
98 155
14 20 DC4 Device Control 4
15 21 NAK Negative Acknowledge
9E 158
1A 26 SuB Substitute
20 32 SP Space
AOD 160
A1 161
A2 162
A3 163
A4 164
AB 165
AB 168
A7 167
A8 168
58 91 [Opening Bracket
2E 46 . Period
3C 60 < Less Than
28 40 { Opening Parenthesis
2B 43 + Plus
21 33 ! Exclamation Point
26 38 & Ampersand
AQ 169
AA 170
AB 171
AC 172
AD 173
AE 174
AF 175
BO 176
B1 177
5D 93] Closing Bracket
24 36 $ Dollar Sign
2A 42 # Asterisk
29 41] Closing Parenthesis
3B 59 ; Semicolan
5E 94
C-3 File DOCUMENT/PASCAL

Burroughs

Hex Decimal
60 98
61 97
62 98
63 99
64 100
65 101
66 102
67 103
68 104
69 105
BA 106
6B 107
6C 108
6D 108
B6E 110
6F 111
70 112
71 118
72 114
73 115
74 1186
75 117
76 118
77 119
78 120
79 121
7A 122
7B 123
7C 124
7D 125
7E 126
7F 127
80 128
81 129
82 130
83 131
84 132
85 138
B6 134
87 135
88 136
89 187
BA 138
8B 139
8c 140
8D 141
8E 142
8F 143

Form 1152048

B 1000 PASCAL LANGUAGE MANUAL

Table C-1. (continued)
A SC1I 11 (EBCDIC Graphic)

Hex Decimal Graphic Meaning

2D 45 - Hyphen (Minus)
2F 47 / Slant (Slash)
B2 178

B3 179

B4 180

BS 181

BB 182

B7 183

B8 184

B9 185

7C 124

2C 44 , Comma

25 37 % Percent

SF 95 Underscore

3E 62 > Greater Than
3F 63 ? Question Mark
BA 186

BB 187

BC 188

BD 189

BE 190

BF 191

co 192

C1 193

ce 194

40 96

3A 58 : Colaon

23 35 # Number Sign
60 64 @ Commercial At
27 39 ‘ Apostrophe, Closing Quot
3D 61 = Egual Sign

22 34 " Quotation Marks
C3 195

61 97 a Lower Case a
62 98 b Lower Case b
63 99 c Lower Case ¢
64 100 d Lower Case d
65 101] Lower Case e
BB 102 f Lower Case f
67 108 [s} Lower Case g
68 104 h Lower Case h
69 105 i Lower Case i
C4 196

C5 197

Ce 198

c7 199

Cc8 200

o] 201

c-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Table C-1. (continued)

EBCDTITC A SC 11 (EBCDIC Graphic)
Hex Decimal Hex Decimal Graphic Meaning
90 144 CA 202
91 145 BA 106 j Lower Case j
92 146 6B 107 k Lower Case k
93 147 6C 108 L Lower Case |
94 148 6D 108 m Lower Case m
95 149 BE 110 n Lower Case n
96 150 6F 111 1} Lower Case o
97 151 70 112 4} Lower Case p
98 152 71 113 q Lower Case g
99 153 72 114 r Lower Case r
A 154 ce 203
9B 155 CC 204
8c 156 CD 205
9D 157 CE 208
9E 158 CF 207
gF 159 DO 208
AQ 160 D1 209
A1 161 7E 126
A2 162 73 1156] Lower Case s
A3 163 74 116 t Lower Case ¢t
A4 164 75 117 u Lower Case u
A5 165 76 118 v Lower Case v
AB 1686 77 119 W Lower Case w
A7 167 78 120 X Lower Case x
AB 168 78 121 y Lower Case y
A9 169 7A 122 2z Lower Case 2
AA 170 D2 210
AB 171 D3 211
AC 172 D4 212
AD 173 D5 213
AE 174 D6 214
AF 175 D7 215
BO 176 D8 218
B1 177 D9 217
B2 178 DA 218
B3 179 DB 219
B4 180 DC 220
BS 181 DD 221
BG6 182 DE 222
B7 183 DF 2283
B8 184 EO 224
B9 185 E1 225
BA 186 E2 226
BB 187 E3 227
BC 188 E4 228
BD 189 ES 229
BE 180 EB 230
BF 191 E7 231
Form 1152048 c-5 File DOCUMENT/PASCAL

Burroughs

EBCDTIC

Hex Decimal
co 182
C1 1983
ce 194
C3 195
C4 196
C5 197
Cob 198
c7 199
o] 200
CS 201
CA 202
cB 203
cC 204
cD 205
CE 208
CF 207
DO 208
D1 209
D2 210
D3 211
D4 212
D5 213
D8 214
D7 215
D8 216
DS 217
DA 218
DB 219
DC 220
DD 221
DE 222
DF 223
EO 224
E1 225
E2 228
E3 227
E4 228
ES 229
EB 230
E7 231
ES8 232
E9 233
EA 234
EB 235
EC 236
ED 237
EE 238
EF 238

Form 1152048

B 1000 PASCAL LANGUAGE MANUAL

Tabie C-1. (continued)

ASC I 1 (EBCDIC Graphic)

