
Burroughs {i)

PRICED ITEM

Printed in U.S.A. Augt •st 1977 5001464

Burroughs~

B 7000/B 6000 Series

COBOL

REFERENCE MANUAL

Copyright ©1970, 1971, 1973, 1974, 1977 Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

Printed in U.S.A. August 1977 5001464

Burroughs believes that the software described in this manual is
accurate and reliable, and much care has been taken in its preparation.
However, no responsibility, financial or otherwise, can be accepted for
any consequences arising out of the use of this material, including loss
of profit, indirect, special, or consequential damages. There are no
warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the software
will be in full compliance with laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may
be issued from time to time to advise of changes and/or additions.

Correspondence regarding this document should be addressed directly to Burroughs Corporation,
P. O. Box 4040, El Monte, California 91734, Attn: Publications Department, TIO - West.

Section

l

2

3

TABLE OF CONTENTS

ACKNOWLEOOEMENT

INTRODUCTION

...
..

Advantages of COBOL
Pr.ogram Organization
Other Publications

......

LANGUAGE FORMATION

General
Character Set

Alphabetic Characters

Numeric Characters
Alphanumeric Characters
Editing Characters
Punctuation Characters
Relation Characters
Characters Used for Words

Language Description Notation
Key Words ••••••
Optional Words
Generic Terms
Brackets and Braces
Ellipsis •••••••.

Definition of Words

Types of Words
Nouns
Verbs
Reserved Words

. .
.....

......

..

....
.........

......

...

CODING FORM ...
General .•.•••••
Sequence Field
Continuation Indicator

....
....

Page

xv

1-1

1-3

1-4

1-5

2-1

2-1

2-1

2-1

2-2

2-2

2-2

2-2

2-3

2-3

2-4

2-4

2-4

2-4

2-4

2-5

2-6

2-6

2-6

2-15

2-15

3-1

3-1

3-1

3-1

iii

Section

3

4

5

6

iv

TABLE OF CONTENTS (Cont)

CODING FORM (Cont)

Margin A

Margin B
Right Margin

I dent ificat ion

Punctuation
Sample Coding

IDENTIFICATION DIVISION

General

Coding the IDENTIFICATION DIVISION

ENVIRONMENT DIVISION

General

CONFIGURATION SECTION

SOURCE-COMPUTER
OBJECT-COMPUTER
SPECIAL-NAMES

INPUT-OUTPUT SECTION

FILE-CONTROL

COPY Function
SELECT Clause

RESERVE Clause .••••••
Disk File Options

FILE-LIMIT Clause

ACCESS Clause
ACTUAL KEY Clause
ORGANIZATION/FILE STATUS

I/O-CONTROL
Clause

DATA DIVISION ...
General

File and Record Concepts
Physical Aspects of a File

Conceptual Characteristics of a
Record Concepts

File

3-3

3-3

3-3

3-3

3-4

3-4

4-1

4-1

4-1

5-1

5-1

5-3

5-4

5-5

5-7

5-ll

5-12

5-13

5-13

5-15

5-15

5-15

5-16

5-16

5-17

5-19

6-1

6-1

6-4

6-4

6-4

6-5

Section

6

TABLE OF CONTENTS (Cont)

DATA DIVISION (Cont)

Level Number Concepts

Qualification

Tables

Subs.cripting

Indexing

Identifier

File Description Entries

BLOCK

DATA

FILE

RECORDS

LABEL

LINAGE

RECORD

RECORDING MODE

SAVE-FACTOR

VALUE

CODE-SET

Coding the FILE SECTION

Coding for Variable-Length Blocked Records

RECORD Description

BLANK WHEN ZERO

Condit ion-Name

FILLER Data-Name,

GLOBAL

JUSTIFIED

Level-Number

LOCAL

LOWER-BOUNDS

OCCURS

OWN

PICTURE

6-6

6-10

6-14

6-17

6-18

6-19

6-20

6-22

6-24

6-25

6-26

6-29

6-31

6-34

6-35

6-36

6-37

6-38

6-39

6-40

6-43

6-44

6-47

6-48

6-49

6-50

6-51

6-52

6-53

....... 6-58

6-59

v

Section

6

vi

TABLE ()F CONTENTS (Cont)

DATA DIVISION (Cont)

Categ;ories of Data
Alphabetic

Numeric ••••••
Alphanumeric
Alphanumeric Edited
Numeric Edited

Classes of Data

• II: ••••••

....

Function of the Editing Symbols
Editing Rules •.••••••

...

. ...

.

. ...
.........

• ...

Insertion Editing •••
Simple Insertion Editing
Special Insertion Editing
Fixed Insertion Editing
Floating Insertion Editing
Suppression Editing

Replacement Editing .•••••

....

Precedence of Symbols
PICTURE Examples

RANGE
RECEIVED
RECORD AREA

.
. REDEFINES

RENAMES ••.
SEGMENT

.
SIZE
SYNCHRONIZED
USAGE

..
....

. ,.
. . .

••
• •

..

. ..
...

...
...... . .

.... II: ••

.........
. ..

. ..

...
.

VALUE
WORKING-STORAGE SECTION •••

Concept of WORKING-STORAGE
Organization .•••••••••••••
Non-Contiguous WORKING-STORAGE
WORKING-STORAGE Records
Initial Values

6-59

6-60

6-60

6-60

6-60

6-60

6-61

6-62

6-65

6-65

6-65

6-66

6-66

6-67

6-68

6-69

6-69

6-69

6-72

6-73

6-77

6-78

6-80

6-82

6-83

6-86

6-87

6-94

6-96

6-96

6-96

6-97

6-97

6-97

Section

6

7

TABLE OF CONTENTS (Cont)

DATA DIVISION (Cont)

Condition-Names .••.•.•.••••.••••••

Coding the WORKING-STORAGE SECTION

CONSTANT SECTION•••••••••••••••

Concept of Constant Storage

Organization •.••••

Non-Contiguous Constant Storage

Constant Records

Value of Constants

Condition-Names

Coding the CONSTANT

LINKAGE SECTION

PATA-BASE SECTION

LOCAL-STORAGE SECTION

PROCEDURE DIVISION

SECTION

General

Rules of Procedure Formation

PROCEDURE DIVISION Execution of

PROCEDURE DIVISION Structure

Statements

Imperative Statements

Conditional Statements

Compiler-Directing Statements

Sentences •••••••••.•.••.

Imperative Sentences

Conditional Sentences

Compiler-Directing Sentences

Sentence Punctuation

Sentence Execution

Imperative Sentences

Conditional Sentences

Compiler-Directing Sentences

.....
...
........

........

.

...

...

.

6-97

6-97

6-99

6-99

6-99

6-99

6-100

6-100

6-100

6-100

6-102

6-103

6-104

7-1

7-1

7-1

7-2

7-2

7-4

7-4

7-4

7-4

7-5

7-5

7-5

7-6

7-6

7-6

7-6

7-6

7-8

vii

Section

7

viii

TABLE OF CONTENTS (Cont)

PROCEDURE DIVISION (Cont)

Control Relationship Between Procedures

Paragraphs

Sections

Declaratives

General Description

USE Declarative

Formulas

Basic Operators

Formation of Symbol Pairs

Intrinsic Functions

Conditions ••••••.••••

Relation Condition

Comparison of Numeric Operands

Comparison of Non-Numeric Operands

Operands of Equal Size

Operands of Unequal Size

Comparisons Involving Index-Names and/or Index
Data Items

Sign Condition

Class Condition

Condition-Name Condition

Event-Identifier Condition

Evaluation Rules for Conditions

Abbreviations

Statement Options

ROUNDED Option

SIZE ERROR Option

CORRESPONDING Option

Verbs

ACCEPT .•••••

ADD

ALLOW

ALTER

ATTACH ~ ..

7-9

7-9

7-9

7-10

7-10

7-10

7-ll

7-12

7-14

7-15

7-16

7-18

7-18

7-19

7-19

1-20

7-20

1-20

7-21

7-21

7-22

7-22

7-22

7-25

7-25

7-25

7-26

1-21

7-28

7-30

7-32

7-33

7-34

Section

7

TABLE OF CONTENTS (Cont)

PROCEDURE DIVISION (Cont)

AWAIT (WAIT)

CALL

CAUSE

~HECKPOINT

CLOSE

COMPUTE

CONTINUE

COPY

DEALLOCATE

DETACH
DISALLOW

DISPLAY

DIVIDE

DUMP
ENTER

EXAMINE

EXECUTE

EXIT

GO

IF

LOCK

MERGE

MONITOR

MOVE

Elementary Moves

Group Moves

Translation

Index Data Items

Valid Move Combinations
MULTIPLY

OPEN

PERFORM

PROCESS

READ

7-35

7-36

7-43

7-44

7-45

7-50

7-52

7-53

7-54

7-55

7-56

7-57

7-58

7-60

7-61

7-62

7-64

7-65

7-G7

7-69

7-71

7-72

7-73

7-74

7-75

...... 7-77

7-78

7-78

... 7-78

7-84

7-86

7-90

7-96

7-97

ix

Section

x

7

8

9

10

TABLE OF CONTENTS (Cont)

PROCEDURE DIVISION (Cont)

RELEASE
RESET ••••••
RETURN
RUN
SEARCH
SEEK
SET

. . . .

SORT •••••••••
STOP ••••
SUBTRACT
UNLOCK
USE

WAIT
WRITE •••••••

.......
. ...
. . . .

......

....

. ..

CODING THE PROCEDURE DIVISION

THE COBOL LIBRARY

ATTRIBUTES

Attribute-Identifier ••••.•
File and Buffer Attributes

. ..

.
Setting File and Buffer Attributes
Interrogating File and Buffer Attributes

Task Attributes ••••••.•••••

Setting Task Attributes
Interrogating Task Attributes

COBOL AND DATA COMMUNICATIONS

ENVIRONMENT DIVISION Considerations
FILE-CONTROL
I-O-CONTROL

....
DATA DIVISION Considerations

File Descriptions
Record Descriptions

. •
...

...
. .

7-102

7-103

7-104

7-105

7-106

7-110

7-111

7-113

7-121

7-122

7-124

7-125

7-129

7-131

7-135

8-1

9-1

9-2

9-2

9-2

9-3

9-4

9-4

9-6

10-1

10-4

10-4

10-4

10-5

10-5

10-5

Section

10

11

TABLE OF CONTENTS {Cont)

COBOL AND DATA COMMUNICATIONS (Cont)

PROCEDURE DIVISION 1-0 Statements
OPEN
CLOSE
READ
WRITE

Abnormal Conditions
File and Station

REPORT WRITER

FILE SECTION
REPORT Clause

REPORT SECTION

Attributes

Report Description Entry
CODE

CONTROL
PAGE LIMIT
Special Counters
PAGE-COUNTER

....
LINE-COUNTER

Report Group Descriptions
COLUMN NUMBER
GROUP INDICATE
LINE NUMBER

NEXT GROUP
SOURCE

SUM
TYPE
USAGE
VALUE

PROCEDURE DIVISION

INITIATE
GENERATE
TERMINATE
USE •••••••

....

Sample Report Writer Program

·- ..

...

...

..

.....

10-6

10-6

10-6

10-7

10-7

10-8

10-9

11-1

11-2

11-2

11-3

11-3

11-4

ll-6

11-8

ll-12

11-12

11-12

11-14

11-18

ll-19

ll-20

11-22

ll-23

11-24

11-27

11-33

11-34

11-35

11-35

11-36

11-38

11-39

ll-39

xi

Section

12

13

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Index

xii

TABLE OF CONTENTS {Cont)

DATA MANAGEMENT

COBOL COMPILER

General Description

Input

Output

Library Creation

Debugging and Diagnostic

Compatibility •.•••••

Facilities

CODASYL COBOL-68

American National Standard COBOL

B 5500/B 5700 COBOL-61

Other Compilers

Compiler Control Cards

Option Action Indicators

A

B

c
D

E

Initial States of Settable Options

Source Image Selection

MERGE

NEW

SAVE

Compiler-Directing Options

User Defined Dollar Options

System Compatibility Options

Reserved Words
ANSI 74 Implementations

B 2500 Implementations

COBOL Syntax Summary

ANSI 74 COBOL Syntax Summary

... ~

F

G

Compiler Produced Messages, Error & Warning Messages

Character Representation Collating Sequence &
Translation Q ••••••••••••••••••••••••••

12-1

13-1

13-1

13-2

13-3

13-4

13-5

13-6

13-6

13-6

13-7

13-7

13-8

13-11

13-11

13-12

13-12

13-12

13-12

13-14

13-25

13-27

A-1

B-1

c-1
D-1

E-1

F-1

G-1

Index-I

Figure

2-1

3-1

3-2

4-1

5-1

6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

6-9

6-10

6-11

6-12

6-13

6-14

6-15

6-16

6-17

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

LIST OF ILLUSTRATIONS

Use of Figurative

COBOL Coding Form

Constants .•••••••••••••.•••..•....••.•••.•

Example of Continuation of Words and Literals •.•••••••••.•.•

IDENTIFICATION DIVISION Coding ..••••••••.••••••••••••••.••••

ENVIRONMENT DIVISION Coding •••••••••••••••.•.••••.••.••••••.

Level Number Construction .•••••••••••.•••••.••••.•.••.••.•••

Concept of Level Number

Coding of Multi-Dimensioned Table •••..•••••••••••.••••.•.•••

Label Coding

File Section Coding•••
Variable Length Blocked Records Coding •.••••••••••••.•.•••.•

Condit ion-Name Coding .•........................•.......•....

Relationship of Class and Category •.••.•••••••••.•.•.•••••••

Permissible Editing Types •••••••••••••••••••••••••••••••••••

Editing Symbols and Results •••••••••••••••••••••••••••••••••

Order of Precedence

PICTURE Clause Examples ••.•••••••.••••••••••••.•••••••.••..•

RECEIVED Clause in Calling and Called Programs .•.•••••••.•.•

Examples of REDEFINES •.••••.•••••••••.••••.••••..•••••••.•.•

Examples of RENAfdES •••

WORKING-STORAGE SECTION Coding ..•.•••••••••••••••.••••.••..•

CONSTANT SECTION Coding

Ari th met ic Opera tors•............................

Formation of Symbol Pairs in Arithmetic Expressions •.•..••••

Arithmetic Intrinsic Functions
Relationship of Conditions, Logical Operators and

Truth Values••.•.........•.....................

Combinations of Conditions and Logical Operators
Example of Calling Another Program••••••••••••••••••••••••••

Example of Option 4 CALL Statement •••••••••••••••••••.••••.•

Result of GO TO ••. DEPENDING •••••••••••••••••.•.•••••••••••

2-11

3-2

3-5

4-2

5-21

6-7

6-9

6-16

6-27

6-38

6-39

6-46

6-61

6-65

6-67

6-70

6-71

6-74

6-79

6-81

6-98

6-101

7-12

7-14

7-15

7-17

7-17

7-38

7-40

7-68

xiii

Figure

7-9

1-10

7-11

7-12

7-13

7-14

7-15

7-16

7-17

11-1

11-2

11-3

11-4

11-5

13-1

Table

7-1

7-2

xiv

LIST OF ILLUSTRATIONS (Cont)

E le me nt ary Moves •••••••••••..••••••••.••.•..••••.••.••••••••

Valid MOVE Statement Combinations•••••••••••••••••••••••••••
PERFORM Statement .. Varying One Identifier •••••••• , •••••••••••
PERFORM Statement Varying Two Identifiers ••••••••••••••.••••

PERFORM Statement Varying Three Identifiers •••••••••••••••••
Direct 1/0 in COBOL ..•.•................•.•..•......•.•.....

SEARCH Operation Containing Two WHEN Phrases ••••••••••••••••
SET Statement Operand Combinations ••••••••••••••.••••.••••••
PROCEDURE DIVISION Coding •••••.••••••••••••••••.••••••••••••
Page Format Control .. .

Page Regions ••••••••••••.••.••••••••.•••••.•••••••.••.•••••.

Permissible Clause Combinations in Option 3 Report Group
Description Entries

Sample Report Writer Report ••••••••••••••••••••••••••••••••.
Sample Report Writer Program •••••••••••••••••••••.••••••••••

Example of SAVE and FROM ••.•••••••••• , •••••••••••.••••••••••

LIST OF TABLES

Comparison of Non-Numeric Operands ••.•••••••••.••.•••.•••.••
Formal and Actual Parameters in COBOL •••••••••••••••••••••••

~

7-75

7-79

. 7-93

7-94

7-95

7-101

7-109

7..,;112

7-135

11-10

11-11

11-17

11-40

11-42

13-13

.fi.U.

7-19

7-41

ACKNOWLEDGEMENT

The information contained in this document is based on the COBOL language

initially developed in 1959 and subsequently updated.

COBOL is an industry language, and as such is not the property of any company

or group of companies, or of any organization or group of organizations.

The authors and copyright holders of the copyrighted material used in this

document,

FLOW-MATIC (trademark of Sperry Rand Corporation), programming

for the UNIVAC® I and II. Data Automation Systems, copyrighted

1958, 1959 by Sperry Rand Corp.; IBM Commercial Translator, form

No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27 A5260-2760,

copyrighted 1960 by Minneapolis-Honeywell,

have specifically authorized the use of this material in whole or in part,

in the COBOL specifications. This authorization extends to the reproduction

and use of COBOL specifications in programming manuals or similar publications.

Any organization interested in reproducing the COBOL report and specifications

in whole or part, using ideas taken from this report as the basis for an in­

struction manual, or for any other purpose, is free to do so; however, all

such organizations are requested to reproduce this section as a part of the
•

introduction to the document. Those using a short passage, as in a book

review, are requested to mention COBOL in acknowledgement of the source, but

need not quote this entire section.

No warranty, expressed or implied, is made by any contributor or by the COBOL

committee as to the accuracy and functioning of the programming system and

language. Moreover, no responsibility is assumed by any contributor, or by

the committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries con­

cerning the procedure for proposing changes should be directed to the Executive

Committee of the Conference on Data Systems Languages.

xv/xvi

1. INTRODUCTION

This manual provides a complete description of COBOL (Common Business Oriented
Language) as implemented on the Bu~roughs B 7000/B 6000. The specifications
contained in this manual describe all options of the language which are ac­
cepted by the B 7000/B 6000 COBOL compiler.

COBOL is a machine-independent, procedural language for describing computer

programs. The language is designed so that a COBOL program reads much like
ordinary English and, therefore, automatically provides much of its own docu­

mentation. For a description of the official language specifications, see the

Journal .Q.i Development, published by the CODASYL COBOL Programming Language
Committee. For a description of American National Standard COBOL, see X3.23-

1968 and 1974 published by the American National Standards Institute.

B 7000/B 6000 COBOL is an extended version of this language which provides the
user with the complete facilities of the B 7000/B 6000 hardware-software sys­
tem without resorting to machine or assembly languages. The following areas
of B 7000/B 6000 COBOL are extensions to the above COBOL specifications:

Relaxation of margin restrictions.
The CONFIGURATION SECTION is optional.

The DISK SIZE clause of the OBJECT-COMPUTER paragraph.
SPECIAL-NAMES entries are, in some cases, unique to B 7000/B 6000 COBOL.
The END option of the FILE-LIMITS clause.

Dynamic allocation of buffers with the data-name option of the RESERVE
clause.

The PREPARED FOR clause of the DATA DIVISION header.

The WORDS option of the BLOCK CONTAINS. and RECORD CONTAINS clauses.

The LABEL RECORDS clause which specifies the WITH MULTIPLE AT END phrase.
The specification of character set in the RECORD CONTAINS clause.
The SAVE-FACTOR and VALUE OF ID clauses.
The abbreviations ID, VA and OC.
The LOWER-BOUNDS, RANGE, RECORD AREA and SEGMENT clauses.
The OCCURS clause at the 01 level.
The definition of tabl~s of more than three dimensions.

1-1

The PICTURE character "J".
The use of non-PICTURE characters in a PICTURE entry as fixed insertion

characters.
The USAGE options; ASCII, COMP-1, COMP-2, COMP-4, COMP-5 and DISPLAY-1.

The LINKAGE SECTION.
The special registers TIME, COMPILETIME, CHECKPOIN'l:'.,.STATUS and

TODAYS-DATE.
The use of arithmetic expressions and subscripted variables as subscripts.

The arithmetic operators MOD and DIV.
The arithmetic functions.
The logical association of ELSE with the AT END, EOP, INVALID KEY and

ON SIZE ERROR clauses.

Arithmetic operands may be a maximum of 23 digits instead of only 18.
The word TO is optional in the EQUAL TO relational operator and in the

GO TO statement.

The DUMP, MERGE and MONITOR statements.
The CRUNCH, HERE, PURGE and RELEASE options of the CLOSE statement.
The use of a formula in the DEPENDING option of the GO TO statement.

The HERE option of the EXIT statement.
The relational operator UNEQUAL.
The type c abbreviation of conditional statements.
Partial word moves (options three and four of the MOVE statement).
The REEL-NUMBER option of the OPEN statement.
In the PERFORM statement:

The use of a formula in the VARYING option.
No limit on the number of AFTER phrases.

No restrictions on the range of a nested PERFORM.
The SEEK statement for sequential disk files.
The AFTER RECORD SIZE ERROR option of the USE statement.
The CHANNEL, AUXILIARY, ALTERNATE and ERROR options of the WRITE

statement.
The facility for handling Data Communications files in the same manner

as any other type of file.
The use of file attributes for dynamic definition of file characteristics.
The facility for handling any type of file as a DIRECT file thus bypassing

most of the MCP procedures for file and record processing.
The facility for invoking user written intrinsics.
All syntax for handling interrupt procedures.
All syntax for handling Inter Program Communication, synchronous processes

and asynchronous processes.
All syntax for handling switch files.

1-2

Al.l syntax for interface with the Burroughs Data Management System.

Selective implementations of statements, clauses, and phrases contained
within the ANSI 74 Indexed I-0, Sequential I-0, Table Handling, and Nucleus
Modules. (Refer to Appendices B, D and E).

Various B 3700 system compatibility features implemented under the
auspices of the "B2500" system dollar option (Refer to Appendices C and D).

B 7000/B 6000 COBOL utilizes the B 7000/B 6000 features of automatic program

segmentation, automatic peripheral assignment, virtual memory/storage alloca­

tion, multiprocessing, re-entrant programming and debugging language statements

to allow a high degree of sophistication in application program design and

development.

ADVANTAGES OF COBOL

COBOL'S long list of advantages is derived chiefly from its intrinsic quality

of permitting the programmer to state the problem solution in English. The

programming language reads much like ordinary English prose, and can provide

automatic program and system documentation. When users adopt in-house standard­

ization of elements within files, plus well chosen data-names, before attempt­

ing to program a system, they obtain maximum documentational advantages of the

language described herein.

To a computer user, the Burroughs COBOL offers the following major advantages:

a. Expeditious means of program implementation.

b. Accelerated programmer training and simplified retraining requirements.

c. Reduced conversion costs when changing from a computer of one manu-

facturer to that of another.

d. Significant ease of program modification.

e. Standardized documentation.

f. Documentation which facilitates non-technical management participation

in data processing activities.

g. Efficient object program code.

h. Segmentation capability which sets the maximum allowable program size

well in excess of any practical requirement.

i. Due to the incorporation of debugging language statements, a high de­

gree of sophistication in program design is achieved.

j. A comprehensive source program diagnostic capability.

A program written in COBOL, called a source program, is accepted as input by

the COBOL compiler. The compiler verifies that all rules outlined in this

manual are satisfied, and translates the source program language into an ob­

ject program language capable of communicating with the computer and directing

1-3

it to operate on the desired data. Should source corrections become necessary,

appropriate changes can be made and the program recompiled. Thus, the source

deck always reflects the object program being operationally executed.

PROGRAM ORGANIZATION

Every COBOL program must contain these four divisions in the following order:

IDENTIFICATION

ENVIRONMENT

DATA

PROCEDURE

The IDENTIFICATION DIVISION identifies the program. In addition, the program­

mer may include such optional pieces of information as the date compiled, and

programmer's name for documentation purposes. This division is completely ma­

chine-independent and thus does not produce object code.

The ENVIRONMENT DIVISION specifies the equipment being used. It contains

computer descriptions and deals, to some extent, with the files the pro­

. gram will use.

The DATA DIVISION contains file and record descriptions describing the data

files that the object program is to manipulate or create, and the individual

logical records which comprise these files. The characteristics or properties

of the data are described in relation to a standard data format rather than

an equipment-oriented format. Therefore, this division is to a large extent

computer-independent. While compatibility among computers cannot be absolutely

assured, careful planning in the data layout will permit the same data de­

scriptions, with minor modification, to apply to more than one computer.

The PROCEDURE DIVISION specifies the steps that the user wishes the computer

to follow. These steps are expressed in terms of meaningful English words,

statements, sentences, and paragraphs. This division of a COBOL program is

often referred to as the "program" itself. In reality, it is only part of

the total program, and is insufficient by itself to describe the entire pro­

gram. This is true because repeated references must be made (either explicitly

or implicitly) to information appearing in the other divisions. This division,

more than any other, allows the user to express his/her thoughts in meaningful

English. Concepts of verbs to denote actions, and sentences to describe

1-4

procedures, are basic, as is the use of conditional statements to provide

alternative paths of action.

A program written in COBOL is called the source program, and is accepted as in­

put by the B 7000/B 6000 COBOL compiler. The compiler will verify that the

rules presented in this manual have been followed and will generate an object

program in machine code, ready to be executed. Due to the speed of compilation,

no object deck is supplied. Instead, the object program is placed on the

disk, and may be dumped on a magnetic tape for back-up storage. Should

changes become necessary, the source deck is corrected and a new compilation

run made. Thus, the source deck always reflects the object program being

executed.

OTHER PUBLICATIONS

Additional information which may be of interest to the COBOL programmer may

be found in the following publications:

1058633

5000060

5001563

5001779

5000722

5001456

5001092

5001175

5001290

B 6700 Information Processing System Reference Manual

Data Communications Functional Description

B 7000/B 6000 System Software Operational Guide, Volume 1,
includin~ the following:

Indexed Sequential Access Method (ISAM)
Mathematical Intrinsics
SORT

B 7000/B 6000 Input/Output Subsystem Reference Manual

System Software Handbook

B 7000/B 6000 System/Binder Reference Manual

DMSII, Host Language Reference Manual

Workflow Management Reference Manual

B 6800 System Reference Manual

1-5/1-6

2. LANGUAGE FORMATION

GENERAL

This section discusses the elements of which the B 7000/B 6000 COBOL language
is constructed and the rules governing this construction. Being composed of
words, statements, sentences, paragraphs, and so forth, COBOL is seen to be

a language based structurally upon English.

CHARACTER m
The basic elements of any language are the characters of which it is formed.
The B 7000/B 6000 COBOL character set consists of the following 54 characters:

0-9 Semicolon

A-Z Period (decimal point)

Space or blank II Quotation mark
Minus sign (Left parenthesis

+ Plus sign) Right parenthesis

* Asterisk > Greater than symbol

I Slash (virgule) < Less than symbol

Equal sign Left bracket

$ Currency sign Right bracket
Comma Colon

The left bracket, right bracket, and colon are Burroughs extensions to the
standard COBOL character set.

Alphabetic Charaders

An alphabetic character consists of any of the following:

A - Z

Space or blank

2-1

Numeric. Characters

A numeric character consists of any of the digits 0 thru 9.

Alphanumeric Characters

An alphanumeric character is any character belonging to the B 7000/B 6000

character set.

Editing Characters

An editing character is any single or fixed two-character combination of the

following set:

B Space or blank insert

z Zero suppress

0 Zero insert

+ Plus

Minus

CR Credit

DB Debit

* Check protect

$ Currency sign

Comma

Period

Punctuation Characters

A punctuation character is any character of the following set:

"
(

)

Comma

Semicolon

Colon

Period

Quotation mark

Left parenthesis

Right parenthesis

Space or blank

Left bracket

Right bracket

I Slash (virgule)

Punctuation characters and one or more spaces may be used as separators and

with character strings as follows:

2-2

a A character-string is delimited on the right by a space or by any

special character except the hyphen,

b. One or more spaces may immediately precede and/or follow any de­
limiter.

c. A punctuation character may be preceded and/or followed by one or

more spaces except when restricted by special insertion editing in
the PICTURE clause.

Relation Characters

The B 7000/B 6000 COBOL compiler accepts the following characters in condi­

tional relations:

Characters Used for Words

> Greater than symbol

< Less than symbol

Equal sign

The character set for words consists of the following characters:

0 9

A Z

Hyphen

2-3

LANGUAGE DESCRIPTION NOTATION

COBOL reference manuals have almost universally adopted a particular form of
notation. This manual uses that notation as described in the paragraphs that
follow.

Key Words

All underlined upper case words are key words and are required when the func­
tions of which they are a part are used. An error will occur at compilation
time if the underlined words are absent or misspelled. Examples of key words
would be:

SAVE-FACTOR

FILE-LIMIT

Optional Words

All words not underlined are optional and are included for readability only.
They may be included or excluded in the source program. If they are in­
cluded, they must be spelled correctly. For example, use of the reserved
words MODE and IS are optional in the RECORDING MODE clause. The clause
might be written as:

RECORDING MODE IS STANDARD

or as:

RECORDING MODE STANDARD

or as:

RECORDING STANDARD

Generic Terms

Lower case words written in a format are generic terms, indicating the
type of word which must be supplied in that format position by the pro­

grammer. Examples of .this would be:

Brackets and Braces

RECORD CONTAINS integer CHARACTERS
66 data-name-I RENAMES data-name-2

When a portion of a general format is enclosed in brackets, that portion may
be included or omitted at the user's choice.

2-4

Braces, { } , enclosing a portion of a general format denote that a selection

of one of the options contained within the braces must be made. In both

cases, a choice is sometimes indicated by vertically stacking the possibili­

tiPs. When brackets or braces enclose a portion of a format, but only one

possibility is shown, the function of the brackets or braces is to delimit

that portion of the format to which a following ellipsis applies.

Ellipsis

The appearance of three consecutive periods (.••)within any format indicates

that the data-bounded by the right bracket, brace, or parenthesis delimiter

immediately preceding the periods and its logically matching left bracket,

brace, or parenthesis delimiter may be successively repeated, depending on

the requirement of the user.

2-5

DEFINITION OF WORDS

A COBOL word is created from a combination of not more than 30 characters
selected from the following:

A Z

0 9

Hyphen

A word may not begin or end with a hyphen, and a space is not an allowable
character in a word. A word is ended by a space or any of the special

characters except the hyphen .

.TYPES OF WORDS

COBOL contains three basic word types (i.e., nouns, verbs, and reserved words)
which are described as follows:

Nouns

Nouns are divided into the following 12 special categories; a brief descrip­

tion is provided for each category:

• Data-Name • Procedure-Name • Figurative Constan+.

• File-Name • Mnemonic-Name • Special Registers

• Record-Name • Index-Name • Event-Name

• Condition-Name • Literal • Lock-Name

Data-Name. A data-name is a.single word and must contain at least one alpha-
betic character. The data-name is used to refer to an item of data, or to a
defined area containing the data.

Example:

STOCK-NAME-2

File-Name. A file-name is a single word and must contain at least one alpha­

betic character. File-names are used to reference a file.

Record-Name. A record-name is a user defined word containing at least one
alphabetic character, used to identify a logical record. A record may be sub­

divided into several data items, each of which is identified by a data-name.

Condition-Name. A condition-name is the name assigned to a specific value, set

of values, or range of values, within the complete set of values that a data

item may assume. The data item itself is called a "conditional variable." The
condition-name must contain at least one alphabetic character and must be unique

2-6

or be able to be referenced uniquely thru qualification. A conditional vari­

able may be used as a qualifier for any of its condition-names. If references

to conditional variable require indexing, or subscripting, then references

to any of its condition-names also require the same combination of indexing,

or subscripting. A condition-name is used in conditions as an abbreviation

for the relation condition; its value is TRUE if the associated condition

variable is equal to one of the set values to which that condition-name is

assigned.

Procedure-Name. A procedure-name is either a paragraph-name or section-name

and may consist entirely of numeric characters. Procedures are referred to by

use of the procedure-name. Numeric procedure-names are equivalent if, and only

if, they are composed of the same number of digits and have the same value.

Literal. A literal is an item of data whose value is identical to the charac­

ters contained within the item. There are three classes of literals: numeric,

floating-point and non-numeric.

a. Numeric Literal. A numeric literal is defined as an item composed of

characters chosen from the digits 0 thru 9, the plus sign or minus

sign, and the decimal point.

An integer numeric literal is a string of digits which may optionally

contain a + or - as the leftmost character and no digits to the

right of the decimal point location. A non-integer numeric literal

must contain a single decimal point.

Examples: Integer Numeric Literal

+601
-234

0
125

Non-Integer Numeric Literal

+98.6
234.8

.005
-.1

The number of digits in a numeric literal may not exceed 23.

If a literal conforms to the rules for the formation of numeric

literals, but is enclosed in quotation marks, it is a non-numeric

literal and is treated as such by the compiler.

b. Floating-Point Literal. A floating-point literal is intended for

use with COMP-4 and COMP-5 data items as an alternative to using a

standard numeric literal. The format of a floating-point literal is:

[~] mantissa E [~] exponent

The mantissa may be signed and must have one decimal point. The

exponent may be signed and must be an integer.

2-7

2-8

Fox; single precision, the range of permissable values is
-47 . 68

8.7581154020 x 10 to 4.31359146673 x 10 • For double precision,
the range of permissable values is 1. 93854585713758583355640 x
lo-29581 to 1.94882838205028079124469 x 1029603 • Zero is also ner­
missable for either single or double precision.

Floating-point literals may be used any place in the langauge where
a non-integer numeric literal is permitted, except that floating-point
literals may not be moved ~o non floating-point data items nor may
they be used in a relation condition involving a non-numeric data item.

Examples:

l.E-40
-.0023E29

+.0012345E-5

+l.2E9500
2.E40
+123.45678901234E20

If.a literal conforms to the rules for the formation of floating­

point literals, but is· enclosed in quotation marks, it is a non­
numeric literal and is treated as such by the compiler.

A floating-point literal may not have embedded blanks. If the
mantissa and/or the exponent are unsigned, they will be assumed to
be positive.

c. Non-Numeric Literal. A non-numeric literal may be composed of any
character of the B 7000/B 6000 standard character set. The non­
numeric literal must be enclosed within quotation marks, and any
spaces contained within the quotation marks are considered to be a
part of the non-numeric literal and are therefore part of the value.
Within the literal, each set of two contiguous quote marks represents
a single quote mark. The non-numeric literal itself cannot exceed
256 characters in length.

Examples:

"2E50"
"+12.3"

"BC. D"

"ZERO"

"B. W. ""BILL"" JONES"

d. Undigit Literal. Hexadecimal literals (UNDIGIT literals) can be used
in comparisons and MOVEs involving unsigned integer four bit character
numeric data items (or as the initial value of those data items).

Undigit Literals must be bounded on both ends by the character "@"

and must contain only the hexadecimal characters O through F. In

addition, an Undigit Literal may be preceded by the figurative con­
stant ALL. An Undigit Literal may not be used in an arithmetic

statement, and may not be moved to an item which requires scaling or

editing. This feature is available. only while the B2500 system dollar
option is set. Refer to Appendix C for a description of the B2500
implementations.

Examples:

@OOCDAEF@

@C@

Figurative-Constant, A figurative constant is a particular value that has

been assigned a fixed name and may be used in any place in which a literal

would be allowed, When a figurative constant is used to represent the cor­

responding value, it must never be enclosed in quotation marks. This does
not preclude the use of a figurative constant as a non-numeric literal when
it must be enclosed in quotation marks, The figurative constant names and

their meanings are shown in the following table.

FIGURATIVE CONSTANTS

ZERO

ZEROS
ZEROES

SPACE

SPACES

HIGH-VALUE

HIGH-VALUES

LOW-VALUE

LOW-VALUES

QUOTE

QUOTES

UPPER-BOUND

UPPER-BOUNDS

MEANING

Represents the value O, or one or more

of the character O, depending on the
context.

Represents one or more spaces or blanks,

Represents the highest value in the
collating sequence. (See figure 2-1).

Represents the lowest value in the

collating sequence. (See figure 2-1).

Represents one or more of the single

character". The word QUOTE may not be
used to bound a non-numeric literal.

Represents the highest value allowable

within the usage of a data item.

2-9

FIGURATIVE CONSTANTS

LOWER-BOUND

LOWER-BOUNDS

ALL literal

MEANING

Represents the lowest value allowable

within the usage of a data item.

Represents one or more of the string of

characters comprising the literal. The

literal must be either a non-numeric

literal or a figurative constant other

than ALL. When a figurative constant

is used, the word ALL is redundant

and is used for readability only.

When a figurative constant represents a string of one or more characters, the

length of the string is determined by the compiler from context according to

the following rules:

a. When a figurative constant is associated with another data item, as

when the figurative constant is moved to or compared with another

data item, the string of characters specified by the figurative con­

stant is repeated character by character until the size of the re­

sultant string is equal to the size in characters of the associated

data item. ALL must be followed by a non-numeric literal or a figur­

ative constant. ALL followed by a numeric literal is illegal.

Example 1:

MOVE ALL "A" TO YEAR.

Where YEAR has been described as having four characters, AAAA would

result.

Example 2:

MOVE ALL "NO-OP" TO FLIGHT-PA'ITERN.

Where FLIGHT-PA'ITERN has been described as having 12 characters,

NO-OPNO-OPNO would result.

Example 3:

2-10

MOVE SPACES TO HEADING.

The area defined as HEADING would contain as many spaces as indicated by

the SIZE or PICTURE clause used to describe HEADING in the DATA DIVISION.

b. When a figurative constant is not associated with another data item,

as when the figurative constant appears in a DISPLAY or EXAMINE

statement, the length of the string is one character. The figura­

tive constant ALL literal may not be used with DISPLAY or EXAMINE.

A. figurative constant may be used any place where a literal appears

in the format, except that the figurative constant, like its literal

equivalent, must not contradict the usage specified for the data

item where it is used. (See figure 2-1.)

Edited numeric items are treated as alphanumeric for comparisons.

Moving ZEROS, UPPER-BOUNDS, or LOWER-BOUNDS to a group of COMP-2

usage resets the digit in any field subordinate to the group.

Example 4:

MOVE ALL QUOTES TO YEAR.

Where YEAR is four characters, '"""' would result.

Figure 2-1 defines the characters used for each of the figurative constants.

The notation of 4"FF" means that the 4-bit (HEX) characters FF are used; 6" "

indicates that the BCL representation of a space is used; 7" 11 indicates that

the ASCII representation of a space is used; 8" 11 indicates that the 8-bit

(EBCDIC) representation of a space is used. The abbreviations for the type

column are AN for alphanumeric, EA for edited alphanumeric, AB for alpha­

betic, NM for numeric and EN for edited numeric. Note that this chart in­

dicates the characters or values used when a data item of a given usage and

category is used in a relation condition with a given figurative constant.

TYPE ZEROS LOWER UPPER HIGH LOW SPACES QUOTES BOUNDS BOUNDS VALUES VALUES

COMP-2 GROUP 0 CHR. 0 CHR. 9 CHR. * * * * ELEM. 0 VALUE 0 VALUE 9's VALUE * * * *
COMP or GROUP 0 0 * * * * * COMP-1 ELEM. 0 0 ** * * * *

AN 811 011 4"00" 4"FF" 411 FF11 411 00" 8" II 8111111
EA 8 110 11 4"00" 4"FF" 4"FF" 4"00" 8" II 8" II II

EBCDIC AB 8" O" 8" II 811 Z" 4"FF" 4"00" 8" II 8"""
NM 0 VALUE 0 VALUE 811 9" 4"FF::gj 4"oo;:gj 8" ·:~ 8'""' ffi EN 0 VALUE 0 VALUE 8"9" 4"FF" 1 4"00" 1 8" Ii 2 8""" 1

AN 6" 0" 6" " 6"9" * * 6" " 6"""
EA 6" 0" 6" " 6" 9" * * 6" " 6"""

BCL AB 6"0" 6" " 6" Z" * * 6" II

6'""' ffi NM 0 VALUE 0 VALUE 6" 9" * * 6" "~ 6""" 1
EN 0 VALUE 0 VALUE 6"9" * * 6" ,. 2 6""" 1
AN 7" 0" 4" 00" 4"FF" 4"FF" 4" 00" 7" " 7"""

ASCII EA 7" O" 4" 00" 4"FF" 4"FF" 4" 00" 7" " 7"""
AB 7" O" 7" " 7" Z" 4"FF" 4"00" 7" " 7"""

* = INVALID *@1aximum Integer Value, Single or Double.
See notes 0 and 2 on following page.

Figure 2-1. Use of Figurative Constants

2-11

The rules for moving a figurative constant are somewhat different when a

figurative constant having an implied alphabetic or alphanumeric category

is moved to a numeric or numeric edited data i tern. (See notes @ and @ .)

Note(!): The figurative constants high-value, low-value, and quote have an

implied alphanumeric category. Therefore, when they are compared in a

relation condition with a numeric data item, the comparison is done accord­

ing to the rules for a non-numeric comparison. When these figurative

constants are moved to a numeric or numeric-edited data item, the move is

done according to the rules for moving an alphanumeric item to a numeric or

numeric-edited item. i.e., the results are the same as moving an alpha­

numeric data item containing the figurative constant in all character posi­

tions. Because the data is moved as if the sending item was described as

an unsigned numeric integer, non-numeric characters in the source are con­

verted to numeric characters. This results in high-value EBCDIC characters

being converted to EBCDIC "9", low-value EBCDIC characters. being converted

to EBCDIC "O", EBCDIC quote characters being converted to EBCDIC "7", and

BCL quote characters being converted to BCL "9".

N"ote@: The figurative constant spaces has an implied category of alphabetic.

It is illegal to move spaces to a numeric or numeric-edited data item.

Special Regis_!.~E.~.: There are several special registers available in B 7000/

B 6000 COBOL. These are as follows:

2-12

•
•
•
•

TALLY

LINE-COUNTER

PAGE-COUNTER

CHECKPOINT-STATUS

•
•
•
•

LINAGE-COUNTER

TODAYS-DATE

TIME (n)

COMPILETIME (n)

a. TALLY. The function of TALLY is to hold information produced by the

EXAMINE statement; however, it may be used by a program as temporary

storage whenever the EXAMINE statement is not being used, The im­

plicit description of TALLY is PIC 9(11), and it is maintained in

COMPUTATIONAL-! form.

b. LINE-COUNTER. The word LINE-COUNTER is the fixed data-name for a

COMPUTATIONAL LINE-COUNTER that is generated for each Report Descrip­

tion in the Report Section to determine the vertical positioning of a

report. One LINE-COUNTER is automatically supplied for each report

described in the REPORT SECTION if a PAGE LIMIT clause is included

in the report description entry.

c. PAGE-COUNTER. The word PAGE-COUNTER is a fixed data-name for a

COMPUTATIONAL PAGE-COUNTER that is generated for each Report Descrip­

tion entry in the Report Section for use as a source data item for

page numbers within a report group. One PAGE-COUNTER is supplied

for each report for which the word PAGE-COUNTER is included as

a source data item in a report group description entry.

d. CHECKPOINT-STATUS. The word CHECKPOINT-STATUS is the fixed data-name
used by the CHECKPOINT/RERUN facility. See the discussion of CHECK-

POINT in Section 7 for a discussion of CHECKPOINT-STATUS.

e, LINAGE-COUNTER. The word LINAGE-COUNTER is a fixed data-name for a

COMPUTATIONAL line counter generated by the presence of a LINAGE

clause in a File Description. The implicit class of a LINAGE­

COUNTER is numeric. The value represented in the LINAGE-COUNTER

at any given time is the number of lines advanced within a printed

page. One LINAGE-COUNTER is supplied for each file in the FILE

SECTION whose FD entry contains a LINAGE clause.

f. TODAYS-DATE. TODAYS-DATE is synonymous with TIME(l5) and will re­

turn the current date in DISPLAY form in the format "MMDDYY".

g. TIME(n). Various times can be made available to a COBOL program by

the use of TIME(n), where n must be an integer ranging from O thru 15:

• TIME(O). Returns the current Julian date, in the form "YYDDD", where

YY is the last two digits of the year and DDD is the day of the year,

in DISPLAY-! form.

• TIME(l). Returns in COMPUTATIONAL form as an integer value the time

of day in sixtieths of a second.

• TIME(2). Returns in COMPUTATIONAL form as an integer value the

elapsed processor time of the program in sixtieths of a second.

• TIME(3). Returns in COMPUTATIONAL form as an integer value the

elapsed I/O time of the program in sixtieths of a second.

• TIME(4). Returns in COMPUTATIONAL form as an integer value the con­

tents of a 6-bit machine clock which increments every sixtieth of a

second.

2-13

• TIME(5). Returns the current date in the format "MMDDYY", where MM

is the month, DD is the day, and YY is the last two digits of the

year, in DISPLAY-! form.
IO

• TIME(~. This is the same as TIME(O) except the value is returned

in DISPLAY form rather than DISPLAY-!.

• TIME(ll). This is the same as TIME(!) except the time is in incre­

ments of 2.4 microseconds rather than sixtieths of a second.

• TIME(l2). This is the same as TIME(2) except the time is in incre­

ments of 2.4 microseconds rather than sixtieths of a second.

• TIME(l3). This is the same as TIME(3) except the time is in incre­

ments of 2.4 microseconds.

• TIME(l4). Returns in COMPUTATIONAL form as an integer value, the

contents of a 36-bit machine clock which increments every 2.4 micro­

seconds. The contents of the machine clock do not necessarily contain

the current time of day and should be used for interval timing pur­

poses on lyi.

• TIME(l5). Returns the current date in the format "MMDDYY", where MM

is the month, DD is the day, and YY is the last two digits of the

year, in DISPLAY form.

• COMPILETIME(n). COMPILETIME(n) is similar to TIME(n). The parameter

range n is the same, but COMPILETIME(n) is not dynamic and it returns

the values of TIME(n) as they existed at compile time, thus enabling

the object program to find out when it was compiled and how long it

took.

NOTE: Most special registers have an implicit class of numeric. Numeric

special registers and attributes can be used nearly anywhere in the syntax of

the PROCEDURE DIVISION that a numeric value is acceptable, such as source

operands in MOVE, ADD, and SUBTRACT statements.

MnemoniG-Name. The use of mnemonic-names provides a means of relating certain

hardware equipment names to problem-oriented names the programmer may wish to

use. See the discussion of SPECIAL-NAMES in Section 5.

Index-Name. An index-name is a word with at least one alphabetic character

that names an index associated with a specific table (refer to indexing in

Section 6). An index is a register, the contents of which represents the char­

acter position of the first character of an element of a table with respect

to the beginning of the table.

2-14

Event-Name. An event-name is a word which contains at least one alphabetic

character and is used as a communication link between processes. The event

provides a means for interrogation between, or interlacing of, related pro­

cesses. See the discussion of the USAGE IS EVENT clause in Section 6.

Lock-Name. A lock-name is a word with at least one alphabetic character that

is used in an asynchronous (parallel) processing environment to name a lock

A discussion of the LOCK statement is contained in Section 7.

Verbs

Another type of COBOL word is the verb. A verb is a single word that denotes

an action that is to take place. These action words are used primarily in the

PROCEDURE DIVISION.

Reserved Words

The third type of COBOL word is a reserved word. Reserved words are used for

syntactical purposes and consist of three types:

Connectives

Optional Words

Key Words

Connectives are used to indicate the presence of a qualifier or to form

compound conditions. There are three types of connectives:

a. Qualifier connectives (OF or IN) associate a data-name or a

paragraph-name with its qualifier.

b. A series connective separates two or more consecutive operands. The

series connective is the comma.

Co Logical connectives that are used in the formation of conditions are

as follows:

AND

OR

AND NOT

OR NOT

Optional words are included in COBOL to improve readability of the statement

format. These optional words may be omitted or included, as the programmer

wishes; however, if an optional word is used, it must be correctly spelled.

2-15

The third kind of reserved word is the key word. A key word is a word whose

presence is required when the construct in which the word appears is used in

the source program. The category of key words includes the verbs previously

mentioned, required words needed to complete the meaning of verb statements

and entries, and words that have a specific functional meaning. A complete

list of reserved words in COBOL for the B 7000/B 6000 is included in Appendix

A. Reserved words can only be used in their specifically defined usage.

2-16

3. CODING FORM

GENERAL

The format of the COBOL coding form (figure 3-1) has been defined by
CODASYL ,. by ANSI, and by common usage. The B 7000/B 6000 COBOL compiler
accepts this standard format. Should program interchange be a major con­
sideration, the user is directed to the ASA standard.

The same coding form format is used for all four divisions of a COBOL pro­
gram. These divisions must appear in proper order: IDENTIFICATION, EN­
VIRONMENT, DATA, and PROCEDURE.

SEQUENCE FIELD (CARD COLUMNS 1-6)

The sequence field may be used to sequence the source program. Normally, a
numeric sequence is used; however, the B 7000/B 6000 compiler allows any
combination of characters. A warning message is given if there is a se­
quence error. The B 7000/B 6000 compiler provides for insertion or replace­
ment of card images during compilation, controlled by the sequence field.

(See Section 13, COBOL COMPILER.)

CONTINUATION INDICATOR (COLUMN 7)

Column 7 has several functions as follows:

a. A $ symbol in column 7 is used for cards which specify options for

compiler operation. (See Section 13.)
b. If column 7 contains an asterisk(*), the rest of the card is con­

sidered to be a comment and, hence, is not "compiled" to produce
object code.

c. If column 7 contains a slash(/), the listing, if any, is advanced
to channel 1 and the card is considered to be a comment card.

d. The presence of a hyphen (-) indicates that the last word or literal
on the previous card is not complete, but is continued on this card,

Words and numeric literals may be split at any point by placing a hyphen in
column 7 of the following card. Any rightmost blank spaces on a card are
ignored as are the leftmost blank spaces on the continuation card.

3-1

C;J
I

!.'-'

PROGRA'A

PPOGRM~Y.ER

PACE J LINE A B
NC. NO.

f JI 4 6 7 8 11 12

I ..1. I I 01 T _J_ _J_ .l. .l. _J_ .l.

J. .l 02 I J. I .l. l _L _L

.l. I I 03 I I __!_ _J_ .J..J.J.

.l.'104~ .1 _J_ _J_ _J_ J. _L

~51 I .i ..1. .l ..1. .J.. J.

rJ..J.Iosl 1 .l.J. I I L

J...1101 1 I _l ..l _L J. _l _J_

L ' CB I _J__J__J_ ..1. .1 J.
I

..1. J. _J_ f.-Li r9 , 1 1 _J_

1 I !10 I! I (_L.l J. l. .l
I I I I

.l. l. _l J.J__l11 j_IJ..

J....L L2i J..l.J. J.. l. .l.

..L..L 13 I I .J...J...l J. J l

.1., T,~l • 1 ..1.. I 1 ii

.l. J. I 5 I .J.. .l. .l. I _] J

J.. ..L 1ei_ J. .l .l .l. .1 .l

J.. ..L 11 I ...1. .l. l lJ..l

~IS~ J. _l J. J. l. I

I 9 I .l J. .l I _l j_

~- . T2ol _J_ J_ .l .l. J. ...!.

J I .l. ..1 ..1. .l. J__J_

.. LJ. ! I I _J_ ..1 .l. .l. J_ _J_

..L. I I ll _l _J_ .l. ..1. _J_ _J_

.1. _J_
I

I I _l .l. LI

..1...1 l _J_ _I_ .l. .l. _J_ .l. . • 8 ,, 12

16 20

J.._J_ .l. ..l.1..l

J. .1 .l I J._J_

.l.J. J. J. .l...L

..l.J. _J_ .l. .l...L

J.. .l ..1. _J_ J_ ..L

J _ _l _J_ _l .l__l_

_J__J_ .l .l. J_ .l.

.l.J. _J_ J. .l...l

.l. J. .J.. .J.. J_ .l.

J..J. J. I j_.J..

..Li J. .l. I J.

.l J. J. _!_ _Ll.

_l__J_ _J_ ..L ..L..L

J._J_ _J_ _J_ _L_J_

J _L .l. .l. _J_ _J_

_l__J_ .l J. ..L..l

.l ..1. .l _J_ ..Li

..L L l l. u

..!.__!_ .l ...1. ..L_!_

.l..l. .l. .l. ..1. .1

_l__J_ _J_ _ _L _J__J_

J._L __!_ _J_ .l__J_

..l..l. _J_ _J_ J.._J_

LLJ _J_ _J_J..

.l_i..l. -1..L..l
rn ?n

Burroughs COBOL CODING FORM
- l REQUESTED BY PAGE OF

l OATE !DENT. 73 eo
..1. .l. .l..l. _J_ J_ .1 ..1.

z

24 28 32 36 40 44 48 52 56 60 64 '68 _172

..L..l.1 .l. .l. ..1. .l. .l. .1 ..L J. J. .1 ..l...l ..L J.J. .l..l. .l. .1 ..l.J. .l. J.._J_ .1 _Ll .l J. J. J._J_ J. J.

.l. J. .1 .l. J. .l. .1 .l. .1 ..1. .l J. .1 J__J_ .l. Ll .1..1. J. _l_ LJ .J.. .l. ' .l .J.. J. .l J. ..L .J.. .1.l. .J..

.J.. .J.. .l J.J...l. .l. .l. .1 ..LJ...L .1 .1...1. .J.. ..L.l .l..l .l .l. ..LJ. _J_ J._J_ .1 _l J. ll...L _J_ _l J. ..L

J J. .1 _J_ ..1. .l. ..L ..1. ..1. ..L J. ..1. _l _J_ I J. j_J_ ..l..l _L _l ..LJ. _J_ J._J _i_l .l .1 _l J.. J. .l J. J.

J _J_ l. .l. J. .l. J.. J.. J_ J...J..J.. .l .l...l. ..1. ..L..L .l J. J. _l J....L J. J__L ..L .l ..1. _J_ ..1. .l. _J__J_ J_ _L
I

J _l_J_ _J_ .l. J. _J_ J_ _J_ _J_ __! _l l. l .l _JJJ _LI J .l .l ..L J. ..l..l. .l. .l. .l. l. J. .l .l.J. J.. .l.

J _L _l _[_ J. ..1. J_ .l. _J_ ..1. .l. ..1. J. .1 _J_ _L ..L_l_ _L J ..1. .l J_ .l. _J_ J..J. ..1. J. J. J.J...L J...l .l. ..L

.l. J. .l .l. J. .l. ..1. ..1. ..L ..L J. J.. .J.. .1 J. ..1...LJ.. .l _L J. J_ J....l. .l. J_J. ..1. _J_ J. l. J. ..1. J._J_ J_ ..1.

.l. J. .l .J.. J. ..1. ..1. .1. ..L J.. J. J.. .J.. .l J. _L ..L..L J. .J.. .J.. .1. .l..l. .l. J...l .l. _J_ .J.. J. .J.. .l .l. J. .J.. ..L

.l J. ..l. .l J.. ..1. .1. .l ..L ..L .l. .l J. ..l..l. J. .l.l. -1.l. .l .l ..L..L J. J_J.. ..L _L J. J_ J. J_ .l.J. ..L .l

.l. J. .l J..l.J.. .l. .1. J.. ..LJ..l .l j__L .lJ....L .1 _l J.. ..L ..l...l. .l. J..i ..1. -1.J.. J...l. J.. .J....l J.. .l

Ll l l L_l JLl J_ l. J. _I I l J...L.l .l-1 J. J.. J....l. ...1. J....l. ..1. .l. ..l. .l ..l. J.. ...1. .l -1.l

J _J__J_ .l. _J_ ..1. J. .l. .l. ..1. _J_ .l. .1 _J_ _J_ .l. .l..l. _J_ __! .l. J. .l..l. _J _] .l. J J..J.. _L l 1 .J....l J.. J..

J _J_ .1 .l. .l. I .l. _J_ ..1. _J_ _J_ _J_ .1 _J_ _J_ .l. _J_ J.. _J_ .l. .l. _J_ J_.l. .l. .l..l. _l _L .l. J. _J_ I I i_J. I

J J. .1 .l. .l. .l. ..1. .l. .l. ..1. _J_ .l. J. _J_ _J_ .l. J_J.. _J_ .l. .l. _J_ _l .l. _J_ .l..l. J.. _J_ I _J_ _l l lJ.l..L

.l. _L_L .l. J. .l. ..1. ..L J.. J.. J. J.. ...1. ...1. .l J.J....L .l J. .1. .1 _J_ _l_ _J_ .l.l _l _J_ .l. _J_ _l_.l. .l .l..l _L

J. J.J. J.. J. .l. .l. ..1. ..1. ..1. ...1. .l l. l. .l .l J__J_ J. ...1. .l J_ .l ..l. _J_ .l.l .l. _J_ .l. ' _J_ .l .1.1.l _]_

J _J_ l J. _] .l _]JJ_ ..L _L _l_ I JJ. .l J_J_ _l _L .l .l _J_ _J_ _J_ .l.l _J_ _l_l. _l J.. I ..LI J...l.

J. J. ..l. j_ I _l _l__.L J.. ..L .l J.. .l .l _l J.. Ll .l ..l. ...1. ..L J....l. .l. .. U _l J. .l. J....LJ. _l J_ I .J..

.l. .l..J.. .l. .l. .l. ...!. ...!. ..1. ..1. .1..1. .1 J. .l. ..1...1..l .1 J. .J.. J_ ..!....!. .l. J....l. .J.. J. .J.. j_ I ...1. J....L_J_ .l.

.l _!_..l. _J_ _J_ ..1. .l. .l .l. _J_ ..1 ..1. .l. _J_ _J_ J.. J_J_ J_ ...1. .l J_ .1.l _J_ I J_ J.. ...1. _J_ J.. _J__J_ _J__J__J_ ...1.

J _J__J_ .l. _J_ .l. .l. .l. .l. ..1. _J_ ..1. _J_ -1..l _J_J_J_ .1 _J_ _J_ .l .1.l. .l. .l...l. .l. .l. _l .l. _J__J_ _l LL .J.

J ..i...l. .1..1..L. ..L..L.l ..L. .l. .l ...1. .l ..i ..L ..L..L J_ ..L J.. .l. J. ..1. ..L ..L.l ..L .l ..l. ..l...L..i J....L...l. ...1.

J _J_ .l ' .l .l. .l .l .l .l. .l .l .l ..l. ...1. .l _l_..l .l ...l. _l .l J. ..1. J. .l.l .l .l J. .l..1....1. I .l..l. _J_

J ..1 J. ..L .l J.. ..L .l ..L J.. J. .l l. ..1 ...1. .l ..L..L J. ..1 ...1. .1 .1.1 .l ..L..L ..L J. J. .1. _J_ .l J..J.. I _J_
?4 ?R ~' AA 40 44 "' AA An .. 64 68 72

Figure 3-1. COBOL Coding Form

Non-numeric literals are split in a slightly different fashion. On the in­

itial card, starting from the quotation mark, all information thru column 72

is taken as part of the literal, and on the next card a quote mark must be

used to indicate the start of the second part of the literal.

MARGIN A (COLUMNS 8 THRU 11)

DIVISION, SECTION, and PARAGRAPH headers should always begin in margin A. A

division header consists of the division name (IDENTIFICATION, ENVIRONMENT,

DATA, or PROCEDURE), followed by a space, then the word DIVISION followed

by a period.

A section header consists of the section-name, followed by a space and then

the word SECTION, followed by an optional priority number, followed by a

period. The priority number, if used, is for compatibility with other systems

and is ignored unless the $ option SECGROUP is set.

A paragraph header consists of the paragraph-name followed by a period. The

first sentence of the paragraph may appear on the same line as the paragraph

header.

Within the IDENTIFICATION and ENVIRONMENT divisions, the section and paragraph

headers are fixed and only the headers shown in this manual are permitted.

Within the PROCEDURE DIVISION, the section and paragraph headers are defined

by the user. Within the DATA DIVISION, level indicators should start in MAR­

GIN A.

MARGIN I (COLUMNS 12 THRU 72)

All entries which are not DIVISION, SECTION, or PARAGRAPH headers should start
in margin B.

RIGHT MARGIN (COLUMN 72)

The text of the program must appear between columns 8 and 72, inclusive. A

word or statement may end in column 72.

IDENTIFICATION (COLUMNS 73 THRU 80)

The identification field may contain any information desired by the user. The

field is ignored but is reproduced on the output listing by the compiler.

3-3

PUNCTUATION

The following rules of punctuation apply to the writing of COBOL programs

for the B 7000/B 6000.

a. A sentence is terminated by a period followed by a space. A
period may not appear within a sentence unless it is within a

non-numeric literal or is a decimal point in a numeric literal or
PICTURE string ..

b. Two or more names in a series may be separated by a space or by a

comma. If used, commas can appear only where allowed.
c. Semicolons (;) are used only for readability and are never required.

If used, semicolons can appear only where allowed.

d. A space mus.t never be embedded in an identifier (or a name).
Hyphens should be used instead. (A hyphen may not start or termi­

nate an identifier.) For example:

NET-PAY

A space, or spaces, may appear as part of a non-numeric literal.

SAMPLE CODING

An extract sample from a source program, showing the continuation of both

words and non-numeric literals, is illustrated in figure 3-2.

3-4

trJ
I

(11
..........
trJ
I
0)

PROGRAM-.IER

I I

4

Figure 3-2.

Burroughs COBOL CODING FORM

REQUESTED BY

s

Example of Continuation of Words and Literals

PAGE

IOENT. 73

OF

80
t

z

4. IDENTIFICATION DIVISION

GENERAL

The IDENTIFICATION DIVISION must be included in every COBOL source program.

The structure of this division is as follows:

{ ID DIVISION. }
IDENTIFICATION DIVISION.

[PROGRAM-ID. comment entry

[AUTHOR, comment entry .]

(INSTALLATION. comment entry

(DATE-WRITTEN. comment entry

(DATE-COMPILED. comment entry

(SECURITY. comment entry .]

. l

.]

.]
. l

The IDENTIFICATION DIVISION must begin with the reserved words IDENTIFICATION

DIVISION followed by a period and a space and PROGRAM-ID followed by a period

and a space. IDENTIFICATION may be abbreviated as ID. All other entries in

this division are optional and may appear in any sequence.

The heading and paragraph-names should begin in margin A. With the exception

of the DATE-COMPILED paragraph, the entire division is copied from the input

source program and listed upon the output listing.

When DATE-COMPILED is included, the first line of the entry is replaced by the

current date, in the form MM/DD/YY, two digits each for month, day, and year,

and the current time in the form HH:MM, AM/PM. Succeeding lines of this

paragraph will be reproduced from the input source program.

CODING THE IDENTIFICATION DIVISION

Figure 4-1 provides an example of IDENTIFICATION DIVISION coding.

4-1

~
I
I:\:)

PROGRAM

PROGRAT•V.!ER

PACE I LINE
NC. (<0.

3 4

Burroughs COBOL CODING FORM

REQUESTED BY PAGE OF

S' DATE fq 'J)ec.. !DENT.

36 40 44 48

Figure 4-1. IDENTIFICATION DIVISION Coding

5. ENVIRONMENT DIVISION

GENERAL

The ENVIRONMENT DIVISION is the second division of the source program. It is

used to specify the computer being used for the compilation, to specify the

computer to be used by the object program, and to specify the files to be

handled by the object program. It also can be used to specify the input­

output procedures to be utilized.

The ENVIRONMENT DIVISION must be included in every COBOL source program and

must begin with the reserved words ENVIRONMENT DIVISION followed by a period

and a space.

The general structure of the ENVIRONMENT DIVISION is as follows:

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER. comment entry.]

[OBJECT-COMPUTER. object-computer entry.]

[SPECIAL-NAMES. special-names entry.]]

[J I-O SECTION. }
~INPUT-OUTPUT SECTION.

FILE-CONTROL.

(I-O-CONTROL.

file-control entry.

input-output-control entry].]

The ENVIRONMENT DIVISION is comprised of two sections: the CONFIGURATION

SECTION and the INPUT-OUTPUT SECTION.

The CONFIGURATION SECTION deals with the characteristics of the source com­

puter and the object computer. The section is divided into three paragraphs:

the SOURCE-COMPUTER paragraph which describes the computer configuration on

which the source program is compiled, the OBJECT-COMPUTER paragraph, which

describes the computer configuration on which the object program produced by

the compiler is to be run, and the SPECIAL-NAMES paragraph, which relates

hardware names used by the B 7000/B 6000 COBOL compiler to the mnemonic-names

in the source program.

5-1

The INPUT-OUTPUT SECTION deals with the information needed to control trans­

mission and handling of data between external media and the object program.

This section is divided into two paragraphs: the FILE-CONTROL paragraph

which names and associates the file with external media, and the I-O-CONTROL

paragraph which defines special control techniques to be used in the object

program.

The definitions of the entries for the contents of the ENVIRONMENT DIVISION

paragraphs are given on the following pages.

5-2

CONFIGURATION SECTION

CONFIGURATION SECTION

The CONFIGURATION SECTION contains information concerning the system to be

used for program compilation, SOURCE-COMPUTER, and the system to be used for

program execution, OBJECT-COMPUTER. The CONFIGURATION SECTION is required

only when one of its paragraphs is to be used.

5-3

I SOURCE-COMPUTER I
Source-Computer

The function of this paragraph is to describe the computer upon which the

program is to be compiled.

The format of this paragraph consists of two options which are as follows:

Option 1:

SOURCE-COMPUTER. COPY library-name

[FROM seq. no] [{~UGH} seq. no. J
[REPLACING word-I BY text-I

[, word-2 BY text-2] ... J
Option 2:

SOURCE-COMPUTER. comment entry.

For a discussion of the COPY function, refer to Section 8, THE COBOL LIBRARY.
An example of this paragraph would be:

SOURCE-COMPUTER. B-6700.

5-4

OBJECT-COMPUTER

Object-Computer

The function of this paragraph is to describe the computer on which the pro­

gram is to be executed and to specify core and disk size limitations when

using the SORT.

The format for this paragraph consists of two options which are as follows:

Option 1:

OBJECT-COMPUTER, .QQ.'e.I. library-name

r FROM seq. no.J [{~UGH} seq, no. J
tREPLACING word-I ·BY text-I

[, word-2 BY text-2] ... J
Option 2:

{
B-7700}

OBJECT-COMPUTER. B-6700
word-3

[' MEMORY SIZE integer'~}]
\MODULES

[, DISK SIZE integer { WORDS }]
MODULES

[, SEGMENT-LIMIT IS integer]

[,[integer] hardware-name] ...

c PROGRAM COLLATING SEQUENCE IS alphabet-name] .

For a discussion of the COPY function, refer to Section 8, THE COBOL LIBRARY.

Word-3 is any single COBOL word.

The MEMORY SIZE option is used only in conjunction with a SORT statement.

The SORT statement may also specify MEMORY SIZE and will take precedence over

the OBJECT-COMPUTER paragraph. When MEMORY SIZE is not specified in the SORT

statement and not specified in the OBJECT-COMPUTER paragraph, a default MEMORY

SIZE of 12,000 words will be assumed. If this option is used and a SORT state­

ment does not appear in the program, the option will be ignored by the com­

piler. One module of memory is equivalent to 16,384 words of memory.

The DISK SIZE option is used only in conjunction with the SORT statement. If

this clause is omitted in a sort program, DISK SIZE will be assumed to be

5-5

OBJECT-COMPUTER

900,000 words. If this option is used and a SORT statement does not appear

in the program, the option will be ignored by the compiler. One module of

disk is equivalent to 1.8 million words of disk.

The SEGMENT-LIMIT clause can be used to control the compiler in segmenting

a program. Segmentation normally occurs at the first paragraph name en­

countered beyond the point at which 1500 words of code have been produced

and at the beginning of each SECTION of the PROCEDURE DIVISION. When

SEGMENT-LIMIT is specified, the SEGMENT-LIMIT value is used instead of 1500

words. SEGMENT-LIMIT, when specified, is assumed to be in words. The maxi­

mum SEGMENT-LIMIT specification is 4095 words.

Segmentation for the initialization code of the WORKING-STORAGE SECTION will

occur automatically is the SEGMENT-LIMIT has been reached,

The hardware-name list is for documentation purposes only.

If the ANSI 74 PROGRAM COLLATING SEQUENCE clause is specified, the program

collating sequence is the collating sequence associated with the alphabet­

name specified in that clause. This collating sequence is used to determine

the truth value of any nonnumeric comparisons.

If the collating sequence clause is not specified, the native or EBCDIC

collating sequence is used to determine the truth value of non-numeric

comparisons.

The ANSI74 system dollar option must be set if the PROGRAM COLLATING SEQUENCE

clause is to be used. Refer to Appendix B for a description of the ANSI 74

implementations.

5-6

SPECIAL-NAMES

Special-Names

The SPECIAL-NAMES paragraph relates B 7000/B 6000 hardware names to user­
specified mnemonic-names and relates internal program names to external
program names for tasks.

The format for the SPECIAL-NAMES paragraph consists of two options which are:

Option 1:

SPECIAL-NAMES. COPY library-name

[FROM seq. no][{ ~UGH} seq. no.]

[REPLACING word-I BY text-1

[, word-2 BY text-2] ... J
Option 2:

SPECIAL-NAMES,

[£QRRENCY SIGN IS literal-!]
[, DECIMAL-POINT IS COMMA)
[, hardware-name IS mnemonic-name] ...

[, CHANNEL integer IS mnemonic-name]

[, literal-2 IS mnemonic-name] ...

For a discussion of the COPY function, refer to Section 8, THE COBOL LIBRARY.

This paragraph is required if the DECIMAL-POINT or the CURRENCY SIGN clauses

are used.

Literal-I in the CURRENCY SIGN clause is used in the PICTURE clause to repre­

sent the currency symbol. Literal-I must be a non-numeric literal and is
limited to a single character and must not be one of the following charac­

ters:

a. Digits 0 thru 9.
b. Alphabetic characters A, B, C, D, J, L, P, R, S~ V, X, Z, and space.

c. Special characters * + () II

If this clause is not present, the currency symbol ($) is used in the

PICTURE clause.

The clause DECIMAL-POINT IS COMMA. means that the functions of comma and

period are exchanged in the PICTURE character-string and in numeric literals.

5-7

I SPECIAL-NAMES I
Hardware-names may be any of the hardware-names listed at the end of the
discussion of the FILE-CONTROL paragraph.

The CHANNEL integer clause is used to associate a mnemonic-name with a
channel in the printer carriage control format tape. The integer may have
positive values ranging from l thru 11. This mnemonic-name may be used
only in a WRITE statement.

The last clause listed above is used to equate a mnemonic-name to an
external program-name (code file title) for purposes of inter-program
communication.

Literal-2 is a file-title and is in the form:

ID [/IDl ...

where each ID (up to a maximum of 14) is a non-numeric literal of l to 17

characters in length.

Example:

"UP" / "TO" / "SEVENTEEN" is XYZ

The alphabet-name clause is an ANSI 74 addition to the existing SPECIAL-NAMES
paragraph. The ANSI74 system dollar option must be set in order to make use
of this feature.

Option 2 of the alphabet-name clause can be used to construct a special
collating sequence in the SPECIAL-NAMES paragraph using the NATIVE (EBCDIC)
character set.

The Options are as follows:

5-8

Option 1:

[· alphabet-name IS l STANDARD-1} ·]
NATIVE
BCL

Option 2:

, alphabet-name IS

l
THROUGHl

literal-1 literal-2
THRU

ALSO li teral-3 [ALSO li teral-4]

lTHROUGHl
literal-5 literal-6

THRU

ALSO literal-7 [• ~ literal-SJ ...

I SPECIAL-NAMES I
The literals specified in Format 2 of the alphabet-name clause are implemented

as follows:

a. If numeric, they must be unsigned integers and must have a value from

1 through 256.

b. If nonnumeric and associated with the THROUGH or ALSO phrase, they

must be one character in length.

c. In Format 2 of the alphabet-name clause, a given character must not

be specified more than once in an .alphabet-name clause.

The general rules regarding the alphabet-name clause are as follows:

Rule

1. The alphabet-name clause provides a means for relating a name to a

specified character code set and/or collating sequence. When alphabet­

name is referenced in a PROGRAM COLLATING SEQUENCE clause, the

alphabet-name clause specifies a collating sequence. When referenced

in a CODE-SET clause, it specifies a character code set.

2. If the STANDARD-1 phrase is specified, the character code-set or

collating sequence is ASCII.

3. If the NATIVE phrase is specified, the character code-set or collating

sequence is EBCDIC.

4. If the BCL phase is specified, the character code-set or collating

sequence is BCL.

5. If Format 2 is specified, the alphabet-name may not be referenced in

a CODE-SET clause. The collating sequence identified is that defined

according to the following rules:

1: The value of each literal specifies:

a. The ordinal number of a character within the native character set, if

the literal is numeric. This value must not exceed the value which

represents the number of characters in the native character set.

b. The actual character within the native character set, if the literal

is non-numeric. If the value of the non-numeric literal contains

multiple characters, each character in the literal, starting with the

leftmost character, is assigned successive ascending positions in the

collating sequence being specified.

Rule 2: Tne order in which the literals appear in the alphabet-name clause

specifies, in ascending seqeunce, the ordinal number of the character

within the collating sequence being specified.

Rule 3: Any characters within the native collating sequence, which are not

explicitly specified in Format 2, assume a position in the collating

sequence being specified, greater than any of the explicitly specified

5-9

I SPECIAL-NAMES I
characters. The relative order within the set of these unspecified

characters is unchanged from the native collating sequence ..

Rule 4: If the THROUGH phrase is specified, the set of contiguous characters

in the native character set beginning with the character specified by

the value of literal-1, ending with the character specified by the
value of literal-2, is assigned a successive ascending position in

the collating sequence being specified. In addition, the set of

continguous characters may be in either ascending or descending order.

Rule 5: If the ALSO phrase is specified, the characters of the native

character set specified by the value of literal-1, literal-3,

literal-4, ... , are assigned to the same position in the collating

sequence being specified.
Rule 6: The character that has the highest ordinal position in the program

collating sequence specified is associated with the figurative

constant HIGH-VALUE.

Rule 7: The character that has the lowest ordinal position in the program

collating sequence specified is associated with the figurative

constant LOW-VALUE.

Refer to Appendix B for a description of the ANSI 74 implementations.

5-10

INPUT-OUTPUT SECTION

INPUT-OUTPUT SECTION

The INPUT-OUTPUT SECI'ION contains information concerning files to be used in
the object program, the manner of recording used or to be used, special rerun
points, and the presence of any multiple-file tape.

5-11

1 ·FILE-CONTROL: I
FILE-CONTROL

The F~LE-CONTROL paragraph names each file, identifies the file medium, and
allows particular hardware assignments. This paragraph also specifies alter­
native input-output areas. The format for FILE-CONTROL consists of two

···options which are:

Option 1:

FILE-CONTROL. COPY library-name

I ;FROM seq. no] [{~UGH} seq. no.]

tREPLA.CING word-1 BY text-1
[, word-2 BY text-2] .. .] .

Option 2:

FILE-CONTROL.

SELECT [~~g~~L J~ECEIVED BY { =ERENCE }] [OPTIONAL)

ASSIGN TO integer-1 [~ integer-2) (INTERCHANGE)
[DIRECT) hardware-name-I [, hardware-name-2)

file-name

. (.QR hardware-name-3 [, hardware-name-4) ..•)

(SINGLE) [BY { gftNDER} J [sAvEJ

l;RESERVE {~~teger-3\ } [ALTERNATE [!::·sJJ] L data-name-I ·

[f FILE-LIMIT IS \ {data-name-2}{THROUGH}) d~ta-name-3 \l
; l FILE-LIMITS A.RE { Ii teral-1 THRU \ i~geraI- 2 f J

[. ACCESS MODE IS { SEQUENTIAL \]
' . RANDOM (

[; ACTUAL KEY IS data-name-4).

[; ORGANIZATION IS SEQUENTIAL]

[; FILE STATUS IS data-name-5].

With the exception of the ASSIGN clause which must follow the SELECT clause,
the clauses may appear in any order.

Each file described in the DATA DIVISION must be named once and only once as
file-name in the FILE-CONTROL paragraph. Each file specified in the SELECT
clause must have a File Description entry or a Sort-Merge File Description
entry in the DATA DIVISION.

5-I2

FILE-CONTROL

COPY Function

For a discussion of the COPY function refer to Section 8, THE COBOL LIBRARY.

SELECT Clause

Each file described in the DATA DIVISION must be named once and only once as a

file-name in the FILE-CONTROL paragraph following the key word SELECT. Each

selected file must have a file description entry in the DATA DIVISION. Hyphens

should not be imbedded in file-name so as to avoid operational problems of the

MCP. Selection of file-names should be done judiciously since these names

must be used when control cards are needed. Although the compiler allows

file-names to be up to 30 characters in length, the MCP will allow up to 17

characters and truncate any excess. File-names containing embedded hyphens or

having a digit as the first character of the name, must be enclosed in quotes

in MCP messages and control cards.

If LOCAL is used, then the file is a formal parameter for a procedure and may

only be named in WITH and USING clauses in the declarative USE statement asso­

ciated with this procedure.

The OPTIONAL clause may only be specified for input files. Its specification

is required for input files that are not necessarily present each time the

object program is executed.

Files and direct files may be declared GLOBAL by an extension to the syntax

of the SELECT clause.

Example:

SELECT GLOBAL FYLE ASSIGN TO DIRECT DISK.

There is a restriction for non-direct files when the GLOBAL clause is used.

The first record description must match a similar record description for the

file in the host, by name and array type. (The $ option GLOBAL has no effect

on ENVIRONMENT DIVISION or FILE SECTION entries.)

The ASSIGN clause must be used to associate an input or output file with the

proper hardware device. The full USASI-1968 and ANSI-1974 syntax for "Hardware­

name" is recognized by this compiler. "Hardware-name-1" is used by the compiler

for device assignment. The remaining hardware-names are ignored, Except in the

case of sort files and disk files, integer-I is optional and used for documenta­

t~on only. (Refer to the B 7000/B 6000 System Software Operational Guide,

Volume l, Form No. 5001563, for information concerning SORT files.)

5-13

FILE-CONTROL

If a file is assigned to integer-! SORT-TAPES, then integer-! must be between

3 and 8, inclusive, and the RESERVE integer-3 ALTERNATE AREAS option is pro­

hibited unless integer-3 equals 1.

If a file is assigned to SORT DISK AND integer-! SORT-TAPES, then integer-!

must be between 3 and 8, inclusive.

DIRECT hardware-name is a B 7000/B 6000 extension which provides the user pro­

grammatic control of input-output operations and the ability to use the same

input or output file in two or more asynchronously processed programs.

When DIRECT hardware-name is used, no input-output buffers are assigned and

the physical records of the file are read directly into or written directly

from the WORKING-STORAGE area provided by the programmer. The RESERVE ...

and FILE-LIMIT(S) ... clauses are not used on DIRECT files.

The ASSIGN TO integer-1 DISK is used to designate the maximum number of logical

records to be placed in a file on disk. It must be specified only for files

which are to be created on disk. For the integer-1 * integer-2 DISK option, a

file may be thought to contain partitions or areas. Each area is indepen­

dently allocated when actually referenced. For example, a file which oc­

casionally contains 10,000 records, but normally only 1000, may be divided

into 10 areas, each with 1000 records by stating: ASSIGN TO 10 * 1000 DISK.

When only one integer is specified, the file will consist of a single area of

"integer" size. When neither of the integers are specified, the MCP will make

the assignment based on the values available for an existing file of the same

name at execution time and, in fact, use the disk area and the header of the

existing file. If no file exists with the identical title, at execution time,

then the value 20 * 1000 is assigned by the MCP.

When this "area size" option is used, the maximum value permitted for integer-!

is 1000; for integer-2, 1,048,575.

The SAVE option, when used with the SELECT clause, provides system compat­

ibility with B 3700 COBOL. This feature is available only while the B2500

system option is set. Refer to Appendix C for additional information con­

cerning the B 2500 system dollar option.

Using the SAVE option in the SELECT clause causes the PROTECTION attribute to

be given the value protected in the file description,

5-14

FILE-CONTROL

RESERVE Clause

The RESERVE option allows an additional number of input or output buffers to
be supplied for file-name. Two buffers are automatically supplied when the
option is omitted. If NO is used, then only one buffer is reserved (minimum
specification). When a RESERVE clause is present, the integer value of

integer-3 or data-name-1 determines the number of buffers supplied, in addi­
tion to the minimum number of one. Data-name-1 is used for dynamic allocation
of buffers and must be defined as an elementary numeric item.

For object program efficiency, do not reserve more alternate areas than are
needed in the program. Also, do not specify NO ALTERNATE AREAS for a file
unless the references to the files are very infrequent. The advantage of
two and only two output areas being supplied automatically (in the absence
of the RESERVE option) is increased efficiency in the object program.

Disk File Options

The FILE-LIMIT, ACCESS MODE, and ACTUAL KEY clauses apply to disk files and
dispack files. (The ACCESS MODE and ACTUAL KEY clauses are also used with data

communications files, but their meanings are slightly different. All program­
ming considerations for data communications files are discussed in Section 10.

FILE-LIMIT Clause

In the FILE-LIMIT clause, the pair of operands associated with the key word
THRU represents a logical segment of the file. The values of data-name-2
and data-name-3 or literal-1 and literal-2 correspond to the low and high
values of the ACTUAL KEY of records available to the program; that is, the
logical beginning of a disk file is considered to be that address repre­
sented by literal-1 or data-name-2. The operand END specifies that the
end of the disk file is to be the last record written before use of the
file as input.

The value of the data items as specified in the FILE-LIMIT clause is utilized
by the system only at the time that the associated disk file is opened by
the execution of the OPEN statement.

In order to ensure that FILE-LIMITS will work correctly, the file must be
opened explicitly by an OPEN statement. If data-names are declared to be

file-limits, the value of those items at the time of the OPEN statement

determines the limits of the file while it is open. Opening the file by
setting the attribute MYUSE and OPEN may cause unpredictable AT END or
INVALID KEY branching to be taken for subsequent READ or WRITE statements.

FILE-LIMITS may be used on either RANDOM or SEQUENTIAL input, output, and
1/0 files.

5-15

FILE-CONTROL

ACCESS Clause

When ACCESS MODE SEQUENTIAL is specified, records are handled sequen­

tially. The next record to be read or written is that contiguous to

the current record. No ACTUAL KEY entry is necessary for the SEQUENTIAL

mode.

If the ACCESS MODE RANDOM clause is specified, the ACTUAL KEY entry must also

be specified. In this case, the MCP obtains each record randomly; the next·

record to be read or written is that record addressed by the ACTUAL KEY entry.

When the ACCESS clause is not specified, ACCESS SEQUENTIAL is implied.

ACTUAL KEY Clause

The ACTUAL KEY clause is optional for sequential access files. When a

SEQUENTIAL access file specifies an ACTUAL KEY, data-name-4 will be updated to

contain the relative record number of the current record. The current record

is the most recently read or written data record. Sequential access files

opened input or output increment the value of actual key by 1 for each READ or

WRITE. Sequential access files opened input-output, also increment by 1,

except when a record is updated with a WRITE following a READ; thus, properly

reflecting the current record number at all times.

For sequential files whose ACTUAL KEY is specified:

5-16

a. The MCP will always copy its internal key into the ACTUAL KEY, ex­

cept for DIRECT files which must use a direct area attribute.

b. Programmatic changes of the ACTUAL KEY will not alter the access

sequence of a serial file unless a SEEK is explicitly given after

altering the ACTUAL KEY and prior to a READ or WRITE. For example:

MOVE 80 TO ACT-KEY.

SEEK MASTER-FILE.

The above statements show how to set an ACTUAL KEY to point to a

particular record and then resume processing at record #80.

c. When a SEEK statement is used to start the accessing of the sequen­

tial file at a particular point within the file, the contents of

ACTUAL KEY cannot contradict the FILE-LIMITS restriction (i.e. , the

ACTUAL KEY value must be within the specified bounds of the file).

If the ACTUAL KEY value is not within the specified bounds, an

INVALID KEY error occurs when the file is accessed.

I FILE-CONTROL· I
If the ACCESS MODE RANDOM clause is specified, the ACTUAL KEY entry must

contain the relative record-number of the record to be read or written. The
contents of data-name-4 are used by the SEEK statement (or, in its absence,
the READ and WRITE statements) to locate a specific disk record. Therefore,

the location (address) must have been placed in data-name-4 prior to the exe­
cution of a SEEK, READ, or WRITE statement.

Values of data-name-4 are controlled by the programmer. The value may
range from l to N, where N equals the number of records on the file or as

limited by the FILE-LIMITS clause. The ACTUAL KEY gives the relative

position of the record within the file. For optimum results, the ACTUAL

KEY should be a data-name that is defined as a non-contiguous item (77

level) within the WORKING-STORAGE SECTION and should have a PICTURE of
9 (11) and be COMPUTATIONAL-I. In all cases, data-name must be a nu­

meric integer.

ORGANIZATION/FILE STATUS Clauses

When the ANSI74 system dollar option is set, the ORGANIZATION and FILE STATUS

clauses for sequential I/O files can be specified.

If the ORGANIZATION clause is omitted, sequential organization is assumed.
The FILE STATUS data-name-5 must be declared as a two-character data item of
category alphanumeric. Following the execution of all I/O statements, the

appropriate value is stored in the FILE STATUS data item. The following table
shows the values stored into the FILE STATUS data item and their corresponding
meanings:

"00"

"10"

"30"

"91"

"92"

"96"

"97"

"98"

"99"

SUCCESSFUL COMPLETION
END OF FILE

PARITY ERROR

SHORT BLOCK
DATA ERROR

BREAK ON OUTPUT

SECURITY VIOLATION

I-0 TIME LIMIT
UNEXPECTED I-0 ERROR

Refer to Appendix B for a description of the ANSI 74 implementations.

I FILE-CONTROL I
The al1owable entries for hardware-name are as follows:

BACKUP1r~1:: }] L\. TAPE OR DISK

CARD-PUNCH

PETA PE

READER-SORTER
REMOTE

{ CARD-READER }
CARD-READERS (:~~=sJ[[OR] [BACKUP] c~ }]

PUNCH [[OR] { ii1;: TA}P]E OR DISK DIRECT

DISK

{ DISKPACK }
DISKPACKS

DISPLAY-UNIT

INTERCHANGE

KEYBOARD

MERGE

MESSAGE-PRINTER

PACKED

PAPER-TAPE-PQNCH

PAPER-TAPE-READER

{READER }
READERS

(DISK }
SORT DISKPACK

DISKPACKS

{ SORT-TAPE }
SORT-TAPES

{ TAPE }
TAPES

TAPE7

TAPE9

~ {
TAPE }] . TAPES

AND integer SORT-TAPE
SORT-TAPES

TAPE OR DISK

When TAPE or TAPES is specified, an assignment is made to the first available
tape unit encountered. PETAPE specifies phase-encoded tape unit.

BACKUP infers PRINTER unless PUNCH is specified.

5-18

1-0-CONTROL

1-0-CONTROL

The I-O-CONTROL paragraph specifies blocking techniques, file location on

multiple file reels, and shared memory areas.

The format for this paragraph consists of the following two options:

Option 1:

I-O-CONTROL. COPY library-name

Option 2:

I-O-CONTROL.

[APPLY comment entry]

(FROM seq. no.] [{~UGH}

(REPLACING word-1 BY text-1

seq. no.]

[, word-2 BY text-2) ...]

(; MULTIPLE FILE TAPE CONTAINS [file-name-1] [POSITION integer-!] ...] ...
[;
[; RERUN

(~RDJAREA FOR file-name-2 {,file-name-3} ...] ...

ON {~ACK} EVERY integer-2 RECORDS OF file-name-4 ...] .
For a discussion of the COPY function, refer to Section 8, the COBOL LIBRARY.

The I-O-CONTROL paragraph may be omitted in the absence of any clause entries.

The APPLY clause is for documentation only. Its intent is to indicate the

blocking format of the file. (See RECORD CONCEPTS in Section 6.) The

comment entry can contain any text except the words MULTIPLE, SAME, RERUN,
or the character period.

More than one file may be read from or written to a single reel by listing

these files in the MULTIPLE FILE TAPE CONTAINS clause in the I-O-CONTROL

paragraph of the INPUT-OUTPUT SECTION.

Use one clause for each multiple file tape. The titles of all the files

listed in a given clause should have a common volume-ID.

After each file is read or written, CLOSE file-name WITH NO REWIND and

execute an OPEN file-name WITH NO REWIND for the next file. If the volume-ID

is correct, it will be written to or read from the same reel.

5-19

I 1-0-CONTROL I
The use of SAME RECORD AREA is implemented for non-DIRECT files having a
common internal mode and maximum record size.

The internal mode for each file is obtained from the usage of the first
record description for that file. The maximum record size for each file
is obtained from the maximum length record size declared.

The SAME AREA and SAME SORT AREA clauses are used for documentation purposes

only, as the operating system assigns memory for buffers only when the file

is open.

The RERUN specifies that.after reading integer-2 records from (or writing

integer-2 records to) file-name-4 a check-point will be written to disk

or diskpack so that the program may be restarted at a selected point.

5-20

CODING THE ENVIRONMENT DIVISION

Figure 5-1 illustrates the manner in which the ENVIRONMENT DIVISION is coded.

:iE
"" 0

. u..

C> z
0
0
u
_,
0
"° 0
u

Cll
.c::
'o.t
::J
0
~
M
~

r:Q

IL
0

...: w z
~ ~

~
a:

"' " 0: ...

bll
i::
·~
'Cl
0
t)

z
0
1-1
rll
1-1

>
1-1
t:I

E-4 z
fil z
i:i::
0
1-1

~
i:z:i

.
.....

I
I/)

Q)

~
::s
bll
·~
rz.i

5-21/5-22

6. DATA DIVISION

GENERAL

The third part of a COBOL source program is the DATA DIVISION. The DATA
DIVISION describes the data that the object program is to accept as input,
to manipulate, to create, or to produce as output. Data to be processed
falls into three categories:

a. That which is contained in files and enters or leaves the internal

memory of the computer from areas of the FILE, REPORT, DATA-BASE,
or LOCAL-STORAGE SECTION.

b. That which is developed internally and placed into intermediate
areas of the WORKING-STORAGE SECTION.

c. Constants which are defined by the user in the CONSTANT SECTION.

The DATA DIVISION begins with the reserved words DATA DIVISION followed by
a period. Immediately after is the provision for the specification of a

PREPARED FOR clause:

DATA DIVISION. [PREPARED FOR system-name.)

The PREPARED FOR clause appears on the same line as the heading DATA DIVISION,
separated by one or more spaces. The clause consists of the reserved words

PREPARED FOR followed by any system-name and/or comment entry. This clause
is optional and is used for docwnentation only.

6-1

The following gives the general format of the sections in the DATA DIVISION,

and defines the order of their presentation in the source program.

DATA DIVISION. [PREPARED FOR system-name.)

SECTION.

[{
file-description-entry } J J

[record-description-entryl
sort-merge-description-entry

~DATA-BASE SECTION.

[01 [internal-set-name] INVOKE set-name] ...]

~ORKING-STORAGE SECTION.

[
77-level-description-entry] .. ·]
record-description-entry

~ONSTANT SECTION.

[77-level-description-entry] .. ·]
record-description-entry

§ INKAGE SECTION.

[
77-level-description-entry]. . . ·]

record-description-entry

~OCAL-STORAGE SECTION.

[LD local-storage-name.

[77-level-descript ion-entry J
record-description-entry

(REPORT SECTION.

. · l ·. J

[report-description-entry {report-group-description-entry} ...] ...]

6-2

Each section of the DATA DIVISION is optional and may be omitted from the

source program if not needed. However, if a section is included, it must be

incorporated in order of appearance shown above. These sections are described

on the following pages.

The file description defines information pertaining to the physical aspects

of a file. Such items as number of records in a block, identification of

records in the file, the presence or absence of labels, etc., are included

to describe the entire file.

The record description presents logical characteristics of each record. This

includes the layout of items within each record type, size of various items

in the record, indication of the range of values for each item, picture

of the contents of each item, whether the item is signed or not, and the

usage of an item within the program. All of these parameters may be utilized

to define logical characteristics of each record.

The WORKING-STORAGE, CONSTANT, LINKAGE, and LOCAL-STORAGE SECTIONS are com­

prised of internal record descriptions and individual unrelated items, which

are described as record entries, or parts of record entries.

The REPORT SECTION is described in section 11.

In summary, the DATA DIVISION contains information pertaining to the data to

be used by the program: the files used, the records contained in each file,

and items comprising each record; in addition, working storage and constants

may be specified.

6-3

I FILE AND RECORD CONCEPTS I
FILE AND RECORD CONCEPTS

The approach taken in defining file information is to distinguish between

the physical aspects of the file and the conceptual characteristics of the

data contained within the file.

Physical Aspects of a File

The physical aspects of a file describe the data as it appears on the input

or output media and include such features as the following:

a. The mode in which the data file is recorded on the external medium.

b, The grouping of logical records within the physical limitations of

the file medium.

c. The means by which the file can be identified,

Conceptual Characteristics of a File

The conceptual characteristics of a file explicitly define each logical entity

within the file itself. In a COBOL program, the input or output statements

refer to one logical record.

It is important to distinguish between a physical record and a logical record.

For COBOL a logical record is a group of related information, uniquely identi­

fiable, that is treated as a unit.

A physical record is a physical unit of information whose size and recording

mode are convenient to a particular computer for the storage of data on an

input or output device. The size of a physical record is hardware-dependent

and bears no direct relationship to the size of the file of information con­

tained on a device.

A logical record may be contained within a single physical unit; or several

logical records may be contained within a single physical unit; or a logical

record may require more than one physical unit to contain it. There are

several source-language methods available for describing the relationship

of logical records and physical units. Once the relationship has been

established, the control of the accessibility of logical records as re­

lated to the physical unit is the responsibility of the operating system.

In this manual, reference to records means to logical records, unless the

term "physical record" is specifically used.

The concept of a logical record is not restricted to files but may be applied

to all sections of the DATA DIVISION.

6-4

I FILE AND RECORD CONCEPTS I
Record· Concepts

The record description consists of a set of DATA DESCRIPTION entries which

describe the characteristics of a particular record. Each DATA DESCRIPTION

entry consists of a level-number followed by a data-name, followed by a

series of independent clauses, as required.

Example:

01 ITEM-ONE SIZE 6.

The maximum size of a record description (i.e., the sum of the maximum sizes

of all the items subordinate to an 01 level item) is restricted by the ex­

plicit or implicit USAGE of the 01 item. For USAGE of DISPLAY, DISPLAY-1 or

ASCII, the maximum size is 65,535 characters. For USAGE of COMP, COMP-1,

COMP-4, COMP-5, INDEX, EVENT, LOCK or CP, the maximum size is 65,535 words.

For USAGE of COMP-2, the maximum size is 65,535 digits.

6-5

I LEVEL NUMBERS CONCEPT I
LEVEL NUMBERS CONCEPT

The concept of hierarchy is inherent in the structure of a logical record.
This concept arises from the need to specify subdivisions of a record for
the purpose of data reference. Once a subdivision has been specified, it

may be further subdivided to permit more detailed data referral. In other
words, level numbers define the interrelationship of the items comprising

the record and allow the programmer to access individual items or groups
of items.

The most basic (least generic) subdivisions of a record, that is, those not
further subdivided, are called elementary items; consequently, a record is
said to consist of a sequence of elementary items, or the record itself may
be an elementary item.

In order to refer to a set of elementary items, the elementary items may
be combined into groups. Each group consists of a named sequence of one or
more elementary items. Groups, in turn, may be combined into groups of two
or more groups, etc. Thus an elementary item may belong to more than one
group.

In COBOL, the item relationship is specified by the use of a series of level
numbers. These numbers may range from 1 thru 49. {Special level numbers
of 66, 77, and 88 are discussed later.)

Each record of a file begins with the level number 1 (which may also be
written as 01). This number is reserved for the record name only, as the
most generic grouping. Less inclusive groupings are given higher numbers
(not necessarily successive) up to a limit of 49. Figure 6-1 illustrates
a form of level construction.