Hex Decimal Graphic Meaning
7B 123 { Opening Brace
41 65 A Upper Case A
42 66 B Upper Case B
43 67 C Upper Case C
44 68 D Upper Case D
45 69 E Upper Case E
46 70 F Upper Case F
47 71 G Upper Case G
48 72 H Upper Case H
49 73 I Upper Case I
EB 232
ES 233
EA 234
EB 235
EC 236
ED 237
7D 125 } Closing Brace
4A 74 J Upper Case J
4B 75 K Upper Case K
4C 76 L Upper Case L
4D 77 M Upper Case M
4E 78 N Upper Case N
4F 79 0 Upper Case O
50 80 P Upper Case P
51 81 a Upper Case 0O
52 82 R Upper Case R
EE 238
EF 239
FO 240
F1 241
Fe 242
F3 243
5C 92 \ Reverse Siant
9F 1589
53 83 S Upper Case S
54 84 T Upper Case T
55 85 u Upper Case U
56 86 \ Upper Case V
57 B7 W Upper Case W
58 88 X Upper Case X
- 59 B89 Y Upper Case Y
5A 90 z Upper Case 2
F4 244
F5 245
FB 246
F7 247
F8 248
F9 249
C-6 File DOCUMENT/PASCAL

Burroughs

EBCDIC

Hex Decimal
FO 240
F1 241
F2 242
F3 243
Fa 244
F& 245
FB 246
F7 247
F8 248
F9 249
FA 250
FB 251
FC 252
FD 253
FE 254
FF 255

Form 1152048

B 1000 PASCAL LANGUAGE MANUAL

Table C-1. (continued)
A S C 11 (EBCDIC Graphic)

Hex Decimal Graphic Meaning
30 48 0 Zero

31 49 1 One

32 50 2 Twao

33 51 3 Three

34 52 4 Four

35 53 5 Five

36 54 6 Six

37 55 7 Seven

38 56 8 Eight

39 57 9 Nine

FA 250

FB 251

FC 252

FD 253

FE 254

FF 255

C-7 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Table C-2. B 1000 Codes in ASCII Sequence
ASCTITI EBCDTITC (ASCII Graphic)
Hex Decimal Hex Decimal Graphic Meaning
(a]s] 0 co 0 NUL Nutt
01 1 01 1 SOH Start of Heading
o2 2 g2 3 STX Start of Text
03 3 03 4 ETX End of Text
04 4 37 55 EQT End of Transmission
05 5 2D 45 ENG Engquiry
06 6 2E 46 ACK Acknowledge
07 7 2F 47 BEL Betl
08 8 16 22 BS Backspace
09 9 05 5 HT Horizontal Tabulation
GA 10 25 37 LF Line Feed
0B 1M1 0B 11 VT Vertical Tabulation
goc 12 oc 12 FF Form Feed
gD 138 €]8] 13 CR Carriage Return
0E 14 OE 14 S0 Shift Out
OF 15 OF 15 SI Shift In
10 16 10 16 DLE Data Link Escape
11 17 11 17 DC1 Device Contraol 1
12 18 12 18 pc2 Device Control 2
13 19 13 19 DC3 Device Controlt 3
14 20 3c 80 DC4 Device Controt 4
15 21 3D 61 NAK Negative Acknowledge
16 22 32 50 SYN Synchronous Idle
17 23 26 38 ETB End of Transmission Bloc
18 24 18 24 CAN Cancel
19 25 19 25 EM End of Medium
1A 26 3F 63 SUB Substitute
1B 27 27 39 ESC Escape
1C 28 1C 28 FS File Separator
1D 29 1D 29 GS Group Separatar
1E 30 1E 30 RS Record Separator
1F 31 1F 31 us Unit Separator
20 32 40 64 SP Space
21 33 4F 79
22 34 7F 127 " Quotation Marks
23 35 7B 123 # Number Sign
24 36 58 91 3 Dollar Sign
25 37 6C 108 % Percent
26 38 50 80 & Ampersand
27 39 7D 125 ’ Apostrophe, Single Quote
28 40 4D 77 (Opening Parenthesis
29 41 5D 93) Closing Parenthesis
2A 42 5C 92 * Asterisk
2B 43 4E 78 + Plus
2C 44 6B 107 Comma
2D 45 60 96 - Hyphen (Minus)
2E 46 4B 75 Period
2F 47 61 97 / Slant [(Stash)
Form 1152048 c-8 File DOCUMENT/PASCAL

Burroughs

ASCTI1II
Hex Decimal
30 48
31 49
32 50
33 51
34 52
35 53
36 54
37 55
38 586
39 57
3A 58
3B 59
3C 60
3D 61
3E 62
3F 63
40 B4
41 65
42 66
43 B7
44 68
45 69
48 70
47 71
48 72
49 73
4A 74
4B 75
4C 76
4D 77
4E 78
4F 79
50 80
51 81
52 82
53 83
54 B4
55 85
56 86
57 87
58 88
59 849
5A g0
5B 91
5C 92
5D 93
5E 94
5F 95

Form 1152048

B 1000 PASCAL LANGUAGE MANUAL

Table C-2. (conti

EBCDTIGC

nued])

(ASCI

I Graphic)