The smallest elements of the description are called elementary items. In

figure 6-1, EMP-NO, EMP-COST-CENTER, EMP-LAST-NA.ME, EMP-FIRST-NAME, and
EMP-M-INITIAL are all elementary items, as well as EMP-ANNUAL-SALARY, EMP­
MONTH, EMP-HDAY, EMP-HYEAR, EMP-GROSS, EMP-HOSPITAL, EMP-LIFE, EMP-FICA, EMP­
STATE-TAX, EMP-WITHHOLDING, EMP-LMONTH and EMP-LDAY. None of these items are
further subdivided; therefore they are called elementary items.

Each elementary item belongs to one or more groups. In the example, EMP­

HOSPITAL is a part of the EMP-INSURANCE group. EMP-INSURANCE, in turn, is
part of the EMP-DEDUCTIONS group, which is part of the EMP-PA.Y-DA.TA. group.
Therefore, a group is defined as being composed of all group and elementary

items described under it, until a level number equal to or less than the

6-6

Cl)
I
-..J

PROGR .. M

PROGRP..~!.~AER

PACE I LINE
:-4C. NO.

.l_ I

I I

I I

4

Burroughs COBOL CODING FORM

REOUESTEO BY

Figure 6-1. Level Number Construction

PAGE OF

IDENT. 73 BO

~
p!
z c
~ ..
= "' n
0 z
n
"' :!I

I LEVEL NUMBERS CONCEPT I
group level number is encountered. In the example, EMP-PAY-DATA group in­

cludes all items to, but not including, EMP-LAST-REVIEW (which has an equal

level number). Likewise, EMP-DEDUCTIONS group includes all subsequent

items up to, but not including, EMP-LAST-REVIEW (which has a level number

less than EMP-DEDUCTIONS).

Level numbers used in defining successively smaller groupings, working

toward an elementary item, are given in larger values. Although it is not

necessary that they be consistent or consecutive, a level number must not

exceed 49.

A level number immediately following the last elementary item of a group

must have a value of less than or equal to the level number for that group

and equal to the level number of some previous group. An exception is that

level number 1 (or 01) is reserved exclusively for identifying the beginning

of a record description.

In the above example, the rule prohibits EMP-ANNUAL-SALARY from having a

level number of 2 (or 02). Likewise, the entry name EMP-LAST-REVIEW could

not have had a level number of 10 or 06 because, in the example, no pre­

vious group appears with either of these levels. As a completely separate

group, it could only have a level number the same as that of the major

groups previously shown.

Figure 6-2 illustrates another way to visualize the concept of level num­

bers by using the same example.

6-8

1E N
M U
p M
L B
0 E
y R
E
E

fTI
I: ,,
r
0
-<
fTI ...,,
I
z
c:
I:
CD
fTI
::0

I LEVEL NUMBERS CONCEPT· I

Q

EMPLOYEE INFORMATION

1..-~~--.~~ --~--------""---~~~~~~~~---~~~~~~~--_.....~e
C :or
0 EMPLOYEE- ANNUAL- DATE P A Y D AT A ~ l;
S NAME SALARY HIRE fTI -1
T E i

0 r
0 J>
(/) (/)
-I -I
I I

0 z
fTI J>
z I:
-I ITI
fTI
:;u

.,,I: J> -- z ::0 0 z V>o c -tr
J> I fTI r -· Z- I

-z (/)
-1- I? - J>_
IJ> J>

r ::0
-<

f:O ~
oJ> J>
z-< ::0
-I
%

NORMAL
GROSS

z
0
::0
I:
J> r
I

G')
::0
0
(/)
(/)

DEDUCTIONS

INSURANCE TAXES

% C> :!! (/)

0 ::0 -I
(/) 0 0

~ ,, c J> ,, fTI

~ I
I

c -I r J>
N .,, x
~

...,,

0
z

Figure 6-2. Concept of Level Numbers

0

~ 1:0
oJ>

-I z-<
% -I % :I:
0 r
0 z
C>

6-9

I QUAUFICATION·.·1

.. OUALIFICATION

Every user-defined name explicitly referenced in a COBOL source program must
be uniquely referenced either because no other name has the identical spelling
and hyphenation or because it is unique within the context of a REDEFINES
clause, -or because the name exists within a hierarchy of names such that re­
ference to the name can be made unique by mentioning one or more of the
higher-level names in the hierarchy. These higher-level names are called
qualifiers and this process that specifies uniqueness is called qualification.
Identical user-defined names may appear in a source program; however, uniqueness

must then be established through qualification for each user-defined name
explicitly referenced, except in the case of redefinition. All available
qualifiers need not be specified so long as uniqueness is established. Re­
served words naming the special registers require qualification to provide

uniqueness of reference whenever a source program would result in more than

one occurrence of any of these special registers.

The hierarchy of qualification is as follows: names associated with a level
indicator are the most significant; then names associated with level-number
01, then those names associated with level-number 02, ... , 49, A section­
name is the highest (and the only) qualifier available for a paragraph-name.
Thus, the most significant name in the hierarchy must be unique and cannot
be qualified. Subscripted or indexed data-names and conditional variables,
as well as paragraph-names and data-names, may be made unique by qualifica­
tion. The name of a conditional variable can be used as a qualifier for

any of its condition-names.

Regardless of the available quali·fication, no name can be both a data-name
and a procedure-name.

Qualification is performed by following a data-name or a paragraph-name by
one or more phrases composed of a qualifier preceded by IN or OF. IN and
OF are logically equivalent.

/6-10

I QUALIFICATION I
The format for qualification consists of five options which are shown below:

Option 1:

{
data-name-I }

condition-name

Option 2:

{ ~} file-name

paragraph-name { 1i} section-name

Option 3:

LINAGE-COUNTER { ~~) file-name

Option 4:

{ PAGE-COUNTER) (IN }
LINE-COUNTER OF report-name

Option 5:

{ lliONF} [{!:F} data-name-4 ¥:!:...

data-name-3

{OINF} report-name

report-name]

6-11

I QUALIFICATION I
The rules for qualification are as follows:

a. Each qualifier must be of a successively higher level and within the
same hierarchy as the name it qualifies.

b. The same name must not appear at two levels in a hierarchy so that
the name would appear to qualify itself.

c. If a data-name or a condition-name is assigned to more than one data

item in a source program, the data-name or condition-name must be
qualified each time it is referred to in the PROCEDURE DIVISION,

ENVIRONMENT DIVISION, .and DATA DIVISION (except REDEFINES where, by
definition, qualification is unnecessary).

d. A paragraph-name must not be duplicated within a section. When a

paragraph-name is qualified by a section-name, the word SECTION must
not appear. A paragraph-name need not be qualified when referenced
within its own section.

e, A data-name cannot be subscripted or indexed when it is being used
as a qualifier.

f. A name can be qualified, even though it does not need qualification;
if there is more than one combination of qualifiers that ensures

uniqueness, then any such set can be used.

g. LINAGE-COUNTER must be qualified each time it is referenced if more
than one File Description entry containing a LINAGE clause has been

specified in the source program.
h. PAGE-COUNTER and LINE-COUNTER must be qualified each time they are

referenced if more than one Report Description entry has been speci­

fied in the source program.

In the example below, all item descriptions (except the data-name PREFIX) are

unique. In order to refer to either PREFIX item, qualification must be used.

Otherwise, if reference is made to PREFIX only, the compiler would not know

which of the two is desired. Therefore, in order to move the contents of one
PREFIX into the other PREFIX, the PROCEDURE DIVISION must be coded with one

of the following sentences:

a. MOVE PREFIX IN ITEM-NO TO PREFIX OF CODE-NO.
b. MOVE PREFIX OF ITEM-NO TO PREFIX IN MASTER-FILE.
c. MOVE PREFIX OF TRANSACTION-TAPE TO PREFIX IN CODE-NO.
d. MOVE PREFIX IN TRANSACTION-TAPE TO PREFIX IN MASTER-FILE.

6-12

Example:

01 TRANSACTION-TAPE •
03 ITEM-NO • • .

05 PREFIX •
05 CODE .

03 QUANTITY • • •

01 MASTER-FILE • • •
03 CODE-NO •••

05 PREFIX •
05 SUFFIX •••

03 DESCRIPTION • • •

I QUALIFICATION I

6-13

TABLES

Frequently, the need arises to describe data that appears in a table (i.e.,
array, list, etc.). For example, a master record might contain 16 total

fields, and these might be described as TOTAL-ONE, TOTAL-TWO, etc. However,
this requires 16 data-names, and each total must be individually referenced
in the PROCEDURE DIVISION. A more powerful way t9 describe the field is:

TOTAL . . . OCCURS 16 TIMES.

Elements of a table are referenced thru the use of subscripting or indexing.

An element of a table is represented by an occurrence number.

The elements of a table may contain subordinate fields. For example:

02 TOTAL SIZE 24 . . . OCCURS 16 TIMES.

03 TOTAL-A . PICTURE 9 (6) .

03 TOTAL-B . PICTURE 9(6) OCCURS 3 TIMES.

Also, as shown above, OCCURS may be nested to describe tables of more than
one dimension by applying an OCCURS clause to a subordinate name. Standard

COBOL limits tables to three-dimensions; however, because of the unique hard­
ware features of the B 7000/B 6000, OCCURS may be nested to any desired depth

up to the limit of 49 imposed by the range of level numbers. Figure 6-3

shows an example of a multi-dimensioned table.

In the WORKING-STORAGE and CONSTANT SECTIONS, initial values of elements with­

in tables are specified in one of the following ways:

6-14

a. The table may be described as a record by a set of contiguous data
description entries, each of which specifies the VALUE of an ele­
ment, or part of an element, of the table. In defining the record

and its elements, any data description clause (SIZE, USAGE, PICTURE,
etc.) may be used to complete the definition, where required. This
form is required when the elements of the table require separate

handling due to synchronization, USAGE, etc. The hierarchical

structure of the table is then shown by use of the REDEFINES entry
and its associated subordinate entries. The subordinate entries

following the REDEFINES entry, which are repeated due to the OCCURS

clause, must not contain VALUE clauses. See example 1, below.

b. When the elements of the table do not require separate handling,

the VALUE of the entire table may be given in the entry defining

the entire table. The lower-level entries will show the hierarchical

structure of the table; lower-level entries must not contain VALUE

clauses. See example 2, below.

Example 1:

01 W-S-TOTS.

03 FILLER SIZE 24 VALUE IS ZEROS.

03 CARDIMAGE-VALUES SIZE 80.

01 R-TOTS REDEFINES W-S-TOTS.

03 TOT PIC 9(4) OCCURS 26 TIMES.

Example 2:

03 FACTORS SIZE 25 VALUE "1000310011100321009610184".

05 Y-FACTOR PIC 9(5) OCCURS 5 TIMES.

6-15

0)
I

......
0)

. Burroughs COBOL CODING FORM

PRoGqAM ~tNG.. op ~IAl.:\9\::DiM~?toNes,. }Ai,L£ I REQUESTED sv I PAGE 1 OF 1 r PPOC•A'.,'/ER DATE 2-0 ~!; IDENT. 73 80

F=·=!'====;r=r==~=r=="'========~=============::;=========:;: z

..l_l 14 I

I .J. ! 1 5 I
; T

I I ! 15 I

_ _L_l_ ! 11 I
T

I I j 1.8 !

-1. ! 19 I

-1 T::
' . I I

...1..; I I
I

I I I _L

...l._l ' I
T

I I I I
4

~ n ~ « o n

I

_LLLL.LJ_l_J I

' I I I I I I I I I I II 1 II I I I I I

I

I

I

I ! I !

I ! I I I I I I I I I I I I

I I I I I , I I 1 ·, I I I I I I l-1 I I I I I I I 1 I I I 1 I

I l I I l I I I I I I I I I I I I [I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I [I I I I I I I I I I I I I I I [I

_LLLI I ! I I I I ! I l I LLL.1
s 112 11s 120 124 12s 132 136 140 144 148 152 iss iso 154 168 112

Figure 6-3. Coding of Multi-Dimensioned Table

00

\

I SUBSCRIPTING I
SUBSCRIPTING

Subscripts can be used only when reference is made to an individual element
within a table of like elements that have not been assigned individual data­
names. (Refer to the OCCURS clause.)

The subscript can be represented by a numeric literal that is an integer, by
a formula (whose result must be a positive value and will be truncated to an
integer b.y the compiler), or by an identifier. The identifier must be a
numeric elementary item that represents an integer.

The subscript may be signed and if signed must be positive. The lowest per­
missible subscript value is 1. This value points to the first element of the
table. The next sequential elements of the table are pointed to by subscripts
whose values are 2, 3, .••• The highest permissible subscript value, in any
particular case, is the maximum number of occurrences of the item as specified
in the OCCURS clause. Violation of this rule will cause the object program to
terminate with an INVALID INDEX message.

The subscript, or a set of subscripts, identifying the table element is en­
closed in parentheses. The table element data-name appended with a subscript
is called a subscripted data-name or an identifier. When more than one sub­
script a·ppears within a pair of parentheses, the subscripts may be separated
by commas and are written in the order of successively less inclusive dimen­
sions of the data organization.

The general format for subscripting is:

(data-name } (subscript [,subscript] •••)
condition-name

For example, in figure 6-3, to reference the first volume, EN-VOLUME (1) is
written. If data-name N contains the number of the volume desired, EN~VOLUME
(N) is written. If the data item PAGE-NO contains the number of the page de­
sired, then EN-HEADING (N, PAGE-NO) would reference the twelve-character page
heading. To reference the heading on the following page, EN-HEADING (N, PAGE­
NO + 1) could be used, The fifth EN-WORD of the second EN-LINE of the first
EN-PARAGRAPH of the third EN-PAGE of the Nth EN-VOLUME would be referenced by

EN-WORD (N, 3, 1, 2, 5).

Where qualification and subscripting are both required, the qualification is
shown first, followed by the subscripting. For example, EN-PAGE OF EN-VOLUME
(N, PAGE-NO). EN-PAGE (N, 3) OF EN-VOLUME is incorrect. For further restric­
tions, refer to the discussion of identifiers in this section.

6-17

:INDEXING

INDEXING

References can be made to individual elements within a table of like elements
by specifying indexing for that reference. An index is assigned to that level

of the table by using the INDEXED BY clause in the definition of a table. A
name given in the INDEXED BY clause is known as an index-name and is used to
refer to the assigned index. The value of an index corresponds to the occur­
rence number of an element in the associated table. An index must be initial­
ized before it is used as a table reference. An index can be given an initial
value by either a SET or a PERFORM statement.

Direct indexing is specified by using an index-name in the form of a subscript.
Relative indexing is specified when an index-name is followed by the operator
+ or -, followed by an unsigned integer numeric literal all delimited by the
balanced pair of separators left parenthesis and right parenthesis following
the table element data-name. The occurrence number resulting from relative
indexing is determined by incrementing (where the operator + is used) or de­

crementing (where the operator - is used), by the value of the literal, the
occurrence number represented by the value of the index. When more than one
index-name is required, they are written in the order of successively less
inclusive dimensions of the data organization.

At the time of execution of a statement which refers to an indexed table ele­
ment, the value contained in the index referenced by the index-name associated
with the table element must neither correspond to a value less than one (1) nor
to a value greater than the highest permissible occurrence number of an element
of the associated table. This restriction also applies to the value resultant
from relative indexing. Failure to observe this rule will cause the system to
terminate the program if an attempt is made to SET index-name TO a value which
is outside the bounds specified by the OCCURS clause. Using the UP BY or DOWN
BY options of the SET statement does not invoke bounds checking for the SET but
the program will still be terminated if an attempt is made to access beyond the

end of the 01 record.

The general format for indexing is:

(
data-name l
condi tion-namej (

6-18

index-name[{:) literal -2]

literal-I

index-name[{:)literal-~

...)
literal-3

I •DENTIFIER I
IDENTIFIER

An identifier is a term used to reflect that a data-name, if not unique in

a program, must be followed by a syntactically correct combination of quali­
fiers, subscripts, or index-names necessary to ensure uniqueness.

The format for identifiers has two options which are as follows:

Option 1:

data-name-I [(~}
Option 2:

da ta-name-21 .•• [{ .QE.} {file-name }] j 1!i report-name

[<subscript-I[, subscript-nl ...))

data-name-1 [(~} data-name-2] .• {{~} { file-name }]
report-name

[(. {index-name-I [{~ } literal-2]} ['
\.Ii teral-1

{ index-name-2 [{ ~ } literal -4f)l J
literal-3)···)

Restrictions on qualification, subscripting, and indexing are as follows:

a. The commas as shown in both options are optional.

b. The data-name-2 must not itself be subscripted nor indexed.
c. Indexing is not permitted where subscripting is not permitted.
d. An index may be modified only by the SET, SEARCH, and PERFORM

statements. Data items described by the USA.GE IS INDEX clause
permit storage of the values of index-names as data without con­

version. Such data items are called index data items.
e. Where more than one occurrence number is required for a data name

reference, it is illegal to use a data-name or formula subscript for
one occurrence number and an index-name for another. However, liter­
als and index-names may be mixed.

6-19

FILE DESCRIPTION ENTRIES

FILE DESCRIPTION ENTRIES

The function of the FILE SECTION is to describe the files. The format for
this section contains three options which are as follows:

Option 1:

c~~} file-name COPY library-name

--rFROM sequence-nwnber]

[(=UGH} sequence-number J
[REPLACING word-1 BY text-I

[, word-2 BY text-2] .. .J .
Option 2:

FD file-name

[;RECORDING MODE { STANDARD }]
IS NON-STANDARD

[BLOCK CONTAINS [integer-1 TO] integer-2 [~~~~ERSJ]
WORDS

[;FILE CONTAINS integer-1 [BY integer-2] RECORDS]

ASCII
COMP
COMPUTATIONAL

;RECORD CONTAINS [integer-3 TO] integer-4 COMP-2
COMPUTATIONAL-2
DISPLAY
DISPLAY-I

[;LABEL

[;DATA

{ RECORD IS) {STANDARD }]
RECORDS ARE OMITTED [WITH MULTIPLE AT END]

data-name-5 [,data-name-6] •••

RECORDS ARE data-name-7 [,data-name-8] .•. (RECORD rs } J
[·LINAGE IS { integer-5 } LINES]

' data-name-9

[.SAVE-FACTOR IS (integer-6 }]
' · data-name-10

[; {~LUE } OF { ~~ENTIFICATION} VALUES

[;CODE-SET IS alphabet-name J.
6-20

IS {d~ta-name-11}]
literal-!

rcHARACTERSl
LWORDS J

FILE DESCRIPTION ENTRIES

Option 3:

SD file-name

[; RECORD CONTAINS [integer-3 TO rcHARACTERSJ J
LWORDS

[. {RECORD IS }
' DATA RECORDS ARE data-name-7 [, data-name-8 l .. J.

For a discussion of the COPY function refer to section 8, THE COBOL LIBRARY.

A level indicator of FD or SD identifies the beginning of the file or sort­
f ile description and precedes a unique file-name or sort-file-name.

The file-name is the highest level qualifier within an FD or SD entry and its
associated record descriptions.

MCP control statements which reference a file of a program must specify the
file-name which follows the FD. The MCP limits the number of characters in a

file-name to 17. If more than 17 characters are specified in an MCP control

statement, only the first 17 (leftmost 17) characters are used by the MCP.

(Thus, if file-name is to be used in MCP control statements, the leftmost 17

characters must be unique.)

All semicolons are optional in the file description, but each complete

description entry must be terminated by a period.

The clauses which follow the name of the file are optional in many cases, and

their order of appearance is immaterial. Option 1 is used when the COBOL

library contains the file description entry; otherwise, option 2 or option 3
is used.

All data-names used in file description entries may be qualified; however,

they may not be subscripted or indexed.

All files selected in the FILE-CONTROL paragraph of the ENVIRONMENT DIVISION

must have a file description entry.

6-21

I BLOCK I
BLOCK

The function of the BLOCK clause is to specify the size of a physical record

(block).

The format for the BLOCK clause is as follows:

{
CHARACTERS}

BLOCK CONTAINS [integer-I TO) integer-2 RECORDS
WORDS

The BLOCK clause is optional and should not be used if the logical records of

the file are unblocked; i.e., each physical block contains one logical record.

The clause may not be used with a SORT-FILE description or when DIRECT is

specified in the SELECT clause for the file.

For object program efficiency, the use of blocked records is recommended for
files assigned to disk or tape.

Fixed-size records (fixed size blocks) are handled more efficiently than
variable-size blocks (variable-size records).

If only integer-2 is specified, a fixed-size block of size integer-2 is

created or expected. The block size may be stated in either CHARACTERS,

WORDS, or RECORDS.

If integer-I is specified a variable FILETYPE file will be created or expected

with integer-2 representing the maximum physical record size. The operating

system will write .or read as many variable-length logical records as possible

to or from the maximum physical record size. A file is blocked only when

maximum blocksize is larger than maximum record size. It will be created as

an unblocked file when maximum blocksize is less than or equal to maximum

record size. The location of a field that is to contain the size of the

record written at object time is denoted in one of the following ways:

6-22

1. If a SIZE DEPENDING ON data-name is indicated on the 01 level-number

in the record description (or PICTURE DEPENDING option if the 01 level

is elementary), then at each WRITE, the operating system will assume

that the data-name contains an integer representing the number of

characters to be written. If data-name specifies the data item which

occupies the first four INTMODE characters of the record, the file

attribute FILETYPE will be 1. If data-name is not a four character

item and/or data-name does not reference the first four characters of

the record (but data name is defined within the record description),

the action taken by the operating system is equivalent to the file

I BLOCK I
attribute FILETYPE = 4. If data-name is defined external to the
record description, the action is equivalent to FILETYPE = 3.

2. If no SIZE DEPENDING or PICTURE DEPENDING is indicated in the 01 level
and the BLOCK clause specifies integer-! and integer-2, it is assumed
that the first four characters of the record will contain the number
of characters to be read or written (equivalent to the file attribute
FILETYPE = 1) .

Where there are multiple record descriptions for variable-length records, each
must have the DEPENDING clause specifying the same data-item, or each must
have no DEPENDING clause.

If the DEPENDING clause specifies a name inside the record, better output
action will result.

The BLOCK clause of the FD and the SIZE clause of the 01 level Record Descrip~.
tion are the only bases for determining the FILETYPE attribute.

When a file is assigned to disk, the user should be aware that the physical
disk segment size is 30 words and that· all physicaLREADs and WRITEs will be
in multiples of this size; therefore, it is preferred that the block size used
be a multiple of 30 words.

The minimum block size for TAPE files is six words. When records are described
which are less than six words, the final block will be padded with hex zeros if
the block is less than six words. When such a block is input to a program, it
may result in extra records containing hex zeros being made available. Thus,
in a fixed length blocked file, such padded records may show upon input when
MAXRECSIZE is three words or less.

6-23

I DATA RECORDS I
Data Records

The DATA. RECORDS clause is optional and serves only as documentation for the
names of data records and their associated file. The format for the DATA
RECORDS clause is as follows:

DATA. {RECORD IS } data-name-1 [,data-name-2] •..
-- RECORDS ARE

No syntax error will occur when a record declared for the file is not
listed in the DATA. RECORDS clause.

6-24

FILE

The function of the FILE CONTAINS clause is to specify either the total number
of records in a file, the areas in a file, or the area size of each area in a

file. The format for the FILE CONTAINS clause is as follows:

FILE CONTAINS integer-1 [BY integer-2 RECORDS]

If integer-2 is not specified, integer-1 refers to the total number of records
in a file. If integer-2 is specified, integer-1 refers to the number of areas,
and integer-2 ~efers to the area size of each _area in a file. The FILE
CONTAINS clause provides compatibility with B 3700 COBOL and is available
only while the B 2500 system dollar option is set. Refer to Appendix C for a

description of the B 2500 implementations.

6-25

I LABEL I
LABEL

The LABEL clause is used to specify the presence or absence of label infor­

mation.

The format for this clause is:

{ RECORD IS }
LABEL RECORDS ARE {

STANDARD }
OMITTED [WITH MULTIPLE AT END]
data-name-1 [,data-name-2) ...

If the LABEL clause is not used, STANDARD is assumed. OMITTED must be used if

an input file does not have standard labels or if labels are not desired on

output files. If the WITH MULTIPLE AT END phrase is specified, a CLOSE file­

name with NO REWIND followed by an OPEN will bypass the tape mark.

STANDARD or data-name-1 should be used if the user wishes to take advantage of

the automatic file allocation and handling procedures in the operating system.

(Disk devices maintain a directory instead of a system of labels.) The format

of labels is dependent upon the device containing the file. (See B 6700/B 7700

System Software Handbook, Form No. 5000722, for label formats.) The file

handling procedures for tape recognize either the B 5500/B 5700 standard

label, the B 2500/B 4700 standard label, the IBM 360/IBM 370 (USASI) standard

label, or the B 7000/B 6000 standard label on

B 7000/B 6000 standard label on output files.

label for tape is in a format compatible with

label for information exchange.

input files, and produce the

The B 7000/B 6000 standard

the proposed USA.SI standard

The format data-name-I [,data-name-2] should be specified if user header and

trailer records are to be included in the B 7000/B 6000 standard tape label.

While these labels may be. specified for any device, they will not be written

or read for files other than magnetic tape. The contents of user header and

trailer labels are accessed by user-supplied label USE routines. These USE

routines are performed by the operating system's file handling routines on

file open, file close, and at volume (reel) switching time.

If user labels are specified, each must be exactly 80 characters in length

and must be the same USAGE (DISPLAY or DISPLAY-I) as the first record de­

scription for the file. The first four characters of the label are reserved

for the operating system. Figure 6-4 is an example of user label record

coding.

6-26

LABEL RECORDS ARE XYZ, RST
VALUE OF ID IS "STN0235";
DATA RECORDS ARE DATA!.

01 XYZ SIZE 80.
02 COCO DE PIC 9(4).
02 DIVCODE PIC 9(8).
02 SECTCODE PIC 9(3).
02 REQ-BY PIC X(65).

01 DATA!.
02
02

01 RST.
02
02

Figure 6-4. Label Coding

The user can specify the creation of single file volumes or multi-file
volumes. In addition, the operating system will do volume switching for
either of the above cases when the data being written exceeds the capacity
of a volume. It will also do automatic volume switching on input when re­
quired. The tape format is shown as follows: (Note that * denotes a tape
mark and** denotes end-of-reel.)

a.

b.

c.

Single-File, Single

VOL! HDRl HDR2
Multi-Volume File
VOLl HDRl HDR2
VOL! HDRl HDR2

Multi-File Volume

VOLl HDRl
HDRl

HDR2
HDR2

Volume (Single Reel File)

*
*

* DATA. * EOFl EOF2 **
(Multiple Reel File)

*
*

FIRST VOLUME DATA * EOVl
LAST VOLUME DATA. * EOFl
(Multiple File Reel)

FILE 1 * EOFl EOF2 *
FILE 2 * EOFl EOF2 **

**

EOF2 **

d. Multi-File,

VOL! HDRl
HDRl

Multi-Volume (Multiple File-Multiple Reel)

FILE 1 * EOFl EOF2 *

VOLl
VOL!

HDRl
HDRl
HDRl

HDR2
HDR2
HDR2
HDR2

HDR2

*
*
*
*
*

FIRST PART FILE 2 * EOVl **
PART OF FILE 2 * EOVl **
REMAINDER FILE 2 * EOFl EOF2 *
FILE 3 * EOFl EOF2 **

6-27

User header labels may appear immediately after HDR2, and user's trailer
labels may appear after either EOF2 or EOVl.

To create or read multi-file volumes, the user must specify the same volume
name for all the files in the set. Only one file in the set can be opened
at a time. To create a multi-file volume, the user must CLOSE NO REWIND the
current file in the set and use OPEN OUTPUT NO REWIND for the next file in

the set. To handle input, the operating system will give back to the object
code an END-OF-FILE condition when an EOF label is encountered. The user
then must CLOSE NO REWIND on the current file and OPEN INPUT NO REWIND on
the next (or some other) file in the set.

The EOV label, when encountered on input, is the sentinel by which the
operating system can detect when volume switching is required. This is done
by locating or requesting the operator to load a volume which has the same
volume name as the current volume and has a file section number (in HDRl)
one greater than the current volume.

After a tape mark has been read or written, normal action for unlabeled tape
files is a "reel switch," i.e., the tape mark is taken as an END OF REEL
condition. The LABEL clause specifying WITH MULTIPLE AT END allows the file
to be CLOSED WITH NO REWIND, re-OPENed, and reading or writing to be continued.

6-28

LINAGE

The LINAGE clause specifies logically the number of lines to be written on

a printer page. It is ignored if the file is assigned to a device other

than a printer. The format for this clause is:

LINAGE IS (~~~=:~~me} LINES

When data-name is used, the data description must be that of a numeric

elementary it~m without any positions to the right of the assumed decimal

point.

The LINAGE clause provides a means of specifying the depth of a printed page;

the printed page may or may not be equal to the physical perforated continuous

form often associated with the page length. LINAGE is not permitted in the

same file description entry with the REPORT clause.

The value of integer, as specified in the LINAGE clause, will be used at the

time the file is opened by the OPEN statement to specify the number of lines

(written and/or spaced) on a printed page and to set the PAGESIZE attribute.

Integer must not be less than one.

The value of data-name, as specified in the LINAGE clause, will be used at

file OPEN and at each end-of-page to specify the number of lines (written and/

or spaced) for the next printed page.

A LINAGE-COUNTER is generated by the presence of the LINAGE clause. LINAGE­

COUNTER is synonomous with the LINENUM attribute. The rules governing the

LINAGE-COUNTER are as follows:

a. One LINAGE-COUNTER is supplied for each file described in the FILE

SECTION whose FD entry includes the LINAGE clause.
b. A LINAGE-COUNTER may be used as a numeric source operand by PROCEDURE

DIVISION statements. If more than one file has a LINAGE clause, then

all references to LINAGE-COUNTER must be qualified by the file name.

c. The LINAGE-COUNTER may not be used as a receiving operand by PRO­

CEDURE DIVISION statements.
d. LINAGE-COUNTER is automatically incremented by one each time a

WRITE statement is executed for the associated file, with the

following exceptions:

1. When the ADVANCING option of the WRITE statement is used with

the identifier-2 LINES option, the increment is the value of

identifier-2.

2. When the ADVANCING option of the WRITE statement is used with

integer LINES option, the increment is the value of integer.

6-29

3. LINAGE-COUNTER is automatically reset to one when the ADVANCING
PAGE phrase of the WRITE statement is specified.

4. LINAGE-COUNTER is reset to one when the file is positioned to a

new page.

e. LINAGE-COUNTER is automatically set to one initially by the OPEN state­

ment.
f. The value of the LINAGE-COUNTER at any given time represents the

last line number printed or spaced on a logically printed page.

g. If the WRITE ADVANCING CHANNEL option is used, the contents of

LINAGE-COUNTER will be unpredictable.

The "AT END-OF-PAGE" clause can be used with WRITE statements for any file
assigned to a printer, regardless of whether or not a LINAGE clause is declared

with the file. The END-OF-PAGE condition will occur as the last line is
written, if LINAGE is specified or the attribute PAGESIZE is set to some value

other than zero.

6-30

I RECORD I
RECORD

The function of the RECORD clause is to indicate, in the absence of Record

Descriptions, the size of data records for the file.

The format for the RECORD clause is as follows:

ASCII

RECORD CONTAINS [integer-I IQ.] integer-2

COMP
COMPUTATIONAL
COMP-2
COMPUTATIONAL-2
DISPLAY
DISPLAY-I

[CHARACTERS]
WORDS

Direct files may use the RECORD clause or a Record Description to specify the

internal mode of the file. Only direct files can specify USAGE in the RECORD

clause; that is, non-direct files cannot specify USAGE.

For non-direct files, the size of each data record is completely defined within

the Record Description entry; therefore, this clause need not be specified.

For direct files, the size of data records must be specified in the RECORD

clause and/or in the record descriptions which may follow the FD.

When record descriptions are present, the maximum record size is obtained from

the length of the largest data record, in terms of the internal character size

of the file; therefore, the RECORD clause is ignored. The RECORD clause is

not a determining factor with regards to the MAXRECSIZE AND FILETYPE

attributes.

When the RECORD clause is present, the following rules apply:

a. The presence of a RECORD CONTAINS [integer-I TO] integer-2 . .. '
clause will not, by itself, cause the file to be declared as variable

length (that is, a non-zero FILETYPE attribute).

b. If the maximum record size declared by the RECORD CONTAINS clause is

different than the length of the largest record description, the

compiler will emit a warning message declaring that the size specified

by the RECORD CONTAINS clause is ignored.

c. The maximum record size cannot exceed the limits shown in the BLOCK

CONTAINS clause.

d. If the file is assigned to DIRECT hardware-name in its SELECT clause,

the maximum record size is determined by the RECORD CONTAINS clause

in the absence of record descriptions and the [integer-I TO] option is

not permitted.

6-31

e. The usage of the first record described determines the internal mode

(INTMODE) of the file.

f. When multiple record descriptions are used, the first record

described determines the internal mode of the file. For non-direct

files, however, the first record description for a file cannot have

a USAGE of COMP-2 (4-bit characters), since the operating system

will not handle 4-bit character INTMODE.

g. Files having a BLOCK CONTAINS integer-1 TO integer-2 clause will be

considered as having a variable length FILETYPE.

h. If the Ol-level record descriptions for the file do not specify a

size clause indicating a variable length item, then the Ol-level

data items will be considered as fixed length (i.e., the value of

the first four characters in the record will only be used by logical

I/O to determine the length of a written record not in determining

the length of the Ol-level item).

The value returned by the file attribute MAXRECSIZE may be the size of the

record in words if records are some multiple of word size.

The minimum block size for files assigned to TAPE is six words. When a record

of a TAPE file is less than six words, the last block will be padded with hex

zeros if it contains less than six words. When such a block is input to a

program, it may result in extra records containing hex zeros being made

available. The MCP will discard any record of a fixed length blocked file

whose size is less than MAXRECSIZE. Thus, in a fixed length blocked file,

such padded records may only show up on input when MAXRECSIZE is three words

or less.

Figure 6-6 (Variable-Length Blocked Records Coding) demonstrates various

methods for describing variable length records. The file DCG could contain as

many as 13 records in a block. File DEC could contain only a single record in

a block if that record (or the next record) were the maximum size record (i.e.,

5288 characters). File WSG is unblocked and its records, instead of being

variable length, are referred to as fixed length records of differing sizes

~i.e., either 84, or 168 or 252 characters).

6-32

(This page deleted)

6-33

. I RECORDlNG MODE I
RECORDING MODE

This clause is used to specify the RECORDING MODE for peripheral devices where
a choice can be made.

The format for the RECORDING MODE clause is:

(STANDARD } RECORDING MODE IS NON-STANDARD

STANDARD recording mode is assumed if this clause is not present. The
RECORDING MODE's for the peripheral devices on the B 7000/B 6000 are:

DEVICE STANDARD NON-STANDARD

CARD READER ALPHA
PUNCH ALPHA
PRINTER ALPHA
7-TRACK TAPE BINARY (ODD PARITY) ALPHA (EVEN PARITY).

9-TRACK TAPE EBCDIC (ODD PARITY)
PAPER-TAPE ALPHA (ODD PARITY) BINARY (9DD PARITY)
DISK BINARY

When ALPHA recording mode is used, there will be an automatic translation
from BCL to EBCDIC on input, EBCDIC to BCL on output. For example, if an
input file is in BCL but the record description is EBCDIC, automatic BCL-to­

EBCDIC translation takes place.

Binary files are read or written as 48-bit words, with no possibility of
translation.

6-34

SAVE-FACTOR

SAVE-FACTOR

The SAVE-FACTOR clause specifies the number of days that an output file is to

be saved.

The format for this clause is as follows:

SAVE-FACTOR IS {integer "\
\. da ta-namej

SAVE-FACTOR need not be specified for input files. For output tape files,

the integer is the number of days the file is to be saved before the tape
can be reused by the B 7000/B 6000 system. This integer is used to generate

the expiration date on tape labels; it must be unsigned and cannot exceed

three digits.

For tape, if the expiration data is previous to the cur~ent data and the tape

has a Write Ring, then the tape is marked as scratch.

Data-name may be used to assign the integer value of the save-factor at
object time. This is done by executing an explicit OPEN statement for the

file.

6-35

I. VALUE· I

VALUE

The VALUE clause specifies the external name (TITLE) of a labeled file in the

label records associated with a file.

The format for the VALUE clause is as follows:

{ *LUE } OF { ~~ENTIFICATION} IS
VALUES · ----

{ data-name }

literal [/literal] ...

The VALUE OF ID IS literal option is used when the actual identif.ica tion of

the file is known in advance. The file-title literal can be in any of the

following forms:

OPTION A

OPTION B

OPTION C

[VOLUME-ID /] FILE-ID

VOLUME-ID / FILE-ID

DIRECTORY-ID [/DIRECTORY-ID] ... /FILE-ID

where DIRECTORY-ID, VOLUME-ID and FILE-ID are non-numeric literals, one to sev­

enteen characters in length and should not contain any special characters or

spaces so that operational considerations of the MCP will not become a problem.

Examples:

VALUE OF ID "ABC" / "XYZ"

VALUE OF IDENTIFICATION "INPUTCARDDATA"

An external name may contain up to 14 identifiers.

Option A is for single-volume or multi-volume files (VOLUME-ID is filled with

zeros) ..

Option B is for multi-file volumes or multi-file multi-volumes, where all

files with the same volume-ID are expected/created on the same reel.

Option C is for files that are controlled via the disk directory or for tape

files. When used for tape files, the first DIRECTORY-ID is used as the VOLUME­

ID and all other DIRECTORY-ID's are ignored. For details, see B 7000/B 6000

INPUT/OUTPUT SUBSYSTEM REFERENCE MANUAL, Form No. 5001779.

The VALUE OF ID data-name option is used when the actual identification of the

file is set by PROCEDURE DIVISION statements. The proper identification must

be moved into the data-name prior to opening of the file. Data-name must be

DISPLAY and its contents must be one to 14 names of 17 or less characters each,

separated by slashes (/) with a period (.) following the last name. An explicit

OPEN statement must be executed to cause the external name(TITLE) to be obtained

from data-name. When VALUE-OF-ID is not specified, file-name will be utilized

as both external name (TITLE) and internal name (INTNAME).

Example:

MOVE "ABC/DEC." TO DATA-NAME.

6-36

ooowa

COD~SB

The CODE-SET clause is an ANSI 74 extension. CODE-SET is allowed in the FD

entry of any non-direct, non-indexed file.

The format for the CODE-SET clause is as follows:

[; CODE-SET IS alphabet-name]

When the CODE-SET clause is specified, all data items in the record

descriptions for the file must be described as usage DISPLAY. The EXTMODE

attribute of the file is initialized in the file description with the

specified value and the TRANSLATE attribute is initialized to VALUE (FULLTRANS).

The alphabet-name clause referenced by the CODE-SET clause must not be that

of Format 2.

If the CODE-SET clause is not specified, no initial values are given the

EXTMODE and TRANSLATE attributes in the file description.

CODE-SET is available when the ANSI74 system dollar option is set. Refer to

Appendix B for a description of the ANSI 74 implementations.

6-37

0)
~

ti)
00

Burroughs COBOL CODING. FORM

OF ,~~~----F)LE-~EC..T\QI\) •4:n>,Mc-- I REOUESTEDBY I PAGE I · I
?ROGRAMMER DEE DATE IOENT.

PACE I Ll!l:E
NC. NO.

3 4

A B

Figure 6-5.

44 48 52 156 60

FILE SECTION Coding

"'ll n 0
OQ c s:: z '1
(I) Q
0)

~ I ::c (11

'"
""' ~
'" ~
"' t+ '" '1 n

~ ::::! c+ 0 (I) z {ll

t+
1:l"'
(I)

~
l:S
l:S
(!)
'1

....
l:S

~
(')
::r
t+
::r
(I)

"'ll
1-1
t"
tr:!

00
tr:!

~
1-1

·~
....
rn
(')
0
p..
(I)
p..

O'l
I

CJ,)

©

PROG~AM

?ROGRAM\~ER ?~

PA(E -, Ll"E
tte. NO.

1 J 4 6

12 116 •20 124

Figure 6-6.

COBOL CODING FORM

REQUESTED BY ! PAGE I OF

i DATE !DENT. 73

12s 132 136 140 144 148 152 156 •so 164

Variable-Length Blocked Records Coding

""'.! n
I-'· 0 (JQ 2 c:

I . 80 I
"'l z
(!) c:>
m .,,
I 0 m

;:11111

I-'·
(fJ <
llJ

,.
;:11111

::::s ;;
(!) Gil
:>< r-m llJ I s r-

'C m
I-' z
(!) c:>

-4
0 ::c
Hi

Gil
() r-
0 0
0. n
I-'· jllll\
::::s m

(JQ c
Hi

;:11111 0 m "'l n
< 0
llJ ;:11111

"'l 0
I-'· Ut
llJ
o'
I-'
(!)
I

I-'
(!)
::::s

(JQ
r+
;::;'

o'
I-'
0
()
:i;-
(!)
0.

"'l
(!)
()

'68 '72 0
"'l
0.
rn

RECORD DESCRIPTION

RECORD DESCRIPTION

The RECORD description portion follows ~ne ~i~~ aescr1ption entries and, as

will be shown, serves to completely identify each of the records in the file.

Each FD or SD entry must be followed by at least one 01 level record descrip­

tion, except for direct files which may use the RECORD clause to specify the

internal mode and record size of the file. The FD for a direct file does not

require the presence of a record description.

The format for the Record Description entry consists of the following four

options:

Option 1:

01 data-name-1 ; .£0PX library-name

[FROM seq. no][{ ~UGH} seq. no.]

[REPLACING word-I BY text-1

[, word-2BYt'ext-2] ...].

Option 2:

level-number

[;SEGMENT)

{ data-name-I} [;REDEFINES data-name-2]
FILLER

[{~~ ZE} IS [in teger-1 TO] integer- 2 CHARACTERS [DEPENDING ON data-name- 3]]

[{ ~igi'URE} IS character-string [DEPENDING ON data-name-4]]

[;GLOBAL]

[;LOCAL]

[;OWN]

; [USAGE IS)

6-40

COMP
COMPUTATIONAL
COMP-I
COMPUTATIONAL-I
COMP-2
COMPUTATIONAL-2
COMP-4
COMPUTATIONAL-4
COMP-5
COMPUTATIONAL-5
INDEX FILE [CONTAINS

ASCII
DISPLAY
DISPLAY-I
INDEX
EVENT
LOCK
CONTROL-POINT
CP

file-name-I [,file-name-2] ...]

I RECORD DESCRIPTION I
[; { l¥'ccURS } [integer-3 _!2)' integer-4 TIMES [DEPENDING ON da ta-name-4]

r{ASCENDING } KEY IS data-name-5 [data-name-6] ··] •• L' DESCENDING ' ' '

[INDEXED BY index-name-1 [,index-name-2) •••]J

r~ { sYNCHRONI ZED} [LEFT J J L SYNC RIGHT

r. {JUSTIFIED} RIGHT] L JUST

[;RANGE IS literal-1 {=UGH} literal-2 J
[{

REFERENCE }]
;RECEIVED BY REF

CONTENT

[; BLANK WHEN ZERO)

[{
VA } ; VALUE
VALUES

[;RECORD AREA]

[;WITH { LOWER-BOUNDS}l
LOWER-BOUND J'

Option 3:

66 data-name-1 RENAMES data-name-2 {=UGH} data-name-3

6-41

RECORD DESCRIPTION)

Option 4:

88 { VA ·}[IS J condition-name ; VALUE ARE
VALUES

li tera1-1n{ THROUGH} U THRU

[, literal-3 [{~UGH} literal-4] J ...

litera1-2]

All semicolons and commas are optional in the record description, but the

entry must be terminated by a period.

Level-number in option 2 may be any integer from 01 thru 49, or 77. The

clauses may be written in any order, with two exceptions: the data-name-I or

FILLER clause must immediately follow the level-number; the REDEFINES clause,

when used, must immediately follow the data-name-1 clause.

Either the SIZE or PICTURE clause must be specified for every elementary

item except an index data item, EVENT item, LOCK item, COMP-4, COMP-5, or CP

item, in which case the use of these clauses is prohibited.

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, RANGE, and BLANK WHEN ZERO

must not be specified except at the elementary item level.

Option 4 cannot be used in the CONSTANT SECTION.

Option 4 is used for each condition-name. Each condition-name requires a

separate entry with level-number 88. Option 4 contains the name of the con­

dition and the value, values·, or range of vaLues associated with the condition­

name. The condition-name entries for a particular conditional-variable must

follow the entry describing the item with which the condition-name is as­

sociated. A condition-name can be associated with any item containing a

level-number except the following:

a. Another condition-name.
b. A level 66 item.
c. A group containing items with descriptions including JUSTIFIED,

SYNCHRONIZED, or USAGE (other than USAGE IS DISPLAY or DISPLAY-I.)
d. An index data-item.

Condition-names can be declared associated with group data items. Such

condition-names are alphanumeric in class and cannot use numeric literals in

their value clauses.

The record description clauses and level numbers are discussed in alphabetical

order on the following pages.

Multiple level 01 entries subordinate to a File Description entry represent

implicit redefinitions of the first record defined for the file.

6-42

I BLANK WHEN ZERO I
BLANK WHEN ZERO

The BLANK WHEN ZERO clause permits the blanking of an item when its value

is zero.

The format for the BLANK WHEN ZERO clause is as follows:

BLANK WHEN ZERO

This clause cannot be used for variable-length items.

When this clause is used, the data-item will contain spaces if the value of

the item was all zeroes.

This clause can only be used with items whose PICTURE is specified as numeric

edited or numeric. The category of the item is numeric edited.

6-43

I CONDITION-.,NAME I
Condition-Name

Condition-name is a special name which the user assigns to one or more values

which a particular data field may assume. These values may then be referred

to by the condition-name. The data field itself is called a conditional

variable and must immediately precede the condition-name entries.

The format for condition-name is:

{ VA. · } [IS J 88 condition-name ; VALUE A.RE
VALUES

. [{ THROUGH} literal-I THRU litera1-2]

[. [{THROUGH} ,literal-3 THRU literal-4 J]
Since the testing of data is a common data processing practice, the use of

conditional variables and condition-names supplies a shorthand method which

enables the writer to assign meaningful names (condition-names) to particular

codes (values) that may appear in a data field (conditional variables).

As an example of the use of condition-names, suppose one is working with

data relating to school children where each grade is to be given a value;

that is, the first grade value is 1, second grade 2, and so on thru the 12th

grade, which has a value of 12. In addition, the grouping of grades 1 thru 6

will be called GRADE-SCHOOL, grades 7 thru 9 JUNIOR-HIGH, and grades 10 thru

12 HIGH-SCHOOL. Any other numerical values for the condition-names GRADE­

SCHOOL, JUNIOR-HIGH, or HIGH-SCHOOL would be in error. Figure 6-7 is an

example of how this may be shown in COBOL.

In a COBOL procedure, the programmer may now test for a condition-name. For

IF SECOND-GRADE, the compiler will generate the coding necessary to test the

item GRADE with the value 02. The test, IF HIGH-SCHOOL, will cause the test­

ing of GRADE with the values 10, 11, and 12. The test, IF GRADE-SCHOOL, is

equivalent to writing IF GRADE IS GREATER THAN ZERO AND LESS THAN 07.

When defining condition-names, the following rules must be observed:

6-44

a. In a condition-name entry, the VALUE clause is required.

b. The VALUE clause and the condition-name itself are the only two

clauses permitted in the entry.

I CONDITION-NAME I
c. The characteristics of a condition-name are implicitly those of its

conditional variable.

d, Whenever the THRU entry is used, literal-I must be less than

literal-2, literal-3 less than literal-4, etc.

e. If reference to a conditional variable requires subscripting, then

references to its condition-names also require subscripting.

f. Condition-names may be declared for either group or elementary items.

g. Condition-names, when specifying figurative constants, must specify

figurative constants which are consistent with the class of the con­

ditional variable.

NOTE: Numeric display data items are allowed to be compared alpha­

numerically in a relation condition with a "non-numeric"

figurative constant, although such figurative constants are

not allowed in a condition-name declaration associated with a

numeric conditional variable. The rules for acceptability of

a figurative constant in a condition-name declaration are the

same as those for the initializing VALUE clause (numeric items

are allowed: ZERO, ZEROS, ZEROES, LOWER-BOUND, LOWER-BOUNDS,

UPPER-BOUND and UPPER-BOUNDS).

6-45

m
I
If:.
m

Pf!O~RAM

PROGRAMMER

PACE I Ll~E
NC. NO.

A 8

Burroughs COBOL CODING FORM

f\J A-111\E: r ~ -- --- I REQUESTED BY

DATE

Figure 6-7. Condition-Name Coding

PAGE OF

IOENT. 73 80

z

n
0 z
0.
3
0
z
I

~
~-

'"

[DATA-NAME FILLER I
Data-Name, FILLER

A data-name specifies the name of the data being described. The word FILLER

specifies an item that cannot be referred to explicitly.

The format for the data-name clause is:

level-number (FILLER "\
data-nameJ

In the DATA DIVISION sections, a data-name or the key word FILLER must be

the first word following the level-number.

Numeric FILLER items are allowed to declare more than 23 decimal places only

if they do not have an initial VALUE clause and do not have any condition­

names associated with them.

The structure of the data-name must conform to the rules for DATA-NAME found

under NOUNS.

The key word FILLER may be used to name an unreferenced elementary item in a

record, with the length of the named item being specified by a SIZE clause,

etc. Under no circumstances can a FILLER item be referred to directly.

FILLER items are allowed to be group items only while the B2500 system dollar

option is set. This feature provides system compatibility with B 3700 COBOL.

6-47

I GLOBAL I
GLOBAL
COBOL procedures compiled at lexicographic level three or higher may use the

untyped procedures, files, direct files, and certain variables in the outer,

or D-2, block of the host program by declaring these to be GLOBAL.

Any 77 level stack operand or 01 level item that is declared in the WORKING­

STORAGE SECTION of a host program and can be passed as a parameter can be de­

clared global in a bound procedure by using the GLOBAL clause in its data de­

scription entry. GLOBAL declarations are matched by name and type to the global

directory of the host. GLOBAL must not be specified in the host program or on

a stack (COMP-I) array.

Examples:

77 GLASTATUS GLOBAL COMP-1 PIC 9 (11).

77 BL-EVENT GLOBAL EVENT.

77 GL-SWFL INDEX FILE GLOBAL.

01 GL-RCD RECORD AREA GLOBAL OCCURS 10 SZ 180.

01 GL-EBCRAY GLOBAL.

03 CMP-ITE COMP PIC 9(11) OCCURS 100 INDEXED BY Il.

A stack listing will show the addresses of global variables to have a lex

level of two and a displacement of from two to N+l, where N is the number

of global items declared, The displacements of references to these items

are changed at bind time to match the actual displacements in the host.

Index-names generated for a GLOBAL array are not themselves GLOBAL items but

are treated as if they had been described as OWN. Index-names for a LOCAL

array will be treated as LOCAL variables.

If most or all of the variables declared in the WORKING-STORAGE SECTION are de­

sired to be declared global, the $ option GLOBAL may be used. The $ option may

be left set throughout the compilation, though it will only affect variables

which are candidates for global declaration and are in the WORKING-STORAGE

SECTION. The LOCAL clause or OWN clause may be used to override the $ option.

For example:

$ SET GLOBAL

77 Gl COMP-I PIC 9(11).

77 G2 COMP-I PIC 9(11).

77 Ll LOCAL COMP-I PIC 9(11).

01 G3.

03 FLD OCCURS 10 INDEXED BY I2.

In this example, Gl, G2, and G3 will be declared GLOBAL, while Ll and I2 will

be given an address local to the stack of the procedure.

6-48

JUSTIFIED

JUSTIFIED-

The JUSTIFIED clause specifies non-standard positioning of data within a

receiving data item.

The format for the JUSTIFIED clause is as follows:

{ JUSTIFIED} RIGHT
JUST

The JUSTIFIED clause cannot be specified for a numeric-edited data item or
for an item described as numeric. The JUSTIFIED clause cannot be specified

for an item whose size is variable or for group items.

The following are the standard rules for positioning within an area:

a. Numeric data is aligned by decimal point (either implicit or explicit),
with zeros filling any unused positions on either end, as required.
In the absence of an explicit decimal point indication, the decimal
point is assumed to be in the next position to the right of the units

digit. Edited numeric data items are aligned by decimal point, with
zero fill or truncation at either end as required within the receiv­
ing character positions of the data item, except where editing require­
ments cause replacement of the leading zeros.

b. Alphabetic or alphanumeric receiving data items are aligned at the
leftmost character position in the data item, with space fill or
truncation to the right.

When the receiving data items are described with the JUSTIFIED clause and it is
larger than the sending item, the data is aligned at the rightmost character
position in the data item, with leading space fill.

If JUSTIFIED RIGHT is s'pecified for an alphabetic or alphanumeric item, data
is placed into the area with space fill'to the left.

If JUSTIFIED RIGHT is specified for an alphabetic or alphanumeric item and the

receiving field is smaller than the sending field, truncation will occur from
the left.

When standard justification is desired, the JUSTIFIED clause is not required.

Justification is considered only when data is moved into an area.

6-49

LEVEL-NUMBER

Level-Number

The level-number indicates the hierarchy of data within a logical record and

identifies entries for condition-names, non-contiguous constants, working
storage items, and regrouping.

A level-number is required as the first element in each data description.

Data description entries subordinate to an FD or an SD entry may have level­
numbers with the values 01 thru 49, 66, or 88. Data description entries
subordinate to an RD entry may have level-numbers with the values 01 thru 49
only. Data description entries in the WORKING-STORAGE, CONSTANT, LINKAGE,
and LOCAL-STORAGE sections may have level-numbers with the values 01 thru 49,

66,77 or 88.

Multiple level 01 entries subordinate to a particular level indicator in the
file section represent implicit redefinition of the same area.

The use of level-number is as follows:

6-50

a. The level-number 01 identifies the first entry in each record
description or report group.

b. Special level-numbers have been assigned to certain entries where
there is no real concept of level:

1. Level-number 66 is used with RENAMES entries. It must be used
with option 3 of the data description skeleton.

2. Level-number 88 is assigned to entries which define condition­
names associated with a conditional variable and can only be
used with option 4 of the data description skeleton. A.n entry

with a level-number of 88 cannot·be used in the CONSTANT SECTION.

3. Level-number 77 is assigned to identify non-contiguous CONSTANT
and WORKING-STORAGE items and can be used only in option 2 of
the data description skeleton. (See the discussion on WORKING­
STORAGE and CONSTANT SECTIONS.)

LOCAL

The LOCAL clause is discussed in the description of the GLOBAL clause.

6-51

I LOWER-BOUNDS I
LOWER-BOUNDS

The LOWER-BOUNDS clause permits COBOL programs to pass or receive array
parameters with LOWER-BOUNDS.

The format for this clause is as follows:

WITH { LOWER-BOUNDS}
LOWER-BOUND

This clause must be used when communicating with FORTRAN. The clause is used
in the data description of an 01 item in WORKING-STORAGE (if LOWER-BOUNDS are
received) or LOCAL-STORAGE (if LOWER-BOUNDS are to be passed).

All LOWER-BOUNDS passed out are zero. LOWER-BOUNDS received are not used
in addressing the array. The purpose of this clause is to describe para­
meters compatible with FORTRAN and ALGOL. (The lowest bound of an array in
ALGOL is zero. That item in a COBOL array is referenced as the first item.)

A LOWER-BOUND area must not be declared to be COMP-I.

6-52

OCCURS

The OCCURS clause eliminates the need for separate entries for repeated data,
and it supplies information required for the application of subscr.ipts and
indices.

The format for this clause has the following two options:

Option 1:

{~CURS} integer-2 TIMES

[[{ ASCENPING) KEY IS data-name-2 [,data-name-3]]] DESCENPING ••• •••

[INDEXED BY index-name-1 [,index-name-2] ...]

Option 2:

{~CURS} integer-I TO integer-2 TIMES (DEPENDING ON data-name-1]

[[(ASCENPING } KEY Is da ta-name-2 [, da ta-name-3] DESCENPING ... J ... J
[INDEXED BY index-name-I [, index-name-2] •.. J

Integer-1 and integer-2 must be positive integers. If both are used, the
value of integer-I must be less than integer-2. The value of integer-1 may
be zero, but integer-2 cannot be zero.

The data description of data-name-1 must describe a positive integer.

Data-name-2 must either be the name of the entry containing the OCCURS clause

or the name of an entry subordinate to the entry containing the OCCURS clause.

Data-name-3, etc., must be the name of an entry subordinate to the group item

which is the subject of this entry.

Data-name-1, data-name-2, and data-name-3 may be qualified.

6-53

I OCCURS I
The OCCURS clause cannot be spe'cified in a data description that:

a. Has a 66, 77 1 or 88 level-number.

b. Describes an item whose size is variable. The size of an item is
variable if its data description, or any item subordinate to it,
is described by option 2 of the SIZE clause or has an L in the
PICTURE clause.

The OCCURS clause is used in defining tables and other homogeneous sets of

repeated da.ta. Whenever the OCCURS clause is used, the data-name which is
the subject of this entry must be either subscripted or indexed whenever it
is referred to in a statement other than SEARCH. Further, if the data-name
associated with the OCCURS clause is the name of a group item, then all data
names belonging to the group must be subscripted or indexed whenever they
are used in a statement other than SEARCH or as the object of a REDEFINES claus

Except for the OCCURS clause itself, all data description clauses associated

with an item whose description includes an OCCURS clause apply to each oc­
currence of the item described.

A level 01 data item with an OCCURS clause may not have a REDEFINES clause.

The OCCURS clause can be used in the WORKING-STORAGE, LINKAGE and LOCAL-STORAGE
sections on 01 level entries. This creates a two-dimensional array that is

handled as such by the hardware. The first subscript can only be a numeric
literal, non-subscripted identifier, or an index-name +/-literal. This type
of array may not be redefined nor may it be COMP-I.

' In option 1, the value of integer-2 represents the exact number of occurrences
of items within the table.

In option 2, the value of integer-i represents the minimum number of oc­
currences, and integer-2 represents the maximum number of occurrences. This

does not imply that the length of the table is variable but that the number
of occurrences is variable.

Any unused character positions resulting from the DEPENDING option will ap­
pear in the external media.

The DEPENDING option is only required when the end of the occurrences of data
items cannot otherwise be determined. The value of data-name-1 is the count
of the number of occurrences of items, and its value must not exceed integer-
2. Reducing the value of data-name-I makes inaccessible-the contents of the
indicated data items whose subscripts exceed the new value of data-name-I.

The implicit qualification of a "DEPENDING ON" variable in an OCCURS DEPENDING
clause by the QI-level record name is allowed only while the B2500 system
dollar option is set.

6-54

When the ANSI74 system dollar option is set, the specification of an OCCURS
DEPENDING clause causes all group items subsuming the OCCURS clause to be
considered as variable length items whose length depends indirectly on the
value of the "DEPENDING ON" variable. In this case, any unused character
positions resulting from the DEPENDING option will not appear in the exter­
nal media. Refer to Appendix B for a description of the ANSI 74 implemen­

tations.

When the ANSI74 option is reset, group items subsuming the OCCURS DEPENDING
clause are not considered as variable length items, and references to them
will reference the entire table.

In the following example, after the MOVE statement is executed, Fl would
contain AB; F2(1) and F2(2) would contain CD and EF, respectively. The area

physically occupied by F2(3) would contain GH; however, since the value of

CNT is 2, F2(3) logically does not exist, and an attempt to reference it will

cause an error termination.

Example:

77 CNT PIC 9 VALUE 2.
01 DATA-T.

03 Fl PIC XX.

03 F2 PIC XX OCCURS 1 TO 4 TIMES DEPENDING ON CNT.
03 F3 PIC XX.

MOVE "ABCDEFGH" TO DATA-T.

If data-name-1 in the DEPENDING option is an entry in the same record as the
current data description entry, data-name-1 must not be the subject of, or

be subordinate to, an entry whose description includes option 2 of an OCCURS
clause. For example, the following is illegal:

01 w-s-TABLE.

02 TAB SIZE 5 OCCURS 1 TO 5 TIMES DEPENDING ON DEP-NAME.
03 DEP-NAME PIC 9.
03 CODE PIC 9(4).

6-55

Record descriptions may be passed to or received from an ALGOL program. The
ALGOL program must declare arrays which will yield a structure identical to
that in the COBOL program:

01 JA OC 20 COMP.
05 KA OC 25.

10 LA OC 3.

15 MA PIC
01 ABC OC 20 PIC X(24).

01 XYZ SIZE 132.

99.} ARRAY A[O:l9, 0:74];

EBCDIC ARRAY B[O:l9, 0:23];
EBCDIC ARRAY C[O:l31];

01 BCA PIC X(l32) LOWER-BOUNDS. EBCDIC ARRAY D[*];

The KEY IS option is used to indicate that the repeated data is arranged in

ascending or descending order according to the values contained in data-name-
2, data-name-3, and so on. The data-names are listed in descending order
of their significance.

If data-name-2 is not the subject of this entry, then the following applies:

a. All of the items identified by the data-names in the KEY IS phrase
must be within the group item which is the subject of the OCCURS

entry.
b. None of the items identified by data-names in the KEY IS phrase can

be described by· an entry which either contains an OCCURS clause or is
subordinate to an intervening entry which contains an OCCURS clause.

An INDEXED BY clause is required if the subject of this entry, or an item with­

in it, is to be referred to by indexing. If indexing is to be used, each table

dimension must contain an INDEXED BY clause. The index-names identified by the

clause must not be defined elsewhere in the program and must be unique.

The maximum number of data items, not including FILLER items, which may be

subordinate to a data item having an OCCURS clause is 511.

6-56

I OCCURS I
The following example illustrates a use of the OCCURS clause to provide

nested descriptions. A reference to ITEM-6 requires the use of four levels

of subscripting; e.g., ITEM-6 (2, 5, 4, 9). A reference to ITEM-3 requires

two subscripts; e.g., ITEM-3 (I,J),

2 ITEM; OCCURS 2 TIMES; ...

3 ITEM-I; .•.

3 ITEM-2; OCCURS 5 TIMES; .••

4 ITEM-3; .•.

4 ITEM-4; OCCURS 5 TIMES; •..

5 ITEM-5; •..

5 ITEM-6; OCCURS 10 TIMES; •.•

In the example above, there are 500 ITEM-6 quantities.

The following example shows another use of the OCCURS clause. Assume that

the user wishes to define a record consisting of five AMOUNT items, followed

by five TAX items. Instead of the record being described as containing 10

individual data items, it could be described in the following manner:

1 TABLE; ...
2 AMOUNT; OCCURS 5 TIMES; •..

2 TAX; OCCURS 5 TIMES; ..•

•,

The above definition would result in memory allocated for five AMOUNT fields

and five TAX fields. Any reference to these fields is made by addressing

the field by name AMOUNT or TAX followed by a subscript denoting the p~rti­

cular occurrence desired. (See the discussion on subscripts.)

6-57

OWN

COBOL procedures compiled at level three or higher may declare certain vari­

ables to be OWN. These variables will retain their value or state through­

out repeated exit and re-entry of the procedure in which they are declared.

Any item that can be declared in the WORKING-STORAGE SECTION, except for

DIRECT SWITCH FILES, can be made OWN either by using the OWN clause or by

using the $ option OWN.

Example:

77 X PIC X(lO) OWN.

77 Y REDEFINES X PIC 9(10).

01 A OWNO

03 CMP-ITEM COMP PIC 9(11) OCCURS 100 INDEXED BY II.

OWN must not be specified for a stack (COMP-I) array.

A stack listing will show the address of own variables to have a lex level

of two and a displacement of from M to M-N+l, where M is the maximum displace­

ment that may be accessed by the procedure, and N is the total number of stack

locations obtained for OWN items. The BINDER will obtain actual addresses

for OWN items by extending the D2 stack of the host.

All related index-names and copy descriptors for OWN items are also OWN;

redefinitions of OWN items are implicitly OWN and need not use the OWN

clause.

Use of the $ option OWN throughout the compilation will cause all stack lo­

cations obtained in the WORKING-STORAGE SECTION, except for DIRECT files, and

stack (COMP-I) arrays to be OWN, unless overridden temporarily by a GLOBAL or

LOCAL clause on an individual item.

If the $ option OWN is set at the PROCEDURE DIVISION header, the special

register TALLY will be made an OWN variable.

6-58

PICTURE

The PICTURE clause describes the general characteristics and editing require­
ments of an elementary item.

The general format for the PICTURE clause is as follows:

{~CTURE} IS character-string [DEPENDING ON data-name]

A PICTURE clause can only be used at the elementary item level.

A character-string consists of certain allowable combinations of characters

in the COBOL character set used as symbols. The allowable combinations de­
termine the category of the elementary item.

The maximum number of symbols allowed in the character-string is 30. When an
unsigned integer enclosed in parentheses immediately follows a symbol, the
integer specifies the number of consecutive occurrences of that symbol. This
may not be used for those symbols limited to one occurrence per picture.

The DEPENDING ON option is used to denote a variable length elementary item.
Variable length items cannot be described in the REPORT SECTION. The data
description of data-name must be such that it defines a positive integer.
The value of data-name represents the number of characters in the item being
described and may have a value of zero. Data-name may be qualified but can­

not be a variable-length item. This clause may be specified only when the
PICTURE character "L" is specified.

The DEPENDING ON clause is not permitted when the description of the item
contains the JUSTIFIED clause.

Either a PICTURE or a SIZE clause must appear in every elementary item except
those items whose USAGE is declared as COMP-4, COMP-5, INDEX, EVENT, CONTROL­
POINT or LOCK. If both a PICTURE and a SIZE clause appear, the SIZE clause
is ignored. The SIZE of an elementary item, where SIZE means the number of
character positions occupied by the elementary item, is determined by the
number of allowable symbols that represent character positions.

Categories of Data

There are five categories of data that can be described with a PICTURE clause:
Alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric edited.

These categories are described as follows:

6-59

ALPHABETIC

To define an item as alphabetic, its PICTURE character-string can only contain

the symbols A, B, and L, and its contents, when represented externally, must

be any combination of the 26 letters of the alphabet and the space from the

COBOL character set.

NUMERIC

To define an item as numeric, its PICTURE character-string can only contain the

symbols 9, P, S, J, and V. Its contents, when represented externally, must be

a combination of the numerals O, 1, 2, 3, 4, 5, 6, 7, 8, and 9. A data item de­

fined as numeric may contain a maximum of 23 digits and a maximum of one opera­

tional sign. The size restriction of 23 digits does not apply to FILLER items
unless the VALUE clause has been specified. If signed, the item may also con-

tain the representation of an operational sign.

ALPHANUMERIC

To define an item as alphanumeric, its PICTURE character-string is restricted

to certain combinations of the symbols A, L, X, 9, and the item is treated as

if the character-string contained all X9 s. Its contents, when represented

externally, are any of the allowable characters in the COBOL character set.

A PICTURE character-string which contains all 9's or all A's, with or without

the symbol L, does not define an alphanumeric item.

ALPHANUMERIC EDITED

To define an item as alphanumeric edited, its PICTURE character-string is

restricted to certain combinations of the symbols A, X, 9, B, and 0 (zero)

given by the following rules:

a. The character-string must contain at least one B and one X, or at

least one 0 (zero) and one X, or

b. The character-string must contain at least one 0 (zero) and one A.

NUMERIC EDITED

To define an item as numeric-edited, its PICTURE character-string is re­

stricted to certain combinations of the symbols B, P, V, Z, O, 9, , (comma),

(period), *, +, -, CR, DB, and the currency sign($). The PICTURE char­

acter string must contain at least one symbol other than V and 9. The allow­

able combinations are determined from the order of precedence of symbols and

the editing rules. The maximum number of digit positions that may be repre­

sented in the character-string is 23.

6-60

PICTURE

Classes- of Data

The five categories of data items are grouped into three classes: Alphabetic,

Numeric, and Alphanumeric. For Alphabetic and Numeric, the classes and

categories are synonymous. The Alphanumeric class includes the categories
of Alphanumeric Edited, Numeric Edited and Alphanumeric (without editing).

Every elementary item belongs to one of the classes and further to one of

the categories. The class of a group item is treated at object time as

Alphanumeric regardless of the class of elementary items subordinate to that
group item .. Figure 6-8 depicts the relationship of the class and categories

of da,ta items.

LEVEL OF ITEM CLASS CATEGORY

Alphabetic Alphabetic

Elementary Numeric Numeric

Numeric Edited
Alphanumeric Alphanumeric Edited

Alphanumeric

Alphabetic
Numeric

Nonelementary Alphanumeric Numeric Edited
(Group) Alphanumeric Edited

Alphanumeric

Figure 6-8. Relationship of Class and Category

6-61

Function of the Editing Symbols

An unsigned non-zero integer which is enclosed in parentheses following the

symbols A, X, 9, P, Z, *, B, o, +, - the comma, or the currency sign ($) in­
dicates the number of consecutive occurrences of the symbol. Note that the
following symbols may appear only once in a given PICTURE clause: S, J, K,
V, L, . (period), CR, and DB.

The functions of the symbols used to describe an elementary item are explained

as follows:

6--62

A The symbol A in the character-string represents a character position

which can contain only a letter of the alphabet or a space.
B· Each symbol Bin the character-string represents a character posi­

tion into which the space character will be inserted.
J The symbol J indicates an operational sign appearing as an overpunch

in the most-significant position for DISPLAY and DISPLAY-1 or as a
trailing digit in COMP-2. J is not allowed for COMP or COMP-1. J

is not counted in the size for DISPLAY or DISPLAY-1 but is counted
in COMP-2. Only one operational sign may be present in each PICTURE.
J and s are mutually exclusive. See the S sign discussion for the

exact bit configuration of signs.

K When the B2500 system dollar option is set, the letter K in a PICTURE
character string may be used to indicate the presence of a separate
8-bit character sign appearing in the first character position of an
item whose usage is DISPLAY; and is counted in the length of the item.
If the usage is COMP-2, the letter K means the same as the letter S.
The letter K may be used in a numeric, or edited numeric picture.
In both instances, it must be the first character in the PICTURE
string. Only one K may be present in the PICTURE string.

L The letter L must appear as the leftmost character in the PICTURE
character-string of every elementary item whose length is variable.
The class of variable length items may be alphabetic or alphanumeric.
The value of data-name determines the actual size of the item and
refers to the leftmost characters of the item. The PICTURE desig­
nates the maximum size of the item.

P The letter P indicates an assumed decimal scaling position and is
used to specify the location of an assumed decimal point when the
point is not within the number that appears ine the data item. The
scaling position character P is not .counted in the SIZE of the data
item. Scaling position characters are counted in determining the
maximum number of digit positions in numeric edited items or NUMERIC

items which appear as operands in arithmetic statements. The scaling

position character P can appear only to the left or right as a con­

tinuous string of P's within a PICTURE description. Since the scaling

position character P implies an assumed decimal point (to the left

of P, if P's are leftmost PICTURE characters, and to the right of P,

if P's are rightmost PICTURE characters), the assumed decimal point

symbol V is redundant as either the leftmost or rightmost character

within such a PICTURE description. The character P and the symbol
It II (decimal point) cannot both occur in the same PICTURE charac-

ter string.

S The letter S is used in a character~string to indicate the presence

of an operational sign and must be written as the leftmost character

in the PICTURE. The S is not counted in determining the SIZE of the

elementary item unless USAGE is COMP-2. If USAGE is DISPLAY or

DISPLAY-1, S indicates the sign is carried as an overpunch in the

least-significant position. J and S are mutually exclusive. For

COMP-2, S indicates the sign is carried in the leading digit of the

field. The two zone bits of a DISPLAY-1 character are set to 10 when

negative, 00 when positive. The four bit sign in EBCDIC and COMP-2

is set to 4"D" for negative, 4"C" for positive.

V The letter V is used in a character-string to indicate the location

of the assumed decimal point and may only appear once in a character­

string. The V does not represent a character position and, there­

fore, is not counted in the SIZE of the elementary item. When the

assumed decimal point is to the right of the rightmost symbol in

the string, the V is redundant.

X Each letter X in the character-string is used to represent a

character position which contains any allowable character from the

computer's character set.

Z Each letter Z in a character-string may only be used to represent

the leftmost leading numeric character positions which will be re­

placed by a space character when the contents of the character

position is zero. Each Z is counted in the SIZE of the item.

9 Each 9 in the character-string represents a character position

which contains a numeral and is counted in the SIZE of the item.

0 Each 0 (zero) in the character-string represents a character po­

sition into which the numeral zero will be inserted. The 0 is

counted in the SIZE of the item.

6-63

Each comma in the character-string represents a character position

into which the comma character will be inserted. This character

position is counted in the SIZE of the item.

When the character period appears in the character-string, it is an

editing symbol which represents the decimal point for alignment pur­

poses; in addition,. it represents a character position into which

the period character will be inserted. The period character is

counted in the SIZE of the item. For a given program, the functions

of the period and comma are exchanged if the clause DECIMAL-POINT IS

COMMA is stated in the SPECIAL-NAMES paragraph. In this exchange, the

rules for the period apply to the comma and the rules for the comma

apply to the period whenever they appear in a PICTURE clause. V and

(.) are mutually exclusive.

+}The symbols +, -, CR, and DB are used as editing sign control

- symbols. When used, they represent the character position(s) into

CR which the editing sign control symbol will be placed. The symbols

DB are mutually exclusive in any one character-string, and each char­

acter used in the symbol is counted in determining the SIZE of the

6-64

data-item. (Note that the symbols CR and DB are two character

symbols, and any other use of C or D constitutes an error.)

* Each * symbol in the character-string represents a leading numeric

character position into which an asterisk will be placed when the

contents of that position is zero. Each * is counted in the SIZE

of the item.

$ The currency symbol ($) in the character-string represents a

character position into which a currency symbol is to be placed.

The currency symbol in a character-string is represented by either

the dollar sign ($) symbol or by the single character specified in

the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. The cur­

rency symbol is counted in the SIZE of the item.

The symbol - when not the leftmost or rightmost character, is

treated as a fixed insertion hyphen. This feature is valid only

to the left of the decimal if the preceding character is not the

symbol Z.

NOTE

Any other character which is not a defined

picture character appearing in the PICTURE

is assumed to be an insert character.

Editing RuJes

There are two general methods of performing editing in the PICTURE clause:

by insertion or by suppression and replacement.

Floating insertion editing and editing by zero suppression and replacement

are mutually exclusive in a PICTURE clause. Only one type of replacement

may be used with zero suppression in a PicrURE clause.

The type of editing which may be performed upon an item is dependent upon

the category to which the item belongs. Figure 6-9 specifies which

type of editing may be performed upon a given category.

C'..A.TEGORY TYPE OF EDITING

Alphabetic None

Numeric None

Alphanumeric None

Alphanumeric Edited Simple Insertion, 0 and B

Numeric Edited All, Subject to Note Above

Any Variable-Length Item None

Figure 6-9. Permissible Editing Types

INSERTION EDITING

The following are the four types of insertion editing available:

a. Simple Insertion.

b. Special Insertion.

c. Fixed Insertion.

d. Floating Insertion.

SIMPLE INSERTION EDITING. The comma (,), B (space), and 0 (zero) are used

as the insertion characters. The insertion characters are counted in the

SIZE of the item and represent the position in the item into which the

character will be inserted.

While the ANSI74 system dollar option is set, the slash "/" (virgule) may be

used as an insert character for alphanumeric edited items. It may be used the

same as a "B" or "0" (zero) in the PICTURE character string. Refer to

Appendix B for a description of the ANSI 74 implementations.

6-65

SPECIAL INSERTION EDITING. The period (.) is used as the insertion character.

In addition to being an insertion character, it also represents the decimal

point for alignment purposes. The insertion character used for the actual

decimal point is counted in the SIZE of the item. The use of the assumed

decimal point (represented by the symbol V) and the actual decimal point

(represented by the insertion character) in the same PICTURE character-string

is prohibited. If the insertion character is the last symbol in the character­

string, and the PICTURE clause is not the last clause of the DATA DIVISION

entry, the character-string must be immediately followed by the semicolon

punctuation character, and then followed by a space. If the PICTURE clause

is the last clause of that DATA DIVISION entry, and the insertion character

is the last symbol in the character-string, the insertion character must be

immediately followed by a period punctuation character followed by a space.

This results in two consecutive periods (or",." if decimal-point is comma

has been specified) appearing in the data description entry. The result of

special insertion editing is the appearance of the insertion character in the

item in the same position as shown in the character-string.

FIXED INSERTION EDITING. The currency sign ($) and the editing sign control

symbols"+", "-", CR, and DB are the insertion characters. Only one currency

symbol and only one of the editing sign control symbols can be used in a

given PICTURE character-string. When the symbols CR or DB are used, they

represent two character positions in determining the size of the item, and

they must represent the rightmost character positions that are counted in

the size of the item. The character 11 - 11 may be used as a fixed or float-

ing sign insertion character. When this character appears to the left of the

decimal point, its use as either a sign or a hyphen is determined as follows:

if the character cannot be legally used as a sign according to the usual

rules, then it is interpreted as a hyphen. To the right of the decimal point

it is only interpreted as a sign. The symbol"+", when used, must be the

leftmost or rightmost character position to be counted in the size of the

item. The currency symbol must be the leftmost character position to be

counted in the size of the item except that it can be preceded by either a +

or a - symbol. Fixed insertion editing results in the insertion character

occupying the same character position in the edited item as it occupied in

the PICTURE character-string. Depending upon the value of the data item,

editing sign control symbols produce the results indicated in figure 6-lo.

6-66

PICTURE

RESULT

EDITING SYMBOL IN DATA ITEM DATA ITEM
PICTURE CHARACTER-STRING POSITIVF. NEGATIVE

+ + -
- SPACE -
CR 2 SPACES CR

DB 2 SPACES DB

Figure 6-lo. Editing Symbols and Results

FLOATING INSERTION EDITING. The currency symbol and editing sign control
symbols + or - are the insertion characters, and they are mutually exclusive

as floating insertion characters in a given PICTURE character-string,

Floating insertion editing is indicated in a PICTURE character-string by
using a string of at least two of the allowable insertion characters to

represent the leftmost numeric character positions into which the insertion

charac~ers can be floated. Any of the simple insertion characters embedded
in the string of floating insertion characters or to the immediate right
of this string are part of the floating string; however, they represent

themselves rather than numeric character positions.

In the PICTURE character-string, there are only two ways of representing

floating insertion editing. One way is to represent any or all of the lead­

ing numeric character positions to the left of the decimal point by the in­

sertion character. The other way is to represent all of the numeric character
positions in the PICTURE character-string by the insertion character,

The result of floating insertion editing depends upon the representation in
the PICTURE character-string. If the insertion characters are only to the
left of the decimal point, the result is a single insertion character that

will be placed into the character position immediately preceding the decimal

point, or the first non-zero digit in the data represented by the insertion

symbol string, whichever is farther to the left in the PICTURE character­
string.

If all numeric character positions in the PICTURE character-string are re­

presented by the insertion character, the result depends upon the value of
the data, If the value is zero, the entire data item will contain spaces,
If the value is not zero, the result is the same as when the insertion

character is only to the left of the decimal point.

6-67

To avoid truncation, the minimum size of the PICTURE character-string for

the receiving data item must be the number of characters in the sending data

item, plus the number of fixed insertion characters being edited into the

receiving data item, plus one for the floating insertion character. When

simple insertion characters are embedded within a floating insertion char­

acter string, the leftmost two characters of this string must be floating in-
'

sertion characters. For example, "X PIC $,$$$.99" will produce a syntax

error.

SUPPRESSION EDITING. The suppression of leading zeros in numeric character

positions is indicated by the use of the character Z or the character *
(asterisk) as suppression symbols in a PICTURE character-string. These

symbols are mutually exclusive in a given PICTURE character-string. Each

suppression symbol is counted in determining the SIZE of the item. If Z is

used, the replacement will be the space, and if the asterisk is used, the

replacement character will be the*·

Zero suppression and replacement are indicated in a PICTURE character-string

by using a string of one or more of the allowable symbols .to represent lead­

ing numeric character positions which are to be replaced when the associated

character position in the data contains a zero. Any of the simple insertion

characters embedded in the string of symbols or to the immediate right of

this string are part of the string.

In a PICTURE character-string, there are only two ways of representing zero

suppression. One way is to represent by suppression symbols, any or all of

the leading numeric character positions to the left of the decimal point.

The other way is to represent all of the numeric character positions in the

PICTURE character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any

leading zero in the data which corresponds to a symbol in the string is re­

placed by the replacement character. Suppression terminates at the first

non-zero digit in the data represented by the suppression symbol string or

at the decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character-string are repre­

sented by suppression symbols and the value of the data is not zero, the re­

sult is the same as if the suppression characters were only to the left of

the decimal point. If the value is zero, the entire data item will be spaces

if the suppression symbol is Z, or will be all asterisks (*) (except for the

actual decimal point) if the suppression symbol is *·

6-68

When the asterisk is used as the zero suppression symbol and the clause
BLANK WHEN ZERO also appears in the same entry, the zero suppression editing

overrides the function of BLANK WHEN ZERO.

REPLACEMENT EDITING. Symbols +, -, *, Z, and the currency symbol, ·when used
as floating replacement characters, are mutually exclusive within a given

character-string.

Precedence of Symbols

Figure 6-11 shows the order of precedence when characters are used as symbols

in a characte~-string. An X at an intersection indicates that the symbol(s)
at the top of the column may precede, in a given character-string, the
symbol(s) at the left of the row. Arguments appearing in braces indicate
that the symbols are mutually exclusive. The currency symbol is indicated
by the symbol "cs".

At least one of the symbols "A", "X'', "Z", "9" or "*", or at least two of
the symbols"+", "-" or "cs" must be present in a PICTURE string.

Non-floating insertion symbols"+" and"-", floating insertion symbols "Z",
"*", "+", "-", and "cs", and other symbol "P" appear twice in the PICTURE
character precedence chart. The leftmost column and uppermost row for eacl•
symbol represents its use to the left of the decimal point position. The
second appearance of the symbol in the chart represents its use to the rig!

of the decimal point position.

The column and row identified by "/" is to be used for the precedence rules

for those other characters which are not defined PICTURE characters but which
may be used as fixed insertion characters.

PICTURE Examples

Figure 6-12 shows examples of valid PICTURE clauses based on the precedence

of symbols in figure 6-11.

6-69

First Non-Floating Floating
Other symbols

Symbol Insertion Symbols Insertion Symbols

Second lll i::i 1:1 l:! l] l]I
A

B 0 I , cs cs cs 9 L s v p p
symbol x

B x x x x x x x x x x x x x x x x x
-

0 x x x x x x x x x x x x x x x x x

en I x x x x x x x x x x x x x x x x x

"' ..8 i:: e , x x x 1x x x x x Ix x x x I x x 1X x ... >-... ti) J_ J.
"' 0 c . x x x x x x x x x x 0 r.r. ... -- --

I
-

I ... -) I c:
'"'

(+ I x
0 al z en

xlx x l x c: (+ -) x x x x I x x x x x x

(CR DB) x x x x x x x Tx x x x x x x
I i

cs I x \

(z *) x x x I x x x x
en

..... ! 0 (z •) x x x x x1x x x ,x x x

.Cl
I

"' e I
I I c: :;-

-) ... (+ x x I X I X I x x I ... c: I I I

"' 0
0 ...

x 1 x I l ' (+ -) x x x x x x x x
r...

'"' «> I T en cs x x x x x x c:

I cs x x x x x x x x x x

9 x x x x x x' x x xi x x x x x x

A X x x x t I x x x
en
.....

l 0 L I

.Cl I
e I I
>- t l l I ti) s

'"' al v x x x x x x x ! xi I x x x x .i:: ...
0

p x x x x x x x x x x x x

p x x x x x x

Figure 6-11, Order of Precedence

6-70

ALPHABETIC ITEMS:

AA

A(25)

ALPHANUMERIC ITEMS:

xx
X(l5)

A(5)9(4)

99A99XX

NUMERIC ITEMS:

9

99999

9V99

S99V99

999PPP

J99

SOURCE AREA

PICTURE DATA

9(5) 12345
V9(5) 12345
V9(5) 12345

9(5) 00000
9(3)V99 12345
9 (5) 00000
9 (5) 01234
9 (5) 00000
9(5) 00123
9(3)V99 00012
9(3)V99 12345
9(3)V99 00001
9 (5) 12345
9 (5) 00000
9(3)V99 00001

S9(5) (+) 12345
S9(5) (-) 00123

9(3)V99 12345
S9(5) (-) 12345
S9(5) (+) 12345
9(5) 12345

S9(5)V (-) 12345
S9(5) (-) 12345

S99V9(3) (-) 12345
S9(5) (+) 12345

9(3)V99 12345
9(5) 12345

S9 (5) (-) 123

EDITED NUMERIC ITEMS (CLASS IS ALPHANUMERIC):

9.99

zzzzz
$$.99CR

B(4)9

$**,***.99
-----9 ("-" IS A MINUS SIGN)

++,++9.999

$**,***.99DB

999,999

99-99-99 ("-" IS A HYPHEN)

RECEIVING AREA

EDITING EDITED DATA PICTURE

$ZZ,ZZ9.99 $12,345.00
$$$,$$9.99 $0.12
$ZZ,ZZ9.99 $ 0.12
$$$,$$9.99 $0.00
$ZZ,ZZ9.99 $ 123.45
$$$,$$$.$$
$**,**9.99 $*1,234.00
$**,***,** *******·**
$**,**9.99 $***123.00
$ZZ,ZZ9.99 $ 0.12
$$$,$$9.99 $123.45
$ZZ,ZZZ.99 $.01
$$$,$$9.99 $12,345.00
$ZZ,ZZZ.ZZ
$$$,$$$.$$ $.01

ZZZZ9.99+ 12345. 00+
--99999.99 -00123.00

999.00 123.00
ZZZZ9.99- 12345.oo-
ZZZZ9.99- 12345.00
BBB99.99 45.00

-ZZZZ9.99 -12345. 00
$$$$$$.99CR $12345.00CR
------.99 -12.34
$$$$$$.99CR $12345.00

999.BB 123.
00999.00 00345.00

-ZZZZZ.99 - 123.00

Figure 6-12. PICTURE Clause Examples

6-71

RANGE

The RANGE clause indicates the potential range of a data item. This clause

is used for documentation purposes only.

The format for this clause is:

RANGE IS literal-I (THRO UGI:[\
\:THRU j literal-2

The RANGE clause can be written only at the elementary item level.

6-72

I RECEIVED

RECEIVED

The RECEIVED clause identifies those items which are received as parameters
by name or by value from another procedure or items which are to be passed
to another procedure by name or by value. The RECEIVED clause may only ap­
apear on a level 77 or level 01 in a LOCAL-STORAGE or WORKING-STORAGE section.

The format is as follows:

{
REFERENCE}

RECEIVED BY REF
CONTENT

The RECEIVED BY REFERENCE allows two or more procedures to share the item with

which it appears. Any reference to the identifier in one of the procedures
which shares it will be referencing the same common data area as the others
use. This is also called passing data "by name". REF is synonymous with

REFERENCE. Parameters passed "by value" are identified by the clause RECEIVED
BY CONTENT. In this case the current value of the identifier is received by
the procedure. Though another procedure may change the value it has associated
with that data-name, it merely affects its own copy of its storage; likewise,
the receiving procedure may make changes to data-name that will not affect the
original item.

The RECEIVED BY CONTENT clause may not appear with any item whose usage is

described as CONTROL-POINT, EVENT or LOCK or with any item described at the
01 level.

When RECEIVED is not specified, 77 level COMP-1 items are RECEIVED BY CONTENT
and all other items and files are RECEIVED BY REFERENCE.

A. data description entry containing the RECEIVED clause must not contain a.
VALUE clause.

Figure 6-13 is an example of use of the RECEIVED clause in a calling and a
called program.

6-73

I RECEIVED I

6-74

SPECIAL-NAMES. 11CALLED11 /"PROGRAM11 IS TO-BE-CALLED.
FILE-CONTROL.

SELECT LOCAL REF DIOFL ASSIGN DIRECT DISK.
SELECT PRTF ASSIGN DIRECT DISK.
SELECT SHOWIT ASSIGN PRINTER.

DATA DIVISION.
FILE SECTION.
FD PRTF RECORD CONTAINS 132 DISPLAY CHARACTERS.
FD DIOFL RECORD CONTAINS 132 DI SPLAY.
FD SHOWIT.
01 DISDIR PIC X(l32).
01 ITSHEADING.

03 EMPTYCMNT PIC X(l32).
WORKING-STORAGE SECTION.
77 VAL PIC 99 COMP-1.
77 DONE EVENT.
77 TSK USAGE IS CONTROL-POINT.
01 TBL.

05 COL OCCURS 5 PIC X.
01 SET-UP SIZE 132 DISPLAY RECORD AREA.

03 FILLER VALUE "MAIN" PIC X(7).
03 TBLVAL PIC 9(5) VA.LUE ZEROS.
03 FILLER VALUE SPACES PIC X(120).

01 FROMHERE.

03 CMNT PIC X(l32) YA.LUE "CONTENTS OF DISK FILE".
01 PLA.INLINE RECORD A.REA. SIZE 132.
LOCAL-STORA.GE SECTION.
LD FORPA.RAMS.

77 VAL-A PIC 99 COMP-I RECEIVED BY CONTENT.
77 FINE REF EVENT.
01 ELBAT SIZE 5 REF DISPLAY.

03 NUMB PIC X(5).

PROCEDURE DIVISION.
DECLARATIVES.
Sl SECTION. USE EXTERNAL TO-BE-CALLED AS PROCEDURE

; WITH FORPARAMS, DIOFL
; USING VAL-A, FINE, ELBAT, DIOFL.

END DECLARATIVES.

Figure 6-13. RECEIVED Clause in Calling and Called Programs.

Pl.

P3.

XIT.

OPEN OUTPUT PRTF.
MOVE 1 TO VAL.

WRITE PRTF KEY IS VAL FROM SET-UP USING DONE.
CALL TSK WITH Sl

USING VAL, DONE, TBL, PRTF.

ADD 2 TO VAL.
MOVE TBL TO TBLVAL.
WRITE PRTF KEY IS VAL FROM SET-UP USING DONE.
WAIT SET-UP. RESET DONE.

SHOW-FILE.
CLOSE PRTF.
MOVE ZERO TO VAL.
OPEN OUTPUT SHOWIT.
MOVE FROMHERE TO EMPTYCMNT.
WRITE ITSHEADING.
OPEN INPUT PRTF.

WRITE-ONE.
ADD 1 TO VAL.
READ PRTF KEY IS VAL INTO PLAINLINE USING DONE.
WAIT DONE.
RESET DONE.
WRITE DISDIR FROM PLAINLINE.
IF VAL GREATER THAN 2 GO STOPPING

ELSE GO WRITE-ONE.
STOPPING.

STOP RUN.

RECEIVED

6-75

I RECEIVED I
FILE-CONTROL.

SELECT PRTFIL ASSIGN DIRECT DISK.
DATA DIVISION.
FILE SECTION.
FD PRTFIL RECORD CONTAINS 132 DISPLAY.
WORKING-STORAGE SECTION.
77 VAL-A PIC 99 COMP-I RECEIVED BY CONTENT.
77 DONE EVENT REFERENCE.
01 ELBAT REF PIC X(5).
01 ARRIVAL RECORD AREA SIZE 132.

03 MYNA.ME PC X(7) VALUE "TASK".
03 TABVAL PIC X(5).
03 FILLER VALUE SPACES PIG X(120).

PROCEDURE DIVISION

Pl.

USING VAL-A, DONE, ELBAT, PRTFIL.

WAIT DONE.
MOVE "12345" TO ELBAT.
MOVE ELBAT TO TABVAL.
ADD 1 TO VAL-A.
WRITE PRTFIL KEY IS VAL-A FROM ARRIVAL USING DONE.
GO TO Pl.

Results of Executing calling Program:

6-76

CONTENTS OF DISK FILE
MAIN 00000
TASK 12345
MAIN 12345

~ECORD AREA I
RECORD AREA

The RECORD AREA clause specifies that the record being described is to be

used for direct I/O buffering. This clause may only appear on the 01 level

in a WORKING-STORAGE SECTION or a LOCAL-STORAGE SECTION.

Areas described with the RECORD AREA clause will become non-overlayable until

the area is specified in a DEALLOCATE statement.

An area described with the RECORD AREA clause must not be declared to be

COMP-1.

See example in RECEIVED clause discussion for an example of using direct files

and record areas.

6-77

I REDEFINES I
REDEFINES

The REDEFINES clause allows the same area of memory to be referenced by more

than one data-name with different formats and sizes.

The format for this clause is as follows:

level-number data-name-! REDEFINES data-name-2

The REDEFINES clause pertains to only part of a record in the FILE SECTION.

Implicit redefinition is provided by the DATA RECORDS clause in the file

description entry. REDEFINES may apply to a part or all of a record in the

CONSTANT SECTION or WORKING-STORAGE SECTION. The rules listed below must be

followed when using this clause:

6-78

a, The REDEFINES clause, when specified, must immediately follow

data-name-I,

b, The level-numbers of data-name-I and data-name-2 must be identical,

but must not be 66 or 88. Qualification of data-name-2 is never re­

quired.

c. When REDEFINES is applied to other than an 01 level, the area being

redefined must be the same size as the area of the new description.

A FILLER entry may be used to avoid violating this rule.

d, Redefinition ceases whenever a level-number less than or equal to

that of data-name-! or data-name-2 is encountered.

e. Multiple redefinitions of the same storage area are permitted. The

entries giving the new descriptions of the storage area must follow

the entries defining the area being redefined, without intervening

entries that define new .storage areas. Multiple redefinitions of

the same storage area must all redefine the data-name of the entry

that originally defined the area.

f. The entries giving the new description of the storage area must not

contain any VALUE clauses, except in condition-name entries.

g. A level 01 data item with an OCCURS clause may not have a REDEFINES

clause.

[REDEFINES I
h. The REDEFINES clause, when specified, may REDEFINE a DISPLAY data

item with a COMP-2 data item whose internal size is four bits less
than the internal size of the DISPLAY data item. The redefining item

will reference the left-most part of the DISPLAY item. This applica­

tion is compatible with Burroughs medium and small systems COBOL.
i. A REDEFINES clause can optionally specify an immediately-preceding

redefining data item of the same hierarchical level, rather than the

data item originally defining the area.

NOTE: Rules (h) and (i) apply only while the B2500 system dollar

option is set.

Figure 6-14 shows examples of redefinition.

01 WORKl sz 80.
02 PART-ONE sz 60.
02 PART-TWO REDEFINES PART-ONE.

03 xx sz 40.
03 yy sz 20.

02 PART-THREE REDEFINES PART-ONE.
03 zz sz 55.
03 FILLER sz 5.

02 FILLER sz 20.

01 TBL-1 sz 24.

03 AA PIC x OCCURS 0 TO 24 TIMES

DEPENDING ON DN.

01 TBI..-2 REDEFINES TBL-1.

03 BB PIC xx OCCURS 0 TO 12 TIMES

DEPENDING ON DN-2.

01 AAl.
05 AA2.

10 AA3 COMP-2 PIC S999.

10 AA4 COMP-2 PIC S9(5).

05 BB2 REDEFINES AA2.

10 BBX PIC X(5).

05 FILLER SIZE 61.

Figure 6-14. Examples of REDEFINES

6-79

I R~NAMES I
RENAMES

The RENA.MES clause permits alternative, and possibly overlapping grouping of
elementary items.

The following is the format for the RENA.MES clause:

66 data-name-I; RENAMES data-name-2 [{~UGH} data-name-3 J
One or more RENA.MES entries can be written for a logical record. All RENAMES
entries associated with a given logical record must immediately follow its
last record description entry. It is not possible to "chain" RENA.MES; i.e.,

it is illegal to rename data item "A." to "B" and then rename "B" to "C". How­
ever, multiple RENA.MES of a data-name are permitted. (See example below.)

Data-name-2 and data-name-3 must be names of elementary items or groups of
elementary items of the same logical record and cannot be the same data-name.
A 66 level entry cannot rename another 66 level entry nor can it rename a 77,
88, or 01 level entry.

When data-name-3 is specified, data-name-1 is a group item which includes all
elementary items starting with data-name-2 (if data-name-2 is an elementary
item) or the first elementary item in data-name-2 (if data-name-2 is a group
item), and concluding with data-name-3 (if data-name-3 is an elementary item)
or the last elementary item in data-name-3 (if data-name-3 is a group item).

When data-name-3 is not specified, data-name-2 can be either a group or an
elementary item; when data-name-2 is a group item, data-name-1 is treated as
a group item; and when data-name-2 is an elementary item, data-name-1 is
treated as an elementary item.

The beginning of the area described by data-name-3 must not be to the left of
the beginning of the area described by data-name-2. The end of the area de­
scribed by data-name-3 must not be to the left of the end of the area described
by data-name-2. Data-name-3 cannot be contained within data-name-2. Data­

.name-2 and data-name-3 may be qualified.

Data-name-1 cannot be used as a qualifier, and can only be qualified by the

names of the level 01, SD or FD entries. Neither data-name-2 nor data-name-
3 may have an OCCURS clause in its record description entry or be subordinate
to an item that has an OCCURS clause in its record description entry.

6-80

I ·RENAMES I
When data-name-3 is specified, none of the elementary items within the range,

including data-name-2 and data-name-3, can be variable-occurrence items.

Data-name-1 will assume the USAGE of the item being renamed. If the THRU
option is used, all items within the RENAMES range must have the same
USAGE.

Figure 6-15 shows examples of the RENAMES clause.

01 TAB SIZE 24.
03 A SIZE 8.

05 Al PIC x.
05 A2 PIC XXX.
05 A3 PIC xx.
05 A4 PIC XX.

03 X ~IZE 16.
05 Xl PIC
05 X2 PIC
05 X3 PIC

66 B RENAMES A.
66 C RENAMES A.

xx.
X(6).
X(8).

66 D RENAMES Al THRU A3.
66 E RENAMES A4 THRU X2

66 F RENAMES A2 THRU X.
66 G RENAMES A THROUGH X.

{i.e. ,
{i.e.,

{i.e. '
{i.e.,

Al THRU A4)
Al THRU A4)

A2 THRU X3)
Al THRU X3)

Figure 6-15. Examples of RENAMES

6-81

SEGMENT

SEGMENT

The SEGMENT clause may be used to take advantage of the segmented array hard­

ware for very large string arrays whose entire presence in core is not

required.

The reserved word SEGMENT at the 01 level in WORKING or LOCAL STORAGE de­

clares that the array will be segmented.

The SEGMENT clause may be used with 01 items whose usage is ASCII, DISPLAY,

DISPLAY-I, COMP, COMP-2, COMP-4 or COMP-5. Redefinitions of these arrays are

also considered to be segmented, though it is not necessary that the SEGMENT

clause be used.

01 items of COMPUTATIONAL usage whose size is more than 1023 words are

implicitly segmented, along with any redefinitions of this array.

While core usage requirements are decreased, there is a tradeoff. References

to items within segmented arrays require an extra index operation in the

hardware.

6-82 ,

SIZE

The SIZE clause is used to specify the number of characters in a data item.

The format for the SIZE clause has two options as follows:

Option 1:

{ ~~ ZE } IS integer- 2 CHARACTERS

Option 2:

{ ~~ZE} IS [integer-1 ,'.!2] integer-2 CHARACTERS

[DEPENDING ON data-name-1]

Integer-1 and integer-2 must be positive integers. When both are used,
integer-1 must be less than integer-2. The data description of data-name
must be such that it defines a positive integer.

Any one of the key words of the USAGE clause can be inserted between integer-2
and the reserved word CHARACTERS.

The number of characters in every elementary item must be specified by means
of the SIZE or PICTURE clauses, unless the USAGE of the item is COMP-4,
COMP-5, CP, EVENT, LOCK or INDEX. PICTURE and SIZE need not both be given
for an item; however, if both are given, the PICTURE is used in determining
the SIZE of the item.

When option 1 is used, integer-2 specifies the exact number of characters
excluding the operational sign.

Option 2 specifies that the item is of variable length. The DEPENDING ON
clause is not required, but if used, integer-I is ignored.

The value of data-name-I is the count of the number of characters in the item
being described. Its value must not exceed integer-2 and must not be less
than one.

If data-name-1 appears in the records of a file, its least-significant
character position must always be the same number of character positions

from the beginning of each record.

6-83

For fixed-length group items, the SIZE clause is for documentation purposes
only. The size of a group is determined from the sum of the number of char­
acters in the elementary items subordinate to that group. When the size
specified at the group level does not equal the sum of the lengths of its

subordinate elementary items, the compiler will issue a warning message. This
facility is useful for checking the sizes of. lengthy or complicated groups.

In option 2, the maximum size of a group is the sum of the number of characters
in the fixed-length elementary items plus the sum of the maximum number of
characters in the variable-length items.

In option 2, if any item within a group contains the OCCURS clause, the
maximum size of the table is the product of the number of characters in the
item times the maximum number of occurrences.

If option 2 is used, the number of characters moved is the value of the
DEPENDING ON data-name. If the DEPENDING ON clause is omitted, the maximum

size is moved.

If option 2 is used on an 01 level in the FILE SECTION, the clause is used
only to determine the initial setting of the attribute FILETYPE.

The number of characters transferred by group moves involving one or more
groups of variable lengths is derived from the logical size of the groups
as specified by the value of the depending data-name or first four characters
of the group, whichever is appropriate.

For example:

FILE SECTION.

FD TAPE-OUPT; RECORD CONTAINS 12 TO 92 CHARACTERS.
01 TAPEREC SIZE 12 TO 92 DISPLAY-I.

02 SF PIC 9(4)
02 COMMENT SIZE 8.
02 DDTA PIC X(SO).

WORKING-STORAGE SECTION.
01 RECOUT SIZE 20 TO 192 DEPENDING ON SIZ.

03 SIZ PIC 9(4)
03 CMT PIC X(S).
03 DAT PIC X(180).

PROCEDURE DIVISION.

MOVE RECOUT TO TAPEREC.

The statement MOVE RECOUT TO TAPEREC will transfer the number of characters
specified by the value of SIZ in RECOUT, from RECOUT to TA.PEREC. If the valut
of SF (the first four characters of TAPEREC) is less than or equal to the

value of SIZ, then SF characters are transferred to TAPEREC. If the value of
SF exceeds the value of SIZ, then SIZ characters are transferred to TAPEREC,
followed by (SF-SIZ) space fill of the remaining character positions.

Note in the above example that the DEPENDING clause has not been specified
for TAPEREC. Since variable-length records are being written, the first
four characters of the record are used as the DEPENDING item.

Before any access is made to TAPEREC, SF must be properly initialized; SIZ

must be properly initialized prior to any reference to the data-name RECOUT.

6-85

I SYNCHRONIZED I
SYNCHRONIZED

The function of the SYNCHRONIZED clause is to specify positioning of an
elementary item within a computer word or words.

The following is the format for this clause:

(SYNCHRONIZED)[~ J
SYNC RIGHT

This clause may only appear with an elementary item. It may not appear with
any items described as CONTROL-POINT, EVENT, INDEX or LOCK. It specifies
that the COBOL compiler, in creating the internal format of this item, must
place the item in the minimum number of computer words which can contain the
item. If the size of the item (explicit or implicit) is not an exact
multiple of the number of characters in a computer word, the character po­
sitions between the item and the computer word boundary cannot be assigned
to another item. Such unused character positions are included in:

a. The size of any group to which the elementary item belongs, and
b. The computer storage area allocation when the elementary item ap-

pears as the object of a REDEFINES clause.

SYNCHRONIZED LEFT specifies that the elementary item is to be positioned
such that it will begin at the left boundary of a computer word.

SYNCHRONIZED RIGHT specifies that the elementary item is to be positioned
such that it will terminate at the right boundary of a computer word.

When SYNCHRONIZED is specif~ed without the words LEFT or RIGHT, then RIGHT is
assumed.

Whenever a SYNCHRONIZED item is referenced in the source program, the original
size of the item, as shown in the SIZE or PICTURE clause, is used in determin­
ing any action that depends on size, such a~ justification, truncation, or
overflow.

When the SYNCHRONIZED clause is specified for an item within the scope of an
OCCURS clause, an exception to the above rules will be in effect in that each
occurrence of the item is SYNCHRONIZED to a character boundary.

An item with USAGE of COMP, COMP-4, or COMP-5 need not begin at a word boundary.

However, if the SYNCHRONIZED clause is used with such an item, more efficient
code will result. Synchronization of COMP, COMP-4 or COMP-5 items may be done
either SYNC RIGHT or SYNG LEFT, since all such items use a full computer word

(double-precision uses two full words).

6-86

USAGE

The function of the USAGE clause is to specify the format in computer storage

of a data item.

[USAGE IS]

COMP
COMPUTATIONAL
COMP-1
COMPUTA',[IONAL-1
COMP-2
COMPUTATIONAL-2
CQMP-4
COMPUTA',[IONAL-4
COMP-5
COMPUTATIONAL-5
INDEX FILE CONTAINS

ASCII
DISPLAY
DISPLAY-1
INDEX
EVENT
LOCK
CONTROL-POINT
.c.e

file-name-1 [,file-name-2] •••

In the absence of any USAGE indication, either explicitly shown in the USAGE
clause or within the SIZE clause, USAGE IS DISPLAY is assumed.

The USAGE clause for a report group item can only specify the DISPLAY or
DISPLAY-1 option.

The USAGE clause can be written at any level, except CONTROL-POINT, EVENT,
INDEX and LOCK may only appear at level 77 or level 01 in WORKING-STORAGE or
LOCAL-STORAGE. If the USAGE clause is written at a group level, it applies
to each elementary item in the group. Multiple record descriptions for the
same file may be declared with contradictory usages. .If a group item is
described as COMPUTATIONAL, the elementary items are COMPUTATIONAL. The
group item itself is not COMPUTATIONAL because it cannot be used in computa­

tions.

COMP, COMP-2, COMP-4 and COMP-5 items should not be declared for DISPLAY
files (CARD-READER, PRINTER, PUNCH, or REMOTE). The use of such items will
cause question marks to print for characters which have no graphic and may
cause undesired control characters to be developed.

Care should be exe~cise~ in redefining COMP, COMP-1, COMP-4, COMP-5 items
on a character basis since the decimal number does not correspond in mapping
to its binary equivalent.

The following rules apply when mixing usages:

1. COMP-2 items cannot "be subordinate to ASCII, COMP, COMP-4,

COMP-5 or DISPLAY-I group items.

2. COMP, COMP-4 and COMP-5 items can be subordinate to COMP, COMP-I,
COMP-4, COMP-5, DISPLAY or DISPLAY-I group items.

6-87

3. COMP-2 items can be subordinate to DISPLAY group items. The

compiler, however, may have to insert a 4-bit filler if DISPLAY

elementary items follow COMP-2 elementary items.

4. Extreme care must be exercised when moving DISPLAY or DISPLAY-I

group items if either the sending or receiving field contains

subordinate COMP, COMP-2, COMP-4 or COMP-5 data.

5. No mixing of USAGE or contradiction of USAGE is permitted sub­

ordinate to a group declared CONTROL-POINT, EVENT, INDEX or LOCK.

These items may.not be subordinate to an item of any other USAGE.

6. Automatic translation of data takes place when moving data be­

tween ASCII, COMP-2, DISPLAY, and DISPLAY-I items. Any character

in one character set which is undefined in the other character

set is translated into the question mark.

7. INDEX, EVENT, LOCK and CP items must not be declared subordinate

to an item of USAGE COMP, COMP-I, COMP-2, COMP-4, COMP-5, ASCII,

DISPLAY or DISPLAY-I. INDEX, EVENT, LOCK and CP items may not

be mixed in an 01 level. When an array is to contain INDEX,
EVENT, LOCK or CP items, USAGE must be declared at the 01 level.

8. Floating-point format numeric literals may only be moved to

floating-point COMP-4 or COMP-5 receiving fields.

USAGE is the dominant declaration for internal format representation within
the computer system and is defined for use as follows:

6-88

a. DISPLAY. The data item is assumed to contain eight-bit-coded EBCDIC

character~, six characters for each B 7000/B 6000 word,

b. DISPLAY-I. The data is assumed to contain six-bit-coded BCL

characters, eight characters per computer word.

c. ASCII. The data is assumed to contain eight-bit-coded ASCII char­

acters, six characters for each B 7000/B 6000 word. If an array is to

contain A~CII characters, the 01 level must be declared ASCII and no

subordinate item may declare a usage other than ASCII. No data item

within an ASCII array may be declared as numeric or edited numeric.

d, COMPUTATIONAL (COMP). The data item is to be used primarily for

arithmetic operations; therefore, it is maintained in a binary

coded representation.

1. COMPUTATIONAL implies a signed item. No further sign specifica­

tion is required. (An unsigned value may be obtained through

the ABS function.)

[usAGE I
2. A COMPUTATIONAL item is capable of representing a value to be

used in computations and therefore is always numeric. Only

elementary items may be used in computations.

3. COMP items will occupy memory as follows:

When the declared size is less than or equal to 11 decimal digits,

the actual size is equal to one computer word; however, the item

is not necessarily word-aligned. (This is equivalent to six

DISPLAY digits or eight DISPLAY-1 digits.)

When the declared size is greater than 11 digits, the actual
size is equal to two computer words (the equivalent of 23 decimal

digits); however, the item is not necessarily word-aligned.

The actual size is used when determining the size of a record,
and for testing for size error conditions.

4. When the B2500 system dollar option is set, USAGE COMPUTATIONAL
will be considered to mean four bit character data (COMP-2).

Four-bit character elementary data items can be greater than
23 characters in length while the B2500 system dollar option

is set, provided they are declared as unsigned and as having no

scaling positions. Such items are not allowed to be used in an

arithmetic statement.

5. The PICTURE of a COMPUTATIONAL item can only contains nines, the

operational sign character "S"; the implied decimal point char­

acter "V"; and one or more of the character "P".

6. COMP items are not required to start at a word boundary, although

faster execution will result when COMP items start at a word
boundary.

7. If the ANSI74 or USASI dollar option is set at the time a

COMPUTATIONAL data item is declared, the item will be considered
throughout the program to be capable of receiving only values less

than or equal to the maximum decimal number specified by the

PICTURE clause.

For example, given the following item, the maximum value that can

be stored in X is 99:

77 X COMP PIC 99

6-89

USAGE

6-90

NOTE: If no sign is specified in the picture clause, only

absolute values are stored in the item. An attempt to

store a larger number than the PICTURE specifies will

cause a size error condition.

If strict compliance with the ANSI 74 standard is sought, it is
recommended that either the USASI or ANSI74 system dollar options

be set. Refer to Appendix B for a description of the ANSI 74

implementations.

e. COMPUTATIONAL-I (COMP-1). For a 77 level item, COMPUTATIONAL-1 is
synonymous with COMPUTATIONAL. The above discussion of COMPUTATIONAL

applies to COMPUTATIONAL-1 items, with the exception of d-4, d-7 and

that COMP-1 items may be declared only on level 77 or 01 entries (or

on the individual items within a COMP-I array) in WORKING-STORAGE and

LOCAL-STORAGE.

COMP-1 items, when used in arithmetic operations, do not achieve any

substantial reduction in execution time over COMPUTATIONAL items.

An 01 level described as COMP-1 becomes a stack array, thus speeding
up access to the array. Subordinate items must be either COMP, COMP-1,

COMP-4 or COMP-5. The 01 item may be redefined and the new item de­

clared DISPLAY, DISPLAY-I, ASCII, COMP, COMP-I, COMP-2, COMP-4 or
COMP-5. Neither a stack array nor its redefinition may be passed as

parameters or referenced as globals.

Stack (COMP-1) arrays may not be declared with the GLOBAL, LOWER­

BOUND, OCCURS, OWN, RECORD AREA or SEGMENT clauses at the 01 level.

f. COMPUTATIONAL-2 (COMP-2). The data item is assumed to contain hexa­

decimal digits, 12 digits per computer word. COMP-2 items need not

begin at the byte boundary or word boundary nor is a sign required.

Regardless of sign specification, if the left-most four bits of a

COMP-2 item contain a value greater than 9, then these four bits

are treated as a sign. If a COMP-2 item is described as "PIC 99",

and contains a hex value "A5", then three four-bit characters are
accessed (i.e., a sign and two digits). If a COMP-2 item described

as "PIC S99" contains the hex value "567", the value "56" will be

used.

USAGE

g. COMPUTATIONAL-4 (COMP-4). This data item will be a single precision

internal floating point operand which will occupy one word of memory;
however, the item is not necessarily word-aligned.

A PICTURE entry is not permitted for a COMP-4 item.

All comments for COMP items except the size requirements and allow­
able PICTURE characters apply equally to COMP-4 items.

h. COMPUTATIONAL-5 (COMP-5). This data item will be a double precision
internal floating point operand which will occupy two words of memory;
however, the item is not necessarily word-aligned.

A PICTURE entry is not permitted for a COMP-5 item.

All comments for COMP items except the size requirements and allow­

able PICTURE characters apply equally to COMP-5 items.

i. INDEX. An elementary item described with the USAGE IS INDEX clause
is called an index data item. If a group item is described with the
USAGE IS INDEX clause, the elementary items in the group are all index

data items. The group itself is not an index data item and cannot be
used in SEARCH or SET statements or in a relational condition. An
index data item can be referred to directly only in a PERFORM, SEARCH,

or SET statement, or in a relational condition. An index data item

can be part of a group referred to in a MOVE or input-output state­
ment, in which case no conversion will take place. The SIZE,SYNCHRO­

IZED, BLANK WHEN ZERO, JUSTIFIED, PICTURE, and VALUE clauses cannot

be used to describe group or elementary items described with the

USAGE IS INDEX clause.

Index data items can also be declared subordinate to a usage DISPLAY
group item. This offers compatibility with both B 4700 and B 1700
systems COBOL languages and with the ANSI 1968 and ANSI 1974 COBOL
standards. The internal representation of all index data names is

that of a signed seven-digit four bit character field. This inter­

nal representation is the same as the B 4700 and B 1700 COBOL com­

pilers give for index data items.

j. INDEX FILE. DIRECT SWITCH FILES may be declared at the 77 level in
WORKING or LOCAL-STORAGE SECTIONS by specifying a usage of INDEX FILE.

6-91

USAGE

6-92

Example:

77 switch-file-identifier INDEX FILE [CONTAINS file-name-1

[,file-name-2] .•.]

The CONTAINS clause is used to describe which DIRECT files compose

the switcn. Each file named in the switch must be a DIRECT file

and an FD must be provided.

The CONTAINS clause must be present if the DIRECT SWITCH FILE is

not received as a parameter. When the DIREC~ SWITCH FILE is received

as a parameter, or declared in LOCAL-STORAGE, then the RECEIVED clause

must be used to indicate that it is RECEIVED BY REFERENCE (name) and

the CONTAINS clause must not be specified.

A DIRECT SWITCH FILE identifier can be used any place in the syntax

that a DIRECT FILE identifier can be used, namely in OPEN, CLOSE,

READ, and WRITE statements and in attribute expressions.

Example:

OPEN INPUT SWFL(X)

READ SWFL(X) KEY IS RCINR(X) INTO RCDAREA(X)

All reads and writes with DIRECT SWITCH FILES must use a KEY clause

if non-serial action is desired, even if all the DIRECT FILES in the

switch are declared to be random.

If DIRECT SWITCH FILES are passed as parameters, then the correspond~

ing formal parameter description must be a DIRECT SWITCH FILE. A pro­

gram which receives a DIRECT SWITCH FILE as a parameter must not have

an FD for the files contained in the switch, since these files were

described in the program which passed them as parameters.

k. EVENT. Items described with the USAGE IS EVENT clause are used to

give the programmer a means of testing and controlling DIRECT input­

output operations (i.e., I-O COMPLETE). For asynchronous processing,

EVENT's may be used as a common interlock between two or more processes

thus providing an efficient means of correlating the activities of one

process with its related processes.

EVENT usage is allowed only on a 77 or 01 level item and, if used at

an 01 level, may have a subordinate OCCURS clause. (See the OCCURS

clause.) Except for documentary uses of the SIZE clause, no other

entries are permitted with an EVENT name.

Elementary EVENT items occupy two words of memory.

For information and syntax for controlling and testing EVENT names,

see the following PROCEDURE DIVISION statements: READ and WRITE

options for DIRECT I-O, CAUSE, RESET, IF, and WAIT.

1. LOCK. When a data usage is declar.ed as LOCK, the same rules apply as

those declaring data usage as EVENT. For information and syntax for

controlling and testing LOCK names, see the LOCK and UNLOCK state­

ments. Elementary LOCK items occupy two words of memory.

m. CONTROL-POINT (CP). An elementary item implicitly or explicitly
described with a USAGE IS CONTROL-POINT clause is known as a
control-point item. The elementary item cannot be a conditional

variable. If a group item is described with the USAGE IS CONTROL­
POINT clause, the elementary items in the group are all control­

point items. The group itself is not a control-point item and may
not be used in any statement except the USING phrase or within a

parameter list.

Elementary CP items are data descriptors and as such, occupy a single
word of memory.

An elementary CONTROL-POINT can be referred to directly only in an

ATTACH, CALL, DETACH, RUN, EXECUTE, PROCESS, or SET statement, or

in a USING phrase, task attribute expression, or in a parameter list.
Further explanation of CONTROL POINT items may be found in the de­

scriptions of statements which reference them and in the task attri­
bute descriptions.

6-93

VALUE

The VALUE clause can serve two functions. First, it specifies the values

for constants and the initial values for WORKING-STORAGE items. Second, it

defines the values or range of values associated with a condition name.

The format of the VALUE clause consists of two options:

Option 1:

{~LuE} IS literal

Option 2:

{ VA } VALUE
VALUES

litera1-2]

[li teral-3 [{~UGH} li teral-4 J J
Option 1 serves the first function; option 2 serves the second. The VALUE

clause cannot be stated for any item whose size, explicitly or implicitly,

is variable.

The VALUE clause must not conflict with other clauses in the data description

of the item or with data descriptions within the hierarchy of the item. The

following rules apply:

6-94

a. If the category of the item is numeric, all literals in the VALUE

clause must be numeric literals. !f·the literal defines the value

of a WORKING-STORAGE or CONSTANT item, the literal is aligned ac­

cording to the alignment rules, except that the literal must not

have a value which would require truncation of non-zero digits.

b. If the category of the item is alphabetic or alphanumeric, all

literals in the VALUE clause must be non-numeric literals. The

literal is aligned according to the alignment rules (refer to the

JUSTIFIED clause) except that the number of characters in the literal

must not exceed the size of the item.

c. The numeric literals in a VALUE clause of an item must have a value

which is within the range of values indicated by the SIZE or PICTURE

clause; for example, for PICTURE PPP99, the literal must be within

the range .00000 thru .00099.

VALUE

d. The functions of the editing characters in a PICTURE clause have

no effect on initialization of the item. The VALUE clause is the

only clause that may (depending on its usage) provide initializa­

tion. Editing characters are included, however, in determining

the size of the item.

A figurative constant may be substituted for literal.

Rules governing the use of the VALUE clause differ with the respective

section of the DATA DIVISION as shown below:

a. In the FILE SECTION, unless the B2500 system dollar option is set,

the VALUE clause may be used only in condition-name entries.

b. In the WORKING-STORAGE section, the VALUE clause must be used in

condition-name entries, and it may also be used to specify the

initial value of any data item. The VALUE clause causes the item

to assume the specified value at the start of the object program.

If the VALUE clause is not used in the description of the item,

the initial value is unpredictable.

c. In the CONSTANT SECTION, the VALUE clause must be used to specify

the value assumed by each constant data item in the object program.

The VALUE clause must not be stated in a data description entry that contains

an OCCURS clause, or in an entry subordinate to an entry containing an OCCURS

clause. This does not apply to condition-name entries.

The VALUE clause cannot be used to describe any item whose usage is EVENT,

INDEX, LOCK, or CONTROL-POINT.

The VALUE clause must not be stated in a data description entry that contains

a REDEFINES clause, or in an entry that is subordinate to an entry containing

a REDEFINES clause. This does not apply to condition-name entries.

If the VALUE clause is used in an entry at the group level, the literal must

be a figurative constant or a non-numeric literal, and the group area is

initialized without consideration for the individual elementary or group

items contained within this group. The VALUE clause cannot be stated at the

subordinate levels within the group. Caution should be used in specifying

initial values for group items containing embedded COMP or COMP-2 data items.

6-95

I WORKING-.STORAGE SECTION I
WORKING-.STORAGE SECTION

Concept of WORKING-.STORAGE

The WORKING-STORAGE SECTION is optional. WORKING-STORAGE is that part of the
DATA DIVISION set aside for intermediate processing of data. The difference
between WORKING-STORAG~ SECTION and FILE SECTION is that the former deals
with data not associated with an input or output file.

All working storage areas not assigned a specific value will have an unpre­
dictable initial value.

Organization

Whereas the FILE SECTION is composed of file description and record descrip­

tion entries, the WORKING-STORAGE SECTION is composed of non-contiguous
working-storage and record description entries (contiguous working-storage).
The WORKING-STORAGE SECTION begins with a section-header and a period, fol­
lowed by item description entries for non-contiguous working-storage items,
intermixed with record description entries for working-storage records.

The format for the WORKING-STORAGE SECTION is as follows:

6-96

WORKING-STORAGE SECTION.

77 DATA-NAME-1
88 CONDITION-NAME-I

77 DATA-NAME-N
01 DATA-NA.ME-2

02 DATA-NAME-3

66 DA.TA-NAME-M RENAMES DATA-NAME-3
01 DATA-NAME-4

02 DATA-NAME-5

03 DATA-NAME-P
88 CONDITION-NAME-2

77 DATA-NAME-Q
01 DATA-NAME-R

[WORKING-STORAGE SECTION I
Non-Contiguous WORKING-STORAGE

Items in WORKING-STORAGE which bear no relationship to one another need not
be grouped into records, provided they do not need to be further subdivided.
Instead, they are classified and defined as non-contiguous items. Each of
these is defined in a separate entry which begins with the special level num­
ber 77. The following data description clauses are required in each entry:

a. Level-number.
b. Data-name.

c. SIZE or PICTURE (if the item is not an EVENT, LOCK, or CP).

WORKING-STORAGE Records

Items in WORKING-STORAGE which bear a definite relationship to one another
may be grouped into records according to the rules for formation of record
descriptions. All record description clauses can be used in a WORKING­
STORAGE record description. Each WORKING-S'IORA.GE record-name (01 level)
must be unique since it cannot be qualified by a file-name or section-name.
Subordinate data-names need not be unique if they can be made unique by
qualification when referenced.

Initial Values

The initial value of any item in the WORKING-STORAGE SECTION is specified by
using the VALUE clause. If VALUE is not specified, the initial values are
unpredictable. The initial value of any index data name is determined at
compile time.

·Condition-Names

Any WORKING-STORAGE item may be a conditional variable with which one or more
condition-names are associated. Entries defining condition-names must im­

mediately follow the conditional variable entry. Both the conditional vari­
able entry and the associated condition-name entries may contain VALUE clauses,
since the VALUE clause serves two different purposes.

Coding the WORKING-STORAGE SECTION

Figure 6-16 illustrates the coding of the WORKING-STORAGE SECTION.

O>
I

ts:>
!X>

PRO:; RAM

PROGRAMMER

PAC: I Ll>IE
NO. NO.

4

FORM

REQUESTED BY

Figure 6-16. WORKING-STORAGE SECTION Coding

PAGE OF

:e'
0 ,.,
~ z
Q
I

Cit ...
2
>
Q

'" Cit

§
0 z

I CONSTANT SECTION I
CONSTANT SECTION

Concept of Constant Storage

The concept of literals and figuratives enables the user to specify the value
of a constant by writing its actual value (or a figurative representation of
that value). It is often desirable to name this value and then refer to it
by its name. For example, 6% (.06) may be named as INTEREST-RATE and then

referred to by its name (INTEREST-RATE), instead of its value (.06). These
named constants may be declared in the CONSTANT SECTION under the same
general format as data-names declared in the WORKING-STORA.GE SECTION.

However, constants so declared may be used but not altered by the program;
hence, such storage differs from WORKING-STORAGE.

Organization

The CONSTANT SECTION is organized in exactly the same way as the WORKING­
STORAGE SECTION, beginning with a section header and a period, followed by
item description entries for non-contiguous constant items, and then by
record description entries for constant storage records and their subordinate
entries. The skeletal format for the CONSTANT SECTION is as follows:

CONSTANT SECTION.
77 DATA-NAME-I

77 DATA-NAME-N
01 DATA-NA.ME-2

02 DATA-NAME-3

01 DATA-NAME-4
02 DATA-NAME-5

03 DATA-NAME-6

Non-Contiguous Constant Storage

Constants which bear no relationship to one another are classified and de­
fined as non-contiguous constants. Each of these constants is defined in a

'.6-99

CONSTANT· SECTION

separate item description entry which begins with the special level number 77.

The following description clauses are required in each entry:

a. Level-number.

b. Data-name.

c. SIZE or PICTURE.
d. VALUE.

The OCCURS and REDEFINES clauses are not meaningful and will cause an error

at compilation time if used. Other record description clauses are optional

and can be used to complete the description of the constant when necessary.

~evel 77 items may be mixed with level 01 items in the CONSTANT SECTION.

The clause USAGE IS INDEX must not be used in non-contiguous items.

Constant Records

Constants in the CONSTANT SECTION which bear a definite relationship to one
another may be grouped into records according to the rules for formation of
record descriptions. With one exception, all record description clauses can

be used in a CONSTANT record description, including REDEFINES, OCCURS, and

COPY. The clause USAGE IS INDEX cannot be used. Each CONSTANT SECTION
record name (01 level) must be unique since it cannot be qualified by a file­
name or section-name. Subordinate data-names need not be unique if they can

be made unique by qualification.

Value o.f Constants

The value of every item in the CONSTANT SECTION must be specified by a record

description VALUE clause, stated either in the elementary item entry or in the
group item entry.

Condition-Names

Since a constant can, by definition, have only one value, there can be no

associated condition-names. The use of a condition-name entry (level number

88) in the CONSTANT SECTION is therefore illegal and will constitute a compile

error in the source program.

'coding the CONSTANT SECTION

Figure 6-17 illustrates the manner in which the CONSTANT SECTION can be coded.

6-100

O'l
I

'""' 0

'""'

PROG~A~.I

PROGRAV.MER

-
PACE
NC.

3 ! 4

C:oN~T~
'])

61718 11112 116

Burroughs COBOL CODING FORM

S.:.C...T~O~ C-dt>\~ REQUESTED BY

DATE ePT

120 124 128 132 136 140 144 148 152

Figure 6-17. CONSTANT SECTION Coding

PAGE

IDENT.

156 160

I OF

n
0
z
"'
> z
"' m n
:::!
0 z

I LINKAGE SECTION]

LINKAGE SECTION

On the B 7000/B 6000, the LINKAGE SECTION is handled in the same manner as
if it were a WORKING-STORAGE SECTION.

6-102

I DATA-BASE SECTION I
DATA-BASE SECTION

The format of the entries in the DATA-BASE SECTION is as follows:

01 [internal-set-namel INVOKE [LOCAL l { REFERENCE} external-set-name
REF

{ ~~} data-base-name .

. The following example invokes three sets within different data-bases:

DATA-BASE SECTION.

01 MAIN-PER INVOKE PERSONNEL-INFOR IN MAIN-CO-BASE.

01 INVOKE INVENTORY IN DBl.

01 REVU INVOKE JOB-REVIEWS IN SECURED-DATA.

The DATA-BASE SECTION must be included in the DATA DIVISION if data-management

is used in the program.

Briefly, the purpose of the data-management or data-base system is to create

and maintain structured data. This data is accessed by a COBOL program using

an extended set of verbs. Use of these verbs requires very little programming

effort, but gives COBOL programs the ability to INQUIRY, CREATE, and MODIFY

data stored in a common data-base. The advantages and use of a data-base with

the DMSII system are described in the B 7000/B 6000 DMSII HOST LANGUAGE REFER­

ENCE MANUAL, Form No. 5001498.

Data Management sets can be passed or received as parameters in much the same

way as files.

The optional word LOCAL means that the set is local to an external procedure

in the DECLARATIVES.

The optional word REFERENCE means that the set is received as a parameter by

name. Sets may be received and passed only by REFERENCE.

A data-base is composed of one or more sets. Each set that is opened within

the program must be the object of an INVOKE declaration. All items (including

other sets) embedded within an invoked set are available to the program, pro­

vided the program satisfies the necessary security restrictions to use the set.

INVOKE is a declaration of data in the data-base to be used by the program; the

internal-set-name is an optional identifier which may be used locally within

the COBOL program to refer to the external set-name in the data-base.

6-103

I LOCAL-STORAGE-SECTION I
LOCAL-STORAGE SECTION

The optional LOCAL-STORAGE SECTION describes parameters received by a proce­

dure when it is invoked.

LD local-storage-name.

The LD entry is followed by item descriptions as used in the WORKING-STORAGE

SECTION.

Local storage is associated with a specific procedure by the USE statement

mentioning the local-storage-name. The local-storage-name must be unique.

An LD entry is required for each procedure that receives data as parameters

(i.e., the USING clause is used in both the invocation of the procedure and

the USE statement in the section header).

,6-104

7. PROCEDURE DIVISION

GENERAL

The fourth part of the COBOL source program is the PROCEDURE DIVISION. This

division contains the procedures needed to solve a given problem. These

procedures are written as sentences, which may be combined to form paragraphs,

which in turn may be combined to form sections. The purpose of the following

discussion is to explain this division and its elements.

RULES OF PROCEDURE FORMATION

A procedure is composea of a paragraph, a group of successive paragraphs, a

section, or a group of successive sections within the PROCEDURE DIVISION. If

declaratives are specified, then sections must be used in the remainder of

the PROCEDURE DIVISION. A procedure-name is either a paragraph-name or a

sect ion-name.

The end of the PROCEDURE DIVISION (the physical end of the program) is that

physical position in a COBOL source program after which no further procedures

appear.

A section consists of a section header followed by one or more successive

paragraphs. A section ends immediately before the next section-name, at

the end of the PROCEDURE DIVISION, or in the declaratives portion of the

PROCEDURE DIVISION at the key words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by one or more successive

.sentences. A paragraph ends immediately before the next paragraph-name or

section-name or at the end of the PROCEDURE DIVISION.

A sentence consists of one or more statements and is terminated by a period

followed by a space.

A statement is a syntactically valid combination of words and symbols begin­

ning with a COBOL verb.

The term "identifier" is defined as the word or words necessary to make unique

reference to a data item.

7-1

EXECUTION OF PROCEDURE DIVISION

EXECUTION OF PROCEDURE DIVISION

Execution begins with the first statement of the PROCEDURE DIVISION, ex­
cluding declaratives. Statements are then executed in the order in which
they are presented for compilation, except where the rules in this sec­
tion indicate.some other order.

PROCEDURE DIVISION STRUCTURE

The PROCEDURE DIVISION is identified by, and must begin with, the following
header:

PROCEDURE DIVISION [USING {
data-name }] file-name ·
control-point-name ...•
event-name
lock-name

The purpose of the optional USING clause is to name those identifiers which
are received as parameters.

Data-names, event-names, control-point-names, and lock-names in the USING
clause of the PROCEDURE DIVISION header must have a level-number of 01 or 77.

When the USING clause is present, the object program operates as if each
identifier in the list is replaced by the corresponding identifier from the
USING clause of the CALL, PROCESS or RUN statement of the calling program

or as parameters on a RUN or EXECUTE card. When the RECEIVED BY REFERENCE
clause appears in an identifier's data description, the corresponding identi­

fiers refer to a single set of data available to both the calling and called
programs. When the identifiers are RECEIVED BY CONTENT, the invocation of

the procedure will initialize the corresponding data-name in the called
program 9 s USING clause to the current value in the initiating program.
The correspondence is positional and not by symbolic name.

Examples:

7-2

Program Contains:

PROCEDURE DIVISION USING INITIAL-VAL,
OPTION-VAL, BEA.ST-NUMBER.

Program is executed by control card containing:

RUN AND/JUMP (7, "I/OTEST", 666); END

PROCEDURE DiVISION STRUCTURE

The data names in the USING clause wil.l be assigned the values from the control
card in the order of their appearance. The COBOL program AND/JUMP must be com­

piled to run at level 2.

In the above example:

a. INITIAL-VAL and BEAST-NUMBER must be described as 77 level COMP-1

items.

b. OPrlON-VAL must be an 01 COMP array declared with LOWER-BOUNDS and
BY REFERENCE clauses. The MCP requires this type of a formal para­

meter description when the corresponding actual parameter is a
string. This array may be redefined with an item of USAGE DISPLAY,

so that the contents of the array may be more easily accessed.

No item may appear more than once in the same USING clause.

The body·of the PROCEDURE DIVISION must conform to the following format:

PROCEDURE DIVISION [USING {
data-name }
file-name
control-point-name
event-name
lock-name

[MONITOR statement.]

[DUMP statement.]

[DECLARATIVES.

. section-name SECTION. declarative-statement .

paragraph-name. [statement.]

[paragraph-name. [s ta temen t •]] ...

[section-name SECTION. declarative-statement.

paragraph-name. [statement.]

[paragraph-name. [statement.] ... J ... J ...
END DECLARATIVES. J

[[section-name SECTION [priority-number] .]

paragraph-name. [statement.] ...

[[paragraph-name.] [s ta temen t.] ... J ... J ...

. . .]

7-3

STATEMENTS

STATEMENTS

There are three types of statements: imperative statements, conditional
statements, and compiler-directing statements.

Imperative Statements

An imperative statement indicates a specific action to be taken by the object
program.

An imperative statement consists of either a verb followed by its operand,
or a sequence of imperative statements. Any statement that is not a con­
ditional statement, a compiler-directing statement, or a USE statement is
an imperative statement.

Conditional Statements

A conditional statement specifies that the truth value of a condition is to
be determined and that the subsequent action of the object program is de­
pendent on this truth value.

A conditional statement is (1) an IF or SEARCH statement, (2) a READ or RETURN

statement that specifies the AT END phrase, (3) a READ or WRITE statement that
specifies an INVALID KEY phrase, (4) a WRITE statement that specifies the ENI>­
OF-PAGE phrase, (5) a READ, WRITE, AWAIT or WAIT statement that specifies the
ON EXCEPTION phrase, (6) a LOCK statement that specifies the AT LOCKED phrase,
or (7) the arithmetic statements ADD, SUBTRACT, COMPUTE, DIVIDE, or MULTIPLY

that specify the optional phrase ON SIZE ERROR. For example, the IF statement
syntax is as follows:

. . { statement-1) [{ statement-2 }]
IF conditional NEXT SENTENCE ~ NEXT SENTENCE

Statement-I or statement-2 can be either imperative or conditional statements.
If conditional, the statement can, in turn, contain conditional statements in
arbitrary depth. Also, if statement-1 or statement-2 is conditional, then
the conditions within the conditional statement are considered to be 0 nested."

Compiler-Direding Statements

A compiler-directing statement consists of a compiler-directing verb and its

operands. The compiler-directing verb is COPY.

7-4

SENTENCES

SENTENCES

A sentence consists of one or more statements, the last of which is terminated
by a period. A sentence composed of a compiler-directing statement is called
a compiler-directing sentence. A sentence composed of imperative and/or con­
ditional statements is called a procedural sentence.

Imperative Sentences

One or more imperative statements terminated by a period is an imperative
sentence.

Examples:

MOVE A TO B.

MOVE A TO B; A.DD C TO D.

An imperative sentence can contain either a GO statement or a STOP RUN state­
ment which, if present, must be the last statement in the sentence.

Example:

MOVE A TO B; ADD C TO D; GO TO START.

Conditional Sentences

A conditional statement terminated by a period is a conditional sentence.

Example:

IF X EQUALS Y

MOVE A TO B
IF W EQUALS T

ADD A TO B
ELSE NEXT SENTENCE

ELSE MOVE C TO D.

MOVE Y TO A
OPEN OUTPUT ERROR-FILE
A.DD X TO Y ON SIZE ERROR A.DD Y TO Z DISPLAY "OVERFLOW ON Y''.

READ FILE-A
AT END GO TO CLOSING-ROUTINE ELSE

MOVE P TO R.

If the phrase ELSE NEXT SENTENCE immediately precedes the period, then this
phrase may be eliminated. This rule may then be applied again to the result­
ing sentence.

7-5

I SENTE.NCES I
Compiler-Direding Sentences

A compiler-directing sentence is a single compiler directing statement ter­
minated by a period followed by a space.

SENTENCE PUNCTUATION

The following rules apply to the punctuation of sentences:

a. A sentence is terminated by a period followed by a space.
b. A separator is a word or character used for the purpose of enhancing

readability. Use of a separator is optional.
c. The allowable separators are the semicolon (;) and the comma (,).
d. Separators must not be followed immediately by another separator.
e. Separators may be used only in the following places:

1. Between statements.
2. In a conditional statement:

(a) Between the condition and statement-I.

(b) Between statement-I and ELSE.

SENTENCE EXECUTION

For the remainder of this discussion, by "execution of a sentence or a state­
ment within a sentence" is meant "execution of an object program compiled from
a sentence, or from a statement within a sentence which has been written in
COBOL. By "transfer of control" is meant "transfer of control in the object
program by transferring (GO ing) from one place to another out of the written
sequenc·e." By "passing of pontrol" is meant "passing of control in the ob­
ject program by passing from on~ place to the n~xt place in the written se­
quence."

Whenever a GO statement is encountered during the execution of a sentence or
a statement, there will be an unconditional transfer of control to the first
procedural sentence of the paragraph or section referenced by the GO statement.

Imperative Sentences

An imperative sentence is executed in its entirety and control is passed to
the next procedural sentence.

Conditional Sentences

A condition causes the object program to select between alternate paths of
control depending upon the truth value of'a test.

7-6

{ statement-2 }]
NEXT SENTENCE

I SENTENCES I
The condition is an expression which is TRUE or FALSE. If the condition is

TRUE, statement-! is executed and control is then implicitly transferred to

the next sentence unless statement-! causes some other transfer of control.

If the condition is FALSE, statement-2 is executed and control is then passed

to the next sentence unless statement-2 causes some other transfer of control.

If statement-! is conditional, then the conditional statement must be the

last (or only) statement comprising statement-!. For example, the condi­

tional sentence would then have the form:

IF condition-1

imperative-statement-1

IF condition-2

statement-3

ELSE statement-4

ELSE statement-2

If condition-! is TRUE, imperative-statement-! is executed; then if condition-2

is TRUE, statement-3 is executed and control is transferred to the next sen­

tence. If condition-2 is FALSE, then statement-4 is executed and control is

transferred to the next sentence. If condition-1 is FALSE, statement-2 is

executed and control is passed to the next sentence. Statement-3 can in

turn be either imperative or conditional and, if conditional, can in turn con­

tain conditional statements in arbitrary depth. In an identical manner,
statement-4 can either be imperative or conditional.

The execution of the phrase NEXT SENTENCE causes a transfer of control to

the next sentence as written, except when it appears in the last sentence of

a procedure being PERFORMED, in which case control is passed to the return
mechanism.

USASI-1968 and ANSI-1974 specify that the statements associated with the

special conditions AT END, INVALID KEY, END-OF-PAGE, and ON SIZE ERROR must

be imperative statements. B 7000/B 6000 COBOL does not have this restriction.

These special conditions (which imply a test) are handled the same as a con­

dition associated with an IF verb; that is, they may be logically paired with

an ELSE, and statements associated with them may be either imperative or con­

ditional statements. The system options USASI, ANSI74, or S360 can be used

to cause ELSE to be matched only to IF statements.

7-7'

I SENTENCES· I
Consider:

IF condition-I

READ file-name

AT END

IF condition-2 statement-I

ELSE statement-2

ELSE statement-3

ELSE statement-4
If condition-I is TRUE, the READ statement is executed. If the logical end

of the file is detected (the AT END is TRUE), condition-2 is tested, If

condition-2 is TRUE, statement-I is executed and control is transferred to the

next sentence. If condition-2 is FALSE, statement-2 is executed and control

is transferred to the next sentence. If the AT END condition is FALSE, state­

ment 3 is executed and control is transferred to the next sentence. Note that

the ELSE immediately preceding statement-3 is considered to be logically

paired with the AT END condition. Statement-4 is executed only when condition

-1 is FALSE. With the system options USASI, ANSI74 or S360 set, an ELSE will

be paired only with an IF statement and never with an AT END, INVALID KEY, ON

SIZE ERROR, AT END-OF-PAGE or ON EXCEPTION clause. In the above example,

the statement-3 would be executed if condition-I were false. The ELSE

statement-4 would produce a syntax error.

For a further discussion of conditions, refer to the IF statement.

Compiler-Directing Sentences

Compiler-directing sentences direct a COBOL processor to take action at com­

pilation time. On the other hand, procedural sentences denote action to be

taken by the object program. Compiler-directing sentences result in inclu­

sion of routines in the object program and do not directly result in either

the transfer or passing of control. The routines themselves, which the

compiler-directing sentences included in the object program, are subject to

the same rules for transfer or passing of control as if those routines had

Qeen created from procedural sentences only.

7...;g

CONTROL RELATIONSHIP BETWEEN PROCEDURES

CONTROL RELATIONSHIP BETWEEN PROCEDURES

In COBOL, imperative and conditional sentences describe the procedure to be
accomplished. The sentences are written successively, according to the
rules of the coding form, to establish the sequence in which the object pro­
gram is to execute the procedure. In the PROCEDURE DIVISION, names are used
so that one procedure can reference another by naming the procedure to be

referenced. In this way, the sequence in which the object program is to be
executed may be varied simply by transferring control to a named procedure.

During execution of procedures, control is transferred only to the beginning

of a paragraph. Control is passed to a sentence within a paragraph only from
the sentence written immediately preceding it. If a procedure is named, con­
trol can be passed to it from the sentence immediately preceding it, or con­
trol can be transferred from any sentence containing a GO TO, PERFORM, PROCESS,
or CALL statement followed by the name of the procedure to which control is to

be transferred.

PARAGRAPHS

In order that the programmer may group several sentences to convey one idea
(procedure), paragraphs have been included in COBOL. In writing procedures
in accordance with the rules of the PROCEDURE DIVISION and the requirements

of the coding form, the programmer must begin a paragraph with a name. The
name consists of a noun followed by a period, and the name precedes the para­
graph it names. A paragraph is terminated by the next paragraph or section­
name. The smallest named grouping of the PROCEDURE DIVISION is a paragraph.

SECTIONS

A section consists of one or more successive paragraphs. The section-name is
followed by the word SECTION, a priority number (which is optional), and a

period. If the section is a DECLARATIVE section, then the DECLARATIVE sen­
tence (i.e., USE) may begin on the same line as the section header. Under
all other circumstances, a sentence may not begin on the same line as a
section-name. The section-name applies to all paragraphs following it until
another section-name is found. It is preferable, but not required, that a

program be subdivided into sections, each section containing a functional
part of the program.

7-9

DECLARATIVES

DECLARATIVES

General Description

Declaratives are procedures which operate under the control of the "main

body" of the PROCEDURE DIVISION or by means of the input-output system.

Declaratives, if present, must be grouped together at the beginning of the

PROCEDURE DIVISION. The group of DECLARATIVES must be preceded by the key

word DECLARATIVES, and followed by the words END DECLARATIVES. Each decla­

rative consists of a single section and must conform to the rules for pro­

cedure formation.

USE Declarative

There are three major types of USE declaratives. The first type allows

additional procedures to be provided for input and output errors and label

handling. The second is more general, allowing the user to create logical

subdivisions within a program. A third type is the interrupt procedure.

More information on the USE declaratives may be found in the discussion of

the USE statement.

7-10

I FORMULA~.
FORMULAS

A formula is an algebraic expression consisting of a combination of arithmetic
expressions and intrinsic functions. An arithmetic expression can be any

of the following: an identifier of a numeric item, a numeric literal,

identifiers and literals separated by aritr.metic operators, two arithmetic ex­
pressions separated by an arithmetic operator, or an arithmetic expression en­
closed in parentheses. Negative values can be expressed by using a unary minus.

The permissible combinations of identifiers, literals, and arithmetic opera­

tors are given in figure 7-2.

Those identifiers and literals appearing in an arithmetic expression must

represent either numeric elementary items or numeric literals on which

arithmetic operations may be performed.

The specific types of operands that can appear in arithmetic formulas are as
follows:

1. Numeric data items.
2. Numeric literals.
3. Intrinsic functions (including algebraic typed installation intrin­

sics). Boolean intrinsics are treated as Boolean when used in a

conditional expression, and as integer functions when used in

arithmetic-expressions.

4. The figurative constant ZERO, ZEROES, ZEROS.
5. Special registers and attributes whose class is implicitly numeric;

included in this category are:

A. The TIME and COMPILETIME functions.
B. TODAYS-DATE.
C. TALLY.

D. CHECKPOINT-STATUS.
E. LINAGE-COUNTER.
F. The attribute mnemonic value functions.
G. Any file, task, or direct I/O area attribute whose implicit class

is numeric.
H. The various Data Management status functions.

7~11

FORMULAS I
Basic Operators

There are five basic symbols available to express binary and unary arithmetic

operatio.ns. These symbols, and their English equivalents, are shown in

figure 7-1.
CHARACTER ENGLISH EQUIVALENT

+ PLUS

- MINUS

* MULTIPL JED BY

I DIVIDED BY

** EXPONENTIATED BY

Figure 7-1. Arithmetic Operators

The symbol - must be preceded and followed by a space. The exponentiation

symbol ** cannot contain an embedded space; however, the symbol may be split

across source cards.

A plus sign or minus sign immediately preceding a numeric literal (with no

intervening spaces) becomes a part of that literal, making it a signed numeric

literal. In this case, the sign is neither a binary nor unary operator. For

example, A +2 is equivalent to A, +2. The latter is two separate expressions,

as would appear in a subscript list. A plus sign in any other situation is

treated as a binary operator if preceded by an operand and as a unary operator

if not preceded by an operand. For example, A + 2 and A + +2 are equivalent

expressions.

The rules for forming algebraic expressions assume the existence of a pre­

cedence table for operations which, unless parenthesizing is used to modify

hierarchy, determines the sequence in which the operations in a formula will

be executed. Normal precedence, from high to low, is as follows:

a. Unary operations (including intrinsic functions).

b. Exponentiation.

c. Multiplication and division.

d. Addition and subtraction.

The symbols + and - are also used to indicate unary options. If these symbols

are used without parenthesizing, they may only follow one of the arithmetic

operators **, *, /, or appear as the first symbol in a formula. Parentheses

have a precedence higher than any of the operators and are used to eliminate

ambiguities in logic where consecutive operations of the same hierarchical

7-12

I FORMULAS

level appear, or to modify the normal hierarchical sequence of execution in

formulas where it is necessary to deviate from the normal precedence. When

the sequence of execution is not specified by parentheses, the order of

execution of consecutive operations of the same hierarchical level is from

left to right. Thus, expressions ordinarily considered to be ambiguous, for

example, A/B * C, A/B/C, and A**B**C, are permitted in COBOL. They are in­

terpreted as if they were written (A I B) * C, (A I B) I C, and (A**B)**C,

respectively. Without the use of parentheses the following example illustrates

normal precedence:

A + B / C + D ** E * F - G

and would be interpreted as:

A + (B / C) + ((D ** E) * F) - G

with the sequence of operations proceeding from the innermost parentheses toward

the outside; i.e., first exponentiation, then multiplication and division, and

finally addition and subtraction.

Two additional basic operators, MOD and DIV, have been implemented for use

in arithmetic operations. They are syntactically expressed as follows:

dividend { MOD}
DIV divisor

The operators MOD and DIV must be preceded and followed by a space. They

correspond in precedence to multiplication and division. MOD is commonly

called a "remainder divide." The result of this operation is the remainder

of the division.

Examples:

(17 MOD 9) = 8

(10 MOD 8) = 2

(156 MOD 120) = 36

DIV is commonly called an "integer divide." The result of this operation is

the integer part of the quotient after division.

Examples:

(10 DIV 8) = 1

(10 DIV .33) 30

(20 DIV 11) = 1

7-13

I FORMULAS I
Formation of Symbol Pairs

The ways in which symbol pairs may be formed are summarized in figure 7-2
below, where:

a. The letter P represents a permissible pair of symbols.
b. The character - represents an invalid pair.
c. Variable represents an identifier or literal.

~ VARIABLE ** I * UNARY () + - + OR -

VARIABLE - p - - p

** I *
+ - p - p p -

UNARY p p - - -
+OR -

(p - p p -
) - p - - p

Figure 7-2. Formation of Symbol Pairs in Arithmetic Expressions

An arithmetic expression may only begin with the symbol for a left parenthesis,

for a minus or plus sign or· with a variable, and may only end with a right
parenthesis or a variable. There must be a one-to-one correspondence between
left and right parentheses of an arithmetic expression such that each left

parenthesis is to the left of its corresponding right parenthesis.

7-14

I FORMULAS I
INTRINSIC FUNCTIONS

The B 7000/B 6000 compiler provides a set of intrinsic functions which may be

included in formulas. The format for calling these functions in a formula is:

function-name iformulal

(The parentheses are required.) Figure 7-3 lists the function-names and

their functions:

FUNCTION-NAMES

SIN

cos
ARCTAN

EXP

SIGN

SQRT

LN
ABS

ONES

FIRSTONE

MAX

MIN

Figure 7-3.

FUNCTIONS

Calculates the Sine.

Calculates the Cosine.

Calculates the Arctangent.

Calculates the Exponential Function;
that is, e ** Formula.

Returns +l, -1, or 0, depending on whether
the formula is greater than, less than,
or equal to 0.

Calculates the square root.

Calculates the natural log (to the base e).

Calculates the absolute value.

Returns the number of non-zero bits in the
parameter value. The parameter may be
either a single or double precision
expression.

Returns the bit number, plus one, of the
leftmost non-zero bit in the parameter
value. If the parameter value is double
precision, only the first (higher order)
word is used. If the parameter value is
zero, FIRSTONE returns zero.

Returns the maximum of the parameter values.

Returns the minimum of the parameter values.

Arithmetic Intrinsic Functions

SIN, COS, ARCTAN functions assume the angle to be in radians. Double-precision

accuracy is obtained if the argument is double precision. A mathematical

explanation of these functions and of the method used for their calculation is

contained in the B 7000/B 6000 System Software Operational Guide, Volume 1 1

Form No. 5001563.

I CONDITIONS I
CONDITIONS

A condition causes the object program to select between alternate paths of

control, depending upon the truth value of a test. Conditions are used in
IF, PERFORM, and SEARCH statements.

A condition is one of the following:

a. Relation Condition.
b. Sign Condition.

c. Class Condition.
d. Condition-Name Condition.

e. Event-Identifier Condition.

f. Not Condition.

g. Condition (AND/OR) Condition [(AND/OR) Condition] .••

Any condition may be enclosed in parentheses. The truth value of a parenthe­
sized condition is determined from the evaluation of the truth values of its

constituents. A parenthesized condition is a condition in the sense of the
last two items of the preceding list.

The construction,

NOT condition

where condition is one of the conditions listed above, is not permitted if

the condition itself contains a logical NOT. The logical operator NOT in­

dicates the negation of the condition that follows it.

Conditions may be combined by means of logical operators. The meaning of
the logical operators is as follows:

7-16

LOGICAL OPERATOR

OR
AND
NOT

MEANING

Logical Inclusive OR
Logical Conjunction
Logical Negation

CONDITIONS

Figure 7-4 indicates the relationships between the logical operators and

conditions A and B. Figure 7-5 indicates the ways in which conditions and
logical operators may be combined.

CONDITION RESULT FOR LOGICAL TEST
A B A AND B A ORB NOT A

TRUE TRUE TRUE TRUE FALSE
FALSE TRUE FALSE TRUE TRUE
TRUE FALSE FALSE TRUE FALSE
FALSE FALSE FALSE FALSE TRUE

Figure 7-4. Relationship of Conditions, Logical Operators,
and Truth Values

~ CONDITION OR AND NOT ()

CONDITION - p p - - p

OR p - - p p -
AND p -. - p p -
NOT *P - - - p -

(p - - p p -
) - p p - - p

Figure 7-5. Combinations of Conditions and Logical Operators

NOTE

"P" indicates that the pair is permissible,

and "-" indicates the pair is not permissible.

Thus the pair "OR NOT" is permissible, but

the pair "NOT OR" is not permissible.

*Permissible only if the condition is not itself a "NOT condition".

7-17

I CONDITIONS I
Relation Condition

A relation condition causes a comparison of two operands, each of which may
be an identifier, literal, or .arithmetic expression.

The general format for a relation condition is as follows:

(
identifier-I } (identifier-2 }
literal-1 relational-operator literal-2
arithmetic-expression-I arithmetic-expression-2

The first operand (identifier-I, literal-1, or arithmetic-expression-I) is
called the subject of the condition, the second operand (identifier-2,
literal-2, or arithmetic-expression-2) is called the object of the condition.

The relational operators specify the type of comparison to be made in a
relation condition.

The following are the relational operators:

IS [!Q!] GREATER THAN
IS [NOT] >
IS [!Q!] LESS THAN
IS [NOT] <
IS [NOT] EQUAL TO
IS [NOT] =
IS UNEQUAL TO
EQUALS
EXCEEDS

Note that the required relational. operators">",
lined, to avoid confusion with other symbols.

COMPARISON OF NUMERIC OPERANDS

and"=" are not under-.

For operands whose class is numeric, a comparison is made with respect to
the algebraic value of the operands. The length of the operands, in terms
of nwnber of digits, is not significant. Zero.is considered a unique value
regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which
their USAGE is described. Group items declared as USAGE COMP may not appear
as an operand in a relation condition. Unsigned numeric operands ar~ con­
sidered positive for purposes of comparison.

7-18

I CONDITIONS I
COMPARISON OF NON-NUMERIC OPERANDS
For non-numeric operands, or one numeric and one non-numeric operand,
character comparisons occur as shown in table 7-1.

Table 1-1. Comparison of Non-Numeric Operands

Possible Comparisons: Compared As:

1.

2.
3.

4.

5.

6.

7.

8.

9.

EBCDIC Vs. EBCDIC EBCDIC, SPACE fill
EBCDIC Vs. BCL EBCDIC, SPACE fill
EBCDIC Vs. ASCII EBCDIC, SPACE fill
EBCDIC Vs. HEX HEX, ZERO fill
BCL Vs. BCL * EBCDIC, SPACE fill
BCL Vs. ASCII ASCII, SPACE fill
BCL Vs. HEX HEX, ZERO fill
ASCII Vs. ASCII ASCII, SPACE fill
ASCII Vs. HEX HEX, ZERO fill

NOTE

* BCL Vs. BCL are not translated on EQUAL or NOT
EQUAL conditions.

Operands are translated if necessary to EBCDIC before comparison. When both

operands are ASCII or COMP-2, ,no translation takes place. When both operands
have the same USAGE and the relational operator is (NOT) EQUAL, (NOT) = ,

EQUALS or UNEQUAL, no translation takes place. For all other comparisons,
operands with a USAGE other than DISPLAY are translated to DISPLAY.

There are two cases of non-numeric comparison to consider: operands of equal

size and operands of unequal si~e.
OPERANPS OF EQUAL SIZE

If operands are of equal size, characters in corresponding character posi­
tions of the two operands are compared starting from the high-order end thru

the low-order end.

If all pairs of characters compare equally thru the last pair, the operands

are considered equal.

7-19

CONDITIONS

The first pair of unequal characters to be encountered is compared to de­

termine their relative position in the collating sequence. The operand that
contains the character positioned higher in the collating sequence is con­
sidered to be the greater operand.

OPERA@S OF UNEQUAL SIZE

If the operands are of unequal size, the comparison of characters proceeds
as if the shorter operand had been expanded by blanks on the right to make

it equal in size to the longer operand.

Elementary COMP or COMP-1 items cannot be compared to any of the "non-numeric"
figurative constants (i.e., SPACES, QUOTES, HIGH-VALUES, and LOW-VALUES) in a
relational condition.

COMPARISONS INVOLYING INDEX-NAMES AND/OR INPEX DATA ITEMS

The result of the comparison of the two index-names is the same as if the

corresponding occurrence numbers are compared.

In the comparison of an index-name and a data item (other than an index data

item) or literal, the occurrence number that corresponds to the value of

the index-name is compared to the data item or literal.

In the comparison of an index data item and an index-name or another index

data item, the actual values are compared without conversion.

Comparison of an index data item with any data item or literal not specified

above is illegal.

Sign Condition

The sign condition determines whether or not the algebraic value of a numeric
operand is less than, greater than, or equal to O. The general format for

a sign condition is as follows:

(
POSITIVE}

ari~hmetic-expression IS [NOT] NEGATIVE
ZERO

An operand is positive if its value is greater than zero, negative if its
value is less than zero, and zero if its value is equal to zero.

7-20

CONDITIONS r

Class Condition

The class condition determines whether the operand is numeric; that is,

consists entirely of the characters O, 1, 2, 3, ... , 9, with or without an

operational sign, or alphabetic, that is, consists entirely of the characters

A., B, C, ... , Z, and space. The general format for the class condition is

as follows:

identifier IS [NOT] (=J:i~TIC)
The usage of the operand being tested must be described, implicitly or ex­

plicitly, as DISPLAY, DISPLAY-1, ASCII or COMP-2.

The NUMERIC test cannot be used with an item whose data description de­

scribes the item as alphabetic. If the record description of the item being

tested does not contain an operational sign, the item being tested is de­

termined to be numeric only if the contents are numeric and an operational

sign is not present. If the item being tested is described as a signed item,

the item being tested is determined to be numeric only if the contents are

numeric and the sign is a hex "C" or a hex "D" or a hex "F".

Computation operands cannot be checked with the numeric class condition since

they always contain numeric data, regardless of their bit pattern.

The ALPHABETIC test cannot be used with an item whose record description

describes the item as numeric. The item being tested is determined to be

alphabetic only if the contents consist of any combination of the alpha­

betic characters A thru Z and the space.

Operands used in the alphabetic class condition must be either DISPLAY,

DISPLAY-I, or ASCII. COMP-2 is not allowed with the ALPHABETIC test.

Condition-Name Condition

In a condition-name condition, a conditional variable is tested to determine

whether or not its value is equal to one of the values associated with a

condition-name. The general format for the condition-name condition is as

follows:

(NOT) condition-name

If the condition-name is associated with a range or ranges of values, then the

conditional variable is tested to determine whether or not its value falls in

this range, including the end values.

7-21

CONDITIONS I
The rules for comparing a conditional variable with a condition":"'name value ..
are the same as those specified for relation conditions.,,

The result of the test is TRUE if one of the values corresponding to the
condition-name equals the value of its associated conditional variable.

Event-Identifier Condition

In an event-identifier condition, an event-identifier is tested to determine
whether or not the condition has happened. The general format for the event­
identifier condition is as follows:

[NOT] event-identifier

The result of the test is TRUE if the event has been explicitly caused by
the CAUSE statement or implicitly caused by a DIRECT I-O function to which
the event is associated; in either case, the event may be caused to happen
in the body of the program where it is defined or in the body of any pro­

gram that is functioning under the control of the program where it is defined.

Evaluation Rules for Conditions

The evaluation rules for conditions are analogous to those given for
arithmetic expressions, except that the following hierarchy applies:

a. ARITHMETIC EXPRESSION
b. ALL RELATIONAL OPERATORS

c. NOT
d. AND
e. OR

Abbreviations

When relation conditions are written in a consecuti,ve sequence, any relation

except the first may be abbreviated by:

a. The omission of the subject of the relation (implied subject).

b. The omission of the subject and relational operator.

c. The omission of the subject, relational operator, and all but the

last logical connector of the relation.

Example of a series of equivalent relational conditions:

No Abbreviation A > B OR A > C OR A > D

Abbreviation a. A > B OR > C OR > D

Abbreviation b. A> B OR C OR D

Abbreviation c. A> B C OR D

7-22

I CONDITIONS I
Since NOT can be used as both a logical operator and as part of a relational

operator, its use in an abbreviated relation 6ondition is interpreted as

follows:

1. If no relational operator is explicitly present in the abbreviated

relation condition, the NOT is always interpreted as a logical
operator.

For example:

A > B OR NOT C OR D

Is compiled as:
A > B OR NOT (A > C) OR A > D

2. If the NOT is preceded by the word IS and is followed by one of

the words GREATER, LESS, EQUAL, or by one of the symbols > ,< , or =,

then the NOT is interpreted as being a part of an explicit relational

operator.

For example:

A > B OR IS NOT > C OR D

Is compiled as:

A > B OR A IS NOT > C OR A IS NOT > D

3. If the NOT is followed by either of the words GREATER, LESS, EQUAL,

or one of the symbols > , < , or =, but is not preceded by the
optional word IS, then the NOT is interpreted as a logical oper­

ator; however, if the ANSI74 system option is set, the NOT is

interpreted as part of the relational operator. This difference

becomes important if there are subsequent abbreviated relation

conditions, because logical operator NOTs do not apply to subse­

quent relation conditions.

For example:

A > B AND NOT < C OR D

Is compiled as:

A> BAND NOT (A<C) OR A< D (when ANSI74 is RESET)
But is compiled as:

A > B AND A NOT < C OR A NOT < D (when ANSI74 is SET)

7-23

CONDITIONS

The following rules govern implied subjects, relational operators, and logical

connectors:

a. The implied subject is always the last stated subject, regardless

of parentheses.

b. The implied relational operator is always the last stated relational

operator, regardless of parentheses.

c. The implied logical connector is always the last stated logical

connector, regardless of parentheses.

For example:

A > B OR C OR (D = F OR G OR H) OR J

The implied subject and relational operator for C are A and> , respectively.

The implied subject and relational operator for J are D and =, respectively.

STATEMENT OPTIONS

STATEM~NT OPTIONS

In the statement descriptions that follow, several options appear frequently:

the ROUNDED option, the SIZE ERROR option, and the CORRESPONDING option.

In the discussion below, a resultant-identifier is that identifier associated

with a result of an arithmetic operation.

Rounded Option

If after decimal point alignment, the number of places in the fraction of the

result of an arithmetic operation is greater than the number of places pro­

vided for the fraction of the resultant identifier, truncation is relative

to the size provided for the resultant-identifier. When rounding is requested,

the value returned is (X + 0.5), where Xis the original argument.

When the low-order positions in a resultant-identifier PICTURE are represented

by the character "P", rounding or truncation occurs relative to the right­

most integer position for which storage is allocated.

Size Error Option

If, after decimal point alignment, the value of a result exceeds the largest

value that can be contained in the associated resultant-identifier, a size

error condition exists. The size error condition applies only to the final

results of an arithmetic operation and does not apply to intermediate results,

except in the MULTIPLY and DIVIDE statements, in which case the size error con­

dition applies to the intermediate results as well. Arithmetic faults such as

divide by zero and integer overflow will cause program termination if the SIZE

ERROR clause is not used.

If the ROUNDED option is specifi'ed, rounding takes place before checking·

for size error. When such a size error condition occurs, the subsequent

action depends on whether or not the SIZE ERROR option is specified:

a. If the SIZE ERROR option is not specified and a size error condi­

tion occurs, the values of the resultant-identifier(s) affected

will be unpredictable. Values of resultant identifier(s) for

which no size error condition occurs are unaffected by size errors

that occur for other resultant-identifier(s) during execution of

this operation.

b. If the SIZE ERROR option is specified and a size error condition

occurs, then the values of resultant-identifier(s) affected by the

size errors are not altered. Values of resultant-identifier(s) for

which no size error condition occurs are unaffected by size errors

that occur for other resultant-identifier(s) during execution of

7~25

STATEMENT OPTIONS

this operation. After completion of the execution of this operation,
the statement in the SIZE ERROR option is executed.

For ADD and SUBTRACT CORRESPONDING, the statement in the SIZE ERROR
clause is not executed until all of the individual additions or sub~.
tractions are completed.

c. For data items described as COMP or COMP-I, only the physical size is

considered for size error conditions. This may be overridden for
COMP items by setting either of the $ options USASI or ANSI74 to
then cause size error testing to be based on the declared decimal
size rather than the physical binary size.

Corresponding Option

In this discussion, identifier-I, identifier-2, identifier-3, .•• , are identi­
fiers specified in a statement containing the CORRESPONDING phrase.

a. Rules for valid identifiers are:

1. All identifiers must refer to group items.
2. Identifiers may be described with or be subordinate to an item

described with a REDEFINES or OCCURS clause.
3. No identifier may have a USAGE of INDEX, EVENT, LOCK or CP.

b. Data items subordinate to identifier-I correspond with data items
subordinate to identifier-2, identifier-3, ... , if the following

rules apply:

1. Both data items must have the same data-name.
2. All possible qualifiers for the sending item, up to but not in­

cluding identifier-I, must be identical to all possible qualifiers
for the receiving item up to but not including identifier-2,
identifier-3,

3. In an ADD or SUBTRACT statement, only elementary numeric data
items will be considered.

4. In a MOVE statement, the corresponding sending and/or receiving
data items must be elementary. The class may differ.

5. Any item with a level-number of 66 or 88 or with a Data Descrip­
tion entry containing a REDEFINES, OCCURS, INDEX, EVENT, LOCK or

CP clause is not considered. Any item subordinate to an item
not eligible for correspondence will also be ignored.

6. FILLER data items are ignored.

VERBS

The specific verb formats, together with a detailed discussion of the func­
tions and characteristics associated with each, appear in alphabetic sequence

on the following pages.

ARITHMETIC

A.DD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

DATA. MOVEMENT

EXAMINE
MOVE
INSPECT
STRING
UNSTRING

INPUT/OUTPUT

ACCEPT
CLOSE
DISPLAY
OPEN
READ
SEEK
WRITE

ENDING

STOP

PROCEDURE BRANCHING

ALTER
CALL
CONTINUE*
ENTER

EXIT
GO
PERFORM
PROCESS
RUN

COMPILER-DIRECTING

COPY
DUMP *
MONITOR *

SORT VERBS MCP, PROGRAM COMMUNICATION, TASKING

MERGE
RELEASE
RETURN
SORT

TABLE MANIPULATION

SEARCH
SET

ALLOW *
ATTA.CH *
AWAIT *
CAUSE *
CHECKPOINT

* B 7000/B 6000 Extensions.

DEALLOCATE
DETACH *
DISALLOW *
EXECUTE *

LOCK*
RESET *
UNLOCK *
USE
WAIT *

CONDITIONAL

IF

Although the word IF is not a verb in the English language, it is a verb in
the COBOL language because it possesses the characteristics of generating
code in the object program. Its occurrence is a vital feature in the PRO­
CEDURE DIVISION.

7-27

I ACCEPT I
ACCEPT

The function of the ACCEPT statement is to permit the entry of low-volume

data from the console keyboard.

The ACCEPT statement format consists of two options as follows:

Option 1:

ACCEPT id ntifi r [FROM {hardware-name}] e e ~~ mnemonic-name

The ACCEPT statement generates a message on the console which indicates the
data-name to be entered. The program is then suspended until the operator
enters the data. The identifier may be any elementary or group item other

than an index-data-item, index-name, EVENT, LOCK or CP.

Group items must have DISPLAY or DISPLAY-! usage, and no more than 256 charac­

ters may be accepted at one time,

Because of the slow speed involved in entering information thru the keyboard,
the ACCEPT statement should be used sparingly and solely for low-volume data
entry,

The FROM option is optional and is used for documentation only. When speci­

fied, hardware-name must be MESSAGE-PRINTER, SPO, KEYBOARD or DISPLAY-UNIT.

Mnemonic-name must be associated with one of the above hardware-names in

SPECIAL-NAMES.

Data entered by the operator will be left justified in identifier. Excess
characters on the right hand side will be truncated. Operator response to

an ACCEPT will consist of the mix number of the task preceeding or following
the letters "AX", then an optional space or spaces and then the data to be
entered,

Option 2:

ACCEPT identifier FROM DAY {
DATE}

TIME

Option 2 is an ANSI 74 implementation which requires that the ANSI74 system
dollar option be set.

DATE is comprised of the data elements of year, month, and day in the sequence
left to right. Therefore, July 1, 1968 would be expressed as 680701. DATE,

when accessed by a COBOL program, behaves as if it has been described as an
unsigned, elementary numeric integer data item six digits in length.

7-28

I ACCEPT I
DAY is ~omprised of the data elements of year and day of year, left to right.

Therefore, July 1, 1968, would be expressed as 68183. DAY is treated as an

unsigned elementary numeric integer data item five digits in length.

TIME is composed of the data elements hours, minutes, seconds and hundredths

of a second. TIME starts at midnight on a 24-hour clock basis. Therefore,
2:41 PM would be expressed as 14410000. TIME is treated as an unsigned

numeric integer data item eight digits in length.

An ACCEPT statement implies a MOVE of day, date or time to the identifier by
normal MOVE rules. Refer to Appendix B for a description of the ANSI 74

implementations.

7-29

. I ADD I
ADD

The A.DD statement causes two or more numeric operands to be summed and the
result to be stored.

The format of the A.DD statement consists of three options as follows:

Option 1:

A.DD

Option 2:

ADD

Option 3:

A.DD

(identifier-I}
\,li teral-1

identifier-m

[{~~~~;!i=~r-2}] •.. TO
[ROUNDED] [, identifier-n (ROUNDED)] •••

[; ON SIZE ERROR statement [~ statement J]

(identifier-I} { identifier-2} [(identifier-3J~
literal-I ' literal-2 ' \.literal-3 u···
GIVING identifier-m (ROUNDED] [, identifier-n [ROUNDED]) ...

[; ON SIZE ERROR statement (ELSE statement]]

(CORRESPONDING} identifier-I TO identifier-2 [ROUNDED]
\:CORR -

[; ON SIZE ERROR statement [ELSE statement)]

In options 1 and 2~ each identifier must refer to an elementary numeric item,

except that identifiers appearing only to the right of the word GIVING may
refer to data items that contain editing symbols.

Each literal must be a numeric literal.

The maximum size of any operand, literal, or identifier is 23 decimal digits.

The composite of operands, which is that data item resulting from the super­
imposition of all operands (excluding the data items that follow the word

GIVING), aligned on their decimal points, must not contain more than 23 digits.

7-30

If option 1 is used, the value of all operands preceding the word TO are

added together; then the sum is added to the current value of each identifier­

m, identifier-n,

If option 2 is used, the values of the operands preceding the word GIVING are

added together, and the sum is stored as the new value of each identifier-m,

identifier-n.

If option 3 is used, data items in the group item referred to by identifier-I

are added to and stored in the corresponding data items of the identifier-2

group item.

The internal format of operands referred to in an ADD statement may differ.

Any necessary format transformations and decimal point alignment are auto­

matically supplied throughout the execution.

Either statement shown in the ON SIZE ERROR clause may be conditional or

imperative, or the reserved words NEXT SENTENCE may be used instead.

7-31

ALLOW

The ALLOW statement permits the execution of an interrupt procedure that has
been attached to an EVENT item. The format of the ALLOW statement is as

follows:

ALLOW {section-name-I [,section-name-2] .•• }
VNTERRUPT

Any section-names used in this statement must be defined as interrupt pro­
cedures with the USE statement (option 4). These section-names must be
attached to EVENT items at the time of execution of this statement by the
prior execution of an ATTACH statement.

ALLOW INTERRUPT causes all interrupt procedures which are attached to event­
identifiers to be allowed.

The interrupt procedure will.not be executed until a CAUSE statement has been
executed for the EVENT named in the ATTACH statement and the ALLOW statement
has been executed for the section-name associated (via the ATTACH statement)
with the EVENT.

7-32

ALTER

The ALTER statement modifies a predetermined sequence of operations by
changing the operand of a labeled GO statement.

The format for the ALTER statement is as follows:

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-4)

Procedure-name-1, procedure-name-3, ... ,are names of paragraphs, each of

which contains a single sentence consisting of only a GO TO statement.

Procedure-name-2, procedure-name-4, ... are either paragraph or section names,

or paragraph names qualified by section names.

During execution of the object program, the ALTER statement modifies the

GO TO statement in the paragraph named in procedure-name-1, procedure-name-3,

t • ' '

. . . '
replacing the object of the GO TO by procedure-name-2, procedure-name-4,

respectively .

7-33

ATIACH

The ATTACH statement establishes an association of an interrupt procedure to
an EVENT item.

The format of the ATTACH statement is as follows:

ATTACH section-name TO event-identifier

The interrupt procedure must not already be attached to some other EVENT at

the time the ATTACH statement is executed. Section-name must be the name of
a section in the Declaratives which specifies an option 4 USE.

The causation of an EVENT item to which an interrupt procedure is attached
results in the queueing of all interrupt procedures which are then attached
to that event-identifier. They remain queued until such time as each pro­
cedure is implicitly or explicitly referenced by an ALLOW statement.

When an interrupt procedure is attached to an event-identifier, the procedure
is automatically allowed. The DISALLOW statement will inhibit that interrupt
procedure so that subsequent executions of an appropriate CAUSE statement will

not bring about execution of the interrupt procedure.

Two or more interrupt procedures may be attached to a single event-identifier.

The order of execution of these interrupt procedures will be in descending
order of attachments.

7-34

AWAIT (WAIT)

The A.WA.IT statement suspends the execution of the procedure or task in which
it appears.

The format and use of the A.WA.IT statement are described in this section,
under the heading WA.IT. AWAIT is synonomous with the WAIT statement.

7-35

CALL

The CALL statement causes control to be transferred from one procedure to

another. The function of this statement is similar to, but distinct from,

the function of the PERFORM statement.

The format of the CALL statement is as follows:

Option 1:

CALL control-point-identifier WITH section-name

[USING actual-parameter-list]

Option 2:

CALL [USING {
section-name J
installation-intrinsic

Option 3:

CALL PROGRAM DUMP

Option 4:

{CALL SYSTEM
ZIP

WITH} {d~ta-name}
file-name

actual-parameter-list]

Option 1 is used to create a co-routine. Option 2 is used to call as a proce­

dure an externally compiled procedure that will be bound to the calling pro­

gram. (Option 2 is synonymous with the ENTER statement.) Untyped installation

intrinsics can be called via Option 2 of the CALL statement. Actually, either

typed or untyped installation intrinsics can be called. However, the value

returned by typed intrinsics will be deleted. Option 3 causes a PROGRAMDUMP.

Option 4 is used to pass a control message to the MCP.

Each identifier in the USING clause must be defined as either a 77 level item

that resides in the stack or an 01 level and must correspond as to level num­

ber, usage, and size of the items described in the corresponding positions of

the CALLed program's PROCEDURE DIVISION USING clause. The identifiers in the

USING clause may be any combination of control-point ite~s. data items, EVENT
items, INDEX or LOCK items at either the group or elementary level.

The USING clause is included in the CALL statement if, and only if, there is

a USING clause in the USE statement of the section name or in the PROCEDURE

DIVISION header of the called program. The number, type, and order of

items in each USING clause must be identical.

7-36

The execution of the CALL statement causes the program containing the CALL to

be suspended and the program or intrinsic being called to be put into execution.

Upon execution of the called program/s EXIT PROGRAM statement, the called pro­

gram is suspended and control is returned to the calling program's next statemen

The inclusion of a control-point item in the USING clause allows a called

program to make any reference to the control-point that is allowable in the

calling program.

Files to be passed as parameters must have a record description unless the file

is a DIRECT file. The record described for the file may be passed as a para­

meter. In the PROCEDURE DIVISION header of the CALLed program, the USING

phrase must not reference any data item in the CALLed programs FILE SECTION.

Either or both programs may initiate I/O to the file passed as file-name-I in

the CALL statement.

If event-name-I is included in the USING list, it must be a 77 or 01 level

item declared with USAGE IS EVENT and may be caused in either or both the

called and calling programs.

Figure 7-6 shows that the name of a program to be called can be either speci­

fied at the source level or can be set at object time by moving or reading

the code file title into the data-name associated with S2. The contents of

data-name must be one to 14 names, separated by slashes (/),with a period

(.) immediately following the last (or only) name. Each of the names may

be a maximum of 17 characters.

In figure 7-6, the called program must contain a USING clause in its PROCEDURE

DIVISION header whose data-names correspond as to level number, size, and

usage with R and X. See the RECEIVED clause for further examples.

Attempts to alter the contents of NAME-TO-BE-CALLED after the first call of B,

but prior to a DETACH, will be ignored.

7-37

7-38

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. B-6700.
OBJECT-COMPUTER. B6700.
SPECIAL-NAMES. "A"/"COMPILED"/"CODEFILE" IS TO-BE-CALLED.

INPUT-OUTPUT SECTION.
FILE-CONTROL. SELECT LOCAL REF FILE-PARAM ASSIGN TO DISK.

DATA DIVISION.
FILE SECTION.

SELECT HISTORY ASSIGN TO DISK.

FD FILE-PARAM; RECORD CONTAINS 132 DISPLAY.
01 PARAM-RECORD SIZE 132.

FD HISTORY; RECORD CONTAINS 132 DISPLAY.
01 HIST-RECORD SIZE 132.

WORKING-STORAGE SECTION.
77 RR PIC 9(6) COMP-I.
77 XX PIC 9(6) COMP-I.
01 NAME-TO-BE-CALLED PIC X(20) DISPLAY.

01 CPA USAGE IS CONTROL-POINT.
01 CPB USAGE IS CONTROL-POINT.

LOCAL-STORAGE SECTION.
LD LDX.
77 R REF PIC 9(6) COMP-I.
77 X REF PIC 9(6) COMP-1.
PROCEDURE DIVISION.
DECLARATIVES.
SI SECTION. USE EXTERNAL TO-BE-CALLED AS PROCEDURE

WITH LDX, FILE-PARAM USING R,X,FILE-PARAM.

S2 SECTION. USE EXTERNAL NAME-TO-BE-CALLED AS PROCEDURE
WITH LDX USING R,X.

END DECLARATIVES.
MAIN SECTION.
CALLING. CALL CPA WITH Sl USING RR,XX,HISTORY.

IF XX= 3 MOVE "TIO/PROCTOR." TO NAME-TO-BE-CALLED.

ELSE ACCEPT NAME-TO-BE-CALLED. CALL CPB WITH S2 USING XX,RR.

EOJ. STOP RUN.

Figure 7-6. Example of Calling Another Program

I CALL I
When Option 4 is executed, the MCP interprets the control message and per­

forms the operation(s) specified. Figure 7-7 is an example of an Option 4

CALL statement.

NOTE: ZIP may be used as a synonym for CALL SYSTEM WITH, but only while the
B2500 system dollar option is set. This feature provides compatibility

with B3700 COBOL.

If the data-name option is used, the data-name must be the name of a level 01

data item whose usage is DISPLAY or DISPLAY-1. The first character of data­
name must not be used because the compiler inserts an invalid character in
this location. The content of data-name must contain the entire control

message in standard card format, (i.e., EXECUTE A/B; FILE Q(TITLE = X/H);

END).

If the file-name option is used, the file-name must be the name of a file
in a format consistent with that used for a load-control "PSEUDO-DECK".

Briefly this is a card-image file which has a fixed length (15 words per
record) and is blocked (30 words per block).

The file must be in EBCDIC characters (90 characters in a record). The

program must insert the invalid character by using the four-bit characters
6F in COMP-2.

7-39

7-40

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. B-6700.
OBJECT-COMPUTER. B-6700.

INPUT-OUTPUT SECTION.
FILE-CONTROL. SELECT DKS ASSIGN TO 14 DISK ACCESS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD DKS BLOCK CONTAINS 2 RECORDS.
01 DSKR SZ 90,
01 REDCMP2 COMP-2.

03 INVLDG,
05 INVLD PIC 99,

03 RESTOFIT.

05 FILLER SZ 178.
WORKING-STORAGE SECTION.
01 EBCRAY SZ 80,
PROCEDURE DIVISION.
PREPARE-DISK-FILE.

OPEN OUTPUT DKS.
MOVE " RUN PROG " TO DSKR.
MOVE "6F" TO INVLDG,
WRITE DSKR INVALID KEY GO TO XIT.

MOVE " END. " TO DSKR.
MOVE "6F" TO INVLDG,
WRITE DSKR INVALID KEY GO TO XIT.
CLOSE DKS.

CALL-SYS-WITH-DISK-FILE.
CALL SYSTEM WITH DKS.

*
*
CALL-SYS-WITH-ARRAY.

MOVE " RUN PROG;END." TO EBCRAY.
CALL SYSTEM WITH EBCRAY.

XIT.
STOP RUN.

Figure 7-7. Example of Option 4 CALL Statement

In Options 1 and 2, the actual-parameter-list must consist of a series of
data-items, control-items, and expressions optionally separated by commas.
In addition to passing arithmetic values, certain kinds of variables may be
passed (received) by reference. As a general rule, the kind of actual

parameter must not conflict with the corresponding formal parameter.

The formal parameters that can be declared in COBOL along with the correspond­
ing declaration in ALGOL, and the permissable kinds of actual parameters that

can be passed are shown in table 7-2.

Table 7-2. Formal and Actual Parameters in COBOL

COBOL
Formal Parameter

ALGOL
Formal Parameter

1. 77-level single precision REAL or INTEGER
COMP, COMP-1, or COMP-4
item (RECEIVED BY CONTENT)

2. 77-level extended preci- DOUBLE
sion COMP, COMP-1, or
COMP-5 i tern (RECEIVED BY
CONTENT)

3. 77-level single precision REAL or INTEGER
COMP, COMP-1, or COMP-4
item (RECEIVED BY
REFERENCE)

4. 77-level extended preci- DOUBLE
sion COMP, COMP-1, or
COMP-5 item (RECEIVED
BY REFERENCE)

5. 77-level EVENT or LOCK EVENT
item

6. 77-level CONTROL-POINT
item

7. 77-level INDEX FILE
item

8. FILE

9. DIRECT FILE

10. 01-level EVENT or
LOCK item

11. 01-level CONTROL­
POINT item

TASK

DIRECT SWITCH
FILE

FILE

DIRECT FILE

EVENT ARRAY

TASK ARRAY

Permissable
Actual Parameter

Arithmetic-Expression

Arithmetic-Expression

77-level single preci­
sion COMP, COMP-1, or
COMP-4 item.

77-level extended
precision COMP, COMP-1,
or COMP-5 item.

77-level EVENT or LOCK
item

77-level CONTROL-POINT
item

77-level INDEX FILE
item

FILE

DIRECT FILE

01-level EVENT or LOCK
item

01-level CONTROL-POINT
item

7-41

Table 7-2. Formal and Actual Parameter in COBOL (Cont)

COBOL
Formal Parameter

12. 01-level COMPUTATIONAL
item

13. 01-level COMP-2 item

14. 01-level DISPLAY-! item

15. 01-level DISPLAY item

ALGOL
ForlUal Parameter

Permissable
Actual Parameter

ARRAY, INTEGER or *01-level COMP, COMP-2,
REAL DISPLAY, or DISPLAY-I

item

HEX ARRAY

BCL ARRAY

EBCDIC ARRAY

NOTES

*01-level COMP, COMP-2,
DISPLAY, or DISPLAY-!
item

*01-level COMP, COMP-2,
DISPLAY, or DISPLAY-!
item

*01-level COMP, COMP-2,
DISPLAY, or DISPLAY-!
item

1. ASCII ARRAYS are considered the same as EBCDIC ARRAYS for parameter
passing purposes.

2. DIRECT ARRAYS may be passed to NON-DIRECT ARRAYS, but not vice versa.

*3. The COBOL compiler will change the character type and length of an
array descriptor, if necessary, to match the character type of the

formal parameter, for one-dimensional arrays only. The character
type of a two-dimensional array must match that of the formal
parameter.

4. Any item that may be PASSED BY REFERENCE may be declared GLOBAL.

5. "STACK" ARRAYS (COMP-1, 01-level items) may not be passed as
parameters.

6. Conditional expressions may be passed to installation intrinsics
having Formal Value Boolean Parameters; any data item may be passed
to installation intrinsics having Formal Value Pointer Parameters.

7. A subscripted 01-level item which has an OCCURS clause may be passed
to a one-dimensional array.

8. The COBOL compiler reserves the right to prevent elementary 01-level
numeric items of any USAGE from being considered "Arrays".

7-42

CAUSE

The CAUSE statement is normally used for communication between processes in

an asynchronous processing environment.

The format of the CA.USE statement is as follows:

CAUSE [AND RESET] event-identifier-1 [, event-identifier-2] ...

The CAUSE statement causes the event specified by event-identifier to be

turned on. If the event is then tested in either the same process or any re­

lated asynchronous processes, it will cause the TRUE branch to be taken. (Re­

fer to the IF event-identifier statement.) If any of the processes are in a

suspended condition because they encountered a WAIT event-identifier statement,

they will continue processing. Once the event is caused, it remains on until

it is turned off explicitly by the RESET statement.

When AND RESET is specified, all of the event-identifiers are set (i.e.

CAUSE) and then RESET thus allowing a process which has been suspended by a
"WAIT event~identifier" to continue processing.

Event-identifier must be a properly qualified and subscripted data-name with
USAGE EVENT specified

7-43

CHECKPOINT

Checkpoint

The CHECKPOINT statement can be used to reduce execution time when it would

otherwise be necessary to rerun an entire program.

The CHECKPOINT procedure takes a complete snapshot of the task and stores it

on disk. The task can be restarted by utilizing the stored information. If

a HALT/LOAD or other system interruption occurs, the Work Flow Management

system will automatically restart the job either at the last "no task active"

point (see WFM documentation) or at the most recently executed CHECKPOINT

statement.

The COBOL syntax to take a checkpoint is as follows:

CHECKPOINT

[TO I ::::ACK I]
[WITH I PURGE I

LOCK]
[; ON EXCEPTION I statement I~ ELSE

NEXT SENTENCE ~ I statement J]]
!ifilIT SENTENCE

The DISK-DISKPACK option determines the medium to be used for the checkpoint

files.

The PURGE option is used to save only the last checkpoint file.

The LOCK option indefinitely saves all files and can also be used to restart

the program even if it has terminated normally. PURGE is the default.

If the ON EXCEPTION clause is used, any outcome of a checkpoint except a

successful one will cause the statement to be executed (restart is an

except ion) .

After each attempt ~o take a checkpoint, the CHECKPOINT-STATUS (a special­

register) will contain the result of the attempt. CHECKPOINT-STATUS is a

global variable, that is, its address resides at Level 2.

The fields may be extracted by use of the MOD and DIV operators in a COMPUTE

statement. In the case of a restart, the whole value of CHECKPOINT-STATUS will

be negative.

7-44

CLOSE

The CLOSE statement is used to indicate that processing of a file has been

completed. The file must have been opened previously before a CLOSE statement

can be executed.

The format for the CLOSE statement consists of three options which are as

follows:

Option 1:

Option 2:

Option 3:

CLOSE file-name-1 {
NO REWIND }] LOCK
RELEASE
PURGE
CRUNCH

[[{
NO REWIND }]]

, file-name-2 WITH ~:E ...
CLOSE file-name-1 ! REEL!

UNIT
[WITH NO REWIND]
FOR REMOVAL

[. file-name-2 !REEL!
UNIT

[WITH NO REWIND]]
FOR REMOVAL

CLOSE HERE file-name [WITH NO REWIND]

The REEL and WITH NO REWIND options apply only to files stored on tape.

RELEASE, CRUNCH, and PURGE are Burroughs extensions. In options 1 and 2, the

word WITH is optional. CRUNCH is provided for output disk files only.

For input files, any USE declaratives for the ending label are performed when

an attempt is made to read beyond the final data record of the file. For

output files, the ending label USE routines are performed when the CLOSE

statement is executed for the file.

To show the effects of the CLOSE options, each type of file will be discussed

separately. The effects of option 1 are as follows:

a. CARD INPUT. The only options allowed are WITH RELEASE and WITH

LOCK; however, these are ignored, so the action is the same as a

simple CLOSE: the input areas are released and the card reader is

returned to the MCP.

7-45

7-46

b. CARD OUTPUT. Only the options WITH RELEASE and WITH LOCK are al­
lowed; however, these are ignored and the action taken is the same
as a simple CLOSE: the output areas are released, the trailer
label (if any) is punched, and the unit is returned to the MCP.

c. TAPE INPUT.
1. CLOSE rewinds the tape. It does not release input areas, and

the unit remains assigned to the program. Subsequent opening of

the file within the same program will always result in accessing

the same unit.
2. a..osE NO REWIND, same as a..osE except the tape is not rewound.
3. a..osE LOCK releases the input areas, rewinds the tape, and the

MCP marks the unit not ready.
4. CLOSE WITH RELEASE releases the input areas, rewinds the tape,

and returns the unit to the MCP.
5. CLOSE PURGE releases the input areas, rewinds the tape, and if

a write ring is in the reel, overwrites the label with a scratch
label, making the tape a scratch tape.

d. · TAPE OUTPUT.

1. a..osE writes the trailer label (if any), rewinds the tape, and
the buffer areas are released. The unit remains assigned to

the program.
2. a..osE NO REWIND writes the trailer label (if any). The tape

remains positioned beyond the trailer label (or tape-mark if
there is no trailer label). The buffer areas are released

and the unit remains assigned to the program.
3. a..osE LOCK releases the output areas, writes the trailer label

(if any), rewinds the tape, and the MCP marks the unit not ready.
4. CLOSE WITH RELEASE releases the output areas, writes the trailer

label (if any), rewinds the tape, and returns the unit to the

MCP.
5. CLOSE PURGE releases the output areas, writes the trailer label

(if any), rewinds the tape, returns the unit to the MCP, and

the MCP overwrites the label with a scratch label, making the
tape a scratch tape.

The CLOSE options WITH RELEASE, NO REWIND, and PURGE may not

be used in conjunction with the REEL option.

e. PRINTER OUTPUT. Only the options WITH LOCK and WITH RELEASE are

allowed. However, these have no effect, and the action is always

a simple CLOSE: a page is ejected, a trailer label (if any) is

written, and the printer is returned to the MCP.

f. DISK FILES. The action taken on files assigned to DISK will be

discussed in terms of "old files" and "new files". An old file is

one that already exists on DISK and appears in the disk or pack

directory. A new file is one created by the program, and does not

appear in the directory. A new file may only be referenced by the

program which creates it. (See the OPEN statement in this section

for further information on new and old files.)

1. CLOSE file-name. For an old file, the file is left in the

directory and is available to other programs. Subsequent

OPEN OUTPUT will access the same file without resetting

EOF pointer.

For a new file, the file is not entered in the directory;

however, it remains on the DISK and may be opened again by

this program.

2. CLOSE file-name NO REWIND. Not permitted on DISK files.

3. CLOSE file-name WITH RELEASE.

For an old file, same as CLOSE file-name.

For a new file, same as CLOSE file-name PURGE.

4. CLOSE file-name LOCK.

For an old file, same as CLOSE file-name.

For a new file, the file is entered in the directory, thereby

making it an old file. The file is available to be opened

by any program.

5. CLOSE file-name PURGE.

An old file is removed from the DISK and deleted from the di­

rectory and may not be reopened.

A new file will be removed from the DISK. The file may not be

opened again by this program for input or I/O.

6. CLOSE file-name CRUNCH.

CRUNCH is provided only for output disk files. Any unused space

at the end of the file is returned to the MCP and the remaining

file is then closed as if LOCK had been specified. Later on, the

file must not be enlarged.

7-47

Option 2 of the CLOSE statement terminates the processing of REELS/UNITS,

files and/or removal where applicable.

Use of the FOR REMOVAL phrase is permitted only while the ANSI74 system

dollar option is set. Refer to Appendix B for a description of the ANSI 74

implementations.

The REEL/UNIT phrase is only used for tape files.

The terms REEL and UNIT are synonymous and completely interchangeable in the

CLOSE statement.

TAPE INPUT.

CLOSE file-name REEL allows an end-of-reel condition to be forced. The tape

will be rewound and locked; a new reel will be requested by the MCP just as if

a normal end-of-reel had occurred. At this point the file is still open and

may not be opened in the program. If no more records are to be read from the

new reel, it should be closed with release to avoid unnecessary retention of

the reel.

TAPE OUTPUT.

CLOSE file-name REEL allows an end-of-reel condition to be forced. Any partial

block will be written followed by normal end-of-reel labels (if standard labels

are specified). The tape will then be rewound and locked.

Option 3 is an extension to COBOL-68 to permit writing over the last portion of

a tape file, or adding to an existing tape file. The operation is as follows:

7-48

a. To overwrite the last portion of a file:

1. OPEN INPUT file-name.

2. READ file-name. Check RECORD-COUNT, BLOCK-COUNT, or record

contents to determine the end of the portion to be retained.