Hex Decimal
FO 240
F1 241
F2 242
F3 243
Faq 244
F5 245
F6 248
F7 247
F8 248
Fg 248
7A 122
5E 94
4C 76
7E 126
BE 110
6F 111
7C 124
C1 193
c2 194
C3 195
C4 196
Ch 197
Cs 198
c7 199
cs8 200
C9 201
D1 208
D2 210
D3 211
D4 212
D5 213
o]} 214
D7 215
D8 216
D9 217
E2 2286
E3 227
E4 228
ES 229
EB 230
E7 231
E8 232
E9 233
4A 74
EOQ 224
5A 90
5F 95
6D 109

c-9

QoNOOOpA~WO -0

— e N X E<CANITOUTVOZIrXea=IOTMmMmOOW@>>E I I A-- -

Semicolaon
Less Than
Equals
Greater Than
Question Mark
Commercial At
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Opening Bracket
Reverse Slant
Closing Bracket

N<Y<XE<<CHOMOIDVTOUTOZIrAC~IOMTMOOO>

Underscore

File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Tahte C-2. (continued)

ASCTII EBCDTITC (ASCII Graphic)
Hex Decimal Hex Decimal Graphic Meaning
60 96 79 121
61 97 81 128 a Lower Case a
B2 98 82 130 b Lower Case b
63 99 83 131 C Lower Case ¢
64 100 84 132 d Lower Case d
B85 101 85 133] Lawer Case e
66 102 86 134 f Lower Case f
87 103 87 135 g Lower Case g
68 104 88 1386 h Lower Case h
69 105 88 137 i Lower Case i
BA 106 91 145 j Lower Case]
6B 107 92 1486 k Lower Case k
6C 108 93 147 L Lower Case |
6D 109 94 148 m Lower Case m
BE 110 95 1489 n Lower Case n
BF 111 86 180 a Lower Case o
70 112 97 151] Lower Case p
71 113 98 152 q Lower Case g
72 114 99 183 r Lower Case r
73 115 A2 162 S Lower Case s
74 116 A3 163 t Lower Case t
75 117 A4 164 u Lower Case u
76 118 A5 165 Y Lower Case v
77 118 AB 166 W Lower Case w
78 120 A7 167 X Lower Case x
79 121 A8 168 y Lower Case y
7A 122 A9 169 2 Lower Case 2z
7B 123 co 192 { Opening Brace
7C 124 6A 106
7D 125 DO 208 1 Closing Brace
7E 126 A1 161
7F 127 07 7 DEL Delete
80 128 20 32
81 129 21 33
82 130 22 34
83 131 23 35
84 132 24 36
85 133 15 21
86 134 o0e 6
87 135 17 23
88 136 28 40
89 137 29 41
8A 138 2A 42
88 139 2B 43
8C 140 2C 44
8D 141 09 9
8E 142 0A 10
8F 143 18 27
Form 1152048 C-10 File DOCUMENT/PASCAL

Burroughs

ASCITI
Hex Decimal
90 144
91 145
92 146
93 147
94 148
95 149
96 150
g7 151
98 162
99 153
9A 154
9B 165
aC 156
D 157
9E 158
9F 159
AD 160
A1 161
A2 162
A3 163
Ad 164
A5 165
AB 166
A7 167
A8 168
A9 169
AA 170
AB 171
AC 172
AD 173
AE 174
AF 175
BO 176
B1 177
B2 178
B3 179
B4 180
BS 181
BB 182
B7 183
B8 184
Bg 185
BA 186
BB 187
BC 188
BD 189
BE 180
BF 191

Form 1152048

B 1000 PASCAL LANGUAGE MANUAL

Table C-2. (continued)
EBCDTITC C (ASCII Graphic)
Hex Decimal Graphic Meaning
30 48
31 49
TA 26
33 51
34 52
35 53
36 54
08 8
38 56
39 57
3A 58
3B 58
04 4
14 20
3E 62
E1 225
41 65
42 68
43 67
44 68
45 69
48 70
47 71
48 72
49 73
51 81
52 82
53 83
54 84
55 85
58 86
57 87
58 88
59 89
62 98
63 99
64 100
65 101
66 102
67 103
68 104
69 105
70 112
71 113
72 114
73 115
74 116
75 117
c-11 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Table C-2. (continued)

ASCTI1ITI EBCDTIC (ASCII Graphic)
Hex Decimal He x Decimal Graphic Meaning
co 192 78 118
C1 193 77 118
c2 194 78 120
C3 198 80 128
C4 196 8A 138
C5 187 88 138
C6 198 8C 140
c7 1989 8D 141
cs 200 8E 142
c3 201 8F 143
CA 202 90 144
CB 203 9A 154
cC 204 9B 185
CD 205 9C 156
CE 206 9D 157
CF 207 SE 158
[8]9] 208 9F 159
D1 208 AQD 160
D2 210 AA 170
D3 211 AB 171
D4 212 AC 172
DS 213 AD 173
D6 214 AE 174
D7 215 AF 175
D8 216 BO 1786
D39 217 B1 177
DA 218 B2 178
DB 218 B3 178
DC 220 B4 180
DD 221 BS 181
DE 222 B6 182
DF 223 B7 183
EO 224 B8 184
E1 225 B9 185
E2 226 BA 1886
E3 227 BB 187
E4 228 BC 188
ES 229 BD 189
E6 230 BE 190
E7 231 BF 191
ES8 232 CA 202
ES 233 cB 203
EA 234 CC 204
EB 235 CD 205
EC 236 CE 206
ED 237 CF 207
EE 238 DA 218
EF 239 DB 219
Form 1152048 c-12 File DOCUMENT/PASCAL

Burroughs

ASCTITI
He x Decimal
FO 240
F1 241
F2 242
F3 243
F4 244
FS 245
FB 246
F7 247
F8 248
F9 249
FA 250
FB 251
FC 252
FD 253
FE 254
FF 255

Form 1152048

B 1000 PASCAL LANGUAGE MANUAL

Table C-2. (continued)
EBCDTITC (ASCII Graphic)

Hex Decimal Graphic Meaning
DC 220

DD 221

DE 222

DF 223

EA 234

EB 235

EC 238

ED 237

EE 238

EF 239

FA 250

FB 251

FC 252

FD 253

FE 254

FF 255

C-~13 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

INDEX
< 5-8
<<Boolean-option> A-3
<> 5-8, 5-9, 5-10
<= 5-8, 5-10

<abort procedure> 6-35

<abort procedure»> syntax:

<abs function> 6-32
<abs function» syntax:

6-36

6-32

caccept procedure>
<accept procedure>
<actual parameter
<arctan function>

6-35
syntax:
list>
6-32

6-36
4-10, 5-4

5-15,
5-1

carithmetic expression> 6-32, 6-34
carithmetic expression> syntax:
carithmetic function> 6-1, 6-35
<arithmetic functions> syntax:
<arithmetic operataor> 5-15
carithmetic operator> syntax:
<arithmetic relation> 5-8
<arithmetic relation> syntax:
carray type identifier» 3-5,
carray type> 3-5, 3-8
<array variable> 5-1, 7-2
cassignment statement> 4-1
<assignment statement> syntax: 4-2
c<attribute parameter list> syntax:
<attribute phrase> syntax: 2-3
<hase type> 3-22
<blank> 9-3
<hltank> definition:
<block> syntax: 2-3
<Bpolean constant identifier>
<Boolean constant> 3-2, 3-21,
<Boolean expressiaon> 4-9, 4-11,
, 5-9, 6-23
BEXpression> syntax:
operator> 5-5
operator> syntax:
primary> 5-5
primary> syntax: 5
type identifier> 3
<Boolean type> 3-5, 3-6, 3-
<Boolean variable> 5-6
<Boolean-option~-expression»
<Boolean-option-expression> sy
<Boolean-option-setting> A-2
<Boolean-option-setting> syntax:

5-8, 6-33,

6-32
5-18

5-8

3-8, 3-13

8-5

9-3

3-2, 3~
3-23, 5
4-12,
<Boolean 5-5
<Boolean
<Boolean
«<Boolean
<Boolean
<Boolean

o >

X A-3

A-3

Form 1152048 IX-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<Boolean-option> A-2., A-3
<Boolean-option> syntax: A-3
<huffer variable> 7-1

<huffer variable> syntax: 7-4
<case constant> 3-21, 4-4

<case index> 4-3

<case index> syntax: 4-4

<case list element> 4-3

<case list element> syntax: 4-4
<case statement> 4-1

<case statement> syntax: 4-3
<char constant identifier> 3-
<char constant> 3-2, 3-21, 3-
<char expression> 5-1, 5-2, 5
<char expression> syntax: 5-1
<char type identifier> 3 3
<char type> 3-5, 3-6, 3- -
<char variable> 5-11,
<character literal> 3-3,
<character literal> syntax: 8-2
<character string> 3-4, 9-2
<character string> syntax: 8-1 -
<character> definition: 8-2

<chr function> 6-27

<chr function> syntax: 6-27

<close option> 6-13

<close option> syntax: 6-13

<close procedure> 6-2

<close procedure> syntax: 6-13
ccamment> 9-3

<camment> syntax: 9-4

<component type> 3-186

<compound statement> 4-1

<compound statement> syntax: 4-4
<caonstant definitions> 3-1, 3-2
ccontext-sensitive identifier> 9-2
ccontrol variable» 4-4

<control variable> definition: 4-5
<cos function> 6-32

<cos functian> syntax: 6-33

<date procedure> 6-35

<date procedure> syntax: 6-37
<day> 6-37

cday> syntax: 6-37

<declared function»> 5-4

<declared function> syntax: 5-4
<declared procedure> 4-10
cdeclared procedure> syntax: 4-11
cdigity> 3-2, 8-2, 8-3, 8-4

<digit> definition: 8-2
<directive> 3-27, 3-28

<display procedure> 6-35

<display procedure> syntax: 6-37
<domain type> 3-18

Form 1152048 IX-2

File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<dynamic
<dynamic
<dynamic

allocation procedure> 6-1
allocation procedure> syntax:
variable> 7-1
<dynamic variable> syntax:
<element type> 3-14
<entire variable> 7-1
<entire variable> syntax: 7-1
<enumerated constant> 3-16,
<enumerated expression> 5-1,
<enumerated expression> syntax:
<enumerated type identifier>
<enumerated type> 3-5, 8-8B,
<enumerated variable> 5-11
<eof function> 6-2
<eof function> syntax:
<eoln function> 6-2
<eoln function> syntax:
<exp function> 6-32
<exp functiony syntax:
cexponent part> 8-4
<exponent part> syntax:
<expression> 3-32, 4-2,
<expression> syntax: 5-~1
cexternal file identifier> syntax:
<external file specification> syntax:
<field designator> 7-1
«field designator> syntax:
«field identifier> 3-20,
<field list> 3-20, 3-21
<field type> 3-20
<field width> 6-23
<field width> syntax: 6-23
«file handling function> 6-1
«<file handling function> syntax:
«<file handling procedure>» 6-1
«<file handling procedure>» syntax:
<file type identifier> 3-5, 3-8,
«file type> 3-5, 3-6
<file variable> 6-13,
, 7-4
<final value>
<final value>
<fixed part> 3-20
«for statement> 4-1
<for statement> syntax:
«<formal parameter list>
<forward> 3-27, 3-28
<frac digits> 6-23