3. READ file-name. This positions the file at the first record

to be overwritten.

4. When this point is reached, CLOSE HERE file-name WITH NO

REWIND. This switches from reading to writing.

5. No OPEN OUTPUT is required, because the only operation allowed

after a CLOSE HERE is a WRITE. If an OPEN OUTPUT file-name

is given, then the non-fatal attribute error MYUSE (20) will

be displayed.

6. WRITE record-name. Successive WRITE statements will overwrite

the existing records.

7. CLOSE file-name to write a normal end-of-file on the tape.

b. To add to an existing file:

1. OPEN INPUT file-name.

2. READ file-name.

3. When the AT END clause is executed, CLOSE HERE file-name WITH

NO REWIND. This causes the tape to be backspaced over the

ending label and the end-of-file mark.

4. WRITE record-name will start adding records to the file im­

mediately following the last data record which previously

existed; e.g., if the last record in the file had been record

number 5, the first write will write record number 6, and sub­

sequent writes will be to 7, 8, 9, etc.

5. CLOSE file-name to write a normal end-of-file on the tape.

7-49

I COMPUTE I
COMPUTE

The COMPUTE statement assigns to one or more data items the value of a
numeric data item, literal, or arithmetic expression.

The format for this statement is as follows:

COMPUTE identifier-1 [ROVNDED] [, identifier-2 [ROUNPED]) •••

{
FROM }

EQUALS
{

identifier-n}
literal-I
formula

(; ON SIZE ERROR statement [~ statement]]

Literal-1 must be a numeric literal. Each identifier must refer to an
elementary nwneric item, except identifiers that appear only to the left
of:

{
FROM "'\

EQUALs.j

may describe data items that contain editing symbols.

The formula option permits the use of any meaningful combination of identi­
fiers, numeric literals, arithmetic operators, and intrinsic functions, pa­
renthesized as required.

The maximum size of each operand is 23 decimal digits.

The identifier-n and literal-1 options provide a method for setting the
values of identifier-1, identifier-2, etc., equal to the value of identifier-n

or li teral-1.

The words FROM and EQUALS are equivalent to each other and to the symbol "=".
They may be used interchangeably and the choice is generally made for read­

ability.

If more than one identifier is specified for the result of the operation (that
is, preceding FROM, =, or EQUALS), the value of the arithmetic expression is

computed, and then this value or ~he values of literal-1, or identifier-n is
stored as the new value of each identifier-1, identifier-2, etc., in turn.

7-50

I COMPUTE I
The COMPUTE statement allows the user to combine arithmetic operations with­
out the restrictions on the composition of operands and/or receiving data
items imposed by the arithmetic statements ADD, SUBTRACT, MULTIPLY, and
DIVIDE. For further information, refer to the discussions of the formulas
and the ROUNDED and SIZE ERROR option in this section.

Some examples of the COMPUTE statement are as follows:

COMPUTE A.MOUNT FROM TONS * COST-PER-'R>N.
COMPUTE A, B ROUNDED, C EQUALS 487.9563.
COMPUTE X = Y * Z + SQRT (PREV-RES)/W

ON SIZE ERROR GO TO ERROR-CON ELSE GO TO CNTUE.

Either one of the statements shown in the ON SIZE ERROR clause may be con­
ditional or imperative, or the reserved words NEXT SENTENCE may be used
instead.

7-51

I CONTINUE

CONTINUE

The CONTINUE statement passes control to a synchronous process that has been
previously called and exited via the EXIT.PROGRAM RETURN HERE statement,
thus allowing the called process to continue without repassing parameters.

The format of the CONTINUE·statement is as follows:

CONTINUE control-point-identifier

Control-point-identifier must be the same as in a previously executed CALL
statement.

7-52

COPY

The COPY statement allows PROCEDURE DIVISION statements contained on a
library file to be incorporated into the source program.

The format of the COPY statement is as follows:

COPY library-name [FROM seq. no.] [{~UGH} seq. no.]

[REPLACING word-I BY text-I [, word-2 BY text-2] ...] .

Library-name is the name of a subfile on library.
statements, paragraphs, or sections. The subfile
statement. The COPY statement must be terminated
only statement in a sentence.

Library-name may take one of two forms:

It may be any number of
may not contain a COPY
by a period and be the

a. It may appear as a unique identifier, in which case it becomes the
internal name of the library file. This name may be label-equated
to another name.

b. It may appear as a non-numeric literal, in which case it is the
actual external title of the desired file, (e.g., "A/B/C" for a
file titled "A/B/C").

The COPY statement itself is carried over to the symbolic, but the text of
the library file does not become part of the symbolic file.

The replacement function is handled internally by the compiler, but no
physical change is actually made.

For further information refer to section 8, THE COBOL LIBRARY.

7-53

1 · J>EALLOCATE

DEALLOCATE

The DEALLOCATE statement may be used to deallocate the storage of record

areas. The format of the DEALLOCATE statement is as follows:

DEALLOCATE record-name

The record-name must be an 01 level item that is not redefined and is not
described with the SEGMENT clause.

A record-name which is described without a RECORD AREA clause need never be
specified in a DEALLOCATE statement, since normal system overlay will release
the area of memory used.

The record-name specified must not have a usage of EVENT, LOCK, CONTROL-POINT
or COMP-1.

7-54

DETACH

DETACH

The DETACH statement disassociates a procedure from a control-point item or

an event item.

The format of the DETACH statement is as follows:

DETACH identifier-I [, identifier-2] •••

The identifiers used in this statement must be defined as elementary control­

point items or the section-name of an interrupt procedure.

If a control-point item is being detached, it must have been previously at­
tached because of the execution of an option 1 CALL statement or a PROCESS
statement. The successful execution of this statement terminates a task which
was attached to that control-point and had been running. After execution of

the DETACH, the control-point item should be tested for a STATUS of -1 prior
to the next use of that control-point item. The execution of the program
which executed the DETACH continues asynchronously while the detachment is
performed.

Similarly, the interrupt procedure being detached must have been attached to

an event. If, at the time the detachment occurs, executions of the interrupt
procedure have been queued, they will never occur.

7-55

[DISALLOW

DISALLOW

The DISALLOW statement prevents execution of an interrupt procedure which has

been attached to an event.

The format of the DISALLOW statement is as follows:

DISALLOW Csection-name-1 [, section-name-2] •• ·}
INTERRUPT

The section-names specify which interrupt procedure or procedures should not

be executed when the attached event(s) is (are) caused. The sections named
must be defined as interrupt procedures with the USE statements in their
headers. The section-names must be allowed at the time the DISALLOW is
executed.

After execution of this statement any potential executions of affected in­
terrupt procedures are queued rather than executed.

7-56

DISPLAY

DISPLAY

The DISPLAY statement provides for the printing of low-volume data, error
messages, and operator instructions on the console.

The format for the DISPLAY statement is as follows:

DISPLAY { literal-! }[{literal-2 }]
identifier-! ' identifier-2 ··· [UPON {mnemonic-name}]

hardware-name

Each literal may be any figurative constant, except ALL. If a figurative
constant is specified as one of the operands, only a single occurrence of
the figurative constant is displayed.

When the DISPLAY consists of multiple operands, the data comprising the
first operand is DISPLAYed, followed by the data comprising the second
operand, and so on. This operation continues until all information is
DISPLAYed,

Altogether, no more than 256 characters may be displayed, Identifier-I,
identifier-2, ... may be any elementary or group item other than an index
data item, index-name, EVENT, LOCK or CP. If an attribute-expression or a

special-register is used as identifier-I, identifier-2, ... , the implicit
class of the item must be numeric.

Because of the comparatively slow speed of the console, the DISPLAY statement
should be used sparingly. Since all operator instruction is thru the console,
only information required by the operator should be displayed.

The UPON option is for documentation only. If specified, the hardware-name
must be MESSAGE-PRINTER, SPO, KEYBOARD, or DISPLAY-UNIT. Mnemonic-name must
be associated with one of the above hardware-names in SPECIAL-NAMES.

7-57

DIVIDE

DIVIDE

The DIVIDE statement divides one numeric data item into others and sets
the values of data items equal to the quotient and remainder.

There are five options for the DIVIDE statement which are as follows:

Option 1:

DIVIDE

Option 2:

[MOD] hiteral-1 l INTO
- lidentifier-lj

identifier-2 [ROUNDED] [,identifier-3 [ROUNDED]]
[;ON SIZE ERROR statement [ELSE statement]]

DIVIDE ['MOD] jliteral-1 I
~- lidentifier-lf

jliteral-2 l
lidentifier-2f

Option 3:

GIVING identifier-3 [ROUNDED][,identifier-4 [ROUNDED]J
[;ON SIZE ERROR statement [ELSE statement]]

DIVIDE [MOD]{literal-l }
~-· identif ier-1 BY {literal-2 }

identif ier-2

Option 4:

DIVIDE

Option 5:

DIVIDE

7-58

GIVING identifier-3 [ROUNDED] [,identifier-4 [ROUNDED]]
[;ON SIZE ERROR. statement [ELSE statement] J

{literal-1 l
· identifier-1 f

lliteral-2 I
lidentifier-2j

GIVING identifier-3 [ROUNDED] REMAINDER
identifer-4 [ROUNDED] [;ON SIZE ERROR statement [ELSE

statement]]

\ii teral-1 l BY I literal-2 I
lidentifier-lf lidentifier-2f

GIVING identifier-3 [ROUNDED] REMAINDER
identifier-4 [ROUNDED] [;ON SIZE ERROR statement [ELSE

statement] J

DIVIDE

Each identifier must refer to a numeric elementary item, except that any

identifiers that appear only to the right of the word GIVING may refer to

data items that contain editing symbols.

Each literal must be a numeric literal.

The maximum size of each operand is 23 decimal digits. The composite of oper­

ands, which is the data item resulting from the superimposition of all receiv­

ing data items aligned on their decimal points, must not contain more than 23

digits.

When option 1 is used, the value of identifier-! or literal-! is divided into

the value of identifier-2. The value of the dividend (identifier-2) is re­

placed by this quotient; the same is true for identifier-! or literal-! and

identifier-3, etc.

When option 2 is used, the value of identifier-! or literal-! is divided in­

to identifier-2 or literal-2, and the result is stored in identifier-3,

identifier 4, etc.

When option 3 is used, the value of identifier-! or literal-! is divided

by the value of identifier-2 or literal-2, and the result is stored in

identifier-3, identifier-4, etc.

Options 4 and 5 are used when a remainder from the division operation is

desired, namely identifier-4. A remainder in COBOL is defined as a result

of subtracting the product of the quotient and the diviwor from the dividend.

If the ROUNDED option is specified, the quotient is rounded after the re­

mainder is determined. The compiler will recognize the ROUNDED option for the

REMAINDER clause of the DIVIDE statement only while the B2500 system dollar

option is set.

For discussion of the ROUNDED and SIZE ERROR options, see the statement

options in this section.

The MOD option can only be used with the B2500 system option set. Specif­

ically, the use of the MOD option will cause the remainder to be placed in

identifier-2 of Option 1 and identifier-3 of Options 2 and 3. The

remainder will be carried to the same degree of accuracy as defined in the

PICTURE of the quotient and all extra positions will be zero filled. This

option provides compatibility with B 3700 COBOL.

Either one of the statements shown in the ON SIZE ERROR clause may be con­

ditional or imperative, or the reserved words NEXT SENTENCE may be used

instead.

7-59

I DUMP]

DUMP

The DUMP statement provides a debugging "snapshot" of specified names in the

program.

The format of the DUMP statement is as follows:

DUMP {file-name}
PRINTER {

data-name-I }
l procedure-name

ALL

paragraph-name-n 1. { ~! ~=:~!me-n)

The DUMP statement must precede the first procedure-name in the PROCEDURE

DIVISION. If the program also contains a MONITOR statement, the DUMP state­

ment must follow the MONITOR statement. The word DUMP must begin in margin

A and the file-name must be a file.assigned to the PRINTER. If no such file

exists, the word PRINTER may be substituted. In either case, the file must

be OPEN before the first DUMP is actually taken. If PRINTER is specified, the

special statement OPEN OUTPUT DIAGNOSTIC must be executed prior to the execut­

ion of the first DUMP. Only one DUMP statement is permitted in a program.

The parentheses and the colon must appear as shown in the format. Data­

name-1., data-name-2, etc., may not be subscripted, but they may be qualified.

They may be group-names or record-names, in which case, the snapshot will

actually show all the elementary items contained in the group or record.

However, tables may not be DUMPed (see the MONITOR statement).

The operation of the DUMP is as follows. A counter is established, and

each time control passes to paragraph-name-n, a one is added to the counter.

The counter is then compared with the literal or data-name-n. If the counter

is equal or greater, it is reset to zero and a DUMP is executed. In any

case, program execution then continues. The use of data-name-n allows the

DUMP interval to be varied.

The result of executing a DUMP is a listing on the printer of the data-names

appearing in the DUMP statement, and the current value of each one. Procedure­

names in the DUMP statement are listed along with a value equal to the number

of times the control has been passed to that point in the program. When ALL

is specified, then every procedure-name in the program will participate in

the DUMP statement. The value of each data-name is shown in edited form if

it is numeric, with decimal point and sign. COMPUTATIONAL fields are con­

verted to DISPLAY before being printed.

7-60

ENTER

ENTER

The ENTER statement will transfer control to a procedure which is bound to
the COBOL program with the SYSTEM/BINDER. The BINDER is described in a

separate document entitled B 7000/B 6000 SYSTEM/BINDER REFERENCE MANUAL,
Form No. 5001456.

The format of the ENTER statement is as follows:

ENTER section-name { identifier-1} [
literal-1 ' { identifier-2 }] J

literal-2 ···

The ENTER statement is synonymous with option 2 of the CALL statement.

The identifiers in the USING clause of the ENTER statement must be level 77
or 01 data-names with usages of COMP, COMP-1, COMP-2, COMP-4, COMP-5, DISPLAY,
DISPLAY-1, ASCII, EVENT, or LOCK.

The procedure that will be entered from the COBOL program must have an ex­
ternal procedure description in the DECLARATIVES, with an accompanying

LOCAL-STORA.GE entry if parameters are passed.

7 ... a1

I EXAMINE I
EXAMINE

The EXAMINE statement is used to replace a specified character and/or to

count the number of occurrences of a particular character in a data item.

The format for the EXAMINE statement consists of two options:

Option 1:

EXAMINE identifier-I TALLYING {~.DING } { ~i ter~l-:-1 }
UNTIL FIRST identifier-2

[REPLACING BY { ~i ter~l-:-2 } J
""""'""""'-""""''""""~-~ -- 1dent1f1er-3

Option 2:

EXAMINE identifier-I REPLACING{ ~DING }
(UNTIL) FIRST

{ li teral-1 }
identifier-2

BY {literal-2 }
- identifier-3

The description appearing in the DATA DIVISION for the identifiers used in

the EXAMINE statement must be such that USAGE is DISPLAY or DISPLAY-I (ex­

plicitly or implicitly). Literal-I, literal-2, identifier-2, and identifier-3

must consist of a single character belonging to a class consistent with that
of identif ier-1. A signed numeric literal is not permitted in the EXAMINE

statement. Figurative constants automatically represent a single character.

Figurative constant ALL may not be used.

Examination of data proceeds as follows:

a. For non-numeric data items, examination starts at the leftmost

character and proceeds to the right. Each character in the data

item specified by the identifier is examined in turn.

b. If a data item referred to by the EXA.MINE statement is numeric,

it must consist of numeric characters and may possess an operational

sign. Examination starts at the leftmost character (excluding the

sign) and proceeds to the right. Each character except the sign

is examined in turn. Regardless of where the sign is physically

located, it is completely ignored by the EXA.MINE statement.

The TALLYING option creates an integral count which replaces the value of

a special register called TALLY. The count represents the number of the

following:

7-62

I EXAMINE I
a. Occurrences of literal-1 or identifier-2 when the ALL option is used.

b. Occurrences of literal-1 or identifier-2 prior to encountering a
character other than literal-1 or identifier-2 when the LEADING

option is used.
c. Characters not equal to literal-1 or identifier-2 encountered be­

fore the first occurrence of literal-1 or identifier-2 when the

UNTIL FIRST option is used.

When either of the REPLACING options is used, the replacement rules are as
follows:

a. When the ALL option is used, then literal-2, identifier-3 is
substituted for each occurrence of literal-1, identifier-2.

b. When the LEADING option is used, the substitution of literal-2,
identifier-3 terminates as soon as a character other than literal-1,
identifier-2 is encountered or the right-hand boundary of the data
item is encountered.

c. When the UNTIL FIRST option is used, the substitution of literal-2,
identifier-3 terminates as soon as literal-1, identifier-2 is en­
countered or the right-hand boundary of the data item is encountered.

d. When the FIRST option is used, the first occurrence of literal-1,
identifier-2 is replaced by literal-2, identifier-3.

7-63

I EXECUTE I
EXECUTE

The EXECUTE statement causes the execution of a separate task, using the pro­

cedure referenced. The executed procedure will run independently and asynchro­

nously. An EXECUTE statement has the following form:

EXECUTE control-point-identifier WITH section-name

[USING arithmetic-expression-1 [· arithmetic-expression-2]···]

The EXECUTE statement is synonomous with the RUN statement. Refer to the

RUN statement.

7-64

EXIT

The EXIT statement provides a return mechanism for the PERFORM statement
' designates the logical end of a called program, and provides a common end

point for a series of procedures in a USE section.

The format of the EXIT statement is as follows:

[
PROGRAM [RETURN HERE] J

EXIT PROCEDURE
HERE

The EXIT statement must be preceded by a paragraph-name and appear as the

only statement in a single sentence within a paragraph. EXIT is normally

used in conjunction with procedures referenced by a PERFORM or CALL state­

ment. It allows alternate branch paths within the procedures to rejoin at

a common return point, as required by the PERFORM, CALL and USE procedures.

If control reaches an EXIT statement and no associated PERFORM or CALL

statement is active, control passes thru the EXIT point to the first

sentence in the next paragraph. This cannot happen for USE procedures, as

USE sections are considered to be "performed" by the file-handling routines

of the MCP, and EXIT statements encountered during execution of a USE sec­

tion return control to the MCP.

If control reaches an EXIT PROGRAM while under control of a CALL, control is

returned to the statement following the CALL in the calling program. If a sub­

sequent CALL statement is executed for the same program, control passes to

the first logically executable statement in the called program. When the

EXIT PROGRAM RETURN HERE option is used and a CONTINUE statement is executed

on the same program, control passes to the statement immediately following

the EXIT statement.

The EXIT PROCEDURE statement should be used only for procedures compiled at

level 3 or higher. If the procedure has been processed or called as a co­

routine, EOT occurs for that stack. If it has been called as a procedure,

normal procedure exit occurs back to the statement following the procedure

invocation in the calling program.

7-65

An implicit EXIT PROCEDURE statement is compiled for all procedures compiled
at level 3 or higher. The EXIT PROCEDURE statement need not be used when
it would be the final statement in the procedure.

The EXIT HERE option may be used as an independent statement. (It does not
have the paragraph restrictions.) If the program is under control of a
PERFORM statement when EXIT HERE is encountered, the most recently executed
PERFORM is exited regardless of whether or not the end of the PERFORM range

was reached. If there is not an active PERFORM when the EXIT HERE is exe­
cuted, control will fall through to the next statement.

7-66

GO

The GO TO statement causes control to be transferred from one part of the

PROCEDURE DIVISION to another.

The format for the GO statement has the following two options:

Option 1:

GO TO [procedure-name-1]

Option 2:

.QQ TO procedure-name-1 [, procedure-name-2] ...

{formula } ,procedure-name-n DEPENDING ON identifier

Each procedure-name is the name of a paragraph or a section, or a paragraph­

name qualifieq by a section name.

If procedure-name-1 in option 1 is not specified, then an ALTER statement
referring to this GO TO statement must be executed prior to the execution

of this GO TO statement; otherwise, the MCP will terminate the job with an
error message referencing the GO paragraph.

If, in option 1, the GO TO statement appears in an imperative sentence, it

must appear as the only or last statement in the sequence of imperative state­

ments.

Whenever a GO TO statement (option 1) is executed, control is transferred to

procedure-name-1 or to the procedure-name indicated by the last executed

ALTER statement.

If the GO TO statement is to be altered when using option 1, then:

a. The GO statement must itself have a paragraph-name, and

b, The GO statement must be the only statement in the paragraph.

In option 2, identifier should be described as a numeric elementary item with­

out any positions specified to the right of the assumed decimal point.

The GO statement in option 2 causes control to be transferred to one of the

procedures (procedure-name-1, procedure-name-2, ...), depending on the value
of the identifier or formula. If the value is either negative, zero, or be­

yond the range of the procedure-names indicated, control passes to the next

statement in the normal sequence of execution. If the value is other than

integer, it is truncated to integer.

7-67

Example:

GO TO AIM, CALC, ERR DEPENDING ON PROC.

Figure 7-8 shows the action taken for various values of PROC.

VALUE OF PROC GO TO

3 ERR
2 CALC
1 A.IM

2.4 CA.LC
-1 NEXT STATEMENT

0 NEXT STATEMENT

Figure 7-8. Result of GO TO .•• DEPENDING

Any number of procedure-names may appear in a GO TO procedurP-name-list
DEPENDING ON •.• statement.

Execution of an uninitialized GO TO statement prior to its having been altered
will cause an INVALID OPERATOR termination of the program.

7-68

IF

The IF statement causes a condition to be evaluated. The subsequent action of

the object program depends on whether the value of the condition is true or
f.alse.

The format for the IF statement is as follows:

IF condition; [THEN]{statement-l }[· ELSE
NEXT SENTENCE ' ----- { statement-2 }]

!filIT SENTENCE

Statement-1 and statement-2 represent either a conditional statement or an im­

perative statement, and either may be followed by a conditional statement.
The semicolons are optional.

The optional use of the reserved word THEN as•a delimiter between the condi­
tional expression and the first statement following the IF statement is
allowed only while the B2500 system dollar option is set.

The phrase ELSE NEXT SENTENCE may be omitted if it immediately precedes the
terminal period of the sentence.

When an IF statement is executed, the following action is taken:

a. If the condition is true, the statements immediately following the
condition (represented by statement-I) are executed, and control then
passes implicitly to the next sentence unless statement-I causes
some other transfer of control.

b. If the condition is false, either the statements following ELSE are

executed or, if the ELSE clause is omitted, the next sentence is

executed.

When an IF statement is executed and the NEXT SENTENCE phrase is present, con­
trol passes explicitly to the next sentence, depending on the truth value of

the condition and the placement of the NEXT SENTENCE phrase in the statement.

IF statements within IF statements may be considered as paired IF and ELSE
combinations, proceeding from left to right; thus, any ELSE encountered is

considered to apply to the immediately preceding IF that has not already been
paired with an ELSE.

ELSE phrases are paired only with IF statements while the ANSI74 or USASI

system dollar options are set. Refer to Appendix B for a description of the

ANSI 74 implementations.

When control is transferred to the next sentence, either implicitly or

explicitly, control passes to the next sentence as written or to a return
mechanism of a PERFORM or a USE statement.

7-69

The method of evaluating conditional expressions allows early exit once the

truth value of the expression has been determined. If the expression contains
procedure calls on user intrinsics or makes use of implied subjects, the ex­
pression is evaluated fully.

\

7-70

LOCK

The LOCK statement is used in an asynchronous processing environment. It

provides the ability for one process to deny related processes access to a

particular common storage area until it has unlocked that area. It also

permits a process to test a common storage area for a locked condition.

The format of the LOCK statement is as follows:

!data-name)[
lock-identifier ;
event-identifier

{ statement-I } [
AT LOCKED NEXT SENTENCE ; ELSE {statement-2 }]]

NEXT SENTENCE

Data-name must be a COMPUTATIONAL or COMP-I item; and if COMPUTATIONAL, it

must be synchronized to a word boundary.

If the AT LOCKED option is specified and the data-name or lock-name is

already locked when the LOCK statement is executed, control will pass to

the statement following AT LOCKED. If the ELSE option is specified, con­

trol passes to the statement following ELSE after the LOCK operation is

complete. If the AT LOCKED is not specified, the LOCK statement will

continue to try the operation until the LOCK has been successfully completed;

that is, until the data-name has been unlocked from another process.

The locking of data-name utilizes the hardware READ-LOCK operator. The

locking or unlocking of lock-name or event-name invokes the PROCURE and

LIBERATE functions of the MCP.

The AT LOCKED option should be used when locking data-name since there is

no priority system with the READ-LOCK operator.

For additional information, refer to the discussion of the UNLOCK statement

in this section.

7-71

I MERGE I
MERGE

The MERGE statement is used to merge up to eight input files into one output
file or to make a merged file available to an output procedure. The input
files are merged on a set of specified keys.

The format for the MERGE statement is as follows:

MERGE file-name-1 ON

{ ASCENPING } KEY
DESCENDING data-name-1 [, data-name-2] •••

[{ ASCENPING)
,ON DESCENPING KEY da ta-name-3 [, da ta-name-4] •••] •••

USING file-name-2 [, file-name-3] ••• , file-name-9

{
GIYING file-name-10 }

OUTPUT PROCEDVRE IS section-name-1[{=UGH} section-name-2 J
The MERGE verb is considered to be a variation of the SORT verb. Refer to

the discussion of the SORT verb (merge mode) in this section for additional
merging considerations.

7-72

MONITOR I
MONITOR

The MONITOR statement provides a debugging "trace" of specified data-names
and procedure-names.

The format of the MONITOR statement is:

MONITOR { file-name}
PRINTER {

data-name-1 } [{ data-name-2 } J
i ~~cedure-name-1 , ~~~cedure-name-2 •. · l

The parentheses are required. The MONITOR statement must precede the
DECLARATIVES or the first procedure-name in the PROCEDURE DIVISION. If the
program also contains a DUMP statement, the MONITOR statement must precede
the DUMP. The word MONITOR must begin in margin A. Only one MONITOR
statement is permitted in a program.

The file-name should be a file assigned to the PRINTER. If no such file
exists, the word PRINTER may be substituted.

The MONITOR file may not be explicitly opened after any MONITOR information is
written to the file. The file used for writing MONITOR information is created
as an ALGOL file to allow the first WRITE to open the file, if it has not
already been opened. This is done for the following reasons:

1. The specification in the MONITOR list of the first paragraph-name in
the program is made possible.

2. When the MONITOR file is PRINTER, the special statement OPEN OUTPUT
DIAGNOSTIC is not necessary.

The data-name(s) may be any names appearing in the DATA DIVISION except
file-names and names which require a subscript clause. A table may be
monitored by using a group-name or record-name which contains the table.

Whenever an elementary data-name which appears in the MONITOR statement, or
is subordinate to a name in the MONITOR statement, is encountered as the
result field in a MOVE or arithmetic statement during execution, the name
and its new value are listed on the file specified. Procedure-names being
monitored are listed when control passes to them, with a count of the number
of times control has passed to the procedure-name. In place of, and/or in
addition to procedure-name-1, procedure-name-2, the word ALL may be used
to indicate that all paragraphs in the program except the first are to be
subject to MONITOR action.

7-73

198 0

I MOVE I
MOVE

The MOVE statement transfers data, in accordance with the rules of editing,
to one or more data areas.

The FORMAT for the MOVE statement consists of the following four options:

Option 1:

{
special-register J

MOVE ~ttri~u~e-identifier
~~ identifier-I

literal-I

Option 2:

identifier-2

Mo E ·{CORRESPONDING} identifier-I TO identifier-2 _v_. CORR

Option 3:

MOVE

Option 4:

MOVE

[identifier-I TO identifier-2]

identifier-I TO identifier-2

[{li teral-2}
formula-I

: {literal-3}
- formula-2

: {li teral-4}]
- formula-3

[, identifier-3]

[, identifier-3] ...

Identifier-I and literal-I represent the sending field; identifier-2,
identifier-3 represent the receiving fields. Literal-I may be any literal
or figurative constant consistent with the class of the receiving field.

Options l and 2 provide for multiple receiving fields. The data designated by
the literal or identifier-I will be moved first to identifier-2, then to
identifier-3, etc. Subscripting or indexing associated with identifier-I is
evaluated only once, immediately before data is moved to the first receiving
field. The notes referencing identifier-2 also apply to the other areas.

The result of the statement:

MOVE A(SUB} TO SUB, B(SUB}

would produce the same result as:

7-74

MOVE A(SUB} TO temp.

MOVE temp TO SUB.
MOVE temp TO B(SUB}.

lr:=l\
'~

ELEMENTARY MOYES

Any move in which the sending and receiving items are both elementary items

is an elementary move. All other moves are defined as group moves. Every

elementary item belongs to one of these five categories:

a. Numeric.

b. Numeric Edited.

c. Alphabetic.

d. Alphanumeric.

e. Alphanumeric Edited.

See the PICTURE clause description in Section 6 for a detailed discussion of

these categories. Group items, non-numeric literals, and all figurative con­

stants, except ZEROS and SPACES, are classed as alphanumeric. Numeric

literals and the figurative constant ZEROS are classed as numeric. The

figurative constant SPACES is classed as alphabetic.

Figure 7-9 shows the legality of the various types of elementary moves. The

numbers refer to one of the rules listed in the text following.

~
Alphanumeric

and
Alphabetic Alphanumeric

Edited

ALPHABETIC Yes/6 Yes/4

ALPHA.NUMERIC Yes/6 Yes/4

ALPHA.NUMERIC EDITED Yes/6 Yes/4

INTEGER No/2 Yes/4
NUMERIC

NON-INTEGER No/2 No/3

NUMERIC EDITED No/2 Yes/4

Figure 7-9. Elementary Moves

Numeric
and

Numeric
Edited

No/l

Yes/5

No/l

Yes/5

Yes/5

No/l

7-75

Illegal Elementary Moves. The rules governing illegal elementary moves are

as follows:

1. A numeric edited item, alphanumeric edited item, SPACES, or an

alphabetic item cannot be moved to a numeric or numeric edited item.

2. A numeric literal, ZEROS, a numeric data item, or a numeric edited

item cannot be moved to an alphabetic data item.

3. A non-integer numeric literal or a non-integer numeric data item can­

not be moved to an alphanumeric or alphanumeric edited data item.

Legal Elementary Moves. The explanation of legal elementary 'moves is as

follows:

7-76

4. When an alphanumeric or alphanumeric edited item is a receiving

field, justification and any necessary space filling takes place

as defined under the JUSTIFIED clause. If the size of the sending

field is greater than the size of the receiving field, the excess

characters are truncated on the right after the receiving item is

filled.

If the sending field is described as being signed numeric, the

operational sign will not be moved. If the sign occupies a

separate character position (as in COMP-2), that character will

not be moved and the size of the sending field will be considered

to be one less than its actual size.

For example:

Given these data descriptions:

77 S COMP-2 PIC S9999.

77 R PIC X(6).

Then the statements:

MOVE -124 TO S.

MOVE S TO R.

will result in R being equal to "0124 "

5. When a numeric or numeric edited item is the receiving field in an

elementary move, data is moved algebraically (that is, values are

moved, characters are not moved). Therefore, if the data in the

sending field is not numeric, zone bits will be stripped and the

data will be modified. Alignment by decimal point and any neces­

sary zero-filling takes place as defined under the JUSTIFIED clause,

except where zeros are replaced because of editing requirements.

I MOVE I
When a signed numeric item is the receiving field, the sign of the

sending field is placed in the receiving field. Conversion of the

sign representation takes place as necessary. If the sending field

is declared unsigned, but contains signed data, the sign moved to the

receiving field is unpredictable.

When an unsigned numeric item is the receiving item, the i:ibsolute

value of the sending item is moved and no operational sign is gen­

erated for the receiving item.

When ~n alphanumeric item is the sending field, data is moved as if

the sending item was described as an unsigned numeric integer.

6. When the receiving field is alphabetic, justification and any

necessary space filling takes place as defined under the JUSTIFIED

clause. If the size of the sending field is greater than the size

of the receiving field, the excess characters are truncated on the

right, after the receiving field is filled.

GROUP MOYES

A group move is any move in which either the sending field or the receiving

field is a group item. Group moves are handled as alphanumeric to alpha­

numeric moves, regardless of the class of the receiving field and without

consideration for the individual elementary or group items contained within

either the sending or receiving area.

If the receiving field is a group containing elementary fields described

as COMP or COMP-2, the sending field should be identically described as

to sign convention, USA.GE, and size. Failure to observe this convention may

lead to unexpected and/or erroneous results.

Example:

01 DISPLAY-AREA.

05 DA.-1 PIC XX.

05 DA.-2 COMP PIC 99.

05 DA.-3 CQMP,-2 PIC 9999.

01 REDEF REDEFINES DISPLAY-AREA..

05 Rl PIC X(lO).

7-77

I MOVE I
If the figurative constant ZERO or an EBCDIC data item containing zeros is
moved to DISPLAY-AREA, REDEF or Rl, accesses to the memory locations described
by DA-2 and DA-3 will not yield a value of zero. Instead, DA-2 will contain a
very small negative floating point number. If the value 1 is added to DA-2,
the result will be a value less than 1. The field DA-3 will contain the value
9090 after the above MOVE statement.

The following moves are not allowed:

a. From a group item to an elementary COMP or COMP-I item.
b. From an elementary COMP or COMP-1 item to a group COMP item. ,

c. From a numeric data item, special register or attribute to an ASCII .
item.

d. From a non-numeric literal of any size to any COMP, COMP,...!, COMP-4,
or COMP-5 data item.

TRANSLATION

Any necessary translation of data from one form of internal representation
to another, i.e., BCL to EBCDIC, EBCDIC to hexadecimal, etc., will be done
for any elementary or group move in which data is moved non-algebraically.
The type of translation depends on the usages of the sending and receiving
data items. Data items declared within the sending or receiving fields are
not considered.

For example, moving an elementary numeric item of type integer to a group
DISPLAY or DISPLAY-I item causes the absolute value of the elementary item.
to be converted to characters of the same size as their destination. Then
they are placed in their destination, left-justified, with spaces in any
character positions to the right.

INPEX DATA ITEMS

An index data item cannot be used as an operand in a MOVE.statement. The
SET statement must be used to move index data items.

VALID MoVE COMBINATIQNS

Figure 7-10 shows the valid combinations of sending and receiving fields
permitted in COBOL.

GROUP ELEMENTARY

DESTINATION NUMERIC ~Q ' (J ' (J 0 ITEM c(- c(a: Ill ci: (J a: Ill :z:: a:
Ill A. Ill :z:: Ill :z::-

L9 NON· A. :::E - A.
INTEGER :::E- ..J :::E ..J ::> Q ..J Ill

~ > A. Q INTEGER ::> Q c(::> c(z Ill ci:m A. ~ - c(:::E ..J z Ill z :e A. ..J c:; ..J 0 Ill

8 § A. A. g u:
~ fl) "';' .. ;:: SOURCE fl)

i ~ >).).). c c
~

> ;; > ; >
ITEM i

c(~ :5 c(:5 c(c(c(c(

§ ..J ..J A. A. ..J ..J ..J ..J ..J A. A.

~ ~
A. A. A. A. A.

~
A. A.

~
A. A. c:; A. fl) fl) fl) !!! fl) fl) fl) fl) fl) fl) fl) fl) c c c Q c cc c c c c ~ c

COMP 16 16 17 17 17 * * * 16 17 17 * 16 17 17 17 17 17 17 17 17 17 17 17 17 17
A.

COMP-2 ::> 16 2 2' 2 2 * * * 2 2 2 * 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 DISPLAY-1 16 2 2 2 2 * * * 2 2 2 * 2 2 2 2 2 2 2 2 2 2 2 2 2 2 a:
Cl) ASCII 16 2 2 2 2 * * * 2 2 2 * 2.2 2 2 2 2 2 2 2 2 2 2 2 2

DISPLAY 16 2 2 2 2 * * * 2 2 2 * 2 2 2 2 2 2 2 2 2 2 2 2 2 2

..J FLOATING.POINT * * * * * 5 *
cc
a: "UNDIGIT' * 6 * * * * * * 6 * * * * * * * * * * * * * * * * *

Ill NUMERIC INTEGER * 25252525 3 7 3 1 1 1 3 1 1 1 2020252525262626 * * * ... NUMERIC NON-INTEGER * 25252525 3 7 3 1 1 1 3 1 1 1 20 20 * * * * * * * * * -
..J ALPHANUMERIC * 23232323 * * * 9 9 9 * 9 9 9 21 21 23 23 23 24 24 24 23 23 23

COMP-4/COMP-5 * 14 14 * 14 19 7 8 12 12 12 8 12 12 12 22 22 14 * 14 15 ·: * 15 * * *
OMS F1ELD * * * * * 4 7 4 .4 4 4 4 4 4 42222* * * * * * * * *

COMP * 14 14 * 14 19 7 8 12 12 12 8 12 12 12 22 22 14 * 14 15 * 15 * * *

S:! COMP-2 16 2 2 2 2· 3 7 3 1 1 1 3 1 1 1 20 20 14 * 14 15 * 15 * * * INTEGER
a: DISPLAY-1 16 2 2 2 2 3 7 3 1 1 1 3 1 1 1 20 20 14 * 14 15 * 15 * * * Ill
:&
::>

DISPLAY 16 2 2 2 2 3 7 3 1 1 1 3 1 1 1 20 20 14 * 14 15 * 15 * * *
z COMP * * * * * 18 7 8 12 12 12 8 12 12 12 22 22 * * * * * * * * *

> NON· COMP-2 16 2 2 2 2 3 7 3 1 1 1 3 1 1 1 20 20 * * * * * * * * *
a: INTEGER DISPLAY-1 16 2 2 2 2 3 7 3 1 1 1 3 1 1 1 20 20 * * * * * * * * * cc

DISPLAY 16 2 2 2 2 3 7 3 1 1 1 3 1 1 1 20 20 * * * * * * * * * z NUMERIC· DISPLAY-1 16 2 2 2 2 * * * * * * * * * * * * 2 2 2 13 13 13 * * * Ill

:E EDITED DISPLAY 16 2 2 2 2 * * * * * * * * * * * * 2 2 2 13 13 13 * * *
Ill DISPLAY-1 16 2 2 2 2 10 11 10 9 9 9 10 9 9 9 21 21 2 2 2 13 13 13 2 2 2 ..J ALPHA·
Ill

NUMERIC ASCII 16 2 2 2 2 10 11 10 9 9 9 10 9 9 9 21 21 2 2 2 13 13 13 2 2 2

DISPLAY 16 2 2 2 2 10 11 10 9 9 9 10 9 9 9 21 21 2 2 2 13 13 13 2 2 2

ALPl-lA- DISPLAY-1 16 2 2 2 2 * * * * * * * * * * * * 2 2 2 13 13 13 2 2 2
NUMERIC ASCII 16 2 2 2 2 * * * * * * * * * * * * 2 2 2 13 13 13 2 2 2
EDITED DISPLAY 16 2 2 2 2 * * * * * * * * * * * * 2 2 2 13 13 13 2 2 2

DISPLAY-1 16 2 2 2 2 * * * * * * * * * * * * 2 2 2 13 13 13 2 2 2
ALPHA·

ASCII 16 2 2 2 2 * * * * * * * * * * * * 2 2 2 13 13 13 2 2 2
BETIC

DISPLAY 16 2 2 2 2 * * * * * * * * * * * * 2 2 2 13 13 13 2 2 2

Figure 7-10. Valid MOVE Statement Combinations

7-79

The following rules describe the valid combinations of sending and receiving
fields shown in figure 7-10. These rules apply in addition to the standard
alignment rules for destinations as explained in the discusssion of the

JUSTIFIED clause.

* Illegal Move

1. Numeric-decimal move; absolute value moved if destination is de­
scribed as unsigned. Completion of operation guarantees that zones
and sign of destination, if any, are valid. If digits are greater

than 9, they may not be moved unchanged from the source.

2. Alphanumeric move; left justified with truncation or space fill

(zero fill if the destination is COMP-2) on the right (except if

the destination is described with the JUSTIFIED clause). If the
usage of the source and destination are not the same, translation

occurs using the standard MCP translate tables. The source is con­
sidered as having a category of alphanumeric. If the source is a
group item, the destination is considered as having a category of

alphanumeric (any editing or decimal point is ignored).
3. Numeric move; the decimal source is converted to binary. "UNDIGITS"

existing in the source are changed to values less than 10. If the

destination is COMP-4 or COMP-5, the source value will be approx­
imated in binary floating-point.

4. Numeric move; the bit pattern of the source is considered to be an
unsigned integer operand, and is extended to double precision

binary or converted to decimal if necessary.

5. Numeric move; decimal value converted to nearest binary floating­
point approximation, and adjusted to single or double precision.

6. "UNDIGIT" move; right justified, zero fill on left.

7. Numeric move; the source is converted to a binary integer if
necessary. The destination is considered to be an unsigned binary

integer operand. High-order bits of the source may be truncated.

8. Numeric move; the binary source value is adjusted to the precision
and scale of the destination. If the source value is floating-point,

the source value is integerized.

9. Numeric move; the source is considered as a numeric unsigned integer,

and is moved as described in rule-1.
10. Numeric move; the source is considered as a numeric unsigned integer,

and is moved as described in rule-3.

7-80

11. _Numeric move; the source is considered as a numeric unsigned integer,

and is moved as described in rule-7.

12. Numeric move; the binary source is converted to decimal.

13. Alphanumeric-edited move; the source is considered as having a

category of alphanumeric, and is moved as in rule-2, except that
editing also takes place.

14. Numeric to alphanumeric move; the source is assumed to contain valid

numeric data and is converted, if necessary, into an intermediate

unsigned numeric integer data item whose length is equal to the

number of decimal places described in the picture clause of the

source and whose usage is the same as the destination usage. This

intermediate data item is then considered as having a category of

alphanumeric and is moved as described in rule-2.

15. Numeric to alphanumeric-edited move; the move is done according to

rule-14, except that editing also takes place.

16. Group computational move; the source is considered as having a

category of alphanumeric. The bit pattern of the source is trans­

ferred, left justified (or justified right, if the destination is

so described), to the destination, with zero fill.
17. Group computational move; the move is done according to rule-16,

except that space fill occurs.

18. Numeric move; a single precision source value is extended to double

precision if the destination is COMP-5. A double precision source

value is set to single precision if the destination is COMP-4. The

source value is then divided by a power of ten corresponding to its

scale factor and stored into the destination in floating-point.

19. Numeric move; a single precision source value is extended to double

precision if the destination is COMP-5. A double precision source

value is set to single precision if the destination is COMP-4.

20. Numeric-edited decimal move; the move is done according to rule-1,

except that editing also occurs.

21. Numeric-edited decimal move; the source is considered as a numeric

unsigned integer, and is moved as described in rule-20.

22. Numeric-edited move; the binary source is converted to decimal and

edited.

23. Alphanumeric move; standard justification and space (or zero) fill.

The source characters are considered as being in the character set

of the destination.

7-81

MOVE

24. Alphanumeric move; the move is done according to rule-23, except that

editing also takes place.

25. Alphanumeric move; the source is considered as being a non-numeric

literal, and any sign or decimal point is ignored. The move is then

done according to rule-23.

26. Alphanumeric move; the move is done according to rule-25, except that

editing also takes place.

Option 2:

When Option 2 is used, selected items within identifier-I are moved, with any

required editing, to selected areas within identifier-2. Identifier-I and

identifier-2 must be group items. Items are selected by matching the data­

names of items defined within identifier-I with like data-names of areas de­

fined within identifier-2, according to the rules specified in the discussion

of the CORRESPONDING option. The resulting operation on each of the sets of

matched data items proceeds as if an Option 1 MOVE had been specified.

Options 3 and 4:

Options 3 and 4 of the MOVE verb are extensions to COBOL-68. They allow bit

manipulation and character manipulation. In options 3 and 4 the left and

right bracket symbols are required. In option 4 the colons are required.

In option 3 the sending field item (identifier-I) must be a DISPLAY, DISPLAY-I,

or COMP-2 item of any size or class. This is a "blind move" of the first six

characters of identifier-I into the low-order six characters of identifier-2.

If identifier-I is less than six characters long, then only the size of

identifier-1 is moved; but the data is right-justified with zero fill in the

high-order bits of identifier-2.

In option 4, both identifier-I and identifier-2 must be COMP or COMP-I in

USAGE. Both must be single precision. This is a move of.bits from identifier­

! into identifier-2, with only the indicated bits of identifier-2 being changed.

Literal-2 or formula-I represents the location in identifier-I from which the

transfer begins, i.e., the source-bit. Literal-3 or formula-2 represents the

location in identifier-2 at which the transfer begins, i.e., the destination­

bit. Literal-4 or formula-3 represents the number of bits to be transferred.

The bits of a B 7000/B 6000 word are numbered 47 thru O, from left to right.

A computational item represents such a word. Therefore, only 0 thru 47 may

be used as values for source-bit or destination-bit. Source-bit or destination

bit minus the number of bits must not be less than -1.

7-82

MOVE

Examples of options 3 and 4:

MOVE [CUST-NAME TO DISK-ADDR]

would move the first six characters of CUST-NAME to the COMPUTATIONAL item
DISK-ADDR without converting to binary.

MOVE A-AND-B-BOTH TO A-ONLY [39:19:20]
MOVE A-AND-B-BOTH TO B-ONLY [19:19:20]

These statements would unpack a COMPUTATIONAL word which actually contained
two 20-bit fields.

MOVE B-ONLY TO A-AND-B-BOTH
MOVE A-ONLY TO A-AND-B-BOTH [19:39:20]

would repack the fields.

7-83

I MULTIPLY I
MULTIPLY

The MlIT...TIPLY statement causes numeric data items to be multiplied, and sets

the value of data items equal to the results.

The format for the Mm...TIPLY statement has two options which are as follows:

Option 1:

MlIT...TIPLY { li teral-1 }
identifier-1 BY

ident if ier-2 [ROUNDED] (, identifier-3 [ROUNDED]]

[; ON SIZE ERROR statement [ELSE statement]]

Option 2:

MlIT...TIPLY { literal-! } BY
identifier-1 ~

ident if ier-3 [ROUNDED]

{ literal-2 }
identifier-2 GIVING

[, identifier-4 [ROUNDED]]

[; ON SIZE ERROR statement [ELSE statement]]

Each identifier must refer to a numeric elementary item, except in option 2,

In this option, any identifiers that appear only to the right of the word

GIVING may refer to items that contain editing symbols.

Each literal must be a numeric literal.

The maximum size of each operand is 23 decimal digits. The composite of

operands, which is that data item resulting from the superimposition of all

the receiving data items aligned on their respective decimal point must not

contain more than 23 digits.

When option 1 is used, the value of identifier-! or literal-1 is multiplied

by the value of identifier-2. The value of the multiplier (identifier-2) is

replaced by this product; similarly this is true for identifier-! or literal-!

and identifier-3, etc.

7-84

I MULTIPL., I
When o~tion 2 is used, the value of identifier-1 or literal-1 is multiplied
by identifier-2 or literal-2, and the result is stored in identifier-3,
identifier-4, etc.

For a discussion of the ROUNDED and ON SIZE ERROR options, see statement
options discussion.

Either one of.the statements shown in the ON SIZE ERROR clause may be con­
ditional or imperative, or the reserved words NEXT SENTENCE may be used
instead.

7-85

I OPEN I
OPEN

The OPEN statement initializes the processing of both input and output files.
It performs the reading and checking of labels on input, the writing of

labels on output, the execution of applicable USE routines, and other input/
output functions.

The formats for the OPEN statements are as follows:

Option 1:

Option 2:

INPUT file-name-I

[file-name-2

[!WITH LOCK [ACCESS]
REVERSED

WITH NO REWIND

J REVERSED r {WITH LOCK (ACCESS]

twITH NO REWIND

OUTPUT file-name-3 [WITH NO REWIND]

[,file-name-4 [WITH NO REWIND]]

l]
l]]

INPUT-OUTPUT {
I-0 }

[file-name-5 [, file-name-6] ...

0-I

EXTEND [file-name-7 [, file-name-8] ...

OPEN { INPUT }
OUTPUT file-name-7 REEL-NUMBER { literal }

data-name

At least one of the options, INPUT, OUTPUT, I-0, or 0-I must be specified;
however, there may be no more than one instance of each option .. These options
may appear in any order.

The I-0 option pertains to disk files existing prior to this opening and to
data communication (REMOTE) files.

7-86

An OPEN statement must be applied to all files except sort-files and must
be executed prior to the first READ, WRITE, or SEEK for a file. Failure to
do so will result in an error condition at object program time. Also, the
file must be opened before it can be closed, and a second OPEN for a file
cannot occur without an intervening CLOSE.

The MCP provides complete file-handling capabilities. It maintains an I/O
assignment table which shows which file is mounted on each peripheral device,
and which program is currently using each device. When a tape is mounted or
a card deck readied in the reader, the MCP reads the label on the front of
the file and enters the information in the I/O assignment table. Tapes
which contain a write ring and on which the retention period has expired
(see SAVE-FACTOR, Section 6) are marked as scratch and will be assigned to
output files as required. All other tapes are marked as input and may be
accessed only with OPEN INPUT. Thus, a tape (or disk) file may be OPENed
OUTPUT, written on, closed and then opened INPUT, provided a SAVE-FACTOR
greater than zero is specified.

When an OPEN INPUT statement is executed, the MCP searches in the I/O as­
signment table or DISK directory for the file specified. If the file is
found, it is opened, and any associated USE declaratives are executed. If
the file is not in the table or directory, a message to the operator is
displayed and the program is suspended until one of the following conditions

is met:

a. The file appears in the table or directory.
b. The file is an optional file and the operator indicates that the

file is not present (i.e., the OF message).
c. The operator indicates another file as being the one desired

(i.e., the IL message).
d. The program is discontinued.

When an OPEN OUTPUT statement is executed for a file, the MCP searches the
I/O assignment table or disk directory for available disk space or a peri­

pheral of the type desired, writes the label as specified by the program,
and executes any declaratives for the file. If the MCP is unable to find
a peripheral or enough disk as required for the file, a message to the
operator is typed and the program is suspended until the operator makes
available whatever is required or until he discontinues the program.

7-.87

I I OPEN I
The I-0 options permits opening of a disk or data communication (REMOTE) file

for both input and output. If the file is assigned to DISK the file must be

present on disk at the time the file is opened.

In option 1, when using the OPEN statement with the LOCK or LOCK ACCESS

options, the B2500 system dollar option must be set. When LOCK or LOCK

ACCESS is specified, the EXCLUSIVE file attribute is set.

When using the 0-I option in option-I, the 0-I option will give the same

update action that input-output does; however, a new file will be created.
The use of this option requires that the B2500 system option be set.

The EXTEND option in option 1 is an ANSI74 system dollar option which exists

for sequentially organized files. The ANSI74 system dollar option must be

set when using this option.
'

The EXTEND option is used to position an already-existing file immediately

following the last logical record of that file. Subsequent WRITE statements

referencing the file will add records to the file as though the file has been

opened with the output phrase. Refer to Appendix B for a description of the

ANSI 74 implementations.

When a DISK file is opened for OUTPUT and no file size was specified in the

SELECT clause for that file, the MCP will use the file size of an existing file

of the same name or a default value as discussed in the SELECT clause in sec­

tion 6.

The OPEN statement does not obtain or release the first data record. A READ

or WRITE statement must be executed to obtain or release, respectively, the

first data record.

Opening of subsequent reels of labeled multireel tape files is handled auto­

matically by the system and requires no special consideration by the programmer.

When checking or writing the first label, the user's beginning label sub­

routine is executed if one is specified by a USE statement.

If an INPUT file is designated as OPTIONAL in the FILE-CONTROL paragraph of

the ENVIRONMENT DIVISION and the file is not present (i.e., the OF message is
typed by the operator), the first READ for that file will cause the AT END for

that file to be executed.

The REVERSED option can only be used with files assigned to TAPE and cannot be

used with multiple-reel files. The subsequent READ statements for that file

will make the data records of the file available in reverse order, i.e., start­

ing with the last data record.

7"'88

When neither the REVERSED nor the NO REWIND option is specified, execution of
the OPEN statement causes the file to be positioned at its beginning.

Option 2 allows a program to process a file starting at other than the first
reel. This can be useful in master file searching and in program restarts.

7-89

PERFORM

The PERFORM statement is used to execute one or more procedures, either a

specified number of times or until a condition is satisfied, and then to return

control to the normal sequence.

The format for a PERFORM statement includes the following four options:

Option 1:

PERFORM procedure-name-I [{~UGH} prooedure-name-2]

Option 2:

PERFORM procedure-name-I [{~UGH} procedure-name-2]

{
identifier-7}
integer-I TIMES
formula-I

Option 3:

PERFORM procedure-name-I [{ '.i:~UGH} procedure-name-2]

UNTIL condition-I

Option 4:

PERFORM procedure-name-I [{~UGH} procedure-name-2 J

VARYING { identifier-I}
index-name-I

{
identifier-3 }

BY literal-3
formula-3

FROM literal-2
~~ formula-2

{
i~entifier-2}

index-name-2

UNTIL condition-I

{ identifier-4}
index-name-4 FROM

{
identifier-5
literal-5
formula-5
index-name-5

}
{

identifier-6}
BY literal-6

formula-6
UNTIL condition-2], ..

Each procedure-name is the name of a section, paragraph, or a paragraph quali­

fied by a section name.

Each identifier represents a numeric elementary item. ldentifier-7 must be

described as an integer.

Each literal represents a numeric literal.

When the PERFORM statement is executed, control is transferred to the first

statement of procedure-name-I. An automatic return to the statement following

the PERFORM statement is established as follows:

a. If procedure-name-I is a paragraph-name and procedure-name-2 is
not specified, then the return occurs after the last statement of

procedure-name-I.

b. If procedure-name-I is a section name and procedure-name-2 is not

specified, then the return occurs after the last statement of the last
paragraph in procedure-name-I.

c. If the procedure-name-2 is specified and it is a paragraph name, then

the return occurs after the last statement of the paragraph.

d. If the procedure-name-2 is specified and it is a section name, then

the return occurs after the last sentence of the last paragraph in the

section.

There is no necessary relationship between procedure-name-I and procedure­

name-2, except that a consecutive sequence of operations is to be executed

beginning at the procedure named procedure-name-I and ending with the execu­

tion of the procedure named procedure-name-2. In particular, GO TO and PERFORM

statements may occur between procedure-name-I and the end of procedure-name-2.
No particular sequential relationship is required to exist between procedure­

name-1 and procedure-name-2. There may be more than one logical path of pro­
gram control through the performed range of procedures. A common method,
though not a required one, of documenting the terminal paragraph of a performed
range of procedures is through the use of the EXIT statement.

If control passes these procedures by means other than a PERFORM statement,
control passes through the last statement of the procedure to the following

statement, unless a PERFORM statement is executed during execution of these

procedures.

I PERFORM I
An implicit return mechanism is established at the end of a performed range

of procedures and is activated by the execution of a PERFORM statement. Pro­

gram control reaching an active return mechanism will always return to the

activating PERFORM statement. A return mechanism permanently deactivates

itself by transferring program control back to a PERFORM statement. An active

return mechanism is temporarily deactivated by the execution of a PERFORM
statement. Program control will always pass through a non-active return mech­

anism to the next executable statement following the PERFORM range.

Because the return control information is placed in the stack, rather than
through instruction address modification, a PERFORM statement, executed within

the range of another PERFORM, is not restricted in the range of paragraph

names it may include. The permanent deactivization of an active return

mechanism causes the last return mechanism temporarily deactivated to again

become active, allowing "overlapping" PERFORM ranges, or two or more PERFORM

ranges that have a common exit point, to logically execute the same as disjoint

PERFORM ranges.

Transferring program control, by means of a "GO" statement, from a range of

procedures being executed under control of a PERFORM statement does not cause
the return mechanism to be deactivated. Subsequently, transferring program

control back into the PERFORM range will cause control to return to the PER­

FORM statement, provided that the return mechanism is still active. Repeat­

edly b~anching from a PERFORM range without allowing control to ever reach an

active return mechanism may cause a STACK OVERFLOW due to the fact that each

execution of a PERFORM puts this mechanism in the stack and expects it to be

deleted by execution of the final statement in procedure-name-2. In an input

or output procedure, care must be taken to ensure that no more than 31

PERFORM's are active (not yet exited) when a RETURN or RELEASE is executed.

If 32 or more PERFORMS are still active when a RETURN or RELEASE are executed,

the program will be terminated with INVALID INDEX.

Option 1 is the basic PERFORM statement, A procedure referred to by this type
of PERFORM statement is executed once, and then control passes to the state­

ment following the PERFORM statement.

Option 2 is the TIMES option. When the TIMES option is used, the procedures

are performed the number of times specified for that execution by the initial

value of identifier-7 or integer-I. When the PERFORM statement is executed,
the value of integer-I must be positive. If the initial value of

identifier-7 is negative or zero, control passes immediately to the state­

ment following the PERFORM statement. Following the execution of the

7-92

PERFORM

procedures the specified number of items, control is transferred to the

statement following the PERFORM statement. During execution of the PERFORM

statement, reference to identifier-7 will not alter the number of times the

procedures are to be executed.

Option 3 is the UNTIL option. The specified procedures are performed until the

condition specified by the UNTIL option is true. At this time, control is

transferred to the statement following the PERFORM statement. If the condi­

tion is true at the time that the PERFORM statement is encountered, the speci­

fied procedure is not executed.

Option 4 is the VARYING option. This option is used to augment the value of

one or more identifiers or index-names in an orderly fashion during the exe­

cution of a PERFORM statement. Every reference to identifier as the object

of the VARYING and FROM (starting value) phrases also refers to index-names.

When index-name appears in the FROM phrase, identifier, when it appears in an

associated VARYING or AFTER phrase, is initialized according to the rules of

the SET statement; subsequent augmentation is as described below.

In option 4, when one identifier is varied, identifier-I is set equal to the

current value of identifier-2, literal-2, or formula-2. If the condition is

false, the sequence of procedures, procedure-name-I thru procedure-name-2, is

executed once. The value of identifier-I is augmented by the specified incre­

ment or decrement (identifier-3), and condition-I is evaluated again. The

cycle continues until this expression is true; at this point, control passes to

the statement following the PERFORM statement. If the condition is true at

the beginning of execution of the PERFORM, control passes directly to the

statement following the PERFORM statement. Figure 7-11 illustrates the logic

of the PERFORM statement when one identifier is varied.

ENTRANCE

SET IDENTIFIER-1 EQUAL TO
CURRENT FROM VALUE

TRUE
CONDITION-1 1--------------- EXIT

FALSE

EXECUTE PROCEDURE - NAME-1
THRU PROCEDURE - NAME - 2

AUGMENT IDENTIFIER-1 WITH
CURRENT BY VALUE

Figure 7-11. PERFORM Statement Varying One Identifier

7-93

PERFORM

In option 4, when two identifiers are varied, identifier-I and identifier-4

are set to the current value of identifier-2 and identifier-5, respectively.
At the start of the PERFORM statement, condition-I is evaluated; if true,

control is passed to the statement following the PERFORM statement; if false,
condition-2 is evaluted. If condition-2 is false, procedure-name-I thru
identifier-6, and condition-2 is evaluated again. The cycle of execution and
augmentation continues until this condition is true. When condition-2 is
true, identifier-4 is set to the current value of identifier-5; identifier-I

is augmented by identifier-3, and condition-I is re-evaluated. The PERFORM

statement is completed if condition-I is true; if not, the cycles continue
until condition-I is true.

Figure 7-12 illustrates the logic of the PERFORM statement when two identifiers
are varied.

During the execution of the procedures associated with the PERFORM statement,

any change to the VARYING variable (identifier-I and index-name-1), the .BY
variable (identifier-3), the AFTER variable (identifier-4 and index-name-4),

or the FROM variable (identifier-2, index-name-2, identifier-5 and index-name-
5) will be taken into consideration and will affect the operation of the PER­
FORM statement.

When two identifiers are varied, identifier-4 goes thru a complete cycle

(FROM, BY, UNTIL) each time identifier-I is varied.

7-94

ENTRANCE

SET IDENTIFIER- 1 AND
IDENTIFIER- 4 TO

CURRENT FROM VALUES

CONDITION - 1
___ T_R_U_E _______ EXLT

FALSE

CONDITION-2

FALSE

EXECUTE PROCEDURE-NAME-1
THRU PROCEDURE -NAME- 2

AUGMENT IDENTIFIER -4 WITH
CURRENT BY VALUE

TRUE

SET IDENTIFIER-4 TO ITS
CURRENT FROM VALUE

AUGMENT IDENTIFIER - i WITH
CURRENT BY VALUE

Figure 7-12. PERFORM Statement Varying Two Identifiers

At the termination of the PERFORM statement, identifier-4 contains the current

value of identifier-5. Identifier-I has a value that exceeds the last used

setting by an increment or decrement, as the case may be, unless condition-I

was true when the PERFORM statement was entered, in which case identifier-I

contains the current value of identifier-2.

For three identifiers, the mechanism is the same as for two identifiers ex­

cept that identifier-7 goeb through a complete cycle each time identifier-4

is augmented by identif ier-6 or literal-6, which in turn goes through a com­

plete cycle each time identifier-1 is varied.

Figure 7-13 illustrates the logic of the PERFORM statement when three identi­
fiers are varied.

After the completion of option 4, identifier-4 and identifier-7 contain the

current value of identifier-5 and identifier-8, respectively. Identifier-1 has a

value that exceeds its last used setting by one increment or decrement value,

unless condition-1 is true when the PERFORM statement is entered, in which

case identifier-1 contains the current value of identifier-2.

ENTRANCE

SET IDENTIFIER-1, IDENTIFIER-4

AND IDENTIFIER-7

TO CURRENT FROM VALUES

CONDITION - 1

FALSE

CONDITION-2

FALSE

CONDITION-3

FALSE

EXECUTE PROCEDURE-NAME-1
THRU PROCEDURE - NAME - 2

AUGMENT IDENTIFIER - 7 WITH

CURRENT BY VALUE

TRUE

TRUE

SET IDENTIFIER - 7 TO ITS
CURRENT FROM VALUE

AUGMENT IDENTIFIER -4 WITH

CURRENT BY VALUE

SET IDENTIFIER-4 TO ITS

CURRENT FROM VALUE

AUGMENT IDENTIFIER-1 WITH

CURRENT BY VALUE

Figure 7-13. PERFORM Statement Varying Three Identifiers

7-95

[PROCESS I
PROCESS

The PROCESS statement initiates the parallel execution of another task.

The format of the PROCESS statement is as follows:

PROCESS control-point-identifier WITH section-name

[USING actual-parameter-list]

The syntax of the PROCESS statement is the same as that for the CALL statement.

The difference between the two statements is that CALL initiates serial pro­

cessing of another program while PROCESS initiates parallel (or asychronous)

processing of another program.

NOTE: The actual-parameter-list must consist of a series of data-items,

control-items, and expressions, optionally separated by commas. In

addition to passing arithmetic values, certain kinds of variables may

be passed (received) by reference. As a general rule, the kind of

actual parameter must not conflict with the corresponding formal

parameter.

The PROCESS statement creates a dependent process as a separate task. Unlike

the separate task initiated by a RUN statement, the task initiated by a PRO­

CESS statement is dependant on the initiator. If the initiator terminates

prior to termination of the dependent process, a critical block exit will

occur.

A dependent process must be bound to a host program if the dependent process

contains data areas described with the GLOBAL or OWN clauses. A bound depen­

dent process is generally more efficient than an unbound dependent process.

A dependent process runs in its own stack.

Refer to the discussion of the CALL statement for an explanation of syntax

and semantics.

7-96

READ

The READ statement makes the following items available to the program:

a. For sequential file accessing, the READ statement makes available

the next logical record from an input file or an input-output file,

and also allows performance of a specified statement when END-OF­

FILE is detected.

b. For random accessing, the READ statement makes available a specific

record from a mass storage file, and also allows performance of a

specific statement if the value of the associated actual key data­

name is found to be invalid (out of range).

The READ statement has the following three options:

Option 1:

READ file-name RECORD [INTO identifier]

; AT END statement [ELSE statement]

Option 2:

READ file-name RECORD [INTO identifier]

;INVALID KEY statement [ELSE statement

Option 3:

READ file-name [KEY IS formula] INTO identifier

[USING event-identifier] [ON EXCEPTION statement [ELSE statement]]

An OPEN statement for the file must be executed prior to the execution of the

first READ for that file.

In the INTO identifier option, identifier must be a name in WORKING STORAGE or

an output record. The operation will be identical to a READ statement without

the INTO option followed by a MOVE. When the INTO identifier option is used,

the file-name RECORD is still available in the input record area. The file­

name in this case must not represent a sort-file. The INTO phrase must not be

used when the input file contains logical records of various sizes as indicated

by their record descriptions.

Option 1 is used for all serial files, e.g., tape, card, and disk files ac­

cessed sequentially. Option 2 is used for disk files accessed randomly and

for all data communication (REMOTE) files.

7-97

If a file described with the OPTIONAL clause is not present at the time the
file is opened, then at the time of the execution of the first READ statement
for that file, the AT END condition will occur.

If, during execution of a READ statement in option 1, the logical end of the
file is reached and an attempt is made to READ that file, the statement speci­

fied in the AT END phrase is executed. The logical end of the file is
specified as the last record written (if serial) or as the record with the
highest record number ever written (if random). Any further attempt to READ
the file once an END-OF-FILE condition has occurred will cause the AT END
statement to be executed unless a SEEK statement is used to point to a valid

record location or a CLOSE and an OPEN are executed.

End-of-reel conditions (excluding END-OF-FILE) on tape input files are

handled automatically and need not be of concern to the programmer, except
on DIRECT I/O. On a DIRECT file, these conditions must be handled by the
program.

The following action, performed by the B 7000/B 6000 file control routine,
takes place at end-of-reel when the tape mark is sensed (unless the file
used DIRECT I/O):

a. If labels are STANDARD, the regular end-of-reel checking for the
close of an input reel is performed along with any USE routines
specified.

b. The next reel of tape is opened; if labels are STANDARD,
beginning-of-reel checks are performed, including any specified
USE routines.

c. The first record on the new reel is made available to the program.

If a read error is detected during a READ, the MCP will attempt to successfully
reread the record. If the record cannot be read correct~y, control will be
transferred to the applicable USE AFTER ERROR procedure and the record in
question is made available to the program.

The occurrence of a parity error without a USE procedure results in the error

message PARITY ERROR NO LABEL, followed by job termination.

Error termination also results if a READ statement references a file that no

longer is OPEN.

Option 2 is used for random disk files. The READ statement implicitly per­

forms the functions of the SEEK statement (using the actual key specified by

the programmer) unless a SEEK statement for the record specified by the

current value of the actual key has been executed prior to the READ statement.

If the value of actual key is outside the limits of the file, as specified

in the FILE-LIMITS clause, the ASSIGN clause, or by the EOF pointer in the

disk directory, the INVALID KEY clause will be executed. Successive reads

may be executed without changing the value of the actual key, and data will

be moved each time to the record area of the file.

Option 3 of the READ statement provides user control of the I/O operation.

This option allows the programmer to initiate the I/O operation and return

immediately to the statement following the READ. The I/O operation and the

user program then run in parallel until the I/O comes to completion or the

user program encounters a WAIT statement associated with that READ. THE ON

EXCEPTION phrase may be used with option 3 of the READ; however, if this option

is included it will cause loss of asynchronous processing with the I/O, since

the I/O operation must come to completion before it can be determined if an

exception condition occurred. This can be avoided by using the ON EXCEPTION

option of the WAIT statement or by testing one or more direct attributes.

The file-name must be described as a DIRECT file or as a DIRECT SWITCH file.

(See discussion of DIRECT SWITCH files under USAGE IS INDEX FILE.)

The KEY IS option may be used to override the ACTUAL KEY specification in the

FILE-CONTROL paragraph for randomly accessed DIRECT disk files.

7-99

The option 3 READ statement places the record directly into working storage;

no record description (buffer area) is associated with file-name. The INTO

portion of the statement specifies where the record is to be placed. Identi­

fier may be any 01 level entry in the WORKING-STORAGE section which specifies

the RECORD AREA clause.

Event-identifier, if used, is a link between the system and the program.

When the system completes the I/O operation it notifies the program by

causing the event-identifier to happen (an implicit CAUSE statement). The

event-identifier specified for the READ must be turned off or RESET before

it is used in a subsequent I/O operation; otherwise an error will occur. Re­

fer to the RESET, WAIT, and IF event-identifier statements in this section.

When using option 3 of the READ, the user must provide his own check for the

end-of-file or invalid key condition. This can be accomplished by testing

the direct attribute IOEOF logically following receipt of the I/O COMPLETE

event.

While the ANSI74 system dollar option is set, ELSE phrases will be paired

only with IF statements. In particular, ELSE phrases will not be paired

with AT END, INVALID KEY, and ON EXCEPTION clauses while the ANSI74 system

dollar option is set.

Figure 7-14 illustrates the use of DIRECT I/O in COBOL.

7-100

~
I
I-'
0
I-'·

Pi10GRAM

P~OCRAM~.~ER

~
. PAC.E I LINE

· NO.
3 4 6

I ' I 01

I C2

4

"D

A

Burroughs COBOL CODING FORM

... Cb"f::C L I REQUESTED BY PAGE OF

DATE IDENT.

z

172

Figure 7-14. Direct 1/0 in COBOL w

I RELEASE I
RELEASE

The RELEASE statement transfers records to the initial phase of the SORT

operation.

The format for the RELEASE statement is as follows:

RELEASE record-name [FROM identifier]

RELEASE is used within the range of an INPUT PROCEDURE associated with a SORT

statement. Any other use of a RELEASE statement will lead to unpredictable

results.

Record-name must be the 01 name of the record in its associated sort-file.

If the FROM clause is used, tht:: operation will be identical to a MOVE

followed by a RELEASE without the FROM clause. The information in the record

area is available.

After the RELEASE is executed, record-name is no longer available. The exe­

cution of a RELEASE statement causes record-name (after identifier has been

moved to it in the FROM option) to be transferred to the initial phase of a
SORT. When control passes from the INPUT PROCEDURE, the file consists of all

records placed in it by the execution of RELEASE statements. No OPEN, CLOSE,

READ, WRITE or USE statements may be given for the sort-file.

7-102

RESET

The RESET statement is used as part of the user's control of DIRECT input­

output operations and also for communication between processes in an asynchro­

nous processing environment.

The format for the RESET statement is as follows:

RESET event-identifier-! [, event-identifier-21 ...

The RESET statement causes the event specified by event-identifier to be

turned off. For inter-process communication, refer to the CAUSE statement.

For DIRECT files, refer to the discussion of option 3 of the READ statement

or option 5 of the WRITE statement.

Event-identifier must be a properly qualified and subscripted data-name

with USAGE IS EVENT specified.

7-103

RETURN

The RETURN statement is used to obtain sorted records from the final phase of
the SORT operation.

The format for the RETURN statement is as follows:

RETURN file-name RECORD [INTO identifier]

;AT END statement [ELSE statement

File-name must be a sort-file with a sort-file description (SD) in the

DATA DIVISION. RETURN can only be used within the range of an OUTPUT
PROCEDURE. Any other use of a RETURN statement will lead to unpredictable
results.

The execution of the RETURN statement causes the next record in sorted order

(according to the keys listed in the SORT statement) to be made available
for processing in the record area associated with the sort-file. No OPEN,

READ, WRITE, CLOSE, or USE statements may be given for the sort-file.

The storage area associated with the identifier and the storage area which
is the record area associated with file-name must not be the same storage area.

If the INTO clause is used, the operation is identical to a RETURN without the

INTO option followed by a MOVE. The file-name RECORD is still available in
the input area.

After execution of the AT END statement, no RETURN statement may be executed
within the current OUTPUT PROCEDURE. The results of such an error will be
unpredictable.

Any reference to the record area associated with the specified file-name after

the AT END condition has occurred will cause an error termination of the pro-

gram.

7-104

I RUN I'
RUN

The RUN statement allows a program to initiate another program. Once a pro­

gram is initiated by execution of a RUN statement, it is executed independently

of the calling program.

The format of the RUN statement is as follows:

RUN control-point-identifier WITH section-name

[usING arithmetic-expression-1
[,arithmetic-expression-2] ... J

The section-name must be the name of a use procedure declared to be external.
All parameters must be passed by value, that is, RECEIVED BY CONTENT. Only

arithmetic values may be passed or received, since only formal parameters
having arithmetic properties can be described in the syntax. The formal
parameters, to which the values of the arithmetic expressions are passed,
must be described as single or extended precision 77-level COMP, COMP-1,

COMP-4, or COMP-5 items and should have a RECEIVED BY CONTENT clause, even

though RECEIVED BY CONTENT is the default. The compiler makes any adjust­
ments, if necessary, to truncate extended precision values to single precision,

or extended single precision values to insure that the value passed has the

same precision as the corresponding formal parameters. All values are passed
with a scale of zero, regardless of the scale of the corresponding formal

parameter, and may be passed as normalized values.

The RUN statement creates an independent process which does not in any way,
share the resources of the initiator and thus may continue running after the

termination of the initiator.

An independent process must not be bound to a host program nor may any of its
data be declared with the GLOBAL or OWN phrases. Independent procedures must

be compiled at level 2.

7-105

I SEARCH I
SEARCH

The SEARCH statement is used to search a table for a table element that satis­

fies the specified condition and to adjust the associated index-name to in­

dicate that table element.

The two formats of the SEARCH statement are:

Option 1:

SEARCH identifier-I [VARYING {~dentif ier.:..2}]
1ndex-name-l

[; AT END imperative-statement-I]

condition-I

condition-2

Option 2:

{. imper at i ve-s ta temen t-2}
NEXT SENTENCE

{ imperative-statement-3}]
NEXT SENTENCE •••

SEARCH ALL identifier-I

[; AT END imperative-statement-I]

WHEN condition-I { imperative-statement-2}
NEXT SENTENCE

The SEARCH statement is to be used if a linear search of a table is desired.

Identifier-I must not be subscripted or indexed, but its description in the DATA
DIVISION must contain an OCCURS clause and an INDEXED BY clause. Identifier-I
in Option 2 must also be described with the KEY IS phrase in its OCCURS clause.

Identifier-2,'when specified, must be described as USAGE IS INDEX or as an
integer numeric elementary item, i.e., without any positions to the right of

the assumed decimal point.

The WHEN condition in Option 2 should be constructed so that each key item is

referenced.

If the VARYING index-name-1 phrase is specified and index-name-I appears in

the INDEXED BY clause ~f identifier-I, that index-name is used for this search.

If this is not the case or if the VARYING identifier-2 phrase is specified,
the first (or only) index-name·given in the INDEXED BY clause of identifier-I

is used for the search. In addition, the following operations will occur:

7-106

a. If the VARYING index-name-1 phrase is used and index-name-1 appears

in the INDEXED BY clause of another table entry, the occurrence num­

ber represented by index-name-1 is incremented by the same amount

as, and at the same time as, the occurrence number represented by

the index-name associated with identifier-! is incremented.

b. If the VARYING identifier-2 phrase is specified, and identifier-2 is

an index data item, then the data item referenced by identifier-2 is

incremented by the same amount as, and at the same time as, the index

associated with identifier-! is incremented. If identifier-2 is not

an index data item, the data item referenced by identifier-2 is incre­

mented by the value one (1) at the same time as the index referenced

by the index-name associated with identifier-! is incremented.

In Option 1, if the varying phrase is not used the index-name that is used

for the search operation is the first (or only) index-name that appears in

the INDEXED BY clause of identifier-1. Any other index-names for identifier-!

remain unchanged.

Condition-!, condition-2, etc., may be any condition as described at the be­

ginning of this chapter. The search starts with the current index-name sett­

ing as follows:

a. If at the start of execution of the SEARCH statement, the index-name

associated with identifier-! contains a value that corresponds to

an occurrence number that is greater than the highest permissible

occurrence number for identifier-!, the search is terminated im­

mediately. Then if the AT END clause is specified, imperative­

statement-1 is executed; otherwise, control passes to the next sentence.

b. If at the start of execution of the SEARCH statement, the index-name

associated with identifier-! contains a value that corresponds to an

occurrence number within the range of permissible occurrence numbers

for identifier-!, the SEARCH statement operates by evaluating the

conditions in the order of their appearance, making use of the index

settings, wherever specified, to determine the occurrence of those

items to be tested. If none of the conditions are satisfied, the

index-name for identifier-! is incremented to obtain reference to

the next occurrence. The process is then repeated using the new

index-name settings, unless the new value of the index-name settings

for identifier-I corresponds to a table-element outside the permiss­

ible range of occurrence values, in which case the search terminates,

7-107

passing control to the AT END clause or next sentence. If one of the

conditions is satisfied upon its evaluation, the search terminates

immediately and the imperative-statement associated with that condi­
tion is executed; the index-name remains set at the occurrence which

caused the condition to be satisfied.

A diagram of the operation of the SEARCH statement containing two WHEN phrases

is shown in figure 7-15.

In general, if an imperative-statement of an AT END clause or a WHEN clause

does not terminate with a GO TO statement, then, after execution of the.

imperative-statement, control will pass to the next sentence.

If identifier-I is a data-item subordinate to a data-item that contains an

OCCURS clause (providing for a two- or three-dimensional table), an index­

name must be associated with each dimension of the table using the INDEXED BY
phrase of the OCCURS clause. Only the setting of the index-name associated

with identifier-I (and the data-item identifier-2 or the index-name-I, if

present) is modified by the execution of the SEARCH statement. To search a

multi-dimensional table, it is necessary to execute a SEARCH statement several

times. Prior to each execution of a SEARCH statement, SET statements must be
executed whenever index-names must be adjusted to appropriate settings.

In an Option 2 SEARCH,

a. The data in the table should be ordered in the same manner as de­

scribed in the KEY clause associated with the description of

identifier-I.
b. The contents of the key(s) referenced in the WHEN clause must be

sufficient to identify a unique table element.

c. The primary purpose of the WHEN clause is to provide an algorithm for

determining when to stop searching the table.

In Option 2, the index-name that is used for the search operation is the first

(or only) index-name that appears in the INDEXED BY clause of identifier-I.

Any other index-names for identifier-I remains unchanged. The index-name to

be used for the SEARCH is initialized to 1 and then incremented as discussed

for an option 1 SEARCH.

7-108

INDEX SETTING: >
HIGHEST PERMISSIBLE

OCCURRENCE NUMBER

<

TRUE
CONDITION - 1

FALSE

* TRUE
CONDITION-2

FALSE

INCREMENT INDEX- NAME FOR

IDENTIFIER-1 (INDEX-NAME-t

IF APPLICABLE).

INCREMENT INDEX - NAME-1 *
(FOR A DIFFERENT TABLE)

OR IDENTIFIER - 2.

AT END* IMPERATIVE -

STATEMENT-1

IMPERATIVE-

*• STATEMENT-2

IMPERATIVE- *
STATEMENT- 3

Figure 7-15. SEARCH Operation Containing Two WHEN Phrases

*This option is included only when specified in the SEARCH statement.

**This control transfer is to the next executable sentence unless the
imperative-statement ends with a GO TO statement.

7-109'

I SEEK I
SEEK

The SEEK statement initiates the accessing of a disk file record for sub­

sequent reading and/or writing.

The format for the SEEK statement is as follows:

SEEK file-name RECORD [WITH KEY CONVERSION]

The SEEK statement, with the KEY CONVERSION clause, will cause the USE FOR

KEY CONVERSION routine associated with the file to be invoked prior to

executing the SEEK. The KEY CONVERSION clause can only be specified while

the B2500 system dollar option is set.

The SEEK statement may only be used on disk files. The programmer must

specify the ACTUAL KEY for random files and may specify an ACTUAL KEY fqr

sequential files. The value of the ACTUAL KEY at the time the SEEK state­

ment is executed determines the record sought.

If the value of the ACTUAL KEY is invalid (i.e., outside of the bounds of

the file or not within the limits specified by the FILE-LIMITS clause), the

statement in the AT END or INVALID KEY clause of the next executed READ or

WRITE statement for that file is executed.

Two SEEK statements for the same disk file may logically follow each other.

A SEEK statement used in a serial file serves to reset the file to the record

specified by ACTUAL KEY.

A SEEK statement used in a random file serves to pre-locate a record. This

allows concurrent I/O operations.

7-110

SET

The SET statement establishes reference points or offsets operations by set­

ting index-names associated with table elements. The SET statement is also

used to specify a value for a file attribute or task attribute.

The two formats of the SET statement are:

Option 1:

SET {~dentifier-1}
~- 1ndex-name-l

Option 2:

SET index-name-4

[{ identifier-2 }]
' index-name-2 ···

[, index-name-5]

Gdentifier-3)
TO index-name-3

nteger-1

{ UP BY }
OOWN BY { identifier-4}

integer-2

All references to identifier-I and index-name-1 apply equally to identifier-2

and index-name-2, respectively.

All identifiers must name either index data items, or elementary items des­

cribed as an integer, except that identifier-4 must not name an index data

item. When integer-I is used, it must be a positive integer. Index-names

are considered related to a given table and are defined by being specified

in the INDEXED BY phrase of the OCCURS clause.

If {ndex-name-3 is specified, the value of the index before the execution of

the SET statement must correspond to an occurrence number of an element in

the associated table.

If index-name-I, index-name-2 is specified, the value of the index after

the execution of the SET statement must correspond to an occurrence number

of an element in the associated table. The value of the index associated

with an index-name after the execution of a SEARCH or PERFORM statement may

be undefined.

In option 1, the following action occurs:

a. Index-name-I is set to a value causing it to refer to the table ele­

ment that corresponds in occurrence number to the table element ref­

erenced by index-name-3, identifier-3, or integer-I. If identifier-3

is an index data item, or if index-name-3 is related to the same

table as index-name-I, no conversion takes place.

7-111

b. If identifier-1 is an index data item, it may be set equal to either
the contents of index-name-3 or identif ier-3 where identifier-3 is
also an index data item; no conversion takes place in either case.

c. lf identifier-1 is not an index data item, it may be set only to an
occurrence number that corresponds to the value of index-name-3.
Neither identifier-3 nor integer-1 can be used in this case.

d. The process is repeated for index-name-2, identifier-2, etc., if
specified. Each time, the value of index-name-3 or identifier-3
is used as it was at the beginning of the execution of the statement.
Any subscripting or indexing associated with identifier-1, etc., is
evaluated immediately before the value of the respective data item
is changed.

In option 2, the contents of index-name-4 are incremented (UP BY) or decre­
mented (DOWN BY) by a value that corresponds to the number of occurrences
represented by the value of integer-2 or identifier-4; thereafter, the process
is repeated for index-name-5, etc. Each time the value of identifier-4 is
used as it was at the beginning of the execution of the statement.

Data in the figure 7-16 represents the validity of various operand combinations
in the SET statement. The parenthetical comment references the lettered para­
graphs above.

RECEIVING ITEM
SENDING ITEM INTEGER DATA ITEM INDEX-NAME INDEX DATA ITEM

Integer Literal No (c) Valid (a) No (b)
Integer Data Item No (c) Valid (a) No (b)
Index-Name Valid (c) Valid (a) Valid (b)*
Index Data Item No (c) Valid (a)* Valid (b)*

*No conversion takes place.

Figure 7-16. SET Statement Operand Combinations

7 112

SORT

The SORT statement is used to create a sort-file by executing input pro­
cedures or by transferring records from another file, to sort the records
in the sort-file on a set of specified keys and, in the final phase of
the operation, to make available each record from the sort-file, in sorted
order, to an output procedure or to an output file.

The format for the SORT statement is as follows:

SORT [! PURGE!
file-name-1 ~~~ ON ERROR] ON !

ASCENDING l KEY data-names
DESCENDING

[, data-name-2] ...

[ON !ASCENDING l KEY data-name-3 [d t 4]] ' DESCENDING. • a a-name- · · · · · ·

USING file-name-2 [(=E I J
RELEASE

INPUT PROCEDURE IS section-name-1 [! THROUGH I section-name-2] THRU

GIVING file-name-3 [!~ASE l]
OUTPUT PROCEDURE IS section-name-3 [!~UGHjsection-name-4]

[MEMORY SIZE tormula-1 !=~~::ERSIJ
[DISK SIZE formula-2 !

WORDS l] MODULES

[RESTART IS [
formula-3 I] data-name-5
literal-1

More than one SORT statement may appear in a program. SORT statements can
appear anywhere in the PROCEDURE D.IVISION, .. except within INPUT and OUTPUT
procedures associated with a .SORT statement or within the DECLARATIVES,

7-113

File-name-1 must have a sort-file description in the DATA DIVISION. File­

name-2 and file-name-3 must be described in a file description entry, not

in a sort-file description entry.

The keys are listed from left to right in the SORT statement in order of sig­

nificance, without regard to how they occur within the record. Data-name-1

is the major key followed in descending significance by additional keys if any.

a. When a SORT file-name-1 PURGE clause is used, PURGE implies that on

a parity error, the bad record will be skipped and SORTing will

continue.

b. When a SORT file-name-1 RUN clause is used, RUN implies that on a

parity error, the bad record will be SORTed.

c. When a SORT file-name-1 END clause is used, END implies that the

SORT will be DSed on encountering a parity error.

d. When an ASCENDING clause is used, the sorted sequence will be from

the lowest value of key to highest value.

e. When a DESCENDING clause is used, the sorted sequence will be from

the highest value of key to lowest value.

f. Both ASCENDING and DESCENDING ekys can be used in one SORT statement.

g. When a USING file-name-2 LOCK clause is used, LOCK implies that the

file will be LOCKed at the end of the SORT.

h. When a USING file-name-2 PURGE clause is used, PURGE implies close

with PURGE.

i. When a USING file-name-2 RELEASE clause is used, RELEASE implies

close with RELEASE.

j. When a GIVING file-name-3 LOCK clause is used, LOCK implies that the

file will be closed with LOCK at the end of the SORT.

k. When a GIVING file-name-3 RELEASE clause is used, RELEASE implies

close with RELEASE.

NOTE: Items a thru c and g thru k can be implemented only when the

B2500 system dollar option is set.

Every data-name appearing in the KEY clause must be described under the DATA

DIVISION entry for the sort-file-name, and these KEY items are subject to the

following rules:

7-114

a. They must not be variable length items.
b. No key may be more than 65,535 characters in length. (Should it be

necessary to sort on a key which exceeds this limit, the definition
and use of subitems will bypass the restriction.)

c. All numeric elementary items are compared algebraically, with all neg­

ative values considered lower than positive values. Anything else is
compared as alphanumeric. DISPLAY keys are compared according to the

EBCDIC collating sequence. DISPLAY-I keys are translated to EBCDIC
and compared according to the EBCDIC collating sequence. COMP-2 keys

are compared as 4-bit data characters. ASCII is compared without
translation. When two or more records are identical on all keys speci­
fied, the order of these equal records in the sorted output will not
always be the order of their entry into the sort. When records which

are equal on all keys must be returned from the sort in some predict­

able order, an INPUT PROCEDURE may be used to append a record number
to each record and that record number may then be specified as the

most minor key for the sort.

d. KEY items cannot themselves contain nor can they be subordinate to

entries which contain the OCCURS clause.
e. All key(s) must be in the same location within all records. An INPUT

PROCEDURE may be used to modify any records which do not meet these

standards.
f. The data names may be qualified. When a data-name specified for a

key is not unique, qualification by file-name-I is implied.

If an INPUT PROCEDURE is specified, control is passed to the INPUT PROCEDURE
before file-name-I is sequenced by the SORT statement. The INPUT PROCEDURE
must consist of one or more sections that appear contiguously in a source
program and do not form a part of any output procedure. The compiler inserts

a return mechanism at the end of the last section in the INPUT PROCEDURE, and
when control passes from the last statement in the INPUT PROCEDURE, the

records which have been released to file-name-I will be sorted.

7-115

!soRTj
The use of an INPUT PROCEDURE allows the programmer to select, create or modify

the input records to the SORT. The INPUT PROCEDURE must include at least one
RELEASE statement in order to transfer records to the sort-file; at least one

record must be released. Control must not be passed to an INPUT PROCEDURE,
except when a related SORT statement is being executed, since the RELEASE
statement(s) will have no m~aning unless under the control of a sort. The

following are certain rules and restrictions which must be followed when

writing an INPUT PROCEDURE:

a. The INPUT PROCEDURE must not contain any SORT or MERGE statements.

b. The remainder of the PROCEDURE DIVISION must not contain any transfers

of control to points inside the INPUT PROCEDURE; i.e., ALTER, GO, and

PERFORM statements in the remainder of the PROCEDURE DIVISION are not
permitted to refer to procedure-names within the INPUT PROCEDURE.

Also, while the INPUT PROCEDURE may perform a program portion outside
of itself, control must always return to the INPUT PROCEDURE.

If the USING file-name-2 option is specified, this implies that all the records
in file-name-2 are transferred automatically to file-name-1. At the time of

execution of the SORT statement, file-name-2 must not be OPEN. The SORT state­

ment will automatically perform the necessary OPEN, READ, USE, and CLOSE func­

tions for file-name-2. File-name-2 must not be a sort-file description.

File-name-1 and file-name-2 must have the same character size since no input
translation will be performed by the sort. Translation can be done in the
input procedure.

If an OUTPUT PROCEDURE is specified, control passes to it after file-name-1
has been sequenced by the SORT statement. The output procedure must consist
of one or more sections that appear contiguously in a source program and do
not form part of any input procedure. The compiler inserts a return mechanism

at the end of the last section in the OUTPUT PROCEDURE. When control passes

from the last statement in the OUTPUT PROCEDURE, the return mechanism will
provide for termination of the sort and then will send control to the next
statement after the SORT statement. Before entering the OUTPUT PROCEDURE, the

SORT procedure reaches a point at which it can select the next record in sorted

order when requested. The RETURN statements in the OUTPUT PROCEDURE are the
requests for the next record.

The OUTPUT PROCEDURE must include at least one RETURN statement in order to

make sorted records available for processing. Control must not be passed to

the OUTPUT PROCEDURE, except when a related SORT statement is being executed,
because the RETURN statement does not have meaning unless under control of a

7-116

sort. The OUTPUT PROCEDURE can consist of any procedure needed to select,

modify, or copy the records which are being returned one at a time in sorted

order from the sort-file. The following are certain rules and restrictions

which must be followed in writing an OUTPUT PROCEDURE:

a. The OUTPUT PROCEDURE must not contain any SORT or MERGE statements.

b. The remainder of the PROCEDURE DIVISION must not contain any trans­

fers of control to points inside the OUTPUT PROCEDURE; ALTER, GO,

and PERFORM statements in the remainder of the PROCEDURE DIVISION

are not permitted to refer to procedure-names within the OUTPUT PRO­

CEDURE. While an OUTPUT PROCEDURE may PERFORM a program portion out­

side of itself, control must always return to the OUTPUT PROCEDURE.

c. No RETURN statement can be executed after control has been trans­

ferred to the AT END statement.

If the GIVING option has been used, this means that all the sorted records in

file-name-1 are automatically transferred to f ile-name-3 as the implied out­

put procedure for this SORT statement. At the time of execution of the SORT

statement, file-name-3 must not be OPEN. File-name-3 is automatically opened

before the records are transferred, and a CLOSE file-name-3 is executed auto­

matically after the last record in the sort-file is returned. File-name-3

must have a file description, not a sort-file description, in the DATA

DIVISION,

File-name-1 and file-name-3 must have the same character size, since the sort

will not perform translation on output; the user can include appropriate

translation in the OUTPUT PROCEDURE.

If the MEMORY SIZE and/or DISK SIZE clauses are present in a SORT statement,

they take precedence over the values stated in the OBJECT-COMPUTER paragraph

of the ENVIRONMENT DIVISION. The presence of a MEMORY SIZE clause for a SORT

statement has no effect on the compilers algorithm for estimating core require

ments for the object program.

The RESTART clause is used to communicate to the SORT the type of restart

desired. Literal-I must be a numeric literal. Data-name-5 must reference an

elementary integer numeric data item. The RESTART values and the SORT are

discussed in the B 7000/B 6000 System Operation Guide, Volume Number One,
Form No. 5001563.

7-117

The COBOL sort package is designed to sort a file or merge a number of files

into a single file of ordered records. The package operates in four modes:

DISK-ONLY MODE, TAPE-ONLY MODE, ITD SORT MODE, and MERGE MODE. The mode is

selected by the programmer as follows:

7...;.118

a. DISK-ONLY MODE:

1. COBOL mode selection statement:

SELECT file-id ASSIGN TO SORT DISK.

2. System configuration. The amount of disk specified by the DISK

SIZE clause should be 1.5 to 2 times the file size.

3. Characteristics of disk-only sort:

(a) The disk-only mode is the fastest of the three sort modes.

(b) The disk-only mode requires less intervention on the part

of the operator to set up the system for sorting.

(c) The amount of data that can be sorted is restricted by

the amount of available disk.

(d) If amount of available disk is inadequate, the sort will be

suspended with the "NO USER DISK" message on the SPO. When

this happens either of the following can be done:

(1) The sort can be terminated and another sort mode

selected.

(2) Permanent files on the disk can be moved to tape. The

"OK" message will then cause sorting to resume.

b. TAPE-ONLY MODE :

1. COBOL mode selection statement:

SELECT file-ID ASSIGN TO integer-I SORT-TAPES.

2. System configuration. A minimum of three tape drives is re­

quired for the sort-tapes. The maximum number of sort-tapes

allowed is eight.

3. Characteristics of the tape-only sort:

(a) Allows for multi-reel sort scratch tapes.

(b) The input file to be sorted may be indefinite in length

(since the scratch tapes may be multi-reel).

c. ITD SORT MODE:

1.

2.

3.

COBOL mode selection statement: {TAPES }
SELECT file-ID ASSIGN TO SORT DISK AND integer-I SORT-TAPES

System configuration: A minimum of three tape drives are re­

quired for the sort-tapes. The maximum number of sort-tapes

allowed is eight.

Characteristics of the ITD sort mode:

(a) If the amount of available disk is sufficient, the !TD sort

will operate in the disk mode only.

(b) If the amount of disk is insufficient, sorting will be

automatically switched to the tape mode.

(c) While operating in the ITD sort mode, the disk is used in

conjunction with core to edvelop strings on the scratch

tapes up to 500 times longer than is possible with the

tape-only mode. This can reduce sort times by a large

factor, compared to what can be obtained by operating in

the tape-only mode.

(d) The scratch tapes, if used, may be multi-reel, thus allow­

ing the sorting of an indefinite length file.

d. MERGE MODE :

1. COBOL mode selection statement:

(a) SELECT Clause:

SELECT file-ID ASSIGN TO MERGE.

(b) SD Entry. There must be an SD for file-ID. Since the key

compare routine is generated using the record description

of the SD entry, all files to be merged must have similar

record descriptions insofar as key locations and length

are concerned.

(c) Merge Verb Syntax. MERGE file-name-I ON KEY (syntax is

identical to KEY syntax for SORT statement)

USING file-name-2 [file-name-3] ••• , file-name-9

{
GIVING file-name-10 }

OUTPUT PROCEDURE IS procedure-name [THRU procedure-name]

7-119

2. Input file specifications:

(a) Up to,eight files can be merged simultaneously.

(b) The input files to be merged must have fixed-length records.

(c) Mixing files, some blocked and some unblocked, is allowable.

(d) All files must have two and only two buffers (one alternate).

This is checkerl at compile time and will cause a "merge

syntax error'' if other than two buffers are specified.

(e) Mixing files as to type is allowed; that is, files from

card readers, tapes, and disk can be merged simultaneously.

(f) A file specified in the merge may be declared optional. If

the file is not present when requested, it will be excluded

from the merging process, in response to the optional file

message.

(g) If the files to be merged are on magnetic tape, they may be

multi-reel files.

(h) If a file to be merged is not in sequence, an out of se­

quence condition will occur in the output. An output proce­

dure may be used to detect an out of sequence output from

the merge. An out of sequence condition will not cause the

merge to be terminated.

3. Output specifications.

(a) The output media may be a file or a procedure.

(b) Any specification or restriction specified for sort output

procedures is true for merge output procedures.

(c) Any specifications or restrictions specified for sort out­

put files is true for merge output files.

Refer to the OBJECT-COMPUTER clause for specifications of the core and disk

size.

7-120

STOP

The STOP statement causes termination or temporary suspension of an object
program.