6-28

7-3

-21,

6-18
6-15
6-33

B-4
g-22

2-2
2-2

7-3

3-21, 7-3

6-2

-2
3-16
6-15, 6-16, 6-17, B-21,
4-4

syntax: 4-5

4-4

3-27, 3-28

<frac digits> syntax:
<function declaration>
<function designator>
<function designator> sy
<function 1dentifier>

<general function> 6-1

Form 1152048

6-23
3-26
5-6,
ntax:
3-28,

IX-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<general function> syntax: 6-35

<general procedure> 6-1

<general procedure> syntax: 6-35

<get procedure> 6-2

<get procedure> syntax: 6-15

<goto statement> 4-1

<goto statement> syntax: 4-86

<hours> 6-39

<hours> syntax: 6-39

<identifier> 3-16, 3-20, 3-28, 3-27, 3-29, 9-2

<identifier> syntax: 8-2

<if statement> 4-1

<if statement> syntax: 4-9

<immediate-optiaon> A-2

<immediate-option> syntax: A-3

<index expression> 7-2

<index expression> syntax: 7-2

<index type> 3-14

<indexed array variable> 7-2

<indexed array variable> syntax: 7-2

<indexed variable> 7-1

<indexed variable> syntax: 7-2

cinitial value> 4-4

¢initial value> syntax: 4-5

¢integer constant identifier>» 3-2

<integer constant> 3-2, 3-21, 3-23

<integer expression» 5-1, 5-2, 5-9, 5-13, 6-22, 6-23
6-24, 6-27, 6-38, 8-5 -

cinteger expression> syntax: 5-12

<integer operator> 5-12

<integer operatar> syntax:

<integer primary> 5-12, 5-1

<integer primary> syntax: 5

3

, 3-3, §5-13

<integer type identifier>
<integer type> 3-5, 3-6, 3
<integer variable> 5-13, 6-17
<label declarations» 3-1, 3-2
<label> 3-2, 4-1, 4-6
<letter> 8-2

<letter> definition: 8-2

«<ln functian> 6-32

<ln function> syntax: 6-33

¢<mark procedure> 6-28

<mark procedure> syntax: 6-31
«<member designator> 5-16

«<member designator> syntax: 5-16
<cminutes> 6-39

<minutes> syntax: 6-39

<month> 6-37

<month> syntax: 6-37

<new array type> 3-13

<new enumerated type> 3-16

<new file type> 3-16

<new pointer type> 3-17

Form 1152048 IX-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<new procedure> 6-28

<new procedure> syntax: 6-31

<new record type> 3-20

<new set type> 3-22

«<new subrange type> 3-23

<non-apostrophe character> 8-1, 8-2¢
«<non-apostrophe character> definition: 8-2
<number> g-2

<number> syntax: 8-3

<odd function» 6-35

<odd function> syntax: 6-38
<option-factor> A-3

<option-factor> syntax: A-3

<option-term> A-3

caption-term> syntax: A-3

<ord function> 6-27

<ord function» syntax 6-28

<ordinal expression> 4-4, 4-5, 5-10, 5-16, 6-28, B-38

6-38, 7-2
c<aordinal expressiony syntax: 5-2
<ordinal relation> 5-8
<ordinal relation> syntax: 5-9
<ordinal type identifier> 3-21
<ardinal type» 3-14, 3-22
<page procedure> 6-2
<page procedure> syntax: 6-16
<pointer expression> 5-1, 6-31
«<pointer expression> syntax: 5-14
<pointer relation> 5-8. 5-9
<pointer relation> syntax: 5-8

«<pointer type identifier> 3-5, 3-8, 3-17
<pointer type> 3-5, 3-29

<pointer variable> 5-14, 6-81, 7-3

<pred functian> 6-35

<pred functiony syntax: 6-38

<predefined function> 5-4

<predefined function> syntax: 6-1
<predefined identifier> 9-2

<predefined identifier> list 9-3
<predefined procedure> 4-10

<predefined procedure> syntax: 6-1
<procedure and function declarations» 3-1
<procedure declaration> 3-286

<procedure identifier> 3-27, 4-10
<procedure invocation statement> 4-1
<procedure invocation statement> syntax: 4-11
<program heading> syntax: 2-2

<program identifier> syntax: 2-2
<program parameters> syntax: 2-2
<program text> syntax: 9-1

<program> syntax: e-2

<put procedure> 6-2

<put procedure> syntax: 6-16

<read parameter> 6-17, 6-20

Form 1162048 IX-5 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<read parameter> syntax: 6-17

<read procedure> 6-2

<read procedure> syntax: 6-17

<read textfile procedure> 6-2

<read textfile procedure> syntax: 6~17
<readln procedure> 6-2

¢<readln procedure> syntax: 6-20

<real constant identifier> 3-2, 3-4, 5-15
<real constant> 3-2

<real expression> 5-1, 6-23, 6-25, 6-33
<real expression> syntax: 5-15

<real primary> 5-15
creal primary> syntax: 5-
<real type identifier> 3
<real type> 3-5, 3-6
<real variahble> 5-15, 6-17
<record houndary»> 9-3

<recard boundary> definition: 9-4
<record type identifier> 3-5, 3-8
crecord types 3-5, 3-86

<record variabtle> 4-12, 5-1, 7-3
<rel op> 4-10, 5-8, 5-9

<rel op> syntax: 5-8

<relational expressian> 5-86
<relational expression> syntax: 5-8
<release procedure> 6-28

<release procedure> syntax: 6-31
<repeat statement> 4-1

<repeat statement> syntax: 4-12
<reserved ward> 9-2

<reserved word> list: 9-2

<reset procedure> 6-2

<reset procedure> syntax: 6-21
<result type> 3-29

<rewrite procedure> 6-2

<rewrite procedure> syntax: 6-21
<round function»y 6-32

<round function> syntax: 6-33
<runtime function> 6-35

<runtime function>» syntax: 6-38
<seconds» 6-39

<seconds> syntax: 6-39

<seek procedure> 6-2

<seek procedure> syntax: 6-22

<set constructor> 5-16

<set constructor> syntax: 5-186
<set expression> 5-1, 5-10, 5-16
<set expression> syntax: 5-186

<set operator> 5-18

¢<set operator> syntax: 5-16

<set primary> 5-186

<set primary> syntax: 5-16

<set relation> 5-8

<set relation> syntax: 5-10

, 3-20

Form 1152048 I1X-6 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<set type identifier> 3-5, 3-8, 3-22
<set type> 3-5, 3-6

<set variablesy 5-16

<simple type> 3-5, 3-29

<sin function> 6-32

<sin function» syntax: 6-34

«<special token> g9-2

<sgr functian> 6-32

<sgr functiony» syntax: 6-34

<sgrt function> 6-32

<sgqrt function> syntax: 6-34
«<statement list> 4-1, 4-3, 4
<statement List> syntax: 4-1
<statement part> syntax: 4-1
<statement> 4-1, 4-4, 4-9, 4
<statement> syntax: 4-1
<string constant identifie
<string constant> 3-2, 5
<string expression> 4-10
<string expression> syntax: 5-17

¢<string relation> 5-8

«<string relation» syntax 4-10

<string type> 3-13

«<string variable> 5-17. B-36, 6-37

«<structured type> 3-5

<subrange type identifier> 3-5, 3-8, 3-21, 3-23
<subirange type> 3-5, 3-8, 3-7

<succ function> 6-35

<succ function> syntax: 6-39
<tan function> 6-32
<tan function> syntax: 6-34

ctextfile type identifier> 3-5, 3-8, 3-24

<textfile type> 3-5, 8-6

<textfile variable> 6-13, 6-15, 6-16, 6-17, 6-20, 6-21
6-22, 6-27, 7-4

<time procedure> 6-35

<time procedure> syntax: 6-39
<token separator> 9-1

<token separataor> syntax: 9-3
<token> 9-1

<token> syntax: 9-2

<trunc function> 6-32

<trunc function> syntax: 6-35

<type definitions> 3-1

<type identifier> 3-31

«<type transfer function> 6-1

<type transfer function> syntax: 6-27
<type> 3-26

<unsigned integer> 3-3, 5-13, 8-3

cunsigned integer> syntax: 8-3

cunsigned number> 8-3

<unsigned number> syntax: 8-3

<unsigned real> 3-4, 5-15, B-3

cunsigned real> syntax: 8-4

Form 1152048 IX-7 File DOCUMENT/PASCAL

Burroughs

<value parameter t
<value parameter>
<value-option>

<value-agptiaon> syn
<variable declarat
<variable identifi

<variable identifi

<variable parameter>

<variable> 3-32,
<variable> syntax:
c<variant part>
cvariant selector>
<variant> 3-20

<vlstring type ide
<vistring type>

<wait procedure>
<while statement>
<while statement>
<with statement>
<with statement>

<write parameter>
<write parameter>
<write procedure>
<write procedure>
<write
<write

S

<writeln procedure>
<vwriteln procedure> syntax:

<year> 6-37
cyear> syntax:
3-3, 3-4,

A-2
A-2
5-13, 5-1§5,
3-3, 3-4,
5-15

(underscore)

3-18

Abort 6-36
Ahort Procedure
Abs 6-32

ABS Function
Accept 6-36

Form 1152048

textfile procedure>
textfile procedure> syntax:

5-12,

5-
5-12,

B 1000 PASCAL LANGUAGE MANUAL

ype> 3-31

3-31

A-2

A-3
3-1

3-286
3-31,

tax:

ions>

er lList>

Br> 3-26,

3-31

4-2, 6-17,
7-1

7-1

6-37, 6-39

3-20

3-20
ntifier> 3-8
3-6

6-35
4-1
syntax:

4-1

yntax:
6-17,

syntax:
6-2

syntax: 6-22

6-2

6-22

6-2

6-27

8-37

5-13,

16

5-13, 5-15, 5-16, 8-3, B8-4

8-2

6-36

6-32

I1X-8 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Accept Procedure 6-36
Activation Records 2-9

ACTUAL PARAMETER LISTS AND PARAMETER MATCHING 3-32
AND 5-6, A-3

ANSIT A-4

Arctan 6-32

ARCTAN Function 6-32
Arithmetic Functions 6--31
Array Types 3-12

Array Variable 7-5

ARRAY ; 3-14

Assignment Compatibility 3-10
ASSIGNMENT STATEMENTS 4-2

BASIC COMPONENTS 8-1
BEGIN 4-1, 4-4

BLANK 9-3

Boolean 3-8, 3-14
Boolean and Relational Expressions 5-5
Boolean Expressions 5-5
Boolean Options A-4
Boolean Types 3-14
Boolean Variahle 7-5
BRIDGES B-3