The STOP statement has two options as follows:

Option 1:

STOP RUN

Option 2:

STOP { literal-! }
identifier-! [{ literal-2 }]

' identifier-2 ···

When the STOP RUN is executed, all OPEN files are closed, all storage areas
are released, and the task is removed from the mix. STOP RUN is not used

for temporary stops within a program. STOP RUN must be the last statement of

its sequence. Use of STOP literal-! or STOP identifier-! causes the list of

operands to be displayed and the object program to be temporarily suspended.

The program must be activated by an "OK" message from the console.

When STOP RUN is executed in a procedure compiled at level three or higher,

the procedure will exit the outermost block of its host. If the procedure has

been processed or called as a co-routine, it will be DS-ed for doing a bad GO

TO. If it has been called as a procedure, the outermost block of the stack is

exited and an EOT occurs immediately.

If the task which will execute the STOP RUN statement has executed a DETACH

on a control-point item or has set the STATUS of a control-point item to -1,

then the STATUS of the control-point item must be tested repetitively until
STATUS is equal to -1.

7-121

1SUBTRACT

SUBTRACT

The SUBTRACT statement is used to subtract one, or the sum of two or more,
numeric data items from one or more items, and to set the values of one or
more items equal to the results.

The SUBTRACT statement format includes three options, which are as follows:

Option 1:

SUBTRACT

Option 2:

{ li teral-1 } [
identifier-I ' { li teral-2 }]

identifier-2 ··· FROM

identifier-m [ROUNDED](. identifier-n [ROUNDED)]
[; ON SIZE ERROR statement [ELSE statement)]

SUBTRACT { ~~!:~~~~!r-l} [, { !~!:~~~~!r-2 } J · · • FROM

{ identifier-in} GIVING
literal-m

identifier-n [ROUNDED][, identifier-o [ROUNDED) J ...
[; ON SIZE ERROR statement [ELSE statement])

Option 3:

SUBTRACT {CORRESPONDING} identifier-I
CORR

FROM identifier-2 [ROUNDED]

[; ON SIZE ERROR statement [ELSE statement]]

Each identifier must refer to a numeric elementary item except in option 2,
where any identifiers that appear to the right of the word GIVING may refer
to data items that contain editing symbols.

The maximum size of each operand is 23 decimal digits. The composite of
operands, which is that data item resulting from the superimposition of all
operands, excluding the data items that follow the word GIVING, aligned on
their decimal points, must not contain more than 23 digits.

7-122

· 1 SUBTRACT I
In option 1, all literals or identifiers preceding the word FROM are added
together and this total is subtracted from identifier-m, identifier-n, etc.;
the difference is then stored as the new value of identifier-m, identifier-n,

etc.

In option 2, all literals or identifiers preceding the word FROM are added
together, subtracted from literal-m or identifier-m, and the result of the

subtraction is stored as the new value of identifier-n, identifier-a, etc.

If option 3 is used, identifier-1 and identifier-2 must refer to group items.

Corresponding numeric elementary items from the group referenced by identifier··
1 are subtracted from, and the result is stored in, numeric elementary items

from the group referenced by identifier-2.

For a discussion of the ROUNDED, ON SIZE ERROR, and CORRESPONDING options,
refer to the STATEMENT OPTIONS heading in this section.

Either one of the statements shown in the ON SIZE ERROR clause may be con­
ditional or imperative, or the reserved words NEXT SENTENCE may be used

instead.

Arithmetic faults will cause program termination unless SIZE ERROR clause is
used.

7-123

I UNLOCK I
UNLOCK

The UNLOCK statement is used in an asynchronous processing environment in

conjunction with the LOCK clause.

The format for the UNLOCK statement is as follows:

{
identifier }

UNLOCK lock-identifier •..
event-identifier

Identifier must be a COMPUTATIONAL or COMP-1 item; if COMPUTATIONAL, the
identifier must be synchronized to a word boundary.

The UNLOCK statement acts as the logical opposite of the LOCK statement by
releasing the imposed common resource restriction. Refer to the descrip­
tion of LOCK statement.

The LIBERATE intrinsic of the MCP is invoked by the UNLOCK statement.

7-124

USE

The USE statement is employed in certain declaratives and has three different

functions:

a. It can specify supplemental procedures for 1/0 error and label­
handling.

b. It can specify procedures to be employed in a parallel processing
environment, and

c. It can specify interrupt procedures.

The format for the USE statement has five options which are as follows:

Option 1:

.1IaJ. AFTER (STANDARD ERRQR PROCEDURE } ON
RECQRD SIZE ERROR

{
INPVT-OUTFUT }
.l:Q •
INPUT
file-name-1 [,file-name-2] .••

Option 2:

Jm!·{ BEFORE} STANDARD {BEGINNING \f ~)
AFTER ENDING J\..E..lli&

l.::Q
{

INPUT-OUTPUT }

LABEL PROCEDYRE ON INPUT •
OUTPUT
file-name-1 [,file-name-2]

Option 3:

{
EXTERNAL { identi:ier-l } AS PROCEDYRE} mnemonic-name

USE A§. GLOBAL PROCEDURE

[; WITH {~~!=~~:~~rage-name} [' { i~!=~~:~~ra~e-name}]

Option 4:

USING identifier-2 [, identifier-3] ••• J .
USE AS INTERRUPT PROCEDURE.

Option 5:

I EXCEPT I ON l USE AFTER STANDARD ERROR PROCEDURE ON

file-name-1 I [, file-name-2] .. ·I
INPUT
OUTPUT
I-0
EXTEND

7-125

A USE statement, when present, must immediately follow a section header in the

Declaratives Section. The remainder of the section must consist of zero, one

or more procedural paragraphs that define the procedures to be used.

For Example:

section-name SECTION. USE statement.

(paragraph-name . (sentence) ..•) ..•

The USE statement itself is never executed; rather, it defines the conditions
calling for the execution of the USE procedures. Only CALL, EXECUTE, PROCESS
or RUN statements may reference section-name. There must be no reference to

the "main body" of the PROCEDURE DIVISION from within a USE section.

Within a given format, a file-name must not be referred to, implicitly or ex­

plicitly, in two or more identical USE statements. The same file-name can ap­

pear in a different option of the USE statement. However, appearance of a
file-name in a USE statement must not cause the simultaneous request for exe­
cution of more than one USE declarative. A file-name may not represent a sort­

file. Within a USE procedure, there must not be any reference to any non­

declarative procedures. Conversely, in the non-declarative portion there must
be no reference (other than by a CALL, EXECUTE, PROCESS or RUN) to procedure­

names that appear in the declarative portion. A GO TO or PERFORM statement in

an Option 1 or Option 2 declarative may reference a paragraph-name in any

other Option 1 or Option 2 declarative section.

The designated procedures are executed by the input-output system at the

appropriate time as follows:

a. In option 1, after completing the standard input-output error routine

on files assigned to DISK, TAPE, DISKPACK, or REMOTE or after making

available any record from TAPE of a BLOCK which-is less than the

specified block size.
b. In option 2, before or after a beginning or ending input label-check

procedure is executed.
c. Before a beginning or ending output label is created.
d. After a beginning or ending output label is created, but before it

is written.
e. Before or after a beginning or ending input-output label-check

procedure is executed.

7.-126

When option 1 is used for RECORD SIZE ERROR:

a. The RECORD SIZE ERROR is applicable to input TAPE files only.

b. The RECORD SIZE ERROR may not be specified if the file is declared

to contain variable length records or blocks.

c. The ON phrase must specify file-name-1, file-name-2 ... instead of INPUT,

When option 2 is used:

a. If the file-name option is used, the file description entry for

file-name must not specify LABEL RECORDS ARE OMITTED.

b. If the INPUT, OUTPUT, or I-O clause is used, the procedures will

not be executed for any INPUT, OUTPUT, or I-O file whose file de­

scription entry specifies LABEL RECORDS ARE OMITTED.

c. If BEGINNING or ENDING is not included, the designated procedure

will be executed for both beginning and ending labels.

d. If REEL or FILE is not included, the designated procedure will be

executed for the appropriate REEL and FILE labels.

e. Option 2 is applicable only to files assigned to tape.

Within the procedures in a USE declarative in which the USE sentence contains

either the INPUT or the OUTPUT option, references to label items must be

qualified.

Option 3 enables untyped procedures or subroutines to be declared GLOBAL in

the same way as they are declared EXTERNAL. This statement is placed in the

header of a section to be used as a task.

If the EXTERNAL phrase is used, it identifies the separately compiled pro­

gram which is to be used as the task when this section is referenced. In

addition, there must be no paragraphs in this section when this phrase is

employed. Identifier-I must be defined in the WORKING-STORAGE SECTION such

that its value may be a program-name. If the mnemonic-name is used, it must

be defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

Local-storage-name must be defined in the LOCAL-STORAGE SECTION and must be

unique among USE statements. A local-storage-name must be present if the

USING phrase is present.

7-127

If the EXTERNAL phrase is used, the USING phrase is included in the USE

statement if, and only if, there is a USING phrase in the PROCEDURE DIVISION

header of the referenced, separately compiled program. The number, type and

order of the operands in the two USING phrases must then be identical.

When GLOBAL is specified, an untyped procedure must exist in the host with

the same name as the section to which the USE is attached.

Identifier-2, identifier-3, .•• ,must be uniquely defined as files in the

FILE SECTION or as level 01 or 77 items in the LOCAL-STORAGE associated with

the USE procedure. They may describe any combination of data items, control­

point items, event items, index data items, or lock items.

Option 4 of the USE statement is used to specify a declarative as an

interrupt procedure.

An interrupt procedure provides a means of interrupting a process when an

event-item attached to that procedure is caused. The USE statement may thus

be used to declare such interrupt procedures.

Statements which are to be executed when the event is caused and the inter­

rupt procedure is allowed, must follow the USE statement.

Option 5 of the USE statement is used as part of the ANSI 74 Sequential I/O

Module specification; thus, requiring that the ANSI74 system dollar option

be set.

The words EXCEPTION and ERROR are synonymous.

Specifically, this USE routine option will function the same as Option 1 with

the following exception: READ statements may have optional AT END clauses's.

This means if a READ statement which contains no AT END clause gets an end-of­

file exception, the appropriate USE routine will be executed. If no USE

routine exists, the program will be terminated.

7-128

WAIT

The WAIT or AWAIT statement is used as part of the user's control of direct

access input-output operations and for communication between processes in an

asynchronous processing environment.

The format of the WAIT statement is as follows:

Option 1:

Option 2:

l formula)
event-identifier
INTERRUPT

WAIT control-point-identifier i[subscript,] EXCEPTIONEVENT)

Option 3:

WAIT [AND RESET] [formula]

Option 4:

event-identifier-I [, event-identifier-2] ...

[GIVING data-name-I]

WAIT area-identifier [ON EXCEPTION statement [ELSE statement]]

All parentheses are required. When a subscript is specified, a maximum of one

subscript or index is allowed and it must be followed by a comma.

Option 1 of the WAIT statement containing an event-identifier will cause pro­

cessing to be suspended until event-identifier has been caused explicitly by a

CAUSE statement, or implicitly by option 3 of the READ statement or option 4

of the WRITE statement. The EVENT is not automatically reset.

If formula is used in option 1, the program will be suspended for the number

of seconds (or fraction thereof) specified. Formula must be greater than or

equal to zero. A control-point-attribute may be specified as part of formula.

However, the formula must then by enclosed in parenthesis and the specified

attribute must be typed INTEGER or typed REAL.

The INTERRUPT phrase causes execution of this task to be suspended until at

least one of its interrupt procedures has been executed.

Option 2 is identical to an option 1 with an event-identifier specified. The

event-identifier in this case is the EXCEPTIONEVENT task attribute associated

with the control-point-identifier.

7-129

WAIT

Option 3 causes a WAIT for the number of seconds specified by formula (if

specified) or until one of the event-identifiers has been CAUSE'd. If the

AND RESET phrase was specified, the event-identifier wh.ich caused the, WAIT

to be terminated will be RESET. If the number of seconds specified by
"formula" elapse before one of the event-identifiers is CAUSE'd, the AND

RESET has no effect. The GIVING phrase provides an integer value to indicate

by which method the WAIT was terminated. Thus, the data-name will contain
a 1 if the wait was terminated because the number of seconds specified in
"formula" had elapsed, a 2 if event-identifier-I was CAUSE'd, a 3 if event­

identifier-2 was CAUSE'd, etc. If a "formula" was not specified, then data­

name will contain a 1 if the WAIT was terminated because event-identifier-I

was CAUSE'd, a 2 if event-identifier-2 was CAUSE'd, etc.

Option 4 of the WAIT statement will cause processing to be suspended until

the DIRECT input-output operation (option 3 of the READ statement or option 5

of the WRITE) is complete. Area-name is the name of an array specified as a

direct array by use of the RECORD AREA clause.

The ON EXCEPTION phrase of option 4 offers a means of detecting abnormal file
conditions when DIRECT I/O operations are used. The specific condition may

be determined by using the attributes described in the B 7000/B 6000 INPUT/

OUTPUT SUBSYSTEM REFERENCE MANUAL, Form No. 5001779.

The following are examples of valid WAIT statements:

WAIT CP-I(5,EXCEPTIONEVENT).

WAIT MYSELF(EXCEPTIONEVENT).

WAIT EVENT-NAME.

WAIT X DIV 2.

WAIT (X).

WAIT CP-I(3,TASKVALUE).

WAIT (MYSELF(TASKVALUE)).
WAIT INTERRUPT.

WAIT 35 EVENT-I, EVENT-2, EVENT-3, GIVING XYZ.

WAIT AND RESET 10 EVENT-6.

WAIT BUF-NAME ON EXCEPTION STOP "ERROR".

7-130

WRITE

The WRITE statement is used to release a logical record for an output file.
It can also be used for vertical positioning of a printer. For disk files,
the WRITE statement also allows the performance of a specified statement if
the contents of the associated actual key data item are found to be invalid.

The WRITE statement has four options which are as follows:

Option 1:

WRITE record-name [FROM identifier-!]

Option 2:

·[{CHANNEL integer-! }] integer-2 LINES
(:;~:E } ADVANCING TO identi~ier-2 LINES

mnemonic-name
PAGE

[; AT {END-OF-PAGE} statement [Jl!l&l statement] J . EOP

WRITE record-name [FROM identifier-!]

; INVALID KEY statement [~ statement]

Option 3:

WRITE record-name [~ identifier-!] (
AUXILIARY }

TO ALTERNATE
ERROR

Option 4:

!RITE file-name [KEY IS formula]

FROM identifier [USING event-identifier]

(;ON EXCEPTION statement [ELSE statement J]

7-131

As in the READ statement, the file must have been opened prior to any refe­
rence to records in it by a WRITE statement. Record-name must be defined

, in the DATA DIVISION by means of an 01 level entry under the FD entry for the

file.

When the WRITE statement is executed at run time, the logical record is re­

leased for output and is no longer available for referencing by the object

program. Instead, the record area is ready to receive items for the next
record to be written. If blocking is called for by the COBOL program, the

records will be blocked automatically by the B 7000/B 6000 I/O routine and
written by that routine when the block is of the proper length. This in­

formation is specified in the FILE clause entries of the DATA DIVISION.

If the FROM clause is used, the operation is identical to a MOVE followed
by a WRITE without the FROM clause. The information in the record-name area

is no longer available; the information in identifier-I is unchanged. It is
illegal for record-name and identifier-! to be the same name.

Both the ADVANCING phrase and the END-OF-PAGE phrase allow control of the
vertical positioning of each record on a representation of a printed page.

If the ADVANCING phrase is not used, automatic advancing is provided to cause
single spacing after writing (i.e., BEFORE ADVANCING 1 LINES). If the AD­
VANCING phrase is used, automatic advancing is overridden and spacing is pro­

vided as follows:

7-132

a. If identifier-2 or integer-2 is specified, the printer page is
advanced the number of lines equal to the current value associated

with identifier-2 or integer-2. Identifier-2 must be the name of

an unsigned integer data item.
b. If PAGE is specified, the record is printed before or after (depend­

ing on the phrase used) advancing to the top of the next page (i.e.,

channel 1) and if LINAGE was specified for the file, then LINAGE­

COUNTER will be reset to one.
c. When CHANNEL is used, the MCP will advance the printer to the carri­

age control channel specified by integer. Only channels one thru 11,
inclusive, are valid. If CHANNEL is used with the LINAGE clause,

the results may be unpredictable.

d. If the BEFORE phrase is used, the record is printed before the
printer page is advanced. If the AFTER phrase is used, the record

is printed after the printer page is advanced.

e. If mnemonic-name is specified, the printer will be advanced to the
carriage control channel declared for mnemonic-name in the SPECIAL­

NAMES paragraph.
f. The WRITE BEFORE ADVANCING clause is more efficient than the WRITE

AFTER ADVANCING clause.
g. If END-OF-PAGE is used the LINAGE clause must be specified for the

associated file or the PAGESIZE attribute must be set to a value

greater than zero.

If the logical end of the printer page is reached during the execution of
an option 1 WRITE statement with the END-OF-PAGE phrase, the statement

specified in the END-OF-PAGE clause is executed. The END-OF-PAGE limit is

specified in the LINAGE clause in the FILE SECTION of the DATA DIVISION

or in the PAGESIZE attribute.

If a CLOSE statement for a file has been executed any attempt to WRITE on
the file will result in an error termination.

Option 2 must be used to write on files assigned to the DISK. The operation
is as follows:

a. For files which are being accessed in a SEQUENTIAL manner, the
INVALID KEY clause is executed when the end of the last segment

of the file (last record) has been reached and a further attempt
is made to WRITE into the file. The last segment of a file is

specified in the FILE LIMITS clause or in the ASSIGN clause of

the ENVIRONMENT DIVISION. Similarly, for files being accessed

in a RANDOM manner, the INVALID KEY clause will be executed when­
ever the value of the ACTUAL-KEY is outside the defined limits.

In either case, no writing onto DISK will take place, and the in­

formation in the record area of memory will still be available.
b. Records will be written onto DISK in either sequential or random

mode according to the rules given under ACCESS MODE.

c. For random DISK files, the WRITE statement performs the function
of the SEEK statement, unless an explicit SEEK statement for the
record specified by the current value of the ACTUAL KEY has been

executed prior to the WRITE statement.

d. If the value of the ACTUAL-KEY is changed after a SEEK statement
has been given and prior to the WRITE statement, the WRITE state­

ment will access the record selected by the new value of ACTUAL

KEY.

7-133

Option 3 is used to control stacker selection on a file assigned to a

card punch.

Option 4 of the WRITE statement is used with DIRECT I-O. Refer to the dis­

cussion of option 3 of the READ statement and figure 7-14 for an explanation

of the action taken by the system for DIRECT I-O.

While the ANSI74 system dollar option is set, ELSE phrases will be paired
only with IF statements. In particular, ELSE phrases will not be paired

with AT END-OF-PAGE, AT EOP, INVALID KEY, and ON EXCEPTION clauses while

the ANSI74 system dollar option is set.

7-134

-...J
I

I-'
(JJ

01
..........
-...J
I

I-'
(JJ

c:n

PRO:::JRAM

PROGRAMMcR

PA(E I LINE
NO. NO.

3 4

A

Burroughs COBOL CODING FORM

REQUESTED BY PAGE

DATE IDENT.

28 32 36 40 44 48 52 56 60

Figure 7-17. Procedure Division Coding

l"%j n
I-'· 0 (Jq
c: c

OF

Ii z CD

-...J
0

73 80 I -I
I-' :I:
-...J m

I-'·
.,,

I-' ;a
I-' 0 c:
[/J n
n- m
Ii c
Ill c:
n- ;ici
CD m
[/J c
n- < ::r
CD !!?
8 0
Ill z ::s
::s
CD
Ii

I-'·
::s
:::;::
::r
I-'·
n
::r
n-
::r
CD

'C
!:ti
0
(")
tc:l
t;;
c:
!:ti
tc:l

t;;
l""i
<:
1-4
(/.)
1-4
0 z
I-'·
[/J

n
0

°' CD

°' .

8. THE COBOL LIBRARY

The COBOL library contains text that is available to a source program at

compile time. The effect of the compilation of the library text is ~he same
\

as if the text were actually written as part of the source program. ·

The COBOL library may contain text available thru the use of a $FROM or a COPY
statement for the ENVIRONMENT DIVISION, the DATA DIVISION, and the PROCEDURE

DIVISION.

The COBOL library may be ASCII or EBCDIC coded (14-word records) or BCL coded

(10-word records). (The compiler will determine the blocking factor of the

file from the label.)

The format for the COPY statement is as follows:

COPY library-name [FROM integer-I] [{=UGH} integer-2 J
[REPLACING word-I BY text-I (,word-2 BY text-2] •.. J .

Word-I, word-2 .•. may be any word in a library routine conforming to the rules

of definition for words. Word-I, word-2 •.. must not be literals.

The COPY statement may appear as follows:

a. Following any paragraph header in the ENVIRONMENT DIVISION. The li­

brary entry may, but is not required to, start with the paragraph

header.

b. Following the file-name specified for an FD or an SD. If the first

library entry processed is an FD or an SD, then the "FD" or "SD" and

the following word (presumably, a dummy file-name) from the library,

is ignored by the compiler.

c. Following the report-name specified for an RD. If the first library

entry processed is an RD, then the "RD" and the following word (pre­

sumably, a dummy report-name) from the library, is ignored by the

compiler.

8-1

d. Following the data-name specified for any data description entry. If

the first library entry processed has the same level number as was

associated with the COPY statement, the level number and the following

word (presumably, a dummy data-name) from the library, are ignored by

the compiler.
e. Following a section header. The first library entry processed must be

a paragraph-name.

f. As any sentence of a paragraph.

COPY must be a sentence by itself; that is, the COPY statement must end with a

period. No other statement or clause may appear on the same source image as a

COPY statement. The last source image brought into a program by means of a

COPY statement must end in a period .

. Library-name may take one of two forms:

a. It may appear as a unique identifier. The identifier becomes the in­

ternal name of the compiler's library file and may then be label­

equated to the desired file. For example, the COPY statements

COPY TAXES.

COPY PAYCALC.

would require the following label equation cards:

COBOL FILE TAXES (TITLE=TAXES)
COBOL FILE PAYCALC (TITLE=LIB/PAYROLL)

b. It may appear as a non-numeric literal. The non-numeric literal be­

comes the actual external title of the desired file. No label equa­

tion for the attribute TITLE is possible since the non-numeric literal

specified in the COPY statement is used to dynamically set TITLE.

Label equation of other attributes must specify the compilers in­

ternal name for the library (i.e.: LIBRARY).

In either case the library may be a BCL file with 10 word records or an EBCDIC

file with 14 word records. The file may be blocked or unblocked. The attri­

bute KIND is assumed to be DISK but may be label equated to other devices.

For example, if the library to be accessed by the statement COPY "PAYROLL/

PRIME/MASTER" is on a diskpack named PAYLIB, the following label equation

would be required:

COBOL FILE LIBRARY (KIND=PACK, PACKNAME=PAYLIB)

s-2

If the FROM phrase is specified, copying will start at the sequence number spec­

ified. If the THRU phrase is specified, copying will continue until that se­

quence number has been copied.

The library text is copied from the library, and the result of the compilation

is the same as if the text were actually a part of the source program.

If the REPLACING phrase is used, each word from the library text, specified in

the format, is functionally replaced by the respective text from the BY phrase,

even though it is not shown on the listing.

Text-I, text-2 ... , may be any desired combination of COBOL characters with two

exceptions:

a. The word BY will be taken as the BY of another word-text replacement.

b. The character period, outside of a literal, will be taken as the

terminal period for the COPY sentence.

Use of the REPLACING phrase does not alter the material as it appears on the

program listing.

At compilation time, the COPY statement and the library text both appear on the

output listing. The library text is flagged with the letter L on the listing.

The text contained on the library must not contain any COPY statements.

Example:

PAYROLL/DESC is the library-name of a file containing the file and record

descriptions of another file. If the VALUE OF ID clause in its file de­

scription is:
VALUE OF ID IS PAY-ID

and it is desired to give the file an identification of "PAYROLL"/"FILEl",

then the following statement may be written in the file section.

FD PAY-MASTER COPY "PAYROLL/DESC"
REPLACING PAY-ID BY "PAYROLL"/"FILEl".

8-3/8-4

9. ATTRIBUTES

This section is not concerned with the attributes themselves, but only with

the way in which attributes are used in COBOL. For a detailed discussion of

each attribute, its values, and the mnemonics associated with them, refer to

the B 7000/B 6000 INPUT/OUTPUT SUBSYSTEM REFERENCE MANUAL, Form No. 5001779.

There are two types of attributes: physical and logical. Most physical

attributes, such as file-name (TITLE), can be label-equated. Logical attri­

butes, such as file-name (PRESENT), cannot be label-equated.

Physical attributes are of two kinds: fixed and variable. A fixed attribute

will not change, and cannot be changed, while the file is open. A variable

file attribute can change, and may be changed, while the file is open.

Physical attributes can be declared at three different processing points:

a. All physical attributes are specified by the information in the FILE

and RECORD descriptions, the ENVIRONMENT DIVISION, the OPEN state­

ments, etc. Both implicit and explicit actions are involved, since

many attributes have default values; e.g., tape density by default

is "unit selected". Peripheral type mnemonics are explicitly speci­

fied by the hardware-name in the ASSIGN clause.

b. Label equation cards may be used at compile time or execute time to

specify physical attributes.

c. During the execution of the program, attributes may be interrogated

or set by PROCEDURE DIVISION statements.

File and buffer attributes permit dynamic file definition. This means that

the precise nature of all characteristics of a file need not be known when a

program is written.

Task attributes permit access to and control of the status of a task.

9-1

ATTRIBUTE-IDENTIFIER

The attribute-identifier must have the following format:

J.[subscript,] attribute-name[, formula-1]2_

The subscript may be specified when using a direct switch-file and then speci­
fies which file in the switch-file list is to be addressed. A subscript may
also be specified when an attribute of a control-point-identifier (task attri­
bute) is to be accessed and a subscript is required due to descriptive clauses.
A maximum of one subscript is permitted.

The attribute-name is treated as a reserved word only when used within an
attribute-identifier. An attribute-name may be used as a data-name, procedure­
name, etc., unless it is also a reserved word when used outside of an

attribute-identifier.

Formula-1 is used when addressing the station attributes to specify the rela~

tive station number of the data communications file which is to be addressed.
Formula-1 is also used for accessing an attribute which requires a parameter
(e.g., AREACLASS).

FILE AND BUFFER ATTRIBUTES

Setting File and Buffer Attributes

B 7000/B 6000 COBOL uses a variation of the SET statement to change file or
buffer attributes. The setting of file or buffer attributes is in no way con~

nected with the setting of indexes. For this reason, the syntax for setting
file or buffer attributes is included here rather than in the description of
the SET statement.

!buffer-name']
file-name iattribute-identifierl
ru&

TO l {i~entifier-1 } UP BY literal-I
formula-2

\DOWN BY VALUE attribute-mnemonic

File-name "qualifies" the attribute-name enclosed in the required parentheses.

Within a USE procedure, the reserved word FILE can be used, instead of file­
name-1, and will refer to the file which has currently invoked the USE pro­
cedure. PERFORM statements should not reference a paragraph which makes use
of FILE unless FILE has a current meaning to that paragraph.

The file attribute FAMILY is the only attribute that may be SET UP BY or SET
DOWN BY. FAMILY can be used only for data communications files.

9-2

The choice of literal-1, formula-2, identifier-I, or the attribute mnemonic
depends on the type of attribute and the static or dynamic nature of the
value to which the attribute is to be set.

Attributes of type POINTER accept or return an alphanumeric item. For

example, consider:

a. SET FYLEX (TITLE) TO "A/B/C."
b. MOVE "A/B/C." TO EXT-NAME.

SET FYLEX (TITLE) TO EXT-NAME.
c. SET. FORMFIL (FORMMESSAGE) TO "SET DEVICE NOW."

Example a. or b. above would change the external name of FYLEX to A/B/C. The
contents of EXT-NAME must be one or more names, each separated by slashes, with
a period (.) immediately following the last or only name.

All other attributes return or accept a numeric value of identifier-I, formula-

2, literal-1, or the attribute-mnemonic. If the value is not within the range
of the specified attribute, an error will occur either at compile time (in the

form of a compilation error) or at execute time.

The attribute-mnemonics are not treated as COBOL reserved words, They are
"reserved" only within the context in which they are used. The file-name and
parentheses define the context for attribute-names, and the COBOL reserved
word VALUE defines the context of the attribute mnemonic names. Attribute
names and their mnemonic names may be used as data-names or procedure-names
in the program if they are not COBOL reserved words.

Examples:

SET BUFF-NAME (IOMASK) TO 640.
SET REMOTE-FILE (FAMILY) DOWN BY "NDLNAMEl".

SET DISK-FILE (FLEXIBLE) TO VALUE TRUE.
SET TAPE-OUT(SAVEFACTOR) TO 180.
SET FILE-OUT (DATE) TO CC-AS-OF-DATE.

SET SW-FILE(3,AREACLASS,28) TO 9.

Interrogating File and Buffer Attributes

File or buffer attributes can also be interrogated by appearing as the sending
field in a MOVE statement or as the subject or object of a condition. In
addition, attributes whose class is implicitly numeric may be used in DISPLAY
statements and in place of any identifier in an arithmetic statement except
the receiving field identifier. When an attribute is moved into an area by a
MOVE statement, the receiving field must be an elementary numeric item de­
scribed as numeric except for the type POINTER attributes, where the receiving

9-3

fieid must be alphanumeric. BOOLEAN attributes (those attributes having mne­
monic values of TRUE or FALSE) will return a zero if FALSE and a "l" if TRUE.
REAL or INTEGER attributes should be moved or compared to a COMP or COMP-1 re­

ceiving field. REAL attributes which will not have sign bits or exponent bits
set may be associated with an integer of any USAGE. The file attribute STATE
should be moved to an integer COMP or COMP-1 receiving field and then mani­

pulated with option 4 MOVE statements.

A file or buffer attribute appearing in a condition may be tested against its

associated attribute mnemonic.

Examples:

IF FILE-IN (KIND) ~ VALUE PRINTER

MOVE TAPE-IN (RECORD) TO RECORD-CNT.
IF TAPE-IN (TITI.E) IS EQUAL TO "A/FILE/NAME."
PERFORM READ-A-REC THRU RR-XIT UNTIL FILE-IN
(EOF) = VALUE TRUE.
MOVE REMOTE-FILE (TITI.E) TO HOLD-NDL-NAME.

TASK AnRIBUTES

Task attributes are used to change or interrogate the task variables o:f re­

lated processes in a synchronous or asynchronous processing environment. This
document is concerned only with the way in which task attributes are referenced
in B 7000/B 6000 COBOL. The user should be familiar with the concepts of task­
ing, the task attributes, and their possible variations.

·Setting Task Attributes

B 7000/B 6000 COBOL uses a variation of the SET statement to change task attri­
butes. The setting of task attributes is in no way connected with the setting
of indexes;- ·For this reason, the syntax f& setting task attributes is in­
cluded here rather than in the description of the SET statement in Chapter 7.

SET (:i~~F] ,tattribute-identifierl
control-point-identifier

{
identifier-I }
literal-I
formula-I
VALUE attribute-mnemonic

Control-point-identifier may be attached to a program. The reserved word MY­
SELF is a compiler supplied control-point item which refers to the task within
which it appears. Thus, any attribute of a given task may be referenced with­
in that task as MYSELF (attribute-identifier). The reserved word MYJOB is a
compiler supplied control-point item which refers to the job within which the
task appears. Thus, any attribute of a job may be referenced within any task
of that job as MYJOB (attribute-identifier).

~he choice of identifier, literal, formula-2, or mnemonic-name depends on the
attribute being set and its desired value. The type POINTER task attributes
accept or return either an alphanumeric item.

Examples:

a. SET TSK (l,NAME) TO "A/B/C.".

b. MOVE "A/B/C." TO EXT-NAME. SET TSK (l,NAME) TO EXT-NAME.

The examples above would change the external name to A/B/C. The contents
of EXT-NAME must be one to 14 names (1 to 17 characters in length), each
separated by slashes, with a period following the last or only name.

Task attributes which are type EVENT may be used in place of any valid use of
an event-identifier (USAGE EVENT).

Task attributes which are type TASK are themselves control-point-identifiers
of some other associated task. This type of attribute may be employed to ac­

cess or manipulate the task attributes of that associated task.

All other task attributes accept or return a numeric value of identifier,
formula-2, literal, or the value associated with mnemonic-name. If the value
is not within the permissible range for the attribute specified, an error will

occur at compile time (syntax error) or at execute time. The attribute­
mnemonic is a name associated with a constant value for those attributes that
have a set number of predetermined possible conditions.

The attribute names and their mnemonics are not treated as COBOL reserved words.
They are "reserved" only within the context in which they are used and may be
used as data-names or procedure-names, provided they are not regular reserved
words (i.e., the task attribute LOCKED is a reserved word; IOTIME is not).

Following are various examples of the task attribute SET statement:

SET PROGl(l,DECLAREDPRIORITY) TO 1.

SET PROG2(1,STATUS) TO -1.
SET PROG3(STACKSIZE) TO 1500.

SET MYSELF (DECLAREDPRIORITY) TO 90.

SET MYSELF(PARTNER(DECLAREDPRIORITY)) TO 65.

9-5

Interrogating Task Attributes

Task attributes may be interrogated by appearing as the sending field in a MOVE

statement or as the subject or object of a condition. In addition, attributes
whose class is implicitly numeric may be used in DISPLAY statements and in
place of any identifier in an arithmetic statement except the receiving field

identifier. When an attribute is moved into an area by a MOVE statement, the

usage of the receiving field must be consistent with the usage of the attri­

butes. BOOLEAN attributes (those attributes having mnemonic values of TRUE
or FALSE) will return a 0 if FALSE, or a 1 if TRUE. BOOLEAN or INTEGER

attributes should be moved to a NUMERIC receiving field. POINTER attributes
should be moved to a non-numeric receiving field. REAL attributes should be·

moved to COMP-4 receiving fields.

Task attributes may be tested against their associated attribute mnemonics.

Following are various examples of interrogating task attributes:

9-6

IF PROGl(l,LOCKED) = VALUE TRUE SET PROGl(l,LOCKED) TO VALUE FALSE.

MOVE PROG3(PROCESSTIME) TO PRINT-P-TIME.

IF PROG2(1,NAME) = "X/Y/Z"

PERFORM PRINTING-ROUTINE UNTIL PROG1(2,STATUS) 3.

10. COBOL AND DATA COMMUNICATIONS

This section defines the B 7000/B 6000 COBOL language facilities for handling
data communications files. The characteristics of the B 7000/B 6000 data

communications system permit B 7000/B 6000 COBOL programs to deal with data
communications devices as easily as they deal with other file types. Changes
and/or extensions were made to the language only where there were no accept­

able constructs present. Language constructs that represent certain

characteristics of other file types apply to data communications files where
the applications are similar.

The material in this section does not describe the B 7000/B 6000 data com­

munications system. A knowledge of the basic concepts of the data communica­
tions system is a prerequisite to the proper use of this material.

An object program can receive data from and send information to remote devices
by the use of Datacom files. The Data Communications Subsystem allows es­
sentially the same degree of media independence which can be achieved by an
object program dealing with other peripheral files. However, unlike the usual
peripheral devices which are accessed through peripheral control units, remote
devices are accessed through a special peripheral processor called the Data
Communications Processor or DCP.

Datacom files are permanent files in the sense that they are described in the

Network Definition and are assigned an external name (TITLE) in the Network
Information File. The Network Definition Language allows a Datacom file to.

be a single station (with the possibility of the external name of the file
being the name of the station) or a FAMILY of stations. A FAMILY is a list

of stations which are grouped together to form a file in the Network Descrip­
tion.

The file attributes, which are uniquely related to Datacom files, reference

information stored and maintained in the station list. There are "Datacom"
attributes which deal with the file as a whole, such as FAMILYSIZE, LASTSTATION
and CENSUS; and "station" attributes which deal with the characteristics of

10-1

the specific stations in the file, such as WIDTH, DISPOSITION, SCREEN and
ASSIGNTIME. Some of the more general file attributes, such as TITLE, POPULA­
TION and PAGESIZE, have special meaning when referencing a Datacom file.

When a Datacom file is opened, a station list is created in addition to the
File Information Block. The station list contains the information from the
Network Information File which is necessary to distinguish the different
stati,_ons which have been included in the file. When the station list is cre­
ate,d, each station in the file is assigned a Relative Station Number in the
order in which they are described in the Network Information File. The
Relative Station Nuniber is in effect an index into the station list. The
Relative Station Number is not unique to the station and the ordering of the
station list can be changed by extensive use of the FAMILY attribute. If a
station is subtracted from a file, its Relative Station Number becomes invalid
and points to an empty area in the station list. A station which is added to
a file may be assigned a Relative Station Number which belonged to a station
which 1 was subtracted from the file, which is to say that Relative Station
Number's are reusable. It is also possible for a valid Relative Station
Number to be larger than the value of the FAMILYSIZE attribute after some
stations have been subtracted from the file.

An object program may open an unrestricted number of Datacom files, and a Re­

mote station may be assigned to any number of Datacom files. However, a Remote
station can be assigned concurrently to only one Datacom file that is input
capable without the station's controlling MCS participating in the I/O opera-

tions.

An object program can write to a Datacom file in two different ways. If the
LASTSTATION attribute is set to a Relative Station Number, the output will be

directed to that specific station in the file. If the value of the LASTSTATION
attribute is zero (the default value), the output will be broadcast to every

station in the file.

An object program receives input from a Datacom file in a first-in-first-out
order. After a read statement, the LASTSTATION attribute contains the Relative

Station Number of the station from which the input came.

When an object program opens a Datacom file, a FILE OPEN Datacom message is
sent for each station in the file to the station"s controlling MCS. The
FILE.OPEN message is a notification to the MCS that the file would like per­

mission to communicate with the station. The MCS may allow, postpone, or
deny assignment of the station to the file.

10-2

If the MCS allows assignment, the DCWRITE function checks to see if the re­

quested use of the station is compatible with its description in NDL. If the

requested assignment is to an input capable file, DCWRITE checks to make sure

that the station is not already assigned to another input capable file, unless

the MCS is participating in I/O. If the MCS is not participating in I/O

while a station is assigned to an input capable file, DCWRITE will deny re­

quests to assign the station to another file.

If the MCS denies assignment, which it may also do subsequent to having allowed

or postponed assignment, an end of file message is placed in the input queue

if the file is input capable. Further writes to the station will cause end of

file action.

A multi-station Datacom file can have ~nd of file notification for each station

in the file. The LASTSTATION attribute can be interrogated to discover which

station is no longer assigned to the file after end of file action. The

station's DISPOSITION attribute or the qualification field of the STATE attri­

bute can be accessed to find the reason for the end of file.

If an object program opens a Datacom file containing a station which is de­

clared in NDL without line assignment, the controlling MCS of the station is

restricted in its response to the FILE OPEN message. Assignment of the sta­

tion to the file is allowed only if the MCS participates in I/O. MCS partici­

pation in I/O requires an agreed discipline between the object program and the

MCS, so that the MCS can perform message switching and the object program

can identify the source station.

10-3

ENVIRONMENT DIVISION CONSIDERATIONS

FILE-CONTROL

Data communications files are selected in the file-control paragraph and

assigned to the hardware-name (REMOTE).

The syntax of the SELECT clause for remote files is as follows:

SELECT file-name ASSIGN TO REMOTE

[, ACCESS MODE IS SEQUENTIAL]

[, ACTUAL KEY IS data-name]

The ACTUAL KEY is analogous to the ACTUAL KEY of a disk file. Files declaring

ACTUAL KEYs have the ACTUAL KEY set to the relative station number when a

READ is done. WRITE statements for this file are then "KEYED" WRITES, with the

value of the ACTUAL KEY passed to the MCP; thus, directing the record to the

specified station when Option 1 of a WRITE statement is used or the files

LASTSTATION attribute is set to the value of the ACTUAL KEY just before an

Option 2 WRITE statement.

1-0-CONTROL

None of the clauses in the I-0-CONTROL paragraph may be applied to data

communications files.

10-4

DATA DIVISION CONSIDERATIONS

File Descriptions

Data communications files are declared by a file declaration (FD) as are

other file types. However, some of the file description clauses are not
relevant to data communications files and may not be used. These clauses

are as follows:

a. The RECORDING MODE clause.
b. The BLOCK clause. Blocked records cannot be declared for data

communications files. The block size is implicitly equal to the

maximum record size.
c. The LABEL RECORDS clause. Label records and user header and trailer

records cannot be declared. Recognition of files is handled by the

data communications controller and the I/O intrinsics.

d. The LINAGE clause.
e. SAVE-FACTOR. Data communications files (or families) are defined on

a permanent basis in the Network Information File by the NETWORK

DEFINITION LANGUAGE.

File description clauses used with data communications files are as follows:

a. The RECORD CONTAINS clause. Rules for using this clause are the same

as those for other file descriptions. This clause may be omitted

for fixed-length records.
b. The DATA RECORDS clause. This clause is optional as in all other

file descriptions.
c. The VALUE OF clause. The VALUE OF ID option of this clause is re­

quired. The VALUE OF data-name option may not be used. The value
specified must be the external name (TITLE) declared in the Network

Definition.

Record Descriptions

The record areas of a data communications file are described like the record

areas of other files, although the following special considerations do apply.
All data items within the record should be described, either explicitly or

implicitly, as DISPLAY, DISPLAY-I, COMP-2 or ASCII. Appropriate translations

will be automatically provided. Variable length records may be used just as

in any non-datacomm file.

10-5

PROCEDURE DIVISION 1-0 STATEMENTS

OPEN

The syntax is the same as the OPEN statement, described in section 7, except

that the optional clauses REVERSED and NO REWIND do not apply to data com­
munications files. The appropriate format is:

OPEN r{~ } file-name-1 [,file-name-2) ···]···
INPUT-OUTPUT _

At least one of the following options must be used: INPUT, OUTPUT, or I-0.
They may appear in any order.

The OPEN statement causes the allocation of necessary space for alternate
areas, file tanks, FIBs, etc.

All stations of the FAMILY associated with the file are assigned a relative

station number (RSN); relative station number designation within a FAMILY is
determined by the sequence in which stations are specified as members of the
FAMILY.

CLOSE

The CLOSE statement returns to the MCP those areas that were allocated to the
file.

[{
NO REWIND}]

CLOSE file-name-1 WITH ~~SE

[,file-name-2 [WITH {
NO REWIND}]]
=SE .•.

When LOCK, RELEASE, or PURGE are specified, the files family reverts to that
which was declared in the Network Definition. When the WITH clause is not

specified or the NO REWIND is specified, changes in the files FAMILY are
retained so that a subsequent OPEN will retain the Station List which existed
when the file was last closed within the same program.

l0-6

READ

The READ statement causes the next message in the file to be made available
to the object program and sets ACTUAL KEY, if specified, to the relative
station number from which the message originated.

READ file-name RECORD (INTO identifier~l]

;INVALID KEY statement (ELSE statement]

See section 7 for a general description of the READ statement.

The abnormal conditions which cause execution of the INVALID KEY clause or
the error USE procedures are discussed later in this section.

WRITE

The WRITE statement causes a message to be made available to a file for
transmission to one or more stations assigned to that file.

The syntactical formats for WRITE statements to files assigned to remote
devices are as follows:

Option 1:

WRITE record-name (FROM identifier-!]

; INVALID KEY statement [ELSE statement]

Option 2:

WRITE record-name (FROM identif ier-1]

!BEFORE' ADVANCING
AFTER !PAGE l TO CHANNEL integer

numeric-operand LINES
mnemonic-channel-name

See section 7 for a general description of the WRITE statement.

A message released to a file is transmitted to the station specified by the
relative station number indicated by the contents of the file attribute

LASTSTATION. If an ACTUAL KEY has been specified for the file, the LAST­
STATION file attribute is replaced by the contents of ACTUAL KEY prior to

transmission. If the file attribute LASTSTATION contains the value zero, the
available record will be broadcast to all stations assigned to the file.

The abnormal conditions which cause execution of the INVALID KEY clause or the
error USE procedures are discussed later in this section.

10-7

ABNORMAL CONDITIONS

It is the COBOL programmer's responsibility to be aware of, and to provide
for, the various types of abnormal conditions that can occur during the use
of data communications files.

The MCP will maintain the information concerning the status of a file and its
associated stations. This information is accessible through various attributes.

The END-OF-FILE condition causes the statements specified by the INVALID KEY
clause in the READ or WRITE statement to be executed.

SIZE, BREAK, TIMELIMIT and SECURITY errors cause execution of the USE AFTER

STANDARD ERROR if specified. If the USE procedure is not specified, the pro­
gram will be terminated.

Differentiation among the various types of abnormal conditions can be done by
interrogating file or station attributes.

The END-OF-FILE condition occurs for the following reasons.

a. For a WRITE statement, when the message is directed to a station which
is not currently assigned.

b. For a WRITE statement, when LASTSTATION is zero and no stations are

currently assigned to the file.
c. For a READ statement, when all stations in the file have been de­

nied assignment.
d. For a READ statement, subsequent to denial of assignment of each

input capable station specified for the file. Subsequent READ state­

ments will not generate an END-OF-FILE condition unless "c" above
has occurred or an additional station is denied assignment.

Errors which cause execution of the USE AFTER STANDARD ERROR (or program

termination when the appropriate USE procedure is not specified) are:

a. Time Limit.

b. Size Error.

c. Security.
d. Break.

lo-s

This error occurs when no input is received following

a READ or output is not initiated following a WRITE
statement in the amount of time specified by the file

attribute TIMELIMIT.
This error is possible only when FILETYPE=l.

This error is caused by a security violation.
This error occurs at the instigation of an operator at
a station. All output queued for that station is dis­
carded. The program will be notified of the "break"
acticm on the next WRITE to that s'tation. (Break is
part of the datacom/MCS interface.)

FILE AND STATION AnRllUTES

A data communications network has a variety of attributes which may be of
interest to object programs. These attributes can be interrogated and/or
altered. There are two classes of attributes for data communications files:
one set of attributes pertaining to the file; and one set of attributes
for each station which is a member of the file. Station-attributes are ac­
cessed by specifying their relative station number. In the syntax of the file­
attribute SET statement in section 9, formula-1 defines the relative terminal
number.

For descriptions of station-attributes and file-attributes pertinent to data
communications, refer to the B 7000/B 6000 INPuT/OUTPUT SUBSYSTEM REFERENCE
MANUAL. Form No. 5001779, and B 6700/B 7700 DATA COMMUNICATIONS FUNCTIONAL
DESCRIPTION, Form No. 5000060.

10-9/10-10

11. REPORT WRITER

REPORT WRITER is a special-purpose language subset of COBOL which permits a

more convenient method of producing reports. REPORT WRITER is non-procedural

in nature, in that the major emphasis is placed in the REPORT SECTION of the

DATA DIVISION on the logical organization of the report, its format, contents,

organization, and structure. The concept of a hierarchy of levels is used in

defining this logical organization. Each report is composed of report groups;

these, in turn, are divided into sequences of items. PROCEDURE DIVISION code

for moving data, constructing print lines, counting line and page numbers,

producing heading and footing lines, summing information, and checking for

control breaks is generated automatically by the compiler, primarily from

the clauses in the REPORT SECTION.

11-1

FILE SECTION

REPORT Clause

The REPORT clause specifies the names of reports that comprise a report file.

!REPORT IS l
REPORTS ARE

report-name-I [, report-name-2]

Each report-name specified in a REPORT clause must be the subject of a Report

Description entry in the Report Section. The order of appearance of the

report-names is not significant.

A report-name must appear in only one REPORT clause.

The subject of a File Description entry that specifies a REPORT clause may

only be referred to by the OPEN statement with the OUTPUT phrase or the CLOSE

statement.

The presence of more than one report-name in a REPORT clause indicates that

the file contains more than one report.

After execution of an INITIATE statement and before the execution of a TERMINATE

statement for the same report file, no other explicit input-output operation

may reference that report file or the Record Description entries associated with

that report file.

11-2

REPORT SECTION

REPORT DESCRIPTION ENTRY

The report description entry contains information pertaining to the overall

format and structure of a re~ort named in the FILE SECTION and is uniquely
identified in the REPORT SECTION by the level indicator RD.

Option 1:

JW. report-name; ~ library-name

[FROM seq. no~ [{il:ZuGH} seq. no.]

[Ri~A~lliY word-1 BY text-1

[, word-2 BY text-2) ...] .
Option 2:

RD report-name

[; .@1m li teral-1)

[; {CONTROL IS }
COlf TRQLS ARE [FINAL IJ FINAL, data-name-1 [,data-name-2) •••

data-name-1 [,data-name-2] •••

[LIMIT IS]
LIMITS ARE integer-1

(, HEADING integer-2]

(' FIRST DETAIL integer-3]
[, LAST DETAIL integer-4)

(, FOOTING integer-5J] •

[LINE]
LINES

For information on the COPY option, see Section 8, The COBOL Library.

The level indicator RD identifies the beginning of a report description and
must precede the report-name. The report-name must appear in one and only
one REPORT clause.

All semicolons are optional in the report description, but the entry must be
terminated by a period. The clauses which follow the report-name are all op­
tional, and their order of appearance is immaterial.

Report-name is the highest permissable qualifier that may be specified for
LINE-COUNTER, PAGE-COUNTER and all data-names defined within the Report Section.

11-3

CODE

If more than one report is associated with a file and the reports are produced

simultaneously, the CODE clause must be used so that the individual lines of

each report may be identified by the MCP printer Uackup routine.

The format of the CODE clause is:

literal-I

Literal-I must be a 2-character non-numeric literal. If CODE is specified for

any report in a file, it must be specified for all reports in that file.

When the CODE clause is specified, literal-I is automatically placed in each

record generated. The positions occupied by literal-I are not included in

the description of the print line but are included in the size of a logical

record.

The backup printer file on DISK for a report for which the CODE clause is

specified will have the title:

BDREPORT/task-number/count id

The task-number is the task number assigned to the task which created the

report and is expressed as a seven digit number. The count is 000 for the

first time the file is opened within the task, 001 for the second time, etc.

The id is taken from the VALUE OF ID specified for the file. For example, if

the task mix number is 325, and the VALUE OF ID specifies "ABCD"., then the

file title assigned to a backup disk file will be:

BDREPORT/0000325/000ABCD

The second time the file is opened within that task, the file title will be:

BDREPORT/0000325/00lABCD

A backup disk file may be printed by entering the following message:

?PB Q task-number/count id KEY REPORT EQUAL literal-I

Task-number is the four digit task number assigned by the MCP. Count and id

are discussed above. When the KEY clause is used, literal-I should match the

literal-I used in a CODE clause except that literal-I when used in the KEY

clause of this MCP message must not be bounded by quotes and may not contain

blanks or special characters. Example:

?PB D0325/000ABCD KEY REPORT EQUAL A2

11-4

A backup tape file of a report writer report for which a CODE clause was speci­

fied may be printed by entering the following message:

?.f!i MI xxx [FILE integer] KEY REPORT EQUAL literal-I

In the above, xxx is the tape unit on which the backup tape resides, and

literal-I is as described for disk files.

11-5

CONTROL

{CONTROL IS }
CONTROLS ARE data-name-I [, date-name-2) ••• I FINAL J

FINAL, data-name-I [, da ta-name-2) .••

FINAL, if used, is the highest control. The positional order in which the

data-names appear specifies the hierarchial level from major to minor; data­
name-1 is the major control, data-name-2 is the intermediate level control,
and the last data-name specified is the minor control. The data-names cannot
be subscripted or indexed. The data-names must be defined as group or ele­
mentary items in the FILE, WORKING-STORAGE, or LINKAGE sections of the DATA

DIVISION. Control data items are subject to the same rules that apply to the
SORT key data-names.

The CONTROL clause is required when control heading and/or control footing

groups are used. The data-names specified in the CONTROL clause are the only
data-names referred to by the RESET and TYPE clauses in the report group de­
scriptions for a report. No data-name, including FINAL, may be referred to
by more than one type control heading report group and one type control footing
report group.

The CONTROL clause establishes the levels of the control hierarchy for the
report.

Data-name-I and data-name-2 must not be defined in the Report Section. Data­

name-1 and data-name-2 may be qualified but must not be subscripted or indexed.
Each data-name must identify a different data item. Data-name-I, data-name-2,
... , must not have subordinate variable-occurrence data-items. Control

data items are subject to the same rules that apply to SORT keys.
The data-names and the word FINAL specify the levels of the control hierarchy.

FINAL, if specified, is the highest control, data-name-I is the major control,
data-name-2 is an intermediate control, etc. The last data-name specified is
the minor control.

The execution of the chronologically first GENERATE statement for a given
report causes the values of all control data items associated with that report
to be saved. On subsequent executions of all GENERATE statements for that re­

port, control data items are tested for a change of value. A change of value
in any control data item causes a control break to occur. The control break
is ass.ociated with the highest level for which a change of value is noted.

11-6

A control break is tested for by comparing the contents of each control data

item with the prior contents saved from the execution of the previous GENERATE

statement for the same report. The relation test is applied as follows:

a. If the control data item is a numeric data item, the relation test is

for the comparison of two numeric operands.
b. If the control data item is an index data item, the relation test is

for the comparison of two index data items.

c. If the control data item is a data item other than as described in

a. and b. above, the relation test is for the comparison of two non­

numeric operands.

A control break for FINAL occurs before the first detail line is printed and

when a TERMINATE statement is executed. A control break occurring at a par­

ticular level implies a control break for each lower level in the control

hierarchy. For example, if this CONTROL clause is used:

CONTROLS ARE MAJ-KEY, INT-KEY, MIN-KEY

and control headings and footings are specified, they will be printed in the

following order, upon a control break on MAJ-KEY:

CONTROL FOOTING (for MIN-KEY)

CONTROL FOOTING (for INT-KEY)

CONTROL FOOTING (for MAJ-KEY)

CONTROL HEADING (for MAJ-KEY)

CONTROL HEADING (for INT-KEY)

CONTROL HEADING (for MIN-KEY)

11-7

PAGE LIMIT

PAGE [LIMIT IS J
LIMITS ARE integer-I [LINE]

LINES

[, HEADING integer-2) [, FIRST DETAll!, integer-3) [, LAST DETAIL
integer-4] [, FOOTING integer-5]

The PAGE LIMIT clause is required when page formatting must be controlled by

the REPORT WRITER. The PAGE LIMIT clause may be omitted when no association
is desired between report groups and the physical format of an output page.

If this clause is omitted, neither a PAGE HEADING nor a PAGE FOOTING can be

declared.

The PAGE clause defines the length of a page and the vertical subdivisions

within which report groups are presented.

The HEADING, FIRST DETAIL, LAST DETAIL and FOOTING phrases may be written in
any order.

Integer-I must not be greater than 255.

Integer-2 must be greater than or equal to 1 (one).

Integer-3 must be greater than or equal to integer-2.

Integer-4 must be greater than or equal to integer-3.

Integer-5 must be greater than or equal to integer-4.

Integer-I must be greater than or equal to integer-5.

The following rules indicate the vertical subdivision of the page in which each
TYPE of report group may appear when the PAGE clause is specified.

11-8

a. A REPORT HEADING report group that is to be presented on a page by

itself, if defined, must be defined such that it can be presented

in the vertical subdivision of the page that extends from the line
number specified by integer-2 to the line number specified by integer­

!, inclusive.

A REPORT HEADING report group that is not to be presented on a page

by itself, if defined, must be defined such that it can be presented

in the vertical subdivision of the page that extends from the line

number specified by integer-2 to the line number specified by integer-

3 minus 1, inclusive.

b. A PAGE HEADING report group, if defined, must be defined such that

it can be presented in the vertical subdivision of the page that

extends from the line number specified by integer-2 to the line

number specified by integer-3 minus 1, inclusive.

c. A CONTROL HEADING or DETAIL report group, if defined, must be defined

such that it can be presented in the vertical subdivision of the page

that extends from the line number specified by integer-3 to the line

number specified by integer-4, inclusive.

d. A CONTROL FOOTING report group, if defined, must be defined such that

it can be presented in the vertical subdivision of the page that ex­

tends from the line number specified by integer-3 to the line number

specified by integer-5, inclusive.

e. A PAGE FOOTING report group, if defined, must be defined such that

it can be presented in the vertical subdivision of the page that ex­

tends from the line number specified by integer-5 plus 1 to the line

number specified by integer-I, inclusive.

f. A REPORT FOOTING report group that is to be presented on a page by

itself, if defined, must be defined such that it can be presented in

the vertical subdivision of the page that extends from the line num­

ber specified by integer-2 to the line number specified by integer-I,

inclusive.

A REPORT FOOTING report group that is not to be presented on a page

by itself, if defined, must be defined such that it can be presented

in the vertical subdivision of the page that extends from the line

number specified by integer-5 plus 1 to the line number specified by

integer-I, inclusive.

All report groups must be described such that they can be presented on one

page. A multi-line report group is never split across p~ge boundaries.

The vertical formlt of a report page is established using the integer values

specified in the PAGE clause.

a. Integer~! defines the size of a report page by specifying the number

of lines available on each page.

b. HEADING integer-2 defines the first line number on which a REPORT

HEADING or PAGE HEADING report group may be presented.

c. FIRST DETAIL integer-3 defines the first line number on which a body

group may be presented. REPORT HEADING and PAGE HEADING report

groups may not be presented on or beyond the line number specified

by integer-3.

11-9

d. LAST DETAIL integer-4 defines the last line number on which a CONTROL
HEADING or DETAIL report group may be presented.

e. FOOTING integer-5 defines the last line number on which a CONTROL

FOOTING report group may be presented. PAGE FOOTING and REPORT FOOTINC
report groups must follow the line number specified by integer-5.

If absolute line spacing is indicated for all report groups, integer-2 thru

integer-5 do not need to be specified. If relative line spacing is indicated

for individual detail report group entries, some or all of the limits must
be defined, depending on the type of report groups within the report, in order

for control of page formatting to be maintained.

If the PAGE clause is specified the following implicit values are assumed for

any omitted phrases:

a. If the HEADING phrase is omitted, a value of one (1) is assumed for

integer-2.

b. If the FIRST DETAIL phrase is omitted, a value equal to integer-2
is given to integer-3.

c. If the LAST DETAIL and the FOOTING phrases are both omitted, the value
of integer-I is given to both integer-4 and integer-5.

d. If the FOOTING phrase is specified and the LAST DETAIL phrase is

omitted, the value of integer-5 is given to integer-4.

e. If the LAST DETAIL phrase is specified and the FOOTING phrase is

omitted, the value of integer-4 is given to integer-5.

If the PAGE clause is omitted, the report consists of a single page of in­

definite length.

Figure 11-1 illustrates page format control of report groups when the PAGE

LIMIT clause is specified.

~ HEADING DETAIL FOOTING
REPORT PAGE CONTROL CONTROL ,.PAGE REPORT

Integer-2 --4-- I --T--I
Integer-3 I

I I I
I I I

Integer-4 I I
I J

Integer-5 I I
I I
I I --1--Integer-I

__ J. __

Figure 11-1. Page Format Control

Absolute line number or absolute NEXT GROUP spacing must be consistent with
controls specified in the PAGE LIMIT clause.

11-10

Page regions that are established by the PAGE clause are described in
figure 11-2.

Report Groups That May Be First Line Number Last Line Number
Presented In The Region Of The Region Of The Region

REPORT HEADING described with NEXT
GROUP NEXT PAGE integer-2 integer-1
REPORT FOOTING described with LINE
integer-1 NEXT PAGE
REPORT HEADING not described with
NEXT GROUP NEXT PAGE integer-2 integer-3

minus 1

PAGE HEADING
CONTROL HEADING integer-2 integer-4
DETAIL
CONTROL FOOTING integer-3 integer-5
PAGE FOOTING

integer-5 integer-1
REPORT FOOTING not described with plus 1
LINE integer-1 NEXT PAGE

Figure 11-2. Page Regions

11-11

SPECIAL COUNTERS

Two special counters are automatically supplied for each report described in
the REPORT SECTION. The special counters are PAGE-COUNTER and LINE-COUNTER.

PAGE-COUNTER

PAGE-COUNTER is the reserved word used to reference a special register that
is automatically created for each report specified in the R~port Section.

In the Report Section, a reference to PAGE-COUNTER can only appear in a SOURCE

clause. Outside of the Report Section, PAGE-COUNTER may be used in any con­
text in which.a data-name of integral value can appear.

If more than one PAGE-COUNTER exists in a program, PAGE-COUNTER must be quali­
fied by a report-name whenever it is referenced in the Procedure Division. In
the Report Section, an unqualified reference to PAGE-COUNTER is implicitly
qualified by the name of the report in which the reference is made; whenever
the PAGE-COUNTER of a different report is referenced, PAGE-COUNTER must be
explicitly qualified by that report-name.

Execution of the INITIATE statement causes the PAGE-COUNTER of the referenced
report to be reset to the value one (1).

PAGE-COUNTER is automatically incremented by one (1) each time a page advance
is executed.

PAGE-COUNTER may be altered by Procedure Division statements. If a starting
value other than one (1) is desired, the contents of PAGE-COUNTER should be
changed following the INITIATE statement for that report.

LINE-COUNTER

LINE-COUNTER is the reserved word used to reference a special register that is
automatically created for each report for which the PAGE LIMIT clause is speci­
fied. If more than one report may have a LINE-COUNTER, then all references to
LINE-COUNTER must be qualified. In the Report Section, an unqualified reference
to LINE-COUNTER is implicitly qualified by the name of the report in which the
reference is made.

In the Report Section, a reference to LINE-COUNTER can only appear in a SOURCE
clause. Outside of the Report Section, LINE-COUNTER may be used in any con­
text in which a data-name of integral value may appear. Changing the LINE­
COUNTER by Procedure Division statements may cause page format control to
become unpredictable.

Execution of an INITIATE statement causes the LINE-COUNTER for that report to

be reset to zero (0). LINE-COUNTER is also reset to zero (0) each time a page
advance is executed for the associated report.

11-12

After a report group is printed, LINE-COUNTER contains the line number on which

the last line of the report group was printed unless the report group specifies
the NEXT GROUP clause in which case LINE-COUNTER will contain zero (0) if NEXT
PAGE was specified or the line number specified.

For further information on line number positioning, see the LINE NUMBER and
NEXT GROUP clauses.

11-13

REPORT GROUP DESCRIPTIONS

Following each report description RD entry are one or more report groups.
Each group describes one or more print lines related to a specific function in
producing a report. A report group is described by a hierarchial data struc­
ture similar to record descriptions in the other sections of the DATA DIVISION.

Option 1:

01 data-name-1 library-name

[El!QM sequence-number] [{=UGH} sequence-number]

[REPLACING word-1 BY text-1 [, word-2 Jll. text-2] •••] •

Option 2:

01 (da ta-name-1]

[; i..llil NUMBER IS

[; .!Im GROUP IS

.ml IS

[; (VSAGE IS)

11-14

{integer-1 ON NEXT-™}]
~ integer-2

linteger-3)]
~ integer-4
1i1XI PAGE

l.:P!lRT HEADUG)

[~ HEAD.ING)

l~NTROL BEADING!

l~AIH)

l~NTROL FQOTINq)

!PAGE FQQTING

.l?E.)
[~EPORT FQOTI!Kl)

{DISPLAY }]
DISPLAY-1 •

ldata-name-2]
FINAL

Ida ta-name-3)
FINAL

Option 3:

level-number (data-name-I]

['
• r TME NUMBER IS finteger-1 [ON NEXT PAGE] }]
~ lRl..lm integer-2

[] {DISPLAY }]
; (USAGE IS DISPLAY-!

Option 4:

level number [data-name-1]

(; BLANK WHEN ZERO)

(; COLUMN NUMBER IS . integer-3)

(; GROUP INDICATE)

[·{JUSTIFIED} RIGHT]
' JUST

[IS {integer-! ON ffEXT PAGE}] ; 11.!'i! NUMBER ~ integer-2

;{;igTURE} IS character-string

·,SOURCE IS { TODAXS-DATE }
-- identifier-!

{;.!!!! identifier-2 [, identifier-3]

[!l3lli data-name-2 (, data-name-3) ...] } ...
[. {FINAL 1]
RESET ON data-name-41

d*LUE} IS literal-!

The Report Group Description entry can appear only in the Report Section.

Except for the data-name clause, which when present must immediately follow
the level-number, the clauses may be written in any sequence.

In all formats above, integers must be greater than zero.

11-15

Level-number in option 3 may be any integer from 02 to 48 inclusive. Level­
number in option 4 may be any integer from 02 to 49 inclusive.

The description of a report group may consist of one, two or three hierarchic
levels. The first entry of a report group must be an option 2 entry. An

option 3 entry describes a single line of the report group and must be fol­
lowed immediately by option 4 entries describing the printable items for the
line. Option 4 entries, in addition to describing a single printable item
of a line, may also be used to describe a line which contains only one print­
able item.

An entry that contains a LINE NUMBER clause must not have a subordinate entry
that also contains a LINE NUMBER clause.

Data-name-1 of an option 2 entry may be referenced only by a GENERATE state­

ment, the UPON phrase of a SUM clause, a USE BEFORE REPORTING sentence or as

a sum counter qualifier. Data-name-I is required in an option 2 entry only
when:

a. A DETAIL report group is referenced by a GENERATE statement,
b. A DETAIL report group is referenced by the UPON phrase of a SUM .

clause,
c. A report group is referenced in a USE BEFORE REPORTING sentence,

d. The name of a CONTROL FOOTING report group is used to qualify a
reference to a sum counter.

In an option 3 entry, data-name-I is optional. If present, it may be used

only to qualify a sum counter reference. An option 3 entry must contain at

least one of the optional clauses.

In an option 4 entry:

11-16

a. A GROUP INDICATE clause may appear only in a TYPE DETAIL report

group.
b. A SUM clause may appear only in a TYPE CONTROL FOOTING report group.
c. An entry that contains a COLUMN NUMBER clause but no LINE NUMBER

clause must be subordinate to an entry that contains a LINE NUMBER

clause.
d. Data-name-1 is optional and may be referenced only if the entry de­

fines a SUM counter.

e. A LINE-NUMBER clause must not be the only clause specified.
f. An entry that contains a VALUE clause must also have a COLUMN NUMBER

clause.

Figure 11-3 shows all permissible clause combinations for an option 4 entry.

The table is read from left to right along the selected row.

An "M" indicates that the presence of the clause is mandatory.

A "P" indicates that the presence of the clause is permitted, but not required.

A blank indicates that the clause is not permitted.

PIC

M

M

M

M

M

BLANK GROUP COLUMN SOURCE SUM VALUE JUST WHEN INDICATE USAGE
ZERO

M

M M p p

p M p p p

p M p p p

M M p p p

Figure 11-3. Permissible Clause Combinations in Option 3
Report Group Description Entries

LINE

p

p

p

p

p

The JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses are described in Section 6.

11-17

COLUMN NUMBER

The COLUMN NUMBER clause identifies a printable item and specifies the column

number position of the item on the print line.

COLUMN NUMBER IS integer-6

The COLUMN NUMBER clause can only be specified at the elementary level. When
this clause is used, it should appear in or be subordinate to an entry that
contains a LINE NUMBER clause.

Integer-6 must be greater than zero. Integer-6 specifies the leftmost char­
acter position of the printable item. Within a given print line, printable
items mus~ be defined in ascending column number order such that each char­
acter defined occupies a unique position.

The COLUMN NUMBER clause indicates that the object of a SOURCE clause or the
object of a VALUE clause or the sum counter defined by a SUM clause is to be
printed with its leftmost character position indicated by integer-6.

The first or leftmost character of a print line is column number 1.

The absence of a COLUMN NUMBER clause indicates that the entry is not to be
printed.

Space characters are automatically provided for all positions of a print line

which are not occupied by printable items.

11-18

GROUP INDICATE

The GROUP INDICATE clause indicates that this elementary item is to be produced
only on the first occurrence of the item after any control or page break.

GROUP INDICATE

The GROUP INDICATE clause may only appear in a DETAIL report group at the
elementary item level within an entry that defines a printable item.

If a GROUP INDICATE clause is specified, it causes the SOURCE or VALUE clauses
to be ignored and spaces provided except:

a. On the first printing of the DETAIL report group in the report or

b. On the first printing of the DETAIL report group after a page ad-
vance, or

c. On the first printing of the DETAIL report group after every control
break.

If the report description entry specifies neither a PAGE clause nor a CONTROL

clause, then a GROUP INDICATE printable item is printed the first time its
DETAIL is printed after the INITIATE statement is executed. Thereafter,
spaces are supplied for indicated items with SOURCE or VALUE clauses.

11-19

LINE NUMBER

The LINE NUMBER ciause specifies vertical positioning information for its re­
port group.

.LJB! NUMBER IS !integer-I
~ integer-2

Integer-I and integer-2 must not exceed three significant digits in length.

Neither integer-1 nor integer-2 may be specified in such a way as to cause any

line of a report group to be presented outside of the vertical subdivision of
the page designated for that report group type, as defined by the PAGE claus~.

Within a given Report Group Description entry, an entry that contains a LINE
NUMBER clause must not contain a subordinate entry that also contains a LINE
NUMBER clause.

Within a given Report Group Description entry, all absolute LINE NUMBER clauses
must precede all relative LINE NUMBER clauses.

Within a given Report Group Description entry, successive absolute LINE NUM­
BER clauses must specify integers that are in ascending order. The integers
need not be consecutive.

If the PAGE clause is omitted from a given Report Group Description entry,
only relative LINE NUMBER clauses can be specified in any Report Group De­
scription entry within that report.

Within a given Report Group Description entry a NEXT PAGE phrase can appear

only once and, if present, must be in the first LINE NUMBER clause in that
Report Group Description entry. A LINE NUMBER clause with the NEXT PAGE

phrase can appear only in the description of body groups and in a REPORT FOOT­
ING report group.

Every entry that defines a printable item must either contain a LINE NUMBER
clause, or be subordinate to an entry that contains a LINE NUMBER clause.

The first LINE NUMBER clause specified within a PAGE FOOTING report group
must be an absolute LINE NUMBER clause.

A LINE NUMBER clause must be specified to establish each print line of a re­
port group.

The vertical positioning specified by a LINE NUMBER clause occurs before
printing the line established by that LINE NUMBER clause.

11-20

Integer-1 specifies an absolute line number. An absolute line number speci­

fies the line number on which the print line is printed.

Integer-2 specifies a relative line number. If a relative LINE NUMBER clause

is specified then the line number on which its print line is printed is de­

termined by calculating the sum of the line number on which the previous print
line of the report group was printed and integer-2 of the relative LINE NUMBER

clause.

The NEXT PAGE phrase specifies that the report group is to be presented be­

ginning on the indicated line number on a new page.

11-21

NEXT GROUP

The NEXT GROUP clause specifies information for vertical positioning of a page
following the presentation of the last line of a report group.

A report group entry must not contain a NEXT GROUP clause unless the descrip­

tion of that report group contains at least one LINE NUMBER clause.

Integer-1 and integer-2 must not exceed the value 255.

If the PAGE clause is omitted from the Report Description entry only a relative
NEXT GROUP clause may be specified in any Report Group Description entry with­

in that report.

The NEXT PAGE phrase of the NEXT GROUP clause must not be specified in a PAGE

FOOTING report group.

The NEXT GROUP clause must not be specified in a REPORT FOOTING report group

or in a PAGE HEADING report group.

Any positioning of the page specified by the NEXT GROUP clause takes place

after the printing of the report group in which the clause appears.

The vertical positioning information supplied by the NEXT GROUP clause is
interpreted along with information from the TYPE and PAGE clauses, and the

value in LINE-COUNTER, to determine a new value for LINE-COUNTER.

The NEXT GROUP clause is ignored when it is specified on a CONTROL FOOTING
report group that is at a level other than the highest level at which a con­

trol break is detected.

The NEXT GROUP clause of a body group refers to the next body group to be
printed, and therefore can affect the location at which the next body group

is printed. The NEXT GROUP clause of a REPORT HEADING report group can af­

fect the location at which the PAGE HEADING report group is printed. The
NEXT GROUP clause of a PAGE FOOTING report group can affect the location at
which the REPORT FOOTING report group is printed.

11-22

SOURCE

The SOURCE clause identifies the sending data item that is moved to an as­

sociated printable item defined within a Report Group Description entry.

SOURCE IS {TODAYS-DATE }
identifier-I

Identifier-I may be defined in any section of the Data Division. If identifier-

1 is a Report Section item it can only be:

a. PAGE-COUNTER, or

b. LINE-COUNTER, or

c. A sum counter of the report within which the SOURCE clause appears.

Identifier-I specifies the sending data item of the implicit MOVE statement

executed to move identifier-I to the printable item. Identifier-I must be

defined such that it conforms to the rules for sending items in the MOVE

statement. Identifier-I may be any special register, attribute, intrinsic

function or identifier.

The print lines of a report group are formatted just prior to presenting the

report group. It is at this time that the implicit MOVE statements specified

by SOURCE clauses are executed.

11-23

SUM

The SUM clause establishes a sum counter and names the data items to be summed.

{sUM identifier-I [, identifier-2]

[uPON data-name-1 [, data-name-2]

[RESET ON { data-name-3 }]
FINAL

. . .
. . .] } . . .

Identifier-I and identifier-2 must be defined as numeric data items. When

defined in the Report Section, identifier-I and identifier-2 must be the names
of sum counters. If the UPON phrase is omitted, any identifiers in the as­

sociated SUM clause which are themselves sum counters must be defined either

in the same report group that contains this SUM clause or in a report group

which is at a lower level in the control hierarchy of this report. If the

UPON phrase is specified, any identifiers in the associated SUM clause must

not be sum counters.

Data-name-I and data-name-2 must be the names of DETAIL report groups de­

scribed in the same report as the CONTROL FOOTING report group in which the

SUM clause appears. Data-name-I and data-name-2 may be qualified by a report­

name.

A SUM clause can appear only in the description of a CONTROL FOOTING report

group.

Data-name-3 must be one of the data-names specified in the CONTROL clause for

this report. Data-name-3 must not be a lower level control than the asso­

ciated control for the report group in which the RESET phrase appears.

FINAL, if specified in the RESET phrase, must also appear in the CONTROL
clause for this report.

The highest permissible qualifier of a sum counter is the report-name.

The SUM clause establishes a sum counter. The sum counter is a numeric data

item with an operational sign. At object time each of the values identifier-

1, identifier-2 ••• is added directly into the sum counter. This addition

is performed under the rules of the ADD statement.

The size of the sum counter is equal to the number of receiving character po­

sitions specified by the PICTURE clause that accompanies the SUM clause in the

description of the elementary item.

11-24

Only one sum counter exists for an elementary report entry regardless of the

number of SUM clauses specified in the elementary report entry.

If the elementary report entry for a printable item contains a SUM clause, the

sum counter serves as a source data item. The data contained in the sum

counter, is moved according to the rules of the MOVE statement, to the print­

able item for printing.

If the data-name appears as the subject of an elementary report entry that

contains a SUM clause, the data-name is the name of the sum counter; the data­

name is not the name of the printable item that the entry may also define.

It is permissible for Procedure Division statements to alter the contents of

sum counters.

Addition of the identifiers into sum counters is performed during the execution

of GENERATE and TERMINATE statements. There are three categories of sum

counter ·incrementing called subtotalling, crossfooting, and rolling forward.

Subtotalling is accomplished during execution of GENERATE statements only,

after any control break processing but before processing of the DETAIL re-

port group. Crossfooting and rolling forward are accomplished during the

processing of CONTROL FOOTING report groups.

The UPON phrase provides the capability to accomplish selective subtotalling

for the DETAIL report groups named in the phrase.

Each individual addend is added into the sum counter at a time that depends

upon the characteristics of the addend.

a. When the addend is a sum counter defined in the same CONTROL FOOTING

report group, then the accumulation of that addend into the sum

counter is termed crossfooting. Crossfooting occurs when a control

break takes place and at the time the CONTROL FOOTING report group

is processed. Crossfooting is performed according to the sequence

in which sum counters are defined within the CONTROL FOOTING report

group. That is, all crossfooting into the first sum counter defined

in the CONTROL FOOTING report group is completed, and then all cross­

footing into the second sum counter defined in the CONTROL FOOTING

report group is completed. This procedure is repeated until all

cross-footing operations are completed.

11-25

b. When the addend is a sum counter defined in a lower level CONTROL

FOOTING report group, then the accumulation of that addend into the

sum counter is termed rolling forward. A sum counter in a lower level

CONTROL FOOTING report group is rolled forward when a control break

occurs and at the time that the lower level CONTROL FOOTING report

group is processed.

c. When the addend is not a sum counter the accumulation into a sum

counter of such an addend is called subtotalling. If the SUM clause

contains the UPON phrase, the addends are subtotalled when a GENERATE

statement for the designated DETAIL report group is executed. If

the SUM clause does not contain the UPON phrase, the addends which

are not sum counters are subtotalled when any GENERATE data-name

statement is executed for the report in which the SUM clause appears.

If two or more of the identifiers specify the same addend, then the addend

is added into the sum counter as many times as the addend is referenced in

the SUM clause. It is permissible for two or more of the data-names to specify

the same DETAIL report group. When a GENERATE data-name statement for such a

DETAIL report group is given, the incrementing occurs repeatedly, as many

times as data-name appears in the UPON phrase.

In the absence of an explicit RESET phrase, a sum counter will be set to zero

at the time of processing the CONTROL FOOTING report group within which the

sum counter is defined. If an explicit RESET phrase is specified, then the

sum counter is set to zero at the time of processing the designated level of

the control hierarchy. Sum counters are initially set to zero during the

execution of the INITIATE statement for the report containing the sum counter.

11-26

TYPE

The TYPE clause specifies the particular type of report group that is described

by this entry and indicates the time at which the report group is to be pro­

cessed.

{ :PORT HEADING}

{~~GE HEADING}

{ CONTROL HEADING}
CH

{ CONTROL FOOTING}
CF

{ PAGE FOOTING}
PF ,

{ :,roRT FOOTING}

{data-name-I}
FINAL

{ data -name-2}
FINAL

REPORT HEADING, PAGE HEADING, CONTROL HEADING FINAL, CONTROL FOOTING FINAL,
PAGE FOOTING, and REPORT FOOTING report groups may each appear no more than

once in the description of a report.

PAGE HEADING and PAGE FOOTING report groups may be specified only if a PAGE
clause is specified in the corresponding Report Description entry.

Data-name-I, data-name-2 and FINAL, if present, must be specified in the
CONTROL clause of the corresponding Report Description entry. At most, one
CONTROL HEADING report group and one CONTROL FOOTING report group can be speci­
fied for each data-name or FINAL in the CONTROL clause of the Report Descrip­
tion entry. However, neither a CONTROL HEADING report group nor a CONTROL
FOOTING report group is required for a data-name or FINAL specified in the
CONTROL clause of the Report Description entry.

11-27

In CONTROL FOOTING, PAGE HEADING, PAGE FOOTING, and REPORT FOOTING report
groups, SOURCE clauses and USE statements must not reference any of the
following:

a. Group data items containing a control data item.
b. Data items subordinate to a control data item.
c.. A redefinition or renaming of any part of a control data item.

In PAGE HEADING and PAGE FOOTING report groups, SOURCE clauses and USE
statements must not reference control data-names.

When a GENERATE report-name statement is specified in the Procedure Division,
the corresponding Report Description entry must include no more than one DE­
TAIL report group. If no GENERATE data-name statements are specified for such

a report, a DETAIL report group is not required.

The description of a report must include at least one body group.

DETAIL report groups are processed as a direct result of GENERATE statements.
If a report group is other than TYPE DETAIL, its processing is an automatic

function.

The REPORT HEADING phrase specifies a report group that is processed only once

per report, as the first report group of that report. The &EPORT HEADING
report group is processed during the execution of the chronologically first
GENERATE statement for that report.

The PAGE HEADING phrase specifies a report group that is processed as the first
report group on each page of that report except under the following condi­

tions:

11-28

a. A PAGE HEADING report group is not processed on a page that is to
contain only a REPORT HEADING report group or only a REPORT FOOTING
report group.

b. A PAGE HEADING report group is processed as the second report group

on a page when it is preceded by a REPORT HEADING report group that
is not 'to be printed on a page by itself.

The CONTROL HEADING phrase specifies a report group that is processed at the

beginning of a control group for a designated control data-name or, in the case

of FINAL, is processed during the execution of the chronologically first

GENERATE statement for that report. During the execution of any GENERATE

statement at which a control break is detected, any CONTROL HEADING report

groups associated with the highest control level of the break and lower levels
are processed.

The DETAIL phrase specifies a report group that is processed when a correspond­

ing GENERATE statement is executed.

The CONTROL FOOTING phrase specifies a report group that is processed at the

end of a control group for a designated control data-name. In the case of
FINAL, the CONTROL FOOTING report group is processed only once per report

as the last body group of that report. During the execution of any GENERATE

statement in which a control break is detected, any CONTROL FOOTING report

group associated with the highest level of the control break or more minor

levels is printed. All CONTROL FOOTING report groups are printed during

the execution of the TERMINATE statement if there has been at least one

GENERATE statement executed for the report.

The PAGE FOOTING phrase specifies a report group that is processed as the last

report group on each page except under the following conditions:

a. A PAGE FOOTING report group is not processed on a page that is to

contain only a REPORT HEADING report group or only a REPORT FOOTING
report group.

b. A PAGE FOOTING report group is processed as the second to last report

group on a page when it is followed by a REPORT FOOTING report group

that is not to be processed on a page by itself.

The REPORT FOOTING phrase specifies a report group that is processed only once

per report as the last report group of that report. The REPORT FOOTING re­

port group is processed during the execution of a corresponding TERMINATE

statement, if there has been at least one GENERATE statement executed for the

report.

.11-29

The sequence of steps executed when a REPORT HEADING, PAGE HEADING, CONTROL
HEADING, PAGE FOOTING, or REPORT FOOTING report group is processed is de­
scribed below.

a. If there is a USE BEFORE REPORTING procedure that references the data­
name of the report group, the USE procedure is executed.

b. If the report group is not printable, there is no further processing

to be done for the report group.
c. Otherwise, the print lines are formatted and printed according to

the rules for that type of report group.

The sequence of steps executed when a CONTROL FOOTING report group is processed
is described below.

The GENERATE rules specify that when a control break occurs, the CONTROL
FOOTING report groups beginning at the minor level, and proceeding upwards

are processed through the level at which the highest control break was sensed.
In this regard, it should be noted that even though no CONTROL FOOTING report
group has been defined for a given control data-name, the step described in
paragraph (f) below will still be executed if a RESET phrase within the report
description specifies that control data-name.

a. Sum counters are crossfooted, i.e., all sum counters defined in this

report group that are operands of SUM clauses in the same report
group are added to their sum counters.

b. Sum counters are rolled forward, i.e., all sum counters defined in
the report group that are operands of SUM clauses in higher level

CONTROL FOOTING report groups are added to the higher level sum
counters.

c. If there is a USE BEFORE REPORTING procedure that references the
data-name of the report group, the USE procedure is executed.

d. If the report group is not printable, the step described in paragraph
(f) is executed next.

e. Otherwise, the print lines are formatted and the report group is
printed according to the rules for CONTROL FOOTING report groups.

f. Then those sum counters that are to be reset when processing this

level in the control hierarchy are reset.

The DETAIL report group processing that is executed in response to a GENERATE
data-name statement is described in paragraphs (a) thru (e) below.

11-30

When the description of a report includes exactly one DETAIL report group, the
detail-related processing that is executed in response to a GENERATE report­
name statement is described in paragraph (a) thru paragraph (d) below. These
steps are performed as though a GENERATE data-name statement were being exe­

cuted.

When the description of a report includes no DETAIL report groups, the detail­
related processing that is executed in response to a GENERATE report-name
statement is described in paragraph (a) below. This step is performed as
though the description of the report included exactly one DETAIL report group,

and a GENERATE data-name statement were being executed.

a. Any subtotalling is performed that has been designated for the

DETAIL report group.
b. If there is a USE BEFORE REPORTING procedure that refers to the

data-name of the report group, the USE procedure is executed.
c. If the report group is not printable there is no further processing

done for the report group.
d. If the DETAIL report group is being processed as a consequence of a

GENERATE report-name statement, there is no further processing done
for the report group.

e. Otherwise, the print lines are formatted and the report group
printed according to the rules for DETAIL report groups.

When a CONTROL HEADING, CONTROL FOOTING, or DETAIL report is being processed,
as previously described, processing of that body group may have to be inter­
rupted after determining that the body group is to be printed, and execute a

page advance (and process PAGE FOOTING and PAGE HEADING report groups) before
actually printing the body group.

During control break processing, the values of control data items used to
detect a given control break are referred to as prior values.

a. During control break processing of a CONTROL FOOTING report group,

any references to control data items in a USE procedure or SOURCE
clause associated with that CONTROL FOOTING report group are supplied

with prior values.
b. When a TERMINATE statement is executed, the prior control data item

values are made available to SOURCE clause or USE procedure refer­
ences in CONTROL FOOTING and REPORT FOOTING report groups as though
a control break had been detected in the highest control data-name.

11-31

c. All other data item references within report groups and their USE
procedures access the current values that are contained within the

data items at the time the report group is processed.

11-32

USAGE

[USAGE rs] {DISPLAY }
DISPLAY-I

The USAGE clause may be used at either the 01 or elementary level; however,

the USAGE of all report groups and their elementary items must be the same

as the USAGE of the file on which the report will be written. (See Section 6

for additional information.)

11-33

VALUE

The VALUE clause defines the value of Report Section printable items.

VALVE IS literal

See Section 6 for a discussion of the VALUE clause. Only option 1 of the

VALUE clause is permitted in the Report Section.

11-34

PROCEDURE DIVISION

INITIATE

The INITIATE statement begins processing of a report. The format is as

follows:

INITIATE report-name..;,l [, report-name-2]

Each report-name must be defined by a report description entry in the REPORT

SECTION of the DATA DIVISION.

The INITIATE statement resets all data-name entries that contain SUM clauses

associated with this report.

The PAGE-COUNTER register, if specified, is set to one (1) during the execu­

tion of the INITIATE STATEMENT. If a different starting value for the

associated PAGE-COUNTER other than (1) is desired, the programmer may reset
the counter after the completion of the execution of the INITIATE statement.

The LINE-COUNTER register, if specified, is set to zero prior to or during

the execution of the INITIATE statement.

The INITIATE statement does not open the file with which the report is asso­
ciated; however, the associated file must be open at the time the INITIATE

statement is executed.

A second INITIATE for a particular report-name may not be executed unless a

TERMINATE statement has been executed for that report-name subsequent to the
first INITIATE statement.

11-35

GENERATE

The GENERATE statement links the PROCEDURE DIVISION to the REPORT WRITER
(described in the REPORT SECTION of the DATA DIVISION) at process time. The

statement format is as follows:

GENERATE identifier

Identifier represents a TYPE DETAIL report group or an RD entry.

If identifier represents the name of a TYPE DETAIL report group, the GENERATE
statement does all the automatic operations within the REPORT WRITER and pro­
duces an actual output DETAIL report group, at process time, on the output

medium. This is called detail reporting.

If identifier represents the name of an RD entry, the GENERATE statement does
all the automatic operations of the REPORT WRITER and updates the FOOTING

report group(s) within a particular report description without producing an

actual DETAIL report group associated with the report. In this case, all SUM
counters associated with the report description are algebraically incremented.
This is called summary reporting. For summary reporting, there may be no
more than 1 TYPE DETAIL report group, there must be at least 1 body group,

and the CONTROL clause must be specified for the report.

A GENERATE statement implicitly produces in both detail and summary reporting
the following automatic operations (if defined):

a. Steps and tests LINE-COUNTER and/or PAGE-COUNTER to produce

appropriate PAGE FOOTING and/or PAGE HEADING report groups.

b. Recognizes any specified control breaks to produce appropriate
CONTROL FOOTING and/or CONTROL HEADING reporting groups.

c. Accumulates into the SUM counters all specified identifier(s).
Resets the SUM counters on an associated control break.

Performs an updating procedure between control break levels for
each set of SUM counters.

d. Executes any specified routines defined by a USE statement before

generation of the associated report groups(s).

During the execution of the first GENERATE statement, the following report
groups associated with the report, if specified, are produced in the follow­
ing order:

a. REPORT HEADING report group.

b. PAGE HEADING report group.

11-36

c. All CONTROL HEADING report groups in the following order: final,

major, minor.
d. The DETAIL report group, if specified in the GENERATE statement.

If a control break is recognized at the time of execution of a GENERATE state­
ment (other than the first executed for a report), all CONTROL FOOTING report

groups specified for the report are produced from the minor report group, up

to and including the report group specified for the identifier which caused

the control break. Next, the CONTROL HEADING report group(s) specified for
the report, from the report group specified for the identifier that caused the

control breakdown to the minor report group, are produced in that order. The

DETAIL report group specified in the GENERATE statement is then produced.

Data is moved to the data item in the report group description entry of the
REPORT section. This data is edited under control of the REPORT WRITER, ac­
cording to the same rules for movement and editing as described for the MOVE

statement.

GENERATE statements for a report can be executed only after an INITIATE state­

ment for the report has been executed and before a TERMINATE statement for the
report has been executed.

11-37

TERMINATE

The TERMINATE statement terminates the processing of a report. The statement
format is as follows:

TERMINATE report-name-1 [, report-name-2]

Each report-name given in a TERMINATE statement must be defined by an RD entry
in the REPORT SECTION of the DATA DIVISION.

The TERMINATE statement produces all the CONTROL FOOTING groups associated with
this report as if a control break had just occurred at the highest level, and

completes the REPORT WRITER functions for the named reports. The TERMINATE
statement also produces the last PAGE FOOTING and the REPORT FOOTING report

groups associated with this report.

If no GENERATE statements have been executed for a report during the interval

between the execution of an INITIATE statement and a TERMINATE statement for
the same report, associated FOOTING groups will not be produced.

Appropriate PAGE HEADING and/or PAGE FOOTING report groups are prepared in

their respective order for the report description.

A second TERMINATE for a particular report may not be executed unless a
second INITIATE statement has been executed for a report-name. If a TERMINATE

statement has been executed for a report, a GENERATE statement for that re­
port must not be executed unless an intervening INITIATE statement for that
report is executed.

The TERMINATE statement does not close the file with which the report is

associated; a CLOSE statement for the file must be given by the user. How­
ever, the associated file must be open at the timethe TERMINATE statement
is executed. The TERMINATE statement performs REPORT WRITER functions for

individually described reports analogous to the input/output functions that
the CLOSE statement performs for individually described files.

SOURCE clauses used in the CONTROL FOOTING FINAL or REPORT FOOTING report
groups refer to the values of the items at the execution time of the TERMINATE

statement.

11-38

USE

A special format of the USE statement may be used to specify PROCEDURE DIVISION
statements to be executed just before a report group named in the REPORT

SECTION of the DATA DIVISION is produced. The statement format is as follows:

USE BEFORE REPORTING identifier-I

A USE statement, when present, must immediately follow a section header in
the DECLARATIVE portion of the PROCEDURE DIVISION and must be followed by a

period followed by a space. The remainder of the section must consist of
one or more procedural paragraphs that define the procedures to be used.

Identifier-I represents a report group named in the REPORT SECTION of the

DATA DIVISION. An identifier must not appear in more than one USE statement.

No REPORT WRITER statement (GENERATE, INITIATE, OR TERMINATE) may be written
in a procedural paragraph or paragraphs following the USE sentence in the

DECLARATIVE portion.

The USE statement itself is never executed; rather, it defines the conditions

calling for the execution of the USE procedures.

The designated procedures are executed by the REPORT WRITER just before the
named report group is produced, regardless of control break associations

with report groups.

A USE BEFORE REPORTING must not alter the value of any control data item.

SAMPLE REPORT WRITER PROGRAM

The following pages present a sample of a program which uses the report
writer feature.

Figure 11-4 is a sample report. The numbers on the far right hand side

indicate the report group type which caused the line to be printed as

follows:

1. Report heading 5. Control footing DAYY

2. Page heading 6. Control footing MONTH
3. Detail 7. Page footing
4. Control footing GRADE 8. Report footing

Figure 11-~ shows the program used to prepare the report and also has

numbers at the far right hand side in the same manner as on the sample report.

11-39

11-40

_12345678901234567890121456789012345~7890123456789012345678901234567890

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

26 M '*Mi,Of lw.I
27
28
29
30
31
32
33
34
3.5
36 IAB~ENlcEls FIQIR
37 iOE M~!M~MMMlif!Ml~dMIM
38
39
40
41
42
43
44

47
48
49
50
51
52
53
54
55
56

SEPT 7

SEfITEMBER

7

9-07

9-11Qi
l!f Ml~dMIMMIKIMIM MIMIMIMIMM

S~[!ll:.I 11gj

9 -1lg_

* * *

IQo

lolokl

1no~

*

Figure 11-4. Sample Report Writer Report

1bl

1 11
11

15

114121

~Iii lul IA

[Q1

11215

IBIE IP"1 R Tl- P~G 1-1
J

12345678901234567890123456789012345678901234567890123456789012

-(6 ,...., .L-
E~

H ~
I! Ll 3

4

IEIS1 © ~ 1--1
6
7

~A ME 8
9

~u !SIT I s '4 10
~! ~~ D lnlN It.I IDI ©~ .ll-MIO! u~ M IC IK IYl ~
~I ID~I 1 INIG ~N D RI l1 j_J H 13

~~
~ H ~ wn N~ s ~SI .,!!..

~JA !! F L. I &
i-llL

w~ iJ!.-~ ON~ D IAIN I L ~
EIA IGI ~ R D· l1

_,
I l-t-1 i!!-©H ~

H ~
"' ©...., ~ I I!; ·•~I lN GE ~ IOI a H ~

~ M~M M IMIM IHIM M~ tt~I btbel IMM ~M MM l*IM btM *~* lll 26
J~ FF EE J IQJH~ ©H ~ LU BAI s c~ D AJN I L 3 t-1 ~
"""' IUI J ubl'(J lot! l±f 29

30

~ j\3 [
iR c[QJ D~ t '41G ~N K ~~ M IN 32

e~ ~)~ ~
R I ~E ~

·~
l.&lal ~I tfiC IEIS I 2 ©~ ~

* .L.J. 37

-~·
lalit l&INIDI J t\S E PH 38

Mit (!,,J s1 tr~ ·~ s NbR A G}-~ IPIE I!! t! P'4 B l!l!l! I-+- 40
IODI DI ING TlnN K IM II RLIY'

~
~

H ~
I H ~ F'i
~ tM BS ENI CIES 16 ®E ~ M l..J M I I 46

© ·-I ~
48
49
50
51

L5_2
53

7 ., ~ 01 tll.
8 Jj 56, -

11-41

001000 IDENTIFICATION DIVISION.
001100 PROGRAM-ID. FED-SCHOOL-SYSTEM, FRB-NY; BERKOWITZ.
001200 ENVIRONMENT DIVISION.
001300 INPUT-OUTPUT SECTION.
001400 FILE-CONTROL.
001500 SELECT PENNI ASSIGN TO SORT DISK.
001600 SELECT INFILE ASSIGN TO CARD-READER.
001700 SELECT REPORTFILE ASSIGN TO PRINTER.
001800 DATA DIVISION.
001900 FILE SECTION.
002000 FD INFILE
002100 SD PENNI.
002200 02 FILLER
002300 02 STUDENT.

OJ IN-REC SZ 80.
01 FROMM.

PICTURE XX.