Buffer Variables 6-3
Bufffer Variables 7-4

CAND 5-6

CASE 3-20, 4-3

CASE STATEMENTS 4-3

CCI Syntax Diagrams A-2

Char 3-8, 3-15

CHAR Expressions 5-11

Char Variable 7-5

Character Types 3-14

CHARACTERS AND CHARACTER STRINGS g8-1
Chr 6-27

CHR Function 6-27
CLEAR A-6

Close 6-13

Close Operation 6-
Close Procedure 6-
CODE A-4

COMMENT 9-3
Compatible Types 3-9

Compile-Time Errors A-7

COMPILER OPTIONS A-1

COMPILING AND EXECUTING A PASCAL PROGRAM A-7

COMPILING, EXECUTING, AND ANALYZING A PASCAL PROGRAM A-1
COMPOUND STATEMENTS 4-4

CONST 3-2

CONSTANT DEFINITIONS 3--2

COR 5~8

Cos 6-33

Form 1152048 IX-9 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

COS Function 6-32
Crunch B-13

Date 6-37

Date Procedure 6-36
DECLARATIONS AND DEFINITIONS 3-1
Display 6-37

Display Procedure 6-37

DISPOSE Procedure 1-1

DIV 5-13, 5-15

DIVIDE BY ZERD A-8

Do 4-4 4-12

DOWNTO 4-4

Dynamic Allocation Procedures 6-28
Dynamic Variables 7-3

E g8-4
EBCDIC AND ASCII CHARACTER SETS C-1
ELSE 4-9

END 3-20, 4-1, 4-3, 4-4
Entire Variables 7-1
Enumerated Expressions 5-11
Enumerated Types 3-15
Enumerated Variable 7-6

Eof 6-15

EOF Function 6-14

Eoln 6-15

EOLN Function 6-15
ERRORLIMIT A-5

ERRORS DURING EXECUTION 1-2
Exp 6-33

EXP Function 6-33
EXPRESSIONS 5-1

EXPRESSIONS BY TYPE 5-5

FALSE 3-3, A-3

Field Designators 7-2

FILE 3-16

FILE AT EOF A-9

File Attributes 6-3

FILE ATTRIBUTES AND MNEMONIC VALUES 8-4
FILE NOT AT EOF A-10

FILE NOT CLOSED A-10

FILE NOT OPEN A-9

File Types 3-186

File Variable 7-86

File-Handling Procedures and Functions 6-13
Fixed-Point Format 6-25

Floating-Point Format 6-25

FOR 4-4

FOR STATEMENTS 4-4

Formal Parameter Lists 3-31

FUNCTION 3-29

Function Declaration 3-29

Form 1152048 IX-10 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

FUNCTION DESIGNATORS 5-4

General Procedures and Functions 6-35
Get 6-15
Get Operation
Get Procedure
GOTO 4-6
GOTO STATEMENTS 4-86

6, 6-10
1

6-6,
6-15

HEAP LIMIT A-9

Identifier, predefined 9-3
IDENTIFIERS g8-2

IF 4-9

IF STATEMENTS 4-9

Immediate Options A-8
IMPLEMENTATION RESTRICTIONS 1-1
IN 5-10

INCLUDE A-B

INDEX OUT OF RANGE A-8

Indexed Variables 7-2

Input file 6-9

INPUT/OUTPUT AND FILE-HANDLING CONCEPTS 6-1

Inspection Mode and Generation Mode 6-3
Integer 3-8, 3-17
Integer Expressions 5-12

INTEGER OVERFLOW A-8

Integer Types 3-17

Integer Variable 7-6
INTERPRETATION OF PROGRAM TEXT 9-1
INTRODUCTION 1-1

INV PTR REFERENCE A-8

INV STD ROUTINE A-9

INVALID CASE A-9

INVALID CHAR READ A-10

INVALID OPCODE A-9

LABEL DECLARATIONS 3-1

Lazy I/0 6-12

LINEINFO A-4

LIST A-4

LISTDOLLAR A-4

LISTINCL A-4

Ln 6-33

LN Function 6-33

Logical and Physical Files 6-4
LOOPS B-2

MAP A-4

Mark 6-31

Mark Procedure 6-30
Maxint 5-13

MAXINT 3-3

MOD 5-13, 5-15

Form 1152048 IX-11 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

New 6-31
NEW 1-2
New Procedure 6-31
NIL 5-14

NIL POINTER ERROR A-9
NOBOUNDS A-5
Non-local GOTOs 1-2
NOT 5-5, A-3
NOTAGFIELD A-5
NUMBERS 8-3

Odd 6-38

O0dd Function §-37

OF 3-14, 3-16, 3-20, 3-22, 4-3
OMIT A-5

OPTIONAL ITEMS B-2

OR 5-6, A-3

Ord 6-28

ORD Function 6-28

ORDINAL EXPRESSIONS 5-2
Ordinal Types 3-8

OTHERWISE 4-3

Qutput file 6-9

PACK, UNPACK 1-2

PACKED 3-14, 3-16, 3-20, 3-22
Page 6-16

PAGE A-B

Page Procedure 6~186
Permanent and Temporary
Pointer Expressians 5-
Pointer Type 3-6
Pointer Types 3-17
Pointer Variable 7-8
POP A-2