002400 03 NAME-L P CTURE X(JO).
002500 03 NAME-F P CTURE X(lO).
002600 02 FILLER P CTURE XX.
002700 02 GRADE P CTURE 99.
002800 02 FILLER P CTURE XX.
002900 02 ROOM P CTURE 999.
003000 02 FILLER P CTURE 99.
003100 02 MONTH P CTURE 99.
003200 02 DAVY P CTURE 99.
003300 02 YR P CTURE 99.
003400 02 FILLER P CTURE X(20).
003500 02 TAL P CTURE 9.
003600 FD REPORTFILE REPORT IS ABS-REPORT.
003700 WORKING-STORAGE SECTION.
003800 77 SAVED-MONTH PICTURE 99 VALUE IS 0.
003900 77 CONTINUED PICTURE X(ll) VALUE IS SPACE.
004000 77 ABSS PI C X (8) VALUE ''ABSENCES".
004100 77 CA PIC X(l9) VALUE "CUMULATIVE ABSENCES".
004200 77 TAL-CTR COMP-1 PIC 9999.
004300 OJ HEAD-I.
004400 02 FILLER PIC X(24) VALUE SPACES.
004500 02 HEAD-LINE PIC X(72) VALUE "MONTH
004600- 11 GRADE ROOM NAME".
004700 02 FILLER PIC X(36) VALUE SPACES.
004800 01 MONTH-TABLE.
004900 02 MONTH-I.
005000 03 FILLER PICTURE A(9) VALUE
005100 03 FILLER PICTURE A(9) VALUE
005200 03 FILLER PICTURE A(9) VALUE
005300 03 FILLER PICTURE A(9) VALUE
005400 03 FILLER PICTURE A(9) VALUE
005500 03 FILLER PICTURE A(9) VALUE
005600 03 FILLER PICTURE A(9) VALUE
005700 03 FILLER PICTURE A(9) VALUE
005800 03 FILLER PICTURE A(9) VALUE
005900 03 FILLER PICTURE A(9) VALUE
006000 03 FILLER PICTURE A(9) VALUE
006100 03 FILLER PICTURE A(9) VALUE
006200 03 FILLER PICTURE A(9) VALUE

Is ''JANUARY 11

IS "FEBRUARY II

IS "MARCH II

Is "APRIL 11

Is "MAY II

Is "JUNE II

Is "JUL y II

I s "AUG UST II

IS "SEPTEMBER".
IS "OCTOBER 11 •

IS "NOVEMBER".
IS "DECEMBER".
SPACES.

DAY

006300 02 MONTH-2 REDEFINES MONTH-I.
006400 03 MONTHNAME P(CrURE A(9) OCCURS 13 TIMES.

Figure 11-5. Sample Report Writer Program

11-42

006500 REPORT SECTION.
006600 RD
006700
006800
006900 01
007000
007100
007200 01
007300
007400
007500
007600
007700
007800
007900
008000
008100
008200 01
008300
008400
008500
008600
008700
008800
008900
009000
009100 01
009200
009300
009400 01
009500
009600
009700
009800
009900
010000
010100
010200
010300
010400 01
010500
010600
010700
010800
010900
011000
011100 01
011200
.011300
011400 01
011500
011600

ABS-REPORT CONTROLS ARE FINAL, MONTH, DAVY, GRADE
PAGE LIMIT IS 56 LINES HEADING 2
FIRST DETAIL 10 LAST DETAIL 45 FOOTING 55.
TYPE IS REPORT HEADING.
02 LINE NUMBER IS 2 COLUMN 57 PIC X(17)

VALUE "FED SCHOOL SYSTEM".
PAGE-HEAD TYPE IS PAGE HEADING.
02 LINE NUMBER IS 3 COLUMN 52 PIC X(26).

VALUF "STUDENT ABSENTEISM REPORT".
02 LIN~ NUMBER IS 6.

03 COLUMN IS 56 PIC X(9)
SOURCE IS MONTHNAME OF MONTH-2(MONTH).

03 COLUMN JS 66 PIC X(8) SOURCE IS ABSS.
03 COLUMN IS 76 PIC X(ll) SOURCE IS CONTINUED.

02 LINE IS 8.
03 COLUMN JS I PIC X(132) SOURCE HEAD-1.

DETAIL-LINE TYPE IS DETAIL LINE NUMBER IS PLUS 1.
02 COLUMN IS 24 GROUP INDICATE PIC X(9)

SOURCE IS MONTHNAME OF MONTH-2(MONTH).
02 COLUMN IS 41 GROUP INDICATE PICTURE IS 99

SOURCE IS DAVY.
02 COLUMN IS 54 GROUP INDICATE PIC 99 SOURCE IS GRADE.
02 COLUMN IS 67 PIC 999 SOURCE JS ROOM.
02 COLUMN IS 80 PIC X(20) SOURCE IS NAME-L.
02 COLUMN IS 101 PIC X(IO) SOURCE JS NAME-F.
TYPE IS CONTROL FOOTING GRADE.
02 LINE NUMBER IS PLUS 2.

03 COLUMN 1 PIC X(132) VALUE SPACE.
TESTER TYPE IS CONTROL FOOTING DAVY.
02 LINE NUMBER IS PLUS 2.

03 COLUMN 2 PI C X (12) VA "ABSENCES FOR11 •

03 COLUMN 24 PICTURE Z9 SOURCE SAVED-MONTH.
03 COLUMN 26 PICTURE X VALUE 11 - 11 •

03 COLUMN 27 PICTURE 99 SOURCE DAVY.
03 NO-ABS COLUMN 49 PIC 999 SUM TAL.
03 COLUMN 65 PIC X(l9) SOURCE CA.
03 COLUMN 85 PIC 999 SUM TAL RESET ON FINAL.

02 LINE PLUS 1 COLUMN 1 PIC X(l32) VA ALL 11*11 •

TYPE CONTROL FOOTING MONTH
LINE PLUS 2 NEXT GROUP NEXT PAGE.
02 COLUMN 16 PIC X(28) VALUE "TOTAL NUMBER OF ABSENCES FOR".
02 COLUMN IS 46 PIC X(9)

SOURCE MONTHNAME OF MONTH-2(SAVED-MONTH).
02 COLUMN 57 PIC XXX VALUE 11WAS 11 •

02 TOT COLUMN 61 PIC 999 SUM NO-ABS.
TYPE PAGE FOOTING LINE 54.
02 COLUMN 59 PICTURE X(l2) VALUE "REPORT-PAGE-".
02 COLUMN 71 PICTURE 99 SOURCE PAGE-COUNTER.
TYPE REPORT FOOTING.
02 LINE PLUS 1 COLUMN 32 PICTURE A(l3)

VALUE "END OF REPORT".

0
@

11-43

011700 PROCEDURE DtVlSLON.
011800 DECLARATtVES.
011900 PAGE-HEAD-RTN SECTlON.
012000 USE BEFORE REPORTlNG PAGE•HEAD.
012100 TEST-CONT. .
012200 IF MONTH = SAVED-MONTH MOVE "(CONTINUED)" TO CONTINUED
012300 ELSE MOVE SPACES TO CONTINUED
012400 MOVE MONTH TO SAVED-MONTH.
012500 END DECLARATIVES.
012600 SORTING SECTION.
012700 SORTER. SORT PENNI ON ASCENDING KEY
012800 MONTH, DAVY, GRADE, ROOM, STUDENT
0129J,)O . USING INFILE OUTPUT PROCEDURE REPORTER.
013000 ENCi•OF-Tl-lE-SORT. STOP RUN.
013100 REPORTER SECTION.
013200 IN I.Tl ATE-REPORT. OPEN OUTPUT REPORTFI LE ..
013300 INITIATE ABS-REPORT.
013400 UNWIND-THE-SORT.
013500 RETURN PENNI AT END
013600 TERMINATE ABS-REPORT CLOSE REPORTFILE ELSE
013700 GENERATE DETAIL-LI NE GO TO UNWIND-THE-SORT.

11-44

12. DATA MANAGEMENT

The interface to DMSII is via extensions to the standard COBOL compiler. The

extensions affect non-data-base users of COBOL only in that new statements

have been added to the reserved word list. No special compiler or extra

control cards are required for the data base user. The extensions conform

very closely to the familiar characteristics of COBOL, as can be readily seen

by examining the sample programs provided in the B 7000/B 6000 HOST

Language Reference Manual. Form No. 5001498.

12-1/12-2

13. COBOL COMPILER

GENERAL DESCRIPTION

This section describes the B 7000/B 6000 COBOL compiler and its operation with
the MCP on the B 7000/B 6000 information processing system.

The language acceptable as input to this compiler is based on the CODASYL
Journal of Development - 1968 and USASI X3.23-1968 plus the extensions to

COBOL indicated in Section 1.

13-1

INPUT·

Punched cards, disk, or magnetic tape may be specified as source-language in­

put media for this compiler. On the basis of sequence numbers, the compiler

has the capability of merging inputs from punched cards and either tape or

disk.

A library of symbolic images may be held on disk for inclusion in the source

program. The images are included in the source program by means of the COPY

statement or a $ FROM.

Source-language input is handled by means of various compiler input files.

The primary compiler input file is a card file with the internal name CARD.

This file is required for a compilation and is normally a card reader file,

but may be label-equated to another file assigned to a different device. The

CARD file may be an ASCII or EBCDIC-coded file (with 14-word records) or a

BCL-coded file (with 10-word records). It may be either blocked (with any

block size) or unblocked as desired.

The secondary compiler input file is a disk file with the internal name TAPE.

This file is optional and is normally a serial disk file; however, it may be

label-equated to another file assigned to a different device. The TAPE file

may be an ASCII or EBCDIC-coded file (with 14-word records) or a BCL-coded

file (with 10-word records). It may be either blocked (with any block size)

or unblocked as desired. This file is accepted as compiler input when the

MERGE compiler option is set. The card images in this file are merged with

the card images in the primary input file (CARD) according to sequence number.

When duplicate sequence numbers are found on two such card images, the card

from the secondary file is replaced by the card from the primary file.

The compiler may also access permanent library files as input thru use of the

FROM compiler control card and the COPY statement. The files thus accessed

may be either EBCDIC-coded (with 14-word records) or BCL-coded (with 10-word

records); and may be either blocked (with any block size) or unblocked as

desired. The internal name of a file accessed by a FROM card is SAVEPERMIN,

and the TITLE of the file is specified on the FROM card and cannot be label­

equated. The internal name of a file accessed by the COPY clause is LIBRARY,

and the TITLE of the file is specified in the COPY clause or by label equa­

tion (see Section 8, the COBOL library).

13-2

OUTPUT

The COBOL compiler processes the given input data to produce optional output

files. These output files may consist of an updated source-language file, a
printer listing, an object code file, and source-language library files.

An updated source-language file, acceptable as input to the COBOL compiler,

can be generated by this compiler. The updated file may be created on disk

or magnetic tape by specifying the NEW compiler control option and a label­
equa tion card, This file is assigned to serial disk unless another device
is indicated on the FILE control card. This source-language file will be

EBCDIC-coded, with 14-word records in 420-word blocks, and have the internal
name NEWTA.PE. A. SAVEFACTOR of 99 and a TITLE of COBOL/IMA.GE are assigned to

this file. The file will be created only if the compiler option NEW is set,
and it will contain all card images input during the compilation. The se­

quence numbers on these card images may be updated by employing the SEQ
compiler option.

The output listing is an optional print file that is generated by the compiler

when the compiler options LIST, or LISTI are set. The files have the in­
ternal names LINE and ERRORFILE and contain the following items:

a. Input source-language card images.

b. Code segmentation information-
c. Program stack sizes.

d, Diagnostic messages.

e, Elapsed and processor compilation times.

f, Number of input card images scanned.

g, Sequence number of last error detected in input.

h. Number of syntax errors detected in input.

i. Estimated core memory requirement in words.
j. Generated object code (if option CODE is also set).

k. Stack address assignments (if option STA.CK is also set).

If the option SPEC is reset, this listing also includes a display of
elementary data items being referenced by program instructions employing

the CORRESPONDING expression.

The generated code is written on the disk but not saved if the compilation
is specified for syntax check only or one or more syntax errors are found.

13-3

UIRARY CREATION

Source-language libraries may be created by the compiler (by the use of SAVE
compiler option) or by a program other than the compiler.

13-4

DEBUGGING AND DIAGNOSTIC FACILITIES

Diagnostic aids for programs are invoked by including appropriate control
cards ($-cards) within the input to the compiler.

Error and warning messages are automatically produced (appendix F)
on the output listing following the line which contains an error. The error
message is followed by the syntactic item being examined at the time the
error is determined. The total number of errors appears in the summary of
compilation stat~stics at the end of the listing. When no listing is re­
quested, only the syntax errors are listed. Warning messages inform the
programmer of possibly erroneous conditions which do not prevent a code
file from being produced by the compiler. For example, incorrect sequence
numbers will cause a warning message unless the option SPEC is set. When
set, SPEC suppresses the printing of warning messages.

Understanding the code generated by the compiler can assist the programmer
in writing efficient, precise COBOL statements. The option CODE produces a
list of operator mnemonics and their hexadecimal equivalents, any operands
used, and the macros in the compiler producing the code.

13-5

COMPATIBILITY

CODASYL COBOL-68

Source-language programs written according to the CODASYL COBOL-68 specifica­
tions are suitable for compilation by this COBOL compiler without the need
for filter or translation.

Americ:an National Standard COBOL

Source-language programs written according to the specifications for.American

National Standard COBOL as contained in the publication X3.23-1968 or 1974,
are suitable for compilation by this COBOL compiler without the need for
filter or translation when the USASI or ANSI74 system options are set. Such
compatibility is subject to qualification of implementor-defined aspects,

hardware-dependent facilities and areas where two or more well-recognized
interpretations exist of the standard.

13-6

a. The following implementor.-defined aspects of ANSI COBOL may be

implemented on other systems in a manner not compatible with the
syntax and/or semantics of this compiler but do not imply rion­

conformance with the standard:

• Hardware-name in the SPECIAL-NAMES and FILE-CONTROL paragraphs.

• The VALUE OF clause of the file description entry.

• The internal representation of data items. for which USAGE IS INDEX
or USAGE IS COMPUTATIONAL has been specified. No automatic alignment
is. provided for data items for which USAGE IS COMPUTATIONAL is
specified.

• When SYNCHRONIZED is specified, implicit FILLER positions may be
generated, thus affecting the size of the group and redefining items.

• The collating sequence of non-numeric items. See Appendix G for the

collating sequences recognized by this compiler.

• The representation and placement of operational signs when PICTURE
character S is specified for a data item are discussed in Section 6 .

•
• The ENTER statement.

b. Some facilities of ANSI COBOL as specified in the publications

X3.23-1968 and 1974 are specified in a manner which does not lead

to consistent interpretation by all implementors of ANSI COBOL.

No implication of non-conformance exists as a result of the inter­

pretation adopted by the B 7000/B 6000 compiler. These facilities

and the interpretation taken by B 7000/B 6000 COBOL are as follows:

• When a signed numeric integer data item is moved to an alphanumeric

data item, the sign is not moved (1968 standard only).

• When a signed numeric data item is compared to a non-numeric data

item, the sign, if any, participates in the comparison.

• When a class test is performed on an unsigned numeric data item or

on an alphanumeric data item, and the data item tested contains an

operational sign, the result of the class test will be NOT NUMERIC.

• In a WRITE statement for a printer file, when no ADVANCING phrase is

specified, BEFORE ADVANCING 1 is assumed (1968 standard only).

B 5500/B 5700 COBOL-61

Source-language programs written in B 5500/B 5700 COBOL-61 are acceptable as

input to the COBOL compiler after translation by the B 7000/B 6000 COBOL filter

programs, with the following exceptions:

a. Data communications I/O.

b. Inter-program communication.

c. The collating sequence of the BCL character set is not compatible.

d, Options 4 and 5 of the MOVE statement.

Other Compilers

Source-language programs written for COBOL compilers of other systems may be

filtered to B 7000/B 6000 COBOL by the Burroughs Conversion Aids. Alterna­

tively, an appropriate system option may be set and the B 7000/B 6000 will

flag those statements requiring modification.

13-7

COMPILER CONTROL CARDS

For program: compilation, the only required carde .are a COMPILE card, a DATA,
EBCDIC or BCL card, the source program cards, and an END card, in that order.
For program execution, the only required cards are a RUN or EXECUTE card; a
DATA, EBCDIC or BCL card if input data is to be read from cards; and an END
card.

The COMPILE card specifies the operation (COMPILE) to be performed, the name to
be given to the object code file, and MCP options. The format of the COMPILE
card is:

[
SYNTAX]

COMPILE program-name WITH COBQL LIBRARY
.Y:Q.

Program-name may consist of 1 to 14 names separated by slashes. Each name may
contain not more than 17 alphabetic (A thru Z) and/or numeric (0 thru 9) char­
acters. If the MCP option GO is specified or an MCP option is not specified,
the code file is executed if no syntax errors are found but the code file is

not saved. If the MCP option LIBRARY is specified, the code file is saved if
no syntax errors are found during compilation. If the MCP option SYNTAX is
specified, the program is compiled and no code file is made.

The DATA, EBCDIC or BCL card specifies the character set in which the input
card file is punched. DATA and EBCDIC are synonyms.

The END card signifies the end of the input card file. Any other control
card will also signify the end of the input card file and may be used· in place
of the END card.

Additionally, a FILE card may be used to specify that a substitute file is to
be used. This card has the format:

[COBQL] FILE file-name .(attribute replacementsl

The word COBOL specifies that a compiler file is to be affected. When COBOL
is not specified, a file within the object program is affected. (See Work Flow
Language (WFL) Reference Manual, Form 5001555 for complete information on
this and other control cards.)

Typical decks for program compilation and execution together with explanations
of the cards used are presented in the following pages. When <I> appears as
the first character of a control card, the <I> represents an invalid character
(such as the combination of a 1, 2 and 3 punch) punched in column 1. Two or
more control cards may be punched into one card. One group of control infor­
mation is separated from the next by a semicolon instead of the invalid char­
acter when cards are combined.

13-8

COMPILE FOR. SYNTAX (Card input only)

<I> COMPILE PROG/ONE COBOL SYNTAX
<I> EBCDIC

Source card file
<I> END

COMPILE FOR SYNTAX (Card and disk input)

<I> COMPILE PROG/TWO COBOL SYNTAX
<I> COBOL FILE TAPE (TITLE=TWO/SOURCE)
<I> EBCDIC

$ SET MERGE
Source card file

<I> END

COMPILE FOR LIBRARY (Card and tape input)

<I> COMPILE PROG/THREE COBOL LIBRARY
<I> COBOL FILE TAPE (TITLE=THREE,KIND=TAPE)
<I> COBOL FILE NEWTAPE(TITLE=3D)
<I> FILE MSTR(KIND=DISK)
<I> BCL
$ LIST MERGE SINGLE NEW

Source card file
<I> END

COMPILE TO LIBRARY AND GO (Input on disk)
<I> COMPILE PROG/FOUR COBOL LIBRARY GO
<I> COBOL FILE CARD (TITLE=FOUR,KIND=DISK)

<I> END

COMPILE AND GO (Input on tape, patches on disk)

<I> COMPILE PROG/FIVE COBOL GO
<I> COBOL FILE TAPE (KIND=TAPE,TITLE=IN/FIVE)
<I> COBOL FILE CARD (KIND=DISK,TITLE=P/FIVE)
<I> EBCDIC INFILE

Data required for execution

<I> END

13-9

COMPILE AND GO (Input on card)

<I> COMPILE PROG/SIX COBOL;EBCDIC
Source card file

<I> BCL CDFILE
Data required for execution

<I> EBCDIC XFILL
Second card data file required for execution

<I> END

EXECUTION

<I> RUN PROG/THREE
<I> FILE MSTR(KIND=DISK,TITLE=MSTR2/PAY)
<I> DATA DATA/DECK

Data required for execution

<I> END

<I> EXECUTE PROG/FOUR; END

Various options are available during compilation. These compile-time options

are activated by $ control cards.

$ control cards must have the $ symbol punched in either column 1 (if sequence
numbering is not needed) or in column 7 or 8. The options to be manipulated
are specified following the $, with one or more spaces following each option.
No option may continue past column 72 of a $ card. A period in a dollar card

causes the r.emainder of the card to be ignored.

$ control cards may be interspersed at any point within the source-language
inputs $ control cards will not appear in the source-language output or
in SAVEd input unless the $ symbol is in column 8 instead of column 7 or l.

There are five types of operands which may appear on a $ control card:

a. ·Option action indicators.
b. Source image selection.
c. Compiler-directing options.
d. User options.
e. System compatibility options.

13-10

Option Action Indicators

Option action indicators preceding a list of options are used to set, reset,
or recall the last setting of each settable option in the list.

Associated with each of the settable options is a register which reflects the
last 47 settings of the option. The options FROM, PAGE, AREACLASS, LEVEL,

and LIMIT are considered non-settable since they are not Boolean in nature.

The presence of any preceding option action indicator is ignored when

processing non-settable options.

The option action indicators are:

a. SET. The current setting of each option specified is saved and each

of the options is turned on.
b. RESET. The current setting of each option specified is saved and

each of the options is turned off.

c. POP. The current setting of each option specified is discarded and

each of the options is set to its prior setting. When there is no
prior setting, a POP will leave the option turned off.

Initial States of Settable Options

When the compiler is not initiated by way of CANDE, the initial state of the
LIST, B6700, and LIBDOLLAR options is on; all other options are off. When

the compiler is initiated by way of CANDE, the initial states of the
LINEINFO, B6700, FREE, and LIBDOLLAR options is on; all other options are off.

Initialization of options occurs when a dollar card appears containing a

settable option that is not preceded by an option action indicator. For

example, the following $ card does not contain an option action indicator

prior to the first settable option:

$ LIST STACK

Note that a dollar card containing only a non-settable option does not cause
dollar option initialization. For example:

$ LEVEL 3

Initialization of options causes all options to be returned to their initial
states and then setting the options appearing on the dollar card. The state
of the following options cannot be changed after the occurrence of the

IDENTIFICATION DIVISION header in the source input: FREE, STATISTICS,
INTRINSICS, LINEINFO, ANALYZE, and OPTIMIZE. These options are also not
changed if option initialization occurs subsequent to the occurrence of the
IDENTIFICATION DIVISION header. All prior states of an option are discarded
when it is r.eturned to its initial state.

13-11

Source Image Seledion

MERO.E

MERGE causes the primary input file (CA.RD) to be merged with the secondary
input file (TAPE). If matching sequence numbers occur, the secondary input
is discarded. When MERGE is not set, only records from the primary input

f ,ile .. and the SA.VEd input may be used.
' ' l

NEW

NEW causes a new source-language file to be created for use later as secondary
input.

SAVE

SA.VE causes SA.VEd input to be created for inclusion in place of a $ card
specifying FROM. A SAVE may create a permanent or temporary file.

For creation of a permanent file, the syntax of the SAVE is as follows:

$ SET SAVE file-title

The SAVEd input identified by file-title becomes a permanent disk file
available to any compilation. The file-title must be enclosed in quotes.

The syntax for recalling records from a permanent SAVEd input file is:

$.lRQM file-title [integer-I [THRU integer-2]]

The file-title must be identical to the file-title specified on the SAVE card.

Integer-I specifies the beginning sequence number in the SAVE input and
integer-2 specifies the ending sequence number. When integer-I and integer-2
are not specified, all records from the SAVEd input will be included. If
integer-I is specified, integer-2 may be specified to indicate that inclusion

is to end with a record which contains the sequence number specified by
integer-2. When integer-2 is not specified, inclusion continues thru the end

of the SAVEd input. A hyphen may be used in place of THRU.

The syntax for creating temporary SAVEd input is:

The syntax for recalling temporary SAVEd input is

$ FROM integer-I

Integer-I must be the sequence number of a SAVE which did not specify a

file-title,

13.,.12

The SAVE option may be reset by a $ RESET SA.VE, a $ POP SAVE, or be implicitly
reset by a $ SET SAVE, a $ FROM or by initialization of dollar options. The
SAVE operation will combine together a group of source image records to be
used as SA.VEd input. This combination of records continues until SAVE is
explicitly or implicitly reset. If SA.VE is implicitly reset by a $ SET
SA.VE, one group of records is terminated and a new group is initiated.

POPping SAVE functions exactly as "RESET" in that the option cannot be POPped
to its prior value.

During a SAVE operation, the source image records will not be compiled but
will instead be written to a permanent or temporary SA.VEd INPUT file.

A $ SAVE or $ FROM will cause a syntax error if either one originates in
a library file.

Figure 13-1 is an example of SAVE and FROM.

200100 $ SET SAVE II A/SAVED/ INPUT''
01 ABC sz 3000.

200200 $ SET SAVE
01 XYZ.

05 A sz 10.
05 B sz 10.

200300 $ RESET SAVE

01 XABC COPY "A/SAVED/INPUT''.
200400 $ FROM "A/SAVED/INPUT"
200500 $ FROM 200200

Figure 13-1. Example of SAVE and FROM

13-13

Compiler-Direding Options

ANALYZE

AREA CLASS

CHECK

CODE

DEBUG

13-14

ANALYZE, when set, will produce a listing of conditions

which will adversely affect the programs demands upon
system resources. The items which are flagged are not

necessarily bad programming practices, but are instead

items which could be handled in a more efficient manner.

The ANALYZE option must be set prior to reading the

division header for IDENTIFICATION DIVISION. The out­

put listing produced when ANALYZE is set will appear

at the end of the program listing, giving either the

sequence number of the inefficient statement or the

data-name or procedure-name which is involved in the

inefficiency. The messages produced by ANALYZE and

the reason why the message is produced is listed in

Appendix F.

An integer less than 256 must be specified following the

option. This integer value will be used as the value of
the AREACLASS attribute of the object code file. Any op­

tion action indicator is ignored.

This option causes the compiler to print warning messages

for sequence errors in the source-language input. (See

NEWSEQERR, SEQ, SEQERR and SPEC.)

This option causes the generated object code to be

listed and the option STACK to be automatically active.

If LISTI is set, pass-I macros will be listed on the

pass-I listing. This option is not active except when

LIST is set.

This option when reset, causes all 77-level COMP items

to be placed in the stack in the same way as COMP-1
data items and results in faster access to these items.

Setting this option causes all 77-level COMP items to

be gathered together and placed in an array.

This option causes pseudo-stack, literal stack, and

boolean linking stack locations to be printed. This

option is intended to facilitate compiler development,

and its function may change without notice. This option

is not active except when LIST is set.

ERRLIST

GLOBAL

INFO

INTRINSICS

When set, the ERRLIST option causes the listing of syntax
errors to be written to the compiler file ERRORFILE.
When the compiler is called from CANDE, option ERRLIST
is automatically set and the compiler file ERRORFILE is
automatically equated to the remote device involved.

This option when set, removes most of the margin re­

strictions required by COBOL. Division-names, section­
names, and paragraph-names must start in columns 7, 8,

9, 10 or 11. All other constructs may start any place
after the sequence number field. If column 7 (or the
first input character when entering data thru CA.NDE) is
$, *, /, or hyphen, then that character is interpreted
as indicating a dollar control card, comments card, page
eject, or continuation card respectively. This option is

set automatically when the compiler is called by CANDE.
If the FREE option is to be set, it must be set prior
to the first source image and may not appear on any $

CA.RD after the first source image. Initialization of
$ options does not affect FREE.

This option causes all data items in WORKING-STORAGE
to be global except those for which LOCAL or OWN are

specifically declared. OWN and GLOBAL $ options may not
both be set. The GLOBAL option is ignored unless the
compilation is at level 3 or higher.

This option causes INFO, XINFO and DICT entries to be
listed. INFO is intended to facilitate compiler de­
velopment, and its function may change without notice.

Programs compiled at level 2 may be bound into the in­
trinsic file if they are compiled with the INTRINSICS.
option set. This type of intrinsic may be called by a
program written in any language, as an untyped pro­
cedure. The GLOBAL phrase is not permitted when
INTRINSICS is set.

13-15

LEYEL

LIBDQLLAR

LIMIT

LINEINFO

LISTDELETED.

LISTP

13-16

This option is not settable. The word LEVEL must be

followed by an integer greater than 1 and less than 31.
This option controls the lexicographical level at
which the compilation is to occur. A value of 2 will
be assumed when no LEVEL is stated. The LEVEL must
appear prior to the IDENTIFICATION DIVISION.

When this option is not set, $ cards read in from a
library are ignored. This option is automatically set
at beginning of compilation and on $ card initialization.
LIBDOLLAR is ignored if it appears on a $ card which
was input from a library.

This option is not settable. The word LIMIT must be
followed by an integer value. When the number of syntax

errors equals or exceeds the integer value, the compiler
will terminate compilation. No limit is assumed when
LIMIT is not specified except when compilation is called
for by CANDE. CANDE sets LIMIT automatically to 10.

This· option causes source-language sequence numbers to
be saved in the code file so that abnormal terminations
of the object program may be identified on the SPO, in
the log, and in memory dumps by the sequence number
rather than by an address couple. Setting of this
option requires a significantly larger amount of disk
space for storage of the object program but will not
affect memory requirements or usage until an abnormal
termination occurs. This option is set automatically
by CA.NDE.

This option causes the source-language to be listed
during pass 2. When LIST is not set, only syntax error
messages are printed. LIST is automatically reset for
compilations requested by CANDE and automatically set
otherwise.

This option causes source images which are replaced or
deleted to be printed on 'the output listing.

This option causes all source images from the primary
source input (card file) to be printed on the output
listing, even though the list option is reset,

LISTl

NEW ID

NEWSEQERR

OFFSET

When this option is set, the compiler lists the source­

language during pass 1. If, in addition, CODE is set,

the pass-I macros will also be listed,

This option causes the contents of columns 73-80 of the

source image to be replaced by a non-numeric literal.

The literal must be from one to eight characters in

length and need not appear in conjunction with NEWID

or even be on the same $ card. Setting NEWID simply

activates the replacement process. This option may be

reset (via a POP or RESET or $ option initialization)

to deactivate the replacement process.

This option causes source-language records being written

to NEWTA.PE to be sequence checked and warning messages

to be printed for out-of-sequence records. If sequence

errors do occur, file NEWTA.PE is not locked (and thus

may be lost). This type of error will not have any

effect on the successful compilation of the program.

This option presents offset indications for all con­

tiguous data items, including those in the DATA-BASE

section, not having their own stack location.

The offset is printed on the same line as the card

image and is generated on the assumption that data

descriptions in the source program are presented in the

generally-accepted method; that is, one data item

description per line, beginning with a level number and

ending with a period. If two or more item descriptions

are on the same line, the offset shown will be the

offset of the first item. If a line contains only the

description of an elementary unvalued filler item having

no condition names, the offset shown will be the offset

of the next item, rather than the offset of the filler.

The offset is printed on the extreme right of the listing

in the following format:

0000 (WWWW:C)

Where "0000" is the offset of the item in terms of its

character size.

13-17

OLD NOT

13-18

Where "WWWW" is the offset in words from the beginning

of the array, and

Where "C" is the character off set from the end of the

last word in terms of its character size.

All values are hexadecimal.

When an item is subordinate to a non-01-level item with

an OCCURS clause, only "0000" value is shown, preceded by

a "+"; this is the offset from the occurring group item.

The "+" indicates that it is an incremental offset.

Example:

01 TAB.
03 x
03 y
03 z
03 A
03 B
03 B

05
05

03 w
NOTE:

PIC X(9).
PIC 9(6) COMP-2.
PIC 8(11) COMP.
PIC XXX.
PIC 9(11) COMP.
OCCURS 10.
L PIC XX.
H PIC 99 COMP-2.
PIC X.

0000(0000:0)
0012(0001:6)
0002(0002:0)
0012(0003:0)
0015(0003:3)
001B(0004:3)

+0000
+0004
0039(0009:3)

1. The offsets of COMP-2 items are in terms of
4-bit characters.

2. The offsets of word-ALIGNed COMP items are in
terms of words.

3. The offsets of character-ALIGNed COMP items are
in terms of 8-bit characters.

When this option is set, all occurrences of NOT will be

considered logical operators. The following forms are

interpreted in the following manner when the OLDNOT

option is set.

FORM

1. NOT A=B or C
2. A> B or NOT=C or D

3. A NOT=B or> C

INTERPRETED AS

NOT (A=B) or A=C

A > B or NOT (A=C) or A=D

A NOT=B or A > C

OMIT

OPTIMIZE

NOTE: This distinction becomes important when abbre­

viated relation conditions are used, because,

under the rules of the 1968 ANSI COBOL standard,

logical NOT operators apply only (in the absence

of parentheses) to the immediately following

relat~on condition, while the implied relational

operator of an abbreviated relation condition is

obtained from the last explicitly stated

relational operator. For example, "A NOT =B or C"

which was interpreted as "A NOT=B or A=C" prior

to II.7, is now interpreted as "A NOT=B or A

NOT =C" because the NOT is part of the relational

operator.

When set, OMIT causes card images from both file CARD

and file TAPE to be ignored. That is, these card images

will not be compiled, although, they may be listed and/

or included in a new source file. On the output listing

these images are flagged by the word OMIT.

This option causes generated code to be optimized for

fastest execution. The setting of this option may not

be altered after the first source image. OPTIMIZE is

initialized to reset. With OPTIMIZE set, the following

optimizations are effected:

a. Numerical comparisons involving unsigned DISPLAY

items will be compared as characters rather than

being converted to binary and then compared. The

zone portion of each character is masked with hex

"F" so that uninitialized data items will compare

equal to zero.

b. Simple ADD statements involving unsigned DISPLAY

items will be done as character adds with all zones

masked with HEX "F" so that uninitialized data items

will be considered zero.

c. Invalid index checking on subscripting is bypassed.

The responsibility for ensuring the validity of any

given subscript then rests with the programmer.

System protection against accessing beyond the

bounds of an array is still effective.

13-19

SECGROUP

13-20

d. The characteristics of the program's PERFORM
statements and ranges will be analyzed. PERFORM

ranges containing less than "about" 5 or 6 statements
and performed by less than "about" 5 or 6 PERFORM
statements will be compiled inline at each PERFORM
statement. There will be no overhead for doing the
PERFORM. The numbers "5" and 11 6 11 are merely
estimates in an attempt to maintain balance between
an increased amount of object code and the overhead
required to do a PERFORM. PERFORM ranges which are
not compiled inline, but which are not executed

except under control of a PERFORM statement, will
have a special unconditional return mechanism pro­
duced at the end of the PERFORM range which will

decrease the PERFORM overhead.

This option causes all WORKING-STORAGE data items to as­
sume the declaration OWN except those for which LOCAL or
GLOBAL is explicitly declared. The OWN and GLOBAL $ op­
tion is ignored unless the compilation is at level 3 or
higher.

This option is not settable. The appearance of PAGE on

a $ card causes the pass-1 and/or pass-2 listings to

skip to a new page.

This option causes the normal code segmentation of the
compiler to be overridden so that groups of two or more
sections may become a single code segment. When this
option is set, contiguous non-declarative sections which
specify the same priority number on the section header
will be grouped into a single code segment. When the
option is not set, segmentation is controlled by section

headers without consideration of priority number, and
sections will not be grouped together. For purposes of
SECGROUP, sections without a priority number are never

combined with any other section. Sort input or out-
put procedures will never be combined with each other
or with any non-sort procedures. SECGROUP will not be

effective on declarative sections. The SEGMENT-LIMIT
clause is effective regardless of the setting of SECGROUP.

SEQERR

SINGLE

STACK

This option activates the resequencing of source-language

output files (i.e., NEWTAPE, pass-1 listing, and pass-2

listing). The SEQ option is normally associated with a

beginning sequence number and an increment which is

added for subsequent source-language images. These

two integer values may be specified on a $ card prior to

the $ card which activates the SEQ, on the $ card which

activates the SEQ, or the default value (10) supplied

automatically by the compiler may be used. As long as

SEQ is set, the beginning sequence number is incremented

by the increment for each source-language record, and

that value is retained while SEQ is not set. Thus, set­

ting SEQ does not restore the beginning sequence number.

The beginning sequence number is initialized when an un­

signed integer is found in any $ card (with or without

SEQ set). The increment is initialized by specifying a

plus sign (+) followed by an integer in any $ card (with

or without SEQ set). The two integer values need not be

specified in the same $ card nor even on the $ card spe­

cifying the SEQ option.

With this option, the compiler will print warning mes­

sages for sequence errors in the source-language input.

At the end of a compilation which had sequence errors, a

code file will not be created. Thus, sequence errors

which print as warnings behave as though they were fatal

when SEQERR is set. The settings of NEWSEQERR, SEQ, SPEC

and CHECK have no effect on the setting of SEQERR.

This option causes the compiler output listing to be

single spaced. SINGLE is automatically set unless the

option DOUBLESPACE is set when the compiler is compiled.

The SPEC option suppresses printing of warning messages,

sequence error messages, printing of the expansion of

the DMS INVOKE statement, and the printing of the list

of elementary items involved in a CORRESPONDING option.

This option causes relative stack addresses and the

name of the associated item to be printed on the output

listing. The STACK option will become active when

STACK is set or both LIST and CODE are set.

13-21

STATISTICS

13-22

It is possible to obtain statistics which reveal the

characteristics of a COBOL object job. Statistics are
accumulated for a program when the STATISTICS dollar op­

tion is set. This option may not be changed after the
compiler has encountered the beginning of the IDENTIFI­
CATION DIVISION. When this option is set, the compiler
will include code to determine how many times each para­
graph is entered and how much time is spent executing the
instructions comprising each paragraph. The STATISTICS

dollar option can only be set for a compilation at
level 2.

Each paragraph has a unique number. This number is
printed on the right-hand side of the compiler listing
and corresponds to one line of output on the system
summary of the statistics. This summary is written on
the job's diagnostic file (the file on which program
dumps appear). A simple example follows:

PROCEDURE DIVISION.

Pl.

P2.

P3.

OPEN INPUT CARD-FILE.

READ CRD AT END GO TO DONE.
IF FLD=O THEN PERFORM ZERO­
RECORD.

MOVE 5 TO R-CLASS.

ACTIVE CLOCK IS #0001

ACTIVE CLOCK IS #0002

ACTIVE CLOCK IS #0003

The output of the statistics summary would look like the
following example:

STATISTICS <Cont)

BLOCK FREQ TOTAL TIME AVG TIME

MAIN 1 0.132267 0.132267

1 1 600 600

2 1000 0.500000 500

3 366 36600 100

The column labeled BLOCK specifies the paragraph, as

numbered on the source listing, for which the line of

output applies. The line labeled MAIN is the time

necessary to initialize user data areas and construct

the stack.

The data listed under the heading FREQ reflects the

number of times the paragraph was entered. Paragraphs

never entered are not listed.

The data under TOTAL TIME is the total elapsed time

spent processing the paragraph. The column AVG TIME is

equal to the value of TOTAL TIME divided by FREQ. One

should note that times printed in both of these columns

without a decimal point are times in microseconds. Thus

the total time spent in Pl would be 600 microseconds;

but, for P2 it would be one half of a second.

A statistics summary is produced at END-OF-TASK, or when

the program is DS-ed.

The times accumulated are elapsed times. Therefore, they

reflect the time needed to handle presence bit interrupts,

I/O interrupts~ and possibly, time spent in other pro­

cesses. Also, the timing does not cease upon entering

the MCP (READ, WRITE, etc.) or using IPC (CALL, PROCESS,

CONTINUE, etc.). The PERFORM statement, however, does

stop timing and begin timing the performed paragraph,

resuming the timing of the performing paragraph upon

exit from the PERFORM range.

13-23

YO IDT

Integer

+ Integer

Non-Numeric Literal

13-24

This option causes the compiler to print the normal

heading and footing of the compilation listing even

though the option LIST was never set.

This option causes all source-language input (primary

and secondary), except$ cards, to be ignored until the

option becomes not set.

This option causes all secondary source-language input

except $ cards to be ignored until the option becomes

not set. This option is not active unless the MERGE

option is set.

When this option is set, a cross-reference listing will

be produced of declarations and uses of all data-names,

file-names, condition-names, etc. Operation of XREF is

in no way dependent on the setting of LIST. By use of

SET, POP, and RESET, the XREF operation may be re­

stricted to portions of the program.

This option causes all $ control cards to be listed.

When an integer value (not preceded by the symbol +)

appears on a $ control card, the integer value is used

as the beginning sequence number for the operation of

the SEQ operation. This is not a settable option.

When an integer value with a preceding plus symbol

(with or without intervening blank spaces) appears in

a $ control card, the integer value will be used as

the increment for operation of the SEQ $ option. This

is not a settable option.

When a non-numeric literal is specified in a $ control

card, the literal will be used for the replacement

operation performed by the NEWID $ option.

User Defined Dollar Options

Identifiers not having the same length and first five characters as a standard

dollar option will be considered to be user options.

In addition, any option, user or standard, may be set to the value of an

"option expression", as is the case in ESPOL and ALGOL. The syntax for this

conditional set is:

where

$ SET option = option expression

option expression

option secondary : :

option primary

option

Boolean operator

option secondary/option expression

Boolean operator option secondary

option primary/NOT option primary

= option/(option expression)

= standard option/user option

AND/OR/IMP/EQV

In the following card deck for example, cards in Region-1 will be omitted and

cards in Region-2 will not be omitted.

$SET TESTING KLUDGE

$SET OMIT = TESTING AND KLUDGE

(Region-1)

$POP OMIT

$SET OMIT = NOT (TESTING OR KLUDGE)

(Region-2)

$POP OMIT

13-25

The special-action parameter options "AREACLASS", "FROM", "LEVEL", "LIMIT",
and "PAGE" are not permi"t;ted in an option expression, since they imply no
Boolean value. The normal precedence of Boolean operators applies to the
evaluation of option expressions. .Dollar cards having options, but no option
action, will cause all options, both standard and user options, to be cleared.
For example, given the user option TESTING, $ TESTING will cause the same

action as described on page 13-11 for an option with no option indicator.

13-26

SYSTEM COMPATIBILITY OPTIONS

System compatibility options are provided to restrict recognition of reserved
words. These options are B2500 for all models of B 2500, B 2700, N 3500,
B 3700 and B 4700; B5700 for B 5500 and B 5700 COBOL-61; B6700 for B 6500,.
B 6700, B 7700, and B 5500/B 5700 COBOL-68; USASI for COBOL as spec·ified in
the publication USASI COBOL, X3.23-1968, S360 for IBM 360 and IBM 370; and
ANSI74 for COBOL as specified in ANSI X3.23-1974.

The compiler's reserved word table includes words which are reserved on B7000/
B 6000, words which are reserved on other systems compilers (but not on the
B 7000/B 6000~, and words which are reserved on both. Setting the appropriate
system option will allow words which are reserved on one system to be used on
another system as paragraph-names, data-names, etc. An example of this is the

word PROCESSING which is reserved if B2500, USASI, or S360 system options are set
and is available to the user as an identifier when only B6700 or B5700 are set.

A system option may be set by $ option initialization or by a $SET.

The setting of system options are not mutually exclusive; that is, setting a
system option will not reset all other system options, allowing words and
facilities if they are reserved or allowed under any of the systems specified.
Systems options can also be reset or popped independently. Initialization
of system options will occur if an attempt is made to reset all system options.
The initial value of the B5700, S360 and USASI system options is reset. The
initial value of the B6700 system option is set. The initial values for the
ANSI74 and B2500 system options can be made to be either set or reset, depend­
ing on how the COBOL compiler is compiled. If ANSI74 or B2500 user dollar
options are set when the COBOL compiler is compiled with ALGOL, the compiler
will cause the initial values of the ANSI74 and B2500 system options to be
set.

The reserved word list shows all reserved words known to this compiler and

indicates under which system options they will be recognized as reserved
words (Appendix A).

13-27

In addition to reserved word recognition, system options also affect syntax
and semantics where compatability can be enhanced as follows:

USASI

S360

ANSI74

13-28

ELSE is associated only with IF. A CLOSE of

a multi-file tape will assume NO REWIND unless
sqme other pptipn is·speci~ied~ The implicit
definition of TALLY will be a computational
item with a PICTURE of 9(5).
ELSE is a~sociated only with IF.
ELSE phrases are paired only with IF statements.

A. RESERVED WORDS

The following pages list all the reserved words known to the B 7000/B 6000
COBOL ~ompiler and indicates to which system or systems they are reserved.

An X at the intersection of a reserved word and a system option setting in­
dicates the word is reserved when that system option is set. A hyphen indi­
cates that the reserved word will not be recognized as a reserved word when
that system option is set.

RESERVED SYSTEM OPTIONS
WORD B6700 B5700 B2500 USASI S360 ANSI74

ABS x x - - - -
ACCEPT x x x x x x
ACCESS x x x x x x
ACTUAL x x x x x -
ADD x x x x x x
ADDRESS x x - x x -
ADVANCING x x x x x x
AFTER x x x x x x
ALL x x x x x x
ALLOW x - - - - -
ALPHABETIC x x x x x x
ALPHANUMERIC - x - - - -
ALSO x - - - - x
ALTER x x x x x x
ALTERNATE x x x x x x
AN - x - - - -
AND x x x x x x
APPLY x x x - x -
ARCTAN x x - - - -
ARE x x x x x x
AREA x x x x x x
AREAS x x x x x x

A-1

RESERVED SYSTEM OPTIONS
WORD B6700 B5700 B2500 USASI S360 ANSI74

AS x - .- - - -
ASCENDING x x x x x x
ASCII x - - - - -
ASSIGN x x x x x x
AT x x x x x x
ATTACH x - - - - -
AUTHOR x x x x x x
AUXILIARY x x x - - -
AWAIT x - - - - -
BACKUP x x x x x -
BEFORE x x x x x x
BEGIN-TRANSACTION x - - - - -
BEGINNING x x x x x -
BLANK x x x x x x
BLOCK x x x x x x
BOTTOM - - - - - x
BY x x x x x x
BZ - x x - - -
CALL x - - - x x
CANCEL x - - - x x
CARD-PUNCH x x x x x -
CARD-READER x x x x x -
CARD-READERS x x x x x -
CAUSE x - - - - -
CD x - - - - x
CF x - x x x x
CH x - x x x x
CHANGE x - - - - -
CHANNEL x x x x - -
CHARACTER x x - - - x
CHARACTERS x x x x x x
CHECKPOINT x - - - - -
CHECKPOINT-STATUS x x - -- -
CLASS - - - - - -
CLEAR x - - - - -
CLOCK-UNITS x - - x x x

A-2

T SYSTEM OPTIONS I
RESERVED -·--·-.-·- -··· ·----,

WORD B6700 B5700 B2500 USASI S360 ANSI74

CLOSE x x x x x x
CMP - x x - - -
CMP-1 - x x - - -
COBOL x x x x x x
CODE x - x x x x
CODE-SET x - - - - x
COLLATING x - - - - x
COLUMN x - x x x x
COMMA x - x x x x
COMP x x x x x x
COMP-1 x x - - x -
COMP-2 x - - - x -
COMP-4 x - - - x -
COMP-5 x - - - x -
COMPILETIME x - - - - -
COMPUTATIONAL x x x x x x
COMPUTATIONAL-1 x x x - x -
COMPUTATIONAL-2 x - - - x -
COMPUTATIONAL-4 x - - - x -
COMPUTATIONAL-5 x - - - x -
COMPUTE x x x x x x
CONFIGURATION x x x x x x
CONSTANT x x - - x -
CONTAINS x x x x x x
CONTENT x - - - - -

CONTINUE x - - - - -
CONTROL x x x x x x
CONTROL-POINT x - - - - -

CONTROLS x - - x x x
CONVERSION x - x x x -

COPY x x x x x x
CORR x x x x x x
CORRESPONDING x x x x x x
cos x x - - - -

COUNT x - - - - x
CP x - - - - -

A-3

SYSTEM OPTIONS
RESERVED

WORD B6700 B5700 B2500 USASI S360 ANSI74

CREATE x - - - - -
CRUNCH x x - - - -
CURRENCY x - x x x x
CURRENT-DATE - - - - x -
CYLINDER x - x - - -
DATA x x x x x x
DATA-BASE x - - - - -
DATE x - x - - x
DATE-COMPILED x x x x x x
DATE,-WRITTEN x x x x x x
DAY x - - - - x
DB x - - - - -
DE x - - x x x
DEALLOCATE x - - - - -
DECIMAL-POINT x - x x x x
DECLARATIVES x x x x x x
DELETE x - - - - x
DELIMITED x - - - - x
DELIMITER x - - - - x
DEPENDING x x x x x x
DESCENDING x x x x x x
DETACH x - - - - -
DETAIL x - - x x x
DIRECT x - - - - -
DISABLE x - - - - x
DISALLOW x - - - - -
DISC - - x - - -
DISK x x x x x x
DISKPACK x x x x x x
DISKPACKS x x x x x -
DISPLAY x x x x x x
DISPLAY-:UNIT x x x x x -
DISPLAY-I x - - - - -
DIV x x - - - -
DIVIDE x x x x x x
DIVIDED - x - - - -

A-4

SYSTEM OPTIONS
RESERVED

WORD B6700 B5700 B2500 USASI 8360 ANSI74

DIVISION x x x x x x
DMTERMINATE x - - - - -
DOWN x - x x x x
DUMP x x x x x -
DUPLICATE x - - - - -
DUPLICATES x - - - - x
DYNAMIC x - - - - x
ELSE x x x x x x
EMI x - - - x x
ENABLE x - x - - x
END x x x x x x
END-OF-PAGE x - - - x x
END-TRANSACTION x - - - - -
ENDING x x x x x -
ENTER x - x x x x
ENVIRONMENT x x x x x x
EOP x - - - x x
EQUAL x x x x x x
EQUALS x x x - x -
ERROR x x x x x x
EVENT x - - - - -
EVERY x x x x x x
EXAMINE x x x x x -
EXCEEDS x x - - x -
EXCEPTION x - - - - x
EXCHANGE x - - - - -
EXECUTE x - - - - -
EXIT x x x x x x
EXP x x - - - -
EXPONENTIATED - x - - - -
EXTEND - - - - - x
EXTERNAL x - - - - -
FD x x x x x x
FILE x x x x x x
FILE-CONTROL x x x x x x
FILE-LIMIT x x x x x -

A-5

SYSTEM OPTIONS
RESERVED

WORD B6700 B5700 B2500 USASI S360 ANSI74

FILE-LIMITS x x x x x -
FILLER x x x x x x
FINAL x - - x x x
FIND x - - - - -
FIRST x x x x x x
FIRSTONE x - - - - -
FOOTING x - - x x x
FOR x x x x x x
FREE x - - - - -
FROM x x x x x x
GENERATE x - - x x x
GIVING x x x x x x
GLOBAL x - - - - -
GO· x x x x x x
GREATER x x x x x x
GROUP x - - x x x
HEADING x - - x x x
HERE x - - - - -
HIGH-VALUE x x x x x x
HIG~-VALUES x x x x x x
I-0 x x x x x x
I-0-CONTROL x x x x x x
ID x x x - x -
IDENTIFICATION x x x x x x
IF x x x x x x
IN x x x x x x
INDEX x - x x x x
INDEXED x - x x x x
INDICATE x - - x x x
INITIAL x - - - - x
INITIATE x - - x x x
INPUT x x x x x x
INPUT-OUTPUT x x x x x x
INQUIRY x - - - - -
INSERT x - - - - -

A-6

SYSTEM OPTIONS
RESERVED

WORD B6700 B5700 B2500 USASI S360 ANSI74

INSPECT x - - - - x
INSTALLATION x x x x x x
INTERCHANGE x - - - - -
INTERRUPT x - - - - -

INTO x x x x x x
INVALID x x x x x x
INVOKE x - - - - -
IS x x x x x x
JUST x x x x x x
JUSTIFIED x x x x x x
JS - x x - - -
KEY x x x x x x
KEYBOARD x x x x x -
KEYS x x - x x -

LABEL x x x x x x
LAST x - - x x x
LD x - - - - -
LEADING x x x x x x
LEFT x x x x x x
LENGTH x - - - - x
LESS x x x x x x
LIBRARY - x x - x -
LIMIT x - x x x x
LIMITS x - x x x x
LINAGE x - - - x x
LINAGE-COUNTER x - - - x x
LINE x x - x x x
LINE-COUNTER x - - x x x
LINES x x x x x x
LINKAGE x - - - x x
LN x x - - - -
LOCAL x - - - - -
LOCAL-STORAGE x - - - - -
LOCK x x x x x x
LOCKED x - - - - -

A-7

SYSTEM OPTIONS
RESERVED

WORD B6700 B5700 B2500 USASI S360 ANSI74

LOW-VALUE x x x x x x
LOW-VALUES x x x x x x
LOWER-BOUND x x - - x -
LOWER-BOUNDS x x - - x -
MAX x - - - - -
MD - x - - - -
MEMORY x x x x x x
MERGE x x x - - x
MESSAGE x - - - - x
MESSAGE-PRINTER x x x x x -

MIN x - - - - -

MT NUS - x - - - -
MOD x x x - - -

MODE x x x x x x
MODIFY x - - - - -
MODULES x x x x x x
MONITOR x x x x x -
MOVE x x x x x x
MULTIPLE x x x x x x
MULTIPLE-I-0 x - - - - -
MULTIPLIED - x - - - -

MULTIPLY x x x x x x
MY JOB x - - - - -
MYSELF x - - - - -
NATIVE x - - - - x
NEGATIVE x x x x x x
NEXT x x x x x x
NO x x x x x x
NON-STANDARD x x x - - -
NOT x x x x x x
NOTE - x x x x -
NULL x - - - - -
NUMBER x - - x x x
NUMERIC x x x x x x
OBJECT-COMPUTER x x x x x x

A-8

SYSTEM OPTIONS
RESERVED

WORD B6700 B5700 B2500 USASI S360 ANSI74

OBJECT-PROGRAM x x x - - -
oc x x x - - -
OCCURS x x x x x x
OF x x x x x x
OFF x x x x x x
OMITTED x x x x x x
ON x x x x x x
ONES x - - - - -
OPEN x x x x x x
OPTIONAL x x x x x x
0-I x - x - - -
OR x x x x x x
ORGANIZATION x - - - - x
OTHERWISE x x x - x -
OUTPUT x x x x x x
OVERFLOW x - x - x x
OWN x - - - - -
PAGE x - x x x x
PAGE-COUNTER x - - x x x
PAPER-TAPE-PUNCH x x x x x -
PAPER-TAPE-READER x x x x x -
PC - x x - - -
PERFORM x x x x x x
PET APE x x x x x -
PF x - - x x x
PH x - - x x x
PIC x x x x x x
PICTURE x x x x x x
PLUS x x - x x x
POINTER x - - - - x
POSITION x x x x x x
POSITIVE x x x x x x
PREPARED x x - - x -
PRINTER x x x x x x
PRINTERS x x x x x -

A-9

SYSTEM OPTIONS
RESERVED

WORD B6700 B5700 B2500 USASI S360 ANSI74

PRIOR x - - - - -
PRIORITY x x x - x -
PROCEDURE x x x x x x
PROCEED x x x x x x
PROCESS x - - - x -
PROCESSING - - x x x -
PROGRAM x - - - x x
PROGRAM-ID x x x x x x
PT-PUNCH - - x - - -
PT-READER - - x - - -
PUNCH x x x x x x
PURGE x x x x x -
QUEUE x - - - - x
QUOTE x x x x x x
QUOTES x x x x x x
RANDOM x x x x x x
RANGE x x - - x -
RD x - - x x x
READ x x x x x x
READER x x x x x x
READER-SORTER x - - - - -
READERS x x x x x -
RECEIVE x - - - - x
RECEIVED x - - - - -
RECORD x x x x x x
RECORDING x x x - x -
RECORD~ x x x x x x
RECREATE x - - - - -
REDEFINES x x x x x x
REEL x x x x x x
REEL-NUMBER x x - - - -
REF x - - - - -
REFERENCE x - - - - -
RELEASE x x x x x x

A-10

SYSTEM OPTIONS
RESERVED

WORD B6700 B5700 B2500 USASI S360 ANSI74

REMAINDER x x x x - x
REMARKS - x x x x -
REMOTE x x x x x x
REMOVAL - - - - - x
REMOVE x - - - - -
RENAMES x x x x x x
REPLACING x x x x x x
REPORT x - - x x x
REPORTING x - - x x x
REPORTS x - - x x x
RERUN x x x x x x
RESERVE x x x x x x
RESET x - - x x x
RETURN x x x x x x
REVERSED x x x x x x
REWIND x x x x x x
REWRITE x - - - - x
RF x - - x x x
RH x - - x x x
RIGHT x x x x x x
ROUNDED x x x x x x
RUN x x x x x x
SAME x x x x x x
SAVE x - x - - -
SAVE-FACTOR x x x x x -
SD x x x x x x
SEARCH x - x x x x
SECTION x x x x x x
SECURITY x x x x x x
SEEK x x x x x -
SEGMENT x x - - - x
SEGMENT-LIMIT x x x x x x
SELECT x x x x x x
SEND x - x - - x

A-11

SYSTEM OPTIONS
RESERVED

WORD B6700 .. B5700 B2500 USASI S360 ANSI74

SENTENCE x x x x x x
SEPARATE x - - - x x
SEQUENCE x - - - - x
SEQUENTIAL x x x x x x
SET x - x x x x
SIGN x x x x x x
SIGNED - x x ... - -
SIN x x - - - -
SINGLE x - x - - -
SIZE x x x x x x
SN - x - - - -
SORT x x x x x x
SORT-TAPE x x x x x -
SORT-TAPES x x· x x x -
SOURCE x - - x x x
SOURCE-COMPUTER x x x x x x
SPACE x x x x x x
SPACES x x x x x x
SpECIAL-NAMES x x x x x x
SPO x x x x x -
SQRT x x - - - -
STANDARD x x x x x x
STANDARD-I x - - - - x
START x - - - - x
STATUS x x - ·x x x
STOP x x x x x x
STORE x - x - - -
STRING x - - - - x
SUBTRACT x x x x x x
SUM x - - x x x
SUPERVISOR ·X x x - x -
SUSPEND x - - - x -
SY -· x x - - -
SYMBOLIC x x x - x x
SYNC x x x x x x

A-12

SYSTEM OPTIONS

RESERVED
WORD B6700 B5700 B2500 USASI S360 ANSI74

SYNCHRONIZED x x x x x x
SYSTEM x - - - - -
sz x x - - - -
TABLE x - - - - x
TALLY x x x x x -
TALLYING x x x x x x
TAPE x x x x x x
TAPE-PE - - x - - -
TAPE-7 - - x - - -
TAPE-9 - - x - - -
TAPES x x x x x -
TAPE7 x x x x x -
TAPE9 x x x x x -
TERMINAL x - - - - x
TERMINATE x - - x x x
TEXT x - - -- - x
THAN x x x x x x
THEN - x x - x -
THROUGH x x x x x x
THRU x x x x x x
TIME x x x - - x
TIMES x x x x x x
TO x x x x x x
TODAYS-DATE x x x - - -
TOP - - - - - x
TRAILING x - - - x x
TYPE x - - x x x
UNEQUAL x x x - x -
UNIT x - - x x x
UNLOCK x x - - - -
UNSTRING x - - - - x
UNTIL x x x x x x
UP x - x x x x
UPDATE x - - - x -
UPON x x x x x x

A-13

SYSTEM OPTIONS
RESERVED

WORD B6700 B5700 B2500 USASI S360 ANSI74

UPPER-BOUND x x - - x -
UPPER-BOUNDS x x - - x -
USAGE x x x x x x
USE x x x x x x
USING x x x x x x
VA x x x - - -
VALUE x x x x x x
VALUES x x - x x x
VARYING x x x x x x
WAIT x - x - - -
WHEN x x x x x x
WHERE x - - - - -
WITH x x x x x x
WORDS x x x x x x
WORKING-STORAGE x x x x x x
WRITE x x x x x x
ZERO x x x x x x
ZEROES x x x x x x
ZEROS x x x x x x

A-14

B. ANSl74 IMPLEMENTATIONS
INTRODUCTION

This appendix defines the B 7000 / B 6000 COBOL language facilities for

handling specific features of the ANSI 74 COBOL language standard.

The COBOL specifications contained in the ANSI 74 standard are based on a

Nucleus and eleven functional processing modules. Four modules out of the

ANSI 74 standard have been implemented in B 7000 / B 6000 COBOL; they are the

Indexed I/O, Sequential I/O, Table Handling, and Nucleus modules.

Certain facilities are relatively minor additions or modifications to existing

language elements. These facilities are noted in this appendix; however, a

complete description of these facilities is included in the appropriate main

body sections of this manual.

Other facilities are completely independent of existing language elements and

will be described fully in this appendix.

All ANSI 74 facilities have been implemented under the "ANSI74" system

dollar option. "ANSI74" can either be set when compiling the COBOL compiler

or set at the time a COBOL program is compiled. Refer to the SYSTEM

COMPATIBILITY OPTIONS in section 13 for a complete description of the "ANSI74"

system dollar option characteristics.

B-1

I· INDEXED·, t-0 I"

INDEXED 1-0

The following ANSI 74 Indexed I-0 features are described in detail on the
following pages.

INDEXED I-0 is implemented in the B 7000 / B 6000 series of computer systems
by m.eans of the ISAM intrinsics, and allows all constructs of the full

Level,2 ANSI 74 specification with the exception of alternate record keys.

The Indexed I/O module provides a capability to access records of a mass
storage file in either a random or sequential manner. Each record in an
indexed file is uniquely identified by the value of one key within that

record.

The FILE-CONTROL paragraph format for INDEXED I-0 is:

INPUT-OUTPUT SECTION
FILE-CONTROL.
SELECT file-name

AS~IGN TO [integer-! [..!. integer-2]]

[; RESERVE integer-3 [~::~s]]
ORGANIZATION IS INDEXED

I SEQUENTIALJJ
ACCESS MODE IS RANDOM

DYNAMIC

RECORD KEY IS data-name-1

FILE STATUS IS data-name-~

!DISK l
DISKPACK

The SELECT, ASSIGN and RESERVE clauses have the same specifications as
described previously in the section dealing with the FILE-CONTROL paragraph.

B-2

I INDEXED 1-0 I

The ORGANIZATION clause specifies the logical structure of a file. The file

organization is established at the time a file is created and cannot subse­

quently be changed.

NOTE: Indexed files do not have the same default values for the attributes
"AREAS" (integer-1) and AREASIZE (integer-2), as normal system files.

Therefore, if omitted, "AREAS" and "AREASIZE" will be set to 1. Also,
the system attribute "FLEXIBLE" is not valid for indexed files being
created. This means that when creating an indexed file, "AREAS" and

"AREASIZE" must be made large enough to accommodate all records. After
a file has been created; however, the "FLEXIBLE" attribute is valid
and additional records may be added.

When the ACCESS mode is SEQUENTIAL, records in the file are accessed in

ascending record key values.

When the ACCESS mode is RANDOM, the value of the record key data item indicates

the record to be accessed.

When the ACCESS mode is DYNAMIC, records in the file may be accessed

sequentially and/or randomly.

When a file is opened in the output mode, records must be written with

ascending keys, regardless of the access mode.

The RECORD KEY clause specifies the record key for the file. The values of
the record key must be unique among records of the files. The record key
provides an access path to records in an indexed file.

If the FILE STATUS clause is specified in the file control entry, a value is
placed into the specified two-character data item during the execution of an

OPEN, CLOSE, READ, WRITE, REWRITE, DELETE or START statement, and before any
applicable USE procedure is executed. This is done to indicate to the COBOL

program the status of that input-output operation.

B--3

I INDEXED 1-0 I

The leftmost character position of the FILE STATUS data item is known as

status key 1 and is set to indicate one of the following conditions upon

completion of the input-output operation.

'0' indicates Successful Completion

'l' indicates At End

'2' indicates Invalid Key
I 31 indicates Parity Error

'9' indicates Open Error

The rightmost character position of the FILE STATUS data item is known as

status key 2 and is used to further describe the results of the input-output

operation. This character Will contain one of the following values:

'0' no further information is available concerning the input-output

operation.

'2' indicates a duplicate key when status key 1 contains a value of

'0'. The duplicate key condition indicates:

a. For a READ statement the key value for the current key of

reference is equal to the value of that same key in the next

record within the current key of reference.

b. For a WRITE or REWRITE statement, the record just written

created a duplicate key value.

1.l 1 indicates a sequence error for a sequentially accessed indexed

file when status key 1 contains a value of '2'. Status key 2

will designate the cause of the INVALID KEY condition generated

by status key 1.

'3' indicates no record found when status key 1 contains a value of

'2'. That is, an attempt has been made to access a record,

identified by a key, and that record does not exist in the file.

Data-name-2 must be defined in the Data Division as a two-character data item

of the category alphanumeric.

Data-name-1 and data-name-2 can be qualified.

The data item referenced by data-name-1 must be defined as a data item of the

category alphanumeric within a record description entry associated with that

file-name.

Data-name-1 cannot describe an item whose size is variable.

B-4

INDEXED 1-0 I

The File Description Entry for indexed files is the same as sequentially
organized files, with the exception that three extra attributes pertaining

only to indexed files may have their initial values specified in the "VALUE
OF" clause in the file description entry:

IV.A
VALUE
VALUES

OF { ID 1 f data-name-1]
IDENTIFICATIONJ IS lliteral-1

[, KEYSPERENTRY is

[, AREAOVERFLOW is

[, FILEOVERFLOW is

integer-1]

integer-2]

integer-3]

Integer-1 represents the number of records that will be written into the

file for each fine table entry.

Integer-2 represents the number of overflow records that will be
allocated for each area.

Integer-3 represents the number of overflow areas that will be
allocated for the file.

For a further discussion, see the ISAM manual.

The following Indexed I-0 statements are allowed during the following File
Access Modes and Open Mode:

File Access
Mode

Sequential

Random

Dynamic

Statement

READ
WRITE
REWRITE
START
DELETE
READ
WRITE
REWRITE
START
DELETE
READ
WRITE
REWRITE
START
DELETE

PERMISSIBLE STATEMENTS
Open Mode

Input Output Input-Output

x x
x

x
x x

x
x x

x 'X
x

x
x x

x x
x

x x
x

B-5

CLOSE

The CLOSE statement, when used as a part of the Indexed I-0 module, terminates

the processing of indexed files.

The format is as follows:

CLOSE file-name-1 [wrTH !~E!]

~ file-name-2 [ma !~E!]
The files referenced in the CLOSE statement need not all have the same

organization or access.

A CLOSE statement may only be executed for a file in an open mode.

The PURGE option removes the file from the system's directory.

CLOSE and CLOSE WITH LOCK both cause a file to be made a permanent file in the

system's directory.

B-6

DELETE

The DELETE statement is implemented as part of the ANSI 74 Indexed I/O module.

This statement logically removes a record from an indexed file.

The format is as follows:

DELETE file-name RECORD [;INVALID KEY imperative-statement]

The INVALID KEY phrase must not be specified for a DELETE statement which

references a file which is in sequential access mode.

The INVALID KEY phrase must be specified for a DELETE statement which refer­

ences a file which is not in sequential access mode and for which an

applicable USE procedure is not specified.

The following are general rules for the DELETE statement:

a. The associated file must be open in the I/O mode at the time of the

execution of this statement.

b. For files in the sequential access mode, the last input-output

statement executed for file-name prior to the execution of the DELETE

statement must have been a successfully executed READ statement.

c. For a file in random or dynamic access mode, the record logically

removed from the file is the record identified by the contents of

the record key data item associated with file-name. If the file does

not contain the record specified by the key, an INVALID KEY condition

exists.

After the successful execution of a DELETE statement, the identified record

has been logically removed from the file and can no longer be accessed.

The execution of a DELETE statement does not affect the contents of the record

area associated with file-name.

The execution of the DELETE statement causes the value of the specified

FILE STATUS data item associated with file-name to be updated.

B-7

OPEN

The OPEN statement, when used as part of the ANSI 74 Indexed I-0 module,

initiates the processing of Indexed files.

The general format is as follows:

INPUT file-name-1

OUTPUT file-name-3

I-0 file-name-5

[, file-name-2]

[, file-name-4]

[, file-name-6]

The ANSI 74 Indexed I-0 statement functions the same as the standard

B 7000 / B 6000 OPEN statement.

B-8

READ

For sequential access, the READ statement, which is a part of the ANSI 74

Indexed I/O module, makes available the next logical record from a file. For

random access, the READ statement makes available a specified record from a

mass storage file.

The formats for the READ statement are:

Option 1:

file-name [NEXT] RECORD [INTO
---; - identifier]

[;AT END imperative-statement]

Option 2:

READ file-name RECORD (INTO identifier]

[;KEY IS data-name]

[;INVALID KEY imperative-statement]

Option 1 is the sequential READ statement, and must be used for all files in

sequential mode.

In Option 1, the NEXT phrase must be specified for files in dynamic access

mode, when records are to be retrieved sequentially.

The INTO phrase must not be used when the input file contains logical records

of various sizes as indicated by their record descriptions. The storage area

associated with identifier and the storage area which is the record area

associated with file-name must not be the same storage area.

Option 2 is the KEYed READ statement, and is used for files in random access

mode or for files in dynamic access mode when records are to be retrieved

randomly.

Data name must be the name of a data item specified as a record key

associated with file-name.

Data-name can be qualified.

The INVALID KEY phrase or the AT END phrase must be specified if no applicable

USE procedure is specified for file-name.

The following general rules apply to the INDEXED I-0 READ statement:

B-9

The record to be made available by an Option 1 READ statement is the next

existing record in the file.

The execution of the READ statement causes the value of the FILE STATUS

data item associated with file-name to be updated.

When the AT END condition is recognized the following actions are taken in

the specified order:

a. A value is placed into the FILE STATUS data item, if specified for

this file, to indicate an AT END condition.

b. If the AT END phrase is specified in the statement causing the

condition, control is transferred to the AT END imperative statement.

Any USE procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must be

specified, either explicitly or implicitly, for this file, and that

procedure is executed.

When the AT END condition occurs, execution of the input-output statement

which caused the condition. is unsuccessful.

Following the unsuccessful execution of any READ statement, the contents of

the associated record area are undisturbed.

When the AT END condition has been recognized, an Option 1 READ statement for

that file must not be executed without first executing one of the following:

a. A successful CLOSE statement followed by the execution of a successful

OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Option 2 READ statement for that file.

For a file in which dynamic access mode is specified, an Option 1 READ

statement with the NEXT phrase specified causes the next logically sequential

record to be retrieved from that file.

Execution of an Option 2 READ statement causes the value of the key of

reference to be compared with the value contained in the corresponding data

item of the stored records in the file, until the first record having an equal

value is found. This record is then made available. If no record can be so

identified, the INVALID KEY condition exists and execution of the READ

statement is unsuccessful.

B-10

NOTE: The KEY IS data-name clause is for documentation purposes only.

The key declared to be the RECORD KEY in the SELECT statement is

the only valid key for any I-0 on an indexed file.

REWRITE

The REWRITE statement logically replaces a record existing in an Indexed file.

This statement is a part of the ANSI 74 specification for the Indexed I/O

module. The format is as follows:

REWRITE record-name [FROM identifier]

[; INVALID KEY imperative-statement]

The record-name and identifier must not refer to the same storage area.

Record-name is the name of a logical record in the File Section of the Data

Division and can be qualified.

The INVALID KEY phrase must be specified in the REWRITE statement for files

for which an appropriate USE procedure is not specified.

The following general rules apply to the REWRITE statement:

1. The file associated with the record-name must be open in the I-0 mode

at the time of execution of this statement.

2. For files in the sequential access mode, the last input-output

statement executed for the associated file prior to the execution of

the REWRITE statement must have been a successfully executed READ

statement.

3. The execution of the REWRITE statement causes the value of the FILE

STATUS data item associated with the file to be updated.

4. For a file in the sequential access mode, the record to be replaced

is specified by the value contained in the record key. When the

REWRITE statement is executed, the value contained in the record key

data item of the record to be replaced must be equal to the value

of the record key of the last record read from the file.

5. For a file in the random or dynamic access mode, the record to be

replaced is specified by the record key data item.

THE INVALID KEY condition exists when:

a. The sequential access mode is specified and the value contained

in the record key data item of the record to be replaced is not

equal to the value of the record key of the last record read from

this file: or

b. The value contained in the Record Key data item of the Record is

not equal to the value of any record in the file.

B-11

START

The START statement as part of the ANSI 74 specification of the Indexed I/O

module, provides a basis for logical positioning within an indexed file, for

subsequent sequential retrieval of records.

The format is as follows:

IS EQUAL TO

IS =

START file-name KEY IS GREATER THAN data-name
IS >
IS NOT LESS THAN

IS NOT <

[; INVALID KEY imperative-statement]

NOTE: The required relational character '> ', '<'and '=' are

not underlined to avoid confusion with other symbols.

File-name must be the name of an indexed file,

File-name must be the name of a file with sequential or dynamic access.

Data-name can be qualified.

The INVALID KEY phrase must be specified if no applicable USE procedure is

specified for file-name.

If file-name is the name of an indexed file, and if the KEY phrase is

specified, data-name may reference a data item specified as a record key

associated with file-name, or it may reference any data item of category

alphanumeric subordinate to the data-name of a data item specified as a

record key associated with file-name whose leftmost character position

corresponds to the leftmost character position of the record key data item.

The following general rules apply to the START statement:

B-12

1. File-name must be open in the INPUT or I/O mode at the time that the

START statement is executed.

2. If the KEY phrase is not specified, the relational operator 'IS EQUAL

TO' is implied.

3. The type of comparison specified by the relational operator in the

KEY phrase occurs between the key associated with a record in the

file referenced by file-name and the specified data-item. If file­

name references an indexed file and the operands are of unequal size,

comparison, proceeds as though the longer one was truncated on the

right such that its length is equal to that of the shorter.

a. The file is positioned to the first logical record currently

existing in the file whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, an

INVALID KEY condition exists, the execution of the START statement

is unsuccessful, and no positioning of the file takes place.

The execution of the START statement causes the value of the FILE STATUS data

item associated with file-name to be updated.

B-13

USE

The USE statement specifies procedures for input-output error handling that
are in addition to the standard procedures provided by the input-output con­
trol system. This statement is a part of the ANSI 74 specification of the
Indexed I/O module.

The format is as follows:

USE AFTER STANDARD EXCEPTION PROCEDURE ON INPUT l J {file-name-1 [, file-name-2]

ERROR -------- OUTPUT
I-0

The words ERROR and EXCEPTION are synonymous and may be used interchangeably.

The files implicitly or explicitly referenced in a USE statement need not all
have the same organization or access.

The following general rules apply to the USE statement.

The designated procedures are executed by the input-output system after
completing the standard input-output error routine, or upon recognition of the
INVALID KEY or AT END conditions, when the INVALID KEY phrase or AT END
phrase, respectively, has not been specified in the input-output statement.

After execution of a USE procedure, control is returned to the invoking
routine.

B-14

WRITE

The WRITE statement when used as part of the ANSI 74 specification of the

Indexed I/O module, releases a logical record for an output or input-output

file.

The format is as follows:

WRITE record-name [FROM identifier] [;INVALID. KEY imperative-statement]

Record-name and identifier must not reference the same storage area.

The record-name is the name of a logical record in the File Section of the

Data Division and can be qualified.

The INVALID KEY phrase must be specified if an applicable USE procedure is

not specified for the associated file.

The following general rules apply to the WRITE statement.

The associated file must be open in the OUTPUT or I/O mode at the time of the

execution of this statement.

The execution of the WRITE statement causes the value of the FILE STATUS

data item associated with the file to be updated.

If sequential access is specified for the file, records must be released in

ascending order of record key values.

If random or dynamic access mode is specified, records may be released in any

program-specified order.

When a file is opened in the output mode, records must be written with ascend­

ing keys, regardless of the access mode.

The INVALID KEY condition exists under the following circumstances.

a. When a file is opened in the output mode, regardless of the access

mode, and the value of the record key is not greater than the value

of the record key of the previous record, or

b. When the file is opened in the output or I/O mode, and the value of

the record key is equal to the value of a record key of a record

already existing in the file.

When the INVALID KEY condition is recognized, the execution of the WRITE

statement is unsuccessful. Also, the contents of the record area are

unaffected and the FILE STATUS data item associated with the file-name of the

associated file is set to a value indicating the cause of the condition.

Execution of the program proceeds according to the rules stated in the

INVALID KEY condition.

I SEQUENTIAL 1-0 I
SEQUENTIAL 1-0

The following ANSI 74 Sequential I-0 features have been added to existing

B 7000/B 6000 COBOL syntax and semantics:

The CODE-SET clause in.the FILE DESCRIPI'ION ENTRIES.

The EXTEND option of the CLOSE statement.

The ORGANIZATION/FILE STATUS clauses of the FILE-CONTROL paragraph.

B-16

LINAGE

The LINAGE clause, when used as part of the ANSI 74 Sequential I-0 Module,
can be used only when the ANSI74 sy~tem dollar option is set.

The LINAGE clause provides a means for specifying the depth of a logical
page in terms of numbers of lines. It also provides for specifying the size
of the .top and bottom margins on the logical page, and the line number,
within the page body, at which the footing area begins.

The general format is as follows:

LINAGE IS {data-name-I 1LINES [WITH FOOTING AT integer-I ' l data-name-2 J]
integer-2

[LINES AT TOP { ~a ta-name-3 } l [LINES AT BOTTOM ' ~- integer-3 ' { ~ata-name-4 }]
integer-4

Data-name-1, data-name-2, data-name-3, data-name-4 must reference elementary
unsigned numeric integer data items.

The value of integer-I must be greater than zero.

The value of integer-2 must not be greater than integer-I.

The value of integer-3, integer-4 can be zero.

If the .ANSI74 system dollar option is set at the time the LINAGE clause is
used in the File Description, the semantic meaning of the ANSI 74 LINAGE
clause will be given to the file.

If the ANSI74 system dollar option is not set, the current semantic meaning
of the LINAGE clause will be given to the file.

The following general rules apply to the use of the ANSI 74 extension of the
LINAGE clause.

1. The LINAGE clause provides a means for specifying the size of a
logical page in terms of number of lines. The logical page size is
the sum of the values referenced by each phrase except the FOOTING
phrase. If the LINES AT TOP or LINES AT BOTTOM phrases are not
specified, the values for these functions are zero. If the FOOTING
phrase is not specified, the assumed value is equal to integer-I, or
the contents of the data item referenced by data-name-1, whichever is
specified.

B-17

B-18

There is not necessarily any relationship between the size of the

logical page and the size of a physical page.

2. The value of integer-1 or the data item referenced by data-name-1

specifies the number of lines that can be written and/or spaced on

the logical page. The value must be greater than zero. That part

of the logical page in which these lines can be written and/or spaced
is called the page body.

3. The value of integer-3 or the data item referenced by data-name-3

specifies the number of lines that comprise the top margin on the
logical page. The value may be zero.

4. The value of integer-4 or the data item referenced by data-name-4

specifies the number of lines that comprise the bottom margin on
the logical page. The value may be zero.

5. The value of integer-2 or the data item referenced by data-name-2

specifies the line number within the page body at which the footing

area begins. The value must be greater than zero and not greater

than the value of integer-1 or the data item referenced by data­

name-1.

The footing area comprises the area of the logical page between the

line represented by the value of integer~2 or the data item referenced

by data-name-2 and the line represented by the value of integer-1 or

the data item refer'enced by data-name-1, inclusive.

6. The value of integer-1, integer-3, and integer-4 if specified, will

be used at the time the file is opened by the execution of an OPEN

statement with the OUTPUT phrase, to specify the number of lines

that comprise each of the indicated sections of a logical page. The

value of integer-2, if specified, will be used at that time to define

the footing area. These values are used for all logical pages

written for the file during a given execution of the program.

7. The values of the data items referenced by data-name-1, data-name-3,

and data-name-4, if specified, will be used as follows:

a. The values of the data items, at the time an OPEN statement with

the OUTPUT phrase is executed for the file, will be used to

specify the number of lines that are to comprise each of the

indicated sections for the first logical page.

b. The values of the data items, at the time a WRITE statement with
the ADVANCING PAGE phrase is executed or page overflow condition

occurs, will be used to specify the number of lines that are to

comprise each of the indicated sections for the next logical page.

8. The value of the data item referenced by data-name-2, if specified,

at the time an OPEN statement with the OUTPUT phrase is executed for

the file, will be used to define the footing area for the first

logical page. At the time a WRITE statement with the ADVANCING

PAGE phrase is executed or a page overflow condition occurs, it will

be used to define the footing area for the next logical page.

9. A LINAGE-COUNTER is generated by the presence of a LINAGE clause.

The value in the LINAGE-COUNTER at any given time represents the line

number at which the device is positioned within the current page

body. The rules governing the LINAGE-COUNTER are as follows:

a. A separate LINAGE-COUNTER is supplied for each file described in

the File Section whose file description entry contains a LINAGE

clause.

b. LINAGE-COUNTER may be referenced, but may not be modified, by

Procedure Division statements. Since more than one LINAGE­

COUNTER may exist in a program, the user must qualify LINAGE­

COUNTER by file-name when necessary.

c. LINAGE-COUNTER is automatically modified, according to the

following rules, during the execution of a WRITE statement to an

associated file:

1) When the ADVANCING PAGE phrase of the WRITE statement is

specified, the LINAGE-COUNTER is automatically reset to

one (1).

2) When the ADVANCING identiier-2 or integer phrase of the

WRITE statement is specified, the LINAGE-COUNTER is

incremented by integer or the value of the data item

referenced by identifier-2.

3) When the ADVANCING phrase of the WRITE statement is not

specified, the LINAGE-COUNTER is incremented by the value

one (1).

4) The value of LINAGE-COUNTER is automatically reset to one (1)

when the device is repositioned to the first line that can

be written on for each of the succeeding logical pages.

d. The value of LINAGE-COUNTER is automatically set to one (1) at

the time an OPEN statement is executed for the associated file.

10. Each logical page is contiguous to the next with no additional spac­

ing provided. (This assumes that no automatic channel advance mech­

anism is present on a hardware device).

B-19

WRITE

The following semantic actions for the WRITE statement are related to the

specification of the ANSI 74 LINAGE clause.

The syntax for the WRITE statement associated with the LINAGE clause for
Sequential I-0 is ~s follows:

WRITE record-name [FROM identif ier-1]

lBEFOREl ADVANCING
AFTER

r ~dentifier-2}
linteger

!mnemonic-name}
PAGE

[LINE]
LINES

[; AT !END-OF-PAGE 1
EOP imperative-statement]

If the END-OF-PAGE phrase is specified, the LINAGE clause must be specified

in the file description entry for the file.

The "ADVANCING mnemonic-name" phrase cannot be specified for a WRITE

statement referencing a file whose description contains a LINAGE clause.

Both the ADVANCING phrase and the END-OF-PAGE phrase allow control of the
vertic~l positioning of each line on a representation of a printed page. If

the ADVANCING phrase is not used, automatic advancing will be provided by the

implementor to act as if the user had specified AFTER ADVANCING 1 LINE. If
the ADVANCING phrase is used, advancing is provided as follows:

B-20

a. If "ADVANCING identifier-2 LINES" is specified, the representation

of the printed page is advanced the number of lines equal to the

current value associated with identifier-2.

b. If "ADVANCING integer LINES" is specified, the representation of

the printed page is advanced the number of lines equal to the value

of integer.

c. If the BEFORE phrase is used, the line is presented before the

representation of the printed page is advanced according to rules

a and b.

d. If the AFTER phrase is used, the line is presented after the

representation of the printed page is advanced according to rules

a and b.

e. If the "ADVANCING PAGE" phrase is specified, the record is presented

on the logical page before or after (depending on the phrase used)

the device is repositioned to the next logical page. If the record

to be written is associated with a file whose file description entry

contains a LINAGE clause, the repositioning is to the first line

that can be written on the next logical page as specified in the

LINAGE clause.

If the logical end of the representation of the printed page is reached

during the execution of a WRITE statement with the END-OF-PAGE phrase, the

imperative-statement specified in the END-OF-PAGE phrase is executed. The

logical end is specified in the LINAGE clause associated with record-name.

An end-of-page condition is reached whenever the execution of a given WRITE

statement with the END-OF-PAGE phrase causes printing or spacing within the

footing area of a page body. This occurs when the execution of such a WRITE

statement causes the LINAGE-COUNTER to equal or exceed the value specified

by integer-2 or the data item referenced by data-name-2 of the LINAGE clause,

if specified. In this case, the WRITE statement is executed and the imperative

statement in the END-OF-PAGE phrase is executed.

An automatic page overflow condition is reached whenever the execution of a

given WRITE statement (with or without an END-OF-PAGE phrase) cannot be fully

accommodated within the current page body.

This occurs when a WRITE statement, if executed, would cause the LINAGE­

COUNTER to exceed the value specified by integer-I or the data item referenced

by data-name-1 of the LINAGE clause. In this case, the record is presented

on the logical page before or after (depending on the phrase used) the device

is repositioned to the first line that can be written on the next logical page

as specified in the LINAGE clause. The imperative statement in the END-OF­

PAGE clause, if specified, is executed after the record is written and the

device has been repositioned.

If integer-2 or data-name-2 of the LINAGE clause is not specified, no end-of­

page condition distinct from the page overflow condition is detected. In this

case, the end-of-page condition and page overflow condition occur

simultaneously.

B-21

If integer-2 or data-name-2 of the LINAGE clause is specified, but the

execution of a given WRITE statement would cause LINAGE-COUNTER to simultane­

ously exceed the value of both integer-2 or the data item referenced by data­

name-2 and integer-1 or the data item referenced by data-name-1, then the

operation proceeds as if integer-2 or data-name-2 had not been specified.

B-22

I TABLE HANDLING I
TABLE HANDLING

The following Table Handling feature has been added to existing B 7000 /

B 6000 COBOL syntax and semantics:

The DEPENDING option extension in the OCCURS clause.

There are no other differences between existing language elements and

ANSI 74 language elements with regards to the Table Handling Module.

B-22a

NUCLEUS

NUCLEUS

The following ANSI 74 Nucleus features have been added to existing B 7000 /

B 6000 COBOL syntax and semantics:

Option 2 of the ACCEPr statement in the PROCEDURE DIVISION.

The alphabet-name clause in the SPECIAL-NAMES paragraph.

The maximum decimal value restrictions for COMPUTATIONAL data items.

The meaning of the NOT operator in abbreviated relation conditions.

The PROGRAM COLLATING SEQUENCE in the OBJECT-COMPUTER paragraph.

The "/" insertion character in the SIMPLE INSERTION EDITING sub-section

in the PICTURE section.

The following ANSI 74 Nucleus features are additions to the above mentioned

ANSI 74 features and are described in detail on the following pages.

B-22b

INSPECT

The INSPECT statement provides the ability to tally (Option 1), replace

(Option 2) or tally and replace (Option 3) occurrences of single characters

or groups of characters in a data item.

The general format is as follows:

Option 1:
INSPECT identifier-! TALLYING

[identifi«-2 FOR [
IALL I
IEEADINGI

CHARACTERS
lidentifier-31}
literal-! I

Option 2:
INSPECT identifier-! REPLACING

!identifier-al
literal-4 !BEFOREl

AFTER I INITIAL

[{BEFOREl INITIAL
AFTER J

!identifier-7l
literal-5 I

f identifier-41]]
lliteral-2 .. J

{

CHARACTERS BY

! , j~DINGl l l FIRST j
J, lidentif ier-51 l literal-3 BY lidentifier-6l

literal-4 j INITIAL l i~entifier-7l].} .. ·l · .l literal-5 r J
Option 3:

INSPECT identifier-! TALLYING l identifie•-2 FOR !·
REPLACING

{
IALL I
!LEADING I

CHARACTERS
lidentifier-31! [!BEFORE!
lliteral-1 lj !AFTER I

INITIAL

{

lidentifier-61

!C,HARA{-CLA TELEADL RSIN!!._GY}. l· llii;eral-4 I
lidentifier-51
lliteral-3 I FIRST

I BEFORE I
!AFTER I INITIAL lidentifier-71

lli teral-5 I

lidentifier-61
lli teral-4 I ll BEFORE I INITIAL

!AFTER I

lidentifier-41]}
lliteral-2 I

lidentifier-71]}
lliteral-5 I

.. · l

"-l-·l

B-23

All Options

Identifier-1 must reference either a group item or any category of elementary

item, described as usage DISPLAY.

Identifier-3 identifier-n must reference either an elementary alphabetic,

alphanumeric or numeric item described as usage DISPLAY

Each literal must be nonnumeric and may be any figurative constant, except ALL.

Literal-1, literal-2, literal-3, literal-4 and literal-5, and the data items

referenced by identifier-3, identifier-4, identifier-5, identifier-6 and

identifier-7 may be one or more characters in length, except as specifically

noted in syntax and general rules.

Options 1 and 3 only:

Identifier-2 must reference on elementary numeric data item.

If either literal-1 or literal-2 is a figurative constant, the figurative

constant refers to an implicit one character data item.

Options 2 and 3 only:

The size of the data referenced by literal-4 or identifier-6 must be equal to

the size of the data referenced by literal-3 or identifier-5. When a figur­

ative constant is used as literal-4, the size of the figurative constant is

equal to the size of literal-3 or the size of the data item referenced by

identifier-5.

When the CHARACTERS phrase is used, literal-4 literal-5 or the size of the data

item referenced by identifier-6, identifier-7 must be one character in length.

When a figurative constant is used as literal-3, the data referenced by

literal-4 or identifier-6 must be one character in length.

The following general rules apply to the INSPECT statement.

B-24

1. Inspection (which includes the comparison cycle, the establishment of

boundaries for the BEFORE or AFTER phrase, and the mechanism for

tallying and/or replacing) begins at the leftmost character position

of the data item referenced by identifier-1, regardless of its class,

and proceeds from left to right to the rightmost character position

as described in general rules 4 through 6.

2. For use in the INSPECT statement, the contents of identifier-!,

identifier-3, identifier-4, identifier-5, identifier-6 or

identifier-7 will be treated as follows:

a. If any of identifier-!, identifier-3, identifier-4, identifier-5,

identifier-6 or identifier-7 are described as alphanumeric, the

INSPECT statement treats the contents of each such identifier as

a character-string.

b. If any of identifier-!, identifier-3, identifier-4, identifier-5,

identifier-6 or identifier-7 are described as alphanumeric

edited, numeric edited or unsigned numeric, the data item is

inspected as though it had been redevined as alphanumeric and

the INSPECT statement had been written to reference the redefined

data item.

c. If any of the identifier-!, identifier-3, identifier-4,

identifier-5, identifier-6 or identifier-7 are described as

signed numeric, the data item is inspected as though it has been

moved to an unsigned numeric data item of the same length and

then general rule 2-b had been applied.

3. In general rules 4 through 11 all references to literal-!, literal-2,

literal-3, literal-4 and literal-5 apply equally to the contents of

the data item referenced by identifier-3, identifier-4, identifier-5,

identifier-6 and identifier-7, respectively.

4. During inspection of the contents of the data item referenced by

identifier-!, each properly matched occurrence of literal-! is

tallied (Options 1 and 3) and/or each properly matched occurrence of

literal-3 is replaced by literal-4 (Options 2 and 3).

5. The comparison operation to determine the occurrences of literal-!

to be tallied, and/or occurrences of literal-3 to be replaced, occurs

as follows:

a. The operands of the TALLYING and REPLACING phrases are considered

in the order they are specified in the INSPECT statement from

left to right. The first literal-!, literal-3, is compared to

an equal number of contiguous characters, starting with the

leftmost character position in the data item referenced by

identifier-1, literal-1, literal-3 and that portion of the

contents of the data item referenced by identifier-1 match if,

and only if, they are equal, character for character.

B-25

B-26

b. If no match occurs in the comparison of the first literal-1,

literal-3, the comparison is repeated with each successive

literal-1, literal-3, if any, until either a match is found or

there is no next successive literal-1, literal-3. When·there

is no next successive literal-1, literal-3, the character position

in the data item referenced by identifier-1 immediately to the

right of the leftmost character position considered in the last

comparison cycle is considered as the leftmost character position,

and the comparison cycle begins again with the first literal-1,

literal-3.

c. Whenever a match occurs, tallying and/or replacing takes place

as described in general rules 8 through 10. The character

position in the data item referenced by identifier-1 immediately

to the right of the rightmost character position that participated

in the match is now considered to be the leftmost character

position of the data item referenced by identifier-1, and the

comparison cycle starts again with the first literal-1, literal-3.

d. The comparison operation continues until the rightmost character

position of the data item referenced by identifier-1 has partic­

ipated in a match or has been considered as the leftmost character

position. When this occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one-character

operand participates in the cycle described in paragraphs 5-a

through 5-d above, except that no comparison to the contents of

the data item referenced by identifier-1 takes place. This

implied character is considered always to match the leftmost

character of the contents of the data item referenced by

identifier-1 participating in the current comparison cycle.

6. The comparison operation defined in general rule 5 is affected by the

BEFORE and AFTER phrases as follows:

a. If the BEFORE or AFTER phrase is not specified, literal-1,

literal-3 or the implied operand of the CHARACTERS phrase

participates in the comparison operations as described in general

rule 5.

b. If the BEFORE phrase is specified, the associated literal-1,

literal-3 or the implied operand of the CHARACTERS phrase
participates only in those comparison cycles which involve that

·portion of the contents of the data item referenced by

identifier-1 from its leftmost character position up to, but not

Option 1:

including, the first occurrence of literal-2, literal-5 within

the contents of the data item referenced by identifier-!. The

position of this first occurrence is determined before the first

cycle of the comparison operation described in general rule 5 is

begun. If, on any comparison cycle, literal-!, literal-3 or the

implied operand of the CHARACTERS phrase is not eligible to

participate, it is considered not to match the contents of the

data item referenced by identifier-!. If there is no occurrence

of literal-2, literal-5 within the contents of the data item

referenced by identifier-!, its associated literal-!, literal-3,

or the implied operand of the CHARACTERS phrase participates in

the comparison operation as though the BEFORE phrase had not been

specified.

c. If the AFTER phrase is specified, the associated literal-!,

literal-3 or the implied operand of the CHARACTERS phrase may
participate only in those comparison cycles which involve that
portion of the contents of the data item referenced by

identifier-! from the character position immediately to the right

of the rightmost character position of the first occurrence of

literal-2, literal-5 within the contents of the data item
referenced by identifier-! and the rightmost character position

of the data item referenced by identifier-!. The position of

this first occurrence is determined before the first cycle of the

comparison operation described in general rule 5 is begun. If,

on any comparison cycle, literal-!, literal-3 or the implied

operand of the CHARACTERS phrase is not eligible to participate,

it is considered not to match the contents of the data item

referenced by identifier-!. If there is no occurrence of

literal-2, literal-5 within the contents of the data item

referenced by identifier-I, its associated literal-I, literal-~,

or the implied operand of the CHARACTERS phrase is never eligible

to participate in the comparison operation.

7. The contents of the data item referenced by identifier-2 is not

initialized by the execution of the INSPECT statement.

8. The rules for tallying are as follows:

a. If the ALL phrase is specified, the contents of the data item

referenced by identifier-2 is incremented by one (1) for each

B-27

occurrence of literal-1 matched within the contents of the data

item referenced by identifier-1.

b. If the LEADING phrase is specified, the contents of the data item

referenced by identifier-2 is incremented by one (1) for each

contiguous occurrence of literal-1 matched within the contents of

the data item referenced by identifier-1, provided that the left­

most such occurrence is at the point where comparison began in

the first comparison cycle in which literal-1 was eligible to

participate.

c. If the CHARACTERS phrase is specified, the contents of the data

item referenced by identifier-2 is incremented by one (1) for

each character matched, in the sense of general rule 5-e, within

the contents of the data item referenced by identifier-1.

Option 2:

9. The required words ALL, LEADING and FIRST are adjectives that apply to

each succeeding BY phrase until the next adjective appears.

10. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched,

in the sense of general rule 5-e, in the contents of the data item

referenced by identifier-1 is replaced by literal-4.

b. When the adjective ALL is specified, each occurrence of literal-3

matched in the contents of the data item referenced by

identifier-1 is replaced by literal-4.

c. When the adjective LEADING is specified, each contiguous

occurrence of literal-3 matched in the contents of the data item

referenced by identif~er-1 is replaced by literal-4, provided

that the leftmost occurrence is at the point where comparison

began in the first comparison cycle in which literal-3 was

eligible to participate.

d. When the adjective FIRST is specified, the leftmost occurrence

of literal-3 matched within the contents of the data item

referenced by identifier-1 is replaced by literal-4.

Option 3:

B-28

11. An Option 3 INSPECT statement is interpreted and executed as though

two successive INSPECT statements specifying the same identif ier-1

had been written with one statement being an Option 1 statement with

TALLYING phrases identical to those specified in the Option 3

statement, and the other statement being an Option 2 statement with
REPLACING phrases identical to those specified in the Option 3

statement. The general rules given for matching and counting apply
to the Option 1 statement and the general rules given for matching

and replacing apply to the Option 2 statement.

B-29

SIGN

The SIGN clause is a ANSI 74 Nucleus module facility which specifies the
position and mode of representation of the operational sign when it is
necessary to describe these properties explicitly. The SIGN clause is used
in conjunction with the PICTURE clause in a data description.

The format is as follows:

[] 1 LEAD I NG 1]
SIGN IS 1TRAILINGJ [SEPARATE CHARACTER

The SIGN clause may be specified only for a numeric data-item whose PICTURE
contains the character 's', or a group item with such entries subordinate.

The data description entries to which the SIGN clause applies must be of
display usage.

At most one SIGN clause may apply to any given numeric data description entry.

The specification of "TRAILING SEPARATE CHARACTER" is not implemented.

If the CODE-SET clause is specified, any signed numeric data description
entries associated with that file description entry must be described with the
SIGN IS SEPARATE clause.

The following general rules apply to the use of the SIGN clause.

(l)· The optional SIGN clause, if present, specifies the position and the
mode of representation of the operational sign for the numeric data
description entry to which it applies, or for each numeric data
description entry subordinate to the group to which it applies. The
SIGN clause applies only to numeric data description entries whose
PICTURE contains the character 's'.

(2) A numeric DISPLAY data description entry whose PICTURE contains the
character 's', but to which no optional SIGN clause applies, has an
operational sign. In this (default) case, the sign is in the zone of
the trailing character.

(3) If the operational SEPARATE CHARACTER phrase is not present, then:

B-30

a. The operational sign will be presumed to be the zone of the
leading (or, respectively, trailing) character position of the

elementary numeric data item.

b. The letter 's' in a PICTURE character-string is not counted in
determining the size of the item (in terms of standard data
format characters).

(4) If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign will be presumed to be the leading character

position of the elementary numeric data item; this character

position is not a digit position.

b. The letter 's' in a PICTURE character-string is counted in
determining the size of the item (in terms of standard data

format characters).

c. The operational signs for positive and negative are the standard
DISPLAY characters '+' and'-', respectively.

(5) Every numeric data description entry whose PICTURE contains the
character 's' is a signed numeric data description entry. If a

SIGN clause applies to such an entry and conversion is necessa~y
for purposes of computation or comparisons, conversion takes place

automatically.

B-31

STRING

The STRING statement provides juxtaposition of the partial or compl~te con­

tents of two or more data items into a single data item.

The general format is as follows:

STRING !identifier-1} [· identifier-2] DELIMITED BY
literal-1 , literal-2 ···

t { ~~~~;!f ::r-4} [m~;!i:~r-S] · . . DELIMITED BY
INTO identifier-7 [WITH POINTER identifier-8]

[; ON OVERFLOW imperative-statement]

l identifier-3}
li t.eral-3
SIZE

{ i~entifier-6}~ li teral-6 ...
SIZE

Each literal may be any figurative constant without the optional word ALL.

All literals must be described as nonnumeric literals; also, all identifiers,
except identifier-8, must be described implicitly or explicitly as usage
DISPLAY.

Identifier-7 must represent an alphanumeric data item without editing symbols
or the JUSTIFIED clause.

Identifier-8 must represent an elementary numeric integer data item of
sufficient size to contain a value equal to the size plus 1 of the area

referenced by identifier-7. The symbol 'P' may not be used in the PICTURE

character-string of identifier-8.

Where idehtifier-1, identifier-2, ... , or identifier-3 is an elementary

numeric data item, it must be described as an integer without the symbol
'P' in its PICTURE character-string.

The general rules for the STRING statement are as follows:

B-32

1. All references to identifier-I, identifier-2, identifier-3, literal-1,
literal-2, literal-3 apply equally to identifier-4, identifier-5,
identifier-6, literal-4, literal-5 and literal-6, respectively, and
all iterations thereof.

2. Identifier-I, literal-1, identifier-2, literal-2 represent the
sending items. Identifier-7 represents the receiving item.

3. Literal-3, identifier-3, indicate the character(s) delimiting the
move. If the SIZE phrase is used, the complete data item defined

by identifier-I, literal-1, identifier-2, literal-2, is moved.

When a figurative constant is used as the delimiter, it stands for a
single-character nonnumeric literal.

4. When a figurative constant is specified as literal-1, literal-2,
literal-3, it refers to an implicit one-character data item whose
usage is DISPLAY.

5. When the STRING statement is executed, the transfer of data is
governed by the following rules:

a. Those characters from literal-1, literal-2, or from the
contents of the data item referenced by identifier-1,
identifier-2, are transferred to the contents of identifier-7
in accordance with the rules for alphanumeric to alphanumeric
moves, except that no space-filling will be provided.

b. If the DELIMITED phrase is specified without the SIZE phrase,
the contents of the data item referenced by identifier-1,
identifier-2, or the value of literal-1, literal-2, are
transferred to the receiving data item in the sequence
specified in the STRING statement; thus, beginning with the
leftmost character and continuing from left to right until the
end of the data item is reached, or until the character(s)
specified by literal-3, or by the contents of identifier-3
are encountered. The character(s) specified by literal-3 or
by the data item referenced by identifier-3 are not transferred.

c. If the DELIMITED phrase is specified with the SIZE phrase, the
entire contents of literal-1, literal-2, or the contents of the
data item referenced by identifier-1, identifier-2 are trans­
ferred, in the sequence specified in the STRING statement, to
the data item referenced by identifier-7 untl all data has been
transferred or the end of the data item referenced by identifier-7
has been reached.

6. If the POINTER phrase is specified, identifier-8 is explicitly
available to the programmer, and he is responsible for setting its

initial value. The initial value must not be less than one.
7.. If the POINTER phrase is not specified, the following general rules

apply as if the user had specified identifier-8 with an initial value

of 1.

B-33

8. Characters transferred to the data item referenced by identifier-7

are moved (seemingly one at a time) from the source into the data

item referenced by identifier-7. These characters are designated

by the value associated with identifier-8, which is obtained by

incrementing the value of identifier-8 by one prior to the move

of the next character.

9. At the termination of STRING statement execution, only the portion

of identifier-7 referenced during execution is changed. All other

portions of identif ier-7 will contain data that was present before
the execution of the STRING statement.

10. If at the beginning of the string statement execution, the value

of identifier-8 is either less than one or greater than the number

of character positions in identifier-7, then no data will be

transferred, and the imperative statement in the ON OVERFLOW

phrase, if specified, will be executed.

11. If the ON OVERFLOW phrase is not specified when the conditions

described in general rule 10 are encountered, control is

transferred to the next executable statement.

B-34

I UNSTRING I
UNSTRING

The UNSTRING statement causes contiguous data in a sending field to be
separated and placed into multiple receiving fields.

The general format for the UNSTRING statement is as follows:

UNSTRING identif ier-1

[
DELIMITED BY [ALL] {i~entifier-2} [OR [ALL] f i~entifier-31] .. l

~ literal-I ' --- ~ lliteral-2 J
INTO identifier-4 [,DELIMITER IN identifier-5][, COUNT IN identifier-6]

[identifier-7 [,DELIMITER IN identifier-8][,COUNT IN identifier-9] J ...
[WITH POINTER identifier-lO][TALLYING IN identifier-11]

[; ON OVERFLOW imperative-statement]

Each literal must be a nonnumeric literal. In addition, each literal may be
any figurative constant without the optional word ALL.

Identifier-I, identifier-2, identifier-3, identifier-5 and identifier-8 must
be described implicitly or explicitly, as an alphanumeric DISPLAY data item.

Identifier-4 and identifier-7 may not be described as requiring editing, and
must be described as usage DISPLAY.

Identifier-6, identifier-9, identifier-IO and identifier-11 must be described
as elementary numeric integer data items (except that the symbol 'P' may not
be used in the PICTURE character-string).

No identifier may name a level 88 entry.

The DELIMITER IN phrase and the COUNT IN phrase may be specified only if the
DELIMITED BY phrase is specified.

The following general rules apply to the UNSTRING statement:

1. All references to identifier-2, literal-I, identifier-4,
identifier-5 and identifier-6, apply equally to identifier-3,

literal-2, identifier-7, identifier-8 and identifier-9,
respectively, and all iterations thereof.

2. Identifier-I represents the sending area.
3. Identifier-4 represents the data receiving area. Identifier-5

represents the receiving area for delimiters.

B-35

I I UNSTRING I
4. Literal-1 or the data item referenced by identifier-2 specifies a

delimiter.
5. Identifier-6 represents the count of the number of characters within

the data item referenced by identifier-1 isolated by the delimiters

for the move to identifier-4. This value does not include a count
of the delimiter character(s).

6. The data item referenced by identifier-10 contains a value that

indicates a relative character position within the area defined by

identifier-1.
7. The data item referenced by identifier-11 is a counter that records

the number of data items acted upon during the execution of an

UNSTRING statement.
8. When a figurative constant is used as the delimiter, it stands for

a single-character nonnumeric literal.

When the ALL phrase is specified, one occurrence or two more con­
tiguous occurrences of literal-1 (figurative constant or not) or

the contents of the data item referenced by identifier-2 are treated
as if there were only one occurrence, and is moved to the receiving

data item according to general rule 13-d.
9. When any examination encounters two contiguous delimiters, the

current receiving area is either space or zero filled according to
the description of the receiving area.

10. Literal-1 or the contents of the data item referenced by

identifier-2 can contain any character in the EBCDIC character set.

11. Each literal-1 or the data item referenced by identifier-2 represents

one delimiter. When a delimiter contains two or more characters,
all of the characters must be present in contiguous positions of the

sending item, and in the order given to be recognized as a delimiter.

12. When two or more delimiters are specified in the DELIMITED BY phrase,
an 'OR' condition exists between them; that is, each delimiter is

compared to the sending field. If a match occurs, the character(s)

in the sending field is/are considered to be a single delimiter.

B-.36

No character(s) in the sending field can be considered as a part of
more than one delimiter.

Each delimiter is applied to the sending field in the sequence

specified in the UNSTRING statement.

UNSTRING

Specifically, the strings unstrung will be the same regardless of the
order in which the multiple delimiters are specified. For example,

given the source string "ABC,DEF GHI" and the delimiting phrase

DELIMITED BY SPACES OR",", the strings unstrung from the source

string are "ABC", "DEF" and "GHI". This is because all specified

delimiters are checked against the first character in the source

string before proceeding to the second character of the source string.

13. When the UNSTRING statement is initiated, the current receiving area

is the data item referenced by identifier-4. Data is transferred

from the data item referenced by identifier-1 to the data item

referenced by identifier-4 according to the following rules:

a. If the POINTER phrase is specified, the string of characters
referenced by identifier-1 is examined beginning with the

relative character position indicated by the contents of the

data item referenced by identifier-10. If the POINTER phrase
is not specified, the string of characters is examined beginning

with the leftmost character position.

b. If the DELIMITED BY phrase is specified, the examination proceeds

left to right until either a delimiter specified by the value of

literal-1 or the data item referenced by identifier-2 is

encountered. If the DELIMITED BY phrase is not specified, the

number of characters examined is equal to the size of the current

receiving area. However, if the sign of the receiving item is

defined as occupying a separate character position, the number

of characters examined is one less than the size of the current
receiving area.

If the end of .the data item referenced by identifier-1 is

encountered before the delimiting condition is met, the exam­

ination terminates with the last character examined.
c. The characters thus examined (excluding the delimiting char­

acter(s), if any) are treated as an elementary alphanumeric data

item, and are moved into the current receiving area according to
the rules for the MOVE statement.

d. If the DELIMITER IN phrase is specified, the delimiting

character(s) are treated as an elementary alphanumeric data

item and are moved into the data item referenced by
identifier-5 according to the rules for the MOVE statement. If

B-37

I UNSTRING I
the delimiting condition is the end of the data item referenced

by identifier-I, then the data item referenced by identifier-5

is SPACE FILLED.

e. If the COUNT IN phrase is specified, a value equal to the number

of characters thus examined (excluding the delimiter character(s),

if any) is moved into the area referenced by identifier-6

according to the rules for an elementary move.

f. If the DELIMITED BY phrase is specified, the string of

characters is further examined beginning with the first

character to the right of the delimiter. If the DELIMITED BY

phrase is not specified, the string of characters is further

examined beginning with the character to the right of the last
character transferred.

g. After data is transferred to the data item referenced by

identifier-4, the current receiving area is the data item

referenced by identifier-7. The behavior described in
paragraph 13-b through 13-f is repeated until either all the

characters are exhausted in the data item referenced by

identifier-I, or until there are no more receiving areas.

14. The initialization of the contents of the data items associated with

the POINTER phrase or the TALLYING phrase is the responsibility of

the user.

15. The contents of the data item referenced by identifier-IO will be

incremented by one for each character examined in the data item

referenced by identifier-I. When the execution of an UNSTRING

statement with a POINTER phrase is completed, the contents of the

data item referenced by identifier-IO will contain a value equal

to the initial value plus the number of characters examined in the

data item referenced by identifier-I.

16. When the execution of an UNSTRING statement with a TALLYING phrase

is completed, the contents of the data item referenced by

identifier-11 contains a value equal to its initial value plus the

number of data receiving items acted upon.

17. Either of the following situation~ causes an overflow condition:

B-38

a. An UNSTRING is initiated, and the value in the data item

referenced by identif ier-10 is less than 1 or greater than the

size of the data item referenced by identifier-I.

I UNSTRING I
b. If, during execution of an UNSTRING statement, all data

receiving areas have been acted upon, and the data item

referenced by identifier-1 contains characters that have not

been examined.

18. When an overflow condition exists, the UNSTRING operation is

terminated. If an ON OVERFLOW phrase has been specified, the

imperative statement included in the ON OVERFLOW phrase is

executed. If the ON OVERFLOWphrase is not specified, control

is transferred to the next executable statement.

19. The evaluation of subscripting and indexing for the identifiers

is as follows:

a. Any subscripting or indexing associated with identifier-1,

identifier-10, identifier-11 is evaluated only once,

immediately before any data is transferred as a result of the

execution of the UNSTRING statement.

b. Any subscripting or indexing associated with identifier-2,

identifier-3, identifier-4, identifier-5, identifier-6 is

evaluated immediately before the transfer of data into the

respective data item.

B-39/B-40

C. 82500 IMPLEMENTATIONS

The following features have been implemented in B 7000 / B 6000 COBOL to
allow more compatibility with B 3700 COBOL. These features are available

only while the B2500 system dollar option is set. The default initial
value of the B2500 system dollar option may be set to true by compiling the

COBOL compiler with "B2500" set.

The KEY CONVERSION clause of the SEEK statement in the PROCEDURE DIVI­
SION section.

The O-I and LOCK ACCESS options of the OPEN statement in the PROCEDURE

DIVISION section.

The REMAINDER ROUNDED and MOD options of the DIVIDE statement in the
PROCEDURE DIVISION section.

The SAVE option of the SELECT clause in the FILE-CONTROL section.

The PURGE, RUN, END, LOCK, and RELEASE options in the SORT statement in
the PROCEDURE DIVISION section.

The letter K in a picture character string in tQe PICTURE clause.

COMPUTATIONAL to mean 4-bit character data when USAGE IS COMPUTATIONAL

is specified.

UNDIGIT literals in the DEFINITION OF WORDS sub-section.

The use of initializing VALUE clauses in the File Section.

Unsigned 4-bit integer items allowed to be declared greater than 23

digits in the DATA DIVISION.

The redefinition of a DISPLAY data item by a COMP-2 data item of dif­
ferent size in the REDEFINES clause in the DATA DIVISION section.

The ALL construct when using UNDIGIT literals.

The declaration of USAGE IS INDEX data items subordinate to USAGE DIS­
PLAY group items.

C-1

C-2

The ability to MOVE SPACES to DISPLAY and COMP-2 numeric data items.

The optional specification of an immediately-preceding redefining data

item using the REDEFINES clause in the DATA DIVISION.

The recognition of a FILE CONTAINS clause in a File Description Entry.

The implicit qualification of a "DEPENDING ON" variable in an OCCURS

DEPENDING clause by an 01-level record name.

The optional use of the reserved word THEN as a delimiter between a

conditional expression and the first statement in an IF statement in the

PROCEDURE DIVISION section.

The ability to use FILLER items as group items; explained in the DATA­

NAME FILLER sub-section of the DATA DIVISION section.

The ZIP option of the CALL statement in the PROCEDURE DIVISION section.

D. COBOL SYNTAX SUMMARY

IDENTIFICATION DIVISION

{ ID DIVISION. ~
IDENTIFICATION DIVISION.J

[PRQGRAM-ID. comment-entry.]
[AUTHOR. comment-entry.]
(DATE-COMPILED. comment-entry.]
[DATE-wnITTEN. comment-entry.]
(INSTALLATION. comment-entry.]
[SECURITY. comment-entry.]

D-1

ENVIRONMENT DIVISION

D-2

ENV'IRONMEN'T DIYISIQN.
(coNfIGJJRATION SECTIQN.
(SOURCE-COIPuTER. comment entry.]
[OB.JECT-COMPVTER. object-computer entry.]
[SPECIAL-NAMES. special-names entry.])

[{ I-O SECTION. }
IHPYT:-OUTPVT SECTION.

FILE-CONTRQL. file-control entry.
[~-O-CQNTRQL. input-output-control entry].]

CQNFIGJJRATIQN SECTIQN.

Option 1:

SOURCE-COMPUTER. £QfI. 1 ibrary-name

Option 2:

~FROM seq. no.] [{=UGH} seq.no.]

(REPLACING word-1 BY text-1

[, word-2 BY text-2] ••• J.

SOURCE-COMPUTER. comment-entry.

Option 1:

OBJECT-COMPUTER. £QfX library-name

[~seq.no.] [{;;UGH} seq.no.]

[REPLACING word-1 fil text-1

[, word-2 BY text-2] •••) • ---- ---------------

ENVIRONMENT DIVISION (cont)

Option 2:

{ B-6700)
OBJECT-COMPUTER. B-7700

,word-3

[(
CHARACTERS)]

, MEMORY SIZE integer WORDS
MODULES

[, DI SK SIZE integer { :g~~ES}]
[, SEGMENT-LIMIT IS integer]

[,
G

[integer] hardware-name]
program collating SEQUENCE IS alphabet-name) .

Option 1:

SPECIAL-NAMES. COPY library-name

[FROM seq. no][{=UGH}seq, no.]

(REPLACING word-1 BY text-1

[, word-2 BY text-2] ••.] •
~ ------------------ ------------

Option 2:

SPECIAL-NAMES.

[CURRENCY SIGN IS literal-1]
[, DECIMAL-POINT IS COMMA]
[, hardware-name IS mnemonic-name] •..
[, CHANNEL integer IS mnemonic-name] ••.
[, literal-2 IS mnemonic-name] ••.

Option 1: ANSI 74 alphabet-name clause.

SPECIAL NAMES.

[' alphabet-name IS lSTANDARD-1}]
NATIVE · · ·
BCL

D-3

Option 2: ANSI 74 alphabet-name clause.

SPECIAL-NAMES.

,alphabet-name IS

I-O SECTION.
INPUT-OUTPUT SECTION.

Option 1:

literal-1 [l=UGH11iteral-2
ALSO li teral-3 [,ALSO

[
li teral-5 [l=UGH1 literal-6

ALSO li teral-7 (,ALSO

FILE-CONTROL. COPY library-name

[FROM seq. no.] [{;;UGH} seq. no.]

(REPLACING word-1 BY text-1

[, word-2 BY text-2] ... J.

D-4

li teral-4]. . J

1i teral-8] .. J · .

ENVIRONMENT DIVISION (cont)

Option 2:

FILE-CONTROL.

SELECT [afgBAf.] [RECEIVED BY {.::ERENCE} J [OPTIONAL]

ASSIGN TO [integer-I [~ integer-2)] [INTERCHANGE]

file-name

{ hardware-name } [] [{AREA }]
[DIRECT] hardware-name SINGLE BY CYLINDER [SAVE]

[; RESERVE { ~~teger-3) [ALTERNATE
data-name-1 [!:!s J]J

[.{FILE-LIMIT IS } {data-name-2}
' FILE-LIMITS ARE literal-I

{ THROUGH} (d~ ta-name-3) J
THRU literal-2
- END

[ACCESS MODE IS { ~:~:TIAL} J
[; ACTUAL KEY IS data-name-4].

[; ORGANIZATION IS SEQUENTIAL]

[; FILE STATUS IS data-name-5].

Option 1:

I-0-CONTROL. COPY library-name

[FROM seq. no.] [{=UGH} seq. no.]

[REPLACING word-1 BY text-1

[, word-2 BY text-2] •••] • --------- --------------------------
Option 2:

I-O-CONTROL.

[APPLY comment entry] .••

[; MULTIPLE _rn TAPE CONTAINS[file-name-1 [POSITION integer-I]) •••] •••

[SAME [.=RD J AREA FOR file-name-2 L file-name-3 J ••• J ...
[RERUN ON (g~g~ACK} EVERY in teger-2 RECORDS OF f ile-name-4 J

D-5

DATA DIVISION

DATA DIYISION. [PREPARED FOR system-name.)

[FILE SECTION.

[{ file-description-entry ·} [] J J sort-merge-description-entry record-description-entry ••••••

[DATA-BASE SECTION.

[01 [internal-set-name] INVQKE set-name] ••• J
[WORKING-S'TOBAGE SECTION.

[77-level-description-entry] J
record-description-entry •••

[CONSTANT SECTION.

[77-level-description-entry] J
record-description-entry •••

[LINKAGE SECTION.

[77-level-description-entry] J
record-description-entry •••

[LQCAL-STORAliE SEQTIQ!I.

[1Q local-storage-name.

[77-levdedl -desc::rtipit ion-et ntryJ ••• J ... J
recor - escrip on-en ry

[REPORT SECTION.

[report-description-entry {report-group-description-entryl ••.] •••]

.Ell& SECTION.

Option 1:

{ ~~ } file-name ~ library-name

[~seq. no.] [{=UGH} seq. no. J
(REPLACING word-1 BY text-1

[, word-2 BY text-2]. .. J .
D-6

DATA DIVISION (cont)

Option 2:

m file-name

[; RECORDING MODE IS { ~~~~~~!~DA.RD } J
[; BLOCK CONTAINS (integer-I TO] integer-2 [~~~g~ERSJ]

WORDS

[; FILE CONTAINS integer-1 [BY integer-2] RECORDS]

ASCII
COMP

RECORD CONTAINS [integer-3 TO] integer-4
COMPUTATIONAL [CHARACTERS]
COMP-2
COMPUTATION~-2 WORDS
DISPLAY
DISPLAY-I

[{ RECORD IS } { STANDARD } J
; LABEL RECORDS ARE OMITTED [WITH MULTIPLE AT END]

data-name-5 [,data-name-6] •••

[; DATA { ::gg:gs 1%,RE} data-name-7 [, data-name-8]. . .J
[; { ::~:~s 1%,RE} report-name-I [, report-name-2]. •.]

[; LINAGE IS { integer- 5 } LINES J data-name-9

[; SAVE-FACTOR IS { integer-6 }]
data-name-10

[;{~UE } OF { ~gENTIFICATION}
VALUES

[; CODE-.SET IS a.lnha.bet.....naIQeJ.

IS { cti:ta-name-11} J
literal-!

--- ---- ---- ---------- ---
Option 3:
.§1> file-name

[. [CHARACTERS] J ; RECORD CONTAINS integer-4 WORDS

[; DATA { ::gg:gs 1 %,RE } da ta-name-7 [, data-name- 8] ..] .

; D-7

DATA DIVISION (cont)

D-8

Option 1:

01 data-name-1; COPY library-name

[FROM seq. no][{ =UGH} seq. no.]

[REPLACING word-1 BY text-1

[, word-2 BY text-2) ... J .

Option 2:

{ data-name-1} [] level-number FILLER ; REDEFINES data-name-2

(; SEGMENT]

[;{ ~~ZE} IS [integer-1 TO] integer-2 CHARACTERS [DEPENDING ON data-name-3D

[{~~~TURE} IS character-string [DEPENDING ON data-name-4)]

[; GLOBAL)
[; LOCAL]
[; OWN]

;[USAGE IS]

.Q.QM£ Aacu
COMPUTATIONAL DISPLAY
COMP-1 DISPLAY-I
COMPUTATIONAL-I INDEX
COMP-2 EVENT
COMPUTATIQNAL-2 .LQQK
CQMP-4 CONTROL-PQINT
COMPUTATIONAL-4 .QI?.
CQMP-5
COMPUTATIONAL-5
INDEX FILE [CONTAINS file-name-1 [, file-name-2] .•.]

~ {§§cuRs}[integer-3 TO]integer-4 TIMES [DEPENDING ON data-name-4]

[{ ~~~~~~~~~G } KEY IS data-name-5 [, data-name-6] ... J
[INDEXED BY index-name-1 [, index-name-2] ••• J J

DATA DIVISION (cont)

Option 2 (~ont) :

['. { SYNCHRONIZED } [LEFT J J
SYNC 'Ri'GHT

[;
[;
[;

{ JUSTIFIED} RIGHT]
JUST

RANGE IS literal-I {=UGH}

(
REFERENCE } J

RECEIVED BY REF
CONTENT

[; BLANK WHEN ZERO]

[; (~!LUE } [IS J li tera1-1]
VALUES ARE

[; RECORD AREA]

[i WITH {LOWER-BOUNDS}]
LOWER-BOUND '

litera1-2]

----------~---------

Option 3:

66 data-name-1 RENA.MES data-name-2 [{=UGH} data-name-3 J .
Option 4:

88 condition-name-I ;{fu:s} [!~ J literal-I [(:UGH} literal-2 J

[, literal-3 [{=UGH} literal-4 J J ...

D-9

REPORT SECTION

Option 1:

RD report-name; COPY library-name

[FROM seq. no.] [{=UGH} seq. no.]

(REPLACING word-1 BY text-1

[, word- 2 fil text-2] ...] • --------------- __ __...;.. -----
Option 2:

RD report-name

(; CODE literal-!]

~ {·CONTROL IS } .{ ~~::::t, data-name-1 [, data-name-2] ... }] L CONTROLS ARE data-name-1 [, data-name-2] ...

[[LIMIT IS] [LINE J ; PAGE LIMITS ARE integer-! LINES

[, HEADING integer-2]
[, FIRST DETAIL integer-3]
(, LAST DETAIL in teger-4]

[, ~ING integer-5] J .
Option 1:

01 [data-name-1] ; COPY library-name

D-10

[FROM seq. no.] [{=UGH } seq. no. J
[REPLACING word-1 BY text-1

[, word-2 BY text-2] ... J.
------------------- -------- -

REPORT SECTION {cont)

Option 2:

01 [data-name-1]

[; LINE NUMBER IS { integer-1 ON NEXT PAGE}]
PLUS integer-2

[; NEXT GROUP IS

~IS

(
integer-3 }]
PLUS integer-4
NEXT PAGE

{ ~PORT HEADING }

{ ~~GE HEADING }

{ ~NTROL HEADING }

{~TAIL}
{ ~NTROL FOOTING }

{ ~iGE FOOTING }

{ ~PORT FOOTING }

[;[USAGE IS] {DISPLAY }]
DISPLAY-! '

{ data-name-2 }
FINAL

{ data-name-3}
FINAL

Option 3:

level-number [data-name-1]

[; LINE NUMBER IS { integ~r-1 [ON !iill PAGE] }]
--- PLUS integer-2

[; [USAGE IS] { ~~~;t!;-l }] •

Option 4.

level-number [data-name-1]

(; BLANK WHEN ZERO]

[; COLUMN NUMBER IS integer-3]

[; GROUP INDICATE]

D-11

REPORT SECTION (cont)

Option 4 (cont) :

D-12

[; { JUSTIFIED }
JUST RIGHT]

[; LINE NUMBER IS { integ~r-1 ON NEXT PAGE }]
~ integer-2 ·

; {;raTURE} IS character-string

SOURCE {TODAYS-DATE }
IS identif ier-1

{.§llM identifier-2 [, identifier-3]

(.YEmi data-name-2 [, data-name-3] •••] ••• } .••

[RESET ON {FINAL }]
data-name-4

{~LUE } is li teral-1

[[; USAGE IS] { ~~~:t!i-l} J .

PROCEDURE DIVISION

PROCEDURE DIVISION [USING

[MONITOR statement. J

{
data-name }] file-name
control-point-name
event-name
lock-name

[~ statement. J.,.

[DECLARATIVES.

section-name SECTION. declarative-statement.

paragraph-name. [statement.] .. .

[paragraph-name. [statement.] ...]

[section-name SECTION. declarative-statement.

paragraph-name. [statement.] ...

[paragraph-name. [statement. J ••• J ... J ...
END DECLARATIVES.]

[[section-name SECTION (priority-number].]

paragraph-name.

[[paragraph-name.]

Verb Formats
Option 1:

ACCEPT identifier
Option 2:

ACCEPT identifier

Option 1:

[statement. J ••• J ... J ...

[FROM f hardwa~e-name1] mnemonic-name

rTE} FROM DAY
TIME

A.DD { identifier-I} [{ identifier-2 }] TO
literal-I ' literal-2

identifier-m (ROUNDED] [, identifier-n [ROUNDED]]

[;ON SIZE ERROR statement [ELSE statement]]
...._ __ ---------------------------------· -

D-13

PROCEDURE DIVISION (cont)

Option 2:

.Mm. {identifier-I}
literal-I '

{ identifier-2}
literal-2

[{ identif ier-3 } J
' literal-3 GIVING

identifier-m [ROUNDED][, identif ier-n [ROUNDED] J ...
(; ON SIZE ERROR statement [ELSE statement]]

-----Option 3:

ADD {CORR } identifier-I TO identifier-2 [ROUNDED] -- CORRESPONDING

[; ON SIZE ERROR statement [ELSE statement]]

ALLOW { section-name-I
INTERRUPT [, section-name-2] ... }

ALTER procedure-name-I TO [PROCEED TO] procedure-name-2
[, procedure-name-3 TO [PROCEED TO] procedure-name-4] ...

ATTACH section-name TO event-identifier -

Option 1:
~control-point-identifier _{.[subscript,] EXCEPTIONEVENTL }

AWAIT l.formu~al . .
event-identifier
INTERRUPT
-- ----Option 2:

AWAIT area-identifier (ON EXCEPTION statement [ELSE statement]]

Option 1:

CALL -- control-point-identifier [WITH section-name]
['USING actual-parameter-list]

1--- - -----·---- - ----------- --
Option 2:

CALL {section-name 1
installation-intrinsic [USING actual-parameter-list]

I--' ------·-------------- -----
Option 3:

CALL PROGRAM DUMP

1--- ------------------------
Option 4:

tCALL SYSTEM WlTH1 data-name
ZIP file-name

D-14

PROCEDURE DIVISION (cont)

CAUSE [AND RESET] event-identif ier-1 [,event-identifier-~ ...

CHECKPOINT

[ro i~~~~ACK ll
[WITH {::g~~E }l
[f statement J [f statement J~ ; ON EXCEPTION NEXT SENTENCE ELSE NEXT SENTENCE

Option 1:

[WITH 1~Wl~)] CLOSE file-name-1 RELEASE
PURQ:E
CRUNCH

[, Hle-name-2 [rQ R~I~ }]] WITH ~~~~SE .••
Elll!GE
CRUNCH - -- ---- --- -- -- --- --- -- ---------Option 2:

CLOSE file-name-1 \REELI [WITH NO REWIND]
/UNIT\ FOR REMOVAL

J, file-name-2 \REEL/ [WITH NO REWIND]
IUNIT\ FOR REMOVAL

---- -- --- --· -- --- --- -- -- -----
Option 3:

CLOSE HERE file-name (WITH NO REWIND]

COMPUTE identifier-I (ROUNDED] [, identifier-2 [ROUNDED] J ...

(El!QM }
(identifier-n }

iouALs
literal-I
formula

(; ON SIZE ERROR statement (ELSE statement]]

CONTINUE control-point-identifier

COPY library-name (FROM seq. no.] [{::~UGH} seq. no.]

(REPLACING word-1 BY text-1 (, word-2 BY text-2] ...].

D-15

PROCEDURE DIVISION (cont)

DEALLOCATE record-name

DETACH identifier-1 [, identifier-2] ...

DISALLOW { section-n.ame-1 [, section-name-2] •.. }
INTERRUPT

DISPLAY { li teral-1 }
identifier-1 { literal-2 }]

identifier-2 [{ mnemonic-name}]
'' · UPON hardware-name

Option 1:

DIVIDE [MOD] lliteral-l I INTO
lidentifier-11 --

identifier-2 [ROUNDED] ,[identifier-3 [ROUNDED]] ...
[; ON SIZE ERROR statement [ELSE statement]]

------ -- -- -- -- -- -- -- --· -- --- --- -+ Option 2:

IV [MOD] lliteral-1 I lliteral-2 I
D IDE -·- lidentifier-11 INTO lidentifier-21

GIVING identifier-3 [ROUNDED][, identifier-4 [ROUNDED]] ...
(; ON SIZE ERROR statement [ELSE statement]]

-- ----- --- --- -- -- -- -- --- --- --- -- --1
Option 3:

BY lli teral-2 I
lidentifier-21

GIVING identifier-3 [ROUNDED] [, identifier-4 [ROUNDED]] ...

__ _J ON SIZE E~ statement [ELSE ~atemen:fl__ ______ -I

Option 4
!literal I lliteral-2 I

DIVIDE lidentifier-11 INTO lidentifier-21

GIVING identifier-3 [ROUNDED] REMAINDER
identifier-4 [ROUNDED] 1;0N SIZE ERROR statement [ELSE
statement]]

Option 5-=-------------.--- -- -- -- -- --
DIVIDE lliteral-1 I

/identifier-11 BY I li teral-2 I
I identifier-2 I

GIVING identif ier-3 [ROUNDED] REMAINDER
identifier-4 [ROUNDED] ~ON SIZE ERROR. statement [ELSE
statementll

- -I

{ file-name} CfaTa-name-T } [(aata-name-2 }]
~ PRINTER _j_ ~~cedure-name , ~~1cedure-name. . .. _2_

paragraph-name-n • {literal }
~ data-name-n '

D-16

PROCEDURE DIVISION (cont)

ENTER section-name [USING {identifier-!}
literal-! [, { identifier-2} J

literal-2 ...]
Option 1:

EXAMINE identifier-! TALL YING (~ING }{ li ter~l: 1 l
UNTIL FIRST 1dent1f 1er-2

[REPLACING fil {literal-2 }]
identifier-3

------ --
Option 2:

(ALL } EXAMINE identifier-! REPLACING LEADING
(UNTIL) FIRST

{ li teral-1 }
identifier-2 BY { li teral-2 }

identifier-3

EXECUTE control-point-identifier WITH section-name

[USING
arithmetic- [, arithmetic- J .. ·] expression-1 expression-2

[PROGRAM [RETURN HERE]]
EXIT PROCEDURE .

HERE

GENERATE identifier

Option 1:

GO TO [procedure-name-!]
------ -----------.--

Option 2:

GO TO procedure-name-! [, procedure-name-2] ...

, procedure-name-n DEPENDING ON {formula }
identifier

IF condition-!; [THEN] -
{ statement-! }

NEXT SENTENCE [; ELSE { statement-2 } J
NEXT SENTENCE

D-17

PROCEDURE DIVISION (cont)

INITIATE report-name-1 [, report-name-2] •.•

{data-name }
U2CK lock-identifier [;AT L~!Ql;D statement [ELSE statement]]

event-identifier

MERGE file-name-1 ON {ASCENDING }
DESCENPING KEY data-name-1 [, data""name-2] •••

[' ON { A~CENDl;NG } KEY data-name-3 [, da ta-name-4] ••• J DESCENPING ...
USING f ile-name-2 [, file-name-3] •••

' file-name-9

{GIVING file-name-9 }
OUTPUT PROCEDURE IS section-name-1 [{~=~UGH} section...,.name-2 J

MONITOR {file-name}
PRINTER .l

{ data-name-1)
~~cedure-name-1

[(data-name-2 }]
, l~cedure-name-2 ···l

Option 1:
~speical-register }

MOVE ~ttri~u~e-identifier TO identifier-2 [, identifier-3] •••
~~ 1dent1f 1er-l ---

literal-1 -- -- -
Option 2:

MOVE {CORR }
CORRESPONDING identifier-1 TO identifier-2 [, identifier-3] •••

- -- -
Option 3:

MOVE [identifier-I TO identifier-2] - -- -
Option 4:

MOVE identifier-I TO identifier-2

[{ li teral-2} . { li teral-3} { li teral-4} J
formula-1 . formula-2 - formula-3

D-18

PROCEDURE DIVISION (cont)

Option 1:

MULTIPLY { literal-I } BY
identifier-I

identifier-2 [ROUNDED] [, identifier-3 [ROUNDED]]

[; ON SIZE ERROR statement [ELSE statement]] ---------------------- ---------·-
Option 2:

MULTIPLY {literal-I } BY { literal-2 }
identifier-I -- identifier-2

GIVING identifier-3 [ROUNDED](, identifier-4 [ROUNDED]] ...

(; ON SIZE ERROR statement [ELSE statement]]

Option 1:

(

\

OPEN

INPUT [lWITH LOCK [ACCESS]}]
file-name-1 REVERSED

WITH NO REWIND

[file-name-2 [!WITH LOCK [ACCESS]1]]
REVERSED
WITH NO REWIND • • •

OUTPUT file-name-3 [WITH NO REWIND]
[, file-name-4 [WITH NO REWIND]] ...

l~UT-OUTPUT(file-name-5 [, file-name-6] ...
0-I J
EXTEND file-name-7 [, file-name-8] ... ----- --· -- -- -- -- -- --- -- -·-· - -- ----- --- --

Option 2:

{ INPUT } file-name-7 REEL-NUMBER OUTPUT

Option 1:

{ literal }
data-name

PERFORM procedure-name-I [{~UGH} procedure-name-2 J

D-19

PROCEDURE DIVISION (cont)

Option 2:

PERFORM procedure-name-1 [{~UGH} procedure-name-2 J
(

ident if ier-7 }
integer-1
formula-1

IIMES

--- _..;..._ ____ ---------------------------· -
Option 3:

PERFORM procedure-name-1 [{ ~UGHJ procedure-name-2 J
UNTIL condition-1

i-------- ---------------------- --- -----
Option 4:

PERFORM procedure-name-1 [{~UGH} procedure-name-2 J
{

identifier-2}
VARYING {identifier-1} FROM literal-2

index-name-1 -- formula-2
index-name-2

(
identifier-3 }

BY literal-3 UNTIL
formula-3

condi tion-1

[{
identifier-5}

AFTER { ~dentifier-4} FROM li teral-5
index-name-4 -- formula-5

index-name-5

(
identifier-6 } J

BY literal-6 UNTIL condition-2 ...
formula-6

PROCESS control-point-identifier WITH section-name

[USING actual-parameter-list]

Option 1:

READ file-name RECORD [.!N!Q identifier]

; A.T END statement [ELSE statement]

D-20

PROCEDURE DIVISION (cont)

Option 2:

READ file-name RECORD [INTO identifier]

; INVALID KEY statement [ELSE statement]
-- --1

Option 3:

READ file-name [KEY IS formula] INTO identifier

[USING event- identifier]

[ON EXCEPTION statement [ELSE statement]]

RELEASE record-name [FROM identifier]

RESET event-identifier-I [, event-identifier-2] ..•

RETURN file-name RECORD [INTO identifier]

; AT END statement [ELSE statement]

RUN control-point-identifier WITH section-name --

[USING arithmetic-expression-I [. ari thmetic-expression-2 J .. J
SEARCH identifier-I [ALL] [VARYING {~dentifier-2}]

index-name-I

[; AT END imperative-statement-I]

; WHEN condition-I {imperative-statement-2}
NEXT SENTENCE

[; WHEN condition-2 {imperative-statement-3}]
NEXT SENTENCE ...

SEEK file-name RECORD [WITH KEY CONVERSION] ...
Option 1:

{identifier-I } [, { ~dentifier-2 } J { identifier-3 }
SET index-name-I index-name- 2 ... TO index-name-3

integer-I -
D-21

PROCEDURE DIVISION (cont)

Option 2:

SET index-name-4 [, index-name-5]... { ~!!X }

Option 3 (FILE and BUFFER ATTRIBUTES):

[
buffer-name)

SET file-name-I _L_ attribute-expression
FILE

UP l!X. formula-2
l!QJYli l!X. VALUE attribute-mnemonic

{identifier-4 }
integer-2

I.IQ I {i1~~;!i~~r-4 }

-------- --- --- --- -
Option 4 (TASKING):

SET j:i~~~F) l attribute-expression l control-point-identifier

{ i~~~;!i~~r-4 J
.IQ formula-2

YALUE attribute-mnemonic

SORT fil e-name-1 n:~GE}ON ERROR }N ~~~~~~~~G} KEY data-name-I [. da ta-name-2 J
[oN ~~~~~~~~G} KEY dat~;;;;;ie-3 [. data-name-4] .. J ...

D-22

{
USING file-name-2 [!PURGE 1J

RELEASE

INPUT PROCEDURE IS section-name-I

file-name-3 [!~ASE}]
[l=UGH} section-name-2 J}

{
GIVING

OUTPUT . {THROUGH} PROCEDURE IS section-name-3 THRU

[MEMORY SIZE
MODULES ,_

{
CHARACTERS}'+·

formula-I WORDS

[DISK SIZE formula-2 =Esl]
[RESTART IS J ~~~:~!:;!-s} l

hiteral-1

section-name-4]1

PROCEDURE DIVISION (cont)

Option 1:
STOP RUN -----------------Option 2:

{literal-I }
~ identifier-I

Option 1:

['

SUBTRACT { li teral-1 }
identifier-!

{ literal-2 } J
identifier-2 •••

[, { li teral-2 } J
identif ier-2 ••• FROM

identifier-m [ROUNDED)[, identifier-n [ROUNDED]] ...
[; ON~ ERROR statement [ELSE statement]]

Option 2:

SUBTRACT { li teral-1 } [, {literal-2 }]
identif ier-1 identif ier-2 ...

~
{ literal-m } GIVING identifier-m

identifier-n [ROUNDED] (, identifier-o (ROUNDED)]
[; ON SIZE ERROR statement [ELSE statement)]

Option 3:

SUBTRACT {CORR } CORRESPONDING identifier-!

FROM identifier-2 [ROVNPED]
(;ON SIZE ERROR statement[~ statement]]

TERMINATE report-name-![, report-name-2) •••

{identifier }
UNLOCK lock-identifier •••

event-identifier

Option 1:

rn AFTER { RECORD §lZ.l ERRQR }
STANDARD ERROR PROCEDURE

{'MPU1-0U~ }
ON I-0

INPUT •
file-name-1 [, file-name-2] ••• -

...

D-23

PROCEDURE DIVISION (cont)

Option 2:

USE { BEFORE } STANDARD
AFTER { BEG INNING } {Mk }

ENDING FILE

{
INPUT-OUTPUT }
I-0
INPUT ·
OUTPUT
file-name-1 [, file-name-2] •••

LABEL PROCEDURE ON

Option 3:

{ EXTERNAL
USE AS GLOBAL

{ identifier-I } AS PROCEDURE}
mnemonic-name

PROCEDURE

[. WITH {local-file-name } [{local-file-name }]
' ----- local-storage-name ' local-storage-name

; USING identifier-2 [, identifier-3) •.• J. --- ---------_____ ..,.
Option 4:

USE AS INTERRUPT PROCEDURE.

Option 5:

USE AFTER STANDARD

Op ion

EXCEPT I ON.l
ERROR

(
formula }

!.81.I event-identifier
INTERRUPT

PROCEDURE ON

file-name-I IL file-name-2] ... I
INPUT
OUTPUT
I-0
E

--------------------Option 2:
WAIT control-point-identifier _([subscript,] EXCEPTIONEVENT) ----------------
Option 3:

WAIT [!lin. RESET] [formula]
event-identifier-I [, event-identifier-2] •••
[GIVING data-name-I]

Option 4:
WAIT area-identifier [ON EXCEPTION statement [ELSE statement]]

D-24

PROCEDURE DIVISION (cont)

Option 1:

WRITE record-name [FROM identifier-I]

[{ ~~~~:E} ADVANCING TO { ~~:m~::~~~~::s}]
mnemonic-name
~

[; AT {~-OF-PAGE} statement [ELSE statement] J
t---------------------------. Option 2:

WRITE record-name [FROM identifier-I]
; INVALID KEY statement [~ statement]

Option 3:

{
AUXILIARY }

WRITE record-name (FROM identifier-I] TO ALTERNATE
ERROR

Option 4:

WRITE file-name [KEY IS formula]

FROM identifier [YSING event-identifier]

(; ON EXCEPTION statement (ELSE statement]]

D-25/D-26

E. ANSI 7 4 COBOL SYNTAX SUMMARY

INDEXED 1-0

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT file-name

ASSIGN to [1nteger-l [! integer-2]] l DISK 1 DISKPACK

[; RESERVE integer-3 ~:~!J]
'

ORGANIZATION IS INDEXED

~ {8EgUENTIAL}] ACCESS MODE IS RANDOM
DYNAMIC

'
RECORD KEY IS data-name-1

[; FILE STATUS IS data-name-2]

rA [~gENTIFICATION1 l data-name-1] VALUE OF IS literal-1 VALUES

[, KEYSPERENTRY IS integer-1]}
[, AREAOVERFLOW IS integer-2]
[, FILEOVERFLOW IS integer-3]

CLOSE file-name-1 [WCK ll WITH <PURGE

[- file-name-2 [WCK !l WITH PURGE ...

E-1

INDEXED 1-0 {cont)

DELETE file-name RECORD [; INVALID KEY imperative-statement]

{ INPUT file-name-1 [, file-name-2]
OPEN OUTPUT file-name-3 [, file-name-4] ... } ...

I-0 file-name-5 [, file-name-6] • ...

Option 1:

READ file-name [NEXT] RECORD [INTO identifier]

[; AT END imperative-statement] ------- --------
Option 2:

READ file-name RECORD [INTO identifier]

[; KEY IS data-name]

[; INVALID KEY imperative-statement]

REWRITE record-name [FROM identifier]

[; INVALID KEY imperative-statement]

l"'IS EQUAL TO

IS =
START file-name KEY < IS GREATER THAN > data-name -- IS > I IS NOT LESS THAN

,IS NOT ~ --
[; INVALID KEY imperative-statement] l } rfile-name-1[,file-name-2] USE AFTER STANDARD EXCEPTION PROCEDURE ON INPUT

- ERROR OUTPUT
I-0

WRITE record-name [FROM identifier] [;INVALID KEY imperative-statemen
~ J

t]

E-2

SEQUENTIAL 1-0

LINAGE IS {data-name-l1 LINES [WITH FOOTING AT f data-name-21]
integer-1 ' linteger-2

[LINES AT TOP 1~a ta-name-31~ [LINES AT BOTTOM 1~a ta-name-41]
' ~- integer-3 ~ ' linteger-4

WRITE record-name [FROM identifier-1]
,..

/ ~ ~

{ identifier-2] [LINE J
{

BEFORE1 ADVANCING
AFTER j

integer LINES

f mnemonic-name 1 l PAGE

'
[~-OF-PAGE}imperative-statement J

I
}

E-3

NUCLEUS

Option 1:

INSPECT identifier-! TALLYING Tdentifier-2 !Q!! f , f f~DING\ l bHARACTEAs
fidentifier-3} jf:[~} INITIAL {identifier-4Jl. } J
lliteral-1 ~ AFTER literal-2 · · · · · ·

..._ ________ - -------------------.....!
Option 2:

INSPECT identifier-! REPLACING

i(CHARACTERS fil { identifier-6}
literal-4 [{ 2~~~r J INITIAL {identifier-7}]

literal-5

J , r~DING} [, l FIRST
{ident ifier-5}
literal-3 {id en ti fi er-6}

literal-4 [{~} AFTER INITIAL {identifier-7}] 1] }
literal-5 · · · · · ·

------------------------------ --- --- ---1

Option 3:

INSPECT identifier-! TALLYING l f { AIJL
, identifier-2 FOR , iLEADINGC

CHARACTERS
ident ifier-3 l} [{BEFORE}
literal-! r ~ INITIAL { identifier-4ll } l

literal-2 rJ ... 1" ..
REPLACING

{
r[{;GB}Y['I i~~~;;f ::r-6

I [I !~~=EI INITIAL I i~~~;!i:;r-1 1]
{ identifier-5l BY {:ldentifier-6t [1~l INITIAL

literal-3 [~ literal-4 I ~ I jldentifier-7~}] }
lliteral-5 ~ ··· ···

E-4

NUCLEUS (~ont}

lLEADING] [§..!Qli IS] TRAILING [SEPARATE CHARACTER]

STRING fi~entifier-~[,i~entifier-2 DELIMITED BY
lI1teraI-I J ,IiteraI-2

J ~~~~;!f :;r-31
~SIZE

[l'd t'f' ,f 'd t'f' 51 {identifier-6}] • 1 .en 1 ier- l'i.en 1 ier- ... DELIMITED BY IiteraI-6 ...
literal-4 ,IiteraI-5 SIZE

INTO identif ier-7 [WITH-POINTER identif ier-8]

[; ON OVERFLOW imperative-statement]

UNSTRING identifier-I

[DELIMITED BY [ALL] f i~entifier-21 [oR [ALL] f i~entifier-31] ...]
- pi teraI-I J' - -- lI1 teraI-2

INTO identifier-4 [, DELIMITER IN identifier-5] [, COUNT IN identifier-6]

[, identifier-7 [, DELIMITER IN identifier-8][, COUNT IN identifier-9] ...

[WITH POINTER identifier-IO] [TALLYING IN identifier-II]

[; ON OVERFLOW imperative-statement]

E-5/E-6

ERROR

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041

F. COMPILER PRODUCED MESSAGES

ERROR & WARNING MESSAGES

MESSAGE

UNRECOGNIZED CONSTRUCT
IDENTIFIER EXCEEDS 30 CHARACTERS
STRING GREATER THAN 256 CHARACTERS
NUMBER > 23 DIGITS
INTEGER > 23 DIGITS
CANNOT START IN MARGIN A
STRING CONTINUATION INCORRECT
IMPROPER LIBRARY NAME
SEGMENT SIZE > 4095 WORDS
MEMORY SIZE MUST BE INTEGER
DISK SIZE MUST BE INTEGER OR NUMBER
MUST START IN MARGIN A
MERGE REQUIRES 1 TO 8 FILES
MUST BE INTEGER
AT LEAST 3 AND AT MOST 8 SORT-TAPES ARE ALLOWED
ILLEGAL HARDWARE TYPE
MUST BE SINGLE ALPHA CHARACTER
ILLEGAL FILE NAME
MUST BE DATA NAME
COMPILER ERROR
BLOCK SIZE MUST BE MULTIPLE OF RECORD SIZE
DIRECT INDEX FILES MUST BE LEVEL 77 ITEMS
ALL LABEL RECORDS MUST HAVE SAME USAGE
RERUN NOT ALLOWED ON SORT FILE
RERUN NOT ALLOWED ON DISK
FILE NOT SELECTED
DUPLICATE FD FOR THIS FILE
DUPLICATE OR INCOMPATIBLE CLAUSE
CLAUSE NOT LEGAL IN SD
INCORRECT CARD CONTINUATION
ILLEGAL USE OF RECORD AREA CLAUSE
FILE ALREADY ASSIGNED TO MULTI-FILE
ILLEGAL CLAUSE USED WITH SAVE ARRAY
MIN RECORD SIZE MUST BE LESS THAN MAX SIZE
MIN BLOCK SIZE MUST BE LESS THAN MAX SIZE
BLOCKED VARIABLE LENGTH RECORDS CANNOT BE RANDOM
NO GROUP ITEM MAY BE MOVED TO AN ELEMENTARY COMP
ALPHABETIC RECEIVING FIELD ILLEGAL
DISK AND REMOTE CANNOT BE UNLABELED
NON-NUMERIC LITERAL EXPECTED
INCORRECT FILE OR PROGRAM ID
SAVE FACTOR > 999

F-1

042 MUST BE LEVEL 1
043 FILLER MUST BE ELEMENTARY
044 SENDING ITEM IS NOT AN INTEGER
045 GROUP COMP RECEIVING ITEM ILLEGAL
046 QUALIFIER OR NAME HAS NOT APPEARED BEFORE
047 MISSING QUALIFICATION
048 QUALIFICATION FOUND NOTHING UNIQUE
049 QUALIFICATION IS NOT UNIQUE
0 50 NAME HA.S NOT APPEARED BEFORE
0 51 RE.NAMED LEVEL NUMBER IS ILLEGAL
052 RENAMED ITEM CANNOT HA.VE OCCURS
053 RENAMED CANNOT BE VARIABLE SIZE
054 RENAMES DN3 PRIOR TO DN2
055 RENAMES NOT NEXT TO RENAMED AREA
056 ILLEGAL DUPLICATE NAME
057 NESTED REDEFINES NOT ALLOWED
058 REDEFINES-CANNOT HA.VE VALUE
059 REDEFINES-CANNOT BE VARIABLE SIZE
060 REDEFINES-CANNOT HAVE OCCURS
061 MUST BE ELEMENTARY ITEM
062 INVALID LEVEL NUMBER
063 SIZE ERROR-GROUP VS ELEMENTARY
064 REDEFINED AREA NOT SAME SIZE
065 REDEFINES NOT ADJACENT TO AREA
066 SECTION REQUIRED AFTER DECLARATIVES
067 PICTURE STRING ERROR
068 RIGHT PARENTHESIS EXPECTED
069 OPERAND EXPECTED
070 SIGN CLAUSE MUST BE USED WITH SIGNED NUMERIC ITEM
071 PICTURE STRING EXCEEDS 30 CHARACTERS
072 ALPHABET-NAME REQUIRED
073 ILLEGAL EXPRESSION STRUCTURE
074 FROM, = , OR EQUALS EXPECtED
075 DATA-NAME EXPECTED
076 STATEMENT CA.NNOT BEGIN WITH THIS ITEM
077 INFLEXIBLE COMPILER LIMIT EXCEEDED
078 TO EXPECTED
079 PERIOD REQUIRED AFTER PARAGRAPH NAME
080 PERIOD REQUIRED AFTER SECTION HEADING
081 MISSING PERIOD
082 USE STATEMENT EXPECTED
083 PARAGRAPH NAME REQUIRED
084 SECTION NAME REQUIRED
085 PERIOD REQUIRED AFTER DECLARATIVES HEADING
086 SOURCE INPUT SEQUENCE ERROR
087 CODE-SET REQUIRES A SIGN IS SEPARATE CLAUSE
088 ELEMENTARY ITEM MUST HA.VE SIZE
089 SCALE EXCEEDS 23 DIGITS
090 NUMERIC ITEM EXCEEDS 23 DIGITS
091 CLASS CONFLICT
092 USAGE CONFLICT
093 J OR S NOT ALLOWED IN EDITED NUMERIC
094 CANNOT BE VARIABLE SIZE
095 COMPUTATIONAL REQUIRES NUMERIC CLASS
096 FILLER ADDED
097 ONLY ONE TYPE OF FLOAT/INSERT ALLOWED
098 MULTIPLE SIGNS SPECIFIED IN PICTURE
099 ALPHANUMERIC SENDING FIELD REQUIRED
100 INVALID OPTION ELEMENT

F-2

101 SUBSCRIPTS REQUIRED
102 ILLEGAL SUBSCRIPT
103 NOT ENOUGH SUBSCRIPTS
104 INDEX-NAMES AND DATA-NAMES MAY NOT BE MIXED
105 GIVING CLAUSE ILLEGAL IN THIS CONTEXT
106 FROM EXPECTED
107 GIVING EXPECTED
108 INTO OR BY EXPECTED
109 ELSE EXPECTED
110 LABEL REQUIRED
111 DEPENDING EXPECTED
112 LOCK MAY ONLY BE USED WITH OPEN INPUT OR 1-0
113 CONSTRUCT NOT IMPLEMENTED
114 LITERAL VALUE EXPECTED
115 CONFLICTING CLASS
116 ILLEGAL FOR FILLER ITEM
117 LITERAL SIZE EXCEEDS DECLARED SIZE
118 COPY MUST BE ON 01 LEVEL
119 TIMES EXPECTED
120 SOURCE MUST BE SAME LENGTH AS TARGET
121 END OF STATEMENT EXPECTED
122 NON-ALPHABETIC CHARACTERS NOT ALLOWED IN STRING
123 VALUE CLAUSE EXPECTED
124 REDEFINES NOT ALLOWED FOR FILE 01 LEVELS
125 REDEFINED AREA TOO LARGE
126 CANNOT CHAIN REDEFINES
127 VALUE NOT ALLOWED IN FILE SECTION
128 VALUE SPECIFIED IN PRIOR LEVEL
129 TOO MANY LEFT PARENTHESES
130 CONSTANT SECTION REQUIRES VALUE
131 VALUE NOT ALLOWED
132 SERIALNO ONLY ALLOWED IN MOVE STATEMENTS
133 VALUE NOT ALLOWED FOR ITEM WITHIN OCCURS
134 USAGE CONFLICT BETWEEN LEVELS
135 ILLEGAL CLAUSE USED WITH INDEX USAGE
136 NON-DATA ITEMS CANNOT HAVE CONDITION-NAMES
137 ILLEGAL COMPARISON OF TWO OPERANDS
138 ILLEGAL LOGICAL OPERATION
139 MISSING SUBJECT OF RELATION
140 LEFT PARENTHESIS EXPECTED
141 ILLEGAL USE OF LOGICAL CONNECTIVE
142 RELATIVE SINGLE SPACING ASSUMED
143 CONDITION DID NOT RESULT IN TRUTH VALUE
144 BOOLEAN FUNCTION ASSUMED TO BE INTEGER OPERAND
145 AT END CLAUSE EXPECTED
146 INVALID KEY CLAUSE EXPECTED
147 STATISTICS NOT I_MPLEMENTED ABOVE LEVEL 2
148 MORE THAN 3 DIMEN&IONS
149 INDEX NAME MUST BE UNIQUE
150 JUSTIFIED NOT ALLOWED
151 RECEIVING FIELD MAY NOT BE SCALED OR EDITED
152 ALPHANUMERIC OPERAND EXPECTED
153 UNDIGIT LITERALS ALLOWED ONLY WITH 4-BIT ITEMS
154 NO DATA RECORD DESCRIPTION
155 TRUNCATION OF NON-ZERO DIGITS
156 PAGE LIMIT CLAUSE REQUIRED IN RD ENTRY
157 NO FILE HAS LINAGE CLAUSE
158 ILLEGAL LEV~L NUMBER WITH OCCURS CLAUSE
159 MISSING LABEL

F-3

160 LITERAL LENGTH SHOULD BE ONE, lST CHARACTER USED
161 FIRST EXPECTED
162 DUPLICATE LABEL
163 ALTER VERB - INCORRECT USAGE
164 MUST BE NUMERIC VALUE
165 ILLEGAL ARITHMETIC STATEMENT STRUCTURE
166 NO CORRESPONDING ITEMS
167 TO OR UP BY OR DOWN BY EXPECTED
168 ITEM CANNOT BE ZERO SIZE
169 J NOT ALLOWED FOR COMP
170 ILLEGAL KEY ITEM
171 IDENTIFIER MUST HAVE OCCURS CLAUSE
172 IDENTIFIER MUST HAVE INDEXED BY CLAUSE
173 WHEN PHRASE REQUIRED
174 IDENTIFIER SHOULD HAVE KEY CLAUSE
175 KEY MUST BE USED IN CONDITION
176 DIAGNOSTIC MUST BE A UNIQUE NAME
177 MUST BE ASSIGNED TO MERGE
178 IDENTIFIER MAY NOT BE MONITORED
179 TASK OPERAND EXPECTED
180 EXIT MUST BE ONLY STATEMENT IN PARAGRAPH
181 FLOATING POINT QUOTIENT NOT ALLOWED
182 IMPROPER WORD FORMAT
183 !~LEGAL CODE LITERAL OR COLUMN NUMBER
184 NAME MUST BE UNIQUE
185 MUST BE REPORT NAME
186 ILLEGAL LINE VALUE OR LINE CLAUSE OMITTED
187 MUST BE DETAIL
188 ILLEGAL CHANNEL VALUE
189 REPORT ENTRY MUST CONTAIN REPORT GROUP
190 THIS REPORT FAILS TO SPECIFY A CODE LITERAL
191 NEXT PAGE EXPECTED
192 MAY ONLY APPEAR AT LEVEL l
193 GROUP EXPECTED
194 OF EXPECTED
195 CONTROL LEVEL EXPECTED
196 ILLEGAL CONTROL LEVEL
197 FOOTING OR HEADING
198 ILLEGAL DUPLICATE TYPE GROUP
199 ILLEGAL GROUP TYPE
200 BOOLEAN OPERAND EXPECTED
201 FILE NOT ASSIGNED TO TAPE OR DISK
202 ROUTINE NOT APPLICABLE TO ANY FILE
203 FILE NOT ASSIGNED TO DISK
204 NOT A LABELED FILE
205 FILE NOT ASSIGNED TO TAPE
206 STRINGS MAY NOT BE MOVED TO COMP OR COMP-1 ITEMS
207 ILLEGAL RECORD NAME
208 CHANNEL OR LINE NUMBER EXPECTED
209 MUST BE ASSIGNED TO SORT
210 FLOATING POINT RECEIVING FIELD OPERAND EXPECTED
211 ILLEGAL CLOSE ACTION
212 ILLEGAL OPEN ACTION
213 ONLY FIRST 256 CHARACTERS WILL BE DISPLAYED
214 REPORT-NAME OR DETAIL-GROUP-NAME EXPECTED
215 REPORT-NAME OR ALL EXPECTED
216 MUST BE RECORD NAME OF SD
217 MUST BE SORT FILE NAME
218 KEY ILLEGAL OR IMPROPER QUALIFICATION

F-4

219 ILLEGAL SORT KEY
220 NO SORT KEYS SPECIFIED
221 INPUT PROCEDURE NOT ALLOWED IN MERGE
222 ONLY ONE FILE ALLOWED
223 MUST BE A TAPE FILE
224 ARE YOU SURE YOU WANT A TWO-DIMENSIONAL ARRAY?
225 MUST BE. DATA BASE OR PARTITION NAME
226 ILLEGAL SEEK ACTION
227 EVERY TABLE DIMENSION MUST HAVE INDEXED CLAUSE
228 ILLEGAL REFERENCE TO CONSTANT
229 POSSIBLE INTEGER OVERFLOW
230 SORT PROCEDURE MUST BE CONTIGUOUS
231 SORT PROCEDURE MUST NOT CONTAIN SORT VERB
232 RELEASE MUST APPEAR IN INPUT PROCEDURE
233 RETURN MUST APPEAR IN OUTPUT PROCEDURE
234 INVALID TRANSFER OF CONTROL
235 INVALID OVERLAPPING OR NONCONTIGUOUS PROCEDURE
236 ILLEGAL DATA STRUCTURE FOR CORRESPONDING
237 # OF DECIMAL PLACES MOVED IS FUNCTION DEPENDENT
238 LITERAL MUST BE GREATER THAN PREDECESSOR
239 COMPILER MUST HAVE EXCLUSIVE USE OF CODE FILE
240 OPERAND COMPOSITE SIZE ERROR
241 RECORD KEY MUST RESIDE WITHIN RECORD AREA
242 NUMERIC LITERAL EXCEEDS SPECIFIED LIMITS
243 ILLEGAL USE OF FIGURATIVE
244 INCOMPLETE SORT PROCEDURE
245 DATA NAME OPERAND EXPECTED
246 LITERAL OPERAND EXPECTED
247 ARITHMETIC OPERAND EXPECTED
248 MOVE SENDING FIELD OPERAND EXPECTED
249 SET RECEIVING FIELD OPERAND EXPECTED
250 SET SENDING FIELD OPERAND EXPECTED
251 NUMERIC DATA NAME OPERAND EXPECTED
252 NUMERIC LITERAL OPERAND EXPECTED
253 NUMERIC SENDING FIELD OPERAND EXPECTED
254 NUMERIC RECEIVING FIELD OPERAND EXPECTED
255 FIGURATIVE OR INTRINSIC OPERAND EXPECTED
256 DUPLICATE LABEL RECORD DESCRIPTION
257 MISSING LABEL RECORD DECLARATION
258 LABEL RECORDS MUST BE 80 CHARACTERS
259 MORE THAN 9 LABEL RECORDS SPECIFIED
260 RANDOM DISK FILE MUST HAVE ACTUAL KEY
261 MUST BE ELEMENTARY CONTROL-POINT IDENTIFIER
262 RECORD DESCRIPTION NOT NECESSARY FOR DIRECT FILE
263 SIZE OF ALL RECORDS MUST DEPEND ON SAME ITEM
264 REPLACING TABLE LIMIT EXCEEDED
265 MISSING BY IN REPLACING STATEMENT
266 INDEXED FILE MUST HAVE RECORD KEY CLAUSE
267 NO LIBRARY SEQ NUM = OR > THAN STARTING SEQUENCE
268 INVALID COPY TERMINUS
269 MNEMONIC VALUE EXPECTED
270 FILE ATTRIBUTE EXPECTED
271 INVALID SET STRING
272 PERFORM RANGE CONFLICT
273 INVALID USE OF GENERALIZED FILE SPECIFIER
274 INVALID EVENT DECLARATION
275 MUST BE DIRECT FILE NAME
276 VALUE CLAUSE NOT ALLOWED FOR GLOBAL OR OWN ITEM
277 INTO EXPECTED

F-5

278 FROM EXPECTED
279 DIRECT I-O RECORD AREA REQUIRED
280 INVALID CONTROL VARIABLE FOR PERFORM VARYING
281 INVALID PROGRAM SPECI~ICATION
282 EVENT NAME OPERAND EXPECTED
283 CANT PERFORM DECLARATIVE THAT USES 'FILE' OPTION
284 INVALID PARAMETER
285 ARRAY ROW MAY NOT BE DEALLOCATED
286 DICTIONARY OVERFLOW - PROGRAM TOO LARGE
287 SIGN CLAUSE MAY ONLY APPLY TO DISPLAY ITEM
288 NULL OPTION NOT ALLOWED FOR THIS ITEM TYPE
289 DUPLICATE PROCEDURE DIVISION USING PARAMETER
290 TASK ATTRIBUTE EXPECTED
291 DIRECT I-O BUFFER ATTRIBUTE EXPECTED
292 ILLEGAL ACCESS MODE
293 USER OPTION MUST BE ALPHANUMERIC IDENTIFIER
294 LOCKABLE OPERAND EXPECTED
295 INVALID FROM OR THRU CLAUSE IN COPY STATEMENT
296 NESTED COPY STATEMENTS ARE NOT ALLOWED
297 INVALID OPERAND FOR CALL SYSTEM WITH
298 RECORD CONTAINS CLAUSE IGNORED
299 BLOCK SIZE MUST BE STATED IN CHARACTERS OR WORDS
300 MAXIMUM RECORD SIZE > BLOCK SIZE
301 MOVE TRUNCATION
302 POSSIBLE TRUNCATION OF NON-ZERO DIGITS
303 MISSING END DECLARATIVES
304 MISSING RECORD DESCRIPTION
305 MUST BE DISPLAY OR DISPLAY-I
306 GROUP COMPUTATIONAL ITEMS CAN NOT BE DISPLAYED
307 DATA-BASE OPEN ERROR
308 INVALID SELECTION EXPRESSION
309 INVALID DATA BASE EXCEPTION EXPRESSION
310 SET NOT IN DATA BASE DIRECTORY
311 INVOKED SET IN ERROR
312 MUST BE PROCEDURE NAME
313 DOLLAR PARAMETER DOES NOT HAVE BOOLEAN VALUE
314 MUST BE WORD OR INTEGER
315 FILE HAS NO LINAGE CLAUSE
316 SET NAME EXPECTED
317 INVALID DATA BASE SET STATEMENT
318 DATA BASE OPERAND EXPECTED
319 BLOCK SIZE MAY BE TOO SMALL
320 FILES INTERNAL MODE CONFLICTS WITH SORT FILE
321 POSSIBLE SHORT BLOCK PROBLEM
322 ILLEGAL USE OF LOCK VERB
323 MISSING FILE DESCRIPTION
324 MISSING PROGRAM
325 BEFORE ACTION TAKEN FOR DIRECT FILES
326 ILLEGAL HARDWARE TYPE FOR DIRECT FILES
327 BLOCK OR REPORTS CLAUSE ILLEGAL FOR DIRECT FILE
328 MUST BE LD NAME
329 MUST BE WITHIN CURRENT LD DESCRIPTION
330 INTERRUPT PROCEDURE EXPECTED
331 REPORT FILES MUST BE ASSIGNED TO PRINTER
332 ARITHMETIC FUNCTION REQUIRED
333 FORMAL PARAMETER ERROR
334 ACTUAL PARAMETER ERROR
335 SEQUENCE ERROR ON SOURCE OUTPUT FILE
336 MINIMUM RECORD SIZE IGNORED

F-6

337 ILLEGAL USE OF LOWER-BOUNDS CLAUSE
338 STOP RUN WILL EXIT THE GLOBAL BLOCK
339 NON-EXECUTABLE STATEMENT
340 ONLY LEVEL 1 ITEMS MAY BE RECEIVED AS ARRAYS
341 ARRAYS ARE PASSED BY NAME (REFERENCE)
342 ILLEGAL USE OF SEGMENT CLAUSE
343 STOP RUN IS ASSUMED
344 EXIT PROGRAM WILL CONTINUE BACK TO co-ROUTINE
345 AREASIZE NOT A MULTIPLE OF BLOCKING RATIO
346 RECORD DESCRIPTIONS NOT ALLOWED FOR REPORT FILES
347 NO RD ENTRY GIVEN FOR THIS REPORT
348 LABELS AND DATA-NAMES MUST NOT BE RESERVED WORDS
349 GLOBAL OR OWN CAN NOT BE DECLARED AT LEVEL 2
350 FAMILY ATTRIBUTE EXPECTED
351 ILLEGAL USE OF GLOBAL OR OWN CLAUSE
352 FILE ALREADY NAMED IN SAME RECORD AREA CLAUSE
353 USE QUOTED LITERAL IF EDITING IS NOT DESIRED
354 DM ATTRIBUTE EXPECTED
355 GROUP ITEM REQUIRED
356 STRING OR FIGURATIVE MUST FOLLOW ALL
357 MAXIMUM ITEM SIZE EXCEEDED
358 OCCURS GREATER THAN 65535 ARE NOT ALLOWED
359 INVALID CHARACTER IN UNDIGIT LITERAL
360 ILLEGAL USAGE FOR MONITOR/DUMP FILE
361 INVALID LEXICOGRAPHICAL LEVEL
362 OPTION IGNORED AFTER IDENTIFICATION DIVISION
363 INFO TABLE OVERFLOW, TOO MANY DATA-NAMES USED
364 SD FILE -- ILLEGAL ASCII INTMODE
365 DECLARED AS RECEIVED BUT NOT IN PARAMETER LIST
366 $FROM NOT ALLOWED IN LIBRARY OR SAVED INPUT
367 ONLY INITIALIZE ALLOWED FOR PARTITION
368 GLOBAL OR OWN DATA-NAMES CANNOT BE PARAMETERS
369 ON EXCEPTION EXPECTED
370 ONLY ONE DATA-BASE-RESTART FILE IS ALLOWED
371 NO DATA-BASE-RESTART FILE DECLARED
372 DIRECT FILES NOT ALLOWED FOR RESTART FILES
373 MUST BE DATA-BASE-RESTART FILE
374 ALL REPORTS ON A FILE MUST HAVE THE SAME USAGE
37.5 ILLEGAL CLAUSE USED WITH DIRECT INDEX FILE
376 NUMERIC OR EDITED NUMERIC ASCII IS NOT ALLOWED
377 GLOBAL OR RECEIVED BY REFERENCE CLAUSE EXPECTED
378 FLOATING POINT ITEM MAY NOT HAVE PICTURE CLAUSE
379 COMPILE AND GO NOT LEGAL WITH PARAMETERS
380 DM ERROR
381 NAME EXCEEDS 17 CHARACTERS
382 SECURITY VIOLATION
383 VERSION ERROR
384 DATA BASE DOES NOT EXIST
385 DATA SET NAME EXPECTED
386 DUPLICATE DMERROR USE PROCEDURE
387 DM COUNT OR RECORD TYPE EXPECTED

· 388 DUPLICATE EXPECTED
389 INVALID DM KEY CONDITION
390 LINK EXPECTED
391 SET NAME EXPECTED
392 MUST BE MANUAL SET
393 SEGMENT DICTIONARY SIZE EXCEEDED
394 GLOBAL STACK SIZE EXCEEDED
395 STACK SIZE EXCEEDED

F-7

396 PARAMETER WILL BE PASSED BY REFERENCE
397 SYNCHRONIZED CLAUSE IGNORED
398 MUST COMPILE COBOL COMPILER WITH BDMS OPTION SET
399 IDENTIFICATION DIVISION MISSING OR MIS-SPELLED
400 ENVIRONMENT DIVISION MISSING OR MIS-SPELLED
401 MUST BE AN IMPERATIVE STATEMENT
402 COBOL TO DATABASE/INTERFACE VERSION MIS-MATCH
403 SUBSCRIPT WILL CAUSE INVALID INDEX AT RUN TIME
404 FILE SIZE IGNORED FOR SORT DISK
405 ATTRIBUTE WILL CAUSE NON-FATAL RUN-TIME ERROR
406 MULTIPLE RECEIVING FIELDS ILLEGAL WITH REMAINDER
407 CHARACTER MAY NOT BE USED MORE THAN ONCE
408 ALPHABET-NAME IN COLLATING SEQ CLAUSE MISSING
409 NUMERIC LITERAL MUST BE IN RANGE OF 1 TO 256
410 LITERAL MUST BE SINGLE CHARACTER
411 MAY ONLY BE USED WITH INDEXED FILE
412 MAY NOT BE USED WITH INDEXED FILE
~13 CLOSE OPTION NOT MEANINGFUL FOR FILE KIND
414 MUST BE NATIVE, STANDARD-I, OR BCL CODE-SET
415 CONSTRUCT ALLOWED ONLY UNDER ANSI74 $ OPTION
416 CONSTRUCT NOT ALLOWED UNDER ANSI74 $ OPTION
417 FILE DECLARATION MUST CONTAIN ASSIGN CLAUSE
418 ILLEGAL HARDWARE TYPE FOR ACTUAL KEY CLAUSE
419 CONSTRUCT ALLOWED ONLY UNDER B2500 $ OPTION

F-8

WARNING MESSAGES PRODUCED BY$ ANALYZE

ALTER STATEMENTS SHOULD BE AVOIDED

An ALTER statement may complicate debugging and maintenance functions.

DISPLAYS AND ACCEPTS SHOULD BE AVOIDED

These statements produce large amounts of code and, because of the slow

speed devices which these statements access, tend to degrade execution

time.

J-SIGN PICTURES - AVOID WHERE POSSIBLE

PICTURE clauses which specify the PICTURE character "J" cause con­

siderable amounts of extra code to be generated and execution time to
be degraded.

LABELS PERFORMED OR GONE TO FROM DIFFERENT SEGMENT

This may cause repeated presence bit action on code segments.

NON-CONSTANT VALUE USED AS SUBSCRIPT

When an identifier is used as a subscript, evaluation of the subscript

is done at run time.

ON SIZE ERROR CLAUSE

The presence of the ON SIZE ERROR clause will cause extra code to be

generated and executed. Proper planning of field sizes will eliminate

the need for this clause.

PHYSICAL BLOCKSIZE NOT MULTIPLE OF 30 WORDS

The size of a physical block for this disk file is not a multiple of 180

EBCDIC (240 BCL) characters and thus will waste space on disk.

SORTS WITH BCL KEYS

A SORT of a BCL file requires conversion of the keys to EBCDIC because

of differences in collating sequence,

F-9

SORTS WITH MULTIPLE KEYS

Multiple keys require that the compiler generate a compare procedure
instead of allowing the in-line compare within the SORT to be used.

STATEMENT CAUSED CONVERSION FROM BINARY TO DECIMAL

The statement flagged will cause a conversion from binary so that data
may be stored in a DISPLAY field.

STATEMENT CAUSED CONVERSION FROM DECIMAL TO BINARY

F-10

The statement flagged will cause a conversion from DISPLAY so that data
may be stored in a binary field.

G. CHARACTER REPRESENTATION,

COLLATING SEQUENCE

AND TRANSLATION

G-1

EBCDIC Collating Sequence

REPRESENTATION
SYMBOL BINARY HEX CARD CODE

NUL 0000 0000 00 I2-o-9-s-I OS:
SOH 0000 OOOI OI I2-9-I 9
STX 0000 OOIO 02 I2-9-2
ETX 0000 0011 03 I2-9-3

0000 OIOO 04 I2-9-4
HT 0000 OIOI 05 I2-9-5

0000 0110 06 I2-9-6
DEL 0000 OllI 07 I2-9-7

0000 1000 08 I2-9-8
0000 IOOI 09 I2-9-B-I
0000 IOIO OA I2-9-8-2

VT 0000 IOll OB I2-9-5-3
FF 0000 1100 oc I2-9-8-4
CR 0000 llOI OD I2-9-8-5
so 0000 llIO , OE I2-9-8-6
ST 0000 1111 OF I2-9-8-7

DLE OOOI 0000 IO I2-11-9-s-I
DCI OOOI OOOI 11 11-9-I
DC2 OOOI OOIO I2 11-9-2
DC3 OOOI 0011 I3 11-9-3

OOOI OIOO I4 11-9-4
NL OOOI OIOI I5 11-9-5
BS OOOI 0110 I6 11-9-6

OOOI OllI I7 11-9-7
CAN OOOI IOOO IS 11-9-s
EM OOOI IOOI I9 11-9-s-I

OOOI IOIO IA 11-9-s-2
OOOI IOll IB 11-9-5-3

FS OOOI 1100 IC 11-9-5-4
GS OOOI llOI lD 11-9-5-5
RS OOOI llIO IE 11-9-8-6
us OOOI 1111 IF 11-9-5-7

0010 0000 20 11-0-9-s-I
OOIO OOOI 2I o-9-I
OOIO 0010 22 0-9-2
OOIO 0011 23 0-9-3
0010 0100 24 0-9-4

LF 0010 OIOl 25 0-9-5
ETB 0010 0110 26 o-9-6
ESC 0010 OllI 27 0-9-7

0010 IOOO 28 o-9-s
OOIO IOOI 29 o-9-B-I
0010 1010 2A 0-9-s-2
0010 IOll 2B 0-9-5-3
OOIO 1100 2C o-n·B-4

ENQ 0010 1101 2D 0-9-s-5
ACK 0010 1110 2E o-9-B-6
BEL 0010 1111 2F 0-9-5-7

0011 0000 30 I2-l1"'0-9-s-1
0011 OOOI 3I 9-1

SYN 0011 0010 32 9-2
0011 0011 33 9-3
0011 0100 34 9-4
0011 0101 35 9-5
0011 0110 36 9-6

EOT 0011 0111 37 9-7
0011 IOOO 38 9-8
ooi1 lOOI 39 9-s-1
0011 IOlO 3A 9-8-2
0011 1011 3B 9-8-3

DC4 0011 1100 3C 9-5-4
NAK 0011 1101 3D 9-8-5 = 0011 IllO 3E 9-8-6 ~

SUB 0011 Illl 3F 9-8-7 1-4

=

G-2

EBCDIC Collating Sequence (cont)

REPRESENTATION
SYMBOL BINARY HEX CARD CODE

SP 0100 0000 40 Blank Space
0100 0001 41 12-0-9-1 "" 0100 0010 42 12-0-9-2 0

..:i
0100 0011 43 12-0-9-3
0100 0100 44 12-0-9-4
0100 0101 45 12-0-9-5
0100 0110 46 i2-o-9-6
0100 0111 47 12-0-9-7
0100 1000 48 12-o-9-8

[0100 1001 49 12-8-1
0100 1010 4A 12-8-2
0100 1011 48 12-8-3

•". 0100 1100 4C 12-8-4
0100 1101 4D 12-s-5

+ 0100 1110 4E 12-8-6
0100 1111 4F 12-8-7

& 0101 0000 50 12
0101 0001 51 12-11-9-1
0101 0010 52 12-11-9-2
0101 0011 53 12-11-9-3
0101 0100 54 12-11-9-4
0101 0101 55 12-11-9-5
0101 0110 56 12-11-9-6
0101 0111 57 12-11-9-7
0101 1000 58 12-11-9-8
0101 1001 59 11-8-1

] 0101 1010 5A 11-8-2
$ 0101 1011 58 11-8-3

* 0101 1100 5C 11.:...8-4
0101 1101 5D 11-8-5
0101 1110 5E 11-8-6 ..., 0101 1111 5F 11-8-1 Logical Not

0110 0000 60 11
I 0110 0001 61 0-1 I 0110 0010 62 11-0-9-2

0110 0011 63 11-0-9-3
0110 0100 64 11-0-9-4
0110 0101 65 11-0-9-5
0110 0110 66 11-0-9-6
0110 0111 67 11-0-9-7
0110 1000 68 11-0-9-8
0110 1001 69 0-8-1
0110 1010 6A 12-11

'
0110 1011 68 o-8-3

% 0110 1100 6C o-8-4
0110 1101 60 o-s-s Underscore

> 0110 1110 6E o-8-6
? 0110 1111 6F o-8-7

0111 0000 70 12-11-0
0111 0001 71 12-11-0-9-1
0111 0010 72 12-11-0-9-2
0111 0011 73 12-11-0-9-3
0111 0100 74 12-11-0-9-4
0111 0101 75 12-11-0-9-5
0111 0110 76 12-11-0-9-6
0111 0111 77 12-11-0-9-7
0111 1000 78 12-11-0-9-8
0111 1001 79 8-1

: 0111 1010 7A 8-2
0111 1011 78 8-3
@ 0111 1100 7C 8-4

0111 1101 70 8-5 = Apostrophe
0111 1110 7E 8-6 l.!:i
0111 1111 7F 8-7 =

G-3

EBCDIC Collating Sequence (cont)

REPRESENTATION
SYMBOL BINARY HEX CARD CODE

1000 0000 so 12-0-s-1 II:

a 1000 0001 Sl 12-0-1 9 Lower Case A
b 1000 0010 S2 12-0-2 Lower Case B
c 1000 0011 ' S3 12-0-3 Lower Case c
d 1000 0100 S4 12-0-4 Lower Case D
e 1000 0101 S5 12-0-5 Lower Case E
f 1000 0110 S6 12-0-6 Lower Case F
g 1000 0111 S7 12-0-7 Lower Case G
h 1000 1000 SS 12-0-s Lower Case H
i 1000 1001 S9 12-o-9 Lower Case I

1000 1010 SA 12-0-s-2
1000 1011 SB 12-o-S-3
1000 1100 SC 12-0-s-4
1000 1101 SD 12-0-s-5
1000 1110 SE 12-0-s-6
1000 1111 SF 12-0-s-1

1001 0000 90 12-11-s-1
j 1001 0001 91 12-11-1 Lower Case J
k 1001 0010 92 12-11-2 Lower Case K
1 1001 0011 93 12-11-3 Lower Case L
m 1001 0100 94 12-11-4 Lower Case M
n 1001 0101 95 12-11-5 Lower Case N
0 1001 0110 96 12-11-6 Lower Case O
p 1001 0111 97 12-11-7 Lower Case P
q 1001 1000 9S 12-11-s Lower Case Q
r 1001 1001 99 12-11-9 Lower Case R

1001 1010 9A 12-11-s-2
1001 1011 9B 12-11-s-3
1001 1100 9C 12-11-S-4
1001 1101 tr 12-11-s-5
1001 1110 Y.C: 12-11-S-6
1001 1111 9F 12-11-s-7

1010 0000 AO 11-0-s-1
1010 0001 Al 11-0-1

s 1010 0010 A2 11-0-2 Lower Case s
t 1010 0011 A3 11-0-3 Lower Case T
u 1010 0100 A4 11-0-4 Lower Case u
v 1010 0101 A5 11-0-5 Lower Case v
w 1010 0110 A6 11-0-6 Lower Case w
x 1010 0111 A7 11-0-7 Lower Case x
y 1010 1000 AS 11-0-s Lower Case y
z 1010 1001 A9 11-0-9 Lower Case z

1010 1010 AA 11-0-s-2
1010 1011 AB 11-0-s-3
1010 1100 AC 11-0-s-4
1010 1101 AD 11-0-s-5
1010 1110 AE 11-0-s-6
1010 1111 AF 11-0-s-1

1011 0000 BO 12-11-0-s-1
1011 0001 Bl 12-11-0-1
1011 0010 B2 12-11-0-2
1011 0011 B3 12-11-0-3
1011 0100 B4 12-11-0-4
1011 0101 B5 12-11-0-5
1011 0110 B6 12-11-0-6
1011 0111 B7 12-11-0-7
1011 1000 BS 12-11-0-s
1011 1001 B9 12-11-0-9
1011 1010 BA 12-11-0-s-2
1011 1011 BB 12-11-0-s-3
1011 1100 BC 12-11-0-s-4
1011 1101 BD 12-11-0-s-5 = 1011 1110 BE 12-11-0-s-6 CJ
1011 1111 BF 12-11-0-s-1 =

G:...4

EBCDIC Collating Sequence (cont)

REPRESENTATION
SYMBOL BINARY HEX CARD CODE

+ 1100 0000 co 12-o ii:
A 1100 0001 Cl 12-1 9 B 1100 0010 C2 12-2
c 1100 0011 C3 12-3
D 1100 0100 C4 12-4
E 1100 0101 cs 12-S
F 1100 0110 C6 12-6
G 1100 0111 C7 12-7
B 1100 1000 cs 12-S
I 1100 1001 C9 12-9

1100 1010 CA 12-0-9-s-2
1100 1011 CB 12-0-9-s-3
1100 1100 cc 12-o-9-S-4
1100 1101 CD 12-0-9-s-s
1100 1110 CE 12-o-9-S-6
1100 1111 CF 12-o-9-S-7

1101 0000 DO 11-0
J 1101 0001 Dl 11-1
K 1101 0010 D2 11-2
L 1101 0011 D3 11-3
M 1101 0100 D4 11-4
N 1101 0101 DS 11-s
0 1101 0110 D6 11-6
p 1101 0111 D7 11-7
Q 1101 1000 DS 11-s
R 1101 1001 D9 11-9

1101 1010 DA 12-11-9-s-2
1101 1011 DB 12-11-9-s-3
1101 1100 DC 12-11-9-s-4
1101 1101 DD 12-11-9-s-s
1101 1110 DE 12-11-9-s-6
1101 1111 DF 12-11-9-s-7

1110 0000 EO o-s-2 Back Slash

" 1110 0001 El 11-0-9-1
s 1110 0010 E2 0-2
T 1110 0011 E3 0-3
u 1110 0100 E4 o-4
v 1110 0101 ES o-s
w 1110 0110 E6 o-6
x 1110 0111 E7 0-1
y 1110 1000 ES . o-s
z 1110 1001 E9 0-9

1110 1010 EA 11-0-9-s-2
1110 1011 EB 11-0-9-s-3
1110 1100 EC 11-0-9-s-4
1110 1101 ED 11-0-9-s-s
1110 1110 EF 11-0-9-s-6
1110 1111 EF 11-0-9-s-7

0 1111 0000 FO 0
1 1111 0001 Fl 1
2 1111 0010 F2 2
3 1111 0011 F3 3
4 1111 0100 F4 4
s 1111 0101 FS s
6 1111 0110 F6 6
7 1111 0111 F7 7
8 1111 1000 FS s
9 1111 1001 F9 9

1111 1010 FA 12-11-0-9-s-2
1111 1011 FB 12-11-0-9-g-3
1111 1100 FC 12-11-0-9-s-4
1111 1101 FD 12-11-0-9-s-s =
1111 1110 FE 12-11-0-9-s-6 s
1111 1111 FF 12-11-0-9-s-7 =

G-5

BCL to EBCDIC Translation Chart

EBCDIC Collating Sequence Order

BCL BCL BCL BCL TRANSLATED EBCDIC EBCDIC EXTERNAL INTERNAL EBCDIC CHARACTER BA 4321 BA 8421 CARD CODE CODE HEX CARD CODE

(Blank) 01 0000 11 0000 0100 0000 40 '"' 0
[11 1100 01 1011 12 8-4 0100 1010 4A 12 8-2

11 1011 01 1010 12 8-3 0100 1011 4B 8-3
< 11 1110 01 1110 12 8-6 0100 1100 4C 8-4
(11 1101 01 1101 12 8-5 0100 1101 4D 8-5
... 11 1111 01 1111 12 8-7 0100 1111 4F 8-7

& 11 0000 01 1100 12 0101 0000 so 12

$ 01 1110 11 1110 0 8-6 0101 1010 SA 11 8-2
10 1011 10 1010 11 8-3 0101 1011 SB 11 8-3

* 10 1100 10 1011 11 8-4 0101 1100 SC 11 8-4
10 1101 10 1101 11 8-5 0101 1101 SD 11 8-5
10 1110 10 1110 11 8-6 0101 1110 SE 11 8-6

.s:. 10 1111 10 1111 11 8-7 0101 1111 SF 11 8-7

10 0000 10 1100 11 0110 0000 60 11
I 01 0001 10 0001 0 1 0110 0001 61 0 1

'
01 1011 11 1010 0 8-3 0110 1011 6B 0 8-3

% 01 1100 11 1011 0 8-4 0110 1100 6C 0 8-4
f 01 1010 11 1100 0 8-2 0110 1101 6D 0 8-5
> 00 1110 00 1110 8-6 0110 1110 6E 0 8-6
? 00 0000 00 1100 All other 0110 1111 6F 0 8-7

card codes

: 00 1101 00 1101 8-5 0111 1010 7A 8-2
00 1011 00 1010 8-3 0111 1011 7B B-3
@ 00 1100 00 1011 B-4 0111 1100 7C B-4
~ 00 1111 00 1111 B-7 0111 1101 7D B-5

01 1101 11 1101 0 B-5 0111 1110 7E B-6
01 1111 11 1111 0 B-7 0111 1111 7F B-7

+ 11 1010 01 0000 12 0 1100 0000 co 12 0
A 11 0001 01 0001 12 1 1100 C.001 Cl 12 1
B 11 0010 01 0010 12 2 1100 0010 C2 12 2
c 11 0011 01 0011 12 3 1100 0011 C3 12 3
D 11 0100 01 0100 12 4 1100 0100 C4 12 4
E 11 0101 01 0101 12 5 1100 0101 C5 12 5
F 11 0110 01 0110 12 6 1100 0110 C6 12 6
G 11 0111 01 0111 12 7 1100 0111 C7 12 7
H 11 1000 01 1000 12 B 1100 1000 CB 12 B
I 11 1001 01 1001 12 9 1100 1001 C9 12 9

x 10 1010 10 0000 11 0 1101 0000 DO 11 0
J 10 0001 10 0001 11 1 1101 0001 Dl 11 1
K .10 0010 10 0010 11 2 1101 0010 D2 11 2
L 10 0011 10 0011 11 3 1101 0011 D3 11 3
M 10 0100 10 0100 11 4 1101 0100 D4 11 4
N 10 0101 10 0101 11 5 1101 0101 DS 11 5
0 10 0110 10 0110 11 6 1101 0110 D6 11 6
p 10 0111 10 0111 11 7 1101 0111 D7 11 7
Q 10 1000 10 1000 11 B 1101 1000 DB 11 B
R 10 1001 10 1001 11 9 1101 1001 D9 11 9

s 01 0010 11 0010 0 2 1110 0010 E2 0 2
T 01 0011 11 0011 0 3 1110 0011 E3 0 3
u 01 0100 11 0100 0 4 1110 0100 E4 0 4
v 01 0101 11 0101 0 5 1110 0101 E5 0 5
w 01 0110 11 0110 0 6 1110 0110 E6 0 6
x 01 0111 11 0111 0 7 1110 0111 E7 0 7
y 01 1000 11 1000 0 B 1110 1000 EB 0 B
z 01 1001 11 1001 0 9 1110 1001 E9 0 9

0 00 1010 00 0000 0 1111 0000 FO 0
1 00 0001 00 0001 1 1111 0001 Fl 1
2 00 0010 00 0010 2 1111 0010 F2 2
3 00 0011 00 0011 3 1111 0011 F3 3
4 00 0100 00 0100 4 1111 0100 F4 4
s 00 0101 00 0101 5 1111 0101 F5 5
6 00 0110 00 0110 6 1111 0110 F6 6
7 00 0111 00 0111 7 1111 0111 F7 7 =
B 00 1000 00 1000 B 1111 1000 FB B "
9 00 1001 00 1001 9 1111 1001 F9 9 =

G-6

ASCII to EBCDIC Translation Chart

ASCII Collating Sequence Order

SYMBOL ASCII EBCDIC CARD CODE BINARY HEX BINARY HEX

NUL 0000 0000 00 0000 0000 00 i2-o-9-s-1
SOH 0000 0001 01 0000 0001 01 12-9-1
STX 0000 0010 02 0000 0010 02 12-9-2
FTX 0000 0011 03 0000 OOll 03 12-9-3
EQT 0000 0100 04 OOll Olll 37 9-7
ENQ 0000 0101 OS 0010 llOl 2D 0-9-s-s
CCK 0000 OllO 06 0010 lllO 2F 0-9-s-6
BEL 0000 0111 07 0010 llll 2F 0-9-5-7
BS 0000 1000 08 0001 0110 16 U-9-6
HT 0000 1001 09 0000 0101 OS 12-9-S
LF 0000 1010 OA 0010 0101 2S 0-9-s
VT 0000 1011 OB 0000 lOll OB 12-9-8-3
FF 0000 llOO oc 0000 llOO oc 12-9-8-4
CR 0000 llOl OD 0000 llOl OD 12-9-8-S
so 0000 1110 OE 0000 lllO OF 12-9-8-6
SI 0000 llll OF 0000 llll OF 12-9-8-7

DLE 0001 0000 10 0001 0000 10 12-U-9-8-1
DCl 0001 0001 ll 0001 0001 11 u-9-1
DC2 0001 0010 12 0001 0010 12 U-9-2
DC3 0001 0011 13 0001 OOll 13 u-9-3
DC4 0001 0100 14 0011 1100 3C 9-8-4
NAK 0001 0101 IS 0011 1101 3D 9-s-s
SYN 0001 OllO 16 OOll 0010 32 9-2
ETR 0001 Olll 17 0010 0110 26 o-9-6
CAN 0001 1000 18 0001 1000 18 U-9-8
EM 0001 1001 19 0001 1001 19 u-9-s-1
SUB 0001 1010 IA OOll llll 3F 9-5-7
ESC 0001 1011 lB 0010 Olll 27 0-9-7
FS 0001 llOO lC 0001 1100 IC U-9-8-4
GS 0001 1101 lD 0001 1101 lD u-9-s-s
RS 0001 lllO lE 0001 1110 IE U-9-8-6
us 0001 llll lF 0001 1111 IF 11-9-5-7

SP 0010 0000 20 0100 0000 40 Blank Space
0010 0001 21 0100 1111 4F 12-8-7 Exclamation Point (left arrow)
0010 0010 22 0111 llll 7F 8-7

0010 0011 23 0111 lOll 7B 8-3
$ 0010 0100 24 0101 lOll SB 11-8-3
% 0010 0101 2S 0110 1100 6C o-s-4
& 0010 0110 26 0101 0000 so 12

0010 0111 27 0111 llOl 7D s-s
(0010 1000 28 0100 llOl 4D 12-8-S
) 0010 1001 29 0101 llOl SD 11-s-s

* 0010 1010 2A 0101 llOO SC U-8-4
+ 0010 lOll 2B 0100 lllO 4E 12-8-6

0010 1100 2C OllO lOll 6B o-s-3
001() llOl 2D OllO 0000 60 ll
0010 1110 2E 0100 loll 4B 12-8-3

I 0010 llll 2F OllO 0001 61 0-1

0 0011 0000 30 llll 0000 FO 0
1 OOll 0001 31 1111 0001 Fl 1
2 OOll 0010 32 llll 0010 F2 2
3 OOll 0011 33 1111 OOll F3 3
4 OOll 0100 34 llll 0100 F4 4
s OOll 0101 3S llll 0101 FS s
6 OOll 0110 36 llll OllO F6 6
7 OOll Olll 37 llll Olll F7 7
8 OOll 1000 38 1111 1000 FB 8
9 OOll 1001 39 llll 1001 F9 9