PRECEDENCE OF OPERATORS h-2

Pred 6-38

PRED Function 6-38

PREDEFINED IDENTIFIER 9-2

PREDEFINED PROCEDURES AND FUNCTIONS 6-1
Predefined textfile 6-9

Predefined Textfiles {(Input, Qutput]) 6-9
Procedural Parameters 1-2

PROCEDURE 3-27

PROCEDURE AND FUNCTION DECLARATIONS 3-26
PROCEDURE AND FUNCTION DESCRIPTIONS 6-13
Procedure Declaration 3-27

PROCEDURE INVOCATION STATEMENTS 4-10
PROGRAM ABORT A-9

PROGRAM BLOCKS 2-5

PROGRAM PARAMETERS 2-4

PROGRAM STRUCTURE 2-1

PROGRAM TEXT 9-1

Fi
13

Form 1152048 IX-12 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

PROGRAM UNIT 2-1

Program Unit syntax: 2-2
Purge 6-13

Put 6-16

Put Operation 6-7, B6-11
Put Procedure 6-18

RAILROAD DIAGRAMS B-1
Read 6-17

Read Operation 6-6, 6-10
Read Procedure 6-17

Read Textfile Procedure 6-17
Readln 6-20

Readln Operation 6-11
Readln Procedure 6-20
Real 3-8, 3-18

Real expression> 5-1
Real Expressions 5-14

REAL OVERFLOW A-8
Real Types 3-18
Real Variahble 7-6

RECORD 3-20
RECORD BOUNDARY 9-
Record Types 3-18
Record Variable 7-
RELATED DOCUMENTS
Relational Expressio
Release 6-31
Release Procedure 6-31
REPEAT 4-11

REPEAT STATEMENTS 4-11
REQUIRED ITEMS B-2
RESERVED WORD 9-2
Reserved words 9-2
Reset 6-21
RESET A-2
Reset Operatian 6-
Reset Procedure 6

4

4
6
1-
ns 5-7

6
2
Rewrite 6-21
Rewrite Operation 6
Rewrite Procedure 6
Round 6-33

ROUND Function 6-33
Run-Time Erraors A-7
Runtime 6-38

Runtime Function 6-38

Same Types 3-8

Save 6-13

Scape 2-5

Scope: Blaocks 2-5

Scaope: Record Definitions 2-8
Scope: Recard Variables 2-9
Scope: WITH Statements 2-9

Form 1152048 IX-13 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Seek 6-22

Seek Operatiaon 6-7
Seek Procedure 6-22
SET 3-22, A-2

Set Expressions 5-1
SET OUT OF RANGE A-
Set Types 3-21

Set Variable 7-6
Simple Types 3-5
Simple, Structured, and Pointer Types 3-5

]
9

Sin 6-34
SIN Function 6-34
Sqgr 6-34

SGR Function 6-34

Sgrt 6-34

SART Functian 6-34

STACK LIMIT A-9

Standard Files 6-5

Standard Files and Textfiles 6-3
STATEMENTS 4-1
String Expressions
STRING RELATION 4
String Variable 7-
STRINGS A-B
STRUCTURE OF MANUAL 1-3
Structured Types 3-8
Subrange Types 3-22
Succ 6-39

SUCC Function 6-39

5-17
10
6

Tan 6-34

TAN Functien 6-34
Terminalogy 6-2

Text 3-8, 3-24

TEXT BUF OVERFLOW A-9
Textfile Types 3-23
Textfile Variable 7-6
Textfiles (Including Predefined Textfiles) 6-8
Textfiles in Generatl 6-8
THEN 4-9

Time 6-39

Time Procedure 6-39

T0 4-4

TOKEN 9-2

TOKEN SEPARATOR 9-3

TRUE 3-3, A-3

Trunc 6-35

TRUNC Function 6-35

TYPE 3-5

Type = <char variable> 6-18
Type = <integer variable> 6-18
Type = <real variable> 6-19

TYPE DEFINITIONS 3-4
Type Descriptions 3-12

Form 1152048 IX-14 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Type Identifiers 3-7
Type Transfer Functions 6-27

UNDEFINED POINTER A-10

UNDEFINED VARIABLES 7-6

Underscore () 8-2

UNTIL 4-11"

Use of File Attributes 6-12

USING THE PASCAL/ANALYZER PROGRAM A-10
USING THE SYSTEM/IDA PROGRAM A-11

Value Options A-5

VALUE 0OUT OF RANGE A-8

VAR 3-26, 3-31

VARIABLE DECLARATIONS 3-24
Variabte identifier> 3--31
Variable parameter type> 3-31
VARIABLES 7-1
VARIABLES BY ACCESS 7-
VARIABLES BY TYPE 7-5
VARIANT ERROR A-9
Variant Record Declarations 1-2

1

WHILE 4-12

WHILE STATEMENTS 4-12
WITH 4-12

WITH STATEMENTS 4-12
Write 6-17, 6-22

Write Operation 6-8, 6-11
Write Procedure 6-22
Write Textfile Procedure 6-22
Writeln 6-27

Writeln Operatian 6-11
Writeln Procedure 6-26

XREF A-5

Burroughs

	00-01
	00-02
	00-03
	00-TC1
	00-TC2
	00-TC3
	00-TC4
	00-TC5
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15