OOll 1010 3A 0111 1010 7A s-2
OOll 1011 3B 0101 1110 SE 11-8-6

< OOll llOO 3C 0100 llOO 4C 12-8-4
OOll llOl 3D Olll 1110 7E 8-6

> OOll lllO 3E 0110 lllO 6E o-s-6
OOll llll 3F 0110 llll 6F o-s-1

G-7

ASCII to EBCDIC Translation Chart

ASCII Collating Sequence Order (cont)

SYMBOL ASCII EBCDIC CARD CODE BINARY HEX BINARY HEX

@ 0100 0000 40 0111 1100 7C S-4
A 0100 0001 41 1100 0001 Cl 12-1
B 0100 0010 42 1100 0010 C2 12-2
c 0100 0011 43 1100 0011 C3 12-3
D 0100 0100 44 1100 0100 C4 12-4
E 0100 0101 4S 1100 0101 cs 12-S
F 0100 0110 46 1100 0110 C6 12-6
G 0100 0111 47 1100 0111 C7 12-7
H 0100 1000 4S 1100 1000 cs 12-8
I 0100 1001 49 1100 1001 C9 12-9
J 0100 1010 4A 1101 0001 Dl 11-1
K 0100 1011 4B 1101 0010 D2 11-2
L 0100 1100 4C 1101 0011 D3 :1-3
M 0100 1101 4D 1101 0100 D4 .11-4
N 0100 1110 4E 1101 0101 DS 11-s
0 0100 1111 4F 1101 0110 D6 11-6

p 0101 0000 so 1101 0111 D7 11-7
Q 0101 0001 Sl 1101 1000 DS 11-8
R 0101 0010 S2 1101 1001 D9 11-9
s 0101 0011 S3 1110 0010 E2 0-2
T 0101 0100 S4 1110 0011 E3 o-3
u 0101 0101 SS 1110 0100 E4 o-4
v 0101 0110 S6 1110 0101 ES o-s
w 0101 0111 S7 1110 0110 E6 o-6
x 0101 1000 S8 1110 0111 E7 0-1
y 0101 1001 S9 1110 1000 ES o-8
z 0101 1010 SA 1110 1001 E9 o-9
[0101 1011 SB 0100 1010 4A 12-8-2
'\ 0101 1100 SC 1110 0000 EO 0-8-2 Back Slash
] 0101 1101 SD 0101 1010 SA 11-8-2 .., 0101 1110 SE 0101 1111 SF 11-8-1 Logical Not (LEQ Symbol)

0101 1111 SF 0110 1101 6D o-8-s Underscore (Unequal Symbol)

0110 0000 60 0111 1001 79 8-1 Grave Accent
a 0110 0001 61 1000 0001 81 12-0-1 Lower Case A
b 0110 0010 62 1000 0010 82 12-0-2 Lower Case B
c 0110 0011 63 1000 0011 83 12-o-3 Lower Case c
d 0110 0100 64 1000 0100 84 12-o-4 Lower Case D
e 0110 0101 6S 1000 0101 8S 12-o-s Lower Case E
f 0110 0110 66 1000 0110 86 12-o-6 Lower Case F
g 0110 0111 67 1000 0111 87 12-o-7 Lower Case G
h 0110 1000 68 1000 1000 8S 12-0-8 Lower Case H
i 0110 1001 69 1000 1001 89 12-0-9 Lower Case I
j 0110 1010 6A 1001 0001 91 12-11-1 Lower Case J
k 0110 1011 6B 1001 0010 92 12-11-2 Lower Case K
1 0110 1100 6C 1001 0011 93 12-11-3 Lower Case L
m 0110 1101 6D 1001 0100 94 12-11-4 Lower Case M
n 0110 1110 6E 1001 0101 9S 12-11-s Lower Case N
0 0110 1111 6F 1001 0110 96 12-11-6 Lower Case 0

p 0111 0000 70 1001 0111 97 12-11-7 Lower Case p
q 0111 0001 71 1001 1000 9S 12-11-8 Lower Case Q
r 0111 0010 72 1001 1001 99 12-11-9 Lower Case R
s 0111 0011 73 1010 0010 A2 n-0-2 Lower Case s
t 0111 0100 74 1010 0011 A3 11-0-3 Lower Case T
u 0111 0101 7S 1010 0100 A4 11-0-4 Lower Case u
v 0111 0110 76 1010 0101 AS 11-0-s Lower Case v
w 0111 0111 77 1010 0110 A6 11-0-6 Lower Case w
x 0111 1000 78 1010 0111 A7 11-0-1 Lower Case x
y 0111 1001 79 1010 1000 AS 11-0-8 Lower Case y
z 0111 1010 7A 1010 1001 A9 11-0-9 Lower Case z

0111 1011 7B 1100 0000 co 12-0 Left Brace
0111 1100 7C 0110 1010 6A 12-11 Broken Vertical Line
0111 1101 7D 1101 0000 DO 11-0 Right Brace
0111 1110 7E 1010 0001 Al n-0-1 Tilde

DEL 0111 1111 7F 0000 0111 D7 12-9-7

G-8

ASCII to EBCDIC Translation Chart
ASCII Collating Sequence Order (cont)

ASCII EBCDIC
SYMBOL BINARY HEX BINARY HEX CARD CODE

KO 1000 0000 so 0010 0000 20 11-0-9-s-1
Kl 1000 0001 Sl 0010 0001 21 0-9-1
K2 1000 0010 S2 ooro 0010 22 0-9-2
K3 1000 0011 S3 0010 0011 23 0-9-3
K4 1000 0100 S4 0010 0100 24 0-9-4
K5 1000 0101 S5 0001 0101 15 11-9-5
K6 1000 0110 S6 0000 0110 06 12-9-6
K7 1000 0111 S7 0001 0111 17 11-9-7
KS 1000 1000 SS 0010 1000 2S 0-9-s
K9 1000 1001 S9 0010 1001 29 0-9-s-1
KIO 1000 1010 SA 0010 1010 2A 0-9-s-2
Kll 1000 1011 SB 0010 1011 2B 0-9-s-3
K12 1000 1100 SC 0010 1100 :'C o-9-S:-4
K13 1000 1101 SD 0000 1001 09 12-9-s-1
K14 1000 1110 SE 0000 1010 OA 12-9-s-2
Kl5 1000 1111 SF 0001 1011 lB 11-9-s-3

Kl6 1001 0000 90 0011 0000 30 12-11-0-9-s-1
K17 1001 0001 91 0011 0001 31 9-1
KlS 1001 0010 92 0001 1010 lA 11-9-s-2
Kl9 1001 0011 93 0011 0011 33 9-3
K20 1001 0100 94 0011 0100 34 9-4
K21 1001 0101 95 0011 0101 35 9-5
K22 1001 0110 96 0011 0110 36 9-6
K23 1001 0111 97 0000 1000 OS 12-9-s
K24 1001 1000 9S 0011 1000 3S 9-s
K25 1001 1001 99 0011 1001 39 9-s-1
K26 1001 1010 9A 0011 1010 3A 9-s-2
K27 1001 1011 9B 0011 1011 3B 9-S-3
K2S 1001 1100 9C 0000 0100 04 12-9-4
K29 1001 1101 9D 0001 0100 14 11-9-4
K30 1001 1110 9E 0011 1110 3E 9-S-6
K31 1001 1111 9F 1110 0001 El 11-0-9-1

N<> 1010 0000 AO 0100 0001 41 12-0-9-1
Nl 1010 0001 Al 0100 0010 42 12-0-9-2

-N2 1010 0010 A2 0100 0011 43 12-0-9-3
N3 1010 0011 A3 0100 0100 44 12-0-9-4
N4 1010 0100 A4 0100 0101 45 12-0-9-5
N5 1010 0101 A5 0100 0110 46 12-0-9-6
N6 1010 0110 A6 0100 0111 47 12-0-9-7
N7 1010 0111 A7 0100 1000 4S 12-0-9-s
NS 1010 1000 AS 0100 1001 49 12-s-1
N9 1010 1001 A9 0101 0001 51 12-11-9-1
NlO 1010 1010 AA 0101 0010 52 12-11-9-2
Nll 1010 1011 AB 0101 0011 53 12-11-9-3
N12 1010 1100 AC 0101 0100 54 12-11-9-4
N13 1010 1101 AD 0101 0101 55 12-11-9-5
N14 1010 1110 AE 0101 0110 56 12-11-9-6
Nl5 1010 1111 AF 0101 0111 57 12-11-9-7

Nl6 1011 0000 BO 0101 1000 5S 12-11-9-s
N17 1011 0001 Bl 0101 1001 59 11-s-1
NlS 1011 0010 B2 0110 0010 62 11-0-9-2
N19 1011 0011 B3 0110 0011 63 11-0-9-3
N20 1011 0100 B4 0110 0100 64 11-0-9-4
N21 1011 0101 B5 0110 0101 65 11-0-9-5
N22 1011 0110 B6 0110 0110 66 11-0-9-6
N23 1011 0111 B7 0110 0111 67 11-0-9-7
N24 1011 1000 BS 0110 1000 6S 11-0-9-s
N25 1011 1001 B9 0110 1001 69 o-s-1
N26 1011 1010 BA 0111 0000 70 12-11-0
N27 1011 1011 BB 0111 0001 71 12-11-0-9-1
N2S 1011 1100 BC 0111 0010 72 12-11-0-9-2
N29 1011 1101 BD 0111 0011 73 12-11-0-9-3
N30 1011 1110 BE 0111 0100 74 12-11-0-9-4
N31 1011 1111 BF 0111 0101 75 12-11-0-9-5

G....;9

ASCII to EBCDIC Translation Chart

ASCII Collating Sequence Order (cont)

SYMBOL ASCII EBCDIC CARD CODE BINARY HEX BINARY HEX

N32 1100 0000 co 0111 0110 76 12-11-0-9-6
N33 1100 0001 Cl 0111 0111 77 12-11-0-9-7
N34 1100 0010 C2 0111 1000 78 12-11-0-9-8
N3S 1100 0011 C3 1000 0000 80 12-0-s-1
N36 1100 0100 C4 1000 1010 SA i2-o-s-2
N37 1100 0101 cs 1000 1011 SB 12-o-s-3
N38 1100 0110 C6 1000 1100 SC 12-0-9-4
N39 1100 0111 C7 1000 1101 SD 12-0-s-s
N40 1100 1000 cs 1000 1110 SE 12-0-s-s
N41 1100 1001 cs 1000 1111 SF 12-0-s-1
N42 1100 1010 CA 1001 0000 90 12-11-s-1
N43 1100 1011 CB 1001 1010 9A 12-11-8-2
N44 1100 1100 cc 1001 1011 9B 12-11-s-3
N4S 1100 1101 CD 1001 1100 9C 12-11-s-4
N46 1100 1110 CE 1001 1101 9D 12-11-s-s
N47 1100 1111 CF 1001 1110 9F 12-11-8-6

N48 1101 0000 DO 1001 1111 OF 12-11-s-1
N49 1101 0001 Dl 1010 0000 AO 11-0-s-1
NSO 1101 0010 D2 1010 1010 AA 11-0-s-2
NSl 1101 0011 D3 1010 1011 AB 11-0-s-3
NS2 1101 0100 D4 1010 1100 AC 11-0-s-4
NS3 1101 0101 DS 1010 1101 AD 11-0-s-s
NS4 1101 0110 D6 1010 1110 AE 11-0-8-6
NSS 1101 0111 D7 1010 1111 AF 11-0-s-1
NS6 1101 1000 DB 1011 0000 BO i2-11-o-s-1
NS7 1101 1001 D9 1011 0001 Bl 12-11-0-1
NSS 1101 1010 DA 1011 0010 B2 12-11-0-2
NS9 1101 1011 DB 1:011 0011 B3 12-11-0-3
NGO 1101 1100 DC 1011 0100 B4 12-11-0-4
N61 1101 1101 DD 1011 0101 BS 12-11-0-s
N62 1101 1110 DE 1011 0110 B6 i2-11-o-s
N63 1101 1111 DF 1011 0111 B7 12-11-0-7

GO 1110 0000 EO 1011 1000 BS 12-11-0-s
Gl 1110 0001 El 1011 1.001 B9 12-11-0-9
G2 1110 0010 E2 1011 1010 BA 12-11-0-s-2
G3 1110 0011 E3 loll 1011 BB 12-11-0-s-3
G4 1110 0100 E4 1011 1100 BC 12-11-0-s-4
GS 1110 0101 ES 1011 1101 BD 12-11-0-s-s
G6 1110 0110 E6 1011 1110 BE 12-11-o-s-6
G7 1110 0111 E7 1011 1111 BF 12-11-0-s-1
GS 1110 1000 ES 1100 1010 CA 12-0-9-s-2
G9 1110 1001 E9 1100 1011 CB 12-0-9-s-3
GlO 1110 1010 EA 1100 1100 cc 12-0-9-s-4
Gll 1110 1011 EB 1100 1101 CD 12-0-9-s-s
Gl2 1110 1100 EC 1100 1110 CE 12-0-9-s-s
Gl3 1110 1101 ED 1100 1111 CF i2-o-9-s-1
Gl4 1110 1110 EE 1101 1010 DA 12-11-9-s-2
GlS 1110 1111 EF 1101 1011 DB 12-11-9-s-3

Gl6 1111 0000 FO 1101 1100 DC i2-11-9-s-4
Gl7 1111 0001 Fl 1101 1101 DD 12-11-9-s-s
Gl8 1111 0010 F2 1101 1110 DE 12-11-9-8-6
Gl9 1111 0011 F3 1101 1111 DF 12-11-9-8-7
G20 1111 0100 F4 1110 1010 EA 11-0-9-s-2
G21 1111 0101 FS 1110 1011 EB 11-0-9-s-3
G22 1111 OllO F6 1110 1100 EC 11-0-9-s-4
G23 1111 0111 F7 1110 1101 ED 11-0-9-s-s
G24 1111 1000 FS 1110 1110 EE .;.1-0-9-s-s
G25 1111 1001 F9 1110 1111 EF 11-0-9-s-1
G26 1111 1010 FA 1111 1010 FA 12-11-0-9-s-2
G27 1111 1011 FB 1111 1011 FB 12-11-0-9-s-3
G28 1111 1100 FC 1111 1100 FC 12-11-0-9-s-4
G29 1111 1101 FD 1111 1101 FD i2-n-o-9-s-s
G30 1111 1110 FF 1111 1110 FE i2-11-o-9-s-s
FO 1111 1111 FF 1111 1111 FF 12-11-0-9-s-1

G-10

INDEX

abbreviated condition 7-22
abnormal conditions l0-8
ABS . 7-15
ACCEPT . 7-28
ACCESS..................... 5-12, 5-16, 5-17

RANDOM . 5-16
SEQUENTIAL . 5-16

action indicator options 13-11
ACTUAL KEY 5-12, 5-16, 5-17, 10-4
ADD . . • • • . • . • . . • • . • • • . • 7-30
add records to file 7-48
ALL........... 2-9, 2-10, 7-60, 7-62, 7-73, 7-106
ALLOW . 7-32, 7-34
alphabetic character 2-1
alphabetic items ...•............................... 6-61
ALPHABETIC test 7-21
alpha file ... 6-34
alphanumeric characters . 2-.2
alphanumeric edited items 6-61, 7-81, 7-82
alphanumeric items 6-61, 7-80, 7-81, 7-82
ALTER •. . • • • • . • 7-33
ALTERNATE 5-12, 5-15, 7-131
ANSI 74 system dollar option features

ALPHABET-NAME, object-computer paragraph .. 5-5, 5-8
CODE-SET, file description entry 6-20, 6-37
COMPUTATIONAL, USAGE 6-89
DATE, ACCEPT . 7-28
DAY, ACCEPT . 7-28
DEPENDING, OCCURS 6-53, 6-54, 6-55
ELSE, IF 7-7, 7-8, 7-69, 7-100, 7-134, 13-28
EXTEND, OPEN . 7-86, 7-88
FILE STATUS, FILE-CONTROL•....... 5-12, 5-17
FOR REMOVAL, CLOSE ..•.•.•.•.•.•••..•.•.• 7-45, 7-48
NOT, relational operator 7-23
ORGANIZATION, FILE-CONTROL 5-12, 5-17
PROGRAM COLLATING SEQUENCE, object-computer

paragraph 5-5, 5-6
TIME, ACCEPT • . . . 7-28
USE, EXCEPTION/ERROR 7-125, 7-128
/,simple insertion editing 6-65

APPLY • . • • • • • . . 5-19
ARCTAN .•....•.•..•............•.•.••.•••....•...... 7-15
AREA 5-12, 5-15, 5-19, 5-20, 10-4
arithmetic expressions•....... 7-11
arithmetic faults ... 7-25, 7-31, 7-51, 7-59, 7-85, 7-123
arithmetic function 7-11, 7-15
arithmetic operands 7-11
arithmetic opera tor • . 7-12
arithmetic operation precedence•.. 7-12

Index-I

Index-2

INDEX (Cont)

arithmetic verbs ••..•••••••••.•.••••.••••.•.••••.•• 7-27
ADD •• • 7-30
COMPUTE . . • . . • • . . . • • • • • • • • • • . • • • • • • • . . • • • • • • • . • 7- 50
DIVIDE .. 7-58
MULTIPLY ,. 7-84
SUBTRACT • • • • • . • . • . • • • . • . . . • • . • . • • . • . • . . • • • • • . 7-122

ASCENDING 6-41, 6"'."53, 7-72, 7-113
ASCII ..••...•..•.••.. 6-20, 6-31, 6-87, 6-88, 7-19, 7-21
ASSIGN • • • • . • . • . • • • . • . • • . • . . • . • • • • . . • . • . 5-12, 5-13, 10-4
AT END .•.•...•.•.••.•.•.••••..• 5-15, 7-97, 7-104, 7-106
AT END (MULTIPLE) .•.•.•.•..•.••••..••..••.•.. 6-20, 6-26
AT LOCKED•.•..•••.••..•....••.•.... 7-71
ATTACH • • • • . . • • . • • . . . • • • • . • • 7-34
attaching terminals .••.•.•.••.•..••••..•..•.••••••• 10-2
attributes ...•....•••..•...•...••••.•..••••••• 9-1, 10-8

buffer 9-1, 9-2
file ..•.•..•...•....•.••....••. 9-1, 9-2, lo-8, l0-9
station •..•...•••••••.•••.•.••.•.. 10-1, 10-8, l0-9
task .••.••••.••••••••••...•...•. 9-1, 9-4, 9-5, 9-6

a~tribute-identifier .•.•.••.•..•.••••..... 9-2, 9-4, 9-5
attribute-mnemonic .•••••••.•.•.•••••. 9-2, 9-3, 9-5, 9-6
attribute-name ...•.....••••••••••••.•..•.. 9-2, 9-3, 9-6
AUTHOR . . . • • . • . • • . • • . • . • • 4-1
AWAIT 7-35, 7-129
AUXILIARY .. 7-131

BLANK WHEN ZERO . . . • . . . • • . • . • • . • . . • • . • • • • • • • . • 6-41, 6-43
BLOCK ..••..••....•.......•• 6-20, 6-22, 6-31, 6-32, 10-5
binary file .. 6-34
BOOLEAN • • • • • • • . . • . . . • . • . • • . • . • • • • • • . • . • • • • . 9-4, 9-6
brackets and braces ••••..•..•••......•••.•.••.•..•. 2-4
break . 10-8
buffers . • • • • • • . • . • . . • . • . • . • • • • . • . • . . • . • . . 5-15
buffer attributes 9-1, 9-2, 9-3, 9-4
B 2500 system dollar option features

COMPUTATIONAL, USAGE •.••••.•.••.••••••••••••.• 6-89
CONTAINS, FILE ..•.•••••••.•....•..••••••• 6-20, 6-25
DEPENDING, OCCURS •••..•.•.••...••.••.•.• 6-53, 6-54
END, SORT • • • . • . • . • • • • • • . • • • • • . • . . 7-113, 7-114
FILLER, GROUP .••••••••••.•••.•••••...•••....•. 6-47
INDEX, USAGE • • . • • • • . • • • • • • • . • . . • • • • • . . • • • • • . • • 6-91
K, PICTURE . 6-62
KEY CONVERSION, SEEK .•••••••.••••••••..•.••.• 7-110
LITERALS' UNDIGIT • • • • • • . • • • • • . • . . • • • . . • . . 2-9' 7-80
LOCK, SORT ..•..•• ; ••••••.••...•..•••.. 7-113, 7-114
MOD, DIVIDE ..•.....••••.•••••••••••.•••• 7-58, 7-59
o- I' OPEN • • . • . . • • . • . • . • • . • • • • • • . • • • . 7-86' 7-88

INDEX (Cont)

PURGE, SORT •.•.•..••..•••.••.••••.•••• 7-113, 7-114
REDEFINE, CHA !NED • • • • • • • • • • • • • • • • . • . • • • . . • 6-79
REDEFINE, DISPLAY .••.•••••••••••••....••••...• 6-79
RELEASE, SORT ••••.••••••••••.••••••••• 7-113, 7-114
REMAINDER ROUNDED, DIVIDE .•••••.•••••••• 7-58, 7-59
RUN, SORT . • . • • . . • . • • . . . • . • . • . . • 7-113, 7-114
SAVE, SELECT •..•.•...•••••••••••••••.•.. 5-12, 5-14
THEN, IF • • • . • . • • • • • • . . . • . . • . • . . • 7-69
ZIP, CALL • • . . • • . • • . . • • • • . • . . • • • 7-36, 7-39

CALL • . • • • • . . . • • . . . • • • • • • • . . 7·-36, 7- 52, 7-96
CA USE • . • . • • • • . . . • . • • • • . • . • • • • • • . • . • • • • • • • • • . • • • 7-43
CF . 11-14, 11-27
CH ... 11-14, 11-27
CHANNEL •.•......•...•....•.•....•.•.••.. 5-7, 5-8, 7-131
character set . . • . . • . . • . • • . . . • • • . • • . • • • • . • • • . . • • . • . . 2-1
characters . • . • • . • • • • . • • . • . . • . . • . • • • . • . . • • 2-1

alphabetic . 2-1
alphanumeric . • • • . • . • . • • • • • . . • • • . • • 2-2
editing . • . . • . • • . . . • • • • . • • • . • . • • • • . . . 2-2
numeric . 2-2
punctuation • • . • . • . • . . • . • . • . • 2-2
re la ti on . • . • . • • • • 2-3
used for words • • • . . . • . . • . • • • . • • . . • . 2-3

CHARACTERS . . • • . 5- 5, 6-20, 6-21, 6-22
CHECKPOINT • • • • . • . • . . • . . • • . . 7-44
CHECKPOINT - STATUS•..•.•............•••.. 2-13
class condition .•.••....••...•.•.....••...•.•.•.•.. 7-21
CLOSE •.............•................•.. 6-26, 7-45, 10-6
CODE •••.•••.•.•.•.••.•.•...••.•....••.....•.. 11-3, 11-4
coding form • • • . . • . . • • . • • • • • • . . • . . . • • • . . 3-1
COLUMN NUMBER • • • ll-15, 11-18
COMMA . . . • . • . • . . . • • . . . • • • • . • • • . • • • • • . • • . • . • • 5-7
comparison • • . • • • • • . • • • • • • . • . • • • . • • • • • . • 7-18

equal size operands .••••.•••••••••.•.•••..•••• 7-19
index data i terns . . • • . • • . • • . • . • • • . • • . . • • . • • • • • • 7-20
index-names • . . • • . . • • • . • • • • • • • • • • • • . • • • • . • . • . • . 7-20
non-numeric operands•••..•.••••••.••• 7-19
numeric operands ..••.••...•..••.•••••.•...•..• 7-18
unequal size operands ••••.•...••••.••••.•••••• 7-20

compatibility . 13-6
compiler 13-1

compatibility . • • . • . . • . • . • • • . . • • • . . • . • . • • • . • • . • 13-6
control cards . 13-8
debugging and diagnostic facilities ••••••••.•• 13-5
input . 13-2
1 i brary . 13-4

Index-3

Index-4

INDEX (Cont)

output
compiler-directing options

ANALYZE
AREACLASS
CHECK
CODE
COMP
DEBUG
ERRLIST
FREE
GLOBAL
INFO
INTRINSICS
LEVEL
LIBDOLLAR
LIMIT
LINE INFO
LIST
LISTDELETED
LISTP
LISTI
NEW ID
NEWSEQERR
OFFSET
OLD NOT
OMIT
OPTIMIZE
OWN
PAGE
SECGROUP
SEQ
SEQ ERR
SINGLE
SPEC
STACK
STATISTICS
TIME
VOID
VO IDT
XREF
$
INTEGER
+ INTEGER
NON-NUMERIC LITERAL

compiler-directing sentence
compiler-directing statement

13-3
13-14
13-14
13-14
13-14
13-14
13-14
13-14
13-15
13-15
13-15
13-15
13-15
13-16
13-16
13-16
13-16
13-16
13-16
13-16
13-17
13-17
13-17
13-17
13-18
13-19
13-19
13-20
13-20
13-20
13-21
13-21
13-21
13-21
13-21
13-22
13-24
13-24
13-24
13-24
13-24
13-24
13-24
13-24

7-6
7-4

INDEX (Cont)

compiler-directing
COPY

verbs

DUMP
MONITOR

COMPILETIME .•.•••
compound condition
COMPUTATIONAL
COMPUTATIONAL-I
COMPUTATIONAL-2
COMPUTA TIONAL-4
COMPUTATIONAL-5
COMPUTE
concepts

CONSTANT

6-20,

data communications
file
identifier
indexing
level numbers
qualification
record •.....
subscripting
tables ..•...
WORKING-STORAGE

condition-name
condition-name condition
conditional sentence
conditional statement
conditional verbs

IF ••••••.•.•
conditions

abbreviation
abnormal
class
compound•.
condition-name
evaluation
event-identifier
not
parenthesized
relation
sign

CONFIGURATION SECTION
connectives•.....
constant, figurative
CONSTANT SECTION
CONTENT••.•.

.6-20,

6-31,

6-31,

6-87,

6-87,

6-41,

7-27
.••••. 1-53, 8-1

. 7-60
. • . . • • . 7-73

. .••. 2-12, 2-14
7-17
6-89
6-90
7-21
6-91
6-91
7-50

6-87'
6-87,
6-88,
6-87,
6-88,

7-16,
6-88,
6-88,
6-90,
6-88,
6-90,

6-4
6-99
10-1

6-4
6-19
6-18

6-6
6-10

6-4, 6-5
6-17
6-14
6-96

2-6, 6-42, 6-44
7-21
7-5
7-4

7-27
7-69
7-16

7-22, 7-23, 7-24
...... 10-s
.••... 7-21
7-16, 7-17

. 7-21
7-22, 7-69

....... 7-22

. • . • • . • 1-16
7-16, 7-17

7-18
7-20

5-1, 5-3
...••... 2-15

2-.9' 2-10
6-1, 6-99

6-73, 7-2, 7-105

Index-5

Index-6

INDEX (Cont)

continuation indicator 3-1
CONTINUE . 7- 52
CONTROL . 11 - 3 , 11 - 6
control cards . 13-8
CONTROL FOOTING 11-9, 11-14, 11-27
CONTROL HEADING 11-9, 11-14, 11-27
CONTROL-POINT 6-87, 6-88
control relationship between procedures 7-9
COPY•. 5-4, 5-5, 5-7, 5-12, 5-19, 6-20, 6-40, 7-53

8-1, 11-3, 11-14
CORRESPONDING 7-26, 7-30, 7-74, 7-122
cos . • 7-15
CURRENCY SIGN • • • . . . 5-7
CYI..INDER . • • . 5-12

DATA-BASE SECTION ..•................... 6-1, 6-2,
data communications
DATA DIVISION 1-4, 6-1,
data management
data movement verbs

EXAMINE ..•.......•.....•.•..•.......•..•.•..
MOVE •.••••.•••••••.•••••••••.•••••••••••.•••

data-name . 2-6,
DATA RECORDS . 6-20, 6-24,
DA TE-COMPILED•................
DA TE-WRITTEN•..........•.•..............
DE ..•..................................... 11-14,
DEALLOCATE .
debugging and diagnostic facilities
DECIMAL-POINT . ,
decimal scaling
DECLARATIVES 7-3, 7-10,
definition of words ,,•.....•.......

6-103
10-1
10-5
12-1
7-27
7-62
7-74
6-47
10-5
4-1
4-1

11-27
7-54
13-5

5-7
6-62
7-61

2-6
DEPENDING ·--· 6-22

GO TO • . 7-67
OCCURS . 6-41, 6- 53
PICTURE • 6-22, 6-40, 6- 59
SIZE . 6-22, 6-40, 6-83

DESCENDING 6-41, 6-53, 7-72,
DETACH .. .
DETAIL . 11-14,

7-113
7-55

11-27
DIAGNOSTIC . . . • . 7-60, 7-73
DIRECT . 5-12, 5-14
DIRECT 1/0 7-100
DIRECT SWITCH FILE . ,•..................... 6-92
directing options, compiler

(see compiler-directing options)

INDEX (Cont)

DISALLOW
DISPLAY 6-20,
DISPLAY-I
DISK
disk
disk
DISK

file options
files
only SORT

DIV
DIVIDE
DIVIDED BY
DIVISION

DATA
ENVIRONMENT
IDENTIFICATION
PROCEDURE

6-31,
6-20,

6-87,
6-31,

dollar options, user defined
DUMP .•••••••••

editing
editing

characters
rules

editing symbols
elementary items
elementary moves
ellipsis
END
ending verb

STOP
end-of-file
END-OF-PAGE ... , , .. , . , , ...
ENTER
ENVIRONMENT DIVISION
EQUAL
EQUALS
EQUALS COMPUTE
evaluation of conditions
EVENT
event-identifier condition
EVENT item
event-name
EXAMINE

7-57,
6-87,

. 7-56
11-14,
11-14,

11-15,
11-15,

11-33
11-33

5-5
. 5-15

........ 5-13, 5-14
..•...•.. 7·-118

7-13, 7-44
7-58
7-12

1-4,
1-4,
1-4,

1-4
6-1
5-1
4-1

1-4, 7-1
•. 13-25

7-60

2-2
6-65
6-62
6-6

7-75
2-5

5-12, 7-97, 7-104, 7-106
7-27

..... 7-121
io-8

7-131
7-61

. 1-4, 5-1, 10-4
7-18
7-18
7-50
7-22

6-87, 9-5
7-22, 9-5

7-34, 7-43, 7-103
2-15
7-62
7-18 EXCEEDS

EXCEPTION
EXECUTE

7-97, 7-129, 7-130, 7-131, 7-134

execution of NEXT SENTENCE
execution of PROCEDURE DIVISION
execution,
EXIT

sentence

7-64
7-7
7-2
7-6

7-65

Inde:x;."'."7

Index-8

EXP
EXPONENTIATED BY

INDEX

expressions,
EXTERNAL

arithmetic

FD
figurative constant
FILE
file attributes
file concepts
FILE-CONTROL
file description
FILE-LIMIT
file-name
FILE SECTION
FILETYPE
FILLER

5-12,

(Cont)

5-13,

. 7-15

. 1~12
7-12, 7-13

7-125, 7-127

. 6-20
2-9, 2-10

9-2
9-1, 9-2, 10-8, 10-9

5-12,
5-14,

5-2,
5-13,
5-15,

5-12,
6-20,
5-16,

6-4
6-21
6-21
5-17

. 2-6

6-22,
6-1, 6-2, 11-2

6-23, 6-31, 6-32

FINAL
FIRST

11-3, 11-6,
6-40, 6-47

11-14, 11-15, 11-24, 11-27

FIRST DETAIL
FIRSTONE
fixed insertion editing
floating insertion editing
FOOTING
formal and actual parameters
formulas

. 7-62
11-3, 11-8

7-15
6-66
6-67

11-3, 11-8
...... 7-42

. 7-11
FROM sequence-number .. 5-4, 5-5, 5-7,

6-40, 7-53,
5-12, 5-19, 6-20
8-1, 11-3, 11-14

function, arithmetic
function, intrinsic
function-names ..•..

GENERATE
generic terms
GLOBAL
GO TO
GREATER
GROUP INDICATE
group item
group moves

hardware-name 5-5,
HEADING
HIGH-VALUE
HERE, EXIT
HERE, CLOSE

5-12,

5-8,

5-13,

7-11, 7-15
7-11, 7-15

. • 7-15

.............. 11-36
2-4

6-40, 6-48, 7-125
. 7-67

. 7-18
11-15, 11-19

6-6
7-77

5-12, 5-13' 5-18,
11-3,

7-57
11-8

2-9
7-65
7-45

INDEX (Cont)

ID division•..•. ,
IDENTIFICATION
IDENTIFICATION DIVISION
identifier
IF
illegal elementary moves
imperative sentence
imperative statement
INDEX
index data
INDEX FILE
index-name
INDEXED BY
indexing

items, MOVE

6-18,

1-3, 4-1
6-36
4-1

6-20,
1-3,

6-19, 7-1
7-69

• • • 7-76

2-14,
6-41,
6-18,

7-5, 1-6

6-19,
6-53,

7-4
6-87
7-78
6-87
6-56
6-56

6-19, 6-56
initial states of settable options
initial value

.13-11
6-97

11-35
13-2

7-86, 10-6
5-2' 5-11

INITIATE
input, compiler
INPUT, OPEN
INPUT-OUTPUT SECTION
INPUT PROCEDURE
input/output verbs

ACCEPT
CLOSE
DISPLAY
OPEN
READ
SEEK
WRITE

INSTALLATION
installation intrinsic
insertion editing
integer divide
INTERCHANGE
INTERRUPT
intrinsic functions
intrinsic, installation
INVALID KEY
INVOKE
ITD SORT
items

alphabetic
alphanumeric
alphanumeric edited
numeric
numeric

I-O-CONTROL
edited

7-113, 7-115, 7-116
7-27
7-28
7-45
7-57
7-86
7-97

7-110
.••.•• 7-131

4-1
7-36
6-65
7-13
5-12

7-32, 7-56, 7-125, 7-129
.............. 7-11, 7-15

7-36
5-15, 7-97, 7-131, 10-7

6-103
7-119

6-59
6-60
6-60
6-60
6-60
6-60

5-2, 5-19

Index-9

Index-IO

INDEX (Cont)

I-:0, OPEN
I'."'0 SECTION

7-86,
5-2,

10-6
5-11

JUSTIFIED • 6...;41, 6-49, 11-15

key words

LABEL
LABEL PROCEDURE
language formation
LAST DETAIL
LD••.
LEADING ..•...
legal elementary moves
LESS
level-number•....
level number concepts
library, co~piler••
LINAGE ..•.....
LINAGE-COUNTER
LINE-COUNTER
LINE NUMBER
LINKAGE SECTION

6-20,

2-16

6-26, 10-5
7-125

2-1
11-3, 11-8
••.. 6-104

7-62.
7-76
7-18
6-50

6-6
13-4

6-11, 6-20, 6-29, l0-5
.•••••• 2-13, 6-11, 6-29

•••• 2-11, 6-11, 11-12
11-14, 11-15, 11-20

literal
6-102

2-7
7-15

6-51, 6-103
6-104, 7-61

6-87, 7-71
7-45, 10-6

2-15

LN
LOCAL
I.OCAL-STORAGE
LOCK •••••••
LOCK, CLOSE
lock-name•
logical connectives
logical record
LOW-VALUE
LOWER-BOUND

margin A
margin B
MAX
MEMORY
MERGE
MIN
MINUS
mnemonic-name
MOD
MODULES
MONITOR
MOVE

5-12, 5-13, 6-40, 6-48,
6-1,

2-10,

2-15
6-4
2-9

6-41, 6-52

3-3.
3-3

7-15
5-5

7-72
7-15
7-12

2-14,
7-13,

5-7' 5-8
7-44

5-5
7-73
7-74

MULTIPLE FILE
MULTIPLE AT END
MULTIPLIED BY
MULTIPLY
MYSELF
MYUSE

NEGATIVE

INDEX (Cont)

Network Definition•..•
Network Definition Language•.
Network Description
NEXT GROUP
NEXT PAGE ...••.
NEXT SENTENCE
NEXT SENTENCE execution••.
non-numeric comparison
non-numeric literal•••.
NON-STANDARD ...•..

RECORDING
justification

NO
CLOSE NO REWIND,

non-contiguous
non-contiguous
NOT condition
notation
nouns

CONSTANT storage
WORKING storage

numeric characters
numeric
numeric
numeric
numeric
NUMERIC

comparison
edited items
items
literal
test

OBJECT-COMPUTER
OCCURS
OMITTED
ONES

11-15,

6-20,

11-14,
11-20,
7-69,

6-20,

5-12,
7-45,

5-19
6-26
7-12
7-84
9-4

5-15

7-20
10-1
10-1
10-1

11-22
11-22
7-106

7-7
7-19

2-8
6-20
6-34
6-49
5-15
10-6
6-99
6-97
7-16

2-4
2-6
2-2

6-60,
6-60,

1-80,
1-80,

2-1,

7-18
7-81
7-81
7-12
7-21

5-1, 5-3' 5-5
6-41, 6-53
6-20, 6-26

. 7-15
OPEN . , .. 5-15, 5-19, 6-28, 6-29, 7-86, l0-6

7-11
7.-1.2

operands, arithmetic
operators ...•..

arithmetic
precedence

op1tional words
OPTIONAL•.

7-12,
2-4,

5-12,

7-12
7-13
2-15
5-13

Index-11

Index-12

INDEX (Cont)

options,
(see action indicator)
(see compiler-directing)
(see disk file)
(see initial states of settable)

organization, program•.............. I-4
output, compiler . 13-3
OUTPUT, OPEN . . • . . . • . • . • • • • . • • • • • • . • • 7-86, I0-6
OUTPUT PROCEDURE•• 7-72, 7-113, 7-116, 7-117, 7-119
overwrite existing records .•....•..•..•.••.• 7-48, 7-49
OWN . • • . . . • • • . . . • • . . • • 6-40 , 6-48 , 6- 58

PAGE • • • • • • . • . • • • . 6-30,
PAGE-COUNTER ..•...•............ 2-13, 6-11, 6-12,
PAGE FOOTING•••• 11-9, 11-11, II-14, II-27,

ll-29, 11-30,
page format control •.....•.•.......•....•.•......
PAGE HEADING ... 11-9, 11-14, 11-22, 11-27, 11-28,
PAGE LIMIT • • • . . II -3, II -8,
paragraph, definition•.•..•....••.....•..•...

s true ture
parameters, formal and actual •••...•.••••••••.••.
parenthesized condition .•••••••..•.•..•••..• 7-16,
PERFORM •.•••••••..••••••••••••.••••••••••••••••••
PF .. . 11-14,

7-131
II-12
II-28
11-31
II-IO
11-31
II-IO

7-1
7-9

7-42
7-17
7-90

11-27
PH .. 11-14, 11-27
physical record ••..••..•••••.•.•..•..••.•••...... 6-4
PICTURE ...••••.••...•..•.••••••. 5-7, 6-40, 6-59, 11-15

DEPENDING .••.•••...•...•... 6-22, 6-23, 6-40, 6-59
precedence . 6-69

PLUS . 7-12
POINTER•............................ 9-3, 9-5, 9-6
POSITION . 5-19
POSITIVE . 7-20
precedence . • • . . • • . • • • • • • 6-69

PIC.TURE • • . • • . • • • . . . • • . • • . . • • • . • . . 6-69
arithmetic operators ..•.•••.•.•....••.• 1-12, 7-13

PREPARED FOR • . • . . • . . • • . • . . . • . . • • • • . . . • • • . . • . • 6-1
PRINTER .•...................•.......•....•... 7-53, 7-73
procedure branching verbs ..••...•••.•.•••...••••• 7-27

ALTER • . 7-33
CALL • . 7-36
CONTINUE . . • • • . • • . • . • • . • • • • • • • . • • • • . • • • • . . . • • 7- 52
ENTER • • 7-61
EXIT . 7-65
GO . . • • . • . • . • • • . • • . • . • • . • • • • . . • • • • . • 7-67
PERFORM • . • . • • • . • • • • • • • • • . . • . • • • • 7-90

INDEX (Cont)

PROCESS • • . • • • . . • • • . . • . • . . • • • • • . • . • 7-96
RUN • . • . . • 7-105

PROCEDURE DIVISION . • • • • . . . 1-4, 7-1, l0-6
PROCEDURE DIVISION body .•.....•..•.•••..........•. 7-3
PROCEDURE DIVISION execution•...••.•....•••••. 7-2
PROCEDURE DIVISION•.•..••.•••.........•.. 11-35

GENERATE•............•...............•• 11-36
INITIATE • . • • • • • . • . . • . . • . 11-35
TERMINATE • • • . . . • • . . • . • . . . • 11-38
USE . • . . . • • . . . • • • • . . • . . . • . • 11-39

PROCEDURE DIVISION structure•.•. 7-2
PROCEDURE, EXIT . . • . . • • . . . • . • • • • • . . • • • • • 7-65
procedure formation •.••...•..•.•....•..••...• 7-1
procedure-name .•..•.•..•••••..•...•.•....•.... 2-6, 2-7
PROCEED TO . • • . • • • • . . • • . . • • • . • . . • • • 7-33
PROCESS • • . . • . • . • . . . • • • • • • 7-96
program communication verbs ...••.....•........•.. 7-27

ALLOW • • . . . • • • • . • • • • . • • • • . • • • 7-32
ATTACH . . • . . • . • . . • . . . • • . . • • . • . • . • • . . • . • . • • . • . 7-34
AWAIT •..•...••...•.••••...••...•••...• 7-35, 7-129
CA USE • • . . . • . • • . . • • • . . . • . . . • • • . . . 7-43
DEALLOCATE . • . . . • • • . . . • • . • . • 7-54
DETACH . • • . . . • • • . . • • • • • . • • . . . • . • 7- 55
DISALLOW . • . . • . • • • . • . . . • • • • . • . • . • • . • . • • 7-56
EXECUTE . • • . • . . . • • . • . • • . . . • • • . . . • . • • • . . • . 7-64
LOCK • • • . • . . • • • . . . • • • . . . 7-71
RESET • • • . • • . • . • • 7-103
UNLOCK • • . • . . • • . . . • • . . 7-124
USE .••••....••.......................•.•.••• 7-125
WAIT ..•..........•••.......••......... 7-35, 7-129

PROGRAM DUMP••.•••.•.....•••......•.•.••• , . . 7-60
PROGRAM, EXIT • • • . . • • . 7-65
PROGRAM- ID • • • • • 4-1
program organization............................. 1-4
punctuation characters•................ 2-2, 3-4
punctuation, sentence . . . •...... ••.....•.......... 7-6
PURGE, CLOSE•.........•..... 7-45, l0-6

qualifier . . • • • • • 2-15
qualification . . . • . • • • . . • . . • . . • • • • • . • . 6-10
QUOTE . • . • 2-9

RANDOM . • • • 5-12, 5-16
RANGE • . • • • . • • • • . . . • • • • • • . . • 6-39, 6-72
RD ... 11-3
READ 5-15, 5-16, 5-17, 7-97, 10-7
REAL . • • • . . • • • . • • . • • • . . • • . • . • • • • • • • • • • • • • • • • • 9-4, 9-6

Index-13

Index-14

INDEX (Cont)

RECEIVED
RECORD
RECORDS
RECORD AREA
r:ecord concepts
RECORD CONTAINS
record description
record-name
RECORDING
REDEFINES
REEL, CLOSE
REEL-NUMBER
REFERENCE

characters
condition
station number

relation
relation
relative
RELEASE ...•.••
RELEASE, CLOSE
REMAINDER .•....
remainder divide
RENAMES
replacement editing

5-12,

REPLACING 5-4, 5-5, 5-7,
6-104, 7-53,

REPORT .•••••••••••.
REPORT FOOTING
report group description
REPORT HEADING
REPORT SECTION
report writer
report writer PROCEDURE DIVISION

GENERATE
INITIATE
TERMINATE
USE

RESERVE
RESET
reserved words
RESTART
RETURN
RETURN HERE
RF
RH ... 7-25, 7-30,

6-41, 6-73, 7-2
. 5-19

6-20
6-41, 6-77, 7-54

6-4, 6-5
6-20, 6-31, 10-5

. •••.••• 6-40, 10-5

6-20, 6-34,
6-40,

2-6
10-5
6-78

.••••. 7-45

.••••• 7-86
6-41, 6-73, 6-103, 7-2

2-3

5-12,
7-62,

. 7-18
10-2, l0-6

•••.•••. 7-102
7-45, l0-6

• • . . • • . . 7-58
. 7-13

6-41, 6-80
• • • • . • • 6-69

5-19, 6-20, 6-40
8-1, 11-3, 11-14

. • • • . . . 11-2
11-9, 11-14, 11-27

. 11-14
11-8, 11-14, 11-27

6-1, 6-2, 11-3
11-1

11-35
11-36
11-35
11-38
11-39

5-12, 5-14, 5-15
7-103, 11-15, 11-24

2-15, 9-2
7-113

7-50,

. 7-104

11-14,
11-14,

7-58' 7-84'

7-65
11-27
11-27
7-122 ROUNDED

RUN 7-10 5

INDEX (Cont)

SAME
SAVE-FACTOR
scaling
SD
SEARCH•.
SECTION

CONFIGURATION
CONSTANT
DATA-BASE
definition
FILE
INPUT-OUTPUT
LINKAGE
LOCAL-STORAGE
REPORT•
structure
WORKING-STORAGE

SECURITY
SEEK
SEGMENT
SEGMENT-LIMIT
segmentation
SELECT
sentence, definition
sentence

compiler-directing
conditional•.
execution
imperative
punctuation

SEQUENTIAL
series connective
SET ...•.•.....
SIGN
sign condition
simple insertion editing
SIN
SINGLE
SIZE
SIZE DEPENDING
SIZE ERROR .. 7-25, 7-30,
SORT
SORT-DISK
sort files
SORT-TAPES
sorting verbs

MERGE

7-50,

6-20,
5-19,
6-35,

5-20
10-5
6-62

,6-20, 6-21
7-106

5-1
5-1, 5-3

6-1, 6-2, 6-99
6-1, 6-2, 6-103

7-1
6-1, 6-2

5-2, 5"-11
6-102

6-1, 6-2, 6-101
6-1, 6-2, 11-3

7-9
6-1, 6-2, 6-96

4-1, lo-8
5-16, 7-110
6-40, 6-82

5-5, 5-6
5-6

5-12, 5-13, l0-4
7-1
7-5
7-6
7-5
7-6
7-5
7-6

5-12, 5-15, 5-16
2-15

7-111, 9-2, 9-4
7-15
1-20
6-65
7-15
5-12

6-40, 6-83
.6-2~, 6-23, 6-40, 6-83
1-58, 1-84, 1-122, lo-8

5-5, 5-19, 5-20, 7-113
5-14
5-13
5-14
1-21
7-72

Index-15

Index-16

RELEASE
RETURN ...••.
SORT

SOURCE
SOURCE-COMPUTER
source
SPACE

program

special counters

INDEX (Cont)

special insertion editing
SPECIAL-NAMES
special registers
SQRT ••••••••••••••
statement options

CORRESPONDING
ROUNDED
SIZE ERROR

STANDARD•
justification
LABEL .•••.••.
RECORDING

STANDARD ERROR PROCEDURE
statement .••••••••.••••

compiler-directing
conditional
definition
imperative
types .•....

station attribute
station list
station number
STOP •••••••••••
structure of PROCEDURE DIVISION
SUBTRACT
subscripting
SUM ••.•••••••
suppression editing•.
SWITCH FILE
symbol pairs
SYNCHRONIZED
SYSTEM, CALL

tables
table manipulation verbs

SEARCH
SET

TALLY
TALLYING ...••.

7-102
7-104
7-113
11-23 11-15,

5-1, 5-3, 5-4
1-5

9-2,

2-9
11-12
6-66

5-1, 5-7
2-12
7-15
7-25
7-26
7-25
7-25
6-20
6-49

6-20, 6-26
6-20, 6-34

10-1,
10-1,

7-125
7-1
7-4
7-4
7-1
7-4
7-4

10-8
10-2
10-2

7-121
7-2

7-122
6-17

11-15, 11-24
6-68
6-91
7-14

6-41, 6-86
7-36

6-14
7-27

. • • • . • 7-106
7-111

2-12, 6-58
7-62

INDEX (Cont)

TAPE only SORT
task
task attributes
TERMINATE ..•....
THROUGH sequence-number.5-4, 5-5, 5-7'

6-40,

7-118
9-5

9-1, 9-4, 9-6
11-38

5-19, 6-20 5-12,
7-53,

TIME(n)
time limit
TODAYS-DATE
translation
TYPE
types of words

UNEQUAL
UNLOCK
UNTIL
UPPER-BOUND
UPON

8-1,
2-12,

11-14
2-13
10-8
2-13

6-34, 7-78
11-14, 11-27

2-6

7-18
7-124
7-62

2-9

USAGE 6-40, 6-87, 11-14,
6-104,

11-15,
11-15,
7-125,

11-24
11-33
11-39
11-39

USE
USE BEFORE REPORTING
USE declarative
user defined dollar
user labels
USING 5-13, 7-2,

options
7-10

13-25
6-.26

7-61, 7-64, 7-72, 7-96, 7-97
7-105, 7-113, 7-125, 7-131

variable-length blocked records "' 6-22, 6-31,
6-39,

6-32
6-85

7-111, 10-5 VALUE 6-20,

verbs
verbs, arithmetic

ADD ..••..
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

6-36,

verbs, compiler-directing
COPY· ..•
DUMP
MONITOR

verbsi conditional

6-41,

IF••••.•••.....•.
verbs, data movement

EXAMINE
MOVE

6-44, 6-94,
11-15,

2-15,
11-34

7-27
7-27
7-30
7-50
7-58
7-84

....... 7-122
7-27

1-53, 8-1
7-60
7-73
7-27
7-69
7-27
7-62
7-74

Index-17

Index-18

verbs, ending
STOP

verbs, input/output
ACCEPT
CLOSE
DISPLAY
OPEN
READ
SEEK
WRITE

INDEX (Cont)

verbs, procedure branching
ALTER
CALL
CONTINUE
ENTER
EXIT
GO
PERFORM
PROCESS•
RUN

verbs, program communication
ALLOW
ATTACH
AWAIT
CAUSE
CHECKPOINT
DEALLOCATE••
DETACH
DISALLOW
EXECUTE•.•
LOCK
RESET
UNLOCK
USE
WAIT

verbs, sorting
MERGE
RELEASE
RETURN•••
SORT

verbs, tape manipulation
SEARCH

WAIT
WHEN
WITH

SET

7-27
7-121

7-27
7-28

..• 7-45, 10-6
7-57

7-86, l0-6
7-97, 10-7

7-110
....••• 7-131, 10-7

7-27
7-33
7-36
7-52
7-61
7-65
7-67
7-90
7-96

7-105
7-27
7-32
7-34

7-35, 7-129
7-43
7-44
7-54
7-55
7-56
7-64
7-71

7-125,
•• 7-35,

7-103
7-124
11-39
7-129

7-27
7-72

7-102
7-104
7-113

7-27
7-106

7-111, 9-2, 9-4

7-35, 7-129
7-106

7-45

INDEX (Cont)

words
definition
key
optional
reserved
types

nouns
condition-name
data-name
event-name
figurative-constants
file-name
index-name
literal
lock-name
mnemonic-name
procedure-name
record-name
special registers

CHECKPOINT-STATUS
COMPILETIME
LINAGE-COUNTER
LINE-COUNTER
PAGE-COUNTER
TALLY
TIME
TODAYS-DATE

reserved words
verbs

WORDS
WORKING-STORAGE
WRITE .. 5-15, 5-16,

ZERO

5-17' 6-22, 6-23,

2-4,
2-4,

2-4
2-6

2-16
2-15
2-15
2-6
2-6
2-6
2-6

2-15
2-9
2-6

2-14
2-7

2-15
2-14
2-7
2-6

2-12
2-13
2-14
2-13
2-13
2-13
2-12
2-13
2-13

2-15, 9-2
. 2-15

5-5, 6-20,
6-1, 6-2,

6-29, 7-131,

7-20,

6-21
6-96
10-7

11-15

Index-19

Burroughs m PUBLICATION
CHANGE

NOTICE

PCN No.: 5001464-001 Date: June 1978
Publication Title: B 7000/B 6000 Series COBOL Reference Manual

Other Affected Publications: -~N~o~n~e ______________________ _

Supersedes: -------------------------------

Description:

Pages Changed

2-13
5-5
6-87
6-91
6-103
7-79
7-113
7-125
7-127
7-129

13-21
13-23

D-23

COPYRIGHT© 1978, BURROUGHS CORPORATION, DETROIT, MICHIGAN 48232

F.E. Dist. Code

Printed in U. S. America PCN 5001464-001

J

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However. no responsibility. finam.:ial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/or additions.

b. LINE-COUNTER. The word LINE-COUNTER is the fixed data-name for a

COMPUTATIONAL LINE-COUNTER that is generated for each Report Descrip­

tion in the Report Section to determine the vertical positioning of a

report. One LINE-COUNTER is automatically supplied for each report

described in the REPORT SECTION if a PAGE LIMIT clause is included

in the report descrlption entry.

c. PAGE-COUNTER. The word PAGE-COUNTER is a fixed data-name for a

COMPUTATIONAL PAGE-COUNTER that is generated for each Report Descrip­

tion entry in the Report Section for use as a source data item for

page numbers within a report group. One PAGE-COUNTER is supplied

for each report for which the word PAGE-COUNTER is included as

a source data item in a report group description entry,

d, CHECKPOINT-STATUS. The word CHECKPOINT-STATUS is the fixed data-name

used by the CHECKPOINT/RERUN facility, See the discussion of CHECK­

POINT in Section 7 for a discussion of CHECKPOINT-STATUS.

e. LINAGE-COUNTER. The word LINAGE-COUNTER is a fixed data-name for a

COMPUTATIONAL line counter generated by the presence of a LINAGE

clause in a File Description. The implicit class of a LINAGE­

COUNTER is numeric. The value represented in the LINAGE-COUNTER

at any given time is the number of lines advanced within a printed

page. One LINAGE-COUNTER is supplied for each file in the FILE

SECTION whose FD entry contains a LINAGE clause.

f TODAYS-DATE. TODAYS-DATE is synonymous with TIME(l5) and will re­

turn the current date in DISPLAY form in the format "MMDDYY".

g. TIME(n). Various times can be made available to a COBOL program by

the use of TIME(n), where n must be an integer ranging from O thru 15:

• TIME(O). Returns the current Julian date, in the form "YYDDD", where

YY is the last two digits of the year and DDD is the day of the year,

in DISPLAY-1 form.

• TIME(l). Returns in COMPUTATIONAL form as an integer value the time

of day in sixtieths of a second.

• TIME(2). Returns in COMPUTATIONAL form as an integer value the

elapsed processor time of the program in sixtieths of a second.

• TIME(3). Returns in COMPUTATIONAL form as an integer value the

elapsed I/O time of the program in sixtieths of a second.

• TIME(4). Returns in COMPUTATIONAL form as an integer value the con­

tents of a 6-bit machine clock which increments every sixtieth of a

second.

2-13

I

• TIME(5). Returns the current date in the format "MMDDYY", where MM

is the month, DD is the day, and YY is the last two digits of the

year, in DISPLAY-I form.

• TIME (10). This is the same as TIME (0) except the value is returned

in DISPLAY form rather than DISPLAY-I.

• TIME(ll). This is the same as TIME(l) except the time is in inc re-

ments of 2.4 microseconds rather than sixtieths of a second.

• TIME(l2). This is the same as TIME(2) except the time is in incre­

ments of 2,4 microseconds rather than sixtieths of a second.

• TIME(l3). This is the same as TIME(3) except the time is in incre­

ments of 2.4 microseconds.

• TIME(l4). Returns in COMPUTATIONAL form as an integer value, the

contents of a 36-bit machine clock which increments every 2.4 micro­

seconds. The contents of the machine clock do not necessarily contain

the current time of day and should be used for interval timing pur­

poses only,r.

• TIME(l5). Returns the current date in the format "MMDDYY", where MM

is the month, DD is the day, and YY is the last two digits of the

year, in DISPLAY form.

• COMPILETIME(n). COMPILETIME(n) is similar to TIME(n). The parameter

range n is the same, but COMPILETIME(n) is not dynamic and it returns

the values of TIME(n) as they existed at compile time, thus enabling

the object program to find out when it was compiled and how long it

took.

NOTE: Most special registers have an implicit class of numeric. Numeric

special registers and attributes can be used nearly anywhere in the syntax of

the PROCEDURE DIVISION that a numeric value is acceptable, such as source

operands in MOVE, ADD, and SUBTRACT statements.

Mnempnjc-Name. The use of mnemonic-names provides a means of relating certain

hardware equipment names to problem-oriented names the programmer may wish to

use, See the discussion of SPECIAL-NAMES in Section 5.

Index-Name. An index-name is a word with at least one alphabetic character

that names an index associated with a specific table (refer to indexing in

Section 6). An index is a register, the contents of which represents the char­

acter position of the first character of an element of a table with respect

to the beginning of the table.

2-14

OBJECT-COMPUTER

Object-Computer

The function of this paragraph is to describe the computer on which the pro­

gram is to be executed and to specify core and disk size limitations when

using the SORT.

The format for this paragraph consists of two options which are as follows:

Option 1:

OBJECT-COMPUTER, COPY library-name

Option 2:

r FROM seq. no.] [{~UGH} seq. no. J
tREPLACING word-I BY text-I

[, word-2 BY text-21 ...]

OBJECT-COMPUTER. { ~=~~gg }
word-3

[' MEMORY SIZE integerf ~}]
lMODULES

[, DISK SIZE integer { :g~~ES }]

[, SEGMENT-LIMIT IS integer]

[,[integer] hardware-name] ...

c PROGRAM COLLATING SEQUENCE IS alphabet-name] .

For a discussion of the COPY function, refer to Section 8, THE COBOL LIBRARY.

Word-3 is any single COBOL word.

The MEMORY SIZE option is used only in conjunction with a SORT statement.

The SORT statement may also specify MEMORY SIZE and will take precedence over

the OBJECT-COMPUTER paragraph. When MEMORY SIZE is not specified in the SORT

statement and not specified in the OBJECT-COMPUTER paragraph, a default MEMORY

SIZE of 12,000 words will be assumed. If this option is used and a SORT state­

ment does not appear in the program, the option will be ignored by the com­

piler. One module of memory is equivalent to 16,384 words of memory.

The DISK SIZE option is used only in conjunction with the SORT statement. If

this clause is omitted in a sort program, DISK SIZE will be assumed to be

OBJECT-COMPUTER

900,000 words. If this option is used and a SORT statement does not appear

in the program, the option will be ignored by the compiler. One module of

disk is equivalent to 1.8 million words of disk.

The SEGMENT-LIMIT clause can be used to control the compiler in segmenting

a program. Segmentation normally occurs at the first paragraph name en­

countered beyond the point at which 1500 words of code have been produced

and at the beginning of each SECTION of the PROCEDURE DIVISION. When

SEGMENT-LIMIT is specified, the SEGMENT-LIMIT value is used instead of 1500

words. SEGMENT-LIMIT, when specified, is assumed to be in words. The maxi­

mum SEGMENT-LIMIT specification is 4095 words.

Segmentation for the initialization code of the WORKING-STORAGE SECTION will

occur automatically is the SEGMENT-LIMIT has been reached.

The hardware-name list is for documentation purposes only.

If the ANSI 74 PROGRAM COLLATING SEQUENCE clause is specified, the program

collating sequence is the collating sequence associated with the alphabet­

name specified in that clause. This collating sequence is used to determine

the truth value of non-numeric DISPLAY items comparisons.

If the collating sequence clause is not specified, the native or EBCDIC

collating sequence is used to determine the truth value of non-numeric DISPLAY

items comparisons.

The ANSI74 system dollar option must be set if the PROGRAM COLLATING SEQUENCE

clause is to be used. Refer to Appendix B for a description of the ANSI 74

implementations.

5-6

USAGE

The function of the USAGE clause is to specify the format in computer storage

of a data item.

[USAGE IS]

COMP
COMPUTATIONAL
COMP-I
COMPUTATIONAL-I
COMP-2
COMPUTATIONAL-2
COMP-4
COMPUTATIONAL-4
COMP-5
COMPUTATIONAL-5
INDEX FILE CONTAINS

ASCII
DISPLAY
DISPLAY-I
INDEX
EVENT
LOCK
CONTROL-POINT
CP

file-name-I [,file-name-2] •••

In the absence of any USAGE indication, either explicitly shown in the USAGE

clause or within the SIZE clause, USAGE IS DISPLAY is assumed.

The USAGE clause for a report group item can only specify the DISPLAY or

DISPLAY-I option.

The USAGE clause can be written at any level, except CONTROL-POINT, EVENT,

INDEX and LOCK may only appear at level 77 or level 01 in WORKING-STORAGE or

LOCAL-STORAGE. If the USAGE clause is written at a group level, it applies

to each elementary item in the group. Multiple record descriptions for the

same file may be declared with contradictory usages. If a group item ~s

described as COMPUTATIONAL, the elementary items are COMPUTATIONAL. The

group item itself is not COMPUTATIONAL because it cannot be used in computa­

tions.

COMP, COMP-2, COMP-4 and COMP-5 items should not be declared for DISPLAY

files (CARD-READER, PRINTER, PUNCH, or REMOTE). The use of such items will

cause question marks to print for characters which have no graphic and may

cause undesired control characters to be developed.

Care should be exercised in redefining COMP, COMP-I, COMP-4, COMP-5 items

on a character basis since the decimal number does not correspond in mapping

to its binary equivalent.

The following rules apply when mixing usages:

1. COMP-2 items cannot be subordinate to ASCII, COMP, or DISPLAY-I

group items.

2. COMP, COMP-4 and COMP-5 items can be subordinate to COMP, COMP-1,

DISPLAY or DISPLAY-I group items.

6-87

3. COMP-2 items can be subordinate to DISPLAY group items. The

compiler, however, may have to insert a 4-bit filler if DISPLAY

elementary items follow COMP-2 elementary items.

4. Extreme care must be exercised when moving DISPLAY or DISPLAY-I

group items if either the sending or receiving field contains

subordinate COMP, COMP-2, COMP-4 or COMP-5 data.

5. No mixing of USAGE or contradiction of USAGE is permitted sub­

ordinate to a group declared CONTROL-POINT, EVENT, INDEX or LOCK.

These items may not be subordinate to an item of any other USAGE.

6. Automatic translation of data takes place when moving data be­

tween ASCII, COMP-2, DISPLAY, and DISPLAY-I i terns. Any character

in one character set which is undefined in the other character

set is translated into the question mark.

7. INDEX, EVENT, LOCK and CP items must not be declared subordinate

to an item of USAGE COMP, COMP-I, COMP-2, COMP-4, COMP-5, ASCII,

DISPLAY or DISPLAY-I. INDEX, EVENT, LOCK and CP items may not

be mixed in an 01 level. When an array is to contain INDEX,
EVENT, LOCK or CP items, USAGE must be declared at the 01 level.

8. Floating-point format numeric literals may only be moved to

floating-point COMP-4 or COMP-5 receiving fields.

USAGE is the dominant declaration for internal format representation within
the computer system and is defined for use as follows:

6-88

a. DISPLAY. The data item is assumed to contain eight-bit-coded EBCDIC

b.

c.

characters,

DISPLAY-I.

characters,

ASCII. The

acters, ·six

six characters for each B 7000/B 6000 word.

The data is assumed to contain six-bit-coded BCL

eight characters per computer word.

data is assumed to contain eight-bit-coded ASCII char­

characters for each B 7000/B 6000 word. If an array is to

contain ASCII characters, the 0.1 level must be declared ASCII and no

subordinate item may declare a usage other than ASCII. No data item

within an ASCII array may be declared as numeric or edited numeric.

d, COMPUTATIONAL (COMP). The data item is to be used primarily for

arithmetic operations; therefore, it is maintained in a binary

coded representation.

1. COMPUTATIONAL implies a signed item. No further sign specifica­

tion is required. (An unsigned value may be obtained through

the ABS function.)

USAGE

g. COMPUTATIONAL-4 (COMP-4). This data item will be a single precision

internal floating point operand which will occupy one word of memory;

however, the item is not necessarily word-aligned.

A PICTURE entry is not permitted for a COMP-4 item.

All comments for COMP items apply equally to COMP-4 items except the

size requirements, allowable picture characters, and that COMP-4 is

only permissible in an elementary item description.

h. COMPUTATIONAL-5 (COMP-5). This data item will be a double precision

internal floating point operand which will occupy two words of memory;

however, the item is not necessarily word-aligned.

A PICTURE entry is not permitted for a COMP-5 item.

All comments for COMP items apply equally to COMP-5 items except the

size requirements, allowable picture characters, and that COMP-5 is

only permissible in an elementary item description.

i. INDEX. An elementary item described with the USAGE IS INDEX clause

is called an index data item. If a group item is described with the

USAGE IS INDEX clause, the elementary items in the group are all index

data items. The group itself is not an index data item and cannot be

used in SEARCH or SET statements or in a relational condition. An

index data item can be referred to directly only in a PERFORM, SEARCH,

or SET statement, or in a relational condition. An index data item

can be part of a group referred to in a MOVE or input-output state­

ment, in which case no conversion will take place. The SIZE,SYNCHRO­

IZED, BLANK WHEN ZERO, JUSTIFIED, PICTURE, and VALUE clauses cannot

be used to describe group or elementary items described with the

USAGE IS INDEX clause.

Index data items can also be declared subordinate to a usage DISPLAY

group item. This offers compatibility with both B 4700 and B 1700

systems COBOL languages and with the ANSI 1968 and ANSI 1974 COBOL

standards. The internal representation of all index data names is

that of a signed seven-digit four bit character field. This inter­

nal representation is the same as the B 4700 and B 1700 COBOL com­

pilers give for index data items.

j. INDEX FILE. DIRECT SWITCH FILES may be declared at the 77 level in

WORKING or LOCAL-STORAGE SECTIONS by specifying a usage of INDEX FILE.

6-91

I

I

USAGE

Example:

77 switch-file-identifier INDEX FILE [CONTAINS file-name-I

[,file-name-2) ...]

The CONTAINS clause is used to describe which DIRECT files compose

the switch. Each file named in the switch must be a DIRECT file

and an FD must be provided.

The CONTAINS clause must be present if the DIRECT SWITCH FILE is

not received as a parameter. When the DIRECT SWITCH FILE is received

as a parameter, or declared in LOCAL-STORAGE, then the RECEIVED clause

must be used to indicate that it is RECEIVED BY REFERENCE (name) and

the CONTAINS clause must not be specified.

A DIRECT SWITCH FILE identifier can be used any place in the syntax

that a DIRECT FILE identifier can be used, namely in OPEN, CLOSE,

READ, and WRITE statements and in attribute expressions.

Example:

OPEN INPUT SWFL(X)

READ SWFL(X) KEY IS RCINR(X) INTO RCDAREA(X)

All reads and writes with DIRECT SWITCH FILES must use a KEY clause

if non-serial action is desired, even if all the DIRECT FILES in the

switch are declared to be random.

If DIRECT SWITCH FILES are passed as parameters, then the correspond­

ing formal parameter description must be a DIRECT SWITCH FILE. A pro­

gram which receives a DIRECT SWITCH FILE as a parameter must not have

an FD for the files contained in the switch, since these files were

described in the program which passed them as parameters.

k. EVENT. Items described with the USAGE IS EVENT clause are used to

6-92

give the programmer a means of testing and controlling DIRECT input-

ou tput operations (i.e., I-O COMPLETE). For asynchronous processing,

EVENT's may be used as a common interlock between two or more processes,

thus providing an efficient means of correlating the activities of one

process with its related processes.

EVENT usage is allowed only on a 77 or 01 level item and, if used at

an 01 level, may have a subordinate OCCURS clause. (See the OCCURS

clause.) Except for documentary uses of the SIZE clause, no other

entries are permitted with an EVENT name.

I DATA-BASE SECTIO~

DATA-BASE SECTION

The purpose of the data-management or data-base system is to create and

maintain data. This data is accessed by a COBOL program using an extended

set of verbs. Use of these verbs requires very little programming effort,

but gives COBOL programs the ability to INQUIRY, CREATE, and MODIFY data

stored in a common data-base. The advantages and use of a data-base with

the DMSII system are described in the B 7000/B 6000 HOST LANGUAGE REFERENCE

MANUAL, Form No. 5001498.

6-103

I LOCAL-STORAGE-SECTION I
LOCAL-STORAGE SECTION

The optional LOCAL-STORAGE SECTION describes parameters received by a proce­

dure when it is invoked.

LD local-storage-name.

The LD entry is followed by item descriptions as used in the WORKING-STORAGE

SECTION.

Local storage is associated with a specific procedure by the USE statement

mentioning the local-storage-name. The local-storage-name must be unique.

An LD entry is required for each procedure that receives data as parameters

(i.e., the USING clause is used in both the invocation of the procedure and

the USE statement in the section header).

6-104

GROUP ELEMENTARY

DESTINATION NUMERIC ~Q . (.) ' (.) 0 ITEM <(- <(cc w c:i: (.) a: w :c a:
w~ a. w :cw~ :c -... L9 NON- :E - ..J :E a. :E- a. ~

INTEGER :::iC ..J :::> Q ..J w > > a. Q INTEGER <(:::> <(zW <(al a. ~ <(- <(:E ..J zW z
:E a. c:; ..J 0 !:!:! 0 :E ..J a. ~ 0

a.
~ . Cl.I u.

SOURCE (.) Cl.I "'1' > > > > > > > (.) i5 i5 Cl.I > > > > > a.
~

N <(<(~ <(<(<(<(<(<(<(<(<(<(ITEM :E a. ti.. ..J ..J a. a. ..J ..J ..J ..J ..J - ..J ..J - ..J ..J - ..J
0 :E :E a. a. :E :!: a. a. a. a. a. c:; a. a. c:; a. a. c:; a.
(.) 0 8 Cl.I Cl.I 0 0 Cl.I Cl.I Cl.I Cl.I Cl.I Cl.I Cl.I Cl.I Cl.I Cl.I

(..) i5 i5 (.) (.) i5 i5 i5 i5 i5 ~ i5 i5 ~ i5 25 ~ i5

COMP 16 16 17 17 17 * * * 16 17 17 * 16 17 17 17 17 17 17 17 17 17 17 17 17 17
a.
:::> COMP-2 16 2 2 2 2 * * * 2 2 2 * 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0
a:

DISPLAY-1 16 2 2 2 2 * * * 2 2 2 * 2 2 2 2 2 2 2 2 2 2 2 2 2 2

c.:i ASCII 16 2 2 2 2 * * * 2 2 2 * 2 2 2 2 2 2 2 2 2 2 2 2 2 2

DISPLAY 16 2 2 2 2 * * * 2 2 2 * 2 2 2 2 2 2 2 2 2 2 2 2 2 2

..J FLOATING-POINT * * * * * 5 *
<("UNDIGIT" * 6 * * * * * * 6 * * * * * * * * * * * * * * * * * a:
w NUMERIC INTEGER * 25 25 25 25 3 7 3 1 1 1 3 1 1 1 20 20 25 25 25 26 26 26 * * *
~ NUMERIC NON-INTEGER * 25 25 25 25 3 7 3 1 1 1 3 1 1 1 20 20 * * * * * * * * * -
..J ALPHANUMERIC * 23 23 23 23 * * * 9 9 9 * 9 9 9 21 21 23 23 23 24 24 24 23 23 23

COMP-4/COMP-5 * 14 14 * 14 19 7 8 12 12 12 8 12 12 12 22 22 14 * 14 15 * 15 * * *
OMS FIELD * * * * * 4 7 4 .4 4 4 4 4 4 4 22 22 * * * * * * * * *

COMP * 14 14 * 14 19 7 8 12 12 12 8 12 12 12 22 22 14 * 14 15 * 15 * * *
COMP-2 16 2 2 * 2 3 7 3 1 1 1 3 1 1 1 20 20 14 * 14 15 * 15 * * * ~ INTEGER

a: DISPLAY-1 16 2 2 * 2 3 7 3 1 1 1 3 1 1 1 20 20 14 * 14 15 * 15 * * * w I
:!: DISPLAY 16 2 2 * 2 3 7 3 1 1 1 3 1 1 1 20 20 14 * 14 15 * 15 * * * I
:::> z COMP * * * * * 18 7 8 12 12 12 8 12 12 12 22 22 * * * * * * * * *

> NON- COMP-2 16 2 2 * 2 3 7 3 1 1 1 3 1 1 1 20 20 * * * * * * * * ..
a: INTEGER DISPLAY-1 16 2 2 * 2 3 7 3 1 1 1 3 1 1 1 20 20 * * * * * * * * *
<(

DISPLAY ~ 16 2 2 * 2 3 7 3 1 1 1 3 1 1 1 20 20 * * * * * * * * *
z
w NUMERIC- DISPLAY-1 16 2 2 * 2 * * * * * * * * * * * * 2 2 2 13 13 13 * * *
:E EDITED DISPLAY 16 2 2 * 2 * * * * * * * * * * * * 2 2 2 13 13 13 * * *
w DISPLAY-1 16 2 2 2 2 10 11 10 9 9 9 10 9 9 9 21 21 2 2 2 13 13 13 2 2 2
..J ALPHA-
w

NUMERIC ASCII 16 2 2 2 2 10 11 10 9 9 9 10 9 9 9 21 21 2 2 2 13 13 13 2 2 2

DISPLAY 16 2 2 2 2 10 11 10 9 9 9 10 9 9 9 21 21 2 2 2 13 13 13 2 2 2

ALPHA- DISPLAY-1 16 2 2 2 2 * * * * * * * * * * * * 2 2 2 13 13 13 2 2 2

NUMERIC ASCII 16 2 2 2 2 * * * * * * * * * * * * 2 2 2 13 13 13 2 2 2
EDITED DISPLAY 16 2 2 2 2 * * * * * * * * * * * * 2 2 2 13 13 13 2 2 2

DISPLAY-1 16 2 2 2 2 * * * * * * * * * * * * 2 2 2 13 13 13 2 2 2
ALPHA-

ASCII 16 2 2 2 2 * * * * * * * * * * * * 2 2 2 13 13 13 2 2 2
BETIC

DISPLAY 16 2 2 2 2 * * * * * * * * * * * * 2 2 2 13 13 13 2 2 2

Figure 7-10. Valid MOVE Statement Combinations

7-79

The following rules describe the valid combinations of sending and receiving

fields shown in figure 7-10. These rules apply in addition to the standard

alignment rules for destinations as explained in the discusssion of the

JUSTIFIED clause.

* Illegal Move

1. Numeric-decimal move; absolute value moved if destination is de­

scribed as unsigned. Completion of operation guarantees that zones

and sign of destination, if any, are valid. If digits are greater

than 9, they may not be moved unchanged from the source.

2. Alphanumeric move; left justified with truncation or space fill

(zero fill if the destination is COMP-2) on the right (except if

the destination is described with the JUSTIFIED clause). If the

usage of the source and destination are not the same, translation

occurs using the standard MCP translate tables. The source is con­

sidered as having a category of alphanumeric. If the source is a

group item, the destination is considered as having a category of

alphanumeric (any editing or decimal point is ignored).

3. Numeric move; the decimal source is converted to binary. "UNDIGITS"

existing in the source are changed to values less than 10. If the

destination is COMP-4 or COMP-5, the source value will be approx­

imated in binary floating-point.

4. Numeric move; the bit pattern of the source is considered to be an

unsigned integer operand, and is extended to doubl.e precision

binary or converted to decimal if necessary.

5. Numeric move; decimal value converted to nearest binary floating­

point approximatiori, and adjusted to single or double precision.

6. "UNDIGIT" move; right justified, zero fill on left.

7. Numeric move; the source is converted to a binary integer if

necessary. The destination is considered to be an unsigned binary

integer operand. High-order bits of the source may be truncated.

8. Numeric move; the binary source value is adjusted to the precision

and scale of the destination. If the source value is floating-point,

the source value is integerized.

9. Numeric move; the source is considered as a numeric unsigned integer,

and is moved as described in rule-1.

10. Numeric move; the source is considered as a numeric unsigned integer,

and is moved as described in rule-3.

7-80

SORT

The SORT statement is used to create a sort-file by executing input pro­

cedures or by transferring records from another file, to sort the records

in the sort-file on a set of specified keys and, in the final phase of

the operation, to make available each record from the sort-file, in sorted

order, to an output procedure or to an output file.

The format for the SORT statement is as follows:

SORT [! PURGE]
file-name-1 ~~ ON ERROR] ON !ASCENDING l KEY data-name-1

DESCENDING

[, da ta-name-2] ...

[, ON I ~~~~~rJ~~Gl KEY da ta-name-3 [, da t a-name-4] ...] ...

USING file-name-2 [1~E l J
RELEASE

INPUT PROCEDURE. IS section-name-! [I THROUGH l section-name-2] THRU

GIVING file-name-3 [1~SE l]

OUTPUT PROCEDURE IS section-name-3 [j~UGHlsection-name-4]

!MEMORY SIZE formula-! ·i~~~~~CTERS]] l MODULES

rISK SIZE. formula-2 1:g:~ES l]

[RESTART IS l formula-3 l]
data-name-5
literal-!

More than one SORT statement may appear in a program. SORT statements can

appear anywhere in the PROCEDURE DIVISION, .except within INPUT and OUTPUT

procedures associated with a SORT statement or within the DECLARATIVES.

7-113

I

File-name-1 must have a sort-file description in the DATA DIVISION. File­

name-2 and file-name-3 must be described in a file description entry, not

in a sort-file description entry.

The keys are listed from left to right in the SORT statement in order of sig­

nificance, without regard to how they occur within the record. Data-name-1

is the major key followed in descending significance by additional keys if any.

a. When a SORT file-name-1 PURGE clause is used, PURGE implies that on

a parity error, the bad record will be skipped and SORTing will

continue.

b. When a SORT file-name-1 RUN clause is used, RUN implies that on ,a

parity error, the bad record will be SORTed.

c. When a SORT file-name-1 END clause is used, END implies that the

SORT will be DSed on encountering a parity error.

d. When an ASCENDING clause is used, the sorted sequence will be from

the lowest value of key to highest value.

e. When a DESCENDING clause is used, the sorted sequence will be from

the highest value of key to lowest value.

f. Both ASCENDING and DESCENDING ekys can be used in one SORT statement.

g. When a USING file-name-2 LOCK clause is used, LOCK implies that the

file will be LOCKed at the end of the SORT.
I

h. When a USING file-name-2 PURGE clause is used, PURGE implies close

with PURGE.

i. When a USING file-name-2 RELEASE clause is used, RELEASE implies

close with RELEASE.

j. When a GIVING file-name-3 LOCK clause is used, LOCK implies that the

file will be closed with LOCK at the end of the SORT.

k. When a GIVING file-name-3 RELEASE clause is used, RELEASE implies

close with RELEASE.

NOTE: Items a thru c and g thru k can be implemented only when the

B2500 system dollar option is set.

Every data-name appearing in the KEY clause must be described under the DATA

DIVISION entry for the sort-file-name, and these KEY items are subject to the

following rules:

7...,114

USE

The USE statement is employed in certain declaratives and has three different

functions:

a. It can specify supplemental procedures for I/O error and label­

handling.

b. It can specify procedures to be employed in a parallel processing

environment, and

c. It can specify interrupt procedures.

The format for the USE statement has five options which are as follows:

Option 1:

USE AFTER STANDARD ERROR PROCEDURE ON {
INPUT-OUTPUT }
I-O
INPUT •
file-name-1 [,file-name-2] •••

Option 2:

.!I§];_ AFTER RECORD SIZE ERROR ON {file-name-1 [,file-name-2] .•. }·

Option 3:

USE {BEFORE l STANDARD {BEGINNING\[REEL)
-- AFTER j ENDING f\. FILE

I-o
LABEL PROCEDURE ON INPUT • {

INPUT-OUTPUT }

OUTPUT
file-name-1 [,file-name-2]

Option 4:

{
EXTERNAL { identi~ier-1 } AS

mnemonic-name
USE AS GLOBAL PROCEDURE

PROCEDURE}

WITH { i~~=~~:~~rage-name} [' { i~~=~~:~~rage-name J]

Option 5:

USING identifier-2 [, identifier-3] ..• J .
USE AS INTERRUPT PROCEDURE.

Option 6:

!EXCEPTION l
USE AFTER STANDARD ERROR PROCEDURE ON

file-name-1 \ [, file-name-2] ... j
INPUT
OUTPUT
I-0
EXTEND

7-125

EJ
A USE statement, when present, must immediately follow a section header in the

Declaratives Section. The remainder of the section must consist of zero, one

or more procedural paragraphs that define the procedures to be used.

For Example:

section-name SECTION. USE statement.

(paragraph-name . (sentence) .••) •.•

The USE statement itself is never executed; rather, it defines the conditions

calling for the execution of the USE procedures. Only CALL, EXECUTE, PROCESS

or RUN statements may reference section-name. There must be no reference to

the "main body" of the PROCEDURE DIVISION from within a USE section.

Within a given format, a file~name must not be referred to, implicitly or ex­

plicitly, in two or more identical USE statements. The same file-name can ap­

pear in a different option of the USE statement. However, appearance of a

file-name in a USE statement must not cause the simultaneous request for exe­

cution of more than one USE declarative. A file-name may not represent a sort­

file. Within a USE procedure, there must not be any reference to any non­

declarative procedures. Conversely, in the non-declarative portion there must

be no reference (other than by a CALL, EXECUTE, PROCESS or RUN) to procedure­

names that appear in the declarative portion. A GO TO or PERFORM statement

in an Option 1, Option 2, or Option 3 declarative may reference a paragraph­

name in any other Option I, Option 2, or Option 3 declarative section.

The designated procedures are executed by the input-output system at the

appropriate time as follows:

a. In Option 1, after completing the standard input-output error routine

on files assigned to DISK, TAPE, DISKPACK, or REMOTE.

b. In Option 2, after making available any record from TAPE of a BLOCK

which is less than the specified block size.

c. In Option 3, before or after a beginning or ending input label-check

procedure is executed.

d. Before a beginning or ending output label is created.

e. After a beginning or ending output label is created, but before it

is written.

f. Before or after a beginning or ending input-output label-check

procedure is executed.

When Option 2 is used:

a. The RECORD SIZE ERROR is applicable to input TAPE files only.

b. The RECORD SIZE ERROR may not be specified if the file is declared

to contain variable length records or blocks.

c. The ON phrase must specify file-name-1, file-name-2 ... instead of INPUT.

When Option 3 is used:

a. If the file-name option is used, the file description entry for

file-name must not specify LABEL RECORDS ARE OMITTED.

b. If the INPUT, OUTPUT, or I-O clause is used, the procedures will

not be executed for any INPUT, OUTPUT, or I-O file whose file de­

scription entry specifies LABEL RECORDS ARE OMITTED.

c. If BEGINNING or ENDING is not included, the designated procedure

will be executed for both beginning and ending labels.

d. If REEL or FILE is not included, the designated procedure will be

executed for the appropriate REEL and FILE labels.

e. Option 3 is applicable only to files assigned to tape.

Within the procedures in a USE declarative in which the USE sentence contains

either the INPUT or the OUTPUT option, references to label items must be

qualified.

I

I

I

Option 4 enables untyped procedures or subroutines to be declared GLOBAL in I
the same way as they are declared EXTERNAL. This statement is placed in the

header of a section to be used as a task.

If the EXTERNAL phrase is used, it identifies the separately compiled pro­

gram which is to be used as the task when this section is referenced, In

addition, there must be no paragraphs in this section when this phrase is

employed. Identifier-1 must be defined in the WORKING-STORAGE SECTION such

that its value may be a program-name. If the mnemonic-name is used, it must

be defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

Local-storage-name must be defined in the LOCAL-STORAGE SECTION and must be

unique among USE statements. A local-storage-name must be present if the

USING phrase is present.

7-127

If the EXTERNAL phrase is used, the USING phrase is included in the USE
statement if, and only if, there is a USING phrase in the PROCEDURE DIVISION

header of the referenced, separately compiled program. The number, type and

order of the operands in the two USING phrases must then be identical.

When GLOBAL is specified, an untyped procedure must exist in the host with

the same name as the section to which the USE is attached.

Identifier-2, identifier-3, ••• , must be uniquely defined as files in the

FILE SECTION or as level 01 or 77 items in the LOCAL-STORAGE associated with

the USE procedure. They may describe any combination of data items, control­

point items, event items, index data items, or lock items.

I Option 5 of the USE statement is used to specify a declarative as an

interrupt procedure.

An interrupt procedure provides a means of interrupting a process when an

event-item attached to that procedure. is caused. The USE statement may thus

be used to declare such interrupt procedures.

Statements which are to be executed when the event is caused and the inter­

rupt procedure is allowed, must follow the USE statement.

I Option 6 of the USE statement is used as part of the ANSI 74 Sequential I/O
Module specification; thus, requiring that the ANSI74 system dollar option

be set.

The words EXCEPTION and ERROR are synonymous.

Specifically, this USE routine option will function the same as Option 1 with

the following exception: READ statements may have optional AT END clauses's.

This means if a READ statement which contains no AT END clause gets an end-of­

file exception, the appropriate USE routine will be executed. If no USE

routine exists, the program will be terminated.

7-128

WAIT

The WAIT or AWAIT statement is used as part of the user's control of direct

access input-output operations and for communication between processes in an

asynchronous processing environment.

The format of the WAIT statement is as follows:

Option 1:

!formula I
event-identifier
INTERRUPT

Option 2:

WAIT control-point-identifier ~[subscript,] EXCEPTIONEVENT)

Option 3:

WAIT [AND RESET] [formula]

Option 4:

event-identifier-I [, event-identifier-2] ...

[GIVING data-name-I]

WAIT area-identifier [ON EXCEPTION statement [ELSE statement]]

All parentheses are required. When a subscript is specified, a maximum of one

subscript or index is allowed and it must be followed by a comma.

Option 1 of the WAIT statement containing an event-identifier will cause pro­

cessing to be suspended until event-identifier has been caused explicitly by a

CAUSE statement, or implicitly by option 3 of the READ statement or option 4

of the WRITE statement. The EVENT is not automatically reset.

If formula is used in option 1, the program will be suspended for the number

of seconds (or fraction thereof) specified. Formula must be greater than or

equal to zero. A control-point-attribute may be specified as part of formula.

However, the formula must then by enclosed in parenthesis and the specified

attribute must be typed INTEGER or typed REAL.

The INTERRUPT phrase causes execution of this task to be suspended until at

least one of its interrupt procedures has been executed.

Option 2 is identical to an option 1 with an event-identifier specified. The

event-identifier in this case is the EXCEPTIONEVENT task attribute associated

with the control-point-identifier.

7-129

I

WAIT

Option 3 causes a WAIT for the number of seconds specified by formula (if

specified) or until one of the event-identifiers has been CAUSE'd. If the

AND RESET phrase was specified, the event-identifier _which caused the WAIT

to be terminated will be RESET. If the number of seconds specified by

"formula" elapse before one of the event-identifiers is CAUSE'd, the AND

RESET has no effect. The GIVING phrase provides an integer value to indicate

by which method the WAIT was terminated. Thus, the data-name will contain

a 1 if the wait was terminated because the number of seconds specified in

"formula" had elapsed, a 2 if event-identifier-I was CAUSE'd, a 3 if event­

identifier-2 was CAUSE'd, etc. If a "formula" was not specified, then data­

name will contain a 1 if the WAIT was terminated because event-identifier-I

was CAUSE'd, a 2 if event-identifier-2 was CAUSE'd, etc.

Option 4 of the WAIT statement will cause processing to be suspended until

the DIRECT input-output operation (option 3 of the READ statement or option 5

of the WRITE) is complete. Area-name is the name of an array specified as a

direct array by use of the RECORD AREA clause.

The ON EXCEPTION phrase of option 4 offers a means of detecting abnormal file

conditions when DIRECT I/O operations are used. The specific condition may

be determined by using the attributes described in the B 7000/B 6000 INPUT/

OUTPUT SUBSYSTEM REFERENCE MANUAL, Form No. 5001779.

The following are examples of valid WAIT statements:

WAIT CP-I(5,EXCEPTIONEVENT).

WAIT MYSELF(EXCEPTIONEVENT) .

WAIT EVENT-NAME.

WAIT X DIV 2.

WAIT (X).

WAIT CP-I(3,TASKVALUE).

WAIT (MYSELF(TASKVALUE)).

WAIT INTERRUPT.

WAIT 35 EVENT-1, EVENT-2, EVENT-3, GIVING XYZ.

WAIT AND RESET 10 EVENT-6.

WAIT BUF-NAME ON EXCEPTION STOP "ERROR".

7-130

SEQERR

SINGLE

STACK

This option activates the resequencing of source-language

output files (i.e., NEWTAPE, pass-1 listing, and pass-2

listing). The SEQ option is normally associated with a

beginning sequence number and an increment which is

added for subsequent source-language images. These

two integer values may be specified on a $ card prior to

the $ card which activates the SEQ, on the $ card which

activates the SEQ, or the default value (10) supplied

automatically by the compiler may be used. As long as

SEQ is set, the beginning sequence number is incremented

by the increment for each source-language record, and

that value is retained while SEQ is not set. Thus, set­

ting SEQ does not restore the beginning sequence number.

The beginning sequence number is initialized when an un­

signed integer is found in any $ card (with or without

SEQ set). The increment is initialized by specifying a

plus sign (+) followed by an integer in any $ card (with

or without SEQ set). The two integer values need not be

specified in the same $ card nor even on the $ card spe­

cifying the SEQ option.

With this option, the compiler will print warning mes­

sages for sequence errors in the source-language input.

At the end of a compilation which had sequence errors, a

code file will not be created. Thus, sequence errors

which print as warnings behave as though they were fatal

when SEQERR is set. The settings of NEWSEQERR, SEQ, SPEC

and CHECK have no effect on the setting of SEQERR.

This option causes the compiler output listing to be

single spaced. SINGLE is automatically set unless the

option DOUBLESPACE is set when the compiler is compiled.

The SPEC option suppresses printing of warning messages,

sequence error messages, printing of the expansion of

the DMS INVOKE statement, and the printing of the list

of elementary items involved in a CORRESPONDING option.

This option causes relative stack addresses and the

name of the associated item to be printed on the output

listing. The STACK option will become active when

STACK is set or both LIST and CODE are set.

13-21

STATISTICS

I

13-22

It is possible to obtain statistics which reveal the

characteristics of a COBOL object job. Statistics are

accumulated for a program when the STATISTICS dollar op­

tion is set. This option may not be changed after the

compiler has encountered the beginning of the IDENTIFI­

CATION DIVISION. When this option is set, the compiler

will include code to determine how many times each para­

graph is entered and how much time is spent executing the
instructions comprising each paragraph. The STATISTICS

dollar option can only be set for a compilation at

level 2.

Each paragraph has a unique number. This number is

printed on the right-hand side of the compiler listing

and corresponds to one line of output on the system

summary of the statistics. This summary is written on

the job's diagnostic file (the file on which program

dumps appear). A simple example follows:

PROCEDURE DIVISION.

Pl.

P2.

P3.

OPEN INPUT CARD-FILE.

READ CRD AT END GO TO DONE.

IF FLD=O THEN PERFORM ZERO­

RECORD.

MOVE 5 TO R-CLASS.

Pl rs #0001

P2 IS #0002

P3 IS #0003

The output of the statistics summary would look like the

following example:

STATISTICS (Cont)

BLOCK FREQ TOTAL TIME AVG TIME

MAIN 1 0.132267 0.132267

1 1 600 600

2 1000 500 0.500000

3 366 36600 100

The column labeled BLOCK specifies the paragraph, as

numbered on the source listing, for which the line of

output applies. The line labeled MAIN is the time

necessary to initialize user data areas and construct

the stack.

The data listed under the heading FREQ reflects the

number of times the paragraph was entered. Paragraphs

never entered are not listed.

The data under TOTAL TIME is the total processor time

spent processing the paragraph. The column AVG TIME is

equal to the value of TOTAL TIME divided by FREQ. One

should note that times printed in both of these columns

without a decimal point are times in microseconds. Thus

the total time spent in Pl would be 600 microseconds;

but, for P2 it would be one half of a second.

A statistics summary is produced at END-OF-TASK, or when

the program is DS-ed.

13-23

VO IDT

Integer

+ Integer

Non-Numeric Literal

13-24

This option causes the compiler to print the normal

heading and footing of the compilation listing even

though the option LIST was never set.

This option causes all source-language input (primary

and secondary), except$ cards, to be ignored until the
option becomes not set.

This option causes all secondary source-language input
except $ cards to be ignored until the option becomes

not set. This option is not active unless the MERGE

option is set.

When this option is set, a cross-reference listing will

be produced of declarations and uses of all data-names,

file-names, condition-names, etc. Operation of XREF is

in no way dependent on the setting of LIST. By use of

SET, POP, and RESET, the XREF operation may be re­

strictecl to portions of the program.

This option causes all $ control cards to be listed.

When an integer value (not preceded by the symbol +)

appears on a $ control card, the integer value is used

as the beginning sequence number for the operation of

the SEQ operation. This is not a settable option.

When an integer value with a preceding plus symbol

(with or without intervening blank spaces) appears in

a $ control card, the integer value will be used as

the increment for operation of the SEQ $ option. This

is not a settable option.

When a non-numeric literal is specified in a $ control

card, the literal will be used for the replacement
operation performed by the NEWID $ option.

. '

PROCEDURE DIVISION (cont)

Option 1:
STOP RUN

1------------------------~
Option 2:

STOP {literal-I } [' r literal-2 } J
identifier-I l identifier-2 ...

Option 1:

SUBTRACT {Ii teral-1 }
identifier-I [, {Ii teral-2 } J

identifier-2 ... FROM

identifier-m [ROUNDED] [' identifier-n [ROUNDED]] ...
[; ON SIZE ERROR statement [ELSE statement]]

Option 2:

SUBTRACT {Ii teral-1 } [, { li teral-2 } J
identifier-! identifier-2 ...

FROM { literal-m } GIVING identifier-m
identif ier-n [ROUNDED] [, identifier-o (ROUNDED]] ...

[; ON SIZE ERROR statement [ELSE statement]]

Option 3:

SUBTRACT {CORR }
CORRESPONDING identifier-1

FROM identifier-2 [ROUNDED]

(; ON SIZE ERROR statement [~ statement]]

TERMINATE report-name-I [, report-name-2] .••

(identifier }
UNLOCK lock-identifier ••.

event-identifier

Option 1:

. ..J
{INPUT-OUTPUT

~AFTER STANDARD ERROR PROCEDURE ON 1.:Q . INPUT
file-name-I [, file-name-2 J

Option 2:

.!!.§§. AFTER RECORD SIZE ERROR ON { file-name [' file-name-2] ... } .

D-23

I

I

PROCEDURE DIVISION (cont)

Option 3:

USE { BEFORE } STANDARD
AFTER { BEG INNING } { REEL }

ENDING FILE

I-0
LABEL PROCEDURE ON {

INPUT-OUTPUT }

INPUT ·

Option 4:

USE { EXTERNAL
- AS GLOBAL

OUTP.YT
file-name-I [, file-name-2] •••

{ identi~ier-1 }. AS PROCEDURE }
mnemonic-name

PROCEDURE.

[; WITH {local-file-name } [{local-file-name }]
---- local-storage-name ' local-storage-name

~ identifier-2 [, identifier-3] ... J.

""""-·' J

1 Option 5:

I

USE AS INTERRUPT PROCEDURE.

Option 6:

USE AFTER STANDARD

Option

EXCEPTION!
ERROR

{
formula)

WAIT event-identifier
INTERRUPT

file-name-I II. file-name-2] .. . C­
INPUT

PROCEDURE ON OUTPUT
J_.=..Q
E ND

-------------------------~---
Option 2:
WAIT control-point-identifier .i[subscript,] EXCEPTIONEVENT)

Option 3:

WAIT [AND RESET] [formula]

event-identifier-I [, event-identifier-2] •..
[GIVING data-name-I]

Option 4:

WAIT area-identifier [ON EXCEPTION statement [ELSE statement]]

D-24

~

........
C)
C)
C)

~
~

:::0 en rr1 C) .,, ,,., C)
:::0 C)
rr1 z en ..
(') CD
rr1 -t -· s: CD

en
)>
z n c
)> 0 r

g:J

0
r-

5001464

Printed in U.S.A.

I ~1"BINDER-I I
r---1~·· BINDER-1

Printed in U.S.A. August 1977 5001464

